-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
30 lines (26 loc) · 1.03 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
from torch.utils.data import Dataset
import os
from PIL import Image
import numpy as np
import torch
class Cardataset(Dataset):
def __init__(self,image_dir ,mask_dir,transform=None):
self.image_dir = image_dir
self.mask_dir = mask_dir
self.transform = transform
self.images = os.listdir(image_dir)
def __len__(self):
return len(self.images)
def __getitem__(self,index):
img_path =os.path.join(self.image_dir, self.images[index])
mask_path = os.path.join(self.mask_dir,self.images[index].replace(".jpg","_mask.gif"))
image = np.array(Image.open(img_path).convert("RGB"))
mask = np.array(Image.open(mask_path).convert("L"))
mask[mask == 255.0] = 1.0
if self.transform is not None:
augmentations = self.transform(image=image,mask = mask)
image = augmentations["image"]
mask = augmentations["mask"]
mask = torch.unsqueeze(mask, 0)
mask = mask.type(torch.float32)
return image,mask