-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtrack_attention_icd15.py
269 lines (216 loc) · 8.98 KB
/
track_attention_icd15.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
'''
@File : track.py
@Time : 2021/06/01 14:51:41
@Author : weijia
@Version : 1.0
@Contact : [email protected]
@License : (C)Copyright 2021-2022, Zhejiang University
@Desc : 通过在线获得的OCR结果,进行跟踪视频OCR定位
'''
# here put the import lib
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import copy
import json
import shutil
import os
import os.path as osp
import cv2
import logging
import argparse
import numpy as np
import torch
from tqdm import tqdm
from tracker.multitracker import track_online
from tracker.tools.common import logger, mkdir_if_missing, strip_points
import sys
from tracker.video_tools import visulization as vis
from tracker.config import config
from glob import glob
from PIL import Image
from infer_img_atten import PANppE2E
# from tracker.tools.online_rec import Client
import pickle
logger.setLevel(logging.INFO)
import time
# client = Client( KESS_SERVER_NAME_hori='grpc_mmu_videoOcrRecognitionV6',
# KESS_SERVER_NAME_ver='grpc_mmu_ocrRecognitionVerticalVideo'
# )
from xml.dom.minidom import Document
try:
import xml.etree.cElementTree as ET #解析xml的c语言版的模块
except ImportError:
import xml.etree.ElementTree as ET
from tqdm import tqdm
class StorageDictionary(object):
@staticmethod
def dict2file(file_name, data_dict):
try:
import cPickle as pickle
except ImportError:
import pickle
# import pickle
output = open(file_name,'wb')
pickle.dump(data_dict,output)
output.close()
@staticmethod
def file2dict(file_name):
try:
import cPickle as pickle
except ImportError:
import pickle
# import pickle
pkl_file = open(file_name, 'rb')
data_dict = pickle.load(pkl_file)
pkl_file.close()
return data_dict
@staticmethod
def dict2file_json(file_name, data_dict):
import json, io
with io.open(file_name, 'w', encoding='utf-8') as fp:
# fp.write(unicode(json.dumps(data_dict, ensure_ascii=False, indent=4) ) ) #可以解决在文件里显示中文的问题,不加的话是 '\uxxxx\uxxxx'
fp.write((json.dumps(data_dict, ensure_ascii=False, indent=4) ) )
@staticmethod
def file2dict_json(file_name):
import json, io
with io.open(file_name, 'r', encoding='utf-8') as fp:
data_dict = json.load(fp)
return data_dict
def Generate_Json_annotation(TL_Cluster_Video_dict, Outpu_dir,xml_dir_):
''' '''
ICDAR21_DetectionTracks = {}
text_id = 1
doc = Document()
video_xml = doc.createElement("Frames")
for frame in TL_Cluster_Video_dict.keys():
doc.appendChild(video_xml)
aperson = doc.createElement("frame")
aperson.setAttribute("ID", str(frame))
video_xml.appendChild(aperson)
ICDAR21_DetectionTracks[frame] = []
# vis_dict[frame_id].append([track_id, bbox[:8], track_dict['text']])
for text_list in TL_Cluster_Video_dict[frame]:
track_id, points, text = text_list
ICDAR21_DetectionTracks[frame].append({"points":[str(i) for i in points],"ID":str(track_id)})
# xml
object1 = doc.createElement("object")
object1.setAttribute("ID", str(track_id))
aperson.appendChild(object1)
for i in range(4):
name = doc.createElement("Point")
object1.appendChild(name)
# personname = doc.createTextNode("1")
name.setAttribute("x", str(int(points[i*2])))
name.setAttribute("y", str(int(points[i*2+1])))
StorageDictionary.dict2file_json(Outpu_dir, ICDAR21_DetectionTracks)
# xml
f = open(xml_dir_, "w")
f.write(doc.toprettyxml(indent=" "))
f.close()
def demo(model, config, frame_dir, dict_cost):
# vis_dir = osp.join(out_dir, 'frame')
# result_file_path = os.path.join(out_dir, "result" + '.json')
# mkdir_if_missing(out_dir)
# mkdir_if_missing(vis_dir)
frame_info_list = []
# 获取单帧信息(图像OCR结果)
# 单帧进行识别
for img_path in tqdm(glob(osp.join(frame_dir, "*.jpg"))):
frame_id = osp.basename(img_path).split('.')[0]
frame_info,outputs = model.predict(img_path)
frame_info['frame_id'] = str(int(frame_id))
frame_info_list.append(frame_info)
