-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathlpmlpMix.py
607 lines (568 loc) · 25.3 KB
/
lpmlpMix.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
import sys
sys.path.append(".")
sys.path.append("lib")
from models.densenet import densenet169
import misc.utils as utils
from misc.load_dataset import LoadDataset
import models.MobileNetV2 as MobileNet
from datetime import datetime
from torch.utils.data import DataLoader
import argparse
from models.resnet import *
from models.mnist2layer import *
import json
import os
import torch
import torch.nn as nn
import models.GANv2 as GANv2
from models.pgdWrapper import Pgd
from models.fgsmWrapper import Fgsm
from models.preGenWrapper import PreGen
from torchvision.transforms import Normalize
from lib.robustbench.utils import load_model as load_AA_model
from torch.utils.tensorboard import SummaryWriter
import tensorflow as tf
import tensorboard as tb
tf.io.gfile = tb.compat.tensorflow_stub.io.gfile
def train(orimodel, genmodel, mlpModel, loss_func, device, loader, optim, epoch,
encoder, vae, gen, inference_m, args, writer, policy="",
cond_optim=None, attack=None, norm=None):
mlpModel.train()
orimodel.query_features()
genmodel.query_features()
if args.cond:
orimodel.train()
genmodel.train()
else:
orimodel.eval()
genmodel.eval()
total_loss, total_num = 0.0, 0
for img, classId in loader:
if norm is not None:
img_ori = norm(img)
else:
img_ori = img
img_ori, img_pos, img_neg, y, wrong_y = utils.generate1(
img_ori, classId, device, encoder, vae, gen, policy=policy,
class_num=args.class_num)
aux_img = None
if attack is not None:
x_adv_suss, pred_y_suss, y_suss, x_adv_fail, y_fail = \
attack.adv_by_suss(img, classId, device, training=True)
if x_adv_suss.shape[0] > 0:
x_adv_suss = norm(x_adv_suss)
x_adv_ori, x_adv_pos, x_adv_neg, y_adv, wrong_y_adv = \
utils.gen_with_pn(
x_adv_suss, y_suss, pred_y_suss, device, encoder, vae, gen)
img_ori = torch.cat([img_ori, x_adv_ori], dim=0)
img_pos = torch.cat([img_pos, x_adv_pos], dim=0)
img_neg = torch.cat([img_neg, x_adv_neg], dim=0)
y = torch.cat([y, y_adv], dim=0)
wrong_y = torch.cat([wrong_y, wrong_y_adv], dim=0)
# This is for failed attack samples, i.e. y == pred_y
if x_adv_fail.shape[0] > 0:
x_adv_fail = norm(x_adv_fail)
aux_img, aux_pos, aux_y = utils.gen_with_label(
x_adv_fail, y_fail, device, encoder, vae, gen)
if args.cond:
for opti in cond_optim:
opti.zero_grad()
optim.zero_grad()
feat_emb, _ = orimodel(img_ori)
feat_pos, _ = genmodel(img_pos)
feat_neg, _ = genmodel(img_neg)
if aux_img is not None:
feat_aux_emb, _ = orimodel(aux_img)
feat_aux_pos, _ = genmodel(aux_pos)
aux_data = {
"feat_aux_emb": feat_aux_emb,
"feat_aux_pos": feat_aux_pos,
"aux_y": aux_y,
}
else:
aux_data = None
gt_pair, pred = inference_m(
mlpModel, feat_emb, feat_pos, feat_neg, y, wrong_y,
aux_data=aux_data)
loss = loss_func(pred, gt_pair.cuda())
loss.backward()
optim.step()
if args.cond:
for opti in cond_optim:
opti.step()
total_num += loader.batch_size
total_loss += loss.item() * loader.batch_size
train_lr = optim.param_groups[0]['lr']
global train_iter
if train_iter % 50 == 0 or args.tag.find("debug") != -1:
print("E:[{}/{}], lr:{:.6f}, L:{:.4f}".format(
epoch, args.epochs, train_lr, total_loss / total_num))
if args.cond:
print("DML lr: {}".format(
[opti.param_groups[0]['lr'] for opti in cond_optim]))
