From 0ab5241cf22d4c337908da8f6e4edfd9ace74abf Mon Sep 17 00:00:00 2001 From: pauladkisson Date: Wed, 18 Dec 2024 16:27:28 -0800 Subject: [PATCH] added example notebooks w/o streaming --- 001259/README.md | 8 + 001259/environment.yml | 11 + 001259/ephys_example_notebook.ipynb | 781 ++++++++++++++++++++++++++++ 001259/opto_example_notebook.ipynb | 558 ++++++++++++++++++++ 001259/stream_nwbfile.py | 36 ++ 5 files changed, 1394 insertions(+) create mode 100644 001259/README.md create mode 100644 001259/environment.yml create mode 100644 001259/ephys_example_notebook.ipynb create mode 100644 001259/opto_example_notebook.ipynb create mode 100644 001259/stream_nwbfile.py diff --git a/001259/README.md b/001259/README.md new file mode 100644 index 0000000..9b11b72 --- /dev/null +++ b/001259/README.md @@ -0,0 +1,8 @@ +# Example Sessions for Dandiset 001259 + +This submission provides 2 notebooks showcasing example sessions for the Dandiset 001259. + +Each notebook provides an example of how to access the critical data and metadata from the 2 types of experiments in the dataset: + +- `ephys_example_notebook.ipynb` showcases one example session from the 001259 dataset containing operant behavior and concurrent OpenEphys recordings in primary auditory cortex (A1). +- `optogenetics_example_notebook.ipynb` showcases one example session from the 001259 dataset containing operant behavior and concurrent optogenetic stimulation. \ No newline at end of file diff --git a/001259/environment.yml b/001259/environment.yml new file mode 100644 index 0000000..9674997 --- /dev/null +++ b/001259/environment.yml @@ -0,0 +1,11 @@ +# run: conda env create --file environment.yml +name: schneider_notebook_env +channels: + - conda-forge +dependencies: + - python==3.12 + - ipywidgets + - pip + - pip: + - matplotlib + - lerner-lab-to-nwb @ git+https://github.com/catalystneuro/lerner-lab-to-nwb.git@main \ No newline at end of file diff --git a/001259/ephys_example_notebook.ipynb b/001259/ephys_example_notebook.ipynb new file mode 100644 index 0000000..f7ad8e1 --- /dev/null +++ b/001259/ephys_example_notebook.ipynb @@ -0,0 +1,781 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from pynwb import NWBHDF5IO\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " \n", + "

root (NWBFile)

session_description: Mice performed the auditory guided task while electricophysiological neural activity was recorded in the primary auditory cortex (A1).
identifier: 1fb4f618-1681-43b1-b541-cedcce1466cc
session_start_time2023-10-29 16:56:01-04:00
timestamps_reference_time2023-10-29 16:56:01-04:00
file_create_date
02024-12-18 09:06:51.025092-08:00
experimenter('Zempolich, Grant W.', 'Schneider, David M.')
acquisition
ElectricalSeries
starting_time: 0.0
rate: 30000.0
resolution: -1.0
comments: no comments
description: Recording of AC neural responses in mice performing this behavioral task utilized dense 128-channel recording probes (Masmanidis Lab). These recording probes span a depth ~1mm, allowing for sampling of all layers of cortex. Electrophysiology data was recorded using OpenEphys Acquisition Board v2.4 and associated OpenEphys GUI software.
conversion: 1.9499999999999999e-07
offset: 0.0
unit: volts
data
starting_time_unit: seconds
electrodes
description: electrode_table_region
table
description: metadata about extracellular electrodes
table\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
locationgroupgroup_namechannel_namerel_yrel_x
id
0Primary Auditory Cortex (A1)ElectrodeGroup pynwb.ecephys.ElectrodeGroup at 0x5118772528\\nFields:\\n description: ElectrodeGroup for all channels in the recording probe.\\n device: MasmanidisSiliconMicroprobe128AxN pynwb.device.Device at 0x5118623520\\nFields:\\n description: Masmanidis Lab dense 128-channel recording probes (https://masmanidislab.neurobio.ucla.edu/technology.html).\\n manufacturer: Masmanidis Lab\\n\\n location: Primary Auditory Cortex (A1)\\nElectrodeGroupCH16100.0200.0
video_camera_1
resolution: -1.0
comments: no comments
description: Two IR video cameras (AAK CA20 600TVL 2.8MM) were used to monitor the experiments from different angles of interest, allowing for offline analysis of body movements, pupillometry, and other behavioral data as necessary. Camera 1 is a side angle view of the mouse.
conversion: 1.0
offset: 0.0
unit: Frames
data
timestamps
timestamps_unit: seconds
interval: 1
external_file
starting_frame
[0]
format: external
video_camera_2
resolution: -1.0
comments: no comments
description: Two IR video cameras (AAK CA20 600TVL 2.8MM) were used to monitor the experiments from different angles of interest, allowing for offline analysis of body movements, pupillometry, and other behavioral data as necessary. Camera 2 is a zoomed-in view of the pupil of the mouse.
conversion: 1.0
offset: 0.0
unit: Frames
data
timestamps
timestamps_unit: seconds
interval: 1
external_file
starting_frame
[0]
format: external
keywords
processing
behavior
description: C57BL/6 mice were first be water restricted, habituated to head fixation in the behavioral set up for two days and classically conditioned to associate a 16 kHz tone with a small water reward given 150 ms after the tone plays (~12 seconds inter-tone-interval). Mice were then be trained for 15 to 20 sessions on an auditory guided task described as follows. Inspired by human performance on stringed instruments, whereby a target note is achieved via modulation of forelimb and hand movements, we have engineered a novel behavioral paradigm that requires mice to skillfully adjust the size of lever presses in response to a dynamic virtual acoustic environment. Mice were trained to press a small 3-D printed lever forward with their forelimb toward a 2 mm wide target zone. Mice heard a 16 Hz tone when the lever enters the zone and a 10 kHz tone if the press exceeds the bounds of the zone. Presses that peak within the zone produce only the entry tone and are rewarded when the lever returns to the starting position. Presses that undershoot (producing no tones) or overshoot (producing both an entry and an exit tone) are unrewarded. Every 30 trials, which we refer to as a block, the target zone was relocated without warning and the mice must use acoustic feedback to adjust their lever presses to peak at the new location.
data_interfaces
behavioral_time_series
time_series
encoder
resolution: -1.0
comments: no comments
description: Sampled values for entire duration of experiment for lever pressing behavior read from a rotary encoder (US Digital). Digital signals for licking and lever movement were collected by a data acquisition card (National Instruments) connected to a computer and logged by custom Matlab software (Mathworks, PsychToolBox) and sampled at 2kHz.
conversion: 1.0
offset: 0.0
unit: a.u.
data
timestamps
timestamps_unit: seconds
interval: 1
lick
resolution: -1.0
comments: no comments
description: Samples values for entire duration of experiment for voltage signal readout from a custom infrared/capacitive lickometer sensor (Schneider Lab). Digital signals for licking and lever movement were collected by a data acquisition card (National Instruments) connected to a computer and logged by custom Matlab software (Mathworks, PsychToolBox) and sampled at 2kHz.
conversion: 1.0
offset: 0.0
unit: a.u.
data
timestamps
timestamps_unit: seconds
interval: 1
targetOUT
description: Time at which the target zone is overshot during a press.
timestamps
timestamps__unit: seconds
toneIN
description: Time at which target zone is entered and target entry tone is played.
timestamps
timestamps__unit: seconds
toneOUT
description: Time at which target exit tone is played (this is delayed 50ms relative to targetOUT so that entry and exit tones don't bleed into each other.
timestamps
timestamps__unit: seconds
valve
description: Times at which solenoid valve opens to deliver water after a correct trial.
timestamps
timestamps__unit: seconds
valued_events_table
description: Metadata about valued events.
table\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
valueevent_timeslabelevent_description
id
0[2.0, 16.0, 24.0, 8.0, 12.0, 4.0, 20.0, 2.0, 16.0, 24.0, 8.0, 12.0, 4.0, 20.0, 2.0, 16.0, 24.0, 8.0, 12.0, 4.0, 20.0, 2.0, 16.0, 24.0, 8.0, 12.0, 4.0, 20.0, 2.0, 16.0, 24.0, 8.0, 12.0, 4.0, 20.0, 2.0, 16.0, 24.0, 8.0, 12.0, 4.0, 20.0, 2.0, 16.0, 24.0, 8.0, 12.0, 4.0, 20.0, 2.0, 16.0, 24.0, 8.0, 12.0, 4.0, 20.0, 2.0, 16.0, 24.0, 8.0, 12.0, 4.0, 20.0, 2.0, 16.0, 24.0, 8.0, 12.0, 4.0, 20.0, 2.0, 16.0, 24.0, 8.0, 12.0, 4.0, 20.0, 2.0, 16.0, 24.0, 8.0, 12.0, 4.0, 20.0, 2.0, 16.0, 24.0, 8.0, 12.0, 4.0, 20.0, 2.0, 16.0, 24.0, 8.0, 12.0, 4.0, 20.0, 2.0, 16.0, ...][2017.8980716115984, 2018.9518499695782, 2020.003974437991, 2021.0560366067878, 2022.1107962585747, 2023.1668696021022, 2024.2185851730928, 2025.2744759177485, 2026.3273306815604, 2027.3805422431042, 2028.433056109059, 2029.4864062697368, 2030.5382417399826, 2031.5908030056212, 2032.6432292721304, 2033.6949235432678, 2034.7478345067166, 2035.8035136527246, 2036.858632502247, 2037.911757564347, 2038.9679882068874, 2040.0206993715876, 2041.073034538676, 2042.125070507642, 2043.177316575283, 2044.231457230973, 2045.2869840779456, 2046.3397792421156, 2047.3954766880022, 2048.4485546503893, 2049.5003617208013, 2050.562680124963, 2051.614361396171, 2052.6670118612574, 2053.720565420659, 2054.7738006820596, 2055.8256480522045, 2056.877617321607, 2057.929639990643, 2058.98234325542, 2060.034222725374, 2061.0869674898563, 2062.1391423579566, 2063.191559724513, 2064.2458221794604, 2065.2981518465704, 2066.3499962167407, 2067.4024316831747, 2068.454694650721, 2069.5074332152535, 2070.559872881664, 2071.6122939482248, 2072.6642931174047, 2073.717558778641, 2074.769599947556, 2075.8216661163287, 2076.8742220820186, 2077.9281686389386, 2078.979919009713, 2080.032674574151, 2081.085022241139, 2082.140088191, 2083.195803236793, 2084.252941573597, 2085.3072098284943, 2086.363447670986, 2087.4153593407204, 2088.4670414119287, 2089.5229857562476, 2090.5753192233337, 2091.63422514901, 2092.6878982076373, 2093.7414865668234, 2094.7941654317433, 2095.846430199263, 2096.8987763662785, 2097.951348931874, 2099.0051972893925, 2100.0587607487496, 2101.1111402155466, 2102.1648806737676, 2103.216960242471, 2104.269369109074, 2105.3220012742813, 2106.373825644571, 2107.426654208552, 2108.4840629436444, 2109.5373144049495, 2110.592115056499, 2111.646091113225, 2112.6982058817125, 2113.750644748122, 2114.8060345959625, 2115.858254063772, 2116.9107193300124, 2117.96300249744, 2119.015053166309, 2120.0683294274427, 2121.1231206790385, 2122.175454446154, ...]tuningTonesTimes at which tuning tones are played to an animal after a behavioral experiment during ephys recording sessions. Integer values correspond to the frequency of the tuning tone played i.e. 2 for 2kHz, 4 for 4kHz, etc.
intrinsic_signal_optical_imaging
description: For precise targeting of auditory cortex, intrinsic optical imaging (IOS) was performed using a 2-photon microscope (Neurolabware). The skull was first bilaterally thinned over a region of interest (ROI) and made translucent. On experiment day, 680nm red light (ThorLabs) is used to image the ROI. Data was collected via MATLAB running custom suites for online and offline analyses.
data_interfaces
images
description: Intrinsic signal optical images.
images
overlaid_image
target_image
epoch_tagsset()
electrodes
description: metadata about extracellular electrodes
table\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
locationgroupgroup_namechannel_namerel_yrel_x
id
0Primary Auditory Cortex (A1)ElectrodeGroup pynwb.ecephys.ElectrodeGroup at 0x5118772528\\nFields:\\n description: ElectrodeGroup for all channels in the recording probe.\\n device: MasmanidisSiliconMicroprobe128AxN pynwb.device.Device at 0x5118623520\\nFields:\\n description: Masmanidis Lab dense 128-channel recording probes (https://masmanidislab.neurobio.ucla.edu/technology.html).\\n manufacturer: Masmanidis Lab\\n\\n location: Primary Auditory Cortex (A1)\\nElectrodeGroupCH16100.0200.0
electrode_groups
ElectrodeGroup
description: ElectrodeGroup for all channels in the recording probe.
location: Primary Auditory Cortex (A1)
device
description: Masmanidis Lab dense 128-channel recording probes (https://masmanidislab.neurobio.ucla.edu/technology.html).
manufacturer: Masmanidis Lab
devices
MasmanidisSiliconMicroprobe128AxN
description: Masmanidis Lab dense 128-channel recording probes (https://masmanidislab.neurobio.ucla.edu/technology.html).
manufacturer: Masmanidis Lab
intrinsic_signal_optical_imaging_laser
description: ThorLabs 700nm fiber coupled LED (M700F3) driven by their basic LED driver (LEDD1B).
manufacturer: ThorLabs
lickometer
description: The lickometer comprised a custom-mounted (3D printed using Formlabs Form2) IR-beam emitter and receiver. IR signal was titrated and pre-processed using a custom printed circuit board (designed by Melissa Caras and Dan Sanes) to generate a binary TTL signal with IR sensitivity controlled by a potentiometer.
manufacturer: Schneider Lab
rotary_encoder
description: H5 BALL BEARING OPTICAL SHAFT ENCODER
manufacturer: US Digital
two_photon_microscope
description: Standard Microscope by Neurolabware.
manufacturer: Neurolabware
intervals
epochs
description: experimental epochs
table\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
start_timestop_timetags
id
01191.8669131993.435631[Active Behavior]
12017.8980722164.295733[Passive Listening]
trials
description: experimental trials
table\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
start_timestop_timerewardedtime_reward_sopto_trialopto_timeopto_time_endITI_respectThresholdVectorendZone_ThresholdVector
id
01191.8669131192.054760FalseNaNFalseNaNNaNTrue24.030.0
11192.9176091193.742364FalseNaNFalseNaNNaNTrue24.030.0
21194.2168131194.700726FalseNaNFalseNaNNaNTrue24.030.0
31196.7101841197.109255FalseNaNFalseNaNNaNTrue24.030.0

... and 483 more rows.

subject
age: P12W/
age__reference: birth
description: 12-week-old C57BL/6 or VGATChR2-EYFP mice were used for all behavioral, electrophysiology, and optogenetic experiments. In the VGAT-ChR2-EYFP mouse line, channelrhodopsin (ChR2) was coupled to the vesicular GABA transporter, inducing expression in GABAergic inhibitory neurons ubiquitously across cortex and allowing for real time optogenetic inhibition of brain regions of interest.
genotype: C57BL/6 or VGATChR2-EYFP
sex: U
species: Mus musculus
subject_id: m53
strain: C57BL/6
epochs
description: experimental epochs
table\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
start_timestop_timetags
id
01191.8669131993.435631[Active Behavior]
12017.8980722164.295733[Passive Listening]
trials
description: experimental trials
table\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
start_timestop_timerewardedtime_reward_sopto_trialopto_timeopto_time_endITI_respectThresholdVectorendZone_ThresholdVector
id
01191.8669131192.054760FalseNaNFalseNaNNaNTrue24.030.0
11192.9176091193.742364FalseNaNFalseNaNNaNTrue24.030.0
21194.2168131194.700726FalseNaNFalseNaNNaNTrue24.030.0
31196.7101841197.109255FalseNaNFalseNaNNaNTrue24.030.0

... and 483 more rows.

units
description: Neural spikes were sorted offline using Kilosort 2.5 and Phy2 software and manually curated to ensure precise spike time acquisition.
waveform_unit: volts
table\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
spike_timesunit_nameshn_spikesampKSLabeloriginal_cluster_idContamPctfrchqualityAmplitudedepth
id
0[3.5251333333333332, 3.5982666666666665, 3.615466666666667, 3.6355, 3.667133333333333, 3.673233333333333, 3.6804, 3.6820666666666666, 3.719533333333333, 3.7214, 3.7286333333333332, 3.7361, 3.7454666666666667, 3.7516666666666665, 3.7582333333333335, 3.7706333333333335, 3.7723333333333335, 3.7761666666666667, 3.7828, 3.789266666666667, 3.7908, 3.7944333333333335, 3.7975, 3.801433333333333, 3.8028333333333335, 3.8101, 3.8163, 3.8306666666666667, 3.8476, 3.8533333333333335, 3.8613333333333335, 3.8677333333333332, 3.8763, 3.8783333333333334, 3.8937333333333335, 3.8977333333333335, 3.9047666666666667, 3.9154666666666667, 3.9199, 3.9278, 3.9289666666666667, 3.9656, 3.9732666666666665, 3.9785, 3.9968333333333335, 4.253466666666666, 7.058, 7.0735, 7.076233333333334, 7.093833333333333, 7.0957333333333334, 7.117, 7.1205, 7.1216333333333335, 7.122833333333333, 7.1245666666666665, 7.1294, 7.131433333333334, 7.1349, 7.138366666666666, 7.144266666666667, 7.145533333333334, 7.151666666666666, 7.1612, 7.1795333333333335, 7.1817, 7.194966666666667, 7.198966666666666, 7.227566666666666, 7.2441, 7.253466666666666, 7.256, 7.270533333333334, 7.2833, 7.3402666666666665, 7.348166666666667, 7.385433333333333, 7.3868, 7.429133333333334, 7.468233333333333, 7.493733333333333, 7.500633333333333, 7.533966666666666, 7.572033333333334, 12.2529, 12.287133333333333, 12.332033333333333, 12.345333333333333, 12.362333333333334, 12.431366666666667, 12.447833333333334, 12.468133333333334, 12.476366666666667, 12.4821, 12.4863, 12.489433333333332, 12.491666666666667, 12.497033333333333, 12.509133333333333, 12.5132, ...]01.025481115.930557mua080.79.435566127noise12.450.0
1[3.5561333333333334, 3.5773, 3.5833666666666666, 3.5907, 3.6018333333333334, 3.607, 3.6252333333333335, 3.6276, 3.630333333333333, 3.636433333333333, 3.672, 3.6748, 3.689233333333333, 3.6984, 3.7062, 3.712666666666667, 3.7167666666666666, 3.722366666666667, 3.7267333333333332, 3.7298, 3.7329333333333334, 3.7546666666666666, 3.759533333333333, 3.761833333333333, 3.7788666666666666, 3.7809333333333335, 3.784, 3.8009, 3.804866666666667, 3.807, 3.8131, 3.8219333333333334, 3.8369, 3.8399, 3.8489333333333335, 3.872733333333333, 3.875, 3.8805666666666667, 3.9079333333333333, 3.9105666666666665, 3.9217333333333335, 3.923566666666667, 3.9467333333333334, 3.9625666666666666, 3.9875333333333334, 4.0126333333333335, 4.046733333333333, 7.04, 7.048466666666667, 7.0652333333333335, 7.066766666666667, 7.071133333333333, 7.075466666666666, 7.080466666666666, 7.083566666666667, 7.084633333333334, 7.0874, 7.0924, 7.099066666666666, 7.102333333333333, 7.105033333333333, 7.108833333333333, 7.1101, 7.111666666666666, 7.1146, 7.1165666666666665, 7.118266666666667, 7.124033333333333, 7.129833333333333, 7.1328, 7.147766666666667, 7.1531666666666665, 7.157033333333334, 7.1607666666666665, 7.163333333333333, 7.165933333333333, 7.1679, 7.170233333333333, 7.172533333333333, 7.173666666666667, 7.174633333333333, 7.177266666666666, 7.189033333333334, 7.202366666666666, 7.203533333333334, 7.2062, 7.208933333333333, 7.2103, 7.215233333333333, 7.221533333333333, 7.2261, 7.233466666666667, 7.2365, 7.240233333333333, 7.259133333333334, 7.263366666666666, 7.2657, 7.2673, 7.289833333333333, 7.308666666666666, ...]11.035443126.206665mua162.413.124476127noise13.250.0
2[0.12136666666666666, 0.8584333333333334, 1.2345333333333333, 3.9112, 5.9219333333333335, 9.9444, 12.450633333333334, 14.325033333333334, 14.3353, 14.5326, 18.6813, 23.658733333333334, 28.391166666666667, 37.837133333333334, 40.08743333333334, 41.8005, 41.903533333333336, 49.185966666666666, 56.691766666666666, 60.7654, 65.25846666666666, 66.39336666666667, 66.88976666666667, 70.34863333333334, 71.04976666666667, 73.94253333333333, 74.4071, 74.6132, 81.01176666666667, 82.65003333333334, 84.92176666666667, 85.42363333333333, 93.15026666666667, 97.1867, 97.19306666666667, 97.2139, 97.38656666666667, 97.42413333333333, 97.6594, 97.6653, 97.6856, 97.86983333333333, 98.4364, 98.4886, 98.82413333333334, 99.05023333333334, 99.52346666666666, 99.52543333333334, 100.2741, 100.2827, 101.2859, 102.92483333333334, 103.9318, 104.3477, 105.0469, 105.2011, 106.22393333333333, 106.25263333333334, 106.41993333333333, 108.4289, 109.03933333333333, 109.5766, 109.80056666666667, 109.87266666666666, 110.75076666666666, 110.92793333333333, 112.9565, 112.98053333333333, 113.53836666666666, 114.05953333333333, 114.5931, 115.62396666666666, 116.19866666666667, 116.86976666666666, 116.8932, 116.94683333333333, 118.0651, 118.55736666666667, 118.57543333333334, 118.8569, 118.9409, 119.22193333333334, 119.87903333333334, 119.9101, 119.91233333333334, 120.007, 120.09633333333333, 120.14376666666666, 120.9085, 120.93486666666666, 121.11313333333334, 121.12623333333333, 121.22286666666666, 121.22786666666667, 122.9742, 123.09116666666667, 123.1092, 123.1423, 123.53393333333334, 125.6168, ...]21.012217116.071793mua249.84.52393263noise9.350.0
3[3.7224333333333335, 9.597633333333333, 12.7993, 12.8781, 16.0953, 27.6601, 27.8507, 28.9355, 29.759833333333333, 33.2042, 40.22743333333333, 41.89406666666667, 42.1827, 42.194966666666666, 42.94793333333333, 54.178066666666666, 56.0236, 59.0662, 60.64053333333333, 60.64763333333333, 60.76893333333334, 60.851, 61.1273, 63.092866666666666, 70.4433, 71.1334, 81.05643333333333, 81.0611, 81.08413333333333, 81.24146666666667, 81.48196666666666, 88.2934, 91.73243333333333, 96.785, 97.18263333333333, 97.19186666666667, 97.27646666666666, 97.50363333333334, 98.0959, 98.18673333333334, 98.71266666666666, 99.0543, 99.05646666666667, 99.5565, 99.56853333333333, 99.57726666666667, 102.64806666666667, 102.65586666666667, 102.89906666666667, 103.50246666666666, 103.6804, 104.14823333333334, 104.19613333333334, 104.62423333333334, 105.57153333333333, 105.73293333333334, 105.88566666666667, 105.99263333333333, 106.2862, 106.4737, 106.8489, 107.3072, 107.99803333333334, 108.38136666666666, 108.45516666666667, 109.1129, 109.27656666666667, 109.31046666666667, 109.3976, 109.81196666666666, 110.6496, 110.84356666666666, 110.96526666666666, 111.6309, 111.7842, 112.01633333333334, 112.08223333333333, 112.9762, 113.05623333333334, 113.51366666666667, 113.78466666666667, 114.62746666666666, 114.64606666666667, 114.65686666666667, 115.90943333333334, 116.88066666666667, 117.24156666666667, 118.57846666666667, 120.12076666666667, 120.17023333333333, 120.411, 121.76593333333334, 122.1256, 122.51696666666666, 123.53856666666667, 123.59466666666667, 125.3487, 126.73206666666667, 126.78536666666666, 127.2204, ...]31.011622116.476280mua350.24.30360563noise9.350.0

... and 231 more rows.

experiment_description: Identifying mistakes is important for improving performance during acoustic behaviors like speech and musicianship. Although hearing is instrumental for monitoring and adapting these behaviors, the neural circuits that integrate motor, acoustic, and goal-related signals to detect errors and guide ongoing sensorimotor adaptation in mammals remain unidentified. Here, we develop a novel closed-loop, sound-guided behavior that requires mice to use real-time acoustic feedback to guide skilled ongoing forelimb movements. Large scale electrophysiology recordings reveal that the mouse auditory cortex integrates information about sound and movement, as well as encodes error- and learning-related signals during this sound-generating behavior. Distinct groups of auditory cortex neurons signal different error types, and the activity of these neurons predicts both within-trial and across-trial behavioral adaptations. Brief, behavior-triggered optogenetic suppression of auditory cortex during error signaling hinders behavioral corrections on both rapid and long time scales, indicating that cortical error signals are necessary for skilled acoustic behaviors. Together, these experiments identify a cortical role for detecting errors and learning from mistakes and suggest that the auditory cortex plays a critical role in skilled, sound-generating behavior in mammals.
session_id: 231029
lab: Schneider
institution: New York University
source_script: Created using NeuroConv v0.6.5
source_script_file_name: /opt/anaconda3/envs/schneider_lab_to_nwb_env/lib/python3.12/site-packages/neuroconv/basedatainterface.py
" + ], + "text/plain": [ + "root pynwb.file.NWBFile at 0x4945540784\n", + "Fields:\n", + " acquisition: {\n", + " ElectricalSeries ,\n", + " video_camera_1 ,\n", + " video_camera_2 \n", + " }\n", + " devices: {\n", + " MasmanidisSiliconMicroprobe128AxN ,\n", + " intrinsic_signal_optical_imaging_laser ,\n", + " lickometer ,\n", + " rotary_encoder ,\n", + " two_photon_microscope \n", + " }\n", + " electrode_groups: {\n", + " ElectrodeGroup \n", + " }\n", + " electrodes: electrodes \n", + " epochs: epochs \n", + " experiment_description: Identifying mistakes is important for improving performance during acoustic behaviors like speech and musicianship. Although hearing is instrumental for monitoring and adapting these behaviors, the neural circuits that integrate motor, acoustic, and goal-related signals to detect errors and guide ongoing sensorimotor adaptation in mammals remain unidentified. Here, we develop a novel closed-loop, sound-guided behavior that requires mice to use real-time acoustic feedback to guide skilled ongoing forelimb movements. Large scale electrophysiology recordings reveal that the mouse auditory cortex integrates information about sound and movement, as well as encodes error- and learning-related signals during this sound-generating behavior. Distinct groups of auditory cortex neurons signal different error types, and the activity of these neurons predicts both within-trial and across-trial behavioral adaptations. Brief, behavior-triggered optogenetic suppression of auditory cortex during error signaling hinders behavioral corrections on both rapid and long time scales, indicating that cortical error signals are necessary for skilled acoustic behaviors. Together, these experiments identify a cortical role for detecting errors and learning from mistakes and suggest that the auditory cortex plays a critical role in skilled, sound-generating behavior in mammals.\n", + " experimenter: ['Zempolich, Grant W.' 'Schneider, David M.']\n", + " file_create_date: [datetime.datetime(2024, 12, 18, 9, 6, 51, 25092, tzinfo=tzoffset(None, -28800))]\n", + " identifier: 1fb4f618-1681-43b1-b541-cedcce1466cc\n", + " institution: New York University\n", + " intervals: {\n", + " epochs ,\n", + " trials \n", + " }\n", + " keywords: \n", + " lab: Schneider\n", + " processing: {\n", + " behavior ,\n", + " intrinsic_signal_optical_imaging \n", + " }\n", + " session_description: Mice performed the auditory guided task while electricophysiological neural activity was recorded in the primary auditory cortex (A1).\n", + " session_id: 231029\n", + " session_start_time: 2023-10-29 16:56:01-04:00\n", + " source_script: Created using NeuroConv v0.6.5\n", + " source_script_file_name: /opt/anaconda3/envs/schneider_lab_to_nwb_env/lib/python3.12/site-packages/neuroconv/basedatainterface.py\n", + " subject: subject pynwb.file.Subject at 0x4946217632\n", + "Fields:\n", + " age: P12W/\n", + " age__reference: birth\n", + " description: 12-week-old C57BL/6 or VGATChR2-EYFP mice were used for all behavioral, electrophysiology, and optogenetic experiments. In the VGAT-ChR2-EYFP mouse line, channelrhodopsin (ChR2) was coupled to the vesicular GABA transporter, inducing expression in GABAergic inhibitory neurons ubiquitously across cortex and allowing for real time optogenetic inhibition of brain regions of interest.\n", + " genotype: C57BL/6 or VGATChR2-EYFP\n", + " sex: U\n", + " species: Mus musculus\n", + " strain: C57BL/6\n", + " subject_id: m53\n", + "\n", + " timestamps_reference_time: 2023-10-29 16:56:01-04:00\n", + " trials: trials \n", + " units: units " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "nwbfile_path = '/Volumes/T7/CatalystNeuro/Schneider/conversion_nwb/sub-m53_ses-231029.nwb'\n", + "io = NWBHDF5IO(nwbfile_path, 'r')\n", + "nwbfile = io.read()\n", + "display(nwbfile)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Retrieve Ephys and Behavioral Data" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "metadata": {}, + "outputs": [], + "source": [ + "# Ephys\n", + "electrical_series = np.asarray(nwbfile.acquisition[\"ElectricalSeries\"].data[:, 0])\n", + "fs = nwbfile.acquisition[\"ElectricalSeries\"].rate\n", + "raw_to_uV = nwbfile.acquisition[\"ElectricalSeries\"].conversion * 1e6\n", + "electrical_series_in_uV = electrical_series * raw_to_uV\n", + "electrical_series_timestamps = np.arange(0, len(electrical_series)) / fs\n", + "\n", + "# Sorted Units\n", + "units = nwbfile.units.to_dataframe()\n", + "good_units = units[units.quality==\"good\"]\n", + "\n", + "# Behavioral Events\n", + "tone_in = np.asarray(nwbfile.processing[\"behavior\"].data_interfaces[\"toneIN\"].timestamps)\n", + "tone_out = np.asarray(nwbfile.processing[\"behavior\"].data_interfaces[\"toneOUT\"].timestamps)\n", + "target_out = np.asarray(nwbfile.processing[\"behavior\"].data_interfaces[\"targetOUT\"].timestamps)\n", + "valve = np.asarray(nwbfile.processing[\"behavior\"].data_interfaces[\"valve\"].timestamps)\n", + "\n", + "# Behavioral Time Series\n", + "encoder_data = np.asarray(nwbfile.processing[\"behavior\"].data_interfaces[\"behavioral_time_series\"][\"encoder\"].data)\n", + "encoder_timestamps = np.asarray(nwbfile.processing[\"behavior\"].data_interfaces[\"behavioral_time_series\"][\"encoder\"].timestamps)\n", + "lick_data = np.asarray(nwbfile.processing[\"behavior\"].data_interfaces[\"behavioral_time_series\"][\"lick\"].data)\n", + "lick_timestamps = np.asarray(nwbfile.processing[\"behavior\"].data_interfaces[\"behavioral_time_series\"][\"lick\"].timestamps)\n", + "\n", + "# Behavioral Trials\n", + "trials = nwbfile.trials.to_dataframe()\n", + "example_rewarded_trial = trials[trials[\"rewarded\"] == True].iloc[0]\n", + "example_unrewarded_trial = trials[trials[\"rewarded\"] == False].iloc[0]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Plot an Example Rewarded Trial" + ] + }, + { + "cell_type": "code", + "execution_count": 89, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/opt/anaconda3/envs/schneider_lab_to_nwb_env/lib/python3.12/site-packages/matplotlib/cbook.py:1762: ComplexWarning: Casting complex values to real discards the imaginary part\n", + " return math.isfinite(val)\n", + "/opt/anaconda3/envs/schneider_lab_to_nwb_env/lib/python3.12/site-packages/matplotlib/cbook.py:1398: ComplexWarning: Casting complex values to real discards the imaginary part\n", + " return np.asarray(x, float)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABmUAAANXCAYAAADEk1u3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1jU2NcH8O/QQQRsiF1Q7AXXttjFgr13V2XtvWIv2Nvau6Ji3bXrWlGxomJZFXtFEBSxC9JhmPcP3uSXZJKZzDBUz+d5fBwymeROyyT33HOuQqVSqUAIIYQQQgghhBBCCCGEEELSlVFmN4AQQgghhBBCCCGEEEIIIeRXQEEZQgghhBBCCCGEEEIIIYSQDEBBGUIIIYQQQgghhBBCCCGEkAxAQRlCCCGEEEIIIYQQQgghhJAMQEEZQgghhBBCCCGEEEIIIYSQDEBBGUIIIYQQQgghhBBCCCGEkAxAQRlCCCGEEEIIIYQQQgghhJAMQEEZQgghhBBCCCGEEEIIIYSQDEBBGUIIIYQQQgghhBBCCCGEkAxAQRlCCCGEEEJIlnT58mUoFApcvnw5s5uSrTRq1AiNGjUy6DYVCgVmz55t0G1yzZ49GwqFQq/HpsfzJYQQQgghJL1QUIYQQgghhJBsaMeOHVAoFJL/bt68mdlNzHJCQkJ4r5GRkRHy5s2Lli1bIiAgILObl601atRI4+eR+ZeegR1CCCGEEEKyA5PMbgAhhBBCCCFEf3PnzoWjo6Pa8tKlS2dCa7KHnj17olWrVlAqlXj58iU2bNiAxo0b486dO6hcuXJmNy9bmj59OgYOHMj+fefOHaxZswbTpk1D+fLl2eVVqlQRffyMGTMwZcqUdG8nIYQQQgghmY2CMoQQQgghhGRjLVu2RI0aNTK7GdnKb7/9hj/++IP9u379+mjZsiU2btyIDRs2ZGLL5ImJiUGuXLkyuxk8zZo14/1tYWGBNWvWoFmzZhpLizHPxcTEBCYmdHlKCCGEEEJyPipfRgghhBBCSA7m5eUFIyMjXLhwgbd88ODBMDMzw4MHDwAAiYmJmDVrFqpXrw5bW1vkypUL9evXx6VLl3iPY0qALVu2DOvXr4eTkxOsrKzQvHlzhIWFQaVSYd68eShatCgsLS3Rvn17fPv2jbeNkiVLok2bNjh37hxcXFxgYWGBChUq4MiRI7Ke061bt9CiRQvY2trCysoKDRs2xPXr1/V+jerXrw8ACAoK4i3/8eMHxo4di2LFisHc3BylS5fGkiVLkJKSwq7z22+/oVOnTrzHVa5cGQqFAg8fPmSX7d+/HwqFAs+ePQMAvH37FsOHD0fZsmVhaWmJfPnyoWvXrggJCeFtiylTd+XKFQwfPhz29vYoWrQoe/+WLVtQqlQpWFpaolatWvD39xd9jgkJCfDy8kLp0qVhbm6OYsWKYdKkSUhISFBbb9y4cShQoABy586Ndu3a4d27dzJfSc2YeWOePn2KXr16IU+ePKhXrx7vPi4fHx+4ubnB3t4e5ubmqFChAjZu3GiQthBCCCGEEJJZaCgSIYQQQggh2VhkZCS+fPnCW6ZQKJAvXz4AqWWhTpw4gQEDBuDRo0fInTs3zp49C29vb8ybNw9Vq1YFAERFRWHr1q3o2bMnBg0ahJ8/f2Lbtm1wd3fH7du34eLiwtvH3r17kZiYiFGjRuHbt29YunQpunXrBjc3N1y+fBmTJ0/G69evsXbtWnh6emL79u28x7969Qrdu3fH0KFD0a9fP/j4+KBr167w9fVVy7rgunjxIlq2bInq1auzASem897f3x+1atXS+TVkAiF58uRhl8XGxqJhw4Z4//49hgwZguLFi+PGjRuYOnUqPnz4gFWrVgFIDej8888/7OO+ffuGJ0+ewMjICP7+/my5Ln9/fxQoUIAt5XXnzh3cuHEDPXr0QNGiRRESEoKNGzeiUaNGePr0KaysrHhtHD58OAoUKIBZs2YhJiYGALBt2zYMGTIEderUwdixY/HmzRu0a9cOefPmRbFixdjHpqSkoF27drh27RoGDx6M8uXL49GjR1i5ciVevnyJY8eOsesOHDgQe/bsQa9evVCnTh1cvHgRrVu31vk11aRr165wdnbGwoULoVKpJNfbuHEjKlasiHbt2sHExAQnTpzA8OHDkZKSghEjRhi0TYQQQgghhGQYFSGEEEIIISTb8fHxUQEQ/Wdubs5b99GjRyozMzPVwIEDVd+/f1cVKVJEVaNGDVVSUhK7TnJysiohIYH3uO/fv6sKFiyo6t+/P7ssODhYBUBVoEAB1Y8fP9jlU6dOVQFQVa1albfdnj17qszMzFTx8fHsshIlSqgAqA4fPswui4yMVBUqVEhVrVo1dtmlS5dUAFSXLl1SqVQqVUpKisrZ2Vnl7u6uSklJYdeLjY1VOTo6qpo1a6bxNWPaPmfOHNXnz59VERERKn9/f1XNmjVVAFQHDx5k1503b54qV65cqpcvX/K2MWXKFJWxsbEqNDRUpVKpVAcPHlQBUD19+lSlUqlUx48fV5mbm6vatWun6t69O/u4KlWqqDp27Mhrs1BAQIAKgGrXrl3sMuZ9rlevnio5OZldnpiYqLK3t1e5uLjw3rctW7aoAKgaNmzILtu9e7fKyMhI5e/vz9vfpk2bVABU169fV6lUKlVgYKAKgGr48OG89Xr16qUCoPLy8hJ/YUUwrwvz3qlUKpWXl5cKgKpnz55q6zP3cYm9Ru7u7ionJyfesoYNG/KeLyGEEEIIIVkZlS8jhBBCCCEkG1u/fj3Onz/P+3fmzBneOpUqVcKcOXOwdetWuLu748uXL9i5cydvDg9jY2OYmZkBSM2s+PbtG5KTk1GjRg3cu3dPbb9du3aFra0t+3ft2rUBAH/88Qdvu7Vr10ZiYiLev3/Pe3zhwoXRsWNH9m8bGxv07dsX9+/fR0REhOhzDQwMxKtXr9CrVy98/foVX758wZcvXxATE4MmTZrg6tWrvNJiUry8vFCgQAE4ODigfv36ePbsGZYvX44uXbqw6xw8eBD169dHnjx52P18+fIFTZs2hVKpxNWrVwH8r/QZ87e/vz9q1qyJZs2asaXEfvz4gcePH7PrAoClpSV7OykpCV+/fkXp0qVhZ2cn+noPGjQIxsbG7N///fcfPn36hKFDh7LvGwB4eHjw3hfmuZQvXx7lypXjPRc3NzcAYEvUnT59GgAwevRo3uPHjh2r9TXVxdChQ2Wtx32NmIywhg0b4s2bN4iMjDRomwghhBBCCMkoVL6MEEIIIYSQbKxWrVqoUaOG1vUmTpyIffv24fbt21i4cCEqVKigts7OnTuxfPlyPH/+HElJSexyR0dHtXWLFy/O+5sJBHDLZnGXf//+nbe8dOnSanOIlClTBkBqOTEHBwe1fb569QoA0K9fP/EnidTOe24ZMjGDBw9G165dER8fj4sXL2LNmjVQKpVq+3r48CEKFCgguo1Pnz4BAAoWLAhnZ2f4+/tjyJAh8Pf3R+PGjdGgQQOMGjUKb968wbNnz5CSksILysTFxWHRokXw8fHB+/fveWW8xAIOwvfg7du3AABnZ2feclNTUzg5Oak9l2fPnml9Lm/fvoWRkRFKlSrFu79s2bKij9OX2OdJzPXr1+Hl5YWAgADExsby7ouMjFQLPhFCCCGEEJIdUFCGEEIIIYSQX8CbN2/YoMajR4/U7t+zZw88PDzQoUMHTJw4Efb29jA2NsaiRYsQFBSktj43a0POcpWGuUPkYrJg/vrrL7U5bhjW1tZat+Ps7IymTZsCANq0aQNjY2NMmTIFjRs3ZgNcKSkpaNasGSZNmiS6DSaABAD16tXDhQsXEBcXh7t372LWrFmoVKkS7Ozs4O/vj2fPnsHa2hrVqlVjHzNq1Cj4+Phg7NixcHV1ha2tLRQKBXr06CGa7cPNGtFVSkoKKleujBUrVojeLwykpTc5zyUoKAhNmjRBuXLlsGLFChQrVgxmZmY4ffo0Vq5cKSsjihBCCCGEkKyIgjKEEEIIIYTkcCkpKfDw8ICNjQ3Gjh2LhQsXokuXLujUqRO7zqFDh+Dk5IQjR47wMli8vLzSpU2vX7+GSqXi7evly5cAgJIlS4o+hsngsLGxYYMqhjB9+nR4e3tjxowZ8PX1ZfcVHR0taz/169eHj48P9u3bB6VSiTp16sDIyAj16tVjgzJ16tThBawOHTqEfv36Yfny5eyy+Ph4/PjxQ1abS5QoASA1C4YpQwaklkILDg5G1apV2WWlSpXCgwcP0KRJE7XsJOE2U1JSEBQUxMuOefHihaw2GdKJEyeQkJCA48eP87KymFJrhBBCCCGEZFc6zSnz7NkzeHl5wc3NDaVKlUKhQoVQpUoV9OvXD3///TcSEhLSq52EEEIIIYQQPa1YsQI3btzAli1bMG/ePNSpUwfDhg3Dly9f2HWYgAE3o+XWrVsICAhIlzaFh4fj6NGj7N9RUVHYtWsXXFxcREuXAUD16tVRqlQpLFu2DNHR0Wr3f/78Wa+22NnZYciQITh79iwCAwMBAN26dUNAQADOnj2rtv6PHz+QnJzM/s2UJVuyZAmqVKnCltWqX78+Lly4gP/++49XugxIfb2F2UNr165VK6MmpUaNGihQoAA2bdqExMREdvmOHTvUAjvdunXD+/fv4e3trbaduLg4xMTEAABatmwJAFizZg1vnVWrVslqkyGJfR4jIyPh4+OT4W0hhBBCCCHEkGRlyty7dw+TJk3CtWvXULduXdSuXRsdO3aEpaUlvn37hsePH2P69OkYNWoUJk2ahLFjx8Lc3Dy9204IIYQQQsgv78yZM3j+/Lna8jp16sDJyQnPnj3DzJkz4eHhgbZt2wJI7bh3cXHB8OHDceDAAQCpZbyOHDmCjh07onXr1ggODsamTZtQoUIF0QBIWpUpUwYDBgzAnTt3ULBgQWzfvh0fP37U2OluZGSErVu3omXLlqhYsSL+/PNPFClSBO/fv8elS5dgY2ODEydO6NWeMWPGYNWqVVi8eDH27duHiRMn4vjx42jTpg08PDxQvXp1xMTE4NGjRzh06BBCQkKQP39+AKnz4zg4OODFixcYNWoUu80GDRpg8uTJAKAWlGnTpg12794NW1tbVKhQAQEBAfDz80O+fPlktdfU1BTz58/HkCFD4Obmhu7duyM4OBg+Pj5qc8r06dMHBw4cwNChQ3Hp0iXUrVsXSqUSz58/x4EDB3D27FnUqFEDLi4u6NmzJzZs2IDIyEjUqVMHFy5cwOvXr/V6TdOiefPmMDMzQ9u2bTFkyBBER0fD29sb9vb2+PDhQ4a3hxBCCCGEEEORFZTp3LkzPD09cejQIdjZ2UmuFxAQgNWrV2P58uWYNm2aodpICCGEEEIIkTBr1izR5T4+PihRogT69euH/Pnz87IdnJ2dsWjRIowZMwYHDhxAt27d4OHhgYiICGzevBlnz55FhQoVsGfPHhw8eBCXL182eLudnZ2xdu1aTJw4ES9evICjoyP2798Pd3d3jY9r1KgRAgICMG/ePKxbtw7R0dFwcHBA7dq1MWTIEL3bU7hwYfTq1Qu7d+9GUFAQSpUqhStXrmDhwoU4ePAgdu3aBRsbG5QpUwZz5sxRm2S+fv36OHjwIOrVq8cuq169OqysrJCcnIzatWvz1l+9ejWMjY2xd+9exMfHo27duvDz89P6/LkGDx4MpVKJv/76CxMnTkTlypVx/PhxzJw5k7eekZERjh07hpUrV2LXrl04evQorKys4OTkhDFjxvDmx9m+fTsKFCiAvXv34tixY3Bzc8OpU6cyfN6ZsmXL4tChQ5gxYwY8PT3h4OCAYcOGoUCBAujfv3+GtoUQQgghhBBDUqhkzLiZlJQEU1NT2RvVdX1CCCGEEELIr6NkyZKoVKkSTp48mdlNIYQQQgghhJAMJWtOGVNTU6xbt072pJMUkCGEEEIIIYQQQgghhBBCCOGTFZQBgOnTp7Mp/RcvXkzPNhFCCCGEEEIIIYQQQgghhOQ4soMyERER2LRpEz58+IBmzZrB0dER8+bNQ1hYWHq2jxBCCCGEEEIIIYQQQgghJEeQNaeM0Js3b7Bjxw7s2rUL7969Q9OmTTFgwAB06NCBSpcRQgghhBBCCCGEEEIIIYSI0Csow1CpVPDz88OOHTtw7Ngx5MqVC58+fTJk+wghhBBCCCGEEEIIIYQQQnIE2eXLxCgUCpiYmEChUEClUiEpKclQ7SKEEEIIIYQQQgghhBBCCMlRTPR5UFhYGHx8fLBjxw6EhoaiQYMG8Pb2RufOnQ3dviwnJSUF4eHhyJ07NxQKRWY3hxBCCCGEEEIIIYQQQgghmUilUuHnz58oXLgwjIw058LIDsokJibiyJEj2L59Oy5evIhChQqhX79+6N+/P5ycnNLc6OwiPDwcxYoVy+xmEEIIIYQQQgghhBBCCCEkCwkLC0PRokU1riM7KOPg4IDY2Fi0adMGJ06cgLu7u9aIT06UO3duAKkvro2NTSa3hhBCUiUlJeHAgQMAgG7dusHU1DSTW0QIIYQQQgghhBgOXfcSQrKyqKgoFCtWjI0faKJQqVQqORtdsWIF+vTpgwIFCqS5gdlZVFQUbG1tERkZSUEZQgghhBBCCCGEEEIIIeQXp0vcQHamzPjx49PcMEIIIYQQQgghhBBCCCGEkF+V7KAMw8jISOME90qlMk0NIoQQorvk5GScPXsWAODu7g4TE50P74QQQgghhBBCSJZF172EkJxC56PX0aNHeX8nJSXh/v372LlzJ+bMmWOwhhFCCJEvISEBbdq0AQBER0fTySkhhBBCCCGEkByFrnsJITmFzkev9u3bqy3r0qULKlasiP3792PAgAEGaRj5dURGRmL06NHo2bMnWrRokdnNIYQQQgghhBBCCCGEEELShZGhNvT777/jwoULhtoc+YUsX74cu3btQsuWLTO7KYQQQgghhBBCCCGEEEJIujFInl9cXBzWrFmDIkWKGGJzOYJSqURSUlJmNyNbiIyMRIkSJQAA8fHxmdya7MvU1BTGxsaZ3QxCCCGEEEIIIYQQQgghEnQOyuTJkwcKhYL9W6VS4efPn7CyssKePXsM2rjsSKVSISIiAj9+/MjspmQbnTt3ZrNkgoODM7k12ZudnR0cHBx431FCCCGEEEIIIYQQQgghWYPOQZlVq1bx/jYyMkKBAgVQu3Zt5MmTx1DtyraYgIy9vT2srKyoc1wGIyMj/Pz5EwDg6OiYya3JnlQqFWJjY/Hp0ycAQKFChTK5RYQQQgghhBBCCCGEEEKEdA7K9OvXLz3akSMolUo2IJMvX77Mbk62wS25ZWFhkYktyd4sLS0BAJ8+fYK9vT2VMiOEEEIIIYQQQgghhJAsRlZQJjQ0FMWLF5e90ffv3/+S88swc8hYWVllckuyF5VKldlNyDGYz15SUhIFZX4xZmZmWLduHXubEEIIIYQQQgjJSei6lxCSUxjJWalmzZoYMmQI7ty5I7lOZGQkvL29UalSJRw+fNhgDZSyePFiKBQKjB07ll0WHx+PESNGIF++fLC2tkbnzp3x8eNH3uNCQ0PRunVrWFlZwd7eHhMnTkRycrJB20Yly3STkpKS2U3IMeiz9+syNTXFiBEjMGLECJiammZ2cwghhBBCCCGEEIOi615CSE4hK1Pm6dOnWLBgAZo1awYLCwtUr14dhQsXhoWFBb5//46nT5/iyZMn+O2337B06VK0atUqXRt9584dbN68GVWqVOEtHzduHE6dOoWDBw/C1tYWI0eORKdOnXD9+nUAqeXFWrduDQcHB9y4cQMfPnxA3759YWpqioULF6Zrm4k0ypQhhBBCCCGEEEIIIYQQ8iuQlSmTL18+rFixAh8+fMC6devg7OyML1++4NWrVwCA3r174+7duwgICEj3gEx0dDR69+4Nb29v5MmTh10eGRmJbdu2YcWKFXBzc0P16tXh4+ODGzdu4ObNmwCAc+fO4enTp9izZw9cXFzQsmVLzJs3D+vXr0diYqLo/hISEhAVFcX7RwyLgjKEpJ1SqcTly5dx+fJlKJXKzG4OIYQQQgghhBBiUHTdSwjJKWQFZRiWlpbo0qULVq1ahaNHj8LX1xd79uzBhAkTUKlSpfRqI8+IESPQunVrNG3alLf87t27SEpK4i0vV64cihcvjoCAAABAQEAAKleujIIFC7LruLu7IyoqCk+ePBHd36JFi2Bra8v+K1asWDo8q+xBoVDg2LFjBt+unKBMo0aNeKXq0srDwwMdOnQw2PZ0sWPHDtjZ2WXKvknOFR8fj8aNG6Nx48aIj4/P7OYQQgghhBBCCCEGRde9hJCcQqegTGbbt28f7t27h0WLFqndFxERATMzM7XO7oIFCyIiIoJdhxuQYe5n7hMzdepUREZGsv/CwsIM8EyyHg8PDygUCrV/LVq0SLd9MkGe2NhYreseOXIE8+bNS7e2iPH29kbVqlVhbW0NOzs7VKtWTfSzp6vu3bvj5cuXBmghIYQQQgghhBBCCCGEkOxE1pwyWUFYWBjGjBmD8+fPw8LCIsP2a25uDnNz8wzbX2Zq0aIFfHx8eMsy+7knJibCzMwMefPmzdD9bt++HWPHjsWaNWvQsGFDJCQk4OHDh3j8+HGatpuUlARLS0tYWloaqKWEEEIIIYQQQgghhBBCsotskylz9+5dfPr0Cb/99htMTExgYmKCK1euYM2aNTAxMUHBggWRmJiIHz9+8B738eNHODg4AAAcHBzw8eNHtfuZ+9KDSqVCTExMhv/TZ54Wc3NzODg48P5x5+0RCgsLQ7du3WBnZ4e8efOiffv2CAkJ4a2zfft2VKxYEebm5ihUqBBGjhwJAChZsiQAoGPHjqhZsybatWsHAJg9ezZcXFywdetWODo6sgE4YfmyhIQETJ48GcWKFYO5uTlKly6Nbdu2AUitMTpgwAA4OjrC0tISZcuWxerVq3V6LY4fP45u3bphwIABKF26NCpWrIiePXtiwYIFvPW2bt2K8uXLw8LCAuXKlcOGDRvY+0JCQqBQKLB//340bNgQFhYW2Lt3r2j5sn///Re//fYbLCws4OTkhDlz5iA5ORlA6mdo9uzZKF68OMzNzVG4cGGMHj1ap+dDCCGEEEIIIYQQQgghJPNlm0yZJk2a4NGjR7xlf/75J8qVK8d2zpuamuLChQvo3LkzAODFixcIDQ2Fq6srAMDV1RULFizAp0+fYG9vDwA4f/48bGxsUKFChXRpd2xsLKytrdNl25pER0cjV65c6bb9pKQkuLu7w9XVFf7+/jAxMcH8+fPRokULPHz4EGZmZti4cSPGjx+PxYsXo2XLloiMjMT169cBAHfu3IG9vT18fHzg4OAAY2NjdtuvX7/G4cOHceTIEd5yrr59+yIgIABr1qxB1apVERwcjC9fvgAAUlJSULRoURw8eBD58uXDjRs3MHjwYBQqVAjdunWT9fwcHBxw5coVvH37FiVKlBBdZ+/evZg1axbWrVuHatWq4f79+xg0aBBy5cqFfv36setNnjwZI0eOxF9//YVixYrh7NmzvO34+/ujb9++WLNmDerXr4+goCAMHjwYAODl5YXDhw9j5cqV2LdvHypWrIiIiAg8ePBA1vMghBBCCCGEEEIIIYQQknVkm6BM7ty5UalSJd6yXLlyIV++fOzyAQMGYPz48cibNy9sbGwwatQouLq64vfffwcANG/eHBUqVECfPn2wdOlSREREYMaMGRgxYkSml+nKCk6ePKkWQJo2bRqmTZumtu7+/fuRkpKCrVu3QqFQAAB8fHxgZ2eHy5cvo3nz5pg/fz4mTJiAMWPGsI+rWbMmAKBAgQIAADs7O+TPn5+37cTEROzatYtdR+jly5c4cOAAzp8/j6ZNmwIAnJyc2PtNTU0xZ84c9m9HR0cEBATgwIEDsoMyXl5e6NSpE0qWLIkyZcrA1dUVrVq1QpcuXWBkZMSus3z5cnTq1Indz9OnT7F582ZeUKZLly5o1KgRAKBQoUJq+5ozZw6mTJnCPsbJyQnz5s3DpEmT4OXlhdDQUDg4OKBp06YwNTVF8eLFUatWLVnPgxBCMlxMDMD8lkRHA+k4QIAQQgghhBBCDCUxJhGLrFPnEp4aPRVmucwyuUWEkJxKr6DM7t27sWnTJgQHByMgIAAlSpTAqlWr4OjoiPbt2xu6jbKtXLkSRkZG6Ny5MxISEuDu7s4rJ2VsbIyTJ09i2LBhcHV1ZTMa5s6dm25tsrKyQnR0dLptX9N+ddW4cWNs3LiRt0xqLpcHDx7g9evXyJ07N295fHw8goKC8OnTJ4SHh6NJkyY6t6NEiRKSARkACAwMhLGxMRo2bCi5zvr167F9+3aEhoYiLi4OiYmJcHFxkd2GQoUKISAgAI8fP8bVq1dx48YN9OvXD1u3boWvry/i4uIQFBSEAQMGYNCgQezjkpOTYWtry9tWlSpVNO7rwYMHuH79Oq80mlKpRHx8PGJjY9G1a1esWrUKTk5OaNGiBVq1aoW2bdvCxCTbxFQzzYIFC3Dz5k0cP36cDR4SQgghhBBCCCGEEEJIZtG5V3fjxo2YNWsWxo4diwULFkCpVAJIzXhYtWpVhgZlLl++zPvbwsIC69evx/r16yUfU6JECZw+fTqdW/Y/CoUiXcuIGVKuXLlQunRpWetGR0ejevXq2Lt3r9p9BQoUYLNJdKVSqbS+XpaWlhrv37dvHzw9PbF8+XK4uroid+7c+Ouvv3Dr1i2d21OpUiVUqlQJw4cPx9ChQ1G/fn1cuXKFLXfn7e2N2rVr8x4jLLmmrb3R0dGYM2cOm3HDZWFhgWLFiuHFixfw8/PD+fPnMXz4cPz111+4cuUKTE1NdX5OvwqlUokZM2YAAK5evaoxiJcTmJqaYunSpextQgghhBBCCCEkJ6HrXkJITqFzUGbt2rXw9vZGhw4dsHjxYnZ5jRo14OnpadDGkazrt99+w/79+2Fvbw8bGxvRdUqWLIkLFy6gcePGovebmpqyQT1dVK5cGSkpKbhy5Qpbvozr+vXrqFOnDoYPH84uCwoK0nk/QkwgJiYmBgULFkThwoXx5s0b9O7dO03b/e233/DixQuNATFLS0u0bdsWbdu2xYgRI1CuXDk8evQIv/32W5r2nZPFx8eztzMjWy2jmZmZYeLEiZndDEIIIYQQQgghJF3QdS8hJKfQOSgTHByMatWqqS03NzdHTEyMQRpFMkdCQgIiIiJ4y0xMTNTmfAGA3r1746+//kL79u0xd+5cFC1aFG/fvsWRI0cwadIkFC1aFLNnz8bQoUNhb2+Pli1b4ufPn7h+/TpGjRoF4H9Bm3bt2sHMzEwyuCNUsmRJ9OvXD/3798eaNWtQtWpVvH37Fp8+fUK3bt3g7OyMXbt24ezZs3B0dMTu3btx584dODo6yn4thg0bhsKFC8PNzQ1FixbFhw8fMH/+fBQoUACurq4AUueCGT16NGxtbdGiRQskJCTgv//+w/fv3zF+/HjZ+5o1axbatGmD4sWLs3PWPHjwAI8fP8b8+fOxY8cOKJVK1K5dG1ZWVtizZw8sLS1RokQJ2fv4FXGDMvpmbhFCCCGEEEIIIYQQQogh6dxT6ejoiMDAQLXlvr6+KF++vCHaRDKJr68vChUqxPtXr1490XWtrKxw9epVFC9eHJ06dUL58uUxYMAAxMfHs8GVfv36YdWqVdiwYQMqVqyINm3a4NWrV+w2li9fjvPnz6NNmzb4448/AKSWL5Nj48aN6NKlC4YPH45y5cph0KBBbFBwyJAh6NSpE7p3747atWvj69evvKwZOZo2bYqbN2+ia9euKFOmDDp37gwLCwtcuHAB+fLlAwAMHDgQW7duhY+PDypXroyGDRtix44dOgV/AMDd3R0nT57EuXPnULNmTfz+++9YuXIlG3Sxs7ODt7c36tatiypVqsDPzw8nTpxg20HEJSYmsreTkpIysSUZQ6lU4s6dO7hz545eGWiEEEIIIYQQQkhWRte9hJCcQqGS2wv+/7Zu3YrZs2dj+fLlGDBgALZu3YqgoCAsWrQIW7duRY8ePdKrrVlCVFQUbG1tERkZqZbZER8fj+DgYDg6OsLCwiKTWpj9/Pfff+ztatWqqc3Jkt09evQICQkJAFLL/MXGxiIxMRF2dnYG3xd9Bv8nLCwMxYsXBwAcPHgQXbp0yeQWpa+YmBhYW1sDSC3Xll3msiI5UEwM8P+fRURHA/RZJIQQQgghhBhAel/3JsYkYpH1IgDA1OipMMtlZtDtE0JyNk1xAyGdy5cNHDgQlpaWmDFjBmJjY9GrVy8ULlwYq1evzvEBGZL+dIwRZktPnz4FkDpHjZWVVSa3JufijpphgmKEEEIIIYQQQgghhBCSmXQOygCp84n07t0bsbGxiI6Ohr29vaHbRX5Rv0JQhhEXF0dBmXSUnJzM3qagDCGEEEIIIYQQQgghJCvQKyjDsLKyok5lQrT4lQJNWQkFZQghhBBCCCGEEEIIIVmNzkGZatWqQaFQqC1XKBSwsLBA6dKl4eHhgcaNGxukgSRnEwYsVCoVvn//jg8fPsDJySnHzYuSkpKS2U34ZVD5MkIIIYQQQgghhBBCSFZjpOsDWrRogTdv3iBXrlxo3LgxGjduDGtrawQFBaFmzZr48OEDmjZtin///Tc92kt+AUFBQYiNjcWbN28yuymiIiIi8ObNG70yYLiBAiMjnb9+RAbmfeFmynBfd0IIIYQQQgghhBBCCMksOvcKf/nyBRMmTIC/vz+WL1+O5cuX4+rVq/D09ERMTAzOnTuHGTNmYN68eenRXpLDiGXKMLid6lnJu3fv8O3bN0RFRen8WG6mDGXNGN6GDRtQqFAhPHnyhPf5odeaEEIIIYQQQgghhBCSFehcvuzAgQO4e/eu2vIePXqgevXq8Pb2Rs+ePbFixQqDNJD8WrhBmaw+F4s+7eM+hgIFhjdixAgAwODBg3nHoF/htTY1NYWXlxd7mxBCCCGEEEIIyUnoupcQklPoHJSxsLDAjRs3ULp0ad7yGzdusPN/pKSk5Li5QEj60BTYyIpBGW7nvtjcSro8Pis+v5zi58+fvJJlv0L5MjMzM8yePTuzm0EIIYQQQgghhKQLuu4lhOQUOgdlRo0ahaFDh+Lu3buoWbMmAODOnTvYunUrpk2bBgA4e/YsXFxcDNpQ8mvI6pkyhgzKkPSTkJBA5csIIYQQQgghhBBCCCFZjs5BmRkzZsDR0RHr1q3D7t27AQBly5aFt7c3evXqBQAYOnQohg0bZtiWkhxJ05wyWZE+7eMGb7L680uL2NhYWFpa6hWsMrSkpKRfLiiTkpKCZ8+eAQDKly8PIyOdpwwjhBBCCCGEEEKyLLruJYTkFHodvXr37o2AgAB8+/YN3759Q0BAABuQAQBLS0sqX5aNKBQKjf/SMzVUKkhx4sQJNGjQQONjv3z5grdv32ZooEOfTB6peWRyUoDmwYMHyJs3L8aMGZPZTQEAGBkZ8UqW/QpBmbi4OFSqVAmVKlVCXFycQbaZnJyMa9euIT4+3iDbI4QQQgghhBBC9JUe172EEJIZKKRM8OHDB/bfqlWrYGNjw1vm6emZYW3RJVAREhKCz58/IzIyMh1bxJfW8mo5KRDDtW3bNiQkJGDt2rWZ3RQAqYFGbqbMrzCnTHpYtGgR6tevDw8Pj8xuCiGEEEIIIYQQQgghOYLOQRmlUolly5ahVq1acHBwQN68eXn/iISYmIz7pyMHBwf2n62tLRQKBfu3vb09VqxYgaJFi8Lc3BwuLi7w9fVlHxsSEgKFQoEjR46gcePGsLKyQtWqVREQEMDbx7Vr11C/fn1YWlqiWLFiGD16NGJiYmQHKWbPng0XFxfs3r0bJUuWhK2tLaZNm4aYmBhe53t6o0wZcRkZGBN68uQJ6tWrh4sXL7LLhEGZXyFTJj0sX74cALB///5MbgkhhBBCCCGEEEIIITmDzkGZOXPmYMWKFejevTsiIyMxfvx4dOrUCUZGRula5irbs7bOuH8GtHr1aixfvhzLli3Dw4cP4e7ujnbt2uHVq1e89aZPnw5PT08EBgaiTJky6NmzJ9spHhQUhBYtWqBz5854+PAh9u/fj2vXrmHkyJE6BSaCgoJw7NgxnDx5EidOnMC9e/ewc+fODJ3DJK2ZMhQcMLx27drh+vXraNKkCW/5rxyU6dWrF/z8/NK8nawwPxAhhBBCCCGEEEIIITmJzkGZvXv3wtvbGxMmTICJiQl69uyJrVu3YtasWbh582Z6tJFkomXLlmHy5Mno0aMHypYtiyVLlsDFxQWrVq3irefp6YnWrVujTJkymDNnDt6+fYvXr18DSC2B1Lt3b4wdOxbOzs6oU6cO1qxZg127dqnVANUU6EhJScGOHTtQqVIlVK9eHa1atcKdO3cM/pw1SWvJspyaKcPNUslowcHBassUCsUvN6cM1/Hjx9GsWbM0bycrln2Li4vLUd8dQgghhBBCCCGEEPJrMdH1AREREahcuTIAwNrami1b1KZNG8ycOdOwrctJoqMzuwU6i4qKQnh4OOrWrctbXrduXTx48IC3rEqVKuztQoUKAQA+ffqEcuXK4cGDB3j48CH27t3LrqNSqZCSkiLaoS6lZMmSyJ07NwAgISEB+fPnx7dv3zK0gzat5ctyamdyYmJiZjeBh8qXGUZWC8p8//4dTk5OqFmzJs6dO5fZzSGEEEIIIYQQQgghRGc6Z8oULVoUHz58AACUKlWK7Ri7c+cOzM3NDdu6nCRXroz7lwlMTU3Z20zJI6YjPDo6GkOGDEFgYCD778GDB3j16hUcHR312oeJSWo8kQnupFVKSgoiIyO1biutQZWcmilTo0aNTNu3kZH6YUwYlMlqwYXsIqu9bmfPnsWPHz9w/vz5zG5KlhcdHY3169fj/fv3md0Ug3vx4gU2bdqU5T6fhBBCCCGEEEIIIXLonCnTsWNHXLhwAbVr18aoUaPwxx9/YNu2bQgNDcW4cePSo40kk9jY2KBw4cK4fv06GjZsyC6/fv06atWqJXs7v/32G54+fYrSpUur3RcbG8v7W26g4sePH+xtXYIyKpUKX79+Ra5cuWBpackuDw8PR0REBBwcHFC0aFGNj9e1rdz1cmIHaWaTmvckK2XKhIeH49OnT3BxcUm3fZiamsLT0xN79+5lA+dpldU6vS0sLNjbKSkpogE5kmrixInYtGkTli9fjjdv3mR2cwyqXLlyAFIz9EaPHp3JrSGEEEIIIYRkFOa6l7lNCCHZlc49WosXL8a0adMAAN27d4e/vz+GDRuGQ4cOYfHixQZvIGPRokWoWbMmcufODXt7e3To0AEvXrzgrRMfH48RI0YgX758sLa2RufOnfHx40feOqGhoWjdujWsrKxgb2+PiRMn8jpvCd/EiROxZMkS7N+/Hy9evMCUKVMQGBiIMWPGyN7G5MmTcePGDYwcORKBgYF49eoV/v33X4wcOVLvbBFu52xUVJTsx339+hUhISF48uQJb3lERATvfymGzG7JSZky6TUhfEBAABo0aIB79+7ptG8jI6MsNadMkSJFUK1aNbx69Srd9mFmZoa//vpLp+wzKUqlEi1btsxyx0buSbdwPirCd/LkSQDicy7lFH5+fpndBEIIIYQQQkgGYq57//rrL5iZmWV2cwghRG86B2WuXr3K66j7/fffMX78eLRs2RJXr141aOO4rly5ghEjRuDmzZs4f/48kpKS0Lx5c8TExLDrjBs3DidOnMDBgwdx5coVhIeHo1OnTuz9SqUSrVu3RmJiIm7cuIGdO3dix44dmDVrVrq1O7sbPXo0xo8fjwkTJqBy5crw9fXF8ePH4ezsLHsbVapUwZUrV/Dy5UvUr18f1apVw6xZs1C4cGEkJCTw1pUbqOCOkNclKBNtwLl99MmUyanSKyhTp04d+Pv7o2XLljrtO6vOKXPz5s1034dU9khKSgoCAwORlJSkdRvBwcHw9fU1dNPSjPtey3kev7JfIYsoPj4+s5tACCGEEEIIIYQQojOde20aN26Mb9++qS2PjIxE48aNDdIoMb6+vvDw8EDFihVRtWpV7NixA6Ghobh79y67/23btmHFihVwc3ND9erV4ePjgxs3brAdoefOncPTp0+xZ88euLi4oGXLlpg3bx7Wr1+f5SYqzyweHh680mBGRkbw8vLCu3fvkJiYiMDAQLRo0YK9v2TJklCpVLyyTHZ2dlCpVGjUqBG7jJmY++fPn4iOjsaDBw8wbdo0yc78tm3b4vr16+zfs2fPRmBgIG+dXr164fjx4zo9v7QGSChTJnN8+vRJ8r7sUL6MkZ6ZJykpKQgJCZE8li1ZsgTVqlXDgAEDtG5L0/HQy8sLzZo1y5RjJvc7k9WyeLKad+/eZXYT0p2xsXFmN4EQQgghhBCSgZjr3pCQkCxznU8IIfrQOSijUqlEO0GZeToySmRkJAAgb968AIC7d+8iKSkJTZs2ZdcpV64cihcvjoCAAACppZAqV66MggULsuu4u7sjKipKrZwVIyEhAVFRUbx/xHD0DUzo+7i0/mhzH58emTLZNVDDPSakx3PQlIkjlhGgUql45ctOnjyJli1bZnpHdXplFAGp5bwcHR1x+/Zt0fsXLFgAANi9e7fWbWnKQpk7dy78/Pxw5MgRdplKpcLEiROxcuVKWW0VZsjJxX1PKVNGs1/hAoWCMoQQQgghhPxamOteR0dHKmlNCMnWTOSuyJQBUygU8PDwgLm5OXufUqnEw4cPUadOHcO3UERKSgrGjh2LunXrolKlSgBS5wIxMzODnZ0db92CBQvy5gvhBmSY+5n7xCxatAhz5swx8DMgUtK7JFhaAwa6dnRq2p/wvs+fPyM8PBzOzs6wsrLSq31ZQUpKSpo7S2NiYtCnTx/2b03bEwt0qFQqXiZFWFgYwsLCMHr0aF4wISNw25GeQRltdClnJSfgwS0dGRgYiGXLlgFILSOpiaenJ1avXo3AwECcP38eDg4O6NGjB3v/58+fsXr1avTv3x9OTk6S7aKgjGaWlpY58iLl+/fv7G3KcCWEEEIIIYQQQkh2JLuXztbWFra2tlCpVMidOzf7t62tLRwcHDB48GDs2bMnPdvKGjFiBB4/fox9+/al+76mTp2KyMhI9l9YWFi67/NXIgxMMBlQmnz+/JmXsaRLAMCQ5csMnRHy9u1bJCUl4e3btwbdbkYw9Fwff//9N44ePcr+ralUlZygDCM8PFxtWXJyMhQKBRQKRbpk+XCzQjI6KMPNLNHleyLnPeS+vl+/fmVvv3r1SuPjli9fjuTkZHTr1g3jxo1Dz549efd7eHhgwYIFcHNz09guXT5nv0LWiNBvv/2mdZ3smJnHnUfG0tIyE1tCCCGEEEIIIYQQoh/ZmTI+Pj4AUucQ8fT0zNBSZVwjR47EyZMncfXqVRQtWpRd7uDggMTERPz48YOXLfPx40c4ODiw6whL+3z8+JG9T4y5uTkvK4ikzc+fP6FQKGBtbS16P3fuELEO7Pj4eLWgRUZNaK1SqXSeWFqXTJmMduvWLVy5cgUTJkxIc2YLt9PbEB3gx44dk72u2OckJSVFNCgj9jxXrFjB3g4PD0eRIkVk71sOfUt1GcKdO3fw/v17dO7cOV2DMiYm//spmTNnjqwA/efPn0WXnz17FgBEg5PcdsmdU2bAgAE4f/48Hj16BFtbW1mPyQm0vYezZ8/Gtm3bcOvWLRQuXDiDWpV23O+Tvb09gNQSBn5+fggPD0fPnj1hY2OTWc0jhBBCCCGEkF+WUqmEkZFRplYJISS70Lk328vLK1MCMiqVCiNHjsTRo0dx8eJFODo68u6vXr06TE1NceHCBXbZixcvEBoaCldXVwCAq6srHj16xOv4P3/+PGxsbFChQoWMeSK/MKVSiRcvXuD58+dsx72ugQmxcjUZFdz4/PmzZJk7Q8qoH6/ff/8dkydPljXHiDbcQAw3O0Nf3E5+baQyZcTaIRaYOHHihMb704rbiWyI10YXrq6u6NKlC44fPy77MWfOnEHDhg21rsd9Ltz3i/mO7tmzB3fv3pV8vD7fW30yZbZv346wsDDs3btX5/1lZ9zXRyxQOmfOHLx79w6LFy/OyGalGTcwzny3+vTpg3bt2mHo0KEYOHBgZjWNEEIIIYQQQn4J9+7dQ1hYGL58+cIui46OhpOTE7p3747o6OhMbB0h2YOsns9q1arJ7ii+d+9emhokZcSIEfj777/x77//Infu3GznuK2tLSwtLWFra4sBAwZg/PjxyJs3L2xsbDBq1Ci4urri999/BwA0b94cFSpUQJ8+fbB06VJERERgxowZGDFiBGXDZABhx72RkZHOHbNpzcJISwBHOEm8nG3pkymT0Rk0Dx8+1Pux165dw9y5c3klqwyRKaPL91GX8mViWVUDBw7EtWvXAMjPvtAFNyiTWXNgjBkzRva+W7VqJXkf973lvlbc28WKFcPt27fZOYGkPs/C7CrmvdEUuOLuR9cyeRkdEMts3PebOd6KMcT3NTIyEnZ2drC1tcWPHz/03k5iYiLOnj2LBg0aSGY1iQVlDh8+zC47ePCg3vsnhBBCCCGEEKLZvXv3UL16dfbvGzduwNXVFQcPHkRoaChCQ0Nx8OBBNG3aFOfPn8/ElhKStckKynTo0CGdm6Hdxo0bAQCNGjXiLffx8YGHhwcAYOXKlTAyMkLnzp2RkJAAd3d3bNiwgV3X2NgYJ0+exLBhw+Dq6opcuXKhX79+mDt3bkY9DaIDqc52OcvkUKlUOmWlpGcGC/c5pEe2RnqpX7++2jK5nbw/f/5E165d0aVLF7XR7cKgjKZjkNj7L1W+zMzMjPf358+fMXr0aPbv9Jg8PisEZfr3748lS5aI3vfu3TvMmjULo0ePhouLi+Q2rly5wga4AemgTIkSJRAUFKS1TWJBWm30nVOG2cevRFjqzdTUVHQ9QxzXdu7cCSA1OPPw4UNUKVVKr+0MHz4c27ZtAyB9XOcGZTLr+0QIIUDqaNDcuXMDSC2DHBoaKnmsJYQQQgjJCcLDw3kBGQCoU6cOlEol+vfvz1vu5+cHILVP5OvXrzA2Nkb+/PmzVZ8XIelJVlDGy8srvduhlZyOdwsLC6xfvx7r16+XXKdEiRI4ffq0IZtGZOK+h8xt4ftqZWWF2NhYAOBd2CYnJyMyMjJTgzLC/aQ1U0ZqPQsLC9ltMgRdSoXJITcos3btWpw9exZnz57VGpTRNeNIqVSKdsILgzKenp6Iiopi/9YnKLN7924UK1ZMLWDM4AZl0nN+GRMTEwwfPhwnTpxAWFgY7z47OzvJz3rv3r1x9epV7Nq1S2OmUJMmTXhZENzXl/u6JSQk8L67SUlJ7N/c5889EVMqlbI6svSZU4ZhiIyQ7ETua2WIE2JuoOTr16+AnkEZJiAjd1+ZOV8TIeTXlpSUxOuQiIiIgJmZGR49eoRKlSoBSA3auLu7w8zMDCdOnJCcT5EQQggh8jHXvcxtknFu376N2rVri963atUq0eWvX7+Gs7Mz+3eDBg1w5cqV9GgeIdmO3kewu3fv4tmzZwCAihUrolq1agZrFMmZuJ2ickp3cW+/efOG13ku9RhdZESZMLnBhIwuWcbdn7YMhZEjR+LKlSsICAiQ1aEgt/M7Li5O8j7hRN2aOpXF9pecnCwrU+bmzZuy9yMmODgYffv2BSCd7ZFRncjm5uZYv349nj9/rhaU0RR8/O+//wBozyRRKpWSHf3c5YmJibzXOSYmBnZ2dgBSs6MY3CCM3CwWXTNluJ/zXzkoo+n1NURQhpttml6vc3x8PPz9/RETE8Muo0wZQkh6iomJQVJSEvsbxliyZAmmTJki+pjKlStDqVQiISEB48aNw40bNwCkZqweOHAgvZtMCCGE5HjMdS/JeFIBGQCYMGGC6HJuQAYArl69qraOvb09O4fziRMn0Lx5cxQvXjxtjSUkG9BeL0bg06dPcHNzQ82aNTF69GiMHj0a1atXR5MmTfD58+f0aCNJZwqFQuO/2bNnG2Q/Yh2kmrJP4uPj4eXlhTJlyqBSpUpo2rQppkyZIqs0klDJkiXVIvcRERG8Scl0ldZASkYGZc6fP4+FCxeynbPcDnVtnbLr16/H48ePsWfPHln7ktvBzmREAeqdq8KsCV9fX6xYsYL3GE2SkpJkBWWEwQpdM2W+f//O3uYGHLi4gRhNgai0SkpKwvXr13lBIMbq1aslJ9rTNiG81LpS5cuSkpJ4wSnufrnvH/c283htnx1dgzLCeVVyum/fvrG3NWXK6BKUlYMbKElLUEZTW/744w80b94cHTt2ZJdduHABFy9e1Ht/hBAiJSoqCtbW1siTJw+qVq3KDmAAIBmQYRgbG8PKygpbt25llx08eFDyPIEQQgghJCu7f/8+Fi1aZLDtLV++HEDqNXrhwoXZvmQHBwcMGjQIJUqUMNi+CMnKdO6NGTVqFH7+/IknT57g27dv+PbtGx4/foyoqCje3Awk+/jw4QP7b9WqVbCxseEt8/T0NMh+5AQhmOWJiYno378/tm/fjvnz5+Pw4cNYvXo1lEol/vzzTzx69EjrtrS14cOHDwgJCUnXEfT6lC9LD82bN8f06dPZwAq3w1buSHlmLiZt5L6eK1asYG9zO3UB9U5kpVKJCRMmYNasWWrbEXvtpDJlhJ2+aQ3KcNOlpSY45wZl5AaV9DFp0iTUq1ePHZXL9fr1a97fbdu2xcuXLwHwgxXC+bWEJdm4rw83+CPMyuBuk/vecp8/t3OKWV8saBUQEICjR49CpVLpHJThvvY5PVNmxYoVyJcvH/bv3w8A+PjxI3uf8LvAfe0MEZThSkt5npYtW/L+ViqVOH/+PL5//47Dhw+LPqZJkyZ6748QQqTY2tqytx8+fIjmzZsDSFvGq42NTZoGAxFCCCEk9fr/8+fP+Pz5c4ZXHPlV/fbbb5g2bZrBtufp6YklS5Zg586d+PDhg+g69N6SX4HOvTG+vr7YsGEDypcvzy6rUKEC1q9fjzNnzhi0cSRjODg4sP9sbW2hUCjYv+3t7bFixQoULVoU5ubmcHFxga+vL/vYkJAQKBQKHDlyBI0bN4aVlRWqVq2KgIAA3j7Onz+PJk2aoF69emjdujUmTJiAmJgYyUyZf/75B4GBgTh58iS6deuGQoUKoWLFiliyZAlKliyJefPmsesOGTIEY8aM4W2nQ4cO8PDwAJDasfz27VuMGzcO5cqVQ82aNXnryu2sFa6n6UciOTlZ63alglSG/vHhbu/t27cA5AdlhG0RlvsSI/f1rFu3LntbGJSRymq4dOmS2jKx1yspKUl0G9o68nUNynDXj4yMFF2HGxBJz2wNqRquYk6ePIkOHTqoLZ8zZw7vb2FZSu7z5QZQuJ3+coMy3PeNWf/r16+8/X358gV16tRBp06dcO/ePZ3nlOF2nuWUTJnv37+jfv362LBhA285ky4+duxYteCW8Llz7zd0UEaqpJhKpcK1a9dEvyfR0dF49OgRL8gZHh6Obdu2oXnz5mjYsKFB20gIIbpiMmPTOu8fXSsRQgghaRMbGwt7e3vY29un66BHkr6mTJmicWC/sE+RkJxI596YlJQU0QmZTU1Nc/xI5LSIicm4f4a0evVqLF++HMuWLcPDhw/h7u6Odu3a4dWrV7z1pk+fDk9PTwQGBqJMmTLo2bMn22n6+PFjtG/fHq6urvj777+xcOFCBAQEYOTIkWr7Yzr0zp49izp16qBq1aq8+42MjNCrVy8EBwezI/212bRpEwoWLIghQ4bgzJkzahfEcoIg3FHn2iQnJyMwMBAPHz7UK1MmLXPkiJWuEpvLR25QRp8RoXKPA6VLl2ZvMx33Bw8exPXr19lOZGGmhljHutgyqUwZYYdxWjNluPuQOiEcNmyYxrZmFmZOME1sbW1RqFAhAECzZs1kZcqkpKTwPgNS5cu4mNdx48aNvOXe3t7s7VevXqUpU0bsu5EW69atk13Sz5BWrlyJa9euYcSIEaL3p6SkaM0806WMXlBQkMbjgHDbUkGZlStXon79+pg0aZLafTVq1ECVKlV49YWLFCmCIUOGAAAvM5IQQtLTy5cv4ejoKHrf3r1707x9ZnCMHFIZuIQQktVdunQJQ4YMkSyfTAjJPg4dOqS2rGTJkoiKisLhw4eRP39+tfsTEhLw119/ad228LqVq27duhgyZAhlzJAcTeegjJubG8aMGYPw8HB22fv37zFu3DgqI6KBtXXG/TOkZcuWYfLkyejRowfKli2LJUuWwMXFRW1UvqenJ1q3bo0yZcpgzpw5ePv2LZshsHDhQrRo0QK9evVC8eLFUbVqVSxZsgS7du2S7BwMDQ2VvChmloeGhsp6DtHR0TAyMoKVlRXy58+v9qMh5yAvnDhd0+OY56RtJL/UJOT6/uh8+PABr1+/5s1zImwH05HN7dDWNAm8PifScoMyp0+fZm/HxcXhwYMH6NatG+rVq8e22dzcXOO2U1JSRDvnpYIywnWFz11O9oXU+mKd0cIyJbpuP72tXbtW4/tlbW2NpUuXsn9LZcroU76Mi1lf+P7kzp2bvR0fHy/6WdYkvebzefv2LUaNGoU+ffpk+Eki9zspNmn0p0+f1DKONAVONAVcLl++jNKlS6Nx48YAUt8nPz8/XraL8PFSQZlNmzYBALZs2cIuCwwMxL179/DixQsAUDt2EUIyX2JiYpYaUJDeOnTogJCQENH7/vjjjzRvf+bMmTh48KDW9RYtWoQ8efKgYcOGOb4zIqc/P0J+RW5ubtiyZQty586NiIiIzG4OISQNunbtqrbs2bNnyJ07Nzp16oSjR4/y7vv7779hZmZmkGkQtmzZgjZt2qR5O4RkVToHZdatW4eoqCiULFkSpUqVQqlSpeDo6IioqCisXbs2PdpIMklUVBTCw8N5ZaaA1Ii1cJR9lSpV2NvMyPpPnz4BAJ4/f46TJ0+iQYMG7L9OnTohJSVFNNiR0dKzXJjcAIVUpkxYWBiePHkiq0OECZRGRUXxlnMfy3SYyp3c/d69e1r3KyS384aZzI1pz+3bt9W2IQzKyB2Vn5SUlCGZMtpex/Xr1/P+zmodW9rmAQsJCWFLSiUnJ/OeL/e11FS+TE6mjFRmFDe4EB0dnaZMGUOmtnODB8LPlJ+fH8qUKYMrV64YbH9cK1euZG8zJ7rCkdfCer9KpRIrVqyAm5sbYmNjea+LpqDMtm3bAPwvdXz16tVo1qwZmjVrxq4jzECS+k4Ky6QlJCSgWrVqqF69uuT+CSGZKyEhAebm5qhUqVJmNyXd/Pjxg/39VqlUsrJIhXr37q3xcd27d+f93a1bN43nv58/f2aP41evXlU7D89Jfvz4gdKlS9O8pITkEF++fFErfyzWoUsIybpUKhXu3LmD5ORktZLZDG4513r16uH48ePs3z179jRoe06fPo1Pnz5RgJfkSLKDMp6ennj+/DmKFSuGe/fu4dSpUxg7dizGjh2L06dP4969eyhatGh6tjVbi47OuH+ZgVvSjunoZi5yf/78iU6dOmHv3r3sP39/f7x69QrFixcX3V7x4sURFBQkel9wcDC7DpDa2adUKvHx40e2g1GXzvW0lAtjJCUl4dGjR2oX2cxrYGxsjAIFCkg+Xur2x48fERcXpzbyXRfcDnMma0FuUEZT7XSp102fMoZfvnzh/chKZcoIM080dSiLdQ4nJSVp7JyX6lB++PChaGaWMBghVLFiRd7fWS0oo02JEiVkBWWEnyddM2WSk5MRFBSEdu3a8ZYvXryYvf3z50/efvr06YMnT55obH96Zcpwg3nC7TZr1gyvXr1Co0aNMHz4cIMFfaOiotROcJnjzdatW3nLhcHU5ORkTJgwAZcuXcKWLVt479358+cl9yksbchkudy5c4ddJvwOSn0nhQHQtATJhPMhzZ8/X+9tEUKkMdl4z58/zzElip8/f441a9bgxo0bUCgUyJMnD4yNjbF9+3adSotxrVu3DuXKlcPhw4cBAC4uLrz7mcFKXJoCLfb29ry/AwICNJb3yM62bt2KN2/e0MA+QnKA8+fPo0CBAggMDOQtv3btWuY0iBCiFyMjI9SqVQumpqZqJbOHDBkiek7Ytm1bXLhwAe/fv+ctb9q0KYDU67WwsDBERkbyBhkyevfurbFNBQsWRKFChXgVmwjJCWQHZf79919UrFgRderUgY+PD+rUqYNRo0Zh1KhR7BeNSMuVK+P+GYqNjQ0KFy6M69ev85Zfv34dFSpUkL2dKlWq4M2bNyhWrBj7r2TJkihdurTo/ERAasfmzZs38eDBA97ylJQU/P3333B0dESZMmUAAHZ2dggODkZYWBiePn0KpVKJx48f8x6nac6jtHSaJicn4/nz53jw4AESEhLw8eNH3shxZttiJcLi4+PZTmZtc8po6wzR1NnPvW/Dhg0YOnSo7KCMpo5TqX0yJcUWLVqkscOXq1WrVmxnBvC/jm5hUEjYAc6UyBMj1gl/9epV5MqVCxcvXgQgL1Pm/fv3qFq1KkqUKKF2n7bXUZgdkJbyZQ8ePMCQIUPw4cMHvbchl42NDSpWrIhBgwaxQZnExETJDBFN5cvkZsowE9Vzubm58bYjfH+Eo7fj4uLQsmVLrF69GkD6Zcpwn5+mYM/GjRvVjkX6WrJkCfbt28dbxsy5IgwmCk+GuZ+7nz9/8l4X4fxgXNygTHJyMltmjEtupoyQvgHK1q1b459//uEtK1euHO/vnz9/4vz583rNiUXIr+jUqVOiv6fcASHC7/rOnTsxYMAAnTNMT58+jdGjR+v0uOfPnxtsXrDy5ctjzJgxakGRAQMGSJbNFfPhwwc0bdoUW7ZsgZ2dHQCgU6dO+Pr1K+7fv4+vX7+ibNmy2LdvH6ZPn672+LCwMKhUKhw4cEDjuQyDyT7PSgwRqOOWwySEZF9///03mjdvntnNIISks02bNkmWv3dzc0PhwoV5y44ePQo/Pz9MnjwZRYsWhY2NDcaOHas2GKN9+/Zs358ww5irSJEiVPaU5CiygzKvXr3CpUuXUKZMGYwZMwYODg4YMGAAbty4kZ7tI5ls4sSJWLJkCfbv348XL15gypQpCAwMxJgxY2RvY+TIkXj48CGWLl2KFy9eIDQ0FKdOncKIESPw8eNH0cf06tULlStXRtu2bXHw4EF8/PgRT548weTJkxESEoKZM2eyPwY1a9bExYsXce3aNQQFBWHo0KFqk6MWKlQI9+/fx6dPn9TuS0umzI8fP9TmXZGaH0b44xUfH4+HDx+qrSfWHm0XrWIXxj9+/MCjR4/g6+vLW75582bZQRmxkZnMY6U6X1NSUnDgwAFMmzZNY+oq09nP4AbgmA50YaaM8DWsUaOG5PY1deAwIz6E2xN7TtzAgJC2TBnh9nTtiP7nn3/Qvn17REVFoVatWtiyZQv69eun0zb0cf36dTx+/Bi2trZsx/ytW7d4F1tyy5dxP0PCAC/3Me/evVNbzg0K7N69W7QTj/luKJVKbN++Hb6+vhg7dqxaGw0ZlOF29mvrKDRUho5YujYTtCxbtixvufB14h6jQkJCRD+XYt917ndUbP4a4baB1NecCRZxpbVUIOPkyZOwsLDAlClT2GXCUeVt27ZF8+bNMW7cOL32QcivZP369WjTpg2cnZ3Vyp+WLl2avS2cZ8XDwwPbt2+XLGshpXXr1li7di3MzMxkrT9o0CCUL18ebm5uUKlUaNOmDVq1aqXx3C0pKSldJ5fOnz8/HBwccP78eQwaNIh3X968edn/nz9/ju7duyN//vyig5AOHz6M7t27w9nZWes+uSVfM5NKpULv3r2hUChgb2+fpt/WxYsXGyzTUalUUicNIZng2bNneP/+vdZR7lltXk1CiLqkpCSDVz+ytrZGkyZN1Pp+rKyseH8rlUpUqVIFKSkpagMRhTp27Mj+5icnJxts4A4hmUGnOWUaNGiAHTt2ICIiAqtXr8bLly9Rr149lC9fHsuWLZPsYCfZ1+jRozF+/HhMmDABlStXhq+vL44fPy7rApJRoUIFbN68GaGhoRg8eDD++OMPLFmyBPny5ZMMCJibm2Pr1q3o27cvpk2bhg4dOmDMmDEwMjLC9u3bUblyZXbddu3aoXXr1pg9ezaGDBkCOzs7VKtWDUlJSezBmskw6NixI28+BEA8KBEfH49Hjx5pvQgWeyx3GXNboVCIjihg2icWlOEu+/nzp07tUKlUqFq1KqpUqYJevXqprc89MdY1U4ZZJtWpmpKSwpb6kiq7lpKSovHknOkgFnbaCDNPNBF2LoltX6hnz564efMm+3dcXBxevnzJ/i18ztzObbHXUbi+rkGZXr164fjx41i0aBG7L2Z+j/TEHeEiPIFicE9+NGXKcNfbsWOH6LaSk5NFX5tv376xt8PCwkQ/c8OHD0dERARMTEwwcuRI3n2GzJThZopwn5O2oEtaO4mePXuGT58+iXZgMp2OUhmHDO730NjYWC0os3jxYlhbW8PLy4u3nBsUk7rY5mZPAanfiT1797J/p6Sk4PPnz7zSjiqVKs2leHLnzs3eZrImGcx8Phs3bpS1LerII1lFRn8WVSoV77hpa2uLU6dOiZ6HNGzYkF3GDbzK6VT39/fHv//+q7Z8165dGh/3+fNntjxjQEAARo8ejVOnTuHMmTOIiIhASkoKXr58qfa6VapUCblz5+adB8THx2u9yJfrv//+0/kxwnKmQGqQWUhqwAuTKfPhwweNWYDBwcG4e/euzu2TKyAgAH///TeA1N+WmTNn6r2tqVOnGqRNp0+fhomJCYyMjPDo0SODbJMQol1ERAQqVKggqxNXrAw0IfoyMTFBv3790K9fP8lrVaLZvXv30LJlS9y8eROBgYGoXr06zMzM1CoucBlyQL61tTV729HREW3atAHwv4F8z58/l3zsv//+i1mzZgEAfvvtNzg4OBi0VDkhGUmnoAwjV65c6N+/P/z9/fHy5Ut06tQJixYtkpwfhGQfHh4evEwSIyMjeHl54d27d0hMTERgYCBatGjB3l+yZEmoVCpe/Ww7OzuoVCrUrl0bycnJUKlUqFixItatW4crV67g6tWruHTpkloHqpClpSXmz5+PV69e4c6dO/Dz88OSJUt4IzeB1B/lKVOmwM/PD2fPnkX37t2xbNkyLFq0iL1Qr1y5Mv7++29cv36dNx8CIN5RHhYWhoSEBI31xVUqlWgHCjfYILeDRSy7RpeyEML9JCUlaTz55db61TVTRltQRqlUau0k1jZKntmvsHyZVKqsGE0nFA4ODgDE33tXV1cAqaOHhSM4hIEkbRlHwvX1HSXGLVkm1mZDd+TZ2Niwt4XzijCuXbuGhIQEdO3aldcpI5xTJj4+Hu/evdM4KlpqhKsws0bsc7N//372pEzIkHPKjBs3DuXKlUOtWrV429I2Mict782bN29QoUIFFCxYUPR9f/78ORQKBfr27atxO9xjesOGDdVexxkzZgAA5s6dywteaQqCJiQk4Ny5c2oldYTHjNw2NrC3t+eNWr98+bLGoKkcI0eORK1atbBkyRKtxxtNlEolXF1d4e7uTsEZkqm6du2KatWq4fjx4yhWrBguXLiQrvtr3bq16He8TZs2MDIywpEjR3jHii9fvmDbtm2ws7Nj55dilosJCgrC8OHDERwcjAYNGqBDhw7YuXMnb51+/fpBoVDg58+fCAoKwqpVq/D777+jVatWbCYG17p169jbhQsXhrGxMcqWLYulS5fy1mMGUzCDLOLj4zF79mydJ54VthdIzc4WK2eqzf79+2Vtn/vaCh//4sULFC5cGI0bN0ZycjKmTp2Ks2fPAkjNNm7dujWcnJxQo0YNKBQKtG/fnj0mG+r4JvzNW7FiBZvpGhgYiAULFuhdOrJJkyZ6DTxp3bo1e7tKlSpwcHDQeA4oJTo6mn4HCNGBpiCoMGB/+vRphIWFqR1Dfvz4Qd87ojNzc3Ps2LEDO3bsUKusQeQZMGAAfH194erqihYtWqjNSSr09OlTtp/EENq2bYtatWph7NixCAoK4gVpgNRKEFKVGoDUY0xwcDAePXqEyMhItWkP5EhOTqZgjgg6JmcsvYIyjJiYGPj7++PKlSv4/v07nJycDNUuks3FxcXhyZMnCAwMlJwjRVsHNfdxumRIcB8v54AilmUit/NcW1CG6UiVypQR245YUIYphyG3HdpGoffv31+tjWKY7dSuXZtdxnTaCud1YKSkpGh9v7TNO8HsV3iSVbBgQSxYsAC7d+8GkBpElKIpu4h5L5gLA7FJeMWChsLPBfd5iL2Oac2UYWiaWB6QnlxdX9wRR5pGH82bNw+HDh3iLRNmyiQkJKBYsWIaA3HJycl4+vSpxjaVLVtW9HupVCpRs2ZN0ccYMlOG6Qy8c+cO7zmnZ6YMt3NKLEAsVQ5OyMfHh72tVCplZakB6mXBuLZs2QJ3d3d069aNt1yYOSPG19cX1atX17qeUIMGDdjbNjY2uHXrFiZNmqTxM3rt2jWEhIRg6NChvMwrRmhoKG7duoVz585hx44daNu2reh6hKS3Q4cO4cGDB2jfvj3evXuHpk2b4tSpU+m2v9OnT2u8v3Pnzrh//z5v2cCBA0UDqmKBmdKlS2Pjxo28awOp3+xx48ahfPnyGDduHG7duoUzZ87IeAb/M2XKFNy+fRstW7bkXZQrFAo8efIEdnZ2WLJkieztHThwAMuXL0ffvn3x7t07PHv2jHefPsqUKaMxU4f5rRCW2GXs2bOHnT8rICAApqamWLx4MVq0aIGrV6/CxcVF7T09fvw4rK2tMWrUKBgZGWHatGlITEyUzGKWQ6wqAvMbX61aNcyYMQOTJk2SfB6nT59Gjx49RO+/ePEi6tSpI/o4qd9Ssd/2jx8/omjRouwApJMnT2LEiBHYt28f9uzZw56jfPz4EaNGjcKlS5dw79495M6dG8OGDRPdDyFEN9OmTWMzHQFg1KhRKF68OCwtLdnv88qVK5EnTx69rvMJIWnDHaSrreKRr68vypcvb9D9W1pa4tatW1i5cqVkP1nXrl01DiDmnmPqM/i1Zs2asLOz01qV5ldy/Phx5MmTB8eOHcvspvwy9PoFvHbtGvr3749ChQph9OjRKFOmDPz9/XkXLeTXxj2wiY1WU6lUOo1q0OdkzdjYWK+gDCCvA1elUok+ltshHRwcLGs72oIyurCwsNCpA1rTfg4fPgwgtewG00HLbHv06NGS2+O+X2I/kHIzZYSfkRcvXmDGjBlsZoCmIIemkfhMm5igjK2trcb2CB/H0JYpY6igjLbPf1pLQWkilSkDAAsWLFBbJhaU0aZmzZpaPxMqlUpyHaksHF2DMjNmzMCAAQO0Hjdu377N3k7PTBnuZ+rcuXN6b+fSpUvs7cTERI2vdXx8PHv81hQ8lZpHQk5AQ99OTbFSjIB6Rh1X/fr14ejoiM2bNyNfvnxq93O/0/3798fJkycxe/ZsvdpHiL6kgtJt2rRBVFQUvn37pnUwQ3qQO99HgQIFcOPGDSxevBhBQUE6n7/cunVL73mmGLVr14avry9bZo3h7u6u8XeImYOMq2vXrhg/fjyA1AlluccObYNkNNGU1cdkoR8/fhwA0KhRI7Rt21bWdoXPWYgZVLBo0SKYm5sjf/78CA8Pl7VtIanjMDejd82aNciTJw8WLlzILktJSUFKSgpat26N/fv3o0iRIpL7EA522LZtG4yMjODn58db/vPnT+TKlUtyO9WqVQOQOhp3w4YN6NmzJ/r06QMTExPUqFEDDg4OWLduHdzc3NiBAps3b5bcHiGET9NxW6FQYMCAAaL3MedezHGWEDlu3LiBQYMGsRUWYmJiEBMTQ6P609nTp0/h7u6eafuXWylFqVQiOjqaLTcuR2BgIBITE3UqyzZq1CgoFAq1ahE5Rfv27REZGYmOHTvy5hMm6Ud2T/eHDx+wePFilCtXDg0aNMDz58+xYsUKfPjwAdu3b0fdunXTs50km9FWTkalUmmt/yn1A8straSNnI4BsUwZfcqOMcSCEJoyZYT7Yzq0xUqaAakXq+Hh4byOb+79CoVCpzTML1++oGzZsqK1vfPnzw8ACA8PZ0t5aevcFgZlxDqS9M2U4Xr58qXGjhZtkwAD/+tQ56bLSo3SBHTPlBErXxYaGioaMHr37h2vs59LKjCSkJAAlUqFKlWqSLY5rXSt0ysMyhhqsuW4uDjJiz+xoJRKpdIpKKNSqbBgwQJs375da036yMhIXrs0kfqeyqFvYFaTxMREjSOJihcvDhsbG7ZkpRTua8AlJ1NGagS1lJUrV+Kff/5Rm1CbYWZmhgsXLuj028AQ+3zS/Hgko2zYsAFr165FUFCQ5Dq2trbIly8fChQogDdv3mD37t04ffq06PEkIiICQ4YMwcOHDwGkzn1SunRp3lxp6aVu3bqYOnUqSpcurfOEq48fPzZYO7jHpuTkZMkyVsnJyUhISMCiRYu0brNAgQKYPn065s+fr9dxhsGdD1GICbwzJXYvX76MY8eOwc3NTe/9aaIpKCJlzZo1kveJlXSbPn06gNS50fLnz49p06ax92n6TbaysuIF+AcOHAgAvDkh4+Li0vReaJp3R1vmLiHZycyZM7Fy5cp02bbUuaA2P378wMGDBw3cmqxr7dq1GD9+PAUP0iAlJQV169bF1q1b4ebmhtjYWFhbW8Pa2jrN1RCIZobOkNEHdy5RKffv34ejoyPKlSsHX19fnbYvd+BTQkICO9ClYMGCOu0jOzp//rzOfYtEd7KDMsWKFcPKlSvRpk0bPHnyBDdu3MDAgQPVav8RAsgbPa7LiQmzbrly5WRn2KSkpMjq/BMLymj6m7tcW6YMQ1v5Mu52mNtiywDgyZMnCA8P53U0CNuoy8nJnj178PLlSyxevFjtPiYY0KFDBzYowxyU+/TpI/lcuEEEYeDE19dXdMJbsfZreq/Lli2LixcvAoDoCHhNhEEZbqaFpjrkcjNlVCoVRowYgWXLlvHWDwwMRIkSJWBrawuFQsGb96dYsWKoXbu2aGeAMCgzdepUhIWFIX/+/BgyZIjeI17l0DUoI5xTRttEznLFxsZKBmWOHDmitkypVIrOKfP9+3ds27ZN7TvC3ba2QBL3fm3HOma7ISEhKFiwoE5ZGHZ2drLXBVLTwLXRlinD8Pb21hj05I6K5pKTKaPrZ2rMmDHo0aOHxowxNzc32aPKucQCepqyflUqFV38Eb09efIEFSpUwL59++Dr64sRI0Zg9OjRaNeundbHRkVFoVSpUujbty9at27NdlQDqZ9LpVKJbt26YcuWLez2atasiaCgILi6ukKpVKJx48Zo27YtwsLC0u05AqnPMyvQdBFpbGwMMzMzWFhYyJocfv78+WyQQV/Ozs44deoUbty4gSlTpqjdLzxPNDIykizPaQjMOU1kZCTatm2rtR77mDFj9NrPuHHj8P37d51KyEkF4Rlimbpi9Jm/rGLFiumagUxIRnn69Cnmz5+P8ePHs3M/GZK+g1js7e3Vyt8mJydj2bJlmDNnDn78+IFv377xzrcTEhKy7fnX6NGjsXLlSpw4cQIRERGZ3Zxs6datW+ztq1evZmJLfg2tW7fG77//Lnqukhm4fUdSJfTHjRvHltNt2bKl1m1yr2W1BWXCwsJQs2ZNtTkMcxpmigChnP68M5vsoMyBAwfw/v17LFu2LEtES0nWpi3NMCUlhRdIECsfJVbSS6FQaCynxPXp0yeNk91z2yK1X7G/ucvlZspo8vnzZ9F5aLjbFhuJxD1RFb5Wupy0SnV0vn37lq0laWZmppYpI/UeCydtDw0N5bV/zpw5Wjtu5WTKAP+rY69rUIbJMBELyrx9+xYJCQns8+WSmylz48YNbNiwgb0AYsorCTuyxU4Y/vvvP7Vlws/84sWLsWrVKkRHR8Pb21v8SRqI3O8bQ5gpo6u6deuy5Vu4NGXKiE2InZSUJJopkzdvXgwcOFCt5Ak3uKKtXBw3qBAVFYXXr19Lrst8Rry8vPD582fMmTNH47aB1O92/fr10aFDB63rcjVu3FjrOgkJCbKOUXPnztU4KlqKnKCM1MTgUuSmrWs7Xjg6OqotEwvAOTs74/Xr1+wx+Nu3b5g4cSK+fPmCQYMGwdbWlpfZ8OLFCygUCt7cPYSoVCq1DuG+ffvi2bNn6Nmzp6wLRk22b9/O3u7cuTPKli0Lf39/AOJzUAUFBeHy5cs4efIkihcvnqZ929vbaxxYU6tWLY2Pz6iL/JiYGPz5559a16tUqRJ7e+fOnenZJLRq1Qqurq6YPn06L7Am1LNnTwDS5Tm1kZNpyczTZWdnh5MnT8LFxQWtWrUy+Gjus2fP6vwYZrCFsKOEKX8pNygjlYGsTf78+WFhYYFXr17JWp97TklIVsEMXgNSR5Eb+jPKLfd348YNTJw4UW0dufM0mZqaYuLEiZg9ezby5MmDfPnyIXfu3EhISIBSqYSFhQVy5cqVrQIzKSkpvAoM7du3R6FChShjRg/C6za5x2YiLiQkROP9//77LwICAmRlE2cE7rVgjx49DLLNTZs2sbePHj0quV5ycjLq16+P//77D7NmzeLdN23aNCgUiizzOjFu376NZs2aaR1sI8RMESA0e/ZsnDx50hBNIyJkB2U6deqk8+hW8uthAgLaTja4mTK5c+fmdfyKZV9xt2foyQC1Xbhqei6GyJQJCwvjZWcw2xR2nP7333/4/PmzxrYytP3QcnH38/XrV0RHRyMhIYFXktDc3FwtKCM1AjUlJYW3TRcXFzg4OLB/yymjwrwGco85ugZlYmJikJyczO5H2OkxY8YMFC1aVO1xmoIy3A5cYbaN1JwXYp915rvA/WyJjeLVNfDBnQhPaPDgwZL3pbV8ma5Wrlwp+n5qCsqIYUrTMJiLOincz7PYd5VbIo677oABA+Ds7Cw558uLFy/g6OioU8bQ/Pnzce3aNcn7XVxcRJfLmesgOjpa77kb5Mwvce/ePb22bQjagjJiwSix0dDnz5+Hs7MzW+s8X758WLZsGQoUKIBt27YhOTkZc+fOBZAazGMm3+7fv39an0KGu3v3rqxAGtHs58+faucKc+fOha2tLc6fP88u05SJqY+XL18CSL2Y1FQCDUgd9SjFysoKly9flr1fV1dX2euKSUhIkDXfGEOfTn0g9eJSbrA0MjIS165dk8wCNjRra2uNgyqWL18OADhz5oxe25cTzA4ICFBbdubMGdjZ2WHXrl28z7RYAFvO/CtpPb58/fqV93f37t11ysTiljzTRXx8PBISElCmTBlZ6zds2BCWlpay5pIkJCOEhoZi1KhR7N/t2rWDpaUlFAqFTvMnSFEoFHj+/DmA1PnPXF1d4enpibZt2/JGsq9atYoNAOtj5cqVvN8nOQOQsopnz56JHmednJx07iz91Qn7XJg5w4h+tA3Q03VQZnoTnoPI+f58+vRJsh8vICCAvZYDgL1796oFrePj4zF06FCYmpqKDnYCwAZjuOVZs4IGDRrAz8/PoHPCtG3bNs0Z40ScYXu3yS/vy5cvePr0qdaOB03ly5igi9j9umTKyCX8kRf+LVX6gEmtFpJ6XnJHezMZOGLbkfpB4K4bHx+vU4kk7mOvXr2K3Llzw8LCgvcempubs6WRdA3KMG26fv26zvWD5U6omydPHp22m5yczPvhFQZlNm3aJCsLSli+7MuXL8iXLx+6d+/OW08qKFOoUCEA/PeACYJwAz5iadq6luSQGm07b948jR0run7foqKiZI9gFZMvXz7RiXuZCR3lSk5OVuvM0VTKhvt5EDtR5b7XYu1gOtCEli1bpjFI6ufnBy8vLyiVShw6dAgPHz7UWOJl4cKFmDdvnuh9cr4vUVFROmfzMTJiFHBaBn9Ifc8YwpJNP3/+RJcuXdTW+/nzJwBg9erVGDJkiOi2du3ahUmTJskqGZdVXbt2DTVq1JDd6UjEtW/fHjY2NrxJzQGwv8PNmzfH+vXr8fnzZ4PPV1S2bFnJ46LwnENTRl9sbCwaNmwou7zNv//+K7+RIgoXLqwxA2To0KHw8PBgz4WaN2/OBtWNjIxQq1YtHD16VO/PrtgksDY2Nqhbt67sczVDkSoDXaBAAQDi2bMtWrSQtW1mXkBNxAYrREVFoV+/fmwJsXPnzqnVc586darGTB9GWuuQiwUbuZlNXLdv38azZ88MXvuc6XhmCEfqf//+nc1S27hxo0H3TYg+ChUqJDrPE6Np06Zp2r7wO8B0mNrb2+P48eO8kexmZma4dOmSrDkhxEydOpXX3tu3b2PRokXZIjNNqrx0SEgIXFxcKIirA02dy//++y+9ljrSVE0mKwY+mzRpAuB/87jImU+3YMGCooOILl68KDqHMHN9zVzzb9q0Sdbgk6xi/vz5aNiwIWJjY9mBT58+fZL12O/fv8vqvxFe6xDDoKAMMSipoIEQN+ggzCIRuyDmrpvemTLCv6VK7egyCbeuF/nCEmBixMq7pZXUXBpmZmYwNTUF8L8Oa01BGbGR+PXq1VOrH6yNiYkJUlJSMHz4cI3r6RqUUSqVvKwj5rkx4uPjRd/fRYsW8dJTheXLxMpoAdKdxebm5ujbty9Kly6t1hZtFxvcgIOc74TwOWprG0PXTvLz58+nqUPE0dFRcvJeXSYUTU5OVqt/GhcXJ/paqVQq9O7dm/dYIW21ZqWOB2KdnMz3NT4+Hs2aNcPcuXPh6emJrl27omrVqhr3M3XqVMn3TE7GWFRUlN6ZMul9ARwUFIT4+HiNc7poIlZyUIg74l4sICO0ZcsWyfv++usvtWVMADU7lKY4ffo0APWR6ESelJQUNGzYkC23OGPGDPY+YXbDyJEjYW9vny7tMOTcjkWKFJF9HieXSqVSO6ZqKmdz4cIFbNy4ET4+PrxzJyMjI3bQx61bt9ChQwedJ2QPDg6GSqXKUoHIJ0+eiJbwZX57u3btqnbfqlWrZG1bznmqps6Xbdu2ITo6Gu7u7rzlI0aMwMKFC2FkZKS1I0zbYApXV1cUL15cdKBJcHAwW65MGzs7O9SsWRPlypXTel6jq/Lly+Phw4fw9fWFQqFArly5sHjxYoSGhkKhUPAGRFhaWiI8PBylS5fGihUrdLpWIEQfX79+xahRo/Dhwwd8/foVd+/e1TpvSVoDl8JjeI0aNTSub2RkpNM5vDbTpk0TPW5mlqioKBw/fpx3raBSqeDl5aXxcfXq1UvvpuUYmqqF9O7dW2NFCKKOCXIAqXMH58qVC9++fcPmzZtl/+5mpHnz5mHt2rW4c+cOu4w5rx4wYAC2bdsm+rhbt26xfY3M+QpTCUFo4cKFqFGjBszMzGBsbKzzIAt9Bz1qExwcjKNHj+LgwYO8c4rPnz9jwYIFuHbtGi5duoSZM2fi6tWr2Lp1q877GDduHO86xtvbW9b8VyqVilfym+iHgjLEIJKSktjRxXKoVCp2fbGJTcXWZ9bN6EwZQ9ElMCOn/JNwYnk5tNUml9qvubk520HA/OBI1fQVy5TRl7GxMRQKBS/9XozUhOhSr3lycjIOHz4sub3k5GTRTngfHx9MmzYN379/B6CeKcMt08alKSize/duvHnzhl3GfL61lXbhXlDJ6YyWCspoK/kkFpTp1KmT1v3p49KlS1AoFChcuLDo/bpkB4l9BmNjY0UDeBs2bMD169fZv8WCFtoCGbp0wjOfrRUrVrDLpAJ6YqQCZVLfA+G+mddG17kKLC0t0bFjR50eI9eMGTPg5OQEY2NjthyYroRzNonp1KkTNm7cCIVCIVlyLi2WLFmCy5cvw8HBQTQzMDOCNQcOHBA9QdfUcfno0SN4enqKZoOuWbMG69evN2gbs6NTp05JTjbbqlWrNG37wIEDmTbqU858M8zckpMnT5a1TeF5G5MNKcz66927N9zc3CS3IxzEY2xsLLs0Q1RUFEqWLClr3YxUvHhx/P7775L3i3XaFS5cGMuWLZN8DDMfGTMv2JQpUyS/s0yGhxSx0e1Tp05lb5csWRL379+XfHyrVq00Hmtu3LiB4OBg0f04OTlh7dq1Gtu3atUq/PHHHxpLfjIeP34MILXzgcnYDw8Px/bt23HlyhWNWf5Vq1blzQM1depU0Q7XkiVLolq1aggKCsKECRN4JWkN2SlNCGP48OFYt24dChcujPz582sNkKRVTEyMWknesWPHan2cobMQExMTERcXBy8vr0wpnatSqdC+fXs0bNgQvXr1Qvv27XkljHr37i1auowrPDycLSm3bt269G5ytqNSqbBnzx7Ja1ghb29vBAcHY9iwYXj9+jUCAwMpg0aEsL/n6NGjiI6ORp48eTB48GBZWbYZzdraGiNHjkSxYsXYZaGhoXj8+DG8vb3Rv39/jBkzRuM2mMCdptJnd+/eBZD6m82UCJZLU9+Svt68eQMnJyd06tQJ3bp1Y/vGLl68CHt7e8yYMQP169fnnTtrex3ECOdTHDhwIPLlyyc68Ov169cICgpC//79Ub58eTg7O2PSpEm6PznC0jkoc/HixWyRLkoy1tevX0XLQUiJjY1lR+dKZcqIZYKkJVOmaNGiKFeuHMqWLctbLgzCCDvj5ZQEMjU11ZitoeuJqKbyboyEhAS8fPkST548kVWbvUyZMujVq5fGdZhgg9DLly/VgjJSo6yUSqXeI/GFmItZbSdjUp3RYmWwgNTn8Ntvv7F/i3VOazrOMZ8ZYaaMVFBLqkNCbDnz+dZ2nOXOUyDn/ZcblBH++IoFQe3s7Aw6OhtInSelUaNGbJvEAg+6BH6lgjJihGV99AnK6IJph7aLNSFtJzxyLloSEhLY58I9Fjo7O2t97NixYyXrgsu9YJIyc+bMND0e4E98LiU2NlZr5l1anD59Go0bN8anT594mYEqlQo+Pj7IkyePTgG4tEpISED37t0xaNAg3oVpSEgILxDJPXZdu3YNVapUwfLly9U66B8/fowxY8Zg5MiROn0fcyKxDlaFQiGZcapNcnIyQkND8ezZM3Tt2jVTRwEvX76c9z0pU6YMnj17Bl9fX7i7u7MdYPPnz2cDAGIWL17M3hYbxThlyhTe3/oMuuEem6VKP5qZmeldOicjaDp+DhkyBP3798fBgwdx9uxZ3L17F7lz58aECRPY8wVXV1d4e3sjJiYGhw4dYjtMe/fujQ8fPmDhwoUYMmSIxjlsdCE833VxcZGcN43JgBRauHAh/Pz8APzvvEdu+Tyu6tWrY/fu3ahYsaLa9oUqVqwIlUrFGxBRqFAh/Pnnn2jQoAEKFy4sOWebGLFzvv79+6uVC7lz5w5atmwJOzs7rXM/GUpERES2yNgkaafvqPaEhATcunVL1kDAkJAQ9O3bFzVq1FA7/+/cubPkYCoh4fc0rdzd3TF37lxUr17doNuVIzY2FsePH8fVq1dx6tQpAPxSxtx5dTRhjo/aBiD+iv755x/06dNH9mDPwYMHw8nJCZs2bYKzszOqVasGJycnneaw+xUwA2uyO3Nzc1SsWJHtZ5s/f75kOXHGvn370q09PXr0wMWLFw2acS7MVGZwM53SSqoaiImJiWjZ5bt376Jq1arw8fFh+3+1ve5EM517t9u1awc7OzvUr18fM2fOhJ+fn8Fr95KMxQRFpP7JmZ9ETqDExsaGPWnTNKk2d1sKhQLHjh2TLHXG5e/vj8GDB6Nhw4aoV68e+vbtixMnTrD3Ozg4wNraWu3iVxiUmTRpEi94kZKSojWo4uDgoDXjQJfAjJygDJA68jMuLk5jXVCGiYmJ1pIO3NeLK1euXGxniZzyZXJPnpydnTV+vpiOeX2DMlKBA6VSyXbEV6lSRfR1kROU4XYGvXr1ih2FKST1uosFHtq1aweFQqHTiEo5AQO55cuEgSyxNpqamhq8FI9wbg6x906XLLbk5GS10ercYDCXcESQ2OuprXyZLif8zHfn5MmT7LJHjx5pfEzz5s0xa9YsyfYB8jLsuJky3Lr8zIhqTfLmzSt5nJNTLubIkSOS96U1qANonsg8M0VFRaF06dLo378/IiMj01zLXRfc0kHcNHRHR0deplC1atXw8uVLfPr0CfXr11d7/J49e+Dm5obKlSuz90nN6/CrkPrM6tP5b21tDWNjYxQrVozNFNM0X5GhyzN17tyZ9/f48eN5mRUKhQLlypWDu7s7fH192f2bmJjwJtsVlqoaN24ce7t///748uWL2hxqP3784O1HV8y8JvXr15cc3ZnVJ1TWdL5nbm6Obdu2oUuXLmjevDlvQMnXr19x8uRJXLlyBQMHDoSVlRU6d+7M+ww6ODiwWeYDBw7UOGeZpiwlLrHPZp8+fXQKOEydOlWtU6FIkSI6ZzBKnedpOyeXokvZD7nZuw8ePGCf144dO/Rplk4WL16MQoUK0UTYOVhSUhKuXbum8/ySXF26dMHvv/+OFStW4ODBg1iwYAHi4uJ42fsqlQrx8fFwdHTE7t272VHkXIcOHZJ97Bb+1jC4E24Dqd8ZOdlv2jL99JWcnIz//vtP43m11HVwfHy83gHRsLAwWdf0v4L379/zSksz2rVrp/O2mKDZr+7EiRNQKBR49eoVu0xTpm52Y21tjfHjx2v8jPTs2VNtWalSpWRtf8iQIXj8+DHOnz+Phw8fiq7TpEkTnbOyAwIC4OHhITr/i6b5IOXQlvUUFxen8XzJyspKbeB9jx49dJrnl2inc1Dm+/fvuHDhAlq2bInbt2+jY8eOsLOzQ926dXl16LK69evXo2TJkrCwsEDt2rVx+/btzG5Spvnw4QP7b9WqVbCxseEt8/T01LoN7skYt8OQmcgcSP1Sy+l4Y7bFnAgJAxRiJ3779++Hp6cnG7X9559/0Lx5cyxevFhr7W1tHb3cA2SJEiVED1xGRkYaT0g1BZPEpMfoNmNjY60XqZcuXRJd3q5dO9mZMlJzyojJkycPvLy8JF+btGbKSHVcKZVKDB06FEBqPc6pU6eqzcehabQz8xpwO+r/+usvyXRRqXZo6siXEwzVhdxMGWEQRmzksqmpqcYOdn0IXyPuKHx9OleSk5PVXl+pNGTh51WfTJlr167JDkbGxcWppdNrm0vm7NmzbMBMqi1yvndxcXHsepaWlujVqxcaNmyIZs2a4fnz5xrLtwDS74W2wLyDg4PGes+GKGtRq1Yt9rbUXGBiDDG/xIYNGyTv27NnD6+TIyNxg8uaAr2PHj1CixYtsHLlStH7+/Tpo/b7EBoa+kuPxL548aJBtjN+/HjRrCNNxz3hxOP6GjBgADw9PbV2RGs6tnE/Y1ZWVjh8+DBq1aqFFy9eqGWhis17ldaMoJ49e+LOnTs4c+aM6MVn8+bN9S6JmNXZ2dmhdevWOgW1J06ciD179ojed+bMGckyrIy1a9dKHq+dnJwwb9481KhRA23atJHchqaR/VJzykmRCoJqmn9AkwoVKshe999//5W1Hvd8af78+elWdx5IPb9lyss9ePBAtAQlyf4aN26M+vXrp+n4yQwMmjRpErp164YZM2bAysoKpUqVgp+fH969ewcjIyONAwS4c2LKMXXqVEydOpXNkgNSy8rOnDmTzWDz9PRElSpVULduXZ1Ksek6SDguLg5KpRKtWrVC27Zteecz48aNQ82aNTX2bUll3w8dOlTtnLhp06YoX7681gyF4sWLo0SJElSVBpB87SdMmKCxZKYYOVVPfgViwYpDhw5lQkvS17Fjx0QzPKTIrVyxceNGVKxYEU2bNuUNUhMjp/SZSqXCsGHDUKdOHezcuRMFCxaUnBtHX8z1sEql4g2CYsjpv89K8zDmVDoHZUxNTVG3bl1MmzYNZ8+exc2bN9GzZ0/cvn2bNwF2VrZ//36MHz+erUFatWpVuLu7i0YnfwUODg7sP1tbWygUCvbvmJgY9O7dGwULFoS1tTVq1qzJO5ECUusnr1ixAl5eXmjUqBEWLFgAILU+Ze3atVGvXj1MnDgRGzZsUDt5u3LlCtq1a4eyZcuiffv28Pb2ZoMkzA9Hp06dULNmTTaDQHgxGBERgVWrVqFHjx4YMWIEnJycUKxYMfzxxx8YPXo09u7dy2Yw7NixQ+2C88SJE6hZsyZ729vbG69evULNmjVRs2ZNnDx5kj1Rs7Oz4wWaGBYWFgZJjWU6wOVmyui6bX1HDlpaWrKd9UywzBCZMkyHTUhICE6cOIHRo0ertRnQPygjNWcG97X98OEDypYtKzkfhVimSN26ddGxY0e1+ptSpIIymkYZaOsc15XUPCTCz4QwCCOVKaMtiKAr4WvEHZ2mzzwAYkEZqfJ9wpFwYiPjtGXKANIXaGLb4pafA8Qzs4oWLQoAaoHxtARl/Pz82IwJU1NT7N27F5cvX4axsTHKli3LK0ExZMgQ9jbzuZA6hsgJqggv7JcvX46rV6+Klr5s3749AKBhw4Zat8soUKAAe1vY+Xv06FHJxzHHf30ZGRnhzz//FL3PxcUFI0aMSNP29REbG4ukpCTecTomJgbTp0+XnKMhODhYdETWs2fPJPdjyLJ+2c2WLVsMsh2pMpsKhQJv377llYoaNGgQwsLCUKJECXTv3l30ccxxQ5P27dvj5MmT2Lx5M/766y+t81FpGi0szJjq1KkTbt26pddFnD7BWYVCgRo1aiBXrly8Y0D//v2hUqng6+ur8zYzWkYGNxUKhejo4+PHj8PMzAzPnj2TnCspLi4OI0eO1Lj9GTNm4M6dO5IdPaVKlULXrl0lH69r1qRUpoy+JVa5v3EDBgzQaxtCZ86c4f0tnEvJkLil2QBkylwbJH1FRETwyo+mhylTpmDp0qVa19P1WsDCwgILFy5EkyZNEBQUhK1bt7JlvsaNG4dv377x9qvL3Ba6BDJ+/vwJBwcHlClTBmfOnMHJkyexc+dOrF69Gs+fP2fnd+GW4ORSqVSSpWjFrg2dnJzw9OlTPH36VHKEPZe+QeWcROq6q0GDBnBxcdHp/aZR/dKZnUWKFMnglqQ/hUIBe3t72eWqueeOUlauXKl2jqopoFG2bFkoFAo8efJEcp1Xr15h06ZNvGUDBw40+PzWMTExGDp0KPLkyYNbt27x7hOeM/z555+4c+eO2ja0lQgfP3582hv6C9M5KPPy5Uts2bIFvXr1QpEiRdCwYUNERkZi2bJl2ebEb8WKFRg0aBD+/PNPVKhQAZs2bYKVlZXohy0hIQFRUVG8f/qISYzJsH+GFB0djVatWuHChQu4f/8+WrRogbZt26ql1q5fvx7Ozs7Ys2cPBg4ciAcPHmDx4sUYOnQo9u3bh1q1aqkddO7fvw8vLy/069cPfn5+mDZtGk6ePMmeCDEnNUuWLMGZM2ewc+dO0TllLl68iOTkZPTp04ddxnQwdOrUCVZWVjh79qys59usWTP07t0bTk5OOHPmDM6cOcMb7SeV8ZI7d26NI3TkdjRwn1t6BGXkTAQuxsLCIl0yZZigSfHixdGmTRu1EV9pLV+my0TmUvv4/v272sjJ4OBgHDt2TPbzlArKaOrEN3T2ntzyZXKDMoamqRyPplF6UsSCMkK3b99GWFiY2om/vkEZuaNb4uLi1F5DsQuGTZs24c6dO2oDHrgj7YSjhJ8+fap1/0ypMm3vIzdAw3RUSQVltAV8f/78qfY+jh8/HvXr1xftvN2xYwc2b96s06SJ/fr1g6urK+bMmQMAWL16NYDU0cwdOnRAwYIFRR+X1rkmUlJSYGFhgT/++EPtvswomxQXF4dcuXLBzMyMd5y+e/cuFi5cqBb85mLmdeLSNHL8Vy1fa8hSGFIBPSD1t5E799OWLVvYoAuT7SkkNaE7o3r16jh27Bhat24tew4XTQMtunTpgrFjxxpkriR95wxkcDvwmOOboSeXTg9ZIeOMKf9oZ2eHevXqqd0/f/58ncrmiZ1/mZubY/fu3RofJ2d+My6p47e+8zMYGRnh27dv+Pz5M7y9vfHw4UOcPn1a42Pq1Kmj0z7mzp1r0JrzXMJrLTllTUn6i4uLw6ZNm7B8+XLcunULT5480ft7LzY4UMrFixfRo0cPrZ9hobt370oO4OASft504eTkhAEDBvCOFXny5OEds7XNhcrFLc8rhhnwmJiYCBsbG0RFRfGymP/880+MHTtW1nwbLVu2RP/+/WW3jRtAkPO+/+pz9u3atQt///232nLu8V6XjMOQkBBDNCvL8vPzQ65cuSQHofj5+WXqPIWZRZeqI9zfZOF5eVxcHMaOHav2GDmZfJpKPYtlrgD/6xPgDo7Upl27dpLHjejoaHYgmbBUJNe1a9ewfft20eel6VoFoDll0krnq59y5cph5syZqFSpEs6cOYPPnz/j6NGjGDNmjMFHTqeHxMRE3L17l1fT3cjICE2bNhVNXVu0aBFsbW3Zf8WKFdNrv9aLrDPsnyFVrVoVQ4YMQaVKleDs7Ix58+ahVKlSOH78OG+9Bg0a4I8//kDRokVRtGhR7N+/H3Xq1MHYsWPRrl07zJkzB61ateKdiHh7e6Nfv37o1KkTSpQogdq1a2PIkCHYu3cvgP9NJGpjY4P8+fMjT548amXCFAoFQkNDYW1tzbsY53bmFylSRHZ9VgsLC1hZWcHY2Bj58+dH/vz5Nc5/w6UtKCPnJIybKWNopqamev0gN2nSBEZGRrygjEqlkgwoKJVKnTNlGMKyFczrIZXlIfU4hq7BA7H6xdyAlL6EE2AyczYYcuSOtk5xueXLhJ10UuXLDE1T4MXKykrn7ckJytSuXRvFixdXW08sc4YZtaJpLh25o0SqV6+uFuAX+z7Vr18fNWrUUPv8lSlTBnPmzIGVlRXOnTvHXkB27NgR5cuXx+TJk2WNDpIKWu7ZswcdOnTgPZ8SJUoAkP6ccd+j/SKTKMbExOjUoWdnZ4fBgweLljuSYmVlhRs3brBz74wePRoxMTFs1qXUcULfEdVC3bp1M8h20oo7PxHzewrIG3mp628PdzBEelq6dCnGjRuXqZ3XTFmg4cOHayzNpCtHR0eN90sFTrjfOe46JUuW1HghKrfkEpem33QzMzOsXLlS9nwkmqQ1gMLNhJaa4y0ryuygTFBQkNp8jlx2dna8+YHkEHsvf/78CVdXV42Py507t2R5NTFS5w42NjZISUnROcgDpF5/5M+fHwqFApUrV1Yrfyf8LatQoYLO50Xu7u4YOnSoWtZsWglL70ZEROD48ePpWjKNaDdmzBgMGzYMnp6e+P3331GpUiV2AIkmU6dO1TuzKjw8HI0bN8Y///wjK4NSH/pWYJCrd+/eWLZsmax1d+zYgdy5c6v1UTDatGmDatWqiXb26yIuLk72YE8GN+NdzmAWXebnMrSfP3/KKrl74MABrfNh6iMhIQH9+vUTvU/fYNXIkSPZsq8+Pj5pCiZq8/PnT/zzzz8IDAw0yPaYDA1N8yc1a9YMsbGxaNmyJZRKJRITE3mDCaVez5yuQIECiImJ0TgYjVG8eHF8+PAB27dvx/r16/H9+3fMnDkTT58+lbx+bdeuHXx8fPTOXKxdu7bo8l27dkGlUsnOyH/z5g3+/fdfWFtbswMSubjnxpoGmaa1cgTRn85BmdGjR6NIkSKYO3cuhg4diunTp+PcuXOyy7Zkti9fvkCpVKqNmC1YsCBvElzG1KlTERkZyf4LCwvLqKZmCdHR0fD09ET58uVhZ2cHa2trPHv2TC3IIZxM8u3bt6hQoQKb2WJhYYFatWrxLtJevXqFbdu2oWrVqihfvjwaNGiAhQsX4uPHj5IpqcxkpQypC1nh4w05Ka7wQpOZdFVbvVJtF93cLJz0KF9mYmKi1+vA1JrnBmWSkpIkUyv1yZThPpZLbvkyqft1vUgWGx1lYmKS5qAMt/wM8L/OYV2Pm4ULF0bfvn1F79N2wS03KCPsuM6sTBluqUN9MmUSEhJklxQUHi+EQRnu59lQI42Ec12JXaRpChbMmjULMTEx+P3333Hv3j28e/eO7XxavHix1tHygPT72Lt3bxw9ehTW1tY4efIkateuzdbEl7oA574uYuUmTE1Nee+jriOL9cXtuBYL7pmZmWntVJAqL6XveumNe1zdvHkze1vOBNa6ji4/ceKETuvr48yZM5g8eTJWrVqlsQyAJj9+/EBycjK+ffuGc+fOYenSpejfv7/GUeQjR46EQqHAiRMnMHbsWJiYmGDx4sXYuHGjvk9FL1LfU+73af78+extMzMzeHl5iT5m8ODBepWqyKjR9sIBDLrijqLNTuVKhOc+jRs3zrB929raapzvC0jNGNZncISwTI/cc4fixYvz/h44cCAmTpyIggULYv/+/ejRowd7nyHnc5TCzUxo1aqV2jlDfHw8bt26hebNm8ve5osXL7B582Y0b97coAETYSluDw8PtG/fXuO8ZyT9eXt7qy2bM2cO+xkVO8a+e/cOixcvxqxZs1C7dm1MnTpVpxIx3M8t97xA21wIupCbbakvIyMj0SxkMVOmTEF8fDxb/paxd+9e+Pv74/Tp03jw4IFop6UmycnJePv2LXr06AFnZ2ed53T7+fMn7zWXU5pIn8ns9aVSqbBixQpcuHABb9++hY2NDUqVKgWFQgFzc3M2gJGQkIC8efPC1dUVZ8+eRffu3VGlShWDt+fYsWM6P0bTPLCMRo0aITExEf3798ewYcNE+/3kmj17NhQKhdpxValUwsbGBr169UK1atVw4cIF2f05/v7+7PGAmQts5cqV7He+QYMGyJs3L2+wlRgTExOYm5vD3Nwc58+fh0qlQnh4uB7PMmewsrKSnTHj4OCAP//8E5aWlrCzs8PcuXM1Zs4pFAp4eHigTp06Gs+jxM5HJ0yYILn+yJEjZWfkv3//nje4a/To0aJZPQw/Pz8EBASgQYMGvME2Y8aM0VphRirLRk6pS6KZzkGZVatW4d69e4iIiMDUqVORmJiI6dOnI3/+/Khbt256tDFTmZubw8bGhvdPH9FTozPsnyF5enri6NGjWLhwIfz9/REYGIjKlSurRVmlOqOEpSi4F0dxcXEYPHgwjh8/Dl9fX+zduxf//PMPbt68KXpQYH6ouB1o5ubmKF68OKKjo3mjgJnO2KSkJLx79449GTIyMlL7cdTlYkh4gWdiYsI+R0dHR7ULSe7jslpQpm3btrIfB/zvxDs5OVnjKB995pRhCEc0yi1fJhU00TV4ILWdtAZlhB35zHFE106jESNGSM5jo63TTFv5sj179qB06dLYtWsX7/6MypQRBmVOnz6Npk2b4uLFi5JBmU6dOklu79WrV7JLK2kLynA7gg0VlBGm0ou1VW4pHwsLC9GOVm0jhOW8j61bt8bNmzfZkcLc42+TJk3Yk1DuRTP3/Sr2/6MzGzZsyHuP//rrL637NjSxz5GFhYXW18HY2FjWZ0mfTsv0wGQKAamdqRnl7NmzaR6BKnTt2jW0atWK/ZspsaSL8PBw5MmTBzVq1EC+fPng7u6OyZMnw8fHR/KiJyoqig1stmvXTmMnjq61n6Xm65Ai5/eNWw9b0yCFJUuW6LRv5rOU3h26R48eRe/evTF58mSDbTOzs0/0NXr0aJ0yRfTFnG+m58jIypUr6xWA5553fP36Fd7e3li6dCk+fPiAbt266TRQwxABDwsLC7x//x7BwcHs5OhcSUlJqFatmt7zF+lbak0X+nR0EsOQk7XHvSbbvHkzRo8ezTvvuH37NhYvXoyVK1fK2qcwwM293jJklkBGnPfoMzDr3Llz7GDQP/74Aw0aNGDv0zWDwdTUFCVLlsT+/fvx+vVryUEPUu0QDrCqVasWmjVrpvWxaQka6OLff//FhAkT0LRpU7U5PBMTEzFs2DAAqcfB79+/4+bNm2jRogW7jnDOrLT49u0bXr16lebtiJXe+/jxIy94w0yADug+8ITJchsxYgTvXEM4L2PTpk1RtGhRBAcHS27ry5cv6Ny5M+8zypSCEgZhv3//zrveev/+PTsnk5jmzZtrnHB+8ODBkvflJNzBsXXq1MGlS5cMkt3N9fr1a0RGRoreZ21tjf79++Pt27e4du0abt68qTaXi5Cwegt3MGeXLl0ApJZPExvMJDXnJKNOnTrw9/fnbVNTnwpjypQp2LZtG96+fcsrvUbzyaSd3sWblUolkpKSkJCQgPj4eCQkJIhO1pvV5M+fH8bGxvj48SNv+cePH9UmgDekXGa5MuyfIV2/fh0eHh7o2LEjKleuDAcHB9G6nMKRaCVKlMDTp095y4WTRpUtWxZv