From eb8879fa9d8eb9f9cb86427699e06af6b98f4b7f Mon Sep 17 00:00:00 2001 From: Rafael A Irizarry Date: Wed, 4 Dec 2024 09:51:54 -0500 Subject: [PATCH] lecture for today --- .gitignore | 1 + docs/index.html | 2 +- docs/search.json | 1880 +++++++++++++- docs/sitemap.xml | 30 +- docs/slides/highdim/34-distance.html | 1609 ++++++------ .../figure-html/diatance-image-ordered-1.png | Bin 0 -> 142999 bytes .../figure-html/distance-image-1.png | Bin 0 -> 161643 bytes .../figure-html/euclidean-dist-diagram-1.png | Bin 0 -> 49532 bytes .../figure-html/polar-coords-1.png | Bin 0 -> 48350 bytes .../figure-html/polar-coords-2-1.png | Bin 0 -> 48546 bytes .../highdim/35-dimension-reduction.html | 2221 +++++++++-------- docs/slides/ml/36-intro-ml.html | 883 +++++++ docs/slides/ml/37-evaluation-metrics.html | 1395 +++++++++++ .../figure-revealjs/accuracy-vs-cutoff-1.png | Bin 0 -> 86591 bytes .../figure-revealjs/f_1-vs-cutoff-1.png | Bin 0 -> 90276 bytes .../figure-revealjs/precision-recall-1-1.png | Bin 0 -> 115030 bytes .../figure-revealjs/roc-3-1.png | Bin 0 -> 97626 bytes docs/slides/ml/38-conditionals.html | 900 +++++++ docs/slides/ml/39-smoothing.html | 1400 +++++++++++ .../binsmoother-expained-1.png | Bin 0 -> 164365 bytes .../binsmoother-final-run-1.png | Bin 0 -> 164839 bytes .../final-ksmooth-normal-kernel-run-1.png | Bin 0 -> 155654 bytes .../figure-revealjs/final-loess-run-1.png | Bin 0 -> 147847 bytes .../figure-revealjs/gaussian-kernel-1.png | Bin 0 -> 42598 bytes .../ggplot-loess-default-run-1.png | Bin 0 -> 128382 bytes .../ggplot-loess-degree-1-run-1.png | Bin 0 -> 140719 bytes .../linear-regression-not-flexible-1.png | Bin 0 -> 125765 bytes .../figure-revealjs/loess-1.png | Bin 0 -> 181300 bytes .../figure-revealjs/loess-final-1.png | Bin 0 -> 241360 bytes .../figure-revealjs/polls-2008-data-run-1.png | Bin 0 -> 92685 bytes .../polls-2008-parabola-line-loess-run-1.png | Bin 0 -> 164641 bytes .../figure-revealjs/regression-p-hat-1.png | Bin 0 -> 120639 bytes .../signal-plus-noise-example-1.png | Bin 0 -> 186107 bytes .../figure-revealjs/triweight-kernel-1.png | Bin 0 -> 51350 bytes .../true-p-better-colors-1.png | Bin 0 -> 126703 bytes .../two-or-seven-images-large-x1-1.png | Bin 0 -> 44426 bytes .../two-or-seven-scatter-run-1.png | Bin 0 -> 251276 bytes index.qmd | 2 +- slides/highdim/34-distance.qmd | 2 +- .../diatance-image-ordered-1.png | Bin 0 -> 142999 bytes .../figure-revealjs/distance-image-1.png | Bin 0 -> 161643 bytes .../euclidean-dist-diagram-1.png | Bin 0 -> 77164 bytes .../figure-revealjs/polar-coords-1.png | Bin 0 -> 80634 bytes .../figure-revealjs/polar-coords-2-1.png | Bin 0 -> 80865 bytes slides/highdim/35-dimension-reduction.qmd | 2 +- slides/ml/36-intro-ml.qmd | 193 ++ slides/ml/37-evaluation-metrics.qmd | 597 +++++ slides/ml/38-conditionals.qmd | 142 ++ slides/ml/39-smoothing.qmd | 877 +++++++ 49 files changed, 10202 insertions(+), 1934 deletions(-) create mode 100644 docs/slides/highdim/34-distance_files/figure-html/diatance-image-ordered-1.png create mode 100644 docs/slides/highdim/34-distance_files/figure-html/distance-image-1.png create mode 100644 docs/slides/highdim/34-distance_files/figure-html/euclidean-dist-diagram-1.png create mode 100644 docs/slides/highdim/34-distance_files/figure-html/polar-coords-1.png create mode 100644 docs/slides/highdim/34-distance_files/figure-html/polar-coords-2-1.png create mode 100644 docs/slides/ml/36-intro-ml.html create mode 100644 docs/slides/ml/37-evaluation-metrics.html create mode 100644 docs/slides/ml/37-evaluation-metrics_files/figure-revealjs/accuracy-vs-cutoff-1.png create mode 100644 docs/slides/ml/37-evaluation-metrics_files/figure-revealjs/f_1-vs-cutoff-1.png create mode 100644 docs/slides/ml/37-evaluation-metrics_files/figure-revealjs/precision-recall-1-1.png create mode 100644 docs/slides/ml/37-evaluation-metrics_files/figure-revealjs/roc-3-1.png create mode 100644 docs/slides/ml/38-conditionals.html create mode 100644 docs/slides/ml/39-smoothing.html create mode 100644 docs/slides/ml/39-smoothing_files/figure-revealjs/binsmoother-expained-1.png create mode 100644 docs/slides/ml/39-smoothing_files/figure-revealjs/binsmoother-final-run-1.png create mode 100644 docs/slides/ml/39-smoothing_files/figure-revealjs/final-ksmooth-normal-kernel-run-1.png create mode 100644 docs/slides/ml/39-smoothing_files/figure-revealjs/final-loess-run-1.png create mode 100644 docs/slides/ml/39-smoothing_files/figure-revealjs/gaussian-kernel-1.png create mode 100644 docs/slides/ml/39-smoothing_files/figure-revealjs/ggplot-loess-default-run-1.png create mode 100644 docs/slides/ml/39-smoothing_files/figure-revealjs/ggplot-loess-degree-1-run-1.png create mode 100644 docs/slides/ml/39-smoothing_files/figure-revealjs/linear-regression-not-flexible-1.png create mode 100644 docs/slides/ml/39-smoothing_files/figure-revealjs/loess-1.png create mode 100644 docs/slides/ml/39-smoothing_files/figure-revealjs/loess-final-1.png create mode 100644 docs/slides/ml/39-smoothing_files/figure-revealjs/polls-2008-data-run-1.png create mode 100644 docs/slides/ml/39-smoothing_files/figure-revealjs/polls-2008-parabola-line-loess-run-1.png create mode 100644 docs/slides/ml/39-smoothing_files/figure-revealjs/regression-p-hat-1.png create mode 100644 docs/slides/ml/39-smoothing_files/figure-revealjs/signal-plus-noise-example-1.png create mode 100644 docs/slides/ml/39-smoothing_files/figure-revealjs/triweight-kernel-1.png create mode 100644 docs/slides/ml/39-smoothing_files/figure-revealjs/true-p-better-colors-1.png create mode 100644 docs/slides/ml/39-smoothing_files/figure-revealjs/two-or-seven-images-large-x1-1.png create mode 100644 docs/slides/ml/39-smoothing_files/figure-revealjs/two-or-seven-scatter-run-1.png create mode 100644 slides/highdim/34-distance_files/figure-revealjs/diatance-image-ordered-1.png create mode 100644 slides/highdim/34-distance_files/figure-revealjs/distance-image-1.png create mode 100644 slides/highdim/34-distance_files/figure-revealjs/euclidean-dist-diagram-1.png create mode 100644 slides/highdim/34-distance_files/figure-revealjs/polar-coords-1.png create mode 100644 slides/highdim/34-distance_files/figure-revealjs/polar-coords-2-1.png create mode 100644 slides/ml/36-intro-ml.qmd create mode 100644 slides/ml/37-evaluation-metrics.qmd create mode 100644 slides/ml/38-conditionals.qmd create mode 100644 slides/ml/39-smoothing.qmd diff --git a/.gitignore b/.gitignore index 987bddf..81f7d55 100644 --- a/.gitignore +++ b/.gitignore @@ -9,3 +9,4 @@ notes.txt docs/site_libs/ lab-notes census-key.R +*_cache \ No newline at end of file diff --git a/docs/index.html b/docs/index.html index ae14e97..b00051a 100644 --- a/docs/index.html +++ b/docs/index.html @@ -308,7 +308,7 @@

Lectures

Dec 09, Dec 11 Machine Learning - +Intro, Metrics, Conditionals, Smoothing Resampling methods, ML algorithms, ML in practice diff --git a/docs/search.json b/docs/search.json index c3bc1c9..b739ce0 100644 --- a/docs/search.json +++ b/docs/search.json @@ -3448,7 +3448,7 @@ "href": "index.html#lectures", "title": "BST 260 Introduction to Data Science", "section": "Lectures", - "text": "Lectures\nLecture slides, class notes, and problem sets are linked below. New material is added approximately on a weekly basis.\n\n\n\nDates\nTopic\nSlides\nReading\n\n\n\n\nSep 04\nProductivity Tools\nIntro, Unix\nInstalling R and RStudio on Windows or Mac, Getting Started, Unix\n\n\nSep 09, Sep 11\nProductivity Tools\nRStudio, Quarto, Git and GitHub\nRStudio Projects, Quarto, Git\n\n\nSep 16, Sep 19\nR\nR basics, Vectorization\nR Basics, Vectorization\n\n\nSep 23\nR\nTidyverse, ggplot2\ndplyr, ggplot2\n\n\nSep 25\nR\nTyding data\nReshaping Data\n\n\nSep 30, Oct 02\nWrangling\nIntro, Data Importing, Dates and Times, Locales, Data APIs, Web scraping, Joining tables\nImporting data, dates and times, Locales, Joining Tables, Extracting data from the web\n\n\nOct 07, Oct 09\nData visualization\nData Viz Principles, Distributions, Dataviz in practice\nDistributions, Dataviz Principles\n\n\nOct 16\nMidterm 1\n\nCovers material from Sep 04-Oct 11\n\n\nOct 21\nProbability\nIntro, Foundations for Inference\nMonte Carlo, Random Variables & CLT\n\n\nOct 23\nInference\nIntro, Parameter and estimates, Confidence Intervals\nParameters & Estimates, Confidence Intervals\n\n\nOct 28, Oct 30\nStatistical Models\nModels, Bayes, Hierarchical Models\nData-driven Models, Bayesian Statistics, Hierarchical Models\n\n\nNov 04, Nov 06\nLinear models\nIntro, Regression\nRegression, Multivariate Regression\n\n\nNov 13, Nov 18\nLinear models\nMultivariate regression, Treatment effect models\nMeasurement Error Models, Treatment Effect Models, Association Tests, Association Not Causation\n\n\nNov 20\nHigh dimensional data\nIntro to Linear Algebra, Matrices in R\nMatrices in R, Applied Linear Algebra,\n\n\nNov 25\nMidterm 2\n\nMidterm 2: cover material from Sep 04-Nov 22\n\n\nDec 02\nHigh dimensional data\nDistance, Dimension reduction\nDimension Reduction\n\n\nDec 04\nMachine Learning\n\nNotation and terminology, Evaluation Metrics, conditional probabilities, smoothing\n\n\nDec 09, Dec 11\nMachine Learning\n\nResampling methods, ML algorithms, ML in practice\n\n\nDec 16, Dec 18\nOther topics", + "text": "Lectures\nLecture slides, class notes, and problem sets are linked below. New material is added approximately on a weekly basis.\n\n\n\nDates\nTopic\nSlides\nReading\n\n\n\n\nSep 04\nProductivity Tools\nIntro, Unix\nInstalling R and RStudio on Windows or Mac, Getting Started, Unix\n\n\nSep 09, Sep 11\nProductivity Tools\nRStudio, Quarto, Git and GitHub\nRStudio Projects, Quarto, Git\n\n\nSep 16, Sep 19\nR\nR basics, Vectorization\nR Basics, Vectorization\n\n\nSep 23\nR\nTidyverse, ggplot2\ndplyr, ggplot2\n\n\nSep 25\nR\nTyding data\nReshaping Data\n\n\nSep 30, Oct 02\nWrangling\nIntro, Data Importing, Dates and Times, Locales, Data APIs, Web scraping, Joining tables\nImporting data, dates and times, Locales, Joining Tables, Extracting data from the web\n\n\nOct 07, Oct 09\nData visualization\nData Viz Principles, Distributions, Dataviz in practice\nDistributions, Dataviz Principles\n\n\nOct 16\nMidterm 1\n\nCovers material from Sep 04-Oct 11\n\n\nOct 21\nProbability\nIntro, Foundations for Inference\nMonte Carlo, Random Variables & CLT\n\n\nOct 23\nInference\nIntro, Parameter and estimates, Confidence Intervals\nParameters & Estimates, Confidence Intervals\n\n\nOct 28, Oct 30\nStatistical Models\nModels, Bayes, Hierarchical Models\nData-driven Models, Bayesian Statistics, Hierarchical Models\n\n\nNov 04, Nov 06\nLinear models\nIntro, Regression\nRegression, Multivariate Regression\n\n\nNov 13, Nov 18\nLinear models\nMultivariate regression, Treatment effect models\nMeasurement Error Models, Treatment Effect Models, Association Tests, Association Not Causation\n\n\nNov 20\nHigh dimensional data\nIntro to Linear Algebra, Matrices in R\nMatrices in R, Applied Linear Algebra,\n\n\nNov 25\nMidterm 2\n\nMidterm 2: cover material from Sep 04-Nov 22\n\n\nDec 02\nHigh dimensional data\nDistance, Dimension reduction\nDimension Reduction\n\n\nDec 04\nMachine Learning\n\nNotation and terminology, Evaluation Metrics, conditional probabilities, smoothing\n\n\nDec 09, Dec 11\nMachine Learning\nIntro, Metrics, Conditionals, Smoothing\nResampling methods, ML algorithms, ML in practice\n\n\nDec 16, Dec 18\nOther topics", "crumbs": [ "Home" ] @@ -10151,8 +10151,8 @@ "objectID": "slides/highdim/34-distance.html#distance", "href": "slides/highdim/34-distance.html#distance", "title": "Distance", - "section": "Distance", - "text": "Distance\n\nMany of the analyses we perform with high-dimensional data relate directly or indirectly to distance.\nMany machine learning techniques rely on defining distances between observations.\nClustering algorithms search of observations that are similar.\nBut what does this mean mathematically?" + "section": "", + "text": "Many of the analyses we perform with high-dimensional data relate directly or indirectly to distance.\nMany machine learning techniques rely on defining distances between observations.\nClustering algorithms search of observations that are similar.\nBut what does this mean mathematically?" }, { "objectID": "slides/highdim/34-distance.html#the-norm", @@ -10305,8 +10305,8 @@ "objectID": "slides/highdim/35-dimension-reduction.html#dimension-reduction", "href": "slides/highdim/35-dimension-reduction.html#dimension-reduction", "title": "Dimension Reduction", - "section": "Dimension reduction", - "text": "Dimension reduction\n\nA typical machine learning task involves working with a large number of predictors which can make data analysis challenging.\nFor example, to compare each of the 784 features in our predicting digits example, we would have to create 306,936 scatterplots.\nCreating one single scatterplot of the data is impossible due to the high dimensionality." + "section": "", + "text": "A typical machine learning task involves working with a large number of predictors which can make data analysis challenging.\nFor example, to compare each of the 784 features in our predicting digits example, we would have to create 306,936 scatterplots.\nCreating one single scatterplot of the data is impossible due to the high dimensionality." }, { "objectID": "slides/highdim/35-dimension-reduction.html#dimension-reduction-1", @@ -10509,7 +10509,7 @@ "href": "slides/highdim/35-dimension-reduction.html#linear-transformations-10", "title": "Dimension Reduction", "section": "Linear transformations", - "text": "Linear transformations\n\nNote that in this case\n\n\\[\n\\begin{pmatrix}\n\\cos \\theta&-\\sin \\theta\\\\\n\\sin \\theta&\\cos \\theta\n\\end{pmatrix} =\n\\mathbf{A}^\\top\n\\]\nwhich implies\n\\[\n\\mathbf{Z} \\mathbf{A}^\\top = \\mathbf{X} \\mathbf{A}\\mathbf{A}^\\top\\ = \\mathbf{X}\n\\]\nand therefore that \\(\\mathbf{A}^\\top\\) is the inverse of \\(\\mathbf{A}\\)." + "text": "Linear transformations\n\nNote that in this case\n\n\\[\n\\begin{pmatrix}\n\\cos \\theta&-\\sin \\theta\\\\\n\\sin \\theta&\\cos \\theta\n\\end{pmatrix} =\n\\mathbf{A}^\\top\n\\]\nwhich implies\n\\[\n\\mathbf{Z} \\mathbf{A}^\\top = \\mathbf{X} \\mathbf{A}\\mathbf{A}^\\top\\ = \\mathbf{X}\n\\]\nand therefore that \\(\\mathbf{A}^\\top\\) is the inverse of \\(\\mathbf{A}\\).\n\n\n\n\n\n\n\nNote\n\n\n\n\nRemember that we represent the rows of a matrix as column vectors.\nThis explains why we use \\(\\mathbf{A}\\) when showing the multiplication for the matrix \\(\\mathbf{Z}=\\mathbf{X}\\mathbf{A}\\), but transpose the operation when showing the transformation for just one observation: \\(\\mathbf{z}_i = \\mathbf{A}^\\top\\mathbf{x}_i\\)." }, { "objectID": "slides/highdim/35-dimension-reduction.html#linear-transformations-11", @@ -10971,7 +10971,7 @@ "href": "slides/highdim/35-dimension-reduction.html#principal-component-analysis-8", "title": "Dimension Reduction", "section": "Principal Component Analysis", - "text": "Principal Component Analysis\n\nThe two groups can be clearly observed with the one dimension:\n\n\n\nBetter than with any of the two original dimensions." + "text": "Principal Component Analysis\n\nThe two groups can be clearly observed with the one dimension:\n\n\n\n\n\n\n\n\n\n\n\nBetter than with any of the two original dimensions." }, { "objectID": "slides/highdim/35-dimension-reduction.html#principal-component-analysis-9", @@ -11006,7 +11006,7 @@ "href": "slides/highdim/35-dimension-reduction.html#principal-component-analysis-13", "title": "Dimension Reduction", "section": "Principal Component Analysis", - "text": "Principal Component Analysis\n\nFor a multidimensional matrix with \\(p\\) columns, we can find an orthogonal transformation \\(\\mathbf{A}\\) that preserves the distance between rows, but with the variance explained by the columns in decreasing order.\nIf the variances of the columns \\(\\mathbf{Z}_j\\), \\(j>k\\) are very small, these dimensions have little to contribute to the distance calculation and we can approximate the distance between any two points with just \\(k\\) dimensions.\nIf \\(k\\) is much smaller than \\(p\\), then we can achieve a very efficient summary of our data." + "text": "Principal Component Analysis\n\nFor a multidimensional matrix with \\(p\\) columns, we can find an orthogonal transformation \\(\\mathbf{A}\\) that preserves the distance between rows, but with the variance explained by the columns in decreasing order.\nIf the variances of the columns \\(\\mathbf{Z}_j\\), \\(j>k\\) are very small, these dimensions have little to contribute to the distance calculation and we can approximate the distance between any two points with just \\(k\\) dimensions.\nIf \\(k\\) is much smaller than \\(p\\), then we can achieve a very efficient summary of our data.\n\n\n\n\n\n\n\n\nWarning\n\n\n\n\nNotice that the solution to this maximization problem is not unique because \\(||\\mathbf{X} \\mathbf{v}|| = ||-\\mathbf{X} \\mathbf{v}||\\).\nAlso, note that if we multiply a column of \\(\\mathbf{A}\\) by \\(-1\\), we still represent \\(\\mathbf{X}\\) as \\(\\mathbf{Z}\\mathbf{V}^\\top\\) as long as we also multiple the corresponding column of \\(\\mathbf{V}\\) by -1.\nThis implies that we can arbitrarily change the sign of each column of the rotation \\(\\mathbf{V}\\) and principal component matrix \\(\\mathbf{Z}\\)." }, { "objectID": "slides/highdim/35-dimension-reduction.html#principal-component-analysis-14", @@ -11139,7 +11139,7 @@ "href": "slides/highdim/35-dimension-reduction.html#dimensions-approximation-1", "title": "Dimension Reduction", "section": "200 dimensions approximation", - "text": "200 dimensions approximation" + "text": "200 dimensions approximation\n\n\n── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──\n✔ dplyr 1.1.4 ✔ readr 2.1.5\n✔ forcats 1.0.0 ✔ stringr 1.5.1\n✔ lubridate 1.9.3 ✔ tibble 3.2.1\n✔ purrr 1.0.2 ✔ tidyr 1.3.1\n── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──\n✖ dplyr::combine() masks gridExtra::combine()\n✖ dplyr::count() masks matrixStats::count()\n✖ dplyr::filter() masks stats::filter()\n✖ dplyr::lag() masks stats::lag()\n✖ dplyr::select() masks MASS::select()\nℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors" }, { "objectID": "slides/highdim/35-dimension-reduction.html#dimensions-approximation-2", @@ -11147,5 +11147,1867 @@ "title": "Dimension Reduction", "section": "36 dimensions approximation", "text": "36 dimensions approximation" + }, + { + "objectID": "slides/ml/notation-and-terminology.html#terminology", + "href": "slides/ml/notation-and-terminology.html#terminology", + "title": "Notation And Terminology", + "section": "Terminology", + "text": "Terminology\n\nOutcome - what we want to predict\nFeatures - what we use to predict the outcome.\nAlgorithms that take feature values as input and returns a prediction for the outcome.\nWe train an algorithm using a dataset for which we do know the outcome, and then apply algorithm when we don’t know the outcome." + }, + { + "objectID": "slides/ml/notation-and-terminology.html#terminology-1", + "href": "slides/ml/notation-and-terminology.html#terminology-1", + "title": "Notation And Terminology", + "section": "Terminology", + "text": "Terminology\n\nPrediction problems can be divided into categorical and continuous outcomes." + }, + { + "objectID": "slides/ml/notation-and-terminology.html#categorical", + "href": "slides/ml/notation-and-terminology.html#categorical", + "title": "Notation And Terminology", + "section": "Categorical", + "text": "Categorical\n\nThe number of classes can vary greatly across applications.\nFor example, in the digit reader data, \\(K=10\\) with the classes being the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9.\nIn speech recognition, the outcomes are all possible words or phrases we are trying to detect.\nSpam detection has two outcomes: spam or not spam." + }, + { + "objectID": "slides/ml/notation-and-terminology.html#categorical-1", + "href": "slides/ml/notation-and-terminology.html#categorical-1", + "title": "Notation And Terminology", + "section": "Categorical", + "text": "Categorical\n\nWe denote the \\(K\\) categories with indexes \\(k=1,\\dots,K\\).\nHowever, for binary data we will use \\(k=0,1\\) for mathematical conveniences that we demonstrate later." + }, + { + "objectID": "slides/ml/notation-and-terminology.html#continuous", + "href": "slides/ml/notation-and-terminology.html#continuous", + "title": "Notation And Terminology", + "section": "Continuous", + "text": "Continuous\nExamples of outcomes include:\n\nstock prices\nrealestate prices\ntemperature next week\nstudent perforamnce" + }, + { + "objectID": "slides/ml/notation-and-terminology.html#notation", + "href": "slides/ml/notation-and-terminology.html#notation", + "title": "Notation And Terminology", + "section": "Notation", + "text": "Notation\n\nWe use \\(y_i\\) to denote the i-th outcome\n\\(x_{i,1}, \\dots, x_{i,p}\\) the corresponding features.\nFeatures are sometimes referred to as predictors or covariates.\nWe use matrix notation \\(\\mathbf{x}_i = (x_{i,1}, \\dots, x_{i,p})^\\top\\) to denote the vector of predictors." + }, + { + "objectID": "slides/ml/notation-and-terminology.html#notation-1", + "href": "slides/ml/notation-and-terminology.html#notation-1", + "title": "Notation And Terminology", + "section": "Notation", + "text": "Notation\n\nBecause, to motivated algorithms, we often use statistical models that assume the features and predictors are random variables, we use captial letters.\nIn this case, when referring to an arbitrary set of features rather than a specific observation, we drop the index \\(i\\) and use \\(Y\\) and \\(\\mathbf{X} = (X_{1}, \\dots, X_{p})\\).\nWe use lower case, for example \\(\\mathbf{X} = \\mathbf{x}\\), to denote observed values." + }, + { + "objectID": "slides/ml/notation-and-terminology.html#notation-2", + "href": "slides/ml/notation-and-terminology.html#notation-2", + "title": "Notation And Terminology", + "section": "Notation", + "text": "Notation\n\nThe machine learning task is to build an algorithm that returns a prediction for any of the possible values of the features:\n\n\\[\n\\hat{y} = f(x_1,x_2,\\dots,x_p)\n\\]\n\nWe will learn several approaches to building these algorithms." + }, + { + "objectID": "slides/ml/notation-and-terminology.html#the-machine-learning-challenge", + "href": "slides/ml/notation-and-terminology.html#the-machine-learning-challenge", + "title": "Notation And Terminology", + "section": "The machine learning challenge", + "text": "The machine learning challenge\n\nThe general setup is as follows.\nWe have a series of features and an unknown outcome we want to predict:\n\n\n\n\n\n\noutcome\nfeature 1\nfeature 2\nfeature 3\n\\(\\dots\\)\nfeature p\n\n\n\n\n?\n\\(X_1\\)\n\\(X_2\\)\n\\(X_3\\)\n\\(\\dots\\)\n\\(X_p\\)" + }, + { + "objectID": "slides/ml/notation-and-terminology.html#the-machine-learning-challenge-1", + "href": "slides/ml/notation-and-terminology.html#the-machine-learning-challenge-1", + "title": "Notation And Terminology", + "section": "The machine learning challenge", + "text": "The machine learning challenge\n\nTo build a model that provides a prediction for any set of observed values \\(X_1=x_1, X_2=x_2, \\dots X_p=x_p\\), we collect data for which we know the outcome:\n\n\n\n\n\n\noutcome\nfeature 1\nfeature 2\nfeature 3\n\\(\\dots\\)\nfeature 5\n\n\n\n\n\\(y_{1}\\)\n\\(x_{1,1}\\)\n\\(x_{1,2}\\)\n\\(x_{1,3}\\)\n\\(\\dots\\)\n\\(x_{1,p}\\)\n\n\n\\(y_{2}\\)\n\\(x_{2,1}\\)\n\\(x_{2,2}\\)\n\\(x_{2,3}\\)\n\\(\\dots\\)\n\\(x_{2,p}\\)\n\n\n\\(\\vdots\\)\n\\(\\vdots\\)\n\\(\\vdots\\)\n\\(\\vdots\\)\n\\(\\ddots\\)\n\\(\\vdots\\)\n\n\n\\(y_n\\)\n\\(x_{n,1}\\)\n\\(x_{n,2}\\)\n\\(x_{n,3}\\)\n\\(\\dots\\)\n\\(x_{n,p}\\)" + }, + { + "objectID": "slides/ml/notation-and-terminology.html#the-machine-learning-challenge-2", + "href": "slides/ml/notation-and-terminology.html#the-machine-learning-challenge-2", + "title": "Notation And Terminology", + "section": "The machine learning challenge", + "text": "The machine learning challenge\n\nWhen the output is continuous, we refer to the ML task as prediction.\nWe use the term actual outcome \\(y\\) to denote what we end up observing.\nWe want the prediction \\(\\hat{y}\\) to match the actual outcome \\(y\\) as best as possible.\nWe define error as the difference between the prediction and the actual outcome \\(y - \\hat{y}\\)." + }, + { + "objectID": "slides/ml/notation-and-terminology.html#the-machine-learning-challenge-3", + "href": "slides/ml/notation-and-terminology.html#the-machine-learning-challenge-3", + "title": "Notation And Terminology", + "section": "The machine learning challenge", + "text": "The machine learning challenge\n\nWhen the outcome is categorical, we refer to the machine learning task as classification\nThe main output of the model will be a decision rule which prescribes which of the \\(K\\) classes we should predict." + }, + { + "objectID": "slides/ml/notation-and-terminology.html#the-machine-learning-challenge-4", + "href": "slides/ml/notation-and-terminology.html#the-machine-learning-challenge-4", + "title": "Notation And Terminology", + "section": "The machine learning challenge", + "text": "The machine learning challenge\n\nMost models provide functions for each class \\(k\\), \\(f_k(x_1, x_2, \\dots, x_p)\\), that are used to make this decision such as\n\n\\[\n\\mbox{When } f_1(x_1, x_2, \\dots, x_p) > C, \\mbox{ predict category 1}\n\\]\n\nOur predictions will be either right or wrong." + }, + { + "objectID": "slides/ml/evaluation-metrics.html#evaluation-metrics", + "href": "slides/ml/evaluation-metrics.html#evaluation-metrics", + "title": "Evaluation Metrics", + "section": "Evaluation metrics", + "text": "Evaluation metrics\n\nHere we describe ways in which machine learning algorithms are evaluated.\nWe need to quantify what we mean when we say an algorithm performs better.\nWe demonstrate with a boring and simple example: how to predict sex using height." + }, + { + "objectID": "slides/ml/evaluation-metrics.html#evaluation-metrics-1", + "href": "slides/ml/evaluation-metrics.html#evaluation-metrics-1", + "title": "Evaluation Metrics", + "section": "Evaluation metrics", + "text": "Evaluation metrics\n\nWe introduce the caret package, which provides useful functions to facilitate machine learning in R.\nWe describe caret it in more detail later" + }, + { + "objectID": "slides/ml/evaluation-metrics.html#evaluation-metrics-2", + "href": "slides/ml/evaluation-metrics.html#evaluation-metrics-2", + "title": "Evaluation Metrics", + "section": "Evaluation metrics", + "text": "Evaluation metrics\n\nFor our first example, we use the height data provided by the dslabs package.\n\n\nlibrary(caret) \nlibrary(dslabs) \n\n\nWe start by defining the outcome and predictors.\n\n\ny <- heights$sex \nx <- heights$height" + }, + { + "objectID": "slides/ml/evaluation-metrics.html#evaluation-metrics-3", + "href": "slides/ml/evaluation-metrics.html#evaluation-metrics-3", + "title": "Evaluation Metrics", + "section": "Evaluation metrics", + "text": "Evaluation metrics\n\nBut can we do better than guessing?\nA machine learning algorithm is evaluated on how it performs in the real world with a new datasets.\nHowever, when developing an algorithm, we usually have a dataset for which we know the outcomes.\nTo mimic the ultimate evaluation process, we split the data into two parts and act as if we don’t know the outcome for one of these.\nWe stop pretending we don’t know the outcome to evaluate the algorithm, but only after we are done constructing it." + }, + { + "objectID": "slides/ml/evaluation-metrics.html#training-and-test-sets", + "href": "slides/ml/evaluation-metrics.html#training-and-test-sets", + "title": "Evaluation Metrics", + "section": "Training and test sets", + "text": "Training and test sets\n\nWe refer to the group for which we know the outcome, and that we use to develop the algorithm, as the training set.\nWe refer to the group for which we pretend we don’t know the outcome as the test set.\nA standard way of generating the training and test sets is by randomly splitting the data." + }, + { + "objectID": "slides/ml/evaluation-metrics.html#training-and-test-sets-1", + "href": "slides/ml/evaluation-metrics.html#training-and-test-sets-1", + "title": "Evaluation Metrics", + "section": "Training and test sets", + "text": "Training and test sets\n\nset.seed(2007) \ntest_index <- createDataPartition(y, times = 1, p = 0.5, list = FALSE) \n\n\nWe can use the result of the createDataPartition function call to define the training and test sets as follows:\n\n\ntest_set <- heights[test_index, ] \ntrain_set <- heights[-test_index, ]" + }, + { + "objectID": "slides/ml/evaluation-metrics.html#training-and-test-sets-2", + "href": "slides/ml/evaluation-metrics.html#training-and-test-sets-2", + "title": "Evaluation Metrics", + "section": "Training and test sets", + "text": "Training and test sets\n\nWe will develop an algorithm using only the training set.\nOnce we are done developing the algorithm, we will freeze it and evaluate it using the test set.\nThe simplest way to evaluate the algorithm when the outcomes are categorical is by simply reporting the proportion of cases that were correctly predicted in the test set.\nThis metric is usually referred to as overall accuracy." + }, + { + "objectID": "slides/ml/evaluation-metrics.html#overall-accuracy", + "href": "slides/ml/evaluation-metrics.html#overall-accuracy", + "title": "Evaluation Metrics", + "section": "Overall accuracy", + "text": "Overall accuracy\n\nLet’s start by developing the simplest possible machine algorithm: guessing the outcome.\n\n\ny_hat <- sample(c(\"Male\", \"Female\"), length(test_index), replace = TRUE) \n\n\nNote that we are completely ignoring the predictor and simply guessing the sex." + }, + { + "objectID": "slides/ml/evaluation-metrics.html#overall-accuracy-1", + "href": "slides/ml/evaluation-metrics.html#overall-accuracy-1", + "title": "Evaluation Metrics", + "section": "Overall accuracy", + "text": "Overall accuracy\n\ncaret works best wtih factors.\nSo convert y_hat to factors using the factor function:\n\n\ny_hat <- sample(c(\"Male\", \"Female\"), length(test_index), replace = TRUE) |> \n factor(levels = levels(test_set$sex)) \n\n\nThe overall accuracy is simply defined as the overall proportion that is predicted correctly:\n\n\nmean(y_hat == test_set$sex) \n\n[1] 0.51" + }, + { + "objectID": "slides/ml/evaluation-metrics.html#overall-accuracy-2", + "href": "slides/ml/evaluation-metrics.html#overall-accuracy-2", + "title": "Evaluation Metrics", + "section": "Overall accuracy", + "text": "Overall accuracy\n\nCan we do better?\nExploratory data analysis suggests we can because, on average, males are slightly taller than females:\n\n\nlibrary(tidyverse) \nheights |> group_by(sex) |> summarize(avg = mean(height), sd = sd(height)) \n\n# A tibble: 2 × 3\n sex avg sd\n <fct> <dbl> <dbl>\n1 Female 64.9 3.76\n2 Male 69.3 3.61\n\n\n\nHow do we make use of this insight?" + }, + { + "objectID": "slides/ml/evaluation-metrics.html#overall-accuracy-3", + "href": "slides/ml/evaluation-metrics.html#overall-accuracy-3", + "title": "Evaluation Metrics", + "section": "Overall accuracy", + "text": "Overall accuracy\n\nLet’s try another simple approach: predict Male if height is within two standard deviations from the average male.\n\n\ny_hat <- factor(ifelse(x > 62, \"Male\", \"Female\"), levels(test_set$sex)) \n\n\nThe accuracy goes up from 0.50 to about 0.80:\n\n\nmean(y == y_hat) \n\n[1] 0.793\n\n\n\nBut can we do even better?" + }, + { + "objectID": "slides/ml/evaluation-metrics.html#overall-accuracy-4", + "href": "slides/ml/evaluation-metrics.html#overall-accuracy-4", + "title": "Evaluation Metrics", + "section": "Overall accuracy", + "text": "Overall accuracy\n\nBut remember, it is important that we optimize the cutoff using only the training set: the test set is only for evaluation.\nAlthough for this simplistic example it is not much of a problem, later we will learn that evaluating an algorithm on the training set can lead to overfitting, which often results in dangerously over-optimistic assessments." + }, + { + "objectID": "slides/ml/evaluation-metrics.html#overall-accuracy-5", + "href": "slides/ml/evaluation-metrics.html#overall-accuracy-5", + "title": "Evaluation Metrics", + "section": "Overall accuracy", + "text": "Overall accuracy\n\nHere we examine the accuracy of 10 different cutoffs and pick the one yielding the best result:\n\n\ncutoff <- seq(61, 70) \naccuracy <- sapply(cutoff, function(x){ \n y_hat <- factor(ifelse(train_set$height > x, \"Male\", \"Female\"), levels = levels(test_set$sex)) \n mean(y_hat == train_set$sex) \n})" + }, + { + "objectID": "slides/ml/evaluation-metrics.html#overall-accuracy-6", + "href": "slides/ml/evaluation-metrics.html#overall-accuracy-6", + "title": "Evaluation Metrics", + "section": "Overall accuracy", + "text": "Overall accuracy\n\nWe can make a plot showing the accuracy obtained on the training set for males and females:" + }, + { + "objectID": "slides/ml/evaluation-metrics.html#overall-accuracy-7", + "href": "slides/ml/evaluation-metrics.html#overall-accuracy-7", + "title": "Evaluation Metrics", + "section": "Overall accuracy", + "text": "Overall accuracy\n\nWe see that the maximum value is:\n\n\nmax(accuracy) \n\n[1] 0.85\n\n\n\nwhich is much higher than 0.5.\nThe cutoff resulting in this accuracy is:\n\n\nbest_cutoff <- cutoff[which.max(accuracy)] \nbest_cutoff \n\n[1] 64" + }, + { + "objectID": "slides/ml/evaluation-metrics.html#overall-accuracy-8", + "href": "slides/ml/evaluation-metrics.html#overall-accuracy-8", + "title": "Evaluation Metrics", + "section": "Overall accuracy", + "text": "Overall accuracy\n\nWe can now test this cutoff on our test set to make sure our accuracy is not overly optimistic:\n\n\ny_hat <- ifelse(test_set$height > best_cutoff, \"Male\", \"Female\") |> \n factor(levels = levels(test_set$sex)) \ny_hat <- factor(y_hat) \nmean(y_hat == test_set$sex) \n\n[1] 0.804\n\n\n\nWe see that it is a bit lower than the accuracy observed for the training set, but it is still better than guessing.\nAnd by testing on a dataset that we did not train on, we know our result is not due to cherry-picking a good result." + }, + { + "objectID": "slides/ml/evaluation-metrics.html#the-confusion-matrix", + "href": "slides/ml/evaluation-metrics.html#the-confusion-matrix", + "title": "Evaluation Metrics", + "section": "The confusion matrix", + "text": "The confusion matrix\n\nThe prediction rule we developed in the previous section predicts Male if the student is taller than 64 inches.\nGiven that the average female is about 64 inches, this prediction rule seems wrong.\nWhat happened?\nIf a student is the height of the average female, shouldn’t we predict Female?\nGenerally speaking, overall accuracy can be a deceptive measure." + }, + { + "objectID": "slides/ml/evaluation-metrics.html#the-confusion-matrix-1", + "href": "slides/ml/evaluation-metrics.html#the-confusion-matrix-1", + "title": "Evaluation Metrics", + "section": "The confusion matrix", + "text": "The confusion matrix\n\ncm <- confusionMatrix(data = y_hat, reference = test_set$sex) \ncm$table \n\n Reference\nPrediction Female Male\n Female 48 32\n Male 71 374\n\n\n\nIf we study this table closely, it reveals a problem." + }, + { + "objectID": "slides/ml/evaluation-metrics.html#the-confusion-matrix-2", + "href": "slides/ml/evaluation-metrics.html#the-confusion-matrix-2", + "title": "Evaluation Metrics", + "section": "The confusion matrix", + "text": "The confusion matrix\n\nIf we compute the accuracy separately for each sex, we get:\n\n\ncm$byClass[c(\"Sensitivity\", \"Specificity\")] \n\nSensitivity Specificity \n 0.403 0.921 \n\n\n\nWe notice an imbalance: too many females are predicted to be male.\nWe are calling almost half of the females male! How can our overall accuracy be so high then?\nThis is because the prevalence of males in this dataset is high." + }, + { + "objectID": "slides/ml/evaluation-metrics.html#the-confusion-matrix-3", + "href": "slides/ml/evaluation-metrics.html#the-confusion-matrix-3", + "title": "Evaluation Metrics", + "section": "The confusion matrix", + "text": "The confusion matrix\n\nThese heights were collected from three data sciences courses, two of which had higher male enrollment:\n\n\ncm$byClass[\"Prevalence\"] \n\nPrevalence \n 0.227 \n\n\n\nSo when computing overall accuracy, the high percentage of mistakes made for females is outweighed by the gains in correct calls for men.\nThis type of bias can actually be a big problem in practice.\nIf your training data is biased in some way, you are likely to develop algorithms that are biased as well." + }, + { + "objectID": "slides/ml/evaluation-metrics.html#the-confusion-matrix-4", + "href": "slides/ml/evaluation-metrics.html#the-confusion-matrix-4", + "title": "Evaluation Metrics", + "section": "The confusion matrix", + "text": "The confusion matrix\n\nThe fact that we used a test set does not matter because it is also derived from the original biased dataset.\nThis is one of the reasons we look at metrics other than overall accuracy when evaluating a machine learning algorithm.\nThere are several metrics that we can use to evaluate an algorithm in a way that prevalence does not cloud our assessment, and these can all be derived from the confusion matrix.\nA general improvement to using overall accuracy is to study sensitivity and specificity separately." + }, + { + "objectID": "slides/ml/evaluation-metrics.html#sensitivity-and-specificity", + "href": "slides/ml/evaluation-metrics.html#sensitivity-and-specificity", + "title": "Evaluation Metrics", + "section": "Sensitivity and specificity", + "text": "Sensitivity and specificity\n\nTo define sensitivity and specificity, we need a binary outcome.\nWhen the outcomes are categorical, we can define these terms for a specific category.\nIn the digits example, we can ask for the specificity in the case of correctly predicting 2 as opposed to some other digit.\nOnce we specify a category of interest, then we can talk about positive outcomes, \\(Y=1\\), and negative outcomes, \\(Y=0\\)." + }, + { + "objectID": "slides/ml/evaluation-metrics.html#sensitivity-and-specificity-1", + "href": "slides/ml/evaluation-metrics.html#sensitivity-and-specificity-1", + "title": "Evaluation Metrics", + "section": "Sensitivity and specificity", + "text": "Sensitivity and specificity\n\nIn general, sensitivity is defined as the ability of an algorithm to predict a positive outcome when the actual outcome is positive: \\(\\hat{Y}=1\\) when \\(Y=1\\).\nBecause an algorithm that calls everything positive (\\(\\hat{Y}=1\\) no matter what) has perfect sensitivity, this metric on its own is not enough to judge an algorithm.\nFor this reason, we also examine specificity, which is generally defined as the ability of an algorithm to not predict a positive \\(\\hat{Y}=0\\) when the actual outcome is not a positive \\(Y=0\\).\nWe can summarize in the following way:" + }, + { + "objectID": "slides/ml/evaluation-metrics.html#sensitivity-and-specificity-2", + "href": "slides/ml/evaluation-metrics.html#sensitivity-and-specificity-2", + "title": "Evaluation Metrics", + "section": "Sensitivity and specificity", + "text": "Sensitivity and specificity\n\n\nHigh sensitivity: \\(Y=1 \\implies \\hat{Y}=1\\).\n\n\nHigh specificity: \\(Y=0 \\implies \\hat{Y} = 0\\).\n\nAlthough the above is often considered the definition of specificity, another way to think of specificity is by the proportion of positive calls that are actually positive:\n\nHigh specificity: \\(\\hat{Y}=1 \\implies Y=1\\).\n\nTo provide precise definitions, we name the four entries of the confusion matrix:" + }, + { + "objectID": "slides/ml/evaluation-metrics.html#sensitivity-and-specificity-3", + "href": "slides/ml/evaluation-metrics.html#sensitivity-and-specificity-3", + "title": "Evaluation Metrics", + "section": "Sensitivity and specificity", + "text": "Sensitivity and specificity\n\n\n\n\n\n\nActually Positive\nActually Negative\n\n\n\n\nPredicted positive\nTrue positives (TP)\nFalse positives (FP)\n\n\nPredicted negative\nFalse negatives (FN)\nTrue negatives (TN)" + }, + { + "objectID": "slides/ml/evaluation-metrics.html#sensitivity-and-specificity-4", + "href": "slides/ml/evaluation-metrics.html#sensitivity-and-specificity-4", + "title": "Evaluation Metrics", + "section": "Sensitivity and specificity", + "text": "Sensitivity and specificity\n\nSensitivity is typically quantified by \\(TP/(TP+FN)\\), the proportion of actual positives (the first column = \\(TP+FN\\)) that are called positives (\\(TP\\)).\nThis quantity is referred to as the true positive rate (TPR) or recall.\nSpecificity is defined as \\(TN/(TN+FP)\\) or the proportion of negatives (the second column = \\(FP+TN\\)) that are called negatives (\\(TN\\)).\nThis quantity is also called the true negative rate (TNR)." + }, + { + "objectID": "slides/ml/evaluation-metrics.html#sensitivity-and-specificity-5", + "href": "slides/ml/evaluation-metrics.html#sensitivity-and-specificity-5", + "title": "Evaluation Metrics", + "section": "Sensitivity and specificity", + "text": "Sensitivity and specificity\n\nThere is another way of quantifying specificity which is \\(TP/(TP+FP)\\) or the proportion of outcomes called positives (the first row or \\(TP+FP\\)) that are actually positives (\\(TP\\)).\nThis quantity is referred to as positive predictive value (PPV) and also as precision.\nNote that, unlike TPR and TNR, precision depends on prevalence since higher prevalence implies you can get higher precision even when guessing.\nThe multiple names can be confusing, so we include a table to help us remember the terms." + }, + { + "objectID": "slides/ml/evaluation-metrics.html#sensitivity-and-specificity-6", + "href": "slides/ml/evaluation-metrics.html#sensitivity-and-specificity-6", + "title": "Evaluation Metrics", + "section": "Sensitivity and specificity", + "text": "Sensitivity and specificity\n\nThe table includes a column that shows the definition if we think of the proportions as probabilities.\n\n\n\n\n\n\n\n\n\n\n\nMeasure of\nName 1\nName 2\nDefinition\nProbability representation\n\n\n\n\nsensitivity\nTPR\nRecall\n\\(\\frac{\\mbox{TP}}{\\mbox{TP} + \\mbox{FN}}\\)\n\\(\\mbox{Pr}(\\hat{Y}=1 \\mid Y=1)\\)\n\n\nspecificity\nTNR\n1-FPR\n\\(\\frac{\\mbox{TN}}{\\mbox{TN}+\\mbox{FP}}\\)\n\\(\\mbox{Pr}(\\hat{Y}=0 \\mid Y=0)\\)" + }, + { + "objectID": "slides/ml/evaluation-metrics.html#sensitivity-and-specificity-7", + "href": "slides/ml/evaluation-metrics.html#sensitivity-and-specificity-7", + "title": "Evaluation Metrics", + "section": "Sensitivity and specificity", + "text": "Sensitivity and specificity\n\nspecificity | PPV | Precision | \\(\\frac{\\mbox{TP}}{\\mbox{TP}+\\mbox{FP}}\\) | \\(\\mbox{Pr}(Y=1 \\mid \\hat{Y}=1)\\)|.\nThe caret function confusionMatrix computes all these metrics for us once we define which category is the “positive” (Y=1).\nThe function expects factors as input, and the first level is considered the positive outcome or \\(Y=1\\).\nIn our example, Female is the first level because it comes before Male alphabetically." + }, + { + "objectID": "slides/ml/evaluation-metrics.html#sensitivity-and-specificity-8", + "href": "slides/ml/evaluation-metrics.html#sensitivity-and-specificity-8", + "title": "Evaluation Metrics", + "section": "Sensitivity and specificity", + "text": "Sensitivity and specificity\n\nIf you type this into R, you will see several metrics including accuracy, sensitivity, specificity, and PPV.\nYou can access these directly, for example, like this:\n\n\ncm$overall[\"Accuracy\"] \n\nAccuracy \n 0.804 \n\ncm$byClass[c(\"Sensitivity\",\"Specificity\", \"Prevalence\")] \n\nSensitivity Specificity Prevalence \n 0.403 0.921 0.227 \n\n\n\nWe can see that the high overall accuracy is possible despite relatively low sensitivity.\nAs we hinted at above, the reason this happens is because of the low prevalence (0.23): the proportion of females is low." + }, + { + "objectID": "slides/ml/evaluation-metrics.html#sensitivity-and-specificity-9", + "href": "slides/ml/evaluation-metrics.html#sensitivity-and-specificity-9", + "title": "Evaluation Metrics", + "section": "Sensitivity and specificity", + "text": "Sensitivity and specificity\n\nBecause prevalence is low, failing to predict actual females as females (low sensitivity) does not lower the overall accuracy as much as failing to predict actual males as males (low specificity).\nThis is an example of why it is important to examine sensitivity and specificity and not just accuracy.\nBefore applying this algorithm to general datasets, we need to ask ourselves if prevalence will be the same." + }, + { + "objectID": "slides/ml/evaluation-metrics.html#balanced-accuracy-and-f_1-score", + "href": "slides/ml/evaluation-metrics.html#balanced-accuracy-and-f_1-score", + "title": "Evaluation Metrics", + "section": "Balanced accuracy and \\(F_1\\) score", + "text": "Balanced accuracy and \\(F_1\\) score\n\nAlthough we usually recommend studying both specificity and sensitivity, often it is useful to have a one-number summary, for example, for optimization purposes.\nOne metric that is preferred over overall accuracy is the average of specificity and sensitivity, referred to as balanced accuracy.\nBecause specificity and sensitivity are rates, it is more appropriate to compute the harmonic average.\nIn fact, the \\(F_1\\)-score, a widely used one-number summary, is the harmonic average of precision and recall:" + }, + { + "objectID": "slides/ml/evaluation-metrics.html#balanced-accuracy-and-f_1-score-1", + "href": "slides/ml/evaluation-metrics.html#balanced-accuracy-and-f_1-score-1", + "title": "Evaluation Metrics", + "section": "Balanced accuracy and \\(F_1\\) score", + "text": "Balanced accuracy and \\(F_1\\) score\n\\[\n\\frac{1}{\\frac{1}{2}\\left(\\frac{1}{\\mbox{recall}} + \n \\frac{1}{\\mbox{precision}}\\right) }\n\\]\n\nBecause it is easier to write, you often see this harmonic average rewritten as:\n\n\\[\n2 \\times \\frac{\\mbox{precision} \\cdot \\mbox{recall}}\n{\\mbox{precision} + \\mbox{recall}}\n\\]" + }, + { + "objectID": "slides/ml/evaluation-metrics.html#balanced-accuracy-and-f_1-score-2", + "href": "slides/ml/evaluation-metrics.html#balanced-accuracy-and-f_1-score-2", + "title": "Evaluation Metrics", + "section": "Balanced accuracy and \\(F_1\\) score", + "text": "Balanced accuracy and \\(F_1\\) score\n\nwhen defining \\(F_1\\).\nRemember that, depending on the context, some types of errors are more costly than others.\nFor instance, in the case of plane safety, it is much more important to maximize sensitivity over specificity: failing to predict a plane will malfunction before it crashes is a much more costly error than grounding a plane when, in fact, the plane is in perfect condition.\nIn a capital murder criminal case, the opposite is true since a false positive can lead to executing an innocent person." + }, + { + "objectID": "slides/ml/evaluation-metrics.html#balanced-accuracy-and-f_1-score-3", + "href": "slides/ml/evaluation-metrics.html#balanced-accuracy-and-f_1-score-3", + "title": "Evaluation Metrics", + "section": "Balanced accuracy and \\(F_1\\) score", + "text": "Balanced accuracy and \\(F_1\\) score\n\nThe \\(F_1\\)-score can be adapted to weigh specificity and sensitivity differently.\nTo do this, we define \\(\\beta\\) to represent how much more important sensitivity is compared to specificity and consider a weighted harmonic average:\n\n\\[\n\\frac{1}{\\frac{\\beta^2}{1+\\beta^2}\\frac{1}{\\mbox{recall}} + \n \\frac{1}{1+\\beta^2}\\frac{1}{\\mbox{precision}} }\n\\]" + }, + { + "objectID": "slides/ml/evaluation-metrics.html#balanced-accuracy-and-f_1-score-4", + "href": "slides/ml/evaluation-metrics.html#balanced-accuracy-and-f_1-score-4", + "title": "Evaluation Metrics", + "section": "Balanced accuracy and \\(F_1\\) score", + "text": "Balanced accuracy and \\(F_1\\) score\n\nThe F_meas function in the caret package computes this summary with beta defaulting to 1.\nLet’s rebuild our prediction algorithm, but this time maximizing the F-score instead of overall accuracy:\n\n\ncutoff <- seq(61, 70) \nF_1 <- sapply(cutoff, function(x){ \n y_hat <- factor(ifelse(train_set$height > x, \"Male\", \"Female\"), levels(test_set$sex)) \n F_meas(data = y_hat, reference = factor(train_set$sex)) \n}) \n\n\nAs before, we can plot these \\(F_1\\) measures versus the cutoffs:" + }, + { + "objectID": "slides/ml/evaluation-metrics.html#balanced-accuracy-and-f_1-score-5", + "href": "slides/ml/evaluation-metrics.html#balanced-accuracy-and-f_1-score-5", + "title": "Evaluation Metrics", + "section": "Balanced accuracy and \\(F_1\\) score", + "text": "Balanced accuracy and \\(F_1\\) score" + }, + { + "objectID": "slides/ml/evaluation-metrics.html#balanced-accuracy-and-f_1-score-6", + "href": "slides/ml/evaluation-metrics.html#balanced-accuracy-and-f_1-score-6", + "title": "Evaluation Metrics", + "section": "Balanced accuracy and \\(F_1\\) score", + "text": "Balanced accuracy and \\(F_1\\) score\n\nWe see that it is maximized at \\(F_1\\) value of:\n\n\nmax(F_1) \n\n[1] 0.647\n\n\n\nThis maximum is achieved when we use the following cutoff:\n\n\nbest_cutoff <- cutoff[which.max(F_1)] \nbest_cutoff \n\n[1] 66\n\n\n\nA cutoff of 66 makes more sense than 64.\nFurthermore, it balances the specificity and sensitivity of our confusion matrix:" + }, + { + "objectID": "slides/ml/evaluation-metrics.html#balanced-accuracy-and-f_1-score-7", + "href": "slides/ml/evaluation-metrics.html#balanced-accuracy-and-f_1-score-7", + "title": "Evaluation Metrics", + "section": "Balanced accuracy and \\(F_1\\) score", + "text": "Balanced accuracy and \\(F_1\\) score\n\ny_hat <- ifelse(test_set$height > best_cutoff, \"Male\", \"Female\") |> \n factor(levels = levels(test_set$sex)) \nsensitivity(data = y_hat, reference = test_set$sex) \n\n[1] 0.63\n\nspecificity(data = y_hat, reference = test_set$sex) \n\n[1] 0.833\n\n\n\nWe now see that we do much better than guessing, that both sensitivity and specificity are relatively high." + }, + { + "objectID": "slides/ml/evaluation-metrics.html#prevalence-matters-in-practice", + "href": "slides/ml/evaluation-metrics.html#prevalence-matters-in-practice", + "title": "Evaluation Metrics", + "section": "Prevalence matters in practice", + "text": "Prevalence matters in practice\n\nA machine learning algorithm with very high TPR and TNR may not be useful in practice when prevalence is close to either 0 or 1.\nTo see this, consider the case of a doctor that specializes in a rare disease and is interested in developing an algorithm for predicting who has the disease.\nThe doctor shares data with about 1/2 cases and 1/2 controls and some predictors.\nYou then develop an algorithm with TPR=0.99 and TNR = 0.99." + }, + { + "objectID": "slides/ml/evaluation-metrics.html#prevalence-matters-in-practice-1", + "href": "slides/ml/evaluation-metrics.html#prevalence-matters-in-practice-1", + "title": "Evaluation Metrics", + "section": "Prevalence matters in practice", + "text": "Prevalence matters in practice\n\nYou are excited to explain to the doctor that this means that if a patient has the disease, the algorithm is very likely to predict correctly.\nThe doctor is not impressed and explains that your TNR is too low for this algorithm to be used in practice.\nThis is because this is a rare disease with a prevalence in the general population of 0.5%.\nThe doctor reminds you of Bayes formula:\n\n\\[ \\mbox{Pr}(Y = 1\\mid \\hat{Y}=1) = \\mbox{Pr}(\\hat{Y}=1 \\mid Y=1) \\frac{\\mbox{Pr}(Y=1)}{\\mbox{Pr}(\\hat{Y}=1)} \\implies \\text{Precision} = \\text{TPR} \\times \\frac{\\text{Prevalence}}{\\text{TPR}\\times \\text{Prevalence} + \\text{FPR}\\times(1-\\text{Prevalence})} \\approx 0.33 \\]" + }, + { + "objectID": "slides/ml/evaluation-metrics.html#prevalence-matters-in-practice-2", + "href": "slides/ml/evaluation-metrics.html#prevalence-matters-in-practice-2", + "title": "Evaluation Metrics", + "section": "Prevalence matters in practice", + "text": "Prevalence matters in practice\n\nHere is plot of precision as a function of prevalence with TPR and TNR are 95%:" + }, + { + "objectID": "slides/ml/evaluation-metrics.html#prevalence-matters-in-practice-3", + "href": "slides/ml/evaluation-metrics.html#prevalence-matters-in-practice-3", + "title": "Evaluation Metrics", + "section": "Prevalence matters in practice", + "text": "Prevalence matters in practice" + }, + { + "objectID": "slides/ml/evaluation-metrics.html#prevalence-matters-in-practice-4", + "href": "slides/ml/evaluation-metrics.html#prevalence-matters-in-practice-4", + "title": "Evaluation Metrics", + "section": "Prevalence matters in practice", + "text": "Prevalence matters in practice\n\nAlthough your algorithm has a precision of about 95% on the data you train on, with prevalence of 50%, if applied to the general population, the algorithm’s precision would be just 33%.\nThe doctor can’t use an algorithm with 33% of people receiving a positive test actually not having the disease.\nNote that even if your algorithm had perfect sensitivity, the precision would still be around 33%.\nSo you need to greatly decrease your FPR for the algorithm to be useful in practice." + }, + { + "objectID": "slides/ml/evaluation-metrics.html#roc-and-precision-recall-curves", + "href": "slides/ml/evaluation-metrics.html#roc-and-precision-recall-curves", + "title": "Evaluation Metrics", + "section": "ROC and precision-recall curves", + "text": "ROC and precision-recall curves\n\nWhen comparing the two methods (guessing versus using a height cutoff), we looked at accuracy and \\(F_1\\).\nThe second method clearly outperformed the first.\nHowever, while we considered several cutoffs for the second method, for the first we only considered one approach: guessing with equal probability.\nBe aware that guessing Male with higher probability would give us higher accuracy due to the bias in the sample:" + }, + { + "objectID": "slides/ml/evaluation-metrics.html#roc-and-precision-recall-curves-1", + "href": "slides/ml/evaluation-metrics.html#roc-and-precision-recall-curves-1", + "title": "Evaluation Metrics", + "section": "ROC and precision-recall curves", + "text": "ROC and precision-recall curves\n\np <- 0.9 \nn <- length(test_index) \ny_hat <- sample(c(\"Male\", \"Female\"), n, replace = TRUE, prob = c(p, 1 - p)) |> \n factor(levels = levels(test_set$sex)) \nmean(y_hat == test_set$sex) \n\n[1] 0.739\n\n\n\nBut, as described above, this would come at the cost of lower sensitivity.\nThe curves we describe in this section will help us see this.\nRemember that for each of these parameters, we can get a different sensitivity and specificity." + }, + { + "objectID": "slides/ml/evaluation-metrics.html#roc-and-precision-recall-curves-2", + "href": "slides/ml/evaluation-metrics.html#roc-and-precision-recall-curves-2", + "title": "Evaluation Metrics", + "section": "ROC and precision-recall curves", + "text": "ROC and precision-recall curves\n\nFor this reason, a very common approach to evaluating methods is to compare them graphically by plotting both.\nA widely used plot that does this is the receiver operating characteristic (ROC) curve.\nIf you are wondering where this name comes from, you can consult the ROC Wikipedia page1.\nThe ROC curve plots sensitivity, represented as the TPR, versus 1 - specificity represented as the false positive rate (FPR).\n\nhttps://en.wikipedia.org/wiki/Receiver_operating_characteristic" + }, + { + "objectID": "slides/ml/evaluation-metrics.html#roc-and-precision-recall-curves-3", + "href": "slides/ml/evaluation-metrics.html#roc-and-precision-recall-curves-3", + "title": "Evaluation Metrics", + "section": "ROC and precision-recall curves", + "text": "ROC and precision-recall curves\n\nHere we compute the TPR and FPR needed for different probabilities of guessing male:\n\n\nprobs <- seq(0, 1, length.out = 10) \nguessing <- sapply(probs, function(p){ \n y_hat <- \n sample(c(\"Male\", \"Female\"), nrow(test_set), TRUE, c(p, 1 - p)) |> \n factor(levels = c(\"Female\", \"Male\")) \n c(FPR = 1 - specificity(y_hat, test_set$sex), \n TPR = sensitivity(y_hat, test_set$sex)) \n}) \n\n\nWe can use similar code to compute these values for our our second approach." + }, + { + "objectID": "slides/ml/evaluation-metrics.html#roc-and-precision-recall-curves-4", + "href": "slides/ml/evaluation-metrics.html#roc-and-precision-recall-curves-4", + "title": "Evaluation Metrics", + "section": "ROC and precision-recall curves", + "text": "ROC and precision-recall curves\n\nBy plotting both curves together, we are able to compare sensitivity for different values of specificity:" + }, + { + "objectID": "slides/ml/evaluation-metrics.html#roc-and-precision-recall-curves-5", + "href": "slides/ml/evaluation-metrics.html#roc-and-precision-recall-curves-5", + "title": "Evaluation Metrics", + "section": "ROC and precision-recall curves", + "text": "ROC and precision-recall curves" + }, + { + "objectID": "slides/ml/evaluation-metrics.html#roc-and-precision-recall-curves-6", + "href": "slides/ml/evaluation-metrics.html#roc-and-precision-recall-curves-6", + "title": "Evaluation Metrics", + "section": "ROC and precision-recall curves", + "text": "ROC and precision-recall curves\n\nWe see that we obtain higher sensitivity with this approach for all values of specificity, which implies it is in fact a better method.\nKeep in mind that ROC curves for guessing always fall on the identity line.\nAlso, note that when making ROC curves, it is often nice to add the cutoff associated with each point.\nThe packages pROC and plotROC are useful for generating these plots." + }, + { + "objectID": "slides/ml/evaluation-metrics.html#roc-and-precision-recall-curves-7", + "href": "slides/ml/evaluation-metrics.html#roc-and-precision-recall-curves-7", + "title": "Evaluation Metrics", + "section": "ROC and precision-recall curves", + "text": "ROC and precision-recall curves\n\nROC curves have one weakness and it is that neither of the measures plotted depends on prevalence.\nIn cases in which prevalence matters, we may instead make a precision-recall plot.\nThe idea is similar, but we instead plot precision against recall:" + }, + { + "objectID": "slides/ml/evaluation-metrics.html#roc-and-precision-recall-curves-8", + "href": "slides/ml/evaluation-metrics.html#roc-and-precision-recall-curves-8", + "title": "Evaluation Metrics", + "section": "ROC and precision-recall curves", + "text": "ROC and precision-recall curves" + }, + { + "objectID": "slides/ml/evaluation-metrics.html#roc-and-precision-recall-curves-9", + "href": "slides/ml/evaluation-metrics.html#roc-and-precision-recall-curves-9", + "title": "Evaluation Metrics", + "section": "ROC and precision-recall curves", + "text": "ROC and precision-recall curves\n\nFrom the plot on the left, we immediately see that the precision of guessing is not high.\nThis is because the prevalence is low.\nFrom the plot on the right, we also see that if we change \\(Y=1\\) to mean Male instead of Female, the precision increases.\nNote that the ROC curve would remain the same." + }, + { + "objectID": "slides/ml/evaluation-metrics.html#mean-squared-error", + "href": "slides/ml/evaluation-metrics.html#mean-squared-error", + "title": "Evaluation Metrics", + "section": "Mean Squared Error", + "text": "Mean Squared Error\n\nUp to now we have described evaluation metrics that apply exclusively to categorical data.\nSpecifically, for binary outcomes, we have described how sensitivity, specificity, accuracy, and \\(F_1\\) can be used as quantification.\nHowever, these metrics are not useful for continuous outcomes.\nIn this section, we describe how the general approach to defining “best” in machine learning is to define a loss function, which can be applied to both categorical and continuous data." + }, + { + "objectID": "slides/ml/evaluation-metrics.html#mean-squared-error-1", + "href": "slides/ml/evaluation-metrics.html#mean-squared-error-1", + "title": "Evaluation Metrics", + "section": "Mean Squared Error", + "text": "Mean Squared Error\n\nThe most commonly used loss function is the squared loss function.\nIf \\(\\hat{y}\\) is our predictor and \\(y\\) is the observed outcome, the squared loss function is simply: \\((\\hat{y} - y)^2\\).\nBecause we often model \\(y\\) as the outcome of a random process, theoretically, it does not make sense to compare algorithms based on \\((\\hat{y} - y)^2\\) as the minimum can change from sample to sample.\nFor this reason, we minimize mean squared error (MSE):\n\n\\[\n\\text{MSE} \\equiv \\mbox{E}\\{(\\hat{Y} - Y)^2 \\}\n\\]" + }, + { + "objectID": "slides/ml/evaluation-metrics.html#mean-squared-error-2", + "href": "slides/ml/evaluation-metrics.html#mean-squared-error-2", + "title": "Evaluation Metrics", + "section": "Mean Squared Error", + "text": "Mean Squared Error\n\nConsider that if the outcomes are binary, the MSE is equivalent to one minus expected accuracy, since \\((\\hat{y} - y)^2\\) is 0 if the prediction was correct and 1 otherwise.\nDifferent algorithms will result in different predictions \\(\\hat{Y}\\), and therefore different MSE.\nIn general, our goal is to build an algorithm that minimizes the loss so it is as close to 0 as possible.\nHowever, note that the MSE is a theoretical quantity.\nHow do we estimate this?" + }, + { + "objectID": "slides/ml/evaluation-metrics.html#mean-squared-error-3", + "href": "slides/ml/evaluation-metrics.html#mean-squared-error-3", + "title": "Evaluation Metrics", + "section": "Mean Squared Error", + "text": "Mean Squared Error\n\nBecause in practice we have tests set with many, say \\(N\\), independent observations, a commonly used observable estimate of the MSE is:\n\n\\[\n\\hat{\\mbox{MSE}} = \\frac{1}{N}\\sum_{i=1}^N (\\hat{y}_i - y_i)^2\n\\]\n\nwith the \\(\\hat{y}_i\\) generated completely independently from the the \\(y_i\\)." + }, + { + "objectID": "slides/ml/evaluation-metrics.html#mean-squared-error-4", + "href": "slides/ml/evaluation-metrics.html#mean-squared-error-4", + "title": "Evaluation Metrics", + "section": "Mean Squared Error", + "text": "Mean Squared Error\n\nHowever, the estimate \\(\\hat{\\text{MSE}}\\) is a random variable.\nIn fact, \\(\\text{MSE}\\) and \\(\\hat{\\text{MSE}}\\) are often referred to as the true error and apparent error, respectively.\nDue to the complexity of some machine learning, it is difficult to derive the statistical properties of how well the apparent error estimates the true error.\nIn ?@sec-cross-validation, we introduce cross-validation an approach to estimating the MSE." + }, + { + "objectID": "slides/ml/evaluation-metrics.html#mean-squared-error-5", + "href": "slides/ml/evaluation-metrics.html#mean-squared-error-5", + "title": "Evaluation Metrics", + "section": "Mean Squared Error", + "text": "Mean Squared Error\n\nWe end this chapter by pointing out that there are loss functions other than the squared loss.\nFor example, the Mean Absolute Error uses absolute values, \\(|\\hat{Y}_i - Y_i|\\) instead of squaring the errors.\n\\((\\hat{Y}_i - Y_i)^2\\).\nHowever, in this book we focus on minimizing square loss since it is the most widely used." + }, + { + "objectID": "slides/ml/36-intro-ml.html#machine-learning", + "href": "slides/ml/36-intro-ml.html#machine-learning", + "title": "Introduction", + "section": "", + "text": "Machine learning has achieved remarkable successes in a variety of applications.\nThese range from the postal service’s use of machine learning for reading handwritten zip codes to the development of voice recognition systems." + }, + { + "objectID": "slides/ml/36-intro-ml.html#machine-learning-1", + "href": "slides/ml/36-intro-ml.html#machine-learning-1", + "title": "Introduction", + "section": "Machine Learning", + "text": "Machine Learning\n\nOther significant advances include movie recommendation systems, spam and malware detection, housing price prediction algorithms, and the ongoing development of autonomous vehicles.\nThe field of Artificial Intelligence (AI) has been evolving for several decades." + }, + { + "objectID": "slides/ml/36-intro-ml.html#machine-learning-2", + "href": "slides/ml/36-intro-ml.html#machine-learning-2", + "title": "Introduction", + "section": "Machine Learning", + "text": "Machine Learning\n\nTraditional AI systems, including some chess-playing machines, often relied on decision-making based on preset rules and knowledge representation.\nHowever, with the advent of data availability, machine learning has gained prominence.\nIt focuses on decision-making through algorithms trained with data.\nIn recent years, the terms AI and Machine Learning have been used interchangeably in many contexts, though they have distinct meanings." + }, + { + "objectID": "slides/ml/36-intro-ml.html#machine-learning-3", + "href": "slides/ml/36-intro-ml.html#machine-learning-3", + "title": "Introduction", + "section": "Machine Learning", + "text": "Machine Learning\n\nMachine learning has achieved remarkable successes, ranging from the postal service’s handwritten zip code readers to voice recognition systems like Apple’s Siri.\nThese advances also include movie recommendation systems, spam and malware detection, housing price prediction algorithms, and the development of driverless cars." + }, + { + "objectID": "slides/ml/36-intro-ml.html#terminology", + "href": "slides/ml/36-intro-ml.html#terminology", + "title": "Introduction", + "section": "Terminology", + "text": "Terminology\n\nOutcome - what we want to predict\nFeatures - what we use to predict the outcome.\nAlgorithms that take feature values as input and returns a prediction for the outcome.\nWe train an algorithm using a dataset for which we do know the outcome, and then apply algorithm when we don’t know the outcome." + }, + { + "objectID": "slides/ml/36-intro-ml.html#terminology-1", + "href": "slides/ml/36-intro-ml.html#terminology-1", + "title": "Introduction", + "section": "Terminology", + "text": "Terminology\n\nPrediction problems can be divided into categorical and continuous outcomes." + }, + { + "objectID": "slides/ml/36-intro-ml.html#categorical", + "href": "slides/ml/36-intro-ml.html#categorical", + "title": "Introduction", + "section": "Categorical", + "text": "Categorical\n\nThe number of classes can vary greatly across applications.\nWe denote the \\(K\\) categories with indexes \\(k=1,\\dots,K\\).\nHowever, for binary data we will use \\(k=0,1\\) for mathematical conveniences that we demonstrate later." + }, + { + "objectID": "slides/ml/36-intro-ml.html#categorical-1", + "href": "slides/ml/36-intro-ml.html#categorical-1", + "title": "Introduction", + "section": "Categorical", + "text": "Categorical\n\nWe denote the \\(K\\) categories with indexes \\(k=1,\\dots,K\\).\nHowever, for binary data we will use \\(k=0,1\\) for mathematical conveniences that we demonstrate later." + }, + { + "objectID": "slides/ml/36-intro-ml.html#continuous", + "href": "slides/ml/36-intro-ml.html#continuous", + "title": "Introduction", + "section": "Continuous", + "text": "Continuous\nExamples of outcomes include:\n\nstock prices\nrealestate prices\ntemperature next week\nstudent perforamnce" + }, + { + "objectID": "slides/ml/36-intro-ml.html#notation", + "href": "slides/ml/36-intro-ml.html#notation", + "title": "Introduction", + "section": "Notation", + "text": "Notation\n\nWe use \\(y_i\\) to denote the i-th outcome\n\\(x_{i,1}, \\dots, x_{i,p}\\) the corresponding features.\nAlso referred to as predictors or covariates.\nWe use matrix notation \\(\\mathbf{x}_i = (x_{i,1}, \\dots, x_{i,p})^\\top\\) to denote the vector of predictors." + }, + { + "objectID": "slides/ml/36-intro-ml.html#notation-1", + "href": "slides/ml/36-intro-ml.html#notation-1", + "title": "Introduction", + "section": "Notation", + "text": "Notation\n\nBecause, we often use statistical models to motivate algorithms we also use capital letters:\n\n\\[\nY \\mbox{ and } \\mathbf{X} = (X_{1}, \\dots, X_{p})\n\\]\n\nNote we drop the index \\(i\\) because it represents the random variable that generates observations.\nWe use lower case, for example \\(\\mathbf{X} = \\mathbf{x}\\), to denote observed values." + }, + { + "objectID": "slides/ml/36-intro-ml.html#notation-2", + "href": "slides/ml/36-intro-ml.html#notation-2", + "title": "Introduction", + "section": "Notation", + "text": "Notation\n\nThe machine learning task is to build an algorithm that returns a prediction for any of the possible values of the features:\n\n\\[\n\\hat{y} = f(x_1,x_2,\\dots,x_p)\n\\]\n\nWe will learn several approaches to building these algorithms." + }, + { + "objectID": "slides/ml/36-intro-ml.html#the-machine-learning-challenge", + "href": "slides/ml/36-intro-ml.html#the-machine-learning-challenge", + "title": "Introduction", + "section": "The machine learning challenge", + "text": "The machine learning challenge\n\nThe general setup is as follows.\nWe have a series of features and an unknown outcome we want to predict:\n\n\n\n\n\n\noutcome\nfeature 1\nfeature 2\nfeature 3\n\\(\\dots\\)\nfeature p\n\n\n\n\n?\n\\(X_1\\)\n\\(X_2\\)\n\\(X_3\\)\n\\(\\dots\\)\n\\(X_p\\)" + }, + { + "objectID": "slides/ml/36-intro-ml.html#the-machine-learning-challenge-1", + "href": "slides/ml/36-intro-ml.html#the-machine-learning-challenge-1", + "title": "Introduction", + "section": "The machine learning challenge", + "text": "The machine learning challenge\n\nTo build a model that provides a prediction for any set of observed values \\(X_1=x_1, X_2=x_2, \\dots X_p=x_p\\), we collect data for which we know the outcome:\n\n\n\n\n\n\noutcome\nfeature 1\nfeature 2\nfeature 3\n\\(\\dots\\)\nfeature 5\n\n\n\n\n\\(y_{1}\\)\n\\(x_{1,1}\\)\n\\(x_{1,2}\\)\n\\(x_{1,3}\\)\n\\(\\dots\\)\n\\(x_{1,p}\\)\n\n\n\\(y_{2}\\)\n\\(x_{2,1}\\)\n\\(x_{2,2}\\)\n\\(x_{2,3}\\)\n\\(\\dots\\)\n\\(x_{2,p}\\)\n\n\n\\(\\vdots\\)\n\\(\\vdots\\)\n\\(\\vdots\\)\n\\(\\vdots\\)\n\\(\\ddots\\)\n\\(\\vdots\\)\n\n\n\\(y_n\\)\n\\(x_{n,1}\\)\n\\(x_{n,2}\\)\n\\(x_{n,3}\\)\n\\(\\dots\\)\n\\(x_{n,p}\\)" + }, + { + "objectID": "slides/ml/36-intro-ml.html#the-machine-learning-challenge-2", + "href": "slides/ml/36-intro-ml.html#the-machine-learning-challenge-2", + "title": "Introduction", + "section": "The machine learning challenge", + "text": "The machine learning challenge\n\nWhen the output is continuous, we refer to the ML task as prediction.\nWe use the term actual outcome \\(y\\) to denote what we end up observing.\nWe want the prediction \\(\\hat{y}\\) to match the actual outcome \\(y\\) as best as possible.\nWe define error as the difference between the prediction and the actual outcome \\(y - \\hat{y}\\)." + }, + { + "objectID": "slides/ml/36-intro-ml.html#the-machine-learning-challenge-3", + "href": "slides/ml/36-intro-ml.html#the-machine-learning-challenge-3", + "title": "Introduction", + "section": "The machine learning challenge", + "text": "The machine learning challenge\n\nWhen the outcome is categorical, we refer to the machine learning task as classification\nThe main output of the model will be a decision rule which prescribes which of the \\(K\\) classes we should predict." + }, + { + "objectID": "slides/ml/36-intro-ml.html#the-machine-learning-challenge-4", + "href": "slides/ml/36-intro-ml.html#the-machine-learning-challenge-4", + "title": "Introduction", + "section": "The machine learning challenge", + "text": "The machine learning challenge\n\nMost models provide functions for each class \\(k\\), \\(f_k(x_1, x_2, \\dots, x_p)\\), that are used to make this decision such as\n\n\\[\n\\mbox{When } f_k(x_1, x_2, \\dots, x_p) > C, \\mbox{ predict category } k\n\\]\n\nHere predictions will be either right or wrong." + }, + { + "objectID": "slides/ml/37-evaluation-metrics.html#evaluation-metrics", + "href": "slides/ml/37-evaluation-metrics.html#evaluation-metrics", + "title": "Evaluation Metrics", + "section": "Evaluation metrics", + "text": "Evaluation metrics\n\nHere we describe ways in which machine learning algorithms are evaluated.\nWe need to quantify what we mean when we say an algorithm performs better.\nWe demonstrate with a boring and simple example: how to predict sex using height." + }, + { + "objectID": "slides/ml/37-evaluation-metrics.html#evaluation-metrics-1", + "href": "slides/ml/37-evaluation-metrics.html#evaluation-metrics-1", + "title": "Evaluation Metrics", + "section": "Evaluation metrics", + "text": "Evaluation metrics\n\nWe introduce the caret package, which provides useful functions to facilitate machine learning in R.\nWe describe caret it in more detail later" + }, + { + "objectID": "slides/ml/37-evaluation-metrics.html#evaluation-metrics-2", + "href": "slides/ml/37-evaluation-metrics.html#evaluation-metrics-2", + "title": "Evaluation Metrics", + "section": "Evaluation metrics", + "text": "Evaluation metrics\n\nFor our first example, we use the height data provided by the dslabs package.\n\n\nlibrary(caret) \nlibrary(dslabs) \n\n\nWe start by defining the outcome and predictors.\n\n\ny <- heights$sex \nx <- heights$height" + }, + { + "objectID": "slides/ml/37-evaluation-metrics.html#evaluation-metrics-3", + "href": "slides/ml/37-evaluation-metrics.html#evaluation-metrics-3", + "title": "Evaluation Metrics", + "section": "Evaluation metrics", + "text": "Evaluation metrics\n\nA machine learning algorithm is evaluated on how it performs in the real world with a new datasets.\nHowever, when developing an algorithm, we usually have a dataset for which we know the outcomes.\nTo mimic the ultimate evaluation process, we split the data into two parts and act as if we don’t know the outcome for one of these.\nWe stop pretending we don’t know the outcome to evaluate the algorithm, but only after we are done constructing it." + }, + { + "objectID": "slides/ml/37-evaluation-metrics.html#training-and-test-sets", + "href": "slides/ml/37-evaluation-metrics.html#training-and-test-sets", + "title": "Evaluation Metrics", + "section": "Training and test sets", + "text": "Training and test sets\n\nset.seed(2007) \ntest_index <- createDataPartition(y, times = 1, p = 0.5, list = FALSE) \n\n\nWe can use the result of the createDataPartition function call to define the training and test sets as follows:\n\n\ntest_set <- heights[test_index, ] \ntrain_set <- heights[-test_index, ]" + }, + { + "objectID": "slides/ml/37-evaluation-metrics.html#training-and-test-sets-1", + "href": "slides/ml/37-evaluation-metrics.html#training-and-test-sets-1", + "title": "Evaluation Metrics", + "section": "Training and test sets", + "text": "Training and test sets\n\nset.seed(2007) \ntest_index <- createDataPartition(y, times = 1, p = 0.5, list = FALSE) \n\n\nWe can use the result of the createDataPartition function call to define the training and test sets as follows:\n\n\ntest_set <- heights[test_index, ] \ntrain_set <- heights[-test_index, ]" + }, + { + "objectID": "slides/ml/37-evaluation-metrics.html#training-and-test-sets-2", + "href": "slides/ml/37-evaluation-metrics.html#training-and-test-sets-2", + "title": "Evaluation Metrics", + "section": "Training and test sets", + "text": "Training and test sets\n\nWe develop an algorithm using only the training set.\nOnce we are done developing the algorithm, we will freeze it and evaluate it using the test set.\nThe simplest way to evaluate the algorithm when the outcomes are categorical is by simply reporting the proportion of cases that were correctly predicted in the test set.\nThis metric is usually referred to as overall accuracy." + }, + { + "objectID": "slides/ml/37-evaluation-metrics.html#overall-accuracy", + "href": "slides/ml/37-evaluation-metrics.html#overall-accuracy", + "title": "Evaluation Metrics", + "section": "Overall accuracy", + "text": "Overall accuracy\n\nLet’s start by developing the simplest possible machine algorithm: guessing the outcome.\n\n\ny_hat <- sample(c(\"Male\", \"Female\"), length(test_index), replace = TRUE) |> \n factor(levels = levels(test_set$sex)) \n\n\nThe overall accuracy is simply defined as the overall proportion that is predicted correctly:\n\n\nmean(y_hat == test_set$sex) \n\n[1] 0.516" + }, + { + "objectID": "slides/ml/37-evaluation-metrics.html#overall-accuracy-1", + "href": "slides/ml/37-evaluation-metrics.html#overall-accuracy-1", + "title": "Evaluation Metrics", + "section": "Overall accuracy", + "text": "Overall accuracy\n\nCan we do better?\nExploratory data analysis suggests we can because, on average, males are slightly taller than females:\n\n\nlibrary(tidyverse) \nheights |> group_by(sex) |> summarize(avg = mean(height), sd = sd(height)) \n\n# A tibble: 2 × 3\n sex avg sd\n <fct> <dbl> <dbl>\n1 Female 64.9 3.76\n2 Male 69.3 3.61\n\n\n\nHow do we make use of this insight?" + }, + { + "objectID": "slides/ml/37-evaluation-metrics.html#overall-accuracy-2", + "href": "slides/ml/37-evaluation-metrics.html#overall-accuracy-2", + "title": "Evaluation Metrics", + "section": "Overall accuracy", + "text": "Overall accuracy\n\nLet’s try another simple approach: predict Male if height is within two standard deviations from the average male.\n\n\ny_hat <- factor(ifelse(x > 62, \"Male\", \"Female\"), levels(test_set$sex)) \n\n\nThe accuracy goes up from 0.50 to about 0.80:\n\n\nmean(y == y_hat) \n\n[1] 0.793\n\n\n\nBut can we do even better?" + }, + { + "objectID": "slides/ml/37-evaluation-metrics.html#overall-accuracy-3", + "href": "slides/ml/37-evaluation-metrics.html#overall-accuracy-3", + "title": "Evaluation Metrics", + "section": "Overall accuracy", + "text": "Overall accuracy\n\nHere we examine the accuracy of 10 different cutoffs and pick the one yielding the best result:\n\n\ncutoff <- seq(61, 70) \naccuracy <- sapply(cutoff, function(x){ \n y_hat <- factor(ifelse(train_set$height > x, \"Male\", \"Female\"), levels = levels(test_set$sex)) \n mean(y_hat == train_set$sex) \n})" + }, + { + "objectID": "slides/ml/37-evaluation-metrics.html#overall-accuracy-4", + "href": "slides/ml/37-evaluation-metrics.html#overall-accuracy-4", + "title": "Evaluation Metrics", + "section": "Overall accuracy", + "text": "Overall accuracy\n\nWe can make a plot showing the accuracy obtained on the training set for males and females:" + }, + { + "objectID": "slides/ml/37-evaluation-metrics.html#overall-accuracy-5", + "href": "slides/ml/37-evaluation-metrics.html#overall-accuracy-5", + "title": "Evaluation Metrics", + "section": "Overall accuracy", + "text": "Overall accuracy\n\nWe see that the maximum value is:\n\n\nmax(accuracy) \n\n[1] 0.85\n\n\n\nwhich is much higher than 0.5.\nThe cutoff resulting in this accuracy is:\n\n\nbest_cutoff <- cutoff[which.max(accuracy)] \nbest_cutoff \n\n[1] 64" + }, + { + "objectID": "slides/ml/37-evaluation-metrics.html#overall-accuracy-6", + "href": "slides/ml/37-evaluation-metrics.html#overall-accuracy-6", + "title": "Evaluation Metrics", + "section": "Overall accuracy", + "text": "Overall accuracy\n\nWe can now test this cutoff on our test set to make sure our accuracy is not overly optimistic:\n\n\ny_hat <- ifelse(test_set$height > best_cutoff, \"Male\", \"Female\") |> \n factor(levels = levels(test_set$sex)) \ny_hat <- factor(y_hat) \nmean(y_hat == test_set$sex) \n\n[1] 0.804\n\n\n\nThe estimate of accuracy is biased due to slight over-training.\nBut ultimately we tested on a dataset that we did not train on." + }, + { + "objectID": "slides/ml/37-evaluation-metrics.html#overall-accuracy-7", + "href": "slides/ml/37-evaluation-metrics.html#overall-accuracy-7", + "title": "Evaluation Metrics", + "section": "Overall accuracy", + "text": "Overall accuracy\n\nWe can now test this cutoff on our test set to make sure our accuracy is not overly optimistic:\n\n\ny_hat <- ifelse(test_set$height > best_cutoff, \"Male\", \"Female\") |> \n factor(levels = levels(test_set$sex)) \ny_hat <- factor(y_hat) \nmean(y_hat == test_set$sex) \n\n[1] 0.804" + }, + { + "objectID": "slides/ml/37-evaluation-metrics.html#overall-accuracy-8", + "href": "slides/ml/37-evaluation-metrics.html#overall-accuracy-8", + "title": "Evaluation Metrics", + "section": "Overall accuracy", + "text": "Overall accuracy\n\nWe see that it is a bit lower than the accuracy observed for the training set, but it is still better than guessing.\nAnd by testing on a dataset that we did not train on, we know our result is not due to cherry-picking a good result." + }, + { + "objectID": "slides/ml/37-evaluation-metrics.html#the-confusion-matrix", + "href": "slides/ml/37-evaluation-metrics.html#the-confusion-matrix", + "title": "Evaluation Metrics", + "section": "The confusion matrix", + "text": "The confusion matrix\n\ncm <- confusionMatrix(data = y_hat, reference = test_set$sex) \ncm$table \n\n Reference\nPrediction Female Male\n Female 48 32\n Male 71 374\n\n\n\nIf we study this table closely, it reveals a problem." + }, + { + "objectID": "slides/ml/37-evaluation-metrics.html#the-confusion-matrix-1", + "href": "slides/ml/37-evaluation-metrics.html#the-confusion-matrix-1", + "title": "Evaluation Metrics", + "section": "The confusion matrix", + "text": "The confusion matrix\n\nIf we compute the accuracy separately we get:\n\n\ncm$byClass[c(\"Sensitivity\", \"Specificity\")] \n\nSensitivity Specificity \n 0.403 0.921" + }, + { + "objectID": "slides/ml/37-evaluation-metrics.html#the-confusion-matrix-2", + "href": "slides/ml/37-evaluation-metrics.html#the-confusion-matrix-2", + "title": "Evaluation Metrics", + "section": "The confusion matrix", + "text": "The confusion matrix\n\nThis is because the prevalence of males is high.\nThese heights were collected from three data sciences courses, two of which had higher male enrollment:\n\n\ncm$byClass[\"Prevalence\"] \n\nPrevalence \n 0.227 \n\n\n\nSo when computing overall accuracy, the high percentage of mistakes made for females is outweighed by the gains in correct calls for men.\nThis type of bias can actually be a big problem in practice.\nIf your training data is biased in some way, you are likely to develop algorithms that are biased as well." + }, + { + "objectID": "slides/ml/37-evaluation-metrics.html#the-confusion-matrix-3", + "href": "slides/ml/37-evaluation-metrics.html#the-confusion-matrix-3", + "title": "Evaluation Metrics", + "section": "The confusion matrix", + "text": "The confusion matrix\n\nThe fact that we used a test set does not matter because it is also derived from the original biased dataset.\nThis is one of the reasons we look at metrics other than overall accuracy when evaluating a machine learning algorithm.\nA general improvement to using overall accuracy is to study sensitivity and specificity separately." + }, + { + "objectID": "slides/ml/37-evaluation-metrics.html#the-confusion-matrix-4", + "href": "slides/ml/37-evaluation-metrics.html#the-confusion-matrix-4", + "title": "Evaluation Metrics", + "section": "The confusion matrix", + "text": "The confusion matrix\n\nThe fact that we used a test set does not matter because it is also derived from the original biased dataset.\nThis is one of the reasons we look at metrics other than overall accuracy when evaluating a machine learning algorithm.\nThere are several metrics that we can use to evaluate an algorithm in a way that prevalence does not cloud our assessment, and these can all be derived from the confusion matrix.\nA general improvement to using overall accuracy is to study sensitivity and specificity separately." + }, + { + "objectID": "slides/ml/37-evaluation-metrics.html#sensitivity-and-specificity", + "href": "slides/ml/37-evaluation-metrics.html#sensitivity-and-specificity", + "title": "Evaluation Metrics", + "section": "Sensitivity and specificity", + "text": "Sensitivity and specificity\n\nNeed binary outcome.\nSensitivity is defined as the ability of an algorithm to predict a positive outcome when the actual outcome is positive: \\(\\hat{y}=1\\) when \\(y=1\\).\nBecause an algorithm that calls everything positive has perfect sensitivity, this metric on its own is not enough to judge an algorithm.\nSpecificity, is the ability of an algorithm to not predict a positive \\(\\hat{y}=0\\) when the actual outcome is not a positive \\(y=0\\)." + }, + { + "objectID": "slides/ml/37-evaluation-metrics.html#sensitivity-and-specificity-1", + "href": "slides/ml/37-evaluation-metrics.html#sensitivity-and-specificity-1", + "title": "Evaluation Metrics", + "section": "Sensitivity and specificity", + "text": "Sensitivity and specificity\n\nWe can summarize in the following way:\nHigh sensitivity: \\(y=1 \\implies \\hat{y}=1\\).\nHigh specificity: \\(y=0 \\implies \\hat{y} = 0\\).\nAlthough the above is often considered the definition of specificity, another way to think of specificity is by the proportion of positive calls that are actually positive:\nHigh specificity: \\(\\hat{y}=1 \\implies y=1\\)." + }, + { + "objectID": "slides/ml/37-evaluation-metrics.html#sensitivity-and-specificity-2", + "href": "slides/ml/37-evaluation-metrics.html#sensitivity-and-specificity-2", + "title": "Evaluation Metrics", + "section": "Sensitivity and specificity", + "text": "Sensitivity and specificity\n\nTo provide precise definitions, we name the four entries of the confusion matrix:\n\n\n\n\n\n\n\nActually Positive\nActually Negative\n\n\n\n\nPredicted positive\nTrue positives (TP)\nFalse positives (FP)\n\n\nPredicted negative\nFalse negatives (FN)\nTrue negatives (TN)" + }, + { + "objectID": "slides/ml/37-evaluation-metrics.html#sensitivity-and-specificity-3", + "href": "slides/ml/37-evaluation-metrics.html#sensitivity-and-specificity-3", + "title": "Evaluation Metrics", + "section": "Sensitivity and specificity", + "text": "Sensitivity and specificity\n\nSensitivity is typically quantified by \\(TP/(TP+FN)\\).\nThis quantity is referred to as the true positive rate (TPR) or recall.\nSpecificity is defined as \\(TN/(TN+FP)\\).\nThis quantity is also called the true negative rate (TNR)." + }, + { + "objectID": "slides/ml/37-evaluation-metrics.html#sensitivity-and-specificity-4", + "href": "slides/ml/37-evaluation-metrics.html#sensitivity-and-specificity-4", + "title": "Evaluation Metrics", + "section": "Sensitivity and specificity", + "text": "Sensitivity and specificity\n\nThere is another way of quantifying specificity which is \\(TP/(TP+FP)\\)\nThis quantity is referred to as positive predictive value (PPV) and also as precision.\nNote that, unlike TPR and TNR, precision depends on prevalence since higher prevalence implies you can get higher precision even when guessing.\nThe multiple names can be confusing, so we include a table to help us remember the terms." + }, + { + "objectID": "slides/ml/37-evaluation-metrics.html#sensitivity-and-specificity-5", + "href": "slides/ml/37-evaluation-metrics.html#sensitivity-and-specificity-5", + "title": "Evaluation Metrics", + "section": "Sensitivity and specificity", + "text": "Sensitivity and specificity\n\n\n\n\n\n\n\n\n\n\n\nMeasure of\nName_1\nName_2\nDefinition\nProbability representation\n\n\n\n\nsensitivity\nTPR\nRecall\n\\(\\frac{\\mbox{TP}}{\\mbox{TP} + \\mbox{FN}}\\)\n\\(\\mbox{Pr}(\\hat{Y}=1 \\mid Y=1)\\)\n\n\nspecificity\nTNR\n1-FPR\n\\(\\frac{\\mbox{TN}}{\\mbox{TN}+\\mbox{FP}}\\)\n\\(\\mbox{Pr}(\\hat{Y}=0 \\mid Y=0)\\)\n\n\nspecificity\nPPV\nPrecision\n\\(\\frac{\\mbox{TP}}{\\mbox{TP}+\\mbox{FP}}\\)\n\\(\\mbox{Pr}(Y=1 \\mid \\hat{Y}=1)\\)" + }, + { + "objectID": "slides/ml/37-evaluation-metrics.html#sensitivity-and-specificity-6", + "href": "slides/ml/37-evaluation-metrics.html#sensitivity-and-specificity-6", + "title": "Evaluation Metrics", + "section": "Sensitivity and specificity", + "text": "Sensitivity and specificity\n\nThe caret function confusionMatrix computes all these metrics:\n\n\ncm$overall[\"Accuracy\"] \n\nAccuracy \n 0.804 \n\ncm$byClass[c(\"Sensitivity\",\"Specificity\", \"Prevalence\")] \n\nSensitivity Specificity Prevalence \n 0.403 0.921 0.227" + }, + { + "objectID": "slides/ml/37-evaluation-metrics.html#sensitivity-and-specificity-7", + "href": "slides/ml/37-evaluation-metrics.html#sensitivity-and-specificity-7", + "title": "Evaluation Metrics", + "section": "Sensitivity and specificity", + "text": "Sensitivity and specificity\n\nBecause prevalence is low, failing to predict actual females as females (low sensitivity) does not lower the overall accuracy as much as failing to predict actual males as males (low specificity).\nThis is an example of why it is important to examine sensitivity and specificity and not just accuracy.\nBefore applying this algorithm to general datasets, we need to ask ourselves if prevalence will be the same." + }, + { + "objectID": "slides/ml/37-evaluation-metrics.html#sensitivity-and-specificity-8", + "href": "slides/ml/37-evaluation-metrics.html#sensitivity-and-specificity-8", + "title": "Evaluation Metrics", + "section": "Sensitivity and specificity", + "text": "Sensitivity and specificity\n\nBecause prevalence is low, failing to predict actual females as females (low sensitivity) does not lower the overall accuracy as much as failing to predict actual males as males (low specificity).\nThis is an example of why it is important to examine sensitivity and specificity and not just accuracy.\nBefore applying this algorithm to general datasets, we need to ask ourselves if prevalence will be the same." + }, + { + "objectID": "slides/ml/37-evaluation-metrics.html#sensitivity-and-specificity-9", + "href": "slides/ml/37-evaluation-metrics.html#sensitivity-and-specificity-9", + "title": "Evaluation Metrics", + "section": "Sensitivity and specificity", + "text": "Sensitivity and specificity\n\nBecause prevalence is low, failing to predict actual females as females (low sensitivity) does not lower the overall accuracy as much as failing to predict actual males as males (low specificity).\nThis is an example of why it is important to examine sensitivity and specificity and not just accuracy.\nBefore applying this algorithm to general datasets, we need to ask ourselves if prevalence will be the same." + }, + { + "objectID": "slides/ml/37-evaluation-metrics.html#balanced-accuracy-and-f_1-score", + "href": "slides/ml/37-evaluation-metrics.html#balanced-accuracy-and-f_1-score", + "title": "Evaluation Metrics", + "section": "Balanced accuracy and \\(F_1\\) score", + "text": "Balanced accuracy and \\(F_1\\) score\n\\[\n\\frac{1}{\\frac{1}{2}\\left(\\frac{1}{\\mbox{recall}} + \n \\frac{1}{\\mbox{precision}}\\right) }\n\\]" + }, + { + "objectID": "slides/ml/37-evaluation-metrics.html#balanced-accuracy-and-f_1-score-1", + "href": "slides/ml/37-evaluation-metrics.html#balanced-accuracy-and-f_1-score-1", + "title": "Evaluation Metrics", + "section": "Balanced accuracy and \\(F_1\\) score", + "text": "Balanced accuracy and \\(F_1\\) score\n\nBecause it is easier to write, you often see this harmonic average rewritten as:\n\n\\[\n2 \\times \\frac{\\mbox{precision} \\cdot \\mbox{recall}}\n{\\mbox{precision} + \\mbox{recall}}\n\\]" + }, + { + "objectID": "slides/ml/37-evaluation-metrics.html#balanced-accuracy-and-f_1-score-2", + "href": "slides/ml/37-evaluation-metrics.html#balanced-accuracy-and-f_1-score-2", + "title": "Evaluation Metrics", + "section": "Balanced accuracy and \\(F_1\\) score", + "text": "Balanced accuracy and \\(F_1\\) score\n\nThe \\(F_1\\)-score can be adapted to weigh specificity and sensitivity differently.\n\n\\[\n\\frac{1}{\\frac{\\beta^2}{1+\\beta^2}\\frac{1}{\\mbox{recall}} + \n \\frac{1}{1+\\beta^2}\\frac{1}{\\mbox{precision}} }\n\\]" + }, + { + "objectID": "slides/ml/37-evaluation-metrics.html#balanced-accuracy-and-f_1-score-3", + "href": "slides/ml/37-evaluation-metrics.html#balanced-accuracy-and-f_1-score-3", + "title": "Evaluation Metrics", + "section": "Balanced accuracy and \\(F_1\\) score", + "text": "Balanced accuracy and \\(F_1\\) score\n\nThe F_meas function in the caret package computes this summary with beta defaulting to 1.\nLet’s rebuild our prediction algorithm, but this time maximizing the F-score instead of overall accuracy:\n\n\ncutoff <- seq(61, 70) \nF_1 <- sapply(cutoff, function(x){ \n y_hat <- factor(ifelse(train_set$height > x, \"Male\", \"Female\"), levels(test_set$sex)) \n F_meas(data = y_hat, reference = factor(train_set$sex)) \n})" + }, + { + "objectID": "slides/ml/37-evaluation-metrics.html#balanced-accuracy-and-f_1-score-4", + "href": "slides/ml/37-evaluation-metrics.html#balanced-accuracy-and-f_1-score-4", + "title": "Evaluation Metrics", + "section": "Balanced accuracy and \\(F_1\\) score", + "text": "Balanced accuracy and \\(F_1\\) score\n\nAs before, we can plot these \\(F_1\\) measures versus the cutoffs:" + }, + { + "objectID": "slides/ml/37-evaluation-metrics.html#balanced-accuracy-and-f_1-score-5", + "href": "slides/ml/37-evaluation-metrics.html#balanced-accuracy-and-f_1-score-5", + "title": "Evaluation Metrics", + "section": "Balanced accuracy and \\(F_1\\) score", + "text": "Balanced accuracy and \\(F_1\\) score\n\nWe see that it is maximized at \\(F_1\\) value of:\n\n\nmax(F_1) \n\n[1] 0.647\n\n\n\nThis maximum is achieved when we use the following cutoff:\n\n\nbest_cutoff <- cutoff[which.max(F_1)] \nbest_cutoff \n\n[1] 66\n\n\n\nA cutoff of 66 makes more sense than 64." + }, + { + "objectID": "slides/ml/37-evaluation-metrics.html#balanced-accuracy-and-f_1-score-6", + "href": "slides/ml/37-evaluation-metrics.html#balanced-accuracy-and-f_1-score-6", + "title": "Evaluation Metrics", + "section": "Balanced accuracy and \\(F_1\\) score", + "text": "Balanced accuracy and \\(F_1\\) score\n\nFurthermore, it balances the specificity and sensitivity of our confusion matrix:\n\n\ny_hat <- ifelse(test_set$height > best_cutoff, \"Male\", \"Female\") |> \n factor(levels = levels(test_set$sex)) \nsensitivity(data = y_hat, reference = test_set$sex) \n\n[1] 0.63\n\nspecificity(data = y_hat, reference = test_set$sex) \n\n[1] 0.833\n\n\n\nWe now see that we do much better than guessing, that both sensitivity and specificity are relatively high." + }, + { + "objectID": "slides/ml/37-evaluation-metrics.html#balanced-accuracy-and-f_1-score-7", + "href": "slides/ml/37-evaluation-metrics.html#balanced-accuracy-and-f_1-score-7", + "title": "Evaluation Metrics", + "section": "Balanced accuracy and \\(F_1\\) score", + "text": "Balanced accuracy and \\(F_1\\) score\n\ny_hat <- ifelse(test_set$height > best_cutoff, \"Male\", \"Female\") |> \n factor(levels = levels(test_set$sex)) \nsensitivity(data = y_hat, reference = test_set$sex) \n\n[1] 0.63\n\nspecificity(data = y_hat, reference = test_set$sex) \n\n[1] 0.833\n\n\n\nWe now see that we do much better than guessing, that both sensitivity and specificity are relatively high." + }, + { + "objectID": "slides/ml/37-evaluation-metrics.html#prevalence-matters-in-practice", + "href": "slides/ml/37-evaluation-metrics.html#prevalence-matters-in-practice", + "title": "Evaluation Metrics", + "section": "Prevalence matters in practice", + "text": "Prevalence matters in practice\n\nA machine learning algorithm with very high TPR and TNR may not be useful in practice when prevalence is close to either 0 or 1.\nTo see this, consider the case of a doctor that specializes in a rare disease and is interested in developing an algorithm for predicting who has the disease.\nThe doctor shares data with about 1/2 cases and 1/2 controls and some predictors.\nYou then develop an algorithm with TPR=0.99 and TNR = 0.99." + }, + { + "objectID": "slides/ml/37-evaluation-metrics.html#prevalence-matters-in-practice-1", + "href": "slides/ml/37-evaluation-metrics.html#prevalence-matters-in-practice-1", + "title": "Evaluation Metrics", + "section": "Prevalence matters in practice", + "text": "Prevalence matters in practice\n\nYou are excited to explain to the doctor that this means that if a patient has the disease, the algorithm is very likely to predict correctly.\nThe doctor is not impressed and explains that your TNR is too low for this algorithm to be used in practice.\nThis is because this is a rare disease with a prevalence in the general population of 0.5%.\nThe doctor reminds you of Bayes formula:\n\n\\[ \\mbox{Pr}(Y = 1\\mid \\hat{Y}=1) = \\mbox{Pr}(\\hat{Y}=1 \\mid Y=1) \\frac{\\mbox{Pr}(Y=1)}{\\mbox{Pr}(\\hat{Y}=1)} \\implies \\text{Precision} = \\text{TPR} \\times \\frac{\\text{Prevalence}}{\\text{TPR}\\times \\text{Prevalence} + \\text{FPR}\\times(1-\\text{Prevalence})} \\approx 0.33 \\]" + }, + { + "objectID": "slides/ml/37-evaluation-metrics.html#prevalence-matters-in-practice-2", + "href": "slides/ml/37-evaluation-metrics.html#prevalence-matters-in-practice-2", + "title": "Evaluation Metrics", + "section": "Prevalence matters in practice", + "text": "Prevalence matters in practice\n\nHere is plot of precision as a function of prevalence with TPR and TNR are 95%:" + }, + { + "objectID": "slides/ml/37-evaluation-metrics.html#prevalence-matters-in-practice-3", + "href": "slides/ml/37-evaluation-metrics.html#prevalence-matters-in-practice-3", + "title": "Evaluation Metrics", + "section": "Prevalence matters in practice", + "text": "Prevalence matters in practice" + }, + { + "objectID": "slides/ml/37-evaluation-metrics.html#prevalence-matters-in-practice-4", + "href": "slides/ml/37-evaluation-metrics.html#prevalence-matters-in-practice-4", + "title": "Evaluation Metrics", + "section": "Prevalence matters in practice", + "text": "Prevalence matters in practice\n\nAlthough your algorithm has a precision of about 95% on the data you train on, with prevalence of 50%, if applied to the general population, the algorithm’s precision would be just 33%.\nThe doctor can’t use an algorithm with 33% of people receiving a positive test actually not having the disease.\nNote that even if your algorithm had perfect sensitivity, the precision would still be around 33%.\nSo you need to greatly decrease your FPR for the algorithm to be useful in practice." + }, + { + "objectID": "slides/ml/37-evaluation-metrics.html#roc-and-precision-recall-curves", + "href": "slides/ml/37-evaluation-metrics.html#roc-and-precision-recall-curves", + "title": "Evaluation Metrics", + "section": "ROC and precision-recall curves", + "text": "ROC and precision-recall curves" + }, + { + "objectID": "slides/ml/37-evaluation-metrics.html#roc-and-precision-recall-curves-1", + "href": "slides/ml/37-evaluation-metrics.html#roc-and-precision-recall-curves-1", + "title": "Evaluation Metrics", + "section": "ROC and precision-recall curves", + "text": "ROC and precision-recall curves\n\nThe packages pROC and plotROC are useful for generating these plots." + }, + { + "objectID": "slides/ml/37-evaluation-metrics.html#roc-and-precision-recall-curves-2", + "href": "slides/ml/37-evaluation-metrics.html#roc-and-precision-recall-curves-2", + "title": "Evaluation Metrics", + "section": "ROC and precision-recall curves", + "text": "ROC and precision-recall curves" + }, + { + "objectID": "slides/ml/37-evaluation-metrics.html#roc-and-precision-recall-curves-3", + "href": "slides/ml/37-evaluation-metrics.html#roc-and-precision-recall-curves-3", + "title": "Evaluation Metrics", + "section": "ROC and precision-recall curves", + "text": "ROC and precision-recall curves" + }, + { + "objectID": "slides/ml/37-evaluation-metrics.html#roc-and-precision-recall-curves-4", + "href": "slides/ml/37-evaluation-metrics.html#roc-and-precision-recall-curves-4", + "title": "Evaluation Metrics", + "section": "ROC and precision-recall curves", + "text": "ROC and precision-recall curves\n\nFrom the plot on the left, we immediately see that the precision of guessing is not high.\nThis is because the prevalence is low.\nFrom the plot on the right, we also see that if we change \\(Y=1\\) to mean Male instead of Female, the precision increases.\nNote that the ROC curve would remain the same." + }, + { + "objectID": "slides/ml/37-evaluation-metrics.html#roc-and-precision-recall-curves-5", + "href": "slides/ml/37-evaluation-metrics.html#roc-and-precision-recall-curves-5", + "title": "Evaluation Metrics", + "section": "ROC and precision-recall curves", + "text": "ROC and precision-recall curves" + }, + { + "objectID": "slides/ml/37-evaluation-metrics.html#roc-and-precision-recall-curves-6", + "href": "slides/ml/37-evaluation-metrics.html#roc-and-precision-recall-curves-6", + "title": "Evaluation Metrics", + "section": "ROC and precision-recall curves", + "text": "ROC and precision-recall curves\n\nWe see that we obtain higher sensitivity with this approach for all values of specificity, which implies it is in fact a better method.\nKeep in mind that ROC curves for guessing always fall on the identity line.\nAlso, note that when making ROC curves, it is often nice to add the cutoff associated with each point.\nThe packages pROC and plotROC are useful for generating these plots." + }, + { + "objectID": "slides/ml/37-evaluation-metrics.html#roc-and-precision-recall-curves-7", + "href": "slides/ml/37-evaluation-metrics.html#roc-and-precision-recall-curves-7", + "title": "Evaluation Metrics", + "section": "ROC and precision-recall curves", + "text": "ROC and precision-recall curves\n\nROC curves have one weakness and it is that neither of the measures plotted depends on prevalence.\nIn cases in which prevalence matters, we may instead make a precision-recall plot.\nThe idea is similar, but we instead plot precision against recall:" + }, + { + "objectID": "slides/ml/37-evaluation-metrics.html#roc-and-precision-recall-curves-8", + "href": "slides/ml/37-evaluation-metrics.html#roc-and-precision-recall-curves-8", + "title": "Evaluation Metrics", + "section": "ROC and precision-recall curves", + "text": "ROC and precision-recall curves" + }, + { + "objectID": "slides/ml/37-evaluation-metrics.html#roc-and-precision-recall-curves-9", + "href": "slides/ml/37-evaluation-metrics.html#roc-and-precision-recall-curves-9", + "title": "Evaluation Metrics", + "section": "ROC and precision-recall curves", + "text": "ROC and precision-recall curves\n\nFrom the plot on the left, we immediately see that the precision of guessing is not high.\nThis is because the prevalence is low.\nFrom the plot on the right, we also see that if we change \\(Y=1\\) to mean Male instead of Female, the precision increases.\nNote that the ROC curve would remain the same." + }, + { + "objectID": "slides/ml/37-evaluation-metrics.html#mean-squared-error", + "href": "slides/ml/37-evaluation-metrics.html#mean-squared-error", + "title": "Evaluation Metrics", + "section": "Mean Squared Error", + "text": "Mean Squared Error\n\nUp to now we have described evaluation metrics that apply exclusively to categorical data.\nSpecifically, for binary outcomes, we have described how sensitivity, specificity, accuracy, and \\(F_1\\) can be used as quantification.\nHowever, these metrics are not useful for continuous outcomes.\nIn this section, we describe how the general approach to defining “best” in machine learning is to define a loss function, which can be applied to both categorical and continuous data." + }, + { + "objectID": "slides/ml/37-evaluation-metrics.html#mean-squared-error-1", + "href": "slides/ml/37-evaluation-metrics.html#mean-squared-error-1", + "title": "Evaluation Metrics", + "section": "Mean Squared Error", + "text": "Mean Squared Error\n\nMost commont metric to minimize is mean squared error (MSE):\n\n\\[\n\\text{MSE} \\equiv \\mbox{E}\\{(\\hat{Y} - Y)^2 \\}\n\\]\n\nHow do we estimate this?" + }, + { + "objectID": "slides/ml/37-evaluation-metrics.html#mean-squared-error-2", + "href": "slides/ml/37-evaluation-metrics.html#mean-squared-error-2", + "title": "Evaluation Metrics", + "section": "Mean Squared Error", + "text": "Mean Squared Error\n\nBecause in practice we have tests set with many, say \\(N\\), independent observations, a commonly used observable estimate of the MSE is:\n\n\\[\n\\hat{\\mbox{MSE}} = \\frac{1}{N}\\sum_{i=1}^N (\\hat{y}_i - y_i)^2\n\\]\n\nwith the \\(\\hat{y}_i\\) generated completely independently from the the \\(y_i\\)." + }, + { + "objectID": "slides/ml/37-evaluation-metrics.html#mean-squared-error-3", + "href": "slides/ml/37-evaluation-metrics.html#mean-squared-error-3", + "title": "Evaluation Metrics", + "section": "Mean Squared Error", + "text": "Mean Squared Error\n\nThe estimate \\(\\hat{\\text{MSE}}\\) is a random variable.\n\\(\\text{MSE}\\) and \\(\\hat{\\text{MSE}}\\) are often referred to as the true error and apparent error, respectively.\nIt is difficult to derive the statistical properties of how well the apparent error estimates the true error.\nWe later introduce cross-validation an approach to estimating the MSE." + }, + { + "objectID": "slides/ml/37-evaluation-metrics.html#mean-squared-error-4", + "href": "slides/ml/37-evaluation-metrics.html#mean-squared-error-4", + "title": "Evaluation Metrics", + "section": "Mean Squared Error", + "text": "Mean Squared Error\n\nThere are loss functions other than the squared loss.\nFor example, the Mean Absolute Error uses absolute values, \\(|\\hat{Y}_i - Y_i|\\) instead of squaring the errors.\n\\((\\hat{Y}_i - Y_i)^2\\).\nHowever, in this book we focus on minimizing square loss since it is the most widely used." + }, + { + "objectID": "slides/ml/37-evaluation-metrics.html#mean-squared-error-5", + "href": "slides/ml/37-evaluation-metrics.html#mean-squared-error-5", + "title": "Evaluation Metrics", + "section": "Mean Squared Error", + "text": "Mean Squared Error\n\nWe end this chapter by pointing out that there are loss functions other than the squared loss.\nFor example, the Mean Absolute Error uses absolute values, \\(|\\hat{Y}_i - Y_i|\\) instead of squaring the errors.\n\\((\\hat{Y}_i - Y_i)^2\\).\nHowever, in this book we focus on minimizing square loss since it is the most widely used." + }, + { + "objectID": "slides/ml/38-conditionals.html#conditional-probabilities-and-expectations", + "href": "slides/ml/38-conditionals.html#conditional-probabilities-and-expectations", + "title": "Conditionals", + "section": "Conditional probabilities and expectations", + "text": "Conditional probabilities and expectations\n\nIn machine learning applications, we rarely can predict outcomes perfectly.\nThe most common reason for not being able to build perfect algorithms is that it is impossible.\nTo see this, consider that most datasets will include groups of observations with the same exact observed values for all predictors, but with different outcomes." + }, + { + "objectID": "slides/ml/38-conditionals.html#conditional-probabilities-and-expectations-1", + "href": "slides/ml/38-conditionals.html#conditional-probabilities-and-expectations-1", + "title": "Conditionals", + "section": "Conditional probabilities and expectations", + "text": "Conditional probabilities and expectations\n\nBecause our prediction rules are functions, equal inputs (the predictors) implies equal outputs (the predictions).\nTherefore, for a challenge in which the same predictors are associated with different outcomes across different individual observations, it is impossible to predict correctly for all these cases.\nIt therefor makes sense to consider conditional probabilities:\n\n\\[\n\\mbox{Pr}(Y=k \\mid X_1 = x_1,\\dots,X_p=x_p), \\, \\mbox{for}\\,k=1,\\dots,K\n\\]" + }, + { + "objectID": "slides/ml/38-conditionals.html#conditional-probabilities-and-expectations-2", + "href": "slides/ml/38-conditionals.html#conditional-probabilities-and-expectations-2", + "title": "Conditionals", + "section": "Conditional probabilities and expectations", + "text": "Conditional probabilities and expectations\n\nHowever, none of this means that we can’t build useful algorithms that are much better than guessing, and in some cases better than expert opinions.\nTo achieve this in an optimal way, we make use of probabilistic representations of the problem based on the ideas presented in ?@sec-conditional-expectation.\nObservations with the same observed values for the predictors may not all be the same, but we can assume that they all have the same probability of this class or that class.\nWe will write this idea out mathematically for the case of categorical data." + }, + { + "objectID": "slides/ml/38-conditionals.html#conditional-probabilities", + "href": "slides/ml/38-conditionals.html#conditional-probabilities", + "title": "Conditionals", + "section": "Conditional probabilities", + "text": "Conditional probabilities\n\nWe will also use the following notation for the conditional probability of being class \\(k\\):\n\n\\[\np_k(\\mathbf{x}) = \\mbox{Pr}(Y=k \\mid \\mathbf{X}=\\mathbf{x}), \\, \\mbox{for}\\, k=1,\\dots,K\n\\]\n\nNotice that the \\(p_k(\\mathbf{x})\\) have to add up to 1 for each \\(\\mathbf{x}\\), so once we know \\(K-1\\), we know all." + }, + { + "objectID": "slides/ml/38-conditionals.html#conditional-probabilities-1", + "href": "slides/ml/38-conditionals.html#conditional-probabilities-1", + "title": "Conditionals", + "section": "Conditional probabilities", + "text": "Conditional probabilities\n\nWhen the outcome is binary, we only need to know 1, so we drop the \\(k\\) and use the notation:\n\n\\[p(\\mathbf{x}) = \\mbox{Pr}(Y=1 \\mid \\mathbf{X}=\\mathbf{x})\\]\n\n\n\n\n\n\nNote\n\n\n\nDo not be confused by the fact that we use \\(p\\) for two different things: the conditional probability \\(p(\\mathbf{x})\\) and the number of predictors \\(p\\)." + }, + { + "objectID": "slides/ml/38-conditionals.html#conditional-probabilities-2", + "href": "slides/ml/38-conditionals.html#conditional-probabilities-2", + "title": "Conditionals", + "section": "Conditional probabilities", + "text": "Conditional probabilities\n\nThese probabilities guide the construction of an algorithm that makes the best prediction:\n\n\\[\\hat{Y} = \\max_k p_k(\\mathbf{x})\\]\n\nIn machine learning, we refer to this as Bayes’ Rule.\nBut this is a theoretical rule since, in practice, we don’t know \\(p_k(\\mathbf{x}), k=1,\\dots,K\\)." + }, + { + "objectID": "slides/ml/38-conditionals.html#conditional-probabilities-3", + "href": "slides/ml/38-conditionals.html#conditional-probabilities-3", + "title": "Conditionals", + "section": "Conditional probabilities", + "text": "Conditional probabilities\n\nEstimating these conditional probabilities can be thought of as the main challenge of machine learning.\nThe better our probability estimates \\(\\hat{p}_k(\\mathbf{x})\\), the better our predictor \\(\\hat{Y}\\)." + }, + { + "objectID": "slides/ml/38-conditionals.html#conditional-probabilities-4", + "href": "slides/ml/38-conditionals.html#conditional-probabilities-4", + "title": "Conditionals", + "section": "Conditional probabilities", + "text": "Conditional probabilities\nHow well we predict depends on two things:\n\nhow close are the \\(\\max_k p_k(\\mathbf{x})\\) to 1 or 0 (perfect certainty) and\nhow close our estimates \\(\\hat{p}_k(\\mathbf{x})\\) are to \\(p_k(\\mathbf{x})\\).\n\nWe can’t do anything about the first restriction as it is determined by the nature of the problem, so our energy goes into finding ways to best estimate conditional probabilities." + }, + { + "objectID": "slides/ml/38-conditionals.html#conditional-probabilities-5", + "href": "slides/ml/38-conditionals.html#conditional-probabilities-5", + "title": "Conditionals", + "section": "Conditional probabilities", + "text": "Conditional probabilities\n\nThe first restriction does imply that we have limits as to how well even the best possible algorithm can perform.\nYou should get used to the idea that while in some challenges we will be able to achieve almost perfect accuracy, with digit readers for example, in others, our success is restricted by the randomness of the process, such as with movie recommendations.\nKeep in mind that defining our prediction by maximizing the probability is not always optimal in practice and depends on the context." + }, + { + "objectID": "slides/ml/38-conditionals.html#conditional-probabilities-6", + "href": "slides/ml/38-conditionals.html#conditional-probabilities-6", + "title": "Conditionals", + "section": "Conditional probabilities", + "text": "Conditional probabilities\n\nAs discussed in ?@sec-evaluation-metrics, sensitivity and specificity may differ in importance.\nBut even in these cases, having a good estimate of the \\(p_k(x), k=1,\\dots,K\\) will suffice for us to build optimal prediction models, since we can control the balance between specificity and sensitivity however we wish.\nFor instance, we can simply change the cutoffs used to predict one outcome or the other." + }, + { + "objectID": "slides/ml/38-conditionals.html#conditional-probabilities-7", + "href": "slides/ml/38-conditionals.html#conditional-probabilities-7", + "title": "Conditionals", + "section": "Conditional probabilities", + "text": "Conditional probabilities\n\nIn the plane example, we may ground the plane anytime the probability of malfunction is higher than 1 in a million as opposed to the default 1/2 used when error types are equally undesired." + }, + { + "objectID": "slides/ml/38-conditionals.html#conditional-expectations", + "href": "slides/ml/38-conditionals.html#conditional-expectations", + "title": "Conditionals", + "section": "Conditional expectations", + "text": "Conditional expectations\n\nFor binary data, you can think of the probability \\(\\mbox{Pr}(Y=1 \\mid \\mathbf{X}=\\mathbf{x})\\) as the proportion of 1s in the stratum of the population for which \\(\\mathbf{X}=\\mathbf{x}\\).\n\n\\[\n\\mbox{E}(Y \\mid \\mathbf{X}=\\mathbf{x})=\\mbox{Pr}(Y=1 \\mid \\mathbf{X}=\\mathbf{x}).\n\\]\n\nAs a result, we often only use the expectation to denote both the conditional probability and conditional expectation." + }, + { + "objectID": "slides/ml/38-conditionals.html#conditional-expectations-1", + "href": "slides/ml/38-conditionals.html#conditional-expectations-1", + "title": "Conditionals", + "section": "Conditional expectations", + "text": "Conditional expectations\n\nWhy do we care about the conditional expectation in machine learning?\nThis is because the expected value has an attractive mathematical property: it minimizes the MSE.\n\n\\[\n\\hat{Y} = \\mbox{E}(Y \\mid \\mathbf{X}=\\mathbf{x}) \\, \\mbox{ minimizes } \\, \\mbox{E}\\{ (\\hat{Y} - Y)^2 \\mid \\mathbf{X}=\\mathbf{x} \\}\n\\]" + }, + { + "objectID": "slides/ml/38-conditionals.html#conditional-expectations-2", + "href": "slides/ml/38-conditionals.html#conditional-expectations-2", + "title": "Conditionals", + "section": "Conditional expectations", + "text": "Conditional expectations\n\nDue to this property, a succinct description of the main task of machine learning is that we use data to estimate:\n\n\\[\nf(\\mathbf{x}) \\equiv \\mbox{E}( Y \\mid \\mathbf{X}=\\mathbf{x} )\n\\]\n\nfor any set of features \\(\\mathbf{x} = (x_1, \\dots, x_p)^\\top\\).\nThis is easier said than done, since this function can take any shape and \\(p\\) can be very large." + }, + { + "objectID": "slides/ml/38-conditionals.html#conditional-expectations-minimizes-squared-loss-function", + "href": "slides/ml/38-conditionals.html#conditional-expectations-minimizes-squared-loss-function", + "title": "Conditionals", + "section": "Conditional expectations minimizes squared loss function", + "text": "Conditional expectations minimizes squared loss function\n\nWhy do we care about the conditional expectation in machine learning?\nThis is because the expected value has an attractive mathematical property: it minimizes the MSE.\n\n\\[\n\\hat{Y} = \\mbox{E}(Y \\mid \\mathbf{X}=\\mathbf{x}) \\, \\mbox{ minimizes } \\, \\mbox{E}\\{ (\\hat{Y} - Y)^2 \\mid \\mathbf{X}=\\mathbf{x} \\}\n\\]" + }, + { + "objectID": "slides/ml/38-conditionals.html#conditional-expectations-minimizes-squared-loss-function-1", + "href": "slides/ml/38-conditionals.html#conditional-expectations-minimizes-squared-loss-function-1", + "title": "Conditionals", + "section": "Conditional expectations minimizes squared loss function", + "text": "Conditional expectations minimizes squared loss function\n\nDue to this property, a succinct description of the main task of machine learning is that we use data to estimate:\n\n\\[\nf(\\mathbf{x}) \\equiv \\mbox{E}( Y \\mid \\mathbf{X}=\\mathbf{x} )\n\\]\n\nfor any set of features \\(\\mathbf{x} = (x_1, \\dots, x_p)^\\top\\).\nThis is easier said than done, since this function can take any shape and \\(p\\) can be very large." + }, + { + "objectID": "slides/ml/38-conditionals.html#conditional-expectations-minimizes-squared-loss-function-2", + "href": "slides/ml/38-conditionals.html#conditional-expectations-minimizes-squared-loss-function-2", + "title": "Conditionals", + "section": "Conditional expectations minimizes squared loss function", + "text": "Conditional expectations minimizes squared loss function\n\nThe expectation \\(\\mbox{E}\\{ Y \\mid X=x \\}\\) can be any function of \\(x\\): a line, a parabola, a sine wave, a step function, anything.\nIt gets even more complicated when we consider instances with large \\(p\\), in which case \\(f(\\mathbf{x})\\) is a function of a multidimensional vector \\(\\mathbf{x}\\).\nFor example, in our digit reader example \\(p = 784\\)!.\nThe main way in which competing machine learning algorithms differ is in their approach to estimating this conditional expectation." + }, + { + "objectID": "slides/ml/39-smoothing.html#smoothing", + "href": "slides/ml/39-smoothing.html#smoothing", + "title": "Smoothing", + "section": "Smoothing", + "text": "Smoothing\n\nBefore continuing learning about machine learning algorithms, we introduce the important concept of smoothing.\nSmoothing is a very powerful technique used all across data analysis.\nOther names given to this technique are curve fitting and low pass filtering.\nIt is designed to detect trends in the presence of noisy data in cases in which the shape of the trend is unknown." + }, + { + "objectID": "slides/ml/39-smoothing.html#smoothing-1", + "href": "slides/ml/39-smoothing.html#smoothing-1", + "title": "Smoothing", + "section": "Smoothing", + "text": "Smoothing\n\nThe smoothing name comes from the fact that to accomplish this feat, we assume that the trend is smooth, as in a smooth surface.\nIn contrast, the noise, or deviation from the trend, is unpredictably wobbly:" + }, + { + "objectID": "slides/ml/39-smoothing.html#smoothing-2", + "href": "slides/ml/39-smoothing.html#smoothing-2", + "title": "Smoothing", + "section": "Smoothing", + "text": "Smoothing" + }, + { + "objectID": "slides/ml/39-smoothing.html#smoothing-3", + "href": "slides/ml/39-smoothing.html#smoothing-3", + "title": "Smoothing", + "section": "Smoothing", + "text": "Smoothing\n\nPart of what we explain in this section are the assumptions that permit us to extract the trend from the noise." + }, + { + "objectID": "slides/ml/39-smoothing.html#example-is-it-a-2-or-a-7", + "href": "slides/ml/39-smoothing.html#example-is-it-a-2-or-a-7", + "title": "Smoothing", + "section": "Example: Is it a 2 or a 7?", + "text": "Example: Is it a 2 or a 7?\n\nTo motivate the need for smoothing and make the connection with machine learning, we will construct a simplified version of the MNIST dataset with just two classes for the outcome and two predictors.\nSpecifically, we define the challenge as building an algorithm that can determine if a digit is a 2 or 7 from the proportion of dark pixels in the upper left quadrant (\\(X_1\\)) and the lower right quadrant (\\(X_2\\)).\nWe also selected a random sample of 1,000 digits, 500 in the training set and 500 in the test set." + }, + { + "objectID": "slides/ml/39-smoothing.html#example-is-it-a-2-or-a-7-1", + "href": "slides/ml/39-smoothing.html#example-is-it-a-2-or-a-7-1", + "title": "Smoothing", + "section": "Example: Is it a 2 or a 7?", + "text": "Example: Is it a 2 or a 7?\n\nWe provide this dataset in the mnist_27 object in the dslabs package.\nFor the training data, we have \\(n=500\\) observed outcomes \\(y_1,\\dots,y_n\\), with \\(Y\\) defined as \\(1\\) if the digit is 7 and 0 if it’s 2, and \\(n=500\\) features \\(\\mathbf{x}_1, \\dots, \\mathbf{x}_n\\), with each feature a two-dimensional point \\(\\mathbf{x}_i = (x_{i,1}, x_{i,2})^\\top\\).\nHere is a plot of the \\(x_2\\)s versus the \\(x_1\\)s with color determining if \\(y\\) is 1 (blue) or 0 (red):\n\n\nlibrary(caret) \nlibrary(dslabs) \nmnist_27$train |> ggplot(aes(x_1, x_2, color = y)) + geom_point()" + }, + { + "objectID": "slides/ml/39-smoothing.html#example-is-it-a-2-or-a-7-2", + "href": "slides/ml/39-smoothing.html#example-is-it-a-2-or-a-7-2", + "title": "Smoothing", + "section": "Example: Is it a 2 or a 7?", + "text": "Example: Is it a 2 or a 7?" + }, + { + "objectID": "slides/ml/39-smoothing.html#example-is-it-a-2-or-a-7-3", + "href": "slides/ml/39-smoothing.html#example-is-it-a-2-or-a-7-3", + "title": "Smoothing", + "section": "Example: Is it a 2 or a 7?", + "text": "Example: Is it a 2 or a 7?\n\nWe can immediately see some patterns.\nFor example, if \\(x_1\\) (the upper left panel) is very large, then the digit is probably a 7.\nAlso, for smaller values of \\(x_1\\), the 2s appear to be in the mid range values of \\(x_2\\).\nTo illustrate how to interpret \\(x_1\\) and \\(x_2\\), we include four example images." + }, + { + "objectID": "slides/ml/39-smoothing.html#example-is-it-a-2-or-a-7-4", + "href": "slides/ml/39-smoothing.html#example-is-it-a-2-or-a-7-4", + "title": "Smoothing", + "section": "Example: Is it a 2 or a 7?", + "text": "Example: Is it a 2 or a 7?\n\nOn the left are the original images of the two digits with the largest and smallest values for \\(x_1\\) and on the right we have the images corresponding to the largest and smallest values of \\(x_2\\):" + }, + { + "objectID": "slides/ml/39-smoothing.html#example-is-it-a-2-or-a-7-5", + "href": "slides/ml/39-smoothing.html#example-is-it-a-2-or-a-7-5", + "title": "Smoothing", + "section": "Example: Is it a 2 or a 7?", + "text": "Example: Is it a 2 or a 7?" + }, + { + "objectID": "slides/ml/39-smoothing.html#example-is-it-a-2-or-a-7-6", + "href": "slides/ml/39-smoothing.html#example-is-it-a-2-or-a-7-6", + "title": "Smoothing", + "section": "Example: Is it a 2 or a 7?", + "text": "Example: Is it a 2 or a 7?\n\nWe can start getting a sense for why these predictors are useful, but also why the problem will be somewhat challenging.\nWe haven’t really learned any algorithms yet, so let’s try building an algorithm using multivariable regression.\nThe model is simply:\n\n\\[\n\\begin{aligned}\np(\\mathbf{x}) &= \\mbox{Pr}(Y=1 \\mid \\mathbf{X}=\\mathbf{x}) = \\mbox{Pr}(Y=1 \\mid X_1=x_1 , X_2 = x_2)\\\\\n&= \\beta_0 + \\beta_1 x_1 + \\beta_2 x_2\n\\end{aligned}\n\\]" + }, + { + "objectID": "slides/ml/39-smoothing.html#example-is-it-a-2-or-a-7-7", + "href": "slides/ml/39-smoothing.html#example-is-it-a-2-or-a-7-7", + "title": "Smoothing", + "section": "Example: Is it a 2 or a 7?", + "text": "Example: Is it a 2 or a 7?\n\nWe fit can fit this model using least squares and obtain an estimate \\(\\hat{p}(\\mathbf{x})\\) by using the least square estimates \\(\\hat{\\beta}_0\\), \\(\\hat{\\beta}_1\\) and \\(\\hat{\\beta}_2\\).\nWe define a decision rule by predicting \\(\\hat{y}=1\\) if \\(\\hat{p}(\\mathbf{x})>0.5\\) and 0 otherwise.\n\n\nWe get an accuracy of 0.775, well above 50%.\nNot bad for our first try." + }, + { + "objectID": "slides/ml/39-smoothing.html#example-is-it-a-2-or-a-7-8", + "href": "slides/ml/39-smoothing.html#example-is-it-a-2-or-a-7-8", + "title": "Smoothing", + "section": "Example: Is it a 2 or a 7?", + "text": "Example: Is it a 2 or a 7?\n\nBut can we do better?\nBecause we constructed the mnist_27 example and we had at our disposal 60,000 digits in just the MNIST dataset, we used this to build the true conditional distribution \\(p(\\mathbf{x})\\).\nKeep in mind that in practice we don’t have access to the true conditional distribution.\nWe include it in this educational example because it permits the comparison of \\(\\hat{p}(\\mathbf{x})\\) to the true \\(p(\\mathbf{x})\\)." + }, + { + "objectID": "slides/ml/39-smoothing.html#example-is-it-a-2-or-a-7-9", + "href": "slides/ml/39-smoothing.html#example-is-it-a-2-or-a-7-9", + "title": "Smoothing", + "section": "Example: Is it a 2 or a 7?", + "text": "Example: Is it a 2 or a 7?\n\nThis comparison teaches us the limitations of different algorithms.\nWe have stored the true \\(p(\\mathbf{x})\\) in the mnist_27 and can plot it as an image.\nWe draw a curve that separates pairs \\((\\mathbf{x})\\) for which \\(p(\\mathbf{x}) > 0.5\\) and pairs for which \\(p(\\mathbf{x}) < 0.5\\):" + }, + { + "objectID": "slides/ml/39-smoothing.html#example-is-it-a-2-or-a-7-10", + "href": "slides/ml/39-smoothing.html#example-is-it-a-2-or-a-7-10", + "title": "Smoothing", + "section": "Example: Is it a 2 or a 7?", + "text": "Example: Is it a 2 or a 7?" + }, + { + "objectID": "slides/ml/39-smoothing.html#example-is-it-a-2-or-a-7-11", + "href": "slides/ml/39-smoothing.html#example-is-it-a-2-or-a-7-11", + "title": "Smoothing", + "section": "Example: Is it a 2 or a 7?", + "text": "Example: Is it a 2 or a 7?\n\nTo start understanding the limitations of regression, first note that with regression \\(\\hat{p}(\\mathbf{x})\\) has to be a plane, and as a result the boundary defined by the decision rule is given by:\n\\(\\hat{p}(\\mathbf{x}) = 0.5\\):\n\n\\[\n\\begin{aligned}\n\\hat{\\beta}_0 + \\hat{\\beta}_1 x_1 + \\hat{\\beta}_2 x_2 = 0.5 \\implies \\\\\n\\hat{\\beta}_0 + \\hat{\\beta}_1 x_1 + \\hat{\\beta}_2 x_2 = 0.5 \\implies \\\\\nx_2 = (0.5-\\hat{\\beta}_0)/\\hat{\\beta}_2 -\\hat{\\beta}_1/\\hat{\\beta}_2 x_1\n\\end{aligned}\n\\]" + }, + { + "objectID": "slides/ml/39-smoothing.html#example-is-it-a-2-or-a-7-12", + "href": "slides/ml/39-smoothing.html#example-is-it-a-2-or-a-7-12", + "title": "Smoothing", + "section": "Example: Is it a 2 or a 7?", + "text": "Example: Is it a 2 or a 7?\n\nThis implies that for the boundary, \\(x_2\\) is a linear function of \\(x_1\\), which suggests that our regression approach has no chance of capturing the non-linear nature of the true \\(p(\\mathbf{x})\\)." + }, + { + "objectID": "slides/ml/39-smoothing.html#example-is-it-a-2-or-a-7-13", + "href": "slides/ml/39-smoothing.html#example-is-it-a-2-or-a-7-13", + "title": "Smoothing", + "section": "Example: Is it a 2 or a 7?", + "text": "Example: Is it a 2 or a 7?\n\nVisual representation of \\(\\hat{p}(\\mathbf{x})\\):" + }, + { + "objectID": "slides/ml/39-smoothing.html#example-is-it-a-2-or-a-7-14", + "href": "slides/ml/39-smoothing.html#example-is-it-a-2-or-a-7-14", + "title": "Smoothing", + "section": "Example: Is it a 2 or a 7?", + "text": "Example: Is it a 2 or a 7?\n\nWe need something more flexible: a method that permits estimates with shapes other than a plane.\nSmoothing techniques permit this flexibility.\nWe will start by describing nearest neighbor and kernel approaches.\nTo understand why we cover this topic, remember that the concepts behind smoothing techniques are extremely useful in machine learning because conditional expectations/probabilities can be thought of as trends of unknown shapes that we need to estimate in the presence of uncertainty." + }, + { + "objectID": "slides/ml/39-smoothing.html#signal-plus-noise-model", + "href": "slides/ml/39-smoothing.html#signal-plus-noise-model", + "title": "Smoothing", + "section": "Signal plus noise model", + "text": "Signal plus noise model\n\nTo explain these concepts, we will focus first on a problem with just one predictor.\nSpecifically, we try to estimate the time trend in the 2008 US popular vote poll margin (the difference between Obama and McCain).\nLater we will learn about methods, such as k-nearest neighbors, that can be used to smooth with higher dimensions.\n\n\npolls_2008 |> ggplot(aes(day, margin)) + geom_point()" + }, + { + "objectID": "slides/ml/39-smoothing.html#signal-plus-noise-model-1", + "href": "slides/ml/39-smoothing.html#signal-plus-noise-model-1", + "title": "Smoothing", + "section": "Signal plus noise model", + "text": "Signal plus noise model" + }, + { + "objectID": "slides/ml/39-smoothing.html#signal-plus-noise-model-2", + "href": "slides/ml/39-smoothing.html#signal-plus-noise-model-2", + "title": "Smoothing", + "section": "Signal plus noise model", + "text": "Signal plus noise model\n\nFor the purposes of the popular vote example, do not think of it as a forecasting problem.\nInstead, we are simply interested in learning the shape of the trend after the election is over.\nWe assume that for any given day \\(x\\), there is a true preference among the electorate \\(f(x)\\), but due to the uncertainty introduced by the polling, each data point comes with an error \\(\\varepsilon\\)." + }, + { + "objectID": "slides/ml/39-smoothing.html#signal-plus-noise-model-3", + "href": "slides/ml/39-smoothing.html#signal-plus-noise-model-3", + "title": "Smoothing", + "section": "Signal plus noise model", + "text": "Signal plus noise model\n\nA mathematical model for the observed poll margin \\(Y_i\\) is:\n\n\\[\nY_i = f(x_i) + \\varepsilon_i\n\\]" + }, + { + "objectID": "slides/ml/39-smoothing.html#signal-plus-noise-model-4", + "href": "slides/ml/39-smoothing.html#signal-plus-noise-model-4", + "title": "Smoothing", + "section": "Signal plus noise model", + "text": "Signal plus noise model\n\nTo think of this as a machine learning problem, consider that we want to predict \\(Y\\) given a day \\(x\\).\nIf we knew the conditional expectation \\(f(x) = \\mbox{E}(Y \\mid X=x)\\), we would use it.\nBut since we don’t know this conditional expectation, we have to estimate it.\nLet’s use regression, since it is the only method we have learned up to now." + }, + { + "objectID": "slides/ml/39-smoothing.html#signal-plus-noise-model-5", + "href": "slides/ml/39-smoothing.html#signal-plus-noise-model-5", + "title": "Smoothing", + "section": "Signal plus noise model", + "text": "Signal plus noise model" + }, + { + "objectID": "slides/ml/39-smoothing.html#signal-plus-noise-model-6", + "href": "slides/ml/39-smoothing.html#signal-plus-noise-model-6", + "title": "Smoothing", + "section": "Signal plus noise model", + "text": "Signal plus noise model\n\nThe fitted regression line does not appear to describe the trend very well.\nFor example, on September 4 (day -62), the Republican Convention was held and the data suggest that it gave John McCain a boost in the polls.\nHowever, the regression line does not capture this potential trend.\nTo see the lack of fit more clearly, we note that points above the fitted line (blue) and those below (red) are not evenly distributed across days." + }, + { + "objectID": "slides/ml/39-smoothing.html#bin-smoothing", + "href": "slides/ml/39-smoothing.html#bin-smoothing", + "title": "Smoothing", + "section": "Bin smoothing", + "text": "Bin smoothing\n\nThe general idea of smoothing is to group data points into strata in which the value of \\(f(x)\\) can be assumed to be constant.\nWe can make this assumption when we think \\(f(x)\\) changes slowly and, as a result, \\(f(x)\\) is almost constant in small windows of \\(x\\).\nAn example of this idea for the poll_2008 data is to assume that public opinion remained approximately the same within a week’s time.\nWith this assumption in place, we have several data points with the same expected value." + }, + { + "objectID": "slides/ml/39-smoothing.html#bin-smoothing-1", + "href": "slides/ml/39-smoothing.html#bin-smoothing-1", + "title": "Smoothing", + "section": "Bin smoothing", + "text": "Bin smoothing\n\nIf we fix a day to be in the center of our week, call it \\(x_0\\), then for any other day \\(x\\) such that \\(|x - x_0| \\leq 3.5\\), we assume \\(f(x)\\) is a constant \\(f(x) = \\mu\\).\nThis assumption implies that:\n\n\\[\nE[Y_i | X_i = x_i ] \\approx \\mu \\mbox{ if } |x_i - x_0| \\leq 3.5\n\\]\n\nIn smoothing, we call the size of the interval satisfying \\(|x_i - x_0| \\leq 3.5\\) the window size, bandwidth or span." + }, + { + "objectID": "slides/ml/39-smoothing.html#bin-smoothing-2", + "href": "slides/ml/39-smoothing.html#bin-smoothing-2", + "title": "Smoothing", + "section": "Bin smoothing", + "text": "Bin smoothing\n\nLater we will see that we try to optimize this parameter.\nThis assumption implies that a good estimate for \\(f(x_0)\\) is the average of the \\(Y_i\\) values in the window.\nIf we define \\(A_0\\) as the set of indexes \\(i\\) such that \\(|x_i - x_0| \\leq 3.5\\) and \\(N_0\\) as the number of indexes in \\(A_0\\), then our estimate is:\n\n\\[\n\\hat{f}(x_0) = \\frac{1}{N_0} \\sum_{i \\in A_0} Y_i\n\\]" + }, + { + "objectID": "slides/ml/39-smoothing.html#bin-smoothing-3", + "href": "slides/ml/39-smoothing.html#bin-smoothing-3", + "title": "Smoothing", + "section": "Bin smoothing", + "text": "Bin smoothing\n\nWe make this calculation with each value of \\(x\\) as the center.\nIn the poll example, for each day, we would compute the average of the values within a week with that day in the center.\nHere are two examples: \\(x_0 = -125\\) and \\(x_0 = -55\\).\nThe blue segment represents the resulting average." + }, + { + "objectID": "slides/ml/39-smoothing.html#bin-smoothing-4", + "href": "slides/ml/39-smoothing.html#bin-smoothing-4", + "title": "Smoothing", + "section": "Bin smoothing", + "text": "Bin smoothing" + }, + { + "objectID": "slides/ml/39-smoothing.html#bin-smoothing-5", + "href": "slides/ml/39-smoothing.html#bin-smoothing-5", + "title": "Smoothing", + "section": "Bin smoothing", + "text": "Bin smoothing\n\nBy computing this mean for every point, we form an estimate of the underlying curve \\(f(x)\\).\nBelow we show the procedure happening as we move from the -155 up to 0." + }, + { + "objectID": "slides/ml/39-smoothing.html#bin-smoothing-6", + "href": "slides/ml/39-smoothing.html#bin-smoothing-6", + "title": "Smoothing", + "section": "Bin smoothing", + "text": "Bin smoothing\n\nAt each value of \\(x_0\\), we keep the estimate \\(\\hat{f}(x_0)\\) and move on to the next point:" + }, + { + "objectID": "slides/ml/39-smoothing.html#bin-smoothing-7", + "href": "slides/ml/39-smoothing.html#bin-smoothing-7", + "title": "Smoothing", + "section": "Bin smoothing", + "text": "Bin smoothing\n\nThe final code and resulting estimate look like this:\n\n\nspan <- 7 \nfit <- with(polls_2008, ksmooth(day, margin, kernel = \"box\", bandwidth = span)) \npolls_2008 |> mutate(fit = fit$y) |> \n ggplot(aes(x = day)) + \n geom_point(aes(y = margin), size = 3, alpha = .5, color = \"grey\") + \n geom_line(aes(y = fit), color = \"red\")" + }, + { + "objectID": "slides/ml/39-smoothing.html#bin-smoothing-8", + "href": "slides/ml/39-smoothing.html#bin-smoothing-8", + "title": "Smoothing", + "section": "Bin smoothing", + "text": "Bin smoothing" + }, + { + "objectID": "slides/ml/39-smoothing.html#bin-smoothing-9", + "href": "slides/ml/39-smoothing.html#bin-smoothing-9", + "title": "Smoothing", + "section": "Bin smoothing", + "text": "Bin smoothing" + }, + { + "objectID": "slides/ml/39-smoothing.html#kernels", + "href": "slides/ml/39-smoothing.html#kernels", + "title": "Smoothing", + "section": "Kernels", + "text": "Kernels\n\nThe final result from the bin smoother is quite wiggly.\nOne reason for this is that each time the window moves, two points change.\nWe can attenuate this somewhat by taking weighted averages that give the center point more weight than far away points, with the two points at the edges receiving very little weight." + }, + { + "objectID": "slides/ml/39-smoothing.html#kernels-1", + "href": "slides/ml/39-smoothing.html#kernels-1", + "title": "Smoothing", + "section": "Kernels", + "text": "Kernels\n\nYou can think of the bin smoother approach as a weighted average:\n\n\\[\n\\hat{f}(x_0) = \\sum_{i=1}^N w_0(x_i) Y_i\n\\]" + }, + { + "objectID": "slides/ml/39-smoothing.html#kernels-2", + "href": "slides/ml/39-smoothing.html#kernels-2", + "title": "Smoothing", + "section": "Kernels", + "text": "Kernels\n\nin which each point receives a weight of either \\(0\\) or \\(1/N_0\\), with \\(N_0\\) the number of points in the week.\nIn the code above, we used the argument kernel=\"box\" in our call to the function ksmooth.\nThis is because the weight function looks like a box.\nThe ksmooth function provides a “smoother” option which uses the normal density to assign weights." + }, + { + "objectID": "slides/ml/39-smoothing.html#kernels-3", + "href": "slides/ml/39-smoothing.html#kernels-3", + "title": "Smoothing", + "section": "Kernels", + "text": "Kernels" + }, + { + "objectID": "slides/ml/39-smoothing.html#kernels-4", + "href": "slides/ml/39-smoothing.html#kernels-4", + "title": "Smoothing", + "section": "Kernels", + "text": "Kernels\n\nThe final code and resulting plot for the normal kernel look like this:\n\n\nspan <- 7 \nfit <- with(polls_2008, ksmooth(day, margin, kernel = \"normal\", bandwidth = span)) \npolls_2008 |> mutate(smooth = fit$y) |> \n ggplot(aes(day, margin)) + \n geom_point(size = 3, alpha = .5, color = \"grey\") + \n geom_line(aes(day, smooth), color = \"red\")" + }, + { + "objectID": "slides/ml/39-smoothing.html#kernels-5", + "href": "slides/ml/39-smoothing.html#kernels-5", + "title": "Smoothing", + "section": "Kernels", + "text": "Kernels" + }, + { + "objectID": "slides/ml/39-smoothing.html#kernels-6", + "href": "slides/ml/39-smoothing.html#kernels-6", + "title": "Smoothing", + "section": "Kernels", + "text": "Kernels\n\nNotice that this version looks smoother.\nThere are several functions in R that implement bin smoothers.\nOne example is ksmooth, shown above.\nIn practice, however, we typically prefer methods that use slightly more complex models than fitting a constant.\nThe final result above, for example, is still somewhat wiggly in parts we don’t expect it to be (between -125 and -75, for example)." + }, + { + "objectID": "slides/ml/39-smoothing.html#local-weighted-regression-loess", + "href": "slides/ml/39-smoothing.html#local-weighted-regression-loess", + "title": "Smoothing", + "section": "Local weighted regression (loess)", + "text": "Local weighted regression (loess)\n\nA limitation of the bin smoother approach just described is that we need small windows for the approximately constant assumptions to hold.\nAs a result, we end up with a small number of data points to average and obtain imprecise estimates \\(\\hat{f}(x)\\).\nHere we describe how local weighted regression (loess) permits us to consider larger window sizes.\nTo do this, we will use a mathematical result, referred to as Taylor’s theorem, which tells us that if you look closely enough at any smooth function \\(f(x)\\), it will look like a line." + }, + { + "objectID": "slides/ml/39-smoothing.html#local-weighted-regression-loess-1", + "href": "slides/ml/39-smoothing.html#local-weighted-regression-loess-1", + "title": "Smoothing", + "section": "Local weighted regression (loess)", + "text": "Local weighted regression (loess)\n\nTo see why this makes sense, consider the curved edges gardeners make using straight-edged spades:" + }, + { + "objectID": "slides/ml/39-smoothing.html#local-weighted-regression-loess-2", + "href": "slides/ml/39-smoothing.html#local-weighted-regression-loess-2", + "title": "Smoothing", + "section": "Local weighted regression (loess)", + "text": "Local weighted regression (loess)\n\nInstead of assuming the function is approximately constant in a window, we assume the function is locally linear.\nWe can consider larger window sizes with the linear assumption than with a constant.\nInstead of the one-week window, we consider a larger one in which the trend is approximately linear.\nWe start with a three-week window and later consider and evaluate other options:" + }, + { + "objectID": "slides/ml/39-smoothing.html#local-weighted-regression-loess-3", + "href": "slides/ml/39-smoothing.html#local-weighted-regression-loess-3", + "title": "Smoothing", + "section": "Local weighted regression (loess)", + "text": "Local weighted regression (loess)\n\\[\nE[Y_i | X_i = x_i ] = \\beta_0 + \\beta_1 (x_i-x_0) \\mbox{ if } |x_i - x_0| \\leq 21\n\\]\n\nFor every point \\(x_0\\), loess defines a window and fits a line within that window.\nHere is an example showing the fits for \\(x_0=-125\\) and \\(x_0 = -55\\):" + }, + { + "objectID": "slides/ml/39-smoothing.html#local-weighted-regression-loess-4", + "href": "slides/ml/39-smoothing.html#local-weighted-regression-loess-4", + "title": "Smoothing", + "section": "Local weighted regression (loess)", + "text": "Local weighted regression (loess)" + }, + { + "objectID": "slides/ml/39-smoothing.html#local-weighted-regression-loess-5", + "href": "slides/ml/39-smoothing.html#local-weighted-regression-loess-5", + "title": "Smoothing", + "section": "Local weighted regression (loess)", + "text": "Local weighted regression (loess)\n\nThe fitted value at \\(x_0\\) becomes our estimate \\(\\hat{f}(x_0)\\).\nBelow we show the procedure happening as we move from the -155 up to 0:" + }, + { + "objectID": "slides/ml/39-smoothing.html#local-weighted-regression-loess-6", + "href": "slides/ml/39-smoothing.html#local-weighted-regression-loess-6", + "title": "Smoothing", + "section": "Local weighted regression (loess)", + "text": "Local weighted regression (loess)" + }, + { + "objectID": "slides/ml/39-smoothing.html#local-weighted-regression-loess-7", + "href": "slides/ml/39-smoothing.html#local-weighted-regression-loess-7", + "title": "Smoothing", + "section": "Local weighted regression (loess)", + "text": "Local weighted regression (loess)\n\nThe final result is a smoother fit than the bin smoother since we use larger sample sizes to estimate our local parameters:\n\n\ntotal_days <- diff(range(polls_2008$day)) \nspan <- 21/total_days \nfit <- loess(margin ~ day, degree = 1, span = span, data = polls_2008) \npolls_2008 |> mutate(smooth = fit$fitted) |> \n ggplot(aes(day, margin)) + \n geom_point(size = 3, alpha = .5, color = \"grey\") + \n geom_line(aes(day, smooth), color = \"red\")" + }, + { + "objectID": "slides/ml/39-smoothing.html#local-weighted-regression-loess-8", + "href": "slides/ml/39-smoothing.html#local-weighted-regression-loess-8", + "title": "Smoothing", + "section": "Local weighted regression (loess)", + "text": "Local weighted regression (loess)" + }, + { + "objectID": "slides/ml/39-smoothing.html#local-weighted-regression-loess-9", + "href": "slides/ml/39-smoothing.html#local-weighted-regression-loess-9", + "title": "Smoothing", + "section": "Local weighted regression (loess)", + "text": "Local weighted regression (loess)\n\nDifferent spans give us different estimates.\nWe can see how different window sizes lead to different estimates:" + }, + { + "objectID": "slides/ml/39-smoothing.html#local-weighted-regression-loess-10", + "href": "slides/ml/39-smoothing.html#local-weighted-regression-loess-10", + "title": "Smoothing", + "section": "Local weighted regression (loess)", + "text": "Local weighted regression (loess)" + }, + { + "objectID": "slides/ml/39-smoothing.html#local-weighted-regression-loess-11", + "href": "slides/ml/39-smoothing.html#local-weighted-regression-loess-11", + "title": "Smoothing", + "section": "Local weighted regression (loess)", + "text": "Local weighted regression (loess)\n\nHere are the final estimates:" + }, + { + "objectID": "slides/ml/39-smoothing.html#local-weighted-regression-loess-12", + "href": "slides/ml/39-smoothing.html#local-weighted-regression-loess-12", + "title": "Smoothing", + "section": "Local weighted regression (loess)", + "text": "Local weighted regression (loess)\n\nThere are three other differences between loess and the typical bin smoother.\n\n\nRather than keeping the bin size the same, loess keeps the number of points used in the local fit the same.\n\n\nThis number is controlled via the span argument, which expects a proportion.\nFor example, if N is the number of data points and span=0.5, then for a given \\(x\\), loess will use the 0.5 * N closest points to \\(x\\) for the fit." + }, + { + "objectID": "slides/ml/39-smoothing.html#local-weighted-regression-loess-13", + "href": "slides/ml/39-smoothing.html#local-weighted-regression-loess-13", + "title": "Smoothing", + "section": "Local weighted regression (loess)", + "text": "Local weighted regression (loess)\n\nWhen fitting a line locally, loess uses a weighted approach.\n\n\nBasically, instead of using least squares, we minimize a weighted version:\n\n\\[\n\\sum_{i=1}^N w_0(x_i) \\left[Y_i - \\left\\{\\beta_0 + \\beta_1 (x_i-x_0)\\right\\}\\right]^2\n\\]\n\nHowever, instead of the Gaussian kernel, loess uses a function called the Tukey tri-weight:" + }, + { + "objectID": "slides/ml/39-smoothing.html#local-weighted-regression-loess-14", + "href": "slides/ml/39-smoothing.html#local-weighted-regression-loess-14", + "title": "Smoothing", + "section": "Local weighted regression (loess)", + "text": "Local weighted regression (loess)\n\\[\nW(u)= \\left( 1 - |u|^3\\right)^3 \\mbox{ if } |u| \\leq 1 \\mbox{ and } W(u) = 0 \\mbox{ if } |u| > 1\n\\]\n\nTo define the weights, we denote \\(2h\\) as the window size and define:\n\n\\[\nw_0(x_i) = W\\left(\\frac{x_i - x_0}{h}\\right)\n\\]\n\nThis kernel differs from the Gaussian kernel in that more points get values closer to the max:" + }, + { + "objectID": "slides/ml/39-smoothing.html#local-weighted-regression-loess-15", + "href": "slides/ml/39-smoothing.html#local-weighted-regression-loess-15", + "title": "Smoothing", + "section": "Local weighted regression (loess)", + "text": "Local weighted regression (loess)" + }, + { + "objectID": "slides/ml/39-smoothing.html#local-weighted-regression-loess-16", + "href": "slides/ml/39-smoothing.html#local-weighted-regression-loess-16", + "title": "Smoothing", + "section": "Local weighted regression (loess)", + "text": "Local weighted regression (loess)\n\n3.\nloess has the option of fitting the local model robustly.\nAn iterative algorithm is implemented in which, after fitting a model in one iteration, outliers are detected and down-weighted for the next iteration.\nTo use this option, we use the argument family=\"symmetric\"." + }, + { + "objectID": "slides/ml/39-smoothing.html#fitting-parabolas", + "href": "slides/ml/39-smoothing.html#fitting-parabolas", + "title": "Smoothing", + "section": "Fitting parabolas", + "text": "Fitting parabolas\n\nTaylor’s theorem also tells us that if you look at any mathematical function closely enough, it looks like a parabola.\nThe theorem also states that you don’t have to look as closely when approximating with parabolas as you do when approximating with lines.\nThis means we can make our windows even larger and fit parabolas instead of lines.\n\n\\[\nE[Y_i | X_i = x_i ] = \\beta_0 + \\beta_1 (x_i-x_0) + \\beta_2 (x_i-x_0)^2 \\mbox{ if } |x_i - x_0| \\leq h\n\\]" + }, + { + "objectID": "slides/ml/39-smoothing.html#fitting-parabolas-1", + "href": "slides/ml/39-smoothing.html#fitting-parabolas-1", + "title": "Smoothing", + "section": "Fitting parabolas", + "text": "Fitting parabolas\n\nYou may have noticed that when we showed the code for using loess, we set degree = 1.\nThis tells loess to fit polynomials of degree 1, a fancy name for lines.\nIf you read the help page for loess, you will see that the argument degree defaults to 2.\nBy default, loess fits parabolas not lines.\nHere is a comparison of the fitting lines (red dashed) and fitting parabolas (orange solid):\n\n\ntotal_days <- diff(range(polls_2008$day)) \nspan <- 28/total_days \nfit_1 <- loess(margin ~ day, degree = 1, span = span, data = polls_2008) \nfit_2 <- loess(margin ~ day, span = span, data = polls_2008) \npolls_2008 |> mutate(smooth_1 = fit_1$fitted, smooth_2 = fit_2$fitted) |> \n ggplot(aes(day, margin)) + \n geom_point(size = 3, alpha = .5, color = \"grey\") + \n geom_line(aes(day, smooth_1), color = \"red\", lty = 2) + \n geom_line(aes(day, smooth_2), color = \"orange\", lty = 1)" + }, + { + "objectID": "slides/ml/39-smoothing.html#fitting-parabolas-2", + "href": "slides/ml/39-smoothing.html#fitting-parabolas-2", + "title": "Smoothing", + "section": "Fitting parabolas", + "text": "Fitting parabolas" + }, + { + "objectID": "slides/ml/39-smoothing.html#fitting-parabolas-3", + "href": "slides/ml/39-smoothing.html#fitting-parabolas-3", + "title": "Smoothing", + "section": "Fitting parabolas", + "text": "Fitting parabolas\n\nThe degree = 2 gives us more wiggly results.\nIn general, we actually prefer degree = 1 as it is less prone to this kind of noise." + }, + { + "objectID": "slides/ml/39-smoothing.html#beware-of-default-smoothing-parameters", + "href": "slides/ml/39-smoothing.html#beware-of-default-smoothing-parameters", + "title": "Smoothing", + "section": "Beware of default smoothing parameters", + "text": "Beware of default smoothing parameters\n\nggplot uses loess in its geom_smooth function:\n\n\npolls_2008 |> ggplot(aes(day, margin)) + \n geom_point() + \n geom_smooth(method = loess)" + }, + { + "objectID": "slides/ml/39-smoothing.html#beware-of-default-smoothing-parameters-1", + "href": "slides/ml/39-smoothing.html#beware-of-default-smoothing-parameters-1", + "title": "Smoothing", + "section": "Beware of default smoothing parameters", + "text": "Beware of default smoothing parameters" + }, + { + "objectID": "slides/ml/39-smoothing.html#beware-of-default-smoothing-parameters-2", + "href": "slides/ml/39-smoothing.html#beware-of-default-smoothing-parameters-2", + "title": "Smoothing", + "section": "Beware of default smoothing parameters", + "text": "Beware of default smoothing parameters\n\nBut be careful with default parameters as they are rarely optimal.\nHowever, you can conveniently change them:\n\n\npolls_2008 |> ggplot(aes(day, margin)) + \n geom_point() + \n geom_smooth(method = loess, method.args = list(span = 0.15, degree = 1))" + }, + { + "objectID": "slides/ml/39-smoothing.html#beware-of-default-smoothing-parameters-3", + "href": "slides/ml/39-smoothing.html#beware-of-default-smoothing-parameters-3", + "title": "Smoothing", + "section": "Beware of default smoothing parameters", + "text": "Beware of default smoothing parameters" + }, + { + "objectID": "slides/ml/39-smoothing.html#beware-of-default-smoothing-parameters-4", + "href": "slides/ml/39-smoothing.html#beware-of-default-smoothing-parameters-4", + "title": "Smoothing", + "section": "Beware of default smoothing parameters", + "text": "Beware of default smoothing parameters" + }, + { + "objectID": "slides/ml/39-smoothing.html#connecting-smoothing-to-machine-learning", + "href": "slides/ml/39-smoothing.html#connecting-smoothing-to-machine-learning", + "title": "Smoothing", + "section": "Connecting smoothing to machine learning", + "text": "Connecting smoothing to machine learning\n\nTo see how smoothing relates to machine learning with a concrete example, consider again our two or seven example.\nIf we define the outcome \\(Y = 1\\) for digits that are seven and \\(Y=0\\) for digits that are 2, then we are interested in estimating the conditional probability:\n\n\\[\np(\\mathbf{x}) = \\mbox{Pr}(Y=1 \\mid X_1=x_1 , X_2 = x_2).\n\\]" + }, + { + "objectID": "slides/ml/39-smoothing.html#connecting-smoothing-to-machine-learning-1", + "href": "slides/ml/39-smoothing.html#connecting-smoothing-to-machine-learning-1", + "title": "Smoothing", + "section": "Connecting smoothing to machine learning", + "text": "Connecting smoothing to machine learning\n\nIn this example, the 0s and 1s we observe are “noisy” because for some regions the probabilities \\(p(\\mathbf{x})\\) are not that close to 0 or 1.\nWe therefore need to estimate \\(p(\\mathbf{x})\\).\nSmoothing is an alternative to accomplishing this.\nWe saw that linear regression was not flexible enough to capture the non-linear nature of \\(p(\\mathbf{x})\\), thus smoothing approaches provide an improvement." + }, + { + "objectID": "slides/ml/39-smoothing.html#connecting-smoothing-to-machine-learning-2", + "href": "slides/ml/39-smoothing.html#connecting-smoothing-to-machine-learning-2", + "title": "Smoothing", + "section": "Connecting smoothing to machine learning", + "text": "Connecting smoothing to machine learning\n\nWe later describe a popular machine learning algorithm, k-nearest neighbors, which is based on the concept of smoothing." + }, + { + "objectID": "slides/ml/37-evaluation-metrics.html#problem", + "href": "slides/ml/37-evaluation-metrics.html#problem", + "title": "Evaluation Metrics", + "section": "Problem", + "text": "Problem\n\nThe prediction rule we developed in the previous section predicts Male if the student is taller than 64 inches." + }, + { + "objectID": "slides/ml/39-smoothing.html#signal-plus-noise-model-7", + "href": "slides/ml/39-smoothing.html#signal-plus-noise-model-7", + "title": "Smoothing", + "section": "Signal plus noise model", + "text": "Signal plus noise model\n\nWe therefore need an alternative, more flexible approach." + }, + { + "objectID": "slides/ml/39-smoothing.html#kernels-7", + "href": "slides/ml/39-smoothing.html#kernels-7", + "title": "Smoothing", + "section": "Kernels", + "text": "Kernels\n\nMethods such as loess, which we explain next, improve on this." + }, + { + "objectID": "slides/ml/39-smoothing.html#local-weighted-regression", + "href": "slides/ml/39-smoothing.html#local-weighted-regression", + "title": "Smoothing", + "section": "Local weighted regression", + "text": "Local weighted regression\n\nA limitation of the bin smoother approach just described is that we need small windows for the approximately constant assumptions to hold.\nAs a result, we end up with a small number of data points to average and obtain imprecise estimates \\(\\hat{f}(x)\\).\nHere we describe how local weighted regression (loess) permits us to consider larger window sizes.\nTo do this, we will use a mathematical result, referred to as Taylor’s theorem, which tells us that if you look closely enough at any smooth function \\(f(x)\\), it will look like a line." + }, + { + "objectID": "slides/ml/39-smoothing.html#local-weighted-regression-1", + "href": "slides/ml/39-smoothing.html#local-weighted-regression-1", + "title": "Smoothing", + "section": "Local weighted regression", + "text": "Local weighted regression\n\nTo see why this makes sense, consider the curved edges gardeners make using straight-edged spades:" + }, + { + "objectID": "slides/ml/39-smoothing.html#local-weighted-regression-2", + "href": "slides/ml/39-smoothing.html#local-weighted-regression-2", + "title": "Smoothing", + "section": "Local weighted regression", + "text": "Local weighted regression\n\nInstead of assuming the function is approximately constant in a window, we assume the function is locally linear.\nWe can consider larger window sizes with the linear assumption than with a constant.\nInstead of the one-week window, we consider a larger one in which the trend is approximately linear.\nWe start with a three-week window and later consider and evaluate other options:" + }, + { + "objectID": "slides/ml/39-smoothing.html#local-weighted-regression-3", + "href": "slides/ml/39-smoothing.html#local-weighted-regression-3", + "title": "Smoothing", + "section": "Local weighted regression", + "text": "Local weighted regression\n\\[\nE[Y_i | X_i = x_i ] = \\beta_0 + \\beta_1 (x_i-x_0) \\mbox{ if } |x_i - x_0| \\leq 21\n\\]\n\nFor every point \\(x_0\\), loess defines a window and fits a line within that window.\nHere is an example showing the fits for \\(x_0=-125\\) and \\(x_0 = -55\\):" + }, + { + "objectID": "slides/ml/39-smoothing.html#local-weighted-regression-4", + "href": "slides/ml/39-smoothing.html#local-weighted-regression-4", + "title": "Smoothing", + "section": "Local weighted regression", + "text": "Local weighted regression" + }, + { + "objectID": "slides/ml/39-smoothing.html#local-weighted-regression-5", + "href": "slides/ml/39-smoothing.html#local-weighted-regression-5", + "title": "Smoothing", + "section": "Local weighted regression", + "text": "Local weighted regression\n\nThe fitted value at \\(x_0\\) becomes our estimate \\(\\hat{f}(x_0)\\)." + }, + { + "objectID": "slides/ml/39-smoothing.html#local-weighted-regression-6", + "href": "slides/ml/39-smoothing.html#local-weighted-regression-6", + "title": "Smoothing", + "section": "Local weighted regression", + "text": "Local weighted regression" + }, + { + "objectID": "slides/ml/39-smoothing.html#local-weighted-regression-7", + "href": "slides/ml/39-smoothing.html#local-weighted-regression-7", + "title": "Smoothing", + "section": "Local weighted regression", + "text": "Local weighted regression\n\nThe final result is a smoother fit than the bin smoother since we use larger sample sizes to estimate our local parameters:\n\n\ntotal_days <- diff(range(polls_2008$day)) \nspan <- 21/total_days \nfit <- loess(margin ~ day, degree = 1, span = span, data = polls_2008) \npolls_2008 |> mutate(smooth = fit$fitted) |> \n ggplot(aes(day, margin)) + \n geom_point(size = 3, alpha = .5, color = \"grey\") + \n geom_line(aes(day, smooth), color = \"red\")" + }, + { + "objectID": "slides/ml/39-smoothing.html#local-weighted-regression-8", + "href": "slides/ml/39-smoothing.html#local-weighted-regression-8", + "title": "Smoothing", + "section": "Local weighted regression", + "text": "Local weighted regression" + }, + { + "objectID": "slides/ml/39-smoothing.html#local-weighted-regression-9", + "href": "slides/ml/39-smoothing.html#local-weighted-regression-9", + "title": "Smoothing", + "section": "Local weighted regression", + "text": "Local weighted regression\n\nDifferent spans give us different estimates.\nWe can see how different window sizes lead to different estimates:" + }, + { + "objectID": "slides/ml/39-smoothing.html#local-weighted-regression-10", + "href": "slides/ml/39-smoothing.html#local-weighted-regression-10", + "title": "Smoothing", + "section": "Local weighted regression", + "text": "Local weighted regression" + }, + { + "objectID": "slides/ml/39-smoothing.html#local-weighted-regression-11", + "href": "slides/ml/39-smoothing.html#local-weighted-regression-11", + "title": "Smoothing", + "section": "Local weighted regression", + "text": "Local weighted regression\n\nHere are the final estimates:" + }, + { + "objectID": "slides/ml/39-smoothing.html#local-weighted-regression-12", + "href": "slides/ml/39-smoothing.html#local-weighted-regression-12", + "title": "Smoothing", + "section": "Local weighted regression", + "text": "Local weighted regression" + }, + { + "objectID": "slides/ml/39-smoothing.html#local-weighted-regression-13", + "href": "slides/ml/39-smoothing.html#local-weighted-regression-13", + "title": "Smoothing", + "section": "Local weighted regression", + "text": "Local weighted regression\n\n3.\nloess has the option of fitting the local model robustly.\nAn iterative algorithm is implemented in which, after fitting a model in one iteration, outliers are detected and down-weighted for the next iteration.\nTo use this option, we use the argument family=\"symmetric\"." + }, + { + "objectID": "slides/ml/39-smoothing.html#local-weighted-regression-14", + "href": "slides/ml/39-smoothing.html#local-weighted-regression-14", + "title": "Smoothing", + "section": "Local weighted regression", + "text": "Local weighted regression\n\\[\nW(u)= \\left( 1 - |u|^3\\right)^3 \\mbox{ if } |u| \\leq 1 \\mbox{ and } W(u) = 0 \\mbox{ if } |u| > 1\n\\]\n\nTo define the weights, we denote \\(2h\\) as the window size and define:\n\n\\[\nw_0(x_i) = W\\left(\\frac{x_i - x_0}{h}\\right)\n\\]\n\nThis kernel differs from the Gaussian kernel in that more points get values closer to the max:" + }, + { + "objectID": "slides/ml/39-smoothing.html#local-weighted-regression-15", + "href": "slides/ml/39-smoothing.html#local-weighted-regression-15", + "title": "Smoothing", + "section": "Local weighted regression", + "text": "Local weighted regression" + }, + { + "objectID": "slides/ml/39-smoothing.html#local-weighted-regression-16", + "href": "slides/ml/39-smoothing.html#local-weighted-regression-16", + "title": "Smoothing", + "section": "Local weighted regression", + "text": "Local weighted regression\n\n3.\nloess has the option of fitting the local model robustly.\nAn iterative algorithm is implemented in which, after fitting a model in one iteration, outliers are detected and down-weighted for the next iteration.\nTo use this option, we use the argument family=\"symmetric\"." + }, + { + "objectID": "slides/ml/39-smoothing.html#beware-of-default", + "href": "slides/ml/39-smoothing.html#beware-of-default", + "title": "Smoothing", + "section": "Beware of default", + "text": "Beware of default\n\nggplot uses loess in its geom_smooth function:\n\n\npolls_2008 |> ggplot(aes(day, margin)) + \n geom_point() + \n geom_smooth(method = loess)" + }, + { + "objectID": "slides/ml/39-smoothing.html#beware-of-default-1", + "href": "slides/ml/39-smoothing.html#beware-of-default-1", + "title": "Smoothing", + "section": "Beware of default", + "text": "Beware of default" + }, + { + "objectID": "slides/ml/39-smoothing.html#beware-of-default-2", + "href": "slides/ml/39-smoothing.html#beware-of-default-2", + "title": "Smoothing", + "section": "Beware of default", + "text": "Beware of default\n\nBut be careful with default parameters as they are rarely optimal.\nHowever, you can conveniently change them:\n\n\npolls_2008 |> ggplot(aes(day, margin)) + \n geom_point() + \n geom_smooth(method = loess, method.args = list(span = 0.15, degree = 1))" + }, + { + "objectID": "slides/ml/39-smoothing.html#beware-of-default-3", + "href": "slides/ml/39-smoothing.html#beware-of-default-3", + "title": "Smoothing", + "section": "Beware of default", + "text": "Beware of default" + }, + { + "objectID": "slides/ml/39-smoothing.html#beware-of-default-4", + "href": "slides/ml/39-smoothing.html#beware-of-default-4", + "title": "Smoothing", + "section": "Beware of default", + "text": "Beware of default" + }, + { + "objectID": "slides/ml/36-intro-ml.html", + "href": "slides/ml/36-intro-ml.html", + "title": "Introduction", + "section": "", + "text": "Machine learning has achieved remarkable successes in a variety of applications.\nThese range from the postal service’s use of machine learning for reading handwritten zip codes to the development of voice recognition systems." + }, + { + "objectID": "slides/highdim/34-distance.html", + "href": "slides/highdim/34-distance.html", + "title": "Distance", + "section": "", + "text": "Many of the analyses we perform with high-dimensional data relate directly or indirectly to distance.\nMany machine learning techniques rely on defining distances between observations.\nClustering algorithms search of observations that are similar.\nBut what does this mean mathematically?" } ] \ No newline at end of file diff --git a/docs/sitemap.xml b/docs/sitemap.xml index 53e758b..a25d6f5 100644 --- a/docs/sitemap.xml +++ b/docs/sitemap.xml @@ -58,7 +58,7 @@ http://datasciencelabs.github.io/2024/index.html - 2024-12-02T14:40:38.005Z + 2024-12-04T14:50:03.522Z http://datasciencelabs.github.io/2024/psets/pset-04-wrangling.html @@ -194,10 +194,34 @@ http://datasciencelabs.github.io/2024/slides/highdim/34-distance.html - 2024-12-01T15:44:27.021Z + 2024-12-02T21:04:53.288Z http://datasciencelabs.github.io/2024/slides/highdim/35-dimension-reduction.html - 2024-12-02T14:36:00.904Z + 2024-12-02T21:04:46.090Z + + + http://datasciencelabs.github.io/2024/slides/ml/notation-and-terminology.html + 2024-12-04T00:19:04.886Z + + + http://datasciencelabs.github.io/2024/slides/ml/evaluation-metrics.html + 2024-12-04T01:42:22.347Z + + + http://datasciencelabs.github.io/2024/slides/ml/36-intro-ml.html + 2024-12-04T04:15:15.945Z + + + http://datasciencelabs.github.io/2024/slides/ml/37-evaluation-metrics.html + 2024-12-04T13:38:19.091Z + + + http://datasciencelabs.github.io/2024/slides/ml/38-conditionals.html + 2024-12-04T13:46:07.207Z + + + http://datasciencelabs.github.io/2024/slides/ml/39-smoothing.html + 2024-12-04T14:46:57.147Z diff --git a/docs/slides/highdim/34-distance.html b/docs/slides/highdim/34-distance.html index d6ba81f..6927e50 100644 --- a/docs/slides/highdim/34-distance.html +++ b/docs/slides/highdim/34-distance.html @@ -1,406 +1,273 @@ - + + + + + + + + + + +Distance – BST 260: Introduction to Data Science + + + + - + + + + + + - - - - - - - - BST 260: Introduction to Data Science – Distance - - - - - - - - - - - - - - - -
-
+
+
+
Keywords
+

High dimensional data

+
+
-
-

Distance

+ -
-
-

2024-11-12

-
-
-

Distance

+
+

Distance

  • Many of the analyses we perform with high-dimensional data relate directly or indirectly to distance.

  • Many machine learning techniques rely on defining distances between observations.

  • @@ -408,22 +275,38 @@

    Distance

  • But what does this mean mathematically?

-
-

The norm

+
+

The norm

  • A point can be represented in polar coordinates:
- -
-
-

The norm

+
+
+
+
+

+
+
+
+
+
+
+

The norm

  • If \(\mathbf{x} = (x_1, x_2)^\top\), \(r\) defines the norm of \(\mathbf{x}\).
- -
-
-

The norm

+
+
+
+
+

+
+
+
+
+
+
+

The norm

  • The point of defining the norm is to extrapolate the concept of size to higher dimensions.

  • Specifically, we write the norm for any vector \(\mathbf{x}\) as:

  • @@ -438,8 +321,8 @@

    The norm

    ||\mathbf{x}||^2 = x_1^2 + x_2^2 + \dots + x_p^2 \]

-
-

The norm

+
+

The norm

  • We define the norm like this:
@@ -447,22 +330,30 @@

The norm

||\mathbf{x}||^2 = \mathbf{x}^\top\mathbf{x} \]

-
-

Distance

+
+

Distance

  • Distance is the norm of the difference:
- -
-
-

Distance

+
+
+
+
+

+
+
+
+
+
+
+

Distance

-We can see this using the definition we know:

\[ \mbox{distance} = \sqrt{(x_{11} - x_{12})^2 + (x_{21} - x_{22})^2} \]

-
-

Distance

+
+

Distance

  • Using the norm definition can be extrapolated to any dimension:
@@ -470,8 +361,8 @@

Distance

\mbox{distance} = || \mathbf{x}_1 - \mathbf{x}_2|| \]

-
-

Distance

+
+

Distance

  • For example, the distance between the first and second observation will compute distance using all 784 features:
@@ -479,26 +370,26 @@

Distance

|| \mathbf{x}_1 - \mathbf{x}_2 ||^2 = \sum_{j=1}^{784} (x_{1,j}-x_{2,j })^2 \]

-
-

Distance

+
+

Distance

  • Define the features and labels:
-
mnist <- read_mnist()
-x <- mnist$train$images  
-y <- mnist$train$labels 
+
mnist <- read_mnist()
+x <- mnist$train$images  
+y <- mnist$train$labels 
-
x_1 <- x[6,] 
-x_2 <- x[17,] 
-x_3 <- x[16,] 
+
x_1 <- x[6,] 
+x_2 <- x[17,] 
+x_3 <- x[16,] 
  • Compute the distances:
-
c(sum((x_1 - x_2)^2), sum((x_1 - x_3)^2), sum((x_2 - x_3)^2)) |> sqrt() 
+
c(sum((x_1 - x_2)^2), sum((x_1 - x_3)^2), sum((x_2 - x_3)^2)) |> sqrt() 
[1] 2319.867 2331.210 2518.969
@@ -507,33 +398,33 @@

Distance

  • Checks out:
  • -
    y[c(6,17,16)]
    +
    y[c(6,17,16)]
    [1] 2 2 7
    -
    -

    Distance

    +
    +

    Distance

    • In R, the function crossprod(x) is convenient for computing norms.

    • It multiplies t(x) by x:

    -
    c(crossprod(x_1 - x_2), crossprod(x_1 - x_3), crossprod(x_2 - x_3)) |> sqrt() 
    +
    c(crossprod(x_1 - x_2), crossprod(x_1 - x_3), crossprod(x_2 - x_3)) |> sqrt() 
    [1] 2319.867 2331.210 2518.969
    -
    -

    Distance

    +
    +

    Distance

    • We can also compute all the distances at once:
    -
    d <- dist(x[c(6,17,16),]) 
    -d
    +
    d <- dist(x[c(6,17,16),]) 
    +d
             1        2
     2 2319.867         
    @@ -544,7 +435,7 @@ 

    Distance

  • dist produces an object of class dist
  • -
    class(d) 
    +
    class(d) 
    [1] "dist"
    @@ -553,42 +444,54 @@

    Distance

  • There are several machine learning related functions in R that take objects of class dist as input.
  • -
    -

    Distance

    +
    +

    Distance

    • dist objects are similar but not equal to a matrices.

    • To access the entries using row and column indices, we need to coerce it into a matrix.

    -
    as.matrix(d)[2,3]
    +
    as.matrix(d)[2,3]
    [1] 2518.969
    -
    -

    Distance

    +
    +

    Distance

    • The image function allows us to quickly see an image of distances between observations.
    -
    d <- dist(x[1:300,]) 
    -image(as.matrix(d)) 
    - +
    d <- dist(x[1:300,]) 
    +image(as.matrix(d)) 
    +
    +
    +
    +

    +
    +
    -
    -
    -

    Distance

    +
    + +
    +

    Distance

    • If we order distance by the labels:
    -
    image(as.matrix(d)[order(y[1:300]), order(y[1:300])]) 
    - +
    image(as.matrix(d)[order(y[1:300]), order(y[1:300])]) 
    +
    +
    +
    +

    +
    +
    -
    -
    -

    Spaces

    +
    + +
    +

    Spaces

    • Predictor space is a concept that is often used to describe machine learning algorithms.

    • We can think of all predictors \((x_{i,1}, \dots, x_{i,p})^\top\) for all observations \(i=1,\dots,n\) as \(n\) \(p\)-dimensional points.

    • @@ -596,8 +499,8 @@

      Spaces

    • In the case of the handwritten digits, we can think of the predictor space as any point \((x_{1}, \dots, x_{p})^\top\) as long as each entry \(x_i, \, i = 1, \dots, p\) is between 0 and 255.

    -
    -

    Spaces

    +
    +

    Spaces

    • Some Machine Learning algorithms also define subspaces.

    • A commonly defined subspace in machine learning are neighborhoods composed of points that are close to a predetermined center.

    • @@ -607,454 +510,440 @@

      Spaces

      || \mathbf{x} - \mathbf{x}_0 || \leq r. \]

    -
    -

    Spaces

    +
    +

    Spaces

    • We can think of this subspace as a multidimensional sphere since every point is the same distance away from the center.

    • Other machine learning algorithms partition the predictor space into non-overlapping regions and then make different predictions for each region using the data in the region.

    -
    - -
    - - - - - - - - - - - - - - - - - - - - - - - - - + } else { + return undefined; + } + }; + var bibliorefs = window.document.querySelectorAll('a[role="doc-biblioref"]'); + for (var i=0; i + + + + - \ No newline at end of file + \ No newline at end of file diff --git a/docs/slides/highdim/34-distance_files/figure-html/diatance-image-ordered-1.png b/docs/slides/highdim/34-distance_files/figure-html/diatance-image-ordered-1.png new file mode 100644 index 0000000000000000000000000000000000000000..d01b6927f252bd7eeb52402da0517b0535ac3bf8 GIT binary patch literal 142999 zcmeFZS3pxw*FB7)pi-hDy+lEJi4^Gs5CN4YA~jN^2uPD&LlNmEgpQQZQ2{AJ=)HxY zbR_gHp+jgP1o-3g*57;mU3?eMMUs;#`B>2Ge-iT-FvsI_bAn?CuIvE#ow z>$*Kl5mze!NuK4rD!}wzaAjoiN6(+mPHDF`=pYqzP>?@1i7$!k3iDEX%jDM1{qEWE zqnhIj>y7U(Rj-84gkVY}(d>&>BRtuYE+;aDSl|lIjz(z8^$R}9tbIie3u3^g; z-WQ{9Bi@4x$JhR$dv_JOEof~kJw7N^@GeqOU^{9FcSo-X+^PRHE9J?VsbI~$Zce#S zlMG5X)FXG|A;CjGGwsG=yc9hJQ#2=#P zUM2t&w%&j{X;Wi*71};|Z_++8qj?&4A7JYTG0Q8u#e}uV!4}x$;K$}S=h}Hs&Pi%s zzduK9V22((DZJp=9sJh5W24K_Na^owQ|vx?^W6uIQQ_yH=kdXK7WRbYM~n~h?#FZY z>R3iw4oSbDe%zDH?rOPTH#F*fh2s@MBC0V8>#5j%Zf%)5Up3J60wHl5Gk_VeLnn

    +`;!K2OzG7;-Vpn# zcMDqY1nE@Wm(#Qa7YORwzx|PyYxr1?a241`0H%E#OF9>)W@0+wc% z!3+Ja2p5F&Tp-GLUdYAN#nc(-icoz&>b)aow_TQ3aqEw5iuN?(i4jInmd7$guDzq( zQcVj>8~W+yTab^3L@`Yay>SCsPq~w2F|;I*{;TVzW66)-3-Yg3lF7LJ3YT_7Ni`jp zK5;ykXJij?Xz=;8by(=(uO>HH7S!#!XD@r*+|Sfc417<%{X;P0TvW66=H95wT4f*g zVzg~$RrTlf$d2CSCG%TlB7Ag|E3Mf)8}--*mZ3uG>J*z5l5$@W$#$pb=V$a&-UU{! z2r@|`x6H8-QVK9%LOOVA(_%4rckX#9~CAoHa zbmj8JbonA7xte|Tzs``7WRw2S@!vv9Fz%FuM1kb_Q^nU_S2mlVC64;WJ2F$-$f~ND zuX3jfH$Mn&6=vs_hg7-v1_eGY9W^^(GGV_dp4FLh+vkDGgYI+-h3EJ3pP(K;eR}i5 zBNLh=qj*A?g5o?+SPjWcLp6K#AVk3f5(RD9m+2u!pZNOQ{j`=FFe)DG+RyAYvWT8L z#m5S-vRM2SUUh9(IvYB9bXBGG2E!E&vun|TcP_t}aom=4=6JvMg6V(G{j0*G`|~#g zWj_9`^FKep+`lG!1(V(Fp&RqBU;lRrH_0~X|El-*!ojz9ubBliP3b=V-&c5aHH)Mc z@V^YWyhISylUABQs`vK#WB=Q<)*D_|=fVGF=zso|_>C)CB;sExjCKF}7XDRoY3%7g zO}g`MWB=WL8Q#D$5kzL zoth4RZ>P@@-+3O-cme`oKBIZ{!Q=oB>r8h&&wi;@H@?$)1dPBd5QmRf^IXGXG)s>Ugee@1x~#%G#kG$?J?yr<8*Q4k;|NRcAs00}wUF;0FK$L;jZAJS62 z{}0}$y9DO%awcTDTP{vpJO`lLt_^?R#=hv`2IP*XwdX9A_-9gDh%4J!zT01YxU;;>j|(N5zBa6XE9U#f_*W-@l?5%@e68~f;cP{UOoe7|15`4s8*631Bj8AE_#GIDt5;Iu>PHO_D z&JMIL4j$bcY`B6rKPYO*oScjZ*!TyZ*$lYmA%1t};_y6nY~BKRikaUCyR(~SHKgbIXLlC|q)-}N=%f`N^ z6Ns~k_e?0^ieM(G%)agIT{C~R8(VeU3w+6xQ1;XC{v%n+jvJ)GW2mjf%DrUe3 zAIyMV^?Nz%^np$dTgb?crAyO3&wc2=5Kke3Xpe6_<@fnt>sTAw$ldu-o@Z^!q~o@go(Nyj_G?kK{p@`0DPc3}2yZE>@q<%;J7m^c?m>xg@a@e^zqjzZols?9 zyfV-mjfvnDsSGO>05RHdXX#V{i7HjEaF~z5)GMj%{AsB$5p+keke`%!dIXt2s+E4H z>XWS_b8p68;xL!#IRfCJEwOF^sS;2^ykZ$OM&_3IO&=CKiNeK47*M`g0PcNbTOPWY z%hFwpHF!Xy{+e=LSzRPX1pJ!Y2JBuu z$mgd*^D2$iTLGL4@W~Nm+^^Jx#zw}TUv4A7bkkHyrI$tWqJ?h_yT3<>_?66dNLtkP zj1We-Y*6$}2TVZwXp47~8-HEjo3BB8r`*OUyvXpsNUD$JRvH*=o@C?$?l_MryQhcuA3n zcwCeSrhe1DHtMSz+=+<1EK8TNMiC2F&=xh?eF znNkr^L^ZkxYV)RwmGx!km{c%-wcvQBI^GG z#}Msl_FUbvT4Dc}TO`9~Ov-Lnu_BYQP8(gCvIABaI9=CW=}!F`{mp+AsGhYxN8*Ag z5B{%HwCewdQ}i-e0?qg!Raa_NeX-h3i*PoVqNZhX-A!uQBVHv!%!RwL=WaoW#~e3U zX0SFT^EBWLadvI~Vo&qqm88sz{cC2c7>DRTGP8TJ+co|hHT6wii;sx0ZCj>Bt=olD zbmR?TfZ3W>{RLuAVvuuUjCb#Hr436@EJ7Vwh_Zl0_j=ade7(T>E_ciCPCkpq9CU`A z4xX}KV|uFKxx2ea!jQJqlbU}(+9w=<{rHM|Z7ohnc-q%u=&48l_x$|eH$!|#6u&VY zL=AD2whQ}BxBtE-ytuYgDLpcj(mfHj57Z&sUR(`ksQ-Q-fAHgtfPR2n;c|s*ejZgJ zzBS1!9jU_Z9I#Fxua7bnHu(mlT!{4{WR5zqbyH68+r7NWEm6u_9HovRq zS1;@xP-P;g?@mnAakD0=Zwi4r4wPB<2N)@M?fc^YI#mR4r6 z*M8lQ-s3N}km=ZJ$Ss&7HCQF@JmNzoXi9%QJ->uXa>7Nx$4g)6m2OxN+Vak50-f(F z_>3H^ceveQU8(zkW;?NTDL)QcvMO%3G8Rrg6aA3j$kO;#z@%`YxGN!+x|c=j4emsq zUVVnAm!spC&WcYC3%N4t!$Llbj`4vzO2`|JRR-c!lPleFGtfg^E`};#5siA5y?1<* z3sc*{)vrDu=Dl*%Hy41~GA%1-rVbF`DI1?QZx2X*C>%IS7b6=h;V|d-w;w9o<@Z6h z-4AMhV2B$MCsjLG^?L@)!m(i5#ogYbv*)MP)Z`kzn?-@ff+NUD={9@&*HVV*bWCZD zNg;YS){1jC@c4%99ifw*6=at}@KKX(#x!d6p3cyQ1RW(~uXzKtNEt|E^&BmRSBetr zrlM*YrSjoV5?IyyQylY!JJk`scB;Tnwmg4_#(_k>u!>W9vD!x4xhx9msTR8L{N+M&zK1LIQSZwWqD6*Q7is0F48iJSX{}Z>wtzIMO&l4rwKwkn zc7APouuUphV{P_0;+RVILzu+vo&c<(%s#rvttg;CfTfj2knQsu1(_x5S+Q~kJOGS- zbN`!U3)f#zdK2TRL;Oo!EZB68Wc?+U%ANijb^Mht&iRh^X-V@_UOg9f2N2E(?ptf$gHIk4 zME_bblzMZ$PuKDfQK1NE9tCzjuQ=UUpRce(Cs$q$PzSK{b!zBlL=WFXu~+NA-;)#C zGlawkyXX#dbq>md+1$`Ca(KDcPw?D{x|oJC$TZyp?@1GHR;=Cilq7kZl6?MH(zCu^ z>B?psL)e(vkP<;Y>E;>!MX&UWH?Ke4kB;ZZBT;ig-jUYHx0esep|LxPG?cG zfnEhf1RpND*e{FK7XRZaU}z$2o%RLctZ2GA5nPi@Zx1gz2SoE9JOT-mlJcvisYm)o-)7uyn!qyw4u-xYDyw`rZIQ>VU4@ic_%;9bbcP#Tj(bi zn`^SaBp&)kMWRrf>kp?+-@;jtpuevvO1S~ee~wmz73S2ehXW?QxI7>mf{;rfYkQJ< zHVsXnfk85j*c9+bO6NqEiO_3+v#(m}5N9D@mkCgSUx|FMzFVR>#Nf8C9kaq{g!f{y zqdz&xRQv#vx0r2I!U+`aFVZ|3&?>UEq^d_44e=z&)mW*ZS<^-kl$k0islRZG;L;9x zMz|(tNn-9blqT9mA)PD(P)bE5RbxF67wn)=A_v$Ilv0pjYxc2eYq$jHU|!7m0!xO_zMwpua;h zFHz{;H{|6I0j=#8$t4+%%?K%bZoIRlhBhI9;66fiB=loO<;e^B22S$ zWY_l);%1)RJaY9(gzD+p1Wri+Z{2X$tw`oCt;$?@S89Aedq5x=R4PDSTbtT@Acp0O z{S75I8wM3a`9yDqOUxQjov8jTBfgx4Ep)t)F?apADZ4rl|i^3un$FzGK!FM=LK42a#t=cN*ka0dqOR&ZWOjI%&2% z7XETxHYd%~rP=I_T!afCF;4yW4R8}=$gU_CzB1QNMUW5Xx5mAx>6g4}$PjYzXAmFK zvYq`Qm<=jY6N>P)I(el!t|8&yyY6QszDJ@)h;VZY@BeoHoTA9=rwoZH)Hm&ua3FsE z@ruXMV#kPnVEG8ssF}_V%bM583bbXDJf)PQTX9-9_PLo>xXWU23a-Lf1R%HUYKR+5 z9KW-4fBOaGuFjC-#Q@kv%I??R*pa%Ct?4>lS=S&Q;dTOc zuu{V$H<=P-M#Ft{Z))vOF0Q#a50;bI-d5s^x!~6WDk_1`_r83 z?9tTSHO-TA+?p2EIpF+H9~qMt@2)V)WPgKn;KC!eb&(P2D)amQ@W)H8c7Ogd`enme z7C$Mxk^B6mc*POh&v@o^-ByVHY=DiQ`^1{LAr7KMiv+sFTB|u+6ttM=wsK zP_U(Q?s8Hn$*6c@+>9}9UhYhOH0d~T%Nlv>Vz0uu$Yf-x5 z+sqp226jtN4{VrYx#H|&R6Ds92R@w%m;a5BWOqm+@@=Wl=p7DKMhMB8FHKMVs%C*~ z2rOn;#fcbB!Ye+B6Lm`Z@;#bSCFvsc(6~bv45zGzHD;G z0gGDs0^AS&Z~;@@Nrdn^bZ4_NRx?8&3?+;5xHtqcWy>tLh75>b%DiWp%}>3%!fDpT zP!cQ|`h*~X{Upd3(d3}*-goqM2Z?UDm%7g(ji0}o;e8OGbJ5%HXQm~BQYx;L)58R+ zo~SSLD+kaAham zA!LdM?sU@GO_#=cq`$e`42SBFDWR)wCWvBRRFrPq_Xb})m%`!h%O9n0(#uaGJ6q}P zvGja2Ku7?W%*rIY;p8L70XWpbu!C!A{1T8Ha7a@yOiDjJ`$nwQrK(?#^z($mbEy_( zgs}cg>k!YFW14V96(ir36+NAq0)=XL1DO>~RhkPH)_=e-C?ol$w2;0^EEi zk1kTBzxT#~`BKFA9s2WDgR+?qdA7k~E~+c~N@^`7F;7d#ez0~vQj?8s&1@CFs2})e z^BH$fzT$mTzqG|p!h2r&MyugB^SJ^QmTXoNN?Bs-kDL|Q7{^GZ%+Vr)7JO;;2_i1> zZ2<9wh^#Z5xtSx4TcXg?TUdmmTJu4HOI{)3(U*8xsNiXk|L(4sja51C=h&RswQiY5 zgn(a!c1qh~YV)Y9QG6dL1GS{|XO{_wqu`@QhHVVdM`zY zAET&~wgIg_Y*?=7ZPmk#-ejC*)K2rN;PqxT<7Zs{5xvadC7S&%PKeFD9YoM!Et=a* zoqYZ|Bvz2@q>-Tn8K{@fZOSLQyQ*wD8>OI^@Nn{@L8@dBuu{|WKk&ALRjE=K^;Rzk zi)8UX+c0&4Yl!|+t@?4PFFm68HT$Uf5N0F2*-n)*2961NTB(kAOd&_-~Ju_Tm1 z0S#+i<179No-m;`j~$ZiC_i;I*)69t)jGYbq=$OWmC^WJgOCX6#|XC5N{XJWT8$M{qwXdNaF5osIFp29i_+F0Xw*_ug~!SxZ-nT(#4z=0j=nEf{6RYoC^x zFpnqXEfulYp|XNt79Xh?zXNaSp~bf{Q`%C<2gufklkxV^RBY~vLjIMkC#{8>*j5ms zCpOC46T!B1_d1*2g9<}gf%6`~YeFCIS#m@jX#*T)a&ZlYhQ zZ+jgXl5;SceDd|`W$dSc%*RG!%~GH*Rm2OY_F8XC4XeY%Q&xsXXt>rt{VFLsr_pZ} z1wt@EW#XTHPtH+;%KG!l68#_bs%)G4NA86Z4uN{ZYaKQ=AsK{jyN~!Gdj2(R*FC6B z`xPUk;hLIdRb@Y)y!gp-;RnerP7o{VxcR)PJgll@GsX1kyQGUm3Uo@dc~jd}D?MC+ zE1^KyzrFlf=6*83&Hf}uaFAQKX)pL9IIQUy=y$}P+45>T#C-}2#=&83ExQyggRFAW zP#~@X2DSGbelEkT?hjJ@On$qBh%A+qC#lh17XO6r?X8nA4 z5%ffs15@dsycI$zT|s4G;)jg>;#6)Gc14e$`e4s_(`)bUh7!V}GTY||?KS9fS095) z#uug7>x^3)-E_`*9HwbxT1Q_<2@_$Kq9Al@ANZk?+<+VaW|fV}x#;5J{LzW3Sv6psCDyB+Zaxerg0 zrJtyB7se|K4SOb-j+w-YuIpxWAK#3NSrtxTGFMh5ZJCyji*QIKPj)8hPyU?DCT`vs zuM_PziJOnHDvz*_C>ji>xr|!#joBIt5BM30dg@GKM+boMvO68gS({Yg_-L&3BDaDC zWyqBKX3-pzHDjZikkg8-M&n@5cehkZg^^ZM^5B4#HW{r~ul3Et!eGDt%8)ta=ejE&gsKzvmX9Se4++fE)dBSa4e}cbC~B z#-*1Z2+xuf|Swg$~2w3Mym(N}k>=CUz`^IIfKWy*6q#pQgRyyKq&X?~io4 z6ouBwWAJ0g2aA=lQjlEh(@S-->bYPT_icO(uect3Km^-eYYQxx|J1?*h(YEF4i5Dp zcH@+}M!H~IY5`B!psyA*1sW}HX-RumGY2eoHM;TS!Hm%_zS3;5dJCSQ5PjB7b@eag z!L+@?RqNN1`;ffV{TwD@@2X9j;dZ4&8c`6HwE!(Yp|XH9^A+x5=I{D~Re|1{FSFFfhm^!8LqpFDVqJD4Bs5X;aQ5I*$=#qZ0g;(1 ziZY9Nz|OA2e#^aImO)!!jPc{K`@xDN()faNz6906q(Ak_j9wE+OCvG2AEuU%ojbWI z`(7Qa#}En6nb;EfMrd{sR&kkXc`*VB9|lBp{AHx0xPQE49Iy==kfTbGFoe1kLO8n#iIOmR8* zA%Ga@+aj(S@GNlGn(Bk5v>740E{1N4CS1X6m6t8(G?sYuRyl=PXH@mwSP*qRR=dCW z+h7uVg8=n9>!Ax6AksO2=@fx-4VOPxNAYly^^>kY^eKF6Z8(XGl5I93rFKO3tuvD= zP2(r*V!+Lbi-6DT12U|XUn;Y(f}ic5N)s?_UbeSs&juErqz5)^=IHP3nBLBkv8?HS ztoeBm2G0345pj@gUln3sXeGA?5nGGOI^?CG*;N3tH7ETUdq;>R+}t7+Pb?tU@McZy z3#>R3x+Q{BR3D5?sx$(?yda2-H%O6RbrHW9B*gcEqF>pd%v1@xxqd%Yfrfe&A6;V` ztVq>EgNW6a_?PTZmQ|`Ly}4uHer7~4*}3#$RC6ai`B~%rXbs}sgbyf$Tga-L(`^Hm z(#;qRh~dY;qjQ9($wjD6K;tEH*xs(+_|7@}j`7MrbetyTRxOevx&en$xyu!#?b+kz zWA}i4i2za5tl$2xe=S@)95$z1!^x2N(SDSEU!AF|zvBM#UA4pgLe)}Ihd)4%&UaSV zhpwmJ?nxZG=Wu5T6y0r6$uWCS4ddaMLRAoMB6RQgDGb>D`SB!iZMe9Y$CgucDudrb z=6mY`d6rwRHQS2RX`0E366E7}rH3LJbg}oym9dFV&PnQthat;^rT|U)xpr!ULvHmLFiqzdJ&{Z-3=e~MpM4+&&QQ>G8h>fUbYRRlR>xd%$X$G%SP}8i%%0cw1JrzgZ!G=?=r55W-kdk%;CVWC?@C zmT2Bp|C~Oyaf+U*7e z0HG0872HIN4Q2BS|8=cOM)xl3`5=3BxYbMg8im#<+%iPiipk3D6Qr;WlKicy?Hlr} z)+!ts2S(;-(*fiNKWvIwFz8A_pQ8sCD66c^wmu}BHWM7HZcj7$c=%ya8_+$B-bxfE z=_MuE9V2jV6$ZZR(9ZqKKc`3RRF^SeH&?bc@TQe<)DJ%)8m%gcUiGa{7d$-*EKI8} z@+~MR83$Ech?O7&UZAm(H9SamJo3wU?j5xwrSwh=m*MJfWwUyY@5Q#>|9h1D9WqC( zSN*S+?|inuApfZ!=%Qh8y$>S%kQ}B9FNyleVybo5pxR;WiBjkQZj3g;U*=jdpbzXG z!TPGpb&o$8@otaY&Z~;i)Ze^1I4KR)0Vvi>tT5b6@&*%7?;nRrFB~s+mwhp(n2PTr ztIEjoU3;!eHihCjue~ZZ*x^C5Tv#N(VynJMN*L2+?HoWS>M7WY>Xmv$?Cf4N9fq~W z2|^kpt%-@lRrP#^M2(8-8vh)%NFX}j)opK2d1g>MlFi+Ik3FXJu6LhO;sc;VPa{4t z4AU)0UIl{OY$hDxXcKdGOu>ty=)2_2iNo|pvg_1zz<}|y8P1kh_KW0<_U2kv2jA>% zl)U_|Kf_TRZuA{MC!Vr>UJlFCu3-qa%uinuK%Z5Y?)<3UKBJ4@ie<@LKCGMDqFyWl zm=zU-*_V*>kDz*__m;1u`<$e0m{bX4V^{0@fB0!U(Q})mv~SJa$g$4>Xso2Bs5hHL z!Ze7_HN(n-$TbtIBY(YrJf(;G&0uUteRSj=xbPBt!Rt?aOOu6doTiQukCC)a$3%%> z6K*90x18)N?X^MVALrYD9UAxBK7Hz)lVT_Rb=~V1CrVu;d< zXk3)whukK&QZr`l?t4?iQiF4LZXX=lW&=7g{IsdCAP+bMID%Uoj!7ajb} zj44|xxZs(%?~g~8QSp+>*)Qq*lr6stI)C-WGM9~p%rCrb>BDig&(LbSf#gVlai=JZ z!q=}RFv>Ja!jNCevi3t{q<`{EY*^`Yr)tHW{F={1%a&yuK>76@o-n|qnh2#zT-2co zwTb#(&(6z1`D~gnx9mOJm({?Q8&i>@go!BGLx%M!Kt58Y)mBDouVN-Xq^M2cP}cKa zw4}AM<jhi(!=>B`TtfG(#_b>y(60r3^l{q+zs= zDpZmVBY;LbgQeep@Y?-wGB$(KXJcGpe46E=IPso+vcvt+%Ooh-VCNHgow@vGb%WNs z6Lt8wVBl7q_1!dwUU^fDqI@AGjzhy+<3{Vt(~~7dR^_FPD8H4*_?8WjX+p1()cUd) z=j|;Cs)MKIGJDRdWblSE-<`NDLWUI8$hhLA>gqmNxtYcO(uv8Iq$68idWq}T@e~K> z58Q4d+y(8bv{*RigA3HGkZ3`7U#~yRx*{tyi+M;3WTW5vq6DTUBb)JGflHf3Rjq$Y z7X#B-c8{rTW~&-j4h}{+-w&g-GMP=(>;t)Ab*COEF|U)?;)2*bMC6khAANOtWLC5z z>=lipB<6HUexZ$;{P;bfnyZ$arm0;`1wvFVUqGt&4a{D7Mv0_hz6#w{Lx#nA8T z&$=rxZqP92KungG;moL7>tI|LH-8Y{i2h&#H7VHvuV`;P8~;zrW@^&_1nTVDZjiLu z17y(9MF+K2L6uWWe{EG+o)R!y{Z?$E1)qr{_vQ_!^_%_9xesMXp?=bVtZtoQg^jUq z=wk5fpg)`mFb0WA3|v5raMKEk3BvO^h-qF#Hpdk}#V}j|fcFr$5o49+%9;^eznK1e z=~{i510fr|%sq7}q#+^WLDQi_)Z_W#8lAf57N!c+j09>cxt05%8Ly04`Is3d&|TAS zTH5A*i``uu{lYfnriVdoB&TP(*-e<8vMc_?ra;99L=LX+*PTCxFjSGQ3TkS4h7&Hh=BqmRg-iozbxx9Z*mKE7YMJrJUSGYGe~Lg=TdnXPlz+ zPWIgPcM{O9T7h2Q@{7n_57YB3>B2Wgd%GQu*@eLdX#bWXsjU#2xQgmI{ z+B#H(lwg(fE$ZUya2O6_vzI*7nUGlmi!G1z&t4TP`_v%yEdXaOuoyFG6)l1=gHjM73O@74S=|ty8sy@Pv1F zF{M_r2tPcqS6s#*Cc@VB^Wb$TkWwkO=ut*PJU7@fGG;B}NunaCFL%jJ?r)9<0Hn6_ z;Od*~+8fT=X!^>{yK-3VtTrP%_SSPEk($KA{DlBqg^jKGskPlrk^D%(p7f2Vl3{l* z6!L%_=Cwzv<%ZjR_Ji83z*TxNhno?X+rzOw?w4xTbrkJ$IbRFU&+J@*k%MDd$298g zX@UlRGpuPq3)TPZ(yw9AEyfRg56G8?V5D-ycojz6?w51|poND52Igc%j^9_h9ChJW zfSuCgPJ2p`Y#vo|?10%;GUq=%1G%aqPoE_9Feh}`D6MlTn+e=F~Z zZojPMazL8HA}Pft%KH0AhCnk??Sv}aYKOiTBy8#Hihmy4#u1!XQtZ~mEkqtS*ik;)f&jcCD^+>JpCoWQ_~GW@(6 zWOz1_GeKBc)gvw?gL-j{?v59xJ@%jma+9ubOwT9xp-D+FaZycnF;B1yMoxTYw*qmg zpdQXCk;NU5qdWN~>QWyDm-2ubNU4`}DD~<#JU+sOqSs9E*#gY478mDJ@~K;$OW|`* z=rvX^9_sf$p8T|Pq6#c6B^?Y;nG2M3I|+)s?)4UeSo;a3Gbw>2zg;mEwqkRCoqk(X zi?1#7=x*}hVEPYkun(%gz%bTlpjWlta@G80qpa|Cpxb2*l>c&bhr2o^ms}j%$Bh|D zw&#eL(wraaPaNZ#;6kp@u$@QTNlX2+rLwpps352g5nI1jSQTRlR}Ezdcg`O0n|QXj zFQsvSLFbFeBHu2kot_z<3_z+2T|X3qg}di8vNhqVly%T>ZHGt%%aTINH#rrBxwWIe ziI#FI$ry`k&Cb>V94(%c-rWij%)!$Ys*K~C#d=ccHd7UPts}3S44L-a1RJQ&UAbWf z33|IDQI5QOZ1j3Up{Q2A#wHKye+^URvmPwwjlj<7OUME@3vRp9TP$(sj z+WiU85G_?;j3q6Fu2*X=0X~j-bu?VVT$h-zn~2Zw8$OpvI(e}En3b&aX2*KX3ym~g zFSE;(lY`>k;nA>GE&v%P#5*kSU9W{NzjaowWF^}Qrf|BoP0A?xOyNK|txM}vI6Q%c z^g3~G&9LheOCv*++fvZxB1vK6QU!zB=;z&T@#frnvL6OWTX^_Q1)1X+4@Q#9zohSD zass}pQ|@KbtyNFno~R9w9m(C=M7V7J7!23&7j4EX=<#mR*e)}MTaZsN4Ql!n2(E!9 zU1McI8M&&NiR{5;sqIQx=Yot}ci?nu>iAr_&8J5F0O5Yhc}~bioQZfh(wxiG>eOeQ z$DleuN0CTmzSW5B^AG5KB-JW@EVao=vJ`e---RX5)>5T-Jf=b9-Y`4c=s)ajtxiXBdUzL`DlvaLz)Mq#$WwfEoiTSiy2BDM#chc5{I;JfrcwtL~{3+o}UB=N3)Qb&fc?(IRWP6ZXbtr)U~>+9vt%SYNemME5%*8S~kY?a?vD#);h zT@07KkpDP7+;dk1Q|$a;un1dxZm++vcFi0IVC!t>qlesh4F)epw-6quXPNA=>PPNH z0SY?ly{l;aZGH6uIHMfAF!umZ^9Yg7-ZIQ0M-~vPnvU+XuHrO`PA@CAggR7M_?rB2 z_D2M49kk1fIA2dd#%Zx)*HW6{pp34I-7nk@&l*%42ct2$fXkJuE1)IH%p|B=;@z-y zCEs?Z!|PrLc1ab8Lkmc@YNY0CWucC&e4G*py?P$>vnnzJ!9(j{{}JlAgC#Yz z!L_+F$qQ3w@de7sVkDa@)6 zHl@Vi2gsC(tDtrMhGmHCqC%)7UiS3XwCR{lA>yrFauUzMr!6wO~8D&^6i#-?=d3& znMBG8dDEh6q|7X_Qhg)zlYin$?i{YKtHC|^3vS86&Yu65I0rzkT=oJZmYtCCp$K3p zGnm(8K##3rm9T~S-w8Oedo)N(eqOG`2Xr>$kUk7|U?A_o_7?~{?mG0|)j584_$y>U-Ai^Pkye!yWgjp&wu#^Es-9ygMX;g0j`hTg4o3 z>FUiY8;lVr=WKH3GbQTu-B7O)Juxp7pH<*<Kt@KP^Cz-u3@uT4+@{Kh-!Ux^6 zVZ!fEpx?Wj=e8z;PO)%)`(l;g)&#oS`9NlQDE7S9mF+>ENX30pP@!uh-sEW_H-h{; zLu;}lpwF)5QTVSW@;mY|FMNaUv@pFPKFsjnx0>XNxi+^}iw(qN35zRg&xV9Nb#hs4tO#IiiayHrGYZ3^d} zM8N9xdXY|`jq^XeUE+Eu6znAww;Pv4DWS09UjC6UO#oK1=~4kh=EI_KEK=0i7p|;% zrpvnzrlxOfXz*{&gmw3&nf1l!LP;3yL27L=DNi|Ns%P@04(qzoY4750nhYi5bNBN@ zz)Tj=-kU3l>9THqK@C`xnU_Y${WS!00yKc#@3MF{jE+BmPV~vW2>_>yc0uC&g6*#`3`Uqp7 z_6G&C@oijC9$bFz(G#+OIu>=19IYe`^?yAJKtB9A7?l?_r^h(KL+TLa7XV(xR|-hK zfM53hLr1sI@ zWlnNak{8{rK2XnArmXDcw8;zaxy2%vLgp^Bzs_c^FLpV>Pbig(WS*Lxa`v(^AwU0f zyUC-gFxhLwYxD4NuGlX@B*igQztInoBrB#@yT$o~L{RHA-CZ&wj$whJY*qz$8#xEF z$DefL47h;D^5!W92EAcyBhOo2?%mO!s)#As#N`Llvgzf-!5`Z%01VN>nFq-4xuB7b zP(A6dAThLHBmAxItKxQNcL*`r)V}&i&mzIiN2L7l4p`*drFN|~-5FZ)%4^U_#Ej9Z z7&b~@kudUw*?UZrbcaWk5?)9gWs*S*J@aHcU=-btlOttQUY|~l=pm0pL|UF?dJL7`G;wfn!e#BCH z*yP8?Ww+f#D%ObyrVqKM;IXU+oD`bEboM++{YyPbZhBr5Dt8AA^&*Fwj=Mo)MH++V zX!PX@3Ffuzn`0YN%foA-wK?$jV`-q-UER+mu##bW)ylz3`9DJ*6_{=wW1tG`!(k$t zTMhXyq+?Bu^)8ZBO-}qinAV<6Rz6PlvIL|X7U{-AM#N5Erg?M%CDO6MwG-d2fY9dLgg}_XtAiRfIE=JJDsxlK1>2!SUyt6+)~16= zR{)G1UYxZ)b=kX(K+b9E`Jm{S3t)c)sfW0n7ZDMkk8rML3G{r*Vcnlnx877L1$1(G zBqD8!ad{4Iy9Lr+m--<*Mx<^w{tCBwz5tt;{V?4kyrr0q6>+^eN6~!sdoKERy6UvwC4w z(w=c>F1LxJS7lduXg;HQH1k)20y0LQO0D#Xr{kze8Yi1?f6KVBk6@x&RMM+hi6Gqy zF7eYQ_Y%B7$ruB#I9)LUirW2SKNv$0G^(}gb){4Be5=HjD|+|!OZkg~+>@Ll*pc4v zZz~(VmGavS@;@x{i@kfoqv}6FcVAC5&Y_^ht(<8z-Y|^IS5|Mp$NBN~7HzH`H7WET z$vpKx%2UoO{KKA~i!wdF0jJz(A*deO*LsQz%6=B$?(i}?puhwf`=vT4G08qxdA%&@ zE~zXU*OkmlY#Z?qGknZr4LyGC8jOb_4Wq*qG{k>Cr_6_=LqFZ%FvdBd3?ru3U`sKn=dA3V zl*hWOta3@XlsdRp72rGC#1#JrN}8wVY* z@UO}Ve+5tbz9*ig#7P!1Olnc*Cu~Fs8EAXdi~fB|38UlhNz!W!uRrV?j4jvWrY1OJ zEqZDa1pJmQSl-Oz=sLlNcLS*oa0zprHy2n;_cACLNn)3vzQrlGlrjaqS5*E#Ww5J~WP24oJ zA8~r!O)lX(5egKJE7_a}$fHEoV35H4JdQrP_1_nr!|$#8dF`#XSc>uUg%MiSGsont z7@f>P#XB|FK}|CT;rbn#%P=~cvZX!zV4#VAy`q{TeW(Uk zNx#B@@M8aUa(L%*Ul{afNkz|%^0HKlEV4z)+}f|IDc+CnIK`uK0+!=(!|_KjQAt(s zl;OeS($}cM&Aq#i=%pQfFda3o>}N(VmPvxkP;){9%G&hKMCH#1x_{UKfQG|@-mKgE zyU%~H9d&XetOjFvMYO|YU9>}yg^p(VKp%6Gtf?>@IgAb4648v8p~Aq+?3piyi%QEw zO3?T&x<-5h$>5->$F4B7*Cnz>6#TePZyvq(I_=SiWaDa67J(-^Xa#2!?4q2b0Bx z4bkjQjW-k22N`$O3X3TLka=Z$K~}ww1Hn{tJMY!xbX8T2Z3z?VfB zx(T}Tr`#|HbiIj*UmFJ0?HThebFgI(0Dw|4*qT0?=Hn=f0?8E%mIujJz$4{*Mygl3 z#*^$Qpvg$X@=PMGN@1>#T#2mA*=!&%^@@NT#0wh6G@2drO{h_%p_wT<3;ff#B028gMp#W~=}PZMqe)Qic9K3XHkabK8{= z#O>uAl1%$K#2{XfsC*`fdtkC$nKfymrQueNOQ}fuxp(dgbtOmc-!iXK%A(cpU4*5^ zrCp|GLQ}+PsbsJ^bbu-J04s{47z}q<&~mrx`hR4-cT`i|7WNCGL|+s{gisTTfYb;o zNR5aPqzXu{QUs*E(oCo#N(&Hrk={fEY0`V|0-^U_LJuLdK;Xu6?;Ybi=No&B{7cAQ zd#^R;^E|&9W){W$z1kwg*Vp3prq83DLDaFn39s&I1%I!0<%P;0lCp{zedVEVpx|o| zI*)zebP?yYy3{ddKEP$A#5-lD03Ek1+E;2CZ}2nB2@q>uf1MX4e)Ef8ckmY)+wv+n z$$IRsu@+_D(;Sl$A*lTWd9{KF2NRyh_E$!R@9NoQUZNX!tfl(A%dPZs--`E*@ZJ~D z(2WeY8%Nf=;|ej^ZHQb^fs>s88wE4zi^D0K-em=exP#2bZkms!IFepFq?b#FVqo*z z$`gS!=t{x7dTmns2dy1k<~YAks!zW3FgUk97ash35RevIm+rs$@5u5O=bDu-={z?M zDWIENU1|;1k4Lakn=^4C(5)3eDU*Z4=jKwW);MfgxY7paH*3SSAHYMQDF!vkz6)#9 z1_@K>9k((Q?6_6ruB3sYwF4I_the-6mY^u=ODtoE+2rbAMCY@^=g7lX&qgb$Vpffv zFU;wPszDl(M@MTL4{#!JjuzPsoL5WzD^+U&`iAb#=&bPWF2HfttR%u=nAfnjJGd$o z>R^YH;)TMT&rnYskd%}N&WL&|%bl$3^i53UKo8%Z1gKU-L2NiUx#L06(*pC>Ptw!! z8gzH(4H8$!&(mb+0C+z8y0@3@8?*D5j79<)#1JD3P(ddDe?g}Ewjjlc^VI8=BGf8u~}ez1_#{{BI&ll9e!7bse~Q5HjnZi z1*w@RL6Hm?Ke4)42mdU%gF#^0oNBLBDDm0du752zdBKvAsN<5Sq~)`vjfWDL&(|zj zPXiQZaV_j@Qm4_>2k7E||0wIm`om_2xlvH7AKAU90eSajrF*-d=Se4gzIBlaTFLp` z&|8r{ny0*Vz9RH}IP`02CZ)MN%{S#}V%GJT& z)|>XWE^GHoQyG|ITaBPgY@RByOnL%+nguEIE)9OBnDG172>?$IK*ZX5IdpoFQ+UFM z!x2;6*68X1elSf1-3H^yy|mYFd3&XrWUnE!Jum+DdNeJ4ioXy}57jXd z(srH~{k{JbP#MZBn^%PD=*0b&MkQ8+cK+jSI#yR$*R&#Y&A~E=p36IUklzRy2=e9D zFl_>6ScZBT&MBhIRNK2UN?=!5f5*6UmEUa6*m_& z5*Q8EIOAKCu8Ozt8kSfp8iTX$(voZ6b;P%jP~8}7Kr+^aHH&UPKJMbfk)cPhHiGTQ zc=ynZP47KG@ruTvV&rThUgwSNX|&n$17CbXZduPn_0K=P?#2L(GyFXHQ73~eXX=<5 zzC?g+)nF;kG&fvv`=^!n@_pTlgYX6n3$y5yhj2lWao)OH#zwidifAhsq(59Vlr3c2 zJscnH-&yQV<9K!4L60wl$T$p5lyZ6gLG214sNwY^FC?~FofDwAS^s-GkZf+;0l{e*|5EXvs~!Fg3fjuBfkh zbA8F9x=Vpo;?iJ-V1|^KZkO!S8K{A9dAw*%=Cyx(nA1My72s0*I#}0+{_qioenZf|Q%Rwuylzcc1z3OhI2Nt5V2-^h^nL1`pp6mM?e`Kp zgH?#UEE79N6IRJHCCnV)lW(?5 z@^)d`YnvCdwKr}WEa^KA-u`Bdq%d$i%wISITeiOYcz<&)Z*1LG`I71RJu1`YXIpQQ zURNoz(3j@PJ>Jj<-F|DtKN+N$^h{SR?>OlR2GFkLfQut$KqO05 z06G&AC5HZCU~W|zj;AiK@w9U7mIFBds_l@zNc?A}+Jp-izcw~dZlL1Cq=Bm;W``T6 zcgKJnmF7w+QZ=SRDx*;47=iTzTDv}+P_odpD9duk;VmCqX*s*MW&Oe)59kj0HI8O| zW$dvt#Xl+|tm`o`I-0s3cG^?@8*=yn5Ken`L`-g#OXJBjo3HBcLO2?5_TzB^>L?|~ zK#_Ogf;KRox=d)^bjZc%wdrJ5G;2kX&?3tR(k3tQyQ-@fDuAWcZoC#dOI>gxePL%z@^BE}_dw~D=!vAwvylP;^PlM8Gvt#IJ9XS3dm>R?(}xx^;$ zr-SRk3rMd31ROU3533Ce`o&N2wj)-qNA$xZ{XUo(N(WyShHa(Uec`Yu6n3~zW^OYn zK0Pz!FOB-e<#-o!)q-p+c?t}2BS}cz{Db~i)f3Dh*-7R5)+KC?oHXJ0y+j-j%4AEI zR0tvraojNnEfJ@#fSKPVyb`wU-&-DU-0)cJ0R)iE`#gts_MP9JG&rVb_ijHu=pref z3qz64xs!{t2F)(get(Uu+$d8AFT7HeW&=6^W+2;bW9lFe&(Y-VdSy_islL{&Z2;K4 zrs4SEykbpS@Lmj?Rc4jeS-*<}^=5_bWVTs(ud62^m8o%yw1Ym7TK(Sx zMIH<`zOFNHF1GXvcqYMg5Czlqlzi!oZb!P|Lo~f39s4!pfqw?^#R4MOgi4s4v z*T75%Mn`leyR$f) z7P$kRZeuu51Z^;giilk(esjx&Ns(4ilPS)zN9gohlJ`AWxti%NOi;RJ5pZO9S@M-y z|4!M;OZMKEva)em#TTMX4u6gwZ=O#|TtjMCrOuRo|KD!qIT<;Wd=d~|&c{(^Q9#Tt z9M}G+J8BS4&xWwF2yK+T)h#mhFxHw-*qBl9q{#3`Sfj;@wB74bUA_DQ%6+sxLhwh|nFZF4(Q@XBEduAvC>`-)hX3OSh&I zFQdD0dXbNjEXQ?Ac&v8fnA9&0YfMs|M>B2Ju8iF9+#QJLvx`FMrv>$dSDh|W_ERC{ z%nBx?wrMkapL_x-g_mQzD<(R;z$s1uPrG@0en}5QS?TX81p2b=wj#?}sq1xBG1&ov zYl+KdPga{>9#j&3SlNTA(>WAqqzrRm5uPdu*|^~i=}q2lz78JQ9HiO~d+}wihT?Vx zSX)t%ud?Kh#)gXNFGU`UzFsj;<(8NyPUmt!8LNzf{+dv=`CCJkT&s&6iQT`CZZYLz zIDW55-fbl12fTM?{=IN;DbKH;zBO}X_kIDqEOJ`7VY@VB>U#3)$Nt6tA+y2(?8$4Z z45=-iY*t}FfUsz^TpF^mclA)kb~2>$cO#tDShZ$oYi+a!S?t7P+<)q3TpkV*ztelF zRT~DoE!1GkwVtg`3ayJ8sTz7l#S@jm%#{xz1+elYv-TBAE~b(}aZ0OZ-Lge$jdE)M zF`GNa(L7le2pH^+R`wXE+@erF?GOuiu#{lkEa!%E5N|2o@dq5VXorHQCC?*eMSC|W z5DqX|ifn?+#Rn=fe6myWv?z@&7f(CVu|wX^0(oDAVP>txJtE{I8J^8;wUlY3Ummsl zIr@(%ZC`)eF)N#|dK7AcX6p~)x>#w^(ED`EhakmoKKUsKemV-A0VTo1ZZ}{hzIwdo zwNE(R3PxbU>tWt2%`ks*X)#NtI<@46sAuq(G&7#yJIQ!Uc$UqKan}&~?DOp>)2}wj zo(u>$bUpD~rt|5slJS1UlWuv+8RttyM_@Mk1cz|+YHJWUe63lMY4tXhDG_li{*AV- zqCd5ZAQOGIeP^j$B*TJK*TA>`uJX+nIR1uDi+Yazn(MFk|D+YTU)b3`=9PBcdy9}i zk8r;wl@*hoqoVGytWBm_O6MNA1XLv*8ow(v@EzkgIXykmXS0XOA%k_LKU;c3Kx3`R z_;pw5X_?JiKo1)4wLrN@jV9|Ei)8>ZwxV^Q_mMO)GMw7CUlDP!Bu^MR9edT&A@9A) zl`8EB()+xq3FsAKg6E(?2;DuzR5bYa3*NkPUg9<1T{@zNr~?;^UU7ysu^N}Kt>xaD z?RKHax~_X-MKTZbDE5{mq<>$O=X1fdXgin($x4qUPa^oqX=?wis}_KizTg@UzU7Jb zD}snl#~&=WS@+TIBL7UQ6ZxHr=t#a_S9(7kNIB#(J~stc7@=rzA>WqJyBekGQ0Oo) zX5=33qvo-0)nU&zRou%YZ#ASBMsh#Aal>hvo=vJJk<`4(%(of^!{tnqpFS3fm+P{a z|LzUDK6Vy;HBbr3QD$E0gc9vbVk&bo)Mg1!9n*q8gs)06>fx3$AxyFdJycEDW%o}y zo(^T6kSSZRN$&8VXDn5d(&5)EE&k)?Zys4`-R@s-dNc5 z{A*+Yna0mkTvtDb5V;7vYE4evUq2zA1zg4p2zM@zAt}6m1+-dadoRg*stT6)%Tio3 z!J;jtp4Wfkpt&P8`|$Jmd)O1<@u=bpx3>@xMdn0RQKK~yU`=IeHNFi0Tc|e_It}Ty zevv8d(mtrBvUZyIte1fW={_K91-$+EJ4WEff)W=r58{O#>VjH3kiKXjc9ZVgjyVe` zf2-Yt-Zm%nmf*@AuSJv(kdSMT=p zbA3m1-9?N$jXG?O)BDhht5F*~QO=yh0YQS5E=;vr2S0f6hI@eaQJ|^7FC5q7_#PXn z_Yf!cayAO~hB|T@KLfC*swJ^BB-Lv$lg>__cZ0CL}OG3`WwE)UD5< zWIoDOALcN%iqF*)>k3b^5`}DWz*tH!*Bj!5M>bOAG@y;{BsLAzWAmSR1=6K!u-bvs zB=I{xyNVkv-Zn?bXjz!QrjhxM#aroN6XycS zoHjzorW!FSHp%Nm7|4w07#UYI-*)Mp<|+Ii^mtga?_VnkC{xIN#<9xX?6egqnX7^5 z)vg6!w19WiWhM3@eqSh?EcE-=r&emRrqht6p1JVvyC9@MLR;uKH!@u+%(L%vZvmr_ zfv$;R8MX{mmi7C^aCA@o&k6lf{{;6elODkp6%Tr*o>D@#w=4#{m~zISO`}MP96^sE zwo~!m%|`1qGv2#)Ow@flR#&B}tRj1)#yHrL)AZlo+JesD*|JIO4KXy(Q`#}O{wFXP z-)1dP-hO{H(4o94G_|nUrJTG;As}HyqMjQ#!@IqPGiLj391-pkmaWj|VYrrxsYtst zuhYr1-u>c-pHM5<)hu1}qfajTZ89@=xMWAgEr31MOB&k^DCQTq`bb=}r<}<8{dpnu z1`DRjif4Y=>#Zh(RFtAG(?HEUUO*NR8osNAU$rl4bak7Wx0`VUPJGA7ke^alUIfs{ zPO`~(mY?VO5%Ts(48Ywq5>WBuU-}>eXZ2dVQSC&-p8K5F!ukB3KLGTjURzxv*K1S7 zY?`_shI+$LGID|h_gV**+Y3#$G&~3H&aphqHy%bp+0MLl)}5ZCw&1S`1N`6 zyEHZR)}P2rmlb)O9hopIR^bHQsYfB%zF2&98tmkD&XT6C18bc4Jq8PA;v(0|r#rdb z?XC>WE~D~m4l4EaV`MU^K_~Oo&m@8-lwF~*#TcnA!4+$XxW|>6l;BcQKRN2ff;zNM zJKnU9@>mq*k-5(S9Qi?a=qft)4jMHsBAAFbT3D8=ukYpqiL4%SZY_a*dNtn}$exh* zRN7`$6&;>xhlxNCy}jGdPPBY#%T~{zXOfwXe?3!_b;^0<-slwkcVOcbPr&Yv03moR zy+-*BGdtN0E{!vZ{!CciPzi^F=$$mJ%2-Z$iQbpz1w+|khckbB#>b4iA?Pz1kLT?Upuw8tj1FBj@A=eUNpsQGG zU~+exysn!rqMES^9>v2p)$;@`fhGMjo#dZSN5NArF~Ssg@Fg&bElrruQZ~lIjzH;t z%ybk5!ZHJ%4RP|czq$%rdl=+|7ioVc-o3XuY2n`Rbn1B^v9$Gz|C4&*`cF(Nj5sbD z!LPS`e_sB0$yPOqxz)W@-@QM~UhL6I^Q1QlIHT>-=U_oH?AqtX?Ar0}yfhkp?SKt_ zY{?=b#~?V`h!MfOfO>}Fvb1&6d<*NTy<@e`oA8##2K>`N$oZr?bOvd?+y<)@nhJZB zl6X&C6n)H(xOl9&!um$Ko|lgJXR5tvT1ex~VkQeK3fuM{vl4sZYK{9N5co!&#~H{WGCaLXu=md3v#okTEMU8|I{crJ@_x}zM3ob%LE zNB6(RY_Xyo`2C>PxP7v_QUbEy*36Dq%iLj2JU;_m zwtw5upm)}9r!+HrF6Y;-#wk(9ZoT_}@W=5JB$X=9_|d#YXC4ctgYd%sEC|M2 zWqX%JS_@rDiWE-uZZ`?WqIy}F$^hX67tp6W-uaQJ{STvwosbs_=~!DJzLeCcL59JH zN^WToR-;;itn38feO9Gx+N+i+%LS>`fh4BH6yd&rv|9EcCs$aDcoz?oZMlLyHwk6H zv#0N8o3s2j#;mdfc%a0Uef6n zDGKii>AOEjnNY2?^6&QIM_+gi99pwk5u@CMW|}9um!)b8Ifdm4Nbik_zu=-Htf7%1 z#hHL4(9(+QVK|n|r@*a|V6_~I6>O#lymA#Z#%v!Y3 zJ1;h)@*4pZ1}H~1;y>EcoaaA0vReN^oQ3XAX=$?9oW}xKhuMKFebZ#=-&WsJ-EP*U zxaE{Fx%!y9s0E&C!9lnU2&oOD5yy zFOr;GS4ou45yHN!ngCm60Y?%c4M0&8zwmQp+ftxwcvwF0$uYt>1WH$LwqCJKzPLX)m6$;CAoDVN#0~=L4Z9T6|45R^L1R>O z#tvG*-e?$*+4{h(8x-^7MUuCbq<7vn$0J8yV~xRK0nUsuA2uk7!#q#ybiU|p{Y3l= zZ~J>Da@$Dv^Q|~u7jLRrcU24^E}W$NbJshGEB59_Ry+K+fD_M2Dlb)*rew6! zaibqP=#fphAZwqw4aA_=e95nk6xRW!^XoK4Vy`|Dz6_@Y{;qYfmXLRMO89bn&ya9%j3@z^X z1wGX>(O+UW)s+wRFo^4sb}Q$P){|Vy1Z(fK(??63o&G+VG^baToa`+y=~e>F47n7N z;`H=ROkQpV5@DiP(eFcXS~P2R8V)UVY~NPhngw#RRMPzwe|p-?#8zabSJAzhw|(v- z4xM*;8v-hb)#6o$OSAb4Gr=W%G0{_HI+pD5epD_pcFj_b0WVTqb$qT!ysr^;e2e}X zD-}UxPnBi*(y$T`pRkRv7!DUe3C)c85k%EW&Bj~e&*E5pZc7YM^|t@KKkd?_z}0EA zcFwDH*39G9TdER+z|RMh`dR`Mqe!r^zW;xVQUtCSlA-MUs8y_D8l5h6

