-
Notifications
You must be signed in to change notification settings - Fork 98
/
Copy pathtest_tf_model.py
59 lines (45 loc) · 1.8 KB
/
test_tf_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import imageio
import numpy as np
from argparse import ArgumentParser
import torch
from trainer import Trainer
from utils.tools import get_config
parser = ArgumentParser()
parser.add_argument('--config', type=str, default='configs/config.yaml',
help="training configuration")
parser.add_argument('--image', default='', type=str,
help='The filename of image to be completed.')
parser.add_argument('--mask', default='', type=str,
help='The filename of mask, value 255 indicates mask.')
parser.add_argument('--output', default='output.png', type=str,
help='Where to write output.')
parser.add_argument('--model-path', default='', type=str,
help='Path to save model')
args = parser.parse_args()
def main():
config = get_config(args.config)
if config['cuda']:
device = torch.device("cuda:{}".format(config['gpu_ids'][0]))
else:
device = torch.device("cpu")
trainer = Trainer(config)
trainer.load_state_dict(load_weights(args.model_path, device), strict=False)
trainer.eval()
image = imageio.imread(args.image)
image = torch.FloatTensor(image).permute(2, 0, 1).unsqueeze(0).cuda()
mask = imageio.imread(args.mask)
mask = (torch.FloatTensor(mask[:, :, 0]) / 255).unsqueeze(0).unsqueeze(0).cuda()
x = (image / 127.5 - 1) * (1 - mask).cuda()
with torch.no_grad():
_, result, _ = trainer.netG(x, mask)
imageio.imwrite(args.output, upcast(result[0].permute(1, 2, 0).detach().cpu().numpy()))
def load_weights(path, device):
model_weights = torch.load(path)
return {
k: v.to(device)
for k, v in model_weights.items()
}
def upcast(x):
return np.clip((x + 1) * 127.5 , 0, 255).astype(np.uint8)
if __name__ == '__main__':
main()