-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsub-01.html
683 lines (618 loc) · 38.2 KB
/
sub-01.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="Docutils 0.12: http://docutils.sourceforge.net/" />
<title></title>
<script src="https://code.jquery.com/jquery-3.3.1.slim.min.js" integrity="sha384-q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo" crossorigin="anonymous"></script>
<script src="https://stackpath.bootstrapcdn.com/bootstrap/4.1.3/js/bootstrap.min.js" integrity="sha384-ChfqqxuZUCnJSK3+MXmPNIyE6ZbWh2IMqE241rYiqJxyMiZ6OW/JmZQ5stwEULTy" crossorigin="anonymous"></script>
<link rel="stylesheet" href="https://stackpath.bootstrapcdn.com/bootstrap/4.1.3/css/bootstrap.min.css" integrity="sha384-MCw98/SFnGE8fJT3GXwEOngsV7Zt27NXFoaoApmYm81iuXoPkFOJwJ8ERdknLPMO" crossorigin="anonymous">
<style type="text/css">
.sub-report-title {}
.run-title {}
h1 { padding-top: 35px; }
h2 { padding-top: 20px; }
h3 { padding-top: 15px; }
.elem-desc {}
.elem-caption {
margin-top: 15px
margin-bottom: 0;
}
.elem-filename {}
div.elem-image {
width: 100%;
page-break-before:always;
}
.elem-image object.svg-reportlet {
width: 100%;
padding-bottom: 5px;
}
body {
padding: 65px 10px 10px;
}
.boiler-html {
font-family: "Bitstream Charter", "Georgia", Times;
margin: 20px 25px;
padding: 10px;
background-color: #F8F9FA;
}
div#boilerplate pre {
margin: 20px 25px;
padding: 10px;
background-color: #F8F9FA;
}
#errors div, #errors p {
padding-left: 1em;
}
</style>
</head>
<body>
<nav class="navbar fixed-top navbar-expand-lg navbar-light bg-light">
<div class="collapse navbar-collapse">
<ul class="navbar-nav">
<li class="nav-item"><a class="nav-link" href="#Summary">Summary</a></li>
<li class="nav-item"><a class="nav-link" href="#Anatomical">Anatomical</a></li>
<li class="nav-item"><a class="nav-link" href="#About">About</a></li>
<li class="nav-item"><a class="nav-link" href="#boilerplate">Methods</a></li>
<li class="nav-item"><a class="nav-link" href="#errors">Errors</a></li>
</ul>
</div>
</nav>
<noscript>
<h1 class="text-danger"> The navigation menu uses Javascript. Without it this report might not work as expected </h1>
</noscript>
<div id="Summary">
<h1 class="sub-report-title">Summary</h1>
<div id="datatype-figures_desc-summary_suffix-T1w">
<ul class="elem-desc">
<li>Subject ID: 01</li>
<li>Structural images: 2 T1-weighted (+ 2 T2-weighted)</li>
<li>Functional series: 0</li>
<li>Standard output spaces: MNI152NLin2009cAsym, MNI152NLin6Asym, fsaverage</li>
<li>Non-standard output spaces: </li>
<li>FreeSurfer reconstruction: Run by fMRIPrep</li>
</ul>
</div>
</div>
<div id="Anatomical">
<h1 class="sub-report-title">Anatomical</h1>
<div id="datatype-figures_desc-conform_extension-['.html']_suffix-T1w">
<h3 class="elem-title">Anatomical Conformation</h3>
<ul class="elem-desc">
<li>Input T1w images: 2</li>
<li>Output orientation: RAS</li>
<li>Output dimensions: 208x300x320</li>
<li>Output voxel size: 0.8mm x 0.8mm x 0.8mm</li>
<li>Discarded images: 0</li>
</ul>
</div>
<div id="datatype-figures_suffix-dseg">
<h3 class="run-title">Brain mask and brain tissue segmentation of the T1w</h3><p class="elem-caption">This panel shows the template T1-weighted image (if several T1w images were found), with contours delineating the detected brain mask and brain tissue segmentations.</p> <img class="svg-reportlet" src="./sub-01/figures/sub-01_dseg.svg" style="width: 100%" />
</div>
<div class="elem-filename">
Get figure file: <a href="./sub-01/figures/sub-01_dseg.svg" target="_blank">sub-01/figures/sub-01_dseg.svg</a>
</div>
</div>
<div id="datatype-figures_regex_search-True_space-.*_suffix-T1w">
<h3 class="run-title">Spatial normalization of the anatomical T1w reference</h3><p class="elem-desc">Results of nonlinear alignment of the T1w reference one or more template space(s). Hover on the panels with the mouse pointer to transition between both spaces.</p><p class="elem-caption">Spatial normalization of the T1w image to the <code>MNI152NLin6Asym</code> template.</p> <object class="svg-reportlet" type="image/svg+xml" data="./sub-01/figures/sub-01_space-MNI152NLin6Asym_T1w.svg">
Problem loading figure sub-01/figures/sub-01_space-MNI152NLin6Asym_T1w.svg. If the link below works, please try reloading the report in your browser.</object>
</div>
<div class="elem-filename">
Get figure file: <a href="./sub-01/figures/sub-01_space-MNI152NLin6Asym_T1w.svg" target="_blank">sub-01/figures/sub-01_space-MNI152NLin6Asym_T1w.svg</a>
</div>
