-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
283 lines (230 loc) · 14.3 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
import torch
from torchvision import transforms
from torchvision import datasets
import time
from tqdm import tqdm
import numpy as np
import argparse
import json
import os
from nflib.utils import transforms as custom_transform
from utils.loaders import CIFAR10C, TinyImageNet, TinyImageNetC
from nflib import model
from sklearn.metrics import roc_curve, average_precision_score, roc_auc_score
# evaluate model
def test_dataset(model, test_loader, device, val_stats = None, num_evals = 1, name = None, output_path = None):
# Set device
model.to(device)
start_time = time.time()
if val_stats is not None:
val_mean_bpd = torch.tensor(val_stats['mean_bpd']).to(device)
val_std_bpd = torch.tensor(val_stats['std_bpd']).to(device)
val_mean_grad = torch.tensor(val_stats['mean_grad']).to(device)
val_std_grad = torch.tensor(val_stats['std_grad']).to(device)
test_nll = []
test_gradient_norm = []
test_bpd = []
test_nsd = []
model.eval()
with tqdm(test_loader, unit="batch") as tepoch:
for test_batch in tepoch:
inputs = test_batch[0].to(device)
inputs.requires_grad = True
ll = model.test_ood_per_sample(inputs, num_evals)
# ll = model._get_likelihood(inputs, return_ll=True)
nll = (-ll)
mean_nll = nll.mean()
test_nll.append(mean_nll.item())
bpd = nll* np.log2(np.exp(1)) / np.prod(inputs.shape[-3:])
mean_bpd = bpd.mean()
test_bpd.append(mean_bpd.item())
# Backward pass
mean_bpd.backward()
flattened_tensor = torch.flatten(inputs.grad[:,1, ...], start_dim=1)
gradient_norm = torch.mean(flattened_tensor.norm(dim=1, p=2))
test_gradient_norm.append(gradient_norm.item())
# Compute NSD if val_stats is provided
if val_stats is not None:
normalized_bpd = (mean_bpd - val_mean_bpd) / val_std_bpd
normalized_grad = (gradient_norm - val_mean_grad) / val_std_grad
abs_normalized_new_bpd = torch.abs(normalized_bpd)
abs_normalized_new_grad = torch.abs(normalized_grad)
nsd = torch.add(abs_normalized_new_bpd, abs_normalized_new_grad)
test_nsd.append(nsd.item())
# write output as npy files
if output_path is not None:
nll_path = os.path.join(output_path, name + '_nll.npy')
np.save(nll_path, np.array(test_nll))
bpd_path = os.path.join(output_path, name + '_bpd.npy')
np.save(bpd_path, np.array(test_bpd))
grad_path = os.path.join(output_path, name + '_grad.npy')
np.save(grad_path, np.array(test_gradient_norm))
if val_stats is not None:
nsd_path = os.path.join(output_path, name + '_nsd.npy')
np.save(nsd_path, np.array(test_nsd))
duration = time.time() - start_time
result = {"time": duration / len(test_loader), 'test_lls': np.array(test_nll), 'test_bpd':np.array( test_bpd),
'mean_bpd': np.mean(test_bpd), 'std_bpd': np.std(test_bpd), 'test_grad': np.array(test_gradient_norm),
'mean_grad': np.mean(test_gradient_norm), 'std_grad': np.std(test_gradient_norm), 'test_nsd': np.array(test_nsd)}
return result
def read_validation_stats(path):
with open(path, "r") as f:
val_stats_data = json.load(f)
return val_stats_data
def compute_scores(test_results):
score_auroc = []
score_fpr = []
bpd_auroc = []
bpd_fpr = []
grad_auroc = []
grad_fpr = []
for key in test_results.keys():
if 'score' in key:
score_auroc.append(test_results[key]['auroc'])
score_fpr.append(test_results[key]['fpr'])
elif 'bpd' in key:
bpd_auroc.append(test_results[key]['auroc'])
bpd_fpr.append(test_results[key]['fpr'])
elif 'gradient' in key:
grad_auroc.append(test_results[key]['auroc'])
grad_fpr.append(test_results[key]['fpr'])
return np.mean(score_auroc), np.mean(score_fpr), np.mean(bpd_auroc), np.mean(bpd_fpr), np.mean(grad_auroc), np.mean(grad_fpr)
def compute_results(val_mean_bpd, val_std_bpd, val_mean_grad, val_std_grad, test_bpd, test_grad, corrupt_bpds,
corrupt_grads, corruption, severity, corruption_combined_results):
bpd_data = np.nan_to_num(corrupt_bpds)
grads_data = np.nan_to_num(corrupt_grads)
y_true = np.zeros(len(test_bpd))
y_true = np.append(y_true, np.ones(len(bpd_data)))
y_score = np.append(test_bpd, bpd_data)
auroc_bpd = roc_auc_score(y_true, y_score)
print(f"{auroc_bpd=}")
# calucalte AUPR (area under the precisionrecall curve)
aupr_bpd = average_precision_score(y_true, y_score)