    5ran<6!{1-@T3Wo;`c(<|_72DmOHH>!_Y$yhvaxjUJLOjB@R7Y6veap8{lge0$1J*_)-PI zSTrpgGpVF6CoTmL@Vm>400*?*3`p8o_C^wsi%y&L>+{WoN>4xTGgrYsq%qlit}!!6 z0v!1=X?U}Z>G4rt>7nI~35(y34BZ{i+8FFAxg%7UH?2K*Zsv`{qG@HOf#543DBU-X$*|(F#qfJxp5ihEXzzw6 ztJ|=JjORL`mCM#Zk(+a`@ zTpO9)*5khB7X#KPq=xA2zqbh3)c_VL(w1`@7Zs8iEmIdsZHVa@-_L1Q&47kbKFZc( zMWyy<-JsN>$Jo@OpijJH+e;Od_^&|INg|2PzJlHL^I6Mt_ukS@XYM9kY|MRJm`n8~ zYzme7ACu70}&@Ig9ZG;g3+CYq_hn=wZPQ4O)NCY*&1yr7hkDkn z`ri%~iYHDEp1q%>143+}#j7qPjIXzF7&eQ#oYj~!}ePY zXlVI+n=nmDYzZukUoZJBNw8|=JC;Y|Xm_pByoVt;!|{mZ8(oDG};8 z?7}8Q1T%X)OLv>=KcdvWqks5boVXU^M>w22m}vU=sE>?5g4VDXHY!2e8608YV8@qf zlV8A|hJOYD=|8`yFIYA;=@MOy*b7dbn<_8FuKDh>t#me7EzycwA2=Z#r!>j#$aMJE zuP$?d=pvMOHGB-dEPFd`E&|yq=v>VG=io*DGWGFkwg-_AizJM7S+q58qw6;Nqo#|h z2>QMO&SrKZ+djN2et|4<*o-)4<_$O*t=XLx$U8cUhK<0{2xUq0?wbS6$?*ubAY4Vi4 z>CpS#PUWA>;o*NQ-U6-YZeFLIo#Z4~wB{?eQ{Dy{lGFSt4h#l7=g>O*E_XwamsTyZ zeXcwT1Gb{LA)mY4r*bl1!5RD{cUa9V!>tNyw2*X^bktDnHSW20j_^?VC?$YMOR6c_ zcTco`_vhPF`|(;5!@mwn$c8GDupRsL_}J%7*9y%5zUzUV&jvp75Q!DLYD0C?9|~CO^dky|OQUH_*X97~Y8@sfmz6*I{N)=fX;Q}+N}eL% z755RkhOBf5%(0H7u34mfpo?2FZ3s<~5yeWfWfoB&%$~%sX9t zJ)gvPIf@nPD^to|rd2q?6EaxR1v6Q0Tjvfvv-z>#8k6sPG)!Y9mX(S0RWooI8Y&G{ zPk=?ZMQrS{eu%aAVVH|XU6M2tK7o2X$8={E`LGAJkvIVsbn%t|$V_v(F1tD_@eK7a z2Gn0+J)u6?aPv0V94$3xiLvU!DRo5}Q`E~tNoONh~v5Fq@ zc^$dFkb1JB%o?A@rs>g7J$KUDm8zX_s{7^j$KLdJ&h}dxFa3{yDfSxhR=Q!7&nD#( z=>%halCmM4H$wB-hcJ@9cS&kXWL~I$s=RqHHNN%mI7Wrs=E6d>J!B)l6qO-~GcL3~Ez zT^4pdQL8dJ1yi*%e7qPEVj03MeQ~U>SclP8_MY0lUFk7!7qBm1q=GoW2%Ks?B3^#j zVJl%NXr*D=G1qgj#UI%V5Bj_i4-i>5Hv!RMC))%)@#67O?t%yR!ad{$5JMJH+%<0t z7!tpw{3{tbm`m`(2XEKDG5yNR(jMKz=f2{tl@!8S8tcpU-j4^HBzpOAKEMp2Zczd> zjqzK>@W!@y5F5|BG|5UuPv?}ieBD^|6lp9-)t0Af7obnmvz&aWm>!|DH8t>6$Px895LN#& z6_a2_Q=Xd~Mp_b+R*U1bbr-n45tQd9UHZZ~s6fr2EdYG6h<~uS8l$0}e%bn`D1{pfTOXTdmtd9mubrE znP=S)Ho3*fZHLz8YMJsfi%O=$*DrvKN8R-6+tzEoMomBSt)4$AscBk$MgHVKB5?>EltK5Ac*;l&y>CP+YP=EG*d=T+DfUtX_b{U< z6A`Yne6g2RZ~Wzcby2c1_O=cOc8_UwY4m(DP)K)c*XP_nPP#t)oohc>^i`f8+Jk>2 zP4zaP{nyLMWZVOptx;qpD>gEqNUVeUN%|M3I`~IUaJ97G*#4JZn@Z`T{yz3Hy2*;~3nF-S|5liiL;?gtd|!Y{yP4wo ze*PP7IH9rpoK(I{HC!GQ@1J@`vW(?i$?PLE+`S@K3>y_P{^v61zqU(h&M$gGMzquL zGR$kLS@}D9$M@LAuhQ%4d?DSGx$$V+sICiod63$8b+uyyty_u7bd{tAni{L+^#2pO z)$%j#uzOB^_jpme}-Eo1Q0n}MQ|+-+i!4~xgx zbg@yEUyTUHL8m)@37`vkYC-F_LpQ=lH&4~1wngxYAL16whYWU3j9zyCz6NV(;qOS( z^%*I($x)bF8Of^;<+%`j7d!Y**A*@(?umD{bXL4;f%zN_t~-CeQO0`e#ov6LrfIsG z0&wB@dy2($S3eD5xT1|0+ChQ3GyT~ENGY-A{tTk6D1)P5D-5&<;C&=@jM8wATu|cm zK!0Vee2>Ehe~68v-V#dNK&KBksvkTD`c#W`eu@%&h98QL6<6j0&7BIKF?XIh$zOKn zxpx1)p#+z;N9-ga=%-ftNzO@5nKVBq6~t=9d9S;59o2b1;`5?tdFn{4o(~3vS>+4R zy)rn1Ma20zD8+xccRSxf)X4(O()zNlVscm*6Sgbt+1|~dArc|W)s<9T;B*?H-YcC- z%jP|?RxGqswf&Cju4iyl@8VLAuq+2mwYeOh_IG(yZ&=n>ehrevXU-L0^cEKieXRbc zogCQ{I1xm}4y4`qurzT@UFq?t#dUU=#((P4ZfPi68bU5mEH7=!_$T&5-xoNS@4*`M zj16EXd<}zsu5p|3A=Aazqk5}{_FmUqFq}8I&dN-_m)&@%o@ET0GqR%438&@tol&^zqeP5?JT{>C)RfuaAVlv*g9Sx9*DWf)4b3aFA_1 zPPcJX_ztcjjp5}JzoDwjSJ(fhDf-TI1rP8%%=!E+XTJx1CE46l2dQX5_kYb|%^2wf zjx1BcT}&0lMZN+|tOpBHw!iUS@^72Zs0%w@q$jhx)%jS6VBz2!@*Z z{ckdx@3=J(_`2Eqif(MJWuhT>8rfrLkFLsH3H-0EXTIc&`YwiQ$j>=p)b~76qoL$R zGvfg|1TxQu+nd)fU&zxO$pvYdamx>!r2)rRws2W6Vy@G;IxSanM2vdxWW0%Yz=kJh zxa64_*ew%)=+WY}?Y8r}34IiF2almrS)_8dbtY=zEA-wyFj5VjjeO;+TK_tUoun#I zuM3o*i)Nag3L)<9f=5`fmjfT782VaYw28YRO>O1Pf_Q5;=Dy=%>N)0@v%OwbR?#Cc zbPOQN>(Xh%-(79iVUz}`dFke6M%EchmpNH8-)0@*goz&Qt2YmL2%Zu1I+DM``1gJf+zxgGbec0 zL^aziQG=hxDY<7YGseG$Y3QUioaj#S#ogh#z4q9R;&azeg7O^-{u$0wmpg7DFVk$X zOCjGW5L2^a7sk@S(Gk%HCKwM{sM-Cfk2U1Ft9+I*Wy3K+*F4qtny6`MHah%Ms~09e zIxqL$aO`>(`+qHpWxQ*qHI z9Q0d!b~lrP8D5G1(LZ_b{I33irQlG(t8EE!5L{w}Px!e*T&v%X7EK&e`sSb$(4;%+o@K9c&A=#wdo?A< z-ps01I6d#XAav*k&D97*)XZh*Pvr#<=f5wn43ri3)q=&NydGamKkK)t<%OR0bgVXv zxk0?9`f6!>ANd*nVqAE!p0$G7@g-D`d8C(qYh4ZNiRkYNiMG{-tLf^eHkr@p-4LSV zod}RF5Wh8fbr=#q5}R-v&ZA(CHL^Z2v96*Tv}<*6ds(CJan`MkF!3tVIQyoKHi0mr z|87IUMQf~ZNa08PBgX|;)@+tnYzObOVy+-5#EW*7n10!=t*YS3PT{o&Ls#1AD3P4` zc76Rv-H6^A^^}KH6yb+J8UC1$CcSmut3A9I*}|hj7CMw|;Q>{5b~_%-&D>>{oTGG+ zW^?mn-@UqV^v}*|Hl-Mz5Cr(_P(kb>E|A3|{@(Op10DbPv`? zvjK@lxvcJ-E1oSS-&Ultmv+x>wfT-{7Y-Kr$V z@7+o-cR@Poeu(lf5|y6z-4MWW!vx@k>m81=7|q_Z=d-!Vgv^nHUMiLk?GI>-%L zm_@_DbEz)9d<%fSKUT=+|8+GJxk<y0`+z%ZtgsAf3 zcj1yaOLVF9`x|B};XhL70=p`^{a@j{%Gi9~52JoNUB2(C1c0I>%@8vGeC@K->}oHD zeL}wnqB^2r)M35w>)){sETo4`c0=WERsc-nk1z^enhEQ?@m=KqX929B#qmlu-my}$ z)1azwH+fY9{|A?bj+V$Ex6O<~At8sc3@ELi<4pc$bUnNjT(b5VNO@Gj+xRU7DFwcN}6;!!3 zaDogf_FWcVDfWH=H1flym#RTu-=H)UeR7e!90GDD9E(q02Pcx+zH_MC39EE(UZvvSIskW^LkzF0S0TOf!Jjs*cqS2Pa-OXGGw~*ohx!0bHAJD;- zWiKxWKW#j5YdI|2;FdQ)V0+KW6}<YmP8%0X!R5qIdc#+aKNyq-336jCT z9+fkR4Z)Hn6%lO1K~Dc-G?T`3kKTIZ$DTDU{ST5}-*Pk@n_ozQ0Lp;o4Vo zl#F?qEcI1D1Y9HzJ$LyY{pxIh+l_o+w35BJV7z+Un2>; z&s71aRvr=b|F zxOn2TS*=(3xJXV$MtCfdhg^E%-W)6G7p9H-lSkS;)-69OJ!m5Fm)%ItkgJi+^HYM< z<>^YD<4mPH4We7Vc6X*K562Z?|4raVSH!&(Nn|n zHo71az1cYZ_bR&BuCe6~`sWoS9|qX^S8!C`ZoZ{y=AcHhtyc+xTd4Tq2Xe(U`ZM2; z9}vtq#&b=MGjX8|cI0W?&yTHxb%FWis?og_ppEa_u}5 z=B?k77yQ9;dVj>nK!C_mDJ~Xw&!&W`J`?)FlKV*laK`jl!*68e-ga{?A{UtIt@v7e z-#Z(eT6nk5nJ^nN_y>8{Yd-QkEp4x48p+D{;kCqguCDVV5X4PhzG@kCfK5?PBYf5j zb%GaC_A$6br1y?Y3~{j@1q2m7iqcypG`1iBloDyN`F_BQW~=^J9hrU{uq}^Gfx`BJ z9YoLTWAHKV_+_zH2UXMAL7|pdhHoA_Tbpy?Ynn5SolH$X6j(a#=eMosBQXVlODvjC z5`ONEjCIOK>d zDoh|pBZU65`E$UNX&Z>gGj$}8bHf}!7VG~XkC0?s9`){-Un^bOkjzoO#;$Pn;^+T& z4l!2*BQL$SOZYtJ(EnVI=t%{_Bl;wH)d|RH<3YHyD%4m+eDmY)|7gdMD;#8VpQJCq zPTHUsZF8id$?JO;hs3-dlVxo0@8#;yi9-E5UMA`P42vk!$yjjS3&KETk!B6X7mojIzU5|1E$ptLCOtN{kJ&WR;Phup z#5jp036Lk7JQT0t_8IA+5JVa1yDKR}6A`N;@hE3l9#oh&$=z6f67JQx5bxb-kNbQ> z04p8tBGWBr8K+^r^IH;bQhaW8POtgamTt}chxf*13hGLH`7MfGW0gB79dEMLIzn4{ zN0~A`I7-(OtyYgt^__!b1{V!76{|`Lj~UL1bRf22q_MYX99bK52k5ZSxY~mLs80+u zRdf6bl9^1Gf}y$n^bep*+z>UZ<6{9ujQ4o*z^i&LaA~%=EqGtR;-{)q%VFGAP6m#K zX-ujz^~4$eaqp`2bNnQa#pfFjS)vprI6mLZPkUW7~ji((DkA*Y! z%Oyb>k<)zA*yKG&XD_3VJ=_WRO@izL$s5<9G3@Z2ytEkFcq+!2u7lj3q7|uq^Q@u| z+kqgR^_E0(SiO?G#(bGbwunV0Or1iH)YE+TARDTz=RjBz88?&6!x(b z9n^KmT81N$?#H%Vj}4hzZ(ow;hM;-*gjdB)lX%ZU`AG59Ydx*l@Z(t^ZWSQ7`@~c9 z_{P>BWL;~R>5K?LjU>GsqCwo!Pqg@0;_qGz zI1avHU6SUqqTTj91~i>V<#Avn8B$y&P>J!1wa?%Ftl_h%QIr>$z-k$|5SHD=TmDsy zapt4WWjIBT=0}HT49tvMe{z7b?yt9YDP$@&oc5)CUrLK#i{@**P3PR354p1&;5^y< zT?<~`V2e((m2Bn*yN|&!{&~Az4niEqSUhJHH8{D6IB}M+zUj>TIJltl^D0*!hBjO* z!|yKL!E*aT>7wmpt)7;)Mq9~MI`Q}-73m8PnXL27LzV?D>RRk%-hLf5TvHak8`y6h zi?V#=J;v2ZT_+r10`Hazl>8Jft4x`O>mKjCbHKzEx6$kydZqK)sCMdRIm@R%icShO z&c27qb{%OwSK4W~*uB4_mjCK5ylNNXTCUi|mc5bmOSfq;e1hLuLTYc*<#yA&%yB77 z&FHgObQ9#T##ZngUJ_aT<8l7I0BKxoYS)8a-p+$t&qXYlcE)tgR=y7HehdBT(E6o^ zj)I%;P~|SOayyINN@)7&QxY4hzo$=Jx2n42Ef7(qZR?R4avV9K05%=nl}y6NSD!$u z+ke_*?)HfTavc~6WFC)sPQY;E#dgc#mOGr{@t6V6z)SJje>04ZP{7<_06|QV_jEXj zp#RBIOOB~)ffjH{W2c zD%txOiq-oz!g#y{;U1$#3${&TAlr|_Y{X|=EKPqhbfcs-Bt84iMA{(CqV1oCyNgR7 z(rTU{DsG4iEhgn?Gl*?vI4%1Z^vKbv!&-FH$gEy27RSz?z10TxL4zV#KRVUF7~2s~yz)F&RdU==DjP zGKjS%P}xpwS=hi8<9scJ(~;lwjQ z9_18T0z^!8(uUjy)tOrh3@?uDwAycO(ROo9Zk+}iKfd;N9KeVVE+$=73xeoTskJX| zsMP+cbEOku86olAi=?{E6G>Ci4Njs^-Z|O^UH=(bzd+o>u{VSc1lrNs{?`RxRLqbe zuMV2I{A)8T!*W4!Tz2$V-CW{+gSiQx7D!Gr51^U%hiP@vAYyTM6r$g9Z;9F4Z|q!| zH?5>qE@@OR=Y3-Jjhhl$zcS1rPA9a1V>fl>N;o8R1BVp&Z@UaB+2fh-NQ>#SeJvu* z!cZ4&`>7dgQ!#K92}>)>8$e33!9cgI&FEhMXMFJOfz`ODtZB(oDJg1?n5C^f6Jk~E zk=oQ=MX6PL?-;GER_!2mL=gLl&pFTUJm1gvck&m1I&$Cl`+C2w>+-aBph#zzFLUZs zv50DoS1DP?(%ga@b-f3Atg=fRr0}nra!6JoR!7Jxm|%=1V^JC7-#fK$&m?&$0rnL+ zzgO$LGN00j!6+`c8*Eot7;ZL7*u4B`54h%T9S8;wx8Cq4L|q4AyS{LR&{RJ_Mxq7B_otL#{puc>ObtT7w_I-U;+GTRUZBuu67% zaa{HHXpn1&4mk4x=hvi}o9Q33?L72bkZeJ&iL&3NdvMbRbM{ua7G=G@qq2K~LKrh^tjyZ7G`_42*0UdigK6p05fPe3K`1RDqt{ z8+Ifqr$WyzTpm3hnU1fz^*=u#C${SX?@s%l{L-0(ili}bqB7sZ;#xusQ#g*TJerGu zBpdzpguHDtk>v#%-m?^Q9F)hnGC(^t?1>Fk0H?a@`Kf}iN1dv-SDnSI&wr2#_TL`h zx#P0Por}~)Vn~D+4Rl5Z^eATey+|=18?v%hR`Irfg-0BrmF;7y8)2Iodj}MYPzV8WLqJL$<8E;9=s9Eb4 z7@S<~QD6%ySkL=ir89Vj!DvO(?<|EaoI3U1Vs$~puyv5AE7Eb zZ@yTCj(p2`ER&>cLYdPWI%M{T^fsfp?4EC3#^(*e{(IWcW`Xtmx}XT18@Q{l*-c+( zx+q%NTh?l~Lh-^!WA?57jGTE@k9{6lR#HQaq3Iz4HPdes5oi~`grp&$>qwi+V?yNY zU(M@dzTs)0`zhL{G`D}8IPFZ!wo{#I)mCw}mxhWpK2sX~3-ig#mV%RLW6iY=GZyky z&s&(Wy~Q#|7WI+aeh*}eF7+Y31=``~lY2ytIQ{G3kQQP*BAZtHQL%f@v*M8Y?tokU55hmU8!B-LSK)y_0=>>J7zV+42w2JR1`3t>y zSbr~T2-ey@m^<%kUJ)nKdZo9z7Q=uk9(`jGboN)}fQlsUlfx@xMr>2@a?{889-aNL zB*DZ7>47(d8a5ua{tI65;5n7^^?rl7O(|hLoM4gJvfwTe4-H_iY3O@FZ?9mmE+L9} zvpW)J7X&fv@jYW9%BiZZA}EObzD%kRuZ{eTRfx~*RgfUu{5Y|;iDT{-v-frdQ@^wV z_}(>Llb?Ef#BU?Xw{JQ`=ko6*65-es2i}X~RV%q4O&?le2rrF!?tqGv+GjXt(~vI6 zAj%3z;7%}L6d=*a;n&D2u*(K>Gpwd42w{X7!b4buayI-k)FQ6BNx%)Eg-LB6Efj!H zj?$>9BB3#Bpw$9A#<+q?Zn$88!EWp{ShkWdWxgE8 zamaIK5EV8LC^;nK>Z!3SFYQMp9Jx5pjMEN%Zwf19xNO>VQkhl=JF`EMJ5h-{ro|&kI$?fMPfxt}))&?!8 z20P%g#QyXm^mLEtcb_0$cszT!gGxl)GTgUEO$&XmOawHYGxV68@K#7VIN;V$P-{HC zQF8xTJ*VmVKPPu&xV$|;*_v~GN|}0Ylc_6=6-dG>Ee(4ZfEW(4zVS!By=K5P@!c!d zil-EYfiCB7@12o+S^@>A*tL&qE%T*F!9lErac)|ILgRmgF&HYw~r*xwqxJckGL>P&2w|_+KC0=xh8!>Rl>%%Qahp!|q;> z^`2hN$49e{dmel9>6d>e8a_>y?vk+L6>1ZP!b(3Kyj`i4uY)K_e{jyMwk!YE-d{G` zy#HQs;vm-Mkb|wNq4lh-C=7H+`v^h|)H763Z~4s5Q}YA~IEh53(Yz-}`X6+4N zzXSv4oBd1Oy4E~^1MK}nk2hspkj%nFimc!LC>Vvif)9)t;ExhlZ|e*x);dY!2I?YN z(Ko;blD7S40rEL9$8wRfP=T#eB~K}&eOHA3Mmm)OE+gpcC)hS&$>cuGZzrYi{9j_65Ds7-07ziL+vuV zQEVA`Eb`{Fq^-fW%{pPITx$52y&_A?H}KSVRmTf@D2OQdlG2iXop}A8@O>7b3x4q^ zJEou0Wt=$O?0Tn|J4MEmpJeo*02F6U*4r21d&9 zqG8Ce!T!fMrejpnuZoR^wopB{BN*}#IizW(fNCiatlH69Axk&=V)oT{iys9ybB%Rh z{i`C~CTv}st>81RCn`NSQMQ5X5H7$>IKj{$D%5@$lw%d%+DZ3~RN-l)H2oHfS$-&Z zUuERJtQ~-DSE+7jF?FnW60=OeD9XE1#1r@=ZOvkTm$RAvx>tKATg7FiK6o`P+L;M* zpIp=8T}%PLPq9JRYro3`%UGT(qYHiL<#48og$wlQoKZ({8`8e5h zK3QJ%3sd@`Z$HtgJy1;ssYrm zzdqSvmSdGcw}giO6q#Y@{vHTuuL%3wx^(IJCmTDND`sxJh>i$7=w;_>r1YILB~Tf% zWS!kA{TFf@mpR?ULmw!8jjhtifv{2givp~hErOrk0L4P%^P(14*&HhSGnzD{G_H?w z;{zvv0z#0lG58L|5t^n9V3N?RCgKW_Xm3p7oD%j$jfh_~m!r+`xF;S;!>0U zqH*zc$8nF{vO`>7NumPtxd#Sq+s zR&wurKH0UvaI_|Hu7ArZv)5)2Pe`s=Ik^e8t<4ny_3dli+<6IEgvXjLE6J#ZMDI8* z%k-x)R#f3M#lOe7ngJfV+Im>UL_C8)RhqPcLkRy;DtG<^Rvr6<0uibYuZCm5{ zy!KhY<^yY|)^^qCq$-=(JGjjDh0Qw|?A{xCbYDwiv?LQ|Ap$q{pJi!2qsJ{)8 z9d>srs(5i()3KVL_mW`SKT=YZ_r2?xQ2+JLIx=)M{jRf0>xSiO*I4VhOBxG)H-TW^Xi+1+W?(pORdHg5ea0~&?mRGmpiIqal&mhxa-eKG;<9` z(T$V&ALWm9c53-7wP;smnEaQ3btqxEgGvy;1rC3?&KWAb$RsVUntP#N+BcxvrP+h{ zmS(Gc8MRY&4l{1qE9;ZTPIX3eMh{0{Yymh$tQ{5QRBj_~7xZiII4+gFGhW?@87W1xlZU|1z;np1&v~W{LaVBiB zTPH1@Tc;@_&{aVz-3vb!rl45`W3np&z!cr9|E4170?y2D(k1ckh0xmRH0&w)5Bc}d zQh+9a+s+BMHj^tm0?vCGU31~4MVj?+vZ?`y*$aS{UGv+NiJ#82r0--&A+tBSEWx^x z`uhrTx@@qj+fkxrT5D&xZ_IU1hg2!xU>`A#&5|X|f_?e7U;$iL<<0kghnNgS0! zx0L#+a5zYiXvbydI?E+CP=Pm}C}uu4wZCQGpD`$v!GqV%%@Kr?hU(`H`BTsSvt@wbXu@2xLYCDziG^wQI@foU~s zkI1Ry-%U=H;Um$tAqAvn99ysiZJ)Cm&a!cP_3Gxai>BA%!G5D8(c;;Bw?wUM1xNZi z+4EZqnRmSAhGmb2N}jKzocWvPyL!ajBbyt3Wxa4P`q}_SZHo?bOIT7jkNL3S^`BKl zcX2kr{N}QM&__<=_yR3dy?^l=UsYu{6q~X~N|W=x^P9Y%A0xuZu#{{0{{Zp(PNsb! z6mb9y=`%F8a@{(l5=&Xwf3}n?nd00?`P*6K6^n@tKZ0d>HP3;kaJ zi%*Nwr*?w@X5kq=o_*L3WII03S+_sL_jb1_Lj5RryC9FTqV?#MJ^6|&W%a7cC61$MVBKTGW7$C z`zn%*rO&?tQFmmUEZL-w+PpGDMayH^P5Za91QS~(ufoM>{Ep7p%PwhG;;T_t&TMK6 zD`!V9Dtx|#wGPA;0JKUEpV@63Tz=(VS` z7`k_eY_=&i@XAs#Lq@aA9kjrGj>F@6Zr>DM>gc%h)D7$tJNWW;3o4h7x0-->dQ(Cj zn>JC{93dBU;(5f-P@EFk-)|Zi^!Fx*O?ut)&eDVLIO(2)XnNUGsi1_kgWlY-?_8s8 zf3mM+62vrb+Wz*J0orIOZR7@~n zS)olr<>bT`o53W@jw*H2)>me?)unrmr{&Onq7__dl0(LeacFFUx?4aySKo_H>L$bV z#el>3h5%=nli52my$BAdP<+g!zM>zrXK&42#_z|A^yK6dtLQ#@8UeRSUB6tQxz8xw z02(!W_NF1IlN`RRrcsr7bcPf>e-$05e>d=z9wSg+XfTlO>6-D z3fM)_e-QJlSZNq0=ihwZGv;0{Kz}eA*esQf`I|qh|hVReQaFQBNtoo}DAQCW&W%L&LUFqrM)J z!nYl7uB1N8*7g_~9^j90U_c4(x^I|GsKJEh=8bgtiXC!Tr;_&3eEP%ytES2m{eK_X z3`^FD-thj6QAuyuHFKBow^}8a)FmHz9bUGWP`SKZEVTHVgFKpxWy&c%`nm=3ljMlI ze*{A}u4IWNDzfBC(4{kx^zEt3T_eZPD2qap)c&zG^gYKrfF5^A`#ixKsiQ9(9vz!b zrr%4B4#5taH zg5od&>AO#E%JSmv)}4T0^6+N!)W_CV+}_{ZZTc&0)_w{v!oG0|7$t?$Ku$+|{g#YWeoVfYn76C(a8ES~N0 zh`bG)SR`r@4~qy425?fM(I`z(uR4Z4IvU`1IDIX_I^@;fNR3+*Z20@yJzy;-oSA;- zRY=)`$T2q4LsO)LTLaKSZ;WK#=MjP$l|4x~NjPc4J?$t^pSZCjx?Q6gI7a-i&)F@} z^2&hA-mxzcr}t_4d&g1DeuERl-qA?UQ7MAKht*vX`7Rs;-+UsgE%%y?8B3_KHdMF4 zQSe=Kp2UR6qjjXY$TeEBDGd43KS40#G(MGxq2adJJAr$>XD@;OctGWpj94;6ps66H3i%%jL9t@GaR-su464EP|$>v(hx0QhRI>y z5sJ0B8mLEdcM0;$Lz)Bb$a2hAS0mI?fO{i`P1gZ}6fv(6VwAJhZZ>r~uZ$J$f8 zjodw5ts%9&NdEsr)jP#+tjI-n*4+8C-^qW23)BR$K52K(x1zl=Xr5d#&?VKUTGaf& z6QXiuR@H2_sVTzy;WC+}e%WZ1-gm#qjIWc1c*9&Nh?d)IT(MXclg63m`&|6AW5BI? zLa;nKtXOwSFI?6(T8aMh4B^hd)Cr*HxRiT4z}>KfLA?aq;M7{BKN6xD8Ct&PRFZNdZ=;eb2aZeiTAzwk@ ziZ2|HnGZtc)|wj|pLp#q zq%IO7S}g|jKIRo4v3vB62;@ykt`!OHQ2X*+P0?YS;Cu^h2laZm9kky~fU)sOLFwt6 zr^WN*>b@?+lTW=H?v#BWbAQTuSZI%ry|2%j$}X2^{p)YbC`UuB)M>(f^40b8jAi~Q zmeXj(|GfsZ6U;k?VYw-^Kd;iXPyj1hPo4>@2 zk*|JFm)a373hzc4ct5V)WX@z&Q<5G@xh=SRQLyWl_SesWDr2n8IeUHo{8@&~>1{Gt z|B%<}ingwNw(pEWB!h`tvKdAU@z7&EWg3`CFc7#^w9+pm-^F*4@QI_S<4DLnx?hJJ z?d`#pYLM!b^j0(K_MeUKZ(fa<;%G+N7gHftG3*J06|x5?3K*v~p3wFV*J4IWqX5Mt zTvnNq^>(qWoNJXqmp+}~f0nFXu`EaB&$u-+k>r@J7psy>L=mjLg^?^MclMW8$*1vo zs5{C*m&5AC)ZGt&_F+D?scjeX+kc^Ey01+#YLErrK$bzip2P;Iwql54E<*b|L{rZy zUK$`ZbJK{=>=w8&hlz22n01Jyhuqwu{`5dqRW?lpPGg1-0T3>#e*wJn5Vyx6k#I$g z)}gGxBc0hyzge-co+RJ8qN#&mc&T@)S<>l`OB|y`Y`pq;C*VZ6<@>X+V~G#wn?~Bj z(rC=l4TQr?Qu3`K*h{AH#Ax3pcV?^n%f2@SafFN|OGw4s(a5%A7ti+*dO3a`X_#AV zc!=-0vIN8O*Z$5wg8C!9?Bw%4;YSf=&2pG25+flY!-k?;Rh~rRv^9j@hiiWD;BxP9 z4$LZ{QCLs(j97d6fN9!d6zRVM6?paSYwp;Gj=!k(It^QN=1RZ_QSZ(B54lhCkc6g+ zB~6dU;aBZ0BstPZ0&kaZ78WKX=DisDVSLp-6l`Y93OXmv9rt-Vz54EN09;@-NumJ$ zV<{$Xw@6xvDYl(H>G9CO61^RhpHuYdpA&Ho!f<7VnH>w&WQ3z07cd|j+O!|8K9vc^ zXOU;1hySKHy#}VEUjSC6A_v$A;9^_u_T>xqLvjBa)o_zqolkLw#`z1YeJYJ|J^t-L z>m+ln@6O!VPXx=Z<|j4Ik8c(abM|xqa|tiokj`% zr1M1OP;G=1G_jgZ)TCYUS(pcUBpK%wQL@U9Y#frV)Qm_VBk+b&f7Oq&>jh);x4qh4 zxWWozxReAoA2ch+rJ?DW>xzBI;vYGPu-KTVz8miPZ>9M9XX?ybRa`_NV52!f&|w)- zccXXNqhiLA__hO`fI62&5T-=#Bq>PWoVYVQ*%IGR$*}LcyL=v+pd+ALh2oXAOvh+? zl?Q5Q0TI$<->jBb2J!lI1aEEAIy>j-yUrJif2|j#sQyWVEVvCU=-fZwV+D$r7vb3f zRD9T+F+t;ung}dfGh6^=91QYFl6%Z(H@V&5yE+oc%Hu7!%&kIcjaSWe*klLFmGY=i z8i#CY0!{Aa%Kd>oF$SRz2(BOJYDR-|uAbopjgyD4MPm;h)~$DOq$^E^Op*&bkHK?Y zmJ!U7_CF(Lx2HNtdbDfSU-#6m-tIhNv)FDhAwPNAy0bhNmJfz&ak+KZyki=QvhKAk zPQ0J_P#pUY@ep{SDKN^-`*R~~XA7@`og&{NuvO*6%03x#9a7}r)31uPNwR_|`pRH_ z+M4e)vN0jl$9*4A5~{RuArM~`?;GWsS>lU=j-2xfSrtY%cZ+TbIc@CQrQx3yVd+Iz z9zAVsQ-b+*g)<)|+d-QdZmP`0Sa;k27YDRO9S=?NE!Dq$?<$F5ay^4SuE$Jr2Qo~ZCz)0+z@BOks>HHU0f=HYh zkFu1|u0)k#_(Cc9)ko;e*qMIUl3>G9ab(k&RtrLXY1$Lr9k_cz`>+-Ai1}zSKraQv zu;kw5@_p?J^MDD9;cj%;UXB}p!AG)12T(Ou5Yc_6g+}Mw1Aw!zsMtzu)G>E>DbbIS zBJDqV>oEYH;%+IETmH_?1i-;F&9;lGMT>Jz&cMdS2gew(p1^4s>DXH@;K2OVbN-$0 zz0@6hKkp1YYu)+hC!DDg)O)087A}@aQ<$e}eZcFz2UL4}ziXz2bi1Zr8SuCCy$Vuk zH3yLq0^Q<-EeDZ>iq_{!8I{+?AWNVgJ)xQ7=p9mHI`u2Up8?ga=uqU~q3*&mN;A;+ z7SGjOjOIJy>hY_hlQ^c)(gAvAq?d1( zR6^gY?@Hb)r1s+`Okeb+WQ5*mlyg8v`iNEo3l=E(yb{zJdIOOHfj=N^FycEIdF?9A zW?jckD=$?t!jy4}_=f=I(_zJFcSZKYQ$i`rsTR$CxOm&so)Oa#OLxN`$4+rQ_!W*HL}?;!^4vLBm{8f1YR)NxTBSFKNR- z-fg+;x5WWlM#%l#UJ;aj`fMKP(?hlLr4-Ws_uh&>t7?p1M$3<;XdM`ndADH2ul*Oe z`p%s|UN5o^;{}(Kr%B5#g1pYm9`UO0Ra*~+cl2%1xl}I;{uE@4zXD*^{PoV9X z&-o>yqr)r7i3{+XGcrV}2$MLw|B};f?@4Z7Qwz)<>K=F*_}0$Fox${##4whj-prfU zs{v(C^S%M=#NJ7kWrX#9yajO^-h2wC4v&^SQR6eYVxXNdkU&6eVt~5P!xPPDlC#r2 z&6&s3jSi=VIb9Q6f$oifv~S@y0N+ov@j4W`+xo-@6A5*rOVaEaI-ioB)4Mox08W1t zZCM^7tt-@1+Z7$y&wANan4X&MGhLar5AViC9Zk^VnYkK1al5~$-3k+}Rk=8)2_DU~ z>Ii@A6?+k|?(x!d?sn~3YrT%|&lZ|rb@#!nYa7vLH-Wu zA82@mKWn_wLt%?qgjv2uXPlPMa*XGdK{`EzyotsXJNgE{bkd!fX)f^p}s-Y;31r2I9ePbQ*{khlZQ_Bv?;U8)H8cqk8WQ0{?ANbNT zbvy!7!r{u~3|c3`Vj7<{4ac|*_J@B~vi3&Q-087SK)%nb#r}Vy&tAYSq1VsFGQqhe zZvQfbwHQm%^{|~c(}+!Hd2&oq?Z(5-zp~mt;Y+W~c0ap~eFf8FdTmlqI*^ix#~|IFz!#UL<)02 z4Qb)wm;bGulE1w+_maQ0T+sW`aM6B|I~G@Ekx_e4J`?QMST>_kW2uz>QxnLr8DpT0p48xG>2)AkxJa2xc)<Y^Tv3F3$2?8c%^emmjU%MZwF!-na+-;6;v=ka zuuX_t5r25A)->GUKFINZ;+?cx=Qx58Nh;L-}eCCm|bc zrwZQoJ3K2?$wpR&lPgOC0zU5>dYUKX?-LqTn-YPd|iRudJ-%Mr7sz%o9 z?1&6wtLgflTkgplW)~a71EdJei-q3sw9U6DMg|>DfCDuFBr3oRt4s@5H%)@irKF&h zODBaArhILGYpNC<$Cs>8EL$*hS6OK56UX%%iYy~>Ze_!n|3ad$Q&YE8S~JexaZBgL z>Ax_N=q@Yd>R!IvZT7fyOL}T0W}#L>epuHoYht{8CC&2p;uctpad{DhleFg%CKqQGQQfYB6zu8ThVm<5yog_)_k^h^!-ho)K)@q>#K)$y+yRNQ$@a}`EFjUy; z{kB`sn(hvD4+Q z+!ST?=_pGRkWgUptXt88_h>&iKlM6*X3F^Aw{h9K0s9?7Ew6gM6ufs}meif?s~Nco z;XS$6`6xe?k_@c7nL?mVKAwO8%HhLPbjM&H$T@l!oKkQu-@+UQ?L%a*skgE z`#n}nHm%hQ#^CMR&_3?=r%ws!HQu6a+1Y0!&=T>$y|5%qR)Q#I$ZBDu1RbH*Q$_3# zbf6PGu~|k4oO>*^St5~ivO&Yni{Zxw@pT-todeV8F9jkOtfu!(S2DL^^@~0^#<|{M z%FAI#N~%m>_>+;3X5i$ByClu0oN?XusutXP6W|hY3;f@uIVcQf4|2`qjPkw!GEmTg3sy&S7ZTn%CQYAn?B9x-o1~l>^yBdckRB zAci3olOIM=;st7;q{ng^5!iUW_FG#m>`dBj=JME2){uZe$e4ESZAb)t3uj6Szwlyt zqejEi)LQO@vUe%!PPn0OQK2ylT|(H8*x}KSn;FJzrWjEAvib-I?;MD#WJ$j-D$}C7 z)T&J(wIf_!&RzNk&fem4Qvv=9)x4h5Z)w=_uE^9Q>cI%u&lw~ww12tV{<-H|eC>(9 zv(IpiNfUmcr2~U9n>B#EV%yNp?zDLUb6IRC>}&_~`>Mv*O_UEm8JIGOK&-@PeiAIt zt9B;JC`eNQrN@Aortbw8+!$wNEF%ZissNiTK>&>+OW8e!AsRxSe`v_A)QJ?OG)#nA zw_&8Hi8VSP8h8q)qN#{CYN-DYncw~Mwf*B8`y7jwL%-+BL0Y@DvqJmp%iD4GWTPSq zlzT*l@V|dxpKk(7IF}`GnKveg9XCmp%o)yAPWD~xhN0wb`y-C~;h8+|q93*@D~`i5 zLdxQk$i6r`{x6&NsMI;Qx?lXsN@G6ur`up)HG;Ai;HIkvDxbGg* zq2T%FHRvg8OP3s%M{Xnyog?%f4>B)8Iz!onc0<*=aMEvP=JalZ1!0E+>^mm9Nic4`}&&ZN?daGPK_mR!+OF)v8hrRz_gT)S=fhIMpHt~ zqDnPZc$251n)c_5EkCmln+kvO;D!iP)7NrXyScRfzL>;z9htJk-LmN zQHfWihPI&O=`kdCB>R+I?HdEl6*?32{43QSn8rd4wQMw$O%)myxDG{!9yJ3ql1!~! zWU*=`!t+3y;~|M>Up4!cOkvwX$xhGjJMJ!a zF#6eRi=ZRjW2wjl-7J$T@xyF%zm>VMOiQ|}jV(pcvL6)8(w`1FeCLm%lcEKO*Ytn5l>0Xode&f@n(UQ8n*1XQ%eeM!~DEi3TrBXEu| zfWhF--?nJ|!q@BmGkg)Cf6K`y5{v;fzP+jkLD; zYB*jP?0<)(9sN6hu##AOfaq{u;ezQF6$w_nT3v#(nXZkFqW%eIB)#FAw8a7PLEQej zah?#6U~7?QN!(VzdL?cph(R)IXcBcZh7yFjcufTw*Hp2}_TCghji{%LueOc5$p8#& z<3BYl{xLTxT_r^1d6Sz}ONzbw-{;H)+jU^XMGhliPqoBFZ-^&dSE)eveN{NA!#`>v z7AD8;PrJ>J&K-o<&bC5HuaVGArH`?qINJw=-5DS#gtQAcuxYNHvTFlprfeu=*SZbNYfl z)({-iBLzoCO)FUux?A+oIzahzxIY_RXue@->F-TbU zbj3@&U&Wx`6he@0|NXxY?d4mM^s6OMzGFmGNSOH_RHzY3wdXiV(4|0arOnmqd*F@*hHiq6FZ3kGyJpPK(rX^>uW+8 zaACVGSr7s(9#haF_K;y;lI@Ruz3&psmW2E=Y})58KvsZNI6f#FFkCuX(I4PDNxRyn zK(1DwZ}guxx#9UY948xQr|fXyq{Z8qo14D%x!$Sp&!v#6p4Zb=k2&YyuEwuyw{!mz z4I$jpX?<_~7EII+BT-LmCiPIQs8C?OWBgV$x#v0Gvd`V_q-#HLL%Xfh`yqZ1nVrw; z&*y0-ZuKCjZOg)ghuq>%Rs3GA=j8SYo_yXD6p^+_ZOc^6UFevwW$HUq61SMsJKZ#H zO^!o=`W@Icy4s(bbV=DrmqAOICJUpI6Fo9u0CEGXr;eQYElPUHLJb<_8mR~L=|Cpi zQua0Wp4Ec#>Py#XRsm<9RTh}mJh53dM1lx~@Ul|2 z|K&;aH3Cfi5^>p6Ik4zxZ`VeKbtU)?xLpX#?^E)X8p0Lik&BIQ{) z<&?1==E~g4qCK!eBmR^^CjXO8=EtL~iS71J8-$(nJn@tlWoq#M9`!ppuMZLPv3JL; zDl2;a`UzRV@UqNGEnS@pH5O}Hi?!nCq}m27T>`uepvPaEP3Hcn_UM!_GToLuK*0~%{k5wyPBo-Q0lVMk!D#0oor8R8MS7Z^Pi zLJRieS$F9TRfhO~uUrqx-iB?ymI*^HK}SC7pXblP44=Z|Js)0%uZ0YZ3kB&iMi>t% z!yr;xlJTt7>@*>-Aoh?N@8m+h=gqFbI#`a%KXjwv-qU zg8FDLk5rUr=+CeqkIeKA60eX48ceE~R-%6_eH2a7$v91H5hWs&Opy%fQv#(uK%^^G z-Xg8h&FjW(y>U|xFo6Zo>S0L?{t&fC zqF!M`V}`01dTYvIjd5qvq>e-{W@$!?@W}KW432d_#Tx6OG(8A*Ia@Q`eJaL$V}|Lg zT~W86_bqXC4nw&E9|-GprVXO9@!GO`5#KVSU18^s9hUb=T+_(sHKr6opd<5XS261z zxej(uqg=2uqiu@EHD6SC8pqSeeTY>Ip%%Fzpv8a69$%^p{I@yQhtB3D&sPeIvnv!HpLJ7Ee2mADl@K zS@N}wKy-TOk+I}p9=^)nc6M4HRZ|A2HnyYfASo>Sv0xf&PN1{bZyHv_QvBdkBVMjl zBmMZ|4fvzc8M-WTi{e`8+W+>gnXzB{*2q&YcN+;8dDDK6!`0=*93jJe{My4bS5%PU z#fo$LBv8TAb`&FJ5Bfftcte+3|F-4fM-5*SQ{xFq@4cU^aWJ$+w|+}SW%~~*)jCzLr8=~&3aUH>aK0vH{m{Fg<{0RypVS%U?04o{wa-0-VK zWU{W@Uize&o&64xzmmd~!al4{nvDz*icrsZ;%rtk1utwlGAH0IcfSDhd!Oh2P6~wX z>%lXq{r`9!)b}HN+Q$HJ&DOC6T;0n{Y(8x3u6?eX!#1LL9$oyiQihIMIRB0J{)(kb zxNpG1W~1idnFLs@tX?KRoiaa9Ka5+bp<2^1OA{ z4I3fbA=D;PcnblFD|m^%swgAy@c0ATM`R4O5zO=!0(T|cxQ;XH1|Y;8Ewi74;e3i^ z`5i75p>V1!N)LPl_@0bTG!%EDl*LK0+ap{5bGS20fYE}SDn)9pgN=TN=eyi~6g)w@ z=~QJ$`a3REh3T%*IX%G7B;%+{j^Xr%*As}$Fv0{C)J@F|D)0S^3n$B90yy;+M^YCA zC}uP$99MC!!&loQ*XQ*m>=uy()@hfE=4295jhYy0SIp&upZ{CzWkPm`8eqJW zUkWWf-I>4YxpnkUaFqkxyyz^aRhpmc$W9MQw!KY4P4FJB-!uBC9Hrt`9oC9}gHAv~ z1~o_Oq~4m6Lpjgly9pvk2pFx)QpCDPbJqxWeoTAuLJu+ayjj~EuLte)_3rnj9tP+w zIsbahcNCt+$a#b*fBY)@&}gqI5lmsb}xitwirm`tD3NwBjRLUt!lXymw7|;}ZeSjQdK4_vU28jMnXS@(F?asWsO~mV1@<>>7d{GzUP0bdo zWhWIA@uZ3+f%Vb11SU?QSmbeGT*7@jX#e6yVC_MIr_TueGM)9i(hU!jXieZ%z5m(~ z(^;@ksw{@-tRW_V&iw}!vL$Xudx)EH14F?Cs)9>xVyCGgHUyMaj@d$Dn zpUn7z!RDd^;$5@IUwI zP7EPP`pGZ|A+U0Epk8MsoBS+Zwp)(j+eJ!(7b53Yi0+BYY{IS?h_Q zOH7c%tnR9;M}*ngaZp95x5~}+8q!UTm^IWA^g9`71o+`QmDZRR@XCF>xdp_nS7)sd z+v{I8a>?z7&8666O#57HLH3SzW+#0JA@VydXLEZV-bdRTgYsAByVqd=$0YI?5~c6f z|C>F~4ZHTKai|)#ofEnYEK|lxeaQ9&7v3S z(B&}F+(-u^-$Ok=u{omit=7v=$H5X!+1`Y7=m!6Kd0PF1T#f34htNDjO|$#}ov)Qz z<>Z9o9@5={aZdW>r849mbDiN;OqAsn4CEQl+Z-Q%cZ&$oSX~LA zMlC5OL1Z#B^@2C(&7RPFz<_>EXT~xO)eAe6ZoOT#^x>X7|I9Tj=8G%RT?lQt%~i9^cX&6^6mqhb_txa+aC<3g_))398cu|%b;5sN}^Stl6rp$v75F|mPKI<=9QO4rM zhPf`C@SYjVNOT~ZKP>fhcZ9DnH9~XW#x<9XCfD&%>DSPP+!l-DG0#n#1OQ!Rj@D&+ z#onY1KW4Z4*YbEi8X>UhV$}4hEs=cliHS7^Sfd!a7J{b?H71G~X`=uzLURH`R1Afh z)rUIucp3ml!|~EAuo3s(-TQy$J9`T?$q|>?T#e1t@}R`I@~D1GwEoZvx$vkuiA#{g zJ0>h(FqDA%d@O{B+7r=awUBy){4+dd`QqrKQ(KCAq_<46j^% zr`gZ^+gCezY+8|7*!09vAKDc))!;kxRWcL)z9l7w67T9zCmnWvOuAlB)s-vg{A(x9 z!PX%JL<6_@Tq?ylXj4AwKJ%$E6HOC!+HvqxetC2Qw9so3O8OVyd(U_8bIyJ8A7riHnsbgZ<`@fJe-H`C!<^l- z1)cbP!6@tx&zJH{RCZ{%O1n$C*x+^GrAe$J=55}s7FOhX;Mc6tK0~jGe=kOj=5ne8 z{=uDZS$|L}$a&iTaGn!<{9tk8%-mfv-_mUqS!dB@deAY+>I=b;`DYh(=T9x?rPfZn zZ<4Nm6_Psj-+!AAZ9IG42=#ol5VZhSB;k(=Uk^nuSd{Vs4=xyys9Xea|hURPliAexYgi~gXd&-!9-)4&J~v{CHMx z@~aSdXw^zsBr5BebSV3GNv~l&&!v%TKYssggXCJ66VUSJJ!q1_>HcDj5VTBV~*bOh%VPlJQgR9 zIHbSV5VlWq2)mo*B(XCQ<^1bqJXVbIe81H6F|6$&UBWOJ`|Gt$d&qq;pWgXIl|kZp zUf)3FAD_KOaCJ++LSn?5Ml>zke>u!I2u-nEpNQs+x$w60xJ_gb_7~e|MD31cF#TZG z1x%g#V-GcL@V7O6!_+^Ru^K!_|E^Da=-;m}ersQ3;g5?@FW+0z%i%wq=+3J2Yb|kGVc`xi`w*1@p5ju&WIZ z<BXwmI$m9}mGVc@9QelN|hxa;CeWY@n8 zmg(Yp@^Q{IJ>=s+kbKw9E4LBIvWOf~MP0N)+FK3#+b05zX?_uOR>`zgd{*HSHZBPv zqyXDudyy|Hrt|AV`lv`hKHF+CJYbmimIdLs^9cm(tI23Mme>57(ZLv+3!SCT9btAl zIAu!i3%Y&yqu`S~?JW8EkKyk+`}{6rXSYb{#2{?t_9%Co@3__YI!7Dn+TKhBYZdsr z#^NUt72SLQc8PR55Etx0`&TfYbAymo{3DG``ftQysAf#NB^y8a(;vO#KF;w&FmC}9$iQYDAt6EMO6XGm%ZPBFm+e54 zSz}?kMsnM6?qQDAj3U&-bBq(U4Diin61m}%r?JozCiDyq3tG(}^hY2oLxpA-fgJj5 ze2I2V6#G{H@incY+UsA2_Q3c@R!a`u>zPSWqMK_E`S?W%dmmO=rnlPkj|F}sY|)f! zU~Oe5=(8biRNcQ{?vBneF6sZcDJv0=mBx?yt@6Rqfoo;&!k0p}Dj-5Z*`?mHJ6C{x zWs!&&JTxNAf z;6`DF$pPx9dDS-?<>} zMbS&!#KgRAd;CKmlfS+e!pL)maot@7T-q%x;|o~3(-oN;B@xlb=O0)dZsRip&93g4 zLKdRey3&u=J}$|7tL@48LI<@hZ;h8Lm?uoXNii;-*?|VD-kBP4`!&@@?j0lx;VbYe z*B(ozIJR#5bkf}SAHYn%yaDz((=-vsL;GOj@QUm1N43C&2ayv0!1vB@NwzGFR)w~} z5ZU1a$~d$31eV;m>oFp(?wG-*#=P2kbG31yt9oty5(}%A+>-8u_6P@Mo;}-Xc=E6{ zk|P>^IL$l~tZEcv1kZ+oQ(Afa=SK#`1Xyuq>sk+G!NRh~H-+~l=!V}t-iF+Qz9t33 z*mA}YTW>!U{3}4HM)#@}&WE22H0%EYgGI2m#fLtmgN#Yd<%pr*L*)yNB1kXpP`K?7 zx73#p_c{27ea>=nM~$C1|Naf|W03h+r}i^5hc~sCq)WL)H+S56r&ZUxm#rr|5~{Zx zd;SM;Z#a^tAjrD1il1u!wXcS@asKu0i4s5>1v z_7zj4F%s=-+q%YD?2^fIe*TG1(BYxe*9iVz)`kDDLf}&4va!h@Nk!PQoQuiI6ctQK z=-8u>NMbtOH=uY*%vw$(8_TI^cEr}u%_}6p4TK z8L^!ou_2rRr7dp)Nb!qoieI&VZ{HJp6eG_tFnKnUo)2?t;^Bvgz0S;zZyXEIGt88_ zhY5H-%EnEul--+1>w6y>`1qFmGnb0+0NIG9RV(D`QY2>YdZhl)o9)NVd!h33neRLW z$i~ZW_qLbSRJL&227U^Z02m^5F7UdAE%Y^sSn+3iXy79hzaZZ} z_wdW;arYA@k)vN;n71<zJKq|Sc~jN&%baGZ z_keY@)~wo>>PvTeyIEU*%wd+q85>~D--`&*R8rZ~~Hb=p3JCgJ>RNq+BP4%kp>D-hoPm93<&(?aQnb#?rJ%z);W4a!^JldUyEeR*h8 z-h1^%{aVgiw`Zql@Uf>fW_U1yp$e|9Yg!HpM*Z5)hS2`{yg@1P2Wi+I%RiUkVrBy> zEIU=AX_hlX>l05x3p5@!-DA^c8h|4X+deUvRsKhEN$NIQeHx1ZJ;zy=TrsS)C zC2V}H4Ns)7>!sZ99t1@g{QK$Z$GGaZ*Z=waapLuzzb%$H!=K*oi~L*jUCPt@%;%mD zWwZW$U6GN(UUNaEFb8g)D|0)ql{ia<4K(a*zGMaGVo**hGP9};yEVUk;pima(wgy? zLEAM)Wl)tsiGhK>1iY$A%3MMd{d)?|Lr8PbUoQtZECi?^X>VC_@Etuwkvo%&kA>* zT=^5aTEGzkri>(IO4MTEJxQ>h6%@THxRwlHvc!R}#F*6Hk`#qgE~kH=Eje!{QvTQ` zx=kQN>(;4Fp|@H$Ni0{1LDKnhe+)5WlojU78obl~z$%llMPAed4TC$PD(bVwt^9E~ zX8DH9^ zE3hPg;lg%!?N=C^?C;b?e2Jb(fSY+IY1|MQJjLS}|~bQmzm>{dhb%+Tp?G z_Ct;49ms2K4p;oBZB-^Wb+TW&h z8_yE32EN}K-vNZUSCTV(H@#|ZmE{nTG4ANzaoApqj@D{LF0c^ZG|r%nD4%M-AEEW(W_H3&v9XwCNrzJ8ZF=92Jz+omsY2{eRA z*ynb?l>3GK+g^8j)dh9L*~xE#jjdZ6BhDM1rI_%pM+cub<(}x!?|wqdyLNpQ(k9nB z+^%#rR^M8570%JII>C?H%~iqt((BZtx0RHkUC~ZXQw* zmL}~)sx;p1SuXk=;yPyGy!E(FO#@_S_%lc_*&%r?*6P{%zq{R8u`ded+>g~i9JTGP zUA3`ztG1SA3Y(f+I*D6l&IpQ)0btWdy3QN)h+Py`N2LjUGGbaTvpx^dZfZUjuVz)A zg+D744RcGI(^?;fWV4BqFO!UCmtTF4TEEk5FFt!=^x$+TJNj~i-X`8Yd2j6+pLxvC zu!^XCr1vwJYJTsaz#sz|bD2_sNF~Iv{@F>Su*$k^LvQEOnaJNPTx_aB9BuLT&3ox2 zaNP+jY4_q^0wMq7#$z2$e@U_h#*aZ^s`U9#zz&!#HC2N;If$?{o_Kc8MESAgvvGsT zmq)Ocz8K>(wIx%?t@r-;xhgcUE=}OSSUoT)Kw0W{nBW&&9iXmS0 z@LybZyfj5i#kPq1ju+Oz?QflaWUqGhkQO`)Xa(7e!CbJ(A4Gd~1+`BLpTa?e_J%7< z-VH+%V`k6J(jF}VXxomp=(9dEUZZ0Elc73e7hXw4HYAQU7MXh*$IMbQZh_2HrH^C#5kxiC>Ad2yG12(z#+1yrj)gPa}`@*0~K}R`^;A zwwj&1iQkL70<4QuI0BMP=8h(|8zk7RxqDZ1P*{K@^WXxC-agkz(C461&Aw<<6}Vvs zF2f!aW?lYv=m~!C!q*9o}9b`01L>U^Zxfm> z|Gc^F_HvsgFdyTq&h!JxKYm>hW7RhWLJ*9viMYYUBr@Ro-tVuyy&Z5fi!`K!)8A|YCU|R zmlpNR% zC{g!^MD1!005g4-9zz9{^D0|@dvC)TBc+_>i`xLG&bH$}?VOit=9?q7%@r^{jN9W* ze$|I(b4rmfFQk~cOfZn0%DP5N|LFFyFlG#W zG0nM#9!yTJg3Y`_t4|vmK(G1 zj!0?Vhj#+=YiF(YNPdXjSz^b-DZ)pYDf;&<(O<5Ql$7Hy(WQLucyelJjft<2nmveZ z@58yP!#@YBQWFP0a;6;jW{!Ix2=Lt$BQ;W5TEBPek%A$kS1=g%j6QmCkj{smR6EuN z$;F~b>3n+Y)2(DH!$4}#&eSi~*07&-DT+dDRfVlyZx;0Pk6O#zCkD$I@p*FcAuW4f z`^@KA5|5uY>AWr%u|B5Hqb8OF1vhW=mDfn`!F3*@*Sp13B&ErgMpD1?X2#aw8kNg& zXl%EJhP4BJKNlMy`?M#LH~2vkIzV3i;ai;`U&`kK4kYDCv!RaPBqnN)y|Xz2Av3!@VJi z=Ne0e@lt>J%=?nNvtN3?jc&ehPObQZYz|2+SY#Bw6Zoq=qDM}Rsg-;l@-PxkTGncO z02Ep-`uXX%qiv;~)PS)T7G?0;f2~SD_$B=0t6V@ndW}Py=Oc5$w^dRfcTPG?k=rU0 zMT^1AaY*E^L9N zRR0(fHm0{DyeN|=qU_5z8hcAwZfn0-9@^y;)4U#Li5CN^Plf3@dg|luiGUVk!`9{3 zo=P6_m-QMo#BybbSdYh79$H1{c6|oa_KkV?iBC623}SjDcr z2n}EvDbteENhpDPY#HN(jKm-hX?Mu5zvIN)~ROpC^4J~vFf2Jl8heWIeGU^}7Mut0xnwzg&M1F^T?mF`J04cZuA zOfrQ|$@`3MuFx4N$E#=2pta48g)lJleZNw(`_9s$!yc(crQMtA5tG~JKU^9MwK|CA<`q1wel&FjFs+Amk1LfTAp_-p zLrG%^5V(w&?DFUU?4CV(V*@H5hA4xo(I)*(R5V~Gr7<>{-<5PGwj+2mGzNnp!f?*cizx9*yv+sUc2 zd*DHlMr!X9t9E2*F*(sMAo`n9XnGfNDWJ`Wdi$_Vb>gLYm$Je|;{ugoX9c2>71kuC zF~;6ZQfEvlfSy}6Gs>NFOBY@wP0C9UMnriOQ0|XE;SjLurPO$h#9Uh6PL=@da;qec zPb&wmC~X0EuKzMy1Lh+UJ+#N;EZ!=n zk)`hG_XvFmrsOz%2OMamclv}2hKPS@+J2(&@wgy&xq3ldUW5xudAIH+7iWmGa8IrK zWPAzkgbq4V`4yYF`Lx)#KFXR9)Y>>6E(1gvn7C&U}^WHFO+UAjY@J7lK^)A11h-^|EM_P z2_v!U%s&qDihnZZ6#ZvBu`9)xjbcSsobv+K?&;33&Y)%+m{EAn8Q0)z6XaU z1J5~HTw;+#WB1PllWYuEFL6~d<6AV2b%HeOg5G;4b4^4F;<|^Wgvh^qvCQ+O8=v)y zFo};b#3K56_UJNcjx7lf(!vWvM4_dzokTZ&jJ}>1ncy1z6C{?p5 znle&>c+4fF`d9cdD z_d0rR>k%MW%dGyq%>K_|_@-jfmYlGq>{dtB1@J+Iy*-V&c zOO`>zl))LbqlUrR85prYtw7_TFijBB?3qdm-m(Wy!;U+FbIrT(-Dw(puJn4#BF3G$c#5pvIfg(PAmWFWkghEWVcmS0C@s%v# z>+1luf0G9p5oGBPVXmtezF&eURM-uzRrIg@kO^L3M2q^g8(j)Gw2f;l#X)1wYkC%Y zKCb%5aZLLq_*?CAvG5%R22Kqrvaj5erR}}?)_=(Mz~nnmH95x8)hureNY;hu*3^wn zC#av^)NYeuW;g6&X0X-SHXhoUtt6D4DNUr41LF2V?^dbJk;dPG6iQ#K=V3gZa`6hl z$Az`QR68K&rLe6=P!2n?fK6#G&iy4{)LLpib*HxaWW(NJ^~KfWP7ak48nw-|MjKfl z8$O$=uS{?3{kY=6lQ)C6vC~egDCRO8wMOo#=z`FJHfw*ew-Vo7TECKZ2fkpI(cJF# zei-y?{4TI1V1Sxd3-DNd+pqjkZ0qy{L)+qWQ{^Vxlqg|qXsmDX#kMkflq1RRA9(GU zu@EUho4=`?hFI~N86O|Au?GvI^J#_^8r_N)v3aa?o+$oLpac%K&lkL3ePd0HjFrIMK0#9|ln=SLD{fhUGWUyp4sPe4 z)af148@pghlRJjfR#(vxacH*uW+jG^PJ!{fnAWr2KhKh$8FJGv#4y%-opnvWG6i{&Py5zO^5$#+KL8#7ABZG+lhHFbqr z?rO&3rl+^vO!8Gh9nv1n=em#(66NHp97-`}IWb2tv)O_S``IN6hP5Z@8#b1jsvqu8 z{gaV{s)ro?&KLR&uhkUAnnd3a_^H>QavFl!OWm&UW)IN2TDvB2zh?Jr=x;HG2(v~= z&>_*qd~?{>S3NdV?%c9>fC7q@N|bdVA7~KxZlS4qk!3D&ke-#Z7$2rPH<3((a#-x! zqadq>cx9xDqTf(sfAxn*>4Ojb%H~942=y{8J&{0 zn|#(QjC)|X`$mZrxR*1seB?EKxXzKOF-;ctM_n^qQi*%%Jbv-d5l$`omyz`8zw~vd z;iqVgXlkSLE|V7(aB!|NcTHR$+Pk99=m9Cy;r-*V{uP(jLzjZcx2*?tjNdCP6~MIR z!|}LieWjLG_5?ab^Yy!TPGcG%VUL5b>-E+={cZ6ukP2p+i*Y5mxqsu{)b{+rNgnm% zfgF+IRnhVb$kqhm&dS6_^3^O38G-^5^{+Z~KZ^rB<|(&-sJHvI@0}D0{i(_@}v?ags;E8{YxWHC-HlycHf~ zqfG$wf*@vqM_avX!UVZnorQfHGmQ{lt+ zi5c?AFl4uC>&mC;Z^2O{9|8E7#;gJ!T`T64t{XJ$Mw_s&i+4l>MpyROIILa6^^E}< z$%40(?-HDYiz$?jn|jN+q(=a&AoGSN?VDcW{?<~vzT2YX8xQn#yZRpmJ0ywD4Ofk~ z5UVy=p^9Jfb*pc)>V_IZKY8{{ul4vj-_SfQsIClO$Wm2m-@0Yqv(tzLK7_4=BNHLa zX!&w3Nca>Z1b7_s6kN+oUx6@QRaC$Fe>7U@z>ou;HnLo!==Wg8AQKwL+(0unbWMop zgJbRBbs0BST)?>Qo1KQ$%zjSmy>~9gWalIhUg7Jkc(FjDyW@}BYz^A79gjpOh$beI zIEf!maGze`-%yovdma_Xikp>w9ewuu^bFl%(b1*1Z z8B>`O{^h7IRU8~m{d5uT>~xnND&&JFj>HT;yWQl_6g^Z!586e&c&WfAMzA`10uYS7 zVd~st5v!l6*LW=qhYuY*e~Dj1A}q|L?(!pPc*nDy(xd+3aqLtI#NffP}!V+YkQF%lH1j1OZZL{bghqkJ8EUp&ZH__qV?i;qHA^gIrNl z*`wWJW74l-`&X>irse<^w0o-gf@u9uVu8?@D~fA+*6KaewFc{i_SLtnaep=f?~nHH z`YC{B053J_w|9!>4>SpGX!go^9!=;K95V7|JZsdZFYA8+*Qc}+Uo0t%gy&0#aWnz~ zbw}WnMt zWDc^5a;BfqzEFOu?QG}s!DT4w#+&J;;H3_uxdRb316lE1sH1AQ-z?GZ-IUZSUanQW ze#g?@e`FlHXriRpeI2jAos=j8DENtekve5EQm6zBLOBKGU~OtIFZ>e+-E{ zqhsJ3x*Ci(ru~zV$-+dFBHI=WXkLWkU&`mpAE3q&*2pEkT8jvI^5DJ}a}C%cEMY42 z-*_H{Q>gprC#yt$z(VQsiHp^wd+SdW8%y7;gtP_zO4L%6 z2o?{P_#N@-!atNsuYeX)^$EM2{D4{HdC@zPn%EtifV&AX7?p_3J8ttQahOx4o&^uXc^}IKrBoQY_xtagyOs%^q$q^U~cPIa;2L_TX$?#M>su3lp;z zACsq!wB)Yj42pvleRph7KFg@Xi)Uh8XRMe;8!a!Txt2J3)i zK8m2ag#`PumzqP>Yu^>5Z3$PkNG|fThD=#;w) zTVNa;lRwSljs=649uSbCdsV2T_x+`VU<`MfQbO`W@{2lDAVP46H-Cd)R_6^N)NW5C zsV;pvIe6akuF=%@IeI6ED#E*RM@}lfSt60PaJUJ3W=svBDV!aNZ7(Nsea;fJ=`j`- z!j9a4`HW8DB{P_^Fx{7!MNPD$1@M8t4~mDE(0s|k9Tj7&2i(g~F%*@CJ;m8*fnNBv z-<_-v+TrjqEuj#)z6ZX^sUw@Os>zjDD7c}HTHw9fN!*U1U6C}E-+gen@AB4Zbch7n)OdJQM5t3otnSj$<@>()oS&EvivQk3Ir2-6-rDwPEGy!uUTgrt3*cQ}EHQJ7%*9 z|z&gzcQB#exW0`NlLSwWUj=VQqhKh0P*B$gDpOp7uvMgIgA{i9yqP(KED+ zR-*sEK<{-Z@YL-Je&btgH6fEWvK_wW%d{a}1-b2eK1c0T&0kh-{3Pyt_8MmcLKO6$ zhe1COJ!4*LVDev0!2`fM2N&vMqcjpQ6Z@oGskMAZM-BV1nJ1$2ls6_ItDkB3k;guVGwLTCxGw_##WZ6RBOvv9(HE z6)RN~wcJy>zJA_J<^&4{&x;KvLKywJ!gKI#7qF^&J(ZPi=it4X;jb6WXPoNKWKJOI z6ACSQq-;e~+W(*_m&8u#AOAWGpc$TiW>Ca3| zSsVW|?7+RTLjLL32;aJ90yj(3RvEpjO2L6gjXw>AYVt&jkLM2W*AjN>onwl}XuY9g z%*_5#v42wjZA|wH@VSAq|6W{eQ^aMRcP5?mfzWA5q_4lfA%Ck@0ZYDFs}+{C55>XlquK#JxymSyN)ySUy!343;I1(`s0#rvzA)&8;)poHI`Vw zCa*>>@rznYL>4bnN4Lh%uIW8ETMGb%%U9bU#;lt!cKt9=#R@kpZ@!?vy>D1{+_$2o zqE%f4qV2GyL~N3~+hR?5{2mso6v6Uj@Wq%^bO1?3(HQlPdu3V)INN+s3Yl$QQ9u_i zx-d@tIbrF)OE%BZ|6mso1Z%ML^xkbba@U|O0Q9Fry_~L~k7?kUsE^}CiL)KxE`nsF|)oQ z-#$q70@T?D6UxNgt>H~Av)<7_gE1~T*5g+Y$y9D zWI8VFX+vM<_3gT}9-;U`!k+Ixg;w*AdHZ8RbklsS6L-}P^wq1KuttGn7t+eJB9)u{ z0A*P5>dT4JXy!P>gr0t5m6<~^!N8J0DXt^ztEHm8c3Ldo$3B{|rEXYBZ-Nq-3by@1MSbz}M;q&qxoqZq29 zb=c(2FTc;0PZbI*Fm6)U*WXsvCOD%7LW?%dEKIDE0Q&UCSqbb#Xmf&#M!j{}oxqs9 zu^+$yB9>Kn?b}sC>fBGNTzvxISmtcq<5VJ3b<|*Ie_mg{CU@7jW7PN6HAbdnhDws| z;zkpLJAi#bm%iLkCz5c4>1^H0BwHBFBCZ{#X>i1$-- z?IO{j$z|T)i)kTN7~@$59DE401>B_(d+n4f@7J}o8uKYr>kg1MYem&VM9rrKk@|q* z5x#WI=Esi3RtL6gF}TfJ@Xz!eLBX8r&C=wx_JZkL>G;C5II_*)8W-rat2`#iUl*7BzHo9f*CFa+j9ro9n1 zW_w#vdw|(hJ+j<&o!_r!S1w~YbldkDP-itZUbxtQV`9_V_o(i|K5EB)9XcTlZd@FM zR*tQ*)@=FiTgRLi98i*Rc@8Go46U6j1zB8 ze1|hTZk-4Nmm61f~)dQEs#Ic~RF zLf;>oZeG@SEk`)Zf?N<;`rT@7+Cb&8)o_wQU^O1TOIx!^SltIr$qjpVrDBf5~S!R`26&Lc>&U`g&budqYj8Xg#mP7(|YaYoG5^+SUBrlUGeA7>H{F^kKaT!6=skp2o zew5GP=xUmr?E23(w2=)IpB(hX?o~${Od7?JC z$p6ID*LVBK{rMWeC6coGW*@(|iJepiYsUWHVx!9;jH|M2$dl!%xA$eUcpym0Y2d(6 z-I)L!;FBg(OY zjLh+^d|gr`oI0c0+8d|iv&Sup%kv;%43{`N*-IuC!AMfFUVNy{@mIZGzJvQ2>1?s9 zni-#cTV&Tn`5F=-2J_fvJ8JHGT6$)S=XR&1Y|0ZB;Z6*zUqh^9`0H+QSO*7$zjM32 z+rA)jz5O4)<-2n5=nm_eCN z@48JGuyf`BOw|Kc^BkJ=&~shj5${CHlZP6`&0(%!juMQ*#UO^X_s_@J{F(h0wIbf1 zP`)<<=T%^P(zr5@HlvJy*MqbO@=*oY;q>aexr@S-wI?ds;WEM&uu_5xWAXf5)i`TQ zMB@Liy!$V<>3`k%fB$pmzf}nDmYMq&0hY|6CB9*r#gbhn;1YQu6C?oruo=%F8)s<; zW{xWp^#z&N@j`zVoHax-=z)EL>DQ&k{aQA7IM&2{8y zX1bTIq`tKk!7~Hl(`s9ls)>*>+*x^@G^5^Aaa3XR-Du`8u=Wz+^|H7BN?V%g!E8e~ zn!+=iHp>^X9)8Pe<71K$c#NZnDFSogVdVN8+DIB5yvO$SY6v*9I`)k_i^i6NRiky2 zy7V_kZFOTU>a{m3;&7&I#5R-#gYrT39F%`t5vXFDy_&yEmyG`)2}!RzGOHlv%{jRP zpCd-RSCCQabY0M0+hA(UbithoLH7(iiq=eSw}E_kfjlvp@xGR6hm*LTYBcSa65hI5 z70yPUW3QnvuV-7}qV&`b<2x3VTkVQRi_+DaD+6Srh1$oGeW>e6b3c3%V-EAS*GBZ? z{MT;NwD_Nr!RD2ec zK5_PULmtv156$mO?Y5XxFC297%@FjUJ&(Z%V%D~LLDmUFJ#)DMRLJ{b4OwH>-#1=T ztVT<9VhVW@&$#V)2&CGUw#DL+|p2fG+Bm1_AG|AXQG8_Pz9QeUmn%Rc#+2 zx0M`7t+Tgr>D@VN0j0u%Zoe2CBO90t5xz%C;XF%mNu9Vk{H;l+u2$PV}?S~z+o<@?tO{!GH_c6Q;QFV z5DP6J?-a=T2%iZeXfX>uz*N$w1+NygdS6SCU7ma!rXj2EVfprR3PzZw-)g$AQ?#3T z)w*0ZLfa@eT8HsvYSYMY!}%Xr=4Dj%pd9T{`TDB*tL4dWimDe^niJ9kIrL@bo^XI| zj*=_8-#+#qGbOek$WP{qSO@`l)lfr}-AA%~>O6-lQaQ_-rl3R1y9dNj9oB{W3#XqlFBUbf0|tSi5rRP5^}*jzrsWEaE&+eOUc}+wZE9hYef$EKhc*@; zjGOlDC4Pae<*2kt?aQZZ?Hef$=jP;#RSVp;j7j1D{Q~_* z46JYp*>ko8dO2?-g&B?zNzi&Esm7ly_`C+_bO6Gf?L)m#A-t-Mb|$J$cp?r?Ct1>r-GGU=4tV z@h<^l#ui&q?6>Of77wZq4xF8aw#@kES;{GZp)84LOesG!nI)#w(X}1AhI6*Nqyw>^ zu;*_aoKf+kZEP{iu@w2J#?IkK$i_pJe(}XftkYxEB6SVu~m? zl3!G0`2X&(e8-0l44N~!yn2Q_Q7QBdSBZ?8reyHV!XraUPfyy#hVgoT4yL5-r1$#6 z=iCfaBi|ze%H;qjsgK*Vm}9h}=hLq?G?8{A2T{FtDsk=Fmw)k=Zd{8T?+b68FjXc? zo32|W$^R@|kBjd1x9-*Ud&At}-@aucf_sA#+;5VRHCE!X)@{;HtV<|pVm0xS^#RnJ>Zxs-G;r(F&1;*pJ~RoAwfqME~R-!XZ3 zyiQQPk3-UqgehD(C&*%+4QQJf8unB}Dixez-u9 zoJL-Ixo;n;L)!*kpi}za+zg^GS=+_dooycy?`Qk2aruW>bNANf%)o`@ z+^ww&)mJRX-EDktXI79vgIn`hygNSPQD~tW*}C9($#Tg;$|6s+4tsf>ZF$o2*}COo z7*7uP)e?SR2=K>^h#g=VL!MUcyW1)eRjQt} zv+TND`^S0B`7E%TrAln5FEtqd`y~40!3Sfuvx(ybp%W@cyv?(KmutHX9UbX@O^MSS z>HX?q?dV{RD_%bPvkz~BuN{h59Ed@_qS(i_PhZ6v`_`DAR57OZ@T^QQRE!4_S;-Q9Y`1mncFyYJ24H1-M(TG=}sf? z=@OJ&W!SyGX_1=e=g1wJ&7y4`pw*D%hwRaxo(9=1Uk(X-T9g^kqHCzc@9CwHU&1qW zN(OFb)d;DXk#pT^pakC1m*zEQbR0EyiK<22K|_tiFbiWw(@pb{8opunoi0vQLOQeL z(`ko`b+yD2ZCRhD?oz+bRwxy_J9n{081|P2M~k;JV-RUx@NCm-;~|IOI`LrJVnMPB z?7QzBv)z1CF~Zy7pEQh>4C(UNZi*MbMJG{0-DegZt$6?;2 zqVJIn>F@F$`DoGIUWHP#`e&ir%?ax7$APsQ^5Xs(vB2T(#fs^5@ul_-BVqHd%kiOM zFUkn74JL*)O@!jT#vfq_LpF($qR_B&F;4{pm)GvGp7J5K_^0*ZO0y#1AsZ3MDP;an zRP5{vFcefTnX7 zGaDV_Lh6=-)~uxCnQF^voy%?SHz$L4yLi=kS^3vv(zCSaOkvd1g+s6#^_e#22PY&U zBG0qC>PZgce&)|Y#cp+j!ov&Gu|VvGPXz7Bs`#D8Q4Tey-%BcQBJCM5Tha@fPJma} zcP-KI*j@E9(nGXbhU=p*Gfw~lL0j?R8vJ}51L*Uw9xfT;vxaA(ms~90w+jS6XkF^n z+`N6_ly?uQe03r2FO!P@N8xrkEv$OpZ1;qk-_(ZZg7eM^*kmwutbcqip#HG>)Yo?= z*9>YSLX!TSiwH?X4of_->R*GL%w{RDYgCRJW#)Ef#kE-G^2`pH?;A?c*PoYHmu{qxPih__*AsYkfG^8 z32iy_(mIz+@oo!vLu}{l>7$w8{nYFKA;5i}l}_n@m<7?pVcm3CISy3J+)-;=tFqQg zRmrL_gj=y%o`;Bp!}@i>3od62QGX#X!+HrqfVA3gDn-$;dbA?J(tJ`C7|Pe)+JdoaPxkaf>tc z_~=~slT(V#si+EK=3H$0)4v7VCxq{G2=e#*5jCD09(j9NBNHeo&px*%#QkndYCn4r zDZ!Pp)%SQa=$59^1mOeHK~%jd3^&w$bJwjV3drdY{|cWv;=605pVIBTB-zw5( z`}Qt(>Goe@2RYW$KD(WVFGDUb4@2Nxv^NubLu%S51g$~;DEXENJKsHb7*Wi`uGv32US3Pc<_P_bMceGX>wAHJ)w{ryn>(qnT7>3{ zjRXmy!7H?>ql4`(Hy(IEtqMaQ<>W2#W^j7SO2sY|FcAI!vGwlZOvjJkf2HVvB^5cX zC_;{j9G8UTun;QeQT9=#1%v!$jBP(o-%&LpZ)GUmR?AM5JT-n-wTQMx3wx4 zHbMH+kVg@Nu@M#D<$w7?$Bo1g7e)7R2U-?!Aodv-nFLNs8$eurhwUTa67WF0Z7hmc z&0Bo=7yb}BqMrQ1wvroLGpzvrG#r|{Ec?C?us<+KM{!RchN|>srtcv}lWGZ%liNs# z6Th@sVHLICx@_w@Zc?5{Z0-~c^$5yVghM~T{u;#qRIP1hbpf%SmBak;o1~Nd+AD+; z&DW>2n&~|f=rc{!4*f~7L;nK)KxRIS76jR?96)rvW~>sl)R#xL zjvQ!Y3qesWT!#W9&xjM*`KMq}5=1jjZGBKp%^pfbNzRuxBVa8~c`E+YZ^aj=g(Qx3yEY@xbh zw!@(<+p63l6ra7h0o8HTmWh&FB&WhY-6$t^=KM)5quSoZ$hQMBb%do593Ep~V9z~e zq#D|I&f8Fi|2@91sqd8){{PoZ{I5gK|BueUH11E2Z-W9|`@Yc)k47IgVE#N`N7}Dn za56Kup}5O02GpK<(`_r`?FG2y_KU|<@q=oUn6^)pB*&{lXKvxX-Y~PUEZWCFBhAda$wo;oXRldu5DD&egAe=& z5vP#(?vg5RuTtasKtBtr$?-yHSKnC%B4fKX za<~3y9jl6Q*?9LPu(XK*4sjHAITa`UYX&?7HtZQgUo%?B9Frnh_%{j!GAkhLjhSp1 zP+j}VI4=u7ZT*~(dI2|IAnA%h6Y{+hIaw+ozTEU>k1l*0e9O)O0cJ=W$*u}SwJ<&G zKohw5VZDXC+c{M4lbS1_-P(#u>)_`{E|T8#b#D=&TF0G~VC6$lbvtcn7qHB3OQrhC zLCM>kv!Z43OGz(qs*s#x!h2u+U%{Q8->lcJC$6%fBH`EA&_HM=H}*yQ>c@YuaB&nl%K z9f1^_q=vJuZ2o4UbUDD{TjY*OJ+2F;u%&_FL42G8C~`95gzh3bjetFf_v$ihb&?q+ z!Pb6*S5AiN+SK;iDukrG{vF?2>)L%XTZmZ^_(fiVl5L@PGT~7Ckl+5vml=@Xb-?}p zE0%a&MCWEQ!OS;-C*P5qve#~_k{~kcEQwl79zZf}lako{`q7Ci#Da!Ky61(b&^t|C zReHW1Y4J+5DaXE(mchH#)fzhiaei56>&N_z!ea<>&(?xt2MiMGgGpKumaQkxX_bt` z_Lv3rBSUg~kf~%7QiF5mKzE-^Pq;>*X%{@`+VY7ohID-rGf`EM+>|_8_Ne&(&CLF5 z>~8W#HV3fH$&EaQizyvwHJb}y-b{v%Ru2i7n`LnpV1BDbpNn|G-+4UPXW;A%CavNk z5@3E~zq97uFt6ai2gejln1&S>A&Y&u^nlEa%`rY6hW;a;rQX4w zt-ql-Z%P#S3|WFBNz~IvXBANNDJpkx@SP#^cU-6`VB!R-!INpH?=*gHEZjKZWxB^W zyHx@(q?CILa%o@#2dU>;ry{^B?_E~R9X^}CA!GAx!ja+zu6HuY-R4~FR`^4UxJ@E(Q!XF!1(Uaia zl^2~16hr_jhu@9)q~LH9ED^^$--W_n1(b$N!Y>Bq6P8EizB=-H%VI?N4DdY>V{aM- zRzI2hJYnCz=`$th6}vXECgQJG<$`LPPF~W}P>a^nBhbU+!a3ocN!}w`Q@|jB`9cFS z8#~a2#=^MT0^n|cO$q*arXuy7O$^9t_2))6r?m-p6&SryTE*HAuT-Ckd^r=1VA<%D z$=u!WB3Bxw?oGXrol=qP(h(J!kvG}p1IyQ+Yqy&yv;GuRWh^5h4C-lETh-=h5|NQf zs>qBuy7czDkT zxDm7{(iPYJCsLfxeTJTGv}yr7(D3ngzbTfh+nA`E@(2ME?Sj8bhIvz(CB_tXcGcj& zBJ~C$Bxlt#0S z$s9*8_bNRbhIVx8s$}XSrM~8rcC9Y!7Iif&62C%f^a5jUWYz`Y0ra~u#>G4fn2`Ywz$?z&v9!s4C`#0wkq7-s9SeHCH3lqHO9uu`HOPDZ;7Jwb6um}4 zx;YuriE_2XLBTJEkMc%vw3PDwtTLp5DDhLx26$?>ewXF&V!&>8uWRaLI62YfgR?VO7m?oCe`VXS*W`Z8+s3^wPEY|WcRn|@fXX@frB%)a)f28QrwJ7rQ`h>*wn3r@+If9P(JWE%tneX{BuhIEK>)8c9xBkJ*72kkLUn+q0l z=4fil+F5jHgA%fo2RhYI3BWr2V40D04yK$-PtU;s4h8q>i`7EST3&gzCYu?P&1zJy zyKjP?GLnt(n^d210knjGih9i&Axn8+9LqJI&hqR`rHYs3F`6wsu8nOfP1k(g{h%i~ zIFs5hGa31NDzfOWOV!}#>_Y>;$!6>^UbUU3+6IS8$D-@;1>y&Z=GzCB73PBAP5QNVzFD6s>6}V<@@smF1Z##udCR>87MO$jwF;* zz-KU9?c5M~9xcE?_Hw`31^i8qYESaKn?e_jcHpr}oLH=R(?8tD{f6O3JS`AF%{43f z;C8Y^>ICa^mN7YxmS(@{Pc^{b)!er%-*x*0`j}J&Pu(3)2xqSPesSR-d{?C!{!FSi z&(YY7E_7tb$?eUbvZOg7TAwspqnYQga@iv2cUgi_z=t)Ba5lfs(y+Z=??h#7Ktr`2 z?V_?j;8c_?&W&M$CbVd%i}$6vS7escyE$vQHq@Rw(Y)FFVCZl)Ab9#_|98NI<)~0xy$`pi^mA z9}`)9;Brm4?%<=G6=Ykp>BYGvgGp&tj54o>A8V83>WYcb;ml~Y#-C77)-c#FF>bbR z{qm&`9Tieuw$jz(6J6*({p}&Bz~o2}#MfrQH*rA3JCKR1t)7N9s-1tPC-#7O*SUM` zp(Ji!XRe{<*wHdZn{`4Tp1sEhc zBe_)10{wfn3ziE#SZ$V^B}a&TI|H`$37}H##T(B2V(fnQQm3Eh4eC+fhTfJyel?dW zhCDahBJN!c?tYOpdD!i_>#_7uozNayjFhGC&WSP4zjA$P?$ec@^)(dd+D%l&lFX;8 zqIw>7H0)C=ybQB+XFmxlfbKujM$zpAc62YyoNR`docq;17neE8Hh7U~bNkoPSh-uY zV1L_e_DiGAGoF3*a=`;UKi#OOcfXZX9)Eb)tp8G@d&@%EV1x1YvSYdj~Ib2DeB!TIY^|J@;pt4znqHWaBHwU{bjwJJzLJJw!@SAXA z>nMPh`F5@E&Uaz<%l zW92Qk%!1uQPTL-c4eF3%86QVt?|~=37Ey<(so0K9C%5_5yHCru1LNwQIO`H~hkMwz zS`e>N6Ot)mV|d*ifG6?s>}|#MXZKMQQ;|{)me;Rx%%}f{v$9L`WX5K}+Sc8lUC%#u zJv`~zxbwF^nNeel4O)u_Zw5?Jfky3nJ<+0g* zMYLc%M%I7xQfNe{&E%9~DOcXXOkWwsrxiDK2?Cxi8+X`2cDLNH1;C>B5-qmPG-x+$ z2#s(*Rj2Iy?fWYcZ;MAdYDVJ!nJM*Uq=`ThqONcHp^_ZXay|PkJBUoVJB7FM+){>j(Gm zJ!XsaEOS(C>T8YA_?BWulh9{EIuR!nK*Hi}7J>v;Der9NJIFcosMgAU((5dEtORIe z)>%TMK_WEbZ=ZEC`9ewOS0nj5H{j-F{)wz&7^5n~s{HEJaU(!xF|J;{!4YAuhy)H- zL83)#SIc!3DO^%?BS7(ru}$mL!d!JjWQ_;tpB)mYYGy%kUOA?0sjj1O$`W2D)zXfw z=AugKG!$||{m~t0wcj`K%i`k_V58I(Fh-ia)=|+ew1C!4l@C^5`(?Af7nM+7ViPM} z=@<~mE*z>D-?gG5>3aqtrPv5EcgJus{0ZW_W!k{#na?YS;%x-6EBuAAb9RNn(14r* z1UlB-v`&{-W#a7sqDK3sbAbEU8Nf`fk+gWAteM3g<;E<$8`h%^DB(G#F3WR^$xe~x zExm;P|Hwf9_YGjKOyEEHgxVdUQ1miqvjzIdLTPr77Qu!LxKk7qW@FJ~GVnPJa~jE= zwVRDC>Do_NLS!f6XfZn{He&OXcPlx*Bq{-eO1Qe!UAekSs>=lJfnU=CgvW z>cRW^lc=fpF&t{XRk?Mnp~*q90VQ{V_U+dg22FlKPi#=!v~icz%>7%my>~hQ=-~}P z!PmI)hXS~s$QW{&LV&J{2%>uP-A#7us`Nj4)34kyg5f~~`l?T;-sgzFjC-h;3z{|K zH+6xTLq;u680xclNubP*ExFNQPlpX?O6|3l@qVZG+%ZGmGXHN)jWq=KNzEEFxOsm} zL$-H*`5ssZAcY5QF2R{7rVD9qcR3GaOEh~V>U8Ghxn$4C&6||e8T8t2M$@nhiGH^> zT3c3>v%7>myjROIm9k6OL}Ji~e2+sX-Q9vTxv`=wkSnsoh`;Zp?yAY_S2j$!LjGu` zdzSs&`;4S~1Jdp@Z@^^Db=f`s20%mGb$2j-16#;oAn$G1^=(!G#(Y3(D#_NSpe83% zW+qgg OK3%BV>#cF9-CB1o_8GbE|y45%QtH=SQg3UTkPAt=MH!(JP^jh^8Tj*?!+L z6KkI=kM-E}XU1Iih84*kvzgVX=(Py6c8!ivG>Nc(t9joc`fZ!|eS0%Wl?wGVmTdBX2ufSMsEs^avb|BBmmK}?eLeoY zWrsA+d(+J0rM6ArNdWgj1)!`Wb#woukOrlM8*Dgz?P0A(^H*=&fyUZ!`scV{P`Ez# z?@d)y@6ZGz#`aP&S-eXw*i5KoOclKl6I7^@MAnDtZa`H+i5g|xv(i8K70HtbPv<%~ z&5UuGKR{>eLxBoy+Q*-NaJ*SlsF$SK5a3a3@yIDxGgY4(rl<0+ye6G&Bqg}l6*$^k&TOB`p z1sAPZEu3TV@Co&gy1PG({F4nQ;B*sJwu<)pB5YLe)^<6JqQMiqpjYD^w4#9DoEu65 z&*QtX0u5ii=^@NKNSsODHNOrL_Q%i!AUOE+(;Vqco8ZVms5KJzKRi&G!36T@BEMro zcn*sHTa*UN+~+3L)u*(dJ}9KSAQ;?Xd8zU0V)4E?XZo9y%NywvfkrhR9A@C#+I9MtgOa4x=H~M$oOItDayp`{%CA}ypJy&78J3oV~7igJKa+s7QnFPF0V@tn*g)1K{Mt-3u~g$TlL# zA@Gsad>|iIG$cEi76khH0@5ncrQ}0uAgojx(BIOjf;G07T@w5@!_|HKb~+G(*q&wh zZQE?HEXfilMtuh#x6f+W+i5XO58H#)eyLP}Q$2$-L2=&^lrSlcFry6Yo;HsVjiALn zI+^6Z*=V)aQkqD9xco4D^@7(dctd@4xJ3RAO7K4a1Q2s=yp2}I;M-YWsj8B0c~ISX zM?tsLT8T#DZdkTS2=yt0O)affIJ>j1q-DQ#N*?(3`4nGzR^P^AgL;>@fqeb)_wigY z#sfw`<8Dez?el|V-dn^-K)OZO8egcL;1*lS!DVKOSy>}JOWd6~FsxXbOj$q?U;d{z z5H*@FxWjCccyDJOj)r_&JTaNTZvLAgzIU|G4)4Nl-@+i)WL&> z!PJI>j15{wKNFgU*nRt}GH=*hf@=4jI zDp%btb@&G6a`nQOE|j=?ZXEx_hln02Z?B@gZp)=hYlZqV#qKo=#X2r-(GiyRD;|ER z$;w9__4)&BZ_3S%%LEjOj!YapCSW+N!0MZ+@Id7N_MzO!)V)vYUme$U4u6Pa%}S=u zuo^b?j&;1nePpSoMZUz`02_g{fjxf|ud&I*2$fGFYfNQb9csgJm6-oRq$!hb!#9s~ zCp$@0lh{S^GgMsbVBBGr)QetCzg{yCY=rP^!N;mserLF%~->YUdrmL?IT*FA%D@&cVclm0o@Pn6ArJrJtHQ&4j!YWQ;;*7V z5ppNMA(OsW_vlD3IsWsc@6#byvVV`Km zY!!j1-y>#XwS_fH9%coV$xW|f!Pw7st@an7Z@GT{`eJ_{MH7}cyh(Tfv}fM1QYm@G zhr{+JSA=E;D^oh1vd*-7py-yKb^Kq`hJ32*q z?)(lzH?7#D|Cl{F6E=JK(&2O+bVLZ@hg}{*4;}`}%>4TKeYEC=_waXV&(Up=O2bjA z*KlH++i{WX;5~w{$glh+;%YrZt50rf+H-zf=wQvulz4veYfa!_yJukN_J={$IB~8c zE`aoMDV4CNic$;yfY}JzG@M@YO&yeCv@)SRJ9R@mtJTe`a+dv&&5mt$>FL5*oQ}tR zfWiJfj|xJUqolm6OSSK@TRE6~7AH?81gT8T4xr4NAd$I-Q0A;;tKmtiCw8n`G1cb% z*5h#1d{b+`;1^+<+z38X=<i^qIth-1?AFNNQQHCah!}D+chfWfqzS+#eY$6?y%sO})3EF|b9mPj8 zkMq*j6Vq$lHDn!RMhxhx&2Xb!zvoVdk98V&rd4aQHG2T4{g4BJl~!Yw$!8mOFw^{ni3D#q+gBHhAhdx|E6Dm!~&&uP-X%% zekGft8>5~V_^d4ir=m~+tIqe`5o6<|ve8|Z<#PtE%9Xo0^)wUw z;P_1M@F)>6f^A|x_~G-qyyO8%o=)+mIgf2<5r_4!mVtetvj)JP0wHA-qewrFCNyREr3bPz;r7#<-HI5=_PkEz8*{BU`dy0b2w~DLd zBl>@|q8p<6YiezwWD1upIcnjNiCo|TbDK-C}a@Lm+ z5|~lY&!+LZOwV13q6MO8rP6m6O*8pWXy57Q|3fd~D$`be_ppeVFLk2&SnanOi7d5Z zvNhC>oWDKrcI46ggjwFRvtD|-=09fwkAAQDx=cVXwUIasYz=KjnjQ?Eg=4+k?6$`V;bv({&`-x3k`o=-is4*D{d9B22;87#M}0Zp z<+HFBAiDU$yqT?u#?Ir7SnzcH!1EHC1b^M(upFTby1MY4WVy|Z=j~tq-q*2q-=t}a zzp0G&58~6WI-8rq;NANx=(Q--|BYA#t)*3;w(qL6L}!^0~%TSY?JcT7Ss^G7TZ}Ab4wxlT5HXWS3M2rn`+kA5cUeyo~ zrA66^V4L`4gKkCu{wa&Ny`*v_dc(m-)HlugBUy2(hVA=HJSzNKQNaq{am>JF4#d|0 z@>yA}D8Ns{3f#lMS#O8-Qh%~V=!(L=Z|T)`vT}5WVrp+{WpgV!H#`bm5qDqXb}gkq zRA444k5t1WL@dg(HO8l4*K2ZaKV8!UxK~9fj>NEPNkgCw-{MtIwRKG{x1WeX+YJ{s z;*j9YRSTPB(~=ZVpeRueyN{Tyn$xWu5~PTW;r()brcax0^^B>+;Kpi>?R>IsXb9A9 z>o{c*IV$qy65Vz`*LE^!%rAIsDH0sCu=KBasQ4dP7HG#5@yF9iPVoYy85zOIu*MjSH5`9x$jOPN;_R5wkXRci-62 zQT1`|slg)&%a{9iCuiW+nZHR*i6IS*C2QMfaPA`KxnZki%T9!um8k`pALpt&zv`i% zVEyxReDJ^wBmCa1$A(;J^&)ERY2d1P)>A^VkMq+&W=8>d$EWM20#$;EF4{lOj4LxE zx#@cL@f&4Vs

    wXn3|TJ^!V|3Zs;&ob6+bbz^(k78h04%65FhC&~5ZWvbd%{V6scYh1GVn4>cngx8M5XC+8hzoI zu?E1v2k_@(V_V`DUvC8M6fe|kkVV*quA~gPq4%FaaXDr{D3iThD{=eBaF$f!iqmPY zN^O=5PkiM|uR%xj7eL+;5h)IHh16X=-4DO<&BLYT$Ja_9;9||1CYt4Y$cv~mSceON zoCqC_EU~InAB`-hR(A(+nMRh+_I?Veua5DCWrSL*;nSj|^U?+@+9x)oAwpNi`*I)| zKadWz5^0gC%}&u22`%{eUl<1)H;pUCMm$=cW&}9mMfK&YjU4y8wdR{JN?p)W%J8Oq z#*42(e*Y^sO`%fO&wVvz5Xd4}W>JDxp%L0MuYM`uRhnTk<yro}ipo@Ih}LFekwlQ-O?OV7mF?Tcx>wxW6V^?8aU! zqpcPG&Jx-4e@mhNDM}2!JI!Qy3$^GBgtpL(nw5gul-yy={TbNyKiK*-eJbR@D<3(z z3_7C0zq`PTULxhTew66k9Gl9;no3@TJUw-mlOqq+YHpp4Igf+}PS0J6#p=-W_3M&n zoqyDfMM`O~PU1sbHq;cEOvA0@k3|n``t3DvGgRj*_B=&=F^oPEQ`Hm$~aOU($wv&$ZWxW;QYc)bV{?lXxChbcC9_N$qUzfb7R)S6>k z{9dR)egEFRLvk$ruXq)C!w_V8%Wvv^!!tt9VCw97$fk?rD^gBrt05&$#k(#^mz^V@K0smsA~MixLxeLu1a(VBo17=RKF^hLEXCK zx|J7N>1!xqa+SA!oPvnC8UQ^8xDjmF_`b90MU(PzT#S^KnAl4>Chh2N0sX zUD=&-eR#lwzwcaz@=%;JuI^tn!Jm^Ww~314XMjTH%2S&APM2grLjJB8Hrl{;b{p*V zYOGUtY6C6njQN2;J%{zwRr%_+>u{!$JpOZyi;vwhYo`ZjL!aB28Cb_;QXWjNk*Co9 zhp${5;+KzkQ=a~`^gr549WL|8&m10`l8XyI@L(ElQ~<;Mb85ZDMz#2k3~ZbD z>R@BCi>;F;+p{74uB!IXJLR6*FN}KA+RD9Dsj)*0RI_vpdWCJX{XT6oXvls9p5NH+ zN_99qY7JcSip_Z-_74dV`F=kOQBfsN2y!_G_D%GF?Pm4WUX4 zgGIk3t>J}Vda@m^<9l26mS1kz;RgfMlDnoCmSNQSABwl(}oU4Vf2_}fcxS;}1Q z^h>j4lf&OioPS-8CAC82gPCDl++%fmb4?RtZFJ@SEMwg-Q;w=WyRDw8gx-pAafM@A zi)&`;l$o%o>@yIO`_;l7rPtwN;F*tFn-O|T4IjpQ;y5mQJ-GeJ`p%pue!Q65uT@Z z8uhk@gu!B%gRGXnoNHPNH7yBtxeiup@E(gRe;VyD>N9rN zHjGU*9_2eW_U`i^{OHb=cYR&!b^0&7)1uyup{Z44*1LtT|9h(Bo^Yw>@qmOK=41zx z@EAg8(j1qlQ(m+5--GnuIBez~cgTYA627W-`wyrT>$^!uS~Md6)_t%cnjgDg!Dmb( zn`b7tOYh#U6UZ#KOu>!VukeYU*XSJhTp;TRJQvqb@oIHOo7= zc#BV2&hS>%*2J$2>p08SC-sw8q>%BAwk@TDnK@XU-c88!uPA>@X4&;Mt}q>!?_tMe zdadG$E-cj^_ufeg!FlV>eXW-{y{p7%APlrgY7iU9oj~}wjV*x$TUlD|qB(5mSq_xY zN4W*fr#+I-NwEb#Gp^xqf@n~m8nvD~;`Bw$JeR+qJU8gAOPLs~Sk&vvZJHc;W4?%C zTn}Pc))%K$+I*aaQC*nzf?%6Pqdr-7fDQjg&oW!@ZHAP`QK6q+hqiiRw#!S) zk;>2LsTtvcNl|C-pt#l-QJFzqc^dv^E)bm6wu+74!oD(hTHW=`P&Dp9@oTST{0gP8 zf*DPCVswzLT@Cc#>}`2zyLKXb+6Uw9aL$(4lPR3JXJISsmuL7_>fV{2JA%we^_`C! z^V~2D(x$3sc5!Qu$<>5i+D2?25}t!VvR6tCqzwc%KY;LT9I&uEH|JZJ`w=#-jONfp zR*R77x-|KN-uyi4lH~0C(SX`X6ZpT>7~9)dDkGSeK?P++G*b^eTc{^d?paD@YE-Ca zP15{u!^-SQQ1$c@3PcrU_X%0Ujd_9~j4Y8sFP;52ST9 z0=BxLDb&rRl(t7I29v>h>&0FfvoC%C$`cddFG0Sf-VoVmM84tHz?SvC=1Y#LfZ)ic zlwYIwY#|N1hqN`#Y$e81pTA9&&N%Nd&qR)m-p1Rg!{u}J3+8hAiXVu3?RBGt(ol~d z0$*<^FRupzw62#iQqwuZw1D@bY%JMze22$*l;r;A6ZIuTCwzs`I3oYNJ<(jqo@NCl zi|{9QHQf*lx`CjmrQfEOp6a%&8ZTVF#t=#O$55R@>hGL{&-S{X67!w>$njD(u=e6* z&Xn;&TJtX6Bcue6n=syJxOgmPdTCwH9SlAL`?Hj;111$_h@>-rrAX_51<4ResqwfV zg7W49KNR)~b>=Rwi|GEkE$IQze%W~Qf5fEO6Oe!+p*J|0BeIOw;W+TXF%ZN&%D`*e z0GA~oBRizBXLhG__i(oES#RHOWHOuVNkFfC z=)dah$phTMOhwbZ`P8R3N0ToOUcOFkTiLUt9g?P&*MeY0s)}Sz#RNp`=IbthGhH%$ zI4`~FNs0I5_b%1L&5vG`EJ?AC1!@Y4?a1DiHi`TuA^vkjf;R!6%V$Yn*@wp@4>S&I zD;;H{x+05Jn9cTtK&zhN^zxwHz;?%MM_nfGLf{+up|rxU^^FU#NDY;c{vhbF_K=fzQ4DB!|r&kQ{Bw*Uruuxh<2vP;O9QWoF}yD zlE_4F|GuZrcX2ng+Y{(h`Z}$c9044HR^^fBa?_RiGGzQpHAinDOm;bbySWSS ztq;ikR~fNf9A4tZ^5&ZMk{i4n;8)*wLqlywjjbozkO&rq6dq5`jX+cYqNxt6(%ONY zh-hexz3oahm@8hlFqGXd!3?R%>TwE*I&Zav_Ty%C8wmsLAYB{fy0PJmJ42p3YyoiW z6}>B&!T5XatG(;e;di%1xZP6HdxJy5G;JTPIC14o8NYCYuzjBl%?I<<{rYaE%#3E6 zQ08zQ#nctPHal*Ypt}30h&nUATbB7`=}@FRxvY+0Om@{()ZYV&5IA52 zp=i7J(bnHOdd7b-CQ#j+r^xE*rP4a?@0U&@AJTrSDu3QApS2ZYE&;?T6VfeW2yur; ztBoPQUtpeXG`@d-{NhrjsX+cI;g8}&<3CI}99Iis9u7X%DL_RQs}uAipPynk^x$^m zD-+|(9)5bEcqjAG{LtH1zf)ab1u<|SL)DX@PB(=Hvjg#u-jGNQqgwrg^2jK5pT@ytC^!q!OAuF zKNy){K%}r`aoGL0wcRYYlZ>_u$(4gCaOC(PEpM;POZ@8n>SBo+?JlQ*lM$Nsk}EV~Ng zhnc=Rr_6H7)^w3aZ#o7;+=~u=fa}Me)9r*#Yc*RMz1VnXYT2 z$Xq8(?hFX!5(K>s2*+Iq;%{bK?hE%1ioL#Jt$qT}YPT~UJat3Kef+VL2R+kqPezmm~0ruF>vfrIjR3B@NO-=oD`x8^;Fd(wIp<7 z0WPKB5k|-^|Eqk|p~hVr%fYC51v=zi2KdHkmA$Hci>+wVZAN*=>RlPbB%iqD;A52{ zsKeeK;LH!7(LH5}!|{b4OCDZctQNoRDjKJb!wLXZn@~Y(T3d0uv=Jry*-O zYZbn?;Ao`8TM&6DKjUz}u9oJlyk)KA?^-^4(9wVDW;IEiwPNfNeLYV7@;CbCp@@nv za|_u5C!R61aQWUaP4NA=pOw-wV5==jwtFk<*m7;G=&W?u9Ncv-Yxq!l#kVU+lQr`u zqPH`xv2G2b&``bcevlZcK)Gf*Ql8Qe2OqQ!};DbNx#eUc0NO+fzq?P15(pNT@! zd`0`sS~kSkzLDm$9MJ?^oXf}O6mjoA$tkYovC^Vp2ItFA7gdc`$ZG)Fe zw_R@rTg^7zr)1lxjBkJ&O0Nka89^Poha=RvFWfc}guR47mG=UNCe%ny#B@#>2;{Ta zp{&K;^2sPOLT9SStA-_0p;{0!A^_5DV@20mdp;a4`1L+QXZlkai6#7QXe2_DcuW#X z&+b=V9u^7WS*9*+NB523`HN)dhSm8OCwj`q{4R?b3RKAdh$ZF;@o{H2QBHZr(t}p; z@zxXHrTy5>lEU53^8AfdfK9b zS+OI>S^3j$^DXlFeSg2DV$8D3pH6Aym2pZ~I47SVs3pWNv3SmZSyLV zUzHJRa*q^HOH@b62PC+B486q1+$xsg<8@8o4?1|r^GsHn4W)0L*Do^mXP8!XUajU_ z@#r&`xwdR}9f-qesbt~VEs~i$1V3qU7k&p?`rIel_nGzuRyA?o^se3;%;owkP z+k-o&Pt~)$wN1pH8w|@l(`q=s`ZS&i~l5vF%yk37}bN6z3xA;c@AW)?V z%Et?>2f)0t7xtwXfaB+7D0uf@0!S1^b8{xMtdA-&`B=k&t=<^0pYS13gQOIe%pptQ zZRI5D44Cd}Qe4~0aE<7phmkRpfd^qyLfvt~s7nsy%}tKXEXh;nbQA^x@r*A=X}8s4 z-px`_r8h7>AELxHhSwLm(AU+A%5`VMoPi*J z-8B$L*Sq4s%P%0#o7ke6&2H|>FZ7(CRH1gScm!2b@jP+k6q8?0uGWsWmom@>*s6*!sb9LDvsv%ij2EBV`GR?!N&i{d$N=xBy?bxW_ zV!JtPxv%sm&-}i!({3A4-Th8XG~sL5IbH0yNgK{G-o#HDE2emTNmjo zP=<1>OuKn?w+P&m{zXVOI%M;~GQGn_T3cz+_U-z|k9-tJHOcQ&b2ehzm^vIOz&qT+ zVIS7P8H~mEWJi>nkT|7WL>!uXFZ)AAMgRBLDs>Op;qg+O@nM5`$+2uCnV||x>euT? zv8wC5>GZzlI1$}K8Q4}7<{#>NiFIxV6%t(KGMJI;!SnvY|NA*E{1|p7LyOA`J}pGoedgNn2e&6q=lfdUABQ zabzQ?0{MwhJ=|MFg7&jPg)`e3yO2sp@rvLBDrr?_#=5bV1k@;#YPRT~=;ekcM3AC6 z_vW-`Ej&ECi!Q2w*%RX;B7_KY2`U^`2G%Y(!8LNgo=#d`d+Q26{-&xZ3G$m4Ajp+X z&0iy)+e&^P*Pkm5mqBAAFb3v*6BkZes}RT3u6%a3uf*%JO~Jn1KY(N8&2gnS6senf zk{{me{Pp3$Z;d&>t<)wL^1t~Zb+g_bSHLb!#<9Vq77f1j40xkck@nCI)cGGPQ?6LVkJ6wJ!e`{;^OPDJq)tE(xlXIMDWmFqW4 zLp^&)_t)5}(=K~F1gBLh+d#JpRMnEV)Pis~b)kgVC|*oVfQrUa834P}{Fd*RxHwsD zq<{UOi1Ft=$`R&vUv2khLoAAu_ApTK_q7G_;a4lOQ8&K$SPY?|RewqcpbSISsqoDlJO zhARVTEth463?&w#=hRCUh6j4vLi3m-hCX(gdX)pF5V7{XkWT*Dg*&2fFy+16E%cd1 z=&q_5;PM~_98OXf&17D8DfVI!ZPbK6K4(!W@-`z~Tfm}~7_~$Z&S>16GDonZno}H0 zRMALx_9`#AJM>z{W@3Q5a)`2vpi+{quF+9Snt!)+D}HZ0$|I%izSfI4Y{6ZM#E!r1 zucOzs$2aGSzHB7hTb!2`juP2SX6{&GaYuq1{<;;rw#YqGIP-ih+aG3nQcD}3B};zJ zP^)Y1C>{Ujup6&U*H%2&8GDi{qYyiLyqS~bl$a9Y_1>c^cIi4oLIDppd~z7A2EXHs z&uX|Nw?wK(5WCz*GRz@%7G&Ha6JMifBJUUqqNbdF`~C|%RCat9@`>5s);%cXrw*M; zDmPgO;}{Vb#CPlR|G2FziZ;lIGk#PrJN(U?tG74+-pKNf!(^gkAO*{5+SGv5LM+$r z{Y6;$uXeb^2QPGh#x|>u2E@KSL4+JtgS;PADP{6NpwQ%GZ_MRNaHY(?-Woi>n1@PJ z(wPdW1R#REY+rBPcrhG##p9E};Z8k~q@-;aaeodiSng&5DNad2;&fsPqk6uEme$#GBN&?tnBnK&QJ zsC;{}!x9YY^QGzjl?uUN}{1a2jKWaD;z>pYn=ACp$2JaIo2-c0#QXmHOm z_|(j_5kZPK*Jj81n%usYx^)~e*Jl9y!IMUmxzIKKPu%pIU;g`9sr_B;xc~cu78lUL zL}x3L#Sb=r-fz3IbsMyO8?!TJJNt8@DI~;)xq?w*hBr=j>G)r4eP=wI?fZ9CQMIbt z#!RY;su5Jph^i54q@`BP8pU0s2okd>p+@Xc#HLE^QY)wtqqP-Pn*B+wO`dkR~D_Lq$k#+^ zVu7dIJ}^dOxI%sHbSBK{XgIc_<5E5IY`~h(i^p1zWDXpJvK*TGNUJNS*3^w zTxdQ*9XNdmwt%$CE5bsQx~Nq+&%!MJU%$gp0P-Q`(0cqbu@~*or6Sf*A^38W z{PTU$#@^Zw;;Ir)TJ4SN`eXQ$s{ukZi&En-k=&-G)Q;>BxbffG@WFmEuk*(IWlq7q zg`J;=OoV#_(&jCVJrx`FBXqMSl|12GEWjSu&#reSd;~w+N%zsfRS!MTZ*F6y zUJu`_%FQ$NA0BWd@G7Z>V9a~#Yq-+?u|#}RIt(_`wanK9ayB&S%;k8b)lg!n-zC$V z+%|Q&RQ1Y4Dc6wLLM{M5+M;SYnclLfwssa;P@4mtwt>v5ad|oKK$qL4si{KV6U~04 zMM?u|zK6&ie|rJ?c&b_W%Y-`tB^|0%NyOcx z4h?+{Ib@<88>hVHkPwbAFPwCtjm*xQ+R&2`cX>zwWws{~uDQACwMJYOb!kZtk!5Hv zN=ueIvTwC*bbJ?6Wt%2@e65N|=9<1f#~|f$6W&}CXhhBEITB6fHhDTv&fRL`^49e9 z<~~=tDCw&XKHp_2Ovx(P%HJK?vI}ty&Xc zVeP082jUA07zJuLii(j?(9~C|L^vfDMg4g8d&NO;xN_b7un!{_0W;-8oA-W?MGJD$ zL3*Fo(>{)5Z<+rNov3`_;|^6#vqPwxfET^X{EH5Q{FoUAHr!$quxr%g^4nJKK6CVI zs3f_TL_&CKhHixoM4Uep7(`-jB^!Tv@7K;XGuZ7<8J1cKrHqp+&8NOBbww#0zPUMaP1h&?$2ECV^%t-C zBjhV{^OJZCY33^%vJE&44No=%vh^M?lH6`-UNr;{($~hh7_}}WFjRbh))Hgr%J7ak zItgcdJH~*WOqoq|<0lI_LRw&pB0d;7(kp+r(ppHWp{Ze>axq|~{Ya9}Pce{0P7Eh- zo@x_uI&nc|h(e}S_dJDld}p0ReTJByite%l##!Df@yQyFk~$I$_p4e)e;X?Qs&&8S5qO`jTsK4z%sEk%id19b>HS8omJ;cOsHNP5|cob@5&p;6?!q#_Q5u` z2MAwNYe1>rE=2NaTNi|Vse*uf)j?>8UtC_0v}H&q@^0pOKu3}nlq3CNWDOPj5!c^u zX!flwW=Y9)FY2bf zrat2Cj|!bg+mjV8xqdt7Uv=gpxL$f28bM=Mp#4D#IbeR3i5-=gb_z2WkWYvPgsTCV zw*4Zx?MUfuAKE~`VwNVW?B}#=#o{V{DF;n`1d^Oc4L3GO&Rdz2q~o&?8X8%P?1=A? zuydksS9bD%h#wZhF~gv_xL)X4%oov#PL>|)0moq~bCh4(=3kbrP3VrMc53Rw%3rGK zT(m2LZMNnJ(p+U+?26L90~p^L>6UU2r!cc8PuoyY!=VHTGZ(i3ygf?Tr7`i#&Da&S zwocc$%}7cdDoOPCHDEvx1|MaJKnhg+b`WzaltXO)?wdY3BE{uP>9$MCEmfr}m9-=L9=T5FL( zG-!e(Rg^Bfa@u=z7j+7Ftr1u@uu+~CY(+jLVp~V%E@QZhWc6C9_MLB|``;iwP zxUz&=s2^t=YWK0dyG30WH9=v2a8JQo{{r(rBOBq69o4VC2b+IgITXLIPF>W^_^e6D z9a+|v(OCZHM}E$FU*^&pXrxr#`DF6z8>78>mcVbv6L_eh;_2IqRC!^mj%Y3!X|@Z? z(@sk#1pAtTK;P#N57tpEk6*Uwn4*n;{&WVg$ETF(ZazNtyL+r=U!tOmvlL46ui_QK zB%)C4nWadLrIY*0m zx+cLvK36+;|H8wQb=<$Vv#fo>P;V%#Vj;=q=qe?4st@mEeh+uL3^vN5Xu3XA(=orm zD4iocx98fP!fDA71OEPD5nfxDTx$o_>}V{az3y0UL8$%&}S~&Rpoe5 z1*fx|9|L{9kNnEayRq2?TM5fuHFizleSz4?EQO|-7GSnled!f|(Ekj^Xe&S;umiD(PaH4zH1Qn4e&@UdVei~HUMsdG4q(Fj{~tocVx?9cIVIa&y0 zRV%8iT*NjV)^sKw#!P-_nh1z%(dL*fB;J%>h&A%J5orzPAia6uq7e{<`{3d_Wlo2o z`~@~t*j8cqC4nm|q3`@CVmix$7I$(9L&tYIeiEaVpBHPX9!R5A;@P`hNt7W%h;L0k z?dFbqI&w(R>Ao7kQCH9_?u{X^z4tlTOfX7tyoRy6mUI z%$Q&_lqY80O_1wEhe38;Q@|5FvgSdB88}ExfS!(70NWQVS9ew^w#O!L-bC!viO#QA z&Q_A>`8#z2?ZLBEe9W&N00K`!3}me7X)QvWjedJme6L=!JFZ6j{1_e=_0P@pT7O>1 z?;co8U9a0X8y7G*i$E`Sbbv0JUh_$9vnW6R2l*4+Wv}+F z=V9=D*8g6zVSLZ9m$=)by-OQ#M0D%vbDy%9($8%+olk_>m+TF%aay%_zPkk^FBxtQ z{(PFzi@Td6S#qP_<}1TVzm0(@E@jJHq4*Dj{K zTLD!|k2DI{nxcI18?DRv0tuf8(ua(mP(>7#v)6ECjKIxd-G z1zr6ana4df2#0l?@iv3{IJw`hR>De%kzkisepLmM4WaX0p_VPTlz=gy1?8>vT2sYr z8Aq)*b$23&bYC1c-UP$ zjoV^+ziWl*z~uPZQ}A8~lue(ivij?<0_y49hePxHo~MKPAnu0ZI>g(&#HnP#^NHJc z#zsuE}mC~6i*fCZVD#E^}C!bl;3=^mN=eezt?`$aTABs z-u@&*h&#Cg1TL%BMa$&cs6a?_&4H{&2k>wGEbk?2?%NE?r7r}H%ld6PSIdkaUhVSy zIrPMwM_6$#k1`+_DC5@c#S(G&yuW~`|0hDxzX$bPT82IbxuPscBC1>X zr&aP=zfc!!DqCOlOUE0cmAi*y2qaMu>Xrg`RTzQBn!;OU_yn)~enV^swbB$+%XXsr zc(d^Gga7(;k&dd_el)~_p%}cj=&A7I(qGl_8vLpRBSn8t<^X0emPk~E21H!unQM+J z-Oc!=M608RTgAZVgc{HH`UgtAzSOyo;IA3i9a}dUR1>2}RmzNLT=!k5vohDxLNwE< zA?j-R2DtQUbujKAtR}c8CE$J^p|9nrxNGmEzok@j+SM-yn8;;y!h$`}H>~jxjvb}q zQ87MzTHHeF=98(*y}cd36Y`DKduMRvTPmKeB9YJKQ2CZ4+c(lI=JHa0(G zes}Fz&7OIl`w(_0@?gMAvVXYPBsUn=-v6NZK+77|lH0eD5a1fi# z4$6#s<5~!$0VP!if90;T;7b5BH&Kp=oT`s6MaYkf{(Bg3&CB} zQrh2rrBQT>@v00mZ`lb#Lz5K29KB`f-gJX2Q*Gfn62O{E>vgvPY}0rYyGCN-<6Uo0*^3gD5#&9x9HJOEa*O$Q^E*_ zMIw(vz}vA!Eky2oP{@u)((!kXmY#OLBu1}FbW5W7RxFUrR6u+@(}zug*e&;gsf4e+ zQRr2;^d{0W&Vu){J=VkQ>)DtiyryF@I~VREiFA8@;NBz~Q{Vcy05CMz8L3UYlGm0P zaSQC(saR-J+o1yFmcB1+m+ip`HtmYU+9+axpzG!!RLYLuQl20>Vq-BiCgrH@Hp043 ze<^!sQcVZzvE_UfCNdVIAf|QFTK_mlFlAwD3LF?vRz8nL9GvkL75pP`QF=&Vt$u-s z{IErSMELpCV0xrHgl@R6l*Di}(K7tAYhIluwG3E`;cQGAx|e^bW+4dTsjfPK`$bRN z7N8HD?!xU5R$1;LJQJ8dWXwM7cspTduJyboFA4B)TEMvTQ}xL2xv-zh+w?pZg_ioR z$Xpc)UEcJKkQVWmde7css7K*(V%(7I73Xf++Qfx~k!}LAV790_TAh6i+|vi zQsTrK;%T;GHf8HbcjbVOqe}HwqTPbCA_1Pg&5TiIgp%l!!PX_c)nA7%>MCQ5mHeE^ zp>9^CSUKNN>Hon~msJY0kBUh_gU7_nX}GazSWere*w z5^|1P1!$pd4)2g>k;5+?Qs}~8EBch`jmH1nEqfC##t2cun;W8>9$?Iu(ahUc1_D_L zJ@ak60Ez9Sm>tTV2NsW!C=#Ww-)w0($H@j0dOvo*7CU*#&G{7^gQ24O7(Oj%Q13;upP_Q?n<#xxaH*VkLT316M z2>n~!ELMu2c~g=sVnQxIM389b!Fr$a?WXi*rGXyzG4VoNJ))FvOa(w?wNZ* z@N>@~Rl1P)ur@Kg$%FUvj86{0=jvBr4h#9-C zmKhh>^-}Tfzy&Em258yi!@7&tE)O25EBO6*)ieD$UDD>H2lEo(qavYqvY5At%W0$0Pg5pQDF zxplRZ3~VA~wg+M@^WlUokv@C@jvE`+ammPF0@|=q*=j?!c%zo*UuB)Mx>dt>|lR^-l?laVua zD@B~?x#t<$F=5bEidwPe6IaxsN)xwY5g6ui)|>Z+F;ZKz2$tPMEv{%tWAY!M%Coy~ zf50e&mh9j3?TIg~iMMVWlDu6sEmem;n8{cvva&Yd$mgQe(y`p)miwj$FXtwRGjDJKEx&Fk-RLRgQR;$GS4Dd)* zu$Hb=XQy}y_q;rNEf(j%#r1tSt6wQK;E|W9aFOMm*M0EQVHV+whdxt9G`hRzBeEms z2^ZUc0Qmc}2MLp&Y1kQj@R-YZkc;14Pe!*805;T4^azKhY! zyl3&jmNdp}T;LHq=bpjjQ8exjOKr7X8V;&B8`=lB7msK`Gxu&j1 zS^tUFUu<8^1rGWUt2$+zOnt+v)?98XodW*U}vTBLAU3J*6}R49Qo}Z zHD!3OJD_(9t;!~w5>}-PpZgkg5uH@G8z?HckSg)+=X6UN^CgS|u)g^mUKq!b23m>2 zyhQJWk(q{2h@WcLGAv75#pl~`;*j27$*~Bs3{&^f6*cyajpdP#U!G;&lXE_q=eMjq zc(HL0WZH0*4Li8H4goZOSG2+N}Ir^E|{OSItdEkO-W5UlVcNZ{Bv6Ai@s<(dB z?yg0Xh69!&hu|3K9&r+Xztz=S8>-YzYP zqmBlX!k_TsrNk>5j(Rf=pnLxJ?|nT%>A?}ky^(tB!R@z~)f{yL)*h{(=T7;5e?m)l z_oygrtTJ#`5^z=Jng=s)^Q~#J;D}tKjZTKC z(*C3!>T}opl$~$rt}c6dqd4&emRb(kaoc46u8!TYSwFzG)hhC)=>yn_E@ek`N)-vB z-KOG{UKF0!A8&h#WoD@~EORvxi*|GU@je!^etHUOKp*lb#*O-=STs)VbvWI0WjzGf zrlN}&hy?X@GZx7C#neVYjLFYp_TFt4+jhMz|Kst=kEWZt_DR5RXw?XWRu#;{-he64}B$-tS)X(*%BHFg?+9GP_j|}2*9=F|V#P51)tSqYxS(8~?*S_DoC(*|L?lYH5zXW5{`fjiy z$q_!6eD;rYgQ+eB)4rk|#d=vM>}k?a(+U~GGx2jjLxGJ}J~-L}DO4o;xQ>PUoH=aa zAR${Q#H2%NncDaxoG$<|^?T!fF!Q;mC%YnQDt zW*MTIwVTaUFgy-U{Q>S3H;FovKT18e+j6zs$MH`o3ZNF2C+suE324tnzAcOH?~)Qk z=Xe`*8iFOA@m|h1o*b&ti<;vt(*RWh zzS{QU^lW7$oA`v;beN}3WN_0eX_zhp;CX}XIJews3;M18IX>ZPPcWYO_$C9^Z2fm4 z){HEF;;c+ISbfrxXo1M#GW|@q@q{be6heaNJjT`>JEz7x1$ElJy-8K3uh<9S<;3? z6~*J}ihM2De}_U(JD;aK%3A9)CHk)8nfh#QqI|I!@qO|e!CLOU)R|zs_KVpnwbEQ} z#C+bC6%U`8oMGf+6g~2Pn~XUyRh~8R9)&xKh^%0I`ds&0_pW3JUBml>_C1N6`O6P1 z^6N!pz}na6dv2fD=0q28%_0KYp%hO@v1hxSLFfMMWl!YM`|2Cm6sviDTZ84Lc}LKB zTFb%94?6Pscx95rLau9!@-P2oo=Xer8KL|ZHd73(;*;K}^*B-=?%e+(!+bk`Vmtjx zEu(T?Abn&DneRB#cAE{=dnk%>Am?PYP;jLiJoOGnwSVZ2VnCxdBK*wX=OP#9VOZjy zo7>ip+z&rVN_6*xSPB?8Az@ceMzbPv`sGg5>!#2!ZP$8<>HJ1+$dV&h@6*ZnE(O6{ z-jw!6mhTJbRpkuT0UkNV+V`0KKexRG8NkEyECn`{nijYMAj8&CjmmjqqbiklQFD+E zu=oQ$fO9xt3SUW7)kX5iXN8?6Lu&Ij?`59jja%6=kDu(`yr`gpBTl186QmtFIeab` zu(-?l7|gz2q78)X-|rK%QQBDcYU73d$+MWRz(k45aZVWhIn+kcr&@hUO%{DDOj{P7 zbT#om7I!4;efXuAPD6z-|6gqHgt12{t0|V#TTmO%cmFt2y58eIc~HYs?(!yLDegOU zi2=Q#A=>ade+Wd_z0@#*P6x$vD9VAHt4xorzA)ic4oFroduhNN{oEn|a}@FCrT%&@ zevJw9t$5ldeUZ=kVOSi~+np5uoJI8TCk0rZ^R(-@GWM23?!r)djXn|B{B?T*Tm?x)fN?3_Vug6on)BG8)ff~NawGoE*;F_P^6>kTUEJbiKG zFuT{D{?CBjbe4qTc9^Xi;PnR<7mxdx<_sL~%*%C;vN?E0Y-Ei2*1#NI4*|=xIky%z z3aq1HrkJOccdH0-1|Q1h2Z{v=5Sd>p<2*fDVLlCFJKNL^4m*zx$>D4)9~X0(#RuCy zY@&9ALd+AHJAW=$Y&CdDr91~t4@Lm&3i^m~eiZE}@k{c*+R+5C9{*)6m=%%V>ZaqP zD8PM=`wN#Y|I%l=)6_%x_5A&)fO`zEL(K`sF7NUP3#keY?$(tO-%E?&#= zxs2Vb2qAau4F<9Ney+ZURCMi7y@QBIMgW0_rBHE4C-b+fj`u86%LZ0GY5!z5*R^cs z&s(bl2HynTSA0-wMS*Ti!CXO#EUOlBRL397#T?*$X*$~J1f@Yi7iGI99@alUt6i}llzdg^ajR|Rn!sa_oHAYIj%(m2;JF9VKEV<3)u`0-E>T3btT&Ar|_xg=1_A= z=(E%pGi-6SHq*cBGXW=1lSz$Vt1H zfn4nV?;Zx{CCGn0{jxv3Zh0}$L=fZO2oJ)wneS5?I-y%CwX7G`s;(^Yb;TK!gi}u@C ztVEW|%;MuL8lCAEF%WTVu$$bD0Swp-!}ej8BiPu-VN*lkiunYkC5W0}Lxy+F?xA|- zpDc-)XIvUUx#NhnDAf906}bgNA^)9VBoBfO!a&RK(G);u@Da2_jj4-qs4XX5vKSHX9YvTH3)uQrTDRsm4p@mpGrcA8 z!9w6q&rTceU~P*T2oiR-Nq-%-@kpzu4L(W$R3wLP8P_nMVM5;CWBIZMRj0O}#tF@LVqz8bw?S8eN%l!dp2 zhh^;cgmASlRWP2HepH|}cY9YTl5SUuY4+^6CpMxGcM6$E> zwB==P^WxXmYwx_u&Y?pkaYWvQBOLxr=&1|n1{aL4sb*GU%n#^ac03*^aG{2h z7uck_OjoZeqLY}M_+Y-v)|we+f|T^*46VF!Iqe)BOzU>lB7*1t1B+3Bu_#pvX!bTr zYE-N9XQlTgW1XFbD$-Ta0L>?er5e&>Af$NhmD;$`gVxSb2`omomm=RLf6dpYK*E;b ztY2CfzXIJuoyHZ@_0xC}c4XpSLDpdee4IK)@rcZk)C0@38p^vV0{QAVs-vLdeI$fB z2!Xg05y$LIa&YrsD@0c3s|oE2Ue5#HffYM?JmcvI?5FL(R0(q{GZyJCy_9w_XKaFs z(u4%4O#|dEm$|0a4upP5naKc7e(>sA_stjr>{z^}`Iuy9t4fi|Q%)#@r>5@EK6^xU zuD0SmIMg~n(%_#Z)e$Q5fKH!<1hTqCJn&)*s)hplT5#H+{yYUKtb&_Pa34-%8GSnO z*pY0Cz5zPaXa6{&Yt@m$TPu30xrbgoWV$5i{i2#^9bxA3?6J|3^1)5T!F$xsA0X~F zLdWkphSS;~_Z?js*ifIgawmz&@MFX(hHjJX^u)@{x*zR~yY)rmJ=t8zufXRODTijr z$tQO>vu;lNs{HN)e`KC~2MDaS0FY&$KbC<$U_OkO+6QPP&37V$JQ<~0H26|R67q7W zfp+jAjy2jYyEb_iPT2#%pJxw55-gTlpAX$}QF6W=PQy-21Qc{r zo@8P%mt$yW>F-xu_b?q?qsCS7>gg_`$6Jn36e zf&Su>ufkqa=<+TlJ+E`nUy7sFG9m3;f6ZzsY2_~OQR6`QaPP{5O?qx?py*`*6Z{T# z41+h?9t{5XIb=ieO4GMiQrd^qi}Nd&#uv?@!eR^fF?QSA1;n|^@^UicimH0UYyj#w zm;vL%&+^mgeW>S*;K7d>{l43KHfobbCHw26esz7C* z;#fTqV{=T5+ZkQX4)F#`iEpb4vS3E-!fBkZsTVJ1h&8J;g?lJ&vXCac<@~4?Atd7E zMLR^7^i9R#L4r_2laj*h?nL~++8o<+3Ch@X9$3uN6_0xNX z@V@^ot-`90WiGj*i2bXdQ!)p2Wc{+^pVB^BPGe-!S$#i0c&F`7I5*{#pvMMbs{}mf za^n8dy1G1AGOa;poLq69Ogvm#ttc%6Fkt07gUmPR;J#;`;ydU~&pQJBDuVuPD7hxG z=Iiy`dyG}RBi?3RN8bkpPYcx%JXRj;$4Lij+nNnocjPmDp5(3XXLqva7zwej>@?XV z|AZ+%ShUwQ>cG63tA{SlqqHeLNk*?pg!TYCi^BIgl@8xD+>@4YN#gDcc7$vuYIUCck__&8pD}E{)*=A` z8N{7r`#clWn@8LM%U8ZjzAm)6P4qQyx-=%_OhvEw(Sh}$^|jakaGveU=RCB|S0Kp} z_9lOY6U=VW0{05VSQTV>Da+tiWTbEvGD)qiS`&zvJFw{tbn`j47To@kfHz@k z=4e3mK)y0nZ>Tb4^K%lci$6R%OQE~-8v{d3WkRKa3saWHv<#_g3SYz% zqP}|5vjCa~_0YK(-Ft>U4JRm(wVLA7E4TIJ&%D|Dy!w_q)Ucks`g`ajCNn{yyJ@0Nz_MKeywMfYw@Yk9O9_7@j)Yr z;eJl4J|cWdw?NDI-n9bXW^&Zg=d<(DQ@mFf&hYl$*E>q#>Ec*G*tzH8x#%rtOsP#< zr!)OT5+icS!?C6J(M2M|=}U>jdx3+YE(_AjW<8ye^71TP#AML}swrJ>PWen}ehd?y zdF8S~hc^#)phu0m?Ly^mQU4PuEFhCEU}O$wtC}A$r}>Qth6y$$*d7@?<%npU6N_KN{HEOyK@Z#OR3+W zihe9iJ>%H>Zzja69sI`$HLTRi##)qaL42DSDREvnno^SI^iRiLn%{BX;Tc|byS(U? zt)m%7-B%0RI3P&KU^-Cqzv^zT`{`Vyn#jkZ77GT9U_dAI*Yt45@8`dkEw^S^+n^G> z>ceW#I-Pfs57=wT4sVz-D=6{+7~2qNr8+WyJlL5W@m|AIg?ak)fv3S9_~N;s-d9C8 z-mr6P_q>*XKP(ngV#9H@m%F>#j>i+wF*!Ku=@Y;n#fRM+IV^N2l&aEyuv0REvkr#l<%}Z~1 zr>ri$fa<6ho+jUNs1#wOgKQaP40PLQ5rh`$rmk@CO*{>?C;-|Q;UW8f(BURuA!Bso z@Y9I8-KPN*WwGF;|4|k*^T@w&{`1Yv(HsLkcGx42z-8R+v8cbpB$%mHuU0GP3%NGA zd5*V_9K>Vw0kk)UdfIoTR^72AvA$OPV_}PYUN8_^&%BcpV$jdf8{kTJm^$A!}V1c~m%dVd@-2S(X;>&w(}`QvF3_=bSx0sutX+C3L-qv#?$60qLGC%NqFV?lGg7iAwpo$5K%fG5f5sl=R&iAO}vcfAV7nITJT8^ElTc$-_B_3E!Bdi?5}$YGqs| zMVf{bzeQ1BEE@eI6>=Q6^MXV~n6s*&SZ{MXj%soQhoS=6-lMNx+PQ_uNOfMLrvL(4P&{pzgD(u2<>WuN=y*Gm7oRz0Ii{tsj= z@oLS#)dk07KL4-Lxvc*0$JM{-uGmViS^oor`w>C|@QGG}YWT(LJ z;G$y(64kw>#%_4tQoH6ZGqw~VYikTn8C zl52SO@7uKNBUPk%g#G7o*tlwwBKi&K#Se4b69;y()kG*s5YK@bBdV0Z^jbBFfcEH} zx_sfkEq5?B{CvoQS;qdMz}0=TwO_cULq510M~2 z0l&G8xe1ia9}(HRzoL9QQ_=gIf2^B`6#3chuu9eowGbAInjGr&>$58{(G8hsZL*G} z9QR>-+5d#_Y)F`WnwJUOm9ZDNnB6m;#=EkCQ(b% zg4<)~9Rh8a=aB#q?vWN&7||- zgbQ~NED*RffASHbzuSUEY#nY*N8&^sU!UB{YKk&_*d&^2d{@b%Qt8s8f{vEsZVwMO zo?2?8<(zfr?O-~Wr&-7XkuNOkI=VE0;vP`kw z@3}L!ayEB4k^LrUZ=d~Ac!AB_^65Q`%uVrM->|9PEqvu8Mi2XC!4&5o!)b>M@-WXB z8lZv#~g~0X~>B56jm#y!PwNJD`U$%Q|4mShp-& zP<>9z@>p;0-)MfOm!^T|lz{jKpVJ+DN#IFcUgZ1e2(R_PWteu!^Qd8So-Yg z-_nJB6*L>SN5sA!apRORRYF+hWXL^C0Ha8~q4jRIO*wYLz_xDXw>^ZAlNy zeQ1PqmmMutk|`c zT}?pAX}mIkM6`XRW@osT<($QS&tG$VFyRvUzW+YMismJ$N%-2|XT!ZMPvQQXzhWki ztV*(ZJnpG9Eq;!R%ub(xY5th{{F#60TbENTXO_O26AJ>w2YnRl?>|fnP9ZvS(bQDda3Lkxeq@*_osiFj`1MNIy^BV)xLKJpOX=wx4+Zw#a@6V{NlRy_UAY5rMp1qg?a2Vn zelq$w9}UH29#U703f{i!?Oa($r=~rSHlR~H(li>GAn8@jt!Q|`{c$1(y&?5Hne;3p zUAl7r(#3`b+OK!A|CL8ghEu*9&>gCVOIfMbZpf^&II=r6v90FnyF5sldC}$iG$Xja z?Az^0-JZwl&TMOsrx7^qN*;;lS?Pt~w`{9T07<34Y+g2s+2!87vZ@(Ht3}M_j78UO z|H=RNC278T$y4KM`SE)5Jd-QCf&1}FkrBmRXj*rCF>rA@Fg9?$K43_xy@C3fZ@(|3 zWUD8ELVn2ZWWA&jknYAb|6us#$yaw4fQy*%;E2i=|5W^E_qD68t<9U}-rSJ3{qB%r z_**KYYnYx#CBHrzgBmh5J$)Xu+JZ_E)x8*CAl*A}I^zP^K^yhKsBij6kQlQ0XFw>O zh0GfiG=PkeaL#bU9N^wOacng$aBhj`#a;2fD<5OU!6U36TDG9pK*i>RDW|FG+7Ql z(lzqWTY#y!Zv0%AC{vbKk}Jy7?KeLxduZL6HzP(Dz1!{iI1dLg&jFmtJ6-o0!Q;LdXk zI=5#)bM4-^l%F}!l6@L9Pw#NC&C}8w?)!m+0g-y4o-KpDT(Pdp4SK8B*YYJHcwcBw z{%!#4ujTihK!hvEA^%^Ku{rc|HQyGAq-ISS^Xk7pN$W-lxe|M9_!IC>YF=rpX_s?- z_IzX3ux0;EOYO6=OaEQN3e_nZxm3>LTW(Xe&L!t7S?9$K1gx)sBeGN2V#tr42&1I? ze=ZL^TT7bZ9b{^w3}TqkB;jv_-vS!)dEgF8imOW^<<{?VDk*QZsIEwsUir}V4=wbs zA<$gb)wwKP`pD951q?*^_(3%dEkyeB=dFan*xjNV&4DYL z9hy_K5oz^_Nu^uoE$5$(FV3?pvlb(-&oXrfM`@U{7n`=FS4pZiH{;6Q{9{r3$uiNA zNIlhAc*wqonl!p_|37TKbzD>N|1S=rpi&~}Kwzk-^hQausUQdl2uSGY5Kuz8wgJ*P zkrIiCfOK~akZzFf?i{c&M%{UTzwh@x?&o{|I{)pDo%25D^?K%-a%7-PNj3AAcb}w~ z7&q8+yh^Wphn*B!?0a++MxrN10Tzu1%g^Cf47E0rDeY$G%}Yh02$C;G;N5ffuocfy zKy8Z>u4AwTT69U+j2PLD|0+ZICrb^R9lI`NYV*>`!*m=cD}7ATM%sR*$mO~YFIM&h zu#ex4l&Nw5GVi>d8c$;BqDTgEm)&-l24h?%aG1w|c=_!m6z9e&S7T5x7UviNXC2F8 zwYg-m;I8NRHLudID!JiwDW5^3QyfwTqQe0yyNdDu4q|!x=eHE%WW>=+Dk!08lQi9& za2xhG^~+XH5D)+L1oReOVD=Duxz1)kIcU9j*iaA+`ip)%fa=Labqy~1pqbr^X3qD8 zf@fbLkal>&)VnnGc^=|M)y0{i6rG!>A+yEeV{f7_NcOE0jOHNma@kunXFSvomkF7% zPn#In?Ozl5!j)V}5>g$xn~rr0-73We^*e>`)})&?OIklH+_?icWtt(>Z20Zvsntnn zTrQDrm}+2HV-%G=*=)u-$?QKvyF)UFZi2=gZWZ!Yh^~Nd5quoCZ@UdP9XY65?Xi~8 zPbIYY1@7vH(p3N@C~MWUAd1JHP79`g1L3;j*Aw2lEdN2-Yi&NzZVAd4CHSW7mPWAD z{<%eQCXa4Dt;tMuh7V=BdobL)=eVvVx%rj_Stzaa+o?=eT!e%6*=5Y|6xU+fOj{=2 zDY3gl1C`~SCF8GqMjDa6(m+}-?wEzqYx_ZiNK@FI$v047ux3B2v`4uj3r zV4D~@4$qhuPW<9`)KrAe|GeLpi);mK8&lNV0m8=s9yYHkx8h&(iyw@Bu;Vl>e)o6f zq2QEUe6+y&4Tgd42C0if=w+$qMU)~i;l8%EwClDN^8Pkq31yGun>X0=)WxOJBeG6< zeUxtA%=!<}{7?D&j3gb+ea0Bvqm54xD3%ebaeh8`i8y2-2^8vzY8FHJcewM`A@wAzVs0Z> zay&@L44NaVbIc4*Mq{VbL4zEmRkUb0!$@{l_jyzk$igIb&=s3uX~Oxt)Iz9lut=mO z`tof49|zA2UQbkGux;*ko8 zKU`@2-m%Jp8=_(#cY`uoUO*w8ift;W{<;?ajKlU0Gh`ZTE!PBfS60VKRH+|bis+js zvwsyyY_Ra3XIh3q<_~Eb7$2Tf`O&%;(->G60Qz)4vpKH1-cSOavF#2d2YN!VrBH)#m(d0h& z_u#!zcKZSNXRA$0Y~P<6?}x?wP4#r=rkUigc5c~;u_-Si{YLoN*~ z>1vjCKX=c>WC7bMjFiJwF0T)rygRmJ@8G6SF(M^qb}kd6%$<$t4PqF@&ogHS zoRJP%45SGp(SFR&erkv04fgmA6uo$u6sSJ1 z9)^&eKiWwXyRY`SwqmQCYP%_X>r#MiNO4zFTWI3FXv=~c=Nuz2kc_pN7W!4x;3*)z^t7fO_uU+KRlJk&dj zqCxhNZCx3ErTY%o2;Tmc8O6HZPoia#*F4&5)XUtB}ZCwNH^8xzvH!i(T$KH~{p)LjA?Y7>8 z6EE|Rl_1CY)k@bcKJI;%`99zzL<&5loi)5EAN1tHIH5z^i(b5pP`ETk19==wi+$L; zlHk0tQaQ2oxzdp;IgH8z{i-Mk9ScYNIZVfk{Dk*K$9j_jJ%VDr@U?y;-SyZTSHNc} zu)UozLvN^F#+cWY-FP!Kul}H%Xbc!JiYGh=Z74wnL@;w7P=p;P9 z^i9;9a(LiM&zq7i{>3*Lo^2W!2rO*a}Sit4fo_TJuQGXf3)LR;U!6 zS}&gNN|C5CgR(-C`nsuG)WwPwlR~aBp0Ld9ET<%Lnm(RMPCn<&2my&|PV$L2{W9{6 zrE5>q$`;%Oh-Mu0+Ak+%!kvcASY3Ysv7D$9Q#lAvPJ4yxLy+h2o#I8gFo^Qp*Sg7& z3zfO&>bnNO#Z|t8GO+6ggNDmXGlVcZ zlcwi~F&8as79{yBzv!`L7B{3X+ABZ59IakJiuSrlC$5S&Oq_KU+EKR*6>}ojW!ryqp4s&suqNuTMjrTGTk8y+(fwowQm(&fk zp&OJo+TO@5+GJ(zV?i6bC;sF>yr=EQ1~3MG=d84uEUW;>wQ#jYakICkHjB2)g%E=Ir9@5=PdG;}5l@y^xP!_leT8@%hceO*vw z(KNuY-;R?(b+c{hi8}xqQyI`$Sm!_$;j`~SKl>`&6h@C;O$Qmb?zvw|*PrDIh)Nwf zf=~(lR#0>Zq+;|s01V8mGpp_BwS)||;@K`~xL^_YKA)rVT^w6@4 zwnt?mW0ahn;SPxT`3Hq%&E+u7MyV&dRA(P@{g;fg>dyL49(oO|0ATc{u$+Qw=2x>D zWqdnHeV1h;*QJH*3Mha=FBF*RILwNAM>z$RvA(WYrxu5>gYm{nAsM}s2t*r2Je8ts zJ$RlZN^C7z9}GMaqI?)MlTORX@L6g&KGjz#sZ5mt9VloV`^BW2sU#9Bb7rM0 zPTRs?!MB!jGdKujR)*I~0x(%@ zX{6wA5eMXZF8*i^6(7}g#22LvyGSR?9K=XB*seS^^}j|1jvHLlv-ghwnvCt5N|K#&2GI&!8G%V>6ypUmDidLtP!%Nuv)}x%oA$}O6SHje%LVi zJ?k}Z)%`lcJx;7hWc;F6{aZs^uxmz;lIykzZ3TjZdlIF0OtsD2hJEaP^iKgFX}BF< z0VnJ)B+M~L9QKIBj~0hErpg8VFcL;yoE&K`@{+h4(q7pSSN0$C<~+AN>HlX7_*wYz z;9vgKk3#YX4M0Xm=ZFklBZLbsM7^ir4Qc^^z1ZrszVo#5_8p6N0yzz@=Zea@;!hu0 z#e}UG_Md&ck9<|Rltl?S{8bXFl7u^m#r;sGcyf}LSGjDg# z6VHJmn|F1m&XW`)NeTK3#reS)icu&`j^il<-|B7pvx(^g-?wDZ(8I$c1ova? zBZ(Vw=?hxvoSLLPh4iq*g^jsABL0If@q2R(poZt4_v(*zMh=5MEUq&KvIO3#YUKa( zb8*Da3+sFqn_vCAvMJ=RxdpK(*cbg6C8TzS5+s_&LjxlH>kQ zp=VD#|Bh@?j%4l+Bzp}4%1&Eewp;(n?(x4RX+w~{uFw44*$)>}Q{<*sr`G4Y6_ZIX zkV_{?)LwJT52m)N>rg8n+?bTse%N}wHkp*g%^_gskPb06n?&=4fjJ4jkx4Ubv<=n! zoR=>$$6F(}<(lJn6>5|jUlu7hJ&Wd#uF{unqRj}Kd^j0~1^%t2VNX6<$Su&P$R?W?tl!AyQgoX$yZ| zq{UGSDi?35bIPNT!GUw{J58VRE$&lbmL(cP6=%1|BAE;f6~LHAIh1*$yoX6Gu|l0L zSi|nqb%(aVZfKFXE#sd8_wi;-cU0yqVL^Sd@n?`zA^14AjgX(uGcG4?wDL`V*+jR( z6JF9I8OBk~WaJ0~Iuc&V8D20tS*@qDS(vdTwSSQrx1y-YECz=J0V^)7yvAz_lx*qf zXV!1a+R=Z>%na&qF{1yNP@*pFn`!r}dFym(yIeu9LVLBsUTD^ogJT4cB@J^ZQvb09 z9Rm)~x;R;{gM^e;`Vy?D#fpZz&uubG(r6Zrjn3lDg7 z;aLw3JJk%Bs`QfFvHeeFF8|QiRJpGM;4VH<5X3hvs)KV~|J@C%%w57B?dp6)?T@#_ zft8Dp4e|T^v*-!{R;7iIldm}51cIUe>SQgjk~s@@t}ZT3`7gHqa;Uk;6w5%QGH@ay zZvmyMf3{$J@-mZ+)Yv-Bpp^uoMLR^wMdHGyB`eLd7~g+;lJXuTI??trex+eJQ4#qVsG8r zs>JOTy#kvBPKDxr(^I1ii1Ai(RJgkw?A66h4jS>NkAe86P88`#*?bY$`1tSE<+kR( zswZPGZan59`}A~(_8I;*yHv5FN7tiUHm^^cY%T&hP2VwCnr@!$%KCaf8%qrlWyH!S zoO8GcH9E=NM+~Udx$EdWesb}TUtxLTX&KBJ5M9wwx&W+^ow3QfHK+2^j`QPaPpECp z-GG@^OZ&gS#CENoJIEP*j-q?08Wl1*d`Ez|?m05V^;q)qA+2}qVGiZMF+y9YOO;`qM5vh>3(q2ln5xUnK3pNuIuSZU>ET)RI_u~}X zlG%_9wo&}HeI9ZX2>o=k4yxrEr(O&eMT*bHnd7X01exXLTTn%mOV5Tgjnq#M)@O1- zhd(1SzQ+@l^JT(fOusu04E- zH5P*^Y=~BeR8N*!Yq|U*5)#Gj?Yf4_>j_bwHwfGRJ31X9lXU1#(%?uncsd7?rs9gL zy@L6-9Aex!&SvS#KWTZQOkV?Fk+(>>(N;5EZ|dt6gANIz4;_`GSl^!q=RN}El8hJ& zL4v>hsN_z*AS$(wlfB=Gj>RPx;k81U9YmaVDF0l6XjrthSF@)T0! z9Sy9844I9H$;m87X@t^F#<((p7n`I|ii@67^VnNY+T=y?1H6S49<9_e#bJ0(LyPw9 zDqh*`^J!JZmQA{eV5#h|$hs%mvZRjamHZZVW-wN<)BV?VdTj>#r?LaSPuHj6}p@9~>m@5|YBLjK6kIv{G&`E8rI3&$t|w z)9SNj7Sa>N)P&GGI9M9EE}z5hmumDY>qgJdS<% z&yVnFsPu_jgA*gkASYAP50xm4zQInx75!$6yx)3xAwy}!rgr^_LXe%9yPHpahRyj# z<;0N}`-D-yN?{=7XpdTJgI!}3vR%B$+&AZl7BF!c$R+S z+a*)o@ZGzrpDm}p04^$K2IllXKgUvQTnoTZFSmiIO1ML89A1?oU)W#X_SJOQcO;2kSfHo8rV?)Z8ZXpT^}(DRU37z zz*k>tcK&4aF6INCxHqRGBV;E-gfDUnoE!y)cG}LTJ`Sxjo?gswZ3~__Uj}VIB<&Sq zM>T3?26>DQ`xxe}-0>1B=)tsMA0?(S4HRL7gH8nLj_i#QQV%yG#?rA%)C;XHD1gvP zJ^L|sXKFkQTHEyHPzC?BT|9QlUh>v4`s}UE9<(07fJn#Zq^hxAGUWC#d5MId;;GNOKrH`%lrxY3%<Y0-9wS#>I&Mf~&A5C8~w^;p(B0Ff$;${x; zB_n4ry+wJ|pS-`JVP$DV~73rA&L`=OU3xZh)B<6&Bc%MtaYeDVF^uC=gDvNG8%4=&uk*g zL7Cd??#jH8X#wPk)F52AFCQ@owJkc5KZ1`Y=v1Uh7=~oOpaBLbUjP@8r7W=eHT%<0mj9A>(0Gy zz`W>CLiPz!svsuBTj+P0PiJ&Q-yPNU#ocf8dx`_UQ~b0F!xLA<#~KDTy__%~6Ol5TI%8=K>cdqJ z{Wy>fc(+hlwhe{oinL~s!R%{>rNz!RtVi6F$4Hk2$qwIE5}bZbX(rY zNX+Z?MErKnyZJJa-&_Bca7G{9Gr`zE!g^W%ZAA~;n2F5gc!?GPUy@zZw?tLouGbNU z-y=dCuuiBvyAF$;dg5iHbIdZ7U?pyA1Lqd63h@S=A@sxY5O|cvpTBP9$)~+A8cgF~ zo#iOCw#NC9E_2AA96#TF_^QZ?Gsp8tsm(0M-OJU)%5!E*smYJI`G3OPqx+!yG1W49L-|E)jlgAeNLRxIgcw+k9&6oai5`WKL|?75QP5{1wZ|&&;7N z&N?sAD9Y8adV`GW!5O#CdCPqf^!G5Y)lQN3YW3Cbx*n&|7eAS%_Q>*NFh36aJ&F1@ zW`!}VfdXNyl(xps*g}-2HHFsQQ15R0v&8pp_s;dFwxEAA9< zI2^$$QzX_q;?Nj>4dAgC9cD|#7gmnGurCC$LiL%IgY4l#9fIN1`{}(|A6;bP=K}pM zBA$7pxy@>*+0L9Z%3hu;)K9p<-yz4*>y}f7+j)^PE_bn9th4=!%VqDAxr*YIKb8Cbj z$@e1cq6=Ly{~PaMCMNn;HL2owyam)eApChHRyXct@4wEB(rV)|l}1Z6!gWJ^D8vqP z@`082py`?5Et;zo|8;46L%DdP@lEIlswxt#s!SEcfpq_CbzxJ2 z4|Xu8yQMDGgWKop)GH2|WI`Vcqhu7sqO^1WygiJK^2O3Bf+acGjWd=g;q;OVYgba}bP$ z`XcgU!G+v87Zo863K#0~>uYNT@TA#JHDq{zeX3;cWTp7LP4n7+Jr_3RIh+aYN@>2; zpGhcoRH%29+L}7fEewMH3Bk=hv6MIBv}rLpiV{YC)xtwU5 zTl55T*AgiQ;{`~Ke%1wby8!(8Q`&_^DnXYh#xe1Y%{yDqg9aV`%1qbnrmuZs*Lngm zh#hgi9_@Hlfu|j|IHoQhZqE^q=z`!%A&8Wk`$2B8^?mWh8Xu>WXE$SYjVeY|+7-6p ziQHb^yk=>cvBULIy=6WsDc`S$d2e%@*$V0Cte9=zQ~MCzM%!pJ&f0`06@r5`Nc`&7 z_4S2Y2-aufw><&#sX@Sdc11ThCAginqoPZbuPpDl`-7pqogd{k;sB?5B?G24XU6SK zMnmv3>Ie&;1EaK0=Bkm5H%XE<)mYe^k@8Si)W&?*H3`7Ly8qgIw`!Z(T8dW9$>5I> z3trehf#*&u)Zmd|eUM^{vG$nl=`-_e=uFUef<`FEq~6R|8jx<6N~^I&d%(>huSbVm zGHQlMS}&9H-w<28?{izV_%Kv#A(dld3H?NvJ$`}$Rj~Rjo^bJ!Yx*QQ8K(r?&eHOc zh%zm#c;F}JWx_RGWDQQCAUq7z-0X~q8;R;~#bV$ru*6W9UCYMWBuM1iby!#iX5D@5 z7ha3+fMt7YE_@62&NmfJ%A-4euY_Rd7H>~o6_=wi=piD1&Drw9Q`2mO2+u8#KW#To ziD^K$=~Pjp?N^Dwx$#`}Mou&6oyyl!FBCu8&Nn)K!i{s6>lpz)=P026P<#Ju`hko+l2*8l*W zvDo%_)S!i#%lKhSb43867s|eV&!Gad&`B&KY8)<2qHepfp*L9-&T8RlejNR_Ft7UL zR+kNaP`qxv?kba<`7o@=!M((eYl6d?Zw?U!HIExog2Rl;Zp>B8LhP%VUs56eN)eeg zfXTk@k-}2Cj1P|Iyf6Rm4xulciIZa(u_*fR-TLEM=gsVqYqO+2w(qV}`Bk^W1emW= ze(^QF|6dnoKVSDNf|T!~pUvS4++x9(A8oz!7yp&cWQaGM^jdG_R|30}Qy$jg^6drC zPdfHVLRi*rq}J8bD0o*j$&Xs;KI|$;>-U&kSHL^ZaH0M5K8Q2a5UQM@5w0)G!fyW? zBg#2{V6ef*!nr>Fs-NjsOiq;d>XFKE6@|BoQvF}`cia~yU~e&$VYY%3&<%Dco&f=$ zBK`24=E-lC!+{&J;qdpYlkzkf-MZT9boeJ;M&u^ z5icqo%bh?RR7mBtn-4tPNwoQ${xp|`p?xvNQeKsKZ%OCdwTy+eOdW&hx)1c(HfqNjY@-%8iFDJ<4_T=(`FO(1+J{O6&*Nl8nKeK7( zgdMSi`&uX|g=OwFtuy z{Bgw9MJ*^SUU=@(po@~OaT%Vrv=Q6&nGOj3@xyG3Kd&&zeE76IUT3dqMQ}9JhKbrR zn9svz$l|^o*=mBlD!CMiA{w&JOpY5ZG%_-*;`82bqRJ#`4>Q?X=RDSuyXk#xOMAsc zAXi9jcVaY<%(o6B$PH&)R+Id$M@AC?O>o)=+vwmq8y%p*VKY`@r|}S5h{V zk8hU8=2AMH;>C zJY;p{XP(EU#pPc7*f7HX9i$@o*>@RaZ|)fdT3qfUYtO=S((Ddw4`-3z#(N{)r|`87 zAmz|PvB8MW(atf;n38Q>%&%(6c-oyJ8AddsV&_+bz?1e+vHEx?iu3hezXnd?#8Oaf z2sFF?tXX9WGSI42fc~HbfT0Vjn%!?8nx9RRiR$;jcK=ng{q3&hO8WfbWO4WWcn&>U zU;w*_V14`P(uhPMl)hJUp8oDj|9>4xJsFx7+Qt~7<`8l;?_G4C?D4cS$tsa4y=Mx2 z&iG$h0Ci5w9o=yPd{ClGk5GFIL_uu2#n*r{{;jO|dw+ILQDdhK3B6WR(XR~j(ob7Y z+beahn~vPqVJaT~@ODPkYr`*n&Eh?C-^k%6@YU z@SV`F((RwJr)oJhyddzU@D=r(D3C&&V-!oZ>CHEEa{A5&7mhm_-cGI^nHal`nf_&DkN!w3Gr`sl@!2iM?ftQP)*$Jr5svHh((e^j_GP7DNTAFolV>3Ia< zJE%MaY3={g+1;HAq%ae35?*vc+!zN>SR?+3?8HY(AVWh(JkSJ&CvLC5)_p3)i-B1; zMY@ojb(OkP5)fr5ATeTa#Bg)>nClaL+gR=&8b~KOpZ9Wo@-k-6MrOf@nPjq?^^Q?A zBb_9LC2O@ed^&lrER!4*PTWWsU3zXo4KGQK4w`YBL#!O#mt`5ajh?ctG?+9YiG!bB z98Z2KEIXd{iZ7AOZh5lo&nTxGTXmlUhlM+(YUanZ1e|bp`{V$7X@k&~HgUwBo}daY zt|{P1&{JXppg%yA)cEH#82crUe-E^;_S{0m-RXrvMsqyML>I8=1L5fQSxgLjvt!?T zp)mpsk1(?Skdpqm@U+@ns}W+e1}W{|JvPPAnt*PFdX!H}_%bvw)p)z)nR;`gPj45A z~{+UjBbIcKxTfce)SKMi8esyDgdrk4*7TQODW*WOwq_WD6W@S{*IMa-&Vx6g z+d_P83;!ld5D1cO&pVouxmV4S8rd=gdCq2@z8HlFbRUPYI)Ba;CYjQY zzwzHSYANM8-;5_O$K-=QeLA146I|>cMf{$b4-oZi{dHO0w2v9lfuAC8-v#X}&FM+c zJt1v3`>OAl;fx%~n&z`=j*EkLyT)@l>S+wpo&Fu)9$J){m&fE#O570u=Jc}?K$il@ z8hw34o=g0NiO}gzUD5qr+fZyR;?oitLL(oCxc;A zv^0G*yYzQeVB=t3`w?&Nq(7D0wub99`e#VncOIrOp^IqK;>*-hye-_Mkcq~1{jDXK zwM7R3(gy-S-Hafb#PPEEX%}7D9*=KKV1W0EM4dt4)0X z;{V$D{%wFZe`!eaN!1#!yKXDY0qLi&>0f_ug7;^U6~E3)?72qA&s5kLQ?F%ZXiSWe%orxCAMhv47s(rbiA zLOksTFPU9=8jcF7;1d|Lw^19Q*K$S7<`NtCTn^yfftVIGPA5X95!P0Vw6-C?w4Tb~ zTNJ?_B7Y^F^eLr(KQ_*kavO<1k9RdyoP46F{^PK8vw$|^2iSZ}<~Vb8J$tHaDOalp z1sR5Ts)p-#16yP<*l|@BfuDGAfgAcJI16YS^g5y{2uC!tSlE z#4|;7+|D{mO^a)h?`0skYnyA+tSSp}SIfK1S7UZcr7bYB#B|wwJ=U|{d|1`PR3yNz z;q8dh=}H)?FmmWf7Pl5Q`;ied9~b4lvv+nuFXOo{{Box~axTEAPs>HFy+h0;RzPZ# zuTE@IBR1!fqL_#XmUU1v<-b5I+t6mvG9$Cz-%D*w_ zu=jfFLg7=d36f~Eo6_y#aJoDv!B2JJi8LTb{|7)L5ax2aX+vR@9-FZHh+UkmtI}4# zWtA8h9n|{y;UnPpB=4%?8juVZD;!pv)U#=u!YtK9dL_j)b%PxeuE_IucKTKFB%LHa zG}%{@F^Xej;nACD76F*yU;MbZ)o0g{9q+tctjo{ZK1sh$1nA@cbeY|zp!c6 zlXTTln9*yCLGngITx6Z#OU;!q$Hirk;h@6;ibHc_(D!9#jQcPv$Tm+b{Os3KrQcq` z1zyj_29cN7cI?f8oMXBhz8O8VL{DdPnx4kq<)<-g7u!33l1KY#$A4o{Zd^lf)N;Aq zlJvQ3TjS?n4fZ9HO$q;kDt%uyFHg0HxPSh3iv}AaLP%+x?~aPKdlP7&o1>>MC~~v; zl?>XLQa00u_aq*W@0Zhfn(W3)ihuuxvCrsmmKi)wHkz6lT zV_G*r(<~!joG1p#I>t)g7>^S7T4cH7XOH7K4+~HHkqE)o zzgN^(({VL=reox67@4`6zKJG_IUj?v_&o`9PSW47>@t3AS=Jl*MH%d20078&&KY)& zTT#2Dh6Ag+47pek3uYaW5VMT?AYuOa=~td!Cl$ro6|xpI99!bOX1d(su#k{u_dn0;HxN-<*>tjereRCfX96$l^Z z$Y*%V(%a`$d9aR?vl{1Xm`$9SO05*b&^M09AjS_Ya1fMwN(F;D{>%>B%6PS_<(vA! zdJ7t7Aw<&f;G&YuD8xYoN!sS^JpZ2!gia(e!my;jHO_io&{5@X+r8w z+}Eu(JO~&WbukZmE-roq*oM?@Z%ww7%*Z5-(JY zurd)@Y+jeWr~1I^V7XD`c9yV*VEW$)H|j_2!0>X5bc$ql5BU$+j#r79H+t(#byTcI zarSWo`qdTp`iz&+QFIvkH^g(tr;}c;YkG80wmhFljH05qhkyxeb*RXT-r&KPLDeT08qe3D>lTsT2K~tLJE>CWZi` z@kbUD5i+K_TM<8t3)@P6I8ywo4}Ys72Y*u{M|oV9J&e=MAtCTu#n0`vHuhD|xv3S| zpqX{5pu__AzoiQlbrC8lQYLb|viR*<;|x-3R>=%BguHF@>&dXwCtRqn`lS~WU2?fb z3O*iR04^T97`zL^m)TPS+KeJLptKJP^67=cUQ!l}vdkH;GvWawEHb1I`O50FUtF2T zi%9!3Juh>;sP_epjgOf#*4;}o^;#&_y1#MePEAp*5!sKgo z{R~!b>zV{=*|tjVILmPQe32G**YzacU9z*Ajzco9b%J^PRhu&zo&H_L6vlUbMoXXM z-k0; zwgeQFg5#uumxW&np3O5O0dFp(4`BLi`uMWocz0Z)gt=I2d@K(tg0S{v zsEwlEnV;~oz3*bqVOF`*|QsRv+eOSU8e6tD{>(k^<;eqXsN(YOWzA*P9y8z zSfH1lFkQF|s+KQ;L7)nE`mmkrxufY0ZB z!akn8QnaxL&u~wryAqy2EG82_MYp<3BAh% zMMj-fdRIl;Z4$%W2|w%M0i=}`-pl_4gn1@@xSIDvp~dQe+vtj&!j%=5{eU@TaqiOM zS_QpbWPhSEciKVS*(nKp$&C@&QM^WisU39FUW6NCg>CJwrhv(zo|aEtsKU>pES*WB zaLYsgyu4RfROVIBE56{%KT>gGCE6eAly|5IGTcOCn zalQzD)u~=ePeUx0Qb6aiTbUbwUDMpmA5>Mi$+ED_^9@g{;AkDjKGO_#I9JIiY3)Pl zb;aQ|=i1aoG(%-^MYt!B>~h6bvsaO*f_R?^bY1-(bn)wfm#KfuAZ(-fF@&>4#%1WE z!DnA6hmoV{{)@`WrV4=-H|x`|Ir0YTt)bN^xTmDpWMvlkl+I#eUpS|-5)lG6kFoHh z@p2AT0n#|^go>vaO$dF9pquM;a4nT8FuL|i##5S@Ozhxr@n!7H%A9j+?4rl`AG4l! zMbopQWH7-h6U1_l);INyr{A?Dy$z%7k(Fhgr+1BpBk)?8`uy7hf$)MzLJOd{i1f&| z(+v4mVjgL+I|*;p>6eVR{r8vgJ2~A^(!kpIx%}=X#cOZSfxKE$RKvdaeoh$M!x6r< zo;NfMpNmuc9EvO>ymcP@t-Y=vE?$xp)M>6yR&?Rrr-Jw^s3q!HrDR^dN4IoO#PrOw zp{mZY3zJB#VHWWXBlydsJID5-MV6zfYCWT2jZ>k|5^y}f1rcmmdQWN9!*seTE^>%q z5ggjy(-+x1m(FB+9#_hdp(+*UWcK~=`8tT5867%RAoY4Nnt3ww2l5=;Vj;!9OE%6l z4yf`F&++BA&B0Pk!hI`rTng}V<{n|nKf;>!z9){|9=e>FcZylMfw4yAE2;(cEKVLQ z8Bf9e>r6;&l-wQyYxy-~OLwqD3C5WeGc!ZBsenGe~i| zK8=2p{5;9=Ubfcfm0I2{Xln1({j_)}sDt%gsXvUapPYeRoMjx$2f5l7Xx}CFGAP-O zTkn{IP3koDv9tbJ?3^gK|FO|%9X#9~rR@>JsLTkUpW!+04wgy#AepPN2&=8Ai8&vD zz7yk2>RpIsx zQ_$-ER9)c^4ZHyz5{A^fnWBebm-O-uze5S_D(!!t5X-kG9+m+D4r#~rO2|yPAHXIP z0Y7c|C(SIPIMBXWl>Acr^|1c~_5T0B@3=g(RbZA_)XkSq??Nf+DCS{Z>%Zf3d$OWd zbxS?v0kfwAS^S&`Lq*9r6rqGi1x}1bHd@89uTF>@#2Q`8davem;*|rY7TE+t zd&)oHfV1LXr&j|k(qD4&BX zj=*pjdz$*)=Igg?P0~X&yg#V}y<)M}JHZh&wHlhegRMZBL)Vr5b~!2?&Yv#R7rf6Z zZ0BuRiyqtQPKBUU`{--*-?s~@1M5)w4JA-SZ~m2Z=HYBRwcAV(34t-qtLEb{c438H?ca!b_}r^V z_Hhk7z{Cl&tbY0k5r5cuF;IT<7QUx;&43<93-M_8gDh13lnO67K}ORGLj@Ft;?YK` z84r-KQ(K!VZT5|LDFqIz;|DeqQ~?3t$an$+WlB-Axc<6?8hfKVYiBV2FKJ+4LEU06I$jfZgRbNo|C zzX}rjCNw`A+UcAOALx9SXaKsUx9y_U+{@(d921l=Ye`2>nH&){^uW))f!=w7F-@Q~ zj(Ps8R$oR5R^rUPx}1tL!Jbh(xq@RqfZbv%T86m`Vq4m(=9zem$0U*dz}d*h_iafe zUGEergC-2<{ViJ2ve=MHA-gqO=4KpZM2JiVnWuJ9=JEP*?`6AT-GWF^QcLD$n0KTR z;Xz^ZcEhFa5qfH^cJV#COR@05dR8Ksdd(sRn_AWl)bFEX&p!666TrE5 z{XyOCKaD--c5NvhpWds;2hJjgt1y@ttmV=JE%vcIZ&3sHg@6rOdv}T_QIVa`UX$O8 zF7l!JZ#ww@8*!- zulC!QddSY(n<)vqYWtHGWBJ`6!$*cB9rIXh$2HvXnT1^_X=D_W=Ybe5? zCs>GengUxrxN96XHw;KV^OPyhV|Opg;Vh{@C1yt&=Ov#hN7B%^l)AiF75e7owQ11F zYKUFX+FqF2bP~?h#dxqZ{9T?@slU^`S`T(U;9IfYi)Ao zCPhju#Ok@CUn+jg+?Yp4Ic+yhie@f}w-u{0Z_Q1Lv-M7k?+egyyl=Uid^U>Pxs2oy zm$A_?E8+@(c8T?FC`7$`jiAvtVo%HSKDY}`0Q-GXvF1t&2AfN=_Dh}z)Y~-9Q-xQ( zTtzh3#`p90%fublJ}y}Mxh1hzEVAUH;)wSX{=MsRdc#(lr2iS{Q?*(R@kL+EuWht{ zn0QI|2HvTKVy~90+Bo!&4W%Hrd6xz`a?eeqFzvHed9MtWp6zHrDt&Coyp%HZdSc%V7W|KO91wj^Jrhc(vH zw(*rBP<90*T~w-S3$NnBz^Cd2;**>WziW$o57R>{R681fmO6IVN1!59^OIvy(e}rK zM?*cHeRX7O?n*Y@hx6BN2lKuZXEqyvy7(uW6UirjthmL|X&bue#@g2w-x(N-XC`VM zwT%y7Y=tErn6U1!yYhcJl#^b7NtoM;>DYOTjJE$oC$O!W5-JEK5z^?Bh&yhOsj{z# zc4;!|>f^h{GdQ}&2bJDj?B|5lm$G!u)vKQcz0Nm3zUxyrDme)c1A_DmLX)H} zC_0&%8WUqWD1MxKWy7cZSh(xY;jcaVloQ@NTY3k!4u2h-e$|QDY3692dT%%8+7T3j zo-&gPE5nZ&xv95y1|PH=!EQq55${~9YkZpv>tD@(pl3n!(|)&E7va!FY`e64m6b9d zS82zzb>8JajhLy-q87^$k>Jx}Yb8U`&mk8kw`~*W{iV7JY_-m@8&h9s9b=n*X@vrl z^Bdw#6k!(B4Ve0GUMzU!scojAv1}63(|`J#oe;&|a0kBb<{LhDS8CGN&{0sQ-JV){ zGu7T{cDbr)xobYMfmAf*23$tZ|?A{5m!Kv-{DHe<6 z+b4C6!5#Ao@dj^c?9W+R&M>B^6R)(yw;NS=TUuHV@n*3MS>)zzja*cmwA4lR^DqF* zFJsa2xmoUvq4|Fm)}WA46NgG-=&BX5)Wj3ISysH z3PD$U!Pzf;&>`4Qwsek`nOi5|#X8Pw4xLJS1JVHFvx_Tta_tZ%xwQbfYo_1QuOd$) z8s0f0)ZKM$mqU`Tk&DxMMQt=w29#^+eb`8YvrqEtp=V=V%L6d%k8t{Gb%n{54-2k1 zg|tTOs-)XN{^AF{ zlb`aas+mmLX_EKeP|wf{zM9Zl^xvDYIrFP|vUh`29a`S++kY44WGCa36Mz3obIawP zwdCvdU&gRV6FDX9bZe57y`_bt_0N#85A;)5 zH7>c1hJI+<2(;YbGl${!?wczAm)?VojtA))%T-5L!?lmPI>zRIS$+C%TK@QSboTR0 z*76@c7l!DQ?belG&!{I?a^#Wh5vB0-po;2RHSWkwuGX(h{N4a@D!}Gm$9BiVVL*R9 zm+EVc!IS*hAk0>mh|RC59?t|*cJRsD2>;p{TBva~Z7btNzwyJ5#s~MOrjDBVij7l# zciVIX%6W=D%{nkeX}F;G-JiCqUmyp|FO8Gh;;g6i_`+xu2NQY0qQO;)cPAJ`?1pAD7HG|us~f;mQxX7R(9Di*FAg1QfH0Gcl`t#rWH zyQ?`un+5d}Z3|}AE))z3tWD;Wov{tu@_^52CW2CS`{J{3KZV@CX%-b#VrAdG4Am66 zyCG9_@)4zGy)`n&4sEkvAsbBiEoP%F4#;mob3IrDHgzB;LbFh&W>EbVU+w9uv;lj| zjNVFfMZn2Ub!(0@!0&2%N&RXjRQoj@;(?yPqNAW7j z8KBboIO4Zsxs~MO0U12cht^y=_cPvmrH}lmK4%V%bJ*QYh~<%6P(DXs1#Bw@^xb#X zSF1Q=W-b9TJaJ#`bP7Ae3htB)`Y~zh{UW|G^oB{fMUxx_E*7Ytyn*r99-G~z!(}s$ z7?ZOxq9eCEooQQIVnif6N&@5Z^CtWIPR*VHXv@{P&KugKTyTR8z~Us^`wBm1qRU5? z#@>Smr{?;iIyCd4=?NmvBLxK7o#zA?64ew-?~Br6t9BYIjJa|!5tgkrwuxEbWs6In z6rMnXz~2_2qR;AP^|xe^{%_UuHP&DU?HLF8t8X64q}XSDjkhVtS*-#MwzB@g|81?Y z2y1etXPc6|4Uv3K6i8`pY!57Wn@K%O1u7gCbLpHA>}A+Pl`QYrCvb2-F6mX>7&r3n zJS{Uo@4qR)r~%#O({U_hY{gz|o)~e(nh<4Zr$NnZWTZ*Z&4krWx5l?KqI3xn( z&0SU`jV(f5>iL9Otzt7Q6|-D4z%r~rXkLlk-(yxaEys3`2gTT<=>e9+ZsCbbvH3~m z%KKUnH>PDDmz%QBpvSspRv7bVu}`Sf!z>qR09j&(>V03f;i&*AC%>Z_8cM!+mT$e2fU~BBk4{yX+Q8qjqK2 zK4llT8gTA*rC1UdbPh`(xj0om4tLv$3gX?I3S5$bb z%6>*~406^iJur%9To4*fuZP*GXiX>{#3e{zVgR#lnvBP~~jw8ay4&g?OJ#BJ{Q#qzoj<$`5{?Hx0wI`pNbgD+(dTbSim zHae%{T*CVppRR;(6G|f*f<<>Y5n6`&r{gQp+vOZwJ9mRgwCb0S?i_@vJ6x&zH!N_m{^pXW{m4b70Ph7Qm1}g5;a}ytnit) z8u`WuGyR}p>vyrMSj-SIc{VY;tnkYPs&UA-as!{E#a-jyTE@=TXDlYhMr49c&h+Ts zk%O|*;R=W4JAIIEPaFKn-td(d(^o~oI+7ee3Jb(upYVtuUxm47&>x&dSut$edoStLWSM?N zCl@E5K4>eUVC?&1^nyTrhm8@t?x|$T+Q{ZpV{lgPjodBFbTIxyN?G==LI1GZnq&fP zNAW{F((-mL?Fw5ZdxWMp!jNU{~f&)+y&J=s}ByEVvQ1;c4d=S`%@XZjY-#T&lPGdQmsz zJ@;X$_vmPGx2la)0jA6O*$4Q2J=3L-HB%IHmURA1 zV%o+}&oj~&MFrcNjUDDc^!Wg6?~m-b^+(A(kG##Vz&M^{l-)hqs=uU#%%=6S81X#g zM`zAze!lktk9EpbSMi;><-(bJs)ho{TzWQXHy~wBP%WZa?JR!uLBSv=NarA)o{dCv z_ZM>z*rKgv<&(+^Q7@7KRRo+==8B`4W+ERXwOToN`AU#++!rh>-ZZLekjF$NC0X0o zj2*&m7o2?G@S_v0&_$B{cFl|CvxJlqdWOz&h>x3ErJEtrzUz;<|0$N9o!@hwxj_Xg zx(mU!*?*bqUqNuCMvWsMN+oQZx!RibOWkD(La3(m&1s}D=#WVp5d!4zWaj~A@JGsq zvQ{1N7!Y5KhKrqol8>ZlY*nFI^%a*iA6T)a{|+g&>?IpXYi_~MAnDi}CfU+X_+~&o za9#2dWito-620^f*3(65WdvZ=Cmgxx9GkoX5dasBrhprv$vWzZp*m-^#fm zi%nbW29>|oBXj!JN(9zYpk~tz38~LI_Ll1y7(Bv?uSz8(q)Aqra8ieJe(E`lp|eBd z)KlS%I2T!~1B|A15It#P_zDui!Jc7O7}a&8ourPpt}_pDfZ(0eZiVZx94^|Pv;Q7} zIclGA1&#sWmVX%a(6GAUgk@^8%v;-%0f!Ie`hf0?5j<~P`_kqbN`_P1Pn+ujXES|x zfu#Tnd=~ZGT?mwUrc|3T^w8{~PJrqD033g*w$ggGAtem4xH?|2=MvTJ#tCg!cK@{} z%-(_V^jm4*;O6+8v|53$fOlrTP0}oAEVDzb(e~yHbqv*Clw0Y%!J8MOo>Fxv2M+WTE; zr0Y(^aA!R0TOp~XwoUtWU=f-5jAlCvfWyaGp4uDKoQl1q=x-=*e-1dxWO%i(0h{FaWLlC7Ouj#^lXK@PtIOS9KwB$Jyr**n*J4@$kPAogKA$z?2(d{kjz zRFT-YXdBVmK2{m!2*Y~iz*prq8)oqxvHLFVxsGwA3s!Bekms0LnBOHrl&ceca7dsw_ENB@qB zQS3)$2fN?fQ8{yw(;UJWL1buz=UIBW0`4;TP;Qb$MtAMX0zxaZr?|WQHwGSNzOd$7 zLEs4g{B}1^3AWB6NiBUmlv8Sq`*tJS)J$(;u&u5vLk3hi_A%06t-$0Y!?Kxq%xdmc zQeo`ww;zoA<*MI(6qOay3%vuT`9002qmli(VH~EoFLRF>_p8}GK#j@e+h!)86oeO8 zo$(9ZVj?zFO9R6eb~X2CXqDE9$zNkcyjI?62(*f5yEWXo3qewBQf^ZA8eJf9h~P}w5Aqv`H5eEjb3gpsZ^&(b2yz&+dpy|#K)AO{yb{}W0hwnwi6tAE zWe`Lsn-KYG57)h822<;t)|RY_L9e=8V_%h|UD)2jS6&`IK5lMq$v93vQw@(1RU7W9 z&YofDaAtn_vJ3793u|++HvuTl_KnKkX)IGuIyXI@xNX1gm&#iC5w6k0^`Jyep{Q&< z!(k^l#q>QVSJL&b#i-t39u|p)02(2GQ{H4rZdLJ>oa!k*`LL%pa~2GdUKI$2HRJSw z=B+!m0~nzXD}D_oewUlXJ(hztS^JuLK?uHLBNcl9&(PtTpAceVvv&pwY74tYe4 z92g+|G7g_@9M{2OaSoMY1DS`X(+Wzp6Mw{>dK91CSPvms6U(@&W|h*a^#+G{SA9Q15nYdp$;a!8^iXJWovB0}x#iiM+u3D7)l(fPXg z@$AHzH9-G3eOMT-v?z0X^Ltv&*Xi$<*{olNFeT2!>s1*O{n}UI6pK!z{-KKC~bH+AZ`pM~oh2 zH~{pO8VwgKE=%_z7H^a?`4Tl-nMi7n=u9*!ZM#|&`(2S*$z^M~?yYX{H7>VwGu^#Cv)F!z@`uCLRJ;j`z)&RLLUIk_+(T$% z?aEk7!7gF$MLa@Zj(9e;c%}VWAqtSzh%8?C%6@WLsftn%zem z>kcCsT>a~Grs4Tt>u7kRlDB9ZziR7AoAc{f zfrlgG9-RqOF6-Ng#wm4PzA);n8!2&pG@^mN3Yz&pT9zfi<3iNio zs*JM>VEGzcib;vFi08)h)9ww^Pkw)>R}x@_Z-Ac*BV()glS&8;PW>28tokI2fl!%8 zbPgRor`P=SXQ5JApc3qCT@lmMvI)thhng4%)HCb}j{6xIiyjc3+tWGdCACQY1>2m*aX=bWZj8YAA&$|6@ed_M~Xk0;X`v#>N38{fX0Pc8Es(^%FI zN@+F}_H*_tl(l`rhgayii2n@TRQZJXr`7%kzDI#aUbq{l_kE#HYrJHDrIFdeioB{^;v6Ay-^ zdW@Kd{K9L<@x-y<7=C8!q(@zQCE$sjKh<=fC-4950VCk zJuMwBcb_k_DP-ox9%hDLg+FCK;*e(@43ahE?(iJEhE7)SFsp`buyc4EDU|NgvaT}v z0yJ<)h%H`)o{R3pZbeMcSDqC<9AD;KKV8ttz&aXGBJOt>JI74=FlfZ-ouiLTOle(O ziH~Wguh_!;YM!;mm%1xFisi)l8P7NT0-En5T9VFmX-(~iEBz7IvuN>)>=kxZfPo(^ z+}?H1)DbaaFrC|FA(c_RGWN0;n1vxthFSwVYQ});Z|&*HPPQgO&;+3B6Dn8pRRzoJ zjT|bheg3+pp-ng6v7|qM52ZKK%L&_KN2iOe?XkE2N#(yt?E-N5A4bM`e+G11O$dk$ zUzm(d-s<}`;y`eN6UCI) zmiM;%$N9A9Fwe%t-DF!O(J4O%_c_;k74#tH+z96vE)h=K`H(mya;7F`Lo-8=VrejgdPSH*9uz zjX8YF?n-8~K`M|iu6_E%kkR)3Hfl1SIOE=ylenH-HhQ}^qvAmCgSrN<37SJryO+lW z-C(Oh-3$DfxLdr9AJ*Jjk-eqCj1y*2^`B z!cKUM|FRn`P7gatBd^&IfH5^yiWGb0|B)XUx5phW5&&xp6}}WVZ4skqZ0cuy);)$Z z%ht=R6?j5y?|0Jwgsi!r9zuUC`HL%rgguHM)kPm(Wd&b@k1>FcT&6APF`zDD;9r5X zfsn?~&Y9B#A>xuh%~Z5@p+K=-AOfal3Kr3vV-RMN=Jv_2F{#f`wTa=O6LGNLnbImf0vL z2YUWBJpdNBHDk4hDPp_wW@ zZ6uJBV=(HsL|%3WO&ZIeHGAK(Zw@j|5MJWrTip_i%oJG;3?GsK%QZlqwy#%sr*|82E=ZV?@=_pYb3jZp<&X z>IoVbac&#z0ub=+B%NK1HCDi;=Tc)UT0p6k=_l2{9YO`dWXOhhuaGj)#S92DRCd5cv100{U~w~G@vCI`3_QNk3@zYDf87z&x^vdLKOb+r z{L{qPPaC@jDX1h&ywC48-5kMsvDYwa+rLzB+4xvjcJ$t7i|Z0DsRLuHZ1(Yj9zqfN z%@P)UrImdg+@KP|Fl&ywvTy8ojC8r%q zBT9UqGFNp;adC5uZ1M&gf~%Pm*bQ6Sy$a9IBTynnVpt}?vy8rAF=uI=!gvV2F=?~}{D%hN_D)j%$wD|s-b@RIaYe`50jplRee z&{Qy4^QL1Rk(eWeQzhMQ-CINQ?E?)q>c^PD#*uc%oiK8OS!0Wv-6&q)vSykFb#olT$ z_D;dt$=;S;sw>2<&a2i$*1YI0$a+KBdJJIc8`6h48u88gkR&Tw)k~7$jJvwyZJOGA z^V5fHTK{?zMq{l6(1JQOW-qYy#2 z{|tZmj;T0;ogNM2i(0wlR^NQlPG<=$U9Z}}mF$&?0ke1hH7*x!DP2sI>Ww*L#Fwci zdb#STDGYzKJ!H`Kkc;E4Du0f^)4{(z%k`ity&QT4AJ^S`XJjOwd!PHpqsmtQSW`IS z{aE!5bLR~zB{c-c==VlX(5^?ryp@T|Mp^gdtRGo9+p(u$;bR}SQ*7Lw68A#;>n%rH z(jAkUJyNXWynb^bv8|(mL8Ayx&E$vOYD|{iVoZwcr0NOi>sPwh3yVXzg%~ea>^?&0 zhRe$;`9ujlwXvRGC0ro$-C~AsPshEjXnpB9VHo-&t9h)twB!&dd$PX{njF*Si_g$C ziR!EMsJslRn+}U|>zIyhK<{y`Eh{?7o`|IsUb!oLQg2ppBWbEYcaK=tL0>(^Ev!_I z&AXC-=2B9ipTHz(G`QW_fY~=ot?wn8TRSFf4+EJe)&N~*AjHSz1JpiKwBhiD4$CF6 z9V0^3=?;xiSgH38gohfCcRcuc5}V;3ClPWsO|^b$cFAhXd_gj8o4a^a>?-(dZ)EMa zp;iu8wWEVps422fMfjAo-vkNOkhrEbXmEw`*B{e8{3$Q+}tk(&^( ze|qBC508JqkoG0UUT5Mh&gyyBD%oj+F=OjbH+=y(zKAL(=tAfFtp*UyEt95qcSCCn znc^Amu!4>@gNy~FKpn1_1{L}#NnVyRq zmX1|7A<=kk7+IH}v6Q)uqR&lGMbQJwx;;beaygc@X8sRtYQINxwYINwn^n4*#YXl+ znW4gtbJ#;H;?a0rD2IEz@0pMW`OB67xE?V#`?$X8=T_DTB)4_EnCi&ZUf(F z?}zrZHWg@(GT@E;=v6tZdyaa{tHZ^K^S%3ESzz|sNhYn$58-;^BJPKZ9y5qJDBhcE zDe*cat~ZxC@nwZ{Fy!C>AELt7QQScQvrd8{D)8XKa@YM{wX776SFdW32w5N>?Wl&( zVF4hJ4j^Wc_3G`Og^)Vz=xa0^_qi%!3p?IA!6ZH(Q0|aDz8%65J$ZVvKfKWP|D;_0 zi@S#r2M9Gv)^Fpb5e(Ds88x1jAe{GsFey^Y^A)JfI+tjkNdz@6vtX`JaQa?!v9~aB zbWksIc5~pN0W>bezyxX4sB|;`iotx z&yr}Hk}X5B0Xn&hbS|j6bJDU%tAjCsF$~&H`P9xEJy( zpL+9U=a0RUI_yayc?Bp-@(VuEf$q*eA*M`K25hH(0zFAZX9K+*jCd>&>bRjSDZ}Q{ ztHSPKU=aE0ZhFk-|a5Lm+&By!hTD(f&NRU)jv_MUDXl~=Ew$yKz@@=ZD zHeR~3-_H$^S=PY{$ZFh)4Sqz;l@fQC3PTG5_16d9zK|oqr|1aQy;s8b2;^5@SHkBh z{f(>m=^{*!2jb4eoYutHGRGej$4UH5xS)Fcjzz-={b!~B=&xt^^jEjU!zIgC9|!A8 zB5Zbt9B|tv)mO)dBXGg~PLgp~aP|0FK}%X*mY}J`VF3+&z~-#fz2xvFJoxT>c1#`= zSGn>5z9xYBVxjyenUmGc#6YxB+iy0kczw+M&)oPVd54#MmOH zIA`UrydLL5)BwNVCI#zdkreHzc`rpY0=iKvHrS+NwE}X`vd?JyE+5Z`2PM zH^dF)86^OcjW`#d-@yDo3`DE|_I(DY$H+J1Isby1z309gHJ;JJ*nd;Tu#~)WRGf9s zQViJ91->h#g!ixs@uIb*;-H@k(uboPk+0935%{X|~t>HL=Nbi<{1} zIW4Hy-{WY^2&X?3q9wWZpt4uzywWuTv5(ZoPTJdXN=jONw(lde800z41~gdx-j#t_ zhcz$1c&)txSH2K<8$%ag+%FkEKVAPqk8GO-gb}gA67jTFha0&-Q_pvS7}%8%Y_13> zLIAoj%W_sDT38PV*mo*ngm!!(h#Yuu@S3~-BnWJ^quwJmlAmanTN8J?xBUmVEVuGj zGF{s92gNqy0liw$Xr+vS&28$(v zW!&p~j;KQ-ixEFRb!8p|aA%5c{n9--{`G9-86p>Y{OrTzu&uH0D$Kh%fZIr!n%Vvuv=Fg>^nQV;e1M;4#1i0fT6bLs>F*YG=2EBVdtyXXad)nM};PsCk%wq}ZO(&v~>Z znA?jtf4&VUZ2B3o`w1Vegq}@J9EjK|lmPfw^WP_qwmgPffa2cqFD1XrL7L@{vgU5- z@I*yjSCyRai-_*{P#!ZPMD20F#*<&V?R9LZG5wjf;nw!vo>KQoW|hS&?jb1zY=8V? zEzg)4Il5qVVuseY7Cfyez`9VQnG=J9pYj(qC#+ebIVn-K4b*wkBrlDK-pXG2jI_9 z!XNu|K0F|2Q7soP1&ls$;h#8~<$cUf16sMq<~~gYNawiEp1+lh&8NC2d+a{5e)f8m zc)+2J*vIk0WtIBTN-xg4Z^CyBYRXEi{et)ggQ-}W+nyEmj^1JXAn#tnr|Wi*-W7qK zwY0Wuj88ik8%}_PxK!QW;mHI{MQ;Sf{(SVVA2uHR9BtgQWVUV3)@eKfO8O279D`xI%jYDMxG^BT> zcfq;COJ3(RpVN(w$@^&g4YT5<0C$f8F8Gg_(nqLpgPUI;FCu=@EjfMQE(9VfRM2Le z78e;-mp;&F@rJgLgPM&M9z>rer~}(HOiu=rG#Zp5XUfKM9lYKSLPgEXkrS*J9%c50|9SJk2i4oIT<;~P$Mk42 zUVO~La-@2Vf2mNWcDm2J^`d?cAFJK#n4^Q)h8C_x_T2sZUHPgg@Dw;27#sDgsItz?4g0|O>}!S$rg_L!;h*iN5u?cEv;I1sZu4cU6!%V zxNqI9JOUwvgmbX;H`6g({@eD)OV2*y)914p3CTZC> zOalCAG^GAGDarz#z5PIav|@R@>MFYzkiceHq7)<*2r8P-xk)3f%odFCPg0W&?cqy-k3ZrB3$6%cJrG2!Guev2>x-+a+#YQF!EyUd`jNe4B_-heEAf~ zXb#lzxcK4U5ul?tjD%RV2RjPa>@^W9I+(QQyprAiz%CyL4XBxKinEuDm z+3Mj^mh_^1rCcMEzOj~`!{OEf+JT4VS@)MxCYEQxm@ogLZax$hm7&Bb8BcSze`MQN z>4c@JEiV67`dbX-Yj?@>d{7kz$bs2mS-0f)J%urf@=L#l+);z4d)u_^r-%^D@p2ng&hr%|34aC|9fz2 z6F>yFdfVjVb}vjZYDnK!0G3n3(VsMqAFe&w?FsXLshD%(M;f2f;67|qj&?Ycx?jE2 zP4GG19vE<9|Hso5UZN1vGk?qM|8dpy0o)^_@@w|SWWOkF>E|0KrEbM$r85cXrQ4TH zV2xe0SjbS)Xm3Aae+K@l4T60ya0{UN#F(NFoGk~=S^o$O@chjDwQhEJ;i4I+GYR_d#x5kT}A54=1{ zA%Am@e{O{xRsg$t|K0YiSv6UR<;+|6Z@Q*@FK=ubN358UxgwFru}oBBK?aE9Z@P_II?4;e%j<{yN4(>EEsvc!7Cr$StnBVM;poHHBsqK=?DpB(Gc1L z;t&1+Z=xgUb0))j>9DCSV9Elro@*J=B?4+vo<}WGxTqb8yIA#vK#Do~f_lJS{fMMG zHO2DU<;AqV|E@mEpqK^T%6ID(c{2p6cI40rSY`LOr@UXNzVCFnkdS5KG0LN`ZmWsj zH@IddPA&2Ds1tVLLUEHzl6b*1K2O<_{}Zk0d&56BSbg39^e5~A7ly61X8yVIW@avw zsOR#xLHu7~%)p8A^Y2!Re>na7eg6-k7r0ivyP>Z1zb=-TOxgO$RfTl_;$JXx0DGr! zx>8v1pWFQ^of<_iL9NHcfcoE*V8B8vO5zwNsMF_6pk0fBuG-<_(>=#5;GFv^PXox$<}XyJkUfBa<@xfy zTV$Y6LAAJjQ8P2)lBU-?d{@47H`(0d!NkX*nvr*bVyp)gui!~NBl|%ikI}U$psm<2 zsfpZ*5tCp1MzKEMkm>c-ko;ibSg{aa1GvPBI#xGj;Aiv8z1EqeZ1NE4NJ09wnkn+c z)H-=53u-c3BVKZdKN9H6AI3V1XJxa*+dsWMG@dOVg<9p^-Lz#qp z;KTVBxNOq`ZFeb>`F{YUGv|YL#Cemeh)WH80GzAwKg#kC#jypRH4y@qkBcWkZv7Yj zA~WVuW+^mW53SA;Cpq!+X}9D9YD%f;=xY{jh*S+hy$0nsf49cM>Sq~nBn?+CLG~+Z zfOV-gU9{{sL_$PjR~ZJ*|41Mip*rVArCsWW$t-rk{Kbi0k2Vj^QC z9L`Y70Iyg@3rK0w_9qWoq=v{vKyQ9Ol4_s^rpE7ZYqA!wZe$o(2mFEwobCf!yQo9JESUQ@N~e%! zbm|~tYMEfs>~KotKJC-tbbCAy6Tp448KPH{zKxsgCOkSY`72djXtsm-RT+9`nv z&+_(<4FJyA5;OP{7ag-BrT|h;-d`4w@Eo<-=R8|-{EgDY6@&c{r6&*G*_K(zD)#P; zs+w+H&oS*kwB6Madzq2-h>vUdoQzXQHLQqCtrn<9uPW00lB5?wra zc1A$cyCXczKOBrZn5~2WAExg$Fv0EBAN!HQZ~L^ho3uQqve!Hm*84C{AW;V3DCe1g zN+5wvIeWMRST(#=2sQ^&i2@QIpdOJ4yin~X3b&%h;>2~70ps*WR1-LY; zgzI14eP?gaz^Rv{g&vZ39W%T(KpjobRKES6Pu0>8Y|5I_p8F% zna2ZXi}~L80NkXS-+*htt$td0-ro9T&+!xsIZzi@P?lohxX~lOt+wi;bduET_xh6w z!2HnEycK^WDe@Nw*k%kP+<-gq?9WF(c3_rJ=f|2lzN*dO7^a}>0x$ETHK;;`H+dBX z+qYH|vSmdB`|uiczoK^#u?b-Gtn4SeS(dXuU*>cOJW7Bey{U_SJpr~Iz%3de$Fh?{ z4k^&=!QTSl4P65t?)=QjUs=bFJ3Nr8{4{8Gv9+-RU@ZZ0M9l3??m1m!`<9_@3hsyw z)tbDXKFA+>7?DQ}_8sliCMNzGps0@Kl}kQ#b~XeY+2%jXrggq?zhw_S>O*OZ{Y(lH z78w0iE|j{Ku3tUNL>TQwdW-?6Qcea$zm;9S2^NE%5K%hL+asS~YaO;H@h--=b$iGE zFkQv~h^a&5dQ3LzHcu$F1Ky&uv06kT?-`5t4D2sKT5M@u596Aw2 z%Q~u!m!BO;Tmyd|X-@Gq!Ou3=1J7|IM>pN#2~L*+v1OiRg&R~l37ek(+r$j!8a`67 z7;Fi#^H)u^ocMe? zF-0~J0GWc+WiPeH+XNuLv^YQOM7|Zul+Oeb1;ISx>P-g|HHjly~SQ{{^yL{`F@sHZSJc>gD*i` zGlPfNa1E=mUtC+9o`3qNJ39=+j@vbnE`ssw-4<7`D=%0aotx!BJB0orFThSRGTGu0 z-#5++@7jN<<>_=6E0AXbJ0#pelzj85nEZKngEbL2%?#9qu7!m)TX1;`X6~n3RB8%N zq6L(X!ZO@C(NY8pIBP(aZ8CU=B#>DbUmq5iq)kNX=tSMg>N~MO`T|wAEnJO)0NePt~~$?a-=F-NDKD`Z+dj+F2J zf%-^1aEq31G7cqVwxwjgCR{6!j7Y};GSViYCij0Y0