<p class="elem-caption">Spatial normalization of the T1w image to the <code>MNI152NLin2009cAsym</code> template.</p> <object class="svg-reportlet" type="image/svg+xml" data="./sub-01/figures/sub-01_space-MNI152NLin2009cAsym_T1w.svg">
Problem loading figure sub-01/figures/sub-01_space-MNI152NLin2009cAsym_T1w.svg. If the link below works, please try reloading the report in your browser.</object>
</div>
<div class="elem-filename">
Get figure file: <a href="./sub-01/figures/sub-01_space-MNI152NLin2009cAsym_T1w.svg" target="_blank">sub-01/figures/sub-01_space-MNI152NLin2009cAsym_T1w.svg</a>
</div>
</div>
<div id="datatype-figures_desc-reconall_suffix-T1w">
<h3 class="run-title">Surface reconstruction</h3><p class="elem-caption">Surfaces (white and pial) reconstructed with FreeSurfer (<code>recon-all</code>) overlaid on the participant's T1w template.</p> <img class="svg-reportlet" src="./sub-01/figures/sub-01_desc-reconall_T1w.svg" style="width: 100%" />
</div>
<div class="elem-filename">
Get figure file: <a href="./sub-01/figures/sub-01_desc-reconall_T1w.svg" target="_blank">sub-01/figures/sub-01_desc-reconall_T1w.svg</a>
</div>
</div>
</div>
<div id="About">
<h1 class="sub-report-title">About</h1>
<div id="datatype-figures_desc-about_suffix-T1w">
<ul>
<li>fMRIPrep version: 20.2.1</li>
<li>fMRIPrep command: <code>/usr/local/miniconda/bin/fmriprep -w /work --participant-label 01 --anat-only --bids-database-dir /lustre03/project/6003287/datasets/cneuromod_processed/smriprep/sourcedata/raw/.pybids_cache --bids-filter-file /lustre03/project/6003287/datasets/cneuromod_processed/smriprep/sourcedata/raw/code/bids_filters.json --output-layout bids --output-spaces MNI152NLin2009cAsym MNI152NLin6Asym --cifti-output 91k --skip_bids_validation --write-graph --omp-nthreads 8 --nprocs 16 --mem_mb 65536 /lustre03/project/6003287/datasets/cneuromod_processed/smriprep/sourcedata/raw /lustre03/project/6003287/datasets/cneuromod_processed/smriprep participant</code></li>
<li>Date preprocessed: 2021-05-22 01:25:42 +0000</li>
</ul>
</div>
</div>
</div>
<div id="boilerplate">
<h1 class="sub-report-title">Methods</h1>
<p>We kindly ask to report results preprocessed with this tool using the following
boilerplate.</p>
<ul class="nav nav-tabs" id="myTab" role="tablist">
<li class="nav-item">
<a class="nav-link active" id="HTML-tab" data-toggle="tab" href="#HTML" role="tab" aria-controls="HTML" aria-selected="true">HTML</a>
</li>
<li class="nav-item">
<a class="nav-link " id="Markdown-tab" data-toggle="tab" href="#Markdown" role="tab" aria-controls="Markdown" aria-selected="false">Markdown</a>
</li>
<li class="nav-item">
<a class="nav-link " id="LaTeX-tab" data-toggle="tab" href="#LaTeX" role="tab" aria-controls="LaTeX" aria-selected="false">LaTeX</a>
</li>
</ul>
<div class="tab-content" id="myTabContent">
<div class="tab-pane fade active show" id="HTML" role="tabpanel" aria-labelledby="HTML-tab"><div class="boiler-html"><p>Results included in this manuscript come from preprocessing performed using <em>fMRIPrep</em> 20.2.1 (<span class="citation" data-cites="fmriprep1">Esteban, Markiewicz, et al. (2018)</span>; <span class="citation" data-cites="fmriprep2">Esteban, Blair, et al. (2018)</span>; RRID:SCR_016216), which is based on <em>Nipype</em> 1.5.1 (<span class="citation" data-cites="nipype1">Gorgolewski et al. (2011)</span>; <span class="citation" data-cites="nipype2">Gorgolewski et al. (2018)</span>; RRID:SCR_002502).</p>
<dl>
<dt>Anatomical data preprocessing</dt>
<dd><p>A total of 2 T1-weighted (T1w) images were found within the input BIDS dataset. All of them were corrected for intensity non-uniformity (INU) with <code>N4BiasFieldCorrection</code> <span class="citation" data-cites="n4">(Tustison et al. 2010)</span>, distributed with ANTs 2.3.3 <span class="citation" data-cites="ants">(Avants et al. 2008, RRID:SCR_004757)</span>. The T1w-reference was then skull-stripped with a <em>Nipype</em> implementation of the <code>antsBrainExtraction.sh</code> workflow (from ANTs), using OASIS30ANTs as target template. Brain tissue segmentation of cerebrospinal fluid (CSF), white-matter (WM) and gray-matter (GM) was performed on the brain-extracted T1w using <code>fast</code> <span class="citation" data-cites="fsl_fast">(FSL 5.0.9, RRID:SCR_002823, Zhang, Brady, and Smith 2001)</span>. A T1w-reference map was computed after registration of 2 T1w images (after INU-correction) using <code>mri_robust_template</code> <span class="citation" data-cites="fs_template">(FreeSurfer 6.0.1, Reuter, Rosas, and Fischl 2010)</span>. Brain surfaces were reconstructed using <code>recon-all</code> <span class="citation" data-cites="fs_reconall">(FreeSurfer 