writer.add_scalar('Train/lr', train_lr, train_iter)
writer.add_scalar('Train/loss', loss.item(), train_iter)
train_iter += 1
if args.tag.find("debug") != -1:
break
if attack is not None:
attack.print_stat()
writer.add_scalar('Train/EAvgLoss', total_loss / total_num, epoch)
return total_loss / total_num
def test(orimodel, genmodel, mlpModel, device, dataset, encoder, vae, gen,
inference_m, writer, norm=None):
global test_iter
mlpModel.eval()
orimodel.eval()
genmodel.eval()
orimodel.query_features()
genmodel.query_features()
pred_list, pos_pred_list, neg_pred_list = [], [], []
with torch.no_grad():
for img, classId in dataset:
if norm is not None:
img = norm(img)
img, img_pos, img_neg, y, wrong_y = utils.generate1(
img, classId, device, encoder, vae, gen, next=True,
class_num=args.class_num)
feat_emb, _ = orimodel(img)
feat_pos, _ = genmodel(img_pos)
feat_neg, _ = genmodel(img_neg)
gt_pair, pred = inference_m(
mlpModel, feat_emb, feat_pos, feat_neg, y, wrong_y, test=True)
pred_y = torch.argmax(pred, dim=1).cpu()
pred_list.append((pred_y == gt_pair).cpu())
pos_pred_list.append(pred_y[torch.where(gt_pair == 1)] == 1)
neg_pred_list.append(pred_y[torch.where(gt_pair == 0)] == 0)
pred_list = torch.cat(pred_list)
pos_pred_list = torch.cat(pos_pred_list)
neg_pred_list = torch.cat(neg_pred_list)
acc = torch.sum(pred_list) / len(pred_list)
print("MLP acc: {}".format(acc))
pos_acc = torch.sum(pos_pred_list) / len(pos_pred_list)
neg_acc = torch.sum(neg_pred_list) / len(neg_pred_list)
writer.add_scalar('TestEmb/mlpAcc', acc.item(), test_iter)
writer.add_scalar('TestEmb/mlpAcc_pos', pos_acc.item(), test_iter)
writer.add_scalar('TestEmb/mlpAcc_neg', neg_acc.item(), test_iter)
test_iter += 1
return acc
def cache_batch_AE(idx, dataset, attack, norm):
global suss_AE_batch, fail_AE_batch
if suss_AE_batch is None:
print(">>>> test AE no cache, generating for the first time.")
suss_AE_batch, fail_AE_batch = [], []
for img, classId in dataset:
x_adv_suss, pred_y_suss, x_adv_fail, pred_y_fail = \
attack.adv_by_suss(img, classId, device)
x_adv_suss = norm(x_adv_suss)
x_adv_fail = norm(x_adv_fail)
suss_AE_batch.append((x_adv_suss.cpu(), pred_y_suss.cpu()))
fail_AE_batch.append((x_adv_fail.cpu(), pred_y_fail.cpu()))
return suss_AE_batch[idx], fail_AE_batch[idx]
def testAE(orimodel, genmodel, mlpModel, device, dataset, encoder, vae, gen,
writer, attack, norm, feature_m=False):
global test_iter, suss_AE_batch, fail_AE_batch
mlpModel.eval()
orimodel.eval()
genmodel.eval()
orimodel.query_features()
genmodel.query_features()
if feature_m:
inference_m = utils.inference_2_mlp_m
else:
inference_m = utils.inference_2_mlp
pred_list, pos_pred_list, neg_pred_list = [], [], []
with torch.no_grad():
for idx, (img, classId) in enumerate(dataset):
(x_adv_suss, pred_y_suss), (x_adv_fail, pred_y_fail) = \
cache_batch_AE(idx, dataset, attack, norm)
assert img.shape[0] == x_adv_suss.shape[0] + x_adv_fail.shape[0]
if len(x_adv_suss) > 0:
x_adv_neg, x_adv_neg_gen, y_neg = utils.gen_with_label(
x_adv_suss, pred_y_suss, device, encoder, vae, gen)
feat_emb_neg, _ = orimodel(x_adv_neg)
feat_neg, _ = genmodel(x_adv_neg_gen)
neg_gt, neg_pred = inference_m(
mlpModel, feat_emb_neg, feat_neg, y_neg, pos=False,
test=True)
else:
neg_gt = torch.Tensor()
neg_pred = torch.Tensor().to(device)
