forked from zhangks98/eeg-adapt
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_within_quantized.py
95 lines (79 loc) · 3.37 KB
/
train_within_quantized.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
#!/usr/bin/env python
# coding: utf-8
'''Subject-specific classification with KU Data,
using Deep ConvNet model from [1].
References
----------
.. [1] Schirrmeister, R. T., Springenberg, J. T., Fiederer, L. D. J.,
Glasstetter, M., Eggensperger, K., Tangermann, M., Hutter, F. & Ball, T. (2017).
Deep learning with convolutional neural networks for EEG decoding and
visualization.
Human Brain Mapping , Aug. 2017. Online: http://dx.doi.org/10.1002/hbm.23730
'''
import argparse
import json
import logging
import sys
from os.path import join as pjoin
import h5py
import torch
import torch.nn.functional as F
#from braindecode.models.deep4 import Deep4Net
from quantized_deep4 import QuantDeep4Net
from braindecode.torch_ext.optimizers import AdamW
from braindecode.torch_ext.util import set_random_seeds
logging.basicConfig(format='%(asctime)s %(levelname)s : %(message)s',
level=logging.INFO, stream=sys.stdout)
parser = argparse.ArgumentParser(
description='Subject-specific classification with KU Data')
parser.add_argument('datapath', type=str, help='Path to the h5 data file')
parser.add_argument('outpath', type=str, help='Path to the result folder')
parser.add_argument('-gpu', type=int,
help='The gpu device index to use', default=0)
parser.add_argument('-start', type=int,
help='Start of the subject index', default=1)
parser.add_argument(
'-end', type=int, help='End of the subject index (not inclusive)', default=55)
parser.add_argument('-subj', type=int, nargs='+',
help='Explicitly set the subject number. This will override the start and end argument')
args = parser.parse_args()
datapath = args.datapath
outpath = args.outpath
start = args.start
end = args.end
assert(start < end)
subjs = args.subj if args.subj else range(start, end)
dfile = h5py.File(datapath, 'r')
torch.cuda.set_device(args.gpu)
set_random_seeds(seed=20200205, cuda=True)
def get_data(subj):
dpath = '/s' + str(subj)
X = dfile[pjoin(dpath, 'X')]
Y = dfile[pjoin(dpath, 'Y')]
# chan = [7,8,9,10,12,13,14,17,18,19,20,32,33,34,35,36,37,38,39,40]; X=X[:,chan]
return X[:], Y[:]
for subj in subjs:
# Get data for within-subject classification
X, Y = get_data(subj)
#print('Shape: ', X.shape)
X_train, Y_train = X[50:250], Y[50:250]
X_val, Y_val = X[250:300], Y[250:300]
X_test, Y_test = X[300:], Y[300:]
suffix = 's' + str(subj)
n_classes = 2
in_chans = X.shape[1]
# final_conv_length = auto ensures we only get a single output in the time dimension
model = QuantDeep4Net(in_chans=in_chans, n_classes=n_classes,
input_time_length=X.shape[2],
final_conv_length=1, split_first_layer=False, quant_bit_width=8).cuda()
# these are good values for the deep model
optimizer = AdamW(model.parameters(), lr=1 * 0.01, weight_decay=0.5*0.001)
model.compile(loss=F.nll_loss, optimizer=optimizer, iterator_seed=1, )
model.fit(X_train, Y_train, epochs=200, batch_size=16, scheduler='cosine',
validation_data=(X_val, Y_val))#, remember_best_column='valid_loss')
test_loss = model.evaluate(X_test, Y_test)
print(test_loss)
model.epochs_df.to_csv(pjoin(outpath, 'epochs_' + suffix + '.csv'))
with open(pjoin(outpath, 'test_subj_' + str(subj) + '.json'), 'w') as f:
json.dump(test_loss, f)
dfile.close()