6.0.1, RRID:SCR_001847, Dale, Fischl, and Sereno 1999)</span>, and the brain mask estimated previously was refined with a custom variation of the method to reconcile ANTs-derived and FreeSurfer-derived segmentations of the cortical gray-matter of Mindboggle <span class="citation" data-cites="mindboggle">(RRID:SCR_002438, Klein et al. 2017)</span>. Volume-based spatial normalization to two standard spaces (MNI152NLin2009cAsym, MNI152NLin6Asym) was performed through nonlinear registration with <code>antsRegistration</code> (ANTs 2.3.3), using brain-extracted versions of both T1w reference and the T1w template. The following templates were selected for spatial normalization: <em>ICBM 152 Nonlinear Asymmetrical template version 2009c</em> [<span class="citation" data-cites="mni152nlin2009casym">Fonov et al. (2009)</span>, RRID:SCR_008796; TemplateFlow ID: MNI152NLin2009cAsym], <em>FSL’s MNI ICBM 152 non-linear 6th Generation Asymmetric Average Brain Stereotaxic Registration Model</em> [<span class="citation" data-cites="mni152nlin6asym">Evans et al. (2012)</span>, RRID:SCR_002823; TemplateFlow ID: MNI152NLin6Asym],</p>
</dd>
</dl>
<p>Many internal operations of <em>fMRIPrep</em> use <em>Nilearn</em> 0.6.2 <span class="citation" data-cites="nilearn">(Abraham et al. 2014, RRID:SCR_001362)</span>, mostly within the functional processing workflow. For more details of the pipeline, see <a href="https://fmriprep.readthedocs.io/en/latest/workflows.html" title="FMRIPrep's documentation">the section corresponding to workflows in <em>fMRIPrep</em>’s documentation</a>.</p>
<h3 id="copyright-waiver">Copyright Waiver</h3>
<p>The above boilerplate text was automatically generated by fMRIPrep with the express intention that users should copy and paste this text into their manuscripts <em>unchanged</em>. It is released under the <a href="https://creativecommons.org/publicdomain/zero/1.0/">CC0</a> license.</p>
<h3 id="references" class="unnumbered">References</h3>
<div id="refs" class="references">
<div id="ref-nilearn">
<p>Abraham, Alexandre, Fabian Pedregosa, Michael Eickenberg, Philippe Gervais, Andreas Mueller, Jean Kossaifi, Alexandre Gramfort, Bertrand Thirion, and Gael Varoquaux. 2014. “Machine Learning for Neuroimaging with Scikit-Learn.” <em>Frontiers in Neuroinformatics</em> 8. <a href="https://doi.org/10.3389/fninf.2014.00014" class="uri">https://doi.org/10.3389/fninf.2014.00014</a>.</p>
</div>
<div id="ref-ants">
<p>Avants, B.B., C.L. Epstein, M. Grossman, and J.C. Gee. 2008. “Symmetric Diffeomorphic Image Registration with Cross-Correlation: Evaluating Automated Labeling of Elderly and Neurodegenerative Brain.” <em>Medical Image Analysis</em> 12 (1): 26–41. <a href="https://doi.org/10.1016/j.media.2007.06.004" class="uri">https://doi.org/10.1016/j.media.2007.06.004</a>.</p>
</div>
<div id="ref-fs_reconall">
<p>Dale, Anders M., Bruce Fischl, and Martin I. Sereno. 1999. “Cortical Surface-Based Analysis: I. Segmentation and Surface Reconstruction.” <em>NeuroImage</em> 9 (2): 179–94. <a href="https://doi.org/10.1006/nimg.1998.0395" class="uri">https://doi.org/10.1006/nimg.1998.0395</a>.</p>
</div>
<div id="ref-fmriprep2">
<p>Esteban, Oscar, Ross Blair, Christopher J. Markiewicz, Shoshana L. Berleant, Craig Moodie, Feilong Ma, Ayse Ilkay Isik, et al. 2018. “FMRIPrep.” <em>Software</em>. Zenodo. <a href="https://doi.org/10.5281/zenodo.852659" class="uri">https://doi.org/10.5281/zenodo.852659</a>.</p>
</div>
<div id="ref-fmriprep1">
<p>Esteban, Oscar, Christopher Markiewicz, Ross W Blair, Craig Moodie, Ayse Ilkay Isik, Asier Erramuzpe Aliaga, James Kent, et al. 2018. “fMRIPrep: A Robust Preprocessing Pipeline for Functional MRI.” <em>Nature Methods</em>. <a href="https://doi.org/10.1038/s41592-018-0235-4" class="uri">https://doi.org/10.1038/s41592-018-0235-4</a>.</p>
</div>
<div id="ref-mni152nlin6asym">
<p>Evans, AC, AL Janke, DL Collins, and S Baillet. 2012. “Brain Templates and Atlases.” <em>NeuroImage</em> 62 (2): 911–22. <a href="https://doi.org/10.1016/j.neuroimage.2012.01.024" class="uri">https://doi.org/10.1016/j.neuroimage.2012.01.024</a>.</p>
</div>
<div id="ref-mni152nlin2009casym">
<p>Fonov, VS, AC Evans, RC McKinstry, CR Almli, and DL Collins. 2009. “Unbiased Nonlinear Average Age-Appropriate Brain Templates from Birth to Adulthood.” <em>NeuroImage</em> 47, Supplement 1: S102. <a href="https://doi.org/10.1016/S1053-8119(09)70884-5" class="uri">https://doi.org/10.1016/S1053-8119(09)70884-5</a>.</p>
</div>
<div id="ref-nipype1">