if len(x_adv_fail) > 0:
x_adv_pos, x_adv_pos_gen, y_pos = utils.gen_with_label(
x_adv_fail, pred_y_fail, device, encoder, vae, gen)
feat_emb_pos, _ = orimodel(x_adv_pos)
feat_pos, _ = genmodel(x_adv_pos_gen)
pos_gt, pos_pred = inference_m(
mlpModel, feat_emb_pos, feat_pos, y_pos, pos=True,
test=True)
else:
pos_gt = torch.Tensor()
pos_pred = torch.Tensor().to(device)
gt_pair = torch.cat([pos_gt, neg_gt], dim=0)
pred = torch.cat([pos_pred, neg_pred], dim=0)
pred_y = torch.argmax(pred, dim=1).cpu()
pred_list.append((pred_y == gt_pair).cpu())
pos_pred_list.append(pred_y[torch.where(gt_pair == 1)] == 1)
neg_pred_list.append(pred_y[torch.where(gt_pair == 0)] == 0)
pred_list = torch.cat(pred_list)
pos_pred_list = torch.cat(pos_pred_list)
neg_pred_list = torch.cat(neg_pred_list)
acc = torch.sum(pred_list) / len(pred_list)
print("AEMLP acc: {}".format(acc))
pos_acc = torch.sum(pos_pred_list) / len(pos_pred_list)
neg_acc = torch.sum(neg_pred_list) / len(neg_pred_list)
writer.add_scalar('TestEmb/AEmlpAcc', acc.item(), test_iter)
writer.add_scalar('TestEmb/AEmlpAcc_pos', pos_acc.item(), test_iter)
writer.add_scalar('TestEmb/AEmlpAcc_neg', neg_acc.item(), test_iter)
return acc
test_iter = 0
train_iter = 0
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Train MoCo on GTSRB')
parser.add_argument('-a', '--arch', default='MobileNetV2', type=str)
parser.add_argument('-c', '--config_path', type=str,
default='./config/configsCifar10.json')
parser.add_argument('--tag', default='', type=str)
# lr: 0.06 for batch 512 (or 0.03 for batch 256)
parser.add_argument(
'--lr', '--learning-rate', default=0.06, type=float, metavar='LR',
help='initial learning rate', dest='lr')
parser.add_argument(
'--drop_p', default=0.1, type=float, metavar='LR',
help='MLP drop rate', dest='drop_p')
parser.add_argument(
'--epochs', default=100, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument(
'--feature_m', action='store_true', help='use the minus of inputs')
parser.add_argument(
'--useAE', type=str, default=None, help='add the AE to inputs')
parser.add_argument(
'--ae_epsilon', type=float, default=0.08, help='epsilon for AEs')
parser.add_argument(
'--AEPreGen', type=str, default=None, help='file to load pre_gen AEs')
parser.add_argument(
'--cond', action='store_true',
help='After MLP pretrain, train end-to-end')
parser.add_argument(
'--device_id', default=[], nargs='*', type=int, help='cuda device ids')
parser.add_argument('--cos', default=-1, type=int,
help='use cosine lr schedule')
parser.add_argument('--batch_size', default=64, type=int,
metavar='N', help='mini-batch size')
parser.add_argument('--wd', default=5e-4, type=float,
metavar='W', help='weight decay')
# utils
parser.add_argument(
'--pretrain', default='', type=str, metavar='PATH',
help='path to pretrain checkpoint (default: none)')
parser.add_argument(
'--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument(
'--results_dir', default='./results', type=str, metavar='PATH',
help='path to cache (default: none)')
args = parser.parse_args()
if args.cos == -1:
args.cos = args.epochs
if args.config_path is not None:
with open(args.config_path) as f:
model_configs = json.load(f)
train_configs = vars(args)
else:
raise NotImplementedError
cfgs = utils.dict2clsattr(train_configs, model_configs)
