-
Notifications
You must be signed in to change notification settings - Fork 85
/
Copy pathmask.py
596 lines (490 loc) Β· 21 KB
/
mask.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
from nodes import SaveImage
import torch
import torchvision.transforms.v2 as T
import random
import folder_paths
import comfy.utils
from .image import ImageExpandBatch
from .utils import AnyType
import numpy as np
import scipy
from PIL import Image
from nodes import MAX_RESOLUTION
import math
any = AnyType("*")
class MaskBlur:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"mask": ("MASK",),
"amount": ("INT", { "default": 6, "min": 0, "max": 256, "step": 1, }),
"device": (["auto", "cpu", "gpu"],),
}
}
RETURN_TYPES = ("MASK",)
FUNCTION = "execute"
CATEGORY = "essentials/mask"
def execute(self, mask, amount, device):
if amount == 0:
return (mask,)
if "gpu" == device:
mask = mask.to(comfy.model_management.get_torch_device())
elif "cpu" == device:
mask = mask.to('cpu')
if amount % 2 == 0:
amount+= 1
if mask.dim() == 2:
mask = mask.unsqueeze(0)
mask = T.functional.gaussian_blur(mask.unsqueeze(1), amount).squeeze(1)
if "gpu" == device or "cpu" == device:
mask = mask.to(comfy.model_management.intermediate_device())
return(mask,)
class MaskFlip:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"mask": ("MASK",),
"axis": (["x", "y", "xy"],),
}
}
RETURN_TYPES = ("MASK",)
FUNCTION = "execute"
CATEGORY = "essentials/mask"
def execute(self, mask, axis):
if mask.dim() == 2:
mask = mask.unsqueeze(0)
dim = ()
if "y" in axis:
dim += (1,)
if "x" in axis:
dim += (2,)
mask = torch.flip(mask, dims=dim)
return(mask,)
class MaskPreview(SaveImage):
def __init__(self):
self.output_dir = folder_paths.get_temp_directory()
self.type = "temp"
self.prefix_append = "_temp_" + ''.join(random.choice("abcdefghijklmnopqrstupvxyz") for x in range(5))
self.compress_level = 4
@classmethod
def INPUT_TYPES(s):
return {
"required": {"mask": ("MASK",), },
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
}
FUNCTION = "execute"
CATEGORY = "essentials/mask"
def execute(self, mask, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
preview = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])).movedim(1, -1).expand(-1, -1, -1, 3)
return self.save_images(preview, filename_prefix, prompt, extra_pnginfo)
class MaskBatch:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"mask1": ("MASK",),
"mask2": ("MASK",),
}
}
RETURN_TYPES = ("MASK",)
FUNCTION = "execute"
CATEGORY = "essentials/mask batch"
def execute(self, mask1, mask2):
if mask1.shape[1:] != mask2.shape[1:]:
mask2 = comfy.utils.common_upscale(mask2.unsqueeze(1).expand(-1,3,-1,-1), mask1.shape[2], mask1.shape[1], upscale_method='bicubic', crop='center')[:,0,:,:]
return (torch.cat((mask1, mask2), dim=0),)
class MaskExpandBatch:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"mask": ("MASK",),
"size": ("INT", { "default": 16, "min": 1, "step": 1, }),
"method": (["expand", "repeat all", "repeat first", "repeat last"],)
}
}
RETURN_TYPES = ("MASK",)
FUNCTION = "execute"
CATEGORY = "essentials/mask batch"
def execute(self, mask, size, method):
return (ImageExpandBatch().execute(mask.unsqueeze(1).expand(-1,3,-1,-1), size, method)[0][:,0,:,:],)
class MaskBoundingBox:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"mask": ("MASK",),
"padding": ("INT", { "default": 0, "min": 0, "max": 4096, "step": 1, }),
"blur": ("INT", { "default": 0, "min": 0, "max": 256, "step": 1, }),
},
"optional": {
"image_optional": ("IMAGE",),
}
}
RETURN_TYPES = ("MASK", "IMAGE", "INT", "INT", "INT", "INT")
RETURN_NAMES = ("MASK", "IMAGE", "x", "y", "width", "height")
FUNCTION = "execute"
CATEGORY = "essentials/mask"
def execute(self, mask, padding, blur, image_optional=None):
