-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathint.go
309 lines (275 loc) · 8.53 KB
/
int.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
package saferith
import (
"errors"
"math/big"
"math/bits"
)
// Int represents a signed integer of arbitrary size.
//
// Similarly to Nat, each Int comes along with an announced size, representing
// the number of bits need to represent its absolute value. This can be
// larger than its true size, the number of bits actually needed.
type Int struct {
// This number is represented by (-1)^sign * abs, essentially
// When 1, this is a negative number, when 0 a positive number.
//
// There's a bit of redundancy to note, because -0 and +0 represent the same
// number. We need to be careful around this edge case.
sign Choice
// The absolute value.
//
// Not using a point is important, that way the zero value for Int is actually zero.
abs Nat
}
// SetBytes interprets a number in big-endian form, stores it in z, and returns z.
//
// This number will be positive.
func (z *Int) SetBytes(data []byte) *Int {
z.sign = 0
z.abs.SetBytes(data)
return z
}
// MarshalBinary implements encoding.BinaryMarshaler.
// The retrned byte slice is always of length 1 + len(i.Abs().Bytes()),
// where the first byte encodes the sign.
func (i *Int) MarshalBinary() ([]byte, error) {
length := 1 + (i.abs.announced+7)/8
out := make([]byte, length)
out[0] = byte(i.sign)
i.abs.FillBytes(out[1:])
return out, nil
}
// UnmarshalBinary implements encoding.BinaryUnmarshaler.
// Returns an error when the length of data is 0,
// since we always expect the first byte to encode the sign.
func (i *Int) UnmarshalBinary(data []byte) error {
if len(data) == 0 {
return errors.New("data must contain a sign byte")
}
i.abs.SetBytes(data[1:])
i.sign = Choice(data[0] & 1)
return nil
}
// SetUint64 sets the value of z to x.
//
// This number will be positive.
func (z *Int) SetUint64(x uint64) *Int {
z.sign = 0
z.abs.SetUint64(x)
return z
}
// SetNat will set the absolute value of z to x, and the sign to zero, returning z.
func (z *Int) SetNat(x *Nat) *Int {
z.sign = 0
z.abs.SetNat(x)
return z
}
// Clone returns a copy of this Int.
//
// The copy can safely be mutated without affecting the original value.
func (z *Int) Clone() *Int {
out := new(Int)
out.sign = z.sign
out.abs.SetNat(&z.abs)
return out
}
// SetBig will set the value of this number to the value of a big.Int, including sign.
//
// The size dicates the number of bits to use for the absolute value. This is important,
// in order to include additional padding that the big.Int might have stripped off.
//
// Since big.Int stores its sign as a boolean, it's likely that this conversion
// will leak the value of the sign.
func (z *Int) SetBig(x *big.Int, size int) *Int {
// x.Sign() = {-1, 0, 1},
// 1 - x.Sign() = {2, 1, 0},
// so this comparison correctly sniffs out negative numbers
z.sign = ctGt(Word(1-x.Sign()), 1)
z.abs.SetBig(x, size)
return z
}
// Big will convert this number into a big.Int, including sign.
//
// This will leak the true size of this number, and its sign, because of the leakiness
// of big.Int, so caution should be exercises when using this function.
func (z *Int) Big() *big.Int {
abs := z.abs.Big()
if z.sign == 1 {
abs.Neg(abs)
}
return abs
}
// Resize adjust the announced size of this number, possibly truncating the absolute value.
func (z *Int) Resize(cap int) *Int {
z.abs.Resize(cap)
return z
}
// String formats this number as a signed hex string.
//
// This isn't a format that Int knows how to parse. This function exists mainly
// to help debugging, and whatnot.
func (z *Int) String() string {
sign := ctIfElse(z.sign, Word('-'), Word('+'))
return string(rune(sign)) + z.abs.String()
}
// Eq checks if this Int has the same value as another Int.
//
// Note that negative zero and positive zero are the same number.
func (z *Int) Eq(x *Int) Choice {
zero := z.abs.EqZero()
// If this is zero, then any number as the same sign,
// otherwise, check that the signs aren't different
sameSign := zero | (1 ^ z.sign ^ x.sign)
return sameSign & z.abs.Eq(&x.abs)
}
// Abs returns the absolute value of this Int.
func (z *Int) Abs() *Nat {
return new(Nat).SetNat(&z.abs)
}
// IsNegative checks if this value is negative
func (z *Int) IsNegative() Choice {
return z.sign
}
// AnnouncedLen returns the announced size of this int's absolute value.
//
// See Nat.AnnouncedLen
func (z *Int) AnnouncedLen() int {
return z.abs.AnnouncedLen()
}
// TrueLen returns the actual number of bits need to represent this int's absolute value.
//
// This leaks this value.
//
// See Nat.TrueLen
func (z *Int) TrueLen() int {
return z.abs.TrueLen()
}
// Neg calculates z <- -x.
