-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathicarl_model.py
610 lines (475 loc) · 21.9 KB
/
icarl_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
"""
This class implements the main model of iCaRL
and all the methods regarding the exemplars
from delivery: iCaRL is made up of 2 components
- feature extractor (a convolutional NN) => resnet32 optimized on cifar100
- classifier => a FC layer OR a non-parametric classifier (NME)
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.autograd import Variable
import numpy as np
from PIL import Image
from torch.utils.data import Subset, DataLoader
from torch.backends import cudnn
from torch.autograd import Variable
import copy
import gc #extensive use in order to manage memory issues
from torchvision import transforms
from PIL import Image
from torchvision.transforms import ToPILImage
from Cifar100 import utils
from Cifar100.resnet import resnet32
from Cifar100.Dataset.cifar100 import CIFAR100
import random
import pandas as pd
# new classifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import LinearSVC
def auto_loss_rebalancing(n_known, n_classes, loss_type):
alpha = n_known/n_classes
if loss_type == 'class':
return 1-alpha
return alpha
def get_rebalancing(rebalancing=None):
if rebalancing is None:
return lambda n_known, n_classes, loss_type: 1
if rebalancing in ['auto', 'AUTO']:
return auto_loss_rebalancing
if callable(rebalancing):
return rebalancing
# feature_size: 2048, why?
# n_classes: 10 => 100
class ICaRL(nn.Module):
def __init__(self, feature_size, n_classes,\
BATCH_SIZE, WEIGHT_DECAY, LR, GAMMA, NUM_EPOCHS, DEVICE, MILESTONES, MOMENTUM, K,\
herding, reverse_index = None, class_loss_criterion='bce', dist_loss_criterion='bce', loss_rebalancing='auto', lambda0=1):
super(ICaRL, self).__init__()
self.net = resnet32()
self.net.fc = nn.Linear(self.net.fc.in_features, n_classes)
self.feature_extractor = resnet32()
self.feature_extractor.fc = nn.Sequential()
self.n_classes = n_classes
self.n_known = 0
# Hyper-parameters from iCaRL
self.BATCH_SIZE = BATCH_SIZE
self.WEIGHT_DECAY = WEIGHT_DECAY
self.LR = LR
self.GAMMA = GAMMA # this allow LR to become 1/5 LR after MILESTONES epochs
self.NUM_EPOCHS = NUM_EPOCHS
self.DEVICE = DEVICE
self.MILESTONES = MILESTONES # when the LR decreases, according to icarl
self.MOMENTUM = MOMENTUM
self.K = K
self.reverse_index=reverse_index
self.optimizer, self.scheduler = utils.getOptimizerScheduler(self.LR, self.MOMENTUM, self.WEIGHT_DECAY, self.MILESTONES, self.GAMMA, self.parameters())
gc.collect()
# List containing exemplar_sets
# Each exemplar_set is a np.array of N images
self.exemplar_sets = []
self.exemplar_sets_indices = []
# for the classification/distillation loss we have two alternatives
# 1- BCE loss with Logits (reduction could be mean or sum)
# 2- BCE loss + sigmoid
# actually we use just one loss as explained on the forum
self.class_loss, self.dist_loss = self.build_loss(class_loss_criterion, dist_loss_criterion, loss_rebalancing, lambda0=lambda0)
# Means of exemplars (cntroids)
self.compute_means = True
self.exemplar_means = []
self.exemplar_mean_nn = [] # means not normalized
self.herding = herding # random choice of exemplars or icarl exemplars strategy?
# this is used as explained in the forum to compute the exemplar mean in a more accurate way
# populated during construct exemplar set and used in the classify step
self.data_from_classes = []
self.means_from_classes = []
# Knn, svc classification
self.model = None
# increment the number of classes considered by the net
# incremental learning approach, 0,10..100
def increment_classes(self, n):
gc.collect()
in_features = self.net.fc.in_features
out_features = self.net.fc.out_features
weights = self.net.fc.weight.data
bias = self.net.fc.bias.data
self.net.fc = nn.Linear(in_features, out_features + n) #add 10 classes to the fc last layer
self.net.fc.weight.data[:out_features] = weights
self.net.fc.bias.data[:out_features] = bias
self.n_classes += n #icrement #classes considered
# computes the mean of each exemplar set
def computeMeans(self):
torch.no_grad()
torch.cuda.empty_cache()
feature_extractor = self.feature_extractor.to(self.DEVICE)
feature_extractor.train(False)
# new mean mgmt
tensors_mean = []
exemplar_mean_nn=[]
with torch.no_grad():
for tensor_set in self.data_from_classes:
features = []
for tensor, _ in tensor_set:
tensor = tensor.to(self.DEVICE)
feature = feature_extractor(tensor)
feature.data = feature.data / feature.data.norm() # Normalize
features.append(feature)
# cleaning
torch.no_grad()
torch.cuda.empty_cache()
features = torch.stack(features) #(num_exemplars,num_features)
mean_tensor = features.mean(0)
exemplar_mean_nn.append(mean_tensor.to('cpu'))
mean_tensor.data = mean_tensor.data / mean_tensor.data.norm() # Re-normalize
mean_tensor = mean_tensor.to('cpu')
tensors_mean.append(mean_tensor)
self.exemplar_means = tensors_mean # nb the mean is computed over all the imgs
self.exemplar_mean_nn= exemplar_mean_nn # exemplars means not normalized
# cleaning
torch.no_grad()
torch.cuda.empty_cache()
# train procedure common for KNN and SVC classifier (save a lot of training time)
def modelTrain(self, method, K_nn = None):
torch.no_grad()
torch.cuda.empty_cache()
feature_extractor = self.feature_extractor.to(self.DEVICE)
feature_extractor.train(False)
# -- train a SVC classifier
X_train, y_train = [], []
for exemplar_set in self.exemplar_sets:
for exemplar, label in exemplar_set:
exemplar = exemplar.to(self.DEVICE)
feature = feature_extractor(exemplar)
feature = feature.squeeze()
feature.data = feature.data / feature.data.norm() # Normalize
X_train.append(feature.cpu().detach().numpy())
y_train.append(label)
if method == 'KNN':
model = KNeighborsClassifier(n_neighbors = K_nn)
elif method == 'SVC':
model = LinearSVC()
self.model = model.fit(X_train, y_train)
# common classify function
def KNN_SVC_classify(self, images):
torch.no_grad()
torch.cuda.empty_cache()
# --- prediction
X_pred = []
images = images.to(self.DEVICE)
feature_extractor = self.feature_extractor.to(self.DEVICE)
feature_extractor.train(False)
features = feature_extractor(images)
for feature in features:
feature = feature.squeeze()
feature.data = feature.data / feature.data.norm() # Normalize
X_pred.append(feature.cpu().detach().numpy())
preds = self.model.predict(X_pred)
# --- end prediction
return torch.tensor(preds)
# classify base on cosine similarity
def COS_classify(self, batch_imgs):
torch.no_grad()
torch.cuda.empty_cache()
batch_imgs_size = batch_imgs.size(0)
feature_extractor = self.feature_extractor.to(self.DEVICE)
feature_extractor.train(False)
means_exemplars = torch.cat(self.exemplar_mean_nn, dim=0)
means_exemplars = torch.stack([means_exemplars] * batch_imgs_size)
means_exemplars = means_exemplars.transpose(1, 2) # means no normalized
feature = feature_extractor(batch_imgs) # features no normalized
feature=feature.to('cpu')
means_exemplars = means_exemplars.to('cpu')
preds=[]
for a in feature:
a=a.detach().numpy()
aa=np.linalg.norm(a)
res=[]
for b in means_exemplars:
b=b.detach().numpy()
bb=np.linalg.norm(b)
dot = np.dot(a, b)
cos = dot / (aa * bb)
res.append(cos)
preds.append(np.argmax(np.array(res)))
# cleaning
torch.no_grad()
torch.cuda.empty_cache()
gc.collect()
return torch.FloatTensor(preds).to(self.DEVICE)