if mask.dim() == 2:
mask = mask.unsqueeze(0)
if image_optional is None:
image_optional = mask.unsqueeze(3).repeat(1, 1, 1, 3)
# resize the image if it's not the same size as the mask
if image_optional.shape[1:] != mask.shape[1:]:
image_optional = comfy.utils.common_upscale(image_optional.permute([0,3,1,2]), mask.shape[2], mask.shape[1], upscale_method='bicubic', crop='center').permute([0,2,3,1])
# match batch size
if image_optional.shape[0] < mask.shape[0]:
image_optional = torch.cat((image_optional, image_optional[-1].unsqueeze(0).repeat(mask.shape[0]-image_optional.shape[0], 1, 1, 1)), dim=0)
elif image_optional.shape[0] > mask.shape[0]:
image_optional = image_optional[:mask.shape[0]]
# blur the mask
if blur > 0:
if blur % 2 == 0:
blur += 1
mask = T.functional.gaussian_blur(mask.unsqueeze(1), blur).squeeze(1)
_, y, x = torch.where(mask)
x1 = max(0, x.min().item() - padding)
x2 = min(mask.shape[2], x.max().item() + 1 + padding)
y1 = max(0, y.min().item() - padding)
y2 = min(mask.shape[1], y.max().item() + 1 + padding)
# crop the mask
mask = mask[:, y1:y2, x1:x2]
image_optional = image_optional[:, y1:y2, x1:x2, :]
return (mask, image_optional, x1, y1, x2 - x1, y2 - y1)
class MaskFromColor:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE", ),
"red": ("INT", { "default": 255, "min": 0, "max": 255, "step": 1, }),
"green": ("INT", { "default": 255, "min": 0, "max": 255, "step": 1, }),
"blue": ("INT", { "default": 255, "min": 0, "max": 255, "step": 1, }),
"threshold": ("INT", { "default": 0, "min": 0, "max": 127, "step": 1, }),
}
}
RETURN_TYPES = ("MASK",)
FUNCTION = "execute"
CATEGORY = "essentials/mask"
def execute(self, image, red, green, blue, threshold):
temp = (torch.clamp(image, 0, 1.0) * 255.0).round().to(torch.int)
color = torch.tensor([red, green, blue])
lower_bound = (color - threshold).clamp(min=0)
upper_bound = (color + threshold).clamp(max=255)
lower_bound = lower_bound.view(1, 1, 1, 3)
upper_bound = upper_bound.view(1, 1, 1, 3)
mask = (temp >= lower_bound) & (temp <= upper_bound)
mask = mask.all(dim=-1)
mask = mask.float()
return (mask, )
class MaskFromSegmentation:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE", ),
"segments": ("INT", { "default": 6, "min": 1, "max": 16, "step": 1, }),
"remove_isolated_pixels": ("INT", { "default": 0, "min": 0, "max": 32, "step": 1, }),
"remove_small_masks": ("FLOAT", { "default": 0.0, "min": 0., "max": 1., "step": 0.01, }),
"fill_holes": ("BOOLEAN", { "default": False }),
}
}
RETURN_TYPES = ("MASK",)
FUNCTION = "execute"
CATEGORY = "essentials/mask"
def execute(self, image, segments, remove_isolated_pixels, fill_holes, remove_small_masks):
im = image[0] # we only work on the first image in the batch
im = Image.fromarray((im * 255).to(torch.uint8).cpu().numpy(), mode="RGB")
im = im.quantize(palette=im.quantize(colors=segments), dither=Image.Dither.NONE)
im = torch.tensor(np.array(im.convert("RGB"))).float() / 255.0
colors = im.reshape(-1, im.shape[-1])
colors = torch.unique(colors, dim=0)
masks = []
for color in colors:
mask = (im == color).all(dim=-1).float()
# remove isolated pixels
if remove_isolated_pixels > 0:
mask = torch.from_numpy(scipy.ndimage.binary_opening(mask.cpu().numpy(), structure=np.ones((remove_isolated_pixels, remove_isolated_pixels))))
# fill holes
if fill_holes:
mask = torch.from_numpy(scipy.ndimage.binary_fill_holes(mask.cpu().numpy()))
# if the mask is too small, it's probably noise
if mask.sum() / (mask.shape[0]*mask.shape[1]) > remove_small_masks:
masks.append(mask)
if masks == []:
masks.append(torch.zeros_like(im)[:,:,0]) # return an empty mask if no masks were found, prevents errors
mask = torch.stack(masks, dim=0).float()