dict_cost["rec_head_cost"]+= outputs["rec_time"]
dict_cost["backbone_time"]+= outputs["backbone_time"]
dict_cost["neck_time"]+= outputs["neck_time"]
dict_cost["det_head_time"]+= outputs["det_head_time"]
dict_cost["desc_time"]+= outputs["desc_time"]
dict_cost["det_post_time"] += outputs["det_post_time"]
dict_cost["number_text"] += outputs["number_text"]
start = time.time()
# 排序
frame_info_list = sorted(frame_info_list, key=lambda x: int(x['frame_id']))
# 执行跟踪
re_results = track_online(config['tracker'], frame_info_list)
dict_cost["track_pos_cost"] += time.time() - start
result_dict = {}
for frame_id in range(len(frame_info_list)):
frame_id= frame_id+1
if str(frame_id) not in re_results:
result_dict[str(frame_id)] = []
pass
else:
lines = re_results[str(frame_id)]
result_dict[str(frame_id)] = lines
return result_dict,dict_cost
def track(model, data_root, config, save_images=False, save_videos=False):
dataset_result = {}
seqs = os.listdir(data_root)
import time
start = time.time()
image_len = 0
dict_cost = {
"rec_head_cost" : 0,
"backbone_time" : 0,
"neck_time" : 0,
"det_head_time" : 0,
"desc_time" : 0,
"track_pos_cost" : 0,
"det_post_time" : 0,
"number_text": 0
}
for seq in tqdm(seqs):
print("跟踪{}中".format(seq))
frame_dir = osp.join(data_root, seq)
if not os.path.isdir(frame_dir):
continue
# output_dir = osp.join(out_dir, seq)
# mkdir_if_missing(output_dir)
image_len += len(os.listdir(frame_dir))
seq_results,dict_cost = demo(model, config,
frame_dir,dict_cost)
dataset_result[seq] = seq_results
for video_name in dataset_result:
annotation_one = dataset_result[video_name]
xml_name = video_name.split("_")
xml_name = xml_name[0] + "_" + xml_name[1]
# xml_name = video_name.replace("/","_")
predict_path = os.path.join("./outputs/pan_pp_r18_ICDAR15/xml","res_{}.xml".format(xml_name.replace("V","v")))
json_path = os.path.join("./outputs/pan_pp_r18_ICDAR15/json","{}.json".format(video_name))
# predict_path = os.path.join("./outputs/pan_pp_r18_minetto_desc/xml","res_{}.xml".format(xml_name.replace("V","v")))
# json_path = os.path.join("./outputs/pan_pp_r18_minetto_desc/json","{}.json".format(video_name))
# predict_path = os.path.join("./outputs/pan_pp_r18_YVT_desc/xml","res_{}.xml".format(xml_name.replace("V","v")))
# json_path = os.path.join("./outputs/pan_pp_r18_YVT_desc/json","{}.json".format(video_name))
# predict_path = os.path.join("./outputs/pan_pp_r18_BOVText_desc/xml","res_{}.xml".format(xml_name.replace("V","v")))
# json_path = os.path.join("./outputs/pan_pp_r18_BOVText_desc/json","{}.json".format(xml_name))
Generate_Json_annotation(annotation_one,json_path,predict_path)
print("time cost:",time.time() - start)
print(image_len)
print(dict_cost.keys())
print("backbone_time cost:",dict_cost["backbone_time"])
print("neck_time cost:",dict_cost["neck_time"])
print("det_head_time cost:",dict_cost["det_head_time"])
print("rec_head_cost cost:",dict_cost["rec_head_cost"])
print("desc_time cost:",dict_cost["desc_time"])
print("track_pos_cost:",dict_cost["track_pos_cost"])
print("det_post_time:",dict_cost["det_post_time"])
print("number_text:",dict_cost["number_text"])
def mkdir_if_missing(d):
if not osp.exists(d):
os.makedirs(d)
if __name__ == '__main__':
from tracker.video_tools import evaluation
ids = 'online_config_601_5fps'
config_path = './config/pan_pp/pan_pp_r18_atten_ic15_desc.py'
checkpoint_path = './outputs/pan_pp_r18_atten_ic15_desc/50_0_0_0_0_checkpoint.pth.tar'# 3_162_0_0_0_checkpoint.pth.tar'
data_root= '/share/wuweijia/Data/ICDAR2013_video/test/frames'
# data_root = "/home/wangjue_Cloud/wuweijia/Data/VideoText/minetto/minetto_test"
# data_root = "/home/wangjue_Cloud/wuweijia/Data/VideoText/YVT/YVT_test"
# data_root = "/share/wuweijia/MyBenchMark/MMVText/BOVTextV2/Test/Frames"
pANppE2E = PANppE2E(checkpoint_path, config_path, ctc=False)
track(pANppE2E, data_root, config,
save_images=False,
save_videos=False)