<p>Gorgolewski, K., C. D. Burns, C. Madison, D. Clark, Y. O. Halchenko, M. L. Waskom, and S. Ghosh. 2011. “Nipype: A Flexible, Lightweight and Extensible Neuroimaging Data Processing Framework in Python.” <em>Frontiers in Neuroinformatics</em> 5: 13. <a href="https://doi.org/10.3389/fninf.2011.00013" class="uri">https://doi.org/10.3389/fninf.2011.00013</a>.</p>
</div>
<div id="ref-nipype2">
<p>Gorgolewski, Krzysztof J., Oscar Esteban, Christopher J. Markiewicz, Erik Ziegler, David Gage Ellis, Michael Philipp Notter, Dorota Jarecka, et al. 2018. “Nipype.” <em>Software</em>. Zenodo. <a href="https://doi.org/10.5281/zenodo.596855" class="uri">https://doi.org/10.5281/zenodo.596855</a>.</p>
</div>
<div id="ref-mindboggle">
<p>Klein, Arno, Satrajit S. Ghosh, Forrest S. Bao, Joachim Giard, Yrjö Häme, Eliezer Stavsky, Noah Lee, et al. 2017. “Mindboggling Morphometry of Human Brains.” <em>PLOS Computational Biology</em> 13 (2): e1005350. <a href="https://doi.org/10.1371/journal.pcbi.1005350" class="uri">https://doi.org/10.1371/journal.pcbi.1005350</a>.</p>
</div>
<div id="ref-fs_template">
<p>Reuter, Martin, Herminia Diana Rosas, and Bruce Fischl. 2010. “Highly Accurate Inverse Consistent Registration: A Robust Approach.” <em>NeuroImage</em> 53 (4): 1181–96. <a href="https://doi.org/10.1016/j.neuroimage.2010.07.020" class="uri">https://doi.org/10.1016/j.neuroimage.2010.07.020</a>.</p>
</div>
<div id="ref-n4">
<p>Tustison, N. J., B. B. Avants, P. A. Cook, Y. Zheng, A. Egan, P. A. Yushkevich, and J. C. Gee. 2010. “N4ITK: Improved N3 Bias Correction.” <em>IEEE Transactions on Medical Imaging</em> 29 (6): 1310–20. <a href="https://doi.org/10.1109/TMI.2010.2046908" class="uri">https://doi.org/10.1109/TMI.2010.2046908</a>.</p>
</div>
<div id="ref-fsl_fast">
<p>Zhang, Y., M. Brady, and S. Smith. 2001. “Segmentation of Brain MR Images Through a Hidden Markov Random Field Model and the Expectation-Maximization Algorithm.” <em>IEEE Transactions on Medical Imaging</em> 20 (1): 45–57. <a href="https://doi.org/10.1109/42.906424" class="uri">https://doi.org/10.1109/42.906424</a>.</p>
</div>
</div></div></div>
<div class="tab-pane fade " id="Markdown" role="tabpanel" aria-labelledby="Markdown-tab"><pre>
Results included in this manuscript come from preprocessing
performed using *fMRIPrep* 20.2.1
(@fmriprep1; @fmriprep2; RRID:SCR_016216),
which is based on *Nipype* 1.5.1
(@nipype1; @nipype2; RRID:SCR_002502).
Anatomical data preprocessing
: A total of 2 T1-weighted (T1w) images were found within the input
BIDS dataset.
All of them were corrected for intensity non-uniformity (INU)
with `N4BiasFieldCorrection` [@n4], distributed with ANTs 2.3.3 [@ants, RRID:SCR_004757].
The T1w-reference was then skull-stripped with a *Nipype* implementation of
the `antsBrainExtraction.sh` workflow (from ANTs), using OASIS30ANTs
as target template.
Brain tissue segmentation of cerebrospinal fluid (CSF),
white-matter (WM) and gray-matter (GM) was performed on
the brain-extracted T1w using `fast` [FSL 5.0.9, RRID:SCR_002823,
@fsl_fast].
A T1w-reference map was computed after registration of
2 T1w images (after INU-correction) using
`mri_robust_template` [FreeSurfer 6.0.1, @fs_template].
Brain surfaces were reconstructed using `recon-all` [FreeSurfer 6.0.1,
RRID:SCR_001847, @fs_reconall], and the brain mask estimated
previously was refined with a custom variation of the method to reconcile
ANTs-derived and FreeSurfer-derived segmentations of the cortical
gray-matter of Mindboggle [RRID:SCR_002438, @mindboggle].
Volume-based spatial normalization to two standard spaces (MNI152NLin2009cAsym, MNI152NLin6Asym) was performed through
nonlinear registration with `antsRegistration` (ANTs 2.3.3),
using brain-extracted versions of both T1w reference and the T1w template.
The following templates were selected for spatial normalization:
*ICBM 152 Nonlinear Asymmetrical template version 2009c* [@mni152nlin2009casym, RRID:SCR_008796; TemplateFlow ID: MNI152NLin2009cAsym], *FSL's MNI ICBM 152 non-linear 6th Generation Asymmetric Average Brain Stereotaxic Registration Model* [@mni152nlin6asym, RRID:SCR_002823; TemplateFlow ID: MNI152NLin6Asym],
Many internal operations of *fMRIPrep* use
*Nilearn* 0.6.2 [@nilearn, RRID:SCR_001362],
mostly within the functional processing workflow.
For more details of the pipeline, see [the section corresponding
to workflows in *fMRIPrep*'s documentation](https://fmriprep.readthedocs.io/en/latest/workflows.html "FMRIPrep's documentation").
### Copyright Waiver
The above boilerplate text was automatically generated by fMRIPrep
with the express intention that users should copy and paste this
text into their manuscripts *unchanged*.
