-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtmf_rp.tex
720 lines (612 loc) · 26.5 KB
/
tmf_rp.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
\documentclass{shortart}
\usepackage[hidelinks]{hyperref}
\usepackage{microtype}
\usepackage{amsmath, amssymb}
\usepackage{tikz-cd}
\usepackage{spectralsequences}
\usepackage{cleveref}
\usepackage{rotating}
\DeclareMathOperator\Ext{Ext}
\newcommand\Z{{\mathbb{Z}}}
\newcommand\RP{{\mathbb{RP}}}
\newcommand\tmf{{\mathrm{tmf}}}
\newcommand\ko{{\mathrm{ko}}}
\SseqErrorToWarning{range-overflow}
\SseqNewFamily{virtualclass}
\sseqset{
hzero/.sseq style = {},
hone/.sseq style = {},
htwo/.sseq style = {},
virtualclass style = { fill = none },
}
\NewSseqGroup\groupD {m} {
\begin{scope}[xshift = #1 * 8, yshift = #1 * 4]
\ifnum#1>-2
\class(16, 6) \class(17, 7) \structline[hone]
\fi
\ifnum#1>-3
\class(17, 8) \class(18, 9) \structline[hone] \class(19, 10) \structline[hone] \class(19, 9) \structline[hzero] \class(19, 8) \structline[hzero]
\fi
\ifnum#1>-2
\class(22 + 3 * 0, 9) \class(22 + 3 * 0, 8) \structline[hzero] \class(22 + 3 * 0, 7) \structline[hzero]
\class(23 + 3 * 0, 8) \class(23 + 3 * 0, 7) \structline[hzero] \class(23 + 3 * 0, 6) \structline[hzero]
\structline[hone](22 + 3 * 0, 7)(23 + 3 * 0, 8)
\class(22 + 3 * 1, 9) \class(22 + 3 * 1, 8) \structline[hzero] \class(22 + 3 * 1, 7) \structline[hzero]
\class(23 + 3 * 1, 8) \class(23 + 3 * 1, 7) \structline[hzero] \ifnum#1>-1 \class(23 + 3 * 1, 6) \structline[hzero] \fi
\structline[hone](22 + 3 * 1, 7)(23 + 3 * 1, 8)
\class(22 + 3 * 2, 9) \class(22 + 3 * 2, 8) \structline[hzero] \class(22 + 3 * 2, 7) \structline[hzero]
\class(23 + 3 * 2, 8) \ifnum#1>-1 \class(23 + 3 * 2, 7) \structline[hzero] \class(23 + 3 * 2, 6) \structline[hzero] \fi
\structline[hone](22 + 3 * 2, 7)(23 + 3 * 2, 8)
\fi
\ifnum#1=-2
\class(22, 9)
\fi
\ifnum#1>-1
\class(27, 5) \class(27, 6) \structline[hzero] \class(26, 5) \structline[hone]
\fi
\ifnum#1>0
\class(25,4) \structline[hone]
\fi
\ifnum#1>-1
\class(31, 7) \class(32, 8) \structline[hone] \class(32, 7) \structline[hzero] \class (32, 6) \structline[hzero]
\class[virtualclass](31, 8) \class[virtualclass](31, 9) \structline[hone]
\class(32, 6) \class(33, 7) \structline[hone] \class (34, 8) \structline[hone] \class (34, 7) \structline[hzero] \class[virtualclass](35, 8) \structline[hone]
\fi
\ifnum#1>-1
\class(30, 5)
\fi
\ifnum#1>-3
\structline[htwo](19, 8)(22, 9)
\fi
\ifnum#1>-2
\structline[htwo](22 + 0 * 3, 7)(25 + 0 * 3, 8)
\structline[htwo](22 + 0 * 3, 8)(25 + 0 * 3, 9)
\structline[htwo](23 + 0 * 3, 7)(26 + 0 * 3, 8)
\structline[htwo](23 + 0 * 3, 6)(26 + 0 * 3, 7)
\structline[htwo](22 + 1 * 3, 7)(25 + 1 * 3, 8)
\structline[htwo](22 + 1 * 3, 8)(25 + 1 * 3, 9)
\structline[htwo](23 + 1 * 3, 7)(26 + 1 * 3, 8)
\fi
\ifnum#1>-1
\structline[htwo](23 + 1 * 3, 6)(26 + 1 * 3, 7)
\structline[htwo](22 + 2 * 3, 7)(25 + 2 * 3, 8)
\structline[htwo](22 + 2 * 3, 8)(25 + 2 * 3, 9)
\structline[htwo](23 + 2 * 3, 7)(26 + 2 * 3, 8)
\structline[htwo](23 + 2 * 3, 6)(26 + 2 * 3, 7)
\structline[htwo](31, 7)(34, 8)
\fi
\end{scope}
