-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathtest_w.py
134 lines (114 loc) · 4.85 KB
/
test_w.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import torch
import cv2
import numpy as np
import os.path as osp
from models import networks
import torchvision.transforms as transforms
from utils.alphabets import alphabet
import imageio
import argparse
import os
def print_networks(net):
num_params = 0
for param in net.parameters():
num_params += param.numel()
return num_params / 1e6
def get_labels_from_text(text):
labels = []
for t in text:
index = alphabet.find(t)
labels.append(index)
return labels
def get_text_from_labels(TestPreds):
PredsText = ''
for i in range(len(TestPreds)):
PredsText = PredsText + alphabet[TestPreds[i]]
return PredsText
def clear_labels(TestPreds):
labels = []
PredsInds = torch.max(TestPreds.detach(), 1)[1]
for i in range(PredsInds.size(0)):
if (not (i > 0 and PredsInds[i - 1] == PredsInds[i])) and PredsInds[i] < len(alphabet):
labels.append(PredsInds[i])
return labels
def main(w1_path, w2_path, save_path):
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
modelTSPGAN = networks.TSPGAN()
modelTSPGAN.load_state_dict(torch.load('./checkpoints/net_prior_generation.pth')['params'], strict=True)
modelTSPGAN.eval()
modelEncoder = networks.TextContextEncoderV2()
modelEncoder.load_state_dict(torch.load('./checkpoints/net_transformer_encoder.pth')['params'], strict=True)
modelEncoder.eval()
modelTSPGAN = modelTSPGAN.to(device)
modelEncoder = modelEncoder.to(device)
torch.cuda.empty_cache()
'''
Load w1 from LR image 1
'''
img1 = cv2.imread(w1_path, cv2.IMREAD_COLOR)
img1 = cv2.cvtColor(img1, cv2.COLOR_BGR2RGB)
h, w, c = img1.shape
ShowLQ1 = cv2.resize(img1, (0,0), fx=128/h, fy=128/h, interpolation=cv2.INTER_CUBIC)
LQ1 = cv2.resize(img1, (0,0), fx=32/h, fy=32/h, interpolation=cv2.INTER_CUBIC)
TextLQFillBG1 = np.zeros((32, 32*16, 3)).astype(LQ1.dtype)
if LQ1.shape[-2] <= 32*16:
TextLQFillBG1[:, :LQ1.shape[-2], :] = TextLQFillBG1[:, :LQ1.shape[-2], :] + LQ1
LQ1 = TextLQFillBG1
else:
exit(['\tLQ1 width is not normal... The width is larger than 512', LQ1.shape])
LQ1 = transforms.ToTensor()(LQ1)
LQ1 = transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))(LQ1)
LQ1 = LQ1.unsqueeze(0)
LQ1 = LQ1.to(device)
'''
Load w2 from LR image 2
'''
img2 = cv2.imread(w2_path, cv2.IMREAD_COLOR)
img2 = cv2.cvtColor(img2, cv2.COLOR_BGR2RGB)
h, w, c = img2.shape
ShowLQ2 = cv2.resize(img2, (0,0), fx=128/h, fy=128/h, interpolation=cv2.INTER_CUBIC)
LQ2 = cv2.resize(img2, (0,0), fx=32/h, fy=32/h, interpolation=cv2.INTER_CUBIC)
TextLQFillBG2 = np.zeros((32, 32*16, 3)).astype(LQ2.dtype)
if LQ2.shape[-2] <= 32*16:
TextLQFillBG2[:, :LQ2.shape[-2], :] = TextLQFillBG2[:, :LQ2.shape[-2], :] + LQ2
LQ2 = TextLQFillBG2
else:
exit(['\tLQ2 width is not normal... The width is larger than 512', LQ2.shape])
LQ2 = transforms.ToTensor()(LQ2)
LQ2 = transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))(LQ2)
LQ2 = LQ2.unsqueeze(0)
LQ2 = LQ2.to(device)
with torch.no_grad():
preds_cls1, _, w1 = modelEncoder(LQ1)
preds_cls2, _, w2 = modelEncoder(LQ2)
##show the interpolation w on LR image 1
labels1 = clear_labels(preds_cls1[0])
labels1 = torch.Tensor(labels1).type(torch.LongTensor).unsqueeze(1)
with torch.no_grad():
buff = []
for i in range(11):
scale = i / 10
print('Interpolating w1 and w2 with weight {:.2f}'.format(scale))
new_w = w1 * scale + w2 * (1 - scale)
prior_cha, _, _ = modelTSPGAN(styles=new_w.repeat(labels1.size(0), 1), labels=labels1, noise=None)
prior_cha = (prior_cha * 0.5 + 0.5).permute(0, 2, 3, 1).cpu().numpy()
prior128 = prior_cha[0]
for i in range(1, len(prior_cha)):
prior128 = np.hstack((prior128, prior_cha[i]))
buff.append((prior128*255.0).astype(np.uint8))
cv2.imwrite(osp.join(save_path, 'w_{:.2f}.png'.format(scale)), prior128*255.0)
imageio.mimsave(osp.join(save_path, 'w.gif'), buff,'GIF',duration=0.1)
print('Finishing interpolation.')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-w1', '--w1_path', type=str, default='./Testsets/TestW/w1.png')
parser.add_argument('-w2', '--w2_path', type=str, default='./Testsets/TestW/w2.png')
parser.add_argument('-o', '--save_path', type=str, default='./Testsets/TestW')
args = parser.parse_args()
print('#'*64)
print('{:>16s} : {:s}'.format('Input w1', args.w1_path))
print('{:>16s} : {:s}'.format('Input w2', args.w2_path))
print('{:>16s} : {:s}'.format('Save Path', args.save_path))
print('#'*64)
os.makedirs(args.save_path, exist_ok=True)
main(args.w1_path, args.w2_path, args.save_path)