375FiRIl4OTkhGLFiqFYsWJwcnJiOyNNTEzYH0rutipUqABnZ2eYm5vDzc0NJiYmvElFmQ7Kw4cPIy4uDj179gSQ2nHx8+dP3oku82PFlEczNTWV7GQRPk9hKTVN2TLaOgi4pdk0ratv1o8wKCP3JJfp4GE6hpRKpcYOyo8fP8rOUBB2HgnnhmEuzLmvc+PGjaFUKnk/sFKdVnLmlOGmiEt1Zhk6KMOM5tV1Pga5wRDhxPCA9HNgOtl79+6NV69eoWLFilofl9agjNg2hZ9rZ2dnnD9/Ho0bN1b7rFatWhXjxo3D4cOHJedVyJUrFxv0Es7JIqQtKMOdlFhuUGbKlCmy1ktP2uq76vM+coMyFhYWuH//Pp4+fcorScN9vw4cOIChQ4fi77//5r3vmTHPg1jngYWFhazjhPDzKXYcziqZMhmRvSKmRYsW6N27t8YLQF0xpR4ZckuRcjGdkWLz+3z79g2nTp2Ch4cHryzG169fZW+f+1lu06YNfH191SZD55af0TVYIHXsdnZ2hpubGzw8PHjZacznecuWLbyR0vPnz9d5Xrk5c+bg+/fv7AVgeunQoQP27Nlj0O+QoSdKTU/cjrDVq1enOWNIjrt372LAgAGSAz0Mxd/fH8uXLxctES2F+x3h/uYw3zVmdGeTJk20bov5bSpVqpTs/YspXLgwSpYsKfrbxT1XjY2NlawTL8UQneQfP35kr3XEvHnzBlFRUahRowYWLFiQ5v0R7VQqFV68eCErM+XMmTN48eIFVCoVhg4dirVr12LmzJl671vYsc0d5FOuXDn4+vrC3t6edx544MAB0cwHZiDZ5MmTkZKSwus8zghS16szZ86ULJ3v7u4uOlm1IXA78zX59u2baPDF2NgY586dw9OnTzF9+nTExMSIPkdm/sf0kJiYCBcXF/Tt21fWvD2asoO4Gdn6+PHjBxQKBbp164Z8+fKpfe4vXbrEfoc0leHlZgc0adJE9DqMWxKZOU7PnTsXefPmxbNnz9jvrKbzB2FQr0+fPggODsbTp0/VSl0CqQODnJyc8Pr1azRt2hR+fn68+wsVKsRWI2AsXLhQ4yCVY8eOQalUomjRolrfP7E2MYN/0/reZSfJycl4+fIlrl+/jkaNGhn8HFGhUMDGxgYXL14UnWPRx8cHJUuWRP369bWWcQWgNoiKG0Br1qwZ3r17hxs3bog+9vfff0dQUJBof5AU4fWWGFNTU/Tv3x/FixeHra0t7t27h8ePH6d7xuSvQK/yZVWqVEHBggUxZMgQhIeHY9CgQbh//76seuWZzczMDNWrV+d9WVJSUnDhwgVZX5BfjbOzM44cOYLAwEA8ePAAvXr1Ej2ICS9Sunfvjhs3bmDNmjV49eoVNm/ejDNnzvDWGzhwIE6dOoW1a9fi1atXCA4Oxrlz57B48WJ2ncKFC+PSpUv48uULb3SDlZUVbG1toVAo4ODggFGjRmHHjh3YsGEDQkJC8OnTJ+zduxdr165F//792ZqNtWvXhpWVFdavX493797B19eXHfXGlForVKgQwsPD8eLFC/z48YOXFSTMlBE+b2NjY+TOnVtjhpAU4TpiHTe5cuUSnRRbDlNTU72CMkyHELd8maZgwogRI7B//35Z2xZ2hmqbdB5IvbAwMjJiy8ZJrQdo73QuWLAgL900o4IyzKgpXYMycjqPAfGJb7VlykhJj0wZsc+eppMj4fp+fn7sCBOp0lOJiYlsUEZqgneGMGNJGJThjnCSM/9IUlJSumQT6UrbvBdpDcowmaTly5fnLecGP6pUqYKNGzeyI/kHDhyIRo0aoVatWjrvO63EgjLm5uair0Pv3r3Z28Jjc82aNfHt2zds3LgR5cqVw8WLFwHoFpQRft6lSnbqylDbSQvhSEFdPXz4MM2BHe7rq6l+spGREdq0aYOdO3eytZtPnz6ttZyTlNjYWLi7u2Pq1Km85QMHDmRvyx20wGAuqoQlWYyNjXHhwgX4+PjwjpHM53nQoEF4//69TvsSo2sgJ6vITpky06dPR4MGDTIkQ4ZRrVo1bN26VTIAxByjx4wZk6b9GBkZYfz48fj9999lP0YqKMOoXLky3r59Kzl3BNfGjRsxadIkHD16VPb+dcU9T7K0tMyUCZU7dOiAfSLzuTHevn2LdevW4e7du5gxY0YGtuzXtWjRItEOUSmnTp3izf0i91pKjPB8h/udMjMzg7u7OyIiIpCYmIjjx4/j0aNH6Nq1K/777z+1bX3+/Blfv37F4sWLoVAo0KhRI73bpQ+pc9W5c+emad4OfYPfwgDzsGHD4OHhgUePHiEiIgKlS5fG8uXL1UpXC5UvXx7z58+HlZWV6IATbQPK0uLs2bN48OABdu/eLetaVFMJp3fv3unVhvj4eBw4cIB9nQ4ePCi6XsOGDfHw4UOoVCrR8siM6tWrs7dNTU2xaNEijefETBDHy8sLUVFR8PT0xOLFi1GuXDl4eHjw1v3+7Tt2794NhUKhVrJ/7969cHJyUhvUKOTh4YELFy6gWbNmvIChVDanppJQHTt2THPfxK/G2NiYV0EivQbuNG7cGG5ubmoJANpoGtg9YcIEWFpaYteuXejbty88PDxQpEgRjdfxTk5OOmWf6zNYslq1alo/90QenYMyHz58wODBgxEYGIjPnz/j8OHDbKAmM0a+6mP8+PHw9vbGzp078ezZMwwbNgwxMTH4888/M7tpWc6KFSuQJ08e1KlTB23btoW7uzuvM5whfO+rVq2KKVOmYM2aNahatSp8fX0xbtw4Xgewq6srVq5ciWvXrqFly5b4888/8ffff6NYsWLsOmPGjMHt27fRpk0bXg1p4X579eqFv//+G4GBgejbty+qV6+Os2fPYvLkyZg0aRK7ft68ebFr1y7cuHEDPXr0wNmzZzFo0CB2W0ZGRnBzc4OrqyuGDRuGZs2aqU3mpykoo1AoUKZMGVSrVo03QhXQPVNGbH3hqCZdpDVThvH582edgwlShJ3hwjZpytLgBr70LV8mPLmTCu6k9cRHWPZQ3zllmOcjHIUN8Guwa8tu4XYeCz+nQmIltNL6eoh99oRzrHAJT1S475NUoCo+Pl52B3VUVBTvb01p7Nq+N/ny5YOJiUmWCMooFAqNQaS0BmW4j+d+TjS9Rt7e3rh06VKmjKoRC8qEhYXxPkO1atXCli1bROsP79+/H5UrV8a5c+dgaWmJoUOH4tmzZ+z8D7qU8eB+Nnft2gVLS0u1i0B9MGUmdFGiRAle+St9cL8zwu+TLn78+IGqVauibNmykhdM2n5Lt2/fjnz58rEjyDRNUM49ll29ehWDBw/Wq0TalClTYGxszHaiCNvOPeYmJiaiZcuWAORl3jVp0gTv3r3D4cOHJdfhnotwP8/c5Rk1j1NWkZ2CMsWLF8eVK1d4weDMtmXLFixevDhdOwalCMsEiylevLisY27u3LmxZMmSLD+Phq4dRCqVih0o1qFDB9y8eVPrY5h5CgDo3GH0qwkKCsKhQ4fSdByZPn26TutPmDBB9twPS5cu1alyAvc3nnkc8z1r27YtKlWqBCD1vI77OQFSf1O45+FTp07F0qVLZZVlywj6fh/37dun9v7q8373798fPj4+qFSpEgoWLIhXr17pXM4nf/78uHXrltrytJRffPnyJRQKBUqUKKH2vDTNOaGru3fv8v4OCwtTWybGy8tLa5klT09P2f2L3N8K5jxI05yRd+/e5WUjnT59GtOmTQMA7N69m7duseLFJOd0lYtbUYgprTdixIg0bZPob+3atbCxsUm3+VDs7e1lr5ucnKwxQ3/ixIkAUrOydu7cKXuQrrb5rknWoXNQ5uDBgxg5ciT7450dde/eHcuWLcOsWbPg4uKCwMBA+Pr6ah1N/Svw8PDgpd2XLFkSFy9eRGxsLEJDQzFixAhcvnyZ14EaEhIiWg+5Y8eOePv2LWJjY3H06FGEhISolQ9wdXXFgQMHEBISgsuXL2PHjh284FiDBg1w5MgR3Lx5Uy04ItShQwf4+voiNDQUcXFx2LVrl+hEee3bt8eRI0dw7do1rFy5Eh07dsSdO3fYoIiZmRmWLFmCgIAA3LlzR/bcKwzmIok7ulTOnDJyypfpOmkpt5SBvkEZ5iSHqa+/a9cuNiiT1o5n4Q+QsE1iJ9rM68q9z8TEBAMGDFBbV9uPlvCCRvjaMmnnaQ1CCEcaM5ksugZlmOezYsUK+Pv78+7btGkTWrVqhVatWmkNypQvXx79+vXDpEmT9KoHLdZ5oKnDUEjsJFlTTXXhXE3c58cdXdajRw82qMutxcw9MRIbGcctWwQACxYswIkTJ0Sfp7bvjS5ljzICN8NQeBGW1qAM9/vFvXDMKnOrCEm9d9zXYeLEiRg0aBBKly6ttl63bt3w8OFDycwBXTJluN/9fv36AYBBygjt2LFD58coFAq1TOd169bJDr7PmTMHSUlJ7N/Tpk1jf6t0LTfGLQty6dIl0XWYzJdnz56xma5MHWeVSoUBAwbgx48fcHNz0/q7y+0EP378uOhkzFLMzc3Zi+yFCxciMjKSzS4QXoxxP3uFCxfG6tWr0adPH9FRyWKKFCmiseOJe6wSfq+fPn2K48ePo169erL2ld0xwScaaJU2VatWxeTJk/WazyGtatWqhUqVKukVIM0I3MFjQGppMCnC109qsIhYaWhNuOWE/v33X7X7xeZl4JY0ZQLDRFzp0qXRtWtXncv7ML85upTr09WWLVswceJExMXFyc5MzZUrF16/fo2QkBCt1zR58uRhAwR9+vRRu9/CwgITJ07MMiOkuZNc6/M4prOd6fj09vaGk5OT1nM6FxcXBAQEoEaNGnrtX6hWrVpq1x116tThZdd+//4dY8aMkRX0YM5HQkND1a5zNB2z9HHjxg1Mnz4dCQkJKF68OGrUqCE5rYFKpUKLFi20doYvXrxY4/yTxsbG7HWvsbGx5IA9TaUrNWWC+l/1l7xPH2Jl79J7vj4xp0+fzvB9ZkVVqlTBt2/f2O99ehA7fgo1bdqU/eyKlT0DtFf8kCJ3blqS+fR+p54+fQpfX18cP36c9y+7GDlyJN6+fYuEhATcunWLLW9F9CMWKNi9ezcePnyI169fY+3atdi5c6fkwUlT9omm5cLH2dvba0xt1bZ97sFLagSSnLaK3cftHBKblJsbcImIiBAdra/rwZU7T1JaM2W4WS3Mj4ZYmSxdCFO75QRlmHWEmTJbt26FSqXi1VbV1umsLWjDnLikNSgjnK+K6bTWtYwN83xMTU1Rt25d3n158+bFqVOncOrUKdHPLvc5GBkZYceOHTpP+sxgOmBPnTqF3Llz48CBA7w6vWK4+xd7PTt06CD5WGE2D/fx3PIOu3btYict5pYPatGiBZydndGkSRO8f/9ebXvCkf0fPnxAu3btYGxsrHbBK3dkIvfCStNkfnIurAxFOMeMITNluIEYfee9Sm9SwSLucYB7m8liEH7XdN2+GF0DsulN2MlYoEABtffR09NTtEb77NmzeSOCueX+SpQoIbsNbm5uvNICTZs2FV0vPj4eSqUSFSpUQNu2bVGvXj3Y2dlh165dvBJFCQkJ6Natm+z96yo8PJwtJ6pQKHgdOGZmZoiMjMSkSZOwcuVKmJiY4OLFi9i2bRuqVasGZ2dn7Nq1SzT4pw/u8Ub4u1a+fHmdB5dkZ8z1iKYMKZK1mZqa4sGDB5k2P5Y227Zt4/2tqcSf8PdDauS2pnMgMdwBF2JKly6NuLg4jB49WvT+T58+6bS/X9WwYcPw9u1bteV+fn7sPBC3bt1CQkICjhw5Ant7e+zbt08yMzEuLg5PnjxR+wxp06pVK1haWmLw4MFshQeA/3nSdk1WqlQp2b/JtWrVQlRUVLrPOSXXtGnTJM/F9Mn09fLyYkvFLVmyBLt27cLcuXMBpJYbDQoK0lqWv0CBAjqVZZRD2Hdw584dWFhYsKW9Jk+ejDVr1mgNBKWkpPAmHb9y5Qp7W9tgle7du7MDMeWqW7cuFi5cyJuEXphtwjh69KjWgbaA9msJCwsL3nWvVMawWNBajpatsl/gunPnzgDUB2j16dOHrcJCAfn/Se+qDZqqgACp3xvud8HNzS3NlQukaDonpkFMmU/noMybN29QtWpVdgRThw4d0KFDB3Ts2BEdO3ZMjzaSbEAsWPD06VO4u7ujcuXK2LRpE9asWcOrq87F/SGVCjyIjS7TZ64WTetxRwbLOVDLDcooFAo2AGFubo5ChQqplRXiZsrExsaKXjDpWiKQG+TQFpSRusBjOsDnz5/PLmNqVKY1KCPsHJdTvox5Dbjvj9RtbZ3OmtKauftPa1BG+FnSVjJMirAsDfe7wn0uYu39+++/2dtpHTnBZEW0atUKP378QNeuXbV+X7htF2ufptdY+D5x98VkGQCp77fYdoyNjfHy5Ut2ckVhp6VwBBmXMLtEbsCBu01Nc7sYsqSKNkZGRrz9afv8i5H6nFWsWBELFy5kay5nRVInutzjBPf53b59G5MmTYKPj4+s7etycp+VgjIKhULtt1kswDR37lzJjgBNgUdNLl26BFdXV5QpU0YyM0YoPj4eW7duZf++fv06gNRjgbD806FDh/RqlyZTp06FSqXSWhbAxsYGS5YsYY8hjRs3Rv/+/Q3eHoDfyZIVSidmpnz58qFt27Y0QjCb454TZzUlS5bk/a1pNLfc5/Do0SPR8kVSNP0ubd++HUDq+YrYxO0A8P79e15H7a+GmXfwwIEDah3EwgFTwkGnKpUKzZo1Q+fOndGyZUv8/vvvsLCwQOfOnfHlyxdelQIuGxsbWFhYoEKFCmjSpIlO7T116hS+fv2KTZs28ZZzj/fbt29H165dcfXqVZ22LSV37txZ5ju4YMECXLt2TfQ+uede3JJi3LJZDg4O6NOnj9r5vaWlpcYSRJpKHaeF2JyL3bp1Q8+ePWVn8wrn2uEOVNOWUb1lyxYMHz4cycnJahm22oJQ3HOuBQsWAEgdyFm5cmX2OlRscI8YXT97wnmTGLrM62Qohsqe0tX+/fvx4sUL9O3bFykpKWjQoAGA9J2fiEjLmzevZBC0a9eu8PPzUztXffToEe9vfeeSZnz+/Bn79+/H0qVLef1PAwYMwOfPn3Hy5EmdqgSQ9KHzFcuYMWPg6OiIT58+wcrKCk+ePMHVq1dRo0YNXL58OR2aSLIDsYvfRYsW4dOnT+yooKFDh4r+wApP+vQ9AdQl+CJnufAkT1iDV9s+hfflypULlStXRoUKFUTvN2SAicHtWDMxMeF1OAoDINoyg8RKFqYlKFOxYkXMnDlTYxvETrTFXgOpLAxtnTJyO6XTGpThPr5Ro0aya4EKCTvbuNvlPhex140b5Evr8+FeiDCvcVqDMpomkRS+T9zHb968Gdu3b2cnmnzw4IHGdgjbAmgOypw6dYr3t7agDDOnx65du2Q9xsTEJEMvernfe30m8Oa+F8ITzalTp/JGyWU1wow1hlSmTJkyZbBkyRKd6gKL+euvv9QyFbhBGe777+XlpXV0ppiPHz9i5cqVkvdrmuzRwsICkydP5nUkMZ8TbnaVoTOgjh07Bjc3N9y8eVO01I6UGzduYOjQoaL3yZlHasmSJTpnCdauXRsRERE4d+4c29GQlUjN70QIMTzu7+CBAwc0nr/oIjw8HGvXrkXfvn1x7tw5jfPMbNy4UfI+7kTsYvNxctd7+fKlXm3NylQqFQ4cOMCWeEtMTMTZs2exZs0atiqBubk5rK2t0b17d7Ro0QJr165lO4uFv0f379/H1atXUapUKTx8+BD37t1j7/P19ZXdrvv377O3tWWXi7G0tFQ7X+SesxQrVgwHDhxA/fr1dd52dsGc56xdu5ZdNnjwYADS86bVrVsXKSkpmDdvHipVqoRRo0bJ7qjXlFHGLSFoSOfOnRNdvm/fPtnb+P79O+/vJ0+eIDw8HAqFQnJwyKNHj3Dv3j123lNjY2O1bMV//vlHdhuYbTZt2hSPHz9mB83IzcLRdZ4tqYxhY2NjfPr0CR8+fMCBAwc0liyTq2PHjpLZ8RUrVpQ1x5c+5s2bJ7rcwsICZ8+ehfH/sXff4U2V///HX6ebtrSMMkRWGbI3ooCColDEhSwVF4qICKKgyAcUcaMouEBBUXAh4kLEAYgsUb8IMmQrlKFshJa2QKHN74/+EpM2SZM2zUmT5+O6cjU5uXPOOyfn3D3nvM993+HhuuCCC2z13LJly3T69GmnPbTAHG+//bb+/fdfzZ071+l5Vf5ra67qA08lJSWpX79+ioiIsNVZjz76qGbMmKGkpCRdffXVpozzCkden7n98ssveuqpp5SUlKSwsDCFhYXpkksu0YQJE1w2kUbw83RndnbxsVKlSg6fL+oFheJe2Mz/+fwDHVr7c7S/IOxNSxkp70TO1bryZLyY/OumsIuq+VvKuBqMO39frM5Yk0n2ipqUiYyM1KZNmwr0kelJUsbK/oKw/W9i/5nCmmi7S8rYN/H3JonRvXv3AtPsY0pKSipyUiR/MsF+vjk5OYqLi1NcXJzTu7datWqlli1bSpLLFmuecjbwZGHbT2Etedz9Fvm/d/4WQnfeeaftgNN+bAtJTpME+efn6dgZl1xySaEJtcGDB0tyPOF29xnrxQEr610sJXXXiv1JRFHGCrCPNZBae3jCvn6x/iY7d+50+H2K0nrI3nfffedwsUDK6/Zr/vz5OnjwoG27sF939vXUU0895VEfxPm1bt26wMCy9mMxueobvXr16vrwww8VHR2t//3vf7bp1nVivdjh7Xhm9lx101jU1tXFHWx1xIgRXp2gWseYqlKlirp27Rowdw7bu/jii1W5cmWlpKSYHQoQ9Oz/lxR2zhIeHq6NGzcqISHBdtNI69atnZZ9++23NXz4cH3wwQdKSUkp8nGAfX0fFxfndhzYBg0a2I5bgsXChQt14403qlGjRrJYLKpXr566d+/u9mLs8OHDbS0U8h8Tzpw5U507d7b1FlKUu+CfeeYZ1alTx/bamzHo3Mnfgj7YPfjggzpy5IiGDRtmm3brrbfqp59+0nfffacBAwZIyusG/Ny5c8rNzdVPP/0kwzAUGxurP/74w5ac89bjjz/u8Hr//v3F+i6uJCYmFrnLLStnxwLujntGjRqlpk2bqlWrVg7T82+n1apVcxizszD5W+pt27bN7Y1w9go7h8/MzLSd92ZmZrptMVypUiVVrVpVffv21SuvvKL77rvPw29Q0P33368vvviiwHro0aOHFi5cqLVr1yo8PFx//vmnQy8V3rLvru/KK6/U008/rfvuu081a9ZUixYtbO+dOXNGp06dUrdu3QrMI/85Jswxa9YsNWvWTLt27dLdd99doPt+e/nPzb3pBrowCQkJslgsDr3fIDB4ffU7JyfHdiE2KSnJ9g+pVq1aLgf0AqzyHwQlJCTIMAyHf56B0lIm/8Vd6/tFSRoVNh5OYbHlf79ly5Zq1KiRwwG+M/kvhLvqpseTf9j169cvcOJW1KSMq6RE/unuui9zlZSxv1PG/gK0szux3X1v+ySDp0mUK6+80mm/nPkHHyxqUib/QWb++WZlZSkrK8tpguSJJ57QsmXLtGLFimJf1HSWxChsv8jfais/d4mLwhI69vIn9vJ3E+huWdbxaFyZM2dOoV0DWd+3b+LvanmvvfZagfeHDRumEydOFDtxlp/1DjX7g72iHKjbx/rRRx8VPzA/st82nnzySVksFtWpU8dlS5mi6N69u4YNG+a0bqxSpYqtD/O1a9fKMAynJ2ye9LWdn7OLA/Z3y8bFxWnhwoW2/qat9u3bZ7tAaH/ybN0X4uPjlZaW5jCmmLeqVKlS6Mm1O/nrlsLGUnAmJiZGkydP1ooVKxQZGenV+D9jx44tsT6efaVs2bLav3+/FixYYHYoQNCz/99Z2N3crVu3VrNmzZSWlmarY9esWeN0gPbvvvvO4fVbb71VpPis46FZVatWzW35oi4nUP3444+252FhYdq3b5/Hnz1z5ozDDQq+cv/99zu8dne+9+yzz3o8sHNxj1lKo/xjxxqGoY4dOyohIUEzZ86UxWJRlSpVFB4e7tNEVf4B463H8CWhffv2xfq8N12rxcbGFui5wir/OU9UVFSRBx2XVKCLWSnv5p8DBw4UmO5JSxnreW/+8oX97lOnTi1Q71ksFqdx5Ofs3O2dd97RggUL1K1bN9v/h3r16rnsytAT48ePtz2fNm2aHnvsMVWoUEG7d+/W+vXrlZOTI4vFEpJ1QGlzxx13aOPGjUpOTi60rP226y55g+Di9dXlpk2b2u70ueiiizRx4kStWrVKTz31VKEXiIH8rIML2190MetOn/zLzX9nmfVCt6exeppg8eYz1juOIyIiFBcXV2h5axNkKe/A6vzzz9ftt9+ue+65x+GiobOLs82aNVP//v0dpuXvtsXXSZnCupCzL2N/8GVfzr7bqPr162vSpEn68MMPVa9evQIXBt1dlLb/nT1NorhqcZS/ezVftZSxjzF/U+38YmJilJiYqEsvvbTY+1j+7cLVMu35KinjbRNbb5Iy2dnZbucVGxtb6G9nnberASftDR06VJLj94uMjCxwQaU4/vjjDz377LO2O27tkzJF6Y6qNN+J6SoR7W6Q9KKytkrLz7ofWMcZcXaC6iv2g97HxsaqW7duhY6xkpOTo5ycHIdtIyEhoUitqqyKm9QpSjd7zuYxYsQIW6LK/kJDsIyrEB4eXuyuKQEUzr5+dFW3rVmzRuPGjdOjjz5a4D3DMDwaW9C+mywp73+VuwT3li1btHnz5gLHtp5coD137lyxkudmslgseuihh/TEE09Icj/GT2HKlSvnkNTxhQ8++MDhfKwwY8eO1YEDB1yOB2SPOt9/7MeRe+aZZxxa6/hapUqVtGnTpiJ91psWPPfee6+OHj1a5PP5m266SRaLxTaOVWHs67TGjRvLYrFo+vTpTrsJ9rYbPm/rr0GDBtlanFjH23TVzfGWLVvUvXt3h66koqKilJKSog4dOmjAgAEuz4+s9ZIzHTt2VIMGDWyvrS29nnrqKYfjVGc3L9NVbfDq3r27KlSooNTUVLNDgZ94vTc/9thjtgsYTz31lFJTU3XppZfq22+/1auvvurzABF87A9qvE10uONpCxh79s1y85fLf1JjjdG+nLsDgMLGnnE2poyzcvZ3uOW/OOXuu61bt67AhXDDMPTee+9p+vTpLi/oW23YsKHAnfD5D9o8uaPEGW+SHPlZD15cNVO271orPDxcI0eOdHnh011SxlVLHCtnB7Dh4eFq0qSJ0+n2sRZ1IOb8n7M/0S4sceGLwZ+HDh2q/fv3Ox2cvrBkSf6u9PJzd3DpTUuZ/HdWOUvKuPrdnX0ve2XKlCl0+db1nL8VkzPW71zYeDvF0bRpU40dO9a2/u0vDIRak3Zn3ZdJcthnfTVI+gcffKDrrruuwAV/X3VZ4gn7+sF+ue72NWu3tJ6oXbu2x/2L5x8s1htFScrYd+0gqUALEvvf2dp6ScrbRoIlSQOgZNj/n87f1bFVmzZt9NRTT7lslefpTRGffvqpfvrpJ+Xk5OjCCy9Uly5dCtxA0rlzZ82ZM0eNGjVy2tWwsy5n86tRo0aBsc9Ki/r162vy5Ml68skntXHjxmLNy5NxybzlKiHjbHwIaysEwzA82kbszwPtuyyF79nv9y1atCjxm5ScnU8W5vjx4151z3r69Oli3XRjPZYuSt1hf+NQWFiYdu7cqa1bt+qff/7RihUrbN0JesrbMWgkafXq1Vq4cKF++eUX2zRnybCaNWvqu+++U9euXW3TDMPQd999p59++sntcfO4ceP0zjvvOH3vyy+/1Pr1622v27RpI4vFonHjxjkcp9IaJrR888032r9/v09v0kRg8zopk5KSol69eknKa5a3bds2HT16VIcPH9YVV1zh8wARfOyTDM4SHf4cUyb/Z+zvkDAMw6EytMZlH5+7g/eixOPsu4eHh6tVq1Zq1aqVx+umRo0aatmypcMBZP4B0POPy5Gfs/ijoqIcyv7888/65JNP1KJFC6cDnX7//fdOB2R2d+HZfrn25VasWKExY8bYugCwT5q4atXiaasGZ3bu3Gl7vmfPngLvO1tnERERatiwYYFB2fJ3hebNhfcPPvjAZbz2d2gWlpTxxQFddHS0y7s7C0vKnDhxwuOyzpZrVdi6y3/xwdlFcFfrwlkCJ38czpZ/0UUX2Z5bD6LHjx+vypUr69FHHy00Zm++X3EVpQWYK6WtT1r79Wy/DdjX+75a/7Vq1dJXX32lTp06OUz3tNus9evXa9myZRo9erTS0tIKLe9smx41apTT5Rb3QsIjjzwiSZoyZYrLk/n8/w82bNigrVu36uGHH9aRI0e8Wp63JyURERFav369rZvGRx99VG3atClQxiomJkY5OTn6+++/derUKXXq1Mm2T/uilQ6A4OVuvBZ37P8Xuxv0vV+/frr00kv1xRdf6Pfff9eyZcu0ZcsW2/uvvPKKli1bphtvvNHlPDwZv+vgwYP65ptvPB7vwZ/S09P1/fff69y5c1q/fr0Mw9DUqVNlsVh08uRJh+P1/An5QODqBpjHHntMF1xwgcO0VatW2Z57+v9n48aNWrVqlcu7/FF8L774okc3W/na3LlzXb63ePFirV692mFa/htgli9f7rLltlR4DwGS49gm+VnXQ1JSktctW/Jv+3Xq1FHDhg1VrVo1r+cled9SRsqLv1u3bg7nik2aNJHFYtGhg4cK/byn4wHfdddd+r//+z/btIkTJ+rFF19UpUqVHLYl+5up8t/QidARFhYWcjdOhjqftHurUKGCDh48WKLNOBE8oqKiFBkZ6TDovf0/Hm+SMsVtap9/WfkPsurVq2crY734ZP/P112XAJ62qLGPxdl3NwzDZbdYkvOLztb52H9m69atDmXs37NW/GPHjpUkPf/88y7jtG8hEhERoX79+mn9+vUFvmN4eLhSUlKc1gueJmXsY7z00kv13HPP2X4jV33H2ndf5s3g8+4sWbKkwDRnB+TW5XXt2tXhdylO92XOLvg7Y/+es/n74oDO3TwK22+trZUuu+wyr/dbb7ovy79PepOgKuyuRFcH3vZ9vlrnXb16dR08eFDPPPOMDMPQpk2b9Ntvv2nq1Klu4ynppIz9dyjKXXiStGjRIk2ZMsVptyyBzFVLmbi4ON1yyy3q06eP6tWrV6IxeNpSplWrVrr88ss1ceJEWxLEnfzb7ldffaV+/frZXtvvB8W5K1LK+/9w9OhRXX311U67V6lZs6ZWrFhR4EJgkyZNNGnSJD3yyCNedcvhbbcaV111lSTpvffeczmgpf1+EB0drbCwMIe7S2fPnq077rhDP/30k1fLBhAaNm7cqA8//NDhzmlv3XfffUpOTrZ1ZeqOfX1uPxh3z549C/3ssGHD9OGHH9peV6xYUe3bty9wUVSSGjZsaHt++vTpIo3h5WuJiYm66qqrVLNmTdt3HzZsmIYMGaJdu3aZHF3h3B1b2h8PWywWh3FLpkyZotq1azs9brTXrFkzdejQofiBooA///xTM2fO1IgRIxyOz/11kbxv374u3+vWrZsuuugibdu2TVJegsU+YStJnTp1cnsc48lNcu5uJrI/P1uxYoUsFotyc3NtXfT6U69evVSrVi3deuutPplfXLxvW7a3a9dOp0+fVnZ2tkaNGqWHH35YkuP5s/05rKseQQAEH6+SMps3b9aUKVP01ltv2e56Pnr0qB588EHVqVNHS5cuLYkYUQpcdtllmjFjhkd39YSFhalp06Zq0qSJ7cJIRESE6tSpo7p167q8uOvswMH+n1f+C6bWg2D77tLyy/+Z8uXLKy4uzjbWjWEYatGihUOrE0/vMvb2buTw8HDbmDHezMfZZ6zr0P4OmPwHVc66L3vmmWe0d+9etxcB7Q8SJk+ebHuev19t62/j7GTE3YVn+7jcHSy6urBvP1i7s8/bD8DuLClz2WWXScq7+9DKWeuQa665psA0++W5Si55m5Sx337d3TFe2HrzZmBrV9wlsQo7sB8zZozmzZunefPmFSspU9i686TvdGdJmcjISK8TIqNHj9YjjzziMJ6as35/pbwL0m3btnUanz9bytj351zUg/yuXbt6dBEpkOXfBj788EN9+umnJd4dRVH2w8IGYR46dKjS09Ntr3v06KHrrrvO4ff97bffbM/tL+gVhWEYtju7k5OTNX36dNt7r732mnbv3q2kpCTNmjXL4XPW/X7WrFlOuwo8dOiQbrzxRn3zzTcO073dTj3pwsV+P3T2P6pOnTqaNWtWkROXAIJbs2bNdMsttxTrf8bUqVO1c+fOYnVRUqtWrULLhIeHO3TjO2rUKP38889at25dgbL241HUrVtXZcuW9Tgxc+7cOe3du9ejsu64Oo7L32Xy9OnT3bYCsNeiRQt98cUXOnDggNN1VlhL6eJwd+zsrsul+vXrKzU1Vffdd19JhAUP1KtXTwMGDCgwZps/L5JbbzRx5fbbb9c///yj2rVrO0yfP3++JPc3A3lyzjFo0CBJ0tVXX13gPWfnx4Zh6OWXX1Zqaqrblj6+Fh8fr127djn0MBFooqOjPb7B0f5cme7LgODmcVJm/vz5atWqlYYPH657771Xbdu21dKlS9WoUSNt27ZNX375pTZv3lySsaKEXHvtterevbvT91auXCnDMDzqozcmJsbju4zDw8MLJF8qVKjgcMe51fnnn69y5co5DITmiYYNG6p+/foeJ2UsFosiIyPVqFEjW5++1lj9MZBiWFiYQxdPzmL0lPUCuX23N/kvmjvrvswwDNWoUcPtMo8dO2Z7bn+B0dVgp4UNfJ+fq2RGfq5OZOw/4+zz9ncLOjtRWrp0qc6dO6cHHnjANs2+9Y3VpEmTNGnSJA0fPtw2zf572a/f/F1GeXowv2LFClWsWFFjx47V2LFjHe6gyy8sLEydO3dW586dnc6/OHfHjx49WrVr13b4rvl50kXX9ddfr8TExGIlZQqTv/syV93wOZvmSSs9+9iff/55vfDCCw7LKOzAuVu3bpKct66RSj4p420fzcHE/uTRrLvOijqmzKFDzrtRWL9+vd544w2HadaWJfbf8bbbbrM9Hz9+vCIjI33W/dydd95pe16+fHnb/uDpwMZ33nmnNm3apMqVK2vOnDnq0aOHw/uu9gn7CxD2xwfO+unPz/7/B10EADCLJ93flBRXNwn0799fc+fOtSVo8nd/7Erv3r1Vq1atAl34espiscgwDNsYmDt27CjSOBHOrF69WjfccIOqVq2qLVu26IsvvnB433rXen7ueg7wheL2+AD/sT8W8edF8rfeestta6vffvtN1atXd0haxsTEOIzzYm1t9dprrzl81pOWMn369NHKlSs1e/Zs27Tp06frqquuctsipnbt2urbt6/DeC1W9sekRWV/3uusi/nSyP7mZo5TgdDhcc31zDPP2O7GnDx5snbt2qXhw4fr22+/1ffff+/yoj4C38CBA7V48WL9/fffBd6bOXOm2rZt67SLEld8eXKRkJCg8847T/Xq1XN68uDuYDYiIkKJiYkex+NJv/3e8HY9REREOE1KFTYfZ3d3WQ9K7Pu6zn8Hjf2BS1Hv0rO/6OfqTjpvu9Ky/77uvrur395+eYUNeO/qICf/5+xbQljFx8dr5MiRDokSVwmh/OPkeHrh3XoR+dlnn9Wzzz7rdn2UKVNGy5Yt07Jly5zuK8U5gXj++ee1a9cut/2e559/s2bNXJ5EFCcpU9gdm/lPOJzF7OygPSoqyqOTE/uErZX971LYxf4GDRpo165dDuMU2X+/kk4WTJ06VQ899JBDy4lQUalSJdtzX13o8VZRkzKjR4+2PT9z5ozatGmjgQMHOm3VaE3A2m9L9jcnXHHFFcrKyvJZ93P2y/F08Gp748aNK9Aixf6Y0tqt5s033+xQZvPmzbYLafPnz5fFYpHFYnH6fzQ/+1ak/rjpAgBcMev/kSsff/yxwxg1Z8+e9ehz1jvzU1JS1KFDBw0aNEgXXXSR2/E3rXJzcwvcdd+gQQOvxyB0pkKFCg7HqLGxsQW613TVUsb+wvbcuXP18ssvOy2Xnp6u6dOne90yYODAgZJE92OlgFktZapXr65Tp04VuOnMnfxjy9x3331KT0/X/fff75BI8SSJYRiGLrnkEocbbe655x59++23Hh3TXnzxxbJYLMrOztb06dP15ptvOrSwLir7897idstrthdffFE33nijQzeV9ueGZiXuAfiHx0mZ7du3a+jQoYqPj9f999+vsLAwvfzyyw5dBaF0uuaaa1SpUqUCXY1kZGTo008/Vc+ePXXzzTfr/PPPV2xsrJo1a6aPP/7Y5fymTp2qAQMGFJjeokULPfXUU7bXM2bMUKNGjRQTE6OGDRsWuNtX8u8/IW9OijyJy5sxZWJjY1W5cmUlJycXONArbFnWrtbsWU9iLrzwQt13332qXr26Zs6c6VDG00FG87O/MGYfq6vBAs8//3zdeeedDgca7g4CPf3NXa3TwlrKFGVsBXfdGrhanqvv6E03WUU9yLRfdt26ddWmTRuH8RKKorDfJX9SZuPGjS7Hgsj/2xXWNYP9gWlWVpbbsr1799ahQ4f06quvqlevXm77Y7Z3/Phxj07++/XrpyFDhuijjz6yTfO0dZdVcnKyw7rJf7GgJIWHh+ull15S27ZtS3Q5gch+f/Lm5NaXnP2+zhJ9+VnvVP7333/12muv6ffff9e7776rxYsXFyhr3f/t97P8dZivExHVqlWTJHXu3Nlhuifj4Ti7uDFlyhTVq1dPU6ZMUadOnXT48GGHfU7KW5cvvviicnJynI6N4Em8AGC2/v37FzlhX1x//fVXoWXsB6j21C+//KIZM2Zo9erVGjVqlAzD0DXXXKN27dqpbNmy6t27tw4fPixJ+vLLLxUeHu6yRWhxNGrUyKGFvyvWLprsGYahxo0b66GHHtLzzz+vvn376sEHH1Rqaqoee+wxh7Jly5bVPffco759+2rXrl06evSo7T1354CPPPKIFi5cqO+++86LbwUzmD3wujetQJzdbGk977BPLPoi6empyMhI3XPPPbr33ntLfRLF1x5++GHNmTPH4Ryhbdu2uv322zV+/HgTIwPgDx7X7idPnrRlyMPDw1WmTBmnd4/DuezMbL89vBUREaHbb79ds2bNcjhw/PTTT5WTk6Nbb71Vbdq00TfffKNNmzbpnnvu0W233abVq1c7nd91112nzZs3O7S82bx5szZu3Kj+/ftLkj766CM9/vjjevbZZ7V161Y999xzGjdunN577z2HeRV2IdiXzb696U/Yesd1cfqBtte4cWNFREQoLCxMLVq0cLhgW9g6cHZgaH/gNnXqVO3bt69A8sa+jDd3N9svz13rC+sJi2EYevfddx2SQq4SON7wpPsyZxce7d/3tHsddxcwvU3KuGops379eq+Wa69Ro0YOr+33i99++02rV68u8SbdzlodueoX3D6+nTt3urzz0MrbC8iVK1fW8OHD9fnnnzvdtj1J6E2cOFFXXnml0zJvvPGGrS7LryiJZPt156s6BQXZb0dmJWWcXXjzJCm+fv167dixQxUrViw00TFnzhxJeWOr3HTTTRo2bFiJJ/u2b9+ugwcPOrRGkqQJEybYuuxzxdn+XbduXf3555+2sYsqVaokwzBs3eKsWbPGVrYodVubNm30zjvvaNmyZV5/FgB86bzzztOhQ4ccxjpxNzi3L9WtW1dTp0512+PF//73P4fXGzdu1FdffSVJWrBggebPn6/ly5e7/PyUKVMkSd98841+++03ZWRk6IsvvlCVKlVkGIZ69epV7O9x5ZVXOvxfkKTXX39dP//8s0efT0hI0Llz5xzG77AeE7700ksOrVVr167ttpvM5ORkVaxYUVdffbVtPEFXIiIi1K1bN4/PR2Aes7ovs/Lm/MLTG01JjgQuwzD03nvv6YknnjA7FAAlzKsrXQsXLrRdMMrNzdWSJUu0adMmhzLXXXed76ILIhPiJ/htWeMt3mfU77rrLr344otavny5baDzmTNn2voHtu9r9/7779fChQs1d+5cp+MTXHnllWrQoIF+++039ezZU1JeEuaiiy6yjTkzfvx4TZo0yXYgnpycrC1btmj69Om64447VLZsWZ08eVKVK1f2+rt4q3r16jp69KjTwercfSYhIcFlS4D8nF2cdpdQ8rQLL8n5BSlP7nwpalLG/kDUPkGTkJCg9PR0RUVFadeuXQXuRLYv6+67e3qx1NUBp/1Bs7N152wsncJ4mpTxJHngbEyZqKgotWjRQnXq1NGuXbts0z3d/sPDw5WZmWnros5+YPDo6Gi/9LHr7ATFk6SMJ8l9X7eY8yQpc/nll+vHH3/0aH7Fjc9+3dFvsH+42jZLmrMT4AceeECDBw8u9LPWBEVhrK3JDMNw26rVl+Lj4112pfntt99q27Ztio6OVv369QuU8eaO065du/rsZoy77rrLJ/MBgOKKi4tz6NbUvvvhknbfffdpyJAhhbZiP3TokEctO/3h/vvv1+uvv257vXDhQoWFhenNN9/Us88+q//7v//zukVkeHi4vv32W9sxXXFbEXz99deyWCylfpwL5DGr+zJn3n//fd1+++0u37/mmmvcfv7yyy/X0qVLdffdd/s6NL+xP+/dvXu3aa0NAaC4vDpKuOOOO9SzZ0/17NlTp06d0uDBg22ve/bsWaB/VpQeDRs2VIcOHfTuu+9KymvOvnLlSg0cOFA5OTl6+umn1axZM1WoUEHx8fFauHCh9u7d63Re8fHxGjhwoG0QRYvFoo8//li33HKLpLx/ojt37tTAgQNtF3Li4+P1zDPPaOfOnZKk+vXrq2nTpoXeOWRt/eFNQiW/qlWrqmnTpl4dYIWFhalcuXIeH7CfOHGiwLSTJ0+6LO9NUsaZkkzK2K8n++c//PCD2rdvrx9//FHnn39+gbg9be3g6cVST1rKFPa+pzG5m6erMWxcbbvWQUztWS+2njp1yjZtwIABHv/21t/y6NGjOnr0qMN8/HU3V1GTMoEkf9d2no6lVdykjH0ixoy770KRWSdv9kmZN998U7/++qvHJ8Xuto3333/f9rxmzZpFD7AEhIeHq0mTJrabMvIz++IGAASaxMREHT582DYgdsuWLR2SEMXh7IYywzBs52muBEpCRpImT55se37s2DHbcfC9996rffv2+aSLyuImZQzDICETRAIpKRMWFmZrrZbfQw895LQbeXuLFi3SkSNHCvS0UNpYz3sBoDTzuKVMoA1CWNqMyRhjdgiFGjhwoO6//35NnTpVM2fOVN26ddW5c2e98MILevXVV/XKK6+oWbNmiouL04MPPui2C6qbb75Zo0eP1u+//65Tp05p3759tkEjrQN1v/3227roooscPmc9AA4LC/MoURAXF6fWrVsH/EGvswuA7vYpby/yNm/eXFlZWba+oT1ZH75Oylx44YVuuwkwo7VDYe97esJVlO7LPvnkE/Xv31/PP/+8Q/kWLVo4zK9fv36aMCGvJV2lSpV04MABSSowBpA7+b+HfZLSX4NYO1uXrlo9ZWZmlnQ4XmvTpo3DuoqJidGDDz6oiRMnFvpZXyZlaClTsl577TX99NNPPukupSjsuxFLSkoq8D/QHXfb2UUXXaT69evrzz//1NSpU4sVo7+ZfXEDAALBlVdeqR9++MH2ulKlSpo2bZq6deumq666ShUrVlTnzp09vmEkv9dff13fffedy1aCH374oeLj430yCHdJi4iI0LJly3T69GlVqFChSPO44oortGTJEpetCvx1/IzSwewxZexFRUXpuuuuk8Vi0dtvv6177rnH9l67du0KvQ4QERGhpKSkkg4TAOABjjb8JCou8O9+7tevnx544AHNnj1b77//voYMGSLDMLRq1Spdf/31uvXWWyXlJRN27Nihxo0bu5xX9erV1blzZ3300Uc6deqUunbtauuKqUqVKqpWrZp27dpV6F1Zngj0hIzk3Xg1kvctZaKiorwebNx+vXnTp6yr7su84YuWEkVNyth/75JMyrRp00bbt2+3vV69erU2bNigHj16OLRkuf76620X4ufMmaPBgwd7Pahf/vjatWunDz/80O0+6g+ukjKVK1fW1q1b/RyNeyNHjtTBgwdtr8uUKaPzzjtPFStWLHSQ2OLetED3Zf5z//336/777zdt+fZ1rbetdb755huX7yUlJWnjxo3auXOnmjRpUuT4zGD2xQ0ACATnn39+gWmxsbG28y9Jatasme25tzeEDBs2TMOGDXNbZtq0aQGRlDl+/LjKly/v9L2lS5dKkjp37lysZXzyySf67LPPbDcN5ufPQdAR+OzPO80+Vrc/zhs0aJBiYmJs3Zm52m8AAIEp8K9mw2/i4+N14403asyYMTpw4ICt6Wv9+vW1ePFi/fzzz9q6dasGDx6sQ4cOFTq/W265RXPmzNGnn35aIPny5JNPasKECXrttde0Y8cO/fHHH5o5c6ZDc/Rg0KhRI1WtWtXrZvTF7b7ME75uKeNvnowp4yxxY3+SlZaW5tGywsPDNXbsWJfvOVt2fhdeeKHuvvtuGYbhcDBv/z0aNWqkFStW6IorrvAoLitnB+C33HKLWrVq5dV8fM1VUsaTgc3zq1q1anHDsXG2XURHRztMt7ZoKCwhI0mXXnppseKh+7LQYZ+UsW81444n20T58uUVExMT8AmZSZMmFZjGhS8AkCZOnKhrr71W8+fP96h8Sd2U9sUXXygmJsbpGGBFcfnll3v9mXLlyhWY1q5dO82YMcM29mlxVaxYUYMHD3a6LKnw/03W8zNvzqFQetmfr5l1/rtx40Z9//33BW66s09QdunSxd9hAQCKgaQMHAwcOFDHjx9XSkqKLZHw2GOPqXXr1kpJSdFll12mqlWrqmfPnoXOq0+fPjp27JiysrIKlL/77rs1Y8YMzZw5U82aNVPnzp01a9YsJScnl8C3cq2kEh5WcXFxql69utMDe+vFM+u4OPbsx+LwNEZvEzmlPSnji+7LVq1a5fHynn32WR04cEDnn3++Q4KmKN2h2Zc7c+aMxzG4YvYdW/ktWrTI7ftm3xnvbNuJiYnR6dOnba+9ad123XXXafLkyVq/fn2R4qGlTOjwpKXM4cOHHV67G8zVqqT/l/nKddddV2BaaYkdAEpS5cqVNX/+fF177bUelS+puvOGG25QVlaWduzY4fVn58+f79CF5nvvvacff/yxwE06Q4YMsT2PjIzUSy+9VOi8J06cqIEDB3odk7eeeuopSXmthtxZsWKF2rVrp+XLl5d4TDCffVLGrBuomjVrppSUlALTa9asqdWrVys1NZUbXQCglKH7Mjho3759gQuWFSpU0Lx589x+btmyZQWmlStXzuEiZ379+/dX//79ixJmUChTpozatm3r9D37Fhz+aCnjzYVg+wPRoh6U+uLuPldJGft5O1t39gerd9xxh1fLrFq1qvbt2+eyq7iiHAi7ukPPG61bty72PHxh3bp12rt3r7p27SpJatu2rdasWaMOHTo4lCvK71+vXj2H7sWKIysrq8C06OhohwSZN32JR0VFacSIEUWOxz5JRVImuNm3jnHWUubCCy9UpUqVHKY5G5TZXlGTgWagJRgAFM+4ceP09NNP64033iixZRT13MOaUOrdu7fCw8Nt41aEh4crLi5OmZmZGjJkiKZMmaJHH31UGzZs0FVXXSXDMLRmzRrNmTPHdm44efJkjRw50jZvf11sHjdunB544AElJCS4LXfJJZfo//7v//wSE8xXs2ZN2/NAHG/owgsvNDsEAEARBN5/FMCPAvUO3UqVKunIkSOSSq6ljP3JjTcXgn3RUsYXSRlXF/fsv7uzO9Htl33eeed5vdz869bT7svye//997Vq1SqPWp25smbNGn399df63//+J4vFYkvymTXOUsuWLdWyZUvb66+++krvvvuuBg0a5FAu/0VnT8yaNUujRo3S6NGjixumqlSpUmBadHS02ySyv3DROrjZJwSdJZat4wXcc889euuttyS57uasQYMG+uyzz9S0adMSiLRkmN1KDgBKuyeffFJDhw51eixjphkzZtieO4vtr7/+0u7du3XxxRdLyhtDx34cnRkzZujqq6/WNddcI0kaMWKEbrvtNtsxoz+PbQtLyCD0xMbG6ujRo4qMjAzY6wehJCwszPTzXgDwBZIyCGmB+k88KSnJ66SMPW+7L/MmmRAoSRlPlp2YmFhgWnh4uMaMGaMTJ06oXr16xY7Dft15cxffbbfdpttuu61Yy27Tpo3atGlje/3bb78Va36+Vq1aNT322GMFpj/++OPatGmTVy2V6tatqy+++MIncT3//PM6ffq0evfurT59+kjK++2cdSXXv39/zZ49Wx07dvTJsgtDS5ngZt+q7YILLijwvrVeu+WWW2xJGVfdS1588cWlKiEjkXQEgOIyDMNvCZlnnnmmwHHc1VdfrW+++aZA2cK6Fqtatarb8QHj4uJ06623OkyzP64O1HM2hI6ijImJklGmTJmAO+8FgKLw2dHNhg0bSqxZ8e7duzVw4EAlJyerTJkyqlu3rsaPH6/s7GyHchs3btSll16qmJgY1ahRQxMnTiwwr08//VQNGzZUTEyMmjVrpm+//bZEYkbpYN+/fyCxv9DvjzFlvNl37S+qBWJLGUkaPHiwunXrpksuucTp+88995zPun0obvdloahixYpasmSJR2NllITKlStr9uzZDv0yG4bhNCkzffp0zZw5U1999ZVfYuOidXCLiYlRdna2zp0757T+7NSpkyTHvstdtZSZO3duyQRZgmgpAwClx6OPPuowzqUkXX/99X5bPkkZAAAQzHx6dONqjIfi2rZtm3JzczV9+nRt3rxZL7/8sqZNm+Yw2HZ6erq6deumWrVqae3atXrxxRf1xBNP2O40laSff/5ZN998swYOHKh169apZ8+e6tmzpzZt2lQicSNwNWzYUNWqVStSN0r+UNi4KIUpzS1lkpOTPZrHgAEDJP3X3Y+9adOmaeHChX5JkpCUKb3sEyDh4eG2sXDsk7Xx8fEaMGBAid4dZ/+/ky4Rgl9kZGSBumLbtm16//33dfPNN0tyrEuqV6/udD5169YtuSBLSP6k4/jx402KBADgibCwMK1cudL2+o477nDaEr0k2P8v5PgIAAAEG4+vxPbq1cvt+2lpaSV2sNS9e3d1797d9rpOnTravn273nzzTb300kuSpI8++kjZ2dl69913FRUVpSZNmmj9+vWaPHmy7rnnHknSq6++qu7du2vUqFGSpKefflqLFy/WlClTNG3atBKJHYEpPj5e8fHxZofhkn3SoijJzpJMypR0S5kFCxbowQcf1BNPPOF2HjfffLOSk5PVpEmTIsXgK0UdU8bXsrKy1LhxY0nSli1bXN5dj//Yb78RERHq1auXvvvuO7Vo0cLEqBCKGjRooAYNGthed+zYUddcc40aNWqk3r17O/2Mtd/90sR+n1u5cqXL1owAgMBxySWXKCcnx3b8/tNPP6lLly62rpZLiv35Ai1lAFhx3gsgWHh8BfHrr79W165dXfZhm79pc0lLS0tThQoVbK9/+eUXderUyeGCcUpKil544QUdP35c5cuX1y+//KKRI0c6zCclJUXz5s1zuZwzZ844dGmTnp7uuy8BuFCUEw9vk6JFTcrYf66oSRl3sTZu3FiLFi3yaB7t27cv0vJ9yX4MEDNbylgsFu3Zs8f2HIUzDENXXXWVDh48qObNm8swDIcbAACzhIWF6euvvy4wvUyZMtq2bZu+/fZbr8ZkChS0LASA0sn++L9p06Y6dOhQiSdKYmJi1KpVK6Wnp6tRo0YluiwApQfnvQCChcdXYq13a7oaxG/9+vVasGCBzwJz56+//tLrr79uayUjSQcPHizQ7ZE1gXTw4EGVL19eBw8eLJBUqlKlig4ePOhyWRMmTNCTTz7pw+iBwhmGofPOO0/nzp1zOchzYZ8vjJlJmWC6282+xRUXGUsf62C1ZnaL4e+bGlD6rFu3TqNHj9Zzzz2nmjVr6t577zU7pCJr3bq19u3bp1atWpkdCgCgiPxx3GQYhtasWaOzZ8863AQFAAAQDDy+MtqmTRv9/vvvLt+Pjo5WzZo1vVr4//73PxmG4faxbds2h8/8888/6t69u/r27atBgwZ5tbyiGDNmjNLS0myPffv2lfgyAUk6//zzVatWLY/L258c+SspU9RByYMpeWGflGEQ69LH+r/GTG3btpWkgO5SEeZq2bKlFi5cqDZt2pgdSrGtXr1af//9d5FuOAAAhJawsDASMgAAICh5fCV22rRpbu/mbdSokVJTU71a+EMPPWQbrNuVOnXq2J7v379fl19+uTp06KC33nrLoVzVqlV16NAhh2nW11WrVnVbxvq+M9HR0RwIotQpyaSM/bxpKUNLGRRf//79FRERoaZNm5odClDiwsPDqSsBAAAAACHN4yuxJZGYqFSpkipVquRR2X/++UeXX3652rRpo5kzZxa4qNu+fXs9+uijOnv2rO1C8eLFi9WgQQOVL1/eVmbJkiV68MEHbZ9bvHhxQIxLgaLZvXu3kpOTtW7dOrVs2dLscAKGt0kZby6Q2X+uqC0MzG6Z4Ev2SZns7GwTI0Fp1q9fP7NDAAAAAAAAgB+UitvV//nnH1122WWqWbOmXnrpJR05ckQHDx50GAumf//+ioqK0sCBA7V582Z98sknevXVVzVy5EhbmQceeEDff/+9Jk2apG3btumJJ57QmjVrNGzYMDO+VkA5cuSIhgwZopo1ayo6OlpVq1ZVSkqKVq1aZStjGIbmzZvnk+Xt3r1bhmFo/fr1Lss88cQThXZvV6NGDR04cIA7zPPxV/dlRXXxxRcXex6BIjY21vb8zJkzJkYCAAAAAAAAINB5fiXWRIsXL9Zff/2lv/76S9WrV3d4z2KxSJISExO1aNEiDR06VG3atFFSUpIef/xx3XPPPbayHTp00OzZs/XYY49p7Nixql+/vubNm8cFfUm9e/dWdna23nvvPdWpU0eHDh3SkiVLdOzYMZ8vy9PWBA8//LDDYMYXXnih7rnnHoexhMLDw912PwfXzEjKrF27Vu+8847GjRtX5HkEGvsE2OnTp02No3HjxrbnAAAAQEmpW7eudu7c6XCDEgCUNM57AQSLUtFSZsCAAbJYLE4f9po3b66VK1fq9OnT+vvvvzV69OgC8+rbt6+2b9+uM2fOaNOmTerRo4e/vkbAOnHihFauXKkXXnhBl19+uWrVqqV27dppzJgxuu666yRJtWvXliTdcMMNMgzD9nrnzp26/vrrVaVKFcXHx+vCCy/UDz/84DD/2rVr6+mnn9btt9+uhIQE3XPPPUpOTpYktWrVSoZh6LLLLisQV3x8vKpWrWp7hIeHq2zZsg7T8re4WbZsmQzD0MKFC9WqVSuVKVNGXbp00eHDh/Xdd9+pUaNGSkhIUP/+/ZWVlWVbVm5uriZMmKDk5GSVKVNGLVq00GeffebbFR1gipqUadiwYZGX2bp1a02dOtXjbgtLGzNbysTGxmrz5s3avHkzJ8cAAAAoUd9++61uvPFG/fLLL2aHAiCEcN4LIFiUipYywSAzM9Ple+Hh4YqJifGobFhYmMqUKeO2bFxcnFexxcfHKz4+XvPmzdPFF1/sdPyg3377TZUrV9bMmTPVvXt32xgkGRkZ6tGjh5599llFR0fr/fff17XXXqvt27erZs2ats+/9NJLevzxxzV+/HhJ0tChQ9WuXTv98MMPatKkiaKioryKuTBPPPGEpkyZotjYWPXr10/9+vVTdHS0Zs+erYyMDN1www16/fXXbYm7CRMm6MMPP9S0adNUv359rVixQrfeeqsqVaqkzp07+zQ2f/DkjhH7cWS8Sco0adJE8+fP1/nnn1+k2IIZ3ZcBAAAgFFxwwQWaM2eO2WEAAACUSiRl/MR+MPD8evTooW+++cb2unLlyg6tOOx17txZy5Yts72uXbu2jh496lAmfwuiwkRERGjWrFkaNGiQpk2bptatW6tz58666aab1Lx5c0mytWwoV66cQ3dhLVq0UIsWLWyvn376aX355ZeaP3++w1g9Xbp00UMPPWR7bU0IVKxYsUS6H3vmmWfUsWNHSdLAgQM1ZswY7dy5U3Xq1JEk9enTR0uXLtXo0aN15swZPffcc/rhhx/Uvn17SVKdOnX0008/afr06aUyKeMJ+5Yy9gkaT1x77bW+DicokKgCAAAAAAAA4I5HSZlevXp5PMMvvviiyMHAPL1799bVV1+tlStX6tdff9V3332niRMnasaMGRowYIDLz2VkZOiJJ57QN998owMHDujcuXM6deqU9u7d61Cubdu2JfwNHFmTSZJUpUoVxcbG2hIy1mmrV6+WJP3111/KyspS165dHeaRnZ2tVq1a+SdgH/OkpYx9Usa+pRa89/333+ubb77RkCFDTIshKytLF154oaS8lm005QYAAAAABBPOewEEC4+SMomJiSUdR9DLyMhw+V7+VgqHDx92WTb/IOu7d+8uVlz2YmJi1LVrV3Xt2lXjxo3T3XffrfHjx7tNyjz88MNavHixXnrpJdWrV09lypRRnz59lJ2d7VDO2y7ViisyMtL23DAMh9fWabm5uZL++22++eabAi0dnHXlVhqQlPGvlJQUpaSkmBqDxWLRli1bbM8BAAAAAAgmnPcCCBYeJWVmzpxZ0nEEPW+SEiVV1luNGzfWvHnzbK8jIyOVk5PjUGbVqlUaMGCAbrjhBkl5CQ5PEkXWMWTyz88MjRs3VnR0tPbu3Rs0XZV5kpSxJqUkkjIAAAAAAAAA4A9FGlPm3LlzWrZsmXbu3Kn+/furbNmy2r9/vxISEtyOnYLAdOzYMfXt21d33XWXmjdvrrJly2rNmjWaOHGirr/+elu52rVra8mSJerYsaOio6NVvnx51a9fX1988YWuvfZaGYahcePGOVzsd6Vy5coqU6aMvv/+e1WvXl0xMTGmtcgqW7asHn74YY0YMUK5ubm65JJLlJaWplWrVikhIUF33HGHKXEVhydJGfsyNPkFAAAAAAAAgJLndVJmz5496t69u/bu3aszZ86oa9euKlu2rF544QWdOXNG06ZNK4k4UYLi4+N10UUX6eWXX9bOnTt19uxZ1ahRQ4MGDdLYsWNt5SZNmqSRI0fq7bff1vnnn6/du3dr8uTJuuuuu9ShQwclJSVp9OjRSk9PL3SZEREReu211/TUU0/p8ccf16WXXqply5aV4Ld07+mnn1alSpU0YcIE7dq1S+XKlVPr1q0dvn+wSUpK0tixYxUVFaWyZcuaHQ4AAAAAAAAABD3D4mUnjD179lTZsmX1zjvvqGLFitqwYYPq1KmjZcuWadCgQfrzzz9LKtaAkJ6ersTERKWlpSkhIcHhvdOnTys1NVXJycl0BwVTrFmzRkePHtWXX36p6dOnmx0O/CgzM9PWUjEjI8Pv4zgBNpmZkrXVbEaGxLYIAAAAwAdK+rw3OzNbE+InSJLGZIxRVFyUT+cPILi5yxvk53VLmZUrV+rnn3+2jQliVbt2bf3zzz/ezg5ACfCk+zIAAAAAAAAAgH95nZTJzc11Ojj733//TRdIQICIiCjScFEoxQzDUK1atWzPAQAAAAAIJpz3AggWYd5+oFu3bnrllVdsrw3DUEZGhsaPH68ePXr4MjYARURSJvTExsZq9+7d2r17t2JjY80OBwAAAAAAn+K8F0Cw8PrK7aRJk5SSkqLGjRvr9OnT6t+/v/78808lJSXp448/LokYAXiJpAwAAAAAAAAABB6vr9xWr15dGzZs0Jw5c7Rx40ZlZGRo4MCBuuWWW1SmTJmSiBGAl8LDw80OAQAAAAAAAACQT5Fup4+IiNCtt97q61gA+Ehubq7ZIcDPTp06pU6dOkmSVqxYQZIcAAAAABBUOO8FECyKlJT5888/tXTpUh0+fLjAxd/HH3/cJ4EB8F5kZKSkvLGfEFpyc3O1Zs0a23MAAAAAAIIJ570AgoXXSZm3335bQ4YMUVJSkqpWrSrDMGzvGYZBUgYwUd26dWWxWNSgQQOzQwEAAAAAAAAA5ON1UuaZZ57Rs88+q9GjR5dEPACKISIiQtHR0Q7JUgAAAAAAAABAYAjz9gPHjx9X3759SyIWwGMDBgxQz549zQ4DAAAAAAAAAACPeZ2U6du3rxYtWlQSscBER44c0ZAhQ1SzZk1FR0eratWqSklJ0apVq2xlDMPQvHnzSjwWwzDcPp544gm9+uqrmjVrVonHAgAAAAAAAACAr3jdfVm9evU0btw4/frrr2rWrJltYHGr4cOH+yw4+E/v3r2VnZ2t9957T3Xq1NGhQ4e0ZMkSHTt2zO+xHDhwwPb8k08+0eOPP67t27fbpsXHxys+Pt7vcQEAAAAAAAAAUBxeJ2XeeustxcfHa/ny5Vq+fLnDe4ZhkJQphU6cOKGVK1dq2bJl6ty5sySpVq1aateuna1M7dq1JUk33HCD7f3du3dLkt5880299NJL2rdvn5KTk/XYY4/ptttus33WMAy98cYbmj9/vpYtW6bzzjtPEydOVJ8+fZzGU7VqVdvzxMREGYbhME3K677sxIkTtpY7l112mZo1a6bw8HC99957ioqK0jPPPKP+/ftr2LBh+uyzz1SlShW9/vrruuqqq2zz2bRpk0aNGqWVK1cqLi5O3bp108svv6ykpKSirUzARGy3AAAAAIBgxnkvgGDgdfdlqampLh+7du0qiRiDQmZmpsvH6dOnPS576tSpQst6y9ryZN68eTpz5ozTMr/99pskaebMmTpw4IDt9ZdffqkHHnhADz30kDZt2qTBgwfrzjvv1NKlSx0+P27cOPXu3VsbNmzQLbfcoptuuklbt271OlZ33nvvPSUlJWn16tW6//77NWTIEPXt21cdOnTQ77//rm7duum2225TVlaWpLxkVJcuXdSqVSutWbNG33//vQ4dOqR+/fr5NC7AH+Li4nTkyBEdOXJEcXFxZocDAAAAAIBPcd4LIFh4nZQx25kzZ9SyZUsZhqH169c7vLdx40ZdeumliomJUY0aNTRx4sQCn//000/VsGFDxcTEqFmzZvr222/9Erc18eHs0bt3b4eylStXdlnWvpWHlNeCJX8Zb0VERGjWrFl67733VK5cOXXs2FFjx47Vxo0bbWUqVaokSSpXrpyqVq1qe/3SSy9pwIABuu+++3TBBRdo5MiR6tWrl1566SWHZfTt21d33323LrjgAj399NNq27atXn/9da9jdadFixZ67LHHVL9+fY0ZM0YxMTFKSkrSoEGDVL9+fT3++OM6duyY7XtNmTJFrVq10nPPPaeGDRuqVatWevfdd7V06VLt2LHDp7EBQMiIi5MslrwHJ0oAAAAASomouCiNt4zXeMt4RcVFmR0OgCDmdVImJydH77zzjvr3768rr7xSXbp0cXiUtEceeUTVqlUrMD09PV3dunVTrVq1tHbtWr344ot64okn9NZbb9nK/Pzzz7r55ps1cOBArVu3Tj179lTPnj21adOmEo870PXu3Vv79+/X/Pnz1b17dy1btkytW7fWrFmz3H5u69at6tixo8O0jh07FmgF0759+wKvfd1Spnnz5rbn4eHhqlixopo1a2abVqVKFUnS4cOHJUkbNmzQ0qVLHRJaDRs2lCTt3LnTp7EBAAAAAAAAAOD1mDIPPPCAZs2apauvvlpNmzaVYRglEZdT3333nRYtWqTPP/9c3333ncN7H330kbKzs/Xuu+8qKipKTZo00fr16zV58mTdc889kqRXX31V3bt316hRoyRJTz/9tBYvXqwpU6Zo2rRpJRp7RkaGy/fCw8MdXluTBs6EhTnm0azjuvhCTEyMunbtqq5du2rcuHG6++67NX78eA0YMMBnyyhJkZGRDq8Nw3CYZt1Wc3NzJeX9Jtdee61eeOGFAvM677zzSjBSwPdOnTpla0n33XffqUyZMiZHBAAAAACA73DeCyBYeJ2UmTNnjubOnasePXqURDwuHTp0SIMGDdK8efMUGxtb4P1ffvlFnTp1UlTUf80LU1JS9MILL+j48eMqX768fvnlF40cOdLhcykpKbbB4p05c+aMwzgr6enpRYrfm74uS6qstxo3buywbiIjI5WTk+NQplGjRlq1apXuuOMO27RVq1apcePGDuV+/fVX3X777Q6vW7VqVTKBe6h169b6/PPPVbt2bUVEeL0rAAElNzdXy5cvtz0HAAAAACCYcN4LIFh43X1ZVFSU6tWrVxKxuGSxWDRgwADde++9atu2rdMyBw8etHVPZWV9ffDgQbdlrO87M2HCBCUmJtoeNWrUKM5XCUjHjh1Tly5d9OGHH2rjxo1KTU3Vp59+qokTJ+r666+3latdu7aWLFmigwcP6vjx45KkUaNGadasWXrzzTf1559/avLkyfriiy/08MMPOyzj008/1bvvvqsdO3Zo/PjxWr16tYYNG+bX75nf0KFD9e+//+rmm2/Wb7/9pp07d2rhwoW68847CySfAAAAAAAAAAAoLq+TMg899JBeffVVWSyWYi/8f//7nwzDcPvYtm2bXn/9dZ08eVJjxowp9jK9NWbMGKWlpdke+/bt83sMJS0+Pl4XXXSRXn75ZXXq1ElNmzbVuHHjNGjQIE2ZMsVWbtKkSVq8eLFq1Khha+XSs2dPvfrqq3rppZfUpEkTTZ8+XTNnztRll13msIwnn3xSc+bMUfPmzfX+++/r448/LtCaxt+qVaumVatWKScnR926dVOzZs304IMPqly5cgW6iQMAAAAAAAAAoLgMi5fZlRtuuEFLly5VhQoV1KRJkwLjeHzxxRcez+vIkSM6duyY2zJ16tRRv3799PXXXzuMX5OTk6Pw8HDdcssteu+993T77bcrPT3dobutpUuXqkuXLvr3339Vvnx51axZUyNHjtSDDz5oKzN+/HjNmzdPGzZs8Cjm9PR0JSYmKi0tTQkJCQ7vnT59WqmpqUpOTlZMTIxH8wsFhmHoyy+/VM+ePc0OJeixDYauzMxMxcfHS8obL6kkuzYEAAAAAMDfOO8FEMjc5Q3y83ogjXLlyumGG24ocnD2KlWqpEqVKhVa7rXXXtMzzzxje71//36lpKTok08+0UUXXSRJat++vR599FGdPXvWlihavHixGjRooPLly9vKLFmyxCEps3jxYrVv394n3wcAAAAAAAAAAMAVr5MyM2fOLIk43KpZs6bDa2tWvG7duqpevbokqX///nryySc1cOBAjR49Wps2bdKrr76ql19+2fa5Bx54QJ07d9akSZN09dVXa86cOVqzZo3eeust/30ZAAAAAAAAAAAQkrxOygSqxMRELVq0SEOHDlWbNm2UlJSkxx9/XPfcc4+tTIcOHTR79mw99thjGjt2rOrXr6958+apadOmJkYe/Hwx/hCAwsXGxpodAgAAAAAAJYbzXgDBwOsxZSTps88+09y5c7V3715lZ2c7vPf777/7LLhAxJgyCGRsgwAAAAAAAADgX96MKRPm7cxfe+013XnnnapSpYrWrVundu3aqWLFitq1a5euuuqqIgcdTGgZArOw7QEAAAAAAABA4PI6KfPGG2/orbfe0uuvv66oqCg98sgjWrx4sYYPH660tLSSiLHUiIyMlCRlZWWZHAlClXXbs26LAAAAAAAAAIDA4fWYMnv37lWHDh0kSWXKlNHJkyclSbfddpsuvvhiTZkyxbcRliLh4eEqV66cDh8+LCmvn0vDMEyOCqHAYrEoKytLhw8fVrly5RQeHm52SPCz06dPq3fv3pKkzz//nO7rAAAAAABBhfNeAMHC66RM1apV9e+//6pWrVqqWbOmfv31V7Vo0UKpqal0naS89SPJlpgB/KlcuXK2bRChJScnR99++63tOQAAAAAAwYTzXgDBwuukTJcuXTR//ny1atVKd955p0aMGKHPPvtMa9asUa9evUoixlLFMAydd955qly5ss6ePWt2OAghkZGRtJABAAAAAAAAgADmdVLmrbfeUm5uriRp6NChqlixon7++Wddd911Gjx4sM8DLK3Cw8O5QA4AAAAAAAAAAGy8TsqEhYUpLCzM9vqmm27STTfd5NOgAAAAAAAAAAAAgo3XSRlJOnHihFavXq3Dhw/bWs1Y3X777T4JDAAAAAAAAAAAIJh4nZT5+uuvdcsttygjI0MJCQkyDMP2nmEYJGUAAAAAAAAAAACc8Dop89BDD+muu+7Sc889p9jY2JKIKaBZLBZJUnp6usmRAMB/MjMzbc/T09OVk5NjYjQAAAAAAPgW570AApk1X2DNH7hjWDwpZScuLk5//PGH6tSpU7ToSrm///5bNWrUMDsMAAAAAAAAAAAQQPbt26fq1au7LeN1S5mUlBStWbMmZJMy1apV0759+1S2bFmHrtuQlw2sUaOG9u3bp4SEBLPDAUIO+yBgLvZBwHzsh4C52AcBc7EPAuZjPwxdFotFJ0+eVLVq1Qot61FSZv78+bbnV199tUaNGqUtW7aoWbNmioyMdCh73XXXeRlu6RIWFlZopivUJSQkUOkAJmIfBMzFPgiYj/0QMBf7IGAu9kHAfOyHoSkxMdGjch4lZXr27Flg2lNPPVVgmmEY9OcIAAAAAAAAAADghEdJmdzc3JKOAwAAAAAAAAAAIKiFmR0Agkd0dLTGjx+v6Ohos0MBQhL7IGAu9kHAfOyHgLnYBwFzsQ8C5mM/hCcMi8Vi8aTgjz/+qGHDhunXX38t0B9eWlqaOnTooDfffFOdOnUqkUABAAAAAAAAAABKM49byrzyyisaNGiQ0wGKEhMTNXjwYL388ss+DQ4AAAAAAAAAACBYeJyU2bBhg7p37+7y/W7dumnt2rU+CQoAAAAAAAAAACDYeJyUOXTokCIjI12+HxERoSNHjvgkKAAAAAAAAAAAgGDjcVLm/PPP16ZNm1y+v3HjRp133nk+CQoAAAAAAAAAACDYeJyU6dGjh8aNG6fTp08XeO/UqVMaP368rrnmGp8GBwAAAAAAAAAAECwMi8Vi8aTgoUOH1Lp1a4WHh2vYsGFq0KCBJGnbtm2aOnWqcnJy9Pvvv6tKlSolGjAAAAAAAAAAAEBp5HFSRpL27NmjIUOGaOHChbJ+zDAMpaSkaOrUqUpOTi6xQAEAAAAAAAAAAEozr5IyVsePH9dff/0li8Wi+vXrq3z58iURGwAAAAAAAAAAQNAoUlIGAAAAAAAAAAAA3gkzOwAAAAAAAAAAAIBQQFIGAAAAAAAAAADAD0jKAAAAAAAAAAAA+AFJGQAAAAAAAAAAAD8gKQMAAAAAAAAAAOAHJGUAAAAAAAAAAAD8gKQMAAAAAAAAAACAH5CUAQAAAAAAAAAA8AOSMgAAAAAAAAAAAH5AUgYAAAAAAAAAAMAPSMoAAAAAAAAAAAD4AUkZAAAAAAAAAAAAPyApAwAAAAAAAAAA4AckZQAAAAAAAAAAAPyApAwAAAAAAAAAAIAfkJQBAAAAAAAAAADwA5IyAAAAAAAAAAAAfhBhdgClTW5urvbv36+yZcvKMAyzwwEAAAAAAAAAACayWCw6efKkqlWrprAw921hSMp4af/+/apRo4bZYQAAAAAAAAAAgACyb98+Va9e3W0ZkjJeKlu2rKS8lZuQkGByNAAAAAAAAAAAwEzp6emqUaOGLX/gDkkZL1m7LEtISCApAwAAAAAAAAAAJMmjIU/cd24GAAAAAAAAAAAAnyApAwAAAAAAAAAA4AckZQAAAAAAAAAAAPyApAwAAAAAAAAAAIAfkJQBAAAAAAAAAADwA5IyKDGZmZkyDEOGYSgzM7NY5b2dV2nkj+8YzOsxmL8bSpan205Rt7FA3jYLiy2QY3fG3/EG8voJ5NgAFJ83+zj1gXMlsV7MWNfB8j08EahxAQAAeIukDAAAAAAAAAAAgB+QlAEAAAAAAAAAAPADw2KxWMwOojRJT09XYmKi0tLSlJCQYHY4AAAAAAAAAADARN7kDWgpAwAAAAAAAAAA4AckZQAAAAAAAAAAAPyApAwAAAAAAAAAAIAfkJSBKTIzM2UYhgzDUGZmZsDPF97jtyhd+L3yFGU9BOK6C8SYiiJYvocUXN8FwYvtFABKD+psR6yPPKwHACgdSMoAAAAAAAAAAAD4gWGxWCxmB1GapKenKzExUWlpaUpISDA7HAAAACDoZGZmKj4+XpKUkZGhuLg4kyMCAAAonTiuAvzDm7wBLWUAAAAAAAAAAAD8IMLsAAAAAADAXlxcnGjQDwAAUHwcVwGBh5YyAAAAAAAAAAAAfkBSBgAAAAAAAAAAwA9CLilz6tQpZWVl2V7v2bNHr7zyihYtWmRiVKErMzNThmHIMAxlZmaaHQ6KwV+/JdtM8bD+PBeI6yoQY0LJ4jc3F+sf9oJlewiW7wHP8HuHHn7zwMDvULJYvygKthsEkpBLylx//fV6//33JUknTpzQRRddpEmTJun666/Xm2++aXJ0AAAAAAAAAAAgWBmWEBvpKSkpScuXL1eTJk00Y8YMvf7661q3bp0+//xzPf7449q6davbz6enpysxMVFpaWlKSEjwU9QAAAAAAAAAEBoyMzMVHx8vScrIyFBcXJzJEQHueZM3CLmWMllZWSpbtqwkadGiRerVq5fCwsJ08cUXa8+ePSZHBwAAAAAAAAAAglXIJWXq1aunefPmad++fVq4cKG6desmSTp8+DAtXwAAAAAAAAB4jTFLfCsuLk4Wi0UWi4VWMgg6IZeUefzxx/Xwww+rdu3aateundq3by8pr9VMq1atTI4OAAAAAAAAAAAEq5BLyvTp00d79+7VmjVrtHDhQtv0K664Qi+//LKJkQH+xR0cAJwprXWDmXGX1nUGuOPr7Zr9xDyse5R2bMNwJZS2jVD6rqUZLTvMwz7ie6zTkhVySRlJqlq1qsqWLavFixfr1KlTkqQLL7xQDRs2NDkyAAAAAAAAAAAQrAyLxWIxOwh/OnbsmPr166elS5fKMAz9+eefqlOnju666y6VL19ekyZNcvv59PR0JSYmKi0tjTFoAABASMrMzFR8fLwkKSMjI2jvBAyV7wkAAAAAKB5v8gYh11JmxIgRioyM1N69exUbG2ubfuONN+r77783MTIAAAAAAAAAABDMIswOwN8WLVqkhQsXqnr16g7T69evrz179pgUFQAAAAAAAAAACHYh11ImMzPToYWM1b///qvo6GgTIgKAghhQLXAE6m8RqHHBvWD53UJlENNQ+Z4AAHMFy/EBAADwTMglZS699FK9//77tteGYSg3N1cTJ07U5ZdfbmJkAAAAAAAAAAAgmIVc92UTJ07UFVdcoTVr1ig7O1uPPPKINm/erH///VerVq0yO7ygwcC4QPFY786G+Xz5W/iybmQbKZ343fyL4xEgcLF/Av/h+AAITvyvA+BKyLWUadq0qXbs2KFLLrlE119/vTIzM9WrVy+tW7dOdevWNTs8AAAAAAAAAAAQpEIuKbN06VIlJibq0Ucf1dy5c/Xtt9/qmWee0XnnnaepU6eaHV6plb8PXOudPhkZGYqPj3fZN25J9Z1b0n3yupq/WX0BB1IfxIXFUtRYPf1cSSw/kNavK+5iLKnfpLh8vVxv5+ev722/HEnFHp/CV/uCv5Wm+t7sdWfW/7CSjsuM+tfZmDBmr19vlu9J2ZI4JjGjfizucszeb4vKPu7SGH9xlPT+acb/h5KsX82qu/0935Kef3HrTF9tA8U5dvdlvL5Skssxu34PluWbcRznj3mb/fsUxtX4hIF2TSlUsH4RSEIuKdOrVy+tXbu2wPRXX31VY8aMMSEiAAAAAAAAAAAQCgxLiHVcOmPGDI0dO1YrVqxQw4YNJUmTJk3SU089pQULFujSSy91+/n09HQlJiYqLS1NCQkJ/ggZAAAAQIDKzKS/eKCksH8B8CXqFAAlyZu8QYSfYgoYd999t/79919deeWV+umnn/TJJ5/oueee07fffquOHTuaHR4AAAAAAAAAAAhSIZeUkaRHHnlEx44dU9u2bZWTk6OFCxfq4osvNjssAAAABBjuqERhrP3FA/A99i/+DwG+RJ0CIFCERFLmtddeKzDt/PPPV2xsrDp16qTVq1dr9erVkqThw4f7OzwAAAAAAAAAABACQmJMmeTkZI/KGYahXbt2uS3DmDIAAAChgzuUAQBm4v8QAAClA2PK5JOammp2CACCWCCcKAVCDKGutP8GpT1+uMfvW3R0cwEAKEmF/Y/m/xAAAMEnzOwAAAAAAAAAAAAAQkFItJQZOXKknn76acXFxWnkyJFuy06ePNlPUQEIFoFw91ogxBDqSvtvUNrjh3v8vgAABCb+RwMAEHpCIimzbt06nT171vbcFcMw/BUSAAAAAAAAAAAIMYaFWzK84s2APQh+9NGPQMG2aC7WP0oDtlMAAAAAAEqGN3mDkB5TZt++fdq3b5/ZYQAAAAAAAAAAgBAQckmZc+fOady4cUpMTFTt2rVVu3ZtJSYm6rHHHrN1cQZ4ytr/r8Vi4Y5jmIpt0Vysf5QGbKcAAAAAAJgvJMaUsXf//ffriy++0MSJE9W+fXtJ0i+//KInnnhCx44d05tvvmlyhAAAAAAAAAAAIBiFXEuZ2bNna9asWRo8eLCaN2+u5s2ba/DgwXrnnXc0e/Zss8MDgkpmZqYMw5BhGMrMzAz65ZY2rKfSh9+sZLF+Awu/h2verptgXZdmfK9gXZcAAM/wf8B3QnVdhur3Lg7WGYJRyCVloqOjVbt27QLTk5OTFRUV5f+AAAAAAAAAAABASAi5pMywYcP09NNP68yZM7ZpZ86c0bPPPqthw4aZGBkAAAAAAAAAAAhmhsVisZgdhD/dcMMNWrJkiaKjo9WiRQtJ0oYNG5Sdna0rrrjCoewXX3xR4PPp6elKTExUWlqaEhIS/BIzAAAAAAAAAAAITN7kDSL8FFPAKFeunHr37u0wrUaNGiZFAwAAAAAAAAAAQkXIJWVmzpxpdggAACBAZGZmKj4+XpKUkZGhuLg4kyMCAABAaccxJnwlGLalYPgOgK+FXFImv+XLlyszM1Pt27dX+fLlzQ4HAAAAAAAAAAAEqZBJyrzwwgvKyMjQ008/LUmyWCy66qqrtGjRIklS5cqVtWTJEjVp0sTMMAEAgB/FxcUpxIbXAwAAQAnjGBO+EgzbUjB8B8DXwswOwF8++eQTNW3a1Pb6s88+04oVK7Ry5UodPXpUbdu21ZNPPmlihAAAAAAAAAAAIJiFTFImNTVVzZs3t73+9ttv1adPH3Xs2FEVKlTQY489pl9++cXECAEAgK9kZmbKMAwZhqHMzEyzwwEAAAAAAJAUQkmZc+fOKTo62vb6l19+UYcOHWyvq1WrpqNHj5oRGgAAAAAAAAAACAEhk5SpW7euVqxYIUnau3evduzYoU6dOtne//vvv1WxYkWzwgMAAD5k7bfYYrEoLi7O7HAAAACAEkVLcQAoPSLMDsBfhg4dqmHDhmnlypX69ddf1b59ezVu3Nj2/o8//qhWrVqZGCEAAAAAAAAAAAhmIZOUGTRokMLDw/X111+rU6dOGj9+vMP7+/fv11133WVSdAAAAAAAAAAAINgZFovFYnYQpUl6eroSExOVlpamhIQEs8MBAAAAAAAAAAAm8iZvEDJjygAAAAAAAAAAAJiJpAwAAAAAAAAAtzIzM2UYhgzDUGZmptnhAECpRVIGAAAAAAAAAADAD0jKAAAAAACAUok79wH/iYuLk8VikcViUVxcnNnhAECpFXJJmbvuuksnT54sMD0zM1N33XWXCREBAAAAAAAAAIBQEHJJmffee0+nTp0qMP3UqVN6//33TYgIoYY7uWBVGraF0hBjMGK9lw6B9juVdDyezt/X5RBaAnG7CMSYSkJRvqdZ66Y01TPexuBN+UD4fv5Q2Pcs6Tv3g2E9l8bvECgxB0ocAEKDGXUO9Zw5IswOwF/S09NtB2onT55UTEyM7b2cnBx9++23qly5sokRAgAAAAAAAACAYGZYLBaL2UH4Q1hYmAzDcPm+YRh68skn9eijj7qdT3p6uhITE5WWlqaEhARfhxlyMjMzFR8fL0nKyMigT1KUGmy7AAAAAADAE1xDAIKfN