}
\NewSseqGroup\groupE {} {
\class(4, 1) \class(7, 2) \structline[htwo]
\class(16, 3) \class (19, 4) \structline[htwo] \class(22, 5) \structline[htwo] \class (21, 4) \structline[hone]
}
\NewSseqGroup\cigroup {m} {
\SseqParseInt\maximum{4 * #1 - 1}
% Do it in reverse so that the ``hook'' starts from the bottom
\foreach \n in {\maximum,..., 0} {
\class(8 * #1 - 1, \n)
\ifnum\n=\maximum\else \structline[hzero]\fi
}
\class(8 * #1, 1) \structline[hone]
\class(8 * #1 + 1, 2) \structline[hone]
\SseqParseInt\maximum{4 * #1 - 2}
\ifnum\maximum>2
\foreach \n in {3,..., \maximum} {
\class(8 * #1 + 3, \n)
\ifnum\n=3\else \structline[hzero]\fi
}
\fi
\SseqParseInt\maximum{4 * #1 - 3}
\ifnum\maximum>3
\foreach \n in {\maximum,..., 4} {
\class(8 * #1 + 7, \n)
\ifnum\n=\maximum\else \structline[hzero]\fi
}
\fi
\SseqParseInt\maximum{4 * #1 - 4}
\ifnum\maximum>6
\class(8 * #1 + 8, 5) \structline[hone]
\class(8 * #1 + 9, 6) \structline[hone]
\foreach \n in {7,..., \maximum} {
\class(8 * #1 + 11, \n)
\ifnum\n=7\else \structline[hzero]\fi
}
\fi
}
\NewSseqCommand\wtower {O{} u(u,u) m} {
\SseqParseInt\maxn{2 + (\xmax - #3) / 5}
\begin{scope}[#1]
\foreach \n in {0, ..., \maxn} {
\class[name = w\n#5](#3 + \n * 5, #4 + \n)
}
\end{scope}
}
\NewSseqCommand\wvtower {O{} u(u,u) m} {
\SseqParseInt\maxn{2 + (\xmax - #3) / 5}
\begin{scope}[#1]
\foreach \n in {0, ..., \maxn} {
\SseqParseInt\maxm{2 + (\xmax - #3 - \n * 5) / 2}
\ifnum\maxm>-1
\foreach \m in {0, ..., \maxm} {
\class[name= v{\m}w\n#5](#3 + \n * 5 + \m * 2, #4 + \n + \m)
}
\fi
}
\end{scope}
}
\NewSseqCommand\wdiff{m m m m m} {
\SseqParseInt\vsource{4 * \n + #2}
\SseqParseInt\vtarget{4 * \n + #4}
\DrawIfValidDifferential#1(v{\vsource}w#3g35)(v{\vtarget}w#5g35)
}
\begin{sseqdata}[name = tmf ass, Adams grading, scale=0.15, class labels = { left = 0cm }, x range={1}{96}, x tick step = 4, y tick step = 4, yrange = {0}{48}, classes = { fill, minimum size = 1.2 }, differentials = {-, blue}, grid=go, grid step = 4]
\sseqset{
htwo/.sseq style = {thin, gray},
}
\foreach \n in {-2,..., 10} {
\groupD{\n}
}
\groupE[brown]
\structline[htwo](1,0)(4,1)
\foreach \n in {-2,..., 4} {
\groupD(48,8){\n}
}
\groupE[brown](48,8)
\structline[htwo](49,8)(52,9)
\wtower[yellow](31, 6){g31}
\wvtower[orange](35, 6){g35}
\wtower[yellow](48 + 31, 8 + 6){v28g31}
\wvtower[red](48 + 35, 8 + 6){v28g35}
% \foreach \m in {1,...,5} {
% \cigroup[gray]{\m}
% }
\foreach \v in {0,..., 9} {
\foreach \n in {0, 1, 2} {
\d2(23 + \n * 3 + \v * 8, 6 + \v * 4)
\d2(23 + \n * 3 + \v * 8, 7 + \v * 4)
}
\d2(32 + \v * 8, 6 + \v * 4, 1)
\d2(32 + \v * 8, 7 + \v * 4)
\d3(30 + \v * 8, 5 + \v * 4)
\d3(25 + \v * 8, 7 + \v * 4)
\d3(26 + \v * 8, 8 + \v * 4)
\d4(31 + \v * 8, 7 + \v * 4)
\d4(32 + \v * 8, 8 + \v * 4)
}
\d2(15, 2)
\d2(15, 3)
\d2(18, 3)
\d3(17, 3)
\d3(18, 4)
\foreach \n in {0, ..., 5} {
\foreach \m in {0, ..., 10} {
\SseqParseInt\mt{\m + 1}
\SseqParseInt\nt{\n + 9}
\DrawIfValidDifferential2(v{\m}w\n v28g35)(v{\mt}w\nt g35)
}
}
% Later, this class get identified with a multiple of x_{35, 6} via a d_2 and we keep that other class instead.
