diff --git a/cosipy/spacecraftfile/SpacecraftFile.py b/cosipy/spacecraftfile/SpacecraftFile.py
index 4615f149..b40a4887 100644
--- a/cosipy/spacecraftfile/SpacecraftFile.py
+++ b/cosipy/spacecraftfile/SpacecraftFile.py
@@ -518,6 +518,7 @@ def get_scatt_map(self,
scheme = 'ring',
coordsys = 'galactic',
r_earth = 6378.0,
+ earth_occ = True
):
"""
@@ -537,7 +538,10 @@ def get_scatt_map(self,
The coordinate system used in the scatt map (the default is "galactic).
r_earth : float, optional
Earth radius in km (default is 6378 km).
-
+ earth_occ : bool, optional
+ Option to include Earth occultation in scatt map calculation.
+ Default is True.
+
Returns
-------
h_ori : cosipy.spacecraftfile.scatt_map.SpacecraftAttitudeMap
@@ -574,7 +578,8 @@ def get_scatt_map(self,
# Define weights and set to 0 if blocked by Earth:
weight = np.diff(timestamps.gps)*u.s
- weight[earth_occ_index[:-1]] = 0
+ if earth_occ == True:
+ weight[earth_occ_index[:-1]] = 0
# Fill histogram:
h_ori.fill(x, y, weight = weight)
diff --git a/cosipy/threeml/COSILike.py b/cosipy/threeml/COSILike.py
index a27b8346..da3a508e 100644
--- a/cosipy/threeml/COSILike.py
+++ b/cosipy/threeml/COSILike.py
@@ -61,9 +61,11 @@ class COSILike(PluginPrototype):
attached to them
precomputed_psr_file : str, optional
Full path to precomputed point source response in Galactic coordinates
+ earth_occ : bool, optional
+ Option to include Earth occultation in fit (default is True).
"""
def __init__(self, name, dr, data, bkg, sc_orientation,
- nuisance_param=None, coordsys=None, precomputed_psr_file=None, **kwargs):
+ nuisance_param=None, coordsys=None, precomputed_psr_file=None, earth_occ=True, **kwargs):
# create the hash for the nuisance parameters. We have none for now.
self._nuisance_parameters = collections.OrderedDict()
@@ -78,6 +80,7 @@ def __init__(self, name, dr, data, bkg, sc_orientation,
self._data = data
self._bkg = bkg
self._sc_orientation = sc_orientation
+ self.earth_occ = earth_occ
try:
if data.axes["PsiChi"].coordsys.name != bkg.axes["PsiChi"].coordsys.name:
@@ -194,7 +197,7 @@ def set_model(self, model):
dwell_time_map = self._get_dwell_time_map(coord)
self._psr[name] = self._dr.get_point_source_response(exposure_map=dwell_time_map)
elif self._coordsys == 'galactic':
- scatt_map = self._get_scatt_map()
+ scatt_map = self._get_scatt_map(coord)
self._psr[name] = self._dr.get_point_source_response(coord=coord, scatt_map=scatt_map)
else:
raise RuntimeError("Unknown coordinate system")
@@ -325,16 +328,22 @@ def _get_dwell_time_map(self, coord):
return dwell_time_map
- def _get_scatt_map(self):
+ def _get_scatt_map(self, coord):
"""
Get the spacecraft attitude map of the source in the inertial (spacecraft) frame.
+ Parameters
+ ----------
+ coord : astropy.coordinates.SkyCoord
+ The coordinates of the target object.
+
Returns
-------
scatt_map : cosipy.spacecraftfile.scatt_map.SpacecraftAttitudeMap
"""
- scatt_map = self._sc_orientation.get_scatt_map(nside = self._dr.nside * 2, coordsys = 'galactic')
+ scatt_map = self._sc_orientation.get_scatt_map(coord, nside = self._dr.nside * 2, \
+ coordsys = 'galactic', earth_occ = self.earth_occ)
return scatt_map
diff --git a/docs/tutorials/spectral_fits/continuum_fit/crab/SpectralFit_Crab.ipynb b/docs/tutorials/spectral_fits/continuum_fit/crab/SpectralFit_Crab.ipynb
index f4a2f72a..10f8219d 100644
--- a/docs/tutorials/spectral_fits/continuum_fit/crab/SpectralFit_Crab.ipynb
+++ b/docs/tutorials/spectral_fits/continuum_fit/crab/SpectralFit_Crab.ipynb
@@ -16,7 +16,7 @@
"metadata": {},
"source": [
"**To run this, you need the following files, which can be downloaded using the first few cells of this notebook:**\n",
- "- orientation file (20280301_3_month.ori) \n",
+ "- orientation file (20280301_3_month_with_orbital_info.ori) \n",
"- binned data (crab_bkg_binned_data.hdf5, crab_binned_data.hdf5, & bkg_binned_data.hdf5) \n",
"- detector response (SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5.zip) \n",
"\n",
@@ -71,12 +71,12 @@
{
"data": {
"text/html": [
- "
12:03:40 WARNING The naima package is not available. Models that depend on it will not be functions.py:48\n",
+ "
11:14:38 WARNING The naima package is not available. Models that depend on it will not be functions.py:48\n",
"available \n",
"
\n"
],
"text/plain": [
- "\u001b[38;5;46m12:03:40\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The naima package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=916286;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=215945;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/functions/functions_1D/functions.py#48\u001b\\\u001b[2m48\u001b[0m\u001b]8;;\u001b\\\n",
+ "\u001b[38;5;46m11:14:38\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The naima package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=535691;file:///discover/nobackup/ckarwin/Software/COSIPY/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=713279;file:///discover/nobackup/ckarwin/Software/COSIPY/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py#48\u001b\\\u001b[2m48\u001b[0m\u001b]8;;\u001b\\\n",
"\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mavailable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n"
]
},
@@ -86,12 +86,12 @@
{
"data": {
"text/html": [
- "
WARNING The GSL library or the pygsl wrapper cannot be loaded. Models that depend on it functions.py:69\n",
+ "
WARNING The GSL library or the pygsl wrapper cannot be loaded. Models that depend on it functions.py:69\n",
"will not be available. \n",
"
\n"
],
"text/plain": [
- "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The GSL library or the pygsl wrapper cannot be loaded. Models that depend on it \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=868229;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=764392;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/functions/functions_1D/functions.py#69\u001b\\\u001b[2m69\u001b[0m\u001b]8;;\u001b\\\n",
+ "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The GSL library or the pygsl wrapper cannot be loaded. Models that depend on it \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=513794;file:///discover/nobackup/ckarwin/Software/COSIPY/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=648032;file:///discover/nobackup/ckarwin/Software/COSIPY/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py#69\u001b\\\u001b[2m69\u001b[0m\u001b]8;;\u001b\\\n",
"\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mwill not be available. \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n"
]
},
@@ -101,11 +101,13 @@
{
"data": {
"text/html": [
- "
WARNING We have set the min_value of K to 1e-99 because there was a postive transform parameter.py:704\n",
+ "
11:14:40 WARNING The ebltable package is not available. Models that depend on it will not be absorption.py:33\n",
+ "available \n",
"
\n"
],
"text/plain": [
- "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=919383;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=286569;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n"
+ "\u001b[38;5;46m11:14:40\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The ebltable package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=20217;file:///discover/nobackup/ckarwin/Software/COSIPY/lib/python3.10/site-packages/astromodels/functions/functions_1D/absorption.py\u001b\\\u001b[2mabsorption.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=757941;file:///discover/nobackup/ckarwin/Software/COSIPY/lib/python3.10/site-packages/astromodels/functions/functions_1D/absorption.py#33\u001b\\\u001b[2m33\u001b[0m\u001b]8;;\u001b\\\n",
+ "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mavailable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n"
]
},
"metadata": {},
@@ -114,11 +116,11 @@
{
"data": {
"text/html": [
- "
WARNING We have set the min_value of K to 1e-99 because there was a postive transform parameter.py:704\n",
+ "
\n"
],
"text/plain": [
- "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=402464;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=161328;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n"
+ "\u001b[38;5;46m11:14:41\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m Starting 3ML! \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=846373;file:///discover/nobackup/ckarwin/Software/COSIPY/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=911724;file:///discover/nobackup/ckarwin/Software/COSIPY/lib/python3.10/site-packages/threeML/__init__.py#39\u001b\\\u001b[2m39\u001b[0m\u001b]8;;\u001b\\\n"
]
},
"metadata": {},
@@ -127,11 +129,11 @@
{
"data": {
"text/html": [
- "
WARNING We have set the min_value of K to 1e-99 because there was a postive transform parameter.py:704\n",
+ "
WARNING WARNINGs here are NOT errors __init__.py:40\n",
"
\n"
],
"text/plain": [
- "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=200604;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=500344;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n"
+ "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m WARNINGs here are \u001b[0m\u001b[1;31mNOT\u001b[0m\u001b[1;38;5;251m errors \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=117600;file:///discover/nobackup/ckarwin/Software/COSIPY/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=609949;file:///discover/nobackup/ckarwin/Software/COSIPY/lib/python3.10/site-packages/threeML/__init__.py#40\u001b\\\u001b[2m40\u001b[0m\u001b]8;;\u001b\\\n"
]
},
"metadata": {},
@@ -140,11 +142,11 @@
{
"data": {
"text/html": [
- "
WARNING We have set the min_value of K to 1e-99 because there was a postive transform parameter.py:704\n",
+ "
WARNING but are inform you about optional packages that can be installed __init__.py:41\n",
"
\n"
],
"text/plain": [
- "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=943578;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=139722;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n"
+ "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m but are inform you about optional packages that can be installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=456421;file:///discover/nobackup/ckarwin/Software/COSIPY/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=958166;file:///discover/nobackup/ckarwin/Software/COSIPY/lib/python3.10/site-packages/threeML/__init__.py#41\u001b\\\u001b[2m41\u001b[0m\u001b]8;;\u001b\\\n"
]
},
"metadata": {},
@@ -153,11 +155,11 @@
{
"data": {
"text/html": [
- "
WARNING We have set the min_value of F to 1e-99 because there was a postive transform parameter.py:704\n",
+ "
WARNING to disable these messages, turn off start_warning in your config file__init__.py:44\n",
"
\n"
],
"text/plain": [
- "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of F to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=882185;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=365193;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n"
+ "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m \u001b[0m\u001b[1;31m to disable these messages, turn off start_warning in your config file\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=815368;file:///discover/nobackup/ckarwin/Software/COSIPY/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=967683;file:///discover/nobackup/ckarwin/Software/COSIPY/lib/python3.10/site-packages/threeML/__init__.py#44\u001b\\\u001b[2m44\u001b[0m\u001b]8;;\u001b\\\n"
]
},
"metadata": {},
@@ -166,11 +168,11 @@
{
"data": {
"text/html": [
- "
WARNING We have set the min_value of K to 1e-99 because there was a postive transform parameter.py:704\n",
+ "
WARNING no display variable set. using backend for graphics without display (agg) __init__.py:50\n",
"
\n"
],
"text/plain": [
- "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=588991;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=483700;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n"
+ "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m no display variable set. using backend for graphics without display \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;38;5;251magg\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=995613;file:///discover/nobackup/ckarwin/Software/COSIPY/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=994824;file:///discover/nobackup/ckarwin/Software/COSIPY/lib/python3.10/site-packages/threeML/__init__.py#50\u001b\\\u001b[2m50\u001b[0m\u001b]8;;\u001b\\\n"
]
},
"metadata": {},
@@ -179,11 +181,11 @@
{
"data": {
"text/html": [
- "
\n"
],
"text/plain": [
- "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m but are inform you about optional packages that can be installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=987302;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=770994;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#37\u001b\\\u001b[2m37\u001b[0m\u001b]8;;\u001b\\\n"
+ "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m PyGMO is not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=294734;file:///discover/nobackup/ckarwin/Software/COSIPY/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=330423;file:///discover/nobackup/ckarwin/Software/COSIPY/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1369\u001b\\\u001b[2m1369\u001b[0m\u001b]8;;\u001b\\\n"
]
},
"metadata": {},
@@ -218,64 +220,12 @@
{
"data": {
"text/html": [
- "
WARNING to disable these messages, turn off start_warning in your config file__init__.py:40\n",
- "
\n"
- ],
- "text/plain": [
- "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m \u001b[0m\u001b[1;31m to disable these messages, turn off start_warning in your config file\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=670603;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=174077;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#40\u001b\\\u001b[2m40\u001b[0m\u001b]8;;\u001b\\\n"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- "
WARNING The cthreeML package is not installed. You will not be able to use plugins which __init__.py:94\n",
+ "
11:14:43 WARNING The cthreeML package is not installed. You will not be able to use plugins which __init__.py:94\n",
"require the C/C++ interface (currently HAWC) \n",
"
\n"
],
"text/plain": [
- "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The cthreeML package is not installed. You will not be able to use plugins which \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=853968;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=45582;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#94\u001b\\\u001b[2m94\u001b[0m\u001b]8;;\u001b\\\n",
+ "\u001b[38;5;46m11:14:43\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The cthreeML package is not installed. You will not be able to use plugins which \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=950945;file:///discover/nobackup/ckarwin/Software/COSIPY/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=159794;file:///discover/nobackup/ckarwin/Software/COSIPY/lib/python3.10/site-packages/threeML/__init__.py#94\u001b\\\u001b[2m94\u001b[0m\u001b]8;;\u001b\\\n",
"\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mrequire the C/C++ interface \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;38;5;251mcurrently HAWC\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n"
]
},
@@ -285,12 +235,12 @@
{
"data": {
"text/html": [
- "
WARNING Could not import plugin HAWCLike.py. Do you have the relative instrument __init__.py:144\n",
+ "
WARNING Could not import plugin FermiLATLike.py. Do you have the relative instrument __init__.py:144\n",
"software installed and configured? \n",
"
\n"
],
"text/plain": [
- "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin HAWCLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=982551;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=171931;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n",
+ "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin FermiLATLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=248293;file:///discover/nobackup/ckarwin/Software/COSIPY/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=949413;file:///discover/nobackup/ckarwin/Software/COSIPY/lib/python3.10/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n",
"\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251msoftware installed and configured? \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n"
]
},
@@ -300,12 +250,12 @@
{
"data": {
"text/html": [
- "
WARNING Could not import plugin FermiLATLike.py. Do you have the relative instrument __init__.py:144\n",
+ "
11:14:44 WARNING Could not import plugin HAWCLike.py. Do you have the relative instrument __init__.py:144\n",
"software installed and configured? \n",
"
\n"
],
"text/plain": [
- "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin FermiLATLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=958192;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=870302;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n",