It is released under the [CC0](https://creativecommons.org/publicdomain/zero/1.0/) license.
### References
</pre>
</div>
<div class="tab-pane fade " id="LaTeX" role="tabpanel" aria-labelledby="LaTeX-tab"><pre>Results included in this manuscript come from preprocessing performed
using \emph{fMRIPrep} 20.2.1 (\citet{fmriprep1}; \citet{fmriprep2};
RRID:SCR\_016216), which is based on \emph{Nipype} 1.5.1
(\citet{nipype1}; \citet{nipype2}; RRID:SCR\_002502).
\begin{description}
\item[Anatomical data preprocessing]
A total of 2 T1-weighted (T1w) images were found within the input BIDS
dataset. All of them were corrected for intensity non-uniformity (INU)
with \texttt{N4BiasFieldCorrection} \citep{n4}, distributed with ANTs
2.3.3 \citep[RRID:SCR\_004757]{ants}. The T1w-reference was then
skull-stripped with a \emph{Nipype} implementation of the
\texttt{antsBrainExtraction.sh} workflow (from ANTs), using OASIS30ANTs
as target template. Brain tissue segmentation of cerebrospinal fluid
(CSF), white-matter (WM) and gray-matter (GM) was performed on the
brain-extracted T1w using \texttt{fast} \citep[FSL 5.0.9,
RRID:SCR\_002823,][]{fsl_fast}. A T1w-reference map was computed after
registration of 2 T1w images (after INU-correction) using
\texttt{mri\_robust\_template} \citep[FreeSurfer 6.0.1,][]{fs_template}.
Brain surfaces were reconstructed using \texttt{recon-all}
\citep[FreeSurfer 6.0.1, RRID:SCR\_001847,][]{fs_reconall}, and the
brain mask estimated previously was refined with a custom variation of
the method to reconcile ANTs-derived and FreeSurfer-derived
segmentations of the cortical gray-matter of Mindboggle
\citep[RRID:SCR\_002438,][]{mindboggle}. Volume-based spatial
normalization to two standard spaces (MNI152NLin2009cAsym,
MNI152NLin6Asym) was performed through nonlinear registration with
\texttt{antsRegistration} (ANTs 2.3.3), using brain-extracted versions
of both T1w reference and the T1w template. The following templates were
selected for spatial normalization: \emph{ICBM 152 Nonlinear
Asymmetrical template version 2009c} {[}\citet{mni152nlin2009casym},
RRID:SCR\_008796; TemplateFlow ID: MNI152NLin2009cAsym{]}, \emph{FSL's
MNI ICBM 152 non-linear 6th Generation Asymmetric Average Brain
Stereotaxic Registration Model} {[}\citet{mni152nlin6asym},
RRID:SCR\_002823; TemplateFlow ID: MNI152NLin6Asym{]},
\end{description}
Many internal operations of \emph{fMRIPrep} use \emph{Nilearn} 0.6.2
\citep[RRID:SCR\_001362]{nilearn}, mostly within the functional
processing workflow. For more details of the pipeline, see
\href{https://fmriprep.readthedocs.io/en/latest/workflows.html}{the
section corresponding to workflows in \emph{fMRIPrep}'s documentation}.
\hypertarget{copyright-waiver}{%
\subsubsection{Copyright Waiver}\label{copyright-waiver}}
The above boilerplate text was automatically generated by fMRIPrep with
the express intention that users should copy and paste this text into
their manuscripts \emph{unchanged}. It is released under the
\href{https://creativecommons.org/publicdomain/zero/1.0/}{CC0} license.
\hypertarget{references}{%
\subsubsection{References}\label{references}}
\bibliography{/usr/local/miniconda/lib/python3.7/site-packages/fmriprep/data/boilerplate.bib}</pre>
<h3>Bibliography</h3>
<pre>@article{fmriprep1,
author = {Esteban, Oscar and Markiewicz, Christopher and Blair, Ross W and Moodie, Craig and Isik, Ayse Ilkay and Erramuzpe Aliaga, Asier and Kent, James and Goncalves, Mathias and DuPre, Elizabeth and Snyder, Madeleine and Oya, Hiroyuki and Ghosh, Satrajit and Wright, Jessey and Durnez, Joke and Poldrack, Russell and Gorgolewski, Krzysztof Jacek},
title = {{fMRIPrep}: a robust preprocessing pipeline for functional {MRI}},
year = {2018},
doi = {10.1038/s41592-018-0235-4},
journal = {Nature Methods}
}
@article{fmriprep2,
author = {Esteban, Oscar and Blair, Ross and Markiewicz, Christopher J. and Berleant, Shoshana L. and Moodie, Craig and Ma, Feilong and Isik, Ayse Ilkay and Erramuzpe, Asier and Kent, James D. andGoncalves, Mathias and DuPre, Elizabeth and Sitek, Kevin R. and Gomez, Daniel E. P. and Lurie, Daniel J. and Ye, Zhifang and Poldrack, Russell A. and Gorgolewski, Krzysztof J.},
title = {fMRIPrep},
year = 2018,
doi = {10.5281/zenodo.852659},
publisher = {Zenodo},
journal = {Software}
}
@article{nipype1,
author = {Gorgolewski, K. and Burns, C. D. and Madison, C. and Clark, D. and Halchenko, Y. O. and Waskom, M. L. and Ghosh, S.},
doi = {10.3389/fninf.2011.00013},
journal = {Frontiers in Neuroinformatics},
pages = 13,
shorttitle = {Nipype},
title = {Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in Python},
volume = 5,