\DrawIfValidDifferential4(68, 12)(v{6}w4g35)
\foreach \n in {0,...,8} {
\SseqParseInt\xoffset{8 * \n}
\SseqParseInt\yoffset{4 * \n}
\SseqParseInt\vfour{4 * \n}
\DrawIfValidDifferential2(v{\vfour}w0g35)
\SseqParseInt\vfour{4 * \n + 1}
\DrawIfValidDifferential4(v{\vfour}w0g35)
\DrawIfValidDifferential3(v{\vfour}w1g35)
\SseqParseInt\vfour{4 * \n + 2}
\DrawIfValidDifferential3(v{\vfour}w1g35)
\DrawIfValidDifferential2(14 + 48 + \xoffset, 3 + 8 + \yoffset)
\DrawIfValidDifferential2(17 + 48 + \xoffset, 3 + 8 + \yoffset)
\DrawIfValidDifferential2(20 + 48 + \xoffset, 3 + 8 + \yoffset)
\SseqParseInt\vfour{4 * \n + 2}
\DrawIfValidDifferential4(v{\vfour}w2g35, 2)
\SseqParseInt\vfour{4 * \n + 3}
\DrawIfValidDifferential4(v{\vfour}w2g35)
\wdiff4{0}{3}{7}{0}
\wdiff4{0}{4}{7}{1}
\DrawIfValidDifferential2(31 + 48 + \xoffset, 7 + 8 + \yoffset)
\DrawIfValidDifferential3(49 + \xoffset, 8 + \yoffset)
\DrawIfValidDifferential3(56 + \xoffset, 10 + \yoffset)
\DrawIfValidDifferential3(63 + \xoffset, 12 + \yoffset)
\SseqParseInt\vfour{4 * \n + 5}
\DrawIfValidDifferential3(66 + \xoffset, 12 + \yoffset)(v{\vfour}w4g35)
\DrawIfValidDifferential3(69 + \xoffset, 12 + \yoffset)
\wdiff4{3}{3}{10}{0}
\wdiff4{1}{5}{8}{2}
\wdiff4{2}{6}{9}{3}
\wdiff4{0}{8}{7}{5}
\wdiff4{3}{7}{10}{4}
\SseqParseInt\vfour{4 * \n + 7}
\DrawIfValidDifferential3(80 + \xoffset, 16 + \yoffset)(v{\vfour}w6g35)
\SseqParseInt\vfour{4 * \n + 2}
\DrawIfValidDifferential2(27 + 48 + \xoffset, 5 + 8 + \yoffset)(v{\vfour}w7g35)
\SseqParseInt\vfour{4 * \n + 4}
\DrawIfValidDifferential3(26 + 48 + \xoffset, 5 + 8 + \yoffset)(v{\vfour}w6g35)
\DrawIfValidDifferential2(25 + 8 + 48 + \xoffset, 4 + 4 + 8 + \yoffset)
\DrawIfValidDifferential2(34 + 48 + \xoffset, 7 + 8 + \yoffset)
% This produces some errors when \n is large
\begin{quiet}
\DrawIfValidDifferential2(32 + 48 + \xoffset, 6 + 8 + \yoffset, 2, 2)
\DrawIfValidDifferential2(30 + 48 + \xoffset, 5 + 8 + \yoffset, 1, 2)
\end{quiet}
}
\foreach \v in {0,..., 4} {
\foreach \n in {0, 1, 3} {
\d2(48 + 23 + \n * 3 + \v * 8, 8 + 6 + \v * 4)
\d2(48 + 23 + \n * 3 + \v * 8, 8 + 7 + \v * 4)
}
% This produces some errors when \n is large
\begin{quiet}
\d2(48 + 23 + 2 * 3 + \v * 8, 8 + 6 + \v * 4)
\end{quiet}
\d2(48 + 23 + 2 * 3 + \v * 8, 8 + 7 + \v * 4)
}
\d2(48 + 15, 8 + 2)
\d2(48 + 15, 8 + 3)
\d2(48 + 18, 8 + 3)
% d_2's from the bottom of zigzags should all hit the sum
% d_3's from top right of second zigzag should hit the sum
% There should be a differential from x_{69, 12} to x_{68, 15} as well, so that the sum survives
% there should be a d_4 from x_{50, 9}
% d_4 from x_{75, 14} should be from both classes
\end{sseqdata}
\begin{sseqdata}[name = ddiff, Adams grading, classes=fill, scale=0.35, x tick step = 2, yrange = {4}{14}, xrange = {16}{44}, differentials = blue]
\sseqset{
htwo/.sseq style = {dotted},
}
\groupD{0}
\groupD{1}
\groupD{2}
\foreach \v in {0, 1, 2} {
\foreach \n in {0, 1, 2} {
\d2(23 + \n * 3 + \v * 8, 6 + \v * 4)
\d2(23 + \n * 3 + \v * 8, 7 + \v * 4)
}