args.dataset_name = cfgs.dataset_name
args.data_path = cfgs.data_path
args.img_size = cfgs.img_size
args.class_num = cfgs.num_classes
if args.dataset_name == "cifar10":
args.feature_num = 12
elif args.dataset_name == "MNIST":
args.feature_num = 12
elif args.dataset_name == "cifar100":
args.feature_num = 120
elif args.dataset_name == "tiny_imagenet":
args.feature_num = 240
elif args.dataset_name == "gtsrb":
args.feature_num = 50
# policy = "color,translation,cutout"
policy = ""
print("Using data augmentation policy: {}".format(policy))
assert args.arch in ["MobileNetV2"]
args.tag += cfgs.dataset_name
if args.cond:
args.tag += "Cond"
assert args.pretrain != ""
if args.useAE:
assert args.useAE in ["Fgsm", "Pgd"], "only support Fgsm or Pgd attack"
args.tag += args.useAE
if args.AEPreGen is not None:
args.tag += "_G"
if args.tag != '':
args.results_dir = os.path.join(
args.results_dir, '{}-{}-'.format(args.arch, args.tag) +
datetime.now().strftime("%Y-%m-%d-%H-%M-%S"))
else:
args.results_dir = os.path.join(
args.results_dir, '{}-'.format(args.arch) +
datetime.now().strftime("%Y-%m-%d-%H-%M-%S")
)
print(args)
device = torch.device("cuda")
print(' prepared models...')
# initialize models.
gen = GANv2.Generator(
cfgs.z_dim, cfgs.shared_dim, cfgs.img_size, cfgs.g_conv_dim, cfgs.
g_spectral_norm, cfgs.attention, cfgs.attention_after_nth_gen_block,
cfgs.activation_fn, cfgs.conditional_strategy, cfgs.num_classes, cfgs.
g_init, cfgs.G_depth, False)
encoder = GANv2.Encoder(isize=cfgs.img_size, nz=cfgs.z_dim, nc=3, ndf=64)
vae = GANv2.VAE(isize=cfgs.img_size, nz=cfgs.z_dim)
gen.load_state_dict(torch.load(cfgs.G_weights)['state_dict'])
print("gen loaded from: {}".format(cfgs.G_weights))
encoder.load_state_dict(torch.load(cfgs.E_weights)['state_dict'])
print("encoder loaded from: {}".format(cfgs.E_weights))
vae.load_state_dict(torch.load(cfgs.V_weights)['state_dict'])
print("vae loaded from: {}".format(cfgs.V_weights))
gen.eval().cuda()
encoder.eval().cuda()
vae.eval().cuda()
print(' preparing dataset...')
norm = False if args.useAE else True
train_data = LoadDataset(
args.dataset_name, args.data_path, train=True, download=False,
resize_size=args.img_size, hdf5_path=None, random_flip=True, norm=norm)
test_data = LoadDataset(
args.dataset_name, args.data_path, train=False, download=False,
resize_size=args.img_size, hdf5_path=None, random_flip=False, norm=norm)
if args.dataset_name == "tiny_imagenet":
for key, value in train_data.data.class_to_idx.items():
assert value == test_data.data.class_to_idx[key]
train_loader = DataLoader(
train_data, batch_size=args.batch_size, shuffle=True, num_workers=4,
pin_memory=True, drop_last=True)
test_loader = DataLoader(
test_data, batch_size=args.batch_size, shuffle=False, num_workers=4,
pin_memory=True)
print(' preparing utils...')
if args.feature_m:
inference_m = utils.inference_mlp_m
else:
inference_m = utils.inference_mlp
if args.useAE:
print(' preparing attack...')
weight_key = None
if args.dataset_name == "cifar10":
if hasattr(cfgs, "cls_name"):
if cfgs.cls_name == "densenet":
classifier = densenet169()
weight_key = ""
cls_norm = [(0.4914, 0.4822, 0.4465),
(0.2023, 0.1994, 0.2010)]
else:
classifier = load_AA_model(
model_name=cfgs.cls_name, dataset=args.dataset_name,
threat_model='Linf')
cls_norm = [(0., 0., 0.), (1., 1., 1.)]