year = 2011
}
@article{nipype2,
author = {Gorgolewski, Krzysztof J. and Esteban, Oscar and Markiewicz, Christopher J. and Ziegler, Erik and Ellis, David Gage and Notter, Michael Philipp and Jarecka, Dorota and Johnson, Hans and Burns, Christopher and Manhães-Savio, Alexandre and Hamalainen, Carlo and Yvernault, Benjamin and Salo, Taylor and Jordan, Kesshi and Goncalves, Mathias and Waskom, Michael and Clark, Daniel and Wong, Jason and Loney, Fred and Modat, Marc and Dewey, Blake E and Madison, Cindee and Visconti di Oleggio Castello, Matteo and Clark, Michael G. and Dayan, Michael and Clark, Dav and Keshavan, Anisha and Pinsard, Basile and Gramfort, Alexandre and Berleant, Shoshana and Nielson, Dylan M. and Bougacha, Salma and Varoquaux, Gael and Cipollini, Ben and Markello, Ross and Rokem, Ariel and Moloney, Brendan and Halchenko, Yaroslav O. and Wassermann , Demian and Hanke, Michael and Horea, Christian and Kaczmarzyk, Jakub and Gilles de Hollander and DuPre, Elizabeth and Gillman, Ashley and Mordom, David and Buchanan, Colin and Tungaraza, Rosalia and Pauli, Wolfgang M. and Iqbal, Shariq and Sikka, Sharad and Mancini, Matteo and Schwartz, Yannick and Malone, Ian B. and Dubois, Mathieu and Frohlich, Caroline and Welch, David and Forbes, Jessica and Kent, James and Watanabe, Aimi and Cumba, Chad and Huntenburg, Julia M. and Kastman, Erik and Nichols, B. Nolan and Eshaghi, Arman and Ginsburg, Daniel and Schaefer, Alexander and Acland, Benjamin and Giavasis, Steven and Kleesiek, Jens and Erickson, Drew and Küttner, René and Haselgrove, Christian and Correa, Carlos and Ghayoor, Ali and Liem, Franz and Millman, Jarrod and Haehn, Daniel and Lai, Jeff and Zhou, Dale and Blair, Ross and Glatard, Tristan and Renfro, Mandy and Liu, Siqi and Kahn, Ari E. and Pérez-García, Fernando and Triplett, William and Lampe, Leonie and Stadler, Jörg and Kong, Xiang-Zhen and Hallquist, Michael and Chetverikov, Andrey and Salvatore, John and Park, Anne and Poldrack, Russell and Craddock, R. Cameron and Inati, Souheil and Hinds, Oliver and Cooper, Gavin and Perkins, L. Nathan and Marina, Ana and Mattfeld, Aaron and Noel, Maxime and Lukas Snoek and Matsubara, K and Cheung, Brian and Rothmei, Simon and Urchs, Sebastian and Durnez, Joke and Mertz, Fred and Geisler, Daniel and Floren, Andrew and Gerhard, Stephan and Sharp, Paul and Molina-Romero, Miguel and Weinstein, Alejandro and Broderick, William and Saase, Victor and Andberg, Sami Kristian and Harms, Robbert and Schlamp, Kai and Arias, Jaime and Papadopoulos Orfanos, Dimitri and Tarbert, Claire and Tambini, Arielle and De La Vega, Alejandro and Nickson, Thomas and Brett, Matthew and Falkiewicz, Marcel and Podranski, Kornelius and Linkersdörfer, Janosch and Flandin, Guillaume and Ort, Eduard and Shachnev, Dmitry and McNamee, Daniel and Davison, Andrew and Varada, Jan and Schwabacher, Isaac and Pellman, John and Perez-Guevara, Martin and Khanuja, Ranjeet and Pannetier, Nicolas and McDermottroe, Conor and Ghosh, Satrajit},
title = {Nipype},
year = 2018,
doi = {10.5281/zenodo.596855},
publisher = {Zenodo},
journal = {Software}
}
@article{n4,
author = {Tustison, N. J. and Avants, B. B. and Cook, P. A. and Zheng, Y. and Egan, A. and Yushkevich, P. A. and Gee, J. C.},
doi = {10.1109/TMI.2010.2046908},
issn = {0278-0062},
journal = {IEEE Transactions on Medical Imaging},
number = 6,
pages = {1310-1320},
shorttitle = {N4ITK},
title = {N4ITK: Improved N3 Bias Correction},
volume = 29,
year = 2010
}
@article{fs_reconall,
author = {Dale, Anders M. and Fischl, Bruce and Sereno, Martin I.},
doi = {10.1006/nimg.1998.0395},
issn = {1053-8119},
journal = {NeuroImage},
number = 2,
pages = {179-194},
shorttitle = {Cortical Surface-Based Analysis},
title = {Cortical Surface-Based Analysis: I. Segmentation and Surface Reconstruction},
url = {http://www.sciencedirect.com/science/article/pii/S1053811998903950},
volume = 9,
year = 1999
}
@article{mindboggle,
author = {Klein, Arno and Ghosh, Satrajit S. and Bao, Forrest S. and Giard, Joachim and Häme, Yrjö and Stavsky, Eliezer and Lee, Noah and Rossa, Brian and Reuter, Martin and Neto, Elias Chaibub and Keshavan, Anisha},
doi = {10.1371/journal.pcbi.1005350},
issn = {1553-7358},
journal = {PLOS Computational Biology},
number = 2,
pages = {e1005350},
title = {Mindboggling morphometry of human brains},
url = {http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005350},
volume = 13,
year = 2017
}
@article{mni152lin,
title = {A {Probabilistic} {Atlas} of the {Human} {Brain}: {Theory} and {Rationale} for {Its} {Development}: {The} {International} {Consortium} for {Brain} {Mapping} ({ICBM})},