+ "\u001b[38;5;46m11:14:44\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin HAWCLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=975954;file:///discover/nobackup/ckarwin/Software/COSIPY/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=695721;file:///discover/nobackup/ckarwin/Software/COSIPY/lib/python3.10/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n",
"\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251msoftware installed and configured? \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n"
]
},
@@ -315,11 +265,11 @@
{
"data": {
"text/html": [
- "
12:03:41 WARNING Env. variable OMP_NUM_THREADS is not set. Please set it to 1 for optimal __init__.py:387\n",
+ "
11:14:46 WARNING Env. variable OMP_NUM_THREADS is not set. Please set it to 1 for optimal __init__.py:387\n",
"performances in 3ML \n",
"
\n"
],
"text/plain": [
- "\u001b[38;5;46m12:03:41\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable OMP_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=828564;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=463928;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n",
+ "\u001b[38;5;46m11:14:46\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable OMP_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=712228;file:///discover/nobackup/ckarwin/Software/COSIPY/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=491076;file:///discover/nobackup/ckarwin/Software/COSIPY/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n",
"\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n"
]
},
@@ -343,12 +293,12 @@
{
"data": {
"text/html": [
- "
WARNING Env. variable MKL_NUM_THREADS is not set. Please set it to 1 for optimal __init__.py:387\n",
+ "
WARNING Env. variable MKL_NUM_THREADS is not set. Please set it to 1 for optimal __init__.py:387\n",
"performances in 3ML \n",
"
\n"
],
"text/plain": [
- "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable MKL_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=215262;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=583062;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n",
+ "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable MKL_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=575441;file:///discover/nobackup/ckarwin/Software/COSIPY/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=258749;file:///discover/nobackup/ckarwin/Software/COSIPY/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n",
"\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n"
]
},
@@ -358,12 +308,12 @@
{
"data": {
"text/html": [
- "
WARNING Env. variable NUMEXPR_NUM_THREADS is not set. Please set it to 1 for optimal __init__.py:387\n",
+ "
WARNING Env. variable NUMEXPR_NUM_THREADS is not set. Please set it to 1 for optimal __init__.py:387\n",
"performances in 3ML \n",
"
\n"
],
"text/plain": [
- "\u001b[38;5;46m12:05:05\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m set the minimizer to minuit \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=102912;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=987128;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1042\u001b\\\u001b[2m1042\u001b[0m\u001b]8;;\u001b\\\n"
+ "\u001b[38;5;46m11:22:07\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m set the minimizer to minuit \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=375798;file:///discover/nobackup/ckarwin/Software/COSIPY/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=502880;file:///discover/nobackup/ckarwin/Software/COSIPY/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1045\u001b\\\u001b[2m1045\u001b[0m\u001b]8;;\u001b\\\n"
]
},
"metadata": {},
@@ -765,18 +694,28 @@
"WARNING IntegrationWarning: The occurrence of roundoff error is detected, which prevents \n",
" the requested tolerance from being achieved. The error may be \n",
" underestimated.\n",
+ "\n",
+ "\n",
+ "WARNING IntegrationWarning: The occurrence of roundoff error is detected, which prevents \n",
+ " the requested tolerance from being achieved. The error may be \n",
+ " underestimated.\n",
+ "\n",
+ "\n",
+ "WARNING IntegrationWarning: The occurrence of roundoff error is detected, which prevents \n",
+ " the requested tolerance from being achieved. The error may be \n",
+ " underestimated.\n",
"\n"
]
},
{
"data": {
"text/html": [
- "
12:05:26 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "
11:23:04 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:130\n",
"measurements such as AIC or BIC are unreliable \n",
"
\n"
],
"text/plain": [
- "\u001b[38;5;46m12:05:26\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=737530;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=278840;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n",
+ "\u001b[38;5;46m11:23:04\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=430167;file:///discover/nobackup/ckarwin/Software/COSIPY/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=282327;file:///discover/nobackup/ckarwin/Software/COSIPY/lib/python3.10/site-packages/threeML/plugin_prototype.py#130\u001b\\\u001b[2m130\u001b[0m\u001b]8;;\u001b\\\n",
"\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n"
]
},
@@ -786,11 +725,11 @@
{
"data": {
"text/html": [
- "
12:05:26 WARNING The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
+ "
11:23:04 WARNING The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
"
\n"
],
"text/plain": [
- "\u001b[38;5;46m12:05:26\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=562228;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=53136;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n"
+ "\u001b[38;5;46m11:23:04\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=384743;file:///discover/nobackup/ckarwin/Software/COSIPY/lib/python3.10/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=88743;file:///discover/nobackup/ckarwin/Software/COSIPY/lib/python3.10/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n"
]
},
"metadata": {},
@@ -844,27 +783,27 @@
" \n",
"
12:06:33 WARNING The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
+ "
11:23:18 WARNING The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
"
\n"
],
"text/plain": [
- "\u001b[38;5;46m12:06:33\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=26512;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=246007;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n"
+ "\u001b[38;5;46m11:23:18\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=140514;file:///discover/nobackup/ckarwin/Software/COSIPY/lib/python3.10/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=639233;file:///discover/nobackup/ckarwin/Software/COSIPY/lib/python3.10/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n"
]
},
"metadata": {},
@@ -1211,27 +1150,27 @@
" \n",
"
12:06:34 WARNING The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
+ "
11:23:22 WARNING The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
"
\n"
],
"text/plain": [
- "\u001b[38;5;46m12:06:34\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=840959;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=587231;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n"
+ "\u001b[38;5;46m11:23:22\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=257689;file:///discover/nobackup/ckarwin/Software/COSIPY/lib/python3.10/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=1639;file:///discover/nobackup/ckarwin/Software/COSIPY/lib/python3.10/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n"
]
},
"metadata": {},
@@ -1439,11 +1378,11 @@
{
"data": {
"text/html": [
- "
WARNING The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
+ "
WARNING The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
"
\n"
],
"text/plain": [
- "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=521892;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=431406;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n"
+ "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=580430;file:///discover/nobackup/ckarwin/Software/COSIPY/lib/python3.10/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=907467;file:///discover/nobackup/ckarwin/Software/COSIPY/lib/python3.10/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n"
]
},
"metadata": {},
@@ -1452,11 +1391,11 @@
{
"data": {
"text/html": [
- "
WARNING The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
+ "
WARNING The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
"
\n"
],
"text/plain": [
- "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=402878;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=82481;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n"
+ "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=504220;file:///discover/nobackup/ckarwin/Software/COSIPY/lib/python3.10/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=99234;file:///discover/nobackup/ckarwin/Software/COSIPY/lib/python3.10/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n"
]
},
"metadata": {},
@@ -1487,28 +1426,28 @@
" * main:\n",
" * Band:\n",
" * K:\n",
- " * value: 2.8565585663971596e-05\n",
+ " * value: 2.830532377573198e-05\n",
" * desc: Differential flux at the pivot energy\n",
- " * min_value: 1.0e-99\n",
+ " * min_value: 1.0e-50\n",
" * max_value: null\n",
" * unit: keV-1 s-1 cm-2\n",
" * is_normalization: true\n",
" * alpha:\n",
- " * value: -1.9886166208617622\n",
+ " * value: -1.9883862891924717\n",
" * desc: low-energy photon index\n",
" * min_value: -2.14\n",
" * max_value: 3.0\n",
" * unit: ''\n",
" * is_normalization: false\n",
" * xp:\n",
- " * value: 4.473463779563324\n",
+ " * value: 4.385546491485944\n",
" * desc: peak in the x * x * N (nuFnu if x is a energy)\n",
" * min_value: 1.0\n",
" * max_value: null\n",
" * unit: keV\n",
" * is_normalization: false\n",
" * beta:\n",
- " * value: -2.196416422107725\n",
+ " * value: -2.1674202553986954\n",
" * desc: high-energy photon index\n",
" * min_value: -5.0\n",
" * max_value: -2.15\n",
@@ -1598,7 +1537,7 @@
{
"data": {
"text/plain": [
- ""
+ ""
]
},
"execution_count": 14,
@@ -1607,7 +1546,7 @@
},
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm4AAAG7CAYAAAB6sxkSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAACFlElEQVR4nOzdd1yVZf/A8c9hyQYRFzJkKLhYLtx779yjUsvKHDkqrWz5VI85M8vqsVLbjsqBgoqKew/EhWxBRURlb875/cHPYwQq4MEDh+/79Xper8f7uu/7+h7ihi/XfV3fS6FSqVQIIYQQQohKT0/bAQghhBBCiNKRxE0IIYQQooqQxE0IIYQQooqQxE0IIYQQooqQxE0IIYQQooqQxE0IIYQQooqQxE0IIYQQooqQxE2HZGdnExYWRnZ2trZDEUIIIUQFkMRNh8TGxjJlyhRiY2O1HYoQQgghKoAkbkIIIYQQVYQkbkIIIYQQVYQkbkIIIYQQVYQkbkIIIYQQVYSBtgMQQgghqruCggLy8vK0HYaoYPr6+hgYGKBQKMp9D0nchBBCCC1KT08nPj4elUql7VDEM2Bqakr9+vUxMjIq1/WSuAkhhBBaUlBQQHx8PKamptSuXfupRmJE5aZSqcjNzeXOnTtER0fTqFEj9PTKPmNNEjchhBBCS/Ly8lCpVNSuXRsTExNthyMqmImJCYaGhsTGxpKbm4uxsXGZ7yGLE4QQQggtk5G26qM8o2xFrtdQHEIIIYQQooJJ4iaEEEKIIho2bIiHhwfe3t40adKEcePGkZGRUe77rVu3jmvXrj2y/fjx47Ro0QIfHx927dpF//79iYyMLNW11Y0kbkIIIYQoZvPmzZw/f57Lly+TmprKunXryn2vJyVf69ev54UXXuDcuXP06dOHnTt34urqWqprqxtZnCCEEEJUElveO0JmSk6F9mFqVYOhn3Yo9fk5OTlkZGRQs2ZN9bGlS5eyceNG8vPzqVevHt999x0ODg5s376d9957Dz09PfLz8/n000+5c+cOp0+fZubMmSxYsIDPPvuM/v37q++1aNEiNmzYgKmpKb/++ivBwcF4e3vj7+/P8ePHH3ttdSSJmxBCCFFJZKbkkHmvYhO30hoxYgTGxsZER0fTsmVLRo0aBcBvv/3GtWvXOHbsGPr6+vz8889Mnz6drVu3smDBAr799lvat2+PUqkkNTUVa2trfvnlF958800GDhxYrJ/58+dz9epVWrVqxfTp04u0vfzyy4+9tjqSxE2U2p07d6hdu7a2wxBCCJ1lalWj0vSxefNmmjdvTn5+Pq+++irz5s1j2bJlbNmyhdOnT9OyZUugsBadvr4+AD169GDWrFmMGDGC3r174+3tXVEfo9qSxE2Uyu3bt2nYsCE9evRg3rx5dOrUSdshCSGEzinLK8xnxcDAgOHDh/PWW2+xbNkyVCoVCxYsYPLkycXOXb58OZcuXWL//v28+OKLjB8/nrffflsLUesuWZwgSmX16tVkZ2ezY8cOtm3bpu1whBBCPEP79u3D3d0dgMGDB7N69Wru3bsHFBYRPnfuHABXr16lWbNmTJ8+nalTp3L8+HEALC0tSUlJKVffT3OtLpLETZSKvb09Dg4OGBgYMHPmzCJt+fn58lAJIYSOGTFiBN7e3jRr1owrV66wcuVKAJ5//nkmTJhA165d8fLywtvbm/379wPwzjvv0KxZM3x8fPj555/56KOPAHjllVdYuHAh3t7e7Ny5s0xxPM21ukihkl1tdUZYWBhTpkxhzZo16r+MNCkvL4+TJ0/SoUPRofyNGzfy8ssvM2XKFGbNmoWDg4PG+xZCCF2UnZ1NdHQ0zs7O5dr+SFQ9T/vfXEbcRKkZGhoWS9pUKhXLli0jLS2N5cuXExISoqXohBBCCN0niVsllZyczNtvv03v3r0ZN24cp06d0nZIJcrJycHb25saNWrQsmVLBgwYUKRdBnSFEEIIzZHErZJasWIFNjY2bNu2jddff50PP/ywUs4jMzY25rvvvuP69ev89NNPxTZKnj17NpMmTSIiIkJLEQohhBC6QxK3SigzM5NDhw4xadIkjI2N6dixI25ubhw+fFjboT1SnTp1aNq0aZFj8fHxfPPNN6xbt47WrVuTmZmppeiEEEII3aBzddwuXLjAzz//zKVLl8jNzaV27dr07duXF198scL6zMzMZP369YSHhxMeHk5KSgoTJ04sscZNZmYm33//Pfv37yctLQ1HR0fGjx9Pjx491OfEx8djYmJC3bp11cdcXFyIjo6usM9QES5evIipqSm5ubm89tprmJqaajskIYQQokrTqRG3PXv2MHPmTMzNzXnvvfdYvHgx48ePr/B5VikpKWzfvp28vLwnFqZdsGABgYGBTJw4kcWLF+Ph4cHHH3/Mnj171OdkZWVhZmZW5DozMzOysrIqJP6K0rdvX2JiYvjkk0+YO3dukTalUsnSpUvVdYCEEEII8WQ6M+J2584dli5dyuDBg5kzZ476uK+v72Ovy8jIIDQ0FD8/vxLbjx49io+PDyYmJo+8R7169dixYwcKhYLk5GT8/f1LPO/YsWOcPn2aDz74gJ49e6rjS0hI4JtvvqF79+7o6+tjYmJCRkZGsTgfF0NlZWVlxXvvvVfs+IYNG3jrrbf49NNPWbVqFRMmTNBCdEIIUfmc2RxeYfduOaJRhd1bPBs6M+Lm7+9PVlYW48aNK/N18+fPJyAgoFjb1q1beeedd9i1a9dj76FQKIpNyi/JoUOHMDExoWvXrkWO9+/fn6SkJC5fvgwUFrvNysoiMTFRfc6Dmi8lCQoKYv78+axateqJMVQGKpWKTz75BChcPVunTh0tRySEEOKfGjZsiIeHB97e3jRp0oRx48YVG1Aoi3Xr1nHt2rVHth8/fpwWLVrg4+PDrl276N+/P5GRkaW6FmDOnDn88ccf5Y5P0+bOncvvv/9eIffWmcQtJCQES0tLrl+/zuTJk+nWrRuDBw9m6dKlj/1mGz16NCNGjGDRokVs3bpVfXzTpk0sW7aMCRMmMHToUI3EGB0djZOTEwYGRQc6XV1d1e0ApqamdOzYkbVr15KTk8PRo0cJDw8vVkPtgZ49e7Jo0SJmzJihkTgrmkKhYNeuXUycOJE+ffrQu3fvIu15eXlaikwIIcQDmzdv5vz581y+fJnU1FTWrVtX7ns9Kflav349L7zwAufOnaNPnz7s3LlT/bvxSdfeuHGDgIAARo8eXaaY8vPzS3WsLNc/MG/ePD766COUSmWZYioNnUnckpKSyM7O5oMPPqB79+4sX76csWPHsmvXLt5+++3HznObPn06EyZMYNmyZWzatIlff/2VVatW8dJLLzFlyhSNxZiSkoKlpWWx4xYWFgCkpqaqj82ZM4ekpCQGDhzIqlWr+Oijj7C2ttZYLNpmb2/P2rVrS3ytPH36dPr168eVK1e0EJkQQoh/ysnJISMjg5o1a6qPLV26lDZt2uDr60v//v2Ji4sDYPv27Xh6euLt7U3z5s3ZunUr33//PadPn2bmzJklblu1aNEiNmzYwMqVK/H29iY5OZmGDRty8eLFJ14L8OOPPzJixAj1m6+8vDzmz59PmzZt8Pb2ZsyYMSQnJwMwceJEZs6cSd++ffHy8iI4OBhvb29mzpxJu3bt+Pvvvzl9+jTt2rXD09OTNm3acOTIEQBiYmKwtbVl4cKFdOrUiVWrVpX4eaGw0oKzszN79+7V+H8PnZnjplQqyc3NZeLEier5Uj4+PhgYGLBq1SrOnDlDq1atHnn9lClTMDIyUr9unDp1KmPHjtV4nKV5pQpgbW3NkiVLNN5/ZfPv0ccrV67w/fffo1QqOXbsGHFxcerEVgghxLMzYsQIjI2NiY6OpmXLlowaNQqA3377jWvXrnHs2DH09fX5+eefmT59Olu3bmXBggV8++23tG/fHqVSSWpqKtbW1vzyyy+8+eabDBw4sFg/8+fP5+rVq7Rq1Yrp06cXaXv55Zcfey1AcHAwb775pvrfS5YswdzcnJMnTwLwn//8hw8//FC91+rhw4c5ePAg5ubmBAcHc+HCBb766iu+/PJLcnNzcXNzY82aNfTp04fDhw8zYsQIdS3Su3fv4ubmxgcffACAl5dXsc/7QPv27dm7dy+9evUq73+CEunMiJuVlRUAbdq0KXL8waKDJ70fB0hPT1cnVunp6RqOsDDGkoropqWlAZQ4Glfd3L59W73X6bx58yRpE0IILXnwqvTu3bs4Ozszb948ALZs2UJQUBAtW7bE29ubxYsXExsbC0CPHj2YNWsWixcv5sKFC8/kTVF8fDz16tVT/3vLli388ssveHt74+3tze+//05UVJS6fdSoUZibm6v/3bhxYzp27AgU7vltZGREnz59AOjYsSN16tThwoULQGHR+X8O6jzu89arV4/4+HiNf16dSdxcXFxKPP7gFenjRrpUKhUrVqxg06ZNzJs3j7lz5/LLL7/w9ddfazzG2NjYYu/FH3xDPWrxQXXStWtXrly5wvLly0ssIVLVatkJIURVZ2BgwPDhwwkMDAQKf2cuWLCA8+fPc/78eUJDQzl//jwAy5cvZ+3atZiamvLiiy+yePHiCo/P1NS0SLkslUrF6tWr1fFdvnyZ7du3q9v/mbT9+98qlarEfOHBMTMzsyLtj/u82dnZFVINQmcSty5dugBw4sSJIsePHz8OQLNmzUq8TqlUsnjxYrZt28b7779P//79GTJkCPPnz2fz5s0sX75cY3XgOnXqRFZWFgcOHChyPDAwEFtb22I7D1RXJiYmzJ49GyMjoyLH161bh4eHBwsWLJBdGIQQ4hnat28f7u7uAAwePJjVq1er63Dm5eVx7tw5AK5evUqzZs2YPn06U6dOVf8OtrS0LPe2jU+61tPTk6tXr6r/PXjwYJYvX67+PZGZmcmlS5dK1ZeHhwc5OTns27cPKCwJlpiYSIsWLUo8/1GfFwqn/nh5eZWq37LQmTlubdq0oX379qxfvx6lUkmzZs24evUq69ato3379nh6epZ43YYNG9i9e7d6suED/fr1w8jIiE8++QQnJyeGDx/+2P6PHz9Odna2+hslNjaW4OBgoPB1rbGxMX5+frRq1Ur9DdWgQQP27t3LiRMnWLBgAfr6+pr5Yuige/fuMW/ePHJzc/n000/p0aMH3bp103ZYQgihcZWl1tqDOW55eXk0bNiQb7/9FoDnn3+eu3fv0rVrVxQKBfn5+bz00kv4+PjwzjvvcO3aNYyMjDA1NeWbb74B4JVXXmHu3LksWbKEzz77jP79+5c6jiddO2LECH766Sf1bkXz58/n448/pm3bturRsXnz5j1yAOefjIyM+PPPP5k5cyYZGRkYGxuzadMmzMzMuHPnTrHzH/V5VSoVe/fu5d133y315ywthaqitxV4hnJycli7di1BQUHcvXsXW1tbevXqxcSJE4uN3vzzmvDwcJo3b15ie2hoKB4eHhgaGj6271GjRpGQkFBi24YNG6hfvz5QmPmvWbOmyJZXEyZMKLLlVXmFhYUxZcoU1qxZo/7LSFdkZmbyySefsHTpUp577rlKVa9HCCHKKzs7W12n09jYWNvhVElKpZLWrVuzdetW7O3ttR0OUPgm7ddff+Xnn38u1va0/811KnGr7nQ5cXvg6tWrWFpaYmdnV+R4SEgInp6epV61K4QQlYEkbppx+vRpsrOz1YsMtG3Dhg106tSp2O8qePr/5jrzqlRUDx4eHsWOnT59Gj8/PwYMGMC3336rHt0UQghRPTyu3Jc2lLUYcFnozOIEUT3l5+czadIkCgoK2LZt21NV9hZCCCEqO0ncRJVmYGDAwoULqVOnDj4+PkWKMAohhBC6Rl6Viipv2LBhdO7cmfv37xdbRHL9+nUcHBxk7psQQgidICNuQifUqlULNze3Isdu376Nr68vw4YN4+7du1qKTAghhNAcSdyEzpo2bRp3795l69atzJ49W9vhCCFElfFgk/fH+eCDD9iwYUO5+wgODmb37t3lvrayLUh4VuRVqdBZ48eP58CBA+jr67NkyRJthyOEEDpl4cKFT3V9cHAw6enp9O7dW0MRVQ8y4iZ01rBhwwgJCWHLli3UrVtX2+EIIUSpLF++HHt7e+zt7dU78DwQHR2tbpsxY0axawcPHqxu/7d169axfPnyMsXStWtX5s2bR6dOnXB1deW1115Tt02cOJGvvvoKKNz2av78+bRp0wZvb2/GjBlDcnIyACkpKbz88su0aNECLy8vJk+ezPnz5/n222/56aef8Pb2VieBu3btomPHjrRs2ZK2bdty8OBBdX8LFizAzc2NLl264O/vX6bPoUtkxE3oNDs7u2IFEPPy8hg+fDivvPIKAwcO1FJkQghRstTUVG7cuAEU7u7zTwUFBeq2+/fvF7v2zp076vZ/y8jIIDU1tczxREZGEhwcTG5uLk2bNuXYsWO0a9euyDlLlizB3NyckydPAvCf//yHDz/8kJUrVzJr1izMzc0JCQlBT0+PO3fuULt2bV577TXS09NZunQpAFFRUXz88ccEBgZiaWlJREQEXbp0ISYmhsDAQLZt28b58+cxMTFh2LBhZf4cukISN1HtfPjhh2zfvp3t27fz3//+l/nz52s7JCGEULO0tKRBgwYA1KhRo0ibvr6+uq1mzZrFrq1du7a6/d/MzMyKJYKlMWbMGPT19TExMcHb25vIyMhiiduWLVtITU1l8+bNAOTm5uLq6gqAv