# classification via fc layer (similar to lwf approach)
def FCC_classify(self, images):
_, preds = torch.max(torch.softmax(self.net(images), dim=1), dim=1, keepdim=False)
return preds
# NME classification from iCaRL paper
def classify(self, batch_imgs):
"""Classify images by nearest-mean-of-exemplars
Args:
batch_imgs: input image batch
Returns:
preds: Tensor of size (batch_size,)
"""
torch.no_grad()
torch.cuda.empty_cache()
batch_imgs_size = batch_imgs.size(0)
feature_extractor = self.feature_extractor.to(self.DEVICE)
feature_extractor.train(False)
# update exemplar_means with the mean
# of all the train data for a given class
means_exemplars = torch.cat(self.exemplar_means, dim=0)
means_exemplars = torch.stack([means_exemplars] * batch_imgs_size)
means_exemplars = means_exemplars.transpose(1, 2)
feature = feature_extractor(batch_imgs)
aus_normalized_features = []
for el in feature: # Normalize
el.data = el.data / el.data.norm()
aus_normalized_features.append(el)
feature = torch.stack(aus_normalized_features,dim=0)
feature = feature.unsqueeze(2)
feature = feature.expand_as(means_exemplars)
means_exemplars = means_exemplars.to(self.DEVICE)
# Nearest prototype
preds = torch.argmin((feature - means_exemplars).pow(2).sum(1),dim=1)
# cleaning
torch.no_grad()
torch.cuda.empty_cache()
gc.collect()
return preds
# implementation of alg. 4 of icarl paper
# iCaRL ConstructExemplarSet
def construct_exemplar_set(self, tensors, m, label):
"""
Args:
tensors: train_subset containing a single label
m: number of exemplars allowed/exemplar set (class)
label: considered class
"""
torch.no_grad()
torch.cuda.empty_cache()
gc.collect()
exemplar_set_indices = set()
exemplar_list_indices = []
exemplar_set = []
if self.herding:
feature_extractor = self.feature_extractor.to(self.DEVICE)
feature_extractor.train(False)
# Compute and cache features for each example
features = []
loader = DataLoader(tensors,batch_size=self.BATCH_SIZE,shuffle=True,drop_last=False,num_workers = 4)
with torch.no_grad():
for _, images, labels in loader:
images = images.to(self.DEVICE)
labels = labels.to(self.DEVICE)
feature = feature_extractor(images)
feature = feature / np.linalg.norm(feature.cpu()) # Normalize
features.append(feature)
features_s = torch.cat(features)
class_mean = features_s.mean(0)
class_mean = class_mean / np.linalg.norm(class_mean.cpu()) # Normalize
class_mean = torch.stack([class_mean]*features_s.size()[0])
summon = torch.zeros(1,features_s.size()[1]).to(self.DEVICE) #(1,num_features)
for k in range(1, (m + 1)):
S = torch.cat([summon]*features_s.size()[0]) # second addend, features in the exemplar set
results = pd.DataFrame((class_mean-(1/k)*(features_s + S)).pow(2).sum(1).cpu(), columns=['result']).sort_values('result')
results['index'] = results.index
results = results.to_numpy()
# select argmin not included in exemplar_set_indices
for i in range(results.shape[0]):
index = results[i, 1]
exemplar_k_index = tensors[index][0]
if exemplar_k_index not in exemplar_set_indices:
exemplar_k = tensors[index][1].unsqueeze(dim = 0) # take the image from the tuple (index, img, label)
exemplar_set.append((exemplar_k, label))
exemplar_k_index = tensors[index][0] # index of the img on the real dataset
exemplar_list_indices.append(exemplar_k_index)
exemplar_set_indices.add(exemplar_k_index)
break
# features of the exemplar k
phi = feature_extractor(exemplar_k.to(self.DEVICE)) #feature_extractor(exemplar_k.to(self.DEVICE))
summon += phi # update sum of features
else:
tensors_size = len(tensors)
unique_random_indexes = random.sample(range(0, tensors_size), m) # random sample without replacement k exemplars
i = 0
for k in range(1, (m + 1)):
index = unique_random_indexes[i]
exemplar_k = tensors[index][1].unsqueeze(dim = 0)
exemplar_k_index = tensors[index][0]
exemplar_set.append((exemplar_k, label))
exemplar_set_indices.add(exemplar_k_index)
i = i + 1
# --- new ---
tensor_set = []
for i in range(0, len(tensors)):
t = tensors[i][1].unsqueeze(dim = 0)
tensor_set.append((t, label))
self.exemplar_sets.append(exemplar_set) #update exemplar sets with the updated exemplars images
self.exemplar_sets_indices.append(exemplar_list_indices)