    6!wz}fMY zJ@I0+sQ%v2&T!%u^neoQsz)d`zMtdAn1QnL7c+CJxtk%A2W1ijmB@6_^V3klA%Vn% z_76ajSb2;x{nGW@#*rxn~9Ail12a%P(#+5AkIC&J{%B*FT60kKsLZ`c%?B% zFFyQDxzi3a7EZ}usU;-doVr&20*OjLUF;uRtv$!A@Y&yY?*ya#_CKBHWz1~S8k+K!Mic+e|TUV^>+6~s|lY2=(kt&7B7gW?a!@AQR z=pDtNEVR2;;}(I~gsm}!FjsOxr&#PO#sC_@_e9WDiN@J2_}W#!W{U8wb{*nZR%dd_~cYw*HrfuHu>qhxNZH@EoF zDw@4Q(s$(la7y?YKVP%%A8iXQhkUG~v2)b&3He|-_>Z>ZWqhWSFFZXaqU?HG2O**B z4^Pi$*j9U8rtBv>)3kl9%G_<$^~o3)jD>9Yz7h=0D|VU(cEofFX6b5*wa zjFzI9;u%h6cAQ7z(P+Jht3WM{4YTPJO4d|-L|)j-%oj?Wj6tLJ`5fH{=R1bU$uls= zS9e-yKjGSG6vetpP4M^n(U380OT2y0@Ic)&?Oh93K+mvnnGhI5oJoOgu#V&K>!TSS zU=iY1yB|S9a_&-Fn|5yZ;l0o3KC`9w&xuzv#+~w<=;CcGRbf<0I3?6J0JHxI6A@;R za@e69=p(iN5>Ruzp*L9$G%V(^+V-QfZ`+<&4z9ZcvOLhyjwm?ho+S)s4U-b&SiWX{ zZ8>Ql;Tk%vd9JFJv%_{v@nCkeQ(c09f1q^{Vc2SezTcP#x+SHHoM6ifw8O^3q!aZT zir_Mv7AmQa4Y0$Y^F@a@yOnilkGj5eC_)AiL5DkgYLRi837!pzc=ncjty#q(IDns5 z?8noo#1j_K3~{bww_z`cHJvBQ%2wcmQ9+l}{=tmR^{M{wG}YEfVQgGv zK9F~%)aKfCHlF?LMfCB+`7sKk4dkITpdnzk4_x_>kP!V9# zd--^#uxIh+;fZX0y{QM=^cw4VucLJehJ_z(W@-uJk@;0iq&0aRwW7(x;xcNZEUn`i z>(Ls{z|D8b1ROF@IIT)mDGHKlkI%49wPCqa1g$Qm%G+O64X9i(7<1{Fc%3l(Z-+QMgJCidm?jos#}`E^et?2Z1*(5 zl!*saBEvTeXJ0MQU_2}=c0kx`zZ!qp_ss14pVfhJ;mZQDGbu-m=CAhgQns#&)x~53 z_-F!u-(FkW>?RT27gU3#{_O71JrB7i8oxF7{w=h97$LyR1yJM@%b86w*VfbD`&!tM zXV~I+4GRK=uhA*?!<}-d*@|+^=V3F#h9xiJqtn$wUmjTu(g>zqb45En-e$Zn3S9eB z61n_0cionkZ&s))Z8s^FCH%A{h3GIAX_c20u!yt>pV76`4_Tv_18wahgd+`uROpn1 zWIw%0!I-;@HT|*ZMHxkL=s(-ymMw#;cbA`e050g0PqZUr5BM=IsiH0Wh3ncZckyz4 zs6S#$;yKiMEY<_m_8qBFps9oUL5kkyAm;rl3JRUpN}i`SSw3_=m|bp%<|P52C~Ob9 zs_cE6-)#F*C<1-)s@J&f2|0i54Om3btd9_`(=l4W^xP|*#^oISo({rs=zI(QA+z61 z(_b_B{(cVvCRyckRDTy2DR(wodj8>+Z+n^g3HQoZSJiJO7bZUpra9XzU*hxr@>TJs zo|^yHRZQm$Ff%fdo4wj@*>hUPR?(V*z}rGpO#cJ`WH}30(j`-CEW6*8%_6@Q($E1% zL|d3{ayhcJXa77E!e`yy>nHka8A@i)(eyy0X zQ*A_Fwvq!4DyHeJ?lx_Q!aGu%B0S_L!vDOM8SBxk&T}jD2^26cD5_A*!#*ObWe%Z~ zMQQDMlCo7MK%DxNkZ%^&W3tXB9`{)He|laTMmwtXe2wX|K220emhZ|2`CKv#h^sTm zLUq(nC_7%Jc3t&(iSOP^8@oJPrwJu~z&oFTVDoEFxwB8lu1Xb01bY_BqNmS_H6=}g z{EIAvY{ye~O4t{r+5+r+d$BuJJr*)%o$i&ln<$#T%=`4JalNGw_cQtxIHwVXMbDrk z1vYkr+`}dbWy3y&rvJ7`@>V|cq}Q7l7x1et%y>K_ei6>y=IV!2labO~)LJac?WW&K z|4u%Xncx0z8axfdbXjSeG#}WKen0!8)T;Km*0%_AEvn1jgnxy*)}^ZdxS`@2cr!S! zzaeJE_2IQdWPr<+#}$c_0j^rSBNX;h86IvsOg2JlepRe9D?_iYS@@Ak)F8nty9P-R z6t9`PdT}~&P|5=JMe_Jk_l<6F)n#y8yMAI3iy7N0S*+hs3`)j=qf ze7a_1BLuM*WeOp0xTA&|6d z+nk*bef?*RxXXHrzQfnTEdlSqT~bkhrt}R=_uiZ8Btg*g3gK3evZE@RX0*vTlb^O3vv|Mp-@T;D`865BPBE{|U;+hqDcBY>BhOQbP* zVR{KcL0Xj*vrGj=@=`XgMV40^=`_FM$NZQHoCiAA!Yvf|X3u=No{TY`pvFML9T}5c zCR7y6A%H==);D(V2WIYOhWk%R6te^!`fqmouQI@26(rh1iD7g8AN8;7x)n}}zHTsI zJ9i1cuNZl#JJhQ_)n3&8t)ry+E{nK(Uajt;1L#GtOZB86$66g!hQRddToPTG1b z897}miGZn3!JvD4PG!ihE=_WVP5!i^aoyAe^H_S#N4*I5v>B+bT}!XbhR6!x zK*_$GoLaBwHd1O5ZXPO8&TV(W8s$yyT8;Na}?|SReDJW@SIP1l@_?5i>ycBAAUp@Jx=|(i{Su zortkxWB#0H?n1d6aG8HyFYKc`n$TU%c3e=MxB{{_)5Pt+?UI^&voe3_;An6%aYm*&aY`=%H#eu(7k6(aDQO}s2muM`#L{`&ii zLGb+`@dga9N3tD!pvZL&KHPw!hkh1h*C75r;Ks>?w$-y1(Km}8yb zl6T3%JFzfFct8mg(+EGMRdvzdrQuI4WBv)R{7ls%bqC@k`#G8^DV3z!?w}>V=Rq+K zXBPmOy77lbp`j9!9-=sxmugkcwfWfUX5wZUFQsY)XsAh?T5?Ydc3c;YIqo#^-a7^X zsQ4{aNmc(~8Lzelr)zIX8TSR+4_HPS?Vp%CENSRyk^of>4}dA@j|zeLur|dh;%$+& zp2)mu&T7fL?`tnq{NFfqzb^CCpc!66e`kXa>T=z|J$-8Lu7BuKA_##or1frlUP`cE z&avS+ohFR{;d&a>nr~7rrAm8Mj1v$9y;LV(u%P$dw9hSo+AD<0Fh&;1i{yABFLBsm zc}|kyr5(&!hlKy9%)5NedCY9RX|bXt;(7uyAghGE%I=p!XoFc?DI;dClU|UGu8GJ; z!;mw^WfnlX!$@Jgwd1f>d5wlU(x+c78Fg>(W=P{l>%$qGy((4764cWY8r=27m->0x zU`93v(&i7(yKX%ouM@Z&c*m3*#{E;u9UAd>_+Ct^x7~>(frutp zokn^HOYpzV3b(y^^L928{(GFbxi>pT^#-3sd=fxB$#n}^-X_8B*6|VDH$AWRy?HI= zh2&A_+E2Y;#qYTF#pOG(!mzm7nT#jR&rgAxz`1(MH1N%g@EsstB_)Q-lVIKNluAJ- z1pK@#8tomRajzvhI>Y?`%JDh|VCaY=pIPmCoWk}@+hdQbTHTE}9EAlm9Qm%;x`3%o zr^QBXG2jErcJ=ca*>;uIq$O*&UERkaCtCXQ=l#Ce`89gS8Ud|iNR19u>m0djKJOAm z$$5sEf?NS8xOBfxf!;s;LdH{tDWp%k(<6G6(-lovV2AhLGt{EDW5mj|d@gDlJv@Ai zE;pZi3v3Kz)x)d~<8EYI0m&h6q!3pFeI7;-*5WrdR#zWQK|I*bVBML^v2;8p)uGnzEyHf?!~U zk7d3~qbaUn-G~VK%&J|L9>!;dyw@x$wfF5u<28NOOb=trs-U`wexV)8xko3rBr7La zJ1x!Zn(uuhirG3!v0jDQ8OU9MI$cRj9igcA^ZcEw1-mw#Lq$r6#lcQRrZ{d_$8)bi zukcJnUwy?!>dvHo5IDNxDoDaV1RFBmr45S$zOaM3FMPc-@p*3;Nq3*jLYN3oGFA&g(Kq)CEL>#Z}fT5H3&E ztJFS2RU7`uPcAE`-8os7dbS-Pq+gWzNFDfSd7;NbM?>PdO19z8b)M#38KxmMRD-r@xtctt!E(@s^@CB~wjeN;q< zH)aKesD+@>l5pP#60~Pe(WL={jhm&#PSYHYN{ZY9|JL zRg9oh25VPKOkh&8jPuetb31v|wKpa>*eiFbbj|rr=O!WBq$<2>>enjfW^kn)m}&El zd9n2zZoTd2@EvTl_IN?9W!~cTnh4s}=9w~w5@k1ctqHd_ged}66KK;aJ#trE?y&)X zjvlBnRLNa#?icXa!Es1G??GHQ1Rt-1*$A#mS2m3m!r1o(Ozoc90dp|i;IY)@dvffB zt(>J=&wr0_{vV=(hvd!M{I$R%ihoYL_@W%#CKwH6)j*|q?tPSZFhL3*eEzJVGv^m7 zX;;so#3iKwkJZij_MPVBwLIQFvNK)^soVGM8{NFEF-7R*8DcKp6v5bGoS$NZL}gjS z@vd|Mg}wKJElh`rZzFGRmr-+FfkdZZuL_qIB`BjSaiP-ohT=G40hcgv=Eqt;54 zQ0S*s-df94*Hi3phO|fU4wn8dAjl*PE?sy*N zR+#P6 z^Mf7}TcDI|lTOT@Sn$C8alecRRE0%=za9F!U|^5KMyfdk4|&KeP5u_j{*s&}$lcfX zW*!C8%Q8X0$^+Zk6?XGVima#D!%f7aAytopZ<&cN1T^xcua-#LmakvEjvASy8vsgs?b_pJGp%yOsoQw8(sd^dYhQzCzsY`MF80K9#(|<3v+zvlfi5|Ac$Dl zt0VVwadGVlWX|!_emX8V$;8yF8SFIiyD|3uEC1(cuiPq3U2h%sCny&6`4`Za`I`sy zBcE|PkPI=xvqOuPb@O(apgEsYK}B&$Rs&K>?t%zs5`H*|a0RobQ?D_aC=uyVGsB^}#f)*=T7fY&x%Q<4USv;$?9SiKdTWchyDn7OIWYy{0s7CpihH2|PNM zCgSj>?-|$Q5XW)%d_>!^zLED4ht3cb_tb=&3#8wbC;L`3`~ENo6GKe^T015BQ@tg+ zkV}Tj+2h`Nf%cDGA#!U0mEzY)Z=H-=Qg>dhQ>>eo0;X$p53Y?m8QEsJGc;Rr&GivP z>g9n>7usvRCWOb2;SyXU#I?6L)!SSgx)X|SEmI3XO54!#whUc1({>5ti8_sWsmhLP z%r~3#jkI@l1*`R-d!`S=pIvuwibTp-9NP8W-k|}H*@Co8my9u89J?5=20wVSQ@adRON&L*_)hhz8Sh`(Cb(dz(Cn4WdSe}VOV(64_R z)^AXb$NDZ_M^mq3MR3_j?(QG^|MvWG z=JBjB#Sx0zkyVjaZ5T5Z;SC?u>{Gf0Yp`9LxDeV~!Q+FX*=CM2Izi6%=Q@w1(WCO71r1msZ$2e@bpA73L^NYC z9iZEC`sAb%d0>t0KV_WqGHenAI+5tG!${GUYS~6iF5l@(nM5){d_vjlZ85W{1sfyA zH(`@{J4GX3%e;vCv&s4I!oSy(M<+=|Ri`6tbENw-*csB&a%QWA(!qh(@c;S1g5|^< z5}@C{Xp($psKNTmp*2nj!S@tXLZ77Msu`aC&;lpq6NS>HFda;2RConZl8xOTfm-I?2n|P{25K~{cQjZ z)0+_4BBJLO&}y(D&XN3m4i<3K1E-iy?7dG_DJ!w-lhcDb_MrqH@|jN|z6MSpcVmR4bq*fLly!ZGn2Le#O<$afgKO8WJ}s7p(^ zy)_&!KlL$969v6^$x?sMsCi!(Z0x|oq} z5TMQsC|EXv?l(VbvASRT@otE=1qLf-c$g3^T@-Hts6z(czoY z8rU>`&x|%TnUZeOLJ}y{_F$Y@o#i6y;#IueE+v1o$#1y4>}lQ;uQiG6P@bqho@4VQ z`;|LAbT-+~W;y;MaqV?cKt$mP8K|XnSrR>@k8jAE{ZU+N?^GHmgxkvbF)c2|szFu= z5c(==AghcXIv7ezsfdd!i(`Gf$>sY{rE3@e2E!IJ3@1Xjn~HY*N+W2ZC<~-xs9w%0 ztotmcb!R}%az=c>=kyP~0Q^|X^!xcw)NB-4SYwH3?RmGFXQX)i+r|cEJasK4b87YO z8c#5HXpUgvM(bBiZ@n@%T*r8ZCui>22EA;w3AaN9qGNNtsg6RMoS^V^YD(Ed*0qMf z39Vs8JIqlyA`IV@)ikk(NRfyK4kF4aR`@(A<-^{|70M06sF2~h2rrVTzTM`Lrq6|a zt^e}#z|Xv&tF89WS?tUqm&4nYcD91hVK;-e=5~IK4+8beoMiWP5SnO=a%TLhrM}pQ zpvt@k(=nW>KY^czOKx@FdfqzNGxX&{+x6Lq-OjZtJC0Jj>pZW{EAMOHePTLm-%{}w zpPj|W+my!iZt=9xW8k2DF+*ROovhY_QrS#?>&64OQ+*eDwCQ6T$Iqi}_uB9AV=D{t zQ3Odn+qH`A-#T5Cuw_IE5Fd)xYOcWIr%nA{XH78$L4sXiHYVb<@T6E94cV7aOL4D? zx}nGE+8UgRd<{1hTLb-k=?T3=@h?$@O4LY-`aVR}YTJ7n;!#nev?qF)Kl7Qju8q=b zIMtn)IU~CGctWD{uNURPOJ~hC!`zlmq)6+#Hv;41yFVb>`bylCl1>#i8;bD6I%X7{ zF^;uwp0Aa42iVxS@f&L6@AN$lpuSil^BkAId)BXR?e86}{YTYKc>f_-;)~2(=OHry zeG6v>{5i4wmggfzu)hJ>^P)AK)9NAl>tY53w*(q1(9_aW;M*W)egkL6x{Zv9NibWr zCRX_?&rTOKA1kp$Q6Yz5O$uTW%h zAVD3u_6Bm;WoyG*^?Em`lF6OFS@^Yy*d~Ur9ool2m?F4A^}K!og`3%e1$)K>nNCU! zE=qgjb&))tp*oYHSa!{87HsuPs#NToJbRZr3}zZ4*bx`KkjzqC|H9=_AXW?=IdfY! zBSP_yNaJ;W32_L(RP8UR4~TX#^7}*7|A1c@usgwIW3?!+SEtR?Y0x_2)tk8=&!wr1&f`hb1ht-zO9D^EX{B z|0;JEDZk3m6(aGHzh@!_sw0x3ymvFE19U!2bd1KSLhB>O0noYQz7Al=mGrJHYnTdM z5H7*_Hn=@k+N&^8-QF&j73~xZ>#zXNGs!-H!G*bji%3RKZoEM(ZttQV=Jdm0>K^an z6XVW!A&6>sSEPM%V@9dz1y&(9Nl-Mpo1};8MDi{}7lAHcWe=g7QDz$nPWX~;p$PB< zF)+?)3n<>@Kem#4ewNzBtxonaMF#LHIzQ5gJ6)pUQItpApg6a>{e@xd)+6j+!)E+lOt9+Rp$$ zR|_2e-_zyaMcweluLV7EBs%0q6O9P2x5jX@4n0Gwc#y=^pj9X~J%JTiM(?A4gx8=w zam#9>3G^|!1K?%e){ftn>tnY&VLX1j<)YGW*GhI({6a6YmX1akI6ALIU-H(v>aU?5 zr^{cHy+}vigK}Z_}n%E$8DM3 z$GusU3hQMSAVGfV(^@>eR}SDshqH@iPIlEReDCLYM?yNE5nk=1%>6++zMood2#!%QPdps0zuPP>i1HWDkP zsxzfYaBocz_4j#QS`Uh|!FGl~}mzGsGMapmt=5yAOlJP|?Cm8yg9 z2ZKJHgRg>;Rl9UO2nkyKQ_oyK5Cn7Bt}*ce8^H;#L3x)7Bi5;>89S3&stL`Xu&On*u#jv{Wa_qTRcyDqlV2I%O2j54r>GH7W);J;iT**&1f8KMk zI<}WRdb~i)%D-Le39~h|t@9S2VDfF!{dWJ0E9d0Vm-w*WeXvUq1j9b7yC;FUl5ZR~ z!%>iV79S((`vs6dNI4=e%Can27U!R0yhPf{yuQ2nfHTEe^H!|y$` zoj+61t)v?y`nyYVU8Aysr}gX|ua|NKkvQhxSCCA~JqVfF6V=qbeDsBGsVCYSW#31c z3MeBrlYj-N?PFcLH!9o-nV}CbN6*WRo}20EteG660>Sl*`eR!N<8X~fBbdG&#vQwd zq(a{|MR`fuv-g)#AqzHO-~K4qk6&id$8hws4hO%j+%O}HPb8My7ubT_B;8O2< zr3y;va3&f9KPys6QaM~-_9DqOph!B~-RTneQ%@b`5gt<#pi2{LIGLiXP+{-H?FZ7a z{~WjWY|E8IziHoS953A6^iQ~x99sdOgZq=d5K5S(N{2f>rpzgQ7X4D4(otUMbb}{6 zz-QUtE91YMD!)Dm{^Vlc#JBT@XBwu`8XHXCD&@yc!=FF-;o|gI8;D|4kzoJi(CpI} z!@mEpWRh&0S0r1PN8Fb3nzun-+;CoCi7J$wcXuF z8`^KcW6!k7UCTp2Tuu&zE_u;wdNyjm&qv#KiDnJ9waos*C6{0nV z6#t`M>Ehofw?o<^uckDKgn?WhRelJU%#%lG-1`7`P_ixIPMRUT5#J{~4 zU9G9MTcHgl7Ysr&uheo22YzA4>hxLS&tU!p>n2ibnSrnk|A!mOYt_07t;37){N~y- z$*8S^%l%S+s7XBQ3#pAbDF5l|jEvu*K4|us=kxj!W%NSD-+j{4jq`Ad{4cm#ifLa zAUfRVnHZ$NZto*9*NHV6RUmYZXTXDdsk68Nud&n+M&Xu%#36UdGaQ`l4Z*UWdV0qjAzwvKL)R zETh_lOZuVV>*jm8c4)dpci3iO$ZVOhq$3oOR{AM?#IBuv<9_hO9ukS>JB5D+ZH0L+DaaQ@9_@m$#QXnP5T>qHYWw@-s)CIr5ZxHcdx4jN;o~oZMD-VBZ z1-~_R(_x4~60n=dl2WI+(|hQlYvbaLG|@6X;lZ@pg3I9?XQXL^B+HO>bkop;`H^Qd zF}L+yttlKv#tXBD&T-AAJ*`H!r{g$reQ$3v(ICFR3H60dvJjP){)Wzw{H`-LzP_96 zxbYnAY<%@|*sWejyfW2^Q|Ef*bf(L}h%t&e0goLjJ?uh4--{{jxgG znKc1)_aN1^Hx>yEbMeXn*1q+zlTRaV88@tmK6CCETb^WFsa!w!C{{r-ro8@nAJh>t znzCL)bWH_Uu|Oxo+;vM5$dj-KibA+-Seeo9 zYmp{6>hD$N{*B|-hi&SF$F#K0?^^wUD$!&s?W#9B59n|5q0L@W7zMi=#D%el(0rjKaq(3|NWP#J<6Q^kf`_MaMz z9Rs^JL^tAG$4^Vrrat&peI-AmC(}4?r5_n;D1xQd)ZrrrcGk5` zj8Dmk$Ih8HXuZM=WvA4rmM|sJYG&4{g#plb`G|%S`kIOQTTFTT!#5ma>At>Rqgf%+ zi)PqV`1uGKlOQca?kfu45F9R4%IfQm#(2>tQNcC0KgW7#SvJQlcPUjgG@a5z zH%cEAi)m?iy4~o!tlfEY;Bt`1V96`;HByXl=5BnmB8FOmEl%`oR66>x(JYl0YG79A zCB_baenI>?z+g(nej-^T=eE4!9lnIyLorIs_0oavrQzg}s52~o*H=wEQl-5!1E!cF zG<7I5OLT1SyonU*H$5e3Bm9ocO8QvSAv)l`KziHLlOdhM823xs?VU6cKcYEEu1bo~ zW%cMb*Tir89w87vx5;%awCn`h!;-D9UxyJ>o8l-uQoKl5dwQt8mMt_++QM^$c= zu?}zhsmj~6%Lt`D^_D*vWZ+LnGxR#$sbp3@6_$rBR}^U55reSTlWLR&V82Z`4ID>I ziki|3m-QVV8;HV5W2WK8I8a0Ak22dU{HfAC%ek>2%8k(3ge=DEKT;2Tc6)*zin~$o zX`tToc!FpP9agX4(!30}Mc85TK^cwabVEY7a|z)>Me7BrN=KOZ`xce;7-4PKe+}zo z&Z0n|9rqIuQ)i-#H1NwtajRQ7M7Ap$X4p!6U!iIlk*Hs0nQsUz_Fn#sZ6$!} zW`FYPRtYJuX+m?sg!uMfcHmzwd&L{#f0zzl5z;N%kNvYsXi?HWG4Fq|^`22pw(YjI z6;w)8RHWungs4dGEm2W;5J*%+qz36o?;S)$L`nptmxw4x@1YZVuTlaD5PAtMfdB!L zu;V+{_l>pJUccZcWZd_a^P19#77A?os^zh0Uf8qFGM+WL8#BZGy>Wu8k5 zUy~ZTT{^0$>_-@$mMhiuMO<{!2JkdbdC-N`RvoOf4|;a*wH0v`qe6jN(5bAlY4pVV zoSebm&Do1N6RwiE5R(sY<=#kqWr5&Qro*KwW8%`hj{RBztbF${?pdWUXhH5S$M#nS z6{w_gG{^O7e5+&Cd|lC(C7_D#Kp^^IgmOAI)PGDnu<#DLBP+yd=SK2?c_Ke`bn-X& zb)dNYD;04upJU;(Tu147L#Aaxj4l{zG-EF@>ldKSj~e*4b5_ik5J+h-v0a?hD^BX+ z2-(+f%^CyqU=11%6X?sG?@?JG)NG#ETv+sYfKMb_e@q;&L<{PX?w(5?M{W zTGbQ%52^)@h2XPG<5|gvUBqBz_-&_8X8lg(&-ge}-G_32 zf;?RPU2#fPkA`cbhQzWB9nG^=gsNf+bK9gMzWGig>e*C0T+Obii(7dQbzvAHX>){O z#_a~-OZjQjicx8{IL;^UJg@pSIig7V)_HCcn&i(y(hXRSJ|0>h0FIS+;WFQWij1> z$cDmBLW-CL#{DVKcfUPbi~-UHKzRIrWoduTG8ZuRKJrSu2**(;)`3+IPTzrv%DY%W zQX3gwgcB9C#gAe_o+L>F|8XwITc>L9lex6lDYE(gD(pA{hIb3Q-^=I6x)E!wqhi@! zP-!e46B07ac^F5k?R;74dV4?y-X_d0yATq^YqHUM-fyw{=g(9;1GQ%`KWmNYb}Vt- z7QJ9!IqXsXLeobo`j?0wve2_i>6DCL4i0%k1_||y!%8~mvHBCLJbQ2OPXg%Uh1}xf zOf1ZFmwI_~ho5^Pi!DAW07x@OeNRW{&Lh9%pEs8D0`cq|f{;9Wzh8i(W75PQ0xu^(WIIzPtVJVrD=)w>{U z=voLI)_H53;~Q|QV*VJ6?kETcY0%l(@>OK z38A%NbNn_C7BJ=z)GsI9*)A2hn*YPm=(Sq(cBR;Z`YR2HxW;7V8(2d)uQ^ub4YEHp z`X*zS`*|IV$ zL9(WBGdw{O$Yf{|qy#x`?IiBSZ(u~|uZ@;6cXM_s+!$=Hp25KQg{laAVuN{L{2qJN zqTRu*eESk}OM2BZ3pOQSA)&f5PS#^XEg&&RPPtJ&V}!Z=SAnBBXFd?5xK6l(b2{m%c1w(1W3i_qolKb2%Dt`w7O zb!=8F#ccJX-~B;7BhT9RwV+#Me;IJSIccn`;ESAx_jO*LWFO-5^|KK1{*9zZeHc*x z&6G@Wma9A)J8{r`)$Ks9WYeW^qh~$@h1?`?L;=_JtBrUklN*j2eFfmbar_b=;dINEXOg8g!$1!+7w4VTk@L3?Ti-=31w z_u*y#{3BoF+pL3&uay6gBjYNym%mtj2ljE5 z9Dmnm?oljhkNHxGXRc)ZZnMF4cY3Dp)H5$k+%IXl1YCXCRnyBtNRG0Io02jKTM*z| zyKbkOvLDt!3ibZlnS2Q6H&k!j>XYj8r?DN5~iQ6|#tBy_9HherR z+qvWJiyWKt3~*fF#HI%l1y7DH^R$Z7CjO<3;UyZrKL?r#$nFh0LN=?0mSv4L1|jt? ztrHzdYQ+Jr8`;yl#-aA2J0!AHStf49ZvJ}CLZW{U_I13;!J72=O%4t~(BWfI$>`MD zifee6=Rwy#s^dSWf<(10i_{w%ZkSM&9uK9Ry_&!MO&HX#zee17F6ba}T3OQQ z!iqW*{!rMFd!7?Hv~vk#Pl{5`kgU0qD4Ctjyzm+iK~ynEVu+e&yGGC8;<~_#5w=v9@7KJA~1Lr^i1_bx{ z7@ZFFa?!=9AL$m^b!RctlK774{w-Xs(Vn46;dz;U|rT4o9nEYW7CU6jCG&p`>R=$S}}j^)N#)!$j%LPdp_Gz0{-5TCR9XjXz;$8(o-=ck_mGM?cPZ0 zg0L>$NsSxKwCCMW44-cf-=8bK2#E^S+SYZPOJ^9%`?P-#-FX|=iyFsh(K_2nDJ&9e z5l5#c4O(^->Wk{;#X@to%hBTy#7MWA`1FBHP<~M(Ob;{Sl8gM=Fuo%aHthDR<9Xn? zJh>9Aw)ms(Y*xBDOayk-X_4|hpxw{|>lJKc%j)~g*I#e;rCa6re){-&DG2UGCz3-N z_s=(e)<8z374E(ZGAUQzlILeV9s|{zF!|k+C)NJOKojo|imFtKc^E{I{zil0XAN#*Ze!FGfk6r zKNdDh^y3^szWpfg%YR%yuS&#?m|sdCa70A;TaIbnh{U0>vg9qVF>O5r#MOU+*`7SN zmweK9wbrA4S(9wFz|r?4-Q-0VyMf4bi}hL5kp&af(Nt2nCShe&t}Z!1DsBFTowrx| z$(L)b>yDJwHzphM+>h#l=5>oZn+&!>B8=%NFJuhWVc5g3{_|FP?4~0OfOOJPiL8?A zKcLlnYs=>3vXM?i8||Yt*y&mo`7>?tY6i64plXmgiGhLwFHN{jt-0AJ-x{c9f;BFG zPBYKne+rH%cJ+4Om!#_f@1yw_jA8b+h#9c|b#r%5Ey7WQ3slrRzv|Xur5rqF!LP)B zA)@}g@Qp*)zU5|}PFZ8u1?W4o$A(HB-KB%uSh2TxFq@t&uT`oC?`t24Zo?(MKN@ff zRYrEy<=^_P8zpdrx##4UfXx;;_;NN#VNP|d8@Z|3ROa(vjxpRFF{!gmkPsG+y*5*4 z@yiy*E=zG5`mk82>&&04jWTF=?!Ln-kzzL7X$<#T+{1v8)+f^^)=nfhlbLHgT;BWE zD|M>wm(*m1;rw?Ut@-$@*|+tIk`?yh`djs~B}H=Eob)_<}BvAV|Zq?l4nVRp7i~{al4MYV51dXKNIn03Sdr@10PWoYB+%P7Q zx*0w8mZD4Oa4mh2U@+`+t~&o*K5)k?22UEE2$(F4`^4+FGtXRuGR<0MDJ1L~oysU> zP)ilp@@O?jTwD_yy@LS<*{^*NaH^FmZ?_lFi%5=}uuwlvQ-Vx>)}|59;CE`LYS`BL zbkd9}^>Y{_7uV*FZ7@mP_z4~Z+-{9xwE^T|FrB8;vi6$_T zG$ElW>N~Myy$zx?_c-kze`1Ego!!fj7thCCBn}{Si>(nRo+F)Vl04VT)w0}zls6HZ zUD-$i=gd}{TtGE;Vjq_Am$B3BhSD%nV{&Dl<$=(8TdN=|DNAinrm+P~8C)L~-G)dW zP3~sDrOP?3zOBk8S%}}!+ibqKCjEYlCrP^T41%iXJ7=a$2A_s<* zacu2HvE`TuetMfCIB3!Txu)wv11>5p?oQ3oLKNK0`NjE&;*8j+MO8>%g=uV->ft54 zS`qFdp95Qn8lb@U*-Zz6y0gDwtKQ_sIv#sl(ml3#uNLpYmlt;t34K%lOg%)Q=uVYT zNaD@@pT(68q!#9sf;BJJpHYmvcD$;scqE|J)+hko0g16%Jr;>rLgEAlY{V!^lI z$1>bn{&5_3l*7}he`=mU+po zG?-9=5A`%uRc=g6^Oz+x6~u9U$DSSt6nynz+Hd`Sk$IdQMJAZy`FU-Yd(>VCVP!z0o&&`=SobZ+Y=vHa-wW_t(16mw+1+8vhkpysl=I}RYrgPznj zM#keVD$v5z&GXmW^=eb+1cJ@sC<%BPs58k^k??wHt*GKlKUm4Vx79ntPBX)FV7dV=yUv0^ z`r-`L$IPb!xG;_ndb0r*-SM(^`&&Ybej(pU1%JR8+r)gG3tkz7XLy7EX!{Vc|a-=bnjpDdH@fThGbJVKG ziy4~i=hk0FxYdN5+M+)WuRPbgTTItg#v`a(XJ&+$19`RKpy}NZx1Fz9t1&D){#w(m zlNlt?RaPXW_=El74wKk?Oj0ON0MKtNzm9KCs)!m!79nO&{(76t@%JB>>uiUj1H zToB%PT9q`>wJXs0ZG$%FU24lf9p>jeSul@}IqOYd@%|^Q>b2*g3=i#1_tRpa49)EB z8yZF;E2y{MV9H;UM}*W5sU?R~^4R9y<{Nc3WnY8;vJBc#ssrAf^gSu41+~%9me>7y z8XJb9jgkhQELhmvf;*dnG!#>YXA)Zsy)elNg%%U|n!T7?8Y5B!M?8Z%Urka*3v zzvnR+eIAGV5LJq_XUso;7aWW{B6M2FJB4+0`_#>P-ceon%ARjY;$x|sD<4|A3$Zn$ zw6rIPIP1<+@PPc|F((wq$t^9>PpcodQA2>WBI*VZgfFce=%iEt3v#wEyh;o3_9#yd zXNKYOnIqJq(V~~!UaoS|b(u_NR*QU=BjodpIkl`t-{wVa@ffaFMuI_QGJMS)D@9qI zSJK{;AqzX6$Z2gV*~E1pJJ)y3QL`MXW9BV6^cDCvEw)`TeTL zm13(wM^BxKS7&kD#m7VIx+eBxVvSxklrE6#k=Nqk<7nv7sNF@L$fQ*vW)21E3B{S$ zMwKs?6hAda!&GG3Dmv8H6^9u`h}fEF(xPz%kH z3R}@p6q9OWv|)NqMy#>|Bb?0VE~wxks4|C{Vq~+O{8*m%cdhLsW;hkoqqX1tuU@eH zJAd=y`9CxHH66hVlL#J1f2cl28U1Cm`ey$*i?!h7kY^DOe88$>`36k7=r0-IIZYYAlnmm>kR1dR!P{8j(^OW4C0m^jb}hZ zG=LWOo%l?fNn?*HS{{3)@h#rj_B`iA#I44nWa$(7f3(W-aSn?ufKGcliWP-f^t`|tFZepJf{Z`d9$Kf;HR`l(c>>I z-1OsBF+mkfy7022l`AYt+V?&R`6TMwDnV8J`CELoKCI^+8$0AnwstOmLoBd>bFoT~ zpeINX|8o2^i)%b1e{4vq_{oR^Qe-unf&j*e8jcF+BG_8ZZ$x7wiq+^Sfyut$K7tMsY28&-df| zG^}v_cal{kd1AO&G=G{V5Z$m^iSVk~&)nP|sL{#GQrzru;|N)BY&%T7dHPrY z!Z|L$NL=^dI0y4<6)~4k_kU&;Ztrob*r!sEIMD+yFNThN4lK212`ptZLb}wR&*;KH zSLc4{u(mNiW{t_{GOFV0Id1#>e?X@DN)30!CCeRduZ_X*o9ftK69zOER`kuz*Yuuz zy#F8T+XDA0R>{@@rw1+ZR1sAtyV8qJi3%DS_8X)tAzk3Mupp5Yuf;OMlL9jN{qXf_ z%J(@Cl6WVKBejWFSgBs6k|w4TVQ5NO9Yd8GD!6M6Y;>LjlSxwU zD2wXxuHLZDz;@oqsntK9B4*0ft0GHfl&7nV0GNi2)zfF=Gr$gyov6z!zMj9sZa~1U z_x($4`I$MkX`SQhFj5PrLV$gqJZ_+ z>D_IPNPA*i0vdJvU88{T0LPzQFJ16i~l6DJK-&* z=|c58uie`tY-yiiC;LybOm=0Afc0jn%|oSOfiY5L)MwTQnH?Vnpi(jtuzR_>?e()(uCqk^T ziTx;S&dyGp`V2h3Jwi`Bj0;(-?Azc?7T{IQVvBMcXzhgT z&(#3SG|>E3-ZssV3`Zq!6W}D1KrUGF|AQQEV<(w8@pV>&ff2B}P;^4bieXR0#^F3G6B=pNcIKy^U`~!3R_@z;#Wu24l0z?XS|6<<(vDJD=H5Cjp})FDwYzwF zCi^w6X_!S}`ZFN9Om(dXKRKatvx3XJ5!}83nkotbD*Wosbz#5ht`Xa@f5e*GY6ve( zY_OAC&AWphFE-mTOF!8$drUK(r>Wh;dMd$ji95DBi5dfk_K!i(%A6hpuU9 zp;mH2@Bk}rX8&`vpO!7=CqKrIA6JGyC^2D%d|My9j%H#36E)FRiqB0C%HIoUViFbc zO6>In#i9+xg8ihlRT6h`^I>p;){${eu%3Qyr;rq$wsbLQ_2)p)q#WFDpz@2X50IzA z^62WxP+TE0O3Z7Q1z;epi}Jgn0DCPjRP6e7_z{GXfD}EWo)ZWKnJ-{(mpnC%Xu1*n z-;e6q7gvKF&de!H)?BnEZB{O>zscv;%v1s60Q}St@!MITK=Z4A$`L_F169U3Xe|!l1wO`xR8#DIAIgY z=-M-O=GW^zug^Sg6(TqA8y+&NLyvfFB8SxYljxBNMQytrXvx9xAmWNOv7(Qk&yF7Y z8+BfPhnPO;aMnOmQ%louRSNa6ecTbGpDZ(qYfLip|DDhtN$ zcNU32jL)IWAHq1RqSn7%`Q7>6cb1rG)G%SEkY_~kIJNuSQXGH?K69ec*A@p@V`qD# zI}l1(0!@++FYj&E;hC#1`{j!?XeBnwP`JxS*We@iF5oQ!kWoNWT&2G_eobKv%@`EI zm#$Y$DVE`nn2X`7c_NQ~^wVDeUn3ZT+e!!%tO0j*a^B*kN~MMZOBosQ_y}~=9_OZU z8=IQNpoWSo62mfwJd(*?-tqU?gEcJHS!TN@%R1EIzhDYSO3~VtB8qs8b&I%gG3OFh z>CDjlfSW-5oc?Yhn97b~!MI(`pXC$`bJt@-hmGn{%xcSsEygr+Z9%ee$ZN6z`HFUw z*q9nNID;Wt*MsT^h9ml$MX19HrZaQhLHqc+Ra=FGh|TN#nr%@-WF+lgS8 zR#g*91s^tT^$C-2>6~U|9RZr`bZIb7V`*4aTU&FmeJfr7ypen<--Ot$1_ zR|wB?z#@kg4MOMcT_B6RWOQJi{BXN9(JAteH(pVHX*S5F>r5+$A7#d+=2M!xIlf`? zfEc5Zps3Kf#^w;EX;XR2$Br7j_Yr*1?gkY~4bOMrpD}O}`s$i1!ml3Y}5M7(oTzE-1L1qfbJPty|gTro@$LYcQZ_-A38m ze|j?h!ZqiK3=lb5r8F|JVZ-u2z!1`Qn-N&*mcNAjWAe=cYVpCgRl8TYq=%J&0#q2)dYB z2bcI^cl`Htk@eu6%=B=WYt;$(W3pGp+cnfk>7Q2vC6!)*rK>Q-sdMs7Wb<=N4)6Bg zjHj%HS$RjDwRTeRLdYvn|D8@cqh`HW(hYXazos8mnUkjF6LsEi-O02Bh8u}Ms^qqo zUes>4EgoVtmTw#chHgwrTz7EArEE1ie27h#U6cK-p5xL>3kDpi{}d_l3B45LY-VP^ z7Wk1#1v|wl<}*P4{6;V8ajzpOUz`?KKf7uevSzm>ESH|VrB|~}1i)Wc#B~I^?hZSR zsI~2HfA~9X8$GXvs#E_4v>`jh6J~l7@Fsl-c%<6uL|=AdN76Q|!~OzMS{ZrC6Py3g z@c&kXd5@Q8cql$aTrHw2of36CJBZb$r|)Xh2Wg{KqBwCyIO+`7KZDfSD(LW=!{K{x zcbwnOUYv?abObxz<{~OTT)?B{jp|u5oOdV|M0YoVk@xA%Xq-cSx7h;pJ7ANju8s%} zyA(oj+pe~*=_auu9x1rCnLOw?!i7vOOcm_@83HmXEBhq%a{Y02rYJ#G= z8@`0wCy$EZo-Y$_%k4?kZ9X(-^qqaH&~dy=yTu7O*1?E2G?=CCzros#A6Ed64O<1B zD045;%E$O}!esxI>uc|v4yjn&pu9a8Ho02oW>t;4ssnKGkyl;uI@J}?uu{ivCXCCHd!nx4Kiv}#y#V374BRYnDfAsT1~-&WOWP|ICPE{s=P%!2LcqTGwPK; zC8V#CL)%ids8llU@}cSLwAl$DzqsLzwF}Wf2U{kRag^K)ZueVhEB@n%5TV zko932ZIpj_Qz{&9{)-yHPV0U0o*uB5iZAC0$_8MJ503o7(pGWxpZOw&yE%a#;}Y48 zluwVSt*u_*Y4Y4!CTWL96uj-k^U7}(BqnPMGMt;>!(xGF4pePAmLp5`&?;hL8ann} zn(!fT5gbrGT+Egy5)&J!fBeFfq62+qPpKpyUX+;`ArCW0*8m3=TP2@(sapMiECBX~ zLy?CO_NcYitRhd=yD4N%^WUDgoj1gGC)lhcp9S$OeIrS@`;Wqij*R=A^OlXbq5=;l z_yYB)_~eMVz+f>7$QlOG4*2J$c{9R{y`uofTKADHV}C`0m?84hV^(H3vdlo12di6GnwXD1%3r8D!$LCuJrs1oK6&yUb zX8nY(!etV$mh;#_WvFDfzKXo;%x)ggz>2;5iTU{RfW8&Pm~bBh<*+}T2@%0bSfL%# zKl2*C-%>fAdts02`g(5$+umnnA6nk8Jteu`1(Bv;z(z8{xk$kdvtT4JhDC_UIkyfq zXEeB>KU>#gHo{tQ{?-_OZ_^DfH}r)E_bQwz@8I9nHzL z$Z8Q^YyT*1bFO@k<@$w5jHLw=UEZ)u!sPe5Q*f$-wOk50%HHqURTk-Jmw;L5sK->& zvVMCItaQ7M60*QkJ9^l?H3L({IZWz2mpRMCkdvdJx*Wge7ZamS z)E24H6;It4=LFZb zaQk8sIsqroy=XEV>_PlYdqBMJM8Xx|8SYq@CjZGRN$9TqG}!u9xkf4Dpdj=RoQ)4NL1+CKwf%Dxv@$X@=(7c|rlU_RHaw z{SO$F&{9{o`kcv=%YlE+!2@>2OG?Og8{C1k1Bce6!qe2Zi7x*5}v zF5aa&-1j6_%gVdUGy>J>_NRUw0GxCt=q|g+yW5Nof|ylmIqPkY9#%Jsx5W6wD!VG- zHRd}qR#&Oy1d-I*cR z<9M;N8#MCBKrz3Gvch>ClXCP(!5D^;mp*nN zL%$>t5tS>fS8LL-VnVEPOdscR#See#NH9RJ&A=ScXNN+3g7>m?QaHQnV~~(D0A*s+ zzYNN&%36J!0=G1PI_NXtriNwko#EVcEd1DRWeIoTf2hoVW#=^MzcaLkfXB01#!P;) zLHx@w;x#$OV%SfJKzb{OM$LLr-KSzYp_qTG(NA$;d#^Z%MpVJ?st9bGzdb+ev+ai= z&TAfQXIPy&w^FSiQmKEQ8eiOcAKsZv>UzLFl_KKY*?;s(-{O6;b~6Cjkp4-`{fD-R zOQn&E)icRsOV2M4l!v>sFGcVY?@KNHB-sof{+5+I{3wPCoN*qOizbs1@zZGH5VH_s z+T*p7bA>J@rSDnlj)7J)F-}9B!p^vbc^wfrYM~t9&QXIkQ<$?^RYzD6PGl>Lf+!bM z)-Xo-Zs;?98N-jp-G>wG>W?h3H|g??(fO`Q& zYJTA20E1SYhxlZ!OMAx^4;ME-)?}|clf{hS!p$0$+nlNU`XpPHb=#n?PRpOqWZnL8 zzKQKSED1rw(b3PQ%#J1DPn8Yf|Ew5u_`cQ@Pi;IegoZq#M~{i z{qJTXv;s2_sQI<7fcY_u7G9v4(QG=`mQAo=X?#{kyINwC2F9D5f&%L}T~?%VJOTi(H7vly;pw*H?Z&D z>QUuW+4sXDQ)`#Zj^-$Ds*v)yG?Sf)G~OWR$|;xJ6(Ng~PUW5&aWLV8K~!%^YZkziv8qSJA1`w*qY{1Xk)S1Qzk`U_A%86H3&>O@>jsr zB@so;=Y8!uyAai*7Caof3MtxNGG*T6NR8`qK^xR93-zp>Bu@nahJygtpj#zxMhvpYl*~^9TnUH^QvJLvp?0))-8(fK}!|2@* zE;<2D%U{rZ_<8s7S0KBlZ-M_gd(XG-@95Sy829D~uJEtTb1YGlqUBr^LZmkGt%TpT zlp;M9X^XG69b;t=lwwD&D7~wh9}4TR|H0Kn;NiK?>NGgnF{3DYptPnuuQ zhC}I%;&%rrja{5!-vTNeCRH3J_r7xYu01z=h0O!`SJH%yox|oYPZXn8_DJ5>> zMND!}SD~zjN+rBCm{x;BJDeMX`z~*59O>;L9o)OJA_B;HSsH;CI4Ld;-6my2OpV#h z>1lw)Sp-B5Pa?)SF+6;XgD6WM${L0#c6!xc#Tqh#3)xMi5DUin z;squb88hJE?cJzETg|!Qrye`^ferjtxBW;?a$L`CNnvU}cP41N$2U*#drtcNMSIiF zdhwUCR8NMW7QN#Lnv{M_nMjpclqT)YkUG%bFYOAxno zR<`%LOf@OpH#8MnR^DQMB6wjo##Pam#!zc3?pYWy^YTD#q%yT*Ce+DVQ+rL*Sk~VH zw?*iJ`wrg$8B%xhiADX-^m+vb{Sj+NyDzQna!EOaRmQw|OgbX$}bOzTSl}%KzB$2LX7wttCb!Is|N?JIi>TgFMWVw*wFA!t@$<;#<*&awk@E zJ{3i$C>JK)H)r~)o|7`Io^2g@%M`{cZ}pXRb@2`esFG}xr()AAN#xm>KF9hh^AT)3 zg}rR3>oD#pWqNho)wd2@`#}#J4P^7lJiqRrSwj-2LYP_~7Z3B!Z&&2%HP}&_p!X3E z$ONC$yWa%{%#ez;134y}dH&ZkB-7~es26Ja4HGYpIh7P02zFAxR*%@o@^vKlx--T8 z_NUha&?9kvw`#oS!V!#>q03_(H`x!RG9FZFfxQ29H6}-iv_i1Zitb0Y*+fbks#^jdj}U2 z7yLiu%Ldmh|KaS)K9)Be8cho#zw+Tz53*U;d=j5ywB(-pVO`u`ruc~QS1rcrtoK;x za$Cy#EUigj2MJNgolT7Q^o2q|pnL5+*;RI6_sJ}ys$rgJ4%s(vRR{0Hkn{p~C7o}r zA!wx#S^Ap^7;O~Bb_kxm2lMF(Epe*&e=Guq=Q=Lf3!gGnr=+R<1371Pz6saBb>mZ# zK5V)mJ6XP5qd8MGuGW>P5wGUcvT?G|?fOeFsHErYxI?b*9O1zyE_PI$K8-m`HNa^J zeB(N1ty@|rR$m+(qw6!#VIp7Ao!>Yrb-dl#Fyxi8p?;FdlVfgQDV9RKt8NlIS?l}m zMPmPW->bsz$h0o=RB`$EC?>o7_b+&ax?Ji_k7filh#S{W-l-<%zw&@Pm z34^gGO4fVtp;$yxhCsUXi)ANx+k>QllhuISKX=tTJz0PM|D#yc?zJmjEDs?}?%G=L z=vRQkB^~j-*`}9JSM$D8Ox9xc0r4D5WFT8|1ONSy@4*Awb6?XM{q2zTfLg-UVv+k6 z=c}w#iNRhC3BY;HS(1HhCrzHP3?tg#BJ^ z0u|zD(RqwnKf5@fVpPt3{Vhl!(x@4ZXN`MsgJ4zXVw#rwK75#|tT1 z$9{IyqrHcE76kY`%q#O-+4EkXb9OMU+e(##<%t`_7+5jt8d?TT`iKlNTk(cERAj5x ze{iFXa888Yp<+w0p1fOMqbaS4jyj8lYvBdhPi8GQO0}mN?0E!+m}cHmvZ`<`fmA|w z9j(Sn@foKJ!J5m%B2+8o4XvC}P|K*`kKwNqkp7rD>Lgae;xEb(?2 z1*o3eI&K(bKM3?iuVCN5faJNg%E{ln;A*}T^Rv0V|32Uh#zck7=6Ri`H}%2=$V3iU zet1>@6f(LCR|qiLTh#ME{C82ceU|l;*Cu)N8*@@+V))P#=0md2(5#OClU6utxwXWg z$oDKK3n@=h*r8|MZ*1})`u7VA^)x4L;tF!-meU``0#A1NgqF?ISx;~61Oeg>-}k-W zViFCU+unbjY+o3Ys`G%%*H38}ph)8Lv&Q@}P(?lRY~n zaS|X+dtNPQCtBw~!hErMeAN<0>HY~R$r$>|r+jEJ|2Bwv1NjtB4feG0SN0o&A0@}c z(}!X;ZqRb$e14}3utFLr2<5hZpk%DN9_6?*d9V3mz-nxp1@D0;z%}1?$$aYB%Bk}} z$>TS1Ky!G~%&{=;Wf6+`H$P;;q&Q~iGaFy9hWC#6y#Z%x&ROL{7vSlvPM~kex479e z*6@y!JF@KnbA~mSWvI=C3^8`+ZHHE_ZkQ|7Vv*fH;0--Yt!T>GlHOv)x|7dulx9_d z+%!(%v_Q$7Zy`cMg2l9#XcLN;H%20fG!W5NQs))X;HO@dL%{WL@&|98pKUSU_gU~J zHZvor(M|DsCWi{8OZ4My;LP#N0r){@^k4WYC2gYq-sJz>+`mCIq0ZZ=h$8-FST43g5%lzqT}Q-x*cS6=FtX+j!$rnn@u)xN2ORfH1mu0^9!KCKb3}ON*2%AR zec_+&U5V#j@4ZUFqR+q{r%D1}7Uk|gC5PFxR#|cQP}*~_)3$lhs*=sEbwUwZ;G4{O zfwGzLm~HN+q1U)s(K{fJ@>s%XhyXIED5gnx`;Zb+oZG_$5-VF^@~-_L!{{V)8(f%p5(^Yy&0>v37lOwtKI8pTRHRCL@n)b$kn>TLVk z2DfN6nOPlwS)qQ10y*JQmA`@J`|99$YnJk+BpcVx_bxN>=Nr^r z{h=JT?R!dCG2D{(1=*(fpDSX6Y4aCKsR@gk0i)%%uFHzQLR$yQvUSTGd$#TfoD&jM z*>$t(LywHbf9vxjuTl*>u{bW63WW8o%vdMf-4h%BS?_?Qe2X2#ir{;d$roypqv7OVK{DlzEN<$+U(mMRwdu(lXIURTf)OHSd zMhEHOMl?)nHAAd$_CL<~s8L7xnNBYHFuL;QUeK#ROsbF5Ts^YBabR&J zaE%9TJdtP+wD?(1xrSW!R~LH!(srA4P=-5)Z2@0O;z!_Zg%NlE4_gdhp!a>!H!7Nq ziK-*I!YvB%TVXi-HPMZ37QY1CU!JXNb#*63Ky596WG9tDySBW8_$k&ofE}9mm;{sp z9Y5hk8HF{tVdpNFT-iNv`w2a%3SBYdLj2Nc`7b5+_J7Wv*X`4#;*Ty8)DE<99ajX> z=)_eqJP1Nc(Qs8`9g56OV%e3^vS>M`oyPYbDE`9kR9}0)A-}Yow?@JE%fqhtL^Wg7 zwDvdS$d!DVAF)A%dHd1Ci4D!r($KEYTFNA^^uEXNgG_pvYXuiq(oq57P4vWG|HrgR zgjXo5vFDK7^<&>yv&=EY zxx#N>9w6LrCY<)&X#9@q;+lSIgOQT4fz<2l#!gV_1CtWQ9dT%;yU+^NdR`0wD-xTs ztu{Nr2SufCbof4n+f%OugUT>cZnLY{`gU<0q`>zD!)I$wGGoKIKH(9p6Nlb5YE~y7 z=K5iS;cM3L#n|d&@%m{&HU51(kDL#^UIkJVkvS{_n^6MRd_{!{TIsks9ak4H%|%$5 z*xyjvuYgL#Gi|5V!_*CT=*GHS|Fqp!zah2ZK78Xnx8nS90dbDk)~@2mez;ShCdZXv z8^GlhUI=t2Yc~_ew&tKWWk%Giv-h3V%k8>ysZU3%3JlNcd9WCKyF8vV^<=C->hYal zg_DhYE{DVFm#|oEI8DCMf;~b)*Z`evldFE^mn7~jZ5*oJ#K0FD)%==cTomhFI zQtSU!KoEbbGNkl4;CtUXm!-S^d(2~ahYM5a48a5?QsU6H>zB9BklPH4-f6iRa3Kdo!gbJrrG+QVufo{mMtq#4N7IecY$?KxfM(dqp4?h5c<)p#&ZQ=0 z?ckQx0g`5)+GpsU(Y`-p(?Y6vyPVquqTgQ?SGBNDeSjMBmEs)%GGslyYc$9_SE(r^ z+rn_Ck>e^A&6i73@G3Q9U-etRMw^Qjk7!CMAF!8Lpr?cmX3wun}R~@+5Zy^`^+%us@3|_#d+m5mLx?&nP@WuG;wVp0R zq#0__fWj@jO$85-dmk$^T;bIkG+jf_k=f6I4QWC> zf zHDAoG%|Ylue^Gi`^>-Fd#=oMaUZpZhhY{l$PM*Dy0B`7%1XVfmjyEkXs0i-$Iu1oU z|2k@FwF8`MtoQ%$Chko<$L*=$WRH3ohaf}>G94!d+zD??lC=xVRb9N@IG9E%FQxk{ z?7THdzx=*r8g?>8|9zL`a|=U#wdzGpt@O1x4dvagw)Y0W&QI~Vvuo!ZD>K*BxmxI5 z?_Ym!LWPm)a%E$t?qD{Q!|RHjg`fsw?F!N|75OkQgKLqY(R3(6!kn{^;|mnyFroC_{Ej8E;oht=X^n-R&SG*$UJ{Sf6bhiF$DJ#3Tf(|NgPL+V+6xad z-f1N~Y0ab?u9_JI_p|A_u37d%D6*0Sr1_B}rI|x#b8q2QGTQan<2B+TiKBki%J)tW z61HL0sK+4cas7XmChFw2@JrCQvSkL6u>%4^hmByvZi70C9Mc4jX=zih{vgQqH7rrE#en#rJ|m3YJS7br3?rr_0z9fOKOaHyE+1>$K3k12LYb!-3XYDY>=&{5iY>R!p0buMfCxNs`= zxKa-s3O$>SWoyZKRSv9SM1oz`yR9-MsIRkFKRV)Zsq$u z`+t%DHm?7Mn@#=M!AYFJF{n6DEg@7&kSXT|S@p*x9f=oLS^6!>rYoBU9WFN7B$z3f z2CQb!t24xy`@`8R0Bz+zg#(RnS_#9uis{`1V+*f92Nhw11j-05$gkVc9Mu+3ep!PGO6h#<7j1Q^GBD_Kg9P?p}%38ftthHcx%pbVQ@=+|x8MD4xjj3DcxNXepIl^OktO@|#aOL0 z+2#Z(+wYGsZHYQVtVgFu@5aO`bg?4Ru}QS28od{0iai98K4+s|zrJh%hZZch;Vie* zoeJ)+il~&X<@%1+cx|RG_q>X|$(cv3CotW30yRw@-`Cx{9U{*E#l{CTXQvHq8gRMj z*v=$u<6mpPEO8jRcQAZbPucm^BAX%gBQ{Lq++wgehBI~Iav;%o9Nd$182LxJXrFge zlk*KtZhwlDWK$vkgEZgQB6^Qk3Y(;(3tHw*CJ-dbqP320h?Tz0O*AyM&gO8Prp*`) zR5T88t*QmCbNh&=b8AzXvPaoVb1kT#`{Fmza?Ae3pSZH%NR+QOjau_|8tZgH$|H7u zkY{ZnET@F{?qH@y2M;_7*ZS%wL9@2ez99xZ5=!!AjQ&iU=uodzQ3~2kmclE^xdmlN z!ZN0jJb}}~(fig;c6z^7N(7xUcqQ-G_th6ITB35SqJlzF@17WEuWz68dYAv7wxlS< zsVdbYMiOYxE^PZSZJQ6fwT^Xx5IQo;FP%1Y(NB)2Bc~S577@4o{}NW{J$2erGmj;bxtY=6b_B{N=fxu>$BgaR#!; zw;+D^XpBkBE!lA9j0{o@9&25>)lq+gGQ5*3$tqmmzrdtunRXt*t8XbFKB z>$k6_3PU#Pms^?@2=XvD|GxdQr?ycx5^P8==kC=a>CMRPHCb*2lizJ5x3}y1w^T>F zRWQ+aSACO+!`WVxrtbZ3H9)Z*GB-Qa!ob#|0ktUz_vK=+;~agq*nv}VosLA=<^~&hU3vqrRhWFrK z^_?7FLwS#aOei6{O??YFY1Db@1t zmyTOaCrxUZzTD6>&DrfAJ&7hO19ns{ZqXO9;H4%8m1WsH+;;w2!Etc-rk{ zC~vF4!Ai2??-DQa@ar>r-66yY*@Hg#>--iR=bj?5Qh=3zy&xopFl#-0<@}@Zy+cMV zQ>5T>1Vh6VRas$x+WtV(G$sFEzk+;(0Xs3>Eri4(AHgYipBWKQx$u`7df$gx5fxRT zT;Z`)?6}bPXAu7rt`X_2U!QN#POmRZ2mXX!1z*(m zxjS1oXjKCT9tmcfTjh@X#c*bG!7F70IFcJ{sy8>_kY8x7VKSbeU5*#`CVFL_scoFO z-n$7QTwE;^`|J?fv#&0SB|cOl?)Lp?WUFLlQ{Qu2Ao`32 z3qS%PNX>AHDwmD4B;rHW;vMdRHLSKzHGZ5xSJ0V?sI-FNRLRsnMfXeG_caz#K>$9^#{N2TEDe01juHt8aFxBk!7vp#YQ8b8oN?fJ z;7BjiFP>}>7^*c&5X7EZ4lCixye6hRVL8az0`hX3@h9`zDV2k=({2uY$LL!#Di*J82v2}5FPt=TeyWx?r!N+sYNK31ygP$m8I`eI+&jU`J2%F(W)|joP2ik3#TZE4oR}~6}LCa~b#A0^m zubUzxT!X$`c)Wg*2!&KfT zj7EyYlf&~$t9rCNP=&_sCj=~j`NO+hXGPq%kQOfHy2vNZk!EYfp)u=?@=%w3e+n#` zB9H_NJc z4~%nOpt9QlC#^JDTUt@{{_b1eL+CFbOuL_w8@B~pb$dfwbg#>4ynqgL@A)+a`yMgw zv`Opy<>QCJDq?ql;WkbMi_i0NC!DXTRQ)W4Z}$Asd!%CM!?@$TEt^+z$U9Y!Nwp@C z*e95w@e$!fgw*Dx>WxBDsF6x`U0g-wdUeo{7CCoN z)$?;;G5_}Va9pRld*JAt6&@3h5p-_Q-RBom+SDJ%P&>^PGyuRF$Gd&8viSSB!nFcx z1Le*N1)SR#ZXsy>cCbRM$V%kMT7>hWmAN#E-Y9f%_sAM0alfI-gz-80l*Y>V<(w3? zynQs%^vJ22iVl}58@t+yw5!!!O4tf_q=6{%CNt!!zhOTEj6bQ>NxTzC3mI?5ieWRl z5$*WM)U_kMN!SMS21=%HhM$R@k`B^4Afg;XyeQT{@j_QcxmUws#~?M%rD@xCyXy$Ys2;4mdUQFtUqcJE_abxQqmMEu(0s`@IVpSP?LmH* zfr)g%|^(Q|!HRV7L!B^S@*}!x){qYralixK3M`g7`Rgb47>h|{wJmpjn{Sa zx&daM4IEngnQ-|~_yV~1@k5$v(% zr;|R4N_XxLMrz9qDtw`B8=pj?(V0H(9JLE;y(!$w#UNPcvu0^XdU*~mWTc-apTN1u{z_6z6VX}v-I%)Ujy?#)<#DhJUt>EC2 zdpu_Wy8)XiarlxMF(T73XTW)J5NyFzcVHX3O-T|D;LF=bsk2lZgNg{;uJeVu=^dV8 z7DE%n7z^owc01{GVlEPNlGMapN2LHxVE*B@E9*9$)q_rIQ~pIJX8%RNiYSTg9J+jh z=j2jkp9=cM%HNt_^%wHG({n669SU*DmknmyJ?FJCo^GP*+}v?Ex;!Z4PV~i--_Q!s z!)4A_7OZhNHU{wbXGpx=q+9!k2vB_WCJ3xT!N>RPJh43p-te?4$GPv_^JtU#Z6wH4 zoDaVA^u;82_4B4)WpDdc#yivcet`AeE#?f}nc4AEC3A#!=gyaU+WjHzt1nCZy=p{N zZ~2kHrxSAvT@?iyK;e6ekrT@5Q$j!=~UB7~)QB-dODY^$s|1=(<;Wg@s+`_o7m9{YJ58(u#B9fTc8d6Uw1L(IEW z)v}YbSeSqFTiIjQp#7OcqqpR*Y*X`(r@df0)1osVUECSuo%A4d9#ZbWu%ih2{dBoX zkHcdp)#ZqKrl075kFgi$AI9?RA-Rlq}L!JOtJQ@-(d2T+|kxHeJflZ!dyJ43m-A-4RNqo_hIbhNn5tEyZ+W;7GMhnOJ`9|7f_boT(#`Y7+CXBd+1`X+J5y- zg(#F}YuCm31^x7Ec>v2l`>{dSS)$E7Mm&PpS`&DWCZ&Wlo6Ss4`lW0Xb4gUsDmu2b z*57CDC`F*rM%n4Vsf_qk=kYmiS|+ioogusPsF3Xx+F{gA%etx?g z?sP^En3$CwWltKvTy_JL`t*8E<^{)Gy9pJ>J162-&A)GS0V<1`uwC(-pnmvqWmQ{9 zdm+@qar1;&D?(x94)dv$qf^c{`X(AFC>IBJF6>*v|K3$@)<`}eMfG5xA#h7hmh-ak zwd}?^(5|P5X6tO0xc8>>{#|M4ZL#6kx?gDWMh?9rpdTY0FVQ1IaxObnd$$Vb4%u=f zgZjI9OfH!9CaIxo-s7TY@tVn>G!5OFKW~J>vw!pC>S~boAW0z{qIbt^iIV~Yiqz4^ z=0^}WJ7k(g?CVeL(<|pI+g>n_CCF5xpl(la9M^>Mq&hcO8F?LlQ|g?f448>|Tp2KG z^`e<%@T8~Y+~i?zD1IO{?E#C?EP*Ij$|S^j1C1Y+pZW#C7>pPK{r`;@v8`*@^v(aR znvnDrWHcOin2b|qTAR18^rWe&K#5rZp-MIzo2y`GP(LrMpYSbL)uxS<$+Q3%F`IRx ze_9jR@5=kaW8A#m2Oz)@`nc3>dtQaPH5W033k<%K{hS92;wu)6o7eu9x0jm)dbt zuR+(jMJe=Xjm0T05~^P8J#kv?*1C*4{3+2wajHa^1R_L`k?-s(u6Z0NhDY3a=VYZ2 z6aJoQ<`1+ekoHL*oBVl46}`s7Bs2TlTjS7ILYY&gkiy)VBSEY(eSe(g$T~;DslN>! z{(UZM6qR63N8VpX6J)NtWY#g90au=UZJcg8A(U!uh!XVzS3Au62ev@bN$GljF1f?`V<4bC+z1ZjMl2S1@1tc z6J}nHNWClxcMTq6a&rg1&aCkuFZ9zh*LQOEZb9)iB2yP`>Nfo`!?IMlkiSWQHDfq5 zxUl?{PkaM20L+hn2lk)>HxF)1E1%CSy}ff@ORRvIk)@XbB%vJ}>Lyl&n`S5`#K=s$ zjU9(&%T3b^Ppkd48<;tH;RBzDitC!ZZZRZ4=*ec9*YMWOaBcc-f1RgJE33-?zAD~k zA7#ObNX|p*Bkdrz`YuevFV0u3liC~stN@m$3-#gRNtrwEt=`LElxt~fBL1ubzk#3r zHuQ0XMvpeIvRpFt+C_~!y0J@Py1!gGrw_*qxCk{XkEf>`+vyjx(_8pdf^ZITvz!kj zGNBgg!O0U>Di2v7q$?!(97nJbHTq)$1}*y z-~3}QyGIXv)`wPlS)2MvlUTnBS*Z4pLT{Lxf2}>(7}ioZ?A-_|fEajZCIg;=O2X_iGSHVL+hvMubL0Kh4=q;68eA#{Pk+8t( z`aF1MIBeyrtWCK2e#OL<5YXmO2>>Wm>$-6gB~QaQ7F8Ljd^7V*;2P}o-9$P1u=1Fr z$!c6yuNIB*fk8WGqV-ltM^~vna}hym`w3YGCrDhbLA}Z}$9^2Q8I@)}h`m(HYdLZX z(5f(oJwD2|{w=!^(v|XZrUm`qaYv>#T}1JpZ&jqySr`@1Bui~&jOBL842_ldB}KL0 zy)78v@yJRg*f{dOfHk`9Zc{Ei@cY|_^rMs{#s@i+J85Z^_bExMF7UeSC0oTG>6^wi zx=eD9#DhuR{Vw`+;GT{M0Mq@+U|QqD^>L?{PUQ(aYRX<8d81RlXIc3+-)u1<8tO- zteni|?ZC|r>ZN&A6=moLNYH#`8TA~!BJd2OKXRWmZxErkcgN1YeGZPV_kNHA{1lc# z0MYpd6^}L6e)!G9?ePfGnWx1UTbzmvy2;SQ>|ECrG|lz6V7G^LUIpL1(Ad|q_%+T#o^QQ^DS2d=(7Bdrt?BM{tB%E@D$5mkt_dAn(=mHtpu zjp7_q#U!HX)fMq(X0}>%tlL>QW_xA7ajf)K|h<$hVeRC{v2 zQS|V!>{v5`e$Vx&-;OXm5pn~@On#c_(fr!@MSNoOg#Dq2*jBL-t}ED@Y>wjbcxRTn z&EW$Nx9xG!^M20H4@V=yPL5cu4f~Q8nD>jI4_KJb;@{ti;Ga|Q(+SwwYdYGiNb{h8 z6&n$M^V%QkkFwHCwV{6e@b(NnAwX5YE8}bO9*!RYKYKUyOoxXfs_!T!T;(0 z4$9T(BB*TCGUBuA<9vGE25r=0pzYw&LSK4qs}bf@W!qg7zY|Eo8Z*>d!@*wB+dTC|Sza311mu6=H^KQsEJE-SKZ$W9E^f z_TGMe-|(?&;@i0ZVVMn`-ZKx?sTRXCmxNjHNr0ojniEIo6FxT-OcOV@OB6fbX?5_e zq&~LbK@Z&JYL)#WG|cP6PdJz8?N-1=zp$9;by0<*g=}YF)gq>}FVBw_HD@*9I)rvQ zB_t2C`0Ap7)=^TI_0n0_w_@44|6!)8la`5*w{;Z%lt&@k+X|}@7o-)r6eZl*r&##$ zd>L;)OvxQuh*7hVrh9w*-P$kzjpI}OzPz=QyPmXtpLYO=^q>lC4JxKP9f z8=DpM@z*O;Hnl0D5oVuH!T5>zT>QGsrlk4hbQ$H<2xe%_|JR_A3Ve-LvkW#oHX4nr zYl$oeB_hDiZ>V9|ZJPn_hc3GvU{M-0aM#gXv25aBLizRn@xbgsU0pn-kE_-TYE7+aX}^K=hQOTVrFsCa~3hNSnNKZUPsIv1_<&rm~U8NdZo6kBf4R@ z-zIhMlwg0A_?7W-(=n(emDF}--Y8v6tUv}yZ5)YSKv=%CDfJyqB{m{FHwpoIy#@T1 z*Me5}%z^F8`V@@&<(~atX;@9s(Rfhpg;CshV6BIu!+#C%|6Wi%A;QcMsh$v6WFNlK znU|C;yJunhOna>`cXULlv3WFY8U(*96*o(8XL0 z|C2+=2H#O$(xBJ{5L1w|>>r%9?r#w}IPW5fJ;L`~}oWO`9KUHhI!%~pX z9F=P=@^r1mO-aEVLpA$=v7@$?oecpg1EtILF*?p|h-SKzT1qANECMz6HBl1X)hZRC zz@xNVzpAC+N zvpxY%l4Hi%z)&71-|pA*Yje0VGmRK_FhE$G;K%!)w-A*ly$Zz#GHgGRy+4GjCMPAdloqjW$$)( zSQXoA)FHQTK&^FKuj+C=Jz_MQEVIR+((zQq)>n52c!ay!M7eclw5rwILP=lXt9FyT zK|=~R$M=W*f28Z&77Jxdmw>TPKbD~%)ayTpD5RXf0IeumZv+Sx1Az8a;x&cYgX^lK z(74eU@#T=$UwFqUS^z;a>l=tY>9O&u0bA&-7PG+fF^{lcdN|OiHmBdzSu-l63(lpqjT^&GWgGz+I! z0RM4BxBY5mCbE!-OTM?eBCVf^?npwi1o+u{>YzSn2=i($Y{EnA@!H zdF0)Gv2ZuUVCtJXi_vPoF?JKB1fc|vYkW0f%ox z-nOBnACkD= zo>}TG+?p3F>G@*_TUl^h+wDRpDR10ohIyvC3d2jr=I$VXGJ$F`f#U{h9gg>Ia!1v! zJr9co%y9r!2}eV^g!ZC70zhvum!V|389`jtL+=WWNUeSngc6&3Zpi67Q;<1xqmOip zd;|6a)V`cb2#^4KmazS^Vt)%9XN$j7>7@R8B@W4@xqj3`bUISa=W2%zdwuxn;o<>tb}6X`aN}~(5?&3xqfiDfjXH!!+W$6W2U9X6&c%)D&R#v}<-j`Ryz#Eep-rSt&uhi{6Tgr1O~b zSu?#!v}rC{;}N;h+XHRGZ%sa*M#B#LWzE-wi4x)Le?JXlk9ejS{AAs)w28oIR4CY z>~s%KO=~T^zS8B1LW}W1DnVRDE-xEhxS$vD-}+JdkQFa0HHOcb-s`?>d-bz9-1nKW zkaB&J^j^sTLbPn`Q4s9bX`QcEJ}Y8ac#Y&Jc~zn565b^qGn%Qc6v?ZKyPg0}(P+&y zgqZUgUO>Bb39ke;)X?-039435*LPnDOmB?k5?S4p+n;>^ZHwR}lJ3OvO&IJ=xhXh= z%zT|Y_yY=#XRFI^j3BsEs4S-s+v}8+p6Lhn-pO^^qUPDN&qoCrj)%KW((lCTI2Ldl zEVb#I=d@i4DUS-uNNswl=03tT%LDQ`YYMh7A6j9yYiI=eFjh)N1ck5yZ>T=u+D9>L zIol&ae-NQTK^akM7Uccxj*`?-As`pVkbi+R2F~5vfHgj__4;&*){@_(x6$-<$`ri8 zJldgetW1!Dk8qgfm`)d&#Vq=v@SsD`t~@V?6ugnB6NaSh7{FH* zqxnQyU3Hff=5w)nJ@KIO(;JWq;qNI?f&Wui{|^!k{O}~xJScoBiuhWlG>D~ddae7a zHBUkOJT6I8_F}L%y`G82$S#pNq3CGnz=HeYl@bZu>vd@b*p~PoaOv2pj(VqXqUZEW zjx6N2WgP2zeTI|ndRZrF%IRM=pFZ|Jlf(6(vO~l7R*A{G`#ML8T8|MmN?i$h;4VJH_V)h^IU|6 z`FuB9)jRIdH|L~If&qaqA%omWrEJm8uZnQ% zb+|dYv#2ciEhgGEAN|=QMCfrg=#ao6yFbgS=~c;F~qSFZY9%=of8FD8Yi%>j^dEgR@4)Q20NS^d!3Cl{`%aN_8w3{|bFXDv zGsCy2aI9Wz#LjEL?g-;ZQGFM=Gk{#Ox~;Y#AOdDATj{S}P9Duy8*w^rvSRlD%_F=K z=$X7Le;0Z`S8vm8r7Z$S5dp$(V}B&;DCbI@3hJyIJm59r8f;>rHtO-vzoSldb$&~< zP5$YZ-5pz_=2v;-bzu~JEcGA6`M<&}Ji%a_lO%n4AmN6*K1cBlg|7q zU`Z7%m8M>mw2cyJbxKQ`47#u9M~S?xEMNK9A?G?OWkYT+4sh@+A4ITe35h!5Naa&U zB{NUJmtL=YCG;yl%w>@Ox<@F&1aVx(EPL0iJ2d;N`*bpFG>SVmVTY)RV4sQA6hjW+~ z7etzA7T+6rzEJuw{YB-od+xf7o#5=)mB%FnD+o;oHRqFzE~dHB;>(cHZP$55r34VonV25m#A#NB6|kg{PbuKQ^Jr@FPf?Ae;c%x?7?b?i>S z7x{nMF9immh+H|a=IdhHGgjLEE^1FdCm7H2qiOa#$%0U089_Lo-?3UHo zMTjdPlPhhrCcj3x3|$Az1J-<2IdalrCWv2v%Kt6FfczaA^?XNr+3_}gBZ_WD~RR$jZ|LFnvB zb9z`_Z^TXfXk%}i&c)pO8u+vG&AOQ3tose*E5?*a*x@i@regZ_RP$Ab?E~(3Y@-Gj zGIN#%?z|p(&TA4(bpJk0A0ZY5cd@L5%6 zb+j|d8gfw9n>Np_Jg4}=g`p?#Z`>-687B*SoHXrXZMa``3sZV!LZ**Ty5=~a{Z2#w zy}!#3@%15L^gjOIGkvxhvR^O`8+Lak`8n0dt-=a3V#z7;n8Sx~zX`8=hMCWDr}|F; zx46sxvGgodpt;Lm+wMQH-vm^qSCgfwytlx!r*vJj4S2XqpPJOi+%DN%u$`r{di*KS z7NwWMmf1L@W%P3sob0~Fs=L@94pFt-D1|=eMV0mm!yapzYChbr;Awts zKPvGYxmd1(Dh(I!RcCT@l0I*La2-;po)s7y_>cicbU-q0WWl7 z=n4g|Zo%J?qTK)QBb5HX7!z3EQLV*kQp z?jF8GZYy;vF-8;g?~cYN;^B8i(Wk7#!Zt0D$Y{FA{nGB+50tYTr<|Y*q0!o6eM+b7 z$EGnRBn2%w`fKgPC9fL_&gfgP#zJl(@ozN300zvf4PY^hr4_1I`~8%WmJ zo?vH7sCkRe4@L^@BbK_LF$qeEndPTe#$Cv2a|x#KHF~S7!qpsH%g;*vg^Un=vE?KX zd0-X`As?3JZyWN9wPf%z0)$Y!lI7MCKE2~to2-Mk?Rl|fp^pTnD#pLZeFTuUu=HH9JZ%5*pkJDldTuEQI!whc|!06umSJz;XB99x!HWXqo5PX?z@8 zD^;{52T^7N)5Srd3u6`=Jslwik2fEQrVXu{7?y@<8qGC>WGbGJSGe~AicY4VwA=6C z^3)k!#rYXs8FSoR`1!rAj$2F^&3Y%tty-6q`(8(O%#xd*^uq{w*FC?K-88@SxCmIS z`d){;z?Gz}o8)}ta1UW<(6G|q?45EBUlk?9NM1nCLiq0N?41l=w-sNe~99j^vB@1+zFc;N#RshRXJ#G<=-9e@kb#*nVtmBcI74n z7SD&TS1H5?J~a;o{D8!o9R?&t%?wK_{T`xC{o$HAx+xNY4CWpe?(6}u{+{9?LhP|T zZ1+cDz$CFuFiNyw{h>gW$8v$HBhZUtj-0q7;#YG*j2q&bT;E?m>9NhY_tg$iQ*@WS z`etx^v9MiqxvI9qJl6k{B6N9O&yt(Zz5r=q8JsrlSYss;K#nD37Wprm#G0)JR`0P* zzpWGgF1*}F;DaG`$hygGKeIZNKQc43#kH##^b7CwJE=0tOz4Bo!q4dw6tfnmBv=^&jeHj|Cf%I<2Eo^4HA5wql4_NT;5J7<(kO6}UI z*w&!khPLA+0qt`KuhQ{9<{w$<9hfYQy}D0ebA{ZyqHG_#4zZ=FJC+o(!HJHrR&$54 zM!o5>?=rnLG5Vg&71CorSf073n@4FO+Q8%yuaNR7(Y$%lm43#Cok`R^Sh2c$#7U^v z4YsV~aLS{9=6|H1Yqulyd$*ipL3*fp(gv-f5^&J=#4}~8uS{V2O?1mS=j{kbRYz%s zQ?0zriyu3xBlV`L18G~tQGg9USn<1(Nd6MLKB|P;MsfQVOQEkYu$wl6pWkeVS^b!T zuV{m3obsiK9v+b~+Y?34XH76cq$rtnN7D=1D$I{iAHwJ0Qfy?^Gy{-N6MH1&<2=%1we4<(b$?&sv_G;ON+T&zFwJT#u z+0ui@5g^nh+E0Mo>_a=-aG}iOvKYhtQ;@?k4fCM>K`E0kh4v}(hMEQf=|n-<4Lj*f zqXf+Z-w0j4g^san(baD2DNIUQ+0rjc-oG~}YYb{mpR};NggHEc;NhrlNY>2am6%$v zO|)d=n-dW=zIR;RRsMb*c245OjZ z8$Yx!PuH;3Gqa6)A%Q?fe_Pd2J|jufHYsdJFPp95qh}umAtj9;;hqOGaAAb zywSr786^X=aSc-4r zukR9c>BwbT*;jeH$KP{{raN3GJ4hR+49a@u1O@~Y!-v%0AG<$?=Xigi!Pr^uMCtMR z=JQ&nPTzzp<9c<@^9E%9FYeyMsi`%37gkX@9-4|0dPJm22_O(!h>C#Jh#?9lZe%D&>D$iPv z`wjd%!Srcfv_ieKDw-#W$8>$V#r2G3J@X_IrHQN;UJA(-Z0V*)6{YrsbAq%IZd^4n zu*ag2@|-G=PPsnbVaQB@LwD;vye#TSVRvt6VPZBWq@m-vTNm+G46$+F?_dnrj` z$!-B?GC6;v#DueoG>fApT!gqCcU3%>v37N=M zC{QHXKuX&jtZ`ENR@tB_iREOrfMhys=m-A}niF5TyXNa%f_YBHBo4MIBeqmzS=(8oY4dz*m-aY4Q_YD{xKK_qV| z7;BKF#n}=ixb|VUe$}8=Stxv?u$dU%XR-#OuXrS*YTdGW*khYBTXkKX6S9is(pn(k zA~nj=r?_C|)?nm5_W>pCk+Q7dxcu_fhxFbVC!Cig5Ee|(i;SZG=Xk5iJI8k+&g3;C z^Y@GkjmKZWIklV8zUOIr3Qe?{9bqtrwxtAxzD^A!PH+2hNy{&pQGKnE6GSOBiCpHu z#KZ|O3oElWDL?2YN#A1G?|5I;MLpG?zAdPS(%eC8mv0Q7#3pH;kbh!>LS`KpTb9a$ zWA@86Gsfb>#c$M-%4Fg+IHAW_TjQFlJ5#zXT?;xSq|x+%bu7h%$+_JiD+AS({42x@ z1>%Np+{u=dS|on;D*v_kYtLKb88vq39W5ptyC9bBFC3Gy?+KgW5l)IEAv2=V4eYv~ z)4MRz5X(y&{eJl9upbeHS(eHf_i(%nhF0N?FpPB4!-PiwQNarME*8NivO_43bU~{667Qc zP!W=PSZi%V{Cx!@E24v89dU#ksmTiryxIt#YSH*$RnF*+D4VClHB1{0Y+y}yYwj@! zMhGQ_*wi{6B~(b(Fab^Ob~#SUey}j@2D}E zn4hlGQ9+9K5I$cLgG->zp}0rpd?n5CYK;~G-g@Qw#r1jE95It(5(Fr&)ST{ z%kIb>n44-88gkZ5TrBuU*sxin{uOalS@`7)i7`JX9fCrn)EpUS>Xf+oAE0}@tGeX} zC=W%?Jo8_`zlB_|_^vB*Cg8gE#v?92IkDw{4!>3E+ES6}XIj1Gxr9*svVgV-n=;~>y#eF(( zp;qb54hDD+THWTx@b2cZ@7jZQH_l4(ax7oHC6v2o_&HvmA;szZg}&A$l2<@E1bb4~X4=E(a#KUi&COAAFE)%2)M zbX$YzC+*o%n7PMc{pL39yl|CrVV08m!r9lC@8em`r~J<%9Y<+eO!CBN7~VC|k5pEW z83kH=c2Pg<$Ou-cp`q#oR4A#doO6W%-1kPIViG-7(V^f|&6}9!7@s1*klNP--Xpnm zE@Q}Dv9q+zsyFd=034)~()KQ8;**!PP#VL^4IQ2O`Hq9jJ<2BMGz(>|QGW6sZMxgj zhr8cDJtqo(S~whi*WwrW?aKDAq&I9Ac6scMs(H&+rwJ|wTo~|n+Us@LCjVvmMgB?vxGDcg7=Kj-a8u3ne7fBx5Wey6xAN^9j z_I%b?_JF>atmz8Hv}rFZwu!n>n ztZ9R%0gB#ETw7tPFQ_FfJ{qq_9)r>USnH|}&k|9p;iqyg8@ zm&mdN$6ss_(~FXf=dX2T9VD1!vsbifDwSZGNkD(rel>5THT?LlmMd>rfu|+1h4`U( zMV8N2KJ%8C|N{SU9&CP-c#6?>Vn5NL<$|3=KGss9N^SHY`*i*2yRw>B22kX{& zKa%7gB`TbQEtp;5o79#+RN^IY;@4&QQQsXMz91$(hU{t_cUjOF?k^gNwWaOenOuNU zrBB!Fmm^Z56I`5KpK1Ik&RwnRa(Nzz8~Wto0sDyTT5M^^d*Pj&6e%04KpN6Z5715s zQvm1p**3vh-_HM99@;SMy{ystuj6yuWeWYn5J7vfU?%&ER&^iqXoep%ysKID9@;Ov za+G3|O*@5CM5~}Nd;KN$$1J?zC1WdesD}JRuAWX8igdpsmfe`Ko!*KS)q9p9Vu0=WJZ2uB+{l(VWh&;Mvm5J+0A(AtOj+>e&Ebu zJCRpQ7rb&m6Zh1bW4A0w=%h=k*jq@_J+Wwwfen|Vq5)e-gV&qdSj+lYu}*1{mhhNM zt43|%vRsJ$;G=Nl5i-ZWlQA1?%}obqmm^9K*bbss>&+*6@xcjnv)X)l<-d;jrRq2R z;FIs5>{SEAw=U$xqvZ7tQWj_&_t9~(e{<>RNFksMw8%r3@|DKCGe)P=m$o%}x4fHP z!6wxYi^C*sSUiB+@x-M2hpT+{#L|b9aAyvNLI*%&BttS=34;#32?{BBtx{GB#lp+}7(mxlRUyW9;)(%^c zSs<_7V^!iz*sWMW>;XB4Lm$N-xMZVUmJi@AO^WL@oX1@bU>N0Yo6_?W?F`DqScM!I zwh*m#Mm1Q)049G_Irj4=;!L-M;_AyIpgLWZQShxCyi>>9S@}GEIUTe3@Tnmmje%ML z$X+h0N5)ep`h0~@gTvUlhEVb(WqY`paD7W)DPo8ynvrF~?yu|KGCC3MBf3cs@ZAGt zSDIFms!UYG+v&sk*<7Cd=1n=mg&z0u4UBvigOuhctH`%m-3!Eh^6hq$73o%FQqEy8 zCSc+g`WJJA?sJcqm|Q)Hg`FN3_nJ0us0lUr>{RP5JaNkt$BU^^`#Z1Ol@(Y&snE3T z*^3#LHP_WEdA%){!zzMt8xWIYCfwMn z%Dz@Ucf)ogCAtV3GaO(d!S+`r;W}eQd}an{^#(WOjpO;XDZK{+J0AQRWsIlzskQVk zwV_=4xELXrSiD@Pnv4L{`{6d4+|A9jkgxwjoO~ReFVU0lB3w2omG)IG*U@rK&V`Yx zCZY3Pabt*nMLZO3-0(6tZN;3r6b?5J&PyOGM4C znPx&ra@jSuD4A}HR8lWfuf}oNXEPFtk=ofB?M-GIt}0%PLh+b6yP*!x)!}jr>bZa0 zKD;WY#zzN>vYp6H%lYxVB0fnrXDdsSVj(xKt>9Ru%}T=QeqzE_(?J&U146aMg;peq z3nt@75$pl;SE)A~BLlJb+M;PQMxJlmb3zYqiaNg3(a;p@6*+sMTq9FLES&K`y;BV@ zpGPmU`kP`%POli%DOPMO1_J4eR4k?so-Q7?LkJ~3nZ4Hwqdr*f3ADsBAPw%P9|m_6 zd)ZjAd`w@wk;+ap1gSV2my|D6ED1H4?U;}EEL;`yWxY(({W85n$~J-k$8cd-5Z6EX z>L^d_N_>9C;SXaD5o@4x`qXN4V=k++!&1t+-eelXBz1UEPZrM9w>h8zC*Dmu_qE{b zi5{z3zSQwSe8w3g?P)6V&g66V_?b0SuX5+kuuVv#uO;THQ%|Qt`9JW^f>T~_{Azy3 zhjj46r5yw%287%hS8!bE&1V{AbUc!9r<7?ccS9%UnLlswV16>(lqxImqhui(S9(Br zZo1%4)qfw!=N)qQ3f*17c)O;`FIbs7EkspXi9Vr{Nw^^cn47#YWMh|90(AKYv^M3r zbm_grlrPC3Vr4REG$-62A^MN7PvroJ9uxHaT(83;tEDuuH z&%tQk!DMYbV_F(?`czWhA6ITQRR7T|L441Tx8DR&vGgT`!zQ6+mxSqY&coX*r{8b- zgy(_pmjgEOp60aYc@PR!<$I935M~zP@~P#_S*#)IM=YD6UD5m}9=V~!g;2}|BAr#i zb1#LMV1<*k??_~hY7uUfHP9p^%PdZww(M;nwtB#)iU;ZIAU80qaI~b&)J*_PTzzh@ zcSsd~kmdyTUFkn=Yk{s5)dUeK)$EA)Os`TE?zyY24%0=|Z!Sxx)Z@A&K=fm2ha1rP zaRx!CfyR1phM)X;!>(F&<^f@!K>ZGEW9qyj;MfrQ0}A3H$7dwHP0e1*L#{oQv$1A5 zo_>bQG*DXnSN*$vU;<(zU>75t(_$>dF5z9<#yl* zm$TaMGl|G{Iu-m48igt}9oAqm$iKM!0|zmf(T6`9C_V|fgRka%8IUL{hu&_fDB#(u zGT zlJz7OW8Twj{Mqx%*|KurC*5u*E~(XuNcet&O4Cme%MsvUb_q^?mDf8T3U!RX;*aN2 z;poh;B9&<;Wxg-tMLVVSD>-}kH63n_{@P9GsMX#-f4T?z+l+~jmVhV`mbcaDpz|{6 z@gSE{#b;I&%f4!}lI{NH{?JT_y8Jqu`}lr%gA!W8i+uTw8|@sL)G7NOvbb)()AvJ# zMMkTP~tY%z0I-710+Y;YHxTrvwp;w zjIswXJWk1PuKoMaxPB3SG5K?k(Z(0-)MpQD_#*~tTYXtaO>s>}?2GMlgpa?i zq3qJ71NT-*srIc|=rg7+dO)sPR0am^^W< z@g~Pi9X9_x}eEbYhtA;2zEeIT(K)=Sr#eafP8|#>lU{Pl!SSRy?TXzDu zDwh^Sui{T45ytIsJxJou7iy|ft1VgnZa z*JrD@U%6_{@fqe_G_Cyh3HxID;|Fmru-lTVwZU`wW_~c{ihD0OQWV=`Y2C8|sd#`l z5X6QmQgF%v*$c40h4IKn$;JM{;}5T1@QrFZm7vod*kD$=^{R`wd`ehgYLdQKyKK^L zhX*VYzwpQV&+O*#s$MpaL?p(Zm^xiexYRtiN->rdK8qV<%jrHD zXx$cv?X*(iXL(bdV-q3f8HvKii8TQCPtIvajq~wR7UnhP2i*lw_HmZkt>n1ORCs48 z=gtxIo_~g!dP(hFItBKh;mzdZq`yxCDQ`S=lrltoBh2qHxmtK>Pp+hlu4d5~SAR|V z#>`+u!Nd7i)~`m;2!NCW;@4^1&aWER{7Ezz<&HqIQA(k4b)f|}i_YRO=zG8{qa5uV z(2K>pohDuf&7T{FzF7;qsxiwU3_lt}XXWvCdZfgD01TQ$_+o}x3(s%a4lPu6Q$^v@Ob zuG1#|{Kf8FQHf!b4a{X4O zKNE2q(Oh*M;{DBu7Q&{3*qPkgbt@{(&Gk48Img*?wzS;E63#+PIY}#?-xg}I$7*<2nq-FtH4+@ z2ic`)#VlOA3qkSC+RTT+-bV;(7}KrTnZQi~3MCOR?QNfw)khA>*x*78aG!KJXfj+u zw%^!go-#bhm=#Ud12CF3z4T2?WIL<4ncJ&_>Q9b#N(DBe`RKqpWBxwm3s`P25UFeU zRVgB57hTF#izY*^A&nRrJ;?21mmj%5b43;Y)1tHu$48QKPqX-<=XnnwqWw|7?qyDC zv(o<4{N+{542)u>8lZl=N89~(yNrL4X!d_8rH$cYc(B$d5D3+}0N*39RT9SKI#n4xTX&)t>EV}8cBq2(2%nQ-W{6f=*bejUs}lFtdgJ!A|QY$+e5bG~|m z)KxKCrK~K5t)va&NBGaxis-m=c6z8%vt+ziOInQ14@l#)h4`Q2`Udzq-U?g&fSkx~ zeTU62GE>Xi?a>QsiYv2D_-4mXr3plt=yleAoY!}x)OASYLWOb8By~ zp_lU<7&a!xx$&8sB|w@RoU1Nn58AWG#sx$epBU}1E!z1$K2yAbSH~}a&#cWjLu}?G zd=Z~ne?CO!WG3l5RtkqDNDI)&mTQP<;Z>OG%|`4~C5ipF3VYxi252O%?-Wxf6D(~< z^60vHY!w4#_JG+CizTH}Nzvgos;R0F_|+UmR%bg>2*c`9kv%EgEZ#Czel1!$UP~wj zimI2dz&RP|=;8516=Z)kB}iSHcUI2?N!$L-tHu+S0JK5OH!ewcdso57D?W#BGFxW^ z|6*n!X(Dm`>yJ-HxR1Lk65U82gXD|LyH!RlxC}`jAFScsE5M8Mz6*KH0`ypqQ)V_P z`}+{vIG8hWzQ#8)!lPV12P4sgFj{(p<~~OziJ!PJd{^Me$m@;zquE!p{=?V!(xT}B9yL;Dpww%$!m&dGh1AC+S7N zOx!)*t}kF00#a00c4`EKu^oAPg}BI_D1Zh>b^Q|waSp!?bLetU3zhU(DvyG_%+ZEU z@+Hb&rKt1PYGz;;Yitakjw>9CX|BeE?k{F723rSvkvrg}`gQ6|`-e*Ku?LPt+0Nu_ zKR*Fj50Dz~;-~XB+aDVbtzP-yAM6l+tpmQ%O;0dyoO!BMBLLoe&p_r$$|t_7<$Zdm zS>9}ufD!YtiCd(~J1Q^ri&8`d4XP?ee~wfmX@%4t zV^!MV7iPMC#B}jza2&7e=59{HEQ?Kizoam_r9eZ|ha^obtjq8}%?`NqFgLPppAjf= z{(7+q%(D?t0;K4m0u<=tirc%nQ;?tWDGIia^N=0_<{l>dOgiS*2V+_4HxEqVO%~ff z=HNCe|l3G@L^L&5%DP7_u^G|e`M zmVkBfb)2rIU}%ONZ#^kX%?T*rgstr{LU8}GF-rc)}XHjw0?j+{hqn+rsy>epdXH%(eZQg5A%OGgQoFPH@JjK}+? zJ*{?((Go$sbTiV_lt1E7Vj&HNjtlj?$>?{pt9{Jr-~HS^sPPejeXp%9fV`u>s!Q7G zXfc3!C?=?+?0iX<7OCqTeDmzL(}dh_$*{#)F;_~hiKzyc8No;{4 z&({i2{`&zE$OdMQ8$S_^&jd8#x5!w}%Kj_r$aa~Pg0E&qvFKwf<8~0}=nkawrtN}{ z4l)&+la1qN6n~YT)FNu6K`?AD`QZ38Mws#B+~P-MtTXt#`W{sprkITnl``a15o+%0 zQ_gL;u$=eCAg7Jtn)u2O?Q+Xh*+*cO&1}rC4{J<;IM=Y2vltOpfA<&>RFSp9*(Zbc zx||>dOcHjGJCbb#bnfV;)}~e=ij@*Nq;Cx?`oYUW$yV7GgHTkjN*&33mIvyknc}U2 z<3S-d*%?5_#3)`T!%Vtw{kGIMNR8)tdk}+ybY+>R=D#aHcesJNK1=k6nbGSU zk)thStopFF3P<(WvSiLv$R(!irGAF1?l*8 za?*F}qU}%6>?hz6tA9H9*-oFLGiY3PrEjvJzLQ6v1wVB#&}<$Ie>Cv-aedl;=!cnm zsHJ#JGD>0kUS@mz!Auw5*~dr$!p@f&7F4=TV9gb#HPf7=5P^%?zZ%B*PwJT6CH()2 z$PkW9?_a<2+A5|pJEC1HV#6s?%hX)Ss3he4Yf^8!yz|{`Qe3b}I;eL9zR%27lFSeG z)}C5r(0{%S0$;Lb)mFH48~*UUIgk{{l$RZVU*?^l_}-;Qoh1xNVMNp7F(I{cVFB{{ z(g8!+&Q@(w#EMef(;zOSRl5|DT|bQmYyVc@#66ND*wX==%C52!C*p5aI54!({is>A z1htr?XP(9+*spCVSKQHsGAv_Z$$nVZOEI7;#N1m1<$*KjtGn|U60vVkbd3S}!?&yEqOF!H2# zn6zG4^zEB?%9+}pC6RcXwi@^-ja&z`VqavpXKV2quktj95O~h^h`J_(s_UubP>^vu z(|{zU)1a!DET71qU03x|VNoB2YX{?7Dtv3-Ti-%DdkEbu#OCLkO4NyDV~&hRwLQ-t z5Nwgnx1_3CuYzBEJ1-T!*mAkC=Cb_|oYciVY!5$~AcZ#*G6Mr-I97!2D^_mT6EeJ7 zFH*hO59T4{)yovh8})-`s><4YX?;-@!gLP zA}z^E>HHA3rPbhMWz{q3o90HIKb9UtUbj)Q_`vn%UN(FKilvU4&hlmnw6?AEH3^uP zyqz`oBR`1Ym%i`?;GQH(Dtzj>A)BMkOIr9;;l8U;6x;1$t+I-oh=~+) z?-TXo?hKl3be2urU8jep$|{7cDzzMj;zw$Fn0xc9m}~c|U!HY<42kMOCQds%Qn+tL zwEgA0W|}}?Ggl>xN9tZx1RoDJI(t2mmbyTqxdpn@(XGVaLPTel67FgYeDErJ z1i1l}~TKIxf9MgwA0^N0ESOOzJhhW`V9c)CM!m1QZ33TT>-{Ab*J2QXSTha) zwjv(J-RuZT+a0tc#w|d!xL@I+a-%jM`p(AKg9{hL9aNt@(tX>wmR|TRDZ^uUn4Qfs zj88-?fZ}fUjGkk>+$^ivPn!uFs=fC_sB4bOu-KYb%yf#~Ny4B@-?_b;80xaIs@i|$ zb#uP%7onZ!@?u)ozCcp)7B9^nvBI$UObIJ4g#3coH?n0#PdFZ|*Z*|@`GlK?lYkVe zDCHUB+Us!ENqBNU(0cBQI;m=3=wVE!!xVu1Vy%^Na{OyB1Ym+C_rGd>P;6Mq%i&KR z!q+I!)(|pY=W+PpxLlg{#_%DnQWG|Dj==oA`CvBe2as8ENz?x1B;gS?N4&z$TZWO7 zng0tR1F&Ro>uEoGQbOfqvMXu1 zO%66+b@->JE}EJeuif0J@eMFXDN1@U1!wNIPsv^AvqdS76|pGUp1vwrU$a%N3a!6% z{xe>bdyF=F`xDlacK$r}%C4_l-)x^j4^_;YT-(2Yg9~0oR?xk6UUtGWQh8$niujzf zAcji@82OrA`HiL3Si*Gpu=-sUnX1gG&y>TFPiFc(mur0$hT7Qoc0$k&a{JC|AqRJp zk?IYH;ZoJYa!5{voFwprB_%ne^9F`FyRpXGPh60usX#tv(Vwc@Qhmy3?$+W%yJu0N z5tZj6y(G4P=WF4wMuZtF1A8!b0a1EQ-8!XWUwZ@1T9#Is?q?pPa z%3%_M!lkYuJ7dw>i(l!Glp3-ZW^w)jT~=Z{lJcnEyq~dlHL{V{v?u<-Xf$6xpIN7p zc}@4CNm~f1PVBA}dEu;#OaB{p)NSYIZVe^QBY`Oyb>$r6D;-sSsRnZ;Nkl_wJL!y$ zVAP{v$z~h0fYiF*3~10?_KZo!j!NOq<4ZL*6i)ZV|1-Yi@*jqy5gl-=A6; zw_U01h#GfN`LpVaP{?L+&Ez-s+S2k9U=E{B!$w6f_S=g>Y}3JvF+Bq|?xH5Ke!?y_ z*S0q?!IQFGGv(@thVAnYFXQ`u{u`9RJNOW|;8p&`r>M>c88Kvn?Zbz#b0djgd`&mK zdjs!CxrB3G-c$Rm0&(6@O39N}{3&IA_BiEaw`~^iyQv;;Tg>d1n%zJ>4TW|-+P>ya zdUB^BzxD%!lbg+4=t;(xyASr}ZiM7r?2tmAStEF1&tIEAYwA;(Mm-YUGq+ppX!bJO z8=X}n42h@t8C*v2kv~|#{0A!z!Ud=BT113x@A?(xuvF09K<|@;+`l1N%dncBdo$0= z4)ymX_A*zNnhIibp`}}f_fcHc{AjcLYkUFe2I66nBp@U|OI^F$pQb&oG8Uv1VRigY z7bfs{n{pQMNG=_EXmLC37NS{{jvpWGQsZP8{Ld}hp)Ax_>vfurhA*J<%on}irpZ@5 zHn`i$3r`)?PnMKgL~{t*w)Y~Bt^U?b4_fNZV6w5u_Unm1881gb{7dpHtk_)HX$l6d zyKSE)L44iQiUfj#%b)o;-z>GdYi2W1iXP5t-U-*J3K6!kC=mZC0uQ_e8Ai{%nmiG# zJYA#$}#s5@6^#QDIXYi3m@EZcZ%Yp zJu{uL@ltq!GPo@uMO2j8^&(YwhOE7Jg4fI&j}FbT>aH?m=vhJtnhoPLil2`^m@ymI zSY6t^+uH5l1tTP(;1hcZ!{qvhu|GPLPFA3&pYMS7cEg`FmxkZ138+BqonEB$fRGg2 zPIiZqcE!<$7YcS^IzMHQB8f>80r*}zaAq|W1WUAuqqb$If)MM ztjNOra_!@TbbhAr(`5Py+51t#H5bORDd}Mc^2^_!oyli7sEAWu#`U8sU88)#ZyS9# zqB{>*aG264=#pyo7hXfspmk)CD=laJ7uNMa{gyAeGQXZ4 zT183~ShdJxQS~uXDC2bDPjI5WIh4QrZ2TPq$E)~@M-Gs+`QHe^^^8BR&xWuzQMBfCNbNGi(dylfEV#4)PQ9BiI4nKq@{fhX%41ZV z{YC*o4J3^9B7#bmwbnZ;m*LHCBw-G7x{3%qmJPLbN$YfcxJrZr2~M@Rw2dJJK9mlp zN0&n&ugub}B)sBNa7?O{vxgY=3e(h*rOIj!mtw}4iC?|wU3Ih{JA@6u(~>{=-AO&c zeux9#u_?>;?@@6s8>F*~j}r>OQz30Ufb`C=4Y&CqLG_*MPhwne1-SPK^5|l`h!j8< zY!x+y8w7yvV9FiX z`O!crY#&AL8&NHG_5(;5)XxE;u(W`^!U9DZWp|$`m)hHzP3%g;vi~;hG>-tg{^2u# zS#3N&-9`{Hj3WokKW2%%9v^Z{T{Jh2+Dn3=Xg@g*Q{C8IDgXTH4d&etJ&d=j0=zjg zb!tevP!)1yJ>rm>Y=zM7OZvTnX5I-=X!5~E0w8L;NevZKQp8-7D^1=dk7rQ~uz3>{(CIQ*gFVy8}J^F4S6z+#lyltvAUoLo* zz@U)@clI!8H?+K$??=J!<@g8JJNy;KWLG$EAOxhyKGJ1YsIz)36*!L=_Dhz+SF`dr ze2KCW+<_G=KyDo&K)h(A7>(8nO8L-^DNSc)ZO`?P*e#5 zkk~U>4q=KI#+vr4ONCn=5dqd8m!YIr&uP9g{2j2Slc^TM?(r0LGBvAE&|yG!2M1D! zt3YZL0S0*MhyRSAS2CYb6`Cuqo%s|cyY`hllCL1?50F-+wBHp9O@;$fo*ziT1Zw>G zmZq>@jus9TuYK{9;o?8x&NMzyoJEjC0rd0+W;xZ(Y-_7>Kw)(*h#|^wX6vuFC)+J8 z5l=8_>tDGOu-Ai|`Lb+JHfvwO67Dq|ZO7|q2~g>TU;<7y$A8^P^3@$TePycpum#b) z?0sNSceoJVJC_Jy(DCwyPHU-*$x~b8EBd_rw<-ZYXa5PQbUnr%{GVQ(KY`Y@dvjb5 z*XywV56A`C!D*tx*0EQ(R%7zO>OW;}8l^v)c~?e7?%?+;^W&eO=IDOe^&+p$>T%vp z24jh{V_>GgnT(wmz9#`+*S< zw|y~k*xV#D*~MQi(@tZVg(VI5)7?8+RO#OQ25KIU2#e-(cPG>Sw;%u@u-41hcNpJ@ z>0*J`)6LFEN%>AC^?Cbw85EbA30{}l-#(6o#WiZFt__Yd_$=3BFlyzC*LKrEp0R5^ z&u_ooU#s&WV39p?``n9C)C-w}X?F~V{uC+rUw`7wwY~(P9m11GGAk`lXN3LtG-dny zcJu0cMy;pRoW2&wMR@9j3fN!56c{OuFZ=RfK>mTFxu@E8MXyN4H)ko|{}l0(m0K0x z+7(1>Pw*zP6XyTLFZ~iQwL2ay~r0`E0M0Z_^1m{(YwUj`?!B zI&GrZzn0HH{tw)sUIbFV6pIb&++N4e?u~;v>J_v+)(Y|y_sLJ@JK5ZvWl*XAt|1yY zUsi5mGj+aabf3YzSPrNrug{!RyL;m-Lq^w*s~SQ7YUjGhn9Km6a+VdHE>9S{HC2yH z0=8OZFry^PjY^buZMb#L)CvDX^i$+3g~iVpNtl_x{vBsX4r!VU2o+RKPGdHogDk z7%m1vyKz_%TWfOK@~Cb=Pdjj_L=vuRoY4wn390J)hN z6o`jC4hJXfGt>L!wi|PZ=W&ff=FN??fqO)A^F02w_%~Ga%)dWM8uPszQUc}X z!%tUN0d61V_2vx=iA$_^{eN5m<>)sq+*ajyVW!LnV0-^xIDEx701ltM>_18xp#_+w zp$Ws`e@RK}W!@-2AQ|;->2d!#{r`Dox;LSP;?&OnF?iXGfbsP58I$;z_KCg?{R2F1 zf005Z^`Fy2*Xk~c%E~!?`Zq$gwH=UFi-m7}7gPUpdIgXc=Ja&Q|H{z9U%(~YUo5}* z?`f|~t`{Qu`#=51w2Qj`5xBbho~{2qEej~Fvc0|Lzk~}=XKCOP8YT%c7XLZToDMvr z?8?f#|2$6(cHk2Ke|pTnV@D}KWbi3Up43$}Zua_5ZXx%#&s6a=e76tiDn6KPu`uBT zwtX^?<(6vNu!X2kxwZJCuyGmjX2dZ4933qgp3{TC^MiLsh7rM?-CNV11DY)WQB6|7 zE;O*RC>!t%WShvj5KR>hZ{3FDwL%d0%oV}my8c|ti-DxLObrCGN2jNS&9%-l85gSs zCe+^>oIRO2zye>*UOPXi`O?*orvlGUhhNX^W>nez`ov=jdT=`+ZO`inpOpWH$=(sD z{0j$C0h%~Ps#V?d0e<~;D{oi)Qj&>>Dhgo6iq4=c@!88b)ynlRT5jGo4Vi>Nctsg5 z1)dQCXQlvxv)3J5Q-=q@u3dHjpe#K&nNpPin=m%xnRzm;3??-Jh&OUGz;h=h2qBKR zmkYX@y;fRucHk(;2%~wu{f99Dbq+j)+IA;f6cOVsqIqDFOW6s5Z@5%+^Ln429%A5} zybU(Pz)KeoA?GBBePgq0^{8HxXTJ=!d+EvL&KCf`Eam0)N;Z1y4{m7>8F$X4uvdWC zJY8=&D_pmuzwA|7)+_QoUI+j=^~yN(Y1)`z+NQHsOLW&<9iobyE(7?vfl(0bw=}zZ z`;Ddt{nFX`WR1OjzyXxq{^NXX11Usi8A?`CVJ!fx8sFasR%#}b(w!OKJOfaEkpBRx z#Q)s&y8i-WCiBFAl`cEzI{@t~%SSC^wxIwsDGCD)^xJ-rd8DyT9!6~6ZnC!Jj`Z7n z&2pW2yk25Q+FKneE?fE)T>Se&a*u-vA-3^sO}}OB^lbY)z!VJBM6^qNFAbgmUgGFU zB|xW}A*=Vb@R!t7(Lr1$#pa(fbze7NSr{4`F5vf&-Mk5b|*qX6XQ)=-mu?A?f90n^%hjvBlt(u&6j{V?%3dIf{FNG z*gZ8&$2-c3X4Xav^W7oA=j5hu=r zb`l#YFJajG_>KC3NXN@yv!cqR#w8xH*Q##l!i=yl_hH_$t9}B(+4}(ip@!z-Sq$1Q zrvzi=;EdQ?ww1kD?zdl=XLc8Okzr;G=2eV^$hg z-lg1ew(dT9r>W7SygVZ|o(6(#w3Gl5-ztF>K%Zw3rjOykmclBtiOTL_2G*NLw; z3j42@gwPN#{}DN>ug?Z9=}x<#Qc_wqp}*t9%x0cHt<=7?$QE*+-FNP7fv<+qa;Eo~ zp&~xm_7*hBdkiS-=(<5&9DMEw{|Sq9h6*R{RpekhJ4$>j;{L}+C&&|I95em*Q)1lR zV-OvYfdZbu6UfaXN@r872G|L}T>@2|IR>n7?R0DnFkxP|G2~fhp=O1;j0>P@%pk?Z ze@2vo8fIK4`CUbZ0mh$93D2HzGjbMh3{QeoKPt?^n~uHaRywD*-jLV}H^^S(0)EeH zF%p`{90tlA{-Zhh4E`&M1Gh}KAnNta zyhy9WFkNz2k|D5ZxWsiuI38jnt%-McA}Tt*-pch2>V|i0d8cjZtxi@lCF6>D}tw-mb zjy$JDYRGL?>3BZWa=9nkkHS`s3w2!AmC7#)w=`O%><*L;+sR>^e(+RilSxU?(~iNf ze@f~?z6BVhypZqCdh2Jl3+oq-bLvg1|9QdTLHw(9hO_1iSX}rM!_oef8<=-2x!+_7 zV3;0$F813Yn>O@tC_v2b?Gn%Tt-Ig<@Zb!IwpD16)8FJaN9>w}6@|Ow3w+(bYha;l zVM*)OHMI{eEy^Z^O;p`%t}_(sjLEn1McfZQ$ysPhsmO0hR;zVx6d34zb77;C`1;Fk zKJz7GS%{sTTE~fI(8Dm{y?xN))G$N9PLQ}MLe)CkGHmDO^pK=V`lF7rOw!afmpjY^ z;-E5RvBnVgnx$6%B$fXX(LG;5?ZH%5{so~9`4-PD#}SowUq9I}u%AeWH)z7qA(4~# zk2Yd$YG%JC*FaLIN4~^UKz39!TfrzNU+maIo9L?5x9_8Dkw%DRwVNI(d{yQ9qq#^h zW90g$Uufr+mPBkE4#)Vh7(5tv&&k4f|eea^TNMw4J+4%SxsXU3qP>LxkE2>UPi_KUg>&rU-ZYvc7Z9?yZPCVbicjo=?om#|3QbK7_i^;bPF|?tUBm;*hQJ%$zRypM; zO?}9W_@mrw{sSm+@$?*ErV@b>LlF@ZGyQ-4Sr+q1;pXC4v%PQn3D6W)P%)$k1flT4 zB=4KaYO>-BnG&*vTV(3mh5MOXAsVl`q6{Nl!9C$d%L#`Mb{!-TJg_zJ>B z1zHHc=*(4AdrV}bv%jB)!hB9eB1=nR5Y9|p`;YK=&zTY{DjIHS#9Z3%v!0#D(7CEc zUj)U@CQ&G07`s813x-@JbpM!lpd9*wY5~1eJ=i-*^*cguZcrE2sSc1Jw-0JTnvTfX zv9k&dDH+qF{S3Pen%zCt_#<}$*9`SW03~xBMb2f2j)146U+=*Tc@{XxC<|`Po2aRl z`Z&^;-4g^~&UbQ+^jdjbo_F3rnSs}S!!rHB3)4r#!}3?qtzOfL6}!6DjS!j z)MGiSv(Judlh)8a-9jMF*~EDwqxyTu7j2j`87aBb1gblNa?W*py)jA9IKhjVDvB!~ zN6Q5olOt?6H;)e4$_d>%v5=n2%LBPD%$0wPF<9HEO_X55wLTcT3A6xRFJ`x+_rkkR z=RV{HpCs9a|NK@7Ij5<6z$nodQ*Morl=kz-L+cRSS5V#Z0GbR_4SFya+6g_Z+)dcQ ztj3Rb5huFX{PTvBKf5l6r1ug`aGt@1u}X>3Q=LF^;ycnbBH6^c$07FTa!}vwuE&wB z7vBuIU4)aJ>!U@SI{Q}}LSdgh?ev4VkMR>S`r=bi@F%|f-O;W0_RMp7BZk(u_0rxV(flmNNaapNqX>w0)IR0x80q+ zCg|+K7d68ne2a{%KnUn(Y%eFySa-Fp9FJ1VVi4SKkicV7yLxBQu zK}zc7&+QZ!8@F<9!6%ne96ZvmULfiYd?maYzEU;;G&va7v^!82?}#)#Ck{X?=mfXn zGtUzp*AP*GLGIavThDT6=1*SxC9peU`R*esQ_V_2%l+8}O^kLwX3x3c@CNcAoms8d z@J9HiX%m zDROdB0c=IF<4?(2L+n0`6NUMbmYj)QK7#It##!8W1r8S+V&Q^vk(l^>c!@CB-#pkr zzl^81IfYZ#Ca)gq;890RAD0>HsMoSQcyb>>9g{fi%nWd~CF-L%7GcVsm}74z=do3>tqPkC=Dd&tP& zGls8vb`=4-@jpaD8+*rJvJT((z-%S$*kswB2D8 z87lgXo@Rj4ba?a>faa^K^{Q;h!uJ3|XO*o3J!a70V?(|hh7bg4`*`AvBeui)k;)Le zj(+WGdopU_dEQ^ul2o{0jxXUQ+c=|~Rf?Y}M1N`KoQyZU^4eNCcPyYW7s&_Z)uS-D`~yeL+k`j6|zXT!BY{EHWtqDOb~CF6ylTkcxUCc z;}eLAXo8BFd$F?({%CVQ&>?*~^{EmrOm6~Z4dv(&1+?;c8{Pxdk6NOg0O^Uz!E1a{ZN+#-%Y^l$v zPlTA^7rtNLz!NWG>5IB~;P@j6xmm*Lna-*_R#O~*20vseoZYEK7a(Q#S6tEnVqFGX zIqN05g*T)qHO&7cW%u5o+|wZPa@u)2Qb2k72Z{`0@j8NCdiqgOSzgnrxr>#0oYiIX zfBQA5BVpK?=v{sdo6(#mglm;LaensZl1ugHwe?J_s6TaZib0_lVHX+baB`p z8PA5<1Jk=+4xcdXjEDW{o~#q_bUu1tz@bmc-?*EmG_MyJMi+E0m z5b$2>tZm4^jUP7`u_0hPz=`G?)*tC_x`H32cUG(jeg}I7Ib^@UQej5XUrm`rC>db{-V6AiRnDB~e>2r$%&TKST!Lp zkXL*cOLW^yhEE=K%wYKz$f}K{Ujc{@lT!;6hLw$lB)geMr(0f72s*7!73yvoRSyQO zXw@$KqsbBL7T-<)e~AzEHeGI4rh_CU_K?d@!1bt0q-!*6k;KxE`+sf?J0{y6x;)p-zL;pcbuDf$`N&=5}EGzX!&8QbOuk!rHBQcQJ4|IsSU2 J#=-yke*w`qn&|)l literal 0 HcmV?d00001 diff --git a/docs/slides/highdim/34-distance_files/figure-html/euclidean-dist-diagram-1.png b/docs/slides/highdim/34-distance_files/figure-html/euclidean-dist-diagram-1.png new file mode 100644 index 0000000000000000000000000000000000000000..466318aeabf413bd165cf2ceb10fa55cdadd09e0 GIT binary patch literal 49532 zcmeEubyQSq^fn?W!ZlDrK?FsmK?S74Ae598kPsw>l}Q`BveIIQ2`LD1aBvRa62B>jgM%-O zgR}nw!2x*3OZM~%4i4TC)QuamMmNN6m>HW{$UnTVqbsIss%wGLkrTU)gTw9Pqo{6h zT9HIBBtMJkeEs8=xVYCxwm9Er8_P95=^EYA%`)j>eq)?{?Pc|3Zy4$#`_M)Vib0U% z+Obaw18)Yl)jrXkHB6rJVu{L@jlz3OztXTK_P&Yy&_q6aR^gkEM#Z%~t0SQ^E|@;c z={};DADPtx`YzxyQ>3yCHxFi2jg*)3T77bEIPBcO!sP4E=znn^<w*K`{yY|YVaz5iwn!)2=a&VMSh98~H zLAfrXV_h-i<6o2$sJx^mrWmO#8*3Cy9nxn;0FD&w~Ae<8{*HLsV zIz4KYn8ejs#uVQYq<^gcv7PlN{+i0^n;SWoHA4xlUF1Ul8aa9fXJC+#CEa0}_Ds4I zit%}^kFvqls`=+DA4kaaaGj@F^ijO+4Lq@Wp4XVCy@uwAmEr}Z+VW7jsNA*UHszu;;5(_nVr1 z5v36n!?JIv-%Q;TEGK>EQ!V`IiTxz$C9M-TU(y^!IjLzy#}iVF8oVEkHF&?$IxyM) znPGJcCr`m}>+8g5YQn z)`9Lo8`b!?n`-bnn<{%1iYi4Ewpor@o!6%@WU>0%)e>fb-u|qKX;0V0aH;;abqNIw9_IwdHzh*n0yDL8F|2^}1Ho7pMdSNf(NQX#N^7{(wK&fCc7+7`2h=uxELRJ? zHmY8JO?}aIsPBj1_j=0+iwN_6x3B60tQMLUn&#A&5n_fd_A?wt(`nHegd?cHJ3SHC zRXbSt=^uCqeE#zJfrQK`>C-2N?z1`Aa3!DcAy+RvP?c`>AldnY8+oGTr0IvOw(mj; zq5%i!oZ^ON*!N4D4n3j0C3NbXhe@Hslc~ix8y5+It~B>b%Q<6yd~GL9Ck{apq0bK= zpX&E2xidM}VlkFkdt}fX6_%Y7Jns3W`p1wqVcHc&vcHDQBIzdzMhj0j#vRECG#JK7 zcf7*=+3eQVCV97gtgdCm0qzYtzGc;1o}&XF_BX5>)LwPdA1a=~`5+i)w4iR=4yR&`?e$FuXYBr#ew>ey+xxdK*b!CewADg@;MTo+ zOHWD)hY?;A;Ou*b!oh=A``|wX{Kvt;jl|u32VXdH|L*JkACM2nn^mZAaD;Jg-Mpq? zw{NodP?5i4G1sgR_WUDy#z#@lxrf|NJc)8UcZKKPvk<$KBGs9kD=dZ96Y?AeBPkmF z$z~&UeaUfgiSBMRkB-+2JdZ?)bDw{7oyPO4(}1-=Zp4v?+>(?X`VlkDnCytnzl_or z)%iv@?oOy!x4C3`_~7ir#UnUIBkZ>Kg)Y5p-e27@xBllR@Xl8}yvP!QfBWcdiW^S0 zaiP+e|M7$H*T>w}j{NgF$dAb8;^H=BPN^QI{c{aF7ZAo7=lhqp-Gn;{3508NjX1sc zE_-)P`x0jU?QL9LCK?=;?$p*x|8mR7P3_Bj@!v`9`pSRi_uEtc^Qqm~ z`TuL6kc}<#BxTZGn(WMY`28~@nooQ;VC+WjghLSGgBv8q#kJ@NoMt~Aylg$*@{Y%H zM0&-F`qn@Hn%)<(2)FO;v%6p4-C)Qbk$Cuckrz4`l5YOZbpyYH}j@_&Oca;Af<$qrJpI74j7hwMju>a-C|8nJju;)JnOYr{-f*mK1 zKlu-s?%qUtx5UZbo05x_g42*BKElOeOex#j=&HlQ=-n(msfDp-y76{$vA5>RMilO^ zPh7&y{!wt#;}2{d*@1iG>0dAQ?LScd?y`=jdiMNP`GHRdslB&0*Q?MjOIdYAUvvSg z)B6gC<{`O5-kv(>BEIz_lV7Z6Az-CHSTB@0BxB75by*T@sh^_nuUHC~B zwOntNEIr+{9Ph~U!Ryn7GnLm4Qjw67l3q6H%I01fcq|d6!FbJ0c$MhnKGiMf4<38# zf`lC0WaTv9TGm2lqTZ6_;+aE2wu4;nr9!TnPvx|WI-LGgx;0VybnY%+2D=jnT$ctX zMVBfy|Bv60!bKG!q-d+zGCy__Wrv242jAGg*fXnh)Tpr+Gu zBq9*b%S)d>^t+~k7h3TIJ?2$ZNJX0=8k$8}44L1@wH}j!Tm(n=`JZ z-|>CnuOq+Wl3ioGk}yc{*2_)gWlbzy&f{NImMkBB+Xs~sVZ7F!?V7Fv(!66a@2=?9 z95}YzV=2SG*dpIKr<9^vVco7C=n+eKZ>8Ej#I%4x@7udqVdH(pj(?ru|Cm&3vyvg= zMOI;3f(;X&l2S`jPSR9VQ^iS2$8{`rSR51+TDuctGvm#|;>KY)@{N1sosRZ+OCn!1 zq2L=Fch&QPmD>8XTe-;55%RqIT7uy@??QcmOu+Ej{h%J)3U{1Ao&t#<( zPs9M{dMwepRi&F#W;5Bd?1}>sTVoODq}*NSD#(Yb=_0)4rFnG2)*NoQ;kauPzQfg& zl+yj9xE8)ez(4<$)?PraL#eebRlRVfHO<98Vy!K&gw%C&LKC};(x2|h@AMo-2}#Au zG>PIZ(KFFosUa2x~xg(~#Xg`sXcg`bZ!mNLLYZ*J6Wz?QJ_l0`v;iiPm=z5K_ zTz;C3!3C$2`*3qap`11vy3vS-~g2cP#Lp#Vs3` z>em;{D@c`pw8P4-vKB8iP4YyI4YZdm<&3tcX}Xjs*ic+GK8fOW9jf%nV(hi3W$9#` z@K}?2cj>IlT62V+nOd&#snYe{nJAadFut=K__-duBx^~snrVpF=7KeMMAiJkhP#I` zz9ehEg)WrrE&+$EE{G|6xV^cIPIa8js2Z&2oB6i1y}Z5Ef7!I>qj9N3AglS8!(0#6 zV^=hvQM=fkv4|U3(%fFu)T!_!o%{ZbT5q4(_fzlTwj8s~`d#9=-kbIobkZJ_6KP@> z76Shc)1V^-qjmzWWw<*}Rdg>=pvrK`d2OMnH{^udbiqWbdAqu;2;p$kl8>1aZBs(^ z_KM&3*FG+@K7NQBCE~O!67~{kc7Y*p_Dsf-r7j~Ct@U9xR~|W<(A@3C(knF+bwPH%=#Rw+ zs}Lw0X(o*Ri!1&<5{x-o1xz69)oTbX=c6ks$TdT!%<5fZ6ML%8I2w~Bm`<*dki=C4 z9^sozH)x8v6+@ihI8$t!d)x7T_DJP)Z_C_Oldf{t?PXW}K+>*;Y*h2d?X7jJ{u3p| z%C;8N$hRQ#tyPTJL|aPM)fj&apY3$0Pn=ZqELV==bV!YJZsK|<9qd~G5Kegt-xl}A zQX1JNTq1JTZxijgCf!c1@_dIWIKIZcP%cSz-QM!=S1OE%v)IN8ZCl1@r5CVxJVo)Y z!P3Z4oC~h&d9Ge0_u?vE$kDIWFr_Kju3tpMw++HDPB!B$3{5iD-2rW5;CenBNef5< zdVGYJKDB7RMm%DDZ6ZydNKD>7QF0yH42ZFuo)-)uv+=_Jf7$i{dPk>+?xx{Lycn8>X@y?{uum#r$?wLo}F

    ec<4NU*wB_W}UM>7zqIfP?IOi?X^kYqD!n>m)UW0z4Pi#{f(q-80t-nTwaod#df z4SpQ*?e2)}oD@CFQ zCz=C%V=Wa;)KufMzbX(q`SFe?tc)v{7D&H3c>1C67IW*JXwei)(@ie_^*D=&6xXn2 z*w_xGefvgp2@4|rVEb<0jSCcZ1Jvu@y$nTmuvZl+d zQN*2EvNkRreGah;c9-q-{xsKW-Wfmc!ROrTlUYOMCuHtn>>T9NG>VNGow_2}^`#v; zqgYr@}lasw3~79cQ_Y2nV0ExD}WIF-|BP+KF9X3|vdNHb-02sYgAGD;KKTwBc2cPE?f z>}e+{kIRi=@d(?0;IFSsY(=x5jU60#15+88U%w68_)!Wr!cdgLSjO^}%Y3lhn9Ju_ zifM8W7u>vzbs(=8V(!HZOf+M=PimFN%rA`42Q- zzloAy3MLOfRIoK#bNzkcWTwQ%21W=SA589RRyX0gQRVvJ{zRGkey+P20#ZD#;Okit z5E%6z4>r@cYHqK!cg~UEY`42^D!bIxarK9$w1gjtF>1;QDO6OBPpT33qKPG)mcQgQ zosUtnzUA_vfs0|oxWB~NrRNCjrzZ=r+qntzf8Zmnc*2<09yCAp+lM1rdUZ)l_Q8l% zV)b>-xNgjKir3fp%k0x4yxtrT{yr$R|BRZ0@90!s|CtokoEkC_)opgUV#E=`|r z_~$J~$Oq$o?X~GqCH~k|KB>q{n|z9qmo7MN)<_0jxzMBy z8!F#71MXz}Lwk5a?p?4FhfH%*b3m%hGO4A6yI!zp#P~}k4>sm|+4&K39&Ao$H4_D; zoMmXm+xuBR4m@(YsYl4zEYONL)j|tuF^|?Z`G;T~4K*IIM$H7x z*|CnM#fxn<@mZTGiOscarKjn_tmIWNa5*(;q+Zysjm7Jr1(v-b1h;J*K<(ST3E`9z;?ZYk@-g8CeMN94 zwsIZ0#d+BTOQ(uL{kTnDXj&%t_FUbDOuM}D_-(^MJpz%`Y^Fz3IO7Z z1*c{X&dsFc)THUA6y7{e>tGI)+`>dVo8ZRmmyd&@~(Jr_Dom++GWBGCeVY@m5rg%&|L|S750_=T%%G8^kWtkKdnuoXYKn(D5Ci)RiXkY8ncX~WsU2IY4~V17BVCmTop*%7LF zor;dmU|uM!tmk@XT(}&I$^;=wHX2%uHC<3UmiX{mk}IY@Y^YUP(A^aW`NXX)@lf;V37VSzv{xW~%eP*ze5r$6Rf5L_98l*>eD;gBz1=4_T)o~b!hjcJzklyLCI zGW%$S^Wsx854C8)E2D>)MBZJ0C_8}5Rrnz!Iyha@Tg5qaE8#klG=Ave1HjaZ(|<)p{}!f&ztCdv%a1);$U8NX0_# z+kYf=JR8q4GZ$=#9V95O^{fc{k)RbMICQobzJ%-KNI{J5cDU#GM|g;g!FO3q)-*BS z%pD15**eCBa4%0`Q;ZC%60h#M(az4kjVOcAb=7EmeT~I+EH-d(bGcs=Gh5@?I=9iI zlHs&iW9{pRFc4iAwMbXG+J?IRbmI$5vrxgBTKA6BhfyM+XJ$K1U$oLyU|pOewf~ZI z_cnmxffLcT&*~c^!|7?nGHs2omaM&@=5{!Quj=?xd1DQc202zP+DJ~U*IgQ8|zJ;=5nj^0WWxNPOyKZ6UfRNbkE>|Q* z7qMgCpyp_Y67#l0)g3nksfGeKOHMj+8s%3zsv{N>%m`OY6o~J`%gutT@$F{{-@RI- z(xD9i{?)i>jwVZRk2`nnyvi#DUa&Duvvd*zINN)H8U5u5A9DbUT7af}uQaeOJNah+ z5$?!>+BTl$l@PXyyvoh1BhDMwvQ7FJUAAS~D@$0G?qVp+Afn5%Le#YwyER24`vBA& zuda~-!2fAWvdMUIc05Q4pt_DEqbz-NeRqH4wa47wpPa}n!xmxdy`;lDNDY@vr>Trhba_>SEZ}!1u>(W zSh?{xMZl>1NSC0~%B=W4-TM+=;wJUW_rrTvO3)(ezTi{`wXg1b%t!N~a{~QY>9P3UasxpwYfDp< zK9qs|x5pO8+k9x34XI^H+1WKVyN&l5yvG(Fr;#NCBhMTa_1R0Q;kdI9BNZ7^QxWlR z&ps0>4>2nV>encB+2o!pKaus*!V%{ZQm*Gam}B?`KN3YUnz&AVr(UY{Dwsuu}^Q`213>Ga^TF)tV+WaP&UAT3diurssofweo zZ9JOYec7f3Mr}VlB(^g$olV#qG;r~1aBiqd|2<~*`xl+Y zC|7SiW5|J_7BvhiqxSVYn41o{@l({eEEHUIeav^)8ikH@K`s+M1*)yu$P=7@WbYi6 z0l>F)@i{`kNM`8O1&8V&raFG+0~2g{ z2seCqM!0pa&kLKJxSRRl7Sb6|8RfAWZFt9LYbxE4a3^{c>@)^7h1wT=go^hEW>SGI zy+1W2i%6AY&FZ|tqB0*OF!x}v$rK*v*tkD#I0x6Pbkk;w8J(e1RaxWDWa(uy)g=P_ z&HSrysSv_hi%^!1&czw|fe;RZkNCEv%S{U(+7^u4pa3va{6y`#VScqH@BWvt_NOUH zA47m#N(F10s!4vh$C2P&3U`u+fqt4gtcTAyRzCWSC(V*zU>;f%lHn ziurmY+^|izNuD94>YY2pLaWs>g9n9Hu6@ubF6c4}J1-n*gCGh0QX|g2Zf8>;#J4JJI3;!^ozu^rMcDGNHa|e3$v&$4lGUU`7?tD+%=o z$Anr+XG8HUq#tiX-~?2)H;~0Q9h_&1mj|IZdI2SB6=(as6VP6AR&dG1P}%knYi^D! z4?*!<^Kjhhiic3IzSYC2l~jWZ;P61LzX(8h?Y|R^mKVNWeQ1#1{KgRV_DNKY#rrBz1&u;?xdImL@3@1jn1WYjV zC?fB)e7FB7|0UDX%_VLyW2}x1l4bvmMZbd=z^YCG?YwW-(eH0OtDNl2!dg&r7#st> zxK7j_F@(lM`S^`cDqMW`g&uT2;285y_~Z}nV}KK+WGh~f%Ux0A4HSJAmjWD4Cw&9b z0cr&P{PUCsvf&^lwW2zLWcfXJYlH`c`Wq=D*B`IMw1MWxa9W)&dbe<|io=J;XI@gM zE`$q>?mR0S2FZ1Ql;iTWd8?wbuKOsGeP^+w(SG%!&NgFBu?6Qsk(fXr?0o3Y3wYr- z8FoWXGQL`aJ?gr01Fk{KMl0ZT*+bp~66Z=bafhmV_Fbhl6<3L9VItaV?LrssGETM)sfc~%`2lZ4>7&Ctu_uWzMaMhH+)3=>2D0X_i-qyo){|Yk zz0W|E*yZcXvz?Dr5eirmAmTJ&6{H=RJFL?y;U*je4py73!|Ana{0PKRqkSoA9p~TG zoW=j_FlB&Wk%TT%y$E81&=1~Ycrc+Srn>X`gZ&;JbvML!SuX6?C8A`xn@&^6Dj@eg z*eJF7IvTh%y{Z!EsOi!A3axjd^}LK@#V&I0Ky{Z z2CEG47`7xBdpbIl=-)SLj+26D$&Th{Zz6d>={|MgA-0Z7|GWPC4G5eS;B`Shmsn3T z6~zJGlL{fzT=`5s2%*N;pGmngr(J^*0-102YyiS(;zN+X_8DP3ejAD53t`pw0#f=i z(fkO4HY-`x>ziL&oDhRJAY~*37$FP8GD0_XtfL-xrgYn7>kzrR)tw%PiIi92Y=s#q zipffy;=^jD`4>v&e9UgDUg#S|`=EHFBbSf>X4Y@Sv*&6#;#wfhzHBqu0rn%{V8yJK z%WUSXnx3GXrqL;m1{uLkFEW;SOB;eo1NVhZAWtc(^Ygm{OE-qaX|Ky0>~!STAl@&E z6z#Q4$b||D3gwWHsZpwq6k|KxityKYkQ#r-lE*JBjQ$~n{|X>*^2S#) z#i*UFmIP#?-N3i3 z9b(MXsTcX)VUNl@TbZ(Y@g>N~kC^1OFZ6VhG}(@~pu*75gze{@$y<& zhlK;vG;+2Qqe@GWz=xQ4mR|E`F)CiGj#2#>Eg@%D8G*$XW6l*MVJ@iBA(rM3$cT}& z>i3}|??vHC1TeoibmHOz`EIavG62qXMqNm5Z%a`la|pMr=V^U`~@Jm6Z1;kZnzZrk+yl zAhgu~HguaPVM6YB$)MLiu`sAghI10Z?oLBAgNh;Bz}rVyiuB{geC-fa40?#l;_}0R zGCRoWv>s9Zc?+XYb^HXbuHT9dO)K46J1OX7ckkgRe1Enq8NfO|VC`JDhw%QmVyJL% zO}MCSoW6Y=>Jx$rx}BGMqakbon$jwBGiWuelDfm%@`(v?>OOl+MM_>Dh4MXfktHgb z@2*w8RLL735z>!HSQGk4Kc^YolfZry6S@CrgikTQBx7;_r@7l2chF zT!Qk=4k!M5|3t{{0#eQ$kf0b2ikoFcaKRJ61tNsJ>x&cQ`Vr1HKXJh`VUuIPdQ%Pp z_vs53%GQ)6OzphTczDb95)`lAgOQJqBpp8ACGIBt3N9n^Na3%&dzN%uT;5t9s)(lX zDZtvRy6aPUnq+oy6<*Rpn+xJ-u599j6kOC?EZS9{a z{OxZ*z91-8`#k}p$3&)(Sxcb`Md>IEF(z;rXuo(8ak6bhvrEF-V4 zhjG+kLoMrH?9|hf$7qfR1S`anij(nhUnWR3JS}>j@ z?)N+$QSn$p!5G3c%)7_>2#jwIK&S@lAlvQ^MSd=%`HdO`I{_#M$oMPG3v1nQN4RqE zqLYXwC-=IODh*N$bP|l6z45dhItWvT%`BdPjkiL^O#Wo<`F9lAhpTw#gK7?AQ(hDj3~rzo3fWUny@i%q-y|92oK1+b9_dGDCTfeW^aECda?N~ya^`? zCKI?FE!a$Nh%}gT6`%tatDU+h(ncx~#t<6-t5JI$P2$7~>EG6%GgCL$K!T9};E~fO zQ`GY6k>7{=KwwuBdc=54C4a06tQ8;uz`c~v^*vFD-pD=2sJ#;6F|Cx5j63EngZw!v zCgZWyFos!4q4;nI!`w>}-$RvuZe*kt7))$4x#6BuL^%3r-YNjB_~EFt0Z4_*X$Z(S z)M>uD6TI5(6)}p(hic~sKz)GQ@Ot`;Kf(n5GCELPA*De?Tli;mYqBziIv@P!M>PNX z!q^FvIT>sNpR`teD9>D0#3pkH>o(9o_Epa5GUtRNKfr2qTf-=TxZAbhvN*gZ!YKqp z#^oNRyvp3?gss~MK(c9`X>Vo&b}|dS1A~P0pW(Puu{D4U;@zeD*LR}W*R#(MW3Y9) z-~=d$Qv-^{p+edHdv>eit+1+y!(>MWq)NzL905rLX6_8Y*ZdV;r3ZQM?Tt{dlV`0?lh3Ee%(uH&@3r>EyHK7~b_1B%>@ zTwd$(o6s_WsDdij=hdS{?8cvT+wQNM4DUjr;+>0Sb7nwT&b;=$Qm9AFD^Ka)bP&~oC>{;z5-NJQks#sd zwFpr>CPpQbP9HV%MPjkj#6LZc>MW2$#5IDuIzTuQ_c}81eV8BBZ?YQL1!y0FEO51W zalF;*gf#crh^{`6EAE(4u2kf$&8I5+YLzyJs88jl+_XIb3?T>NhmA)Kul=_CNF}0} z#7SWI?#7UIi}{_Q`kn0{!>WvSmbz{mKt=rhEx58LeZz{x1A$R!=i*(A;34)mY8`P2vqvbT}ZN_i*T}NNm(DuI>e-@6M^GCNXTK< zaelll@q~mDt6!@TW0Xs;L&YXeEE0?94iO039xw9y+YV*B@c_t?jGYP}vk#{g^?vR_ zL_UHCszI+a0uB$N`41kZAOTLdZYPda5wxtH-!N`{5O_CzA$n4OrZkPPR7bEk9;!I4 zb@=VPh?LiVyHSgSJ2(QmGkb}|K@b=igdq+AVVj_9fPU~`xRQAun1Ut#5~{?J%%vpD z?iwu4RCC1&b_I-!B|P@^-xdtN1;?OwO`njT+GXYYI{`-ro@9s2j8tZ&Ge#-XwFi!1{T(g+4}tLz$X?~=gz zTn;P;raPh8Q0Ly**61(T8%R$zpjRZk@G`LyCV1<{ZKSV-N zaO$iEODK~Y3#=!0jMp$gm||a7iO9st#4}efbF(56{nK_g)UO%?MBgGAbkj)1Nzfh$gpwMJv>)PmE~bP;bT7MCdlD zy+8;NV5P43i%FvQEdz<<$)PGg^mX+2FVCtrR7v(jb*Knx&2SVaKBJt@c)2Bg#85W+57;@NBo4YizR z;@sm2Hn^^CjD5A>>Hvr!k#& zwBKmn&sAxr8GOt-%JeUu#m@sPtW- zB~4QZDXD+RcO&vasBIwf9p`qK**_Sl?|ga7q{YO%U1De`cGavx#&J{PbXS4;)T0Jf z;7~#Lrb^bEK>W8sTxFewO{oHm6W|dJkmm)^5yRy1RlT7uYh$mJjAuXxn{Ci|ZYSq< zvAiS`F4!(IEBBAy=8G#{)`ytJFxaoor8 z85tP|q2#NJ&yBC}CR78WcQ7H^w?@o9PTx6R2MA~ag$oV35&Lx}2hPrU#XqZ3Z?39p zIE8*71l^@mnmq3{7pCltvrTi26!UnIr1hFOoj|VI%ER**J{q5;b+t*9 zIGpfXOJAUlh6I`Y`F;^CbnB0 z4#eIGe?uqZ%L&vq=S)Y2j$n#_M+BnMM1rAPSsOuixApSJ+-{x>v1aw5K(rtHX}inu zC#gR1eOs1Ac|RU=r~A9!>!eU#2F7a>X`J+T(EZJL(R(8KQX6__knW*#Vh61%VA){& zptsN#EozULIIqwhx-wk_G)q;?Q-ls(M^D;G{>8g;^E)ONw-7vR z3i@@usYQf;qttX0T(hD%QNff=7$JBLG{^{ku2DPd+QQfykMOaa-Gq6J{%Kj4jHvw< zI-72=vigS3SQ2T3q+J@|z8DGL$+_y5_T7`)0pD*L+-^`$Faam8kr4F!lDx*Of%?it(bD@|LL#hSEZnYdkMebpLfSuh^ zTCH@=J#3UN5=%~KGN0f|bp6V`1)kY=Q%m-Q7vad3koYg7t_yklSGG>L4w-df1B=GU zcQ?BXPd%sg{fdjus^?{LOx0JHmt?{M>!)>)py$%qQI(aTaIF2dkTWfBu3^@G!B(-I zya%;Mo?o)u-#O(2ZMs2Y)JZPWdsk~Le|&v~%qna+0qHRazF&78?Y{q@Xm_s34zdH; z3O;m$CO#>9f!gm6dE@{! zF6h#I5bon=(*;PW)oLK_DiN03Z+@~RQ65N4If-5T;(nae4k}k@S^)rkfgs)hHqG$%Y-IEVup3-9 zNI(44Zq?@|%s?pVw2sa&loAPTNtK^0t~I?NU%?xJmnlYNtx(+}CISSN3REw_t(u0v zwE^jG@L^noR6b6!TFky4c-^!+svkx{h*%3DYI8xN5TX1yMFu=nJ%HsxBIy06_>8 z#;Ov08dM2QAi%tqC9izo z)8o7Z3i#eVn;Cf-0aC}Q;Zt#HPcYiJx~zafu}9kYe;Ee!{}K`sp6iF(UySI2-pfL0 zBp^=nZ@xS1o7p zmg_V$&4pf2Zwwrq;IE143JHZimlBd{6>W{6hrM$?k^K0e7dVEp(huehBD=gc@K}a? zPCNyub9IC{1JsA;P9gcJhZCqGIwTVkgU*jCO4mcwla8Lwo6|`uE}oBQT<&*ul?>)! zmLF}cytt}9F5PUv2`|BeB#N$oZl+p(xAz@L6d(zG^#p`uXG zLO}*1yJ84k$KA^s|Jnc2UlU6U)No+%<(vLE85D`KGUx*L4#bZY+M4s*6p+m-yf<~o zSQ%yjY=#xNe;afFL5!Q_VEK!mNZ=i(k&=t!+J!v8;NUgc?_MF%3$I2Eh|+zC9_%AB zJ11-fV?&)SD=p*DP~@dt?1TzwUbF$2wp z=l0t63m`lq|H8t(yhq*$uheqJeZd=3gSKbQ=J&y6@y260jRkes|DajZd-0msG7ztU zc;-Q_aTk+?G#8j>CjnntO|-F$x1|);+wZjZB9{n2mZV`n?0?yHYvV)X|K9y7S#n~@ zep^O{u?0DTfoR^o07#197A!0@N5hrH^(IqOjtHOXVc9;2)y>j;EKQ8l2)aE+^Ac}Q%WFS0L#6Lo)^S34 z5A5hRt_)wtg zQE&C*rNap0e~vu4-y0YSF{}TK{_MWn`>G?M|CioZ_RGHA))#dB3Lgd`NBsn+CGa<6 zp_Po^2a`N@3yoq~ufmZY53^^xCrSpZELx2eOJY&u{w=799S$qCRHQ2VYrZZ z?gK57wSQ%V#&9okwt95@9Uf$m_l(0dOiAwWLI_}!z(;)ZouIP=GGr%V=7V^T26Q+Q zG&Nf?D(p;YWJhqf6zKQFei-0F;tA5Q^_xeAIS^tNwb%;=35uLS$aTJ;zao{k|5;9k zT$n}1th|O&wk1awY-@9kfl%oV=>E4(Yx;$qY>vT7q(4cK-y+J{gfRJ}ZVBhyt@f{5CBwBdeqMNI2}}6*nQ6nm%s?c zy+#FQ%l0<{XT|6h1_MP!3r!N8Xwa3D9u-{CB73f6p8*0fP_P0D!1uhd8@w$@#F?^X zpwUb@%mYJPb};ohuNQ}jjUAf=D_-Lnd`^pWHsL&wsX|1xH@J$4@IyLV>tgxfXeN*S zZu@E6LN6gA*P*x&Q%_`axk+enwJQH`0(54yXc3fE#=Se}Lx0d61m=9AerLiq<#?d0 zdNc2Y>GvjLE4l<) zijyGQwTqF>o^L}Wg)qX96(Qw(rNnm?l3r9N~zViI3wXLzjpY1L`3jnb% zKA4e?W5*O}J0Hi>l5&d`KBiCq^yyt|i*gfWS3NV^5KxP+wr_9>9Fydq=0E#EBz zsS;5e{ocw%Tp0H829k>Vz|k|O5na_^P_R2XNdViY4MLVz;nvQePpNqS?2M{>NJ1YT z!6Y7Rq_ptzt6eWi!jmflVpK+tDR*bGf=u;$0Y}#bpC`B6!AHguqJPKw%;N^oBIbt~ zU~@>j517i)VSHSmJ0?d}eu0262m`n_DmltJAokjVeVj6zJh6LEl%(&#ZL7#}8@znSeRjGd`tinw;}7-lSv@XwZs z3x#AM!yvC*5U|{#3Y*ealkc~4>flmAxTwp|I0`_=Dw&+i2EEnNox%2S0mqT|n6>2I z5%R8|lb*Wgcfu?hi`{;ZMpSKBRN7#F2?b8Q`qG;J1aA1JCh zXe>cj`|V~AVERtnTMWl`vfDqJrezL0B#!qP0bbxC+02-fK736x04+?6hgZ|rfb5rd zup@Op`2^%;yYNW3>n~6DMuT+CLmttqA-kGFB2IfvABbd7PwOlZ1d%*aT0H87 zlyggmkg`I_SU)G=#|#$k#g071 zU>BRX3D4mnV{!;xG6XX9+O26R_Dfy4CWZ9}B}2I{JGw#@mSWk13?V2W^^$ZIGB*e7 zi!{b>!tyl}ph@fmLE4uAW?Pi9K2z#?HCDg_TxTi!>vdKgr0@n=jnP$0$&nzXeUmZ)r$N>{}=gJHjl(;G!qU`mN$y8xMj? z2n!IMGY#GH?q`VTkaXwpVfC4nq!nmR%B&6893n43(tJJ4%tAbCj+X(7Tbo_N`V?}v z$LM9;J!%C(&9s$yfiK4$sXt(h@)Dr9aAS{^d`nCvG8;}h@a(Ts#}OT)t>LB<6lR<< zfM~F5l0LtV--jRuHHm6`a(#3aQQ;}ap{&<dQ}C8Z11}zz-7pz;>1`-K>q2?e>cD z$Q|+P+ToZCy=%86yn>Sq6W%W-_7f5^0s~s%%br-_^wEdYjl#iNvJt zEzNb>%A4m`!)8W8F&C$$O--lk1lCiRrzZ+9;W_9&qvBHX#cEZ@pAl;r|LGF7LeX8D zuTf#r$JzPCd?+}p6v-h=nt7(J?62!spx1L=8f%VkULQGtM_?rc2e_P^Nc{8LAMh?p zhrR=tP@o;4ZyeBIq1*wQiWsPna)})(kMkbf**cnrg0i<`&7My^)(#tNJ~`rK8|$xh zd#*Kr_9{*Gq5Envq0p>Al;)C^$QTp2iLg8&a)=0K6d5=r(GAn7(;P#O^#eqnDXW>} zhz{^LEEuqh1ZR5k0$;HYw~l^xsZid_^zdkN+Nr{L8Tb{0Jov$0D?xZ#srv}o^TV2m zM+~amidZS93ogv+&9-gVa5N$QR)M{s^M*=neW!F8JQYrCSK02xR?_kDE3X%R=qFCX>tdDd-!KsGuaDT*wWPuG1}=|f8z`+D>2Dx~#W%dgopW0O5{T0o zpr9mfLn^}^{-SMY=G(6!qoBUyMlT~WkZjP zzB?!gjeF4$@?YDrj(1VY-W41Det(}UnZbJMpgeMif^Zht)|-BC)l2=j$b`z;r=u<} zpB|+Shld<&>6fHoaHmdikHx%c(hXD(Km?R=FvXp6H@LTiX?QLXkX9T4??e`V1kfXu zWeEPy?a=nBWJW_4$!i?J|8;toaoLJjRn6ZMKPDS{M^u13e>M1~FizKbkA}nG8dh(G zCm(IXV|*@4!B`l`lg&}DL^h~9d^5w^CzvzJkB@z&^^?3zxePKT#?JzUzUU-wmyHz? zKf>n?SePWT1mR;I1>H?Is8YJ)Wt_+5E0*tndCK{F$9XjdI@>Rjk*n+No5by(E4CGZ ztG-1f<0jci(0Yw~8HcxRS=tzOzMZv>{zO!?(e`7Z zCFW3~>r4r1@%xr@(E!tcFKl)km^Hh#Ix?(BbXN^-^0;D(Hd=c{)Y2IrnDjp+F3+(Di4~638|7_MX>t$ zhjl~Cq_%w)L9Ox;8c~l}86S5ar)ju_yOr2>E1eY?L%?S_CgJ6}@`ai#uNUNk&6%~V z>+e|+I&`c}&5Whb55o`+?3&2kwf85C%tC>mAA_-H<;Lvc0JS*Sv9z3KvK2?jU$>D5 zsCdp*5^s8L<=B*8!d7UreipuJo$o#j6Yrz#9AC=FL=o}pY zlr)2Sy9uy(xOV62#u@WoO0%Mjoo#$lyhw{%PrwU?ST)GReEOFUVF`-3bR5l~fZu5?%V8m&1lP^EYRqTf>QqMxG&6!8*N2d)3YJ!W6NC%ixI!dP5~MY}n7- zX29wm(PL@iU^8EyJ=pLHweEk_AhmuB!DPI`kyYQi8uzuELw#QmRQBZ1i6%twEb4s{ zrrhV_%M|I&jO`ZSsZZIX<6t}8<9{_6cwgvP9G)XSFKYL($D)?==?VbAn0Fa>HE(Z2 zk2`}PgMyCZlNZ!xTqc>-7c2B+8p8;z(YzBMR2*!8+9s*3AF5lSIs?6|@fv+I(b@b@ z2WGYpRv_9ttMSD6`lkN+jk9|5)9GK1j6oMCXvm~w)`Kku87Z$Y?rf9xmgTu>=}FZ+ zlq`6IyWXeHGwR}EgC%gQY+>p>T{*?SCi<*=%BZOe>6{mXiJHE3ZM$p+(KZFtrZ#d? znImMCRTTKn33K&eVSngfv?lj4CVzOXUA+u5Le1a}SE}|o0X~%hWi*?Yr6A0YkWsdj zADz?Jp2HsIDk{Ze)N^kOY(>vKQg2v+kQU=}wToUV=t?X>*SUcYY#yax+)c0@bJ{^0 z=e(F-Ysb$8oHZl2${UpcdZ!8KLgj@*LH3-i_2cY9U&i2BZKlmBzVOr)D`ZBt-WjG? zJ$<~+&2C^LwnH^sHy1_KzE%442fiCVwa@4qnGKQ{;don*y}N8F$~)6H(Uj=A=}hc$ zCVw@)x&3Nq21Qsq(k=TI4b8bTpF*W+$RR=GFjAq_J_up4wA8EOo}EuEdC!%5Vg%dt z@hV4dU0!GVT#t$a2PrWC8o(g?TAAMO3cqkSM zk_=n@*mx;(>Bc;R9;VW``rUoX@5cJnkhkvgV!yF>JB4%zPauKT>yp5AG$gh(g31Z< zyFed!m9bw(!vJ%URj$FNQ~$3JJ96UVj0auwp&?e8<d|} z$|wWO77ippidLU>R>+Y)?YeAF|2if23>i%~Z=+%Ta@Hl>GN__l6H-#l%A1x6#!^9Yya4q<+>Gn?y2wN2emBg( zqnCq%I#bsiD)ikfv%$ofE)Mg=0@ic0>B2QDzy#1f!iwWd{Xgw}cUY5G*ta4o7A;Vfh)kuZ zD5Ho*c2J5aL$NA*D3rZqZxA=zN@YW+Ohv&kWd*7RY8gSo3`;f$As{P80^j|xwEcQr z@Bix%*?*z)SYL1V1p)L3jvm@Ja#}86b)2`SrMm`XKLqtZ! zbB*Wal8K)Y?f7%=~Em#RMrg5N1J{@7?goO+jL;X7lC@J=>@0 zA0Ir$EdR(@`3*uW-4A>IRg5<*DLgq=bnT>nhq5`yK_Mf&$ zbyhM(bhCs*YPfQR2*`DXw4-Gcswm?tcd&NPac4`%G7>`Ku+EON&Olrsz|(0qLnK*H ziHU7>Inbkn4%mvH^9q?9lXA~gqTFEX0Ia|v$ zK55^9J|3&YOJeeoQ_>#$u$^2Qb;V@c>^*G}!f3INe+@tfN+S7%ex>CEU4Z(SA9277 z$pBzFohzW47ni1_bPCuhW;*uv+jKBw=}EfPc&}k=hDH5H3O_@UrDvWG%%3cMm4>C) z5_Z%MdlPnyWCtT*?7^inHcY~Ebg2r|U%+{m&~x%c!a^q7+v8JoF5-;+IN~EI)uMvm zg>Fxw=`D7-oE@EL3*jGxG(2S{j72~fo=J)w<(1~o?# zspk|T>2?F4kXw-BK6t#9d+}3M4eit>eqBO*6Gn*>6x?Fjq%72~XI*`(yJ=I~B@J3L z0wOzzV}D_VH#uBn+aJ06##)$Od5DxUpmmgKh=kwX6!d(n!95#sl_J?c-nvQ;=*KwQ zBdKyma{R!k;L_Cn{*w3?{z@#b5d>QiM3#ifX+_@#hN%dbjEQ^8)iFRDtY?PRUv&G< zFPPoNB1IG~Z3!AP7ZCxWvw;G~39>;a>k&)u>KTk-X-h7DzNxv|=XSQNAg)l?Dl~W=dDO%vAP* zog@<|?n?4tuRfsqfamZ$Ak_>In_2rsj@+u|I$)J}>WdWEgRP`8OM`}<9x_piN-4xD9A$i`%){#JuyziS5}oywd9{0 zUkOFDe-QO>bE@U4WS2_yY)m=rAlogwIyqMFHR}!pl^-mc&Lde*U&vDLd!FNIGGj>F zdf;6?F)S?U!?-j*XlS~trB7R7jb&>>JqSJo<|o0p10 z&{dLIsJPA|-^kk%2ig9P43vr2b>I-_g;;#y_iwh_-8TY;k8ST`Br8nnLc*;os>NFK zgwe!OXn&Kq4ec*^ge(geGB?A-o*A;dzHNZQ#}9X>pDFuJ8Jrm9A>rTvD@Y5wWh zTL_Ix5uAs{vP~Jb2B7J# zupYdUEr{%=7(-&c13Zbi8E-zW*>HaOd6j$?Va;%n>FJ$yGX0A*BWZpF9yiaV>(K>j zTdXkiupyZR0(XX&eDXLC)`o%rNjS|VDETzDZ2w+U*Tma`4DPQ6^6vN^JN>BW!uZ_K zhJpL$DrvF&UtpUkT>(Qp25v}*1B6B|t@>05jyN!sc;V~B-4vt_>+RU3L!kD(S=F@_ zT9x>7J@b-pKnn58et4b;y$1jK zlWlv9gZX={u>9n_NM}bet4LubS7`MV*-IqPl|VNFUJ|hF;~epyhpRQo`WGf{3Vu8p zJYwgVUytU$p&GN+D?kPiwo65DSDjA=`Cyt}QNBi->O=CggpUtYd;!)AGkTvEA$DfO zNn3H7LL)V9Aj|BX8>354M-XfJumhQyg$o(k}Us8Rm{HKH@YR%^8gk$c5 z{zm`MXtFAa32kD$4EBT@*47X53b0ZzJRW^&dH7W2(+Qc6{JBp13py+lT6#Y|q~azN zqyI34nPUUY7fob0W&m+jevtgaco0c(K2RefJ4zB#-M3zt1_s(UYu4=%EZL}Q#)wOU z@c~Y0o^fJDSa)5vAA$%HKFxz(F%1B+N|pOR$iL~m@n)B3a~yg@*Lajtpv7?6#A5%a|WYlJ^O6z|FM41b~1d(LK zg9ya0TMqs3nbV=Y#4Ep|4sWTkg4L%P{VKMj;@+<(U~6*+*~o=xU0>bC?Qh|VaSPvigp-&Mw##1t zcK&YQXqyIbjsNDJ?iU|faI*~P#;AjW-CK&c*ortzbFG=qt&Bg*SR8Fmov(EDTvVqw zALVT=n?U?3kPD`v-^8rP9FCB4mFUzdZV+28|~}V;4_y1i4?@#*z|fy1Xo@S*-Bo zT+7qBRXSze{(e^c%=s8aKf^B)gGkp6$&dHh z>tbbvlVm18ouz%QaF|C0c)ZGE|3T7Pr|h-(-tWzVaD5;f913afnw zi|cz&DC3t{w9ibBL|&7`2c8u79k30HRjra%w(6VO0_E&v;Pg|s(L#(CvCShGQhR_y zR8o^JdhyqfZDkj^2Tq+^9izuAQsXmUiWw3NdY`lEsa8`zf?Go--pJmh{V~JE3BKfp zxP5qLJ(1!Z1-R1sa7yWqkVwjv<|wn>h7uZ;pKB*7V`wvJ7M0&L8I{uJ@hW zs-6{!jGneskSMhxLBeM$!)?C1E$v-lAV*C|Sgup)WjVJ2{*WQ+UfzgFc+3=0*vf0^ zb0-~aoCC-tCpSodb5uR36Z=J1ZgNM*d}0{(UI*;29)|Y{y3)*$!`CPXBT&VJ~^B zyYmW>H7lp8c_AY`0qZZrSi*XyV=!~d@n~}&so1%*5?K66+qQz1Pjij1#UxP72^rq##j^P^UV z;~y=Ot2xQ|-J=RYdOs|ek)Jna3zij29V-YZ);ma)gspt4I9 zwvfJ4QOmGEnTUy3G`=i&dq#!SfBRkrVcV{!cT)>gKQ>UC zYp%NxEn@;L(rcTcUx?x?=;X|bhfHI;mt@Lfd~C{u!ehA{OY`%&@tQQ&7qgtSbTxtT zi56&b&IvDXk;6Z3+)45HZD|YXp@CkhcJF3YA-OE>knf*46rFfE-%{z>dm?4NCD#+% zoU2Q1F4o18b^WNu6A`@FNPbt}g=hXP9?z)Inx-(4pX!$9_*X1fs8QS_Aym(#i8^I0 z71|BHin}}^(Um>?)2rdc+Dp8SALD$|o{}=tc?vfP-+Dkx8lC%-dM=mNEgE2@L{ogm z;HxxL?7tl$u^VY8`FPT2_bl57=h_suk*uo6c?zl0O<^4P%4HwR7e$2&O?6j}O^c~1 zI8BFp_P+bX#eW@b^Ea=}+muPgH#aPs@j5h`an`cZTfx5+DNrtcenib3Wj7=_WTV&}_YtX1Uo}&AJGl zWqM#p$8p@ApL!zsolF5|@5i7`pZZ5iZV$5LdhqbXt;U7h3rdATN_gAreptNCHEMt$ z>)f=zvUs`RL$e~+JJ~ARcS=~IYowjkzBiC5OHn-YB$fwNW?0iZ5S3B>*d*IuE5~1z z^YdA8ZJ%TK46UbkHK`e*(^uIO5BeRwl{Ln7p+ZpSR4w&Z0B08aTfwGX*$hR2z`)2X z217BATS8Lbu;XR(!#D}bjn$htv=W@_K(*&_X z^|5xdVJ&};dfv;u=bc(_{l<3gAm3ABb@0tWMw}e=zA%;hz&qdYxa(9x-OE_<`9JGk zR*T{2VJYP2NwFon^Q#Yrg$o^{Kkk%Tn$r#C$=5MSSD-eFs}(+@Xqgr`+JC`CyV zK1#EN^4yc|SvIC$E4scIK#-N%{k%|3zK-4GPO3($!17B?alT-+)6ccp&*=yh{cPYs z`{l9!*~yv0-qad9;+6ojCXGVOhgj_d8&qJ`v~7r$U_-8McM;mOj9a;8qD#NhY}nC1 z!&54%nET4Y1dnvNU9TNB&VShP&P%7(rINh5*P+}a&AHe&3v3`d@?D&~YwoG|WLWA= z8 zY#qWo!{dUbRHSav*oK4?BYDD{D&z~%sZ!C^_{#}>G!HJc>gb;QxWjnG67+5tm-qAZ z=4pcY0n5tz2SMzp{ERkJGeW_;N7;KcEC#6eE#>+-L?*rag2`%)h&&Rtv_Af-yV`lgB4KZ?xT#FpqylCoZUTrNclZFVcw02D;hZ0)R1d7h8S9L;Dz2RGyCn_c8WY^=vsJKO?h<3Lj_HlnPMw?pE z*wikaC1dvM#7ZjNV9MJU_ZBmWB8oExLj=!bjmCs+YAxEt(0(Bc{42i(5AzIiaJGRg z<51%}Sg9Abd3dip{!iP3+O-&wk=+Raa|;Q)(#MhRC%*j8!z8Gi2K}fK%Py49X_(R( zj%huu(i(PW5q@qF*TK&9OldQJQ`nIC(s`4f|-GhfY{{m;Tc&qO4c;pSo zU;L0WBB+7EkHnvt>`)775LfcDmb*S)VMpB2eJxpDKDDTfL8MknB?Z)6Eeuc0;4ZTY zw4AGN`jeOPP=^QqR>73GeSN-MMI1!_P^X_uL2OfuZ%#(94%hcAp5cLFNnW)>V^m3u zVPfITGv4&eO87v7SIbqhejk_Plf5ZJZtdY&r~UO8pT9DZv#cd%JiaHs6nNNs z1&N2>8odX@l_E(lold0ALY_no@e^W6m81iO z^}*2z1K~N|i}=|Wm`E+indwEr?;B^KxXz}aD<}Cdsq5x0jmF6PPJdK=I^{O45+qmfbzdc zS!QWigLIKvhWFy{8#$FLm>}UzYbEb|uQWCoNlCz$zRUbXIPS9g$3k{NJ^GP7AHMdL zt{8nd#_Je!Z!L z02HoYD1MJtN?#<;C|_ptbELc3aT zNxqHXU&DbCJxpNJdhJa3`iJbN_-3pjZeRoga@I(z*^!2h~faCKRq4srL z9P_|{&rs7Cw2JJ)#sLevfY_Q1jCdgozce`SBg;$D@;;D=(c&e8kMa`-5b@v2yvc`_ zRzms@^bNm)m&#kgr82>+#B+Ix5&9(=gfe4AosM?1eL&d8ueL5unuG%IcNUO+ZYn}Hw5j3uv@h^ozmPQ==5YSip99z9 z87p^em4V%h7B*So_E7zBP*7+=qeX(HiY|QyIr^ah5Nq+50Vm&tALKNFPE}}*5n!uh zFp5V_mPgev>Ik)X+6PY5(L@dt3T<0Dvo@Kmb%F#6ms3yW>&s`F!d5ZqA7HuJJM60Y zgPU#;t?~_s$o)eeN=8uqM&w1&N_05V=;|W0ezs?V>rggG1oxoDuy@`e4)$ZX&&ciNT&ljl&*K&)YJe|Oe_Zx z-53yNFNBI0wRc^hJeo&5Y?8ndlTcwu{#m&k+L}cr7iW$)0NV?7h$~NSeS~L@UE8s^ z_#GXQ5w5=dp{>z+X2B~YfqiOba17Pi6q&!0zx zK`~+7T5CO=$pejLzB}I>S-&f2`D3e~)o-9Ml8+zw3}nCf{_GcO_VKd_R`?B8j1u=-N{)6$6dx?Aaz_paTNQmBCQwZ$=}L{PFG@Byji9KD zO0q3)i2FW(biqx|I;w*Y zrkEqD2)f9k=w~5GBQPU+qPwS7st6dk#zQcX5@Hj7UJsXzNn876v0%GvCiPbDwZNZ- z3boQbp}QWTJARGQxi6R?!teDVNEFS!U%~5!RMZTd&*L!HwFA5E-9n@-6{2v9`$Y$o`R7E+1gA7y3N)<{zPgx-nr9mG0fegF^$kc0<(B$j~%yKUmkWW=+m}Z1mD%w0{Nh^$!l4@_g_kY8C101XuNedcDh;-3-ow z2z)hSj6EA_y7**TF`0e8T0t8nE!(4 z!g*J*C=f1?IxGAt3hg|qeQ}+>cm9-;M@O{pzzZlL1kiA+TMbISMLjVQd?Qjdd{H3b z)R9@B_ErY4uTecVvp7IMt0?a8;Ei$VKA*D0S4)otu2Z?$$TXb@u}M!3PM8?Sa1+a) zW7zYjEl>G7zus{;%}c_T4=7&FA>mO50$l26Irpn2qDDNc5$$)H*U|_`#(q(7tlCHu zkx+jr+A4ijPkRTommi7Nt>Mb&H$OBoQ3G_WxPJW<=eH%(agzaWU6$Izjzs9ul|b{e zM}urAfMZpPep{0_yMkt^3E=dvh~XlY7U^x3j&%Keep!#UwW3{42e^>90sSW?qtCE=F zLG?DSmrNz!@qsK{6i;?R4gn;5KPbyLJ<$LjKY8^kia-bb#m~K&i%3TfDZ(NL+?f?G zWar}L8~`rjclT~vL;sEg&~9nq_2w%y+^ER{toZX_aiy!qS)E=yF-(3{K4K(oy zhYTqLOeURl%Kr7t@d9?xhL`^VOtJrr9I>ehjKrgpC%r!n?lHBf0Xax*eEIrIY>jO@8Mu!35@BZhTFG%EpS&$uxH|p`Q+|4-}TV7o;+99-&gkP z`g&Ze+hF!MBgvjUYmExMwp`c#oB4OlarwtYV$PQ}7C3VqeH&<)ae^5qm~mn~;eV?Z zVa5q&oLCtFW}UU7o?@;C=6YbR2WGv*te2Se60=@{5n$E@%(`H`YrX-eGV=p7KQQyd z|E2seE8*0XC&UV7eWgN<0|KnW`q#j=i(qA07yH{{a)UIMV7y`>;Eo9e?_8vGA-0vOG;Xq~m#w*j@S zA@_~|P5%9&zZzT|{`G^(Lc#z%oF$;Ie7hl9d&m-iOkA^HO|Rp!UuOd6U*~|Sb_ur& z@y`DLug22Yb=0x^U;mDL^EjL*WqHM3Y0!B&0Ao;wQr^eGLw}Zfsn|Ykl#cu=34tUydZ0b8AiUD9xH>x z3?s}i!c5uBYGl23WkyJ5ghWbxX63)WBG%^vb5rxp#t<1C=6>y)?bu2c!Q5s4yYs*d zBmeuth@xd{MAtTl|7!fO4Ia3*&04@6t^V(J5!9Iaps~ysD?7cRp;(WskZn|;&!mU87_pFr+7e90;m9Dz2zzxLr_I`o-p^LS7EdyPWeQh+{_ zcXP*)|L8OQDhhq3yoqgJ8O|HOEW`mVwEw-2Ho9zA6R~5{rcL`;=bRikgN44#x9f}i z$LOWs+~Ou%X8j*8m}B$yQFE)u|M8-tS-x)^nt1Xb1FpczmlBzD^*?%#df&+?$K;28 zWvFkwC6XWz9CjN=9Gg%j=6>) rF*Ab#5<;0_8*&*lDEtpWfs^9qTI?zsBM2qJrt_*7e$F{_?biPT45b7n literal 0 HcmV?d00001 diff --git a/docs/slides/highdim/34-distance_files/figure-html/polar-coords-1.png b/docs/slides/highdim/34-distance_files/figure-html/polar-coords-1.png new file mode 100644 index 0000000000000000000000000000000000000000..dd6d51c4de7b6cb31afccb21e8389b38cfaa42cf GIT binary patch literal 48350 zcmeGEXH-+$_XP|CVg&>%y(kKZ^d7n*#0H4;jv~DYp+i8f3aAi7RFD=FrB~@46#=CL zq}L$5_fCL!A0UADf1mgFe0)B5$GBrKVouIEYp*reTyw3xpWRV_lO3ZuMnFJ7cH{cB zy95LWr3nZQBpo>fK6!D6Zkd39__&#j%pD6ExQvaZjh*ttdxl1EBWoi&GsC;^s{{lh z{{E`ErgW;OCByPEE?=m9+!zz{>iCA>>rBhL^-tP|H;gi@Iyr(YGq1e-G2Rtn#=_r+ z`)GDa^7IvoFL6CVJ)7EJSkIX!PQ2j!ka_0=@ng2-x>fl5UzA73^7u0ff^sd2sybH& z!>2rkx)GDzBrkJ0wBL4LB;ue+;T&k_&8QeGD-*T9wWNJw zimAN2Wie-I(_}2=4xG@p>uGC}$j|e=Mg$vYzJJzzM0{nf@@UKb<)dX{mf=jjC%enr~-3C(c?AG zY}qc0vW~}!0U12V)7S&Ki^1%6Z-4txpjG=j?R`_Z%rd@HY#Qa69i3q&&@Cu@YIkf# zvdmD`t&ncmK0ZOXzVvcz<2w@y>|e$%s+jd%&K*2!OoW`|G%*uxse^qoetv~x@@;KlYRvpzN-W}>amNj#=(o;Q)^&^FTw!LRSZ)c@^ zN6=3~bP1Yf;7$-@(1ea;*_jakAJSi*xQw6SF*tSYB@?-syS71e>@k{Q)Az%lOy4gz z^^9Y`URv28$Wbxhs2m%v=eZiQ$vj<`@O8>mmAR1A!^Jewq3)>hL*_=_8{9WuJzl0e zAJor7eJ+~m73&Y>2YwIgMQMsi9)X)XZh!Oh>CN$=p_Lc385q6l(ulhqRY5GILTBI9? zJq~z|b*SYCjtNw&9Yf~ZXqUm~BorPo?`z3$ZBG7hdTkNAs-5xGGeLH?=;~vRX9b%M z5Tv>BiF~!Wv9V6s;qu7{fj%UHV-;J{%7&5mBps+*Gp!POWYSkOMUW&J{vrhb(}4d82#BJH@Shx%jyiz<`#=)(kE0Em^aKRb1UIf- zQE?_5?>ZWyqxw#2BS-Mcsc^;{jnr2|l)Osg44F7S_Ey2#yh7D^IVW7pxVrCbT-Ea^xpV)OjLyCZ2zyc&TPnmo}0kZw^n|vv$QMCP*#0 zTvb=^a>KyT2oi>3*sTih_7lg6h>uV(Nk1YW-2X@B`%>oiH2KhL|N4CEn_f4i2}ZB{ zpKHLsMOhsrjmCs_^8foj(CO9_vbTgKNVq|$$$J7fmik! zibvU2E#_2zJoolBL_~Km|Mgo$R+pIwtU6Mfc=o^R&NaluQIY@kTg2^Z(gf|_#*PGUwDsZjf(!aia2cWH1v$olP zf$Hhg6pzl9sh$4UC0n>>1Tv3N(VPEDJknPHtX{E{{V!Dgd%M5J+?O~1y2{_U+s_>T zqRM};$G@2Q7c>82CaA&w2EyM!_!|g+1L1E;vR{w_ir(LX>raDhQOdv7D_&svi__ns5iu^89`60bjWlzgu+XRVD#%&n6cZKgJ(KDzOXu9< zHB+*=R+8KmqBY^U)`2Z2JWNNCikz@84718MTUit^JRmo_HlK$t9AL? z*|p@v#LLCY-?__szrW~{m~v5k(Nw&WDE4|v8P#81pNn0ob-LeSmE*s@g!Rn$qIamZ zAyzS9VXUPhz!TS36N$y$mr48`6gmGfcV#dv(Ni(2SN}Q{p=joYqtKr5+i@|K$M;qf+ZyAQ`y!^?P5K4aata4H?}^{@ zyj!zUOppm%lTH33e53pi+R;oXddvn@N^^Xpgkyxgb zZr>N&#kttU!Hf_uoKwkKm&i~!VpSrQUTV1#E_pJKRGKEc_ueu0%Zs64p?K~S#gqn6 zCDZP%8BVnaSkw^rO$sN|iCpTko&CY89{satp8F-?eN^#U1A0T{se%uKtLY}I@Nd?( ziYbq!0>huLFU^EuaWU=F2}cv#KC9AZL_JYn6HxoECU|V_4M};<1AX3>gf|j+( z>7z$KGoz+eN>DT@ymz^uRf<|dLZT@-!%s(w_dsVc%Bbq?_k|XHedOz~st2^$idVl=DqGd)l^s2jn)s$ zaBh!LWpqM{#7x;KX889(%;sw9W`fYnkNA$f?BN(pgTb-2FXSE+0CV*ES+3@E+TFs{ zU~%%}pR2fL#!aNeP@9@iXag>~d(yohheHoWhRjE#>=knTT{#J(I+ch1=1r#Y(M@ z{9MiMuuhD8m%kJaLnH(yBb%f)i(Y%$^4s>7b$j|OIOsJLtGlJqLF+QD?ghfbP{zun zoD78WQV6~gb%cV-(Tf{7a*NiS@XEqaW`n}m+(wqank&Yo_Y^w!_r}_kXRFItb8<%- zMsjUFGUws%uRam{;WmwO1y*tL^pl*aXEhdF*0ip-xz+YDEaj4A#g`)^g&T#Z3Z{z5 z0$dxT6Wm&elHTj-Md;JYwrl6OGLkM1wV9xcWQ}UWVHxZhXK8FIB|CmG7mYb2%QtmT zKVcPrzqGWvHiY)vcxjD};r3jqVsu2WuFsk@i*0VkrAD7+w~kAW&3k|L$&y=uyRqcV zGsSramjyj5l|gSUXYAC1rcZET|3%u_&4yLcLvzTVW9G`uZdGx~Gi@!&2}|8GD5v>I zr;$&=i*9;WH11O_*p0=UH3=IFNvcW7&8{hroZs<^NOPMa+O@om{OrL=?{sK=Y*;fTvbWg@=Tx4Cp{Qnx;2{F zbFNa!1$NUh4bJK3ubE-|ow9iP>FBF@WFIY7L%s!bq7e2$Ai!-hk5zB2y``MobNSoo z(yEl*g?p&4$xp+YGH2-)-i472WHI7;4!f0YyP4fx`Yo()Y*$xm4NrE?&&gju*Nfw2VStWj>p#f+JP z4h1Xq5FO5@s z7~ko1MtZ-ewlj$^kCsZzAB1I{$fA9tB+M|p_L}m6h`tn!Ozo=M0^0w#>7mwj`aC^T zkD*!3q?Y$32%o<7j<^*;)gUf@d{LF>?Cb?*J+Rp>Vx-JiRLf<2`>61k) zRU-g@;kgSXzt>4?C-H=(u~~gQ!b6LsQHbO&Nv&YDimDPEUnX0&|g-|(Js#usk6Jn2*-)_RN4QIE5(^A0VqRukvc0!Xm)_l6p= zammlxI=ok1va%$F8|5<8rfdo(vT5zu-96z7RjE>xik_T3|ZER$R?94 z`Dd#I?lM-_Ota>{NNw~Q~K8L1r2&QE; zTAu}Boa+4j@@kRC1<6V>Tf1*zoj1hbQv;2iT0AGS1WzRP+MT{{-5eCH;j?BcV3A2T zY3DuW;qPFXwAS1$1^+sDdXQ71c%{asoN;rxVsy5%zVIy9qFZ8k{)Xb_yrL3GkDIU; zh-RlXal4Ph*!3>#f*TTbtkyr@{I{9l{dp6qHO(xqJDhbdCUUUFu91jSpXlVZNUj4! zb}t{opc!2@Vk+*q)4~yhzAYQ5@=s@IQb)#c;|)5`nMw|~=pf{$j!YEScC{~MXJcrC zKU99=h@9~=xn?Eb<)5%H43`qM&L4@1<4#Pg_pzFOL6Au%s&wiP3TQA!4CYz^-Axoc zfuJv3odFa9Hdqs;{?uQacC<<8Ts$@#J2F+o+NjsqQt#g05UD25iOIUcA63JQO`KxU zFXHv}>{n=otqVU!CBy8TrgaVo#42GOT6CKP#$Agf0p(H?^CchLpcWcvfAg43hsH_7 zCX?>AX0)w>AwBI_ahAgm`u3c`%8RE*;fLA|(C7JmiMd6sHhPlPQM!H1kbKWs~{%XwHz}iBIbLEuu#>f~|lFgyl}=G?4zR76=}!#>IAh{+nN_$Qbs~iStlZz^zS5TX0Y(#QmjbT z4q_Ij4AzI== z)07ihQg#h#q#kRl4Xu%0a@m7LG*y;Kw~E4lkTh>HA zjuJO(&ony_*|B`jTJEm4P1;g2-4%64*_O3I0&cr9YzN>Jgtb(w@Vsaj1x0Ids9qG< zSWRnz)xh8>&BC29-1N6Ze>Jb;mHLUk?e{Z*%#r*@YA!7=kcH7ynY$knYC)Cr@C#3mPQ@usU@){$%$7R} zHh)S*kyn`x5tU*5Y@oRi1=_+xl& z*p~;$*Moy8)Z;_cALv1WKpPS1Wo($+ynK&lh%LimtXXzaZ)1JRQ_7BVnrP_ds_~dkd?0ey(

    Ez(Bpx3=jYB{;qNM$T!ZQtmYQBoW?G1$GPhPp#PY|4?5 z&IMqE13loayuup%x$;C5cDY>mJRAl}0sWK>`V7~F(a|D0WH(pEro@+tU*{+A%w(so zc}!7B-|XYsf26$g;9AdPa)!}QwDOeJq>8HrN~k*${V!!);Woz0q0zv(W`otG<}$)V z(b2;~5_Ux;q*90{EuOdvPZef4pUVU_f;YyP1^KW2FssgcYv8R$9o0Vs%KBkB)tfn_ zxvL#s1;vr~y>$U&FxEaPGH|5v6}*}EKslXiFtSZu>P?bjQBpa9fRhp9aAn{>)HFk< z$C*(g=TQ=it>#C)Rt2e_SaT5+jV2_H#@b|FQETsa{Q$dIV9WW7Gys8Y!vz@`n?_<} zy@#ncS|0x>H;I~Q8|F;8jCK4760m6VMSQocx1p6zP zztXo8F!9(#JaOb2sCVx7?N%>YZE8XXDTv0eR{7#^o*P4+2^ZOEFjfOCF{L?nQ}JSd zgtBG2H0pZiE5lo<7Nj@qWFl+mVdp$IOf%*6}{$(r@CTpbt+83mIG21>zR% zQw3y%*z2Xw)zJZx`S}-QK7<$RY-*xsBhW2lx+PAB(qZ3W2QrIMkQCC?LG8HUBoIor zlpnhOCQopRJgX!pCh5IS*qC{2cX`gS?`{lvL)zw4N zdBvul@Dz9$oQsy%Www7qA+g)$(-3coI_$1khhUu?9F|b%VL1_Fv#=&mrATO+G5^GM zuTBOYCavVb7RcU5th6s|T<2{d79>SL+P22IPw?N-O3JU!}w8c#|+nmaBk+9#D3Ns!s=)HIN}}sI;Ne1R^&74yIx`3Kv#)Zr%Rs(+9W6KZTW{SX?CqN?50O4=I$ZY<@FGQiKby{v z9H||hPG*QDhDppAb2B0+)~lJ^n(jeqo9P#=J>m&!q%3e+Zh|V9>Mx7esr; z%C(=yFOS8H!KGFVD4hNZnwh3bQ>T~2xiQ$zKxI4q`45z;4Q1H%NvDeHcl>KbA0=-J z92l;d5W!B#AM>coeQQ=UdGG~eS{ylYSf;5x&E=O{_gtho>!OarxdWd&sV)h}iuOD@ z;M$^7qZE3IRbjly#Cv+-#G5voRJX3N1QX^Kvl{sTyY*T+GuIy%gH>9@f#%T3W?EBn z#JM4?TLt-6`G=U8SmLG81+pN!2gHF$Xwfxi?pjW z2jBhHS2*JdabdgUPTkaf^%n9W}E5Apmk9wh8eM81z*!^Uf)unv(*EYK_hc(Vuw7?7@El+1baSt}52jQf+jcPo!#T z7FGfYT^PPQ)e9Gdy9gy^7FXHY=y>0qGuI1amf#<*HaXw&riS_3VzFH4@xe8fuBgQT zT$PWzHKGAcs!SUoHdUB$3t0>#$jm~v5p$cEdgh_05&$;obdECzg! zeYoaC-U=%`ZLr)N_ESvwB2dGMTh=TEl*O`RxQObK>k*uPcy4Brw72L2foYn*$avZ} z*VuIO#nAFOpwT1yJ6nnuv&sV!T42ApoUUS+V<#2`PiCy9Ee41S3-kP7PF(@@jaCuE zBnYoU()$SEX>q=|Bt;}PGl{g`?wSFEi-)zl3O283rZZf0-Oofkx?NuU@vu&+J=AUx zH;Qh7X(cmME}S`HV{dnA{VsV$O3`9__p0!%1v`7AMVXWUO-A|H0LFEd!%eh)`NV@{nu0^`Jd7t!g(N`D1 zuT2fTaA74l?a^?x#$#j0vTW5&X?DyVGVUkS6GzGQ{NS|l4S?+-dEY^gY z#W*e~y3>yN&B=ntCY3?aSi6sU-gN8q)Qv`B!JOJ>r<^OqR>iCmyD{}f+(5fYjBn1< zc0ZK2a3{BfmJw0St4a|Zt%%4pFf?e!3f4?}D7>j<;(Z*WbFv3&Y4EFz-E*ikWz*%S zs2Lf7xn|i0z4y^g`$6ln4#|(Bt8|3n%*QgikWb%+>1eHoelfGo4^mD?{B%QUR1ZCj zx>M+Z<^)0BLRm8{1W#>lxsZ&_DM7;)kf2Ct8dL%zOTXOMoRFS!Z$YC*_Z>Zx4uoOi zeC@{1C>OSMiPxV)2ReN!hHCEeFZ_$iFmt?YXp>sX!z`c-#!_?X&b^IpqG@3opX#hB zLPyuy)s%K#7|cMgj}Izvueu-&gXtn*C*d@Mje|Omd7UUQx|PC|9)p7dd5_&0^4{J{ ze1g`*(yc82R4?Y!FRzeXOz$T1N)QemW?T^;v|p#A2R*RE$6=&ZV+gCxPNqxWCP=vt z(|WMTct3% zx{Mv2qZ*mIi+*~1w#L#8^{A%4(X4Lrx5?)t(uY?biunJ*huf8zWYC@Ku-KdyC-u}E z0hxcowIZX>`dq$H8ECuERg2&(HilUP)!h6iGUba%o$)noEvyZ4OuMQ5C2T;bg*i#_ z4YqULE_e;-CS!cZPm5ShN=7fZSo;PM{;m3RLa#&%{&20&6>dLK$`u`MKU zgKI%EPWUj`|8TsrPv(y*n(f@n=yQnthm)vCWiy1ivGuEM8DyoM9|gv=FpLx zuju`v1n4mdfhmvak;1J+oAa?!s$z;mrnRK64~KeVoiX8B$X_>DRc!|36k%EUO{iFj z2{YU2FNf8eYL!w^zbV-kkUzU75aw>yboQOL6$>3N194mn+HvHEPNy9jek3k=LE0ec zsKx>Nq=nqY9nr4l{L2P?#FNgq4Ad;mv3G}DBdIk8xf(a8$v4wJ<z?P zbGV%oDZq{}50=5vQbzeb7`4tZZ+U=~ht0WDN*|I8{f zC!wwzg&ukto7DyqPBIw!O29Nz)x=&2yG3XxdoZsfe@@9+zkW??H-MVYQ4;}L9jMgv>KQ?R&b*QYmtr4 z3tLT4P3#4|nHNyEIIzGxV37A!^kwei<=zA{*av=i>!Opup=OwtfK0NuT8d8F=iesH zQckUsbJhHP4ykUsf(ueDSLlDzymKM1C?$fPQND~1S6yRA$)UkxU?ewNAYkxCa$LRi zNS%k7yY!<{jnh0t_8g1(LOVUcWR8~w@S)m48_+3EyfnLz-9MZ}_o-ga0nAyuZePc27C;3Nn=6L?P?i zHLf>-SarC?(Ie8@i6xD13A|36rFewmN$bFO9=(;A;C_QCJy6dzpuOR0?`kJ)(U?N7Ja+;lJ-Y`fN1Z7>?*mS>>8;5F2I zweFYH+}`J-bMBtspP!ky{oV??IPD%=LIIQmC!etn`+_ZPX?cv^SFH^iu$_j^Dw zl~uhuRdK$|s5r+bQj4vIhQL0Tm3cowz9n6CB!mddr~B!{{s*EGBU0B#IzU1{FQDt} zxayX?k^0f5M7M94#@y+zBz=&Z(L1)D>jq>2MbE@}5%4UpDs;A+GRN^TTrFY&M_gj3B8*1UkI>HI>AN)UCVhtLJn^W}}ySln;8WK&r9<<+)`FxA=7i9 zZ+2V9edha2ZiPfjC?7UFS>-Zhebcjq%+g_>SQ{VjPbyYi55dc*hn?Zn%@+`|Y^8ww z)v2(L-WE4gp|0F^xB({xrWl}xt6Hqb@;64*k04g^LB1jA`AVsvu=`!xV!wZRUsEgt zo%A%+BF-{&I~3Aa5fC7A9Cm^4NEeVvyj7lFy!EyW>W#Zi6*(0GkZ1UnrN9C?OZp`y z0{XD^l&1Yl%Xa>yatGwT%L}QVx^G(A+Ndw9r}#yHX_3kSK-#4O8WhBm+u1G&OS_ga zCyfd{xJC&c&VcmTa_V=gaeH~_r||(%dYwcExzNhD zjFA|rP2BPvdXo;CCo#k#m*_`Wa;2clGoL*=5oPr&F!aja&k=YTQ{;}sge3@ya_0|! zNDys^k$>S-G^RTPx{k=i#9*=V09s)#6l^dgxj2}1%Vw=7hT}NJi|&mJsNaJ6Mrozs zRj7mYT+PIRp##8tj7?7v@+ST!b(bH4Kq!BH=5m5=8>9R5mk<%#`_*B>+;%m!M^CZL zM-Cm_dO0>u17cG%+kySt45R%2?ZwK;n6`aRY!m&~{MgpZB?PTJy@fvu0BjytbyFw; zPq%A2o}WY@H3v5QvMHP?PhjCUsr4h_%4Ko{7E(%i*Sq!A(#@l-#3P#=h39uKgI4v* z5gmsnRa-!r%7HweFpX%@b@GP@W4dt-&F>*5T=-S!WsMH{5pa$r3+#8L%%oD#P+@?i zLeSb1uoHWBNjauW4D_ZoKy8}^Q>qfW{T;e@R5G;nzpID_j<*|h=VVHa0!OPPojks? zTsl-xJHd}pO7b|Y|E0+Ke1qYyk2kdSABkG zx7t#Y68Z}aB0PN$3M53Lu>3l7V*|ePbml`ACa z6^TAU%LLkUL1y>MeneoO=_b9h-{DQqdxcr&U($mL6hCVI-shK7e0R_>u?6F?m=P8i zldxqn;zO(k$8bI2;j;VRI{R!c82B*+c_H0-rq>xzBE#OYXS_Dug&Ln9+_)XW^FFyF z#TL3_T{p-Vi^jCm%HqU5n3e)q~fYtyFX8CqGVUff)5x2I!%p*$FOh8ZX z^yv??H4>-fk0v-zBG9xM#x)6FF(VDJ6~SP_N+ZMAe;U!~D*FX`ZqRF$dxYBGYlU3k z2QkEbMFw6g-yiw)DgE9z?+|epJHZ8H{RdfI>+nqp%g>W{>7lz*u@G)PrDeIEvtJ63 z&Nv2|vqFFcQIk+|`5k6(W-1S0Wb~o4yB_YbI>KxA>!WdUw(C}WdEGk!xG+g{*p}~X z#UFS8*p|0IVnZ)9bi&@c>n#X1jqQo8QXUfEE+JRCP`i)>{-|MkxX`3t0UGl3877#N zuNaVT_>0#kY$`y0m04~hmH2oZdha{n=nJizS}^Eue2B3zJ#3H{{{H1KBOSkSweRJW z-1CmD_k1*p-CY($g(d8^zUh_D0vttS%yt4w%J}EyJU9s)R3rVqEQem92*W;XdCQ@B z@)XN$a6*a2_I76~Kj5f5H*5beSkSQ~{SwLif`Y`Z&Z)ei$l>8(-;|UTk+GzV`=gEV z@>&*6+ek0~PPZ6Hdb9sH53hS?hDS!8i`lso*&PX5j*gDyz;d(&9-$U`nRT>Q(uD>&yfa0pui- zYvZT3ousp881&B^0itLvw!AS-Blnn7Ziw{<WXjcd+~a37Xk|Y6H3t&mgfM0X;%DWeZn!d<4j_|KTI3Xp|`X zSxzl5J-dR9&;Gyf5+A5pRv`zPYSk{`D!zR_*Y$R=DstneFOG zY{kbLL7`FJ3EMYoR|m(t6eAOj_Pw=$S1DAsS=qR0cRF@hsalDOiS>aD;;-x2_UWj3 z?6ylqtshJxY~Mg8J>7Sy-#^kRb9taORW{z1kqD$>k^KHwx9$UW^A)2sOfCyOa%n3# zyav@(++w#crsSl10L~f}f<6?;ImTrJ!TJn;4OHdrA~16pDXH1m9inS` zoY3Nt5L_y5J3_W2gY&{mS~}nxm={}xp2_6!#&>QH-Yo>NeD9&6x|Jtrp*-X7(R_2C zrM$27pu{G9gA^rUZ-J&pE-`-xn)QVSA0blWM?2)1>h0CaxfMXAX}~?^(}MEP?R($} zmNdtSc8xqcqcis1o}25ctuT|?aFL13h6IYtuJ%NUE!#vz0Mwjl3~S#`_4uDl(#m2# zE`^)UU1-)$baUFl57UHD*>CnzmQaE6^n}OpFZJ6#8+8Ui#=lvQx9tCPiU99} zZQFn@9dvY=+das^cXTg}Gx6Z?n4xxM2o%8jPa_b6)z6^X=GYaVl50*okryfp0E0u~ zJ;Uy+0vhSN1sK!c$OE)(in8)OO-xKc!yLwoT%A902_wHvlp!2Y1Ct7|XV2jM@KT2h=)32{@X!-pH$x#-A8 z5I%os3z^}iP@4b}&QIF+(ll9~lRDi7uP#%OR=1gA&xrx%`4tWRlB|+w&nKv_|v^~qh5DYx0gQ@o1 z&5bp~&RkpG9k94R+y7&t)81-_yl3A9ulwc^7wb;k0pBusuwB0}dN@NTt*4MLoI1k3S9_ z&};{*0V%)?DQ_|ThP_`92r31-i2A_@*6@c{leBZVSZ;?<%ngBMLV`-BMn%&ZPXf*mxaEzL{nF-ceD& z{fKH<)P8O1B&M2_>OUkX3lCJ99&T zTpI2=8qaI=^YzuNJEYt9=Q#_CWyAEAtarOHDSc&&n4W;soq%TgRn7My$Uj+kcFsKF zQ3I4iRLxDVU~jGb(n`Sy@_H*Ec7}`NZ6G{Ahr8@Mr9NGvdg@sZR9X>Ul-*=yB3PFq zN!@2{szd+NQ>bn}B-w%W(w>92y%-DM@bBH7f=c?|*@fk{FVs-pkOUL{gemhUw%=LW zpdX}DW|OhnJy$7zg6AD5$<^W9v6O-j(b3HL`T4zm{IyWY?SJ%uKOS}=o>qvAHr~5D zRPPU0$p?e_{9p|WTS2WKRy@gmeP^-AK&JT@iTK9;utu<@j6`qxpAbO{wKE=*g>$tt zVAIKats&)QSW=_)j$c`R0-}@l(cyhm&G5$m^puOotad<8>l%3M^YouW_a0kL`G0vz zeNyOWyonEh%zU_iWvoQeQFkBd72>fD9!lth=hu>^*P0R?lFV4Jr>YRPM1hK?x1^ z8-nUG-F;;?clPIHX1J#)-lLK)7=XP<3vcuH>Hw-MUf@Ql$3&sM23wRAj9CtXiCn0X z0R!2N#J3zR@cvZ^VOec6G|s&PqM858MY68Zs=V3>qdGKz6DjJcy#zpY08-5$>1BCD z(NinSaj^Pbll7Dv80M!kEn?YuOv5X{T!!z1vjTVHv6O`fnhK@^qbj_Bez4;@U4|n1 zNc5Ml0%pSU1RZ9u@@D(Xre*+4wDZ?gBKIz?BZmA*WaMMe{kG3WTigCX(QzN_2ulY$ zQ>dgoaCO#$mOF1PO#&FXc2tnczPmRc!-27S6mVo=l+?yDkbO5O`pW%Zzz~Dbc0L*) z61TN?6yR@JmkBa;%mmGuJspWhoM^wFjCw<zmDwsO}>;d7ko5vRgOgwLi0hrt>N>1Lru@&b-AZMyx8G3c`*7+7(IM^pw zjh2!+%dJNTHicPf=jis~J#8I$%39EjQLH2F1DouEY4OH z6ZFR0>m;NW9#vi1L1VBCJfuWhnt2~J#&=uG2PFan7y-)Ju6FNDJM82Q154oG6>?G* zJLwk`?IcJ0uVZ!*W%&y^)X@n5HH|v$R&$@T@uVuAHu@Dmx-=b)J#4u5x7-BU-~<6m>JQE6&)sFBLJ;M}*F)T?g3;3*_=l&j zZD0BKuZ9cQ@LPMV(&YQyK!}-M8PpB6HvbHxd-o(fa#7^d9*+< z*1uBUQskjKgCl{r-9zoSiFXtjg-2!$4!u#=qXwF=K}WXs?y0&pY#`t8FFqH=zyFcU zkJ6yQYuWZ0lG^)2(Lh9n*hmG~m|+Mu99#VmiWk^<#Hc0^PRZSmN4JGD$fZY#^1|Gl zoSf*uC{AEOArQ(SoeUCG9Ki&GQY!iw-Z15#fy~FTRGhsV%a&P?>`n)?Ut4Ia*it*7 zfQFC`4rwwAMP1uu1YB=01`s!Y!FzJopLq@)xVt+EU| z#CQbXK?_v_p796Fo66xmBaCLCaS5ym7eu8*CUg7lL(^I1?1`uFzI+>Wf-CHoEW~%0 z$l#!zax^~2RMw!%{b?y}TpPlAUn?s-gQjjC7x~ZO5tsNFxSr(kwR@_ihN+u)SoK7^;oXeu}342kJO9g`(BtAV z7k(ry1$Klj9q6;#`6ZVZI$1VQSt7PT#%QzOI+ksK_DjJj_no*R929X3JvG=f^?Cb@EH`7 z6~8{+G6c;QTs<5efC7_6T-j~LVcC`$ zay!wp$>`=p^gz{RkbGH|qCHTS`GwkPS^s+t9LLVHx10KDi#C00yj{~+c2kj6@F2}= zS*2(;8chKrGUG3ywlTNf{k$y?OBdyR7Akb?d4cb>vfRrlN1i{b{Dng(Y-rG&)pX5U z62m0(bs?u<*p=>~BGtDg;d4mh=NwD~oOVl1c#(narF3?DJ;Wl^b!=rJwN2E1m_krc z5NcDDfuj!YFdfB{RpRFt!NqDNsylTV1=~ky85tQr1_@C;AhH*3{QUV7B7QW;wMEX4 zJ|FPQBYP60@xc6KHN4%v5Holz|E3bPH&szp9r!&2Q3#M#6$ONZj!BU$>fYJGraL+S zA8p-I@#TQ@XQI@?*_(~c&E+r8$v^}TYO@Yncu21F2idlp#a`6T`MMiH*=MJZ;F?*w zcY&Qv*^68X#{<>4&zcws7LJK=kOcW9k_u{JU3q*+u;C1;4F0}%YC-bn9GZNGpS+JMCBlf$-QMaSShl8Be#Lwv zml7Wx8#4qV(pLo_Ajc%2*lDbpvm8ZF z3y}%?@z(T@L)Lb?v7XEg7z+}izMIcl$-FF;qak$z62&3%Vn1AW&fMG_I#Ag6z;O`+ zVLAJ)j`~(2IRR=;+2PML_`4f%)z#HeM8gA6!TKJs)Q_J(^LeZ`pyjZ|$f`oVhTUid zq#me~nQ1fl3yB@Id%$c6>b;DQoT{oSg9igh5zvXpa6`lBX+(}{#7?zI!S)suAsXvy z`1#x@4q`np@er4s?0-(iy9^}m59+CUE1_sb$(09CW7A0K@r_+zeC_=R-g7IO+;}(o zr%iT!1T@M}K(3Po|M}6u_)_u)Lx(%__?hw1PDoS$f~m`hZ);S_=07U)garQ^O!dC^7i(ol5n*z1Vo>QKm2GVau-FunngameSsQ^gL099{v zdb-kb-oYP=_yzJh3$;(!QorDB{Qa~u=qW~LXA60gQlEr2KIs*?4p?|_>E!Y#NUhJ` z{}8t;$w$c(ixXj4#<}p1d|kN*#GM~B=+^%u$gnHlK}kvJ1T!4vXOWV}BI-05Zd{+R zI|{;P2EzYFPDMZ71_S5n8XHeTr5eydD}ZhiqzI%J(UP&bmompM1)Q(Om(|itH^8N@ ztW@zQZ-dMa33SnN{?EU^pd6xv4y!N(XG`#!)?6vVf*t|F8pl8^(zJ|vjdQlhMQTG4-=BjvF^GL z0K*m>ksw!rqE}{9BHIOyqky=dGLN~7e_75;(=!!}75mdldyWkwlvdUkTHs5QUD~t1 z%J-V4X&nG-yJ8UAB05-f5h5}&GG5pDVds^B;JFW%FJJBhJ6vwegHa8UBkcHEg@WxC z0FJjt9k=nzRwqgnAU=EjK^P5y4Uk#t;f(Z7T@LD7nMFJHV9IWHDa{9hcVc_dorq+T z^#TKbg60+$Tg4qTR0lScy-8ik0~!L@XjU9}|A+bR@?KXdWuAT}q^7xJ0V=*`ex_7bKNE)Br7hCfxkq#QAl(Qu?SLnRj=K@`zK=u*L0nd>65ereFZ9K3O}5 zO3cv`I?AX%-LN8pwoGa7VSfTePK(8#Pk!e`OCz_YD1e<#;R(mTJY&h;c?eGnk5I5d z!Eht{`$xQM)m(;h3Pi^W=YQQ=DTROoZ1lPSTB2ERCsSQ05!jpi4D{7ly~$|b`k+B~?b+(;Dzq8k z>T+9X#6!+qpuKw*WR^=#6`gofcToJxNwO?jsD!O`z&O@9QHRk?fBr%|(12*q1&`dj zsJAl;0gML?+HAQ9C^W#F&f)rEzSlFWCS(lc%f*`;L!Ud>=SDI1lMh_4nG zuSdOqe-0|?oB>$P+OqGVhfP4a176?(F472cOQ@?))6N*(>#R~RntBovh_;Dosn>x% zpx`|(FPHmmqUqG!kIy8;TDL&KqV+2UPup4#dI9l@6TpXI<;!y`F>>GpqUsi$`)GV@ zFD=-p%H`L82X8JyqVIs3x~H$Dx^90IRYt6qsz(p8K`?Gwk?%0};lqdXawt0LAQt)O zT)O$MTP@{%c9&Rs1k{GNO5nyjBkE+bh^=_YwCf;*L>*_r zPJ(RRLOlI9we>PVBZWYREqpt>Fo1GgNnanGx&k_dwjPwbRDsR+k(e~eFH@r(=Jkm= z4d~e+d`35`Lj^AjS$9%_b3*(fsRY!BACzMiKJhE@E$C34qhzmUOVAH?gbrQ z22MEY{dqank6dz@X$M1it=cn(>!aZ=r|-Sphe5Xi2JJDXDDi_dG&H?nueBdw!I!wB z04;^in;6EHc)FZ@(7f-$Ye1anE*e_e zr|5yUyBWJFjg24R);qy!`)!Z$nx$|CI>iS-J+MF4!F0WEq=cIsXwz{3>H*DC&$4~x z*mbTW7npiZEE9*u5%2hi{r~ch+G{m?9cSq)5VthTnvm^fx~|&;_N)3sipMs9K!c?aF?~!f8IrpG&UJls5Ap6CCz>SS z^x=BPyzOvz?h-*NHZ=bVS^)Qf8ejh>gs9v_2vYAwlq_hZoL#4l^4R{!Aod_M&<>3h zKtebe1$%4?s*c9S#xigq-3NF8gO~*Bz@EV=Kog$ObWF2gN6fra4iOOBdRfZv;7GU- zbtO$rYH+xk^86IG#4nN0VeiHxV8T&gogr~&{-pJQ7ih!^D1eGIE+OIPH;mVT!{yN4 zW>ZVc(;kyviOPF7&4g-~tdF`ok=2v+t^JAm9@lL2iz7n#m!_e09t30XLOF3W+aBWe`BaFojh+rTu?K3~yH7$6 zavO}F0gipwF)L(O%mrS7J_8WML;|;i{im=0KYIupj-zf#dT(yZj3oDfz{Ezvjv&_R zT?&TuD4}EuM4InFON$1_MsCURppRic+Gs{=;{0OU5g{1zvIDiiTZ^IUu5q>}GBYO@)d{Y&m$ftJd zxgGWxD!Yv$V4`XpMM@tL&VbQIp)C}tId4g^ckw4qptwwIgwStCMOqk9YSE$=B!GbU zV}xb|c5p;|p;39J#>N9740qV$K!ijCEC5OD#zIzhJV)#_m}qdQ4&h~vx&7`WBXVA; zIKDnkDf&K`4zK@oE0{iVZ08NP-ul-mibpXm%4fFR#OvxYJV^!T6F$r7cD*bdmy%NZ z4Gfq_WWHqCKLyEjm0(mG*d2QA*F~j;E_1!mP_*oevjbVA)O;7nB{R@^dq{iav^Fr( z_sNpct?-c6BoSX5&zMQJL0;a*j<$%%g@uLm|6hAo9#(Vywv)0;2^nd@q(miBQ7U7} zGS-AjN+C-}(k4<4Lq@caNLq}+kQS|I9ZO|NA?lQr_O#GKi__`7pL0%i^8T*(djEQ_ z_mBKBmqF)zmuJ17`+h!_{~i~24{+MIx@Q)LS}S(={lRf8rO|x8ZCt?rWErVdHv6(4 zJM{!NT!GS2cz$hL)+m0o>{g3*@9HEf0nz!0u=Z2rxGM0&^3fN8OwSzK<6AeBxYa3E z5hk~nd3Cg+^dOpmx@G#Y4Ob)Q_qA&B>!wmU?zimn5dN!WFu^34)fYHsePuV;c}R0> zQ^p0?z6wu>xfbn~{>e}Laax$8$Tlzm3G(>WJcuiNB=tlzv@YVE>r8wuu}75wKF zL6MY#3XJ0XexGN&*IL#SIwVL9gLYa8m3`hn>+R7jR|ms5Xg zpb^wtn?9&Gf2b}ZvDqHAY0KXi>ib5UYU1N zqJIdnC#=DGPzTfE5cZ;62h6$N$Vd|9O16uuTFNg$J>(1e!b(+mZkyN@u9!w#Ns=lO$>+M)03uREEVJ&$Z@F0y0HfB1*$!18?jROeW*tLF*Sp ztl`G3+(*KzSFffOv2KcOS|x6C(@eRIEER_;ZcdN;dOHkfsPAVa9pW1|is*WYHj^N{2VQ z`Z|?k22(J_I%%84!?x2Kdpi|kc|yjg-&2S>ea@?4#a1_t{yeKMnga(5L&_JmAIrY0iCHr17HZch-8MNR)X}bUOjXjJ3y5B!B(b2efN|{$EXe9DYA~51x z;K|UgA8kG*SP1yKpkN}p*!P;f7$bf%8~KB=e|duI?*fap6f*QH73I$>c?fC89CkbOAa^ zQ$*YLiEA()IOxQ!@+M1Ze#qt z>V{+$4@@>)M5AwFFOq~U83U-EE|&KE<%BFW+df3K7k8#;#btX(CWiA~mZqejapYV> zfsr=Y5gi9ZQ&Fn7&!F#Jg%ULG#>sQM$!g)2Qam3Yqc!stxaCExM>oeFoW5lVO@3cv z&jpn?3pjq`blM5MckT}%%pc?ieq3+iH6(|_`Wol7S(2RSOv+?0w!4rGGF98&G zrIaNnz&YaP_a`A;gJ~0SuMPGI!Uve(5 z5G)#B5WRgdngdYEIxov4%Yhl-M*yi4&IC52iv8nVJF15e5SXLvK#i1mEYmU z>8NgbuzAy_DwktoleMGk_o{F27jgms3Y)Dew;(kgViYT=mmq`5BdH?F^cl;}O&U*1YsZE{ryq)) z{epl<0w~=3mzIs@J#bA*EKPFVO>#|9Sk!zElts6(2qB~~UKXl%v~bsk$R4zw`~7pI z@cn^Wxvi96xvNe2L+DioB$t zjZim+u2}~|u!C2zuGhm01=Fw|te*F}>X|5!#(cfXyBO!qmJlaWYvLx=R`m(Fk{Ttmwz)~= zE!bpgM0F}sl@(fpGZ;@)#a_{5m?lFo5uv^KQZHmpwolZLxX#;LF0#^gDoF_RpaCvf zA3>=V7uIIbO8u0>-#TBu^c*ccfi+|~sI9L~yv}i}86$9QAP-~4QM1NqKCkty4@s9? zt1Ch4r2w8ig(gJ~@z2YmyEC6s6T0G7=b_n+oDb;RT8^~_+Jvwg?ezqnIt-=(z*eGN zId7kDw4v~e02Qyo!a^cgl!2S=1+>BtpouQzti-PKXe_Ykd~>PnM@hGP>P$97Je&ua zI{jQmBmvFpeg>a>jE|(sW?xi_CJ9*BjoFxTWk4m?oTML{SyGf}m-e>YrtUbnRjF7* z;PQkTo43{cJLG$z2nV_8+iKpGXaDNU*zJg_x9VS;30otfsIa#vLrjQ@DrfH8 zcVZhj(H*Wt7jx-w>l+r5q1E7p{N*t?j~lwPr;_%$%I9Gy_zqZpWcQ@>-xDOKIt^0J zLikOrVg7xz71k&|bMi-JN0tj@KG=5dKd>OG`tcQm`}h~wo|3UNO?rQgDMQ{nDo?YO6S4a|@zmW#vmT zYU_UKrGSvV%s}cks`+aY*ZY@>h8!yUQyU#M4H!c_I2|?lQ5GbLekHe5zq97LS!-da zY%=f$*Y+zZS|}dZdQ`adcMWeu0G-(%d3l;|#%?Zc7*nbNz?MZtOkjyNn%p80rKBH@ zU}B!bP;hPtM%0>tC%pRQjjISpm3b--RP8f2Nl=d6QD-abl(!yrvW$-NS(K0!E*`rE z?eG+nG2JO!^l*8C#2Z?S%D#@(soTvw5A}~LdJ5pCk2_^S?>4M}!m2&bgcGj4h6Lj} z29x0IoVPoahvCk7q34eZX8q9x!I%Wg{ElGPjvXB6o@>4{+_>Wg(Xm;Y6BdxOf{*Kk zov_oW`5=^nZ@@+y#*%Q2U0l*-Zp-pZ{d>C2oW5v>UR)iWM9;`3%t;gyF8!ycC8jmY z6o*1oLTGkRb|#KZ-I`rek($o+1?(E)D5M!VNv(0}EA|mdN8mX5>c}2P|IITphOPL>b9;z&fn* zX}DDJ>uLeObC9rtJU*T|{jx9x?YNNifXobxAG6%db7*3U$C~=@`h-RsU~zS;ca4ei zXJq-O5Y)VI^0QjO`(6&Z{gwT8#@um}hXODJ-;$<4QBPLz1q5YcF}vMr!>qdN-Rm3O zHs5PFbgT(cx_^90OKVlMJtg>Iy9eVTN{1!=%Dt#a!Kl16p~@!By{imcAB`~*%>YhV z{P4n_jPM31qnl`>s$3H-cb@D0fxUR=Dls;ebettIJ~$*Y$O8L0UK9Ix)9{-jaYWa_ zPr001-%~yHK}m6!K(w9(sWHt6em(ON^81FO>blGL+a!g}Z!u&QzZL3!crwnl@MFw* zmuOc)vV`XBn=vM%vq{0oBH?BFFE&>tXqPFs3c|9JN{1gnvTl#VkENat{R&493Ua$)F+<6-`01t3&Fv&Px#2W@&1eqKW|lC=(Rw=FvVI zM(QWZ+qsV7lweD6VzTjA{n&Xc<#2P!Qf5%ZNWN%H&kp#tosN@fM`7R; z^$3u=6z9ovU);%bInGy4wt8L5D;>3uhsw`Q)Y!d_2-+SR*b+R(&TB?|;k;NKgV=1} z7#$TXD9YWNU;O$c1rS<@(6X4$n_$R3tn9)*M+H3;eGJ+1o-r(5oyf5I+l1tZ26K}S zL)n+H*S~nr<%XJ&2z6KN-Kp?74&mivdoYy}YCo9Pm9Zv;(ejYy7hTmJ9GiXS&Yt-w zH`Z`m6B<8bQkLjyo1kv|{ki7yPP%`#OLxz3jBc?XY8+-P67x*~xkqa7kWpDkC>VVA zPbm8?y81s~nhIWdl~Ko+Zq64PsRyl@nH1E5Wdkp&eZScpNvU}kp0C(Km5zQ#v06VL zSOXt$*gJ`f0Gn>@O*Lhwr#16Z4QqcHD>#hxFcdbj)+^`QIJMj;i!`^yAGSuy9Ye&y(a(TNq!b_^Ae+dUSC)c0X|+A@}Vu7h(X}_-BX%H=G)a#st5L z)fs`#Nroj8M)u7qIFfLx0*Sofj>C+nUR^Ev-41#Y7|0~lw#Llcl9)`V|EQ$x|K>m? zoQkwj3eMp%JKD&rd--3b;fY#&{P(8ix~xKv4l zy_cg^)x3ihS@*Fjr#Z9KC2ok#st0Iu$}e0Sv!Eu79htZGW5K^_p&!S)5B2O2fHr|x z{0a=syzC%%-hs_p5OG}kV&x8+Ab2RqBUU)=$R0JwNPU+<3(cm>9~tG20?3as>D`2= zwL=3DT|a&r7vs7s3ZeLjr%uL~1LAUmReb$8nn$+b^F zFB=Pdya{)axk52GuUT^W*Adj61Z{q|sqR>#tR_{NtRZXql?uCu!zEY!Gl^UNCCv0)*sRMh{;W~jc4TOw z`130sz5wWI0mjM+Mft@`Vh*<4Xx_Scj{>=+r!eb^KT9T*_=u!FpkuU%75L%c3zbh| z=`wE`nmt*Kb*wttiL4r$bW0HgNp%hyPIbBIb#_KZZ#6yLKAn`(bJb6(%NLj}4H8zF zf~Pm!*qYu~x{XMT_+6kigudu3{PDd(nnbbO^Pq5gms`~q4-KDmXas`BI0BZ@%sG~% z{hSV)VxOgD8HCPe$4aSgy`0vK6G&8sh)uqqZJoTLU%Y{XHr@_v;g;q}!q`!?3?rec zq@-?A9N2m`1L);W^JhCIDRx@=h{hO}#>Q(~xK>^S>F1fOPh$As$+#%{N5d5>ZZY<0 zb=F7bQi;~>hCG?HAh}#HEk(bD;RWA3$W2T2cS)mLP8u9q5aE%Wve;8h9lREHV@`cj zTfJRW!1ydpzXj!I=Qexo2$~ZAw2pRskCN5ZF8Qz*KtX8WBOi#b-8xQSU5+}ZHk4C~ z6Xq$0P7On~SaAT>*| zCi!n;sLci-<~A0w$gXH@#wfu~E_VnFLes!y1wPzAHXQ>xE6lj;EBp+reD2#7#?1gW z(mdLmcG6LDoqy@lhYztj4zZgPmN0v?KHO)1M#)n0@2Sq_*?7?ftGN>reRsE1Z)?pb zdu{~>c!ohV^m4y)itH}RADHE=~^4-BnI*qF=>^Pv)l zupxQc5&wr=f@qHmran%@zPODFZH5WgHouR;AY<8k!+yzP+-hKoao*uHk4TdLiWYnc zgTWwI@r#(^nm%ag5}dadcyt;3W}xlt4B8k-6mHPPbtCPg;s0$ z#~C;$mSUHnw4sdCMhZBuL2U;8`}Z9>sQ}>@bSM2ia`uCqVWVUgXmslw8TGMWcv(us ziq{Jwx8bAe4J@(f&mQWUr#mm1Pe5z=!sl*eq&ND!Dc;&;r)93zUf(cb;+!4J^-|Dl z{o{XY&;EXukpw8>3B$q{k%74jvs6E^t~Zk8Th@J7S`Mf{(0Dk1vgwF#nLGE@dm;4p z`;t39hc}@_@u-^XAyBRw$U7mTf0o%Khn%5jD1YScQ6waLFrLUQBo{m7OxpFX-9?2pEN>RJU>H1OK+phV4X$~nC zEd(K{L%vY?qsw zq!WGf=5!hcLgrM;y}0r1Xz@eVc0E%Jos~bfhbh3T&yy5@t*B@!(uHyPLo_$+Fb^>i zg|N)@1IqIz94UB1cjTP9;0f&z=v%$(IaNzd&N zk84JIzqmylU>gZ{cW-lLIXQIrL^4)OV;>}G#>JSteglIX*~#AeU8R$`NnS^Oe#&fF4XCc3Xogp204F`Og)nj9tA>R*ng!6L)Ptt7oPiK;TF z$GKk_VD=Y3#Ai9X$$_xVak*wNE(l27Q3-*lp!64>w^xDFJV^{r|69z?H$k06D~;$} z#%J#%qJt$1#vW5OiP=%T=0HF2bSyf`>A6c3U}*A^+#L`g9XEk#UM&wmZY#|eFeBe# zAaaliQec(7XjrPaz!M&~0uOlU=LFN?;>$Pmm?XgNici(FGmL5^a6pIYU#M?yl!}Mx z0RDIO5VsMmv_P@{&`Ytmm7vWvY>4pA(3(186$R_Kc!L$B-HkHkJL}-(P!T63mvsOj_c+ zx#Y>8l8f5|ZR^_ZN23hX5nI@rOCu5D_4#DZ<)sLoL5e(IgjgkJK8Lo^u|2rKQ~Q8r z>V+S$ZmagMpTH7dTcML8hdgw3m|J8z^b{d-(}cRVDi0NKV&Bska{DdA+>aS23Ki^S z&tQxNI)X!J4-Q(2#?vL(Y)rPT&`@Tae^=N{I2WwB+a{UwCQ=XC^HD3Iz%soPtWM#S zZBmNa%~=9&vD~bj<}#3q$kU_%M>hGLytYlm*;xLFh~AN%b;tTm`@@C_Yc5j$?b5sD z#|&7*X+Pb5>|eYLIGc3fG1+^Gr|5Pr2N^u7{gKSNLsN`leK3rLt|{xJ|E=;`(7Kc ziKXo(pR-r(b_YWtE8G==6v;a)X9#{uK?2yLi4A3>c+m(?r}wi#_$7nK%bj z4mO*8SmuO8!7ohA2&z3*EK=QU#9a6rKzJSWb5mT*&SJd_iUwhMqA}-o5!W9{=-e!} zF4lc<2jOblX0c~|t5VQSt3Pr%g)r{}7gzSN6j9wuX;T=WUiR9)@ZzDs-L8gXVdDgNQAh+uRTwC@H`0xNwk` zoi|kXDynJhW@2u%{IUsE?r5zK;)av$mkfVZ;D1KRw?Q~GCFY!OatiKSG7n>pD3nyTQ9c;pY-~3fF?x<98A z>+0~c?(TU^B1F*X1hg~O3d10(hq+s#iC~e|5tOzk-u1pX(|mkZYB+1AS?K$IRnKjt z7^5%IotQE^Gr`u$pk<&W*eA+{pheolPv-sjHfnj;1JMMLR@N@_evRjHbAYQ{8UuD- zVobo@)@a*sEOvYsuhGGpEP^?qa2gcvJ!S_?2$)+ys{?q}>*Y`vRKiL@v-fv3;~J~A^j@Lzg1D{=IPwk6BhZtyeB+T zy&-GT-hoXhQ~1$w3j4z}Q^mw<>4=)a7Un{Qr&b@>BM?PQSHp-SmNonakGhZ!mHAb> z1CFp4+AVS&gA#j8gEL9IP5saOi&l}Cq1NPnQtR$40r7QHsB6DY>o)jUMfa~qrEv~R z=cHE-7jKW_uGXUVhWaV2FbeT-q)kG!AP>}!XD--bG0n#vLKAHT0aJ$w*)~ooWv?Qj zfxN9d*6Z>7s|G7Za8+T+F+zE1o-1RPPVXCZg;j{gD3pnWDU{rNbGcLsM~J?;eA)zl zFwzll{wu5!t-%uH>5!3ye-u}uZRnns4`Q}Gyp6B;P9q%*#xHATz zftgk=$hP-$4(ev_^=6($mBkz* zSQC-S4j80>dCmc+`>u^jNJ4f|_9e!?dnzf6R{Iu3)*;5em3vdh%>w3NKSN9aPqVESOweUxuMDF>fO9}KFNQhyxaF6hJ8_!>>zBW8!jREHTA;Tx|=mZ$zh7@twqn) zJhN~1nwNJ!Qwq$y?0%wuf9_&1mu=ACOWJ7Fksdo=#3j?r3fj#ld8UVE*-3N?3SZbB zo|P&$RCO(69=A(O5^gT#PG}1?rtN>`WdB{FwsQIg0m-KqaoFDDegxGR4J*mO5EoCn z%Mv?lx`HW}Z(V@8iBQ#??{eM>m4XuKKb)0l(^?9vMn8^iGtHlF^@oR}DFPt=dx^$@!U9FWb&DaHywR zq5FO9zUY!@#?gE4+1^iSOO>At38<0z{@i);xypR2Uw6I^H-?-z|$_?YkAp=>c ziaXK5w4JCPX!4oC+w6$+ZY0 zOEuE(%xjk3v7PfA?i-OBY=lMIM%(mzRqG5~vemQIvtffp%bB$~;{?p75pfxZ$4rBj zd!nytcJfG^fBZu7N7;|Z@=D_;eV!kB#OvZ9oP0chPN#spD&6{VvU`dbT_SAKDkZaH zQ2K#v5ILt?{4kDxzoOOfbN1WP3};_h7Pvg0!pA#!$V+x1yena|77_;x-1OW8q)tfx zc>0W?->+DCa<DSGZ15jh4oo$L5b0FgM2^K?a+Q zlBBy{5&2<#dt;rh+xg2ASTwl^fm3`*Gh38qAZ35knn|6Im+^2BjwD4Y-f8i^6KAcPcXMss#eIH%TR%x|%;x@04kyYA!;U%t5F$?= z-ZoNDAmIW(Q;_U?X-Yx{e%c5AFoHiMB&0E<#NQl{iP=y5d4CG@j}xsLEF>f{B)4x| zec-fjviDGkwrZ&KMvmas;}Oxfn;5P=-A@_^_fGfymz;^tuI<(d$B3`W$H+dAa2>iN za)!(Nl#I96xJY)vSDQ*3N|WT6YxhnacyL4J0GX^%!1p(vMN8KB2k)j89TV0*C#}Mw zIPL7)i7|wVm(J+ihP)78CWq-mXhchNLSyN3Ck_3W#f>^>QKq-+phRwQrwE zcb_H;JMoiy9z%v?f?>~JcONgt@&H+krK`EU|NpXh@KDCPpWO4q--p_@|KFV=I@@3O zBSz5Qm?C1`|9^o(fFebwK*%a@G$0VYe@FC=9UL`L1!$ezCpvXbM*jxc#zKO0 z#YB7Z@G2I;_7+=k{y%Bq9!Ln99a@%uq@6>r}bg$^Trk^{-C=x<4sum)!&2 z#E;2b1q--pp?dUxNeh3!j%cO5yY|_|n_l-o zYgg;gAtk44S__GxVtnuV6A+&3*x9D*G!<75vYari^lc6MRZR1lN7n1ejT*i` zpIx7fOi^OC-07FR9%KJlOCKq&NX8yySp+o3ZK$I?#iIA6e%Xyk*Y-}z5Yu{*wt;`k2>vz zl1t0`q4;pCqz%dT*Pdq{k&O>b=foY_Q&!7(m7by`Oj&#SiNeMnJgQymTap?yW{ZXH zZ#Y!`YIZizQ=)jK!Fti=!FgpCby$%^pvqKZc zQR0r%J)MtUvLt=K?2fdU8>yLXbS&n#4O`dhn+v)emClTO zIEC_9%&eBVSVs57(VO|CxaS68qRg&#Cb7L%a;fLI9INx=_Q~NuX{pKpCbXH3$?D>f zg|&rON^WQSW_*Opx%F0RtM9Gi5uWb&^}45$=rH&1l)AKZdTut+>kYSf+|`LN%*N)} zYp)(*TYI7X>lG1q%Ew+IaX7F;B@aHef+y}+`mV5iyKmUBWUZIawB_^iI?hwi(y9G< zgT>Et)C+5NH5|bYur)?rD+T@QmsnS-<*b@81j<*Ei=A6B40m5ChiNc@HxuGbU&J|t=yYWX~IK};@HIJWAui&A(KB1mtE%!3f zIM8DuZukYS+ar6VHci&Ycvk7wuPW=Pz?#NFjnz<%u&DV6 zg&(NGzUcy7-|;Mr;2IagxxqXs5E@D>_h6*Z=tq6lSG@TYI#?Ud5G}LK@LF=e2}eBk z4dxJ*seKz0z#&X0I{5tf*}yv6@lP++n6d;|RXih^INKdRdn}i+=~||}kE4={b(>I$ zemy-sJ<*~emlhqe&&vAAua+-1z4mBTw$ZUGKVS0jh(1|~^}F;Mizty&OVeiHH*REJ z;AmZhP#^|Xcl^q8mfAMFlILn`yGdDLWwI_liNN>yT^ybCd?@Mx2Kq8M^T}}OO>D_V za#uNLf)%DKmPuM^f8wN^^r~`%=f=w0aEe~H`G#4V%^8}Ex=RJ+nbGT$BCF$Z!<*|R zn`qpVO9hkPmIF7J1DAo{>-H{Xg$Y?|;yKZI4M@Q??!1gf4dcj@!FnFfNQQ^xJxb2C zDoN67xDwA2tME0cc5D%d&!J?!bu+xVv9a;`l!6EA)6#t(=U<=X9?BhtWAO~A;;DRW znoSwC@PqymbkVeZxVEuKAN?!WC?=6nfkh}BKH^hz`ZOi^?QuUdjn&z;T+KZ?r*h-n5sUg4AOM_k^zODUad)>guEa|(f2Rrg9q9B9-Uzo*Zmjvft9Z;p zs}c^siVRS5fjbW!kIvoLSi|*?~bRo)ognzz9$>Up2Yx0s=+!ZwX$C?xhB?O?ES0j2ex$t#Z!U$*k8p>^qf4F~hy9`pF{(kU~!v_C>+inen(GtFswQvUts&#pjS$6!>C5tS@e!W%$HM@mHrI;L-Km7_wDbj7S9G) zr^I716n)IfVWS|X;ppN;5_0ZiW7nLg4@%8=N4b8C zvzlM;k#rw^$L?(IZ8(CQBlMh~n9M}MBa))f9&K@~s*!U@gnKH+g-Orwbbo>bCMh{> zLR1hTTw4*uIYr=&IVHB zP>3NsQMP;RAPC>+q<~Lm-{&qP3!N_+9(J4Wq2&3)=-xtf50Pf7?PVaE(onx@yDc&m zMn23JE%g<2;Uy9dVitZyC`Nq|8oH<`wK6hcPc9_d;8Gv*cC&xY;<}GAgG;;Y7g;OW zg#c@}I5RoR8xKboeny-P=SWa2S+3ws)1^U6FLs$D%ot%lqWvKKk-M*3cv{)=f4K5t zequ=s+YLiWzPxXVz_?+x`jZ?k>SbGKNZ_1Nem#Yp&*rH34r)q)P^*NHXksR!C9*X( zK{2um=0g5H@4$(CT{AhJ*}hF#65GZvUi4U*P&$Hdm^Mg=#n`2QJ?yjV}%Skb*r%9NV>Zs85D^Xi~NbQQoJ_b%FO= z=Ja+TG%`WtKkr!Wnr@ZEq5n;8&@~pJ`I;)3S1ffh`xHC{5ipl>DY|uKeuUcM7l{uSTyaF zNg5)6KD8?dy;{NRkx|2k7dA6DSX}tzp>3Ip!Xukg+SfqwHMJUXxL>`-bOnzY`UPyi zsyU#+qRE8MD;D~ZxtfxFL0K;Wfe4^T4U$^Mcy3_u$a_}LhRNsMlMW;Kn0^j_-y~LW4 zCdCt{Wq+7Zy?Ii3>bCkHMU0mWH^qo=T2HU2T&hBpgs9o0(sV&_xrugpp7NBE$$4XV zTkS7oKVeKbxxv%6O~=aZ!&Ke7xH;X~*Xj$-8@JrvFb$3P2;ck&Ie!0R$RmNa76N!YJ;rXbs`(!JUxnp7G zF0v*|4wFH}IbW6vZ7#glt{q}PImxzlwDrbl1iFo|4_7i-`>%dG%;eTdUP2+$J#cP< z^bZQhB2-54jBb{RGV+{3+B0=tC6BrHhSNQHs-3xCKIvK>f4BN%En=e&CNp)@ouwf` za>}&5ZBCm>V1L)e6@05A^nQm?H$}+0gQh~QH61&(IxZ)z zIdxj<4c55xgSq+mvSI~RE@<)@p9IXHsveGR7i1~R+<_eyyN zZBXt>CRh+OPzOCd-!3iQyH+(sf`q*=1m>T#&=9b3+lG}gP3os zYDuS;l&!9(6kol^D)6NCgGZnx;j%D$VybZGyc#?vIWQLMoEc3gI)noaldH5G)ka)T zvqS=?a1hib29#LMi6w|)s@qq6#O0W6ZXlcQOlL=`e8JR*X4Z%XSdUb0KYa)Fm}rWgL|Nv=yhHbV zCc?P`rc!ab(U_4F%RTj6&*m$Cbuv8Hv#B`wmOYA}qT#|ao;sWnYvx8Sgbu8{%r87M zk=&NBh`|J47989ROBlObx-+y^bq#f{7pZyZ!5o*g8)GthK&8?CwTUV^6NPg@7Z||e z^q5fAAJL>uYI!PMxBuuh%DCRN8t~iIUHG>Df~dQ&+!t!3z;ugF_dh13!5W25HpmYB z_2*R2=876VQoXYkvnGF!R}KpoH;#!m_I3Dih|}V!6M0y`pyu#P(}=kGjx-&nJl7Q( z&*ideol;nv9%ux<%UiyWdzfeYWY{#kFs(pP)5`YV@xr%{EPcu~CM;RgjPTj4WBO@2 zG;il4K9Q}yKc|qCRA-!2ayg?fzVhj1M>p$>qNE}?SNNR<qw9*%+#8k8p%&?t_N3&F>TwYFQ{+cWj(K4X2W%>Q`jo$ zfRP-Z;Z%ztwr!8o6v8-AsC)cnv2KWB4?SyijcK3gP)0$4xLJXvdR#GM0^5>9 zqkdoA!17|ZHA3+xxD7k{M16n%Tu{z~xO$;tHLHj3nNlW;*QUe$Wg9NEQrv>w-;f z7fYmOv&07nU~e0(t#Ypvj+&G*PigRq{<}Dlj7alnK*C@TtUWmb6N4jO_iEMPTA4t% zJ)zVQifV=G%7+;SHwn{@CCRd_V;`nKg@BLfTc)y@UTdQ_60)*ugJpndo*L@|5p-_~ zA<*%&GiamHGzeu|mPmLnuQ5W=WbKaCdK(u}vf7SN+k|U?Vh^tim$D9?^Hh3Tuy9NI z&m3DyLT39C|2>HLdq{yk8>qyeN!maA^&?>LwjN#W(WIBGE+(k)1}Z&RTW=j8P$rB$ zf>h>VCweP6&}(%w{Blm~pdK(5G_cDhZPI?9C3Tu)UENfG>CV6h_IvU{7KY^hqDhx`AG=Q23zEm=al3kQ$Q?E^ ziBL%ol$fg)na&+f;vk#AJf_XhBUu17auQqdcXAEW_t;lsA0{i2xA-L*@lWP~1wT1U z(J{mtFYD2q18!Mq9GCFTht4^5^$K~w8RN1u?RBg6ws)ZJtYo%|iJ&Vj)Nf%?M}APS zhF3I$wkrFrFMjeJsvaiUMX$k%30~n=*^XAvsbSx4YgK~7iRu97k$Hi z?B#tQ7hS_!@0jK+(nfr%U1UB!GKTxtAAQQ8_P7Q$7t(hpEj$FfuH*9S3)6GOA{OzG zrEiUfaM5@%j_a`z#oC)1(Q}c}=x&`72l5Qj3eo*peYHy^o9h!(R0XSC0Y+s-X-0bX zRyAwSiu$$gqxBmb>;W#JP<^j3hz~uM)lb0Qu^kj}2Z2jYV4!LR<0JIBVErlVRWX@5^IttE=QPdBrAr z9O$@)cXhINBSbO~Wl2j~zntrFs_?c(4}4CuGMoz$%+tG&>Je$Qa)HD$Ncg<+JQNf=cPrF5N$aUb=ZU1?qxY_XTDr#=D&h?1&d_8}h)JKuP8bjerqBq^g z>O&>3qAR197G22;AQAwdz-N-g79OX>@7vJquVK47sS-8!VZt6hnSwZ!KU>{C;pMUM z_EW1UCPL-F1JQgWqQxYLT`{~!0Dc-2a~)Po??LBi)|zM`*N4%b&&YX)Dq}E?Pc0`Vi4g(q5F&8y@Oh|oVNuX@GQlWOP zu)#f8$Z=|Lqfp8~QrLOIdVQc$dDe9@qw1-!VY03gNxtfes^T9xK}%jgA<}{Ie*1Mv zUb$Nx*F&`9GK+o2Dg(YEzG!$#mwm5nHev7>Bfo}!hqYR?PhABxTl-8pN`5%@+f*1(6&Tpq(HnELn>ehkgFV5v+Yba=x5X%H~;&;O5x@1#1@- zyoMqNZgMgu{wrGeZY@$5rc=wzr|FrEX$Yqa2&V?L-UDkp#RQZwXRyV%<%!2Wo}#LR zL?w4K{M`-|cFI_h6QSgdS}UB@du=gY(AF&|H&;ZUe5*|oQ73VY8&AuJhFQG0FeBRXP0F&cZ*gN)eJ+z(HKHI1 z%>uig9&t93T@rRZmN`{}?Lb7`MGJ|uSL6srw^ji)6mRB`h6t@=e*82DHwyEBsIBNH zF(KI7R)zcBd?xYA-$V_rTyK*QmUA&`3Ps&W;|}L2TkMk!J2JBNKqqD~kWly1%?j2U zO{KzA$Ku$de88h%I^P^wY3(lhveJ-IPq+_NDI~z!dKUrfMW>~uMX~gwq&Ep%;|)ji zRygI-$12T4YsG~**1pqtG|gKGs7Pmj<{@q3X@*_;qwB~@k?|43lbFOriV$YXT;nrn z79uK#ZL6M22!!0!%`&S@Ns@>;~Xoa{O59U@|Pd)eb-k$Zs;+mF9jL?Se=CqN1#2F9n z4{oPmj~BlmWb5HK5R~)mz&S69Kf^(^mLz+g)+fFFmWFbcJU*MAd_LY$gCbzQk(D8{ z(V(}%W3R|<_QL)}*Rt9;0(?kI;yYcjyY3@2pKiZh#oYB|! zaXq%|ACDD0Gp>Fg*Khk-*N55tBh|#WX!+nv0gi>kEbc7XH*uKpZ*+jKX@7w2;gNdQ z<8rC0UPOq(Q;amdioW8Fkceg?W+g zH5$R+hEs8OZ>F+_Ett70w5-~%t%j=fg9*reOIE*d}3pF(3|4cVB`p*y8imlNV&%B5_YT>RL%wBGrr8&&_+?}N$ zZwc0>k;V`bUhcLrAKl+GcvBi-J^3zI=!CjXwOt3J4Tb`P`vxx`{I&_d$c2= z)_U3{ug)EwUuVy-Mj0XG7@3N9w(@;_jxL? zX`#rgnuh+NY1+KZ53T~on zp3Z{e$6c_+J|+%Ft~m(J?#wX1m>WX9Z9Q9Om=K{V$x0AGnc6dcAwexi)48iP>eNeS z+gt6E%=jd#5}8Es99GdP-LT;pFyksl!Tm=Z6H#~En-E@tGHau=XZDfCDU>qC#7)7m zyxVqex=1RzE+|(`jeH#PF#1j;*4aouwBVjJ0D86w4mm<0Ged~@7mVHfhJ!pC+=uEh zb(8k-%Tu;o^G|~-{OGD&`{tv}{(0=F(g}OH)I*!7Yg-lu)%5MR3VNOz4@Z_`s|43j zR2?wkg&uDLRI(x2oilUt+Pj2X`V$CNBeJ*i&Ztk{ipI7qs>;q4w5dn-;q>(HZnCX? z_`~WH{)IBrpCj1Mz-}0mQwMmuxbjLPO7u2EaqaTOX}EJbo`|0wV^$N~>S_L95_7Q_ zP_werNkxKnx8P}o%R_$2X`{Z4%#XU&O{r2~StdT38fqyIo4*YjXG=SFN?}tnhwKrq zI)Zp<^i`I6#!zSKFP`3SH>5_-8Gz!$C~qEv!sYO>ujowV7_co~&?hsA7LYnEqc3on zexDd4E??^SHu0Hy@lAmorg047(~>XD;fqJcQ<%TBPjV!5V(fk(s@W;1U8yBS^#|8_UDPD9;U;Ka04~5y^$7>bFsO+{-7` zwUynYaJ+iOg^?E)0-#&@oCYf*4O97}xQX$XnSST7Jos{Hk~vDHpP#DNG$AsHd?alM z8vi2M31E;y2OvW$)F*MvE}F8XCzgZqR2lE=sY|_^*`MOu)vI(}r%r;&A%HKp$Z*zF zO=J=$;ckGE+t6{FpHG4-j)+gvLX&Penm17p^C#zR|xS(S2^V<`fmC@iTXarB4RDy|eO){Nb8B0uvVhnU?ixXPz;oWL7P9M1I zy~O-`76*Ni8eR2eel$)Su$~fNILqfjSPl_)v~rty#^x_4HTSkC8&`f@$sdgKB%{_R zjjOP_OZmEivyjYyg7$wL>(x&_l%kb$DL+4dXgn?uUVtkW7ZVdR=t$9+g@)V^DJIoz zKZQhBLK91faT%`XM@`O)ux+pEe;nS;el3&sYb7YBki#l>&?jjF6yH@Z=yd79o!5-I zVIc2S^lvQYhz$9%liLxDc*jYgb%Ar8=Ku2qvp_;AG{_X0Dc%3uO=YJSqs%>y{6ips z@iHAWqL&!s3rvi!7dGZazJ|Ob>}DxNlTqIBuB&_ZRfsMZ%z=^`UI$&&IEF&5qY3O^pLSGrkBp4WFsOLl3EJF)I-8K>MPz-UH96p&?f%a% zCF_%{p2^xle7NiXF4>$Nsm||6(CDlL@Dw-`90c_`dMo_-dje74CB~M9N}r(&;=9 zG_L({VK&XNh`SH$rnSwyZPhZLVP$zn6>C8S+7^07T6#%R7UYWrbYRr<#0Bu1RXUJl z#fMttc>}6IrI7)A3-6h(M1(Rj7cwBQhdB27 zF5HINF9-ZdczDvJ_HISi+tPe{Y;1BeH(Y9UJa=unAQ>-e43sczKrUghHkD%?7d3Gh zT2@w)7fF^XF2Z34xXGqG55tM?0@&JXZb~~xM>$3Ll0hG)q@cUeQj(CirV}uEIkt5V zl(y`!A(7<~Wtz$~cR$~!X*hk@uRfWJ|M{oLJ<^wE>K+tU+za42(}Vklo= zYnQfdN~Wo!KU(|I2Eb<(&SR+{i5qyIDt-QZqj-)BIx8BAE7@0|oRF&t=up^ec`6{0 zN=CrJR8`!lF+$@-wCi-9u^Y~{-%mAJ?Zpi2@;f*ONF3g&VA;K0jxy_emu+&^o5{M6 z4;o{YXPLGFjZ>QM1(o>nZ%^uy&`|7$fBh16ZOh{1=kyN~N+XzW?v0r2Q@H><4OZqx zGfbLeoo2otGz97fJ|HD}2v}u*CgHTywX`imHT8icx>#J|BDeQ?j{}hKNk>P=W}#WG z3d8^l_>T`r&P0G-%Mgf=)}yf3x1P4?Ft}bVSHA1k-s_Ljj!#d+a|%a!wxk&9(NgX% z+F)jx0UR(;#`4lO3!V)JhRcB$Xzsc?@U!%Gvb6k(B&TUuG!ws3{nsBTP$X2U11|Gn zkqdGLmfU;tB;=x{w+?|yILv1Qb0UYu{<*Rrsq`7KuTY5oBR~f>$ zv6Nn86+8xEbm`?o%e+08ujW(j-R>||{f00>2wonh>tB@s2+QX%*(tKnbbZ*LztIfAK380bD9q@j2Nd+Py*LkHwN%ZMKTt-w*Sod~jW1+m zF<(BnU*G%Kq+1vSsVMj?yRx=4aW7dMe4o?>sUl#l?AzszztBFF0l97#wB8;+?Ych@ zN?4ng3sOVeoUS~S#Ykm)nU&!%YG?URo6L*a-W8=qZjIDU=wYLvmX&| z9ANCnLty@>^jvWZv^_~>y%rOO`S)B(A@H_zDyN?n8cahaT?ays?Kr1mN_;V|cJAd$ z|Jf2p1-oQ{EvtpyD)l@QK5k^P1(G|POy+X@VWyEn%EOGar!GFErIDDCIq6V5NNw%A z11e437y5SI1hR4IGztDZ@j?hlV_qGA^jFrd-Q7bSTGpwWKY#vY0JBxy$!~R+6ne}Q zwy$hp*Qah8%cIlWj&tZr02i#=Uh>m8dfQ9J$mO7{XxN^l`UAzv!MpXb(lJnVg$vt~ z?RD+fhkBfb18l0#yxfA6xjNoJ7KhF=K|ETg)U|DHB7Z4o_P$@Q-b*h(@CMR0Cm!oCKb)l~%SVA}x3z?U$sY=;()s z-yYvi(JPTUrx-ym$L4N#amP)JwXnrsgCQGrX_b0D>R#KJVA*4Gh12OkbPA1gEltFjQ1Q>PQhF=Q5b;LK2H{ylb)A&R(UmgS00$ zZ3gAQorT9JknLn0KA=;DUfmEI7sn3CcEN)<+>MgRQ*cRS+P0THuve-pE-Qj~F_cL! zHud(h0Ni^B2@O=`Z6i^XmvT?fCF}%{z)N7M@L?&F1A8pR^UoV5W=TkW#K3R#V9_eNc)O4&yEIVJRHiub@9rLfk}JG4Owb(Unv<$c&YSB?>W?s!KQo7cm=JNT$pMSl z*baGzW8f`Dt-Wn@zxS8SXS*yZKPp$wlhbowryw(vzfl}lSZ#{i0jeefX$OhrhU@1S zd%n@)fHw#oAn$Rhj}Xl~EDbY^lfRVr56Cbagr37o*FSE3R{tx2>QA+zfqRUbePS6D z>c=6;qhVK;=`5J6{Nn&7dk=wlOB+ngA;EXnlW6;`PJ<#V69CARn7k?IGC=@4m8j~;upPIGhf z(M+R;*O`rC$&BlwciVG!a(MbjkQ=oQ=_2<&vO9zwBEX4N}t>| zXN)93jV{(DIDAymJ#lLNb9d9%34TSVk(87f~wI}PI1l@e{4^+*2&MK%>rG`I`-fv`gdTW6u zO#9eny2sQeD0bKD-OTe8SG1&d6?2<2@&pje27s|zMWOTjSx+`;55jn5v+LIPUVaV2 zJ#KjnEB5vd#M-EJdWamAzKFZ|LS!#hP@U$w8syr5_W42WcV6rhff?och?t6hW{R* zG??tnDAV|8zSH?wo&~MUd!`+*+gd@F2GJ=V0x^4!=jJ*eaLo`&SBD6X)n5?sI85gk z?_95S9)RmLnS{Mj^ojrXQ9qJDHhbFB1=6mLr^xcYh@(weAMy`C_1up1H^uF z1TpJmkoLP0NF$iGnIAAEV82wnJOosvA7?Vxt#VkmE4-t}X}#d|sg!%a_Jnu1RsIE# zg^oiyZo+bvH2k-B0F^w3YV=*>jyzR11E9u#w%O=d?oyv?a?Jea_lmE9p1KlfqYNMs zT}dFDba7}{63z<8*-coY$(raUXAVEyZ|D0|anGyY^v6lj+AxK}fdjn0TX_Wol<&vrbnKLo zjR`Zb@wCPr$PhYtnbc0@IBpB+w^x4o8mVKCja-D=Tup}EuNEhu`ZxIT{1B8Ap`HYg zfDX^i>@~InQeOZfVCH+#j@y5SeB}ihps9{?tEKotfU~~T&jwhcS3vAu1&F^>K;gsH zcDQ}#3*(e!NcPgT;F->!--3|2YWCr=aO*U)smV!y=!xSMBQ?`cChgSkvdK`>i;YBE z|Ndh3i!)#rbs6GJc3K#KAvUuWbX7^J$Zc?KKAxI>L5RCt&@i^E7@M9c0ylPB7V{1VjlrZVr5Q^`n^0#C6%X%}VJay!Fe zs*7IOO1nN>n0IaobTmt__`vNv1c+NsQ22;ysqY?1IenRnSbEsh^Hr5cI`%OT%Tpjy zFa(@V+z%PfZOro?18)@+!WA`N*;&2JQEzBiJ`3sT6VkL3_~fQ^?3!=d48EYN1ZsIr zg-4C{%otQOTeoG74k|-;t2YMxO(mpNK5V$U@XKan1ycpuutQsfFj!{O36O!~bEz4L zVc6+Hiq>(|L9#m*9RMdzo=OZI4fGW*S!uxMBq_VA>$%(Gqe!w|K6y|AAym@QXwXvS zaJ>W%BC05fZ!;UgeD!H|-d=FbFM$3Ej`9NA#Xe}c?GJbWDz@^d9COBP_NbM5<4Q&G zsjQl{K6;)1)fd~V2M$o4f|wLJI-kBBi8Id`09voQKffi$g)J#s*VPj7u?Uc9IJ~kh>|F@u0N}H4+$2^*3f|l)dWXywhSu&ACn{zeNXe|z@yZbdsDkv|2(ID zma!<-DCHM)GE8=JI;Y=5by*a2zgyLj^XNy=z85~~+Bs*m0MT3}5>mwL{T00d#Q|@G z2hQpC|5+jRgc00cVHh6{;6kV!v#M<>yh1-+V*hU8}<1??`1_^T}9mJ=JPY)NTY#(gX@EZ z73lcidnGB+pi4T8G?EMVK-Y9;41^Npsf)hgU9O$_4{A#;(`8h}cn3-5PjA z!>?>2bC1Wa321TABDli&q36dHeIfq=l0OzZMuzuvkj7QErfLJ`pJ?6A?E3i8}XP^H1 z5?sk2HS50viXf4KPAq96a3=GnRjkpD!)sjxIoseG-FCYG8KX&?RJhkpr9PCO6NnZ| zmYV}TPJsWrU)0LJm{vGfTiqN@Bqj6(4uz0PhfQY}@7xVE7syh;J!&0@^rPd2YtO@W zT<55>IMCmYrixC}AffH09@dX@=zfa}q&u<|Kvt83wz@__F?|2hH zPvA{vgP5@u<{g~$KMQJ1x#orrRpJJCchFUjYC;ED9uk|hM?aoJodndASHfAkS6SNj z@2(nT)0Yfwqr^-BCK8|%FtY=)?}|g55wt+Gst5e}oDnLD1&FjX0T*rhPm&#x_?6KD zb!PXF(8MnBA|p@%T84G7jcK_And*S$*Yoas*ij_U|zoF6eT z!A^L1LnmK>;~19%CrF-wfv*pQWL?{h{0yw%>~_h}6c5scP*FzyE(zR}Pb%61Ym5+u zrU@0$@x@MXc-9aM*xJeEpyRq&hr4w|lWScCU3{un+8v_N_K_AH+V0izz#-IXLFuXh zCc62t2EUtrrz*0$t-62HTNJdN{vh!9Wu$gd_4MVIT?AU}G#n1}BpB}0=39(37et`S4O8O=jYC8>EB=V{ZpBAdj8UBMi|cLk0SjLk@l?!*+&2sH5O+PmEj& ze=+Zfp^ZTr&srr+P3&WITrf|gvFea)V>LTF3^@iXQJC_X5a5%JkYp+ zR#og;`la8L_W+;_{fwpNL;1F*SrOnkCGd~_S763)NLrGWh^g0re_U%y+C2saMo`=C z0l1+v;{aXsQddBlQm^zr$SUG;dV#1lXd(m0n1sJ8fd3P3wMbiylne%N3~(i_gTTB~ zWS!#CJOP$#>1ua>w~^*K2Xc4@Q+(dewfjgLINucHIf9-I6oyQBb*^%9a`j(_(j}?DoDXr?j$`88Yt?^S)AE<-DDb3{@k56+E7M>F$E=&&0NB6*5s-(cKeFFIlRXVRxB539}guLfu(1Gy-pl88{zgjX10amS=aTX%B3yqDv|P z_fN+e@$}k=ksMTr3m5%Tu$f3qsC4MI6fRE|+oeeKKZB&s&NI2XYc3w%tx|mAYur#y z$+~5GFlgGA!QmT5Xk1^nq;QaEtf@-?G#$WEi`^;C<;UKT>|?8#+XfGawE++$zD4#h ze@i+}bin_*%4rF}%E#N;N3`t2j)I~_K?ns-k_5j3d;t^iF$iR@opFkq@dOY{(HyZa(Uo+lpu8uuwa+$KjpI@i;fstA5tM*s7+p?7J_1ygDY^9FP&3j}wg2tj@ zMl*<`C&s7xa1uGSc1uMVH;ilalA6YbZR1h^tEAWlXl%#$#lgrN(g;9J#D~ti3dC|= zM&A*lrp3*Ooi6CIT)h*bT(}xVhW+XJ3~sP`u)2(YQr6RB(*Qnsacz-{$UDru^%9qn zj-8<-x|PgPvOa+2Az-9doT$7w?i$D{X#l2sP@@HuHj#cZF|s?6AoB_MCj{{3+<=Yswc%Z0xup$8Td#y4IuqgIEajFO!)?>C<+%^r|Cr|RZER5$)BqhfJo~foSacklX zUEv)`N9#3R_>rAxB(ggXPIot~OK%KI8$d5?05h7KFORUq=I4u*VCQ3=9pP%$2tT#E z9a}m7+D}1ZERty|=!04FicXX#c*ViIIRqBa=#>7-<6Fr(t);usJqitY=6-z)-F*zV zy8}S$@){Z<$@yE_;-+*@AZ<18V5^!25IBTccM``d_F^gO>e=sLvX zm7=4h`=TUQ`{LvR>7_l~wB2SannAO9CArdW_W?Dvz$@;%epK!%mrRa&Td2fABWLJ@ zJ~Z31n`paWW@ZL)rhecUBjRS-qu&-=0B-dQ|KKKZuSUoi85toCYj((wcMPejrnYr@ zcf7yE(-z4^Y%^uREFVy<-=buHN9|Q_(9K@dqE3NB@3d$iu|Wgx0nh;6 ziE5c;*xmJT3IRdE3UEYd>zy9JMMlvnX=#nPRp`KZ*W)9XcBgi40H-a`P@J^QjDy#W z36VnG3#1BZ`653r%C^Tpezxhy?)t|UZr~p+QvsnntRC6BQ%)dn3_*kFqwKOHgT^Hu z>#@bfQl~CypC{bSpMOoXYgQ`2jP8!^cA`(dpmPFR4~S}58J^P0ws^%V=~BKtJ3I{b z3*HzhPS?poX7TFj?UXF##d#9O><;9<81I&kGbkL;qy>GU-)wCHsgHzxWy zg&VvSlDw3?qzOz)N|GRe<3Q}gP)}P~DLaV4bgpbOt{{iUJON(GGi-8V7q0>j6%yv^ z_CUx@phK7wl&0g=Wd`6oQ3YS%CT=K+cgM*Y3ODR3Bk}Cnz4P8n{hrcLsjrft7(mS= zbmQjDoBjaoA$`I)7+`$5cw)B_yT=GTq-Fe>2Cr89})m{m{;al(LNh6q5nOI2*1Zcv%zL&eZC4ddTk@;+cJJj*WX zb@F(FfqzA)aTEi9kLog%$NK6`B6#F!#VQhM5Ly%JeU4t)K1qDU9XhntrGSB7kaS-$ zxXCz(1b;SZDTw7A2U>t1AGvqSlo)1cxt)SAVm+Motn?+D2R)>M(suayBm+$B#sM|d z*49=IRpXMbixw{#^8VRfwl@j@u1E1(_TS!VVqyZd^Ob(Q#UWY`Aou_$mgz6+%M4nQ z5DiN4Asg@w@&(dH#3IK;-5VTEJO51~0Jz57%zQO_pg*V`*cq9aK(XJ&@LQSLsR5)t zjdw)hJ2t;}+8azZMa|63hdT`e0{}HG4PxUxVg>4V!0U~Ql}{h~vg?B%3IKf66+Igx zg00Eb|I0Nfb!+bZ4u~#UfVV=8X+%soZ|WT%9}hL5kSJyr(5z#yRDd33O~vkOK?^+! z#B~ChiZN&xq~)uOckbp*O0m_r0{Q~T`5Tg1q}-ggeB%g2`} z$l|mR85IFhKnCT$5`;-KLaz;t1~2jG(O`S|hU*7%W}ioWR_+VLnc-uIDCaR9_z zeCMdM^D7x93TP~ALzu0S1Nj9MSrCH*&I8{tG>n_cq$cS6yBmb-z^kYF_wy6ODJ!?M zj<H`FCAyO;K1frBNq zH-I^3WD>IQef|11y`+oX-Owu>K$Mrw#4ffi%z->y#u-o#bp@VAL?5d@0PxjdgRrv2 zBZpfThnA@8=&(SX6>yUKyRm%w-b0WYA88?;Za?(tlimBw`FFqY`#DS z6fj|TUQH064v@ax5Y$?VaT49UOI;t*-*#viSAg^~Hqr2FX1qV)TuN^>?M4JSaaw7_l0q@|m=u8J;(O2Y(G53&~Ek6$472_7C zVJIF-bS*ELw`3BedY`S5KW_i(yt6kn$pW)VgZ~sCKm;ADm1D&r?Rorn@o~=#q?Y?w z-<6%!yf|TEX0|1xfds_X#VbZu_kMfEsg@f=&Kzux<~4vk$6i+w_g&yRRGUI??5YH` zYG~jUP?$rsB*f`8(6{d$kUoa8izM;FtoNm@O42OGk@jk!VL3}9O(Qz;<|_h$LK9AS zWUHuXLyGt<*FP-^lFK>t{R2B?%a=<~6B`1U35dxQvhHK4`~K+gi^pGS*a@LZUddScE7 zaa04U7x`?#b34S^=YN`-nrI;@GSI40I%@#%fFz0KrQZ8hxKwtAhtSgRD1y#~1AXlH zj-TE?<^)8a!w_G*Rd_HpO~01 z0D?Mb((w^yI<^~1GBGKTbEr*S*_r6Yv>kxX@k9CsNciYO%@i9Odsa4(l|?1~?kk|7 z`nbB#@LQQ71Ig+}G?Py6#F8Z0e_=!E6DT{ND#m?n(K7Ht-nQa>dtW_I(R!^i61_a^ z0(eW+zYtAs0Hn4nw*XLTd(e#ouBN;GZRGDId&$6{LSFkSW~ah_ancE>6NaHT8*LS) zm@_Y#kKyrnXvTvv_dIn4l?>N@b_)tG!OlE+PEJiWYr^qWO+ER%kd5 zl;}4B(^MNrk+~-tXaRU!WlY_P{+Ja~CSfao=lQXU(O^ARpeE3@+s-ZqfB|eyR!5BK zl~Vlvc8aWA5Xlv{sdqBv=kt(%&}l!tDzQnJcXrV+mo zQW|N((+H=bSIVlYA74g4J4geElz7dZo#zP_)K3kGxC$7~M_|d6&lq>I`mO5&AJuhV zb#-;Q@yCG?tt_suC@wAS(kZAc1*9_L&7|G5r zvI8CB(rHY^!ep%4c41RNx(*eUD951qf-w&h$sWP9z@NL1Pe02TlT0U1dU8 z>;S^huY_oLCQ3>iG_`MEMngxmpvnWZ=)8o51HY^PH@={4Id1y-%FbdV>72mW=>N6% z*WzrWw>Xa1U(UXJrT&;7pd>%On+x*y7sv$woFn}2_o z$G2srixnb@3|4prYWS4WNy6M|x!kt=X)qCJchCovV@!B3WP;vOV`F1LYc&v2Z_G~2 zmKCHenzu}utSX@qVSiF6q1r7qeE4wp2hxgcof>=|3f2Op{{<-xFQFjKv#dY9Qv7A>Ml1lO_ z^l60I@L)$Y83z;LCCDIkFAs|bQK+YfaN9N)>6;7skDe5kxw-iZj-jFEy^rUi8J*WO zA~Gtfc~%QPsi$|)m%dg2!;^)8r$gVkK4GGrJx7}Ku%u-rUG2gUIjirvlTz6w2 zc$u)1x}IDAOJzZySGZL!jW8VqZHj^$Ji2XHw&L{CF`v@KtP>#2_|^Fa7ho;nSadIxQz2Rg-{9M?3!I zD9E#giaRTg7`-Pq5>r`TNM(`rhe;eo2B*A5Ph5qL73%Kx&l5a7JpnsR9+Mp4)v2qegy|fo$n+HkV>3Usom67J&(w4OOJJU2IQg!je6dAgCmGfEGhpNU)*K5_P#lXw0b8%PrG&YH@W;~DeywjPTSP1hTAJ|O zC&oJIJgP})?MDbnXEt)rD2v77HJP0Q4gOgf$rpAX+ehMk(g=T(C@3C~Ym*k+JB|~( zQSwWWsgA9T;xkh5vBEr2`mDS4txZfXhh)oZZeOwWx(?M~{vNz#eXSP{Q*v-tCoM=Pgr>2)=~{uhoSf83#QbElJD zA7es6Xh3u?`L4?A{(Z4j!{QCTGa$ZexBXN83F7{rLc>1PO@d#W`N{Fv0h~Y!-QW52 zYWVPh!uFMvjWBeM7feTqq5<|#9ByAWTKq8Z-`2T1k-yNvVIG@!74WF~&|~tHrq7ts ztj8KOLb=G*WBc#oe>a{6U{+T79sKVdCavt(l0zE%^O2F$M;H#0RT>Kpz{hU9%3#C7 zyE>Y}Q36F)6vanazBE1WKvt*B{V&x~G#OpAci4V3-1C5j#^52{vU_$El$2J%7PDy4 zVZuSwR={+0{GW;ZLgL^;Vh}=q&7KP|NK)BwZ^wR`Xam@OkM_>3?)i8TJx<7q>cKUy zlYF6ezMpXZMG4tDpu5#KoR2~)4lnWwuoaDe@om3>Cxrt)LqJ2+2DwNBYB0ac{4?v_ zqaZiE$0p);OWq9mb&qr6c}ks_iflQz>xZSm8v9Qc2yN4P~)WPyP~B1;~ZgAbGgVaD2-@UWwBhpkjMU!fMPmj_lzK z7$nQMpD`U>)N%LBRdKy)_$+jh592K(D6&jlrARzVC_MaA6I{iQVrl<-(B`(M`s*X97sPT+i$6Ms}A zJB|V8m`^U@C#5>I?A%=W-Zr;hh2E~LUL_C~&(v38#6jkt7I>8XeyEHTKTuOWkibst z8eq)C+^dn~b7d6wWJOom!&$q*b9E6mvpvk3V|jgu*k3MKhQzh9LGbi`5|5EXSm$6= zn(RlDhBV%Z0Nx1#(k!tQgma`t2r1QruQ|@&z=rGs4@ItNLs49!ej=iT5I4MaMhd?E zbxt-1Y3Ll#<>wvqu8&n^^5{Oa;R0RQ|g9%2qn<;eSaJJ6D#C5JQ>N zWq3kWa#|{&pzX%1-oR^9M=UjLjQDy(ob44f2zthqEauLk7Gh7#Z=_E~=Q}3LpwoHS z*jcLn-8D8wn>KACk({2=oWxFOhTC5Zcm<+mYfu_b1S=_Eyh!YJE7*jejp7E95R4|R zB)+A^^xzB*QNz>pOr3o7T}8K2u!ipmEkpBN+W}Qni$|z8b5xj{M)%Oyk|puQQJ|z| z+cWn4=;SZe)oVRc3r#FcGFQ1f)pJwLATe4c)F&V@8hn`u_#TVNee z&*~%%(eo<3uhuy%0p+34JwDu@ZXwuKS||{Z+l_tR`yrCm*eg3>98HQSNONLrQtUUB zKO8#q5U}Sw8?8BsA&N|t@K47;ncDjRQ&mFov%!=G+@i-iUU?Al# z_f}-Zfa;FoU22IQJ0KzFU4zl@$>(A3#N8$`^7MM!{Ja^AmFl$GO-K{NkBdOUfi&QU^&Y{dBLX`tkQ_is~rJbR{oIbx*DjeOhFQHFY!_2_MF z68Z`MF0~Z#z9TSI78yV* z{h>L(WJzrB;pFzD`brg8Dm@GJ9{Y&rMb(Dc;Jwmjbup#<2{Zc+s49>mML>}{uW1oto=w&L61QRZdRmoHDP|MAu*k%1k&DC&q3KjW z_lSZUjKDbm2MXwuvwmNQ7Hn$D^EjwKNCQo9(O=O4v`E4P%cF)t!@eI)~`hGP63tGG(05M({Ki`fa_10_stR} znz!A8z+#td>?^H$b_X5t;Zu%b7s zHm4i*D^=1yle6KIN&YbL56hNC(e`3_FJp3w6&tTTVK%lyXmh|hGYjm;V_J>@GUJe1 zsD7-A`s+W|((d*0&eC3ggZH#XKtbtlWl+X(r4D!=;Zu3B564Ff$wja{Ois;Mu_A|+b zK;B5TLc7R--X3D%D$W>hUNHg_-@6qboEM7S?~7Bir`_0Y!JpksDjm~}H*<$#V@g#D zHW=u<#NQ+@>UpD3I~_BCGGW)uggu}{!O8Gki1x^tc4ZmNwi+`k;5gY74`eLg0%yWRVAnUos0eGc(+ub@I^uSfKHNQW`~ zK;87iE?bWkJD#ljc<#pRT~O#(hW)%W!2+$hUxXrS|TTvbj;2`f|VYF4a- zmiD{h09@{Au&@A8nHLV-s0=$P_;`PyOehFWw}Pd8LWAtdbVTD{PI|yeb%5 zk7iA*$qLy`7&-LAE^OcoXi2nTK!fnoj^Yd)&z-}_vEuKgqGR2NMd$8trdIL~XKeA~ zIK7|aJPq5yHm~6H!3`&t<%M61E<2z7+9I&4Lo;KqLDVQ^zqi)pE6}RiTzu zxmMv^{lwRCba3DzVkA5=S5+FU+G?BvmTnp zm<+M=eqcX-=w_#FwA;R`BFLrVZCd?@7oT4)pnk2xBti03!rQd0!nSi9u~R(KAv(3U z#4D$0)meTgYH4Z<+~kf~Q5s;UT4xeK0YgP%l~rSo+G~xScQ5YE_$<|p7yYR8w%YWL zDb!xNwMNR&U%l#fa_bHK$0a#RFLi6K-%sOKad$@xsdlFJIylm8J2;M^#=NX-;Th(A zes^O1_GPrDLFEcaFn{Rr(r~2i6_zV}di=tvL zW;X%e8?(2rN3p!Hw8!f+&S$r#HmL5-0d*fvsf=J5CM$omkv-uzC?P3!_}Tk?ACLb5 zHHN)xrgIshvDQ@8r(zc!Nm`*p1A|~U)XPbUay!V~2k=|huwJG1Y$`3I?0{Tanati# zpFR!KyCxl);pNv0+4kYkj>f~yGiTlcksMkwPG@_CQA(#sJ3&cj8j{X3<4u%wQnw7T zb278{_Qi-!o0g|g3!)F`;Qrcp-X1*(!@pfm7{2hb$+D*N@5L+na4s7P$qppDPT!N) zQ!wQ&oX`XTMd!!v+Gv}ZVmD7FelJEp!Xm*LnZEEQ04OP2>sxA}b}WLX+a2`B(^WN)%zU7D?z#P!PSctN~todT2%9SpA(1Uc!ZBf`@e) zNZKVjyqUtoHb@HoD@#7U>_wBY&pD_`&?Gg_+7YDwC7dh8Rcqi{o~48am(X=?d0n*x zBUp!gn&((p7;KO@qXlBcOhe9m_xI7V^D=T+;~seghfHJne%R2#@anozua&^rF*JPPZ?G3 zfR3Pmj>lVi1Q*7{3v0!Yj+w&jJw%f#?w!ixR_|$T9uP*wIKWeS$ZTb50ButHGu} zvSkB$Lf_nYGJPFw3&_8fiX9tc4k~CI0P*t#ni+53a1(cX5)}hD^HE#x(CFHYPb_llEgsxsL{gqnPEohJ1|A zQbi1Kh&SFZtQ9{JpyqMOSw?=tJU!7xlV>G?-AyKrvB~i5j&|nGhtdhrz*+*_n zybI6N5-h*c=T-c@YwW$Di*({ANQW5qbaYii5gMTP^5G@%e4TB8eAnjgO`fx3@hq>~ zMAA*5_f-__cx{}6wvmRrc6!O7$Va`27l+QeYa%mD#X!GT&u3W4SFFJjInW(By3yA7 zDBr!QScg)MH4gik9Ua$yJEF3VhG6gkD`E8p$Nh5X@^!YLSa~hf9GRWFd{=xr6~204 zkz~R2>)(NM!N}V#@vkkR_c(AZ?&>(zoeVnC}+B)#6Q@!-Dr)4XYgr&+wwV>D1jhB=L1vGoUE>eT9O8Pl#j z2G6BJ3xqP_RO3n<+0J` zyiywQL1>bO`BGCOtko3`Ss{l*kve&oY8=UYDDdq`B;n5WjE3S_qM!4RJ2MHoM#Ei+&y)G8tz!pX9U#+iI6gtvn0eT#neH#Q93)GDIrW70!Vf+8{>ap^>&&z zryo%(r`qJb+Yq>Q{-}=iY+AKxxK!fHT?<*UYO6X5pE4=f0{R8Vp+udG(2IggxxSR|2Oe4T4YTq@ossZ5hw;hsRT zU{o8rC`qO^lGP^T+m?|hDLzjMgo(-d4~xGvqmH2Ukozsg-)}uwAaeK8$_~3TZ_Z*} zB5xdrUJuKCv+3a_wVN6ee%KAWVvCu*7-K5IUW0vM36r8DaC2@(NkKdrY~^})ie^&F ztDV?a+x$8zDyp1JERSUMoYw|<=(9}*laZL`69WtN6@zAho`XN;FvEvk&R;!ul&a}* zW}5_w;E84P?I9S2+K*iUza4Kqxx;aYFP4J5P)|V6zd9Q(P93wt_mDj9VfbDM3R0to z=;I=0Z_T|*OdV9}*g<&+<5}A4v9RNA)aj63eKw7G3@2OJ0MS$H=9W`LEHjKvrjuk?|1R8`nRI>(2}y5(oo0Ck+$wW@57l}=rMaL z(|UwjC+aL%W}wWBBf}0%WI@14d_zOo1L7Ofv1Luo=tF2yDQe-vEHgLjh0QfMXV#gp zvWJg)Qmlp`ckH) zmaApx3}w2W#~o%Ht)PKcHO(V=a!uPQeMzZHnulHHn1kq~y=`{ysxW$0B%X7}C$o23 zuFaeIj<>n=QSHB&5&jirA>6Rfd{EC?4Y1dj&c{n=6Q(h4wSKxb4yE3>3|2F+J|y!-z%~7oZs<%Xk!@-E&eGx zWPEL(6j!r>JEKtM*;nCk4O3UXqTfM_(Rh=A2UF^2F{c)^8NmNbM#3|h5BA8^9%8kB zE^dB=HX}|eNKb6blcdyU4XBY~T{+L>R85CSkw}GD^AWmnqR0fk+rzn(t?JQnj0Fau zsl5d2hD`iE2n1^U+kEi{q`6$(NM+D}zm}0Ag4S1(JdV`{QmeUXm3yX?J zLs?elTrn}8j2O9pEIyTF2yWYQ5rSFF7~b0}21xVMt}{yPy1^ui2+*^-_u!kyls|A< zt87%L1X!s181N9yPWva+h8m_c?3uY3$nwVx_vZY?$vp45U2jM&(m(Hwba-9hbFEf`4)9tQL>ACI9 zZMv3qU#wUH!GWi!E6PE@{TsHW45B*U^|VmRo%$PkJ2;j@y)e|pB(a?0l4@L{eW6Zg z`9}YlMr@bTI_Kf0y~@+mWKWCiN9;Dm^y7KeILw_UcIx&R5D&hXr(cm{q~enKF4#CQ zRdWa_8p!+Dbsg#V$DU7|o@p2a%15oakSpfvYr{dCu8oerKK@Z=WV-Y{uex#6SGUxc8uoxD*4Ewek+m06XxcHw z_}^(y-Mi97&;DKev#697EDlF~aM>Pq{LU{yH?W-gF^h!ptRYfvNv&&sw2YtH8*mF= z#B&RmZ56AW6z_W!ZVvU0D2(~4Ulxp19C0pRe~zgZ@0|GML`EK@q~*u98GT+aVT!_E zEkMx6cSh-o7gxb2?tv^@;a>Lvp&?B0W4e;V31ATFdLl&*A$&XjC9)!b()YNgycf^* zf-iCrLs{d*lt_`zUhofSJ{aC9L`Vn+(r{vkc3xZ_TIp zzyGoZ;!S6#F%WNlgQi%4VC=pB%a0}4c9;ItJVMj literal 0 HcmV?d00001 diff --git a/docs/slides/highdim/35-dimension-reduction.html b/docs/slides/highdim/35-dimension-reduction.html index 3f82d4e..0add7bb 100644 --- a/docs/slides/highdim/35-dimension-reduction.html +++ b/docs/slides/highdim/35-dimension-reduction.html @@ -1,414 +1,339 @@ - + + + + + + + + + + +Dimension Reduction – BST 260: Introduction to Data Science + + + + - + + + + + + - - - - - - - - BST 260: Introduction to Data Science – Dimension Reduction - - - - - - - - - - - - - - - -

    -
    +
    +
    +
    Keywords
    +

    High dimensional data

    +
    +
    -
    -

    Dimension Reduction

    + -
    -
    -

    2024-11-12

    -
    -
    -

    Dimension reduction

    +
    +

    Dimension reduction

    • A typical machine learning task involves working with a large number of predictors which can make data analysis challenging.

