-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRecognize_From_Photo.py
53 lines (48 loc) · 1.6 KB
/
Recognize_From_Photo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
"""-----------------------------------------
step 4:
识别照片中的人脸;
-----------------------------------------"""
# -*-coding:utf8-*-
from load_dataset import read_name_list, read_file
from train_model import Model
import cv2
# 测试识别一张图片
def test_onePicture(path):
# 加载模型
model = Model()
model.load()
# 读取图片
img = cv2.imread(path)
# 重置图片尺寸为:128*128
img = cv2.resize(img, (128, 128))
# 图片灰度化
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# labelIndex为概率最高的label的索引号, prob为对应概率
labelIndex, prob = model.predict(img)
if labelIndex != -1:
name_list = read_name_list('./dataset')
print(name_list[labelIndex], prob)
else:
print("Don't know this person.")
# 读取文件夹下子文件夹中所有图片进行识别
def test_onBatch(path):
# 加载模型
model = Model()
model.load()
# 计数器
index = 0
# 读取所有图片;img_list是所有图片的集合,label_lsit是所有标签的集合,label_num是标签数量
img_list, label_lsit, label_num = read_file(path)
for img in img_list:
# labelIndex为概率最高的label的索引号, prob为对应概率
labelIndex, prob = model.predict(img)
if labelIndex != -1:
index += 1
name_list = read_name_list('./dataset')
print(name_list[labelIndex])
else:
print("Don't know this person.")
return index
if __name__ == '__main__':
test_onePicture('test.jpg')
#test_onBatch('./model_test')