# this is used to compute more accurately the means of the exemplar (see also computeMeans and classify)
self.data_from_classes.append(tensor_set)
# cleaning
torch.cuda.empty_cache()
# build a exemplar dataset as a subset of the train dataset
def build_exemplars_dataset(self, train_dataset): #complete train dataset
all_exemplars_indices = []
for exemplar_set_indices in self.exemplar_sets_indices:
all_exemplars_indices.extend(exemplar_set_indices)
exemplars_dataset = Subset(train_dataset, all_exemplars_indices)
return exemplars_dataset
def update_representation(self, dataset, train_dataset_big, new_classes):
# 1 - retrieve the classes from the dataset (which is the current train_subset)
# 2 - retrieve the new classes
# 1,2 are done in the main_icarl
#gc.collect()
# 3 - increment classes
# (add output nodes)
# (update n_classes)
# 5 store network outputs with pre-update parameters
self.increment_classes(len(new_classes))
# 4 - combine current train_subset (dataset) with exemplars
# to form a new augmented train dataset
# join the datasets
exemplars_dataset = self.build_exemplars_dataset(train_dataset_big)
#
if len(exemplars_dataset) > 0:
augmented_dataset = ConcatDataset(dataset, exemplars_dataset)
#augmented_dataset = utils.joinSubsets(train_dataset_big, [dataset, exemplars_dataset])
else:
augmented_dataset = dataset # first iteration
# 6 - run network training, with loss function
net = self.net
optimizer = optim.SGD(net.parameters(), lr=self.LR, weight_decay=self.WEIGHT_DECAY, momentum=self.MOMENTUM)
scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=self.MILESTONES, gamma=self.GAMMA, last_epoch=-1)
criterion = utils.getLossCriterion()
cudnn.benchmark # Calling this optimizes runtime
net = net.to(self.DEVICE)
# define the loader for the augmented_dataset
loader = DataLoader(augmented_dataset, batch_size=self.BATCH_SIZE,shuffle=True, num_workers=4, drop_last = True)
if len(self.exemplar_sets) > 0:
old_net = copy.deepcopy(net)
for epoch in range(self.NUM_EPOCHS):
print("NUM_EPOCHS: ",epoch,"/", self.NUM_EPOCHS)
for _, images, labels in loader:
# Bring data over the device of choice
images = images.to(self.DEVICE)
labels = labels.to(self.DEVICE)
net.train()
# PyTorch, by default, accumulates gradients after each backward pass
# We need to manually set the gradients to zero before starting a new iteration
optimizer.zero_grad() # Zero-ing the gradients
# Forward pass to the network
outputs = net(images)
# Loss = only classification on new classes
loss = self.class_loss(outputs, labels, col_start=self.n_known)
class_loss = loss.item() # Used for logging for debugging purposes
# Distilation loss for old classes, class loss on new classes
dist_loss = None
if len(self.exemplar_sets) > 0:
out_old = torch.sigmoid(old_net(images))
dist_loss = self.dist_loss(outputs, out_old, col_end=self.n_known)
loss += dist_loss
loss.backward()
optimizer.step()
scheduler.step()
print("LOSS: ", loss.item(), 'class loss', class_loss, 'dist loss', dist_loss.item() if dist_loss is not None else dist_loss)
self.net = copy.deepcopy(net)
self.feature_extractor = copy.deepcopy(net)
self.feature_extractor.fc = nn.Sequential()
#cleaning
del net
torch.cuda.empty_cache()
def build_loss(self, class_loss_criterion, dist_loss_criterion, rebalancing=None, lambda0=1):
class_loss_func = None
dist_loss_func = None
if class_loss_criterion in ['l2', 'L2']:
class_loss_func = self.l2_class_loss
elif class_loss_criterion in ['bce', 'BCE']:
class_loss_func = self.bce_class_loss
elif class_loss_criterion in ['ce', 'CE']:
class_loss_func = self.ce_class_loss
if dist_loss_criterion in ['l2', 'L2']:
dist_loss_func = self.l2_dist_loss
elif dist_loss_criterion in ['bce', 'BCE']:
dist_loss_func = self.bce_dist_loss
elif dist_loss_criterion in ['ce', 'CE']:
dist_loss_func = self.ce_dist_loss
rebalancing = get_rebalancing(rebalancing)
def class_loss(outputs, labels, row_start=None, row_end=None, col_start=None, col_end=None):
alpha = rebalancing(self.n_known, self.n_classes, 'class')
return alpha*class_loss_func(outputs, labels, row_start=row_start, row_end=row_end, col_start=col_start, col_end=col_end)