    • For example, to compare each of the 784 features in our predicting digits example, we would have to create 306,936 scatterplots.

    • Creating one single scatterplot of the data is impossible due to the high dimensionality.

    -
    -

    Dimension reduction

    +
    +

    Dimension reduction

    • The general idea of dimension reduction is to reduce the dimension of the dataset while preserving important characteristics, such as the distance between features or observations.

    • With fewer dimensions, data analysis becomes more feasible.

    • @@ -416,8 +341,8 @@

      Dimension reduction

    • We will describe Principal Component Analysis (PCA).

    -
    -

    Motivation: preserving distance

    +
    +

    Motivation: preserving distance

    • We consider an example with twin heights.

    • Some pairs are adults, the others are children.

    • @@ -425,51 +350,67 @@

      Motivation: preserving distance

    • Each point is a pair of twins.

    -
    -

    Motivation: preserving distance

    +
    +

    Motivation: preserving distance

    • We see correlation is high and two clusters of twins:
    - -
    -
    -

    Motivation: preserving distance

    +
    +
    +
    +
    +

    +
    +
    +
    +
    +
    +
    +

    Motivation: preserving distance

    • Our features are \(n\) two-dimensional points.

    • We will pretend that visualizing two dimensions is too challenging and want to explore the data through one histogram.

    • We want to reduce the dimensions from two to one, but still be able to understand important characteristics of the data.

    -
    -

    Motivation: preserving distance

    +
    +

    Motivation: preserving distance

    • Start by standardizing data
    -
    library(matrixStats) 
    -x <- sweep(x, 2, colMeans(x)) 
    -x <- sweep(x, 2, colSds(x), "/") 
    +
    library(matrixStats) 
    +x <- sweep(x, 2, colMeans(x)) 
    +x <- sweep(x, 2, colSds(x), "/") 
    -
    -

    Motivation: preserving distance

    +
    +

    Motivation: preserving distance

    • We highlight the distance between observation 1 and 2 (blue), and observation 1 and 51 (red).
    - -
    -
    -

    Motivation: preserving distance

    +
    +
    +
    +
    +

    +
    +
    +
    +
    +
    +
    +

    Motivation: preserving distance

    • We can compute these distances using dist:
    -
    d <- dist(x) 
    -as.matrix(d)[1, 2] 
    +
    d <- dist(x) 
    +as.matrix(d)[1, 2] 
    [1] 0.5949407
    -
    as.matrix(d)[2, 51] 
    +
    as.matrix(d)[2, 51] 
    [1] 1.388275
    @@ -479,8 +420,8 @@

    Motivation: preserving distance

  • We want our one dimension summary to approximate these distances.

  • -
    -

    Motivation: preserving distance

    +
    +

    Motivation: preserving distance

    • Note the blue and red line are almost diagonal.

    • An intuition is that most the information about distance is in that direction.

    • @@ -488,8 +429,8 @@

      Motivation: preserving distance

    • Using this method, we keep more of the information about distances in the first dimension.

    -
    -

    Rotations

    +
    +

    Rotations

    • We saw that any point \((x_1, x_2)^\top\) can be written as the base and height of a triangle with a hypotenuse going from \((0,0)^\top\) to \((x_1, x_2)^\top\):
    @@ -500,8 +441,8 @@

    Rotations

  • with \(r\) the length of the hypotenuse and \(\phi\) the angle between the hypotenuse and the x-axis.
  • -
    -

    Rotations

    +
    +

    Rotations

    • To rotate the point \((x_1, x_2)^\top\) around a circle with center \((0,0)^\top\) and radius \(r\) by an angle \(\theta\) we change the angle to \(\phi + \theta\):
    @@ -510,12 +451,20 @@

    Rotations

    z_2 = r \sin(\phi + \theta) \]

    -
    -

    Rotations

    - -
    -
    -

    Rotations

    +
    +

    Rotations

    +
    +
    +
    +
    +

    +
    +
    +
    +
    +
    +
    +

    Rotations

    • We can use trigonometric identities to rewrite \((z_1, z_2)\):
    @@ -530,15 +479,23 @@

    Rotations

    \end{aligned} \]

    -
    -

    Rotations

    +
    +

    Rotations

    • Here we rotate all points by a \(-45\) degrees:
    - -
    -
    -

    Rotations

    +
    +
    +
    +
    +

    +
    +
    +
    +
    +
    +
    +

    Rotations

    • The variability of \(x_1\) and \(x_2\) are similar.

    • The variability of \(z_1\) is larger than that of \(z_2\).

    • @@ -546,8 +503,8 @@

      Rotations

    • We soon show, mathematically, that distance is preserved.

    -
    -

    Linear transformations

    +
    +

    Linear transformations

    • Any time a matrix \(\mathbf{X}\) is multiplied by another matrix \(\mathbf{A}\), we refer to the product
    @@ -557,8 +514,8 @@

    Linear transformations

  • We can show that the previously shown rotation is a linear transformation.
  • -
    -

    Linear transformations

    +
    +

    Linear transformations

    • To see this, note that for any row \(i\), the first entry was:
    @@ -569,8 +526,8 @@

    Linear transformations

  • with \(a_{1,1} = \cos\theta\) and \(a_{2,1} = -\sin\theta\).
  • -
    -

    Linear transformations

    +
    +

    Linear transformations

    • The second entry was also a linear transformation:
    @@ -579,8 +536,8 @@

    Linear transformations

  • with \(a_{1,2} = \sin\theta\) and \(a_{2,2} = \cos\theta\).
  • -
    -

    Linear transformations

    +
    +

    Linear transformations

    • We can therefore write these trasformation using the folowing matrix notation:
    @@ -598,8 +555,8 @@

    Linear transformations

    \end{pmatrix} \]

    -
    -

    Linear transformations

    +
    +

    Linear transformations

    • An advantage of using linear algebra is that we can write the transformation for the entire dataset by saving all observations in a \(N \times 2\) matrix:
    @@ -617,8 +574,8 @@

    Linear transformations

    \end{bmatrix} \]

    -
    -

    Linear transformations

    +
    +

    Linear transformations

    • We can then obtain the rotated values \(\mathbf{z}_i\) for each row \(i\) by applying a linear transformation of \(X\):
    @@ -640,28 +597,28 @@

    Linear transformations

  • The columns of \(\mathbf{A}\) are referred to as directions because if we draw a vector from \((0,0)\) to \((a_{1,j}, a_{2,j})\), it points in the direction of the line that will become the \(j-th\) dimension.
  • -
    -

    Linear transformations

    +
    +

    Linear transformations

    • If we define:
    -
    theta <- -45 * 2*pi/360 #convert to radians 
    -A <- matrix(c(cos(theta), -sin(theta), sin(theta), cos(theta)), 2, 2) 
    +
    theta <- -45 * 2*pi/360 #convert to radians 
    +A <- matrix(c(cos(theta), -sin(theta), sin(theta), cos(theta)), 2, 2) 
    • We can write code implementing a rotation by any angle \(\theta\) using linear algebra:
    -
    rotate <- function(x, theta){ 
    -  theta <- theta*2*pi/360 
    -  A <- matrix(c(cos(theta), -sin(theta), sin(theta), cos(theta)), 2, 2) 
    -  x %*% A 
    -} 
    +
    rotate <- function(x, theta){ 
    +  theta <- theta*2*pi/360 
    +  A <- matrix(c(cos(theta), -sin(theta), sin(theta), cos(theta)), 2, 2) 
    +  x %*% A 
    +} 
    -
    -

    Linear transformations

    +
    +

    Linear transformations

    • Another advantage of linear algebra we can convert \(\mathbf{Z}\) back to \(\mathbf{X}\) by multiplying by the inverse $^{-1}.
    @@ -669,8 +626,8 @@

    Linear transformations

    \mathbf{Z} \mathbf{A}^\top = \mathbf{X} \mathbf{A}\mathbf{A}^\top\ = \mathbf{X} \]

    -
    -

    Linear transformations

    +
    +

    Linear transformations

    • In this particular case, we can use trigonometry to show that:
    @@ -682,8 +639,8 @@

    Linear transformations

  • with \(b_{2,1} = \cos\theta\), \(b_{2,1} = \sin\theta\), \(b_{1,2} = -\sin\theta\), and \(b_{2,2} = \cos\theta\).
  • -
    -

    Linear transformations

    +
    +

    Linear transformations

    • This implies that:
    @@ -698,8 +655,8 @@

    Linear transformations

  • This implies that all the information in \(\mathbf{X}\) is included in the rotation \(\mathbf{Z}\).
  • -
    -

    Linear transformations

    +
    +

    Linear transformations

    • Note that in this case
    @@ -715,28 +672,26 @@

    Linear transformations

    \mathbf{Z} \mathbf{A}^\top = \mathbf{X} \mathbf{A}\mathbf{A}^\top\ = \mathbf{X} \]

    and therefore that \(\mathbf{A}^\top\) is the inverse of \(\mathbf{A}\).

    -
    -
    - -
    -
    -
    +
    +
    +
    -

    Note

    +
    +Note +
    -
    +
    • Remember that we represent the rows of a matrix as column vectors.

    • This explains why we use \(\mathbf{A}\) when showing the multiplication for the matrix \(\mathbf{Z}=\mathbf{X}\mathbf{A}\), but transpose the operation when showing the transformation for just one observation: \(\mathbf{z}_i = \mathbf{A}^\top\mathbf{x}_i\).

    -
    -
    -

    Linear transformations

    +
    +

    Linear transformations

    • To see that distance is preserved note that the distance between two points \(\mathbf{z}_h\) and \(\mathbf{z}_i\) is
    @@ -750,13 +705,13 @@

    Linear transformations

    \end{aligned} \]

    -
    -

    Linear transformations

    +
    +

    Linear transformations

    • Here is an example for a 30 degree rotation, although it works for any angle:
    -
    all.equal(as.matrix(dist(rotate(x, 30))), as.matrix(dist(x))) 
    +
    all.equal(as.matrix(dist(rotate(x, 30))), as.matrix(dist(x))) 
    [1] TRUE
    @@ -765,8 +720,8 @@

    Linear transformations

  • Using linear algebra, we can rewrite the quantity above as:
  • -
    -

    Orthogonal transformations

    +
    +

    Orthogonal transformations

    • We refer to transformation with the property \(\mathbf{A} \mathbf{A}^\top = \mathbf{I}\) as orthogonal transformations.

    • These are guaranteed to preserve the distance between any two points.

    • @@ -774,7 +729,7 @@

      Orthogonal transformations

    • We can confirm using R:

    -
    A %*% t(A) 
    +
    A %*% t(A) 
                 [,1]         [,2]
     [1,] 1.000000e+00 1.014654e-17
    @@ -782,8 +737,8 @@ 

    Orthogonal transformations

    -
    -

    Orthogonal transformations

    +
    +

    Orthogonal transformations

    • \(\mathbf{A}\) being orthogonal also guarantees that the total sum of squares (TSS) of \(\mathbf{X}\), defined as \(\sum_{i=1}^n \sum_{j=1}^p x_{i,j}^2\) is equal to the total sum of squares of the rotation \(\mathbf{Z} = \mathbf{X}\mathbf{A}^\top\).
    @@ -791,38 +746,38 @@

    Orthogonal transformations

    \sum_{1=1}^n ||\mathbf{z}_i||^2 = \sum_{i=1}^n ||\mathbf{A}^\top\mathbf{x}_i||^2 = \sum_{i=1}^n \mathbf{x}_i^\top \mathbf{A}\mathbf{A}^\top \mathbf{x}_i = \sum_{i=1}^n \mathbf{x}_i^\top\mathbf{x}_i = \sum_{i=1}^n||\mathbf{x}_i||^2 \]

    -
    -

    Orthogonal transformations

    +
    +

    Orthogonal transformations

    • We can confirm using R:
    -
    theta <- -45 
    -z <- rotate(x, theta) # works for any theta 
    -sum(x^2) 
    +
    theta <- -45 
    +z <- rotate(x, theta) # works for any theta 
    +sum(x^2) 
    [1] 198
    -
    sum(z^2) 
    +
    sum(z^2) 
    [1] 198
    -
    -

    Orthogonal transformations

    +
    +

    Orthogonal transformations

    • This can be interpreted as a consequence of the fact that an orthogonal transformation guarantees that all the information is preserved.

    • However, although the total is preserved, the sum of squares for the individual columns changes.

    -
    -

    Transformations

    +
    +

    Transformations

    • Here we compute the proportion of TSS attributed to each column, referred to as the variance explained or variance captured by each column, for \(\mathbf{X}\):
    -
    colSums(x^2)/sum(x^2) 
    +
    colSums(x^2)/sum(x^2) 
    [1] 0.5 0.5
    @@ -831,7 +786,7 @@

    Transformations

  • and \(\mathbf{Z}\):
  • -
    colSums(z^2)/sum(z^2) 
    +
    colSums(z^2)/sum(z^2) 
    [1] 0.98477912 0.01522088
    @@ -840,8 +795,8 @@

    Transformations

  • We now explain how useful this property can be.
  • -
    -

    Principal Component Analysis

    +
    +

    Principal Component Analysis

    • We have established that orthogonal transformations preserve the distance between observations and the total sum of squares.

    • We have also established that, while the TSS remains the same, the way this total is distributed across the columns can change.

    • @@ -849,26 +804,34 @@

      Principal Component Analysis

    • We can then focus on these few columns, effectively reducing the dimension of the problem.

    -
    -

    Principal Component Analysis

    +
    +

    Principal Component Analysis

    • In our specific example, we are looking for the rotation that maximizes the variance explained in the first column:
    - -
    -
    -

    Principal Component Analysis

    +
    +
    +
    +
    +

    +
    +
    +
    +
    +
    +
    +

    Principal Component Analysis

    • We find that a -45 degree rotation appears to achieve the maximum, with over 98% of the total variability explained by the first dimension.

    • We denote this rotation matrix with \(\mathbf{V}\):

    -
    theta <- 2*pi*-45/360 #convert to radians 
    -V <- matrix(c(cos(theta), -sin(theta), sin(theta), cos(theta)), 2, 2) 
    +
    theta <- 2*pi*-45/360 #convert to radians 
    +V <- matrix(c(cos(theta), -sin(theta), sin(theta), cos(theta)), 2, 2) 
    -
    -

    Principal Component Analysis

    +
    +

    Principal Component Analysis

    • We can rotate the entire dataset using:
    @@ -879,60 +842,94 @@

    Principal Component Analysis

  • In R:
  • -
    z <- x %*% V 
    +
    z <- x %*% V 
    -
    -

    Principal Component Analysis

    - -
    -
    -

    Principal Component Analysis

    - -
    -
    -

    Principal Component Analysis

    +
    +

    Principal Component Analysis

    +
    +
    +

    +
    +
    +
    +
    +

    Principal Component Analysis

    +
    +
    +
    +
    +

    +
    +
    +
    +
    +
    +
    +

    Principal Component Analysis

    • The first dimension of z is referred to as the first principal component (PC).

    • Because almost all the variation is explained by this first PC, the distance between rows in x can be very well approximated by the distance calculated with just z[,1].

    -
    -

    Principal Component Analysis

    +
    +

    Principal Component Analysis

    -
    rafalib::mypar() 
    -plot(dist(x), dist(z[,1])) 
    -abline(0,1, col = "red") 
    - +
    rafalib::mypar() 
    +plot(dist(x), dist(z[,1])) 
    +abline(0,1, col = "red") 
    +
    +
    +
    +

    +
    +
    +
    -
    -
    -

    Principal Component Analysis

    +
    +
    +

    Principal Component Analysis

    • The two groups can be clearly observed with the one dimension:
    - -
      +
      +
      +
      +
      +

      +
      +
      +
      +
      +
      • Better than with any of the two original dimensions.
    -
    -

    Principal Component Analysis

    +
    +

    Principal Component Analysis

    • We can visualize these to see how the first component summarizes the data:
    - -
    -
    -

    Principal Component Analysis

    +
    +
    +
    +
    +

    +
    +
    +
    +
    +
    +
    +

    Principal Component Analysis

    • This idea generalizes to dimensions higher than 2.

    • As done in our two dimensional example, we start by finding the \(p \times 1\) vector \(\mathbf{v}_1\) with \(||\mathbf{v}_1||=1\) that maximizes \(||\mathbf{X} \mathbf{v}_1||\).

    • The projection \(\mathbf{X} \mathbf{v}_1\) is the first PC.

    -
    -

    Principal Component Analysis

    +
    +

    Principal Component Analysis

    • To find the second PC, we subtract the variation explained by first PC from \(\mathbf{X}\):
    @@ -944,8 +941,8 @@

    Principal Component Analysis

  • The projection \(\mathbf{X} \mathbf{v}_2\) is the second PC.

  • -
    -

    Principal Component Analysis

    +
    +

    Principal Component Analysis

    • We then subtract the variation explained by the first two PCs, and continue this process until we have the entire rotation matrix and matrix of principal components, respectively:
    @@ -960,25 +957,24 @@

    Principal Component Analysis

  • The ideas of distance preservation extends to higher dimensions.
  • -
    -

    Principal Component Analysis

    +
    +

    Principal Component Analysis

    • For a multidimensional matrix with \(p\) columns, we can find an orthogonal transformation \(\mathbf{A}\) that preserves the distance between rows, but with the variance explained by the columns in decreasing order.

    • If the variances of the columns \(\mathbf{Z}_j\), \(j>k\) are very small, these dimensions have little to contribute to the distance calculation and we can approximate the distance between any two points with just \(k\) dimensions.

    • If \(k\) is much smaller than \(p\), then we can achieve a very efficient summary of our data.

    -
    -
    - -
    -
    -
    +
    +
    +
    -

    Warning

    +
    +Warning
    -
    +
    +
    • Notice that the solution to this maximization problem is not unique because \(||\mathbf{X} \mathbf{v}|| = ||-\mathbf{X} \mathbf{v}||\).

    • Also, note that if we multiply a column of \(\mathbf{A}\) by \(-1\), we still represent \(\mathbf{X}\) as \(\mathbf{Z}\mathbf{V}^\top\) as long as we also multiple the corresponding column of \(\mathbf{V}\) by -1.

    • @@ -986,28 +982,27 @@

      Principal Component Analysis

    -
    -
    -

    Principal Component Analysis

    +
    +

    Principal Component Analysis

    • In R, we can find the principal components of any matrix with the function prcomp:
    -
    pca <- prcomp(x, center = FALSE) 
    +
    pca <- prcomp(x, center = FALSE) 
    • The default behavior is to center the columns of x before computing the PCs, an operation we don’t currently need because our matrix is scaled.
    -
    -

    Principal Component Analysis

    +
    +

    Principal Component Analysis

    • The object pca includes the rotated data \(Z\) in pca$x and the rotation \(\mathbf{V}\) in pca$rotation.

    • We can see that columns of the pca$rotation are indeed the rotation obtained with -45 (remember the sign is arbitrary):

    -
    pca$rotation 
    +
    pca$rotation 
                PC1        PC2
     [1,] -0.7071068  0.7071068
    @@ -1015,26 +1010,26 @@ 

    Principal Component Analysis

    -
    -

    Principal Component Analysis

    +
    +

    Principal Component Analysis

    • The square root of the variation of each column is included in the pca$sdev component.

    • This implies we can compute the variance explained by each PC using:

    -
    pca$sdev^2/sum(pca$sdev^2) 
    +
    pca$sdev^2/sum(pca$sdev^2) 
    [1] 0.98477912 0.01522088
    -
    -

    Principal Component Analysis

    +
    +

    Principal Component Analysis

    • The function summary performs this calculation:
    -
    summary(pca) 
    +
    summary(pca) 
    Importance of components:
                               PC1     PC2
    @@ -1044,55 +1039,63 @@ 

    Principal Component Analysis

    -
    -

    Principal Component Analysis

    +
    +

    Principal Component Analysis

    • We also see that we can rotate x (\(\mathbf{X}\)) and pca$x (\(\mathbf{Z}\)) as explained with the mathematical earlier:
    -
    all.equal(pca$x, x %*% pca$rotation) 
    +
    all.equal(pca$x, x %*% pca$rotation) 
    [1] TRUE
    -
    all.equal(x, pca$x %*% t(pca$rotation)) 
    +
    all.equal(x, pca$x %*% t(pca$rotation)) 
    [1] TRUE
    -
    -

    Iris example

    +
    +

    Iris example

    • The iris data is a widely used example.

    • It includes four botanical measurements related to three flower species:

    -
    names(iris) 
    +
    names(iris) 
    [1] "Sepal.Length" "Sepal.Width"  "Petal.Length" "Petal.Width"  "Species"     
    -
    head(iris$Species)
    +
    head(iris$Species)
    [1] setosa setosa setosa setosa setosa setosa
     Levels: setosa versicolor virginica
    -
    -

    Iris example

    +
    +

    Iris example

    • If we visualize the distances, we see the three species:
    - -
    -
    -

    Iris example

    +
    +
    +
    +
    +

    +
    +
    +
    +
    +
    +
    +

    Iris example

    • Our features matrix has four dimensions

    • Three are very correlated:

    -
    cor(x) 
    +
    cor(x) 
                 Sepal.Length Sepal.Width Petal.Length Petal.Width
     Sepal.Length    1.0000000  -0.1175698    0.8717538   0.8179411
    @@ -1102,15 +1105,15 @@ 

    Iris example

    -
    -

    Iris example

    +
    +

    Iris example

    • If we apply PCA, we should be able to approximate this distance with just two dimensions, compressing the highly correlated dimensions.

    • Using the summary function, we can see the variability explained by each PC:

    -
    pca <- prcomp(x) 
    -summary(pca) 
    +
    pca <- prcomp(x) 
    +summary(pca) 
    Importance of components:
                               PC1     PC2    PC3     PC4
    @@ -1120,564 +1123,666 @@ 

    Iris example

    -
    -

    Iris example

    +
    +

    Iris example

    • We are able to approximate the distances with two dimensions:
    - -
    -
    -

    Iris example

    +
    +
    +
    +
    +

    +
    +
    +
    +
    +
    +
    +

    Iris example

    • A useful application is we can now visualize with a two-dimensional plot:
    -
    data.frame(pca$x[,1:2], Species = iris$Species) |> 
    -  ggplot(aes(PC1, PC2, fill = Species)) + 
    -  geom_point(cex = 3, pch = 21) + 
    -  coord_fixed(ratio = 1) 
    +
    data.frame(pca$x[,1:2], Species = iris$Species) |> 
    +  ggplot(aes(PC1, PC2, fill = Species)) + 
    +  geom_point(cex = 3, pch = 21) + 
    +  coord_fixed(ratio = 1) 
    -
    -

    Iris example

    - -
    -
    -

    PCA visualized

    - -
    -
    -

    Iris example

    +
    +

    Iris example

    +
    +
    +
    +
    +

    +
    +
    +
    +
    +
    +
    +

    PCA visualized

    +
    +
    +
    +
    +

    +
    +
    +
    +
    +
    +
    +

    Iris example

    We learn that:

    • the first PC ia weighted average of sepal length, petal length, and petal width (red in first column), and subtracting a a quantity proportional to sepal width (blue in first column).

    • The second PC is a weighted average of petal length and petal width, minus a weighted average of sepal length and petal width.

    -
    -

    MNIST example

    +
    +

    MNIST example

    • The written digits example has 784 features.

    • Is there any room for data reduction? We will use PCA to answer this.

    • We expect pixels close to each other on the grid to be correlated: dimension reduction should be possible.

    -
    -

    MNIST example

    +
    +

    MNIST example

    • Let’s compute the PCs:
    -
    pca <- prcomp(mnist$train$images) 
    +
    pca <- prcomp(mnist$train$images) 
    -
    -

    MNIST example

    +
    +

    MNIST example

    And look at the variance explained:

    -
    plot(pca$sdev^2/sum(pca$sdev^2), xlab = "PC", ylab = "Variance explained") 
    - +
    plot(pca$sdev^2/sum(pca$sdev^2), xlab = "PC", ylab = "Variance explained") 
    +
    +
    +
    +

    +
    -
    -
    -

    MNIST example

    +
    +
    +

    Ng^9!p=Bdw33!1Dn$gkOM8@z+8pBf7)FWcx^^?(w__XjOh43D`y9;zCi&aq7R- zM+(Se1>M%J%ozo?dr=V?eTWEA_}E9J+!2Wc99iNb5W%=mFebt86hJ^QSweaYGtd5< zM2AZjI?H@KeTiqa%wQpZjb?KEcTBg9{2ZH#rsK#?dZvN75YtrFqZ@=9tdtwR@#R6m zZ6Mg15==OH){Xrl9$y(3ejQ77|0I(s#4Ai-Lbn{>{7LT}MZa9HKWAUUP0Lcbn1yj; z4r~2|oX#%Ry+8cxdIT>Ex4_M^O4aMoZb)%X({g!s#oE#OkJ`1&F#kNa7CgH;xKAe~ zqZ)`WP1`W?AS|vn3+N{Tw*u!^K6LNP=97^9YkP#EhWxS(MhDT$@-uO}33U=3PuLRo zPDD>dzMNhJ^3GEZ@WI9Akct(_8{B!>K+QHx05>vDjlP|xm&_K(5@@C~tpPTx*$f7& z2{&i5v^)TN#Im%qJYoqScyGI>LtGfyTJTC?4cl$QOH0k&eegQ!UFN8=Wc;%HYHrC2 zi@HKhb8AC%{8?+G6{$1va=tx*+-a}6q?dROD=2BZ+$1s5MUA5;TIimcS=cmzCx;RTN(yGnxgp~@zD5~;qOZiXenvq)=vS$ z@KXD$hsmH9C$r#_@4BfzE7{i2qu1UvKXy!;UAQZ3N&v92WIXHO59i_6Q`AoFT|K$d-QD?=% z5x`Lg@`Bvt7SWF98eup~W2&rOqoXDNlO@?L8UVWO0E7z&N#8FR+hUuf=cI4!{8R+? zHi`04zJ>T`TXxD!KA1|5K-+hyilhJme8NXk-Fa;+6r7gDQhU(M^CV|XWS6}Zl)tDg z1uQLSwFb~*zf#v?Xo3~~fKgoI& zhg%sbYye%_R~hJ10LJ8`{RL_UU*1w@zkS4uAw0Aro!=jA~$N|JtH0Kbi@YF7fku*Gu>10E;EgTe7;mgsxT*f5?H;I(UO zvm679xY(QufNnypj)tMITaT(70I~Y7=YF{lvBNW-QQ}7d_gOU^tFBrE>wygt?A@i(lF%SrZ4olyT z@ScXr)t0o>AH-keI(+S|i1%;qf0uVKYpMCbVSTKWf=G(~nAjI2+8YsLzv;`1gNrE5 zhjBC2=MeS3q3&(I%{L07Pb~zhO^MFmd75|aZp!6N_4B*Sul&HQOc@a$tZS*opMU+O zHpAj+S|vj$!L??#(JYUHf@*yt$PFyG-=Ri=p#bJ3>Xs~$fwH$ZUrlq>xf+Wj%TJU# zk8iWDWD3Bg5YDWLGiIVP%Rb|I#n_5H6oL2(xj(JjVyfT2F`Y?KuXk z<(`w?OM@(@H?KLclfjv61CU6W#Y8)DXzR3s$?@u^AV2a9_lbFdfp%VXoj@jeCp1p{ zEjJC9msx>VpWv#Ez~!aTs(fVs8>nW`0Q6?5agERJGyi6vQPm=&*T1|$NLAnmY$h01 z7|8Uk6SLG`Q;KYl<3FB&Pq)A|BG{4de|s(7niLr9*JjbCQZji$igODamCuZ24r^i< z^5#OBu3y?Wd2Z)5{NXB4`O@B?v<6N?S(bd82fkJ^xa(wPoh@>|FWPgZj-M>SLQ?dM zU_nU&RToWIkFRPd%QqiNK@$;x5BzK^&2b~{q&@9e1#VIa63&a_3S$9Bd$b5Hb^zEg zIL~mNmU{6WRA!`;c+(6m?!){YlrKK6gL<>q6I%y-OCn z!_xP;%a%4uoKDwCt3av{fT9D3i#un^mxhBNcXQSL# z&x!6I5QZDGQ44<{y@mlTB}1+I=kxRPhiJdbLm;5-y<^sb7YO8*{A#Zk`)}TaY=18= zgT;!4RuUV~^0LpNr++|BRnEfBy83i$A2!i+lU+TiMU++Ln3yuFSlnxcf6l*81m{ zDla6P=GyZ>=zkI=- zef#3hcU)6U?AF|H{rX|cENzD8GiJ@@6i{$zU|?io;h3Yb;qU3K>UxhZbHK#}PH<~5 zR3-}}M6PgXFqj5Lw1BmM)H%dCFrJW}4K)NPvcS!OaYg4LB^J1*PfT16_inHN?SL9= z3KZ}a5mSU~njjv)@adQu!rm2v0SsA-HgJF(1{Q7H)4(*r+zfc@AymYnw}B}@xYZSA zCJV&uw=1_G|bY_af0{{XpDmX0){8OzAzsPCcDLr>oQd4q)y12c3YiVtxX5(z*W^esM?I{U~ zR7{M%nH`7zE&24O8iBjRA>)OG33SBANwv@yV;^QVh&DA&bApM`TE)2j?O&PpeBvu- z1@`ylZzhRIl>O z5jh*8i>P@ByR|^xc$E6UEoCYEMz%g?&Lg5i*uJLc#)VCj{WUC*#H_g`)a^P}9%-%b z-@>usQT$bMtV5t^{FCjCg%BUlPS8N_uJT!(C^+M~XW)wrnl*YZlEvi*LY01hfLxW@ z_75TkV+`#iP`HTW#xgCcpPVR2UK({r#;!>wLk zxiIq#8jrq*o@a*yFT>1FSCLc|{EBuuuDf4D0v{Zh-4Of)LAdecH2$1EksQ z*=(!N69I`kujP@qKgRSw>HOfkefyyWqjKCGdiwxVi~OSNY#VmD8=viRk0%zl7rO4B z5J?(dIS~7PZ;U;BT6h86AN|_3XQvNrp$YW0EAbq?_U0{cTvS~|Jt5?ngC`O5kd-_C zP6B`bOGq?iOh$w5F)D?}9dgh#HttIbe32~)Z-H-kEA|p?As-iOM|w1}C2ycd&?Alm z$y3heGB9UDc(bZOcJrkBrpH}dHU}Y(zM1h%w~>o3@cL9GcwN$jhDa4i9`t+GpyBcF zN8b&u!@jwgBGnG$bRhDdh4i78HTikQj|~W9fI$*ilTY(iTT0V2%%6UR1jqhA2>`yJ zm3fT((y)8BTej=MyFRl;VK=ZF*cITOt>!T9yZ6X(w<5pl`kH;J-dy%m6SNTM9wbz* ztGf%Lsk?DI?87xn5kD`<62=&2vt~+Er3<74R{D;)*nQi%v}STi;gxC%C4WHS%APp6 zj`PX~pt=GpPpDI~--n&ULa#tgxtWUKUUw`Mbj2zF9Pmi~mO|It5Y`2Fo8C5d+-p8LTL$j28*8gnklFL-^Zd#oo1FE$HO!qf2!7xJPo2{PF>@LLE|i~H?_41H|=7Y&hs^7 z9e6i~v>*J;%~c1gsJIlo7wMw`>KDs+cgR>=2@h^MZJr`-um3q4_REr9m(D+|Y?qa` z-8uBXfKAOf?$sR)x_6CvIkvEp0xc+_-!VKSQ|-9QLJE9%okE90B}M1QKR^DhCYX*? zmt>CN-|oDu?1;FrPhp`Pv-2wEe_QzHA%2ow^8eG`|1@EteAS2SVP3D-*T1iKFp~WF ztE0;y@KAtAS@f)B_5XbUq`<{%?@s^jhJl5FEQ=)iOI7CA|5t#2b+}K_0sEIY|I>ZP z)#$620;rCobte9n%!h1I{(tZKm(Z#oE(HKOK#LsyT{9M!qk0SYA3gowM}SW|7~e5G zu7COX|LX7mUe6+Fr2h{EGH@?m>xf{REoS>$-b=Mo{a3AjtM9*R{jatDcN6&U-umCY z^}k2ff04j{0oMNy0T#Pz(r;bJ*9F34L)u>8pXMR@!2OWjz1p8TjwvZAY2qWG8tK#R z8up3Szae_?O6VmzMN#+Pp7F(xsin6QO4=Rd31bKeFyTik+k~wXy9Cruxb1j(Ex97V z#(g!}P@)|t(EcOiZP&FLq_*VWNDHOB_#uDCOY1&$DQhq}72TsLa1gAWyJf|Ea6cDt$QqG99QE`v{>x^f~AQA|5TAtx2X=1fBmLq7ORmR@_4}>OzUf zh>OPQCinFx2eE&HdZYW7V88TM@s(BL`NBnO(;03seI#H_JTnx0916CZCmuCORsr@_227(yX)Wd&+1-R{^ng&Aml4-ZEw2fQE~Y!qEf;+|C&>f+@%|}s5Tdy zO&Bkdp|61LIHo7+%KHw@&+msx(nuWb{*vAHNB!-$lu}&!GY0Q}utB&2_B(Y>Pey`> zY^7SS4rfWU?sEBWS6%D&|J&8FxN_-&Rg%R`@>JXZEY!(NeK%#L`OU8&f;kv`RGnHj zk#YE!8>bp}sTYN1%Ak`$@Vsy1$y$24ZXhnv5qH$O2dg;wwQ&AxxL5ZAuPeEp={=ve zZ9M(&BeV#(>}?aS(AmXr4npz-PkzuqS(}W$p2=)S!Yh z_I50LNxkKj|8V(6-Vs>{@7m@L{M-NdhZKnqOXZ(hR;IS$KmU3_lwQyHd42 z=wEAojQNB461}8e@|3&hs@IsFsX@J%{|YiPC%{HNe+E(&LU`a&o#6|M`Qk^TX2^vjm$vnkAGb(8ID1ugtXJ3Um2)rbqNHY}S8aUck=3lvOk(Cq z2qJsD5^#u2DnFh{3X$0MOeTUS6A`JcUy$m7m{YV8FSvhE@&J+&&`u13b1pwo6PvEE zo4EyS5x;Qn+zB>KT?wO+F3wtw*8?3?js#XsUl}JRa@wH_%Fj9@L7nWdr7N_pX@Z~t z<&2sZNW4r zlB*?qP?tJ8iz7f*;eh%xeZK;3d1PiZB-`~Jmu4Mp+nAcjK<8kS%5+Bhmc=^`FNo~V zN>29}+z(Pl&TMdC3(dHQblJ}Hov>Du>`-Rwt)%x{o}BQL#$O&2?lMP2M3C)%qIGvT z#nNhUuezQxC$J~rfwp`iBcdx;Wd z1)SqKnLG~jB-XWM*odQq9+F-YplBGmFi6A%J#q;;r5%EsOjqdwjzfLYX*8ciQTJt@qR;k+I&Bq}L$9&Ja+3sClVBxW}{$(GpX(PHZ}z`|0ygh`xKC8HB`?gfUP%Saf(A)gmm$S}M1 zlA7+6Yhm zF~pfk`#S_kI?kG-LYxV;MLxYI2p-j6_FmsRoAM&tZ$G=MNMRcc3%X)QI!ercC4X@; zauGg9>Vxa&Pj?ACNFTyBuH-C;9=oXRInMhL!`8}W-+;H@V+-924R5F{1m(QG2W>6P zXxwWletl+kl$-h}yX9yw^MPNVmF{Ya=77pdF6_K#Yu?KC;0L2#=`2bIBIqQ{{CH!K zN}|8GP)%^(O^)zoXGN0GL22}sp-1I5y3hQ`^nk(Uh*PGCaoTGM-}6`=@tK~lZ(_L( zBX{N0C8!dAWtGKM#gMnkUIBH(_i;vnyW_&}O!m~|bUmi-zQM9!k~#+tVIF-&dLX$E zV!Ty_40p?eSp_EO$M&h1?VzO4Mf78~WocvUCLnoEM{qnQXgd|p*@$PH7~^+=yh_k4um^DNSU0~(oa?00`iu$# z2dK>Mk0!PnpEJw#C<%`4f4-US(pH|)O}G0ggM3LPNUxzDfnZ@r-8%sSVRq=KmTj=7 zm13JgUXgq`?Zso`Gqv_U%k{Rk?O2c1ADD&&yY5Uig)ywN)KcBh-Xp~0X0IKG@-~8l zR^w~le-5&nl^4&j|6nkBg|qz|U6&`Q_;y8VrjTj}iKSV;9yR`pW-8?Xkh{_DDF$@6;ef z$gp%I;z0(kM)qS5uATbWuHOCGgJ@|4_|B+F4n`D})enS0RHHZjd?`}bS6WXJ>6-J5!IuWMLxMIrZZ}M zKdb}uG*f4L4h#y6jMJE@#g0q*RoUF61AENiFL4{ToY+3e-e3?a)?k0J8(uFaG_@Ko zbnpsg(0hwBS$Y_%CN^3-66Unkr!4abf*gEAFzzMIG*X?7AC|9=hd0@nPwH{DveC2I z#F}~p++oy&+On1n;G~#9kbHTN-2sHhC4~#!$Az{w<@H17aoM2NDAUKd{Q7bjH6hAM z!n08VKQ~n6?2Huv&0|zDRo?@F2-w-O=3yg(gBKQRR9(7-R;FT|SW?W7g_b34SGmP= z_VO6)SA7-@X})tDYAE2i(>-vpYwMK$A|AXz`tdy^H;SKxy7SFv6^2oYMNh=S&sOpd zi!dQd>4_zkw2g0dnJ$}A<=XtTl%)aGue}=2`+?W{9=`4Agr?A+eZk~?@tXalt{n^Z z!xX|KFcJ3MzM=U>xn)Q`ugVfsUgHf)cAp15Q@v#YIxTF`oxH!ffvw*ewN16dT0FZ* zz;-GnXZ%z+Ri;m0LIi7lM3te)JQ+819_DVLU+<^D{Mq?w@HoHDau~n=27{(N>2Heu zYd7S$9>dS6&1=;ZKB$>KFvR64xc=rkXA!_!tAXqm!{k)Rm|@K{ZD z%&`7S;UY6ORstvQhfn+{Qhl7qrRhehwDb-H!l;CY(SXLP^aeSlh4VIKAN%*c3nh$J zTpJSw?U`jkWl#*h1oljtj{_&q+5v*eKLdY;{oY~(J12MM2TD)sf1^OM}E^Vz)C zv5Yo$C#85qDz%f{K6w`4u6oc_*fP>_g__FyQM!n;hv;CA+sZtSjzWZ5Jq7;DE(8X( z`Q%gm9pnKa=Nd6#RPgA(qkssD#?;v_Vvq^GDpmxAddKRPCn``qMmak@g@e1@)Za>l zhZDn@cfNN=vQ*RHjjR{}%ZhNfnbhxsSp-_Cd^Pa$T|R=w!@EoYD((CG+?OzMiBTB9`As9~fw-oY0*5(%;*6Crf)wUma795*Q|3`Ww?vU=pcH2h@a;M3FC zp9!z<$yK|^0WTMY-EY|jeA8H#OQ8wCR4HB_kTflV0y0fwUJ0K*^UFxQ>0cB`(euiZ zceBt{_?&&!5f>6J7b6FlZ#pBt5k=0rv!Zl5gA8F>z20z!DspHMAqO|wwAvwHnDu0g zy6H2fS#%_N9Fre=G}f&H-Ln(eQs*CpR|u`agOaU`5uz}W+h!9H5w^vptGLhe3!c5@BK%X z#C27!=!L0$98C$u%!pWC&uz+y>17QSZCy9QO}dg`J>652U<+Q`6nU8k`C75pxEdZG zvJ4A;`sh*%fI<992dNMz$}*>OuuuFUg03}eKmtgsaws$NBXxacjP|x7f|q4eLad=- zDWAW23~?N=^b8^R9mlv5xx)kVnJ)Jcn7-xxT0e1E1FCWs$IleYIlasf!_nXa-B>-V zyPj&e7?-STu!*}agzb~xdCI={(xx`~cMZNES(U@m`h@*$0$;KSwQ+wH?}(?WZRN_R+M?O zBvyN(Zi4W3a-^+5Ejm8c9_y13ThC!#kgFS=FjPDItTJCl4EYrNLsVIKLvKK$#YBr$ z7BZ@4c=%nZ&_ILU7m6eZw(A`UNhXPutjhL`9SJVvtss(v+VDVFuXL{zB(w@Z`Zf2P zOd3B)N%!CnN98+h6yG}r?sOjn`$@#Dllkhz*)lab0lJ?U@aNkpiRsZxL#@bJd%E9+ z2#S4+2t`>?AQDryGHyh^^vW5E(jF;8jZ|A2+C(RR%$b1Nf?eGhtP`C2-4d30SOu3= zye1i$nuZ`E&IgbPFb<hxLY@)D%??kUkBEBxkCp|qL= z5bPRf9i!6?`|5mZ=CiRs9pD{Q|3@|UWoz2HGf1LPFQ@(X%LM8}JIR&MXxtrV{Q72( zZA+*8%#Xlm=2=!ok5^VytZ$j=+0J=p`1t$n6EjWdLS;{MwQ9M&meKDyYd>7`+wX{M z)AY~J7h6j?*%%C(OXWKJSg|n^kvbx`bxy-X)mW*b5Gyq5#?|9+l5O*WfhZ;1r{p^TU=oXdlq+7QLF+$z%c(4h1 zyrekj^=iE}{Y*H{=NMJtHt1@_4n?*HdY@n=dO0EEsgdln94jq>=IMvCEmsu~YpN}mfpPwOs}p`yQFTNJ1N)Mx!1^0uo8!n)rVEaUa6E2P(=)Gx&lM3WVg z4O4kpZOo;$Orja6StjHZl4(_VsypB3+?vp0EnxI<($SAZ6UCVK9xoew`F3v>EPtxdLQNu)g2o_YGSN&(xYmw0<8nh+ z)ik~;p3%!{PLyc}9?s#%5M;N}$yl$Hei#@}YF(zB0C4IQW#6ezL(gHAZLNN`^^30` zcN>m}gn=RYC~&VTwnGW=;>hZPffIl%lR>>4rj>mVzx44ZMf?i0bZm&w5T?N>B2|hd zaa>jFVXB1gpOL2`A9DfjcbUvTat0Puy?6h4K_(-U_T71=;p~rKQpgP1_fB<`?lhnD z;Rl=Qt?rf<_E~*gHM{$b7`T7`O~CQwjMc%5li(I5SQg%$lfQ4UT!K)_^e!TFE=u`C zH!HsI{7VQIHXnE~y6j78+ULr_=mO%(vE;Yv`lYzd4J_@5l!}jUt#N7mToQOXuw$mq zUL99;_&z*sEjBOy(4K0$={3zIXT;R))MLUf=?oHX&oOmB9#z^QUH(sQiR>Rjk#v$L zZ{d8`JH03?&79W^Is8+7y+1sbPT=MMT%W;NSHd#%V=}J+$v~94@#8m-Lnf|4AmTGG z%t|;)<1Aj{oqrp$*3u(PlR;_u`Zi@zj@F^ICAAlrY<+sWmu-Y(4QS0k?*JS!jc8B0 zXS!jR4XUZQN5!Wnvf_WQEJGD$@LH!8A3C&_-X>_kuEfe0kv<`Vjkva*I)B0!pRV10 z6mMA`pIH5sJ>0->8*EGsPVFY_A0U zip&YuDiey+TPWHw;)JXwdF@3XT~uBx^LlOJvT`NSno`aO7kWNd@eTCig4g`vF)kd_$H*n>_FaR|#pLq{O2oUjU_?r7p$8zpI4Io0+;XrrJk-XnFfU)I zH|(SY-aBP&RF9MYc|SA=7d-T2*X!VGbwuAy(@8xu>CCDFIZiluT!sF`1T@CyL|TsL z#OuFF-~T4DIl_;oNRJr;)34JR^lsMRd8c#DSiO0424mrE3Mij_ctc4K4mxM}_NH9YHEUE0tQZSTEQ6bc^ zEaa#A`_!5693M*=&uY6X*0D%5Y8t%LqT7;YkSa0&ZHfX5C)754%7wwDo};S8TeKmd38l zkaL~|YeT8e5)x-FsigbypUZCwetM({Fp)Rl)tzNzggpllZi8^oL89{gbcotoW}9SKf+j;Ug`elOX_EUu)0V7!6* zHKY68hF*?vd#8}2lSD4ob&P&tL001mAqtLl{waN)FVwAq!C>VGGOlsfkEnO91R3+) zaCnJH)%}reH`{~{S_VK&^YH>gO!l)44N0cy`9o8ICz+fvUTM*xoW2|0UwhPMUWve} z(LD3HnKKKjOUFQ_ho8asCrK+{S1Jlon$_rny}=@hB^qI^N$R3A6adBPITLy9TS0Dc z`u-E*HvQ`bR?upgx3|qExmxr2Hn?g{sxvdvp$L6JUW8M9!hMrmvz)#+ zuVzq0joC@8XW3iYlHi?u{W@)Q4!wjPox*+xtyVsC9#y`9UaI;KlC1BI554`ZH0k~4 z?Hkl$BfkMEGII*=DFFTt?D=;>1SC{U2UTa!7V8tk^jo32PMuS#M?1m_rKvWrsEUH8 zD&7e2`(V_vFA<+kh<4B2i>Gi|Zn>#jGOzxQWMYUvBNVr^5A*(ER)1AkhS%M>0}u z?tBN~iRIccB-V{cpm+CPSv3DPboxHiLCqP<*{e4u&g9T7bgsr@bTWcCee<;r8{&ySJvpy6N zA)n4zAs$^804}P4me#8-QrvjvucOw*io&ze0XqU*l&>JHG>0tLn58xt5}hydQr({# z@RIun;-7q@>B?vvgNFd+7mM!>KN~y+1(NDuxU(~S8s@;lnEqmat(*%nD)~l>Y38g} zBwrP+PiW$BoTAxuLMiZ|*=hjVk0$D1dKcnw@6 ztY8?b`+my%VVZ&D`^sEH0?4c%4xMb~@d1u$ob{Mk4QL8b{jsFf0Gqn6cKNAJ8kd_k zOJ%+wD646b{=Q9m)v&zl8bC+yRe(WEGlO3EN2}d!#z8?=*o&CduMT1XZZUw6D6dO~ zi!r~=Jx1uP<~r?e^`LjIbmV@S^X3no43bXDW@PS7K$TDjRa5fDpx1ZBZ^th|$oE6& zwb6(xtwxB`zLF%}ncFR$l+ry2ZM!k9leLd`L%8bg2m6$=;iSt9nMb)harzv`A*z`y z`duMRvt;Jl^u9A6KIRQ^u**EyR0;?WFrPo>=h|fCZ*R|mKfoZT!U786%(H5TGhxv_ zwT!js?6FW3HtF=P+k;537aB$7R-J0UpJX~YNSxr`F!beMko(yo&?`CEK7)`C2hZ@t ziXvqzqD7YxMg~8;@Vq_Zn!2KE65TGKESEWd9p(p*&IX<5Qg0l7WH*Wn-@=DSGmGhE zpBwu|0ASw}$y24gY+;vH5H0-8MYrbEcvePCtj?$A;vV}So2$k#)FZ#nyWdQen+;7E zf@2(0OO!4Aw(2!(;1yh?X83GxbN`WsUqp;9vEbyN>;pgGgG?AEC9$U5<#d!l2@LCXuc4`FwfMG{Giz6V z`9!rHkPOI*$vr5&t6(WCQxcC>HV_awp>kSOr}8z}HnLBqsbXaJD_yfo4n;>qqOQME z*gRRS`3S0Dv)PBsdj{C8hD`t=i^Y%$eFZ{63@Y@NV|0b}(FG(?pUaKMWotttRR1pY zUMvSc&Sa^R63YXppSE13nbl*Go_WU+&l~&ND&%OHntQQaDo!yKEoK(rGs9naNg!N; zLZ=QPkB5=x)NBHl)hPLrrYa}5*P?tUw*hR`Rm1$oz8o4d(7q7no!)%W0pMHGcY#6-)@VT5arR^4rqfwr2nI5lCFj&6hc62#7QlU1IhP z7@dz|@Pz^sHbGL@B3L4NCC7P)lf(LN6bu)3H$9=EZb)FUv0F zoofGQm!3=XSCO zR&uiiTsGD1cFlYUXKfc=kdA>xFaoMu&m*$C!k^NWlql!{y*w4+x}4KSlL3lK&b)+g z8x_9{P?Qqu(`meL;ecc`15?euif*+ln1I*xP_b4r*hxLvkJDEdymaBLdn7bPX7xDR zA9MO_OyEM9HGA2Gvyuhs_g|J=^4)KC)L=*PX2@8NnyhWNr8LwpllF|MBV_##H(qJ( zME+iB#5SWG#!7Bi6On;yyy0Y}R%XbkVJH^G)H~*fQM3u^th#aqrJZ>M?GN3ZbJ<%)ttpCD*X}?>uyrr-3cDQlX_Z3T#l+uA- z=2af>X&)~%I3c(B%f(GX&96| zExj`_BhcXZok2k$(k3f<*=Un58*Me=ZJur+*-IO9Y<%tK0FY(h?Ihe=_##bplAmj% zW+2)|TgRy^CKVu^X-CLS8l4_*%Mpwd}}BR3e}DXbhNY zBG@+!zrV$e0Q-z5UuX~*y$oLTf;v*0#g6rZR^mI87t>Y@I8FDhpfx_D`GTUV9F>u0 zAXX@MiOf#-gIXW7a+?I*M64<1eih?+=jG8!vf%4?;4{6ZVPnYCaA4<~A>F>84jcaZ zb80@QTPgDyNBbMg;>L222hyA5P4Ks;-}p%cCOQS+I6LSS znmCgR=Q>!L?o6X07xP1_7Qix2RKQsA)YBgI zBc!m3pa)ATCiAGE9amXM6%eqvsd?fGL{_MclWSE#RPQ7acWeMZx)mgB!ePtF84^7dF~|Gtr%&R|<%too3Ra!5 zK4S(cD#E9Rat8$^LTlOX?~ANOb~Rm6T8$-ad&*FO|3pAvu=jG~nCPSnbt*4Xtu1g8 z74$h3J|I$(m>$hbN(42WMt$c7KMBnPnwuX(%4I;pcRj>H090&{rQFot$Iq{c{1^=h ziw+oKtMqVF75+Vf3ps!N1~y$b_GZ%+_pU-Qne;Z>5hQ)W&_E`ihJQ5xt61LGD>f6B zW&hQhoU8hQI6`Kp%F7dXHyz#fjWOoAUR%M9_M8XC*WDJv1ou(~Y;0f{ktCA_s@#!p~*LU-0K z8W|Wto4myzNOgy&8coD~p6b~)8vHvEi6z+c-DNnkG(^=;CiIIe$%%N5Z?a-G&B{v{ zW_WnZ@j%7AzsswIS33i97iQp{lgn&_ zB}e$21f*>sYw^R9o>l>5^qk3KgxsqSIm=B9%yrZw9E z%2w<|nBvfP&CgU>4I141fdaA?sHjRv6@zs=bX+NH+p|#5%s%` zy*9mP_?aK}Wckbu`A!{$eDz|-GEg_EL@(KJP8_T=)wDr!CLVsK-Dpm*RYDlWO<*I+ zIMN~2Wl*)FT+48MRZI2LC;9YCV8U@nZ10ucYtWmfNU2?vR4syQCD?9ed}O)k4Rzhw zx>Q~(P-KQ&=@^suaVehKv&UqRls#!Krhnzx8O^ZMLJ09}~97J%ee z^+7YZ%r}P86B;mMpA{kt%O=B0&kjBVmY%iMa;`s*(Z{F<38wI)QnxT&{&sVZ->P>i#7?%t%Ga8v^URxN_I`NAX)F`lzgv`yNw{#J)POF zfKdwWI4VhOiCegma)Z%N0IgOw1cmD7?xlI+EWZna_nrl;{be-97?Q_zdTa<-ehP@sN82OnVt{~yiWcd-Hm*>vZ@-4aE z%ZP&`km$4YzMV&p=>8o7t4z4%hs;Hf!s}z}5C|Wv(QjR}s{CwnkX3(+5q~&~LgO-U z07w;s1?oQPQDc&gx*fDJr9sdd;=@V1$WeARlAHGp%hEaSB&`^Lq7mq5UR-p{>%PPW zNPIBUZ)xU-Q66>}CKLyB$k7EKY3fxOEMLVfUUIh_Dn2kJeAZ(a4XS1ond@N;{KRBE z(8Ne}^g)&dgTDLQo8$v-rXKfXeFkbYdsXlQ3He0fTJe1t=N!j=-`k}MnUJf@%jrkj zZGK%jUFudWPu|l*SRT3xXQRUm5`P7u#$tz_)NN+;J1`UU5FCrHPkX~R`WPjvdII8$ zlDIJ=ut??iLibiN_nf3h8{Q2n5aRitvU8%SL1zzCDJ6lQ+6u(hs` z>a(`fxfXkqR8yGHQ8F$0=`3FJQ6wnwgB=z7ad0@arLpfA=`}zYP$+M_pH*4`KM%+i zwQo?r;A0NBy56F~b&7eqkS|P}6o`V&kj=^X!ENU@zLX~Ya9$u*u6osXiARH;v z%Q7%RBGo;6rDuefxmK;Be}qV4U-n8^-46N~A+hSHdyIg&n^<4}fJ?_QNqoRZvPTR3&M6goA%)UW?}vxrmJ%I#y;@L@ACdh z?+!nTjnzN%zgmdn{d0-Q)CRmsmW4fja|k;-6~t`s7}JrM(3V4x9;~PP`Z#1l!Zh0~ zb;0-&!qf=qNd2%aIazGNp54CV@#;;B;mw~_XI21dD|mek*yB~TOs|F!W;J6!w=Mp( z0|XdbGx-ylin?B@Ha~8y&NXG`V_`hk7tijQToW67Ph4cLuUp<#mFp<3_(UaZ1vt>r zP4{`mE=$`7shlZ$uTDOA$7nfQK3C>c&-w8w@+ov0!!+F(%dv`Q-5a7l53K={``fTw$faVK=i1{u$A`?#A9{TyL44nNfk zgJJFIA=Ut#>|fD;hdq+F)N$*&p70dYK;QkzW)kdYt^)MKR1(9`Iz-qYO05hVr`Co3XUx=W+`;wG@s>rR$Wy;+-Ah>N3dViHhA=LFNX?g;DITauigzaO4xyvz2L<-e~} zEOoGG2qx9JlO$IAnD@}{+&aKhkUU}*;UBDo&sG-xo#%a-Vn9LKPSK*nwzYX{&6>VW z;7nJ?{LH3@w_Hl(v5oVd4)!&Y8-+?-~=fmI~o@$Iu;biF9}g80`KE?CaDKD**W`fvP(yW z37y4zJ3-?E<{r_F(jQilJ6$FOnGz5JPk<>A?18yeJY1*d_+l6Y$T=I|D=+HYbWtp^ z;5Ih~sNvcXG9&Oi-8bg~Mr5bjV2f{Zo$C{jdCUoQJ)-d~Rx}CmLA!Ym=_1Otchu-= zc@Hm7^(m`ODgVoCrjYaAwYJ#LfltAfs~59|UM_oHPH`*I#9FY&plIT`?lGf~TS0q- zlB{bR32-@q#&zK=to3UOJzvtV^4%af_jA>_9*;5`idbqg-{)|0E;^QoNBcIu5D)4E z5s8OS+|q{Ddx@X8d#(j^Ad!I8LTHy2P0$@58|- zU6elg;aa8ir%PQ4@ZT9POWmtyegu7fT2E!#n*VyFN`oeS`7+JYCtl5^ULa0UO&Pb= zRo+w_V74*~$iV-T#Y9-5P7jy8Sw9ijv=b5fqWXBXi+}9{;__uM8;S%QCN|1uxVP>{~04^gVT8bc~l8Ah5F97TF}pmKyH zOl~Y*Eqla|2ktER_^tRIZOVGF=bJBWk*w#>z~p8}s19aNG(vtlJe+gmU%oTHIc_!2 zu&R2iD=IKnVdm=zB4B4E(OA6{HxhcMehervAhk3m2?(74oR0eu|E`ZuA9r@Hr)CQ!2Q_Ig{{&(N#bRC3qR@Zej~Uk{`#$o`8>iX z!m#^R=CJd(2y#YFM=jwvgw2ss)@T)wQ#ep+O<5^6GQ%dV#geK#0y@@gP%(lfGp< z^RSX1%xEs1t;|)05gW+S^(8K}H$?8aDVx=?Gw;WjpWBHeij5^E$KZQ|Ppl_QnRk$C z=?9yR8`b^tgyUk)1-zo!SCK29vpAVB0!p=y#D;$Z~ z2DPJIo7^b)3@rtwstW!;d-kn=(!z>p8?w6BI7tj%I+PfeLROQd%1A2NZWtbZ2%jfi z)TAiAbw@z{(T=xiJ6XR&L_oDJG~z4dFjSUuKhF#w*60t>jAS1mbY4P8Normq$Qu zmyn#?xjUaE(VL_L4%VNnDK4$wZ*iz4XFBF~-rNVhUCYf!$0K~B%x5W$MNjqJFnQWz zNkCWk=8u4y7qRF(u%&KOFuk|?zMkW$pi=q9muP|S7U3MO-yOkF`@`SQ7v5}i!bi$% zv))>)MytJx(<36^m%WZc1oRrW1V~bzf1zqK23IoxCc=HXTt!Fk#?^Dz6OG-gPSW&= zGPGXfblWwA$jpdqSXHjw-1v0-hHPp}S*hQ_@l_eWvpD&8g7SBjwE9+ny&vSo0@O8E z*l_rBCvD$bdLD$Y(4m>pOP(2l->27=@mp78Kd&h%2&xNUh^$uz8tmB8sQfhO#ct}u zwr@q^vNNP8JtR|%I>ekN8)scz0aTnCTR>%rNquh1$+1dU==}nBg-B?jb>nBQAd0_D)B?*#=#29 zBWPKx9NhBMjQQ@=N}gz@8g;x`*u|M%{q|W4kSON_dY?lK1C2DjSm!Y!xHl0PX;B7 z64)6v<-;GqVp*a2x@NpY%ISUS1rul$LL(cV#GzX|1mwf@V3DHmEc53W@yKWe442t8?Q<*%1cMoqfOy3(i~ETZy-ULr#AiGdKAmYF}nwei#}k*e(lnGvE~ zD;wNO&OdDPM}pOpmbzGs4{eu~xU?eG00lRMXT;2Fd5^5_x10pnGn$VkM_UcR!d)^{t2TotEVR^s*T#l8!W2E6w#*3CwYpii=f=ax?SMTV_wrdj2Z zuQ7YDfG!3PSF>ju{uRJ4DJF0~e5jWF!uyHQ zuP(l9t1ExBclaL~E3WL49rpl&`;D%mB8QgaeL6p~^w=Cmpi_C6cW)=E>c2I=rw`F&~H5Nd+xozv+f^|m9>&Rvu9>M&u7r4K7tNBPA`TbKLACy zxuu?$cEm_vqZa1FQMG9yg5~J%+p3AqI}5NU;CR-<^acl(g?I_HZDX};BH(QArZ9dk zIB=+P)g%|}F%_g0|78oXQ??uIV>u19Sr6P+^PA_Q+wwZd7p94J<{>NYw4tthJ4*YFn zw}ZiY_w{4WP^K~?FonSW&&`i=q4U#$bG;cFm`mK8X?%bcwXi@@kdJmVc;6Cq?J^;3 z>sILrul#)H`B4KE?gI1YlL?7)b9AXgT}0{81GfFA_F2)!w$@sWgD=69VX|Q~V9E&d zHYmehXYr+;t$76h!JMX)^jsI=<;uIW>KJpK%?9+Z8DFrC)bN(h-Yu{Fllg`oSBXK6 z);PoqgtOlPi-3uKLr^O)FqH>6vB80_x(tmE-^|PW@rCIX{!f+oWaME&l0+Q`yg9I$ zp&^0rB-%c(Sgan1v*_8$$h+eS0hrO>% zI)CXJ`__qv+b^?zN{=aP+o(xuWEruzq6 zpN&EkNb^3oWEWnlDHj4A&fmtldq&(V>-jmy) zJ0p1;bIkYSE>+(zzVU#@CV56xm8sD|b0T+pgy$Agt|N9vQ7HMVxNoJf*Fsn9+LVg& zVVIc`m97?4bK2oNyeP*RMdK6&K0BJ%-qRUTj7V<{KFF1C3|L9oDa$}=58-?inkmZw zPjiW|NAQbw(q?~T{wJ_NV@{NxUi8r}x_&G0@GZ_H@>8Z9ErXC^KHU}WErm}ijm^{_ zyT-pLx?Es+kf7(atGk%2;JpJ;Ns*QykqiG53(-f?dc}Q>uJx7}333kgys)gY2s7|y z{-EGDV}fMZv5R6`PRhQqR*}1O7H{3 zUDM6aDz>JaS2$R|sw~D!Y|NdS2qV7`33d75PDkf%yA2O$&x*s53h1kc68=Q2^pE8+ zLZMv!Jsfy=FcF$Ltr<&=A@iFlLN}grvqtJGeL6$@$Xb+L&+-wrR{)>r2U`Em;By+a zb!YE><4@I6=}l~=?W`RBj?@KxBMI})h)4ODlhkL8!Sni!^V(15`%PjqY+~h}M?#&j z35W_kn1iAwsW$EtWBp3^TLAuH^TIn-jl*^V^RZ8=`UrQk zeGE{J{$jdQ(isCQVH*;g5vfUzkAZE>87mDAhNrA9w5u8kyQlJaJOTBTL!-I;p4t8^ z`gQVFrd!A?F%n31WGqwVz--)7&C(a_9%-(9M7M($hwJV~9FklA_EP-7@7n<72|^$` zvH>f0*^3tz7j9dz`6J7Z*5|p}qIzm#*A+Sb8C*@44u_H^upCN-?a{I;gXMuM17smysYd`6i*qvjxPyeCQSrO;O=s4(LS0cS@jiD;e! zJz8wcGgfA|<)T|jS+0AL7HWjt_flpgvk>*XrMrI=4$fq+h0 zKbnk&JF>V3^EfX@JL8BA7PRC62S$2eo5qUL-M73o-MJ+=$K+!jX34!BxAhp&%FUO5 zXzqMHOw!V=d>hr)@52)zy!NqE6b$SFid?ix^4Y(ycGf>2^VQ zh9@Oo)11P}3j>Xw?&KNXH@X`CSQB0DuR61GF|C-{@|9v}xcD=e)4N#Kee{3lAm!u1 z8dKfRm;}pn994}DyM>D6!bA{Lw-cR*^4ro*9yfeAFLp|c>vIw%=Rm0O%e|oSH--kz zXV^?V3!K93GdhhA7aK0F{8URh`N(0LBWXL|d0C~5$7NiN9qxWPE9sT(&-G}N!E(!! zg}4nNuD>=LIR;2{HVAK*X5FT#X)j;^` zj1*MrVY}{c)nIcNDc&y(@ukH<<%l+z1$9#@spzU1^#PLfT&_&(lRk4MvGQhnVS~f? z8~zxAup;`Pc=n(L<5`srr4tD@IC2I>bMD*lOZV`=j85nV<{d+T^?GXC?a9lj3gsD= zd1AMaaQ7+1?3Uh}zZKPNYF+1v@ag3V@G0k?y9#^_|h%T{&7#6R~S6(sCDE z%dB)p*sY%EE$q@XMu0;< z*|T!riAIeJI`~{!Cl9E9M6BrW9Y0ZOzgPjT8}gyWKRDufw+Kd_bs$Tv>)%|6XW}ZI z$DbT`$W5wcvIJDI!Ef|9LS^Q>db2B(sY{HrtIrmnBL2NNKs7ZzkA}GC#08x-W*;N{ ze=n1Gtz*1z7qB&TGa6g&83Ji{UnNE>ta5TWr`nN%T<#Ol8Z$dr!B{569g|?&IKYA7 z+lE(q4F$_p-SU`{&V{XTYNk9`3@3#Ryr2?(OooBtutgEV^K(4VoJ7%09leE4 z_~^tQ!O+JUKWc~$-86+iX&X%Y~mKN1d*En;+l^!0E*bFKOVljQK#a z6aB|IPjwC&);bhdC^m0N`j%(=PrM!vsIfO)<3fmF-|;4*xjdraOe!hwG+U4iB?78u z|A+W-o#_mn*f1?SIwJHOetzX4$IP_3#~-4RcoARmi|58&gA4c6iT1ok-jBq3HT>u- z0*BAVXWyx_;~Tppbzr1Vqb#<!BAtmpwYjhR@7&5rGPE^mdcy55(JDiT+2s41 zIkHm3;}*i>xIuu(Se=2?ELPpEzQYU^-h0}6lEVsw#cNiE>gaNScPejP@J$pmq;<+6zPNYwza#f>?3RgJg zX^$oUJGT#eD6z3iI+8%|x)95e4T zf!RtSe`y3Y9;>&P>hY6wE3EwL;e9e1PV(6jPt-)HwV$HhpJds@0v8A`iM`i&0NS?; zUQO*pgwoWJHk{HwK66+H>FG=f|EvPbkSRG$5SrMd4>eY%{a0A-ne|=Zhn!n@)OO=V z1qbp>^b1C;a7v1#<$JNld=9oI6RaG1C-m|}=G2yie7~<+2=sDi>@yMeD8@9J&4)!b zAwLZ2*X~k|V7sDD(;?QozIGrLc<+WO(_6OucJ=4J>5pWHDELu_LU+(( zAUOEBa*(F-Tzk#vycZ+vw41^0URdp2c0psD_iY}?WprtxaWWRQAj(bt$OBK5l-bF- z50u)_3qBV2uqGtS9UPF)%f$s@wT!)--oQx;ZZ4A#99^BFP%-1rN@kjKbpB}41;5nC zl54hftvzyJ(8t$Y%Wp?7O0Z#&8UsCiYHSU;I!P{7&TqC=p{>aFG@nVMnzS%A2f1zG zdmJyFW@yYZ$Cpg-JKW?k9}eTpeJq&$ynkVIg|Xx>ULg7yu_wBV&Uh=$R*7i5aXZ%4 z;#{x*k1Y+kd5*2IjH~yTfq)9koScaf_t87J2L~;S;7y^(^hdoX*7sFsHbcM5kr!#) z&V$>B!47^lN9m1_@*}g;4j~Ko2-zV+EC48Y=0yes)}@K~jumN86y50S{n-^QD{^zc z=B0yV2G_(gNxVxW#%w6rI)jJHM#+0G?M!!~D3a*4IjYCdSi<&?v=o+AHTI!JYOqT5 ztTQWrj=f;WuRkmzk{k0U%jF$V)r~jNKABw$iE| z==|uZ5QM&-kYzSH*B1%~l@&~N-`stv$u7uvo8lgCAaxUIA`>~p!RBR#3?&a#<5c}T z;xAHlYIlmb7Wx``ciM2AnR@rSxwL_PH&c!cjQOpaH$xV!<=5UPbjo?HE=R*`t${=> zKnu#2KI5azt6j_$PX%@*-jE9!FJnp8JuQAvog4V^o$O=+03Q!><7BK0irlcfUY!RP z3;TftqO(;k?DFqQSf4$-6Vj)eM3==3_F|K0D?+`Un6e;E7|<2q5zH)CML6RWzes1C zM5nHR0XFpenEkqR7vZd+@Ugl=4y2KWTKrhNF$f@qJ5OpH;o3CkbD%Si@7T!8?p^hv zX25UoY13_v2@+AgwV@e)CQ^zxw{CA;jx?Ic?2jzMRU{{Vl}8>8EYteRvYk(FbQ0l7Pq?D7l3ce?~UW%5035foBe7kmaGq z4y5t8m@kqD8+KZdW`<0bYIcLUz*z*dm6xySa{lvk$HptZ-73LEK1lRtevfo590@}6-N>AX*-6u42*z1_Y{i&Ty+RaqcAZ^c(vm4 zC!kD6?$Ly1SUvd$labBb=$^^MnGu&NkjmMQ9Jq4p2xP>0F`22SZ>U=L>j(yq+K~<*GwM!Q$H8+wj?c(%%@4K?AkOa<( zdEXtDl+^yq0JyL4P0y)AD4?VHCsdc4Evf4sU zJ}56QQ7&@J-HzgR{-O72%K1tRTN*l(GQX<-OB1{|TG~TnrrULYVSj8qQ5E@L_77O>TE5q){Bl9_5u*$M}7uP7HX-_z#sQoXG z4oTUL&pPmLom}jqLOtwQ)#^sgdpf$IZP3(B|D4`iQHJS9!{C~)n;l$tflME+bMPjm z^M`Z28kq8JCEm(7BzIT61Yb8`=`J-UyrUsiA5fM{v+sa%F+0h>X!Gqc_b6K9aY*re!IZZ^UY(u@qG5J z`niR3QLJ6od~K>(^|tnl=Um1OwD3Qs%YsgbZFc)?5L?e6y8U7Iw>Ha`F0x_rT53dw ztva)+U@J~0fe~tbMK?`Qf8L`A@=xKJleRybzuaJ6$o}P>UGy@Rh&|7;nP-9oKL1`P zwJ0s5Z$BX{H(}Ro;&}SkX6iR>h?-lg-rNx;c~CDBR6&lZUV&BytyPL`ermMt1PCMI z^)Kqd^sZ&Dq%uKlY^x2Uv)sG~S(L4`B!Dk+VPQ5E%_hs7D0_3v(MU}zv3#1JuHGW? ziN?HmsqFkN%Wo`9F!Az1>7FB_ZCL@PrBghSPb$)xQ}RgJeiKYo7_dsLC&t}O2FzIY z^Hd?U0v=4XBA>;YR^5~{{rF8h-+coR85(v9Z}=-`c0g?v!KNHtVyxRyW>|3KLeL~X z<7is{h6!H;BmcbVo&28$z?KU~ABE@!5%4_Qo+s<}ArxMyc+IlWF7M+6!n`D$iTxGH z>S55R;$BsKThD(*EOfAmQI<*FVAMmgD-$SRzQfVSMsBoML5NY=UIN7J5;XQ=b56y7 z33ksuEmH4-7NP{JO{Z-}1@H%)VtaAIa!JH;O3)(oMJp2;{gu}(wz@Kla7p|Sso0j7 zE?45az!TUJv(X}XZ#r=DGT%MAqV8K>jM;Bjzclw^lwY^zCvAT}uj1WV)XHV9@hj7- zJTno-)#DBTmqdD#5V+@%)+^CewwOHHIEjS5-o@k}T^i4ZGb>d@ahjKzM)O^F);x_; z%%0_4f+Eiw8ZnbDS_mIhUDZBP+3y2ksV2R&54y0=A8Jj73!rn_2oke~l96LYV_T83 zGyP>lTB^F6iO)OI=kf?~JSfcRliSZGp&T|r>7Q9S;iy-UK>D{r=85c~8_yOk^u82lC0xB@GrA z#J|GW-NSr1wc7emWXM9m#{QA3`*4#IbNsepFCJhSyNTq&xyvUs@Y0@}{igR&NmG%^ z*gJ~WrfbI2XaSGwW!qS;SU()OvqW|K*recDz|Y`Wdvj1-A}BjW`s%3_+E2?zI|@i! z2toPdn3e;!Wao{2YI(OMP7l|GC#PUDryD(6>gy-{s+v2^q5mEVZjKjMa-VzC#CVC> zhKZlajp<%SBd^XJXEc*BlacR=^oLtT2`p!rc$oxA5usdn2fCuLkMiKo-Oy(dqa_QI#6eRMk z5XVG5I0K(m+xmfe>yI8Pi@!5nDP$f{&FI*DMyKp9@SB|q?h<3|klsT)@unc@HJ8qh z5XZ`pPYyJ`$vSwWhFOPSruY#T*Rj_%u~%kux+mov5;{(iTBMeCxs!N(y^UU@8TbBA zR}qQLZ(taYF#V73xe@}+|DgX4{}A~&q#OLw9cKT-y> zAB9W#E_kx(<0VmTVKT!q4+Qt3R>f55mg1y&+n<1&XIT&G9e$bd|LDjqh3mPGLV_t- zFFL9vt~9h3j@n2O)PA+(rikXk_pK5ofK2L^5~KIV=L(u>zbO5BCKq31aOLX#w?PO= z{Ib@&AoAmnAn+;cjQNV2{vA4$Dn=N%@CWy{C9hA?rEyB^)gK$ftI7#yTpdWq3}wIe zwUJYUJi2MNXmy<0qgv@~LQb$@psh09qQieWPNy$kV-^*3%4TNI*u-R{sX$i?53nEI zefue~qD-0IvOkGj)m$2M@3|(GXMH0VtFB?ZjbuC+xq)9sMYpAk%6z58^Hlbp%;oeK zgUnbYb{rUE#TN7zI{JLqBC|v%G9Dd5d@8CRF6wd1 zZs;6ACYe+F<*-o5FGa@}?Y5F#x7<40zkfJEQ@$nyQh+0ebGMABgM0^ur)TTQc`78n z=53A`!Z&%9x$)6M0=KeN@kuBM9!Ut1<_$o(w$JuXGQs)Ybcy+ zwK>4|bB}iEJmoxnzae#=hmw9c?XUk3z0)COcD>0<|Njnruj1pg`=!67+U+~zk|Jt* z!eHlwdm{BzddmFu%`$#Wbg%=RmaYk73$=L|JffX!WV>MP3!?pCbzN(u`+&HhR>?_(95-XAyAmDGCH={0h?f4 zJQwYx3m(pq+zfGyHQOHqt^BsdrD>wx79|W(i%qPL+@Kf_mEj0ollMo1VZYyjDsUnSzdtPQ?Q9%(A-&x?f6OEy3KgGAXz|vjmaiN;U zdj_<7bcEbWJZeE*qD#=LLla5MW%qMAohiw9brdA&q_OW{MrSiTb}Fnu3V06b!-avw zcXIQu&Fo@@4<3PrzcX4KI*re>|A(|}HRi>B<*A|zHR*`zrL`hd?5!E-`F~`?v&B_W zAUck>Z>A|Ajm|>e?VE28Py0s-?(4Ormfx-50MV>=V|^NP_s6lIKfrw=G5(8zo?@OK zfp2#FXf^A^(SvRe*IO+vh!SCtZ2r5oL@Cg70ZBiXQFzPHJusn}T8oZ^AGyy>a=rN%K2im(Pa*r7L&3xyTdqx>Z+aPZ`I7prnWmAP+{~9u~&Nq z{!?XV^1BOTv+gv1J-){1KOu4wX-3CJCP&LixRm9|(0@~M6_R7q9>23Anc9eBt|n=! z^mh4I#t70DBqud^Oq;&rgc4{WngRkzG`idPlFE^$Ah}x&KTgbv$Ca;GMe1(ErLC>B zt7=kKm_fqm=g4w%+BV`(b!-gBz8wIp&q4Qq3H8jm3UZ{rN`*TFU+0O-(fiy9IJ(B= zPCPdw4W*A-Uexcr^`^VAe*XX5ST2TNp|m!hukuZ+x_wQ5XO#1N_7_v+j zAO3?ZPn!F$=JkzXs8x4UP4-i>_EVQ!PnKN28aFOnjc;_J5(F67U4oZwaq4+1#aG^+ zP12c4(fMp_VfM#{;qKJxDXZS~+BjA4vjtJCxBxLe(!bjtPdsCxlwNEi%*B>A5x(}2 zZ}>6wV49Cl;sQw(m|(LL%UH3}mdd379ICn~$>it6-G3XA;en<3t0gW=TX2B@l*}buJd#c#+ zb+&+&vB`_6=9d$tgheOgs7myA+^>_N%}(m~%aY(f^wQ=TO&8li{@p#`&0s;B2XIv- zt0z+lF^37Q%;kk4Dx0C7h`V8#2bYfNGOg#vPTi`})hcHgk~+2N!K>g+*BsE1@%Sa< zK#FmL;c2la-nr(XvALW2?kXg(zHaI3yRhifWzgTcKH(Je;q<_h{l1gq!!*2Wb5j8S z$~u(J+a5JE{$I5De{gw~G>_^3+2Q|Er(g7SJH;9ME4fIy=KZv0Mf0O(auUkPl2T~w zh5S3^zh2U(@^@+kMy<$l_THMBIBEwUsV+Y!2hzd=$AP=41N>)wiSe3W*Gn5p>sIsA z>Myp^aU(NJa5{CQ1qxAyG08ShoSsfJ@R+QZmRr)e?u%dAF??qr{pfzv2jen_je-vC zEB9Z7D1N;VmG$fb>DxsLx9d5Th%sMBE^8^lx(k9=ZGz)p{qEqZv;;l8(_PXizH;Vj zu%TtqS?5;Q<7M;as?6h!x<3tn5$o|hOHZkSHo$??x=;3>6qn3xVigOL5*j;O-d_JI z&ui=2Fg7vo$M@Vqzl>Q>jucdL{Vd_ZUaQHmR$YEElj(jv+_3bnjOQz_`O_b+$JOlh zuS?#jF`b-&_^tgoD5W%fA>@ud@mD_2cji_0&y(-PB^2>TGxc-M+Cv`x$M?V(N3#vf zI)rl6*aT_l8Dt}lD*(FE2!k=k%1`TzutIaq%yNVr8!lJD#i!Mw3QcYz+bobmsw=(x zRb$m`S%bz12N*R~%T>GOK5(~QdWgWd7dBhl>er*L*!?}DAIhzwaZ0aTB|;U*Gh64WSXR#4P;}#Qr#JUyELu3cyd6L5bes_>p@WP zr>OUMULWvWCs>X9?odvJM(6ipz?F(FLtBmW%$hSxy5>dKEspy%9ECEDk~JeqviHo7 zxe`|h4WJ;c2Ki&R-Cj-i8qQnOhN1$KPDw!5a3KOs2qiHi^j_u73gUN>iy+R&JaGEU za@Lm!p9ARZh~ct8{hh)5Qc)PWjMs+;KL4`8|I5;FFPh=S zqWt>ag)ytFJXS?q88mbQ^e@(lKN1;H!ljN6^6#|fY`(KkL74z$53F+!&!$BR4t(D} z7cb7EH%HZJ(~zIlwKlYeeOQFJgU%P3@Ap{vpq8r(S)ksye1R&qY-2M|uhVi1ERw-F zCov}1s!*l65L90Xi4W4PTQJDdb`g(O?ff=c%o?subrG zHvhyi%%d@GGVh_oXv$n?MCP-QJb6WxBqKX93p3S<4AQ|Vt%UOhV6T%)`(UYSEFCV_ z&}_{Qg03NN(@G!gDZbiMvq$nyZ{*G3W$lYb3N0E-ML`i9;3tX6;*V~*kzt3omvCP9 z69R6;w!~CT$L})pGc%H{x>WI$S-*`{ID_v!eehnP`%AaDX8$TTa91q1G zq3E|}yYdVvmfdts`&{yc`$A0IZK9`4LBgMGXCLR~QXOY@WO3TiHH zv<21sHzWaaT#>Pj~e;Cs;4}-GmoYhSFw4SIJam4St0tT zFO`i-DAqe?lv5Z~6fNTQOOGtK>Wg$JH{F|NyeLZ3hRYLDnv{T)%s~NgHU63hbT0=2 zAV03XU5PF~z>fWHXx3aDdgwDnz!9{E-}PwD?Tq6KnDY;xg*OroqI}=a?0K}qG45B2 zlp0_qVm{#YdjX@JqWk(?TzrNc*HwJ8#Rz?``;_4@qWBxjM?;H6mP%Fl>2#}(G5)6# zGP9sYS3kBNEtyhK1Vg&id(Er8V#>Sxbm95Y0_o&++Y?PIXMG1-oApNC+E%%hVrjsaN5`S9uowO7Az*NX2)%=(>- zf2)D-dvrA-I^Ax64zzu89sIhvC*#|bq5}h;=t|2UU*ET(?$!WFQzso984`(BRp%js z$rf}NV^X)EpGkEB{y}QF9NuSQ(|$n~-4=%|#{E&h0w>LWkLC%`GA!^;uu;Va|HXJX zKjTYkhpb6|{V@_)KeW~vmM93eN=OU|FZrTa2gk&XN-kt9i&d`v_Q1G&+~0uTo92PX zW+G@yeEBuPLl1ZYF^<~AH7)7tJ!8*x4!9uVa>M9$o!s;;_2PCjRYNkvvo*qTrHUWp z-$T47zE_FHYAUzc%P)QxOpH`I7PSWsD~s}g>mi<+dZruu;x443WSbDor&dI^8c4xr z=@dq&bQM71`O#wFcmIXa&&NB!9BFl45^YRPIO&EF4aMJwL8|EDDSNPZ1w(w-l_-F_WtGIJE#qX1VO(bT;vYH|C zH*S|jPon;*pzv8Fj3^XN55MMXv&UIAN5As^RlP!rsMBBPPZ$BT7RB+Whq?5?y>jA#Z)@aL$ORm&mS8Ju>9+ja`i5bCkwkDf}0gD=4 z4w;0Jlh{rOJ6GU=?`OY)d;>JLBw@p9qQnJBZ$8)bYK_ zQ;!Jwx!*PO^$U$6%>X{AAk2@M(?pNky&z}7pV!l*K2IQLE#IKmzZCt~sbN;se^jO| zlYg(P_6OGHuiX{P({&)$0sg3V!2m-$KftGD|0mk}XW2WBTDlRa-O2`@>-|OHx#P#xiqh zBe@4Y7+UlHdkyYHw zjx69IR~K8uj4sU|ws4NGaPInVa{`t#EB=D)^s%3vuZcaak^Hu9_pORuy@6iT{p%{z zV;2>VQHXaeAVGg4r>WtqqT}NmzSMoL``7Ef?j~;Cvo|c6{Thq0a3_Ut!*bK6-!jG^ z4}HsU)7jU z`x13)W}OA*ev@oMv1_>3OTN>h=t8oT2YMWvOSnT_zjniT_pN=b;AHxCw&ov_t+K|7 zmPeyS^<3h1`PCWo0A$XC@`lR+hkGw4;0h&4PrjdO{?rkQ8HSi4D_rT`e0 zFE{Rs0xpX$cm zim~G#{=us-_&o&4kk?z!2QX_W55&_KZY+9`iT7MnoK_ZCbF*HI_4lvu?Notnx+{c_ zYkxRTJ*0-rb3wa9XB=TH1GU8i-{-b_s)WnCqywtszY9!a<*U0lh5<_OyXye&5kbQ6 z*{<|{#5~lCeD@%+9+kZrW#;?hFPn;@A7WWiY?lj4JHw|4tXIV+<)m#$C{l}JCoRb| zL!^vgAZ76Zf>79}I=%NYU@W7~-tU6Rj@}nZFoWK;T0#UpC@k9l2A=-q@awdnS%ezQ ztR!*-!|8jjPIkoTtJm7c0*}W4Z7+}h^^NoAC4F0IZs=!VXwM;n!9kUs>i;d=QZy+_ zyDqC+b)B4@s`f%}GJLgB!fbIJ7sU@->zRg(uLM6X@>-npU!(Oy1oC%tcu@EY(`rr> z0|1fun7vD@e7H%aLtWHq4?PAsYbYOxtBboZeesjZctus@^b8L%aTj+nQfDPY19{C* zr6-avP#K{ouc)ZAHd!P|V>H|Ch=F=Kqyc!UB)iMAK`B@e9yX*wM$cl;gD;0~@hR6a zJa{umj4#NN@cQ!A=aYZuucXxtXBHzs!bt3O*G47p&S;KJYgjencA1uRd|gxBeev8ZNg1x2Y8xVr75$Hw`7wumZw^`&21T95y%X!vh0{Zt zrKM}ke07tU!TMv1%0WU}$<2qQ^P_5_;Co2e-(2g@oifh9K|uP6X@Et|T0;qZsU08r zn^hrEr(T!~y3miBqJWjxLPxJ+VO2u}RVcg)?K|ZBu+oK5wFrA7t0Oh@_ryF4c#yDM zswM(+FZ22}oOhfg8g_6cOlOZG*IDXw7{HQ(h9a5W7MAsE+8k7oX0WxBp^VYfG?2@| zR&4bg>F&w5*1;5oTIFxs_qa=ut+ZD*N%iu_zw5#zFy~UPWUXZ0VV-4GcPR~=uTpQ^ zQ@34O%ILOZNm3S=B#J*eh&ds4eP}rE6gIXQRx@?xscpZwIGCYd91*=IEhI(HpXZ1l zAWg|OZQtK4q~@xJNw}oGf51uM(#IO@yMVbev}z$5PQu&n4Gs+}#CAv_`pX@Bbd+M? z{?e02X*jAmY)NDq&gH&5)O!j?w2OrM1YagZ4MFstQ*KY=jctbU$@SjD0~r6liO@*o z5q|XK9z;SGEMf^eZXGM|4h$B?A{<^U{|x6qasyU1LpamSBfdqVxcnE<+Y0H*K_es1 z@w%3NRp!zpn^I`V>)eH;eW=}p6y_ds${Zvb{s;aDDF~FM(B5pkd}T}B|4lhJ>-ck< z54jVsYYkrPXA!?Ba`Y;*b|i4`_sZiUcW$1eO9df1Ys8(mmTva#VY4Jdzc*z0pf&=N9ZJ#gr=6JqsbA&~F8QxZSSl z<+i|uc$F3^wH0|7tkLmGe7z4C44nEGPs!H@JtAjrHT-{+CBWzwdKdxM%XX)y>075Z z(xCFNQFZL$rlVm?)RH-WFxo#DYRs-z-e%o-v)pr;@Wdbxi=-+WdEze z+FfpTB7z|h_uJ4!;me$ugqJhXAm*Z?e{g8D6XZQ{CwHX8LhOk^FRD9&Po-==+we#t zt9uj^5&Ly%Qca>3lMsqU7HX%udLa66xvSBY&{Xzoa%*C{^-Wd{fyCuW?PYU4cGSB1 zY?ATp+q#8`2-gD)*`U;W{`C@ZX~%)s>D&KiG2X^iVoa`aS8GwN*pnEVo+c4zl=wUER{{!TrV%Scq{{ogEr-nU7}D#?4z zDf?YKUKl1+2Hf((0AsWK)Uud?0NPMa7XH;8GHqGr02|Kl$z>LiIr8ASs3F)~FF9%? zu9-h37Slf-KH?%r6Gz0)OVS@XNd9nuoLstnWg382G|QK8m{P+q%8>c3@rXg;@!(03 z+7{+;i}Wyi1H6~bVR!`Tn>{`G%i-!jl19a3to&dnifcleww>D_0Nh%a{?ur-inp$m zhjz|9J{()7_O^Y!eap4?ydsx_Zvq}g;r?!xCPkjg$*Y*{iDd=MEuvpHe5AJ4`<9X? z-=SuV`9nW1N^%S9+zc}C>(YE3qCJO zMRlEnMF$X+G`5qsnzn~-=lCqgA~hjW4tGTjXVfOFbC7`xhWN+a0}38PI#74-{c9@3 zm|Q~75X2{T==QPPX#VL&em+|gxBuk5KPvr)uuo1eq~K1`P~T%(+V^}^g?CmblZdk? zux$Ps3PspJ53>8e?XMa12b9Ny3`=RE3=m|Kc5`B%iwxVAz-T!PO38TW-%z(`4ad zq4A+^KG(KYz;=DfGaWm*7rAL1@SF^hk&wgwqNAh&kixyD_3EDxdhfnA|Cr~q@hmkP zx088#bSc;W>@uI*H42fqu9ZtRSn^p|QezGAc{{!}f-S0}MygnDtTP|?ZpUn0ePdkc zT(~$Vgo1BCLHwT_t>Khyf$tUpqrc_b3w2?uR1fs&q#65*qGpTOP4I1>nIs#L(W})5SziBrI_LA$nwx|Ti95KaNX4fW(dsadV}0Uqniyv{dk`Z$pG-us+c^1CgBeA3UR zp^8>i*RzEEw;SzAo44z&7U%0sn&1?d)7u0Opx__sJ;b>ZEY8I86i=(YF0az>83hQu zHR-i{d~*7JIrNyVFqyt#7rYR?Rx8>DA#mP@+Xf3mMeEClehGRd2_=`bQ~TW>VzA zeTBw=1|{P|;cM{ta>F$=a96T^wb=VCn?Q+8c~70Ip#<5Oo~lMq9jm?yN=t7A;|Gm= z9w+3BTaKVT{f}4U-Zm$P)bw>Lu*5WdPVD|(Jn%x#x_P$sOD*%MCW_{*GLN=_#bMx8 z6b2N4M+%1<>Z|z_Gegg!?QR3u!PVew(UUv9F+3P5C|}5LV;!pqwOU;=P|1`pI$Xyr zzoYcIJ?3a?a904eTI_Z>mVR~8DXJ=)G&5es;X36g63mI1P3Z@qa6n^#u>3y50Cr`G zaa!u3Jm^=0ZHKf8seDruKnrfS5%Pqac&Txue)j46IX_zaT@T`Hu%fkngt?!ri}M{^ zUfCc^d&+*<86@tw9+H>oi>}r&Ib* zVkoyr>w`Go%mO&pG#`FDH-)GdGqE0y5#A=Rt@`Ds_81!9%T-w$e* z|3dM@;4Rm%(Jf@gIbYI&q&oC{>-qM)6g}5(`;uO^(wP6Vrg}f4@$Ur8cu()I(^MrJ z2HsPIsyUWTdCPO`&c8NhDG4(x?Pj{LP4SV8 z9~KymY9!x5f-#`8k!%pFOWmQ($1?c$?f=FPN%L8}3-fo1$}pdzarrx|zTES#GVb*p z9zA9SI1@$=S_cd52?i77R%Z7!x2ns)G`$1scAylGHfpzN>-RzF+FO`IVmi!;Z0Azk z$({P@4?9&1)fIF9sLSY_(M5Qnz!BiSMOTGyXn|AlP)7C8yH9-W*4LU#O0(+SmF=-1 zzXafE>;vVx<*tjD7>k-o?H0MlD9rUVTRwbAduO``D%~a(T5USDRJz9rNrxTh=+p zz_lKymJX)O21#F%A%5Z^NbaO~>6%%l6%OeWHCD7woblN8HseaKwe)-YHQE)nzISia zo@0AvueYpTHO+I=F!A>lY(qg0`Lu)6g#LP<;2Awvr_s`(iu4!Z;bQ-aPxMM~U*Dm+ zbJ|+yjdN8_lI#87oqqzUA28STe!X7L=ksxTlGVXePuo34?mYiJ-9@VO za-ZUs7?we|q8pvtgI0ZHx13JyWQ)Bo{@d7_eD)us&ggBV@hg0SeB4%I*CC+iYHv#J zD8Yg4^kBC&iWTfQOkQN-vi%Wu7Y6%U60e6_2hp;Ei?Hn{Uq!T9wY>0;42ky#OX4hv za__gFF?+HnoJGWJ*q>PY+gl3frcaJ5eUsZM%*1aeRwx5$mz7P39;_{_V!u|EfzUM|&ODC%HfO@n zG->;;Vf@xJl|b>gLxE`0E}H$h+kq=bPn1#COUBOcq!ifr7fgojO(uVjKUg-E562ZK zmc}ixWR&NF+1`HO5xh#IDL&v?GsdOfcbW4ERS?S>GG^-|`T}hN5jPb(j`rNl6DTN_ zN=~#j^|H*LjpSK0G}d-nu;zhfLuDOTT!^ey(5_1GD5Hx8E4wFZPKw3~(=u+AmA>&C zYdB2gi_Z_de~c)>wEZ%NuvB>_n3iRhN(hkY80ZciTZSOwhKAwt(Ad5{U>rReq}jGY&?Dh~h*3YHoHOPxx2LGSobx;~RHzJw?%Xa2-^k3b+P}zw9*ydrl3@YxrXiW_JxfsZyoRJ33V%-_nF zC-C2hYbx1F)OZd#9yx_D-SoDI`aZkAa`6CI-Qx*m+L}B5@jY8TyxTFo=vK(Ve)|gW z2ZMS)@RntE03?6$WkE~bW8rU!d(XnN<95rXKB<3+YYumYWKZ z4SU^}+exhP$cqvdk9+U6*dwOf;s-h#R&#?!z9=g}w{~}LD3-d}_N2O`%8&?h#6??o zp9355F_~2&L_{WNnH`9wY>ju`hyBtz*U=RDlxHYPyN%5%5)3*YgEABm9CUG0NbR<+ zrVm*s{|>#4A1!8z*d#nfJhNB4>~(H^cSq3VNm#?Nk5Q&8*UIF<3!T{>d7^xXJ<>Bt zJ@Eq>N-U!}Bel;;42ob!`Lua!7@jM9_QD5s4kEu4ehUEE+dL4WI=yvEKJ z+2_uC7s}cH!E>z^>^FlKXM+~mvSS?C+JvCFgczXkakt<4h#x@2r37nwNC$8t5une) zKOeHz!pi=N$9|pUP5uwR@jh|%Wr?@Dpupd-{C$_CUu}6C#eNsV@PQ7yf#puDi0iedYK#{rBM7&TP{> zNwXG3SLhv3qhyq%$k=F1rHd8)26QjK7|Uoi%GA14zT<~3Hzi-%gvf75K*0{+12-?X zVJ`Ux09SJrVur14wjwVsMF_`r6{F(McuqOH%vgHPG5JzUT4p~ z!6iWP2tU2-uI`K+n*?ZG9=RjMFFq`MG4ER)Q1z1e7b_=axF?u07McbfT_;tmM?|J+ zT2yn33R6mTEV1YiKn?u<=ovYkRErKf?A%*FV<#6o&ibEW^>EPaL1=kJzoV(~hV>_? zfBoBe=W4-(^_8Xa@^F>HFg5to?R7C3=P?6DWp-FKhgPl*V1E(F4jFC|-MY`8+ZOak zS6crX*b>2&I=u$fzgKn;w3)rz9r=f>#xzInk+vj;uV$6%9>r>yX31jHq!n=*T8k4? z_7HENaBD<}w!Z8PS#HQ*dD*|0GKXJt$i+l|pT~4vglq4OR-y$joVnF*y|g6_u}4?3 zXW#jP#?P6K6r@_!4afj@Y&0ygRQ>7gXu{RcvN0Ks)GmR%qVDipK;(Wm`e3+!kL}VKSb%Vd#3))W}(onZm8_L z$GzKU=l;|R_8tU#Pi=?jVFBc0r?EQA!wylvVqpg!$euxww^SPgW+=SY5B6j_X zC1g*LO`1*ci@4!(o&HhW0rA@Hp4^_vGfNN~|DG6!_j9G`KGWHOnq|LoXWrpcmUe)i zRo%%)mTcMkt+~1d&f1s5pTu~CtB_LUc_Fr1B$G?at8>{ynepD754PY4r1IUV;&5mh zO0fPRJ2*t`kq*RDuV}CiArzyFCoM23QL1a-c8`^Kh`D=t4y|^(NnSp;^|t)<6Fq^- z+&d+Y>VIvC@%vOaqUKf)>=>!YcqFoYy1c8qO#LaXfoW(t?a2;a4ez_&?pt}NcJ1|^ z!PEHGhDDvd3y%)?1{W<8-_x6TC-S!x9Jr>$&v4ckxc{1K;1+6-Zr$xmCfTi?M*2|9 zu5_&+5a~Aosh0M9qUWQi@a#2P`!=*b8^_foH}Umf6k_;uTFA}Q0O@TlHH7ZqP*Z+E z(=oGdUJ6{|$(1tZJZqtF3NLjgtjXHfzbEk@L*1Vd-)QgvBI1L zxloB8D%+|5&OTF`h;0hFH3Ec~+p^J@c{qQFSKJhMs!JmaO^jiy?_ciIy9cv$(dbIP zOo{HP=7-Kz4auE<9bUPX#u@UHcsWoXi5f{5|6-N;5wdpQXQC^+9l%YhwKUEe5KN`j zHCkbrE;E=k5i7wpmofe_r?jOH>39?HFrrgrvjNNQ@v zJ5I;b%0{zFOr~a*wYAF^r31XYZlcdDjBjksOK)! zS!1g0IuIv-1WE!IQeaDs+eAc_@a>)F7Yn<%dw%;Do_vHc8R=g_Q(Gry+|6aAd&{(s zgJ)!CkCD|wWz6j1U~6Aqe(r?N@rp+52Aev4?D_6FnO{u_867nYgE)rn7{9%+LL|bj zU5tM;JG7(puc{^762;0}<<9?j2mbHF00}r%F#H$Kba7s!>+6scF_%I&UIS{gVd9L) zccN{(u{E~6#rbRUY{1aasHUCoz{A;ZE8CebMe&5nYL@>nSq%?jf-Ql|*OG_6$!5q^ z+QwLZy%EP|r0H&IBW`r$G`@3ehJiv`cZOr9OY3yBHZP_<6P1?ddHL#y5wUM#{Rt`WcE^u-OxnUuA+0Aj1lq z3j3yYKTxMIoLVVbAA;GdrS?#nTTyByeXh1+?y?GRw?vieh(7i-4Z&@UG>S$s1iH=+ z?O6^t^2s-njYi6PD8#ArzU^b<>T6LZ0dBgyn{Y(IbwwYk%BiU?ha5S;<^z7d`rru< zOjm}nUmHaR9zP*|T-2rD-WWi%wUG?!9zCmQQ-&dCDo1X5zdu__Da-%@@rBpB)~Zya zA-<5yN?kzdsku55QcvTzV+P(nz#(IUtg(K=ZK9G zgfvwoH}}WNGVVRpUHtQ**{NgvR0X~SWJ02y5*f_$|Dlwpm})TWSA-aI86R(#yB(No z|9QRXB6)nS&85o|cDsvyDijuYaXzTwU@mLAe@%|73OPa7vmV=<*d*Rry=QR?$$n9g&= z!RnE*X!y$NYeVTOK@F-hBDb7fVv_vQ$0@P)=Um{}&3#AlG9%fMH3b5)$GcgB%ILEk zVC{LJNQRLVa76mtQ~B!XxQMi&qC*V>udUp(o?PCTH_HmNW+lUtx(Db7C6Wi#4N=pz zE1}XT^&DD4Sxfl|;8HZ9w|}V48wawm^?p)TNKk8pk{y^DJ22o6bM(B8akOlAGzxgV zfYTea^7OY_Uul1JK;jx@<(6%a1YLBV-9O{&XhU^T^)ej`9)kPyJ28(BIHr-5v<#+r zzaeXNn$+XK&EJY-{e=LzuU-n(3(vYVy{;??3+vb3AW;XJ@sUrdPX+^SCY0Y2PD;bC zyxR!c=5-Bqva<3ndbda@2zys<@VbzoH`zkm<`M{HK4J65y#Ev49V2*&s`;rs6Uw!% zcOa!Wo7$RXjaA-)czNqKL`~d-cX{>e2=kh2?22tpzW~5kZ@E zrkiy1Q9KObz-sn|yOFuE^+dNj|Z^Q$MIjMiVG)uVu#wGyNpt7g6h* zAN+M8({76i!eW9vnDkp4tIy|8jxt}~va4&^_0{S4R)a+|xB}zl*{=T#d!h(Q%T10v zw&vJ)6aQWQAr{N1m8*DZ3iznI=va02Idw|9qPLc|WCLxj=03dfI|$9uT;GAIw~!9M zH|s+z<+AXGI+GctZ_@m~!KHq-klG#`B7y~tr^lSi0O3h~o9ult7evZ3Gk`A|gwO%I zBuD;O9|pDUvG2%$`>Z^parJn4pmqrEM%@URBiF`_H)SYk`F5>=d&tp!6Ta_E zJwOO`W15V-vi?WdN*LwP1k`2gxMQWmL{-E`LQ?IgUVk}}e30q>Sp}BRTDk8h=q}Qg z==>h09mI4BDVth{{o!HOVKRPhO|}6+s|LZ|JW1L4O_C%)iv{EVq*ADY^a2 zNL3cP+jo0oY`Zh;hX;jKIsp)l146YbCk{$Wn__-SgvtviJOlj(Bll2Tjay3^a;Jt0C^mJM%q0v`5*0VCaj3W!)d|1|!q11O& z_^Ls(0uIQ`av0|@@~9TNHEnZ8%gBBe^Mp9(vRO1W7En5$xBP4}Dob|o4M9eAy1h^9 z7>Zz@G#>~ll(#ozoa?q{rTINz9MPt_+QvHq@$QyHZe-!pAyeuC#VC)NDQ*d-Re0v6 zVxvKo&hhe>y6A0ArFY$&F;y3_5tUxg3>OopJT6eMN&lE_QtYO`fc&z;sx5pIq8a_P zZn5^KHA;nQf0*R9lCr_OilmX4mddm|T3Lgy|K4j;FoLSz4wxLp+3?Z!wn#qqM|FR& zHWI#?K4HHU&=)(cN@k>=1PVnOd<}hBgQFnR=ZXg;Zlr#?Qu8X69KKU7a|WZrRQEhb z*^}#$|JbE72dueqnsGxpP!frr^Xhv1Yf55!dQe{X(%_NgHRRy=8oV2+C3_{3nuJH% zBf*C0-I_6t8~Q)Wf#}y0OT(Y>rP_z{);!Xm$P=CLdGF(TLSALzBw0o#hY*FfNuy)1aqS5BC{Hlds%{8GYPobW*=4YC; zEc8b28Y!@dQH=*;nV7-*&fU0^@;YNBdpgQ*C%@-guBgz2-W(k;2CW? zG@o=u>jS036C!P)=NSVImN#Z(D|wkXZ)u~M`9VcchcR108ybx+%$B0My9@Vszy6*yX$71SLIYT3=a6sJnW$8g(YX(H; z#8=iXeXZqg=XAfSa7 zXy1~DW(cn7{mn-mn+6bX`ajVGwm#A7fR3YE3@wx@CGsK)a!~KIwtj>@BEYo6H|Z+6 zyqQnz)uBgln=UuR9);I%)+?AWjU-lsTJPm?H{bX*J-F_&aUMF-v|<0+tp#MYboJep zuv(}HWk|Kws>ZhJEm7YdG!2vmVA4=A(aQG#vkm{qH%%o0N3FE4n^ytoocHFuQ3 ze-7zVL`Ukz(hI4Tdv1S)rHI5G|6yyL3%tajzFBW8ut&`-x;V(tL^8G|QH?QcE?k z!aWY6nfoK$ac$jWx4q+*;)b68ejSs$>4pNTB(^J9(M^_A+<6Ugk)1io?Ge}Kbp{3# z;tpoESW&#qK}l;|&yT7bqtA%>yLI1Mjd=TR9R8tuqB3Xqyfvroz$}67+hhS=sL8R4 zs(9=Y^!Py{y&K#uhUpi^u(*bj~4#1q5ZEBxShC9G+nh5se(7` z%YHlLgb64qDyH0_NPR^5gGGEr{OcH97?`x*r#G$nLH&MY!ics%=~!%$dY2XM=X`jT zeW?ySHAMjNr*f3l(Y(AOX2ZN!1(H>I5ld^Y7cZTe>SX>cmt>dBjQ9ZgqD1|zZlg^I zK#AamejM)aB2&}eY-1Q$TXyh?>Gr+SA#?Di$ym1y|FQDQ#qT9p%?cbgfcGJ&=)S8@ zEXbXS7Sic$y&T5B-Nz-oE|pZpfAA{serFc;+6Y1u1ydM#5IstdXwlP92?LL{XgNrg z1&a*|_9ZwWWeHu#2q>CXdg3u;nvl;)e@wiHd}ZPRUmz=I&YJ@=W9aA2TG+jN5pMG4 zA1l+6Pi&t(HtHJKavbOUDg@r9as~2payY;{<;i5Bs z!6UL~zk=wDZ?mokgE!Yns{No(vukjR0n}EuRg_qy`$(gU(d*W_G|bxd^N(D8{6I)_cNo2a8+sX z`amZc>uM2PZ!So&D=?Hy5J22{lp|m?J<|A+JyctYb9+S1{^58u%F_TZBa2?1==gHJ zLoP{>G7NbjOKE1KsWm;UduTdDXHvS_-A@fwa2S$00%zElt^J04D`w;d$ob5-Wn{ba zv$KWIPU7W>ojj-(u$Ey&4fP;+FMiUsec_8N+OL0saX%k;r;?W?poaTbMDu zgemaWmxn(SxgeG%zf{5h{m0HE+!kqtSv4PVTACynPeto_<}H`Vj0{dzyqSf}fs-{` z9Ywy5@WF~N(-*JJ9<9D5*nODSSB7=PbTCsJ!P<>_S~Z_~$=|gi&B0qYAKh=-ZFs2R z^GzxYGooVbrPKBDi!{<>xgog-uj#i_v2VpKp?b|O=~Y(bPl`d8V3GIFWKm=TX~_2C zazm7|>0HLh(qZDtlh5(O-qPbsFo|y7h;!54kHua4|IHOOu%TElo=M7Y6t!{B_1?n^ zDe{vbT4bwTv-MXcPDC0CGd~eW@?8yz1XbA8d2BrS6{Qt3>$AZlZ4Le{ZJ21-vKky? z$v?MLYrbWnqK;8%5cC7&GMmrSeKxpGZ#>X@J~E!wcr{66bvrC{KV0}~rCqEIJ+HDE zA#(ViE{ye>9azC_xS5i7L;J$)vxH|T%8$$FT?&t5q&#do6iCkApYuo4i|0+C98prC*uSR8Ll<}|oEYgYcE{-v&aBQ;z>jBq^uc;u>-nZ=Bt3NuQyuPA**7AU3e@C<4C=HTno9RwjF0?;c zcEgjoo++uQ$uRV=*sZEb0b@jh$zED}S^AgUT4wU!SN6t2PZT}yhou)$Ny8Bb;9So0 zn0QcNs@zCbRhor;w)`4}Z{y;iU{I!ZxN1{>-?BgAlEi|=i`2Iy|;W1k$hlL_y3Scry>sKFo z_gHD-)_mB4J16dU*!%U3qIqdCCp+AvI5<|#GAecWy27sYA2d^1cSFO2d%VHrPWg@E z*nru{(eE>I?QX-2#j`?Vp{eJb^%l?uGDqx@-&{2?aZ6UU0BFx%2Go0upKZ{-z={${&S3`@EVk{V zu4Y@odlS6k$5v?qr-7yP=dl?6QQ%^5K~Rxv$7PS#6tn zrQtj!@5^4WuYdkt?z1)Ygot!V9fR0!!5oK$+84sILR|A=nO|8)49)HLsrw45q%L}VP?1uise$u@GnpaIQ2GJ?56 zL;r=~PH;twS63uL?I!V>-=N-BtaEXF4V_IBNannJVvSv3Z%xI?;?GeXVvr#6D+bg! zgI1p29YXaP0*rp&2wNNL03jjE*HV(Yqz=6U=DLI6%>zp#hNGrZq% zwRiNmo=#m58ioiikHS9lc54~-r&S~zWH~-=GClgDwrIX-^}_xCa)&?cOA$M4J-X9d z&ij|ayGVcW&bYB{!Nf;=`FQ7@NXh5l4xN1(h`Zgwd?7ZC-F;piGu2z)KO)7{c|EN4y{fBp;Hd`|wH8;P-&(2PR$XmC2ca z;f^Z(&O0A^<-fasHfhEVecKx!G+372Jv~$4M6(oRmVQJu(N|Q0Yag3J!z|6bZG9dB zi8wA{$jzbtFwrg=ND$dVYim!>MnVdYKk#u&hMbVcP37K>M1UVT$e?{9BQP}!^GcPx zdo3J;p&7wH__3w|J$f?#gtw-{q_Q^W$k_2n?LhCwxsSDL7#hIy6hh6rbAJdSVAjHT zHdfreVldL3;fgiWg1t;jmh&Zf6eqb3*-R{gff#o6Uxk!Vq+%hm-i`(kqk=BKX6 z2hvRoZcW?YQ3KI>($kdvf&M(eXU1LUd}(u>o>@oJkNHcpo0spcS&1)xm(UsUIg-bF zuZ%ya6xzdga;nQvVm))5(mW4#37IyEH~Ua~`Y5b@vPUhgmM(i{NpMOdD~ryoe@gRn z@2yZhnwlULsY(d&_B~GF7-*NDhP*RGd}?!?4f57El}!jL;OpygMQ%xV(}uU6HN=RF ztkV5?%ctUW;Jq)(mVW+4!1j(f|D~*yK^U&Li*aO;un)iY!ZBQfro5}SGFQlOuD!o3 zpr%|Z2l|t*FGe&|LfOsSXal52C{RqTF2$S5<-$K_JPDqu5m<~dPIb_9X1I8H=Po3* z_k-K6ive-xO}8x(FSF4{5jV!-8FhFF*)Mv;q2%?p%TEO>+16lN)wIlQSuZKP!n~xm*~x2xu;>-rT{sryYd*k5>5Nk=cJ< zh`1v+W5J;{nPEk>xX07IUfy5(_S1IP>t9N>^gn0iUs(YvPf|Bbe_}MPykb@*2nqW= z?-G-&J8{#aU2C%FcL*#8%`@jqr9zRZj1LqGV#fwO5#=#Cw( zp}nySTE(<}Qqw}JFdc{!ICPu<@xSfO7$~}JI_=Mrsz?~QT2-Myx<18mC{i7?OadaH z6S>~j$D*Pn=W=Ln0GX)X=x@aswBEWdYx{@%aC53&g=7-7xjx9fDDXDs*0}A+4GB9J zcB55w7o!eM>Vqt^=kky}s#62acK~CYDfiPJmZ{%-=an=YPm6{Dzk#p3ML*0!XDwXN zh6V!dG(De6la?mdc=fa>*6I8Sx?jOUgfgGptg2{vrMm$_(BDN0-fSu_R6nm6pJg%_ zE@p)A0y&>h-&BN#Wr=Hwyn`4Jcd8-i%NH5k2+*@d?HfXH2LjE3;NBKqGg!}U=*NBm z@MG1Uf;h=l#jJEy?38P12XchQl;-nXU;m4cuRAJ308y7EkSf4ktlz-!FwIyBFVrf! z{+m!&vwp{;c6rTW1?8%#0g19G8~QsK&TLCF=%DJB2;-56@E?s9CA zJg`m23wtz|dx;UV-2+|$FX=}3dl;vk2v#WZ^Okmp4>Vet1CuUks;mu~GzdnSF|jph zIYOnB{t#tSwl#~&U7SAj+#&T6v^-(r)tx_M?7IGLh9^RDha_GEDHq*#=Mt#`R=<)cLSlK#@!;K;%E-C*i^ z1y1tcU$0xIwW^<>H;$SL)c`H^?KSHj^J8^Jfl9+`FB7p|P->`SKwp_ugMst&Y75vg zeVqJJ#fr6xXX&#wrrX86ufJ%TI5*aRiX`WR$vhBD7(w{VLV>6kgYp`vw)a$^RmV{* zi@Yh(=6S}i4-S)k?-j=yYlfFr2s$Yb@K>BOhax}~CEqze;ZSa&Sln=7XoEfj`-7yN z5`^Ok$}wa4!seNu#LCFs&R+%15O~#DN4y+&Y9Vk5v-v3`h!)^SS{#Q!1ZnBEm#zFtsrDvYbKUB7vcmUlYm~V?o-GvVnLNwYSKk0Z!I%964f4lT zs{ND1S1iUp>*iH^v}zboeZj$Rq{mtV6$-XO_J1VK7;!1DJ$>XclEeDDa>|=y zR^{|w7BA3T8r|+3tM+vn^BKAfU{k0bA7HbelufJL&!E{uryKU$#L7XWw)5G4u1vwmE1aGu08J9qrpi&+hh@? zE?3d{^cd8?>UsYec^NsZtD()Fw7_)t!uZkY)WlOE2Ew!a7jX^eRScc<#!|Mlj|UD~ z4i%dMwRIf3;yO5;fwG69|*s}O?TeXzh zbZrh_?Qu!$=#-CLTM1Z7a6hxC`88zLk6{>}bR!7llLBLp?jy{zq3^9KpE zNI9K9D#YQTgVNwj=*zz6@dq9xn96pjJt_$Z{L8yv#T_h1+0p@c!%JGSVkUG&+Wty$ z`p+@S7T3}8%?9SX`ohi<<^nEO#~)(8-NlQrnp1fmy@#4@P&&yE(N`LiAwIJp zMo56u<^q-H29Lwn>WYGoPCYxeR#xFcpuxZyF=_sTh6H+c3*XF2 zjITK>p}oXeTi6@WL5g9M<>RaI2B`YCCCgesl-F_v_3*C5Da%%Y{fqv`K&s$X=29hc zpW^rC0t3$x&`9Rm-0c`(wO@UiUsFUR0u$fY%hXUm_$j`PrSAS!}k&dL*_Up&)e_u69PO-MDtU!uOkcSBFY%PJC zwtB&!6fs_;xSTuoT%&_X_-ovG%FXuvSOPCr+(Ze2B(0@dGxuK(=vHK1-d|*;YR%>$ zpo_nJijudwSWI+=)uf2AG^@$vY&`Cis^ zz&Z7F%sFW#0c30H=RX(AKlAEF?};wXRR;d;t#al@MxV@h`Y*+UfggLYRcqa6Qj?5ih zZ`6&k>x{fLn3LLtFoQIFnDu{G94A-a>O6Vo1EwkA; z2joA1oXzj%9(rzR?SI$QWg$_lx@;aeXk=2inwHU*X)VkdZ1fZR>{hwGV#K#-;Vf zpCiu<)`eA64w;2T%e!KK8pVWJs$nL@&760cO_Slv7BMQMPnMIvg2;?fB|!JXbYe>4 z&sR#LSZ2V>k4Cat?UpW#(||Y~k>PH&(XXO2PUO^I3fCA&>XsC$;9TOYMi{FP>j!h5 zSO&%k+@K$)oW}EDGntF|)P0sVL;bmhC&mg3#ZV7NaxUO%todaurD6gj+t;xl*wVvK zuPS&<*|mcPB^L=Uv|sX)($rG|NNjhF^QGmWT@H-XMu@hMkuyM<0i6U3{(HXxQqcUa z?_DCjH#}Z1xuuD20mlB6h)l5>Ie7{(t&=-{SUDihs&)Cy`0WHtV8%@VDGJXjdoBF{7F5wdyT1A}QYOpO#T$UI7nnn;KLV z7$*(JN~8~coyv*UvGLPYL}{|;>-VKPxyt)(j_=a$uUK2wE#--s%7M8!5Jt+@$^GFE zQ`qBz=J;ThhoS@(d$rusrh%OkVs5KH=E_p;)*m}4S2~zQ`4uo$a}zGg@f*#OR{h>= zPhDQn((--zux!JU`(yQL+rT$EiFy0u!HsxjVjfeKf?+e5OU_u@GOu=-mtdWdd1^nE;4B$=RUzEW5JQ zPfc?v-63Mhl^f>%RSStLwI{ID);6svN;FeU?!o3!4NyQ#a|!0{BTLeauFXv z3$6~-!LO@-ae%+} zz{-`@yl%qE0$MXRxvpN(b5<*G(YH()ltUov_uJsH+wezov>r->*+s5=x;*ucLa8 z9ffj7m9U3Qp%#O~9El6YJg57t-L;m@_Um>CsmC>xK#fwV&En*#_P zMd!cpFe&b!BE3$ex%zr=#AAy86e|@t@~Hm1^fBZ$lAu3VSi?d0X`Hg*R*TeNvJ>vE zek#w}q#Jfha{}`a>2FXa$b!x0L`@Xe`YqtYAz&tlCKt3KnOeX^`+Gk%TFPS5A;i|~ z7+XK=GU#BcJ!B=b@cs~u22ttZ?za;)2$1%5^t-xO*v(EjO)_}pz|B6>GV9FIA#n-m z2DuT;oI(fin8qq&y)nXST>)1({FfAEHAN^YPAO)*qZ9vyqnfqat#Y+`*uHY>_M0EO zARI_-wt>4<)fPD)g)F%5;PbQ3u;_uqp62EkAkt1tnShjZz#-F-W|(Cvbt1g`sT%($ z-T`YLR~a8c@z_Xg%ZZFXOgd}hnHB;T+De8~sm(BejpkGM^u)J?H*>kQXKG6lsFVog zW_UC^Yn7lT5$U)k+4fKF@wrIsv7Tn4W+Cb!NZD&LL~G!qu=@)_%h!tZyS7bL{yN&r z(bcwDRs$HvX{lFU=*4ezruF7AZr>rgw%pX-3|@!>njn5H2*uifAV2(#KBDD3-RMX_ z^TNhU(eHja2|xr+_h_A)AA28{-f<@bDeX5>THo#8hm;`T&5++KIDS{;-Z|V*0wA_n z2-holO`la6zf_s4XZ&V6Y_EG%Kit@JkEW5z2|pAxMhzIcZMr$tO+qEXe2$fQ$G+H~ z>LEP-bT!s+lxt4t9ljHiC84TW@+J6+2)u2+b5VW@`{l7!yGKH#NszC-Pj&Uh2OYTK z%Xtin53erXw0rm$?FP0BMl02U0{XG*%yPsTWqKBB@B`mO#pnC7?U+tgv%gO;qZ3;{ z#tc&roRq%+3U)NJnu#N;j{cHB@E-}I4x~<%oLhM$8^#djm&mMoHtAoYVAYfifZI_; zos7?s)f~yT%8XR^X;ORpNs$BH{+^cIO5Gf(S7Zo1b>YKmfxNWSxSjSlL8apNwAfji z6kZx2zitt9jtKtaGAg3EULTJ9Ph-C$CVlkuy|PQIhG|T-F3aN}3R5v&q^|Lg>mOz{ zYn`!D)T+an`}^ZrfVbVh*HU8gusajKUv4M76=X#DEwCE?_)y@Z36Za}2U z*cl?fW!R#u=@u=;1Gy5SMmsT>V$Z546<*3Kp*Zv3Zl26f%KN#no~5dt+VEs^j$8~K z(r%S@MX%}Ns|2-2_vX(C4BdZOUcL&VTH*>MLr_K$zMTm&`pI=y1vz==L*P#=4y7(G zN(Xs)EzI`!s@hYV&&lsG+hU2Euh!8ZOKhaa0avpr3Si;binfvk*2UqzC^GTP-?JY? z(RP2xwt)ZEXh{A^y7lk1m$zwOliZ7L~O1WsL=&f8-(VO_b_icp*A+|y=`=Trj zMK9muBodQ~CYu5c;!bPvW7Q&$K_*mCygPz8ZdY=)=wSUByck{u?K*5(=-GGD=c(#_oTJGUI-G z@KhY?jx+>ms#(`(Ws%Pxl>-;H0O{GI0)QsAY+>L;Eq=VtMb9=`;-OAcG_PorM7ws; z-~ydgdh#;aAbDPGP_5?7nNqgI^mwqJjvzIiv8eVHXP}g%!`hfC5&%#`2P>v9-qP|3 z2=d6xbN#%QR~{Go`+SXmTx3$@T>2dr3^NYX+N%n28_i(*?+) zH^WS92jrV&jKyT4sQcyH%8T8wT(_7L27nDFdKnWt!qC4^!P9xfGkKIUKQv4u@~*=# zG(J?xV?{Q#ffA9i^Ea*Jm3UXeaxXs=Ej_Ij`Ln%+)A{~*YErGsffVxcIM$9;gKWoN z^qAq$aM4u^*i3xs z>G)vdCCUfE8eC0tR~eQ4O!QLoX_GXQFYpvJWUu5=St6b%fR{rUzSMjl=y9Pl!OphR zE%}0GicQr)<#Vjgy*kk~{e8aV9wg^0dUq6vJonBDF+Sr36#j{wZaga99|qa#-b-gM zcX#7s+pv_K9J34k(ei>rkGenf;#r?N+oU%Y<05Gy7+n;L@DKl}wy&be(DvrOJ)yYe ziNZ*&b%mPA#!E87E)%WlUQ%?w;iTD?=MNQaQ7bRN1HbjR@sAa+nfp(->cs@>aNOGc zM1&x&-kV=2J1ryXD%vmduYb5%=1a?hXk7&&>C`IF8R&W2Eopj?KC;R5_zUDK(;UZG z+f&b4_hI&3RX%WK`X}^B%7H#$Ah3GeUxC#sNb9M5&{Z3+cwPebTrpAbcf-9J9%_*D zTWN?K)^+P<6&vpgGxo7SlF;Nv$G)3aW~HGUf4g|c`guBeeWRZ5R={tjRCUIsd`{Wj zp9DMJ{qMB|33hfb$@&bCGUZjs{P>qw0bEH6thgKodip)hq~eDt8fVV&fllhUS6aPX zs#6Xez3j>nL&9Je#vM;}i#+tQ2gcZTDN`>29sL?G1==A>7;ad|PJ3)^|HFtq`B_%` zNrZ-bmDDqXn`3byxj|1Q_zSj5S*e4EgIAU8!9@DHl!5+Gf5)Eh@@G{lWq}+q0vLD; zD{epFIgzd_;7z}*-8JB|z%FWtZ1*6dxHmk9!YYSnye+{v!ccnFk)dphiWu}}gza=( zhB83#fRkVTzWySseEGe--@C~r^sh8TA=)3S^*5|^FR z0(p6p9#@*%r}dGAQ~8NG-DYS_d0|S{!7_yI#T4@()kwnu2 z#9^1o-`@#JtW1>c*1m-*+VF2zwbY!>FYlqC(hMG^mbkvSUMtTd zVT_rq!fTp7m^EesE?N?!eT+L*Fz7j*T`Bn#XLW7++tPvs)R*6|?WU(qq6uV7FQS{VE%jE|HIaM zg*CaiTfZs-A|+Fqg49e!VJZTO^pfaAMfy~vNeNP!aYpuQZKFCROT{+2<=ehr5jQcl4krq&2?~SQ8z8KinwqL%~)KJif zVyo0_6cqi5GY4#Yt-57fW^B|A1p2KP6!bP65R1cp+ad1ZQT9v zJ~Im=rU_Y}SLA<5U4C^P;+rk1%>QH4IaR@EK2B@K+GL-(TN@T3EMhaY#hwcx5qS*$ z!JDu5NT0%{YdQiGp{M!yyGk^3d^;mQ97S5XKl#LzK6*dV#UMbaVS{r&sH|5s-SviM zJl-fcogcGE!c7a(%&6tNZrnZp3>KI`4D`$2m-qCy-<)!eViMEzERzSi#ErmRdTCB+ zc>J)T{o0rPu#9ELyP3>!hgnTW@rp|3D~PU9DT&)yjUrl%bpI!W9JtBX&HJSJ{u%Kz z&S`(Wi6i`KhyPRHmgix@C9cJ5s{cv+n)emzWAM?>XU*D@!3))w#bv){Zto}poc6Tt zFmYLHKhi;0B>XM9IvwDCjE%<}kjg~po^*JkAE}`?8)-$GpoYXMW8OfAoz$FCr{0yw zoYp4e%MAQ&UOk=zRNv;;Y{S2Ov!PuIwKZw#=oJo0^gB@acniB!AUg|HZ8nGeTx^+0 zqYV)s-RHycYI@C(dXT|eW8tO41u&S!aC(}sAZ8S<*2zk(!$C)a5iWo3x+A>HoGgZ> zO^{*t0HrOH&_9MiFgdqq5c(s(&~M0X-Gu`>%q^qiTAx)VI$pS{SWPJoG%(^cZN>OINIpx${K^WXf8vRA zIFIRp0-s->QF~jKDjx?Es-n9TrY)kkQ<3PNMVWno48K&iEpckWhHHEZL(=Rff*GnD)A*`J!+2( zGy2t4I!ValM{*xFCj5&0Q#3GXtm)YWh00h!Q4X0|J<&)MFOf1f47DAUvJWEvX;!0G z^vAG)$2!T_m01%PXqjH1a$DS9 z$5LRWCeWYATe5jBxn)8xJ6(z8tS1(ZpD+xEsHIK)2=Cf%(jC zcelRoNxIUgmWi8&qn)An;LcF}j!(FzNqcxP%5Yo4Y>Jqz1F1igSJU18o$?Agg?_vs zxe;nF0lLxOJ$w27wVYYv%nj+Ka8Xo)K`Ha+b<1ivdY`0}Il`W5!8Ki^Mwoe0a{fL59$fJa?d#@%k(#DK?;2@f|}1t?wJcj!<{sdlubJi#sw zi@BHCb2H%-z)$<1G+-}O13lBR8;5RT;0Ne{4>2Qz?l`I%@=*4)Lmk7gL}0q2X%Tq$W? z!*}71-C=vG*3{s|wn-*rgGFCieb{aM`^Z0oEcV8*=LY!-Dxv`OJs}M9YeFN6XCboc z7upTr?>eP3f&#SaV%D!I6iDzoP<9kH$2a`Uo4O-C4l{d)^0*f+{FAeQCd4zPKH(-I z^=pN|fp_6?>@HPKqq$a^wdaO?ovQ>*3}aGF9X*T-ro_O7HlKcgD2<}QMlxK1YTj!? zG|7b}hbk$+otLaP0jV-)TMxqvB>E1X0(!DPX{L;R~NgL7jk4w z%%$ovqJI^Yv=S=b4h3i!TjLrAH)p%JOJyTu60B-uu z<5`x9c2vdTf-IYEHuXy_SuJhbA51#D4g^?Ev@6lSi<}tWu*D712Mul%-i>D((Jdp% za_UkEEnnX%#KtW|Zt1y|{*CyzOyq~(ZH-~JF|bO_uWY{;9kSKYVJfG$D@`5#>{N|U zn(HPnBRj<=Q6iYG|k&IIvb*;4Th%$Tox#YZKg`v*aR{?t?B`3caU00~>HJ85r zkSRF~RCxnq%pCvhR~D(uP>WO1zQ?8fx_ZPHy1pjlSU9IjxnCU_AzTFK6@Y3h=gm}9 z4p!}}7k467k{I#vwGoLM;S2vxD5S18z(XZerV3>G1pUn43aVQ$Te)yZHH9G=ecUL_ z;rOQYUHoewQo7qF!QT`b0-U}udPKx%Xq0;RdbeBux;fKi% z=;Vs`ZZRqpDTGS;rZ-!AHpSvwKOo|<@t@Hg2ysRD z`7(a}hIYl$H|j7j{Gy zk#R;c6ufu&`XMuT9i0siI6q(|xBR2&OZT&q$w(l{RZPa0;B1JiXv{k9YmUFHXx>Il zzsG;XPg?ddLJ`OLs!%T$il9!HrWVfDRtBU;Qt&|Lbuh`GK!E>Yr7R&9IU!1?bAzg=3zk?A*|Ke8hxxq_}cg%ir-=?)n&MO0gT{JXDL{ z){tAinahG`PyZ2(8Syi7kt0qg)t?nnw}{ERG64$YFv!)Mm9Y1b(2OsS$kqa($+ohu zF0Z}jPt}XQ4O?a%7?_c686U&5@-w?9&bt>uS{5VvsS&NwSH#LX;?rV$2k)sRkBcjn z{oH!7rjeT=3pqG+w{@&f4+s_G)K#z5$eZb3sJbc~t{UO0;7e^S0N4Y)Kcnv%`7uag z?KSeIq;Uy3Bbh0$UFAp2)fxw?KU~dKH#TQ!!aBjBNH_zoZlogHQkfX!z171v8Bjbp zfRw59B;(Gp7nFzY95#2oGT&?g@YiPy)k;UpTSRZSZtCCkMt4tP{6Vbg z%E8{0n7uzQk#!JjGTe-H2(94#zAcbC^<4j&0n5Tsb&XW%Ad`m!WbU`}a}UC{--Khy zG1#jE>8gq}Yw|%ZSbdHORr^o9*rEh{N#X;O(l%%wQ2mQ9MCzRR`RWU}x=!yP*nT=Q4o!YLa`2{V;FJJe;vy~}p+npJ#1AI`Z_WW%VNWW>8 z{p?Gwp~=S4(Z`5+{T9XY4QGCA+jXzad#kp_uL=XE%RT9C3|HAG^~|cC(b*gC#y_kZ z^tkSLqFER0OZYZ>HziF^M_0NlK*TW;nUr|y;o7a`&jluX~B z-=9+Vt#(wEbAgw>cXNzyHM**zBr6#sOA8oiBy6z3*tpF%)@3N#Vj$~-f^c>&L`k?Y zw8*prUOpUe_C_}S<5K0-vq~jZz8klTcDy@7@KLGp|Vf#Iq*UGs%m3ku>9PF^K!G z5$d_INQ}?$r4%0Ccw7+hDb|zr&2Yy%fAdTHK~bFoqmyYA`8fW{l$zY;t?RrIsPdEh z+>Y(b@fL$pI3z~+9=?WZXhRL90%tSM=*EF*m@SUxHCzAd13M=fCwe)$#C=;_6xxw4 zD7Avvm7%xGofxRkzD3iRAldb&89p6Jc_61*q-HO=rOyqi(R=NK>zB5h<5a>b4e6-E{J=F!RKt2bI;m5Ti3&-H&eR9N!DfjH7m3Y-u4$aD)3j6xNLkPF4*2}lR9qbYBS70q zeBm&D=o6OucqTbIIq(#F^iwkz-mbtKs%uP|71AF_*_>I)?B#4kf=GXT6|1Xdoucvd z#V{w^oi~Ldqd&p%$pIw$m4(jorLRfbA8pvt((y3~nsd8zs@q;+d^Hx7LU3!rIX8(|jj!Wl{)gWi}sy;dpjL(59_wB5Ga@*7K z+iIAc2O-e2aK=>BVAPj|mI&!dSyUGnikxG?8<1^DIi7O(p`XhGc~eFr9O{ap1_**m^(}=W73sJ+own=Mw}d#UO@H0n-V)mm%-wD|k(+@9&-3c- zDB- zK^$65Ya~c{B=>~V)wi4sgwWImOz=O5gDjxP!ZG?-LA zyyxR()^>Tcep_sFk=*wdprGVSYwGBgj8ZibPrIA+@EX<@E@IMM1zS&&aok43I_=9&;y^{O5xGaON1HJ^vr$Ej(qvt4Nu zFT9Ld)#K_3fo6+E&yOVEE)OHVI2VhA>*&gevw%ii6JHs4&Sa02Wo;N6%vqQ_c0WU^ z8Kf6V|GJ6YNJRx@Z#7Ta>2>V_lZ$f~KCEXt$SfT21|6subd|BI&o$X+f8mm3VEi^D zLvqvSskkWIy$X8xnS<~ zlUX9w8_L-@`wuupMIppYK!RUQnO@nTP(XfJyn8wL$nK`qonyQ!0rYYLMPe^dLz&jp zZ2i4zVUEXA6^~(f2qD+j89Q%S9BGgY+ZNlj)twzUb0I?* zLD(vFf-JlDUbX-_t_t<5wLH{#ZPV(m)LGQdHhV#s5iaAk_fs@lc$dfHm{VGfOl*hX zg@r!X8(41ZGOJvftLqi1g?$8N@uRP=Wo-~H=}GUt#@sr7;il19quu-3Etbt-$8gbC zj;+iyE1CO!37E-hKl;*Gr{ z=ff&(1@jh3i%=D&cdg2p6aR(u?!K6D)(M!f8KJ_7^@S(wgN^Cs_|6f^GRGPKJs=z{%^mv66xKA1d8F z*$GuDe~Yei!sT3`;?H27E%Cy7BBc6Ft_SY20Uls5B5iBpK8B|<#oz2Bm-F;SP#TPA z@Y&xoqG(*+Z%=WLXDuepe*v-e<1%nse!zOZddO!^5NMiPw5R`%A@!5205lp~CCoHT z{MFZ&Z#YP#nLg2%GMVW?mi&6I4_WuxhQAxo@jYtm5cL^P9AaB|YAa(lD@&NcFwK zT#dl&)9# z%C)J-EIeT~I0vWXB7y?O3#{a!ZM4Xzl5-HJJkVL|1_<5w{Q7NQ$u6(qN8I^X5|!3b38n4f{BTuvoc$eP#0f5Ot14K2CXf~Exns#w#7EfWMR zjI9cXOdl3{7xs~a5RNX%8Oys^XYnSxd^|U7GS%%OEGqPBCO4{5-2Be4aALeAz7L&` z%+SUX_5h7NEm)_2I5icTa8B%Q|Grw}7UlvoT&OR{#U!eI)vG_&O4~?I5BruqLM;2C zxBW>6P9A$<8wXc%@03&?ggUWQ+QbLtUP9tXMpvg>Bz9|h((VOMucz1S^uT2ZI*2=5t%FNW_z3ueR7^bHI= zV6tIBzPo;eUIb&u-2ja}%mJ{G?+eJ@W8EM5A;cZv?aieo;MvS2M=aQM=2SLf%UBlB z)vIpa6>4md_UWFEmlcs%38wk%`}dUy zk5@NqTCMkx=RP?LkBVwFHL-|QP`{`!tb!(8G*k|3btQ1ys3{ke{H!x0pKv=|{Yp;X zWEK6rxL@i6>Tcaijpl0g<)&qJG&xkvd-{92Gtin7vu1#v$RIZK_2l09us-}yT=`%E zm_#HvK9`7x%f+!jIeLkBXm~O~5mXDJ_~O2?970~vv6zw}2u z^k(uG@8>f)HJpM_qZ0a!Cso|L{huACX@x;b<%XRmudZasT4dYnkkrcnP`AQM8n!Hf z>58(r=X{eY;^zmdzuc4ySYmIQiS?)g;1WxweV*zEOu3v!6}xeMa?Ai>tKoC&6^B6+t~ zg)`3B5jy_b?ofczg2g8@_7NDj0Aeb}?RG==uCmN?!M}^?njY!Rm;=n9Wdr0*|=!L)7(;vU`-dIS**FKg+p!?%IZm^0nP1Q#NM_ zi%-g%R!{t9db#o4w@(#z{lyGYDHpyZt~=jpbFW_h1;9TlPK`|{~Ot7 zOF}8ju4}Ms-qYeATtI6T$kY8}eVfq*+6M{u@h4CRKcLZ@iUPM*51C6jQq7ym6R15H z7qEL2Re22&2Ht1cf7U)4)SjH~+QN^paPc9U)bTZU zZBkg+c^zabHKplqjt5n(H{Nl?y27qie~$RD2|aV?);%`7p&LZ0bR83csi4uiNU+$- z8uZ4ubGs=69@rRUah*!XC)OP94bvVgrD}b(lhzoSOg{P<|=%Idmdr zRSrMS`+RgOmY^KGs$3la^p1wShr6;w?ChJfQQs_$Dr~-Sb5?9*Ueu;Vcp%z=PJf&9 z>~SzRlRroyKs5!#RM&Rs)EyM)+!2%I zkC<85FGIpy$-kdQJV+3QND4$92e#fvo%Ai5F=Z^$O~~F&4Y*p`ie~Govo-LftM)o2 zj}v*eqQ`T-H>0vJ!}Qil)HsvW>xt{t?k{ITuP@t;_d9cdBmu_Kg$Iumk^|1Eez^{y z{qx3M`aKF7B=gNOX~n4Rxur3Kr4_Lv1yPI}n`&OH>QUk{5jjvbP%exH?fXL1$`+LR z3R=pBwWDQ{KBte@6Vx{6d%$T%>GiU(7U%KWU$DQ~%&w`H*FW;?<~4A89BY(2!{>Wb za?^?PV8#gelco`DCLeqdVip)cjlcFfTdMHDDY00xQuK}LQT)79_`vF&1Bb>!uF>Nm zrBx@+qXjq|UeaZ@zB}B*cvcK!h;|rlv=5Yl$NsbesRyhMOFWXdn)!9xGT|DUvijX6 zTk19>_xSznl;LdF-ru8fD$1TthNs5q>Ut4H#{23gL;P8jid^JnLDl_cX#Y@Ij-p!| zA8gRs^N6ZC3ygK0{3hWZ7c*#>+|`lGJ$043c7?xEKu49Uc(1fY2`30>Y|Yr4<3w3( z04aG&!|5s_r@FHN7vEXwu18jvu`+iVVb(6n^Tn9;5_E_AY2bCg*18jyLGrLgjrl8o zZoJk&M&<0%YTb#}x%z0ynL98!EpWEvU3-IDUHT1c{H`sK5+jvp+vUgArepV5tT3K1 zD9(~`^G@&R#FyYZ=i;NqGG2FXKR%M(?lZVzk%$D9B7&OTA(Gp$hzu!A#nS|6v^mxnkA-069+I-DIMbEwU4xOg2Yifo(z_p8=) z?cmYBks@|k*N{aaVP!>o%|=1x^(dVDj$Gb8(!kx0O&4UW+*6i2``m5QD-*1;YZT;7 zAWqvbU~UqMB7ProJMNSdf0{?AaHn^#T@iBgN}D&5p%;r)m&b#uBQ(d6s772fsaGtw z=ZpdR18)uGyA`3O(_e{#tZ3-qR)+`1yzhR>c+!$GZ}V(6R5#FZ>MwCJ&or+UXq;Zv z5grRtxh?D(0|W+D=1Kae%t# zls-v&-qlh4zlY2JXpjk)LYR_N!mxgP0#f~G%A3pa%=C4i>}-6-8B+VjcR}8g8NP>X z3;Cfzd-4J#;;^aL&)Hi;I4$>t3w_#}**AH0)zz%Ygao#}9(EC2w?Sxy&E@HIEA{e5 z#~@-`?2v`_lFs3k!k&5M`+G|~dQ=%!IEb8_ol^KtQ2yJGU{VB{I> zyarO?sHFW9k8F^TUtp%h8}7-&*MyNN!h47WtxcSwf~QAwLtD*SDsb?dd2N_7{hJ!K{i;GJAk;} zqY7fS1-sNlw^IHNMpoqYuF)j+3iM`gJ-801G`dQwH+_oPuaP*%?9!!v_|4XXe1Wap z-*=Mb#37z7{uXsUAWmc$1X2Kzy2CUL0IhW13-Rr2qVcC{?sEUWtqaWA_WGgOqaS)9 zriGWsjXP%4vUxKMDRK}OAzt1sH&m_~CZ@irVEqB8e)VOTVyech!CCK7?g6^iX#&#C z(}yrskH!l3yKbER@dt)C?$_WpC}1*GRfya)rJC{WRVm*n`O_EmV&zL&;ydmyUIxD^ z5io#j+4wJs9~}(-xzC`*;D52Fg_Aeai@n?4Elj-z6vE2KJ*ZwM-vEn9S4u&~mr?!S zgV>-Xq8$tx2}26sV>2k;%9>m-uXfToXmR1Bt4N6}!3J&_kcm%4)P>WRLnRd9l_+vfV=55*L`%OXH-&$c>O!@tv?Q=hMzyRa~0zo7t1alGBg*XmQHwQ!Mf zeZ24-_v*?H`rQYJ{#n5fbr_PW93?D?twRPcDzaO4{ET^o&jRkXBi{vSM=MN1qLqhb z${^~X@+Q3Z#ZNbKTDP0>n_C*Q?s4sFJvI<9ux$uD9*72cxL%V{Zn9oVSD8LUztx9M zOLo5Lf77Wj-Nb+M17%wtAMw&g3#dB6*TGSCApOtGWs&5~YZ7kx(6+B}L#k&NFEP0X zkhA74*cpfGny_*Q{~%;HeCDrPz6yG8cY#z7dJe5YaMSnVzuES@NdX3jBbvCH(~;{; zWsd17!Ho0nUt+kPo~b>YFb`MVuEl%p(-_c}_}E642c<3YzWgdlH0<(gAngEF% zHC(qOp#CDK9-C}fTz5!|S^$)Z3fLh8K2(-7w$u$B zde@ns64Ep?Y`;_xm<@o&p@xLcPJn7h(dIAzW3e_yB{gtUM4Pd-P zaR8=UCh0E-nR#~!@iPyZ?(@t)uC1eM!;dhgKIZwwFL^ABCS?V>vs#xeuwk9?DznYb z(JiF$jdMVY{@u*H!8bM?Yr2S==@-#-3>r@wtqLuG;@J>#r+Rn-PF z?p?o;Z+-}%|I0LJ>SLL=WAodvp3D%9648bra~vd!m8qL()@pb!66VE8%bwO{LeT(E z<^%SKI(x+XQjR>a>?>F)kC~FcI@5IxrF(dLXc&y8td5!;*j=VMRZQ z`T#oA9<(}LcaaOxvdfp)!P~dr@&_rf!vD5%jf!@Lthe}@;^ZGIs9!18g(n)?XSEnQ zomA$q@BmY)Hj-j*3!%~)Rki~uFEDM5O)P)e$YNLJwnb$Yo^<3kldO$fU4gS?whlP`a{O97}8kLE5r7K zGEJ@9Q5_NYtb!zEz;5l&Cd123zPb%iC)^`|Dzd|L>Td5h_ef8dy6VZ}ZAwbun<5$I zlHDI7P?_fCA2V*?UBhz4KwT&vLDDggrjP$<5;vWlOf#LDojZ;hP4*XPYXjkLL#Sg{ z*-#s`_%`w2zLURlDBmewDxn)N5%u&u2c-ANjBygjJ-S$~73#Ec`{?AC?5+Xk4Q*P- zK>r}J3WQ$aq-1C+1kucaKbf^IwOQO$RVkn4AUfI-EQhY|7zH2d-Szh7E`JOe)wh$F zJYpWlDdqkmL9Sh#B6Jv*(YKco3m2%rLE)8ji$UZhb>61zT{-+wf2F;F4gEm>byXhX z)l1jC_APw_M6m$A98Q?w&_mt?`Duc$V##s-FZQW!+5ufN3iuyz8eQ^%a(}Umu>FQDxCl~E3>@}M8?1`k@_K}2mpRWdw zdiryJ9PQoiv{0xe5Y(!DDMUMms`r)gZJ|=jr3uj~S$gJIr#zszUqz6a!o8eAZdEm3 zx6gnvpN6WP^FVOEZ&{lHkS8BB?!EkCM#C?BU|Eu&u@*OvyyTWSPv!$DfiJK3C(pUt zx_?ET;?#t}(Bsorw|J>@kM#0srZ;m}j<*(y5u^cHRF>6^N1ce>K>&;WWW3Vy`zNrB zCP%{^-aATQ1!rAiNuAb()YvS4%Nso6HJfb^`$-o`Pv9RtH_{5VvAvF61AsrkY($3= zfb`=J5g0&lnV8Zfq(^>D=1NX9m>K+hVEE=JGGC|@~1YR ze(PEuHvJAME!y~4400-#IU999^?U2`@S(#qaUe3t=lGREP!L#5LRnD3IE|yIdu7?c zO!sG{i`&!csYl^uUF>6BPq7aG;()pDPu^$uxd&QzT!fjbg~nIL1bI`Yh0J40h~%}P zo+?i)Z9h-6#=^W)MEFgtf%(X#J9E!sn><1)iYU`-HI!^k95Dg5b}H2Q|KpZRoiq9O ze6_?G6rqDM4xx=NB2JNvdupeo)=?}IRa5z!H{QBKYr^>d7DdCy5H;C_7UXu1_HP~E z@Pz?$!GrW?N|av9d*8qXCNS2L;*}xWgeW@RyWpeA1mFD3JUT-_E=Tq9S9tQrBRYc~|(e)4n8EVCTaRcCZ?be||^t%|~ z4}h=8;=_WScFlu%?9c|nF4G90XW-&Jgde=U%^YSbR#XwLo01uhQ(0DT%CmIRroO|4 z5ee;9rEMrK*+ZCY1;v8^1ZI%m0rbtsY+n=rGFy?kE5@_DnotTTInQNd+c1Gp@2mdV z#7X52zV(FZi?W-T_)Y&}r`I3Z06?}e<45_4^Ns~PwJLlj3t!fDNMpOL*?LqZB)Bpv zBh}yFvA@B2=h+N(eAM24wQ70%to|~GBI-7`+03J+5n+=Fprl@6`;OZ5%PfG$OdFr* z!Ti^;7}XgQY*ciyVrj;a>?-;^YU;r2EsvZzJn+&K{EUUwsdO?`5wWir4rCJFMVZD1 z+%A9#h6n$E|7}0WNQ8DLa>>AVqr!#TPaGJVD3J`(yDa|hYYT(+0SNZyzf9RVSz?Ym(;y;hLi2yk ze+z4%0Gs5eNkfW=*)OSfKYk77_u{&@tx)ea>AN-VW^X%pRL>aFlC;!73VEu$v=6Eb zlzq9D!fXb89iyaHKf5BvH=_!6oYH!Yc{rYW2430iq9#G!7EdovJvlGKi0zsl_HVEi zVgzBd5%=%CVi-+Qy~<4T9}hs%fq3YW4x-~CZKBA_wcTJZtUU!DRr9`i6h-gLcN})>j$sC(TtA2L6*nmu9hkCaoKt~lx@m} z(osAwhvRFf)<2OF@Rk_E@mkKw&WYyvun+t+VAt2QP1-R(-`EIR=Tw`y0Cwx%J@KuZ z!cux_TMM@qcnL=$Z?n#-K6aZu=M(uY{R5#DNGFjx6wzMfRs@+D$z#&V)lQe0@_AW2 zgV>b^22(4*s!a8K&maeQ262F-4|g7_(MQQ;yZ=k(s=i<`eW`Z6M}g5(N@v<AFnt#ZU?ze(KLB7vjn?1iHUNs; zCLxYiyGMS5*dFA@9$I4Me}`P73MGq3SP(gRaREXbvpJf{PfOq~a5Yvb5i+=6nu7B> ztiZ~aJcZ#b@lKNX?z38hruynh<96@g=@$G^jqLk#|L7yS2b24_3XwO~V`@B7xUiWg zeaB1yP8yi*s84ytx_WDexpBTdb%MHWKD6g>MUm`=F>jggE|_k^P$R{rnV_@+62)=K zc{U6miFl3-wzhMrDO}QqK0`SnXQBstIi zV0sFir>yO@o07noS*aygPKa0E4B!ZWrVGseYuj|DGc@V-m1I}Rwx!Z)m8VZ)`hS5t zKpYUC7xlQY3T>jw1+@se#Rg6CmleAAa%0nfu>dk|tuhXbO=U)F_-gc1Dc38C)TBwj zd=6FJQO*(N}?cqxfIQIdcma8evM~s7<^q zqF6Kx7oR_Xw`=ijaJaRPkPDuIv3E-0A2{v`grD088v58h(=;pp$#fn{Yb?5SM>bwo zI<5%zx{ogA5SZDp@l3OUkjNjh#okP4-}yd=IW)(}H|`~rSco$an@C#OqB--e@RHM> zk~DETKkt7M6O7+ZkJIeX@45?~JjCzn6H?=$D zi0#(1>-F|;g*=FM()Xt4m%9gWHg6l=`n{R~{QF?|{lb~Y;#7^^9Q`mwxr5w0A(<8G zEr4%B5v-z>(+rS^p~`jF+|s7&N90TQx%T@fvevp@=c=bOT^Bg^qDH4+k^dhOAEtJqxSdsfF~^<>fGc>W--U5$j8 z>6awZ{2L)0(??p4OqaT4l%vq-ar{&mF;m`|0(a|KH5+BN5m)baS4HsXt=k=SKUjJT z;W|l0hnG;w#lfXL9u3h&askfze)?0|<*a}EZfVHOObvqQnOcm?RFefo;O_J>)#1`N zs=3<|OR{HNzc}q`5j>*_?|P0p({Rkmaj;O^5ZkQ}{3{BjgB9ZE=z1gr!Qrn?OEfLB zZeRVErg3VMB}0@h_xm*+DPgU0KxiHk&?pdAs(xp6&NgZzvm?Dw)MM)pGh(~j_j#$L zA=X^fFgHq=%gvhhl7rhkpF6YY&|T32w_L#*OYgcIuj1~Tylt4dqcumpDxyL;`C2WP zvnW=A)WOL+m{@Znrj1`X)$FZZFNIy$^zl-?XCl5;5WLJ(^Z%pE;wzvb1NE@oHi|gd8CUmUlTntxGuGeW<qNq3 zJn3ba(I*{V9N?6h93unL`mIrx98uw9Bjfj-6WYMJl(c5R%>xqUP|Lo-OZBs?_tc{! zExQrm!nUIF@`viy=ee4VD%>L7mV-3Ge7VgbiO>RtAEJVk=LYLRhR1qw=v?&vz-8&v z!LQmoSyuk1Xmjxo?&fb@s?VdJ2n86VV`i>>5ceBb0AFmh({^7z^cxA6Lr&s0Dc-j@9ZkKR1xqsxQTGM`yxZInt^>=iFsc`|HU8?dzPMfsBHruY$7_rs_s zIG_8&QIYc(9^rmxFmr518~(qD6Jz;Mcbl zPRz`wE4Pu?sOt&iaoU*b=Ob&k`?GPx?w%OHnM0$rE-~zFu7*~?1g$FnQl0T3G2UVP z!hr3+JD2USKQ+sY*^5fInfCXT9?!HPdR8Ewh!qnolf9 z1NBbAYXit*gMe1HpY5BB$%^6%YL}z`>YtIesOn%r&EdDdbYFJZb7owy{Ct!r@tVYs z)m5I2i;w@jXS8_ZG~zwnhk62*!w>WWm(40nT*ZIwLaJiu@+fEoFXX^qb@JdaY3P!& zi<_tt_WAa$J=gFNO;y-t>0Sw-_VvD9^V;2c`c#Ki`P$$*ri3EMK18~;2i=VPShr|3^SAjtyWf$qlq+WD83#8jyBlP#EREvJJAip>|ec~ zQzYg+(T%$LMCVOIh|6kojZggrS0>wuzlQe>L5(4Nm>dtKuQNlx5-X~YlK9_=-QPKP zN<`9$B!2oYh|(j9GDnH|Tdv!*?+QwtAysG3p!eC)Y#SjDY|rGYs6-b#b6!P{xzugk z|7*7T6-gn9&B`NfQ8Rw3aBV|n>?CIZ$Si`MzR0h_+oP!Nk@2tK&kbA*dKM)#zk%?f zyEk;3+KImpN8GnVxY~&8+x^-_(HjF?FNfz)B7ne@{F)JV;I#PdSmo1%5(Hr4CRkqq z=6Kf#0ysPz;I-O&K2f}B4B&CqdqUE3eW0qb%CIY191@wax!mY?3GCMfxA%4)z{u0c z`ZhI5pTiaFoAa&geOy#PQs6@n#NdiqB zV@E4G!b}F(-Ogk*&VECYy*|@(ws!Ga2vs>P9x0WhQFGXObsjKR@u-&PAaFmY+<($T(SBQTS znlz!hlBML0J!@-jr#;K}SDX?I?RHj$>9Dssy$5x|L871nIY==40{ik;@Po7y-0~E2Mj3nyIFz6v*68nd6 z(G<*SpmPX{wL|THSX0RT!pO!Wz5TdXzVGWw&Wv42i7hC&=xNb+G4#sck_qcO@KxyZ zr=sdFcS%(NRqaZH2^E zv!bP%gtD$3NeE5rfn%GTeZ(CFvsV|3re@b)0PVvebI+?IAL(0%+lBMVpoes9Ahu@` z)pi|HYgI;0=Y7uD*5QoiEh>+1$^Md)!qOw<nNamkx9rtdPkt}vv^mU z`;7VJ9e$bK5VfXiZcS$D2)Fo6gXzUoDt&XO`iu?2XRA4cmd0&mbNp` zS^ix+=U>sY8$%pUvKGYcTb@zmW4SWJ^*Pq$&5ysDjtq0$@3!)rN|~gne9U@fOZ+?) zFFWo2M_ne46U5PPp-NFczAZ^6?oCse>1Td}J13zY&riX@ujvn0KK@(pZI_)&d89_i z>r?@`Q=J>)Si==q(6A;7%S?W6%-Lv<87a@s$2`ZUi4m?NU`oOZH!XF)(sZd1iIDIo z7(3pk%;CvX>sLC7iaP1cC8#E>kwNJaqY!i49=5|Z^`tuSWGW!O@bWR$?v0o@FDoc0 z%;dEPl6zr!M$#Uh@}PFtBz;N4kNo+2{2j{h3dLKmEU~ZcD(#NbDFl5WY#LC%+1}yJ z^|N~=xnh5}V0gzBp$Q#9C6PklDpPEtLTzja>vVk}-1wxvZfextCiUKBnBC2~6?Xwp z-GM`A!+KOr8g==pGMLEEQWnD%G$jp?cIp78i<6}AH-pgq7W)YFXn_@MnQ24Yjms9R zDOed)EHt5S!=(M`(QCx%32ed7=R=N6xSWmaX>%isckM}PMrq@l_vjw&zz>7F;;HIR z7~x*E+$^jLhpq*b_ksEj_S54Mmu%7OdfrC6(+dDNv}5XzC;*Ji_s}-P>R1#KjhtJ> zA_A^`wvsL2ksbboukVB99t(iU%>^;$CnI8>2R JO*hr7pg27^**Gn^Z%ezzPna zz+k;O!-4p>{7uBit%s8kum!VyZZy1^DL&;|lCG7qiw0Pe%Yf9fYrwPdR`k6@0Ah9L zRAgKdw8Qd{%?mgotK^fSH2*5lY%6DV8+H9%hqa(G8#wHe1@W_YR=qp3(EOWsSX$;j zLeZXO{D%Lr-dP`??1imIEczxm*Md_bVcwlorBmjdEngBIjAB^rn)U#I?V$fJbRLYbH&uY>q_Zx8-z z*3O(S@wcT9+j`o#26_{nQl(YZ!ar+0tKycLUPo#c_e1~O9%hGoT}};%TuiaL>(vQv zbfLHKU2~LfAL!Aj=2sExT(13fZg3f^+4Q_*&D+*&w&s`>cp(ae=LYWC2J2J1KW#*M ztd*o2Ao7CzLu2iHH#xrdCT~uq!v@`}MJ|oqUgO;y1CxplIc)QQwkOXz+2IqrQC!Cy z>$^V|PNslqvW$%=!X}rcp7>sflw1Q4wV8}#Uox_NPPo0n=qSnu#8@CKHm_bxU(CGvlk~@U{PFQ9*su z$#@TXKStRCb~xTDge7+@#%YQsTU|ucj%LG8EuHHLU(KaA%+Dp}dt_n%YkTLvo;c+6 zE58qe9)`iMX9tUF7E~JXB0E>%ICi)-`4ECS?oEG0Gel9wuJJM&4gL_o7{-r(q*slT z8w$l^%x@MBMY5pPteVy-bvm;k8`f(D7mYs^Dw%FwSKTYD|5R648ZD_#?5z5%Rh2*x z0w!U)x-(M3!?|SDpJYqQS#Q3U%#b!r-!j$jKRthWo1?QRMb)LGdM3JbyZ5!(Eb?NcTx4l#Mi^&yTA{- zk200lcu_A8=$(`O1%1YKHptP)DHnkBeB4If1;JU_@^ve>=6L8!`#E*>AqTaDhx`HI z)AgCCZ%wAs@c1TMOi6cSE?OAuno#f0&pZ26Tv@dtF^TV$I-maQ?-;Axr7B!xn#2FY z)_Vsvy@ubuDgq)+WlNC~6(tJNdrMRlL`qZyL`sm3bfl960RfRFMnJlB={@w&dvAsw zIspQNk`PMZX79P@-gEEo{F|9fX1+<@dERHO^;r#$+l*w!j|PPtfy-vw=1`Q^0^=O9 zDY*U2RXLy#J{gy6=P}xd`%S(pAAhijVgC^FsW82n`xeBD(5@;o$&v*PK?BQL^ew+c zBBpr*WmOMc?wR)<%|@3iYcIczKMvbfhDReXLBMJ*^ZBkDVUwxeiOkRm@_h0M(!AhD z#vSWbECoQ(a5cvN&NtZ7w26bL6@N1JNBEBsAR6<#(T9R*{8~ieTQ6_j}F)sQ2n&odrM9yf##(~ z1eT$G+G?h=d?hEWiFAXozUVP&bWUtM!z|<=HgbYLtqm~$yHU#CdLl0(g}q8vZd^Om zRD)Zc3;~Y#{Vb@D1uEApVz|Ec`E&i{Q+z7?oY1%>Ff88PYiSqwqq%9Rd5HVquX8i> zqpOD}Jh%UX_2(#r560O|&!;48CE7Ph^OPE&3IU1Lc+nO!sYQ}$BePk^0=FDZ$5jt3 zNc9_*OScAHszr1fdg$`y;}M@r>N>cT0i%ZmcSY9b?iVHw3Jl67$86>vEzzw}O{~M0 z;}{Hn#O-GHYy%8n`S1%&lv_nDPdO3~0H-#25vCTsDxbQthu(7K>c5v5ersgIHd+bd zHnMMTBw1orBzB(#f6=3uc~_N>09yQka|iyRzA-w**d}vXkQ+?>q_F!jaOZd|uoL>h zA7Cv?Db3%HjstjN52g1_Zi!Xs${19NrniQu@&tGmj&ZD-%O?E9+%PyuOA~TGHn)D0 zRp{27#++m?L;YZ+LLWIgF02k8Z@%iEK@(Xt)}43w0kzZ#WR2oTRMfKH5V#e)1UyY;o+@iMnuI%h%2mfIO7gK zP4$xrR^I%F(XAYTBGhzS#5iT&lK3LAG{{8Ugu8yB4J@;0?&RurGge~yAhD@JR=!j% zo+rn6Q39`I--3N!|2=EZ{wS+J?OFBV-$LF} z>YjAIp=cbk4#e&1$Mc2^N+W@)J>*^Ld}wbgqD@^2>+%N%#F4`;29tQizX3!l)!|cK z@6o4nVSJGb=>@fWW)2)7Ca z7pYV3Im08FsA?$NAmx_=Ks1bGRwHAsGu{rAAP37(f`zwr=5iTCj|ZSDKiXL;x_9di z-zG^=%%VY$(ZAA_ML3)ehla{RBbUgsGgN{P^&;q9Ak#xNSGY4?a}go?xNtjbGRl`6owMuTM6@_<7)1vHm(;HW9gf!zLsnJ!t ztw267NPIx%qL>uC(Qh7>r_i;1>c2^U`b@|BWBm4V=y2M^5`%G7?nb7ln=@!pK#!P;3#x4p+r7hzh?4a~sor zCw6M*;PpVY{2=2zLjzyOJI=nls%Gqd_jNrr$A!Un=&#cl?&pqvDVqABz#EErpQNG# zZ)1(E)vZOF#mhxw9dftslalr9%~aM{@%KWRPAdoKwk~t{HsL;NBtJT}A-t`Q@e@7m zP&+kyh`6aHV9;#*NISY$TY;dKLjKV@H&1Zq;U1mS)uVPl%Dp3~Hy1Vs81Bmw?vdJ9 zWxld``)`IwVp5_2{u$Oea+iVHZr|fvdXY4!@805wgXq*RQM^RyVDZr`DMPNF1g?EkKoWx=63{X)OepY<-lh2 zt22!!=f#w_=aLPaUK!eGq%GkF=j~rTb!_T>{B`g)bru-1f0EDlzKk&Jdl>`UQ1U{m zk<5Cx`%bdZ*R}zBg_B>x`A#Qw`am!n$;VJHD@u6bE`NTiMlvOD(QF7fZL&HxT*9oi zT*h3mdZ1@Ou%OQA4dmug`c6ke+mj23z6i~{U{K;YRX2_EkgHf0EqIR)`&o( zXcer|heH(6(+xvxua23%cPm5N?vyPI{fKj_^@0Qo+q4W84FGQK4QJdpEC{gH8TaP{ zA6JC#Nr=x8M=NF0qVVe5k<@ojhzq*&K00N3=-v5TCVtL%zVlh#hzPR!64auo88^4k zcE=;9@CQiDk7VjxVk3@s8WX|6+MwI%0&<(~N>i+{3s1u7 zgO+t-mMll56NiSQ72=&^An~a-N4q^ybJFj2J6Sp2pE{rZIc}yp58M1gm6t`LllX_Aam`HpS3DsFhO+kq-8Sg#%%9_Xi%XQzb@4w}=XRrL~nB5Mb@6wXtZD;Z#iyO*eiSssMZ zQD&4b+9cA%V^`hyR8pjbmRUa6&~j(%nYN80G(snWa?g_^1b5!_M^PQtUBLL9ql<6- zXuz>_w=E&5%Y^LdBP2o=P8PYOW-XC}EOl}CKTaV*RJ;TI{8igO*oRhphb&DlAfHnc zaGZ%gnDAcfRdJ2(7qpM5d&Zu})Y$H@A=v1tDwH<#OeBBmr>j@~b`!4aTffUGul~_p zpwL&o+>zJbu{S$r^@Upbo2kn~FjR%A^B*Ocz(TwTJ^9I|-89x3K{-6)feZxzu=a)dok(el87|zmeqY{vk2e^&T`4g0aD80=OkGGeyFEGE0 zo;%F9mzYfURd0y8JgB$iX-Yz2c8f=cqeKeL^ zS@9N86Z?FH1wjX4HML@T0TN0WmY>4>!nepu63oJe^8{+!_CH3pI##j> zm|cx-Ol`u5{zx7V+N)2PePKt=CBM{^=0y2DYw=A>QihhJ29r)*hctgw+5t?d?SnNvymmU`5 z4*jvAe@^qG_Gtv_zCZF2vX2n)BI!>p^-Q%%8&(zKfRzqio+A*{>AiJXyV^EoDYLsC zDCxrW#~N!1c;wKtMz3MRtt|;3id;i;bZF5=-pc%X1PfwVO`DfKf`;Owt?16_JYat-oO}Az)pv3SAczmhW!QHpxh_DoIsd z)BgH4gPE{?9Rs+(bZby?GD&}k5lK~omI^5$<)p<4+ zvinCWP!1%EZ0q^G)g?^>TdwtIuJamy=XOFZ)~(UbscFiNzM`ynlqP(aK3vm#-cg|n zHVC^!n<^2S$x4~)1R4#2hf09%l(LSygoz#jZwEH?7nDE+)vai~t#e|&6M&tjWLmOr zI}i4$TcQ53$yuX<;huV&SVv~S4(K)#4E8yk9O9ZSIv!Spqw{-O>4RD9&%sOcKEePzf$r?PtX-rgeHFdiOWPC)< zZ0~rZT6eI&7a3VCU-_V7%JIg#vz4ixGxmcwnNbcM->%_8tOvFsGKmY`;PnT6#P19+ z)LVgJux^K++1mwF2h&ahQeeg)b(jb1MX}8K~FxQXqX^C6z6qthTX^zR3vBCz6!3|&(d$P9ObawVZ;P%IH&RWI;$K_7jltdnxF z@7t0N0*_``g+?kQZe5yO8y<`W%?EW_bX?f%Y@WK%*^#5#SdV)K~j_fVTSH55pNwN7Pktk~;JQy!f;fmHwci{!yp zH4x|HR?ULD*=Qs>bxkxOAM0{Lu&YA5Udp&`NW2}hE6=Sg=dpoZtc=nji$8_oMV=K~Y39j-8=e@5tc*vincu-9fzk*FsE zxT^p)w3*1_C19|me3zlYt9*^E#wq+TEuk$xGW2Gu>tZK+8Tq;#oII3AUkt?sM*3-U z2drBko07W(M%|q~R<78}9ZDVB4V*2coWE&S>lugcf}V=$nZ<>o0d+Rn2v-w_UI@2; ztLMV#%Ng?j2R`+`4svo*L{mMCByTroHL(+X<=ykrTQMT^+Y3UD6W88$*_>@jSsLM*~nH2t*O`f`MT*_eOF`ivBoa!fj zj`~)+sKE|`BcPp?ev5BhPWI|+Zvm9uN35W3C&|d~A&zzKp|lN|<>Jnk=2sIMis0D8 zJ79`r#nd%`;usQXY_1s$iUNU@HyJ%4I>9yI60i~uQ2*(SlZOX!mdTd!ylYSIm@RJ zBU>pBiK#l{V2RkdD2SC!HkQd_0bz&GU|Y=YI<^!K<@a2^a!}3v={C2bU*hb2ysjumhdFaQL4k>Fs}NYnM&d@;#x}S0A9OrnwK+iUTM|J zk0de;(AY6Mmm?f9Kr95-X&%Y!gk+? z2AvMw)2KTet6No@cL$(;9jZ-TcSm@tj2*JqOD*{X6JEWW~KaWGzAG&`^nk>iNvYlwzwnyG>C7y)G z^ykkKsbbbY5)3>@fcK^9tH8OWd!=|(!;ZKtk%*!t0L~7 zZP*?B-lchjS=w_wssyAwtL@0~P>^*hR&3m~Hq$WS?D|K;qj2T8#d#VLzK+h?z7=S` z#O#UivX86MOeYd+p9_BNPMPJfobyx^r^PVcuqf+mQ10T~SDR`In5^Rlt2yvuM&P zu)$bueyW@J0C6llx9p~Ah~M@rNJs5GyjzmWn-t(}K6#hmrP?(A>q$$~ho;{^nm2&k z3qKMoINvheT@Io6cwFH+>b-Z^mK*{45PxZyc zC;-Pq9orYME}HXnT|p$(LHg?e*lhxO)MeEvJa{sO)5)q9+nyY?bMmQr=4rd^X>`$=Y%?)!Ez#i5DICm?a1Kx>r19{>Gx^sb5!}!!u3U9(K0V^}tyV*}n?% z;tVw|Re1`UzRnpR&VL-$oLHwiPH5HRAPB58@oj_UFW|@AYL<%RO@Bb8pH|-z7!{;e zGsRUq1)BsZ5I3E*vVkwDj4(otVkFvVn-a_; zcAH4b^~m@j>N^$)ow7cBb3Q3~B<|s68J|>ndemxf?rcAd!Pu{t8g0^yqotGWO1i6V z#5oR5Y0RckvxMavJ8b7KF}=pIUSG89_P`}72cznmt*11iZtBPDHHs-pzbU9xY+RBj1c zEJC!;ZWWE_Qq7|CP(!Ud<)iae0S1;!41IZFUb?(y^lDb*-7S4Pt4E4?v$_B-*Zk#; z?vsz#5f#mWrGXKp0PwA{;XLZ2e~)TiqA$+ZbGE^_!kP<-@lC^Rjt;Z}XPv}Za$Cqt zz~s$1pAi?2FsCZ>)ui)HfB^$O-`S!ZOne{tr6{9EHPHb)K*CrZb0rXV$AsS2RfI76>3FuAYKX+7^bX8klf#x)6~xrwwuH z-<&XB&=omZsPx=$Ybsn>tnW}`l_$P8LOQ8hdQOhJ$t0;%a2{h9NTE(K-|j zUWXp#VO{SbByS4KCUJ<$Wf_m7x+{~0-ttCAKO<4SApm7RHn7;w#Z)RBo+-*6d-2+@ z|6O(3qnXzQ_+bgbYetotV=pBBc=d5stHsjYWXt{5n#!Gc@sef=hsKsT9Wt@YqNLQb z5p;va_+Zo+c-H(J$Ylp|GxGZJ7nUHdcJBKyR%?-8CMH4CqX1rzGm^+enEsnV@H8N| zECpZqYdaoj%}Dj(l3rqLS&t07yNW6Z4GkmO2YQBYSdy5wEEQuBI<|k8ZE{{hSQE!4 z3r$W$Ca1Eem{(O3K>0IHZPEQepDsPH2&-u7$HpcVnRrx7Q%++5FUGUG`+BPSB#9s7 zY|+72))W~gjBrQ*HJiZPR+2A?it(kVm9M(ZGq8luRUk_l!kH*iL_vP{t>n#!27ll} zm=frBZuNT>D)w!H=zcbz&%Cf^*zp8JYoc=~UY#dP%&Xg^_F)tqG(Z=MF;^9Zpa*;6 zmZj?Q4?O~Ro9{`LHItvln(LPfM+g`73PwGuHrTWevD;Fwi)%k&m#vU429>Q;yM(b| zK3VJrJ=$9m;`vqWtM-Ue=110ivPMde%P2K~)`&i#T)FA6x#p-Vx zLq+?r{~qmhT$=g+TLP#ORQq#NUk36wyE3di-QoB(Ax>@4cl%QLbb4&_yIGDw&4PD~ zjJunhXajh?54=X{*K~pvpf*X4^VhRtuDYfJQjx&{8QcR`BRFhTmYyLibyL*>Ca}c$aoPtU&cp zZQjNl><3?uDLPJHR6iYy)m#1e&qR8IBW!+D1N#J`1{<~R!V$aAX2Z}8TKqYHg)Zzv z8AY^Z%o+alseA$zGx0<4kvrk%{oMq(ul*%o1}~$|q>boSFl_O@jK7_JegKToQJU^a zc&I(;*o%Eq5@urlR0k@M-Pz+8N!I-4bZpd^vTt_VpeVz4C%)JqKf=JjvZY6L*Ohq` zd3xV(C+vq-{<)e1wm5P`{yNIfjVH}k^h-#PJ*wool9a_)Ez^*ZTY&e~xI9oRkW~xQ ziL%~_B=#{#bbRF==ogKnZs3z@krh^=25imb!O93QeAxY~>UmPfFAwG4>P5w+sS&au zu|vwsd?WqUNdcLIU_CscJHPNi1oP?W)ttm!c!)v6!orl^>%uN^uz6Ct^*qhvS zKde6tVqTLyWpWc8BPx7}sv&EHVN@w{s!gW2yPh<%VsCZb=f$q+b54OiT!c6dO|S+_ z{{5WHK*?b3%USr|&yEUeZSz}AIp4n%XmW$w8b5pvzn1Fullw&$OQf({b#yRGWU^Ot zs^9sUTe$QsFS*iR+DcQ&k(bx#d&!b^exsaDx7AOxWW}k0_HLf(AH|d*f1rvn%Row# zuVHXU|I4I-l%uhGW(v9%vf_1Ou@Ix$I5?`I@3$sVnjBw<7@ zuA@XUP|=Y#KSUj>6&dKD$^R_(=7rqw@%R?!Lp~sKcNDJ(1m!H!=tP}cd=2u!-K*xy zd1=_Y5XM3hIjvh_@77|$90{>BoN)r2ZVl?Bjuh?eKU7$6S3~Jo2Q<1@eSX!b%5z-P z$eaA?2X8%@)UaT)@kOWpAgxkdKms`;t2xvD3_B=2kOPt#y3W-RENvJ7xofB?*eB=L z>-uuwEMz-+*UG{SLiWv*LkE@$D^XIOuq1@P7FaX2>C$NE%p4Ka_Yo`A;Xt;%z^`ZU zZ+&55@pI$UKZ5t}TjkYlr$RVuk1Wj_XCsj0t~3>RFXX>G$oeA6#aQ+7*>rUeVyAeU zJ_Ph)?Bds3YynL5dKhLN5)Z=Elh4ab(`&{;;`0M!XvY_j$7e3ni5nC;xZ3Xp#;8w+ zlV3z@nM^|TTm-cM|K#%oik%?KF`1Q%KilK%(d{C#`F1Aath54u+;4zI+3gU`4T5qkTRlbYv5J$$9t4^Wb{3Nw zSM%ZL549&0+)MbgFxr@n;_`b|kk!^Nc&|Q3ayL$RJY-0?l&jai3F^`VZ}}oqLz-tx z@}RQSCt6mXL)Bmb!!Zg5vncY?`_`PD-^|4l@eO=)a3~gHrU)lSFrmC%7n7r4Oat`Q z6RIX1tneUBspYI9O?{#k*SUrtZd2g8d|>1L!XVM%H4Q-i0K>y<7$_O-dGIJTAb;h3 z6oP_@GWOXm5r=hnN*U{I+<@xncR*yOmUST;yVs!`>NbDL?e|c^r4#T>d+G)>mF&6H z&*xM9%&F++68%S1=3pJdSf}Gk1*s!v4lYS|8FO^ExOHd^@3(aaZGoxvyinnJ@B(jn zo&Yg59%%Ih+YU!{h*vJE4#uX6T$)zAkP|lDQTacSDf8dL|0VK$vquR{HaG^W9 zFXr654>8D7g6SdmZoXHa>0+4KxX+V1rjns)H9Kb>^UzJ*Lch*hGkSl9!jZACOxCIT zG3T=X@nCpi;^Wek;sx@*K~ZL9BbXcSTke20zo4)nP-XBaduUJ@c|=INSqQ0HMfqGx z>wuE@>>i)%3BtUt;;*nMQoduDkrNj=$8lH3wQ#u9L->1Dc5gMut>dA5%;wX&@0N+$ z_;r|l0i|#w(E7y1A=ht(5|%;;L?RUwj{;QraosJFrOyhdrMNCm3h9zt+J?Ip{={0WMg%~ zwGB6O{M-^g?z~S@2v1tVX9X5^4m(zdQG>(0Yl{cm?d<-&kxf)PFOZx%1=scbxoTDv z_4s6dzT^bU_CliYlS_HgF-QKOHyw z@)~KQC_@{IV&SsMqnUYCvHW&?f7ZG$fY%>ys?w+MI5=2~xy3Jky+84E6cv3LYfEE@ z)8Rt?%B+vl_;|wou_sxyB;l_;zajQY1Lu69>+nf*fB^CkH0-HTaFQ@gEvr}Xi{T3`af5Qs$&;gfU%ItV8IQ3;1i@ z_BMU8vMk~&8^{CWwP2~UF_qMSzfC{*o-cV8c&ZyBZlxvQV<@m67_?;!d=I{@2qGR# za(ftl_!^%JT1G7+5jHoB{TVm=04$89eD5GVY1%!=1~& zlg-Kvv(^$h;O6ELM{Tub0p`fVZ2Q3f?tgxq9(%E7YuutK< zr)TUztQ&1LSZ`>Ge0@Z_3-~aVzwyS(Y4Fpi2KZ$jD086b=j?Lbd9%7(`y5}KG(Zq; zF&_%(Dauf2Zd=QqNuB$W13B&Pm42j+XWyv=aM(ol+G*BHJ@l9yq(T&BS3)+=g8G}t z(F`ay^;(Bg!@BRG!4R{5;@?y<6s#=(HBP>-!!r`k_N-$$o``<+JQ@y^wXT>l1JA9bg*l5pNhc{JK|Z zlDhrIqf~ifIisE#gA)iD8I8vsD2k%|!Y??9rq}Z$h_H2%(7VW45*gI%k$;z$6BQ~1JQZWH#x=f+0t(&jbARwLJT6L2S4%{8L#7Ddi0ZQ^)ZpP zEpPROyI!0fB*nwmd3 z2s~=SDD62;5v^g;CN}Fgr-#0_zlX9yj~9)1l8R%vJs^}WjUr(j8)NNL{@{ne;ULf8 zfpZ~%0d*%lPnmvzikgw?+r66nE;H#Z(cO2UNyRCA*X^!Pb3tVJVc#~M()A(C0i_$%IxJ;E4<7Jd6Po}wb${W2*W+``aeK{bg;->U7gBJh;b^0-AsIaB4QGD zU3NE{U%sxHBokc%csfuzg(G0fLPiLcXJS#j? zDc5-M1#AUPNL-@bN%vbi%fRh^%nrS;+a8D<+-dPS*=A+98yt8B^Z$;AOT=Seih;K^lddqi!k2HcEt5-4`Z?Wp?_gL%=|BcP7>bcyRqpgoR zD9ue}15~@Pq$ZtpDf@PKGMun;+NvBX_=jMTUWgSf^Q5@tMx7qV zZ1L+Gr`p+^HDAIIJNU#<-R3urdfjzR5Hj0C%_d62-LZU$-6=HFfi1<%m9uGxTio|C z_8o(cj0wxf{B^UCzKDnXdjnC;>*%RP19?(Th>pjN-8?acn8@+lO)ERZ zap`|Xb|nd}K=F%gg!GJpZ3Fia6N8AUX)*9F4*i_3@nplsUfE*w{ka(%H*)$Zq0)Md zO=PI8gL?;bwftl1S<#NJL66x7#-XE6fRxwf08>%rjZ-S!gi)0L?@fo=F7@-fj73GK zf!({Ie)FdA`(kGkBkADoPs$4!Sd_q)>e_og`3_d0-R0#BkCZo|&to1AP;5V=;_*|) zo)%?y>QSNJX{u1PSBh4X2Z=@wnfln|gGdmND7R%^i+LJC2C@{TT59xe-`|)XJWq4+ zU7EpEqezs03YDbna}|Da zoOrg3Y{PB?B2ZuPD!Vt%33}XbqO>V*rfF0DdB61yl3bW(uCW7&!G>^$D6SPlk*P+S z#5M9uC_%krtVU+q1G`PYm!mlwrdiy3_xGL>ho!ARs`QfwKWhB;%D_*Y5Z+X(!FKPc zvisrkMQkk8=W+@mUfft=x})^@yxaBa-45;$efTN7l{=;Ue9QLspBv21yd2g3V{Nyz zoGW>}Z8n=6np}{w&Z>L}R0%&ZvQ^*G6HWN;--v0Y35KFOSmTnI%`UEWumgrmba);1 zA~j|$#=kvqUix1wfX_2adPkFkoj9C~Z5T_jD?y*rx1sfWB42HhEX?#k7mM4jCh!1} zMpAfl!(|Vi1VQeCHE9!LZD&}M{&WCya&}J}u=p%Yzq9b@nST39K3bhZy?6#1mKU~8 zyr$5Hg=b0|1@*r@Iq%#phopYx5krm3A*XC{as!csbT(gL;*4a9{ZnY1v3vTR5cF90 zvnZK8GJObyiU^~clcJLq4Cj|ib4GNh@&MqI-7(tBB`+CO0o+3MBOwFi4>PPx*z>_T zO6Td1SkDE3sliJfpN}pouOEMqXUwu4FT9Gi5KfQXarD%(JEpG)_{Z#)PQqiu#6N`x zhR^d=`K4o|hVAv^*zo|Zf;tglb#9z$Zb!`DkxSN9e@q$E@{`{9m(>v{_13G>shc$e zu#`_JYdllRy_$PUhcg%=8Zmb`Bbn;E9iJ<|2;fW3ZEb$0hOISP;nsm3)vlNIe$uml zYd_1u_=!bIG^Ds_C=2nCnw1n(K|c1nFP}8(mH1_38^nn>4j2n*|Z9)Nt=X!?~|fu&oGHFbStI^+wvqf`4yd&6&3{yTG@GqY37E!-zJdqfU3Tue$uV^FG`69ZQ2oM@ z3OEs^hlLfBCjT5Q_13UzmLq%nNJTrtxvU$E!z$W|`NcjKo-2*0=zMkWiR zekQ95)H_1J%*m|B0S1TlBIDUR!x0m$eR${x*zoyLAXFWfnyX|~ zE-X56gXUy0!fCwGwEZW=K02+ugChkIN3je~fEW0z%+03G1ReFu7Gon~LU2EQJz*>9 zk-p>F7Hz-aF01rvvx`-y-{NLV(R;HTy2f zzqyC;Vc#kN*uGkVjQ3 zw6a)Z|G|Q77r^VqoS9x*`}y4V(Q}|Mas0E`=<;sF!9z+du^;{v54xE5~^5 zGmqj$O&n<8{@XwC-SCx3>*7PUgZT+borHHQ2=C3IqQP*(crAfWv{$~i(ox+}@CVs2 z#oUd~_kTKmFt{xEIlPfSe$zqkRO>>2Q3Sn5tHqLs^=e2uK9D+j#J-!ueDqtCe08gH zdlJiQT3j{lLh5cyrMOi3&4nt1LZiV;_9qQGQf}ijL*BE(qgfovCDEDr#}7S70*ogv z;Ld`xv6b1^;Y`T~Z|f@0M~m;#LqHVL3@hY8&4*O`m#zn2P{EAGkt4D2@|U-JS5aGg zk|mT2)u%j;x3qux1Mwy_3H~F6&NLMlGg)rXbyXrc$_d&jX~;nF3x&I;Z$@-?(=f-b zWpm86s3kM8cOzPK4JnU~`c*gV50UN%3(<9Akdu(lCl>%Gu@Ud+nyY>~Zh4rXttP#- zU!kAXk9qn`7~8D0`1qBA4cOH_nkCAeprWgW)_+bf_tQS&VN$NV$8pQ|G)SeG!+nZd zbtV_XNf2f@io+@uUUdGE&-%jTK~>`up0t$v@*ui3lpyZ3b~ zl|Id}d_LTp66RnYk!3zEV{aTR=phG3MGEicIKmkFLCRs2*{Hh;E5R%WW4p^w84_=# zL<}8!w|hxU`kCFyDUaSa;B*Fv;V%#874%^ zGQfK|dVvG6z@fV3w;XjEy)Ze5Agy(eWPALNe>CGm8tQ6V&DQSx-=eYqxRwXoC+MA% zU|IBTMARDyWcx3FV~nW030b$ja`KWSyH%7#-39CH0DAY1fTYQpzK;2&Xi3IIE&!m~ zj3#>^Gv2*f!}f1$pk^$`7whcdX}1Zi`Jv~HfI$J7iJ`vQ`5>#+vLgje2S9b*J_Fxow z#yl2V>et75*#nBpMR;<@r~zxps~?8Stpy-Q%-ko&Iltbtc%DlddQ8XX!W-xgRzDz^ zaoUjxcrah>5`VJQ+J`1wkf{&L{m7yT{Kfy(5A9fVRzs!NxvfK0{n z4QFEWW*%Y@B1v%VshW^B`SF4Oot$}<0^Vh1EGOswZT#_X=u{lGL%H|WUpJ9G$$kH$ zX8gB8^svLJ?;$T+nOPEzpzxpYVLm>OwIDRX*LS1b7*c{-^6Ch0d%zLtzW1ien}b0wd1nX(etqrCw|wWe7u#<5&1~RFn{n?K*1LZX z(ueM{Ve7~^1U`upn?8Y z+rw>s8cO|H^+|FVGl!PjeqcnseB1MGG0n~R^-!m&@2Pt-d#i?LZq0I~v?nB1&8lQd z_2+Sx=nut+_|bM&KG@>#)ZrfkXIVzgWWPD2W_*RcPJo7^s zit=ds@%K9HN7WJR-Ey?r-ohEE1X+$V-o#@atQ+PJN!F>({ZV&T`WCOJ>r(ZP5Yx%H z9o#Ux+cz-$yNDM$qO-LKYdyMVG~eywMe1G;>%O0C9NFJBeGn8~Rd>6aPK}j2H>_E| zPMBGv4yj_!-OWT67-bNW|An(jEx74eCgyTlva zg=!0SE>4CU{w@Ld;eGj$UY{1M*R|kh{0e60T*cnae;ga#td2`xQHDSw>~?1pE6AB= zCg(&CxnBexKi4~0QL4leC1y?={}XP{90BiqOiYBsAGi>rl4P!#pNfNuA`A%~e|!)b z{0Pgy{y3Pi7bGbei#;z~+9nqJFpdlX`CxYQ=vh`_@XNN$RJC8mq`7ndoJa-Ag%<^I zrhk^qVAC}P|Nb~cgy0+;=<~CakPracIrz}*$G;>q_O3uykX-!^d{o`(&bCL&`Kj$t zZbkkFtmK6dt7Hi|E&|g5$mj>-=fN59O3UxPQeTpt4)b>}y4vL|Ryn#1h2GD9_kSTf z@9;H5f586Mvz#|=<5YlE8A2W`w?j)8i3Hd2&d4xbAAw`3%Y;$dys-R<&ugB^{h7WC z{o41TZZ!`^*mI%t)&^?EOL-)r*`NRb2TXH@6thhBd12kztL)SN@YZZ-ZinpTuWD&o zZSpetC&+8G#4qU1S?1c)S965#KEKtL@iIaov=YhqITUTmU zFSI_-OfuTXubWXDD>p{(Vi36Xzyv)`UiIB}b$Ra3M!~HjCjb9=vZI z90jweeeP#_gCiYrpyub+1;wJAs)^zD#Q%N#`)?i$v!pu0oJ*M;PK8qZvEEqgkf<2U zv^&kwij!4(FnTy3DVDXa=q%PskzDxtb(pAwU zu5XSRy$1^QbzBE;XC&+-2a~c{tk+pi&m2S{MplcnFGE5LxN_}Ml$mL*D$=LXu-=D9 zKk=gIey5?X_xh3_V94`4wK-g$u)7EG;+7jO^0mceF=y4B@Z`&6Q9Q5yN48%DzT=o7 z_PUjrg2m~5lGBdZ=4n~^sIkzIh9Yc_cl1WOActaiqk%-}+i*o;iXP0OP88p5YkW6d zxZtn~5A>OsKFp`wxZQjEk>UqrM3)_h&thj8)Rn^~x$-Za?%G{h0R7^Qr+#{vl4b`z zrDdc(1=-d8oaEqEqT*NxS;D>0dz4omLb%Wi z+~^NpGfUYl@E4QTp#Av&vhAv*|7u6<(5rSVPl^?e1F^@NW8%DN z{@A@aE#*nG`oQnSXDQ7ktOahjzDf`{PYF!v^6T76CknH;prxwg1T9XPH|d4#j2Mhl zhicqD&1x;{z#C7ciX?okXtaA-?Jn<$<=g0R#~QbV7Co}Yz$(49O0R$#S0D4T8TCM! z_7oS`F(?|Me2Ez)Kaou(EYc((uD_Q7bCzR87w_u0UmmSGkmXo}1*p%Q#?o*+Y?gaX zVib^J8>DsJk6Lbf?P4#u(sJYWLEF7U?U^v_%9rrf7VHV7TQ&9FBOrrTJ>s8k*&5u6 zCt*_1DIGt}D057{tU`@?P;^dlQ{Z>k*clb=Y6ULLs z=%sMP>+9MSY#k;cBClr}FsQdl>RwB{k6$luNF@l>=83u?56ykg#ddBd zA&;5u4a`-fXRp{k{$3g~34{-6`Z9BtD)a9UIcl|iW97d#GIF^eX^_S5h}v23U+>ZP zN(!|Nxie(isS!?A@x!t5j=54hkyhxNpvTmLU2!7&Zv?%my!y7)TA8J@q!<^^#^;c= zbeA6qbAo1{Z>xD~e_v*LCAJ(`NFz~uV~(NybBur9F@5U)Mb~?Wv%UCl<87VNeyp}m zi&|Yc9b!{L(#cUJr&UFbSVe2q-pOf|RIRGkCRIgIwKoaJh#h-JkQgCGLL!n#p7eaL z=XrkD@ALcpn}1wayz_qDulv4V_pRp7SA6@S48UJQiyrej*TbqPV1>wBr)-NVJ;55*`k0+R4q7g2;MYTo*`KV z`{CuWPn8bN=@WNkHfo?TCks}d@sC z+b0G;6B8e**Sc#Y_n*KRcaD#!aarhtL;1sdv+d?^%AO!**%3}I9F-B%r5&G|B4nmH z=8X~!IF7S2h9RpMOMK4JKVK@l14GL;DxY}%gHZb*$%e8!q0;}hVF$Aba$t5pmfgSe zE5f<`SM8bXnd!CvOEvr-?g6AMIkj~p+-@W^cZAm_AILD|uF1vs!8yIqgX`@G&|dE1 zbLFtBi=K{OUi29nS)0-RwJqFs%I*f~g?jIZQcxQD=y>lXM#Z%H{ zz27vgq1)r#v|!cyfUb`)398F8b-vdVs_8M7Dd0Ka3pJ-CZQZnK`@52jmi-_?u0VUv z@`*KE%-$~am|bJk>iC30#?v(Ne56I31~-1jz? zaW3_M_DLo9aL{BeTx|5uOlZXE27h2IuRb5WykZYJu_?)eKsux|jq(woZa~3RFFH2l_H^u3HwD zu04VP_h8TCLg#Vb*5t1d6lGKIn4+MQB;xG)4^4zcudMev6X9yikjSy2uVT)znh0-9 z8~#cR*&N%pd25L9!Q2eq^edDu#HrIwX2;}~UG#pg`We<}N2cD98{zMP?wgs4=T_d8 zy?VHtBx>Sq;@kfuByj5058-`OkdAVjatM-O&wHeGRyvB_mJsBdfhIF&YE#(Xt3A1U zl4+rvq-E_MF_#N{uVDwN@R072FLfwdX?r4tIlxxH=sBBui5dF+_9~@ z_N#K!_}ZW1-Z9-hx~!CU62VxqX=TLU+V#IV*=r3g-nYODg=^zgTJW>X(f1{&)}~ie zqMStFk{@weMxZXxxOQDgi%+>(5FY6RxNvS>WKvsiZ~2V_>^P2vDBPU*X6l_=xpF43 z(q~WMi{7g3vNryRjsxS9C~;3K@>3A))67szPh!;0T0g9ou`L;USM=xdm2!qojO`a! zg~TX&Z&>FtYE=nVf9sN93Fxz--)%_z3nc*@R8e1CWf(ULD%0pc#~Xg5=Y1$v$Nc9X z$KyIrK|^y`mB`^CHUyYd+B}c`N6ebr_B&ce9S5UEDar06S-%<)v@X*$04%PRHTmN^^89+i6akYSSaD9i4+6)8KtEII+m- z&A2JsR`%Gu(nbFtA)wb@I(A_vEWJL$bvv(UOYX*zwtgu932j4ryu>8=RicC%mbpkIz({($~VTKdWQ-vuJ|x!Q%ZL>ImOl_w#( z;{9G)?Jinv4+S4GT$H<$jT#C~(3z>zU&3zO{-Y{)x#qdc^?tix-sRwnf3(%x3pJZu z{OPbKNQINN-I?Y_*<0t8ZN_8xUC$ZLhYPFU^mRv3jzicH{F@0I_>Lug)l6)NO6heK%B?7x3@Q{igRPd18ur$!;&Fds274$H_X;W z`5W7RM=$Et7w0H{|3`Qi(Q0tF2_DdO+S79d3E;>E2@RPU>yUljy^oS=zZ&8d<<3L* z8Zwmi8hJ-+Z4#HqA}7zej5r~^nrl$y)d%6J@tfVP%4xQ6P<2~0ev?`x>mL5mTgRwn zHm_{`Cw++2VHVUc;MyK3Yzvy+2&g<8n^Jq0@BG2u2B;5~6#I5GRaJ59nX7n7tm2be%-scpL2^6M+RYBZye=kS^G=kqG*pHeqQPPn&$!>h znQBPrkjBL-UiaM+#|Zzm!+$6w5=>l=K||eICFX6}5eE>D;ckNUY@34x|EiIn?^#Eg zOnngmKOayIVXT`a9xdygvKYx03$caUY`WrouLM&mcQZF2;Z+KjP3GC*f+>J-<|RW5 ztnug9r_r(Cy|qmkKK!oNVO4OoPzssXS{vpZ+NpR&&TKy}hS5H{!uIcv8pI|zs5e|h zbZxnL7lNfin3V>yIm+vKt?WcEo!33VZ}<~absIQ*Ac=b2`Jvp>afk7exYZ~I^ib8{ zLy5eUEdVsy2KW8Ex?}`gmKYqV^YH&@%zAciE&X^IJF17`PZucA++{%0RvE2d z*v4oZg7WDyM^W&*5GocSulT5TcHKwg5kOkt>*`<4w3}Ph3VFMV8}uMlulIl?@^SR` z%`-vch6%ECcRZmEbQf;|W;8614qG>hk9M2g?Ju-~?}W{9?Xx1c}i& zwBNEF(GF$^a2MXs1Z!LkbKV!aB@!C>=CbV``=K=AAm0iNh#b8 z{~wC_qG89|a}Wv+8+Th>zC~isJw&#o-xR~P_CjD1J1^O?5>;NGz{x1mn=C!4s|VAb z%ST<+uZP)=o~#j>R}S6sPr4vZX!mFes88N{k@f}1S8XvzOC#!ws=vqHZJh)KHChH! z`_RuNRuEZ+e4EI?hLvd-$UcYvnE*GVX~(w$_W}U$bsSyIA`+E!K3l+=7G5pN-M|m6 z88z9mYDq``Ok*UMf_@`kN|<{))l%%QO*r_t4d;>CqDR}m5i=#+0Sm=m;v8C@U0Yj+ zMMd}h<%V~|Xx>6S=rV4_lFark$&r(CGe<<+#Qu2`AbVa;Et|>rL(5!2n@(B`aumaJ zFcmNZ0_qd=VBU}J)F}q7-@rBvsPdSqzf0GAq$T=x-UQ9nH^pF3FtHnU@xmrhQNXM} zxeWRZV@SvXUGUypG!&m#x7&U51hJT~4<;ZTJ%qc^PaAt%2+?D zR84K}6wTO^Cw@!{5g3(X%>LJ^3Y_v%XQ$F1m@N9*2Khj}ciRzbP&YSL!w_@i=H0-E zH4_Xo-&!~+S{t*6q%&bd7>=18xAZc*Z9Dw#S*d*)1Q|FHow;ojJ`(K@1Ynrqn7d)> zADSia)`;27e3wTDe?V-lkj;nJnmBq!{-^2U-zG0O%bUBo*3X+QaOVDG z(RB};_21uVCG$V-z&2T(-nIQV9?lP1Kk$JJ&d)wqOM?0XH%nvGwA5y#Zc+XzOc~`dg-~m z1LZzQL3(w~RDW$SL8ye9ql*^D-D-Lapm<3a&>x9@0(d5+%T+v?`yLoHJMDg^^MyhG z?6Z&B-Yey%5?Y}o|1g|weE*zS^CD93G3N|~X4W)|GsSRi8}*PHq1$K@1P3C@$6 z!<4`jm9*2BEhu!Fz7OK394>%UbeW6_E35OSyL|11RCP{}&%GiL@ch(a zAN5M0_th8HRC3DnC%YU{|1E-AAt~W$t_76)Y%c>hUC)mKrC@{Eyy2 zcY2S!K(cS!z{b~9cC%CHb7ii8knMNRX2Lk%?cVia z3ca$s@)*loZ?v*Z;ws)pac4H`wd0g3`UwyAdZeI)Sy~RfadmCOxP7OaEXj?nu zX1rk$evdY4YZPM5#`^X*l-+<09$o#}#ZkI1=984ka$QdVs}3hOh7VjzO()IC(|Xq& z(zX&B2}=Xd_wG%g{7!?fdFOs!{%h$uUiHaxoMzX=&RXTz6R0evezq_j4jQlTc@Y~L z^mLXI<)vm8p}UnhQXmzo>YfZ8x1`@?VW&}(e|TaCuS2!t zwe6Cn^krWbn&Bbf#X_eiUXG~{!1pkZ#SKJ`IJG_WS)h82*|;Pa8o0qRyo}_fwlU

    +
    +

    MNIST example

    • First two PCs for a random sample of 500 digits:
    - -
    -
    -

    MNIST example

    +
    +
    +
    +
    +

    +
    +
    +
    +
    +
    +
    +

    MNIST example

    • We can also see the rotation values on the 28 \(\times\) 28 grid to get an idea of how pixels are being weighted in the transformations that result in the PCs.
    -
    -

    First four PCs

    - -
    -
    -

    First PC

    - -
    -
    -

    Second PC

    - -
    -
    -

    Third PC

    - -
    -
    -

    Fourth PC

    - -
    -
    -

    MNIST example

    +
    +

    First four PCs

    +
    +
    +
    +
    +

    +
    +
    +
    +
    +
    +
    +

    First PC

    +
    +
    +
    +
    +

    +
    +
    +
    +
    +
    +
    +

    Second PC

    +
    +
    +
    +
    +

    +
    +
    +
    +
    +
    +
    +

    Third PC

    +
    +
    +
    +
    +

    +
    +
    +
    +
    +
    +
    +

    Fourth PC

    +
    +
    +
    +
    +

    +
    +
    +
    +
    +
    +
    +

    MNIST example

    • We can also confirm that the lower variance PCs appear related to unimportant variability, mainly smudges in the corners.
    -
    -

    Last four PCs

    - -
    -
    -

    200 dimensions approximation

    +
    +

    Last four PCs

    -
    images_hat <- pca$x[,1:200] %*% t(pca$rotation[,1:200])
    +
    +
    +
    +

    +
    +
    +
    -
    -

    200 dimensions approximation

    - -
    -
    -

    36 dimensions approximation

    - - -
    - -
    - - - - - - - - - - - - - - - - - - - - - - - + } else { + return undefined; + } + }; + var bibliorefs = window.document.querySelectorAll('a[role="doc-biblioref"]'); + for (var i=0; i + + + + - \ No newline at end of file + \ No newline at end of file diff --git a/docs/slides/ml/36-intro-ml.html b/docs/slides/ml/36-intro-ml.html new file mode 100644 index 0000000..f78c692 --- /dev/null +++ b/docs/slides/ml/36-intro-ml.html @@ -0,0 +1,883 @@ + + + + + + + + + + + + +Introduction – BST 260: Introduction to Data Science + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    +
    + +
    + +
    + + +
    + + + +
    + +
    +
    +

    Introduction

    +
    + + + +
    + +
    +
    Author
    +
    +

    Rafael A. Irizarry

    +
    +
    + +
    +
    Published
    +
    +

    December 2, 2024

    +
    +
    + + +
    + + +
    +
    +
    Keywords
    +

    Machine Learning

    +
    +
    + +
    + + +
    +

    Machine Learning

    +
      +
    • Machine learning has achieved remarkable successes in a variety of applications.

    • +
    • These range from the postal service’s use of machine learning for reading handwritten zip codes to the development of voice recognition systems.

    • +
    +
    +
    +

    Machine Learning

    +
      +
    • Other significant advances include movie recommendation systems, spam and malware detection, housing price prediction algorithms, and the ongoing development of autonomous vehicles.

    • +
    • The field of Artificial Intelligence (AI) has been evolving for several decades.

    • +
    +
    +
    +

    Machine Learning

    +
      +
    • Traditional AI systems, including some chess-playing machines, often relied on decision-making based on preset rules and knowledge representation.

    • +
    • However, with the advent of data availability, machine learning has gained prominence.

    • +
    • It focuses on decision-making through algorithms trained with data.

    • +
    • In recent years, the terms AI and Machine Learning have been used interchangeably in many contexts, though they have distinct meanings.

    • +
    +
    +
    +

    Machine Learning

    +
      +
    • Machine learning has achieved remarkable successes, ranging from the postal service’s handwritten zip code readers to voice recognition systems like Apple’s Siri.

    • +
    • These advances also include movie recommendation systems, spam and malware detection, housing price prediction algorithms, and the development of driverless cars.

    • +
    +
    +
    +

    Terminology

    +
      +
    • Outcome - what we want to predict

    • +
    • Features - what we use to predict the outcome.

    • +
    • Algorithms that take feature values as input and returns a prediction for the outcome.

    • +
    • We train an algorithm using a dataset for which we do know the outcome, and then apply algorithm when we don’t know the outcome.

