-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathen_de_translate.py
152 lines (116 loc) · 6.45 KB
/
en_de_translate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import torch
import torch.nn as nn
from torchtext import data, datasets
from transformer.train import run_epoch
from transformer.optimizer import NoamOpt
from transformer.criterion import LabelSmoothingKLLoss
from transformer.multi_gpu_loss_compute import MultiGPULossCompute
from transformer.model import Transformer
from transformer.data import batch_size_fn, MyIterator, rebatch
from transformer.validator import validate
from utils import save_model
from transformer.config import config
import wandb
BOS_WORD = '<s>'
EOS_WORD = '</s>'
BLANK_WORD = '<blank>'
wandb.init(project="transformer")
wandb.config.update(config)
def main():
devices = list(range(torch.cuda.device_count()))
print('Selected devices: ', devices)
def tokenize_bpe(text):
return text.split()
SRC = data.Field(tokenize=tokenize_bpe, pad_token=BLANK_WORD)
TGT = data.Field(tokenize=tokenize_bpe, init_token=BOS_WORD,
eos_token=EOS_WORD, pad_token=BLANK_WORD)
train, val, test = datasets.WMT14.splits(exts=('.en', '.de'),
train='train.tok.clean.bpe.32000',
# train='newstest2014.tok.bpe.32000',
validation='newstest2013.tok.bpe.32000',
test='newstest2014.tok.bpe.32000',
fields=(SRC, TGT),
filter_pred=lambda x: len(vars(x)['src']) <= config['max_len'] and
len(vars(x)['trg']
) <= config['max_len'],
root='./.data/')
print('Train set length: ', len(train))
# building shared vocabulary
TGT.build_vocab(train.src, train.trg, min_freq=config['min_freq'])
SRC.vocab = TGT.vocab
print('Source vocab length: ', len(SRC.vocab.itos))
print('Target vocab length: ', len(TGT.vocab.itos))
wandb.config.update({'src_vocab_length': len(SRC.vocab),
'target_vocab_length': len(TGT.vocab)})
pad_idx = TGT.vocab.stoi[BLANK_WORD]
print('Pad index:', pad_idx)
train_iter = MyIterator(train, batch_size=config['batch_size'], device=torch.device(0), repeat=False,
sort_key=lambda x: (len(x.src), len(x.trg)), batch_size_fn=batch_size_fn, train=True)
valid_iter = MyIterator(val, batch_size=config['batch_size'], device=torch.device(0), repeat=False,
sort_key=lambda x: (len(x.src), len(x.trg)), batch_size_fn=batch_size_fn, train=False)
test_iter = MyIterator(test, batch_size=config['batch_size'], device=torch.device(0), repeat=False,
sort_key=lambda x: (len(x.src), len(x.trg)), batch_size_fn=batch_size_fn, train=False)
model = Transformer(len(SRC.vocab), len(TGT.vocab), N=config['num_layers'])
# weight tying
model.src_embed[0].lookup_table.weight = model.tgt_embed[0].lookup_table.weight
model.generator.lookup_table.weight = model.tgt_embed[0].lookup_table.weight
model.cuda()
model_size = model.src_embed[0].d_model
print('Model created with size of', model_size)
wandb.config.update({'model_size': model_size})
criterion = LabelSmoothingKLLoss(size=len(TGT.vocab), padding_idx=pad_idx, smoothing=0.1,
batch_multiplier=config['batch_multiplier'])
criterion.cuda()
eval_criterion = LabelSmoothingKLLoss(
size=len(TGT.vocab), padding_idx=pad_idx, smoothing=0.1, batch_multiplier=1)
eval_criterion.cuda()
model_par = nn.DataParallel(model, device_ids=devices)
model_opt = NoamOpt(warmup_init_lr=config['warmup_init_lr'], warmup_end_lr=config['warmup_end_lr'],
warmup_updates=config['warmup'],
min_lr=config['warmup_init_lr'],
optimizer=torch.optim.Adam(model.parameters(),
lr=0, betas=(config['beta_1'], config['beta_2']),
eps=config['epsilon'])
)
wandb.watch(model)
current_steps = 0
for epoch in range(1, config['max_epochs'] + 1):
# training model
model_par.train()
loss_calculator = MultiGPULossCompute(model.generator, criterion, devices=devices, opt=model_opt)
(_, steps) = run_epoch((rebatch(pad_idx, b) for b in train_iter),
model_par,
loss_calculator,
steps_so_far=current_steps,
batch_multiplier=config['batch_multiplier'],
logging=True)
current_steps += steps
# calculating validation loss and bleu score
model_par.eval()
loss_calculator_without_optimizer = MultiGPULossCompute(model.generator, eval_criterion, devices=devices,
opt=None)
(loss, _) = run_epoch((rebatch(pad_idx, b) for b in valid_iter),
model_par,
loss_calculator_without_optimizer,
steps_so_far=current_steps)
if (epoch > 10) or current_steps > config['max_step']:
# greedy decoding takes a while so Bleu won't be evaluated for every epoch
print('Calculating BLEU score...')
bleu = validate(model, valid_iter, SRC, TGT,
BOS_WORD, EOS_WORD, BLANK_WORD, config['max_len'])
wandb.log({'Epoch bleu': bleu})
print(f'Epoch {epoch} | Bleu score: {bleu} ')
print(f"Epoch {epoch} | Loss: {loss}")
wandb.log({'Epoch': epoch, 'Epoch loss': loss})
if epoch > 10:
save_model(model=model, optimizer=model_opt, loss=loss, src_field=SRC, tgt_field=TGT, updates=current_steps,
epoch=epoch)
if current_steps > config['max_step']:
break
save_model(model=model, optimizer=model_opt, loss=loss, src_field=SRC, tgt_field=TGT, updates=current_steps,
epoch=epoch)
test_bleu = validate(model, test_iter, SRC, TGT,
BOS_WORD, EOS_WORD, BLANK_WORD, config['max_len'], logging=True)
print(f"Test Bleu score: {test_bleu}")
wandb.config.update({'Test bleu score': test_bleu})
main()