author = {Mazziotta, John C. and Toga, Arthur W. and Evans, Alan and Fox, Peter and Lancaster, Jack},
volume = {2},
issn = {1053-8119},
shorttitle = {A {Probabilistic} {Atlas} of the {Human} {Brain}},
doi = {10.1006/nimg.1995.1012},
number = {2, Part A},
journal = {NeuroImage},
year = {1995},
pages = {89--101}
}
@article{mni152nlin2009casym,
title = {Unbiased nonlinear average age-appropriate brain templates from birth to adulthood},
author = {Fonov, VS and Evans, AC and McKinstry, RC and Almli, CR and Collins, DL},
doi = {10.1016/S1053-8119(09)70884-5},
journal = {NeuroImage},
pages = {S102},
volume = {47, Supplement 1},
year = 2009
}
@article{mni152nlin6asym,
author = {Evans, AC and Janke, AL and Collins, DL and Baillet, S},
title = {Brain templates and atlases},
doi = {10.1016/j.neuroimage.2012.01.024},
journal = {NeuroImage},
volume = {62},
number = {2},
pages = {911--922},
year = 2012
}
@article{ants,
author = {Avants, B.B. and Epstein, C.L. and Grossman, M. and Gee, J.C.},
doi = {10.1016/j.media.2007.06.004},
issn = {1361-8415},
journal = {Medical Image Analysis},
number = 1,
pages = {26-41},
shorttitle = {Symmetric diffeomorphic image registration with cross-correlation},
title = {Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain},
url = {http://www.sciencedirect.com/science/article/pii/S1361841507000606},
volume = 12,
year = 2008
}
@article{fsl_fast,
author = {Zhang, Y. and Brady, M. and Smith, S.},
doi = {10.1109/42.906424},
issn = {0278-0062},
journal = {IEEE Transactions on Medical Imaging},
number = 1,
pages = {45-57},
title = {Segmentation of brain {MR} images through a hidden Markov random field model and the expectation-maximization algorithm},
volume = 20,
year = 2001
}
@article{fieldmapless1,
author = {Wang, Sijia and Peterson, Daniel J. and Gatenby, J. C. and Li, Wenbin and Grabowski, Thomas J. and Madhyastha, Tara M.},
doi = {10.3389/fninf.2017.00017},
issn = {1662-5196},
journal = {Frontiers in Neuroinformatics},
language = {English},
title = {Evaluation of Field Map and Nonlinear Registration Methods for Correction of Susceptibility Artifacts in Diffusion {MRI}},
url = {http://journal.frontiersin.org/article/10.3389/fninf.2017.00017/full},
volume = 11,
year = 2017
}
@phdthesis{fieldmapless2,
address = {Berlin},
author = {Huntenburg, Julia M.},
language = {eng},
school = {Freie Universität},
title = {Evaluating nonlinear coregistration of {BOLD} {EPI} and T1w images},
type = {Master's Thesis},
url = {http://hdl.handle.net/11858/00-001M-0000-002B-1CB5-A},
year = 2014
}
@article{fieldmapless3,
author = {Treiber, Jeffrey Mark and White, Nathan S. and Steed, Tyler Christian and Bartsch, Hauke and Holland, Dominic and Farid, Nikdokht and McDonald, Carrie R. and Carter, Bob S. and Dale, Anders Martin and Chen, Clark C.},
doi = {10.1371/journal.pone.0152472},
issn = {1932-6203},
journal = {PLOS ONE},
number = 3,
pages = {e0152472},
title = {Characterization and Correction of Geometric Distortions in 814 Diffusion Weighted Images},
url = {http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0152472},
volume = 11,
year = 2016
}
@article{flirt,
title = {A global optimisation method for robust affine registration of brain images},
volume = {5},
issn = {1361-8415},
url = {http://www.sciencedirect.com/science/article/pii/S1361841501000366},
doi = {10.1016/S1361-8415(01)00036-6},
number = {2},
urldate = {2018-07-27},
journal = {Medical Image Analysis},
author = {Jenkinson, Mark and Smith, Stephen},
year = {2001},
keywords = {Affine transformation, flirt, fsl, Global optimisation, Multi-resolution search, Multimodal registration, Robustness},
pages = {143--156}
}
@article{mcflirt,
author = {Jenkinson, Mark and Bannister, Peter and Brady, Michael and Smith, Stephen},
doi = {10.1006/nimg.2002.1132},
issn = {1053-8119},
journal = {NeuroImage},
number = 2,
pages = {825-841},
title = {Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images},
url = {http://www.sciencedirect.com/science/article/pii/S1053811902911328},
volume = 17,
year = 2002
}
@article{bbr,
author = {Greve, Douglas N and Fischl, Bruce},
doi = {10.1016/j.neuroimage.2009.06.060},
issn = {1095-9572},
journal = {NeuroImage},
number = 1,
pages = {63-72},
title = {Accurate and robust brain image alignment using boundary-based registration},
volume = 48,
year = 2009
}
@article{aroma,
author = {Pruim, Raimon H. R. and Mennes, Maarten and van Rooij, Daan and Llera, Alberto and Buitelaar, Jan K. and Beckmann, Christian F.},
doi = {10.1016/j.neuroimage.2015.02.064},
issn = {1053-8119},
journal = {NeuroImage},
number = {Supplement C},
pages = {267-277},
shorttitle = {ICA-AROMA},
