-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
219 lines (175 loc) · 7.09 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
from builtins import range
import matplotlib.pyplot as plt
import numpy as np
from generateXML_test import getXML
from helpers_test import *
import torch
import MalmoPython
import json
import os
import sys
import time
import random
import math
TEST_FLAG = 0
IMAGE_SIZE = 256
NUM_ACTIONS = 5
BATCH_SIZE = 128
GAMMA = 0.99
EPS_START = 0.9
EPS_END = 0.05
EPS_DECAY = 1000
LR = 1e-4
TARGET_UPDATE = 10
if sys.version_info[0] == 2:
sys.stdout = os.fdopen(sys.stdout.fileno(), 'w', 0) # flush print output immediately
else:
import functools
print = functools.partial(print, flush=True)
if __name__ == "__main__":
with open("data_saved.txt", "w") as f:
f.write("Distances over time\n")
agent_host = MalmoPython.AgentHost()
try:
agent_host.parse( sys.argv )
except RuntimeError as e:
print('ERROR:',e)
print(agent_host.getUsage())
exit(1)
if agent_host.receivedArgument("help"):
print(agent_host.getUsage())
exit(0)
agent = DropperAgent(agent_host)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
policy_net = DQN((IMAGE_SIZE, IMAGE_SIZE), NUM_ACTIONS).to(device)
#policy_net.load_state_dict(torch.load("saved_params.wts"))
target_net = DQN((IMAGE_SIZE, IMAGE_SIZE), NUM_ACTIONS).to(device)
optimizer = torch.optim.Adam(policy_net.parameters(), LR)
memory = ReplayMemory(10000)
missionXML = getXML()
my_mission = MalmoPython.MissionSpec(missionXML, True)
my_mission.requestVideo(IMAGE_SIZE, IMAGE_SIZE)
my_mission_record = MalmoPython.MissionRecordSpec("data")
my_mission_record.recordMP4(30, 5000)
my_mission_record.recordObservations()
episode_n = 0
while True:
actions_taken = 0
episode_n += 1
waterX1, waterX2, waterZ1, waterZ2 = generate_water(2)
my_mission.drawCuboid(waterX1, 3, waterZ1, waterX2, 3, waterZ2, "water")
# Attempt to start a mission:
max_retries = 3
for retry in range(max_retries):
try:
agent_host.startMission( my_mission, my_mission_record )
break
except RuntimeError as e:
if retry == max_retries - 1:
print("Error starting mission:",e)
exit(1)
else:
time.sleep(2)
# Loop until mission starts:
#print("Waiting for the mission to start ", end=' ')
world_state = agent_host.getWorldState()
while not world_state.has_mission_begun:
#print(".", end="")
time.sleep(0.1)
world_state = agent_host.getWorldState()
for error in world_state.errors:
print("Error:",error.text)
#print()
#print("Mission running ", end=' ')
# ******************* START HERE ***********************
print("Episode #" + str(episode_n))
# Loop until mission ends:
#fig = plt.figure()
if episode_n % 7 == 0 or TEST_FLAG:
print("Testing best policy")
image = 0
final_distance = -999
while world_state.is_mission_running:
#print("asdads", random.random())
time.sleep(0.05)
if world_state.number_of_observations_since_last_state > 0:
obs_text = world_state.observations[-1].text
obs = json.loads(obs_text)
playerX = obs[u'XPos']
playerZ = obs[u'ZPos']
print("Old X:", playerX, "Old Z:", playerZ)
else:
print("failed to fetch coords")
world_state = agent_host.getWorldState()
continue
if len(world_state.video_frames) > 0:
image = process_image(world_state.video_frames[-1])
#plt.imshow(image, cmap=plt.gray())
#fig.canvas.draw()
#fig.canvas.flush_events()
#plt.show(block=False)
else:
print("failed to fetch image")
world_state = agent_host.getWorldState()
continue
if episode_n % 7 == 0 or TEST_FLAG:
policy_net.eval()
else:
policy_net.train()
action = select_action(image, policy_net, device)
for error in world_state.errors:
print("Error:",error.text)
break
agent.setAction(action)
actions_taken += 1
time.sleep(0.5) # wait for movement to occur
world_state = agent_host.peekWorldState()
if world_state.number_of_observations_since_last_state > 0:
obs_text = world_state.observations[-1].text
obs = json.loads(obs_text)
playerX = obs[u'XPos']
playerZ = obs[u'ZPos']
else:
print("failed to fetch coords")
continue
if len(world_state.video_frames) > 0:
next_image = process_image(world_state.video_frames[-1])
#plt.imshow(image, cmap=plt.gray())
#fig.canvas.draw()
#fig.canvas.flush_events()
#plt.show(block=False)
else:
print("failed to fetch image")
continue
print("New X:", playerX, "New Z:", playerZ)
final_distance = math.sqrt((playerX - (waterX1 + waterX2)/2)**2 + (playerZ - (waterZ1 + waterZ2)/2)**2)
reward = get_reward((waterX1 + waterX2)/2, (waterZ1 + waterZ2)/2, playerX, playerZ, action)
if episode_n % 7 == 0 and not TEST_FLAG:
torch.save(policy_net.state_dict(), "./saved_params_final.wts")
elif reward > 0:
torch.save(policy_net.state_dict(), "./saved_params_train_final.wts")
'''if reward > 0:
if episode_n % 10 == 0:
torch.save(policy_net.state_dict(), './good_policy.wts')
elif episode_n > 30:
torch.save(policy_net.state_dict(), './good_policy_train.wts')'''
print("Action:", agent.action_list[action] + ", Reward:", reward, "\n")
reward = torch.tensor([reward], device=device).float()
memory.push(image, action, next_image, reward)
world_state = agent_host.getWorldState()
if not world_state.is_mission_running:
break
if episode_n % 7 == 0 or TEST_FLAG:
continue
else:
optimize_model(policy_net, target_net, optimizer, device, memory)
#plt.close()
print("Mission ended")
print(f"Number of actions taken: {actions_taken}\n")
# Mission has ended.
#print("X:", str(obs[u'XPos']) + ", Z:", str(obs[u'ZPos']))
if episode_n % TARGET_UPDATE == 0:
target_net.load_state_dict(policy_net.state_dict())
my_mission.drawCuboid(waterX1, 3, waterZ1, waterX2, 3, waterZ2, "snow")
with open("data_saved.txt","a") as f:
f.write(str(final_distance) + '\n')