-
Notifications
You must be signed in to change notification settings - Fork 65
/
Copy pathclassifier.py
163 lines (136 loc) · 6 KB
/
classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
from sklearn.metrics import classification_report, accuracy_score
import theano.tensor as T
import numpy as np
import lasagne
import theano
import argparse
def iterate_minibatches(inputs, targets, batch_size, shuffle=True):
assert len(inputs) == len(targets)
if shuffle:
indices = np.arange(len(inputs))
np.random.shuffle(indices)
start_idx = None
for start_idx in range(0, len(inputs) - batch_size + 1, batch_size):
if shuffle:
excerpt = indices[start_idx:start_idx + batch_size]
else:
excerpt = slice(start_idx, start_idx + batch_size)
yield inputs[excerpt], targets[excerpt]
if start_idx is not None and start_idx + batch_size < len(inputs):
excerpt = indices[start_idx + batch_size:] if shuffle else slice(start_idx + batch_size, len(inputs))
yield inputs[excerpt], targets[excerpt]
def get_nn_model(n_in, n_hidden, n_out):
net = dict()
net['input'] = lasagne.layers.InputLayer((None, n_in))
net['fc'] = lasagne.layers.DenseLayer(
net['input'],
num_units=n_hidden,
nonlinearity=lasagne.nonlinearities.tanh)
net['output'] = lasagne.layers.DenseLayer(
net['fc'],
num_units=n_out,
nonlinearity=lasagne.nonlinearities.softmax)
return net
def get_softmax_model(n_in, n_out):
net = dict()
net['input'] = lasagne.layers.InputLayer((None, n_in))
net['output'] = lasagne.layers.DenseLayer(
net['input'],
num_units=n_out,
nonlinearity=lasagne.nonlinearities.softmax)
return net
def train(dataset, n_hidden=50, batch_size=100, epochs=100, learning_rate=0.01, model='nn', l2_ratio=1e-7,
rtn_layer=True):
train_x, train_y, test_x, test_y = dataset
n_in = train_x.shape[1]
n_out = len(np.unique(train_y))
if batch_size > len(train_y):
batch_size = len(train_y)
print 'Building model with {} training data, {} classes...'.format(len(train_x), n_out)
input_var = T.matrix('x')
target_var = T.ivector('y')
if model == 'nn':
print 'Using neural network...'
net = get_nn_model(n_in, n_hidden, n_out)
else:
print 'Using softmax regression...'
net = get_softmax_model(n_in, n_out)
net['input'].input_var = input_var
output_layer = net['output']
# create loss function
prediction = lasagne.layers.get_output(output_layer)
loss = lasagne.objectives.categorical_crossentropy(prediction, target_var)
loss = loss.mean() + l2_ratio * lasagne.regularization.regularize_network_params(output_layer,
lasagne.regularization.l2)
# create parameter update expressions
params = lasagne.layers.get_all_params(output_layer, trainable=True)
updates = lasagne.updates.adam(loss, params, learning_rate=learning_rate)
train_fn = theano.function([input_var, target_var], loss, updates=updates)
# use trained network for predictions
test_prediction = lasagne.layers.get_output(output_layer, deterministic=True)
test_fn = theano.function([input_var], test_prediction)
print 'Training...'
for epoch in range(epochs):
loss = 0
for input_batch, target_batch in iterate_minibatches(train_x, train_y, batch_size):
loss += train_fn(input_batch, target_batch)
loss = round(loss, 3)
print 'Epoch {}, train loss {}'.format(epoch, loss)
pred_y = []
for input_batch, _ in iterate_minibatches(train_x, train_y, batch_size, shuffle=False):
pred = test_fn(input_batch)
pred_y.append(np.argmax(pred, axis=1))
pred_y = np.concatenate(pred_y)
print 'Training Accuracy: {}'.format(accuracy_score(train_y, pred_y))
print classification_report(train_y, pred_y)
if test_x is not None:
print 'Testing...'
pred_y = []
if batch_size > len(test_y):
batch_size = len(test_y)
for input_batch, _ in iterate_minibatches(test_x, test_y, batch_size, shuffle=False):
pred = test_fn(input_batch)
pred_y.append(np.argmax(pred, axis=1))
pred_y = np.concatenate(pred_y)
print 'Testing Accuracy: {}'.format(accuracy_score(test_y, pred_y))
print classification_report(test_y, pred_y)
# return the query function
if rtn_layer:
return output_layer
else:
return pred_y
def load_dataset(train_feat, train_label, test_feat=None, test_label=None):
train_x = np.genfromtxt(train_feat, delimiter=',', dtype='float32')
train_y = np.genfromtxt(train_label, dtype='int32')
min_y = np.min(train_y)
train_y -= min_y
if test_feat is not None and test_label is not None:
test_x = np.genfromtxt(train_feat, delimiter=',', dtype='float32')
test_y = np.genfromtxt(train_label, dtype='int32')
test_y -= min_y
else:
test_x = None
test_y = None
return train_x, train_y, test_x, test_y
def main():
parser = argparse.ArgumentParser()
parser.add_argument('train_feat', type=str)
parser.add_argument('train_label', type=str)
parser.add_argument('--test_feat', type=str, default=None)
parser.add_argument('--test_label', type=str, default=None)
parser.add_argument('--model', type=str, default='nn')
parser.add_argument('--learning_rate', type=float, default=0.01)
parser.add_argument('--batch_size', type=int, default=100)
parser.add_argument('--n_hidden', type=int, default=50)
parser.add_argument('--epochs', type=int, default=100)
args = parser.parse_args()
print vars(args)
dataset = load_dataset(args.train_feat, args.train_label, args.test_feat, args.train_label)
train(dataset,
model=args.model,
learning_rate=args.learning_rate,
batch_size=args.batch_size,
n_hidden=args.n_hidden,
epochs=args.epochs)
if __name__ == '__main__':
main()