print("Classifier using: {}".format(cfgs.cls_name))
else:
classifier = ResNet50(num_classes=args.class_num)
weight_key = "net"
cls_norm = [(0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)]
elif args.dataset_name == "gtsrb":
classifier = ResNet18(num_classes=args.class_num)
classifier.load_state_dict(torch.load(cfgs.cls_path)['model'])
cls_norm = [(0.3337, 0.3064, 0.3171), (0.2672, 0.2564, 0.2629)]
elif args.dataset_name == "MNIST":
classifier = Mnist2LayerNet()
classifier.load_state_dict(torch.load(cfgs.cls_path)['model'])
cls_norm = [(0.13, 0.13, 0.13), (0.31, 0.31, 0.31)]
else:
raise NotImplementedError()
if weight_key is "":
classifier.load_state_dict(torch.load(cfgs.cls_path))
elif weight_key is not None:
classifier.load_state_dict(torch.load(cfgs.cls_path)[weight_key])
print("Classifier loaded from: {}".format(cfgs.cls_path))
classifier.cuda()
cri = torch.nn.CrossEntropyLoss()
if args.AEPreGen is None:
attacker = eval("{}(classifier, cri, cls_norm, max_eps={})".format(
args.useAE, args.ae_epsilon))
print("Attacker loaded for: {} with eps={}".format(
args.useAE, args.ae_epsilon))
else:
all_AE_paths = args.AEPreGen.strip(";").split(";")
attacker = PreGen(classifier, cri, cls_norm,
all_AE_paths, args.batch_size)
print("Attacker PreGen loaded from: {}".format(all_AE_paths))
data_norm = Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
else:
attacker = None
data_norm = None
print(' preparing model...')
mlploss = nn.CrossEntropyLoss()
device_ids = args.device_id
orimodel = eval("MobileNet.{}(n_class={})".format(
args.arch, args.feature_num))
orimodel = orimodel.cuda()
genmodel = eval("MobileNet.{}(n_class={})".format(
args.arch, args.feature_num))
genmodel = genmodel.cuda()
if args.feature_m:
mlpModel = MobileNet.MLP(
orimodel.last_channel, p=args.drop_p, class_num=args.class_num)
else:
mlpModel = MobileNet.MLP(
orimodel.last_channel * 2, p=args.drop_p, class_num=args.class_num)
mlpModel = mlpModel.cuda()
# define optimizer
optimizer = torch.optim.SGD(
mlpModel.parameters(), lr=args.lr, weight_decay=args.wd, momentum=0.9)
# set aux opt and scheuler for cond
if args.cond:
ori_Optimizer = torch.optim.SGD(
orimodel.parameters(),
lr=args.lr, weight_decay=args.wd, momentum=0.9)
gen_Optimizer = torch.optim.SGD(
genmodel.parameters(),
lr=args.lr, weight_decay=args.wd, momentum=0.9)
cond_optim = [ori_Optimizer, gen_Optimizer]
else:
cond_optim = None
# load model if resume or pretrain
epoch_start = 1
optimizer_loaded = False
if args.resume is not '':
load_path = args.resume
elif args.pretrain is not '':
load_path = args.pretrain
else:
load_path = None
if load_path:
checkpoint = torch.load(load_path)
mlpModel.load_state_dict(checkpoint['mlp_state'])
print('Loaded from: {}'.format(load_path))
if args.resume:
optimizer.load_state_dict(checkpoint['optimizer'])
ori_Optimizer.load_state_dict(checkpoint["ori_optim"])
gen_Optimizer.load_state_dict(checkpoint["gen_optim"])
epoch_start = checkpoint['epoch'] + 1
print("resuming optimizer from {}, will start from E{}".format(
load_path, epoch_start))
orimodel.load_state_dict(checkpoint['ori_state'])
print("Loaded orimodel from: {}".format(load_path))
genmodel.load_state_dict(checkpoint['gen_state'])
print("Loaded genmodel from: {}".format(load_path))
else:
checkpoint = torch.load(cfgs.ori_path)
orimodel.load_state_dict(checkpoint['state_dict'])
print("Loaded orimodel from: {}".format(cfgs.ori_path))
checkpoint = torch.load(cfgs.gen_path)
genmodel.load_state_dict(checkpoint['state_dict'])
print("Loaded genmodel from: {}".format(cfgs.gen_path))
orimodel.eval()
genmodel.eval()
if args.resume:
if args.cond:
ori_lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
ori_Optimizer, args.cos, eta_min=1e-6,
last_epoch=epoch_start - 1
)
gen_lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
gen_Optimizer, args.cos, eta_min=1e-6,
last_epoch=epoch_start - 1
)
else:
ori_lr_scheduler = None
gen_lr_scheduler = None
lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
optimizer, args.cos, eta_min=1e-6,
last_epoch=epoch_start - 1
)
else:
if args.cond:
epoch_start = 1
ori_lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
ori_Optimizer, args.cos, eta_min=1e-6
)
gen_lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
gen_Optimizer, args.cos, eta_min=1e-6
)
else:
ori_lr_scheduler = None
gen_lr_scheduler = None
lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
optimizer, args.cos, eta_min=1e-6
)
# gpu parallel
if len(device_ids) > 0:
gen = torch.nn.DataParallel(gen, device_ids)
encoder = torch.nn.DataParallel(encoder, device_ids)
vae = torch.nn.DataParallel(vae, device_ids)
orimodel = torch.nn.DataParallel(orimodel, device_ids)
genmodel = torch.nn.DataParallel(genmodel, device_ids)
mlpModel = torch.nn.DataParallel(mlpModel, device_ids)
orimodel.query_features = orimodel.module.query_features
genmodel.query_features = genmodel.module.query_features
# logging
results = {'train_loss': [], 'test_acc@1': []}
if not os.path.exists(args.results_dir):
os.mkdir(args.results_dir)
# dump args
with open(args.results_dir + '/args.json', 'w') as fid:
json.dump(args.__dict__, fid, indent=2)
writer = SummaryWriter(os.path.join(args.results_dir, "tensorboard"))
# training loop
best_prec_at_1 = 0
best_AE_at_1 = 0
train_iter = epoch_start * len(train_data) // args.batch_size
test_iter = epoch_start
suss_AE_batch, fail_AE_batch = None, None
if load_path:
if args.useAE:
acc_AE = testAE(
orimodel, genmodel, mlpModel, device, test_loader, encoder, vae,
gen, writer, attacker, data_norm, feature_m=args.feature_m)
best_AE_at_1 = acc_AE * 100
acc = test(
orimodel, genmodel, mlpModel, device, test_loader, encoder, vae,
gen, inference_m, writer, data_norm)
best_prec_at_1 = acc * 100
print("Start Training ...")
for epoch in range(epoch_start, args.epochs + 1):
train(orimodel, genmodel, mlpModel, mlploss, device, train_loader,
optimizer, epoch, encoder, vae, gen, inference_m, args, writer,
policy, cond_optim=cond_optim, attack=attacker, norm=data_norm)
lr_scheduler.step()
if args.cond:
ori_lr_scheduler.step()
gen_lr_scheduler.step()
params = {'epoch': epoch, 'optimizer': optimizer.state_dict(), }
if device_ids == []:
params['ori_state'] = orimodel.state_dict()
params['gen_state'] = genmodel.state_dict()
params['mlp_state'] = mlpModel.state_dict()
else:
params['ori_state'] = orimodel.module.state_dict()
params['gen_state'] = genmodel.module.state_dict()
params['mlp_state'] = mlpModel.module.state_dict()
if args.cond:
params['ori_optim'] = ori_Optimizer.state_dict()
params['gen_optim'] = gen_Optimizer.state_dict()
torch.save(params, args.results_dir + '/{}.pth'.format(args.arch))
acc = test(orimodel, genmodel, mlpModel, device, test_loader, encoder,
vae, gen, inference_m, writer, data_norm)
best_prec_at_1 = utils.save_best(best_prec_at_1, "best", acc * 100,
params, epoch, args.arch,
args.results_dir)
if args.useAE:
acc_AE = testAE(orimodel, genmodel, mlpModel, device, test_loader,
encoder, vae, gen, writer, attacker, data_norm,
feature_m=args.feature_m)
best_AE_at_1 = utils.save_best(best_AE_at_1, "AEbest", acc_AE * 100,
params, epoch, args.arch,
args.results_dir)
del params