3mDkGkps3TpUlksFnXp0kWff/65KlSoYHsvKipKtWrVUrVq1UyMEAAAAAAAAAAABLOQScp07txZkpSamqqaNWu6bTUDAAAAAAAAAADgayGRlNm4caOaNm2qsLAwpaWl6Y8//nBZtnnz5n6MDNZBGVE4mroGFrbd4MW+BsAd6gh4gu0EwYZtOvjwmwL+xTUEAPZCIinTsmVLHTx4UJUrV1bLli1lGIbTitAwDOXk5JgQIQAAAAAAAAAACHYhkZRJTU1VpUqVbM+BklYSdx1xV0Xg4K6y4OLs92RfQ6ihXvMcdQQ8wXZS+lAPuuftNs369C3OL4E8oVi3mP2dzV4+EKxCIilTq1Ytp88BAAAAAAAAAAD8xbCE4K0Rf/75p5YuXarDhw8rNzfX4b3HH3/c7WfT09OVmJiotLQ0JSQklGSYAEIMd6CgNGF7BUKLr/Z56o6iY90hULAtOmJ9OPLX+gik9V4SsQTS9/NGaY07VPD7ACXLm7xBSLSUsff2229ryJAhSkpKUtWqVWUYhu09wzAKTcoAAAAAAAAAAAAURci1lKlVq5buu+8+jR49ukifp6UMAAAAAAAAAACw8iZvEOanmALG8ePH1bdvX7PDAAAAAAAAAAAAISbkkjJ9+/bVokWLzA4DQIjLzMyUYRgyDEOZmZlmhwMAAAAAAADAD0JuTJl69epp3Lhx+vXXX9WsWTNFRkY6vD98+HCTIgMAAAAAAAAAAMEs5MaUSU5OdvmeYRjatWuX288zpgwAX8jMzFR8fLwkKSMjQ3FxcSZHBAAAAAAAAKAoGFPGjdTUVJePwhIyCGx0BwV/K842FxcXJ4vFIovFEnQJGfZFFIZtJHiEwm8ZCt+xNOP3CS3B/HsH83cD4ChY9/dg+V7B8j1Q+rDthZaQS8oAAAAAAAAAAACYIWS6L+vVq5fT6YmJibrgggt09913q1KlSoXOh+7LAAAAAAAAAACAFd2XOZGYmOj0ceLECb399ttq0KCBNm3aZHaYAAAAAAAAAAAgSIVMSxl3cnNzNWjQIB0+fFhff/2127K0lAEAAAAAAAAAAFa0lPFSWFiYhg8frrVr15odCgAAAAAAAAAACFIkZf6/uLg4ZWVlmR0GAAAAAAAAAAAIUiRl/r/FixfrggsuMDsMAAAAAAAAAAAQpCLMDsBf5s+f73R6Wlqa1q5dqxkzZmjGjBl+jgoAAAAAAAAAAISKkEnK9OzZ0+n0smXLqkGDBpoxY4Zuuukm/wYFpzIzMxUfHy9JysjIUFxcXKmOI1C+D0onth8Aocqf9V9JLsvbeQdCvR8IMbhTWHzFid+szwLwTrDsb8HyPWC+YNmW/PE9iruMYFnXAMwVMkmZ3Nxcs0MAAAAAAAAAAAAhzLBYLBazgyhN0tPTlZiYqLS0NCUkJJgdDoAQwh05/sO6BvyH/S048bt6hxY6AOA71IuBjd/HHKx3oOR5kzcI81NMAAAAAAAAAAAAIS1kui8DgNIuLi5ONG70D9Y14D/sb8GJ39U7xVlfrGsAcES9GNj4fczBegcCCy1lAAAAAAAAAAAA/ICkDIBSLTMzU4ZhyDAMZWZmmh0OAAAAAAAAALhEUgYAAAAAAAAAAMAPQiYpExYWpvDwcNtfAMHB2i+qxWJRXFyc2eEEHXctkVy958vWS8WZF62ogIICfb/wtl4JpO8TSLEAAAAAQH6l+Xwr2ESYHYC/pKammh0CAAAAAAAAAAAIYSGTlKlVq5bZIQAAAAAAAAAAgBBmWCwWi9lBlLSNGzd6XLZ58+Zu309PT1diYqLS0tKUkJBQ3NAAAABQDJmZmYqPj5ckZWRk0JUlAAAAAMDvvMkbhERLmZYtW8owDFksFhmG4bZsTk6On6ICAAAAAAAAAAChJMzsAPwhNTVVu3btUmpqqj7//HMlJyfrjTfe0Lp167Ru3Tq98cYbqlu3rj7//HOzQwV8jkG5gMDHfgoUXVxcnCwWiywWC61kTOTveox6E8HGrG2afQkASgfqa99gPSJQhERLGfvxZPr27avXXntNPXr0sE1r3ry5atSooXHjxqlnz54mRAgAAAAAAAAAAIJdSCRl7P3xxx9KTk4uMD05OVlbtmwxISKgZFnvIAYQuNhPAZR2/q7HqDcRbMzaptmXAKB0oL72DdYjAkVIdF9mr1GjRpowYYKys7Nt07KzszVhwgQ1atTIxMgAAAAAAAAAAEAwC7mWMtOmTdO1116r6tWrq3nz5pKkjRs3yjAMff311yZHBwCBLTMzU/Hx8ZKkjIwMxm9wgfUEAAAAAAAAZ0IuKdOuXTvt2rVLH330kbZt2yZJuvHGG9W/f38umgEAAAAAAAAAgBJjWOhIzyvp6elKTExUWlqaEhISzA4HAAAAAAAAAACYyJu8Qci1lJGknTt36pVXXtHWrVslSU2aNNHw4cNVt25dkyMDAAAAAAAAAADBKszsAPxt4cKFaty4sVavXq3mzZurefPm+vXXX9WkSRMtXrzY7PAAAAAAAAAAAECQCrmkzP/+9z+NGDFC//d//6fJkydr8uTJ+r//+z89+OCDGj16tNnhAQBQamVmZsowDBmGoczMTLPDCTjerB/WJYqKbaf04LeCN9heEKjYNksG67XksG6LjnUH+E7IJWW2bt2qgQMHFph+1113acuWLSZEBAAAAAAAAAAAQkHIjSlTqVIlrV+/XvXr13eYvn79elWuXNmkqAAAKP3i4uJksVjMDiNgebN+WJcoKrad0oPfCt5ge0GgYtssGazXksO6LTrWHeA7IZeUGTRokO655x7t2rVLHTp0kCStWrVKL7zwgkaOHGlydAAAAAAAAAAAIFgZlhBLcVosFr3yyiuaNGmS9u/fL0mqVq2aRo0apeHDh8swDLefT09PV2JiotLS0pSQkOCPkOFDmZmZio+PlyRlZGQoLi7O5IhQGrEdgW0AoYpt33z8BghmbN/OsV4AFIZ6onTid0NpwHbqOW/yBiHXUsYwDI0YMUIjRozQyZMnJUlly5Y1OSoAAAAAAAAAABDsQi4pY3XkyBFt375dktSwYUMlJSWZHBH8gf4v4QtsR2AbQKhi2zcXd6kh2FHHOMd6AVAY6onSKVR/N45pS5dQ3U5LWpjZAfhbZmam7rrrLp133nnq1KmTOnXqpPPOO08DBw5UVlaW2eEBAAAAAAAAAIAgFXJJmZEjR2r58uX6+uuvdeLECZ04cUJfffWVli9froceesjs8ADAa5mZmTIMQ4ZhKDMz0+xwYAK2ASA0WO9Ss1gs3FEIAACAUoljWiAEuy/7/PPP9dlnn+myyy6zTevRo4fKlCmjfv366c033zQvOAAAAAAAAAAAELRCrqVMVlaWqlSpUmB65cqV6b4MAAAAckFh6wAAmhdJREFUAAAAAACUmJBLyrRv317jx4/X6dOnbdNOnTqlJ598Uu3btzcxMgAoGpr+gm0AAAAAAACgdAi57steffVVpaSkqHr16mrRooUkacOGDYqJidHChQtNjg4AAAAAAAAAAAQrw2KxWMwOwt+ysrL00Ucfadu2bZKkRo0a6ZZbblGZMmUK/Wx6eroSExOVlpamhISEkg4VAAAAAAAAAAAEMG/yBiHXUkaSYmNjNWjQILPDAAAAAAAAAAAAISRkkjK5ubnavHmzmjVrJkmaNm2asrOzbe+Hh4dryJAhCgsLuWF2AAAAUEpkZmYqPj5ekpSRkcE4UgAAAABQyoRMUmbOnDmaNm2aVqxYIUkaNWqUypUrp4iIvFVw9OhRxcTEaODAgWaGCQAAAAAAAAAAglTINAuZOXOmhg4d6jBt+fLlSk1NVWpqql588UV9+OGHJkUHAAAAe5mZmTIMQ4ZhKDMz0+xwAoI3rWRCZf2FyvcEAAAAEDxCJimzbds2tW3b1uX7nTt31oYNG/wYEQAAAAAAAAAACCUhk5Q5cuSIw+tdu3apdu3atteRkZHcXQcAIYi7rIHAFBcXJ4vFIovFEjLjphRWH3m6TkJp3JmS2k48/d/g7/8h/M8KHfa/9eHDhwPidw+k7c+TWMyMN5DWVSAK1vUTrN9LCu7vhqJhmwCKJ2SSMlWqVNH27dttrytVqqSwsP++/tatW1W1alUzQgMAAAAAAAAAACEgZJIyV1xxhZ599lmn71ksFk2YMEFXXHGFn6MCAAAAAAAAAAChwrBYLBazg/CHnTt3qnXr1mrYsKEefvhhXXDBBZKk7du366WXXtL27du1du1a1atXz+180tPTlZiYqLS0NCUkJPgjdAAA4COh1K1ToOO3QLBjGweA4qEeRaBgWwTgCW/yBhF+isl0devW1eLFizVgwADdeOONMgxDUl4rmYYNG2rRokWFJmQAAAAAAAAAAACKKmRaythbt26d/vzzT0lS/fr11apVK48/S0sZAAAAAAAAAABgRUuZQrRq1cqrRAwAAAAAAAAAAEBxhUxS5qmnnnJ4/fjjj5sUCQAAAAAAAAAACEUhk5RJTU21PbeOJwMAAAAAAAAAAOAvIZOUmTlzptkhhITMzEzFx8dLkjIyMhQXF2dyRIBrbK8AAAAAAAAA/CnM7AAAAAAAAAAAAABCAUkZ+FRcXJwsFossFgutDhDw2F4DQ2ZmpgzDkGEYyszMNDscAEAQ4H8LSjO2X6DksH8BoYP9HYGMpAwAAAAAAAAAAIAfkJQBAAAAAAAAAADwgwizAwAAhDZrN3IAAPgK/1tQmrH9AiWH/QsIHezvCGS0lAEAAAAAAAAAAPADkjIAAAAAAAAAQgIDwAMwG0kZAAAAAAAAAAAAPyApAwAAAABBJJDvAA7k2AAAocE61ojFYlFcXJzZ4QAIQSRlAAAAAAAAAAAA/CDC7AAAAAAAAL5jvQM4EAVybAAAAIA/0FIGAAAAAAAAAADAD0jKAAAAAAAAAAAA+AFJGQAAAAAAAAAAAD8gKQMAAAAAAAAAAOAHJGUAAAAAAAAAAAD8gKQMAAAAAAAAAACAH5CUAQAAAAAAAAAA8IMIswMobSwWiyQpPT3d5EgAAAAAAAAAAIDZrPkCa/7AHZIyXjp58qQkqUaNGiZHAgAAAAAAAAAAAsXJkyeVmJjotoxh8SR1A5vc3Fzt379fZcuWlWEYZocTUNLT01WjRg3t27dPCQkJZocDhBz2QcBc7IOA+dgPAXOxDwLmYh8EzMd+GLosFotOnjypatWqKSzM/agxtJTxUlhYmKpXr252GAEtISGBSgcwEfsgYC72QcB87IeAudgHAXOxDwLmYz8MTYW1kLFyn7IBAAAAAAAAAACAT5CUAQAAAAAAAAAA8AOSMvCZ6OhojR8/XtHR0WaHAoQk9kHAXOyDgPnYDwFzsQ8C5mIfBMzHfghPGBaLxWJ2EAAAAAAAAAAAAMGOljIAAAAAAAAAAAB+QFIGAAAAAAAAAADAD0jKAAAAAAAAAAAA+AFJGQAAAAAAAAAAAD8gKQMAAAAAAAAAAOAHJGUAAAAAAAAAAAD8gKQMAAAAAAAAAACAH5CUAQAAAAAAAAAA8AOSMgAAAAAAAAAAAH5AUgYAAAAAAAAAAMAPSMoAAAAAAAAAAAD4AUkZAAAAAAAAAAAAPyApAwAAAAAAAAAA4AckZQAAAAAAAAAAAPyApAwAAAAAAAAAAIAfkJQBAAAAAAAAAADwA5IyAAAAAAAAAAAAfkBSBgAAAAAAAAAAwA9IygAAAAAAAAAAAPgBSRkAAAAAAAAAAAA/ICkDAAAAAAAAAADgByRlAAAAAAAAAAAA/ICkDAAAAAAAAAAAgB+QlAEAAAAAAAAAAPADkjIAAAAAAAAAAAB+EGF2AKVNbm6u9u/fr7Jly8owDLPDAQAAAAAAAAAAJrJYLDp58qSqVaumsDD3bWFIynhp//79qlGjhtlhAAAAAAAAAACAALJv3z5Vr17dbRmSMl4qW7aspLyVm5CQYHI0AAAAAAAAAADATOnp6apRo4Ytf+AOSRkvWbssS0hIICkDAAAAAAAAAAAkyaMhT9x3bgYAAAAAAAAAAACfCKqkzJtvvqnmzZvbWrG0b99e3333ne3906dPa+jQoapYsaLi4+PVu3dvHTp0yMSIAQAAAAAAAABAqAiqpEz16tX1/PPPa+3atVqzZo26dOmi66+/Xps3b5YkjRgxQl9//bU+/fRTLV++XPv371evXr1MjhoAAAAAAAAAAIQCw2KxWMwOoiRVqFBBL774ovr06aNKlSpp9uzZ6tOnjyRp27ZtatSokX755RddfPHFHs0vPT1diYmJStu/3/mYMuHhUkzMf68zM13PLCxMKlOmaGWzsiRXP51hSLGxRSt76pSUm+s6jri4opU9fVrKyfFN2djYvLgl6cwZ6dw535QtUyZvPUtSdrZ09qxvysbE5G0X3pY9ezavvCvR0VJEhPdlz53LWxeuREVJkZHel83JyfvtXImMzCvvbdnc3LxtzRdlIyLy1oWUt09kZfmmrDf7PXWE87LUEd6XpY7Ie04dUbSy1BF5z6kjvC9LHZH3nDqiaGWpI/KeU0d4X5Y64r/X1BHel6WO8L4sdUTec+qIopWljsh7Th3hfdlSXkekp6crsVo1paWlFT4WvSVInTt3zvLxxx9boqKiLJs3b7YsWbLEIsly/Phxh3I1a9a0TJ482eV8Tp8+bUlLS7M99u3bZ5FkScurMgo+evRwnEFsrPNyksXSubNj2aQk12XbtnUsW6uW67KNGzuWbdzYddlatRzLtm3rumxSkmPZzp1dl42NdSzbo4frsvk3wz593JfNyPiv7B13uC97+PB/Ze+7z33Z1NT/yj78sPuymzb9V3b8ePdlV6/+r+zEie7LLl36X9kpU9yXXbDgv7IzZ7ovO3fuf2XnznVfdubM/8ouWOC+7JQp/5VdutR92YkT/yu7erX7suPH/1d20yb3ZR9++L+yqanuy953339lDx92X/aOO/4rm5HhvmyfPhYH7spSR+Q9qCP+e1BH5D2oI/Ie1BF5D+qI/x7UEXkP6oi8B3VE3oM64r8HdUTegzoi70EdkfegjvjvQR2R96COyHtQR+Q9qCP+e1BH5D18VEekSRZJlrS0NEthgqr7Mkn6448/FB8fr+joaN1777368ssv1bhxYx08eFBRUVEqV66cQ/kqVaro4MGDLuc3YcIEJSYm2h41atQo4W8AAAAAAAAAAACCUdB1X5adna29e/cqLS1Nn332mWbMmKHly5dr/fr1uvPOO3UmX7Omdu3a6fLLL9cLL7zgdH5nzpxx+Ex6erpq1KhB92XelqUpoPdlaQqY95zmwkUrSx2R95w6wvuy1BF5z6kjilaWOiLvOXWE92WpI/57TR3hfVnqCO/LUkfkPaeOKFpZ6oi859QR3peljsh7Th1RtLLUEXnPqSO8LxuA3ZcFXVImvyuvvFJ169bVjTfeqCuuuELHjx93aC1Tq1YtPfjggxoxYoRH87ONKeNJ33AAAAAAAAAAACCoeZM3CLruy/LLzc3VmTNn1KZNG0VGRmrJkiW297Zv3669e/eqffv2JkYIAAAAAAAAAABCQYTZAfjSmDFjdNVVV6lmzZo6efKkZs+erWXLlmnhwoVKTEzUwIEDNXLkSFWoUEEJCQm6//771b59e1188cVmhw4AAAAAAAAAAIKcqUmZrVu3as6cOVq5cqX27NmjrKwsVapUSa1atVJKSop69+6taGsfih44fPiwbr/9dh04cECJiYlq3ry5Fi5cqK5du0qSXn75ZYWFhal37946c+aMUlJS9MYbb5TU1wMAAAAAAAAAALAxZUyZ33//XY888oh++ukndezYUe3atVO1atVUpkwZ/fvvv9q0aZNWrlyp9PR0PfLII3rwwQe9Ss6UJMaUAQAAAAAAAAAAVt7kDUxpKdO7d2+NGjVKn332mcqVK+ey3C+//KJXX31VkyZN0tixY/0XIAAAAAAAAAAAgI+Z0lLm7NmzioyMLLHyJYmWMgAAAAAAAAAAwMqbvEGYn2Jy4G2CJVASMgAAAAAAAAAAAEVlSlLGE2vWrNGKFSvMDgMAAAAAAAAAAMAnTBlTxhO33XabduzYoZycHLNDAQAAAAAAAAAAKLaATcosWbJEZ8+eNTsMAAAAAAAAAAAAnwjYpEy1atXMDgEAAAAAAAAAAMBnTE/K7N271+37NWvW9FMkAAAAAAAAAAAAJcf0pEzt2rVlGIbL9xlTBgAAAAAAAAAABAPTkzLr1q1zeH327FmtW7dOkydP1rPPPmtSVAAAAAAAAAAAAL5lelKmRYsWBaa1bdtW1apV04svvqhevXqZEBUAAAAAAAAAAIBvhZkdgCsNGjTQb7/9ZnYYAAAAAAAAAAAAPmF6S5n09HSH1xaLRQcOHNATTzyh+vXrmxQVAAAAAAAAAACAb5melClXrpwMw3CYZrFYVKNGDc2ZM8ekqAAAAHzn999/V/fu3XX8+HGzQwl4hmFo8ODBev31180OxWPHjx9Xhw4d9Ndff5kdilPx8fGaM2eOUlJSzA4FAAAAAEKe6UmZpUuXOrwOCwtTpUqVVK9ePUVEmB4eAABAsc2bN09HjhwxO4xSY/r06ZowYYLi4+PNDsUjCxYs0LZt28wOw6UTJ05o7ty5JGUAAAAAIACYnvXo3Lmz2SEAAACUqD///FOSNG7cON17770mRxPYOnTooD179mjlypW66qqrzA7HIz/88IMkafjw4Ro9erTJ0ThasGCBBg8eHNBJIwAAAAAIJaYnZVw5cOCAzp49q5o1a5odCgAAQLFYkzJt2rRRtWrVTI4msHXt2lUzZszQDz/8UCqSMhaLxZaUue666wLu973oooskSVu3bpXFYinQbTAAAAAAwL/CzA7AlS5duig5OdnsMAAAAIrFYrHYkjL169c3OZrAd+WVV0r6r/VJoNu+fbv279+vmJgYdezY0exwCqhfv74Mw9Dx48d19OhRs8MBAAAAgJAXsC1l3n//fWVlZZkdBgAACFInT57UkCFDdPDgwRJdTk5OjtLT02UYhurUqVOiywoGXbp0kSRt3LhRV1xxRcC37Dh06JAk6ZJLLlFMTIzJ0RQUGxurWrVqaffu3brmmmtUtmzZQj9TpUoVvfHGG0pMTPRDhAAAAAAQWgI2KXPhhReaHQIAAAhiX375pT766CO/La9Zs2YBedE+0FSqVEkdOnTQzz//rB9//NHscDx27bXXmh2CS+3atdPu3bu1evVqjz/TpUsXDRw4sASjAgAAAIDQFLBJGQAAgJK0fft2SVJKSoruuOOOEl2WYRi69NJLS3QZweSLL77QsmXLlJuba3YoHilbtqxSUlLMDsOladOmqU+fPjp37lyhZT/++GN9/fXX2rx5sx8iAwAAAIDQY3pSJicnRy+//LLmzp2rvXv3Kjs72+H9f//916TIAABAMLOO85KSkqKbb77Z5Ghgr0qVKrrxxhvNDiNolC9fXn379vWobEZGBkkZAAAAAChBYWYH8OSTT2ry5Mm68cYblZaWppEjR6pXr14KCwvTE088YXZ4AAAgSO3YsUOSdMEFF5gcCRA4mjRpIkkkZQAAAACghJjeUuajjz7S22+/rauvvlpPPPGEbr75ZtWtW1fNmzfXr7/+quHDh5sdolOZmZkKDw8vMD08PNyhv/jMzEyX8wgLC1OZMmWKVDYrK0sWi8VpWcMwFBsbW6Syp06dcttVSFxcXJHKnj59Wjk5OT4pGxsbaxv098yZM2674vCmbJkyZRQWlpenzM7O1tmzZ31SNiYmxrateFP27NmzBVqO2YuOjlZERITXZc+dO6czZ864LBsVFaXIyEivy+bk5Oj06dMuy0ZGRioqKsrrsrm5uTp16pRPykZERCg6OlqSZLFYlJWV5ZOy3uz31BHOy1JHmF9H5Obm6p133tGhQ4fcrt/w8HBbDDk5OR6Xzc3Ndbt+w8LCbPH6q+y2bdskSdWrV1dmZiZ1xP9HHVG0ssFSR9SqVUuS9M8//2js2LG2/bgo+72zshdddJEuv/xySRxHWFFH/Ic6wvuygXIcwbkGdYQVdUTRylJH5KGO8L4sdcR/qCO8L0sdkcdXdYS7/aQAi8liY2Mte/bssVgsFkvVqlUta9eutVgsFsvOnTstCQkJZobmVFpamkWSy0ePHj0cysfGxros27lzZ4eySUlJLsu2bdvWoWytWrVclm3cuLFD2caNG7ssW6tWLYeybdu2dVk2KSnJoWznzp1dlo2NjXUo26NHD7frzV6fPn3cls3IyLCVveOOO9yWPXz4sK3sfffd57ZsamqqrezDDz/stuymTZtsZcePH++27OrVq21lJ06c6Lbs0qVLbWWnTJnituyCBQtsZWfOnOm27Ny5c21l586d67bszJkzbWUXLFjgtuyUKVNsZZcuXeq27MSJE21lV69e7bbs+PHjbWU3bdrktuzDDz9sK5uamuq27H333Wcre/jwYbdl77jjDlvZjIwMt2X79OnjsA27K0sdkfegjvjvESh1xPvvv++2TCg8qCPyHtQR/z2oI0r2wXFE3oM6Iu9BHfHfo7TVEZxr5D2oI/Ie1BH/Pagj8h7UEXkP6oi8B3XEfw/qiLxHMNYRaWlplsKY3lKmevXqOnDggGrWrKm6detq0aJFat26tX777TdbVhgAAJSsjRs3SpJq166t3bt3uyzXuXNnNWjQQJK0d+9eff/99y7LduzY0dYV0v79+7VgwQKXZS+66CK1aNFCknT48GHNmzfPZdnWrVurbdu2kvLGnvvss89clm3evLkuvvhiSdLJkyf18ccfuywLwLkrr7xSderUkSTt2rVLP/zwg8uy3tQRAAAAABCKDIvFRRsxP/nf//6nhIQEjR07Vp988oluvfVW1a5dW3v37tWIESP0/PPPmxleAenp6UpMTNT+/fuVkJBQ4H2aAjovS1NAmgLSXNj7stQRRStLHZHH2zqid+/emj9/vl577TXdddddLstSR3hfljriP9QR3pcNlDrCF8cR3bp1088//6wZM2bopptuoo74/6gj/kMd4X3ZYKoj3JWljqCOkKgjilKWOiIPdYT3ZakjilaWOiJPqNYR6enpqlatmtLS0pzmDeyZnpTJ79dff9XPP/+s+vXr69prrzU7nAKsSRlPVi4AAKVFo0aNtG3bNi1evFhXXnml2eEACEKDBw/WW2+9pccee0xPP/202eEAAAAAgM94kzcwvfuy/C6++GJbNyMAAKDoLBaLtm7dqmPHjhVabufOnZJk63YIAHytYcOGkqSff/5ZK1eu9PrzDRo0UOXKlX0dFgAAAAD4lSlJmV9//dXjxEtWVpZSU1NtfdIDAADPLFy4UFdddZXH5cuUKaPzzz+/BCMCEMoaNWokSfrxxx/1448/ev35pKQk7d2716F7DAAAAAAobUxJytx2222qU6eO7r77bvXo0cOhbz6rLVu26MMPP9TMmTP1wgsvkJQBAMBLP/30kySpfPnyHt1dfvvtt9v6ngUAX7vssst09dVX66+//vL6s7t27dLRo0e1ZcsWtWnTpgSiAwAAAAD/MCUps2XLFr355pt67LHH1L9/f11wwQWqVq2aYmJidPz4cW3btk0ZGRm64YYbtGjRIjVr1syMMAEAKNX+/PNPSdJjjz2mkSNHmhwNgFAXExOjBQsWFOmzXbp00dKlS/XHH3+QlAEAAABQqpmSlImMjNTw4cM1fPhwrVmzRj/99JP27NmjU6dOqUWLFhoxYoQuv/xyVahQwYzwAAAICjt27JAkXXDBBSZHAgDF07RpU1tSBgAAAABKM1OSMvbatm2rtm3bmh0GAABBxWKx2FrK1K9f3+RoAKB4rC3nScoAAAAAKO3oOB4AgFJg9uzZio2NVVhYmMePzMxMhYeHKzk52ezwAaBYrEmZxYsXu6zzrr76alksFpMjBQAAAAD3TG8pAwAACjdnzhydOnXK6891795dUVFRJRARAPhPy5YtlZycrNTUVJeJl2+//VaHDx9WlSpV/BwdAABA8VgsFp07d045OTlmhwLAhfDwcEVERMgwjGLPi6QMAAClgHV8mM8++0yXXHKJx5+rXLlySYUEAH4TExOj7du3699//3X6/kUXXaQ9e/Zo+/btJGUAAECpkp2drQMHDigrK8vsUAAUIjY2Vuedd16xb34lKQMAQIA7d+6cdu3aJUm68MILueAIICRFRka6rP8aNmxoS8p06tTJz5EBAAAUTW5urlJTUxUeHq5q1aopKirKJ3fhA/Ati8Wi7OxsHTlyRKmpqapfv77Cwoo+MoypSZmzZ8+qe/fumjZtGoMQAwDgwp49e3T27FnFxMSoevXqZocDAAGnQYMGWrhwobZv3252KAAAAB7Lzs5Wbm6uatSoodjYWLPDAeBGmTJlFBkZqT179ig7O1sxMTFFnpepSZnIyEht3LjRzBAAAAg4EyZM0KJFi2yv09LSJEn16tUr1p0YABCsGjRoIEn64IMPtHbt2iLPp2LFipo6dSotEgEAgF9xngeUDr7aV03vvuzWW2/VO++8o+eff97sUAAAMN2JEyc0duxYp+9deOGFfo4GAEqHdu3aSZIOHz6sw4cPF2te7du310MPPeSLsAAAAACgANOTMufOndO7776rH374QW3atFFcXJzD+5MnTzYpMgAA/M/a9U5SUpKmTJlimx4ZGakrr7zSrLAAIKC1bdtWP/30k/7+++8iz2PevHmaM2eOtmzZ4sPIAAAAAMCR6UmZTZs2qXXr1pKkHTt2OLzn7cBWEyZM0BdffKFt27apTJky6tChg1544QVbdwaSdPr0aT300EOaM2eOzpw5o5SUFL3xxht0UQAACAjW/4VNmzbVjTfeaHI0AFB6dOzYsdjzmDNnjrZu3eqDaAAAAOBvu3fvVnJystatW6eWLVuaHQ7gkulJmaVLl/psXsuXL9fQoUN14YUX6ty5cxo7dqy6deumLVu22FrgjBgxQt98840+/fRTJSYmatiwYerVq5dWrVrlszgAACgqa1LmggsuMDkSAAgtjRs3liRt3bpVFovF6xvEAAAAQsmAAQP03nvvFZiekpKi77//3oSIgNLD9KSM1V9//aWdO3eqU6dOKlOmTJFOhPLv8LNmzVLlypW1du1aderUSWlpaXrnnXc0e/ZsdenSRZI0c+ZMNWrUSL/++qsuvvhin30fAEDoOXDggN5//32dPn26yPP4+uuvJcmhlScAoORdcMEFCgsLs43tFRMT47N5G4ah6667jjs2AQBAUOnevbtmzpzpMC06OtqkaHwjOztbUVFRZoeBIGd6UubYsWPq16+fli5dKsMw9Oeff6pOnToaOHCgypcvr0mTJhV53mlpaZKkChUqSJLWrl2rs2fPOvTJ37BhQ9WsWVO//PKL06TMmTNndObMGdvr9PT0IscDAAhu48eP19tvv+2TeTVp0sQn8wEAeCY6OloNGjTQ1q1b9fzzz/t8/h9//DFdowEAALcsFouysrJMWXZsbKzXN8hHR0eratWqTt8zDENvv/22vvnmGy1cuFDnn3++Jk2apOuuu85WZvPmzRo9erRWrFghi8Wili1batasWapbt65yc3P1zDPP6K233tKRI0fUqFEjPf/88+revbvt86tXr9bgwYO1detWNW3aVI8++miBODZt2qRRo0Zp5cqViouLU7du3fTyyy8rKSlJknTZZZepadOmioiI0IcffqhmzZr5tGcnwBnTkzIjRoxQZGSk9u7dq0aNGtmm33jjjRo5cmSRkzK5ubl68MEH1bFjRzVt2lSSdPDgQUVFRalcuXIOZatUqaKDBw86nc+ECRP05JNPFikGAEBo+eOPPyRJPXr0UK1atYo8nxo1ajjcQAAA8I8ZM2Zo9uzZys3N9dk8z507p7ffflvbt29XZmamrVtlAACA/LKyshQfH2/KsjMyMnx+nPLkk09q4sSJevHFF/X666/rlltu0Z49e1ShQgX9888/6tSpky677DL9+OOPSkhI0KpVq3Tu3DlJ0quvvqpJkyZp+vTpatWqld59911dd9112rx5s+rXr6+MjAxdc8016tq1qz788EOlpqbqgQcecFj+iRMn1KVLF9199916+eWXderUKY0ePVr9+vXTjz/+aCv33nvvaciQIQxvAb8xPSmzaNEiLVy4UNWrV3eYXr9+fe3Zs6fI8x06dKg2bdqkn376qVjxjRkzRiNHjrS9Tk9PV40aNYo1TwBAcPrzzz8lSc8995xatGhhcjQAAG916NBBHTp08Pl8582bpyNHjmjbtm1q06aNz+cPAABghgULFhRIIo0dO1Zjx46VlDfuzM033ywp7zz5tdde0+rVq9W9e3dNnTpViYmJmjNnjiIjIyU5jq360ksvafTo0brpppskSS+88IKWLl2qV155RVOnTrXdSPPOO+8oJiZGTZo00d9//60hQ4bY5jFlyhS1atVKzz33nG3au+++qxo1amjHjh225dWvX18TJ04sgTUEOGd6UiYzM1OxsbEFpv/7779F7oNw2LBhWrBggVasWOGQ7Klataqys7N14sQJh9Yyhw4dctnULjo6utT3hQgAKHn//vuvjh07JkmqV6+eydEAAAJJ48aNtXz5cm3ZsoWkDAAAcCk2NlYZGRmmLdtbl19+ud58802HadZhJCSpefPmtudxcXFKSEjQ4cOHJUnr16/XpZdeakvI2EtPT9f+/fvVsWNHh+kdO3bUhg0bJElbt25V8+bNHcYBbN++vUP5DRs2aOnSpU5bH+3cudOWlOH4DP5melLm0ksv1fvvv6+nn35aUl5/g7m5uZo4caIuv/xyr+ZlsVh0//3368svv9SyZcuUnJzs8H6bNm0UGRmpJUuWqHfv3pKk7du3a+/evQV2WgAACrNlyxbbAeWOHTskSdWqVaNrGgCAgyZNmmj58uVavHhxkVvdx8fHq3Xr1goLC/NxdAAAIFAYhlGqzifj4uLc3pSYP+Five4rSWXKlCnR2KS8LtmuvfZavfDCCwXeO++882zPS9M6R3AwPSkzceJEXXHFFVqzZo2ys7P1yCOPaPPmzfr333+97sdv6NChmj17tr766iuVLVvWNk5MYmKiypQpo8TERA0cOFAjR45UhQoVlJCQoPvvv1/t27fXxRdfXBJfDwAQpFauXKlOnToVmF6/fn0TogEABLLGjRtLkj744AN98MEHRZ7P9OnTdc899/gqLAAAANM0b95c7733ns6ePVsgeZOQkKBq1app1apV6ty5s236qlWr1K5dO0lSo0aN9MEHH+j06dO21jK//vqrw3xat26tzz//XLVr11ZEhOmXwQEb07fGpk2baseOHZoyZYrKli2rjIwM9erVS0OHDnXIWHrC2lzusssuc5g+c+ZMDRgwQJL08ssvKywsTL1799aZM2eUkpKiN954wxdfBQAQQn7++WdJUvny5W3/ryIjIzVixAgzwwIABKDevXvrs88+s7Wu9FZaWpr++ecfffnllyRlAABAwDhz5oztpniriIgIJSUlFfrZYcOG6fXXX9dNN92kMWPGKDExUb/++qvatWunBg0aaNSoURo/frzq1q2rli1baubMmVq/fr0++ugjSVL//v316KOPatCgQRozZox2796tl156yWEZQ4cO1dtvv62bb75ZjzzyiCpUqKC//vpLc+bM0YwZMxQeHu67lQF4wfSkjJTXkuXRRx8t9nwsFkuhZWJiYjR16lRNnTq12MsDAIQua3dlDz74oB5//HGTowEABLKqVatq6dKlRf78H3/8oebNm2vFihU6c+YMY14CAICA8P333xe4qb5Bgwbatm1boZ+tWLGifvzxR40aNUqdO3dWeHi4WrZsaRtHZvjw4UpLS9NDDz2kw4cPq3Hjxpo/f76td4r4+Hh9/fXXuvfee9WqVSs1btxYL7zwgm3ICkm21jajR49Wt27ddObMGdWqVUvdu3enS1iYyrB4ksnwsY0bN3pc1n5AqECQnp6uxMREpaWlKSEhwexwAAAmufTSS/XTTz/p448/1k033WR2OACAIGaxWFS1alUdPnxYy5Ytc+jGAwAAlF6nT59WamqqkpOTHQasBxCY3O2z3uQNTGkp07JlSxmGIYvFIsMwbNOt+SH7aTk5OX6PDwCA/PLfw2BtKcMYMgCAkmYYhq688krNnj1bixcvdjqmmbfzAwAAAGAOU9pppaamateuXUpNTdXnn3+u5ORkvfHGG1q/fr3Wr1+vN954Q3Xr1tXnn39uRngAADjIyspSs2bNFBYWZntYxwUgKQMA8Icrr7xSkvTss886/D/y9lGpUiWPuhQBAAAAUDJMaSlTq1Yt2/O+ffvqtddeU48ePWzTmjdvrho1amjcuHHq2bOnCRECAPCftWvXavPmzQWmX3755XRlCQDwi6uvvlqVKlXSkSNHijWfY8eO6cMPP9Qzzzzjo8gAAAAAeMOUpIy9P/74Q8nJyQWmJycna8uWLSZEBACAI+sdxVdccYU+/vhj2/SkpCSzQgIAhJjKlSvr77//VlpaWpHnMXfuXA0bNkyLFy8mKQMAAACYxPSkTKNGjTRhwgTNmDFDUVFRkqTs7GxNmDBBjRo1Mjk6AAD+S8o0a9ZMlSpVMjkaAECoioqKKtb/oeuvv17Dhg3Tb7/9pn///VcVKlTwYXQAAAAAPGF6UmbatGm69tprVb16dTVv3lyStHHjRhmGoa+//trk6AAA+C8p07BhQ5MjAQCg6KpXr65GjRpp69at+vHHH9WnTx+zQwIAAABCjulJmXbt2mnXrl366KOPbBe9brzxRvXv319xcXEmRwcAKK3mz5+vV155RTk5OcWe19q1ayWRlAEAlH7dunXT1q1b9dBDD+n/tXff0VGVaxuH70lIbxCBhECAGAgQpIQqQZqiFBURBeSodNQjVRQRVBA8GuygIiJKsINdjxRFigXpEKT3DqEnIQETSPb3h2fmY0ghdfZM8rvWmrWYXZ+ZcQuz73ne96233jK7nHzp0aOHRo4caXYZgENkZWVp2LBhOc5n6Ag33nijpkyZIovFYsr5AQAoCyyGYRhmF+FKUlJSFBQUpOTkZCZ3BgAnFhMTo4SEhGI7nre3t44ePcpQLwAAl7Zs2TLdfPPNZpdRIB4eHjp//ry8vLzMLgUocWvXrlWLFi1MrWHv3r26/vrrTa0BKCv+/vtv7d+/XxEREfL29ja7HADXkNc1W5DcwPROGemfv/CnTp2q7du3S5Lq16+vESNGKDIy0uTKAACuyDAM7d69W5I0ffp0Va5cucjHjI6OJpABALi8Dh066Pfff1diYqLZpeTLkCFDlJSUpO3bt6tx48ZmlwOUOGuHTExMjMaPH+/Qc48dO1b79u3Tjh07CGUAAChBpocyP/30k7p166bGjRurdevWkqQVK1Zo5syZ+u9//6tbb73V5AoBAK4mMTFRaWlpcnNz0+DBg+Xp6Wl2SQAAOI2bbrrJ7BLy7Z133tGyZcuUkJBAKIMyYdu2bZL+uU4dPe/Tl19+qX379mn79u3q2rWrQ88NoHRZvny5OnTooHPnzql8+fIOO++cOXM0atQoJSUlFfoYBw4cUEREhDZu3Jjrvz3Men0oPdzMLuCpp57SY489ptWrV+v111/X66+/rtWrV2vUqFEaO3as2eUBAFyQtUumRo0aBDIAALgw682Q4hySFHBm1k6Z6Ohoh5/bOn+idRQTAMiJxWLJ8/Hcc8+ZXaKpMjIyVLFiRU2ZMiXH9c8//7xCQkJ06dKlIp3nueee4wcrLsz0Tpnt27friy++yLZ84MCBmjp1quMLAgC4FMMw9MEHH+jQoUO2ZVu2bJEk1a5d26yyAABAMbDebJg/fz5zehZAjRo1dM899/Dr3RLw1Vdf6a+//iqx469Zs0aSOaFMvXr1JElLly7VhAkTHH5+/L9y5crpgQceYBg5OKXjx4/b/jxv3jxNmDBBO3futC3z9/fXunXrCnzcjIyMUvGjSk9PTz3wwAOKj4/XU089ZbfOMAzNmTNHffv2lYeHh0kV2ist77vLMUxWrVo144svvsi2fN68eUZ4eLgJFeUtOTnZkGQkJyebXQoAwDCMX375xZCU42PkyJFmlwcAAIpgy5Ytuf49zyPvh7e3t9GnTx9j8eLFRmZmptkfZamwf/9+h3x2bm5uxqlTpxz++rjenOtxxx13OPy/ATjexYsXjW3bthkXL160W56amprroyDbXrhwIV/bFlZ8fLwRFBSUbfmyZcsMScYvv/xiNG3a1PDx8TFatWpl7Nixw7bNxIkTjUaNGhmzZs0yatasaVgsFsMwDOPcuXPGoEGDjIoVKxoBAQFGhw4djISEBNt+CQkJRvv27Q1/f38jICDAaNKkibF27Vq7ehYtWmTUrVvX8PPzMzp16mQcO3bMtn9mZqYxadIko2rVqoanp6fRqFEjY+HChbb11v/Xb9y40bZs/vz5Ru3atQ1vb2+jffv2Rnx8vCHJOHfuXI7vy19//WVIMn7//fcc35ft27cbhmEYs2bNMurWrWt4eXkZderUMaZPn263/eHDh4377rvPqFChguHr62s0bdrUWLVqle38Vz7i4+MNwzCMgwcPGt26dTP8/PyMgIAAo2fPnkZiYuI133fkT27XrGEULDcwvVNmyJAheuihh7Rv3z7FxsZK+mdOmZdeekmjR482uToAgLNbtmyZJKlRo0Zq06aNbbmvr69GjBhhVlkAAKAY1K9fXzNmzLAN6YRry8rK0q+//qqtW7fq888/1+eff67q1aurX79+6tevnyIjI80u0WVt3rxZkhQaGlqi873ExsaqYsWKJXb83HC9OYfTp09r7ty5DNtYxvn7++e6rmvXrpo/f77teeXKlXXhwoUct23Xrp2WL19ue16zZk2dPn0623aGYRS+2Dw8/fTTeu2111SpUiU98sgjGjhwoFasWGFbv2fPHn399df65ptv5O7uLknq2bOnfHx8tHDhQgUFBWnmzJm65ZZbtGvXLgUHB+v+++9XTEyMZsyYIXd3dyUkJNh1nVy4cEGvvvqqPv74Y7m5uemBBx7QE088oU8//VSSNG3aNL322muaOXOmYmJiNHv2bHXr1k1bt27NcbSNw4cPq0ePHho6dKgeeughrVu3To8//nier7tBgwZq3ry5Zs+ebTeXX3x8vGJjY1W3bl19+umnmjBhgt5++23FxMRo48aNGjJkiPz8/NSvXz+lpqaqXbt2qlq1qn744QeFhoZqw4YNysrKUu/evbVlyxYtWrRIv/zyiyQpKChIWVlZuuuuu+Tv769ff/1Vly9f1tChQ9W7d2+7/w5yet/hYCUQGBVIVlaW8frrrxtVq1Y1LBaLYbFYjKpVqxpTp041srKyzC4vGzplAMC5tG3b1pBkzJo1y+xSAAAAnEJWVpaxZs0a49///rdRvnx5u1/Stm3b1oiPjzfOnz9vdpku5+WXXzYkGffdd5/ZpaAUO3PmjO16TUlJMbsclLDcfnWvPLqounbtaretr69vrtu2a9fObtuKFSvmuF1h5adTxmr+/PmGJNtrnThxouHh4WGcPHnSts3vv/9uBAYGGn///bfd8SIjI42ZM2cahmEYAQEBxpw5c3KtR5KxZ88e27Lp06cbISEhtudhYWHGCy+8YLdf8+bNjUcffdQwjOydMuPGjTOio6Ptth87dmyenTKGYRjvvvuu4e/vb/v7NiUlxfD19TXef/9922v67LPP7PZ5/vnnjVatWhmGYRgzZ840AgICjDNnzuR4fGvHy5V+/vlnw93d3Th06JBt2datWw1Jxpo1a2z7Xf2+I/+Kq1PGrcRTn2uwWCx67LHHdOTIESUnJys5OVlHjhzRyJEjZbFYzC4PAODE0tPTtXr1akmy65IBAAAoyywWi5o3b6533nlHx48f1+eff67bbrtNFotFv/32mwYMGKAqVapo4MCB+v3330vsF9KlzY4dOyRJdevWNbkSlGbBwcGqXLmypP//bw5lT2pqaq6Pr7/+2m7bkydP5rrtwoUL7bY9cOBAjtuVlIYNG9r+XKVKFVu9VjVq1FClSpVszzdt2qTU1FRdd9118vf3tz3279+vvXv3SpJGjx6twYMHq2PHjpoyZYptuZWvr69dV2iVKlVs50xJSdGxY8fUunVru31at26t7du35/gatm/frpYtW9ota9Wq1TVfe58+fZSZmWmbS33evHlyc3NT7969lZaWpr1792rQoEF2r/M///mP7fUkJCQoJiZGwcHB1zzXlbWGh4crPDzctiw6Olrly5e3e31Xv+9wPNOHL9u/f78uX76s2rVrKyAgwLZ89+7d8vDwUM2aNc0rDgDgEJcuXdKqVauUkZFRoP12796t9PR0VapUSVFRUSVUHQAAgOvy9vbWfffdp/vuu0+HDx/WRx99pDlz5mjPnj2Kj49XfHy8atWqpf79+6tly5b8ODIP1omrCWVQ0qKjo3Xy5El99913SklJKdKx/P391bx5c7m5mf67bBSAn5+f6dsWhyuHFbP+/ZKVlZVrPampqapSpYrdUFtW5cuXlyQ999xz+te//qX58+dr4cKFmjhxoubOnau777472zmt5zXjxweBgYG69957FR8fr4EDByo+Pl69evWSv7+/Tpw4IUmaNWtWtsDHOpyYj49PidXm6P8OkJ3poUz//v01cODAbGP2rV69Wu+//36OFyEAoHQZO3as3njjjULvf9NNN3EDAQAA4BrCw8P19NNPa/z48frjjz8UHx+vL774Qnv27NEzzzxjdnkuo06dOmaXgFKuXr16Wr58uV588UW9+OKLRT7eW2+9pWHDhhVDZUDJatKkiRITE1WuXLk8f6gfFRWlqKgoPfbYY+rTp4/i4+NtoUxeAgMDFRYWphUrVqhdu3a25StWrFCLFi1y3KdevXr64Ycf7JatWrUqX69n0KBBat++vX788Uf9+eefeuWVVyRJISEhCgsL0759+3T//ffnuG/Dhg31/vvv6+zZszl2y3h6eiozMzNbrYcPH9bhw4dt3TLbtm1TUlKSoqOj81UzHMP0UGbjxo3ZWsYk6cYbb+QvDAAoI1auXCnpnxbaK7sm88PHx0ejR48uibIAAABKJYvFojZt2qhNmzZ688039dVXX+nTTz9VYmKi2aU5vZiYGLvheICSMGTIEG3cuLHIw0qdPXtWx44d04oVK7jHBpfQsWNHtWrVSt27d9fLL7+sqKgoHTt2TPPnz9fdd9+t+vXra8yYMbr33nsVERGhI0eOaO3atbrnnnvyfY4xY8Zo4sSJioyMVOPGjRUfH6+EhAR9+umnOW7/yCOP6LXXXtOYMWM0ePBgrV+/XnPmzMnXudq2batatWqpb9++qlu3rmJjY23rJk2apBEjRigoKEidO3dWenq61q1bp3Pnzmn06NHq06ePXnzxRXXv3l1xcXGqUqWKNm7cqLCwMLVq1Uo1a9bU/v37lZCQoGrVqikgIEAdO3ZUgwYNdP/992vq1Km6fPmyHn30UbVr107NmjXL93uEkmd6KGOxWHT+/Plsy5OTk7OlfQCA0mnXrl2SpB9++IEvuQAAAA7k7++v/v37q3///maXAuB/YmJibD9cK4offvhBd911l3bu3FkMVQElz2KxaMGCBXr66ac1YMAAnTp1SqGhoWrbtq1CQkLk7u6uM2fOqG/fvjpx4oQqVqyoHj16aNKkSfk+x4gRI5ScnKzHH39cJ0+eVHR0tH744YdsozhZVa9eXV9//bUee+wxvfXWW2rRooVefPFFDRw4MF+vZ+DAgRo/frzGjRtnt27w4MHy9fXVK6+8ojFjxsjPz08NGjTQqFGjJP3TCfPzzz/r8ccfV9euXXX58mVFR0dr+vTpkqR77rlH33zzjTp06KCkpCTFx8erf//++v777zV8+HC1bdtWbm5u6ty5s9566618vz9wDIth8ox+d955p3x8fPT555/bxszLzMy0TXp09YRUZktJSVFQUJCSk5MVGBhodjkA4PLOnDmjihUrSpLS0tLk6+trckUAAAAA4Pp27typunXrytfXV+fPn2deGSf0999/a//+/YqIiJC3t7fZ5QC4hryu2YLkBqZ3yrz00ktq27at6tSpozZt2kiSfv/9d6WkpGjp0qUmVwcAKE6GYdhN6ifJ9qutqlWrEsgAAAAAQDG5/vrrVa5cOV24cEGHDh2yzTFRWNYfUwMAisb0iDw6Olp//fWXevXqpZMnT+r8+fPq27evduzYoRtuuMHs8gAAxSQtLU316tVTuXLl7B7WecWioqJMrhAAAAAASg8PDw9FRkZKkiIiIrJ9FyvIw8PDo0BDRAEAcmd6p4wkhYWF6cUXXzS7DABACVq1alWeYxl369bNgdUAAAAAQOnXo0cPxcXFFfk4hmHoo48+0sSJE4uhKgAo25wilElKStKaNWt08uTJbMPa9O3b16SqAADFafPmzZKkO+64Qx9++KHdOg8PDwUEBJhRFgAAAACUWi+++KLGjh2rzMzMQh8jKSlJkZGR2rdvn5KTkxUUFFSMFQJA2WN6KPPf//5X999/v1JTUxUYGCiLxWJbZ7FYCGUAoJTYsmWLJCkmJkbBwcEmVwMAAAAAZUNRQ5Tg4GCFh4fr8OHD+uuvv2xzQgMACsf0OWUef/xxDRw4UKmpqUpKStK5c+dsj7Nnz5pdHgCgmFg7ZRo0aGByJQAAAACAgmjcuLEkKSEhwdQ6AKA0ML1T5ujRoxoxYoR8fX3NLgUAUESGYWj8+PH6/fffs63buHGjJEIZAAAAAHA1jRs31n//+19NmTJF8+bNs1tXrVo1zZ49m3t7AJBPpocynTp10rp163T99debXQoAoIh27typKVOm5Lq+cuXKqlWrlgMrAgAAAAAUVdu2bSVJx44d07Fjx7Kt79mzp+655x5HlwUALsn0UOb222/XmDFjtG3bNjVo0EAeHh5267t162ZSZQCAglq4cKEkqUWLFnrqqaeyrW/SpInKlTP9rx4AAAAAQAHccsst+uOPP3Ty5Em75dOnT9eSJUu0a9cukyoDANdj+p2xIUOGSJImT56cbZ3FYlFmZqajSwIAFJI1lLnvvvt09913m1wNAAAAAKA4WCwWtW7dOtvyLVu2EMqg2CxfvlwdOnTQuXPnVL58ebPLKRE1a9bUqFGjNGrUKIee12Kx6Ntvv1X37t0LfYz27durcePGmjp1aq7bmPX6XI2b2QVkZWXl+iCQAQDXkZaWpl9//VWS1KVLF5OrAQAAAACUtKioKEnS7t27Ta4EjtS/f39ZLJZsj86dO5foeZ977rkcz2t9TJo0qUTPn5fc3hPro2bNmqbV5iyGDx+uevXq5bju0KFDcnd31w8//FCkcxw4cEAWi0UJCQlFOk5JM71TBgDg3LZs2aJ58+YpKysrz+2OHDmijIwM1axZU3Xq1HFQdQAAAAAAs1hDmc2bN+vpp5/O9341a9bU4MGDZbFYSqo0lLDOnTsrPj7ebpmXl1eJnvOJJ57QI488km35uHHj9N133+lf//pXiZ4/L9OmTbObY7dKlSqKj4+3BVXu7u6FPvalS5eyTfnhigYNGqS3335bf/75p2JjY+3WzZkzR5UrV1bXrl1Nqi67En3fDZN06dLFSEpKsj2Pi4szzp07Z3t++vRpo169eiZUlrfk5GRDkpGcnGx2KQDgEI0bNzYk5fsxdOhQs0sGAAAAADjA+fPnDQ8PjwJ9Z7Q+li5danb5prt48aKxbds24+LFi/YrUlNzfxRk2wsX8rdtAfXr18+466678txGkjFr1iyje/fuho+Pj1GrVi3j+++/t9tm/vz5Ru3atQ1vb2+jffv2Rnx8vCHJ7h7xtXzyySeGu7u7sWjRIrvl77zzjnH99dcbHh4eRlRUlPHRRx8VuL7NmzcbnTt3Nvz8/IzKlSsbDzzwgHHq1Kl81SXJ+Pbbb7Mtr1GjhvHCCy8YAwYMMPz9/Y3w8HBj5syZtvX79+83JBlz58412rZta3h5eRnx8fGGYRjGrFmzjLp16xpeXl5GnTp1jOnTp9v2S09PN4YOHWqEhoYaXl5eRvXq1Y0XX3yxQK93+fLlRvPmzQ1PT08jNDTUGDt2rHHp0iXb+nbt2hkjR460PT9x4oRxxx13GN7e3kbNmjWNTz75xKhRo4bxxhtv5Pq+NGnSxBg0aJDdsqysLCMiIsIYO3asYRjXft8zMzONl156yYiMjDQ8PT2N8PBw4z//+Y/tdV75aNeunW2fSZMmGVWrVjU8PT2NRo0aGQsXLszX+36lXK9Zo2C5gWmdMj/99JPS09Ntz1988UX16tXLNl7g5cuXtXPnTpOqAwBI/7SPJiQkyM3NTUOHDr3mr5j8/Pw0cuRIB1UHAAAAADCTv7+/5s6daxvKOj9+++03JSQk6Oeff1aHDh1KsDoX5u+f+7quXaX58///eeXK0oULOW/brp20fPn/P69ZUzp9Ovt2hlGYKq9p0qRJevnll/XKK6/orbfe0v3336+DBw8qODhYhw8fVo8ePTR06FA99NBDWrdunR5//PECHX/9+vUaMmSIpkyZok6dOtmWf/vttxo5cqSmTp2qjh076scff9SAAQNUrVo1u//m8qovKSlJN998swYPHqw33nhDFy9e1NixY9WrVy8tXbq0SO/La6+9pueff17jx4/XV199pX//+99q166d3agjTz31lF577TXFxMTI29tbn376qSZMmKC3335bMTEx2rhxo4YMGSI/Pz/169dPb775pn744Qd98cUXql69ug4fPqzDhw/bnTev13v06FF17dpV/fv310cffaQdO3ZoyJAh8vb21nPPPZfj6+jfv7+OHTumZcuWycPDQyNGjNDJkyfzfO2DBg3SU089pWnTpsnPz0/SP3MJ7d+/XwMHDszX+z5u3DjNmjVLb7zxhm666SYdP35cO3bskCStWbNGLVq00C+//KL69evL09NT0j+dTK+99ppmzpypmJgYzZ49W926ddPWrVtVu3btXN/3EnPN2KaEWCwW48SJE7bn/v7+xt69e23PExMTDTc3NzNKyxOdMgDKkhkzZhiSjNjYWLNLAQAAAACUAh999JEhyWjatKnZpZgu11/d/xOT5Pzo2tV+W1/f3Lf9X5eATcWKOW9XQP369TPc3d0NPz8/u8cLL7xwxUuQ8cwzz9iep6amGpJs3Qnjxo0zoqOj7Y47duzYfHfKnDhxwggPDzceeOCBbOtiY2ONIUOG2C3r2bOn0fWK9+5a9T3//PPGbbfdZneMw4cPG5KMnTt3XrM+5dEpc2XNWVlZRuXKlY0ZM2YYhvH/HRtTp0612y8yMtL47LPP7JY9//zzRqtWrQzDMIzhw4cbN998s5GVlZVrPXm93vHjxxt16tSx23/69OmGv7+/kZmZaRiGfafMzp07DUnGmjVrbNtv377dkJRnp8y5c+cMb29vuy6UBx980Ljppptsrymv9z0lJcXw8vIyZs2alePxre/fxo0b7ZaHhYXZ/fdpGIbRvHlz49FHH7Xb7+r3/Wou3ykDAHB+8//365vbb7/d5EoAAAAAAKVBx44dJUkbNmzQmTNndN1115lckRNKTc193dVzk+TVmeDmZv/8wIFCl3S1Dh06aMaMGXbLgoOD7Z43bNjQ9mc/Pz8FBgbaOim2b9+uli1b2m3fqlWrfJ370qVLuvfeexUSEqJZs2ZlW799+3Y99NBDdstat26tadOm5bu+TZs2admyZfLPoWtp7969tvmUCuPK81osFoWGhmbrMGnWrJntz2lpadq7d68GDRqkIUOG2JZfvnxZQUFBkv7pWrn11ltVp04dde7cWXfccYduu+22fL/e7du3q1WrVnYjpLRu3Vqpqak6cuSIqlevbnes7du3q1y5cmratKltWd26dW2jYOWmfPny6tGjh2bPnq3+/fsrJSVFX3/9taZPny7p2u97UlKS0tPTdcstt+R5niulpKTo2LFjat26td3y1q1ba9OmTXbLrnzfS5JpoYzFYsk2DA6TewFAwRmGoYSEBJ3OqQW5CLKysrRkyRJJ0h133FGsxwYAAAAAlE1VqlRR/fr1tXXrVs2YMSPbjfnIyEhdf/31JlXnJP43rJOp217zUH6qVatWnttcPUm6xWJRVlZWkc89YsQI7d69W2vXri3SEFN51Zeamqo777xTL730Urb9qlSpUuhzXuu8Vn5XfFap/wvpZs2ale16cf9fSNekSRPt379fCxcu1C+//KJevXqpY8eO+uqrrwp0XkcYNGiQbrnlFu3Zs0fLli2Tu7u7evbsKena7/u+fftKtDa/YrxG8mJaKGMYhvr37y8vLy9J0t9//61HHnnE9sKvnG8GAJC7n376SV26dCmx41erVk0NGjQoseMDAAAAAMqWjh07auvWrXr22WezrfP29ta+ffuKfOMbzq1evXr64Ycf7JatWrXqmvu99957mj17tpYtW6Zq1arleuwVK1aoX79+tmUrVqxQdHR0vutr0qSJvv76a9WsWVPlypk72FRISIjCwsK0b98+3X///bluFxgYqN69e6t3796699571blzZ509ezZbB1NO6tWrp6+//lqGYdgaJ1asWKGAgIAc3+e6devq8uXLWr9+vZo3by5J2rlzp5KSkq55rg4dOigiIkLx8fFatmyZ7rvvPlsmcK33vXbt2vLx8dGSJUs0ePDgbOutc8hkZmbavS9hYWFasWKF2rVrZ1u+YsUKtWjR4pr1lgTT/ou68qKQpAceeCDbNn379nVUOQDgslauXClJqlixoqpWrVqsx3Z3d9djjz1GJyMAAAAAoNgMHTpUGzduVHJyst3y/fv3KyUlRT///HO2e4dwLunp6UpMTLRbVq5cOVWsWDFf+z/yyCN67bXXNGbMGA0ePFjr16/XnDlz8txnxYoVGj58uCZMmKDrr78+2/l9fHwUFBSkMWPGqFevXoqJiVHHjh313//+V998841++eWXfL++oUOHatasWerTp4+efPJJBQcHa8+ePZo7d67ef/99W4eKo0yaNEkjRoxQUFCQOnfurPT0dK1bt07nzp3T6NGj9frrr6tKlSqKiYmRm5ubvvzyS4WGhl5zODGrRx99VFOnTtXw4cM1bNgw7dy5UxMnTtTo0aPldvUweJJtmLSHH35YM2bMULly5TRq1Cj5+Phc81wWi0UDBw7U66+/rnPnzumNN96wrbvW++7t7a2xY8fqySeflKenp1q3bq1Tp05p69atGjRokCpXriwfHx8tWrRI1apVk7e3t+2/iYkTJyoyMlKNGzdWfHy8EhIS9Omnn+b7MyhOpoUy8fHxxX7M3377Ta+88orWr1+v48eP69tvv1X37t1t6w3D0MSJEzVr1iwlJSWpdevWmjFjhmrXrl3stQCAo+zatUuSNHbsWD3xxBMmVwMAAAAAQN5q166tX3/9Ndvy8ePHKy4uTkuWLCGUcXKLFi3K1s1Up04d7dixI1/7V69eXV9//bUee+wxvfXWW2rRooVefPFFDRw4MNd93n//fWVkZOiZZ57RM888k219v379NGfOHHXv3l3Tpk3Tq6++qpEjR9q6Mtq3b5/v12ftrBg7dqxuu+02paenq0aNGurcuXOOIUVJGzx4sHx9ffXKK69ozJgx8vPzU4MGDTRq1ChJUkBAgF5++WXt3r1b7u7uat68uRYsWJDvWqtWraoFCxZozJgxatSokYKDgzVo0KAc32er+Ph4DR48WO3atVNISIj+85//5Nj9lpP+/ftr4sSJql+/vt2QbPl535999lmVK1dOEyZM0LFjx1SlShU98sgjkv4JBt98801NnjxZEyZMUJs2bbR8+XKNGDFCycnJevzxx3Xy5ElFR0frhx9+MC0XsBiGYZhy5hKwcOFCrVixQk2bNlWPHj2yhTIvvfSS4uLi9OGHHyoiIkLPPvusNm/erG3btuV7/MGUlBQFBQUpOTlZgYGBJfRKACD/mjZtqg0bNuj7779Xt27dzC4HAAAAAIBCWbJkiTp27KiqVavq8OHDpX7Uhr///lv79+9XREREkeZGAeAYeV2zBckNzB0Qr5h16dIl13kVDMPQ1KlT9cwzz+iuu+6SJH300UcKCQnRd999p/vuu8+RpQJANoZh6NKlSwXex9opExUVVRJlAQAAAADgELGxsfLy8tLRo0e1devWbN9zPTw8Sn1QA6D0c3yvlUn279+vxMREdezY0bYsKChILVu2tM3HkJP09HSlpKTYPQCguGVmZtr+8VmQh7e3t1JTU+Xm5qbrr7/e7JcBAAAAAECh+fj4KDY2VpLUoEGDbN+BmzVrVuAfMwKAsykzoYx14qeQkBC75SEhIdkmhbpSXFycgoKCbI/w8PASrRNA2bRv3z6tWrWq0Pt369ZNnp6exVgRAAAAAACON2DAgFwnUd+wYYNWr17t4IoAoHiZHsqkpaWZXUKexo0bp+TkZNvj8OHDZpcEoBSyToTXsGFDJSUlFfjxzTffmPwKAAAAAAAougcffFApKSnZvvfee++9kqTFixebXCEAFI3poUxISIgGDhyoP/74o0TPExoaKkk6ceKE3fITJ07Y1uXEy8tLgYGBdg8AKG7WUCY6OtquOy+/D8bUBQAAAACUFr6+vtm+93bu3FlS6QxlDMMwuwQA+VBc16rpocwnn3yis2fP6uabb1ZUVJSmTJmiY8eOFft5IiIiFBoaqiVLltiWpaSkaPXq1WrVqlWxnw8ACsIaytStW9fkSgAAAAAAcD633nqrJGnNmjVKTk42uZri4eHhIUm6cOGCyZUAyA/rtWq9dgurXHEUUxTdu3dX9+7dderUKX388ceaM2eOnn32WXXq1EkDBw5Ut27dVK5c/spMTU3Vnj17bM/379+vhIQEBQcHq3r16ho1apT+85//qHbt2oqIiNCzzz6rsLAwde/evYReHQBIL7/8sr799ts8t9m+fbskQhkAAAAAAHJSvXp11a5dW7t379ZNN90kf39/s0sqEF9fX7366quKiYmxLXN3d1f58uV18uRJ2zaMhAE4H8MwdOHCBZ08eVLly5fPdd6r/LIYTtgf99Zbb2nMmDHKyMhQxYoV9cgjj+ipp56Sr69vnvstX75cHTp0yLa8X79+mjNnjgzD0MSJE/Xee+8pKSlJN910k9555x1FRUXlu7aUlBQFBQUpOTmZocwAXFNGRoZ8fX2VmZl5zW3d3Ny0a9cuRUZGOqAyAAAAAABcy5NPPqlXXnnF7DIK7b777tPnn39ut8wwDCUmJiopKcmcogDkW/ny5RUaGppjeFqQ3MBpQpkTJ07oww8/1Jw5c3Tw4EHdfffdGjRokI4cOaKXXnpJYWFh+vnnn80uk1AGQIHs2rVLderUka+vb7Z/eF0tIiJCDRo0cFBlAAAAAAC4lvT0dP3666/6+++/zS6lQPbs2aPHH39clSpVUmJiotzcss8okZmZqUuXLplQHYD88PDwyLNDxqVCmW+++Ubx8fH66aefFB0drcGDB+uBBx5Q+fLlbdvs3btX9erVU0ZGhnmF/g+hDICCWLBggW6//XY1atRICQkJZpcDAAAAAAAcLCMjQxUqVNCFCxe0adMmNWzY0OySABSzguQG2WNZBxswYICqVq2qFStWKCEhQcOGDbMLZCQpLCxMTz/9tDkFAkAR7N69W5JUq1YtkysBAAAAAABm8PT0VLt27SRJv/zyi8nVADBbOTNPfvnyZcXFxemee+5RSEhIrtv5+Pho4sSJDqwMAK5tz549+vDDD/NsL162bJkkQhkAAAAAAMqyjh07auHChfrggw908uTJHLfp1KlTjvNlAyhdTB++zNfXV9u3b1eNGjXMLCPfGL4MgNXtt9+uBQsW5GvbOXPmqF+/fiVcEQAAAAAAcEZbtmy55jyyQUFBOnv2bI5zzgBwbgXJDUztlJGkFi1aaOPGjS4TygCAJGVlZWnFihWSpIEDByooKCjXbStVqqTevXs7qjQAAAAAAOBkbrjhBs2ePVubN2/Ocf3bb7+t5ORkHTlyRNWrV3dwdQAcyfRQ5tFHH9Xjjz+uI0eOqGnTpvLz87Nbz8RXAJzR9u3blZycLD8/P82cOVPlypn+v1MAAAAAAODEBgwYkOu6hQsXaseOHdq5cyehDFDKmX4X8b777pMkjRgxwrbMYrHIMAxZLBZlZmaaVRoA5GrlypWSpObNmxPIAAAAAACAIqlTp44tlLn11lvNLgdACTL9TuL+/fvNLgFAKXfgwAHt2LGjWI/5/fffS5JatWpVrMcFAAAAAABlT1RUlCRp6dKlqlWrlm25h4eHYmNj5ePjY1ZpJSorK0tr1qxRUlKS2aU4PV9fX8XGxvLj4FLA9E+QuWQAlKTk5GQ1aNBAqampJXJ8QhkAAAAAAFBUdevWlSR9++23+vbbb+3WPfTQQ5o5c6YZZZW4efPm6V//+pfZZbiMF198UePGjTO7DBSR6aGM1bZt23To0CFlZGTYLe/WrZtJFQEoDbZt26bU1FR5eXmpfv36xXrsyMhI3XbbbcV6TAAAAAAAUPZ0795dX331lU6cOGFblpqaql27dmnVqlUmVlayrK+tSpUqqlKlisnVOK+zZ8/qwIED+vPPP80uBcXA9FBm3759uvvuu7V582bbXDLSP/PKSGJOGQBFsmfPHklSbGysli5danI1AAAAAAAA2QUHB2vBggV2y3bt2qU6depoz549tvm3S5tdu3ZJkiZNmqQhQ4aYXI3zWrZsmW6++WZt377d7FJQDNzMLmDkyJGKiIjQyZMn5evrq61bt+q3335Ts2bNtHz5crPLA+DirKHMleOxAgAAAAAAOLuIiAi5u7vrwoULOnbsmNnllAhrKGOdUwc5q1evnqR/GhwuXrxocjUoKtM7ZVauXKmlS5eqYsWKcnNzk5ubm2666SbFxcVpxIgR2rhxo9klAjBJZmZmtiENC2rnzp2SCGUAAAAAAIBr8fDwUM2aNbV3715t2bJFwcHBduvd3d3l6elpUnU5K8i9nEuXLunAgQOSpNq1a5dgVa4vJCRE5cuXV1JSkjZv3qwGDRqYWo+3t3ep7NxyFNNDmczMTAUEBEiSKlasqGPHjqlOnTqqUaOG7WYqgLLn1KlTatSokY4fP14sxyOUAQAAAAAAriYqKkp79+5V586ds61zd3fXzJkzNWjQIBMqy+7AgQNq1qyZzpw5U6D9/Pz8mE/mGiwWi+rVq6eVK1eqZcuWZpejc+fOqXz58maX4bJMH77shhtu0KZNmyRJLVu21Msvv6wVK1Zo8uTJuv76602uDoBZfvvtt2ILZEJCQnTTTTcVy7EAAAAAAAAcpUePHnJ3d89xXWZmpubOnevginL3yy+/FDiQkaSePXvSdZEPvXr14n0qJUzvlHnmmWeUlpYmSZo8ebLuuOMOtWnTRtddd51T/U8FgGPt3r1bknTfffdp1qxZRTqWt7e3ypUz/X93AAAAAAAABTJ48GA98MADunz5st3yjRs3qm3bttq0aZMMw3CKm/XWezkPP/ywXn311XztY7FY5OfnV5JllRqjRo3Sww8/rMzMTLNL4TMrItPvUnbq1Mn251q1amnHjh06e/asKlSo4BT/MwFgDutEb9HR0fL39ze5GgAAAAAAAHN4e3tnW9asWTO5ubnp1KlTSkxMdIrhv6yhDPdySo6Pj4/ZJaAYmD582cCBA3X+/Hm7ZcHBwbpw4YIGDhxoUlUAzGb9i5yJ3gAAAAAAAOz5+PgoKipKkmxTQ5iNezlA/lgMwzDMLMDd3V3Hjx9X5cqV7ZafPn1aoaGh2VrzzJaSkqKgoCAlJycrMDDQ7HIAp3X48GENGTJEZ8+eLdT+f/31l9LT07Vu3To1bdq0mKsDAAAAAABwbffdd5/mzZunGjVqZLu3aoYNGzYoMzNTu3fvVq1atcwuB3CoguQGpg1flpKSIsMwZBiGzp8/b9eGl5mZqQULFjjF/0wAFM4nn3yin376qUjHCAwMVN26dYupIgAAAAAAgNKjXbt2mjdvng4ePKiDBw+aXY4kqXLlyqpRo4bZZQBOzbRQpnz58rJYLLJYLLZWuytZLBZNmjTJhMoAFIcdO3ZIkvr376977rmnUMeoX78+E4cBAAAAAADk4KGHHlJ0dHS2qSHM1KhRI3l4eJhdBuDUTAtlli1bJsMwdPPNN+vrr79WcHCwbZ2np6dq1KihsLAws8oDUETWUOaOO+7QHXfcYXI1AAAAAAAApYu7u7vatWtndhkACsi0UMb6P4z9+/crPDxcbm5uZpUCoJgZhmELZerUqWNyNQAAAAAAAADgHEwLZaxq1KihpKQkffDBB9q+fbukf4YsGjhwoIKCgkyuDnBee/fu1UcffaSLFy+aXUo2GRkZSklJkcViYWI3AAAAAAAAAPgfi2EYhpkFrFu3Tp06dZKPj49atGghSVq7dq0uXryon3/+WU2aNDGzvGxSUlIUFBSk5ORkBQYGml0OyqCsrCzNmDFDTz75pC5cuGB2OXmqU6eOrWMGAAAAAAAAAEqjguQGpocybdq0Ua1atTRr1iyVK/dP487ly5c1ePBg7du3T7/99puZ5WVDKAMzHTx4UAMHDtTSpUsl/XP9tGzZ0uSqcmaxWHTvvffawlYAAAAAAAAAKI1cKpTx8fHRxo0bVbduXbvl27ZtU7NmzZyuE4BQBmYwDEMffPCBRo8erfPnz8vHx0cvvfSShg4dynxMAAAAAAAAAGCiguQGpt/NDQwM1KFDh7ItP3z4sAICAkyoCHAuR48e1e23364hQ4bo/Pnzio2N1aZNmzR8+HACGQAAAAAAAABwIeXMLqB3794aNGiQXn31VcXGxkqSVqxYoTFjxqhPnz4mVwfk7PLly1qxYoVSU1NL9DwHDhzQ008/reTkZHl5eemFF17QqFGj5O7uXqLnBQAAAAAAAAAUP9NDmVdffVUWi0V9+/bV5cuXJUkeHh7697//rSlTpphcHZCzN998U48//rjDzte8eXN9+OGHqlevnsPOCQAAAAAAAAAoXqaHMp6enpo2bZri4uK0d+9eSVJkZKR8fX118eJFk6sDcrZq1SpJUs2aNVWpUqUSO4+7u7vuvvtujR49WuXKmX65AgAAAAAAAACKwGnu8vr6+qpBgwaSpPT0dL3++ut6+eWXlZiYaHJlQHa7d++WJL311lu64447TK4GAAAAAAAAAOAKTJslPD09XePGjVOzZs0UGxur7777TpIUHx+viIgIvfHGG3rsscfMKg/IlWEY2rVrlyQpKirK5GoAAAAAAAAAAK7CtE6ZCRMmaObMmerYsaP+/PNP9ezZUwMGDNCqVav0+uuvq2fPnkxmXsplZma65BB1x48f14ULF+Tu7q6IiAizywEAAAAAAAAAuAjTQpkvv/xSH330kbp166YtW7aoYcOGunz5sjZt2iSLxWJWWXCQlJQUNWzYUAcPHjS7lEKLiIiQh4eH2WUAAAAAAAAAAFyEacOXHTlyRE2bNpUk3XDDDfLy8tJjjz1GIFNGrFu3zqUDGUnq1auX2SUAAAAAAAAAAFyIaZ0ymZmZ8vT0/P9CypWTv7+/WeXAwfbu3StJ6tSpk7755huTqyk4Nzc3eXt7m10GAAAAAAAAAMCFmBbKGIah/v37y8vLS5L0999/65FHHpGfn5/ddq54wx7XtmfPHklSVFSUfH19Ta4GAAAAAAAAAICSZ1oo069fP7vnDzzwgEmVwAzWUKZWrVomVwIAAAAAAAAAgGOYFsrEx8ebdWo4SEZGhmJjY3Nct2PHDkmEMgAAAAAAAACAssO0UAaln2EYWr9+fa7rPTw81LhxY8cVBAAAAAAAAACAiQhlUGI8PDy0YMGCXNdHRkYqLCzMgRUBAAAAAAAAAGCeMhvKTJ8+Xa+88ooSExPVqFEjvfXWW2rRooXZZZUqbm5u6tKli9llAAAAAAAAAADgFNzMLsAM8+bN0+jRozVx4kRt2LBBjRo1UqdOnXTy5EmzSwMAAAAAAAAAAKWUxTAMw+wiHK1ly5Zq3ry53n77bUlSVlaWwsPDNXz4cD311FN226anpys9Pd32PCUlReHh4UpOTlZgYKBD6wYAAAAAAAAAAM4lJSVFQUFB+coNylynTEZGhtavX6+OHTvalrm5ualjx45auXJltu3j4uIUFBRke4SHhzuyXAAAAAAAAAAAUEqUuVDm9OnTyszMVEhIiN3ykJAQJSYmZtt+3LhxSk5Otj0OHz7sqFIBAAAAAAAAAEApUs7sApydl5eXvLy8bM+to72lpKSYVRIAAAAAAAAAAHAS1rwgP7PFlLlQpmLFinJ3d9eJEyfslp84cUKhoaHX3P/8+fOSxDBmAAAAAAAAAADA5vz58woKCspzmzIXynh6eqpp06ZasmSJunfvLknKysrSkiVLNGzYsGvuHxYWpsOHDysgIEAWi6WEq3UtKSkpCg8P1+HDh685mRGA4sc1CJiLaxAwH9chYC6uQcBcXIOA+bgOyy7DMHT+/HmFhYVdc9syF8pI0ujRo9WvXz81a9ZMLVq00NSpU5WWlqYBAwZcc183NzdVq1bNAVW6rsDAQP6nA5iIaxAwF9cgYD6uQ8BcXIOAubgGAfNxHZZN1+qQsSqToUzv3r116tQpTZgwQYmJiWrcuLEWLVqkkJAQs0sDAAAAAAAAAAClVJkMZSRp2LBh+RquDAAAAAAAAAAAoDi4mV0ASg8vLy9NnDhRXl5eZpcClElcg4C5uAYB83EdAubiGgTMxTUImI/rEPlhMQzDMLsIAAAAAAAAAACA0o5OGQAAAAAAAAAAAAcglAEAAAAAAAAAAHAAQhkAAAAAAAAAAAAHIJQBAAAAAAAAAABwAEIZAAAAAAAAAAAAByCUAQAAAAAAAAAAcABCGQAAAAAAAAAAAAcglAEAAAAAAAAAAHAAQhkAAAAAAAAAAAAHIJQBAAAAAAAAAABwAEIZAAAAAAAAAAAAByCUAQAAAAAAAAAAcABCGQAAAAAAAAAAAAcglAEAAAAAAAAAAHAAQhkAAAAAAAAAAAAHIJQBAAAAAAAAAABwAEIZAAAAAAAAAAAAByCUAQAAAAAAAAAAcABCGQAAAAAAAAAAAAcglAEAAAAAAAAAAHAAQhkAAAAAAAAAAAAHIJQBAAAAAAAAAABwAEIZAAAAAAAAAAAAByCUAQAAAAAAAAAAcABCGQAAAAAAAAAAAAcoZ3YBriYrK0vHjh1TQECALBaL2eUAAAAAAAAAAAATGYah8+fPKywsTG5ueffCEMoU0LFjxxQeHm52GQAAAAAAAAAAwIkcPnxY1apVy3MbQpkCCggIkPTPmxsYGGhyNQAAAAAAAAAAwEwpKSkKDw+35Qd5IZQpIOuQZYGBgYQyAAAAAAAAAABAkvI15Uneg5sBAAAAAAAAAACgWLh0KBMXF6fmzZsrICBAlStXVvfu3bVz585r7vfll1+qbt268vb2VoMGDbRgwQIHVAsAAAAAAAAAAMoylw5lfv31Vw0dOlSrVq3S4sWLdenSJd12221KS0vLdZ8///xTffr00aBBg7Rx40Z1795d3bt315YtWxxYOQAAAAAAAAAAKGsshmEYZhdRXE6dOqXKlSvr119/Vdu2bXPcpnfv3kpLS9OPP/5oW3bjjTeqcePGevfdd695jpSUFAUFBSk5OZk5ZQAAACBJ+vvvv3X27FmzyyjzvLy8dN1115ldBoooLS1NycnJxXa8SpUqycPDo9iOBwAAAFytILlBOQfV5BDWf7gHBwfnus3KlSs1evRou2WdOnXSd999l+P26enpSk9Ptz1PSUkpeqEAAAAoNc6ePauoqCidOXPG7FIg6c0339Tw4cPNLgOFtHv3bjVu3FgXLlwotmNGRkZq+/btBDMAAABwCqUmlMnKytKoUaPUunVr3XDDDblul5iYqJCQELtlISEhSkxMzHH7uLg4TZo0qVhrBQAAQOmxc+dOWyBTrlyp+ee1y8nKylJWVpZ+++03QhkXtmnTJlsgUxzX0+XLl7V3716dOnVKYWFhRT4eAAAAUFSl5lvj0KFDtWXLFv3xxx/Fetxx48bZddakpKQoPDy8WM8BAAAA13X58mVJUlRUlHbu3GlyNWXXxx9/rL59+9LZ7uIyMzMlSe3bt9eyZcuKfDwvLy9lZGTYjgsAAACYrVSEMsOGDdOPP/6o3377TdWqVctz29DQUJ04ccJu2YkTJxQaGprj9l5eXvLy8iq2WgEAAFC6XLp0SRJdMmazjttcnHORwPGs4Ym7u3uxHM/NzU3SP51UAAAAgDNwM7uAojAMQ8OGDdO3336rpUuXKiIi4pr7tGrVSkuWLLFbtnjxYrVq1aqkygQAAEApZg1lmK/CXEFBQZIIZVxdcYcy1uPQKQMAAABn4dI/5xs6dKg+++wzff/99woICLDNCxMUFCQfHx9JUt++fVW1alXFxcVJkkaOHKl27drptdde0+233665c+dq3bp1eu+990x7HQAAAHBd1uHLCGXMZQ1lGL7MtdEpAwAAgNLOpTtlZsyYoeTkZLVv315VqlSxPebNm2fb5tChQzp+/LjteWxsrD777DO99957atSokb766it99913uuGGG8x4CQAAAHBxDF/mHBi+rHSwhpx0ygAAAKC0culvjoZhXHOb5cuXZ1vWs2dP9ezZswQqAgAAQFnD8GXOwdopk5aWpsuXLxOSuShreFJcnx+dMgAAAHA2Lt0pAwAAAJiN4cucg7VTRpLOnz9vYiUoCuaUAQAAQGlHKAMAAAAUAZ0yzsHT01Pe3t6SGMLMlZXUnDKEMgAAAHAWhDIAAABAETCnjPOwDmGWkpJiciUorJLqlGH4MgAAADgLQhkAAACgCBi+zHlYhzCjU8Z10SkDAACA0o5QBgAAACgChi9zHtZOGUIZ10WnDAAAAEo7QhkAAACgCBi+zHlYO2UYvsx1WTvPijuUoVMGAAAAzoJQBgAAACgCOmWcB50yrs8anhRXyGkdvoxOGQAAADgLQhkAAACgCJhTxnlYQxk6ZVxXSQ1fRqcMAAAAnAWhDAAAAFAEDF/mPKzDl9Ep47qKO5ShUwYAAADOhlAGAAAAKAKGL3MeDF/m+uiUAQAAQGlHKAMAAAAUAcOXOQ9rpwzDl7kuOmUAAABQ2pkyxsKhQ4d08OBBXbhwQZUqVVL9+vXl5eVlRikAAABAkdAp4zzolHF91pCTThkAAACUVg4LZQ4cOKAZM2Zo7ty5OnLkiAzDsK3z9PRUmzZt9NBDD+mee+6x/ZoJAAAAcHbMKeM8rKEMnTKuyxqeFNf1RKcMAAAAnI1D0o8RI0aoUaNG2r9/v/7zn/9o27ZtSk5OVkZGhhITE7VgwQLddNNNmjBhgho2bKi1a9c6oiwAAACgyBi+zHlYhy+jU8Z1MacMAAAASjuH/JzPz89P+/bt03XXXZdtXeXKlXXzzTfr5ptv1sSJE7Vo0SIdPnxYzZs3d0RpAAAAQJEwfJnzYPgy18ecMgAAACjtHBLKxMXF5Xvbzp07l2AlAAAAQPFi+DLnwfBlro9OGQAAAJR2TN4CAAAAFAHDlzmPK4cvu3IOS7gOQhkAAACUdk4TyowfP14DBw40uwwAAACgQBi+zHlYO2UuX76sv//+2+RqUBjWkJPhywAAAFBaOU0oc/ToUR04cMDsMgAAAIACYfgy5+Hn5yeLxSKJeWVcFZ0yAAAAKO2c5pvjhx9+aHYJAAAAQIExfJnzcHNzU2BgoJKTk5WcnKzQ0FCzS0IBWcOT4go56ZQBAACAs3GaThkAAADAFTF8mXOxDmGWkpJiciUoDDplAAAAUNo5vFNm8uTJea6fMGGCgyoBAAAAio5QxrkEBgZKYvgyV1XcoQydMgAAAHA2Dg9lvv32W7vnly5d0v79+1WuXDlFRkYSygAAAMClMKeMc6FTxrXRKQMAAIDSzuHfHDdu3JhtWUpKivr376+7777b0eUAAAAARcKcMs6FThnXRqcMAAAASjunmFMmMDBQkyZN0rPPPmt2KQAAAECBMHyZc7F2yhDKuCZryEmnDAAAAEorpwhlpH++NPHFCQAAAK6G4cucC8OXuTZreFJc1xOdMgAAAHA2Dv/m+Oabb9o9NwxDx48f18cff6wuXbo4uhwAAACgSBi+zLkwfJlrY04ZAAAAlHYOD2XeeOMNu+dubm6qVKmS+vXrp3HjxhXoWL/99pteeeUVrV+/XsePH9e3336r7t2757r98uXL1aFDh2zLjx8/rtDQ0AKdGwAAAJAYvszZ0Cnj2koqlKFTBgAAAM7C4aHM/v37i+1YaWlpatSokQYOHKgePXrke7+dO3fafkEnSZUrVy62mgAAAFC2MHyZc6FTxrUVdyhjHb6MThkAAAA4C5f+5tilS5dCDXlWuXJllS9fvvgLAgAAQJnD8GXOxdopQyjjmhi+DAAAAKWdm9kFWL3zzjuaPHmyQ87VuHFjValSRbfeeqtWrFiR57bp6elKSUmxewAAAABWDF/mXBi+zLVZQ87i7pRh+DIAAAA4C6cJZb7++mvNmTOnRM9RpUoVvfvuu/r666/19ddfKzw8XO3bt9eGDRty3ScuLk5BQUG2R3h4eInWCAAAANdCKONcGL7MtVk7WoprOEA6ZQAAAOBsnGb4siVLlpT4OerUqaM6derYnsfGxmrv3r1644039PHHH+e4z7hx4zR69Gjb85SUFIIZAAAA2Fh/2c+cMs6B4ctcW0nNKUOnDAAAAJxFmf/m2KJFC/3xxx+5rvfy8pKXl5cDKwIAAIAroVPGuVg7ZRi+zDUxpwwAAABKO9NCmW3btunQoUPKyMiwW96tWzeH1pGQkKAqVao49JwAAAAoPQhlnIu1UyY1NVWZmZnFdnMfjkGnDAAAAEo7h4cy+/bt0913363NmzfLYrHIMAxJksVikVSwXzClpqZqz549tuf79+9XQkKCgoODVb16dY0bN05Hjx7VRx99JEmaOnWqIiIiVL9+ff399996//33tXTpUv3888/F+AoBAABQllhDGYYvcw7WThlJOn/+vMqXL29eMSgwOmUAAABQ2rk5+oQjR45URESETp48KV9fX23dulW//fabmjVrpuXLlxfoWOvWrVNMTIxiYmIkSaNHj1ZMTIwmTJggSTp+/LgOHTpk2z4jI0OPP/64GjRooHbt2mnTpk365ZdfdMsttxTb6wMAAEDZkZWVZfuREZ0yzuHK4YeZV8b1WOdoolMGAAAApZXDf863cuVKLV26VBUrVpSbm5vc3Nx00003KS4uTiNGjNDGjRvzfaz27dvbvgTnZM6cOXbPn3zyST355JOFLR0AAACwY+2SkQhlnElQUJBOnjxJKOOC6JQBAABAaefwTpnMzEwFBARIkipWrKhjx45JkmrUqKGdO3c6uhwAAACg0AhlnJN1CLOUlBSTK0FBWcOT4hoO0BrK0CkDAAAAZ+HwTpkbbrhBmzZtUkREhFq2bKmXX35Znp6eeu+993T99dc7uhwAAACg0KxDLUnMKeNMgoKCJDF8mSsq7k4Z6/BldMoAAADAWTj8m+MzzzyjtLQ0SdLkyZN1xx13qE2bNrruuus0b948R5cDAAAAFBqdMs7JGsrQKeN6Smr4MjplAAAA4CwcHsp06tTJ9udatWppx44dOnv2rCpUqCCLxeLocgAAAIBCs4Yy7u7u/FvWiViHL6NTxvXQKQMAAIDSzinGWAgODja7BAAAAKDArMOXMXSZc2H4MtdVUp0yhDIAAABwFm6OOMkjjzyiI0eO5GvbefPm6dNPPy3higAAAICis3bKMHSZc7F2yjB8meuxBp3F3SnD8GUAAABwFg75SV+lSpVUv359tW7dWnfeeaeaNWumsLAweXt769y5c9q2bZv++OMPzZ07V2FhYXrvvfccURYAAABQJIQyzolOGddl7Wgpru4zOmUAAADgbBwSyjz//PMaNmyY3n//fb3zzjvatm2b3fqAgAB17NhR7733njp37uyIkgAAAIAiY/gy52QNZeiUcT0lNacMnTIAAABwFg779hgSEqKnn35aTz/9tM6dO6dDhw7p4sWLqlixoiIjI5kYFQAAAC6HThnnZB2+jE4Z18OcMgAAACjtTPlJX4UKFVShQgUzTg0AAAAUG0IZ58TwZa6LThkAAACUdm5mFwAAAAC4KuvwZYQyzoXhy1xTVlaWDMOQRKcMAAAASi9CGQAAAKCQrJ0yzCnjXBi+zDVdGZwUdyhDpwwAAACcBaEMAAAAUEgMX+ac6JRxTVeGMsUVdFqHL6NTBgAAAM7CoaGMYRg6dOiQ/v77b0eeFgAAACgRhDLO6cpOGetwWHB+dMoAAACgLHB4KFOrVi0dPnzYkacFAAAASoR1ThmGL3Mu1k6ZS5cu8YMwF1ISoQydMgAAAHA2Dg1l3NzcVLt2bZ05c8aRpwUAAABKBJ0yzsnf318Wi0USQ5i5EjplAAAAUBY4fE6ZKVOmaMyYMdqyZYujTw0AAAAUK0IZ5+Tm5qaAgABJ/wxhBtdApwwAAADKAoePs9C3b19duHBBjRo1kqenp3x8fOzWnz171tElAQAAAIXC8GXOKygoSCkpKXTKuBDr9ST9f5hSVHTKAAAAwNk4/Nvj1KlTHX1KAAAAoETQKeO8AgMDJdEp40qs3SzF1SUj0SkDAAAA5+PwUKZfv36OPiUAAABQIghlnFdQUJAkQhlXYg1OirPzzBrwEMoAAADAWZgyzkJmZqa+++47bd++XZJUv359devWrVh/EQUAAACUNOtwS4QyzscayjB8mesoyU4Zhi8DAACAs3B4KLNnzx517dpVR48eVZ06dSRJcXFxCg8P1/z58xUZGenokgAAAIBCsXbKMKeM82H4MtdTEqEMnTIAAABwNsUze2IBjBgxQpGRkTp8+LA2bNigDRs26NChQ4qIiNCIESMcXQ4AAABQaAxf5rzolHE9JRnK0CkDAAAAZ+Hwn/T9+uuvWrVqlYKDg23LrrvuOk2ZMkWtW7d2dDkAAABAoTF8mfOiU8b1lOTwZXTKAAAAwFk4vFPGy8tL58+fz7Y8NTVVnp6eji4HAAAAKDSGL3Ne1k4ZQhnXYQ056ZQBAABAaebwUOaOO+7QQw89pNWrV8swDBmGoVWrVumRRx5Rt27dHF0OAAAAUGgMX+a8GL7M9Vi7WYoz5KRTBgAAAM7G4aHMm2++qcjISLVq1Ure3t7y9vZW69atVatWLU2bNs3R5QAAAACFRijjvBi+zPUwpwwAAADKAoeHMuXLl9f333+vXbt26auvvtJXX32lnTt36ttvv7X9mi2/fvvtN915550KCwuTxWLRd999d819li9friZNmsjLy0u1atXSnDlzCvdCAAAAUOZZh1ti+DLnw/Blroc5ZQAAAFAWODyUsapVq5buvPNOde3aVampqTp37lyBj5GWlqZGjRpp+vTp+dp+//79uv3229WhQwclJCRo1KhRGjx4sH766acCnxsAAACgU8Z5WTtlGL7MddApAwAAgLLA4T/pGzVqlBo0aKBBgwYpMzNT7dq1059//ilfX1/9+OOPat++fb6P1aVLF3Xp0iXf27/77ruKiIjQa6+9JkmqV6+e/vjjD73xxhvq1KlTQV8KAAAASonMzEwZhlHg/TIyMiQRyjijKztlrB1NBWGxWIo1HCjtsrKyihx8WK+nkuiUsR4bAAAAMJvDO2W++uorNWrUSJL03//+V/v27dOOHTv02GOP6emnny7Rc69cuVIdO3a0W9apUyetXLky133S09OVkpJi9wAAAEDp8dprr8nT01MeHh4FfrzzzjuSCGWckTWUOXr0aKE+Wx8fH4Y6zqeff/5ZgYGBhXqfr3x06NBBUsl0yuzatUuzZ88utuMCAAAAheXwUOb06dMKDQ2VJC1YsEC9evVSVFSUBg4cqM2bN5fouRMTExUSEmK3LCQkRCkpKbp48WKO+8TFxSkoKMj2CA8PL9EaAQAA4FgLFiwo0i/8vby81KpVq2KsCMWhevXqqlOnTqH3v3TpkhYtWlSMFZVeS5cuVVpaWrEd7+abby62Y0VHR9v+zOcJAAAAZ+Dw4ctCQkK0bds2ValSRYsWLdKMGTMkSRcuXHDK4QHGjRun0aNH256npKQQzAAAAJQi1nksPvjgA919990F3t/b21s+Pj7FXRaKyNPTU1u3bi1Up/v777+vJ598slDDnpVF1qHBRo4cqYkTJxbpWG5ubrYup+Jw3XXXadq0aRo5cqTtWgcAAADM5PBQZsCAAerVq5eqVKkii8ViG05s9erVqlu3bomeOzQ0VCdOnLBbduLECQUGBub6RdrLy0teXl4lWhcAAADMY+2SCQwMVIUKFUyuBsXJ3d29UJ9pYGCgJBHK5JM1lAkKCnLKa8j6XY/PEwAAAM7A4aHMc889pxtuuEGHDx9Wz549bYGHu7u7nnrqqRI9d6tWrbRgwQK7ZYsXL2a4CQAAgDLM+ut564TgQLly/3xN4iZ+/lhDGU9PT5MryZn186RTBgAAAM7A4aGMJN17773ZlvXr16/Ax0lNTdWePXtsz/fv36+EhAQFBwerevXqGjdunI4ePaqPPvpIkvTII4/o7bff1pNPPqmBAwdq6dKl+uKLLzR//vzCvxgAAAC4NGunjDMOpQtzEMoUjDWU8fDwMLmSnFmvbT5PAAAAOANTQpklS5ZoyZIlOnnyZLZJVWfPnp3v46xbt04dOnSwPbfO/dKvXz/NmTNHx48f16FDh2zrIyIiNH/+fD322GOaNm2aqlWrpvfff1+dOnUq4isCAACAq7L+ep5QBlbWcIGb+PlDpwwAAACQfw4PZSZNmqTJkyerWbNmtnllCqt9+/YyDCPX9XPmzMlxn40bNxb6nAAAAChdrD8SYvgyWNEpUzCXLl2S5LyhDJ0yAAAAcCYOD2XeffddzZkzRw8++KCjTw0AAABkQ6cMrkYoUzB0ygAAAAD55/CfA2ZkZCg2NtbRpwUAAAByRKcMrkYoUzDOHsrQKQMAAABn4vBvnoMHD9Znn33m6NMCAAAAOaJTBlcjlCkYayhjnYvH2fB5AgAAwJk4fPiyv//+W++9955++eUXNWzYMNs/3F9//XVHlwQAAIAyjE4ZXI2b+AXj7J0yDF8GAAAAZ+LwUOavv/5S48aNJUlbtmyxW2exWBxdDgAAAMo4OmVwNUKZgnH2UIbhywAAAOBMHB7KLFu2zNGnBAAAAHJlDWXolIEVoUzBXLp0SZLzhjJ0ygAAAMCZmPbNc8+ePfrpp5908eJFSZJhGGaVAgAAgDLMOnwZnTKwst7Et4YNyBudMgAAAED+OTyUOXPmjG655RZFRUWpa9euOn78uCRp0KBBevzxxx1dDgAAAMo4hi/D1eiUKRhrKHP1fKHOgk4ZAAAAOBOHhzKPPfaYPDw8dOjQIfn6+tqW9+7dW4sWLXJ0OQAAACjjrJ0yDF8GK0KZgqFTBgAAAMg/h88p8/PPP+unn35StWrV7JbXrl1bBw8edHQ5AAAAKOPolMHVrB0f3MTPH2cPZQjZAAAA4Ewc/nPAtLQ0uw4Zq7Nnz8rLy8vR5QAAAKCMo1MGV+MmfsFY595x1lDGGrgyfBkAAACcgcO/ebZp00YfffSR7bnFYlFWVpZefvlldejQwdHlAAAAoIyjUwZXI5QpGDplAAAAgPxz+PBlL7/8sm655RatW7dOGRkZevLJJ7V161adPXtWK1ascHQ5AAAAKOPolMHVuIlfMNZQxjrsm7Oxfp50ygAAAMAZOPyb5w033KBdu3bppptu0l133aW0tDT16NFDGzduVGRkpKPLAQAAQBlHpwyuRihTMM7eKWO9tvk8AQAA4Awc3ikjSUFBQXr66afNODUAAABgh04ZXI1QJv8yMzNt15CzhjJ0ygAAAMCZOOyb5+nTp3Xw4EG7ZVu3btWAAQPUq1cvffbZZ44qBQAAALChUwZXs97Ez8rKsgUOyJm1S0Zy3lCGThkAAAA4E4eFMsOHD9ebb75pe37y5Em1adNGa9euVXp6uvr376+PP/7YUeUAAAAAkghlkJ01lJHorriWS5cu2f7srKEMnU8AAABwJg4LZVatWqVu3brZnn/00UcKDg5WQkKCvv/+e7344ouaPn26o8oBAAAAJDF8GbK7MpThRn7eruyU8fDwMLGS3FkD18zMTBmGYXI1AAAAKOsc9s0zMTFRNWvWtD1funSpevToYfvC061bN+3evdtR5QAAAACS6JRBdoQy+WcNZdzd3Z022Lzy82Q4OgAAAJjNYf9qDgwMVFJSku35mjVr1LJlS9tzi8Wi9PR0R5UDAAAASKJTBtldeRP/yuG5kJ01lHHWocskhqMDAACAc3HYN88bb7xRb775prKysvTVV1/p/Pnzuvnmm23rd+3apfDwcEeVAwAAANj9ap5OGVjRKZN/rhDKXHlt83kCAADAbOWuvUnxeP7553XLLbfok08+0eXLlzV+/HhVqFDBtn7u3Llq166do8oBAAAA7EIZOmVgZbFY5O7urszMTG7iX4O1k8iZQxk6ZQAAAOBMHBbKNGzYUNu3b9eKFSsUGhpqN3SZJN13332Kjo52VDkAAACA3Q1aOmVwpXLlyhHK5AOdMgAAAEDBOCyUkaSKFSvqrrvuynHd7bff7shSAAAAAIYvQ67KlSun9PR0buJfgzWU8fDwMLmS3BHKAAAAwJkwRgMAAADKrCs7ZRi+DFeyDnnFTfy8uUKnjJubmywWiySGLwMAAID5+OYJAACAMotOGeSGUCZ/XCGUkfg8AQAA4DwIZQAAAFBm0SmD3HATP39cJZSxhq50ygAAAMBsTvXN8+LFiwXeZ/r06apZs6a8vb3VsmVLrVmzJtdt58yZI4vFYvfw9vYuSskAAABwYVfeoKVTBlcilMmfS5cuSXL+UIbPEwAAAM7C4aHMiBEjclyelpamrl27FuhY8+bN0+jRozVx4kRt2LBBjRo1UqdOnXTy5Mlc9wkMDNTx48dtj4MHDxbonAAAACg9rhy+zDrnBCBxEz+/rJ0yHh4eJleSN+vnSacMAAAAzObwUGb+/PmaOHGi3bK0tDR17ty5wF94Xn/9dQ0ZMkQDBgxQdHS03n33Xfn6+mr27Nm57mOxWBQaGmp7hISEFOp1AAAAwPVZb9BeORE4IBHK5JerDV/G5wkAAACzOTyU+fnnnzVr1ixNnTpVknT+/HndeuutslgsWrRoUb6Pk5GRofXr16tjx462ZW5uburYsaNWrlyZ636pqamqUaOGwsPDddddd2nr1q15nic9PV0pKSl2DwAAAJQO1k4Z5pPB1Qhl8sdVQhk+TwAAADiLco4+YWRkpBYtWqQOHTrIzc1Nn3/+uby8vDR//nz5+fnl+zinT59WZmZmtk6XkJAQ7dixI8d96tSpo9mzZ6thw4ZKTk7Wq6++qtjYWG3dulXVqlXLcZ+4uDhNmjQp/y8QAAAALsPaKcN8MriadTgubuLnzVVCGes1zvBlAAAAMJspPwls2LChfvzxR40fP16+vr5auHBhgQKZwmrVqpX69u2rxo0bq127dvrmm29UqVIlzZw5M9d9xo0bp+TkZNvj8OHDJV4nAAAAHMPaKUMog6tZOyusE9kjZ64SytApAwAAAGfhkE6ZmJiYHMfo9vLy0rFjx9S6dWvbsg0bNuTrmBUrVpS7u7tOnDhht/zEiRMKDQ3N1zE8PDwUExOjPXv25LqNl5eXvLy88nU8AAAAuJYr55QBrsRN/PyxhlbWziJnRacMAAAAnIVDQpnu3bsX+zE9PT3VtGlTLVmyxHb8rKwsLVmyRMOGDcvXMTIzM7V582Z17dq12OsDAACA86NTBrkhlMkfOmUAAACAgnFIKDNx4sQSOe7o0aPVr18/NWvWTC1atNDUqVOVlpamAQMGSJL69u2rqlWrKi4uTpI0efJk3XjjjapVq5aSkpL0yiuv6ODBgxo8eHCJ1AcAAADnRqcMcsNN/PxxtVCGThkAAACYzSGhzJXWrl2rrKwstWzZ0m756tWr5e7urmbNmuX7WL1799apU6c0YcIEJSYmqnHjxlq0aJFCQkIkSYcOHbL7gn3u3DkNGTJEiYmJqlChgpo2bao///xT0dHRxfPiAAAA4FLolEFuCGXyx1VCGes1zucJAAAAszn8J4FDhw7V4cOHsy0/evSohg4dWuDjDRs2TAcPHlR6erpWr15tF/YsX75cc+bMsT1/4403bNsmJiZq/vz5iomJKdTrAAAAgOujUwa5IZTJH1cJZfg8AQAA4Cwc/u1z27ZtatKkSbblMTEx2rZtm6PLAQAAQBlmDWXolMHVuImfP5cuXZIkeXh4mFxJ3qzXOMOXAQAAwGwOD2W8vLx04sSJbMuPHz9u++IDAAAAOIJ1+DI6ZXA1Qpn8oVMGAAAAKBiHf/u87bbbNG7cOCUnJ9uWJSUlafz48br11lsdXQ4AAADKMDplkBtu4uePq4QydMoAAADAWTi8NeXVV19V27ZtVaNGDdt8LgkJCQoJCdHHH3/s6HIAAABQhlk7ZQhlcDVCmfxxlVCGzxMAAADOwuGhTNWqVfXXX3/p008/1aZNm+Tj46MBAwaoT58+Tj8OMQAAAEoX66/mGb4MV7N+N+Emft5cJZShUwYAAADOwpRJXPz8/PTQQw+ZcWoAAADAhk4Z5IbOivxxlVCGzxMAAADOwiGhzA8//KAuXbrIw8NDP/zwQ57bduvWzRElAQAAAHTKIFfcxM+fS5cuSZLTj3rA5wkAAABn4ZBQpnv37kpMTFTlypXVvXv3XLezWCy0kwMAAMBh6JRBbqw38a2hA3LmKp0yDF8GAAAAZ+GQUMb6ZffqPwMAAABmolMGuaGzIn9cJZTh8wQAAICzcJpvn0eOHGGeGQAAADgUnTLIDTfx88dVQhk6ZQAAAOAsnCaUOXPmjD744AOzywAAAEAZQqcMckMokz+uEsrweQIAAMBZ8O0TAAAAZZY1lKFTBlfjJn7+WOfc8fDwMLmSvNEpAwAAAGdBKAMAAIAyi+HLkBtCmfyhUwYAAAAoGEIZAAAAlFkMX4bccBM/f1wllLEGr3yeAAAAMFs5R52oR48eea5PSkpyTCEAAADA/9Apg9wQyuSPq4Qy1s+T4csAAABgNoeFMkFBQddc37dvXwdVAwAAANApg9xZ50ghlMmbq4UyfJ4AAAAwm8NCmfj4eEedCgAAAMgXOmWQG27i5481lLGGWM7Keo3TKQMAAACz8ZNAAAAAlFl0yiA3hDL5c+nSJUl0ygAAAAD5xbdPAAAAlFl0yiA33MTPH1cZvoxOGQAAADgLQhkAAACUWXTKIDeEMvnjKqEMnycAAACcBd8+AQAAUGbRKYPcWG/iW4fnQnaZmZm2a8jZQxnrNU4oAwAAALMRygAAAKDMsnbKEMrganRWXJu1S0aSPDw8TKzk2qyfJ8OXAQAAwGyEMgAAACizGL4MuSGUubYrQxln75Th8wQAAICz4NsnAAAAyiyGL0NuuIl/bVcO7ebsnTLWa5xOGQAAAJiNUAYAAABlFp0yyA2hzLVZO2Xc3d2dPtjk8wQAAICz4NsnAAAAyiw6ZZAbbuJfmzWUcfahyyQ6ZQAAAOA8CGUAAABQZtEpg9xYh+MilMmdNZRx9qHLJEI2AAAAOA+X//Y5ffp01axZU97e3mrZsqXWrFmT5/Zffvml6tatK29vbzVo0EALFixwUKUAAABwNnTKIDfcxL82V+yU4fMEAACA2Vw6lJk3b55Gjx6tiRMnasOGDWrUqJE6deqkkydP5rj9n3/+qT59+mjQoEHauHGjunfvru7du2vLli0OrhwAAADOwNopQyiDqxHKXNulS5ckuUYoY/08Gb4MAAAAZnPpUOb111/XkCFDNGDAAEVHR+vdd9+Vr6+vZs+eneP206ZNU+fOnTVmzBjVq1dPzz//vJo0aaK3337bwZUDAADAGVg7ZRi+DFcjlLk2OmUAAACAgitndgGFlZGRofXr12vcuHG2ZW5uburYsaNWrlyZ4z4rV67U6NGj7ZZ16tRJ3333Xa7nSU9PV3p6uu15SkpK0QovQ9LT01WlShWzywAAAMjVxYsXJdEpg+ysocz27dsVHBxscjXOyRU7ZRYuXMjnCQAAUET79+9XUFCQ2WW4LJcNZU6fPq3MzEyFhITYLQ8JCdGOHTty3CcxMTHH7RMTE3M9T1xcnCZNmlT0gsuoc+fOmV0CAADANTVq1MjsEuBkateuLV9fX124cIF/015DTEyM2SVcU4MGDeTu7q7Lly/zeQIAABSRYRhml+DSXDaUcZRx48bZddekpKQoPDzcxIpch4eHh7Zv3252GQAAAHny9fVV9erVzS4DTiYkJETHjh3T8ePHzS7Fqbm5ualWrVpml3FNzZo10/Hjx3XmzBmzSwEAAHB5AQEBZpfg0lw2lKlYsaLc3d114sQJu+UnTpxQaGhojvuEhoYWaHtJ8vLykpeXV9ELLoPc3NxUt25ds8sAAAAACiUoKIhhGUqRSpUqqVKlSmaXAQAAgDLOZWc09fT0VNOmTbVkyRLbsqysLC1ZskStWrXKcZ9WrVrZbS9JixcvznV7AAAAAAAAAACA4uKynTKSNHr0aPXr10/NmjVTixYtNHXqVKWlpWnAgAGSpL59+6pq1aqKi4uTJI0cOVLt2rXTa6+9pttvv11z587VunXr9N5775n5MgAAAAAAAAAAQBng0qFM7969derUKU2YMEGJiYlq3LixFi1apJCQEEnSoUOH5Ob2/81AsbGx+uyzz/TMM89o/Pjxql27tr777jvdcMMNZr0EAAAAAAAAAABQRlgMwzDMLsKVpKSkKCgoSMnJyQoMDDS7HAAAAAAAAAAAYKKC5AYu3SljBmuGlZKSYnIlAAAAAAAAAADAbNa8ID89MIQyBXT+/HlJUnh4uMmVAAAAAAAAAAAAZ3H+/HkFBQXluQ3DlxVQVlaWjh07poCAAFksFrPLcSopKSkKDw/X4cOHGdoNMAHXIGAurkHAfFyHgLm4BgFzcQ0C5uM6LLsMw9D58+cVFhZmN899TuiUKSA3NzdVq1bN7DKcWmBgIP/TAUzENQiYi2sQMB/XIWAurkHAXFyDgPm4Dsuma3XIWOUd2QAAAAAAAAAAAKBYEMoAAAAAAAAAAAA4AKEMio2Xl5cmTpwoLy8vs0sByiSuQcBcXIOA+bgOAXNxDQLm4hoEzMd1iPywGIZhmF0EAAAAAAAAAABAaUenDAAAAAAAAAAAgAMQygAAAAAAAAAAADgAoQwAAAAAAAAAAIADEMoAAAAAAAAAAAA4AKEMCu3s2bO6//77FRgYqPLly2vQoEFKTU3Nc5/33ntP7du3V2BgoCwWi5KSkhxTLFBKTJ8+XTVr1pS3t7datmypNWvW5Ln9l19+qbp168rb21sNGjTQggULHFQpUDoV5BrcunWr7rnnHtWsWVMWi0VTp051XKFAKVaQ63DWrFlq06aNKlSooAoVKqhjx47X/LsTQN4Kcg1+8803atasmcqXLy8/Pz81btxYH3/8sQOrBUqfgn4ntJo7d64sFou6d+9esgUCZUBBrsM5c+bIYrHYPby9vR1YLZwRoQwK7f7779fWrVu1ePFi/fjjj/rtt9/00EMP5bnPhQsX1LlzZ40fP95BVQKlx7x58zR69GhNnDhRGzZsUKNGjdSpUyedPHkyx+3//PNP9enTR4MGDdLGjRvVvXt3de/eXVu2bHFw5UDpUNBr8MKFC7r++us1ZcoUhYaGOrhaoHQq6HW4fPly9enTR8uWLdPKlSsVHh6u2267TUePHnVw5UDpUNBrMDg4WE8//bRWrlypv/76SwMGDNCAAQP0008/ObhyoHQo6DVodeDAAT3xxBNq06aNgyoFSq/CXIeBgYE6fvy47XHw4EEHVgxnZDEMwzC7CLie7du3Kzo6WmvXrlWzZs0kSYsWLVLXrl115MgRhYWF5bn/8uXL1aFDB507d07ly5d3QMWA62vZsqWaN2+ut99+W5KUlZWl8PBwDR8+XE899VS27Xv37q20tDT9+OOPtmU33nijGjdurHfffddhdQOlRUGvwSvVrFlTo0aN0qhRoxxQKVB6FeU6lKTMzExVqFBBb7/9tvr27VvS5QKlTlGvQUlq0qSJbr/9dj3//PMlWSpQKhXmGszMzFTbtm01cOBA/f7770pKStJ3333nwKqB0qWg1+GcOXM0atQoRguCHTplUCgrV65U+fLlbYGMJHXs2FFubm5avXq1iZUBpVNGRobWr1+vjh072pa5ubmpY8eOWrlyZY77rFy50m57SerUqVOu2wPIXWGuQQDFqziuwwsXLujSpUsKDg4uqTKBUquo16BhGFqyZIl27typtm3blmSpQKlU2Gtw8uTJqly5sgYNGuSIMoFSrbDXYWpqqmrUqKHw8HDddddd2rp1qyPKhRMjlEGhJCYmqnLlynbLypUrp+DgYCUmJppUFVB6nT59WpmZmQoJCbFbHhISkus1l5iYWKDtAeSuMNcggOJVHNfh2LFjFRYWlu1HCwCurbDXYHJysvz9/eXp6anbb79db731lm699daSLhcodQpzDf7xxx/64IMPNGvWLEeUCJR6hbkO69Spo9mzZ+v777/XJ598oqysLMXGxurIkSOOKBlOilAGdp566qlsk09d/dixY4fZZQIAAAAFMmXKFM2dO1fffvstk6sCDhQQEKCEhAStXbtWL7zwgkaPHq3ly5ebXRZQ6p0/f14PPvigZs2apYoVK5pdDlBmtWrVSn379lXjxo3Vrl07ffPNN6pUqZJmzpxpdmkwUTmzC4Bzefzxx9W/f/88t7n++usVGhqabQKry5cv6+zZs0xmDJSAihUryt3dXSdOnLBbfuLEiVyvudDQ0AJtDyB3hbkGARSvolyHr776qqZMmaJffvlFDRs2LMkygVKrsNegm5ubatWqJUlq3Lixtm/frri4OLVv374kywVKnYJeg3v37tWBAwd055132pZlZWVJ+mekk507dyoyMrJkiwZKmeL4Xujh4aGYmBjt2bOnJEqEi6BTBnYqVaqkunXr5vnw9PRUq1atlJSUpPXr19v2Xbp0qbKystSyZUsTXwFQOnl6eqpp06ZasmSJbVlWVpaWLFmiVq1a5bhPq1at7LaXpMWLF+e6PYDcFeYaBFC8Cnsdvvzyy3r++ee1aNEiu/kQARRMcf1dmJWVpfT09JIoESjVCnoN1q1bV5s3b1ZCQoLt0a1bN3Xo0EEJCQkKDw93ZPlAqVAcfxdmZmZq8+bNqlKlSkmVCRdApwwKpV69eurcubOGDBmid999V5cuXdKwYcN03333KSwsTJJ09OhR3XLLLfroo4/UokULSf/McZGYmGhLgzdv3qyAgABVr16dCVeBaxg9erT69eunZs2aqUWLFpo6darS0tI0YMAASVLfvn1VtWpVxcXFSZJGjhypdu3a6bXXXtPtt9+uuXPnat26dXrvvffMfBmAyyroNZiRkaFt27bZ/nz06FElJCTI39/f9othAAVT0OvwpZde0oQJE/TZZ5+pZs2atrG+/f395e/vb9rrAFxVQa/BuLg4NWvWTJGRkUpPT9eCBQv08ccfa8aMGWa+DMBlFeQa9Pb21g033GC3f/ny5SUp23IA+VfQvwsnT56sG2+8UbVq1VJSUpJeeeUVHTx4UIMHDzbzZcBkhDIotE8//VTDhg3TLbfcIjc3N91zzz168803besvXbqknTt36sKFC7Zl7777riZNmmR73rZtW0lSfHz8NYdNA8q63r1769SpU5owYYISExPVuHFjLVq0yDbB3KFDh+Tm9v8NkLGxsfrss8/0zDPPaPz48apdu7a+++47/gEOFFJBr8Fjx44pJibG9vzVV1/Vq6++qnbt2jGWPlBIBb0OZ8yYoYyMDN177712x5k4caKee+45R5YOlAoFvQbT0tL06KOP6siRI/Lx8VHdunX1ySefqHfv3ma9BMClFfQaBFD8Cnodnjt3TkOGDFFiYqIqVKigpk2b6s8//1R0dLRZLwFOwGIYhmF2EQAAAAAAAAAAAKUd8TkAAAAAAAAAAIADEMoAAAAAAAAAAAA4AKEMAAAAAAAAAACAAxDKAAAAAAAAAAAAOAChDAAAAAAAAAAAgAMQygAAAAAAAAAAADgAoQwAAAAAAAAAAIADEMoAAAAAAAAAAAA4AKEMAAAAAJv+/fure/fuZpeRI2euLTfLly+XxWJRUlJSvvdp3769Ro0aVWI1lbQlS5aoXr16yszMvOa2ixYtUuPGjZWVleWAygAAAADzEcoAAAAAZYTFYsnz8dxzz2natGmaM2eOKfXNmjVLjRo1kr+/v8qXL6+YmBjFxcXZ1ptZm/RPWJLX+9e+ffts+8TGxur48eMKCgoqtjoyMzM1ZcoU1a1bVz4+PgoODlbLli31/vvv29VanMFOzZo1NXXq1Hxt++STT+qZZ56Ru7v7Nbft3LmzPDw89OmnnxaxQgAAAMA1lDO7AAAAAACOcfz4cduf582bpwkTJmjnzp22Zf7+/vL39zejNM2ePVujRo3Sm2++qXbt2ik9PV1//fWXtmzZYtumOIONwvjmm2+UkZEhSTp8+LBatGihX375RfXr15ckeXp62m1/6dIleXp6KjQ0tFjrmDRpkmbOnKm3335bzZo1U0pKitatW6dz584V63kkKSMjI9vryssff/yhvXv36p577sn3Pv3799ebb76pBx98sDAlAgAAAC6FThkAAACgjAgNDbU9goKCZLFY7Jb5+/tnGyKsffv2Gj58uEaNGqUKFSooJCREs2bNUlpamgYMGKCAgADVqlVLCxcutDvXli1b1KVLF/n7+yskJEQPPvigTp8+nWttP/zwg3r16qVBgwapVq1aql+/vvr06aMXXnjBtk1OtY0YMUJPPvmkgoODFRoaqueee87uuElJSXr44YcVEhIib29v3XDDDfrxxx9t6//44w+1adNGPj4+Cg8P14gRI5SWlpZjjdZzhIaGqlKlSpKk6667zrbsuuuu04wZM9StWzf5+fnphRdeyDZ82ZkzZ9SnTx9VrVpVvr6+atCggT7//PO8PrYc36tHH31UPXv2VEREhBo1aqRBgwbpiSeesL1Pv/76q6ZNm2br4jlw4IAyMzM1aNAgRUREyMfHR3Xq1NG0adPsjm19j1944QWFhYWpTp06at++vQ4ePKjHHnvMdrzczJ07V7feequ8vb1tyzZt2qQOHTooICBAgYGBatq0qdatW2dbf+edd2rdunXau3dvgd4HAAAAwBURygAAAADI04cffqiKFStqzZo1Gj58uP7973+rZ8+eio2N1YYNG3TbbbfpwQcf1IULFyT9E4TcfPPNiomJ0bp167Ro0SKdOHFCvXr1yvUcoaGhWrVqlQ4ePFjg2vz8/LR69Wq9/PLLmjx5shYvXixJysrKUpcuXbRixQp98skn2rZtm6ZMmWIbVmvv3r3q3Lmz7rnnHv3111+aN2+e/vjjDw0bNqyQ75T03HPP6e6779bmzZs1cODAbOv//vtvNW3aVPPnz9eWLVv00EMP6cEHH9SaNWvyfY7Q0FAtXbpUp06dynH9tGnT1KpVKw0ZMkTHjx/X8ePHFR4erqysLFWrVk1ffvmltm3bpgkTJmj8+PH64osv7PZfsmSJdu7cqcWLF+vHH3/UN998o2rVqmny5Mm24+Xm999/V7NmzeyW3X///apWrZrWrl2r9evX66mnnpKHh4dtffXq1RUSEqLff/893+8BAAAA4KoYvgwAAABAnho1aqRnnnlGkjRu3DhNmTJFFStW1JAhQyRJEyZM0IwZM/TXX3/pxhtv1Ntvv62YmBi9+OKLtmPMnj1b4eHh2rVrl6KiorKdY+LEierRo4dq1qypqKgotWrVSl27dtW9994rN7fcf0vWsGFDTZw4UZJUu3Ztvf3221qyZIluvfVW/fLLL1qzZo22b99uO+f1119v2zcuLk7333+/be6V2rVr24ZPmzFjhl23R37961//0oABA2zP9+3bZ7e+atWqto4WSRo+fLh++uknffHFF2rRokW+zvH666/r3nvvVWhoqOrXr6/Y2Fjddddd6tKli6R/hnnz9PSUr6+v3dBp7u7umjRpku15RESEVq5cqS+++MIuMPPz89P7779vN2yZu7u7AgICrjkU28GDBxUWFma37NChQxozZozq1q0r6Z/3+WphYWEFDuQAAAAAV0SnDAAAAIA8NWzY0PZnd3d3XXfddWrQoIFtWUhIiCTp5MmTkv4ZrmrZsmW2OWr8/f1tN+RzG6KqSpUqWrlypTZv3qyRI0fq8uXL6tevnzp37qysrKx81WY9jrWOhIQEVatWLccQyFrnnDlz7Ors1KmTsrKytH///mu9LTm6ukvkapmZmXr++efVoEEDBQcHy9/fXz/99JMOHTqU73NER0dry5YtWrVqlQYOHKiTJ0/qzjvv1ODBg6+57/Tp09W0aVNVqlRJ/v7+eu+997Kdu0GDBgWaR+ZKFy9ezBZmjR49WoMHD1bHjh01ZcqUHP8b8PHxsXVaAQAAAKUZoQwAAACAPF051JQkWSwWu2XWOUas4UlqaqruvPNOJSQk2D12796ttm3b5nmuG264QY8++qg++eQTLV68WIsXL9avv/5aoNqsdfj4+OR5rtTUVD388MN2NW7atEm7d+9WZGRknvvmxs/PL8/1r7zyiqZNm6axY8dq2bJlSkhIUKdOnZSRkVGg87i5ual58+YaNWqUvvnmG82ZM0cffPBBnmHS3Llz9cQTT2jQoEH6+eeflZCQoAEDBmQ797VeQ14qVqyoc+fO2S177rnntHXrVt1+++1aunSpoqOj9e2339ptc/bsWds8PQAAAEBpxvBlAAAAAIpVkyZN9PXXX6tmzZoqV67wXzmio6MlSWlpaYXav2HDhjpy5EiuQ6Y1adJE27ZtU61atQpdY0GtWLFCd911lx544AFJ/wRZu3btsr3Wwrr6vfL09FRmZma2c8fGxurRRx+1Lcutc+lqOR0vJzExMdq2bVu25VFRUYqKitJjjz2mPn36KD4+Xnfffbekf+bZ2bt3r2JiYvJVCwAAAODK6JQBAAAAUKyGDh2qs2fPqk+fPlq7dq327t2rn376SQMGDMj1xv6///1vPf/881qxYoUOHjyoVatWqW/fvqpUqZJatWpVqDratWuntm3b6p577tHixYu1f/9+LVy4UIsWLZIkjR07Vn/++aeGDRtm6+T5/vvvNWzYsEK/9mupXbu2Fi9erD///FPbt2/Xww8/rBMnThToGPfee6/eeOMNrV69WgcPHtTy5cs1dOhQRUVF2YaJq1mzplavXq0DBw7o9OnTysrKUu3atbVu3Tr99NNP2rVrl5599lmtXbs2X+esWbOmfvvtNx09elSnT5/OdbtOnTrpjz/+sD2/ePGihg0bpuXLl+vgwYNasWKF1q5dq3r16tm2WbVqlby8vAr9OQMAAACuhFAGAAAAQLEKCwvTihUrlJmZqdtuu00NGjTQqFGjVL58ebm55fwVpGPHjlq1apV69uypqKgo3XPPPfL29taSJUt03XXXFbqWr7/+Ws2bN1efPn0UHR2tJ5980hYMNWzYUL/++qt27dqlNm3aKCYmRhMmTMg2UX1xeuaZZ9SkSRN16tRJ7du3V2hoqLp3716gY3Tq1En//e9/deeddyoqKkr9+vVT3bp19fPPP9s6k5544gm5u7srOjpalSpV0qFDh/Twww+rR48e6t27t1q2bKkzZ87Ydc3kZfLkyTpw4IAiIyPzHGbs/vvv19atW7Vz505J/8xBdObMGfXt21dRUVHq1auXunTpokmTJtn2+fzzz3X//ffL19e3QO8DAAAA4IoshmEYZhcBAAAAACgdxowZo5SUFM2cOfOa254+fVp16tTRunXrFBER4YDqAAAAAHPRKQMAAAAAKDZPP/20atSooaysrGtue+DAAb3zzjsEMgAAACgz6JQBAAAAAAAAAABwADplAAAAAAAAAAAAHIBQBgAAAAAAAAAAwAEIZQAAAAAAAAAAAByAUAYAAAAAAAAAAMABCGUAAAAAAAAAAAAcgFAGAAAAAAAAAADAAQhlAAAAAAAAAAAAHIBQBgAAAAAAAAAAwAEIZQAAAAAAAAAAABzg/wCoHXtsRSVG+gAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "example_trial = example_rewarded_trial\n", + "\n", + "# Define plot parameters\n", + "lineoffsets = 0\n", + "linelengths = 750\n", + "ylim = [-500, 500]\n", + "grace_time = 0.100\n", + "\n", + "# Define time windows for plotting\n", + "plot_start_time = example_trial[\"start_time\"] - grace_time\n", + "plot_end_time = example_trial[\"stop_time\"] + grace_time\n", + "electrical_slice = slice(int(plot_start_time * fs), int(plot_end_time * fs))\n", + "tone_in_mask = (tone_in >= plot_start_time) & (tone_in <= plot_end_time)\n", + "tone_out_mask = (tone_out >= plot_start_time) & (tone_out <= plot_end_time)\n", + "target_out_mask = (target_out >= plot_start_time) & (target_out <= plot_end_time)\n", + "valve_mask = (valve >= plot_start_time) & (valve <= plot_end_time)\n", + "encoder_mask = (encoder_timestamps >= plot_start_time) & (encoder_timestamps <= plot_end_time)\n", + "lick_mask = (lick_timestamps >= plot_start_time) & (lick_timestamps <= plot_end_time)\n", + "\n", + "# Normalize times to trial start time\n", + "trial_start_time = example_trial[\"start_time\"]\n", + "normalized_tone_in = tone_in[tone_in_mask] - trial_start_time\n", + "normalized_tone_out = tone_out[tone_out_mask] - trial_start_time\n", + "normalized_target_out = target_out[target_out_mask] - trial_start_time\n", + "normalized_valve = valve[valve_mask] - trial_start_time\n", + "normalized_electrical_series_timestamps = electrical_series_timestamps[electrical_slice] - trial_start_time\n", + "normalized_encoder_timestamps = encoder_timestamps[encoder_mask] - trial_start_time\n", + "normalized_lick_timestamps = lick_timestamps[lick_mask] - trial_start_time\n", + "\n", + "unit_masks, normalized_spike_times = [], []\n", + "for _, unit in good_units.iterrows():\n", + " unit_mask = np.logical_and(unit.spike_times >= plot_start_time, unit.spike_times <= plot_end_time)\n", + " spike_times = unit[\"spike_times\"][unit_mask] - trial_start_time\n", + " unit_masks.append(unit_mask)\n", + " normalized_spike_times.append(spike_times)\n", + "\n", + "fig, axs = plt.subplots(4, 1, figsize=(20, 10), sharex=True)\n", + "axs[0].set_title(\"Example Rewarded Trial\")\n", + "axs[0].plot(normalized_electrical_series_timestamps, electrical_series_in_uV[electrical_slice], color=\"k\", label=\"Electrical Series\")\n", + "axs[0].eventplot(normalized_tone_in, color=\"red\", label=\"Tone In\", lineoffsets=lineoffsets, linelengths=linelengths)\n", + "axs[0].eventplot(normalized_tone_out, color=\"blue\", label=\"Tone Out\", lineoffsets=lineoffsets, linelengths=linelengths)\n", + "axs[0].eventplot(normalized_target_out, color=\"green\", label=\"Target Out\", lineoffsets=lineoffsets, linelengths=linelengths)\n", + "axs[0].eventplot(normalized_valve, color=\"purple\", label=\"Valve\", lineoffsets=lineoffsets, linelengths=linelengths)\n", + "axs[0].axvline(0, color=\"black\", linestyle=\"--\", label=\"Start Time\")\n", + "axs[0].axvline(example_trial[\"stop_time\"] - example_trial[\"start_time\"], color=\"black\", linestyle=\"--\", label=\"Stop Time\")\n", + "axs[0].set_ylim(ylim)\n", + "axs[0].set_ylabel(\"Channel 1 Raw Voltage (uV)\")\n", + "axs[0].legend()\n", + "\n", + "axs[1].eventplot(normalized_spike_times, colors=\"k\")\n", + "axs[1].set_yticks([])\n", + "axs[1].set_ylabel(\"'Good' Unit Spikes\")\n", + "\n", + "axs[2].plot(normalized_encoder_timestamps, encoder_data[encoder_mask], color=\"k\", label=\"Encoder\")\n", + "axs[2].axhline(example_trial[\"ThresholdVector\"], color=\"black\", linestyle=\"--\", label=\"Threshold Vector\")\n", + "axs[2].axhline(example_trial[\"endZone_ThresholdVector\"], color=\"red\", linestyle=\"--\", label=\"End Zone Threshold Vector\")\n", + "axs[2].set_ylabel(\"Rotary Encoder (a.u.)\")\n", + "axs[2].legend()\n", + "\n", + "axs[3].plot(normalized_lick_timestamps, lick_data[lick_mask], color=\"k\", label=\"Lick\")\n", + "axs[3].set_ylabel(\"Lick Sensor (a.u.)\")\n", + "_ = axs[3].set_xlabel(\"Time Since Trial Start (s)\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Plot an Example Unrewarded Trial" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "example_trial = example_unrewarded_trial\n", + "\n", + "# Define plot parameters\n", + "lineoffsets = 0\n", + "linelengths = 400\n", + "ylim = [-250, 250]\n", + "grace_time = 0.100\n", + "\n", + "# Define time windows for plotting\n", + "plot_start_time = example_trial[\"start_time\"] - grace_time\n", + "plot_end_time = example_trial[\"stop_time\"] + grace_time\n", + "electrical_slice = slice(int(plot_start_time * fs), int(plot_end_time * fs))\n", + "tone_in_mask = (tone_in >= plot_start_time) & (tone_in <= plot_end_time)\n", + "tone_out_mask = (tone_out >= plot_start_time) & (tone_out <= plot_end_time)\n", + "target_out_mask = (target_out >= plot_start_time) & (target_out <= plot_end_time)\n", + "valve_mask = (valve >= plot_start_time) & (valve <= plot_end_time)\n", + "encoder_mask = (encoder_timestamps >= plot_start_time) & (encoder_timestamps <= plot_end_time)\n", + "lick_mask = (lick_timestamps >= plot_start_time) & (lick_timestamps <= plot_end_time)\n", + "\n", + "# Normalize times to trial start time\n", + "trial_start_time = example_trial[\"start_time\"]\n", + "normalized_tone_in = tone_in[tone_in_mask] - trial_start_time\n", + "normalized_tone_out = tone_out[tone_out_mask] - trial_start_time\n", + "normalized_target_out = target_out[target_out_mask] - trial_start_time\n", + "normalized_valve = valve[valve_mask] - trial_start_time\n", + "normalized_electrical_series_timestamps = electrical_series_timestamps[electrical_slice] - trial_start_time\n", + "normalized_encoder_timestamps = encoder_timestamps[encoder_mask] - trial_start_time\n", + "normalized_lick_timestamps = lick_timestamps[lick_mask] - trial_start_time\n", + "\n", + "unit_masks, normalized_spike_times = [], []\n", + "for _, unit in good_units.iterrows():\n", + " unit_mask = np.logical_and(unit.spike_times >= plot_start_time, unit.spike_times <= plot_end_time)\n", + " spike_times = unit[\"spike_times\"][unit_mask] - trial_start_time\n", + " unit_masks.append(unit_mask)\n", + " normalized_spike_times.append(spike_times)\n", + "\n", + "fig, axs = plt.subplots(4, 1, figsize=(20, 10), sharex=True)\n", + "axs[0].set_title(\"Example Unrewarded Trial\")\n", + "axs[0].plot(normalized_electrical_series_timestamps, electrical_series_in_uV[electrical_slice], color=\"k\", label=\"Electrical Series\")\n", + "axs[0].eventplot(normalized_tone_in, color=\"red\", label=\"Tone In\", lineoffsets=lineoffsets, linelengths=linelengths)\n", + "axs[0].eventplot(normalized_tone_out, color=\"blue\", label=\"Tone Out\", lineoffsets=lineoffsets, linelengths=linelengths)\n", + "axs[0].eventplot(normalized_target_out, color=\"green\", label=\"Target Out\", lineoffsets=lineoffsets, linelengths=linelengths)\n", + "axs[0].eventplot(normalized_valve, color=\"purple\", label=\"Valve\", lineoffsets=lineoffsets, linelengths=linelengths)\n", + "axs[0].axvline(0, color=\"black\", linestyle=\"--\", label=\"Start Time\")\n", + "axs[0].axvline(example_trial[\"stop_time\"] - example_trial[\"start_time\"], color=\"black\", linestyle=\"--\", label=\"Stop Time\")\n", + "axs[0].set_ylim(ylim)\n", + "axs[0].set_ylabel(\"Channel 1 Raw Voltage (uV)\")\n", + "axs[0].legend()\n", + "\n", + "axs[1].eventplot(normalized_spike_times, colors=\"k\")\n", + "axs[1].set_yticks([])\n", + "axs[1].set_ylabel(\"'Good' Unit Spikes\")\n", + "\n", + "axs[2].plot(normalized_encoder_timestamps, encoder_data[encoder_mask], color=\"k\", label=\"Encoder\")\n", + "axs[2].axhline(example_trial[\"ThresholdVector\"], color=\"black\", linestyle=\"--\", label=\"Threshold Vector\")\n", + "axs[2].axhline(example_trial[\"endZone_ThresholdVector\"], color=\"red\", linestyle=\"--\", label=\"End Zone Threshold Vector\")\n", + "axs[2].set_ylabel(\"Rotary Encoder (a.u.)\")\n", + "axs[2].legend()\n", + "\n", + "axs[3].plot(normalized_lick_timestamps, lick_data[lick_mask], color=\"k\", label=\"Lick\")\n", + "axs[3].set_ylabel(\"Lick Sensor (a.u.)\")\n", + "_ = axs[3].set_xlabel(\"Time Since Trial Start (s)\")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "schneider_notebook_env", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.0" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/001259/opto_example_notebook.ipynb b/001259/opto_example_notebook.ipynb new file mode 100644 index 0000000..c5b2c43 --- /dev/null +++ b/001259/opto_example_notebook.ipynb @@ -0,0 +1,558 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from pynwb import NWBHDF5IO\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " \n", + "

root (NWBFile)

session_description: Mice performed the auditory guided task while optogenetic stimulation was delivered to the primary auditory cortex (A1).
identifier: b6a37a08-f2ab-45af-b49b-225aa17c8012
session_start_time2023-10-13 00:00:00-04:00
timestamps_reference_time2023-10-13 00:00:00-04:00
file_create_date
02024-12-18 09:07:21.778849-08:00
experimenter('Zempolich, Grant W.', 'Schneider, David M.')
acquisition
video_camera_1
resolution: -1.0
comments: no comments
description: Two IR video cameras (AAK CA20 600TVL 2.8MM) were used to monitor the experiments from different angles of interest, allowing for offline analysis of body movements, pupillometry, and other behavioral data as necessary. Camera 1 is a side angle view of the mouse.
conversion: 1.0
offset: 0.0
unit: Frames
data
timestamps
timestamps_unit: seconds
interval: 1
external_file
starting_frame
[0]
format: external
video_camera_2
resolution: -1.0
comments: no comments
description: Two IR video cameras (AAK CA20 600TVL 2.8MM) were used to monitor the experiments from different angles of interest, allowing for offline analysis of body movements, pupillometry, and other behavioral data as necessary. Camera 2 is a zoomed-in view of the pupil of the mouse.
conversion: 1.0
offset: 0.0
unit: Frames
data
timestamps
timestamps_unit: seconds
interval: 1
external_file
starting_frame
[0]
format: external
stimulus
optogenetic_series
resolution: -1.0
comments: no comments
description: In optogenetic perturbation trials (~33% of trials), during each lever press, continuous wave stimulation of 473nm light (15-20mW) was delivered bilaterally over primary auditory cortex A1 (or secondary motor cortex, M2, as necessary using similar protocol - see Aim 2) to activate the terminals of ChR2 expressing neurons.
conversion: 1.0
offset: 0.0
unit: watts
data
timestamps
timestamps_unit: seconds
interval: 1
site
device
description: Real time optogenetic stimulation of brain regions of interest was accomplished via TTL control of an all solidstate 473nm blue laser (MBL-III-473/1~100mW, Opto Engine LLC). Bifurcated fiber cables (ThorLabs, Ø200 µm Core Multimode Fiber) were used for light delivery.
manufacturer: Opto Engine LLC
description: To identify cortical neurons that project from the auditory cortex to motor regions (Aim 2), stereotaxic injections of AAV-ChR2 were made into the primary auditory cortex (-2.8 AP, 4.2 ML relative to bregma; guided by intrinsic optical imaging) during head-fixation and animals were trained while expression occurs (~2 weeks). In addition, fiber optics were implanted to target cell bodies in the secondary motor cortex (1.0-1.5 AP, 0.5-0.7 ML).
excitation_lambda: 473.0
location: Primary Auditory Cortex (-2.8 AP, 4.2 ML relative to bregma; guided by intrinsic optical imaging)
keywords
processing
behavior
description: C57BL/6 mice were first be water restricted, habituated to head fixation in the behavioral set up for two days and classically conditioned to associate a 16 kHz tone with a small water reward given 150 ms after the tone plays (~12 seconds inter-tone-interval). Mice were then be trained for 15 to 20 sessions on an auditory guided task described as follows. Inspired by human performance on stringed instruments, whereby a target note is achieved via modulation of forelimb and hand movements, we have engineered a novel behavioral paradigm that requires mice to skillfully adjust the size of lever presses in response to a dynamic virtual acoustic environment. Mice were trained to press a small 3-D printed lever forward with their forelimb toward a 2 mm wide target zone. Mice heard a 16 Hz tone when the lever enters the zone and a 10 kHz tone if the press exceeds the bounds of the zone. Presses that peak within the zone produce only the entry tone and are rewarded when the lever returns to the starting position. Presses that undershoot (producing no tones) or overshoot (producing both an entry and an exit tone) are unrewarded. Every 30 trials, which we refer to as a block, the target zone was relocated without warning and the mice must use acoustic feedback to adjust their lever presses to peak at the new location.
data_interfaces
behavioral_time_series
time_series
encoder
resolution: -1.0
comments: no comments
description: Sampled values for entire duration of experiment for lever pressing behavior read from a rotary encoder (US Digital). Digital signals for licking and lever movement were collected by a data acquisition card (National Instruments) connected to a computer and logged by custom Matlab software (Mathworks, PsychToolBox) and sampled at 2kHz.
conversion: 1.0
offset: 0.0
unit: a.u.
data
timestamps
timestamps_unit: seconds
interval: 1
lick
resolution: -1.0
comments: no comments
description: Samples values for entire duration of experiment for voltage signal readout from a custom infrared/capacitive lickometer sensor (Schneider Lab). Digital signals for licking and lever movement were collected by a data acquisition card (National Instruments) connected to a computer and logged by custom Matlab software (Mathworks, PsychToolBox) and sampled at 2kHz.
conversion: 1.0
offset: 0.0
unit: a.u.
data
timestamps
timestamps_unit: seconds
interval: 1
targetOUT
description: Time at which the target zone is overshot during a press.
timestamps
timestamps__unit: seconds
toneIN
description: Time at which target zone is entered and target entry tone is played.
timestamps
timestamps__unit: seconds
toneOUT
description: Time at which target exit tone is played (this is delayed 50ms relative to targetOUT so that entry and exit tones don't bleed into each other.
timestamps
timestamps__unit: seconds
valve
description: Times at which solenoid valve opens to deliver water after a correct trial.
timestamps
timestamps__unit: seconds
intrinsic_signal_optical_imaging
description: For precise targeting of auditory cortex, intrinsic optical imaging (IOS) was performed using a 2-photon microscope (Neurolabware). The skull was first bilaterally thinned over a region of interest (ROI) and made translucent. On experiment day, 680nm red light (ThorLabs) is used to image the ROI. Data was collected via MATLAB running custom suites for online and offline analyses.
data_interfaces
images
description: Intrinsic signal optical images.
images
overlaid_image
target_image
epoch_tagsset()
devices
intrinsic_signal_optical_imaging_laser
description: ThorLabs 700nm fiber coupled LED (M700F3) driven by their basic LED driver (LEDD1B).
manufacturer: ThorLabs
lickometer
description: The lickometer comprised a custom-mounted (3D printed using Formlabs Form2) IR-beam emitter and receiver. IR signal was titrated and pre-processed using a custom printed circuit board (designed by Melissa Caras and Dan Sanes) to generate a binary TTL signal with IR sensitivity controlled by a potentiometer.
manufacturer: Schneider Lab
optogenetic_stimulation_laser
description: Real time optogenetic stimulation of brain regions of interest was accomplished via TTL control of an all solidstate 473nm blue laser (MBL-III-473/1~100mW, Opto Engine LLC). Bifurcated fiber cables (ThorLabs, Ø200 µm Core Multimode Fiber) were used for light delivery.
manufacturer: Opto Engine LLC
rotary_encoder
description: H5 BALL BEARING OPTICAL SHAFT ENCODER
manufacturer: US Digital
two_photon_microscope
description: Standard Microscope by Neurolabware.
manufacturer: Neurolabware
ogen_sites
optogenetic_stimulus_site
device
description: Real time optogenetic stimulation of brain regions of interest was accomplished via TTL control of an all solidstate 473nm blue laser (MBL-III-473/1~100mW, Opto Engine LLC). Bifurcated fiber cables (ThorLabs, Ø200 µm Core Multimode Fiber) were used for light delivery.
manufacturer: Opto Engine LLC
description: To identify cortical neurons that project from the auditory cortex to motor regions (Aim 2), stereotaxic injections of AAV-ChR2 were made into the primary auditory cortex (-2.8 AP, 4.2 ML relative to bregma; guided by intrinsic optical imaging) during head-fixation and animals were trained while expression occurs (~2 weeks). In addition, fiber optics were implanted to target cell bodies in the secondary motor cortex (1.0-1.5 AP, 0.5-0.7 ML).
excitation_lambda: 473.0
location: Primary Auditory Cortex (-2.8 AP, 4.2 ML relative to bregma; guided by intrinsic optical imaging)
intervals
epochs
description: experimental epochs
table\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
start_timestop_timetags
id
0126.256702786.229029[Active Behavior]
trials
description: experimental trials
table\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
start_timestop_timerewardedtime_reward_sopto_trialopto_timeopto_time_endITI_respectThresholdVectorendZone_ThresholdVector
id
0126.256702126.368786FalseNaNFalseNaNNaNTrue21.027.0
1126.976659127.150010True142823.197278FalseNaNNaNTrue21.027.0
2128.341690128.464307FalseNaNFalseNaNNaNTrue21.027.0
3128.784895129.004811True142825.050398FalseNaNNaNTrue21.027.0

... and 433 more rows.

subject
age: P12W/
age__reference: birth
description: 12-week-old C57BL/6 or VGATChR2-EYFP mice were used for all behavioral, electrophysiology, and optogenetic experiments. In the VGAT-ChR2-EYFP mouse line, channelrhodopsin (ChR2) was coupled to the vesicular GABA transporter, inducing expression in GABAergic inhibitory neurons ubiquitously across cortex and allowing for real time optogenetic inhibition of brain regions of interest.
genotype: C57BL/6 or VGATChR2-EYFP
sex: U
species: Mus musculus
subject_id: m53
strain: C57BL/6
epochs
description: experimental epochs
table\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
start_timestop_timetags
id
0126.256702786.229029[Active Behavior]
trials
description: experimental trials
table\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
start_timestop_timerewardedtime_reward_sopto_trialopto_timeopto_time_endITI_respectThresholdVectorendZone_ThresholdVector
id
0126.256702126.368786FalseNaNFalseNaNNaNTrue21.027.0
1126.976659127.150010True142823.197278FalseNaNNaNTrue21.027.0
2128.341690128.464307FalseNaNFalseNaNNaNTrue21.027.0
3128.784895129.004811True142825.050398FalseNaNNaNTrue21.027.0

... and 433 more rows.

experiment_description: Identifying mistakes is important for improving performance during acoustic behaviors like speech and musicianship. Although hearing is instrumental for monitoring and adapting these behaviors, the neural circuits that integrate motor, acoustic, and goal-related signals to detect errors and guide ongoing sensorimotor adaptation in mammals remain unidentified. Here, we develop a novel closed-loop, sound-guided behavior that requires mice to use real-time acoustic feedback to guide skilled ongoing forelimb movements. Large scale electrophysiology recordings reveal that the mouse auditory cortex integrates information about sound and movement, as well as encodes error- and learning-related signals during this sound-generating behavior. Distinct groups of auditory cortex neurons signal different error types, and the activity of these neurons predicts both within-trial and across-trial behavioral adaptations. Brief, behavior-triggered optogenetic suppression of auditory cortex during error signaling hinders behavioral corrections on both rapid and long time scales, indicating that cortical error signals are necessary for skilled acoustic behaviors. Together, these experiments identify a cortical role for detecting errors and learning from mistakes and suggest that the auditory cortex plays a critical role in skilled, sound-generating behavior in mammals.