return (mask, )
class MaskFix:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"mask": ("MASK",),
"erode_dilate": ("INT", { "default": 0, "min": -256, "max": 256, "step": 1, }),
"fill_holes": ("INT", { "default": 0, "min": 0, "max": 128, "step": 1, }),
"remove_isolated_pixels": ("INT", { "default": 0, "min": 0, "max": 32, "step": 1, }),
"smooth": ("INT", { "default": 0, "min": 0, "max": 256, "step": 1, }),
"blur": ("INT", { "default": 0, "min": 0, "max": 256, "step": 1, }),
}
}
RETURN_TYPES = ("MASK",)
FUNCTION = "execute"
CATEGORY = "essentials/mask"
def execute(self, mask, erode_dilate, smooth, remove_isolated_pixels, blur, fill_holes):
masks = []
for m in mask:
# erode and dilate
if erode_dilate != 0:
if erode_dilate < 0:
m = torch.from_numpy(scipy.ndimage.grey_erosion(m.cpu().numpy(), size=(-erode_dilate, -erode_dilate)))
else:
m = torch.from_numpy(scipy.ndimage.grey_dilation(m.cpu().numpy(), size=(erode_dilate, erode_dilate)))
# fill holes
if fill_holes > 0:
#m = torch.from_numpy(scipy.ndimage.binary_fill_holes(m.cpu().numpy(), structure=np.ones((fill_holes,fill_holes)))).float()
m = torch.from_numpy(scipy.ndimage.grey_closing(m.cpu().numpy(), size=(fill_holes, fill_holes)))
# remove isolated pixels
if remove_isolated_pixels > 0:
m = torch.from_numpy(scipy.ndimage.grey_opening(m.cpu().numpy(), size=(remove_isolated_pixels, remove_isolated_pixels)))
# smooth the mask
if smooth > 0:
if smooth % 2 == 0:
smooth += 1
m = T.functional.gaussian_blur((m > 0.5).unsqueeze(0), smooth).squeeze(0)
# blur the mask
if blur > 0:
if blur % 2 == 0:
blur += 1
m = T.functional.gaussian_blur(m.float().unsqueeze(0), blur).squeeze(0)
masks.append(m.float())
masks = torch.stack(masks, dim=0).float()
return (masks, )
class MaskSmooth:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"mask": ("MASK",),
"amount": ("INT", { "default": 0, "min": 0, "max": 127, "step": 1, }),
}
}
RETURN_TYPES = ("MASK",)
FUNCTION = "execute"
CATEGORY = "essentials/mask"
def execute(self, mask, amount):
if amount == 0:
return (mask,)
if amount % 2 == 0:
amount += 1
mask = mask > 0.5
mask = T.functional.gaussian_blur(mask.unsqueeze(1), amount).squeeze(1).float()
return (mask,)
class MaskFromBatch:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"mask": ("MASK", ),
"start": ("INT", { "default": 0, "min": 0, "step": 1, }),
"length": ("INT", { "default": 1, "min": 1, "step": 1, }),
}
}
RETURN_TYPES = ("MASK",)
FUNCTION = "execute"
CATEGORY = "essentials/mask batch"
def execute(self, mask, start, length):
if length > mask.shape[0]:
length = mask.shape[0]
start = min(start, mask.shape[0]-1)
length = min(mask.shape[0]-start, length)
return (mask[start:start + length], )
class MaskFromList:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"width": ("INT", { "default": 32, "min": 0, "max": MAX_RESOLUTION, "step": 8, }),
"height": ("INT", { "default": 32, "min": 0, "max": MAX_RESOLUTION, "step": 8, }),
}, "optional": {
"values": (any, { "default": 0.0, "min": 0.0, "max": 1.0, }),
"str_values": ("STRING", { "default": "", "multiline": True, "placeholder": "0.0, 0.5, 1.0",}),
}
}
RETURN_TYPES = ("MASK",)
FUNCTION = "execute"
CATEGORY = "essentials/mask"
def execute(self, width, height, values=None, str_values=""):
out = []
if values is not None:
if not isinstance(values, list):
out = [values]
else:
out.extend([float(v) for v in values])
if str_values != "":
str_values = [float(v) for v in str_values.split(",")]
out.extend(str_values)
if out == []:
raise ValueError("No values provided")
out = torch.tensor(out).float().clamp(0.0, 1.0)
out = out.view(-1, 1, 1).expand(-1, height, width)
values = None
str_values = ""
return (out, )
class MaskFromRGBCMYBW:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE", ),