def dist_loss(outputs, labels, row_start=None, row_end=None, col_start=None, col_end=None):
alpha = rebalancing(self.n_known, self.n_classes, 'dist')
return lambda0*alpha*dist_loss_func(outputs, labels, row_start=row_start, row_end=row_end, col_start=col_start, col_end=col_end)
return class_loss, dist_loss
def bce_class_loss(self, outputs, labels, row_start=None, row_end=None, col_start=None, col_end=None):
return self.bce_loss(outputs, labels, encode=True, row_start=row_start, row_end=row_end, col_start=col_start, col_end=col_end)
def bce_dist_loss(self, outputs, labels, row_start=None, row_end=None, col_start=None, col_end=None):
return self.bce_loss(outputs, labels, encode=False, row_start=row_start, row_end=row_end, col_start=col_start, col_end=col_end)
def ce_class_loss(self, outputs, labels, row_start=None, row_end=None, col_start=None, col_end=None):
return self.ce_loss(outputs, self.reverse_index.getNodes(labels), decode=False, row_start=row_start, row_end=row_end, col_start=None, col_end=col_end)
def ce_dist_loss(self, outputs, labels, row_start=None, row_end=None, col_start=None, col_end=None):
return self.ce_loss(outputs, labels, decode=True, row_start=row_start, row_end=row_end, col_start=col_start, col_end=col_end)
def l2_class_loss(self, outputs, labels, row_start=None, row_end=None, col_start=None, col_end=None):
return self.l2_loss(outputs, labels, encode=True, row_start=row_start, row_end=row_end, col_start=col_start, col_end=col_end)
def l2_dist_loss(self, outputs, labels, row_start=None, row_end=None, col_start=None, col_end=None):
return self.l2_loss(outputs, labels, encode=False, row_start=row_start, row_end=row_end, col_start=col_start, col_end=col_end)
def bce_loss(self, outputs, labels, encode=False, row_start=None, row_end=None, col_start=None, col_end=None):
criterion = nn.BCEWithLogitsLoss(reduction = 'mean')
if encode:
labels = utils._one_hot_encode(labels, self.n_classes, self.reverse_index, device=self.DEVICE)
labels = labels.type_as(outputs)
return criterion(outputs[row_start:row_end, col_start:col_end], labels[row_start:row_end, col_start:col_end])
def ce_loss(self, outputs, labels, decode=False, row_start=None, row_end=None, col_start=None, col_end=None):
criterion = nn.CrossEntropyLoss()
if decode:
labels = torch.argmax(labels, dim=1)
return criterion(outputs[row_start:row_end, col_start:col_end], labels[row_start:row_end])
def l2_loss(self, outputs, labels, encode=False, row_start=None, row_end=None, col_start=None, col_end=None):
criterion = nn.MSELoss(reduction = 'mean')
if encode:
labels = utils._one_hot_encode(labels, self.n_classes, self.reverse_index, device=self.DEVICE)
labels = labels.type_as(outputs)
loss_val = criterion(outputs[row_start:row_end, col_start:col_end], labels[row_start:row_end, col_start:col_end])
return self.limit_loss(loss_val)
def limit_loss(self, loss, limit=3):
if loss <= limit:
return loss
denom = loss.item() / limit
return loss / denom
# implementation of alg. 5 of icarl paper
# iCaRL ReduceExemplarSet
def reduce_exemplar_sets(self, m):
# i keep only the first m exemplar images
# where m is the UPDATED K/number_classes_seen
# the number of images per each exemplar set (class) progressively decreases
for y, P_y in enumerate(self.exemplar_sets):
self.exemplar_sets[y] = P_y[:m]
for x, P_x in enumerate(self.exemplar_sets_indices):
self.exemplar_sets_indices[x] = P_x[:m]
# ----------
from torch.utils.data import Dataset
"""
Merge two different datasets (train and exemplars in our case)
format:
train
--------
exemplars
train leans on cifar100
exemplars is managed here (exemplar_transform is performed) => changed
"""
class ConcatDataset(Dataset):
def __init__(self, dataset1, dataset2):
self.dataset1 = dataset1
self.dataset2 = dataset2
self.l1 = len(dataset1)
self.l2 = len(dataset2)
def __getitem__(self,index):
if index < self.l1:
_, image,label = self.dataset1[index] #here it leans on cifar100 get item
return _, image,label
else:
_, image, label = self.dataset2[index - self.l1]
return _, image,label
def __len__(self):
return (self.l1 + self.l2)
#------------