    • +
    +
    +
    +

    Terminology

    +
      +
    • Prediction problems can be divided into categorical and continuous outcomes.
    • +
    +
    +
    +

    Categorical

    +
      +
    • The number of classes can vary greatly across applications.

    • +
    • We denote the \(K\) categories with indexes \(k=1,\dots,K\).

    • +
    • However, for binary data we will use \(k=0,1\) for mathematical conveniences that we demonstrate later.

    • +
    +
    +
    +

    Continuous

    +

    Examples of outcomes include:

    +
      +
    • stock prices
    • +
    • realestate prices
    • +
    • temperature next week
    • +
    • student perforamnce
    • +
    +
    +
    +

    Notation

    +
      +
    • We use \(y_i\) to denote the i-th outcome

    • +
    • \(x_{i,1}, \dots, x_{i,p}\) the corresponding features.

    • +
    • Also referred to as predictors or covariates.

    • +
    • We use matrix notation \(\mathbf{x}_i = (x_{i,1}, \dots, x_{i,p})^\top\) to denote the vector of predictors.

    • +
    +
    +
    +

    Notation

    +
      +
    • Because, we often use statistical models to motivate algorithms we also use capital letters:
    • +
    +

    \[ +Y \mbox{ and } \mathbf{X} = (X_{1}, \dots, X_{p}) +\]

    +
      +
    • Note we drop the index \(i\) because it represents the random variable that generates observations.

    • +
    • We use lower case, for example \(\mathbf{X} = \mathbf{x}\), to denote observed values.

    • +
    +
    +
    +

    Notation

    +
      +
    • The machine learning task is to build an algorithm that returns a prediction for any of the possible values of the features:
    • +
    +

    \[ +\hat{y} = f(x_1,x_2,\dots,x_p) +\]

    +
      +
    • We will learn several approaches to building these algorithms.
    • +
    +
    +
    +

    The machine learning challenge

    +
      +
    • The general setup is as follows.

    • +
    • We have a series of features and an unknown outcome we want to predict:

    • +
    +
    +
    + + + + + + + + + + + + + + + + + + + + + +
    outcomefeature 1feature 2feature 3\(\dots\)feature p
    ?\(X_1\)\(X_2\)\(X_3\)\(\dots\)\(X_p\)
    +
    +
    +
    +
    +

    The machine learning challenge

    +
      +
    • To build a model that provides a prediction for any set of observed values \(X_1=x_1, X_2=x_2, \dots X_p=x_p\), we collect data for which we know the outcome:
    • +
    +
    +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    outcomefeature 1feature 2feature 3\(\dots\)feature 5
    \(y_{1}\)\(x_{1,1}\)\(x_{1,2}\)\(x_{1,3}\)\(\dots\)\(x_{1,p}\)
    \(y_{2}\)\(x_{2,1}\)\(x_{2,2}\)\(x_{2,3}\)\(\dots\)\(x_{2,p}\)
    \(\vdots\)\(\vdots\)\(\vdots\)\(\vdots\)\(\ddots\)\(\vdots\)
    \(y_n\)\(x_{n,1}\)\(x_{n,2}\)\(x_{n,3}\)\(\dots\)\(x_{n,p}\)
    +
    +
    +
    +
    +

    The machine learning challenge

    +
      +
    • When the output is continuous, we refer to the ML task as prediction.

    • +
    • We use the term actual outcome \(y\) to denote what we end up observing.

    • +
    • We want the prediction \(\hat{y}\) to match the actual outcome \(y\) as best as possible.

    • +
    • We define error as the difference between the prediction and the actual outcome \(y - \hat{y}\).

    • +
    +
    +
    +

    The machine learning challenge

    +
      +
    • When the outcome is categorical, we refer to the machine learning task as classification

    • +
    • The main output of the model will be a decision rule which prescribes which of the \(K\) classes we should predict.

    • +
    +
    +
    +

    The machine learning challenge

    +
      +
    • Most models provide functions for each class \(k\), \(f_k(x_1, x_2, \dots, x_p)\), that are used to make this decision such as
    • +
    +

    \[ +\mbox{When } f_k(x_1, x_2, \dots, x_p) > C, \mbox{ predict category } k +\]

    +
      +
    • Here predictions will be either right or wrong.
    • +
    + + +
    + +
    + +
    + + + + + \ No newline at end of file diff --git a/docs/slides/ml/37-evaluation-metrics.html b/docs/slides/ml/37-evaluation-metrics.html new file mode 100644 index 0000000..66a626e --- /dev/null +++ b/docs/slides/ml/37-evaluation-metrics.html @@ -0,0 +1,1395 @@ + + + + + + + + + + + + + + + BST 260: Introduction to Data Science – Evaluation Metrics + + + + + + + + + + + + + + + + + +
    +
    + +
    +

    Evaluation Metrics

    + +
    +
    + +

    2024-12-04

    +
    +
    +

    Evaluation metrics

    +
      +
    • Here we describe ways in which machine learning algorithms are evaluated.

    • +
    • We need to quantify what we mean when we say an algorithm performs better.

    • +
    • We demonstrate with a boring and simple example: how to predict sex using height.

    • +
    +
    +
    +

    Evaluation metrics

    +
      +
    • We introduce the caret package, which provides useful functions to facilitate machine learning in R.

    • +
    • We describe caret it in more detail later

    • +
    +
    +
    +

    Evaluation metrics

    +
      +
    • For our first example, we use the height data provided by the dslabs package.
    • +
    +
    +
    library(caret) 
    +library(dslabs) 
    +
    +
      +
    • We start by defining the outcome and predictors.
    • +
    +
    +
    y <- heights$sex 
    +x <- heights$height 
    +
    +
    +
    +

    Training and test sets

    +
    +
    set.seed(2007) 
    +test_index <- createDataPartition(y, times = 1, p = 0.5, list = FALSE) 
    +
    +
      +
    • We can use the result of the createDataPartition function call to define the training and test sets as follows:
    • +
    +
    +
    test_set <- heights[test_index, ] 
    +train_set <- heights[-test_index, ] 
    +
    +
    +
    +

    Overall accuracy

    +
      +
    • Let’s start by developing the simplest possible machine algorithm: guessing the outcome.
    • +
    +
    +
    y_hat <- sample(c("Male", "Female"), length(test_index), replace = TRUE) |> 
    +  factor(levels = levels(test_set$sex)) 
    +
    +
      +
    • The overall accuracy is simply defined as the overall proportion that is predicted correctly:
    • +
    +
    +
    mean(y_hat == test_set$sex) 
    +
    +
    [1] 0.516
    +
    +
    +
    +
    +

    Overall accuracy

    +
      +
    • Can we do better?

    • +
    • Exploratory data analysis suggests we can because, on average, males are slightly taller than females:

    • +
    +
    +
    library(tidyverse) 
    +heights |> group_by(sex) |> summarize(avg = mean(height), sd = sd(height)) 
    +
    +
    # A tibble: 2 × 3
    +  sex      avg    sd
    +  <fct>  <dbl> <dbl>
    +1 Female  64.9  3.76
    +2 Male    69.3  3.61
    +
    +
    +
      +
    • How do we make use of this insight?
    • +
    +
    +
    +

    Overall accuracy

    +
      +
    • Let’s try another simple approach: predict Male if height is within two standard deviations from the average male.
    • +
    +
    +
    y_hat <- factor(ifelse(x > 62, "Male", "Female"), levels(test_set$sex)) 
    +
    +
      +
    • The accuracy goes up from 0.50 to about 0.80:
    • +
    +
    +
    mean(y == y_hat) 
    +
    +
    [1] 0.793
    +
    +
    +
      +
    • But can we do even better?
    • +
    +
    +
    +

    Overall accuracy

    +
      +
    • Here we examine the accuracy of 10 different cutoffs and pick the one yielding the best result:
    • +
    +
    +
    cutoff <- seq(61, 70) 
    +accuracy <- sapply(cutoff, function(x){ 
    +  y_hat <- factor(ifelse(train_set$height > x, "Male", "Female"), levels = levels(test_set$sex)) 
    +  mean(y_hat == train_set$sex) 
    +}) 
    +
    +
    +
    +

    Overall accuracy

    +
      +
    • We can make a plot showing the accuracy obtained on the training set for males and females:
    • +
    + +
    +
    +

    Overall accuracy

    +
      +
    • We see that the maximum value is:
    • +
    +
    +
    max(accuracy) 
    +
    +
    [1] 0.85
    +
    +
    +
      +
    • which is much higher than 0.5.

    • +
    • The cutoff resulting in this accuracy is:

    • +
    +
    +
    best_cutoff <- cutoff[which.max(accuracy)] 
    +best_cutoff 
    +
    +
    [1] 64
    +
    +
    +
    +
    +

    Overall accuracy

    +
      +
    • We can now test this cutoff on our test set to make sure our accuracy is not overly optimistic:
    • +
    +
    +
    y_hat <- ifelse(test_set$height > best_cutoff, "Male", "Female") |>  
    +  factor(levels = levels(test_set$sex)) 
    +y_hat <- factor(y_hat) 
    +mean(y_hat == test_set$sex) 
    +
    +
    [1] 0.804
    +
    +
    +
      +
    • The estimate of accuracy is biased due to slight over-training.

    • +
    • But ultimately we tested on a dataset that we did not train on.

    • +
    +
    +
    +

    Problem

    +
      +
    • The prediction rule we developed in the previous section predicts Male if the student is taller than 64 inches.
    • +
    +
    +
    +

    The confusion matrix

    +
    +
    cm <- confusionMatrix(data = y_hat, reference = test_set$sex) 
    +cm$table 
    +
    +
              Reference
    +Prediction Female Male
    +    Female     48   32
    +    Male       71  374
    +
    +
    +
      +
    • If we study this table closely, it reveals a problem.
    • +
    +
    +
    +

    The confusion matrix

    +
      +
    • If we compute the accuracy separately we get:
    • +
    +
    +
    cm$byClass[c("Sensitivity", "Specificity")] 
    +
    +
    Sensitivity Specificity 
    +      0.403       0.921 
    +
    +
    +
    +
    +

    The confusion matrix

    +
      +
    • This is because the prevalence of males is high.

    • +
    • These heights were collected from three data sciences courses, two of which had higher male enrollment:

    • +
    +
    +
    cm$byClass["Prevalence"] 
    +
    +
    Prevalence 
    +     0.227 
    +
    +
    +
      +
    • So when computing overall accuracy, the high percentage of mistakes made for females is outweighed by the gains in correct calls for men.

    • +
    • This type of bias can actually be a big problem in practice.

    • +
    • If your training data is biased in some way, you are likely to develop algorithms that are biased as well.

    • +
    +
    +
    +

    The confusion matrix

    +
      +
    • The fact that we used a test set does not matter because it is also derived from the original biased dataset.

    • +
    • This is one of the reasons we look at metrics other than overall accuracy when evaluating a machine learning algorithm.

    • +
    • A general improvement to using overall accuracy is to study sensitivity and specificity separately.

    • +
    +
    +
    +

    Sensitivity and specificity

    +
      +
    • Need binary outcome.

    • +
    • Sensitivity is defined as the ability of an algorithm to predict a positive outcome when the actual outcome is positive: \(\hat{y}=1\) when \(y=1\).

    • +
    • Because an algorithm that calls everything positive has perfect sensitivity, this metric on its own is not enough to judge an algorithm.

    • +
    • Specificity, is the ability of an algorithm to not predict a positive \(\hat{y}=0\) when the actual outcome is not a positive \(y=0\).

    • +
    +
    +
    +

    Sensitivity and specificity

    +
      +
    • We can summarize in the following way:

    • +
    • High sensitivity: \(y=1 \implies \hat{y}=1\).

    • +
    • High specificity: \(y=0 \implies \hat{y} = 0\).

    • +
    • Although the above is often considered the definition of specificity, another way to think of specificity is by the proportion of positive calls that are actually positive:

    • +
    • High specificity: \(\hat{y}=1 \implies y=1\).

    • +
    +
    +
    +

    Sensitivity and specificity

    +
      +
    • To provide precise definitions, we name the four entries of the confusion matrix:
    • +
    +
    +
    + + + + + + + + + + + + + + + + + + + + +
    Actually PositiveActually Negative
    Predicted positiveTrue positives (TP)False positives (FP)
    Predicted negativeFalse negatives (FN)True negatives (TN)
    + + +
    +
    +
    +
    +

    Sensitivity and specificity

    +
      +
    • Sensitivity is typically quantified by \(TP/(TP+FN)\).

    • +
    • This quantity is referred to as the true positive rate (TPR) or recall.

    • +
    • Specificity is defined as \(TN/(TN+FP)\).

    • +
    • This quantity is also called the true negative rate (TNR).

    • +
    +
    +
    +

    Sensitivity and specificity

    +
      +
    • There is another way of quantifying specificity which is \(TP/(TP+FP)\)

    • +
    • This quantity is referred to as positive predictive value (PPV) and also as precision.

    • +
    • Note that, unlike TPR and TNR, precision depends on prevalence since higher prevalence implies you can get higher precision even when guessing.

    • +
    • The multiple names can be confusing, so we include a table to help us remember the terms.

    • +
    +
    +
    +

    Sensitivity and specificity

    +

    + +++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Measure ofName_1Name_2DefinitionProbability representation
    sensitivityTPRRecall\(\frac{\mbox{TP}}{\mbox{TP} + \mbox{FN}}\)\(\mbox{Pr}(\hat{Y}=1 \mid Y=1)\)
    specificityTNR1-FPR\(\frac{\mbox{TN}}{\mbox{TN}+\mbox{FP}}\)\(\mbox{Pr}(\hat{Y}=0 \mid Y=0)\)
    specificityPPVPrecision\(\frac{\mbox{TP}}{\mbox{TP}+\mbox{FP}}\)\(\mbox{Pr}(Y=1 \mid \hat{Y}=1)\)
    +

    +
    +
    +

    Sensitivity and specificity

    +
      +
    • The caret function confusionMatrix computes all these metrics:
    • +
    +
    +
    cm$overall["Accuracy"] 
    +
    +
    Accuracy 
    +   0.804 
    +
    +
    cm$byClass[c("Sensitivity","Specificity", "Prevalence")] 
    +
    +
    Sensitivity Specificity  Prevalence 
    +      0.403       0.921       0.227 
    +
    +
    +
    +
    +

    Sensitivity and specificity

    +
      +
    • Because prevalence is low, failing to predict actual females as females (low sensitivity) does not lower the overall accuracy as much as failing to predict actual males as males (low specificity).

    • +
    • This is an example of why it is important to examine sensitivity and specificity and not just accuracy.

    • +
    • Before applying this algorithm to general datasets, we need to ask ourselves if prevalence will be the same.

    • +
    +
    +
    +

    Balanced accuracy and \(F_1\) score

    +

    \[ +\frac{1}{\frac{1}{2}\left(\frac{1}{\mbox{recall}} + + \frac{1}{\mbox{precision}}\right) } +\]

    +
    +
    +

    Balanced accuracy and \(F_1\) score

    +
      +
    • Because it is easier to write, you often see this harmonic average rewritten as:
    • +
    +

    \[ +2 \times \frac{\mbox{precision} \cdot \mbox{recall}} +{\mbox{precision} + \mbox{recall}} +\]

    +
    +
    +

    Balanced accuracy and \(F_1\) score

    +
      +
    • The \(F_1\)-score can be adapted to weigh specificity and sensitivity differently.
    • +
    +

    \[ +\frac{1}{\frac{\beta^2}{1+\beta^2}\frac{1}{\mbox{recall}} + + \frac{1}{1+\beta^2}\frac{1}{\mbox{precision}} } +\]

    +
    +
    +

    Balanced accuracy and \(F_1\) score

    +
      +
    • The F_meas function in the caret package computes this summary with beta defaulting to 1.

    • +
    • Let’s rebuild our prediction algorithm, but this time maximizing the F-score instead of overall accuracy:

    • +
    +
    +
    cutoff <- seq(61, 70) 
    +F_1 <- sapply(cutoff, function(x){ 
    +  y_hat <- factor(ifelse(train_set$height > x, "Male", "Female"), levels(test_set$sex)) 
    +  F_meas(data = y_hat, reference = factor(train_set$sex)) 
    +}) 
    +
    +
    +
    +

    Balanced accuracy and \(F_1\) score

    +
      +
    • As before, we can plot these \(F_1\) measures versus the cutoffs:
    • +
    + +
    +
    +

    Balanced accuracy and \(F_1\) score

    +
      +
    • We see that it is maximized at \(F_1\) value of:
    • +
    +
    +
    max(F_1) 
    +
    +
    [1] 0.647
    +
    +
    +
      +
    • This maximum is achieved when we use the following cutoff:
    • +
    +
    +
    best_cutoff <- cutoff[which.max(F_1)] 
    +best_cutoff 
    +
    +
    [1] 66
    +
    +
    +
      +
    • A cutoff of 66 makes more sense than 64.
    • +
    +
    +
    +

    Balanced accuracy and \(F_1\) score

    +
      +
    • Furthermore, it balances the specificity and sensitivity of our confusion matrix:
    • +
    +
    +
    y_hat <- ifelse(test_set$height > best_cutoff, "Male", "Female") |>  
    +  factor(levels = levels(test_set$sex)) 
    +sensitivity(data = y_hat, reference = test_set$sex) 
    +
    +
    [1] 0.63
    +
    +
    specificity(data = y_hat, reference = test_set$sex) 
    +
    +
    [1] 0.833
    +
    +
    +
      +
    • We now see that we do much better than guessing, that both sensitivity and specificity are relatively high.
    • +
    +
    +
    +

    ROC and precision-recall curves

    + +
    +
    +

    ROC and precision-recall curves

    +
      +
    • The packages pROC and plotROC are useful for generating these plots.
    • +
    +
    +
    +

    ROC and precision-recall curves

    + +
    +
    +

    Mean Squared Error

    +
      +
    • Up to now we have described evaluation metrics that apply exclusively to categorical data.

    • +
    • Specifically, for binary outcomes, we have described how sensitivity, specificity, accuracy, and \(F_1\) can be used as quantification.

    • +
    • However, these metrics are not useful for continuous outcomes.

    • +
    • In this section, we describe how the general approach to defining “best” in machine learning is to define a loss function, which can be applied to both categorical and continuous data.

    • +
    +
    +
    +

    Mean Squared Error

    +
      +
    • Most commont metric to minimize is mean squared error (MSE):
    • +
    +

    \[ +\text{MSE} \equiv \mbox{E}\{(\hat{Y} - Y)^2 \} +\]

    +
      +
    • How do we estimate this?
    • +
    +
    +
    +

    Mean Squared Error

    +
      +
    • Because in practice we have tests set with many, say \(N\), independent observations, a commonly used observable estimate of the MSE is:
    • +
    +

    \[ +\hat{\mbox{MSE}} = \frac{1}{N}\sum_{i=1}^N (\hat{y}_i - y_i)^2 +\]

    +
      +
    • with the \(\hat{y}_i\) generated completely independently from the the \(y_i\).
    • +
    +
    +
    + +
    +
    +
    +
    + +
    +

    Note

    +
    +
    +

    In practice, we often report the root mean squared error (RMSE), which is simply \(\sqrt{\mbox{MSE}}\), because it is in the same units as the outcomes.

    +
    +
    +
    +
    +
    +

    Mean Squared Error

    +
      +
    • The estimate \(\hat{\text{MSE}}\) is a random variable.

    • +
    • \(\text{MSE}\) and \(\hat{\text{MSE}}\) are often referred to as the true error and apparent error, respectively.

    • +
    • It is difficult to derive the statistical properties of how well the apparent error estimates the true error.

    • +
    • We later introduce cross-validation an approach to estimating the MSE.

    • +
    +
    +
    +

    Mean Squared Error

    +
      +
    • There are loss functions other than the squared loss.

    • +
    • For example, the Mean Absolute Error uses absolute values, \(|\hat{Y}_i - Y_i|\) instead of squaring the errors.

    • +
    • \((\hat{Y}_i - Y_i)^2\).

    • +
    • However, in this book we focus on minimizing square loss since it is the most widely used.

    • +
    + +
    + +
    +
    +
    +
    + + + + + + + + + + + + + + + + + + + + + + + + + \ No newline at end of file diff --git a/docs/slides/ml/37-evaluation-metrics_files/figure-revealjs/accuracy-vs-cutoff-1.png b/docs/slides/ml/37-evaluation-metrics_files/figure-revealjs/accuracy-vs-cutoff-1.png new file mode 100644 index 0000000000000000000000000000000000000000..130ccf347a2ee86ae63522d01a8cbdcb7a34cece GIT binary patch literal 86591 zcmeFZWmr^g_dYxf0}_HLDmS4Z2qvJ?J%l14pr{~?N=d`eIf#t{f^34kZyXWdElE@H ztS_K%Q?ugG0h8oOZ_e24^RXDO!(W?MWS_pHBOfo|$tnuSH!Z2_ULJ~=b|3D=P4!ax zSaeCXGr55eE&JCYUuTAVcQC~W-7O4&SO4-M*}&C82c;BK2A=vyzOmY%v;(t z8c#bfOLVX2c1Ma}E$e3k)W)7Snc8@ae_n zQ}=XFA3yx!;l}H(d)tQD7Bw*2a5G&#qI}O%kFeIAuHjD(Q(}8x;(>{84$ zV*C7sKuh_tqz|D+Gz2e4y9&|Tw^K4}IVW`^DD2!-BDN3h*pKS_e3Uc8d5LX*hT@H* z_v#+08S_`o-us$AwAT>rHpOXlL%6+JD8cZ7DSi22}0$O zvGtDn5r;RVO6>oQUGETN@CO5QV`*2c@Th8C>D-&zLzzO;T zaV-9aYA)(O)Nc`%r{=2)V#Vpt6|{VCB4SgC7Vs|i9&wO-yJ4gs(wE)zMm}1ArlYB& z$+R}G-9ks$%|gw)=!|M~Q5$a5_Mj1i38!uK#}APbzM(ZMNt zSpT+I<*Q141?7=FcW#ki<#x6gNTz*6r(Hx^m0_u$?3RM3dybp1NXcsZBys6X5a}V; z#Qtd>VkL|ITWoR?^sKkdi=1ywE+pE!D~Nqe_k4@{VkSy*%~jWxSA4fbrIi;w!MpUr z#Fq~?qnUNopC8_c%+3iLd+@4ep#K_0`l+LPw-1)b93C$mDPn3#q|OO89zvBpkz(tb^t{oCt(#RFs(U(HpylPy>k2mTsnMS3ECps>wI39X^jer(x^?FsI zrp(Zk%sjrJ>1e^;i|TMK(b-&GcXpd2{y;$G$7~XBvO7|~x!zU>2}01|ikzXMBI+o- zCPNY3y@A5ODh=05$E=PWOX$NT|3WY_<$w*#uB%0{i7IA5? z_3M|c(|V%{Roc#U&ma7A;rxSYG%Jgu-pd1hjD*)74`0fVkC@(Ex&QVb+DDHJ9`}Yn zJA3iMlV|gpk|rZ1Q0=PIW&GcyO~N8g{8pf|#zJXy&vrR!*4yMCQr zL`0LCSzId~XMF-qwp%+!>NdqLW@hdxpMA$xY6OYlXL2zr3GynL`f@lQ>ATc5fydMy z*osr1L3zfKKjG5Wm|r?bVBg*FIBqA|ZES(fV7ysp=Fp`oU*_QY`ug(`K{ysX)(_pT zg?luzlq&1HKTsiD}ZA+E>s|9cFWkE6V?%T%t zSJN!+VnLaue~IDy>oZ}S!EL<~`>}tGt8yK9=Oo|$Y|_6z6PX4cWz}rUbnma8+o6C* zWt6=2YWsUik))(SQHS{u@BFL#x{%YLa@!r78UFfAEXELHlJBiq{%TM?Zg}S+!wwCv zzdjR&6N?fw7N(Z@t3fB&v8WE6eo52+nfj2Y@QfiL`+rXQ|D5!HNB;j$PD*2$KJ-U0 zMX>orMsgB7HcKXYOEh=w+7*A=d#_5eD(A2*KIp$?r+g&{^YJ@Rs1N*nfZcbo&d!C! zv$e-;2C5%31&=pB^(y}Q+526*TmaMb9QwZ{8PCr&F&JCx!?@p2fExMQkU-hvL(#79 z4t-6IT$`=qPJr}2yU?y%^rFf3za^`3ddOsvCzY~y{k%vy2l`^-xyNz=9D6##=7yW< zq<4rNJfs|T+)9G~zdaBOjR}!F_O1pme(ufNT^>8|b(f3YzJ7f#ZEbtL$(7NEl$fvQ z3iW74Z}yW+Y>3Q`wILv{R=tn9Lri7r$kw4=!wR8o<%E;JLzjwUfzi6uzq z$vQwrv`$|%6lPlgSfeq*<*pZYfCeLV_&ikqIT!!wT~haIpVN@3upBrbDIa*$z(?F= zF-5D;_DD64^*?B`TT)odl-6lYxC&=yXXjHv_F+hpEF|-mXV*1Vf+^{^s^56id5O~A zeU80$?OHPpQsj=Uc&_!)^)x>>YThI=K~PyiMREJ}ee^=~X%DeqD6a^d9SzLN%#`s^&IFV)fJteJci&%d zfX$}AJaA_bP%T|+QjYE9jXM=_O#gH zW^B5+#&`j4ShQ&&t>ZkVeLkXazp(A$82h2TEK+a2e^Tgc7`E3(hMJLtq{>eBW!j}I zJR>py8~#WA^qfITYuQP)U%#=6DIaPGH-KO~b^Yzbm?ZOmMC?;+N8i0k@1@(#l8Y{K zBJo`)>F(l-VR~Rw(zYPA^L(4x=U9v%Zd)*)W(0dNT6m+#VVZw%zM6DLI-k*RuDRu; zEKeW=rJvUn{JI+^&KSuK63V^R+n8Nh#@o}EMiok&7Y5Rbru^sUZI75meeNxBS>3nR zN_pc>YFg`y%X0-5F_y+NYF?G9C;~xlvwGVgcSE-G!RT8xV1lRt8$1$p@8mC;pTG0#H#M8Js zygBin{9k892ghXprSBczub*#Xc)J{GpBy=5{*jlKcR~E9xVTQC-MHaR-8_POQRjyw zWoD;7&us(cp2WRH&Qarw?K&~eT0 zy}q$A=wgymDBo_k57uql4UVxyh+xf}_Gb5dO!RFN)qiTNX&og^T$WzC@}h}-X{zTK zcgei}ah>8T9FVc@-@h-uI`f}xO@}n(V6nHJs=uJt?kv1vj>!pyI?;6PqPF3&9Mkro z1JZY@o1aQ2K+p;0=9zV>sHW?1-neli({@y)Gt0;q!OklX zoj)#2cxiavWm^C-Im<9Lmyv$axi1i7QmkcTgPG^wf9z z@X&I)y?1q}H;umOla66SSfJ5N`)Z-Y+KksjdY&_hN|9sh{7wIX_R7zI=a}>U!%Olr zN?6v=UAg7~zTzv@`l~}+vMG}Mky&aAJ@!-G>J(v1m%JR}WPSNfziLjV9ee%ut^93@ zJ@pI^qHfIaJDl$j$u|?ryIH?HX=+{ukN7w|Ff{Z?;eHAC;_Bgdv?ElcBqaCv^d?HQ zqlewiNx~Q0_7P8?UR|rCCFO&9nfqnt(<}FAm#OXo41T@s zKa=|dH2~#boN>Rr*Yn!$j+fW(9=V)6w;CntbgC+lk9gKcWa>m`sdkb5Le0JUmpt6D z^4Q_&)JxC()umgksk%*A1k3bZl0IsRmYA-&mWyswJt4GY&-qmQ!)b+>ap(DwmKddk zXwLskGZ{%ppW{QBD)qBUk*Q#Zy;_}|>?{ZniYZZD>iGiET{ zE>)|*<}6o&r{=Vt%@oRd3S}c%Vbo*4FxHCiN*H{JQP9Y<;9Tm)`EK7Qd?`%8a%$=2#4o%4u>Ge!U~wJYMxURJ z0?iqs$mE6h$`XN)$kbn6yWJG{LM`1Q)9vmKX0Do=8u2bCAPr>XgSj|+iX4I&_)MxR zytb`#v}BGkyMKME9?oZKIMh7Vm1kLfDstU|OyoZh36>hV6CpvzUsORK##78?@m}M& zh|}zV=g*MHG?ou)5dB3lY8#Uv%P9{8hyr;RTCf~YW|HHEjxA_NF#?u8Pds~y$ zy!n{FK(!fI9*z$F(qB~<>Ck(`i6N<%?Bvw0{&gEJ*MTrfDnWlYVs-nfv zkSX;QO_v6=>w0MOzEZ188Gn~=eO*pbkuN%@SlkF|G+*@l+mv**p*%*eTq$!TJNAoS z;jNAc2^qvgau62rs=arjWqb~|g zLN-#Sys+8^Im~%uU88);ObX?Bf&%hz?VLdLhPmV7MCS>ehV`U0^(@2Y$b&!;Xt(Sb z@Xd{76kga4Kv&o%yXz4o%^txQ^EEYSRn!&Y65*t2z}fXoWd+mfDG=QA(*)hAvQ78r zYUxn{Md!M9W~AcX3*5#&9BHWnFy&Y)M)yIl$Fe2%GzX6(WG(;IEX`OM@|JfK8mue1 zT^0fP`S~}Ms`xQ9GeA8|+^)EYVLc9Qa3yj1;Ld7ja|P+hxOd)*fq-oOOpBsUHF_EO z2xay1Lf4cOq;r9TyoVn^hb#M~@4cNSMTCfh(!2NX2f^`bcwUVrhFhGXzZZ7;ndd>s zD`e65UgHZ0NkqiCWY(}WKD{S(VjWJocB-eyjru*If`P1bsn;a|a_YCpvZ0_sHI7ys z!>}HK8}VP!VkFXqcq!#5_QJ*krE^y`3T0(1<~?bK!FxaYXivwAGAlapRPqAy1P``F zr*)mdddVlNrk?671xjgw{M6-?D=qq~W8I~g`(`|5yay>T4;WC394pX#D5}o*vnvd& zEzk9a*W*eGq=zZn!bRp4?BLdCAT>;wR*I0x$U`oUA1L5LI{~I>?7Ho+^WH7wY+lf@ zqnMaKCR)Ks{zPMIw9OAIN8cwQp)^4#BMisnns$*#_i_SZcfcLwms_>H2*11aN{9;=$8t;xYP+e-(7G!Jrcyv^F7{OhlOe^o94N3tRG zlI|xJf+fS)iZ>&fS%1}pL(ksc-Y08}soZPZ4g@5e?SK0SXVy=GCKJ@f^87PhG%cQG zqCRruVq$fQdX}hwr&h7!g>3!oG&woBq0Ma?tc6OE!j03SVm}}2`-NjdFxNKL*}Ge> z748kLVaJk>Xt7+F_utigfw#l9brJmppSw=ef(<5P5_7&}SRZl#0L2r?ZC~eKK=C!S zAgoT85uSL6*-wNti5Ei#d~=MZc2_e=j@ITu?E;&G8j7}4GYpu<5@Y_1UM7Eke^v$= zLrE3}lEXy%9>pm|PaegR8yER(pM0PSEuHLm^?OSZit}jU>^Ld%k!EL`UzYHsAu~Qd zJf2?0-&qPl@uV)8dsxu4Gt*!&%4KRN)ryWokDZ|=QjXn_Ogu%`e5wh7f$B{_IpT)u zPtK8S&b-fD==y5GG-By>Tl{un)sV!M(deC7P0>i>g+8#dKev#D~GD9rx&Uh@2 z%(T;3JLh<|A<6irf`33j9HUP!+rM&W9~`|g_ruTb^5i3*_vSS%940c4ei_3~b{-uD z{I}Gh4EsrqfXO1g3Up0vZLRe+PR-})E^KEW`a!K2>KIy=8b=&N;F z{F{!$31VZ=*4EbVQZ)s#q6Dog*CdP}muKF1&w)G2DNuIp4Mo-%-7FLyKK9tI>>IQr z2_4KokNG=3QG*BnxaZZ`Lq9^r^Yfl7c@~j1i;)7BQTm34L;3lJ1b`t5`yKm;ZuAt| z`Ir|Y&i#PZFC^sf4vDo4b->Tp~Tg?`poiu!z*+nnTg|3`w|kOSR^6mUb~R9*Y!l z;GZLLnEZHI{>kA_C85J)f@k2Yedv!eFpwa3aZ@tU+h-TpA?}X%+d{1^JLvt}4vyq& zU;BMIy41YN=(x0IKC;GcW+= ztKycAsijpLMY|ccJ=k+hesg18@%{+JSE*oF72l6z|6!NI_C%-f-jQpYTxUsVHq~Xi zcuwKt%wLbDN0L;da_2^xbI(#lh`Fc^HAb3dx(QhJPP~6|<`F}v89~yE^gih&sT@Bd zrlWF=Uf33r2!EmoU1g82pSA_;Nl6&9E1m83R^`l)mr+a85<;+vo(Np*ds(VR`FyTO z8qeJgyhzY1skqon`0aho)UFp!;mJ{V?T@2{8HxJv`C2(VM0#peha#=>0qNe|!P2m! zp#1G4#)j_DEW?J`n#I=4=K#L|T<3M$C{(AX9)eQ6S5@f&_B>i?2TC)tv9=Z}M^K2~ z3?w!go|`3f4J=b_so{{oR9aTTNQgwBj^*}0YfdyqAZ99?av9_h8*c9Ee-lX+~@pggEQpn?bsmNX;4yd%NIb02F za=i`4E}__&`cNKrHnvx`(!<-^P%qQM$VCCVW$~M~)ywt7r~XJ#Kk%(1rW&<)e)lFV zn1|5KrFM|GgNsd4gofq-aY*z{x0)i-?KYwo1Wu7_NB@pIgH1GAx#0y*YdG#hzGw6rc@NF-+A?6g5$- zw6Y|s<0-LhmNp=Pj=)#)Nfb2AW&{ML0UXkY7#4SFdw#L1{=Sgy$oT;B;VkJ80-Uv> zo{}#Xg|+}Q?FKLR18%7f+TX$C^iuz1wRDZ}`Zz-xf?d0IqKqxfv)H+~xT@@RSk7w! z?DAF!8)rEWKG9eCsDs$^^KKTDR>VgwO3#}Bc<3f*N7`aB_#;I7p7F2#Ov%){I|}WR zUFTb5Il4F<62tj62Q#j|8d&VI3=RqTXWOD52lCbm@`DEto`tAsD6}Mqhl;xuK7W|u zvSfjiij;QTSX(x1Wvn8lW-^wS5isjGkxyx}`)6(cZo8{{S%?Me%Sj@mw)fq%?Jjw= zUC+Uny95^mhug@&t-%;l4v%U8u+Kj#ii_Yn_o%4?8WyDJP8BJGn+|1(?XrZpBDYJs zkL^XbKwLRYztJaF4(D%J^SG3JXh7#P$e8ZlA}WJ#gJBIx z+s|W=DmHH36z5*il4YcPk+l$9{?dh+>Y0Ndz*y3pwaYYQIuJ}V_DuJ&f(Sa44#ct2 zM1cMJx@SdRK!ia@oK(B|BMk6f7y#>o{k{_XxYaSHpn_o2^b%Fl9s7@K3>82EDiD}s zKynxhGZ9rG75%B#DH?m75z5H4?RaOIN12dRGUte?c7VVCITpuqJW(v}#eaYS8gg)G zwx=7>rv5}sl51qTVcYx2cA$b~%N6k3^|-f339IN0H%5Y8o?lF=g`N#JFF8D0((fYz zT}z%tk6G|!c-+fPCrMH(oukEfvHEb(jf8cer87-hk3tRmStMBPY1Y6w;9Viu&L6g+#z?VYNv({TQnUPs%;aW%w!t!<IJz95IEst4F*1@;G3cYq!XCZd5+l%P5S3IU0>Nb{h8ucVA1R_Xe=lWTf;JuUCa8 z>c*T^gfb5gIVB}(WiP>Fe+CQo10{gMn-WN2WO2X6tw=ud!vedSb^Z~}Nhlwz3m$|n zpRcp@m}<(*jqAWsiglLen6%DzPGt)Ku*u#TS7HIc#&#wy90n+W9|hQB7dAhstE&qs z8TMrJSoL8G#?y)p9yo9S$sc~f00HMzK8ayi*#H+;=i@G8W@+K`?x%`d+HB zb?PA_=^v~LD^~_21D?ETS!TC`Krk%cP`*pO?_93B?|w0v%?^XDF>{75UiIq8$DCw! zC#6@8Bw1;WmZF;zlI=1nHuIaM&cAIGB%2xIa+xyHX#Bz;#9z-B*UEcpG9 z@)fZ>Z^bv)aB>O?JiZJpGdjGC%2{tzE?!Kq=qcQs72_A)%mu)O? z^9bm}WQj@Cu{miUP`g<*i<6yMNly-6s5B}H?*%v$ekPz)P#bX}M#<#j&FmZR>!~DG zKDyk8BqB1E{|e*97m%-C%_ffnN9 zfu|T-V=*DdAMQe9?+HhEuW>Y4T~}BlzI0KC_xePy%QUzJ6$9@~?`zyvYj>CObybyj z&`kSf9#5E^9C@Fl91O#fkf_n=TLyJOp*h#yJcy;Q0N%xaFQb&#w&nv3?FFuC zsTu~EZoypIM}>jfkCklNSYHh{BLF^fv3yWCjKRlQRF7snLO1{mD?~wpK|Vg#iNTFDP_I8)AC*T5 zif1c+GW(GtQ0SoY$856o!AlxLPSd?5ZCz1S{N^7+Vy1f>2%O~Pa#MEc^&Dl-0vPgLqpAIs--X>l$P%dT^vZ zeLK+f3U(BYA$+MA2sY*sYxbt7E&!)1)Wvrbm?ki_Z40k0|`OGY>EOm;bo77?w?IKSk$`+ z{<3|$<2yzpNvygO6N%i*e54t=&D8as;KXL2h0XDe`_jk3ixlr0bJ7BjXn~Ul*i&(n#IQBI zhjjZtdTo$INL=K6ex}B6SF!Q~m)^;A917|^=1&R%L`0yz=!GMOD=iR6F~j=oW>fl zp_piblkGWB6E8l+^H9U=U}A>o_|TBY>SP|YSXnOsY2dW9vtHUZo{sFw1O7uO_e-S* z5imEJFAt$VAp#+bPcxCaUS-0{GmzK@!Yxa`6!^Ix0eHcROA!PW+B}!(;7BBAyB#R=V0@q`AYIzkAi|M~TOAaD0F--eV{2jsP4;uF%N>fc@N0ruRv zhqeh(%K)o38T-m(yC6!jR=a`>(mpug$Ff_}}lwn}=r5L6)h#w#r< z-x)!&fbx}vamC#9pjXHg$tU^Aadj15TKPIrQ^Vbq-*S->U2{F(dP$-wWG-kQceMZn zIHmnw=$74vp7!{M=hx8{!mW}vHkt2>lve*Zde3Kw!~%0SbXW6M{({Ejdw2jFLdjMe z6(!=(sK2Td#w*8f*3tKV6|h~%R*Nln?OJS;eJ`0Wl*d>7wdy;`5H_LWnb1R&mzeuL7<`^mbw6c%* zzjtR?ELx-12HGo*nbq|r!YUJZuy(+th~tdjbFG3*ID&5sCrcRSsA|gL9pYbO)B%DY z1%1g$qECQN=}CbK5)KYNM5oG1p~Pff&{gk_OIUhO=XB>CH`Z@-OgKLUUj;rYMY z!NLMP0Xv04z} zhc}64vQ~vxqQ`a)zdH`?HgfQ(sPLn3}gp)<*Vr1b4)el zq24r3UEn$uli>M6+fmk))0_%=kgk`VFaURIppqb7H@ZwL30FDkb(Cu zl+O`Xo)^ z0?J^YewzPvY)u(LprWiDx8$w2s7a|6DPU7Mu_rb@oS5-14v5&Y@I0- zKxm+EY#p7h>jAZNorac!>z{Lh(>5&a1BUyHh}hl6%~BRr#5M}c12hM~6L#Jl&LkUP z1B)^L(|d*mji4ZJohPUh>@fhJBYwz!W@$Qd&BH^J9iXEhqU-@lRoJe_z`8h1aM~=- z8u0kW7_O#iwkSyM1BdU7uchNYm? z>&k|F-EOJN(k{p^lCLx=HO9$S)yeb;79RYJ%+ zwqeA=-7j$}b!7>Itbn= zHks8}MYua-M(Y(*BQU{k?5v3XND0|Z~XI)cnR4!Xu2Z& z^bo^ZD@%qUiRpR4rC8mA3GwkEDSeujC6__ej+_3x(hk>>cx~G(3D?@kdxe+pC^RLq zpdXUE3x9%o5)0Jh|1s~pYdJ%38s4|uGwn_{PhwFpxEG1X#W7~w@s)XD32j0;A(6;xFGlVogxvcy^1Pntr)*{2~qgatRFX5tN-Fo73o z`*nnePr!?(`!Zqy;!Ov2Hh;wZm}gbXVu{N=xj-&-%H+f006tNGXiyk;R1mN`JHPju zcPWkE_=2=jr7ca{6flEBhWlfEPKMp?>kI9tE%%Oh<)wEHcNgH=49oVzkgNZq-RpGX zPVyg={gyjg;ZXs@LVAA2tlzN-ZF7C3$NIRgyMX2}3Nq5>aR6XXfcjo>WBMU&z`Kyl z6Sn2`*oUk0>4{kOiqcMK!|WyLJ;Fhbtkm-~orNB*A$#W*X5wFpT}1>ALuazUF~h>^ zEec0D5FJ;y({N;g!!X|;9U71qL(rl%U-+*h7R>TILW=>10`n?wqxFr|X#=s;u_z<_?% zdZ3!lV?_I9q&rU4v)QVq8O2dj;Ul1<|jzJwZsd9?WQdb{MJu z#@k8{v&a0ObB4Zh(iu=IWSV#JcLHOqo*FZ~JU2`%av`mRZycEt)-G^y$05T3ULRq% z++>(cAfwJqOlDS=0SFFYEC)FOAen*rtf&d;OZOYGME#XPC$GP)#x;qlby)1|QbGw{ zo7eh>h#4G7{2-79GDwsDB-)$J4?NR~+K095uskYcSM%wiVa&H`oe$~?RulV2q|T`< z>EaTOGckn7*6j@I*V>{7+cYf~j06^cZaavgS1cbP0l6?x6L89?k%@M@PMLd&Q8Wlq zT%za}2Vhq4_^I?=`Sq0r%C5l4KkxuP73o-<9gUg3S@_eQ=Gg{~7fy3S4IEi&%zS-C zxM3wwy*|*TYk$~)WYQccT2Zp=yB41(Ma_;gg;~G)No`?{oqu`lG$Plle<6^n7%6-i z>2ownUK37RYQ1;511yQP$BwHK-%I7UTw5LlQEx7EoR?zD={=h%LA}u(&|+$^I2Knn z7@iZa0+P))BGt*Bg!uS)QAQD<;?+S_WGwggW)N_6mmuncZrWe{S*QE*@EfZG4rQy6 zYm0ehfh}>ebq4Ry8iRjwlaML7Ys2*+0K4P@YU=fmx2cT6YT`l?(=D4a~{tn zwW;Qv(}8ya)z9YUC=HDLG~~a$q0@b`MDQRaF=aPiUmDll)PPnw&_lZ8*I68i*|c~L z{Uug*RmANy_K<3)#0!Vu(DN(_Qx{8@5dog2aYic`JG2CbY&)L0 zW)bMF|CCvmzeNKj9DoED2(v$_9nY_dgL56i@91+mHm z7XrwCvlLjc?fI@*q>g-jrUpwvz>u`?^X~tVbjcFR(>>NrJ9A8f>!T&gn%^T$*SkDR z-B1_+g3>FldA*b9$D6mDI3o_yf`|`=`4-)36$t9X+**Fq7&SG{VWzXoL*N`v=wj83 zJcx%hn^>M7Aqe9UXsia{YRR@^ALKS>gUjyqS{ZS!Oh3Q7-?{pn_ZOH9D;OFknssDI zf*9cl$VlG-onorC{|_4yRUxIe{(Q^%ElU(p8e<(`ipEiHYA`?652W3ig>$M#j*b4D zNk$$Fb7OV2Kt%lmuV4<*(9*I=-`Rc=VS^gVnvkx`ZtTO(oK`Sgw zIN2=A)^kC}%%1Q4uW8sXgoga-MkJ9S0%lL0V@M(iAAq9ZZg>3T$qQk;H$I0Zx7Us( zxMu0PPTcx=ADn(qo*XP3()pNcehkV`5TfY}Uule%utZnVa-8#nBsSC=+5Y47wmye9 zM-rI5u`y`cS@8IM7+&JnN4ruadmF+9>VRKa=OSo<)aeTs!K~qZU4)JOKiVIEKKa1z zW|QN{kQ9!n7Vht~7@CoqLUGH`hux8gbzgU; z?aQeZFwIaSF5lqN;BT%SXqD9l0k-n8p$Adtj-Ma)#DXr*0ATX$hl|QJkh=6W=7HC) zi4t?E*Q$i6Pp;|XhutzQ|mG{|fgdDuQFqK3~M;FdL?o3Ya{ZHQxaT^UWr6^TL?> zz9yw#Mrqvp)njvdGn8=?!L)OhXG^S4u(Q9xc&3+aI2$?mw0)-mzM0Py%vWS@Jc^i) zMhuy>3(yz0X_d4gx&QjLYw}hlkLpC zUOmT|KFI*`wY;)*#X|eZFv8X1KdEJzb5L$yj}*Z6$64rsG#Kut=^)baVnN;>!a8Lqo4&R2lAZ(RsS* z+fd|ZCRTx}%EsPgw{`0e@rKIAdTMq2rWp=U*@u?lQ|r6l%{CxWo@|!2@N6)gFQe{f z@q*KNh5?@b(CFys?EHJ>IzSc;H(*`Kt+T`>&sc8cltJySF_nm4$||I7`eSL4<{sX# z!{oW4sXG$?WydMubV(f%G{b-69ir6TclKfj-LKPv{k+fp{euX~i;q9(v^*Hx-~?7M z93oKyP95Y)q;3}fS_qUv0RHX=5nKDhEO+sZ36SnId=Vu(tg|w$4lYU62?$tpcRaDo zMVGEzfjQzD^(VIM~z<86#298Iu1^~`McJ|Y}WZl4)Uo)qq`;+=E z24{6Konb<5n}r3@IeTg!tA-Lnda<;VVjiX;mmrJCE)U_)+>HF?G^__=hzKD4R{&Wy zqQL_SS^t!04wEggTC6Px)9(MsfLl444EDLnwlDz&l0y*)VC17SJ=<`5|626EqiShp z@&Zs=yoy(zsh2*nTvYR0|BfKwi6#y=7uuPs7dyV(&Me;D&E)i{lB8gBV|8$c$5$_> zCLi-e#b1#M8N~uH>C}E*=euwVnBy_(l)dyN3==)2Zbbk)Xkjl6TvX_0NxQZ~By1+L z_vKpsey>V2XO)zK058|E`HHf_(C!InIchE4=NNIsgI~Y&gN&n*yeH<-AD8@XD|?Ej znft-U7hjK%dSv8x7TL{#@yXTY$`R;^oPsRHtv}z=4LN!8qzXb2HY5`v&P4Ej#LI9^ z1cmzcT>y_3#+iN<5vT#0TdoU$$^TH4qg0}Dv_;`U#Wv<@P`3_F<`IIxdGiyJ=l@tU zH$#x%5V6c07}gmhzB<9<1e!YoSi}+%){Z+vMGxCMu#$bKYIUO&i~<0Hw{u$?Q^`s` z05%WhtCmuYXe?l}# zWPGv9=M^}X=Xr7jeE_EGlu{PBT8Sz6bcb;Onvgx<{uMplxCK&`(gMiR96S}ZBdt}! zc4OyD3z{G6ZTs!HDCo}0$svIa>}nvJtk1pPluiIt2y}}F!sm80UhJ0-BNt_XNZUqU zbrng}&oJ3C5sgdZO-P%41lHjudWzbkdm6+qzqqus;j{V2?B_KTtyoLoVQ$SfxYK5` z{Z`5($+Jyb^lYSntMChZVDgT_UD7&26~F?+&!d8!u~_T zJClsNxm;v?$I@NBl%d%iwz+&}8yF@4xRe!6ATjeDMPWxs01ZPWUY^z6T+p3`6^UAC zzZ&MbHTG%{SAdf8Y1v^T86-=7>v~Y0&yZ15>nr8qomdtXbZBTO(t<9-j^kQXbi0Wu zjF=pQE!*mK8fL(}5CLr#qQA4-ctuS1gChh2N{{DPLAYHo7JlTMQ zlpz6S(Lqo%E@7Mz$socDjI2Jr0y`XB2+Du+TyWd(pOwMt0nAQx_6@q#2Ch1N`^l5t zEf4#k9GrCyQalpH2$yY88bAo(%dR-Th7jJLmGs z!L0{7jiLk1yK-wb*P1r(H8R%!1{~lyFh~0eQC85k)JF(iEM1)v5rQnvYx3bNZ2y?c zA10Z*8xS=N>VzOj^`R2QV{NI&kewi7j{Puv6V&Yk;1Q)ajg07;)tK$L(kg>sl}^rk zFQ;gQPKlRg1O%Uu-5iURLwpN@m03M+g^J9Q?SD z8Kpo{1y}=U9Q-saCe<(Pa85v2o4yP~3R6Cob+H-;@=yDS8-4H+$hyp2cf?bIn28hx zJiUw(HhFw>>w7=;M4CK;D#m)~{EJIRTBhIGA+iaO2J_oIvaSd;ZA+oI<<<%$LU#D> zk$OO2bHg|xV)>OZNGTItA>5J&9trgNLHVuZP61I@cwai{Lys@sx@SSZQct%Z*owy> zEPDUsnt5+=LAPW7Blk$(NC;s^65fvF&{b7(qwz0*0B-ZggNTQtBbmMgnrD~^+}>YB z{hLi8w_Lzv@6O(s`~sd3_CiKjz)D{J0XZ5-&W6)Md{w_^Ozdv*d=6Bx)10Atk$ox% zKdZgDOAk8-dvZAkPcUzOl^tzQk2apMhtw16FuEt#m|j&I+K8hti_0@wf~~r+*>~{h zClj8Mqg;#~Z-Vv*Zg#LG1u*T{SX0kwc+e&C#WrxhYi^$^f4@ywD*z##!28Ph#KbTP zK3N~8$E9wowS>(L2YO*!W83~_m)~PPd8L`$M zjS0p8809>6WUl8H zzde-LSb}-+`eK*6qP4*|^*h1eKS1UUS;H$#?Ul{YHSy=9*SU3y4>P;YcpCQ|T8f<` z-W*da^M`w@gBpXgY@Ay_#C8a>H0vouW+4sYpq_sWCtVAnD>MC;(-@H?7cUQmJ5BjV zM3`+D*WuVK3w5v_QS))b{=T~B`x7d9VM45gVCZU41lG^NlG|QqE~-V7(IMDzdeB&r z>I*WfIoC6kVniY=ehOF#U&u{EbI&$?jlLz5;R|Z;g$et%rTO3~u9UGYIKiA!9M&qZ z7?NJcekx=rB?>?0Kvv7oLIq>%ILh@1YfCXwrj|NQvAmByQi6E?qdQuI-m58Y{q60& zr<3rPpPwn~xf8pt=?y zY~(8vV3F{Ot-BuQ4(%(buMqz>Bh61mo3vq1u9k1`2(6gq7&B!{=7`Z5uM*XmC78SO zMJH6QMEm*a-7FF4w(=rh9P0-Sd6iMp3BlZL>@m?bv1?LPW3f!YF)dTfIMoN=p(2x! z!8hs4bQBy$3t{#HBaM5t>UTg|rp&VWc?L2-qQ$g@UkBX@=vCHy9zGONJI%sPB<}0< zd}crTF>QuL&;u>X*wxxJGSv8v$D|LqwDSEd@$D3ACVj2ZgP=t@IT+2?G2e}Ax^Fl! z7VAl%({V)5vpSMqMws=MIg#&Ig5|@bO${sJ4&noHufnP6n#1?=c9@d5@^yq09?|q_ zbE;>?k7z;GQ!6WP7Wp{0a+fiBpQTXLT`8~4;Jo|1B0$ZaJ%j>v~eh?SAw z%x_C4*^{h3w}Ek4IJ2EIAuS<-ZzS1wMOeId&r-ag^SQW}UxfMay=UVMZf4gKBV|by z*(n`bs(@{6)-IYf(7~!eC)yG|Z`j=bK@3 z@iID%9Ho}5+OWMI=0JlWkyxZZ=%!0YCAuefM60ZD_wJaZx~0XPvRQ)aG*;pG-jXnp z4%3Fa+UIroyz)Re3?x+TRBKa2SwcIdut3+39_4$tvZ0Jk4s!eY=`KPAg^w8&o>q_? zZ}>7@Jm+J4hxHHKB$I@PL8^A4?PFjwVZQFhp+Wu8rA5Uc+GC@@DcNqktv7tuwfETt zwz*Q$^7)Q#+RNiEAphZ8^;-`=bih*hY#&si#D`fM#hRfdE4L-DdN(#CSLh_)$`T)o z=u{0YukC9kVcXb8Qsp2SJwzchtBe#oLf; zEW%H?sr6WTF{`rpa=fE*_8Npk9TamJ1+E<9mP)2q9yC@r%VCMYroJq4Z_!I{n}fvrs}Y1(_fqhU>&XNsAl5(v6r$36~4Cl+yn~PP(cu`abNZ2dWrQ>Wt+ZoB3#NI6m(wMqN@{G zvoJ}h+Y%R97THgp%NU2%YaSwAPP^n)8WiP%@4;cpKzyT1iFN-OWz}?27i6n#WR$O8 zo2M&vSK~?tOdaITo;^H&#r`+XLmuPaLo5{5`r>kA9SI0nA?NvL^W*Kxy{>bLEqW*Z zbPr$T=7sfP_2daM%f;Z~`z^Q%$6`Y(80uRmPJ09cg|_weC5Sk25P=VXFq)o1uMw!b zKBlHpWN+T&A}Yz^kA`n3S|DH4nA4&Az*S-$3quWrrqcB&8BwG`_7{c@YLyPC^} zfdV+lfa!%*DrB#gSL7=)AQYXgW@{YVo_hK>g8&nGZ9`0=zBR@-_lu{-torcDRMpfl zfQ7G&_7kvSY3#8%=h8^)ct;ptoIBefYItAC6O!Or*p4?2vWTfezEK9ZI96Oz=uC+5 zBP`Dk=ee)1KvUXF^YmCn@7ile2@Op4K$&5wk&#gyG^KF~UGua=T@;s|otMmh_h3WQ z2f^OQ&O??v0%hRFEhS$Z_;WS?y<|3;LG(&q_(s(Ha1my`$QtBDv(St=eYiut?`YZP z`gFszdQ-S46!w@c5)6_DUln{62eJ+CCAF)Tw`}wfDK?rGI?zB z5C;cG*mY#lHmvyVu3{|sm6v$OW%}}73eb@6)s}ua!mJM5H`P|RPDDP^uubEwx>vDA zWhcer3XX7x)FoBOB~{N7mJ-l~;v&C;H82KzU%=+#Dy&=%0yh$bEGtkWD{b9}HvzPr z1?nNP{fNdN5*l~Pe16nK9!i8&j~1Y<#W$)8Kkc(mb-LqGcFVx>BdOP+a`;Sgg(iRDzgv#kA;o+Y&9 zxaqg1e_RS&baoH2a#9akE(Eu4+p(V)cW@EDcmTm^u%ND1TJ`de!DIxoq!-$MCfWR` zA1LCGL|dU_+Nk5^1_v&s838i7OlJV)3}16N6u9U0{vF%c7?dZ}A!K~c&c}C|-=h1l zM(EgM+5L~97}vriltR$|Pd=F!&Qgi-!$qJq zH0F0$QGFfL09ipL_4R*ca}-*V5<*QHmQatu7biUi^7BK4QFp#|Cdd+(Uomg6eEH(4 zxSN;j_b+kOV^;NXa>; z8E;_zKhC~9p31cgn;m61m1L+i$V{k|LSlDHnbRDh4k9HoR7lu$n#d596eUV3O`0f0 zWlW)TiV{LeX&?=xeAn9SO|`w>_xt{Oy&d*`p8H<+8m@J%>+a=dg#-Yi>#Um;zB3^k zTy_^mrl0nVtr^#*V-mLV!boZ97{{qMlB};s%w*DCtaqlLQbYJxK=t_5}eY{`@H0I@UQ=ilwUi~Qg@fW&re zQQjb3nsyJlfX1a*YD=KdI`{C#ri~?W)ZIA$&(`I)ssJkaZMpF{?#59S4ZBr$erxGt zFNB09dsNv{+`x?fgrI3I&dvu@YkqwHTJ-usl6})R= zq}dLfdDq!(8X%#z-m3sE7abifI&C+h%e~{1P`YUXC<2KKG^e+}PNF&U12@CQ7}~cw zHwh0_D$ssnTX*W`!{NQWK_!GW%I_z=O}lx<{>C-q>8GrYZn?DT!Qa?e?V8ixqq>I( zdVNczb$Nw^Jh0Vah-#RLQPjksCBMu}2LGV8I%X_h1PMTMc4TBO>MCVO z{b=zoANU1&cvBPVDu(yAK|<|Uk@W()fGri0XvTtFZ)sBJ6aR@5C%om?U;4o;?bYp= zgC@g<`twFENtbOu5lP{F2Yy=}mi2j4(1zY%Is1E9os#M3WLccw2>;;qzEZcapa6sc z37X@732XS5)9q$^TsL*GHFZ}WOcwAGsstFMYcJiJh=K*|iBG+`LfjRSkSzt7Hx?7F zw&1ropR3D{C<^B9=LAS!aAdAhueBH3Nz$}Lll{7^hU$w=)v!#8)YacF_HI3N?eaH~ z*R7@iFU8|+OdzvsJ{*mhOi=A^PWv>d_u(o38{pYjzMaxDpB#Y{RaC%t)gC&u?{J;AT*c)GMRm-voNdm3*C25ko-;ZD2&L zP#JXh4~?g<<7iECz88t==eytR4Zn6fX-97(w{C(K%-qodA7_-DElakDCVeyHxB4HN z1$ytl-1x|i5*jV<5(S0oRf$lN)$wxtOVAtk0X!^#|21zriQbSgrYMg=H^Oi9FX(L7 zfv}p)DlcF9;2ur26@eWqPk0DK+D!ewzSlrQPyENTxL>+!a^(109GRk9*qzAy(VNtF z%Ip5}Tx@HAqQt?2YQR*Z=8X26g(68AaQ#D!FLR7X{q9L!sot-H`5EEYVzOQ$y?4GV z^~GGm`}Dd&v4%l6(JYR2AA|ggsKD@1p-TPRLwb&Oum+tXucfR0m>b8Kn+FSQphEPS zk0DD-K8g;Imh-(~exL47efNBwO)ozfT!c@#9uV9(y0^V_t(cf53k{CKrizO%q4U>b zTT5`+a&#b1xmIfh?OSJxV6 zvlw@F430sbXaWe%;%#SJNs#F|`y2HDeb%q=Sf$nLyNe+R&~(o;>A&CIDz!xf-Lrn6 z%h0t|Uq*Fr6(-y-uiWI?dt2PGI89fE95?*)Q<(n>Vx~b2hd2rnhq3#eR<0~eiZD>4 zX#n|3EzMpmlVHwZ<=9>i*!_uCO>FiW5dm-r^q>6v@gZnDHFIb6yZuYaf+=f8_6yIK zsXQL#ktiY8DBi}QjoP}D<_l<29!jgNnIx*!wS08=F>{WgIBPE+tINl-WdH@#a<9}O zrUkX>-F`s5>^N|vGzf3mZu;~~mn{Tjy7ZJSBYV9l*T}6>vZ1V?0F3GGevLI>o@aQU z5N1FP@k*)VuOYRAhVil_H}wwJoKKOMkpP@H4HR}0Q&TM$-N26Yzeehm-jlTbx6DhW z_fq;I@xmCWYVUvRj;2gsLCX1wIfejrNOUE(iFh4tWk-HWREc``&TSHBfeN(uugTB< z2s7YN$XQ|FhIG@wH}yR@89i^mrVIIh>{2Gyx8|MBFDuo({xzK!H;!4ccu~Xc;H*9N z$96tXNI}!)$x^EeYZh9a5*G|xx^s&?b4KFM5i&E9#BxI%LTB9C67o>cTz#IKag$2U z_F3}t1!j(_DXIE;#M@|w^LAC2SDD}a@+w^3U4GL3_g z`Z}i|WOk+f?znTafDzQ9MW=bxelj@9-5(`;RX`!w`>nr>Mz7Cif0XQ70n6#19}S!6 zFw5;`+bdT$6N=xH@aAL&q7 zJ3Y3)UhE*fSgEJ8x!)hmd?Bb1Eb4Jw>G$ssW~z!bVHqa=bNkm z=~HHLy!>>saQ9LO2rbm)7p}RxetOvUo(JptJgcLES1P@Ve6iVyl+JtpHDa;~av4dJ zzsq|)MRtU!F<)nTL=txuxj(E_w*osW9SQ`s0D$kecH|75du+kq*qG-SHp6OV&dRatKCP{Z=TZhe@r-M- z9nf~1gIIvpproKt;85k zW-`*}+s@v~T_Vm8^=H}J0#@x#03%b4K#p4!2br-(i3b^{9qPHCkfDZ6IlZJR{f|xA zXPf|T*u>S3QdVKy(0O6uh+CLM-HB4i>26bxX{0paHTL}wk-_u>_fy$F$j%X1jZX5$ zO3yj1O%;y>-vk187yh(ylwuIh;# zWC}JWbKI8p{Jxw*@DItJCE|SeLL1ie4bL?4BF2mXU@$j79Y^IgCSu4lV|-|tYyR35 z+z-hZhmE=Zq^jVLjnN%j3S?%O_UeT`5NDZGg?xP$jGj(QtkyK{2MDNb#k;Ib56Sy| zImBc?CNZ>EKiUbFOdjTcVorVqUpd!AIsVVBc|cp!E-CTHdIU3%3ebs(GSl1z6&lr3 zfIbd?LXI&9gct`@E!$Sl#Dy;$ORdnv>%3cH9Kih-?hlG;r6@Oi(SJw+j_P{-2zqJc z4DAD&bH(4yapeA@z}=ZJcl}47L5ulqd#uhf28{Bt+C6I8lnqZ^PfQN?xY?#;srz!T zZ~dM*ceOR+d(Lk8LY!R-NgspXJ_2WVo5U)J;O&-~stFybtjRw+Iy%y8wum}_E_DIw zAR@X-GkQKJlJCpZKUX&LA_F9x5OBXIhl6;vdq&#qkHn(M0h?;l$_jXI=W4qY3bI&KU4UaWn zvY@Ca6ny`DjPQ@dRE631g9e-ZF~_TfvSiVz&1)do)ct2n6GW?+W64*3`w;whwM$H| zCm-$%HXMn@zHxptz-S}N9jN->Haez;Yn@(m5U4huy}XBe9=QiV;_n(jOuGRo&PI** z@F^0w@a3KDPh1_+#ZH{=aeoQ6Ft(z7%P}Oy{oC#zDpbxR=2D+qhvgVyZy$bKRlY4N+R~fLrc*Il&FW3 z8t%mor67Y=^wFIfCvlfV_fjOZBBL`aSzPqzlI}B40F`2*du946kRJ5XAY+z~k*^Ub zJ5rtGwMTMHiWPzoVLR_!+@B#r;I7e%7`qK7(b)q=u46t83JeUi^?k9ed52-gSaN8Z z6C3w(o+Oyb!ppG!t^V^#1VmKN=SnR*RyG5(SrfhU&Rne;(GcftslM!rdhe`?X^p%r z=5qSaKg>fwZ5x3lb)d_HifX3IPCD%5|JvzH4JH!we*FY8^y61<^7w@KY$ItqiNfbu zbXM}G;LNSU=x6}k(mwap{#@&d{6X6q6bA7b?yGhG5c!fpXwE~`qiBU6nB5L0@EkfT z_}`M2f^9%9yLQE@0-G}KnWXk;&Kh^`77}Q$A*-Mzr?7yD6sp*@6GWt~f{sG6%AdS+CQcXN}07MExwkKdaQ?LCg;*Bi#>uQeI8V7)scS2)zq|4*5#5Cg=xA(_%ipeF*B@bjkg>o&o5+oy+fx?|BPFL`vJV!!|vs75C_$4`+fOQKot{`sC5*wa`|4 z0H@)L1ONDB13&kzSy5srpM;Ip{(0ENz71jZ8>Ax(yh{3dQ<|C08Yn9aG<7MT)3CW@Tw;eYYqU_uLnCPzyqAX8Cd;0` zI&Xl$@cE<)kJqshVH8d-g>LG)IN#b`v5&zA9DyGEhCdF9C#)lMT!VhkB5_Y$u2>4V z+^B*yJYQ^+b}okatAoNC(hvA`Up!%>p-Hc}Zh*U5{ER~?rRaO4gCiwxBBcBb)yHsf z#lj&l?e0)ysmxjZf|Ym?+neoqJ?@BO9SGOTaqIrpN4ax>PQE8J?xsGy>M^Fo;JaH! z-f?fvgR??tb3M<+|Ct5}sIjuqn;(Nwu26_&Xpg!NO-z{+@f&RP(b3qq!e=|@L1e8S zippqVtkeR#F9p^*F;-Y&p!ip{oZU8lVfmQ#40!JPh&cC7Gy9swUgQ`x-VCp z=YB}vz=ObD^A%Y?zJy{DX%0~3G6VddXF5Mx%N)Obd=WbgN+zFtQD@dc#UT8|VShEW zA!BrVN@&@y0;gV8MTQ;tW08WHxkJibPs9_H;Q83vCD&~H4GD~;gj24A>C~Y#GinZ? zDE<~|2P23U)Pi&$jxzs@_q~3cy=2`TUo)uYZctcQwWpfMF^1$2OG z21jKT-oo`Cd6mHaw1EQU zwo|7uEYr1^%$GwV`OfM;d1&0@QaCQei@5^)TlH2IWy`o>lU$0`eKt#SeX!b1xZvEZ z?X$V&&ix^BCL^e=XnDxwr!I&6l8rwv;^q-4vS zSYFTH6zJg%Q?Dy9XVQ-@ z=_r6n**6dPM<7?65@`@X{>@@JH0$nSo)l6jF)JyYfAl{U+}-GQrNVhnhp&OuE{m0n z<8qPu(xO-Dbu*A-Z`lFp!fFs>(dnNb=IGeV7x5dKUDtoPcfrH!{%GdZF1_H8J2){F zVRa-dZK7vwPAi0f%W4lehVR0I=Kix|)R(R8A|m4>1Cke?>yy%NJ%l7dOvN|M zJW%<_hjJk?6+_mR21jug=8)}n9Batz%$(6Y=y-?`74TnQ9 z*OfozncGklD?UCSs;1*w4GDOgut~)_@=}_%2d*3mxaE=^% zuo}kTm8p-O$hiEf^>&9Dg$peJjfK$ou>PIWsr-!2A;tz`CI);a?^l}|s9zW&Yju-R zXtSYk>MUsun}s)7uj4T!gL3?pdq=(Y!%^8kRfP7QBU(zC_VUg9t!_R!n)t;49KF{7 zdo!UL7dv)j;I|j3y*K9UU*;aGdU1gc8Qm--zGZho2)9UuxYRo3Q%1qGMH@#d9l5Hs z+^4XlWc)sZ$)>;-1)?feM+KQFJtHE`(rZ4hFDw_XxxrYr_VR!JMWPEoZ z3R;FZE%6mB$yYc9a>u3*2km0!Ox9Jgn(*#ogX19kfSJX5tPhs_@tOAiA8Z0+UUy2Z zSIZjK$~`6AT+Rb(M*3CbuiYcbbLaF=g$wFmh#5$i%rDuP+Y})YC>G%LoPV{KgvcSr;KdNY40Sc zas>^^N$y9{@}J_6Wh7-WmtLW4p*id*#P9hmj1zHAIOm6ia&{ezuzGwA-;FjWcTX$R769bEq*X@+Kv1@M@ykOh%enU7uv&ZJeRHRv$$jpI$bt1GaTszy^+C2YT zw8RL*e|1P+RAUbK;I@gbZ$Iw}$9U*fgWDg@ik~5AvjSfm2Bg#o0dZ2DFNUmCWF;p`I zlizuCQf(C`I(IJ%^D*AW<%goU?C-XM(y3+WDvappBgJ?CV9Q(#526b-KQ}n@I zg_Dv2*i$dX_Gogg z9pL9c9;Z;&%8hm7Yt=N2W{KyI^fpfp!=+NPWGo~b)2pAwtN^MN6L!&_yF@)d078YF zVh#?=7yu8}G_pLZ0nJhwVod>HTKv>g1~+iCW4^2mnQrr`ow(Kc_oZP94yCA0CN^}g z{tyT)+Ku=@^#kD!wt;OgFF^E4WQrUYT~;F~CO6YPk()wsP7%5a`xuzWTn@UUZn#eE zPV)fpDLg1g!I<&I-k#whQasI3OU`h;R?jjOShJ9>=VE3x5h3wHg>&ckA@z{Zk|dvr zVZK+Xp)9WVCe&Yj?`K{HoG%cidKAL9Ly`T507%gr^#kO-y3~usAs{{Kp}oD&QEofu zT&l=m&(k~~i~g}de5^PL9n?{dI1io$V|O^^8DdIU=f%H6Yd@73_J;5K?uB64WyH!+ zY1V;7WBEbI^8H_ySAgTo$BVaPj-n#lI)rO9A@XpVBeffPR-|WrtrS>J8Z}N9HPB2^ ziPGK@y%rFOCt%*(F+V@3?y(**6+zaWLDSUZ#jgSS zihYdQ=&?@YvFKXRlJ51w?o$$H~K8qN|IpA`PKy9&NG8B*2u7xmfGj;Un#>G68o>MLiIKg=< zuLVF?r=Gh$kMj?`KD9uEMTC%vEAQ@Ih4HEpB{)-c;7jesJY6p6P-$|rXKI%zd3cfc5YDn0xF~4X=LK*`)PZ4tWwHe26}1X)Po}J zkm1!(?~*1zL>KJ#-Zw*uNWPy(cZvV*GUzGqS|^~6^t`YABnM2IQPg)GaUYWj!!Zfz zfIIIV?Ja#7u-T`(J?V4~i~Yr3W)Bz8i5@m6pZ!zQn?()-~}skAQ@`}t#n0`x3=9uH;)b1Ew>aoDr`s^>lLz%^&t^NkFX z+Z%zSG=qvUd9Avkq2XDqtIpfhi?vv!iq=7wIQEuOgI$;GV2B*){S;ka!aOTH8P|kT zgA8M{#eZ#vWH1bnAdDUZM7{v%v-y?i%EO7Eqct}e zc4lmeu>8h(omylP($&SW-T(iW&)R!2o0?(3f(z|#6<$FoNUx7FtBvz6-bLk2Tv8dQ zEKO*_!xUB7M)3TYglwQ2htG<3oL>Gzt?UhC=#n59){K92?n!~YX5eT`pG}*{BPyiS zGf?z}BMxXI>`9$~&-wp7yMs(kQ2I6Uj@@Gn z4K`G)jPX&x^$R<3qu>N0KY+)5rY319ryuq|kEMvhN8Erx4isw|n{ousLg!1lW8K!l z2E7{X3ujX*;kzh|SL6*BeFSzXlz5BNakp_Ip5SC2=xs@0R#UTihu~n9*gT`%g(U6yRi#)fnsL_5yHAHqMAFMsyWzNiW`h=-@A|zgMZoIZWDeh)Pyp4 zBCdbb0pCySWrTiSu+Vmui8h)SSC{GY@YoYvs=H^YeQE z5QR`aMGl4laFQJ0T_Xill{xw^f=j+1bOasuVNmcH#1?rP*YatPl|8IuH?1q zGLT;-LBDz;z=59hifIHC|E$mwlil6V_sf>=J;j8ZbAZ&@gLBKX%H1w@{wQxnXLL72 zC-UGyO)qPeQ!vA%VDD(Qt8SHO7U z!j>4B^L(+>Os@eS0ZK+y4T-B99_NNfn;U%_3dZVB%6&M{`?rbM^f6_gyZ>~$$n+$Q zA2Tc;3yjwFa#C0$p!{r$peXU9JmD&GfrooP&dct~rdUk`uT`y)*Wwi&)0j1YzawzL zVGjR*k&&}6qGwJ+-?UfFU?n-v_!q3(u5_d02oUT}>vCQj9-Qqjcm>D_@w95`KyOh! zdcxw66h&(qlzcmV&e-nFP0&Z1qG+bw5nfBPP=}pmf#vOh`I1=GqYxh(b0W^mlo&o2 zfY6CdRpRg7^nG)&=Ph;%jf~t7*{1+iEfE`TlLQ`SA9%h$JqO;_5|wx)v2H+Cz2~R znoU>|b|xmg5m|i*C3@85FO0v%q0sz~Ua62+%0dRXR&JonD+WTe;aHvNV+N%5-`0T! z66O@PLWZ-t>J;7PFI&!Ybxm1LrmqRQ@5-m(d1NT_Sh9SxcCQzD3Ws%EBXu(`gYo*C zn@*vFBZ&xLk>3I7&75ccM*?7K+b;(OK3RQbxJaAjrHWg5Ka?4b6;JMd-i#8!PQSDA4(|Kf}-Yqgb z5OI4YR8|l1T8bK{rt^9&p^iBTu&#-#N)ytlaf)MbvJi~~ItNsWPvCrS-`!I>B%R|* zQPCcl>^i^WNzjiaHjzh;j9FsqX%x5qvGoNA)N$MaOB{z%bDm`wk2F)3S+j$Iqa21g zlUZnmXbqqi0&No-v*UWU>HJB&&mpzf-JzFL5_BI{iNERUch545smBcq1Jl6sbD>7+ zFoOW!u{KuSt1A1yjbD7I@q32l`~H^iMJ%tt`_G1yNF6woVU$tjv_BB*vbo4Zc#sUg z=V6>9)%^(UEoXU27(ec3`B>2M@c_+oh-D2WGtNXf=tUC@QAenC(o*JOB(lsEWrC}p zoE-(((8ht0m zYAnC0ubKJrHkVp-6t#|jhjT*IFGnEZF9B%m$Y4S^6e=dO;UgZ7CX7glH79JuqW(i(Z|So8 zl)tdH`(CJx==V!#>|UsSvuh}ZQ74q#RJbd6`41rQ>0|S{C!zXZafF}oQuchq;Z1oM zDX7C4yx(d77UU{4|G;zY?3Eq{;2?kdE;pLz%gBlfym@kN4AhF2+xorSM?}oYiD)g) zCU6od(!DK0+q!MSDG9-KioN7S-iF^PiiBNvA|}7tm{kmSXFt-)C4Xb5UY5YE|idSv;VJb3@PB$IkhdlWW< zY4|W@{&CY0&7gI~TMADP?D!@!fibo_>0db(Mj~~$y;sob`9P+y5Op#^<*2=oKRR^n z)#p>zdJ+!-aU{JqWSj$rhZRdhmAVa%eE{~HJ6z7o;0jFGdH)wL^5M}1j+AmpSKGU#6gk!j_lHK@p@xLC3bw7-Q z&|Y80HzGKJI4U78af0WuB$=P6oDYK1wqlfoyIuZoapOs9>BRZHif#U0-D!ZdD)eF8 zwXQv5DvGHz3w%UMF&eA6`P!gdx=>Jf=U+UaOPGFz#yYSyPGAoqK_AQffXMP1wO9v) z)q9SZS{8Gca`4bJh@j*^L~t~e*Mg9LjGhS5QJ|dT)v}U@@Tky`9K;D+sq%m83v4zC zw?gcRiHVurOgu;ojnLsCDFPx%WuI1l@TsefRTshuneh2WXyIkN*?FcQQ=uXgDC4sYe5#xvY{OJ%Btd-9C zX5{bt;`X*ZsfK{>Lcdj%1WM67|9TaXnhs7K@QZc8?iHri?jE77c4PR7gbd&;y5V5R zqj4@R62kctwOHm!#o(;Bmk?=ZgQ#3bL?M#YVRtRp^iy6>%m*r^ny~MU&u~{>VQp!L267HT0$o$Hy;`~_wiv0-VlCP4Qz=%GAnKWN4)pVO{aL~LMQ{b6V(#V z(-90KrIMXbn_YFhjZU1&HcBTocJ< z^nynMT1==P@&E)yf*6Ugj09)j-FN5j4Dy6zNgjO30i{jR*C;>1wXe#~C5PkB4y9af zq1(y_JZ%b&p2#jp7uVCxSo7fCCMSY%uV$&&cq|?Fu*+pk;!I^MbYsmo!a1%lCYiQFp*rTjsBBEvneQZ&Drp5tu&66 zd&fJEprU{^>KWg^5+Afayb24UgVArvLu;@66pNZFiyMs0S6Ud(_w3BZm05otY32qI zg{gHQGAI@6f4XNLOxHft5d#4785-OOgYky9B{$t~58M9NaB;*QC$ze?)~Iaa*QxEP1c@2+>iHB1}sUWJtB0|^pd$Fb+xJB z$9ijV$k?nVDFl;sX=gpO-hBclCRTVg4`=DfXAweFX7hvN$M#9@wT4xj0a@ zSl9^EV$-C?+uMfkY3$CU%MXxmMph_E9WDhAp(u?Ed0!+BhC3ahY|$uD0*kdqe^1#n zZ@9~>s9{%lCRM@AHqj=qY-tYbH4eJcfqKuD*biiY+>WGE41LvrK_d^G{eJ!alxI1F zNmF|l(e3P{Hwulg0*FNfl8Mv>C0u$|@8ij)xS*%OHWwNLQ7D_K zyiDu5V_HWw^t+43Pnh2AU}PjHEdU>E?}o>~O~1VyACz$`Ty)S#zxq9mm&O*>;mn>* zDEHu5w22jnv!_IE$fUysy3Q(0jeryY5=Q?V>O!mUnm?>N`@s01!tllC?BgvP;x5Hz zj#X*eKvPucoDat(y@CJCtypmb*-nmQ#B?drL|3;>pAhA03MAwlfu%_hCXmtpaD6}( z4%-2Jzm|=mQ__PPg z5{%G&SGzNzyLY?LmnCk&*MOW+>xOsQ%Z3K&5iaP`x<22cI!k18?N>ETn@cJ`@+yFh zKa?j%Jm_+&KTO`6-$XAY30Xw-w6{A3M{DmAt;+8B`1+b62=7sR_Axo~yjD)_Bon#; zM2MejIP?bcQMrt<4Wzett-c!4215yPQ5===58I$vA@WvIr2WhtGG}D-k2}1JjD-23ahMaifXZ3}2 z&LaXAF5xgUoOb3BU;i#FJ#A@1&J(`(2(o&W_3qDzf15P(h~E0umB=hyZ`@Ye{p87O zgfMBE7o&kquy7721x5Q$YdSxZ#4j6LOA1>Rz~#2CZhX5}(WD84k8@ueYPJpzCpUlQ zh(hc}v@_QifBwz0bf-fZvLBJF>fe}`42&c8g;LR{QJ^SHL@vUGKNH;8sU@h*v$ghl zN3F7WoM#br0qnN_^pb3lNwl9i5Awk=lgAj7n?-}{m)t+<4gA?~3$Egj)F=?ETsy0$ zA2t`f0SShDNRpIktKHm`n)1ESE)P?5JBM28j2)y~ADMXgET>WM>$9qbWdjBsUD%#g z*pSTT8SGOCikSYT9OM#C5N)Doti%!zgD9q66xv+L3nqG8ygy|g@(&_!G-2r*?XCd_ z^``y}(al?%`wi9?L!uBg`wfKaroNjL`_pgpvM4^wD^BgNYTa>Z;4W~A=0sUpCQrH0 zhttZTbep(H;BlWAS=ewB3Mzru6qajEztlawsxpmL>tY+EkcTQf+2kRJ0m*AVDlNjn z56Xv{W6-+ATGI;#POTJ!qy0WOT=KZA_1mcxBPOppUsWb@H(Gm3=tV`3rIlqKkI)qW0>PIf*TwZv$D4@c_ENF`|PGd@*T$RiO`7IsHg4Y#}6O@XdLXKLbWJS zd=N;P9|P_YDYHWLJWi;K%Zfy~$gK=}dGC*jGG2>CspW9GZd^o7ROeg^xFUDZ{n*V9 z5Su7_M?XbDm?ocFgv^fU%AQAZ_$pgv;2to6jh*{j2D-hJw^}V+823$n84CXPK^~XXV{a-{MCE)*HeYn(LHI(BZ~e9EK(7pnwre~)vTKXI8 z@4PI=Pb^TmJss1u+P)rJ`-6cA!w7<6qZIo^Uk7CZHNr$Fsrw>QIS_TGbC;>G#0=Rs zTjjQZ{7)BzR-F=8QKZj!7|>D?KC&QrhVrCBsf|Ua1lF}UtG3mt6z^A9CVJE4%FR#F z9tRYcc_vpv<;~6iJ-8i*!BI3&$q6DdPhrXSE9A&$?%2D;i&g(&J#q}7m9?e@^Y6%G zc;=bgMT_>Q(V4^BP$OS7Tror(O-_hN&Fy?~SpCL7^2~$)!7He2RnjN9fD!TYh5gN# znI8lmDqfCyV)DWI$3%K>r~bFMRP>K7*&yPsui9CVHgyZ!?^IN>SJDAvmwlBeJeW54{|pUZhs|Q+Z8`5{k;V0)!<{gG6%81Q|0vX@#dE zKR=2*Gts)-iVCjm4c11z$@L9yf0P|05OpXJ0|J?o8^0TNell!qxP>~NMma$A(m>@| zots?wQXsagURb&$VWD{T_^b}E)(_Q&5O~R0zv)>)QvI^!xz7oDXnh2xzKYGIRn1$S zqgtF07AgjZ|5!Rh%g7|^m}OcMNl*l)p6WG7*}Dil&(Es&eufFm*(Hakmt78yUJW<9 zF%#=J5saU2g>wVbSd%2XGc2Pa->L=UL%i~4zkx351Zq~vDF=Z#_5EAp+@NcF9#0MU zmXZ{1I#|g=_GXsi#xb49!AwHG!hL-h^YcMIrkX7M0|38%f8aleC!7+D>3ecBxCmu9 z#@YUH*3Cwnfs*#UstX?L>RNy8K)*F~iM^kq-A|ABt)sgSFXevIf@#jl=V`;SdjbDxRKsiKRg0~~hMk{zsh+4Zj|6#wMT#8|D%$lFE zO$zPC`-vXaH!mQz0&1E5@bmrX&&x`5>UJ9^?|cvDN2UMUGp>p0D_paVHP=t7M5O-r zc)N(j89B-Y>r*J7J~8*m;rU9{<^CX@PD%xEviV@sbL35BxB!j`{HPX=#Ukt0dfd=^ ztZcT6rAn=3TKKFq`y5glFcJ616Yr_K{2f`^iSLCY#7%-sZhUa3NfW%0bYsR_vlgi4 zOg(d0;UuT`{aYStrN!7W(#sfJ#HdyagA$7?fRf~qks9V=crvJzBx=g)*LlrZ*W!1v zJE$%NrZ$&9zLIsw4b`9hiF}0e37b2fWc}1$P=#@sR>43b)Y7O82q$s6i{s*no<&72 zh^=cCepF(CI~=)3;8`mV2cehn?ir#m2FDE93@pSED&; zr3EGjY%Z+6cdN6BCWH3eo9x=%b$mSDDsdy9@)|9P%8B29XnS|Q&H6bmtOm3>8|5fe zE6HWr)$j%cA^W_ESg$70d<*5=C^V8yPXrvE8M5(K{KO>=7TYeMn6Fy%3{T}Bd5I|)sqZKuw4je`^@vOc>Qg{nrH zU#!HacWcwBMNjT)c&PBlEu?C(%sZ;_pxJ7(+H%024)Al;D_X7|Yk$~V5u{f^>~=64 zZ84kI{gHo)2O-H7v0HA$PUIua7>Wn^ENcSW%Z?-mRv#(OAbxZkj)Wt;c4OeJAd#EL zKZC9!CDGPL3975`5ywf=^-^``U)PM4Pj_vH+64mTXoPWndDOIE1fWl!K2fH>yrCR3 zybtq13To4P$vL~d9+no2=`OSoXpnI~3+H2(x;>~NyR-wDRtlL^qh2NvuEBT|=p$1->}?J!MD%fHA~!J# z2O4dAzM;}HzZ{J&k!5yW9mB{4Y;?92{6)iAc-KTsid_KghZ~zP= zXe9wO8kBqAbL<1hi=4&|_ZSgBY1NPJjiM5hJ6u$t&6;n*2N-6WJC4MGX&c=M%Nt(i zwE8tpnFhA^W@~YEy=Dza1X`puL-HnCpL=OM^v;u*?}crHetagVI&4q}@Z_CN$tK+m z!v?IQn55r%!p7y3ngAcd)u>Ne6KBvrCq)m{TwoCe;07+YYvQbm-7iz4Qrpl~Fz--CDqA)3k5xKb`h&AZ3O z&K{=Do@p2^2}CaSF8Ybd5yidL+NG0N3>I4A`tfZO{BU#b77W`M-5Q%^X0-x6J5S7z z=i|1Y1$D%^MWHwZY@2X6!%6Q{WBdDed~4n_5_((IZI^4y{0y>TI0DH_&42d{Enu)f z&76&1TbVJPCq%xrQnMC$&NSZtP~-jLTI;9agKCim0a3;r&@{ZlYOXWPS*H+SNYu z01xgTJ6x&EV`1EcPL$T#!$1+6QIk54?w-=iP_w#xYybtGbR6s?@T{9p82(U2Q*adU zyHL{Rz}TQT;&Jtgn8N3GfHS}DA2F@RU;J9}iU_oS{V)dd|1*e4v48yX(JpbGv#IGp zG}bp+Q1hoeZ-6P0+`RbNYye) zeIWMS_=ZWMhYBAt6D|pa%l^dK0c_inT_RxWGqA>X#w1JLTUIcLW~Fj4KhsdY`t+HH z!Bxl|2r)*LqBM;mA=tHijx6!4e&66vcT>A=%`kF3kNtYazIuBCKGb#W&Z@#X8nQl_ z0FAPd)Bu38*MyDpcC+;*ycQGS2^9REwRyij-m+x~1+rRfRX7^9$^&cQgF?|?$b}q% zjRAk-KK6Op8y&2gP$X>MGr{`Hsj^CAkOBgsLuIcOV{F-I(yI%jx&oajLosl`N4%>8 z);~AREV;2f@cX;a^=G4bM}}Y~lHodx8AKq^$f5aIhl3c77F{k>_(Zz;2=)I`UPfGd zbQe^ls%XFhY3a%f#p}6Ko!uv$V?xFP?r4S`K<1E%ioO{RDhF!Ghm}|w|GfUd=0SVS z$d)M0Shp{XJCXQ{(djA>Ti5t8AE^mx zX|=_uxw?I(PLy;d0E1&$m^K_m`8|qzkF5>5oCo`5UttO&<49u$CGY?_YiVCpz+|&D z?LowHb+@5ig$+wY)v8vwCMjI+RH+zsoFGb@ykPcVw1<$x&42B^NTH7}FjP7Z=prA& za*3dy5*Lf~UmP)I7J?zB&T?1WP>DZfiD+1zUBFb{*rD`R5b^U1aZqxJ?Jg3g>f48< zYqI3Sb>s+x6JCwMq=~K%k8vVrLYna2H4L3wspx)Oa;wl&g^QbJx6|KYZ7#now9N)zLb}K!`OLSSce$`R(eT~)HomT>-N`Q z%BHTOF-S01z*o&3?h-d-d0^Yh_VS=EzqwMpAVlCJA#w*H401-RVg!%D4Ek)RUCe!I ziynRsj$Y4-)-d_0w6Xtq)Ual95?!o(mEkO}xkzmJ<^p0LWkEjOd7%yOW)MH4dT2So zwmRHEwG;91_#Bj!XNbrG>4$D{HnmXZe^H|gXjBHmZx14-90IfzczQJ&DMSjr;9qF01b@q0v?lj1CPiNqL^ATFTpVwhIuX15{PdsoxJ9;I{e+jV;dHB#mov7tM?Gq zKWp=a_#pZA54sM9PNNG<_LQQ&Q zUId!mM$lj(l9$Yx(~uhH`Ti=dbah8QNCjgEhD0`zOOPaWMbN$3>$Bu(S4px`iC!KB z$hCW0p77A+V1InM1d9}xUP1JQD2aek^Wa5B)95a8B@gaOzErY$vw%5%`OSbETQ^~i zDI0k^J^9ap_bwN+cN?{_>Y%9*K{Vud?htXJt{n~7gud^dHZrwMcmymW^W)zn(ZueP z^?wd#4SURo=!4)-q+Sj0D;KePO5?VRaQ~S;da2PH_66MBjQ;Wd4OgFb1&8BuR)~m1 zZzP;?*i?60QedHJto2)#Uv##hi)|r;29cWG2w+nwimiX++hbU6 zEcEG1%9%jI(>VS9b62r$YEI#aQhJI!G#%By0!_3r3c=C+Fh6K{;sMp}wP>{LqN(Vp zoSyNOU%yFc?~ZH~LZgTWp8R&r*$ky*%lLzSZe5{bp#V#KF5h6pMLU^)&}iF*d3+@r zb3lBx%a=20zXIAhTHE_?`r;Y1ai!&GOi(U8akwkG|MpdIRtf5YNWi7C+U|Qi)I@48 zL*3|1zzZvfZ|M@Z0h61m7?8M4`@KO))PcLFD_5<9Jg!q52z;(Y3vo~Syy$n&&o*-S zt>dbZm4X343zO{#9<#(Xr3X;#xNbPvCGLn65Va%x=z6_)Z}I1V%4}cDirO1*4n0-s zq{bWCVX6u%TwGj*qW%Gz0GDoKst%KVP=5*Dqe{Q#x4Pl58#CWIFToZEvLpHa!?sBqO)m57mI8#eZxv(0YlZm4~ z0Lxwe+A|9Q&Gq^8uay@|8&dw%^Xd8;(*+6WrF+74u$gu4L^}j(VaHvG^M&jxIGb;g-0=czz@Goe!Jr9CtlXc~Jg#rn<`h zrDF4#t`B2^oLj2D&y=XJd!KeS;FX_`%d5k>4Vw*JVzzy+(!Gc(&nK3gy(f#N?mLS z;`wObvkh6G&W-{JkKHpY4hv=i6q?ntyPCKm8XcA>7Vh4?E02-e zVU+;VHTF+`$3sPhoto6AGFuAnK;|*`=#J3`4Qkg>ag1yy2TZ)kixWlJ;{qXO35)j! zTM8XPDx~u|VXFg34nJo+KzDlzvEsqJ33odA7l$+cyRRx3z^Z?hOv0RL>ON^<;5C3l zd3f;APgHNACHev_h5*~AJ)5HBT-S~C< zUQo3GKW2pFp%$}vbA8@D)sDK|r=zdm%4`|^6}~=x`@zhtc>TdTewy9C{OC9t7$J`8 zXs|~$$P)2&CvE$|DQnx~M@A=p0FEq1;H^G%8Rps8jG&e=i7{2XHvGPF9M4>zmW|qX zB;Z!Z5w$cam6@pz2F3oOv7v07Rm4{ItzZq@xu)VjRTw=F+CA?=(t`d5$kbo z=XehP!Ac7x*%Q?mJa*VRaEkHFc0wTlf0H^$gXvDT;wwvTDD*zi#K~>+D&F;C-ked3 zR^BDerM2JD#8}uiVjwS?DA}c^5N<7yBbP~vmv=~vx^C|R%ffA?Ic)E0q!RfbW1WeK zNxOM<&P40}*G@gd#OlLjjB1{Jqxh6}`vj+A2vOermDj;~ovx#cUk5r^QS3JX_E=P| zJbh@3TlJBSdgYT^`un1WPY7jp=TAy(Nr61KoBX?P{i7ZyH8P?R4yYPQNb+t#o?ki2Ci)ImdpgzXlD`s6wH46I?#Km8`En#^d;l;{@0ia@ojer59 ztmUjl^!&0qz%e%&6Tj4D#&EWi6|qlvERwy;wne?Beo%G2VP9@hWeN)^-}abjYP-wgu36S|KU?=&pF_X_XCk`to>j(mFN4{TyntS+P3QPV&XD3)kaK z5%fC6m+4d(<@PGMmt5X2^-1JV29WJADwxAo()k{BizrN%IZ8sb1}f?-8#_ijc|~dy zT>y~!LBHHUwUr1&QOmt3cGg#97kY0Y{tAuzikK~(^2;~$|$`E8WI^Nmi=xBUAow+obJx;@nOrK!5SLQW*PLn|IngS;7cpZE~eR64Id& zByTOQrz)U4b>3%m129GrZft+C3rTPja@s8Xngk&SftIscIta|0cdfU+Rv4R(>EnSh zX-rg3s;iKF9)EEI=_1JvymUxmj}Ec)B@5a|WmA{(T9bF}1$<&I9ZzZ`Qb2)Mpn=22 zv=UOdAZjIbDsr~VxDO*;W=!5e0c9%(5{_Jo@Y1spTuS68q~v zz0weN0PonzeEfkg5XoTKi!V6o$Q+exk40OWj&ZI=26wbJDN`3ztZsJC2+Zt z8;&6LGEZHTdSSMWf@R1Z6vZLbm;Q9H3xn%11diLaDq!FyK@*Pyr|uyd&fN{ExFw_8 zyQFwlE5L_;#C>*-m@0RbEfkkB^El*|=5SIuoudU{;-B6${v0A<9-usFqK2Vt^k_6| z;z>7#6WAg(44E^*$Veq-{XYYzI>AqGp+b`k&riJ|qHexB45&3o2qP8O1Ozpb96e33IT+i8lbJ-WWTi?67ZnvH9XqD*9$YP&$E`(vZZgwy{|=%v zmi-_;GBTjUf&Ps&{6N>THMWIKd8$&>*ci^X**~3G{f=zXAw$S57TAQVw)4>iIjq}V zlAMx@{LJ_WZpVI2i#>k@l9UZjQQWR1%<(k-BnSySq%goQ$Ik`f95mwAMz`+%E~l2| zns}}nTkjqdp<0bc(4=X`psfqXrX?vujQh*?fsu4Bh6uhJA6|weV~6=)q%7U>eq)wd z#5grIIllv&Uv5B4Fkka}(|o_z3xe)0?-F?=?8SZop1iDZpjcF zSBl_Iy7dGZ-vsKl<^BQ(0sN-lr&pA%VwS5YCNkF~VTGX06}RD_g_?dcTkK)FnB9Tf z$SB#Yoccm8t)0kuZS`9FlNqH16zJeDCn|>l4IJC#grxX?*N+ zdf&9*H6wPv{bQ@U_ng%!tg!7q(!M-&J@y~=1!7gVds1lCHTe|F5-6pK)uS@9LOsq&JeBD0XVm<`&=aJr^qdkyYV-%Uhf zPRh5!m0z&txOSi3YNW(#C{Gcp>gq%?z;v*H4(!{yM}(~g@WzJ8pMKUQo1cYc;Qc5u-IWBHs&GzT5lVtO+YZqLEMT@Gr3}a9|l~1hUx0++OA(iXZQXK045Ps zO@oE^X^Jviiir6|P$KxE$0@dR;}k2s4!6}f28`LC1`1&;v0pmTI+z8fikvkERu<3^^#|`2Bdt+kq0q(rf(YiyijcF&W!uMofre|NNgOmXEF_C_Rps1eqZY_;^ zVUlxcrmv@z{}Xnrul`UlW8KaB2YmbZjBG7-Z<=O<;HBE>!tz?Q!0eOv&15Hr{b9Tg z2UhC#0rcGxB^gj6kQwja1`l|)2GE>zK$SQ(gjgT2_(4zZ^o4I1EMw7CBE*j~@1Qh- zhRnUYpj46Nu=0&0oul108-ha)MEfEACSPb`+ z&vb*!c2&X{mo>4^NVdNrR+ue#vsfX4FH>&pxxR7~eTk)xVcHIe@p}R+t`LC}P39vz zVujdTz*F)Ge72)B*7mV!%+bOM8~GxJO_Vb=Gb>B^fWx1TL8%s%en;6T(Rv)1)8mpk z;x(K+jI#g*@~rp`PgOND>Z8na*!3?2+BoZOhNV0IYC)gL{U!#9j<9v9>CO``YH)VD zIx8KR{I*FkT75O3iX?|kSix+<<2Jqp1jlwXsMoJlez7ON!s@_@D=zUH+Q*3#OWDsP z@PkzkE6TvIJKb7LbFi-nB@P+H~cvS!#2fgVYk@VdRT43 z6I^yV?Lr5Lhrf)BW`H%i8!3mg!*yhlByillf{|JH)3#|F<#>0{`5D?$<={y>QX%-Z z1cPKGO*yFx`jR!ou7C2b;-#?3wt&Sp3E(C+Kdb&Z<(&&^zz2{{IH2QMYx?yx8$(W+ z#)?wxeE!D$TkU8+KsmVst#T@+LZ=BgXG)O%tApUlp#=k3;OtB{H8o94Oq4_1-zPI; z*B0gwQH7Et(1Ew7;(w>)F-zI00*lcBQqj<`*cywxG_j{o#AxqeE(jA9e?f-5L z99*Ekksb6Y!RTlDv+7`GzN38P2L@rfGY3zfOdQzB`v6=Uk|g0OOsW^3Sd7qOT;&lD zZDj>PH`Lwhl_NW3wA!vZr73=dO)fWd^fOTT7EVQ!fs`>uyG_Z5=(WZAkWni_? z+rwR9-01v<{tpn>7l|7$E~NVeo=&k|J27KY^1pakSS#h&gmNmz=F3tj)}Wgiq$fm5pMa35L@ z#tIMFf5xKCg0zNQ+iG@2TR8;l6`vvY=S6B=`C5T1TQ{>{k33N{UE>NzWf#V0Q|-{0 zE(lBczoofiOHEj4x#nW_HHpUl<`!NICM0cN(|<47M_mI3>t^z%kI`WviCx)Bhup*o z(tmXNYnIj>^zKKX1vxIN={RI-Se3Nj@7jj+mF_{0foeQpL3?+-qY{DGfZZ|o&1}S6 z_sTG?I58(scL$FadzxDgrEw!a=>96Se|aYZUafOggCa$!`it0bgA(345R^ua5{<*W zdNY)nwZa_eattua4rr}39W`eqacd;b;qRM^Z`|v{O=O$0W%4(V{)ogr?u#~b)Gi6d zNo-|vVb8z8rZ2gXF{F<_X3h{Mjt2WmjAd8MKaDU942bi2XtGCLbS-=17mY)rwE9LE zN6PK@fGIM+M%l2Z`41 zu4L>^bYb4GS+89oGl43bHPz)py#JJ$uu35C)1m5Fkg%E5M&tg?AhtSp;RwukNN%5; zJ;zIZolYzBfiPVV=Lr{n+;2Q)C_pYBLipeVU1LI!*N=sFm41`g7jsHb-D>`Pak@+3 z%$28V_r2O%8|T4eVh~=vCiOU0i&ZHGlMC|`>!S4izHR_@RaihAa=`C$fEK>xCx5VE zlMtdWAX03(yFd#sU7!uCw>>nZ4_*`>i!p?BU1)3_t;~nJ4+pk461K*2QXWW_mrSmv zI5dUl%3}>?2z7vQ9SSggO4Q1u(Hg2kgU1+T%6df$z;M0hG5K|*U3kl#QC$}-5QqV` ze85dHg+QlfG)Dw=$akNaG-Yi2bhGJw0CoI~q9N?DY?_u>ekLV_J=myZe&BrEV@q~z zWkFl7)}Ysi*)S7q7zFsT^#`;G|L!glF1MGm8vuc}fE4mKXZCeyg`7+hE?t^Tpbqu0 zp4O2pIkjdysxsBX5@hImt@yr7|Lv^ztYoSd3jz=M2PQg#G$7S@03$Cp9WMq4EnQhB zvl9liO%n$6dXhS?%TCCiBOMtsZs%vvTXu>QHMWGuIpcnR7x>sM2hs2V!vXN$sRR% zcV3Wk6BhINzAaDTG;(H6CN*eGMv$b%yR~3~llILw6r^d7u9N($RRF#_cWQ%HUo8S% zdG@i{F({0v<6*8y@aWheQWeJz6GYpP6#zV>_(X+xA9#qE3X{`iO1=Ep#&rYcK;2v4 zKWER`2UnO9CUY4+%l7(B|Gu(xfm5=P5FJ1e1JBbZAqt1*|)Kv`!#J+CD?C{==66N z7a!}ec82fk7WHNFDEJ2 z#HDOflB8MagLObL61&>hi%WIQ2oJ6xZ?!!Uw0_=Z!%7t)2^Ja&U5dGbvOq)3HxO|d zECJcmb+3t{uuTc;zG{*hS3RG;x7X)c$ua;R?gRmrMxV=e+xs^jCsap7VVWy`En$NI z&V2r&bHDsiuLH=G5}5LIRT7S@Od?%T=s}`MG+QV-{Vi#0ZBxbfANZs;?$@v7euC8m zwhje>SFr(64gCyTOK1L{_P#uj>U{lQXPD4!QkDvpLMdS?DH5mMt_@kDO*w=j6%nVY zX;qSCvc#0FER{%>P?J3p(V{TcC@oUf_`RNU>dtL$$J{@De}3;@bE|XCXL-M$_p`i~ zuMd9+zdaOjgi8zg_b2}P51Ca0r;#C$^7h<^;W!~lTj)#AI+s4|^?ju?D(&2-{=BO` zw+AGW@O%x#7X=lSGr*$ER@pLM4v)w*(1-EvioY5!gp16zwG5CkP7<2!;HMiA(Vq$E z{*%VbNFbQY^gh1YLa)~!J9lbnjMaZW@V_n}wr`^nZa%Xo4%G(GPAU!R5O`ias29 zkL$~Z%-On}X;?>mM=*g`^lDn{VV>ORkh?EgH2oIxtU?C!k zI>;9SeI`}zY5z}0-Rf-&fYvw(vbhQpWYVlDpdS3Rb$-et7Z4>6H@X!O1S)I$E z);+1$uzscaBDK(g3SN^tQJ;`EL!vmS!~eZX|Nb9hVN8@ojTn=iG*o*kSE@9VaN6FO zzX}A$AI5{amV*6PA^C|%ij0BfSQ15`EDLk!z!p_##?k31%Wa^umtx^7KRO>cp2xzK z5kcd^>1&2;PlC1N`R0!{9P8?CcaWrm0_E88r_S=FJ?#BUFM1CP2Qe3khbUhC1#P z39t}`Y0B;VlUO5#3-Ifnp>y7Uzw?aOGJl-H%$djGAzd)^xo#*L+L<38lVu+=rj@>Z zuGDq@rxeqNnJB30^n4-J;S_nE4H0r1J;oDAxvGlyYXGXAdj+MPbyY(?l`G$U1MTZK z0arhSOxY8<5=HUFkB%VbZ;X>V_x=0EOPa_geCb|HW>qh!yS6MR zs~rr3in$OicDtYgpV=yXOJ0j0vYwwh*sViOfG4q>;2L{^hEITo2`ifkf$Z0V8#tm} zFqc=A#BVB7j(S09?uXm>){B;1u!L??8!L|N|(d(Kf6}X3Xn&I-jTaCVB zvBtf8rjl?#U?BNkT>{3UO#wJL>#v#e$xH2&C@P{%%W^rG#B%`(Z=fD3$9)_CkdS7Y zKcSaCv;GunTxK?%S^fVy@f{BV?rp`Ha44dr7Kb-pqy{0s#s7{f>7(`cErf zodrR$Gr7QoN`ZHHUyfw;3c$7t{POgv9Tj+9WF*hmUdf=T0aR8re6OPu?lpN=rxl0K z=%S0q7QB5K7aIJXkij$>Wd)Sgbpq4ODZ8+EQE^GhR@5o#lWx?bYFEaBYY1_E$}{dM zPDL&J%Y->wmhZfF=SP-G#KArmjgRMe4-N#rtcu317hb@vf13UA-{yRO4_#txCPb)c z{PYmpN3{k6V|5D0(+aIlVAuRYyXLAtBwkRgKFmt zZ2vh<3+rvd;Dp4WV$}gtRUzOGLe8u>X?a}sAYxVP1FPfzZE^eM9TqO(xB!sU6~_?d z1*Uf505%;*;A`5HvUD0VvK&o?QC`0`^J-lSKFVNX%!;#4126pC>5rIwE|1Xi!Yt)t zb%7e)ZxEd}7Ju;KK;aqv`URXwN%FHlXkI~NEBhy*B?w2W=VAGTq^EOXW8XWu-!1-% zNDNW;hKj^JbYj26oM-s$B*)F4d1Sd53CQn)+weWY)u=~6K#op2?xY<OUO9#R3US47#3*3@pvpro{(on3mi$bdy9;>V4`{)3Lo(kjyDuy~wz(z>PC#o4vv%WJo2~pQTN&%3d8nRoYLThyv0<6iJieLYGm45k?)jzNS zs*T<^l=QNq$>>jZiktx`Di{lpn$<=FOwtBCVVyelq^~@0f&( zMPpyCG0KeM`6NuH`e_cOU8zCKr~#OOczf3lEQ)u(;8L{<8>krMrW}9&k4?=2pwg^K zG`dogZ4vH(hrR~eVSJvdzCW+qiyKAGHtQXp07_&Uf18G{|1dbmjn5W(jgV{d<}!Nl z*8%r8OTSGM{+_8=wNuva=2@G__zAF~)wL2>hbxaN0qUI$s&T?vOJCg1KjudiaG<3= z19Z}y<+{2>!UsHHc-;V!*oMuEM$_}zO3x>zaXzodSj>1Lt$M2hBPY zuIEd(^^&3vna`r-(r>+J2EJ~!3A^Ho+Wp|YG~>pwdyzE+u6vM~Yz5uqG_`X{@{xdq zsg*i?nl4s$NC{F2wG*pKG#M6pj9cT=iJISPW z&6ua)BPD+McRGWMO?tzUF*aSkV#SKG{8>LU@?=(FT^l5&FjWk6K7RHeb`B}#H$c$r@0f>nSK-FWb8jYxpi0QS;sIS8gZ2eQPQFqJ|dPScgIKpe=UGxdg>2Nf%}h4ZOT`W@YE` zU#{#dinaG|9`C=UlL*N7XGr)rycL=e=C}8Kch1n_+glT6eP;2h-?0nlu$!(2(I`3@9_~WsRaEVKzg^KJ$Gx=sbcx8CA>GX>!&-@v?lI6#k+B{Svy3f-DI+a_>>Y}ge zUJ!S`H+I!Mgqr@_TRv2D@B-f<3|>*Zh9#aygGC_z+M-EyH^YL3Mdy}TaeDb*u97HP0DEbyo*8 zCAzzPUc0W6=`~My?q7Gd*6zxqcY(|of^uhW>Zy6}NR;xvG;V{%rnYW=eSQ7Ur>!Il zwAdOVItPC`m)Pkr>F{cYWp5Dv=Kz*YW}$rxi)rz~s5J$aS%uxE%898mdki8a8G+tA z43%|1eSVQDx!>H$0?Q1^Oq6Qiky_huQ*86D^|qO|Ha2}dC`=5-m|^VQ0|vY_^a%F% z9c6U}XOciZp)_=Y!bqSk@ zUR4(7kto*l-g1MYWpmHtrZKmRM@E`yP4If^7pmqMav?<9doWqW>unFtdA$dyV>iAB zoLQ0M%}35HDI%V5MP5#(1c0Fs@zndR1qJ!PXVhQ*Wfd6uqjQn_uB&tt0P> zjSfQq{QFX+@$9CfWpC%c?7a{PAt#}?Vey(eCkl0kZZ?S7Asg&tC4!bMHp3@DsL7An z*)MC}FxR|OyLa&x$n7}^_~*pSYo81B-WOkEcgiU8mVkdj^?K#Hz=6{S2hEnuqe^}5dv zQxDV~6qYN|G6OI_CrzR=l-0XPf11j4c2j9Y6yNK8+vb#JShF)hKzDkK=^L;$@m*J*?jg75k2P?(6j_U_;Et(zKu) zOs-xfI)adrD~7|7cz?rzdH%CaJ~f>)j%iJMW*`6dcJ}Mz1j#!q#y;0-1^Fq0ugcq zR@nmeBvw!j_S$a?cWz$AdsdMi@e&P#gs3vh5?)NsGA3>%* z9$^W;M_5^=%X|CLF!HQsoot(;`2z%BUfJyi6DWGw1K@FzQmjcXUm7g?k+YbY22hf_x{Q|-*Kh+;T{%~U@i%RUXc?&Y0U^>o;GTt&`4Y!(Ax6ycFc_<}fZ z9ec4ocRyOQDmp%TyQ{R+Rna*!ZU@&(9b zMZlC<&i^9h_5BF#oHxIW8^N9?q4VaD;a>ndJI)wpA=LONM>ibppHWCU#nf<$)?3HL#gp4^RAr zhyouw;`8er96wn!O+rdfs$>In*L94}IOg89C|_2fZc`lB$qT3}1FSYjZEgZwd}%)B z>xonHVVZLtLF6ykPP3x?4-aAEoDN>Mf$6HuH4+fTez`#1rttTKveuPooBCB#;=iq z49?C9`Tu!^bJ4%6kPtdSErtI9uZ^1ftvuzppYlwCP_dN5eNjjFPGAk`exM%O*Ze!i?qWVzG$RZy zau^cdkG&@1IzflDT7KI)w-mW$(|#1KocyWK8NWJkLHi-k<`n-GrCsDvf|}Rg+HB1l zjxY$Myi78uj7OiIP}%7VW=!J+sYKkkLh$k}SherTZeh|6xY*#tJ+mK_SO+(&a8a4n z{rHkp=bik#Pth`=fS{m!ES9a9DH?4Jg$yInIsr3y0=nxTD9dHeaGpM*pT zN8&0xf0O^78SR$?+J4O@-}%+YNc~mq`K~|q1d!k3*;SJ#5*j*hjhmql(-A$Q$G=|D z8fNcIryf9xU>2o0XT3?(Cp?$fWj72C>mvgNVD!MCEzil8NTHxyUL98MylSM>UC(Jc zNAv?U6y{at<6KNv0t~F?gDg)Nmk(wvIBiE)Acz5h)|Kaz1UNEi_|G#Sf%eujf=0+3FCK`jgwuifbTdm_gv?9a+@!8!nQS=;uCM4 zAZSWszHg;9n)YokF>)aRiIbOJp5SBe#H?e7<$7=4L4+~(366qB@QROBR8**5B4tO8 zVmahugyoj8L=I>2Fxlx^S8gqjr?9aW6 zKl09t6c)07`AI`T8F+UCYhp|TC7?|sU-myCcoB?u2yn!n;6Xh-o4_VSP3A-~mt~ll zENEFG#{1^O#uH7B+#Jp?JjZy4*6eRIs=+aiHTYTj*!QCeeV^X~1`$;_l$HHx(vd&Z zB2G;CC!z-~`7M7LP{L&AF>iMS@SH@iwIu{7I!)jP>~Q8KorxZ9tuW1bc4I^y``&E* z`sF0TgW2T$8c%+s$kha=u$|t_6A34>;RpwngN*DRF8bW*4B$3(E{q)jdN|>(!oODd zf5Z z0$2>j5(^2kn@1TpiHt4x0F#OSJOk=^sX?o%!Iuie6Ac_kqbOd_BO!$eM}-EcNSr|X zJIc!o?ORH6^8nv4&2XNCe)JaXLUAb;?>8&6dNdo+M1{<;iMHWUMF~F%?4bLy{?d3u zA(6P_crS*Jtax|pWZqq3Xn$@quH3;Ol8z&3udhHiWeZS~+8*KKg+w-}<3a*IxbmV? z;U;rk_(=kfQg&d4qm(XykoOY8s0d4T>ShZKeR7LwRFM$*ig%31X^+XsB23U_FA{+> zl*%tM_lk>)+wf*Ss9ljQc&zi&Tsd&{?`I86aelH);MfRLV2XK@Gc-tSG4Z552R|r( z)dF~Qn2+5~iKCeTSD5j;?}=?cisK{=OTYVWY0q8s3IEOkwQO63b++iV2hWTfH8nez zL|i$72#Lh4z(|S38R#pjV3^(cs|WAJArg0yWATm7@Pm}efX&Jsp_%YgnkJvVWc|I< z{>ztLQP@?XJA>M!a}&=+N1l`a9XWPF7UhLf?ccXMu6xcwE@q;X7I+nNw4R(u*?A|#fE1-Sb`&THN;-fcQzZHYiga9!Wc zLo17mrieggaqeu)56qVC~f9NDv}p%O{$|uZv-lLe5zPEa(mR zb%W5O%XpySol-oQ$h0;#vDh?sfppzi8iQ6;lJ2tw{~!pDK~CEv_}I-zxKu{wvv{VT zKuM0>;ESz@Z!)THI$ggl z^yke>=}B&XaAD(Y{!Y2ovUm=X*V74q&f|qZ;mCi-2$Iu3t0}ecDWpw&Ut*kcKXk#> zn@6j)*;xRymDOApUC8?z-f@gUZUF^#3Gtbg{6KrilK_ zN{9(;lNsN%^&_dRKQP#xa|S$5lktbo3N}%IyeZrOB1RtHJ zCGk*-Ln!!uaEQ!ckoaQ*0FlL3YUt;aI4?2f#4_>O>)s;^d17N^{C1G;%5iuFZ@-ug z{kjI65T%F>tM4Nm=V|u4@WiiELzSe3A-!?_B~EPZ0`R6dzZy@!T9%c?J1V#CHix?|@j_2*;HZ$3_g%t z??sj)*NdiyMyVS`Xf0M^Pz@#!dgGqpY?Mw}DZhI0+Q`^MS>q`?p={|o5EQZL1{XBd zPiuA-5_zn)bvoc(Nd2tO`aR~o8u&YnA~B-fjbb<-%P%~C5L$n$FfX5$F8gF!e-Bh9{QmI-OGHIQv47_;KnPdpk0h~2I79UBhvehkwjs15ZTs78W1 zt=|mQe-26%h56Wco!kF>1u`NuSR|jaHKwLP_F33~)D^&Bd&DG$zznpHcCDK=b(qI! zD?pA1UwcqqtiO6t?~@HDi55B_sAgTz`o1MEHxFHJvIz~C<0Mc5f4m55_;{TmTH01f zcAIo8UBpmFZW8ukog8zR>)0vu8r2?6>H(b9&CEhYK$2ol+pV?v+d*f#RTj(S*=D7qL0w!<*JS z-eVlz-mcEPnD?yC+F^WRepB!;C+0;4M1YSWg--A+CC&oCaptu*mqzL^7`ZF1D7ka> zvcLOc?8MmQU6S2bb+yHTScZgz?5^|nzVy6gg^+5D58tk>?HOu3UJAv`sT?UNjvfYH zka`Y~7$>RZ1o^`B*g%OK+aKSddsk(cuLzZ(M2Djvi&4MrQPk-L)F=WT#ko>h*k<;K z5%pWDf}amlRjFQNQr1Vx4mhq_G677K^`6oL$tl*o%nVg_v5+92Sy@FOuV9C(vtU!| zO^z_vkvX(hkopk0?f^_-ClI~vaJ8}w-}7e<8+wQNj&`MMAYB!Z{~uV!rL9H?c%bZx z0VQ~)J2i|MIa7e&CvrpQ9&_-O_zMtiYu4I zvVO1Zq=^#8`~=>i8+5m&DG3Vlr5&*_Hr`212BSw($ z#>Ykcvy^1`tXOLv^F+l9ir57*$kT&5JsEpDLQ1*`6hI3UxG3kqW|O!rxRdcWYMXc> zMNv9V5VnIr`zv0~pmMNdbPkBQR5?34L zk_RAXk;+kVjj5n&D%R1ulbKV7*_ZL-h()p$wNdlj&-Ejyp#s87RnnqoedgWc!E{(z`Y+sS|Vs2BgL7#W|LnnV(|!HC74AI_u{9M z&kRSJnw-kY?vRJqLeTmev6k#(q|+TO>4E5{CMFDXKZet;Rp=?^p{A80bW?U6^h>wE zMw;4iszsk)M0H>zq`k;6a~b9&TPe1|F}13Jy1yuyn=?rTo<#e|I$G*|lJbjcfoCRO z$tiA!TV{DnzHw%Sa!64amfZs)rDnR%T2Z?tj5eh#D1+pY;39^VN(wuYmqt1YQ;kQ8 zfNeDkB^dl6W|5H8cnE=-Fv_!zByIgreKb>4r|ztNrJzSpz4s{o5SvJ7@0=Zc5faq( zwz}(7!BQXQ2camfZ638D7hXlRE|OpE^WFIfC<2_{^-@?z~k66yBRSBB}#_3Gz?%G#TSHLg{Nw{gj?&_ZNS@&eNethC~ z0YyKi{gld_ji0?{b3eQx%hzDY>7)Pp_(Xg9TaPt*Qs$Au4u6<)lzfH;-wsWtlIO-< zz?>ThdIQ0m+a_@VgQX$D=NhJLkx?{FY#XYP%)r)PpTuYd$M-VBZ1?eL!URC-?Fgnw zee7xQ4o0Hhro`0h;xTFKVm~AEaxk%7H-WK2Os8^MwD0x z2}4_9+oWz&lT6`t%h{@~hW0ZS>nm*OC~|cW-C!GNvIPi&vb+#zzmUvMs`wgrK`}iU z-(uqjmazusx1?~Dux-SMO+(ARU&?U5vHUQDw6O_1 zU!mHN80Y%q zd~!kCXdp3*UcDS7Y@E}?*>dV?8$7zc6S};oU^oU3ab>rlLD8%jv*r!~kSHAY;V6H+ zO5b9*x8^Ie3v`KlsJm>kJI@^Kx^xSYo^*yhGGX%FN?KbnOd=s-x15cfPKo9=os)8Z=LA#r%Dzl5qupk>oyPb#uc(S zt@cBsl#gNeEDE+oXL~oQ@_axm*Y_mPWLDzt7x>=D9PS$8&M}YvG-(Ume8~p1sS8pL zMeCLkCErcM=Hg9cG0$(lvS}Npg0+Zbww8rAo={9W2E9_PRwr;Z-=|*nQnJPYCGnf3 zxxFrfk*joBt?3BwweOQVG%6vbLXXqxL}2N>046~J!Lv!KSe7v#C%|K!#$mpIkKH29 z2?CUp0Sp#)mIksI=aZM5Q|+nr11H6C6kRuw1-8Gx;4zDBrfCB z^>Ah&D-0Jl8H+C@V@K>3H?h?-CFQU_Wz=R2yG0MOX?qa%%w;9%jSv;Rq{j5w|4?e! ztzb~A42(PV=5fA=tOWJ%ycu{?p7uq%C2P2S@p~>+dGOuvNZ&@@!<}8_&67-@VHxcT zy=*TqT-jR6AaHFX)SzdN-%TdxV4u*>QcA4WZa#CEpMB<&i)8dOfXq7SQLKKr$tgQq zvOeRDCFYzCW8uZGyFT2KVX_4@_Pi9q$5pmMfUGo{OgcTG zadQR(>g3#L|Bo3I&sXS54j0b_M5)}SW034d!#+^CO^g_*o?6|}o0j=;tO#GynV^(m zmL0#aTseeQZncCsG}H}t)VU;)UI1~ii8Z9SdgiuNEj-YV5B+&VlF&Q2!*2>|3mqq0 zz^f=#k3eSfFPOqjHwxQu&A-rTBOb}Ci*mdK7ifR78Kb%&;Z8tEz!*0x=b`CILTGcK zGQ|kitB%JeN;1mR8t#GM)gYcdU^5WMQj}P zW*8rck*bE$4)y12aS@jGrG-2d4d@G|k0Y&1vUyRe>nK*ddMW}g)X28-u)dXzHWtm~ zeFuE(m7*NXCOZGKZHCaNJdLhpRF-4(1U$pMxEbj@3FTBezGMKXS6auX{Ng3qLE>Rv zNoh;t!$$?;)VWbK#U$f` zPOqaFJ!5RW!@WkYgbwy}H`yJ$-Wa{i5W{+$<|k>|ROb!k8j14WLX8-zr0rz20Q(?A zU6&(G$m2^Q4TVUOP#H816m5%L(g`a<%MT}OmZ7>>;x%+505?gc=4|kr}I*#m7({pCRYxDI#NF(ozwJ3@V+ao8%f>=HGWHX zpP0pG6_(+@j_2ydvnZWbj;7UwMSFLWI&tqH$;1Mgkat)}wDS{cZw|DXqA>ZSY%jVL zIvBxRCBoyme930w3^(BlI9TgXb>2h!AvUqKv#Dq|@nK0BaEw+D85%`;9(PQ8p++`p zq@GpWpP=gNGd9<-@wM`B-!H84pH0K`*{l?2$&Z=)-z}K5ADYsQxj&4dY(*^l{t87z zl85#N2Zswrs?X3R(aQ7H>8FA zZm(n~%ou{VMB@B#{y>VxVbO}irX!*ZkkMC#m-K>_mXDL_Rhac%aeUBvj`ogWX7D0* z>lmc7*40s$q0EYUhvLlSaZ^QNB(hRrhDP{s0n2h6^#&8`hBiLCgqN-VHu(iL&wcq{ z@kB<`*I8WR)CS;7#JfI3xEzP3Z=$P*keLBmig^QJ!?c%}k)=Xl=fsuS4i=kbkAwV7 z{Qv$z4z{4p*gK=zV&yAvUSgd~GH9Hg{k$!oha|VfpB{e0K3D zbjoWVi4V6vQasrB0uH5D3;Ax@6i&RM~qdQ!H*T(^uS75EL}E zcbJYJa;pgpf-lkFAPulYBC4!6F(K=h4-s1eB0n})2-a7d#p*2|rZ$K)=Lb;W@$7E5 z$`yEdCub)Nx6JUH<@i@elC;kA9%EApkUI_QeT78zF!ccbYPB8y)l##F`@^kJAT-Wm zHBKAlFx*}SLOKPT^!IqCkfMPmWW@nG^W*u{uyqE=QqVlR4ABO+U4X6~d3hzn| zv#aq}!ql~Y*?x{U4T$rbv(ePF-nN-zJI4FD9g)C6yys()=J3BMfgZU^^0i?aGZgig zV%?6<=-bAdl#hQkf^m|c-)Fq}hGC`-c;(FBamkzk&k?IwPW z8Qr!aGOL*DLmhW37ma@EVe}g3sk}MF{n=aw+USq9ByJ6E;~b%q#&CiWXjXGUQsBE! z){Hxc6cE+v*y2$g67eSoXe#6n4LlgShkRa|bPPxyjCu||l=4hkWLlSn zVXW7CWT*ECz)Z6~>MC*uw&T$e@~|a~!}qUjhCI?+J)!P*8j~xf1-@MG@W?s*?KLZ7 zKJ5k~Xa06ul2E(q)!{IIvQ1xZn7V5N5(!65^uo?|R-oO0676baPwNP0rEE zJSVJ)VcdHZEX~>5fXluJhlAaPQ;#+c{@E~5*DHJCyzR5I*u-;o^brH`kkkEc3~Xs;0d!NWbscUXzH~GMvT9 zJj;Ip@(Vq8#vBwOhH}(T2OeBlytO!BX1X8&g$VOc03(;P71}GQV@@6oAF?47F@NYF z;F!G&76)kIX_6RlvujYA|73r_jq9wf{d)j#k%shGiA&`|9nLzKrL?+EZSD*0#VLcZ zZ7|(xTJg(!z}_?R8&6L8P0i7QBl`sLgRBEY)d6m<<)ez{pQCoe9&jak*5kGFxYRhi zacrnKG-o$}m+AkO7`u5y1-zW|oAqi9_#|yPv-p!jYqQS}KNWhFb)J?qUCY-4Jg)xe zRl(0U7OCwkQmo+)Nk@y?*&Q%z%eL`2-h(&1LirvFb7^QMmU>rwct#Z1oA7S^Rs7oM z2$Rnum(~7t@g+r(@??Rv<)1R^K0CqHX%SEvVXNfGxi4qpUOb!vBKASq#iC*KYw{5o z=?!m{Kb~K%!?4M9YNe&^j&L_qYV`Il$@Ly=^{&4Bj_g#8(%@FylvaLa(M;dH$(&7# zS-zc))cH;``^QF5QkA!koYm|VXkt1uvAS;&w85kYUZ5!JEU{?&(<9`vZ0bXx3Tzrl zY!cc*>D8}vI3WwzhIgTL1Jl>OO9TC__ehlL6$RguSV{)ebfXTbW`!LM_Ryt|pUoDR2hVBy16D!KDs~Z~Zer{%>Lh#HZ7)u! zrZstFq35RintP3g%CyXE-=U3s671HWAHyodYl?d7bB zxO!EMg>ReR){Gp))5*K0wV~-kZ!1B17 z61AYPqUI@3bAxm5)a}s}I9w@J-&Xn-D*lT*uDB7j#wDaer@_M5?@QQCW-fbH7!X~d z6Q!5JA{>>nZ6E*LhC6jB^9%)U1Lod3Gm8xI!pgk4m%L6WD)`J=k)Ft3ezKU}6WU2A z{=Dw&?%UGkiAu(-A1`;g?CyKLS~7ZlaJ_TJcKMp;&pKanvCkXUu$xo&1-|Z&zO#sk zd1Y@fhfOuOsozifrLAl3l*nDXv=XO^BukpkQg+aEKaKmW6Nz0xZXuuC+vL3t%yfI1 z(-o}}I7Kt|Xemoqc6(t!~{EBmI!*OBwR1MXZTvV!9pe;4Ts0>F>byZ*f52 zDyyn(oEOn+@ETa=)E|A;E$Xd<0B5g2gX&Tio@ml1kE)J@ZK0MgK7RRZ;JCQN+wt4# zRJ_VmM&H-{Wgi)G+n%@vP-OGOsEQ9YB;Ikpaqpwq^-{U>YZh{vwMqt?5K`4wL0YwB z=;vE#LCU%{*+58XgY)f=oj-!!iS)4Z0oL++`t+o1n6ybPbf^uj^2j(fJ2PhgB@$*$AV8*^#h$RUbR zbg;X(oKju!0Vww19aTg;3r`Nq{umk*VjVZDBLV^h;Yl;NwpMWgxeXoL+AE`P1FNl>z#D7d0$Td#w?)GdZ)T+#A@l|?e{%5;|^>_&~dU z87A^;ZIV@GVzX`SPqqp8)NDyqoQF#kp5>Q)J|O7Li_8MTTtaN6sFE4$)Io4z3@+aa!`#IP(oU>^M>I;LBGlTQJ#xQ zlN@~qWw#ivzf1Xk#%M=b{fPNQ!THebURhH$b3)kmOwxM^vq{mbv(i(ssk#|;d4ANJKM>#d$whF%vvnOOnZ+y1z+ z_o2w;U&G(d=Jfo^w=wA0&3;S`W$L@LSUT{Avbt(~$9jQ`_Z4V4J9q5Zq@VPmI1Do)-bKJ6SSoWL8RKB?W_ zY1KD*v+wa>jnz1JFYDKEyUpU_w1xK6siZz+UA{c!{OQ0x|7fip&vsnii0;5%*_m|F zkw*lh(r#4x4{r9;cr(*3RHLq~w1b?!h-vOQfJvFPQ^8{2+DQPnN6lPW@kd96dvBA) zpeyKW&3vwspEJQ44qO*|RA{91F6N-q`e)}Shgp7&bE;9kuOY=S7}~B47VXMtZR}Izj1D8u3wV5N4|Mgb71R%Z6CDhH?53Hs;;&pO zmURm@ng@O59-Q3bfOQs!4-h5MU9T;=vMMF~&28+~RUSWEzet8bOVbOM{q?SuVcfaC z>Jd5|9_@w%$w%r;R~`Iu>SDP%n7X@usthPkRcf2+VNsD1Ql%9AIr^uAZmch-YoG)H zw=Q;dJ_H6m*ha>>Z*rS$Z3^(uiuzNEYucpllA?e$ip9_IhBvap1D#xh_o)ljc~GEQQvm2i}9O=T+M* ze+5kP!I+rJfQ>lw^t2BfjVY=0ueDJ0`eV!aQ%{y~ALs0A7ag}5K5auAQ7b?ze09y* z_FKUkt@^PlZZ8jXy}aHvwT8Pf*9ho2t~XTa4C*`Ew&KtBAYx@#2sXe6N8`-oB<0c* zZ{m$ZGcR_#aK*jij3SddHeTMCxV-M_O^0aDc70Pb%hb1`d`T~KglQw&O=U#?^d1HS zuC19FJENWZVxp0}>q{F|28X$~oIe{gq=A_vnRp&MJ!z5h*%)Q1w*Eib`j3(IO=^*T z-6;#VDwE*;juZCAH@OPMs;eWXIyOKX1F=N)$6dod?u}{ zS-<~PMYrNc#l>%xyl!rO|H=@oiWsACNtT)~%0QKag&s<%QB(QUIR&rMs(LyqqrAl^ z@uj-Kc5YCu2EDF}sN>y3TGk#So%1uF4C~q`CO0B$nmOqTyZ}+L(gfq+ChHeP6y|Dg z=Sf(u-}i(&3N2TlQ%f5NFP*xS98eOr-aRZ-(xm8?tl#0d@mVSgv&A;Dse$?`Z8rp? zj|xG#tE%FtBd5E`UMY_IHr9NL*fA2ukV8pOSX}7z@|RZJ{>jz{+}a`T zFw^T<=Gsh)}FVA@haj z=#=P3)q#TbVXw!r&(s7tzLmc4T5y9(2pC{qYNoiF;QxJZe$8orRh)J<&i#(iu9u`ctg8_XE;a>{Ya& zcK;>Mgx?*VdKsqNT`W85QS5C8ySl3xYIDV30nJ?+or&%LA+}#{h2gxl8xc|5Kj1`E z?)YT6ioG{NQ{?KEtrkVx58oIS<@1I#tzr0QaL_JX<7HcDE}Xr0QGR|M7*ZU3sKUZN zgiKx-J2SM>U*mO&<-vi*DFqnYhMglVp!eq@2IL}KVE`0ttj}&Calkbm%RFgP+%>~j z)5tk0+LmC#-nRmbQ@FEoN%P2T$8E)BD2yhOKJ~$C;n}5`c$6(S-;&{T7LwuX4_8Vx zo2%;8-7;={^k`+w*0!uEgYS;^j_&BHST8yABZ&?Ywnk@3`zV#HpMU(<1V4WZ?oFK& zj#8U-TSpUeFwZ40G21)Gwm9H#xE!v?jK>w^KpMTE44YKW2PDrC=kf5|6DDwSkgZ4`z-6qdxozMRocUXz z#J)y&Fy;qH2kcBg);2}7#Im9*AXRDRu`rFHnb$l4DQsR)SZUeBGRJ#t1SIiTm&DgI zBbDh@Qy7p#GeHuWCzy=Ojssu-sn?KY0V!&YJo;*0Y4!N*cSkfotZWa99e+trWfjSF z^$N_oQx`L6bEKaJAxvGF)HNL3AkaERDl>c`m^%ezAREfVtA6xecc|k2It;LsHeOkh zgEK@bK!^()VoRdWLT5`+6nID~9nUPqy@z+x;U z(WHo$MS=GC0ne6s5k)nrlWZE~xChSH=U(0*U@+oEL%hz9-^}_VQ-!0>rje`ya${AC zvD9a3b=U{V3v%Gfar_~uW2m?a_{H2um7 zg+?5}d(RtG?e#n_`kK4;zdS;=gwiJAml7Kn&;6SWxhbcl?&Zjbr;fkUu|IXj({ITq zN~XDj^%9oz=YBh^GgLy;i7VSp$rm{?sR8>*0EdfEF)rEGjH2%t+9lcqZ$p(?I=4W7 zQT~}JQ^@cx0a-mUP@7(ml@^^F?~!ITcK}?lf8c$=2M<~ezl>H>2)7;#S7oi$L>fd! zd--SrZ$T@m_W>QtXw(#AoZNV1ymevdWoeeKt>TNVz{8&on66Yc$p)PFiy5z4Ltk0fQoih$vRK)!Wh%0BrMVP(X;FS{|@70{q^{p+JLKsFEe_k>8 z^_wLe>Cd2SLcM1Z8jH7(z?3YhB_uTEHz3uXrewIH@Wol#RY~tU&VX>H<4ue)qVW(( z1=5qpZIePfO@#+1qug{CbJ4TJ_0+F3QkOTDU%ai*kGk!y^%{m_HfGe$icj!grQrQB z-lnu!A>6Vrv19+t@NdJM!mrH!E!);9e{+#O%w_@7iPX7tpfVYQxaLi-8)Q96{Z@KU z2O^D;EAsc1>%4T^(2bcnawiz}^%-CF1xElv{T}lkj9{(JKoPp8x zAx;6=kJ03M)$#}8%jKEpKYz1c%2)CuAg!EbG3T3G+GNg#B);6+ogh|uqWa#bc4z3V zI!KAKpIODtdE;&Fr|H*qbReDZO*4`W0`RPrD2!2KOIe3q`eLqq3vGWE15A_SjoQF( znR{Aeds?-J&QF3@r6@TRubF;wq>lr18>Jir&fO20uSmd9OP7Lgt}Id~14VNKA7I z{B|m7KbADWTuxNz)LZzQ9oUcAXVn{(jxZ>zu~N%&Si-GqYe^*0;=uu|^b!`Sjdf;- zfBV%3@YRl2%L2buYZ$bN>~efTP<%q5Un;@o+CqS4D8+ZCJZ#In!#cmf+1j@?`fS#e zgFTyl3xfAWLRO*o9cD%8S=;oZblHs=rzRwQJT&gFLlp6xxtS6aOSie)w#V0fuQ=-( zLTP}?Zs3Ol9|v2fV?#GUdwjDr4#PQ6g7v(Gxl->wP$lNTpd{M3sD|=ZM9$b}TUk4V zpTx)uoCvliL9;AHugY#zEEavc-218ZPg7}U5+Nsp*v>hBJCZ-)M5?h4SDf=Th2rEH z139_)3P}`6_bpk6-yRYe6?9#9-9nqaPi@_Ywud@Ov>969{5;au`LTi z+ktBFpOpk0Fr<!8_L4q3jUnmCEIwX~I%pvld?PLP{lFBvveOHtY?pGpu;D#qU#Y+B0KxgQJw(DHcOOR zLkjX|Fn-I&6y#%1vx@imZq(bR?-QN9;ys^ptCX*2bc!MSwBwB@dVd3#4H|DE;XyRn z^J(aVex}Xjrw2h&Ss-v})UPF(1RaF(lqY_C2JTp>xT* z(*Jbqnmoi&<%qPNV%Qk@$FhyqF(D(<+xvjLZdk=_DJ054Sy(>F97#(XE%}qcV5SzV zX!%2Th@Uv{W?zn_(>3?^{TAOqtJu|woA`IVO0<;!Cbwp52u7{R;;57aSvnnuu2##u z3fP#}&lm7UDcnfHd5stwShm=cl+uO4begJd2#HY_@O})GpJwtx!$}(@<+JV=MZE60 zJ3d<^*vds02dGB#AJGr_0Gr}8mK))0M)SW&Laum zZlF*xyY3>(d=tmyCgHz5>?>nwdOGm=t@ndV9uRc?Abme^`qR0YFo^YwbvA03-FMPFW$E|LeiKZlW$psGY*Jl^;Jw||E5M`qcTJt8aHttAa9AzQYPy>|B zUP^f0-{;q#??3M!&-3ZI-MOyodwtLIJkH}d&hO)+tSCi9NJWT3p@?LpFQ}kUd$A}K zZaMxQ_@pJrumFX^956e7UfJTj)Ol-5Yg<*DtJjUBjBXg&nq60sI)_3DK6#?9YkEwb zTr{*Gi=DCVPD_0J^8@RAFS0FF8t--tuN!4qb)EFL%$D%09`6n}W9I2!jWuHxC6^$n zNbK|P+t99HIc}aj@rWZjTR9qY=fq;evec_4N`kQho~$DOe2bEruBE}SDUYEZyUCt? ze)%W01ACazC#l|W{Am83RXO{L#8ekBe7CN&~|N+;Qd+4FuLyt-{qh*4@VGBXVwQl z<9?todGf^T$LsGqAM71snAgJWwVUqr73ND!Wu>o?tmaP+QDkT?xwGP#E7@)FzVnXK z)2vhO>s3Ynq_?;*)S?FBlyXH(k&{!XG{1~^!;^p*WzQt z_DQb=8q3)eT7peTdha+nR0x0iIC)_;=d^wpp@WA?*#1Fc8dTqRHjZ?c1qPaQ1v9n> zHBU56`7380Eand$GDf>ka+sJ2wKbfHGkz#>a`I9C45>zf=zGnih@f+8`W$)WADKk% z>xJ#NuR7(h`fJ%yGdvjo`|~rD`=}l>acSiIJXhtZnZpuGqMvK;`Sg2Nl|rZgC!EN# zNU9&o{6>UOuT7uej?xPI1bB?1CR1v6-8;K}-T6)v)QS;W*P*i(mT2d*8Ay zt)ueP%-5^Nh8s_vi{D_FZg~B6%2b`9c)y3UX|h8Dfw2uk%V`-dndf&FkJ0-NoH}wm zhVD5_wW{G`!$u+51ALW%^mc}`1&uAvI1DP00*{Ix4d0UZxNc(jvM;;-gKVS#Nqc>J zy~U@1wi|jv?l&|a6SzhKt>1X7Kh&14KO~^Fe|@h9uIE^% zMjqc7Z>DK zp3^dW_V)~keyg*Kw2i#ki>=b_47dE(Y#l zaf|Pt;=xtC(SMggM(havJ*y&@yA!|S9X;ekI?}v8+WoW?#=GXG@5U=iF80>u&XL|n zrI*Hkw%Cqj)*Sf$*epCdCuH>DyXt}dYlLasY=`#$D33ZZRybUAtTFyTPLSyjRJtp- z;9F~%^)<>)=Qty~$UTCqEN2(Aa?cR=rQkNKnAY%PP5MiwP${DEPV*{GEbp)Nq6NR) zc~_ySL{*}5|s@<(bZ)0W6#eEjHr5BYSwSl|A1%n&mRtM4Xk@KNLXAC2CO?qU`jOUm= z1wa1*tPSOebcol#ULY*?pzFU@5JO@^ii0laYd(?y`(9Sah&k_?)6uA5{?@;=9ghZT90lhRkM5&~ttf8TSH~i5Z zQgONow3nCH_lXIPt5>g@i5)Q!M|trQVDRvKA|oTuRKj0j;^*gA80t5`kVuD$x29Z? z+)%XTI&S5A?1{JwzF~cYE*g!lO?vz89TPVV@eSzz%DpY#?Gy1XD2_R9VtVi+x^Q+>o z@$gXzA-=ez{|vCogODsPuSr<_Gg)}4?IS@c@=@=l|7SeHtn8(;boH?ACI;@a%fLf@kJ>$B9czbR{+OE`t<$;WldwuHO{req1M|C

    t%Ae)w5v#*wWDHQdUeaN);dq%Q^_@W1xG^q0K+5@~9?=E7VmuAFjHF zncMJlDdQ6s*16GJYE|~o#t1_~A|@s_>nR=AQ2%W?I#!QPztk;B^d)&iQoP)X7nNmH zeggJDaT{eX?&Q~v?2emwi^29?rLT-98OnR57e*|!Mqi@!J=b#Vr+P#x@MVbjQ?>Kz zibMD;m}xy0Uo9>!3L4`kQlMq<=cal$A}aJn1_rAAn+ohqu9UhtA2hLfte(p|?q=-p zcs=USBnOGutLSyh8M~35UgGSYb#!i$+@f=~r@k^S#xnAX`t3-W6%Vmho+N+wv5GJM z$?M}M(kV*^E6sgT+FESRzDoTB~XDQ1QJtf+?*1Zua z?q3OZ)leHloQtTlwo}Riy9yQ^8OEN`-}kwE9ezBlz06o^YMlK@Q?N1*=T)+Xgdwsr z%PVBx)7l(<_KwYzv@-PsE|$d5TCYTuXp4BRFPR*@npyfrzf3Q}V|m1IqDFD|?uj9U zde##0N^jT4;>-lcgq@Uqsm}(ECqJP+tI?5bWr2RgN_6-mvEpdPh`XE0P?5IHsiZL$ zht=QLTq}7K-jW;ZtK?Xjemw+leR(X6H}VeI?&32Kg~oDlC4TS6zYV!S(4V8T;Q&YI}3|apY{g2eyP-}oa!#p{P_5Y|9Hge`pQ(C zd@#51UDsrd)PYytG_vy<STyYX$iOkYQi1#98VJ7Teu4r8qfj>^F*g)LQGlsLTHBv*et$Xz%Tqn=`oF6(8~;@QVfRK{ zAsGLfC3W!$6_b!GH`9-ayxu?v>-YhZdC784^p#A*XN@sZa+SW+8^4x?zAv;Ssb;#b zI9l{tb>{k%&itrhndr#z_wyrRRZH~C3CG*D7t2ZUgsC%BT6S+-ak_rY{8TU3=MX-B zW`&Sg!Nrxu{-<&=7oTvyu?;)oWq+ulu}CPot-hYCnrEzP!V7orr@gdpbdM;x0(FZV ztH;vHI1B8Ca_5POi1<41+`04PN02_hok8Wtk6N8qcB7|bGUW`DQ{Sa2Y!eE@L|j|L zL*%sk2_UAWqNAe+M!zKgY|Vt%HcwI&DOM(suhG)Xk6TtHzHU0Xmchb{eRpnkdlTUc zzAg{uF)@VwGPt5Iw(#RqfE=6pYeRJ5hldnJF&)dExoKtVT7z}r>_S?iHyb1ODiC*P z8p-jT6Z|r;>iLPqbqZ{mB;-np zi(@_3mYEO3e;V=V+ux>c8X>~zv%fvSiywOjFu%R{06Bha4DzS<18VrOm!P?z!Xcwp zL~ZF3_5nkR=VOg-iO{^v7a}JrOGETH@XX%*fmm4 z#oQ)_hm%^Nbs0X+)0-}Oijz8?m;CT6l zShuIYIzpjS>b8XGR9U%?vN8W5c))9p5^ivFRkEQ;R(wQLN$*#R++Z6I2aZAgTq>c- z`Q6AnJqR10G|`$G+VWam?)zTPU*8_;mAC{u%e&4EAKy5%nxnZ^z=^J7oNmAVwEE@g z>ldWZPpSB1=SotCS1aU#IQb;{AZkLze||~UverZ=>l&^BrFV}@hKAb+wubEdmFGFuUN7@j{9xmnj?mkf_^wwsL(UP}c zjFhd-hweWnsQl>#D}(#;+%pC#-`M(lXZG#9D4h)@^mw+u$X5lq&uky&voZ3=>}emiquvUwdh?}@!JE}HY@K}-ktYo&vyz<$DYP7m(2(Apn4i&zw<+D?N2}`W3Ku1qN1Ydjqceb z{j$>GdS1B89X+OWDvALTNaf94*M;IACg!PkfBzAB_19{rz38>4A$2PuK(Of6RN&Qj z_X#R`I8n z6C51OF?|Hgzt&8v}ffoi% z<0+=T?D;f+`SRz`S`tCmc}ruR`xb&x;t|5mjBISOZ}dt=u{kla`1wKN0O=*I^GAqy z6)L2l)n6gR?Ai0s*QVuYH#w$DMqG@t?&az8qRYb!z)huxyzz{o;kl z*CmG7znrP%`0yJGi~UL4=w8zIi?<=NQuFcQ7UZoz(yt@Ab55gZy$3{ ztt*D4O56*;i=4PPw&0wTlhbW8D(>mbFe)6(Bz;tK%4CNCO4)*CBI5?8jjbn*MXuLX7q_5kc=20vSbFLxE#ao^|? zoL%XMf^@o!%Srj&_p7ie|Gwuu0J-C>-AesCUqCqxTHr?4sTg;@>9a0#!yEk6Q*4GVqAETj>Xr|6=IiUKta?%Qqx_bBuw!L^e*cjA z>m-tf_;K|0^?7I)KLxNGL31(FB*!J=d+dy5r~-DeWTD3&cu1KbPF+J-;#PjhH{126 z+#M*kA|?H1mF=g;kfi&ULlY)%kaz9F!Qw3UBTM{!K+*3X-2&> zc-t@0!45{i7o@_#jrD~x+n?VhlliG$EDeTQ8v;mB$uyL)5J7&GxGZLMZB1d>L;-gV z(6KDM1V)S2lvdXD#eU-1J{d^faZuMYJvTfoj_$s82y*Q#eKU&xTw6$}1LK&imPEg{ z{L3GB0_~i}GeQoAJ<#zTH~RDuGq@Tz`$Ts z{hX;ON&+|OQq29@2odc!x<$rTNT%CfZ5=6K-p1ybICe2_XZM+Qs1v2DrE00WEP%#X z7nWhJ2A%B{K&~hCOLf@P5)C#}CW*AQ7u04M!2L#WlbPmU*vxv03xH?-P*@AVl?`{# zem}@Ta=oSQKOp0z=Vt68ChE9glP#_I9okvApmDo)?V7y7!bn0SKdXjPxRB8oY1}dh zQhtfU3U~_0t#Yf1d+t>T;jONvNU`&yWgvNPApA2<$KKp`J0D=S|&0pf_&Ow%(~ORu})F*khazi(Iv-BYKoYyM~#3~JY> zY@_tpS;vzS_afY8WJbPbCA6e!3skuDAj{%QA2sVg#(wf-ZLMahK?QmY zC-A`o{NOWo@y_ZgmoGsN%?@0WlHa+GOC1s-+piV?z8SRsEE8|FcD!)-RL0A?Y)vD= zeg4V_;~>;R1v&r%GqB4))rFrmg2c^ClpPclr2bjN zb^hf9)Xo5?*wt|3H>|Gj+EK?eVMq1P6Y=e;MSBmnXPfy4vt&WtCQykv#I7NautG@M zpwx4!@G_TIhdcKgAb|WV{e+6IHnG=zWj;nL2Gu@zf@86kM<}d>L502-#~q2 zF9y3X+07p5xn4l9zj9+O7kXHpAe#c)ABJpQEcz9_WV#%dP9cq_CVt*P23UsRf39yli0fML<|Tyubo|0w6lCcWb2NqIuA zIA10>Etmop1b&iwCpsp^2q=c8Y%|p)AcEYMM-pt8W{m!mBK9z7y5S@cBZVpH*o1G*>`((rYsvg93oy*gFFDPNQFt3Ib%EE zm)GmjiSdAT^ckJt)rt3;{g!wL#-4mS|7QO{!>jYm6!wtVQf4JDUi^eqOs?YT+ekMH zDV>3ol(f}x7wDjKfD5Y*eY~`5vHQ?0ieaZ1YM?3L1jaciKVML_AB#ne^pq44tj|mOWju<)-@~cEVN!N zp!+F?AC=m*(02$|mxdyt4-N-|Rp5t@A45XSWueyr^20lT`O$h)tsOdT0W_& zB*L`s&`H0SFAu9~dwP0~bQNR~tRA4^l?J@_qdYar9M%WBfhiXfN#bT0Qw;DW_hsDb4rBz0SNbcLJdms(yTgr#2ZNA<~WV z2nl)+npIkm@}1j(COy!PQMr*Knisb}1C1U3?*03pil$08ksTmctqOpv`ewbQB@l_) z_lapaF`muX+E?(n;>`Pi39J;(&jKbM>Gp*;R%gGDEY(l2EA;n5p=Q<2Ol|#9f)}<$}Q2Woph;jpRYJ|(CSWU+pZr5dW&cPw`k z06UvyLEA$+J|n3z@B&^iSk%36GxCAF7&F(?(`zbrwj2499Mt8xv9{U!!%FF#kAi*& zVHakx^$=?oD(lwWh3ZH*itBLTs=L`oZ^%A!fN~dI`>1r4*tertg>_o#K)6~2_TBbp zNO6Bmo^Si(;p3wMiuOH~GXBh0D)bcyIv^E&&A9IUm{u$zbnVDjf-umQNNi9z?tKYB zyBYf$D9olMMe!MBr|RU}NH8mgnXc;%Kj5A15+gb+Ejbg)PiMa;<7mnkIdQnig)jhM>e5=9C#l=Ovc%*iI-w7sET!d znynY(Ix293cXk8NS8Z;{AHnZ3dfA`>(&Z0$UU*g@sZ*^&2mvsCIe73Oy^xj@yrF}K z4*jQb&^!p;sBDRh_KsIp7$mM`ymduyjAswW4gXy+-4Zmim|UW&e( z6Y+=opJeu9k~;+a-Mtj899e#=4n|;B{UEhkEcml1eS(HH78;AD91G3HrMo+!K>l;! zNi|0mI(C$5EE&NC$nq&yvSL-@WVsEi{4fj|5zd20cvLJv{+Jo?R}#9EoVY3NU>OL6 zmxsar#{}x9p^8N1M(9CmY7U@x{h*f1=9qsOfQDAi&;9MQ4hh{Ik05)-z$?b}uqUkt{$MvhMKqIK;0t2W#c}{ZY7IiN?Hcx4w?Ph&gB=;? zIMERud;&Cp-6Q~374fe(lod%EAn|sX%iGwb6D*q(D*kEE zpwGy{AaXEQ*=lAmixZ#@W{PYuH90IrdMwKTbTZ*q8E&KXTy5M9dwdZ>{F$qF;f|Wv z_Z|&!&G?37xMl{BQ!{{;wNe|&L!l?8Ecy0^;r5>m(yl5_D~-hSF+rR1*xMe9-@H>t zp(4I}jPaN(7#aXh<`lzSYhW;Tx4}|mu$xUq&bjY+-8QyfQ0?E9M|%AX({%O#U$ zwH@_=Th;(}1GjPQ;l`zd{XyS9JPIvOi?5xVo_X6cg`n~9##Ho1OFsGpeW_7%yaGaA+%Ds6>fQ9}*_a>_Y!YOY+7LcD0ACg=61{-w z56L(=<;#ciE4&7(BvmWtIj}-C@Z7sQ7r!e=2O$?Sw&QmC&Y?T=tOaK2bIqDB0y%Xp zCq?=hJ@?J;7Z9qQ*R1Joc^cEZ&G5yt6Of<0tPE{3L$BvXi41P)Y)>T@MkFY@pao+jNnH`_KVL}vrv#$J%Y|F1IkTeYVCcXC3_(5=r=UR0# zb7*CgP%}yX#);)$@W5SC+f^ncl^%b4vLh#Xpf0@A+|krD@lQol$bJ0esDM^dOlmj? zB!6EpT{vDoyMJ9&*nz(vp>Q=)kfR(|xNw1^ha-#Bao=h|7mYBQadhio| zFHWB?8tx`)KfpdvV69aofDHY5?ZKl*o2_V(<3ubVE@tifd%SmMX2ZKkzoPsjY{yp4 ze}L_I4|P08W~kV1NHJMmXy{wjGln04y!_!|A3lBh^iR8jgXy|b-qzM;SaTUzCR4Uy zO?`KDG%ha3L500*pbN=C6JE<7t|5W@ekZJK0_&KKi;OMJj(w~n-8cR1o$(8mJ9~&~ z-AZ%gAtfr^KS0eELbwcl+rg6RO%4h6vsWzMLkf1|^&0?K8)9#B0+7qO4(ZJe_O`Ls zJ%F5_q-fn4!QZmGT>yy#r?2JH&7D|}^Tc%jQ?XA#G$MLEMR-DkhP~)J5Pl(ud<|!2 zXS1xnBfU4$->p7EIOc&5l=?3ad6(a^oenl^5F&F)txb7u_ydy{dZ_~1CbDoBuN{?6 z+#FFDHGKPbW~$>}`W{OkVqdvIjxz)}s8Iu8oe8M7Qv%UN_9OJ`>+9PTD|BX0Mdn{V zrV-JC0>}u!yj@~E^%=PK7IYZPKnEx4v(~Zc0+a5AnyNwe6Y~* z#A^HP-k?J$VxeH>9nowf;00OEXOAOrpJq+U9rMivge&tC7U(kT(xrIA&mmuOeYUJd zeh1J(=zMSpAk5R15|^C2ckePfHH-q>wBuRahqh>fF`_w^71*nqT(FmA`vERn&DpWsO~eXq?`UMTw>{!Nq@tJWZFaT9VX; z%xiUN_EADY!tfLSh6ZH;GrrFk%5UQF4i8UEd|tg3+#u<>`V+yUJ&(B`Zs^}eqyqq7 z137Ja{vZt-o>R!b8$$>d-786@^^sy+P?>zS)JN}Oweg4V2rl1x?n>~cyW1tw06K2& zTa!ACD4Xvy@5z*2&NTvINy^2=#bfm@kVE_6lyQl5M|P4tu$Zfnm0H#3Lh$BhRY0XU zqXY>J08RW-SQtE=3Rho$KZ8q|Iu9MNUJ2_Lj`^U_W``QgxOn|vB2ADCxUxd(N9tHk zC`XCE4pl-7l4fFl8`*K)4Oi;n9bIwtbt#HQaMQSY$3QKT2ul|fBZOH&3qK_g)W3Jm zp1g@Yt(YD*V<7-fo__YX6vy;{$a{B-l)|0|LDj9_JOwm|a9YLF>yD-nKda$gdYC^@`i6J}22Nm;U^CbdcE&KsdpA;l*3cgqtx=Ns@@D zSexl=`gl2zrs`4`~G{3%wy-~x{$o68{Q``2MoE`n4#DY0hR?F=D6fdFe@6oB{Q z_FQ-KpV4ETOX>nTDzqG;Z$-bcF=8vp*a+jS9qo>jqeQxtlUmu*qit!C(J$&k4yX?u z*&(>*KgH&)@CF3#h=o2;w2(=%FI7{^v!BfumzS4ip|6bt0P~znUvvTIRow4T5-dR4 zJhfzv&&3^i)?C1eN;^LCg??z8;G(wrQ6WZFQ*6>%}&7 z5XmQ}9Yjk#x1W+^izOTDD_bopkO8xVQSG&B;hmiVQ@stebHI-E^i=O-enH;uDDaup8-P!d~H6I~i0L)6LFQAyOHyk_)>hP$aw{&f_!kvakHj03YHH%OPBRxSIuiVY^s zsG-7iXws52w?U&7cPZv#(`$8h1o7{pb%zd3FS@Qj6&$+pRxGEjkr<%{SK;=IjesYG zjwcsdlWsvw6@`ZEL7--m`4xJ(LG zjKe+eeUI3hN@zTq2fI5x4bfvi`_G;}efl63m3i+c8wU)DUwOIstY3IMPdp<>R7KAb z9^)$DHBJHm$Z%{bPZNzz^wM|7e|}qB3vX^iHFskQ5%sTKzuxR3>nnxuDoBc71-s@s zDiYoC27p(gtTcgK`W|h8CG#B?gB~v@ZN}SAUxDW6$Wrn`;X%r^)hMq%p!Q@yyCJh4 zbQj(dYp=vC&^U+_0>3uS@+SjMbxTP}b*9nl9Kpdbf@k45yCx^YO(=O7;*@v(wq9sF z!r0ZQ4bQuBaabA z!Yp71BAP#|PJTMjb}h9Tf#YPE3_F0E841!=L*n@mYvs1Fwm^pQ9Q%^Yf~c($S8tb@ zi4Xp?P8QJ)k3Xwfo1~xaS0~&fRBTQES`kVR%Z`b`kH#8>?dJ+1bL+-B|dwY9hEn5@zTS`X0w}1*F zgHvMrL$)ztZasB)?>8W`LXKKO5zZ04Fm^M9-UMj=L1BIOU+S+_s8v47Z$!5J7Rx=mEo=Xsu)8Rd;2mJvPBjbgK zlw1)`S)HXOnDkCZ5u#hlh$q#wQW-`R4KOy#j%OLL8}nU&xi7g72AkB9%r3rn>8FQe z65FMlWvsBOAj8>P=uqRf_(kj(fI3+c$n*%>7jc>Mo9r&~SD}}Y(AdtrvFhSt{vPvR zO;nOpn2re9C-UX^L?HCBv05FF1o-Rm6d`|fbeIMzc^ZeK&Bc{wm?yo^hC_kqLeN3T z0nB9t<4x;ND!O$b5Rh&!`iK;;lr{Dmfd~F7xY&Nee0f6C@HEXw@t%sWO;ML?Kp%MC z5oQn`U);#T?7(=BL(_ScT3AHnbMsS&(Ut;+_G6x6f!oQ7L^??vz!xaAox=8sW>o$4 zjhd-id^}%#6y-o)u6_{_vbObYuOdR=6twI^e82<~+|m?svE$vlcOCj|3m^g7mjTkQ zo}cK19ADQ__lI_X6pZc1cRH)6-lXA=u)JiZA)&Dkt=2$B3uqa{jM-;8aX@hJ(Hj0D zr~=ik8c-MWLa%2T0XLWnF7uMOrA5;|{`JmAMY8!QKiC|S6jJPPan^boS?qAp=&q<7 zUQ(ROL+RZO4QZ?LLXP^E&MuHNls#R()kN({!)MhGc+05vN7;fqrK6Eu{L)kN}uAkP1wr=e#;O%xzfm<4kTWFk{^(h6+ zV#XPLMHUju4LxGvX)L%aJ{A*Fa)x;X*i7?$^`OZK5u(;zT{xiU@Y)+IN7yc!H)>A+ z8IJSoMXGz)EPN-|4Kl~MU%!52B~zcRGa5tzubw-+S2?^$6F1MNrl-U;4pM!zoycex z^8y>9IfF%MxIqH8Hv{m70!qT8pQSr#{kV-jRSh@BNNyx{rJCy6N5($%5bsI9dR`^; zviDyN2~5R#*1h~Aoj?JzQwhDGnh4A+TeVe+y*rM(vV_#i@WM%? zTChi{VunBOcYiqy>e_tjeoZM9j=!#C^DUrMJ{$4PEqn$jApd#@awL;!f^qOjZ&{hC z<55EN{GkSKQ!7>uF8xvnY1do$ZMR%;kV%4DGhkx4VT}WUgot37Aj3CWx`0dUmRgF_ z&+koz4i;u#Gvf+aZdD#oEIijNY61?37EyZobM|b+ARo3XiEj`GGe{jMaQXE*prY9$ z=i4Xz{5B%XywKgY%rb18!-&;u>R5pZbzVtX2K{!BPpXle?JgDXETOpQ})+DOmy zBUp6qjU?{-^Y{0kR@FkpwsYss4SY3;3|O4S?Qzzq)W7a3E^9$WLBUjAEjYZG8hsyM zFbz9lqT)&8O!v-t!J1{#O^E9L!6buK2 zzOxk)e=sG&XI&7-EnKDxEd@!&5XLN+52xT5a4eG)D_Xze3fD@7*@!_Ne_xUvNI$j= zTZ6&!kOZPBKmN=s{jGMgwGb^z{1p&tjT585QXE_yLjs49}5HlwyWg>nhZI+v&4 z9W`c-FAcoh2;X2+X~wG_9RI2@n)c*Iswtr;5!%9I22jd~Z#Q3fcDzSxxs5IQ)2%Qp z#rEARvPTgg$_3i`;9k#u0cok#Kz2<zmiqlI{Z3|Pq`mzCROc0a-Kz{HH71y{^HqiaK=X7smksVs5 z&J&9;0zKuAShmvvY?e9~Di1M%q4C;nt6uko@DvzAQ4ABjn%Z^-7c6a7Jz&vpIcCwB z$Z-2td^fa(p9^@u&~A#fn@jh9=u%mz%mif*@hWIRE@WDXIFaWO+2% z`0jnHP><>H?xH;BbEiRHSIIF~Z#?70_aw5ed%lX{DHvjbA(-$Z_xv&ju}-HHA$*X6 z!YEG6RtZn*3HCbvri9P(>!!TMgFTex7${i%KQjlfx{ z$A^zE2dj2UN|Xm9j@$S3_4R5?P^_ba13)r15c2}8^l)?ZYHbr3m5<;l2Z&Sn<>L(N`ER(uh{7lxDO^Y zN#8t1p`#ZhkU3;V-q0JiG*R9Yle{Y011Qw*vjEUkLGo5NgGtK?l>r7FfpX9VEH86v z50o*5X-%m;Pmc;r`u0tgG|XM}-t)LK$ASf_Y#{JU7ZHnXV*+s`NI!O>oqJ1M!@YO# zRc{y&hAuww^fKKmezpK6yb5a}>rHn}ZS18}g4V5gt1EauAy;`pgMh7&-83HoLuHeEo@S zD_5X!SV*CH->ah5{9-aP+CPhDE7A7dMhh)oo9?SXOhdsUuDOUwO@cq5zw&7f@U5Rs zzajI4z${BIjo$9v%eyts)5KhU!O(2B-*o#D0tcPG`>@0+zdFZ!R^B#57va~&KZXAETnU829^B_K*C<66?vuCmSFtMu z`7OuFC)?b!5C0_^=y>pWdE|jd@^_F4pZNxJK#HxU<9Gk!G@DyEMAMFwT~|PdG`zS9 z60Dx>K-E?1C>-QP%E1KE=Lg@;*bP=831f#JYLXeqwQiTN`5mo?OceC?(E`V()L}5+ z5X>e7H{^RPJaf0@EJmd$wImg8$cSg`hyCQkh17v(W?uG-NIfR%)-If`S!i!I0*D7O zSAgEWQ<#?vhln>Cc&&!v1W~FQ4aFw8?@ZG1dO@H)DpZ zJ4{Ygfj0;=jrXzldLWTOFiFw4O-qaoAT-If4}|`QgaidI!{ib>;!WDYN|XoS39oyg zeWm)wTi!u@=QIZtq?F+CG8sbGf{?^L>fe^}^Ggsq;X`w?s{MK*oZr68z}O+@xA_c?KEJ3xkVFgbA|Su-sV8n>RC!NA~1 z!?4|-oa9+KKaf%tAyQ=ek&@%vw{OuE#+z_#*F02*2L-?}I)lk41D^tFq;-lM6+jDB zmbn8C2s{;cUgW%ixHa+h=0L~uCL*|?#7>+Uop=b8rf!C&nLp1yL0i;iYepz;Qob}I z<`48;C-{zV8$RH%Q@w?mgsG{;2w}?$bj?8EnFyVsw7116`Bn@a`)qm7`r68r>61M+ zAk3cxYv2pWirpD&dhGb9UO7lzhNYl0)Cvqe#P3oNr}bq)xe0{7NK=wS!6+;1!XW;R zh$26H#x|B>)g3}tK14#mFsk}*NT}kQV)LL3A!D`G;M(}{M4(67FA0DewCDaXPWsaM zZh}JSMU4{)!&lh0wpKNqH4=7=X?~jrv$61k$(kxijwkOBkTE~-eILDD@&rr8Gp>CY zDBD;|8!D^tmu ztQ5D^;zHC`UG{>*GZ2$iFuP7#3uv!NfQ>)uy~x@&qsJCu!H?SVMz^yVfo>q!WdZ~R ztyI4@2kgVYvxMq#MC?L9XrmOZ!a||VxvdqWW57F%6ZWid({A!xH!B~(v*)dX=GVC6 zCt{k{wl4WGXBGYTKp1S%J`mru5d$#7`7n4m3|PZB^M`{lRSJD|5G14!(sx3(h~<5! zTqK1!_p3_IcWv%1Ed-@x)L2fpQj?uxr@geSK-~)?%Q%_LFR82Lw9a>j698-|QfZWCz%*W-wSr4qXN^zk`^gcer2v zhY8j`Wi)uB{h>013W>m&Qd5?RlJ{%cfbG3hCFlj_wcsQ%@E$NB17ou|D=RD7lwjT# zlN93ueWca0+5JXW{?#2)eR=|)D`};^z>7kV*q-^ zmyu-mnha)P5n?1QDvHjmH6<9qBsA`Gmt56?wp4y>C_eCw3PK^q+jX)_yANoN=#dDk zxLZ>_#xw$*u3I?)2>}}}FPMmtgV&_+a2T%p(07$+|NiU)1jNKa2n}!En!*ZP+Gz&w zG@XKLJGO{47pNH{Ox4cYn;=Zf06>fF%z#Yu9)*zw7{?WKa7`56e!FWJ*}#*mFj)K? z+A5zqywzHs`Uen}>aUP=2hmoG>%ClH2OYw}qem@vUhEO1=j`E|C%1o>96t1Ms>m>3 zN3_{0*ws#ymX>lh@>6Y(cN>V|ge%5^yfK(Hi11C;y`?JoHdm9+{RuVyLxmu(BQ}h& zR~L4;y}Zbgk=Emfi?)+sejsv=L>v@ljTl5e6S{V1n>2Vj z^if$^nS&1`s~Tu|Vxia=zv%->5hHSx|e)mqBF?g z>^AG=3hvj^paY%TuS!SD0B|;No(G#R!iM%={t6!MxK8;Ua`!PQIyyRWkct?f%0Gvy zCIb^hOmMz~1|9=Fy&+(bCZOREcQb;l5I@!qz$SzEZDsE{Y?Ve7nv*L^pt;9m#VR>` zZDk<{w2m&9EyLFDY{04v5qN~x)Nj1EOdl~1L$n1f60;z#EijF+g0smVIMhB zT$S_Zfy!kt#o@6LYGi+bD9X#8q5+#$mlgk`nkDiD2#yJ3OJ|P!-99LE66y5J%yY0< zw<2Y&)~y04$iNt>ryIl#*887eb~+>`A9Ne7{8_UWNV}3r>4+cB0q5@ zGq!l4$JKVY;rJ48G6TUT5v0V##L2ILYJUbJ{IbBoz>eh1bQseB=$EryXC}do-|oH~ zvO{5AxCDt?8vp^ zwiw=tSvU{k^BW|p7*5?n#*oRc8a?g{x{XJ#Zt406 zM(C0(uc?tkCZT2t_wC~$mV%~Q8mVgdplBMwV+~S}lN%21I{?$92bpAHXn*3uZxSgE zb9lZ_rCa9ujyJXs89_%3>KdAGm=83sK~9uC+qs&qj~@*!cp&0y;@=%@U)KMpXoKO( z?PwE(PT)UIaz9xw@DlsPd$t1kqBJ_BCS-f~?~B7)5WYBhMWqLZaF8z34ccTC@b&zh zo=&H79jGF0+{;!21{>W%`)AO1Jn%iVMQ~!TBTnY=^;eGDNivDNp~VqM-3(tE5Yqq# zzTcfA@mC|UVD02JZ;?K9@-iJ_kedTN3UnFEpWtH&*~<>*1P8s{9ekkGX1$d*aqv7_37SadX_3@UCTfEJm!31-g+`HDHzH}wNFl+R#J zT^0f@&a62eDI^7;*>2nUo<6;AC3&iUyy(^`<3RQ_0QE?Iadno-VR$ST)~-Wm~i#@bpww;fnHH zQPGArRqKrJ_B5r<2`^Fi<;wyufi=1~-S*1G`_p#K%YTI3ox+tekCLPe-;Z#N4RKiFyc)%h&DBQMAWsh}0B;(PNgcG6aP1#kBR|>hMXt#Yip?BcgUuv!5Sdvl$^aaNlw%Uv-Xc5L0YTJ z-YFHjCkK*Y?E?d%1HH+^Redmx)@4EYhnwqbg>uzhxMKFVHRxMKhfqxdu!}#=XWl}h zK!BWDu)U)z$rII*o`Vm!BG#+5R)m60OjGE)B`Rk~R-GctZ+su2aiNzUHh{-LkQ)^CQh zh0@vQ*{uG~k?E+3tBRE&vl(m44$W`D3nBylblvP6-fd4kq}78bE~iKBKgvI@e>5D_ zUgwdxAVz@e9Sev{3(OfZP%Z|50}TZ1qJwVUZ;^HUD#+ZB3?Z4Fwd)B$>jmgIj-Ai!UuSG=hS2I(M=dk z(jh-K4&ISHv26{ZbSIi(2?!t1D-e*NAKa$LXH$?hCGfiYqAhsCmE8-)8dTI-)axed zR3uQOTI%mq;O=OmliKXtr2nfDznTvZjy7ZkqimPYaL7BQG-`Q7xB5Og$qB&D_S;*$ zy%yA;CCYzcT3kxuB$9)qq&Jm@fZni1+BjfdRELs^mXGq9+SK1HhCaHLR9UIza=d}C z=XxEuyF`ROomVtk^_~lZjj|W z{fti0DNuo)jRiVxBq);fN(w>D(DXFPZH&@8*2hd7G^!TpwT z#sni82IivQ>XW8_JK|cgBN&l3n+2tv;8Oz%}94Mg$Of|XR|vZ zBRv3H7}X417{g+6ygT!v1-tv`j*L=1j|P+bbEGRwye1$Z0K*)<>$ec15Zu_7UHO-K z%j0h>>SY-}S=R*Dg>F0{W3rv}?{E@KMyZOQ9jj{M+TKJM0RdVAtD*e{?jO2Dl^PN9IK5)V87xitf0OsIlWg&sL00Q~4*6E7;@l>qa+ z24~PrJcj@00M6D$xZxtqM^A|&6+}%7D-A;%lo}E&G1m~AMg9=K{LPKz2}~L&i8!J_Xr3$kd}NP8fxDj zqf{b;1Jjgp%!BFjvw%O@Udu9-V#k^E16&JDHSXQM{pl77q7X^=KbC6zReK^Ek}}z- zYK0;CWxyC>BmfI7v!{QYqvS>%HIf_f@5i6HIGZJY+JfAx+-ObBQ{Oy;xkGf=*6F+w@FcLW}WAYX|$v zW*o+6`V5U2V2-*Fqv~v~(L-yVYtDPL;#86b=1s-dADmxqTJ8Bnl==9rMC&i6xB6Eq z9mkDYWIPmX?h1b+0%+i?Py7wA#;?&YaG`2Cm*_PS79oUXwYU$-G~u9};-9Zgy8atU z_boz_4cWW3m{(sSLarV6^&MC-0SBdQY;w{*qA(gw!o(SiZK=BsfBgl;lUM>uTTarS zP^&EkT16V)dYd-s-6Glspb(pYatjRUcpuWG@P!+P4hniVZO<(>{SEl&=i;5Co}Q$8 zwXx!?{AyeiGS`Ou4+(w9s_`yp`0zm-M<^V7T?$W<0DZ!@Z389cZE#sc*nl`_R8%zy zO%C!{p3jOOFJ`RYN21fOYNu<+-k++mq*>FjKRq$fOt(&W@cx3!k(qN8e$}YSdh7-t zSgY&8OWM5kVO=W;1g(SHzTP5;l@1vYWx@|Xv?K{vjs* zU>>PU5QR{fqybSPAlhaV&0u{)(}bRxk(vV7cU_aP9y z$nxq|#iI0L`4r1g0*4^^j{the-kp%i*c~b3x6|3X!2HINEdwt!0rUs$Wl#^6 zMGPGVFi@`|MveF)wv!f>Kn-H~l-IxR->jm*qDwaVn-W9MojZpDY+{NKuFNGfB=*J!hJvU(m~jAs!pCu3hj8DbGheoh}ZxXc!{cf!QNv5 zfq^GaR*c$JwreY=kB^UWz=N;y4G%7@t$#2tZoiRqin+hULpi6MsvrumnNZZbaOSHY zn!jYArZ&d0C!0M&>+kK^zIznsx$(*MT6!Jdzc2L;3KK(=wf z)xs^=eFmxZ_f!TCd1;OB4GO%$y)fWvs(12^0q@-UBL)3?_}c=^-?Tm*?ZhHCA@kYA z>9t~|O_otpN>WTHsyRn4U%njH9o6>Ba}YDH6)5m*3LV&}=<#7KXhthT_ru&45tcm) ziaJy(HB{A`vH8}9xZZ^C^&!RePLEFgEER%u2YCG%;39jL9w_3cHf$n%)~0K#aDuh= zotif{FtCdoSjYk(1J#C;QmtId4YkS2^O|hRg0*t z>FVfY*}Sg?S*M#P*+HQCqv+GgZ5Q55!Aexe8dId<1{M6puo4seDZp_uTWQhQDOvyq8X7aRYAJgmNH}OQSq^f;& zE*vWc!8cNMKIX0BH2)id+YgCLxILqqDg)+CGpgLVy>@c-f$rux8l$!fuXyn}oziEZ zOoHw`#O5cCoNw|S%bfIHG44?L7O4=79VjYHYAbP-S z;t^{1s#x63zwfVTp+2kTOQOR||BMS;xvV!dJgU&~m-zhiYJ2@fgYP@Wjf!~ z3wqK5y`UBjH`LO2dFE*NzZ$x;>B|WKeNU-!Jj-9xH*-O#V2ovvXNv2|s9s<6y<#5B z=f$5d&Hb+%P2<_^>svN!=k>XuYiAGu6=L2_o@(Oa+J=->7-|FY`O)~me#DN2(qDaZ~S*C}h6t%>kc8rv^0MJO+xP)v}5 z5RC}ZrhD|{$$Wd_&#-|jNrEG!5XH{Zlu`q&?3&TUP~_`$>{2X{;w;?0Q2e z1*#JfXi^+Iemt>3UC>$IxS<>fF}g4^1%ap+5mC#IXUttbiO}s^&=eWwwTjgiva$sj z)Pd&dPfPv${17C3xqj)@g;|EbRf)-VP7^4NR>_|*eKD1!`g8Vmo>E2e`cPoem2MJ; zk`4~iijMjx>)ts*wC3**{(=AO29n@*G zB;!=0H3^X0t1B1S;dP)C7l~g;ueEDhetv#TucbbxJ{#p?e#_z{DiORxTutaDrJzBH zA$FHj&bGV9OS&8o`RkjdTg(NX!(O<#Shyv3X=aRUgZy8jAXIm(LQ`VFnU%zjFLT(m z9RjHAzsFBh6B@Aaa;Qg(BJU=pSx_t$c$NG*lRI0Vo36_u(lZ3zXC+lX@j7{zHGcWD z#HmKk{R3bO6-|P}t!&XgTeM2ycl;D*tYJ0-wnrMs%XM;&#zvyB_%0GkN~C>PF57V#%yoNze~MavM1uT*F_Xek zp0M&B3MkoM=C+0SXd>##lFlLhHtwt3R<7K?7oM9GOdYF}PdzgKa*FYIE{LX{dDoIV zl(_*)!GYs?2qU{&0>u$h7)@%LCH&uXluxIS3QKeVjaM77hDUZOHGX578!i0dq0Rj#gJM(NR@+@O{&t8gk%GF{iG4=s9Sl|W$J7dE^ zt4fF%B|yF-+-4~0WABW$wTQ=u2Sh=;U$Y$@W27TRQM20TKE9`g>PEClk*u<8xmEzv zB-HfQuusMLjkai^1SomoCmHYI`}1>tba92}uXbt1&WLmo5#>q%H$>)-sHCDkvsDmb z$$SP>1QJ@n)nGD(Fj~OpX(`@{u&6%w^M?-~ChtoM`_HLC z>;E((XO6VMFQgU^gawzy4#Dq`hH0jfPFM&04^hpw#w(1>B4jC?w4=wng)B>@Cva7p zmXI+fPd-AzQ}@EkgF%0JG``)Dgw1J>*CCJ^VPbM|aZOJmSzi$pB|soNP5d0t&Y|Rh z+KhWG>Cy2^YzQbq@Dn=alXIiinQXedA=l}BD6c0pm)RDApG5i@6>${$%b{RIsB0a_ zz-AqU)`K?0y2$BN{(=C3wKY=Mn)7lJC)itKZDxy5CL5xAbphzpLR!wB=IMgm!rOhs7Y>M(2y^D$UAtWIb{In==(lGW z@S$s6R9mkk<8!_7MUT|~?VQ9~8J)v{QN2G9&=&mz9;qI>Eh>#?Cb8{($QIgdX(Uqz zsnB1#hsXk9sb)wJ>e(XQb!ZtO6g?!+Glvk*K6rp0jq!QE7Qc5ugz4-7vzNK_%S*Sf2?PSC_1EU7nEp`O3Z7 zVHh1zigr~8rcoDUBP1}Ny|0(O$*)$&fkn3qQ|+SD5^J4ap9mH7P@ZO5HDppjm~pReV)sC_bI@>^LBVZ9CqEL5 zS|1CI2Dj{A%gX#I>ueyhR6<8$L@5r(XM)}h?@%;w`?lr}G!PObiGaFQr%fgRqE=e!5d-tVB`9XPzX8-6Amf&Yu{-`V4696aFCTA-xm4R_7LlMX@i7 zq3sNu&%p748)YW>6B-CnQPcJSK45r5-3=S)0HLjmwG$bT&LaXCKVKa=z`od|1TDb9 z+Nh^19D|u9iT(x`W??2F>q26Dhti=ytGmg-ZJ|aW4U}+N*FRZeHif&iR<2yB$-Tek zVFl_iSD7bNDHsM5;Kq@7$TeJfK@a5qJ6U zegsb8QXlBCBO39tQfPqj(-&PJsK?LxYu0xu1yNDrcL0+C5`E&x)A_pkpN5jLAin7C zNg(o|+a3vF5KInp*&Q^B;>mqf_mWw2) z14!$Y0tDbR@R_<}ibjI}4GE!kE!FVxqr{i%-%fxwKI!7tyW=olXC~c{G-u z;#4#i{qtQu@EMtEq$Sbt%whyGx4(b7Y7EI(_NE>!=YXbK~cFgB8e=*7@q{A_Dty-7L-X6D?>(Q$4FBxn z&HIh3prxUiF{sDB%30P%Yvd+!s0eJbcf4Hs1B?6~nq6|d>#jP>SQi)(kL~z0Guq$j zS*blK9c6{V6R6xYm0_*EtuyVPf4J1TzG0C)YX~-s_PS?9Gpc`a^_hMr(2*N^AWoDY zk>nn?GATpzQn!{&eh%UZ0((?n-n5BGb2abjscTBRTpS9we;?wI3k+4i{*&B+nN9Oi zSuXx*^c_JDO@UBl@D3o@9gVmI@pY-(}J#iu&SCkH#PDuXHtGi`N`+CDkbAVVw?I<-?nio;! zeOs~^Iwu2PmiQ!yCMIz_(!WMWh*s$@w=K#_1T{@mw-yj8nU}_PRmvj~qKie+$)29w zK>GH}dmdF62}!5Jbu!`0 zJGprd=jy5LU0pRAEvdoes_Opt)XSDnJAkxoiaJ*+KzB@hr^z~@bRkOf=)<$s{H9M! ztX^k&VtSwAVet$mee+lB(Xf%z%kGF@k-6F(6=0rHpeMUO28nsj%)a$w(j*RI;)>IG zMj153j0DnW-l?*`KonJ|6l7`5wSX+l(HOHOG`wmp>#teg@jxuDmdn4t>nRa5B%L%! z+_Y1bvye=Kxa^Yp=nY2uQX5?H=|0D^*ra=I$bi-!r7jiP!WA zef{JwZ~tI!T=>>C`dfB*r8~y_0(J+GY1)*@)g+XzrwBhD~=s0uF-w1)sVAf-- zD$aX~Q#*)(_K1de;VxVkeeWi54x~J)wSS0MKo~Dv&|jQ~TYs6K0@#CyWv&hr=8e1v|iry?8>E9bQvO%3*Jl68`@9O zwh%kv3;PZgpAtDl!_FT-pV=AE*rReJ6xhiFYtO!oSM4aBpAB4nEDz6a+ij$i47%{g z2@7h>KAABRqN1fp97ua!2qR_#mlpm$*Zv#9B3=QP=$SqFHS5#39xP}F^ihsO6U>{O zauFrWzo99t?01IrE9s7IuFY5gLW}N9BV6FdEd#tW@BDPV2Pp}*zDJW4uYVB zkk-dR>(=`MPk~&w5_Uvh&)MlGg7_p`{5fSKKOs-a*JwGVvkNl2TZPPh*(crF%^=T z^;c%Cr>DBQh*7CnD@=7D94M_*yZPh^eDq?X@%dmvX59fYsMUyAVoD6;wUl2$n;Uyrzf|1OrBn` zTTKQ?g?$fq{Uc<@LAJ`)vKh~VA~gnNX#$Xzc6D_f{eUD$y*CN+i3aMcooDCX8coS0 zAfe*jvm1wQ$UuSdq|csYlXbTcs_FuWi7v?ZysFAo&B4Lc0{BI0X8F^F6zNYJ(#&K) zb2th+S&hqG6#JWHPlizpvO5!O^&w1N{9pw6@_ zVG*N%ZDaeYX&x(rVBO7NE=d|u!J17?I&AiI3@UUELV#8zkTuk{j7dv6I1L15fa==n z;FdI4BkGNIR&8Rb^b~}UfkkA{0rYU=_7Dj{!l@oV_VId_OJ=`CnF)re0c5sG za!T9=&_Eiux+@;HDDm$ny2T+Y4va2Cc-JPoA0B;iA%dQ;Ng@wf_V5(jr6i1wq*1Cv zA}&ww#C>E1UaWLM#O)-ND8nINAR5y%AUP%oEpR1qWo4_&bF43EPjsw|KT7nv(f`2k zcJ%8cmRIr45n?SK_yy19p_wSt(AI`b@H++}|4Ef$d~LTtdv|vP(&=*GRD{(;u#m5v zoeI2|$63=d2D6{6NY@H_W0o=?v2SpzOY0+_Y#CY|H+LH9KS1}@LjBuFM&y8&JFUEH%sUadaQYh(&iC;> zVUK%9fsW|B!s}JVEP{hsql7Ukvw(>tN2p2HU5)tQ$CFqO0;`5Wr@tAaxXLYMBY2`Ybm69!6gW7sU| zV<#X&DM=ehG9MVo@vgIEa9{%fvaVLUX7NslwlMKgAyaq>yA$Ix*gme#PGn5wrt*;Kj`KAy~Sv zq~H_|1?e)xlM-!a+_5bwaYQ+>SxrxQZ%@`n zjRMdCdYc&H*o^FC3?Vmh9H0uYexG)DY_e1&x&_iFnVQO{q{Kp3dyee-gtdJUEc)$hAkqLp@(H7kfshjJ#doCmE^~aGSbmSoWT6}WUer_rMP}=i1MJ&57WteCj#?bZEicxpNWrFW;aT?1$h^ zmIlqAFZXSyv9AL95-!5Vhw;}2lcEx-@1Jcv`R@@(`d3Qj5mZXKkiOtas{fKq^^|xq6K#c7?kDXBQboL=8k_ zwb;Q>6TeZ*CuE&3B`<>C*@0HtzZjv6eLEo%=W4YRWr}p0Yi4BV0j?zefPjEYjzoSJ zR)G$8GF*n--Hg|=*o4>W(wAaixmm~P5W*x$Ls2@B6}x=Z?#zBEF7_I;y=$omjfjc^ z<9`o}kaMb*G%mNatb{3c_1*;6FN7er1fT^uobgulHSl^FT)InG78a<;O=_Y@6(4J* zO2sCvJv*=2)oM7?7)|uTd_P9}G!ltxY?~e#687@t%k8}g3vnlc@$iK97Huz8jI6&B z$gI*n|MP63orO&UV!(@ud-CFmA~+G*FPCL0CbMoPJXc@}7sjxOU=n30Zg}IT%OUKt zJ!cRb1ldu~6f`EpDEq+_arxLb5=&1ZLty>nAF<;{xplT^03v2;a}R;!B3SQ($Gws) zPyd@;WF4d;Iw#~m0?ozl?Krv)eMPTcy$VWQ-)^2U2Xg>@g$0X29bxQLyfymS?`J4s zju`VpO5Hfib97SYDaurWpMU4pt@*cFK#%(E8<-D8H>0$*wVAMPcMM{w?*lCCeW@2X z{U^r@HJy*i%?@@U12?1Jg7Im*Ix?UALFahT-lJGnUD2%DfGvL!?<&nkIN1M)t95Q% z;(-CcOI@9haZo${9lvP$!vYY5V0E}=O`tkNn0A_4S~Grt%uDTnHH7)Rv0*(h{R4$C zicv%SG=aZ)C8Pjj9e7IB!$&H0~lDB z$UJ~POQK@NTTx9o^KS>3R^~srF%88dfHu`toXH1o)tJgRyPm?qOY-ZzjmY9Y=bXI zJoK7O1IVQdAlz#wn5IO?pD`vw_lwEvV0gD<5Xc4zFuqUpgeK%6_>HPAr;J}L9Sxs@ zxgc`!v&U(1&`z_1@|E|mD~-d1mr~?yB*tj{%H|-xk~7okS?MGt6S|MPS}_BfkWJdjSKc{(?hIayUh+!oz->_# zo^*kloTH>`5jb&EZOZtm&0A7?^C76Oc97~cFs7YUX{E-rJ*|N#Z~Ov|y(PPR=M0&l zwI0<*!Ne!aDm1G1`IG}C;RB4kitTBc+b7BCRi%%#zq2G-#pgZ>)Lm6K-QC@1N&;1^ z*6oJL=a<=oi`En+W;|M@^rE<>(oC3m}E0#Bt5mW~H6y4o6@`}$;*(sWY-l$-;XNy_0p)RT<5or`-Bui2dH`1-gZ2; zKv!g;SW1!;suAf)fn;WCvEA)ZpAz#fjS$kahBK}i9mapu@toYs8X*Tc?wsX!kD3)7 zLTACXyGkm%7S#mJ$D-8guWNa+x4X`Vs1~et-E}B0SSn8bbi}{>I%n`tla3ufz>gE3 z82HF-i!>F|-)lLew@CA9(#7%94uP$Q(=}z9@_@1Rugi)8C9D%QxpH{R1u#g(M6u$Z z)4yjdpbI{(?OIzQ__(ch$FY7QoP93yIwEl0{Uy!%UT;>a>0hd~UOy$(AcTWMfW?>@wYy#; zoDoA!+Jq=Eq0q(R61(|vCXMBogMRBt;ZXz23*#wtX^gFrENtEL`kD$y`iC%c!^vT6 zN8>!U6RBX&&x=TI{QTxQpV41FjEhL)A-XEnau-0yjQ~TtOuj+no24O5=HMLG; zoJ7f^blWJ-ZGvu5ih(s&CDPnnT%sxl;oX>zdB$a+Zl@ITCKP&H8k;Nr5g|F*m82luPGI$TaFT2-f1N=B<`(u*nKUexLZ z&evZ0EVRz>?s9mCw%FP_GgDrFc8hBbn%N&I3BjYG(ow$}-B2W6s6~Hw7j(q~1V)+*Hwa>-Nzg%*< z4urrW^F~y*y!g(Xs&r0k2n83SU1e`anFMiVujLn_BjgN9ipQ;5jP=K~XLXWsmdFyj zHaCy?4j$y>DHGH&(}fVTH^oKEIjqU{vb=A$gR~|%EGu&c0j6tafbMI8docFYdSwIn zj=cu!6uEQOfKhM?q{srz`li2te{iGpI2Et8KuscjXR!wGtkBf;fhKn%NbQ`6wHO*E z`MS#KYCLyW<4lUAD1)avCZMLh?u&ti*S(@O;n!39;Jr@bTXNWASq;?lP^Zn zv|U(ls+8t<4$!p>*b7AxgO8T2qgv`q?Zc2V(u~pOt7)T_dns|J+08~$mIDcx#ck&xVHj%k=z!|`BB);Z|iJMMX{2iD#QMgLDXeF zI4a2~X3#+mZN#w2r=QK2CHFIGM5E{S8&dTTXB7Vfm}VtfSG}hiEqiK}c>cz&_v1{d zFMU;$@ks|`qF$J&-CRk)q;bhDe$BCKn!lJSZV+MIQE|nqz_whE+TUHl$KPj-uBu7j zLd7J!$4e4W_!oC9={=jesic@F+ycY7BkJ3#YC+w1I7c-(Ws7(79I4Ng<_`yR#FKo( z)qu5MtnI#0e`jU+&*t*VTcK7y1~y0V-xlcM_NY*k01R4Xy0U%|hc)gHU69*SmXS&Xth5E{q8kF6d&Q1Z5E}^w%YBN%rC(CrC#;DK#;Yh~0`(*w|+h5YR z@kPMe?KJ1{7Oqz7N>08CdGkVJd`i=eV^S$e`w#5jPlU6Gk`@X)Ra(i;-GpW~SbbnG zDPWOaheZ>kqLi(_K2v$xw|>&iuQMD=Vkt0TtFI}W%+4&NZM@-eFQEGLL+KQW8|kO2 z!){AkChpA9K6{##**uboE4D~h356PY!m*s~PyQ`bS^I_UGJjooW3Y#O3ecZsbiM*4 z193;YqG*d_ww3(u$8jr6Fxgpn@c{1og_hUnH9V#m2yoIieLv(HM9&3$ zJclT&#%B+9Y?@DTwEa)q=YE4L412_v(^w#|nV-p zKq-`pkfg6C*fZE}-E^pF~QXc^Ma|ZS}v?2`#oVl$B zAYTz$9dQH@MfEVO6P)b813by^-Kujc;M||kUV{LC#39waMpJRU=MZp0vL3>66OMnc zFp4%v9*>CAllEy$9$pJUik?lA2J3nOgLbWZh=(gUjmAjb*Z3(p_U>}uj`**|<0g;c z;`-DjG7W-zPBFXmkT!)EkJ7CBd|~RKe{)I_*$7sKQZ|lAh%GEPUI$kM1?#90Tv3A( zMf$q}3L!+<2?>u#*~I?l%{PhcBA7kzGxA?oa@uuK=Z)oD&F7}qw`}>!Rq0O-Ayp{_ z-Aha6u?>QCDM(@V;lYudq<(qC1F;TNl*Cg~5q4jUxld*~4shq%gZF9(?qtFNI%=a` z79{|Sl9df&)nyy+kmxe*QS;?aN(|u z3G|aQwb^+C$rUcDmww!)lPP69$zQYpj@6bQajh@zkC|VceSwV1A!2uE!E!e&zFP7I zfQxiuqKUnIJQA7Zdm`j>0+8G5dHgW=#+5aBH%;Yqz;qT(OVAY$3T;DHhdso)nv7CE& zlxhU%J``Y8%^L#1K za_^pdt(?bU$f5GRC-R0@v#X)vo+E1zNL2eAj=Etuqs~8ugR7C1H+#s)@>-2%j|x2OV@kT1*AHIGjA(|<#TMp|up zc2>ZUV}p;UFGXpFVb}H>R^`h8IyUh>OC5iTfM>~y|5OR+7$ly(esCxoG?30h;b(r& zEIz)th!bv=nUylXoE_^Yx&wE0<#N<&5?#<{Sp4I|EVX_Qlp`jbL`1rN(IhiCy&0IT z+J`Q0LglePO?@%v_`~F>#1%hJQMn+_DN)sL?lZ*J@_W5t=?dd0Q}w zuR#Pms0H@tGEwV3%WAj=Hrb-e+<~6?X0=@Z55RD)43p9Gxf#=lRDN~WMZo_3kEuAz z6OQ8IzK;$L(r-z|!wN4pn=~ziPvJ%3}~~)B%>Y{ae-Kv zbjY%u8=F9&=j9?@g8&rmb->>u&4GZD&<7OyAX>#dbK?ysKrTbGx`N)Z0Bf2(S9KkP zbHAS^z_zvGXAjbousk&Xul>R4v0hJy6Tz^dMFasb>;sB!R(<+OxF>Y%&~i!&bEplH zBCOuj%V_%p)UiA_o^D50aGPC)A3Kq4-Iftqari-*ZShy+?Y!sTXX9aaK@7-d@| z`V94uTcZ83c94u)P~B}SbbBGjmwwEr;r&&aH0lmbMS12r#8X=gbYk&u;~x!UE? z;L>P3hPG<1V9dk+c9^jMmp%zT6n{`ejsPS^B-;q#U;6{mQ^}Z*?ar$ z9jR_)fuNG7)6OP($FHzOOEj2Ni4_kZyg)RQ93>C_E| z5tL8dJv`)jpFyT088Gk=>jp3pY1X51M8>jDBH9qiFl^j9v$mz>T9Iz2KRW@3;tr}G z*Sg2uWGXt5J!EujqlTB=`3&5S&Pw~{vNt$-s#DlpS`|Dda>sp|j)TEyn;ZKuI#Z?Pl|b8Qp?{++bH30fZA6$C0SXjKP#;MtMd+Q*q9G4MA5AG4 z=uJcaV}laGSGx~6_N1qi%sAg6Rn|e> z{#3=GLO`+S_VjIMjb(VIBZ5I=gE#l0L*B-YU}iAArK!DYv*jbsWXsd^e4a;D`#;0Pkd*-by+9}y;VfOq@($-NJm&&#`G*K#)Dp&Nt;OM(0E z{VAWaF0sMY{g;9#e0JBOq0&JFJll$_Rxbf-aLSBN@)X|rzbFs4<(wmKDV#VYVmp}z zqF5OogmeS!!s?4=n8oga1E^}@o+e|Zp!>Q`g>mNvG|!B(@_{7E+qWM+cz17ZO)?UJ zmZp?y$Lm|WDLoqnUbAo837lQ;ui#8*w|7VTyq??R{3(m&W`4i)ZM_+7eUL|N1V;yT zJpi%OZH@&6ksg?qt^@UmE67ycpceb^1CY4v6s&TRc>@Mji`PLE)@2E201$~K@4K2q zI4V1i=&xsOvpNm!diRledEP>1E{V%iZj;3JC9Hd#m3lD#`6PZL`A5lJG=z^*z)Gv+ z-=;hlkO9DFqpX3R7Zf=!Z%ZO7RwSpbHofhWglmJ$dGvJq(Wd%c-YgK9W^FeuL4HTo zDBttSVN!9?e!H8_mvKc>Uf7S?`tC!jhBX#8Es4i`Jv3-dNG$Nqtia4`E$3&ecltYp zH{cV5_w3ys-7&L6YoZqHmt4SKUIfo147)z`$IX^wkO3V9d+B6%OmzyBVoP)wlEL z{A67B3MQlnzy7e&^Tn{%&owU-0Wv>M^6L{wQ)8 zNV+x9If6KzEQqLz?z+t5rQ+C~V#Tbg1`?Jm@Ei9gr=Z+Ua=JU#(| zOG*BDYd2M0ST!ca=)!(oD?@qKYO(KJl980|=7g-Qu`@@K_}4%!r<_Wkg@^@zxGx>D zA*Hi)w4*gbiL1z5>zLpZ=krRI)0%jPwXmkiq}c<7N7*|LD0v(&s@2X8#{K(J$#neC zFGNyp!D%5ZfjSe#E)O)05ehJuOw!TcPYl~`pP9v>c}yx3(o~5TV`l#Krb5<4!=;K#^j7(G{^jYA{b=}kD(ib&2_RsrO zpj{k6NA-?K@)kXD>POWpk#wCGDz9)Jc5||>P?0)2;3SZS9whIrPAH2CG~QeZY~ug+QwaFf@E70)vWY@CQjJ{X5-y)S-?Z zJGMrjU&vVtCo^xJxYp282L9k8;3pY`;93wBs?B{sci0^R@?uFYKCi~@%ZBzmeuD@q zMG$~aE;n`#CmO`409M+_a{m@;v3H#O+4sq~%@+9*xQ-FyTpNdg4OgyX&IRDt7yzd` z3?rZQ?m=*o50#v9Fb|RON0l;sLP87S#wy>VU3s4FVx_u+roUf+zrThpQH=B6pERVg z$d?sMN6)SU5UnCkbgSUb6~s`9>`e!fSs(xB<((A@gI}=1WCF|JSBap19w>{0!cs{| z9ipuIe;%F;qJ609$5!_$6S4SqOZpiI_4d7ClQG}uyS!X31r23S4CkzKFd4~Y8j|ts!d~{4mc=$&*T=wNTfqkl_#29e-K-G1hu8e+e! z_K_sq*NoL?)LAEWNOU(@3`33*zzj$p>6{sm=I*A$k-SWdvcZpnNxLB=3-NiyZc$as z><*)z9M(O#sc~lhQ}jBr%8vQq=dDB_Fs9zqFzV7t&<#kK^M4+DA-??V>WE_IV`G$# zbVJ&Hy7U=BPs?@wxPP4I2xrWCJvJ=ugla!Cir@Z2Q?MwT)E=cm90q>1C8apFnl z9~Xe|+1-tLWKk07mIG-1lG{&z+OP`-s&qW8CCo32)p;QzdPu|NCf*=P07erq#9 zGP%|M)8h-;N0E3E&iwx|l}uvcQ&vZ-GbvRKToj_Hg^R5zhTw9T2l0mM#zmIK_Mf{( z?InG<6(_F_Z3&&10>G8g%=8p2?X8LadAFt;i47ak@F*o>+3pEVvtogk-TX?BBtW_} zs}PE-Aw)i7WE;;UHhyMxY%%k}ArFC=2k^72Z}3dTc*Hc~t=#%-+~^P2CZ`Q6y<1?y zYNfLeq?7JB)cuPZK}WfdkW4;q>amgB+Jgo7?(24|%bBn3CdE)b&Dwk`NIfkj7CJ6= zBO8l|$Vy-{EIN|gZW@|2N!1_yjH~iXjFzk+r(zH#PBDKgOVviHeCCxI@2-PZlMu+XSHWVI0UsNi6pQ?1iMj!<;Pje zM^nLm*VAr_5ACQ@IG~H=xO+*b-7V7NMkcq|DTdaL^!2==_$TE;*AE=hU zJi-t;@78DWW7tRdKi+{HoDfZH++<$wp$DQHlg2nh<0`ccl|$p%Zlzoj46bDNT6WdjGt+>gJL7O2p(0C+}dvi zD^Z3bFBehUv%Nn6ZWi4I8mt$s?B%jfrDmi>{{S+c%fOQOG0gQ;3Z{e0E(RU0ZV6

    +
    + +
    +

    Conditionals

    + +
    +
    +
    +Rafael A. Irizarry +
    +
    +
    + +

    2024-12-04

    +
    +
    +

    Conditional probabilities and expectations

    +
      +
    • In machine learning applications, we rarely can predict outcomes perfectly.

    • +
    • The most common reason for not being able to build perfect algorithms is that it is impossible.

    • +
    • To see this, consider that most datasets will include groups of observations with the same exact observed values for all predictors, but with different outcomes.

    • +
    +
    +
    +

    Conditional probabilities and expectations

    +
      +
    • Because our prediction rules are functions, equal inputs (the predictors) implies equal outputs (the predictions).

    • +
    • Therefore, for a challenge in which the same predictors are associated with different outcomes across different individual observations, it is impossible to predict correctly for all these cases.

    • +
    • It therefor makes sense to consider conditional probabilities:

    • +
    +

    \[ +\mbox{Pr}(Y=k \mid X_1 = x_1,\dots,X_p=x_p), \, \mbox{for}\,k=1,\dots,K +\]

    +
    +
    +

    Conditional probabilities

    +
      +
    • We will also use the following notation for the conditional probability of being class \(k\):
    • +
    +

    \[ +p_k(\mathbf{x}) = \mbox{Pr}(Y=k \mid \mathbf{X}=\mathbf{x}), \, \mbox{for}\, k=1,\dots,K +\]

    +
      +
    • Notice that the \(p_k(\mathbf{x})\) have to add up to 1 for each \(\mathbf{x}\), so once we know \(K-1\), we know all.
    • +
    +
    +
    +

    Conditional probabilities

    +
      +
    • When the outcome is binary, we only need to know 1, so we drop the \(k\) and use the notation:
    • +
    +

    \[p(\mathbf{x}) = \mbox{Pr}(Y=1 \mid \mathbf{X}=\mathbf{x})\]

    +
    +
    +
    +
    + +
    +

    Note

    +
    +
    +
      +
    • Do not be confused by the fact that we use \(p\) for two different things: the conditional probability \(p(\mathbf{x})\) and the number of predictors \(p\).
    • +
    +
    +
    +
    +
    +
    +

    Conditional probabilities

    +
      +
    • These probabilities guide the construction of an algorithm that makes the best prediction:
    • +
    +

    \[\hat{Y} = \max_k p_k(\mathbf{x})\]

    +
      +
    • In machine learning, we refer to this as Bayes’ Rule.

    • +
    • But this is a theoretical rule since, in practice, we don’t know \(p_k(\mathbf{x}), k=1,\dots,K\).

    • +
    +
    +
    +

    Conditional probabilities

    +
      +
    • Estimating these conditional probabilities can be thought of as the main challenge of machine learning.

    • +
    • The better our probability estimates \(\hat{p}_k(\mathbf{x})\), the better our predictor \(\hat{Y}\).

    • +
    +
    +
    +

    Conditional probabilities

    +

    How well we predict depends on two things:

    +
      +
    • how close are the \(\max_k p_k(\mathbf{x})\) to 1 or 0 (perfect certainty) and
    • +
    • how close our estimates \(\hat{p}_k(\mathbf{x})\) are to \(p_k(\mathbf{x})\).
    • +
    +

    We can’t do anything about the first restriction as it is determined by the nature of the problem, so our energy goes into finding ways to best estimate conditional probabilities.

    +
    +
    +

    Conditional expectations

    +
      +
    • For binary data, you can think of the probability \(\mbox{Pr}(Y=1 \mid \mathbf{X}=\mathbf{x})\) as the proportion of 1s in the stratum of the population for which \(\mathbf{X}=\mathbf{x}\).
    • +
    +

    \[ +\mbox{E}(Y \mid \mathbf{X}=\mathbf{x})=\mbox{Pr}(Y=1 \mid \mathbf{X}=\mathbf{x}). +\]

    +
      +
    • As a result, we often only use the expectation to denote both the conditional probability and conditional expectation.
    • +
    +
    +
    +

    Conditional expectations

    +
      +
    • Why do we care about the conditional expectation in machine learning?

    • +
    • This is because the expected value has an attractive mathematical property: it minimizes the MSE.

    • +
    +

    \[ +\hat{Y} = \mbox{E}(Y \mid \mathbf{X}=\mathbf{x}) \, \mbox{ minimizes } \, \mbox{E}\{ (\hat{Y} - Y)^2 \mid \mathbf{X}=\mathbf{x} \} +\]

    +
    +
    +

    Conditional expectations

    +
      +
    • Due to this property, a succinct description of the main task of machine learning is that we use data to estimate:
    • +
    +

    \[ +f(\mathbf{x}) \equiv \mbox{E}( Y \mid \mathbf{X}=\mathbf{x} ) +\]

    +
      +
    • for any set of features \(\mathbf{x} = (x_1, \dots, x_p)^\top\).

    • +
    • This is easier said than done, since this function can take any shape and \(p\) can be very large.

    • +
    + +
    + +
    +
    +
    +
    + + + + + + + + + + + + + + + + + + + + + + + + + \ No newline at end of file diff --git a/docs/slides/ml/39-smoothing.html b/docs/slides/ml/39-smoothing.html new file mode 100644 index 0000000..69b155c --- /dev/null +++ b/docs/slides/ml/39-smoothing.html @@ -0,0 +1,1400 @@ + + + + + + + + + + + + + + + BST 260: Introduction to Data Science – Smoothing + + + + + + + + + + + + + + + +
    +
    + +
    +

    Smoothing

    + +
    +
    + +

    2024-12-04

    +
    +
    +

    Smoothing

    +
      +
    • Before continuing learning about machine learning algorithms, we introduce the important concept of smoothing.

    • +
    • Smoothing is a very powerful technique used all across data analysis.

    • +
    • Other names given to this technique are curve fitting and low pass filtering.

    • +
    • It is designed to detect trends in the presence of noisy data in cases in which the shape of the trend is unknown.

    • +
    +
    +
    +

    Smoothing

    +
      +
    • The smoothing name comes from the fact that to accomplish this feat, we assume that the trend is smooth, as in a smooth surface.

    • +
    • In contrast, the noise, or deviation from the trend, is unpredictably wobbly:

    • +
    +
    +
    +

    Smoothing

    + +
    +
    +

    Smoothing

    +
      +
    • Part of what we explain in this section are the assumptions that permit us to extract the trend from the noise.
    • +
    +
    +
    +

    Example: Is it a 2 or a 7?

    +
      +
    • To motivate the need for smoothing and make the connection with machine learning, we will construct a simplified version of the MNIST dataset with just two classes for the outcome and two predictors.

    • +
    • Specifically, we define the challenge as building an algorithm that can determine if a digit is a 2 or 7 from the proportion of dark pixels in the upper left quadrant (\(X_1\)) and the lower right quadrant (\(X_2\)).

    • +
    • We also selected a random sample of 1,000 digits, 500 in the training set and 500 in the test set.

    • +
    +
    +
    +

    Example: Is it a 2 or a 7?

    +
      +
    • We provide this dataset in the mnist_27 object in the dslabs package.

    • +
    • For the training data, we have \(n=500\) observed outcomes \(y_1,\dots,y_n\), with \(Y\) defined as \(1\) if the digit is 7 and 0 if it’s 2, and \(n=500\) features \(\mathbf{x}_1, \dots, \mathbf{x}_n\), with each feature a two-dimensional point \(\mathbf{x}_i = (x_{i,1}, x_{i,2})^\top\).

    • +
    • Here is a plot of the \(x_2\)s versus the \(x_1\)s with color determining if \(y\) is 1 (blue) or 0 (red):

    • +
    +
    +
    library(caret) 
    +library(dslabs) 
    +mnist_27$train |> ggplot(aes(x_1, x_2, color = y)) + geom_point() 
    +
    +
    +
    +

    Example: Is it a 2 or a 7?

    + +
    +
    +

    Example: Is it a 2 or a 7?

    +
      +
    • We can immediately see some patterns.

    • +
    • For example, if \(x_1\) (the upper left panel) is very large, then the digit is probably a 7.

    • +
    • Also, for smaller values of \(x_1\), the 2s appear to be in the mid range values of \(x_2\).

    • +
    • To illustrate how to interpret \(x_1\) and \(x_2\), we include four example images.

    • +
    +
    +
    +

    Example: Is it a 2 or a 7?

    +
      +
    • On the left are the original images of the two digits with the largest and smallest values for \(x_1\) and on the right we have the images corresponding to the largest and smallest values of \(x_2\):
    • +
    +
    +
    +

    Example: Is it a 2 or a 7?

    + +
    +
    +

    Example: Is it a 2 or a 7?

    +
      +
    • We can start getting a sense for why these predictors are useful, but also why the problem will be somewhat challenging.

    • +
    • We haven’t really learned any algorithms yet, so let’s try building an algorithm using multivariable regression.

    • +
    • The model is simply:

    • +
    +

    \[ +\begin{aligned} +p(\mathbf{x}) &= \mbox{Pr}(Y=1 \mid \mathbf{X}=\mathbf{x}) = \mbox{Pr}(Y=1 \mid X_1=x_1 , X_2 = x_2)\\ +&= \beta_0 + \beta_1 x_1 + \beta_2 x_2 +\end{aligned} +\]

    +
    +
    +

    Example: Is it a 2 or a 7?

    +
      +
    • We fit can fit this model using least squares and obtain an estimate \(\hat{p}(\mathbf{x})\) by using the least square estimates \(\hat{\beta}_0\), \(\hat{\beta}_1\) and \(\hat{\beta}_2\).

    • +
    • We define a decision rule by predicting \(\hat{y}=1\) if \(\hat{p}(\mathbf{x})>0.5\) and 0 otherwise.

    • +
    +
      +
    • We get an accuracy of 0.775, well above 50%.

    • +
    • Not bad for our first try.

    • +
    +
    +
    +

    Example: Is it a 2 or a 7?

    +
      +
    • But can we do better?

    • +
    • Because we constructed the mnist_27 example and we had at our disposal 60,000 digits in just the MNIST dataset, we used this to build the true conditional distribution \(p(\mathbf{x})\).

    • +
    • Keep in mind that in practice we don’t have access to the true conditional distribution.

    • +
    • We include it in this educational example because it permits the comparison of \(\hat{p}(\mathbf{x})\) to the true \(p(\mathbf{x})\).

    • +
    +
    +
    +

    Example: Is it a 2 or a 7?

    +
      +
    • This comparison teaches us the limitations of different algorithms.

    • +
    • We have stored the true \(p(\mathbf{x})\) in the mnist_27 and can plot it as an image.

    • +
    • We draw a curve that separates pairs \((\mathbf{x})\) for which \(p(\mathbf{x}) > 0.5\) and pairs for which \(p(\mathbf{x}) < 0.5\):

    • +
    +
    +
    +

    Example: Is it a 2 or a 7?

    + +
    +
    +

    Example: Is it a 2 or a 7?

    +
      +
    • To start understanding the limitations of regression, first note that with regression \(\hat{p}(\mathbf{x})\) has to be a plane, and as a result the boundary defined by the decision rule is given by:

    • +
    • \(\hat{p}(\mathbf{x}) = 0.5\):

    • +
    +

    \[ +\begin{aligned} +\hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 = 0.5 \implies \\ +\hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 = 0.5 \implies \\ +x_2 = (0.5-\hat{\beta}_0)/\hat{\beta}_2 -\hat{\beta}_1/\hat{\beta}_2 x_1 +\end{aligned} +\]

    +
    +
    +

    Example: Is it a 2 or a 7?

    +
      +
    • This implies that for the boundary, \(x_2\) is a linear function of \(x_1\), which suggests that our regression approach has no chance of capturing the non-linear nature of the true \(p(\mathbf{x})\).
    • +
    +
    +
    +

    Example: Is it a 2 or a 7?

    +
      +
    • Visual representation of \(\hat{p}(\mathbf{x})\):
    • +
    + +
    +
    +

    Example: Is it a 2 or a 7?

    +
      +
    • We need something more flexible: a method that permits estimates with shapes other than a plane.

    • +
    • Smoothing techniques permit this flexibility.

    • +
    • We will start by describing nearest neighbor and kernel approaches.

    • +
    • To understand why we cover this topic, remember that the concepts behind smoothing techniques are extremely useful in machine learning because conditional expectations/probabilities can be thought of as trends of unknown shapes that we need to estimate in the presence of uncertainty.

    • +
    +
    +
    +

    Signal plus noise model

    +
      +
    • To explain these concepts, we will focus first on a problem with just one predictor.

    • +
    • Specifically, we try to estimate the time trend in the 2008 US popular vote poll margin (the difference between Obama and McCain).

    • +
    • Later we will learn about methods, such as k-nearest neighbors, that can be used to smooth with higher dimensions.

    • +
    +
    +
    polls_2008 |> ggplot(aes(day, margin)) + geom_point() 
    +
    +
    +
    +

    Signal plus noise model

    + +
    +
    +

    Signal plus noise model

    +
      +
    • For the purposes of the popular vote example, do not think of it as a forecasting problem.

    • +
    • Instead, we are simply interested in learning the shape of the trend after the election is over.

    • +
    • We assume that for any given day \(x\), there is a true preference among the electorate \(f(x)\), but due to the uncertainty introduced by the polling, each data point comes with an error \(\varepsilon\).

    • +
    +
    +
    +

    Signal plus noise model

    +
      +
    • A mathematical model for the observed poll margin \(Y_i\) is:
    • +
    +

    \[ +Y_i = f(x_i) + \varepsilon_i +\]

    +
    +
    +

    Signal plus noise model

    +
      +
    • To think of this as a machine learning problem, consider that we want to predict \(Y\) given a day \(x\).

    • +
    • If we knew the conditional expectation \(f(x) = \mbox{E}(Y \mid X=x)\), we would use it.

    • +
    • But since we don’t know this conditional expectation, we have to estimate it.

    • +
    • Let’s use regression, since it is the only method we have learned up to now.

    • +
    +
    +
    +

    Signal plus noise model

    + +
    +
    +

    Signal plus noise model

    +
      +
    • The fitted regression line does not appear to describe the trend very well.

    • +
    • For example, on September 4 (day -62), the Republican Convention was held and the data suggest that it gave John McCain a boost in the polls.

    • +
    • However, the regression line does not capture this potential trend.

    • +
    • To see the lack of fit more clearly, we note that points above the fitted line (blue) and those below (red) are not evenly distributed across days.

    • +
    +
    +
    +

    Signal plus noise model

    +
      +
    • We therefore need an alternative, more flexible approach.
    • +
    +
    +
    +

    Bin smoothing

    +
      +
    • The general idea of smoothing is to group data points into strata in which the value of \(f(x)\) can be assumed to be constant.

    • +
    • We can make this assumption when we think \(f(x)\) changes slowly and, as a result, \(f(x)\) is almost constant in small windows of \(x\).

    • +
    • An example of this idea for the poll_2008 data is to assume that public opinion remained approximately the same within a week’s time.

    • +
    • With this assumption in place, we have several data points with the same expected value.

    • +
    +
    +
    +

    Bin smoothing

    +
      +
    • If we fix a day to be in the center of our week, call it \(x_0\), then for any other day \(x\) such that \(|x - x_0| \leq 3.5\), we assume \(f(x)\) is a constant \(f(x) = \mu\).

    • +
    • This assumption implies that:

    • +
    +

    \[ +E[Y_i | X_i = x_i ] \approx \mu \mbox{ if } |x_i - x_0| \leq 3.5 +\]

    +
      +
    • In smoothing, we call the size of the interval satisfying \(|x_i - x_0| \leq 3.5\) the window size, bandwidth or span.
    • +
    +
    +
    +

    Bin smoothing

    +
      +
    • Later we will see that we try to optimize this parameter.

    • +
    • This assumption implies that a good estimate for \(f(x_0)\) is the average of the \(Y_i\) values in the window.

    • +
    • If we define \(A_0\) as the set of indexes \(i\) such that \(|x_i - x_0| \leq 3.5\) and \(N_0\) as the number of indexes in \(A_0\), then our estimate is:

    • +
    +

    \[ +\hat{f}(x_0) = \frac{1}{N_0} \sum_{i \in A_0} Y_i +\]

    +
    +
    +

    Bin smoothing

    +
      +
    • We make this calculation with each value of \(x\) as the center.

    • +
    • In the poll example, for each day, we would compute the average of the values within a week with that day in the center.

    • +
    • Here are two examples: \(x_0 = -125\) and \(x_0 = -55\).

    • +
    • The blue segment represents the resulting average.

    • +
    +
    +
    +

    Bin smoothing

    + +
    +
    +

    Bin smoothing

    +
      +
    • By computing this mean for every point, we form an estimate of the underlying curve \(f(x)\).

    • +
    • Below we show the procedure happening as we move from the -155 up to 0.

    • +
    +
    +
    +

    Bin smoothing

    +
      +
    • At each value of \(x_0\), we keep the estimate \(\hat{f}(x_0)\) and move on to the next point:
    • +
    + +
    +
    +

    Bin smoothing

    +
      +
    • The final code and resulting estimate look like this:
    • +
    +
    +
    span <- 7  
    +fit <- with(polls_2008, ksmooth(day, margin, kernel = "box", bandwidth = span)) 
    +polls_2008 |> mutate(fit = fit$y) |> 
    +  ggplot(aes(x = day)) + 
    +  geom_point(aes(y = margin), size = 3, alpha = .5, color = "grey") +  
    +  geom_line(aes(y = fit), color = "red") 
    +
    +
    +
    +

    Bin smoothing

    + +
    +
    +

    Kernels

    +
      +
    • The final result from the bin smoother is quite wiggly.

    • +
    • One reason for this is that each time the window moves, two points change.

    • +
    • We can attenuate this somewhat by taking weighted averages that give the center point more weight than far away points, with the two points at the edges receiving very little weight.

    • +
    +
    +
    +

    Kernels

    +
      +
    • You can think of the bin smoother approach as a weighted average:
    • +
    +

    \[ +\hat{f}(x_0) = \sum_{i=1}^N w_0(x_i) Y_i +\]

    +
    +
    +

    Kernels

    +
      +
    • in which each point receives a weight of either \(0\) or \(1/N_0\), with \(N_0\) the number of points in the week.

    • +
    • In the code above, we used the argument kernel="box" in our call to the function ksmooth.

    • +
    • This is because the weight function looks like a box.

    • +
    • The ksmooth function provides a “smoother” option which uses the normal density to assign weights.

    • +
    +
    +
    +

    Kernels

    + +
    +
    +

    Kernels

    +
      +
    • The final code and resulting plot for the normal kernel look like this:
    • +
    +
    +
    span <- 7 
    +fit <- with(polls_2008, ksmooth(day, margin, kernel = "normal", bandwidth = span)) 
    +polls_2008 |> mutate(smooth = fit$y) |> 
    +  ggplot(aes(day, margin)) + 
    +  geom_point(size = 3, alpha = .5, color = "grey") +  
    +  geom_line(aes(day, smooth), color = "red") 
    +
    +
    +
    +

    Kernels

    + +
    +
    +

    Kernels

    +
      +
    • Notice that this version looks smoother.

    • +
    • There are several functions in R that implement bin smoothers.

    • +
    • One example is ksmooth, shown above.

    • +
    • In practice, however, we typically prefer methods that use slightly more complex models than fitting a constant.

    • +
    • The final result above, for example, is still somewhat wiggly in parts we don’t expect it to be (between -125 and -75, for example).

    • +
    +
    +
    +

    Kernels

    +
      +
    • Methods such as loess, which we explain next, improve on this.
    • +
    +
    +
    +

    Local weighted regression

    +
      +
    • A limitation of the bin smoother approach just described is that we need small windows for the approximately constant assumptions to hold.

    • +
    • As a result, we end up with a small number of data points to average and obtain imprecise estimates \(\hat{f}(x)\).

    • +
    • Here we describe how local weighted regression (loess) permits us to consider larger window sizes.

    • +
    • To do this, we will use a mathematical result, referred to as Taylor’s theorem, which tells us that if you look closely enough at any smooth function \(f(x)\), it will look like a line.

    • +
    +
    +
    +

    Local weighted regression

    +
      +
    • To see why this makes sense, consider the curved edges gardeners make using straight-edged spades:
    • +
    + +
    +
    +

    Local weighted regression

    +
      +
    • Instead of assuming the function is approximately constant in a window, we assume the function is locally linear.

    • +
    • We can consider larger window sizes with the linear assumption than with a constant.

    • +
    • Instead of the one-week window, we consider a larger one in which the trend is approximately linear.

    • +
    • We start with a three-week window and later consider and evaluate other options:

    • +
    +
    +
    +

    Local weighted regression

    +

    \[ +E[Y_i | X_i = x_i ] = \beta_0 + \beta_1 (x_i-x_0) \mbox{ if } |x_i - x_0| \leq 21 +\]

    +
      +
    • For every point \(x_0\), loess defines a window and fits a line within that window.

    • +
    • Here is an example showing the fits for \(x_0=-125\) and \(x_0 = -55\):

    • +
    +
    +
    +

    Local weighted regression

    + +
    +
    +

    Local weighted regression

    +
      +
    • The fitted value at \(x_0\) becomes our estimate \(\hat{f}(x_0)\).
    • +
    +
    +
    +

    Local weighted regression

    + +
    +
    +

    Local weighted regression

    +
      +
    • The final result is a smoother fit than the bin smoother since we use larger sample sizes to estimate our local parameters:
    • +
    +
    +
    total_days <- diff(range(polls_2008$day)) 
    +span <- 21/total_days 
    +fit <- loess(margin ~ day, degree = 1, span = span, data = polls_2008) 
    +polls_2008 |> mutate(smooth = fit$fitted) |> 
    +  ggplot(aes(day, margin)) + 
    +  geom_point(size = 3, alpha = .5, color = "grey") + 
    +  geom_line(aes(day, smooth), color = "red") 
    +
    +
    +
    +

    Local weighted regression

    + +
    +
    +

    Local weighted regression

    +
      +
    • Different spans give us different estimates.

    • +
    • We can see how different window sizes lead to different estimates:

    • +
    +
    +
    +

    Local weighted regression

    + +
    +
    +

    Local weighted regression

    +
      +
    • Here are the final estimates:
    • +
    + +
    +
    +

    Local weighted regression

    + +
    +
    +

    Local weighted regression

    +
      +
    • 3.

    • +
    • loess has the option of fitting the local model robustly.

    • +
    • An iterative algorithm is implemented in which, after fitting a model in one iteration, outliers are detected and down-weighted for the next iteration.

    • +
    • To use this option, we use the argument family="symmetric".

    • +
    +
    +
    +

    Fitting parabolas

    +
      +
    • Taylor’s theorem also tells us that if you look at any mathematical function closely enough, it looks like a parabola.

    • +
    • The theorem also states that you don’t have to look as closely when approximating with parabolas as you do when approximating with lines.

    • +
    • This means we can make our windows even larger and fit parabolas instead of lines.

    • +
    +

    \[ +E[Y_i | X_i = x_i ] = \beta_0 + \beta_1 (x_i-x_0) + \beta_2 (x_i-x_0)^2 \mbox{ if } |x_i - x_0| \leq h +\]

    +
    +
    +

    Fitting parabolas

    +
      +
    • You may have noticed that when we showed the code for using loess, we set degree = 1.

    • +
    • This tells loess to fit polynomials of degree 1, a fancy name for lines.

    • +
    • If you read the help page for loess, you will see that the argument degree defaults to 2.

    • +
    • By default, loess fits parabolas not lines.

    • +
    • Here is a comparison of the fitting lines (red dashed) and fitting parabolas (orange solid):

    • +
    +
    +
    total_days <- diff(range(polls_2008$day)) 
    +span <- 28/total_days 
    +fit_1 <- loess(margin ~ day, degree = 1, span = span, data = polls_2008) 
    +fit_2 <- loess(margin ~ day, span = span, data = polls_2008) 
    +polls_2008 |> mutate(smooth_1 = fit_1$fitted, smooth_2 = fit_2$fitted) |> 
    +  ggplot(aes(day, margin)) + 
    +  geom_point(size = 3, alpha = .5, color = "grey") + 
    +  geom_line(aes(day, smooth_1), color = "red", lty = 2) + 
    +  geom_line(aes(day, smooth_2), color = "orange", lty = 1)  
    +
    +
    +
    +

    Fitting parabolas

    + +
    +
    +

    Fitting parabolas

    +
      +
    • The degree = 2 gives us more wiggly results.

    • +
    • In general, we actually prefer degree = 1 as it is less prone to this kind of noise.

    • +
    +
    +
    +

    Beware of default

    +
      +
    • ggplot uses loess in its geom_smooth function:
    • +
    +
    +
    polls_2008 |> ggplot(aes(day, margin)) + 
    +  geom_point() +  
    +  geom_smooth(method = loess) 
    +
    +
    +
    +

    Beware of default

    + +
    +
    +

    Beware of default

    +
      +
    • But be careful with default parameters as they are rarely optimal.

    • +
    • However, you can conveniently change them:

    • +
    +
    +
    polls_2008 |> ggplot(aes(day, margin)) + 
    +  geom_point() +  
    +  geom_smooth(method = loess, method.args = list(span = 0.15, degree = 1)) 
    +
    +
    +
    +

    Beware of default

    + +
    +
    +

    Beware of default

    +
    +
    +

    Connecting smoothing to machine learning

    +
      +
    • To see how smoothing relates to machine learning with a concrete example, consider again our two or seven example.

