forked from eulerlab/processing_pypeline
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreadScanM.py
232 lines (179 loc) · 8.33 KB
/
readScanM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
# -*- coding: utf-8 -*-
"""
Created on Wed May 18 14:45:10 2016
@author: andre
"""
import numpy as np
import struct
import sys
#def get_key(key=None,dictionary=None):
# """small function to get values from keys in the dictionary of the header.
# necessary since the header output has a funny format. To be removed in
# later revisions."""
# return dictionary[str(key)][0:-1]
def read_in_data(filePath=None, header = None,
readChan1=False,readChan2=False,readChan3=False,readChan4=False):
"""function to read the binary data (the actual data coming from the
Analog Inputs of the NI cards), as recorded by scanM. It requires the
dictionary provided by "read_in_header" function to properly process data"""
# grab some variables from header dictionary:
frameWidth = int(header["FrameWidth"])
frameHeight = int(header["FrameHeight"])
# Stimulus Buffer per Frame (aka how many frames are stored in one chunk)
StimBufPerFr = int(header["StimBufPerFr"])
#it seems that the framer counter, counts backwards, so to get the number of
#frames, one needs to take the total number of frames and subtract from the counter
nFrames = (int(header["NumberOfFrames"])-int(header["FrameCounter"]))*StimBufPerFr
#recording buffer (aka how much of each channel is saved before the next one
#starts - necessary so that later one can sort the binary data according to the
#channels)
pixBuffer = int(header["PixelBuffer_#0_Length"])
##########___________READ IN PIXELS___________________
#open binary - right now the whole file is read, which could lead to problems for large files
#
#read data in x steps
steps=4
#open binary data
with open(filePath,"rb") as fid:
#move to end of file and get the total number of bytes
numBytes = fid.seek(0,2)
#move back to beg of file
fid.seek(0,0)
#the data is composed of 16bit integers,
#meaning each number is represented with 2 bytes
values=np.array([],dtype="int16")
for i in range(steps):
#print (fid.tell())
#read the first fifth of the file
length2read=int(numBytes/steps)
temp = fid.read(length2read)
numList = ["h"]*int(length2read/2) # each number is represented by two bytes
numList = "".join(numList)
values = np.concatenate((values,struct.unpack_from(numList,temp,offset=0)))
#number of channels recorded is given by the data lenght divided by result
# of frameWidthXframeHeightXnFrames
#- couldn't find this information in the header
nChannels = int(len(values)/(nFrames*frameWidth*frameHeight))
#empty arrays to store data
###to do: preallocate array the size of each should be (nFrames*frameWidth*frameHeight)
if readChan1 is True:
data1=np.zeros(shape = ((nFrames+1)*frameWidth*frameHeight),dtype=int)
# data1=np.array([],dtype="int32")
if readChan2 is True:
data2=np.zeros(shape = ((nFrames+1)*frameWidth*frameHeight),dtype=int)
# data2=np.array([],dtype="int32")
if readChan3 is True:
data3=np.zeros(shape = ((nFrames+1)*frameWidth*frameHeight),dtype=int)
# data3=np.array([],dtype="int32")
if readChan4 is True:
data4=np.zeros(shape = ((nFrames+1)*frameWidth*frameHeight),dtype=int)
beg1=0
beg2=0
beg3=0
beg4=0
for i in range(0,len(values),nChannels*pixBuffer):
if readChan1 is True:
end1 = i+int(pixBuffer)
data1[beg1:beg1+len(values[i:end1])]=values[i:end1]
beg1=beg1+len(values[i:end1])
if readChan2 is True and nChannels>=2:
end2 = i+int(2*pixBuffer)
chanInd2 = i+pixBuffer
data2[beg2:beg2+len(values[chanInd2:end2])]=values[chanInd2:end2]
beg2=beg2+len(values[chanInd2:end2])
