-
Notifications
You must be signed in to change notification settings - Fork 66
/
Copy pathlmPredict_.daph
56 lines (50 loc) · 2.2 KB
/
lmPredict_.daph
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
#-------------------------------------------------------------
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
#
# Modifications 2023 The DAPHNE Consortium.
#
#-------------------------------------------------------------
# This script has been manually translated from Apache SystemDS.
# The lmPredict-function predicts the class of a feature vector
#
# INPUT:
# --------------------------------------------------------------------------------------
# X Matrix of feature vectors
# B 1-column matrix of weights.
# ytest test labels, used only for verbose output. can be set to matrix(0,1,1)
# if verbose output is not wanted
# icpt Intercept presence, shifting and rescaling the columns of X
# verbose If TRUE print messages are activated
# --------------------------------------------------------------------------------------
#
# OUTPUT:
# -----------------------------------------------------------------------------------
# yhat 1-column matrix of classes
# -----------------------------------------------------------------------------------
import "lmPredictStats_.daph";
// TODO Support optional parameters with defaults (see #548).
def lmPredict(X:matrix<f64>, B:matrix<f64>,
ytest:matrix<f64> /*= [0.0]*/, icpt:si64 /*= 0*/, verbose:bool /*= false*/)
{
intercept = (icpt>0 || ncol(X)+1==nrow(B)) ? as.scalar(B[nrow(B) - 1,]) : 0.0;
yhat = X @ B[0:ncol(X) - 1,] + intercept;
if( verbose )
lmPredictStats_.lmPredictStats(yhat, ytest, true);
return yhat;
}