\d2(32 + \v * 8, 6 + \v * 4, 1)
\d2(32 + \v * 8, 7 + \v * 4)
\d3(30 + \v * 8, 5 + \v * 4)
}
\d3(25, 7)
\d3(26, 8)
\d4(31, 7)
\d4(32, 8)
\d3(33, 11)
\d3(34, 12)
\d4(39, 11)
\d4(40, 12)
\end{sseqdata}
\DeclareSseqCommand\hookone{u(u,u)} {
\class(#2 + 1, #3)
\savestack
\class(\lastx + 1, \lasty + 1)\structline[hone]
\class(\lastx + 1, \lasty + 1)\structline[hone]
\class(\lastx, \lasty - 1)\structline[hzero]
\class(\lastx, \lasty - 1)\structline[hzero]
\restorestack
}
\DeclareSseqCommand\hooktwo{u(u,u)} {
\class(#2 + 1, #3)
\savestack
\class(\lastx + 1, \lasty + 1)\structline[hone]
\class(\lastx + 1, \lasty + 1)\structline[hone]
\class(\lastx, \lasty - 1)\structline[hzero]
\restorestack
}
\DeclareSseqCommand\hookthree{u(u,u)} {
\class(#2 + 1, #3 - 1)
\savestack
\class(\lastx + 1, \lasty + 2)
\class(\lastx + 1, \lasty + 1)\structline[hone]
\class(\lastx, \lasty - 1)\structline[hzero]
\class(\lastx, \lasty - 1)\structline[hzero]
\restorestack
}
\DeclareSseqCommand\hookfour{u(u,u)} {
\class(#2 + 1, #3 - 1)
\savestack
\class(\lastx + 1, \lasty + 1)\structline[hone]
\class(\lastx + 1, \lasty + 2)
\class[virtualclass](\lastx, \lasty - 2)
\restorestack
}
\begin{sseqdata}[name = tmf ass later, Adams grading, scale=0.15, class labels = { left = 0cm }, x range ={92}{188}, x tick step = 4, y tick step = 4, yrange = {12}{60}, classes = { fill, minimum size = 1.2 }, differentials = {-, blue}, grid=go, grid step = 4]
\begin{scope}[gray]
\hookone(96, 48)
\DoUntilOutOfBounds {
\hookone(\lastx + 7, \lasty + 4)
}
\hooktwo(96, 40)
\DoUntilOutOfBounds {
\hooktwo(\lastx + 7, \lasty + 4)
}
\hookthree(96, 32)
\DoUntilOutOfBounds {
\hookthree(\lastx + 7, \lasty + 5)
}
\hookfour(96, 24)
\DoUntilOutOfBounds {
\hookfour(\lastx + 7, \lasty + 5)
}
\end{scope}
\hookone(96, 16)
\DoUntilOutOfBounds {
\hookone(\lastx + 7, \lasty + 4)
}
\hooktwo(96 + 32, 16 + 8)
\DoUntilOutOfBounds {
\hooktwo(\lastx + 7, \lasty + 4)
}
\hookthree(96+56, 16+12)
\DoUntilOutOfBounds {
\hookthree(\lastx + 7, \lasty + 5)
}
\hookfour(96 + 80, 16 + 16)
\DoUntilOutOfBounds {
\hookfour(\lastx + 7, \lasty + 5)
}
\wtower[orange, opacity=0.8](95, 18){first}
\wtower[yellow, opacity=0.8](96, 19){second}
\wtower[yellow, opacity=0.8](94, 17){third}
\begin{scope}[xshift=96, yshift=16]
\class(6, 1)
\structline[htwo](3, 0)(6, 1)
\class(8, 2) \class(9, 3) \structline[hone]
\class(22, 7) \class(23, 8) \structline[hone]
\class(15, 4) \class(14, 3) \structline[hone]
\class(17, 4) \structline[htwo]
\class(20, 5) \structline[htwo]
\class(20, 4) \structline[hzero]
\class(20, 3) \structline[hzero]
\class(21, 4) \structline[hone]
\class(26, 5) \class(27, 6) \structline[hone] \class(27, 5) \structline[hzero]
\class(28, 7)
\class(32, 6) \class (33, 7) \structline[hone]
\class(34, 7) \class[virtualclass](35, 8) \structline[hone]
\class(40, 10) \class(42, 11)
\class(51, 10) \class(51, 9) \structline[hzero] \class(51, 8) \structline[hzero] \class(54, 9) \structline[htwo]
\class(65, 12) \class(68, 13) \structline[htwo]
\groupE[brown](0, 0)
