-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathevaluation.py
executable file
·74 lines (56 loc) · 2 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
from __future__ import print_function
import numpy as np
import random
import math
import warnings
from sklearn.model_selection import train_test_split
from sklearn.svm import LinearSVC
from sklearn.metrics import *
from sklearn.metrics.pairwise import cosine_similarity
def read_label(inputFileName):
f = open(inputFileName, 'r')
lines = f.readlines()
f.close()
N = len(lines)
y = np.zeros(N, dtype=int)
for line in lines:
l = line.strip('\n\r').split(' ')
y[int(l[0])] = int(l[1])
return y
def multiclass_node_classification_eval(X, y, ratio=0.2, rnd=2018):
warnings.filterwarnings('ignore')
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=ratio, random_state=rnd)
clf = LinearSVC()
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
macro_f1 = f1_score(y_test, y_pred, average='macro')
micro_f1 = f1_score(y_test, y_pred, average='micro')
return macro_f1, micro_f1
def link_prediction_ROC(inputFileName, Embeddings):
f = open(inputFileName, 'r')
lines = f.readlines()
f.close()
X_test = []
for line in lines:
l = line.strip('\n\r').split(' ')
X_test.append([int(l[0]), int(l[1]), int(l[2])])
y_true = [X_test[i][2] for i in range(len(X_test))]
y_predict = [
cosine_similarity(Embeddings[X_test[i][0], :].reshape(1, -1), Embeddings[X_test[i][1], :].reshape(1, -1))[0, 0]
for i in range(len(X_test))]
auc = roc_auc_score(y_true, y_predict)
if auc < 0.5:
auc = 1 - auc
return auc
def node_classification_F1(Embeddings, y):
macro_f1_avg = 0
micro_f1_avg = 0
for i in range(10):
rnd = np.random.randint(2018)
macro_f1, micro_f1 = multiclass_node_classification_eval(Embeddings, y, 0.7, rnd)
macro_f1_avg += macro_f1
micro_f1_avg += micro_f1
macro_f1_avg /= 10
micro_f1_avg /= 10
print('Macro_f1 average value: ' + str(macro_f1_avg))
print('Micro_f1 average value: ' + str(micro_f1_avg))