78/Z86cQU9PTx1jSQIDA4mIiKBz585FjsfFxbF//35Gjx6Nubk5AJMnT+aTTz4p82fRBZK4iSfKTMnh6t7rNO3lhLFFyXu+VhVKpZKwsDCgsAZc9+7dtRyREEIUNWfOHObMmVNim7OzM/Hx8Y+8dtu2bY9smzhxYrni+ee2TPr6+uTn5xc7R6VSsXr16qf6mapSqejbty8//fRTiW2ikMxxE090KSCGs5sj+GNmMMd/vkLG3Sxth1Ruenp6bN68ma+++oqlS5fSpk0bbYckhBBV3uDBg1m+fDmZmZkAZGZmcunSJXXbkiVLUCqVQOHrXCgcWUxJSVHfo3fv3gQGBhZZzfrg1WuPHj3YuHEjGRkZFBQUVOtdciRxE49VkFfA1X1xAOTnFHAxIIYNsw5w8H+hpNzK0HJ05aNQKJg2bRpvvPFGsbYtW7aQm5urhaiEEKLqeVDcfP78+Xh7e9O2bVs8PT3x8/Pj/PnzAKxYsYLMzEyaN2+Ot7c37777LlC4gOz06dPqxQmNGjXil19+4eWXX8bLy4smTZqwcuVKAAYOHMjAgQPx8vKie/fueHp6auXzVgYKlYw/6oywsDCmTJnCmjVrcHd319h90xIzCd0RTVhwPAV5yocNCnBuXQ+vwS7YulhprD9t2bx5MyNHjsTPz4+NGzfi4OCg7ZCEEDouOzub6OhonJ2di7ySrAr69+/PCy+8wJgxY7QdSpXytP/NZcRNPJFFHVPaT2rG6C+74jXEFSPT/58aqYLokwlsWXCUgP+e5Oalu1V2HkJGRgZTp04F4Pjx4wQEBGg5IiGEqLx69uxJWloaAwYM0HYo1Y4sThClZmpVg9ajG+M1yJkre+O4uDOarJTC14o3Qu9yI/Qutd2s8BrkilPLOij0qs7+oGZmZgQEBDBixAg6dOjAlClTtB2SEEJUWkFBQdoOodqSxE2UmZGpIV6DXGjWx4nwgze44B9FWmLhgoU7ESkErTiLdQNzvAa54Nq+PnoGVWNgt1WrVpw9exYjI6Nim9IrlUr1UnYhhBBCW+Q3kSg3AyN9mvR0ZOSyznSb7oWNo4W6LflGOge+vcDGOQe4tCuG/JwCLUZaejY2Nuo6QQ9cunSJ5s2bc+LECS1FJYTQdVV1mokouwera8tLRtzEU9PT18O1vR0u7eoTf/4O57dFcTussKJ3elI2x9Zf4dzfkTTr60TTnk7UMDfUcsSll5aWxvDhwwkLC6NTp04EBATQo0cPbYclhNARhoaGKBQK9W4C/x7tF7pDpVKRm5vLnTt30NPTw8iofHVRJXETGqNQKHDwqYODTx0Srt4jZHsUcecK6/Vkp+ZyZmM4F7ZH4dHDkRb9GmJas/KvoMrMzKR27dqEhYXRtGlT2rdvr+2QhBA6RF9fH3t7e+Lj44mJidF2OOIZMDU1xdHRsdzTbyRxExWinocN9TxsuHs9lQvboog6dguVCvKyCgj1j+ZSYAyNO9vjOcgZy7pm2g73kerWrcu+ffv48MMPmTx5MiYmJtoOSQihY8zNzWnUqBF5eXnaDkVUMH19fQwMDJ5qZFXquOmQiqrjpgmptzO44B/NtQPxKPMffsspFODsVx+vwS7UcrLUYoRll5KSwt69e3nuuee0HYoQQohqQhYniGfCsq4ZHV9qzpiVXfEc5IyhiT4AKhVEHbvF3+8cYdfi0yRcvafdQEtJpVIxefJkhg8fzrRp08q1cbMQQghRVpK4iWfKtKYxbcZ6MObLbrQa1Rhjy4eTM+PO38F/4Qm2f3Sc6+cSK/Uqq127dvHXX38B8Ntvv5GQkKDliIQQQlQHkrgJrahhZoj3UFfGrOxKuxebYm77cKHC7Wv32b3kDH/NP0LEkZsoC55u6XRF6Nu3Lz/88AMmJib8/PPPODk5aTskIYQQ1YDMcdMhlXmO25Mo85VEHrtFyLYokm+kF2mzqGOC50AXGnVugIGRvpYiLNnt27epW7dukWNKpRKVSoW+fuWKVQghRNUnI26iUtAz0KNRpwYM/7wjveb4Utvt4ab1aYlZHPnxEhveCCZkWyS5mZVn5dW/kzaAJUuW0KdPHxITE7UQkRBCCF0m5UBEpaLQU+DUqi6OLetw68o9QrZGcSM0CYCslFxO/XGNkG1RNOnlRPO+TphY1dByxEUFBwfz7rvvolQqadmyJZcvX8bCwuLJFwohhBClIImbqJQUCgV2TWth17QWSVEphGyLIvpUAqggNzOfkK2RXNwZjXtXe1oMdMaitqm2QwbAwMCAOnXqkJCQwOTJkyVpE0IIoVGSuIlKz9bFih6zfEi5lUHI9igiDt1AWaCiIE/J5T3XubI3Dtf29fEc5IKNg3YTpY4dO3Lu3Dm+/PJLPvjgA63GIoQQQvfI4gQdUpUXJ5RFxr1sQndGc3VvXLHN6x196+A12IW6jWtqKbpHO3DgADVr1sTT01PboQghhKiiZHGCqHLMbIzxm9CEMV92xXeEW5FN66+fTWT7R8fx/88J4kLuVJpacHFxcQwfPhw/Pz/Wr1+v7XCEEEJUUZK4iSrL2MII3+caMebLrvg974GZzcNacAlX7rHr89NsefcIkcduoVRqN4H7z3/+w927d8nKymLTpk2VJqEUQghRtcirUh0QFBREUFAQ6enpXLhwQedflT5KQb6SyMM3CdkeRcqtjCJtlnVN8RzkQqNOdugbPvv6atnZ2bzxxhvs3r2bM2fOYGNj88xjEEIIUfVJ4qZDqssctydRKlXEnr5NyLYokqJSirSZWtegef+GePRwxMjk2a/NuXfvXrGkLScnhxo1KldZEyGEEJWTvCoVOkdPT4Fzm3oM+U87+r3TGrtmtdRtmck5nPwtjD9m7Of0xmtkpT7bzeFLSto6d+7M/Pnzyc/Pf6axCCGEqHqkHIjQWQqFggYtbGnQwpY7kcmEbIsi5vRtdS2481siCd0ZjXs3BzwHOGNua/LMY5w9ezYnT57k5MmT3L59m7Vr1z7zGIQQQlQdkriJaqG2qzU9Z/ty/0Y6of5RhB++iapARUGuksu7YrkSdB23DnZ4DnSmpv2zqQWnUqlo3LgxBgYGGBgY8MYbbzyTfoUQQlRdMsdNh8gct9JLv5tF6I5owvbHF6sF59SqLl6DXajjZv1MYjl69CjXr19nzJgxz6Q/IYQQVZckbjpEEreyy07N5dLuWC7viiUno+jm9XbNauE52IUGzWuhUCieeWzffvstY8aMwdra+pn3LYQQonKSxQmiWjO2NKLliEaM/rIrbcd7YFrz4erOm5fuEvjfU2xdcJToE8+2FtzatWuZOnUqLVu25Ny5c8+sXyGEEJWbJG5CAEYmBrQY4MzoL7rQaUpzLOs93LQ+KTqVvSvP8+dbhwjbH0dBvrJCY8nOzlbvcxoVFcXFixcrtD8hhBBVhyxOEOIf9A31ce/mQKMu9sScTCBkWxR3Y1IBSLmVwaE1FznzZzgt+jvj0d0BQ2PNP0LGxsYcPnyYkSNH4uvry/PPP6/xPoQQQlRNkrgJUQI9PQUufvVxbluPG6FJhGyL4tblewBk3svhxC9XOb8lkqa9nWjWxwljCyON9u/k5MShQ4dKbMvMzMTU1LTENiGEELpNXpUK8RgKhQJ7z9oMWNCWwR/74dSyjrotJz2Pc39F8MfMYI7/fIWMu1ka7btGjRrFdlQ4c+YMzs7O/PXXXxrtSwghRNUgiZsQpVSnUU16zW3J8MUdcetoh0KvcKVpfk4BFwNi2DDrAAf/F1psn1RNuX//PiNGjCAxMZHhw4fz999/V0g/QgghKi9J3IQoo5r2FnR93YtRK7rQtLcT+oaFj5GyQMW14Hg2vXmQvV+cK7ZP6tMyNDTEz88PgLZt2zJgwACN3l8IIUTlJ3PchCgni9omtJ/YFJ9hrlwMjOXKnlhyM/NBBdEnE4g+mUCDFrXwGuxK/aY2T10LztzcnN9++40uXbrQv39/jIw0O69OCCFE5SeJmxBPycSqBq1HN8ZrkDNX9sZxMSCGrOTCzetvhN7lRuhdarta4TXYFaeWddSvWMtDoVDw2muvFTuelJTEL7/8wsyZM9HTk4F0IYTQVfITXggNMTI1xGuQC6O/6EKHl5phUefhpvV3IlMIWnGWP+cd4trBeJQarAWnVCqZMGECs2fPZvDgwdy7d09j9xZCCFG5yIibEBpmYKRPkx6OuHe1J/pEYS24e9fTAEi+kcHBb0M5symcFgOc8ejmgEEN/afq7/Dhw+zevRuAU6dOkZ2d/dSfQQghROUkI25CVBA9fT1c29sx7L8d6PNWS+p51FS3ZdzN5vhPV/hj5n7O/R1BTnreY+70eJ07d2bXrl3UrVuX33//HTs7O02EL4QQohKSETchKphCocDBpw4OPnVICLtPyLZI4s7dASA7LY8zm8K5sD0Kjx6ONO/fELOaxmXuo1evXkRFRRUrzFtQUEB2djZmZmYa+SxCCCG0S2OJ25kzZzh79iwXL14kMTGRlJQUjI2Nsba2xsXFBW9vb9q1a0etWrU01aUQVU4995rUe6sVd6+ncmF7NFHHbqFSqsjLLiB0RzSXdsXQqJM9noOcsapXtmSrpN0UPvzwQ7Zs2cLmzZvx8PDQ1McQQgihJQqVSqUq78WZmZn8+eefbN++ncTERB7cysjICEtLS3JycsjIyECpLJyIra+vT4cOHRg1ahQtWrTQzCcQamFhYUyZMoU1a9bg7u6u7XBEKaTeziR0RzTXDsRTkPdwwYJCAQ3b1sNrsAu2Da3Kde+dO3eqa71ZW1sTHR2NtbW1JsIWQgihJeUecdu6dStr167l/v37uLm5MXjwYJo1a4a7u3uRv/xVKhXx8fFcvnyZU6dOcfjwYQ4dOkSHDh2YNm2azMcR1ZplXVM6TG6Gz3A3LgXEcHnPdfKy8lGpIPp4AtHHE7D3tMVriAv1PMpWC87V1ZVmzZpx6dIl3nvvPUnahBBCB5R7xK1bt2706tWLsWPH4uzsXOrrcnJyCAoK4pdffqFPnz5MnDixPN2LEsiIW9WXm5nHlaDrhO6MITs1t0hbnUbWeA12wdGn9LXgMjIy+PHHH5k+ffpTFwAWQgihfeVO3G7cuEGDBg3K3XFBQQF37tyhXr165b6HKEoSN92Rn1vAtQPxXPCPJv1O0c3ra9qb4znIBdd29dEzKN/C8B07dmBgYECfPn00Ea4QQohnpNzlQJ4maYPC+W6StAlRMgMjfZr2cmLU8s50fd2Tmg7m6rb78ekc+OYCG+cc5NKuWPJzCsp078jISMaPH0+/fv346KOP1HNQhRBCVH5SDkSISkxPXw+3jg1wbW9H3Pk7nN8WSeK1ZADSk7I4tv4y5/6OoFlfJ5r2cqKGmeET7/ntt9+SkpICwOXLl+UVqhBCVCGSuAlRBSj0FDj61sHBpzYJV+8Tsi2K+JD/rwWXmsuZjQ9rwbXo1xDTx9SC+/zzz7GxseGXX37h+++/l8RNCCGqkKcqB/JvaWlpHDlyhL59+2rqlqIMZI5b9XI3JpWQ7VFEH7/FP59ifUM9GnVugOdAZyzrProWXE5ODjVq1Chy7N69e9SsWVOSOSGEqKQ0uuXV7du3WbRokSZvKYR4hFoNLek+w5sRyzrj0cMBPYPCZKsgT8nVvXFsmnOQfavOczc2tcTr/520ZWRk0LlzZ8aOHUtaWlqFxy+EEKLsyvSq9Pbt249tT0pKeqpghBBlZ1XPjI4vNcf3OTcuBsZwJeg6eVkFqFQQdewWUcduYe9VG+//rwX3KFOnTuXSpUtcunSJvLw8/vzzz2f4KYQQQpRGmRK3UaNGPfYVikqlklcsQmiJaU1j2oz1wGuwK1f2XOdi4MNacPEhd4gPuUPdxjXxGuyCg0/tYs/qsGHD2Lp1K0qlks8++0wbH0EIIcQTlClxs7CwYMqUKfj4+JTYHhsby/vvv6+RwIQQ5VPDzBDvoa4079eQsOB4QndEk55UWAvu9rX77F56hpoOFngNcsalXX309AtnTAwbNowWLVoQHh4ucySFEKKSKlPi1rhxY5KTk3F0dCyxPTc3Fw2udRBCPAWDGvo06+NEkx4ORB67Rci2KJJvpANwPy6N4NUXOL0pHM+BzjTuYo+BkT5ubm64ubkVuY9KpeLjjz9m4sSJNGzYUAufRAghxANlWpwwdOhQ6tev/8j2unXrMn/+/KcOSgihOXoGejTq1IDhn3ek11xf6rhZq9vS72RxdO1lNrwRTMi2SHIz84pd//XXX/Pxxx/j6+tLQEDAM4xcCCHEv5VpxK1z586PbbewsKBfv35PFZAQomIo9BQ4tayLo28dEq7eI2RrFPEXChcUZaXkcuqPa5zfGkXTXo4069cQU6sa5OXlsXr1agDu379Pdna2Nj+CEEJUe1KAV4hqRqFQUL9JLeo3qUVSTAoh26KIPpEAKsjLyidkWxQXA2Jo3MUez4HOHDt2jEmTJuHi4sKwYcO0Hb4QQlRrT524de3alQ0bNlC3bl1NxCOEeIZsG1rRY6YPKbcyuOAfTfiheJT5KgrylFwJus7VfXG4tKvPmhXrsGpgWuz627dvy7MvhBDP0FMX4JXFCEJUfVb1zeg0pTmjV3alxQBnDI31AVApVUQeucnf7xxh74rzJITdV19z5MgRnJ2dWb58ufwcEEKIZ0RelQoh1MxqGtN2vAdeQ1y4suc6lwJjyE4rXLAQd+4OcefuUM+jJg6drBk1YRRZWVnMnTuXOnXqMGHCBC1HL4QQuk+jW14JIXSDsbkRPsPcGL2yK34vNMGs1sNN6xOu3uf4dxH4OXUHoFvXbowZM0ZLkQohRPUiI25CiEcyNDaged+GNO3pSMTRm1zYHkXyjQz09fTp13Ac9kaNaNaoOeEHbtKoUwMMjPS1HbIQQug0GXETQjyRnoEejTvbM/zzTvSc7UNtFysAWti1Ri/dhCM/XGLjrANc2B5FbFQcc+fOJSsrS8tRCyGE7pERNyFEqSn0FDRsXQ+nVnW5dfke57dGcvPiXQAyk3M4+uslVgS/y7XbF9kbtI+t27bg5OSk5aiFEEJ3SOImhCgzhUKBXbNa2DWrxZ3IZEK2RxFz6jbx96OISQoH4HpEPJe2x1NrTB3MbU20HLEQQuiGp07cnn/+eczNzTURixCiCqrtak3PWb4k30jngn8DDA1XsObw5zzf5g1uHk1lw4kDuLW3w3OQMzXtLbQdrhBCVGkKlRRgqpSSk5P57LPPOH/+PLa2tsyePZvWrVs/9pqwsDCmTJnCmjVrcHd3f0aRClFU+t0sQrZHEn7gJvk5Berj+QV52DQ1oev41kX2SxVCCFF6Fb44QaVSERcXR2JiYkV3pVNWrFiBjY0N27Zt4/XXX+fDDz8kJSVF22EJ8UTmtUzoMLE5Y1Z2xec5N2qYGQKw+fyPTFk0miWv/Y+dn54kPjRJCvcKIUQZaSxxO3ToEIsWLSItLU197NatW0ycOJHnn3+eUaNGsXDhQpRKpaa61FmZmZkcOnSISZMmYWxsTMeOHXFzc+Pw4cPaDk2IUjO2NKLliEaM/rIr6c6x7L22ldTs+3wZ/AFhZ6II/O8pti44SvTJBJRKSeCEEKI0NLY4Ydu2bSQmJmJh8XAOy6pVq4iJicHX15fU1FT27duHr68vAwcO1FS3j+Tv78/ixYsxMTFh165dFdpXZmYm69evJzw8nPDwcFJSUpg4cSKTJ08u8dzvv/+e/fv3k5aWhqOjI+PHj6dHjx7qc+Lj4zExMSmyB6SLiwvR0dEV+jmEqAhGJgaMnzUc/xOb2bt3Ly90eR0L48JyIknRqez94hxW9c3wHOSMW8cG6BtIlSIhhHgUjf2EjI6OpkmTJup/p6enc/z4cbp3786KFSv47rvvcHJyYseOHZrq8pHu3LnD6tWrsbW1rfC+AFJSUti+fTt5eXl06tTpsecuWLCAwMBAJk6cyOLFi/Hw8ODjjz9mz5496nOysrIwMzMrcp2ZmZnUxRJVVu3atdm1axebNm3i291L6T7Tm1oNLdXtKbcyOPS/i2yYFUzozmjysvO1GK0QQlReGhtxS05OplatWup/h4aGUlBQoB5JMjAwoFWrVkUSlIqybNkyPD09sbS05MCBA489NyMjg9DQUPz8/EpsP3r0KD4+PpiYPLqcQb169dixYwcKhYLk5GT8/f1LPO/YsWOcPn2aDz74gJ49ewLg6+tLQkIC33zzDd27d0dfXx8TExMyMjKKxfm4GISo7PT19RkxYgQALn71cW5bjxuhSXz5yXckxNyhk2sfMu/lcOKXq5zfEknT3k406+OEsYWRliMXQojKQ2MjbmZmZqSmpqr/fe7cOfT09PDy8lIfMzAwIDs7W1Ndlmj37t2cP3+eOXPmlOp8f39/5s+fT0BAQLG2rVu38s477zzxVatCoUChUDyxr0OHDmFiYkLXrl2LHO/fvz9JSUlcvnwZAHt7e7Kysoos6IiOjsbZ2bnE+wYFBTF//nxWrVr1xBiEqCwUCgWpBnf4esd/+fnUl2yK+IYCZeEq1Jz0PM79FcEfM4M5/vMVMu7KaLMQQoAGEzdHR0eOHj1Kamoq6enp7N27l0aNGhWZ85aQkEDNmjU11WUx9+/fZ9WqVbz66qvUqVOnVNeMHj2aESNGsGjRIrZu3ao+vmnTJpYtW8aECRMYOnSoRuKLjo7GyckJA4OiA52urq7qdgBTU1M6duzI2rVrycnJ4ejRo4SHh9OhQ4cS79uzZ08WLVrEjBkzNBKnEM/K9u3byczMBMC+RW1GLe2CW0c7FHqFfwjl5xRwMSCGDbMOcPB/oSTfTNdmuEIIoXUae1U6fPhwPvzwQ5577jn1yNo/J+cXFBQQGhpaZB6cpi1fvhwHB4cyJ1rTp0+nRo0aLFu2jNzcXHJzc/nuu+946aWXePHFFzUWX0pKCnZ2dsWOP0hu/zliOWfOHD799FMGDhyIra0tH330EdbW1hqLRYjKYN68eTg6OvL111/z1VdfYWpqStfXvWg5sjGhO6IJ2x9HQZ4SZYGKa8HxXDsQT8PWdfEe7Irt/++XKoQQ1YnGEreuXbsye/Zs9eKDbt26MWDAAHX7mTNnyM7Opk2bNprqsojg4GCOHj3KDz/8UKrXlv82ZcoUjIyM1K8bp06dytixYzUdZqljs7a2ZsmSJRrvX4jKZuzYsYwZM6bIs2FR2wT77uY0H9iBa/tucnl3LLmZ+aCCmJO3iTl5mwYtauE12JX6TW3K9cwLIURVpNG9SocOHfrI0a42bdqwc+dOTXanlpmZyRdffMFzzz1HrVq11LXk8vMLV6alpaVhYGDwxMn96enpKBQKVCoV6emafyVjZWVVYhHdB/FaWloWaxOiOvh34pWSkkKPHj2oU6cOGzduxHNgV67sjeNiQAxZyTkA3Ai9y43Qu9R2tcJrsCtOLeuoX7EKIYSu0olN5lNSUrh37x4bNmxgw4YNxdoHDBhAx44d+eyzz0q8XqVS8cUXX7B161bmzZtHXl4ey5cvJzc3l2nTpmksThcXF4KCgsjPzy8yzy0qKgrgkYsPhKhuXn31VSIiIoiIiGDKlCns3LkTr0EuNOvjRPihG1zYHkVaYuGChTuRKQStOIt1AzM8B7ng1t4OPakFJ4TQUTqRuNnY2LBy5cpix3/99VfOnz/PkiVLsLIqeT6MUqlkyZIlBAYG8v7776vLlxgZGbF48WJycnKYPXu2Rl7FdOrUie3bt3PgwIEiBXcDAwOxtbWladOmT92HELpgzpw5HDt2jLS0NFavXq0+bmCkT5Mejrh3tSf6RAIh26K4d71wxDr5RgYHvw3lzKZwWgxwxr2rPYbGOvEjTggh1HTip1qNGjXw8fEpdjwgIAB9ff0S2x7YsGEDu3fvZuHChUWK5/br1w8jIyM++eQTnJycGD58+GNjOH78ONnZ2eoVcrGxsQQHBwPg5+eHsbExfn5+tGrViuXLl5OZmUmDBg3Yu3cvJ06cYMGCBejr65fj0wuhe9q0acPZs2cJCwujYcOGxdr19PVwbW+HS7v6xJ+/Q8j2KBKu3gcg4242x3+6wvm/I2jWpyFNeztRw9zwGX8CIYSoGAqVDu/y/Nlnn3HgwIHH1mHLyckhPDyc5s2bl9geGhqKh4cHhoaP/8E/atQoEhISSmzbsGED9evXBwrn461Zs6bIllcTJkwoMgJXXmFhYUyZMoU1a9bg7u7+1PcTorJRKpVMnz6dSZMm0bp16yJtCWH3CdkWSdy5O0WOGxrr49HDkeb9GmJmY/wswxVCCI3T6cStupHETei6RYsW8c4772BkZMR3333HxIkTi51z73oaIdujiDp2C9U/Nq/XM1DQqFMDPAe6YFXfrNh1QghRFejEq1IhhO4rKChQr0zPy8tTj2L/m42jBd2medFqZCMu7IjmWnB8YS24fBVh++MJC47HuU09vIa4YNtQasEJIaoWSdyEEFWCvr4+e/fu5e2338ba2po+ffo89nyLOqZ0mNQMn+fcuBQQw+U918nLKqwFF30igegTCdh72uI52IX6TaQWnBCiapBXpTpEXpWK6kKlUhVLtC5fvvzYldm5mXlcCbpO6M4YslNzi7TVcbPGa4gLjj5SC04IUbmVudiRUqkkKiqKpKSkYm35+fmcP39eE3EJIcQj/Ttp2717N82bN2fGjBnk5OSUeI2RqSFeg10Z82VX2k9qinnthwW5EyOS2bPsLH/NP0z4oRso85UVGr8QQpRXmUbcEhISePvtt4mNjUWhUODn58c777yjrpF27949nnvuOXUZDPFsyYibqI7u3r2Lh4eH+o/J77//npdeeumJ1ykLlEQdu0XI9ijuxxXdKcXc1gTPgc407mqPgZGU6RFCVB5lGnH75ptvqF27Nps2beLHH38kLy+PadOmFRl9kzevQohnycbGhs8++4waNWowYMAAJk2aVKrr9PT1cOvYgOf+25Fec32p08ha3ZaelMXRdZf5Y2Yw57dEkpORV0HRCyFE2ZQpcQsJCWHq1KnUqVMHFxcXli5diqenJ9OnT+f27dtA6TdRF0IITVAoFEyZMoVjx47x008/oadXthkgCj0FTi3rMugjPwa83xZ7r9rqtuzUXE5vvMYfM/Zz8verZCaX/BpWCCGelTL9hMvOzi5SiFahUPD222/TunVrZsyYwY0bNzQeoBBClIaPjw82NjZFjsXExDB69Gju3LnziKseUigU1G9iQ995rRj2WQdc/Orz4O/QvOwCLmyP5o+ZwRz+4SKptzMr4iMIIcQTlSlxc3R0JCwsrNjxuXPn4ufnx/z58zUWmBBCPI2cnBxGjhzJxo0b8fX15eLFi6W+tlZDS7rP9GbEss54dHdAz6Awg1PmK7m6N45Ncw6w/6vz3L2eWlHhCyFEicqUuHXu3Jk9e/aU2DZnzhy6d+8uc9yEEJVCZGQkcXFxQOF+xvb29mW+h1U9Mzq+3JwxK7vSYqAzBsaFCxVUKog8eou/5x9h15LTJFy9p8nQhRDikaSOmw6RVaVCFHXr1i0mTZrEokWL8Pb2fur75aTncTkolksBMWSnFV2wULdxTbyGuODgXVvm+gohKowkbjpEEjchSicrK4vY2Fg8PDzKdX1+TgFhwXFc8I8m4252kTYbRws8B7ng4lcPPf0yl8oUQojHeuqfKl27dlWvKBVCiKpgxowZtGzZkl9//bVc1xvU0KdZn4aMXtGFzq+1wNru4ab1966nEfx1CJvmHuRK0HXycws0FbYQQjx94iYDdkKIquTPP//khx9+IDMzk1deeYWbN2+W+156Bno07mzP8MWd6Dnbl9quDzetT0vM4siPl9jwRjAh2yLJzZRacEKIpyfj+EKIaqV///5MnjwZgG+//RY7O7unvqdCT0HD1nUZvLAd/d9rQ4MWtdRtWSm5nPrjGn/MDObUhmtkpUgtOCFE+RloOwAhhHiWTExM+OGHH5g8eTIdOnTQ6L0VCgV2zWph16wWSVEphGyLIvpUAqggNzOfkK2RXNwZjXtXe1oMdMaitqlG+xdC6D5J3IQQ1VJJSduaNWuIjo5m4cKFGBg83Y9HWxcreszyIflmOhf8o4k4dANlgYqCPCWX91znyt44XNvXx2uwCzXtLZ6qLyFE9SGJmxBCAGfOnGH69Onk5uZy/PhxAgMDMTIyeur7WtuZ0/mVFrQc7kZoQAxX98aRn1OASqki4vBNIg7fxLFlHbwGuVC3cU0NfBIhhC6TxE0IISjci7mgoHAFaPPmzTWStP2TWS0T/CY0wXuIK5d3x3IpMFa9ef31M4lcP5NIvSY2eA12wd7TVmrBCSFKJImbEEIAkydPpnHjxixfvpylS5dWWD/GFkb4Dm9EiwHOhO2PI3RHDBn3CmvBJVy5R8KVe9RqaInXYBcatqmHnp4kcEKIh546cXv++ecxNzfXRCxCCKFVHTt2pGPHjsWOX758mQYNGmBlZVXCVeVjaGxA837ONOnlROThm4RsjyLlVgYAd2NS2ffleSzrmuI5yIVGnezQN9TXWN9CiKpLdk7QIbJzghCal5SUhK+vLzVq1GDz5s14eXlVSD9KpYrY07cJ2RpJUnTRzetNa9ageX9nPLo7YGQiL0qEqM7kJ4AQQjzG9OnT1ZvVv/XWW+zevbtC+tHTU+Dcph4NW9fl5sW7hGyL4ualuwBk3s/h5K9XOb8lgma9nWjWpyHGlpqdgyeEqBo0nrgplUru3LnDnTt3yM/PL/EcTWz2LIQQz8J///tfwsPDiY+PZ926dRXen0KhoEELWxq0sCUxIpmQ7VHEnircVjA3I59zf0dyYUc0Ht0daDHAGfNaJhUekxCi8tBY4qZSqfj111/ZuHEjqampjz03ODhYU90KIUSFcnZ25siRI0RGRmpkl4WyqONmTa/Zvty/kc6F7VFEHL6JSqmiIFfJpcBYLu++jltHO7wGuWDdQOYaC1EdaCxx++677/j999+pWbMm/fr1o1atWujry2RaIUTVZ2xsTLNmzYocKygoYOTIkbzwwgsMHTq0Qvuv2cCcLq950nJEI0J3RHN1XxwFeUpUShXhB28QfugGDVvVxWuwC7VdrSs0FiGEdmkscQsMDMTBwYH//e9/mJrKNi5CCN32wQcf8Pfff/P333/z3//+l/nz51d4n+a2JrR7sSnew1y5vCuWS7tiyc3MBxXEnLpNzKnb2DWrhddgF+ya15JacELoII0lbllZWfTq1UuSNiGEzlMqlURFRQGgr6+v8T1Pn8TEsgYtRzamxUAXru69TujOGLKSCzevv3npLjcv3cXW2RKvIa40bFUXhdSCE0JnaCxxc3Nz4+7du5q6nRBCVFp6enr89ttvtG/fnoKCAjp16qSVOIxMDPAc6EKzPk6EHyqsBZd2OxOApOhU9n5xDqv6ZngNcsG1ox36BnpaiVMIoTkae4pfeOEFDh8+TFhYmKZuKYQQlZZCoWDGjBnMmjWrWNv+/ftRKpXPLBZ9Q308ujswcllnus3wxsbx4ab1KbcyOPi/UDbMCuZiQAx52SWv9hdCVA0aLcAbHBzMihUr6NChA66urpiZmZV4Xt++fTXVpfgHKcArhPZt2bKFYcOGMWjQINavX0/Nms9+43iVSkX8hSRCtkaScPV+kbYa5oY06+tE095OGJtLLTghqhqNvSrNzc3l8OHDpKSksGPHDoBiE2NVKhUKhUISNyGETkpJSWHy5MkAbN++nT///JOXX375mcehUChw8KqNg1dtbl+7T8i2SK6fvQNATnoeZzdHcGF7NE16OtK8f0PMaho/8xiFEOWjscTtq6++Ys+ePbi6utKlSxcpByKEqHasrKz47bffmDBhAj169OCll17SdkjUbVyT3m+24t71NEK2RxF17CYqJeTnFBC6I5pLu2Jo1KkBngNdsKpf8lsSIUTlobFXpYMHD6ZevXqsXr0aAwPZSUsb5FWpEJXD9evXqVmzJhYWFkWOP3jroE1piZlc2BFN2P54lPn/mIenAOe29fAa7IJtQyvtBSiEeCyNLU7Izc3Fx8dHkjYhRLXn6OhYLGkLCwujY8eOXLt2TUtRFbKoY0qHSc0Ys6orXoNdMDT+/zcjKog+nsCWd48S8N9T3LpyFw1OgRZCaIjGsix3d3fi4+M1dTshhNAZGRkZjBgxgosXL9KqVSt27dpFu3bttBqTqVUNWo9xx2uwC1eCrhO6I4bstFwAboQmcSM0iTpu1ngNccHRp47UghOiktDYiNuUKVM4efIkR48e1dQthRBCJyQlJanLgzg4OODp6anliB4yMjXEa7ArY1Z1pf2kppjbPlyokBiRzJ5lZ/lz3iHCD90o+mpVCKEVGpvjtm7dOi5dusSpU6fw8fHBzc2txHIgCoWCF198URNdin+ROW5CVF7p6enMmjWLN998Ew8PD22H80jKAiVRx25xflsUyfHpRdrMahnjOdAF9272GBjJ4jMhtEFjiVuXLl1K16FCQXBwsCa6FP8iiZsQVU9aWhpnz54t9c/QZ0WlVBF3/g7nt0aSGJ5cpK2GhSEt+jnTpJcjNcwMtROgENWUxua4rVy5UlO3EkKIakGlUvHyyy+zadMmPv74Y9577z309CrHtlQKPQWOvnVw8KnN7bD7nN8aSXxIEgA5aXmc3niN89siadrLkeb9nDG1rqHliIWoHjS6c4LQLhlxE6JqebDLAoClpSUXL17EwcFBy1E92t2YVEK2RxJ1PAH+8ZtDz0BB4y72eA50xrKu1IIToiJVjj/thBCiGho8eDD/+c9/0NPTY/369ZU6aQOo1dCS7jN8GLmsMx7dHdDTL1xpqsxXcXVvHBvnHGTfqvPcvZ6q5UiF0F0aG3ELDQ3lwIEDjB07llq1ahVrv3v3Lr///jvdunWjWbNmmuhS/IuMuAlRNUVERODm5lbk2IMfzdou2Ps4mfezCQ2I4cqe6+TnFBRps/eyxXuIK/U8bLQUnRC6SWMjbhs2bODIkSMlJm0AtWrV4ujRo2zcuFFTXQohhE74d9IGsGLFCiZMmEB6enoJV1QOpjWNaTvOg7GrutFyVCNqmD9cqBAfkoT/whNs+/AY188lSjFfITREY4sTrl69SsuWLR97jpeXF6dPn9ZUl0IIoZMOHz7M22+/TUFBASEhIZw6dQoTExNth/VINcwN8RnqRot+zoQFx3NhexQZ97IBSAxPZveSM9S0N8driCsufvXQ05dZOkKUl8aenuTkZGxtbR97jo2NDffv39dUl0IIoZPu37+PqakpUDgPrjInbf9kUEOfZn2cGP1FF7pM9cTK7uFChfvx6QR/HcLG2Qe4vCeW/NyCx9xJCPEoGhtxMzc3JzEx8bHn3L59u8r8ABJCCG0ZNGgQp0+f5osvvmDhwoXaDqfM9Az0aNSpAW4d7Lh+NpFzWyJJikoBID0pm6NrL3N2cwQtBjSkSU9HjEylFpwQpaWxEbdmzZpx8OBBbt++XWL77du3OXToEM2bN9dUl0IIobMaN27M6tWrMTAo+vf18ePHiY2N1VJUZaPQU+DUqi5D/tOO/gvaYNf84Rzo7LRcTv1xjd+n7+fUH2FkpeRoMVIhqg6NJW6jRo0iJyeHadOmERgYSFJSYaHGpKQkAgICeP3118nNzWX06NGa6lIIIaqVmzdvMmTIEHx9fQkMDNR2OKWmUCiwa1qL/u+2Yein7WnYph78/2LZvOwCQrZF8fuMYI6svUTanUztBitEJafRArx//fUXq1atKrKM/Z//f8aMGTz33HOa6k78i5QDEUK3Pf/88/zyyy8A9O3bl507d1bqciGPk3Irg5DtUYQfuoGq4OGvIYUeuLSzw2uwCzYOFlqMUIjKSeM7J0RFRbFlyxauXr1Keno65ubmNGnShCFDhuDi4qLJrsS/SOImhG67f/8+EydO5OzZs5w9e5batWtrO6SnlnEvm9Cd0VwJuk5BrrJIm4N3bbyHulK3cU0tRSdE5SNbXukQSdyE0H1KpZIbN24U22VBqVRWmn1OyyM7LZfLe2K5GBBDbkZ+kba67jXxHuqKvadtlR1hFEJTqu5TruOSk5N5++236d27N+PGjePUqVPaDkkIUQno6ekVS9pyc3Pp1q0bX3zxRZUtdGtsYYTvc40Yu6obfs83KbJp/e2w++z6/DR/v3OEqOO3UCqr5mcUQhM0Vg5EaNaKFSuwsbFh27ZtnD59mg8//JDff/8dKysrbYcmhKhk3nrrLQ4ePMjBgweJjY1lxYoV2g6p3AyNDWjeryFNejkSefgm57dGknq7cMHCvetp7PvyPOa1TfAe4kqjTnboG+prOWIhni0ZcauEMjMzOXToEJMmTcLY2JiOHTvi5ubG4cOHtR2aEKKSUalUGBsbA2BkZMT48eO1HJFm6Bvo0birPSOWdabHLB9qNbRUt6XfyeLw9xf5fUYwF/yjyM3Kf8ydhNAtOjPiFh4ezpo1a4iKiiI5OZkaNWrg6OjIsGHD6N27d4X2nZmZyfr16wkPDyc8PJyUlBQmTpzI5MmTSzz3+++/Z//+/aSlpeHo6Mj48ePp0aOH+pz4+HhMTEyoW7eu+piLiwvR0dEV+jmEEFWPQqHg888/p3379ty7d49WrVppOySN0tNT4NymHg1b1+Xmpbuc/zuSW1fuAZCdmsvJ38I493ckzfo40ayvEyaWNZ5wRyGqNp1J3NLT06lTpw49e/bE1taW7Oxs9uzZwyeffMKtW7d48cUXK6zvlJQUtm/fjqurK506dcLf3/+R5y5YsICrV6/y6quv4uDgQFBQEB9//DFKpZJevXoBkJWVhZmZWZHrzMzMSE5OrrDPIISo2oYMGVLi8T/++IOhQ4eqR+WqKoVCQYPmtjRobsudyGTOb40k9nThbj15Wfmc3xJJ6I5o3LvZ4znQBXNb2aVH6KanStzy8/OLVfXWFh8fH3x8fIoca9++Pbdu3WL79u2PTNwyMjIIDQ3Fz8+vxPajR4/i4+Pz2K266tWrx44dO1AoFCQnJz8ycTt27BinT5/mgw8+oGfPngD4+vqSkJDAN998Q/fu3dHX18fExISMjIxiccp2YUKIsvj111+ZMGECvr6+bN68GWdnZ22HpBG1Xa3pNaclyTfSCdkeRcThm6iUKgrylFzefZ0rQXG4tq+P12AXatpLLTihW55qjttzzz3H119/TUxMjIbC0TwrKyv09R89edXf35/58+cTEBBQrG3r1q2888477Nq167F9KBSKUi1RP3ToECYmJnTt2rXI8f79+5OUlMTly5cBsLe3Jysrq8jer9HR0Y/8oRsUFMT8+fNZtWrVE2MQQlQPGRkZzJo1C4CzZ89y4MAB7QZUAawbmNPlNU9Gr+xCsz5O6BsW/kpTKVVEHL7Jn28fZvfSMyRGJGs3UCE06KkSt4yMDDZu3MjEiROZOnUq/v7+ZGZqd7sSpVJJfn4+ycnJ/P3335w8eZJx48Y98vzRo0czYsQIFi1axNatW9XHN23axLJly5gwYQJDhw7VSGzR0dE4OTkVG6V0dXVVtwOYmprSsWNH1q5dS05ODkePHiU8PJwOHTqUeN+ePXuyaNEiZsyYoZE4hRBVn5mZGUFBQbi5uTF58mQmTpyo7ZAqjHktE9q92JSxq7rhM8wVQ5OHP2Ovn01k2wfH8F94nPjQpCpbLkWIB57qPefff//Nrl27CAgI4PLly1y5coVVq1bRrVs3+vfvj6enp6biLLXly5ezbds2AAwNDXnjjTceOffjgenTp1OjRg2WLVtGbm4uubm5fPfdd7z00ksanRuXkpKCnZ1dseMWFoVD+ampqepjc+bM4dNPP2XgwIHY2try0UcfYW1trbFYhBC6z8vLi9OnT2NkZFSsrTJNddEUY0sjWo5sTIuBLoTti+OCfxRZKbkAJFy9T+B/T2HjaIHPMFecWtdDT0+K+Yqq56meWktLS0aOHMnIkSMJCwtj586d7N27l4CAAAIDA7G3t2fAgAH06dMHGxsbTcX8WM8//zwDBw7k/v37HD16lC+++IKsrCzGjh372OumTJmCkZGR+nXj1KlTn3hNeZS26re1tTVLlizReP9CiOqlpNqPISEhPPfcc6xbt45OnTppIaqKZWRiQIsBzjTt7Uj44ZuEbIkk7U4WUFgLbu/K81jUMcF7qCtuHRugbyCVsUTVobE/t9zd3XF3d2f69OkcPHiQHTt2cO7cOb777jvWrFlDu3btGDBgAH5+fhW6LUvdunXVZTTatWsHwP/+9z/69ev3xBGr9PR0FAoFKpWK9PR0jcdmZWVFSkpKseNpaWlAYSIshBAVKSUlhREjRhAVFUW3bt0ICAhQr2jXNfqG+nh0c6BxF3tiTiZw7u8I7scV/mxPS8zi0P8ucnrDNTwHueDR3QFDY90agRS6SePfpYaGhvTo0YMePXqQmJhIQEAAAQEBHD58mCNHjmBjY8Nff/2l6W4fqUmTJmzdupWbN28+MnFTqVR88cUXbN26lXnz5pGXl8fy5cvJzc1l2rRpGovFxcWFoKCgYq8ooqKiAHRmxZcQovLKy8vD0dGRiIgIvL29dXLE7d/09BS4+NXHuW09boQmce6vCG5fSwYgKyWXE79c5exfETTv40Szvg0xtij+almIyqJC/7yoU6cOL774It26dWPx4sWEhoZy7969iuyymHPnzqGnp1fi3DIoXMywZMkSAgMDef/999WFcI2MjFi8eDE5OTnMnj1bIxsbd+rUie3bt3PgwIEiBXcDAwOxtbWladOmT92HEEI8jq2tLbt37+azzz7j+eefr/L13cpCoVBg71kbe8/aJIbf59zfkcSdvwNAXmY+5/6O5IJ/NB7dHfAc6IxZLSnBJCqfCkvcsrKy2L9/Pzt37uTixYvqbVm6dOlSIf0tWbIEU1NTmjRpgo2NDcnJyQQHB7Nv3z7Gjh37yNG2DRs2sHv3bhYuXFjkL89+/fphZGTEJ598gpOTE8OHD39s/8ePHyc7O1u9qjY2Npbg4GAA/Pz8MDY2xs/Pj1atWrF8+XIyMzNp0KABe/fu5cSJEyxYsOCxZUuEEEJT9PX1ef/994sdv3//PgEBAY9dia8r6jSqSZ+3W3E/Po3zWyKJOnYLlQoK8pRc2hXL5T3Xcetgh9cQF6ztzLUdrhBqCpWG10aHhISwc+dOgoODycnJQaVS4eHhwYABA+jZsyempqaa7E5t586d7Ny5k9jYWNLT0zExMcHNzY2BAwc+dsurnJwcwsPDad68eYntoaGheHh4YGho+Nj+R40aRUJCQoltGzZsoH79+kDhlldr1qwpsuXVhAkTiozAlVdYWBhTpkxhzZo1uLu7P/X9hBDVh1KpZMiQIfj7+zNp0iS+/vrralX0O+1OFhf8owjbH48yX1mkzbFlHXyGuVHbpfhCDyGeNY0kbnfu3CEwMJCAgABu3ryJSqXC0tKS3r17M2DAAFxcXDQRq3gCSdyEEOW1a9cu+vbtC0CtWrU4d+4cDg4OWo7q2ctKyeFiQAyXd8eSl11QpK2ehw0+z7li16yWRqbPCFEeT/WqdN++fQQEBHD69GmUSiV6enq0bt2a/v3706lTJ52rESSEELqqT58+/PLLL7z22mv8+uuv1TJpAzCxqkHrMe54DXbhSlAcF3ZEkZOWB0DC1XsEfHaPWk4W+DznhlPLuiikFpx4xp5qxO3BfLV69erRv39/+vXrR506dTQWnCgbGXETQjytu3fvUqtWrSLHCgoKUCqVT5wyoovycwsIP3SD81siybibXaTNoo4JPsPccO1gJ7XgxDPzVENiPXr0YMCAAbRs2VJT8QghhNCifydtAJ988gl79+7ljz/+eOQKfV1lYKRPkx6OuHe1J/pEYS245BsZQGEtuIPfhXLqj2t4DnKWWnDimdD44gShPTLiJoTQtN27d9O3b19UKhV2dnaEhYVhbl59V1mqVCriQ5I4+2c4dyKLFlQ3MjWgeb+GNO3jhLG51IITFUOjfxrk5+fz119/ERQUxPXr18nJyWH//v0AhIeHs337dkaOHFlt504IIURVY2lpSYMGDYiPj2fatGnVOmmDwlpwDt61cfCuTULYfc79FcGN0CQAcjPzOftnBCHbovDo4YDnQBfMbKpPnTzxbGgsccvJyWHu3LlcvHgRKysrzMzMyM5+OB+gfv367Ny5EwsLC6ZMmaKpboUQQlQgPz8/zp07x+rVq5k/f762w6lU6rnXpN87rbl3PY1zf0cQczLhYS24wMJacK7t7fAZ6opVfTNthyt0hMZmU/7888+EhobyyiuvsGXLFgYMGFCk3dzcHG9vb06dOqWpLoUQQjwDtra2fPDBB8X2mQ4KCuLMmTNaiqrysHG0oMcbPoxc3gX3bvbo6ReuNFUVqIg4dINNcw+ye9kZkmKK71UtRFlpLHHbt28f3t7ejBs3DoVCUWKNGzs7O27fvq2pLoUQQmhJTEwMo0aNon379nz33XfIdGmwrGtKpyktGPNVN1oMcMagxsPdcK6fSWTLu0fx/88Jbl6+K18vUW4aS9wSExPx8PB47DmmpqZkZGRoqkshhBBasmjRIu7fv09ubi6BgYHaDqdSMbWqQdvxHoz7uhstRzbCyOxhGZWEK/fY+clJtrx7hNjTt1EpJYETZaOxOW4mJiakpDx+GPjmzZtYWcmWIUIIUdV9+eWX1KhRgx07drB27VrZSaAERqaG+Axzo8UAZ8L2xxOyLZLM+zkA3I1NY8/ys1jWNcV7mCtu7e3Qk1pwohQ09l3SrFkzjhw5Qnp6eontiYmJHD9+HC8vL011KYQQQkuMjIxYuXIlZ8+exdraukhbVlaWdoKqpAyM9GnWx4kxX3aly+ueWNZ7uGd36u1MDn4byu8zg7kYGE1+TsFj7iSEBhO3MWPGkJaWxpw5cwgNDaWgoPCbLzs7mzNnzjB37lzy8/MZPXq0proUQgihZZaWlkX+nZWVRfv27Zk1axa5ublaiqpy0tPXo1HHBoxc2pneb7akVsOHX7us5ByO/3SV36bt4+yf4eRk5GkxUlGZabQA79atW1m5ciVKpbJYm56eHnPmzGHgwIGa6k78ixTgFUJo28svv8wPP/wAwAsvvMD69eu1HFHlpVKpuB12nzObw7l1+V6RNn0jPTy6O+A1yAXTmlILTjyk0QK8Q4YMwcvLi61bt3LlyhVSU1MxMzOjSZMmDBs2DGdnZ012J4QQohJRqVS0atWKn3/+GQMDA9566y1th1SpKRQK6nnYMGBBW+7GpnL2z3BizySCCgpyC2vBXdlzHdcOdvgMc8WyrtSCE7LllU6RETchRGVw6tQp4uLieO6557QdSpWTejuDc39HEnHkJqqCf/x6VoBTyzr4Dm9ELSfLR99A6LxnvoSlpNeoQgghdEfr1q2LJW0qlYoVK1aQlJSkpaiqBsu6ZnR5zZOxX3alWd+G6Bv9/69pFcSeTuTvd46w45MTJFy99/gbCZ2lscTN39//iecUFBSwcOFCTXUphBCiivjf//7HnDlz8PX15cSJE9oOp9IzrWlMuxeaMO7r7vgOd8PI9OHMpluX7+G/8AR/v3uE2LO3pZhvNaOxxG3ZsmUcOnToke0qlYr//Oc/BAcHa6pLIYQQVUB2djaffvopAHFxccTGxmo5oqqjhpkhvsMbMe7r7rR93gMTKyN1292YVPYsPcumuQcJP3wDZYG80aoONFrHbeHChYSEhBRre5C07d+/n8GDB2uqSyGEEFWAsbExx44do0OHDsycOZNRo0ZpO6Qqx6CGPi36OTN2VTc6v9oCizom6rbUhEwOrL7AHzOCubQrhvxcqQWnyzS2OCE9PZ1p06Zx584dVq1ahaurK1CYtH3yyScEBQUxePBg5s6dq4nuRAlkcYIQojLLy8tDpVJhZGRU5HhaWhoWFhZaiqpqUilVxJ65zZnNEdyPSyvSZmRmSPN+TjTv2xAjU8NH3EFUVRobcTM3N2fZsmWYm5vz1ltvcevWLfVIW1BQEIMGDZKkTQghqjFDQ8NiSdvx48dxcnLi999/11JUVZNCT0HD1vV4blEH+r/XmrqNrdVtuRl5nN0cwW/T9nP85ytkpuRoL1ChcRovBxIXF8frr7+OhYUFjRs3Zv/+/QwcOFDq+TwDMuImhKhKkpKS8PX1JS4uDoC//vqLYcOGaTmqqispOoUzm8KJO3+nyHE9fQWuHezwHe6GRW3TR1wtqgqNlwNxcHBgyZIl3Lt3j+DgYAYMGCBJmxBCiGJMTU3p0aMHAB07dpSddZ6SrbMVfd5uxchlnXFtXx+FngIAZYGK8IM32DDrAHuWneHev16tiqql3DsnrFu37rHtTZo0ISIiAltb2yLnKhQKXnzxxfJ2K4QQQkeYmpry448/0qVLF3r37o2hoczH0gSr+mZ0m+5Nm3HZnN8SybUD8RTkKQtrwZ1JJPZMIvWb2NByVCPqudtoO1xRRuV+VdqlS5fydahQSEmQCiKvSoUQuiIxMZEff/yRt956C319fW2HU6Vlp+cSuiOay7tjycsquuK0VkNLfEc2wtG7NgqFQksRirIo94jbypUrNRmHEEIIARQWax87diz79u1j7969/Pbbb9SuXVvbYVVZxuZGtB7tjvcQVy7vuU6ofxTZaXnA/9eCW3IGy3qm+Dznhmt7O/T0JIGrzMqduHl7e2swDCGEEKLQ0aNHOXDgAACXLl2ioEDqkmmCobEBXoNcaN6vIdcOxBOyNZL0pGzgYS24U7+H4TXYFfdu9hgYyUhnZfTM9yoVQgghHqdTp07s3bsXe3t7NmzYQL169bQdkk7RN9CjSQ9HRn/Rle4zvbFuYKZuy7yfw7H1l/l92n7O/hVObla+FiMVJSl34jZv3jzCwsLKdW1OTg6///47W7ZsKW/3QgghdFiXLl2IiIigU6dORY7n5eWRliarIjVBoafAxa8+wxd3ou/81tR2s1K35TyoBff6Po7/fIWsVKkFV1mU+1VpYmIir776Kt7e3vTp04fOnTtjZmb22GuuXr3K7t27CQoKIisri3fffbe83QshhNBxNWrUKHbs3XffZdu2bWzevJkWLVpoISrdo1AosPe0xd7TlsSIZE5vvMbNi3cByM8p4GJADJf3xOLa3o6WIxphbmvyhDuKilTuVaUqlYqdO3eyfv16bt++jZ6eHo6OjjRu3JiaNWtiYWFBTk4OqampxMfHExYWRkZGBgqFgm7dujFlyhTq16+v6c9TrcmqUiGELtuyZYu6QK+VlRUxMTFYW1trNygdlXwjndObrhF7+jaqf+xdr1CAo28dWo5qjI2DbFOmDeUecVMoFAwYMIB+/fpx7NgxAgICCAkJYffu3cXO1dPTw8XFhU6dOjFw4EBsbW2fKmghhBDVj6enJz4+Ppw7d46FCxdK0laBrBuY03OWL+l3szj7ZwQRh2+izFei+mctuKY2tBrVmLqNa2o73GpF41texcTEcOfOHVJTUzEyMsLa2hpnZ2fMzc012Y0ogYy4CSF0XXZ2Nj///DMvv/yy1B17hrJTczm/LZKre+PIzym6ytfW2ZKWIxth7yW14J4FjSduQnskcRNCVFd///03BgYGDBo0SNuh6LS87HxCA2K4FBBDTnpekTar+oW14FzaSS24iiTlQIQQQlRpYWFhvPDCCwwePJh33nkHpVL55ItEuRgaG+A7zI1xX3ej3cSmmNZ8uIAk5VYmwV9f4I+Z+7m0O4aCfPnvUBHKPcdNCCGEqAx+/PFH0tPTAYiPj5fXdc+AvqE+zXo70aSnI1FHb3L2rwhSEzIByLyXw7F1Vzi7OYJmfZ1o0d8ZQ2NJNzRFvpJCCCGqtEWLFlGvXj1++uknvv32W0ncniE9PQVuHRvg2sGOuPN3OLMpnLsxqQDkpBfWgruwPRqP7vZ4D3XD2MJIyxFXfTLHTYfIHDchRHWWl5eHoaFhkWOJiYnUri2T5p+lhLB7nN4YTsKVe0WO6xkocG1vR6uRjTCrJbXgykvmuAkhhNAJ/07a0tLS6Ny5M8OGDSM5OVk7QVVD9dxtGPh+W55b1AFH3zrw/zmzMl9F+MEb/PFGMHuWn+V+vOyAUR7yqlQIIYROevXVVwkLCyMsLIzJkyfz119/aTukasXG0ZLeb7YkNTGTs5vDiTp2C2WBCpUSYk/fJvb0beo3taH1qMbUkVpwpSYjbkIIIXTS888/j42NDZaWlixevFjb4VRblnVM6fq6F2O/6kbT3o7oGz1MPW5dvse2j46z5b0jxJ1PRGZvPVmFJ25du3at6C6EEEKIYvr168fZs2f566+/cHNz03Y41Z6JVQ3aT2zG+NXd8R7qipHpw5d+SdGp7Fp8hs1vHiLi8A1USkngHqXCEzfJnoUQQmiLk5MTPXr0KHJMpVIxf/58wsPDtRRV9WZkakirUY0Zt7o7bca5Y2L1cKVpyq0Mglf/fy24QKkFV5IyJW7z5s3j+++/5+DBg9y6datU1/xzJc+vv/5KXl7eY84WQgghKtaKFSv4/PPPadWqFdu2bdN2ONWWgZE+ngNdGPtVNzpOaY5F7YcrTTPu5XDspyv89vo+zv4ZTl52vhYjrVzKtDjB1taWU6dOsWHDBvLy8jA3N6dRo0Y0atSIxo0b06hRIxwdHYska/8ccVuzZg39+/enZs3CSYh//PEHQ4YMwcRElgULIYSoeHl5eaxbtw6A1NRU9PRkqre26enr4dHNAfeu9sScus3ZP8O5H1dYUDknPY+zf0ZwYUc07t3s8RnmhrF59a4FV6bE7a233gKgoKCA2NhYwsLCiIiI4OrVq/j7+5OZmYmxsTGBgYElXv/v16br1q2jc+fO6sTt/v37vP766/z+++/l+SxCCCHEYxkaGnL06FGmTJmCs7MzAwcO1HZI4v8pFAqc29TDuU09blxK4szGcBLDkwHIzy7gUkAsV4LicPWrT8vRjTC3qZ6DPuUqB6Kvr4+LiwsuLi4AREZGcvDgQbZs2UJKSkqp7/PvRE6lUpX6FawQQghRHubm5vz2228lzsGOj4/H3t5eC1GJf2rQzJYGH9uSFJXCqY3XuBGaBCpQ5ikJP3SDiCM3cfSpTasxjanZwELb4T5T5a7jdvnyZQ4cOMChQ4dITEzE29ubyZMn06FDB03GJ4QQQmicQqEotpvC/v376du3Lx999BHz5s2T16iVgK2LFf3mtyY5IYMzG64Rc+o2KqUKlVJF7JlEYs8mFtaCG92YOm7VoxZcmRK3M2fOcPDgQQ4dOkRGRgZt27Zl0qRJtGvXDnNz81Ld4+jRo/j4+GBnZ1eugIUQQghNS0xMZMyYMeTm5vLuu+/i6OjI+PHjtR2W+H/W9czo8YYPmcnZnNkUTsThmxTkKUEFty7dY9sHx7F1tqTlqEbYe+r2FmdlStzmzJmDra0tEyZMYNCgQcW2FynJP794jRo1YsWKFeTn52Nqakpubi6//vorLVq0oFGjRqVO/oQQQghNqlWrFq+//joff/wxvXr1YsyYMdoOSZTA1NqYTlNa0Ha8B+f+juDqvnjysgpXnCZFp7Lr8zNY1TfDe5grbu3tUOjpXgJXpk3mX375ZWJiYsjPz8fCwqLIitLGjRvj4OBQ7JquXbsSHBys/nd+fj4xMTFcu3aNa9euER4eTkREBDk5OSgUClQqVZHzRenJJvNCCPF0goKC8Pb2xtbWVtuhiFLIzy0gdGc0lwJiyU7LLdJmZmOM5yBnmvRwRM9Ad157lylxg8cnXiYmJri5ubFq1Sr1+f9O3EqiUqmIi4tTr1KdOnVquT5MdSeJmxBCaF5cXByLFi1i8eLFmJmZaTscUQJlgZIr++K4sC2KjLvZRdqMLQxp2tsJz0EuGBjpaylCzSlz4laSxyVeDxK3JUuW4OrqipubG66urvLNXwEkcRNCCM3Kzc2lS5cuHD9+nGbNmrFt2zZ1RQVR+aiUKiKP3+LcXxGk3Mwo0mZorE/jrvb4PFe1a8GVeo7b4xIvhUKBo6Mjjo6O9OrVq8Tr8/Ly2LlzJ7GxseTl5VG3bl31vdzc3HBzc5MFC0IIISqVixcvcvHiRQAyMjKwtrbWbkDisRR6Ctza2+Harj7xIXc4szmcpKhUAPKyC7gUGMvVvXG4tKtPy1GNMbcx1nLEZVfqxC0/P/+pEq93330XAKVSydmzZ/n4449JSkri/v37bN68WV2818XFhdWrVz/9JxNCCCGekq+vL6dPn2b8+PF8++232NjYaDskUQoKhQIH7zo4eNfhdvh9Tm+4xq0r90AFBXlKwg/eIOLwTRx9a9N6dGOsq1AtuFInbu+88w7w9ImXnp4e69ev57XXXmPAgAHAw9G47777jkaNGj3lRxJCCCE0x93dnVOnThUrMZGTk0NSUhINGjTQUmSiNOo2qsmABW25fyONU39cI+7cnYe14E4nEnsmkfpNbGg1ujF1G1X+WnBlLsCricTrypUr6hE4KNyCZMiQIZiamhIUFFTWkIQQQogKVVJdsNmzZ7Np0yZ+++23R04TEpVHzQYW9J7bkvS7WZzecI2o4wko8/+/Ftzle2z/8Di2Lpa0HN4YB5/a2g73kcq1PvbKlSv4+vqq//0g8Zo9ezYJCQlPvN7NzY3du3cXO96sWTOuXLlSnpCEEEKIZ2bTpk188803JCUlMXToUO7cuaPtkEQpmdcyoevrXoz7uhtNezthUOPhStOkqFR2LTnNpjcPEn7oRonbomlbuRK3p0285s6dy2+//cbKlSu5efMmUPgKduvWraUq6iuEEEJoU48ePdRvnVatWkXt2pV3hEaUzNjCiPYTmzL+m+54D3WhhvnD/CPlZgYHvrnAHzODuRgYg7JAqcVIiyrXXqVz585l+vTpJCcnM3LkSOzs7MqUeDVq1IjVq1ezYsUKxo4di6mpKQUFBeTn5/Pmm2+WJyQhhBDimbGxsWHbtm3s3LmTgQMHajsc8RQMjQ1oNcod3+cacTEwhosBMWTezwEg4242x3+6wvm/I2jSywnPQc4Y1ij3Nu8aUe46bpGRkaxYsYLQ0NBiiVf//v3V5z2pAO/NmzcJDw9HoVDg7u5O3bp1yxOOQOq4CSFEZbB+/XpSU1OZPn26Tu+ZqatUShXXDsYTsjWK1NuZRdqMzAzwGuRCk56OGJlq5w1hudNGV1dXvvrqqycmXk/KC+3s7KR+mxBCCJ1w/vx5XnvtNbKzszl69Cg///wzBgbaHaERZaPQU+De1YHGXeyJPX2bs39FcC82DYDcjHxO/XGNuu421HPXzgrUp/5uelLideDAgaftQgghhKgSgoKCyM4u3HLJ2tpakrYqTKFQ0LB1PRq2rsfNy3c5s/Eat68lU8+jptaSNihH4qZUKomJicHS0rLYJrz5+flcvHgRb29vTcUnhBBCVBlvvvkmLi4ufP3116xYsULb4QgNsWtaC7uP2pF8I52CPO0uVCjTqtKEhAQmTpzIpEmTGDFiBPPnzyclJUXdnpqayqxZszQdoxBCCFFlPPfccwQFBWFsXHQ7paioKHJycrQUldAE6wbm1GpoqdUYypS4ffPNN9SuXZtNmzbx448/kpeXx7Rp00hKSlKfUxlrngghhBDP0r8XJdy7d48ePXrQqVMnYmNjtRSV0AVlStxCQkKYOnUqderUwcXFhaVLl+Lp6cn06dO5ffs2UHJ1aSGEEKI6e/XVV4mJieHUqVO8/vrr2g5HVGFlStyys7OL1GlTKBS8/fbbtG7dmhkzZnDjxg2NByiEEEJUde+99x4uLi7UqlWLb7/9VtvhiCqsTImbo6MjYWFhxY7PnTsXPz8/5s+fr7HAhBBCCF3h7e3NmTNnCAwMxMHBQdvhiCqsTIlb586d2bNnT4ltc+bMoXv37jLHTQghhCiBtbU1rVq1KnKsoKCASZMmceTIES1FJaqacu+cICof2TlBCCGqloULF/Lhhx9iYGDA6tWrmTJlirZDEpVcuTaZf+DBBvFCCCGEKJuCggJ1kXqlUombm5uWIxJVwVOVdB43bhwvvfQSzz//vKbiEUIIIaoFfX19du3axfvvv4+lpSXdunXTdkiiCniqxE2lUlFQUFDk2I4dO7h48SLz5s17qsCEEEIIXWdgYMB///vfEtvOnz8vOxGJYp7qVWlJEhMTCQgIKLHtt99+Y9q0aZruUgghhNAp/v7++Pj48Morr6j3PhUCKiBxe5ycnBwuXbr0LLsUQgghqpS7d++qpyCtWbOGP/74Q8sRicrkmSZuQgghhHi8WrVqsXLlSkxMTBg2bBgvvviitkMSlchTzXETQgghhOa98MIL+Pr64uDgIFtJiiJkxE0IIYSohJo3b46VlVWRYxEREQwZMoSEhAQtRSW07alH3LZs2UJ0dDQeHh64u7uTkZGhibiqveTkZD777DPOnz+Pra0ts2fPpnXr1toOSwghhJZkZWUxYsQIQkJCOHnyJLt27cLT01PbYYln7KkSN2dnZ65fv05wcDDBwcFFhnMXLlyIi4sLrq6uuLi4ULdu3acOtjpZsWIFNjY2bNu2jdOnT/Phhx/y+++/F/vrSwghRPUQGxtLUlISAFZWVjg7O2s5IqENT5W4rVu3jtzcXCIiIggPDycsLIxr164RHR3N3r172bt3rzqZMzMzo0aNGhoJWtdlZmZy6NAhfv/9d4yNjenYsSNubm4cPnyYAQMGaDs8IYQQWuDh4cHZs2eZMmUKn332GRYWFtoOSWjBU78qNTIyomnTpjRt2lR9LD8/n8jISK5du6ZO5qKiokhPT6+wSZZnzpxhz549XLx4kcTERMzNzXF3d2fixIkVvm9nZmYm69evJzw8nPDwcFJSUpg4cSKTJ08u8dzvv/+e/fv3k5aWhqOjI+PHj6dHjx7qc+Lj4zExMSkySuni4kJ0dHSFfg4hhBCVW506ddi6dWux4xkZGURGRsqr02qgQlaVGhgY4O7ujru7O4MGDQIKk7mYmBjCwsIqoku2bt1KSkoKI0aMoGHDhiQnJ7NhwwZee+01li5dSsuWLSukX4CUlBS2b9+Oq6srnTp1wt/f/5HnLliwgKtXr/Lqq6/i4OBAUFAQH3/8MUqlkl69egGF8xjMzMyKXGdmZkZycnKFfQYhhBBVk0qlYurUqWzcuJGvv/6al156SdshiQr0zMqBGBgY4ObmVmGb6M6ePZuaNWsWOdamTRvGjRvHL7/88sjELSMjg9DQUPz8/EpsP3r0KD4+PpiYmDyy73r16rFjxw4UCgXJycmPTNyOHTvG6dOn+eCDD+jZsycAvr6+JCQk8M0339C9e3f09fUxMTEptsgjIyPjsTEIIYSonjZv3szPP/8MwKxZs+jfvz/169fXclSiouhMOZB/J20ApqamODk5kZiY+Mjr/P39mT9/fonbdG3dupV33nmHXbt2PbZvhUJRqlfAhw4dwsTEhK5duxY53r9/f5KSkrh8+TIA9vb2ZGVlFYk7Ojr6kRNRg4KCmD9/PqtWrXpiDEIIIXTL4MGD1dtJ/vDDD5K06TidSdxKkp6eTnh4OA0bNnzkOaNHj2bEiBEsWrSoyLyBTZs2sWzZMiZMmMDQoUM1Ek90dDROTk4YGBQd6HR1dVW3Q2HC2bFjR9auXUtOTg5Hjx4lPDycDh06lHjfnj17smjRImbMmKGROIUQQlQdNWrU4KuvvuL06dOMGjVK2+GICqbTOyesWLGCrKwsXnjhhceeN336dGrUqMGyZcvIzc0lNzeX7777jpdeekmjW42kpKRgZ2dX7PiDlUGpqanqY3PmzOHTTz9l4MCB2Nra8tFHH2Ftba2xWIQQQuiWkqYEffXVV0RHR7No0SIMDQ21EJXQNJ1N3L7//nv27NnDG2+8UapVpVOmTMHIyEj9unHq1KmMHTtW43GVdlWttbU1S5Ys0Xj/Qgghqofjx48zZ84c8vLyOHnyJHv37sXIyEjbYYmnpJOvSteuXctPP/3ElClTGD58eKmv+2e5kvT0dI3HZWVlRUpKSrHjaWlpAFhaWmq8TyGEENXTtWvX1P/fz89PkjYdoXMjbmvXrmXt2rVMmjSJ559/vlTXqFQqvvjiC7Zu3cq8efPIy8tj+fLl5Obmqid8aoKLiwtBQUHk5+cXmecWFRUFIFWwhRBCaMwLL7yAu7s7K1eu5LPPPtN2OEJDdCpxW79+PWvXruWFF15g0qRJpbpGqVSyZMkSAgMDef/999WFcI2MjFi8eDE5OTnMnj1bI4WDO3XqxPbt2zlw4ECRgruBgYHY2toWKWIshBBCPK22bdvy22+/FTseEhKCg4MDNjY2WohKPA2dSdz++OMPfvjhB9q2bUu7du24dOlSkfZmzZqVeN2GDRvYvXs3CxcupFOnTurj/fr1w8jIiE8++QQnJ6cnvnI9fvw42dnZZGZmAoV7ygUHBwOFQ9TGxsb4+fnRqlUrli9fTmZmJg0aNGDv3r2cOHGCBQsWoK+v/xRfASGEEOLJbt++rf4dt3nzZlq1aqXtkEQZKFQqlUrbQWjCzJkzOX/+/CPbDx48WOLxnJwcwsPDad68eYntoaGheHh4PHE1zqhRo0hISCixbcOGDeq6OpmZmaxZs6bIllcTJkwoMgJXXmFhYUyZMoU1a9ZU+DZfQgghqqZRo0axadMmAPr27VtiHVNReelM4iYkcRNCCPFkcXFxjBo1itjYWM6dO1dkX2xR+enMq1IhhBBCPJmDgwMHDhwgJiamWNKmUqk0MqdbVBydLAcihBBCiEczMjKicePGRY7l5eUxcOBANmzYoKWoRGlI4iaEEEII3n33XXbu3MmYMWP4z3/+o+1wxCNI4iaEEEJUc0qlkjt37gBgaGhIr169tByReBSZ4yaEEEJUc3p6eqxdu5YOHTqQn5+Pn5+ftkMSjyCJmxBCCCFQKBRMmTKlxLbAwEB69eol9UYrAXlVKoQQQohH2rhxI/369aN///4kJSVpO5xqTxI3IYQQQpQoJSWFV199FYDdu3ezfft2LUckJHETQgghRImsrKz466+/qFOnDhMmTGDixInaDqnakzluQgghhHikbt26ce7cOaysrIoV55WCvc+ejLgJIYQQ4rHs7OwwMzMrcuzSpUu0bt2aS5cuaSmq6kkSNyGEEEKUSVpaGsOHD+fMmTO0adOGo0ePajukakMSNyGEEEKUSXJyMsbGxgA0atQIHx8fLUdUfUjiJoQQQogycXBw4NixY0ybNo3NmzdjYmKi7ZCqDUnchBBCCFFmJiYmfPXVV7i5uRU5npKSwu7du7UUle6TxE0IIYQQGqFSqZg4cSJ9+vRhwYIFFBQUaDsknSOJmxBCCCE0YsuWLWzZsgWA1atXc+vWLe0GpIMkcRNCCCGERgwdOpSlS5diaGjIzz//jL29vbZD0jmSuAkhhBBCIxQKBXPnziUiIoIBAwYUaVMqlahUKi1FpjskcRNCCCGERjk6OhY7tnjxYkaMGEFKSooWItIdsuWVEEIIISrU/v37ee+991AqlVy8eJHz589LCZFykhE3IYQQQlSonJwcLC0tARg3bpwkbU9BRtyEEEIIUaH69u3L2bNnWbVqFQsWLNB2OFWajLgJIYQQosI5OzuzfPly9PX1ixw/dOgQkZGRWoqq6pHETQghhBBacf36dYYNG0bLli3ZunWrtsOpEiRxE0IIIYRWvPvuu9y9e5eUlBR++OEHKRdSCjLHTQghhBBasXr1anJzczl16hTr169HoVBoO6RKTxI3IYQQQmiFpaUlGzZsIDExkZo1axZpy8/Px8BA0pR/k1elQgghhNAahUJB3bp1ixzLycmhY8eOfP755yiVSi1FVjlJKiuEEEKISmXWrFmcOHGCEydOcOPGDb788ktth1RpSOImhBBCiEpDpVJRp04dFAoFNWrU4KWXXtJ2SJWKJG5CCCGEqDQUCgUff/wx7dq14969e3h5eWk7pEpFEjchhBBCVDp9+/Yt8fi6desYNWoUpqamzziiykEWJwghhBCiSli7di2TJk3Cz8+Pa9euaTscrZDETQghhBCVXkZGBm+//TYAoaGhnDp1SssRaYckbkIIIYSo9MzMzDhw4ABNmjThtddeY/z48doOSStkjpsQQgghqoSmTZty8uTJEgvz5ubmYmRkpIWoni0ZcRNCCCFElWFubo6xsXGRY6dPn8bV1ZWgoCAtRfXsSOImhBBCiCrr3r17jBgxgvj4eHr37s3u3bu1HVKFksRNCCGEEFVa06ZNAfDz86Nr167aDaaCyRw3IYQQQlRZNjY2+Pv7s3TpUsaOHavz89xkxE0IIYQQVZqenh5vv/02Dg4ORY4nJSXx448/olKptBSZ5kniJoQQQgidU1BQwPjx43nppZeYMGEC6enp2g5JIyRxE0IIIYTOCQoKUi9UCAoKIjU1VcsRaYYkbkIIIYTQOX369GHTpk1YW1vzxx9/YGdnp+2QNEIWJwghhBBCJ40YMYJevXphZWVV5Hh+fj5KpbJKLmSQETchhBBC6Kx/J20AH374IZ06deL69etaiOjpyIibEEIIIaoNf39/PvvsMwDatGlDREQE5ubmWo6q9GTETQghhBDVhp2dHc7OzgC8+eabVSppAxlxE0IIIUQ14uvry5kzZ1izZg1z587VdjhlJiNuQgghhKhWatasydtvv41CoShyfOfOnRw7dkxLUZWOJG5CCCGEqPYiIyMZO3YsnTt3ZuXKlZV2twVJ3IQQQghR7S1dupTU1FTy8/M5evSotsN5JJnjJoQQQohqb9WqVVhYWLB9+3a+//77Yq9RKwsZcRNCCCFEtWdgYMDixYs5ffo0FhYWRdrS0tK0FFVxkrgJIYQQQvw/MzOzIv/OyMigXbt2TJ06lezsbC1F9ZC8KhVCCCGEKIFKpeK1117j0qVLXLp0ifT0dH7++WetxiQjbkIIIYQQJVAoFHTr1g1jY2PMzc1ZsGCBtkOSETchhBBCiEeZPHkyLVu2JC4uDnd3d22HI4mbEEIIIcTjeHl54eXlpe0wAHlVKoQQQghRZUjiJoQQQghRRUjiJoQQQghRRUjiJoQQQghRRUjiJoQQQghRRUjiJoQQQghRRUjiJoQQQghRRUjiJoQQQghRRUjiJoQQQghRRUjiJoQQQghRRUjiJoQQQghRRUjiJoQQQghRRUjiJoQQQghRRUjiJoQQQghRRRhoOwChOTk5OQDExsZqORIhhBBClJWTkxPGxsaPPUcSNx2SkJAAwCeffKLlSIQQQghRVmvWrMHd3f2x5yhUKpXqGcUjKlhycjInT55ky5YtvPHGG6W6ZtWqVcyYMeOJ58XGxvLJJ5+wYMECnJycnjZUnVDar502POvYKqo/Td33ae5TnmvLek1pzpdnsLjK/AyCPIeavE9FP4eV5XehjLhVM9bW1vTu3Zt9+/Y9MWN/wNzcvNTnQuE3VVnO12Vl/do9S886torqT1P3fZr7lOfasl5TlvPlGXyoMj+DIM+hJu9T0c9hVfpdKIsTdFDPnj0r5FxRVGX+2j3r2CqqP03d92nuU55ry3pNZf5eqswq+9dNnkPN3aein8PK/r30T/KqVJRKWFgYU6ZMKdX7dyGE5skzKIT2VYbnUEbcRKnUqlWLiRMnUqtWLW2HIkS1JM+gENpXGZ5DGXETQgghhKgiZMRNCCGEEKKKkMRNCCGEEKKKkMRNCCGEEKKKkMRNCCGEEKKKkMRNCCGEEKKKkMRNaERubi7//e9/GT58OH379uW1114jNDRU22EJUa189NFHDBkyhL59+zJx4kSOHj2q7ZCEqLYuXrxIly5dWL9+vUbvK+VAhEZkZWWxYcMG+vXrR+3atdm1axerV69m