session_id: 231013
lab: Schneider
institution: New York University
source_script: Created using NeuroConv v0.6.5
source_script_file_name: /opt/anaconda3/envs/schneider_lab_to_nwb_env/lib/python3.12/site-packages/neuroconv/basedatainterface.py
" + ], + "text/plain": [ + "root pynwb.file.NWBFile at 0x4858229584\n", + "Fields:\n", + " acquisition: {\n", + " video_camera_1 ,\n", + " video_camera_2 \n", + " }\n", + " devices: {\n", + " intrinsic_signal_optical_imaging_laser ,\n", + " lickometer ,\n", + " optogenetic_stimulation_laser ,\n", + " rotary_encoder ,\n", + " two_photon_microscope \n", + " }\n", + " epochs: epochs \n", + " experiment_description: Identifying mistakes is important for improving performance during acoustic behaviors like speech and musicianship. Although hearing is instrumental for monitoring and adapting these behaviors, the neural circuits that integrate motor, acoustic, and goal-related signals to detect errors and guide ongoing sensorimotor adaptation in mammals remain unidentified. Here, we develop a novel closed-loop, sound-guided behavior that requires mice to use real-time acoustic feedback to guide skilled ongoing forelimb movements. Large scale electrophysiology recordings reveal that the mouse auditory cortex integrates information about sound and movement, as well as encodes error- and learning-related signals during this sound-generating behavior. Distinct groups of auditory cortex neurons signal different error types, and the activity of these neurons predicts both within-trial and across-trial behavioral adaptations. Brief, behavior-triggered optogenetic suppression of auditory cortex during error signaling hinders behavioral corrections on both rapid and long time scales, indicating that cortical error signals are necessary for skilled acoustic behaviors. Together, these experiments identify a cortical role for detecting errors and learning from mistakes and suggest that the auditory cortex plays a critical role in skilled, sound-generating behavior in mammals.\n", + " experimenter: ['Zempolich, Grant W.' 'Schneider, David M.']\n", + " file_create_date: [datetime.datetime(2024, 12, 18, 9, 7, 21, 778849, tzinfo=tzoffset(None, -28800))]\n", + " identifier: b6a37a08-f2ab-45af-b49b-225aa17c8012\n", + " institution: New York University\n", + " intervals: {\n", + " epochs ,\n", + " trials \n", + " }\n", + " keywords: \n", + " lab: Schneider\n", + " ogen_sites: {\n", + " optogenetic_stimulus_site \n", + " }\n", + " processing: {\n", + " behavior ,\n", + " intrinsic_signal_optical_imaging \n", + " }\n", + " session_description: Mice performed the auditory guided task while optogenetic stimulation was delivered to the primary auditory cortex (A1).\n", + " session_id: 231013\n", + " session_start_time: 2023-10-13 00:00:00-04:00\n", + " source_script: Created using NeuroConv v0.6.5\n", + " source_script_file_name: /opt/anaconda3/envs/schneider_lab_to_nwb_env/lib/python3.12/site-packages/neuroconv/basedatainterface.py\n", + " stimulus: {\n", + " optogenetic_series \n", + " }\n", + " subject: subject pynwb.file.Subject at 0x5028608960\n", + "Fields:\n", + " age: P12W/\n", + " age__reference: birth\n", + " description: 12-week-old C57BL/6 or VGATChR2-EYFP mice were used for all behavioral, electrophysiology, and optogenetic experiments. In the VGAT-ChR2-EYFP mouse line, channelrhodopsin (ChR2) was coupled to the vesicular GABA transporter, inducing expression in GABAergic inhibitory neurons ubiquitously across cortex and allowing for real time optogenetic inhibition of brain regions of interest.\n", + " genotype: C57BL/6 or VGATChR2-EYFP\n", + " sex: U\n", + " species: Mus musculus\n", + " strain: C57BL/6\n", + " subject_id: m53\n", + "\n", + " timestamps_reference_time: 2023-10-13 00:00:00-04:00\n", + " trials: trials " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "nwbfile_path = '/Volumes/T7/CatalystNeuro/Schneider/conversion_nwb/sub-m53_ses-231013.nwb'\n", + "io = NWBHDF5IO(nwbfile_path, 'r')\n", + "nwbfile = io.read()\n", + "display(nwbfile)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Retrieve Opto and Behavioral data" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "# Opto\n", + "opto_stim_timestamps = np.asarray(nwbfile.stimulus[\"optogenetic_series\"].timestamps)\n", + "opto_stim_data = np.asarray(nwbfile.stimulus[\"optogenetic_series\"].data)\n", + "stim_power = 0.020\n", + "opto_onset_times = opto_stim_timestamps[opto_stim_data == stim_power]\n", + "opto_offset_times = opto_stim_timestamps[opto_stim_data == 0]\n", + "\n", + "# Behavioral Events\n", + "tone_in = np.asarray(nwbfile.processing[\"behavior\"].data_interfaces[\"toneIN\"].timestamps)\n", + "tone_out = np.asarray(nwbfile.processing[\"behavior\"].data_interfaces[\"toneOUT\"].timestamps)\n", + "target_out = np.asarray(nwbfile.processing[\"behavior\"].data_interfaces[\"targetOUT\"].timestamps)\n", + "valve = np.asarray(nwbfile.processing[\"behavior\"].data_interfaces[\"valve\"].timestamps)\n", + "\n", + "# Behavioral Time Series\n", + "encoder_data = np.asarray(nwbfile.processing[\"behavior\"].data_interfaces[\"behavioral_time_series\"][\"encoder\"].data)\n", + "encoder_timestamps = np.asarray(nwbfile.processing[\"behavior\"].data_interfaces[\"behavioral_time_series\"][\"encoder\"].timestamps)\n", + "lick_data = np.asarray(nwbfile.processing[\"behavior\"].data_interfaces[\"behavioral_time_series\"][\"lick\"].data)\n", + "lick_timestamps = np.asarray(nwbfile.processing[\"behavior\"].data_interfaces[\"behavioral_time_series\"][\"lick\"].timestamps)\n", + "\n", + "# Behavioral Trials\n", + "trials = nwbfile.trials.to_dataframe()\n", + "trials = trials[trials.opto_trial]\n", + "example_rewarded_trial = trials[trials[\"rewarded\"] == True].iloc[0]\n", + "example_unrewarded_trial = trials[trials[\"rewarded\"] == False].iloc[0]" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABlMAAANXCAYAAAChfqnIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3xT1f/H8Xe6Fy1ltGUUWjbIXpUlQ7DKRmTL+gICspeAjIIoFWQLgoAWN0tARQWhgjKKIMiQPQWRKdDalrbQ5PdHf0RDS2ihaYC+no9HHuaenHvv56YNwn3nnGMwmUwmAQAAAAAAAAAAIE0O9i4AAAAAAAAAAADgUUaYAgAAAAAAAAAAYAVhCgAAAAAAAAAAgBWEKQAAAAAAAAAAAFYQpgAAAAAAAAAAAFhBmAIAAAAAAAAAAGAFYQoAAAAAAAAAAIAVhCkAAAAAAAAAAABWEKYAAAAAAAAAAABYQZgCAAAAIFNt3rxZBoNBmzdvtncpj5V69eqpXr16mXpMg8GgCRMmZOox/2vChAkyGAwPtK8trhcAAACwFcIUAAAAIAstWbJEBoPhno8dO3bYu8RHzpkzZyzeIwcHB+XKlUsvvPCCoqKi7F3eY61evXpWfx/vPGwZyAAAAACPAyd7FwAAAABkR2+88YaCg4NTtRcrVswO1TweOnTooMaNGys5OVnHjh3Te++9p/r162vXrl0qV66cvct7LI0ZM0Y9e/Y0b+/atUtz5szR66+/rtKlS5vby5cvn+b+Y8eO1ahRo2xeJwAAAGBvhCkAAACAHbzwwguqWrWqvct4rFSuXFkvv/yyebtOnTp64YUXNH/+fL333nt2rCx94uLi5Onpae8yLDRq1Mhi283NTXPmzFGjRo2sTsF151qcnJzk5MQ/KwEAAPDkY5ovAAAA4BEUFhYmBwcHRUZGWrS/8sorcnFx0b59+yRJSUlJGj9+vKpUqSIfHx95enqqTp062rRpk8V+d6bKmjZtmubNm6ciRYrIw8NDzz33nM6dOyeTyaRJkyapYMGCcnd3V4sWLXTt2jWLYwQFBalp06b64YcfVLFiRbm5ualMmTJatWpVuq7pl19+0fPPPy8fHx95eHiobt262rZt2wO/R3Xq1JEknTx50qL9xo0bGjx4sAIDA+Xq6qpixYppypQpMhqN5j6VK1fWiy++aLFfuXLlZDAYtH//fnPbsmXLZDAYdPjwYUnSH3/8oVdffVUlS5aUu7u7cufOrTZt2ujMmTMWx7ozndtPP/2kV199VX5+fipYsKD59YULF6po0aJyd3dX9erVtWXLljSvMTExUWFhYSpWrJhcXV0VGBio1157TYmJian6DRkyRHnz5lWOHDnUvHlz/fnnn+l8J627sy7KoUOH1LFjR/n6+qp27doWr/1XRESEGjRoID8/P7m6uqpMmTKaP39+ptQCAAAA2AtfIQIAAADsIDo6WlevXrVoMxgMyp07t6SU6ZO++eYb9ejRQwcOHFCOHDm0fv16LVq0SJMmTVKFChUkSTExMVq8eLE6dOigXr166Z9//tEHH3yg0NBQ7dy5UxUrVrQ4x2effaakpCQNGDBA165d09SpU9W2bVs1aNBAmzdv1siRI3XixAm9++67Gj58uD788EOL/Y8fP6527dqpT58+6tq1qyIiItSmTRutW7cu1SiH//rxxx/1wgsvqEqVKuag6M5N9y1btqh69eoZfg/vBBi+vr7mtvj4eNWtW1fnz59X7969VahQIW3fvl2jR4/WhQsXNGvWLEkpQcwXX3xh3u/atWs6ePCgHBwctGXLFvO0Vlu2bFHevHnNU17t2rVL27dvV/v27VWwYEGdOXNG8+fPV7169XTo0CF5eHhY1Pjqq68qb968Gj9+vOLi4iRJH3zwgXr37q2aNWtq8ODBOnXqlJo3b65cuXIpMDDQvK/RaFTz5s21detWvfLKKypdurQOHDigmTNn6tixY1qzZo25b8+ePfXpp5+qY8eOqlmzpn788Uc1adIkw++pNW3atFHx4sU1efJkmUyme/abP3++nnrqKTVv3lxOTk765ptv9Oqrr8poNKpfv36ZWhMAAACQZUwAAAAAskxERIRJUpoPV1dXi74HDhwwubi4mHr27Gm6fv26qUCBAqaqVauabt26Ze5z+/ZtU2JiosV+169fN/n7+5v+97//mdtOnz5tkmTKmzev6caNG+b20aNHmySZKlSoYHHcDh06mFxcXEwJCQnmtsKFC5skmb788ktzW3R0tClfvnymSpUqmds2bdpkkmTatGmTyWQymYxGo6l48eKm0NBQk9FoNPeLj483BQcHmxo1amT1PbtT+8SJE01XrlwxXbx40bRlyxZTtWrVTJJMK1asMPedNGmSydPT03Ts2DGLY4waNcrk6OhoOnv2rMlkMplWrFhhkmQ6dOiQyWQymb7++muTq6urqXnz5qZ27dqZ9ytfvrypVatWFjXfLSoqyiTJ9PHHH5vb7vyca9eubbp9+7a5PSkpyeTn52eqWLGixc9t4cKFJkmmunXrmts++eQTk4ODg2nLli0W51uwYIFJkmnbtm0mk8lk2rt3r0mS6dVXX7Xo17FjR5MkU1hYWNpvbBruvC93fnYmk8kUFhZmkmTq0KFDqv53XvuvtN6j0NBQU5EiRSza6tata3G9AAAAwKOMab4AAAAAO5g3b542bNhg8fj+++8t+pQtW1YTJ07U4sWLFRoaqqtXr+qjjz6yWKPC0dFRLi4uklJGMly7dk23b99W1apVtWfPnlTnbdOmjXx8fMzbISEhkqSXX37Z4rghISFKSkrS+fPnLfbPnz+/WrVqZd729vZWly5d9Ntvv+nixYtpXuvevXt1/PhxdezYUX///beuXr2qq1evKi4uTs8++6x+/vlniym47iUsLEx58+ZVQECA6tSpo8OHD2v69Ol66aWXzH1WrFihOnXqyNfX13yeq1evqmHDhkpOTtbPP/8s6d8pwu5sb9myRdWqVVOjRo3MU27duHFDv//+u7mvJLm7u5uf37p1S3///beKFSumnDlzpvl+9+rVS46OjubtX3/9VZcvX1afPn3MPzdJ6tatm8XP5c61lC5dWqVKlbK4lgYNGkiSeSq37777TpI0cOBAi/0HDx583/c0I/r06ZOufv99j+6MwKpbt65OnTql6OjoTK0JAAAAyCpM8wUAAADYQfXq1dO1AP2IESO0dOlS7dy5U5MnT1aZMmVS9fnoo480ffp0HTlyRLdu3TK3BwcHp+pbqFAhi+07N/D/O73Uf9uvX79u0V6sWLFUa2SUKFFCUsq0WwEBAanOefz4cUlS165d075Ipdx0/+90XWl55ZVX1KZNGyUkJOjHH3/UnDlzlJycnOpc+/fvV968edM8xuXLlyVJ/v7+Kl68uLZs2aLevXtry5Ytql+/vp555hkNGDBAp06d0uHDh2U0Gi3ClJs3byo8PFwRERE6f/68xXRXaQUFd/8M/vjjD0lS8eLFLdqdnZ1VpEiRVNdy+PDh+17LH3/8IQcHBxUtWtTi9ZIlS6a534NK6/cpLdu2bVNYWJiioqIUHx9v8Vp0dHSq0AgAAAB4HBCmAAAAAI+wU6dOmcOIAwcOpHr9008/Vbdu3dSyZUuNGDFCfn5+cnR0VHh4eKqF2SVZjJJIT7vJytoY6XVn1Mk777yTag2XO7y8vO57nOLFi6thw4aSpKZNm8rR0VGjRo1S/fr1zcGU0WhUo0aN9Nprr6V5jDvBjyTVrl1bkZGRunnzpnbv3q3x48erbNmyypkzp7Zs2aLDhw/Ly8tLlSpVMu8zYMAARUREaPDgwapRo4Z8fHxkMBjUvn37NEfX/HeURkYZjUaVK1dOM2bMSPP1uwMwW0vPtZw8eVLPPvusSpUqpRkzZigwMFAuLi767rvvNHPmzHSNQAIAAAAeRYQpAAAAwCPKaDSqW7du8vb21uDBgzV58mS99NJLevHFF819Vq5cqSJFimjVqlUWI0bCwsJsUtOJEydkMpksznXs2DFJUlBQUJr73Bkx4e3tbQ5DMsOYMWO0aNEijR07VuvWrTOfKzY2Nl3nqVOnjiIiIrR06VIlJyerZs2acnBwUO3atc1hSs2aNS2CppUrV6pr166aPn26uS0hIUE3btxIV82FCxeWlDLq5M50XVLKlGGnT59WhQoVzG1FixbVvn379Oyzz6YaDXT3MY1Go06ePGkxGuXo0aPpqikzffPNN0pMTNTXX39tMQrqzpRkAAAAwOMqQ2umHD58WGFhYWrQoIGKFi2qfPnyqXz58uratas+//xzJSYm2qpOAAAAINuZMWOGtm/froULF2rSpEmqWbOm+vbtq6tXr5r73LnR/98RJL/88ouioqJsUtNff/2l1atXm7djYmL08ccfq2LFimlO8SVJVapUUdGiRTVt2jTFxsamev3KlSsPVEvOnDnVu3dvrV+/Xnv37pUktW3bVlFRUVq/fn2q/jdu3NDt27fN23em75oyZYrKly9vnn6qTp06ioyM1K+//moxxZeU8n7fPVrn3XffTTXd2L1UrVpVefPm1YIFC5SUlGRuX7JkSapApm3btjp//rwWLVqU6jg3b95UXFycJOmFF16QJM2ZM8eiz6xZs9JVU2ZK6/cxOjpaERERWV4LAAAAkJnSNTJlz549eu2117R161bVqlVLISEhatWqldzd3XXt2jX9/vvvGjNmjAYMGKDXXntNgwcPlqurq61rBwAAAB5b33//vY4cOZKqvWbNmipSpIgOHz6scePGqVu3bmrWrJmklBvuFStW1Kuvvqrly5dLSpnuatWqVWrVqpWaNGmi06dPa8GCBSpTpkyawcXDKlGihHr06KFdu3bJ399fH374oS5dumT1ZrmDg4MWL16sF154QU899ZS6d++uAgUK6Pz589q0aZO8vb31zTffPFA9gwYN0qxZs/T2229r6dKlGjFihL7++ms1bdpU3bp1U5UqVRQXF6cDBw5o5cqVOnPmjPLkySMpZf2XgIAAHT16VAMGDDAf85lnntHIkSMlKVWY0rRpU33yySfy8fFRmTJlFBUVpY0bNyp37tzpqtfZ2VlvvvmmevfurQYNGqhdu3Y6ffq0IiIiUq2Z0rlzZy1fvlx9+vTRpk2bVKtWLSUnJ+vIkSNavny51q9fr6pVq6pixYrq0KGD3nvvPUVHR6tmzZqKjIzUiRMnHug9fRjPPfecXFxc1KxZM/Xu3VuxsbFatGiR/Pz8dOHChSyvBwAAAMgs6QpTWrdureHDh2vlypXKmTPnPftFRUVp9uzZmj59ul5//fXMqhEAAAB44owfPz7N9oiICBUuXFhdu3ZVnjx5LEYXFC9eXOHh4Ro0aJCWL1+utm3bqlu3brp48aLef/99rV+/XmXKlNGnn36qFStWaPPmzZled/HixfXuu+9qxIgROnr0qIKDg7Vs2TKFhoZa3a9evXqKiorSpEmTNHfuXMXGxiogIEAhISHq3bv3A9eTP39+dezYUZ988olOnjypokWL6qefftLkyZO1YsUKffzxx/L29laJEiU0ceLEVIuf16lTRytWrFDt2rXNbVWqVJGHh4du376tkJAQi/6zZ8+Wo6OjPvvsMyUkJKhWrVrauHHjfa//v1555RUlJyfrnXfe0YgRI1SuXDl9/fXXGjdunEU/BwcHrVmzRjNnztTHH3+s1atXy8PDQ0WKFNGgQYMs1n/58MMPlTdvXn322Wdas2aNGjRooG+//TbL11UpWbKkVq5cqbFjx2r48OEKCAhQ3759lTdvXv3vf//L0loAAACAzGQwpWNFyVu3bsnZ2TndB81ofwAAAACPvqCgIJUtW1Zr1661dykAAAAAkKXStWaKs7Oz5s6dm+5FFQlSAAAAAAAAAADAkyLdC9CPGTPGPIT+xx9/tGVNAAAAAAAAAAAAj4x0hykXL17UggULdOHCBTVq1EjBwcGaNGmSzp07Z8v6AAAAAAAAAAAA7Cpda6bc7dSpU1qyZIk+/vhj/fnnn2rYsKF69Oihli1b2myKr/DwcK1atUpHjhyRu7u7atasqSlTpqhkyZI2OR8AAAAAAAAAAID0gGHKHSaTSRs3btSSJUu0Zs0aeXp66vLly5lZn9nzzz+v9u3bq1q1arp9+7Zef/11/f777zp06JA8PT1tck4AAAAAAAAAAACnh9nZYDDIyclJBoNBJpNJt27dyqy6Ulm3bp3F9pIlS+Tn56fdu3frmWeesdl5AQAAAAAAAABA9vZAYcq5c+cUERGhJUuW6OzZs3rmmWe0aNEitW7dOrPru6fo6GhJUq5cue7ZJzExUYmJieZto9Goa9euKXfu3DIYDDavEQAAAAAAAAAAPLpMJpP++ecf5c+fXw4O915mPt3TfCUlJWnVqlX68MMP9eOPPypfvnzq2rWr/ve//6lIkSKZVnh6GI1GNW/eXDdu3NDWrVvv2W/ChAmaOHFiFlYGAAAAAAAAAAAeN+fOnVPBggXv+Xq6w5RcuXIpPj5eTZs2VY8ePRQaGmo1pbGlvn376vvvv9fWrVutXtzdI1Oio6NVqFAhnTt3Tt7e3llRKmATt27d0vLlyyVJbdu2lbOzs50rAgAbiIuT8udPef7XXxJrpAEAAACAXaX3nlRSXJKm558uSRr21zC5eLpkWY1ARsXExCgwMFA3btyQj4/PPfule5qvsWPHqnPnzsqbN2+mFPig+vfvr7Vr1+rnn3+2GqRIkqurq1xdXVO1e3t7E6bgsde3b197lwAAtuXo+O9zb2/CFAAAAAB4BKTnnlSSY5Lc5CYp5V4sYQoeB/dbGiTdYcrQoUMfupiHYTKZNGDAAK1evVqbN29WcHCwXesBAAAAAAAAAADZQ4YXoHdwcLCa0CQnJz9UQffSr18/ff755/rqq6+UI0cOXbx4UZLk4+Mjd3d3m5wTeFTdvn1b69evlySFhobKySnDH2UAAAAAAAAgQ7gnhewsw7/tq1evtti+deuWfvvtN3300Uc2Xex9/vz5kqR69epZtEdERKhbt242Oy/wKEpMTFTTpk0lSbGxsfyPCwAAAAAAADbHPSlkZxn+bW/RokWqtpdeeklPPfWUli1bph49emRKYXczmUw2OS4AAAAAAAAAAIA1Dpl1oKefflqRkZGZdTgAAAAAAAAAAIBHQqaMw7p586bmzJmjAgUKZMbhAAAAgMdScnKybt26Ze8ygCeSi4uLHBwy7fuAAAAAQIZkOEzx9fW1WIDeZDLpn3/+kYeHhz799NNMLQ4AAAB4HJhMJl28eFE3btywdynAE8vBwUHBwcFycXGxdykAAADIhjIcpsyaNcti28HBQXnz5lVISIh8fX0zqy4AAADgsXEnSPHz85OHh4fFl48APDyj0ai//vpLFy5cUKFChfiMAQAAIMtlOEzp2rWrLeoAAAAAHkvJycnmICV37tz2Lgd4YuXNm1d//fWXbt++LWdnZ3uXAwAAgGwmXWHK2bNnVahQoXQf9Pz586yfAtiQi4uL5s6da34OAADs584aKR4eHnauBHiy3fl7b3JyMmEKAAB2wj0pZGfpWr2vWrVq6t27t3bt2nXPPtHR0Vq0aJHKli2rL7/8MtMKBJCas7Oz+vXrp379+vEPSQAAHhFMOwTYFp8xAADsj3tSyM7SNTLl0KFDeuutt9SoUSO5ubmpSpUqyp8/v9zc3HT9+nUdOnRIBw8eVOXKlTV16lQ1btzY1nUDAAAAAAAAAABkiXSNTMmdO7dmzJihCxcuaO7cuSpevLiuXr2q48ePS5I6deqk3bt3KyoqiiAFyALJycnavHmzNm/erOTkZHuXAwAAAAAAgGyAe1LIzjK0AL27u7teeuklvfTSS7aqB0A6JCQkqH79+pKk2NhYeXp62rkiAAAAAAAAPOm4J4XsLF0jUwAAAAA8WQwGg9XHhAkTsrymJUuWKGfOnFl+XgAAAAC4nwyNTAEAAADwZLhw4YL5+bJlyzR+/HgdPXrU3Obl5WWPsgAAAADgkcTIFAAAAMBW4uKy7pFBAQEB5oePj48MBoN528/PTzNmzFDBggXl6uqqihUrat26deZ9z5w5I4PBoFWrVql+/fry8PBQhQoVFBUVZXGOrVu3qk6dOnJ3d1dgYKAGDhyouAzUOmHCBFWsWFGffPKJgoKC5OPjo/bt2+uff/7J8PUCAAAAwMMgTAEAAABsxcsr6x6ZaPbs2Zo+fbqmTZum/fv3KzQ0VM2bN9fx48ct+o0ZM0bDhw/X3r17VaJECXXo0EG3b9+WJJ08eVLPP/+8Wrdurf3792vZsmXaunWr+vfvn6FaTp48qTVr1mjt2rVau3atfvrpJ7399tuZdq0AAAAAkB6EKQAAAAAsTJs2TSNHjlT79u1VsmRJTZkyRRUrVtSsWbMs+g0fPlxNmjRRiRIlNHHiRP3xxx86ceKEJCk8PFydOnXS4MGDVbx4cdWsWVNz5szRxx9/rISEhHTXYjQatWTJEpUtW1Z16tRR586dFRkZmZmXCwAAAAD39UBrpnzyySdasGCBTp8+raioKBUuXFizZs1ScHCwWrRokdk1AgAAAI+n2Fh7V5BhMTEx+uuvv1SrVi2L9lq1amnfvn0WbeXLlzc/z5cvnyTp8uXLKlWqlPbt26f9+/frs88+M/cxmUwyGo06ffq0Spcuna56goKClCNHDovzXL58OcPXBQAAAAAPI8Nhyvz58zV+/HgNHjxYb731lpKTkyVJOXPm1KxZswhTgCzg7OysqVOnmp8DAIBHlKenvSuwqf/+PcRgMEhKGUkiSbGxserdu7cGDhyYar9ChQo90DnunOfOOQAAAJC1uCeF7CzDYcq7776rRYsWqWXLlhZzFVetWlXDhw/P1OIApM3FxUUjRoywdxkAAOAJ5O3trfz582vbtm2qW7euuX3btm2qXr16uo9TuXJlHTp0SMWKFbNFmQAAALAD7kkhO8twmHL69GlVqlQpVburq6vi4uIypSgAAAAA9jNixAiFhYWpaNGiqlixoiIiIrR3716LKbvuZ+TIkXr66afVv39/9ezZU56enjp06JA2bNiguXPn2rB6AAAAAMh8GQ5TgoODtXfvXhUuXNiifd26deme9xjAw0lOTtaePXskpXzr09HR0c4VAQCAJ8nAgQMVHR2tYcOG6fLlyypTpoy+/vprFS9ePN3HKF++vH766SeNGTNGderUkclkUtGiRdWuXTsbVg4AAABb4p4UsjODyWQyZWSHxYsXa8KECZo+fbp69OihxYsX6+TJkwoPD9fixYvVvn17W9X60GJiYuTj46Po6Gh5e3vbuxzggcXFxcnLy0tSynzknk/4fOwAsqm4OOn//6xTbOwTv/YEHl8JCQk6ffq0goOD5ebmZu9ygCcWnzUAAOwvvfekkuKSFO4VLkkaHTtaLp4uWVYjkFHpzQ0yPDKlZ8+ecnd319ixYxUfH6+OHTsqf/78mj179iMdpAAAAAAAAAAAADyIDIcpktSpUyd16tRJ8fHxio2NlZ+fX2bXBQAAAAAAAAAA8Eh4oDDlDg8PD3l4eGRWLQAAAAAAAAAAAI+cDIcplSpVksFgSNVuMBjk5uamYsWKqVu3bqpfv36mFAgAAAAAAAAAAGBPDhnd4fnnn9epU6fk6emp+vXrq379+vLy8tLJkydVrVo1XbhwQQ0bNtRXX31li3oBAAAAAAAAAACyVIZHply9elXDhg3TuHHjLNrffPNN/fHHH/rhhx8UFhamSZMmqUWLFplWKAAAAAAAAAAAgD1kOExZvny5du/enaq9ffv2qlKlihYtWqQOHTpoxowZmVIggNScnZ0VFhZmfg4AAAAAAADYGvekkJ1lOExxc3PT9u3bVaxYMYv27du3y83NTZJkNBrNzwFkPhcXF02YMMHeZQAAAAAAACAb4Z4UsrMMhykDBgxQnz59tHv3blWrVk2StGvXLi1evFivv/66JGn9+vWqWLFiphYKAAAAAAAAAABgDxkOU8aOHavg4GDNnTtXn3zyiSSpZMmSWrRokTp27ChJ6tOnj/r27Zu5lQIwMxqNOnz4sCSpdOnScnBwsHNFAAAAAAAAeNJxTwrZ2QP9tnfq1ElRUVG6du2arl27pqioKHOQIknu7u42mebr559/VrNmzZQ/f34ZDAatWbMm088BPA5u3rypsmXLqmzZsrp586a9ywEAAI8hg8Fg9WGv6Rtu3rypsLAwlShRQq6ursqTJ4/atGmjgwcPZvhYQUFBmjVrVuYXCQAAkE1xTwrZ2WMVHcbFxalChQqaN2+evUsBAAAAHmsXLlwwP2bNmiVvb2+LtuHDh2d5TYmJiWrYsKE+/PBDvfnmmzp27Ji+++473b59WyEhIdqxY0eW1wQAAAAA0gOEKcnJyZo2bZqqV6+ugIAA5cqVy+JhSy+88ILefPNNtWrVyqbnAQAAADJDXFzWPTIqICDA/PDx8ZHBYDBv+/n5acaMGSpYsKBcXV1VsWJFrVu3zrzvmTNnZDAYtGrVKtWvX18eHh6qUKGCoqKiLM6xdetW1alTR+7u7goMDNTAgQMVZ6XYWbNmKSoqSmvXrlXbtm1VuHBhVa9eXV9++aVKly6tHj16yGQySZLq1aunwYMHW+zfsmVLdevWzfz6H3/8oSFDhphH2wAAAADAg8pwmDJx4kTNmDFD7dq1U3R0tIYOHaoXX3xRDg4OdpsK4F4SExMVExNj8QAAAACyipdX1j0y0+zZszV9+nRNmzZN+/fvV2hoqJo3b67jx49b9BszZoyGDx+uvXv3qkSJEurQoYNu374tSTp58qSef/55tW7dWvv379eyZcu0detW9e/f/57n/fzzz9WoUSNVqFDBot3BwUFDhgzRoUOHtG/fvnRdw6pVq1SwYEG98cYb5tE2AAAAAPCgMhymfPbZZ1q0aJGGDRsmJycndejQQYsXL9b48eMfuWH34eHh8vHxMT8CAwPtXRIAAADwyJs2bZpGjhyp9u3bq2TJkpoyZYoqVqyYav2R4cOHq0mTJipRooQmTpyoP/74QydOnJCU8nfxTp06afDgwSpevLhq1qypOXPm6OOPP1ZCQkKa5z127JhKly6d5mt32o8dO5aua8iVK5ccHR2VI0cO84gbAAAAAHhQThnd4eLFiypXrpwkycvLS9HR0ZKkpk2baty4cZlb3UMaPXq0hg4dat6OiYkhUAEAAECWiY21dwUZFxMTo7/++ku1atWyaK9Vq1aqUSHly5c3P8+XL58k6fLlyypVqpT27dun/fv367PPPjP3MZlMMhqNOn369D1DkzvTeAEAAADAoyTDYUrBggV14cIFFSpUSEWLFtUPP/ygypUra9euXXJ1dbVFjQ/M1dX1kasJAAAA2Yenp70rsC1nZ2fz8ztrkhiNRklSbGysevfurYEDB6bar1ChQmker0SJEjp8+HCar91pL1GihKSUqb/uDl5u3bqVwSsAAAAAgPTJcJjSqlUrRUZGKiQkRAMGDNDLL7+sDz74QGfPntWQIUNsUSOAuzg7O2v48OHm52mJi5P+f8pyAHg8xUk+//80OloSf6bhEZWUJBmNKf/ffVz/35ucnPLf27clDw9v5c+fX1u2bFOtWnXNfbZu3aZq1apbXOfdz+8c6/ZtqWLFyjp48JCCgoqlec603qu2bdtr3Lgx2r17n8W6KUajUTNmzFSZMmX01FMVdPu2lCdPXv3114X/nDdZv//+u+rWrW9uc3Fx0a1byY/tzwWWbt9O+az984+UmGjvagAAyJ6Skpw1YEDKPan4eGfz37OcnJ78LxIBGQ5T3n77bfPzdu3aqXDhwtq+fbuKFy+uZs2aZWpxd4uNjTXPwSxJp0+f1t69e5UrV657frsNeBK5uLjonXfeuefrcXHSmjVSTEzW1QQAmc0pUer1/8+XL5duM9gUjyg3N+mpp1JCv/h4e1fzYOLiJJNJunYtZbtPnxGaOjVMfn5FVbZsRX3xRYT27durd9/9TNeuSTdupPSLifl3n/+f/dfc9sorI9WkydPq3bu/OnXqKQ8PTx09ekg//7xB4eFz06yjc+chWrXqK7Vo0UwTJkxX5cohunLlkmbPnqzDhw9rxYqNun49ZQRM9eoNNH78UC1b9q2CgopqwYIZun79hpKS/q0pf/4gRUb+rOeeay8XF1flzp3HRu8gssKtWym/q2vXSvdYdgcAANici0qXTrkntXLlv63e3lLLlgQqeLJlOEz5+eefVbNmTTk5pez69NNP6+mnn9bt27f1888/65lnnsn0Iu/49ddfVb9+ffP2nfVQunbtqiVLltjsvMDj5vbtlBsZ7u4pN3gA4HHk+J8bZTlzSsn8eYZHlLOz5OAgOTqmfCPvceTgkPLfO/X37TtQcXHRmjBhmK5evaySJcvos8++VokSxS36/fea726rUKG8vv76J7311hg1b15HkklBQUXVsmW7e75PXl5u+uqrHzVz5mSFh7+uc+f+kJdXDtWuXV8//LBDpUuXNfft3Pl/OnRonwYM6CInJyf16TNEtWvXl8Hwby2jR7+hYcN6KySkqBITE/X336zH8jgzGlN+V729U/6eCwAAHg0JCSn3oRgNjCedwZTBFR4dHR114cIF+fn5WbT//fff8vPzU/KdOQIeQTExMfLx8VF0dLS8vb3tXQ7wwIxGo86ePSspZc5xhzt3QP5fdLT0+eeSry/fCADw+HJMiFPjtl6SpO+WxyrZjT/Q8GhyckqQn99pBQYGy8WF1A+wlaSkBJ07d1qXLwfr9m0+awAA2IPRaNSVKyn3pPLmTbknFRcnXb8udewo+fz/XM1JcUkK9wqXJI2OHS0XTxd7lQzcV3pzgwx/d85kMpkXl/yvv//+W57ctQWyxM2bNxUcHCwpZfo7PnsAAAAAAACwtaSkm+rVK+We1PLlsXLjS2/IRtIdprz44ouSJIPBoG7dusnV9d+Jy5OTk7V//37VrFkz8ysEAAAAAAAAAACwo3SHKT7/P0bLZDIpR44ccv/PJLUuLi56+umn1atXr3vtDgAAAAAAAAAA8FhKd5gSEREhSQoKCtLw4cOZVggAAAAAAAAAAGQLGV4zJSwszBZ1AAAAAAAAAAAAPJLSFaZUqlQpzUXn07Jnz56HKggAAAAAAAAAAOBRkq4wpWXLljYuAwAAAAAAAAAA4NGUrjCFqb2AR4uTk5NeffVV83MAAAAAAADA1hwdndS48avm50B28sC/8bt379bhw4clSU899ZQqVaqUaUUBsM7V1VXz5s2zdxkAAAAAAADIRpydXdWnD/ekkD05ZHSHy5cvq0GDBqpWrZoGDhyogQMHqkqVKnr22Wd15coVW9QIAAAAIJP5+hqsPt5+e4Jda/v22zXp6rtu3Vo1aVJXgYE5lD+/hxo0qKbPP1+S4XO+/fYE1alTMcP7AQAAAMgeMhymDBgwQP/8848OHjyoa9eu6dq1a/r9998VExOjgQMH2qJGAHcxmUy6cuWKrly5IpPJZO9yAADAY+jIkQvmR3j4LOXI4W3R1r//8AwdLykpyUaV3tvChe+qU6cWCgmppQ0bftHWrfv14ovtNXRoH40bl7H6AQAAcH8mk0nR0VcUHc09KWQ/GQ5T1q1bp/fee0+lS5c2t5UpU0bz5s3T999/n6nFAUhbfHy8/Pz85Ofnp/j4eHuXAwAAHkP+/gHmh7e3jwwGg3k7Pj5Or7zSSSVK+KtgQS81aFBNmzdvtNi/fPkgvfPOJPXp00WFCnlr8OBXJEkffbRITz0VqPz5PfTyy600b94MFS6c02Lf7777SnXrVlZAgJsqViyiKVMm6vbt2+bjStLLL7eSr6/BvH23P/88p7Fjh6lv38EaP36ySpUqoyJFiql//2F64413NHfudP366y+SpM8/X5Kqhm+/XSNfX4P59SlTJur33/eZR+Y8yOgWAACAJ11iYrw6d/ZT585+SkzknhSylwyvmWI0GuXs7Jyq3dnZWUajMVOKAgAAAJ4Ecbfisuxcns6emXas2NhYNWrUWGPHviVXV1ctXfqxOnRopp07jyowsJC537vvTtNrr43XyJFhkqQdO7Zp6NA+mjBhil54obk2b96oyZPHWRx7+/Yt6tOni6ZMmaMaNero9OmT5iBm5Mgw/fjjLhUv7qd58yL07LPPy9HRMc0av/56pW7dupXmCJpu3Xpr0qTX9eWXX6hq1ZD7Xm+rVu10+PDv2rhxndasSQmNvL190vdmAQAAAMgWMhymNGjQQIMGDdIXX3yh/PnzS5LOnz+vIUOG6Nlnn830AgEAAIDHVcH3vLLsXNcHZd40C+XKVVC5chXM22PGTNLatav1/fdf65VX+pvbn3mmgfr3H2benjRpjBo2fEEDBqQEHMWKldDOndu1fv1ac5+pUydq8OBR6tChqyQpKKiIXn99kiZMeE0jR4YpT568kiQfn5zy9w+4Z40nThyTt7ePAgLypXrNxcVFhQsX0YkTx9J1ve7u7vL09JKTk5PVcwIAAADIvjIcpsydO1fNmzdXUFCQAgMDJUnnzp1T2bJl9emnn2Z6gQAAAACyVmxsrKZMmaAffvhWFy9eUHLybd28eVN//nnWol/FilUttk+cOKqmTVtZtFWpUt0iTPn993365ZdtmjHjLXNbcnKyEhISFB8fLw8PDxtcEQAAAAA8nHSHKcOHD1fPnj1VqlQp7dmzRxs3btSRI0ckSaVLl1bDhg1tViQAAADwOPrz1Vh7l/BAxo0brs2bN2jSpGkKDi4md3d3de36km7dslxk3tMz41OLxcXFatSoiWrW7MVUr7m5uaX7OMWKlVBMTLQuXPhL+fLlt3gtKSlJZ86cVJ069SVJDg4OqRZIvXXrVoZrBwAAAJB9pTtM+eqrrzRz5kyFhISoZ8+eateunRo1amTL2gAAAIDHWmauY5KVfvllmzp27GYeZRIbG6uzZ8/cd79ixUpqz55dFm13b5cvX1knThxVkSLF7nkcZ2dnJScnWz1Xs2atNWHCSM2bN11vvjnd4rWIiAWKi4tT69YdJEm5c+dVbOw/iouLMwdABw7sveucLvc9JwAAAIDsyyG9HY8fP65NmzapRIkSGjRokAICAtSjRw9t377dlvUBAAAAyGJFixbXN9+s0oEDe3XgwD716tVRJpPxvvu98soAbdjwnebNm6GTJ48rIuJ9bdz4vQwGg7nPa6+N19KlH2vKlIk6fPigjh49rC+/XKo33xxr7lOoUJB++ilSly5d1I0b19M8V2BgIU2cOFXz58/SpEljdOzYEZ0+fVLz5s1QWNhr6t9/mHnx+apVQ+Th4aFJk17X6dMntWLF5/riiyUWxytUKEhnz57WgQN79fffV5WYmPgA7xwAAACAJ1W6wxRJeuaZZ7RkyRJdvHhRs2fP1rFjx1S7dm2VLl1a06ZN06VLl2xVJ4D/cHJyUteuXdW1a1c5OWV46SMAAACr3nprhnLm9FVoaE116NBMDRqEqnz5yvfd7+mna2nGjAV6770ZqlOngiIj16lv3yEW03c9+2yoli5dqx9//EHPPltNjRo9rfnzZyowsLC5z6RJ07V58waVLRuoZ56pdM/z9e07WJ98slpRUVvUoEFV1axZVitXfq7p0+dr0qRp5n6+vrn0/vufasOG71SrVjl9+eUXGjlygsWxmjdvrWeffV7NmtVXsWJ59eWXX2TgHQMAAMgeHB2d1KBBVzVo0FWOjtyTQvZiMN09eXAGnThxQhEREVqwYIFiY2Mf6W9wxcTEyMfHR9HR0fL29rZ3OYDNREdLn38u+fpKDzCVOQA8EhwT4tS4rZck6bvlsUp24w80PJqcnBLk53dagYHBcnFJ/5of2cWgQb107NgRff/9FnuXgsdcUlKCzp07rcuXg3X7Np81AAAeFXFx0vXrUseOko9PSltSXJLCvcIlSaNjR8vF08WOFQLWpTc3eKj4MC4uTlu2bNFPP/2k69evq2TJkg9zOAAAAACPuXffnaZ69RrJ09NTGzd+ry+++EjTpr1n77IAAAAA4KE8UJiydetWffjhh1q5cqVMJpPatGmjKVOmqFatWpldH4A0mEwmxcfHS5I8PDws5iEHAACwpz17dmrOnKmKjf1HQUFF9Pbbc9SlS097lwUAAIBMYDKZlJiYck/K1ZV7Ushe0h2mXLhwQR999JGWLFmiY8eO6emnn9aMGTPUvn17eXl52bJGAHeJj483f+5iY2PlyVxeAADgERERsdzeJQAAAMBGEhPj1fb/p2NevjxWbkzHjGwk3WFKYGCgcufOrc6dO6tHjx4qXbq0LesCAAAAAAAAAAB4JKQ7TFm+fLmaN28uJ6eHWmYFAAAAAAAAAADgsZLuZOTFF1+0ZR0AAAAAAAAAAACPJAd7FwAAAAAAAAAAAPAoI0wBAAAAAAAAAACwgjAFAAAAAAAAAADAigyvJv/jjz+qZs2acnNzs0U9ANLB0dFRL730kvk5AACAPTRtWk/lylVUePgse5cCAACALODg4KiaNV8yPweykwyHKc2bN9ft27dVrVo11atXT3Xr1lWtWrXk7u5ui/oApMHNzU0rVqywdxkAAOAx1r59M92+fUsrV65L9dr27VvUpMkz2rJln8qWLW+H6gAAAPAocnFx06hR3JNC9pThab6uX7+uyMhIvfDCC9q5c6datWqlnDlzqlatWho7dqwtarQwb948BQUFyc3NTSEhIdq5c6fNzwkAAAA8aTp37qFNmzbo/Pk/U732+ecRqlSpKkEKAAAAAPy/DIcpzs7OqlWrll5//XWtX79eO3bsUIcOHbRz506Fh4fbokazZcuWaejQoQoLC9OePXtUoUIFhYaG6vLlyzY9LwAAAPCkCQ1tqjx58uqLL5ZYtMfGxuqrr1aoceOW6tGjg8qUKaD8+T1Us2Y5rVz5xT2P98Ybr6thw5BU7bVrV9DUqW+Ytz/+eLFCQkorIMBN1auX0uLF72XaNQEAAACArWQ4TDl27JgWLlyojh07qkCBAqpbt66io6M1bdo07dmzxxY1ms2YMUO9evVS9+7dVaZMGS1YsEAeHh768MMP0+yfmJiomJgYiwfwJIiLi5PBYJDBYFBcXJy9ywEAAPdwKy4pyx4Z5eTkpHbtuujzz5fIZDKZ27/6aoWSk5PVtu3LqlixipYt+1bbt/+ubt1eUZ8+nbV7d9ojw9u06aTdu3fq9OmT5rbDhw/q4MH9eumljpKk5cs/U3j4eI0d+5Z++eWwxo2brMmTx+mLLz7KcP0AAADIegkJcWre3KDmzQ1KSOCeFLKXDK+ZUqpUKeXNm1eDBg3SqFGjVK5cORkMBlvUZiEpKUm7d+/W6NGjzW0ODg5q2LChoqKi0twnPDxcEydOtHltAAAg8yW7eeqbr0337wg8wt4raNuR2/816HpYhvd5+eX/6d1339G2bT+pdu16kqTPPotQs2atVahQYQ0YMNzc95VXBigycr3WrFmuKlWqpzpW6dJPqWzZClq58nONGDFOkrRixWeqWjVERYoUkyS9/XaYJk2armbNXpQkFS4crKNHDyki4n116NA1w/UDAADg0eTi6aIwU8b/fgo8yjI8MmXgwIEqUKCA3njjDfXp00djxozRDz/8oPj4eFvUZ3b16lUlJyfL39/fot3f318XL15Mc5/Ro0crOjra/Dh37pxNawQAAAAeJyVKlFL16jX16acpI71PnTqhqKgt6ty5h5KTk/XOO5NUs2Y5BQfnUsGCXvrxx/X688+z9zxemzadtHLl55Ikk8mkL7/8Qm3adJKUMrL29OmTGjiwhwoW9DI/pk17U2fOnLznMQEAAADgUZDhkSmzZs2SJN24cUNbtmzRTz/9pDFjxujgwYOqVKmStm3bltk1PjBXV1e5urrauwwAAABkU6/+Ofr+neysc+ceGjlygN55Z54++yxCwcFFVatWXc2aNUULFszW5MmzVKZMOXl6emr06MFKSrr3lGKtW3fQhAkjtW/fHt28eVPnz59Tq1btJElxcbGSpFmzFqlqVcu1VRwdHW13gQAAAACQCTIcptyRnJysW7duKTExUQkJCUpMTNTRo0czszYLefLkkaOjoy5dumTRfunSJQUEBNjsvAAAAMCDcvZ0sXcJ99WyZVuNHj1IK1d+rqVLP9b//tdXBoNBv/yyTY0bt1C7di9LkoxGo06ePKaSJcvc81gFChRUrVp1tWLFZ7p586bq1WukvHn9JEl+fv7Kly+//vjjlNq27ZQl1wYAAAAAmeWBpvkqX768/P391bt3b/3111/q1auXfvvtN125csUWNUqSXFxcVKVKFUVGRprbjEajIiMjVaNGDZudFwAAAHiSeXl5qVWrdnrjjdG6dOmCOnbsJkkqWrS4Nm3aoF9+2a6jRw9ryJDeunz5kvWDKWWqr1Wrluqrr1aYp/i6Y9SoiZo5M1zvvz9HJ04c08GDB/TZZxGaN2+GLS4NAAAAADJNhkemXLhwQa+88orq1aunsmXL2qKmexo6dKi6du2qqlWrqnr16po1a5bi4uLUvXv3LK0DAAAAeJK8/HIPffLJB2rUqLHy5csvSRo+fKzOnDmll14Klbu7h7p2fUVNmrRUTEy01WO1aPGSXnutvxwdHdWkSUuL17p06Sl3dw+9++47Gj9+hDw8PFWmTDn17TvYRlcGAAAAAJkjw2HKihUrbFFHurRr105XrlzR+PHjdfHiRVWsWFHr1q1LtSg98KRzdHRU48aNzc8BAAAeRvXqNXT9usmizdc3lz77bI3V/dau3Zyqzccnpy5eTLjnPm3adFSbNh0fpEwAAADYmYODo6pWbWx+DmQnD7xmyqFDh3T27NlUC1A2b978oYuypn///urfv79NzwE86tzc3PTtt9/auwwAAAAAAABkIy4ubho/nntSyJ4yHKacOnVKrVq10oEDB2QwGGQypXyDzWAwSEpZmB4AAAAAAAAAAOBJkeEF6AcNGqTg4GBdvnxZHh4eOnjwoH7++WdVrVpVmzdvtkGJAAAAAAAAAAAA9pPhMCUqKkpvvPGG8uTJIwcHBzk4OKh27doKDw/XwIEDbVEjgLvExcXJ09NTnp6eiouLs3c5AAAAAAAAyAYSEuLUpo2n2rTxVEIC96SQvWQ4TElOTlaOHDkkSXny5NFff/0lSSpcuLCOHj2audUBuKf4+HjFx8fbuwwAAAAAAABkI4mJ8UpM5J4Usp8Mr5lStmxZ7du3T8HBwQoJCdHUqVPl4uKihQsXqkiRIraoEQAAAAAAAAAAwG4yHKaMHTvWPK3QG2+8oaZNm6pOnTrKnTu3li5dmukFAgAAAAAAAAAA2FOGw5TQ0FDz82LFiunIkSO6du2afH19ZTAYMrU4AAAAAAAAAAAAe8vwmilpyZUrly5evKj+/ftnxuEAAAAAAAAAAAAeGRkKUw4ePKi5c+dq4cKFunHjhiTp6tWrGjx4sIoUKaJNmzbZokYAAAAAMDt79ox8fQ06cGCvvUsBAAAAkE2kO0z5+uuvValSJQ0cOFB9+vRR1apVtWnTJpUuXVpHjhzR6tWrdfDgQVvWCuD/OTg4qG7duqpbt64cHDJlgBkAAMiGrl69oqFD+6ps2ULy93dVyZIBat06VDt2bDP38fU16Ntv12TK+dITgrz99gT5+hqsPgoUCNSRIxdUunTZTKkLAAAA6WMwOKhs2boqW7auDAbuSSF7SfeaKW+++ab69eunSZMmafHixRo6dKgGDhyo7777TtWqVbNljQDu4u7urs2bN9u7DAAA8Jjr0qW1bt1K0vz5H6lw4SK6cuWSfvopUteu/Z3p50pKSkpXv/79h6t79z7m7QYNqqlbt1fUpUsvc5ujo6P8/QMyvUYAAABY5+rqrsmTN9u7DMAu0h0fHj16VP369ZOXl5cGDBggBwcHzZw5kyAFAAAAeAxFR99QVNQWTZgwRXXq1FehQoVVpUp1DR06Wo0bN5cklS8fJEl6+eVW8vU1mLdPnz6pjh1bqEQJfxUs6KUGDapp8+aNFscvXz5I77wzSX36dFGhQt4aPPgVVagQLEl65plK8vU1qGnTeqnq8vLykr9/gPnh6OgoL68cFm13j3DZunWzfH0Nioxcr2eeqaR8+dzVvHkDXblyWRs2fK+QkNIqVMhbPXt2VHx8vPlcRqNRM2aEq0KFYOXL567atSvoq69WZu4bDQAAAOCJkO6RKf/884+8vb0lpXwTzN3dXUWKFLFZYQAAAMDjLi4u7p6vOTo6ys3NLV19HRwc5O7ubrWvp6dnhmrz9PSSl5eXvv12japWfVqurq6p+vz44y4VL+6nefMi9Oyzz8vR0VGSFBsbq0aNGmvs2Lfk6uqqpUs/VocOzbRz51EFBhYy7//uu9P02mvjNXJkmCSpZ89+evbZ6lqzZqNKlXpKLi4uGar5fqZMmaCpU+fKw8ND3bu3VffubeXq6qpFiz5XbGysOndupYUL39XgwSMlSTNmhGvFik81Y8YCFS1aXNu3/6zevV9Wnjx5VatW3UytDQAAAMDjLd1hiiStX79ePj4+klK+xRUZGanff//dok/z5s0zrzoAaYqLi1NQUJAk6cyZMxm+eQIAALJGwYJe93ytUaPGWr78W/N2iRJ+FqMm/qtWrbpau3azebtChSD9/fdViz7Xr5syVJuTk5PmzVuiQYN6KSJigcqXr6xaterqxRfbq2zZ8pKkPHnySpJ8fHJaTKtVrlwFlStXwbw9ZswkrV27Wt9//7VeeaW/uf2ZZxqof/9h5u07YUyuXLltMk3XmDFv6umna0mSXn65h954Y7R+++2kgoJSvgTWvPlL2rp1kwYPHqnExETNnDlZq1dvVPXqNSRJQUFFtGPHVkVEvE+YAgAAkIaEhDj17BkkSVq8+Izc3LgnhewjQ2FK165dLbZ79+5tsW0wGJScnPzwVQG4r6tXr96/EwAAgBXNm7fWc881UVTUFv366w5t2PC95syZqjlzFqtjx2733C82NlZTpkzQDz98q4sXLyg5+bZu3rypP/88a9GvYsWqNr4CS089Vd783M/PXx4eHuYg5U7bnj07JUmnTp1QfHy8XnyxkcUxkpKSVL58pawpGAAA4DEUE8M9KWRP6Q5TjEajLesAAAAAnjh//hl7z9fujNK449ixy/fs6+BgudThvn1nHqqu/3Jzc1P9+o1Uv34jjRgxTgMH9lR4eJjVMGXcuOHavHmDJk2apuDgYnJ3d1fXri/p1i3LReazevSss7Oz+bnBYJCTk7PF6waDwfzvmri4lJ/NsmXfKl++Ahb9XFxST3kGAAAAIHvL0MgUAAAAAOmXkTDBVn0zqmTJMvr22zXmbWdn51Sjz3/5ZZs6duympk1bSUoZqXL27Jn7HtvZOWWNlEdhNHvJkmXk6uqqc+fOMqUXAAAAgPsiTAEAAACyoWvX/la3bm3UqdP/9NRT5ZUjRw799tuvmjNnqho3bmHuV6hQkH76KVIhIbXk6uqqnDl9VbRocX3zzSo9/3wzSQZNnjxOJtP9R7Lnzesnd3d3bdy4TvnzF5Srq5t5TcasliNHDvXvP1xjxgyRyWTU00/XVkxMtH75ZZty5PBWhw5d738QAAAAANmGw/27AAAAAHjSeHp6qUqVEM2fP1NNmjyjmjXLavLkcerSpZemTp1r7jdp0nRt3rxBZcsG6plnUtYSeeutGcqZ01ehoTXVoUMzNWgQqvLlK9/3nE5OTnr77TlasuR9lS6dX506tbjvPrY0ZswkjRgxTjNnhiskpLReeul5/fDDtypUKNiudQEAAAB49BhMJpPJ3kVklZiYGPn4+Cg6Olre3t72Lgd4YHFxcfLy8pKUMq3G3VN9REdLn38u+fpKWTxVOQAA2Y6TU4L8/E4rMDBYLi5u9i4HeGIlJSXo3LnTunw5WLdv81kDAMAeEhLi1LZtyj2p5ctj5ebmqbg46fp1qWNHyU6DjoGHkt7cgGm+gMeQg4ODqlatan4OAAAAAAAA2JrB4KBixaqanwPZCWEK8Bhyd3fXrl277F0GAAAAAAAAshFXV3fNmME9KWRPmRYf7tu3T46Ojpl1OAAAAAAAAAAAgEdCpo7FykbLrwAAAAAAAAAAgGwi3dN8vfjii1Zfj46OlsFgeOiCANxffHy8ypQpI0k6dOiQPDw87FwRAAAAAAAAnnSJifHq1y/lntS8eYfk6so9KWQf6Q5TvvnmGzVq1Ej+/v5pvp6cnJxpRQGwzmQy6Y8//jA/BwAAAAAAAGzNZDLp8mXuSSF7SneYUrp0abVu3Vo9evRI8/W9e/dq7dq1mVYYAAAAAAAAAADAoyDda6ZUqVJFe/bsuefrrq6uKlSoUKYUBQAAAAAAAAAA8KhI98iUBQsWWJ3Kq3Tp0jp9+nSmFAUAAAAAAAAAAPCoSPfIFFdXVxa5BgAAAGA3r77aTZ06tbR3GQAAAACyoXSHKfb21ltvqWbNmvLw8FDOnDntXQ4AAADw2Lt69YqGDu2rsmULyd/fVSVLBqh161Dt2LHN3MfX16Bvv11j81p8fQ1WH2+/PUHh4bP13ntLbF4LAAAAANwt3dN82VtSUpLatGmjGjVq6IMPPrB3OYBdGQwGlSlTxvwcAADgQXTp0lq3biVp/vyPVLhwEV25ckk//RSpa9f+zvJajhy5YH6+evUyTZ48Xrt2HTW3eXp6ycvLK8vrAgAAwL8MBoMCA7knhezpsRmZMnHiRA0ZMkTlypWzdymA3Xl4eOjgwYM6ePAg0+8BAIAHEh19Q1FRWzRhwhTVqVNfhQoVVpUq1TV06Gg1btxcklS+fJAk6eWXW8nX12DelqQPPpivSpWKys/PRdWqldTSpZ9YHN/X16APPpivl156QfnyuatixSL66quV96zH3z/A/PD29pHBYLBo8/LySjXNV9Om9fTaawM0evRgBQX5qkQJf3300SLFxcWpX7/uCgzMocqVi2nDhu8tznXo0O966aUXVLCgl0qU8Ffv3p31999XH+4NBQAAyAZcXT00b95BzZt3UK6u3JNC9vLYjEx5EImJiUpMTDRvx8TE2LEaIOslJNi7AgAAnnzOzpLJJBmNKY//iouLu+d+jo6OcnNzS1dfBwcHubu7W+3r6emZgaold3cveXp6ae3aNapc+Wm5urqm6rNx4y6VLOmnd9+N0LPPPi9HR0cZjdLatas1evQgvfXWLNWt21A//LBW/ft3V758BVWnTn3z/pMnj9P48W9r8uTZWr78E/Xo0V4lShxQyZKlrdZ25328+/00mf59r+/44ouPNGDAa9qwYadWr16mYcP6au3a1WrSpJUGD35d8+fPVJ8+nbVv31l5eHgoOvqGWrRooJdf7qk335yphISbmjhxpLp1a6uvvvoxQ+8hspbRmPLzj4+Xbt2ydzUAAOAO7j8hu3iiw5Tw8HBNnDjR3mUAWc7JSfL2lmJipJs37V0NAABPNje3lJu8ycnS7duWrxUqdO9pqRo2bKzPPvvWvF2ypJ9u3oxPs2/NmnW1evVm83alSkGpRlJcumTKYOVOmjNniYYN66UlSxaoXLnKqlGjrlq2bK+nniovScqZM68kycsrp3LnDpCUco1z505Tu3bd1LXrq5KkV14Zql27dmju3GmqUePfMKVZszbq0KGnJOm11yZp06YNWrjwXU2Z8p7Vyu6EJXe/n3fClDvtJpP01FMVNHjwWEnSgAGjNXv22/L1zaOOHXtJkoYOHa+IiPnav3+/qlZ9Wu+/P1dly1bS6NGTzcedOfNDVaoUqKNHj6lo0RIZfB+RVZKTU343YmK4aQMAwKPG2zvlfhTwJEvXr/iLL76Y7gOuWrUq3X1HjRqlKVOmWO1z+PBhlSpVKt3H/K/Ro0dr6NCh5u2YmBgFBgY+0LGAR0l8fLyqVasmSdq1a1eqqb48PaWWLVPfgAAAAJkvKUm6fFny8UkJVtLL2VnKlevfbWtTTjs53b/vf19Pry5dWqtt2ybaunWLfvllh9at+17z5k3V++8vVteu3cz9cuSwPP6JE4fVp88rFm1169bS3Lmz72qrYbFdu3YN7du39761enqmXOPd/VxcUh532p2cpPLly/+nn6Py5MmtKlXKmdt8ff0lSYmJl5Url3TixD5t27ZJRYqkDrr+/vukqlUjTHlUJSRIN25ITZum/B4AAICsFx8frwYNUu5J/fjjv/eknJxS/g4HPMnSFab4+PjY5OTDhg1Tt27drPYpUqTIAx/f1dU1zekKgMedyWTSoUOHzM/Twv/AAADIGgkJ0tWrKf+AvPvbeLGxsffcz9HR0aL/5cuX79nXwcHBou+ZM2dS9XnQbwJ6ebnp+ecb6fnnGyksbJx69uypN94IU48e3f5Ta+rj393m6Ji6jrv7ODikhCT3qzWtY6W1v8Egubo6W/QzGAx3tRn+v90oJycpLi5WzZo1S/NLXfny5eMblY8wJ6eU34EcOTIWXAIAgMzj5GTSkSMp96S8vU3cf0K2kq5/KkRERNjk5Hnz5lXevHltcmwAAADA3jKyjomt+mZUmTJltGbNGvO2s7OzkpOTLfqULl1a27ZtU9euXc1t27ZtU5kyZSz67dixQ126dLHYrlSpkm0KT6fKlSvryy+/VFBQkJxITgAAAACkk8OD7HT79m1t3LhR77//vv755x9J0l9//WX1m3cP6+zZs9q7d6/Onj2r5ORk7d27V3v37rXpOQEAAIAn1d9//60GDRro008/1f79+3X69GmtWLFCU6dOVYsWLcz9goKCFBkZqYsXL+r69euSpBEjRmjJkiWaP3++jh8/rhkzZmjVqlUaPny4xTlWrFihDz/8UMeOHVNYWJh27typ/v37Z+l13q1fv366du2aOnTooF27dunkyZNav369unfvnio0AgAAAIA7MvxVrD/++EPPP/+8zp49q8TERDVq1Eg5cuTQlClTlJiYqAULFtiiTo0fP14fffSRefvON9o2bdqkevXq2eScAAAAwJPKy8tLISEhmjlzpk6ePKlbt24pMDBQvXr10uuvv27uN336dA0dOlSLFi1SgQIFdObMGbVs2VKzZ8/WtGnTNGjQIAUHBysiIiLV38snTpyopUuX6tVXX1W+fPn0xRdfpBq9ktXy58+vbdu2aeTIkXruueeUmJiowoUL6/nnn5eDwwN91wwAAABANmAw3WvBhXto2bKlcuTIoQ8++EC5c+fWvn37VKRIEW3evFm9evXS8ePHbVXrQ4uJiZGPj4+io6Pl7e1t73KABxYXFycvr5RFU2NjY2061QcAALAuISFBp0+fVnBwsNxYyMHMYDBo9erVatmypb1LwROCzxoAAPbHPSk8idKbG2R4ZMqWLVu0fft2ubi4WLQHBQXp/PnzGa8UAAAAAAAAAADgEZbhMMVoNKY5l/Cff/6pHDlyZEpRAKwzGAwqXLiw+TkAAAAAAABga9yTQnaW4TDlueee06xZs7Rw4UJJKR+a2NhYhYWFqXHjxpleIIDUPDw8dObMGXuXAQAAcE8ZnE0YAAAAjwHuSSE7y3CYMn36dIWGhqpMmTJKSEhQx44ddfz4ceXJk0dffPGFLWoEAAAAAAAAAACwmwyHKQULFtS+ffu0dOlS7d+/X7GxserRo4c6deokd3d3W9QIAAAAAAAAAABgNxkOUyTJyclJL7/8cmbXAiCdbt68qWeeeUaS9PPPPxNkAgAAAAAAwOa4J4Xs7IHClOPHj2vTpk26fPmyjEajxWvjx4/PlMIA3JvRaNSvv/5qfg4AAAAAAADYGvekkJ1lOExZtGiR+vbtqzx58iggIEAGg8H8msFgIEwBAAAAAAAAAABPlAyHKW+++abeeustjRw50hb1AAAAAAAAAAAAPFIyHKZcv35dbdq0sUUtAAAAwBPl5k0pKSlrzuXiIjFltW0EBQVp8ODBGjx4cJaet169eqpYsaJmzZpl0/N069ZNN27c0Jo1ax6J4wAAAACPogyHKW3atNEPP/ygPn362KIeAAAA4Ilw86b01VfS9etZcz5fX6lFi4wHKufOnVNYWJjWrVunq1evKl++fGrZsqXGjx+v3LlzZ+hYBoNBq1evVsuWLTNWxCNiyZIlGjx4sG7cuGHRvmvXLnl6ej7wcfft26dx48Zpx44diomJUUBAgEJCQvTuu+/Kz89PmzdvVv369XX9+nXlzJnTvN+qVavk7Oz8wOe1lTNnzig4OFi//fabKlasaG6fPXu2TCaT/QoDAAAAbCjDYUqxYsXM/xAoV65cqr/cDxw4MNOKAwAAAB5XSUkpQYq7u+TmZttzJSSknCspKWNhyqlTp1SjRg2VKFFCX3zxhYKDg3Xw4EGNGDFC33//vXbs2KFcuXLZrvDHRN68eR943ytXrujZZ59V06ZNtX79euXMmVNnzpzR119/rbi4OKv7Pm7vvY+Pj71LAAAAAGzGIaM7LFy4UF5eXvrpp580d+5czZw50/yw9fBzAP/KkyeP8uTJY+8yAADAfbi5SZ6etn08aFjTr18/ubi46IcfflDdunVVqFAhvfDCC9q4caPOnz+vMWPGmPsGBQVp0qRJ6tChgzw9PVWgQAHNmzfP4nVJatWqlQwGg3lbkubPn6+iRYvKxcVFJUuW1CeffGJRx5EjR1S7dm25ubmpTJky2rhxowwGg8V0UefOnVPbtm2VM2dO5cqVSy1atNCZM2fMr3fr1k0tW7bUtGnTlC9fPuXOnVv9+vXTrVu3zH0SExM1fPhwFShQQJ6engoJCdHmzZslSZs3b1b37t0VHR0tg8Egg8GgCRMmmK/tv//WuXHjhnr37i1/f3+5ubmpbNmyWrt2bZrv8bZt2xQdHa3FixerUqVKCg4OVv369TVz5kwFBwfrzJkzql+/viTJ19dXBoNB3bp1k5Qyzdd/pxYLCgrSm2++qS5dusjLy0uFCxfW119/rStXrqhFixby8vJS+fLl9euvv5r3mTBhgsXoEUmaNWuWxc/nbuvWrVPt2rWVM2dO5c6dW02bNtXJkyfNrwcHB0uSKlWqJIPBoHr16ln8DP77fg8cOFB+fn5yc3NT7dq1tWvXLvPrmzdvlsFgUGRkpKpWrSoPDw/VrFlTR48evWdtAADA/rgnhewqw2HK6dOn7/k4deqULWoEcBdPT09duXJFV65ceagpJwAAQPZ17do1rV+/Xq+++qrc7xrOEhAQoE6dOmnZsmUW0za98847qlChgn777TeNGjVKgwYN0oYNGyTJfJM8IiJCFy5cMG+vXr1agwYN0rBhw/T777+rd+/e6t69uzZt2iRJSk5OVsuWLeXh4aFffvlFCxcutAhxJOnWrVsKDQ1Vjhw5tGXLFm3btk1eXl56/vnnlfSfRWk2bdqkkydPatOmTfroo4+0ZMkSLVmyxPx6//79FRUVpaVLl2r//v1q06aNnn/+eR0/flw1a9bUrFmz5O3trQsXLujChQsaPnx4qvfNaDTqhRde0LZt2/Tpp5/q0KFDevvtt+Xo6Jjm+xwQEKDbt29r9erVaU6BFRgYqC+//FKSdPToUV24cEGzZ89O+4cmaebMmapVq5Z+++03NWnSRJ07d1aXLl308ssva8+ePSpatKi6dOnyUNNtxcXFaejQofr1118VGRkpBwcHtWrVSkajUZK0c+dOSdLGjRt14cIFrVq1Ks3jvPbaa/ryyy/10Ucfac+ePSpWrJhCQ0N17do1i35jxozR9OnT9euvv8rJyUn/+9//Hrh2AABgW9yTQnaW4Wm+AAAAADz+jh8/LpPJpNKlS6f5eunSpXX9+nVduXJFfn5+kqRatWpp1KhRkqQSJUpo27Ztmjlzpho1amSeCitnzpwKCAgwH2fatGnq1q2bXn31VUnS0KFDtWPHDk2bNk3169fXhg0bdPLkSW3evNm831tvvaVGjRqZj7Fs2TIZjUYtXrxYBoNBUkpokzNnTm3evFnPPfecpJSRHXPnzpWjo6NKlSqlJk2aKDIyUr169dLZs2cVERGhs2fPKn/+/JKk4cOHa926dYqIiNDkyZPl4+Mjg8FgUf/dNm7cqJ07d+rw4cMqUaKEJKlIkSL37P/000/r9ddfV8eOHdWnTx9Vr15dDRo0UJcuXeTv7y9HR0fzdF5+fn4Wa6akpXHjxurdu7ckafz48Zo/f76qVaumNm3aSJJGjhypGjVq6NKlS1avw5rWrVtbbH/44YfKmzevDh06pLJly5p/1rlz577nOeLi4jR//nwtWbJEL7zwgiRp0aJF2rBhgz744AONGDHC3Pett95S3bp1JUmjRo1SkyZNlJCQIDdbz48HAAAAZECGR6YkJyfrgw8+UMeOHdWwYUM1aNDA4gEAAADg8ZGREQw1atRItX348GGr+xw+fFi1atWyaKtVq5Z5v6NHjyowMNDipnz16tUt+u/bt08nTpxQjhw55OXlJS8vL+XKlUsJCQkW00899dRTFiNE8uXLp8uXL0uSDhw4oOTkZJUoUcJ8jDvTF//3GPezd+9eFSxY0BykpMdbb72lixcvasGCBXrqqae0YMEClSpVSgcOHEj3Me4oX768+bm/v78kqVy5cqna7lz3gzh+/Lg6dOigIkWKyNvb2zwl2NmzZ9N9jJMnT+rWrVsWP3tnZ2dVr1491e/Mf68pX758D10/AAAAYAsZHpkyaNAgLVmyRE2aNFHZsmXN3wwDkHVu3rxp/obf999/n2pqDgAAgPspVqyYDAaDDh8+rFatWqV6/fDhw/L19X2oxdczS2xsrKpUqaLPPvss1Wv/rc/Z2dniNYPBYJ6aKjY2Vo6Ojtq9e3eqKbm8vLzSXcuD/r0rd+7catOmjdq0aaPJkyerUqVKmjZtmj766KMMHee/13jn32Jptd25bgcHh1SB2X/XkUlLs2bNVLhwYS1atEj58+eX0WhU2bJlLaZUy0zW6gcAAI8W7kkhO8twmLJ06VItX75cjRs3tkU9ANLBaDTqp59+Mj8HAADIqNy5c6tRo0Z67733NGTIEIt/CF+8eFGfffaZunTpYvHlqR07dlgcY8eOHRbThDk7Oys5OdmiT+nSpbVt2zZ17drV3LZt2zaVKVNGklSyZEmdO3dOly5dMo+q+O8i5ZJUuXJlLVu2TH5+fvL29n6g661UqZKSk5N1+fJl1alTJ80+Li4uqeq/W/ny5fXnn3/q2LFjGRqdcvd5ihYtqri4OPO2pPue+0HkzZtXFy9elMlkMv8s9+7de8/+f//9t44ePapFixaZ36etW7emqv9+9RYtWlQuLi7atm2bChcuLCklxNm1a5cGDx78EFcEAADsiXtSyM4yPM2Xi4uLihUrZotaAAAAAGShuXPnKjExUaGhofr555917tw5rVu3To0aNVKBAgX01ltvWfTftm2bpk6dqmPHjmnevHlasWKFBg0aZH49KChIkZGRunjxoq5fvy5JGjFihJYsWaL58+fr+PHjmjFjhlatWmVe3L1Ro0YqWrSounbtqv3792vbtm0aO3aspH9HKXTq1El58uRRixYttGXLFp0+fVqbN2/WwIED9eeff6brWkuUKKFOnTqpS5cuWrVqlU6fPq2dO3cqPDxc3377rbn+2NhYRUZG6urVq4qPj091nLp16+qZZ55R69attWHDBp0+fVrff/+91q1bl+Z5165dq5dffllr167VsWPHdPToUU2bNk3fffedWrRoIUkqXLiwDAaD1q5dqytXrig2NjZd15Qe9erV05UrVzR16lSdPHlS8+bN0/fff3/P/r6+vsqdO7cWLlyoEydO6Mcff9TQoUMt+vj5+cnd3V3r1q3TpUuXFB0dneo4np6e6tu3r0aMGKF169bp0KFD6tWrl+Lj49WjR49Muz4AAAAgq2Q4TBk2bJhmz56dobmVAQAAgOwqIUGKi7PtIyHhwWorXry4fv31VxUpUkRt27ZV0aJF9corr6h+/fqKiooyL4x+x7Bhw/Trr7+qUqVKevPNNzVjxgyFhoaaX58+fbo2bNigwMBAVapUSZLUsmVLzZ49W9OmTdNTTz2l999/XxEREapXr54kydHRUWvWrFFsbKyqVaumnj17asyYMZJkXoDcw8NDP//8swoVKqQXX3xRpUuXVo8ePZSQkJChkSoRERHq0qWLhg0bppIlS6ply5batWuXChUqJEmqWbOm+vTpo3bt2ilv3ryaOnVqmsf58ssvVa1aNXXo0EFlypTRa6+9ds9RGmXKlJGHh4eGDRumihUr6umnn9by5cu1ePFide7cWZJUoEABTZw4UaNGjZK/v7/69++f7mu6n9KlS+u9997TvHnzVKFCBe3cudMcZKXFwcFBS5cu1e7du1W2bFkNGTJE77zzjkUfJycnzZkzR++//77y589vDoXu9vbbb6t169bq3LmzKleurBMnTmj9+vXy9fXNtOsDAAAAsorBlMFUpFWrVtq0aZNy5cqlp556KtW8xKtWrcrUAjNTTEyMfHx8FB0d/cDTAwCPgri4OPPc3rGxsfL09LRzRQAAZF8JCQk6ffq0goODzTf/JenmTemrr6T/H6Bhc76+UosWkq2mrQ4KCtLgwYOzZIqmbdu2qXbt2jpx4oSKFi1q8/Ph8XCvzxoAAMg63JPCkyi9uUGG10zJmTNnmgtUAgAAAPiXu3tKuGGjNbtTcXGxXZBia6tXr5aXl5eKFy+uEydOaNCgQapVqxZBCgAAAIBHRobDlIiICFvUAQAAADxx3N0f34AjK/3zzz8aOXKkzp49qzx58qhhw4aaPn26vcsCAAAAALMMhykAHg0eHh72LgEAAGQjZ86csdmxu3Tpoi5dutjs+AAAAMg83JNCdvVAYcrKlSu1fPlynT17Vkl3zVuwZ8+eTCkMwL15enoqLi7O3mUAAAAAAAAgG+GeFLIzh4zuMGfOHHXv3l3+/v767bffVL16deXOnVunTp3SCy+8YIsaAQAAgEeeyWSydwnAE43PGAAAAOwpw2HKe++9p4ULF+rdd9+Vi4uLXnvtNW3YsEEDBw5UdHS0LWoEAAAAHlnOzs6SpPj4eDtXAjzZ7syK4OjoaOdKAAAAkB1leJqvs2fPqmbNmpIkd3d3/fPPP5Kkzp076+mnn9bcuXMzt0IAqSQkJKh169aSpC+//FJubm52rggAgOzL0dFROXPm1OXLlyWlzCFtMBjsXBXwZDEajbpy5Yo8PDzk5MTSnwAA2Av3pJCdZfhvoQEBAbp27ZoKFy6sQoUKaceOHapQoYJOnz7NsGsgiyQnJ+u7774zPwcAAPYVEBAgSeZABUDmc3BwUKFChQgrAQCwI+5JITvLcJjSoEEDff3116pUqZK6d++uIUOGaOXKlfr111/14osv2qJGAAAA4JFmMBiUL18++fn56datW/YuB3giubi4yMEhwzNVAwAAAJkiw2HKwoULZTQaJUn9+vVT7ty5tX37djVv3ly9e/fO9AIBAACAx4WjoyPrOQAAAADAEyjDX+txcHCwmKO2ffv2mjNnjgYMGCAXF5dMLe6OM2fOqEePHgoODpa7u7uKFi2qsLAw8wKEAAAAAAAAAAAAtvJAK/fduHFDO3fu1OXLl82jVO7o0qVLphT2X0eOHJHRaNT777+vYsWK6ffff1evXr0UFxenadOmZfr5AAAAAAAAAAAA7jCYMrhq/DfffKNOnTopNjZW3t7eFov/GQwGXbt2LdOLTMs777yj+fPn69SpU+neJyYmRj4+PoqOjpa3t7cNqwNsKy4uTl5eXpKk2NhYeXp62rkiAAAAAAAAPOm4J4UnUXpzgwyPTBk2bJj+97//afLkyfLw8HioIh9GdHS0cuXKZbVPYmKiEhMTLfaRUt4c4HEWFxdnfh4TE6Pk5GQ7VgMAAAAAAIDsgHtSeBLdyQvuN+4kwyNTPD09deDAARUpUuTBq3tIJ06cUJUqVTRt2jT16tXrnv0mTJigiRMnZmFlAAAAAAAAAADgcXPu3DkVLFjwnq9nOEx58cUX1b59e7Vt2/ahixs1apSmTJlitc/hw4dVqlQp8/b58+dVt25d1atXT4sXL7a6790jU4xGo65du6bcuXNbTE8GPI5iYmIUGBioc+fOMW0dYGN83oCsw+cNyDp83oCsw+cNyDp83oCs86R83kwmk/755x/lz59fDg4O9+yXrmm+vv76a/PzJk2aaMSIETp06JDKlSsnZ2dni77NmzdPd5HDhg1Tt27drPb57wiYv/76S/Xr11fNmjW1cOHC+x7f1dVVrq6uFm05c+ZMd33A48Db2/ux/sMKeJzweQOyDp83IOvweQOyDp83IOvweQOyzpPwefPx8blvn3SFKS1btkzV9sYbb6RqMxgMGZonL2/evMqbN2+6+p4/f17169dXlSpVFBERYTUhAgAAAAAAAAAAyCzpClOMRqOt67Dq/PnzqlevngoXLqxp06bpypUr5tcCAgLsWBkAAAAAAAAAAHjSpStMsbcNGzboxIkTOnHiRKoFYDK45AvwxHB1dVVYWFiqqewAZD4+b0DW4fMGZB0+b0DW4fMGZB0+b0DWyW6ft3QvQP/jjz+qf//+2rFjR6r5z6Kjo1WzZk3Nnz9fzzzzjE0KBQAAAAAAAAAAsId0Lzwya9Ys9erVK82FZHx8fNS7d2/NnDkzU4sDAAAAAAAAAACwt3SHKfv27dPzzz9/z9efe+457d69O1OKAgAAAAAAAAAAeFSkO0y5dOmSnJ2d7/m6k5OTxcLwAAAAAAAAAAAAT4J0hykFChTQ77//fs/X9+/fr3z58mVKUQAAAAAAAAAAAI+KdIcpjRs31rhx45SQkJDqtZs3byosLExNmzbN1OIAAAAAAAAAAADszWAymUzp6Xjp0iVVrlxZjo6O6t+/v0qWLClJOnLkiObNm6fk5GTt2bNH/v7+Ni0YAAAAAAAAAAAgK6U7TJGkP/74Q3379tX69et1ZzeDwaDQ0FDNmzdPwcHBNisUAAAAAAAAAADAHjIUptxx/fp1nThxQiaTScWLF5evr68tagMAAAAAAAAAALC7BwpTAAAAAAAAAAAAsot0L0APAAAAAAAAAACQHRGmAAAAAAAAAAAAWEGYAgAAAAAAAAAAYAVhCgAAAAAAAAAAgBWEKQAAAAAAAAAAAFYQpgAAAAAAAAAAAFhBmAIAAAAAAAAAAGAFYQoAAAAAAAAAAIAVhCkAAAAAAAAAAABWEKYAAAAAAAAAAABYQZgCAAAAAAAAAABgBWEKAAAAAAAAAACAFYQpAAAAAAAAAAAAVhCmAAAAAAAAAAAAWGG3MOXnn39Ws2bNlD9/fhkMBq1Zs+a++2zevFmVK1eWq6urihUrpiVLlti8TgAAAAAAAAAAkL3ZLUyJi4tThQoVNG/evHT1P336tJo0aaL69etr7969Gjx4sHr27Kn169fbuFIAAAAAAAAAAJCdGUwmk8nuRRgMWr16tVq2bHnPPiNHjtS3336r33//3dzWvn173bhxQ+vWrcuCKgEAAAAAAAAAQHbkZO8C0isqKkoNGza0aAsNDdXgwYPvuU9iYqISExPN20ajUdeuXVPu3LllMBhsVSoAAAAAAAAAAHgMmEwm/fPPP8qfP78cHO49mddjE6ZcvHhR/v7+Fm3+/v6KiYnRzZs35e7unmqf8PBwTZw4MatKBAAAAAAAAAAAj6Fz586pYMGC93z9sQlTHsTo0aM1dOhQ83Z0dLQKFSqkc+fOydvb246VAQAAAAAAAAAAe4uJiVFgYKBy5Mhhtd9jE6YEBATo0qVLFm2XLl2St7d3mqNSJMnV1VWurq6p2r29vQlTAAAAAAAAAACAJN13aZB7TwD2iKlRo4YiIyMt2jZs2KAaNWrYqSIAAAAAAAAAAJAd2C1MiY2N1d69e7V3715J0unTp7V3716dPXtWUsoUXV26dDH379Onj06dOqXXXntNR44c0Xvvvafly5dryJAh9igfAAAAAAAAAABkE3YLU3799VdVqlRJlSpVkiQNHTpUlSpV0vjx4yVJFy5cMAcrkhQcHKxvv/1WGzZsUIUKFTR9+nQtXrxYoaGhdqkfAAAAAAAAAABkDwaTyWSydxFZJSYmRj4+PoqOjmbNFAAAAAAAAAAAsrn05gaPzZopAAAAAAAAAAAA9kCYAgAAAAAAAAAAYAVhCgAAAAAAAAAAgBWEKQAAAAAAAAAAAFYQpgAAAAAAAAAAAFhBmAIAAAAAAAAAAGAFYQoAAAAAAAAAAIAVhCkAAAAAAAAAAABWEKYAAAAAAAAAAABYQZgCAAAAAAAAAABgBWEKAAAAAAAAAACAFYQpAAAAAAAAAAAAVhCmAAAAAAAAAAAAWEGYAgAAAAAAAAAAYAVhCgAAAAAAAAAAgBWEKQAAAAAAAAAAAFYQpgAAAAAAAAAAAFhBmAIAAAAAAAAAAGAFYQoAAAAAAAAAAIAVhCkAAAAAAAAAAABWEKYAAAAAAAAAAABYQZgCAAAAAAAAAABghV3DlHnz5ikoKEhubm4KCQnRzp07rfafNWuWSpYsKXd3dwUGBmrIkCFKSEjIomoBAAAAAAAAAEB2ZLcwZdmyZRo6dKjCwsK0Z88eVahQQaGhobp8+XKa/T///HONGjVKYWFhOnz4sD744AMtW7ZMr7/+ehZXDgAAAAAAAAAAshO7hSkzZsxQr1691L17d5UpU0YLFiyQh4eHPvzwwzT7b9++XbVq1VLHjh0VFBSk5557Th06dLjvaBYAAAAAAAAAAICHYZcwJSkpSbt371bDhg3/LcTBQQ0bNlRUVFSa+9SsWVO7d+82hyenTp3Sd999p8aNG9/zPImJiYqJibF4AAAAAAAAAAAAZISTPU569epVJScny9/f36Ld399fR44cSXOfjh076urVq6pdu7ZMJpNu376tPn36WJ3mKzw8XBMnTszU2gEAAAAAAAAAQPZi1wXoM2Lz5s2aPHmy3nvvPe3Zs0erVq3St99+q0mTJt1zn9GjRys6Otr8OHfuXBZWDAAAAAAAAAAAngR2GZmSJ08eOTo66tKlSxbtly5dUkBAQJr7jBs3Tp07d1bPnj0lSeXKlVNcXJxeeeUVjRkzRg4OqXMhV1dXubq6Zv4FAAAAAAAAAACAbMMuI1NcXFxUpUoVRUZGmtuMRqMiIyNVo0aNNPeJj49PFZg4OjpKkkwmk+2KBQAAAAAAAAAA2ZpdRqZI0tChQ9W1a1dVrVpV1atX16xZsxQXF6fu3btLkrp06aICBQooPDxcktSsWTPNmDFDlSpVUkhIiE6cOKFx48apWbNm5lAFAAAAAAAAAAAgs9ktTGnXrp2uXLmi8ePH6+LFi6pYsaLWrVtnXpT+7NmzFiNRxo4dK4PBoLFjx+r8+fPKmzevmjVrprfeestelwAAAAAAAAAAALIBgykbzZEVExMjHx8fRUdHy9vb297lAAAAAAAAAAAAO0pvbmCXNVMAAAAAAAAAAAAeF4QpAAAAAAAAAAAAVhCmAAAAAAAAAAAAWEGYAgAAAAAAAAAAYAVhCgAAAAAAAAAAgBWEKQAAAAAAAAAAAFYQpgAAAAAAAAAAAFhBmAIAAAAAAAAAAGAFYQoAAAAAAAAAAIAVhCkAAAAAAAAAAABWEKYAAAAAAAAAAABYQZgCAAAAAAAAAABgBWEKAAAAAAAAAACAFYQpAAAAAAAAAAAAVhCmAAAAAAAAAAAAWEGYAgAAAAAAAAAAYAVhCgAAAAAAAAAAgBWEKQAAAAAAAAAAAFYQpgAAAAAAAAAAAFhBmAIAAAAAAAAAAGAFYQoAAAAAAAAAAIAVhCkAAAAAAAAAAABWEKYAAAAAAAAAAABYYdcwZd68eQoKCpKbm5tCQkK0c+dOq/1v3Lihfv36KV++fHJ1dVWJEiX03XffZVG1AAAAAAAAAAAgO3Ky14mXLVumoUOHasGCBQoJCdGsWbMUGhqqo0ePys/PL1X/pKQkNWrUSH5+flq5cqUKFCigP/74Qzlz5sz64gEAAAAAAAAAQLZhMJlMJnucOCQkRNWqVdPcuXMlSUajUYGBgRowYIBGjRqVqv+CBQv0zjvv6MiRI3J2dn6gc8bExMjHx0fR0dHy9vZ+qPoBAAAAAAAAAMDjLb25gV2m+UpKStLu3bvVsGHDfwtxcFDDhg0VFRWV5j5ff/21atSooX79+snf319ly5bV5MmTlZycfM/zJCYmKiYmxuIBAAAAAAAAAACQEXYJU65evark5GT5+/tbtPv7++vixYtp7nPq1CmtXLlSycnJ+u677zRu3DhNnz5db7755j3PEx4eLh8fH/MjMDAwU68DAAAAAAAAAAA8+ey6AH1GGI1G+fn5aeHChapSpYratWunMWPGaMGCBffcZ/To0YqOjjY/zp07l4UVAwAAAAAAAACAJ4FdFqDPkyePHB0ddenSJYv2S5cuKSAgIM198uXLJ2dnZzk6OprbSpcurYsXLyopKUkuLi6p9nF1dZWrq2vmFg8AAAAAAAAAALIVu4xMcXFxUZUqVRQZGWluMxqNioyMVI0aNdLcp1atWjpx4oSMRqO57dixY8qXL1+aQQoAAAAAAAAAAEBmsNs0X0OHDtWiRYv00Ucf6fDhw+rbt6/i4uLUvXt3SVKXLl00evRoc/++ffvq2rVrGjRokI4dO6Zvv/1WkydPVr9+/ex1CQAAAAAAAAAAIBuwyzRfktSuXTtduXJF48eP18WLF1WxYkWtW7fOvCj92bNn5eDwb9YTGBio9evXa8iQISpfvrwKFCigQYMGaeTIkfa6BAAAAAAAAAAAkA0YTCaTyd5FZJWYmBj5+PgoOjpa3t7e9i4HAAAAAAAAAADYUXpzA7tN8wUAAAAAAAAAAPA4IEwBAAAAAAAAAACwgjAFAAAAAAAAAADACsIUAAAAAAAAAAAAKwhTAAAAAAAAAAAArCBMAQAAAAAAAAAAsIIwBQAAAAAAAAAAwArCFAAAAAAAAAAAACsIUwAAAAAAAAAAAKwgTAEAAAAAAAAAALCCMAUAAAAAAAAAAMAKwhQAAAAAAAAAAAArCFMAAAAAAAAAAACsIEwBAAAAAAAAAACwgjAFAAAAAAAAAADACsIUAAAAAAAAAAAAKwhTAAAAAAAAAAAArCBMAQAAAAAAAAAAsIIwBQAAAAAAAAAAwArCFAAAAAAAAAAAACsIUwAAAAAAAAAAAKwgTAEAAAAAAAAAALDCrmHKvHnzFBQUJDc3N4WEhGjnzp3p2m/p0qUyGAxq2bKlbQsEAAAAAAAAAADZnt3ClGXLlmno0KEKCwvTnj17VKFCBYWGhury5ctW9ztz5oyGDx+uOnXqZFGlAAAAAAAAAAAgO7NbmDJjxgz16tVL3bt3V5kyZbRgwQJ5eHjoww8/vOc+ycnJ6tSpkyZOnKgiRYpkYbUAAAAAAAAAACC7skuYkpSUpN27d6thw4b/FuLgoIYNGyoqKuqe+73xxhvy8/NTjx490nWexMRExcTEWDwAAAAAAAAAAAAywi5hytWrV5WcnCx/f3+Ldn9/f128eDHNfbZu3aoPPvhAixYtSvd5wsPD5ePjY34EBgY+VN0AAAAAAAAAACD7sesC9On1zz//qHPnzlq0aJHy5MmT7v1Gjx6t6Oho8+PcuXM2rBIAAAAAAAAAADyJnOxx0jx58sjR0VGXLl2yaL906ZICAgJS9T958qTOnDmjZs2amduMRqMkycnJSUePHlXRokVT7efq6ipXV9dMrh4AAAAAAAAAAGQndhmZ4uLioipVqigyMtLcZjQaFRkZqRo1aqTqX6pUKR04cEB79+41P5o3b6769etr7969TN8FAAAAAAAAAABsxi4jUyRp6NCh6tq1q6pWrarq1atr1qxZiouLU/fu3SVJXbp0UYECBRQeHi43NzeVLVvWYv+cOXNKUqp2AAAAAAAAAACAzGS3MKVdu3a6cuWKxo8fr4sXL6pixYpat26deVH6s2fPysHhsVjSBQAAAAAAAAAAPMEMJpPJZO8iskpMTIx8fHwUHR0tb29ve5cDAAAAAAAAAADsKL25AUM/AAAAAAAAAAAArCBMAQAAAAAAAAAAsIIwBQAAAAAAAAAAwArCFAAAAAAAAAAAACsIUwAAAAAAAAAAAKwgTAEAAAAAAAAAALCCMAUAAAAAAAAAAMAKwhQAAAAAAAAAAAArCFMAAAAAAAAAAACsIEwBAAAAAAAAAACwgjAFAAAAAAAAAADACsIUAAAAAAAAAAAAKwhTAAAAAAAAAAAArCBMAQAAAAAAAAAAsIIwBQAAAAAAAAAAwArCFAAAAAAAAAAAACsIUwAAAAAAAAAAAKwgTAEAAAAAAAAAALCCMAUAAAAAAAAAAMAKwhQAAAAAAAAAAAArCFMAAAAAAAAAAACsIEwBAAAAAAAAAACwgjAFAAAAAAAAAADACruGKfPmzVNQUJDc3NwUEhKinTt33rPvokWLVKdOHfn6+srX11cNGza02h8AAAAAAAAAACAz2C1MWbZsmYYOHaqwsDDt2bNHFSpUUGhoqC5fvpxm/82bN6tDhw7atGmToqKiFBgYqOeee07nz5/P4soBAAAAAAAAAEB2YjCZTCZ7nDgkJETVqlXT3LlzJUlGo1GBgYEaMGCARo0add/9k5OT5evrq7lz56pLly7pOmdMTIx8fHwUHR0tb2/vh6ofAAAAAAAAAAA83tKbG9hlZEpSUpJ2796thg0b/luIg4MaNmyoqKiodB0jPj5et27dUq5cue7ZJzExUTExMRYPAAAAAAAAAACAjLBLmHL16lUlJyfL39/fot3f318XL15M1zFGjhyp/PnzWwQydwsPD5ePj4/5ERgY+FB1AwAAAAAAAACA7MeuC9A/qLfffltLly7V6tWr5ebmds9+o0ePVnR0tPlx7ty5LKwSAAAAAAAAAAA8CZzscdI8efLI0dFRly5dsmi/dOmSAgICrO47bdo0vf3229q4caPKly9vta+rq6tcXV0ful4AAAAAAAAAAJB92WVkiouLi6pUqaLIyEhzm9FoVGRkpGrUqHHP/aZOnapJkyZp3bp1qlq1alaUCgAAAAAAAAAAsjm7jEyRpKFDh6pr166qWrWqqlevrlmzZikuLk7du3eXJHXp0kUFChRQeHi4JGnKlCkaP368Pv/8cwUFBZnXVvHy8pKXl5e9LgMAAAAAAAAAADzh7BamtGvXTleuXNH48eN18eJFVaxYUevWrTMvSn/27Fk5OPw7cGb+/PlKSkrSSy+9ZHGcsLAwTZgwIStLBwAAAAAAAAAA2YjBZDKZ7F1EVomJiZGPj4+io6Pl7e1t73IAAAAAAAAAAIAdpTc3sMuaKQAAAAAAAAAAAI8LwhQAAAAAAAAAAAArCFMAAAAAAAAAAACsIEwBAAAAAAAAAACwgjAFAAAAAAAAAADACsIUAAAAAAAAAAAAKwhTAAAAAAAAAAAArCBMAQAAAAAAAAAAsIIwBQAAAAAAAAAAwArCFAAAAAAAAAAAACsIUwAAAAAAAAAAAKwgTAEAAAAAAAAAALCCMAUAAAAAAAAAAMAKwhQAAAAAAAAAAAArCFMAAAAAAAAAAACsIEwBAAAAAAAAAACwgjAFAAAAAAAAAADACsIUAAAAAAAAAAAAKwhTAAAAAAAAAAAArCBMAQAAAAAAAAAAsIIwBQAAAAAAAAAAwArCFAAAAAAAAAAAACvsGqbMmzdPQUFBcnNzU0hIiHbu3Gm1/4oVK1SqVCm5ubmpXLly+u6777KoUgAAAAAAAAAAkF3ZLUxZtmyZhg4dqrCwMO3Zs0cVKlRQaGioLl++nGb/7du3q0OHDurRo4d+++03tWzZUi1bttTvv/+exZUDAAAAAAAAAIDsxGAymUz2OHFISIiqVaumuXPnSpKMRqMCAwM1YMAAjRo1KlX/du3aKS4uTmvXrjW3Pf3006pYsaIWLFiQrnPGxMTIx8dH0dHR8vb2zpwLAQAAAAAAAAAAj6X05gZOWViTWVJSknbv3q3/Y+++o6Oq1v+PfyaVEJIAUgOhCEhRaaIIqBRREBU72BFQL14REcUrNkSvF3vhK2IHGxcLYqWoCBYuSkc60oMQQk1IIZDk/P7Ib4YMKSSZOXNK3q+1Zq3MzJ6ZJzP77LPPec7ee8yYMb7HwsLC1Lt3by1cuLDY1yxcuFCjRo3ye6xPnz768ssvS/ycnJwc5eTk+O6npaVJKvhyAAAAAAAAAABA5ebNF5xs3IklyZR9+/YpLy9PdevW9Xu8bt26Wr9+fbGvSUlJKbZ8SkpKiZ8zfvx4jRs3rsjjSUlJFYgaAAAAAAAAAAC40eHDh5WQkFDi85YkU0JlzJgxfqNZ8vPzdeDAAZ1yyinyeDwWRgYELj09XUlJSUpOTmbaOsBkbG9A6LC9AaHD9gaEDtsbEDpsb0DouGV7MwxDhw8fVmJiYqnlLEmm1KpVS+Hh4dqzZ4/f43v27FG9evWKfU29evXKVV6SoqOjFR0d7fdY9erVKxY0YFPx8fGObqwAJ2F7A0KH7Q0IHbY3IHTY3oDQYXsDQscN21tpI1K8wkIQRxFRUVE666yzNHfuXN9j+fn5mjt3rrp06VLsa7p06eJXXpJ++OGHEssDAAAAAAAAAAAEg2XTfI0aNUqDBg1Sp06ddM455+iVV15RZmamBg8eLEm69dZb1aBBA40fP16SdO+996p79+568cUXdemll2ratGlasmSJ3nrrLav+BQAAAAAAAAAAUAlYlkwZOHCg9u7dq8cff1wpKSlq3769Zs+e7VtkfseOHQoLOz5wpmvXrpo6daoeffRRPfzww2rRooW+/PJLnXHGGVb9C4CloqOjNXbs2CJT2QEIPrY3IHTY3oDQYXsDQoftDQgdtjcgdCrb9uYxDMOwOggAAAAAAAAAAAC7smTNFAAAAAAAAAAAAKcgmQIAAAAAAAAAAFAKkikAAAAAAAAAAAClIJkCAAAAAAAAAABQCpIpAAAAAAAAAAAApSCZAgAAAAAAAAAAUAqSKQAAAAAAAAAAAKUgmQIAAAAAAAAAAFAKkikAAAAAAAAAAAClIJkCAAAAAAAAAABQCpIpAAAAAAAAAAAApSCZAgAAAAAAAAAAUAqSKQAAAAAAAAAAAKUgmQIAAAAAAAAAAFAKkikAAAAAAAAAAAClIJkCAAAAAAAAAABQCpIpAAAAAAAAAAAApSCZAgAAAAAAAAAAUAqSKQAAAAAAAAAAAKUgmQIAAAAAAAAAAFAKkikAAAAAAAAAAAClIJkCAAAAAAAAAABQCpIpAAAAAAAAAAAApSCZAgAAAAAAAAAAUAqSKQAAAAAAAAAAAKWIsDqAUMrPz9euXbsUFxcnj8djdTgAAAAAAAAAAMBChmHo8OHDSkxMVFhYyeNPKlUyZdeuXUpKSrI6DAAAAAAAAAAAYCPJyclq2LBhic9XqmRKXFycpIIvJT4+3uJoAAAAAAAAAACAldLT05WUlOTLH5SkUiVTvFN7xcfHk0wBAAAAAAAAAACSdNKlQViAHgAAAAAAAAAAoBQkUwAAAAAAAAAAAEpBMgUAAAAAAAAAAKAUlWrNFJ/MTCk8vOjj4eFSlSr+5UoSFibFxFSsbFaWZBjFl/V4pKpVK1Y2O1vKzy85jtjYipU9ckTKywtO2apVC+KWpJwcKTc3OGVjYgq+Z0k6elQ6diw4ZatUOV5XylP22LGC8iWJjpYiIspfNje34LsoSVSUFBlZ/rJ5eQW/XUkiIwvKl7dsfn5BXQtG2YiIgu9CKtgmsrKCU7Y82z1tRPFlaSPKX5Y2ouBv2oiKlaWNKPibNqL8ZWkjCv6mjahYWdqIgr9pI8pfljbi+H3aiPKXpY0of1naiIK/Q9hG5OXl6VheXsFzERHH39cwSn/f8PDj7yudvD0pa9mwMP/2pDxls7NL3+4LtyflKXvkSOnbfeH2pDxlc3JOvt2XtWxMzPHt/ujRk2/3ZS1bpYr/dh+sstHR/m1EWcseO1Z6exIV5d9GlLVsbm7p7UlkpH8bUdayeXmltyeFt7mSyno8igwPV3iVKiVv96XtSwu/lWGUVOvdJz09XQkJCUqTVOzy8/36Sd99d/x+bGzJDU737tL8+cfv164t7dtXfNlOnaTFi4/fb9JE2r69+LJt2khr1hy/f/rp0tq1xZdt3Fjatu34/bPPlpYsKb5srVrS3r3H7/foIf38c/Flq1b1r0CXXirNnFl8Wcm/4bzuOunzz0sum5FxvLNz223S+++XXDY1teB7laS775Zef73kslu3FnyvkjR6tPTCCyWXXb264HuVpCeekMaNK7nsokUF36skPf+89OCDJZedN6/ge5WkiROl4cNLLvvttwXfqyRNmSINHlxy2U8/LfheJemzz6QBA0ouO3lywfcqFdTlyy4ruexrrxV8r1JBXe7Zs+Syzz1X8L1KBXX5nHNKLjt2bMH3KhXU5TPOKLnsAw8UfK9SQV1u2rTksv/8Z8H3KhXU5Tp1Si47aFDB9yoV1OVq1Uoue+21Bd+rV2kLTdFGFKCNOI42ogBtRAHaiAK0EcfRRhSgjShAG1GANuI42ogCtBEFaCMK0EYcRxtRwMZthOHxKGXwYB3q37/gBK3HU1DHatUqKJufLyUnl/y+Vaser2dSydumVHDyvnDbtGNHyYmM6GipXr3j95OTS05OREVJ9esfv79zZ8kJh8hIKTHx+P1du0o+0R4eLjVsePz+7t0lnzwPC5OSko7fT0kp+eS5xyM1anT8fmpq6Qmrxo2P/713b+mJpaSk44mMfftKP7nesOHx5MSBA9LhwyWXbdDgeMLh4EEpPb3ksomJx5MIhw5JaWkll61X73iCLS2toHxJ6tY9njQ7fLgg5pLUqXM8EZaRIe3fX3LZWrWOt6uZmSXviyTplFOO7zOzswt+u5LUrCnFxRX8feSItGdPyWWrV5cSEgr+zskpqD8nMgzp6FFVz8hQvRtvLFhk/oQ2Il1SgqS0tDTFxxebOZBUWUemAAAAAAAAAEAFpQwerEM33KA61aurqiSPVHBi15tEyMsr/UR/fLx/YqC0k/fVqh1P2kmljxyLjfVPDpU2aqtKFf+ypY2CioryL1vayKbISP+ypY0qCg8vmswq6bvwePzLejwFJ/xLUrhseHjpiYwmTY4nSCIjS09ONG58POkRFeU/aqi4st7REIVHRhSnUaPjSY/U1OOfUVJZ78ibvXuPJ2xKKutNeuzffzxpVJyGDQvqplSQ/CntQoCGDQvqvFT69yUVJJVq1Cj4Oz299NFH9esXJF+kgrpQ2oiiunWPJyWzsoodoWNIypKUmp8vpaSofuEEYjlVzpEpu3YVn2FiWG3xZRlWW/6yDKst+Juh9xUrSxtR8DdtRPnL0kYU/E0bUbGytBEFf9NGlL8sbcTx+7QR5S9LG1H+srQRBX/TRlSsLG1Ewd+0EeUvSxtR8Pf/3+7z8vK0MTlZderU0Sk1ax4v6/Ec/40No/S6Xris9/+zc1nJf9mE8pTNzy+5PbFL2bCw49s9Zctftjz13aKy+w8cUOq+fTrttNMU7vH4bffp6elKSEw86ciUyplMOcmXAgAAAAAAAADFOXLkiLZu3aomTZoopnDCEoBtZWdna9u2bWratKmqFL6AQWXPG5QypgcAAAAAAAAAUBxPaVMgAbCVYGyvJFMAAAAAAAAAAABKUeEF6NetW6dp06bp119/1fbt25WVlaXatWurQ4cO6tOnj6655hpFl7b4DgAAAAAAAAAAgAOUe2TKsmXL1Lt3b3Xo0EG//fabOnfurJEjR+qpp57SzTffLMMw9MgjjygxMVHPPvusckpbcAoAAAAAAAAAUGlt27ZNHo9HK1assDoUoFTlHplyzTXXaPTo0fr8889VvXr1EsstXLhQr776ql588UU9/PDDgcQIAAAAAAAAAAjQbbfdpvfff7/I43369NHs2bMtiAhwjnInUzZu3KjIyMiTluvSpYu6dOmiY8eOVSgwAAAAAAAAAEBw9e3bV5MnT/Z7zOnLNRw9elRRUVFWhwGXK/c0X2VJpARSHgAAAAAAAACcxDAMZWZmWnIzDKNcsUZHR6tevXp+txo1akiSPB6P3nnnHV111VWqWrWqWrRooa+//trv9WvWrNFll12m+Ph4xcXF6fzzz9fmzZslSfn5+XryySfVsGFDRUdHq3379kVGvCxatEgdOnRQlSpV1KlTJy1fvrxIjKtXr9Yll1yiatWqqW7durrlllu0b98+3/M9evTQ8OHDNXLkSNWqVUt9+vQp13cAVES5kyllsWTJEv3yyy/les2kSZPUtm1bxcfHKz4+Xl26dNGsWbN8zx85ckR33323TjnlFFWrVk3XXHON9uzZE+zQAQAAAAAAAKBcsrKyVK1aNUtuWVlZQf1fxo0bpwEDBujPP/9Uv379dNNNN+nAgQOSpL///lsXXHCBoqOj9dNPP2np0qUaMmSIcnNzJcm37MMLL7ygP//8U3369FH//v31119/SZIyMjJ02WWXqU2bNlq6dKmeeOIJPfDAA36ff+jQIfXq1UsdOnTQkiVLNHv2bO3Zs0cDBgzwK/f+++8rKipKCxYs0BtvvBHU7wAojscob+qyDFq3bq2NGzcqLy+vzK/55ptvFB4erhYtWsgwDL3//vt6/vnntXz5cp1++um666679N1332nKlClKSEjQ8OHDFRYWpgULFpT5M9LT05WQkKC0tDTFx8dX5F8DAAAAAAAAUIkdOXJEW7duVdOmTVWlShVJUmZmpqpVq2ZJPBkZGYqNjS1T2dtuu00fffSRL26vhx9+WA8//LA8Ho8effRRPfXUU5KO/1+zZs1S37599fDDD2vatGnasGFDsTMSNWjQQHfffbffGtrnnHOOzj77bE2cOFFvvfWWHn74Ye3cudMXwxtvvKG77rpLy5cvV/v27fXvf/9bv/76q+bMmeN7j507dyopKUkbNmzQaaedph49eig9PV3Lli0r9/eFyqm47darrHmDcq+ZUhZz584t91opl19+ud/9p59+WpMmTdLvv/+uhg0b6t1339XUqVPVq1cvSdLkyZPVunVr/f777zr33HODFjsAAAAAAAAAlEfVqlWVkZFh2WeXR8+ePTVp0iS/x2rWrOn7u23btr6/Y2NjFR8fr9TUVEnSihUrdP755xebSElPT9euXbvUrVs3v8e7deumlStXSpLWrVuntm3b+p3M7tKli1/5lStXat68ecUmpzZv3qzTTjtNknTWWWeV6f8FgsWUZEpiYmJAr8/Ly9Nnn32mzMxMdenSRUuXLtWxY8fUu3dvX5lWrVqpUaNGWrhwYYnJlJycHOXk5Pjup6enBxQXAAAAAAAAAJzI4/GUeXSI1WJjY9W8efMSnz8xUeLxeJSfny9JiomJMTU2qWCkzeWXX65nn322yHP169f3/e2U7xvuEVAyZceOHaU+36hRo3K936pVq9SlSxcdOXJE1apV04wZM9SmTRutWLFCUVFRql69ul/5unXrKiUlpcT3Gz9+vMaNG1euGAAAAAAAAAAARbVt21bvv/++jh07ViTpEh8fr8TERC1YsEDdu3f3Pb5gwQKdc845kgqWh/jwww915MgR3+iU33//3e99OnbsqOnTp6tJkyaKiDBlLABQIQEtQN+kSRM1bdq0xFt5tWzZUitWrNAff/yhu+66S4MGDdLatWsrHN+YMWOUlpbmuyUnJ1f4vQAAAAAAAADA6XJycpSSkuJ327dvX5leO3z4cKWnp+v666/XkiVL9Ndff+nDDz/Uhg0bJEmjR4/Ws88+q08++UQbNmzQQw89pBUrVujee++VJN14443yeDy64447tHbtWs2cOVMvvPCC32fcfffdOnDggG644QYtXrxYmzdv1pw5czR48OByrdENBFtAqb3ly5f73T927JiWL1+ul156SU8//XS53y8qKso3xOyss87S4sWL9eqrr2rgwIE6evSoDh065Dc6Zc+ePapXr16J7xcdHa3o6OhyxwEAAAAAAAAAbjR79my/6bKkgovc169ff9LXnnLKKfrpp580evRode/eXeHh4Wrfvr1vnZQRI0YoLS1N999/v1JTU9WmTRt9/fXXatGihSSpWrVq+uabbzRs2DB16NBBbdq00bPPPqtrrrnG9xne0S3/+te/dPHFFysnJ0eNGzdW3759FRYW0NgAICAewzCMYL/pd999p+eff17z588P6H169eqlRo0a6dVXX1Xt2rX13//+17dhbdiwQa1atSp1zZQTpaenKyEhQWlpaYqPjw8oNgAA4C779u3Tm2++We5FI2NjYzV06NAiByMAAAAA3OnIkSPaunWrmjZt6reQOgD7Km27LWvewJRJ51q2bKnFixeX6zVjxozRJZdcokaNGunw4cOaOnWq5s+frzlz5ighIUFDhw7VqFGjVLNmTcXHx+uee+5Rly5dypxIAQAAKM2ECRP01FNPVei1b775pubMmaM2bdoEOSoAAAAAAGAHASVT0tPT/e4bhqHdu3friSee8A3dKqvU1FTdeuut2r17txISEtS2bVvNmTNHF110kSTp5ZdfVlhYmK655hrl5OSoT58+ev311wMJHwAAwGf79u2SpAsuuEAdO3Ys8+tmzpypjRs36rzzztM333zjG94OAAAAAADcI6BpvsLCwuTxePweMwxDSUlJmjZtmrp06RJwgMHENF8AAKAk/fr106xZs/Tee+9p8ODBZX7d/v37ddlll+n3339XlSpVNG3aNF1xxRUmRgoAAADASkzzBTiP5dN8zZs3z+9+WFiYateurebNmysiwpQZxAAAAEyxd+9eSVKtWrXK9bpTTjlFc+fO1cCBA/Xtt9/q6quv1qRJk3TnnXeaESYAAAAAALBAQBmP7t27BysOAAAA0zz55JOaOHGiShuQu3//fklS7dq1y/3+VatW1YwZMzRs2DC9++67+sc//qFHHnnEN4K3QYMG+v777yv03gAAAAAAwHqmDB/ZvXu3jh07pkaNGpnx9gAAAOXy+uuvKzU19aTlEhIS1LJlywp9RkREhN5++20lJibqqaee0r59+3zP7d27V3PnztX1119fofcGAAAAAADWMiWZ0qtXL23cuFF5eXlmvD0AAECZ5eTkaM+ePZKkBQsWKCEhocSyDRs2LPX5k/F4PHryySc1bNgwHTx4UJI0evRozZo1yxcDAAAAAABwHlOSKR988IGysrLMeGsAAIBy2bVrlyQpOjpaXbp08U29ZabExEQlJiZKkpo3by5JJFMAAAAAAHAwU5IpZ599thlvGzSZmZkKDw8v8nh4eLiqVKniV64kYWFhiomJqVDZrKysEuds93g8qlq1aoXKZmdnKz8/v8Q4YmNjK1T2yJEjpY4yKk/ZqlWr+k5i5eTkKDc3NyhlY2JiFBYWJkk6evSojh07FpSyVapU8dWV8pQ9duyYjh49WmLZ6OhoRURElLtsbm6ucnJySiwbFRWlyMjIcpfNy8vTkSNHSiwbGRmpqKiocpfNz89XdnZ2UMpGREQoOjpakmQYRqkJ2/KULc92TxtRfFnaCNoIs9qI/Px8LVy4UEeOHFF+fn6p30N4eLgvXsMw/P63jRs3SipIcGRlZYW8jahRo4Yk6Y8//tCnn34qqWD79MYgqch31qBBA7Vv314SbURhtBEFaCPKX5Z+RAHaiIqVpY0oQBtR/rK0EcfRRpS/LG1EAbu2ETk5OcrPz1deXp5fvfN4PL7f2DCMUut64bLe/8/OZSX5nU8tT9n8/PxS16+0Q9mwsDDfdk/Z8pctT323qmzh507c7kvbl/oxKpG0tDRDUom3fv36+ZWvWrVqiWW7d+/uV7ZWrVollu3UqZNf2caNG5dYtk2bNn5l27RpU2LZxo0b+5Xt1KlTiWVr1arlV7Z79+4llq1atapf2X79+pX6vRV27bXXllo2IyPDV3bQoEGllk1NTfWV/ec//1lq2a1bt/rKPvDAA6WWXb16ta/s2LFjSy27aNEiX9nnnnuu1LLz5s3zlX3ttddKLfvtt9/6yk6ePLnUsp9++qmv7Kefflpq2cmTJ/vKfvvtt6WWfe2113xl582bV2rZ5557zld20aJFpZYdO3asr+zq1atLLfvAAw/4ym7durXUsv/85z99ZVNTU0stO2jQIF/ZjIyMUstee+21fnW4tLK0EQU32ojjN9qIgptZbcTZZ59d6vMVvdmhjSjPjTbi+I02ouBGG1Fwox9RcKONOH6jjSi40UYU3GgjCm60EcdvtBEFN9qIglugbUTjxo2NWbNmGYsXL/a7bdmyxVc2Nze3yPOFb5s2bfKrw6WV3bhxo1/ZpUuXllh2/fr1fmWXL19eYtk1a9b4lV25cqXxxhtvGJKMn376ya/sqlWr/MquWrWqxPdduXKlX9k1a9aUWHb58uW++piQkGCsX7++xLJLly71e9+NGzf6Pf/VV18ZkoyPPvrIWLx4sV/ZTZs2GYsXLy7x/8vNzfWV3bJlS6m/x9GjR31lt23bVmrZI0eO+Mru2LGj1LJZWVm+sn///XepZQu3abt37y61bHp6uq/snj17Si178OBBX9m9e/eWWnb//v2+svv37y+17N69e31lDx48WGrZPXv2+Mqmp6eXWnb37t2+shkZGaWW3b59u7F27VojOzu7xDYiLS3NKE1AI1Py8vL08ssv69NPP9WOHTuKZLMPHDgQyNsDAIBKbO/evZKkZs2aKS4uTitWrCixbJ06ddS0aVNJBVfYLVu2LBQhVlhcXJzatGnju7906dJSr3gEAAAAgECdbDahYcOG+UbIV0ZHjx5VYmKihgwZogEDBhR5/p133tFnn32m5ORk3+iqinjrrbc0f/58TZ06NZBwYQGPYZQyVuckHn/8cb3zzju6//779eijj+qRRx7Rtm3b9OWXX+rxxx/XiBEjghlrwNLT05WQkKBdu3YpPj6+yPMMqy2+LMNqGVZr12G1wSjL0PvjaCPKX5Y2ooBZbUS3bt20cuVKffvtt7rkkksqTRtx++23a9q0aXryySc1atQo2ohCaCMK0EaUv6yb2oiTlaWNoI2gjSh/WdqIArQRFStLG1GgsrUROTk52r17t5o0aeK37dp9mq+UlBTf359++qmeeOIJbdiwwfdYTEyMlixZot69e2vfvn2qXr2633uXNM3X0aNHfd9ncWXLMh3XlClTNHLkSB04cKDCU3dt27ZNzZs315IlS9S+fftiy86fP7/Y/887ZdXIkSM1a9YsrV271u9zDcNQy5YtdeWVV+qFF14IaNqscePG6euvv9bSpUtPWra09z127JiioqKY5quMZXNycrR9+3Y1bdpUUVFRftt9enq6EhMTlZaWVmzewKfUcSsnceqpp/qGB1arVs03PO3VV181brjhhkDe2hTeab5ONlwHAABYLzEx0ZBkLFmyxOpQQurBBx80JBn33nuv1aEAAAAAKEZ2drZvuqATZWRklHg7sXxpZQtP+VRa2YryTqt1Iu/Uaz/++KNx1llnGTExMUaXLl38pg8bO3as0a5dO+Ptt982mjRpYng8HsMwCqZvGjp0qFGrVi0jLi7O6Nmzp7FixQrf61asWGH06NHDqFatmhEXF2d07NjRNx2XN57Zs2cbrVq1MmJjY40+ffoYu3bt8r0+Ly/PGDdunNGgQQMjKirKaNeunTFr1izf894p27xThxmGYXz33XdGixYtjCpVqhg9evTwTW9XeDqrwv78809DkvHrr78W+72sW7fOMAzDePvtt41WrVoZ0dHRRsuWLY2JEyf6lU9OTjauv/56o0aNGkbVqlWNs846y/j999+LnV7PO03e9u3bjf79+xuxsbFGXFyccd111xkpKSkn/d5RNqVtt2XNGwQ0zVdKSorOPPNMSVK1atWUlpYmSbrsssv02GOPBfLWAADAhVJSUvTQQw/p4MGDZSorSXXr1jU7LFupX7++JGn69OnaunWrpIKrAh966CF17NjRytAAAAAAnES1atVKfK5fv3767rvvfPfr1KlT4gi37t27a/78+b77TZo00b59+4qUMyo+6VCpHnnkEb344ouqXbu2hg0bpiFDhmjBggW+5zdt2qTp06friy++8I0Aue666xQTE6NZs2YpISFBb775pi688EJt3LhRNWvW1E033aQOHTpo0qRJCg8P14oVK/ymy8rKytILL7ygDz/8UGFhYbr55pv1wAMP6OOPP5Ykvfrqq3rxxRf15ptvqkOHDnrvvffUv39/rVmzRi1atCjyPyQnJ+vqq6/W3XffrTvvvFNLlizR/fffX+r/feaZZ+rss8/We++9p/POO8/3+OTJk9W1a1e1atVKH3/8sR5//HG99tpr6tChg5YvX6477rhDsbGxGjRokDIyMtS9e3c1aNBAX3/9terVq6dly5YpPz9fAwcO1OrVqzV79mz9+OOPkqSEhATl5+friiuuULVq1fTzzz8rNzdXd999twYOHOhXD4r73hE6ASVTGjZsqN27d6tRo0Zq1qyZvv/+e3Xs2FGLFy/2DX8DAADw+vjjj/X++++XuXxCQoLq1KljYkT207p1a0nSzp07tXPnTr/nPv30UytCAgAAAFDJPP300+revbsk6aGHHtKll16qI0eO+KY1O3r0qD744APVrl1bkvTbb79p0aJFSk1N9Z0XfuGFF/Tll1/q888/15133qkdO3Zo9OjRatWqlSQVSYAcO3ZMb7zxhpo1ayZJGj58uJ588knf8y+88IL+9a9/6frrr5ckPfvss5o3b55eeeUVTZw4scj/MGnSJDVr1kwvvviiJKlly5ZatWqVnn322VL/96FDh+qBBx7QhAkTVK1aNR0+fFiff/65JkyYIEkaO3asXnzxRV199dWSpKZNm2rt2rV68803NWjQIE2dOlV79+7V4sWLVbNmTUlS8+bNfe9frVo1RUREqF69er7HfvjhB61atUpbt25VUlKSJOmDDz7Q6aefrsWLF/vWuznxe0doBZRMueqqqzR37lx17txZ99xzj26++Wa9++672rFjh+67775gxQgAAFxi9+7dkqQ+ffro2muvPWn5c845p8jcu2530UUX6euvv9aePXskSatWrdKECRO0fft2iyMDAAAAcDIZGRklPnfiSILU1NQSyxZe90QqWA8klNq2bev72zt6PjU1VY0aNZIkNW7c2O+E/sqVK5WRkaFTTjnF732ys7O1efNmSdKoUaN0++2368MPP1Tv3r113XXX+RInUsF6RYXv169f3/cdpaena9euXerWrZvf+3vX2izOunXr1LlzZ7/HunTpctL//YYbbtB9992nTz/9VEOGDNEnn3yisLAwDRw4UJmZmdq8ebOGDh2qO+64w/ea3NxcJSQkSJJWrFihDh06+BIpZbFu3TolJSX5EimS1KZNG1WvXl3r1q3zJVNO/N4RWgElU5555hnf3wMHDlTjxo31v//9Ty1atNDll18ecHAAAMBdvMPSe/Toodtvv93iaOwpLCzMrx+1dOlSTZgwQcnJyRZGBQAAAKAsYmNjLS8bDIWn3yq8IHlJ8WRkZKh+/fp+U1J5eRd6f+KJJ3TjjTfqu+++06xZszR27FhNmzZNV111VZHP9H6uWdOYlSY+Pl7XXnutJk+erCFDhmjy5MkaMGCAqlWr5rvo7e233y6SqPEmy2JiYkyLLdT1AP4CSqac6Nxzz9W5554bzLcEAAAukJ2drYyMDO3atUuSuJKmHBo2bCipYA2Z3bt3KyLCv/sWGRnpOzgBAAAAACt07NhRKSkpioiIUJMmTUosd9ppp+m0007TfffdpxtuuEGTJ0/2JVNKEx8fr8TERC1YsMA3/ZgkLViwQOecc06xr2ndurW+/vprv8d+//33Mv0/Q4cOVY8ePfTtt9/qf//7n55//nlJBWt6JiYmasuWLbrpppuKfW3btm31zjvv6MCBA8WOTomKilJeXl6RWJOTk5WcnOwbnbJ27VodOnRIbdq0KVPMMF/YyYv4K2uFkwoWDVqzZk15PwIAALjIn3/+qVq1aqlOnTr64YcfJJFMKY/atWsrKipKhmEoMTFRderU8bvVqFFD48ePtzpMAAAAAJVY79691aVLF1155ZX6/vvvtW3bNv3vf//TI488oiVLlig7O1vDhw/X/PnztX37di1YsECLFy/2rRlZFqNHj9azzz6rTz75RBs2bNBDDz2kFStW6N577y22/LBhw/TXX39p9OjR2rBhg6ZOnaopU6aU6bMuuOACNW/eXLfeeqtatWqlrl27+p4bN26cxo8frwkTJmjjxo1atWqVJk+erJdeeklSwTRh9erV05VXXqkFCxZoy5Ytmj59uhYuXChJatKkibZu3aoVK1Zo3759ysnJUe/evXXmmWfqpptu0rJly7Ro0SLdeuut6t69uzp16lTm7wjmKncy5ZZbblGfPn302WefKTMzs9gya9eu1cMPP6xmzZpp6dKlAQcJAACc67ffflNWVpbvflJSUpnmqUWBsLAw3XjjjaWW8SapAAAAAMAKHo9HM2fO1AUXXKDBgwfrtNNO0/XXX6/t27erbt26Cg8P1/79+3XrrbfqtNNO04ABA3TJJZdo3LhxZf6MESNGaNSoUbr//vt15plnavbs2fr666+LLGTv1ahRI02fPl1ffvml2rVrpzfeeEP/+c9/yvz/DBkyRAcPHtSQIUP8nrv99tv1zjvvaPLkyTrzzDPVvXt3TZkyRU2bNpVUMPLk+++/V506ddSvXz+deeaZeuaZZ3zTgF1zzTXq27evevbsqdq1a+u///2vPB6PvvrqK9WoUUMXXHCBevfurVNPPVWffPJJmb8fmM9jlHPiuWPHjmnSpEmaOHGitmzZotNOO02JiYmqUqWKDh48qPXr1ysjI0NXXXWVHn74YZ155plmxV5u6enpSkhIUFpamuLj460OBwCASuGJJ57QuHHjdOedd+qNN96QdHzOXZRdcV22H3/8URdffLHOOOMMrVq1yoKoAAAAgMrnyJEj2rp1q5o2baoqVapYHQ6AMihtuy1r3qDca6ZERkZqxIgRGjFihJYsWaLffvtN27dvV3Z2ttq1a6f77rtPPXv2LHY+OAAAUPmkpqZKKphbliRKxRX33XmnS9u3b1+owwEAAAAAoFIJaAH6Tp06MWcbAACQVJA0mTp1qo4cOeL3+IIFCyRJderUsSIsV/MmU/bu3atnnnnmpOUvuOACv7l+AQAAAABA2QSUTAEAAPAaO3asbxqv4jRo0CCE0VQOtWvXVmRkpI4dO6YxY8actHxcXJwOHDigiAi6gAAAAAAAlAdH0gAAICj++usvSVLPnj19C+951a9fX/369bMiLFeLiorS+++/rx9//PGkZd9//30dPnxYe/bsIbEFAAAAAEA5kUwBAABBsWvXLknSo48+ql69elkcTeVxww036IYbbjhpuR9//FE7duxQcnIyyRQAAAAAAMopzOoAAACAO/z999+SpMTERIsjQXEaNmwoSdq5c6fFkQAAAAAA4DwVTqYcO3ZMF154oW9KDwAAUDm9++67atmypdLT0yWxNopdJSUlSZLuuusuNW/e3O928cUXKzs72+IIAQAAAACwrwonUyIjI/Xnn38GMxYAAOBAEyZM0MaNGyVJLVu2VFxcnMURoTidO3eWJO3bt0+bN2/2u/3www9asGCBxRECAAAAAGBfAU3zdfPNN+vdd98NViwAAMCBUlNTJRUscL5o0SKLo0FJRo4cqRUrVmjBggV+t7POOktSQZIFAAAAACpi/vz58ng8OnTokNWhmKZJkyZ65ZVXQv65Ho9HX375ZUDv0aNHD40cObLUMlb9f04SUDIlNzdXkyZNUqdOnfSPf/xDo0aN8rsBAAB3y8/P1969eyVJF154oeLj4y2OCCXxeDxq166dunbt6ndr2rSpJPl+RwAAAADuddttt8nj8RS59e3b19TPfeKJJ4r9XO9t3Lhxpn5+aUr6Try3Jk2aWBabXdxzzz1q3bp1sc/t2LFD4eHh+vrrrwP6jG3btsnj8WjFihUBvY+ZIgJ58erVq9WxY0dJ8k3v4eXxeAJ5awAOkZqaqnXr1pX7dXXq1CmxEQZgb/n5+VqyZImys7OVkZGhvLw8SVKtWrUsjgwVUbt2bUnSsmXL9PPPP/sej4yMVKdOnRQVFWVVaAAAAABM0LdvX02ePNnvsejoaFM/84EHHtCwYcOKPD5mzBh9+eWXuvHGG039/NK8+uqreuaZZ3z369evr8mTJ/sSTOHh4RV+72PHjikyMjLgGK02dOhQvfbaa/rf//6nrl27+j03ZcoU1alTR/369bMouqLM+t4DGpkyb968Em8//fRTsGIEYFO//fabmjRpoh49epT71qZNG7+TdgCc45lnnlHnzp3Vo0cPXXbZZZKkhIQE0zvfMIc3mTJlyhS/drpbt27q3Lmztm3bZm2AAAAAAIIqOjpa9erV87vVqFHD97zH49E777yjq666SlWrVlWLFi2KjDqYOXOmTjvtNMXExKhnz54nPW6oVq1akc+cO3euPvzwQ02bNk0tWrTwlZ00aZKaNWumqKgotWzZUh9++KHfe5UlvtWrV+uSSy5RtWrVVLduXd1yyy0lTm2ckJDgF5ckVa9e3Xffe8wkSVlZWRoyZIji4uLUqFEjvfXWW77nvCMrPvnkE3Xv3l1VqlTRxx9/LEl655131Lp1a1WpUkWtWrXS66+/7nvd0aNHNXz4cNWvX19VqlRR48aNNX78eL8Y9+3bV+r/+/PPP+ucc85RdHS06tevr4ceeki5ubkl/h6pqam6/PLLFRMTo6ZNm/riLEn79u3VsWNHvffee36PG4ahKVOmaNCgQYqIiDjp956fn6/nnntOzZs3V3R0tBo1aqSnn35aknyzJnTo0EEej0c9evTwvebJJ59Uw4YNFR0drfbt22v27Nll+t6DLaBkitemTZs0Z84cZWdnSyr4EgG424YNG3TFFVcoOztbDRo0UOvWrct8804DZOdhewBKtnTpUkkFV+t4t+sxY8ZYHBUq6vrrr1eXLl2KbatXrFihTp06ae7cuVaHCQAAADhDZmbJtyNHyl72/59nPWlZk4wbN04DBgzQn3/+qX79+ummm27SgQMHJEnJycm6+uqrdfnll2vFihW6/fbb9dBDD5Xr/ZcuXao77rhDzzzzjPr06eN7fMaMGbr33nt1//33a/Xq1frHP/6hwYMHa968eWWO79ChQ+rVq5c6dOigJUuWaPbs2dqzZ48GDBgQ4Lcivfjii+rUqZOWL1+uf/7zn7rrrru0YcMGvzIPPfSQ7r33Xq1bt059+vTRxx9/rMcff1xPP/201q1bp//85z967LHH9P7770uSJkyYoK+//lqffvqpNmzYoI8//rjI1GKl/b9///23+vXrp7PPPlsrV67UpEmT9O677+rf//53if/HbbfdpuTkZM2bN0+ff/65Xn/9dd96qCUZOnSoPv30U2UWqnfz58/X1q1bNWTIkDJ972PGjNEzzzyjxx57TGvXrtXUqVNVt25dSfKtwfrjjz9q9+7d+uKLLyQVjBx68cUX9cILL+jPP/9Unz591L9/f/3111+lfu+mMAKwb98+o1evXobH4zHCwsKMzZs3G4ZhGIMHDzZGjRoVyFubIi0tzZBkpKWlWR0K4Gh79uwxTj31VEOS0blzZyMzM7Ncr7/nnnsMScaYMWNMihCAmTp37mxIMmbMmGF1KDDRjh07jE6dOhmSjLCwMOPFF1808vPzrQ4LAAAAsFx2draxdu1aIzs7u+iTUsm3fv38y1atWnLZ7t39y9aqVXy5cho0aJARHh5uxMbG+t2efvrpQv+CjEcffdR3PyMjw5BkzJo1yzAMwxgzZozRpk0bv/f917/+ZUgyDh48eNIY9uzZYyQlJRk333xzkee6du1q3HHHHX6PXXfddUa/Qt/dyeJ76qmnjIsvvtjvPZKTkw1JxoYNG04aX0nHu40bN/aLOT8/36hTp44xadIkwzAMY+vWrYYk45VXXvF7XbNmzYypU6f6PfbUU08ZXbp0MQyj4DxZr169SjzeOtn/+/DDDxstW7b0e/3EiRONatWqGXl5eYZhGEb37t2Ne++91zAMw9iwYYMhyVi0aJGv/Lp16wxJxssvv1zi93Lw4EGjSpUqxuTJk32P3XLLLcZ5553n+59K+97T09ON6Oho4+233y72/b3f3/Lly/0eT0xM9KufhmEYZ599tvHPf/7T73Unfu8nKm27LWveIKCRKffdd58iIyO1Y8cOVa1a1ff4wIED/YbaAHCPrKws9e/fX1u2bNGpp56qr7/+2m/7LwtvxnnPnj1mhAjAZH///bckqUGDBhZHAjMlJSXpl19+0aBBg5Sfn6/7779ft9xyi7KysqwODQAAAEAAevbsqRUrVvjdTlzPpG3btr6/Y2NjFR8f7xu5sG7dOnXu3NmvfJcuXcr02ceOHdO1116runXr6u233y7y/Lp169StWze/x7p161Zkvd7S4lu5cqXmzZunatWq+W6tWrWSJG3evLlMcZak8Od6PB7Vq1evyIiOTp06+f7OzMzU5s2bNXToUL94/v3vf/tiue2227RixQq1bNlSI0aM0Pfff1/q5xb3e3Tp0sVvDfNu3bopIyNDO3fuLPJe69atU0REhM466yzfY61atVL16tVL/d+rV6+uq6++2jfVV3p6uqZPn66hQ4dKOvn3vm7dOuXk5OjCCy8s9XMKS09P165du8pUJwp/72YJaAH677//XnPmzFHDhg39Hm/RooW2b98eUGAArPf999/ro48+8pu6b+PGjVq0aJFq1qypmTNnqk6dOuV+X28y5YcfftAtt9wStHidJCwsTEOHDtUFF1xgdShAmX3xxReaMWOGdu/eLUlKTEy0OCKYLSYmRpMnT1bHjh01atQoffzxx1qxYoVvDtuBAwfq0ksvtTpMAAAAwD4yMkp+7sSFzEubVinshGvgg7iWYWxsrJo3b15qmRMX7/Z4PMrPzw/4s0eMGKG//vpLixcvVpUqVSr8PqXFl5GRocsvv1zPPvtskdfVr1+/wp95ss/1io2N9f2d8f/rw9tvv10kAeVd2L5jx47aunWrZs2apR9//FEDBgxQ79699fnnn5frc0Nh6NChuvDCC7Vp0ybNmzdP4eHhuu666ySd/HvfsmWLqbEV/t7NElAyJTMzs9gr0g8cOMAitIAL3HPPPdq4cWORx6OiovTll1+qZcuWFXpf7w47OTlZH330UUAxOtnatWu1ePFiq8MAysQwDA0ZMkRpaWmSpPj4eF9iFO7m8Xg0YsQItWvXTtddd53WrFmjNWvWSCqYH3fHjh0WRwgAAADYSHlO6JpV1mStW7cusgD677//ftLXvfXWW3rvvfc0b968IhfnF37vBQsWaNCgQb7HFixYoDZt2pQ5vo4dO2r69Olq0qSJIiICOv0dsLp16yoxMVFbtmzRTTfdVGK5+Ph4DRw4UAMHDtS1116rvn376sCBA6pZs+ZJP6N169aaPn26DMPwjU5ZsGCB4uLiiv2eW7VqpdzcXC1dulRnn322pIK1kQ8dOnTSz+rZs6eaNm2qyZMna968ebr++ut9SYyTfe8tWrRQTEyM5s6dq9tvv73I81FRUZKkvLw8v+8lMTFRCxYsUPfu3X2PL1iwQOecc85J4w22gGrT+eefrw8++EBPPfWUpOMZseeee049e/Ys13uNHz9eX3zxhdavX6+YmBh17dpVzz77rN/J2iNHjuj+++/XtGnTlJOToz59+uj111/nZA5gkl27dkmSHn74Yb/G+6KLLvIbXlhe3bt313//+1/fVEGVza5du/TSSy/5ru4HnODAgQO+RMrzzz+v888/3/JOKUKre/fuWrFihaZPn679+/dr3Lhx2r17t1+HHQAAAID95eTkKCUlxe+xiIgI1apVq0yvHzZsmF588UWNHj1at99+u5YuXaopU6aU+poFCxbonnvu0eOPP65TTz21yOfHxMQoISFBo0eP1oABA9ShQwf17t1b33zzjb744gv9+OOPZf7/7r77br399tu64YYb9OCDD6pmzZratGmTpk2bpnfeecc3IiRUxo0bpxEjRighIUF9+/ZVTk6OlixZooMHD2rUqFF66aWXVL9+fXXo0EFhYWH67LPPVK9evZNOu+X1z3/+U6+88oruueceDR8+XBs2bNDYsWM1atQohZ04wklSy5Yt1bdvX/3jH//QpEmTFBERoZEjRyomJuakn+XxeDRkyBC99NJLOnjwoF5++WXfcyf73qtUqaJ//etfevDBBxUVFaVu3bpp7969WrNmjYYOHao6deooJiZGs2fPVsOGDVWlShVfnRg7dqyaNWum9u3ba/LkyVqxYoU+/vjjMv8GQVPqiionsWrVKqNOnTpG3759jaioKOPaa681WrdubdStW9fYtGlTud6rT58+xuTJk43Vq1cbK1asMPr162c0atTIyMjI8JUZNmyYkZSUZMydO9dYsmSJce655xpdu3Yt82ewAD1QdtnZ2YakMi8ehrLbvn27IcmIiopiMWc4xpIlSwxJRv369a0OBTZQeB9x4MABq8MBAAAAQqrUBehtbtCgQb6+fOFby5YtfWVUzALsCQkJfguPf/PNN0bz5s2N6Oho4/zzzzfee++9Us8h3XbbbcV+rvc2aNAgX9nXX3/dOPXUU43IyEjjtNNOMz744AO/9ypLfBs3bjSuuuoqo3r16kZMTIzRqlUrY+TIkWU6D1Pc+xtGwQL0Jy7Q3q5dO2Ps2LGGYZS8gLphGMbHH39stG/f3oiKijJq1KhhXHDBBcYXX3xhGIZhvPXWW0b79u2N2NhYIz4+3rjwwguNZcuWlev/nT9/vnH22WcbUVFRRr169Yx//etfxrFjx3zPF16A3jAMY/fu3call15qREdHG40aNTI++OCDYv+/4iQnJxthYWHG6aefXuS5k33veXl5xr///W+jcePGRmRkpNGoUSPjP//5j+/1b7/9tpGUlGSEhYUZ3bt3973miSeeMBo0aGBERkYa7dq1M2bNmuV7TWnfe2HBWIDeYxiFFkOogLS0NL322mtauXKlMjIy1LFjR919990Bzz+3d+9e1alTRz///LMuuOACpaWlqXbt2po6daquvfZaSdL69evVunVrLVy4UOeee+5J3zM9PV0JCQlKS0tTfHx8QPEBbpabm6vk5GSdeuqpioiI0NGjR7nqOIiys7N9UyTu3bu3XO2Rd8gjEGrTpk3TDTfcoHPPPVcLFy60OhzYQHx8vA4fPqzVq1erRYsWkgrm8WV/AQAAALc7cuSItm7dqqZNmwa07geA0Cltuy1r3iDg+TkSEhL0yCOPBPo2RXinEvFOLbR06VIdO3ZMvXv39pVp1aqVGjVqVGIyJScnRzk5Ob776enpQY8TcJsZM2bohhtu8G07tWrV4sRYkMXExCg2NlaZmZmqXbt2uV47aNCgkw6dBYLt9ttv17vvvitJatKkibXBwDZq166tw4cP64wzzvA9dskll2jmzJkWRgUAAAAAgDnKnUz5888/y1y2omsq5Ofna+TIkerWrZvvAD0lJUVRUVFF5oqrW7dukTn2vMaPH69x48ZVKAagsvr222/9kpCXXnqphdG416WXXqpPP/203K+bPn06yRSE3PTp031/0ybA67LLLtOECRP8Hps1a5ays7PLNNcuAAAAAABOUu5kSvv27eXxeIosNuqdLazwY3l5eRUK6u6779bq1av122+/Vej1XmPGjNGoUaN899PT05WUlBTQewJut2fPHknShAkTNGjQIKbEM8m0adP01ltvlbl8RkaGGjZsqIyMDGVmZio2NtbE6IDjjh49qkOHDkmSduzYwX4UPq+++qr+/e9/Kz8/X4ZhqHbt2srNzdX+/fvVsGFDq8MDAAAAACCoyp1M2bp1q+/v5cuX64EHHtDo0aPVpUsXSdLChQv14osv6rnnnqtQQMOHD9e3336rX375xe9AvF69er4TOoVHp+zZs0f16tUr9r2io6MVHR1doTiAysqbTGnSpAmJFBN5PB4lJCSUuXx8fLxiYmKUnZ2tPXv26NRTTzUxOuC41NRUSVJ4eLgaNGhgcTSwm7i4ON/ftWrVUkpKivbt20cyBQAAAADgOuVOpjRu3Nj393XXXacJEyaoX79+vsfatm2rpKQkPfbYY7ryyivL/L6GYeiee+7RjBkzNH/+fDVt2tTv+bPOOkuRkZGaO3eurrnmGknShg0btGPHDl8iB0DF7dy5U999950vYVqnTh2LI0JhHo9HdevW1bZt2/Tmm2/62uK4uDhde+21TKmDoMnLy9OMGTN8SZS///5bUsH6GGFhYVaGBpvzJlOmTJmic889V1dffbWioqKsDgsAAAAAgKAIaAH6VatWFUl6SFLTpk21du3acr3X3XffralTp+qrr75SXFycbx2UhIQExcTEKCEhQUOHDtWoUaNUs2ZNxcfH65577lGXLl2KXXweQPncfvvtmjNnju9+YmKihdGgOA0aNNC2bduKjPzbu3ev35SGQCC+/fZbXXfddUUep03AydSrV0+rV6/Wq6++qldffVVTpkzRoEGDrA4LAAAAME1+fr7VIQAoo2BsrwElU1q3bq3x48frnXfe8V15ePToUY0fP16tW7cu13tNmjRJktSjRw+/xydPnqzbbrtNkvTyyy8rLCxM11xzjXJyctSnTx+9/vrrgfwLAP6/jRs3SpJ69eqlPn36sC6CDT399NN6/fXXfetRbdy4UatWrdKaNWssjgxusmnTJkkFI1E7deokqWCKrzvuuMPKsOAA48aNU61atbRs2TJt3LhRGzZssDokAAAAwBRRUVEKCwvTrl27VLt2bUVFRfmtIw3APgzD0NGjR7V3716FhYUFNINCQMmUN954Q5dffrkaNmyotm3bSpL+/PNPeTweffPNN+V6L+8C9qWpUqWKJk6cqIkTJ1YoXgAl866V8tZbb6lZs2YWR4PidO/eXd27d/fd/+CDDzRo0CDt2LHDwqjgNvv27ZMkXXnllXrllVesDQaO0rVrV3Xt2lXPPPOMxowZo927d1sdEgAAAGCKsLAwNW3aVLt379auXbusDgdAGVStWlWNGjUKaArzgJIp55xzjrZs2aKPP/5Y69evlyQNHDhQN954o2JjYwN5awAhlJGRoaysLElS3bp1LY4GZdWoUSNJIpmCoPImU2rVqmVxJHCq+vXrSxIHlQAAAHC1qKgoNWrUSLm5ub4ZJADYU3h4uCIiIgIeQRZQMkWSYmNjdeeddwb6NgAsNGTIEEkFGdpq1apZHA3KyptM2bx5s84666xyvbZfv3566qmnzAgLDrVhwwbdddddWr58uaSCBeeBivCur/Pbb7+V2jbVqlVLU6ZM8SVfAAAAAKfxeDyKjIxUZGSk1aEACIGAkymbN2/WK6+8onXr1kmSTj/9dI0YMYJpggCHSEtL02effSapYPuFczRs2FC1a9fW3r17tWzZsnK9dtmyZRo9erTi4+NNig5O8/HHH2vevHm++7QHqKg2bdooIiJCWVlZJ22bpk+fruHDh4coMgAAAAAAKi6gZMqcOXPUv39/tW/fXt26dZMkLViwQG+++aa++eYbXXTRRUEJEoB5du7c6fv7+++/tzASlFdUVJSWL1+uVatWlet1N998s/bv36+//vqr3CNa4F6pqamSCurH/fffr3bt2lkcEZyqQYMGWrt2rTZv3lximXfeeUfTp09nmkIAAAAAgGMElEx56KGHdN999+mZZ54p8vi//vUvkimAA3iTKWeeeaaqV69ubTAotwYNGqhBgwblek3r1q3122+/kUyBn71790qSOnfurPbt21sbDByvRYsWatGiRYnPr127lmQKAAAAAMBRAkqmrFu3Tp9++mmRx4cMGaJXXnklkLcGEAL5+fmaNWuWJJX7hDycq0WLFvrtt9/066+/qmXLlpIK5nk9/fTTmefVxfbt26fk5OQSn9++fbsk1kpBaHjXfNqwYYOWL1+uU045xfcYAAAAAAB2FFAypXbt2lqxYkWRKw9XrFihOnXqBBQYAPPdddddeuuttySRTKlMvG3266+/rtdff933+KWXXqpvv/3WqrBgor1796pJkybKyso6aVmSKQgFb+JkxYoV6tixoyRp3rx56tGjh4VRAQAAAABQsoCSKXfccYfuvPNObdmyRV27dpVUsGbKs88+q1GjRgUlQADmWbRoke/vW265xcJIEErXXnut/vvf/2r//v2SpNzcXKWmpmrx4sUWRwazrF27VllZWYqIiCj1YofmzZvr3HPPDWFkqKw6dOigiy++WKtXr9ahQ4eUlZWlxYsXk0wBAAAAANhWQMmUxx57THFxcXrxxRc1ZswYSVJiYqKeeOIJjRgxIigBAjCPd42ERYsW6eyzz7Y4GoRKixYt9Oeff/ru79q1Sw0aNND+/fuVn5+vsLAwC6ODGbzb+rnnnqtff/3V4mgAKTIyUnPmzJEkPfjgg3r++eeVkpJicVQAAAAAAJQsoGSKx+PRfffdp/vuu0+HDx+WJMXFxQUlMADmMgxD+/btk8S0PpXdKaecIknKy8vToUOHVLNmTYsjQrClpqZKYluHPdWtW1eSSKYAAAAAAGwtoGTK1q1blZubqxYtWvglUf766y9FRkaqSZMmgcYHwCQzZsxQTk6OJE6wVnbR0dGKj49Xenq6Ro4cqfj4+CJl6tSpowcffFBVqlSxIEJUREpKil555RVlZGRo6dKlktjWYU/16tWTJP32228aPnx4sWWqVq2qBx54gDX5AAAAAACWCSiZctttt2nIkCFFFqD/448/9M4772j+/PmBvD0AEw0ZMkRSwVQrVatWtTgaWK1x48ZatWqVPvzwwxLLtGzZUgMHDgxhVAjExIkT9eyzz/o91rhxY4uiAUp26qmnSpJ27NihiRMnllhuw4YN+uqrr0IVFgAAAAAAfgJKpixfvlzdunUr8vi5555b4pWFAKyXm5urtLQ0SdKnn34qj8djcUSw2gcffKAvv/xShmEUee6rr77SypUrlZycbEFkqCjv73XRRRepS5cuiouL0+23325xVEBR5557rt59911t37692Odzc3P1/PPP6+uvv9ZXX32lK664IsQRAgAAAAAQhDVTvGulFJaWlqa8vLxA3hqAiQ4cOCCpYBu+7LLLLI4GdtC+fXu1b9++2OfS09O1cuVK3yLmcAbv7zVw4EANHTrU4miAknk8Ht9oyZIYhqHx48frnnvu0YUXXqhq1aqFKDoAAAAAAAqEBfLiCy64QOPHj/dLnOTl5Wn8+PE677zzAg4OgDm8C8/XqFFDEREB5VRRCXjX2SCZ4ize34s1JuAGjz76qJo0aaLk5GQ9+eSTVocDAAAAAKiEPEZxc7qU0dq1a3XBBReoevXqOv/88yVJv/76q9LT0/XTTz/pjDPOCFqgwZCenq6EhASlpaUVu8AyUBnk5eWpZs2aSk9PV4sWLbRx40arQ4LNvf3227rzzjvl8XgUFRXl91xMTIzeffddXX311RZFV/kMHz5c77zzzknL5eTkSJIWLlyoc8891+ywANN99913vtGU0dHRlsZyyimnaM6cObbr6wIAAAAAyq+seYOARqa0adNGf/75pwYMGKDU1FQdPnxYt956q9avX8/BJWBT27dvV3p6uiSpR48e1gYDR+jSpYuio6NlGIZycnL8bocOHdLnn39udYiVyvvvv1/kdyjuJhWMKmrTpo3FEQPBcemll+qGG26QpDJtA2bedu3apZkzZ1r8jQAAAAAAQing+X0SExP1n//8JxixAAiBXbt2SZKqVKmiN9980+Jo4ARnnHGGUlNTdejQIb/HZ8yYoZEjRzL9VwhlZWUpIyNDkrRmzZqTrhtRu3ZtxcTEhCI0ICQ+/vhjPffcc8rPz7cshueff16vvfaakpOTLYsBAAAAABB6ASdTDh06pEWLFik1NbXIge2tt94a6NsDCDJvMuXss8+Wx+OxOBo4RXx8fJFhjq1atZLEWiqhtGfPHkkFydDWrVuzDaPS8Xg8atiwoaUxeEd7kUwBAAAAgMoloGTKN998o5tuukkZGRmKj4/3O6nj8XhIpgA29Mcff0gqGFUGBMK7MH1ycrI+/vjjk5bv1KmTWrZsaXZYQfHjjz/6Ehd2snXrVkkFi8qTSAGskZSUJElavXp1mdo+OF/jxo113nnnWR0GAAAAAIsFlEy5//77NWTIEP3nP/9R1apVgxUTABO98sorkgpOxgKBqFevniTpwIEDuvnmm09avmbNmkpJSVFkZKTZoQXk888/13XXXWd1GKWqX7++1SEAlVajRo0kSZs3by5T2wd3+Oc//6lXXnnF9vswAAAAAObxGIZhVPTFsbGxWrVqlU499dRgxmSa9PR0JSQkKC0trch0NUBlYBiGoqKilJubq7lz56pXr15WhwSHGzt2rBYuXHjScj/++KMMw9CuXbtsnQjIz89X27ZttWbNGrVt21Z169a1OqQiwsPDde+996pv375WhwJUSoZh6IEHHtCqVausDgUhkJubq/nz58swDF144YX67LPPVKNGDavDAgAAABBEZc0bBJRMufrqq3X99ddrwIABFX2LkCKZgsru4MGDqlmzpiTpyJEjio6OtjgiVBZ16tTR3r179eeff+rMM8+0OpwSffbZZxowYIASEhK0bds2Va9e3eqQAAAW++qrr3TTTTcpMzNTLVq00DfffOOYaSsBAAAAnFxZ8wYBTfN16aWXavTo0Vq7dq3OPPPMIsPe+/fvH8jbAwiy1NRUSQWLiZNIQSjVrl1be/futfVi9fn5+Ro3bpwk6b777iORAgCQJF1xxRVasGCB+vfvr7/++kudO3fWZ599posuusjq0AAAAACEUEAjU8LCwkp+Y49HeXl5FX1rUzAyBZVd9+7d9csvv6h58+b666+/rA4HlYi37p1++um+hevtJisrS4sWLWJUCgCgWHv27NHVV1+t//3vfwoPD1e3bt1KPR5CyTwejwYPHqxbbrnF6lAAAACA0IxMyc/PD+TlAELo77//1i+//CJJat26tcXRoLJp3bq1fvnlF61Zs8bqUE5q1KhRJFIAAEXUrVtXc+fO1Z133qkPP/zQ169CxWzatIlkCgAAABwloJEpTsPIFFRmy5Yt01lnnSVJ2r9/v2/tFCAUMjIy9MMPP+jo0aNWh1Kq2NhY9e3bVxERAV1rAABwMcMw9MsvvyglJcXqUBxp//79uvvuuxUdHa3s7Gx5PB6rQwIAAEAlZ+rIlH79+um///2vEhISJEnPPPOMhg0b5ruSd//+/Tr//PO1du3airw9ABN410tp164diRSEXLVq1XTVVVdZHQYAAAHzeDzq3r271WE4VmZmpu6++27l5OQoIyNDcXFxVocEAAAAlEmFkilz5sxRTk6O7/5//vMfDRgwwJdMyc3N1YYNG4ISIIDg2Lx5syTZdr0KAAAAuF9sbKxiYmKUnZ2t5cuXq2HDhlaH5BiJiYmqUqWK1WEAAABUWhVKppw4M1glmikMcKRt27Zp+PDhkkimAAAAwFq1a9fWjh07GOFTTg0bNtRff/1FQgUAAMAiTAoPVAKLFi3y/T1gwAALIwEAAEBlN3jwYL388svKz8+3OhTHyMjI0M6dO7Vt2za1atXK6nAAAAAqpQolUzweT5GFAlk4ELCvXbt2SZIGDhyoK6+80tpgAAAAUKk98cQTeuKJJ6wOw1FatmypjRs3as+ePSRTAAAALFLhab5uu+02RUdHS5KOHDmiYcOGKTY2VpL81lMBYD1vMiUxMdHiSAAAAACUV7169bRx40alpKRYHQoAAEClVaFkyqBBg/zu33zzzUXK3HrrrRWLCMBJ5efna9KkSfr777/LVH7OnDmSpPr165sZFgAAAAAT1K1bV5I0efJkrVy50uJoYIWIiAjdcsstatGihdWhAABQaVUomTJ58uRgxwGgHH744QffgvLl0bRpUxOiAQAAAGCmxo0bSyq4SMp7oRQqn5UrV+qrr76yOgwAACot2yxA/8svv+j555/X0qVLtXv3bs2YMcNvbQfDMDR27Fi9/fbbOnTokLp166ZJkyZxVQYqpdWrV0uS2rRpo4suuqhMr6lbt64uv/xyM8MCAAAAYIJRo0YpKipKmZmZVocCC/z999/6/PPPtWXLFqtDAQCgUrNNMiUzM1Pt2rXTkCFDdPXVVxd5/rnnntOECRP0/vvvq2nTpnrsscfUp08frV27VlWqVLEgYsA6GzdulCRdc801evLJJy2OBgAAAICZ6tevr6efftrqMGCR1atX6/PPP/ethQkAAKxhm2TKJZdcoksuuaTY5wzD0CuvvKJHH31UV1xxhSTpgw8+UN26dfXll1/q+uuvD2WogOW8yRRGZgEAAACAuyUmJkqSDhw4oCNHjnBBKQAAFrFNMqU0W7duVUpKinr37u17LCEhQZ07d9bChQtLTKbk5OQoJyfHdz89Pd30WAEzbdmyRZdffrk2bNggSTrttNMsjggAAAAAYKYaNWooOjpaOTk5SkpKUlhYmNUhAYAuvfRSvffee1aHAYRUQMmUzMxMxcbGBiuWEqWkpEgqWPOhsLp16/qeK8748eM1btw4U2MDQmn69Olau3atJKlWrVo6/fTTLY4IAAAAAGAmj8ejrl27at68edq3b5/V4QCAJGny5Ml69dVXFRcXZ3UoQMgElEypW7euBgwYoCFDhui8884LVkxBM2bMGI0aNcp3Pz09XUlJSRZGBARm/fr1kqThw4fr6aefVrVq1SyOCAAAAABgtjlz5vhmKAAAq5177rnKzMxUSkoKyRRUKgElUz766CNNmTJFvXr1UpMmTTRkyBDdeuutvvk8g6VevXqSpD179qh+/fq+x/fs2aP27duX+Lro6GhFR0cHNRbASuvWrZMknXfeeYqPj7c4GgAAAABAKERGRuqMM86wOgwAkCTVr19fmzZt0u7du1nPF5VKQMmUK6+8UldeeaX27t2rDz/8UFOmTNFjjz2mPn36aMiQIerfv78iIgJflqVp06aqV6+e5s6d60uepKen648//tBdd90V8PsDdrd161atXr3aN8VX69atLY4IAAAAAAAAlZE3mTJz5kylpaVZHQ7KqUOHDmrYsKHVYTiSxzAMI5hv+H//938aPXq0jh49qlq1amnYsGF66KGHVLVq1VJfl5GRoU2bNkkq+EFfeukl9ezZUzVr1lSjRo307LPP6plnntH777+vpk2b6rHHHtOff/6ptWvXqkqVKmWKLT09XQkJCUpLS+OqfjhGZmamEhMTlZ6eLkkKCwtTZmZmmes9AAAAAAAAECw33HCDpk2bZnUYqKAPPvhAt9xyi9Vh2EpZ8waBDxtRwXRb77//vqZMmaLt27fr2muv1dChQ7Vz5049++yz+v333/X999+X+h5LlixRz549ffe9a50MGjRIU6ZM0YMPPqjMzEzdeeedOnTokM477zzNnj2bE8pwvfXr1ys9PV1RUVFq3769rrzySuo9AAAAAAAALDF8+HDt2rVLR44csToUVMApp5xidQiOFdDIlC+++EKTJ0/WnDlz1KZNG91+++26+eabVb16dV+ZzZs3q3Xr1jp69Ggw4g0II1PgRNOmTdMNN9ygbt266bfffrM6HAAAAAAAAABwjZCMTBk8eLBuuOEGLViwQGeffXaxZRITE/XII48E8jFApfbXX39JEgt6AQAAAAAAAIBFKpxMyc3N1fjx43XNNdeobt26JZaLiYnR2LFjK/oxQKX1yy+/aMKECVq6dKkkkikAAAAAAAAAYJWwir4wIiJCDzzwAHPjASZ57LHHNH36dG3btk2S1KFDB2sDAgAAAAAAAIBKqsLJFEk655xztHz58mDFAqCQ9evXS5LGjh2rr776Sn379rU4IgAAAAAAAAConAJaM+Wf//yn7r//fu3cuVNnnXWWYmNj/Z5v27ZtQMEBlVV6erpSU1MlSffdd58SEhIsjggAAAAAAAAAKi+PYRhGRV8cFlZ0YIvH45FhGPJ4PMrLywsouGBLT09XQkKC0tLSFB8fb3U4QLGysrL0xx9/qFevXqpdu7YvqQIAAAAAAAAACK6y5g0CGpmydevWQF4O4AS//vqrevfuraNHj0pi0XkAAAAAAAAAsIOAkimNGzcOVhwAJM2cOdOXSImIiND1119vcUQAAAAAAAAAgICSKV5r167Vjh07fCeBvfr37x+MtwcqDe+i8y+//LJGjBhR7FR6AAAAAAAAAIDQCiiZsmXLFl111VVatWqVb60UqWDdFEm2WzMFsLsNGzZIklq3bk0iBQAAAAAAAABsIqBkyr333qumTZtq7ty5atq0qRYtWqT9+/fr/vvv1wsvvBCsGAHXOnjwoD766CNlZWVJkjZt2iRJatWqlZVhAQAAAAAAAAAKCSiZsnDhQv3000+qVauWwsLCFBYWpvPOO0/jx4/XiBEjtHz58mDFCbjSs88+q2effdbvsWrVqikpKcmiiAAAAAAAAAAAJwoomZKXl6e4uDhJUq1atbRr1y61bNlSjRs39k1XBKBky5YtkyT16NFDTZs2lVSw1hBTfAEAAAAAAACAfQSUTDnjjDO0cuVKNW3aVJ07d9Zzzz2nqKgovfXWWzr11FODFSPgWmvXrpUkjR8/Xueee67F0QAAAAAAAAAAihNQMuXRRx9VZmamJOnJJ5/UZZddpvPPP1+nnHKKpk2bFpQAAbdKS0vT33//LalgwXkAAAAAAAAAgD0FlEzp06eP7+/mzZtr/fr1OnDggGrUqCGPxxNwcIDbzJgxQ4888oiOHTumo0ePSpIaNGighIQEiyMDAAAAAAAAAJQkoIUZhgwZosOHD/s9VrNmTWVlZWnIkCEBBQa40UsvvaR169Zp06ZN2rFjhyTpggsusDgqAAAAAAAAAEBpPIZhGBV9cXh4uHbv3q06der4Pb5v3z7Vq1dPubm5AQcYTOnp6UpISFBaWpri4+OtDgeVTH5+vqpXr67Dhw9r6tSpatSokcLDw9WxY0dFRUVZHR4AAAAAAAAAVDplzRtUaJqv9PR0GYYhwzB0+PBhValSxfdcXl6eZs6cWSTBAlR2W7du1eHDhxUdHa3rrrtOEREBzbIHAAAAAAAAAAiRCp3NrV69ujwejzwej0477bQiz3s8Ho0bNy7g4AAn2rJli3bu3Fnk8QULFkiSzjzzTBIpAAAAAAAAAOAgFTqjO2/ePBmGoV69emn69OmqWbOm77moqCg1btxYiYmJQQsScIqNGzeqVatWKm32vHbt2oUwIgAAAAAAAABAoCqUTOnevbukgmmLkpKSFBYW0Dr2gGusXr1ahmEoJiZGjRs3LvJ8bGys/vGPf1gQGQAAAAAAAACgogKaa6hx48Y6dOiQ3n33Xa1bt06SdPrpp2vIkCFKSEgISoCAk+zdu1eSdPHFF+vLL7+0NhgAAAAAAAAAQFAENKRkyZIlatasmV5++WUdOHBABw4c0EsvvaRmzZpp2bJlwYoRcIx9+/ZJkmrVqmVxJAAAAAAAAACAYAloZMp9992n/v376+233/YtqJ2bm6vbb79dI0eO1C+//BKUIAG7+uSTT/Tdd9/57i9dulQSyRQAAAAAAAAAcJOAkilLlizxS6RIUkREhB588EF16tQp4OAAO/v111914403Kj8/v8hzTZs2tSAiAAAAAAAAAIAZAkqmxMfHa8eOHWrVqpXf48nJyYqLiwsoMMDODhw4oJtuukn5+fnq16+fevbs6XuuRo0auvHGGy2MDgAAAAAAAAAQTAElUwYOHKihQ4fqhRdeUNeuXSVJCxYs0OjRo3XDDTcEJUDAbgzD0NChQ5WcnKwWLVrok08+UbVq1awOCwAAAAAAAABgkoCSKS+88II8Ho9uvfVW5ebmSpIiIyN111136ZlnnglKgIAVDMPw1ekTvfXWW/ryyy8VGRmpadOmkUgBAAAAAAAAAJfzGIZhBPomWVlZ2rx5sySpWbNmqlq1qrKzsxUTExNwgMGUnp6uhIQEpaWlKT4+3upwYFP5+fnq1auXfv7551LLvfzyyxo5cmRoggIAAAAAAAAABF1Z8wZhwfiwqlWr6swzz9SZZ56p8PBwvfTSSyzADcdKTU09aSLl6