title = {ICA-{AROMA}: A robust {ICA}-based strategy for removing motion artifacts from fMRI data},
url = {http://www.sciencedirect.com/science/article/pii/S1053811915001822},
volume = 112,
year = 2015
}
@article{power_fd_dvars,
author = {Power, Jonathan D. and Mitra, Anish and Laumann, Timothy O. and Snyder, Abraham Z. and Schlaggar, Bradley L. and Petersen, Steven E.},
doi = {10.1016/j.neuroimage.2013.08.048},
issn = {1053-8119},
journal = {NeuroImage},
number = {Supplement C},
pages = {320-341},
title = {Methods to detect, characterize, and remove motion artifact in resting state fMRI},
url = {http://www.sciencedirect.com/science/article/pii/S1053811913009117},
volume = 84,
year = 2014
}
@article{confounds_satterthwaite_2013,
author = {Satterthwaite, Theodore D. and Elliott, Mark A. and Gerraty, Raphael T. and Ruparel, Kosha and Loughead, James and Calkins, Monica E. and Eickhoff, Simon B. and Hakonarson, Hakon and Gur, Ruben C. and Gur, Raquel E. and Wolf, Daniel H.},
doi = {10.1016/j.neuroimage.2012.08.052},
issn = {10538119},
journal = {NeuroImage},
number = 1,
pages = {240--256},
title = {{An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data}},
url = {http://linkinghub.elsevier.com/retrieve/pii/S1053811912008609},
volume = 64,
year = 2013
}
@article{nilearn,
author = {Abraham, Alexandre and Pedregosa, Fabian and Eickenberg, Michael and Gervais, Philippe and Mueller, Andreas and Kossaifi, Jean and Gramfort, Alexandre and Thirion, Bertrand and Varoquaux, Gael},
doi = {10.3389/fninf.2014.00014},
issn = {1662-5196},
journal = {Frontiers in Neuroinformatics},
language = {English},
title = {Machine learning for neuroimaging with scikit-learn},
url = {https://www.frontiersin.org/articles/10.3389/fninf.2014.00014/full},
volume = 8,
year = 2014
}
@article{lanczos,
author = {Lanczos, C.},
doi = {10.1137/0701007},
issn = {0887-459X},
journal = {Journal of the Society for Industrial and Applied Mathematics Series B Numerical Analysis},
number = 1,
pages = {76-85},
title = {Evaluation of Noisy Data},
url = {http://epubs.siam.org/doi/10.1137/0701007},
volume = 1,
year = 1964
}
@article{compcor,
author = {Behzadi, Yashar and Restom, Khaled and Liau, Joy and Liu, Thomas T.},
doi = {10.1016/j.neuroimage.2007.04.042},
issn = {1053-8119},
journal = {NeuroImage},
number = 1,
pages = {90-101},
title = {A component based noise correction method ({CompCor}) for {BOLD} and perfusion based fMRI},
url = {http://www.sciencedirect.com/science/article/pii/S1053811907003837},
volume = 37,
year = 2007
}
@article{hcppipelines,
author = {Glasser, Matthew F. and Sotiropoulos, Stamatios N. and Wilson, J. Anthony and Coalson, Timothy S. and Fischl, Bruce and Andersson, Jesper L. and Xu, Junqian and Jbabdi, Saad and Webster, Matthew and Polimeni, Jonathan R. and Van Essen, David C. and Jenkinson, Mark},
doi = {10.1016/j.neuroimage.2013.04.127},
issn = {1053-8119},
journal = {NeuroImage},
pages = {105-124},
series = {Mapping the Connectome},
title = {The minimal preprocessing pipelines for the Human Connectome Project},
url = {http://www.sciencedirect.com/science/article/pii/S1053811913005053},
volume = 80,
year = 2013
}
@article{fs_template,
author = {Reuter, Martin and Rosas, Herminia Diana and Fischl, Bruce},
doi = {10.1016/j.neuroimage.2010.07.020},
journal = {NeuroImage},
number = 4,
pages = {1181-1196},
title = {Highly accurate inverse consistent registration: A robust approach},
volume = 53,
year = 2010
}
@article{afni,
author = {Cox, Robert W. and Hyde, James S.},
doi = {10.1002/(SICI)1099-1492(199706/08)10:4/5<171::AID-NBM453>3.0.CO;2-L},
journal = {NMR in Biomedicine},
number = {4-5},
pages = {171-178},
title = {Software tools for analysis and visualization of fMRI data},
volume = 10,
year = 1997
}
@article{posse_t2s,
author = {Posse, Stefan and Wiese, Stefan and Gembris, Daniel and Mathiak, Klaus and Kessler, Christoph and Grosse-Ruyken, Maria-Liisa and Elghahwagi, Barbara and Richards, Todd and Dager, Stephen R. and Kiselev, Valerij G.},
doi = {10.1002/(SICI)1522-2594(199907)42:1<87::AID-MRM13>3.0.CO;2-O},
journal = {Magnetic Resonance in Medicine},
number = 1,
pages = {87-97},
title = {Enhancement of {BOLD}-contrast sensitivity by single-shot multi-echo functional {MR} imaging},
volume = 42,
year = 1999
}
</pre>
</div>
</div>
</div>
<div id="errors">
<h1 class="sub-report-title">Errors</h1>
<p>No errors to report!</p>
</div>
<script type="text/javascript">
function toggle(id) {
var element = document.getElementById(id);
if(element.style.display == 'block')
element.style.display = 'none';
else
element.style.display = 'block';
}
</script>
</body>
</html>