06ZNT9x3TQihGdHR0djb22NoaMjly5eZO3cuf/zxB1ZWVtoOTYhqRalUMnXqVBQKBe3atePFF1/U2L1lxE1ohImJCRMnTqRu3bro6enRr18/lEol8fHx2g5NiGrD2dkZQ0NDAPT19cnLyyMpKUnLUQlR/Wzbto0WLVrg6Oio8XvLJvPVVGZmJuvXryc8PJzw8HBSUlKYOHEikydPLvHc77//nv3795OWloajoyPjx4+nR48ej7x/bGwsOTk52NnZVeTHEKLKqqhncOHChRw8eJDc3Fz8/PxwcXF5Fh9HiCqpIp7DlJQUNm/ezLfffsuXX36p8ZglcaumUlJS2L59O66urnTq1Al/f/9HnrtgwQKuXr3Kq6++ioODA0FBQXz88ccolUp69epV7Pzs7Gw+/fRTXnjhBUxNTSvyYwhRZVXUM/jBBx+Qn5/P2bNniY2NRaFQVPRHEaLKqojn8H//+x+jRo3C3Ny8QmKWxK2aqlevHjt27EChUJCcnPzIb9Zjx45x+vRpPvjgA3r27AmAr68vCQkJfPPNN3Tv3h19fX31+fn5+Xz44Yc4OTnx/PPPP5PPIkRVVFHPIICBgQFt2rThzz//xN7ennbt2lX45xGiKtL0cxgWFsa1a9eYO3duhcUsc9yqKYVCUaq/xA8dOoSJiQldu3Ytcrx///4kJSVx+fJl9TGlUsmnn36Knp4e8+bNk7/0hXiMingG/02pVHLjxo2nDVUInaXp5zAkJISYmBiGDBnCoEGD2LdvH7/++iuffvqpxmKWETfxWNHR0Tg5OWFgUPRbxdXVVd3eokULAJYuXcrdu3dZsmRJsfOFEOVT2mfw7t27hIaG0rZtWwwNDTl48CDnzp3j1Vdf1UbYQuiU0j6HAwcOLJLcff3119SrV49x48ZpLBb57SoeKyUlpcQFBhYWFgCkpqYCkJCQgL+/P0ZGRgwePFh93uLFi/Hy8no2wQqhg0r7DAJs3ryZzz//HIVCgb29PR999BFubm7PLFYhdFVpn0NTU9Mic7tr1KiBqampRkvySOImnqg0w8j16tXj4MGDzyAaIaqf0jyDtWrV4quvvnoG0QhRPZVn+s+7776r8Thkjpt4LCsrK1JSUoodT0tLA8DS0vJZhyREtSLPoBDaV5meQ0ncxGO5uLgQGxtLfn5+keNRUVFAYcFPIUTFkWdQCO2rTM+hJG7isTp16kRWVhYHDhwocjwwMBBbW1uaNm2qpciEqB7kGRRC+yrTcyhz3Kqx48ePk52dTWZmJlC420FwcDAAfn5+GBsb4+fnR6tWrVi+fDmZmZk0aNCAvXv3cuLECRYsWFCsfpQQovTkGRRC+6racyibzFdjo0aNIiEhocS2DRs2UL9+faBwm481a9YU2eZjwoQJj93ySgjxZPIMCqF9Ve05lMRNCCGEEKKKkDluQgghhBBVhCRuQgghhBBVhCRuQgghhBBVhCRuQgghhBBVhCRuQgghhBBVhCRuQgghhBBVhCRuQgghhBBVhCRuQgghhBBVhCRuQghRTaxYsYJBgwapt/YB+PHHH+ncuTPnzp3TYmQPffrpp4wcOZKcnBxthyJEpSR7lQohqqRbt24xevTox57j5ubGjz/++Iwiqtzi4uLYtm0br7zyCqamphXa19atW1m2bBmDBw/mzTfffOy5L7/8MteuXWPNmjW4u7vz4osvEhQUxKZNm5gwYUKFxilEVSSJmxCiSmvQoAG9evUqsa1WrVrPOJrKa+3atRgZGTFkyJAK76tnz558/fXX7Nu3jxkzZlCjRo0Sz4uMjOTatWs0atQId3d3AOzt7enYsSO//fYbw4cPx8TEpMLjFaIqkcRNCFGlNWjQgMmTJ2s7jEotOTmZgwcP0rVr1wofbQMwMzOjS5cu7Nq1iwMHDtC7d+8Sz/P39wegf//+RY737t2bAwcOsHfvXgYOHFjh8QpRlcgcNyFEtdG5c2dmzpxJcnIyixYtYvDgwfTs2ZPXXnvtkXO8MjMz+fHHH3nhhRfo2bMn/fv358033+TChQvFzp05cyadO3cmNzeXH374gbFjx9KtW7cir2sPHDjAlClT6NmzJ0OGDGHx4sWkpaUxatQoRo0apT7v008/pXPnzly5cqXEuL755hs6d+7MwYMHn/i59+7dS25uLl27dn3iuQ9ERkYybNgwBg0axOXLl9XHb968yeeff86IESPo0aMHQ4cO5bPPPiMhIaHI9QMGDAAgICCgxPvn5eURFBSEkZFRscTOz88PExMTdu7cWep4haguJHETQlQr6enpvP7660RGRtKrVy86d+5MWFgYb775JlFRUUXOTU1NZerUqaxbtw5LS0uGDh2qPv+NN97g0KFDJfaxYMECdu7ciZeXFyNHjsTOzg6AHTt28P7773Pjxg369OlD3759uXTpEnPmzCE/P7/IPQYPHgw8HJX6p/z8fHbt2oWNjQ3t27d/4mc+c+YMAM2aNXvyFwgICQlhxowZ6Ovr89VXX9G0aVMALl++zMsvv0xgYCDu7u6MGDECLy8v9uzZw6uvvsrNmzfV9/D29sbe3p6zZ89y69atYn0cOXKElJQUOnfujIWFRZE2Q0NDGjduzJUrV8jKyipVzEJUF/KqVAhRpd24ceORCxCaNWtG27ZtixyLiIhg6NChzJo1Cz29wr9dfX19Wbx4MX/99VeRyfRffPEF0dHRzJ8/v8jrvHv37vHKK6+wZMkS2rRpU2wO1927d1m7di2WlpbqY2lpaXz55ZeYmpry/fffq5O5KVOm8PbbbxMWFka9evXU57do0QJnZ2f27t3L9OnTi8z1Onr0KPfu3WPcuHEYGDz5x/jFixepXbs2NWvWfOK5hw4d4uOPP8bOzo6lS5dSp04doDBZ/Oijj1AqlaxZswY3Nzf1NRcuXOCNN97gyy+/ZNGiRerj/fv353//+x+BgYFMmjSpSD87duwAHo7M/Zu7uzshISFcuXIFX1/fJ8YtRHUhI25CiCrtxo0brFu3rsT/nThxotj5JiYmvPbaa+qkDaBv377o6+tz9epV9bHk5GT2799Py5Yti83BsrGxYezYsSQnJ6tHs/5p0qRJRZI2gMOHD5OVlcXAgQPVSRuAgYEBL730UomfbfDgwWRmZrJv374ix/39/VEoFKWa/5WXl0dycnKpkjZ/f38++OADGjVqxFdffaVO2qAwWUxISGDs2LFFkjYAT09POnTowPHjx8nIyFAff/B1DQgIQKVSqY8nJSVx+vRp6tWr98ik7EG8d+7ceWLcQlQnMuImhKjS2rRpw9KlS0t9vr29fbEJ+gYGBtjY2JCenq4+dvXqVQoKCsjNzS1xRC8+Ph6A2NjYYq8rmzRpUuz8yMhIAJo3b16srUmTJujr6xc73rt3b7799lv8/f3VI1N37tzh1KlT6leRT5KSkgJQ7HXkv23cuJEjR47g5+fHwoULMTY2LtJ+6dIlAK5fv17i1+PevXsolUri4uLw8PAAwNbWlrZt23L06FHOnj1Ly5YtgcJ5bwUFBfTv3x+FQlFiPA8S3wfxCyEKSeImhKhWzMzMSjyur6+PUqlU/zs1NRWA0NBQQkNDH3m/7OzsYsdsbGyKHXswEmVtbV2sTU9PDysrq2LHLSws6NatG4GBgcTExNCwYUN27txJQUFBqVdbPniN+6SCtg8WW7Rt27ZY0gaFr3oB9uzZ89j7/PvrMWDAAI4ePUpAQECRxE1PT49+/fo98j4P4n1UKREhqitJ3IQQogQPErzRo0czbdq0Ml1b0ijSg/slJycXa1MqlaSkpFC7du1ibYMHDyYwMBB/f3+mTZtGQEAAlpaWdO7cuVSxWFhYYGBgoE5EH2XevHn89NNPfPnll+jp6TFs2LAi7Q9GKRctWlSqBREPtGvXDhsbGw4cOMDs2bOJiIggPj6eNm3aULdu3Ude9yDekhJdIaozmeMmhBAl8PDwQKFQqF8RPi1XV1egcKHAv125coWCgoISr2vevDkuLi7s2rWL48ePc/PmTXr16lWmkShnZ2cSEhKKrVz9JwsLC1asWEHjxo1ZsWIFf/31V5H2BytLy/r1MDAwoE+fPuTk5LB37151iY9HLUp4IC4uDgAXF5cy9SeErpPETQghSlCrVi26devGxYsX+f3334tMrn/g8uXLJb4qLUnHjh0xMTHB39+/SNmM/Px8fvjhh8deO2jQIFJSUliyZAlAmYvSent7k5ubq55n9ygWFhYsX74cDw8PvvjiC/78888i8detW5cNGzZw/vz5Ytfm5+eXWNsOHiZpW7ZsITg4GCsrKzp27PjYWC5fvkytWrVwcHB4wqcTonqRV6VCiCrtceVAgKfaVWHOnDnExcXxzTffsGvXLpo1a4a5uTmJiYmEhYURHx/P33//XeKcsH+zsLBg+vTpLFmyhJdffpnu3btjZmbG8ePHMTIywtbW9pET9fv06cN3331HUlISTZs2VY/elVanTp3YtGkTZ86cUW8t9bg4ly1bxty5c1m5ciUqlYoRI0ZgZGTEwoULefvtt5k5cyYtW7bE2dkZgNu3b3PhwgWsrKz45Zdfit3T0dGRFi1aqOcKDhw4EENDw0fGcOPGDW7dusXQoUPL9DmFqA4kcRNCVGkPyoE8ytMkbpaWlqxevZq//vqLffv2ERQUhFKpxMbGBjc3N1588cUSFxU8yqBBg7CwsODnn38mMDAQMzMzOnTowGuvvcbIkSNp0KBBideZm5vTsWNHgoKCyrUFlLe3N46OjuzevZtx48Y98fwHI29z587lyy+/RKVSMXLkSJo0acKPP/74f+3dvYriUBjG8UdEvAERQcR7ECwtjIVFevEDrMXewtJSsBEsbMTSUtEuN6A2IugFCFpErUQQFGG3WHCYWZdlApMxu/9fGU6SUz6c9+U9GgwGms1mWq1WCgQCCoVCSqVSymQyf/ymaZqP4PZxvMpHlmVJehtCDOCN78ez838AgGt2u52KxaLS6bQajcbTNeVyWfv9XsPh0NF9o+PxWK1WS91u99Gv9oru97tKpZIikYja7fZ3bwd4OfS4AYBLzuezbrfbu2fX61WdTkfSr5LmM9PpVJvNRtls1vEl8aZpKh6Pq9/vO3rfLZZlybZtVavV794K8JIolQKAS5bLpZrNppLJpMLhsE6nkxaLhWzbViKRkGEY79aPRiMdDgdNJhMFg0EVCgXH//b7/arX65rP57pcLo4D4Ffz+Xyq1Wp/7cUD/leUSgHAJdvtVr1eT+v1+jHPLRqNyjAM5fP530Z85HI5HY9HxWIxVSqVT81PA/BvIrgBAAB4BD1uAAAAHkFwAwAA8AiCGwAAgEcQ3AAAADyC4AYAAOARBDcAAACPILgBAAB4BMENAADAI34C4fcZMfdez38AAAAASUVORK5CYII=\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm4AAAG7CAYAAAB6sxkSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACEcUlEQVR4nO3dd1zWZdvH8Q97OVBEREERUMCJmntvU7PhKO1+yrq1UktNTc27YdlOs2xY2bCtZpmW5sK9MgcuhpuhMpW94Xr+IK8icF94Mb7v1+t5PXGev3H8uLnk4Pidw8JgMBgQERERkTLP0twBiIiIiMj1UeImIiIiUk4ocRMREREpJ5S4iYiIiJQTStxEREREygklbiIiIiLlhBI3ERERkXJCiVsFkpWVRXh4OFlZWeYORUREREqBErcKJCIigrFjxxIREWHuUERERKQUKHETERERKSeUuImIiIiUE0rcRERERMoJJW4iIiIi5YS1uQMQERGp7PLz88nNzTV3GFLKrKyssLa2xsLC4qavocRNRETEjNLS0oiOjsZgMJg7FLkNHB0dcXd3x9bW9qbOV+ImIiJiJvn5+URHR+Po6Iirq+stVWKkbDMYDOTk5BAfH8+ZM2do1KgRlpY3PmJNiZuIiIiZ5ObmYjAYcHV1xcHBwdzhSClzcHDAxsaGiIgIcnJysLe3v+FraHKCiIiImanSVnncTJWtyPkmikNERERESpkSNxERETHy8vLCz8+PwMBAAgICGDVqFOnp6Td9vcWLFxMWFnbF/j179tC8eXNatWrFunXrGDhwIOHh4dd1bmWkxE1ERESKWLp0KcHBwRw7dozk5GQWL15809e6VvL11VdfMWrUKA4ePEj//v1Zs2YNfn5+13VuZaTJCSIiImXEL//bSUZydqnew7G6Hfe82vm6js3JySEjI4MaNWoY2+bOncuyZcvIy8ujdu3afPLJJzRo0IBff/2V//3vf1haWpKXl8err75KfHw8+/bt4+mnn2b27Nm89tprDBw40HitN954g6VLl+Lg4MDSpUvZsmULgYGB/PLLL+zbt++q51ZWStxERETKiIzkbDIulm7idj3uv/9+HBwcOHv2LG3atGHEiBEAfP/994SHh7N7926srKz45ptvGD9+PKtXr+a5557jk08+oWPHjhQUFJCSkoKzszPffvstkydP5p577il2n5kzZxIWFkZgYCCTJ08u0jdmzJirnltZKXGT62IwGNi0aRM9e/a85RkxIiJSMsfqdmXiHkuXLiUwMJC8vDwef/xxZsyYwbx58/jll1/4888/adOmDVC4Dt1lvXv3ZtKkSQwbNox+/foRGBhYWo9QqSlxk+uyefNm+vTpg5+fH2+99RZDhgwxd0giIhXO9b7CvF2sra0ZOnQozzzzDPPmzcNgMPDss8/y2GOPFTv2nXfe4dixY2zevJmHH36YBx98kOnTp5sh6opNiZtcl3nz5gEQHh5OZmammaMREZHbZdOmTcbJAvfccw/z5s1j2LBh1KxZk9zcXI4ePUqrVq0ICwujadOmNG3aFGtra9avXw9AtWrVSE5Ovql738q5FZUSN7ku48aNIz09nTNnzjB06NAifbGxsVy6dAl/f38zRSciIqZ0eYxbXl4eDRo04OOPPwbgwQcfJDExkZ49ewKQl5fHo48+SqtWrZg1axbh4eHY2tri6OjIwoULAXjssceYOnUq8+fPv+EJBrdybkVlYdCutmVSUlISr732GsHBwbi6ujJlyhTjmIIrCQ8PZ+zYsSxatMj415GpXbx4kZo1axZpmzFjBm+99RaDBw/m7bffVgInInKdsrKyOHPmDA0bNryp7Y+k/LnV/801yryMmj9/PjVr1mTVqlWMGzeOF198kZSUFHOHVSxpS01N5ZNPPgFg3bp1ODk5mSMsERGRSkGJWxmUkZHB9u3befTRR7G3t6dLly54e3uzY8cOc4dWjKWlJc8//zyenp7897//xdPTs0h/UlISKuqKiIiYRoUb4xYeHs6XX37JkSNHyMnJoW7dutx1110MGzasVO6XkZHBkiVLCAkJITQ0lNTUVJ599lnuvPPOEo/Pycnh888/Z/369aSmpuLj48OYMWNo27at8Zjo6GgcHByoXbu2sc3b25szZ86UyjPcCicnJ6ZOncrEiROLTVowGAz07dsXe3t7XnzxRXr37q2NlEVERG5Bhaq47d27l/Hjx5OUlMTDDz/MxIkT6dixI/Hx8aV2z8tbgURERODr63vN419//XWWLVtG3759mThxIpaWlkyfPp3Dhw8bj8nMzCz2ytHJyalMz+a0sbGhWrVqRdp+//139u3bx44dO5g2bZoqbyIiIreowlTc0tPTee211+jQoQNz5sy57kViU1NTOXDgAN27dy+xf+PGjXTu3BkHB4cS+11cXFixYgUuLi6EhYWVuLbNZSEhIQQFBTFu3DhGjhwJQP/+/Rk9ejQLFy40zsBxcHAotqFvenr6FWMoq2xsbAgICCA0NJQXXnhBC/eKiIjcogrzm3Tjxo1cvHiRsWPHYmlpSWZmJgUFBdc8b8WKFcyePZtt27YV6/vtt994+eWXWbt27RXPt7W1xcXF5bpi3Lp1K1ZWVkUWr7Wzs2PQoEEcO3aM2NhYADw8PMjMzCxSKbw8A6U86du3L0eOHGHVqlXFtiuJj49n5MiR2jxYRETkBlSYitu+fftwcnIiISGB//3vf0RFReHg4EC/fv148sknsbMreYuPUaNGERoayssvv8ybb75pXHJj69atzJs3j379+plsj7QTJ07g4eFR7DVoQEAAACdPnsTNzQ1HR0e6dOnCF198weTJk9m/fz+nTp2iS5cuJonjdrKysuKuu+4q1v7KK6+wZMkSfvzxR7766isefPBBM0QnIlL27F9+otSu3WZYo1K7ttweFabiFh0dTX5+PrNmzaJdu3bMmTOHgQMHsnLlSt54440rnmdtbc3s2bNp0qQJs2bNIiQkhP379zNnzhzat2/PzJkzTTagPjExscTq3OW2hIQEY9uUKVNISEhg8ODBfPDBB8yePbvYGLLLNm7cyMyZM3n//fdNEmdpy8rKYtWqVUBhxbFXr15mjkhERC7z8vLCz8+PwMBAAgICGDVqVLHhOzdi8eLFV327smfPHpo3b06rVq1Yt24dAwcOJDw8/LrOBZg2bRpLliy56fhMbdq0aXz//feldv0KU3HLzMwkKyuLu+++m0mTJgHQvXt3cnNzWbVqFY8++mixpSous7Oz4/XXX2fSpElMnz6d3NxcAgICeOmll7C2Nt23KDs7Gxsbm2Lttra2xv7LnJ2defvtt6/run369KFPnz7GBXjLOnt7e44dO8a7776LtbU17u7uRfqjoqJwd3c36fdeRESu3+VN5gsKCrjrrrtYvHgxEyZMuKlrLV68GGdn5ysuzv7VV18xatQonn32WaBw7Pf1nnvu3DnWrFlz3b8vL8vLyyv2O6akths5/7Lp06fTpUsX7r//fqysrG4orutRYSpul1+F9u7du0h7nz59ADh27NhVz3dycmL8+PGkpKSQmZnJU089dcXXq7cSY25ubrH2nJwcY39l4ejoyKxZs4ptQHz5H4nmzZsb97kTERHzyMnJISMjgxo1ahjb5s6dS7t27WjdujUDBgwgIiICgF9//ZUWLVoQGBhIs2bNWLlyJZ999hn79u3j6aefJjAwkDVr1hS5/htvvMHSpUv54IMPCAwMJCkpCS8vL4KDg695LsAXX3zB0KFDjW/GcnNzmTlzJu3atSMwMJARI0Zw6dIlAEaPHs2jjz5Kt27daNasGVu2bKFp06b897//JTAwkBUrVrBv3z46depEixYtaNeuHTt37gTg7NmzODs7M2PGDFq3bs0HH3xQ4vMC1K5dGx8fn1L7HVZhShouLi6cOXOm2Mr+l3/YUlNTr3r++fPnmTNnDvXr1ycnJ4fnn3+eDz/8kFq1apk0xpKWJklMTAQw6b3Kq++++45Dhw4BMHXqVIKDg0vlLxYREbmyy3uVnj17ljZt2jBixAgAvv/+e8LDw9m9ezdWVlZ88803jB8/ntWrV/Pcc8/xySef0LFjRwoKCkhJScHZ2Zlvv/2WyZMnlzhefObMmYSFhREYGMjkyZOL9I0ZM+aq5wJs2bKFp59+2vj122+/jZOTE3v37gVgzpw5PPfcc3z44YcA7N+/nx07dlC1alW2bNlCaGgoH330EZ9//jk5OTn4+vqyaNEi+vfvz44dOxg6dCgnT54ECpf/atq0KW+++SYALVu2LPa8l3Xs2JGgoKArrul6KypMxe3y3pz/Towujxtzdna+4rkJCQlMmTIFa2tr3nnnHebNm0dWVhZTp0416TZTvr6+REdHFxsrEBISYuyv7Pz9/enUqRMAH374oZI2EREzWLp0KcHBwSQkJODl5cWMGTMA+OWXX9i4cSNt2rQhMDCQt956i8jISKDwjdekSZN46623OHz48FV/75pKdHQ0bm5uxq9/+eUXvv32WwIDAwkMDOSHH34osnj98OHDqVq1qvFrb29v43Jg4eHhWFpaGl/VdunSBTc3N4KDg4HCJa7+85//GM+92vPWqVOH6Ojo0njkipO49ezZE4DVq1cXaV+9ejVWVla0atWqxPNSU1OZNm0amZmZvPPOO9SuXRtPT0/mzp1LfHw8M2bMMNnCtz169CA/P984MB8Ky9Br1qyhSZMmRX74Kqu2bduyY8cOtm7dSrdu3Yr0xcfHs3nzZjNFJiJS+VhbWzN06FDjslgGg4Fnn32W4OBggoODOXLkCEeOHAHgnXfe4csvv8TR0ZGHH36Yt956q9Tjc3R0JCsry/i1wWDg/fffN8YXEhJS5BVrlSpVipz/76//7Z+TEx0dHYusR3q1583Kyiq1tVcrzKvSxo0bM3DgQNasWUN+fj6BgYEEBwezefNm/vOf/1zxNeSKFSuIi4tjwYIFRSYvNGrUiDfeeIOpU6eydu1a7r333ive+6effiItLc34ynPnzp3ExcUBMHToUOMPRpMmTejZsyeffvopSUlJ1KtXj7Vr1xITE2P8a0YKPyj/TtqgsKT+xRdfMHLkSN59990iW4KJiEjp2LRpk/Gt1j333MO8efMYNmwYNWvWJDc3l6NHj9KqVSvCwsJo2rQpTZs2xdra2jjGq1q1aiQnJ9/Uva91bosWLQgPD6dr167G+ObPn0+XLl1wdHQkIyODM2fO0LRp02vey8/Pj4KCAjZs2EDfvn3ZtWsXMTExBAYGFln14bIrPS9AaGgoLVu2vIknvrYKk7hB4RRcNzc3fv/9d7Zv346bmxtPPvmk8d18SUaNGkXXrl1LXNy2RYsWfPzxx3h7e1/1vkuXLiUmJsb49bZt24wL+vbr169IRj9r1izc3NxYt24daWlpeHt78+abbxIYGHiDT1u5HDhwgC+++AIorKLOnz/fzBGJiJSOsrDW2uUxbnl5eTRo0ICPP/4YgAcffJDExETjW668vDweffRRWrVqxaxZswgPD8fW1hZHR0fjbkCPPfYYU6dOZf78+bz22msMHDjwuuO41rnDhg3j66+/ZsyYMQDMmDGD7Oxs2rdvb6yWzZgx47oSN1tbW37++WcmTpzI1KlTsbe3Z/ny5VSpUqXExO1Kz2swGAgKCmLmzJnX/Zw3wsKgDSQrjMvLgSxatMj411FFUVBQwBdffMHMmTN58cUXeeqpp8wdkojILcvKyjLujGNvb2/ucMqdgoIC2rVrxy+//IKHh4e5wwFg7dq1fPvtt3z77bcl9t/q/+YVZoybVGyWlpaMGTOG48ePM27cuCJ9l5O6kpZaERGRisvS0pJPPvmEs2fPmjsUo+Tk5FId36fETcqVmjVrFlv08IMPPuC///0vHTp04OjRo2aKTEREzKFNmzZlakvI+++/n7p165ba9ZW4SbmWnJzMc889BxSOgytpHIKIiEhFocRNyrXq1asTFBREkyZNePLJJ+nRo4e5QxIRESk1FWpWqVRObdu25cCBA+Tn5xfr+/333+nTp0+Je8SKiIiUN6q4SYVgZ2eHo6NjkbZNmzYxcOBAOnXqxKlTp8wUmYiIiOkocZMKKT8/n8cffxyAffv28dNPP5k5IhGR8uPyRu9X88ILL/Ddd9/d9D22bNli3JHhRh09ehQvL6+bvnd5plelUiFZWVnxww8/MGrUKBo0aMC0adPMHZKISIXy8ssv39L5W7ZsISkpiQEDBpgoospBFTepsO644w7279/P999/X2R/OcBk+8+KiJjaO++8g4eHBx4eHmzZsqVI35kzZ4x9JS1EPmTIEGP/vy1evJh33nnnhmLp0aMH06ZNo2vXrvj4+PDEE08Y+0aPHs27774LQG5uLjNnzqRdu3YEBgYyYsQILl26BBTO/h8zZgzNmjWjZcuWPProowQHB/Pxxx/z3XffERgYaEwC161bR5cuXWjTpg3t2rUrsj/17NmzadSoEW3atGHJkiU39BwViSpuUqFVrVqVqlWrFmmLiIigY8eOPPfcc4wbN67IJsIiIuaWkpLCuXPnAMjOzi7Sl5+fb+y7nBj9U3x8vLH/39LT00lJSbnheE6dOsXmzZvJzc2lSZMm7N69m44dOxY55u2338bJyYm9e/cCMGfOHJ577jk+/PBDJk+ejIODA4cPH8bS0pL4+HhcXV154oknSEpKMiZ/p0+fZvbs2axbt45q1apx8uRJunbtytmzZ9m4cSM//vgj+/fvp2rVqvzf//3fDT9HRaHETSqVvLw8Ro0axYULF5gwYQLZ2dk8/fTT5g5LRMSoWrVq1KtXDyicePVPVlZWxr4aNWoUO9fV1dXY/29OTk7FEsHrcf/992NtbY21tTWBgYGcOnWqWOL2yy+/kJycbBxPnJOTYxyD9ttvv/HHH38Y33y4urqWeJ+1a9dy8uRJunXrZmyztLQkMjKSoKAgRowYQbVq1QB4/PHH2bFjxw0/S0WgxE0qlfz8fO644w527dqFl5cXjzzyiLlDEhEpYsqUKUyZMqXEvoYNGxIdHX3Fc1etWnXFvtGjR99UPP/cT9PKyoq8vLxixxgMBt5//3369et3U/e4fI2+ffvy/fffX/PYyvymRGPcpFKxs7PjvffeY+XKlSxZsgRnZ2dzhyQiUu7dc889zJ8/n4yMDAAyMjI4duwYUDjubu7cuRQUFACFr3OhsLKYnJxsvEb//v3ZuHEjhw8fNrZdfvXap08ffvzxR1JTUzEYDHz66ae35bnKIiVuck3njiaw94cwUmLTzR2KyQwZMoT27dsXacvKymLmzJlF/iEREZEru1z5mjFjBm3btqV9+/a0aNGCDh06GJcTmT9/PtnZ2TRv3pzAwEBmzZoFwL333ktwcLBxcoKvry/ff/89jz/+OC1btiQgIMA4/m3gwIEMGzaM1q1bc8cdd1C/fn1zPG6ZYGEwGAzmDkJMIzw8nLFjx7Jo0SL8/PxMdt31c/cTeSAOgLrNXAjo7Un9Nm5YWVesvP+JJ57gk08+wdfXl59//pnmzZubOyQRqeCysrI4c+YMDRs2LPJKsjwYOHAgDz74IA8++KC5QylXbvV/c41xk6vKTs/l3JG/N24/fzSR80cTcahuS+PuHvj19KSam+NVrlA+nD9/nqVLlwIQHR1tLOmLiEhxffr0ITs7myFDhpg7lEpHiZtclZ2TDQ8s6MHxbecI3xRFSmzh+IXM5BwOrTrNoVWnqde8Fv69PWnQujaW5bQKV7duXQ4cOMCwYcN46qmnaNmypblDEhEpszZu3GjuECotJW5yTQ7V7Wh5lzctBjXk/LFEwjZFcXZfLIb8wrfs544kcO5IAg7OdjTu7oF/Tw+q1i5/VbiGDRuyZ8+eEjekj4uLo3bt2maISkQqA41aqjxu9X/r8lkeEbOwsLSgXvNa9J7UipEf9KTtA42p6upg7M9MyubQylMsfXora9/4k7N/xlCQV75eOZaUtH3xxRc0btyYX3755fYHJCIVmpWVFVC47plUDpdn3pb0++Z6qOImN8Wxuh0th/jQYrA3544mELYpioj9cYVVOANEH04g+nACjs52NO5ROBbun0leeXH48GEmTJhAVlYW9957LwcPHiQwMNDcYYlIBWFtbY2joyPx8fHY2NgU255PKg6DwUBGRgZxcXE4Ozsbk/YbpcRNbomFpQUeLVzxaOFKxqUsjm89R9jmKNLiC/cCzUjKJviXUwSvPIVHC1cCenvi2coVS6vy8Y9Tw4YNueuuu/jxxx8ZN26ckjYRMSkLCwvc3d05c+YMERER5g5HbgNnZ2fq1Klz0+drOZAKpLSWA7lRhgID544kELopisj9cRgKiv6IOda0w6+HJ349PKhSq+xX4QwGA9999x3Dhw8vtv2MiIgpFBQU6HVpJWBjY3PTlbbLlLhVIGUlcfun9EtZHN8STfjmKNISsor0WViAR6Ar/r088WxVG0vL8rWFyb59+wgKCuKZZ57R6w0REbkt9KpUSpVTDXta3etLy7t9OHc4gbCgSCIPxGEwgMEAUQfjiToYj1NNe/x6euDXwwMnl7Jfhbt48SLDhg0jIiKCnTt38u233xo3PxYRESktStzktrC0tMAz0BXPQFfSL2YRviWK8M3RpCcWVuHSL2Zx4KeTHPz5JJ6tauPf2xOPlq5ltgq3fv16IiMjAUhISCh3K56LiEj5pMRNbjunmva0vq8Rgff4En0onrCgKKIO/l2FizwQR+SBOJxcLlfhPHGqWbYSowceeABnZ2eefvppli5diq2trblDEhGRSkBj3CqQsjjG7XqlJ2YSviW6sAp38V9j4SwtqN/KFf/e9anXolaZqsLl5+cXG2h68eJF7O3tcXQsf4sQi4hI2aaKm5QJTi4OtB7aiMB7fIgKjidsUxTRwfGFVbgCAxH744jYH0eVWg749fSgcQ8PnGqYvwr376QtPz+fBx54gJiYGJYvX07jxo3NFJmIiFREStykTLG0sqRBGzcatHEjLeGvKtyWKDIuZgOQlpDJ/h9PcOCnk9Rv/ddYuOa1sCgjVbjXXnuNDRs2ADB48GBCQ0Nveeq3iIjIZUrcpMyqUsuBNsMa0erev6pwQVFEHYqHy1W4fbFE7IuliqsD/j09adzDA0dn866zNmzYMH744QfCw8P59NNPlbSJiIhJKXGTMu+fVbjU+EzCN0dxfEs0GUl/VeHiM9m37Dj7fzpBgza1C8fCNXUxSxUuICCAvXv3smXLFnr06HHb7y8iIhWbJidUIOV5csKNKsgrIPJgPGGbIok+nAD/+imuWtsB/16eNOrugWP1srHbwZtvvkmbNm3o06ePuUMREZFyShU3KZcsrS3xauuGV1s3UuMyCNsczfEtUWQmF24ZkxqXyZ9LjrP/xxM0uMMN/96e1G1iniocwG+//cbMmTOxsLDgtddeY+bMmWaJQ0REyjclblLuVa3tSNv7G9NmqC8RB+IIC4rk3JFEAAryDZz5I4Yzf8RQzc3xrypcPRyq3d4q3A8//AAU7nuqNd9ERORm6VVpBbBx40Y2btxIWloahw8frhSvSq8lJTadsE3RHN8aTVZK0Y2bLa0s8GpbB//enrg3qYmFRelX4QoKCnjttdc4fPgwS5cuvS33FBGRikeJWwVSmca4Xa/8vAIi9sUSFhTF+WOJxfqruzvh18uTxl3rYV+t9CthBoOhWNJ25swZvLy8lMyJiMg16VWpVGhW1pZ4d3DHu4M7yRfSCdscxYmt0WSl5gKQfCGdvd+FsW9pOA3bFVbh6viXXhXu39c9efIkbdq0YfDgwXzyySdUqVKlVO4rIiIVgxI3qTSquzvRfpQ/dwxvxNk/YwnbFMWFkIsAFOQZOLXrAqd2XaB6XafCsXBd62FftfSqcHl5eQwfPpyUlBS+//576tWrx1tvvVVq9xMRkfJPr0orEL0qvXHJF9IJ2xTF8a3RZKflFumzsrHEq10dAnp74uZXo1SqcMuXL+fRRx+lXr167N27l6pVq5r8HiIiUnGo4iaVWnV3J9o/6E+bf1ThYkILq3D5uQWc2nmeUzvP41yvCv69PPHtWhf7Kqarwg0bNowWLVqQn5+vpE1ERK7J0twBiJQF1rZW+Hauy+Dn2zPs7a40u9MLuyo2xv6kc2ns+SaUHyZsZstHh4gJv4SpitWNGzcmICCgSFtaWhoPP/wwkZGRJrmHiIhUDErcRP7FuV4VOvxfACM/6En38S2o41/D2JefW8DJHef57aU9/DxjB8fWnS32ivVWGQwGnnjiCb7++mtatWrF1q1bTXp9EREpv/SqVOQKrG2taNSlHo261ONSdCphm6I4se0cORl5AFyKTmP3V6Hs/SEc7w7u+PfypHYj51seC5eQkMCuXbsAyM3Nxd3d/ZafRUREKgYlbiLXoYZHVTo+1IS2D/hx5o8YwoKiiD1+CYD8nAJObDvHiW3nqOFZ9a8ZqXWxdbS5xlVL5urqyv79+xk9ejT/93//R+PGjU35KCIiUo5pVmkFolmlt9fFqMIq3Mntf1fhLrOytcSnozv+vevj6lP9pqpwJS3WazAYCA8Px9/f/5ZiFxGR8klj3ERuUk3PqnR6uAmjPuxFtyeaU7uRs7EvP6eA41vPseqF3ayYtZOQDRHkZNzYWLiSkr3333+f5s2bs2DBApNNjhARkfJDFbcKRBU387sYmUpYUCQndpwnN7NoFc7azgrvju4E9PaklveNV+GCg4Np27YteXmF192zZw/t27c3WewiIlL2qeImYkI161el0yNNGfVhT7o+1gxX3+rGvrzsfI5viWbl87v55X+7CA2KJOdfyd3VNGvWjKeffhqAZ555RkmbiEglpIpbBaKKW9mUeDalcCzcznPkZuYX6bOxt8KnU138exVW4a7H5s2b6dq1K9bWmlskIlLZKHGrQJS4lW25WXmc2n2B8KAo4k8nF+uv1bAa/r3r49PJHRv7G0vKtm/fzg8//MA777yDvb29qUIWEZEyRolbBaLErfxIOJNM2KYoTu08T25WCVW4znXx7+1JLa9rV+FiYmJo1aoVMTExtG7dmrVr1+Lq6lpaoYuIiBnpXYuIGdRqWJ0u/61Ou1H+nN51ntCgKBLPpgCQm5VPWFAUYUFRuHpXx7+3J94dr1yFCw4OJikpCQBnZ2dq1qx5ux5DRERuMyVuImZk62CNf+/6+PeuT8LpZEKDoji16zx52YVVuPjTycSfTmbPt6H4dq6Hf29PXBpUK3KNAQMG8McffzBp0iR++OEHrKyszPEoIiJyG+hVaQWiV6UVQ05GLqd2XSAsKJLEiNRi/a6+1QnoVR/vju5Y2109Sbtw4QKWlpa4ubmVVrgiInIbmaziduDAAfbv38/Ro0eJi4sjOTkZe3t7nJ2d8fb2JjAwkI4dO+Li4mKqW4pUSLaONgT0qY9/b09jFe707gt/V+FOJhN/8shfVbi6+PeuT836VYtdJzc3l+HDh3P69GmWLl1K165db/ejiIiIid1SxS0zM5OffvqJX3/9ldjYWONK7ra2tlSrVo3s7GzS09MpKCgAwNramk6dOjFixAiaN29umicQI1XcKq6cjFxO7jxPWFAUFyOLV+FqN3IuHAvXwR1r28Iq3OzZs3nppZcA8Pb2JiwsDBubm9s/VUREyoabTtxWrlzJl19+yaVLl/Dx8aFnz540bdoUf39/HB0djccZDAaio6MJCQnhzz//ZMeOHWRlZdG5c2cmTJhA3bp1TfYwlZ0St4rPYDAQfyqZsKBITu2+QH5OQZF+W0drfLvWI6C3Jzk2GYwaNYrt27ezY8cO2rVrZ6aoRUTEVG46cevZsyd9+vRh5MiReHt7X/d52dnZbNiwgW+//ZYBAwYwevTom7m9lECJW+WSnZ7LyR3nCdsUyaWotGL9bo1r0KhHXRKsoujStbMZIhQREVO76cQtKioKT0/Pm75xfn4+sbGxqriZkBK3yslgMBB3IomwTYVj4fJzi1bh7Jxs8O1aOBauRr0qAMyYMQN/f38eeeQRc4QsIiI36aYnJ9xK0gZgZWWlpE3EBCwsLHBrXAO3xjXo8J8ATu48R1hQFJeiC6tw2em5HFsbwbG1EdTxr8Epw0HeeustAPbt28eHH35ozvBFROQGaB03kQrErooNTft70aRfA2KPJxEWFMmZP2KMVbiYsEusObjReHyjBqrMioiUJyZN3FJTU9m5cycDBgww5WVF5AZZWFhQx68Gdfxq0OGhAE5uP0doUBTJ59MZ3moMns7enEwIwemgL6tf+QP/Xp54tXXDykaL94qIlGUmTdxiY2N54403lLiJlCH2VWxpdmdDmg7wIibsEmFBkVha96ZDw14AXAi5yIWQi9hXtSHPI4nBD/ehVn1n8wYtIiIluqHELTY29qr9CQkJtxSMiJQeCwsL3ANq4h5Qk44pOZzYfo6wTVEkX0gH4FTUCV77/GkavO/L84+8Sed7W9PgDjesrC3NHLmIiFx2Q4nbiBEjsLCwuGK/wWC4ar+IlA321WxpPqghzQZ6cSH0IiEbIpg9ezw5+dmciD/GNys/JzvKEvtqtjTu7oF/Lw+quTmZO2wRkUrvhhK3qlWr8t///pfAwMAS+yMiIpg9e7YJwhKR28HCwoK6TVyo28SF75p9xQMPPIC9hRP3tHgIgKyUHA7/eprDv56mbjMXAnp70qCNG5aqwomImMUNJW6NGzcmNTWVhg0bltifn5+P9qwXKZ+69+7GkdDDpKWmYZtRldCgSCL+jKUgv/Azff5oIuePJuJQvbAK59fTk2pujte4qoiImNINJW733HMPWVlZV+x3c3Nj5syZtxyUiJhHrVq1qFWrFgB1m7qQmZzNvtUhTHj2Me4O+D8a1GxEZnIOh1ad5tCq09RrXgv/3p40aF1bVTgRkdvghhK3bt26XbW/atWq3HnnnbcUkIiUHfbVbHnnx5c5ErmP8AuHmfWf1/DIbYrhryrcuSMJnDuSgIOzHX49PPDr6UFVV1XhRERKixbgFZErSk5O5sKFCwA4VXHi4ReGUtvZneNbownfFEVqfCYAmUnZBP9yiuCVp/BoUQv/XvWp39oVSytV4URETEmJm4hckbOzM9u2bWPatGn0798fLy8vAALv9qHlXd6cO5pAWFAUEfvjMBQYwADRhxKIPpSAY43CKlzjHp5UdXUw74OIiFQQt5y49ejRg2+++eaW9y4VkbLJ1taWBQsWFGs3YODUpRD6PN2djEtZHN9auC5cWkJhFS7jUjYHV5zi4C+n8Gzpin9vTzwDVYUTEbkVt/wvqGaRilROr7/+Oj169ODpp5/GpooVgff4MOLd7vSfcQcN7nDDwvKvNR0NEBUcz4Z5B1gyaQv7l58gLTHTvMGLiJRTelUqIjfsyJEjvPDCCwC89957DBs2jM6dO2NpaYFnS1c8W7qSfjGL41uiCd8SRVpC4Wz0jIvZHPz5JMErTuIR6EpA7/p4BLpiaamFu0VErocSNxG5Yc2aNeODDz5g8uTJ/O9//6Nz587FjnGqaU+r+3xpeY8P5w7FE7opiqgDcRgMYDBA1MF4og7G4+Rij19PD/x6eOJU094MTyMiUn4ocRORG2ZhYcG4cePo3r07/v7+xfr/uf2dpaUFnq1q49mqNumJmYRviSZ8czTpFwurcOmJWRxYfpKDP53Es3VtAnp5Uq+lqnAiIiXRKGERuWlNmjTB0rLoPyNr165l8ODBJCYmFjveycWB1kMbcf+CHvSb1gbPVq5c3t7YYIDI/XGse3s/yyZv5eCKk6RfuvKC3yIilZEqbiJiMpGRkfznP/8hMTGRVq1asWvXLjw8PIodZ2lpQf3WtanfujZpCZercFFkXMoGIC0hk/0/nuDATyep3+avKlzzWn9PeBARqaSUuJVRSUlJvPbaawQHB+Pq6sqUKVNo06aNucMSuapz584ZK3CBgYHUrVv3mudUqeVAm2GNaHWvD1EH4wkNiiL6cDwYwFBgIOLPWCL+jKWKqwP+PT1p3MMDR2e70n4UEZEy6ZYTt1GjRlGtWjVTxCL/MH/+fGrWrMmqVavYt28fL774It9//72+11KmdezYkYMHDzJ9+nQ++OCDYq9Rr8bSypIGd7jR4A43UuMzCN8czfEt0WQk/VWFi89k37Lj7P/pBA1a18a/tyf1mqkKJyKVi4VBC7GVORkZGQwePJglS5ZQu3ZtACZOnMiAAQMYOHDgFc8LDw9n7NixLFq0CD8/v9sVrsh1OXv2LBkZGTRp0uS6zynIKyDyYBxhQVFEH0mAf/1rVbW2A36Xq3DVVYUTkYqv1F+VGgwGoqOjsbW1xc3NrbRvZ/T111/z2Wef0bBhQ7766qtSu09GRgZLliwhJCSE0NBQUlNTefbZZ7nzzjtLPD4nJ4fPP/+c9evXk5qaio+PD2PGjKFt27bGY6Kjo3FwcDAmbQDe3t6cOXOm1J5DpDRlZWUxbNgwwsLCWLRoESNHjryu8yytLfFqWwevtnVIjcsgbHM0x7dGk/lXFS41LpN9S4+zf/kJvNq44d/bk7pNXVSFE5EKy2SzSrdu3cqrr75Kamqqse3ChQuMHj2a//u//+P+++9n9uzZ5Ofnm+qWVxQXF8e3336Lg0Pp74+YnJzM4sWLiYiIwNfX95rHv/766yxbtoy+ffsyceJELC0tmT59OocPHzYek5mZiZOTU5HznJycyMzUavNSPs2dO5f9+/eTnp7OCy+8QFbWjc8WrVrbkbb3N2bkgh70ntyKes1rGfsM+QbO7I3h99f/5Mep2zj062kyk7NN+QgiImWCyRK3lStXcuLECapWrWps++CDDzh79iytWrXCx8eHLVu2sGbNGlPd8oo++ugjmjRpcl2vC1NTU9m6desV+zdu3HjVhMnFxYUVK1bw448/Mm7cuKveKyQkhKCgIB577DHGjx/PkCFDePfdd6lTpw4LFy40Hufg4EB6enqRc9PT029LIipSGqZMmcLDDz+Mvb09y5cvx97+5hfatbS2pGG7Otz5bFtGzO9OyyHe2FezNfanxGbw5w/h/PDkZoIWHOT8sURtzSciFYbJErezZ88SEBBg/DojI4Pdu3fTq1cv5s+fzyeffEKDBg1KPXELDg5m69atPPXUU9d1/IoVK5g9ezbbtm0r1vfbb7/x8ssvs3bt2iueb2tri4uLy3Xda+vWrVhZWTFkyBBjm52dHYMGDeLYsWPExsYC4OHhQWZmJvHx8cbjzpw5Q8OGDa/rPiJljaOjI19++SWHDx+mZcuWRfpuJamq5uZI2wf8GPlBT3pPCqRus78/iwX5Bs7siWHNq3v5ceo2Dv92mswUVeFEpHwzWeKWkpJCzZo1jV8fPnyY/Px8evfuDYC1tTV33HEH586dM9Uti8nPz+e9995j0KBB+Pj4XNc5o0aNokOHDrz88svs37/f2L5161bmzZtHv379uOeee0wS34kTJ/Dw8Cj2GvRywnvy5Emg8Jdcly5d+OKLL8jOzmbXrl2cOnWKLl26mCQOEXOwsLCgUaNGxdrHjh3LCy+8cEvDKKysLWnY3p2Bs9ox/J1utLirYdEqXEwGe78vrMJtej+Y8yGqwolI+WSyyQlOTk6kpKQYvz548CCWlpZF/rq2tra+qbEt12vlypXExsYyf/786z7H2tqa2bNn88wzzzBr1izmz59PZmYmc+bMoX379sycOdO4dc+tSkxMLLE6d7ktISHB2DZlyhReffVVBg8ejKurK7Nnz77iUiAbN25k48aNpKWlmSROkdvl888/5/PPPwcKN67/+eefb/nzVr2OE+1G+tNmeGMi9sUSFhTF+WOFuzgU5Bk4vfsCp3dfoLq7E/69PGnUtV6RJE9EpCwzWeJWv359du3axZgxY7C0tGTjxo00bty4yJi3mJgYatSoYapbFpGcnMwXX3zBQw89hLOz8w2da2dnx+uvv86kSZOYPn06ubm5BAQE8NJLL2FtbbqJt9nZ2djY2BRrt7W1NfZf5uzszNtvv31d1+3Tpw99+vQxLgciUl6kpqZiZWVFfn4+w4cPN9kfSVBYhfPu4I53B3eSL6QTtjmKE1ujyUrNBSD5Qjp/fBfGn0vDadiuDv6961PHv4ZJYxARMTWTZSVDhw7lxRdfZOjQocbK2pgxY4ocExISQuPGjU11yyI+++wzqlatytChQ2/qfCcnJ8aPH8/kyZMBeOqpp7CzM+26UHZ2duTm5hZrz8nJMfaLVCaTJ0+mVatWBAUFMWrUqFK7T3V3J9qP8ueO4Y04+2csYZuiuBByESiswp3adYFTuy5Qve5fVbhu9bCvoiqciJQ9JkvcevTowdNPP83q1asB6NWrV5G1zIKDg0lPT6ddu3amuqVRVFQUv/76K0899VSR1405OTnk5eVx4cIFnJycrrrrwPnz55kzZw7169cnJyeH559/ng8//JBatWpd8Zwb5eLiUmTCwWWXN+M25b1Eyovu3bvTvXv3Yu3r16+nQ4cOJt0txMrGCp9OdfHpVLewCrcpiuNbo8lO+6sKdz6dP74NY9/S4zRsXwf/Xp64+akKJyJlh0kX4L3nnnuuOJA/MDCw1GaUJiQkUFBQwHvvvcd7771XrP/+++9n2LBhTJw48YrnT5kyBWtra9555x2ys7N58sknmTp1Ku+//77JfnH4+vpy8OBB0tPTi0xQCAkJMfaLCOzbt4+77roLLy8vli9fTvPmzU1+j+ruTrR/0J87RhRW4UKDoogJLazC5ecWcHLHeU7uOI9zvSr49/LEt2tdVeFExOwqxCbzDRs25NVXXy3W/tlnn5GRkcHEiROvuNl1amoq06ZNIzMzkw8++MC4W8HcuXOZNGkSM2bM4J133jHJGmo9evRgyZIlrFq1yrhyfE5ODmvWrKFJkya3dWcJkbLKYDAwduxYcnJyOH78OF9//fV1j/e8Gf+swiWdSyNsUxQntp8zVuGSzqWx55tQ/lwSXliF610ft8bOqsKJiFlUiMTN2dmZrl27Fmv/8ccfAUrsu2zFihXExcWxYMECPD09je2NGjXijTfeYOrUqaxdu5Z77733itf46aefSEtLM77y3LlzJ3FxcUDh2L8qVaoA0KRJE3r27Mmnn35KUlIS9erVY+3atcTExDBjxowbf3CRCsjCwoLly5czbNgwHBwcSvyjrLQ416tCh/8L4I77G3N2bwxhm6KICbsEFK3C1fCogn9vT3w718OuSvEJRyIipaVCbzI/ceJEkpOTr7pXaV5eHlFRUVdc3PbUqVN4e3tf9a/rESNGEBMTU2Lf0qVLcXd3N36dnZ1t3Ks0LS0Nb29vxowZY5Kxf9pkXiqSzMxMUlNTi+zZC1BQUIClpcmWoLymS9GphG+O5vi2aHLS84r0WdkWzlz17+VJ7UaqwolI6avQiVtlo8RNKrr4+Hj69OnDK6+8wl133XVb752Xk8+ZP2IIC4oi9vilYv01PKsS0NsT3y51sXVUFU5ESocStwpEiZtUZPn5+QwcOJD169cDhWNY//vf/5ollotRqYRtiuLk9nPkZBSvwvl0dMe/d31cfaqrCiciJlUhxriJSMWXnZ1tHC/q5ubGwIEDzRZLTc+qdHq4Ce0e8OP0HxcIC4oi7kQSAPk5BRzfeo7jW89Rs0HVwhmpnVWFExHTUMWtAlHFTSo6g8HA/PnzadWqFT179jR3OEVcjEwlLCiSEzvOk5tZtApnbWeFT6e/qnDe1c0UoYhUBDecuBUUFHD27FmqVatWbMHYvLw8jh49SmBgoCljlOukxE0qq7y8PJYtW8bIkSPN/moyNyuP03suELYpiviTycX6Xbyq4d/bE59OdbF10EsPEbkxNzQ1KyYmhtGjR/PII48wbNgwZs6cSXLy3/8wpaSkGLeMEhG5XZ5//nkefPBB7rvvPpKSkswai429NX49PLn75U7c+1pnAvrUx8beytifeDaFnZ8f4/vxm9jx2VESzhRP7kREruSGEreFCxdSq1YtlixZwqJFi8jOzmbChAlFtpnSm1cRuZ2OHz/OW2+9BcBvv/1GaGiomSP6m4tXNTo/2pRRH/Wiy9hm1PrHa9K87HzCNkXxy/928ctzOwnbHEVuVt5VriYicoOJ26FDhxg/fjzu7u40atSIefPm0aJFC5588kliY2MBzP6aQkQql8aNG/Prr79So0YN3nrrLTp27GjukIqxsbfGv6cn97zSiXte7YR/L0+s7f6uwiWcTmHHoqOFVbjPj5J4NsWM0YpIWXZDAyyysrKwsfl7ZpSlpSXTp09n3rx5PPXUUzz//PMmD1BE5FoGDhxISEhIidvG5eXlYW1ddsaS1WpYnS5jqtPuQX9O7zpPaFCUMVHLzconLCiKsKAoXH2q49/LE++O7tjYl534RcS8bqjiVr9+fcLDw4u1T506lQ4dOjBz5kyTBSYiciPq1KlTrOL/888/c8cdd3Dy5EkzRXVltg7W+Peuz72vdebuVzrh19OjSBUu/lQy2xcd5fsJm9n55TESI1WFE5EbrLh169aNDRs20K9fv2J9U6ZMAWDlypWmiUxE5BacOHGCRx55hJSUFNq0acPBgwfx9vY2d1glcvWujqt3c9o/6M+pXRcIDYrkYkQqALmZeYRuiCR0QySuvtUJ6FUf747uRZI8Eak8tI5bBaLlQET+FhYWxr333ktYWBgPPPAA33//fbkZg2swGIg/lUzYpihO7zpPXk5BkX4bB2sada2Hf29PanpWNVOUImIOGjghIhWSv78/e/fu5eWXX+aFF14oN0kbFE7yqu3rTG1fZzr8x5+TO88TFhTFxci/q3Ah6yMIWR9B7UbO+Pf2xLuDO9a2qsKJVHSquFUgqriJXJ+wsDDOnz9Pr169zB3KdTMYDMSfTCI0KIrTuy+Qn1u0Cmfr+HcVroaHqnAiFdUNTU4oSY8ePYiKijJFLCIipS4tLY2hQ4fSt29fXnvtNQoKCq59UhlgYWFB7UY16P5EC0Z91IuODzehhkcVY39ORh7H1kXw0/Qd/Dp7Nye2nyMvJ9+MEYtIabjlxE0FOxEpTz7++GNCQkIoKCjghx9+ICsry9wh3TA7Jxua9m/AfW924a7ZHWjUrR5WNn//cx57PImtCw/z/fhN7P46hEvn0swYrYiYksa4iUil8vTTT5ORkcE777zDTz/9hKOjo7lDumkWFha4Na6BW+MadPhPACd2nCMsKJKkc+nAX1W4tREcWxuBm18NAnp74tWujsbCiZRjStxEpFKxsrLihRdeYMKECbi4uBTpy8nJwcbGplxNZLjMrooNzQZ40bR/A2KPJxEWFMnpPTEU5BW+Co4Nv0Rs+CVsvwqlcbd6+PfyxLlelWtcVUTKGiVuIlIp/TtpMxgM/Oc//8He3p6FCxfi5ORkpshujYWFBXX8alDHrwYdHgrg5PbzhAZFknz+rypcei5Hfz/L0d/PUse/BgF96uPV1g0rG1XhRMoDJW4iIsCCBQv48ccfATh9+jTbt28vl5W3f7KvYkuzO71oOqABseGXCA2K4swff1fhYsIuERN2CTsnGxr38MC/lyfV3ctnwipSWShxExEB3N3dqVKlCmlpaTzzzDPlPmn7JwsLC+r416SOf006PhTAie3nCN0YSUpMBgDZ6bkcWX2GI6vP4N6kJv69/6rCWd/y/DURMTElbiIiwIgRI2jRogXr16/n7rvvNnc4pca+qi3NBzak2Z1exIRdJOxyFS6/cIWACyEXuRByEbuqNvj18MCvpyfV66gKJ1JW3HLiNmrUKKpVq2aKWEREzMrf3x9/f/9i7UuWLKFLly54eHiYIarSYWFhgXuAC+4BLnR8KIfj26IJC4oiJfavKlxqLod/PcPhX89Qt6kL/r09aXCHqnAi5qadEyoQ7ZwgYnrbtm2jV69e1KhRg++++45+/fqZO6RSYzAYuBBykdCgSCL+jDVW4S6zr2ZrrMJVcyu/y6iIlGd6VSoicgUGg4GZM2eSn59PQkIC27Ztq9CJm4WFBXWbulC3qQuZydkc31a4LlxqXCYAWSk5HFp1mkOrTlOvuQv+vevToHVtLFWFE7ltTF5xy8/PJz4+noSEBPLy8ko8JjAw0JS3lL+o4iZiehcvXuShhx4iMzOT9evXY2VVuZbNMBQYOH8ssbAKty8OQ0EJVbienvj38qCqq6pwIqXNZBW3goICvvnmG5YvX05qaupVj92yZYupbisiUqpq1qzJqlWrSEtLK5a0ZWZm4uDgYKbIbg8LSwvqNa9Fvea1yEjK5sS2aEI3RpGW8I8q3MpTHFp1inrNaxHQ25P6rWtjaaUqnEhpMFni9sknn7BkyRJq1KjBnXfeiYuLS6X7y1REKiZLS8tik7DOnTtHhw4dmDFjBhMmTKhQy4dciaOzHS2H+NBisDfnjiUStjGSiP1/VeEMcO5wAucOJ+BQvbAK59fTk6quFTuxFbndTJa4rVu3Dk9PTz799NNyvfefiMi15Obmcv/99xMdHc1TTz1FVlYW06ZNM3dYt42FpQUezWvh8VcV7vjWaEI3RpKemAVAZnIOwb+cInjlKTxa1CKgd308W7mqCidiAiZL3DIzM+nbt6+SNhGpFDp06MDOnTvx9PRk9OjR5g7HbByd7Qi824eWd3lz7kgCoUFRRB6IxVAAGCD6UALRhxJwcLbDv5cnfj09qOKiKpzIzTJZ4ubt7U1iYqKpLiciUmbZ2Ngwd+5cOnXqRL169ahVq5a5QzI7C0sLPFq64tHSlfRLWRzfEk1oUCQZF7MByEzK5uDPJzm44iSeLV3x7+2JZ6vaWFpW/FfMIqZksrr1Qw89xPbt2wkPDzfVJUVEyrT77ruP9u3bF2nLycnh7bffJjs720xRmZ9TDXta3evLAwt60n/6HdRvXRsu52cGiAqOZ8O8Ayx5cjMHfjpBemKmWeMVKU9MuhzIpk2beO+99+jcuTM+Pj44OZW8TcqAAQNMdUv5By0HImJ+EydO5P3336dt27b8+OOPNGjQwNwhlQnpF7MI3xJFWFAUGZf+ldRagGegK0361KdeS1dV4USuwmSvSnNycti1axfJycmsXr0aoNgsK4PBgIWFhRI3EamQIiIiWLRoEQCHDh0iISFBidtfnGra0/q+RgTe40t0cDyhGyOJOhQPBgqrcAfjiToYj2MNOwJ616dxTw+catibO2yRMsdkidsHH3zAhg0b8PHxoXv37loOREQqnQYNGrB7926GDh3KjBkzaNOmjblDKnMsLS2o37o29VvXJi0xk/DN0YRtiiIzqbAKl3Epm/3LT3Dg5xN4BtYmoG996jWvpSqcyF9Mlrht2bIFPz8/PvroI6yttZOWiFROgYGBHD58uMQZ9qmpqVStWtUMUZVNVVwcaDOsEa3u9SEqOJ7QDZFEH0kAAxgKIPJAHJEH4nCsaUdAn/r4dffAUVU4qeRMNjkhJyeHVq1aKWkTkUrPycmp2FCRr7/+moCAAHbu3GmmqMouSytLGrRxY8DMttz/bg9a3euDfTVbY3/GxWz2LzvBD09tYcO8/UQfji+29ZZIZWGyLMvPz4/o6GhTXU5EpMI4cuQITzzxBJmZmfTo0YPDhw8TEBBg7rDKpKquDrQZ3phW9/kSeSCe0I0RnDtSuNSUocBAxP44IvbH4eRiT0Cf+jTu7oGjs52Zoxa5fUxWcRs7dix79+5l165dprqkiEiF4Orqalw2ZPTo0UraroOllSVebd2489l23P9ed1re7Y191b+rcOmJWexbepwfntzMhncOcO5IgqpwUimYbDmQxYsXc+zYMf78809at259xeVALCwsePjhh01xS/kXLQciUnbl5eXx4Ycf8vjjj2Nvr3FaN6Mgr4CIA3GEbIjkwrHiC75XqfV3Fc6huqpwUjGZLHHr3r379d3QwoItW7aY4pbyL0rcRMqf4OBgDh8+zEMPPWTuUMqVlNgMwjZFEr4lmuzU3CJ9FpYWNGhTmyb9GuAeUBMLzUiVCsRkY9zee+89U11KRKRSSEpKYujQoZw+fZodO3awYMECVeOuUzU3R9qN9KfN8MZE7o8lZH0kF0IvAoVj4c7+GcvZP2OpUsuBgL71ady9Hg7VVIWT8s9kiVtgYKCpLiUiUiksXbqU06dPA4WVt3/PRJVrs7K2pGF7dxq2dyc5Jp3wTVGEb44mO72wCpeWkMmfP4Szf9lx6v+zCqfvtZRTWrtDRMRMLo93e+655/jxxx+xs1NF6FZUr+NEu1H+tBnRmIh9sYSsjyAm7BIABfkGzu6N5ezeWKrW/qsK182jyIQHkfLAZGPcjhw5wtatWxk5ciQuLi7F+hMSEliyZAk9e/akadOmpril/IvGuImUT1lZWcVekaampuLg4KC1MW9R8oV0wjZFEb4lipz0vCJ9llYWNGjrRpO+DajjX0NVOCkXTLYcyNKlS9m5c2eJSRtArVq12LVrF8uWLTPVLUVEKoR/J20FBQWMHDmSPn36EBMTY6aoKobq7k60f9CfBz/qRc8nW+LW2NnYV5Bv4MyeGFbP+YNlU7ZxZM0ZstJyzBesyHUw2Z9yYWFh19yXr2XLluzbt89UtxQRqZDefPNNVq9eDUC/fv0IDg7G0tJkf2dXSlY2Vvh0qotPp7oknU8jdGMkx7eeIzezsAqXGpvBH9+G8eeScLza1qFJvwa4NXZWFU7KHJMlbklJSdSqVeuqx9SsWZNLly6Z6pYiIhVS9+7dqVu3LhcuXGDevHlK2kzMuW4VOj7UhLYP+HF2bwzH1kcQfzIZgII8A6d3X+D07gtUq+NIk771adTVA7sqNmaOWqSQyRK3KlWqEBcXd9VjYmNjcXBwMNUtRUQqpE6dOnHw4EE2btxI3759zR1OhWVta4Vvl3r4dqnHpehUQoOiOLHt7ypcSkwGe74JY+8P4TRsV1iFq91IVTgxL5P9GdekSRO2bdtGbGxsif2xsbFs376dZs2ameqWIiIVVu3atRk1alSx9g8++ICDBw+aIaKKrYZHVTo93IQHF/ai+7gW1PKubuwryDNwatcFfp29h+XTtnFs7VnjciMit5vJErcRI0aQnZ3NhAkTWLt2LQkJCUDhbNLff/+d8ePHk5OTw/3332+qW4qIVCpr165l4sSJdOzYkS+++MLc4VRI1rZWNOpaj3te6cR9b3YhoE99rO2tjP3JFzLY/XUo343bxOYPg4k7mYSJFmcQuS4mXYB3woQJfPTRR7zxxhtA4fZWl3+gLSwseOqpp7RQr4jITVqwYAEGg4Hs7Gzi4+PNHU6FV9OzKp0fbUr7B/05/ccFjq2NIPFsClC4b+qpnRc4tfMC1d2daNKvAY261sXWUWPhpHSZbB23y06dOsXKlSsJCwsjLS2NKlWqEBAQwN133423t7cpb1WhJSUl8dprrxEcHIyrqytTpky55qxdreMmUrFlZ2czdepUoqKiWLFihSYtmMHFyFRC1kdwcud58rLzi/RZ2VjSsH0dmvZvQC3v6hoLJ6XC5ImbmMaLL76Ig4MDkydPZt++fbzxxht8//33VKtW7YrnKHETqRxyc3OxsSla2YmPj8fV1dVMEVU+uVl5nN5zgWPrIrgYkVqs37muE036N8C3Sz1sHbSIspiO/lwrgzIyMti+fTuPPvoo9vb2dOnSBW9vb3bs2GHu0ESkDPh30nbmzBn8/PyYNm0aubkaNH872Nhb49fDk/te78K9r3fGr6cH1rZ//0pNOp/Ori9D+O6JILYsPETC6WQzRisVSYX5M+DMmTN8+eWXhIeHc/HiRezt7WnQoAEjR46kc+fOpXbfjIwMlixZQkhICKGhoaSmpvLss89y5513lnh8Tk4On3/+OevXryc1NRUfHx/GjBlD27ZtjcdER0fj4OBA7dq1jW3e3t6cOXOm1J5DRMqnnJwchg0bxqVLl5g3bx5OTk689NJL5g6rUnFpUI2uY5vT4f8COLW7cCzcpajCKlx+bgEnt5/n5PbzONdzokl/L3w711UVTm5aham4xcTEkJGRwYABA5g4cSIPPfQQAM8++yyrVq0qtfsmJyezePFiIiIi8PX1vebxr7/+OsuWLaNv375MnDgRS0tLpk+fzuHDh43HZGZm4uTkVOQ8JycnMjMzTR6/iJRvNjY2PPLII9jY2ODr68uUKVPMHVKlZWNvjX9PT4a+2YV7XutE4+71sPpnFe5cOru+OMZ344LY+vFhEs6oCic3rsKk/B07dqRjx45F2u677z7Gjh3LsmXLGDJkSInnpaamcuDAAbp3715i/8aNG+ncufMVFw52cXFhxYoVuLi4EBYWxmOPPXbFGENCQggKCmLcuHGMHDkSgP79+zN69GgWLlzIwoULAXBwcCA9Pb3Iuenp6Vq8WESKsbCw4Mknn6Rt27Y4ODhQvXr1a58kpa6WV3W6Pd6Cjg834eTO8xxbF0FSdBoA+TkFnNh2jhPbzuHsUYWm/Rvg27kuNvYV5leylKIKU3EriZWVFbVr1yYtLe2Kx6xYsYLZs2ezbdu2Yn2//fYbL7/8MmvXrr3i+ba2tri4uFxXPFu3bsXKyqpIEmlnZ8egQYM4duyYcfFiDw8PMjMzi0z3P3PmDA0bNryu+4hI5dO+fXtatGhRpC0jI4PJkydz8eJFM0UlNvbWBPSuz7C3unLPK53w7VoXK5t/VOGi09j5+TG+fSKIbR8fJjEixYzRSnlwS4lbTk6OqeIwmczMTJKSkjh37hzLli3jjz/+oHXr1lc8ftSoUXTo0IGXX36Z/fv3G9u3bt3KvHnz6NevH/fcc49JYjtx4gQeHh7FXoMGBAQAcPLkSQAcHR3p0qULX3zxBdnZ2ezatYtTp07RpUsXk8QhIpXDk08+yXvvvUfr1q2120IZUMu7Oj3GteTBj3vT6ZEmVK/79++C/JwCjm87x4pnd/LTjO2EbYokNyvPjNFKWXVLddl7772XPn36MHDgwDKz/MSHH35oHNNmaWlJt27dePrpp694vLW1NbNnz+aZZ55h1qxZzJ8/n8zMTObMmUP79u2ZOXOmydbiSUxMLLE6d7nt8m4TAFOmTOHVV19l8ODBuLq6Mnv27CsuBbJx40Y2btx41cqiiFQu58+f59dffwUKlwqxtbU1c0Ryma2DNU36NiCgT30STidzdO1Zzu6NJT+3AIBLUWns+OwYe74Ow7tjHZre6YVL/SsvBSWVyy0lbjk5Ofzyyy+sXLkSHx8fBg0aRN++falataqp4rthw4cPp0ePHiQkJLB582by8/OvOT3ezs6O119/nUmTJjF9+nRyc3MJCAjgpZdewtradGMOsrOzi03jB4z/oGZnZxvbnJ2defvtt6/run369KFPnz7GddxEROrWrcuBAwcYMWIETz31FE2bNjV3SPIvFhYWuPo403NCIDmP5HJi+zlC1keSfKFwjHNeTj7Ht57j+NZz1PCsSrMBDfDpVBdrO6trXFkqslt6Vbpy5UqmTJmCn58fJ0+eZMGCBdx3333FXjveTg0aNOCOO+5gwIABvPnmm2RmZjJz5sxr7iXn5OTE+PHjSUlJITMzk6eeego7OzuTxmZnZ1diEnn5lbOp7ycilZunpyc7duwotlm9wWDg3LlzZopKSmLraEPT/l4Mm9uVIS93xLujO5bWf7/tuRSVyvZFR/n2iSC2f3qES9HFF/2VyuGWEjdHR0fuvvtuPvnkE7766iuGDx+Ok5MTQUFBTJ06lREjRvDVV18ZB92bQ48ePQgLCyMqKuqqx50/f545c+ZQv3596tSpw/PPP1/k1aUpuLi4kJiYWKz9clutWrVMej8RESur4tWZjz/+GH9/f5YtW2aGiORqLCwsqO3rTK+nAvnPx73p8FAA1dwcjf152fmEb4nmp+k7+HnmDsK3RJGXk3+VK0pFY7JZpV5eXkyYMIGffvqJV155hQ4dOpCQkMAXX3zBAw88wDPPPMOWLVvIy7u9gy0vv3682vivhIQEpkyZgrW1Ne+88w7z5s0jKyuLqVOnkpJiuhk+vr6+REdHF1vqIyQkxNgvIlKaDh48yOTJk0lLS+P+++8nODjY3CHJFdg62tBsgBfD3+nGXbM70LB9nSJVuIuRqWz/9K8q3KIjXDqncc6VgcmXA7GysqJr16688cYbLF++nCeeeAIPDw/27t3L7Nmzue+++0x9SwAuXbpUrC0vL49169ZhZ2eHl5dXieelpqYybdo0MjMzeeedd6hduzaenp7MnTuX+Ph4ZsyYYbKFb3v06EF+fn6RBYFzcnJYs2YNTZo0wc3NzST3ERG5ksaNGzNixAgAJk+eTGBgoHkDkmuysLDArXENek9qxYMf9ab9g/5Urf33up55WfmEb47mp2e2s2LWTo5vi1YVrgIr1dX+atasyciRI2nXrh3z58/nyJEjJq1g/dPcuXNJT0+nZcuWuLq6kpiYyIYNG4iMjGTChAk4OjqWeN6KFSuIi4tjwYIFeHp6GtsbNWrEG2+8wdSpU1m7di333nvvFe/9008/kZaWZnzluXPnTuLi4gAYOnQoVapUAaBJkyb07NmTTz/9lKSkJOrVq8fatWuJiYlhxowZpvpWiIhckZOTE19//TV33303d999t7nDkRtkV8WG5oMa0mygF7HHkzi65gyRB+IoyC8cx514NoVtHx9h9+IQfDrVpdlAL5zrVjFz1GJKFoZrjdq/SRkZGWzYsIHVq1dz/PhxDAYD9vb29OzZk5kzZ5r8fkFBQaxevZrTp0+TnJyMo6Mjfn5+3HfffVdd/ywvL4+oqKgrLm576tQpvL29r7okyIgRI4iJiSmxb+nSpbi7uxu/zs7ONu5VmpaWhre3N2PGjKFdu3bX+aRXdnlW6aJFi8rM8iwiUn7s3r2bDRs28Nxzz2FpWaHXZ69QstJyOL45mpANkaQlFH9DVKthNZoO8MK7Qx2sbDQjtbwzeeJ24MAB1qxZw/bt28nOzsZgMNCkSRMGDRpEr169rlj5klunxE1EblZ8fDytW7cmOjqa/v37s3TpUm2fVc4YDAZiwi5yZM1ZooPjjVW4y2wcrPHp5E7zgQ2p7u50hatIWWeSV6VxcXH8/vvv/P7778TExGAwGHB2dmbIkCEMGjToiuPLRESkbNi8eTPnz58HCneg+fcOL1L2WVhY4B7ggnuAC1mpOYRtjiJ0QyTpiVkA5GbmERYURVhQFLW8L1fh3LGyVnW1PLmliltQUBBr1qzhwIEDFBQUYGlpyR133MGgQYPo0qWLSRevlWtTxU1EbsWmTZt4+umnWbt2bZEhHlJ+GQwGLoRe5MjqM0QfSsBQULwK59vZnWYDG1K9jpL18uCWErfu3bsD4O7uzp133smdd95J7dq1TRac3BglbiJyqy7/Ef5P8fHx2Nvbm3VXHLl1WSk5hAZFEhoUScbF7GL9tbyr02xAAxqqClem3VJJrHfv3gwaNIg2bdqYKh4RETGjfydteXl5jBgxggsXLvDTTz9p66xyzL6aLa3u9SXwHh/OH0vkyOoznDuSaKzCJZxOZstHh9m1OASfznVpPrBhkcV/pWy4pcTthRdeMFUcIiJSBs2ZM4ctW7YAcN999xESElLibgxSflhYWFCvWS3qNatFZnI2oRsiCdscRcalwipcTkYeoRsiCd0QiatP9cKxcO3rYKkqXJlg0lmleXl5/Pzzz2zcuJHIyEiys7PZvHkzACdOnODXX39l+PDhRdZLE9PRq1IRMbWTJ08ybNgwjh07xpYtW+jcubO5Q5JSYCgwEH00gaNrznL+aAKGgqL9to7W+HSuS4tBDalaW1U4czLZ7IHs7GymTp3K0aNHqV69Ok5OTmRlZRn73d3dWbNmDVWrVmXs2LGmuq2IiJQiX19fdu/ezfbt25W0VWAWlhZ4tnDFs4UrGcnZhKyLIHxzFJnJOcC/qnC+1Wl2pxcN26oKZw4m+45/8803HDlyhMcee4xffvmFQYMGFemvUqUKgYGB/Pnnn6a6pYiI3AYODg7069evWPvLL7/M6tWrzRCRlCbH6nbcMaIxoz7sRf/pbajbzIV/rkEffzKZze8f4ttxQexafIzUeNNsCynXx2QVt02bNtGqVStGjRoFUOJOA3Xr1uXEiROmuqWIiJjJzz//zIsvvgjA7Nmzjf8tFYeFpQWegbXxDKxNxqUsjq2LIHxrNFmXq3DpeYSsjyRkfSS1fZ1peqcXDdu5YWmlKlxpMlniFhcXR9euXa96jIODA+np6aa6pYiImMnKlSuN/+3i4mLGSOR2cKxhT9sH/LhjRGOiguM5suYMF0Ivwl+j5ONOJhH3fjC7nGzw6exO80ENqeqqsXClwWSJm4ODA0lJSVc95vz589pCRUSkAli8eDHNmzfn0KFDTJgwwdzhyG1iYWlB/da1qd+6NumXsji29izHt54jK6WwCpednvt3Fa6RM00HNKBhuzqqwpmQyRK3pk2bsmvXLlJTU0tcpDE2NpY9e/ZcsyonIiJln4WFBdOmTcNgMBQbGhMeHk7jxo1LHDIjFYdTDXvajfTnjvv9iDwQy9E1Z4kJv/R3Fe5EEnEnkthV5a914QZ5UbWWqnC3ymQp8AMPPEBqaipPP/00R44cIT8/H4CsrCz279/PtGnTyM/P5/777zfVLUVExMz+nZyFhobSpk0bhg8fTkpKipmiktvJ0tICrzvqMPiFDox8vyfNBnphV9XG2J+dlkvIugiWTtrKqhd3c3rPBQoKTLYSWaVj0nXcfvnlFxYsWEBBQUGxPktLS6ZMmcLgwYNNdTv5F63jJiLmlJeXR2BgIMeOHQNg+vTpvPnmm2aOSsyhoMBAxL7CKlzsib+rcJfZVbHBt3Ndmg9uSBUXB/MEWU6ZNHEDOHv2LCtXriQ0NJSUlBScnJwICAjg3nvvpWHDhqa8lfyLEjcRMbdff/2Vhx56CA8PD/744w8cHfVqrLJLS8jkyOoznNx5nuy03KKdFuDWqAbNBnrR4A43LC31ev1aTJ64ifkocRORsuD06dPk5+fTqFEjc4ciZUhBfgFn/4zl6O9niTuZVKwKZ1/VpnAs3OCGVKmpKtyVmGxywvXKz8/XPnciIhWYt7d3sbaUlBTGjh3L66+/XmK/VHyWVpZ4d3DHu4M7qfEZHPntDCd3nScnPQ+ArNRcjq2N4Ni6CNwa16DZnV543eGGhapwRZhscsLPP/98zWPy8/N56aWXTHVLEREpBwwGA2PGjGHZsmW0bt2aoKAgc4ckZlbV1ZFOjzTlPx/3pseEFrj6/GOpMAPEhl8i6N2DfDduE3u+CSX9YtaVL1bJmKzitmDBAmrWrEmPHj1K7C8oKOCll15i27ZtprqliIiUA4mJiRw6dMj4tZeXl/mCkTLF0soS38718O1cj5S4DA7/eprTuy+Qk3G5CpfD0d/PcmztWWr71aD5nV40aFO5q3AmS9yaN2/OK6+8QrVq1WjdunWRvstJ29atW7nvvvtMdUsRESkHatWqxZ9//snYsWMZNWoUPj4+5g5JyqBqtR3p8t9mdHq4Cad2X+DY2rMknClcUsZggNiwS8SGXcK+mi2+nevSYnBDHGvYmznq289kkxPS09N58skniY2N5b333jMOSi0oKGDOnDls2rSJe+65h6efftoUt5MSaHKCiJQ3BoOBI0eO0KJFC3OHImVQckw6h389zZk/YoxVuMssLMDNr3AsXGWqwplsjJuTkxNz586lSpUqPPPMM5w/fx6DwcDLL7/Mpk2buPvuu5W0iYhIEfPmzaNVq1a8+eabaJED+bfqdZzoOrY5//m4N90eb46LVzVjn8EAMWGX2Dj/IN9P2MSeb0PJuFTxx8KZfDmQqKgoJkyYgJOTE40aNWLr1q0MHjyYZ555xpS3kRKo4iYi5cnBgwdp27atcaedPXv20L59ezNHJWVd0oU0Dv96hjN/xJCb+a8qnOXlKlxDGrSpXSG3XTP5rq+enp689dZbXLp0iW3btilpExGRErVo0YL//e9/WFhY8L///U9Jm1wXZ/cqdHusOf/5pDddxjajZoO/90c3FEBM6CU2vnOA78dv4o/vQslIzjZjtKZ30xW3xYsXX7X/0KFDnDx5knvvvRdLy7/zQwsLCx5++OGbuaVcgypuIlIe7dq1i/bt22uNT7lpl86lcnjVac7+GUtuVn6RPgtLC+r41aDpQC8atC7/VbibTty6d+9+cze0sGDLli03da5cnRI3EakogoKC+O677/jggw+0bZZct/y8Ao5viSZ0YyQXI1OL9Ts42xn3SHWsbmeGCG/dTS8H8t5775kyDhEREQDOnTvHyJEjiY+PZ9++fQQFBeHq6mrusKQcsLK2JKBPfQL61CcxMoXDv54mYl8cedmFVbjMpGyOrD7D0d/PUse/cEZq/XJWhbvpxC0wMNCEYYiIiBQ6duwYGRkZAHh4eODi4mLmiKQ8cqlfjZ4TAsnPzSdsUxShG6NIOpcGgKHAwIWQi1wIuYijsx2+XerSfJAXDtXL/rpwt32vUhERkavp168ff/75J1OmTOGbb74pMk5a5EZZ2VjRtL8XTft7kXg2hUO/nibywN9VuIykbA7/doYjv5/F3b8mze70wrOVa5mtwt104jZt2jT++9//EhAQcMPnZmZm8tNPP+Ho6KidFEREpJiAgAB+//33Yu1RUVFYWlpSr149M0Ql5Z2LVzV6PRVIbnYeYUFRhG2KIvl8OgCGfAPnjyVy/lgijjUuV+Ea4lCtbI2Fu+nELSkpiXHjxtGyZUv69+9Pt27dqFKlylXPOXbsGOvXr2fTpk1kZ2cza9asm729iIhUMjk5OQwbNowzZ87www8/0Lt3b3OHJOWUjZ01zQc2pPnAhsSfTuLwr2eIPBhHfk4BABmXsjn86xmOrDmLe0BNmg30wrNl2ajC3dICvL///juLFy8mJiYGS0tLPD098fPzo0aNGlSpUoWcnBxSUlKIiooiPDycjIwMLC0t6d27N2PGjMHNzc2Uz1LpaVapiFRkL7zwAnPmzAHA19eXkJAQbGxszByVVBS52XmEro8kfEsUyRcyivU71rTDv1d9mg1ogK2j+X7ubnnnBIPBwJ49e1izZg3BwcGkpKQUO8bS0hJvb2+6devGoEGDqFWr1q3cUq5AiZuIVGSJiYn85z//YfPmzezatYvWrVubOySpoOJOXOLwb2eIOhRvrMJdZmVryX2vd6G6u5NZYrvlyQkWFhZ07NiRjh07AnD27Fni4+NJSUnB1tYWZ2dnGjZseM3XqCIiIlfj4uLC6tWrCQ4OVtImpap2oxr0eboGuZl5HFsfwfGt0aTEFFbhqro6UK2O+dYWNPmsUi8vL7y8vEx9WRERESwtLUtM2iZNmoS/vz9PPPFEmRiHJBWDjYM1gXf7EHi3DzFhlwjfEoVb4xpm/RnTciAiIlKuffPNNyxYsACAAwcOsGjRIjNHJBVRHf8a1PGvYe4wTL/JvIiIyO0UGhpq/O/OnTubMRKR0qeKm4iIlGuvvfYarVu3ZufOnYwePdrc4YiUKlXcRESk3Bs2bBjz588v1r5r1y5ycnLMEJFI6VDiJiIiFdLBgwfp1asX3bp1IzIy0tzhiJiEEjcREalwCgoK+M9//kN2djZ//PEHH3zwgblDEjEJJW4iIlLhWFpa8vXXX9OwYUPatWtn3HFBpLwr9ckJPXr0YMuWLaV9GxERkSLatGnD/v37ycjIwM6u6EbhBoNB671JuVTqFbdb3FFLRETkptWoUYN69eoVaUtMTKRbt27s2bPHTFGJ3LwbStymTp3KJ598wubNm4mOjr6uc/75F823335Lbm7ujUUoIiJiIgUFBTz00EPs2LGDbt26sXz5cnOHJHJDbuhVab169Th06BA///wz2dnZODo64uPjQ+PGjWncuDGNGjXCy8sLS8u/88F/Vtw+++wzBg0aRI0ahSsPf/fdd9x33304ODiY6HFERESuLDU1ldTUVACqV69Ohw4dzByRyI25ocRtypQpQGEyFhkZSXh4OCdPnuTEiROsW7eOtLQ0bG1tWb9+fYnn//u16TfffEPPnj2NidulS5d4/PHHWbZs2c08i4iIyFVVr16dTZs2MWvWLPr27YuHh4e5QxK5ITc1OcHCwoIGDRrQoEED+vXrx4kTJ9i2bRurVq0iJSXluq/z70TOYDAQFxd3MyGJiIhcF2tra956661i7fn5+WzcuJH+/fubISqR63PTs0qPHj3Ktm3b2L59O/Hx8bRu3ZoxY8bQpUsXU8YnIiJyW7z88su8/PLLPP7447z77rvY29ubOySRYm4ocdu/fz9bt25l+/btZGZm0r59e8aMGUPHjh1xdHS8rmvs2rWLVq1aUbdu3ZsKWERExNSOHDliXOtt0aJFjB49WuPfpEy64TFutWrV4v/+7/+46667sLGxueY5/5xV2qhRI+bPn09eXh6Ojo7k5OTw3Xff0bx5cxo1akSVKlVu/AlERERuUfPmzfn8888ZP348s2fPVtImZdYNJW6NGjXi7NmzLFiwgC+//JJGjRrRqFEj46xST0/Pq57/2WefkZeXx9mzZzl+/DgnTpzg+PHjbNy4kezsbC2GKCIiZvPII4/QtWtXvL29i/VpwV4pK24ocSsp8Tp69Ci//PIL2dnZODg44Ovry/vvv3/lG1pb4+vri6+vr7HNYDAQFRVlnKUqIiJiDv/83XTZr7/+ynvvvcd3332Hm5ubGaIS+dsNT0642cTr7bffxsfHB19fX3x8fHBycjL2WVhYUL9+ferXr0/fvn1v4jFERERM7/Tp0zz00EMkJSXRqlUr9u7dqyVExKyuO3G71cTLYDCwbt06PvnkE7Kzs3FzczNe63IiqAkLIiJSliQkJODg4EBSUhKdOnUqtn2WyO12QxW3W0m8pk+fDhQmcAcPHuTFF1/k0qVLHDx4kJ9//pm0tDQcHBxo2LAhH3300a09lYiIiAm0a9eOgwcPMmvWLObPn69xbmJ21524PfPMM8CtJ14WFhZ8+eWXjB8/njvvvBOAvLw81q5dy8cff4yfn98tPpKIiIjpuLm58fnnnxdrP3nyJBkZGbRo0cIMUUlldcNj3EyReIWGhjJr1qy/g7C2ZvDgwdjZ2bFu3bobDUlEROS2ysjIYOjQoRw/fpyFCxcyevRoc4cklYTltQ8pLjQ0lMDAQOPXlxOvSZMmERUVdc3zfX192bJlS7H2pk2bcuTIkZsJSURE5LaZO3cuhw8fJisrizfffJOsrCxzhySVxE0lbreaeE2YMIHFixezYMECzp8/D0BBQQErV67UIrwiIlLmTZ8+nccffxwnJyd++uknbY8lt81N7VU6YcIEpk2bRnx8PMOGDaNu3bo3lHg1b96cjz76iPnz5zNy5EicnJzIy8sjLy+PadOm3UxIIiIit429vT0ff/wxzz77LA0aNCjSV1BQgKXlTdVFRK7pphI3UyRePj4+fPDBB5w/f54TJ05gYWGBn5+fFjcUEZFy499Jm8Fg4KGHHqJu3bq89tprWFvf1K9ZkSu66Z+o6028DAbDVa9Tt25drd8mIiIVwscff8x3330HFI4HX7VqlZYQEZO65T8FrpV4bd269VZvISIiUi4YDAasra3Jy8vj4YcfVtImJnfDiVtBQQFnz56lWrVq1KpVq0hfXl4eR48eLTLjVEREpLIYP348rVq1YvPmzQwbNszc4UgFdEOJW0xMDNOnTyciIgILCws6dOjAs88+S/Xq1QFISUlh8uTJJc44FRERqQw6duxIx44di7X/9ttvdO7cmRo1apghKqkobmjay8KFC6lVqxZLlixh0aJFZGdnM2HCBBISEozHXGtMm4iISGWze/du7r33Xtq0acOBAwfMHY6UYzeUuB06dIjx48fj7u5Oo0aNmDdvHi1atODJJ58kNjYWQO/zRURE/sFgMDB+/Hjy8vI4c+YMP/74o7lDknLshhK3rKwsbGxs/j7Z0pLp06fTtm1bnnrqKc6dO2fyAEVERMozCwsLVq5cSbt27ejWrRtz5swxd0hSjt1Q4la/fn3Cw8OLtU+dOpUOHTowc+ZMkwUmIiJSUdSvX5/t27fz888/F1vbLS8vz0xRSXl0Q4lbt27d2LBhQ4l9U6ZMoXfv3hrjJiIiUgJbW1tcXFyKtMXExNC0aVOWL19upqikvLEwKNOqMMLDwxk7diyLFi3Cz8/P3OGIiMhV5OXl0bdvX+NKDJ9++iljx441b1BS5t3SZmpnzpxRhU1EROQm5Obm4u7uDhQuZn/33XebOSIpD24pcXvkkUf4+uuvTRWLiIhIpeHg4MB3333HBx98wLJly6hdu7a5Q5Jy4JYSN4PBUKzitmrVKs2YERERuQ4WFhZMmDCBzp07F2nPzc3liy++oKCgwEyRSVl1S4lbSRITEwkKCiqx79tvv+Xxxx839S1FREQqlJkzZ/Lf//6XwYMHk5iYaO5wpAwxeeJ2Nbm5uSUuJyIiIiKFjh8/zrvvvgvAxo0bOX36tHkDkjLltiZuIiIicnWNGzdm3bp1uLq6Mn/+fNq2bWvukKQMuaFN5uX2SUpK4rXXXiM4OBhXV1emTJlCmzZtzB2WiIjcBn369CE0NJSaNWsW68vJycHW1tYMUUlZoIpbGTV//nxq1qzJqlWrGDduHC+++CIpKSnmDktERG4TFxeXYvt/L1myhFatWhEaGmqmqMTcbrnitmLFCk6cOIG/vz9+fn6kpaWZIq5KLSMjg+3bt7NkyRLs7e3p0qUL3t7e7Nixg4EDB5o7PBERMYPQ0FDGjBlDeno6bdu25dChQ/j4+Jg7LLnNbilxa9SoEWfPnmXHjh3s2LGjyF8GL774Ij4+Pvj4+ODr64ubm9stB3s1oaGhrF27loMHDxITE0O1atVo2rQpY8aMwdPTs9Tum5GRwZIlSwgJCSE0NJTU1FSeffZZ7rzzzhKPz8nJ4fPPP2f9+vWkpqbi4+PDmDFjioxhiI6OxsHBociaPt7e3pw5c6bUnkNERMo2a2trvL29OXLkCEOHDsXb29vcIYkZ3FLi9tlnn5GXl8epU6c4ceIE4eHhHD9+nFOnTrFlyxa2bNliTOYcHR2xt7c3SdAl+f777zly5Ag9e/bEx8eHxMREVqxYwZgxY1i4cGGp/YAnJyezePFi3Nzc8PX15eDBg1c9/vXXX2fLli0MHz4cDw8Pfv/9d6ZPn857771HixYtAMjMzMTJyanIeU5OTiQnJ5fKM4iISNnXqFEj9uzZw+uvv87MmTOLvUaVyuGWX5VaW1vj5+eHn58fgwcPBiA/P5+zZ88SHh5eJJlLTEwstR+0ESNG8MILL2BjY2Ns69WrF4888gjfffcdzz//fInnpaamcuDAAbp3715i/8aNG+ncuTMODg4l9ru4uLBixQpcXFwICwvjscceu2KMISEhBAUFMW7cOEaOHAlA//79GT16NAsXLmThwoVA4Wra6enpRc5NT0+/YgwiIlI5ODo6lrjI/ZEjRzh37hwDBgwwQ1RyO5XK5AQrKyt8fHwYOHAgTz/9NAsXLmTt2rUsXryYmTNnlsYtad68eZGkDcDT0xMvLy8iIiKueN6KFSuYPXs227ZtK9b322+/8fLLL7N27dornm9ra4uLi8t1xbh161asrKwYMmSIsc3Ozo5BgwZx7NgxYmNjAfDw8CAzM5P4+HjjcWfOnKFhw4bXdR8REak8UlJSGDp0KAMHDuTFF18kPz/f3CFJKbpts0otLS1p2LDhbf1rwGAwcOnSJapXr37FY0aNGkWHDh14+eWX2b9/v7F969atzJs3j379+nHPPfeYJJ4TJ07g4eFR7DVoQEAAACdPngQK/6Lq0qULX3zxBdnZ2ezatYtTp07RpUsXk8QhIiIVx6effsqJEycwGAz8+uuv5ObmmjskKUUVeh23DRs2EB8fz6OPPnrFY6ytrZk9ezbPPPMMs2bNYv78+WRmZjJnzhzat29v0nEEiYmJJVbnLrclJCQY26ZMmcKrr77K4MGDcXV1Zfbs2VSrVq3E627cuJGNGzdqRq+ISCU0ZcoU8vPzefvtt1m+fHmpjicX86uwiVtERATz58+nadOm16zy2dnZ8frrrzNp0iSmT59Obm4uAQEBvPTSS1hbm+5blJ2dXex1LmBcSDE7O9vY5uzszNtvv31d1+3Tpw99+vQhPDycsWPHmiZYEREpFywtLZkxYwZPPPFEsTdMWVlZ2NnZaSJDBVIhF+BNTExkxowZODk5MWfOHKysrK55jpOTE+PHjyclJYXMzEyeeuop7OzsTBqXnZ1diSXsnJwcY7+IiMjN+HfSZjAYeOCBB3jggQdITU01U1RiahUucUtLS2P69OmkpaUxd+5catWqdV3nnT9/njlz5lC/fn3q1KnD888/X+TVpSm4uLiQmJhYrP1y2/XGKiIici1z585l5cqVLFu2jAEDBmAwGMwdkphAhUrcsrOzmTlzJlFRUbzxxht4eXld13kJCQlMmTIFa2tr3nnnHebNm0dWVhZTp0416TZTvr6+REdHF1vqIyQkxNgvIiJiCo0bNzZW4Z577jm9Lq0gKkzilp+fz+zZszl27BgvvfQSzZo1u67zUlNTmTZtGpmZmbzzzjvUrl0bT09P5s6dS3x8PDNmzCAzM9MkMfbo0YP8/HxWrVplbMvJyWHNmjU0adKk1HeXEBGRyuPuu+9m//79fPzxx1fczUfKnwozOeHDDz9k586ddOrUidTUVNavX1+kv1+/fiWet2LFCuLi4liwYEGRrbEaNWrEG2+8wdSpU1m7di333nvvFe/9008/kZaWZnzluXPnTuLi4gAYOnQoVapUAaBJkyb07NmTTz/9lKSkJOrVq8fatWuJiYlhxowZt/T8IiIi/3Z568l/++qrr+jWrZvWBy2HLAwV5KX3xIkTCQ4OvmJ/SQvsAuTl5REVFXXFH95Tp07h7e191RLziBEjiImJKbFv6dKluLu7G7/Ozs427lWalpaGt7c3Y8aMoV27dle8/vW6PKt00aJF+Pn53fL1RESk4gkKCqJfv35Ur16dr7/+2rjrkZQPFSZxEyVuIiJydQaDga5du7Jz504AXnrpJV544QUzRyU3osK8KhUREZGrs7CwYPXq1Tz66KNkZGTw3HPPmTskuUFK3ERERCqR6tWrs3z5cjIyMrC0LDpHMS0tzTguW8qmCjOrVERERK6PhYVFsX2zIyMj8fX1Ze7cuVrzrQxT4iYiIlLJZWdnM3z4cGJjY3nmmWeue8tFuf2UuImIiFRy1tbW9O3bF4CGDRtq3+syTGPcREREKjkrKyteeeUVOnbsiLu7OzVq1DB3SHIFqriJiIgIAIMGDaJ169ZF2rKyspgzZ47JdhGSW6PETURERK5o0qRJvPDCC3Ts2JFTp06ZO5xKT4mbiIiIlOjs2bN8++23ABw/fpz09HQzRyRK3ERERKREXl5e/PHHH/j5+bFw4UJatGhh7pAqPU1OEBERkStq1qwZwcHB2NvbF2k3GAwkJSVpIsNtpoqbiIiIXNW/kzaAL774An9/fzZv3myGiCovJW4iIiJyQ4KDg5kwYQJxcXH06dOH0NBQc4dUaShxExERkRvi4eFB9+7dARg3bhwBAQFmjqjy0Bg3ERERuSG1atVizZo1fPbZZ4wePdrc4VQqqriJiIjIDbOysuLxxx/Hzs6uSPu+ffv49NNPtVF9KVHFTUREREwiMTGRYcOGERERwY4dO/jkk09wcHAwd1gViipuIiIiYhIrVqwgIiICgJMnT2JlZWXmiCoeJW4iIiJiEmPGjGHJkiU0bNiQZcuWYWtra+6QKhwlbiIiImIy999/P+Hh4Xh4eBRpT0pKIjc310xRVRxK3ERERMSkbGxsinydn5/P8OHD6dGjB9HR0WaKqmLQ5AQREREpVXPmzGHjxo0ADBo0iIMHD2JpqdrRzdB3TURERErVoEGDqF+/PpaWlixYsEBJ2y1QxU1ERERKVdu2bTlw4ABbtmwx7rggN0cpr4iIiJQ6FxcXhg4dWqx93rx57N271wwRlU9K3ERERMQsVq1axbRp0+jSpQsLFy40dzjlghI3ERERMYtFixYBkJubS1ZWlpmjKR80xk1ERETM4ueff2bmzJlERkYyefJkc4dTLihxExEREbOwsbFh3rx55OfnY2FhUaTv/Pnz1K1b10yRlV16VSoiIiJm9e89TU+cOEFAQABPPvkk2dnZZoqqbFLiJiIiImVGTk4Ow4YNIyUlhQ8//JDXXnvN3CGVKUrcREREpMywsbHhqaeews7OjoCAAJ555hlzh1SmaIybiIiIlBkWFhaMGTOGNm3aYGdnR5UqVcwdUpmiipuIiIiUOa1ataJJkyZF2tLS0njiiSeIj483U1Tmp8RNREREyjyDwcBjjz3GJ598QqtWrfjzzz/NHZJZKHETERGRMu/ChQts3rwZgJSUFKpXr27miMxDiZuIiIiUeXXr1uXAgQN0796dL774gsaNG5s7JLPQ5AQREREpF9zd3dm0aROWlkXrTgaDgYiICLy8vMwT2G2kipuIiIiUG/9O2gAWLFhAkyZN+Oabb8wQ0e2lxE1ERETKrX379jFt2jQyMzN56KGHCA4ONndIpUqJm4iIiJRbzZo145FHHgFg+vTpBAYGmjegUqYxbiIiIlJu2dvb8+mnnzJkyBAGDBhg7nBKnSpuIiIiUu4NHjwYa+ui9aht27Yxa9Ys8vLyzBSV6aniJiIiIhVOTEwM999/PzExMezevZsVK1bg7Oxs7rBumSpuIiIiUuHs2LGDhIQEAKysrKhataqZIzINJW4iIiJS4QwbNowtW7bQrl07vv/+e6ysrMwdkknoVamIiIhUSJ07d2bPnj1YWFgUaY+JicHe3r5cvjpVxU1EREQqrH8nbbm5uQwdOpQ77rijXK75psRNREREKo3Zs2eza9cuTp06xQMPPEB+fr65Q7ohStxERESk0hg7dix33HEHNjY2fP311+Vu7JvGuImIiEil4eXlxY4dO9izZw/t2rUzdzg3TBU3ERERqVTs7Ozo3r17sfZZs2axYsUKM0R0/ZS4iYiISKW3ZMkSXn/9de677z6ee+45c4dzRUrcREREpNLbuHGj8b8bNGhgxkiuTmPcREREpNJbtGgRgYGBHD58mDFjxpg7nCtS4iYiIiKVnoWFBU8++WSJfYcPH6ZZs2ZYWpr/RaX5IxAREREpo44cOUKHDh0YMmQIly5dMnc4StxERERESpKXl8eIESPIzMxk9erVvPXWW+YOSYmbiIiISEmsra159913cXFxoVWrVrz44ovmDklj3ERERESupH///hw8eJC8vDzs7e3NHY4SNxEREZGr8fT0NHcIRnpVKiIiIlJOKHETERERKSeUuImIiIiUE0rcRERERMoJJW4iIiIi5YQSNxEREZFyQombiIiISDmhxE1ERESknFDiJiIiIlJOKHETERERKSeUuImIiIiUE0rcRERERMoJJW4iIiIi5YQSNxEREZFywtrcAYjpZGdnAxAREWHmSERERORGNWjQAHt7+6seo8StAomJiQHglVdeMXMkIiIicqMWLVqEn5/fVY+xMBgMhtsUj5SypKQk9u7dyy+//MKkSZOu65z333+fp5566prHRURE8Morr/Dcc8/RoEGDWw213Lve75u53O74Sut+prrurVznZs690XOu53h9BovT5/D23M8U173Va5T257Cs/C5Uxa2ScXZ2pl+/fmzatOmaGftlVapUue5jofCH6kaOr6hu9Pt2u93u+Errfqa67q1c52bOvdFzbuR4fQb/ps/h7bmfKa57q9co7c9hefpdqMkJFVCfPn1K5Vj5W1n/vt3u+Errfqa67q1c52bOvdFzyvrPU1lV1r9v+hya7hql/Tks6z9L/6RXpXJdwsPDGTt27HW9fxcR09NnUMT8ysLnUBU3uS4uLi6MHj0aFxcXc4ciUinpMyhifmXhc6iKm4iIiEg5oYqbiIiISDmhxE1ERESknFDiJiaRk5PDG2+8wbBhwxgwYABPPPEER48eNXdYIpXK22+/zT333MOAAQN4+OGH2blzp7lDEqm0jh49Svfu3fnqq69Mel2NcROTyMzMZOnSpdx55524urqyefNm3n33XZYuXYqjo6O5wxOpFCIiInB3d8fW1pbQ0FCmTJnCkiVLqF69urlDE6lUCgoKGD9+PAaDgU6dOvHwww+b7NqquIlJODg4MHr0aNzc3LC0tKR3795YW1sTFRVl7tBEKo0GDRpga2sLgIWFBbm5uSQkJJg5KpHK59dffyUgIKBUdlfQzgmVVEZGBkuWLCEkJITQ0FBSU1N59tlnufPOO4sdm5OTw+eff8769etJTU3Fx8eHMWPG0LZt2ytePyoqitTUVOrVq1eajyFSbpXWZ/Cdd95hzZo15OTk0KFDB7y9vW/H44iUS6XxOUxOTubHH39k4cKFvP/++yaPWRW3Sio5OZnFixcTERGBr6/vVY99/fXXWbZsGX379mXixIlYWloyffp0Dh8+XOLx2dnZvPLKKzz44INUqVKlNMIXKfdK6zM4ZcoU1q1bx/z582nbti0WFhal9Qgi5V5pfA4XLVrE8OHDqVq1aqnErMStknJxcWHFihX8+OOPjBs37orHhYSEEBQUxGOPPcb48eMZMmQI7777LnXq1GHhwoXFjs/Ly+OFF16gXr16jB49uhSfQKR8K63PIICVlRVt2rRh//797N69u7QeQaTcM/Xn8Pjx44SFhTF48OBSi1mJWyVla2t7XSs/b926FSsrK4YMGWJss7OzY9CgQRw7dozY2Fhje0FBAa+88goWFhbMmjVLf+mLXEVpfAb/LT8/n3PnzpkkXpGKyNSfw+DgYKKiohg6dCj33HMPmzZt4vvvv+f11183Wcwa4yZXdeLECTw8PHBycirSHhAQAMDJkydxc3MDYO7cuSQmJjJ37lysrfWjJWIK1/sZTEtLY/fu3XTu3BlbW1u2b9/OwYMHeeyxx8wRtkiFcr2fwyFDhtC7d29j/4IFC3B3d+fBBx80WSz67SpXlZiYWOJfI5fbLs9Yi4mJ4bfffsPW1rbIXyRvvfUWLVu2vD3BilRA1/sZtLCw4LfffmP+/PkYDAbq1avH888/T6NGjW5rvCIV0fV+Du3t7bG3tzf229nZ4eDgYNLxbkrc5Kqys7OxsbEp1n55yYHs7GwA6tSpw7Zt225rbCKVwfV+Bp2cnHjvvfdua2wilcX1fg7/bdasWSaPRWPc5Krs7OzIzc0t1p6Tk2PsF5HSo8+giPmVpc+hEje5KhcXFxITE4u1X26rVavW7Q5JpFLRZ1DE/MrS51CJm1yVr68v0dHRpKenF2kPCQkx9otI6dFnUMT8ytLnUImbXFWPHj3Iz89n1apVxracnBzWrFlDkyZNjDNKRaR06DMoYn5l6XOoyQmV2E8//URaWpqx1Ltz507i4uIAGDp0KFWqVKFJkyb07NmTTz/9lKSkJOrVq8fatWuJiYlhxowZ5gxfpNzTZ1DE/Mrb59DCYDAYbusdpcwYMWIEMTExJfYtXboUd3d3oHC2zOX92dLS0vD29mbMmDG0a9fudoYrUuHoMyhifuXtc6jETURERKSc0Bg3ERERkXJCiZuIiIhIOaHETURERKScUOImIiIiUk4ocRMREREpJ5S4iYiIiJQTStxEREREygklbiIiIiLlhBI3ERERkXJCiZuIiIhIOaHETUSkEli2bBm9evXiwoULxrbff/+dbt268fvvv5sxsr/99ttv9OjRg1OnTpk7FJEyS4mbiJQ7Fy5coFu3blf9vxEjRpg7zDIjNTWVr7/+moEDBxo3zC4te/fupVu3bkydOvWax7788st069aNDRs2ADBgwADc3NxYuHBhqcYoUp5ZmzsAEZGbVa9ePfr27VtiX5UqVW5zNGXXsmXLSElJYeTIkaV+rzvuuAM3Nzf2799PbGwsbm5uJR6XlpbG9u3bqVKlCt26dQPA2tqaESNG8N5773HkyBGaN29e6vGKlDdK3ESk3KpXrx6PPvqoucMo0/Ly8vjtt99o3rw59erVK/X7WVpacuedd7J48WLWrl3Lww8/XOJxGzduJDs7m4EDB2JnZ2ds7927Nx988AErV65U4iZSAr0qFZFKoVu3bkycOJGLFy/y6quvctddd9GnTx+eeOIJDh48WOI5GRkZfPHFFzz00EP06dOHgQMHMnXqVA4fPlzs2IkTJ9KtWzeys7NZtGgRDzzwAD179uSLL74wHrN161bGjh1Lnz59uPvuu3nrrbdITU1lxIgRRV7tzpkzh27duhESElJiXJ9//jndunVj48aN13zuvXv3kpiYSI8ePa557GVxcXE8/PDD9OnThy1bthjbL126xPvvv8/IkSPp3bs3d911F8899xynT58ucv7AgQOxsLDg999/x2AwlHiPNWvWADBo0KAi7c7OzrRq1YotW7aQkZFx3TGLVBZK3ESk0khLS2PChAmcPXuWfv360a1bN8LDw5k2bVqx5CMlJYVx48axePFiqlatyt133023bt04fvw4kyZNYvv27SXe4/nnn2ft2rW0atWKYcOGGceUrV69mueff57o6Gj69+/PgAEDOHbsGFOmTCEvL6/INYYMGWI859/y8/NZs2YN1atXN75ivJr9+/cD0LRp02t/g4CzZ88yfvx44uLiePvtt40J37lz5xgzZgw//vgjdevW5b777qNDhw7s3buXcePGFUky69SpQ5s2bTh//nyJSfHp06cJCwujUaNGNG7cuFh/06ZNycnJ4ejRo9cVs0hlolelIlJunTt3rkhF65+aNm1K+/bti7SdPHmSe+65h8mTJ2NpWfh3a+vWrXnrrbf4+eefmTZtmvHYd999lzNnzjB9+nQGDx5sbL906RJjx47l7bffpl27dkVe8wEkJiby5ZdfUq1aNWNbamoqCxYswMHBgU8//RRPT08Axo4dy7Rp0wgPD6dOnTrG41u2bImXlxdBQUE8+eSTODg4GPv27t1LfHw8w4cPx9bW9prfoyNHjmBpaYmvr+81jz127BgzZszA2tqa999/v8g5r776KhcvXmTu3Lm0a9fO2P7QQw8xduxY3nrrLRYvXmxsHzRoEPv27WPNmjW0bt26yH2uVG27zM/PD4CjR48WuZeIqOImIuXYuXPnWLx4cYn/98cffxQ73sHBgSeeeMKYtEHhTEYrKyvCwsKMbUlJSWzevJnWrVsXSdoAatSowciRI0lKSjJWs/7pkUceKZK0AezYsYPMzEwGDhxoTNqgcDD+mDFjSny2IUOGkJGRQVBQUJH23377DYC77rrrSt+WIuLj46lSpco1k7zdu3fz9NNPU7VqVT766KMiSdvx48c5evQo/fv3L5ZIeXp6MnjwYE6fPl2katm1a1eqV6/O1q1bSU9PN7bn5eWxfv16bG1trzixpGbNmkDhK1sRKUoVNxEpt9q1a8fcuXOv+3gPDw8cHR2LtFlbW1OzZk3S0tKMbWFhYeTn55Obm1tiRS86OhqAiIgIOnXqVKQvICCg2PGX1yVr0aJFsb4mTZpgZWVVrL1///588skn/Pbbb8bk8eLFi+zatYtmzZrh5eV1jactlJKSgqur61WP2bx5M3/++Sc+Pj68/fbb1KhRo0j/5degly5dKvH7ERkZafz/3t7eAMbEbPny5WzcuJG7774bgJ07d5KUlESfPn2oWrVqifFcbk9OTr6uZxSpTJS4iUil4eTkVGK7lZUVBQUFxq9TUlKAwteMR44cueL1srKyirVdrhb90+WK078TIiichVm9evVi7VWrVqVnz56sXbuW06dP4+3tze+//05+fv51V9sA7OzsyMnJueoxx44dIz8/nxYtWpQY4+Xvx+7du9m9e/cVr5OZmVnk60GDBrF8+XLWrFljTNyu9ZoUMMZrb29/1bhFKiMlbiIi/3I5wbv//vuZMGHCDZ1rYWFxxetdunSpWF9BQQHJycklVsXuvvtu1q5dy6+//sqkSZNYvXo1Tk5O9OzZ87rjqV69OvHx8Vc95rHHHmPHjh0sX74cKyurYs98Of5JkyYxdOjQ6763j48P/v7+hIaGcubMGapWrcrevXtxd3cvNu7tny4nis7Oztd9L5HKQmPcRET+xd/fHwsLC44dO2aS6/n4+ACUWL0LDQ0lPz+/xPOaNm2Kj48PGzZsYO/evURHR9O3b98bqkR5e3uTk5NDbGzsFY+xtbXl1VdfpWPHjixdupQPPvigSP/l17838/24XFlbvXo169atIz8/37hcyJVcfvV6+bWriPxNiZuIyL+4uLjQs2dPjh49yg8//FDiWmQhISElviotSZcuXXBwcGD16tWcO3fO2J6Xl8fnn39+1XOHDBlCSkoKb7zxBkCxyRLXEhgYaIz3amxtbXnllVfo1KkTy5Yt4/333zf2NWnShCZNmhAUFFRssgQUVg2Dg4NLvG6fPn2wt7dn/fr1rFmzBktLSwYMGHDVWEJDQ4vELiJ/06tSESm3rrYcCMCDDz5YbLmO6zVlyhSioqJYuHAh69ato2nTplSpUoX4+HjCwsKIjo5mxYoV11X9qlq1Kk8++SRvv/02Y8eOpVevXjg5ObFnzx5sbW2pVavWFStQ/fr14+OPPyYhIQE/P78S1z27mi5duvDhhx+yb9++a75itbGxYc6cObzwwgv8+OOPGAwGJk6cCMALL7zA5MmTeemll1i+fDmNGjXCzs6OuLg4jh49SnJycokLAjs5OdG9e3fWrVtHUlIS7du3v+I2WAAGg4H9+/fToEGDIjNwRaSQEjcRKbcuLwdyJcOHD7/pxK1atWp89NFH/Pzzz2zatImNGzdSUFBAzZo18fX15eGHHy5xUsGV3HXXXVStWpVvvvmGtWvX4uTkROfOnXniiScYPnz4FbejcnJyomvXrqxfv/6Gq20A7u7utG3bli1btjBp0qRrLgtyOXl78cUXWb58OQaDgUmTJlG3bl0+//xzli5dyvbt2/n999+xtLTExcWFli1bXnVnhkGDBrFu3TqgcFeFqzl06BCxsbE89dRTN/ysIpWBheFK+5GIiEipi46OZtSoUfTs2ZOXXnqpxGMefvhhYmJi+Pnnn684M/Zq9u/fz9NPP81zzz1Hv379bjXkUjVnzhz++OMPfvjhhysuFyJSmWmMm4jIbZCamlpsWY7s7GzjRICuXbuWeN6ePXs4c+YMffr0uamkDaBNmza0b9+er7/+usiyJ2VNVFQUmzZt4qGHHlLSJnIFelUqInIbBAcH8+abb9K2bVtq165NcnIyBw4cICYmhtatW9OrV68ix//yyy/ExcXx22+/YWtry4MPPnhL9584cSIbNmwgPj7+qmPMzCkuLo7Ro0dz7733mjsUkTJLr0pFRG6DqKgoPv/8c44ePUpSUhIA9erVo1evXjzwwAPFxuKNGDGC+Ph4PD09eeKJJ4rt0CAilZMSNxEREZFyQmPcRERERMoJJW4iIiIi5YQSNxEREZFyQombiIiISDmhxE1ERESknFDiJiIiIlJOKHETERERKSeUuImIiIiUE/8PK2sTT3Ce/54AAAAASUVORK5CYII=",