\structline[htwo](1, 0)(4, 1)
\groupE[brown](48, 8)
\wtower[yellow](31, 6){newsecond}
\wtower[yellow](79, 14){newthird}
\foreach \n in {0, 1, 2, 3} {
\class[orange](39 + 7 * \n, 8 + 2 * \n)
}
\class[orange](41, 9)
\class[orange](47, 9)
\class[orange](47, 12)
\wtower[orange](40, 7){newfirst}
\class[orange](52, 10)
\class[orange](54, 11)
\class[orange](57, 11)
\class[orange](59, 12)
\class[orange](66, 14)
\class[orange](71, 15)
\class[orange](72, 14)
\end{scope}
\class[orange](150, 30)
\foreach \n in {0,1,2} {
\SseqParseInt\m{\n + 16}
\d3(w\n newthird)(w\m third)
}
\foreach \n in {0,...,11} {
\SseqParseInt\m{\n + 8}
\d3(w\n newfirst)(w\m first)
}
\foreach \n in {0,...,13} {
\SseqParseInt\m{\n + 6}
\d3(w\n newsecond)(w\m second)
}
\d3(97, 16)
\d3(112, 19)
\d3(116, 19)
\d3(117, 20, 2)
\d3(122, 21)
\d3(160, 27)
\d3(165, 28)
\d3(136, 23)
\d3(141, 24)
\d3(146, 25)
\structline[hone](124, 23, 2)(125, 24)
\end{sseqdata}
\title{Adams spectral sequence of \texorpdfstring{$\tmf \wedge \RP^\infty$}{}}
\author{Dexter Chua}
\begin{document}
The goal of this note is to outline the computation of the Adams spectral sequence of $\tmf \wedge \RP^\infty$. Essentially all differentials follow from the Leibniz rule, and products can be computed with a computer. The only work to be done is to organize the computation in order to conclude that we have indeed computed all differentials.
To do so, we need a complete calculation of the Adams $E_2$ page, which was done by Davis and Mahowald \cite{davis-mahowald-ext-a2} (in their notation, $\Sigma^\infty \RP^\infty = P_1$). As usual, we have
\[
\Ext^{s, t}_{A}(k, H_*(\tmf \wedge \Sigma^\infty \RP^\infty)) = \Ext^{s, t}_{A(2)} (k, H_*(\Sigma^\infty \RP^\infty)).
\]
This group is free over $v_2^8$, where $|v_2^8| = (48, 8)$. Thus, to understand this group, it suffices to describe the generators under $v_2^8$. In the Davis--Mahowald description, these generators fall into 4 groups, and we colour-coded these in our chart in \Cref{figure:ASS-E2-nod}. We shall go through the different groups in the coming sections, giving a formal description and describe the differentials that pertain to these groups. The differentials up to degree $96$ are depicted in \Cref{figure:ASS-E2,figure:ASS-E3,figure:ASS-E4,figure:ASS-Einfinity}. The range $96$--$192$ is fairly similar and is depicted in \Cref{figure:ASS-later-diff}. Finally, $v_2^{32}$ is permanent and so all differentials are $v_2^{32}$-periodic.
\begin{sidewaysfigure}
\begin{sseqpage}[name = tmf ass, page = 1, no virtualclass, x range={1}{60}, y range={0}{32}, scale=1.7]
\foreach \m in {1,...,7} {
\cigroup[gray]{\m}
}
\cigroup[gray](48, 8){1}
\structline[hone](34,7)(35,8,2)
\structline[hone](42,11)(43,12,2)
\structline[hone](50,15)(51,16,2)
\structline[hone](58,19)(59,20,2)
\end{sseqpage}
\caption{$\Ext_{A(2)}(k, H_*(P_1))$}\label{figure:ASS-E2-nod}
\end{sidewaysfigure}
\subsection*{Conventions}
We set $k = \mathbb{F}_2$, and write $x_{t - s, s}$ for a generator in the corresponding bidegree.