    • +
    • If we define the outcome \(Y = 1\) for digits that are seven and \(Y=0\) for digits that are 2, then we are interested in estimating the conditional probability:

    • +
    +

    \[ +p(\mathbf{x}) = \mbox{Pr}(Y=1 \mid X_1=x_1 , X_2 = x_2). +\]

    +
    +
    +

    Connecting smoothing to machine learning

    +
      +
    • In this example, the 0s and 1s we observe are “noisy” because for some regions the probabilities \(p(\mathbf{x})\) are not that close to 0 or 1.

    • +
    • We therefore need to estimate \(p(\mathbf{x})\).

    • +
    • Smoothing is an alternative to accomplishing this.

    • +
    • We saw that linear regression was not flexible enough to capture the non-linear nature of \(p(\mathbf{x})\), thus smoothing approaches provide an improvement.

    • +
    +
    +
    +

    Connecting smoothing to machine learning

    +
      +
    • We later describe a popular machine learning algorithm, k-nearest neighbors, which is based on the concept of smoothing.
    • +
    + +
    + +
    +
    +
    +
    + + + + + + + + + + + + + + + + + + + + + + + + + \ No newline at end of file diff --git a/docs/slides/ml/39-smoothing_files/figure-revealjs/binsmoother-expained-1.png b/docs/slides/ml/39-smoothing_files/figure-revealjs/binsmoother-expained-1.png new file mode 100644 index 0000000000000000000000000000000000000000..f31d05312f9639ad0a89e93e5058c1adc9034af9 GIT binary patch literal 164365 zcmeFZc{tST8$Zr8g;a`4B9uW{i?YkKoEUp#%h<9dJK32rNgX9*mt}McWnW_KgJfq^ z)+{6YF2q>I_&(Ee(q}o>?~mU<-|PE1*VT2+8SiGD4kX&} ziI0$9+MKy~_|n1ZS3?m)+lJNrC+}p;Jr@4!jpkp_fYWR38;Z|Aurkb)h!>Pa6x&ub z_pgs9ETAR^UFQcG!-|CrqX&5*LdUa($36}h)Q{KJ%G|B?Yv1qJE-V-lB@o3&%RW+r z|1`J2T{qahiX&}X&tz*V(*8LR*pn&MbZXd=hH~UxzL7ul(q;og_pLRCT3NdU?qTM) zg*1A{l9;~a6XKqV{b}-t(CPGGN^RetbQ3(QH=%T{U;0AiF1*S*bE^4|Mv07P>O3DS z0yfb_e+<~x_62B!7M%4vOx#tx8YAEm{rTZRtj=iv-9K|gYzp2T+_o&SVOZp$F)Aw$ zblJOjvDRG2r<`N*?(1~P_f>*v9dXtNi2J~0uZb0i5^1nQ2Qgjy` zI^5r&))&!4i^XG)k7-75Ma&^D)*gv{(g?4U26y8QrD10B{n^W@+dN;|(`y!P>+qECLwViKaBF9Z4D&S}d2m@9?7K(ZWhTE`L1fajA}CZ4o>4 zhVV`qD|xVo&_l3oit2VSmhp4Ydt7!+7hBflI&~Ljef*B_-G)yci7tfg8k33cT$2gO zoBJqqs9orpK3&{}ne#2Wd;Lls4Qmyb<<%`NrU>iUnH9YF%ix0U2864b#;?S)jNW>W zA$gS4s1R=3NDAlTLyruOUi{qVigm#{6a5>EhD2OUTuhv~T(OFGI=mLn+s@~_$lE(^ z6LY;Ed--OMu-s{jK>3=tH5MuwlSdxhXD}1>c9+axdBSQ`wx>SV(IUey)1URV>#Rd& zLDy%68`q-u@cX8YEQs$?cNn?PgHT{Q6=+}PeSdBx)g7fG|0xGk=elSoxBHf_iSPM~ zhZSm^0@#R;E3eNkcDPLCHy;=dwn=vB+WFGxvPEicC&=P^+?46P3FZ^&s8l? z{@Pnah*W35+iE?H*wcPRn$M;VA|70Lj$Kl zT)lL|lXiB1Az0YJNa2gO<6zfT5o)G|=B?Nvwp;i8p_HqVGsuo7O#Py@M|KX8uf9ilR zSGhy~>oVV-d2y!c$7E|4h3-G}rH+&IXnf zJ`_gdfKa@%=f87+x+%>ZBs0CH`Od_=9wAT05?PCK|2+b~F6&^x36< zCY`}_^Cvt0%Y!#hantsPhji@w=UY*t>7)B+qT87<_QEy~t;lGM&wRDJI~pEjFw@j?rz|te|!pVDh3{FBxkDq^8xDUm1rbW1#jH{ z=SzuTP@>Tox3>T11DwAG6y==J^HV#y`R`&As|tsBiYeH#{QIAFe3N_*D9e+ny+=;| zv!Yvo$0F7Z;{W*oPpAr`s`rZipKpqfrAMN7x{L3}mZ};UW;#@YkU z^(O=!*07W*Yx)jk%B863>CTK!9oQ?BF**bZIiLv>)7eH zTofla(tw8^en}9o)!N!>grjT@k}9XEvhS9&LRpHfm%9cjX03JId9`-=Rn`idz0*0A z=^WjxcPvR??z1yj4dZnh%Mnz0Isv#jucTx;CQQ0;c2o(3T}a%cb2F+1?#5I19^rMmR~u( zzm*R$m2Wos@LPS;X{hP6=o|=TqZ@B5EF#i{^FmcK8t0aW@c$;&?MMugHeqSjTA|FF zvW!)@@y9##m2(DvQYnz(&Mn+!-*NRjOOu~N;+`hHoF|ig{r+%t)WYGL)(;SUi3>cO zi+|39<1I@R6*k^?et!Ef!?rtH2fIz4Xl~Y#w$aQ!YK(fzvh!XJ-p+)Vgp=a&>+uh> zU#vOa7GPus41hQ9M$+~#9q5w#_HereCW2o>m*6+=nh{ez%G)W7>({E-99S^UE7kC7 z(oQE;k}5hseE3jhnT;&bGMS2(WIcK`I_3;NO%oy@zaO)UE;?rMcZ=|hC#-mm(PZs% zp?zPGK!l&Ri*;I}tVdVqMj-9>pWAzqJ%hfT{0y*kjSk(nzZ0?#L)@$&W;j%?k3SbE zuxyT=VJ_Pe^qaiGl`djju8+npyyaZY9m6$eE~>TkV)GN(CEuhf*&Y(No06_qk=``- z(lvf^LScKoSxwGo)h=q(sma5y+e1ebz22NrQc|)(Do1r2dFWs%U(+%q@$0RfeMHLY zbZWdqI&qolH}htf1V@aHx2fU3s^D+Pe`e5lCFnZ$sc_@Y5Ro!R%)a;q!*oN#Z(2LU z`r>ljiq9~3<~6(0gg@%jdT%_GNo2B&TiT_J21y z3zeJcvh&3+Hr|<#-_1xowQ#h0%q8oddC{!h$MQ=SZt$k)wz6T+^$>6;o;}!HfN$)~(U2)*1GF zb?jXn^4@Q=D9oc?aPzz;_^db37@o!E3Y*=bL1(Dq4;@u{O_C?rzdX_xBXV8G|;7` z+my|W?(*>qk~fB_zHg@6dqip{33hW%eLpBT7<&@a|7phF(Z|pYD8w{XZ@X0~sWv6d zUS?*`jVClHqZ;Xgdf7raPaB)p8!IN;E7RolvI(?1eTT>jlaN@xrj5WID_ zK7%+wF`a;>EO+aS0xx?tO7On6@ltq9hr)8`nqyqecZ0530_joz!OfQYa0uCFp#qm} zn?2oXp0Wg7Pvu6)!dl3k?rft@QF4vwjU4aJjPw@n?X`LZV|h{uA#3TxJFcxs#f%)( zN=D}k@Nqf~y^*H(De{}B{Vl4d0lSxuTm(0?tu^3EknhwW*J|9*@cs}ntr%X7*qb)G zQh#wZulWMYwy?J6_h9!|(okhb@4FO%MP^TSX6VIWnY_a@?yGoFzo}Tsa?Bc}tm5>r z>n+yb9LkEJtE=k@2~j~F6U|vd{uZ@itmymiepKr;@)*#eI-=~sML$#zLyhdSQ9SgiW47gy_IDqEsfMJfC#C}h z&$;14n$OZWKB{aQ_)WCVUmpt6@Ez{yWM&Ofv;Kp+%zt`Q?h+4$G_XD-`v@+$Kib-qv-qJTEMRV z|I4o;x1up&`?Vx_pPQe=T2K9E$jqR%fp1S6JowwCgAa2@fCn@nwh;)p%s*aSn4tRC z5Kj4&c)gzHUpS zjqfE)r*s)cW5c!uxjct3x`is{*I0Tg{e0ZkzI^shah+(>0n&Wjepj?ZRMlXG5AgBQ z^?|x8)00nn^UM|9CflETzbmjN=ste@_=V%kOSX6AMO5|ry=SuALXo9+UweP4rep7r zP0xQ1DRZAoKfocSSs$pEV>~b!O7hx&s3+f2#jRNw*HKvFxp>PBc#a1hsuv`#aGT=; z0|TdlGsws`Dl1~s`4YGPU{9%=t=n>|WcP& zrBgj20Z+DH=f(LuRH>)z{q9?KvTo-$u@C&AU(O%45BP5ne2=8|9|YWn^S^@prf2cuPKWe_&Pqhd;srmij=iwklrcF%#znX1!C99fobr0-but8K*R9as( z@O9p5ju!50OO&0_z`KkoyG?yaQA-aBwZB)TCOL2e=tNd25Ga=P7YE{DL&dp>FZ;K8 zI9OcloRGI~)7fhldWSN`h?-om?9LF0cSN(!O?Nxr94S5o+nDtX<&WoZ{lJ9lx5XLd73wI3j%LV=GuNNHncj4Ii&GFN@Sr|916b7hz zg4DU{PX+ipR@2nj%t0xeGFMtZOPaJ0?y2zcD6}SUZdO|ai{st1XJuSQl?FnPTh71+ z#5qRn2^I}AuOXAmM{3sYXX%R8Xu6%54)T9yz7NLrVUd zh&FV1&5o6omlC<_s&G21tw*#zFoDa-wdJo571$Eya-_jTaeD=2!O^+x$Q%(*+-BN3 zdt$R9Xg!6wJNV;~Y#L6*R+)d4U*Jwb!El%CA5s4#B}oLtB=w|_oBJDjTa?vDhh zq4a;C>Bm`2IlyDi9hv{=`e`tG_S)H+Cf*35!5o4DbE|6v40kEj9*;Fe3E+v;*l2aG zF9T%Mx`st|Y-YAcd3WxLF*vM*^!!{CC?le}#lpxZ(qCvBQ|xq9_D15bVxcNGI2Ub_ z4uf4PoVmi9kd)PyAg#^sA3?4FiHK1ObOQl#1e*BiyQC&u9D6shakw~9;GAwSOKIBA(wTJZs zk9!+1pNOw&OOmwcXoH(K(_^GP=8=WyZOR=K3iU+T=l4>b)g|r-|4@*&^A0wjc&??4 zjGaInu#T$@4%)AREcRF!EZ>>_wBG{!KI)O3TByy9@nKksm{rq~WEhH4zPE+s^<7^Y zlUZY(&4G=%?UVr!xABoLt_=maX-NhR_K!=m+|v_49OS1>Xsij^4{9I%N4k# zZ)3p87-g=rl=6hZw`zk}RzqR^5Q2TRmWx(ZRF!SM!EfU66ndfY$Gw{Cbd+G4T4A9;e+ihZo; z{g|J^FM&9CI}{wlXG2Tnrbw8e=W>H^nTyWCD_+EioQulj$25)5($cXVk8{IKBX)5 zyL<4sfyCOm^U6hfMbb~^dVg=;Wadig?@U;q z1iuuvZg$q?gX!^tx`&yS?{?@TxWCI7o4UXtVHR_%_}@)qQO*O<4l!t=^paTe>mV zK$$?Y)aOP>l_Yd^wpW{Og5hg@$&tI+9F-t?sCY6^=7BbUoAjGSu2Q9MArQLH8QrRJ z994cKvvxO{K~`Wt4=CG=O6DBzO184s`~Q>qhMdo>Om$#G~*5@ z^qh76Tpd7X1nSTgS4aN7lTwk~tQne58m7@um)(xc#b>D2J)&xzl7>9dkDkeft|2z~ z8Z>I8`04WT&z~lnOVoZhHG}w9q7=b zneh0YKY#ZE?t2@cg#{*s>F*#6lMxNA9umAggnjeK{Rt5?UN2$m@diT(^8Ba5j3!~M z>pgD#PHq6#-v_QbqCpK=4F2O_P1WI*5YpQ-K@y4)M6f0d=~WzDqHJ81alU$tuFWFTOe24ouP5ouUk-f1}79G=O{`U+XYjlai9MaX>Tf zV1nYHsIysgdxg+VEI*2-q9j`?rLA=YOk++{t?`5ot5`Ck9t(5?i8ezst(}UfAdOhdY{uaNKUyU32c+ zw(@_A_ka2z%nTIsy7iskPq^a*-^{?kQP6Jr-&#O-{>QJMy8SD8bIL=9q6t3(0}I+Eh5h9ZYv%M$&iorNz8dbXIW3VLj(zxBs|goT(h^sroNSX~I30@Rw$ zfu(|87>Z?d0R+d-u-KgO@$u9zHWI&Me$-f$@^Q6+0JxJmQlq+0T{RYj{boV?c?06R zd<44{A)c1(3p-=L{uY$~?|}BRk@>U6Rd*3uGPQ}iv8=GY zJpI^&e5(+2)}{^dD~1`e3*`k=P!j)i6}4HB<2xppVdzkj;yq_;QZ`-Gm2n^g^-A(r z!h4YWOBfuo#=@`O(MV)u73n|>AV2phM94N<@_9xh!lkOw;Z-H4{w0F$J)%?|Q|rjL zhkv{|D~ax1pp6+H9Y0@7{(4-o6Cp{ypl>atqg`p4O~f-G6zDhmkkqV$VhdxQ;nxpVECM z*d7FRvU-i4HRsCk`Rr3U;o~s*Wa$$Xm?jXD%cOmAt(r+!VOd;3+vEcIO`3d`_d7x3 zyy-hL*B|OAw8!tr$qr5)Qc?})mMi`zbB|mI^z2f+GVMY`X^o5Ev*ch#~#|`Mp&zdonU0Ml|oqx4DKVV2) zAgh>ceAvIhT;+Tk(UBr0ayV$7BD5JWa@m7~c~ef_4x8xZpJjSF=`hvg zd=j_bL|S#|%}=Q`>W0ZD;p3niy;g=4)F*f3Z56y~J~rB|fUtb}_yE~}Qt6ta9Ac;} zx!XnP^dCrlSm|Z~skq%}x3C8?m+9-?$dSvebx(pA#rc|gUXd1(yUk-K@|rqpdyNhI zKSi5NUxi5F_*D#qY0E)P$~!LKZmU^fo8zLdXOxGdZ-$-62O07dmSRJNUoO`%c}_-I z%Z;#g$__4uU>4jK-*HrhAJ(JqVVd3b2Y0~JqJ2ur@njB-DrYk}oJ96maeJNdi5xY1 z1(DH51HqvMgwW+Jd_}snbhyD_uR8m{lDxiG3z&w%2lsLHns^0gbZ4)C=4pHO9-G!4 zNC>0($3llcwiVuFtJFJaW?Q^b2yX38KT?*<<-0XwlEYs|AP_V57TTX@}H4>vS zGR};XzTG;?4$I|QKn69oy1b3D2k*;dcDU~-EpxZ;$JiKcMbD|)8V-bYEAP}ByGrDtdDxKP0GflZRou7fR-f+VS&)RD^7#U@s zpZBX!A-E0+i0g@MzWiz%v+vCcJ0z|%K2F9GQYSgMn5hC`3yu^_6t5 zk)VJ^eSsLy-G?tYpVa#!TjJU*RH>f5H)^B?G}vYgUB|X-W=Ro|uxUR}fC(Eh#U z$dx{DsX-^}r!tDZHcQ!y&K$AQt0^h`8%jj;wwvVAv2xG}Dn+g${sVzA|Jhh|O zU)kI6Y$Zw29oeI_ZiUiqJHjj35x96cyr_4A{|RHk6T1vGXR`(8=VvCKHm_MG;1kqg z{>^jGSXo*1&Nq>^Q&sPk4A*gao8NR>n+E_>fzYU?3esTN2g5{9`CY|>&@XrV1{uOa zB*oAK>DRVE)I-8(kq8=VQ*-p>DkV%7HM+fb^Ae5}Kqdlm=KPXzDi5bRwl!3l<0YO`-p;Dbl&CH?2c6-ZIWs`EkLfGL zO1q{em46@~&-m<3KYBlVq{h3UZCrwdakM9Fxf)@7df;$_XP4Kg!|GPDuC<90q?mD} zt~SsM)|z^`#iR+?V`S?KE|r`cSSM>pX?kywDT%&aH0GG#_3NwAs1RO~J4Xqi~wGBiSRy zbK%^0r0~<;_rF)ET0-E%HT|?_7>1D5vg!zAY&fF2H~NDr23#H2YVJcFkA7#xsJ<=o z4Dc@dP8+25uYP_I$mjc&vn@&YAN9LqfzZ zRuSYY$0yNqr+3Aj< z#c*247KEX_`DHhB?rn7csxw=m0$O3y;Hn%Eiu9$(Qo(Drgj z2%CY5xVl;h-#^n+IUT&cpWw%SXCsFIK+Ng&3Y5i8s=Jv^5%sfKNhGc(uJF!tZL~j3 zH?I%TA$Zn_r-P_#xzwtkirJ!~rpCIg2wrWj**=a5CUvjhN@2}U?6e&Fn3ep|04X9< zr7?s8rE~9bkIFI|&BodJelZywUGu(0SQyLXztm~tA)wdz`T(b#J`o~w&I~a@(1Lyn{jQS{Rs5D2KEbz|H)1;44e*#M5rqQ{17@HP8^@ zR>+x1{|sGo*y{g~c)4Ilgff{=&%l zy`vIGr4e4+TO<$GOU*NvRQHIVDRCQXjNpHLSD(B7{yyF1BL|f|b~CpCUsSxOL8u$3 zj2r8f=9wWk2Z!v4`oR15*71uiapKK->*IxT%q`Y-iTIfQEr7LfyeWm!U)4PQaDJq=-Oc$k!QjS=gaM$NjtMATcd_`1iv2Ba%cTpKw z>+e0~vFk>uU|1fprslF6(T~(Qk~FV;w`>f78t`3iy>OY?1nBRAgi^hs317Lp8%H7@ z1G;(LM23WZ9YmT9l-u&=D!SV75 ziSqXs!+yy-rjCBp!c+b3=u>WmOX$iO$rR{1!~F8UAo<+)j?SQ#l;mQI&n}uN->L%& z>uOm9m5HNC$`a8s+#!??4mAjkA?Lbf&878n`GU^q8yTIw@+ zT)IrzuG>;O>{lYI(!SUn9570KTm0+sinnUy!uwlRMFHXb7Wg)C@qO)$MpAD*y4G=F4>Kzt zrx4LO{@5abXIJh`V{Kg41p^VdblD5PAZ>6-sEch5xUIP|-A&3TSRm+w@bK@>cK{p7 zdFHa~-~2Y&@iVbKx_9)^;7EOFx8CYJuxYKuXPwQn_W{a+Mj~G*h8AgFi=e;JsY}1p zF30j>S~}Y7u@Nn;v-6$d_^mnReCly>u~&2dHEjti&hB6J${KZaoDsWJ>`Ui#tEo16 zFGgZ7pgT{m@Y^uKx4VZw-t96o;fwwlazgf6I{uTvjagsX0pTqZpo^H4pVJp9LMau<_P`Gv?(A)Y6~Y z)PTF%E4*ri58eC#_)mA2X3-t3H6Wr^ipjNsB^#1K{mv@GH2`DWp+_59wtwc(?R3zs z*Y>$qv19+@OWb;Md~l6q1w^AxRosOn!v|w&|H8|YVc+^{+3{~I*n5p{sRhF0p?upj zw<8`D{W>al`)v%&b~)A}+QY`Q$a!U2hqwy~C;#f2Q}N>TptV=*^dYF)<__rh3ijQg ze}e!$FSUx-!oTs11*@B+3py=oci1=yHLJvqx zZTdw;sX#7pl`^ymhLRdu;bb*`Jb;M3?pOB?FV&CvWzzr!4_K9uv5nOLUdD+^p;h5q zkM9xdi=g488BK`;eYK>id2O#>3N`?mz7m-A6qOjh(*1YU4_nACFE0;3I&S`Y1WMmh z3}-H)Ldqg=5x(-8!%ek;pv%j*hp=|>`GzDAVdCxKoeA-AfiOeAIe_hyW{^|AApTYs zgHk^Z@LnDXYWfdzjk8ln#>P6>*x1b8M3#GAM@khX9f=nK(5A1PS_(VJ$Y$xm zIhy#*jKiE=1t+d6TRp@opesL>xLPNYSGMpkCJmx@uHAaD!D6u1&GO#D=|W|sC(!B* zf#Gl^PD{UL=Gfh|#5?kg6)!`6ahP6+akMPy=+UFoqmJPvV@2)FjG13v!qBddbD--! ztFs1X2+-y$qTJ29nO|9_dfZ!u zVO%dbS)rLq|B|Fd4T|DO%EOZUd-JpZMb^)R9s5#++2v;UEhG@P@zg}9#ws$u3p&HZ zbx}x!13Ffy3oI?}FZK)f{ysdM1PyO!?JVclNXoQ!;y;uS4s+r}kogb^eOLLbu<`L3 zj+^D^ZPXbr2Ougr5P}%x6OluaJ>3BKYHR_j&Rndzp@#GXKqK!GpvF8m5FEI$ zs}c17Hb-ow%Z)>Wxu^IHaqG4YJ&3i0$GuItaH#sQBnEwt3=4i(!rRkw>(x%L1(iAd zO{zs&bgH~yhmgZH0D;58cRfMy0Sl{@S0KD^HvoqZzWt>5x85X=ffhYT5DgVv3LPCb zqfGGt=Cu(WM-)zL|2_@&!^7Rx;y!1RJ=@9yu4GLOU>UCP(k2u;wd?J1V^(<~dlJZ3 zkV98P5q+fSD^dOnAG665QEVz+QhB}6NnHoNiCwN2gdx&ZaEvUZ_ui`fsi3{9VODBP z#|5U8^i5H5BHfb{;>&(r%5^nkvSs<`)KRGVYV$1CHnGLPMktZxQuaPdsvn-jalqD7o7lhQ1<^hevw>;+mC0zUHD+n+p}3O~>SYNjiV zJskZ@J_qd1NK1_+NAE&fNsdjk1`VBip7kB+FCzpBXg3ls`jsA7^08L7MqaODXGj(6 zx^1Z0QRJYp9hGO!u(Vkp!rpR~ zj>P>eM{b4r$!>Zs2-kcZ&v&dByhg{wX(tv~>W1Xr^jjSx%SYnpmT+Ny(xEQH0`=2{ z>L|Aa?d9*qQw%MHO*AIYHBRZ7vrFB8mqmZ#ayy%cH94_6(rT|od2EhylW?AjiPfzB zMt<#eP@%rOo!nFM2Im_|*u|6>-!mJ8=bY6fbePT3L)e4e&moDXo9zhY7$GLYalA0lWHX z3!$e(mJa@7szVV(@xjyPPhjuGre=X2>Wi#R|9ls~6Q+aRcYN511pTw-^}$TdJ$W$9 z2dw36ENb?ItW|JtZMX!7th=4GSA5av(+w-4D&lhSELQqtE&v8@K(7rp>&t9%3hI_Gt{&1Ya;V$lsfQX`{c4sH58DZynbLQflCvN>8vrx-wj9xJP#%+qW<13UAq zvh79fC4kS2B`zDQ;mB<#A66l{d5#8`ux46O zJyH5qpD4K>$?nE(W^Q?aM{K^-aTDjI4v%z3K(^%+eAk>#oL_P5UWn%jqfr>C|9ZXd zVaAgaA4zPod~2=CeCph)TOfj4lQ17rl{uMKi|j3&+o?-fp1$4aU)BZdf~M z{v?=7Y>x)>*@?e4>j!z?8!}gqDYt-lPZ^SPzldva^(C*(+YBS~92FdghlGgitXAuuqlLA92F%~nDbibA7vhT1Z&}j62`NT1 zEy`jZ(8G#F`7^s@*y05yh9bw9XD9pbLzDuqQNtQr1_Y(3J@_$f(0DEn&-fw|zLA;u^ z?p=5g7nEeGuxU~Eo?%0KNqkO-)(?MWy`q~ZnoYZ&2gEr5GE2GE+<9PKR$s8PndlPT zd=VRglk(ey%BE9d#UK=!Ok*Nw92WIBT<>y zhxsLtskeh{O)nBW5eF0Utfa5!mI$xcrN!Lu&TS;-TisiJ^LjR(_Y88-WX8Iym51~7 zm2m65m{#Tnh8(iJHM#{=qPv8{CGk$h$9|~n7aWoP9<#NB?DKN=u~uk9!b47pXb?dy zB2eRUcf&24#`i|%nQxfKGB$bJ8oKONdmNB&k|KY`5jt_gmk$fjc5 zo5>X#TyHM>_z#HZQ6IHLLs892+mm#u3AM)yNBtASx2s&kw0=gr6%fRosNPJ5eGk$V%_8mnqe@W#}69o1pLzBbC$GMh^#gvMiG|md1&xWhbMl+T zK8wG9gyu!$8;V`3?L$@NLhU1*MtUnJN-NGm^-uUo8bbja7e&8y`O@-!`S0YW+1 z&Vhlh0Z&e4te3}uE-1*Z_A&ii+Plv=D1{o=sg34OOa5gL%nNQ%i*E( z8)BPRi}b?N*on`!;}a7XZC5j#KSi#Ht+tLnkXw?QJ6>pU>uQmukbHW=SQ>BGmc*t> z(<{A^uU*f{!jV!1BzeLQALziSDk#zt70y=nC!?ez`Vrb?FWaVCxV92Uq~}?`IM3VS zD!mHzB`oTnG^eo=PuN-O#AoUyMy3n|L3_5#e7esY!=dT|KR$6^PeEPU`9d2ahho3} zeee_jqT#^3KM>Q6eHoc|ttibd1YYO$ak4o9rsNdwe48^~XQ|hQP#kfRWzw3RcS;Av zRVcqs7OSq-_XZGXjVq=%(S5H~*8AKuldchZzTn^a23)pP2BCm-DIAy z%Mjh!gsvRn?BBpmczhR_ z#&BphU9y~v($&x981-hlD=0K=`Ge3akcyEfh&l#d|7RBLCvIVtwOQ_3xqFnTxm1ec zTHX*m)!31d=aE|AuzK)xtW+c%cORkG1OK%ed|q33{6tetGPq5n%p@3 z*sf|}x*5A>LP6k4DgdYr@kZgqf5s|*gTPc%y0h{^l<5(HOa3-S4A5-FT0c{w@Z4Liy4 zIWDB+kv!UPgoD)^_qXvBq4M;F4qJf*`PQu5{?;hm(_<5$isFWhmCEhEbY{^EMcDL8 zs#HTtwUH*qKYk32XJd`da|)W$J<3K_H&D1}QxB64pY7|dv+~~OF!m`&-JO6d#5poR zpw|wA*>A-Yu^QeQ>l_@ePRd~l^B7cZx?#fid?)r0CRmcWTvcYUVS~*UmV2X11HffB z7w~u)FujlnZCjYa2QRwMebP}N6pL2dXYXqR6MY0M*Hlw=CN|v9TwLSRXhCyNVTaA( z-eL=O1IbW1E`H606Dlgto_yF9ofr)Vfv1Q3d{9mY?~E0DZ)kzqPcNkjO{L-`u7fSj zOX;|Lb5Q{D50V%O76tI?5#f6IppR4la6>a9yl&uel;8u3W|g5{F;x#3zjCU&Xma5q1>r7V^nUpahL_AOPgsHiJ@+eH)-Kp1 z60Zp}EEPB?L$*Mya$RLn$;c%ielqtxq<3M7q)$n$-y(BJE=h*5=#G$ugEvdMew2Ei ziH7A}t7{A5x`tq0#bpL3#vfGq+MOkgw^ofQ&IJ&Vw9)H)`%}4=%WJQ!%g;n!{gS&C z@AtfRE&c>u)RwrOMCeT|(y>u%Hl_*Ebrl0ix43tCUnie_d38COA8u-a0kixawB85W zMU;117+S&{WrQWGS(d&swu>QP=1q0O(S-5O*JB+-4n(SLi*BcSvPvJz5=52wsIr8)weqY@2iT7AK* z?rspHYg(Ed;pNb!#)jI9mP@7xf2;Lc@>|sdBIfmWX$;Pq(%oU+QOis(URmMQ8#hL3 z0}VX7>OU}7P5luFe+ym0T1r<-wjjzV)7FVD$s%;66wB`~?ts$YH8cfKd^i6j)3cX0 zPxCfgR|Fg6pRn|UQqe8^XqNJvXbXa84ou#4DFwQjg6-NH?JCA?UJv`zrN*>CWjc)I zfQ_qk<2mKTTL(kst_|Q^UAVCZa=|HzPjRzvcIR)8Ii6H_C~ecdy$-~i6d7?pm|PLYxrD4J^Db)CJwY6Z zkvfe}!!qM@+#aSdvs#gX-zrcU{xqv+5s>ohL^@eQTaldc&w%rH=y+rj4j#;L;N@FkK z(Hdd^E%5vh#_Y9WJPH&H!?0C;h1?4EZ9V5M*)Z6BRIES@Me!Yu&I50N3&Qdlos4z1 zn~q>%Vj~`4pH0g$keIRFR%MfLj$R4BO9+YpxnusNlexVRY4r&hQr&oenJB+|Oa2)I z#ftrB4cs&gUUv+nx0xeB!6_^c_qlS)I4ciFi8+fc{wd~%k)n1;L%M;&w;5(x#MO#} zKo#bc#2+N{%8`XGMYKTFVz%d{)agwC#Zd7rzqz?={3&)zYSXm~R40lox6Fo{GO;gx zP;DFf-e2R5b5dr&*;7x2?OFkE%86l8mxhmxB00C{HaLo1K1hU;)8bil8J1j4|DG2T zWPrssN}V!)0Ap;@KNZoqQP0kBjOD83I`d(xmgkwF@C}~9fI3vb#XRJg-p09^@xsWj zMx0}$uV#Y;Tf}Hg-bnJC!?-Q4P1KO=+;rmmLBkyAIKn$dB28X8D9TR?r`%kMIF**w zdu_YYsP2RGr7)I#z4+xxlWdZ>Jb&(WNG}u937H#c){q`h7%mFb?jTb=dRYV8}K#Osg~Pm)#TzU3n)H_CZ^+? z`|lWToQG0X>#DO_#r8Quc|6ST_69)&uNuhQ)6H+%75WHje7;A)>?44CpL z{E+m9L>*$2k{Owr?F$&56^mB?OK#JhgN5tBM#3P$ZfTi)`(8ZK(2b}49ERi15NfLq zOrIq^58veup(H?0hjP5qcHt&m5)N&#bFN7TA^rHb*&58b-D2(yQm6DTMh}T$%9lVgk>A#RU+t@_AASpPucPG35RCJ!|}-X#@VO_ zA)i3FHZ)&>|7m=Laj#^7=)_B7<#oe`$^=D<@sdZFxsQ57G%5bW(Ul*W1IoGn~aT#GN07wN^pwLNYjVG ze6)3(>eV(L^QqeK0wm1ex`fnG!2*#6ruT+=%UG=uWu&#SiX&3XC9Dbax<&a6f0+#C z#nT^!up3aZ5G8n=^R;_h(5nmwn>~3(9+zXsn3XJj{{lh&y>96A8D8!as~?qfu@n{4 z1jV|L6sBbqn{0Fh=^shOc|GothpNe{AP2mL;*)6P z8JQ1OR7S?W{QN3U+0}5c{~7OU5PDYe%v5|Z`QFm-7znw=Pb6dE2n7XX5?Q{ z5)U=dO4Fj1)rZH1qQiG-A29vf@-Snd{=7la+^=B%%ii~@$u}gfaZ`BzJV9bn(K_Ea z2+c%#%qW3!kr` zO#djVo;TrcERYkMZ}WUXlKU!D$K1+lQt}{ALm_x3N&ieJY~FRn7T_KXQp+os_$8MU zr7SL6a00PW1Hrwya9VIm1brJ%QIKGPI-5#;ih@_aYS8C9ytHx&5h>I<7M;M)Xerki z!r&h)*`?w!H&>?+>hhQ6+yz~eQ+;=|?}^XF!3=DP#(wC)JVGTs2M)qs4kU+;o24m>Umb(v{a>@Q`=Gbtkkl_a59q7F3!0 z2i*eSb@@uqSj%n^pOlS1I{Mp~G)C=+5=YESdj}mkMB|2i>4pdMW05RD+WwTmF5Mr= zFg0Gay39?iPoUWXeR1<{Nxf}8+JwHFpdHtG``f!)ey(Zv2o7c|i=Fy2{0oeSn|z-jl&$cNGnih3GEYuCh0PZiREQ#rHR-60ir0?p52Kj^8%9pM%6 zrqw>VK9R$Barm7~P{Q2kyr!}T7&R~Z*nLy^?-ILzRWSXitUqaiXu^+)iH@GW`sK6^ zaIkTM3`<~+P`)WWdIt#r*Y|*awhxyR0w6e?D}wj()%gxvyEqrU_4HDLsy;X_CyvRtG=BP@PM z0x<+rbRDx}PGk7fy5gl#iH_cE5T7F3l4O91T%#?PWfno7s9r z`E@pWRSj;2HfsLnY&QI&_6n%r-g;geNR3?i88j9mBpp={<9sCpveHt{X38L-ld~t( zPS!pM;_W-gnr75A2}I{byupsnC1(FoB{&v(`yTll!n)cqywVE>UR@lwMxlw&;@DC(<0sm0uSFA8xx@=R5Z&F!P_xIVF$}V=piB$agSve-{&|*N2ESq zD<4Wgue#`@i0Um;!&9DSXGbch$|Tq0*EFY!K;IX)X)^Om&%kR9gW9N2pl@@Yc!U$* z`w}fgE*9#fzGrk*uVhR|eNT&bBg13lfT6>-4s(@_A-lR&i}&`com2ql3$u2>AhXFv z!XiQ}_akUPXHl{8RGP4}S$G+5HNY%{!qD#m!8>C*0 zb6aD{H7i-3AL8dULzRVM7%ED#mZd;} zu}e)gmZ4@ZMue&w&tnRo{>|yCeS2YN30YXsK)QH+4wRl`nX6dN-TZYG;7N9oFaUfC zpkgIa!>3e!w5pWoGlP`9w&1eC&F2y|K&y_0kjmeQ!tm=~=b1y0V7UH;utkw5j?DR%-KBZ>^_B?0$A zyiITve_iiiX?;2YO_LhH*~KaFJ1n(VwQ^C7J^}O{QF}lBDG4FvE(Qc3H_&LwWxm?( zeWFc(JL!a0(*9$;fc9T^01Z-HWxQ_=bgtW4$zb#a>``bG(2!`F$UN&Gl^cznpuzii zaD;n_20KvSVYMLfB;bF0c>V_wD6_-lc^eO)m!-OP_~$I*_POS8+5#zg(1gXu!cYHj zDRQa=j*>+{afG(2s_G-E%0ua@@AqRf(M}UZ>@SoK8PT7!*3Cb-S2_Xxnmp4y>Jz|c z;>72jVm&$CeNipz?;>Ke{;W0;#VBn+>vO;g7LKcvrlbg>fP!@$fO3ht4EeCc(cfDM zG_HAYj_9K=^^6cKewt}b11yW7237JC2UEQbEh05IaFUKbR4V_&>&1eIvDB?u=c&fd{nOo%e2=uT+}>tdPv@E#uVDwEg=A)sGQL2g30_)Fc*TK#~mxC4F*# zu8rN>YreTPJe&l`a7#Ki*I180L1{pXQAFyI%%3hIa-jrN29`@MadpI<)XrQrX^nN@ zZH_zX@%SEQ83^RSaHDPmP$3Tj-ZTCJ2R{9VwItGVOzPpbq2}RQI+3!l#OenPz^Q&j z=R>yt-9c0B5wp-3&~D@8dic1okf?+H{UjBslqW@iT_e`1yC&9S?#1z~cN>sS?j=w` zesBersm(PD6N_hgoQp9lKkMw02V4d0Qs%4ZhyMT|HdM-Zen5Av#W$Wg6ILA8vw%{e z_+ny2dO-yqL4F2VUnU9xc;QIZbLr0)B0A+l#7g4E7CWX_lrUfvMPL&;+=G z-nqXq{I7$iroz1S*rcV^B)sWpzTz}S<#W`bj(LZ)8U8p?il@PHpzZApB=IL| zYjQ1NCrLCiVbl1&T;?7X0`tJa4zpLP217-zv-=Se94_80%K$WBylBZ)NiJ%~cg%N? ze{){HQ0O3~@?;{Qw6fyhUxRiR?sA7ub-V2(xloZOjS6lV!cfAg)&_+Od^)E|E=N`H zxt`V-6=sa(eX5o`tGLGSOIJW;tTTVj=q_{b{ZU;3Ey@A$(oDlcZ2dzm>V)KM2hese z6|`BDi;U_EX5SjnV6HEM8}Co_u9~M>v#lngl#8>n?N`!A{(Z4h44A7PYkW>TC{X*( z;F=$frpo8Y}! z@M~t^L)C@3zMw>a z+LO}yNr}$}Dh9Cq_~hA^Jx>{4`Y#v;-b#xrolcEqlkkQm3JZd!l!3Edjiua{7TZ z4Ud1-qCQ>hI)}>4(3s7eh_HVdMp`)Y)+3-0=c))ye|a!&t?vgw$EA(IHbtm!ayG2` z*yPwGj+9xe@FtG{A#GRFUje#+<>-4*t|d6EA_SmReNiwT;DI6|DCw`ZANKf%)}E9;!AmK>RYW;c7JpPANovI3$E^U z1bgtg=n(Y=0@sXpH%{V@<9iz3SRFogrw>{xg74n_=8f+ctDwq3oZgtlnC&#(uHL3Z z=D$=|jZZ=KLL*PDU`Xfi5n*G|iM0$`0~xlSNWJdb`qjmXJ4O5a^Wp&?0MsFx!!`5= z^2!l{sUk5#QE$Y%7Qow!Uy*%|tVWl=S--a~`mAH|0ps#-htElUT}a1|RJ8xGDydEb z)kk0#LxAN=L0z9%gI5mKow*>X|1^a9-ytg3W=5wayz#hJrKO>nX|{ddA};Hs3UecT z=|SKLKu}LTy#G!dSc?Ds58w|*!U3(1Ibdnls*f1-E%bqM#cGysYHMS36PIwhL4ZKL zcr2;f{)u9bO=Y8K|8r|sb#Iw}xby z#Jhxjc$;XA&CMJc-J*T=JC$k7vf&p0{a)qXM|1hD`tb>$vuJNR7+0oN7rHsxtB8=} z#5o=VV9qlsZj-jZ5-9QPR`sQNS`MK2_jO8(f4-z#l{tLu@bFL~w!wXCZZry@3r{%@ z`bBnbHn|6GKfHHo*Xb@ZzVA04j)|ThZtLSNhFJLYe{Rq{K**fjx}FV~^XgVB4qMgq z^EP0MeW-+nXWaD`Q~)}-ln*RCI~k@gFsXcST3AMIc_tr=9n$HY0xh?0f?q*;M2dT z1fY!>fn%F3RaJNk6*@|<6gG!!wF)QHqGDRwN9e>=s*EOO+j!XIpzf2Vm;)D1lH0=u z5HyPO^Qz1yR?fPB)B&IPlkfiDwgp5Jv8V78PXKt0kIOprnQ!10P~JMCbG(5@`W-&* zBmQ32moC?dBR$8b{jis`}9V%Mt7!Vq72?{|b&% zR#!`=<)yY$QUN8q7XS)I4u|`NlYA3vQ6xRX?crQH_d#6zyj33ku4M&)HU69;scS9? z7y`zY?E~X< z`ME$;*_eIsj><(qnJJDRi_(bAT2ze_S3&nOqlm%g^8^F%#g`kqen)&h4>dNdy`#MU zG(y4$4PI9MoaD|kf70ry(rkf1jz6jdB5=p>k)zFT2?{nqAa0c;CIEn^<22N2l&tD@ zRV#hC=mUFNPjyiYt5iz_fOV6a4J%+FiTtA@}nH-)o zWtf zsFb55-6kp94uHZ^OCDps(@+(P)T0Hb(kR~d){$}`+`0V!B#Zi1j@|anlSHK-QBsan zTwE98u&6b=e^`_NpuRco_WV(6@YPkW5LIu@IsaC$2ap!AS`0g^#`rS+{D zz&@i8SwOijN6pi@<>%dlegf2ZKwJ9;ddL#>022W6e?+Zug#lgpo{>O{Teer(p*s7gPX{{3dLi50X32p4D6?>J@~*bYuS zl-_%F!0^~pqKCs>7RV7ZwC19mN;zb4sz;n$W&=ev-I6FLp32>{f8e3UwZGVF(yEJF z?Nz{>l~*zL8bsL23T?O26LHSf*mDv?`fqjhQUvC0bGnN{-Y$(@RQ84OHl zl8*X9xmskng7O>r&=-uvi zdY)KT90Sq2d^!_E9?ee=<=dwjaKS&I@hq|V^FBXc4jP8{?)I@?9nD^8on(>Ty*b3| zE}qn5KSLysqW?w;voOo$IT^w$5sj`dd0JRY8D0q!CyP@`sNh6$YE~R?ub=v~>{>0ta{CIY6ll40Oz4rFzM5DS9 z-`SqSR;A3{3U0Xu_Lzol0<&h^&Z=Dc=Fo{vj(fu;^V6+rM3sNFplz2;<8LQFO))&f zJSoo632P{gJ<(t^d{?Ds@$Zjzr^ZJ#e=wq-AN??Ml72wgMAEh+0E_{tIH-dA`Y|an zBPjfu-}5%l1=ASSKUx-oK)3FaREkX{cm$jB4PLYvEbOpuDUpy~tl$SM^-;aszaKx! z4C*w7;Uek#IiAr3)F*YZ2LziHS$;C0!OzyqN;SGu_{u~f%MAa@ol5tWGY<2+OK}zV z8Tu>m{b3R}{=Q6qudNgrNcXsnZK-`vj8Maba%`~C4terpUK?o39~k7b-Nhvd3u6n3 z4`4@pVHNC;hRC!pjq}Q(GIVHH+pS5-Mi^9`pqN@bZ)p8gCC&LQ{rka}18y=Kef>7a z=eYQUH7wha;zYn_S+xxEDtU4Tw$ms^eUqpm7#2!=ja@Pu{SMIuAuK(kCE39+A0FLa zbjCk`RUp>+|9LRot-w5F2TG`Htr?;$kxqE!76JeC#GAX%|~E3$%>~6iU-$^`TQAG zzZrW~$B=-f7X3ISgp4t->AE911@yi|wfy+pyL@Ej7@ zx(lsyG!9$H3eq<3IM5oiT(53($KUb+>Pu|7>ZhihIL)(N+^I(IVu23uu0Aq`svmNl z$t8*{k}Hp$zvg$9yM&Xj2Uf}^%JApmo@5q`_a8S=&UCw|Nq;g0d2(9lSB-8!+ttw49TmrPZ=vVh5v>Ljday9+Ir_!m z4k0uq*u97QbfL@eFuN@^i3k~9X6}TI6V_OKtJJLn7n;a(T~AhGs&DERJ9muz!kKo) zj5Q>UxYwmyXrNI|mB@6U%P{8iId#nQVi5a0sQZM~sDmbSYu(Nd=X>XAk6XZZAlPwJ zCSqUn%%2nhSqC!2pbz`qHXtu5y_LMBzAE!dcqrPMOMp6S2t-F&0*puDPX!XaFv0dDzU^_BC=+pt{`I@s#C5d# zp2(+@c0GrJ)Xgv8dr6VN7cl?u!mU@i?I_O0cKfh07xr^@w7%O9Z{2=8|6*yTZN{oP zkV|yTVo~Z5eT1mT^WD4+zmJgC(gWgYd1y=43}GH9oTQbz@%A;*Gm7Qs#9!Mt zt0=%dl=T+1z_E`bVu(Zn?O4J0I*Zt{N6jK`(FCY#Gk>Ct2NM;0N9V+;5V+XW>siC} z8oW2QHtIGvx|N28Cw$UnIqhS=Sqh3JHH`ej*!;BNVgeu!&?7b98@{rxnC)iKuK{@k z4(a5ZO&vy3tykSzNo>aZKq7^V4u-HS`G%BLE!in8c&O#Lf)jCxP=|E+MBx6AqLEDk zN}fq%k4&gmLApwN2{T@tqgPe9XEuDzkS>+8WJix+V~AH zahefnxQJ@b3)zZ4%EVTeD|x@vhAeDi^dI_|Usp}#_EQn>*iMPWYByv|r#8N!Hm%KB zA17rRQFmrOwBo!KJzVgAzK&K2PoR9}x(vK!nHMi&JyFMF)W&hoHQV~H5TWUt?VCnf zxj_!>2tl#t+Yzf)5XBafsm+HZjT-?Iv)&?v^KHBLar>(RQI*fitaOhV`2BT~85wKw z4EX*74i$}PK%JJZi_v@o>fF77tbxfYLEIj;9O_{=w$p?4vTw7Gh?5|3?4s*#j2mQT zaQOAX)z6g15g%Re#3y7SoMfj|Q@d-jpBVfoGC*XioltrZG7yuo90D~45{;ew4$uCt zJLdINWJywHgLSQ?+ucGCUjl`uLm)Ru zxSVHRM&C}e7-l)%i=)kZ@3$BVu`n$c$=(>xiJGl(Za)UYM%&P$ULQyr?Mw!4{&)N6 z@8ETn9)#ernmW08v02gZtJ8V|ouFhKb0=!e?hLMG7>6vd%~B#~!@n@v zFwAv-6YX{+2U(ekOXkMgt>mf@yEq!?QMf`ugHZ@FiFlR`n}Iv}*4K(#aMPS&{84^A z0{`~lP81Yr^Zf47w6JuUWYHJUxnQTA{=C)OIc+%Wxr(jZ-h_68r`Wqlhs?Z`nR_&9 z^$+fk`SP?#m%fFd9T`InSXYEAWK_GMj0hBxxHPtaZx%H^`-RNr3(Zk7S7tmiD~s(5 z!3?V8d)2>S4e%FE)|s<@)WKc5_2VhlZdQ74{EV1mF>5dL+J zd`Mbmv9dnYwkf4kJ5N$ue7oH|hVezcc>}_Ojn={(XmlVWG)_0X_9XJvg?cecZQ?5+US=CT3F;y4+bnag#179t6%2!kFB zEe;M=Vlbq6$Yt_U zXv+zE5cz?B+ z;A+)rCfOpAqEITqhM9_m#!U9i2}IgAOC9E~&-xZBHe*Wh)&|8>nw?YZ*{%r zJ+Rm*+Syj6-k^njENT~fz7h}h2v>Y!u3Z@<=Vc}7GyM8LxI14S@2$cQ%5h%jkZjh& zPAD%Eg!6UPl?i>NDqjN=8@-QMRpIIVVasll^VU4|@ zTix6OFE%Q(Ng5}B`I(jfhQJ04AfivfhA${e6e#3jub|+aFZ`H%tKO?T3ulrZ<21S< zEh)^iH2NLvW=tPwUL;alpY*rNZ66g#g_Z-pkd*m{iY)Ko-idGm#~HT5Y`@fqi5{o> zU+?M-%tA;PL{Q{*f{Lxgh;0{kGT9@L9p}MD%vPDb7=lc+Y?Kl99p}r4)M8A}#Wo8y zyoA)oSdD%0fu6XM*sO!Fe7hzS*sGw(H)lodjj7JN;uZ**o-YD`&7711tp#R;w(gGy zr)_SF6a!z#rGWQU;W@+pbs|UaC}`0TD-n+6Rp?s$k96vu*S9Dqmg>q)m)!_X+OiU^ zzO%#E^%;`C%H2_O(q`y8pb!-frWOT)HP@FXYd1?OJ@Z1#q0-?OnD)Z6PzuUo0iMtO z`u)D8_|~X^zu$Fd$-wHPbpS744F?|tjR)h_&ngkXD|9H~p++&+V&D8e+|_w;Mr(FwFVvSHy}_D&@TZl|mkRlBWZde2Auv1j)~EiL9t&`_3f zYO;?qQolwFqtY_JaFyEQkbggxW>b8jE<}pYe9L3|RRRmru^HcR zUh?GeW-DqF2s|Lw@jqrlOst=2VaieU*k*h6McBhhCUVVO>|IQG+pO2h#USqvl3^{s z$xl*bH<6Ea#|ya>8yok4%HrGY?K3VEL1{w5EUkF7Uowr1{Lk^hBqt~^X*3wDnEJwk zj>@^@(i*4~#V_?(&N1y{)uW$pj8l}8dM=y_RgrrB;1!B^OhK^iy|*Tf3U$$4{$;~` z>1?TwN9!`)^u!*0d$X2>mmngG5JHU1N)GQn8@Eoz5IKJTDnbh)^GNa#dgz!n)MqzB zZ{l=#0xeo#`nF|&Ha^|zVA{0T;o8$7M+eoT#~1WCb=Ce_`0{w~vo#aGC)dSZv7vX7 z7bF-@hV};<_P*)YiP_`$>_~v~N-OVw5@R^iLhl_Agr)YrInl_E<<1beCSQvAg;|aM z0v&5Cu~EmgZ$4pObhBq`=s3hSx8~O<9c%lN%PzWw*-W7vuGd=)kQL!<3|pm#+0waX z9x%oo&E6N$AoIwmoC)^kLVw~P$h9r(sJd^uvuLliRV#U z_*G_plq-GO;6gfl(yu8mO%J@zx-`*v}^U*X=$^34?7kZhA2 zf;p!4b;3t$YWyP#*vGTIqG~8Q;zD?dJh{(H$`%qn(8Om=!1T{lQjAuS$ipFZja;Od z2(|Gt^5Z)LlQcJM)PMOpgTL^FEatw>N+=#sAumTS(VsS9Izzp};o(-^Nmg50IG3b* z9@|G!?A!Bxv*|6)TM;X>jXOgE^pAY7oE?J5%30(^Z_!;`xkxyNU>m)k_5-I4J$A`bEy_dRUI47_?cKYpf+YC&TG_S3 z>Y6;QO}cJhjNH0)hwBUoH*xG(-l4Q=A_LKLGxLh6j3iywlK)a2GjpC{^~R~q`p=>R9LLd5OgKGU`EXYRu^54AxkR904 z(zg0kIa*lH{*e5&g%S4s^MS0QE1A1AL#HvcovEt4|6Y3KU1mSmMf=Ttw4dMeE3Y?RQoJE|?t5{$KUwJZV?|G6)(HOW z&5WLlb0t#eF=68mieiG^+SN3mc${-;~X=vmeFi0TRKbjxm@k~<4B6cRn9C9~JHWa%RHBV;&% zkKxpOp09-Q=EAeOc%IWIn65cHn*0jGbf)8wbqBlZ8XEe=pr%;l^fdwcGt2`Xf4gt2 z_Rqi+-WQHzA4ogG) z(g4Jd?%QS_kx$rC`a{!k(O}6KXV#XQC4~I72J7o8@!KKhoEg>M-jX(~C$N+COLq*Y znhKkC&ut1KkD3%DTi0}n7(eJ9Nw-Qx_y|6LVjM24JJ`b0oz$;Y=chT*oFR~AWvFDwG4^whL&Xv{i81pryvnsAOA*;xNvk;XPdv8S{Dn;V*$kDcjHeGXg&a`U ze?6|sTl~ZXS39tbsK8M9!srDu-N>u+EZyH$Mph_gl;huXXFkrjnM@kWdm}49b40U0 zZSCON^I?h00T+m9(@CuYJuWy$3tqe^J8$3L^-=AH}MrA-HB<*`&plUX{>&@EP zuM2+xIc9&!8MQ6R(76Yv1dywaVuwz?ozQel3s%6l?{=1g?|v+K@{aU~qoL=>hod{o ziEh>pAp31ilbf`DlaCx1Vrr{n+J;%q7*r$<6Al>v73!Du7Nt}IDJ4yjyi(gX&+ zW@YAQhOS^!Fm-sxDNpxd`IJWXq`kDA90bBoFABYn$8X3^UplvD5)^`4kX%%_z^hS$ z_#qtrSlssO++VM03kjewYM4(!-?`ED`MBG+cNsx^f&KPedN41$NJQ=S;l}H2`cx_V zOV3=U4%IGaBTTb4c%ZIko4JoLypBw1q@yU&(sB;k^x9B~ zt{{?5`ShS7PgfS~<-idq!(%0;-3-(4l*V_29uJLFuJ&mGS9_0{0!EuvlWpP6Sl4K` zRr0@dQ7FX>k1$iX7Cn_Ow-gw1^`%uc#5c}rz?1a~#vxjEo7>Pk9ZHzBh`2@OaZs8^ zQqdKp$`~gVDO%Bc;%IL{4|&|J$5TAFQ=wl2mYH?87v~UsEO5}|F9tbXiGo+LhTh(J ztT*a9c^RbKa3{5?KHK4qP*E+*nCTBo4QNh!;L17%F z;nyuFx4%dqTxsaya+J7?xhs}<<-rH8hh^1~?3h~NhtbdxB39c#qZ=&bO^Vy(d>h-r zWI|=0{8!dxb$S^X1+8-{8|Sp)*{8Gk+hD?x1s#-=n(_kd1i=g1g)~ zeGf*`Hl#@5fE%N-B-Bim$ESy-JX z<*~-0FJ>~&D{?l|b9x}nv<}bvKDFn`a|$DRTKX(4S4aB%YX8g!wAcDgm%R#r^Ruep zFD)4D!->_^8wBu{hHB5VhF{B6Z3u3SVVTehX*7N3lryft20@*c5W!>h-@6h0Q2+wDzci5_c+ z?TS#pM@!eP?(7#2a_*?74{yq97jUGpt8sLY>q;ldGDq^Dy)9DZi*}jV2A2_e+L*EO`&(yrSoGgFX-p_Pn^~+(2 zu%|7Ki1%y8dQ~mJNmhl*S-Z)MlnYX?V6I!KOTYekCV+%G4L*H$6I0mLP=scmqwjM* zhuaYaH1I?^nAnnCdJBn7VA~G1stWDvwV!o?XxK|pZTf|femms0Eft!6hcRfo~_;Wn3WMeF+67ls(rw` z)pNnq=?RMCfLXhER+>ix-|^yy&*|GsE!IJ@-jnV(lBje$3+!+03T!|&%FrY$?+wy| z_(1tp+rt7La}x=ApE-Mmz$~##zSwd z4CjZ+;>u*b4!*ySaWzYYQ@TkQD7{%9xc7k%FG9X8&gmrDQJ(b`F4l4Dqm_x);zU%` z_f6`rLS{KW=PhAfv^sb}xwhT078mF`eq{?s}iWLUpl3Z>gllHZR# z1^S6gM(6o<(>p#kpLE{fUd z9)>K>=b6JyYx(iurbXo%gp^?{^kmqe@EC(wS*QcO$~RTuHLdaRU0I5t;qzJgHo!0l z3ZgM_o!_+9gp&WdACQT(%%&@mE-$;LtLVvhnJvk8ht7#BbWxH0m6{pVmLE`*P^gB< zrP?yyysl-iswuD-(rW=SP661}Q%x8(A-C22hLc-@T4eD0#|M^Y=p zC*#6Mvg?RWWq_RXkXWP)Z(dD9ZWiXtSB`zV%yU#1iYMCyr5nM;*Jy1vW7_zOZ~pfC z)#PC7i+H+Wo0&L=X{R;utQEUS)O=Z*YRj~qFm5_iw{3dWGML^0dadz)U zS#!^F+1sTSE>Os4r=v<5U-Gh^bnCKigjaiVltK4lsxOA+uhIx7Vs$Gb)O zqw0)Xke?z-zx{QbNPt^weGCP>T)LzylLs*wGt<>?Wh9M~$|75Y0=Hb%ICJ2b$LYQU z42!)}y+Zpib@s};7>-jGQwYMV6LcI(^@={LKQObQqZ&hn?cF<*8MQ0DV!chJX79g zx+m+Qx1(|csv>YGS3}-UfUGzr;<#>;#XC9MBT2}&F|dslr%N-r=n+)ALJgaBa2&*FICyqj%a&F zbMNpPp{=-%eY3HYgy@-RPAEx3c0={7!PoYg+Y81{Jy$=V?ydO1!caNTkmXRcVF$@x zMGA|QoNhRWHMs5y04NG}7Z@s9fOhkjG%h%O5`3uak8cg>&<>KRIQ{_q=*%*O;D<2+ z*5Z^K@^v%I0?`e>9e!05UNh!V^Ko#s;0rt8{=Y;}^(t)9BZCBc<{N+x;Qb51m^>Fr zONkO;^v6Pz?`wrJF60NC_b_Rw8n0^`WG-4<@p~*AoedHaRRSwuFQ3qbp80g)fvhQT zWz6{AS+vY|d7nIJE)l~PSk~~%Cgye6YsbwG=WxH2C?(s1E@_m2E^w5%Vy(wV3JkkJE#l9HC+w&}(Y&n@)I(aSn9rD+@d?LhHo+mn61e-@ z@N}WKFdjP@ZwFjPk1>GyZELyJkaP^Jx5VsQ41u7&a7^&fs#Kjm~OLH^Yg zelsLwZ85psEnHX7<>SN%SH`vLwbuVjfR4aT2uarn&*W(PQiKe_yM!OcKPIG$fJOa6ZHG)`zI zl_+!=z#wi5DNMtat&=Npt`g+rzIzWB#-w?9^Qqs(6t`r;-8A5h^bo9cHu|=QmY+{- z8yv$kp&)lQPOm1rd;zA+wd>}bAoBvkdD?P`VI61l!^_GL9L-|1HXqzxr{h>kd>pV- zLNbTv8sK9ju-%HH;hc@BsQ;azHj)5|f&2ZDpI`C5*p_5pz3dxto8jQ0Sp3d$-?t^U z!|sCzHm&)sbNz=4Rt(;sq17`6v$j@(j6EbeBt6IOnG4^tR;Z%;QLC1FDu!C{J+76j znT4PA<0q`X7VK$GI8opS(Ts_P?Oa3B4w{*0UNVZ8Bx=BionI4IO2Kvln!vbNAJ>2d zEs92wR{mm+zr7F>SPje;XazBTC2zjPHK)FHz4>Z$gc)lNk@+#%JES7=ebjhU6>Il+ zSJ88}S-(S_ldsuQ` zPCC+?OkJBVZce>KH|+zgThW@y2DZ7JI%K?Sf6l*)A zBVl4=v!GQ$Nmj^$l3~)C9Bdcxi4FEa^AUaEPmR@tzCeTCtR_y#8^M{R9^GO3o)<1Q zGO=GZvT5^xQY=JnDMA=OeMIqS>hPUu=bqkA7x#m*GktdaKoAjUceP(>PPISy=Io2P zui5Au%_}j~dRWG7IHrYUtFYtpei@7QT1-9}?s3MDI=osVdjv8Y8KXPW(J(Uqqt&#k zaKDZiEZk(~f9-Q*DSoY;^0CNU(_(5#JK>LZpfC}WE1>jsdy`mxMN97@AcJr;YV4T8 zdx+F{PJ#OA zcJni$mq39Cxv8)N;sP9H;A2|)EQL|kC37ss)a`o(s~|Q0i(YC^nvK|7W|8=NU2pX0 zPtOOCF*wB2eBDPHJ~y)j`OJ4M-zPd%V)7~X>bpQlWjR+%%X~3Gnrkg2BMA=Vqw_vAzB@?I*-Ul!mIK&YR*k1nsvnx! z(EKXM5Dylj?_@|6AbT<>JH>Z;ZGp6y%ezB4*>E~C-#IdP9zgkZQjkx25mOW(&LG~? z*UAc5b6Y%on&3(3hUIfe%~pkLXJntsr~HjPa(tRjkp+=nK&?`n+y*>V60 zW2w9;2zATcd3-fB=27!U%$z-RZ?RkQLaDx2+szvE_n)b`(xc^d0JB1rn(5~Zj`f0` z>J6C-Le)FX1D<$7!E8=U-q@!1BXyz(ez4lD0XDKWH_71BJ>=;KIdY2*Su$8~GXA>! zBsJ?WH57?+JKNak0;N%iU8auy9~G!L^MhgrN9iqtWNW7{=Q^cT5L1WcX<}~j< zhGO;57t&1Q%ub{<0pvD%;@TRhKhoBb7`zRZZ?z~90*c8&or{+CF3=_IfAU(G^={kNSp{~I_Oq{wu%orIPaQS!`Yu0Q+ zD?7~Ii(jPE)KI^5k+0UwWZ*?1v6AaQw6TDFo2K9nxhxPSj|tn|?mCl3??}fV_NRMI z-qiz6HSuLw^({{7Af}q2c+Z_ZH#XQNB#YUpTMA_GfUK2}^xOK|3=+{8O03l=wfzq zWr%q*+_l!8l^XTsH)qnnAbH$q)+xwIU4(kY3yN5!i|@N*i+iTN_T5dQc!8VLRF5<( zx3elnS-<#l0PpEQcpjamV-YVX?S0BTTO2a$XLk3TgKQL`px_!ES{?i#K%S>g>8*s| zhPCl*^>mAYW`o6cU#F;vJ3*E^teoMNz}bbL_#_r6etG46(RG>qS|F#LYl4BfynbE; z+nY0n^e#V~-P!uA8!#Qma%xBRIP|O-$JDf|BAzLg2Q1}Uv^twdpX!CMi8V~+r=Khv z5q`tzdKG&5B%es(a_Ry#na!yq%$nI^&nyM#2W|0AIJ!}gGp(-XCP(*33h&cNRPH63 z_IE1PIf0NHE%6rbrX$`4lsxqWax@R0FzS@tBi4v@0nj)z9v z_@V}pmy5Mv#kP>kPL9z-9mKg}jr?{ij8L-%e`1Wv=`%{<+0{JxqKv&~1AfXHha}Xk zChA3$dkaOVZeuW2JfESvN|zvH;x;D1rBCY9{675L1DUHAyCo<={tz?$^b!$Sp za?V1_pwh$KG~dbs>Xz|&e-Yn$??cB9lI8pEEIuVdq+GkVMy{P)oi0QFvX3*Klt!y) zK*T(C5pG3N1gjt4YX1DFx*sYgyctQZcdHW5Ks-{;L|AC}T9!m)S9crvytHc$Nu%k< z-O2Z?{@>G{&}o$O<>9f-6{qyl>THnXYqYV)5Whb=&N|y+#XIfsI~0&K%vN$PbEG3m z!8`s@g{;@d6RCkhM@ec~{dXkklqr1c_G=IP=zP$Rf5tV@ERB#SU|*mO5r1m%JqI(I zD1$10fBV;@m3YM>7SfNi^lOq1dmq6M}9tG_LLzecY*9ht;Vb^IInYQkxH5~k{Fa!3_`cwybG#q+%Ze008TIEZz zR;RH=oflaU_UjfS6H2?rqE)t2p-@9MEF|8g&{yWAAzo&Tu2cF|{2(Cn8awir{Aa0< z97jK*R_@SZzB`TlMn~^IuY9Ef7YW4V`XX^tn;WqCcdmhCmCcl2(bl2rVBKR>{+;*_ zzb~GB9g(|FvLV`9R+jnV3`FfOwjWkmtaXM9?fMrbg?B6Fxnr^}eYFF8My`I%Yg+Gu z=|=ghv%vu4aOG0!G?|Y;gKRQ?hL&h<)jMuflz$uC4%az>e{gzU<&=YL1JQ)3-|}ki zc_;VxabvtntGDU5+Sb_)pOH|@7ueVdLOl-aD<{1=(F8MI-xn{H zmjt<9$S4oEVS%3_54$06Nbd{RgY8K3fjUpl|qT0$o@ic@v3unu0)8)np&B3A~PjuOzAuuaCQM^LXSpi+kKv>pd%jt$Rn zqTmUU^9b~a&UJ(n*V}t|w51F_mGM zvVBwu&h2byGer^<{C2emm+`lfMwTbc*rvPr4Rj8nrzz{@0qsj^M}xS*bYpM7$Tx!- z$MEZ(w-+vSVGL+OHp#ni&mA($Q49U!-v(LC9|M<0r1MVlL3U2_sTe?+CJlN+Bk;(= zAfBL6sQ_B@mvCcQUYZ_E!9%gxah)eJd{p&bKaoCy2wP@t=FZ}k<_@E8hm>WA3?IO2 zth~29tfmJTNdk<$p-g1NhSzNQV;DK=5xYGs>m{Xexmj7P_OyGf+F(Xv{0J9%e|*F} zQeRf)B6;1Q1=pPcj%b2Z+$_`Stm36tG5iB>W$??1n)5r^HGeW^@!ek|#IFpV1!_Y{ zy!Lc{Z-k7Zzv1z>s)mXQvo;ylXPwe@R~<3wD*ie}u=P_^CP4#mD;q-x!sV&gj&Df| z87s(Ivs3g~z9V{@%*hUyIO{j&gI5>9MqyUV>L!P`D{>{Bp&o{xf4)%r#e#~fyVns$ zbx+He<`R!(?IVy*FJw)W7CHpRl7B-l?<1sP8-}r=>zK|U1QE+*5oFW6bvDwrn~1yX zkCwiIo(~jB@uDD9n#2T)u^Lh(Z*}YzlAo%NyywS*c6qpH0SL|%5$x3~(AU}< z)B(J^UxSf5Zm0cgQ*xbC=+g;5FO0(Xhd|CIUny1FLJNFN^#vJ`1o-16-X!MHbC!GZ z8fXnrhxk^rS#~Dpn$VlnP)MSk{vS_Q;Sg05?I{JNK?wmV0r}|el9p0YLSkt|nx$b$ zDQRgb5rGeBkd7sn4gq1wrI%*urIvT`d++@LyEAw0+%t2|`9%(KEg82?Kc>vC>+lS| zK6)F+gE=0Kl*(SJAosmo=kqSbpsY^rL)ka!d?prJ4TkCTwqIWr9(sMUT$t2TEGu^@gbW=TMO3{@74nk&R4mmm1wybY!hS5(Bz=e|LvV1wrKR-T68$F~YXqN;AcaH=>X7C`&S= zJ<5;RaSR`YRit}1?93>=T=`NUyEiOldPcfyN2uHew!pke(Zk{W|q*LV;5C zWb@(}**rQ}_q{;w9*%dO>o=$t&F~)|OHQ8~!aL@L87|gM9^vlr*nKVKPq7vea6wh; zOoAm>!@gX5op7FwisXFhrgwky(|Il&3qNOHinQa3BL8P|T*L@&80(QCe|bw(5L|J$ z6M-h;co^qRExRAr6yEP#Kt;NR%1GjIJgP@YU}QaHvhQQXYAj#ZAbFPqH=F9auItEFNYD= z!%4BHYX^uczd+|A4T5a9x)n_w(R~t1f`2q;2}q_QnOGDaUcLEm&a5~VJhzk!FL;|J zIi@UBDNELGkqj)J=by`H;Pw+_X09kyziJi1I8kpmhvK+@S$c83Rz_cAI?>kj!R$ts zXU_ZU6ul>s92NZ}l*}h&rVA%NWv$S1(-ULR1bLI7Dq`k|U@e}Q@B$ahHZRom+@975K@JV7)R>){w3*^JSqH9ldyFFwpo?oQB5u6h27l8?$k=s2>+4E zDK@#=xBtIKeOzTgjaG-RjYpxMXS$EQwbm!#UEdq@>AGkRMqb!m>v%KsvJpE)+Dm-d zcwaS%ysMOtFh)=x70rGxixc>5v-jzq?6<5)#ER7VZw~1y!8m#9pkCLl84lpXS3aZV zNeU$j2D3+=g<+dLqrp}h!Aod~Ac6&8Fl~-_;YqPLpMkT0F#uh~cvTevtTv{%ORViM zc0pSx30n?@D~Ceq-)@5zw#Xxxy%W6%lYZ7OgzgyiswC7ZBwP=?^x3hWqWF9Do>P=J zX5V=K;%MT%K(<>G)-@-~_2=7QHf{3bPEWaw^-%g1BP;z~LODv_qiDl&lgZa6dsg~h zj_+=neRSx4fER4lFqjZx>8#K&xMOKn^7QB)%Qq0h@1S+mn|Z-C&U7pol1Iwk`9mO8 z`ra$khWK#^MpUPLqq3I$!3>RWwX<_x*BQ#=r2pCX;g<_)E>gZiHd3i|aphSxEd{3^ z{^Bs&Em?tl-S~RkFM9pLD&k@q=0Mt9WN@tVyv1;+neSTLJJ0(*HN`4?)5`U9_U4U+ z;Aza$!=fvHo#yQ6a+HeQQZ?VmgsOo%wl`z;Xdtv$D;Km=&w|<{usRxCy}Dn)K!0B* z1lD)qgp#6BY<49VO49J4iC;9)hbUT^Ffo7Q?|7Npc2-*IWX*8q90PAVhNrB#o>Bdi@1$)kLY?c{UyM6pQX?-I2wKkKqN>e;I2_E${Y!~u zyq;huNdr`5_)WZotF%;iz*v0V;ur%GrRFLPF|sVto-XCA3&+xq+^M1iw#D*@=Lbdi zD6N5K`B6%~-F1DGCUfsIjS!>cW~3*U4n0WyR7mt9_uzu@-$Zkdr9JL*KYB4g8+kLyKG12gBP10n&Toot{Urt_?t(AWq8(ff zaYHy&KMS`SG;R*8|1bhM&!j9|Jv2 z4?OfpZJjVpWzjW%HAiZ*zQUVC4{?JJG^{ldmBD!pJu5~1IMJryBgTKu$B{j|vn7j4 z#<_|&7a#Fk$ub%2DTxRc-omPWHGjIPF~r;KmgTdG4{v$(wfo4u=nWo>%#2G8a6MXJ zYe`^udi0{Ijg{`f{)}qua{W3Oxe@j!md9Rk2WX|VKf&uZ%V0I43#=&^s3!0q{eAohI`B_# zO}+hY=BR*`M|l%G^US5JVf@K}D3QjXb9$ivR&w%WrfgUwqLpa}swC}j^_znaeOgW{3m%cxeP)YSnWz_V?vZYB{#0ZZ7MStA@cE&U$vnq1 z7LTu&{WP39jakM6N=gp{9+Slq2W{dvq|KBt1y8XXiY>kLUfbj)G-5SVwzY`=Ifrw zc9d7SytJ5Di$^3NXif|{anh86+9Wqktz~ek@UIEwYTv?1Je5nqBWN!>$i@bxT-Imi z!epOfaf^Z0%#B0xF@z%2j-G9VepL@yy4(mkOsM$~(Urb5-BZQh<)jb}S(Ey$ee*o7 z@q|Vjn(@e*@9+h@sXkwjA$XHpGeV%aElV&h?=}LAw_nQl<@QYz8E>!NzvmRMy^h7N z%MOA0Xpnykbx)N2&E-3~Z`-y#Dcb1`77<+OCwAvRY8dBM8AxmlHjT z)tQZ71)cG;kGMx>25?Z7WxMH?#aX(HX;aIy#~xFtS-*czuZXaJEK*X&JXxjr!iOCZ zER7EQa32GN=ySuiM$non8AAxyx!VYNesYx8L0T?_)q|l)qni}3e>HWaSs%xoQ{6LF zJ57MI{Tr4o8LJ`g*h6LPLv5UOBS1Q$4|#jm=vYkAzr6 z$AsQYw~s3Xgz^dIdcvQG9=v}Y-Vn9FSYox}k8mF8!42OH zK3WrPGPNl*p!F)7 zhMPt#d{z||4JC~gLz-{#FOH`Hk&fmMb+5aE0~1vtVOr%5n%;ygY4kK>mJ?)g2HxJL zPTa3BQfY7bbn&vu{X;;vcsn73gWe|+8{BBOH80*K?lOTsP@g?F$#GFu099};!I+Tf zS4`Ps>+XnB9{Z9Dp`7JPo1uXcqB?~P-6_tTCp9NG5*|?jKxyo`;A+FkZVEFK`~pA{ z$<8fj_baN51iz9b+j0&#&XjViw<1r^1IRh+yw4TM@Xq6CEW`UD3DnVwB+u^Ui9Z|g zIoL+LO&Kn@N#(@0yL?OiwI%o zfK@p7Oxfr3H&s)yHf-|I@B1F(PCndjK&+$3+e}bbX-ac#e@d$=Yr;6IWM@HHU|xY{ z@!gyq%Q<2=l61??nRvH4cKVWBoCAkF39jg?;x)ZVvmpArO-{mpt zD3APEeNeF^3|3~>EIOgy)TqKZJ(=f|OM+dsdY1!6GehFz>Ek#pL*oBt#+fel1k(Dv z%h7+hjKK(K31|h^!xjt)2lV!)dxV$wXQkID>^Ly@arcrj3tkABK^xKYE=x02xg`}< zI3orhHs0X8A1@S{7cMER4{{QbAv$G~KBbLW+M=x6t*Tm)l+Lf&P&2L%exbQL`-<9_ zZo_MV`KHm`9L_=2-951VnffQq=bK{;F)OJvu|6@ zy~+f(hS6lgw42!D1;mFcG^djf%qE5^CJTxE@(`oJSPS`32ayHid`tHn(BigAJ$R{~ zuamsoUKs?itS>ibm7(@xbG6~UAHloZ5-u&C^Qlu6gzXxM_HC+)?Rb*oOiSk7u#nSb zCTg-7!-!HBcFV2ae?~W%*7lRI0*5jl{G#DdNtv+x;7@JVFP3~Gc+cX>?uS16YA<$E zAQ4>8bOGyt8}m^$T~m~0C3rn1WsjtcXELAj~W;qXYg&Al;qPg}u%+~oW=nT$+AnFm zYJt42pw%}rf1-18#zidovDG3c8n-9h_HnU&V}H=$pF}~$se&}(|E0q{WXt%F-^`wQ z26^podac4vxhauZmy3~2aOMKMj*SLHk4fE6(q$P-LR;LE78h&co*cu@B=}#2SJNAj z`6>mX4LxKZF=l-vocl*b!gk1IJEt{(fdJ*TZ12CEC!P{OX6KR&2h4mw$3f1U5eqyv zzyE;IE9M#7;Wgd4S2D>iTG4h6;Vmm`1(r4jX9dvc9ak@p={QRWp3xbT@r!xhn>W8l z@8lCaT_4Yz(Hm)SxV2~VeKD2k(IKI`R~K~n#(!gD&^wfzKEk_@+n{>q@=K12t$F4l zGE3O9iGPUEw3u)6s!?qD$?ZTP-Evs3f1>EWNp&R}mb)juaz!liP?TiLn74&jH*dr) z(SjAFkUosPy4c|vBv}sQXb_Q=q!Qq}FO_K%^X_xI1o^iJ2T6uiWEz19$AIg6N&9j- z~88D=2sa`OAN4l~X; zHzrOiZg*P!3a^#fyBz9$Xd#@iFxq@;WG2;(zP$#@)qqye41kn`iM3Vbo-6}-&Mg|{ zj2VXdpzj)O3(Wj_=Qja9fX}CDo8I zjH^ttVfzmwb=Hw$n>GIXT)F)r|HUE49-);a_-Nz$v4H>JWULQ(5b@I2@^Z2vXEs%n zrjpf&Y_CwmJ(xH9^JwqvvomntAWUx`A3H!$M?q`ZJ|U08pA+GbRS7C;NJ-~EtdvHg zdX~BUMdTnKzYG{Wm=@MUdwJwG1>L-TA51#5zJDD8_oulP7t@C;w!C79Y?HILHy>c{ z@9Jd>mrQYXTBu8Z%2(}D04j_TOQ+@HPf^YN0=I`hrM!qG+&YO65VtO+=K|k;^|ML@ zUBFWOifjBDW!J)vN+?0Bb+UiLZ>~*H6o)=~sZZYNwAW=YA~d%L9q9kyAY`wLSW|G2LVp>t{-gLd@9&1Zk!&Xk}!*_x6s zkbctzX1<$Xx|(|t9}&l5u~X`N`eO&rY}1vEF2mSx{?gr>B#B5O=m1W)c1(S46D4Gwxm=8+2$%RLQBU<~#N+(19g$ zfc^5s?;{p>_LX(Dyv#q!OIZX~ILXlL63}(Dbd+yo!6Ejg+;D9_wRC+lOfOZh;9D+c zj14V*VY|#%p|~i~#5BUMa)RshaW_|Yvj?c0qfn<6fso#d?$K=kujZ2{3MY!8elMRn z5e}ZJw|1n)zI@a?3>&K{ra*MDKOxj`cp~*N0QQ;_2MO>Z9_d@ldO6K(aKk-)9Vw?| z2y>|!e^KFEni^hOb9LfR;8t6inr7v-o{*=ebP;Ht%SQ}urm(n>1NZ%okvF*PA1tt5 zY>>Pgm%-DES*LePI-2BrcJJ^RXOgawg?~yhFOk{6&`tT4?!r<@xrSPzzl)BURFUJp zhH8R{!XDr45#PZ;#v9ndE#^S(`YQ1D!0VHu)n10?dGZTeT5^$_9gH26~g%tF6YymlGyd=wVWn z9TXYa;y#TQ@Bwg@S$-mWK(*46=!*(`n^TfKR$!U3;{a-cc2`gz>ekopKqb`m=eqJa z&42!v3t=yq?4-$d6?NVncioupCPzTj_?RJ`OWfR>nbAirhATQ~<-O#`nBl}2^;3~U z=a>ms*E&HYH)f-aGbvDiqxL10&P+X9lFMZZB#0qSOcjoQJ{@S0$94mQiiBT2@(@QI zyO?~hxeQ*qxWL%;Phi5MfA$toRm2=XPtq{san!zav?Std;of=28oTYk^hE!Zv67j7 zAR3OHK$EPFcH~@SaXB#GQi6p4a?LCW;E|kE$m5G$&McKDvN^KHjo!<~fsj&dqZSxK z!c6F1m!jjEGsD1picp5ThN{V3tqLy z&)|RdqCgc+_54)@@^&w!GB;ewznwcgFfskEaYUzjRIL#(nlhiJW%4C(|K@9e9|3A1 z@^R+q!MNe2sIsPM29vcMgu3W=t>W3Dh}{q60nO5pY^=;T6=em>p_&677MoJYI^4Du zK5IuUwBMzCnwdN`=?u4|hR#-56dJu>R@-=L64B1T4;q;6EQ{0PWqX?HS&Zu0R&(B} zy`rrEq=BxRt4U&03QlEI+cdk2=br4Yg{1_fvu@R!$#FQ3R}Wtf-!PnWI|vfNw;NYu zd6iVxtyf8V9`y2)@MV<{_72cD7b3KzS3`lV(2Jsy^;ZFF?5&3 zF)_sw){#Q%APZgOe34y!G}auqp1JJ|L;yx_`T@)z*K4}sKk%gH{E%>80dAaC?RjR7 zv^>m=`BO04tMVOWUM{SQ>4C5R2kk_Lu%A!dYLp6Uk|`11d7O zlc&j9>UGp;A89+;nNb-e(7{x{!F(itneY9e=lG_1KaLs79-P@EFa?fUu4Hi0O;rrk z!dd=uYN&D0tV_y`O< z+3w8p*D}H@#}0;fvstR$2*t(VA{f}A8!wMaM%zX+jr1lEBseD>6R-UlGDlUCy46=6 z)0u1cJUN-86z~zTBA`KJd-DXyzgHSDe{i^`H}Uv+(6bWqQlz}$`m?$MokRnCXp<~HF!ySVSF;l4U~^k2mNl4{J6A2l z8zR?JQpB*) zY&PS?99@+MZrt}cVOss5j$!ivh!QTmcovlBH$%xsiZT9AaJvv-NRn$>)CA|b)7Lqb zAk+7ywe2c=EA?BnQ8(1haL4HMIb}bG@2T1^L%pr*y-z?H<%5i0pjMjCk*W9C)wn?T zegcb=RXNfb@)=(bo*aG(Wk8$=N&bX5eDhRJTT(=9z#dP-H>T`ladx9u>6^48;0ms{ zm=&s4@Zu@F@1pib7+==%=w)k{z*K7SK2Q(W*zt_=-*zvDGiYC8dFp!Soizkn{425t zJ}}QMp_H&MWhUScDz zA3kA!LZ|ab?A#wDxfWPr^x;wdn2@A009P1U^;&V;a#)e6V}2RntW8#=5kIYTo04|a za};+2*ZAs3jW+5No-&VLrES(#f^Km&Y)2G`+77hxW~(eXKL4h%99|W;Pn0=6n-9?)Ajr|^Rk(DDTz`|TMT^`0unA6HxHPk^_R+jFNuA91 zal(Hr(Po5&C6A@9r0^Cy3zzR#d*s2gPlV|8IIVxzZG5WeZT>0ElLkho6}2p7TgpK` z2EyKbAB|}TqHvL+PC^}5rma&-+4TBn3pnhvtCbf3{_Z3~W{1A(=;=NV%5C@SaR>p; zJkpJfXfy9<#DnzJnrs`_^Z~eEV#lXkk`rmXN8}0SA8geM;eDJGn`qx7e%icdJ1dKS zTXp$E$G>o>%Ds0)nL4gutCq#3jDY*kRlxVFqG(dG)>TVAhRNOxwMI1RN(RntKdX06>eitA2{rpSAK5wB&*^Kb?vd=1} zW#l-DZk3NAXBj6Mn;WUZ7V*;sVdMD~tk z|1%A&xpu+c>6~)V)1@%<{lk+r0mzCzAW}i25uKSeOHYq?;F?IHUqcg3y|RpFu-Zg^Z~VHQnmv28cPHfWZP71BiAjl9 z;kKVhmEyUgkEM2`tH+-4x%oG7z@E@%=O0wb@L+*_qcu{EQCks~90#*;6+`x=AzXnL)m>z^xPOwHN>V8@@Xt9b|hX94O{o5PfTBPoNV~=p8 zjD=H&XG52Xk>FXk8oPeNp{3<(Un>wJr|yjZq04K-C+q5=Yg|G)rq1NhsYZe!WwT8X za$`Zqc|67>W|YCyi+5Gza1(Wzb#T}N+aE{!-UdWfrT93yjmU@N5lovb^7-7Z%j8n-`eXl4RRi{Wj9TU%Nh{KW33aFM zB8nboGq(82TLm2tr@mw?tL+8t>KcfQ=%!xaeHE1q>i1uo;<6xw+> z&@FL3m<&ri0hPWBd>kxB-XMF1vSIMsAR#wj}Uj~iKWal z&a17$Yn#o5E<6U@Jp-e{2e|9StF=**Tddl4vF&PdTgSy6-IWMwnd3V=F=-%BA(C!> zB6pcD*90EB+hVib6uC!% zacJ&CqInr*N9i4WogET{cr`-L$3)B~7GzCI9dz+l;7b(l`Oineeu_bI!uLlyrcs@i z^8=81ohFf0$Ia-Odmj25U(if9+1K0NjufVS0cBCET?;eK5(bS(iA!SG!0W}s%u`TFz>c&@TK7ScfzB=W*hFp7NGjutHdN4#b>|*(}E>l!xSurCDv&p7!<)| z&8@%O`77LH0Zf9y&Q`o2N<)VXv6571xtHTcg1D2vwk53ff7}vdLSg#+{-<0Wx^2qjO?#7%9($jIjTeIxO0YbGlnc+;p^_YfQ? zvWZ*D)9P=fsu9HbO43-uOcv4rPfrRDuyH0(VRBRJ@KI-2E-!6_Yw$6~++q;7SENvM zG*o=&j4Jka196?%tp1*|Lc_yhN~=Qn(4}Q7zEP43>RQO>&v;)3{57k;uCa+9`4qVK z@rDJtDxSwOceGXUs|q@;9AD>fb@f*_u6pmce#Q8b%a0@uiAXY4&=6GtLNP^Mbt0-yEID-l?K73f-J;QO$?-F^!e;zCs99%D~jj$lA7<) zD#LqYvD9T-ZjBvcBmdRnFn5~4`cv;`hb3*c6F;SN#2#*_TIlFcFJ6q0@xP{0?Ef(I z*oVd-ZXf=GPLYQ=Bq=Ib;@pifcmXBL95-M!j~uAnr{Ar8Svi4W!*QnBLRvzE^*pH@ zQx5AfQwU#lf9`dEl~q1+?FM;!og1hix4%HX?(vLyC%>IR{6X{bvl-M?Ft>BoRQ$dc z_2#<*0taGjY@UV3YkXBvk*$L8K+BgB;2y}jE~)jqebV4=Qj2)DBxMCnQ{Tu^-l*6& zBW3>Y(ZeehG%Lxup$vf={N`V#y%!!nz1kxi>_9dnZuYyxpclgtau-Q*7rSTxf9o~< zqxey90RhUMy>g3ON=$$40Z0l~Hs94?t(dmG+s0RyUOX>iz4GhuV0TdDp|N?dGxruN z`bYf6(Tj5rGJlJx1}}EkY4j-Dd0U+{j859T@!9>z_#gOfqkjyWmKHbk<6@`nyUI@Q zD(i3o$)UQT+9-zvMcD|qjn4v~NNpA!oG^t@V!UorcV2f%1^|Ryx|$nNg6MokMHwUc07c$<;R~^ zUq;0Dt!Ca%I`NsDFr9g85nkM*ghtBdx>Nws`izzY?EjYCsQaZU`PoWObP^?=QD;W> zQF22MsH!AgQ#v7C46*gaK>Cbxx_)wM>ePu zXo1O2bV}6D4^59;OVu@@R2M4C&G$Vt)2hoh+fqgGsCd*Ze5BaXgRx=`iF;Zrn;Gir zUvw!Jewl3Bh0P1=FwWK@Dq*BRXzyt>$xhzG zrUq|M{Hh1c5#LIag6JmdA&=mSO}%k!`*PNdDbb!aLvtHM zT3lY{=vtp$ijtG5ijR%*-ww1ltCYpKkTgH-}R!(Lpr^|G6QiP-R))hCi6=cIO7Pp$u@Z0qY5)zR08maPQ~*0y^b?*&#r~DY8}?OX!u^YdhuC59XZA@L z*Y<^r8_%!)zg5r=Y-%a@i`Xr~Z(43;NG9-j+%Cj0FoZWckMS}O|F+}~D|cJpoZEwj z9_eESc)9Qa^&wZ>6$bidxywOs06tBgLyLa}k)U_x7baO!PXjEI8d)W1E6NYf1x)&W zbT+y#AE%xek$X$x!J#p%mLEP)My$3Q2mtk!)nJ66A&mFP%cqRY=n1qc7bGh>j2@zK z2hjI4+b@3`#03d_?9|@1aNvEs`bHv7WSzV9w(+>5$G#Q*4}!;=VO-)&{i+AY;rq!h zXypn#UADd;iesVGq;ekax-ARJxAnKmsZ5CHThQ?$;E@i_nxJ0gb_d|^GLvt|S6j1U%4YTim2!97 z;~q^#(+~7CmWt*{f+TR3vmqKQjbTUHP=~_w0dcwwvHO-2$x-?PJ2h|cHhbT{hP^^g zrPlwsrj2MAeIpRwqYA5Y4Ipf&emx^hoOuHmHDHS);Cn3Pt(sM5<~8aY)+t*Ypy=2zYpZz$c){@1eJ`K^(w)lI;6lvu^&~(X>7ajGxGbhC9y6c*=@gJmXzVTI~C3$ zt~q#~feOdxfw$)eF7K!TZ+bAuhval_(hp%F>AfFczv%!|fMo_mSYHaQCi2oKhCG2R zPt+Q#YA2^$hdi}@`?~l_4%l0%xk@U+oh&3ys0ObhZ$Gw%~<4o;CDIda45Z zcKCz){7bx6N|76aV2ra#0W|gU+SA?B(Z^`Wc~>%~3|+~#r`E#!GW|(Y zgOWOic#4Nx4}^9(C{M}=knKAuu+GcW>0~~b`>e5qgG|TMf_9{5f2VWrzA>YL92&_K zfCC|We(TW$n-wwjL-F159r0uO-rE|OpzP_i--b%fQivZg}akU?W zK6sBm>hSV>H~Vfw*n}`DBn3sdl0PShiQygDgRW-xn}sz#bv#+*_#r?NZ%*-6Kury*vPj5+N~FaY+O_QIy|%#c{K~ z2)=UMeR}RjVhS^&cY_&GJ^Egw)@BK^HFx|T%lktvW_mNEja0%l9=y}pdZIh$vp_&Y zEviT(M^cBN84%}>gLlD|pb-`hjZ}U=WAYGYh%YKlFUfF##k`*1D`;rIAH@sWXbiEx@ z9p`FU1t5}_BWdGvY!q^S+92+;*g*XQ$SrT2p4V2LWbi1jLBrFdPJ#U#8nw((&H-y% z%D^gpyqs;=Q;j5y46@a^sx+n^fB{`3#?%XBJ~eUC;@&0T`;?Ndj5+CT^jN04%6FW7 zigR)eH>S-@zDTTsf8MLk=tM7z`IA`Q-;tJ2;iOw8o$AflSF3rfk#s!;aXe} znMjz6!xzd?Yn!Yz4w@l;S zCb~B-<3YFno9oiXBC?GqTTN@%veV9vwm#?sY(avb-zfzNul}@V%WUmrw8W$>99+yz z`5ibC@vzUFXo{+Rtoq8}UA1lxK&5e(EvTt$sX5wx*)^Qmin6pv=k2%*yS%0=#o{ff z@$)vT=A56qc_Zv9K_$m=x;TOO5N`()@ptv6d^qu8?RkxYqFa;VU)V*5ZLXLrxcU4` zpUzJ~He zOj$4=i9os8#J{6Hmnka!Go#xS)NW821nP^Cz9e(v_y5O4k|U01r;Xe|2s0hmaixN3 zd++QfIx;pbzjRRzOaqtiH0jxzZC^@!fXJ z`b^8mlZNU^dwx7F&dquIh}z)I#-#M`cvL4CexiGBvtx;rmgsT%g3?VoiqESl+HPFC ze4hzJI`{9g~5-zqIzof zmWOrlKzyWQy_2v$u1LaIVC0EuUn-l;%CY?%uh2{0(J#EZ2dVG>3RgYB6X$B)mhQLc z%*GY2T2f00S^`^nUd>$?7oFLiyP`0p?>*T%Npc=UE+t1%==d1KJYR-B`Qxk%z_=S; z;F0myjjKHSw4k&_zuX(?ABmA6Wc-wV{LY>&U>I*eFU)DIq*j1PZls=TaM^CA{=HS4u7A7mOA1icufVp6hMI0&9}sj3jxQd zJ01=>PS)ZbIjy2(sZ?AxZk_~;P<$@|;MM7W=u}8&NpS|+S3Z;nJb`Knm6mbqTiyr) zh{GVq5IwjDIeO|>-W~wH2YT+_BJ`Pd6e%}ZP3`RQxE&Q`Hz&8sELZ%-tn3vGK9>$! zhB_JgnyUsHN43lWrvD3-<%YX^t9XNbMAW>TS z`K7*ym9Pw^)TiMVDZJkhA@_d~1M>zXa&JF>9zOZJfa>Htw%aZ9zos;5_Qc&Rm_0XG zhvgpY&ZPf3S+u}jUk*2Ve3{3f>%R4tu8T0mu#pHL)VC3p^V9-dS}FOUn&ZG9nw6|S zJpb9#`MgnY76qnuQRh1VZjSq&7XV^s}Cx4 zYH#5lhkun^@1WCg!Fd>-RHk$OLHg(tpl9z$L=yjtz`sIAzk{%dsszPn*)n#4dSMVj z9j+U1-s+M4@#gQiNco@}e*i7&DLuMk4af_Y_m)==W~|=1>g;U;4P44 z{_YR9Tz9zndKP%{TeZ1eea!tiioR|_=|RjrBlefqRNZ?2k%Z0YvCsb4WWbHACO#Fb zzrpkcF98Tt-yc)YPTstbGEH*KJw3o*+F0__zPP-Z>V&UUMctG^-}wD2cD0vvB}I83 z`BgaG@3!!-8$}i+_U$-qh0jl}E~qh(?<~1uT^~hPN5=8>5*BxJRCftz=?MfB-RQ26 z8qB;(iTxAc1xD$Kd^-iKt(FAH+HZ$sR>C&;XGT#kMBV!cdo~@aF2q_;i`U~-n06%E zHz0HLeJ7!-8{7#pLEY+_jxgbJ=amLK8V<|-AJyY86Z18mxPNd`6d2DvZk77Ei^~8S zy&8Yu#H^c1>CkEMvz=zjMNFOP!|dh6Tiv-u_rKpE8v)Z*4xSBoM#~Ce#l@(kDb0!| zp`6;?rVp(9p=~s1`I?^BC3KY@YI&GeA?6yg*5x@>@3no*6;JnJNI@-J14sX6UG`BnBGIaY&- zDg2yFnM&aB$#I5-TPI`G;EbNXYLnlQsxE)TXd3i-ox#SRG^^0!Q(%{Li(lMm=9~In z?JnnuVh45*IMDie1t8<~x%b%fZ=Urx`q3!2^B!p8>3E>KLc~R-3dl@@Qbmq{V-1 zuG=RYqeax7mh0tU(#<=YZ^9nEIZBZz=89Df`b*+*pv8_(Z+IYE-_2WHHe=P@HtX(A zO2J#Yr?Hs899N|t4T23X*WumzwKqBb)r`TzZW~~JO3L>rErME9l=RJNE>+M)g@YN; z47zw~kV)9ncp+8sXR*o3NpHS0p6?G`Q-s*@vc^VaecY<$A85=~Rl+{xE>_dx;i;?1 zazNe3vuf7n@kr=5TDh_8OGNFZh*AlL?!Cg{MQDB9B&5XB2#sSq{ctBU_qlzF%uFb8 zazGjnO{4SX>KDQ8k{>$DoIa?XghLn2MhLz0ezV9Gt0+v<(F#PnRVAG9kozp_n;3_f z0-XyM7cGMHU&6(MXBErL4lHwhZHt3AF8=+%X~eghe0}s+bK_HQ*=g^aHXkj?siwc2 zZ{A?}jWOQWXFO^B6)ji$%~H239%G`+hho=g8b0A$yWnI{HJXcW*IA*P>$(DMZAX;c z;=NwBQ_BWlWY*y4zM=VY@>eQslgsARLm<+CVw$Wio>Ij zZl>|dy86bHU3*{Id3NOQ^Xjs;_j)@%k+a05U`$pIwEDABp(u&TW~^59@7LARS(vgs zKbK1+htP1(?D52hR_OglYXlBtR0ACF{)t@z zGITbgA;?e$`%9abMqdkoDFP$jA@g7_oV=L>Hq8km(=)SK z`6(2ahu6cv37NTdgzd)y_HlPVqsJ!sod0!a{>*$8eUF55^xTLloq1zcMr^ZRsrh<< zIZ`e-6O6-~#7?3R8Kl|%AIb6Vg^=K(>7tv|esZLt>13tbhCL{;MI{au!H@-sZSO6? zU;Xxjzl^SKa<=W0@B>UsAkk>!C%3705_%rY?d8_TqqASDqLwx4M+nXDN$q9t5U#C; zCV>nunJ|4`E&KtqlmU_>lzSq{=%?}s#eg3kT;Y`jZes2B4{svAk7 zmaT!63gS+ypA|j17k22SRC~tC*@c!sk~=Zb(6N)hew9G*RT6mymhNe(c|f+YK5M%D z3(VV3{fOX4f`8J`gXd>~ib`a`C_;IE)iXLZ2Oa(QtAAgl2y1%OD2T|S_ z+q-Q;5gHGu`_P-W7b#Yjxo9RvD8wP$_BoTZJ8eUw})o7_+ zua!>?%(*z=HV)bQ0n1S%TyiaAUYVggeoo4Mvv=c(DBy{E$4QSsv?wWQo*zH8;&loM z0fcQ_NVVB>db^ddEaG?P_O$L;wQ+2Fjd$bRDV*3UEIsYJk$pu4y_k=ez5IX#?_F*b zWou-0>q|Mn-FS2`m;X5eIbma;-5Sd>wV;gGO{ChubNy*nhhi9ZM|!SkKHz}pm(Dl= z&OocJ|979MVIc!0kJeBH^n@MO0)>n~@4IHA`Uf4Qk>2gs#eJpms z{&VWyQsyR1^iCGHSE+rCJ)+GMTl_-k^<}!F_h&!5qOQ0~P8MuR5)pwx-|4_kyc`CN{To@KxchjNkrm?^9I*c0-r+=;Uosax-RSp{eSXo}xWae44$acI z`5Qt1erO{>SlS@JB37I=JqP) zQcvD>5nYY1w%>zre;N3YehHh=q{#g`Uuh&oL#!@aibqx{r57GhJvV1AfHrk$!#DXz z2fSACIIP?5{R`o$0Zes<8kJFlvu=FaREhEuKhDX3J@opvXpKxiqK@R0|I7uQQMpJfpKr-|szwoa%jz2aw zN%ZQ<*b8xJg4qhGlAfWb+(PsRu3bEwUbQAHW@=q7JLWrZ#K}I+ zjYi18oa1UK4-(Ix0y-+O2Mq7gFv1>TOTwP=D6mVLB|L(<^CC${7HFmmSnt*Xd%+1O z7~YKLAnb5pH>W(5uS-K51{wfEWMch@^%ln4q;730O5gb1ZsH9P_4)A1XYP(Q5T3YD zb2yL1SBLt_&3StAm>$lr!VT2HDY%|$*Lh4rgw&SPHCJ@M<=Bqqw)SqZ&qc@KIZ1WDQ#BgEhI35TN4(_o?^>f0 z6S*2*Diag`XMHv1Qi5Hf6QGfWM#!Hc@JK&hFi)xc62JI&{o4Qd1Dw7KZKld&e(n_h6;8 zPnHcQN}eTwpcEI|AC@VCeoGf);zR=T;chu#{Up~{6g>yC#qePb*az{e{Mkbi0}BB!#DS-4GZECEiF#qzblOh*6yR6 zVr|dZff-GG!aDL^Y7hP@&$8ForhIN_Avs4+msoYN(_bQLC-|118-*#j^A+Tr}{4imq|+nk@5!>sKx7P{*hB zt;II>3IpLB|2@|;94;lSiY}3Pc%S$R$pA1@H3|3BWXJ7-0}#0l zpPL^pGmrgp4c;A0?c>K0+n<5w(5Ke&O!12WyyK#8Kc}DFl)zLb% zl_f?_<8HLS^PvddCs<;4B000ee#*CI%W&*%J`aBaoHRapkjFH5o)#3Dn{0eU+6;71 z(b;8gtvTX2in-?%(rF0FzyI%v2UpR-ROg#GvVyE9^i9R^bG=uhBBq7@hp4ykYw~^H zhXsd#G$`>NB`6IebTp`xihzm|0;2>(7$F@SB_$=&j8G6zkr>_0K)M;--E6=ZvET6X zeO}K$u-*54o!42%c^*e4N0PlC(I8&Gak#c7a%DoQX4go;cSTcu@HY+1|Jps8&GM%B z8jhp-2_O#I5 z4}EUMbvDh~nv05SV$R3B8K{+%D&hKPfpD7G0%4_qE@1N}zcp!F+QD%&JZ zPEkJ!(N=g>v&}059MKS%N+Q~7oW`{S)!B>VxTxpkU;hK>?gyiJE5bf>9Z@v3-teC1 zLw`av4bNciG6QNDeZ4HH;|KX0C13sf>d8E$+lbn-Q^cL34U16G7sA5Q{&_M(6S@C) zBG5-ot66F;bze-|p%zT&^7-I%cZc&?r`OQ8=!YJqu4eowB#FIL3%@b+6?VnVg1<^* z+ohFx+3(*Q*n>z9UXaO8=%Y1`$76v_u$Mi);Z4{pm#`7_wBo%QMSLT$G)t%ieVe;j zYbhks`}YHgV;x1b*0F7z8>pq#D}sCFMuBsM zNcL1eL~&OIAL-WPZxIl;r}9M?%n72AiQp2Q6yGGWpemBQy{yeTaN(wLCOmpHQEN<5 zkEZw*>1?&PVCL^p8rWvmwua5kK-q`32%pxK0s{ z;Ch+XuoUCTUw#W3`YYXL_S2Eby_}r~4h#s9y{EZX_e$$dlakMaMFm9%CKc%KnKOtZ z+EmGmy0O|;;WS3lTENR3C#59Hyw~9XQVhelu4&XYCH*pz&lT{zV`?vk^)d=KcuZJP zTurvjMYn51vw$c`*H+K}G$l;YWqg-)@5NXNosC*{V(CrYZQ)Iy=_&digE+7w)$=0e zHXF9IHn`<#$ zRRHaKnWiBJBjUZs+e)OvMn`k7p3+cZb$_O+#m~aOg^TJ+`0xw3thXU(;ZJ}{3V;2R z!ViPun?3z26s-KfV`gNx+D@loG(!FtbY0798eoKHY;0v9F=V5lU^Hg=v97}<3B>il zhpv07n=uB&;&~~8xfCD%te>^|(3}n)9K~_`ETm$@i*;t;jZ-*kCkPuMUZfF*GhyG9 zP($oPbBy`9)!)Qicn)>k#Cj~g68K4VANoff09POFPfQGpMUF)jHJsS+WIHo0}#etTaId)n!&5ez(*r{eCGP&>W38CC+h*kf9ic57?qVQg@Y^ zG=}b2`B_d|V5G&P4<0z!JBlT`tH}=Yljf`W?{dny{!~IU5~MerfoHXo%r+bJ6lYU> z$1}`l5&g+Q3{vrzkvf82cT7X}qF4HRd=8#D3AyDYIR|Oj`wc?0Fp6OBHh6PTca#}2zKU@h8mn*=Zc*0p6;oZ0C3vpsmPCT-~cFz2Kz$Kj|f;VYqAyF z@MAM1N+&-(yL=UsN$@?oqLsoE7pU~eD?O@OIergo%NNuf6*$gR)84p*I{FwLh3oic z)!;Yt^NFctb#37tVz=W#O~ycmzoQ?4&AT#A-2^lszjMDBY--mCkU*5ei< z?6U2BS$zWFwpcb>)PI!p_ccAXksV_sA6+)Q+}=>IR^}Jh{H9F=D6)eC`NJ0GWpzTG zAM8Eb&1GDW-wKm=_PZW$pw5V53Pg00B#YAgS_EzLDa-$WfClxq{`LYZ-8t zr<1=Z{**m6GT+cuPNY2F@LhMV+;TT0^}N2a-Qt_EatAK%Bl`08Nb@8Qsc1#tZ;XBP?Q(S-g=Oz+Pr<>6QT;2Ntjqr`4Q*$kIBel7x zdo%PN$r_$B3NucMv@mzw09pFFSJb?I!^U5@+;vS{CdQn5-1j(1x4{l5_YzsxhSM0PZOy&195oHMOa@5+UahUs9vQLgBZ7>GB;V#w(Hi7N><+lF( zr-6#IfFH(X{+T^YtbE-_IBPV$z{LJyBv6Z<-RECN|1hzh&m|nLO>UOo>I2s56iTiBZ27^=Ov|N7 zt0^k1C5GVc9J_}|O!2fHL(eeH1vr$M>>@{Nm{4rH8eeC>#M5K;UZs^p%IiyLGL_Yf z+5#EtTBZObL$M$mFpgPcZR07LUrE$n-h}4tb%m{7=!PiA-BLujYh4+Yc~N$QfV8X8 zM3;rmV;-IJJze>gl<_3VnVN>FV#>&gT(zB>XYHuqi@-{tPiEfmu#Qxd0bA%W!E^pJASzRpj<1CT23acQ$+(y`4PcQ+HuZA87 znh##2u6rRrqL`y)26KvIkyypwQ}>?{QD42@bEGl1E~WjeXi6Z*K{ZWc%I4zc%r~w> z)#sGt$+GkBmuxfIjQtG@6M9ty`tOlSt2RxBUj!Jqq;!-%)}MIOQZZaUZ|Xc#t|s?< zufREp#}D^>e50bjq)wm|E3qJLlD$=$1zWJRDS|E%K1NCTzR~3>uQy&QOQc39ky;-7 z0Dl2*)%wPqnu&C7SB>&xbgrraylqn|P*&Y7^R&n2cT)YfRk?GitWUqsY$`|e| z=vwA+S>Br~#^ih^9R=hYx5l&DMkB||*%dL5Ul~V#Y({?^5^;3zBcsM6qfrf|!`N1< zKIY>b5bPIm2AE&jYu7qk9`mY(w@IKQy(LmOtL2v{)2D!?+Z5gX5?B*)V?BL{G9$^7 zb?L3kw6eS$m1)}ZVBMKJLx?tK;XXYr)3!AldE8KJM-tqhG^29Pz zX>>=|=NaOg@ft7RB-Wr*Sv=$siz)MQ#LlpCL>qoot>w6dRU69E5LJXdJa}{IXjfTV z1{&rgmX99+>&^=IY+54m{zlug}$a;z0}mzKGsjb%|LP6)QQO|q@Q{wcdg5wQAs@= zmwnuAH0ilglHHfEhUhY0d2nG)D0?$ERrZwdLv&o`RC2BM85(jLKaoofX6~~ua>n=> z)y|Z|Qj{3pM>M&sKZN?||M1zdGc_U)i1A(K&G(tvf|L)vY6(@sejiogJp3|AKSk}p z%VOgC((UqeZT#kW-J0UwzTG)sDK*M2Ml_)Sy%*tkxSQ@^M zxu%#)un$DnL=0FSdptYO(mbn_6^-tIm!!iiOpnK_4iLJnAH-m;@RxGr41*X z^pRjtywb4S#`^CP-rlU^C;69XfEX;dLLju@RacjR8W;a`%HpXomE>jeFVnrnt zr}%0IZ-z0L&jg=f%M_qQAp)u1)SXntyf6S(EMtdtl(Q0?cO5TR9ce*h9I-!T4!+aD zeqQd)o-~{=kR)?s`27y~?Uo#vs^UHIC-J)4f;wv_0TfPeQD_@hT%lSQzw-4xDXSw2 zfMAHU4KC6~A^XAckk2INcfIHX$D65obBL`E^sgzld-BAZAC>9Q^Pz`8Bql7ee5}F-a2K_Evr+z%zP)d9S#6!8VQ!gE`d1_G8N>6U-yHd39QB2K-XQB4pw|;&RTond+eFD{vN@E3H^}0L0gAR2&y5 z+ovXHMG__xZMNH_@4&{MTNFe>(>IO7E>~=Lip2o?x5G`qC(B{f6}}+f0aACNcT2g zOf~jGlokp7@Z-`W*`jah{9ym^@rgvqT9Tel?*!8>ae&OD0FgYj4N`mO@Nd6_0ElP` zPRoJZRgD)rjzxa8S(*i;oJCL;3RZ$v48rUwaJ}6BR}nTn)M^HH^w5dtNkHC1o35+^ zC+2JR5~Xr}J7)L?~)!9azcV#e5d=@d+^m^x~{ zhNBu!ihUu+ekr=Sis_Opzt{J4>h2*@*qo)s@lN^dw{K8H;=UDrR=>sl(6U=xaO+`D zPEsR?Sscu_?I2-}1}s@VeyRRwl1(ovM{`jJ|pX#*eEcuw2A z1frtxoKCqZ>ByvP%+aeg(``d{UUnoihto9$mj6`VHLBV8mQ4y(GZkX7O|5=iijE~A zVT~yOs^L#Ns3oT+ovQj@2af~Ov^^Ur(sk2KWHA`bejp#X_h6$|(qye@|FJtMe;bYT zz2cj@`C1L2R!>8t)}-cwg8AU>wSgMTAX8*y+ zlU}xq#y<>S&t{c0oUee!)#`TLit=gl`D57P{VvA+3i=dJrZlVx6@SF6Jy}w=9z~XXwpJlO~|Z5Y|U&$mf|~q`AM{z9S%q; ziykj4A%2Lin#TmK1{=$xdr!)BiUv+eHb#4l+y z?4587Xt)t<;X6v%U0C5!;p^s8GAS%59k65Xb4b{w*l$MENo4s%#PlFz;L#UNR5nM+ z9ER4lHVp4V(ceav4Bw#$b5#e0#INVPVb-2&9 zoGxdrbz$Hdm9Fy?!2M7^vDf*41gO)PIN>P~e#ACyF{>qeZ_iMVS@B&=j&5N^Uny1L zlELOE>Zgz1UP2y7$@y{7$jR8qgzHu^8~(a(gC=5uQF;w;s(gCv#VTf(d46t@^q|iX zwq+E0kREzaBGK0$W z%WxFM;KVrOW7?+ASEY+EJ;II&Yh?$BxpV7!r|(htTods@2lBby)CTSzX8D>YX47Og zw&rE;r)$QFM68Ytf3CmM&(-?ZPoYrc6y}UML={twS4uYa@-#uBt^A^3@zO^9HJ5Z} z$|!}`>OHL$J26lg5gcM^ymnh`6?eov(ep1%5eE5 z<{ZmUtn4BDhdsGbm=zPALtOokN+|6ckGdreN3%cE=9uX9iFJdmQ?@>E7 zV;xaI@aWhS%uACzNu86iMxSW4giGX7=S%RwsOx;YCN$WOVCjr~Nm9}B=+#kzX~W)R zo?nCCW!&_f$BrkVarEV=N8`!NX5(e$UVekydI+YGn!T%paORi)n*g8DDqh)mG{^g} z_>1BQQn=N`8@gs;CaX8Y@NN4mCk34H`9c{@R=NqP5lm>u-1d6+9`sCXK3dYlR!pRX z3hMmVwU)?h_c>2t3LRX$1>Lqszw_eZ6MPv_;)^;t^gf+A8nA;xtQ+m)C#P>m3{4qu zzp%zmJRq*Y*NV+leBauypw^jGe=fEgT{|A7A)+mlw?okgmTS8Sg<9yJS*2y!CwH8D z6shrzasGh4Ws!UB|F{68Ol#s1w)znd*TdfCO1d*NVmD4}u(di_(m4K|#mcXyuhvlYNM$NvxMIiZB8Rpov3{HI zzV>i(to~1rpfO$TZ$I5}DD?iNYxbVOf66N|zA=Q_$l$tn zHE1&TAh8~N%9f`5q0##6_U$#5$Nh_hiT(-6k-2v)PLIzRi6CGPY`PoBXU|%sNjE*e zMQNpT4uKtwx}9OQjLIhrWPSuuLVgzEo0&iGL(s>3Q(slg{pZ+2V5_E znOX7{5J}Us(M?pYI@`45Izvz2jFH_S{GrV_^l>SYJ@r%YSjbsyaYOhyFTPYJnwKA8 zu7QORefUc`%}WGACpbdG_o=r8H={n15BDCp1rQU~lqJ1&F>zbbjHS*YxR?dZl`Dcu z6FvO3W1kBh)vlcDLxg#L=04S2 zk*JevM%1A8PH?))Ss3QQ1<;B^7A7{LnXs0d)G^y9uMfN z=qU6XDxbR*A#CSp=_B$=YXla#96YE5P1H6@xDKi-rYv2LQE+mwYmD#S>&oNw3JrsY zL!B1EI~=d{S2^fNFya}XrRm1L^LD>g{=@<~`MF&3U&Xn%$bLI9@!175J7Q{uy1TYs z=}jai8|czK?gr~D$V+y_9#MvMA9r*0l__M-=?D3n0cX=Tu5;mDwu#~A0VY#w3|2&zlZ-l*yPIPj@mFO5h}0D>qG;{Y_D(QggBw+lAA^9hopqBt zPF|{?_i*(_kXcXFuM_q|S9vlg^mwf2Os~|ThSGL{h~x-{xX-`N_e%4V zH4k&Owm%!^&b=XGtkzEHYR70Vxo3^3Kd_ESy{ex*xgQ@BV1;p|Xy1C`VCPn-gzuUu z7N}(5Ps}jW;S0Wl$_-!MmtrrI8fifBApAryi+6EPawqUeI6uFw>X&@+-dlAd%7A)k z1_JwAT8`@0Vx9!oicc@J;?jtG9GcEihYG*sbr#Qe96V}UlN$GfL9dHoJ9hb%4Mzo` z{k?E=>hQUDnzk|5I=U%Yry4?J*~31@ClT`inTMV(VJD4*i+o)jMYp4b!r~jpmg}hW zRZ5Hbp<}_k^{+K5bc@F0{S*!WQxj&knz6VI1Vh-oeiQJKqf0apa{Fg$jD6NMZ?=>w z^WCjW-6Aq!@5y^FGW7K_Gy(2p0b$Z##`q{XZW;BU?qNT}pAD;$u9PnPEez!>p*cJ; zc^++`F_RBza>*-2Pjbv|e^I%>@A^$#!jL8eQ;p%T_U4_qp zXhx#7=7>%gyj5U39sb*`8` z$`{KLeo0X6o^CFZZ#5eM^TJkA6iu_NtW=g0qq!;9yC{s9Goe1&N=G+6dpE9bR~0RZ z1W)}p-fg$IC!uMHKa7>`j(Fi`?lL2DBHDwCseE${@?zRrWX`g---Ihg_>?ozo-@^9 zVX=xg5x1#Gk!V(^tI71YNXFqR&P?PJ`Ua7{%G1{x8y&Ti5Vs}+u2W0c)2k7jBOZG1 z9=)NCk)@+Wg)Nx}>Ea8OwG_&?6l#k&S;=LD zY-0CzhjO1!aRr2F;n&sMbSwmhY(%=N=~u9OTC2|i?$=3w^a-8Wr9*c1QLZ$ zGZg}CnD~=oE?(JWKIk)uThb`6%vYTqEzLF}(xUtXZ|^Ni}YgJ4pD z=k7&$4s*mV(&#uRejs!#^PppIqk(X-SERHbK-cyQkI92?=KYS-mivVtN@{prPiz5K zHfO;8_CF;Wkhp0}G$H+f1t0r@UaZ3UNHF+La(?k+EA z7adTw_Wb+^*cIC3S@^@Yj7$G1b}9w+19UmdAEPbv8_&BN|M<~W`Gq5T1u4SYsi@{m z0s*$YY9t&+NCEl}n+q>BINodpG)bEf%H17eSdgQ&GhQ+i=CD||PHrb_P3 z0e||jZPi28T!o(){Xgq)Pl4sKVE^3BDrLR%ht}(dJ76 zDp}L_c)P`q$=l+Z7fu561+*j7TzaaGsfkeawk+99{;pYj{Gh;#9*AEJmVgQ)NxoAb z#CjG(FT?WN9AsH0c``PRDFY1rvTeTGVenjtI{RwZW~x(4M3t*c>^}5xp!s9^7e{lJ zc&JNx0VH3;tLx3`Z&v@&00Sz2A3L>c~TVXG6yiPZPtp%%)!D?>?EONMP9=f^De3gsjv2!yQ!_vWOUQ zN5($V>i8s;Vv@h%KmH*K_S01FAs5768Q0~0Xg;yuTtBMDV)FXJlyIUpN^n`H8GShp zsh#L`(3{zw^i&#t1iaviu?%Wc$wN4a0H?J^l!l(3W^qhE-7t5ve(aa zt-vr@o@-l7X#$yw5;55hGL&!U>z@1wh^b@lUUq!e_%lsGS&S6bDVbztXDyS}Xa1uZMtbu#A~^-727sMBIx@H4iUg zT{*AioS+=S3v%F&T;|itgbq09>-)U^Ft^kpkWk)^7uC&4l>0#_Kz(xhU1Qf_xeol| z4JUP4oT+k4M`E%(e{N8L_nDYA0M!*#6tn|v`NLkhpRKjg-LQJqm}KP&7+5M+gztu5 z*nKS?Roak%q znJocsOkE8;ABrswmt{c#`$cS}>CO62Me!|tLoaI{=;-fdq$o|aRK#!HD+2NL}MtI84#0t$cy?c9Dr(WJtlZy#mMtTtT>e5xbHfodE2Uf28JRWXNcxJEP78 zw=}NpUd@GePz6;|g$*q17w0lD7AYctvg84s7DN9qd8wj5@YN6jM& zWBG?pf3y|~>ejo~j%;yPZU-84Fd%73H_wEE=fdT(Gm51S2qii&|2$v(MqJcTzknv; z30irroeX&@Y-$>twDX{WSrq%XnsrH_vJGv}PP*}1A{vjmdIVKV;vxm_trV>d88Ej&Ld6^SqO3E~cK@ zqYGP54mU7X>Y#r~=eHUVYADu}_jNy?A++i31(th=+E!(igPg=gV6jmWETK+29`3aq zW}s{TSlXVOZ9JK3HAo>xE3%sYfEU7QCq^_|whj@i6M6~`^Zp6XEwH`guOx4+qL$EL z9hZ#4MBB9u@tM4s(kulet)ex{mS{#eI#oBhW-RKOfj6E(yF zi&YbwwRx$Ty6>~RXyjP=$lnk=^%Ru{k;Uyh$2}C@XmYmjq8A(9Bt(w`jcbn_@6j2m zQGs9Z1??vk`R3>i8BH%T2T2I+tF6K-;^T_#I0WtonnPpSvoN|CDywqwIvIZbPD>v_-qcRhaCpQ{JFV^b9#2WpQ zKT;G<{|HHz3}v(odBWOV6({d%=`I$mB@FvqwrVcRlE!-mX2GUtiO*dCRJ$&DxNp#d z=o>VQ$KIevJ-cR4iVwQJ8(ArJ0dyROn3_O$07MsQKt5?Ep{rV4infGj+(m18k` zJU0y>^b#dH_G@&_5;D(%{AJ-Sl>8$cx%v*@_Jmvqy(4h3>FF!Mo8KZVv_kK9yUL8Y zKjVOmh!GJTTcJ2e>0Xx!xebE{61f?r^qvde&Rhw-UP}h55)}5l(-V&A0!fT@G}xsb zE+mvXy8ah}P<+hj_y77H>fQAmKN?x&-qg^|FHl zi72^|faT&7HZBtNIZujJz{i~H)S><_?gXT1cipEK2S2%KW81@O@FMJbFg%7{v4N$R+{&YCO8lV%NM@Hv)Gi^Npj8nF%p-A24|wPR~A| z=2{P#RWemH_uax2KWvvVnt3L5_q|p3F(paOQnVSq9YsE&@oIxvUbFH?wozZG;%-(e zM*NLZy84UQ`KmzydtWqJg?YMnfhpc_Y{LiJsGwYAx+1$GgAIULREqq;IUuzS8)|8{ z#H^BzMDT?Q65$e`kVq+1DJ!U?KBBAlYTCD039v5V^C+hAAj(msEa6uNQK=dHAozlY zi$&pgStF{ac@7%1ukWC+#D8iJ4>sk+zxY^+JiD%g@bdg#b6P4%%aGUfaYmvQeK8$+ z7<0=a5d z&P77)vRfnGw(=D(Y|`{)(K3P|Gh5h{2+!|ewJBdyz8uk;XSw#^$lf4gb65hR=Py8yViVA$|q+984OI*d)J` z^Y&*|@sjY%ADs52N24RMucZN5%+%~x!}J530afOKv>_l-mtj!^visdn+J0eEAJl#d z^XSrx)jG9SuOpCLUeTTX13!`Jj?-M7ji48rd0Kr3dCbVA0$MGrNH?emk*|XfNTmXc zQRBwkLAm@nEF}(-vyobE9F%zH`lb_Ev*AGOmzkLMSwYLG9O$_nf|%{5K!;mg=EgN9 zEgl@Xs<^3KE(hy!t=P|v(1#f)$!IyHm8AET4;FlvGah4`OOWLQjhG@^zIZ-jo4n1a z!0q7w83R>HP>T;`n*3CLx>Z1H#R2WwM5q%7XE{_z2)(dDQ!#EH`h4;fdJGzZB#I5r~n%frFoohW!lxr296BS~K%nH0K z?KjM((7YB&0_31b_i|C*Lx)XWE~m#XwlAMo;4j|!xv{m*!k zP8kCzd78}6((^r6$a%Y)LxyScc5i=XkI;{=auNF9G7-^aiDO!4iZbwcWi^r5;jcZR zTr2Vym#O2*9(P)Fo6)&H;5;~d_!o6$SPc9#3sy&YO5rwj68BLoq`IMXXaO%t`PH=I zseHTGRG>%OyRgFctcivs)-9IE&{?ep>Tx$?Y4=tAbESpt^PwBCO5FEGl&-?0HRMnB zg`oydu`ork;&z>m_me&J>$-uH0TuVDmR*Ss_Ti0?Op|88v)HR$q^oU^9+ijZeKDU6 zEp_ARqG*I9itL)H6r(oL;AX>f__if_Bin9-}kCeqZ)RTA77rhX?$T%&4vtY8m z2a2B~pt83@Ty;6}8^FN04S9RgOi8|BP~E_q*b}G4={)rI`_&u!)(8EQOaX)R^vR!w zSB+&OBxS-s10>R{*gG#PL~_-+{v}fX&X5&Ivb?;RPgJHDah%>@ziSGk;BP@CP0ruU z{QM(f1LZJfuwqMiFm9|{$-$sj(@yoMD?4L7@BSj$r`|md5O0>aF0=8o$9oD{d%pG$ zRZTETv1S|b-$hXnj-S-%+cp z`I{=ZuD{^OKa4s5ne48Idue-Wve8yPW>6WxvKjH<-9ccoah-!@<+9VD>BUgL40cer zUyD@A>aXsh^jdb^ysy@ZYU=x>!?N2pZ&6x^E|c*GF4vU& zZSU^!@0RG8&zNU46xj8+BQuCgAnh-Em3BBtbB3+&+OT}od?=$eE_=%(-}(OK+9%?m z$-gIL41lRNk>V2cAzrv&ZB^kPn5k5wxZKbb>dRkVtwBk3OaedM>BFPr!UgCXenFft0uY{e%HbA@VpOH0p08qMhbK+9q}J<&v$h=nXbg7=H(chw;++Z>E*ZD{rpquT-59?sroWkrcpL zB5j|qW_O&z88;2c2sI!!CI5Gw$pKEc5sl}9$`i{>2W$sQv#l}sWz8A1j2m*06&Tko z6OlagvXFPnXP7UYwN0+nfXgxD9)n*ec^OA zf_^HMRA5C9if5n0bp0_Z} zlSJEdil^Cmx=xrgWhFSE;4pqcz{@f|oT-@^6dCo7C{msUonp5tI2$$&tBfEccNo5r z`~;L3XDU0z2RjkO%HuQ6ZY@Q7J6wy2ut`j$_;Z_tw#0SPghgGJnOsBe=$chQleN`9 zKSOMx20ffUjWjq6H~BQDmKw{BXwsdjV+6g=bpPOppxI?4uL2xY{2aUs_80YUQitUj zh`(s;HG`J?_21_`QM%akomK>;2VeKNrjx#$#L8O;vyfzMwV$$(T)K@BMm4aXSj|P1 z%KqA8p1#^a`^H83J=FDge(yWK&xc&es_P+hUzbG~|CqIxu<&7fT=_+YOq{77+(qaun)$1CmQbzPHx;6ayZ#&jRjXknbK*d)nn5NJ+-omA*W-92VoV45EW!PVQg?^h7G&k z_<^p9yQEAi{^lzRXL8V)g)eMYD*`btTK~7biKYPn=Im>OrztYXmYx8!R;0ql9I#bJ zpy~5Z-wuLcPv9dcx>nY)-FF$Os&)R)k8b0*ck#B6i6)b~`(<8s4(+QhUmmXDXr(gu zJ+!BK{u1^6YEVu@4cu+t$8m9~~< zynJrh+n$r>x*3SKd3;uN;y<9xhS*WQT^@;!MW}XFhVF$tNwEaWvM3>s)`l|=u~gWf6o26_SH zp_XdxqFlSNPk&d+@t++HKYTdPQ52}EguChSKt6DU=T=yPz96()eHgvYV{<+?(5nu= zwR(Pd>)vAUod`BO8NbWZx?=lMowtZ4uz!8SQ%h}BNG)r? z_xZAuia**1LH^T`yH#P;iEcj+v~svc_ec`6%S(!Nq6W5Q9z@x{c=qop!kdnHo0Qw~ zqfRM9tD?ec53X0368jTxnWo1)eLLTifj+gNPe%-jkl0zq6J8GynL~pF7Fs41c7gV9?HPsY8 z9_%>h9b#DCP;T8o{64Ia*ZA3}@G3!4r`dJQG~J~C7X`teuf4k6DBD^w_2Th5g8(6p z+nDr2Xsx@VS9QVNe9*il)L89eWz{-u3TtCub9l5B%`!qXX=s=o{bS5Pc@<^z+CT-A zaV_jS);tm}5EJbXl#E$LvsS3ExxVuHR};_#7z}Xzj<83AC%!odSZ)5#A5)PO-Dx21 zb#1X4`vx=B7{(Tv?X^48Dzy!#EV==;Aye`rnfAaTix&owgN{}JW!CIE3FLjcGN^z} zxKhQ6$Y$xC50`(LbpEOv*}J2nnsr|&r>W$=P$bM6?IL4*M@3KQzZVqBZq1e$1H{X*S+v=ut#6bu-;oQ z5k_u;28Y`SZI)D{CSEylPsP(rNzV&oG<{)@JCUGBk<6;w6`j~&N5QEBYoM$hXPEBBI12{GkWnF-z@Qoq6=Y%1A44@hjn9Bq`RSKzF)Xibt=7Yo^(xJXxaDk|sZ+ zOuE{$lXIGHDzTS$F(I5P>5x`7=l@#r-7tVx|H@DrZ)qf7Th|Ry@T7yVt{jQluwcl< z#Q!4(W%EBpDtLK$mU)@iEH>TK;{^Q@68qtkO24zpe2@AqlXQrw`&IY9-;1bQ;3iTs z7yi%&F#Vvtsz%;1>?PLw=IPAsIzi`ko{q9K16Q|{sT>XZ76=Mnhu_E*e|k?%&5qe(PMk*RJo@gtQZCm?j7A=>L$ z{-1?;QJ`_{RM6GW{WYI`!Nte1ESr^{xAr!K8Tt>qi_?gaNIbrDK4A)FIQD?Kxjxi_ zU19?4oQ?Ea06Qh6qgZ`GAOT|!_STffmPr8(VtnS1?Yb` zM7r<1ViOM$HDM2wcy2LhX0$)(Ax&cBw4JSjXVX~_&hOU}nF@SEEWr(KlQO$*WRjhE z9{#j5$r$^Rlzue|{r`P>Zq8P_wrp6iG6Uj3Q08G~)N+HHqYzidQn-zd&Ph9nsM95s zo1V3QuzJJcecGAAcOl4t{t9)9jc%JwBshWf1jeYRMDCkVDar`rs@XMzLxKDmhpbTz zBO8F^_wlnN7 z@wPqI9!K5=B{MAs1Ltt4mH5AV1ZC1v2}AuXPF5h0)gvVo!3m&ZT4j-cm%+Vd(iRd| zZ9Ax?ka~6XW*E$*(9r`b;Gg*%3;pXZhb_A}o2!8R1d!|huq{q0boK>H-519um*Yp# z^1D@=pM?v5I<9{*)u(PR#mR6@Kj4J0G)&qkl#im_O*Bw`MA-bwj)IXmO_Be{)LF+h z*?<2Z5CuhA0q@Z%(x4kX8Wa%~C8b3~N;*e3QUcOUKndw?2GU*9F>-YGi2bf{dw;&a zzxap8W7n>|F%r`9nwlHB@%eA7qXl|IpKJb{C;g@ zh&+!BVeHQy7`fjUKKUVu`W%cUYe%rE38SeR)zti(E@ZT`=IT5Z+?F~NKE@EHmkdb5gmNej$enS@*qG~vyZgCv!yT@a*7t{I=zo&Kh zs%f0Fv@3+5qp*i$PQrT}uKSXrFziEo7JYIaeQO@m^=sIY_tJIRC6JYW@M?CTq=FNg z9zi%YEjJ)8J;GXSc9ZK&TweUvm5KvNJ^KqN01;SsZZc{s>9vCS`r3aU?9Z{bC2jrq z(IfOButdrmtD7J<0C46)RLQW?H@B!bnk zxH$C0S-@^4_M!G;wX@~u4aC*P`a&pQ!M4Xqt#yTy7SN5#K}g73_p61ATjahIkqt%i z-R6xTsR5%T%*<1kqT<#1FcK5h0B~)>^>OE0sQh5^G{wnsHv z_dNK?zi~L&Nj}$K@D=#dVrjeJ8lg_~d#aHWA`Km8A)|v!5p3 z-f$Zl+!Mec|N6sa_G5Prqa8C9v&ygw=43DdnLy|RFwWsH2j}8VRwT;0;ag=AxRGZ5 z=&{s;=vbnMCeLpzT554?2l!PR32>s~2D5ndC@SJ6}?_>vB6bc$gt<$)wPu0ad}=SgqcsR#`IK90Qd6LFeCb48-rwwD&CP z3P#%=0u%neSmv=T`Y+t98z8^@!y(|~EIpmN(J`YyN=FGGAxyCwkXD8CR-wO5o_{zHqI#3w(&$WWUGZ>5qa|bcBHb8JmwCRnj$@m> zcnIfU;Y9~*eDB?U!!4CPOH!`0JXXA3!l3+d$GVrBPgwhwgnman9;>Oals`m7F3k?C@6^-5Bg7h;cFT_z7541;t zg#y3aG|g=nM+uCat-$rKEn>ht-m70V!ztTuW`HLAyq#OtpNg^qcK{Q~W42E7;6`;O zMkRwecLlGaf;lOPa4^MIS>x8+IGvhK{30vuq*8jy6s<-11Gw&UL}i}^6OfJ7h4f+6>mP`Sfu{#lXG*o&Bk@y= zGbX`jCgDHxNN`WLS=vz4Zhywu^R47cmgEdB34=(D=f|BqQgk&5kia;g!(oLoOR$2z zhS*dY-%wB-o@&Ld@TnfQbp7+w2Q^GrVa1P4<60Zk+MemtqBB*|>8cG`taz5>{GLX< zoy|arf;j1UD(bG)SVe=N?&@NJ)w5Wb2r`BIq%dEEPT9EG0E|ZoRMZW(T(8Mv6fm`co|3`b;U~VhJK6`{5!H7n$zWZYk_PYEw+AQy|OS{qsUGQuh5bvH9vw z$Aa{oTFp!WZhaoLJ`v-m96cgUM_@vuA5i-a<~OV4J_h0Isy(VJfYu~WI6z#{msR~{ zJ)oNM*g48-0Ax34?mx+Wx2K|cx?IVCWg?gH|72J>17SR)mO1~@tNJgnvojSd5;N15 zRU6riS#z~rp5g#UtJem>)S}GW;f}ZZQ)R>;!Gjflc((7--%t7}@C`+41&9#QHG@>D z2d}uT!`G8EXGJWjyW7zr!aA7ir-_H6Ugrt)?90@6mkvg_)Oho02fiekF#^>Fp+CPq zmUJ9k>CF=#!9a{LIgS8X{F&j2 z10_xvdl5L)Nv<*5l(}dF~));bMQkiO$l<>NjLBLb1k7vf<0~xkf%;$v3)j9gW z{TPg+Yp~Ko?igO+hm7od$7LzV`~vd9+F9V_f<2;IDX!+${XzrXN-KNmFssv)ms^<|tcOaTz51f}Tvk-6L&Te1 zr`3qj6xY^D2vk{LB(~8@5{K;C?d|K?SeN` z7+WeK_!#Ke7YgcfR1mk_oolK#Yq!vk@iz^PYvGzqPdRX|IGp65<38GH^uA$kZdwL` zQnN@g^oZE}D%So1dKNi44(bkqQMY!6n!nq+e=r!JYjKqrH%S9=jVV{og`x|r(I(MW zqr5RL`{!4T1~2@O{HnWE@{rp_V?*&y0uj57ua_!CEN1rvENU~%8vOeb+QFWCz5kO+ z6b%lE4M>1`9+32sQT({q8DU`d%3!&!c8#_pXUyTNgGB*zlh3oHR~_GsqdsPB_{iaA zh~rPd6+cqN4zJXqeU^ycAr61?U3dNGV%xtI?*$r2ERaWJdmL$ama_-2r7E)aQJO1y zSuvj3H`gVwv6m9xnUVUq#Dq#dP$QS?7SB-aPA&Ok8tUBfhFe=CuEF+EMs>9#)$%I5Ht;4JNMk{A2G3LDlg zL>78#B=4b-SJhD|$}k;;;5F87aEnb(Amg$Kwz?l66m9VbBbdP>W_HYRB|^6!vO%GOmO`{l z3wvEPdWDhIW^F?7P(FbSr^E+0_#Q*3g3VE&a~j9K>7;s>hv3LP8SpDt$2Zz0@zLvc za{(mipB_nwQ1{>Ij({ueU**b-xoAA&d1?K`FF6BSLj0)WYL<8k`*PwKe9NIbllUgN z_oQ{j&$zO66jC#ICbLq|!P$($x%WcJee`i3aU%hDit4{>e`e$7l>JhL_ zm@D|1i8V1@m^La@;k^qtd44M9Hmv9VE$?}px|&bz1lpgi-}LCo78z>%qWqAY_e}< z0=-ZSl{?X2D>`u8aty$+sbn zzizNwf<3z{@Q?Qk5>4ZdP$#W~Gz152Rc)dj3xCG+gOi4OH4Y48YiwZo-H3^JtJ*W2 zZ|t)bXJM)fv8az-9xMj*1H=~=6T~RC*PG0`=^%@mi&7(@F%^DirdlP>gxkGny zXkGS`i&N&;VW*L|Em>~Nr5xk-=r36Kkp*Uy1Q_mfroyY)^oNnEjmUl}8 z?=;lM(54$*04(IcpWyqiOP;<~BuN;owGr0!QHaEdFmPO*d*JP^)LHr9$}b~(%}4sl zLxFA~HZk*Lq(3c4yakU_s4IER6ZV{BGvcZG;lEYCwV(=J*ekY~omuOHuTE34h zICwk_U+AzDolU*XOVY9q2HinPyb3?5p4Xs5CHK$y1I`68l=!A79$+lT>alAq18z4? z>kj&IJ$6n!3b)h5f`JAy9%~n6hvNy;llAIGPKcMAbX)>B$ctDRH^wW+y2x+f;SG_W z1jag$XZ?3SNrRqtDSKI#7dYbhBMJ(H6p4uaA zJ6Fn84~KT`z^bIQ++?}|?lT>-ivm{Yx>SQqp!m<~I}#x^`*t;i zz_E!qM-#gMKJC%6NcI$#|Igr{9*TqbVoiLsv!HSXdkbomo#J%lJlgVs4n~9Mq2!7v%n>yi*qYN z&e6T^UKjP2Wtw?%@SYcbU0g%X0vvinsVhEid*J3ch*w{bS9hy@0TRE zN7EU=v60NuQ{zs{O#PE0e&UK^H{&LS?GKo{xS%&wH7}Z>7qTunMeQh z%hN+0S;(i~G~EKIcR3(gh<>2`P+gXy>`q_6ZFis{$&;`s#V{g}n?}0t-Ro~>k1LSl zh^S8b|3PFg$qDHp>YJb|*ycE7VS)*AQ}*fI49mg3w7os<{U)}yRfK?mWY=>oDBh{? zMQ=i}k^X^mG|+Gb4eWEX8@~1ZC^6^bIm=2#)*m{U|QsK$rk3 zialOA&HP4UjMo319R`ee^T_rf*b{k|+&O>p{_w%Rw{1+u3!IL85bawe4j*=cq&oM+ zK1eWE7r%?OqJ5>+eB1K#-DUqM&-*pA0~d9V$?=VNBMc*k`&8b)EPZf&);=fmo&_~h zZYqO0$;WTwM-Fo;N5;G@6X*(`E4QY@TZ_zDe6TfL-Y;OIq23dwviMj*ETC^k#W?av z6@=>q6Z=h4v)4{ZVa(0_ymn=x=D%~!z>e_CgL8#EVTI}HXL9NfG9rRk9tm`mOtJ8{ z#lO(yn9Q(&b-i65JStzR4fKx|!DpnnH&5+sIAKkfY zr6Ub?Wj?rZWi0L;M#I@%{B)4R^1-vAwaA7%nLu!`>gWs!u4D!)YRk4)^}gLJ7oY{k zX#-g)yWd+}G*XaYuJ`Ih7J4Y_t8XZYU~>WgD_;WiUu*nRZOJ%m`bYCf4f1mZvDVwh z9lwkYKXQbNAFh1EQ#HxVWAGMOQEI77qVHafKE7+F+|&DZ6^&LDHQx;Jsy5ziFKQQv zJ52-hWzWKh@e7AAe7-}lYTW=xJmo)#@VF&5U*J6YFTbt9_57-#HH0OR0pgkJ74u&4!=LU)yRSU-zv#*xMu?!|W5;*XE;}#&3&I!Ki)T}sK|52_S2JNcvJ1WP4vMrs)Fk(}?)4X>r*z%t%Qeo%@1K1fM>82=*=tQp z*JhY))k2Jm+GB6M_!1@t+u%a8U>@0LTPF!3(PWKNU+PuShA)m{=e{9#4>t;@Bn=*c*bS zXSz;w>#1Y)!jw7Z@n(8;zI%+Xp}RMr1Dw|E^rX0_AXPhFlnQ)^oQWb-3f4u#MSA%d zb7V^RG>!pWP55NA!$L#EqJB@Y#&Y~PMcH1~qoF-H-45)u!b8i585(Hs@ZCJgcdI4q zAN`+EBUcdzLNRsO?s=iOmDKtL_TvjoV?L`~S*(@G$hTqZo~PV%mRk>W4rkI*WWfq8 z5|hEyeW6ipR!-lXSn=#-zx-oYuv16XpXk(PJ1qWal&57Bc7B8NAe!V6p9z$l|2TEr zBqHDCki5pwIIf^LPBON(13a8D=f8eL)|%elY<3_y2VB%U`a4@>^Hr&k+s=3%{yM=TgK^oxHzm1q^&2K7v%VsXyVfhG2j}M zmF^68O>z`A6s))1-I804eAu);48J;jF>}1M!*@BvH)5Q2x3K)_1TCJx%EI=rB#-p- z$S6(=lui{thCH*u6&3V=`ac#x@Dc$Ns6=yspu0zi4!>uG$wOAv$a}*54b@k~N5kP{ zA>?nzTA>SU9=ft`|FZMj-(mpZ%L$WOL)v5&Fh_*p7`$M*Q89we{4QDlJGhxGx()~R)C%(3+~74V4CbMMY7 zwuf&7+oEsA5}!ZihL8Wk$FWI!OvS)EF-#AR$J;bk380zK$*nFwFxXxLlVXpD^NOzJ zLU_#uH?qQfItgFaqO6nj#K<2xUqoQ`puaevK!a6@t6ihA-u_otTC!$rdCNg0U(hr? zmeI?3JVxeA?Rvm1dHMq|xIleq;G6$?pvzBHn_-3SJO@G1=MjgBB1w8xt3$`n#dz^h zFC(oWBKG%d40*|Gno#Aj15fSZ5&!2LqwuyNBRk*U0eEW-63%HmV0UFbtibjM7*YY8 z$>t40KUybgKrhIxojCdS<-~{CtmDd@(?nYatkO3h8L@4=M*nlU1vEngjE8Z*%K3W& z7I9zmi8b5#88S-}b~rY7MT_0X%KtG}G}>G8*Zt6Bm08|K1*wf!)`fT*(+$$TUs=@# z&1dyMj}9PU@7mFs%+%-6*zgAsrd_VjVL)DgeYwwvv8BVQUw>Qpt50mFZk^h5k2+Tj zdDeHdbDj#=1V(^|MXdJ-_2*%Skc_Ta-tk;lga7i_UhyaZH0abfF!V6IzykmP)hnz3 zTm?6Wy;f>#`Wy>s<{}*2A46PfWM(a8#3J{TnRdXAKNbCa;?ZBEdY-IV+!Digg2{{3 z@2j14C?q*5=t_S&6tJ2OGB@_TBUMgWtyak4ilwTqe*;=Qr+*!80Oa1!M*#J=;!0OJ zxNLYQB+G&x7xCm%UqWq%ht6w5!%jo)wXru~Wgg*{0G&7$10t%R`!irj?@r96f)~#d z#F;N|O_O7ivIYF?kI4aqEH2{3BMvH?|KB|pEai#+!5C@67JTD$anApu_Eaj5rY^FO zTDeAxhQr?XGc_+{>XwZ|3sct`1yPXJ(x3uN_vc5`xd%rTIiyI!t4CJ)4uFQsIs7J; zSZ&d;4+O8E5dSJkqbw?T^S0hfG|7er=ypnkicL*S2{7U`ES|tVV=M9Y%p5fkJpVBb zlWrL334^2YpRs4*Ikm+5lwW^dpfazn-@10HoP<0B3hi z?R*>IHoZt<{o`5($M(>^!P1vDIDGqoUdFbPeIqPvD{`Oln~$eA4Ksg4GQNwVQIxjy zKg{nbtL|Y4CgMgFiW)Zo@P-((WkTUvE!Zr}wOmaH-~C`RhxW3Fk+B{;8I)vcss@7< z-mH#BvL}r-UALw2*6sej*371H`NC8Ttse{&G^)*QV&q}#Q<*(uq_}qD&SZ9d&WUzl z^h&UZ6?YVUQohE)%ge5T0FzVcDFfA zD<>eBQeT*#N><=zZ4C?{75zPLD7@zhcXv*;cX{^sNWc-Y!EUWzjr5u6c!l^1?ui{- zF5GnSp*}vE-w!r>3N%Gsy!~e{uu2-_L)~YdRc0Il4vw44*-;VKsV`_&%ezBY@MfI{BL+x2c>y2(ybA9U4h}+-&-EdK2UjH{?l{0`5_UL;v zyu>I%(SxEV&Gg4b>OYh1hn|km?Kroi?+@xxUJ5}Egd8MatYWo+dR%uKN!;l>-OtOk z@bRB@glc4I{-CZ(X!ofg?25e6GLm(G$8)xTuA^7th>up4V$Yu|;_R=pU3g~!=F$+0 z%}wbF6)f+c_rzDYBphS5r80>)Gs}1mTC9vLKl-Dlns4QKJ~g&=pH{4^_sLfBkZzOl zLUFH2!V0#3&~tdkz4YNCKfFi6h?{4e%#NfQzJMw`HWQ-z<6-wkpNt);YsY9p;`*M+ zYgUVKcYOs=|H$|us{z$5rt!)aDVS#ZVd8_1ti!|L86gC-O3c`@8XbURk)^JUi2`tr z|3%t!O86}$CY#-rl*LA;Rt+;Qd)A%RKeSlgpER(*tL6biJH5SKk@M7ta@!cr7aT@@ zK}0Q}$yJO>>*}eXIQ5=|&GQ!JNd{U_+{fQ)lQBTkd~ut6 zM!G^`jU#60ok9!1+OK+`!Hs{&31ujg$~(Ty^+@BZ$%%qwB&Y5yu#nlGTKSe0GM;18 zE7*xMS>d>WlnlPt5Tn*)PJ>F2Yk8CI_N3Wxh6RVra?Oq4{RBZ3{AV-#sX@=aurV8R zhe5tZbi_NUvA0Z8752&QuZc4#jb%U&l@LeW7tfiW^j24|sV7h`&>f_v5G`2J$Jzy3 z4G_5+3SOi3tEc1JX?S0_W~Z12L@?OR+L&Np_W4(*GnB2C?;vPzNpx{zpVR_!Z|G0 zm~6W!otMzl)_{r=vFZuSaEMUpsjgTx0~KWD9}d#;xTI|yPCFc^d14`S@$z1D%|sJL zyCBr-T^YMh+K{uBerK`SmwMTBT?VRWUIJZ7TRKaHGuj+M23d@pc3#`dGybasx;WPr7bKed9` z4b`m?kM=i{6Z~}huf3&K+cuMh#%P`YfP=w{ejfehOa5rGVs{2zB>UZx{6)sb2C>u7 zc;#nc&pd&6Rf|-W1x+^^?b4Ewth)bx=@}WU(_`Q?zwf$py%eaZu6qNJ#i80)m^sp` z?=_nx-Jjkp6WdVFxvZpUVBChv3xfemhg1oo2JESCd1## zX2^y}-gij*jNj=g8%8C3|9tnhjG%&6?ju=DWm-z^I;J2tlyQo1_Pzj=M^pp|9hnGY zJdBk@boUbxQ>;`Rr&6H^_n*hjVOPt)C&6LwEB>wOn=zBs@jJ&?#lp?H7g0yQ4tG+? zSo_M4blml-h5JtcQZ4Jxut5Pieajvd-Dl!iv!fRJLU>bxD~WD4mm^F5W5!X)0H($^ zNdDQ)z|elfa@|T4%|@DRx3-4IR#+wBZd6MRlV@+mkH3NRyKa%TTk~Ip`m!Nji2c~Y zH&|D~Q95;fb`3UylY5d%afQuV*IW5KY+zdegSJrr=>|NMwJCdevXB?l4UX7e=Z++e7l z?#jALPv<@U(Rx9YD$-I(oP#je^N2#Eo^(0D8i{6TdmyM9GYxwo81N~Z|KMd<;~+6t zCxxk}Egb4V$GYd6%L6FJ?r0bQyNu*pIpnSbQyLr`u*vDwOpP*c^^dE31E*gUg&`ip zNwfAeQ&>F52)5#h!4w5bZFRjdE2Cs(r-%Kfsi{K$i-b{ zt5hi$p0YXgP#)bjGLn|Up~BTAb6=sw6BkYAww(ONXsL(zUv1D0pPQ=m@}iY&-tLrg znW;mK%JOL4JP84S;In7uS#+Jkp-#JF9Ss`0{+MK2Oo`>+x0fXErCPuKE0^RzrolHN z*cZ`4tqfg!TL^>4geAo%3cuTxfv-n^Z@!*yKZ8ns)fWf&AsaMILrbQA)AMa$nUX>O zdE_1(_L{Wux$g8~%g$cJ1t%}4?&Z|kb7&Nqc{M$%*ebE^^Eyk?7Pd?0EmP6g`v@$k z{m2>@bG3udq&%*OALPNb>v$s^!ICZYSG=rUSw{b9a{C{g8nE?a)^sTA{zn zaib%P*UC-4Ka`RmqL6dZ7WfBGFTSYENvh61BFIWw=`NE_I(6}Qt^-U~SPLqfqYFWR)zje#;84*52&+ZGMp5&~w1o+`oLz(9o$N9KrQ z^AWe%gVgJwR1&bqsAGUk=QW?UU|UwI>!%|>4)L@aEQP_hL7)p;G5IAnJx?++v+Y>v z|6}!5!aiK?`wcv$+Sd1~gttF)|9}MJbjWyBbCQZU?;4mI&D>LB+MfJLf-e0iz&M$c zN9c$TmE#|Nqqx-D|Mz4E+;EPk)W_dPv&(;}!KiBvt^j=K?5i{vnxy;xo9mF|6@x$s}(tQGcxNKOAVrM%`F z$eFRBrsmG4?>`m`D!(Gtd#Iv=$hvD8so`!AHO=hwpV`)m#en5re^ZF~rr;H9_X`430S?56@zS7>^|_v*B5i6={XguuQ|K>WzKD9S%vNEMW#AB;&h0 z@{E)a#WJQda9TO?x9?%seS9reCy49+JzwLo&ba)a2~R&nSc}T@p)N6#{oH&dNl)`v z8DXB>0)&{3c2}Ov|0ysO-cnwkO~gDDPP+UWw|E1l_Jo`@shc>L;YUb!QOT@nu!ri@ z-fvA)0OI{Dbh_($oE)%Z$6@#vKbRX@Ja?a3;zL5pm4Gp>--=ac9kK@1Az(8;PpnYa z9+reKImhCEH2{vz@P_+*q3PKB?!*6S)Y!dw#CXacXG^k!^Ua?+2Y zPIGi}pqB2i6zv8P4cfB@d4gb3*56j!KU5gBF)Luda2`Ewjq(bueY_sv3)ztK;*VUsAf%#1fSfBYmssmx zRqxyn2i}1?p12@RK3&)?)U|K~E<&+=e+DwOih2LZMva!RCX*!e=aCLL))NPi`COG& z#-nZXvvfEUM9EhpaQb|wTxuy9ej}dP+-_)hWk(nvIISbXbgV4&Z9CbHbQEj9FLQ8W zOX75T5e_%TV_K`^;1jWe>hZR=O4kZ+N`lBO?4|= zbUnLyY;3Sk(qWY#W#gbCyhQRWHlvPnJ=0OkYtJmXg}UX`Osv+ZXFUGDpwNbF4z$M( zm)+#j*&?I9g)kqM@t7oj=gf4@plWq<%v>#?%;;rZ(NczcU_*6O2*SEsXzEXb84yPR zw!>BZT^ZMR`!eW<9vNfdf0~k?Y)EU4c{u(>*R>{6%JszxU2WxgC2G`=zB3I zil%~y9*pg{uZWRu=)~33lc2Fc|4oLoxt!ZNKGX`HzSRFfVGzAjMDev5S?)U#UPdAN zwcIUvwHKigr|YP7O^9+`Q`Q$<)41!1%Qb8T!IR!s_L;6!>>?9pLhE+P{uXg~56u4% z6g~o*$Z7X^9KUcliz3;&7VT`vzh~&lZxAxG5k~lK-~MxR+1^bj=ug!{6SE{4oE*ht zUv6zBFb5s#A;#-ro5Df`nL<*<#q5BJ&gF_zEQD^u zS~>b}BMJXqT=3XnfG$uf9Ct{}Q zL36>}F?d_Kwlu`iBmr2oMPk<%DdCy7!_K&8ueqKYGQ|!c_7;eqEk);IS!@EkdxyK& zcRwQyaTDak_jwah?ELHQvdtge78zbVMg{`jpjR)Vt9Vny_xWlv|SUhEaH! z2F5F*8Mi-fTR3w_slDl5meaX&6BARx$^JH=EF8Pgfdm)5gpvT&8j0+cmnTfnh#kK9 z2c)q8se1{qG7Lrti!fk9x+*`1+weZIT@v^d>*UUNb0h$Jc6*YdhaJ5(+6um^&|s4g zEGBhM6ZWd-mpo`wI@gV`ZmOE`=&NXK@EtR9;o$%>0XG!IQQ4VyAKZ3d83lfCrp! z!15QV*3K1Ep2m$`WrgEo#8;DnvRT3xYAJ{of)`+P|!KKf*WzIaAi)g)fO)s{Xk(G5Z8+r+Bm~{CXu*sL$ z0Qjx~ZUxhYTvExI16WBiG{^|gdip=5e>D&X)Kd`-G@#x%JQ5O~1tuB2bYgY(ca*Ol zY@VY5$QSFObt-1*(-*V>Qk_J`2aw%}(`K4;PJ*O>&XK_R`kd(nzG<>{^T{6xmJF~b zC{!>_WI>i*UwRBMPOz77cVd$h>5R>y8lECV+M_fU19F{RJ?~VEH{Y`8#$xd0Cl- zdv`{^GlwYfe`?WW1K+P}e&jLViH9}jFCB=y1^Bd?}5f+vtM((mb@0jwQ0ZUwGe|1qtxhR4P^vBzF!*&z(jG zM8qv@eF+}DhbzH%YdF8k8U(ganEy`U0!C%u^VTJ#y~G*Eumi)u)#PvnW%|fra2^FBMhJtPgc&(n`oMwu@t&a=w+B0tEUi@qY&5syuQ`2PVy@_uACUWLm zt<-05V~}>l8n-_zWRwd}er}Sy1GV;APgvX{rJHAw=%BW|UvxgQGZ`93tqldJ8OliB zttkEd(vQTc+PF@5G?;xbwu)vRcs9dgp z`dFtBctZ!$-}Rr0G3bvBu`tdR=!CN3fi+5$7#5`nygMqLjfVfI7_tsAW!%)qJZe|O z={y;JM8O4;_$(=R#rn;?8@isOFT#L79c3ol?k=D~=C(L7-glasn|l<}SkA;RUiO4) zCCIfcO~seZ*yY7klEe5{m$?CSv6j>6B(ASRE3Jv;uj>KwA&uhrpG7Xrw%tFGv=Qa= zwa@w6DolGzx^}+N>tNpq^B8<9B8kV}2l32r7l|JqqtMGvuCbci4}D$jVxV8|;rI_> zJj{LINLE2!sb)hYR*#y&)zZj-t|)GdFj{zZ@9}?;LlEm zyc;P0YNHqF&9oy=On5``HSh~=ct?xkfN!eS#H%ZKEjW#vgewV_=# z3Rw?jVYOXHm%wCny>KshM`^=@2(_n{ZMviFaps5_CyV1^v)i4f#Uh<-rtu-2TgO%T z_q~CCegVP-WjUug81*rIwv|unY_GXJ2D!1;yqE6D9kM?64|-9`wX;{jc&e_=)`$(m zeybmJuF?m@jl}P;oFafPeOqsC0uG$k#?0B7$33@LhOMQ z!#W}LYbv>g7<8e2;lb#b+Uc!^qf44Pvey&VKFZgF){BU|&ngo)hlHImrXDC$bp~K) zjDCd;N3boU(eLPs>((jHebuYZbwI5;&;WEgr1-!)BH-a89suXs4VS$S*9<%?P$>;52XurrFw$7}Fsl4YsWc2s3y$a?5G?l(6vuyqRdlRGv&ND|h3W1&(y~|(vN4e_AJvwADx|rd-IF1uLl&uoY z;<*%&*Ra{$U{Nort(+fbcYLUq={^ra;n+0|iTFQA(V!B|7zu5RW&F%S(1^K0V$Mh4 z7tx-!M=a2NmS}^Ehdr^`B3ggw$Y0t$Jz_x;}~->O4Y<8aK!87K*pePZ=on}H`e zvP6o!8U5zxrLs9u_B4GCXX+$ zNNUlT=q&3+|03H}uDHruTKa$99>*JnfhPS5UHj3MokaPZ!fEBCPWIn})U3XVWx~et zxZZ_hR?xb-=XdNo%}?`e=?Gb!EP0*juB`YXBD|V)#QXbqr?SrPBNjCBuG)~Npj=Ye zs%$Q1U;nBbjVzcCM_j~V_D4+J+f4Ju6wR|8X3nk9qBlEfKYu9~6-__5ht>cAcc`!g zet5UKJr6WMB1I$I+X#5|*mFV(XRMjX@?ouja|cm0BEe}-MkHNa67rx|0$<#( z9*j-%j%wnPUfDF}v5iUsxp>j`yx(P@(+0Qt2wV_ zzw=M7gRa-Ge0}@^a$NHik;mtms8{AlYSeyZ< z4dj6YveXqj91|dh=p)d<@YCR>Y(#Rlyv0(Du{Iyw zhtqio!oJ>r4_A3=AVb9}AQCwm*wxECSKunCnfP+=zHYnHzEws0NZ;5+>{;V@64%oX zYvZeUbK{Ns-gZ)rbjVSqjib*(?#?uyE_={b@26++>Gy;4ZYUqEpdO3<8xsHlDXw{d zb>9N;UnK0-m2Fi^0jPHy&qp(s^S8$so$LvFsK6rp&#iv3C+*3Y8-rU;%r~=?$qD)V z&MBfu=LoI9*}y(|V4C-?hQr`u|8nS5#Iog+E_sy;eu;HWCsEid^YSNC|NKgJn5hzD zGXy1t7vCD!|Iz>UI$qk8nOhZ8#3toqmSa@#(y$kn%Wyf!pnLffaTqrW1;Gks;P8;!-wcNhmi^Fg8 z*&aOK6e(X?{x)rI+WS7k#Edq(Kcb+^jHOY7B#Kt>fv4Tm8WDK_PLu3dXs$~x48xCf zLAcKgR=m?<2vdW@e{~4u&4c%QiS5Sj*?krFYN!@{aX(}7EjAFXGRF@{$_B2Yws#v{ znfsQL*}5V*T<=CQxB$RV)0PYCyKT)g1(*4)Gpnb{RmtK)1Uz;QIo9068o>7kfPtfu z5NLJJ&o&Kb!(-dH^3QhV6CB7QBx`?sZF|zy&=ZaJ-lLL4;Cd2f!w>hsxrm0IMQ>ce z00+#aGWyH~e&VumW6txa@M@&~h5y+GrsZ zJMC?eU+%KarhXlqwTz2CRt?`GMuI$fuXYo6T4lhO-`af8D4#MRr?A)h?nD2s zoOh4#lBT<8KlSw|yGOfN@y7=CcH%A{RR{CC&`sHh9{202{^8>L;-q)=aVwy9{C1^} z*8W=DSo{e|N+%`C%(+0{3BWz1>9v zVuTtx0}f~=vUa_T_}F?TNu=JsDs5!gF>K9D)x)*WdtugZ8XnKl^1)@E_E0+ud;Qi5 zMLZDJY0KrJ4}4$#LSrXkucH=Pk4@Ukp#_6yo?lfN7Sy%cvsP!hxsFc-18tMw5iq*h zkgRz;yXshBqBt+#u{NS8KGq0wJ2dpk&iEL^R)^_l*=ozlK4+CFNUZ8k>DD-WkJ2h1 zj>^snd~#v=B9x(Gf&kLsXL?LX!C}Pf+=T%~oZP5P6TXzF(y;@^%aU5^I?eTAAmt2Z z)7p?8{bmPQ)iOE+hhw-%Kvsss#1p|=z(@+xf-@#h8sCKBFS4f$TvR3jaC5;0xWTcKzp@4 z&d;m$FefWjn?sBOC|=%Iq|yjY5TpVJR|t~S)2`DUyfi1t-2D1bJ1?-JRR3$6BlQ%_ zN?I{8+=fx4eOCDwi--q$Eo+Bum7kh)Az(L5StO$9J@u|^{SF*OEs49 zAqQpomvgDbUAF?^9&1d;mf7NGaU{h@&EsrFhR^j+Z;^a;yl?l3iKx~cJ1 zb50f<6l}XJos+vz!OyLq+qQSDD_32S_ldBV z?N0vkh1H90=b0}z4^kcExW6P2R4|!;IcJDYV2OF^Hq}K6kfAO5>O?Q{`hf%XA>K;3 zm&h2g$o~5Sx(BFENhg2m0G&>|-Wey(O(Q3(I~A$%Q_&oyy>6(_FuTr;JOYUpEtH7n zq$*9cYBRKIG#PQqQwhGv`L!AzPz#d#~Y zB2A-Bn{9Gw7Y)=VP5hZRd$Ch@5k|m%V9`KfV!Q z9B)-o4Q?;0_pd(JR^F;#LZfow=hbkX!o@ac)aktNn>N}=n}<}pzpKr?&%Qzzjg7V3 zjOFTr6pN)4QI`S^I+;M^z9BcaTsuT$bDGzW&Kp6TK`hbQFe9Oav!-GFxYQN1>nlE9t!gDEgE9A%zn`$Z>e8I!ZcBv%1#Gu&BrAzUTy}Bm zZxC};z6w#*{#QTR3kmdUh7Kjh^5}e4ncSNfz@nuC_EXf>QeJaHToPztJ# zQTXXF{koO=UDxu|nnA}@AG5v8EFt36oil1Muq}s+JIt9_hS^KLz8!W$U zCQ=}Xn12`Q%Z<3>-3BsD+5Mi50+l+cr$-1E?Qp=%uBA^?tgb=1CmlYgsJ5n%t2~4j zt*W0W%Z*c4BL9f9!;se6Q`g zlXt7>V;JoW3^zLSq@jT`-GKL4yjsk4XgY!;#X4eXR{g7vnY8#~^z{Y4V;4=!D~-C* z(VM_ZjE3>o*?j-Q`{4VC!m+FpD1Inq1=)VF^`WWLXN@*Xb{*gMQbFTXy5Y<&}M{a{UcGj|)NL%4g zO1Og7*S`FsEiZI}HQ@~;xm48N5jJi5G#}X*-mF0xl&m!w<6fzbIjQ1sZj1bO>gb>| ztwI`c+-EcO7x}LawGj(l-G^pAROMV4W9d=5OcE}*^-L%>IXU*%lD@JfX6)@L^0H^x z0@)K%ij?;b_O3u|{R0j@V|VF9_EcA|1?>X(eMt)HgM{dqRv*YQ)54VtCx5XBUbInj zB#i%pmOv}#yJ)5avlo1ETaesk^>hm@kvM*@p@dc@fmZ7tHSooP*IYC{XhKpr)0#;^ z<@X>eOXI>rRt8upk?F4!E_XF9XKOChcCCzpG>BBB^{&5q^%5P4xkxy@)I78~R66PM zU4V0-@0?Q5tX8i;+G}bihM&_b6=%I&5G+1H{>$%P;fK z^dqq4BUFmtYUJ+Uo-JTviE(2M_*d&03Sf#ZF?TvP!a7txOFnY{&Y_1j6O%QLxyYGv zUcwX%TO<;OHys*g_J?M`PJ|5##T zm!3)85^KBtsR1tsjaFW`(^R)`I$Gmiu z-)&fnUKaeZ^06g}JAYPEt`V!=BKQs|8^P_sWncTyT!JLpGTX>uhj)Wyh8*!$j1>uCGT>Hyc0Kt29^5ygXPx~-vJCSeS5o+gXnS)i_#H8 zTaoK8+kIu+_okM)uiol~6aCAyEs&&2t{UrmVB_$@s8lm~Q zxLq43LUdciR;$lx1)7F{y}u?#zndwm2*iE<$(-GKX!s-bIoHiTljtr1k}GH@J=Q4F zftuA?t>B#mGN@byLsE2I&RWb^Hii4O*x&Iz8DzLJV3MH^3axIt4yWRWUu*i-eez0a z;Z(8-uZH-%nRrJEhr?ek3S`0C1+aUt4=h?2&xQ>+Os-~LweZR`BVQx@!-WYhW_~qd zer04}H!q|Zg*9}Ht|YyKy*L%BKj^Uk#8~zKT3Lsq!Jt%3#8qJA4^+= zCDXlse$-mfPm-2T{t(@a7Ja%i1&n~qxdUzeH%e4mqiALJz_`nFK5x{rUYz}V{eoaDBr2&bF>n`ZG`M)!9VFJzL^r8H5^Nta!AZONbm+zdAiAI)2Gh z-j{bKCk7G@uIr97_~PIY!cH2@BUoD~WJisc=l^p2_e?ZnWqm3>-DKR`yJ~Le=-_rz z#b9OA0Q!vmCwuQK1aFJNi01nlM!3fAs6QH!_k0R|uKFmS(2~9BJePZV+`rdxQ<4+{ zL;`9f(dEq4U$*zF9${&TsY+7Ldgwaa=X0@4vg_!CW@A{8L zP8K0ppydRFj54pl-qkqbM<0v5O#rWZ0^2Htl^I(54uH2_tluHb8aO@M!D+2E_U6i# z*VdA>HrV&Z<~S>tIhW!WVq0%q%ZG~<_!9>>&>xO;OxWJPao$nCpXi%!{k-U9mwPgv zboQ1?57$r2h9$pE@ZNMYaXY?}{^V?9*o_kd+<&c%`SLTai%oH)3Y?L)Lbadd{yQD5 zx3+@pCuacs3T1=n)#tZAC%Hs?t(xRx6A3P58>tTOkJ=W!(=dKHq9T-G3D3uOV{i);eE*$UEWgyEF z1yhd@^jAVVgd=m&BIq2~3WE&Ou;pCP4X*KzKKrKOte$JxgE>CwQ zw6&k}PZ2`rE?=eRh(PGtuIsjQn2EeprxE}PJhffq5iR~yaS=lqRsSbZMQF#KfxNw z@gEAE=nQwB(es#1%IB>-{m9{!@sR!v)Qx46V>NuH?HO`yk`Jf$C#Rn5HZDEfOiJHO z>e(NB^+{gi+k?FQvngm8$)~9>E@#LlhdIfzcBc)^{thv5E2TK<1ctJl2pHC(=Tr0V zpTAXDVhs=d<*8tiZROTA?a<4%SCX7!|2rbcx$_Amj3p&3In$-hY4vXPh}owIg}nE9 zFShM`+HXxikHdbsq1==Zc3n^M>)GQNA7&arwOX{Yh zH#YlX4p)mj&P$eVYy!N$0{I6MDYXU`GljzjVH1In-)XVvnS#)TkmQo`d#E+T@w$-B z%+24-c>I$**+fWbxJ%$u%kld(QgBEseL#B_2$8vfWmS1#L!K<_%>9Y$rYO9-Gb=f z4=Iv;=-6V|hYBX-k8mgkAD)@%AXG~}yYs1lbV8UKfJtao1u3x;ev|cK#E?MD>zN<> z3ww>X>0F7Mfl_ws6Q@|y`nAk*d5GFjBYCC|1bNzsAwQCTUjYgSQ^;Ma={lC|$BHv_ z)x@og1xXw|4f|G@SGkj8(ZSp3gni|EwOK8#(gY3| zU3~8$7tk@85}-!Vu8~ZdOBHOlo$v~_C!FSr*ZOFUoeb-lP`k$8J755napNuidw8sC z!9%u8noXjtQT1NTr7j(kL&%z0qh5bMXbW=@RMfLq_S#lJ$q3L*wO87w{<)8AxZpn< zJv{B_JJ(!K$OzvSynu0{PBXfd2kt!Z3t12w3T_ejoW7xPtGtUBWvoyfM|VbFN0xkr zxk-={W=axD^VH5RBAYO9$(33KvN!4v;fEskq22TPlVXHmf_Lxl#|NNMDR0w9yqjUr z1>r_B1h@As)5d3!$x@=)TlF39wiK+6F1nUx+CfY~%cXTUTzwz6?$u<1PH!Ty3ymV+ zRfE|wx;1tOP$ntzWyY*y7Zi42A0&ro#u_gZ%9YE}J0~COIZP}gaeq1yKkMI|_*yj3E8v68Jkfc==UDvVzLE*s(hH5Nl3UvIU$i0{UpIP% zwDlw@sNe~%Shz&K@sJ@5JgcCfxH>(&d!(a;vGhI7se@^AV-bG_<}Bz7-@RxrB(wq_ zY%dltew-Ail|_oou=}}#dAw+XbH>7#JGTdRfgiB*D2KHnlw6vCq-I4!Y}8#HOhCpI zgY`WuLsZ%(0-%_e5zdJ0wHInmN=E7<RAu*ckHA&(l_}*;xr=6tMVTZ%relIv zeRnq9x40&PFV}B}+SiPCsvJGLSerQTymz#y%QH~>0r_GAKsqqC>WccE`rcz@<#O(l zRkxNJPz0o|IfNH+=!kXFbNouEI;ebd7{C-eorkWDJS zoeZZsBp9csT`smI8hhr{?ZPJuy0M7wqNF3OC3xEt5t~;7OB{Y%{EJxf%1gB#LB6}Z zvXTN#jwMpv+K92)c%M_=!m05)91=DW@lOnh)HTzhJ!1zN&1|SAv(~G5rG(ag6w(&w zg2|tg3+b7<*O$^!(|M$I45#(R!|#fSqf&&Ysp8@(G@(OteVCbLN%~-`bt2d|m=ojF zy@h$(*j_k}O@-GfBxl#T3>x|YN3vk8e#68t9-Jvc3JJ{IZ4w}p{>4-u@~Wz}ZV-S} zv`58nMJ0ESy(Pz^)MG@Lb#bQPkKravaOfxT)*)1pWMjTLNs@h+JL>(He9=RD={MV! zHz@#B7rS(P1U5OH-bve^OSTi%tLxm`q|?vhD{DJm>Bm4Hbz{2G0)eLudc-fg<6hjc zx^gRCtC6O5=1a01IH+Dkt1Toj1GN~JwWLg`e7*%wr&0hD<#V^2LJWlzl%^>i59=^DOR(7XlJl*%=I%PxW`PKrg3 zy~nPOAiUam7mSFn!oltd4cjHliIC!mU*czLS}Aokd8r%pZo~r@YS7qz8ua?Yw?p+q@?w-G^(TrSRpqW`9>6^*+Pmjsm>KOCVJ_5WYM ze-UM=-0yp>_poj7@7BOfb~=EZ?}_NnjBX!ko2DeXh1FWI-EGU6cvu$k{+jZ(#=SJz8wjUU?%x$CRj|f=+zb|#VC`@isgsIqe`mh4z@XKr=7H^zQpSoB3Oeo zt?>xSEOGjNBBUa5W$cgCe_8-vY$Fy1AM=-dywD6S|&3=?1waL9=%;&hOBO=dYGTCs`E{SGC2mdJ#iGK7Jhim zNKhAfTCvF!A?e^bk{CM1$rx)yTRm4YYwW8Ea#>PlE zfy6t4EWYm^(FFpLlLcAw2TNQ4?LIIoUO zitf=wVMRM+l}c}h0cq6$zVNa{`g#?s^Z>%2`Z0FH)Kb#mZ2u7SUVfgb+ek&z(U7-a zTQi;HUU=M&xwn(nwQl|fytA{lSmuN}KXq?reTP6QV*UmCp$Dnn{SklzwmaXmw6{~~ zC+uVui5)u4ZYsLjq}$7OE9RnOR^2`u0x|j2#KeaOU zM)=W>(3+1bl-PCYc~eK0{cL{ZVwHP57lcGt?!P7;WV**CH^X3LA*2Xp$A;Nu186cEZg<(Rh@~vE_LXJ0@WeO5CcNNniR}Zht7}t?EsQaXU>Cqi-NvM ziL4b?wqgk|0AypFmq$stax3#;^!6}LQ8SYlS$8q$8(c2QcaU|7H#@Xi6BN z_myXSGB(^R7yEu4bP%Zkcuq`_@N*Jphn{BNCOXn;gKz|X(+Qd6!)Zo17|P+!72etz zh$X!uQu0$nl7ekpzK;@i>C7nohNiOKooq)%`}>}2PSu7WcB2p`Uc&E*ZnO4tu|kI3{wU^V~~7p7uZ*x~e(6u4?>T{1H-D^%DDOpQ=$n22+UgOK_& zZNI;dd)0StjA8P0A5B6SOt-z-9-D~0ykccltvY%&`!Dq52oZUO$tu_s)WTl1GmSnd9^duab_|fh|QdvuOVJk^T zE(-KK%!$udo=1lsgmX#X)@c{>(_2)?8i`YApW3AJEI2l}w>bD%mr?QSF8Bf0<4d%% zO(#d0<-_S8bu8a}uc55{4O54^-zg78>~MmSj32O_d}c$yrpeu!2R=8DrHXwYJR!<$ z=5ARL$_*df+1HqgX#R_Swzj>wm*FO<^L7SL!HsK6gDtcSlRS|XDmEEWG#+Epuaf;2 zG8H%{p**`fsBwk;4pcr&cPZ5L%}?(JWJ4514$tj99p~+BTFKncK`?Mc5b3FqJ<7 z@(JPcPyGib3Xk-D@inPJ;FRjF980SQxzL}!IL8{Jq;S537tH11H^%O3$=Gk(9OSm% zA^H1kC26g#?ReN`yq({&f$|{i!E%Cy-thquR>h!gJ#rn$d%2puuh~4tm?lnM3sHS2 z@>s7O^j6!?DnWDA8+9q?VXwgRcLbp&^!!L4MxPl5u4BCr=4Kdv#Ovdpp#7Gosk z*g)>;edUVT{GG^KV0FXrN)Y$2@sHI}&(22`$du2!K8>od9XER0?BT9)M?!mzEK)ae z%g?Cf}73{t`(60lrvwdv7aIvmL`II;wM8Vk7SfCZdc-S$`_{ zhUjfxrHT5bIzsU_b!jNN9krIx|F6}8Em(I>yr`MmU{P4>`yAof2X@q>p zcOBq*mwEfC7I8DYw3z6%{T{5HaBV)yVjn?JWoK){G`kb+$n|ZAWQ1$4?TSrtd~MYb z4}KgZGBDqg;<#&*>^*{X#IBVv>V2M);-AP-%Tk;RB8&cF^k2dOR9*cma9)%qAMF=v z?Ih!aw?ivwAkzV=Z=qEb-Yt>)@5lu6UpP7swhui5E%cPKnI&~!{oOV^t4KJN zPWD)P*_u*PqWsl&{wvIzR%cl53`@=-?H@1zjK8;J3KeUdU!)-0DL?mAC_|*(HFr9_ z1Zc8To97c99`-r1$(*KKI4cqQJcggs;%tdTk;rY1P-|P#cYLov;1$7Vy3rEzGO#s@%XF5yiTi##arF(ya?4mmnrJe?OjPuTt6j{qo=k6!OTmy%&V`Lhic+-WL)1q%xaI>4V~oq zY%tVCptTylDD=7VHO`>%BY%QrV(E5uWs>n&bL8^77gp5>d}#7>nHwFKp%-L(#XPe8 z5c3bUXx5-mYSi{mVfbnT7rZu+mz{hZf5a(rnR`(LAW_+VF}MppgMX-Dbn6pdGoiLr>uQT+6iQg-$=YUP#=gbw=oa*WoX44 z$fO+a7)2*1x_tsf^i`hJIZs@k!LNYv;r8& zZb;y6n)9~`RC<9V+yt^_ec~i4P2uNHn%#nGgTScm5FpE52{h{Ldd(@EE85%9s>`Zj zf#yD4Ez`?S?8C!RzV3ni`8q$t8AX82h1KI>iR{u_esT*+=`?e4VkYz1o(6B;TH<<$ z_W;uwU<@cVM(`W`CU=iMXq;MI-yJ2HqBb#pn{yqz16pOwb^v_t$=xZe^kC$qGjphi zerL8+6d`^3AC-u($^0%EI)1sR>Df;ivzQBq+v}vqXXRQ5J~GE$3BJ}&;svZ$DM$(~=`DlpG{ zA|a7<_bkKQFRJ%BYEqI>|Aom%fH#^oh?TuVIol5X@$h))A zWdU;n;cSai2DAAmLcer1MCCYyK$!BrhdWP#D3j;ocn*zGu@ z%{azM>3s@A-=sXQ>WS4oL5x?wl$}c)M-wfdGc+U#)fiVv2AP^Mj~@| z%YYH+3$HmdtVwS)C_)*dO7$z`^<~Uh)0kswfEx4*_*~em1Aq;mhJE5z#pw zMaToZE{n%GZ;I}aJ#~nzMqR~&#Vny?)243wPetoK!*`9{`JfF86#lObl zCG(-HwHkS>=;P=F?X^rH>eUY5oBL5m)?q1zx{^svk<^$mDd!P!ogUUGu}*0%bkSyi zk*p{cF-=mv-ph%~(lvA>c!txm74?~g0~mruP*t}H2RNl=+A33(58&f3*W}Q6l4-_p zN!af@LMR!aTcO6Q$~?5Z-!Qe*eExKdz%Z?JXY3a#)O3hqfN+eXiLmy!bkbSYvv+Rz zE!GID%l5k6X7gbIJ!F~yMSJE2%XS^JNWhRqgz3ss{*UgbP{TU=5Y)UkpatINxqji5 z*lXmu&i2RFt*OI{yTUpf;HwwqDqsUMNd-w@uKKSV*LpQEK5e|-_)^!1O!y1KtzX6m zgXIs|6g$9xlcr5+TUY!69Fi&S@6+r=A>(zBGff$Z6n(_V)F>G~?1&u;@TK=%SJbqR z?TGzd{g}#bF*B4YpJR5BwV9txubGz)PMQyBgH%0&$$VIXFu+~v3y*k<9S`L zZd6X25?&nOQGMZ#K7M!(6B&m#xsl%;0f$llcXiA2pr($P@CS&Cu6NNT{q867?G1HX zqJKapq|WbDKH2%wc&l#NACqdY+aKprvPsE6i##h&Yr_?}JBkGSTtd)~D8!kG3t3xq zMAv!DCw=+ieh>^d$EGH5e|S7iVV1h}ta z12#}_DUTJ~OSzJpQL`@VGIZCUknR-2J`id*G6KZz(h<}^J~w`~rru+Ro2xets3xag z+O;?^e>*JPI*i z4yAC|)}TRA6S@eAa``>uM_B!JoVDR%7&kC98%uTCo$JHHw%}h{iGPdFgO+cDXt+j^ zWMXV&&(a(~0Yq3`e*BI4tVa3^RY2|YkI4OLrK7BkrdPEB(De)Za{zr!2h(!k!x?K6 zS9qJuee};dSG_o-W%Kq;JlCu2eS(1y+dhx)>cIL!A0$TIR(O}0B*WGK`k)GqZ)-N@ z&f;C$o>xld+0m)HBb1ArmhO|#B7rPk`%%-+vW5V9Z*Q4$j8ndxr&|0wfJB4n_s)(Eo&ZT|S?NTyOt_Ov0?su^zIO_Esg5lBFSTGv zzj9T-&xQa<=NBJB{K)4R=3-S|m#yM!m;4OXL@arjb$a}};ESw>rg~p2>V#!;=VJ8u(HY%zaPJ2F}%*Ib7Q??c|xzVLH5nzh^7zx z6Ha8KNPP<2ep)5UL-Vd_IWW>teGEe_?XW&96eCZQ9STSV`T^na^;q?^PGkQ88 zljH7CJ?QUXA8MrU7k7Z)G9bImQ1@+IGC=|Ke&PE+ZhokGB^H&w{yU@eMz^Pz0vTH+ zx$xWZ;1GMrbIoEK;0VV_HZ2I`I}zH(mkx7lIOjq?+ly#6Aj9J7u{f`0xV_2w`}2uc zmh+CPZle}UC|Qr4Hc#nV-X`#T2IF~9k;aaO0^09pLYH!qO>~6+tseKQ_bMW+u}$ZH z&3^2W0JO-Pm&D4c60eMu^{6Jh_;}kb?-%H%8)?#{dd|k>R`UgkrFMhXvK9xzQgYkI zcl?0Dqp96qmN(lVH{kj82=eQDcUrFol{>eOzU%+Tx7&f>@|3o}3X&XmNzEF6290*Q zjeZemLX|EIKrhyZ0r;1o82kGeb&q|!IeoiXT8s0Q;*cbaE(yzLPJnkO%thCCE;!q9 z=&?y+ly_r6h7QA@sjmHh4v*!`6z(7O*+DFd<2+q29L0Ox5Sezx1ob+4Wq3KdJXt?_ zD(c)6=KZIsWSriIT9~J|?#%J~j}1+YCGp8aMLUsMC?;t4wdb*bPNy5`a{WZjsUcfi ztui6DpR{Ivjf?okXI~5(;))Yb30Z}T&@>Boa2|NGgBSCRSH5z>l{{EtSFBMNl&2FW zxmj1p{Inwngw85YRAnisp+(DlBMsu182M(mNj&l=!mKj*z0kz1mWdCw`EE(l3)O$$ zotg-`{G}Y(C-&2oOo7APm|55YGE%+jHckZ_tr<%=LmVI|%t;4^q)j93cKf z!1z=TGn{0gDQ_A6##Q*ul=#1A7v#cu+xla*3v`3wsr-!?2v=Vd=Af9fyiB1A8mNjh|f)dcE%PyzcZ4c zY0ee{4ptzXsWdJ&w*r#?IqiBcMQmLmZJ*ioiGwX5Kk~ebSR`MFU4l%Ue4dG1b!}?U zSw}Sg)AB}3X_rT%HkCI$y&5MHnX-U{1W#0^i?fE^_gO5DK>Oiv^ec;N=l78+MhZFV zm@iqG|GJqu`3{EORH6P@d~rjWo6Leqi$WokSyMxI9cs|N(6E>9b`{w3$?)ky+X8geOxWk3j+3SGFYqGI3WNnCmXo$W6tU-EkXPK_ft1QCfw6loDu8zwuwEx5#_ zy!I2F6|9DJn?{GnW@Nr^zzsPi{HOxcTo`;I%6pWVP67K4+V;Jza^ChH^>!_%Oc#4) zKx9G3d~0c6!#d1dyV*sN&cy1@4-jWBcrM))ri}shZ(WWgE%3#anK+Ujp}xwHU_yQfQUGxpP1U2?U;Y6%o8| z573K#ria~hN@P1pMLQ=RCZZ1N^g5)8&4$^WLJ)^TulL>-sqziIS*mYE=7G3Vzohc1 z;S8*>#GWy9+W6urv6W4uy;Y-J75N#H3wlsK3e2i1+x00&FlzIyi})I-Wl=o5nZHgx z#&H-qc39M;uY=r&r5%L`v01eQ)Bp{IIY!X}nDg)2K5yfK^D~Ynci%NzKMw|Qev-;I zk5Yyti@#{x;5uVb9I3n5dBA(W#OfK&Vz`RXT1QY(3iu|3r|{be?^=x>u=c_vbRZ_J z<)o5Ly62%Ty12lhf%PisV}znmKwoJ*zT|STg8NfiH?Xb4&pWT0hG*?M zRlwaot62b6;NE>QF@MI3>X1UVIa3i%$IjJ&6$-t4esh>Q%P#Y2#|Q}m_Gr{C}vhj@>7{=M;VpL6vqB!_5#NG&T~4}tLZ2CK5dyH@%=)AH*RZ^g7V>+yd6 zYQB&h$%|aUQIuKRnuDP}W^+DE09|UZFO^~26z5y3Bc%VH*n6DX`M_L%{^bZi5046$ z#WB&)?93SC^^_Mo7_fj=h!JjZ&zL zzNX)E86Bq%OqWlg-&JHqPxJa}4_AJ(XdTmgLt6FS-LNYRg;G#zMY`8v3Sqk?(mdXO{U7 z%z5vW(pvB98q;I$A!~JlT2gyF$<6#fb*%3A+`!6*8BN~&*{r*eI~Hq|_$%#4GU{cn zG3>5NR)W{!5m?jEhe<_HM+M$xy6<8WjvSboC^H_YtHok5nA8gk@}HXjSbsqP_eq44 zJGt)cgWHm+XI&g#iF3+7NMh@(aZvDhv8gE42{BYO$wC2nev6khLzA@BlC6G&rP~5*#cB+ zma4&~(tV50lisQmcNHdDu!Aw}_G~zBxg#-7gU|hLn--H#p{UC>ZuW_BIHDU9`(l)Y zzn`@8cI470h6LRimn`ZU6OKI01iU zMEfP0BN`&>J<>R&Ygr6)Y4ff&2(&UnP6YO*PjL?LFPGrNU_2dG;xsY5%N<6~3Sk5O zg^2}i53Ya8rv29NZ9{xDk!z%0yS=O^okx#v1AKGLT zKdK!xImkzXInK|LRTXUwl|(OGayu{6)P_4!ay_^+V$4389RT_(fZ8~klW}T^f`YTaov*xC<`@3klzkjkB^6-7RkIApIE#c6A_$LAhccYz* z4gR`(li68qNiP)lY=4eji&YneLzR~%1IfD(4G8Ksig^VS>Yq3?tV{OUI$Mjp9_Dz8 z;i9b~7i>p!kg*YccH%>Zq|fQ0!3CfF;zNX0lZBv>j@MNQ^S|kFJKwXG{0O!G_?En^ zda`eEQ=cA~qbuFSWE;;952;P_IP_f~#M2R@I)lTEMR_N=k_Y@pC0`;moYUMlgpx=% zXSf+HS^i$L4S&SGGQAJhagnDuTw`kSO+Fs%J=iT}T=1BF)#J7(p_KO2AeGTsqN&{_I}P@54kuv?URAccHQ`0S>qLgVjW zrT=|uUi*{Qp$g8V{RxSK#~5qjxkiuff*&(C=DHi%vxs99cMXZF#_lz&m$uMcIv_3y$tKjm0u*~s4>0M4s@Fy^|?#7j$5cm8Hddz^tYL+6(ZIwUuBov%Im@3a5C4rgh=str_t(;pAo z)T-^!SZQPSr7de$ehL&KS80_0vE{0yX)^#^A^NJH#zkz;f#kq`sEPtXJc>5dI$#Ix zzm%IC=dlpL!`R^~{~-&y)|Z4q=XvJtlT-BFVMNETW~kzlDS`R%e4(?P5%Qkns+yKM}}ePFE zzzYKw;oUWEf6Av`wg19Pjwb+Q!3_D%(^oRGTJW6fx;aL|cX#uzuBiED0yss3oLvx& z^z_|oez~Vq%wCC^+FUz8EC2s302&2eVj`4#U5Dh-l%5R#6RJ}pcYExV#Y~nZ#%X)P zU#^@-s(VRaZJQt=iU%KD*Y4UU_Nu`ji5lUr6el;D3&{$nUj85EfjTN(ZEhUk6WXB53)usOWhabD}R(&a|1&I?LE zG%Lab>~aczmvq2`J;2}|uo*s=g$<(Zeu`F(Jlb^+Pb7JyZ}wlE^4H%X7*HJ6sog`S zA82?0>B~-j2G}h`V!5wUL`KQCo|bnOJ#TF4*Zj5`-CmZ0aqTK_+Iak5e5RaZoqS9( zE+}0~Il>x)JMg(I8w(;uxeCZ{2X*(?1{BP!9uW|%oKAL#aay9q);*qx&ds@P=wiYTGfpWXZclDr*m=+z4J#Hhm8YLebAC${ z3xj=M2z;`w3u~}Ls;&xE)EcBXya`&`^uB^9vTHviFI4x=V|Gw-!ceHX)~=?v?W*sy zRy&+p*ubiiwJD_If2twCYpa?SvmC*Xnzk0vw7sJWH8v@;j4?IYiJ~d2PGvK3D%iDx zxlj&2jA=?c=^KO8h{oLAVk0(VBl+WrWTK~LuR z$hp;FbW#O#S4+x8q+62Hg;|AGjOSkKXbpTe@*0;*FVIAS5#dZ7jk?ss*6FsI)!99d z43U>>Z59?@hmQWQC_Eitr@bE>QwyeZb}{>!h#sjalCyo~5^WT|#z^Fp_&Q(pE;!88 zwLQQ_Vr>^4^7V}#%cM#qpPxk4USV9Fk>nxvyEBa{!7OjB&B$^V@Gh?#A2)^&H60wM z-(E$wFYT+beSBDdSFNt?o~_#rQBA;})0nhk$ET{Xx4mK)7KC2RlZ0~T1i9=w%|pXJ zcWIR7#9E{`qKCHeMk+P-$dzA2p&M%W#UB)B+LE5*Pf)vf@ zGQp$|83h}X0H5kZbhk&-0Q+A-?O>oAl(p9?%$-H zq7B(e2;i(V1zw=s6D6H92A9?y8n<;XYQ|sH7Mk~vB-edfum9F>bxJVdq)MF*!#L&t zLf=e%|3qHnP<7ptd}*Y$v&wWybr>?tQvMZOeal?o(3%?+(ZVmOFXYK;FBqQqQRkAFn6!^jv@s`#)W7X`U z!)j7jbZwQNL_PPScioE{A{S-&1x=$n3V&h4Srv5lGTtz&JJ_m$Lis~~%ejomfota` zG7PO6%yf{3wi7NpWU1Xh+36u*wO^8b#Yv~{?)MD-J;qM+MDeShXc^Dds8=I65Q`F| za&cK&fUW}-G=7@t60W=~=-9+h*Yb@uJ&Cwpa;|cGrP-WXv=V$40_BowT-Vr**Ikj; zLi3+%tou?vQorQt=H3&%;^Wk0w47?-tBrP@d(S@s;u6TczN)3s)PJ1&cyIO7lI1+h za=YBSPm3v8V>83b9W`bpGgCzdyTwHA;z~8hFlm*FSDU}1QF7Zdd8Z}OcIHun?0BJ0 z>PA|}bKN?r)Z+0!zRVz6X8YCpKAwVqL3-f)k-q`_$aMZ;B6(SFL!%EhPupmpo#sVe>7(>L;m(d=+ zH|Ypn`^E0|lL8HL6QZ<1uN$ixDhcLDhjM0^A*L_b#_g7_NPT#Rd5fJfN+POV|LhJD za4cP9JoOvLUDgQ;5|BnGa#Q~_W14)BN)iN}k?K^#$wwoWS~5kz5VpevuS>0ym4v4S zH#JY(dWgbou1sDDc2&Oglea~>sMW(G-&7dmIuX5_;icsf0xte$CyS#!{9ghK{OT5u z9unG;OI|M9IMQ0f`HMo2pHl6m6U``iyh&u)kQO2wl6^+eq`RcyQ=4XCxHy_c{gZ^z*wk#xql6#1(}O!^kiNxX@km zA5T4>s)3JLgC-2;CT*6(s~lyD6fFvKxON>yrPKMa;&4lr zvj3BM1PX=6Y+SY+eIM>_X&yTy1o*}eS4dq?xxi<7JLN`R^T6q;g!uTB6`{6*amB~* zCf{v5)zaoCApv+n+CQVd^IY`x6ni+tHD`6~?YFdiTJE};Rm1g>#PE!nm2c(Bybzpc z&SyWe(qwJ_#|z7k&|JH%*Dtc#)dp$hKUaF3OZza-zCNSzFkRMHjT#G`jqUYJ6{p)H z{h#oVhoa*rT?oifXW2Q zO4o;^mER=f%Yys+zN_^zr!==()(R%Ycq*GSvY4{vQCub8f4IKk7`wQwzmeEfGCkXn z0{RFp3UNt6nqk}fn*YX@EltJ`xlJUMcz2~-r$` zu!g?19W&>|?W?ztt)!wintgc9pk-}z?ZziXM~P97Jn3H78NViv9WL-!X$4!+wAalIA%zaRjH7@QrTqhoh{19I7(6PY-R6*V-qquIERB{AKN(`{BFwo z{rP@AfBgROczC$o_jO&b^?Z%%^)d+bePy#PEKL`}TCJ6kI3uG}m_#XX?XQo zJ0=SB^CKTfE6ZCa&bT)JfKBDoz(Nw_u)Af4%ea5Z-MYvBnfpau{p*=RTnm(D?!jc3 z&vFw{-xIHtwO(R4;hqX-<3b(2Dl;|5`a;&Cr4FJp?=F`Tb}_h1lY2%>@96n2q0(g$ zpTA*%ApKvUJWO4B3GPyL>;%Vi zjI$+?#gnBmF8rMF?pWapioR?+hZ6Can{PXea@%oKOu`IbcQR3fR|3~?_7fTm7J}dD zdh0Y8abq_b`rGVY{RBVhU6D;Cw?io(v}st`Kt$Xxn|1C-jgo9ebF9xs?5v`EqaVo7 zFRhFO#0DHK+MPQC{TD;hf^^U(LM7RJVFVIfxVPBLbQNDO{UcbDCm2Pp@9`af6KI}H zV>T0uRoa-$%OK-I>Cl4?@_=|Oh zzg*yZDEa&w3l?imJs(WUux$6DT8ev6;%6A;)K zOdr!LTRg`WmvW*JcU!pI@A0|J=&?2=aK}MQSyUY8vsm{pIf3zbPWwTIc>}S{mxz)j zx+W^y9P$=h(lq<;?NF)ys3vG?$v`CE8hF4=D}XCTEO2_edqfg9zleZPD}WpeUsK)I zpXxjCQG8<1ZChBeIdmI>EDukD@}P$B%f@0ItKzS=n##I6;7LjQ;+aGTosByI&mlD( z?+jT3D{&^q2VT*eKPJW+fwa?^o9=Rh#1LB4FuE*IvmkvquQ0l`73;Xjy5BGtiLVqU z&KzQH>O#K{(@|Ml=!t|NEoe}&n1Z`*u1cP^h3J5if_ojcVVznj0t(N~5i>nrJGe{2 zt1y>uYI5;jwNCaqSKJS70VG{TtUebBR^CkLzIhi+mwu zbGZTR_SIUkn#10qr7J%kW(x8qJFZeRn-L$~v-Edd(YH!y3`o9AxNY*E^I6RXDy$pb zvYrz(?Qw?LJ=I+AcGe1DX!>acW&=ekB|Pq`E5Isc$DbOp} z^X>(UGlB~vq$bnI%oxo@eo5sA&bq{{t^OVxC=)MWUCO%Ip(cD*)&UgYzi!@&o1uO1 z0>aDX(#vCdE&aB0GL5hTQwTCE+`BwfC1O$bnGnUu{*pEb8wNo^KD>9tTvkT-7b}?3 zloTxAHBI~~KLW<%vmh8~fNqn-6EB?GKmG6yrM*P1gC#A8-jzO>nrq5IRJY^ue_p~_ zv%zTr`{Ux#WaZU^dJG3uh($JjiSd1A7~6$*)G{*VLn8VhJHh%;#*@t$<4TiN;7GUc z^VAGqej6`sFz~FwdIdhB?5}9sw3uY7Zynhvutv4EzJ0Ed&~ZR0U|_EF|*7Cc}PK+*K`K~vv0RA)3s51<{Qppu1SxJCdz4Hv3d+f~YjcSCyo zTD)H$n!v*zyz2iYStv6C_CLwbi5gD$8T19x@=Ci`KnwEitl2ma8A1N0UR?HaWN!*N zzBkMB5Qf#fBDctV?EIcZtmcMtNbt#z3oGJL5>W)Ph{aReu(|2tumw)0Z@t<6)I;BV zQiv;#%Q8)NbeB|DZL$EVAVhBGzAB23XxiXMU0Husj;Sn#glf#%8~7*0*X)$J4~e}$ zs6P+b^#QRzpqnJF?;vgutCRCXkeJ0@-MzHz?vzu_hU#%N4~D%lZNO8JS7}32PVpbi zR#yMl{5G9=!Z-XEgE$g%PMgEV9yX;o$FO#xcdvATfva+}f5ZC?ZD&My7 z_4JJA|1sc4lhk$;YQ8}}YTLo%R`-^RZkcL#?FM{5jhmCu^ULkj1D%JaO~U(KWm5Q$ z<~y;YflLQ7pX|vF$$_k3TJOXLG-&4qE6ILn#XO&f3IX@*(fnyZ0bl?T1=Eb92eXohk zje}oFN}EonWe)6uouHKB-qFe6O-5D`C52R7r8;u6PDIomWz^;mFyD2`r3o1MFYGtGwUY!XYS@d|){Wz(cyAD_DfdRkF#zpg2uW^#zx#q?x z^Elg=_GPBzJ|gI3WLY=}O2VnOKjnq^tqcv5Iab|^tJ9JA@#10UyRzujsL813I@b?= zADW-61Qp3#ir@XZE3+p5YpjK>OiDLD#^;eDY8ZbH*-ix;^ntSom6!3SfH1A+~BiU1uVvnhK#8l(E%>T{Fd!~^!AkEB2o(?Y=BhH8D_m z9>7IDqF(G@{OUd1yOxxtxY2yUzC7_h1>JWw)0Dw~xNH1QZ$gnye~>%E%aX{lhScy( zUg~?)6aWmsGUvFz*#N2skTd77NaKQNc-MB4fX$F!=B(l-lBUZb$9o|CisUp0yO8tp z_}){W?TfTmiRy|bYnr0IFf&N2DDRaePQh)MhDF1#>Mk=wCLV>zWc#h_+7&sUVn0uUx)ohyP}mQ`C~5tYvIZPm-);Xb5VHs9)FU%0JsSK0N7Y{C^rRPr+Az6nVWwB|MNiB~yO#W-PKpp#K6(g9d>bEI{ZEE%SVS zeS7_e;_ctpooOYz3O)%TUdeY+ntgeoiATxIg&=q)>cSD!(wZ_&Q+uX)b*syVq8h;* z9D&#wsWMge3NX~mzYl|tHi^LdhypS!QK?D7OdAnAwEr_P@Kr!`UH~Xg*Ret)K>Bk- znsERVhLNH4dTFQ+rF7MHFfns$@Kssk&({(7~ z5og-gZMa*rbytoy;x%(!hjg~|{zDiyn^mN)N5y7T^J#}k1GQFaV@9A$g8K?sJSt-ruhdjY@#wy8JKXqA{Eprnk?8&m2$xdF)vVk(P`0Revbwj zHhGuN0KOojL=Hjo)dwTye0Je$hYt5*JJ?UU%jRdQLwiaa)W1JntLKW!pc;d^j)bi^6M#VH2!9!;}iC1ID z3zw*X4#Dh&1?-xLs~s^*`=|6!VkOueOdWFO+Vp_k!P{yb<)}^dL?6vUb1na=&!TY8 zKL#aBdh3bF1pLJIk&A|Tw=>0%*H_j?>d_IQV zw#O~J=LqDINkYs~FRvFhnUMqiq!sj!-?3^3=CcM}A8Rmc>;H!CU^RQqt#G(nA@B3S zY_np^%@JHZwp`;<$6DOg{VvO^e z`5te)Hv4`82L9x3UbiCVwIGy4l@}5{n|YN#EB|Ubhg@%mL}vbT4sIH*qm*7Rnq&&Oyj5W!dKX zp|sXiOsX+)n%0t;E=p?sq{;6tvx{5SZ^=v43M_MF?+l@tX~lsVfnn43SC01k?8brI zigooRlz{s+lYoj$s--y5rO(6YI=tstpjcG3PcuFlYB~@t8@<*7eVQC7-MIeS&#~zo zhI)hMcp4p_3F}eX2=k5lgF`&bMIHgZk@OKSjAP-Y+s!Bm_RWxP99Pl>yk&x-!fOhd z-n`A1SzC43ae7yzBttQHj!#KnBVf%;Qgm`orIdM=J+3uO+I4!*_Y2*6hyAP8DPS#? zIta%`n34>Y4Mxm8KAncorE^BKt_`(d7P zWKj_%yC{7_^uz4*h16fWHA{bYTO~;8S`*V@!OW_Z9naqyC^&DzQ%4 zZq~l*xYDzD>Iz^i3uPx85Bk~MR;$39(el3lN%s^WWz|16KKE7VLo`WbcXm^(aH9{L zv{mQWDiD95nor*B3aVDbiMI3pp5m!AmN84q#+Xm-RP7|`zoC&>N zCC9lLj%ii|;T6(PbdKHtS*>Zkl*7TQ&um2Kf}hlZEQEnq`}7_i6#fUM|I0+Dg%Iez zW|*bNVl9B6Md%xZ1w<-n$iF)Tx#`X((^;+YlKK^UI&UYxrLg83PO?rqUl@pNyz=MxkhiH92{)o;KR)|!={+<6Ya}ODbFaNV zmR8xL3G(veK5Qh_W(Tap^k&25(nf>7>6X9c2f*>k(gEcdwf@^Dmym1A7;=k30Jk8U7 zy?(t)K ziYs_~CXC|*3mZ%H{ut}r9%W9s?YmsnhAGx?tT{a%vCDw7rU(7@`9IO4yG`&yZMAbq zO_8{nlERO`KQuwff;Kd9@~}&WMM~NM>&D*++|F~?II&Jtls-5Kx$LoXR?YJt>j0_N zXae@&3$l~O*Ss(E1I6Rl`KL`yWr$Agh5gB9o?_TciT}(IWk`EB(C(sE)@;4F;Ln0e zS%3v$I`V-r73c91yU^gUM(cpQVL}PFY9AMG-uos+8UA}fMd0M2@*u8DMtLPWlc?>r zp=K3q2h~fHgh5?|QTt!R&oCbRgYu+CO3HxH`4&ZT ziyp|>?V7hO`>s%cQ@4OFX7&%}BdSmZl>q-WuW?=@IpG1J^{}T6R z948XVkSO0#6};KH(YvjJtQGc1%5*+%oV`-Q*iOy{0z6V+5KHvEqm?^l4QE$20LN_M zx=%&Gx$o%mnFI^wWBAy#BjTuh@!bjWtIsYukE@Q9`G~7=yqLFjN4SZQvf5Wz($aqe zDd#js#|AsQvZJUOWpbk$fw@x_qRlfUEdEC)c8x58-Hm{oT}8!J!?Dz?g>n=0bb`s1V|48^v^G&f9X3ZN7Ttt9>sdi(M*rV z=Ao$^E721mFMC`5BxS54w#SbPNf}7vo+)0;`dhT@YFU9yRNusH!;cjn|7nCj>#Pm{ z&Fu#E%S1)$JJWllya>F5Z3LPt9Z`O7mm4m%IO{IiIzTauM z?P@+rM)dmVw6WP<1e$C2wW7)%N-%u##CwZb)BMKo@(;nQ`vl$s@BdszJGYvEs;4BB z*_kD$q+(l0Q0#;f1J;X99uEX;*L{66gi+q7Qx<+R;9pbKZhYU6w#AO3vC8b|iqEsu zjF?X)XBJ1+3zUjU&6X$nagObP9pe??Vqm^5XL34J;5JBK-;H58TT-(nEa0sN1*goiA9kM|S zV!fmUxO^+l$+g_$Y?H4oI+dGqwY2CW-7`c$KL91nN+}7v(5%* zLiiWg;QBdgLzBT8n+jx7-_dy-_N;E>)EdB52u`5niVF)CHH~AGS6$mSR1;?+WIs4l zr!h<>Kq8BfHZ=n25QUReXIv^UH>)%YeKMnrkNV{mFy>VRbT(;xx%&g?;A`)cXt02; zlj%te5SFIpvtIfB=UULCQ(pS&oA3Ew{bU7=OVa+bL6dJl?jkx@b(KanoU-gTKO5&l zW)n%!yc4zeLWbQa@vgtv!iLO~8v|otg1z_V=-27Dc36nr2ko=}mrw$E*GrA0tC8l) z#B2FKCrO0%sYG9K3jpPxUSu5L26jl5y8qlIr$!twNV@dkLJ*Rw(52n9H3)IofT%k- z?O9ngeK1;896J*^6J58w=BF$}{FY%|?dxfSUKbIPR|VT93XkRg6E;l}&Ug}qatxAT zLSw+_Wo(3FN z1syIYo@^=yCNcnB$pDEVdHoK&TTnT+b@tZGJ3#S@OuWnPne6g%a!&NhT!}*5N%7uG zda0b0{A#=eeyBG%zg8zk)|h;RWs4_&a+(4rYy;;EUM<5;74XT`vRHqTxl0( z)QH1pIm zq7!(HPgqo8HDiO$NB&KT-VC3$&!DB2NZ#!Y5~_QwPFuOFww*A=v@zm+F!)&K1B^H8 z{`3hljH=kt79*{Ri1MT8$W=PfZa~hIl~WKZ53`wJ_fL)y=0~S(;dmmHv0=*92SrW0 zRmDnc!%A!HUXW#mwQs{LM7%19R^T|Y#7=#FOZ3QhfMtq_2|=yd34zO(eroWjzIPj( z%XEF+Jp$SrdT^U|>%`xUC~D-%|xgLCY#&@ zd-}|1HO!@1L@IBR%hQ_i+r4#G0wS!UMc8PA?nncm#AlP!WB$n9eKbwVx7C?PgCQ2z zWrKO6!ye8T#oz?**{DfZOlzPxn(T;%N?9bOOI+GEF&Xz89CJrD9k{-{Hj1R^!JHgp zAhy%WC+HLZ-Kdid4zond+Wg*>1w!%OMEG9fGp3PyXUrvk%3NNn!P2KK-aNR2O*pl< z{z=v$z40*OCJ&+dod9`C8WlsD0eglnJTQm6VVYHC$P%o*-f)N0Bu5K*8h`XFop|)X z+_XByf}<4z$&XNO^*uS-*ON1>9UEs-2uXo7bytapX>`8G%2}2xdcf5mrzZX>@!-8+KsaggBBdMTaR)bnvG@ge+i&b| z(YKEPXL>mipxgGt0AJk)PN)S5Jft@JpkFMs@-; z`*(JBCTs1coBo*q+vV349R3RMJsd`u@4KibE|oSKM%l_ch*7R2(n+P@_ou#ng$m{d z6Or-fHZNY3by~2$H=F(z^|LdAHP$T)>MBU(#)XSSrM+-w9dH#I5NGpbHNT_O5{Up8 z!{YB0!y5zq4l;taz^@_TN*;!eGJ$p0eT}QL)ewJZZAM#1*-dc9e0!LqsGCGj&!ORL zygbIb#rOHtGpJ&vQRSGNS9Py5d9QrDtyRVZrQw}QJ~L?eTHIudx23AcOugEKLb6g@ z(2!@ic;hPZX)@%|LmVEh3>nq3@fp>~=s>%fCCp6dng-d9u-+lO_?{DK)XiIX9sPjt zBJacC-0xnPY5HkW3VLr+HJY2-qY>ODdxc=e`b{9 z&zrCoW^0pOk!2J2yuL%aeXrG1&H9itcH;n#_x}wfI3ac9;piMizgntEOOi_SO8HSL zxcg5fF5VV7Ye=`8o$=l>B5BhIpn^*7c1D?|p&X#VF4BMbN-z_Wq(?H_{9S)AZi4TT zi&!_I_=nIL>K3c#ixMHn2!RH;MTsNX2QE^GgvxmfM+WU*cnczJS5T;D@zzJHi~i>Q1FHj zV=9gf2eK$~xi2f$TPq!85W^nd0yc3U`0)=((gSao)uFH4&$ML{e6B&-#HF)^3yNG7 zG|Hk(UXz3K7Sj`~ePZ6uG00u8?%!aQaZ`YZuK#!{VKS#0nTR@OllS~&Juo_xiS?r& zHj++#=UAo>4Yq!1;xf;esW7r$e+jn0>Ltm#SJpSWwCs_}Cn3Jwy;Y&zD=H#%VH@I1 z5k?qPbyGsTX8^-EG_J(h|3o)`Y2&gPa(@F%Zli62RDPnWhFj0E+~xc zis3+Sln$_ibovlFQLp!Jue*bR-Gnfc-}jDTpPo_;3>24TwDoSi67nu=;)T8IyeKgy zyrP^KO>+kYBERU7{~&*pDNc`sr&pb(rnlOIJ#wCOz=_?#J=~~+i&H(xmSwI%_p)`R zQLAM86Wx)K4>WrptAYY20C}kzW!}nguDqBU-TYbu6qv8l9QV8@>`&> zL#D}RJy~bjOh0dL3tnoP;l^1MqnSC`QOt&pvx6gQJSeqGwIya zr_b!c}ROvohF8UbgxGZ`*i{q1++c&9Y8Aj;*93K+M#^aq40#Q%SbG zS3WssZKB64^?-MWWHK0joz1#4!bUltr6$Rt^B^97mw3IRUrsPUWZP07;16ES+{p}# z=2NRQbzsem6$HdNARS62(pwGe7PKy;ym14ss+m2WG7~Qe$waDu_}&?odoS3Uxj{Pg z!uBnT+$iTd&heF-FtEZ!@lY8!J>geoa;Q}%lB5U;Ho;>qS_O3=9^)OaCjP{kcGv{~ zX-yAWz7JM#+lEaa@m?U%_^q%N3tE|1eP}2R(G>Hm@$##6>(G!?5D+-r@hn%tX&5(XO zKR!oIQ+7Z~b9ssAi8xG_o;wGbu5yH{0;yQ+{K1bUU~a@Xjk3Q0rEj^Qb zsp327XiO3sPnu`gF9E;U(=SoFs?DeSmino9`zVo1jZ_>R{6UrDm*+1FiH|#syl@^Z z2hYbCMVf@GSUSeew8*LOS(3T*-Yw?Ww^_c);Yy)?Cnjs;#ki)gqMLSsb;C#7c6sx~ z8OFCLm|4PQrc~E-N*r&3a;#ESKPJMi3a`38Q!QV9Ux=g2c`HHqZ;7X7MV|aJFwX|!tQ;#}QO5!W zS;-9tze;p*SpjMe1BJ1=aHAD)0v)>B;B=wS$m1}p_7ziEey4|9PQVq6yuGnhAg(lQ z={r0~^2jyxlQy-z6xVI)4U*?KS3mCCt(2-a(cNW~2^z|Mj;(Ek;WcipJ&CjRk-uos z(f-DAV{OERs?OE9BHSf48yDTNwP~Sb%@VyYr-&wR7T3m`&Kl3rKo9YA`?fTL)@(a3 zLnWuR^SZJnd`+FA4E|_hU{$xH+H@nL%e7$Q!mvthXJ%$t;2dcJ+c%r#PU#0&OS#AH zT&M(j_)cB_=Ig>qVY{fubu*p!3p07=Rga%tqtm!#!(^zN18AI5=d@@jiLtiB)Wwg_ zV~->uxZYKbpdF36#GQDqafbReM`x{-c!)r4nrYByM?+r+X&xTIx!sMqVB+v2+YL+nD)P54K8U&s4fZCq5I0n9(m#h$nw1_Cf8{DShsZV&*3)}*lg)2$?m1ht{|rRt;F` zlmcV%mk5>>t1RKl&-ikfM91FG9(;SXIOTAW+HpMYMXO|$<8-;LR&9W!5r!D(3{zq3 zRCC?$XRO&P)lu#Xje9>z`kWeeM^{71Meefo`8Wm!He$#{-doHo+yKyDe37qL@YiM!E`Zt2j9&;TO(zG#Ud7#oR=(X=vVnp_DDOm9{2jE#D73XzwL1cx z<*vI2v~H32pl<{&G*x{5{Q2#PCuTa^&B~;my(UR8*zt^O^Z?HF)H;3Z9sXN}pBeZE zSO@p$%&h&%IEM#Yi(X=u{Y%X1OG}nH_KJobhI}pRqSs2FH$t;*MP8ngheF1w%CpDp z*)d!=$bmeLL)a`cwW-f=JrFV>vaqo5@aI0VC2Ywrz}R^#UbtZqS1j*z`A#Rg+cLK4 zXj#7T)ZYL&ChjR`koJ4!)IvFqVYgKyX~-+LxJ@7B1o*cD7*?k;ajmrXSM`(x9lH-g zcO_TEscdy_q?1nk#8%;HTFI}d7aL4E(@Ia%Tj#d#feNhI&UVcoZfAyZsFe!;vJ*xCyirySVmo!zjc$6Xui^@6uWBe&q!y zAkdDe;K=$Wc9R4kdJ%+Hswpx1w#%BgOO!7k+4>-?e207YdEq6@pz)cZQG(Azt`zD zYcC=s=!18e^BkqA3SDUNZM|73dAvUU%(@x{+mkutQP6w8@Y#b?1jBrznNWx@xOqbF z{v6WlJ>{#iYYIh$g`dKXoj#O%Y+INR8HLN|r%~AzLA?&LIXkNhVZ1V-v^^>zMf$;s z^Ra91O50^|S5cnZJfAFKzKfn#T*^n5cKwkC$9U1c>x7nEeS z@Ie=9b<6c~6n~7@d*#UJTnNV{s!GescBdTwODzmluEbIcVNGlcz**4rlfIi`?&+^= zySWvTV>?gJV|!AS1I`E6OBnEg`z8_VT= zZX(>36J~2smUJ2EKC!k|Oomr0-+au9GpN&MjTGXml>Vd4JFX)Y`8%#-&^L0MACXhj zlPZN%IH_s1e9^{o8LD>{B#jn%t?^uQhF1zl2sLuNZH`c3s;lXa=AKrBZTQ}3t2CUbC!CE}!8?A2DRC`q>Gxj~c*-Y>ywnk;oe^`l6C~?? zbn^WKzq4L@VbAKW?{92kqHUDVpEBpzsc6IO#^n=<;2xWcTG?@*yF2>p6YG8j{tY>| zU4`Qhdz*a!OI9Y#7l%K34El=X4e!7M7R1a^nD{K_?KJbNX55Em**|h*kj_c_+t6*v znj~U0MY@h|eB8LJx;Rnq&Q`B2V z&e@Ui0}exyTxNgxr?^J4;p^s!WL)mz3D*>1z=8(+{R}J?}jcyV>rnJs5 z+{dq#WeIUZw=9gU{Ya>Yl+3iLv?8lcjlv(J#DD)za9pc6Uqo*wAFExZ{ZFPhD7{E7 zy3u(`d0-%GdWoyH?oV1eH?9n3Iy1~$JxX?k^hj8oC6g0ox-U71>Z}f^1KeM@8X{6n$VZ-0A|9#uysI(!uh%s?ZQO*`!Am0zk z5Uu>&*;Xc;MDB|8T2OYg6q4^@!O;*$TKZTYA{GDYL=^o7#k}n9kptk)za$K$BaF>e zALpZ|c}n^ghrFG{X(7g{658CheN!fMu|Hd0|5lz0EG+j*2n9p`3!2*&D{)(o^lRZ7tZWgWK`PT7EC#K_6QRpSmuswYB2NW;Ngh!1`lvng33=@1?$M?6>cp;jnw z`@?^yYfhNJ2Tqtvzq!>lG&Hm}F&dN~OJVl(WL;7zqXOx+`EM%9qD>gVuN@Qc zbnJ6H%vbBLPVi&;SH`z36w4a6zO2+xq(;mmoyFX^dOFK1gtCk~oy{qFwzfFchB_m% ziW90lA2cNcE$IXDJ4n{C`eujDf?_K z7C+YY4&TpRerr105(v?CR@pDtp)Tnv%Zf69(e?`IJk1iO|X+FtbuDp}Q@kh?C5`KNb^_5aE z9@(Dv(%$N4`EvOJ3WjH2nbZaI^82q430{@iIEE=vH{Qhx|r-<$>40HzJ z(|JQWBZj~ChCLk(+$PN^*QR71!H?R?y&=z|6HBl(>aeD*n$V3fjcxFlc$rOgYHUKB zh^_|Lk>dV>W;*^`C41FJQVnUO_y+{MiyAcP#tS%ZiD5qVyXG59>Y^w00Rbez4SLPCXs%2(Tgp^4#s z#V+#!WG(*Y5(rdV7~H|#STwTifAHbyS8f^yPr|(R*%iE9b`$Qq8VI{_80;ipsWE;u zr%Kj5r&<#1xL517e&)jDYXG0yDYQ>}bZQ$cx-astuEVQDjm^w-RdNLVma#{pqCubRkl3uHJC{QWU)jCBOIcv=@*G2EM0@tP#vcAMMh;B>^enaHJKEYbbcz5#CU zEl~Am$tvt@T~N(d6+aTKoHWCjV}=M1VE+pp&JA?P0%@Dqv75b}+~LDXVfZzTVgO$o zYoxIa%=~@CLII#W47FZx>P`aUB|+%>a(hbmC$w%1vjsFR9dOa59n_zkp5`|82u%7* z(ZBjjjBuSyU1aWR|6?~Ub&E#!*ZuAEDSv!FGXDGKfY9!m%JgUa`KJps$bZaZs_5PP zmS(a~Ty!a2w4Ud;|7!a`D<*04!fl!C%KLY{jnmp3Ga1kFz+|1RPP-uZB67(DBl6?y z6zE9@p_yjCry94bSV&QlY%yK`_g%L|J_T!WRlVe9cu4Tf_x$f)N`My~6tkeU|Ge*DkmsvxrWL+8b%TJvh4=!laxvQ1 zwfN72jOhe33Piq5bU&iJnnDvw&e`RULu+P19f26FVehzUtPDl`b=z~_16z9Ol<@iN z*<02iY(l;YeXzi>M0Q}4R<*cG|Cj%lcw9u2G%*@Y25TMfnrxtf7zrt^?;??Zp7}vv zN?_9SYgYR&Q_F_@upi6+xCRv0jgH-Bg3O8zSNv}Y)d*(w8q(yu{E0wY#H7k;>XsAV z6srpQObCI{9w`vT8a;4x`m@|cBa5Sh-LEcwtK(%ku)f4*EGQt~?(b=w9SQK`c>)30 zsqekiSAt$ILIX#QM0P2LC++TkkMs_|1)+ENc;MSVOGZ)WKCiQcMvlNUOU*vJ?uu3& z%zh$NY&d7fbLiDagG}v{l$88R;y>5<=ANYPOuF&i6jB+dNy8V+3Fo>kkEWDBf!R*^ zG_($or;N;Dx*mMRS%6^wAX_gS4~?QK*vz2hqx`GF|HuRIi9Xu&>};Kygt)O41CV%s zclW&;#}aH!Csjr((=}&)c)AiG7QFHrYaM!;W&fj^i5J~=Li_PKWSqd{f z=-IynYL)?2t1~oIQnAV=vB|yS=U#PRDNfOqTLN)MqAD#w0Ztr!@0!ky(SJL+!g-;8 zV4y(Idudgxz+8@E`?({~%mSA1*|Iaj1g8bF_*XfZ1Ip=W?2Y@EKgy{Yv{Xj&Ect|GT5Jr|Gzx*Rrad5jkYdZ^)M@SZl=OF6s;MGE~;NkF;4-bE?r` zVWNe7$EcRgw;a#xj`{q4wMRvko9LeM@$;Bw@4aTAqn*+pE>6Es*s8#lLre&P2dWS9 zjq8Id|Cdx~7ZcPZm5|N88Hf-PuNnM^nJYegAT+_JRH1Yj1W9LV*T~*rvdh^@zlfxJ zhu3*i|Rdg$c(UJrHln{ohdx?Sz@&ORff)}{j zb44IVL6{I<{XWIIxca>$na`YRLX892cRDeKO8w0r`D6;m0Fy*d=2GgjfoyT`@d00XbZt&eB^br|c2<=5 zgTGy3ND!F}ErU@AGl|PL*GB6&H2<+%XmUqj3|-3VH*C&JcH3gg34V6WJW{ixOr(TBzw0?_jt~M7md$6=ZB=WYh6ql?@aF{OTb5zVt%I7{VNTzr?!g{@*5q7OgRA*R} zj8IpBHkpBeVL0&h0FO&W$wy8ti)V~`k5>!$7luCA1_mna4mrsrQVcXEreslY49|u0 z9xCT|g$4KD6hM|Y*}V66n&`Nh?z{k5+NkN3S5exl*aT}sd}d-Y0XhGyD`Tq+JGa!g zLIOdumuBu&$*#|MM^L_aa~T{t({i|(3!MU7c7wzh2RQ$;^zkz9Ewj8l@X8>GY|~7ic+bN)(I3zm zo*)3jG7^$;u==}g+$%-rN|4dwB6zU+g|CT7h?`j7_V@M86K~rAdd&h!6pjR3>d&ge zhn%XOb>FN}pzF}#2N5p)jV}-P*7!`aTUW$&bUh_>TD|HzRwxFUC!JTDqnH1WD3pIlmG zZB*G=S=tZ7vP26`jb)rZ5@@~q(zE@FfsI|Z$CJIGw8oot_^qB{a7E|))x+)uDY=Wo zgc;k;s~Yn08pm-*LeOOLi2=7X{xcq+4B4~m=@94R#%jm>!1xUK4e^!bE$~dCmG)~^ zM~$8P0yi0g#1Bua35VQUbWeWUm-MlFBSUUdp1kk}+P~{0HXXs6`lh#1t3I&>u7HTa zR7JykUcfoB6UH#P$`5^<)i4Why~qdR*Bz7UMi}I4il@Ek@9q7*hD|nSSCY){svpEQ7^5U-yUio*PK-v<_pxRI zy8pNpb_S-6{cFaW#XyS|uuWQ~#E)tP{V#C?yu@z)ZDm(s@~o(Fu&n6Z000sBLj;@b z!G04LqlT4Uy1o#fulKMYv*o}oYLrt2VWE09wR}y=RlD2Lj_huuZ zCYEwxVe=Oqfr&5J<$Z;WD?D}fJ}95u-veeArA?sp=uKaoY-8_vde5}10{y#sWerZI z_ZwvnCm=@?s~=-U?rp0DS~pD;m6fc{<5`B|x1Hm(@@<;5Jb#?(-Mp(`_SB!}<@6Bx zPdDsOXCD17IePlLtm$aYS?{Fle(6y(1RMQo(C=t>%noQec7I9F7Y?6JjcLLcY<{2$ z;IBK{gI6dYe}WncEE1sEU^CdNi&!lhvu5@t$9&U!c1@d3#P z*%lT4i}YuFKtU+?Pn#n|AlFmycmd6&YjMXSVSo0X8Cjclii>HbxXxahc1j%|y_D|@ zx-DG21OWEGV=4Cf{3#D#?oFH{)B6^TL=WEPj^EG6vTRe=BoRrdTO|0L(x*B1V*mKA z_a5Gkqq~24*JZC)pS{lvJ83=P$btR3nus_FDsR_NN@e@KA6=QKak3&>?sbH~^sOJ_ zF?ML>Lzlfcz79L)lNGQ=IfKIf^SwT_ke%I{Kfg}O*fG*;Iz7McJG$gaftU9TM}jfy z`dgPNk1<=XNmq@3sNQzj+kp2fvVsKtHr4(44~;rz+|w^H4WBC6xTh8`$(oxE>zXok zn;VXIOZ2J&UQf#!nEBZ5)s8iYOfm0vw+K_ z6Y>aL|A^lfHwW&n+)@Sv$%*DtHU<2vkR@7Va|)3NaY{ot{{F`(8I-y!uh~9O@FW-8VBBLS+nyB&T$R7qSCvMI%7aaRu*wKIpR}T5@JcxX8Nwvt7^*Acn=+PjQ*^=z=rYG z*gLHm6wq6!xZ)G9+oHXFfdhNX6P@jq`kwcqX+LmRD(J|7IY+zmyPT9<=SEGI#>)I` zY_DO>bYdChk7}9P|cMc zptVu@G2KTJR>#3@>fv2rxA}U(NqTyYl&`)?ci0BOLWKAz&KTnVWADwwp>EswVMMly zvS&|Ok}b-T4tV{kyL@55%=^h7`I+zf}C*tW0 zfwW$}DbdcOpi!7BS8&zmz75MZ_%YHRrmrm-zFJd{(dgW0*7W1iUo)6PTaCmBUs);x3f_kBd(_E3TbeHPOd zWN(NmYe<&FS}yXA{QX)eD5@tAOvbx>fR}>40sg^2F%qe7Gwq@uh(XB9yCdU< zXxSxK5i1{J;c&RyQ>(+z!q>wKSnZOoBa{OuJcRDa3s5jKi`%q-`sZfMt*nONaWn2g zp|5T_!DbVu%GEnzCa3LWVPu4{3T<=+xWQEaIic$;>P1z?