# FPR at 95% TPR (True Negative Rateat a fixed level of 95% True Positive Rate).
fpr, tpr, thresholds = roc_curve(y_true, y_score)
fpr_bpd = fpr[np.argmax(tpr >= 0.95)]
corruption_combined_results[f"{corruption}_{severity}_bpd"] = {"auroc": auroc_bpd, "aupr": aupr_bpd, "fpr": fpr_bpd}
# calculate everything with test_gradient_norms
y_score = np.append(test_grad, grads_data)
auroc_grad = roc_auc_score(y_true, y_score)
print(f"{auroc_grad=}")
# calucalte AUPR (area under the precisionrecall curve)
aupr = average_precision_score(y_true, y_score)
# FPR at 95% TPR (True Negative Rateat a fixed level of 95% True Positive Rate).
fpr, tpr, thresholds = roc_curve(y_true, y_score)
fpr_grad = fpr[np.argmax(tpr >= 0.95)]
abs_grad_distances = np.mean(np.abs(test_grad - grads_data))
grad_distances = np.mean(test_grad - grads_data)
corruption_combined_results[f"{corruption}_{severity}_gradient"] = {"auroc": auroc_grad, "aupr": aupr, "fpr": fpr_grad}
normalized_new_bpd = (bpd_data - val_mean_bpd) / val_std_bpd
normalized_test_bpd = (test_bpd - val_mean_bpd) / val_std_bpd
normalized_new_grad = (grads_data - val_mean_grad) / val_std_grad
normalized_test_grad = (test_grad - val_mean_grad) / val_std_grad
abs_normalized_new_bpd = np.abs(normalized_new_bpd)
abs_normalized_test_bpd = np.abs(normalized_test_bpd)
abs_normalized_new_grad = np.abs(normalized_new_grad)
abs_normalized_test_grad = np.abs(normalized_test_grad)
summed_normalized = np.add(abs_normalized_new_bpd, abs_normalized_new_grad)
summed_normalized_test = np.add(abs_normalized_test_bpd, abs_normalized_test_grad)
# compute the roc auc score
y_true = np.zeros(len(summed_normalized_test))
y_true = np.append(y_true, np.ones(len(summed_normalized)))
y_score = np.append(summed_normalized_test, summed_normalized)
auroc_score = roc_auc_score(y_true, y_score)
print(f"{auroc_score=}")
# calucalte AUPR (area under the precisionrecall curve)
aupr_score = average_precision_score(y_true, y_score)
# FPR at 95% TPR (True Negative Rateat a fixed level of 95% True Positive Rate).
fpr, tpr, thresholds = roc_curve(y_true, y_score)
fpr_score = fpr[np.argmax(tpr >= 0.95)]
corruption_combined_results[f"{corruption}_{severity}_score"] = {"auroc": auroc_score, "aupr": aupr_score, "fpr": fpr_score}
return corruption_combined_results
if __name__ == "__main__":
# Parse arguments
parser = argparse.ArgumentParser(description='Test CovariateFlow')
parser.add_argument('--model', type=str, required=True, help='Path to model checkpoint')
parser.add_argument('--validation_stats_path', type=str, default=None, required=False, help='Path to validation stats')
parser.add_argument('--data_path', type=str, required=True, help='Path to data')
parser.add_argument('--dataset', type=str, required=True, default='CIFAR10', help='Dataset name (CIFAR10 or ImageNet200)')
parser.add_argument('--output_path', type=str, required=True, help='Path to output')
parser.add_argument('--subset_length', type=int, default=None, required=False, help='Length of subset to test')
args = parser.parse_args()
model_path = args.model
data_path = args.data_path
dataset_name = args.dataset
val_stats_path = args.validation_stats_path
output_path = args.output_path
subset_length = args.subset_length
if not os.path.exists(output_path):
os.makedirs(output_path)
device = torch.device("cpu") if not torch.cuda.is_available() else torch.device("cuda:0")
# Load model
print('loading model')
ckpt = torch.load(model_path, map_location=device)
covariateflow = model.create_conditional_flow(device, img_shape=(2,3,32,32) if dataset_name == 'CIFAR10' else (2,3,64,64), train_set=None, num_coupling_layers=8)
covariateflow.load_state_dict(ckpt['state_dict'])
covariateflow = covariateflow.eval()
covariate_transform=transforms.Compose([custom_transform.pil_img_to_numpy, custom_transform.normalize_8bit,
custom_transform.GaussianFilter(1), custom_transform.AdjustHighImage(), custom_transform.toTensor,
custom_transform.ScaleAndQauntizeHigh(bits=16), custom_transform.Permute() ] )
# Compute val statistics
if val_stats_path is None:
if dataset_name == 'CIFAR10':
dataset = datasets.CIFAR10(root=args.data_path, download=True, transform = covariate_transform, train=True)
elif dataset_name == 'ImageNet200':