//
// The result has the same announced size.
func (z *Int) Neg(doit Choice) *Int {
z.sign ^= doit
return z
}
func (z *Int) SetInt(x *Int) *Int {
z.sign = x.sign
z.abs.SetNat(&x.abs)
return z
}
// Mul calculates z <- x * y, returning z.
//
// This will truncate the resulting absolute value, based on the bit capacity passed in.
//
// If cap < 0, then capacity is x.AnnouncedLen() + y.AnnouncedLen().
func (z *Int) Mul(x *Int, y *Int, cap int) *Int {
// (-1)^sx * ax * (-1)^sy * ay = (-1)^(sx + sy) * ax * ay
z.sign = x.sign ^ y.sign
z.abs.Mul(&x.abs, &y.abs, cap)
return z
}
// Mod calculates z mod M, handling negatives correctly.
//
// As indicated by the types, this function will return a number in the range 0..m-1.
func (z *Int) Mod(m *Modulus) *Nat {
out := new(Nat).Mod(&z.abs, m)
negated := new(Nat).ModNeg(out, m)
out.CondAssign(z.sign, negated)
return out
}
// SetModSymmetric takes a number x mod M, and returns a signed number centered around 0.
//
// This effectively takes numbers in the range:
// {0, .., m - 1}
// And returns numbers in the range:
// {-(m - 1)/2, ..., 0, ..., (m - 1)/2}
// In the case that m is even, there will simply be an extra negative number.
func (z *Int) SetModSymmetric(x *Nat, m *Modulus) *Int {
z.abs.Mod(x, m)
negated := new(Nat).ModNeg(&z.abs, m)
gt, _, _ := negated.Cmp(&z.abs)
negatedLeq := 1 ^ gt
// Always use the smaller value
z.abs.CondAssign(negatedLeq, negated)
// A negative modular number, by definition, will have it's negation <= itself
z.sign = negatedLeq
return z
}
// CheckInRange checks whether or not this Int is in the range for SetModSymmetric.
func (z *Int) CheckInRange(m *Modulus) Choice {
// First check that the absolute value makes sense
_, _, absOk := z.abs.CmpMod(m)
negated := new(Nat).ModNeg(&z.abs, m)
_, _, lt := negated.Cmp(&z.abs)
// If the negated value is strictly smaller, then we have a number out of range
signOk := 1 ^ lt
return absOk & signOk
}
// ExpI calculates z <- x^i mod m.
//
// This works with negative exponents, but requires x to be invertible mod m, of course.
func (z *Nat) ExpI(x *Nat, i *Int, m *Modulus) *Nat {
z.Exp(x, &i.abs, m)
inverted := new(Nat).ModInverse(z, m)
z.CondAssign(i.sign, inverted)
return z
}
// conditionally negate a slice of words based on two's complement
func negateTwos(doit Choice, z []Word) {
if len(z) <= 0 {
return
}
sign := Word(doit)
zi, carry := bits.Add(uint(-sign^z[0]), uint(sign), 0)
z[0] = Word(zi)
for i := 1; i < len(z); i++ {
zi, carry = bits.Add(uint(-sign^z[i]), 0, carry)
z[i] = Word(zi)
}
}
// convert a slice to two's complement, using a sign, and writing the result to out
func toTwos(sign Choice, abs []Word, out []Word) {
copy(out, abs)
negateTwos(sign, out)
}
// convert a slice from two's complement, writing it in place, and producing a sign
func fromTwos(bits int, mut []Word) Choice {
if len(mut) <= 0 {
return 0
}
sign := Choice(mut[len(mut)-1] >> (_W - 1))
negateTwos(sign, mut)
return sign
}
// Add calculates z <- x + y.
//
// The cap determines the number of bits to use for the absolute value of the result.
//
// If cap < 0, cap gets set to max(x.AnnouncedLen(), y.AnnouncedLen()) + 1
func (z *Int) Add(x *Int, y *Int, cap int) *Int {
// Rough idea, convert x and y to two's complement representation, add, and
// then convert back, before truncating as necessary.
if cap < 0 {
cap = x.abs.maxAnnounced(&y.abs) + 1
}
xLimbs := x.abs.unaliasedLimbs(&z.abs)
yLimbs := y.abs.unaliasedLimbs(&z.abs)
// We need an extra bit for the sign
size := limbCount(cap + 1)
scratch := z.abs.resizedLimbs(_W * 2 * size)
// Convert both to two's complement
xTwos := scratch[:size]
yTwos := scratch[size:]
toTwos(x.sign, xLimbs, xTwos)
toTwos(y.sign, yLimbs, yTwos)
// The addition will now produce the right result
addVV(xTwos, xTwos, yTwos)
// Convert back from two's complement
z.sign = fromTwos(cap, xTwos)
size = limbCount(cap)
z.abs.limbs = scratch[:size]
copy(z.abs.limbs, xTwos)
maskEnd(z.abs.limbs, cap)
z.abs.reduced = nil
z.abs.announced = cap
return z
}