-
Notifications
You must be signed in to change notification settings - Fork 98
/
Copy pathtrain.py
177 lines (150 loc) · 7.21 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import os
import random
import time
import shutil
from argparse import ArgumentParser
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
import torchvision.utils as vutils
from tensorboardX import SummaryWriter
from trainer import Trainer
from data.dataset import Dataset
from utils.tools import get_config, random_bbox, mask_image
from utils.logger import get_logger
parser = ArgumentParser()
parser.add_argument('--config', type=str, default='configs/config.yaml',
help="training configuration")
parser.add_argument('--seed', type=int, help='manual seed')
def main():
args = parser.parse_args()
config = get_config(args.config)
# CUDA configuration
cuda = config['cuda']
device_ids = config['gpu_ids']
if cuda:
os.environ['CUDA_VISIBLE_DEVICES'] = ','.join(str(i) for i in device_ids)
device_ids = list(range(len(device_ids)))
config['gpu_ids'] = device_ids
cudnn.benchmark = True
# Configure checkpoint path
checkpoint_path = os.path.join('checkpoints',
config['dataset_name'],
config['mask_type'] + '_' + config['expname'])
if not os.path.exists(checkpoint_path):
os.makedirs(checkpoint_path)
shutil.copy(args.config, os.path.join(checkpoint_path, os.path.basename(args.config)))
writer = SummaryWriter(logdir=checkpoint_path)
logger = get_logger(checkpoint_path) # get logger and configure it at the first call
logger.info("Arguments: {}".format(args))
# Set random seed
if args.seed is None:
args.seed = random.randint(1, 10000)
logger.info("Random seed: {}".format(args.seed))
random.seed(args.seed)
torch.manual_seed(args.seed)
if cuda:
torch.cuda.manual_seed_all(args.seed)
# Log the configuration
logger.info("Configuration: {}".format(config))
try: # for unexpected error logging
# Load the dataset
logger.info("Training on dataset: {}".format(config['dataset_name']))
train_dataset = Dataset(data_path=config['train_data_path'],
with_subfolder=config['data_with_subfolder'],
image_shape=config['image_shape'],
random_crop=config['random_crop'])
# val_dataset = Dataset(data_path=config['val_data_path'],
# with_subfolder=config['data_with_subfolder'],
# image_size=config['image_size'],
# random_crop=config['random_crop'])
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=config['batch_size'],
shuffle=True,
num_workers=config['num_workers'])
# val_loader = torch.utils.data.DataLoader(dataset=val_dataset,
# batch_size=config['batch_size'],
# shuffle=False,
# num_workers=config['num_workers'])
# Define the trainer
trainer = Trainer(config)
logger.info("\n{}".format(trainer.netG))
logger.info("\n{}".format(trainer.localD))
logger.info("\n{}".format(trainer.globalD))
if cuda:
trainer = nn.parallel.DataParallel(trainer, device_ids=device_ids)
trainer_module = trainer.module
else:
trainer_module = trainer
# Get the resume iteration to restart training
start_iteration = trainer_module.resume(config['resume']) if config['resume'] else 1
iterable_train_loader = iter(train_loader)
time_count = time.time()
for iteration in range(start_iteration, config['niter'] + 1):
try:
ground_truth = next(iterable_train_loader)
except StopIteration:
iterable_train_loader = iter(train_loader)
ground_truth = next(iterable_train_loader)
# Prepare the inputs
bboxes = random_bbox(config, batch_size=ground_truth.size(0))
x, mask = mask_image(ground_truth, bboxes, config)
if cuda:
x = x.cuda()
mask = mask.cuda()
ground_truth = ground_truth.cuda()
###### Forward pass ######
compute_g_loss = iteration % config['n_critic'] == 0
losses, inpainted_result, offset_flow = trainer(x, bboxes, mask, ground_truth, compute_g_loss)
# Scalars from different devices are gathered into vectors
for k in losses.keys():
if not losses[k].dim() == 0:
losses[k] = torch.mean(losses[k])
###### Backward pass ######
# Update D
trainer_module.optimizer_d.zero_grad()
losses['d'] = losses['wgan_d'] + losses['wgan_gp'] * config['wgan_gp_lambda']
losses['d'].backward()
trainer_module.optimizer_d.step()
# Update G
if compute_g_loss:
trainer_module.optimizer_g.zero_grad()
losses['g'] = losses['l1'] * config['l1_loss_alpha'] \
+ losses['ae'] * config['ae_loss_alpha'] \
+ losses['wgan_g'] * config['gan_loss_alpha']
losses['g'].backward()
trainer_module.optimizer_g.step()
# Log and visualization
log_losses = ['l1', 'ae', 'wgan_g', 'wgan_d', 'wgan_gp', 'g', 'd']
if iteration % config['print_iter'] == 0:
time_count = time.time() - time_count
speed = config['print_iter'] / time_count
speed_msg = 'speed: %.2f batches/s ' % speed
time_count = time.time()
message = 'Iter: [%d/%d] ' % (iteration, config['niter'])
for k in log_losses:
v = losses.get(k, 0.)
writer.add_scalar(k, v, iteration)
message += '%s: %.6f ' % (k, v)
message += speed_msg
logger.info(message)
if iteration % (config['viz_iter']) == 0:
viz_max_out = config['viz_max_out']
if x.size(0) > viz_max_out:
viz_images = torch.stack([x[:viz_max_out], inpainted_result[:viz_max_out],
offset_flow[:viz_max_out]], dim=1)
else:
viz_images = torch.stack([x, inpainted_result, offset_flow], dim=1)
viz_images = viz_images.view(-1, *list(x.size())[1:])
vutils.save_image(viz_images,
'%s/niter_%03d.png' % (checkpoint_path, iteration),
nrow=3 * 4,
normalize=True)
# Save the model
if iteration % config['snapshot_save_iter'] == 0:
trainer_module.save_model(checkpoint_path, iteration)
except Exception as e: # for unexpected error logging
logger.error("{}".format(e))
raise e
if __name__ == '__main__':
main()