-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathsingularity-container.def
57 lines (48 loc) · 1.91 KB
/
singularity-container.def
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
Bootstrap: library
From: ubuntu:20.04
%post
export LC_ALL=C
export DEBIAN_FRONTEND=noninteractive
apt-get update -q
apt-get install -qy software-properties-common
add-apt-repository universe
apt-get update -q
apt-get upgrade -qy
apt-get install -y --no-install-recommends wget git ca-certificates openjdk-8-jdk-headless build-essential ninja-build \
libssl-dev uuid-dev unzip pkg-config libomp-dev gfortran lld zlib1g-dev libxml2-dev clang llvm virtualenv \
python3-pip g++-8 maven cpio bison
apt-get clean
# -----------------------------------------------------------------------------------
CMAKE_VERSION=3.23.1
BUILD_DIR=$PWD/build-cmake
mkdir -p $BUILD_DIR
cd $BUILD_DIR
wget -qO- https://github.com/Kitware/CMake/releases/download/v$CMAKE_VERSION/cmake-$CMAKE_VERSION.tar.gz | tar xzf - --strip-components=1
./bootstrap --parallel=`nproc` --generator=Ninja --no-qt-gui --prefix=/usr/local
ninja
ninja install
cd $BUILD_DIR/..
rm -rf $BUILD_DIR
# -----------------------------------------------------------------------------------
virtualenv /venv
. /venv/bin/activate
pip install -U pip
pip install duckdb==0.2.7 matplotlib==3.4.3 numpy==1.19.2 pandas==1.3.2 seaborn==0.11.2 h5py==3.1.0 \
keras==2.6.0 tensorflow==2.6.0
%environment
export LC_ALL=C
export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64
export CUDA_PATH=/usr/local/cuda
export PATH=$CUDA_PATH/bin:$JAVA_HOME/bin:$PATH
export LD_LIBRARY_PATH=$CUDA_PATH/lib64:$LD_LIBRARY_PATH
. /venv/bin/activate
%runscript
exec bash -c "$@"
%labels
AUTHOR [email protected]
NAME CIDR2022-daphne
URL https://github.com/damslab/reproducibility
VERSION 3
%help
This container is used in the reproducibility experiments for the Daphne CIDR 2022 paper submission. Visit
https://github.com/damslab/reproducibility for further instructions.