if readChan3 is True and nChannels>=3:
end3 = i+int(3*pixBuffer)
chanInd3 = i+2*pixBuffer
data3[beg3:beg3+len(values[chanInd3:end3])]=values[chanInd3:end3]
beg3=beg3+len(values[chanInd3:end3])
if readChan4 is True and nChannels>=4:
end4 = i+int(4*pixBuffer)
chanInd4 = i+3*pixBuffer
data4[beg4:beg4+len(values[chanInd4:end4])]=values[chanInd4:end4]
beg4=beg4+len(values[chanInd4:end4])
#run through data array to sort into the different channels
#x=0
# for i in range(0,len(values),nChannels*int(pixBuffer)):
# if readChan1 is True:
# channel1Indx = i
# data1 = np.concatenate((data1,values[channel1Indx:channel1Indx+int(pixBuffer)]))
#
# if nChannels > 1 and readChan2 is True:
# channel2Indx = i+pixBuffer
# data2 = np.concatenate((data2,values[channel2Indx:channel2Indx+int(pixBuffer)]))
#
# if nChannels > 2 and readChan3 is True:
# channel3Indx = i+(2*pixBuffer)
# data3 = np.concatenate((data3,values[channel3Indx:channel3Indx+int(pixBuffer)]))
#
output = dict()
if readChan1 is True:
output["chan1"] = data1
if readChan2 is True and nChannels>=2:
output["chan2"] = data2
if readChan3 is True and nChannels>=3:
output["chan3"] = data3
if readChan4 is True and nChannels>=4:
output["chan4"] = data4
return output
def read_in_header(filePath=None):
"""function to read the header file recorded with scanM.
it stores the header data into a dictionary"""
###########_________READ IN HEADER FILE____________
#open header
fid = open(filePath,encoding="latin-1")
dicHead =dict()
for line in fid.readlines():
#for some reason (couldn't open unicode) the lines contain a mixture of binary and string
#skip every other one to get only the string values and
#use .split(",") to separate the data type description from the data
#temp=line.split(",")
temp=line[1:-1:2].split(",")
#print(temp)
#print(temp)
#store only the data, since in python the data type is defined in a different way
data = temp[1:]
if data: #means if there is something stored in the "data" variable
#now use the "=" sign to split the value description from the value itself
dicInput=data[0].split("=")
#remove first empty space, if it exists
if dicInput[0][0] == " ":
dicInput[0] = dicInput[0][1:]
#remove last empty space, if it exists
if dicInput[0][-1] == " ":
dicInput[0] = dicInput[0][0:-1]
try:
dicHead[dicInput[0]]=dicInput[1][0:-1]
except IndexError:
print("read more than necessary")
fid.close()
return dicHead
def to_frame(dataArray=[],nFrames=1,frameHeight=512,frameWidth=652):
"""function to reshape the dataArray into frame format. Currently it only
works with the direct scan mode (s shaped).Note that this function does not
cut off retrace periods.
nFrames is the number of recorded frames.\n
frameHeight is the number of pixels in the y axis.\n
frameWidth is the number of pixels in the x axis\n"""
c1=np.reshape(dataArray[0:nFrames*frameHeight*frameWidth],
(nFrames,frameHeight,frameWidth),
order="C")
return c1
def trigger_detection(frameData,triggerLevel=220,triggerMode=1):
"""detect triggers from one of the recorded channels.
in our setup normally channel3 contains trigger data"""
#create zeros array. later "ones" will be placed to indicate trigger point.
#the array length is equal to the number of frames on the channel used.
trigArray = np.zeros(shape=(len(frameData)),dtype=int)
indexes=list()
for i,frame in enumerate(frameData):
if np.any(frame>=triggerLevel):
indexes.append(i)
########TODO#########
### figure out if killing triggers that happen next to one another is desirable
#####################
#drop triggers depending on trigger mode.
indexes=indexes[::triggerMode]
#populate triggerArray with ones
trigArray[indexes]=1
return indexes,trigArray