dataset = TinyImageNet(root=args.data_path, transform = covariate_transform, train=True)
train_set, val_set = torch.utils.data.random_split(dataset, [int(len(dataset)*0.85), int(len(dataset)*0.15)])
val_loader = torch.utils.data.DataLoader(val_set, batch_size=1, shuffle=False, drop_last=False, num_workers=4)
print('val loader', len(val_loader))
val_results = test_dataset(covariateflow, val_loader, device, name = str(dataset_name+'_val'), output_path=args.output_path)
else:
val_results = read_validation_stats(val_stats_path)
# Compute ID test results
if dataset_name == 'CIFAR10':
test_set = datasets.CIFAR10(root=args.data_path, download=True, transform = covariate_transform, train=False)
elif dataset_name == 'ImageNet200':
test_set = TinyImageNet(root=args.data_path, transform = covariate_transform, train=False)
if subset_length is not None:
# use random subset
test_set = torch.utils.data.Subset(test_set, np.random.choice(len(test_set), subset_length, replace=False))
test_loader = torch.utils.data.DataLoader(test_set, batch_size=1, shuffle=False, drop_last=False, num_workers=4)
print('test loader', len(test_loader))
test_results = test_dataset(covariateflow, test_loader, device, val_stats=val_results, name = dataset_name+'_test', output_path=args.output_path)
# Compute OOD test results
ood_test_results = {}
cifar10c_corruptions_list = ['brightness','contrast','defocus_blur','elastic_transform','fog',
'frost','gaussian_blur','gaussian_noise','glass_blur','impulse_noise','jpeg_compression','motion_blur',
'pixelate','saturate','shot_noise','snow','spatter','speckle_noise','zoom_blur']
tinyimagenetc_corruptions_list = ['gaussian_noise', 'shot_noise', 'impulse_noise', 'defocus_blur', 'glass_blur', 'motion_blur', 'zoom_blur',
'snow', 'frost', 'fog', 'brightness', 'contrast', 'elastic_transform', 'pixelate', 'jpeg_compression']
if dataset_name == 'CIFAR10':
for corruption in cifar10c_corruptions_list:
for severity in range(1,6):
print(f"Corruption: {corruption}, Severity: {severity}")
cifar10c = CIFAR10C(root=os.path.join(args.data_path, 'CIFAR-10-C'), name=corruption, severity=severity, transform = covariate_transform)
if subset_length is not None:
cifar10c = torch.utils.data.Subset(cifar10c, np.random.choice(len(cifar10c), subset_length, replace=False))
cifar10c_loader = torch.utils.data.DataLoader(cifar10c, batch_size=1, shuffle=False, drop_last=False, num_workers=4)
cifar10c_results = test_dataset(covariateflow, cifar10c_loader, device, val_stats=val_results,
name = dataset_name+'_c_'+corruption+'_s_'+str(severity), output_path=args.output_path)
ood_test_results = compute_results(val_results['mean_bpd'], val_results['std_bpd'], val_results['mean_grad'], val_results['std_grad'],
test_results['test_bpd'], test_results['test_grad'], cifar10c_results['test_bpd'], cifar10c_results['test_grad'],
corruption, severity, ood_test_results)
elif dataset_name == 'ImageNet200':
for corruption in tinyimagenetc_corruptions_list:
for severity in range(1,6):
print(f"Corruption: {corruption}, Severity: {severity}")
tinyimagenetc = TinyImageNetC(root=args.data_path, corruption=corruption, severity=severity, transform = covariate_transform)
if subset_length is not None:
tinyimagenetc = torch.utils.data.Subset(tinyimagenetc, np.random.choice(len(tinyimagenetc), subset_length, replace=False))
tinyimagenetc_loader = torch.utils.data.DataLoader(tinyimagenetc, batch_size=1, shuffle=False, drop_last=False, num_workers=4)
tinyimagenetc_results = test_dataset(covariateflow, tinyimagenetc_loader, device, val_stats=val_results,
name = dataset_name+'_c_'+corruption+'_s_'+str(severity), output_path=args.output_path)
ood_test_results = compute_results(val_results['mean_bpd'], val_results['std_bpd'], val_results['mean_grad'], val_results['std_grad'],
test_results['test_bpd'], test_results['test_grad'], tinyimagenetc_results['test_bpd'], tinyimagenetc_results['test_grad'],
corruption, severity, ood_test_results)
# Compute results
score_auroc, score_fpr, bpd_auroc, bpd_fpr, grad_auroc, grad_fpr = compute_scores(ood_test_results)
print(f"NSD AUROC: {score_auroc}, Score FPR: {score_fpr}")
print(f"BPD AUROC: {bpd_auroc}, BPD FPR: {bpd_fpr}")
print(f"Grad AUROC: {grad_auroc}, Grad FPR: {grad_fpr}")