We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
pycolmap._core.Camera.model_id
python3 -m hloc.pipelines.Aachen.pipeline
Configs for feature extractors: {'cosplace': {'model': {'name': 'cosplace'}, 'output': 'global-feats-cosplace', 'preprocessing': {'resize_max': 1024}}, 'd2net-ss': {'model': {'multiscale': False, 'name': 'd2net'}, 'output': 'feats-d2net-ss', 'preprocessing': {'grayscale': False, 'resize_max': 1600}}, 'dir': {'model': {'name': 'dir'}, 'output': 'global-feats-dir', 'preprocessing': {'resize_max': 1024}}, 'disk': {'model': {'max_keypoints': 5000, 'name': 'disk'}, 'output': 'feats-disk', 'preprocessing': {'grayscale': False, 'resize_max': 1600}}, 'netvlad': {'model': {'name': 'netvlad'}, 'output': 'global-feats-netvlad', 'preprocessing': {'resize_max': 1024}}, 'openibl': {'model': {'name': 'openibl'}, 'output': 'global-feats-openibl', 'preprocessing': {'resize_max': 1024}}, 'r2d2': {'model': {'max_keypoints': 5000, 'name': 'r2d2'}, 'output': 'feats-r2d2-n5000-r1024', 'preprocessing': {'grayscale': False, 'resize_max': 1024}}, 'sift': {'model': {'name': 'dog'}, 'output': 'feats-sift', 'preprocessing': {'grayscale': True, 'resize_max': 1600}}, 'sosnet': {'model': {'descriptor': 'sosnet', 'name': 'dog'}, 'output': 'feats-sosnet', 'preprocessing': {'grayscale': True, 'resize_max': 1600}}, 'superpoint_aachen': {'model': {'max_keypoints': 4096, 'name': 'superpoint', 'nms_radius': 3}, 'output': 'feats-superpoint-n4096-r1024', 'preprocessing': {'grayscale': True, 'resize_max': 1024}}, 'superpoint_inloc': {'model': {'max_keypoints': 4096, 'name': 'superpoint', 'nms_radius': 4}, 'output': 'feats-superpoint-n4096-r1600', 'preprocessing': {'grayscale': True, 'resize_max': 1600}}, 'superpoint_max': {'model': {'max_keypoints': 4096, 'name': 'superpoint', 'nms_radius': 3}, 'output': 'feats-superpoint-n4096-rmax1600', 'preprocessing': {'grayscale': True, 'resize_force': True, 'resize_max': 1600}}} Configs for feature matchers: {'NN-mutual': {'model': {'do_mutual_check': True, 'name': 'nearest_neighbor'}, 'output': 'matches-NN-mutual'}, 'NN-ratio': {'model': {'do_mutual_check': True, 'name': 'nearest_neighbor', 'ratio_threshold': 0.8}, 'output': 'matches-NN-mutual-ratio.8'}, 'NN-superpoint': {'model': {'distance_threshold': 0.7, 'do_mutual_check': True, 'name': 'nearest_neighbor'}, 'output': 'matches-NN-mutual-dist.7'}, 'adalam': {'model': {'name': 'adalam'}, 'output': 'matches-adalam'}, 'disk+lightglue': {'model': {'features': 'disk', 'name': 'lightglue'}, 'output': 'matches-disk-lightglue'}, 'superglue': {'model': {'name': 'superglue', 'sinkhorn_iterations': 50, 'weights': 'outdoor'}, 'output': 'matches-superglue'}, 'superglue-fast': {'model': {'name': 'superglue', 'sinkhorn_iterations': 5, 'weights': 'outdoor'}, 'output': 'matches-superglue-it5'}, 'superpoint+lightglue': {'model': {'features': 'superpoint', 'name': 'lightglue'}, 'output': 'matches-superpoint-lightglue'}} [2025/01/16 03:01:18 hloc INFO] Extracting local features with configuration: {'model': {'max_keypoints': 4096, 'name': 'superpoint', 'nms_radius': 3}, 'output': 'feats-superpoint-n4096-r1024', 'preprocessing': {'grayscale': True, 'resize_max': 1024}} [2025/01/16 03:01:18 hloc INFO] Found 5426 images in root datasets/aachen/images_upright. [2025/01/16 03:01:20 hloc INFO] Skipping the extraction. [2025/01/16 03:01:20 hloc INFO] Found 13026 images and 13026 cameras in database. [2025/01/16 03:01:20 hloc INFO] Reading the NVM model... [2025/01/16 03:01:20 hloc INFO] Reading 4328 cameras... [2025/01/16 03:01:20 hloc INFO] Reading 4328 images... [2025/01/16 03:01:20 hloc INFO] Reading 1652687 points... 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████| 1652687/1652687 [00:24<00:00, 68819.92pts/s] [2025/01/16 03:01:44 hloc INFO] Parsing image data... [2025/01/16 03:02:04 hloc INFO] Writing the COLMAP model... [2025/01/16 03:03:24 hloc INFO] Done. [2025/01/16 03:03:25 hloc INFO] Reading the COLMAP model... [2025/01/16 03:03:53 hloc INFO] Extracting image pairs from covisibility info... 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 4328/4328 [00:47<00:00, 90.50it/s] [2025/01/16 03:04:41 hloc INFO] Found 85515 pairs. [2025/01/16 03:04:42 hloc INFO] Matching local features with configuration: {'model': {'name': 'superglue', 'sinkhorn_iterations': 50, 'weights': 'outdoor'}, 'output': 'matches-superglue'} /home/benchmark/repos/Hierarchical-Localization-1.4/SuperGluePretrainedNetwork/models/superglue.py:226: FutureWarning: You are using `torch.load` with `weights_only=F uct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more he functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted b r any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. self.load_state_dict(torch.load(str(path))) Loaded SuperGlue model ("outdoor" weights) 1%|█▌ | 809/56479 [38:19<52:35:26, 3.40s/it] 55%|█████ 2/56479 [24:26:13<21:55:55, 3.08s/it] 61%|█████████████████████████████████████████████████████████████████ | 34343/56479 [27:13:10<14:17:28, 2.32s/it]100%|█████ 6479/56479 [44:35:59<00:00, 2.84s/it] [2025/01/17 23:40:43 hloc INFO] Finished exporting matches.
100% ████████████████████████████████████████████| 56479/56479 [44:35:59<00:00, 2.84s/it] [2025/01/17 23:40:43 hloc INFO] Finished exporting matches. Traceback (most recent call last): File "<frozen runpy>", line 198, in _run_module_as_main File "<frozen runpy>", line 88, in _run_code File "/home/benchmark/repos/Hierarchical-Localization-1.4/hloc/pipelines/Aachen/pipeline.py", line 53, in <module> triangulation.main( File "/home/benchmark/repos/Hierarchical-Localization-1.4/hloc/triangulation.py", line 222, in main image_ids = create_db_from_model(reference, database) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/benchmark/repos/Hierarchical-Localization-1.4/hloc/triangulation.py", line 46, in create_db_from_model camera.model_id, camera.width, camera.height, camera.params, ^^^^^^^^^^^^^^^ AttributeError: 'pycolmap._core.Camera' object has no attribute 'model_id'
The text was updated successfully, but these errors were encountered:
No branches or pull requests
Version: Hierarchical-Localization-1.4
Ubuntu 24.10
Python 3.12.7
Command:
python3 -m hloc.pipelines.Aachen.pipeline
Error:
The text was updated successfully, but these errors were encountered: