Skip to content

Latest commit

 

History

History
130 lines (103 loc) · 5.42 KB

README.md

File metadata and controls

130 lines (103 loc) · 5.42 KB

Prepare

To start with

To use codes in this directory, you need all submodules correctly configured. Every thing should be fine if you clone this repo with

git clone --recursive https://github.com/cure-lab/ContraNet

Otherwise, please use the following command

git submodule update --init --recursive

All the softlinks in whitebox_attacks/lib should locate their origins automatically.

Prepare pre-trained cGAN

Download pretrained cGAN and classifier as indicated in top-level readme.md to whitebox_attacks/pretrain, the structure is as follows

pretrain/
├── cifar10_adding_noise_cGAN_112000
│   ├── dis.pth
│   ├── model=E-current-weights-step=112000.pth
│   ├── model=G-current-weights-step=112000.pth
│   └── model=V-current-weights-step=112000.pth
├── classifier
│   ├── Cifar10_ResNet50_214_95.27_m.pth
│   ├── densenet169.pt
│   ├── gtsrb_ResNet18_E87_97.85.pth
│   └── MNIST_Net.pth
├── gtsrb_cGAN
│   ├── dis.pth
│   ├── model=E-current-weights-step=90000.pth
│   ├── model=G-current-weights-step=90000.pth
│   └── model=V-current-weights-step=90000.pth
└── MNIST_cGAN
    ├──dis.pth
    ├── model=D-current-weights-step=14000.pth
    ├── model=E-current-weights-step=14000.pth
    ├── model=G-current-weights-step=14000.pth
    └── model=V-current-weights-step=14000.pth

Training of DMM

If you want to train our DMM model, you can follow the procedure as follows. If you only want to test our methods, we have provided pre-trained weight, please check next section for usage.

We provide pre-trained model and log for better understanding how our code works: Google Drive

The directory structure should be as follows:

whitebox_attacks/
├── results
|   ├── MobileNetV2-cifar10-2021-04-10-11-21-11
│   │       ├── MobileNetV2.pth
│   │       ├── MobileNetV2_bestE3acc95.82.pth
│   │       ├── args.json
│   │       ├── lpmlpMix-10.log
│   │       └── tensorboard
│ 	└── cifar10AEPgd2
│           └── MobileNetV2-dense.01E.2_112000cifar10CondPgd-2021-05-24-12-35-50
│               ├── MobileNetV2.pth
│               ├── MobileNetV2_AEbestE91V97.48.pth
│               ├── MobileNetV2_bestE77V92.18.pth
│               ├── [base]MobileNetV2-dense.01E.2_112000cifar10CondPgd-2021-05-18-20-47-08
│               ├── args.json
│               ├── lpmlpMix-Dense.01PgdE.2_112000.log
│               └── tensorboard
└── pretrain
    └── done
        ├── MobileNetV2-256_32_2cifar10Gen-2021-04-08-21-32-16
        └── MobileNetV2-512_32_3cifar10-2021-04-08-21-03-43

The whole training procedures of DMM are as follows:

  1. train feature extractor with deep metric loss for original image

    • run lpDMLpretrain.py
    • results and logs are in pretrain/done/MobileNetV2-512_32_3cifar10-2021-04-08-21-03-43
    • please check pretrain/done/MobileNetV2-.../args.json for command args
  2. train feature extractor with deep metric loss for generated image

    • run lpDMLpretrain.py
    • results and logs are in pretrain/done/MobileNetV2-256_32_2cifar10Gen-2021-04-08-21-32-16
    • please check pretrain/done/MobileNetV2-.../args.json for command args
  3. load the weights from previous steps and train a MLP

    • run lpmlpMix.py
    • results and logs are in results/MobileNetV2-cifar10-2021-04-10-11-21-11
    • please check results/MobileNetV2-.../args.json for command args
  4. to further improve the performance, we also use AE for fine-tuning.

    • run lpmlpMix.py with --useAE AE
    • results and logs are in results/cifar10AEPgd2/MobileNetV2-dense.01E.2_112000cifar10CondPgd-2021-05-24-12-35-50
    • please check results/cifar10AEPgd2/MobileNetV2-.../args.json for command args
    • Note: due to time limit of our GPU server, we have to resume after 50 epochs.

The weight file from step4 is the final model weight we used for test. Md5sum for MobileNetV2_AEbestE91V97.48.pth: 232802a68f57da260c0e6b8d7dc87c5b.

Whitebox Test

The procedures to test the performance with whitebox AEs are as follows

  1. Download pretrained DMM to ./results
results/
├── cifar10AEPgd2
│   └── MobileNetV2-dense.01E.2_112000cifar10CondPgd-2021-05-24-12-35-50
│       └── MobileNetV2_91V97.48.pth
├── gtsrbAEPgd
│   └── MobileNetV2-.01gtsrbCondPgd-2021-05-04-15-12-58
│       └── MobileNetV2_33V98.08.pth
└── MnistAEPgd
    └── MobileNetV2-C.01MNISTCondPgd-2021-05-06-15-04-16
        └── MobileNetV2_59V99.92.pth
  1. Setup Python environment as environment.yaml.

  2. Generate whitebox samples. See scripts/gen_whitebox_sample.sh.
    Note that the output information is NOT the final results because we didn't set correct threshold here. If you have other generated AEs, you may skip this step, but please make sure to keep the data format the same as ours.

  3. Plot ROC curve and get the threshold at FPR@95%. see scripts/roc_threshold.sh.

  4. Finally, TPR and Detector's Accuracy can be tested through scripts/test_whitebox.sh. Furthre, AutoAttack whitebox results can be tested with test/eval_detectorDictAA.py.