-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathtrain.py
59 lines (50 loc) · 1.98 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
"""Train script.
Usage:
train.py <hparams> <dataset_root> [--cuda=<id>]
train.py -h | --help
Options:
-h --help Show this screen.
--cuda=<id> id of the cuda device [default: 0].
"""
import torch
import numpy as np
import json
from docopt import docopt
from os.path import join
from irl_dcb.config import JsonConfig
from dataset import process_data
from irl_dcb.builder import build
from irl_dcb.trainer import Trainer
torch.manual_seed(42619)
np.random.seed(42619)
if __name__ == '__main__':
args = docopt(__doc__)
device = torch.device('cuda:{}'.format(args['--cuda']))
hparams = args["<hparams>"]
dataset_root = args["<dataset_root>"]
hparams = JsonConfig(hparams)
# dir of pre-computed beliefs
DCB_dir_HR = join(dataset_root, 'DCBs/HR/')
DCB_dir_LR = join(dataset_root, 'DCBs/LR/')
# bounding box of the target object (for search efficiency evaluation)
bbox_annos = np.load(join(dataset_root, 'bbox_annos.npy'),
allow_pickle=True).item()
# load ground-truth human scanpaths
with open(join(dataset_root,
'coco_search18_fixations_TP_train.json')) as json_file:
human_scanpaths_train = json.load(json_file)
with open(join(dataset_root,
'coco_search18_fixations_TP_validation.json')) as json_file:
human_scanpaths_valid = json.load(json_file)
# exclude incorrect scanpaths
if hparams.Train.exclude_wrong_trials:
human_scanpaths_train = list(
filter(lambda x: x['correct'] == 1, human_scanpaths_train))
human_scanpaths_valid = list(
filter(lambda x: x['correct'] == 1, human_scanpaths_valid))
# process fixation data
dataset = process_data(human_scanpaths_train, human_scanpaths_valid,
DCB_dir_HR, DCB_dir_LR, bbox_annos, hparams)
built = build(hparams, True, device, dataset['catIds'])
trainer = Trainer(**built, dataset=dataset, device=device, hparams=hparams)
trainer.train()