quv1r333huiiAAAAAAAAAAAVqrQNF85OTl64okn9MMPPygqKkoPPvigrrzySk2ePFmPPPKIwsPDdd999wU7ViAkdu3aJUmqW7eu1q9fX+R5j8ej+Ph4eTyeUIcGAAAAAAAAALBAhZIpjz/+uN5880317t1b//vf/3Tddddp8ODB+v333/XSSy/puuuuU3h4eLBjBULCm0xp2LChqlevbm0wAAAAAAAAAADLVSiZ8tlnn+mDDz5Q//79tXr1arVt21a5ublauXIlV+tXMjt37tTMmTOVl5dndShBs3DhQklSYmKixZEAAAAAAAAAAOygQsmUnTt36qyzzpIknXHGGYqOjtZ9991HIqUSuu222zR37lyrwzBFUlKS1SEAAAAAAAAAAGygQsmUvLw8RUVFHX+TiAhVq1YtaEGVZuLEiXr++eeVkpKidu3a6f/+7/90zjnnhOSzUdTatWslSb1791Z8fLzF0QRP1apVWWAeAAAAAAAAACCpgskUwzB02223KTo6WpJ05MgRDRs2TLGxsX7lvvjii8AjLOSTTz7RqFGj9MYbb6hz58565ZVX1KdPH23YsEF16tQJ6mfh5I4dO6aUlBRJ0scff8xvAAAAAAAAAABwJY9hGEZ5XzR48OAylZs8eXK5AypN586ddfbZZ+u1116TJOXn5yspKUn33HOPHnrooZO+Pj09XQkJCUpLS3PVKAqrbN++XU2aNFFUVJSys7MVFhZmdUgAAAAAAAAAAJRZWfMGFRqZEuwkSVkcPXpUS5cu1ZgxY3yPhYWFqXfv3r4Fw0+Uk5OjnJwc3/309HTT43Sim266SRs2bCj367KysiRJDRs2JJECAAAAAAAAAHCtCiVTrLBv3z7l5eWpbt26fo/XrVtX69evL/Y148eP17hx40IRnqOtXbtWK1asqPDrO3ToELxgAAAAAAAAAACwGcckUypizJgxGjVqlO9+enq6kpKSLIzInv7v//5Phw8frtBrw8PD1bVr1yBHBAAAAAAAAACAfTgmmVKrVi2Fh4drz549fo/v2bNH9erVK/Y10dHRio6ODkV4jnbeeedZHQIAAAAAAAAAALblmIUuoqKidNZZZ2nu3Lm+x/Lz8zV37lx16dLFwsgAAAAAAAAAAICbOWZkiiSNGjVKgwYNUqdOnXTOOefolVdeUWZmpgYPHmx1aAAAAAAAAAAAwKUclUwZOHCg9u7dq8cff1wpKSlq3769Zs+eXWRRegAAAAAAAAAAgGDxGIZhWB1EqKSnpyshIUFpaWmKj4+3OhwAAAAAAAAAAGChsuYNHDUyJVDevFF6errFkQAAAAAAAAAAAKt58wUnG3dSqZIphw8fliQlJSVZHAkAAAAAAAAAALCLw4cPKyEhocTnK9U0X/n5+dq1a5fi4uLk8XisDgcISHp6upKSkpScnMy0dYDJ2N6A0GF7A0KH7Q0IHbY3IHTY3oDQccv2ZhiGDh8+rMTERIWFhZVYrlKNTAkLC1PDhg2tDgMIqvj4eEc3VoCTsL0BocP2BoQO2xsQOmxvQOiwvQGh44btrbQRKV4lp1kAAAAAAAAAAABAMgUAAAAAAAAAAKA0JFMAh4qOjtbYsWMVHR1tdSiA67G9AaHD9gaEDtsbEDpsb0DosL0BoVPZtrdKtQA9AAAAAAAAAABAeTEyBQAAAAAAAAAAoBQkUwAAAAAAAAAAAEpBMgUAAAAAAAAAAKAUJFMAAAAAAAAAAABKQTIFAAAAAAAAAACgFCRTAAAAAAAAAAAASkEyBQAAAAAAAAAAoBQkUwAAAAAAAAAAAEpBMgUAAAAAAAAAAKAUJFMAAAAAAAAAAABKQTIFAAAAAAAAAACgFCRTAAAAAAAAAAAASkEyBQAAAAAAAAAAoBQkUwAAAAAAAAAAAEpBMgUAAAAAAAAAAKAUJFMAAAAAAAAAAABKQTIFAAAAAAAAAACgFCRTAAAAAAAAAAAASkEyBQAAAAAAAAAAoBQkUwAAAAAAAAAAAEpBMgUAAAAAAAAAAKAUJFMAAAAAAAAAAABKQTIFAAAAAAAAAACgFCRTAAAAAAAAAAAASkEyBQAAAAAAAAAAoBQRVgcQSvn5+dq1a5fi4uLk8XisDgcAAAAAAAAAAFjIMAwdPnxYiYmJCgsrefxJpUqm7Nq1S0lJSVaHAQAAAAAAAAAAbCQ5OVkNGzYs8flKlUyJi4uTVPClxMfHWxwNAAAAAAAAAACwUnp6upKSknz5g5JUqmSKd2qv+Ph4kikAAAAAAAAAAECSTro0CAvQAwAAAAAAAAAAlMIxyZRJkyapbdu2vlElXbp00axZs6wOCwAAAAAAAAAAuJxjkikNGzbUM888o6VLl2rJkiXq1auXrrjiCq1Zs8bq0AAAAAAAAAAAgIt5DMMwrA6iomrWrKnnn39eQ4cOLVP59PR0JSQkKC0tjTVTbObo0aPKycnR4cOHg/J+sbGxqlq1qiIjI4t9Pj8/X3v37lWdOnVOOhee2xiGod27d1sdhuni4+NVrVo1q8Oo1FJTU5Wbm2t1GKWKjY1VQkKC1WG40p49e5SXl2d1GJaqVq0a/Q0bMAxDqamplb4+VoTH41G9evUqXV/Jjvbu3atjx45ZHYbrUMftKSsrS4cOHbI6DNdISEhQbGys1WGgnHJzc5Wammp1GK4QFRWlWrVqWR0GTJSfn6+UlBSrwzBFRESE6tSpY3UYlUJZ8waOXIA+Ly9Pn332mTIzM9WlS5cSy+Xk5CgnJ8d3Pz09PRThoZyOHDmi0047TcnJyaa8d3R0dJHHu3fvrt9++0133323XnvttaB/rp1dddVV+uqrr6wOw3QxMTFatGiRzjjjDKtDqZQeffRRPf3001aHcVLh4eH66quvdOmll1odiquMHj1aL7zwgtVhWC4yMlI//vijLrjgAqtDqdTuueceTZw40eowHGvAgAH65JNPrA6jUnviiSc0btw4q8NwrauuukpffPGF1WHg/9u5c6fatGkTtIvsUHDx0IoVK9S8eXOrQ0EZ5efnq2PHjlq1apXVobjGCy+8oPvvv9/qMGCSvn376ocffrA6DNOMHj1azz33nNVh4P9zVDJl1apV6tKli44cOaJq1appxowZatOmTYnlx48fz4GHA+zcudMvkRIeHh7Q1WGFr4TfsWOHWrRoUaTMb7/9Jkn64osvKl0y5X//+5+kwL9nO8vNzVV2drZWrFhBMsUi3noWFhamsDB7ziiZl5envLw8LV68mGRKkDnh9zdbbm6ujh07pmXLlpFMsRj1sWIMw1BeXp7v+4N1qMPm8Nbxn3/+2epQUMiyZct8iZSICEedrrCl3NxcZWZmatWqVSRTHCQjI8OXSHHzcXso5OXlyTAMLVy40OpQYCK3nufKz89Xfn4+9ddmHNU7admypVasWKG0tDR9/vnnGjRokH7++ecSEypjxozRqFGjfPfT09OVlJQUqnBRRvn5+X73V69erVatWlX4/a666ip9+eWXklTs8PDCn+emRrasvP//qlWr1Lp1a4ujMUffvn01Z86cInULoeP97qdNm6brrrvO4miKN3z4cE2cOJF6YgLvdzpjxgz179/f4misccstt+ijjz6iftmA9zeYNWuWLr74YoujcY4VK1aoQ4cO1GEb8P4GH330kW644QaLo3GP3bt3KzExUYcOHVJ+fj6JKpvwHr/16dNHs2fPtjYYF7jgggv066+/0pY7TOHZ+LOyshQVFWVhNM725ptvatiwYWwDLuf9fTdv3qzGjRtbHE3wzJgxQ1dffTX112YclUyJioryXU1x1llnafHixXr11Vf15ptvFls+Ojq62CmeYC8nzmEe6IFM4denpaUVed7uaziYzdsIuzmR5K0D7HCs4/3u7XxiwrsNUE+Czwm/v9moX/ZBfawY9qX24e0rU4eDq3r16pIK6nhGRgZrXNnEwYMHJR3/fRAY+iPOVPj3ou0PDP2ZysGt/X3qrz05upbl5+f7rYkCZwp2MqVwkqC4kSkkU9y5kynM+78VvqIHoeWEpB0dE/NUhnbmZKhf9kF9rBjv93ViPw2hRx02R0xMjO/CO+8JfFjPe/xWo0YNawNxCfojzkQyJXjYBioHt/aVqL/25JiRKWPGjNEll1yiRo0a6fDhw5o6darmz5+vOXPmWB0aAmRmMqW4kSmV/aSAW3cyhbHDsZ4T6hlJN/M44fc3G+2QfVAfK4Y6bB/UYfPUqFFDKSkpOnjwoKumBXEybzKFkSnBQVvuTJV9avJgYhuoHNzaV+KchT05JpmSmpqqW2+9Vbt371ZCQoLatm2rOXPm6KKLLrI6NAQo2MmUwk42MqUydky8jbDbdjKF0WGynhM6M9QT8zjh9zcbHV/7oD5WTHh4uCTaSDvw9pW9vwmCp3r16kpJSSn2mAHWYJqv4KK/60yFR/lXxnMWwcRI28rBrf192nB7ckwy5d1337U6BJjkxEbB7JEpTPPlzp1MYexwrOeEekY9MY8Tfn+zUb/sg/pYMZx8sA/qsHm8U0kxzZd9MM1XcNEfcSba/eBhG3A/wzB8F7C5LflI/bUnWmZYLtgjUwpfBXyykSmVsUGqDB0zdjjWc0I9o56Yxwm/v9moX/ZBfawY6rB9UIfN4x39QDLFPhiZEly05c7khPUnnYJtwP0KnwN0W1+J+mtP7qplcCQzp/k62ciUyjhKpTIckLPDsZ4TppOjnpinMrQzJ0P9sg/qY8VQh+3D+xswzVfweUc/MM2XfbBmSnDRljuTE46lnIJpS92v8G/rtm2GNtye3FXL4EhWrplSGaeuqAwnldjhWM8J9Yx6Yh5v22rn399s1C/7cEJ7ZEecfLAP2lTzMM2X/TDNV3DRH3Em+i7BwzbgfiRTEGruqmVwJEamhFZl6Jixw7GeE+oZ9cQ8Tvj9zUb9sg/qY8WwZop9UIfN4x39wMgU+2Car+CiP+JMtPvBQ3/G/UimINTcVcvgSMFOphSeV5SRKUVVho4ZOxzrOaGeUU/M44Tf32zUL/ugPlYMddg+mObLPIxMsZfc3FwdPnxYEiNTgoW23JnouwQP24D7kUxBqLmrlsGRTmwUGJliHjcvzFUYOxzrOeEAgHpiHk78Ub/sxAntkR0xzZd9MM2XeUim2EvhY7eEhAQLI3EP+iPORN8leNgG3I9kCkLNXbUMjhTskSmFEwaMTPHn5p1MYexwrOeEAwDqiXmc8PubjfplH9THivF+X4Zh+PWtEHrUYfMwzZe9eH+H2NhYRUZGWhuMS9AfcSbv71V41g1UDNuA+7n5PBf1157cVcvgSGaumZKenl6k0Sn8eSRT3IkdjvWccOKHemIeJ/z+ZqN+2Qf1sWIKf1/UY2sx2s88jEyxFxafDz76I85E3yV4GGnrfm4+z0Ubbk/uqmVwJDOTKfn5+crIyPB7rPDIFMMwKlWj5OadTGHscKznhAMA6ol5nPD7m436ZR/Ux4ohmWIfTPNlHkam2AuLzwcf/RFn8o4Ipd0PHNuA+7n5PBf1157cVcvgSGYuQC8VXTflxHVSKtPoFDfvZApjh2M9J5y8pJ6Yxwm/v9moX/ZBfayYwqMgqMfWog6bh5Ep9sLIlOCjP+JMtPvB4/0OK9N5n8rGzWsD04bbk7tqGRzJzAXopaJXmp2YTKlMi9CTTEGoOOEAgHpiHif8/majftkHV/VXTOHvixMQ1mKaL/N4T9ofOXJER44csTgaeI/bGJkSPPRHnIm+dPCwDbhf4d/WbesMUX/tKSIUH7Jjxw5t375dWVlZql27tk4//XRFR0eH4qPhAGYuQC8xMqUwkikIFSccAFBPzOOE399s1C/7oD5WDNN82Qd12DxxcXHyeDwyDEOHDh1SvXr1rA6pUmOar+CjP+JMLEAfPGwD7ld4e3HbNkP9tSfTkinbtm3TpEmTNG3aNO3cudPvBHdUVJTOP/983Xnnnbrmmms4MKjkzFwzRWJkSmEkUxAqTjjxQz0xjxN+f7NRv+yD+lgxTPNlH4yuMk9YWJiqV6+ugwcP6uDBgyRTLMY0X8FHf8SZ6LsED9uA+7l5e6H+2pMpNW3EiBFq166dtm7dqn//+99au3at0tLSdPToUaWkpGjmzJk677zz9Pjjj6tt27ZavHixGWHAIcxOpjAy5TiSKQgVJ3RoqCfm4cQf9ctOmCKpYhiZYh/UYXOxCL19MDIl+OiPOJMTjqWcgm3A/dy8vVB/7cmUkSmxsbHasmWLTjnllCLP1alTR7169VKvXr00duxYzZ49W8nJyTr77LPNCAUOcGIyI9BheSe+npEpx5FMQag4oUNDPTGPE35/s1G/7IP6WDGsmWIf1GFz1ahRQ1u3bmURehtgzZTgoz/iTLT7weO9EIFtwL3cvL3QhtuTKcmU8ePHl7ls3759zQgBDnJioxDsOQ4ZmXKcmxfmKsz7v7HDsY4TOjR0TMzjhN/fbNQv+6A+VgwjU+yD0X7m8k4pRTLFekzzFXzeduPEdUVhb97fi3Y/cN7vsDKd96ls3NzX55jSntxX0+A4Zu/UGJlynJsX5iqMHY71nNChoZ6YhylpqF924oT2yI4K9xWox9aiDpuLab7sg2m+go/+iDPR7gcP24D7uXl7of7ak2U17eGHH9aQIUOs+njYiNnJlBNHppz4eZXpCgU372QK4wos6zmhrtExMY8Tfn+zUb/sg/pYcVzNaQ8kqM3FyBT7YGRK8NEfcabCF0EiMGwD7ufmvj71154sq2l///23tm3bZtXHw0YYmRI6bt7JFMYOx3pOqGvUE/M44fc3G/XLHgon1Stzfawo6rE9MM2Xubwn7hmZYj1GpgQf7bgz0ZcOHrYB93Pz9sIocXsyZc2Usnj//fet+mjYTKhHprBmijt3MoXRYbKeE+oa9cQ8Tvj9zUb9sofC339lro8VRT22B9pUc3lP3DMyxXosQB98tOPORLsfPGwD7ufm7YX6a0/uq2lwHEamhI6bdzKFscOxnhPqGvXEPE74/c1G/bIHkimB8U4rRT22FtN8mYtpvuzhyJEjysnJkcQ0X8FEf8SZ6EsHD30Z93Pz9kIbbk+mj0x58sknS33+8ccfNzsE2JzZjQIjU45z806mMHY41nNCXWNtHfM44fc3G+2QPZBMCQxrptgD03yZiwXo7cGbzAoLC1O1atUsjsY96I84E33p4KEv435u3l5ow+3J9GTKjBkz/O4fO3ZMW7duVUREhJo1a0YyBYxMCSE372QKY4djPSfUNeqJOVijogD1yx5IpgSGemwPTtinOhkjU+yh8BRf1PXgoR13Jm9/mm0hcGwD7ufmfhL1155MT6YsX768yGPp6em67bbbdNVVV5n98XAA1kwJHTfvZApjh2M9J9Q1FnMzByevC9AO2QP1MTBMjWEPTPNlLpIp9sB6KeagP+JM3t/Le7yCimMbcD8nnHuoKOqvPVlS0+Lj4zVu3Dg99thjVnw8bMbsZEZ2draOHj3qu8/IFHfuZApjh2M9J9Q16ok5Crfpdv79zUb9sgeSKYGhHluP0X7mY5ove/Ams0imBBftuDM54VjKKdgG3M/N20vhqcmZntw+LKtpaWlpRUYMoHIKxciQwnWNkSnu3MkURofJek6oa9QTc3DyugD1yx6oj4FhnnHrkaA2n3dkSlpaGnXdQt5kFovPBxf9EWdywrGUU7ANuJ+bt5fC/xPJFPswfZqvCRMm+N03DEO7d+/Whx9+qEsuucTsj4cDmLlTi4uL0+HDh3Xo0CHVrl1bEiNTJHfuZAqjw2Q9J9Q16ok5Cn+flXlKGuqXPZBMCQz12Hq0qeYrPBIiPT2dk/kWYWSKOWjHnckJx1JOwTbgfm7eXkim2JPpyZSXX37Z735YWJhq166tQYMGacyYMWZ/PBzAzCvAEhISdPjwYUam/H9u3skURofJWk6ZkoR6Yg5OXhegftkD9TEwrJliPeqw+aKiolS1alVlZWXp4MGDJFMswpop5qA/4kyV5bg9FLx9mcp03qeycfP2Uvh/ys/P58IamzA9mbJ161azPwIOF+ydWuFF2qpXr66dO3f6zYF84ucxMsV9OGiwllNO/FBPzOGU399s1C97oD4Ghmm+rMc0X6FRo0YNXzIF1mCaL3PQH3Em78VptPuBYxtwPzef5zoxmQJ7cF9Ng+ME+wC98FXxCQkJklgzxcvNO5nC6DBZyyknL6kn5nDK72826pc9FN7HF77YAmVDPbYe03yFBovQW49pvsxBO+5M3t+Lvkvg2Abcz83nuUim2JNlNe3111/Xk08+adXHw0bMTGYUd2DEminu3MkURofJWk45mU49MYdTfn+zUb/sobLs98xCPbYebWpoeEdDMDLFOoxMMQftuDPRfwketgH3c/P2QjLFniyradOnT9eUKVOs+njYiNlrpkiMTPGqLFe40GGyllNO/FBPzOGU399s3naW+mUtNx9chQJrpliPab5Cg5Ep1mPNFHPQH3Em+i/BwzGf+7l5eyGZYk+mr5lSkrlz51r10bAZMxsERqb4c/NOpjA6TNZyysl06ok5Cn+fbk/clob6ZQ+VZb9nFtZMsZ5T9qlOx8gU6zHNlznojzgT/Zfg8X6HhmHIMIxKfXziVm7eXkim2JP7ahocx8wF6BmZ4s/NO5nCOGiwllNO/FBPzFFZ2pmTKXzgBut46yNrTVQM7aT1nLJPdTqSKdZjmi9z0I47E/3p4CncB2Q7cCc3by8kU+wpZCNT1q5dqx07dujo0aN+j/fv3z9UIcCmrF4zpTIlU7wn9dy4kymMgwZrOeXED/XEHG7uzJYH9cseqI+BYZov63n7qdRhczHNl/UYmWIO+iPORP8leE48Gc0FNu7j5u2FZIo9mZ5M2bJli6666iqtWrVKHo/HdzLXO3qgMp3IRvGCXQcKXwVclpEpTPPlPhw0WItkSuXGib8C1C97qCz7PbMwzZf1qMOhwcgUa+Xn5/uO10imBBf9EWc68bwZKo6T0e7n5r5S4TaA+msfpte0e++9V02bNlVqaqqqVq2qNWvW6JdfflGnTp00f/58sz8eDhCKBegZmVLAzTuZwlho0VokUyq3ytLOnAz1yx6oj4GhHluPqepCw5tMYWSKNTIyMnx1nWm+got23JnovwQPyRT3c/P24vF4OL9lQ6aPTFm4cKF++ukn1apVS2FhYQoLC9N5552n8ePHa8SIEVq+fLnZIcDmQrEAPSNTCrh5J1MYBw3WcsoC5NQTc3DirwD1yx4qy37PLNRj61GHQ8N7zMDIFGt4v/fo6GhVqVLF4mjchXbcmWj7g4dkivu5fXsJCwtTXl4e9ddGTK9peXl5iouLkyTVqlVLu3btkiQ1btxYGzZsMPvj4QChWIC+8FVmJ34eI1Pch4WfreWtZ4WvorAjDi7NUVnamZOhftkD9TEwrJliPaZODA2m+bIWi8+bh/6IM9F/CR6SKe7n9u2Fdtx+TB+ZcsYZZ2jlypVq2rSpOnfurOeee05RUVF66623dOqpp5r98XCAUCxAz8iUAm7fyXixs7GWU+oZ9cQcTvn9zUb9sgfqY2BYM8V6jPYLDRagtxaLz5uH/ogz0X8JnsLfIf0Zd3L79kI7bj+m17RHH33U94M/+eST2rp1q84//3zNnDlTEyZMKPP7jB8/Xmeffbbi4uJUp04dXXnllYxscYlQrJmSlpbmG6XAminu3cl4sbOxllPqGfXEHE75/c1G/bIH6mNgqMfWow6HRuGRKYxsDj1vEotkSvDRjjsTbX/wFL4Yge3Andy+vdCO24/pI1P69Onj+7t58+Zav369Dhw4oBo1apRr+peff/5Zd999t84++2zl5ubq4Ycf1sUXX6y1a9cqNjbWjNARIsFOZhQ+APJ2yPPz85WRkaG4uDhfMiU8PFx5eXmMTHEhdjbWcko9o56Ywym/v9moX/ZAfQwM03xZj2m+QsObTDl27JiysrI4vgwxpvkyD/0RZyo8bTICwzRf7uf2/j7tuP2YnkwpTs2aNcv9mtmzZ/vdnzJliurUqaOlS5fqggsuCFZoCIHc3FzNnDlT+/fvlyRt2bLFtM+KiYlRRESEcnNz9fbbb6tGjRpKTk6WVLDAYVZWlv744w9NnjzZtBjs5M8//5Tk3p2Ml/f/S05OLvG37dixo9q1axfKsCoNp3Rm6JSYIz09XZL9f3+zUb/swSntkV1Rj63n7S8zzZe5YmNjfRdaHTp0iGRKiHmPURiZEny0487kXWuY/kvgCieksrKyLIwEZklNTZXk3u2Fdtx+TEmmDBs2TI8++qgaNmx40rKffPKJcnNzddNNN5XrM7xrYJSWmMnJyVFOTo7vvvcED6z16aeflvv3Lo/mzZv7/vZ4PKpVq5ZSUlJ0//33+5WrWbOmsrKyNH36dE2fPt20eOwoOjra6hBMVaVKFUnSunXrNGTIkGLLVK1aVXv37lXVqlVDGVql4JSTl3RKzDFp0iRJ8tv/VkasNWEPTmmP7Ip6bL2nnnpKknT06FGLI3E3j8ej6tWra//+/Tp06JAaNGhgdUiVirfv4O3DI3i8idhjx45ZHAnKw7tN0PYHrnAy5e233/btV+EeEydOlOTe409vHea8hX2YkkypXbu2Tj/9dHXr1k2XX365OnXqpMTERFWpUkUHDx7U2rVr9dtvv2natGlKTEzUW2+9Va73z8/P18iRI9WtWzedccYZJZYbP368xo0bF+i/gyBLSUmRJCUmJqp9+/aSpLi4OHk8Hg0ePDjg93/kkUd06NAhXXfddZKkF198UVOnTvWb/isxMVG33367XnjhhUp3dUJ4eLiGDx9udRimuuiii3T77bf7rug50cyZM5WVlaXDhw+TTDGBU05ekkwxV7NmzawOwVLeTi9z71vLKe2RXdFO2kfXrl2tDsH1oqKiJHHS2QqnnHKK/v77b1144YVWh+I69erVk6QSj4tgT3Xr1tXevXt13nnnWR2KK9SqVUv79u2rdOd+KgvvFJFnnXWWxZGYg/64/ZiSTHnqqac0fPhwvfPOO3r99de1du1av+fj4uLUu3dvvfXWW+rbt2+53//uu+/W6tWr9dtvv5VabsyYMRo1apTvfnp6upKSksr9eQgu79WNvXv31vvvvx/094+NjdXrr7/uu3/jjTfqxhtvLLbsZ599FvTPh/Xi4uL09ttvl/h8eHi48vPz2RmZxCknL73xcbI7uLzf5/XXX29xJNYimWIPTmmP7Io1U6zn/e5vvvlmiyNxP299ZyRW6Hnr+emnn25xJO7TuHFjSdK2bdtkGAZrcDiEt/94zjnnWByJO9xxxx0aP3487btLebeXnj17WhyJOUim2I9pa6bUrVtXjzzyiB555BEdPHhQO3bsUHZ2tmrVqqVmzZpVeCc+fPhwffvtt/rll19OOo1YdHS066czciJObMBqJFPM5ZRtnE6JObydWbv//mbjZIU9OKU9sium+bIeC9CHDslD61DPzeNNpqSnp+vQoUO+K7hhb97+NP3J4CBZ7m5u3144b2E/IVmAvkaNGgHvtA3D0D333KMZM2Zo/vz5atq0aZCiQ6hxYgNW4+SQuZyyjdMpMYf3+3RrZ7a8GJliLae0R3ZFO2k973fPAvTmo39oHeq5eWJjY1W7dm3t3btX27dvJ5niEG4/ORxqJMvdze3bC/1x+3HMkeXdd9+tjz76SFOnTlVcXJxSUlKUkpKi7Oxsq0NDOdFZhtXYGZnLKScvqQfmcHtntqyY5ssenNIe2RXtpPW4Yj90uHLZOtRzcxWe6gvOQH86uEiWu5vbtxf64/bjmN7KpEmTlJaWph49eqh+/fq+2yeffGJ1aCgnTmzAalyZYi6nbON0Sszh9s5sWZFMsQdO0AWG/aX1uAgpdOgXWId6bq4mTZpIIpniJPSng4tkubu5fXuhf2I/IZnmKxg4GeEeTjnRCvfiyhRzOWWaJzol5mDNlAIkU+yBPkdg2F9aj4Rg6HCyzTrUc3N5kynbt2+3NhCUmdtPDoca7bu7uX174byF/ZjaWzEMQzt27NCRI0fM/Bg4DJ1lWI2dkbmccvKSemAOt3dmy4pkij04pT2yK9pJ63HFfuhwss061HNzMc2X89CfDi7ad3dz+/ZCf9x+TE+mNG/eXMnJyWZ+DByGExuwGtOWmMsp27i3s0U9CC6njEwyG8kUe+AEXWDYX1qPi5BCh5MV1qGem4tpvpzH7SeHQ4323d3cvr1Qf+3H1N5KWFiYWrRoof3795v5MXAYTmzAakxbYi6nJFPolJjD7Z3ZsiKZYg9OaY/sinbSevSbQ4crl61DPTcX03w5D/3p4KJ9dze3by/0x+3H9CPLZ555RqNHj9bq1avN/ig4BCc2YDV2RuZyyjZOPTCH2zuzZUUyxR6c0h7ZFRcfWI8r9kOHkVjWoZ6byzvN18GDB5Wenm5xNCgL+tPBRTLF3dy+vXDewn5MX4D+1ltvVVZWltq1a6eoqCjFxMT4PX/gwAGzQ4DNcGIDVqMzZS6nbON0SszBAvQF3NqZdxqntEd2RTtpPa7YDx2Sh9ahnpsrLi5ONWvW1IEDB7R9+3adeeaZVoeEk3D7yeFQ4/jf3dy+vXj7J1ykZx+mJ1NeeeUVsz8CDsOJDViNk0Pmcso2Tj0wB2um+KPTay2ntEd2xZX61uOK/dDhZJs1Crcv1HPzNGnSRAcOHNC2bdtIpjiA208OhxrHfe7m9u2F+ms/pidTBg0aZPZHwGE4KITV2BmZyyknL6kH5nB7Z7asmObLHpzSHtkVV+pbjyv2Q4d+gTUKf9/Uc/M0adJEy5YtYxF6h6ns/elgIVnubm4//qR/Yj+mJ1Okggbryy+/1Lp16yRJp59+uvr3709nqZLixAasRmfKXE6Z5olOiTnc3pktK5Ip9kCfIzC0k9bjIqTQoX9ojcLfN/XcPN51U1iE3hnoPwYX7bu7uf34k/64/ZieTNm0aZP69eunv//+Wy1btpQkjR8/XklJSfruu+/UrFkzs0OAzXCFHazGzshcTjl5WTg+wzBc2/kKNack08xGMsUenNIe2RX7S+vRbw4dTrZZg5EpodGkSRNJYmSKQ7j95HCoMdLW3dy+vdAftx/TjyxHjBihZs2aKTk5WcuWLdOyZcu0Y8cONW3aVCNGjDD742FDnNiA1dgZmcsp23jh+KgLwcOaKQVIptiDU9oju2LNFOsxMiV06B9ag5EpoUEyxVncfnI41OjPuJvbtxf6J/Zj+siUn3/+Wb///rtq1qzpe+yUU07RM888o27dupn98bAhTmzAalx5aC6nbOMnJlO4GjI43N6ZLSuSKfbglPbIrriS03qMTAkd+ofWYGRKaDDNl7PQnw4u2nd3c/v2QjLFfkw/soyOjtbhw4eLPJ6RkaGoqCizPx42xIkNWI2dkbmcso0zMsUcbu/MlhXJFHtwSntkV+wvrcfIlNChvluj8PdNPTePN5myb98+ZWRkWBwNTob+dHCRTHE3t28v9E/sx/TeymWXXaY777xTf/zxhwzDkGEY+v333zVs2DD179/f7I+HDXFQCKuxMzKXU05ekkwxB2umFCCZYg9OaY/simkxrMfIlNDhZJs1Cn/f1HPzVK9eXdWrV5fE6BQncPvJ4VBjpK27uX174fyV/Zh+ZDlhwgQ1a9ZMXbp0UZUqVVSlShV169ZNzZs316uvvmr2x8OGOLEBq3GwbC6nbOMkU8zh9s5sWVX2/98unNIe2RUnH6zHRUihQ//QGoxMCR2m+nIO+tPBxcUh7ub27YVkiv2YvmZK9erV9dVXX2nTpk1at26dJKl169Zq3ry52R8Nm+IKO1iNnZG5nHLykmSKOViA3h8jU6zllPbIrthfWo9+c+hQ361ROHlF38FcTZo00cqVK1mE3gHcfnI41EiWu5vbtxf6J/ZjejLFq3nz5mrevLny8vK0atUqHTx4UDVq1AjVx8NGOLEBq3Flirmcso2TTDGH2zuzZcU0X/bglPbIrjh4sx4jU0KHk23WIGEYOk2aNJEkkikOQH86uGjf3c3t2wv9cfsxvVc+cuRIvfvuu5IKGq7u3burY8eOSkpK0vz5883+eNgQJzZgNaYtMZdTtnGSKeZwe2e2rEim2INT2iO74uID63GiOXQ42WYNEoahwzRfzkF/Org4/q8c3Lq9eP8v+uP2YXqP5fPPP1e7du0kSd988422bNmi9evX67777tMjjzxi9sfDhjixAauR2TeXU7ZxkinmYAH6AiRT7MEp7ZFdcfLBepxoDh36h9YgYRg6jExxDpIpwcXFIe7m9u2F/on9mN4r37dvn+rVqydJmjlzpgYMGKDTTjtNQ4YM0apVq8z+eNgQB4WwGp0pcznl5GXh+DjhHTysmVKAZIo90OcIDAdv1uNEc+gwMsUatNOhQzLFOdx+cjjUaN/dze3bC/1x+zG9x1K3bl2tXbtWeXl5mj17ti666CJJUlZWFgcFlZRTTrTCvbjS1lxO2cYLd7bomASP2zuzZUUyxR6c0h7ZFRcfWI8TzaHDyQprkDAMHe80X6mpqcrOzrY4GpSG/nRwkUxxN7dvL/RP7Mf0XvngwYM1YMAAnXHGGfJ4POrdu7ck6Y8//lCrVq3M/njYEB1mWI2dkbmcdPKSuhB8bu/MlhXJFHtwUntkR7SR1qPfHDqcbLMGCcPQqVGjhuLi4iSxbord0Z8OLi6mdDe3by/0x+0nwuwPeOKJJ3TGGWcoOTlZ1113naKjoyUVdFYfeughsz8eNsSJDViNK23N5aRtPCwsTPn5+dSFIGLNlAIkU+yBE9GB4eSD9TjRHDokU6xBOx06Ho9HTZo00apVq7Rt2zYubrUxt58cDjWO/93N7dsLyRT7MT2ZIknXXnttkccGDRoUio+GDTnpRCvciZND5nLSNk7HJPjc3pktq8r+/9uFk9ojO6KNtFbhZCwnms1HfbcGCcPQaty4sVatWsXIFJujPx1cJMvdze3bC/0T+wlJMmXu3LmaO3euUlNTi/z47733XihCgI1wYgNWY2dkLidt49SF4GMBen+MTLGWk9ojO+JKTmsVPulDHTYfJ9uswciU0GIRemdw+8nhUKN9dze3by+cs7Af05Mp48aN05NPPqlOnTqpfv36rq3cKDuuPoLV6EyZy0knL+mYBJ/bO7NlxTRf9uCk9siOGMlprcL7Jk40m4/+oTU4NgwtkinOQH86uOjPuJvbtxfOWdiP6cmUN954Q1OmTNEtt9xi9kfBIbj6CFZjZ2QuJ528pC4EH2umFCCZYg9Oao/siDbSWoxMCS3quzU4Ngytxo0bS2IBertz+8nhUCNZ7m5u317on9iP6b3yo0ePqmvXrmZ/DByEExuwGjsjczlpG6cuBJ/bO7NlRTLFHpzUHtkRbaS1GJkSWpxsswYjU0KLkSnOQH86uJi21N3cvr3QH7cf03sst99+u6ZOnWr2x8BBOLEBq3GwbC4nbeN0TIKPNVMKkEyxBye1R3bEyQdrMTIltOgTWIORKaHlTabs3r1bR44csTYYlMjtJ4dDjeN/d3P79kL/xH5Mn+bryJEjeuutt/Tjjz+qbdu2ioyM9Hv+pZdeMjsE2AwnNmA1dkbmctI2Tl0IPrd3ZsuKZIo9OKk9siPmGLcWI1NCi5Nt1mBkSmidcsopio2NVWZmppKTk9WiRQurQ0Ix6E8HF/0Zd3P79sI5C/sxPZny559/qn379pKk1atX+z3n1oqO0nFiA1ZjZ2QuJ23j3v0QdSF43N6ZLSuSKfbgpPbIjthfWouRKaFFMsUajEwJLY/Ho8aNG2vt2rXatm0byRSboj8dXLTv7ub27YX+uP2YnkyZN2+e2R8Bh+HqI1iNzpS5nHTyko5J8LEAfQG3duadxkntkR0xzZe1Cn/v1GHz0SewBseGodekSRNfMgX25PaTw6FGf8bd3L690D+xn5D1WDZt2qQ5c+YoOztbEldqVmZcfQSrsTMyl5NOXlIXgs/tndmyYmSKPTipPbIjpsWwlvd793g8lb5NDQUutrEGx4ah5103Zfv27dYGghLRnw4u2nd3c/v2wjkL+zH9yHL//v268MILddppp6lfv37avXu3JGno0KG6//77zf542BAnNmA1dkbmctI2Tl0IPhag90cyxVpOao/siDbSWpxkDi1OtlmDkSmh17hxY0liZIqNuf3kcKhxcYi7uX178dZfjivtw/Qey3333afIyEjt2LFDVatW9T0+cOBAzZ492+yPhw1xYgNW42DZXE7axjlRGHxu78yWFSNT7MFJ7ZEd0UZai5PMoUV9twZJw9DzjkwhmWJf9KeDi+N/d3P79kL/xH5MXzPl+++/15w5c9SwYUO/x1u0aMGw0kqKExuwGjsjczlpG6cuBB9rphQgmWIPTmqP7Ig5xq3FSebQ4mSbNUgahh7TfNmf208Ohxr9GXdz+/bCOQv7Mb3HkpmZ6TcixevAgQOKjo42++NhQ5zYgNXoTJnLSds4HZPgc3tntqxIptiDk9ojO2JaDGtxkjm0qO/WIGkYet5pvv7++28dPXrU4mhQHPrTwVV4miT65u7j9u2Fcxb2Y3rP/Pzzz9cHH3zgu+/xeJSfn6/nnntOPXv2NPvjYUMcGMJqHCyby0knL+mYBB9rphQgmWIPTmqP7Ig20lqcZA4tLraxBu106NWpU0dVqlSRYRhKTk62OhwUw+0nh0Ot8H6UcwDu4/bthf64/Zg+zddzzz2nCy+8UEuWLNHRo0f14IMPas2aNTpw4IAWLFhg9sfDhjgwhNXYGZnLSQfF1IXgc3tntqxIptiDk9ojO6KNtBYXIIUW03xZw/t9c2wYOh6PR02aNNH69eu1fft2NWvWzOqQcAL608F1YjIlIsL0U6EIIbdvL/TH7cf0nvkZZ5yhjRs36rzzztMVV1yhzMxMXX311Vq+fDk77UqKExuwGlcemstJ2zgdk+BjzZQCJFPsgZPRgWF/aS0uQAot+gTWcFK/0U28U32xCL09uf3kcKgV3o/SxruP27cX+if2E5J0bEJCgh555JFQfBQcgA4zrMY0X+Zy0jZOxyT43N6ZLavK/v/bhZPaIztif2ktkoGhxcgUazAyxRreRehJptgb/cngKLwfpY13H7cff3LOwn5M65nv27dP27dv93tszZo1Gjx4sAYMGKCpU6eW+z1/+eUXXX755UpMTJTH49GXX34ZpGgRSpzYgNXYGZnLSds4dSH43N6ZLS9GpliLK/sDQxtpLepvaJFMsYaT+o1u4k2mnHjOBtYr3HekPx0crJnibm4//vT+X/TH7cO0Hss999yjCRMm+O6npqbq/PPP1+LFi5WTk6PbbrtNH374YbneMzMzU+3atdPEiRODHS5CiKvsYDWmLTGXkw6KOVEYfCxAX4BpvuzBSe2RHbG/tBZ95tCiT2ANRqZYg2m+7ItkSvCRTHE3tydT6J/Yj2nTfP3++++aMmWK7/4HH3ygmjVrasWKFYqIiNALL7ygiRMn6pZbbinze15yySW65JJLylw+JydHOTk5vvvp6ellfi3MMX78eG3atEkSB4awDtOWmMtJJy+9MXLCO3hYM6UAyRR7cFJ7ZEfsL63FyJTQYmSKNWinrcE0X/ZFMiX4WDPF3UimINRM67GkpKT4dtCS9NNPP+nqq69WRERB/qZ///7666+/zPp4SQUn7hMSEny3pKQkUz8PpduyZYsefvhh3/3atWtbGA0qM3ZG5jpy5IgkKTIy0uJIX8z04QAAKXlJREFUTo66EHxu78yWVWX//+2CkVKBoY20FiNTQovkoTUYmWKNBg0aSJJ2795tcSQ4EcmU4Cv8PdLGu4/bjz/pj9uPaT3z+Ph4HTp0yHd/0aJF6ty5s+++x+PxGzVihjFjxigtLc13S05ONvXzULrs7Gzf3zNnzlTz5s0tjAaVGVcemmvXrl2SpMTERIsjOTk6JsHn9s5sWRX+/xmdYp3c3FxJ8l3Mg/KhjbQWI1NCi2ntrMHIFGtERUVJOr6fhH2QTAk+j8dDn8bF3H78Sd21H9N6LOeee64mTJig/Px8ff755zp8+LB69erle37jxo2mjxSJjo5WfHy83w3W8W74derUKdd0bUCwsTMylzdx7YTRgNSF4GMkQAGSKfbAFc+B4eSytai/ocXFNtZgBJY1vPXdMAz6KTZDMsUcHPe5F8kUhJppl+k99dRTuvDCC/XRRx8pNzdXDz/8sGrUqOF7ftq0aerevbtZHw8b4qoj2AU7I3Pt3LlTktSwYUOLIzk56kLwub0zW1YkU+yBk9GBYdoja9F3Di36BNZgBJY1TlyQmxGc9kEyxRy08e7l9uNP6q79mLbHbNu2rdatW6cFCxaoXr16flN8SdL111+vNm3amPXxsCEOCGEXXHlonvz8fP3999+SSKZUVixAX4Bkij1423lOElUMbaS1SAaGFv1DazAyxRokU+yLZIo56NO4F8kUhJqpe8xatWrpiiuuKPa5Sy+9tNzvl5GRoU2bNvnub926VStWrFDNmjXVqFGjCseJ0CCZArtgZ2SevXv36tixYwoLC1O9evWsDuekqAvB5/bObFlV9v/fLrxzwXMyumKY5sta9J1Di2SKNRiZYo0TkymA23Hc515uP/6k7tqPoy4/WLJkiXr27Om7P2rUKEnSoEGDNGXKFIuiQllxQAi7YGdkHu8UX/Xq1VNkZKTF0ZwcdSH4WDOlKEamWIcr+wNDG2kt6m9oUd+twcgUaxT+vkmm2AsjU8xBwty9SKYg1ByVTOnRowcnJByMZArsgo6UeZy0XopEx8QMbu/MlhXTfNkD03wFhjVTrEXfObToH1qDkSnWKPx90w+2F5Ip5uC4z73cfvxJ3bUfeuYIGQ4IYRfsjMxDMgWsmVKAZIo9MM1XYGgjrcXIlNAieWgNRqZYg2m+7Itkijno07gXyRSEmqU9luzsbCs/HiFGMgV2wc7IPCRT4PbObFmRTLEHTkYHhjVTrEXfObSo79ZgZIo1SKbYF8kUc3Dc515uP/6k7tqP6T3zESNGFPt4Zmam+vXrZ/bHw0Y4IIRdMI2DeUimwO2d2bIimWIPTPMVGK7UtxbJwNCif2gNRqZYw+Px+Poq1Hl7IZliDo773Mvtx5/UXfsxvcfy3XffaezYsX6PZWZmqm/fvr6pF1A5kEyBXbAzMk9ycrIkkimVGQvQFyCZYg9M8xUY2khr0XcOLeq7NRiZYh0SiPZEMsUctPHuRTIFoWb6ZXrff/+9zj//fNWoUUMjR47U4cOH1adPH0VERGjWrFlmfzxshANC2AXTOJiHkSlgzZQCJFPsgSv7A0MbaS3qb2hxYtkajEyxTnh4uHJzc6nzNkMyxRz0adzPrdsLddd+TE+mNGvWTLNnz1bPnj0VFham//73v4qOjtZ3332n2NhYsz8eNkIyBXbBtCXmMAzDl0xJSkqyOJqyoWMSfG6/MqisSKbYA9N8BYaLD6xF3zm0SKZYg5Ep1qHO2xPJFHNQ392pMmwvnLOwn5AcWbZt21bffvutLrroInXu3FnffvutYmJiQvHRsBEOCGEX7IzMsX//fuXk5EiSEhMTLY6mbKgLwUcypUBl///tgiv7A8PFB9ai/oYWfQJrMDLFOpxctqfKcHLYCrTx7lQZthfqrv2Ykkzp0KFDsZU4Ojpau3btUrdu3XyPLVu2zIwQYEMkU2AXXGlrDu+olLr/r707D46izP84/kkiOSDcR8IRDQIBuQMIhv0hYAERqSgKwiILGEBRDjkWQRAJR3Gsui6xQBRE2V3lXNFlBcEYBOUmYAQEQZBL5BA0JgRWIJPfH9TMEgOBJDP99My8X1VUQU/P9HeG5+l+nufbz9MREQoODjYcze1xXqsoC+7DM1PyY2aKOTwzpXjovJlF29laDCybwcwUczjH25M/DA6bQHn3Tf5QXyi79uORZErXrl098bHwcnQIYRfcaesZ3va8FImGiScwM+UalvmyB+7sLx5uPjCL8mst2odm0Ec0hwSiPfnD4LAJ9Pt8kz/UF8qu/XgkmZKUlOSJj4WXo6EMu+Bi5BkkUyDxAHonkin2wDNTiofBZbNoO1uL5KEZJA3NIZliT/4wOGwC/T7f5A/1hbJrPx5vme/YsUPbtm3Lt33btm1KS0vz9OFhI3QIYRd0lj2DZAokZqY4kUyxB5b5Kh7OkWYxyGwtBpbNoI9oDmXenvxhcNgE2jS+yR/qi7Ps0qe0D4+3WIYMGaITJ07k237y5EkNGTLE04eHjdBQhl1wp61nkEyBRDLFiWSKPTAYXTycI82i7WwtyrsZnKfNIZliT/4wOGwC53jf5A/1hbJrPx5vme/bt0/NmjXLtz02Nlb79u3z9OFhI3QIYRdcjDyDZAokHkDvRDLFHljmq3iYyWkWg8zWYmDZDPqI5lDm7Yl2o2fQpvFNJFNggsdbLCEhITpz5ky+7adOnaJj62doKMMu6Dh4hnMWIskU/8YzU64hmWIPLPNVPMzkNIu2s7Uo72aQNDSHPpE9McvbMzjH+yZ/SKY4vxdjFvbh8ZZ5p06dNG7cOP3666+ubRkZGRo/frw6duzo6cPDRugQwi4YQHe/3NxcZqZAEh1AJ5Ip9sAgXfFwjjSL8mst7lo2gz6iOSRT7Im2tGfQpvFN/pBMoezaj8enhrz66qu6//77dddddyk2NlaSlJ6eroiICP3zn//09OFhIyz9ArvgYuR+GRkZunjxoiTvTKYw2O0+dACv8ffvbxcs81U8XC/NYpDZWgwsm0HS0BzO8fZEW9ozKO++iWQKTPB4z7J69eravXu33n//fX399dcKCwtTYmKievXqpRIlSnj68LAROoSwCzrL7ueclVKpUiWFhoYajub20TBxPxLn+ZGsM4dBuuLhTn2zKL/WYgkYM+gjmkOfyJ5IpngG/T7fRDIFJlhym16pUqX09NNPW3Eo2BgNZdgFFyP388YlviTKgifwzJRrWObLHnhmSvFcX48dDoff12ur0Xa2FslDM0gamkMyxZ5IpngG/T7f5A/9LMqu/XgkmbJy5Up17txZJUqU0MqVKwvc9+GHH/ZECLAhOoSwCy5G7kcyBU50APPzh0a+XbHMV/GQTDGLQWZrMbBsBn1Ecyjz9kRb2jNImPsmZqbABI/0LLt27arTp0+rSpUq6tq16033CwgI4MLtR2gowy7oOLgfyRQ40QH8n4CAAOXm5pJMMYjB6OK5/nfjPGk92s7Wok1gBudpc+gT2RNtac/gHO+bSKbABI8kU67/D+Y/G050CGEXXIzcj2QKnOgA/g/JFPNY5qt4rm+zMdhmPQaZrcXAshn0Ec2hzNsTbWnP4LlYvolkCkww1mL54YcfeI6Kn6GhDLtgiq/7kUyB5B+N2cJw/gYkU8xhma/i+f0yX7AWbWdrXd8m4LxtHZKG5pBMsSeSKZ5Bv883+UP/k7JrP8Za5ufPn9eCBQtMHR4G0CGEXXBXivudOHFCEskUf3d9Y5ZzPckU03Jzc111m0G6oiGZYhaDzNa6/nfmvG0d+ojmkEyxJ5IpnkG/zzeRTIEJtFhgGRrKsAsuRu7HzBRI/tGYLQx+A7OuHxxiMLpoeGaKWbSdrXV9eWdw2TokDc1htr49kUzxDPp9vskf+p+UXfuhZQ7LOE9ydAhhGh0H98rMzFRWVpYkqXr16oajKRwaJu7lD43ZwmBmilkkU4qPZ6aYxSCztSjvZpA0NIfZ+vZEMsUz6Pf5Jn/of1J27YcWCyxDQxl2QcfBvZyzUsqVK6fw8HDD0RQODRP3uv539NXGbFGQTDHj+nM8z0wpGpb5Mou2s7WYiWWG81xNObcey3zZE8kUz+CGSt9EMgUmeKxn+dhjjxX4ekZGhqcODZuiQwi74GLkXs5kSlRUlOFICo+y4F48MyUvZqaYxcyU4iOZYhYzU6zFMl9m8Gwrc0im2BPJFM+g3+ebSKbABI8lU8qWLXvL1/v27eupw8OGSKbALrgrxb289XkpEg0Td/OHxmxhkEwx6+rVq66/M0hXdIGBgXI4HJwnDaDtbC2W+TKDmSnmkEyxJ5IpnkG/zzf5Q/+Tsms/HkumvPvuu576aHgpOoSwC5b5ci+SKXDyh8ZsYZBMMYtlvtzDmUzhmmk9ZqZYi2W+zGBmijkkU+yJZIpnMAbgm/yhn8WYhf0wqg3LkEyBXXAxci+SKXAimZIXyRSzru8s0/YoOs6T5tB2thYzU8xgZoo5JFPsiWSKZ9Ce8U3+UF8ou/ZDiwWWoUMIu2CZL/cimQKn639HzvUkU0xzLvPF3c7FwzXTHGamWItnBJnBzBRzSKbYkz8MDptAv883+UN9oezaDyMdsAzJFNgFU3zdi2QKnJiZkhfJFLOc53iW+Coerpnm0Ha2HoPL1mNmijmUd3vyh8FhE+j3+SZ/qC+UXfuhxQLL0CGEXXAxcq8TJ05IIpkCkim/x29gFnf1uwfnSXMow9YjeWg9ZqaYw/ndnvxhcNgEZtr6Jn+oL5yr7YdRbViGZArsgruw3OfChQvKyMiQRDIFJFN+j5kpZrHMl3twnjSHtrP1GGyzHuXcHPpE9uQPg8Mm0J7xTf5QXyi79kOLBZahoQy74GLkPidPnpQklS5dWmXKlDEcTeFRFtzr+t/Rlxu0hUUyxQyW+XIPBpfNYWaK9Rhcth7l3BzKuz35w+CwCfT7fJM/1BfKrv0wqg3LkEyBXXAxch9vfl6KRFlwt+uTBpzrmZliGgN07sGyR+bQdrYe5d16lHNzSKbYkz8MDpvA+d03+UN9YczCfmixwDI0lGEXdBzcx9uTKc5GFw0T92CZr7xIpphFMsU96MCZQxm2HjOxrEc5N4c+kT35w+CwCbRnfJM/1BfKrv0wqg3LkEyBXXAxch9nMiUqKspwJEVDWXAvkil5kUwxy/nMFJb5Kh4Gl82h7Ww97ly2HuXcHJIp9uQPg8Mm0O/zbb5cX7gB1H5oscAyNJRhFzSk3MfbZ6ZQFtyLZ6bkRTLFLO52dg8Gl82hDFuP5KH1KOfmkEyxJ5IpnkG/zzf5Q32h7NqP141qz5kzR9HR0QoNDVWrVq20fft20yHhNpFMgV3QcXAfX0mmMNjtHsxMyYtkilkM0LkHHThzaDtbjzai9Sjn5lDe4U9Ilvsmf0qm0Ke0D69qsSxdulSjRo1SUlKSdu3apSZNmig+Pl5nz541HRpuAw1l2AUDQ+7jK8kUyoJ7+ENjtjBIppjlXOaLZErxcJ40h4Sg9ZiJZT3KuTmc3+2J9rRnUN59kz/UF8qu/XjVqPZrr72mp556SomJiapfv77efPNNlSxZUu+8847p0HAbSKbALrgrxX1OnDghiWQKrvGHxmxh8DuY5Ryg45kpxcM10xzaztajvFuPcm4OM1Psifa0Z9Dv803+UF8ou/bjNb3Ly5cva+fOnRo3bpxrW2BgoDp06KAtW7bc8D2//fabfvvtN9e/MzMzPR6nN2rbtq327Nnj8eNcvHhREg1lmHd9GSxfvrxPX3g97ZdffpHk/cmU5cuX65NPPjEcjfdzNvCoU9c4f4e4uDgG9A24cuWKJO52Li7nebJjx44qUaKE4Wj8S1ZWliTKsJWcv/UDDzzAedsiGRkZkijnJjh/81mzZmnevHmGo4GTc2Yt7Wn3crZnZsyYoeTkZMPRwF2cyWBfri/Osnv27FlVqFDBbZ87d+5c9ezZ022f50+8poV47tw55eTkKCIiIs/2iIgIffvttzd8z4wZMzR58mQrwvNqmZmZrgFRKzRp0sSyYwE3Uq5cOd111106duyYqwOHomvQoIHKlStnOowiadSokQIDA3XlyhVLz4O+rmnTpqZDsIUmTZooJSXFNSAKMyiPxRMbG6tDhw7pwoULpkPxS0FBQWrQoIHpMPxG06ZNdfToUc7bFitVqpRq1aplOgy/47w+/v4mVNgD7Rf3orz7Nl+uL3feeacqVKign3/+2a1jFpcvX3bbZ/mbgFwvWcj7xx9/VPXq1bV582bFxcW5to8ZM0YbNmzQtm3b8r3nRjNToqKi9Ouvv6pMmTKWxO0Njhw5YtnFJDw83GvvYIdvuXTpko4dO2Y6DJ9Qs2ZNhYSEmA6jyM6cOUMixc3uvvtuBQcHmw7DuKtXr+rw4cM8M8WgwMBA1a5dm1mxxeBwOHTo0CGWFjCkQoUKqlKliukw/EZOTo4OHTrEedtiVatWVdmyZU2H4Zd++OEHkuU2FBAQoNq1azNjy81OnDih7Oxs02HAA2rXru3TM0qzsrJ08uRJt34m1978MjMzVbZs2VvmDbympFWqVElBQUE6c+ZMnu1nzpxRZGTkDd8TEhLi1QN8VqlZs6bpEADLhYWFqV69eqbDgA1ERETkm/UIuMMdd9yhunXrmg4DKJbAwEDFxMSYDgOwRFBQEOdt+BVudIQ/iYqKMh0CUCSlS5dm/MpGvOY2veDgYDVv3lypqamubQ6HQ6mpqXlmqgAAAAAAAAAAALiT18xMkaRRo0apX79+atGihVq2bKlZs2YpOztbiYmJpkMDAAAAAAAAAAA+yquSKT179tRPP/2kiRMn6vTp02ratKnWrFnD8iwAAAAAAAAAAMBjvOYB9O5wuw+SAQAAAAAAAAAAvs/nHkDvDs68UWZmpuFIAAAAAAAAAACAac58wa3mnfhVMiUrK0uSFBUVZTgSAAAAAAAAAABgF1lZWSpbtuxNX/erZb4cDod+/PFHlS5dWgEBAabDAYolMzNTUVFROnHiBMvWAR5GfQOsQ30DrEN9A6xDfQOsQ30DrOMr9S03N1dZWVmqVq2aAgMDb7qfX81MCQwMVI0aNUyHAbhVmTJlvPpkBXgT6htgHeobYB3qG2Ad6htgHeobYB1fqG8FzUhxunmaBQAAAAAAAAAAACRTAAAAAAAAAAAACkIyBfBSISEhSkpKUkhIiOlQAJ9HfQOsQ30DrEN9A6xDfQOsQ30DrONv9c2vHkAPAAAAAAAAAABQWMxMAQAAAAAAAAAAKADJFAAAAAAAAAAAgAKQTAEAAAAAAAAAACgAyRQAAAAAAAAAAIACkEwBbGzOnDmKjo5WaGioWrVqpe3btxe4//Lly1WvXj2FhoaqUaNGWr16tUWRAt6vMPVt/vz5atOmjcqXL6/y5curQ4cOt6yfAP6nsNc3pyVLliggIEBdu3b1bICADylsfcvIyNCQIUNUtWpVhYSEKCYmhjYlcJsKW99mzZqlunXrKiwsTFFRURo5cqT++9//WhQt4L2++OILJSQkqFq1agoICNBHH310y/esX79ezZo1U0hIiGrXrq2FCxd6PE7AFxS2vq1YsUIdO3ZU5cqVVaZMGcXFxWnt2rXWBGsBkimATS1dulSjRo1SUlKSdu3apSZNmig+Pl5nz5694f6bN29Wr169NGDAAH311Vfq2rWrunbtqr1791ocOeB9Clvf1q9fr169eunzzz/Xli1bFBUVpU6dOunkyZMWRw54n8LWN6ejR49q9OjRatOmjUWRAt6vsPXt8uXL6tixo44ePap//etfOnDggObPn6/q1atbHDngfQpb3xYtWqQXXnhBSUlJ2r9/vxYsWKClS5dq/PjxFkcOeJ/s7Gw1adJEc+bMua39jxw5oi5duqh9+/ZKT0/XiBEjNHDgQJ8a4AU8pbD17YsvvlDHjh21evVq7dy5U+3bt1dCQoK++uorD0dqjYDc3Nxc00EAyK9Vq1a69957NXv2bEmSw+FQVFSUhg0bphdeeCHf/j179lR2drY+/vhj17b77rtPTZs21ZtvvmlZ3IA3Kmx9+72cnByVL19es2fPVt++fT0dLuDVilLfcnJydP/996t///768ssvlZGRcVt3IAL+rrD17c0339Qrr7yib7/9ViVKlLA6XMCrFba+DR06VPv371dqaqpr25///Gdt27ZNGzdutCxuwNsFBAToww8/LHDm8tixY7Vq1ao8N5v+8Y9/VEZGhtasWWNBlIBvuJ36diMNGjRQz549NXHiRM8EZiFmpgA2dPnyZe3cuVMdOnRwbQsMDFSHDh20ZcuWG75ny5YtefaXpPj4+JvuD+CaotS337t48aKuXLmiChUqeCpMwCcUtb5NmTJFVapU0YABA6wIE/AJRalvK1euVFxcnIYMGaKIiAg1bNhQ06dPV05OjlVhA16pKPWtdevW2rlzp2spsO+//16rV6/WQw89ZEnMgD9hvAQwx+FwKCsry2fGS+4wHQCA/M6dO6ecnBxFRETk2R4REaFvv/32hu85ffr0Dfc/ffq0x+IEfEFR6tvvjR07VtWqVcvXQAeQV1Hq28aNG7VgwQKlp6dbECHgO4pS377//nutW7dOvXv31urVq3Xo0CENHjxYV65cUVJSkhVhA16pKPXtiSee0Llz5/R///d/ys3N1dWrV/XMM8+wzBfgATcbL8nMzNSlS5cUFhZmKDLA97366qu6cOGCevToYToUt2BmCgAAxTBz5kwtWbJEH374oUJDQ02HA/iUrKws9enTR/Pnz1elSpVMhwP4PIfDoSpVqmjevHlq3ry5evbsqRdffJElYwEPWL9+vaZPn6433nhDu3bt0ooVK7Rq1SpNnTrVdGgAALjFokWLNHnyZC1btkxVqlQxHY5bMDMFsKFKlSopKChIZ86cybP9zJkzioyMvOF7IiMjC7U/gGuKUt+cXn31Vc2cOVOfffaZGjdu7MkwAZ9Q2Pp2+PBhHT16VAkJCa5tDodDknTHHXfowIEDqlWrlmeDBrxUUa5vVatWVYkSJRQUFOTads899+j06dO6fPmygoODPRoz4K2KUt9eeukl9enTRwMHDpQkNWrUSNnZ2Xr66af14osvKjCQe18Bd7nZeEmZMmWYlQJ4yJIlSzRw4EAtX77cp1bx4OoM2FBwcLCaN2+e52GEDodDqampiouLu+F74uLi8uwvSSkpKTfdH8A1RalvkvTyyy9r6tSpWrNmjVq0aGFFqIDXK2x9q1evnvbs2aP09HTXn4cffljt27dXenq6oqKirAwf8CpFub794Q9/0KFDh1xJS0k6ePCgqlatSiIFKEBR6tvFixfzJUyciczc3FzPBQv4IcZLAGstXrxYiYmJWrx4sbp06WI6HLdiZgpgU6NGjVK/fv3UokULtWzZUrNmzVJ2drYSExMlSX379lX16tU1Y8YMSdLw4cPVtm1b/fWvf1WXLl20ZMkSpaWlad68eSa/BuAVClvf/vKXv2jixIlatGiRoqOjXc8mCg8PV3h4uLHvAXiDwtS30NBQNWzYMM/7y5UrJ0n5tgPIr7DXt2effVazZ8/W8OHDNWzYMH333XeaPn26nnvuOZNfA/AKha1vCQkJeu211xQbG6tWrVrp0KFDeumll5SQkJBndhiA/C5cuKBDhw65/n3kyBGlp6erQoUKuvPOOzVu3DidPHlS//jHPyRJzzzzjGbPnq0xY8aof//+WrdunZYtW6ZVq1aZ+gqA1yhsfVu0aJH69eun5ORktWrVyjVeEhYWprJlyxr5Du5EMgWwqZ49e+qnn37SxIkTdfr0aTVt2lRr1qxxPTTt+PHjee5kat26tRYtWqQJEyZo/PjxqlOnjj766CMGm4DbUNj6NnfuXF2+fFndu3fP8zlJSUmaNGmSlaEDXqew9Q1A0RW2vkVFRWnt2rUaOXKkGjdurOrVq2v48OEaO3asqa8AeI3C1rcJEyYoICBAEyZM0MmTJ1W5cmUlJCRo2rRppr4C4DXS0tLUvn17179HjRolSerXr58WLlyoU6dO6fjx467Xa9asqVWrVmnkyJFKTk5WjRo19Pbbbys+Pt7y2AFvU9j6Nm/ePF29elVDhgzRkCFDXNud+3u7gFzmjwIAAAAAAAAAANwUt/0BAAAAAAAAAAAUgGQKAAAAAAAAAABAAUimAAAAAAAAAAAAFIBkCgAAAAAAAAAAQAFIpgAAAAAAAAAAABSAZAoAAAAAAAAAAEABSKYAAAAAAAAAAAAUgGQKAAAAAAAAAABAAUimAAAAAD7iySefVNeuXU2HcUN2ju1m1q9fr4CAAGVkZNz2e9q1a6cRI0Z4LCZPS01N1T333KOcnJxb7rtmzRo1bdpUDofDgsgAAAAAs0imAAAAAF4gICCgwD+TJk1ScnKyFi5caCS++fPnq0mTJgoPD1e5cuUUGxurGTNmuF43GZt0LclR0O/Xrl27fO9p3bq1Tp06pbJly7otjpycHM2cOVP16tVTWFiYKlSooFatWuntt9/OE6s7EzLR0dGaNWvWbe07ZswYTZgwQUFBQbfc98EHH1SJEiX0/vvvFzNCAAAAwP7uMB0AAAAAgFs7deqU6+9Lly7VxIkTdeDAAde28PBwhYeHmwhN77zzjkaMGKHXX39dbdu21W+//abdu3dr7969rn3cmZAoihUrVujy5cuSpBMnTqhly5b67LPP1KBBA0lScHBwnv2vXLmi4OBgRUZGujWOyZMn66233tLs2bPVokULZWZmKi0tTb/88otbjyNJly9fzve9CrJx40YdPnxY3bp1u+33PPnkk3r99dfVp0+fooQIAAAAeA1mpgAAAABeIDIy0vWnbNmyCggIyLMtPDw831Ja7dq107BhwzRixAiVL19eERERmj9/vrKzs5WYmKjSpUurdu3a+uSTT/Ica+/evercubPCw8MVERGhPn366Ny5czeNbeXKlerRo4cGDBig2rVrq0GDBurVq5emTZvm2udGsT333HMaM2aMKlSooMjISE2aNCnP52ZkZGjQoEGKiIhQaGioGjZsqI8//tj1+saNG9WmTRuFhYUpKipKzz33nLKzs28Yo/MYkZGRqly5siSpYsWKrm0VK1bU3Llz9fDDD6tUqVKaNm1avmW+zp8/r169eql69eoqWbKkGjVqpMWLFxf033bD32rw4MF6/PHHVbNmTTVp0kQDBgzQ6NGjXb/Thg0blJyc7Jo1c/ToUeXk5GjAgAGqWbOmwsLCVLduXSUnJ+f5bOdvPG3aNFWrVk1169ZVu3btdOzYMY0cOdL1eTezZMkSdezYUaGhoa5tX3/9tdq3b6/SpUurTJkyat68udLS0lyvJyQkKC0tTYcPHy7U7wAAAAB4G5IpAAAAgA/7+9//rkqVKmn79u0aNmyYnn32WT3++ONq3bq1du3apU6dOqlPnz66ePGipGsJjAceeECxsbFKS0vTmjVrdObMGfXo0eOmx4iMjNTWrVt17NixQsdWqlQpbdu2TS+//LKmTJmilJQUSZLD4VDnzp21adMmvffee9q3b59mzpzpWn7q8OHDevDBB9WtWzft3r1bS5cu1caNGzV06NAi/lLSpEmT9Oijj2rPnj3q379/vtf/+9//qnnz5lq1apX27t2rp59+Wn369NH27dtv+xiRkZFat26dfvrppxu+npycrLi4OD311FM6deqUTp06paioKDkcDtWoUUPLly/Xvn37NHHiRI0fP17Lli3L8/7U1FQdOHBAKSkp+vjjj7VixQrVqFFDU6ZMcX3ezXz55Zdq0aJFnm29e/dWjRo1tGPHDu3cuVMvvPCCSpQo4Xr9zjvvVEREhL788svb/g0AAAAAb8QyXwAAAIAPa9KkiSZMmCBJGjdunGbOnKlKlSrpqaeekiRNnDhRc+fO1e7du3Xfffdp9uzZio2N1fTp012f8c477ygqKkoHDx5UTExMvmMkJSXpscceU3R0tGJiYhQXF6eHHnpI3bt3V2Dgze/faty4sZKSkiRJderU0ezZs5WamqqOHTvqs88+0/bt27V//37XMe+++27Xe2fMmKHevXu7ni1Sp04d1zJjc+fOzTO74nY98cQTSkxMdP37+++/z/N69erVXTNIJGnYsGFau3atli1bppYtW97WMV577TV1795dkZGRatCggVq3bq1HHnlEnTt3lnRtObTg4GCVLFkyzxJjQUFBmjx5suvfNWvW1JYtW7Rs2bI8ia5SpUrp7bffzrO8V1BQkEqXLn3LJcuOHTumatWq5dl2/PhxPf/886pXr56ka7/z71WrVq3QiTQAAADA2zAzBQAAAPBhjRs3dv09KChIFStWVKNGjVzbIiIiJElnz56VdG1Zp88//9z1DJbw8HDXQPrNlnKqWrWqtmzZoj179mj48OG6evWq+vXrpwcffFAOh+O2YnN+jjOO9PR01ahR44bJG2ecCxcuzBNnfHy8HA6Hjhw5cquf5YZ+Pyvj93JycjR16lQ1atRIFSpUUHh4uNauXavjx4/f9jHq16+vvXv3auvWrerfv7/Onj2rhIQEDRw48JbvnTNnjpo3b67KlSsrPDxc8+bNy3fsRo0aFeo5Kde7dOlSviTUqFGjNHDgQHXo0EEzZ868YRkICwtzzWwCAAAAfBXJFAAAAMCHXb8kkyQFBATk2eZ8hoYz6XHhwgUlJCQoPT09z5/vvvtO999/f4HHatiwoQYPHqz33ntPKSkpSklJ0YYNGwoVmzOOsLCwAo914cIFDRo0KE+MX3/9tb777jvVqlWrwPfeTKlSpQp8/ZVXXlFycrLGjh2rzz//XOnp6YqPj3c92P52BQYG6t5779WIESO0YsUKLVy4UAsWLCgwCbRkyRKNHj1aAwYM0Keffqr09HQlJibmO/atvkNBKlWqpF9++SXPtkmTJumbb75Rly5dtG7dOtWvX18ffvhhnn1+/vln13NoAAAAAF/FMl8AAAAAXJo1a6YPPvhA0dHRuuOOoncX6tevL0k3fSD8rTRu3Fg//PDDTZcWa9asmfbt26fatWsXOcbC2rRpkx555BH96U9/knQtAXXw4EHXdy2q3/9WwcHBysnJyXfs1q1ba/Dgwa5tt/vQ9xt93o3ExsZq3759+bbHxMQoJiZGI0eOVK9evfTuu+/q0UcflXTtOTKHDx9WbGzsbcUCAAAAeCtmpgAAAABwGTJkiH7++Wf16tVLO3bs0OHDh7V27VolJibedED+2Wef1dSpU7Vp0yYdO3ZMW7duVd++fVW5cmXFxcUVKY62bdvq/vvvV7du3ZSSkqIjR47ok08+0Zo1ayRJY8eO1ebNmzV06FDXzJl///vfxXoA/a3UqVNHKSkp2rx5s/bv369BgwbpzJkzhfqM7t27629/+5u2bdumY8eOaf369RoyZIhiYmJcy6lFR0dr27ZtOnr0qM6dOyeHw6E6deooLS1Na9eu1cGDB/XSSy9px44dt3XM6OhoffHFFzp58qTOnTt30/3i4+O1ceNG178vXbqkoUOHav369Tp27Jg2bdqkHTt26J577nHts3XrVoWEhBT5/xkAAADwFiRTAAAAALhUq1ZNmzZtUk5Ojjp16qRGjRppxIgRKleu3E0fJt+hQwdt3bpVjz/+uGJiYtStWzeFhoYqNTVVFStWLHIsH3zwge6991716tVL9evX15gxY1wJncaNG2vDhg06ePCg2rRpo9jYWE2cODHfA9TdacKECWrWrJni4+PVrl07RUZGqmvXroX6jPj4eP3nP/9RQkKCYmJi1K9fP9WrV0+ffvqpaybQ6NGjFRQUpPr166ty5co6fvy4Bg0apMcee0w9e/ZUq1atdP78+TyzVAoyZcoUHT16VLVq1SpwOa7evXvrm2++0YEDByRde8bO+fPn1bdvX8XExKhHjx7q3LmzJk+e7HrP4sWL1bt3b5UsWbJQvwMAAADgbQJyc3NzTQcBAAAAADDv+eefV2Zmpt56661b7nvu3DnVrVtXaWlpqlmzpgXRAQAAAOYwMwUAAAAAIEl68cUXddddd8nhcNxy36NHj+qNN94gkQIAAAC/wMwUAAAAAAAAAACAAjAzBQAAAAAAAAAAoAAkUwAAAAAAAAAAAApAMgUAAAAAAAAAAKAAJFMAAAAAAAAAAAAKQDIFAAAAAAAAAACgACRTAAAAAAAAAAAACkAyBQAAAAAAAAAAoAAkUwAAAAAAAAAAAApAMgUAAAAAAAAAAKAA/w+Wv93oiQ3buQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "example_trial = example_rewarded_trial\n", + "\n", + "# Define plot parameters\n", + "lineoffsets = 1\n", + "linelengths = 2\n", + "ylim = [-2, 2]\n", + "grace_time = 0.100\n", + "y = np.arange(-1, 1, 0.1)\n", + "alpha = 0.3\n", + "\n", + "# Define time windows for plotting\n", + "plot_start_time = example_trial[\"start_time\"] - grace_time\n", + "plot_end_time = example_trial[\"stop_time\"] + grace_time\n", + "opto_onset_mask = (opto_onset_times >= plot_start_time) & (opto_onset_times <= plot_end_time)\n", + "opto_offset_mask = (opto_offset_times >= plot_start_time) & (opto_offset_times <= plot_end_time)\n", + "tone_in_mask = (tone_in >= plot_start_time) & (tone_in <= plot_end_time)\n", + "tone_out_mask = (tone_out >= plot_start_time) & (tone_out <= plot_end_time)\n", + "target_out_mask = (target_out >= plot_start_time) & (target_out <= plot_end_time)\n", + "valve_mask = (valve >= plot_start_time) & (valve <= plot_end_time)\n", + "encoder_mask = (encoder_timestamps >= plot_start_time) & (encoder_timestamps <= plot_end_time)\n", + "lick_mask = (lick_timestamps >= plot_start_time) & (lick_timestamps <= plot_end_time)\n", + "\n", + "# Normalize times to trial start time\n", + "trial_start_time = example_trial[\"start_time\"]\n", + "normalized_opto_onset_times = opto_onset_times[opto_onset_mask] - trial_start_time\n", + "normalized_opto_offset_times = opto_offset_times[opto_offset_mask] - trial_start_time\n", + "normalized_tone_in = tone_in[tone_in_mask] - trial_start_time\n", + "normalized_tone_out = tone_out[tone_out_mask] - trial_start_time\n", + "normalized_target_out = target_out[target_out_mask] - trial_start_time\n", + "normalized_valve = valve[valve_mask] - trial_start_time\n", + "normalized_encoder_timestamps = encoder_timestamps[encoder_mask] - trial_start_time\n", + "normalized_lick_timestamps = lick_timestamps[lick_mask] - trial_start_time\n", + "\n", + "fig, axs = plt.subplots(4, 1, figsize=(20, 10), sharex=True)\n", + "axs[0].set_title(\"Example Rewarded Trial\")\n", + "axs[0].eventplot(normalized_tone_in, color=\"red\", label=\"Tone In\", lineoffsets=lineoffsets, linelengths=linelengths)\n", + "axs[0].eventplot(normalized_tone_out, color=\"blue\", label=\"Tone Out\", lineoffsets=lineoffsets, linelengths=linelengths)\n", + "axs[0].eventplot(normalized_target_out, color=\"green\", label=\"Target Out\", lineoffsets=lineoffsets, linelengths=linelengths)\n", + "axs[0].eventplot(normalized_valve, color=\"purple\", label=\"Valve\", lineoffsets=lineoffsets, linelengths=linelengths)\n", + "axs[0].axvline(0, color=\"black\", linestyle=\"--\", label=\"Start Time\")\n", + "axs[0].axvline(example_trial[\"stop_time\"] - example_trial[\"start_time\"], color=\"black\", linestyle=\"--\", label=\"Stop Time\")\n", + "for i, (onset_time, offset_time) in enumerate(zip(normalized_opto_onset_times, normalized_opto_offset_times)):\n", + " x1 = onset_time * np.ones(len(y))\n", + " x2 = offset_time * np.ones(len(y))\n", + " if i == 0:\n", + " axs[0].fill_betweenx(y, x1, x2, color=\"blue\", alpha=alpha, label=\"Optogenetic Stimulation\")\n", + " else:\n", + " axs[0].fill_betweenx(y, x1, x2, color=\"blue\", alpha=alpha)\n", + "\n", + "axs[0].set_ylim(ylim)\n", + "axs[0].set_ylabel(\"Channel 1 Raw Voltage (uV)\")\n", + "axs[0].legend()\n", + "\n", + "axs[2].plot(normalized_encoder_timestamps, encoder_data[encoder_mask], color=\"k\", label=\"Encoder\")\n", + "axs[2].axhline(example_trial[\"ThresholdVector\"], color=\"black\", linestyle=\"--\", label=\"Threshold Vector\")\n", + "axs[2].axhline(example_trial[\"endZone_ThresholdVector\"], color=\"red\", linestyle=\"--\", label=\"End Zone Threshold Vector\")\n", + "axs[2].set_ylabel(\"Rotary Encoder (a.u.)\")\n", + "axs[2].legend()\n", + "\n", + "axs[3].plot(normalized_lick_timestamps, lick_data[lick_mask], color=\"k\", label=\"Lick\")\n", + "axs[3].set_ylabel(\"Lick Sensor (a.u.)\")\n", + "_ = axs[3].set_xlabel(\"Time Since Trial Start (s)\")" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0.0063527])" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "normalized_opto_onset_times" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([1.0845106])" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "normalized_opto_offset_times" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "start_time 198.942435\n", + "stop_time 200.023562\n", + "rewarded True\n", + "time_reward_s 142896.074106\n", + "opto_trial True\n", + "opto_time 142894.990439\n", + "opto_time_end 142896.068597\n", + "ITI_respect True\n", + "ThresholdVector 27.0\n", + "endZone_ThresholdVector 33.0\n", + "Name: 60, dtype: object" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "example_trial" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "schneider_lab_to_nwb_env", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.4" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/001259/stream_nwbfile.py b/001259/stream_nwbfile.py new file mode 100644 index 0000000..5208c0d --- /dev/null +++ b/001259/stream_nwbfile.py @@ -0,0 +1,36 @@ +from pynwb import NWBHDF5IO +from fsspec import filesystem +from h5py import File +from dandi.dandiapi import DandiAPIClient + +def stream_nwbfile(DANDISET_ID, file_path): + '''Stream NWB file from DANDI archive. + + Parameters + ---------- + DANDISET_ID : str + Dandiset ID + file_path : str + Path to NWB file in DANDI archive + + Returns + ------- + nwbfile : NWBFile + NWB file + io : NWBHDF5IO + NWB IO object (for closing) + + Notes + ----- + The io object must be closed after use. + ''' + with DandiAPIClient() as client: + client.dandi_authenticate() + asset = client.get_dandiset(DANDISET_ID, 'draft').get_asset_by_path(file_path) + s3_url = asset.get_content_url(follow_redirects=1, strip_query=True) + fs = filesystem("http") + file_system = fs.open(s3_url, "rb") + file = File(file_system, mode="r") + io = NWBHDF5IO(file=file, load_namespaces=True) + nwbfile = io.read() + return nwbfile, io \ No newline at end of file