"text/plain": [
"
"
]
@@ -1739,9 +1678,9 @@
],
"metadata": {
"kernelspec": {
- "display_name": "Python 3 (ipykernel)",
+ "display_name": "Python [conda env:COSIPY]",
"language": "python",
- "name": "python3"
+ "name": "conda-env-COSIPY-py"
},
"language_info": {
"codemirror_mode": {
@@ -1753,7 +1692,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.9.15"
+ "version": "3.10.15"
}
},
"nbformat": 4,
diff --git a/docs/tutorials/spectral_fits/continuum_fit/grb/SpectralFit_GRB.ipynb b/docs/tutorials/spectral_fits/continuum_fit/grb/SpectralFit_GRB.ipynb
index 8f0a2579..23166ded 100644
--- a/docs/tutorials/spectral_fits/continuum_fit/grb/SpectralFit_GRB.ipynb
+++ b/docs/tutorials/spectral_fits/continuum_fit/grb/SpectralFit_GRB.ipynb
@@ -16,7 +16,7 @@
"metadata": {},
"source": [
"**To run this, you need the following files, which can be downloaded using the first few cells of this notebook:**\n",
- "- orientation file (20280301_3_month.ori) \n",
+ "- orientation file (20280301_3_month_with_orbital_info.ori) \n",
"- binned data (grb_bkg_binned_data.hdf5, grb_binned_data.hdf5, & bkg_binned_data_1s_local.hdf5) \n",
"- detector response (SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5.zip) \n",
"\n",
@@ -72,12 +72,12 @@
{
"data": {
"text/html": [
- "
12:04:24 WARNING The naima package is not available. Models that depend on it will not be functions.py:48\n",
+ "
08:46:50 WARNING The naima package is not available. Models that depend on it will not be functions.py:48\n",
"available \n",
"
\n"
],
"text/plain": [
- "\u001b[38;5;46m12:04:24\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The naima package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=258198;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=478015;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/functions/functions_1D/functions.py#48\u001b\\\u001b[2m48\u001b[0m\u001b]8;;\u001b\\\n",
+ "\u001b[38;5;46m08:46:50\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The naima package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=713174;file:///discover/nobackup/ckarwin/Software/COSIPY/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=413436;file:///discover/nobackup/ckarwin/Software/COSIPY/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py#48\u001b\\\u001b[2m48\u001b[0m\u001b]8;;\u001b\\\n",
"\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mavailable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n"
]
},
@@ -87,12 +87,12 @@
{
"data": {
"text/html": [
- "
WARNING The GSL library or the pygsl wrapper cannot be loaded. Models that depend on it functions.py:69\n",
+ "
WARNING The GSL library or the pygsl wrapper cannot be loaded. Models that depend on it functions.py:69\n",
"will not be available. \n",
"
\n"
],
"text/plain": [
- "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The GSL library or the pygsl wrapper cannot be loaded. Models that depend on it \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=322055;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=156430;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/functions/functions_1D/functions.py#69\u001b\\\u001b[2m69\u001b[0m\u001b]8;;\u001b\\\n",
+ "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The GSL library or the pygsl wrapper cannot be loaded. Models that depend on it \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=202856;file:///discover/nobackup/ckarwin/Software/COSIPY/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=855975;file:///discover/nobackup/ckarwin/Software/COSIPY/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py#69\u001b\\\u001b[2m69\u001b[0m\u001b]8;;\u001b\\\n",
"\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mwill not be available. \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n"
]
},
@@ -102,11 +102,13 @@
{
"data": {
"text/html": [
- "
12:04:25 WARNING We have set the min_value of K to 1e-99 because there was a postive transform parameter.py:704\n",
+ "
08:46:53 WARNING The ebltable package is not available. Models that depend on it will not be absorption.py:33\n",
+ "available \n",
"
\n"
],
"text/plain": [
- "\u001b[38;5;46m12:04:25\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=427696;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=920737;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n"
+ "\u001b[38;5;46m08:46:53\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The ebltable package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=395347;file:///discover/nobackup/ckarwin/Software/COSIPY/lib/python3.10/site-packages/astromodels/functions/functions_1D/absorption.py\u001b\\\u001b[2mabsorption.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=263203;file:///discover/nobackup/ckarwin/Software/COSIPY/lib/python3.10/site-packages/astromodels/functions/functions_1D/absorption.py#33\u001b\\\u001b[2m33\u001b[0m\u001b]8;;\u001b\\\n",
+ "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mavailable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n"
]
},
"metadata": {},
@@ -115,11 +117,11 @@
{
"data": {
"text/html": [
- "
WARNING We have set the min_value of K to 1e-99 because there was a postive transform parameter.py:704\n",
+ "
\n"
],
"text/plain": [
- "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=187003;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=664651;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n"
+ "\u001b[38;5;46m08:46:54\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m Starting 3ML! \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=638303;file:///discover/nobackup/ckarwin/Software/COSIPY/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=443065;file:///discover/nobackup/ckarwin/Software/COSIPY/lib/python3.10/site-packages/threeML/__init__.py#39\u001b\\\u001b[2m39\u001b[0m\u001b]8;;\u001b\\\n"
]
},
"metadata": {},
@@ -128,11 +130,11 @@
{
"data": {
"text/html": [
- "
WARNING We have set the min_value of K to 1e-99 because there was a postive transform parameter.py:704\n",
+ "
WARNING WARNINGs here are NOT errors __init__.py:40\n",
"
\n"
],
"text/plain": [
- "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=970697;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=263503;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n"
+ "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m WARNINGs here are \u001b[0m\u001b[1;31mNOT\u001b[0m\u001b[1;38;5;251m errors \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=185403;file:///discover/nobackup/ckarwin/Software/COSIPY/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=745790;file:///discover/nobackup/ckarwin/Software/COSIPY/lib/python3.10/site-packages/threeML/__init__.py#40\u001b\\\u001b[2m40\u001b[0m\u001b]8;;\u001b\\\n"
]
},
"metadata": {},
@@ -141,11 +143,11 @@
{
"data": {
"text/html": [
- "
WARNING We have set the min_value of K to 1e-99 because there was a postive transform parameter.py:704\n",
+ "
WARNING but are inform you about optional packages that can be installed __init__.py:41\n",
"
\n"
],
"text/plain": [
- "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=507764;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=140382;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n"
+ "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m but are inform you about optional packages that can be installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=437664;file:///discover/nobackup/ckarwin/Software/COSIPY/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=479019;file:///discover/nobackup/ckarwin/Software/COSIPY/lib/python3.10/site-packages/threeML/__init__.py#41\u001b\\\u001b[2m41\u001b[0m\u001b]8;;\u001b\\\n"
]
},
"metadata": {},
@@ -154,11 +156,11 @@
{
"data": {
"text/html": [
- "
WARNING We have set the min_value of F to 1e-99 because there was a postive transform parameter.py:704\n",
+ "
WARNING to disable these messages, turn off start_warning in your config file__init__.py:44\n",
"
\n"
],
"text/plain": [
- "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of F to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=410897;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=483212;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n"
+ "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m \u001b[0m\u001b[1;31m to disable these messages, turn off start_warning in your config file\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=949768;file:///discover/nobackup/ckarwin/Software/COSIPY/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=157059;file:///discover/nobackup/ckarwin/Software/COSIPY/lib/python3.10/site-packages/threeML/__init__.py#44\u001b\\\u001b[2m44\u001b[0m\u001b]8;;\u001b\\\n"
]
},
"metadata": {},
@@ -167,11 +169,11 @@
{
"data": {
"text/html": [
- "
WARNING We have set the min_value of K to 1e-99 because there was a postive transform parameter.py:704\n",
+ "
WARNING no display variable set. using backend for graphics without display (agg) __init__.py:50\n",
"
\n"
],
"text/plain": [
- "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=964303;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=470707;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n"
+ "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m no display variable set. using backend for graphics without display \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;38;5;251magg\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=566653;file:///discover/nobackup/ckarwin/Software/COSIPY/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=944073;file:///discover/nobackup/ckarwin/Software/COSIPY/lib/python3.10/site-packages/threeML/__init__.py#50\u001b\\\u001b[2m50\u001b[0m\u001b]8;;\u001b\\\n"
]
},
"metadata": {},
@@ -180,11 +182,11 @@
{
"data": {
"text/html": [
- "
\n"
],
"text/plain": [
- "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m but are inform you about optional packages that can be installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=547569;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=324296;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#37\u001b\\\u001b[2m37\u001b[0m\u001b]8;;\u001b\\\n"
+ "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m PyGMO is not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=709932;file:///discover/nobackup/ckarwin/Software/COSIPY/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=813304;file:///discover/nobackup/ckarwin/Software/COSIPY/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1369\u001b\\\u001b[2m1369\u001b[0m\u001b]8;;\u001b\\\n"
]
},
"metadata": {},
@@ -219,64 +221,12 @@
{
"data": {
"text/html": [
- "
WARNING to disable these messages, turn off start_warning in your config file__init__.py:40\n",
- "
\n"
- ],
- "text/plain": [
- "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m \u001b[0m\u001b[1;31m to disable these messages, turn off start_warning in your config file\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=559824;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=851427;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#40\u001b\\\u001b[2m40\u001b[0m\u001b]8;;\u001b\\\n"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- "
WARNING The cthreeML package is not installed. You will not be able to use plugins which __init__.py:94\n",
+ "
08:46:56 WARNING The cthreeML package is not installed. You will not be able to use plugins which __init__.py:94\n",
"require the C/C++ interface (currently HAWC) \n",
"
\n"
],
"text/plain": [
- "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The cthreeML package is not installed. You will not be able to use plugins which \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=844985;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=163953;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#94\u001b\\\u001b[2m94\u001b[0m\u001b]8;;\u001b\\\n",
+ "\u001b[38;5;46m08:46:56\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The cthreeML package is not installed. You will not be able to use plugins which \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=590709;file:///discover/nobackup/ckarwin/Software/COSIPY/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=892582;file:///discover/nobackup/ckarwin/Software/COSIPY/lib/python3.10/site-packages/threeML/__init__.py#94\u001b\\\u001b[2m94\u001b[0m\u001b]8;;\u001b\\\n",
"\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mrequire the C/C++ interface \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;38;5;251mcurrently HAWC\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n"
]
},
@@ -286,12 +236,12 @@
{
"data": {
"text/html": [
- "
WARNING Could not import plugin HAWCLike.py. Do you have the relative instrument __init__.py:144\n",
+ "
WARNING Could not import plugin FermiLATLike.py. Do you have the relative instrument __init__.py:144\n",
"software installed and configured? \n",
"
\n"
],
"text/plain": [
- "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin HAWCLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=871918;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=23540;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n",
+ "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin FermiLATLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=60242;file:///discover/nobackup/ckarwin/Software/COSIPY/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=580067;file:///discover/nobackup/ckarwin/Software/COSIPY/lib/python3.10/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n",
"\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251msoftware installed and configured? \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n"
]
},
@@ -301,12 +251,12 @@
{
"data": {
"text/html": [
- "
WARNING Could not import plugin FermiLATLike.py. Do you have the relative instrument __init__.py:144\n",
+ "
WARNING Could not import plugin HAWCLike.py. Do you have the relative instrument __init__.py:144\n",
"software installed and configured? \n",
"
\n"
],
"text/plain": [
- "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin FermiLATLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=354714;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=655302;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n",
+ "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin HAWCLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=639772;file:///discover/nobackup/ckarwin/Software/COSIPY/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=980755;file:///discover/nobackup/ckarwin/Software/COSIPY/lib/python3.10/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n",
"\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251msoftware installed and configured? \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n"
]
},
@@ -316,11 +266,11 @@
{
"data": {
"text/html": [
- "
\n"
],
"text/plain": [
- "\u001b[38;5;46m12:04:56\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m set the minimizer to minuit \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=963889;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=362192;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1042\u001b\\\u001b[2m1042\u001b[0m\u001b]8;;\u001b\\\n"
+ "\u001b[38;5;46m08:49:04\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m set the minimizer to minuit \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=947353;file:///discover/nobackup/ckarwin/Software/COSIPY/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=786599;file:///discover/nobackup/ckarwin/Software/COSIPY/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1045\u001b\\\u001b[2m1045\u001b[0m\u001b]8;;\u001b\\\n"
]
},
"metadata": {},
@@ -768,12 +706,12 @@
{
"data": {
"text/html": [
- "
12:05:22 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:128\n",
+ "
08:49:30 WARNING get_number_of_data_points not implemented, values for statistical plugin_prototype.py:130\n",
"measurements such as AIC or BIC are unreliable \n",
"
\n"
],
"text/plain": [
- "\u001b[38;5;46m12:05:22\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=395184;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=957324;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n",
+ "\u001b[38;5;46m08:49:30\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=789908;file:///discover/nobackup/ckarwin/Software/COSIPY/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=222980;file:///discover/nobackup/ckarwin/Software/COSIPY/lib/python3.10/site-packages/threeML/plugin_prototype.py#130\u001b\\\u001b[2m130\u001b[0m\u001b]8;;\u001b\\\n",
"\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n"
]
},
@@ -829,7 +767,7 @@
"