@t(@k3=|Rn);Og=makevpQ`9EF}IcUaMCN9 zS1c0CQ|VCZw&%W9oBB*o^yMc)^x1u`_6dDeU419{eE1UKJ?gCt-j>Cd%1o5idAT~H z>{zP=)gk6F7=46QA42XUo!A1;I%TWAMQyC<+M(@v3;zqY_tIz9aIao%4X2+=+fKi_ zRmS)gdSgr}P2B2oLZRzAWrA7S!m3s8M8ijOtbX7FmGp=V0g9#|O_7MpApi|bG)Z?n2&mk zeob`y;+nIX5JkRk&u*Pq|J?4zIX2%7mdFHz<+|i{sl?Axx>}9`%l)IHE@wglqto^z z{tba7@0tL#vi!@6g}M1(fdwye8eCV19fi-cmAT(SmduqI!2W?_ZzU)A#A z?O56mbH33&-~W2`@wVF zo#TtxM%>7P*~_Y@PZA^hi)=OdS)?l$1}|0+J(1aApOk*`pq6HM>y-rCXvbVnMn7cH zxw$fcw84I$BnhRTf1Wk10m_=N5{wy_%c6bzAg)@JqSwr~JB zOYLXqO?k{`=y9a}ojb8p4%fye4a%I(oQ-rvReElJ0Guu)jZgFoA2hK60Qt95#IKKn@+$|R5>XjAk{fm^mHR0<|~OblW#3QkHR7t zQL#(mfy5A16{+xD!27035BGkQO zO_{#xWJ%bx`b*8FoAQsCdu?j5J7yH03+1e~{7SR3JPJ!!IHzh^x~7Yhd28iVO2Wi*vlmfM{w+hRMfz|{*+D9kv4Eg~pM`lf zoDyApHe~RyY^a9j-oa4LP!i^#j=f9HYSN@^#-IImYkpy8K2b5dWFl6~Gay$j&|*!m z0B_2-vKKb9zaY)n`}i1cE(RlJoaF-#ZOvw=j3qL(AIG~-wq)Q~j!sk(%kFzvR6DUo zIk4%s8Yb?kj6 z?Ozg%lV2_d@WqMSCQ8XO+y-!H$`7cK;^+FQo}lAXvxvN9x5XX$UM0+2o~CH>`>Hnj z$?2^!vSyD4ZFyu6%?Y)9%iRVTfE}2C0rGG!J3pEJRz30~SE}HnLBzriRa533D}Hw^ z5YqFG;O4#9kQ8sCaG`3sr<5_pA9uO|^y(X=G0VZ#j{lz2=gw2LxmB)cW>gRIVVu#< za#VV)@(F#jY&9woFQidlR^T*emS)S}g^fpAa zV%SQ%8W~i|l^%;-Woqt5jA)(FPzs0IumwAfUq9LIpd8Q8q)UL6{mt-pbspI}^2o8% zB$zK^IK8lofASOKAAi$EdawmSc_!*ir zq&xZT`6*XNH!vtYBC`Zu+{^7o?9jgJf4099`0{TGj6r_ri!f z`?;=W8YNV$X4$H<2I%M0Z3*OYA}3_iT*3WiP6-p>D)DtQaG6ycQYL?4%snaQa(X>3 z4?ZsHHrEqGw>2?E%c3jbym`(DkJR+%6s99F9uM)=&+BXYiqB@!>S8i?MZx&k_ ziqJKTNkp?}KPbVpN$2Am|CesM!2rzel`NVG(KrwKpJqV-(g+Px)KWtp47P`QDje1#9OYr+RZvn_fQ4`G?;puO05tw_` zHeFuhe6m3{glmy|z8)DBh5QhtoMg_JrnqrW{%cl8Ssa2h%ppP$P8U3l2X9n#&4^(= z9=o?_tK}mxc=*NSVoZx>On62MO*5i0hK58%m&th(vNzAY%qalo#DC5`+Mv#o^Eu&m zKz(R3af3h*B3I`|LvgYdHW8%0LJ3@-Jr=AR+=x|K;~Y~+bPc0S>AAj>Oe0bvY#55U zfxq!64~~t2HzlsVw_qi`vbI@hyHz+VyWpz17Fkq&W)LfAgKU``(;rhZG?m}jS+9~W z+u5ASA1rg8B)!hGT0<$+0$L0wX4Abk)3tfb?KzS66DFWsFf_w?R*dHB;s=7C15EVT zAkp$a@+9v{PLI62F4$Cj2E$Of=r{WmHubbK>a)Y+7nv^8xhpTD%1@&UPhg!8vS8c2 zw)&CBKVmW^A$n z4m8|{+IUw9`q<)Fx#Wil<5z5cEXEV-^2F|I&e;AJH*xnQ@WatMT}`eO5*`^Dd6V$f za2%>?tYQ4onj#Bnhjc8I(F-K*=4^X3RiLj%?xfdN1{k7)lslrs2C}`c3C+&+7o}UB z$cW)aqE~US;A!F3;!TOPt0skNrgxSkJr2X`@|J+(G;4~L(WtgR<>OiK>j*AXU=f0z zVQVmE3D+91tjGv9V=`;} zW~bJ!n(@{1=r6HVg>M;RV!O?9Jm>Bsbv{Fq>LkjX=B^>ljZ|PQ7MWeR#z{;?jZFAA z#;5!qCDnm7qDV8N1_Q}np1cK9*fO#O;hYY~4m1{EF}7;bRq$ZkbE=ZCppzvZ!gbOS zE06H`B`qRthgS{9uxW8NUxrq*o%b>U^%13FhF*g+hEdy%p|~pzyTyGbRV%4N>d0h* z7J)ae?TJgDBR+vs%fM*|I|&!=OPU;cLbXVOkLL)Faqx}VYc&bDNO(_t^5G_ZD>L<| z(GI%U`iX~%N-o`68)`!L_MF0k4UyE=35^ql{_{>W=8XPlAT)jC_0rDsYFqClOcWG& zI2u+qV$i4k&%|rXoQZa}KGHx=yykg)4SOz4*|ZddIxj@j6Wy&^XiVTs(astt7bSCT z$3;gSdJuU79m+D1Sy2dw+hB@&#fPK-f(CXLjMfSV%}uiBkj51W!;zjRXgUgUGbO1y z=zCMVmt0C7<_98XoIu>8M#tIkMy*+RquqJrzrrJ~DLMY? zreB02Lb*l0C@XQI-m4(qEDcKi>G}Qs6^g~8)=%^(>GRXU29hdaI7Qx^aVj}JH9HQe zhr#!_soPIEs>S&YVOeZd~mjuGE_at)2sA!P|}-`_=8nDjYt+Kn{Gxg!!~ zBLrA;u|zm_^#(nVmLU%xkk}c$?T0SnCBocsq^N(qi; zB?E?S3@$f`$qcbFyOnJ}-xY1s;!f+s#B=`Pm?o^~!gcS5A<{2gSq9&)UYsf!w=J?+ zO>MlO6ZvTKETJav5__9NA}0Q<;lqZJON#O5ETt9V7(n{spc4uUgpZ+51WX63_i(#3kgKj~1C;oe6;r5b?8>oFt7SvE zo`w(GG7htsNr~9R*7LV5rS|Zl;Al9a>}`5BfJMd<`rzxrQkU?=H>CjPP6dk$+gJPh+?+Qf|%l1gR{A5|v7;g9QKrj-)$k`CpztH=O*m z{UGP=v7cq>6#8eTDT-{i!EQ`AkN{%LQ5YcPlUn{OCa%$w_N8kSB^}1ff6P4WgNm585CYyke4A?eWypB1Hyc>IvUfolAP>v=G z8!1kqVf7{Lh>k3=qkgHO43v+T$C$7Y)W@{Utl-(}mJRkJ{} zXI#;k4!cLbKdqk+KBDN&(vX5`D-S|+6G2H9K><0IJH`Rj$|q_#-;49S17CasCL6Yh z&w}nBVI1Vt^{$`SWmmtPKw+5?1BcyAOgPoUX~;ZwX-vF8B~8D`#vmu$+2!XCeyjl} zWmtcsAFWNMm=tX|Unr||B%4SuzOsEv7@6)MTw+)2e{`u3B>ce;4*^)a4969ogB4H< zP#}h8_nj%A*=)X8&pE7(OHCK2s^{s!h$2lHmE;j|7ax8pe9(J7Y=K!&I`r5+aOLMT zd9}_dOd3edzwB>x9{Zd(*Z6{q4|79i;?suX&UlEHT2wb^r8^30^3k9Q)(W{z--9oL z`J5mcU++7^J;Cv77s5Fe2zbJfre$ij4+6?WWK0s1h3X86txgCgGRPF5 zQH^lx%FnwlR3Rpf4ifGB@Pg8Lwx>gzbS&9*31m#QjQfBzYi`jGFCS!=9}<&o60g?P z)j6sN`SmAXZcM+ewiIRJ%8hIIR)vM4FSeJfc0|)q3~Q``rDc2wY=DvE>6OzzF)HwCG-ByMyBUN)<{6Kjgzjz zNcRGly{SvFZ)XS4DWqk3V_7I#9FLhx?PUG|9yJouTmE{RV{W7PAXLpt%Y0$^sq$cq2!+#zhn`Cw~7WN|mX#IWc`tfK8 zqjTV?<|PgqJX1k$R?$!&vIVnUU4(+Uf4|Zq7E`$A|ADK}D66-zl7&AH5#c2w2zmMa z?(7G^-K2Y5QX0koD1|_6!Pf1*>PQs7f0?I+9skK%QCZ6Btn)kB2g-wAksu@Q@`iQH zOG-Xs)rr6y;!_Nrx$D_w^LOT02AUx#r~Ze0y0Mh*H}*W8r2Oip1k^I?ZwEjkEk~m* z9@FBT;w%pE3l}jh5jF7yQ!AcTgDlt(-hirjncu;n_;-HQ^oCqnijuwrFkcxcAlzTC zMxR;&3~<_3^>{BZ)#K{qU3<=ikj#nZYofzfz+zWF0l1&U4|Ly04-~JKmSfRjONdR( z2B9)i2p_eD!T7ijg3BML+IM~hlSpZmrKCEYGFopuk?I%GoyA%z3%s}0zrdI+b3^qO z5U{jc)%psW(*e%82cf+bc~5?s#{F8?8~f+nk0-j(JX2FWUThr*jiJ{i*neLJK#gbH zOhz9_#aBwZ8S@&~D&6_>_@2W*w|#=lu785J&z{6K;xfGqU<%b9iGr7Gz1rX2Qg8Q; z?@l53BYJPLY83>s1>{>E3)=F*OXOH6WiBjjy!hw4etav1hJ)ed)x9%$(qgQNK!fm(YGNS=0gq^N55gf7r$O9?dm zfuLf{B4Bl$W(4r5s)-9ZO@$BpyD&!}kG|==^DZ}UjctMSh{Cz>gXJN+O(5s%g z@r8oAjgQEoEGGkBJ@ZhK`!~c_rkD7`zE=U&w2x7^3GwtGT_^JF;?aOvKOqkjFpGdD zdhg~hlJWQxNe_U8ESOQhHieh-gDYl&w!I{vs9RqVGguX*T5Tak`}iM#tsju8W0ed> z9#AKAuz1>IyQ0)$P@&IfwkhV621a%BT9SZ%;l_5=V7mt%$jQrTXaC%U<Ldj(A_z%K7QE>; zKR-Vn>JTYADT!#ZDV$^&GoI^7WNPbDYV= zfQtAh&s_WSEi^YJCc?4ia^)ne!rk7;edOuBbo*Ro;LvVuZB4B^?VbRwXX-6OZO_kE z`yA@USHR~6%f#t_lMT8)c)AcFLzRDHL)K++ z*m^0don4n%o4`B~pYo8o@yuK@amTTW?_TuGXRCvUfz_=xqiAVqd803{y>f!2_qf=5A)pN`t;I5DNtkOQ9KLQn%x(Lut&B)p5MUI) zh!gxm7lRz^NCFW*m69B1ENPDREmrelgb-y#8Q;#$_VLe3D?>H{Qlj!V7}Inmcu1pB zfWzT7ahvaE{@!$ZW-C&}N)|22&np2Ji4yJ%LV|LXCfuFS=j9NLa!<8 z`t|Epl>qE!bG$gOk_&VZNsyEm4eobz?E8+!H6a@Nn$W#1Pp~=U)$Tx|dH6&hv z;EtSNBK&gB!iL=28!b8TU%eH0 z9<1tj^~)z7<@W(JoC{<+PJGFS90ty0%)0D(lV4T9iDJ<8~{^vaay`6TC`l6Od zLwuuHK-8l{m^LNG@SBojM}a4(M*K2BAm4hGkfIVCyG*G5>w-ZcpUk8yV=X`^#K(}W zm!Brqn`F<)-dNy*Z@l&S$5MkX=A`yA(AXs)B$U3;6Ws4`W8X( z&5_x!u;hIO+ZMrGF0KN?Xy1BkurVFD0}V9 ztx0CZgdr5|bJqzGadBP7a`Ls6W0M(o-CnHIbTYyD!(8`!ihr%iVIBpjGbj;eCOqcr zxj9^c@4hBw_YfYh0s-Z{$wYUX(o@kvs<0r)75{VAV-m|8wa(0imQq2Q^#dPFlsk+o z@p0H!4IoH!e?1rdiFT$C)AUZZS?MvKPkHKi-y|w|9*_E@vh_!=wI#TjVx-Uxr@Zxj zIz;1_@R1LcCGDzky0ZjE`y)Zia}u`*(X6f-G58)U$*-}}N*E?xV0by*Xhy4rDG7zB zE=2_~u-fj93hkV7-`zsN1FEp^Y=8?|HX6X6hey|F_69+D*}^FUm)Z0}WUh`xtHtc% za4Uf@^C3&xaCE?E^2nZuybTAkCY5z`avz-ygvK(A;I%A8KCK#gLwUWgo%+bDYV{tT z0&T59fI==^j;ebgOWtnP5kp_QtOq%&)`%*6sGt4``QeGDn{@+SJu9gV<}eQpW9aBg zntEK{k&)}aX$RgL;8d8@r^q+E7*GwJnE;tUVs3_;SAfwo{^DeI#lK>{bS6*JYZEC_ zf=*ltje{! zL7eusS&VEc;biS{g%HhAlnlG?4P;x&wFTf{tT8=~ZXBN0Z zWnQv^);l`$rdwut9)hQ9mv(BY_7lt(215JD6t!9x7Z*MR@&Z?DAn-LD#|WXAxpGWfvtY^C z%UAh~ku_&~14nGj<_c#4*@l{xMnG%T%Jr&O+W>pC{C)6k@s}cPu5>)kz3q#KlZQ=5 zH}1o^u^QeTJaPv)=82!v+mArp?&PppX#99J?b|2<5}oX+)adIX5qE8F1SSi7atApV z65D`W71Xy|VzO?}9Q1)N^H7@3G3Kx?0kDR$t+qRB9csSAh+^7s^7SQY9x7hkO@cr1 z;_aW=!pkejmd^`!C}pJsJoN17~A3T0nbLJFPdsI42ABhFP4{d-?wQQqkMn5Nm(d zD_}Z|;oe2wY&7NUnLlMj>;^|==JRSqL|%nhKsB)^MK-NZ=EWLWPPq3_R!64CWLv_t zwQ(gP%GDU+=H);KCHC;=8W254GMrpvUxZlk{3*qI0$}`-r12*7DUW?Go(5(ckK-h- zLkTA>ZpKw%<9b)Sjo5|m?XGCjTxT-D z^=iRV9o>$*G&SUtBCW|LXi>iT9Si=!+>rGomz_T`J#e7!3#e`Pc_?n7cZxRV9>D&aOH>Qa}f=eG4|ah_Iv=AtFliYvfb{oRd;;}X=F{@ z2RHJ7H_3H;#*+#Cc*q@MvJDxs9-WiurKH8{Xi3=oJ-3!a!TL^6X{$dL6Q5nOGdrIM z=n}(W*~?9#a+{WgAVi%V4HTMpb*yZg1PMXtSpo;=vy|1cG*Y0wQSG_HM^P8;$LPBU z87>MLK85Oq^~h#o%*L_djBF2a8stcs$DfW_3QeO$4U8fusJWZcz;pFm@8;@^`yFrb z%BA3U4$!fhjD%P2n_8s!Q12vYbSn1YZ`C`9`z{M8j6{B5*B$-~3;GAts2&D1$+#W; z4$TzNpavO@yu&Q}ZSg-Ba!QjUZv+JYc}JNq-iqy+PKPHhk6WcDL~aitwjtA*E;*&& zGiD=lJnn6}otmfk2pWp6!58-OH)0?$km&z$_WZ#FJt?$sXN)nB)iQUcs8Im~t+%@s za9cp1V--lv$ufkxW6%Af9NFIqOCg1Zp$)0TsPeHhbEMywzn_VMk&i{K^G2Ik&TYl=EU~Id$zUUG03YtAW7rc1eCxD3fQNTywM!w_FPbF)) zN~FPPmnlfmMC%+C6{W2hGhO%aH5ly5_!pyqwkPg3BK5_8=AM?w!kS#d=Gs8IZFV)s z%X1Bn8cDU7NQZq-zd32R40v~lgaI)^-4H|7M%_aPPNo-XUm~i8HcP~c4uQ~*7Ua4T zMdzk57msKM+DYJmyf^0rZQdn^AYqR}`aVhti>b!Xze@+5x0+ z{nX)sW}M{vzeS=+3b_P&4>1$1e6=se@mRe#YR=$9pbNQ@SdRCKbOGA=UC(uqD2+;p zI;e@73MV{idLn}a>B{3Vkj6>3{z)Zs6y90*3*^vqZf^J}LsQ5sb zfn$eCZ>u;e-V@twBxk~HxKYDkF2948PXurW#C3q_{y$|Z~yM)5AjQesZ+J!b`9qLPWCK1=KDZwLZ zzVm@sCC=2997OHb0t!9p4dNArC3Ir4l_hneMFc5Jaz!%%3)a?ig9bBx4impl-n~!P z$nlw;Ot%tc+7e+eN((9C@S}V<`*ESrE@{<>O={A;XHVgig9x*bUydp@kq0|6Qb51c zmmh||Ey|Jk!$vlDP2~ZQ;z#yrTbof!AiQRUo5`RW%|NNx_9hj5O*FVhRzYX^7Yp|gwvuQ1^{@2Za zdkV}cAQt@}_wnEl7w~P=wGpG|4rK73L;SJOI>2V=-f&>~?~>;aHuQe+&G<9_{j2{I z(*FtRFRlF#pZ+JL|Noz)KIz*Cnk;|J_&FWg4SZ@Vz*M8n5~PU2w@>yI43_g)RQzS| zGF^7g%7#>DiQ7_Uosy>D{1$|Eja+QkYl_C6=(2N_Fd;uwA#fOGq7X(S98)^Sa2J-* z9!r^j4%gzRQ<&7m{B-V9RbZ2TPKDr$EkDCLZg-b;%J2$UvtYuOU*1imNc@)H^lijo zWS-5IUo_kXGdRB;-d{0wzm@K`p`p!u3zcyj)-*aM=Bl>aY;Hpy@B*ofGc=Ol5rL9) ztBcweN=3UHl{C@6U6XX0$5d*Trt7^P8fJ3-FN^V1iRm}tdBM!$X-jzE2*{1TSuS7! z(5;!StY!^4tQlyCF^cdMP-I=F%+Jq{h-yNk&QZz-z(6{8ALBKP7JtwaR(MF7@FH+# z^NHsfHap_pLrtrOcca2T8oC>tlzME_SHKs%wt)_{czTTW`=b-bj@6j9I8tG(Z-qeEd3(ELBfnxCxqGMWsU@2kg{vr zOBpHnEaA!RcBSl&{q&uDaw(~M_;&1dgiuS@8yCJ#Vb!70BgHB!qoa4v?$`jx)G0e2 zv0rfUz28|2DtvMV5X*OOuYZc_moB1*nI3mZfHeA+UFuMbPF@5IZqgw%=*_)o1wh-< zsdl+=pq>ARx8x&5X{WMK>A7{Yane0L03`3nlc-zhY6gx4ebD6Gqg(iGa_uts=zJ~a zu8moRMjfgv6~E7$r5xFZC%&8PbNXm&^a5L4C2kuz?S%sxY(uxWzkfLwrS#j7B z%wCzJ#knSY&}_Fjxk9}jX=G}U@Q0AJ=M(rDNv+ybTAt@{etK$QX?PuwuD5*}Q(^-U zv}?MD*JWt-0}Ekcuycn}9F=~`m_j}=;A*nlX;-F7H5?*#3#eYfg*>*U^+9(TF1f+3 zGWqjA#U3+B1G)4#ul{{R)6eA~B(XlH5VEz|U6mM6IVL^7{56)+6|5#}O5eDWA=(qb zV0^Iw96zQCoV!rOkmfUTbcbYqb55gZFJI&W-N)9BYCSqn|)wdX{DrqBoOlRQ#%+63ID z6O@gs5VuKuCJprSQdR@2U?BB#D~E{*DN5YeX0H;$M+FJtsykh+Pqrk31 zp7j0fXgk0$glwm})JOb4}cQDM`AgCXXvps_NFs91pNV}iU21pK3 z2Q+kD`yc_53vvx0xj`f?V1uIjR5_@&WaxpSAu-He88=hBkG`Zx8>o-M0Mdg4VE~_e z+{nWE!45&L+yMXM2kc^tmjzE76C10ZkH z2wMRnq;k0d*Azp7n5B5gp9!EK4R5u^hwzeXQ90P@)Q%*d_S2NFE9$mTeG)uOdE^OH}u$#7f-67u`R zQU^zDQl^3&LnogE*r*D?nmT@MxQpMj>A6}nr00>21U?23z6JJ4dHm7nfpmHjPmQZ9 zg!W5{TF^SWlW!g$BVS#i552rG`ElwfTh7*>X$5vddlqn2fGR9SC4^s}AOzavt;T<6 zOevrWwrl%#1OIifF+__l1KYQLF0}C&5#;0bp3pGFkxT77#ZgDMo?yF(gexlf&Z$x@ zzYvON-zW9?5v2eekB)Z;(5+>CvGayw<%ag0lENsFXcXTuhX%eM1Wt@_Z}*X<-mRve zGpW8pG8MzBJ6%so(>5IgE)*~nax?Fl>Se868q`z+eWTol%fH~Pdlo9moQU>;^te($ zO;(ZPyx5l6RW@wfXVnmvrmk#*xQ7G9xk$^(Jw%-FDX?x_kJn6pijEJI@{%ymo5}vt zM>Cxfpn~DghvX$tMc4sI8*kFa^`75pIPn(qt2Rd-3A|FGG(X`01 zY^@(9a5P9I$QXLb9}vPa#wZZucn9i99aMw}6HeKz91aDP@}dH4D~oBCYE%mVi{yB6 zp!=uv|BwP}4uu`A=8qFfhFsmNFDXr-#r?D-#`UPuNB3i4<&%35k7^g<#L|vk7de#X z0c$fY;|l^sIXA~5*y)N2^mn6dVu0SiI5n(JyIo%&h(PhQ>b2-_R=5UD|!B!`r9G`zdPAIpi;HI zR(Su2s^FNSV34%plH1s&%7yMxTWQ(78fLxF;+Q9My*zuH4_NwrpRJmVc*Bs}W>D=$ zRJGApvNhV^>2K;H(KW(;#+8^Tey=~v2dy+5$QwOpFddS``shrb#wS6_mjMD;Vl6~# zaBL3(2ego6_-|U+NJ2Ibsu3#2Hsf^y6{QzyWb5wwpBWRCdyV@0;sGjbLW(L#33GyP zGp&!_mtyN^C1Ks&<^5FR+jMV>`R~72??A%al4xasd)7f^0l&@8MB44+U2WI}ujIw+ zFQQ3v99D%n;o-!8CbTCg!UzGH-~}F|HeLg=sE+GAQb#e*E(?yWApp4tOE_th-KdQ1wb-2J1% zqkti4bf)zId`;R7!^Jg#w(=Z6Y=wLtQ?l7=LF^6C#|@7OUEhSx|CDK;*W{n)lCV2G zHrP5}CA-QEW)#M(n!V53uIA@p_D;v@9)OenA!av;)5Zgep~FAGXJQsbB@9 zEcG3W)=#SttwyLML*-_VB-_O5D{4;MEW7o$C*pAjublyaU)Ci!pA+ z;5h`lcW+ItinEv}$1He`@Y;FAPc=^q# z{9~l;j9@*3^>qFqHvHpTd;h6*4!pjn!TG0t|6I7g4-zbvTBYrOm`j7L${~_r% zczv#pQBofPfh@(9cf)Nao(F4&s<3a!Zt94)~fu0_}04)DDVEn&X z;z45d@6TH7lS2N#jhdGpq)uniW&d$}KmYK5jJWPrRk#yICYRD2hH2eOT&C{e*f6d= zb>m!wN|49h&+qRRcD?7e=~7DRjkb(AOA{Q?cRJPP>+MpVjx$}{AM4MeipkTyQb%1n ze&pWk6YOUwqMv0yOU@&EyfM5zjzV=uZAD8DFwL8~O?2z5x2ZY96CGgS;ynazE1p}y z8-UA*$*4L0%!~1`t@!M+rPc(j8jQ@K?!)IumLI2th+woS-7&O~i0bb)?6bRco+1zJetPMCI z3J`KzZwxEkbP7f8)BJ6jMu?LIiUIm6&B>&I1Oxu>xca_{Q|P83BXG{j$=dtAkN@#! zNeci29d;3PB3)SKqGk!+v7Bl^8M@C!Y_3d)A3nkuwl?Ix;19i_^}CS-;6^;tMtv|d zvVq-eAlZO%Jha*t+^&%y=u3KxC0h1kK%o7eIrN#QrzV)Ufi9@-P3F5A$K&$j8-oB( z?d0bywvlp!J$Q=@SHBEeRqy$XY#is<*<4?MA3l2WjjCOOCq3=cU)I^Dp6*%o0)TqO zx$RsIMQsFv3vvW;W8s>47r_UX^JdSSOwcg1SMm6tlxii75LF9R;p}5C-2dxN?p>8N zG-hK7jr{sf8wo(<{N^ES8tW)8FE?;|cqcyF5iMfc*`dmw0K)sogn?Im!#FGkIa(KZ zUEs?EfPS4*hs#wAj??cs3O;vEJTt6>9trY?u`r}q*b+N)E%v(w9QIl{5%P%Z3X38> zW{-pvJ-U-a{<~+9<9)mQS)Q<4m0?ZVo_I=XN6Rl%0tb-CJm_ zexjpv1R=(AK}@1~C!de-pyg-*wFd++|y-PE=0-0A9G+E76Y7!@tc=wOz?(KxN8pp|vW|W zJpQu&=DWmxTna4mhdlsvS}$j$_=E>wBz{~y_c})Nz=`oD@Hxrw?D*^DVF1hZY(DIO z=|5EW_C^P#L|=G^U=WAhJId$x%ct`8ciZ}}BonX+l^b_Ar!~D|w-;GH_0nj{h?Ldr z5tL3CLF?$OCR$>qs}E7lYTYw%pZln{=-m0{>hu@>oEHCFkD08ZPCPcU!1&YSw1<~T0+GEA&b`n*bt+~c~A_E2_;Wy4z5tM^%d zmt5+%tUiq6d^V)CvTn|FxQB@|Do=&PQvVi?1AreZk~L4eSLCO2q{36!1#FD*?c*n{YYLJTX#M zM=j9k7T1Xg|{2ZT7uUuBZY+*ZHOKH<%_3|zl(9Iv%L$rPXM+OTv(P?lNCMR6h9 zp`K87@>67xs|1oLf7QQ@eoD^=j8|E@VH?JukSrS$N=;XLSvNoU8Vb3&r{PJ*iKV)9 z(uYq#PaG%gkH!-#T}*A7++HiHYIP$i(tG_a2xzQKoC9E+zd+)J(Yebz1+HHdWTp^( zT-};pzP|^Rwd*$BxP47T>4aKyudr zH%)=wkX!xBGuQLqff>he2&84G`!T-fp1W*9>AGvYvYAxs%_^ zL{&C>G**Z&?k(d_FJ1vkJX)yGkr){0jvgJhPA6l#&+u0!59{9Fc?GlvQ}t4dbn+e0 zL**hz*<^|bW$N=7AKQX^%Bpmh3Jf%Ckp-reM_MOG27k$P(wtcDOB-9h6E_n5Zg|YDRt%P+Zm zVtx_@Gg&`6V?x=wP6>VRJ;d~;ZYiDYZh{rkV3IK*#-jf_#HU>M?hygzA`y|}i|#ij zJrAEEh%cgaULPIyc=B!|dtO7hge$cfbF$(3mS4!TZ8{K=(-q;^d8L*lUcn>^U^)w_=1gCOpM@h%+R!qvw0ug0*v{ z?gj2nN4Nsxu5h6~N`4%6!hijhQ$$XL6tm#}N>z4h- zV7E;q_HF?sTCQ@WR9d@01l*iAUrzO5yJr6DZO_zTL?Q;f^4T|KHXMQ zCicc`slM7;o*=~;993jmFKFzxvUSH6#-b3yumMA$>T3ee+>d#!m!VqS)a!zxcT?E6 zc?E#Z8+dK6P6L|itj$WM)%6S7r|=SLN$fLt^pyDH7w3Nu2$Q;iP414Vu>5%RewP3E zo?Qz#tHnS#%y`Odu=LTH8Dju}M`W`E`sEtBYqPx%PE;FDE6xz`FAL(-SQg9bMofw? zsGqPhZ;OusSc32nxy>p1iqz4{&)pCQ^;kJiw*Zr527x=TG$clzbj7tAdQD$9x<~I5kpWDod-OH-K-5CdU!rpegZotN2xM!6O$={E*Ge}{o&cY7n6ew z&oCw9&l(;6+ZQBEed00nk0gkC& zqnTCoDj_LLSbZov{OBQ8Wu+np0=dy=TsLta#VY{c^_+n9Gi<9bb*uY*@k=9gdBF-h zu8r<@1vAfr?IO(Nz?(KpsdH1Ma5w$A0c zsq|e7ay}c-v+PZEu-97y_g51}G1OjblppUX4~FMVG~~JU2yMtL;07!i<_j!WETBUt z;iTH86qn+-;Ij<&&j-C)47gn4t2$wU|Z2g z{R}mOX@YS^Sq?PdFvBvXQ29eQmSqyD5i_q1iXDU)&YYd1HEJtXO8IKU(vBgpV~ZBh zX_1i_cwxDjU8vhs7(01yV{xRn87OxS_5otgu~BFxzogkmmRA1_Q-(ASA+Q6IVzF_kFytP5iPUhzaR&qiGVmmYhDn)WD81Pl#qmf)2viNO0nKUDK3Zy>&6Dy4M0e zC{~3H|CXt1Aq0wDy&i>=`zCRMI63{6*c$r#EE!ReT%ptHTCC1cZbI?1=1adhHiSfV z$DbwMJYEp&WU@k(oo2uwE0m(n#I^EyG4qGXOL8Foo=m!!%{$6g_LLpwaxr8VsVP5b zzKX?6S`3z$CWORW#seDD-iy~r63}n%4VAn0E|aNEY7h8M7xvp+FB-7Fj(0`n%BDq# z+OJ2RYch;t9xdVX0bpq0CMG>48BLsVrIw(Ya1y%?Ef3ndR7XV&4V~~H%MM8^V*6>~ z_FUqXa)koQ6axmufsIVF0K;0~eL3AD_Wnr8-;po4Z|j8GsR@TUB*2Zc=b!i6R#nth zxTkc_d9Dve3EUqP6`xPv!ZS5Du(_YpPuvYOtOA~*rQ3LfZfCrt!*Xvg8s7wemuyn` znB-~oSh06jdc>f1%NBq1seJ>hbAbeB0Ce28e5ro+i3K?4^*)sHz5X$e%OuGRc5K8U zm)%vFw~n7{^R05-JSmX;;O};t$!Cg0#&N1WEznoGPcSI(vHa##$^)@?z;?db+1`qB zWeD6)%lTX*`F@vdDuj0PO}NGve>1!%QMy<|iNs%VvaQ8h;lgFi?9=^DJH4>yE2U6* z7z}i@S%|~h+_&o~pcne^eIbtDbaYc^a;oHHv18%A?HzchbWO(p6An=1caLU#EPgrn zJu^oGPeFMRvYL;Oi_?%@{raGvlK$Kk+e)mt)a-}aPQYN$b&AUHM+iXw%->CH0NumL zAXb+}Kl**4I7?}UFMGc2X;53vVn}BBkC^L61fvD1!qRUgE}N7Mm+C6xbY^z<|!5pRB6 z%gXe)wAH_LKUS1IO&z>4RmaRApJh}9F6_I!Fcdw?$lMHqfKMowpw(m__FB1yl;=Oj zzwZ?X2vN_KSuTt#4qGx@mIh8U)W>d!JIKidAN;XZK@~r|h6ft0U)%fkN4|Dp!r|di zwyS$|<#=|B6|lt?F~ES)APn~QO; zg8cw$eeV{C)1hL}mo%=t-?TF-)-S;KhV(U70a8s{;f7~AGFW2Ob(r))$xyQ>Uv5y* z6e-Yc5&gTkZIgYr%~{&AB=$0OnPen9Ys+w%4@}hy`%J6PZ&iE!niBpn_{h_)MK~NU zpM9QL+UdcLeG&UQP#s#Y2(=FVvpZ`0dTK~KdN*yVm)Q#nM-{JYi>;+F*oiG)n4d{a zi}3w@xl&0$Xw0x(|Npdi<$+MHZJ#;gL^w!NiAYF9BFZ`)N45q%Q-6`CZq2 z{Tv|%e;YxWv2XUSCl9|}hLaQI8*XxT*P-)wEIZVsObj}ZE9k@XyZS5C5^=v!gOYnp z+z~V6sx$+lj+=_*S9ZmoAJN?Tf~U$HTcMr6HD@rY4R=ux?6wP4u=q}i zuA}^PD-`3(tJbC5OA$LW71#>yPsJLz-kW(e<9W0#%3h`+h+-ko&wD9!@ZwrFY{aR zU$x-MUj|%=4qD7zXC?yiS}1$jZ0LtFADmPJ`N1b1yx!39=r9-%n zFD}}+7+zl=8Ll~)cH*R+5|7}(E+U-MB&Q}3G(Rw*A0Rc-P@?T$H$f#4J=Qg`dRJhT z)a7J&x`^~AUz!YtOAztJh1dH^%q(%2n zYaNVv1h>g&gTYn{VJ^705$1>Q$eP`=_SI445j?et2=T0X6MaXP&(&FOdETz6!Mm?8(jQ=3iwa36xHN2ObSShz@4lf(K#ThX;Jg+D2j?r)C(aTD>>&=?W}UTHTyUY;Bt@K6zHpk zgWw!j5hjuz!eZhUX2x-YP3Z`-K-?`;j_ z%@+3H)t#29_WN~l{;=%MwFK%SV6YnvaXBq3cU@&R{q?`*iQPlZ@7uirA|fbmhs;4|&eojSgG`gaau z&+0wRqIn~lcxI}-_1n2yzoFi9`}t8UY6+A$wf8amHUiXdhAGY-a`%YE=x{d;%YFrb$5vtCyI>zdip$%uAIXKCc!kBW%X$YOhB&3EaVqikX%sq4uG`wNMDyCFvy%(T z&9xDn?HBJK-(o>QiPMy=^17bLVi!#mHo#~1_M_V`R%Gh$m1{VRVgzM~a)6e*G3+0Q z;d?g@ds0znvO&L1eY({tA|Ht0{0k|7E9V1;XMPu9o(us@F^v(Ye5JGe-3BJ)im>nU z1EZr zJrCc;vAo_jl1-@(46Yrz&ap=4!aQV#cI+7-U1-E=&|>N|hceV$>+T`Z3AtG`X4v=B z5r}0|(3^&Sd!*?f8*5U}%I7_6?8b$MmYB%z-+yjbv|q`PL&Nw5BmBF@h23 z7Zq8HC^HD+cJeZ(hFX;Eq2C@o`{hpx^A59|!9aNG+)^XD|AG`@;Kou+$0GLf|7^*ToHQAa|HxGo`hA z(U)~XLI{LxVaHiH*Yn<9ra$DM=J1Q2_c@z{)2v8Qi$5>#q+>r02}?HUpxQ6eK7Fz0 zUW+AlMlew22J^qD|4R6z8zl65DFEq>UBJmRa)@+BU+>cOy3r3uw~yyK*W`9mAmTBR z-hcg6-WyORiHtEDsIkUFKfZQF4NwasqG=~#Q6ox$_M}^!N3iu4=H3q_Q|-T{0}UUd zKH3IVOsXI^)sB6BvO3D$hL2_E7RKRyz(+tH5S0oM?+j%J+F@U&D4D9H=pbIB0#Wn! zwm;Vt**RO66J@VVvTtR)?j&Lkat$t8dvOmuAnX#`)`hf5(F9YYY1dP7fAgy88l_^z zV#6i`)|VW4bye81gC&3Ia$Rass^bAb0P0+y23&XE95lAiU$1;&Rj;~2?7mP;;lIW1 zsZgS^1w(p?QaF-f1Vk*xu&=!1_MUdZcN14N!q&diERGxeUbwDU!Qa|hN=!?(gDpzn~09X z=$E%pe5#~ z`|cd)x`L-`o2y%Z56@((Shrri)@bf5oV4 zov#AeDokd1RaG2{v_;*Jy2+Z^TsgC6YBLxTn?H~WQpS(W=@1q)O?)Ykig~=@f1ixgwvmyw zn1`+L)X~t_h?I(k<)zHgVVR^j8V`x$JL+DY9s3_RQXt1U(C+g2i0YPBF@0@lL?$~Q zsezyCwS+hyd{<*?s(JmTA8hka9n}2zyYL|vb20C*$!8h!cve+0sP5i8?KP4OTqt`u z^R=X{l)AHxQRp|^uY9zoHjq<*ds9!WZ+2m#-W)lbzftX!Mc71WP}szUygE&VA+Aj? zf9`@zo(;#IOP9h=Uj=PYM4LzV_oHD=o-NxO0p`>K%&GtOOockoS-+(cKL3u{z4SU4 ziX%48?TrFIC+a=#DbXWdax$E#^bse0RJrbF9a(Qg=|fM8`?d2)0e!LbuQkeEsuXF} zp35H&KHTpdLT--uNJL=dMEL6@uvj{Cc7v{Ve(c$recvj|-Jye}k+RUM7x-~AINM4M zBJ&sB%09hMru*@UflroE4h@uJ%7BaUj-Bh&m$tS{@du)#0D+oh39AD4TfM6ekp-+^ zazl$^{X*l55%cqXmCWX=6SH+Z$7;@DN!BoPPc0qoeGoIM#ZZt#KN1=U`=;6~9dKZ~ z9l(s@wd8pOjoQ30A1$8bNOAs}^i@LmN}?(m-!$^H#lb!<_2bLSt{*~1OQ&-y7k<}e z?JI1G@7D?~awT2mAZ7_KJ+f=ut8u1^9QZ14LX!Gb3M3y#(4 z<7ds}Ak@(5XE^ZC1`jvf{r;^IU38eEw+3$59*aUzTWhp+UO|jrhXRvUznHVGD~{X(Z+2)!l6QHX_}wzNZ;i z0w42I+jAN8g-8KR<8OzGyK=~f#n z@HibMM}$v9D-g1+=QEj1>zoHz;+C7mh~8%k8E%Tyd9A}K0O`|wBvP29nim?Yf>WLk zH5Bd%+=}tsg4=Fmb|cfU*3`h0N9_^@eFbK$(+^=>R2+j0d}M8XJx`B8hw7e`Lw|fm zC^?{5#JT3vMKht)Ovh$U>wY}{J$6>yqE28GJ_fz{Iyz+4*A^!n?n|SkQifKL#=2c^i*x5 zE+Nu7tOtc-%ZT(7L!UB!*n&-2%VTfK3cV+E>Hsm?Tz9X+Ikbl(H2PV`jX0%Y5-(H` zA|tP3>q-d^3&)V607$S?)$|g7*|`_LcC&Al6gXnWJ8lPnVHyWVP|0zT{4di*jOjAceeV3J>>ahpXr600MfZNh{va7$E*oEX>lLSIic zOK9J61M$@jNpYj+cH_dNx1^#s>Psqh9xL)bj^vi9T%vY25reY0!?8@ef_t-yy>GP) z4%{8Aqz|jxE9jFL{n6trlNQI2U_6M_vIEsqA?o-xu`+W@8IVeznbCcT6`KNoIZoI+ zi1i086hWWJm6}RNO(`R9ZaM0@pD~NbPNZXd``GwaeLTce0 zV_Ksn)EHU(kCg@|AsgXN)i#GEToCFM>@)O4x<3T*gB|zES=_)F{%JHVu}rcQhBSoE z=Pj;lzRlBg0aGe5#1%U9k($moygCE$>`c37yZATl*;ye_3ddN74%R>H_d?(O)PBW? zN(o{47kY7m*Cf1bMtZ8NRETryu8fX9I{dg1iB0xLNF+e)PV z{sVRo^u-F+aH4k0fFE!9{vAE`ozfS-Lt;6NmzXC9|hy>)> z!0yQ3R%wS~hM}mf#gkUG;qPC%eGSOtO3j<^1;u_>nmq`&JyUG2^#6)RAS1*WfILKe zY+~8r4Zo~%s4la7;!xU%w34c$WoNR@Iz}JHs&VqEf*Si(`_;35zw#F z4{2mBpgTh{D3fm3xbLGq77~&B=MY}hNeGB<+3h}GfZzzvp*!lK(N3-S*>U_I=eg3s z1EquUu0{PpR?h~+%n#!J6mSw!5ri~wxy4tpaw!S zeHxTl!uU1ElWjK=i;@8Kq#`&5n5)=z$`1Erv2ihgu|D*_Hi2YWm4oS~He-A6yyl78 zd&T`*kK;ZRc*x_2_bYcHaY-=rbggf``s-<3V5M@bL6zq$LIzAS0m{#2AFPX@%+p45 zyS?6)0M+X;#fkIml9Fo}QhvE_c$-7PXQWf^iUrbCP!74=Muad-F^cQLhRe^>h%u-z{iyrV7`6})ve^AtYW1En4IBtTk$-G0$q1c z*!t9WH&c1!?%gZ{`a9>m76>sItLs{>N>n23f_ZmTg8Vu(iWqCBWto70N7sf+ytvg7 zUBoB=&uqnJBDM>HM!12$xm;QH?N4daM8qZPPYTghILKEKRL;37Mv*2!7`vdj-p=i# zBa7jf`s{Rn3TvUBbpW#KX6c7>1Dqt|EhX zQi&iGvqBKa1U20*2iT<{=6-{p1Sp=u5%3hrY8X?18=VR$R9?3iM1@qO3nP=B z#7w76=15-huNxiyP$D`8TRVY_pptV4-%IX??3--cAxs)n%Dv}NmTc>8+Z7C7*FE#c zM>5|e-3|%@N7qxyFv#p(9k@l!aeUVLE(n7Bs5=<(`5+Go~PJHStC#N9Hb#y3I#tK;xrrKPoP@tW_ zFD*W_k@+mW{rL3JJYH;Gp(m|{~^y4`EK! z9%U?7jD9oTtCc|3W2<9=*<_ujL*!->J}Wp@?@~WI(xC<o9WQ1wc;wjW)!;88w3hDUU~F3aLc05g0?pW#as{|O zN}japy(=Zp-IQIvqp%|?d~e@f#mfi*@Er8~jr}SW*YdaD0VY@wjH(;?_&Va40ErFhSZU=k;F-sawCW z(qq8b^MF%w_{?@b_F;r!koEheEsuIdNV*a1>Rm>;_^y*iOS@dt@6>ZpcZ~qLQG2VS zO|{!D-LunIH<#-0~w?-q=QTgY5ul@z$;mBgL|Yv!=N3pyVz@h zZOo|oe`!r=N&Ge?OOuZY=7wPz>TG8(4QL`^I-I5c%$6%*M3eYRD+|C-& ztrMqF;r)2lrSoh>Bn-r0@mDo!h&`g@ZWm&ckKlj`5dqG5TSp*bwW;qaQuZ=T1+PP^ zbZ+o54nCNEMLOIFK@-J!6Xy^` zAAz@8&9)pRvrUPB;wMAz_azHMhw|3W&vO7@uUJsT9-j56=jYDIR<7JxfN-B6!j?bz zN0-t1mxd5?uegb%%Y|=o&58NG5@M#>oDfBGI!A9L(~$<6yKc%`rX*KK%e`bDt)|FM zv|qxJj1z43f`bU*zVozros2Fc-JEQ2Z5unmJv?ZLwu)}t~}; zZh|<`=uk0Ilt|?FgIW1f;%itM{|szNbfo{Q#AYZD6o>k*(*!nhz&~RHvtP1){`LI- E02X}ot^fc4 literal 0 HcmV?d00001 diff --git a/docs/slides/ml/39-smoothing_files/figure-revealjs/binsmoother-final-run-1.png b/docs/slides/ml/39-smoothing_files/figure-revealjs/binsmoother-final-run-1.png new file mode 100644 index 0000000000000000000000000000000000000000..00a2690a8d61fc5133474b7c0040a94892769497 GIT binary patch literal 164839 zcmeFZcT|(xwmuwUP{0C$ZUv>d5mAaDC>??gP?|`Sj?z2Qdx#ASy-E#=f^_MN!~R`@{Gl;?G3RJbO*PgHFX6bp zjty*;;VD+wygQ0C&oNI2b0k{-{B8juAOBKl6bQRYY^EQ0uucD2+CGWvJM*U!i0;W0 z#+5>Je1ynzlbZtPvx3Q=N1h*;A@{pBX0|a%&cL-`ym5=qAV0eUFqpagZ&TM@Xk+^;$DRw}kf{lS!!?BJBHUv+77x zD-Eg+#Wr&%iZg1-Q10{b*C8$P4Ntrmj|-c!+z97lwDB`AP0L_lo40;5|K9q|cHhL} zc;kf~GNeq)mfVb;?-st6PT^kZ%4)<}Yjam03h=hhcJHFMbms28bW7+~l8guIB3%-M!v4+;>spuc}|odtUuYwlaS`QH=g_8zs&( zh#o}SwZ;rM8cX>*>b|N{&_Px8yZ&%HYsF?O=+->ko9u$7G@8r}d^DL8*FQu)5U>w{ z9nmSfg1y|X!{A@(Wbj#WT~^Ip?!BP4{r#e}w|ZA}2vE*8h<}Aw6`j?7gWYL-3p~=U z1s}bhz#L;Jwb#P71)F?gf%W7hFk zwHk}7y)Hir+m3t>wn;87NmzLKsbzZV0YknB-yer&>Qm2SE9a|Dcc&jIiL;)8eDoEO zXmq+oCY>1ZesAH5+Ap!oD~;DLm1LaA+1Ew1ZW9Z%nySG;a^%vzw(ffIets|xmFRo? zsXCz{l?ji#jFeKNE1e2k1XWl`!id3lxi zQP;YR*Z{mIy5hQB$lYU57#$Ord?1A8*FOgF&`-nw#>Kt<|6jLiL7}EXuwOspU)OBB z2!xcYOMP?v-3z(oi@rTu#x$ve+|H44Xpxy6x5B2|3c$k-XUwoOVd}lUMkLlhC3Agz>l3pvOo5Xlg ztJd$|zY|=S!G0#@yVESJtv@8m`Lj{i-%oq)+_}~Qv!<+ZA;a=JmR42+DAyn$%ATGc z9tygACf2|d+-7RTMaeJU8n(+GkBg0M&D6~3|Hox!W@a;=U$D%SjyUpzKk`7hA1{WZ zpZO`gYcA{8>&F>-V%)KKgBmlKbM}K+-rwqtd>8{=pl`9+vV2^S2#ao@heH*en9_86b??b}zX z{BtQ=sK7eTEfbW@rJq6@w4*`57u^{L<&a~4G+RBHimJgV>MNS&!*&lBl=wLmZ896c zMJqQoQ-;EzMMXu#f}!D29^{J`FCqFNFW7OSNkSRZigbyAYR4)=qAfB?9d zNg_Sdd}RInymfp+LYA$GzCPaxA>+k=U3!v}GoKtbNl76V;EUtsJ!vg1Ewc{i@l7U)CpVE8u zd$k~5lZR9bRo>$Mz0G|r3WRuBaV!7UFy&26fI9{fv^o2GWAgZe34*gXr~kbwE*_+z zS*e{r7jpKuc3$5J}Sm~(`e*lRszL38*<~rA@ zJ?V69BAC#jG#*S)T}hl(2=4Jl4&to|4l)WbYle$MR^PL`_pKgqT4# zRg1W|5!e;+2B&LdOScthttx^KrJzvxjZ;q=8TL|(E;u+t@(*R-Yk~C;dVz}JTqZ;XT2lGl65b=F-6f`jyt&+mE5fYE;;nFesR(MO7c2# z-+`>7HMz^4{RYOyc?wKcQr1uRvWj^|kOv?((rQ4U4TLd|TEd)L=dFF?T+m7rDy+$s zBFy)I7y0$wgzF%DagwZs=$KA&AytS;8dVkPILF(KQ@z}fv5>d!d)Sz~6FrEv+3@0L z;JMNa0)m1ueSLkUij@9S&F+r}`unpq>UT2tG(DmTFkuR@i-U`=>f74dEbQ%b-pTzRkJ6=PEHg8cui8jo-_{N->LXDW zOuhmw7re&5hf*U`j)Ba;yv+I-5J>6IBrg8->krpPb*@hYvl-vJ_d$W2o&sy#Td6sr zX{3TvTT~DHm`7Mf#!xLuLPM1%S(xep7@m0EZT>L+<;xe_q4@ZC+q0``Sg$=}_#hmr z0KuVZzug6jJ$jRCfJTi@281=*23J?tK6fO`ekXw)*#@Ua-=EaQukEZ%e&V6|cx?|o zrQ3)LJX%lcLv1~SAZb{XUi+?1x40~iR*1miCb4mG*{Po9=I;`QC3|FfA)U`BySuyj z1jN=n>y6KP#Qj?J_urO>$lSp=Sb>PGh%6{5us!RnfVYfxa&%uw#1hZ#c34k7`NAr= zm{3RB=KH9=hZCL<1*K6wwKUpzArBoJ4LvP+S9K>TqK@7d+gneD* zRc}dDfBbj{^T&x3*^uqQ0<%7meF_$y^ozGmC!iB`yKQv>bz63II&$RIu(%&TeyrUz z*|<5=z!>0MvHJCtCv7}qF6TCq^ZbCZuY-4gQA&w}5ytjY>8Z`V;ULp67{Ix+SHx+Y z6n4&~Wj-EnOLY73?fquBgys#DjCWyhNQhDG>v4Lf!E2_e&o}J?in}ftxR^m zpU_?Z3deb)`JE8Nkv1pttWzwGSc}U}XKtRy7&unEp9z`!v_LE5b=8|f9IuxhU-o~J&7I@mDnCmLRV1h6bHV1t+cEr zmjJ267U`1vL&OX#j)(m_d;BZ%MyG;Auv@uK&ovXs12HdDanQGT@{ii309( z*D=8u)&swmpV&-QCs0xxU5Kib0(@8@( zl}|o%A#Dzrbl2c32Wnd1To1aP&ba-VSMK4L^+Z``!p4uRJS(~N_?f3de)lDPHs&o~ z<-)v$4adA6i5HSb1X(4MGT(`YxLNvYgA&s?b+ce=WMCi) zJ?7Sl^}6hqpKOiD=GNu48QG9 zoOy{4<4`EPH%fP*yWP{fQD`6k$JO90oxEJ(kER|;^?~%gn##Qs(|2!QkUPb?%@00%L{9yBZM?J6ZIHH&KP zylP2_^~5RF;r>{`U$?5V=SmOk-1O8emG(^yxNkuSbc{B(zAnC{ zoV=%ZMRveMmH-;{y3|`-Q^~1cEbQpK6%u)pCMlEWu83^C4%Nx^X;y@LiQfjt@j+2G z%Wp(ipLev^ zdjnu)fi3Sb|E1TyDHP4wayQ4SWT=d!ngYw*z5d3=M$<=IL&kGOZ)#PN{jjZ_xs=+< zwfJOC*5{D&lsxY$xE%KJxci+dQ6oELx2(fdUBB&U5R>Rs>z$n;BNqrgmC@Ubs9#`V z-yhz1k%g)q>BhGqi$(WYPBR|mxBbVEYYBr=I7W9>ud> z8q7c7t3Kg^l-g*6_5{?QOPGmf<;sAerh6YRe5XY*$lw0c#8KZl~o$Gu?(WAJ~87l2WehWm$Z?k zTa#5O?}f1`8}qUA#$b(gNrYxaxx#>QLOk|I?Rqj!02hF-!mW8#)fM+V^C+{B-BWD! z#s|%}`lgz~;sCO58{2QG2;~(9h`JEyMf8;*tSl|Je01$m^|eP&V#Eb87T4#np z#4-FuPOzFb7S#6VwGtCzNgwUp_-3AG3>E4>ATvQjjod3nrE9#1HQpI-w6F2zFoBo+=OQ+$w zIOs#n5!JtN9GwrXzcZ!svSe8cQ&p0elM@~0zi8GM)O=Wc^o}aKbBV!7u9*3-?NfO{ z=lQNT3kOB&P?E0c1d&|SIyHw<4CA1tYcm@^dW5O);>B=E_+0x!^uZGsM`zY9U=LPY z53H|eFyFXIMm=m3EIX8gWapKixQ*Pc`#x-!pPSO$u-jgm0YYsm@EQSQ9wQEYIZ2yS z0Y~!WA7sMnD|jHrMn<`gJ8~_8lTLZ8Nh{*{obM5|B7D`$W;^{cBtMM%fYFX=RM??* zx`_~uot5%ASzN{Ho9uwP6T{AZp2Pe1!XA;xKa`piyK5@?0G10=Yf;H+Q7;U>7AQ}I z?qh|Np)FMR)H?`LjqdC`J0~aZhV}x0{2zm)a^JJ6JfI_;!1*M;%2zskZ7&x&VS3&l%^&aaeT)*|u?Y^;6a|U zot+&KQBh6W26mgk+teIAl}ZxGTgyt?BPZJkl~4DrC2fsluXuWUS5P%CcnyjCM(FVLw7M7%@uI_Yd*7CA5 z^n37;PNj)xmBY#1^*{Rw8+rB4I5E|>zts`{6hBgp{_J*#^_X(pMbJFVboewLGSc4L z#mZA%UVg6=1ve3K`PrvJj#23ij^oy>e@%4$nSsqem%lbXG&E#;doDNKZ_M#JJyMiy zn_3jmRbvWMz^)+38t@EUZe8vkbOmJIL34&VL$r90q!rtoN9*9=y({h;ySskwvJ)N) zAAjarZYHTU>O0G2ZGY^!qa*a@gxQ#w7(U3DY79M6Q++}6=Lv}eNW5l9NPjODgw(n4 z?z-&kY=M=#yqI+ovJrY(=@1U!rb6a7xR1=i1Su38lwpoNB zHTIvu0l5s?+*MBY2lsLd>a@?EJ!@@ve4q`4PAb`>Z2+ofodl6Mv)10;p0fNZgu0IU zEoj;Zd`WK)vzAZggr#R>WHX5m(4-_L^0T%`%T%vR6o59Ip`iflO}~wKjWh&t@{1`a zXlL7jPK$|Welk^ef3+{v(dP3L+=`)Eb<~zTa0v^Q^;1(*JZK|hkp=OA-467VFTkwx z0*q^uK;a3TL>Z7$O&_QJ^Vqq65@EcsyvGwyYVGXo zcqXZys3~4fpBhh*V<&(~25{P(`PJfp9OpmC=S?MEc*6p<@|g?XP@PCLxHbW+bKg#! zSuib63%T>tmj71`{o^DnYo@~1xs49@08y~71D#V9A)zmse5wwVgaW}N9^Bp-8~u{D z*U53gL@GT&hqdzX=OZJxz{zY>0A)i<4=x|&>f(e-5?uhPLF%BWZ?vfJx?)9dVbo?))fwIL`=LYc14l{C#3xs}OV|yV0H-tl8R#%cQ@8+&VgH zxcNR=2rUyEN!gfg6GfP+s;X)a*sXHD=?}^MD=B2LM!xYSh}&9CR~M!@CHF^~v2Wg5 zkt9D{nP^z>Y91@QcaZK-sC?s?A+OK<`}buBv&T`Aa`E_iDu)1X6{^kW%N^de33v$D zridOVcX%HvEh;KX8$N?qivy~(IW_3Mo#fDqnxaR#3aNF7)fh|}_S4IsqD zO!?Zg>L@uQ()}0;Y^JSJZsdwd_zn~u=L7w|yBb3|%MS7;sYF}#Q;t)AJsRXWS{J`5 zfZAZ+Tn$hcj<|E73GO2EPHrm#?By1@If9$#%rg+&@w98T(yp^A$N6UOnX_;AwYkcvTjpT<<~~=$=pT(N8mGfV5JZlG$>? zt21?EAty%$B{V>2lRfj10yBCaTKHGaMydlcX*YnlRHpkzBlPLnW6hV}$HmE{aFuiL zBz-(H`2{$KnOB5l2=WMn`DL3&UrzhB*GE68qTjeEsxJa8^HS# zp^{>ToQj=u)(S(j_ttbs(Pqu8O3~`8n>y#bO5Nvt*ryyO`)Ftn>^E;TOVq4O@MHgHArt>?;arI+#OZLl@gSh@!ksXU}%7 zN#?~jxdgiuaTTuTvbVFbl+U^rA93@P3Qek2VoD6S{Qb@>D7lqn*5w^C?JC*eQiPh4d}hSi zq!zd&;gL<~5E6nojoTn zcJ%D}^nweeJoe3(!c}+@j=rSI^LX>aFV%I--z>Hobd<*iyb&2GPoi$m(J~j}W?e6n z61v1lNtv|pU$o_)vSntJ9yXJw6Z4EOl10zJG0Yf&Lm`f=h9Svs_-Qz3rUH zA~<}(+r$b}jn<6&=8YssxTrn1;eDt6s?bpm&eB-Q*6Xx;+Q}2=a!4jW!UH<*Q6_1P zr4Kxi+q5J^1C_lHUi5zLOESDLAz8tDy*xue|pxN#lgM$XvqpU|_EvHWNkn88e@&`f6uo!dhZS$i#HlxxX5g3{4tP zlJj+CR_B##N#Dg7i69;erU3cG4OAj ztI@_o@FlK~7918G1DrEPXac^T+umb-X6(kqf1L$IyD|95EFmX0P1K=Vg7Y#@)Uf%Uzc~ z{<`14_qK`Wl&fF%fEjP~{)!_sD_rv7b<~j+ixM=txuf`y#ZnNNP zHO1wSNYmkr^z_!rPeJ)7a6yywm*gIvdROe+M4-&&6g5vZ!BMkPTmv{(B@lxi+O zBu$2w`nx+la{rcESu1cIAh^~eK-I+%l%O}aX2ERDGkUu`dg=lL^6H6Z;tx=c_q81N zcAA!r#W#KJPS_-#<2423Ic=ITK%!q}uITEzk z_H`;0IW8y}fn)qn&zd>_V>UedI!lqaw5RsTAM}S@cGEO9-<0+o!7>3a@+7wm<6&@x zApXV}T2kG_e5fB6wyWZ-%PHQD1EuQB)`(Mn=*@m&ghgS1f20D*iyzLi$aAv2G%2l4eS6)iHLWfuj=cZ-8l_!FKDhlAnGD<^??zUb3L~%H?r+T+Vz0rhjEZxlR=D~gEx({ zopCJS0LtsqQX%yKOGExM&b61<74RfjncMB)cjNRkNySEXmbe1rZD~GYzL*3s8a>GBVgS{n^C6&e8s` zIq9_qr*1oupT=Y?45XKbMACd*7uVJz@ehZ?@z$}KVH%EG#v1yFSpG|xDZ50iJ5VpqOZ(Dbx{%z-wq?I6}~+Sp6{@mUaLjhy^{+~o-4wDjIRZH z8xNcJK3P`SBG)dZd(0Rg*9XfZgnEb7M|JoO0iiQp)qQC!H?v4Kl zRNzLyfS2ryh?-!5oDFPU4TC9pS09OY0hPcP7lE@)GR$meSCp*ZGo5rp23NKd&5G)C zk0+isPzg+Aa+)gm;^X#XsK_e&Xo|NS&q$jf4t=^vSGHME*SMwR&VV6vpw@72rj3k^CPO|#5kJrO!k2U#XUi6rl?9T zRB*SZr@#OY>fT6g5PxAFXTpU(C(*`G27AvqlbPB$buR3+JdF)v!@!uIX(>N4;}pQd)yT#1F}^N}f9h>ggvvG?_oo z)Wof{0e~Y*TZ7v|YW1zdTC=l)}Sf=(g zKhrKFvVI^iIyri4Ylq>>RdeG z#;d=@(f?5d1BPjzYN`#cu1l*Q=4_KbkiY82}4e*#aP)gV8~W zNhbvg;MamI8UU%Pe)ZgFi|_MA$^ComLB=fk-BU-^*Y{- zT%z24=WCOOI6O7@L6Qa@gQ^(;P&i_d$L=Oez3M9b^qp@+49q!k%HHE-LzO9c| zxB?;uM7WN3{uG#O+N$NCPq^a+FqTS-)`>L5Fr7CO5T?VQFP@w4I6poLPHev}ARd?d zJE8v;7k}z$DkF?}IR*4F7!WMWmha|t(qz`XV%3$BE<6@8s?-8?ys?O2@y~pg1ZHEF z!vcy={EveF#}DCD=o}hl!nuHWxCXW znS)oQlg_k9zAW3C+Qi!k1>VDxa83EwcL&P%fZ9`(P?nsD5*k+mxg`Cg<3HCt4%SS< zAoTZ`SKP-JUSAr;?V+j5i#^rlSTI7}rz;RuiYIda-`wjzUXI*?d5CVVe-&g15VtJ{ z4@Qy%g)8e4^EdzFeE)4wroyx?OJlJ5WCkbE!)^;&bZ*y7r=7^9!T$4Mt*x@l#yZRX z=)36|(i*u^AUU{J&+E;i^v7OZ!kV8GAGD=lXiuPG+_6RL+l9j^!YNn1YuLbs;+QX}3NWiz^ajg^#L$Crj!?G_<)*9mZQ+U)K&o5W6j^-aAPR7;7s*qm-D z+`Yn>#YyEliGdjIkgE6Z9Okmga@D`S1@NC9W>J9)Y5S-<_+^LSRa-~;0Bm3hhee`B zG3yU$QBl{MN{KUJ9J2b%rItIe;trLWq=;%gG33JqjO~Wgf-FEwOYEVu(UrLss5wpb z(&UKRO|4#5?W7rIIxECN#MezZ3rdkX{i7H%(@D}qQ0qn*9N}+eiCC-fd{*b}W?Pu! z*K$I)Z1X9b=QH?brU+?tE^eQbw*jkdwc`=^YE|oyIN4Tj$I7Jq;Uzphll4^)ZlSR^ zf9<;i>m6x9FJjWEu?zN&wIT82##&@|J^eivP$hMc%$h=t3hWokXA|sNK{qk`LYyeH ztX2-R5kq(y>=$mGPt>TQzb{JgEQ&N0cTZ2YQH~wA?{!>g6&Z4jZ96{>tFqDE;wQ%4 zJuos9aA-|*X~Hs!{CK(^CLL$Z`x#>1NEEs8pJbFL2vBu6{{{jkU}-Aipg@yAW3 z>e%tuK9jFnw}}CDwi65OZ(PX7g#>5n`}5;-x6E@d9p9-KsI4@tBv;x-bk|XWT(%!l z-b8;bc?@ESJ{avRo3*f^MwMSAOCTjzs602{{$VUvp~q4CAv@HH)LS$(KkS2nwN>PS zu}y4VRh}V&w26g_KHbpKR2#rreRgJVPR})nfql`tIO$XxFP0AG@QBP%-r}(=@QW!$ z3JgXLA)r&Zon(S?}NY1dX^;;pJDE2G(WX=@Ummmcd_ z-8`Jv^AfgS10*ufYaCI(Hin5ThO=ioqTA_jVl@hL#ki0*kNRQhnc4A?cf_zW{r0yo z@%@sMiyk~gtpn9@11OK#o!%m&7MBaGf`&nzBZ9b!v7;x+y{a=^nkhO9*(ySQ_^7sT z;(nOCQ(iv~E^Bnw5KgoWvvZ?)$2L=3Rt_M{2R5?;>$&JJQ(nN8__kvH)6M*kOx^C7 z-oO8bL79cz&uuZ1DTn2C!#MiPcr4@&+`_ms`Feja5YnWy7qZe;54m^?p!?c-vG!X< zBgEn%G1*dOq{2t|I{UchGjviepMK?dTwH|}x&9)5jq7F%5mS~#*+B`~c?R>Lc4JHg z<849jFjW%ZJFaT6zxMDnP=|x&(@wJ5E+a9QbyPkk_}n#t_N&DO4?2`4$InWZbwDSI z`LBAWsQZt^SSlWL(hZu+%d2m&qIj_qr{I}ll|J8Z#FKDB7eXd~useMICLVCTVr2?# zobO7wDRl7wc@Eo;@XS!8Wkacc3c-r=`|^W4$pB&S>kmmFX_%ClD*LR5bUf-(zDd5Z z6^Bk#CU*qi%^UgHSLiL{ppp!h5jT=|1Z^aXd?8-*UZs{0mwhT? z?mm5Aby%_}K%v+1%F>#nji!_ApPm_&3oGIdSvV)di~zrk(*CwDNtiCtAMYK3FORehiBo(kHg?24T#FXQZh*uN zt|P+W_g&TLVj2RE*Ak}(A5L!|yH#ks!Dz3wbSeOf z29vEK<0oa~S4uH=4>VV0npHXQJ^_>`A^Jd1Hk%~Ut@=bUBe~YHBTtLkEz=&0m)-{n z&+sg028+op1_;p$7~4NVz)Qy7R&bIV3O%M*2squD&J8z7d|SSNBInkM$l43_*a&q@ zZ+ZVBOKSx+1(5by$+~?1j=0D$9hnhMeqmv4^W!3nA7A0gz2SeaVz4}SY{}8nyHm)Q zU%0v~vCMrhKTd(N(k3!Vz~e3+)JVV(VTII*>U#;5mD=g2t^&%ys}n+wRWF`YZO)Gs z=U${o^mNL^`IPeOU2Nm+TGshcgV~ZDNUHB`GuBXWtjyH++IdCsuGki&R8}09uI?Rf ziJBSBuTIb5kk;>$*_z|LAgaEbcbAR#=y?oqr%j1%lTMV-%@zE&xzRhbDTJDt4P0$e zlJ~$!TO&RoZlz3mqbf@qQq3>-lWFn`ABvoXQPE@h%iPAIwxuzV;cmd4>QhY3ip|)o zOYbTcwVi`>T94X`I$-k77ONU8aEZ6|b3YPIkT|od!?S7i?qR9>_R1u?B7>85SW^|h zup8FFVu4471}EzY&+ zPfb6L-sj|}86Plq&_g3lTbxB=gA-v&N~p^Y!4gssef+oM7seL%C6+XpErDES#IxAd$`U)FIiS@UAo0nEV#{oA*qkHv^kLJ&!?#OPwNj6(q|NLA9C#fOD zX8zlCPQ#1U6W-XRc*4`Tn0<8{3!CGZq2&7BSH^}%s%IRudF(CuXDn(zFYRkpPidfy_b*~&9Z#XI`>m=@H%wsGW=+X@d*lsV(`qV;=KxG1FaKy0JWJ^NYERI ze(yy1ItFtn(B2VfCSK%K?bU3WBSqp()vBADcMPqndT?)6%P2bWAf4+skS1!P`S~f| zl?Om5#Z#GW9;l;Nb5({U2J)V$X8jF^C-dbypD)g(dZyc+%AI(_Q-MTRO@mm#is%|G#giJ)-yCU2}>4eWz`4$$e zt0Qc=VPv=XT~vN{<3c>nUtiMmyO$pMC2`Z-H_=9G%mlOp&x0@Z^j%)`7V1MWg7JH% za=EK#aT(PIq%{=e*1AR3qcdU%#lbtg@B(UyAf-_vmG?GKeIWa}gXSJ5mimX1SHgvG zma(%Ffaq$=zI?Xp$3}Cl&q(gB$|(_&o1=}{wTUMh-ZBl23S5>Z3og^m5w^uHv27wl zP1F)u-P5f2L5&ey`h1tfnfrtac!lxgC}RLZ&u#;eAA1nKGb-W-T)=mB93LoOFzqZU zTAgH^c(gKp_mQ!~TI^D*mAnFG?sItXZijDnK-df^+F7DZAP)4e+USVYxHS%pDyx)x z*6D!VsMap_G?Gxjl5SiDC-DtN%LXIM3|Npyt2_2!pCjqc_O>(+)v(Qs+!iwbd|#B? z6O@Y|i_`&o*od**U?|oCuV%WYO-TzTli*s1?^U2{+P_BS5GO_a0!mMlJ;Q{o#@D_U`jFf^db?QKra!;b3}F&WL%71z7F;90e2v8GIC{(A zz9dCQ*t}(7uu4vH?$)t^wFFTDm*p`M>gk^{l-8VntlgO0tH@MqA^M)GV?nN6a`1rvK{sV4T;@=m7su} zVE>iteQ&datXg+;DG&7Q#8n(EAIJWnei8ul@>U$_$j{SrW8jQ)x&fMAFgLnIx4KZJc6qap&o1O>-JHqR`V2LQ#PA7> zm{CzEEK|p?Q7Ax%oF>GVjR*KvZ1x+pfzQ2VX?SjyIINGlOtF24e|80J5igKvs_-MF ze%q<0NM)ChSXoAM1$Q1Kod|;?yKDJcZMj#{Po((vGvdnC^1=5!KVe!I(Yw7qMPCtf zHCVjwj+&g4OX00Yqrr;~CFWA|DhHFJ^j+*qgGtM{m>-n2>dh}gyK$WSZHzt>1l;nX zIt}=!6pEDI_iLlzZFp?0<6z1Q&3Z=@9t3CYYF zw0%c-HL7KM2XNAzq^V|mAD>DeDeess zp5lo5M4J-I;61Y^vm36&cR-D1WrbHxPl2+G%g)kS-l63gP}3n$KM(}>w^83CNjL=v%<*hj26i3F&PsHa zNQpizE zz_XC&6@C9oS^a0uGeS3ASwo*H!gsL;US_ahXW#E$Vt`J~7blIP1g1jlDCs#@@;>=3 zU#Yv-AIiz^iryv{dMHxNwH8*I;2MHcsAYPUU0j)1I!4aO!Su&fMge6;f9IZ4ZA31l zquO(&)I_X>)jPj2UV1JpC>~_uPi~(J2_b6uD z_j$dU#TSKFvz^Yzf0yJjlSkK0-<-K?MwpAHB1nbXgNnNNAhtK8je`M|l{o5ds+TA^ zx^fhw@qz$EhO}hn+uC#wh23-8sw?G2EkviRquX;eQQeKKM@KsfH&W5C`k}AezP_Gp z^TE-fsw$qEg#nMo*@u##?!X(?4fOdzeEP)6MyQJgN7r8o^M9SUohg z$MX#+oZJZb+0c`OPmIwK`G|Y0mE1CQ8#$a8v(dZip6=TlxfUC!fLkq>yXb{=$f=j^ zZle(0MsceKRz5(6t|Pb|-OHY8Lv8g;DAiIxcdkg(*UA>6te^WOWoe zeb7<+8CwrLOm5L2D?^uaD`e(deyvCL%_@S|uzr|Utdr3#%mUHY>@Y~I3kv?g`zmm8 z7Be9AQ^^zUxQe=-A>B=%0A?=Xlh948N4U_2c_-gnsd`94(V4cnTJ&?v839F8Vb}ti z4t4l(_xM(%d=*rVdpM@ZxQteegEPCXXBcDIj}~2S)wXV7G`#DWsIK2E?5d>SuN z^iyUfL|Dc0huWGTj4n`CeU*1!p!itTr3fgLX8+jQ*Cp}kp)J@L8IiS8roWTOsiUwg zamFj7mAT(ycn(%U&xQ>cv#BBMRC9>%xTzg#-V7`|$d7d&CV1n~Ag*c5T#vuKt4^s7 zz6`~=eD^ZYcK3Zxoz5#i_c=K}UXM{B5#uP^%#EEbH9{S#S;u(l5I0Q*SWsqi%DBZy zwNVy`=e2^Mh31?6KgUkxa_S^NZ+b$2#P$^s9QcsbRxg6iGK=FMW5AuYvL1`~Htk59 zXo4irIj-=>Zaau)6ki`fFc77|b>MY=&DQY3n|7}6q7TwSi8W`#>zr7^%@<}dYQgal z%kjs#n?~Cciu{GF&Q85x;cXp4R9Bqd6%RXaRyL-S`*HMSi1!vPnm>dwM3w)fPh*`> z6Pd`*Hjpl>`D|=8&t+NAiN6g`d8r!5{^Y>ARGXay9E<%t3wzSO607lODfDFWjtTfA zfan1&Grr}Z00+I{xA2SNa@49!>s;|j$D**F`1q-zua{Zy=HxUXDQBKz08fO_&#CHYv>cSq13J!=H1L<~cYM^CA- zp*WJbftSq=2!apJ`%aht~9i;O2 zD!>n2(AV5q*=Pe-TPBO2&SM;I=4s{ZB?(JR@rW)t#Gf&Dp z?`EpUbk~voA75`773Z3Cfd&Z@90D}%5?q3NAV7i#LU4C?r*Q}b4IUf<1cC&28h3YZ zG`PET_wAgSGvCbIxp%Gp@vhZ>=!bf0@7lGiUajk^zk04@({EWJa3AXlNW4z&f73Xp zbjje-XdcByB{aPV5V|h@6tf6MnbAho8pPErU$F}j$T!{ADO7YIFNV~~?sfe2g)5w+WP|k$&GtJDYk=S^ zD7@af{S>f7_P_Nn_&x}@rUIXd%B)q#Z#P>-9xPE<)HXUQcjWvz4m^1XuHk%&tiCWe ztcE_;dy*pTuJC5pw+~!h8m3(VA-BNxL~4ONhb~a`SEap-d3|N!AI0cnkcYZ7^8;!@ zy3mYQ1dhIs4<^K*eZz7vcwd=9=A>4ScYGef>CLD^a@|({&=4_Xy7U1q?rDU>Hnvum zG~^Cq-f@g3NeZMIz5_E-=fJmK%0A!aOE40I#E<8}CytVAE1HV-$G@N7K8^W^JnuMs z>F-&bz1ec=F@pWSmu54EIVeQVfkhSx!F650e7Y1dqrsIqHKNEnIPR74u8?)T4@>I zLlGsqPszCt^p1F?O>bzX!!tUmQjXNI?)Z2KG|MmGD{4^kQ~lb$K1Q_u=_3xCX}}Hf z>@>Uqa_61XGMg`U=_Ot{1@orZsf*7+_gCj{&z`zfN|mM9I(>xLoY%>MIKijwN|iR9 z5C(W}!4Ohd_rJp(UbVa_iY^;YDnSpv^c7>jQvNt+Z15&s&r%&81AmHa%p7rb_Qt2c zN;X%ChmovL&3=)xcS5(_&o#C?>zLWgU+gLCRv^VS4_WY+mEM4`gYxEs%S2jZkSTt z!G=^#>79qBkWRr@wP4-ZU3jnX|98gIO^do<2Y;Q>>pgBtM|rl6XN}U%z0bBjd?sxG zy+4Tp`8V;0rpWXf3B!;4~e%VX@d_smWOv9&HGg`lmY*si3EJ_z=JtUtB*B zhVy>wO|w0SlC#oR0wNAwu7I`VJlG1@+n-K*2l;{xx80vdv~L^^73!l@5(Br#CcD*P$A#v5 zEBCCV+!qOPDbnD}8J8odp*o`>WEk!?AtG--zH!;!h~pptL5o=DmPe7$KdSJ_k}_$G z9x^ha+wouU=UE%brB4YMTPlkWydFo7J^YZ96hBc{XzhRa;^Zz}lFxnny0vO%xn*JD z_hg^^MA9r0f%#34VUu%JX_j|Zad`>TV~W4xAoY^7KRPy14UogLz{F_RrqQe z^I695@od(DfSXa)hnBAfrcW;uwGSbp7Yly5%ikM*yBi@?e} z)D*E~g{PTY%0SjC8*U}m@es(D%X#ybTc{LL(@Z7 zDo~BBL6Po}gF$|n5Zs~Ro)4eKRyJyOetoL>aZbvqYdU&rRDL-rw7jV>wiUX>e*NI? zU&6%1J2T%7Et7yw^SHdntsefE^@%R`fOuih5NJ;VpDDNTOo6Xz7@GJ5 zd@JW+e-Z&zhYOk7L))BfrHW4nWJ3v#4-Gp54Su%i3tV-_I&_UW0aFdh(*b8K<~O^* z=1l)-vY}qbr|@fj#kTE2^WV!knHp}8Dvy(yf*yj}-)2FY26X73T&JXD_Zib5utgCZ zL4_zAoSZ>pPYVzJ8svmBTKQOfWOP~_8QgeGL|S=Gjh8YnCnBh&g5htx!F`#)tb)g2 zsirn4bX0BZVd3H8bA7FRy_VkQ>2M(8+6{XGicL4Plr|q69=zDq=m;FC9)7x2V7J6) zI*s5m={CFJtcmruxHNSMHNI>XUw` zUu5x9yzY(*-7R$a09iNe{(j>C()X%J+@z;Qa&m6}RQMiQM)LprLyd(vGSq_`CY2WA zTJdg*e*I>pyya+ULjAUcDQtH!8?&q}<@%`R6E3FjBY*Z4)=!_4d#;7flF>QmgUI@` z^!~D~GG05UULl3k*?H~dkEz=I=>1_1wkNPeKG^u0CiJ9bqs~p`DSAoqwz5}#xXdLw zZv-(m%Rk#eZ?lO>6tf24kZ!L4tZ)I5Q32VU#P=+~_4aM%qLp+N#zzb>fL4f|IXM@` z0$GrVh)BrdFr8@My;NpvCjd6mF>X=snkh%$Is;l`vj0`W-Dr4yRb$cpD9v=GY9=7d z25W`XzfBQluzZa`5-3M7>4?XSkErpzeM7QP@%cDkB--b|e}3p`C3S=Nk?c{im+);Q z=<^E?X{iza{d0~sv*uRw(N9pKarQ8Um~z2y+G~ubeQpDDNP5hPgcXUk!s^&E#~LHY zXGT~>yfge;anG88&q;JzR&kbzeX9OZif9FT#YgDvTiZ2vm7iW0B^`~C#$SQBygrHO z!<3KW>ih~JTd9k6pLWNthaiT+sTdb824$F0M2BT0aGlQRYcZc6J9bm*#!;c zE$(yL>?#HE8kvWrSL(qC1XoPl$cfpL!G3jj6NNj<(56_I}*;!6$$FnTdX&@WViEOB8k za^O3TCA?Zz`hP#iKhLpCXN!3@1bzHe)z=+c9pz1>bKe!lZ=QoxHpQDI~24GCj8@d3W zM<-ns>~Wg6={k8NEJO@^W)XsL-CL6jr@q~We9W?^h^k3MMa*U3SvZQVOnqk1h zMfme!CPb{ovy$LKT=smjlAv~5vr>1;xjc0y zgs!{Kv3;@Pm&)j<5vYxq+|*f)K5jvWg(XN`bHW!`I>Uiuj)m-8uog z@m$#_I@8i|9Bsd&eeJDDCHzI-`IaH1J>#wz`^LvQA>ADVrAKkuM5KF2xa-uPNlf%o zR!~rYzoVerr@J*k0IH8y2^6r(6{0rMyq@T`D9+)3`q>EU<$#F>6ks75h#SVA3J&o8 z3L$7l3_UyxVc31z&GPYtl6B^uUg|n0vSrQ;KGPFCea}r86pH*~hNwBg=4JiMc8y$( zAAo>1{8aGEnKiVL0ANjja8e`s64HRlJPw`Of#yu^>gy>CyK>j@hTo_u zV^LYIm-hVoA>KE??{`srG#?}|!>|4G;P(AkuDkp%z04`)xG2UnfJv@rmx`6kN&AGH*kr z65DNP{RJF|RdOuEYAkeOG9dc*T>)iwYG1IL+6untmxf;o?)N-XT)X%g(N~mp+e=@g zr5loiMSd9T>SelT*_GZPV1$;kjT&UNJHIRU?Ii{t^DD$ELh=GfD{9rI{-3H%ePR}{ z4}$7k>O!#}ty5nrGHCu2Pu_<{)TL?<2@G2m8zE!xy z=N|_&Jzd`Hqh!@{&lkU9Q7)hxG1|Gm+(q@*tt3-1d+Ozc7^KxUKSd@9F(%_k;AawF z<^*}JRh6b1V1Hd`n~KtG`b{bYjk`72J50RAP5YYj6n(XBGD3C28=r|3;tbzSahBC1 zIJu9EACKULxN$g18_$lwa%@!lja9E?;X_uWbmxhj@#KQBH|D=UMsgqbY*>6cCAWa6 za$4XUii0Zkgz?RBgkln2LHDfVKQH?~t~_oKE%iF4>@_iG24va!0^K{6IXVo}qEI4) zG8w8wT~WzBs_K&+Q_|5M8PQs-@k+_ zA%Vd=YqY<$5ph*zR)-S@T~W=^g)WjbB+%TJ)!U0_+5E~Ac?kTT?!=^H;=c8ZZnWge zKGHK)_nT-EYRYjWxdCfFfgsjOjoY~C*V*=KB6M{*%3B4i?nKd8Biuf;O!@V3fnc)e z4pOe{&og%hsR&+v-iOw-xUUdM$$?i&3r6p@(3$;SwOU{OP*q0C%#8X6Vn`wooViQD z(q}VlP#2jN;p5#Q6XEfHhs)n7O%mRBt%G#%eS_zr9r)#6z)6LWggOJ+_lP%rmz$>gNR#q; z?Crmkw%ky3!2%;luLKT)8yqIRvN@Rmza|QKa8sa)qWcD}Sce(>e2pJrr!bu+UO@kg zaE<7nfX2N~-UVFYoL!?DX=&0hwz(hg7vR{^2Q1aQ?Ng3+1st?`6|jY?K3FxH|K| zU(&Q<3(z%e>{|x^z?{=q{)#2=nT$QUrPZ_tM`oS89uU-&V~0<2f_q`h(-0&L8GHq2 zVy;o2g1$(epiTV9{ZRZYmOXyjpEiu=xk#9c-4@NN)3(9ibTyX?O?6lO_OURNCz3A< zxJ2c)H&Zekn)~!0F(P@6`{Vxjw0twmGX(j%9F%=+53*ylZ~s1ZtG_oKZO&!~_M4_2 zG9O!*J)8MZplwIm%0bx1*2ShPA<3V}?y{G$5y!P)E2z2WYCMo7?(cI(o*knM*y0^l zb#)r!JHbn}o-TS0ls){y)U-G}8lWqT;WiMq+`P(P75CmpnY=A%ahy&0;8g_ndY=e` zLF=^QcmEotH;#O9qMAv~=eeh_5m(K{D!1zj1~Pjq>AG`N$-7oT;nQc4j(s@%fZ_1< znBMJoZa7~f8K{xYdM@Ut-%^_*zRZtq9;^+%#3@o`#C+j}{eOAn96z_B7)vU`fvr%E z1=&hsf`~@+U*G=oW<}yV`3Jw_t_cuP83eTjc=G}<_CZF>6befX3v8_vEjYhGd+t?N zAzb1-zfwpV08Z(~BXt^KcSiK4*88v2i|CIEs@%s%(s}LsqDeN&jG}*$kKp#nkN9Ip z51c>v%&LgnC$qCl&FIX-zF#*B7PA1Jp4z)ac{4hDO2m27Mee3SN;l&DFD&0hBY1t) zy=VcT3M3YV%TZx)*E*8a+&X)?@1x%*JY@_#Q*7S^R*Q}a1ZS9R3%$@@gORt?4nOX( z2GgoGBmY?c;kQLNu>XMu^M(0~d%qtY(=nixe_fpKveciBBWAKWKK&O?_sZt}z7Z+g z9Bl|TyDo32xQ43$t%|fh;~H)y3jC||3uGz1iA)mb8eO%y3fH_e+)-2WZ@3U^R$O?x z>HD~`qd~y*-B27?feEk)+V24wo0E2dtGSy+3d9hOVP&ReQZ#8+-T-c={u5Sm6n-ft zsDB@?M=@z316i44h=ZhLldmV1Ly8^Q=|o{o8nUud9OrPqy(u8jAE?}ubl7-)g6|wv z$4Bo{aJVHc$s5=oQIk!JC`1=u)-k#mLip=nxvvxdb14M(qu_Il4|v3XvBAFq;sfJ) zw8Awp`|@MMWl!av@j0vZp4 z0s!^JmXyPhIrBja%mE=n%i5pqw{e|x;d*+*H%~e1i#6xYOLYmlOe|De9ctUT+7hV zyRC0WWbcRq0|W+F_JJqpRwzydRRfUMGszEnISf5#FGVyr3I|Mz8=MzMj!C0O$tlk`{4LCMdeNs>#9K?05PFm zNuYk|ql5`>R#3wziJ1115Px=+kBJ3pB4tYB?*Q@0dGkw->I9E|(~Ft_oZuh6N6v@K zW(9V^!y=%>m9;*DJ{>5D!1j1m&u)y_i5C+T5>1$WvXdQ%+0kTK#`IZI8BG;odLS1s zAx70neQ^5hb3S*nlHT^GzjGaR1F|ar9mK2JAO9G2iOxpCOyL9cKSAIbx*(kjf=mQX^!oSTYmZ&3KAy{bf)NNc zar^V$TO#N5{!Y8%=Of|XcN659xDsAnBt_}(f8m_%e0siiNa@@4pe)ESoqI6_{w_y} zwZ%7gF)nx^t9#M0*E-6FeaeXWdJG->Yh2pd;c!au4`CuVK2)Q{Wk6sN!j`qZSK~_$ zRq0g@QhY1aY&1?UdXM*aoDUcxy3OtNJgTjwvrx2}gxAZrvmjsGvNK!!$8A@=Ltap? zznGm53B9VUslPsHcGZbA+282>LL4!SGhKNmD~8y$5W0rHMNeR~*Ui<g2%G(q^2MJX4O>I+GMEmFo1BgyNlw!BsMO|2N<8)Bq1XU-5?F z&$lu<3(E}?Js_mD;(15Qui-a!bG6XH#4?w65g#QW(Ma2jy5`2JWAxZUms{;Q-y%{; z15x$CZT8(Ni(1mJ@1RdE>wDNHy<}lkbo4beXEC@$HMa}|3P#(ynG213`|zJ;jhmZm zKF5KDE-P%#^77!d7McR>-ITXFnXq#@nmtYzb(vWfNUc0r&6QkLmsFEpMR08Vi=md*da5LYFzmOG^=#D?U5_&2P0|cITCq&{_7%B^=bGQ$X zR0{L2QF|$d`JQ|acw!YShHXE-3CmX~e|o&s+_>S9eGpjcK-n$B%_Q#5k$2k~YXq5f z7oIkkwe*)}1M2}3$kspHLWqZ!mqIRYu;v<0=)ufja@0-BO;m{$Do3;34044uwOGR= ztihF7!q}6y(r}7oCCKs;FAWzl+N*%N@R@~~QgiU;yZ|r_i~e81zzjrm>rwTas8T4p z`z+VZX)H_j9ak=@Um@}T1c-mog73Xf;Za7!YbGaq!HFw+di1 zdt)c38{;{!s{`Qz7o}hEp?*zeJ|!c9zLW|`FUon9cz_BcWy~`@EJsu}UBtbcyAz)v zJd3$Q*vh2CoLHBqZ`>u@$vP{Kxz=ZTAw6FJ2YRPkQNnL%(X0qB)NX8Y5oD0e$`D2Q zP1?DN&iXiqi{<|%+P#l}7g3{35S?{EF*AlN{16Nt1fs4By*i#476l(zYt_~CwUtc<| z=sSm|F@X$ur*45ARQc!~el&Ab2CMcAZQtv3pq zUGeseZ_HaFJzNU_ClL%C>0>qmQU#|7qdTt5_cF|cF#!I|D0-M0d-9QSIr{*zoNPE6 zwAENXPd$K3Bc(dah!EE1nKx;RS^;bKb52X1<#t*sD{Z?c{EbuZtKP9ixke{f$r@GO zDklj(v;kO1Bs(xSjf^grY!^G;v!WQVfW4-_c`i@07yud6aPI@!elC;7-Zy`QzvfL! z4^`7(kVOJo6+f-Tk9@%&(tAHPfz%P{m~878aE?sJt>{f$rd2v=y7GEyUyfY*V{POr*deHVI)HU#H(S}EqSZ#km;+IjoW_=pO9M&}A&@M;a; z;fJ||Q%i#@Y;TY!)gOOY%hVYAHFS*c8126~&q)t^F-+p*?$;wB^UFPSgQH@x1+Q_-(I59iMy$>TU%vk7*9$qT<6~JQ3v8V$*`U5m>#SLq3F2}I~h?n1qt_t=IO`Z~Lar*1JZM8cp zfB@F8#rrw0JGIX2CPGJ$sk%5Qwa(Bv@)~F%;y@goG@fM{6G37A(IMS~Q(umfG83gH zi-LF|{`5Z9sHclZ?E2}B6UhnKirV`IxtdY3 zm(O;t%!mq;ls&pNFSqD}v|zDGK|;?S;|p_e?%>15i+@#Oxzy+rlctPZQ2^PAf@mp| zWt>{>y_eI#_1sIQe5;i)g_Yf9W)IS#Zza&WiQbTlG^|aHkOU@Jk3&|MaKxzv$LA%?IoM+ih5F!`=5@3Q zTwK@QwJr_?eYpxPJ$ z7!PF#?`6$?M|atUghDEW!lkc?VHYydjI$z9JU&|7!7Xp{dHd{inv5;vcK>SIbiWUE zPHR=?q^X-U&Q12JKO1fBahrF%KI)S}9fO4MaAvhw&Q}py4z}Snr_B=0xm5x^s!ZWo zoyw-J2Z3d?P!V7}s0|B&;#pbWW)IJzAF*He8XBgpmI-r8g^^H?x2sf2ZmTz8)Mqpq zxxhEX-JIb@ETW-r7CDartBEha{(T0L+<0dcg2G;Cbp9lGoc|R<0}_bla8eDIK5C#? z;(QzlKU;n;oeAm7krQPXy95Ufl6_KlmPjFU%L(np3&W)hXN$$#v=F!nuo3&yrRg}+ zKi^c~|24Kmm$}^?7nN#IUxb8R7j-Lvme0Grxq9;@NB0zac~|<1ksf=mPiTrT<+Wqm zJxYe(L%OEt)@YC?^iwM|yiVWUTSpA+Orr!*)rqY9V2=r4XiZ$zS8gT>P<#6 z5Sx?^;Z??y)hb%>N8JD5bALBpv~ihjwe8d!z=PjBAA@K0oj(%M6#lNe$bnUtTEaJJ zP-;2HUZ1p@+E7O5a|`v7IZR)qb#NQUL|i#E*x#ich-N<5+p#EBUNk+OxDyfdZ)R_Y zqOy#3=KSJAb99I_6 z8P*3W*gPq{!gJ9$Lw=3axNew-uR4INC6ZH^&RwSZ%4x!D!)P1JcCTg*s->X*(&d5B z6Rz+-(MxK}EXt6CozI`9zgd)th`~z&2H*e{{)O!S{?L~yd2A1=aj`^}wF$VkJ$yJw z5Q>ppot+Qc@TBm;J!FaisS8PgBC!!Dr0av%f*JhP)0@(cYkV3YwMxzF`P69#AaOH& zxd4V`YPw59*M9vur><9;zZr>WAV2+QbOQX_uqvuu%*L5_0vAMH^Natz3*fN<%#N|@ zb>-Zd-Eo8^YJSV9wM>|*1NK;EiwH;8H^}*Y4bi)NsMYe9xECOM%kYn^3Xp&|HdgV) z%PwLBVn~`HhyFaRL_6;myTbY?3kFo}W84G0LA4>4)Ium+m5(DDnnIb?pO}GG#}LJn|;z=DVo-!*cAZ zd7(c0i|$Oek4?)+{5Y7?;>x{O0Y>F~760lS?Yv-u;A*ru!&J$SyEtq)59*Z{qFf9Q$y zjGmV3TOixJg2=rFwC(t3D2Z>s5Is*u9L}DZpGO@Q>9;LYeK!$rY>_2UyPi7v2LBK9 z`~2-$h|&}Mtg>bL46_yPWlV_#qMg1cEYHmmxhK8M{yX*lt-b!K86?RO-33-#S7yJp zoV*+Ks?F>-BhIXW*QzJIf zbfD!t#~?!HJ^X?Bfnq1zIqiLrnv@3pNaJ6)E1850@cwe1nhpZEtFL-yqLd3DPFwYY zWd28F$WVJC4`n)Vaose_{kpP+E!jTD`RR4)Z))K*^TG9$s=SM&DSmBKpe86TfNe`I z*YQl&$U-5XQ|TiYG~ZLQIO<&Bt z1s5EVcl(Cj7_h4S0I0&c$Amuy1^7|F1 zNu-fA+C10Szi#hKWPs|Mrmx4Pi0yv)(~NNBfQtppCU-?gBEsX9~eD!JpItH_h7i!i>@#|v;GIrf5r`|J$cXVyV)d2;_DAF$)BJ5q7hbvnm0j$u|uzI(>@Wrl5a*Gg$_%IpdeEQsL zg#7O%zhtNp5J*{>-`DW{^4j9=Beft@(FkFZ;&InTmdSmFZq$+IXHxmqF7zTstqIdB z0e%oKIT6~OlejS{^N!Zf?D3ZvlAdFt8JmeKG?kQpX!VwQMew(<29FOw0Af{5K+6qy zUN1!CGjd9npnMH5d0=#?=|r=7aMvY?HzkY#aW;Nq1&nJ50PvHW|;<5Zu0o+qVHD}(=u>oi|x%yW&lR039>Gd%7?Ozkjj3=}r#d$C??~aRpSCU^82Y_BTRu)9$norG=eK=I%wr-F z3K}V&7XE zWAf`~1xcOjhp0_?zl?jJ@V)aP(&lfRe?R{ZJCqS3nwtm7BaBwMf?}=hbj_IFN4&w- zDFy@X^O#)uV7SqysB+-Yx;PY$>g{=27Xjx5W3PX3L-II#(N z?t0}#C;PzE2pp9DWR5R0Q#f_Zl3_l^BW`c~YaZGk%m4Jfjo_8pI3(vuW+o24p$=D4 z0MO2z)pV+^w_=(nD7v(5BF9G3yq2K|CYi^p7KiJe_nVqOJrt%a7{(eu z`uZQ)O-on5;LsnxFNGb&tfJmkYV#-)41L~d#GwM;CRk`F^a=5Hfkn<6x!PFufXT)y zN{ls?jY}+W9++7tVha57=ut2;&fwdAl8Ox{KMK40tc3*ffoe9d_41hqAc~uNpBKa|?26@B89x%Woz*ut9@x1eRZR9KlqH@|EWg1s}nhxC6ROQig)ME+9-crkcyvQZQ|Fb)rQrcBP6}^Q<&Cuq6+E=>WWLJSk7`G z{r#?bep@@p{gAyJ-subeVLX%No~(=FgIVGY!O8$G9|vJrT!3~k2g<&`^_IEsS+^Zx z0zKabNbRSf(f`S4A7osp5f=%JKrfQ=7CAybUnC**vTnTl^Vd`BB91H+OnxhOMuCM& zd;b;Kl!$I`_Wh=4u4Pv>K12kirFSG@Ft6z7>Z+eJ3j9aygo}=V*-~pNakm~~L`D$Z zUS_q0gUN2^$m6&sdbqbY;4AIa%UY>3J3WqKhw{73sBPJ?g}iu8-{Zy2!H(=TB!K7e zz+grmATS%s z@c_M57GDcr5#rerXwbf1KBd2E%3o$}wDWqby5;<*D?mp=lzx?i2p+gpr zGmHk2Hl7N3&ucSTh?1THO=7&opIwmfj+aO^TBVQ#nBc?4o`-6i}Ka#W^2*4jS1}3pH<#C{h}}rXvKtKxS5dD*d$A^P3Vv zc<33z6<-uVRX3<2%14{Tb4xMqTocgN>b%ftp9JiZSLLX@Ld`@U#tGF^ZBMkyh0VnUstyM3%Jx zW7=MElQIAhK&B_1`mbYo-HoQ$&rjAVL1DtKpN#ePp77t`P+s;~2&XJQ3U{BwJDwDY z=+5iwYbirOz`d1O$)7UFvqmzZ-Cn{zgta`4>z$a$iIH?SQcXI7-tVQWefi!1s4X9` zzT|M%Gr$|{)|wisyB3sM3KBa~;f1OgMyBtvDU5yHX44%DuqfhmMj|+z-J?Z6Rs9j1?A*o{1vXvvYX){?7LSOF(-R)infsY+L4V=?T;0k`Ln< zsCBNN!=7ezMPz4wMRsf2@dD~1&i zbFR?)S4kbjjLv0(x5bX7EV0a)eCB^IbKkfAvRpa-1z!_hP#29PQ_9T?uowR(YIyF# zfElhH|9Fbwzfq^4DVjjMm_?VhyJ46Hvgh84)lU<%Ji|!Vgvr=MlZ_B$@1WemZO&d0DmQh4UB7wxn?9eb7y zu`_+a6mBy*RaS^;F@28Tg6TF&;Tf~z*3!&yE;bHWq>VS#iC#I6Z>R{2kmJw^0qn!*C`d(dcR5 z5QZ<=%#Nr=ko%@XmB;&Ho7#%SJGwJ^t#iFg%6QBjRK^mXPQq(}Oc$IV8`s6^jOg%s zFKM;iXnJ06-Ub@)Q=HpVLTG+rZO1PlfXYhvt2O#mR2^GQ{5}K>_p(H;@8o9 z0UiRjYo?C2f;Y&nQJ|#YN=V%@%zeT9w%s>F9h>obz6DaxztHH$Ic3uzKWWe@iwnH0qkDsKC~(==+(FTj5x;+&iHW7HF1;6`|Y?) z-!NPi_SM9nX7?jq+v?UYd>a(45ubu3Gd)CX|`8sa+6bnPD8)LB?ruu z5a#cEBqu0leC!A$Yu;ajDQw)QF^!?EwH%HG5oBw_rGMo{u-IspKf?w7E) z8bN8I?4&@Ib@A!|frUG6(mDYyt~3r9{P?Oah|K(pgygmF%~8j~CRQ8UW%Rju7@;N_ zRGma#hMEa^#cHm3xB@eT!?QqzOj&R?GnuosC~=CuqEiQlD+>MPzkUY}6kV z_ClXPIj0!0`w;1Z_?FcC%YWgo)UyIKB%B%wC;67-8`h1t42ffqNO-4a?(;g!>e1Nm z)tlO-3@{J5|)r$tXS5pm8 zpE>V~^E|^Wdg^rx$9jF&Fs#`*WNaJCrwk?N%`Lv5fk%3qKZ%~Cgl!pAEi6N5>8T%v zA&M<5ecr`+g2#psjfV>Z-kep(yQknFdsXgD7dbSAu{-yzY3+Zj39h5`P&In$)o0us zW*S8t4>hoUNI+=&bV1 z-{(9SZX)k#sft&@qB(QYAU`ikdU(UX8uB1(Jr7jdkNzN+o>KBFG@EKQ+Zu4e^tapL zuU3F5-Wf0Lbh;Wbrzi+97KbxC!>!_@7*ytmrLnBh@^gu*ppO#x$ZEgqcWmzZ8p<~s z3AQ+B^!~t6+=2KXI7&`zS8+5C8N&_J5W5LY9?hYe*Bvbf)qV3l!8pO1oz;0PB>q;T z+~@xD3my8EV`EUAzDE_7&?@?e-RS#kVtwH$wGqx}54)1LFdMclPJ^Om?advrwxH8q zky9%q2SWZ(^N@W*<7crfaVQ9fD&LWrBYc!aW>Jb?hi$aGuY4+J8;*P#ssI+vfO-RH zvXYShls}t%tO>m`fwIBiFQKqr)%E_O$UfEfqR8-M%bf9Z#aAGavFlU=O5tPStK2ic zDIp2CB^S}%j7@UfdR66LWU`MM z%OoMD01x0hbgypt`d5XmOl5YK_^9VjeeL0i?M-&pJ6o|;*^ry6l*iNRlT}ZQ0v+E+ zsuW%P=BJP*O-M&bP)28w?BSyQ{Dl8|rm=;U%lks$kX0Pm{nTY`2n_6J%z;AA9=@Ii z2$XC0<@Mu>@2{FO>AKvc(*(VffR@ZYo!oAmE)ZOCUh(c5CiLS+*_tZCj*mBvpC3U) z*|rrd;--kGMc+a30WN)D4}tZ9faGNRHTaYf*k@RtR>Wd0avS}{_cSysK^5*crNTlh z^ohk&r{T*FRqCC-(uB{&dCyf#d068LR9O&`_QjQ617(XNwIfDEY3&JK^?aH1*4Nh$ zy2yx?w6pA}kt@+>KH3!GO$2t%Xu{-A zxT6c;KaKSq6zNUte7rtQyzNI*l%SLNI%cr_YJfwsy>8(&*56cKfNf7wHT;ewU{UN{ z`&(*W#47J3AKH2c>bQqynnkO9#cXA5NwLFW)B}SGnk3YAzq4Ul%ZunYSKS_jeA6iDh>*o+i7iq|5+z0|6Y3?^AOXJ zz(t@8@&}sS%&#vP;ItK;zT+#Uy}f-UwEfdS_q9Dcg zEy%g}eReBPoafkWx99xK%u9eYhS+LP&Q-#VR<~x^SA2ehror1tytF6s!y1@`Az zpt_*C`4=P!4OY_h({+lTy7k`LzfQ%Wub)n@wXT}z?^ObC-+I4kN$^aGiOmp|(OOJ$ zzE@G?j{cW6hD(D$ip)&T)t4*zc0Zci&5f>;wMb1hx3-AZsK$HccZTXG|Iol{E*QzVBZn>>stp$kgys3%$JR|X+pPGfH)yJ8$8 zJ);s{rRUM*+{efM>0b@Ko0484`6c=7Dd0lT9NodVCqPg!M_i1f*iX4~Q_~Ci2U%Lo znCE-S!m?ceWHmv~S%I>bLhfZqHd@>T0utx=I$5MZ)VGTu%LlKA-MCoGjkcg|?%)1K z$VE?~#B%vANuJ1LLwG{~%$=lyzgl9<^oTR)?Z@&$DnjzU*0p!_bPyE78}nrkwm#sx zl>@w^0vAo1s3n&PR@13M(*}9{K!7%E^MJn12YxK3em00-m-8HKP^AYe_K+Rs*}#{1 zQQqP8xnODe6m9j!-^QQp?ykQJY@O98T-MLdrw{vL8*Ki=_M~;WIaX+h1$M6T6Sn`> zSoN3~+7qq^GyM7-p}+Zf6T@z()mt;HYPAmQ8@A{O5g6i2mdVG9mL{C-(W~V@u=L5W zW^i1Ls`1qI)C@kd$4>m}De;pKeVA0>#UPGqWO1A#1L0Mj_imEwRX+o5{0oF*gv@{B z1L{DjgphF7C@a$JbId}G2WGmbuSv|TTBUda_w=t_RP()d&`@S&tZCOYEY<|0xv{sN zy-z-m*SgV|AUCaIV%KP8?%}RI$EL+24gaEB{sgy?_j%946&%tA8P{3qI5WytTQYpxF~XY zFTfN#2w;j`KlSZduPm&J`%~-&XiGuRE4&~*yxhypOJ?sF(f8ttNpkldkRz50K63|t z@1#!kP$?jj9qh?#ztAstE#I$$%KbS|;jO$t$eXlL1)(=tm;wi)L!Y3gBuvvDXviXuzr2)|;36ZsVEq#Y z@F698_o3g4*K$ca?S`2@j#L68=5~%e3Fqc#JG&To)b&nnc(INe0&bG1| zIx9|!+!eiEgoML4ul53%C_q5!pbu_534<+U=CDsMvj0C+y>(QSUH3msNlA!+fI~OZ zA)V4CAT2E=($X=6NOyNgh;&NB(A_BA9m3E#FzaYB_6k{~NgPB0xJ&K+q zRj{Gb6^}{%8*>Td`s10ZLZ0&ok%U@wZi+$_PXTp)dKk6@UI3y8AZuVcliMQ6TXN5% zfKQpIp!o-7L^D9CV`Cl9xtX(_hFFd6n3>&zn%Y+nEGTLy>~-~;6B}g=g!lMQ4yJFE zEi;tWKOHqpy~>av+0(n)unU6X3ZIY8k##?`G%TcAqrGxA;_+!^p z6$^zUB1bV#_&aM_6kf7sC9HkVrp~MA^IiS)()9ttP7L?*&#H5$FmU8i7mi^Q?fFC> zs^S~mx3+ah#K?B^&>z_(-6f@@f28#<#)wKM0!Mth^_)J<9EbZsAgR&}LJo|vEZ3P&1bwFP5f0$u!D1w5< z%ATxM%v*DD0yW<8XE_~1T)lrb1SY;r5YY)F>eD9@U|JHKlk%)P6?_a9sSz=A>;q^b<$-}0T@D*3P_AP{idSP-$A?=7#p@-?Nl| zUxPrhaPL8{(J3{yo*?y*orGZ0U+K#TN`l6!a$9Cp)!G>V$o&~eDnzF0Xf7}=5Ffxx zF>j6727M^O72dmO+n2UX&W}Akoh$@F5_-uTqP%Evu@?s7)u$=d>8`9`%R144T3e&- zTVm|Oj2AMcXZaO{t=>*>&x7|v*+*6TcSrRP*nAvBMI0?kDjd`*P1n`!UXfFhR2^;I z$%Y@b*iGLd&~}OiQ0VrMcvsXhc|q;X4VJVHv0CCG7Y5d1XU-+AU{$QPDRPg+mlR%$ zuLRdCsQKZm?0OJx`ab;g(oO4Iv$#$wzbuM-G+R+;suqY@lfvRVQK|%$T4-FNWuT-K zCmAl#z>7vR7m-Anr1YZ(1@d72QcC>6<6b1EDm?BtQoEKWQ`_gPpf87?_@3S>_e0)9 zmNhbm<9V;28KFZiim4Q3Ym2OmYa}7gkU&j$wUKLIu)yZ>y{dX1c9R0QpDaKBW z_Mp*#YRDceZmb>}*fUocfn#!cD$E zmsq+kQmU{R1?+gaw|M82Dk?1CF{jH{@bkgn60n6Rp=I3qbNo`SrI;#8&;5h;j(w77 zARn6eioNl%AL;K+=NB7zDH=~bj-gsUWl?ZQz5s2Pi)iz^OIS&`$J&%FOe#{keZYN0 zFOi_&(U^ssiwbiB0^~EV%bO1}J{uk%PW|{0?(Q-RvvgvR@4>LMdtW$ec6HqlTU~Eg zG>+C)$=!v$&6e-OkQVsFoZ0Qht`@7YO|x)_yKKQ0pR|>^f@fa-IK4$V{RueooW~Jw z>q2_o65SlnR{9(xK_Ee*Y6~BlavB;?9nMP^p#BR!dN7lo92<|w&u$b>tvQIo2($9G zP!IJAWLdi&g-dZ=SPg0nyj^VN3Jjajj#4We=!*|~t?n=KV4~t4njrfV(likHaA(-i z?F8l3)4TH!<4FoLff8vS^hJL;$QgGpy@80K)dYcXMJ8XYxD{fLrje|)LiS&V&{)8m z)P7)ObN;a$aC=)*j0U$zv~StN>Z_Q`r^vP^v&=e@9KM4yF1zFA33=?vWCRg=L`9hj zDzrFf;}>`dqIA!=VRB)oLq{tZ+kKhvxapXD^Dts$nP~Ec^S(-FDN8d_?8-$RnH8+_ zO=E98U3qE6B#rFA@-*{N?k4^X|JYV`-lqz)!Fek1LzG}p6IEs%%~9Sy+Nt+s{OH+~ za^YWH9D=RqAnWZ=Z4aK999OzTmRgK7T*_m#*chwwo4%A-kZSK;8}dEkpu(bQiu_M8 zJoczv0OM|Z-SB$z7UNJ%NbKmL>;$%bJKx?nUG?yKrgBi*5S#pW{eaB0$0BE=kIg{v z3ZTKV9l(XyV;5$VR2rxM)FE;9s0Bo_Wg{fug$zTEi3lTT-&NjTaISqqRBt>}20TFw zz->%!HW#vMkz0?mJnCziNX9#xzk3gU2k&=H!zUkGoqMfL1^if5$M(UmyPADKJ z2bEJ8@ZiZausWlMsMJ~IuG6&W1H?HmnF({6?)b_OOW~sC^Uvu3nV?for1{9kHrdFg z{1UfT991!;i#pZvgO*XK0-jK{&rdH-m;U-it%#$izSYh83GND1Z&@u#5@L)PcN85kCh%*@?+MGzY! z5yP91E?{ym@;z2BA&#?xj|2A>-4?BEoo4`7J(5vZ(F$h#oa109@2ZyJ5W}9}HG=i^ zvM%qgR)%$RH|u?dxe;UbWYU!mD5GyNnm@l{lCAlzx5@sb$3_@kNeNq+oN0>tk&U7{ z?)Btzor2lRMIIZg5S9GvUYEK(D(tUoT|?4o=nH3K^xo_8{9pOr(`TNUmO#$Kjz0rk zcs+m+Suk_#N~5k<0hvz|s}D|O|5Q~B5u^H*v*jyrz46AG~FhA4{U;Ju*t zGc!?jx7kK`#Qq=^;omPrR+DmEv17c6+89=BVBWk|7>v96tY zECUwiUo_TP`3fZ4nL~4T`=80=a`EA*87<4+L_XV=Vyb^$pg!}@>bzrEJwTlookM?^ zvK6|mOTS7VIV)P2EF-G%$btcRbixZnRM9%1gzVM8dXXSd+b6)-<-HQ?MM@kt7f)o` zCxvmZgJZFzCQ9A?S|QcD7q@ghpiv?Qd{AL&&__;YejNMtH@N%Tbp70SUVf(_>_$m0 z9~8mS>!=IcpMlto(44W6>q8g8r1G1yvY9ga-%wO~+Vqe&Z5P~9H%U5}{QJVfK0N2N zDt>Mu{>jMSVCT@^@GH9uBNQ&Wn6xL9Q{!7I04idO)W(@s*M~x$i^JYw`rPnxEIN1n z)a052UzDc{R7GeTB=L1QWFy4ANx}P+Pldt+b|`$xVGU^?K^ZmvwYB<+S#RNY^1}GB z+&oa^aag?Qi{HP41B8|vdxsL=pV9Bf$g`t&Sk`{xTn6fTm96>!ErA7q<*2;Nn{5}d znyrEd3T|LYhWDl)I=tD4`$SOe8V#6Ms!jEA51s-&k=rQ^O4>%NlC z4NHM=lb*|KEH1V5pe`z zG$1*LF~pBSoC+#yb7wsVV-S9cj?dI~n!6TPHhz2(QH{-<1^=Nlp-Qtv>fccC78E5m z_X+OccC8apoXL>=>|t~>-~MdGW;7^#HYQ(K8AQL)uO=E{DabxRehINDN(3RliF{?|*GsnpF=ChkrdlhOVH9Sf& z$7?8ax&uZ)K5Z76bSt_z z#q!sVUje}84~s%zzGit}%Q!1bWXc}2T=n%cdKbqQlVS$-b$WklyJ-*KZ!co+5(=-* zVt#U8>WqtndpGY5T9A$tHe4Ofkb)qHhxNnfDP^uCSkdqtnTY;Xn73q&#Rw*YHc}Qm@~ApAD`c4&Hgq#926ZR#@J`y*A-z-Wx;LrH2FastM+ftagI+64W8X(dll)=- zDA&zY+Gnumrj=_&ity2+1*r)`n<)Cvo)#UZVbU}LOtusqq`&m}#`D)xOhzB`OwY|P zIZRghGF|Vwzt59AU2%6R>X;$%;=I)w&P?V|Xtnd$Dz6|Ho?k5U(-wBGFLF3-2#PXKKZkN>doyfxo`ir8#Ku+opX!< z5G}5us!WVrNIaq+zn(Yh=B4tAfBdzYjrYN4E;F=KDj<-Db3LB_8~T98$M%U``NEpm z(Hh}98-TvE|Y+YGo^-@D`= z<5X`p!WQ+R#r$#t`yS?@`3hejV{ixaN&&3(s>})=Pzs2S@ns0fRNzh7=t&pmzB7he z@=jKXN&uYpV_1t}Z%qn=tPz2;Cvks8yYy$klsPb>Ku3KYe@VpXKG3I5TzL(L$7JGkIfJ;>$q~j=k zuxweeD!d_fBydP%Wc|| z0Q3VQSz*w#y6b4S_kAQQoR@AcPk?D#`IYLF;twCjtdcZj#;I-vV?}c)B33U*eG`9G5C*_Eh7t3+Nin?RI!Q`5s63UW6n6ocf2p}1jqsy6wnCPuhRuxJ{dmC ztCIFsO}Lw@+LMZyGdVuKGsxfIBdd=<-6Y8pQAkmmjbA1_y2;aQJ%+BHNU~*2Tl<=T zvzK3G?&fc~epHD6Y2fx#+41f?sTuF*?`SbA%`w*356@M1PWq%KNl0|8l@G4B2Y7FS zcb=SB1JI=HL@($`P2^PAF~5KX3PYZNz;zugWK4rR+A-KZCJONeNm7jpV+(zVjI(nd zR5Te1p+J}52UseSZ|&6S#M^T1a)t|*6|}!?o-wW+M}B8cz-2_g9&P2K%;X5+#zf9i z5uo}ZJ`R<;y7`<RY*Ps0BZujkvW~--ifKpk|vVw0jgDbj4!Z0V}O<%fQdb#s1Q$e6OU~=(v zjg={iPSy`c2;2GWp0H`&g=M_-y$?X0)?b=0Z|EjY3`@Y?$@C|*(7S58 zbGOumTdJhDDf41>GG#;B>3#3Kbc0h%5UyXiQ}8?t$hH(}bc1|vPzP`W8?bO4A5|#W zHqO=Rgo|<6Hx?K)WLuWSV=+Q_#~#0Cu$^bs6K917jTt%>v>7Xkw0|%UK!5QSp>H7{ zF{y-jQL&gLD>QA&{3S}Xclr?6_5*MI7k1lW%0N5qwd`-)U+uJ87C^E61ASaZCK^AG zErxJ;?KO^t2HX^y*% zS4e7y;_;I$$pc@k8Ac=SnpkEy>sQ4V|-pef>9atwC7f)`I z-}U_X^%&9j1;qEp6p>wf(!7|#-k_@9k4y>Y#8W@aLanQL zCaycldW|Zu1}>iFtp#@sf&4jtOwGyD5+i*iT^|Mcni!p|b0Isd(1RFG$!{(mF%dzA zDnvK(J58q-h?O$EqUpP)^BpB@~vT}`&f`8@hS{vIkV6;)VwE%u8O z0zJoi{iv!5zTR%m7K}746R+^>>}NY!R}g?m{_1Zte33RgR<>2mt#DW+&%18L*Wn}J%B8jYy>CY>MjF1ESUj|nt94`%mDV}E?(E4JG%WjBs zk)TK~pM&3E`Ngf%`-vjvv3p4aQ!VtVS8~wK&~E$>7W;@JykPQDIpgRA)1FCzGTJAE z{w(Om-ksJv^QEFPGcaluStrkY_j_JWYwN&Xj)$TMnn-X=JoH%DfK|0?bN8 zoKdf#*u}%;gRVv2oORl>+__GlUJ~aDG>qa6kq10E>3inSiSQ6p;eC_18XGX8Zu4KQQOAZ_vu>I)h@LX@Z9+3mrppmf=R^r`R4;bwkFTfAc* z&e_e8@1)g4ukE{;i@fi)xy|SGj{9^O!eGUXNyufpMh7o zfl5T9lUP%J!~H3?$SgjZJEEd5bkX^4@Qu9OC(AGX2lD7Iq7#m z?${TukF zgs6fK@kZQ)rveXq$j`~aqVkS-l+hf=iz*R0*vU%$M7x;dMpNWwpPzUhdb9P#706#H zhKp|(e6VtS_et8g6WzTBY4AzHT7>8hL|fRn@>}OCT2pMRH~ym%PX;CEl+xtT6ntazabO2mfPO%qwGHX-s0}(>wAJjRkonl7&>JS4C0xxh5@2qyGA8{~P*tIP z1WmZ+x9&!^Z~S)6fB06WrF7q}Qzr=6R4`&8wUI@2bSL|!_L71zZ9mOl+%T5rYhBC) zfBAvkR1Mkj70r&G(8!R%6NgAb9Bb|D5^55B;#M%C+j6klnW&fhK=!FT@$9=`v<-N8SNfMAZO14 zsLCG|eH?;bXTe5RW8=rJ{V%|t%piToQFm#oyq$5*98RM!Y|n&HA7kWRHXkQ|=9Z1F zWVY0P<@X^>@;}3wXE}E5&xF+8MclWCekj@jIw1Kfem>kX_z@pc_w8ZrqoFoC42l9Z zzTmM2fCE3`k`eDQaW4#rwb&LqFhogyU44~KiCd=@C+RL`^Wl=BFOp2&)~+>M6+Gk) zMc))cWVOhK+RL2)?Px}RBw$u^I^rVavU>!00*B%2!?_dgj*S$IML$mdFI(SwnIAmg z?&0M~?pUVW>fRT~N-$-iBRLD+V|iDgq=&fgrv9@u|Ne}5g-B0re4Rs<9%?dt1>tzu zKFmk0f29R*zn;cm3FN)K>Ojj6lRctOL6FglV*J_?CPipS;P{Ss;+e6uas))_Xu!FS z{{{*EwM)r36rBJGXacZ(t43_1t2Wy=OVbvjUP&77)A@Uj`KX0sxkyrN`;1)1D8XWr6DPrV zQ>0F6e0S}{huic2m8puqLg8>9H|*J!@O`yJi1!hfrnEA?0(JGhCCpr0XtH_eEib=i zAV9S_%|^Iqywy^}sw}7oa#RJ^ziQd!O#;`5{)c_ci@2A1Xy;x3M0nPo3fM zzV2CxkQ0k*JqBuySQO$^0YF)z2Q+I~4O{qi+9G}zYVR23D&N3zAl_!}7T{B1DC z8}%C;Ok%EHu)ZhwgD+($ZFS>{W zKHw+ zrXBYER6r!TT*h~78SiqPpv=`ZSQJ zzm0}$?6PpQErN_X#k09k`k zXB+_$;$Q*eS5Xm@0xop=upK5Wy#6G=aIBjr|9Jt_p3Xf_@Wo?90``OfKC!Pnrpzip z+OMp>yrhEErN=%rQawI@bcS8TX~9YF5O(> zHQ=?c^hWl-!1MSfVpM<^V1i=NPF>?~RWs?WEQ>NuM)o-57yzDVU?|aZJoie}3P_*8Y+!f66x%QXY$4@ms z;ZOmSYHRyOR^gdY^aut-3)lzPg_lMTH>@`t7uA@6kda*{i*IVww58Ie>>6X7q}xyN zfod!^`5m5MG?q9eNB?(OZ(8Br7qLq>jyOvy97wFF&DJjXZVITvT+>v%h*u(l!fV-oOm8a6% z?g*qn#;UwGw0dN?9^nq?K!*^hzyy9iTaH_2L=vD?b-Rz$+Lrl94NkYSNrYb~CpN0t z|AauMJnL7cJujD;gH_nua+rx1F*1)rdVUQD6Tm+B$0wYm!}p zh5>nJl-+g{@jU!s#Hd~m!8elRTTdQ1sqRSKCQ8mVzjs5c0jzRsF*rWTa*Coj(>@yw=+G|t3 zAGQT4rOvG zF`5oH};!Qx-XCoUDWjTLQ8cOH4HqB0!6gnB+ zfw?JiiFBzbr(zR!{uf;b+7SPIh|>|kZ1a`N?Q!x#?td6IckPlv9Nt4^604Hs&{>yV z2?5WTFJ$aUECQoBC=pJ(DEu6=CcBY@s4U|%_jftZRn-7OM{>X>LBY1rAe>gdn zEM}so;OzI~QbAqSC>mIj!UtRea##Ga*pcw%axUv3xE5B=1DDI{YacGAe*(8rT^5-b zes}TW>#wu8v%jP8iHDFpo!z1}u|UIUV%1?Ff%it@vC+K6$R+Hr5%53tSXan`8s6ah z)1vHdPB0caW*6nu9%mw3xF|?bk{}Ak5&No9n&t5y-$Z!}zgNQpp{?9>s}4uF;f$)8 z{jVGo=%Uf9dfky}9o0!odS;T_I3y%0< z#Y%WV96R84l2rIcZDM(uoRPH!1nDDu;7{@Q=L(3j>KJa9L)E$Z2TuA|Jwf>fi3R?r z01$k^iXMm%5id_8GoK8v&d-X*XLp1Ok@$qK1{S8E-1cogxt-dL)cHxN*&*T);=_BV ztSFVE`Y3;6v{yJGKvZcT;rR5hNUn9Wt~l)h;7E>_sSj`8!%Lv>cukzK;Xm+MK^iP) z$*J$U3({ggzq3<(FlYO9tH=g$7e#Hs>Gny}+zKO((!&psd+X%w2gpMvZfV;vLMcgm zR@g%{5n_Y|@j&%!ZxgvZ|FPk>fYyg*H92mOcjbf>U^b?3m=ZoGP9*}aap(5}ePmay z6C`5#h3Z2c=x&!)3WcWWESXL0k2JFX`vktt*$*uQT$$k5aTCyUBJhHZ!LIx}m@HmS z#n(p!t77v4MeTe}M&zy7Q$K|JZNMKL6}c?+$=mGIwo{!Of8mWt$Yz1nTg#)nl_xP~ z(rPHB`dGkg#S9m}$OdTOzM(GnuV-|B2lx&#B3>jLklY@?=Bwu*4<7&v8=aX6BMhIU z#=-KnhIl}bZ$%1~fy+Ms;eE1o+zCt?2;M1he}gs{j@6#^_3`Ofio*9j05Q402D((@ zm3LP7VaTLJCeUN4G$TRAZ{Z41c#Rfn<0$&>(+%xc_&~pZOP{?E83tLvn{~ z1Gibk*X%P17!Yr@hyzXUbb3=hje5oL2O`RXHA#~lW(tUwmb*#L;Y=#Mq5+u?aR3zkZGknO97n1By_ zgs*i^9?+(bBkk|>ZYhGr1Je@^3w$#tvk-+FP8E1JUuuS6wTo)+!rk$J#xZz9WNK$U zJE#qpead08f(PB*{7v1>=+r4DrVn?C+sS&5KUFdg^HAzZi&Uq`;<$i0?m<#g5@m$c zk&D6qqXrU3Q3w>jL31ht#O(o_I89snUTx<+@8p{%nUJVg(Z^LRRxGuKKFC|%E))B6 zqH>4Kg97)oXMX>Fa%3@*Mz>M%Sw-TxT&cjT{!PY7YSl%Q!9|v=eKc~?*#0m;z<27_ z#<%{yngUo+Ji$G|eRQV-*&v8)MgwNm{SMKBs)4OT<960vDIi`WS(5_fZ$G@P_OMo| z>ht^CKT#OC<`Ik;SMJMxNr;y?LcCiq*pt)us1=PjjTu7Vvs82cG z@q27i`)Nul#Qt|el0u1Ct}ynaX#QQ zf+ZeD1QbXk7>qp{V|1}`dvT)jy?z~tcGVyX81A)a(xWD5JurU%HHe_EWUp?;Ywi`jcN;Hj+XYiE_6hNCz$&YJXW0i2lmRi{>#W*-S(5YB1(MI5-&ER~v4k zB|XeeBkYYk`4d^=gS)SUALT2UH@s?2%as?c>lt?D907T_>3$0Fxq0Pl0RP{RMUIGy zJ(>Igf!bE>VT$inSjSg3GN98$N}C?(^JOc0Lt^|jaIMBs`i%x}<;*P*nI8X{tC7s( zm@&U*4Yg7I6`Fw9@WZI$xwZ|;CwtvGm=oYzHybwvA*6Rat#7m50z^%|41z_?r=Lt! zjPf5PB=@wNl9Ri*I+H^6s^qnc64AJhl{vF5zU1C-=T! zi(Mn|9G3AR@}DB$^gc8GN`KdIU0^>2rdJfJF=ONA00DyMx%j;xs;dI|oNwQ#h`s&Z z4dYVF1*34Ywos+QWQmtkGDiAMEeO0eKGUBlFkt_~G5I$um1fy~z0lqc!MoYElh8Yl-8GTFhu9~&56XT5r-27)y-9OoYp=*RF- zgN)0+ISln)ADlc7(q6u?zWsl%C)IhBT{uTceL+DF2hv%(j|LbF=BSKKH2b)4x^PvY zqltP&9KiXUC`>~H_Cxc2BU{25O-pyq(`~j*HMiUyXaoGsU}XT~vr+VP;m~$|{M|p* zX<{r(8*crF%6=!)Lx2L}5%0gr=DoQSt3Ksh!SoGgP!udZx&;MfcZf0=iM(n_+?QWT zO4pllG{Vj>MYZF9Fk{whVAO<4AC|B8m~;Exy+-DDpXo5{@3L<_ea(t!@QXs6oF1nO z`m0DCS^7y3PXfU}gd_37>_%8>7qKsAX8{diMa!r7QPG)KORq5ECh7b>mlhQOp4MANc#b=EAa{=*uZI*-WwgB?A9?{Ua$-7({_^|_eVPdW*U2NJq-z`l z(NXFu)om(e6b;4K4sEY9KEHoXQQ){RhCp6iR@D(*`tD`u+ql7ROv=D~6cV|f1N#P- zzT_j3%x3s z+A!k{JXyU~Ju;I)!@KueE7>ZWN;8Un2#Ue+!5q6E+Ua~bYcgOmZ5x!hxgSj(kUSD4 z&>oFv6YS{x@cK%_5Vs7<(&%e32 zF#G4D^zs4`J#|aE7qM+ud;n` zX;M}W{@(f%fz_}V8Gv)FYU^s(Cqm#7!(^FZ?bpx51vr-yBZ;Ru{@mgn4u9z;4xUJk z{lj9}d#_t#5jX_>j^CxAeWV5S6^hQdEXS<{k2y-*rMXw8OmuAQ)WTx3QzpVChy&Bc z+=%@+vACyZK;a~%?Ga%*9nsm1ATN=4rz~Zi#Kgo@_y4h`_NS&0?SBSNOnn?y&^#X6h}ijGd}ee-+WURf^Hy>X-(Q$k^!Q0_EvywFj`Af9 zW7+{?qP13exYxJDM}YQf9FTOLx~*W3-to@2-|{W-J0}ketQJ#LUCx>pj@^FKY=J4z zOArQ9h}|W3V||3L;6ZDBFA7kN*|a`Vtm4_6n|fn#)DR&rU^16JBMwN-9PoEcIRGRL zIHR(l)pwERhqm?64)2$%XVWgl`Uh9Me7jxl0hoeVPgj9dk|P*+6M+L>`ZUnjJUrc+ zO|cZ5NTwX4S}?;-ACEnouK2&cT>mDE0O_UukAcO*hlY__u$&%I7pIJIly{;+J=Fff zhypXW@0Ga$nvZ}{Ua|YX6)@zYAm_-X%AgaL=}LX-nx6x$78!LS$^v zH8h*hm};vDxWxwP=lLA_vZLQSlgIb`S>Yh4$zngWUGnl4ZFo1mWE$B=3T4~24-li@ zkImL<`*H7!F9CS^=%B7jB|K!e*7(Ke^*>yvUo6o!+I4v5+~S1N z&lu||#ysdS3b}y2d;nm^GoyFi?J@d$B=hU*FBKGx5gAOOUim;7sT!n_yji%xBO9oQfcj|}tGf)5f`y4)+9L&{a{pR;|owDtv-KCz#CKaS3 z&CzG&8wSH-cg`5BRSjVM)483=wh3-+sI2ABT9dwdHSg-p2&v|!zuHXVxh%;-VO!p zHldv${?k;$9bBYe_%7XeV`aKM;p~d?UHa*J(<3qi8E8jI<1rnVVs_sg(QJ8p2eaSM zrNr;@rtQwg7@xmnkwD4FB`yim*!OdLcKi)S$5ycHk8rWy`)stRHqtr9VUJ-*=zIM4 zwi0wkq%c3~9Q12{1XJSAxYu62cZ}hGs%?}!DfWGKc0OWZTh4mWUHfds36ZWrAPo>{kZm%P+iSpR@#D zKBYvLDVq4BjxiOjN)kl&VXJUq=t*)B>4{cAP$Zpt*Y9LScvZ7vJEMHDeVg)p#A%+( z`FANz9s(;w()W&mxlC@{nZPkS7tcfC_(azm$VaJ;9P zdFv-BQq`I1+4*Vqu;At1L!=Z^I$M_&g}cBiWJT&do9!vyfKXi4C9V%m`3cj%D-j5+L<{Ri%7)_-aTwB6 z zOg3C8!kE#7^k9E~oh#}O!=n3e?Bvd5Xj0LU+xZEX^<>R+LuWPi!(|_}Tg|?QzC#P@ ziMH9wWy8h%!C+>6{dLrcn5J36cBM+t%a?!LcC^yYmN?~2pKr7Y(XS{?UmrDS4U!}M zLI!WNc$}4TeD%!r;it?}k0y268BJ`n=uj@hOVe;>tF@{)WMI{^v+D|q;Pbm(uuppM z`or2VP~m=vz2~;+$aOW(+!DyoYfOGW4sEWYYKoi`WfC)K59SRMGDVSANR>5i_e0eB zfqEIShVG=_9FZ(|5vUs1lvnmV_}v<{pQ_7fhCm(MQL8?-CH){<^>Rw=1e}Y0RFp{@ zhJF}zZlylaLSxl@zC=wj862$f?!SohITB&xg(_mo=(Um2u|c-65$V5il+FRlBh_3X*q9Kc(N+M65ELW?K83J$T-FJfCS z=b5KzTD8s4Q7pz{2X}-Pe|;U<%rn2UjeleOAm68$SVhTpQ*G)y&ztuwsaS!TzznH< z6Rj5=mBNA}&V-hV57Dn^Q`{kflJmuDa<6<10ANXgLq(WU1=K%9K5uw9T3CH!`UI+Z zrQma~tbk>T5hzo9VV^wsI(~P2Qc-@+ZAEdw9um&;I$VP&Sv*DlB|Z;Mn-I!VrQ$pW zldn!IWcZ-AW`AU~VuV)3yuo4Y%Iw$HNtvnvVqls#X&+5c;}tro$EoyJ`m$=DlJ;v3 z;aC`*qd!%A(a*E!UiRzAw-Q_ZVsq*_IluUJCVXs|fVxK~(-^$~Pl0@%-Zr7S?C3Cm?;(h3g|G^{$<$3Qe)ljc1f+(m56NJ z-J4#Cv+~EUDqf9FkcdQVe%Kv~&nkmXLyW%S3kQ3w`lD@rdCC^^bNW5A35?hoR}AKG zvz2W0M+ki{+v`ZctL0`p{quIJ<$MRDU}qnNul}+Zv~_o3*_U9V7~yi2aX)-emOS3i zDo=F?XCZW=jXpToVudqMT}$arHl{zO$bXq%oVeWp#Lb*KO%EOKU3^ z3ViYfn?C(KTB-O>NLFcf_+8&;?PaLd5z?y3jg$zftxv2 z)f{1TuiQZNSd#ojVM`ka_bPYgg^#ofsg0<29TvicVu)V182b^o4oG|`uCxBWb)H)$(Ba|MLUR(&dl)6$ z%o$Nf67P2YlrmEGzYHlP0O5?i@Q1n0*WhUBSW{vJbpqwL5B}8rajTFNK9122d(Pe- zkSPf=i4aLNO`rK@a4P+&${b0byjYUU!;Y-OK8#e`6<>omR=!ny&12v8OB^*89+HW7s61iHWkqpLBW?b@pILp?$X+CN?7~Ct&whOd|++U_=c`|B=%9jw~h@k9ircc~!XmAn?5ESb?VCPk8iUSrU`F*=TK%md;`( z0{bbr+@#z%$rxy*-B5&EnT-v35M?p{45l#8+jUwFoNQY2Y&D$IzBLaHd>x2W{G_t% zZa2Fh?5Bo86pxgGfyUg1N8nrti|mcS0O1oYTjqAncDwyZAVJw(SX5Y-A|(9P=f|X8 zpi=nsT5AgJ!wD$-z3beZyKD+8cx=BCcIY%mI4SxuhlirlsB~4gRTd-}BTkY1Bc>07 zkUs!q>)anhrR9+Ddzi@NL*0^#=cf3v+&$HzI3o(Ds1P0LMXLRm2I|u4+AyWoQ}9Wq zT7Bp=!{OK4!blF(6FaxC4fj;3*r6}T^SWH7#Cx%5w}c6OupQO^yVj}$5n!<(N!=eQ zyZoC8O%bgT{t>PHDwMtEmi}_y0}(?JdEKFJlCIv7B*%9|c{lawFm|mjEF$jkt5MreSt9n+2emvQEg)0rNz<2}oz zg5gEar&fGn5AI(mg{e_2MiNA|^-WjyyykU#$Utqc=Vb$_-c=+I*6P<8Xji=^g2 zl0G?-Rr+I@fg0=k_w)2z{K7Gf4d8Hp$&;0ySeiT$&u+ zd~GL=st`tZXx7KkClu#98QmvDA5Ve(f7JqQ7{VEYyT-LBcJ< z8y6nqoMS3K5FEm? z%h4Zdc}*Pr4WDlS)y4-Bx`g)F%~D@&4Zf<_%3T*Mlwzn?d-Fm|pWU)cF%gHCHyTIO z0GAS*GCe=XWp|euCHaUD)CPm~XFgc}a-=@1N3Z2L&f)6Oyz7m8N2V+XBG*K3{9&!K5PH=)aaQ*Cl$l2Jpa3?>`ULvC+yb=fP?xQDyU3E zcyIjMnD4EZl`1K&mqPpeOn0kY#8fp-;Z^>;`zRts`C&OgvMN5zM5P`oyCRQ`xR298 zdYBwwP53E4$h@spIvdI&@{aHa*TXpd_2}A49M#vhbG%I&U8;IT2DRmhz?mAL%==sI zt)e0Ivl2_Lsi~87r9e2NxPrJU&aCz64SQ$J`nJp*9AT2wXQ0j;bPI`Z>Gn;Hi2QLg z?o#gVPu9hYQdERLj{KgH&r!Gg-O|TzMIlIQ$a(r8Y8&W^u9E!cgQzyYyZnA!-P-<~ z$j}bA?Ktc7+bccS(^PM^if!e8D?(KQ%vJWb>rNa8MV6|sEOoOV3>-)WKIfZj>C9c7 zjfuH=kb^gB#zbrC9pI$lstA%4zKd&~Gl8L62wlc&y>I04bkGsIW~<=r1Qwl~c7NVP ztKZ-Y+{gzr1+V2Vb@KP*Rn8eTucd`PKdR*_YC9t@a<}u3qXh;lc&u>bnXhk%M}dp&?9w5n{{swua;fxA;w%03&Ci3T>r|q2zIfs$17?DWJ)B_pRhEWQ zx*a!<{l)M6i3V}k&TmJbLrY*uw)J%qNZ-ZE+P0#OzF3}<+!Uy&xNseE1yhE*x4)AI zo*5>AKt+c3MYQ*e1{2;gtJdNlyfI{BimDPjgY0f$p< zvDZ=k97g)-Yx0Sj!anZ-uTt-8D(xK6H3loMC8i70g6ttLySDwA`cl|OHf!}M;6MB8 zQ>hZL<;S2XbdXeQ?o8G~a)h=^n;oBRb#k<;Vk` z((M#~7XxGu)c$V+Wj_`WPQ5$dYU3dp_SdytFw|zCvxvp^LU3Df0asHmgue;5W3B&16kq#FdJ5d@@D zK)SoT8iFAH#{Aa;=w?O&4TP6_HXgJNN9PL=-G!=<&fyZK=x0C!(M3N7nMcTxD%Sp<8 zEP9ZLT9ysXzg&-8fNwf0u#<7=g`T6Kb>w#JHZ}5W^cr2`IzK@Os)EheSu~s-g>98_(Ssi70SQ@=|F0@^qk_BHv-wEunnST%HzQgDaSdps4(^V%hjXB`|*$Z4{Xpdd4}8Paya z@jmZnVLkR{JPp_C&!&uyc+r&B3!*wH{RO0fTK{4DbLjcI-n0Hmtzl{2l;5MkBvp>5 z;KubaQsF*=bp-46lN6}#IsYo}RZ73Oz&oV02)eY;dqKx>BOz)38ImL`h%lP_t68dI zIleY6%z5SAid3CaJbPRSqP@4sYVNNW&e}s7EMJRw@MtDgQ2T=>D9xIf$DM{$(R7(E z5T-xW`R7e^QP>yYhv_Ldry!W?;T*6Ie7b))yT303Ng(={Mi~g$TpM5-s*tttk|pH( z6UGpI&dy*NJQ;vy-tiLBFop&YmQ8MzdOEJH#KZcl3!wsB5Ac zTYYiVPSkC64%4Q1$?g7lra%F`nz7>&gM^GAknxf_lCu-j@boLceZN2z_<(LVwWdpk zS|w}B!~RgIVb-O*T`su-_AQGgBCGwyw$>Y&yAAE+HG}Mb?f1_Zf8V0>DydzmqnBP~ zDP~D1o4&}JjWd+V%)q^wihvBCM%SB#P^S%OUv^}X3sIY_nOPXkQ~q22e&ns z01ePrT^`P-(#|M(@O=wOQIv zIq=yGWX5@WP^Nvu98hd%P};(UPV5mCQbB&21?sqC&~A7&?Mh+CMY@*ofIIo==e^D_ zsBIh~SsV<+!6&Hp^>NzJpVi7lwjlF?AjCTilj(C*o}^TZQi({|RTOvj{ab>9syx>k z5gL53^is=+8OJUZ2Fay9iP)94Q)@9(ral0u8JDe2 zpYOI~F4o*2OUxjnx)s&GoP5xb!33onjg&9R%yF+F8ZTdl3;x#=zYWN(gfT6^=#?&V z-vQSN{t0)JMQ21_LB=M_o93j@=E`)-%gE*953S8KOOKVJiP&Yg^=nU!miA0sl9SNP96`ibtifK*5>EguVr76lips( zXj!w^x*gmMWW}p(b5W%2(9G=cuW=7Qz8eT0&KwK0)TF0?>GPTzv$&kv#Z zk>+b9YATG`CZc8;55us)o@ZT;6EJ^`MY;&V4CQ_ELyJI%plM#40f0HUF+^?<*h4=p zX>d!nv)2y`$w7H; zZ$T&Z;3==!olRUoCR!o?X2pMcP`hIhrY}hn2 z?^fPf!%dij<^36!43k03!P%3UzhqMck-6HBJ{1^f>*aViX3Qd$MzIJc8|qN!%IOt{ zUdPNkERIn`{bWm&JfT(HX;K=wkeXXV)~0OMyyz5oK8c#5+(d;88ZNuni8of9cVkbN znue5>4*mt$FjqJ+vvb4#ag5SS$$C;7X?7;3UQikHCKE63u?ZM(hU@TRY_yjEt?Y(& zna$9I=g^PF4I*M_=k2EZiua&a)lL933_9bZSDZu?fZr_@96g(d&3A*7wSA8v(JfOb zU7odB_AFLHw+HbWbxJie&)CyjGmi#3F3L`VZFq3g@$DMHo0z|Nt%ZRo+m&fE>`BTr z_-+j6=kK;Tj9OGM3g0WV-fH`9LZ&yNVUS&Hp-uzXclXj<$vPCf8IF*7n}(#&zR)nj z-`*1}E(do;3oNT3*ml^x#0_z+&5oKv8d;_%ZNaW0_T=DO$47<)ymLi-0U2;i#5eN= znxBm7+YKtwDr)UTnS(xdgR0ZdNnKfmJLXj>hJH^1Ca97w^Y%WB7wqmc?MzVzY#R6eKp$HOW=%uLj8*pxm? zi85B~5FwRu1OtIuGLo>UL3?UGG{2gXPU_<(<7K`cPIP>2s!Cz@yJWUl(Qo^rHvzGK zGcrx)TYHa!M#f?gRHf_OqQ%EZuB)jvW3xASHVUpKz6=iMfURq#gG z69=Yi;15+SGeddpL$>_l{8A_#sErU7=gd0`>F-^;GIhH`yIuQ)ad2qdGu*Rr$(M(r zi|FFQ0_gwv9Xb$sXUf20P&IRgherNWkVESEBz0ZwGdyS{f-r5|``WE$)`xWMTT^2r_vDw%!ll^=7R2eNerv;kEi6^Y5E_7bv>#fXz zVe|ll7cG_F45k&#FU1)T@*es@p?*UT1mwaG{63Bl^kj6f(vftu+73 z|AmSC`|=y&mg)p!Ou?D9Ibe6gL<1{cc9Wr)diZ2X&42$ae2eSzF)v8OqdRMVIAZkp z`={a9U&wZ~F~y=1AHMc(D`LRAoX3j?^v!MUFK(qr%v!6JFpDBg4-@-$Db*p&43<$w zXg3p0pF5%HABXPG)6m&>w}o>H+7L#Z&H{+<{&$l%k}Qi5?)N;;kN^?$!-5ai4~za5 zVkQvW7*NW2C^Xv14ZGd_Y$*k{Hn9r)MS`UKycPR#4A027av80kmGVtE>ZP=~l z!|hma-E<>gIXm_tK)lKdw-XOwaARM(Zrk+G2e14f>^s{6mQwHK6)XYh>?}5BFDkGI zui`_^YjaeaYj?rd2{PSmTNcd*Vk)2V#^uo8g8`tFi{>hdIqu;_krmhB65H_77yx-9 ze+!?Id=@p`kv zBb;(6iOr^rkPb=qA6Vh%;E?Z!bX%+GR7(Kq`jlXH@%A;=lF!yxYzZZxB#Ngkp7)x& zl-bl5U)u#2QiCS^(dWULzeBPfwZ1muD<$eB)z5p}1^pqP%46Fub|;2qf(y7i*6tqR zxOWapMd>OOMZu@^=*7JmLvC~(S&(Xg^ZTy#z5##)b{Ih<(RG(xZbG{eg07O$#1?Dj zt_+{IpL9JB3s@Z3e=Gd@I0S?Q=t&+w+Rw=G3?-`T(hEOd zCA6GmD2e#pEScTBGL+s;{C0nPD6UJXXs8{oCUhS;rnRVXRd?K)S8*Rq|EILHCK6kg z3e;r`V1S6*AuSE3Df1fV+)yF;WyGt77zP@-q-oZUaNM%&(?p;9x@1VK!*4e4<1|u8T&D=e3B7ku^mQzoX4dP3lh9V9Ndbw zYI&U8Z2kGwgA{4IbG44a{)Zz3x22K#<&a>ieA|Y${Ly2CidjyOEhBoct9;7hr51`P z+f8Q;d&effTUsKV_p#h?^|8;Q#9}Kfx39SXx<~5cF%LlsyHxZ#WS4 zXvjjr-jQZ!Pmv>MT|-#g^xh3B$JCF$xtn2G-tm%q3`6m0kWM(om)4>}Q_hB#r4iF@ z_7|Co7f-1HDyqfF>>NOENp4F4YZOmCLU1}S%Jve45qq80Hp*iDz|ULhl1m%$NX z8TK3#-KKGJ&}YP3xY*b2RI5-P{2$zvjvGF_aDT;VLU4DKa{{bo*Y-_K&&S1Xvghb# z-HV@zHILb8N#RzdMx7e2QsrSX+a0#JT3#CXFr>c*iUz6%;MJpr{7W?>?fFQE!h<%Sl6|M9(@7ME z+g6{HWP$=Kn6T7W(h~MK_TYt>xGLSnDf&@+)eJvqi@1Ow;p5Hu=4dZf9DvZGLDqh% z>t2f3a6bkjE_~NoR@3@6Ed0{j{H?-!kJnK>eY(MCvt?K0pedyr5cT790@q zZ~xhjpgVeQTNNC|u3Hx#TWRr@D8cU(=>e8m8m0g-V>xzL^f0kw#rGy8VIT7zBS+?q^iv(iQ6#@ls zdDAKDTTmMjcH}pue7Z-@Sv*9_V-Hp%c!^H3paI;NsTHReu?iENX?CgApL{<7r^Io_ zEY=%9`TZa6h7(};CEFaQGfyI_nkBX4ZVQF?AUnvoW{kUL6hp0*&RVH8npDs;hx=?w zl5D7HKhsM6yEubC;Q>I1>+^0$a_#`FZNlrzZO6RJ6>S!RLf}s1Cuw@WeI25r#~fixqPnV&B;NkD zw%jEnFHJ1kpEIJ)sM&l%!Sd|G8+v{TLipNDCJNn5=1tGDL$oR)cpPSle<7BD2 z;$+wf7xxz=A|d^w6uFZR>E}Lxmg22Kciy?>i7Jd!$HjeebvaCEk%J9R0LTVsQ?0cM z7B-29s1vDAzA!{%D&_F?Ni6&L89jgNnx|lu&g)PHR7m0?NnNx5b&d3KFrAh($#tfK zzE2Y7CBp8V=+C~}A1jEGdLf8cyYjfWs*zYt(KCuGzmo#fl z#UtKhoVbsfGRQC6dWTbYX_JVK-z4w2b;U#oEc>P!H>t1DG>u&{wfe<`o%jx*@Ci94x_&Ou$vrjDiJ^?t%H$*Q7FjYdA5jxHD4@#;$y+T~sP zr@ngF;0;Z|mT2}-+`zGKCb-#VMlO1m0>Yp_8$>`&=`hzGZy&NIrQl?-@3o`zWnp$R6CgHVNa+3eIN90-7EufJ_tWC zo3~d(xgiyI>-n9qCWD@DpC>JW>&S`n<@4>uSTXI8K#gb`pQDe_+TYhWj_p3U5}wlG z6XHub_SDKEP6hyYLl)!V-=mvWR59Jg+UbJpUL0zo4!2kbccdl;9p&P?mMQV} z=^zM;^dsBpW8aHE6ooVrilZRv9pvt0V7-~<0wFU(g8arln`WhGq|xU4@?JhH5+;Kk zl~Q-QQ1~ZtPov~Aou3kE%TqxDqL2E&r|e(<_!R-RpS)kRU$I}_UHe@>TR&?iXK2%T zf)$R;SyQAzE52Oob|!BDxio!uvqP%;r<4^;9zbBktCl`xad(|nl_Id&oZ`qCeVG+> zA;yw*hQ1Ma{Np0vGlk;ZGy1Q-HWeE+tpy#)<$1k{TkD?3PCwq`Eou=Rr%%>YJyW)g z=;OU}Yq_xNRApAlETqerPTYXnh&EhbJvrFzWU1h@mRSF&q0Uj_euy*}9pTfi%le#o z3wSCqqdI`_PIN>3-eRKlzv2~$t^M@9Y| zk}0Ykw*+#6F9g)ha04mbU%S{aCHaP<26MqrcL}Jg_MBY^_ALe?W^IpTZ}D@9@OsQy zIe>|Wt()ugctJ0ksZe*|bM{k*oz$z&O|3#&RN6|Dx;7TAF|>8;w(mm}G+OGd5$0`f z2Y)*cjYUwyn$ob)V|O6?V-qcP<8qdOzC95HI?H+TngnnjJvt4Z6Ijh`*!?g3rQ(n3lf+} zO0NA#1?yojE)lT^qJyFxxG`_aTdKe>7p1q2Ye+*>(Y1ZhA~wO*R5 zfDn|Pc<{4Q70fsuZy`1f?i=JcGjT?E&!$f+$-2^-4QrYVS-xu0s5P1{`-0O~w_-Zg z2u>`IM^>dz)IA~9w3b5tMB26i1s_?mBcf8YInT|oy4`-91xS(qNXw^S+izifzTsE6 zC(<@O3;}m+%(p&%I&?ZW2_%{emr5v@y`mawoIUmG=gqv}u?D9*O$g~|jy71BhWDv4 zo68x$(7)1lC91{yzOt?GY!tqvL5=&)e+*tRvL<-+U%M`D2y6)3eYakgd;SJ(YMH(J zUDl0Os{-RRzNdlleX~|+nHJFqWCUk}yG3XOH%u}=+S&1cSpehG;V?*mGAfAH8Rb1I zy3-gB_R|bQ<6;cPZj-9AK+0K{(*D)0l4k?}0ndYNEN21h?!=(c{w#J1MBUcHl?f$K9T8{r4|X z!auiQNajUs#l%_zYVRQ%t#vc7%F!a(MsT{5BbaDGIU~YYvtdO7B*fqc zi;uvzMJwSSj<1WyduwgG5B9Xo;~h(<$>c!-cPty=Duik_EGq|=x~+kz)l9!vD*FvE zPy5BRQBTe?;hKKd?x2cEXj;%Uz&Gjjl!P*iz!+q!^s_XkwK1NMRsX0f{GU2;gB6q- z>$l^nEssNSF=Y5hce9{}?yFUK>pY_;&CQETTwbIL;5*kX& z;AaJYD(pG0iTO@TpJP-Y5p`qy|L(yp(%rUO4WR zO_QFIl|Z5?7}Lpa)3@r28jE*oBLPs8*cVjg+iSV#>VA6LA8(CCI%@{q7?J0V&2HEQpH-VtU(6ZE>@T zV>G4CG;3Vu&$#Zng4eLOOq6fZpyO!xoX)V`=J#higj>_Zc+GsyaFv4J3h~@WdqT@cD_M=&)77HJi9Y7HyC*}#X zrQqo0hxI1h8~&d@@hjXK6S|MjGtF~*>kR=!2mRmFZus8l*?q zPUJP?;{T_zV0Wi1)r7HUYUE3 zA_FSCwvKWZ-Ke$?AEVk4=cZ4*+~e<5_eAxx{=C;rB@e8m!dm`i0|nbekMYkM>tQs* zD+wS1LbPE$wnKVr=cfnZOQbKuGv*7mCJUKyMFxpc0#P-}P*MN(i01~Q6Y7|!S%8&E zdTc|%WR}YzpLF@i08Y0O!VLgPkOR!{U?jw|w}_wM13~nQluJi7KJdvL z>=+G?5siaBS--iPtd`lQ!KN=nuHgW-&!-CcG>@ioO70Q5jk2-Yiq7jV@0ES8u}%S) z!v|YjVh*n_e1=(C1?5Pp*E=t~TZ#Q*=t-5SUqk`GmNB5oi7J!DJ8akPJMA7t4dVW4 zShBHmZmazf!p(&DiW6(g*F8d%L;K#|Hk0HGj=fC0kk&i^YIjTqMwSb_fQ#GpWGv1? zkv~k4Y!Eqy+3JyTj#sAbsO*FXZQlabRB^}uA4LGJw>J_St4TRuk9&lnF5kka9c5zI zs9uvo3gEh1@~}S7QT;?MVGyVt(7Z)lDikN92pOb*&yThVxkk9NNcRPyjr+5A@fB*_V+s7YauXDDfi0 zFjIO{vus;793CFoU27CK4j{(a+vu>XB;Oa@^AIz*=8Wh0f!N_o}u>6_Iph!%t3YdVOrM3*9M!}ehZVD z!&tZv`oT^A@a_JY+p8LCYo>suG_C(2C;x@3!{K1T^nkyu9tE75Y$%6ogD~WS<1lKG zTIzTOh3GxpoM;h~<0{gBH<$OJ)XE-@rT?O3qmm_m7*^IjM1BN#LNq((Wm~7kx-?%U zm=>=|@7zBV_2!~eqwjycmvZJ1$cqGz&^zk5vx(djDZrw>(-&{4`17aELVTd&^`D+1 z3=|vW8s)-s9jwh9kMu(zifvZ-#3MU(21Biw4RfQ#cnWhH+hzDxCJUqVwAilQU>U{; zr+U^M;$@JV)5M|*KMQJ9w35HnX+%ot%6mv!X?x1kr;`xWfx*s#0TR)!I z)c3OW@^p4bT&U~Tym(o%a zBMYyKMF(yr_Y7&~;!5`Z=>Exl%;cv8!?=qM8l0{?b4K=Dwkq>_{+ai|pfXyLP>P8gPI4X_J~Vykit#GIG*^`{g@Dp?JQEqWmyY zQNLJKkt|ZiJk>-XxvvB!8m8s4`r;e_Ntp#TUYi?&3dt;V>~tO*W;LSJTs0pYso08i zEzyOvK^fR{dsX~WmqK1m>euOJNK89#9uQpMGR)@kmcm5H*{tfpKGXExMC~cTNqQ_> z7DvgKEO*JZ)-82W{%vD_N85Kzpgysl!4HN1ha>^Si6CfH1rTL{ZZyKXHA2XVHZ~ONxV(WS^Br zrm&SvyH$L_9pE8)#JEy_%v&V}3Oj=wAsfPxeOS0RS2%4#6O^FY7|ud_6j)E`%x2f? ziATDCVyA*`QU4G+g1)n{OP~Jb1^(tQvw{Y^mn_J}z-3xM`VIQDz?FT7PXe0bd5_X2 zAFk@(?A7ONyS{HXy?$6yyp_72zcY|^(SB#5$5ILNE=rpMdWn*7xGL1+-yQrxZ2X!t z!IEI1wzx!jIjS0l;rSk)oinpG@0bfSB}{)8TVZ93jmvz=w)Md+v(4D*{+># z;^%0-@fx~!EW)CDFORFi+q3>llG!%TE(L341R)ITcQId$RBkwP=ovt7$raC+iLefE z3~LJyUp#VlBKhk=OIefW(H0sS;7pH;SIk<$zRzQ#T~{&x?~}hGg-_S|#zc#)Q+6z^ z;J#PZsBN-d3ig6ezrb4xN}&Dli*a8w`QghwRufX&Qxs3Z)7q_#Dg~8_IVlhKl=;j% z$(1kc5rzXzWKeo#a3?YNE%7JCJ4&t3>|X@v0-9pB+@{3w>rO`#5|^&P=suZzAo)y* z4C)e?NZF|7f|okK@Gk{yHycg>2cFXUsEAo+cuwcKz>|^=JwH#p3 zJ??N8yFZd>oyIy)FJCO!gue?K1pRotPS|VXUlV-)*>TK;M?z?P!^{#m2W{8pYj4iS}8^=S5QOr zl58L&lO2SaGdw;#SugIWv^-%rnP$n$0EkrBEd1MRUw+f^vO^C-Lf|Gc;lww$jSF9Z z49-Ma)`yb>gsbaalAEu6^tqkTHP$Bh{JrN7&sVLY(g&>Vp={d;pMv}u!52}3>;HZJ zBIo4#czJ4T4h^b8S3ki%cX9BM`f9~znEIJv{>0*B!||#}j56zHT^#51yYFCk5a{H7 zBkmv-$7&(@Z-vxvnp6CR^w9ofuW*T}c9eh}^ev|gQhdid(rHfk_SHk)>kDiz>0AVJ zeF`cG-z-C%(v4$Gkf3Oju>08t_CRH!piLD0zQyTPhRgKeF7=DtRadL%G-Jv1}Brc@c^q51qEw{8uZh4`dh zK^)S-KCeOG7xq4efPI0R>`lx!51E+~zyGT`n-m1mai*YTkNRT-=Q)chB`_a(%{M9g zEC`}d59C_nB|F0NvI=+WHlPzVD}H)T=s;rAEAW}hRK~5oB!yz5pBI#T9oGXR)0)xo zA21$JDgRNBmVpEw2Rzh1e(ty|S8csdLZJNUu4J+9berzKr43`05$PCP9WOaN91s}O zhqRN$9X7q#6f-Ur$~9GsVegV2jT-6Nbt~ev_xM$kJ6X-(YBwLl-be)^Uy&%)wn~`d z>+k+)BTHH5ORV(rLo_8un8;1z^`PptCMKOIJZPpcVgm9DFDt1;NQNKJ9?)aQ6Bl|1F|5MV&j?wq1` zhD?Z1NwtR9i2atT?6-Hb*x?V+0>Fnz^5t!omh1XwQG9LVKR;!tR*QK~8X7({XW4g$ zS#(BHO!9eh=Aglk-fG=%eMmKHhj>G+INpRxq$eY7yv=hSR!wWzcwZ{j=%*tA%(Rsc zkEgLO{Ku9vjE|>Y#Vb~Rsh4MMh93e5rBtZC{ddOD@P~0iVoFN?M(qTh7$3@;7aIe>UhvZ7hPD4w8ILTYk*M0a{7ymwL~YLb;91KEivtvO&#kEXBH`5 z+qmuQwkJ0dls0XZM9cny^yj^t>g@j&-}&%iO`y9Hi%hb4M_UA2VW|O9K%`UQ-tlz( z`gQ1-x1Py{$S&mdQ!smJKbhK{7GLzijel#vYQdA&5WO$L%`zti3IeGi^MFh9gH@Db<9(0bu zmauJEqZgM~7}Vb)BS-`<%2-Z*Y=E2tU)p@@>y@D(Jh!k;M_psO!c+w@SPA{RuX1C! z7ZO%WmT)*Y7{;ojjIvRVqy{`$w(|4OPG6kIOgUC?HbGm_o3g25Qot+bIvH3r1i_vI6mVh(0EO8Kii=9 zZ0l0h&~}h>wm)i{zU<=`cbrJ1x-Cmh*8(1s$4gD1U8$}zen2f2y!y(ysalYYsGq5G z$KH|umCj=IiDx2QLv_i)1w+9?joT>+)&1c+dcrV3TjrRS)+V~H>qtaqkq3>ELJF?Y z)}2@$bPe`uGiKcfKO6Fq-SV)GgK@<%lYEKKhcoe0=VU)b`u|OPDpSBW>rS2Y=lx8M zeVsr2nyy+vvm6Grv32xxpzk97ZGvmzyYq6~@c_nQMlshdojarf%U{y8x!3wDA2AXp zA5fmy+$j2u^Y6ZDt6e^fN^_=s6DC00B4^o>O}2j=BOQ)y_U9%ipwJR8l4+@2qW$fX z_J@hP_$fH*qG5BMsO)S+bBypWZ$Yv$>r`@uTcQn3J&_(t&Xsx1Fc*njLkin2%>7Z?$`+QNC0B3&yauM?cz z*;k$4K0-~q5$yU#D%|HL`Ak)y%f`yffU#{OpBr+`XLMl(>Ws|uzzmdR5*#0)dsV!S z4Xp1Tr6(qb+Y0dk73~yUdfwED87PJ;R*zDEw^-X=kP$>E-g!;yJ2<0A_du;MVxGh0 z7y;wbw<)=XP2q6QHE)4S4=N^)ZT}#gsCrEzo;`^1o1O7JiFk{-%WcH-YW<7nbbbF3 zUg)%*Z{lzf-;LN9qV|KfX9#@c3g^!@RWUzJUb5;rBhpm{)s!)3^~z0Yls5#M(PTK< zwuD4zc#r`35li7M=H5>XG;Ivj{e7Qio0sU`F3c5vi>ybRujyu8gEBD_I6ZKvU3_*D zG12p-rY=+f4F1hx*;g|Y1;=?YzgpsVzIj3_7PWf_={7 z+Hl|V^&X$JDDP~iES$(Nu{c#UuM%-u0?DULjouWd8f~ds@F{v6c5>>Ir#PLpVnBHi z(G&66A|(H{h-EV=7US8_!I|`=C*1ECekA!2FpemP z7>$o7z(@~T5`ihmNbs|G1*7#|(xUZa?qnSfE78X#6dWyrg|D?DdCw)|$q;#OBJYn% zD~_cnHG=%EtQgBG1DQHnH6sMy=?TEV)nA`VtRE)6BHXQjktt->`PD)WznJAdr@~! z9S>C33-N>Il+1m)`G7o-YAoH6ZaTBWbVCD3TQ-RlPAfPhYTk*GtTl3y{(Pp3r z>0r?L?SA`Lj~R)r9!IiFUZy0GhNopGMNhNFT#=RvldAZoJLza2GJNahnkRZoM>7xM z#2e-ZUFFO@0SI=I2vdLDAH~f5Rdo-I&KJXZOY}X;R(pnR%1mE)6|MdSJT+%BjrBIW zq;%FuMJ@D(f6qNt@Zzl%yS3ecf-bo~0xwH%74bgbH^cVu>i&v*%aVJ#n_G=ffuNN3 zU?EuQUwJPR9UpcxB0BcVYwAD79B7>J?fw)q8HUh)&AJteg`E(feb)08m)_@DURYf@ z=|^k3@OmdDXodp&fc=2mYV@Ioj)Bh)@FX4fVv-cSOb`RPHpQ%XbxnQZ#rbc9`yS6! zi_g9l=NALo)GCa@pCEz)s6|l*4PcJe82zSK#nIiyIU%4j&iA*>JqEA@DaInHN@~86 zHVU_sAy*SG4Lbj=*ODhPG5pAC^sY*hYs;nY4P`D>>vP0n81E%>G& zIh=@_jEpTTbjqIbUS)`Clp*000r|ME;+0V6XHHlqX^z19VSN4@cN4#nq(9uO(gd}W zI+&e_IZlExE1UqN()Sfg03Vs%23^|sOv2oSwlY3PaWvZ0eT$lWM6y`3MA5sC4j-!U zsBDNHZU?3G-s1tnAsldrBAF4%w2;1k?QwO&bA|B#u=8RHe-Ht+cI`Ax>Y_V-AG*VR zAq@90x#SR?zemyeol*YNKb=V(Pkt{Q;oomcwXr!?-1929#U zWwb~BRYl4S7s4?5HQ2{i+*<$~*&+Ex3yQhg=}BeJyNgLNbn1d9xgv~*a?02WB>m@z zT|DDk#wD9%?=ef?osqI?OMxqWR#vVBZK%%v7AW~wVvLYM!aL48GB0D6>NvGu0IWr1 zi)&jQS7nG+7~&4Va`8Tbws(_`BOVj!iFs~$KLOD#*W|3V%xd*L0ej-NF9i#^u0KT5 zzT-@-)9=u|LRYZZo)Y6JF``5Op@7uV0^|#XJL0!cTr(Wapg;S{&ub2S_`E~qp;?Q0 zYTk2rpo%OfYg4Y#srYuBzrIk&JwA=KPgFPi4rG#RhyqW|f6gjD6bAXD*)vgbr4%=J zg9i9sj8b>QGZL~h!YtHHq_WaabaOW>3Oo8#y?GRdrD>hgrgPJmJPpmC!9&jV1FA%l zT3ub8Yy07{el@S-eBpDXmp*PaZA9klW-;OpqI|IevX9WyS4+TgO*3D8XK%4MX-$pw z;}@C}kJ-qW$?&!M&?q`2X=y^3I%wrFL}M2KhG^ia0q$ASPFff&@T1(OAMW-hK5NP_rI({ERu6utxUMw5fd z96=64Dv3z@`{^1=#WSRh`TCn|F+sO)V~;0)hBM$T>pU8C3MRyprNbQ1dW}0~Wv9g$ zqhvSaUW2X#p`sHdC4fTuUv|zb_K;}g^W$xUY>`&m8@PC+u7gU?tTWl+XYD_Yl?Z2U zVa7%3p~c=;4i(x*FH1q9tRkHnD-F@>vL&Rxvz`>c*@piB3Y(HeIuHs5TZE(~OZ(^} zL_gR#;NeYi(~%}Ufa-W<3Fcd&^GgTf>#;;hlF~36MJ1MD>gS8@R^J+T@Cm=PmB% zNk!fDe1))ha2aXzd`p&kEmpD7)8ud}yb|2kPW4(6*9qL~LA%K;^R|eegiLroUblWz z-G@{APlD8-5a{gH7cjgVHQr4#O99BTF3wQ1-;M4^{Lh?ZS#I+d)6m+Q zRulEHG@id%aqS9v8ThWDoHZEVQu@k*d4MKPE`~&|kS92u8CSsTp(#+HTPqONhwAG& zGor}OwM>ANeQahOK#*(>x5f;UeOiULCvq>-Hk0)a9+DuhzY^}#KBw@$nv%RZfqVB! zB(Z~j>vsk2Cs1MDz(vC-Ta%*s`KGepN|fP8TL3}3iWHf7c|?B95p67Ix<9$i)VtvQ zlI6sDWoRvM^b@R>=7qV_g@6nZk3!&NL^n`f>s@B2y@JT*raBwYkJhDqH8ZA&F$i4d z*QrW;xvPmAhQEXwk^sI zPab=5+vESH3@-v>rOf0*GRFUm<7UC^t<`@*2~19OXbU>@U5V-!nTdeZ2VhNS@@->$ z68^d!cIcjH?1WKESn=3Cw)R##7|`rGu|78h^CvDf_OiTA_|?QYDqDb`u4+^Xc3D*o z;d6jdKXvx;y~ckOw4z@+(M`1b^3~gNfj4EgMSeGTiHXB@-NNh9vQxup?$@(FTn0+L zN|*xV93OV?_o(`J_tDkFzQNJ&yqr8Pm)~9_J?kk2pnWR+cWE+F%u4WgFL6}aFyAkv zw*U0ex#t|N*fReq^et9-w}UCq9WcPYgF8zrjRyeOdKlR@?*LzsW}#CQR*LK2dVYJG zrE9G?WRZ3_;r<@)uH40o0BxM0_xlEc=RY2bqNyI)PpdXU`j~7nBOsw4`$F527KGuw zzrpm_H=%=2^r^+O2`~>H{feYRmMSp2hw}hM%7-!*t9VOf10#ojxeqrP{;4>s5O*16 zXc1B4KYaWt2;Jr*kl$Be(a|;?#lgDnCd)XAQi_qP+Lhi}+Ze{hcw?ZJ^1ExpG~U3$ zHoMqpzx*Ss{{=tx8zVdpRD!m;S&~m($7A=!$)Lx$vFC;F9ME*mRxi&Sq)+hOd;B&l z`ht%Qy^S}_e*1o>ahVas0l&i3rG{3ceR8zwmy`qjbW0g23xx+Py>B8EWS#+RcIADk zmjT1NrZKTCw3#@PJ_6BM>cQ=_?@ipDB5sArSW2LcD=W%@ zPpS~dAK&j2^gKop(?6mEH8_?ZJ_XL6jpu9fPdEd&X5^;M(eKKpH)tWEJ)sZP%#*7T ztg#yxRMzPQ9WOM`(E@6bP1QiB)gDpm%Y#;X1F6PjqCf@W=pnt{4 zCOgnGz{?druN~7~e9GdsEi1Yc4-oYW&<6FfIwBim3^IcODS{YGgfkxPq3HZ@YHwbH*3<2BU-=#y?5y4ob~YW_f%F5EoX(#-%fA&`M@vsIz{x z=OEq1_(Qd)AO2R@Io)r^2tQDDzw95lo9+P_<)-)8y1NcB3pumKSuW7}3 zEF1!APDu;2=JCBLb&=`DsZ$r|Httg4qbO{RXk7!wC@ty;p#5TkgS#BgUm{_v6)@t+ zIQ-Ti4~trVoVxaRkglE)>i6}Hb#>EPP|a~^MH^*klD6ocu5$MQ}H(4Z}78>~Su zMaN9krI!Y>oL_DCXD;L$e4cDpoD+iAhfK5kduYE_CP2F3WX5*YjXCd6XE?&wOCIr# zy(BjP%Y6P(z>j7>g)G2^3LL9AykcW^rTEWOmYg!Ga_7WPxTeQ%of*t#>Rzsgjq#ef zSDiD0#|TS4lB&gj$Jp)5!zUE;zh^*+$E>INV&;3aSCW1|;R9w2R@s&AFX>MH`LDc7 zkFJj^jsS+Ktnaa31-I02zr+71wF1*>X0>;g#~CBR;-yW>ThtJjqs?SmEDTPi3!o{y zk#0kTy?c*GssxP`wuQyImgnCfb(wf|#_zl)ovr-Awi@bpHcUud zRrXQaA#C(vf^oWafm90Gbts;XFCHZF7tg4*TCMf&AJziseX~$l@wC-N$NW~rM5&Tw z2qN*eAF4e%+HCIpF)wcUyO|uNJ2mUK<`!B%YVxctwv4BteK=0f zpqqO9|55c;QFSd_*C?_e3rT?BZXvh_cXtmK+#$F_aCdhIl3>Bz9fG^NySv*z+54Px zzx%)ojmCmmv#Q4Eql*#XXlcCS*ogUSJBfMm9nIWH{?2NWsvnHG2^}Srn?T|_H7kIZzGWYp#bqlN7+jvdCYg{ZH1!n zR4_pyct>qbE+vu?s-Nt}t)vLLK!IG<*ohG%pfu=>Oz4jzA5;*-C$r~Tp4>KAXORo_ z)&a+RJQYk4xQ6epl=Z7!u|%!TmhFYHW&jF<^8sy-suXqy_~w>0UahrS7(Ef2759RM zEj#*|`+Te-D*SdH?vE`Ha>ei1>m$WlMxg2|0OQVj5!g~b$%k}@)HRh66gQg<6mK35 z4JUka=?tmmZ2yrFWwzsLE@{+IX=rpbC}1vgdt=jGS#gzi3QzUg9X;R2JBl=$vaF}_ zu)nK#-?zysUf(E*^J?qh++o0L(6+Y5B(-Srrd;qC(IEmw-TSKhE5DpP-Y7K9|0b?K z$kc}&ydGX#Fqgc1d7QH-ui-Mv@-paU$uq7VcU(^;y#%~t3{ZA{y$?e~U>x_`*tZ}OE5 z!FK1&xJ-|m6g>B{jyJ=qzBjQQV7`%A47e>;PAN*MtI{ragk7H*r`^|8Ry9=vT8A}E zC^9eUn1$yL@%&0v5tZF)&m&xq4sE~b4_thU%08DEzYc~1FwKP7WbVOwZ;tC|WQ)%v z3@ovYfkE~cHZ~yg6}c9XRV6J~DR1FV8p@}rd1-eYvN)@r%PWsF=)t_a&u&hV$SR_h zP_aDBYA8YS{R(|*U7S?UwKiJ(?{fzUulFdB|Jh9Wf43|u@9xys6&Dt8_`Xy7;O)H{m~`8g&CE$i$ZGncBrBi%9@*l z2SKM*s{%#k=;q_qVuI(YJ^dL*8jCEu+CmVbEJ1MU_Y}A8+zGE1i z1=gdv9x~3(j|S-I3~smrCBUR%79o2l)7@90u$3q`kd69vO{k#xo;9WQu~a2RfQO?y zRHNp!Cr`R$%H(wG;+C&^E+7yoNoDhaK^G%!n!q-^Mb&=TaiZ~9<>s3gut-_;$hxEK zY?wZ~2AZ}8;F*XkU>LowUE6mZvK7G?`Pz?s8m;52(U-H0lAASTJ(fZyc#LBw!D(Y=}%bti7z%0Cx%Sy??Bm_-~NU zv>@Ft`pE|Y_+~Rf_u*>)V#$8g^|h%;ihf4d03<^Qy7aR86ZFd8KKoU>@_(WmvbTNW~ThnNX z2m3bL%E-nCZQhs}pk9RjYFsj%Y6tDQxZ?7YIE$ky8B2R^B6({V&kv8GA-)mIV1Y4=Rw zLE%9;`kYh9g>i=d24YZ+YB^+D7_4v&+eN#t%KR`_wm zq>$OB)(c)bMG&7WD&_c;V9J9Ufu-LkZpV;&^XexxBOKF7?LCRt_J64T|ELf-{@yrs zxuCSx954W)k)R+%+HFRneAh8VDQLUg2``qdg+tqyJKU2gX(9@Zie*UWVL&l1r!WGd z#AX!H*WsbiL2XieSHTKUqg526^QO=RIz~p+cgcV;>ibi)6jtvS7jV{EGNVCYzP$6} z7vd+|IlGAHWy;WenKa|F2t#qfK_@jx0}k9^#os?dw&q0u@!F^>=0Lk6Ydmj~w5Is| z;&-%Gdx8d?1Hu+QvTb@nfmu-nSt9PP(9ZS#l$+3vBv!Z==J!r`;MI7bt#%Otzt^6^ zC_VBzmC)TOUQr)|qCgMTdEg!iryLn3Tg`psZ7_BhP#D@sE-+?P;5_+4OSAKMVo>ab zKg@U2SAG9}Nv!VK%m~-$P1n0RIqEb{??9LGW&UxswqJC`u~qvEHuYlQFjqWGZV$_= zVqRt>Uepqc2ep4JbgQ@L)My2P>Tl%{tvUs!FRvw&ej(UMX&*So{K|Gx4_nMz-VWuJ z2#B!2wM#5q;EQ@`PGEJbbp3J-4nI@u&f?tl?8p!H{RIYQWpJE(FUf^4FD1fkxK~&* zM+IS61{FyU!H!?b?=1CCTVR;-H)8XhAOH1movXI_5ea*hW5|EF&TkvukPvc}*85Go zWsPoL*)1_EBVW01<|0Cb4|;eygeo{%YNECHynkJ{OmrMZpCKFnV1)<5LE=*T9>u%D zDySeN?{Zh`*Y zX_nz{IwC$AIt#!TR|lMI{b#z~r?mBvS1+>>*bowfR!uvq1YtyM6dov@T%JLQFq3gRCT2-;q9M}P!*z2DnyPVYj6Qq}<<}-% z!}u*q<=M1(sg?tkDdsYAWepAM;KJPJAh3^#UA6RE{m%J8!o~GsNFYQ0WkQE@c6@6T zY1_J;rjPP*&p=~n?5z8fVY7u%sGu?3hU=#T&AIe~>Mz_n$z`%_ zK5zC8PRqu&H^UPE*Nu!bKQF2FkYxPI0<85Zt#yns=}>mfsv@FmyTMRIAe<{Rur@Lx zDPo66POKU+^2s4GtX@TQa58n+C)5{;<|5YISUYx?zzrvw~Gj0VEqj7YrqJ z_D&A1m*Qu2M4l#$>oZ9hB4GEIK;K*pzeY2Qfj}F3eA!2`%H(U`s?d7g;rFgrYYwGO ze8)o*n=94pt$9)6!@_C!J@necZ}(*kETcMn25Bf=}*tqTXgguwU!r+sGcs|E7?-&9N_ zjH`&B3i?VI!Mj)K@d4aq15KY}otJtV0~$-xEK~ca3xXK8!GO`iEfgK&rb9o_Pd@5* zDMrbyeg#M)1&z0ma9Ast-|r7uUE93ni=_XZ8S;8nr4)jifXPY-|!gGE$RM>(skz-(K6D+B!wcrl{ZVq^4q5?yn zNi01FwKsj6hHE>E10F^~qeF`heoGxgg$uI=>`gP;m)1wI2;UK>A|+y_~MYx8)9 zXszz%L$#FWgD|I2Yrgn4FbL&jyfqd*OQco-gUS?lSlGPJ<7Wx3CB?eztQk6x7d;W5 zxMWf&Zs(n##OXl*<<_dyYHwncis&$H?De2ng$(mu!&2F7e!Z-}dBtEZ5AL0W`7S|q z{pP82Xa5S<`mWAZsjY41=vI%JX2L|&2u@S>kcI(E+P2*$t4Br1?BC&54VSJa3eJrN zt_WO#DQFjwx;l?Big|&yTE@(1kzl7%5XYX{j)t-~3KnU?4H>Doj60e!V{& zkbV8j)jTTrDc{?1l-c96rKTVfE~|9l2mJ4tOclvyfa&fH!D#HZmfOH(=Sim6H5&Kv zZUn>z0(@C-2>4$M zejgI}^KsXWNi{9FZ~owI<=n+uthmV)G#p7%GQyVvMEK~5Q?Kau@RXi~TkQh(gZ%)_ z3*Qfd%9?bwN0n7W4A%i`xxar4ons-jB$6e?%fB|#MJd>DV#fSc($H8WlV)7zhv@c! zfR`%x3fB7wKgt39PW*ZcGuJ`3#Sup9=00iXsUhA|Z$!sqlTu3y2a@zB{bmYBPFGR9 zhha%T#Nu97#orp0E;BWRIHzHBRa|Pj$x_Y|Jn>H!XtTpjr&JL=HKvcTQuQ?Vc20@t z{qQha8`TQCR*Cfo2aUA`m@1<%q23BFwSWq@;>DxC^bh?%EUdYB{5u zTv9coLhK`V9k=^8VA)S`kjy*Nnzjj;4licpA>*IjUOgHZwo|#zKQ`6p{oRT=rd>E~ z(CG}qCs_w{@)G6KZz%>3v6^`#w$Bu5*$h6OEG{MGy{(G+ciuixJj7LX%aS`~HKIc_ z^%X0Wv6Hqnjpf&;D~yu}xVMGFO~?B8SQuE!tL{ZZeA}=3fzxSkZQmStjBowDuSjkI zvH?=iq9hrn_UxYOIt#O`sH-7nV~YP;iw4^Y!=?nRs@A-epNBWk@;g z5DC>Eq;@++s(2K+M=cRra^8B0|HPCK8Gv&>H?Ym8d@+k{zEbSXNC6bx3E?=?#Qtxl zEZaq8t&)^o20h^@9{_}u5Csf46FNTP5s~#Qpncacu}mpCd8kxT)&qi`c#zCXTSut2 zVJ+@eM@!@lKl_p_GZV}Vc%>y(HF5~uGV(d3C<_qR>W=sRo()IrKSkWql17x?Q zRSXI+48d2tfBCI*yNrc4qfokgJ6{{F&BJ>T9a7FYM|X;JkL6hk$sk* zIRvWsWArkgFV(gg;X5xsO_`s@WBx8Axtl{C7o#&BWA8>Z_Y9-Vpvrb?kLSqU*ltOXw z4iBlSqTf3@PUAaEZ7O(S-r9^18VzqQMev|^<4&;s=L1v^~xw*xD$@{%OI z88r3HDhO+a<`P}hQ0FLrTK82>^>Q%TPV@e6Bd3BQt`7MG0GEUJyUs_Lfm!pE-h?h| zkgkB;y&@H80Hh3&4@z&1HvT1fsP!$^A2DD4eW%~P7WBSkjlwDBrv zT{rH4pE?F!3YxgNu$q1f&+KIyl0Fd|LQ3SwV5W5`5G&XhWo=C#6SJpV@`Il+I@Y<3 zU~~Y}Un*|{bzv+c3Dbb>l`gA#`1Jl?%=c;u%l@Moa0HxcpZXmJGe&b zrJ8#`<9!(rFh4fGF?io=vn);Ie+-s-LXJg#HzU$r3;`XmJ@5akJzzFEeefA&GKN3^6~;(Yl`& z#n0QP`_U(?&N6a^-2Q{7eg{YKr6Wl3;gL`g0LeZ+OhVNK?01)1_X@UO-xsL)iuU%h zjogl4#e%0b-BUoEw^b%w(0n(zr-M@$x z-V38CMcMob7-Ip_J8uXNUIPhE?N4}!S8`{rp63yCEAE`C(g$-tyt!*4=V`dqnF;6w zd&0f~j05qvey&}Os5ec+m|Q3|ltexmJSD95%Gw2;yUvr(fHI~@{a>KuK8Sx{A|OtV zS3Q#Jgk9seI9nDH&s8+KRj%SxpNpca&Z+{4$%p?sVODY)8b2)}aCqP_@UW~BBP2y! zYV!!&=Z%AF>7}kAI7kyW=E($>V1GhhX<8z7pj5GQ>G=qd3__G3P)!#6jnb}(%jG0vMe3F#3~@)>rF074 zy&hB9r4Jb{#bf$1z47o7XI4$d7{`1`guqi8sv{b)^^jM6%SX&`Cekax?D3e^(%2`3 zbe23{aTgt+9OZgRS18or)Xo2jp>8zY%q4Z6vn#)#Q|WEr(*F?bSlIJyxVUIQhEFgdI9rUfN{DM6^3tT{_>zn9(-bp1VZ} zg|tTrC48@FHwB#$5?*qJyXkSJF7dlbQp$WrM#gf={O-N`kH-9_jk2Q5!d=(Gj0G#) z(>84fC@5pT8AG&etZDf~f1_%$l5#}HbZ_kebww}Du>hZZrJ4MLkMs(;8>JX8blY$@rb;x)fzG_az>=H+z2qfUGskO3V8BE^N8msTZEvpzzoX1ac}Qu!kE z9ew9^-z6jSv}$9ZVg{XzVJe(mF%`CSPA_=sw6$o8u)GY7?j#4i#YG$Hq-iZCsR_22bv?b2jIFX0PJT#K4@*kcJ zhSSEDu1cRK*0(ATCHu^k22HJ!GytFI5%Qn?uNS~SRctg17{m%;BJ;i`E0iC|Uw(ZIxnjST zmIIftp6HqnQ=#M@3AR((Dp=$QQdr8zX8nch3ecc3+8?TyW!yqL7C_r7eWIw4r*o_? z(pN!1((WQ~R45A2YT$f0TA*;d%@Z8AtnOlz$z8)?qXemi%$tV$!0?S$7a7ixW8B_J z?h8N=yvy{x?Wj^*cP&KRYsi{k)audHUAQ$61i9Y;R1z$gRlti7E zF0yfyv`7qdo&v`m<=oZUa{gx?>x*aOmf-z$GHLFs2a=>UVuvvcgIH#MX57lCY%C1d z=_lq73vw4TTIBn!1?|!_RH+w#=msET!ubmyU!L(f0rtPRHw6#GkvdvQnFA+L+CwBCHoZ^1iA2iX`?l8?BHN(KV~( z#`}dTUbHM}lI}8@o7e+}+fgZdLzwdH&R35ey6a+~bKpgxNM)KvP;X0nWsJs@c&jh} zTSn4?{jDG}xLqrUzC7lA5&|>w{J4r97?4ySsZYWEVk*xx&QeT*%n5aGY~4*DM)26X z;?`B0RLF=Km=X0k*%M?#8&!!f5~O4S>Yt{3Q3%Y!+aCbsQ3T3Y=WjG--ZkSg91r+2 zA#-<`W?$tu$9+Zj)4KOC6k0wEulVzn@puf%-B8s|Sm;6;4%9cX#6GuDQdTxn6|XUA zmia0X|LUH3d_HWIq_a(?#B-1{G9NS+-jA?quCO&tr%uwNxRyYPO23wk$HKyLjB{|P zibKJtjsY3F~{_Nur4JapOleT~}yV*k2RYGM*E%xOsgM=Ud8ieNDpiTg+fr5=zrHyDE|U7co~A*=|~MI>lGzo2uzpCjsb6M zJHTC2N<>6N(#*_IgvbmOZlmqG#i+<&QW}AyZepqKzUY#(nG-hwPLG1<`G!VD!SJ(# zQM}+_D5HYnWpHrNPk6L|UANqHoTR7^Dvk)&cK3VaT>;itJ4iLO?^wz5)fMpdJe%^( zoRgxA-ln(_LGmX{Wvgb%ED%cB`kPiV@7wo1>fAHWC?8N-E3&ww6fZpDM7gOlu42&u zU6;pFedk5b^QFSM@4+(#$c6ljcLl|LYV_~#KuBoA9aodVvR(qRXM!JJACjMa5D*EC zLsfzPBqTX|1k1Nbj!%TdYk{4r4l9YJM)6?|^+uqIQtDVQ=r1__PUZOJQM`NZkj(4E zTJdRy%PGLiuIRTA${IYS{Xq&=#YU`(tbr;G#voU zX!JNS&Ji2nG6uHDI&Y5`+2mg_sh`zu;a^vKW7}+EJPaem@M-K>ZVxDrxHNS!n9;DT z5fwGa^=k-&z66&Sd7!2efT^MRxd8~-bopB z6QZ_AYJ151cs9~0;ND}P{IR=SA3)*ypgwA&U>)8gV+=(183H5Sp>gf%%Egnj(tifk zmAH^SO=si}zFC#QX$*a8^y;17;oQD#2zR6&-?%r+q|#cW`tQaoBis@r?a#fmZ(~bV z^|($ON$E*&tBavVn6c13$A2U3^*yoBix6p`P-IM0!oY5q5mq|Zst661{1*+``ULe0 z*E`em!ED`z&KEGZCW+#G_|yFQ@^}H5L-oz-c+r+MUxaGf^^;9hnaCj=q?(sfj`F=W zOaEk7=!qgcZSZ~pIO>L5eK8zx%_>yPD1YjYsH|68jF~r`*PorS$yP#B)YWJctU>ZN zSq@@)ozgdkX!Jlba;e^(BR925kAK%1LgwS}kf+fF{JQ~+k)<>s0Pp=~xMRgcf1=wO z+-HjTSVkz+jD&X-37kK4Dx`Zbx?;P~xZ{|#v9eK)qi)BGRLiPMNBRsAo4(Eu-72+B z@mORie8!Z^n8+<$#ZC}$jp|&&wtr6aIkVbkh>Q71c_KylT(=CJSWRkPM&|f9xC`1v|H+W-02I$%Rf1dXD*G{}xbYJ;o}BBk+=CsF^T zP{a5nitF|Kqml@3Q|f}8*Wk`U;r!6rMPk;vE!}xJ2D9V_^5yF?zw@V?R8=QZ`Kz6; zWl+~b(-22KzcBwdo`fYrZiI9JhLU!FQN+|>=HC*yl=7rw{E&FnSQjmro7zs-I{b_P z-^6&pP_{1|oB7Biypz!Dsp6>Rc7^Ht6vh2ppcn8}dj^=?3A6$Wj_55JHinLD${P1E zRYrsZBdST31lM{By>OZAAb4Y$Qd?eIm!S&_JL;z%ssSy0(n^b4ucPwN!3u}{&KysT zcv^iuf(Ts1gul7To#85N=ST81I1#r@UXP;zh=U!?zhs4|YQMQViAF=ASX6375&Y_z zk$uQ5zo7VVQA@C!nujcy{&u)hcOsGJa~CUHJAy8b*9Il$K#pefwU_US`5=wjqiSms zqSeLco&Kq}`gvP_&}m;``s4MwlMw2v0qc%GTfRDcWOH5)E2teJy)M170F{XSvC08{3@W*yLp}8NMPL^rc*ubHb<4PAd zfG1?|w4N(v4@U*4@R+b5A0R($K|R1efP3uD`(%hZ?*{5qY_;8roD6bB2*QSWPtG`8 z3@ZIm=1R1U5t4p6P75lA1yiT?57< zP<}djti2l!>=k~=;jAw9Ncv{;Z*Af8Q<%tMcmiOXlOkZ!#iPoy3y6ke#UOt%F6RY2 zFIB+6j414AfSn{uvuQss&G5KpwiXJO+7ED_iR90EsE#ulPp=bCP`H~uzE6tmQ@q^c z2g$={FNuWsLJ=B#8bC&)e%fu{3!F$cq2Oj1_;nSP&)~CKF_6SQQXUcuGJq6S{7~8; z_DwU6wa8cDw;^*y>MyU?7nKx|<&JjBYP<|xguJC)#7L}-$(AU!+6~FJU|*!4`Zd6y zSueN)N}71Vp3k5>cviFu9f8(aA9N68Nk1(0-k+>2`B^feLY%S%+mVxH zsydrAR@T0IuX0bPwJPL=9K~=|aZCNxTGRc~Gr^abpAecbfK8uYuM_>${}yGLtwYRJ z4q0zM$)%1U#f^m=pT4b)O$0-SRTL+QaE*uRVarRAW5Z>i#X_~9ehdE8a~LHk6r0=S z)lYK@k4-RjSPhcOW3Fpn~fe8_E3w{f^=f~Civri8wE-24IT=jCRojywt zI=+0wQXt|96T}fU9tFO53QJ5(?Ew^4^fuo4lQ!AL^zE0F=4l8-cp$sX4vgk`7qdm1 zAaz)`AQ)a$w)Jsr?7tfqxN}uN8|J^Ej2{7t$z1X~e23^VG!-pJ<$2TWh+a^w^{u%)cZ`HN^>m+Lr>}495`y7c0hmf&=ZsLR$467 zfzO$!cQm~k$bCCrk#Qkw`)#HezAp1|(OkWi{{JkUAv{!p1f=D6AEp2gw_oV0nia#7 zcU~ypvw(0dL8oO$ReB;Qq`xaE|CToX0T7aCcT&{~?_qfT1(SCvPEoNb;i4chg-VrH z?q~^Jqj}-cCe}D(Y}>6H)6pX<4Zs2l0T=KvTyuiD!JWaJ`VHgHp%lAy{Fs+zjyXPKE``z@TMfG~k zTl88X-|Bi#KF;sGR>Fo!(@}UJp++)5O|D*)YU+$~ZQ|Surt*JPAPG~s02qk z%dq(fv3jJ2sX1&Huk~KZSD$kw=qUysC9|60bC6_D-#6}inKZ+y0{dqbjlfj*$`GJh zz8fxxRaK&fnQV*eVR=WM<`0NG8quJ-m0lSj4qw`|4yMhG{$u4{3G$JD-wvh*GrdI- z15#tS$LEJ%K#1uWY}dB^mzKwqrW<6+Gp5&X9+o!5?h@m<^lnX})(_4qWY#Ski{dTv# z07n48c|oRW{t7{PH@!ug_XjBph#_n3+>aEE>9oM=)g#wxwIz4!9y8~twyF5AtB_gl zJ(=rAGfiu)f>ozKjG@vfDtAe|H~v!uwx*{0=7MjpD>j&6#DGbGvtPzt!f}G=oKdmq zs*}q8eDF2qNhHkD?!7Srh%#z3g18uQQG#6mjviJw*dt^bV(EkKL%lhv?q>#0dSMw+ z%%%F9Z(6uWB`yEus6_jK?|xpKv~8tXREE5FKkvpI^o2P-Rd)n#hJmB`DoZ@fB)%d4 zbS9(FmbOA$)RH#?xp_c`1Em?zfPFl#>NiK0$6Nf=?LBz(l;vL$|HTG6J&YZuTV(T1 zNW=%iQPq(lF)y})#`JuS*m^z7ZVSetasV}EI@Mm?w+-jGFUc4~cVVyrKwd%p!MA>m z1IAxBXKj*`--{kX^7NP>Aq~`wr%!z)ZB##d08E^CvDbVLFay6QTL z+dG5ASadrqjPf=)_y-3ASVA-)K{kj?+aB!Nz{z~MBz&hi0d0@#>0}n;gfqZ|ni^Bn z#>b=ea)fKK#pdqvem8Tl;~k;Jdz#|nMUUHMgS=mCZ)MyiaytuF9G~a&wJKMG9~?oI z@o=n;=e@|zXr?u}v!QlD95u?x0>e^eA;lka)(Hq|6$rmUKnYh|JHviUG&Oy5#T!Vti=HWSmwV`e1jGHu$#j z_En-P0<=Wl|A0F`1+zx#edyY*KWOCZ8$gtDSP9Ec)8kTYYKk;gR?=IHdLSh(_}wIt zVQLW#x41Qkm5iV#X^~l_3lB?>=FZoT0O;#)ls}AauNdj>sV&N$gZPSVi*(~rfJMd| zc;tlAzKL83b0I~=1akqupA#!u)QK}&fj%2`X{D^?z$+Mi+g3$~^RDFcuu-lP(wZQ1 z2lZsgZ6yE^6fn8ygLe1=wGC}d&O~^7m)V(IMl*P-RA5K1oX61zRk^n<%NDMM>Ms86 z_5K4UF}?E{d*A-m^6Bo}iGB?jKQ7>K8V@BC<5id@X*pH&Y-qQ9i#I4nbSllhoi`zD z*o?%;H7>6IA@^3hKm*Tph{jm)ou~{NG~RfT0SfF;>)S8`!#02kU)O6j;WDj8dFPsk=5bY_uKv>c#iF9YH~XLa)fyDd$ndi62v#Tk zgJ5F#@pFExHr7|q!}J+@ShH#Cnt&;!Mc!~jCAqFXqZr58nBPczu}?4vWUFVZc|O#6 z8CE!oHW@ifPJ(@_SWk+; zC@R%&jq~Bq)F?^)-@D!d_CJBbp}?|<#Afa(y=ZwG0@rUwqTbvZF@#o_Y(}sp3Vq=C zdvg8=c!c+53HWh?u%lO;7A^lV1Z2q9@q;Y8G}LQKYMzB4+iK2I0HHmt&#B&#}K*En0FJw-P0;_p@`H%6M`f zUA>qGDiWtVx=)+QTLO=%rt^PN$PChx2k5w)nPaMZuoOHW3aHB~(dwHJ%Ns0+-M@b= zrydX0@sNRUy;s3`S2nKRJ?{Q?Zww;0pACk}8KM}%8%CO{=d>IUwGmzF>V8UR`17=Y zE4?~jiLbWY>Lz8_^}bV_wff69TyMUl2d%)ML?}+S?diDF?uao}#)Z4042SIt$DhUCvo@yA&4%uI>_YLev zg?v0WUG{k&1k1iCV}@gNZ2@elUtk(PZ-tpzJlFb`VaYTA=hFNf{C185j|l~;kIteY z;MbUpqzu{$kC3OpjKMX!V#`Pqa?=NKG;K7Bg&^M=2K23 zI<@OTx4-qLvv-FBkwYQlv;B$vF4cBsd+I00#3~{@xLI60F;}zgo>qJq^>Qt}2%akM z?|Hk9wA}$B>;|#C{ZPz|*7pp?zwxpzl7*u@8mU8`lm9jwcOnq3@8|vCa{ILUZ2GYJ zSjO$ZumW`^G_xajg9GCXe>N(MK8?mh7jo?U314FSQaO`4VPRO!O?qma3YqL2j2J21 zS9nC^f7Jh&k58l%cx~kuFS2P!4h6G19POJ@WwD;ZFuqh|;-n%h^*`9q0TLw00zpbK zl+HEV$!gdaoui512w7Yc8piuf$n{7eVippQr4KWlZ9OBzPM9=~rKUX=^ zUvmmv*@In+r=DtSNm;bC{cbKEDXaPx+>~Wb0&G^X4hTf$@V4oU=OT^|s)7w*CpiOw&MK+M?aDzeZI(yeZS|7h3AHTydhBor3YP zD^}GRwtJjs{5kY9&FodzNRxOqBdK4}T9fIp$K%3{(#;uZr{qOt(`j5G!ss==4)i~& zE(oZ48_`G`QQa*L2X>%Q{oIV!0ONUJ7@xu87RV}5w^!nv1Ck>POqE_$^El|g;oS5b z64uc?#`L^TKpRS>1>k2X`%`Uf1!=^#E02?O7}~GZh^4S=Sro8gy=*;PTZ@}%_LaP+ zpEUlM9xQ4r;06{xnjj&*QJ()DD={Ja$ZPR4gO`odEG<}8yys?1M>6I&6|;F@-ZC4iPP!IvaF~htj_0#jgtnQHqXi>yTJhC zCzj6GuYjYB>e9iaT*A(P%?;Yk$M@&IuX)>3HenaAk7M2|5gXb(^jpMrC>7Y7^cp=e z0pexr;?50hXNC+t#I6}NtYGH!(AB3dXjx!(#MDy%jrYI(K$a9~^uixTSciI#3|7lj z~NkK8SvYWY=N-E44}SGwM`N93D^ z0iENf4eVNN&+3iJE2s2Q@sp;KY16~LI&iou3T2tK+f}ZmkmmqE<4|Sl9IE1P`@W)r z#MqEg@%7o&xkcJiBXXSEN>mY57%@`x*T#g4!PA3xRgKwJnLL~1g>oAt{I4PU@w}J; zESs=sbET`>9Jl8q>)Z}wa_<~tuj zzu}aX*Z_uw*fK)<bz-vq9EIPc^A2Wq8S4zYP1p_D{sHoHLbg(S z7gike7_H%_ln1ny=SW(dI5}L_RT|Q;f`EUD$bWsQFy1;ZX88u7h%&m`8@F5axb6QN zf@*|c)w}eDOiwGTY8fL9?O}Ettp5@U5?!4z2iB=i9)$e0lf-1nAvCCbLdKahzRCG? zg%uaX0%G;&FdoZ}55$uNdurN$Mik^?K1)BdgeJeU#X`~f_Z3$I3$rfqvp*?bo8^nI zS0m*f{SwRBYS<+!tL^Uc)fdw5-S00X=;W^@$km`394VU)wVS;1upJz}O~Z$~ zO~nEe>&EBXm>z*5=WiTe41j+G90?I;x+I*sR#1&Pd3GFHRCWoati|vRk@WV(WJAQz z&#^@x9pF1TFVACM*`A2k(8#uaYN>rTD>O5I!T?1tFW&`Jz-`96a6)u8o+F6rf38@s z<(UkIL%BD`Mf;;yB{Srm^JOyh&$hyU4-GUQihsIYATRtaH<~^S1_7fFNR~A~IyL?o zCPmjE{J!0`e0(vKKabe^cRO5!Ui^DMGgkPFHE#qK5QhrcujCz@z;FKSXk*BZ!e&4u z@=>uRc`{d*9ageAPAGpVQTuIROwehBxl737%0x{pnQD0$R`;;JJxzl}czkjKosqFJ zvD=iOlk!=doJ0Xfp)4WUboS^_!uNd5s3(9&<_ly^?hDVTYotaLN#|Y>dk>l*Hc|*1 zV0&iU?>y#bZZDdUF+7t$L9pe|%f`sCvQk^J)=)nq7{8K`$?=dn8o!>5WN|a^?7NQX z#q!;4CS7#Olc8Qm_?!vOKUimVpRF;mACZh=W^pDMNEAzk(d zwxub)cxbA@x{>P`3%1x*Ag+ZCny?W^v?QXoaAo{b;&*PpgVBGAHOr6=UHN&?Qu?Ef zz@{1N|8j@%Bl!OSG3XBKEPTK+?{S0Vi%D|Wg-pg`kux2{={4X4@G!q0#ZA{)>oi$o zgc|#^XtF7=A+~}&{H12@5a=4bm1fSJc~{Z_?6@MpJldmOQ^v zXe(|jr-TWzlNk`UE*M0{-j}s~y3F(x{2rlD&`|wXs`)9hiEOmKOzFEomdgbiQs~1k z4Y%1JD7;YaZFtfbS%kTx*FqFBa8Xhsn)Dy}F#kOKjnQTqux=V`I@t@muw~QOq`%+6 zg>l|q7n53nS1leEx3p)7FF(Ng?cY2!sJpAyiJUc_`T-~uvk&V zk@5UKo}<`_(=Wp5;qmUcV8fDw*bo)Ko&tz%A5d+ePBq*6rzJ*1`KiEbcInDK#Sf0| zAnneMx*+|q>ARt<-Eb(_q~n6KqOSvKGPW(s9ZA|W%W}LjlG<)U7l@I$uRjF8i$?b4 z73P!_izp0~Jy<$E#yUU_JBObqwxStWRSLHaeb+Ss^%#iNDm|a!lU4Q{DBc}AE8cCZ zDqcMpn$3AGekf6Sx#bg|U%sswh`YFAzX7S=?fI#pedCdu&HP2{-B#})%hUyh;EJd~nNBrJI* z&5UNkfokgClb9}&e~;SR?fQTW8Ws`kz@9CE=|%p{LxhMLnSX7oee9zHEK{f!B3q81 zZoIkwM#>Kbz9p4BUsPKZsA-6w<|V?1s31s0!K3^D6fE8imBq`F2J~BsY6dLZv*%yj zdQ7mPXk=dCa;jtxU;G5#Gi2PfrZ%lx3kC|$LraZUFf61p>jX zaTV}SzSWf(Ljw(|sJ~SpSMA(_R0|e!RmE2nX$}J|>1BF0;l4iIG)+8PR5g}C|2YE& zcN6tlCqPfJ@7c5Wp--Xe4Wcnb>0{F%i(h^%kC?GQ{HBbVk!JBR9f!BF8Gz_}%|{!zGItgU@?zp}u^(RW*{HgCqjrLR5o;Tl+NAdgwSO>LkV>@Tv6$;GK% z`A9geXYyQ!rCiZMal zqM5bue3O{x>0znN(1_uA(e|MTqsU51+r4{d*06^xtXGRV?4((Q;e3b9 z@01i5SNCW45sP9O3%KT|G%zwha@_cH8=f-hqb0%#VY~xYO?ETumF`LmP+-naHG>! zfCi#nyYQX5;j9xuivch#1ONk4@3Fokl~$vX{(3e$C~Dgu$vla6DGWATKmRzp!BPjo zG*6VMfXETsf$5v7D1>&Gw%Q4oq_H3f9<7xUu`j2?b6N5Q`46^jJX-pEWoPM8#v|9# za&eoYljfh_6x*s@tU{c0n{>&j9z;yg9=cTiztgJi^kEqIv5?+P_eMrrsYcY4$1nfL zr)ho8`$}|yIeWGSRL_^4Dw(c@UvTRd>a(=%wgJIpgICq)Kv|0d4iIj5aI-v!fV(5o zZ-AQfCt|#5arMPYQ^CqK^15qCa`Nq*^9BZmR~7NRkIfOw7KS~ARdPtlin}7_Mi8uV zZA<~tWak+{k+kaAc*}U3W?Pe*NgZ5=9>mrRD-gSeh6!rhWS(t71TnmItN4c%*X`q9 zbU7+|?RJ`hmdN2X!lWl}`(d$5?ZKc&?#6gL9s`N}uQ^sB?3&^E%%(%YMDLKKYw zeFnsWQSYWZXGmvoa};n|*3KJC1kAPrKQz_=W}r@ZHbv%58S>GC@%a*yC8TCDC46Sc z*P3M&!&!IpV(-jO4DvT^ClfA)yO&3Rl(y*xy>%kW1{BTDn8);)x7UT}5}W z5@NSJmqEJAD{hjLfc?hH6O1ANgLJ-R$^c$g^mZQtsXUp#U;E*BPd)@ zKg?+US|I(9aB*HI-nwo^HYyWan6fK18A_c~^CS25DQWp#oHR*M2^9-zzQmADH+nhxSkd+fw$3qI2G9N5B?Q~Sb}S;V2WJvITQFakyH^BsI3reeIWsb@ zAEVU>DXtYVx$)tmD*~n~ffx?s7nAwWmzkPzum3H~tN@V%<`}?(O7ggwCpX(Xg{Lki z0&)hOW(Bm(3&C4pC@?EHdfY0K(XMg6n?i#l876EzzyzG;f4bV{m1N6hWO90QI6Gj3 z>Ea!B8Qea<{+C%(l#v*I9&a-+Ms{1%`*tO!-90d*Q5V z;qOQseXu>{N=~bOyret23{|Jn3R4#q(W4e^#+x7XQH1~zYn7EcwD83VF!*h>mr6m*EWu+`yoflwV<>pa)5z5w z(M&UZ&SXovALXHpVNt1jMeux*Xw39r`A6GRBD z93u3dMUnYYW=l&_Kb54yD%rTyt`9MddW%wqEsi<;)jl_@69z{auK+-N1=w3$9GENK z0G*ZXGW)*g$o+(Q5)VunzULpH^Y=f8oyt1NeCE&7`%kxy<`d3Obid7fjP^J{T~=+C z3CC(N$1o4%^p-5v#*m7A%RO9nUbTFe$MZm;(PFRc9R) zW!rvjx+SDRS~{gWq`Rb~8_@OFK^uy{+5Ls|U-V=%5 z7xLa5*E>L8pKQV|Ym-)8W22`XR&1w>h$BfghQ7Btr<$}L(|dutG|wklwLA_e?E7d3 zEk3#ca~~QrhB{p%uV}rU{Rvy^D^Hr5rxvXTaAt#eXs#ba^v9~L>55v;-PtUMy|&FJ z^uEfI&)kCezg)?qUsYPJUUmp^$(u-l)sw$Sz`my<zqZvL`^8V;SB4v9h_?q2qS@`e}Efz#3T8#NPnU!OG63F9-Y! zk$KOWf;b&CY6XkA&8}bHT#?}ky8F?kM$~K?T=j^AOGV^du%k50LN$liLtMr%`YL0z zb@}|*9m1*CI`9ctN?(c&dNFF;fS&$1kO^w+ho9I*vpx?M_Y(1ou77pjMP^Cozi;)Y z%#h|A9{Kr)>O7h|M`6ow%R3yjxe!q@0CTjvUNAPm@Plebj65Yh&-B34dYF&a2~P9v zICGyfU%-scZz4B#G<8`pshX6(9CgGJr0FP!+912cTE?V?!oCa~8^4mUxL0o>O|5Z4 zKq<>z9%=(t_QM<1dJ3_cwhJ;Wfd3d!pz4z~*u@JisvAf@UoHA*`g&)p4NV1ovff8h z_uMS_kBtjS~;=yf%%XZeF6P>JXrqYqR~Q@tco?!_ZyQd_zY{tewTm%35(cpB&xkxXRQc zSo^EM6+z&bRn2i?5@t*R->4-X1*~i}qVkh8&toMo{c^2u#CIhuutV80&ikJ_Ur4)O zNw=6*EdGr{r!K`kTSh8-H#zvbsowi&osiYoDUX$-+2}k9kJ18JtKiN4>+d$TTYWv@ zCy5L^;6NAT#m90td|CS&gNfD?#lZ{qdusl4olc#ddXFok##M1JyUlQ6l4$Q@Yp$Tu zdDO7-Kew7BQWU0z(XjB(mR+AE$>vT2FDIbDU=83&kL%8M_y*!&4E~$?^Q_TwHH*BH zE0CS(ii>p|69{B6&~EJYm~>dNXPI))4G_Sld>v()KJe?eO4fUyBb^{uQWpM4hjFo+ zWS?5HCiboI4E9jv8`2mo6X}eokD%w@{qK1uP%givh%PWn7pk@Pj{uzIjc?5=>fak} zJ>yj>jv-+-v&Nu$?_jko!Rl$A#{z(dk1%EzkLf zAipy+KUb2un$Hzc{$@b8`EkN)yK{n8Tk0mhbl>o@G4WpF zkn$np&o_>f4!SPVKoB$gmZkG4At+sPyS1_js&(RVwO4{Bx7|>;Srb`g9(;9pgaA3O z>Hk)e@wOzEv2N59)-Tsp|2U`acJI`3zojBw^{~B254%})tlkfIpuZAvNVS($X%USE zDwk2P8~!`!{LXc`#5y&cvx~eSvyB>y)5C`7cVuRRaa%^OiT%mCgpTV!!Pe{2H%f^U z!*4@vuEZ%t0TH&m$%+v{{U?}c;Xkh(@aX*uVUrFFDmd~qe{%gj72sI}?C=eqC}wN( zz`Am4JJUG@_ITo-9-We+hIbkW7bISp`e8)e$|+V4i99LRhi(K#mfG$<8mjO7!=SmXO6RC7JFdb*FiyjS=RAm);b^ z!h#PSlSs~b{v~F;KX9%qtG39|hX0JO*m@~cjU|u+lI{04P|>H+as5sAHbT+V599K9p7zx#iOm^ z!g%^wqxFiX3KCEvFS(z-+rFYnh98F#?5c^tcfrEb-pGr-ROotlZUSrE@bj$WvPt^CZ zDXU(Mq4An_)3U@N@b)_;=6Cr6Uk((2>zCcs+}$d1U0SIdH-PF-?nU$;dEuw7x%4;W z4}sz$i?@iDn!1*)XP7nm-0nk}JbEnAH&{OgJ+;bKUBk@+?!Qj|TIR1=+v_hnKgH8B z)4k*VR5;J<=XT;1Eb}0Q#VV99$8?(F(I> z))}!$uq$p3(zy9Kx-YvZqamYYm%y!!CX;+DO@gog8iE8$;=5mP-cWQB5o99!-oJ{u zZoJp0S?`9H8*} zd~AuPR?*W%+dq02ZI+K=3)0w0K_{K5=b28m=B>uQ6$B5LiEPb7Bq^$}DavYF^S zuWmprVcydo@@9nXssCycvKyaZYmp4d?r1ZeGw@mQ#BjMU5muC2O)XZ^Ki;T4E-&=D3Bnw7k;yJ9+^K=RTS;a?CGNE;pb0xgtixld$kQr(>oy1LJkSnj;rUv$wv7*G%wrINYc&~^=R?M zohB}u{x8Yxk#q=iWo`9Jx`s`OLxu>b(ifG)VvP?QG=>)E#PDWrJXd1%3yY*sQ6ZWY zD+1F?qt<@3uUg61*j4LMlYt(w+@Zf>cJjUs$h{@~9mq}EtEREh3R)ovDu!P%!zsr0 zhKi)gcOrV?jibwZu1Npfyd!U`khu}qq{#OF?2kB3=MS|UvRcs1euE%=So>p z`-7^^_u|+&bP6*7%j|$-*e`NuBLqu4+z5C?zGv zKqHN~k!yH9pgNomL@-=kWDM<)TqdNoq&!JNmpl{)FXbfd1i#2r<3l@+OQaDYFFP@( zbNAcY)Sc+#s&~ep;?LkoM?yWOy>=9UHm9v_=;@ZTRJ7;e=FB)Hw$5y8w4(SyO?X8d{P~aX6lntNV#Kri$`1{V`u&xg@YE*E} z#Z(ZHZ#V4W8s*rEJy*lV2H0%Sb5`>rao}S2(#!VN4L4iWOs`u&_1x3NrAP*GY)W^I z+^j3k<(Fsr@;?Wg#l`DkN0`QU1pN;kUyZ_A>i~GkrCl1ViE51X{ z`l(U@&5WrybPX{QSt+KX(aDwY)1)HfAP}s1*tIino14s-VIMJ z*jsJ|+uPO$$-A-uJx5wXGTlr5IJ@WrQgP?H-Qudu&S<^&&89l=j)E+QPptmJ_>;cE zwV6gd$$ww>(67J!ixF`j+!_@sb`r9a)lDgD!GhB8K;_3UkVe;$iu*cDf@}Vp_@pn)(VgCD3Co!p>ydVq2+~Mx`P8trTMoN~`QBgG zTjJgMcovd(b|I3sy4XDQnD>rn(QmD)HOhkT<*Xpl!j({)rJCKR*23+9-Zs(a*=K7d zmGJM@8O;B$@O=M~RhsDnaKz9R$VJyMs{&S+YXBV2In6UJ`q#w&VpO1JQi*jCkbpSn z7Q}^cQ38Xj`7k&{cLGYR71AlXkve%aK{WoXZ?Ti=%w9-Y8w2LCTBTwLZb-^WT4*UG z_%#MU9I86*L~n4r0?^0v9xe2{;I_k!^f&TV(0g%r8CSV_^WKGl-VRpUY>9-g1`)F+ zJe=+~Sj!K-@F+y=gxB^|@|MX7aeokJx^5G>Blo1zhn5B(IBPKB#Wp0ejDIw;jN^3> znbOVl?NQ3{?GQuL@{8%_B=d$gQGEiV?2lQ|B*jYofQ~Yo)ZID0-#=dd6NxPq&=6I& z`Sf_dNZ9Su-)3rSv^4?>>n83!`83RK+nI>XoHZE2KXlUv8f#P}zv`v>foN__ZmohJ zvVXnM8>xFfRlDLI7a8PStUT|Fv+$$I`?*I9dR?oM^}Laiy;81Fo! zE2oT-UFK+id!FJ~TOUrz7Jbm*z)Zk;$bB;+qVIFBI%!34q7nZl0@QjrWF52@J%yVm z;d+#F9mBR+vJ4bIxxI;dvrC2Frj-7kRo||(0=FFR7CW<-Zw+#1sh)Z%rMpFc=U3hx z5`&MwcsY~LT;VG=soGgD;6jyrSyvoZmi#S1*Z zMyirr)w0hbw3VcNnCA#IhLjk9U?4mTXj`r&5G9SELc+&Q5UT;)Y}M`4KW-k>0h7HI zzu$gam(TlFNs1xSft+;5gq!q02Y1bMp_vwBSu z(W{NW&aaiH0zKPA1Of+~$=1RwzCEG5>e+Sv5F_3*+;O-yE$*2-s!!zZa4ZlMo=I z<9cV-Mzone=&W=E_)7AetwzQK60jyxUxrtUTS|JWG~hpqqL>i%a4A+CK|{U8qN22g z&qxh*L`|oT8bKvGneG0>%kE{osST&s#Y2>nrzO!M6`~o{|B-~|p&?0Av!j?1)Cw$r zP8`V+(yj!0$|@_Yjb|NnGcf2m8Zy;|cLo-?pMV~AFdMY87y1_y@LS?a=1DP0Ra3p2 z_N@CK;@LaEP$$_oT8f%7!iXawPkpcfIpV<|Az(Or`dM;$f(SeV`MT&Mr~~J z+imZ4>&s-}JcZy@1t<=jjIxj?O9c}kNUc3PFKXAeS#YdD zK}lse$rb(!3b54reZybhCkTw}%zL#OYZQy}1Eu8yPSTt)kl#GO-3H&h+Pqh*cd4u3 zT437B^JQ3;Q*A3I)QcOi$(;LXmdEtv#Me9fP#v(?)R~NeX7&adCY+!Haxfr@B9|#% zs%-JsZL!2p(Mu*~uX1Zc>c4}Ejgg#JlcnO8@5~wxUKl#t>%Pv}EYk6NlmI~93Ka0* zmzTAt+tjO++yvnVW!jvY{Y817@)QO`zCBNAi7tUia;Gi+2FQv`|0aQfvoUAE+hx?b zUfK!d97C;j9F>>(ri?ENC{1yyHe+QLjl5gUBqp;0}cpr{d zzitaj5mZpihWNbr?r^n^>y{HKUt=A3x=$xipkt=2ggB# zn0^LZsCOh~`vqSncgH6O#!NP2%uS0C9+rYM4lx0J+$N`y zRoOy7pkwL%dp!`aORLia<2f1O5#TK_tulzRp-mq@_Roj}E=iKFymKAgGMUk_&7}ck zcI_~86W)rp1U65bp!pIIPo_i8U~B&#kR*KtDZI>$Raz%DUAT`2l%E-R^2JH+ql5j* ze6>u<;V(4MPsE0;JcgAyIlIcA1Rg} z{M}vth2gvTWgk1+Y$=ITZ;v?Ic;L>2MAt6fR$b)4Z=$;Iu}t5qT;8Yse*z>2Nowf3WrrWxDVlf+bO^v5@!*2xuG z$@&p}*A4bvpe5LEZE6tj_xT+f%LR({_qIkeo%L2*Y?Yt< z@M<@gRxh(hZyKR9XOp}xc}c6ET1Oe3nf)y~kM6QT81&A%c&W>Nsm7zG=jUZXn6rRf zIW)mTPc@_?q=R|d1IKT|myY#`JA28KF6xsOXc96&RP(UG0KxWPW^abR1*O;S05hUF z-x*R{0>5IEwQG~Q%%(I42_jbG4m{5nzLq~xw)FRGhuQ(rSv|ylNE@(L&~6PLWo9v7 z{rU9Y>0gAT4NV+>sozYw!TF4#^Wf#)->sV>Z~Z#GtM%USVKtFZy3NMaRB=5dEm=5Z zad{FYfWH0HdJ;NF7odUh1T50|snye1As{4NL&AX(9 zajmo}r(X8t0YkiBC}xu^zNfibzUS!q^15U})s;jn-l&!bs5BiH5VoU#ky z+Wy8>Pe)g@%hl5pK&G1vPDWK~yx>d`^~}+P8q$5vLrRUFa<~qtBK3-TXXIVrJHWCg zd$Zi^AlVKfhhOl~Kgv;A+`8&ePI(G2pII(Se$on0mA-At3~6u8Z!r#6wz^R5RTh=j z4hrY3;MKtJyEDMB@mbwaEX+o?B7L8X&8n;a&>ihx`%NARzWK5m-K0*%6?RCd@V^w8 zk9Z1^@K9j?m&97x)N|aIip706Q39;nasU3x{syPi@hBvdhKGjljimSs zN7|me^Y@($9vUkA!UvMVBXKVRidZ%G`b2FL`d&BvYKrSt9M*R5)l4!<0hIj<43RnQ zF_NGYS~CUfD}Rp`|LPjMwLuZ&@0>wE*65`nePW^|;nLS2)dq`>wmAscW?;U5Q2xlp z@!%A8DSE0=y6jA4@M$n~(!nT9UVFm(#JlVbAb5$e{_v0M=@;4`x!dA(oYI!yqHM-q zs)dfAmStdbzVoO$r`-q*O_ix^{%%Y>gly_hSA-*Gk@$hX%&!dmdF(?6K%e20TT3ni zq-jMSCt`)JNA(N3oJBCceoA(0h9kh%SOhK7D_jF&99eVZ5~lJITT!2F^UCgnnm!kCp&7U%4Xo|+Ft^@=E zNRlOH?g-|8>Rw%&w?w>nPZV8(Ru>L;G<8OC^P-NJamLN|_iy)_1PP?IakYt2AtvN? zp|+2ypr4}S?e|>w+<|21;g$M->bN8%ggu6y<5g35?VqGyGA=L?TF zSK#~=)&En(KYKH%5xV)(T)EqTjIcv|6z}Kc3;<{`fiX0amig*a8_{$>zoR(ri%p;_^R~}f zts2OEX;h5W92%D7tRaHG@dbY<7$#tfzA=mrs@Q~)6+_=Ew4>ge`({lI^Rh{jgBz;O$mwmJwlcoXr;qA?pr0(BG zydi|G7L$FJd~Q_~pu~tbsbmn1;iiU(!~5B~p&^d1IfQ|_Xn(}*OR5*_$^y`zaA!$_ zpmN&4mEv*Ez@OB1`BTAN^>9|9pVrD=6ypV-Hemlrx1lFNO((ap3l8W^N8l|A-9&-7bFmD z`SVEJ?nw&L>=8HQy`72LsgjC#u|1MJ)Je&_Txpknh-1SChR7{C;s;rzv!9VgW7^4w znl^gky27rO$lw_iFS#COqKyqDu3+O=kzTnq5)W@zx^t`JEsmuB2w*DNcSHAnroR z{VODh$wZ@W1A`zm(qgqJLrYhWh@NK1Hi@~M|2qYv^6!G>f~1LWdQTIGtXzn#)N>b= zuR3=q7(~{?pTNz8vZN_&vNr-#bPhko*9A-Y!BgO;$F{-?6`1bb;f0phX7!|PfrN5n zr!j3P6>Qe~_y)mbb(zG&(tH&YGNbjL%SRs6JVJVS>%=wb5>s59td|fPD@q;dM9!)D zc()*bnET#u)^|pgO<@1;W&(f9t1sEhXoA2djuy?iINCx3B4TTl_A=eWM8W|zQ-;zq zTW|Dr6v;b47u6#^r}6u+(a?Lh`_0>}m5K~YdCx@IImYI-i( z>-4r*>?Z9lMfLk&ldDPHQC!-fP%qLPJ+~i(AGDGLQvhf%O27}2B_cn@{EdG>qSsTVF=;8dtMF;dW@&`Q3OpK>F2qH-_WcgZ)er&N090q{khOCy18{)Pi^S!-~t8 z!MXi^Sn0+H&+H9qejlg{=8|Qs*bF_~loAV|K4fCg(xQ|q68j{loODWp(4%!-pX$sn z)^8T15qyrZmEKF(rdjT~?NYY8#De-uRR&FwBuaB6|A%ZI5TQ_m4j&Z@ShE|Bh>?*U zbKPh^9Z_zfA5rE^$44Z|SPvK5n&Ehuq51hGEgw^K|J`K-NLTotTlK(PJf*ZBXJe?sDZ0dYHMlm^*_x@R^56l^KOAl`zgBw5Iw4pBe zHqNdlJuDDy9ek%TR8H&`$ar;a24`b-au>DhGBMi}Zv5$Lt7dH;{iOkj;{L}VN#ti_ z7ha_=6u@;uWmgczXXpLxEB_E^WG<9{0dRQSS1?3CZb(@J<_qvyp2o?C4+o6_@#C|! zU%YD3i*fHm;wvC5yY4f$TD4{evCmmiU(X{~b=)A`shX#A&2N(28%&rxen5gM-TY}C z{WS|%L$afe)sxbCJ&)s3R@BYXVM(V%>5_E}4a?cdneCWCHZYRs7^z!u`cpXG>eX;F z11gb^fb^H+>Z+twuh<=Q#M!zF)9lw*{`2fuyEXjL16l%qyteN-(w>ZGW(o>0jz3e3 zp^X&ccuLY*L>)kbd8ipNsJ3~|Lt`xhim39aO4N4@LBeQ5I8|;w1eUHEEM8B@-P))! zrfqYZp-;he>(iUaCmuepa@5jEEV~Yv%l;-Ju?K_yX9ln&m$&v(+FaMQc9cJHT>M^z z(*MC#L}S4slKri=Rfxfuk!qyWPpy8s0Le81F{}a7kb=v=tbksB0$Mb}5Z5x%N&Bx- z3i(EH+FT0~q)&)8XvS#TYqAtwnCqzUBNS?-$WLgAYf7FQA`qe-yF)KjCVP!{<|@?e z0Hl2pH}A-jEpPO1$8AS*@sUVQZ~Ar2%g~eHldm4Jcu~&i8-{D-Qs44{^1&0ODUdU* zf1_e)Cx9wYV$PEHc(y7xyuEWN7RrA)=5zv;pI zhQX%rF@V^ynVF2Q5oi!P^Q(0Jz+qY^rNS;sWD4)Fl&U|#@FcD#*RO%bmeN0JD&upL zdba(AnYtk;jPKWlGGHd>toIjFAmd+r_fwsUesp`;ogP8pS6ElPbg3_r5&4$kW&mne z_;TZ*+pJu7k_X1jDXM2Jd2M}eVk|Dha!*xf{9DVp5uR03nB2wMERM5qjE@g-7_*?X8^hwYOWOc-&)E zyJipiLS16)C-2y%vfrubxd+5%tWKaG6a8R;@ll3b#!z-l^7^#|aqjieLc=|_Lh46P zo^dG0D+ZM>3IhCtQ>+Se`j6a#lE;fX68hRV4UgPV>zB!**CFpH`Lr->#%lU{=ujTl zHvEkkM}=K=F(hDbBZ__Ps_mf{+mlUW@6#{ugxlHbYju-Q~ ze5hWXDtF-Z_r^^dzo*cA(=Y#~O}K+7Hns;5UHa9K>TU38&9jj;DEB?MrZeY_()LDv zPoZK*A?kR{_WG$>e}6Y|+me3I*>y~p(uD?65UnJ+jYA&@3@Uhr-$VpR!