\section{\texorpdfstring{$\ko$}{ko} type classes}
We first deal with the gray classes that look like quotients of $\ko$s. To understand these classes, we use the cofiber sequence
\[
\tmf^{hC_2} \to \tmf^{t C_2} \to \Sigma \tmf_{hC_2}
\]
which induces a short exact sequence on homology, if we think of $\tmf^{hC_2}$ and $\tmf^{t C_2}$ as pro-spectra in the usual way. Moreover, by \cite[Lemma 1.3]{lin-ext}, we know that
\[
\Ext^{s, t}_c(k, H_*(\tmf^{t C_2})) \cong \bigoplus_{k \in \Z} \Ext_{A(1)}^{s, t}(k, k[8k]).
\]
So the $\Ext$ groups of $\tmf^{tC_2}$ look like a bunch of $\ko$'s, and for degree reasons, its Adams spectral sequence must degenerate.
We claim that the gray classes are in the image of $\Ext^{s, t}_c(k, H_*\tmf^{tC_2})$, hence must be permanent. It suffices to prove that the generators under $h_0$ and $v_1^4$ are in the image, i.e.\ the classes in bidegree $(8k - 1, 0)$. To do so, we note that they cannot be in the image of
\[
\Ext^{s, t}_c(k, H_*(\tmf^{h C_2})) \to \Ext^{s, t}_c(k, H_*(\tmf^{t C_2})).
\]
Indeed, the left-hand side is
\[
\varprojlim \Ext^{s, t}_{A(2)} (k, H_*(D \Sigma^\infty_+\RP^n)).
\]
The top dimensional cell in $D \Sigma^\infty_+ \RP^n$ is always in degree $0$. So the bigraded group $\Ext^{s, t}_A(k, H_*(\tmf^{\Sigma^\infty_+ \RP^\infty}))$ has a bottom vanishing line equal to that of $\Ext^{s, t}_{A(2)}(k, k)$. In particular, the corresponding generators at $(8k - 1, 0)$ are all below this line, so are mapped injectively into $\Ext_{A(2)}(k, H_*(P_1))$.
We now give a formal description of these classes. For any $i \in \Z$, we let C($i$) be the chart of $\Sigma^{8i - 1}\ko$ truncated to below the line $y = -\frac{x}{4} + 6i - 1$. Then the gray classes are given by $\bigoplus_{i \geq 1} \text{C($i$)}$ plus all its $v_2^8$-multiples. We depict C($3$) in \Cref{figure:c3} for reference.
\begin{figure}[h]
\centering
\begin{sseqpage}[scale=0.5, classes = fill, grid = go, grid step = 4]
\cigroup{3}
\end{sseqpage}
\caption{Depiction of C($3$)}\label{figure:c3}
\end{figure}
\section{\texorpdfstring{$v_2$}{v2}-periodic classes}
We next look at the five brown classes. There is not much interesting to say about them. They have no periodicity apart from $v_2^8$. For degree reasons, only $x_{16, 3}$ can potentially hit something, but the target is $v_1$ periodic while this is not. Note however that $v_2^8$ multiples of these need not be permanent, and indeed they will not be.
\section{\texorpdfstring{$w$}{w}-periodic classes}
Next, we look at the orange and yellow classes. The yellow classes is a free $k[w]$-module on a single generator $x_{31, 6}$, where $|w| = (5, 1)$. There is no actual element $w$ that you can multiply with; rather, it is given by the Massey product $\langle h_1, h_2, -\rangle$.
However, some multiples of $w$ are realized by elements in $\pi_*\tmf$, namely
\[
\begin{aligned}
\beta &= w^3\\
g &= w^4\\
\gamma &= w^5
\end{aligned}
\]
So $w^k$ exists for $k \geq 3$ and is permanent for sufficiently large $k$. These yellow classes are in fact all permanent.
It is useful to note that $x_{31, 6}$ is in fact itself $w$ divisible, with $w^6 x_{1, 0} = x_{31, 6}$. Note that $w^4 x_{1, 0} = g x_{1, 0}$ is the sum of the two basis elements in bidegree $(21, 4)$. The two basis elements can be uniquely identified as follows --- the brown class is the unique non-zero class that is $v_1^4$ torsion, while the black class is the unique non-zero class that is $h_1$ divisible.