"threshold_r": ("FLOAT", { "default": 0.15, "min": 0.0, "max": 1, "step": 0.01, }),
"threshold_g": ("FLOAT", { "default": 0.15, "min": 0.0, "max": 1, "step": 0.01, }),
"threshold_b": ("FLOAT", { "default": 0.15, "min": 0.0, "max": 1, "step": 0.01, }),
}
}
RETURN_TYPES = ("MASK","MASK","MASK","MASK","MASK","MASK","MASK","MASK",)
RETURN_NAMES = ("red","green","blue","cyan","magenta","yellow","black","white",)
FUNCTION = "execute"
CATEGORY = "essentials/mask"
def execute(self, image, threshold_r, threshold_g, threshold_b):
red = ((image[..., 0] >= 1-threshold_r) & (image[..., 1] < threshold_g) & (image[..., 2] < threshold_b)).float()
green = ((image[..., 0] < threshold_r) & (image[..., 1] >= 1-threshold_g) & (image[..., 2] < threshold_b)).float()
blue = ((image[..., 0] < threshold_r) & (image[..., 1] < threshold_g) & (image[..., 2] >= 1-threshold_b)).float()
cyan = ((image[..., 0] < threshold_r) & (image[..., 1] >= 1-threshold_g) & (image[..., 2] >= 1-threshold_b)).float()
magenta = ((image[..., 0] >= 1-threshold_r) & (image[..., 1] < threshold_g) & (image[..., 2] > 1-threshold_b)).float()
yellow = ((image[..., 0] >= 1-threshold_r) & (image[..., 1] >= 1-threshold_g) & (image[..., 2] < threshold_b)).float()
black = ((image[..., 0] <= threshold_r) & (image[..., 1] <= threshold_g) & (image[..., 2] <= threshold_b)).float()
white = ((image[..., 0] >= 1-threshold_r) & (image[..., 1] >= 1-threshold_g) & (image[..., 2] >= 1-threshold_b)).float()
return (red, green, blue, cyan, magenta, yellow, black, white,)
class TransitionMask:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"width": ("INT", { "default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1, }),
"height": ("INT", { "default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1, }),
"frames": ("INT", { "default": 16, "min": 1, "max": 9999, "step": 1, }),
"start_frame": ("INT", { "default": 0, "min": 0, "step": 1, }),
"end_frame": ("INT", { "default": 9999, "min": 0, "step": 1, }),
"transition_type": (["horizontal slide", "vertical slide", "horizontal bar", "vertical bar", "center box", "horizontal door", "vertical door", "circle", "fade"],),
"timing_function": (["linear", "in", "out", "in-out"],)
}
}
RETURN_TYPES = ("MASK",)
FUNCTION = "execute"
CATEGORY = "essentials/mask"
def linear(self, i, t):
return i/t
def ease_in(self, i, t):
return pow(i/t, 2)
def ease_out(self, i, t):
return 1 - pow(1 - i/t, 2)
def ease_in_out(self, i, t):
if i < t/2:
return pow(i/(t/2), 2) / 2
else:
return 1 - pow(1 - (i - t/2)/(t/2), 2) / 2
def execute(self, width, height, frames, start_frame, end_frame, transition_type, timing_function):
if timing_function == 'in':
timing_function = self.ease_in
elif timing_function == 'out':
timing_function = self.ease_out
elif timing_function == 'in-out':
timing_function = self.ease_in_out
else:
timing_function = self.linear
out = []
end_frame = min(frames, end_frame)
transition = end_frame - start_frame
if start_frame > 0:
out = out + [torch.full((height, width), 0.0, dtype=torch.float32, device="cpu")] * start_frame
for i in range(transition):
frame = torch.full((height, width), 0.0, dtype=torch.float32, device="cpu")
progress = timing_function(i, transition-1)
if "horizontal slide" in transition_type:
pos = round(width*progress)
frame[:, :pos] = 1.0
elif "vertical slide" in transition_type:
pos = round(height*progress)
frame[:pos, :] = 1.0
elif "box" in transition_type:
box_w = round(width*progress)
box_h = round(height*progress)
x1 = (width - box_w) // 2
y1 = (height - box_h) // 2
x2 = x1 + box_w
y2 = y1 + box_h
frame[y1:y2, x1:x2] = 1.0
elif "circle" in transition_type:
radius = math.ceil(math.sqrt(pow(width,2)+pow(height,2))*progress/2)
