-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsemantic_similarity.py
198 lines (156 loc) · 4.96 KB
/
semantic_similarity.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
'''
#from sentence_transformers import SentenceTransformer
from scipy.spatial import distance
import networkx as nx
import json
import numpy
def semantic_similarity(term:str, x:float):
term_list = term.split(':')
ontology = term_list[0].lower()
if ontology == 'uberon':
ontology = 'hp'
elif ontology == 'maxo':
ontology = 'hp'
elif ontology == 'cl':
ontology = 'hp'
elif ontology == 'go':
ontology = 'hp'
path = ontology.replace('/','')
complete_path = 'beacon/ontologies/' + path + '.json'
save_path = 'beacon/sentence_embeddings/' + path + '.txt'
f = open(complete_path)
data = json.load(f)
sentence_embeddings = numpy.loadtxt(save_path)
i = 0
for id in data:
if term in id['id']:
y = i
break
else:
i +=1
#print(m)
if y != 1:
term_to_change = data[y]
term_1 = data[1]
data[1] = term_to_change
data[y] = term_1
#print(data[m])
#print(data[1])
if y != 1:
sentence_embeddings_to_change = sentence_embeddings[y]
sentence_embeddings_1 = sentence_embeddings[1]
sentence_embeddings[1] = sentence_embeddings_to_change
sentence_embeddings[y] = sentence_embeddings_1
#print(sentence_embeddings[1])
#print(sentence_embeddings[m])
m = 1
#print(sentence_embeddings[0])
#print(sentence_embeddings[1])
#print(sentence_embeddings[2])
g = nx.DiGraph()
list = []
i=0
while i < len(sentence_embeddings):
length = (1 - distance.cosine(sentence_embeddings[i], sentence_embeddings[m]))
list.append(length)
i += 1
#print(i)
#print(list)
#print(list[1])
edges = []
tuple_list = []
n = 0
while n < len(sentence_embeddings):
if n != m:
tuple_list.append(m)
tuple_list.append(n)
tuple_list.append({'length': list[n]})
n+=1
#print(n)
edges.append(tuple(tuple_list))
tuple_list = []
n = 0
edges_2=[]
neighbours =[]
while n < len(sentence_embeddings):
if n == m:
n +=1
elif n+1 == m:
edges_2.append(edges[n])
edges_2.append(edges[n+2])
edges_2.append(edges[n+3])
g.add_edges_from(edges_2)
lengths = nx.single_source_dijkstra_path_length(g, source=1, weight='length', cutoff=x)
dict(lengths).keys()
for k in dict(lengths).keys():
if k != 1:
neighbours.append(k)
edges_2 = []
n += 4
g = nx.DiGraph()
elif n+1 >= len(sentence_embeddings):
edges_2.append(edges[n])
edges_2.append(edges[n-1])
g.add_edges_from(edges_2)
lengths = nx.single_source_dijkstra_path_length(g, source=1, weight='length', cutoff=x)
for k in dict(lengths).keys():
if k != 1:
neighbours.append(k)
edges_2 = []
n += 3
g = nx.DiGraph()
elif n+2 >= len(sentence_embeddings):
edges_2.append(edges[n])
edges_2.append(edges[n+1])
g.add_edges_from(edges_2)
lengths = nx.single_source_dijkstra_path_length(g, source=1, weight='length', cutoff=x)
for k in dict(lengths).keys():
if k != 1:
neighbours.append(k)
edges_2 = []
n += 3
g = nx.DiGraph()
elif n+2 == m:
edges_2.append(edges[n])
edges_2.append(edges[n+1])
edges_2.append(edges[n+3])
g.add_edges_from(edges_2)
lengths = nx.single_source_dijkstra_path_length(g, source=1, weight='length', cutoff=x)
for k in dict(lengths).keys():
if k != 1:
neighbours.append(k)
edges_2 = []
n += 4
g = nx.DiGraph()
else:
edges_2.append(edges[n])
edges_2.append(edges[n+1])
edges_2.append(edges[n+2])
g.add_edges_from(edges_2)
lengths = nx.single_source_dijkstra_path_length(g, source=1, weight='length', cutoff=x)
for k in dict(lengths).keys():
if k != 1:
neighbours.append(k)
edges_2 = []
n += 3
g = nx.DiGraph()
neighbours = [*set(neighbours)]
n = 0
final_neighbours = []
while n < len(sentence_embeddings):
if n in neighbours:
n+=1
else:
final_neighbours.append(n)
n+=1
neighbours_list = []
for a in final_neighbours:
print(data[a])
neighbours_list.append(data[a]['id'])
if x != 1:
del neighbours_list[1]
#print(neighbours_list)
return neighbours_list
list_neighbours = semantic_similarity('UBERON:0000178', 0.9)
print(list_neighbours)
'''