These classes stay along for quite a while. The differentials that eventually kill them come from the differential
\[
d_3(v_2^{16}) = w^{19}
\]
in the Adams spectral sequence for $\tmf$.
The orange classes form a free $k[w, v_1]$-module on a single generator $x_{35, 6}$. Again $v_1^4$ exists and is given by, well, $v_1^4$. It is also convenient to note that
\[
\begin{aligned}
d_0 &= w^2 v_1^2\\
e_0 &= w^3 v_1\\
\alpha &= w^2 v_1
\end{aligned}
\]
These have a fairly complicated differential pattern, but these all follow from the differentials in the Adams spectral sequence for $\tmf$ and the Leibniz rule. It is prudent to note that the Adams spectral sequence for $\tmf$ has
\[
d_2(v_2^8) = g \alpha \beta = v_1 w^9,
\]
so $w^{9 + k} v_1^{1 + j} x_{35, 6} = 0$ for all $j, k \geq 0$ on the $E_3$ page, and we are left with a sequence $w^{9 + k} x_{35, 6}$ of dots separated by $(5, 1)$. In fact the sequence starts at $x_{20, 3}$ with $w^2 x_{20, 3} = x_{30, 5}$ and $w^3 x_{20, 3} = x_{35, 6}$. These again eventually get killed by $d_3$'s in a manner exactly analogous to the $x_{31, 6}$'s.
\section{\texorpdfstring{$v_1$}{v1}-periodic classes}
We finally get to the black classes, which are $v_1^4$-periodic. A ``unit'' of this $v_1$ periodicity looks like this:
\begin{center}
\begin{sseqpage}[Adams grading, classes=fill, scale=0.5, class labels = { left = 0cm }]
\sseqset{
htwo/.sseq style = {dotted},
}
\groupD(-8, -4){1}
\classoptions["1"](16, 6)
\classoptions["2"](17, 8)
\classoptions["2"](19, 8)
\classoptions["2"](22, 9)
\classoptions["1"](22, 7)
\classoptions["1"](23, 6)
\classoptions["1"](25, 7)
\classoptions["1"](26, 7)
\classoptions["1"](28, 7)
\classoptions["-1"](25, 4)
\classoptions["0"](26, 5)
\end{sseqpage}
\end{center}
The numbers on the class denote how many times it is $v_1^4$ divisible, relative to the coordinates in the diagram. For example, $x_{17, 8}$ can be divided by $v_1^4$ twice to give $x_{1, 0}$, while $x_{25, 4}$ doesn't even exist; only $v_1^4 x_{25, 4}$ does.
The divisibilities of unlabelled classes are determined by $h_0$ and $h_1$ products (if $x$ divides, then so do $h_0 x$ and $h_1 x$). If a class is completely unlabelled, then its label should be interpreted to be $0$.
Finally, the hollow classes are not actually in the diagram, but come from the C's. Their role is merely to indicate multiplications.
The differentials in $D$ follow from the differentials for $\tmf$ via the Leibniz rule again. They look as follows:
\begin{center}
\printpage[name = ddiff, page = 2]
\end{center}
\begin{center}
\printpage[name = ddiff, page = 3]
\end{center}
\begin{center}
\printpage[name = ddiff, page = 4]
\end{center}
\begin{center}
\printpage[name = ddiff, page = 5]
\end{center}
The two ``hooks'' with lower left corner at $(17, 8)$ and $(25, 4)$ are $v_1^4$ periodic. The classes left (including the hollow ones) are killed by elements in $k[v_1, w] \cdot x_{35, 6}$.