c_x = width // 2
c_y = height // 2
# is this real life? Am I hallucinating?
x = torch.arange(0, width, dtype=torch.float32, device="cpu")
y = torch.arange(0, height, dtype=torch.float32, device="cpu")
y, x = torch.meshgrid((y, x), indexing="ij")
circle = ((x - c_x) ** 2 + (y - c_y) ** 2) <= (radius ** 2)
frame[circle] = 1.0
elif "horizontal bar" in transition_type:
bar = round(height*progress)
y1 = (height - bar) // 2
y2 = y1 + bar
frame[y1:y2, :] = 1.0
elif "vertical bar" in transition_type:
bar = round(width*progress)
x1 = (width - bar) // 2
x2 = x1 + bar
frame[:, x1:x2] = 1.0
elif "horizontal door" in transition_type:
bar = math.ceil(height*progress/2)
if bar > 0:
frame[:bar, :] = 1.0
frame[-bar:, :] = 1.0
elif "vertical door" in transition_type:
bar = math.ceil(width*progress/2)
if bar > 0:
frame[:, :bar] = 1.0
frame[:, -bar:] = 1.0
elif "fade" in transition_type:
frame[:,:] = progress
out.append(frame)
if end_frame < frames:
out = out + [torch.full((height, width), 1.0, dtype=torch.float32, device="cpu")] * (frames - end_frame)
out = torch.stack(out, dim=0)
return (out, )
MASK_CLASS_MAPPINGS = {
"MaskBlur+": MaskBlur,
"MaskBoundingBox+": MaskBoundingBox,
"MaskFix+": MaskFix,
"MaskFlip+": MaskFlip,
"MaskFromColor+": MaskFromColor,
"MaskFromList+": MaskFromList,
"MaskFromRGBCMYBW+": MaskFromRGBCMYBW,
"MaskFromSegmentation+": MaskFromSegmentation,
"MaskPreview+": MaskPreview,
"MaskSmooth+": MaskSmooth,
"TransitionMask+": TransitionMask,
# Batch
"MaskBatch+": MaskBatch,
"MaskExpandBatch+": MaskExpandBatch,
"MaskFromBatch+": MaskFromBatch,
}
MASK_NAME_MAPPINGS = {
"MaskBlur+": "π§ Mask Blur",
"MaskFix+": "π§ Mask Fix",
"MaskFlip+": "π§ Mask Flip",
"MaskFromColor+": "π§ Mask From Color",
"MaskFromList+": "π§ Mask From List",
"MaskFromRGBCMYBW+": "π§ Mask From RGB/CMY/BW",
"MaskFromSegmentation+": "π§ Mask From Segmentation",
"MaskPreview+": "π§ Mask Preview",
"MaskBoundingBox+": "π§ Mask Bounding Box",
"MaskSmooth+": "π§ Mask Smooth",
"TransitionMask+": "π§ Transition Mask",
"MaskBatch+": "π§ Mask Batch",
"MaskExpandBatch+": "π§ Mask Expand Batch",
"MaskFromBatch+": "π§ Mask From Batch",
}