\begin{sidewaysfigure}
\begin{sseqpage}[name = tmf ass, page = 2, no differentials]
\foreach \n in {-1, 0, 1, 2, 3} {
\draw [differential style] (71 + 8 * \n, 14 + 4 * \n, 1) -- (70 + 8 * \n, 16 + 4 * \n, 2);
}
\foreach \n in {0, 1, 2} {
\draw [differential style] (74 + 8 * \n, 14 + 4 * \n, 1) -- (73 + 8 * \n, 16 + 4 * \n, 2);
\draw [differential style] (77 + 8 * \n, 14 + 4 * \n, 1) -- (76 + 8 * \n, 16 + 4 * \n, 2);
\draw [differential style] (80 + 8 * \n, 14 + 4 * \n, 1) -- (79 + 8 * \n, 16 + 4 * \n, 2);
}
\end{sseqpage}
\caption{$E_2$ page for Adams spectral sequence of $\tmf \wedge \Sigma^\infty \RP^\infty$ without differentials}\label{figure:ASS-E2-nod-full}
\end{sidewaysfigure}
\begin{sidewaysfigure}
\begin{sseqpage}[name = tmf ass, page = 2]
\foreach \n in {-1, 0, 1, 2, 3} {
\draw [differential style] (71 + 8 * \n, 14 + 4 * \n, 1) -- (70 + 8 * \n, 16 + 4 * \n, 2);
}
\foreach \n in {0, 1, 2} {
\draw [differential style] (74 + 8 * \n, 14 + 4 * \n, 1) -- (73 + 8 * \n, 16 + 4 * \n, 2);
\draw [differential style] (77 + 8 * \n, 14 + 4 * \n, 1) -- (76 + 8 * \n, 16 + 4 * \n, 2);
\draw [differential style] (80 + 8 * \n, 14 + 4 * \n, 1) -- (79 + 8 * \n, 16 + 4 * \n, 2);
}
\end{sseqpage}
\caption{$E_2$ page for Adams spectral sequence of $\tmf \wedge \Sigma^\infty \RP^\infty$}\label{figure:ASS-E2}
\end{sidewaysfigure}
\begin{sidewaysfigure}
\begin{sseqpage}[name = tmf ass, page = 3]
\foreach \n in {0, 1, 2, 3} {
\draw [differential style] (66 + 8 * \n, 12 + 4 * \n) -- (65 + 8 * \n, 15 + 4 * \n, 1);
}
\end{sseqpage}
\caption{$E_3$ page for Adams spectral sequence of $\tmf \wedge \Sigma^\infty \RP^\infty$}\label{figure:ASS-E3}
\end{sidewaysfigure}
\begin{sidewaysfigure}
\begin{sseqpage}[name = tmf ass, page = 4]
\foreach \n in {0, 1, 2} {
\draw [differential style] (75 + 8 * \n, 14 + 4 * \n, 1) -- (74 + 8 * \n, 18 + 4 * \n);
}
\foreach \n in {0, 1, 2, 3, 4, 5} {
\draw [differential style] (50 + 8 * \n, 9 + 4 * \n, 1) -- (49 + 8 * \n, 13 + 4 * \n);
}
\end{sseqpage}
\caption{$E_4$ page for Adams spectral sequence of $\tmf \wedge \Sigma^\infty \RP^\infty$}\label{figure:ASS-E4}
\end{sidewaysfigure}
\begin{sidewaysfigure}
\printpage[name = tmf ass, page = 5]
\caption{$E_\infty$ page for Adams spectral sequence of $\tmf \wedge \Sigma^\infty \RP^\infty$}\label{figure:ASS-Einfinity}
\end{sidewaysfigure}
\section{Stems 97--192}
The situation in stems 97--192 is very similar to the first 96 stems. In the Adams spectral sequence for $\tmf$, we have
\[
d_3(v_2^{16}) = w^{19}.
\]
So in particular, all $d_2$'s in this range are the same as in the first 96. Moreover, by the Leibniz rule, for any $x$, we have
\[
d_3(x v_2^{16}) = d_3(x) v_2^{16} + w^{19} x.
\]
For most of the terms, the $w$ multiples have already been killed by $d_2$'s, so the $d_3$'s get preserved. The extra $d_3$'s we get come from $w$ multiples of $v_2^{16} x_{1, 0}$, $v_2^{24} x_{1,0}$ and $v_2^{16} x_{20, 3}$.
The $d_4$'s are also preserved by $v_2^{16}$, except for the $d_4$ on $w^4 x_{35, 6}$, which supports a $d_3$ instead. This follows from the fact that our $d_4$'s are $v_1^4$ periodic and $v_1^4 v_2^{16}$ is permanent.
We depict the interesting $d_3$'s in \Cref{figure:ASS-later-diff}, omitting the classes that get killed by differentials propagated from the first 96 stems. This is included because one has to do a bit of book keeping to keep track of which of the $w^{19 + k}$ multiples actually get killed for small $k$.
\begin{sidewaysfigure}
\begin{sseqpage}[name = tmf ass later, page = 3]
\draw[differential style](117, 20, 1) -- (116, 23);
\end{sseqpage}
\caption{Differentials in 96--192}\label{figure:ASS-later-diff}
\end{sidewaysfigure}
\begin{sidewaysfigure}
\begin{sseqpage}[name = tmf ass later, page = 4]
\structline[hone](117, 20)(118, 21)
\end{sseqpage}
\caption{Permanent classes in 96--192}\label{figure:ASS-later-end}
\end{sidewaysfigure}
\bibliographystyle{plain}
\bibliography{tmf-rp-ass}
\end{document}