>z!@226Eq zY1~4h#08k@?E-?qF?g}WS3uV|AXm8&#g#XS zA>UVhg(Zt|dSscrx(@~g@H830$Wu7di1-}e5+m|MdCz_#t`;q~4r)fJYMh>D1^Y13 z9Z{~RkbVkWI7lrOad&_G#4r@-wJoyiaU7}ztaVP3c{4h^&)6Y_=ELl5-o}r#H8W;7 zK|xjSRAx9)NW^vijQ(^xy`ZHgp$v)B=szIgr$3aO%5m0{v1)ye$@%P`=69GJ~ z0viR&?_D4_Fdj$3A)OE~N2{!#N~2|efV&P(3LAWfMDn@dL9$C~KKML1Jss_UqxXqr z3*ubQ8W>s9Mvt89#}R$dSgztA;i3FB$5|!bN89wr7bw>rpP6L1`KlJeqYlzbx&VaK z-ZNAI<~ZjmX8T*Yzk`{s#w$~`TIZvFi?Z8>!#rh1kt?|jfMU8K)R{YMAFymI8pXfz zTX6VQO6pqpE~>My5`m-Byp62`Vl%9~zIB;j8s|Mb_9s5(OyW_j^6ef>Q6in2M=kFK z_cfTQS1`RH9V4C+^=O$iush+CT&$wjC}T2rF{{&}pHSvz7j5m!j{7}Z-c8)Ksh&Uw^={8aoDAlr%A(q@>037{1W~WnN2}qr>V!enK$eI zR)JR700OT5&HfwL4Vigh`W z2d7+_ME3p}Lxp>(Dd@uF&W2!iLa;)S>89*tFu$6VqA>afy!&bNs^R5UBao~~@<_)F zRm%07!CVD$&1Z`KA+rQxz0K41s?{u>J!*(d5<7Q3Kxwhs_^ahN{zxgTvy($VYC~wF zSDXQfP38_(>^P&#q=mN&`*kxFxXFOOybQ0 zpZKlZ9M>9MD~Id+_>i}z)RY72(eloSPxpCe8(c9TMW6bN_M!9*0jYC7NmAE}b(*lyN&SQk7h zGO$T9bQrZig&bV>Ke1~}2-xs2?O~%Rk1=)e+d@JY&9E2>5#0{{TH0)KCYxJ&VGaOs z>7g~-|16>(2F3;S(>laVh6Y{%BCr1~Z3MtO$GLempTJZZ|uzWGIw8{5Ha3 zCQqWnlTC8Ky{&59LkC6_aPlZS<8EIWOyVRyNK$#U3?0qnnQietu74b>i0X{*{y6ZU zs9t&|KxB8E^QMxog7?o;?ZXtwV-mpcjVg|bMcKMPHTz6jxD~!bpqfJ)%G1%;{Vd!y1v3E8~HL9h1{* z&Wc4}f!ch z%hu~>hGzrs*`4y{mD|nkKz;@GO;|E;lt)YTB||04N=6dGUu#;QNN&cKZ8;a^k@&ei}C(j0KtNmm9V9K_y778yJ$oHL>V9>hW*GWr zE=m0K*P90?MnZuH>GKg5*&p+Dqx+DU6t5GNlnhPAh%|Pxqy_mr*U@g1ytnR%N9OU- z#4)iw(jpPD-1d3UdI2`0XdBKuq2BPKC3y`GhI0)n&;0-Y;roZGm@6HIRc-GNz=Ak% zp6!-EC@LmAf%U6W3{xub!$OfXB4sn>7IUcjB>~ ze`C)AQDETz9%uWpkPF=4h{tz1s??^+;; zR>N)M%w(#@n-Uk&I(AQW@O?9VN3_UbImcgkTl zoOvapHfT9phkILNYQ>EPrw`4a56GvpruPvAfdC?^U%r(|7eV%h7j)cj6hPlIx zQKWoX8xevnh{eS1Y5t5?MhgB>YpAr{BCoqBkv=)f^zMI8l8z_sP9olwC`t*Tt zNkbnnC#833Ul2&_xik|S+qD1tyhDqTv!(RsLjB-m^lxP57(VIh1*k!1POv@?{dv_;mHwc-knXBY1z002OW|QvuN8o{3c1q z{sh^U0i$%@ay!{zsb$Q|lm~&cYkOM@f9GOauDn1!b0N=G=FrCMNaqlXp=55q7Sf0i ze;Dx2#;a{S3G!dz#H6|}k>NL5ZLK06q{9U^@5ZvKBM9#B*`fiY1c=7)Z8#e!B=XXe|VP+Up8;I7{h-`*uzqe-B- z`6Wvlqghn^{O9dR8ZLRI*spw+)acMW?RBZ<<08OrK{$K%wA`Ng92sJsjyxAZw}Xt&TngTUFns4 zq9Rn@T5WNjJGXqTuH>;u;EaIfg}~R9m$My!#|{sMF-$hYt*lXdEPv66?_C}*i!k|+ z;&D2U8I=M|?j-SZ&cVn9gpvu8w4ZXh%m7@Syw-X2YmcoVO_a!4aWaZhx4HxXMUbfT zXumiPy^CK`M_Y!<4TW|<{DUd@< z_k`RQ6)Y~r*wx>!nET)Np)uYwIk7-KHbpU!!ApN5X0Nm)=lqGW#cZtrWlaWck4Kie z5l?bA5GU`eE0109)EsFX-oMF202Pfq5ZHz(SuML4o?dX4XAW7^o>%(Kt`8HmZ0_x} zdAqmV&Gx>1UiMN08zXj-fcyxcsmV3=s0q_ax@f}ku$*oHd=u71E_I8xSP_oPxQ)@N z`~KjTr0BL_G90e=W}*y!{G`}iGa8^Fs;N{|QI)}NWS_GrJ!%)I|g7VxHlSOum=HYzB`EP@vhdw$g0 z8GJ4Y#gh>}gDQNRk8SNb;C z@fmg~+_*lu0Nk6B!g!LmA?L`}SodDYG$EW({b&;9RvQ1t`3(3V{ZxOoM_BXFAkucQ z8#!5$bM`a?#CtryD1nt>a1ha?ZJ!_XA9804e=}{~-<)s) zcu!r$*nIc1jXr);g6qv#^E5;{F3WL~_AiQ5wF|;OXlT-f&7f9GQR{FG9ugVN@%&y768+MK=2`L2!k43+bK(Aa*9ZC&J#r4xb z$@l4v%R1H}_8Tr*|M%Jdl1`&>*0k_!|Krin*Y7w_xda`sKpEhak9>D}CGgA+x%LM_ zYbKkXT2^?TH=Kc$fpB1Pa5%~SQV8H%#fyDIRb$ocIyxlC^+QTyXt>a6hob1R)E1x^ zja8ylE;>8!EjCt-rY3)9x_d*AcL}<+lzDA>9@}^~jDmd|K5Y@@#f)QZ`6^pwx%;Jb zeJ}gwMiHOTEH+nG;ajs^hL-`>{2FH$oCNzL}(6waWdrW^_X@=UqKb}C4lxHc> z>ND>n)JvMLwKb%t3ep#qViBf7Vjz%W>Tqf9-^YBe^cAAuhF%a5Er4Ew6>~kX5MJ1D zt_5NC&yBP!n_nZW*nCZOJ#*vqoQ=LeDsY^UrV}Hc;6Q8ErHrS{;?wa*u z6+9i29NGDQEBtySN8G@{Bo4u3D4FxD)4)T0ZkwChCOz7*83x7va(!t3qBBZFhzSvL zw0l0+MFE8{D02Wdrx^-}Y#kPE852p>8#2M(en2^%o7CNV_H}IYh1s~&qp{&vo!RT- zKx9W0HsM)v5nT*-|4xMr08^#K6W*w#3wtd|?H_#AUeX6f z{+zguqf~)6km4Mn)#~j3oRC9xHY}g+i3l^_IthSB+-Py(XupBS$wH}p+c~w%_8py4 zMc6Yfk5d{pL1|iWV!0t|-LEVQ=y(^R@v}=zSP`;;bg|q&pw?;`+a&1=AoLdKm#AA- z-5x(}Cv%G^C)pz9q?8WN8~Cx;14qLq69Q9_%~%$5BoTW}t*iMH(>d;Iitdgj6$2z{ zhCFKMk5dTl{(A?^CI|MgFo*MVP$1s zvWsk~bOX)jNM+u2A!``n_K{d?VojtejO?WT_!go3GLeMlLlnBJ>Sf|@da^zWDOq^D z`QOpz6gFYjxTIm}IXUSoWi1^SBFj5!?&>bgb3mBex$+S!#6t2Z>*x??U4|0zJ?+nu)nnAdI~_qKGike zV#sk1K1tU>O@DFBeXw7*35nIG-NwiC!m&Aj{Z=Rl?qtNpB99Nmg*co z`N|cLa^il$*^2b~a{MQ5%+&NZ86KPOm6!eXJ`&YME6GYI<(>mk9CzP#ziNxR*+jm( zEcjX%rS~WHye%KVIgRer#ERLZOE2Fa$}Bi?oG|Q)w#>hD;+}Aj&w5U4@m~pTl9r%+ z2s^`h_!KgDvZc0xezvELBqRCHN8T0s)Dl9|ReWD-h+(5sGzcZR)r&rWdPoAfi7V6H zgh#{L;-R)b_5-}rQ#n8*FL=juitpaJmQEd|53$IC?9J!D=7kNV=bqM@t+i ziqs=QL8K|Taz*0Vzwt8;(vItz2>Yhbk@4uwT8(7la&0hkkzAD?tvRRjQyNTz9VfMnp@tDaj z^0HNML5KcPnGQY9|E}>@%UoAiz=?eC>q|g1Yy?xj^4q1G35Omm?IQ2Y$9c;Ueu<@b zY?=VkA%yRk?m|dl)SQ=)uf3P+SCk^H^Commj?r^H^j9^msQZFnsPb*d{8&}=97}l1(;+bx8)cEBj)3)p?pPBQ&)>D#y;j2{Xl=NaF2(4f z_7%!FW@x&v@8!){`pbZ29OKoym}n!!egN!Cdw)C*X35 zxU!Asa2bA!-QV0o)t;E~VdO3*rF5cK!7x@bgB-2%@s-Z*7oAVE7qHs{7%aeQMdGhK zXf;hsegyvJc`ar_@^TeB zm@r5$H*)yRQjlMJRVg7GZjkidr6vv59^J#IweXYm#=W&W+(3PNw5#NC7s>-HRySH| zgcme;4`!uad0qw^U{HCfFO+smJoRePQO>T=|;N@M*A9o_El0F zcc6t{P=4G$`O0sP)dcDI{&1)KUPMpUi^{uixWFwN_^vt*c(%M>YcG_IQtms#(MG!9 zX_?O0-q-zL)5jn8ZBT77*rgZ~Zn&^*)bBwbG-#}H;SpSk#|skrgq(JIyo6=VL?3Hz zKlK6G?5Rpp5<3w~NwF2rPwU{MVN)9CzL0T-!ZtBnv}M z9=%J*A>%R0R&7_F8S@e8k@=BHzO-`ZVD%Sv1HY@&1M+y|$ofYm45i%PlasG1mSR(p zq;vj#3P>XTq}8~~RMr_}`t|&`PW?Z!z5*($wriUhaS((7L_iv(Bo(EEp+RX-=|;Li zI);=kNhJnE1f(U08d5r?yStmA{^Rq$>ht~YT4%8iuom32&%Up{_qDHmpZ91t;eli~ z%XnBLjJHE2{{t0iAgP%nDP$Iv`H?rOG~sgF2#N@aRVeH5pRP}F04&I^h}Naoq8BhF zGkXe_r2sb=Kj%GzI`@u4Nk_bu&gvBouR9;(Ew?A$25Cv?gY-ckWGLpr zeQ$qO;WQvdkVc#y<_xWGk{%GfsHubb%g!KaQ#ML(VfP2Ue;n)(I(qSum2Q`wt!_1L1NBfx`l;F%LF+LRo^&yo^Ry-%+Fyl<_1L|Qe{jnw}Bmt)mZ|Uv)-cUcsD5@wi$@HbiHuTEMU33?k3KEs^tCo&Hygx139n8 z=&|s=MyhtjkW`rXC?|*S8MOwAxSE9GqtA81pH=O zG@Zh-*PWn42dnx*OB1VFHzhBGgmrf~Pwm1u1!&pZlUVBK*AsX&`@Z2HJ*R}J;}>a` zcf!?TuRQ~{>n(PvhKyFtZf4K*buAvOXGR|Bjoxo&76z{=L$fefLR_{aC_>FJ-G5Q6-1EZ-$V9zYqlrJ^!(# zaZE^Xc)VHGeiq#MvvHb3F$49uVX8}EW#nz@?;Xu})_42aU*D0KBW6`~wRbt)ndX5) zcM=JtLA?c-XPfKm`wN^Gx79Q`SBP{DeB~1+xXNqo+_&cw>^(v{TZ4R%)WX%hrp(I; zzP%J4a-L7JQ=SHh7_O!tdv0$+xAT*&o}k{3K6^+l^ZM_SX=u>ZkN^D zpQJ9`dbZ7QwD59HRb&R9GJbVU&6RT4a_gpg9GS9WH1JRGGRel^o&<#7BBYxPA(*zdhx#*NO7KHcl0XH4?jMSepCDS=2z zvkVb%uu_pqkWV;Tw*wLki?1F~s};QS%{ZO@UWt$>c*nyqxuE`9>iN=v;@CuGeKTJD zL2^Y4d%H}X1>-(RJ9i>%Vc@p{f3D2!lyvY|MSED+#C?S4T!KX?Tfcpw$t^3S^{dhDE}}KSrNHCY5Mld=6iDMM&X;h z2w?n_{5)3pJAnNrmsF#il=wncxi!1T<6RW)!3iXh^AR#dI+hxVoF^XgHe;mC6pv&N zU#4Gd>}nm9%$`4FN;`iiD|{SqE~jh$7q1$ipoeI?{t_e;A!rHcZ1_ApJS&NJnq|=1 zy7vLmrm$?v$Az9^;n&ZndE?6w*a6PclSXz4yL@b3q&ZnV$0sMM&(tTU0^&Rf%c1Z_*!GN&Dd)K>;p%x{kEmSW$DL&Z^FC=)=&9ZEu*o1)0$ zg)ciRBiWw2k@jxy13gtvJ6z0M5Ph0yb@uO$Xu*|R^D@GiKOHExQ#`~efP&=_lbJ5k z2zlcm>$Nm{X{(NokMyuXucGpzVyjA|$e`}pmUe^rX>~mx&31vUKH9uo@2g!)es{6R zI8|=QAu5C_;#7}%{-e(`&EO-i{SWh2zh_4-8aF)mVCEsG#}iA9w>2EPG85kU)p>~U zm2P*cQ82SBpNF#grrn?n@S~9En?ZKum7KvI%m`F2rfBpOS@2!Ast&3|&6WeH}O&a&LhqjX|xWkA2 zb9f36DQdw>6~-XOG`J`Tr*EJ?fq>rCnNGET<-A4F?(%+s`h*7zhJ>BGpUu0HVD9i5 z2|8*%6bxosimjtxcWJU6{#vkCAgvEzv2e2=8t=t)3@V^X#_Kc38%sA$7SV}`xw&)_ z1%CW<-2E8E31+vfnZvZM@+y85=0TqaX15zJb1MNB`uzdd^}(!XER$obx;8jpZ_QCL zLGh3mly0SB6G!|*#Hi%{RZw3>UuI~2OM^4fgwwr~5v5!I=5h5b(OEZS+> zJz0@?@#Kn9_#z+0^zGi?y_gR6MchoX5vmJ^iEtC@&wUgv;YzxP1tWXiNqJ;!$AByF zIJgCE{JU|N$(i|&1J*vee&Ec#T1-q#?>)lCU|$(5VaMA-=E=A!KX=SB&x|0k=yOvQ z%$KY$n68Y(HC@>w;Qk zlIWPx!;S=!1@&*p49JhO76+sY4ttNG=iQ>WHBkXh5uKrf>|zbOn3tKGwMB7SSeh7i z1p4eK$G#hH_DADmw^j|6Azq^)eiy)od*5%^S`-<=+@_>k`ra@JHvl@y3oY{Rq%exo!!Y{|y&eu+g6cl42p^w6g z)PI)reEcDAQAQuF{N+Kubd?6e!FcBT^7~=83y3})x|9DZVPCQ5aR{orG{Rrt9%yWD zC#k4l=o1YQnd{8KjLb!b&a&fD;H9Z_1z%DlcskV%uI~;Y z6efawJg$#Ck2jTlrS-hL-xU)5PUX=F%pUrl6&w%0cpy`=jLp^1+UNs3t8OF_p2a@VBo4@zrAnlTnM3ph(b8c zx`Mg1#gpbVp+Q`J!U050bngA8uNRuWu!Hze1P4mpfu=%YK;6jG5rPJCy$%TR&l+J$ zb3Dt!qyIrmH99#^pHn#mlR%0s*xEqNTntoH&0NZctN2}?uz+Zj-iYdVJ)2;aUK2jM z8wMOOIE!3a;FSB}y-R_EGxjS3ULicqNh-S!vOtxn1gtisU9<>^SM?e9xfQ0%r3A37 z_(3QZ9@?@mQyeZ`z52ZUMGIQLvvP=gq#jd2aOQluZ*mMLje1%wA=o5jH;WS% z&+azPT5yp(YmggE*0{Ra6@CRvWo9SQ!vIPW0gv3fgg%QN*&B(ah2%B>iKXR*v6!7= z_3>HIFz4e|w!dkW&a8=_87rJxM@F4 zNZ%HInI149^DKIe`zTHJ9LT1arF<&np0j1K|1>c#0zaiF^N<+RABVF#bSseTV<0o8 z`>yN8Tw2nLx469&Xk)6C1OqbigPpKGQl07e>0+14W`Pw7JA$_>oqfdpXb?_x9clc9?nA$+Ed5YC|?-nzH2okoqDu z%LdsDZw6jkh{yu(BFvl8E(z1z3AKY`1xR)j&kDv&+ixEyxN3GdS-A}feBCrdjb-L> zOtg??j~8-!_F~yo_e#y|33OF=+-h{X-WaVoyQv>eNWIkFygF6XG;F(+$K5!aUQ9r> z7I~^Z>2=`u8VsS;LWR@%9!-=FJoNijN)=v#k1qReqynkxltz#QxW7n&|6ET~0ML0q zi(#x^52g`&3~6e3f;qS>fMuHGrMI5`4zb>W1eal;V^NuNm!&#j^@@-C`$$lH$H04i z#Da0CNCQ@Hm3Y&l19}a0oD^K82yVE9CW>!?{TvZQ!jPgh&KG(2x@O1E=QI?_LNbQ~ z*!lCqJ8nFDx&RXM5>x6b=xY^MI0x@W%B8dupUT|T`zE~5=0`$XrH%gKsmZEi z;mZeEE4gXcuDlI*T!9MmdahPGrfl#sqS`p!fAjprC9@-gi?#KDH=yV0A%z#!E`N(S zQhGWQng3M56_VzfLtU`okO=DqsMem)!19?i*_+0Sn}hq4hb}PdEd)7*suzy%SzpB^ zS>N}-UC*dekwRpk>FH@6+;RCd}0_B!t9@vs(}bc{UwEpW103~$|l^V9(m`Q=u2c$T)mYm; zbTdq%F?tG9uUyWkaX7t^L`w)0@;y4z9l}0Mi=C=sIXQoWWhtG$+G(rVB=p?g2)WCM zjlf3#g^T~aAS8gf79E)4qN)kO{u;PeZwwm=o{(T=iF?jh1FuE_oiO;Eb)lI+Y0dOz z1B?21g8k9WC(-~kXt*QYIJjIE>MrQWpWe+NjB$mvX?3!5Pa|)ehxoozVK}Os8c@3nCA6Ov7%W6 zcx`4iKcQt_2hJ6%7yaoIxwJ*iXB<;~{hX>qYT8YVy9GsP6!EdAy@~ZLKr0`~v*({@ zb#&>-zR9Q#8a@6A*SMiZb|k=$*tGV1@iiTOuI#-UhKE>B<{zHGFI*Yb3X1{qLf0uJ zH2oT6vV)m#oW7|j2xU3)JkL`$keFoHN-W6P2b|HpgRTYUuP*_t5FAG|B zFd2wFaBS7v;zhA9&?z8J9zr&}rZ!)hF_pWvW#xZ6ZQZ<3?|srAR(M^Huf%@SkOqy) zyziyq>SB@QZS{k&Uz$?+(qy;yjhR@@erCts*e&^ocd6gzU-aZ_xZ zUDtrpbMtkA9m|x?$E=;oC{!0+`!Y;9-djzCId7|QT!RMrkL{re*iphUC+)NzPT4$y zb2wqduBb2B<WZWx+H&65EjGp^l^%hUC zU%k)`s^h#YL+*VsX>~yNPy9%*Tl)J^PN(6yxJMLwbjih4|HJNF;ZdbEj6HnnONJ?_$IGQFZ5|-+Q9}AyC@# zc0{P~kzq)fXt>e# z7WZ_FrwicB?g?_W99Vt*;aYonz_v%4W++>UjRI0jPZXr0H zC2Mtgw2E2)Mx!fQks89LaJ4%@4QT>Rja~(k)AZY#BQYwSDxAU{cgfiw*I~RuC1q~J z%k8^PtMnTcT?&z3PTY(|YT1@$R9+*DPi8sqjFy;29eeM0RU8=?m1UXMxBQ}_K28c( z-Af#+Zx*mc^mqWoSvRA?bj@vhmigsud(fces1y-KPM(9ch`#GsHS$GpnbXO)mcCbe7nWiq}O-shL)O)p;{CxqT?y6N3>@xr#-wYFZe}-v)FY=62Oa~BKtF1p8pYM8sMAP~F z;DBBk{Cjr*9Yk&b8Jw{4*A_*6MCZAZ-t^3o8jyt>&@kXuv}Oi$27+6nL|j}dZCPQaT=<{!_1YW;8|+FRNnMvyz?uYnmi|sPYm@(*qfj8Io$PQ z2Tb2Aiou)f@`tZ*?FTt4{A8y+V6Vf0SFTF0mhjnM0f%;^+16aoW?Nry+Lj3IdK6`i zQc)S-6}9WgsDj1tkv$MxXaSBt9gxpWS!}n;;U28c{?nAJu`XDpNH*B)+Max zDk{J5`r+S5qGSm~5=;5l`>hEgdU|kbS8__q0=}q4n_U*HAMPF=S7?r{1T5*`GIaEO z1vAz%vI&K($YR{4%1$(sEQ)&ypa*~mhn<9o-)t9Lavs3k!XWYNvU}O#7B?!|f#RBA zJapNykPln-t(5hdGzrojRkRbX!hj_d1$c{^n75`JVmx)vb}M@}gZLffC1lzxchS58lak z9=Ki4NPN4MrKQLerf)>v6~>OxH+U~?T|{(kRZjeXySQ%>t1uA$jwfc=7{_FRX4p?3 zN#qfzSJ`DygA9BEGqt5ju~bMKv}#@L5sk}wpotF+pC!XQlQXto8;Z8hG2O;YDl_;6 zw?80YYcg7^!isP^84pRmtm)g*q(<&l6b18syn}DC&QBYUUVC?LkS(`Zpp?{HjvOBSW*W!CdLz z-*yn%#_59gnCNE~CTYYF3vDV* z^Q23Ow#kirGN5>C-;E=qdWdhi2!X8xM_pW8IR>vPXYEForMidN(ZYw$r#eWorqDaz zuf3>QjAo4x*?H10J57ib-Q#3G8cORqdNsriy3{^F%ytp`HcL=0WbTyvH4E^ZpQ-A_ zbrV?j2)+H3tFIK{b-$8#Pd0z|AS&6iYy^mF1GYx1wNC{` zUmil*CQrgkcu}S-k;0WT zT}8-j3_u{5=3#$Yb3mk+HQ8f&w$^U$dyoA>UIpMZ?OA;`_)H8J%u8g~Qr-W8k9xou z0l{y235hq&{&+!Y5Op1LsVs$}lk))|}F1Y1!^(Dc_rZ8De%BIHKvyK5iwjwSkxCwZ?wU)x~P$&Xg zkP+Fu(|X*?tmj1EKttjG=()?z5$03eC4=~w=gd85GR5k2^tf-0T1gX3^0Zd&m4M4= z(6M3(j7S5f$}QC%w)gMwIowVrD>IqPBn zo3!niMr6rRTV5p3`^vUKmt$?(OpSLu+R|t2H1$xTZ{WSA^zX z(B1&v>oGw|#F%qBELUwd`YA@&Mf>&9PR(u!F$~4T!^Jh%s>vAFAhg#;zeQj#j>Nn` z1ZXz>>Wa-Og61HrThK(lTo=R@^RCX9=|>!HyF&+kaZE0X(} zn;$FaWr7a$ z8Exi}Rj>N>d3h1Xv!u(vjR+BO@N3@ck!UtnWrCbEG)x_JV_ZBul;{I2LkD&S(ki3= zKwmPfpQH_o+Q73*e}YlQ!j@wuEeiTNz06@rIzefTM~ih+@YGdJYOv@p`;@zfK%(ddqPI1+~F`VZGB~WNLEj%`P0Y62L z)L+&JDMMkRUgcHwDUq|MWd~Te)Vv>o&GcJxdhtR9%2iZTKrcWP|M++ zm73ZJIp72{`6;S*a-kb-t+PU8#n8&_ z%qQWgj?O@ATA`12?h>I#W16Z_a9CvQqHwV~B>pV#Fm+L)INk(970Xu*Q#iveXW2?m z_C7NxT1}ehjOwml859VgsFaU>?q3r9y$8}Wer3w{kc74m(E}K;UXzMoWB%+;X?qN5 zrnz(bTGJYm6*Cp@>_G&^Tr8_8erjpvg6r_aE`k~xxviu48g)iAciztZG+4iEwOG)+ zz9M{%JfV*P*W0ZEYd_IhFUpjC-)KCTH1Q&zNmy`m-H{mwe*8lC+C_z*EeP!xgyXb9 zK$Iv8{t@ z1Bkqzr=%-fiKydmtsgp!H`k>=qpFDmP*Z%Sr+1zSPwCSJ-j_5! zSgLE|0o^<0ai72CXi~LmIa}Ovlr%85i=1L7=Di`RTj@^s{?oOF_-X*g?8Eq6v@MO6 z@zU_s#k5O&l|6{m$^?=s{>ydUu=^95x$k9|a|G$JP4hjNhtxupmL$@FcWKr|d8CSg ze^e)m7eYaUn~|p&#g!QKn>NXO$M@h6F{^?LL6kBhsa;vJ>`Y}N30YW82PVE*!NT)- z?=wISH1ARyq0wIOrhTFpZ#vRer1ZT!MEG!tx2vI zv}Y4(OOP&TW;c!OqHugoQL3IS`0}#gZW~tH2mV0~G{u^s_qicB^EJ>#@$^F!T;gNL zR;7Tz?s@NQmQ zx4HAX>AE08vW(Zfpwd(mF%tkeZXNr?ojri&n*^_#*P?VO| z!NuxD*7$T9LyR!c0A&7G15g4~26{&{&1U@O_ip;VED0Ja&{*lSs-e`)W^-Au$fzif z`NXRrCPv1~`cXDuqQ?cQVFE7@Qoo<-Z&~h;>#-a4S%%s}?iX<$%-~zEn=E)nBMbfB z`T<|qkVn9Thn?-m6XbRhOXX*gRZ8R@0~}CIB(=wSZ(#G-cXC_r!>XRmxzppWvJigV zP59Gm=b9juIEPclcS@n1)c=H zL_hto;g=)R)7voVv*|jIO1=96u^q2J9fjNFdYs&8_?UURQzXzFTOTYE4t^UcNY^PZ z( z3U;Fp0Jh-|clVzgh%CmsQ=9a;MZA~K_%6x53y`qm)TG*U{G>ri1*SR?=KCWAmlD(& zJcoPPg;S?4)1w$2=g<>$YO6MwiG9IC$s(wnIt;r5--u%ch5f{rG~fme5}V8Lp9k-$ zgfCio_A)K4F5_ZNFVpz-Vad!8llRhIf4DJ-ZxWD@Q^b;ISp8wS|J*z!@eLsYOp(f7 zjL+4@zdMEa$$38Y^XID(@A}{tHiC%b-C`|{_{;}Et_evM4@VCAhNEAPoj;7$a8!@e zPHKSY^uH9xwi6zMlO;m0)w>F{HMoRh6}BiZQHj=Tl(wZ?NA)Z8MK|J(sfLYQs6Sx| zNX?{Zh%0efg#UkI0VeCm{RNO=-#==?T;9#(GpS#_zw*|YK@bMn$q8;zb`K83R}Xoe zN{e#00pcF;dj&&z8pknRbiVTO?YkT#Xn9f74>=T%OOb@f&(B}iLe zcCQlSWX%5E4>YQvr%vpumEs@&8thLMcpqb&n3b*c#v5AGaTh-cu^gK`PCKO_Cr8=^ zRonQ`@uiZ2kt$L~2Z-z#cBr*X)(EM234LAcw}~7j9mcX=pE_<+r;V0v#*pS=^hatu zNb8{8I_@bqd1r8LdH}t?<&L{+{uJYfFqI{@h$FTWlkyAzN9Kllu^ z+-T5G&=szC>}B~39y;xMB><3mw_ASsCH)4?L2-a%)(Dc;sfqp`fnJuO!(a(62RqK3 zj~HBD#K$=OxihYM6TAP+{+Vj>l&urdlDqBwb(|&(G*1Nu1*y-RvUNYdmK^C-*%=Ib zwa&cW^jtZ)w+n1l_=}MOIj;Ti>`{JENzUKv1iE)jG&plVW-*ulY}!9J=`XRrI06eT zK<2%aHPAhiTwBj+q)KcN)qbOaHp^>_p5kQa0BHW?yWWu53S;!t;&WM_bTGk>+JGTq zD>Jip#icp-q@l)xoy!WRO;vIViX&^G9T&u51zf8sWV~wsXPS{hYotd)yzpNm<$UsC z^U0IS0slpj-wT?EN4ww9`0NncpnheqKd;6r?HOOyGRI;2MqZusS|&dil-cw&Sj4^O z6Z7(y$=j|ASeqWNF}RG_3IO`L#NoJCMj; zXA|2f9#vHrZo&wSt+g@iTEu=y=>BsR$cxB|RGwVDS^rk8RKzg*OKU4#>A)*g(-1yMfLH8`k8LYka^&7$vTf39f z(>h9*J@Ox~4S|UVZ*#MJUw=r-CKKK&r53z+=;*`2dNW>mhjBx(oLhovEjzEbUt7}0eitWLp5^?P*JglfPF z^nm{*EsItdkkRxsT12l%o~jtxCvq^)ZgXG!tMA8;&&?+uVQ|Tcs0kQg%IZ%D*lz(d zuR9>}y-lD642MZ!I;21R3r6XWeh}e7xd`m$2 zEg$e7WA7)q0*3{@w%?Cs%i5m$5@vLej>#G+jV_t43~GAPk8MgYS+YD3`ki2cNS2j8 z9}f@jfojE8O_y!CU2sL&aWTj<%bpI62;a~le`@KA)723pJd2I)xKuIX%}E^DU*FAP z@_j8tuQv7f3I6sky8exSAUkxd8-uIK77#I2E|F7Foru}xUYyarpp~0P78Uj3bP&Wn zQ4pZ=0@}KgU%CgR69`mvC263bCqa}J&Odvg;<-Ke6K5GgaVh*0gkq0wf42Cc0db7L zw4Btpmwm1U@Nl+{4ARgpdJL|8dNj4gcA~4cwY8jCqN-0-7Gylfo3rX|4RLP{T3Gs? zj`9ybac}+CZY*I0fJ%Lq%J^UWz<+lG%?_woB~`n+#gzM3Hlce^PTB=1J8FM0XkGy=$ZGjn$ z^6kk=@&u%(w0f4cfpJ*B3?OlvDKQEp_hv)tVsJ^7Hn)!baz& z+c(K!QmcQgYb^pu5UuTE-$?v@1iw>s6rn!ZS|R*$h%nPA!Baoe_>=3dCL0bx0OTFS zmmnDe=YzQVJ);xDzdbr89A_7d91ecj0c4>zaiBSHpu(qc5p|4DR!r2MIbWuJjzFCJ zkA=2Fc=#p<@XY;#o5jV&W7eu&_ZP->!@RQ#2-Tih^E?z2tlA?hD zb^iPDLtb!OK+#avP7UXsPr$I6(4znafMLZ&cRlo%BxFlJi%%E`#fYC$3H%e@%?tt5 zNj_U)+5BVaKR5d{(Yh|4aWO-v8tbh~$IRUxcfV+VNzQ~o(Mw4-vAxy^2v5lr-`xOw0NVatAw|9zx$_lqOTT3>^|^~XZDPe6xyzm&O6xeD z7Z(rldJi@3uDicw`>Dm)E z&EViFBaXXlCy8tyC!%WOT>Z))`?0U93B>qk%{g9#s0 zeh9qVCBl?aEHDZL?4R@vbU#!#Adv(H{?XbNg5Y|#>0Xt=c+G7(3VLX4kVDI=%AtBL zvd|ozZ?lund&2RbWbAk7mq<6qZpWxHw@rNlu*&~|t$sNWDQR<)zhXjrbIFqK&cVlJ zw((IpV>MlJX`jY9rCmP!5h2{8C;i=2aP_UBu99q8{{h@bu~3d7k3mkC+)nr9SNlAX zXsVVOkxF`Elv%oTjIULs*Np%XUvK{^p=plGGFyozUh2`l4fR~IZF#^XH;L>>_e66S z_Kd1Gf_I7ub-UMI)~04ULH<<|-^L5rkE>?I9N-{(3a^(r^q#5~h&B43)C4)0=$vRb zXYSOF4u|4yr?>DISdLRn9kU`)eWF^Q>*DAcji#f(J)*)IHc;0}1`4q!Ud|NSfO0G0 za(d{|t#u-}#kjHTVl?~mzw+;uc#$h9kCk##8M)upmI!F!rH^PyW22~WdjwhnYg3F7 z*0>*Y#|(%R)ES}$fI)c4w8EMy6BMRaP)lJN7V%?0|!cp6jMo)^g} z5ppP*25k}U9dOa{mT-p&?m!15&L5jcB{W{z%uuARru9>;Wn1jyGU82ut+Oc5lX%MB zt*cNctnyqLv7C1h7r8~Y4WLLy76Bz{W#_u~Z%d>{fV;1#-;w(&DgP@vkAO($q%I{v zKWHm@DpU;TqI?CgD*5-iXi{2=HD@DELZaNCa&bXIScjft`4M>Ks^N}35$X2f#=yNU zY08`#784YGH-m7@j*5NfHztMR8)UNHfErRB!;gOP@Pj^%7gHT0>@26=0OQNO!R$rv zC!UizM6@AgLzxwM?^|XI*@joKROZg2@KLrXDYj~M22xVLFkTj3%n|yi{F;N@W0>{x zuE68j5tps8dExcjRno!o88G$BJ$iz#OsYi(7+fT4&0>^|oX42b6o@`W3H?aBzB;BW z0$(fwu&hX|=h&pXv+7!6PG5OWY1!R{Mdr}~{K2RNi0@%t>B^6nlbQGovjM;bGnR0Ak zr*{=#xoPZUD&b%PQKjx4{!y`%vUmuSL9uRLpls1|j!-OgbsJ9f33te~`OVbDc%kXf zxcH?noACGe0{y2rqC=ni?wrP>d~v+6k3+qKJUSW!?(-9vJ@wTFYR>aUzj5qiM0$`L z%D024jAh1vz-67j`2xdDB4;JNZ#nil?wZeLp(r9;bJbe-bZ9J5=&CHcmq?U>{x=fQ zVC>UzJ-aKc>!xD!C!$KE=VEi|zfW(~=M@9_o40C{;+jH|_k!CT=#=o#v5fqyntZIG z`%ccD2s&~|NmqBU41WO%^j7SyfN4c2+&F=4< zDJApMuOTqnecr@JK)X6*nPuKV&7%ESt%KiBab(zB+u~|EsaB0pzAJD(&3<<-!mQ=- zq*K+Z$><2v<#LQa{`c_BwkpLVqQ(a)9w~kMxXUx#8a}I>eainBrQ_7UxYus-xi{!Q(5IT zHvJsiW}$5L`>agH!bbJqbfWC(uMp_v@rLhr2=qN?Y?#v;JFL7%OUDbt{YLwO=F4NB z9+8R^aGVT{oB-IrH0ymcHD)a?DYrTL;{xrrIXei9z`2vsQ;O^BHVq!_K}R_wI$H|@ zIh3fv2wqZ2k91Iy&b4e*HicZ|2p_?ht7ybxv#0pFLX4=93i)!>uzX~A`gly~mwl)= zD`IZU>1H>6>G2*L-k zBNH^@s@5iHsiDD0B-g#3j77t2GZ;iOv|zxSPiS0J3hD~MRF3p-w8Z+}<%Bq{HxbiD ze2l)SCQP?ck}g?dYZVaEGl4wI$qcS<5l=D5z4E-Db-s|~6@iiw9MW4T2uyAtzg<=O z9*Eex^=%2Y3xZmgiMwTmcS->_-FBm#M65 zv=+2$ge0eV(KvpO`;;`$Nj`tsJbX#xLbkT#kH0Mc2^u4yfK<)JA)+!fYI%c0lGdY+ z5p-2f;AKe+V?RjZj3m3bf$ko8>b{fz{i#Jj6MiD+nIEiuB?JG(-*J2 zlA1+$?H}uNFk!TUmDC_Vnp8ftUXq|v-DR&Nb6DF9L|<0PNb(Kdabu#wLyXWtP(Ngt z+CUF7BHs&0>xdrF&&W_N;Os}YX;zV4pv`JrK^w3~sYq&fuPTo66SV*mH~f2&otrK| z*8&`ZJK+xTDTmrnYU*s-Z62vaDLnZ1Pq-xDHZQ5AJ7Q{Q)+bD#p<<8M0U9+E;7m3g zGK|y5@sn3gOR(_*I|&&}AZ>uq;EtPR*rr_QOZi=fH0S~Nm(;$3x$+LnUl=(D;I~&= za`ayyf`QQ}z=Hc)4HAei<|?5N63R~k8WNxzc*p8;~r(_GWV8HV%{w6twk9tT*Cv?G6j zAzn+Fq4#R2G%`el9o$`vHj@IQ)=!%bZjk$+zaWOVf;goL^bxKta|G&zJ^8_c2h{BA zHq4xVvd9QVpk^O%5n2C3c$eX#V|^+aGlmrY12^4+xfAd1)jtC(DOxC>=D6Sr0%MLo z@Ax66eBbQB_ALwpUmt|-V*6tf7VZmekF^nyq_3sVDbZVOvEE+8#P~<3V{n4%1Dy8x#5ruf+Sl zve>gtk6IdC6wELw&d)f)L-~&xTEXk5=X8)0G{(B6mAbB!J_RHaIUCk6XT}CDj{LO(UB4=bG@sQty5=4;ZXA&s z3+8lI3zKkxe0qXY(UiMdR~bTeYaWqms6> zx6iSh6Dk#ph`jG>qX4P2UunVSidJTR6#PJryz0b*=jaq>q)|z|+MYc7HdYpOwL2|b zKciB4C3rwy8LP6Ryt){rWntEC>a|uZj&na_$m8Ay=z3WqJq9FGg2o6N8ei^8yr^?7 z0h{1kvU%Vfr{<58nD$ZWJv~{Iyex3`lc(n&erU~0PJf5S#>MjAr5cwK{a$L&4d9=LhrEy^YsanVBoSl5? zvhliL!^}pAwpX(XVp^~OM0;qbD$v@>JVYo|*Skaja-qPH(-1{1L-&u19mK3wqs!DK zjkeyy!2BNZtv(K2t7h2#%GyPftT1V6+xnNG>kQLH-L7^q3_Jc)@BrHvN+zmK*$aYp z4n33Dt1z#|*ktNYL}%CRG%(IzvzqJkS^lkh|2G?5Y-Crr62%1ijb7BWa&PMxnq|VT`GtN{ZiJ zJ{wZr5Im0K%iDGouVdhd)U0wiLEmxRquqpUZx-Av@cuJXxKyezMs=PkTt;bwSS>m1 z>q*Xv;jNu{a(inRwpqKFIC6YNy>dLd7BsBr~*?HhSf11*Jwge?mWI1I% z8|Hq8CFW%g@$LTf3~Joc(NdAiFpXmzh^iZt-x~uC;H;J8k`<>v`Yvn-DDVJH-PtTb z2yl)%d)F*Qv={Z&>DuI3*#FmNnTQwprh`-H@MqHpixgmU^>?FDsy;B-LkvFkGrsNb z1*AyfXqZhy!Y3L9QhPLlpC2ShX9((!YN_`&05X%RSXt2$a8D0XIyg^@!>$Q&r{WO zUsvg3({1@wsXXG&V-wozLVXZd+t<$}`bC}EUpTEX!&`y?m_~gd@r$sB9b3ZPJGY&L z=GmOX_)!l7^zl&4c-l#Fukz}@sY5?4pB7T<+3HkI@02D3_$$T9SETX1(DP3Q9xO8b zYuuh(Q}Pdx^hbh<2ld_ROG+MdGQMu|@tU?^mwNpHKhT^CBiIsLIaEXQAuibiM07%q zi`lyzkUdlSkYPS7ggbCSk`(u|{4+z{j5DXY5)eeq@{M$^Ek#S4FPe5lv0P2YT>{er zZJ?>awkcsAFx~t7l-Q@H@T!FUG8y0m6QnaAG6Btzj8kpHOxWHhvIVmx+P)6pNDj^2 z?CYN@3L^6Stbi`ctNDj6CFXo{$mA95fN`^WUJAZB?x2>?fmT>+Ug>G=KCZG^2NQo? z9n*||ctzURIJZX5SC!x)beVS1!5!zFlW@w->zx`Vf&e|S#EbBI$om}qZ0O+RD|^T_@(4(*)TvdI*WN1)qDE+1IqvN@(;_mq5FMT-Bm!WnFBJw1;8E753 zLGem0a27Z%l@~d83F(;vQ+Dd#&o=4b`7wXCx5K$U&s@qu8Tiz@&|ee@$(ry(w*qlk5yIX}~ckyeB9LTGZ_`K7YZt!*boJ(Ltj} zQ2vJ{ER$av*gIJ#t8jaYV|1&Xt5+8{a~5=6O8vC z`ami{VT`=$Js+yTMy>hrVlN@ElD9^44<2)ZDdt_gLL0O}Nn9eS&4j$cxsKQj2z%NI z6;lGa9ArG-3ClwrwmI|L%jy`hwwI^J$8W6o^gp{t(DwGrlrIsauev{w3ZF@GeVySnit11C5_Mc0 zbvq=QgT88O0+DU7TrF##dO8CjxOB%OAZtcB=;I~V)2BxM-= zU#QNnV)@`Za0W(sfGlU#OI`z`c5LFzB4n_iUX^XM-)Y z^sqKmq6xd^iln|*0Cq(VkIJ9Sblr2jF(>MKJ`Iz$nys)-hK<<6TzQOhmVqBxpE5g9urX8X>?_rPEIj^+Htv^2{I= z7&IE3kSt94SMJ*Z2uo}Z$aA*-n6xDp?Y>1YB_Ja4R(g7F(cR(vr_pK=I;)4Xop;!W;${+9SA!JPNtjefiGwgJhpSrmNE4cL64*C(=&q+P)VSjC9JU zxQ9lho(pc)?_h0`jser0XZYmar_U{jy#`zf6&ki-J(44Cqe3&bBiNh%dS@x}f)_)~ zY*#p^A=l_72_DM@?rKHf_pekH10DOCUXJqGD>l#o_&eT)3r6A{DW~7N?p!I*ysd z5KY8^Uv;D`J&^`;N79arG~cZ|CETpOW=gQLuG{5?m&OQt*BMWzRUiL9_TDqB38V`c z4G|?O3K12QE+Q6+h!{F3O#uN#nsg8Wk=|)ff8HOvI~$UjGiT16e$Ln)HfSvvcK2ts**+B0@}WS>L#wdtCyTIN%!jbC zOi=BJ#HB&7#onh5Aj3>2SZM9tFa^&)}cdrN}>mx!3eYWjUKcpJ6 zN7^F9HB2Si*P&)q!;i`NRX91n{pi1;OYC~y?QOME@llFc(`WkfaAo%ruaaAWqKohA z@8O>?Z;Xz5t*CwhjrBgr6_M>AH2db-7ku7u7dCP|T1_&6W$`tSYnxMzYh!X2edX9fSvL;^x94phpb&RI+8{o2 z%H_=FA^f$Lmsi6)F}H*zsFs*fu|h+)8LU=x9_RFpW(4CQ3D(Hb4J-nC;y(A3ZN#OM`rRXPl8(uUF$KT64xAlvMtH#r%0FCrFPOBJMW|ah`o=Xf|bj zH)aGrww@EDR+eF}QHP)u~b|CkI!bf{cGOm%|=*|HCM0C^JPPQd2gQmCZ z3m~AiHsY+>rVMfzL0cGXa8&jhZmV7~IDa8|g2GbQQdj$vjX-)OpR29^-RP}b(p$?p zLVb0vi6&S?haa_l^_2>?loqK~ly&oE^Bre9AhF%gZKF04J5O`@ z!=BTx!ow}tEwI`}o_#;@?~G%|4-K1O-$!|s3PBn7YCf2NG z7q~!!DE^cU`UrvHOAg3(@n6j#!bFc}f9(!t@ zI~rG7T#DTTJChIiDwABj6@~T@=r2kQC4ug+GbOZ7NiM_Uxs5?`cep1@^ zt;WsG&C?t9L2C-!r~%OZ4z#Cnx0&kD(LnS)s+Ds!ZMCQmWEc{|L}^(K;%<`EZ{68R zW_nC9HZgC)?0c%HTe#cC?eR>wx&txLaCM|*QW!X$=VDZBTWjXey)fH@#*k@;Q;$9V zJ3uE-1_ezrydck0{cX$)46s7qt$8L9$6d?$>_Ot1e;KU2Hkhru8qNOTrgkY*@6y;a zoD;J0W$JA^+ksoP?3N@k{*-wO;%#YrhV&-Hw1d<@ zyh}}pYA&Z?TG0QSTAdDUA>^f{eTVl5zx1uz*1(c)^qcRP={pP)3T7;zGf~2@xN#eDJj+eKqv>!vPL0Av;&Opt}rr|g` zs;cy*_}qgbt{3NTYy@vlUWgw9DPv9h`c(`wG7#~Qozx&y5fNC^MOioID31}2_0`~W zTV5)v%VAe<5=#h3z=9LuMAeoJ-t0;D9{EXtwI4!NASCTG>mZtI|9VMl@sM!`?(&GI#fc``J^g-Ng1Xy0h$L(W|Z;sAMqRm7Bku)(~;W9Z4e)iLG0!`@9BfD(fa zHH9M_WhU3cSo;%a^@)erbI2~Vm8+cKu&6y+yOXmoas{|r1YDFgkm#{qxFkLH0UyL~2<8*G>bphK8aoLG=twJg%0c8~Ic?8JgA+KMUE*KQ_)7eynP;qw2&gN2lZR8g3Oj&e@fEn=wZ=Mypa2HABo`KjJmg$%05Mn`YGU^qVh}rsOBTy8p-J&Ab>x0_>Ia}wk9_I8=WioGb?(KF#{qGtrEgG3`j{zQ zTltXcQ#Qh)r9?OS9-kXq{9$mjY9l~(F{gwQ-`cL6j(vihh~>iVhs<SRaXeThAelA7i+IAes1@(jv@j=N8BT-XYPeqZN?4Xou z|A{XFW|6z~{H^=HSIRt(`k+=tF>qSC|K-b<>A~(28?70j^0plMafJc+r_1!17@EAjRF#A?>up)yHHyWgtWM;x&hzt-+yTJ^HbToEf1K7trH^IY(du*Hw`} z^mLI-tNWateC2O;yF;m?paEYl@62n$}NA13pC$8(hR z_XW8+$ZuC(V5#x>H!4AI)Dt2l(>NSnspOYM#SvWMQwq97)He+fyVcjr;>Z#)#l^)R zSyQgD?ZlMco&ZS!6hc`J83BrC?>#SP-kLZeox4SkSnE<&1C0nOd2(vP_g2Zgu%q)h zXenO)x8Mo2gH9c+yWa>ytE|m`w`{n%q5mD*?`{06%SEFp@nd$PP5IhW$aytPS_N71 z(nz@aPcuSV026Mht&Z+e+Ri&UyCFkG*7P# zcB{`H*=E5k2YxOQ#W{S^58?1H-rwa@0nF6`tG_lff>Z^^byI?t3FPB_UydJD;@IZsBc$es~OIC=rb`fX)-(} zw*pbRw(jokzS#$kdxsb50l}%lzTDgxaUz#DKpPzNR})$X1<0NSAWAH}^5QPA?s@Mg z&ajASRehx@zjcv0W~xb6i1!;m&I4AyQtB60$gYv!;{Q4RW1mC!^vm|Cg?gWQW0za5 zpx{ssxUGa@oXKvPX*Y1!NU8E%q%6C!;Suu?D?PXGmh`|f-$I_NIIWH-)Hbn#j`wKd zt@#jiW{T@l;&LgOYojdR_=i`xhWaS}=^tjU877_SmEJn3i{Qb8Vqw$b)yL}v=yiT! zD@$8|mGY_FB?4ANh#A~c3tZN1g?Xy_DLtH5gY6|qM@zaqN;xZZ%dYiT7rfdpa7&7b zsVI&Nasy^=#oyR@Y;FW-VzZ-$S8!Mqqj&xuVYZPCpB-hP`)Zn#=o|8Y< z65>@#R?iFCzNISNo30GW<~!15PBzGaOMP=iD{LizDb<^wWXNt`hn&Xa#1rTazm11E84Q=l5MM^ za%T>D(`3Cyxmeem-Zi(^ekedFsq(cL6Ki}vMD&FUQOn z*KBs5*8pY9(0Btni`>Q|*TaG-HLPDoxvq_G9ekRB?rg^8im%Hf*hs8jg#}L&?=)6DzyT`Rf$%66oRjN# zxI_kao~>`1YWs5Q+>B4Il&Zt0^MShTOA$*zi(lwF(cp3;V)pdW`^z{L-2Dp`T74Gq zL}{CMGKDNw+ZQADky9ogstf(H@&%PgC@ecSqn^(=hQ`ZSWj=WRgnjuj#0pP6&k*VM zd^9zq^!G^T`R}fcr{Fxf53!6DiTm8_-4>-IExVLB-Ip+QC&e_)C*Z7;B{p8Aho*y}E`||C!F%{!Wa5o1IaY%BuOpowj*?X0J zNB%HOL=9Gg-kdhu6jV=tbf?tmjB9tgzVuDu0dL*85&uLLs=<0n_74gBP=8SZa^={e ztkmb9t8^4gW2p|ff{xB-UmYQ^^2W==d-z|f8TIX3Sl+W$yb zn>jc=4?Zt@M*x;`kd}fBw^G^CP$c+RPBPxMMJt{*>#rrDj6H0}p2vE*3jmoH{Dnvs(7-dO3C^M9cKq z@@3ait{9^b4O`V&5T^;93xY2lmA3n3X~T%i+!{f2pq$wy8$z@!p_dxS9GhrCnyI5x zx-QEde7be`rVh0zgPnYY;BrTb{4c~oQ4Gann~da51_k8Wmxh59+K#SVNIP3iTrg)4 z^+XkqbS$gv-po*Y%G}U>cB3Kib`g+297-H2sj=Zt*V0eWJ3%R*F4!d_sC!15?|@(c zbL5Emrz=`Fw@(ejYK?0u_@%O@?nJvj=X|xbwROZYj$ucK0}m4DrMkSoa7Ou-ypC9` z&0){EJ5nmOc<(l5CCBeww;-e9a74&TmifRf9Lv)` zS$Wt$kh~nQ`KY5d0lCj zB`K@X&uw!a#z{lmln(-4+;Pr*2#l=Ibjl|SuXB2yH0joS60H6t7=pyTD-+JTtUw-f z3(WaR=U-u|uzGyo<3eI(Aq)o{sgW>WS+rDLITsc9H@a$WZapA#0^%!3wX9k3n~; zq}IbY&m1!jctZ2KH#DlqWqtWelKPkL-evW|L>I);uTuw_$dnaKZ(zkP0k1{HOUO2M z9$7UMBurO5bxH1=JOWB}YF3yVr_y@lWuXCQ9 za{0i4PZbR)xG1-W*PE~v`)byf(U9I11?hYmgI*^f9*49m_#Y+F%-y3~QC6Uv7ZsqA zzbZjR%Jbx{T;&dpg+itS=PZ;`AJLoszJ+7dV@&4H`Vj6I+l?ON_U09KTgghsh>P0f zTG+FNM+UEY3{6aSCXd6?LP^wCRISkxE_Txv;OK`iF>{9aS)1 ze+i+aqSvWg(I(aBedH~o(17u)lCG~5mDp|8C%#7!Tkk1V+RmKs&qwxGg+<0Zp~abh zxY>CHE_0ZKe^3SVZz`R#?#;J*&Zc2N6gqa^CfZ`8-eJ6v{IxAS1AF=2>CuFyAUlaP9O=>gm-6WHH8^?uzCXr+vLuw4OnSylGqD}lOiFN*h>)Q5?wX7ysp zYD2Cz@`Qxex}8_zQpvdbxed1*_j<|faO}uG@1FqIUaSr=xfaQxLr=d=M^Up{!VS-4 z3>2}bbf0@{*&k#V`6Nj=t*7$HDQP{=+kIi~p=z*0z+_AN`t#OW#zM)pMhygJ!Xty! zn%whfrE-l;g=`JAr$I4^(6h4g=XTW$Tl2E2h6%$J6y2=j%aAJlK!LKOozDi7T5WPm zqpy`lJ+H^WCq$9zf+`UOn`IaHP<$cT`VlZ7*p}dkb&8(@F3jT64fg z8JIaXN7STS@@_6RyQsrTSQ&qy_*+yDZI5Ve#YdT!9o}-90j3@!!Zd0h?_em2#ezQJ zn{KoRG-*f!EoOyI9Ga&Z){}pJQz4ntr%D7fb@MxU%08bb!*ODJWam!SMfHGlvda_r zQHS=MkmER^Rv))QE;dln9K^^7Wny2LIn|d{=A;y=O-U@>mq8wMhkxZTYqi$AZU%aj zWIJnpT{!a{a;1A#K{4ioAm`1mG9dxmX zTX2kFRZXu5xs>W{CbazK8RjDOIYHK29gf(0bNjYL13Ta24;t-czSSEY`FJ;CLwcr^ zgnlXnnQ#blxrR)Pi(m?ezpog^o{40Bh%Ne4fFMuOa-F3!O5BW4qa8Jy9xlZ%;Y z?!{WiR2wML*7L5XEqBHAE=KlYGTP3G#FAeuZbBQkC+oh%UZC)y*0jjrGJR2b44n%< z9kjASi8wF>M=TFYXg4h&Ok*!6v5^Zt8mzK?GbTDQpz zRJF2w!M)W|fAd+2Tok@9L>ZSqpk}mK$#FSnyfCC1TViO?L*XNzX=pGPmI_N{!OOEl z2Q5h^iw3`B&U0;RY4+l`)g!#vw>+HXSWj2X4Qi^gN$b#8U#>TrpDPn`A4m;)7so`L zJdAy0Nvlc0ATNkoiLhE2{jplhKev9LQN&GzksM7uXeV}ZRq5S)Hx?_1b3nUrH7K(+ zAFxlCc7_PdRZy^SJZza9)1e4jee)zoN2ofR4eTC9&d_)kYB9uadZX&cTJ8X1^`jPi ztLknV3_0W#6QP?lXEnfjn4AGD!E{vY#hC#u&ya<%^mEYC4k013O3DvIT=Etf7Vqfp zX*mamZ}47m4;ZvkaxT6sWc*`^*Vs^(YU~_jCYtKdn#idG{f5=x@z!9E2}9$#%953I zZTOqh*lWtOYAUA|wyW0Tr-;;P(1vEDNuYV~Aol$joTl3o8IOI?G93o_4J#>>?F#|JYh-gcj9e21Al)pRUHaXK5eyCMcFf|=0}$YcdLR?R{Bsb zBpJ*v!>1$~se&rsl=^4Kx3+I!^89EZ+YPmp3cb(QC8*8@RR(7l7q@Kni{^zlVd)@T7PP}o z+*3;)XrjL1B_d?rFXGCc(|ezTUT|RLdiqGNb4Q@}7E{tn3axanr(aO}>g$5$ibzX` z^?@V<#lo0lzp%eEU$CqQq|mx8Q0&+2|7`!C^-@JpFt<3$SzT|_Kt}htXez$k=$b|` zj{f)HA4j$*;o^*z%z=!9CCsE8yT1d)_>kl{|96-EhTQu|g>x3XtBNMYKdPA<+W*3QeOu*|NHGkv$U_F{YeI=?=H*i0wXU8h4%C1Q-$B!{p24kfc4Bjix6ke zsXSew=9Z)tck!k(S`B_4xmIAb_>IZ(0N+e8OP1i~;ym}qo|hzt6sj9$YK^OJm`KG{ zZ|7L5J(S&@FZDTCLBGPza2NXoWTR>hz9*U0m2QDs!8okx1}f>$Q(F`!XY*&>3;9Mn zrnl;k=_53fPetKnh?}=RVHamrIW&?V^RVyEP(lNy=5_mefdKRFKt&U^yu93Fm2;NJ zd~qx3IwWwYQoae4Zm;q#C+Uarky_IpDjD5Q8W~YW{GKiL36xeb@s9Z4h$Vi)K#np| zR#rZ4Dk&+cKwNf|jWfi&?m$m(ub|#3_}Vfa{|SXcUFYEm_4a3XJXQ@lRf9D4QOPVP zI2rn>@maN;8%Z7AA$&+{rzhPx904h+TzdQ=dOBEI;Y+l(_LHjd?V7)?#SSPfA#QXf zOE!X;UcWEJ?w%M#v=5=8qoZ3oJHyVEXc+o3AROl;AT&#NIY^Gv+(xhdF#E~XAn55>SF%_s?3R~^MfqZ=HxFsR|n3 zh3Z|z!jQ^x#G$X9a1vJw?QngIQyC2(T_}o7<3K2Fae8|Cu0_w-9QAqyljAu_YM=&N zlGD61=dNwhiAAgZ_(G|uT-|_^Goc`Ic=M90;WkBYDy3pf6yZ8OVbO+-b#;E(i_#i-5k#n4Zxn~9FogSd4A@IJ~ zP|~xS^SZTXMe9Y;6dptX-uhEEs3uL(9F6f4x?dq?6KYK_f}BiXpgAppJAnSw4V(7gFa&1Ah}z~ zzNg_kjP#H5cmwZ9)e*f!97vZ7@0Z}{36ml{McZA`*Z`j~?aDN&=|NXEHi$Q1#`FbZ z?k^q+yiw8E)Oz`~H)^I!lfGO8I7O9(isq=G>zSCOwuCR2y2yk#7a#?H%SaoLN3B-P9UJjVeq3Uv& z&zI7YjI!9U7sCxpIgvLgZ8s)ry{%&LdTZ*R=VO+8X*$MUv!2(ko8I+&Qb!g)!eO{2 z98lY%;?44JG?4FH*E$mC;g^!5j8Q{2q}4P!W_8un4NXIK zn`=u(Km?Bi^O5KL#<5BmQqO*@!J={KodR32jq!dPo9@` z;JbHvF|Z&?g+Y~j%ETq0)>BhPG2TUwYAl()FBoHIg4Q`lE>w_dnxJLfH`fhuv`>WC zCv4IN{hs)$7FZE`<+0P>tTg|`MKANffl#KpfPr_|Bgi4*_wA;{RcYJ0QZ$LMca#bZ z!!F+Jg$$>-sO{v4OKMg9Aok8>M#J%+I1ChMB6cB(!q0-XQ z#J$n470(eTE1hxbducS>g89*!1;Pdsxp-{r7e~#duPd!X37c~)^FmB4=&J#8byi>Z z7+Ve?+~Sm=w!aCtLAnG9@;&Hp8agT97VQU0DQWV@mM^5JDpjm`hbn@dfj?)L@C-QTUIg5^$ zv`&@_S95yjMCZNnwq@N#C+gr4m>VU`0I~Z4;b2i!r+s)m07u=Ct1J_VkIx8hq2pgt z1U4wz3T)hdvON;l`nC9dJ|9vbfdq)DBtv>?!Zuk`+#vQ2o3v5?LMdSAVgE4C>A=9i zkD+AtjNppoA(=qg7g@hyL%%p>aCqy|bo}(ep5>|Jmbq^n3v-g$G$B=F{9jv6??Z($ zKn1#8qV_*fagn_I27Y;YwBJ@+Tf0xvuOAN>Q^KcDEJ+##H!1~6TG>Tkj}mE4=)`^^ z-F9A9Z585PB0%198%)fk(t3hG^t*!=bV)e3@lVi0bb+QAJ}U89?T+vCaT=Z%*jFbq{`TF4dMKx%*0is^htu)o6rO+;X`g8 zATWBuUY;OdQgp zeVO^}AxC>28<0@Hnma@xQI1B+x=srd$YY5Es8HL+AD$6DAq==r8k(8O0hf|2e6&iv z7&v!%`vb58z6{r)1NMRV9bw9eGXuA}e}|#x;mwalgm|%cDSdHG@IuYx4}8qjZJ%-O z8L&bM2MFT6-KX}W0R>#$r-&t5OBc^IDv23(Om%du7VP!Pju0okGz$(HiLH*+#X2PcaMQk)3d)* zTQPSir-(0Uqbx+BTP*i%krfGM<6}5Cfi?HYGYiskaO+2Gh_HwF_k8EO|dMF9RP2NBV1VeV6c`cL?ah_(ZMY1*u#`-O}@v3zOaL9 z#g}m8?+XljpvB+_39_>p@hdRRXO8#P&JK?^c^_hi&&k1Fu6D|A?x)s_(V`cyHy@NQ zPsqsN^3FTT`*@Kikb!5EIFMoAX+(k3u+4t*x5CdL&yAYv>pN*hB&o{T^g4UNJ4Z2T z=JV%uW6W*NLTg|&vdat^w~w}i?A=SFkia}7rNTLpKu6*d|9hDnzmG!O6riU^B72v~ z?cG5Jc}l2gO0UurN&GUkR7&EU?!;_^S-m1?Zi;QRefpF&NhK{;&9~_Q&x9}eet1g; zg|b?cHU0}?5$*7j{%qw>bG{7RQg}NSXuq#W*4g;YQt$iNBK*h~2_!c3`i7H1$d@FE z73#O*ZZs&%eKu^@VVIk-LE_`T?gJ52fmlLPazP-M^Q&c@H#H8cP=zp&DmRD(EnlqtNfFK zr;G0Rz!^awz3peD^nyifeH6Par4De(=-%pwf8AQtp;JEE2*=eK;2`iWhTlroEaJmI z3NX(O4Z7hNUp4t2JJT#DtZ}b|mqNPb9_bYgqXx|Q(#dxgo}V(7pwZVz7jw{DMd7>{ zyREV1mf{6vhk^kGBqAW%dhqM|Nk&tuD*3Jf>YKBRFZiI#hIWhjfh7oMGXAO5rvj5i zU(fH}>Cb+E!(M)VnIHgn0Vf9y4q*&C;;g&_rmMFyU}-fgQNUy!;Kn6I90H8k@Sh4i zDWCg=;aw6uXRFm^%s_L!3E#Dvw?HwIf0*@RM;On>|J*tdqIus@u-hMoBop44eL#9x zV=?x4$}D?bTwsT7xz{n?4GlvoAvLwHOuI0Js%pFHHP)$n#}g=TZ!jUj;P^p;;f&w| zz2klFB~6%*J&)yaoCQ7^EIGo9En4o<=(hmJ(+cl@z;z{EMrytpefrqM6m)x9ZtH?g zkBi(Br-||Ft}8ktH)7HYP0X|=wwCP{(&yd^8qJbv3F~h@H9J?=Tj*eQ{1a1b;Ek%) z(}JiWm)vUSDtAoh`J`PKTO@WEMDCZjyHrRppMZ+5`wa_|1KDucQ(LEh1oU5X#7Mvd z)F5h4g;#mKgafN}9k*pu%;wiGrLcG@)8)_RX_lB!yt4xgDm2|O8_}z^>G&k#s^7Jh zeE**-;oKP}LPPnmU%E~p&!CSr2o{c3gO1;pL6|J#_9IAx2N^GZgCXw(l(^{tTGZcQ z`4YdUd;;&0;AnXk3_~!1$MJ&WP7+yqe$N00W_l%w-ElGabltozW4Um{eGN^;Oo!y@ zuLM*3a}pqv?BXYc4+vzUatj4B@%Hv!a7OzdJ`bEPb!OD%Hz`G_l`YR&)Y;b=#Dq<- zEeF{G2BekE9gw6If*9XunodYcG0Xn3kiWc6e>)1_8>1COx9)y@BRvD#Qw_Rf{bnrz zObigyNaOhbAOtIz*a~&&wDag@R6-5RLiwx8%Spe1*eh%r8X68`>5n{;7#s3Nr)E+i>8%v;|5onO|8_NHwMh3LHo#Y0+7Hz)G8kRv~o zw$L$mr}=F^WEVL#`w69chn+&I*?@iFg9PW0|dv8BN6cFeZ) zddTi41iFeXEYbCHiPkjcBwbh>$tVhf@Hi5Y9Y6kYjJNPb^tYyU1RapUbwQnhl#^cd z{D^>*sqdwxSix=n%D7k87HbxMcD$5)ke*<&i(BHew?Rt9v!}7ITOa(*okmalXcoYs z4WHUgd0&2Jng}-)Z5y$q_~Y6a~;KykD;5Ei9}9$N*hpv!sV`%=S-x}KnaP@(s9vui^DrC?-}y?brR4Yk1qIiMwQ_isWDy-Z%tQQcDj964ltQts^u z+yZ#^(f)vFG<=l(!&fb|5J?HBN6TYtN`}2MIQyQ@9Ye*QABx~{#{fxCpKFqr{akMG zG~LRAFk4QSC1J0pPmn`$8Y^wT5UBe10Hs9k1L5|%7pPfs^sqV8i-4=PAnjpc;u(ME z4fnpg5jRGzI%0}lz=9uPpY$|{n=K+?3E<+U@_M-hMwfGXF3Q}T8(u5gQ;y|9=s{h! zim*0;kWpSIeaN{T`(`j`VUoP2_3WP~-aUo4NW7pyP2ZCC%moJhi=OuOkja2l#4Suy zQxna+#4Po+|E%4QaPEYH0;hN08T5Ozu`)oGJ$AV@;p7+^9{?{{6?qLjy(%*Q-sQt6 z|5-$KP~#0Ri)0C3a$d&+luME@nv}RGI7D)cx`AL2K~PU%Ft@~apO5b%ZEvak6Fwz~ zTm2U~>CHV$)4r-Vo(0jO7ftXsi3SYpX`&#hRZGqb#)QcuN_qss{=fJZPM;&!nFLAE z(ST^*dTRx~i;BaVc$QSs6wV2GJqpC9xd6j<0nvA5@379^6M^*jDBq3vTmQOz!iTO1 z4y~4NY@*<~)em#_Z$vnb*jif;^V&0QaFdvcf4y;T7f+w{0O`?c(cC2vBLQ;Wq&kq{>aa1f`2GcyOM)TsS0xB=`N1r+Y!C*!qJq zkMCnCZ!Zw=@}C3w1i;zvU+O0KfC%&MAAs42OKe= zrkeKVJKI{|7-w!?1Pt>caaVV@f|;3FSB{z1S!(Jlr=5WQBeK;?j%IrQE$8?q>Y|Vq zZT{mKW@vw2z}Y895p&cNmaT2kk^HJg$||qM4qMCOblp zUHBDtie9lyIDYwpHuA_+F4%kC{M$CV#514r@GcoAk&|K`YzT+uuZfukX zXCDmS=h+4v~;7 z#1$0@R>oayqPE`&Nt6Sv+-PZ{)d)Bf9EmAKqW2Uv835lV)qdgf4|ioP5LsO7%`lKV zZm0JdJ2pUFE+og%M9t&n6-ZYGhgIt}f4r;UJ~+N^FGpaHKK^|j=-=fMa?xD&#WtM;tJ6({3s$$SV8a!eWwnn!e(zl6 z+D;%?;DHrsJIw-KA_W8U@E76ftA0@rRA#$qIUj($>S8#nB&-l9)y(`HBm|Y0K|Toh z<{S$zckSt=zh^Z(ff}1G0J$3i6(B(Z-XQ@r-ZI`kU>E2=dUT$oJdJgfC{QvU+~P6u zA7N}iAP}M9J7PB<&{)Bax?NGsAZVB(89?QXSgPUU__y%@QU+*%!RU>iqbW73>jV** zd*>Dd@Nk%93TEuEx@Q@jw0gGw?VHd1QZ1B40si>6Q^wSLll-^X%!SlC&aYMiA46cqOk-?b&Vg8%nI7iioa4vMkL?Oi)mjkEj{8EinSLc!T0u|W zX4pg%G(WyJpfYMXfE$)LSuRqY{$A32aWsH2im4^(gG_SVt7#L_J#th9 z8u<@L{V2+RlOymzoy!f-iD7yZl|-@=yezSE1nF(aA-L!*;4o0KK7CKJ<<$DVjIxKS zB`kwV#cTC{`B3E#pkPREFR#bPkVC2Bjr@X;K%2_Qk|qlKk4tHH@146CIEyG7wO881 zQD!<|K5tWst^TsGAE+{TJq@HQf!EmD+SWgG0=ZSkQ3hv6^TvKqFNpyUneWm)WjVQq zrxB`>d)s6Nw~oysEb1@LsBJ`iE;T@Mu|FzN>>D+s1!vE~;JCw0^u^ChT5L(R7QaZR&0iTazMsL7brN ztE$4iG4)L@B_;yGLEZe==af;yV}wt32OtgefZ?j=LXXlt6C32Po##KK(bm zYDExSX6E#7+_cPWe0M(|v?^ zYKJeHzm3|%%Wvql4<7^p*ZYeT0nz!K!e;TzWkX|4AUYucLV+z5rRKnB_VN#0)2qj* z?1f&)8LlddKm=OL`S-5kF0|rDK+tt_9sdcGboEf%uaVbhDAIRJnDvj1Qx`ey1cNcv zpvREp7=O&#WBy>9z3qnY81c`QTY3L7bA#_OxOY)S^EyI+84rgwuw(*{PnrwJmV)dB z#ehJwMAcl-NhlOj`wyY|t;miEBw+!6nPgC3o>bi&wbf=-BpQC!4CH4eYwWpEK@d3{ zq>?p@6f*zCx<3b&R0U95$@Nhk-^nH8C1oF7jB@sbxyI#~*R6x}DxSVfBTx$DFmDTz ziwQr!3bJhMO_|ho<;UJlWEElXvIr#S8C{&7oUA1>BQAxnB&*EzlvvO4(Q!VtCS9cw zMC#38K;q;?Ce+F+T$RQ!G(;|1T)xZAy8-imy zoImyG$GpAW>|u2e%8M)v5Ox+l-v9fWXJr5$v?*n*_Oz0{DfW)>|LD5=WA^KzfP0m) zhmQUS5$??;5*rD=7WsVNY5W)bhF1ZWJv6TFA#&dodzca71z+PmQ~Q61zfl`V`a=cU z;nI7*{0}UnEWy_-uLbWTU;-uY4gN1~@IPiB0i0*#5$j)6@&|%}9uJh%DR(168u5R? z1+ZKLzE=BPzg!Tu;{g2T0@zwuvw0+!# z2>L&cwvVs=Pjv2yL=c1ipXl5tV*mfq(PHCzj{Hjz63ICF93*oC^XvMxYp>+8l9JeL zY;5A|>+3UhpW$Q>>q~a7`}iHXp#)H;xHJ{9f4W36j_mjxR~yoUk+`-G?1eRdgRH*)yFPEdQiU-@?G` z{rigNgd7i$k&=FZ`H}&5+D>j2aKjmQvfBKqkDVeNPo|)SraRJ@l0bS= z6zCB&zOm3C2g**v5Kl-cmfxm0GxyrGYZ!qycgH;`WN&|pc6^dQTXu8-QDyLDHdxK{ z4!+L`CzCjz{v!hMDW`CRO}}03<{vEYD22}~KFlEc`v9(^LxpZ4PaW3>bC0t#CoW0T z0!|uYNirQmve!SqY{?LjK3D>8({!57T6L_*$r%b-joDiKG+wK&mk-=raHr+~fS1Raw^_+isKbFNw)D2#Sx&D@!Rz!CufXtC=#SPm-Js z!fs)|A3)R>m{>pc0B*;R=K?Y;BDw1VVt4#}WCv*(&EJeM?|8j7x{&+y9iT>w6dlQw zfjDDa@bPl4^RIc|1eh<6a3CGF4&mF2m$M2tHgQN~{!ISl&zF*Ps!dsIv);my<(MS3 zoR3#h3a=q4K+-t9oU*!wc>YqGnzW5<%1$erXVKnE1a6~EluYrCHWfff4w;KK`$ttkWH2whl8PVrLGc#l=X zkH)B|sPR|Q>~}y(zZhK&Z&|-x(WHizrY8xVJwq=j%LY%3Nea!sJc)q3rvdGG#)s&) z?ejtXdNX(vx>-L&BlrSI{!VVDU&Qf<8zwc?Q41nB{xB*~;zuiHe}D+P1j;YLZBz|7 z^R33H7ogP`YfhV>f7K*TC~Aur-S`?l?KhAQTs`R~-PxjF*n?d_1$|wSJ6Wf8mpcx* zz3%WGK&E^I>3>)E;uvU!bOod0LvC+*$#FZ{e$e+drPJL%=#BfN5Bl&Gn`@r-|XZ7J7VPW~Z(AA0s=^^0dE3{C@rBHX2rd+f^$+U2;${OEm*O2?&qM9~D6QAGyBe%Y+?PRC` zLX}jpIFwp5>C)KO!`E{}B&)6H4_uH_ZtO9bnu3vk7Gvo&p4mP6_YZ!ug&;ydQUig9dR4|i&MFZUZanOgG-kj65h)m;{m^@{IXQM!BRd(z4AB1XS{Ipa#ljB)s^Sn- z9K!ON%2r%$yr-PFz1}&2#rSM<7;>TFPx!=E<9yPc$b35L`UP$A(5 zAq9XsLUEUBo?_@Ox~A$Hrglm>ize*AF0S#~`=Ed0%1#2TVs&IWash#S?I*$>yxoi0 z)Nt%ak^F2`){5E!y$qN!v7t${e^yA9^gt^k(ZI!;7Jt@;HT&4|zwBG9!`HHly z-U1OE%A>RG(7EIl>~o^~?GBMu)?pr_yC4|ynF)B=FdjR}qqv#7X)dI3v`D=->(qspWPjcvXGmp0?c~&M z>Sh*z&YK5Yby%Rp;R*~Ahg5P*HM&4<_ZDkwq`~-C7`cj%$n(!?G79Zqka|BxK_Pp% zNrdHO_&LZHXu1*Ix88@Zw-3auR3Uzj{)kw}?-X)AjX?XS+E>+VHI#kk7{#+KhZUQo zIa_MLY3Qx$I9EAc*6ooMaLEq}vb@Y>2WUlag&cJQm4cmKJ|LqRDX6d%ob|b6n1iu` zUb`}c;^CWeBMJu4YsO2{FQVTSA>%O@3_-neYanAj!f{qTHq?&Y^&?9ICpV_q4=@5* zG1{axoPmYaM@7&RM3^g^rSUTKHCmk_4!cU*bXmF2;lyVdhT=zOnT4b)v7EoKTQYnv z*xB{sgD(pk-JNd}6~G%bCy>sP4ZUG>b3~aiH-By0j}oT`%opEBCDtiooF~Gazm}5; z3!q&<0z3=Ha`+!M=V?arA|c%xN^VeQpBy~9PuD76=t%NJ1^Sv zY!Mo07ALtv%_PY7Xj}X`Ci!1NOA~sx>41GQS0Jyg9O&A(QN2ZL*JJT*G^fW>I@*aL z+n4%))m!DF2}Ot3VYjd=5-UFtn8BpO6wyf7aA=f@->Qx8oT8#5T$JTLZ zVYD!KY*o6JPBiXB^IqDG_~Kh|%Vvxhm>rd@;VLuy{poaSe1r z(`yFD6`5^@(PXV}h}qu2Dv%CrxKkD~nDpjnWwMv`FHN>%sgG^1rEK%*CwqW`bL$`6 z?H@cy{-5@)JP_*q?~hrwLqg7qMr6s6#7559WaWyeq(aL|%6${Yw3W)$mZM9fT%o8a zIY&8DjvXZDxX0u^!Z3K=U#8z0yN~Dj^ZDcH&&dIFr2dyM?I`*x7FWEndKx^$mCaBcSy$O`UD335-TK68khqLoA6efB7U$ zul6of2VLgP*}?V*YN|UqJ@vItm<-FdahK#NWjR);^Pnz zwNWp#@2T)4`wcv&nh|G@s|>&GCIQWy|bNqA@UL;lfpY=G{o?WuR(E#`Zd5rJY3%wI^*_W)0zT+lx>cmh1yJ?tG#4i{lYzx(zc$xAuodlg z&UEXo%z_9+XtUWq)^9ucPOr?(SkUep53SF4?Jg6Vg&_hK=g<<~#PxVEAa|Q3+I5tL za2ciNj{q{+{j>8At6l*o+K~s>8s4a-75$1s9#JO{bp&Hlm9neJv+s%Y<>cOZT!> z?*G86^xkHN-?GJ?bO{ZTsf18A*??f;(0vaYzlS)LbGMQrNpqYX>&S} z%c?dEr5wGxW&jQX381 zwp`EMJDB5HnF4I+kFSx~`ubkwLP;U<_vD!eNBi?88%wyEO3`sD2-%2P@DW)ib5Xkq z&HZD!)~dONDv=jYwjO!^FDObTB`PZEKf%Qu(KDG-hi09taO}STC|0Iolc;~| z)34MX{5b>;ZJwSm!4xa6{E?*vd!aihyC{ZY3TK%f8h#ai3@X$gqda!3{tMIZW#vPQ zpcluAVtVe?4_PY%<@$3ux2ykH{TC+rqXhusOpidp4P9$&+I?;4gvgkYeAixb9F~k; z)1?aQa$L^Q{h~5$x|?8+&Zp_My(+h;F0(tCC@ygOIexs{d38W?CXP0 zFX*7w+6oqQl_)fiqNS;7YcJ^wOMYBjk6QbUn5_|bj2pA19^8sH?36*wm_o=^VLEq0A_9O+*Q_I_lea#v; z`UfU~IGaYSY?%K*pzF>Stk|x$YoyHaa~mKC!0#0}o_HK*CH~Z3Ga9C=kpH|1KCMDeJIZ3oG}j%5qIT;CiYG zy4Pm0h2w9W&cB_tqW7SD?CzQWz?U$apRdTwfp^TIKi1TDkr&Wx9DUz9sLlNCRbRsA z@|@pJko0Vn0^#DM(6E_ur1%Jp`vWRNS#>0C9igL9e#aS!x?)BVOvuF!7tRg)Uxr-V z0b;^C_osi4Ww6*7^C8>nQD>;sn~RjXET>+@98a{2Vwj&QS(g^a>_o^k{BO6sany%V z=c<7B`aWLh4)GE%$u;c?l-G*5YG2nM|4t_K-#k^cF>pa$`Lg+ccuxr!o1Mv&!eimp)U%Y<=j! z&8r!g+6G8aXR^w#ssS7(RoaTCmphQ2M*?h9-3Ez=w~$=Xqw}gj5|kl#xA=Wm_i(H@ z0dq6cxBqc4>06@}!E5l#pU5Q6kpsPv9t$)|GVtc{J`ftuzZI}KrGyc3#yPRI+C6R2 zkN<5+WZ)(2;e1Uzh8)AGU{_W&YpN{Q;sA2e3^XCgB-tm&Mr+VM7*+dRzcf;yH2)1a z0uiAxv*ez&gH+ z>*?f#)5?a2KC?4_Iu(5TEVN&z=KC1yc_BQ_Kk)5H;oLZJdhBY( zOjje+GRKjUGL#E5qBPc>@ow|<<-L9I?9MsfIX}kC&o-T+fNNzrCr;@tDd5+m*o7C0 zX4{bKyW3$YvSj|Gj|>V19+Bo=}pD``}bdLE5)3XKhr&6wK!{@9Tvr@Hj2%K z@ZWTD_{O7m>gwvg1UPUi0YKhqBw*$5+FTfL2??4>K>yMAtcEe0S2WK4X?mjAPIIn_ zx8N#y_H%ZU;Jlcgot<4Sa8{CdjMV7Pd#K6zwtyMo<#`q(Jx#{pEcsX_44^tBDNp%c(p(luZKmT7 zz@#Cey{5N;X7QaPD!U`luVBb_5;&!M8`zud{0hF$4u6va-J7=(lU<(G{U!stmz!p@ zzCSV3YZp3%-=`tXGO8VF9DUgA+m*-}ycQf>H$tx-Nw}Lll4do30U3pdgzV*@qw}TH zxgD3;laBGZ&;M#p44jYbEq!23gL4z2%>c*YRrv3YP=a$b*h^B%D0pB#PMlHWvf6jL zLc`M_$)2%WTUn;JRu-LP@JSrowYPEp2bz|4D4%1(Iu~t&{i4PgG|;J}E7QaH1t!K1 zjXX5M&DNzrQzX{4Y-6gS_9OT6na4=3(RS6*1CNLvp9ySLn_}MuuI8i`CWYWKPO(scyq>WdlotSXH|--d}zT?%nyo?#zMm_nPx{nuhX&-EcWa z(x*-Vb-WyK!SWUa*_`aJ2^e-ifUr`8q8_fLiZCy5j9tc2a+K|CF{uVyMy4<|Hi6>VFP3wCZiS<)Xyxy?k+Ztm` zqn`AV@5PEC3O|*)At>f^%U?jeFgih4R4V}P>{!<}rNXhWR}*8^Z;KPI{^d@AazAlQ<`g*wnI@t{Ykdd^GXN`{!9yZrt#a12q?LPY|pEUuxQ=X{^Gad z$>ZP8lD-U=nA@jG+T+Yj_jj`Q1~Re7)aECO4o;c7{4jKQ*?HF=irY5*6ZohPiAR?a z=;ycLbA~YnL~^a7MBye0;4a)3r@9MIMawIV7%H_X28=x+TLHZ@waJcPC}8RHn+jBQ zI8#QHh%`e>ex5Xe3A%9LOs8)X62VY@d{k&E6S41f%?em~{jVKJ3#CDN4;;JeA^=&n z_q&Ub=w%_uXzfzO2}clb1*EpS@G&4?AzPmIv|pLq6e9XYVJRy(?~CtRz|$X3X>RmG zHMW1@UN7?id!-VoDAghMd27pPF=k<}+)|-yz^1xGQh|*muRFI?94p6MW2D`+{%GiL z97AF#5)=sPmP%_I+TA|NA~OKaJnkGi<`o*j#~fIea}ncd^sqwxyf_KF^xBLY(c{61 zd1~n8SERpZ6z&k&hfz4#0&XnEG#m$Iq2!r9r%2*V2vPF6>fB(ayEC-30+r!D;DRhQ z%R_gC)NfjiUKU7zCfE^k3gcMUs-cmpn#R2v|2_r#@hmQ+y)+BO##@aRZXd)=kNE7I zGe{|7;I`w2ksxDEKLNjFLgLcddN}pHeK)ZbAcUOI_3A1cbj)sx9?qdWnw-iesv}m3 zHdY}PkmYO`bm1nFg~&IuzY})z z`7mOs`huXjO`fUhZZYBy8+hMB18^y3IHEd~HTl6P(5);L z=C9pq+8|Wh1Kr}NHwTdR)FtQ*Zl%z|!bBCrQ8OPT2r@%F6YH%4X}we+K$4T4U<|sS zm%;0S+1Sbfv*SkoT|Crl+np-hS;}8QkT-cvDSs!zLyZuI@f+?2hor~$y?^D2IHWc! zQI2JYgakuR=f$@y>s}0bqP!k}OEF@qjFaZmyJ#^DjL)ClOK>olS5`mt0w%5&H z+l4U`YbeS^*l8_wW2XJQKi&cCmiwcogH!i1O}2lJzQmE}%VKlbauJ7PH!Rp@%Y$mH zK2f#oBL2Hb_@oJo1uZ(V<=v|MVpSS#jATMX4h{c8kF+A7$BXlEq2zXF|G``;U-etq zI4>w%{3~b7ir->E>r08CEKQu&{c{RXC7ZZ;w%5c^vKc2Aiqdx-TW)l z607$HzXo;CiqFcxB(RTej&LZ`693r2*MNZhU%dgA(c5mSf~&WQS<(vdODQs~=~R&ao2mz4XNV5-*T2@40h;wEB33m^};_ zQK#X$qPpG54{x7%_LP393AvBS4|1yUZaBOKO9^e~6&_NE<>Zqr--$l0Z8LWW^j%>Q z5y?>F&#&6K-Qd(HR2oEw5R?Z%M3C#d?tJ#qW!mAepFrv?>7;^{GK$n1qcQXSI(0~L z0Ihqa#5V4%UnSMddRHnnG0O> zojUn|O#f-!JB8zWAxE(U8=nl(l~h5mtg|j*u9b4G`O`k8boM+Kp1ffDMTFzC0n`7B z)Jmdpv>4nyjc+MNy?sEO8B;K5Ymb06rdphh06yZ3R8~}ALZPWH2gwb#Lt{^9hmLb6 z(gs1?6yl(?GurxlRrl__r7`o4v(Hh~VNWGtzKPI_QvSO5)r@$*edG zJ<@G7CY?cFY{`32D;4oGs>m6u^^D_Z(br{P!r~Gsi1sCJaY5(uDY(Aj$as=XJaKVh&fj5jh9&t(>`mZ= zFYWI?pOuwW0%`GhI9ag|wClQg=DA+VcISNVU{1`A#S1xw(6E?+z}UL_;Q`m7=GPJ` z(YbVPKBo8cbQ>OrYcg&yXgb7f3b5bU{h=x0dz*T_53(Ogah$0Q5H17eL0UysRbtbw zp)E&L{Y`brdfq>3T7pO5heYgS6$};nnz`5;G`r>p&d<^ngfX$h9D(@>c}tL_2X&h} zC35b}j5*VoQ5y|AMOe-V51i#^(qmw==EP`(PEcwn*GWe|DcDs%6Ko3?R(0F=)`XJp zJMjbtQ8gB3y1zhwB5`Mq;{u)5TbMQA?XSD&B}J|1uhCrehXI}BSR!>j_1GJSrrU%C zrZbIoWIv2*oSMC-&SYGUJuYfUGqZt&p+;ti6#FzQJ6q@C#fzoG9)lB5P2{KU=4Uh;b@Tu)##+?tak8y1l7;q6UHQY?>jSus8ZtH({T{nQY+ zUUZe!ZxDCse1CQPN^^5_Z05O^ktZ0^b;1MQ{lG{3d{`^^DY~nA$)h@)B&@2C|Vb z^*n{tR@m*$0`Rq-=_G@DTOf0uX>soV5BJnk>9U#o7I=Wy`%Ia&jvMdc@1D|{>zQ`! z`3xPZOwwQA(;Z(I0W?WvfL$?lGGl57;hXtgSUnsw2u)0W1k1NEA>m>Q9guE`7fLCI z<^gwdbQ32h#XC1Qw`+cyoH4WDOq@UAWaRyWnG}?F!s2xze$|sAsCw^#Dc1>klKr!8 zg7gjhl`bATwDAkenY@d3eas4+h|b6#*HimeZ|du1Up{f{%=d6h5tJ4y+MMBnL|S0SSa$>S0$yypf-ZUwePSN8Nj-TM8ka9Y zjn#?)&sY*;6}UA~>^>~G9o+p5@M;^xPQv|Z!}>QmgjKyt01f%kW~4QT2PVv`%9SFF zL?S{%Bg@q+b<45IZd6jD@}((rSC?#39Vv3Ox4!{V?_G@mKRAo!Pqagx#K*^XMS24{OnG88)IfSiWGwTQ`DIRW)o9E) zl*jV}Q)*aV~&v`=7USQv9K{z_Vj_?5uuXkZId6IU#PP0gGE;-L^1|si=(M zXs~)Fx~k&8sDy`NP2Uwq8ylN;+JoWV`D|MsA7!AT+XnkE))gXGHc_LAfgEFT>f88R z51DV^18piJce?@&)ZP7#r*e!K^$&)v`ljKnU*F^ zmIr(kFVu%Wh=K?n1n(56kyUtbJ=d-JRc;n5R zHzs!^m_Ac~FGwtIz~PsxD^(6Yp@(MYm#Jv@a7Us%Eu(N7ls0Y?#f6Mk3Rj;JBwXZ~ z`{Mno*Pz=0g}A@!>v@ed=M}kDeuGOgD2UaCh2Q)-llZIKHN09y+_j}A?T)TF7G{iM z+0cQOdBw%N#msRIm*h2AQU0@ess3-qF=mD5QR5rNC zcu$ci``^3*t3+Dz6V~ewqXcYXwVA`)RYGD};HvW0>9_;$Q{QTZ;ZqZr7;Q YCN}5O$5G8cqu`&e_K`#B2hU#qFENUnKmY&$ literal 0 HcmV?d00001 diff --git a/docs/slides/ml/39-smoothing_files/figure-revealjs/final-ksmooth-normal-kernel-run-1.png b/docs/slides/ml/39-smoothing_files/figure-revealjs/final-ksmooth-normal-kernel-run-1.png new file mode 100644 index 0000000000000000000000000000000000000000..41282fd9d3c3005f99d88e883429dfbeda41edd6 GIT binary patch literal 155654 zcmeFZXIxX++CCg&6k-7s8zO>(f>ITvOHmv^s*1?aM5Wgt5PE_Z}%$akJBR=o@{d}1D?O}HIUhD4nb=_lPKI@bJ$yj`VqR7Kz-{M( z@_S1|zv`n?9$DG49d#m^T?w|F#QWaJx96Kb&RyClJ!_G)6B%$VY4-%jG05;2VX-&9 z6oF%JbnS&7<3f$>WEvJ9ua!?6w1J}L#BA*q@a^)iY@S>YoqIaExc5e;@_VDKl=zEu z3o*?8k0+HL-b~u<(Rc>Au|oAUN={(=5+#3V*O8Eu5;sa0E;a@ll?uJ&v?%ik4F59N zs5=nd%#w;tJu-eJnlF0RO!@tRXQ551Z-aei4xG8gbt!_M!`|QYR(j^nBU5%Sre4{- zSnD31A=aN>--KYUJ8U+RraI1C%wP!2w`bRr?F@!j=H~g z^q1(dGu+41`J;rI46H(|Iux|nr5oaYakpBk=;-oc5xABr`?UJ$l-Grio3>WZhD+K$ zXr;<>_O|u5IX1`QU2ZC%T#TMpsozMg>T&<-al-b9gP2ESe^;_w8>8N0692|xQr2Ym zCTqa9K+?bsj5O)oryDy_l?c=K8cRxgR?4r$44rNlr~hFreS-?+!$D9L-c@Y2J4`pm zC`~F+j!l#(KEc4zp)uu=R`*o5)Vsu>M)P5DHw!n5yL|4c8V+4P| z4yIl-=@mPF%Ibkq{kwWAZT+bO4};;iC44<)bGSkenOE&-c!RLYLFEP=%5tA^$t~^~ zQMs-jw?oK3W0WklP0wXCSm3e>_b(5et9*lJS28>Uw3Ye`&>!6woX&5*<8R@APIr%07kRYyBA*h}N> z#vyO~B<1Q6mpAE$27F#wyQl7u+YnNun3TzL4CiiZr`h3Tf^0`?$dFv+4DZ!z-a_y1 z5TSD2_usuW(m&Fc!$(>%^>#Tq1nKp!xyhi>eNju>x`>eSG{!c@N$*`BEPHSuK*(AD zcG*T(7a|O<*&r;B>>)64#RC300{($OplQ&5{e?9sZQH-Dx79KK=XH)9tq_PR*q2e)A8NJ4`(52{Z(o?~rY=7ZH*+8b)JJx1?<^5M-7fSA` zZ)drn{_D}bc1KL#yk)tr&bsXGE3DV6C-%z_t_JfFJmFfb*CuT!IZ?}6!C-thb_JCg zrC>`g#c$?GSu-dmepWSCpIi)rus~sKocyXkzCcNw>8JSJV%_?VZ$D1k#|iQKWy`00 zyXTfF3|6=8bEN0}pT81%tL>*tg0by>90c)JRru`k^B1Z@X5_cn)?YhDv+U)BaA<1u z@A;VwU~FtbO8q~*z9X}T*tS)8Szn1r7F&ySZt8FXd^Bi?Sn<8prx1;x<1vJ89`uh5& z8I!HaA~+n5Cw%<@*jPh2pM-#b!1zpG@fooGH^*N9hhtJoj9SNs#`UDCtHwTiRHPcKUYBuxGnKO@%f*N z&G))0WH6mK-T3FSv%3Lq%Y8Nu|EaCErvvjjHhZ|`m!I#T7~E#_K~(>zMut9ifD=No zYp^@`^Bp_~x5XiD= zKL7RSJFo$_wLCFS`MIK$g!v(J9bp}!Ki|PQkuya@r&{u@)`t$XC)W(fvUV3mMn*bx zrtq+KZ!6ROwiK#<9p%v`NlHxcn+90LhH39EP=aQ;rkv5$8gj~g1E`ls7`s-T*W=`I z$He6L-t|Z|MU}D0fc?)>Q^^fBj_&a=K_MY+m($wX+Q3-zv`w#xu|Vmk&PYoeE}pz| z_iiCyVnGXx&ExWL`wKN|U*F1X6tH%)TK|f_Z#{eVDm`=r(H1bHtcGE+IjD<2=C00h^plYnvHb@6iWQt%vw?pbh;39_zFC%~MNxi13 zkZMfi$^XL+4*?gcoe~T^@l#K#8v?i0go^$=T%&6_fhYYcYk%VBJ6Ju)2_ZXM!GCUt z%MXByNK{@H_<1aNg8|tMA)x(32m0G>(j-7O1*$!A`R_md=mK4{oqe|E@i(CXh4u9G zG>_xrwF7R}_?Cu*gv0<_a$B1pahqy?G0mVCN%U{|xN{Qx5SO7(M}U&1d%gD^!{#FTp|H!2uEeZ%zK>)aJNV*A7rYk=b z?jvDVe&qocj+UC16+nT1y+s^rLvbHSa+Oob%*beNiWbVTW`EfsqqW8J*gSNB5lNdI z0P!cS3JUjXOOiJ@c<`WBJuzfnx4gE<)J4$e=H@;f9Ua{*9VB&f`NPvgl;Y>sTbVRkd2g@9opvF`^aLRG!w1pp z>+22*lkXmJ7zy|$63Drj%1V<^{#K9ntyglGxsoXjzYENjoG5Q$8;((XWKtF5rw+Ak zp6ZH?to#4?TdV%bkp32F)WB(YxIs9iocCAKz8?pB^bjZqDK`S`_5k^;?*Gl$_%w)N z&OXbC8nl_LHwsmAWP4KTmalDRfF*B|)%;Y0>LTDLa%ZpKO3X?#FoIe$ON<`|iK##q z7FP!4g%T(&8e#kTJ+n`2=%SKyiw&F&IJWo=e|t6XM;|FipyFZG?UG1$m*m5xrmS^Y z`XH+Q_)S!cy1k6Qm!_km^UZv)ARyfThn>S1k~MV z6kJDFH#WEq?mED|y&7l|gj4NlgDs8WEeJ*&>MH%apsZ6H8nK}zju~_wZ0yC_3D+w7-ITzTJDx{ z=l*e5yEC5eZh{+bmBZ9EG;mo4nc1h)xF+%o3XIV6H+OQcR8?1-i7Cp;8ik%1a^wx) zvKpWZ+=96>mSf|92@M}Xo3Y9rpa1kp=KxGXRP;K2yWZjIiZKQ}fNQ_dMoUbaM))x? zc+i2Zqp7i>vx> zJ_V20JD-Mb@D>UEPB{5PRij@33+6EN8Zd^!c3iy$%FrY5q>dWy@kCSJjR|TkJW$F+ z?)F{vT~!lge&t;=TwBPzTpKhY3E&l=)6lF-94NGG$UdDawJ3WVp>)Js)w6T!7N!bR z?_O^gK%$0Gukyb@Wcc0K(lSQ44)fNUmo@y*H~#j~!#XT1^S4%WYJOT|-eLo_ms;;v z&x9Ylz@LjizugZ6WP|M&*-9zjJm}#S(98rUyTt!A<^6AA|5n`pB=)x}{m;h!9h?5= zmH$pl{|guY3l~4gP5%oQ{|gsCs*wH{F8=?A3$)t(3e(jmKk%}@vU8fz_8vSQ*W9dS zY;G>bM5qAlYwhHe%j}8N9=$iJ=|}W;^FeQ3pm*q-YzZoGPWhpOYvRStg#p0DGlHle zjsg8pAQzNR-t8smj#lWK{VY({pbZ0ZNqu|w4kK(OOth|>k$A4G(o05sjf zWnE=+R7G5cv7};gbFKbR9INs?TJg+mfLDg#+9sK?xi}fPIqBD`O$6&0x)}bGb*QHu zTTh(#a&vQQJ0qKZPm1oYzSEW7Zp*~^s5ZB?^8bM^{uW(z7^=6|R zOCMDj>unNb?*_%@0(yTzY^DnRYxi|1ca7hGGe){*q1w1+>Q@P2?2;n3c(Rh<@Gga? zY-=kShQK7B%XTW;YB4bjGWTYW?x(3?Q56LRlLvK&#LZswEk;AoO0b85kN^Vdrjg_| z%H423v-RpWTD5}-TIbOGYYnCB^NW$;xf9O=2L^`9Sn;JCj1E5fRiApUlq*A1S6eZK{m88k@nbm6_B*X#NLUbt% zrGbryHq*Bz@}|zBVOZ{(L`SNP*5nOsb#`0fuQ~$BeK$cr?Rm&9AeTP3vND#=x8A6c z?a8a?>C~_~UZ|rsKf)1MK1dFr4BV}tq8};E+#cT>?)|>3MStQ@NfraU%z zrw@hw5}|$il{ez`;SIH*IvMD?_=wUSp2J>y58pwXVWq7BLu7UCwWJvo?!0ugap7xA zLyqayMz-NDX=&-wg_@FB-`q|`=n75EWQ?X}OS1+leDL6bmNN$8?c$Pel5x{hVuESv zrH#_z_?5DOhZHP>J|2qjAC*Sp89wv(`OF@CUSZHryfNnId%^^x%DA2-CllseC;%Wy zqmEV+RNBw(<3IBZTC1}ATc?}MsR@};`hzQKn*WS9w6nAGKE`0xP9JS00AF9kSXTvF zOjy0&ZKwHc#+#C|jKTzwIg)3KUOa;;;EB3@vomPw@3CLERbKUdv4_wrf!x}A%eWeW zl_Kx-Pk3fT4COn|37lz!s-1<(8EC(>@(oI6Vz@bv+>S4}#ORfdbc6?ZtS7atCpjm2 zFOD@uIdX}>9MDPI4O8K-n^?GJ}eh9#b#hM!MRmH$GaS8!R_cr_KcL2OtF6 z878@M4SI{bXJEMeDFm%mM`6{60d4K=hnmz#f|3T6&y&bdYlF>|h(KpZ={J zRbHxf(2dQHR~~Bfr|w-@$fQ$Vu=15A2+eHe`3JW}Rh!)D z9?^Wf)2BeT-9dF%V0E$t4})$)5K$gslA*E&`c`&68SLc@I++;jGW$Tr!@A-6mXJ1Q z?*;z&=mMB&+gy7vQlM3}H9wG~qh zc1Y76fq&Pc-$AKIOH^$vlzbMg5}rTLwy`IWHHTpzpFVxcEFLOX$%BJ~7syWl?Z$&v zLv?z2@eRs^W#WHUrGghXgh?n&57V>XQ?5_*oU-|K5CFJz=*aoXh?zp03MJ~;DaE*( zlZ=zyzJ7k?D4tqW7-0dp1`~8hZ6lEzL+~7EKhk>_3d=tP2tZk)zx#?R`-E+o(w{*^ zX>ln`aqhLvcrKaZ?!A4V_DM*q7|VQjj!}-Ovc8-4TB73)0O2laaGRk+b{5cnt3{$z zh;BGBJh7t9@1YHB-X^@-$N#es>hnaE%NiMY9ZzkijOKSn^S9=9m#SVI3YlxkOPP~D z?y6;TO*bIQdOs9qa_Dd~q#P;kxOGrv^SH==f&BjcC86wVtSrz(fW#-B+1Sea9_sR^ zOGsGM`nO!KPKc9!n-ux%-Kx_YEI^p=0e+6tw?p~wMg8{$T5!7?VGb}g(+atcj*i_P z)d^9uFUV6X1(gXlC)|RYj#ALEA4hLi5 z-tP47VC)LgI6f{;%Z2GSAldD_r}!BX%Up%35dd$^#|`EG2GRceVu}~7L-C(X_PQ}b zo}P9{NJ5|hMW38mld^;<6hVpNLrdv&mm>+7~-&&D^$Z&5x*P0izu(04T zJq4(QY2UiMuG_rKH&4~7I+7O&h8 z>60+oY63z*Frowd7hOh((Al2sdoA_Pt)B*4ZwcrS-g@hRh>bFB2EJ{Iw4uZ5kSJ$E zn{Qmy)Du8;iR23ZnC$?w0LQO9DxC#Vr)1>2FQEdMqCpQa$!~QPyY2t6tN%3AsV8;7 zsHIojFAjL#AMic$RcCwNHzPza=WL2CO1A1BJ#=n?Qg|ntYq-oH->l-=zRe8fZ`7Wz z0U&V`>30H-Dt8%k}p zVmKOB2X_WBQ%ilJ?AnbRH?rrwz#s;-Pm8zbn@7&=VhgH5IPKbE0e~k|S66SInQ@W_ zsngiR#DQv32M^_f2wh4^OjK+~6@o|!ItugQ_Bjr}n60w!VHi3gAwl?k3o_^s@ND(P zu&_BLJ<;@s@$vE6>U;TA0tTmu7rZ5VSpofI0w|Prg5%_O^~b-qSZ5C9-tIrsTR5!( z?A{uTnN*6;gDBTzX{xPGpLmX4Pk6I7)sf!amWNwcVg7144j2Q5s^+-G6IJmr$uE@m zzjJk;8Vat9m$1lJ-!{1!T!-XLYWD)l;nEH>la?Nzc@m{}{J^8wveRiAxrE8`x3GC91)q2Stz zRs`4=wXQ-1qxR?$TMgm92{TyDZm;%3kiXpA;sIy&L%9je@dU!dJCA0W^BgW!baMDT zZ>F*iNaLN9=rJT;Jbu2lv<5NO#Oo6<<`XrWX+=xW z8oE20~OY}hn+JM5tb|7}D*S4~Mt z$=;dng0`cnpB$F~P2EkBY7maSzgKh0cj3#2(9y=Pn99^?N(abL*{O>Ry?7AuLPvX% zYe~*sL;gtCjX*h@xa^uCiNXK$uz7$Qj}FhJm3BZEul#P#Nd@S_}A;i$1S4ZSE8 z&zavYKYjrW4271f>NqzSkQb zk+@G_YQrZsm#yi_zROb`*#$Df_M`DhCDEh3KI~(1o?2z8lbWcbeoL$FQFUOjL|2yh za6Q220EBGR>;^2l`~r0Si^s&Lgz50-{y~$wE0bHBn@87O^Hc`8pfrK09mtrL@1wrh zuCXzSBDuPFXQ-R#i5IFFrwJx*f%k@eV_fSW1|M>FcQ-w>5(vg#PDOOQgdcRDIlIkZ z-<)9kfXO2D6G?L9PQXN55F&Fl!4ywn^lW!?Dpw9mqI855wG@seQ%^TUNJX3?V~v%C zx=IWdYm??>M*>q=6?q$4Y2IZCd#7m;iout>i~Di*uHq-8ON+Y=VVA_ zO~(7z@lC9@%60~N$qI(_j;`g8dH+bn-rH-0m|$-B&gqEL6d|)_ zUr+)hA8K@z8bMqn?3U>h`_w{`5<;9f(Yh#~pFnd9ajW7lTFT>XJ;GH!fhuA5peTeT z)oOAk257xbU0L$W=s~<1qnER%8tB(g5~zx8FG>p8Ulg|hq8?LZPnt2f<&lar4q-Z* zOOR^D^~({79Ju7xp8kC9^{7~mzT8BGMV9>Ur4IAG%8%#Ddq)h`u6nQ|aUeC~c!Tyn zN$csUB+UX~IL7GR=bA_&1;sGWst2H=NW$NZYrD+rgPKI9yR8<6wi50LxpE!U5V@*h zA`>gI5#q%hGNy}_tt7>j6G_(U-|<~lg3Ze6R+#zN z;g10tAq`q*qIu`|#aj;hgq7@5#Z-0t+oUL7H4i zz*l|tK`Xorch5OVPaJJ;sSOuA*ShqQFxtCvc3$C=3sNN)Qw$1nTb^+6is6UwvHNA4 z?M{<8!y`!?n_aO|ufcP_6GQ>q3Ax6z5iy?OfhW#4E^x587A)s`?!KoQCNzQU*L!pL zQMIzv@X6anj@6#430JE!QcZa2rkK~Uqm4dcV>Plu3m#ukgTF(O2#?K7NcmER1IT@< zozV5V);t17i<2DR#`-T2)E~XrW6}H9u)wYc17B-K$$eGqE{{d&*wLiq+ybJrV&5jU z98uK}MWS@TDrsUqd~JCIXIsCORT9_z)qx$jS$!}8sUoD!#HVtg$<%fo0Rw;t{CA4_ zCTO$`YHwH0K=Bjztn_BWQCT2ISq z8*(Uo?oiqlS)4gdI#ps2kNn5XM)JPKg(pWDQb02AIdTkAQ-h146p~JW5 zP&B9$+4VNYgeCaxo0qku;>3U6@J zXhr&_sdO_HzEem@Nb%r}vi`UWW)k%ML@Me{H!2s8m_VItOFgd<7au>M9F{ygDWAZ_ z1-yYRND+~(4(#ciScJqaW+`fKpQRur!S^yRMnSdpk!KFFq{#fAIK!$y#5TJ8Fc!=r zJy4?=+ma;VCHq`Xnl&%%e^B>k*Vu~3>P+AC*pq6R#UnV9<&s?s6&cNShFPCN$e<9z z2P0NUQt6LK!{rACN;KZ!pA2sHG|_JIE(?V?zj_(CbpBaFg8g)jTwB(8eYc}k?5?JL z0b!PzV^*++Less2e!NSTGk?yf4sxRXdj-q$u(wK!IzU)uLQ3Bm(3CV9b_kv^-SK-~ ziNuRvq4$BxyRN^^D|x2?^S!`-o5bricr|oW_jSCgSV1A|{t8Jzg=?_8Vb2l+Ah2%C z?y}(*61`E<7^{3ay%w903SZr~+s0I{-A>(wf$Jfs-_5_@MK3_%qkM+OP$hF@o1Ox- z(W6gYUXA%Y-}~Mt#pXoiXI_xYyv({me-3ilw8X9T;TG0g#jn`ImfoI*xco5GYQ8zA zsA&2?jr&3ze_BG+u-w~U)zf$Zlayd6rhRJ|wn&wCpU{zB#2ia7epIVC>vXJb;oZ@v zpB&E!JmNah!)&E}&leQ8Q1Id8RjJv_$ytg8Z8tPB=gRhk#|nQ6M^Fo6nSojFWfL{8 zI(&jId)!0mfJZSZ%6Zaf3RP`fF%fqNB0Fhq4@|_vaJaY7lE?O=G#7MIP0FI#?PCw9 zHe_4pNDh{U|0ss+F7Tt(K#TttF0rb3PizFC7os?L!a)>R6m-mIp0vYbbf#o{NP5vO>z~?Y+J7s8d!nSi3q8ceZv`Jy9_e! zG$s7D{-u=g=yq#Qc4mJgYk=}OQ+oT{@g2I~k4NtKjlV%|->^-|t$a&kK1So&(B!Z{ zP!PfPAnhVkccO0}Y$P3LaaB6?^1#!hUO?Op$KCI!qs-106u|s_lmua|XB$JNTMBV` zCksYPju&)@8t|nL&Xrap%^3)NepJllg(0=hM+?NSsB^e+IX9{#JuxeOAmLZZh8%rR z(9Ei)2-vHsFHgu9m6Df^W`$c$E;z|H6uK7$fs&~5uZGZMU*jXdz-4N;R^vb|^lXX6 z{88OHBv0jBG1~tP-lBP0!d}d|SL?fM0YUSeh!{O84_9VUg}y$@&bMsPYk$nkkv~218Y((cXHZ-_fd-L`b=5(KKl7Re7N6s-KLntiQ`(M=$*< zYLRNR4Us!;rg-v#*-bw<2PW>QUp2mF&ag&#=}5~$6U?__y!4s#q?}EduHc3< zM$8mLX87#_o_(yvR3DxKT&AOk(m{P*m3%%dX;NPuI=TLAQZr!UWe^p0zU_A>*^z?L zUO$ShP&_BZ>zaW%(7@CiRprC(I98k5;BLOb^*gZ~_zh4q{RbAnj9PTjE03z-_qon= zkG!1-%1Wi^55PUt_zR*H9y@1lR=2v%oGqxC)vB)#uBxz3M6xB(+?^y@EQGdwnC%~~ zt=aCDD<^fL3zfhrH?Ce2E;!aA*49Lok1DgG`GmLWkADO>1|k=e$IQ1U(f+?{asG2S zc84KZD?Q8FBFsd zf0Sl_2Vhk`wi8o0XO*|JE>#8vh~Nnqtz!c1fuO_w_tBK^?GxnihrjU~YzmgN#8l13 z`0g)^teHJ!60b^z0~n@2zvS`XkN^JSO}c76<~e71Z4W7I*W7|?kG@jIEMZ&oI~Y|5 zAThSQ85KWx+c!1Tx$ZgvX+_=y7>>eDx%5CIkgI&b*#9G*El7{G(cxAhqBlI`}XfH(8u@6xs7Qu8HClc zK2Et2ggS@qiMvcP_pm5)$aN*NX3JMUROL?((oZ>W96H?M(F)G4`Gvvq<4w)Y^LlVp zbq4#}=nvxT$w6o7YWQ)_XWxtLUu_eBaDp+J`l;f!tx4Zb{M^3%VyA~Y10Z6THIt%9 zFx&TtdqgI7*hOacz^7lbzI_WIW7oVO$eIZUV=ICLB@vM(A#ia?DqY#&%y4%GsD{tbx^Mm% zYpvtld16_Y?O7`KLWML;XDXiG6)>%zT3QU#FFlH|ANG`IK~SaW&q*wZImY?8fYhX< zTtGf-8UfKdu@o%6owM-U;?#s1e?(*olhv;$!h+TV@74bP`|l29Qe+zZ0n<86Gj=Nn zYiM0A)4l$D-b$%0Dt!;XauSnqC)m-??+mQWV>D zFi#=5)*LG`KGqa{vh(6MB*2sB7N|Fi4pLn=TKJ@bMK~Bm$(Cvm!;% zcS-V3^mLO8pr;n8_Gf{AerLYl{_+~OZ_q|zQioQJZzRq(?t@x@BRN(l<`)+iJ)f3` zGk5TRIUzr^A^@RI7OW$DeUA0JY^^XA+`xS~sq$Nx|BoXP-xqkyD2hJ5zp;^6T3RZ+ zp&K#aaM?TQjJ!aQ?lwa9AIzG&U6G0EecdItl^f9xYOW=AVDoh7)kuLX0pv-xZ{z7{ zSfEWhA<$%tBZ_Lm5p`wJ0-gp&LL{EgE`$lycqU?sQ!^`cW0^Q6F^op7;(-(>oNNj0D6K`RpnTkKIzB$yrsEa zP*5GEsiswx9!!u#l#jvA+>JfS~zEL z;w5VuL??#|b`d5arAlUdhI`>fy{P>oO900yG`CAWk;V9)bIG`)S6+pGJjgs>3j(7N z23GDThK-edd$)|~<6uguOxd5nAdQneZThE5q*P?%b+l_hUoq|K1A392*_2}aMACvH zbIbp6V(YuS`AukP&gkHmAe5XOvAg#_PE5s!CEx$=t2Vd*RLj zsJ@=woFc4swP@C96d=h}`Iz$Z-`q@Z-puc>kcS-O;Tf>Ay+>k_Kr4a}J?0cvciBb? zUGqwEojmFEHv#&9YJO6;dn;bg^MK~F=eN$iMYwQZNHo1i49-EyB?ftdm}>QsNeLs5 zJIASj;33^FgA+_6v|VrIZc4P~I-EI_tj-X8ujDmnR_dgFB(ux8h3s>F#cBYAp;KA1 zZ(Y<6*jB*m`{I4aT;p(Jv{ckzIb78i*lF_0b)Fwv5NEF;e|iAdrXZWH>hrzTaBWPS z?~(D~SMV!bWhruZzf@WqH0a6_t}{n+9(>?Nn_BS6u`EnP-I7^35!2F041U8+2ejIo zM1{`Ql9M=utOJHUr}@+djIQN05Z%8 zl%Tp+;DX7{=l{{4{iRF=;fRiEFe{fYctuyU(%`bUDQgA%HrMls+Tc3V`-Cp{>8>n? zbyy+Xi0dfcKx@+0#aJ8@vY|U)*=aYDYr)#QvZz=pCGf1+zdxo<_Bdh{QFTi(+;#x| zd$B&ZbP`Q+r!mv{(XDJV8%>`RsNGvFgzX$`UsR7kAXl}E>~l}W*RUL8Wwc8@0rq-8 zH#v!a1++okmc}y2oz!~;BXoHyPI}}cj038o($+pDNOiC7>k&0sdxVJtnxw7=ax@OzRNf zu3W8iH;VL;bycOCB~sy;DFm%J?Iybs1&<+TpYU&*{yz?*_U~(4ap8*V={$ikF$Ogn zT&L>lH80-xE_;v|7YUrr{&`Q_c>^u}l1aa=nZeT&Tr>tpPxE-r- z1W1N^O~bvNOV7e@0E$w(uK#P)-YS~2ZN6C2fG3M#Q{zxCCc49+I71(7^^@Joa|XC#lOi3}w(G|L@RL>%|bd1uLt z4zA&#COWnY`{Rm*$qjYgcBU6|@${Ycp1nk%WeE(BFY!1;Qzrw;oVl4Ppw}26W5uBw zKMt=!sv0n6E%l~^5Ftgfy)>)WDUKQF?J^B-B;@2PY!K{I-2&tKa`IN(&N3&}RMSu( zT+tqGsrIU!A>rZiup~co4llgc5e^%Amz2DGUt|Zy6k~*OcXoCrsp07=vzp-GDI|&J zh8y+UUbUiZJ@73Rl}Nb0rVDrdtCIYOZOsTWkBqbPDqKH!=upnQC&t>#PxQ9^^kv9k zXcVU>piaSoQnLJKxmj?eOvaga+%$Z;MRG-RB)Pu|WCG_U0K+MYec4prf0#iaii`%X zF=BHv_2P0cgJ$`I{snF;6NxzL@1v-4+2=ZGSU{Q5yDd!qJO=*{0isStTzvyagGmT8 zCLC2)+(&5aYU55&1SinDyJx60bLABwh@NTZM6y;rVa5nL+|qeXXhTldRs#;$t=LSR)+2Cli4k0<7&~Jix=)f%$=9PTvR<)!baQC$;R^4< zqw5*Au}xkzwhii`=k$UO)8eQ`Dd0b^XPB*a2@4B9*p#222v%4R>u( z!LUGS2Q>M8H`W&10MIA=sU@bNYWquM4RQ@6vDRY%p$d2{qQdnBq?SK+x^cm5X^Np^ zEy^cht&;GkBuD7vCLzP4_3;R--&mGbJWyobcRAM6?A8o|k^f2QE2;TK;F<~#QbK9r z?s#(z+5DqRRbI%@YDX0!l!(Blhn&+p+H1m&U5RgguShgFn7XoDv^*vh`_Xv2>7fO{ zO09zV>LJ#sU;m-}Z*@YDst`=lS60A^tH@^AQN2|VM);~w0XLL7;12BtBPljsCS_c+ zIi%O`rWO446uCaT)bt?Yi05~fAA=`dtr-wYq)Kl0ToqY4xzRFZ@d~?LaA<)v-Y8Z3 zDnv%_u%eeHtTjZ zkI2&7+`jq{jc%xr-7y94YCz+C3M@bJ<5nLrNn3)#&vU(DqA)wXq?%=J+h+vpl_z!- z!nL?EY`VzH%N}50yk_=dcPnN-{|MKYA&*Yo?#JW7-Q0zV*D%E{j{ONlkj53AKP|2& ztWFkg1TJ0gSkat-)%loxH2_~KLQ+3Sh;$aLMTU~-H`mK)F}n)rzq^e`^SxQplTP93 zMh5ZVq2j4mo15QZ--xQr6>k;-zybQZOGu( zb3|uUp>S=k;S(F?%ya9>3TwKq&rPAdzA;YF(fgm(E#6Dk7Df8T zwKrwnx|++74OT_ok^?fZ`FKh(1*R^3E}udRZ95fBriX@p%-d*a6FFo-Z!QYRUB5~& zBBQh`*0@wmJ`x#K)~kwG%uxrO)5((SVHP4>WLjv^+A>1)sRg5y+pV^+<^ug>LBY4d zp^;Wc@q$-W`tjQc7oXW~p~qt@G5BG0+&Ip9;-rL#LBV=ck+PyeD}ACWCxW3maPB?N zAqdCa$pPdKtA9>8IW$ZTP_BlDp9cwH@&q<~Z(CXPM`Y!=Yx8hvo(yTG!#$;-XKB~s zEgQlNI~8mzM59sFt|J#$Tnj>Pa9$CZGF%>^|c5pm^N60Y98w)9-e zejZBcB5rze^O4(}64oRmfNG0d*1maD7p_!PVrFx5`Q7+@TTO)-6-^csv6yeakv;bm zxp*vs6g>GpB4ne*F()8&d?m(J4kH@hu%v)vqgBr>9#MKMx#<^p#U_=W6iQMFH%pS} zl<>2zSgxPsz2xpx3>b0 zXIO5e@G}F-gl!%1b(InaWO4*$3g-JPPEq1W=b3VbN3)PFghPt0rZt_BiEu8=_M+`G+WdyZ0z zRV0erYHYQLxKu`j+niBgmf8BtKmzi4DJy-zZ4Mt;@kxb2Ywk|>3U%eR*Fl|MS~QB~ zN~LVK{^M@)aDW8d)qU|Ym`-hX&aiqur2uR7Aj!XYWokXP@xblnS?ETu5emsoYs6kp zG)9D6y6OF~v$?{nrY2WuzPPf~enkdYlM590$Dh&td#D7UC=~${$zDUoE?D}i+uUG< zLzg+qdEk5*s4aBgJ#Q$|iIaY?aBI1y#_mGeSz+WH37Zvi?&hJ>xbTf9ZVP)<40_1y zmZq-@*A0&xpInSixzbw8sImT97%slDwow@F|MDnm(E!)caK1K#P9Vx!Ai{I+g4xq) zt7upSci(_hlSg~PK?R}Gv7XSVH2QnB+O(qqOA=1kvDB}rCav^-iP#T}Rk2rh3%`WY z=x%R7jeCCuvqdZ@e+z~CO4Z8>j7wI^;*Aez)zDItuRws%%7Y=`G%j8J11=F%|QX&^G73JlOHsn}~Z&gw3XV z4H_HP40#t+FY^+6rXFEpMG`Y6=cYUjdx`+YV6E^CFZf<3071aQtvnDJ{;fzEDHCyg zpN?ITc~(I|0>9izfn~{)C6RRl_7#XL+XVwhoX6))H;qdDNTGXEKyc1ZDX%5<+oEjb z8DW^%^+VV+Go`!L4n$2$>eyE!hPV7e1&3HPg8r)ZYgE#2QIrhNdg6?eI*ToJ(pTob z9t2bm0rJ#X{c6uHGL|;uHb)?z($@ELus>JHm3UR-5%31y9frI=_J-wrRp?+ynD&*Z zj#^r>gLL{muEVy3rO7tR9J>QIntf-8j5@tld9q5z!E7ymGDakoijdg^l?s?-48?2e zl{CIyubu$4Ta}b=?b$n?>p90dpB<#4tiS#qE<*AO*E&XpW!HFXp4KZJu1tK5sXA1lv$MbJhBbS73odkFUT?%`%E;-ilqB#Ki_8v7U(z zbn%@f44vsaqt|t}2uBJhBj!B;!gAuJ*4lv6WwxZNzFFy}_+FY;sFJ^0Uhs!3Pmj$3DHs|%$D4kY3}sGH)+?58sWr)_bX>CQD~l8YF27sZa&uI^Tk z&!gD&f$`pWmC6vpYDc#GS4IfcoWAkM;}4%{Fn9zV<_U7*`tf>Q-#{x|5YX2lPjJg^ zd2!SuiAVs|TPi_oM9&NzmRDR!FUWfS?3w4Lp@axYNdG2&teSn_)I{)OSY^dcPxaj_A4@SP#uJ%qVa-J~NiibqB!$2C-n%r+M#@{S#|Pg*-mZ#F_y*%b_O z7l3n!Z3ALwbs>Y(9-pHbOJd_wqgWfuF-kvOr7(#Ri-{}Mr^R?C+R%AG{aK6dmDysV zmsKFb(MizEUT7oFH06p2@|E6$x-_^|$xLLXN={ewhPV=_Ex^Z@hDn}MLWW)VuGYsy z7#4oaOT>q+E1R*e)ln$@ft0fcruhrTf9az%I`byuqogmzuE)i>AlX;ynu5$(=S(X) z3`_g^bhb>2{@Ey|!ZyH>yP}F$gt2)6Bry8L3Th!=G2zP`={CAY-+g){`N%{D^Q_l1 zFJdiXZ|{b+3}3cSCjj}G$F!dMJZTFvdCxqf^=5tdh`*PeZSyIREs(E66HjF>Z0>%gp8MtCc^ zB_HcJzH*;qBe!UCtw2()^EBV=PN2iGB!@u`5+|8;W0lD$@C=4Dqu z9gn?Zn$uvS1or&lvw-gBkZt>4W6fT{*HHz<1?+FKWORe-SlGJAaAiey2vHEe{6>{N z6d^d_Mc%74X#89q9Cn8H0cm?Rt1NIsFcg!Ha6@)+~Ed`rx8M)I2R zSgDQKuN45gv_T)e1y0Q-=2S_pyrevCQ3xOd0u`&P8nxGRc1I+4R{UPF{DjSsDT1H8 z05_AvZ%tJpt}d5VA?)AqwJeFYjcj~!mpduMKlZ$mTWMhWaYu`TW#EF*_?nl0+eh;y zi8Zv_`jnY{bs=KVh!M4^b0wiYKY6s(ST>cXFWk2*!Iy`3U0%_^20MM$dfJwFMc2`P zy(-mo!eTQj>^dP-Ynsb&-;+!W3eT5`C0Vkzu@I_=IEqS`qfJ?+Uirv_N-Y}l)-(4V za>p$isnnhm&YB}lsQ4fnl{42iU2B%bz=tR4$+T+b2kzk3XMfy?Oj)2|R&e#{`P^is ztb*dc*t+cGhsIvRFt^Y3%o!S&s@XDOe(f{f;6$D96@9kEcF}Nx&t$S8q*t=;%bf(j zY1!DwDvd~S*$hU_#sP~mOC;Q7Nx_aH9f7yL89f`^s3@~I$9gbzp`<8aE&uALXoQa= zH;oq9>lnMu@BB6yx6jr?IpFNbD)RHC6ajdkJ9lPoDpwW7FfI<)A*8&XGVe9*TCvty zP$9BGFxq}_+8W?q5|psAA0u%9M%#DYI_9>P;&E5rO+ly2n(3TV4^`E(CXZBLhyi{F z)&z%fcI{N(3OIbpZ%*6$`58H!P4W%(^0olHJMKl*{f<)oazp~-EqUNBW|7)N;vX0y zvvns6Vg3*)qiFg4$HzVD-1bh6)RPjVo{au{*_4ExR6so#rX>axXarw*YNl|p$L`MTRGP}PRh4YF{5*IUy7Uv}f@zV#VnSdUd z5_#~)$AeT^VSu{M;goxOS>)u1c8_jE5*U8md6Y_55sk*K;jCvQcse`8E#{oYQ8!HQ z4F*@j8IoEu2DAyE_-OWN`+G}%bhA&AU_gFveM`*mA4@GV1Lj(~g-M~l6M-|auOd&( z{q`&GrMYrdE{-l1*NZJKaUU|3N^^J2AVn@Y90(q{a!yQ&7F=Vb+!_kDy1DfV6tokvXgNQicVhC5UX z&(mrIPNO&XV`~E|77J7s@>3~@4X42)YdpA>ehIiFDM-96-uJyXZ;#EGw@X!MQp@Ys z;BvUf(s^zEa?{J^aCmX3lj6u-_3F0P*12+%`ghek#APo|g!{F6Aw<0fWR+i;ZS;np zjt<3NPMK76_QR|qu9t;de2J}8FeK_FnyL8wAsPUxngpW_O>TS9bIkJOkOhrPQEZ5d zGD#Pvr%ql?*|nY!pxw9OuSJwKV8@Px;;VZmELOi1QOOK*DZ}5&H~_qfYQOw^3kZC6 z*9oiU#!8)p=lpVvg3Jd)Ijahvv`ks<%t8hVx~+ zj3<+ayhRuA-QnxcidHXEBybksV(}yg(R+qJ@ba1X$?NraYQ?p1hZakp{F5cxXTaAu zndh{A!<5OlwRA<+N#JJp*SVNWFxrZYg-97;u=2i%o~Q^p7I)~d=}r2m^_L#goL|MI z>sJETK1-ZVw{5#I`^iy2;0o6X1iPJqtxI2lFR{$U63b|#+EYAd2NAq9bC<6qY?)5Y zD#);3{1Y}-ykgZrF;}#jkXlIW=CGt8kP|Ymub!5~~*G>oLmict<6K z=u~_yS1-LJvUY%X&!68w{bxC*xXY@<3>5UaxT#OUx8Vd&VINVPRUZHWBe=etp4}A^ zFqPU|$XGnU{FDP>ykKq7ZG9Ktjr?=!3_w!!MEQLLM87PTaK>$1DEeV~pi=#2Bl%3#%}xrFu& zy3__Pm95hJZW`IUXF^*EWmN$l`JzfIr+J=Q?VmprTZpCJN}yFDLttJmdb^nlb+(DY*zn%f<&Q+`H|XLZ0bd<}?g1*ZD2ZRruupW9uuR zqUyJ|DWyw9S`ZWvq@;!hDUp%}0RbtI?q&!DX{9@)1cvS$5a|@8W9S-S=o*Ikj_CrDpG7wC%eXr3&=LL0I1-nKyX?lk6Yjp)UesWWg> znOu!mA7`T{BnE}bu`|9LkHK#2X>1orQ1)wEuv=pqq!eSx3rN(xEM$)(Hx+H}#vkg* zcd8`_y5SuM6q#UnJdRLoQdxQ&^4`#9(uRws%!?_ANi6#)qDktJvzS)Y)>Yd1?@@R& zF+Ldn73wVsLsLqeXd}4E#1K9Gp`7g^I%mPdvP93-G?_K zmbcwJpfRCYFV8zs7zgDQz~0*bi@eIgy>kz=2!ymhT^t+lS)^5R5-~tQ+79@^6!*8P zfa!gmK?1PY#Mdx163wp2cyg&32Gu+8R~A9nHyF{~T4{x`4JN9igeULUMUHxV0GUkc z?FeehcOVmdk-TwCKytNG z1=z5}itWHmS%XeX<9Rr`#OS6NsM><1DqHM&X|;aH{$Ho`ry%WO|1$Pe>y#C*eIv=R zB%5X<#qglz55CGyZNCV;qaCt99!;KI13O!AS)XsOiCU02b~_8oHW)$e^88h&pb*|H zUagnr6&$7LgPKzJ=Ostme^?@v6uJ>DDq3k#XrRWMmLteUC~!ir)R-1e^8ANTrybUM z6w%0N#^*5yC5CkPP#-Lcdqjwoi#y2|x~D^z-guUtty?biVkYy|l+t{4#o71OJ==2g zjNaW}LtS-&Qnu;XbqR`zY zI`eIFpp}gubl`dmQ9H{@fL91vgr3Lz-wt>F=!-@w{P?DxVu814o<#)#RRpUsP`|CM@?cv$e}a=Tbti^c5(O z57VfuN?~M5N6W*qj8D%A8cBkv=yF|x58GbNY2)@7NUTmCr9*Aj za#N{Lhdqdp^TE9fKX9twg>UKN8^^tiPt$1aCZFtBhT6qisd+$MZIE%M3X&n~!?i(m zKVlrX3LN$SOF9JH$doO}Pp{82)X%ez3-$z9fS@#p`mad6r)P=+qg6!!;KM}$J-hvo zc&3o!wIkMEHU!-*DERv9pdk&OG|1jV=;-6$bX>)#B_VXa0_IkP9*0}5uXe+e7WZR5 z=Hm-fsB9u~P&lcn=Z&}N#hJyOH4X~Xh2=Q8_=Xc%9?G{#%Era~$VC5FpT*Af7@x5L z#FNe$JgjFx3XE(xu+_qknJBMyJxLf%Wk&t!0O+T<@_jDjbZ%|i-|Q`J<~EmLlg(e} zBdk{4*KQ4-m|Cb86KcPiQFIh{>_MMmTdo30c5b~LjsC5Eqmt^g4=+Xa*&eLMwzfk2 zr>q_J^!$l(JR)Y*dNFpleB1Us{984uOnhGC)N#6A$V~_a0~3Kb$7Wfivwmj%xHcoq zgSh^Z>zcbY)bm%G)r%f~ul_x)kVYwbwJYYY)2dwM@qm{%bk+M45#(2Ifzh-7NVKL< ztgrwiYGYtpydWwQ`nt@ejxY24Cbqp5;`hsV`f$-vLX69^jxQ1MDce_8s7(JEcJBz#$HqW0}D0nWgmVF z0jxO0Z>4K|SxsoCV>j(`(laR);k(pxPSuW_9~?+t5F8g9y}&tY5wT?bcW~jtR^3h3o}WZ z*Lq`p%^eIDBL1?|9Q2)IhDR_)A@oWzg7oRt8W-&8F|Jv=ltt=IP&R^ep5bO2Objgl z{m1jAi|#0(ce*S$@zuGbvEy_m^=P$5-+C>oCvtkK&o3138#lq&w5J6nu0QuC7?FCd zUZ5+7{81AF-Pr-EHjitk?ODNaV7E!Rs8w3!^G;ofFRWm;jU;HupL@}G&&7eHY4=Q& z{GHXjjVwdlrv3qXbjiEJKr_J?nORHWVQqE7Z5orKC*Kx~Dc{N=(~WaCm^nDkAUsay z^_L788I7R`c7k_})6XLMtXqS>rEvFc_M3THZIu>z!n(}Phg3YXC0)m%0nn@+S2g!f zMWv-nuXR*uj!))G?oIf0*3ASvkC4Aicj0c{u$>~OU;juvm^?cmyF`)Mi(1>rKe!?> zE$?k=wwtZ~{B*%IDkP)&i?Gk*X)+#ox6*nS>amHNzUL6K?Z~$qv0d*Z)4;HJ!6oEz z=00_^41-+7UKqfI5tYB%Oc<#YyL)VXmU*V!e@A5GfiI1b^M__(3Pw|9hE&cjj95|c zt?6rNW;*c=F@q2*TSu3p5@%jNyJ3N{uzADo;NqI#eoP~4VWY`1RV<h z5&Zcb=dZ$_w~l26%zc`PPSf!|2maSf+MfdNytlk7wknis1Xh)KJK-aF#FwsLTlv_i zCkx3q>|7Fe<@V z^C1zGuVKeTJkGo<*M+H)2~@>l;I%n)dC(lw z+BcEe_0wJ9ZOn^l$`c0nZlMwXAHRlC83RkIMh8-8k;-UN2I!CG7;zzv7rpYyv)gaY z674Dr^z88ne>RhdEYQ9H`iWZhKVUOTvW@T9Ts&iPRg>I#1TA0SSzSlc`UyG(h>s}Y zDn2JMy%1i;)BR3_H4Cg#juI`t&-_{s=NK1c1!H33ZKR@oeH8=KM=5Wq^bRe97ITdC zcy$cO$$+PqV3L2Qz=}fkVf113;q={|=qF_#?W1N7W1lpNj4NWoV*cNk7I}*AuY### zILz)=1R}(6`8)cF>#Yxs(7~}LoN!+Gq+RO;k_!6HRq93qeZ{B7n|<@9?`rVQjHYwP zH=dP+T?8VQzSlu{;I&A>U$$dr|{;%%Ggxc#D#Wa3G(?Jr-m7t)L|^xqt327Bru zFCA~;Ayel&qY6+xc=kxVTHR(PR!T<%^47MZHaeG~i5Nqz)&@k`%(H!6D}m)~qu$Oe zas3=Y3g!QrfgR@T=;(Nwu`d71h6cY6(@5cR;0;d1lR(qun#t|Twep|2<`)L~Lz`y4 zM0fsuf@DG0kCx{pS(J0WQ)*tbPB4+&#kp^l%s5WX!dg^1`u`naonp?0wN%4-Y1jGS zqssESqfPahpR4k}wlvYRhu3X(%QvpBvu;MNZFS&hc47<}pFo{s)|GiZ#>Vh^?TikU z&)wuI(!wsd2HZ6XYzf4Q0zz+NMn*=y`?VABJ5+Cb8Ofq%szsBR+MxAMV90=kp~8Ay z^E1b^K$4f4N(~E-U_vBfyYz|;1qAdKOx~A(ft@hg9?n_0P8ApwGm<`HlIbEzlNtFhCzam6cUYB;hU`X{GKrBV zi+qv!^637*oc%w)nX;v2XFfFYBT#vHiVP0X72fUv331u6t+rq~aWi@D?4~VX6wLwU zv%cV>XnW90&31s(BND3mAdHLTIsFIFa0Gt7{B?eqYhoaFN@59USsa>r?1U>g?Zjn6 zMk{-j<+M`JG{`8jZaUvMe7vyL$Oba%4-qxjV^u0)UKK(gkP0E9NH+$aALjDg?=_8v@8YukaLZ_f);dCae-;_LK>c+@ zS_=sdK6?1d2KM_h^n28C5!UKG`{o;Q8CtUi;(lKIA=D zFS;Do<|LwsW3>8~50n2Z4*vUSawPHH9(u+JmKjm%1eiNXM`!qG8b}i{ctVI7-AogN z>0a=N@Pm3^G>uu0<7Cu;^qie?^_sM(d#NbwChk7i%*oym(^2y648GHY)V^BE%mi&Y z{q}Y$dPXAYCa_w4oNTKUGUmKUJav5mmfMn5_X#eOTxR&?JubDr&nY3XpKoJ9lg*W3 z){9axeApO&_rmoMGGX^F61yE$m|o^gSo3VqsH9fEYQg=z7sBy7q1pPdFI_wn-fu1v zwv3hq^I&zkW%_zh&{d{eA>mJ!vA5O{V#cD^Ty$727}i}H#h*JM6w=>KUl(DIAil&u z_^6f|lc^?R;`K5uX7%6p6Nsmci`nDX695}{s#>gZ{Z;DqcK+{zN8fG#V?Mx<Z&RN)hs^3d*t*Bng}*Q+|CH+5W)4Hx(=J8=Wh3O$A(odmK&Kq z+st$c6^yd;&?Rl(h^~KR=dO~q&LF&ecyd7yZ_O7UzP2f%C4QL)TkYUtZM4rgbz&zC z^<;4*aDQC8bj4tM)xFsLSc-GH-UL~t$Y%Vp{7lZZ1Q zyEytJicB%S+j`?%Jw2ShV`BAJEc5Foob5&$KSK9DC1q7ww*jTQxB1@e?SG>L=_`B- zE-9wSmjUc(e;xe)HJm+Q?*#;2nO9~uI56{d*^Yj3i_4Pd!JV1Y#@^Xo3dt{=gC11I zABJtGHzbQhI+J!eA1%_r)l5&zQ?W+)GD<*T|Mab$^3H%rmOt!#z1{5dc|gX^3vq2{ z$?W%7ovH{}d;>*yvCpb58VmWI?|iLEX0Q`*C1!Kg&0~LXMYRzz30_gOyP;7Z^;i4RKYyaF za+L*o$dlZkPjN-diurU+5wIIP6N5tT@bVy@#8*DgqEudnR7S2M{sv1Hor`YKXOI!V#_!_x^^SKT=;*YbHHCr?mIDz9`I2c@M+mY+-O zB{6@wgK0HxF_}7E9RDyZ`0pzPveB2D*DV*if)sy2qJIG+vLF}ol#?=qKGIr>(Nc=M z9=y>8rRe-cEnNBTf#Q0zJKRpy=|dTSL_`sA_~2e5e{`-9X_m{kXvbNCW@MO@S{tPR ziRNB)JA=U4I{!SVMwOq$SQp#ewYw>TC6TfrgCaJuwcVb7s{rprO=_NYx-2$slcA3V z;b+KAmjSh-QuXf7ey$-j(D%Uv#+;@Dg{T#(P1tK>DtkRpUq~{B)Wk8nN*U|Ll#m@P zF7Gf7O|rf*6BEcl8j-W*4jC)b+p2Qv$#>6QW?0X6gpDkeyno9>f5U%guG0;3>SyZH ztdqx%pN{XbJA|AbCm90)#hAhrL!r;qiJNuInZ<%{M(+obE}}THobvBeNy)-MC>~!N zsW7^3ntWyaqWD;9Xy_H+|GJJYzJTP7BV2rC-RSJDy693*7S#OU#ElK|rMo|JjU0v5 zOOA`lM$t?tO2qlvdzAZHajv6oZQkA%Exw96UytO8jWgri4x(xs>v_Nxl?f4}SE~5J z0x2sS27RZC(bgSb^<&{C;iK=mdArwQTf}*ofw*m`TlDa~Z~3il_?oBPv~+vh86p`f zwlQQcfsw}qJ<3xB`)4fuyB^GUB}Lk zIrlz@S1p|O_$Va4RpcpeJKGCyqMEO&a}3?+uLzW-!ccMRmF6n0uj zxUB>#bFQwQOVX*$sJY|%G!shPnJbA1DcXt<@;VN$e`?n+p_B8holC$nACgd`9|m9q z%QOF5iO)67?j?RrLMG}XvBG3asX+Jee&eS36g7QkBH5dOLl$`BO^K1lbw#7afG-i- z9P`;}KV=gkTjt@-5&eVJ9W^sMeEuu48=4gn-T%#EwUD_2Z0ka;xekJNI7yoJ!g2LR z&1(NH{^W85aApn&uP|vao^Y#5p93XWn$neWe0w?h-)8ymLdFk^LC?tE_2AZ0drXy( zN*|q={N}K5Sl>w(Rc->6oTH@)i-WU+O8q`Pg5|khmVbiW+oX*V2y%0Nxw3u@@9+Io zmLu%gmSMs9{*-O{6UStd=*7ZG9%U)-++{F>{pFXC@#T^T+v@7*76-AWafk(@|H;y? zY2sYeFlxIyK5yuHs|W4d*BtZ4tli*bYz0w6+yb>4aA_pPM50y1!jFfX$ymiAoe7Zq zB9>MwxF-GT0ZuyXJVB|xYsX3IO~Bn(kqx|18v8nq$zQ{2lQZGD5;iIQpTu3Kjv-G3 zJi^m3P06DD6U}ox{%*?u@jYpr-B{_9MF6Be(Oc(O0?*3V+gw#IY!$0HtzVazz}|T^ zD;3;?PCT$?tXI*+tnmS@>8~1x%th>r81M- z5<&DWcj@Z?}nL<2vL{ybnLCog;Ux{SVxV5xZNF)i~o;C zN5)|s;+SHrBX5P3{u-f0R|y^3Ye~aDsBloLIJ^ULFNeZXnFNOkTqKu)l_*y>O%3jFj7oJ z-JhEQz=+Ddx=$lJAY`VxBq8_ty|+8a6}Fv<2&jD|NT!#i)tK#66U*DF{&u174*?dS z6&6l2QU3iAiwfoEkgq+N&;#i#j`sh2=-+;(fhFU(ExPyK_DvH<$#Tz@`25`w&=Xxt zgSJR)s;zs9$<$|1?U!$%r&AW8R(qUS2sIKf809JaIGOxUUNKYT7 z%iqjZcTZ1fr0wvY?RBqI-f^rwT7^z@_poeNGty)kGUSQXvgljV{Ow}(`+EB~QvNFM z!pQ|$MMejZ5x(oe^{3&dV`_y1Jn@Jw{t5T7+^OSvn0!A_u-0brEYRC_w{4B$IBf}J zk_OeQ8fEeCVK}WCY=~t+UtqHFsWegT>6dg{ePU1CYAK$!O)e52(7};o0zd-CFY*%- zA{-`BBT-vX8xoVF$iQw9HFHsW5wKRr)RTWh=+`VbuU&wN>JPTl<D>@$!(ZO7-GsGnDn4udGS zMGw|3N1Vr?2wWgZi>fb(|1vx9rkV*w&)IuWW?L2sCdY+!_K9>3p9RDsMwY+R8?Ih^=0~6C8A`D=u@uD4yLsRhj4Fr>JqW7h z&$cS{8z^$aA$yZjx6V-SxhdJl*T|Pc9%cZd|Ecqbf-=FvYdIxnH~kap&Xh2`G3AL_ zA_hrriX5FbNWFtV)Ot?0J(^$O6h$Anu-s(=Z?W=H-A0=m7fbT-ezFGcbqs)l5#kS! z@8s_T-$sk&dT>+jp5^SJy%c`ffDW~_-@6hU(GPGVIQ<;P7yxo9VOGv3J{1OKUdCp{ zO|>g|HwLU5%+F`|9@I^RJ*+QWzHf`1maRXZY>~ev-}spn@$jSM$8v4wN1);sQt_EI z-HPxCp_^M-yVHH7t`VQIF_Yceg8Bj6A~UJghUcaSwf>g1E;<&~TLTfSMfV8We)Bw3 zdzRv8&f^zgQ%acu$z%le&$W9iCXgcB588I_()rFRYi<#;_1I?7jjXITONDQ`zB{7E zb-v1yHp0qYA#$aMLh?5k*5tpwyIm0l#}t^`5fiuDgy>=vJt>0AqRSTl| zK=gt7{biPcGmfaoKMWNnxf50&KD!Y;wI*Ih-VC1@%rZhCB4aBT{ZGaCuQ!vbIY*A* zh7n4(bq+qaJ&pR6$%+C0teuaPVJc+KilZt=MaWD6{k`Dw;C+63CIGb7; z<7#*dwsWs`ku>8EL2!X|bPRUhsVH~LxWdx4Rk}Xt3>lL5S^g%~cQXvKpJbSKpEY=C z$#Zz4{wT46ow<8Bc@s%iiP`Z%R1M@=MS4g?k=Shiz z^6zw5Zp}pRK_OH;Z|R4Bn=LC#bW9S9=xF~NWbCG6RAcdfOWlYh3VOB@-@lt4_2C~z z<}V7=UB%SvXEP~4%65tQ;nTgXiX_gw43d*}qFs?2_+cPNo8SFaKE-Qc&F&DQ<*LLb zdEuAdVrAbwubF;(Y7K8Zp8LM=D`GE_hnLV0htn>gj=Y(RumF^@ZUnLSGk<@Pho-C# zAjz#Nn%;yuGumFmL!NXlIv;IJ9fhlJj6ZBVWT{^{^WBiNcK+eIUi!^?RnDmXV^42j zW+2*cWYv4*8~3X`ULfofy8dcl<}Jk`(@m-B5jzK^D8(mY@Rw3*SOGU!P!Z!!bZX$K zs-$7VCPy(r_`le=|NX6^lykB^0l8{N=D~U!7Fi*3t;}8>aZL}78#XeZ=ix|M?0eCQ zm_qxiRLPwV+@V|kR!4{7g*X7zZgG^vd71^&UnXygmy{oLIID?X)`s?)089c1L}=M z3tKCCP9g$&JRbU?_7zmdkT!>hhvxYcy$Iln>Qn;TKevZV5^V7p3h+Js)Qr%uNZh9IW+zOdc{f(v?rOTrgQnRHoHX7QITY~j{`Eo zozd;PAPOcsH8bsKyuvUPQj}>Y8wTaER(JIUw@Yxrmei44_uoK|b<%yOnwqlj#)|w1 zm2Dr_=J6URvx;_)4UgBBdgzMuEc{@5*lo_{7>6RPO zWZKF*eI0Xe!uu@!3=8l3sp_c|PylG4<)9yfd%*Nvr|R&jvdC+;Yo7lK0{<>-futWa z$1--44x4K|e5gr^y_I2R&g0b%RyoZMUk7zmIzKSqT7ToAZs8)Tm}E9lT`+YK4!3`& z+-whPT%4Va2Y09p z21x_f83%8nM=M~%ivUD@=;2$dAARXdrgU$SyVc31O9UMpmrFeUQ=u?_>GEB|gPRzM z6O^K%wWEmzY_y@s46(&z3O3iE4x68NZ*CmMXisdohhCTtiWL{VVonZMlVidJ9Gjv; zQ=6PU34;@CAgIU|TPa&K3Z`$1$2R=N)VGYcDN4^}1P}SKetG>2YoV)+?C)Iwfbn;e znO5TmvvKyTB%`K%O79Z`2J>V^tm-)NK`X74vE*=h`hH7v^oU8E+2Qy>&fTQ*3<>9Sa7yJ(`K(z7Qk> zZYc8D$!+*DKI=X9Rwf0~M}8O_Mha8-tUWVxArY1I+I_d7!wPGx8vh=*pZvo z(F3P~nPCxmFQbcy0A%Sj=47v@H*H60cm){6Z%j<9rPZ4P@Q)+0N#B>Oc}x$FcCwu? zCZvuG{_hj;!FMzADHy(5iOnOhBZ$^GVDwNH)MuHYi?7P(cS|!dBY9LQ$rr%7J*A%rQ*nQbSq0?sv~R*v(wYPkG9EEjC>CU0EniuAw}qX=!b5rQ z;DEcHn%{)+co%soSZ^9DtiYL@-sS5l7ArY&EqTR97#f>eG5TB~r4h!k#4``biE_n% zh?XUu1-taD!^>x`8gKCN$3m;ZjvU~>(0;iRhpFl_@oJYj?h9yZTO#|Lqpd7QdvHKU zXqQ+>OTZ}wycJG0b$^wLzdjt_m~w3CGRYnrE%gYOhePe z0-cu%@j(V;E>7c2^fr`Ev=Pk;IC7@XFnOc3|14PTwa+=p}S61Q@hn!zTmxgw8>e`Hut9NVj{cp zh@qaxzWtT|8?0I-yHgb_Q%x+hwPVZkWV(umUhsBT{c;PM!oOi%xj_!ihEBz+zwKnm zwzV}mzX$i<;DjK(M~B;3yj+a@0T_<6j-jTkHXSaFg$0tQCQ2C&m5vu;!r`lAqVC7c zNcvU|aG!l_(%He!KT$NKNTcOMLGc?H+@bm9ltH^pfz^?IU9O`z_jGSrwoDV0nkSUp zf9n?jaQi=DG>Dd!SHLc_DAUH?d!&R|3}FFeKcl!;=8WB62V4A*NMv6B`ixqt_Q(s` zQ^MOkbJGgbAEJheYwy$djeC2tPVC^&^%ro_C!Gpzc#tvK&Xx4UM#j^`hfT!RDFWrdETisp}PC9PUz=ei0H4bhRF zBqXq8Ll`$t&C%83ul2j*ABfLyYYBVB{ZUjw{WuXd=W1%I*?_!80FVp4uirpIx-)x; zxVecahhCdR{7EP(SRlKd?AOf^_@|C4YMqbr0fTtmg5%YbS}?j!eoaD>tn}Jvhwyb^ z>i5vEtS02;#vCQ7e>2N}AuDa3phDc+55{2+9frXHOnTwJBs?2#2f1sRmbcnDyYWek zGv3ayR%W~KcK*(Us&IF|4RToV_@$X(UMQdlYi%G#t$@qcnqw79^Tc9BxP2H8y_}8{ zpD)`vKzBCT2^T)2l8u05b7E33q-oRpIM5+VGV0cl9U{6dO-HhC-anjOLk!TX{w?hb z*PcFKSC~dfRa|n02eXpY<+lvT+3iWQbe<;0;Ax9siaL{sp1#BWL1M$l=}>}MI3w=X z2Alzktj}}lzM<`XfpM)r^_nVHD-3wJ$4E^~4b^N?B_D41vo94AEz8;)roDIMeNffu7k2UE3 z=d#Fx448Sv-<|x4Obq@;BUfU#jr))-xJj1I7DBtO>?P7#KViaiKT+uRC!1Wi!!=S0 z0zb^-g8WV`p)H0wqBa?X5DEM))1(aEDa4E(?}4lN5Q(ubp^P-L|D|Cc@d$`qe5Y<@ zct0O^sN_IIU3AfLQ*Jep?;a@s`a}IOHTYEM%S=@0!SWTJVAUyND01T(YOY*%?}%l} zgi=D=QT+4r6~-+>b8Y$Oecu)S8w)3@VHhXwfAaP5VQz98P80kE_NX`8qMf$nY^3ZdH7fS zaFC{7i*EbHC(6BdAtdv&vo!k_6nax!2D#RcR;DWayF}H+yJi3_w4s z`QmGD!FM}ktq%iu<>^OZ@(Ap#lam(v5xR@2UyB}fx$&_LRa=s5?(&9z5>kNUOW|4r zteC5y$Px9-EbeCvn0qHPos}1Cbw$5OS5D8``%Q{|%2AH59~uLr(ap?@&2EAk19d8Z zR`sU6rNpqCtfTWqk!tTjuvOZRD_^jZ`d?tBnyKT1Y&77He3uHa!>3ry7 zn%=eY!?CYf$3ko->lVsp+>j(v89m2J_QUGgb7B z-a*=*#Na<|Y?-UE**>APL1sG5xo3LHumt`2l;Pa}n)S9OCHNN4IQ?|2r47t%e9cDU zwsUZBpe^d1@%*V8Ak|?vdLYU^=*r-s6azf!_z zinrJPDuLfu^@;WQb%X?cC+N+X%~vqM_PyZ^csiJ2Ft^gyK1?cZs(OL$PeTwYUcvxD zeX91unXW-p`?by#xciAvmFcZ6bSKgaM*((iMYrfmYK#6oJmtLK3*iIJ;g`W~vxf0| zx0fm!00=O1Ig!<@6C6z{VOQ4RKQY(tkuHcv_#2`m&-WN0hza48IvesaT_=up!aeJm ziEYkdEx9YJ zse(Q{>3GHKYRUT2!1 z3k2OYE@Vd?Twe%9Nn9+=6kn=+ye0u;Rbs|lNkXT>h(g5Lz3ul6D=bTnEQmSSoMUVM zTm`g~7I~dlmOJ0>+)}r6%SGoum~MA?X>QNF{i3V^My`tt=z0SvL-(y+gu2Wo53eOm zY~dH)HG-e;@ypBzT{EJ(f&Bp|zqah~8YQCJLwp5{!Ln#M@r>qEF?toz6)At6N4~T+ z<5C;Q`!mJTGB~S%9fG)@c2fi~Ys2%`*)g8lG}-Tt323JR9o-)N;FN)5f zA%fpk``I?;V&W4*t((w4eE~f8bzqb-rpz;TVY>A8T?lW_b(|iW1?o9X*)i~(L(}A& zu2&}X2gIN=wohN##FwVpeS{6KO7!Lq*XrkQt~)AAYWZ4YaB*{Z@P4p9GyZU|^*Q*b z^Ps@}5EkSi{zSa=Kry?TFA`tex6Riv%J+QB$NxiUN!Q(z_Bdm(8y9tS zrp+U5iMQnNHU1U#!oV=#{N#OsBfO!VqMqcf9&dm6q5Xnj^UuZm^x@`Wc8nsvy&*Np zCr4~j{lQdxHzmAuIIPVrcH8S~fC6|SH~*pmc4}iwO;Z=jb#BVjbs6`h{y?yTKn-SG zCJfrHDqG&mq_gX&72D(9R;#t0dpu9XFXIXHTDjbc{3HOnB1{{KRx&d8ayBGg$Qq#_ zaMgt?%=uvC_cR%m7=wMF-yu2sX8@AyqSjt((v$an!3e<${k^ob^nJq0gDhL5wdMjd z%Wh{Ob+&8Q3x9Ppwf=)VxEbOD)Z?j1EsdLA1~eG478cb@f64CLvv z5hTi(zWeopPJHb?oe%oal=EcW)a@+Kj2xVvZqb$$4o1B_Kb*+^AZzxEbl={g5~b!) zP7}4If&4clUL>)~BE#%s|X6`)p?n&VTVl z_+uB9_fl@dZt-)+k!)7k%~&sB>mx7-<*Mei#tu*e|72UHkp7|(p~3BcE^5<(_|qL35MEWq(ESCq zs1s7L|d35pWo;2 zT43mNj-sO^mA~`fMd0_BSTmDjhLM?0+a#vrgB-PsZZ+;%9=hC3;Y{X^3mXN$K8*G4 z(CJ2U{00S`4phvqDcijT;fCs?Sb2 z3S+;4ncHqAe!4}N(DyYh-k;2>iqj=- z*c-KXviZ^(@17jPuh%-(As97;JK4V#hws{NJic#MQEV{=8*iUm|2edM_GJQ~E~y9{(d`?mLdR2oNpxN+;{NO^7-s!?_2UOA0AeVj z(fS}j_Y93(uYvylKOgrA0+z6U3W8v=Nmp;Q_mb&Ek(UV+}SaL5i64>9TqD?pT~h%TmPOUgOS%hjlW{;lF9oV*%H@) z^*qw#HMiANRX2g*$~U}qPVA9~L8aPz=?`zx-2;~Mjmp9|=hE-r zG!2NBBfZ?B_AC8sIlNAX9cxtwlQ+sIl)OyT8o>+72Tw2Jk#OLr_gt*D?M(sn2rhW0$+=ZTb zJLWo}0vYa=H&hgk#|CA;+Q>3*DN^rGW|>Gz64-|A_OpIXN-UpO$q9hyHLo$hF2I=? z4@vHA`64YyEwH^u{(+Cc6w*^1666kKs&LpNzV!Fh-}RN`+JNbR$co)>Y7S1leJ?V3 zznl7T_jcT!2J(@S$jZK@`}te7kHQ1}5`6+hvHCz!WN2x9)1 za6)2>+MR}M9QY1x#S6kbp~GT;IOe-_N2nT{V(hb$N1#|}Sz7(`y(6Gtd<|4-$tzQR z@S|}HIP2r``7ZR>}g~IkeA^IvD&(gUMr97OA*DF28uX$LxWE)T{7Tw?1()7Eg{r%7 zPfh(e>to(FB1lvZM9PDMRr)13dwNvqn9JT>Hx95B-m_8yO220|99)00KDNkR+zdYI z*L5QfKU0TEhs0FzoCjr{)RHxnj(gyb5X ztlJ~Dr;}D=z0@-F^g`5}Wb8@L3^X-L)iWS)&Yhq48NOfPuYGRGi zT9z{=CT0_MGxb-=Iir z9f-ZBjC^+gaw%I(e+6etETcn90{heWFHhz#A2CL$?Gw&>u2k$3oP#EHYBhQ&%FXOv z&MTyfZ%{mbol~gwZJUu7>nNkKCgsLCYD(4=65@LM0d#2g`j{~bZGoeIeczDjibQLsY zyzkfEmnC#yY?X4XP2tOg21Uz|%My`T2y-Wwyme??k-D4Qh$TgU75ae3x@s@|_99jY zQLC8vF{nnZriw~jO1G}p!!PU1#3#4vUCNjXqM{7g`xNeOUnc+KE4)iP1E-F>p?>1IgO$SQ;ho9VdBK3zGq^SDBhR?>S{GLazddvwZXdlNwh%F(Z{N| zfb?54(JjY->!^N^ARh-`x$|%3Kys1`pr>9z>}^LUQulVklh-UXoCVnDo_x~qmNshbaj`e~n2<^Wiu}je#c^CyLncK{2Uv z!)G>cFUFm_1!LWBA6`Ec0mm-{ihhptr|^&S&{bLX8CP19d&X*FoSubIPlCvJh#-1%?=%^L z5PlF z##v(Hnq)x`d{fh-{REplCG0i)(I@*E9%%xHMiccKKUZllPfnP?2t+(>^6^A*kLv+d zh1HBzy1ff73CzA>QOJdCjk=KZPYV)R&lhe^5~r%G-Bxu`_!Yp@%1CLmHgHhO_qFC2X8Mi6z>5VfhGb^}AwYV|o*+ij>JgO~j8XuUi{b2^bYqmQx z7Fowg@NoT%JPYuBHmC0w!;i^xz@7Li=#N~F)x>hp-+0!frukPy4}M-9Pil+k-NQ7n z;@ENc{tQ5ZrhPp*Q7ZyvNB4uMIw`wkpHLUj{QgeyLn%#^ukz93uL@5YI`T(l0ulsO zJHk6KM*O4rzfcY2xps$7odQEUQqd9{{bquQJVeaX`vA?YuvCS}D-A?6H5}+-b}>E* zM~hR~1UDEY$jm7S-pQh*x3kHB{*K=Yv@I5nd47kyFAbx|W{w@@`{qul?c&#rd_Q*e zEbyCx)T1cL?3Qf!P@qJ7wBO8eLPisrKZsz+B_u&L+u_bXEl=EU(^HB;=Dh`^t#{AI9MqP1dflvY(4QjkWb!- z5OBLh+8ypq{B??I7`@r^c5DrbvHTO@a#<@G^b1Da@7!3RKyRJT>g=A#qxJI+35Be6 z&voT%HjlYiwiV^vuQ=?JfG9l@S2%tzhzRcz(v^>89WdqaMShH{pi4k%bZ4YZ4Uf$x zgiecWMC28DH9Om0G231|t^ao|WUrK2nP&i7$&#FJ`WZ0%rutDvQpc3?@R#B`H?Vl2 z1Mk%W?t$W)t$T-F4;E81LJU^e@M74T@S>EgxwrJ9Z8ajyp0d0HX5FZi1BG5OD$#K% z1ob=Sie6?&I9wWr+Xrrb(87*MMJrM{bb;5F`j-qRbJ>1gbsj@PDgGJZ@b@#UsC z_OBe55Qp(x;+%$6w;K5XH$H4>tu z@~#rIRW|qUf{OsoYGZQTKzt3GU8X6z&k@&75%luHG8n7+MVj;6+56Mi`_0;!!~`@H zxV$4q^=Y2z!58YM8cVU7vU8Ca>fJMHCGknGGVcVrDKAv_8T^?Rx&Js2BapmhMn{0U zPU9x^>Ce4yE_Zf=DPoTA8?xOM9hdE7@8Nw;NobwzA(&DG4>r&NOw2#juu2A$!*Oj4*|V^&ZJ5?Ex+V|7MhKx)r|vAid!0ecl_-9 z&A>p7Cd8Gn^LMsb)>{66Q`Onn88F^-{*$`9@paT!h8I_(>^(reW&QD{sXj&eYVoie z{SL0FVgRTnf0g>qIMs0s##Bsgk2_EPA6IVy71y?G4MRhM1PKnoAxLmZa19nD5FCO# z1lPu0f(LhZm*Ca}x8UyX(74OLIp@Cj?)Q%Y3Uv3+0m$3?zxz0MXz)>T`pP+WS9y{Zveb<4-zM6u*t%b8p`!BD!nn!>C&TFm-#o}Ma~gNulP3G z4!uf{9V6hXy*1C8Vl;A`=9Kr*w8|+oIj9I(Ryvc9@}x#=9FQwP;CFYIyfsTP2=s9O z;KG5q{oc%UPY3b*3M^0!;fbm{XQuWTkmSk5-A9M79g)Ltzr(xB<4)2JTizs82*S-Yv%L^^Zh;tk$M>!bdR^=*nF@c>j(-Ai~{ zkF>D!SR;zKAt+|=kL+6^BWDEUf9(kBNvKNL|7mpronv+zal$4WbLZa^Cf!)pq$q=q4lHhYK|{m8CI3Oj`4* ztRuyYs(77eYAIv)lr0YDe3d8M!5Wfs2@}H-+jJbA0D+0m*z=6CpFt5KnT(kw8v;eKj-u@WW2MEZj;@k}Tel{xHZJedjmN8p zum!y`(>@%_Koomsw@~2RXQJp!_oCwDs|`k$|GXaNHOXhte;%gOjm7vp2q0XHg1732 z<|W+v7Ee=}{T~L>3m?Bm1-9Y(C}8$A3Ci8I(1hzq;Yw-zvsyFl5LpBaS-F3{qarqs z?#T%LKE3xhHp3I>uM~QKxH6|p)v+w)2K;5gnyZ>dweKPrRoK@v_1_qSO8grG858Kq zGlLqK6l7f9buyXXY6zmc-=tntK;@y(X~S1Nj^Ja7z>l6G>@2Gnx(8?dcbu}yQ!PCmthl}?_DM^a8q}6ak`w`%vcfxBl7p7>t1WUQ?`+l;0vUV-DQ)i` z7|xX5y{scL&>U7K>5kA2Ee8w7dx8Yb-hO?}+{1M3m-YJc2dnTlH{}}jO!IZPJ6N*I zdz(6U7gl(@ff0u#`qwqgw68KB!wRL)tGt*L2KZ;3aDOw-PfR>SMrSDQb zGqZ`2Er?m8j^R7`h#_)1L2Bz0liI*vleV4ffH!#J8p#Fol<+aPVOS`>a*NA)7k5^T= zBs@}LVGL}&yu3DL#CA4LBvry1!(wWTF8a#L%d1vT150<5uLc%y?}1WRdiW_bi`tHn7zxV=vkP@*DYPm(p&= zNmJpz#2e#Rs7E}ExZA3_{*_&=|HDo$AfcbJ`vx9Y0`fe>Oq+=vHu2H=0@ND09zNBu zjr!9x{BSKuKZe?damzl- zZvLb1M9!mPM!y(==Zc&CP97I1W#l8_rs*o( zN=)LyXBo}-V{gRQ8aI;282`!QJeWpsj~Fb0if+j)G&{{HkM9v~<}U28#&Oi~-$ffI z+`h$ccw19V$pb&b#z7WDjl|S!l!Xw@dHGLg&xZkV^&!uiuBWZ5Hg_#zlVLzP;v*pI z1_X0CrJMp@5`-?-uv@f&XQ{q0N1e~yU4;w);1_8sa1RsKn` zzrVnIWlQo?1^Y;3VPu)Wr~iA$M12PvKQ3rcp}%)!KvqUm9%~J|2D+G!Ln4N1aeG+P z@ClkWc8vb4y$2Y49j4J%yKGzViT}bzDJ`7YH7oq+rbR*7(!ME6GtvdmhPV`TRpxFA zmQ1_jbE|<%7n^?-k^KX?e77Nn&TP(u0)8Zos9kdJgC`NFhQ80`M* zPp|>vl|nA5#>Qyzu(6Z|DJ>!6Z@ZDvz5W;E7|#q zufrLh5e}75B?Hr^OY733{FIz*Isc{$9rw0?yre0$xMT))S7KSs)b?51QLF+Dp$_Zv z5nINRiTk^|AJO4-pFY7_z?Nd~JdT#W_S%e+u-F=i8#AHC95wmyQ|J@cD6R5eu$)na zI*9fVzZ*k58u&7V;qcauMSHcOD7KxKktLelMxme~!t%9#s?7-*Dt4g4>r`W+&6qAE z6t}uaVdpLkj3AGD)Qllzquo(IAguTZ=AgtJZ5C#+-Kjc@mW<%X?AWE zARqYY3}u`|iu*KE=@%{U!mHE6OkEoJ>R@TN?IbExOHQTYW~G%qR{#Np&EvJ|v(Axm zq9_AyW3p|)Q}Pwb3{dL`x!++8$iDjz8M{`v{gU=6=gs>lVgf=6mwIqF%1!845y8)*w ziNvCJD_kp@29@mU`?{D07h3Ht456N!zpE!&t*(wAUA*H~Wk9QL)L50tL?$dNy|s8s z+FzBkU1@+gY^{fxf>0poa;ddA+Yaw-LQ50ND-lN#dGM=QxmIDybK7O)!!Ecc@C`p4 z$oSE8;GNp&HnQeUI(|Mm2U}#Ou71m~s>6$b@fTTdJm*AnGmfZRygw-9dC{^GUNMX{ zd(ps|r_>FYKIGDp)O2!yvzrf=+>{S>U3EBoX(|hCVF^8nUH$#M zofk=2wzv5xMK%6ZMOX&-{D^fEdUb4Ap1}30{E$DW*4#BE^8XlJDbMW0tkei9bByHi*X0MSnLFWKH_o}#@$gmgsB8zZsG=M-tFtCt!; zCtp>^6Zhv#U$oEvAP02zlX$RqT%bp7l|K_hbgc>n6E`DXbBod>X?!csW9TWhs>2a( zdF5W8awE}#wJ5{SXAXKBpaud*#A!-dSBPZIRn;>`Xk6}ZE+zX6h-yC6W9ee4H944N z<80STeEU?)@zNq&AXaoa2!Vk^?Lk2Ki=VqB+378!>rH_+Ot;RWNZct(g)k75McPY; z;Fv9N>qvoisrR<0NQ&5mmu&Y>I$OiUXc{^f+}Yd)%84?_c3|!XDp7iwvJ#Rl>+f34 zcwQPf|kgjnM32D$52XY8;r>3P)ugm4sc-wzKD$#~cSqj^d+P+Bo^ z3+_?Y%^9Z@9`k__TlnlJ(}Ys;m-*bD7A5DBj#R#{+>SlPGiu<5J3gfo&leIVI}1q9 zi4&MRZ?}4_5|CSai93@xM{xa=))7wnk73M@1n)t=FzMUsoC8o8oDBXDDPeUs5b(Mx z7O@fkP*&PMhyB+b_bbro>@$t+>eE;@Bm{f7u=elGharuY+l-!O zTqSdi4mXkz|GF5x#RkZDmj1yzZ7d)Ht9+s6b`|f(cP_uWab{~v%1Bd+((hWGkaD3o z<_W<+s6jYl?Wk|?@mK=c?^B~i5x)!o#wl_dA`L@%;(bJ3*}x9`n#TvGvPK-p1c)iPNiv;l z25=k1K0DQumazh9anM5^pAM+3?tqw}oR?0Ra27>Y$+v$~feB0@j?Ye_+72`)7X1-n zf_*<~a}i|UXb1vbZ>9IJ37xiy&d&*TnX`(&iU8D;s%F_WfRuB_JZvW)!PP zvD04>wwC#kLJ$A*O4fDP*A51cLTPD*b!|cQN&i_I^B0mCVV_^F-x5HgDfaOuYM-)6 zP!h+O{R|`QKjl)3jW5Ja$FF-a(sd%prw^ozpOv(>N6;YGnY-@O&o^|dzlX!CBUE5l zsv9+bYsa%0{?zwo(TN1{_lRc9djAd`0ZdT7Nx~0sbDZ$$Ca!<`A9fNV3&-kDM%6+w z{z^@TxC&q+v;*z_<@#z9l2^NO(=}{2a4TuPT-nyUZCRCMbJVV0upsJ;8vfY`qy2;G z;U;_q#sT=2q;DpY@8a2L(^9)iF0I7D}=PS;?JQwLP)r;sx z-xWZ#c0-e*yVuunr^Fz>-yE!_H^nv|+^AY{922+#*{t2TJXn**dbn78$F7{Ie2vj( zv?jg<{2vuFlMZq9L`b`P&qpB6K>~hL55#+@6bjdHd+b*F7^)LIz>i^g1@w-&cxEyN z09-b}Dy|z|!{Jk^-}qlTr~sY@#i0-bjLLvsWX48qG_6?tsI6)$<=F?pCJ7`7l@Wp^*ZtD498EXy}D{Q3hy? zTwPtWj|SgPYnhr5W&)_j0wBW5@mm2-H#HD#f_Y~M?EEs&>&m`{AH!u$9qXADkG$%$ zj^sQ02}~RjTL{NVsVM(%uH_3nUAgpOScAww#wzSLW+GC3Uu$1CS2$k4QA~+Z_0i%R zrU7!I@3u$?O8Vd z9d7^)VT-9-4QH5X*9On>U;f5$V^y}i_y0wbAOrOyWlA$@Hn7-Lv-;q2CoEZf|Ngzs zZokPh;5^|#jVkCoAFwruM$+_AFpeT6n(fE;1= zVGjDJ25~xi14bOsF2%A_(&r(M>0m@9dRP^ubr|C*Dr9mEK0Jlj7^|$}EcC=;=q9PW z(Bj%-I`A!`E|+dCcOWb1HS_$8;SMw8G!60w)j$j=lqaupWj;&%w@4^68ZlFP4c@qe zqQoakeJsu9b&kEQ%`mvHZdX^PR0}wN-=C`}XywxnE=n_vJn}gVMd?BJ*XzRmQsu`) zV`TDYtFjhN6E{k-8+3q%byS+^CrNxh-#I6LUw@z~D;<|sd<_s#BmrC})jxjy9|eLG z=t%F>+% z0aC$m_#&@*-qh`UE#U+3tCcAM*jQm|^ifY!`bxT{zuzw#Q^pb|f5*Ms?*C!v^Tn$BF60c8P^anrKc^6x zOWCa43v8YL+E8`t5LYK1C0K@aBa8;)=QtKDu!u`BBX|ky>IR5tGI~p&_&G|SzLHP$ z_Dk4S)3kTNsX()XsxbK@az@f1552e2&B}lh0?>p^V-;x0NWk#(_Zvd@#>cHG0M1~v zx~NHx=zz$}6aEMjS}=j=qIOcsmx*6{wpxC#tD!LG!dUK~@VeaMz)1b$e|2EZVho}C zDO8K0dqAC9Us^1~OFvN`8B)TfLP!}`{}JA1@orkrtj=G*8e}<=)}HqvPvQTOGWr}M zX4;c?Hu+J76QydIjTd~}@$%GVe1>w$gMf;}gwlG2(?h?hngM>+E;SfQMxdR#-KP@` z!P-+7hlU5QnK{dEjZYh>g#M_CZ|M}A?^6k-=w^FmUA?VWsiCZ^FBmE5L1MB!C~~e9 z19%GaO&Kp%Q9^kbh`z@61y;jxKW;{^H;3s@4L6vWYj=q`vuqlCnj-{;->H@tcV!pL zP_R(J#`5{w`QO*T<^<3qlF%u$c>EfCNNz65?D4G3Tg zn|*!ud|!MPn5JWB061xNt9tGF<8bVhXGlO>%}}7#hkSQ%)A!vYY9~LG+~<^qFuY+t zb1&Rs^HO5Hf|XzcOr?fIVLCxa<-lI%qFd7*EYnQc+8>CBg7f(J7&X?hal>2Q5aEY| zkI(*1ro{18k4(#D^Z$_wfrf>lnC>w6dEvX~eKT$2X|Le0`0~|sX|xKD5m~#_@NJ2A zl4eQ;`z^BU`q%0Dfp3~d+|ux)k!EjpCuYNEYssw01S}ExQ?9?#1HtqbAj^M0jve>_ z9P)AS^VT9oL!f$l}4AaI$%~gDI*mLORW=Krgk00_F8IdbS>>rz7|0+aw6cQS2++U?G2?0W4 zi+t4mr5`_|u}pg2aAeVWT=79pSYfm2Lu~zX^c#ECY8-`g{_Aal15tRoByW00^|+`D zY*8{apVImC`bKv#>{pJL`%`1_Mlv!s2Cqvz<^n_f?4Q%QhAg(Tb? zEHgr$S9XI=X$1a=U%Q-7M_qiK!V;?Q_>fv*pzM*S1RU=96f(x58=){ruW^U(gvHHo2Kh?;VoSEqLK!ig|~xRDj2 zuiOkqubPOQwepm3K$#p!fN&z(JJCTjCY@ro^igjrRqEsg;J|Pr4TP zt%0k-ljF7l@WY4R{{SQBsMgolOPm6Q8DJT5#1WiaJ~tVklU!a$NAr>fFv0nUaAMc9FJc@MeU3*f&+$`W6q5wGh?ejh5Vs7Ocijnbxxcc5ss>7{G^~! zm;xl3Y_Q8~z8e+*@-2oFqnwbNb6tQNP-VsBv{MT4kz3L`talbuFRZN6#-FyvD#sdNqpwsUf7t#W6z^Bi;hLiJcCwYZzE!+;f ztq5W}Q+Fm0dvdi;k?ypr4=#XFYI5DsufHBeSQv$5Ad4}-i8_3V)Qa`@#6+h55T{d1 zYxq-Z@cYK$!+vN=r%*Eb5-x_A1=SdgQvp!&|1D#n@gNFATv%T}1Go^Fy(GRb4tU^` zB)^&Hu<&r4rk4FSb3oSiV)~J77s-G0f#YtwwWJ)4uJS*-oQwnz`g^;(oG*|1ML6@a z&ieaC)8$wkq0_(#qP`~P&9?-ybS3Rg_eJa?9|fdbUj^D}w__03HFs>)%+?|d=Sj^P*c%g* zdP`}YcI=YvTy8J^I}ZR%LIKMF(TEktgK2dg9i0mSnF|WTFA0(^oYasFGHO}n3Pd!= zgNFBBmr&$43n!D?f0fH#h)h85Gu~UguBr91xB*zjMTj*k7kirHln4-Bu=WuR9O+|a zxZqx}{HNsSvrK>lZCtA=xmBSDvY7J20?b&47aMwz)~l46N*E=#&{nKwM@n zs&9ui=Cz`yFt}W8VJ5b}z)7&I=-JTs+#XC(qH-?Zg75y@n&jIG{HT}ORI}%!YbVl> z$weVR5;N7O^r#NzfVcpcODg5u&%}dFoH_}QMRRw~7ft*C^ zlZuGZ3t{es3S$NsAM-JiJOZU5klG`DeBOUnAA~-=)%pmi7-s`jTiMh>I7Ds~T%C92 z=ukMcg%r&BHiyvKWmk*qz1+lpf}r2wV9hE!;7F9^dWG>t z3T8tM3t!z+BFA^-R{4BD#mo6DerdCbo7~mBy5#E@e7xDl^l~4w*xO7_^1LBX`(kV z6v09`n269U%ckQEj;jlkh1ua|wFz*WYCv3J8^un=6S3z=GlQw@lxnb<6yMe2&g`lg z&5r&M@9jtPhkHT07d}s%s5ed|FmO1$&enLFCxVNp<)K&C2O#z)xEt5;mQb>~uC{2@ zn2yB;MoJau3@9YQ&+?>l_>15nFdc=)ZPjqj6C+r@6(NklGA)teQL8qTG;}B#`d*~; z?<@WHYpo~@KjIFv9i5%|qLxXb+86gt^-WEO(jUlWI?aD)r@~n39@#A~F5Q$BPnA{v zvo3#r&E$5H5qqfx(LkM)fXHG**;{+L0kX7KF-Sa|cUZMLBSMeR6BQaEDp z99ZpKRnDjDePcZ+j$uSxuIjJ)y^O1{f{uo4FgF?uRGNJev87>h@GX&Y@FTQQ3~PAN zfXk-$Fmv-9#XW};=W6TJ)3hMdIWxD4ztLfk*7~ndt`%xuxeOiRQAbNF^6aZF#TAEq z9?_?;9RFxMknPf*-pdkF=l?L|Z z1N@xg^j|QRp=Di3YTj_OY3=Vt+&X8)7gFd>cu&>h|J`mOP6JkWv%RL`a+hz{R0u}CUTobtJ51zJeg)*|6v_io2-Y1qPKTru-jPnt|VruRFG1@pW~YBi&G6^$L#bwjavsKZF~zCZ(F z97#7!@sI&l0!O6HW4K3Q8`mwpT%MdQhg8${2Y8knY4z$GRuwfp*KNJ8p|?q>sgB8( z-y6t${hWbGsYi7uI2Cm+G-*Flo}gK#Mws;eYB&YI!h`_97jaqORxzqx=n>$nAQvx$ z)3batj<+xxl9LlXktfPwez9_u8wHrjG}c7#*2 z-_o0*5&A01xs3>#em>~`;1#c7k4qxSALJ%DLde%{f4hFEHeh}4_%HdW-2zJ&#o+LB zn+eL_&pp?+V-u-Iw%kY}70tZfp-ZoV5BUGS-%31c0Eh-0f-UdL_SU>4)UDl*?JYV< zD$Lr2)oOu0ALN)K`_UhY*UHhj%1hYy8xUomJ|eWo?6YJoGp>)lMb zhm0(tlS>gQG1$Vn7b-h;9XZ!UQ_A-aP%v{;uPl^3-Vsvn*lvve`UKw{R2HfMI1y=F z*457!`=Ql*)eFF+k8>ZK)Hn7M$oKyAkOg!x?Q01IZnPTDzY7xZ9OIie9_(=J05F~H zlIsEAkAO>0?oxj=`oGw9)ZV^q_{%9_)#2>D;i!BDrNieYOh>qy8asv7<8Rw-*s<>< zjiRq+=LKz0E#p3Z zkx_ar8=>e8+RP&~6P<7$2tBX5D59Ow+~DUwk(;ke{mZ5!qX&iQ_0@$L zFl{u2K`XX&i9~wj*aC+?GBq#%djGd{KQ#kwm~}=(3nIL7Iunz*k?Vra;zEXy$=;y( zE5o`wHRu)g5|n2)8QLsJH=ZA$C-K|7qA+otiV?Bp(esY~J?inRqqzk;#(}3i*Z7!a zxEE>!KprLk<`zHrgS^5nL`Vw6DA+p46Un`N#<~0Fl-KzInQ-A&j6I(RL*==Y_s)jU z`7ynYrIbwjtkzo1fQ61T!m4sB z)3!cXsf*LC!5{j#W<$m2n1iPDyRX(f+5vA^pgh%4>%~z8yptk=(?nZEMgJTh9E75v z2}}@)z(~E5LXjeRjTCE*g3bp{r5_@JJr)53@~A-4)ARNi>pIA<9l9tH@$}@G!fCBt zlU=>|I;|9O?5R*tys97Ihf6*N!;#L@E)W>dDgZ`FuioH_ihr85_ri~9)sl_ly?&GP z9vJy3^$vLo*!h3R$;nMV-xM!AwDsQ8q&{BA@nvxNn*5-#4IVx2%isuDOLW@0jj7*( z#u)aI5-9u+wl?t9+cuOHg*)E9N2y1mhqZ@UVB@0!isL;(#KPX^EZd}y9*ah)q9*N< zL5n>NKOYVuatTiH5P88(w}G{i_mUY+lu$+V9-u%bo)d^j;WGqS_A}=z}vy(%#To&xp!c|8`+sw&_E*P5K zL-?c~9~(;ono7`K4(DI-LQCAs0tm=*R1N8AHaQ914PfjE4P(0?k$LkfZft5=U z4=hvNfGyVEtyBo1cJ*)6ba&tIql=8HKf2hWu=rM1)yu1h+Ly!ib9I39jIm{7Vfw9q zKezeJ99lt|r8(HEmfv}DZF*)22Pqyug7rO}#n;Ton2cc$?z3Y!2GfYfkxQFuGeGz8 zTpe0^&kqePUa;-Qsawlq4*o=*MRJpwo0Vy+>(E~5t-!C2M43*%Ov^#*@TPOfkYLoL zAgI)?isF*UiqeZ=V4CI45VkCo9M+nvZmM|&Y`vR2skYq_g8>6d zyS#?5`^UpNGuG6RD`9&qnah(waN@Ru{k2548+df){cUfy_BCyNYdxQXu9b%qZ(cZ*v;M_XnfW+Ch2CMvv!6TvJXmX z%)HXi7d$@Mf17)0evp0eS%o6y=%vA@)~ae&xrCyJVW9XEA#&hp+W54tzGD9Q)mQlX zCuKyX*W-cC*eCow3>c&e=WhDL(%-`&uXA=oTLkGqULN;MLgLRV^3%^)0|?s!aYKRuy0UT_3nzk1&2+OXJ?b_z+y@)swfK#s&TMJ&`iW*ZICOTm+LL`|2(*go+k3JYwMy&Abr^U<}S0z zNQ$5GO$k5aMH9njgt|i<@+(p&U_b$VB}=9PC><5@F+$fb>^1!q!n6E5tXT71k4I#Q1s8f*Aik=&r~T0P8>I=;(M+}>P6mf0RiaLrRUyD+wu6v znR|jiO;hKXrkc^Gg+-GtHV9_q-6K|y#xdpDf{YJ`w`~|l`(y8HYMs~mQ}dcTK#@@9 zre!xEc?>q}EuvMvzP@1GB>+m=FOI6BdBDC73^6hId$u*0^D#=XQZSaC1(!8&ol9Sg zY-3#pb`Ciyku~xZOTxx8Q(I<0U(?COJfD@rOOu*Eq3Uen?;VlL(k0=UiA=ht>&*>)7J52q*!?Z=+(~ah-?Lq;XxX>16ruB({)Kgg* zbOHdfe_tlBLW-8R=ve7@$2_0!R~F(_wF!_|xlDAP&Jra2{?0(2E_d&-WV!wbJl~G& z_$x!Kil2AV-K;hrUIqvsg|QF+45LTqzxb8rG;embLHf*b&Z+TVfEwou65y z1UGJ|e|HG~Vhx>o4yHhaKF(+gl%3C1oIfL8b7gBL^@E=EboL7h5Xc4xAfr%B=@O;?Gz%SM7M1TSMZwOtu`9OlN(@WSV0LB=o*0>pL57&H-CzcKgo*s!VFJ+^Mwxi^-3S~F^}tSQ5UH4m^r zZ+4V!G{PEXxH8kI2s-;B*+wgLOE=m7ce=n3F6<^HsYuc+E|{o8cAZVYfXtvmuFZ}{ zGud`-!cZT_ET14DrqbX+OeJ;TR{Hy7-03@&2Z^2?Uhpnk1f}9I_RkSV+x6jCm3RnP z)6T`pmnYipxf@R@?;MYMQ91)AS=8iQvZ?$xBfvpyno+l7a{OMytkd_|!_?ds#1kb5 z-o57o4^s|bhWsOJuKk=@r9#K1$gidxTItjdiy%txfMM|#=6VUNvtW|pkv;c=%WuP9 z@aZ)2YEb8i4by6v7uvE|$Fg8qpQh!ymlw5m1pH+2M{O5CjijKYXJ6|FLtC$x_h$h~ z%{sQQ?S7b$qFNd+bO?Rx2fxj+dhm*>FUT7va+E!<9ozqD3ZZ4<=^`M-QnzrCTj zWu<-xa{tyGvN2qUy5m`Rjb%LUxzEmx+=&382WuzL2;)Nm-z%i|kPvEi# z-e^HpIomW-i3TZ5UbAx(wX9A0Gn2aJP4>4OwI*8{No3kME=d47@%r>?lfpV@l0V{{ z6XIDTk8O^x|La>KKPYUA%QxxO06YfK2~p}fF$6;bNHj+)$eJ;tm*vt;?r6$Qq7izQ zaseILW|{*^j&)|_$wSO`*+0E1ARYLI0((JYsMJFd@!p3OeJ+tTtmlOVyc@ma?it$IwG*<-_kG^Y@F zs?_$|KdR3H=Sd?&&);__SonR&YQQ9o6s2rSrKVxWjm_bQ*H?QLNf-1|$Rn`621Gt) zoxu1HuhzA9ZZ91X5^U1X(zE+F1SV-FgAv@zJp8g`MbtGDi2 zGkOoe7VvaVnpVnky*@Y;$Wg!K3g_n=Fb11PIc%@`6MZ0=7fTgAl}^KV8E zSzk|5DG{iV@ICe@X(bdW>vuXG@dNr(JU{*jIIrooMU>t>Co#zo@&-4h%lc1Xk zEVXJ>?b-zYF(w=)E;z_&j8se0=~ReJsB*RLOC@{|yd)xSs#r&M=x;7~TpcwvL|9*G zM7_nbXIFEDwBcNne610ebY730%-(?vg}zgf|r7v0=r?<`4~E!ScCXSuFfvY(A{69%370 z@VVVDsjxzzFFm|}x`!q>uU!8r$ng9@s`td5Ch*A{UvZDwJ{;DqA8|n{mWd9c zQY?>Zi4?4oYfgBl_jmfjmTec}6O-`^VN2YnrM>jm!#eD5LgyT@F5@ZsivG$YFz)NA zIVLe<<)Rp11o?qC3*_kjh?020!YIQzoZvM3-uQLP-*gS?PFmu`LNU4sK5C*4#b8Fz z+jyCL5iOz#okLo?#8jTGZ(hd=N8Eei#%xDtB2P#N49YJT#etZayYYEULg#JKD8i}7 zS!)nwL!`Lv@w(lqIqCM>F&!}>jBoJRKF*ZwiLq^wtUvnhBFTa~1U<+-DD><|Eg>ku zI3tZ(s}Iz%F0?NGL=GD+5@^1J*Q>kfuRe?NT^wy9*iRo?$-e4mzbmeek;99Wi(BE)> zE?_b2CfkIEbGv4k6lxl>TD7)n6fP!pRf#<@5muAo8M4XTRp8uXIqo>wP&r&W49{nJ z5cNg1mI8ex)%`1kqFTGkcZ=`O^HO(+pG}Xv9%QzXl{(DUjaW+(o zez+e@?fDRccgI>L5nLg08ZtJ8#5mzhUb;pH+6xw1b!JPlN4aCU8#V2{xd9up85ozV zT@8*!_y75Uw3j!6N|R=FynZG{NSeq|>0lsoO#YS}b7@%TBC%WtF+N|Ef6xUA_krK8 z#aZT-lDHX4cciNG!3EM&r17MHpD$@8hDc@ zHPR}sf@%a*;iDskbW<|z!)D_p99ktTCNS$q7YPs|5>avGU0fPH4i{hBZ=`c`J_gL_ zsOflI#-XmKyB$~g(KwMz+`2zr&YYbMG7sKEA*KOIdp(I2f7LoA@ig`J8)`GkuGaknYW~hQKQ)Tt{w>{pd1N$8WCNtx z(h)ALZ-7s0l9SV*t50mn&B|&-F^JzD4yT_unTQ~kUX()%+9k}!*yoL>URRgMk<7RY zM}r-RlcuUdz`kNA+|kdJ&17}Sq!JYpT8dB3dh zT+fJyA6}QvS_ZepTyU?4bEA21cg*_l#4?%%-Q3nKfLK6Jq=W8KcnZnypb43j`u8qA~i7Lz%7Hj{bf>hZw}$;-_Wv3KvpejMbQ z9Ad2B_lm5i+4?zGdm~=jT7|Gbr*7att0W{eIg$>?%w-ra52u?=vvvkby6kt!*ID0S zREymlXFqPYhXj-9HA1;GPC`utJOrO;`8kJwWviO>lMeOF9ETvECZ;_+IH{_9iM%~x zg)E*AJ?ZG-h9t$!z)3d6$(QaIcD`RagN~O$LWGJb+BtD#2=J|3_d+`!1=8+K?^*Hc z-!L!Ml(_x7Lj!xcCj74b`WW=Bam^!zi|u){%{fl-{g(+O0wnTqG@R_WO9gL2Kk{M{ zX_-1YI`)MQeEtf~J$7Glr(EJaHg;6x2n*-LgbI>k$|3)Ps3il|gl(jXKQ&c3i=^LP z{)*OplZD1QUmwxP_7j_Qhncw7aC2#G>kMPhTKDN*pU5n6U+$li!a<0P9#K~XnH)v; z4od>S)ajN{UDf1wA1+WQ_|Y}{B}_b@AFmhUG!7~tPx{0>JD55SV`6N^L->DWE`V%` zKE=AtWkvVs`JnW71OVg!-S@J(`5&(0hTjawp;$1an;zpU zD_!UjSQ2fsK8ob`L~V>#l3slHW$K<+-O_iv8Et7k<4@&7w+i#5&R^W!j*|8o>uxvP z3>-fuXsi*M^(?)Qf=0H{#IN5K`P}uY^&}it@~JU2JQ<%poFknkR_nc;d>*gtR$OSj zP&k{oFwgV2RL1kFIuRU5y24>F(2^CV3_Ht8k%>7rJ)nIm%9y-%=yQu5H3|UtG+W8Y z+>WCay~l;M+2PIm8f<(hUVO`OD~>c6zV&(#)pmnJ#X!Q6^tA|I>oR-qs@xcm&26VLrD|@hB;$(29Hz;bFZe+GwcRPv3b&^Mzo5l# zl#kR|_mtk(^XANJ`*K{AYE-QlC!Y6dN*S(!f>>W;hT}MfXFtLHu?dJvLJ>&AOi0^B znWx0zyxFWDPJD=htS|+zlg36%Cj6Xn7a=(h---|v<{@$Z_O3vaiJvkd_+xSGm8y{w z8jl&*4cT5;rbX(r%rhg`G5!a^C88-1JHwTDdE1 zr6 zASH|oxj45-+!4-|`S*^@ziTF!zzG+d@6I@T&bQn76a%f?5BCE!$l5u*pYU1==^rBZ zj4x~&kODL4X?o0ts0iE|?c;(&ZD`*t2k=C^k*R0~JNi~ePkHg$rM8^$qf#Hci4`r=sA*reQv5nXY_I1AsX->F%>4*;7;lYFXrkDK{esfin22Ecew__Ob!MfC zu;9ZI$*TE~p^{pC0X$ltpWIdrT1TkihhPdHZWOzIk6O6g%kqBFKpCDkiX(?(eC;~+ zwjE`3u~<%(!4lz^8Az?E@=VexUop4plkPz7nv^V?V?OHGMAQ(wXWA!YKwPXJH0&TZ zV`lr(9EfS`QV4A+rquK@uHW8r zu~8FNhKiB!ZSKrEPt7XoWoQ0&LwFK^#Df- z3Df+;ho00+4bR=E==(W~H`a2Fag%~Ja*LegLVeSdld~>ul=emDy2tzQBg9XuK_n4C zQvmM3uX%@Gl=W$p{4L22!$we3hy6a<2qjKI!WWuW(1v^^Y^N#2s4~=8hWNwrf6f&{ z%9s6sQf00-6f@g8NZmTN#bLFSP0c7y`86XJ9tp1_=aRz&)#5pkx*ifV27*)=KSEmeQayS<4gRuE7e#UCsL^-4StbZ!O9V83LaR2_UqD{e7JRF6l zDb`WLVQ1;7rZ$3i(yM~=kxcjX0b?(z!G1^MwD9Q#VV*!JqV64G8?Prq^2w!NdfMh% zWU$mqTZy3H+{2>5e0nN#TWq$QiPWDBxsYBNY`DC8^g-km#y6_&#ygmxxdm2>!kT1` zazQZ}S*_Mm=Z+$Uhg+h4))**`oPbta>zRVtV)b>y>jF*Wng*D1Yof%Hi?-F~2 zg*g$WQd2EIny`HwM7*ost_NYEe0)EHGj>Q%V1jZxK49Bd=Bt_x=^&2&5x>`{ytulyOOnR$N*}DwlR0lEa{&2 z_Tz?6l;f`a+E3g}5H=GN3n1oVH8o_zidZG_LTO>So?gkU^?-QfUQOZorwz)UnY4b0 zb33yBE7EMTcb9VCUl0u-OB}cSuY>A5?m2tY%U!}GnigbQb%o)gpQm}F@Bajy{-oaO z5It?*Op$yS(`J(g1>==JhuN=;({bBF;#+1`e))RwF?7$!#Ee7I7;z9H;)=__zq05n zs6=MeHvN;o4=}Zj2MO`uD>bRD9xXJNARMjLEzvmg9WnHwHYW;Wn@TOqF2VLlG zZEe+|=P;wFJ`3N3+3t0!$w0pd+_CpOTnvW!b>iG9_AEurzM1hVJVwfJh!+1jVDn1w z#t22|Nl_}ys`zk{J#V#JyR~E_R^BgZ$FZ#5N;5{1__OsJ?!m+`m$ni-9}GWYd#N6s z*iVj#S;OB7UYCU4z=0Qe>Ej>dk}!4NyS^HTK0yrPNwr#UGiuBD0^z;>|ERjkfGD4D z4G0L*A)V3<(%sT6DUFnLH%o^g-Q9>H-QArFNT+l+EVcLb_m6w;2iWiPo|!pMoM%`x zXc_-G59W>e1A>0U=wx=)Xud>fsp0=$yhpPb8?5E3%|-;D86A_s-gFAhX-ik zrWL54(NrUUhDnjfavxjJS?igIO^;XePD-K@&te}G{XM}Isq3xBs@uG&yoEqDP={c2 z#D)b^6a}qE;X|e06kQX#v1R14M{0kHT#leo)@y|OKplz60Rgrf2k!<+Uuh!B+u!{3 z!9Q*s%+el%Y1@1#18bO1AoC<#%}lBbTx=On%pB?t7e(PGW3__Nau_KAv`O@9kmSH) zh;_pjOO`|H_`Mpk3?#sZHq|~M<$_6bTx#*LH#Xt!wpIOn|Bt%svy!^^1j6rf?K$+; zk+^!EI1{EyhB;_s`^Oj&sSy=nN%@KlM(I1KKBwQz@46P8C$p4`wUZxN-SgpyDGwa7u(e1px zsH;4nodw2dsYycN+_+RZJ{V}K0gTeZyDqqQOLz}3OQnvo#<+e>r5Nv`Wka0E@$Ej* z%a3;P!41ZQ9;Jh zlsXk#2tb1x`;Dsvxfhb4DE;8#K(6;;6lY`cU6jd1ef!C8$i2pBhb=D`9sh70tkldi zY6#6l>RPb!HXLH$%jCRH=#6pRCS5?MjfO^q*SNSvSCg3cTsiL9&T49(y;~I*(#iM( z$?+BZ85Wopf=##nUV;E~_}?W(1sCR^H^gV|d3rz{D}1YyF6`4#Mdb-l`SrmR?ibFx ztbIoS9&JdwylvjgNmO8KpRK6zzM0d;m)yUZH%dieZR&FG2njvdR}q0ot$81@v@Y8m z&X(1jwnSBm`2eVCr*1~M_La&6(VEjBsog@z&7WA&kvB}`6dEOp@j%tKFs7F&fpC}llvW07i&nslJ3wenTTJ)hIqz<8qnGt3ZmKx7ngG@>LLFDk2( zBwrS2bzO`%4WwADbr~=B9q7im5(0=GZj_LGON=))g@1 zo_>_e8%%?*T=PV+A+b!qgnD&@6JmZai8WwFyoltE!j^nU%w+rSr8ge7CYG-5%p2xeyk2Kx9Iq}Vpyax9aV z&E6T%yTWZo;#LB}c$Op4RA3Y!KDV z(pb>CC(1&eP4U=kqStD_n@rkf8W5%tQu0k%-G?A?--|eaH>Z(vDSPz3W-P)L5FWS4FU$*5&hsq;!{dK5gW92?MWXq)2}Iw8{W< zf2Npuc8*aWlh*aHuZsU3f#H-Q!$fcdLi@~>?YDYfFOa=wLEnAUTL5VB@1~jAmJ&oP zi@~#>iaec5DiFO^_D$s#3|0Y%*hR-)v{%8G>t?%NOLf*M5$+fVV~tB+m=w@wIHai_ z0;PftFQ2qdFY$*T&jxv5vrwQjhaK;8J+u&CzT3HiNS=rpne=CN>P{!0I|hn^>~ z9-Grza_RQvCzm0}?)UaO!&G_*JMy1p=aJW^>6lw#XEA5-$W-fWOpRXTY>^1C$7R22 zx9wvnJ=!fAK@$=M^N)#?KFv_`9M7J#6@*bH+IgQ8UA>m^IZo&FHJ`^;#WT*U6)vsr zwy>M%VJ;~YJ1QL4k)ir;@KVdN{BFcJQ$LNIl2N^?=dTIQGA4u-^kT^;?eyM23LNrc zZcm8yNok-PaJ1KG=w0-D7nctIRgOUTS|gkI@#I1eu`6N-r|m*je}v~iKwMW6 zT`JRP*Mp+&Rt%SF&OWXLW%gqUB^gv>@Ev7<9LhTO`g?*zkMP>jRu{=NtV{IYvzCtP ze|OyM2QlQ0z)>0C--YfLOZMqXvx^;&DOoeBhtQ85)8i?&_Xx-Y3(2~u?yF*7@+kJ} z&Vz$;xk9!q^UhZUX#z;G53VwyU?z2^A->FwQ*#-)@yyBy!m@tqSKUa)`0T+tv@EDu zS>QNW+*j&{g~ZI*h>6J&{iq^LR+XHLR= z!Mu56MBify?!_Xziu7nWvGQz_VU*izc3O)tHU*0@4wgmoS0wU>?jn1bw60LXLu|-Z z_wA3CQYc&B$8F7FF+_7 z=K#+5@>w^K-?{X7A@K>XP%lPUFJm$n6B!o^VggI%ZKN&pfD+=(jR~vBA0W)abW5utj!nXoU0&>Mc?6_K^}r9NtUKo4262G zHHp&&e?(M8WzRnUb}mBu3dDI}o#mbU@uVsf2m{ZW2X_osfUE!H8n`k%AC>(~-71@h z%q(zS=+l6ntwKEh5UaENGDA<=T0X^%O~1!o=abA}Re{##OG*b0bK`($DSbWcWkhhq zdF3Qc$P&+3XQdFF!o7A^Fhpyjc$~+3z5%*nLy;e5X|PDp{+aHVJ_%F&1dr*M)tq>$ zlT(93X-4Gx8BtE%lIWG~%*(8K|4J85(9^ccRYKN2A<-K z<_z0)add}t_>dBZyoz^ig$@*FPe17yOeh+H?nQ8RoTL2yzig;zmf`!l(lYf+>f)>M${Plj#DtvLF4h$ zQRP1vBt0VF%lZ52kK8KO!D26?mGWyc(E5WDGH&&y+hxH`Ys-MXw<-WGrLpE|-I8Z( z8T+8&J^){~cptm<^GCF09S3sjeTMZGH#Ix>W$&cO|s zlss@$wSvr)kRXyOFG@$#GP2#AlX7d1P^>ctl%nglNU&#b!Rq9&%4Pz?Q2Jv%4U<=| z^1$xZq%K%3L)0mekT*Z_j!|t4(r|XA&G0nX>n`JY@ykQ@ir=!B|7)b2|HR$^>J`2b zQP6x`Tg*P%lbuyGALT1Tol_1=cMrR&4%dp#9M{S^iApbvF)p_Dq_mwatig0SGLFY% zPQgIHWYyoePLsWC&qBIvmngS5+xBlz@!ub0nSgBn$c#!_As1Z&6Jsv{Fc$%8Kc_u@ zC5KD2t8Ggp*9zAvv$OJ(ZbeKJTFO9|Ws_N8;4+8e8eFKr@uAbkmGNB&tXl3H!J*({ zmE4Ui0!Z*F!aHPN1mgwxr;DC%dw2Ho zSoHD1G>3rmzP=<6+7{)x6wR+C?+>ZQ)^nBc(ByjTYz zd)AR4&pC!Xl~ZGf_MM_mnw2pek744sls|(C-NCUsoXVjdt4u6(BupJ5drQ=B^Khe9 z9>*Kiy*G>1&!3{4RMIDtK=T(G6zb%Sq zbp*cq-FRIPYS{b>==^up0APkm1UIIX{?mB{wlfeOrHDw2J+1cgX95{gQ%#Z3D`aC? z9QSJVoWMP57hLVl)w`uJNOWe&aOzj5w4^bKQ`NKY;lWtGZF@a-MsR6;iR;}F?_9Z# zpAZteS7;I9m}9wAb3e3~w7;1xRm+_&z4)1+i!|l#^x|GsyFH!TQbTUF=Wjt-&@6}l zx7A5a0J~a{z|m;GK7J8CxHn8JCrlmf=bUZddIR>oO;;BvyIYyBshv#BP=Zo-9RBDh zE$ISzIdsqdadF*G-lAruH3ixzC`57b@GObjn49n9 zC1yElgvy=A7`WF6_UKNdAg_3Xoi-5@FHVJ%y6b0(hmL98EGi#HU1K>)*EoB!>TMKR zm!n(`#-;j5oac^sH?#%DYgx@cj6M-bPQBCA1lRl~0$aO7+<(c~vIHM5k%`<6iGT6U7l^8H)Eej8VO*+;TgWPy;+ z$bINVtX_oCFas!25s|8k+|r|)QQ(5rJ%chS90G-{nGq7m1O6@{kcG6zttx5 z(zS@L<&7(5_P}J^@@d^7he8Izs`&d*fuW#RNM!!6Zs`1G`UNj#JHF>`FE*F1NnqZ{ zAO*eBQ9GmTalZA&{`S_S$&`Ct(Vcq+#;A&J6yWSC> zBfGLCYYzs&D-u!25$C$%(E^A1)$UKQZ#O^K;?QicLQrA;1F`JncQvfUPHPnPuXJrb z^_s;yb%{@9%z!7FqZR=Q^)CDmQ}o}h5k&>l9G0*eZ=3e&)S+Xw0$HcxQhk?V(5bCijfu z_e0&RIBl&4T)s-@HeRXfX?FxjHLnfge~?M>&0x``vH*#i7?vg=(EyGJ^qVs7?(it# zt~;D(eU&OTzTvsn@~)EUIAByo9kgUBx?n(o9}a4q23t$tQ)jD}OXu@!J*ePN?`u ztdJJt9sgA4eZY!`ZFBQ%$9Wx>fm7st*hfnY3hNw=iRM#%AEnHwtX%&Da1@)$6^Zrb ze}sYm=mYl@T|#pwPtx6F(e$WzoTrW$48c&ef zgNqXckW@wNIYU1ovFjYt+i1Vshr^eQX@XH;dB9Z+VGcQGoKr6 z7qe5!;wofkx+rGS{VZTcD5yzH5Quwji@;f-2pFfzw38W=c3K9{W>PWmS zDdVy+l@RMHe`rWSA7fL$zk8%UTXzWGP|N;r;r>H-(!(u=25|lynHW~ZXA%r?oXmQg z_;buhGa(jcC*TEUHF$F=_>%d>=`!}0qjc!W9RWA}Tj6@;^)02|YaBl(b)ULVNQAfA*p%e- z^Ab&1Aj&oy4*ytspR)vTOB1SdJYZhHr%4ZU>~v|Kf2_22%uTm-`_wE^^nzGvY!2cF8(SNj&H8GNY zla*+O=)rF^&JABl>9t2tGr!%B-9CVNF6L9|XCW@N9QdekrCUn(>t*nVB6pTFQeBpB z8?MkJ+i>=C^ELtJdL73&zKZ^~*xCPGb=g<&3&_3tU0C?^J(R2qZ%Yf1q=I3tG!OA_ z7}RM5U(QwdLP|gDanWFB8x5f^eFZFz^!ZxpO0W==U)9{dS{r67YEwR@Un;(ZOB3S5 z=}HR=C84gIu}^w&v7Ia4 z*$Y}%3($tQKJr4pfuiQq9?D3BwGN{fm!)z&G5|}5`uUJqxtk~Af3g60%sUDstaBVc zh%wGwr9{4drASLTjm|~T#BNO4W`)?<9d}F!AXAKmdBa;jg`bo@qAB_=TJFHdNzj)> z-Fp%Maa69gcr$qJaQj>YkuI+?Rni*}ry2ARS8FUBV;h=ra}XMh8I8S|oZp^!BwX>s zJFpFBzS?}eX^e`Wf7QRoDdj!S$RszvWFxn{87`lizVYKT0o(_y(Bj~c)fYxG4a=|g zoeE1H>zXam{G4z9@3v4Ugx$qF)-l~nSgs#%P3DF7-G#tmhQM^8Nj z!s?>gqajBISMdwU$0;J639a+U5Yz(_-eT{3>4vgP+gsg*p_6`*BW;vSYKZ5-sflff zTkY9by5C8c_kJhlS7KW@SGq~=MSDzYu&Tx3E*B>tm^RYSC>o_C5N zqng?vOHP-ZY+XFNv0L!ERWH#j$SK~{z9q6<4`1LmgEPoQ^l2zVb&|6a^ERi!9i*yQ z=G^(PWEhGeY?>>%?NQNM!9m*IK@-YBx>`Gn)S0X5&?frw+5O7DI_{XeGi-nS*}1|q zI*1bYf@8tR#OuJ&kNZH+Pt)ZW?ds28UvkqIP3XnHXL5bW8!b0<;C~@tXg>YW$*{kK zpZk{MM&sYW`d?P-k5U0nq87?(S}w8d^7xmHt z1F-_%oZ<1jqw!w34 z#i(#zwQEUjcOq2>2Rwc6N(?peD5p5TBmq8;N`92v4MXgOIJ@LW0_^+EM;uf1#{C9C z8ff;N_o!u`qrz`yd4q>F4%o>4&jOgRyk*F~DG`r3@uRY@Qx}2IIr=xwqM3H?ukR9i zj^FV#7PxqbWB(_B=J8coiReM~-)zeEW_q?sg4XaQoZ@7#1xEE=cge20*`vbo<^UY-e1ijv5!I;Zv!Y?R<|ERo+gJE+r7^ApsVeHygOk-_uab)Yfof0HYOABVdir#W z1c<*pwU=KnP>~-oUt#OilZBhaT|ei`Mz*CTqDfUs*&?>TrK^IJcRE!?L7}c4 z;%dFd+<33hdML_Yl0=aQhtrC}+IGGO9%B->52j%@wgyv%QihBxn>hIOn#zqr%yYKW zYD3?Qg)Xc%|14()Oh^&)^eqy}WVM3Aj=T=39K5UM?l(llp81IRr!~m1X0+uOOT+5T zgCf7BJg0woTxSHm{0UnO3EJhx!8E41-gEJuwB;StGyWlJc{=ZpLgY>vty|vPlX{vQ zt@{$%`IL*C!u>uUi5uge<_0wcMlgv2v^X8L*wY>3Z(`qt&gYISNkG*bhBlMk^(wIZ z3{R3mtB(-43d}~vwDCvHZ=YVhY+_ry-L)$135{xA*3uUzYFHe>ATa6w5p(})4!A1e z;q`s6QT&KPOyv(|B!)mdg8Ai5rfRnv-%oUS=1XRWS^-T(4L##4>IaI+EW6CR(?_20 zmPe0`pi@I1C9{XcxUNTH?52|6X;;}cvK!Ot&~wED4nY?)#sObPh+L^$x5ngsu-!5! zS9)*iA-CiV4TlDo7nNrAuED>#-sYyY~;la4t{$ z1D{1x+jwj^09ByrhfVR@qGjfm13gf?;mniGFNQE0ow4kfe`BRMA$a!3vGf!#FE5k$ zrip7#f158~KKDgnnIwu0kJb-lDZ-~2y?2nFCPSOvLoz0Kt2RNmtkyOvJUPkNL;!CkWo9YO z-Fg{MTkq+S01=ZM1O$s?*m+i~t>G9hMG#gk8(3NF=>iiwx3sPO^mSv9?!Y3)34pZK z)}b&6OWJq0$Q*B$Jl^lWuKW59lLi%OJI+_+_VG_h&+p_(m4D5TVTm8ncR}J1Y zEMUGa(O^#*7jm}@CoG65y=?COMQq=D%)XkW){$wi^{gM~^U4{=RbZQnNPVi%LzB|a zNqXegv8_sFvy}Dpy*(YIe_yzPeN+K!VOPF{k23Ea0`A49Bjv2zF;i1gXhm>{%$6v- z(47?{YNN6qWkVs1pOy5+wW-E!-#qqyf$3wjL$>QN-nL6$WLL9|F_2gqcanD#v~@VM zR;UwV!F`~MM4HM`#i)+qNRy5ZOo#;ae5H*J?3wqdmWH`Zy);$Jq&lOD47|X7Nrs7m z7rwz!fZvjUk$lMUSo69Bs3=bAt$A~+t-i?j)?n(p$`?jB>sYbr>rA|CmeyG$Yr*}1 zx=D?9@4Hw>TVzm?+j19?ZQaS8ENBG-DZ>DUuWgrWo?SsC*?zI>+$}Lvxg23D%hkF?s@8w(S zH^*uFohHPNBx}B7t%cBqOVW7l#_%rz9{5ob295xm6&GC6S@#EjE4(TR<`jd*k1PTv z1nEi>4_)eq)gXBYrHj#SIpeS-Oii?No)BrIpz4(yY16Ik`~3O%k-jx&vm@7?-4$s=M)erLa35)Zitg zDR$x6neJ{^TvQ-iQEPAY^J%33;XXY~th+Z>et0MGdGU+LmFw#Bk&GFzZ|1a4Xaetq zr*bAUu1-AEt=-{1VSCOFb-zN|dIxymi+oo&wtoF=bnsyuDc+1B1UE01i0fMpP$B+A zhXRs4k zf;=Apo|>pcDwyz>KuVQ7l&71u<+77U3$vwR`GelP?lP;^zTuqCAz^t=h8*i2)cNKu z#-N}tPwPCh=q>~evV8aCHu0Iw^Ay2nbKP>w%!DAMYMEiBy$1QyIP7hxHdOncfjm=q zim8=Tqom~cub-Glp1MzlqPduFQc01jW`4A_t(;aBq8C_UXsgAD4yC_$@l|Q^uYI-C zx0~Q>3@flB0dYo1Ot^zm(U3zYI}X`p{O684qT0h9or)r{ExO}oEF&cX9>Q6p1r7j% z(v~{_Cg$&1KZ0Mwj*vbx2;o!vH`!sCQB))(U>jhjiuC7HGko*?ypBPQZ{QlA`vgpB z2fikwA7$%oW3Hc74@U3PGW6Q{MZdvD^vJ2j(JVV^f zJ#BtX4H#W#^{`%be1cua{6^$7Jt&!{WPp)@Af&623tG?@%*91+xl6N zFu}sxn2IuK;j<2j)D860t)lzNj9Z9#V#cBD|sZ{`!3 zJ@mWy1yJh$B5WiCSfpiH52IT&a_qEhPzWJf`U;_ij`i{!+Q?*&2?IgtArK=!!W%RfEXjaw zQ)0Tn-GAdZ@vDcxs^*rfDM^p zIGUcnx1J2!vokoPR?o%%UXAgNh~>s(ozb069f@f+sxtYQ!JqAI%((XdMI~m)hj*YVZXzdEZqJEnf`eE8670R&*{V z*vEBi3Lev+r?7a_e%r zc7?ns+vcqEI&886W8#gWEYejb;2ezVKe4k)@~vHnK`}{nT&8?2Hv`!taG8!z->-o^ zApZyI)!@PoK&#&cq?$Y zqlDAJC=|*Z<4d><;W86%W-8oLd7(2u^D~w_<3fSQKW@&P(>M>flu8v+g~+5a-;^MQ ze1m!5I;6TGG{~4Ky^%S*nJcYMqty6y5Q=7z;gz>q;2>@_`2E!@7MQ%_MV7Jt9{iE) zTSaLsSspkJng9sq%i}t9N$49fuk!Hv=hTXUTu1n}u&i>vd-jVA7r3~Xah~`AYwfc1 z9(n~h&V*z5iqCZCY**3m?&->2t}3)Pm(3IroLC+2hT>5`KwiV{dkd!4@#fLuR0D=k z43RAr@kfAW?sb(!B!;8Sgn#F;P-UX7p<(vA9Mw>DqRF6LS?$kQ5__6?9^A#xZ3mt? z+;N*8O!jphK%*o~Y#^3j9441DtwTHw#+NlG}KpENHyS zsi*bxu9eq+T?@cAqL4%4E1;8`wyCoYgSk@K{aIgM|Kftb=r-uWdWbXPb{#XOi?!Qy z{2(p9zP`1~6-;TCpx`B*q2_*^Rm9vpCAv`4al#5R1g(LLta*0iy=oM&LCPwd9!0!g z#jvsRM9|4a^nn2_kJefo>@=Qm={FT8PAIunx!<7^$DGu8x8ZWkZS;j7*yIT{!fX?| zYu?!rn4gWz#lIv8yCH}kKWYBNRST+IGYbnC{HSg;Ccz2IVf@KBN&Xmq%`}R|l&~)B zEgT%+##TV8n3WU4+|X|w5x$FGsqC!o_DH`vJbZ!V-6vQzAaYWb^GK%2ngqQAY<~P* zab2P^T9cm!$ju|)&M1^}qN){V)8=Y6DfSR#u?Jezi%t^GHizf$9Y2K2R+$|S!5uA;D)h}rF)|E7lSs9t!UjI;p14$J>%gbS;)^Q@WW@1xj zd8k#<=yLcEhI|a=@V@rGQJoNu2J3JHg0t=ZRQ~0%17M$Yrlul|ACMF5vv{*BGiy_- zLM3!)mnZV=K~bm-KO=IK%}+qCF(3FR!x57li*?Esn-2E1+7X1~1?KvC4YKf^tjwALGC_F{$Wkx~+L3EwQsBoNp8SXGyQ1rQT^_3a3GW!2DSXO27nCn1@L$7LV%#&!3v1+`qU7=aC)9yswUNIWK?dgZ~qF#T~icUWtbuZqRjBE+! zg8c>mPYi-)LEKI!zkb#3&V3q;P8mR%Ott4!b}=vV(;x!5W&n*^FDBBlOai~Vg*Fa6 zdusp{O~4{nKP!O;s#@6FWD6PK0w@sgVs>N^hDv~t#w~MLJH9&qf8n!Q=5Iv-2^5Sn zq;5%VkEgBg{T^JsHUeLNF8s!m0EDGYWtqq(l(H)1hQ)dRUM66UiG5{Nu(wF+DmJXFkA*((jBODV=!lf zk$SLURge_MysjA;L-CbmL<~v?!uk1(vy)KH=)0QSJJn?nYgBKvaAo9zuG*SJ|&Avi=K;NVg z27G@Io?*zXVCH=Vw^nL{B!=>2wAGLQXrF;x5`R}Y1Q};L-7@Dwva9=aQurnzS{N8!u6dC(8l+u6A}$fPBlWOykROJ-&!3lA>@4p71{4^I{M#>B;3;NZ%`1`DJBTwe6~a&C*m4qpcC<4IjB*9yCm zz&D6t@-{_R0qO(Rl1RsN7tf?$A^pvP<-VxZRf0IXw<58+{}5IJbfOiHK9>@g$U>iu zRPZc~WCNSPCYAs0?(vgD(iVWUi|t!9+e(ZWxdacjNj;*U_)b+JPMz&V{dKt&q~@hW zb_{;0U;jA*E~ElP3IS_MLMJnY^BE-#mxoKV zZzTBYU)j>4w>%@J`VZ0`b21QBxNw_)jJIl;J%;~{;OQ@P{o!AI5MVjPhvT3N_>-)P zri~>_1AqCAPQ@LsxoHkRZi@aC+4SCwLw?ak&es{OW$2ah?WN`|4zeMf+gm7}`}k$x318JCULxXujN(|S7z zS?XfBxw(6K3XSeo6}|uoB*|=Tv)Emj-Jqr$blrz)y3cF*W}kBwSyn!eL^v0)6gwO) zuUT;EWbgycyevIj9k)Ge&qA6A^@4=P62}sCqj9ni9uAFZ)?g3819J#};-@~sV-hW1 zhl1Qfw$B`B{)yH54EYFU@qfMl3rI=IEqx?*GZxSFC(rn1{AVgA;rV3$E80=`0$_1! z&E}5Fw^Q6tEUihiT$~j39P_;xav&_so6R}4&L`|3CO2#}xU`M(6`wlc)ObgNHXdbO z!9WdFWb!7?D!?Mcm|r;TBk(94A0!QzM1W*BZY+-*VZ2g1nlN`q9|i~v0qP@jOy?xF z+H9+6Zs@tH)6_KYd^LofJo};R z5im@VgMzl(?*c{hPXO27w|SMfMw-RY^tC<=*de2G(!722;&CdPredggw@N0yVj$TO zuFvti!0Lp%3#jdsNNq&X%jt5F%jmdd%vb-(8?QRKy1N64YtE~^$woh3JH{RO{3DJX z_RAmE@3(VRm{Yz@p3sJQSrz@!;{YvN7vW`^mr1{s>X$ zBs&~XS70&6k!d&S4*vQsj`v8ZOek-D#U=JY^vk-ZuJ;F2ZQ~kD*j)+9aP)fbSlQ-a z<`AXYav-n>t`1GvsNm^$f^^3JI* zLlV|xzHT$YRJP&}?fDIx;DCK(HtdtVqV5bgJ<2^TR?^g>K$isN*f!4lR5^wdoX%im z`>t5hpY(jHRsm)54t~z^ltU}3Nx~ZkxH1(Yh|4!|zwXs#tb4nWY4pCkCBdo}xy|+m zJFC#tW1S}_%V#c*?_1kno*j;H`>6wSuX1~|pd>Q0OD!6Ir1Ni02yFQcUPS}n>>wZ1 zQU+VcuLw}!qBSl>vhBLXhP6QJ2H<)~$t_eB8fU-s8XkdF8!%c5f98G`+1YlGQSv8h zSW?g6SrNPZhTQYy)wy)MoyM6ky6!FWLFg*W(b@0$ax`+Vt}GhoBT(FVAb0|DPTJqi zmQVtOj(jC&JVOG`a87)atUWxOX`a?*1LOOPrtpPgQkq{YiS|n$J(_*1j_?)am{a<* z<=v^op7WF`#&X?a;#Y6Fch_`8zViV|S^W{vOu8(}>}A{HuFni`*QD1h%=V`CMgP*8 zBq>xU3tUjcM+%Ja);}-;rx}$}#6uJs+(Td=;-GOpU^LLEKMPE#bxd`e*RzoY9BWb2 zafmKC*pmR`$by(en|9oHykz=j6H`7?j(G&HXM+s7Sg|4&iGa1`F2fmtA>(-Fj>fm6 z#`nTG%`y_-B|xN1_6i7`=qW3dhY1gMebdCfu3Wl!v)q2jm~b~@1Kb!H^Kk}%>d7c9 z`J>pT-A#icK0OtFiD`Z}A1StI+zeK$4IkSJtxVT?fT7vQ*Bm7uuuUF9onl>|oeHZ^ zXh;Fer~63c`pd(^gn3HJlCZ}SP0)D7gRcuEe+gQJ@0}mvLx`^G^de1%+dN(+>;0S7 zweR7_;=mlo`A7x_XOzaiN{@kY4_|EaYZt76jW`=2g`_F+sS<3qPJR2=e0^-tKeUvl zV}p2Wyc*8C{$}M4>3`4|nbh4W-6hUtyJf#;%EOczcT;o7N$>7|lW@641lM26gZXY4 zpY0QM$cAGwyl|hxu)Bs?k-r&X$qK_;5oc9MLw?bW(h>4Pn;^};TbP#+$YH}s_;Uq5b2 z>ay>bYLw!Px~r3t6#OcrH)Fu>*~;Qe9+S@V1MsKKx4Gh{Av3hayJF9=)3KV`3C`Vo zDAhM@eN!#iqSKxtSLU}JN*ydqWwOgcxG&e_zPa=t%vN{3Ku>avcjSM_ORouPH*PRi zm<*1}lVjp!k}T$9f^LkrWv|G2lbUxKIV`DTn|9n8e4wH{6HiM5gkGy?V7Ey>u=|sz zweT^f)|^xl*-g9 zX$FEjGURMtyT?XFgXLU+9-E_^pk6%dV7lPeKVd|z-Y@J=89>QQ37Z6CUz_$p{(CT; zJT(&L$ZKaB^-uzn;#NM?AsH?=+)jFgzx7_~^NT>}nO?{y7gCy(&C%WYqvL#2hUN~G zEB`F)Av-x_j));;5CSNZ*AV4{*YDmg33aGFP~qNhp285*uRWz2C4*}xl1a>#2o5+b z_hyAXD>Z{Kw%HQbs+nRMVprWZ>k7w-E7*+Ig$(3H9x5q=&f?zJq7V#oOF16UXvu`Kpdyo8nJPPQNsF7fod|3zDr5kleYE+vY;aUb$1+ID(m^TtboNg>gdHw6+@BgbKc*6YyXqdV>_QU$ zum0;Fsg)WpFami)x7K19Sa^GlsDeeTE)0?TJfW*GPOKfc_u|MK5qTOaPEvW-V=hHq z^x9ZPCV{i-eyy&RH3`o~P{0@v7e#;CtA_M?^z9pB+7X~6P3-j8ePFOzp1&tPFAtR)6{4#jmZX&1xbS~0LH3DTv zu`f6|%0!bpzxg&(bl;gfRF&zFJObDfzI)kxDZZ{5R`;D@0XvVWfqCr9@5j*X|Aq7= zq`Ph?r(>?p$(t5vh~D$h)|Gy31>zs%H>qM5x9?HW?ZQc@*UmZ``y3`DG+qL&Z+_2x zs!3bz;WzSSK(jE(`n#CGDz-JQC-=zs;9J~(eN$`=_KH*r7%2H))9K%3Httu!8bXBs zN@qkRjX^-uf|W}NC9-c)Zs9?PGPm1yF=}2#)R3CXF(*-nV0pUR{n+KtIe=3blJ=+U zE5v$gJug6}TYV0qyJ6IFn>8UiDF}BRfP*Y7Li0>p>x)QYC=oTW2JS9Y3kT-Q+De`Qejy<+)0=mHivRTW00w)v83 z@ewNm9jMcX1gmn{Cfun3j)|zbrs>ekkxqoLdlqCaN*{Gf6S~6r<*#CaTCR zmGl{Uq~uKzkPyOzH{z3Omc+Wqh(2kRe7pf@*F9qvPJDfE8jjI!ev`X3a;0q^fS-^{ zxkHgLhHrqjb^DS5+%ba=u08(lI`Uzpc&=Wh`cP7zm`Lrz_{3(xr?a>%Yu@|u11x1A z;Dif$@)4-WG}s9GeZ_O!pAE4!_Ifr-kdui|MPtV`yT<~S$YBQNG}^!$trn?{e+OcY zu)-rN+k|j7W`qDtDwc)m_$)LuS&FGI+>qqA%Vi$8oLhnqfF9?mC0piqXJChU?7Qh}oV<@2v2%B@B-Ded{U*m#{s+{-$0lYWyLgw=;+j9V zVRyY!e%U0PAaiO_;RSr^)E|WFbV9%B28{A>t@xDAiaa*eLA?Y))m}%$sQHe+K0>V( zBr#Rq#zKt#u}TFRBQ-hcmM_uGvmrz=tymr_+w<(X{GOjzFfhml2Cb}EG($3Dj89!U zGMIK`q8kT4o#$LAT{TAyZ5aDMO)5UFn&KT?GYdWPuIsoA`RxfqZ2%Pp$f2U#;P@Q@ z?46U?yaUr(oCT6QKyLo8FLziRxWD-Lhv#(O2HsNzMAA>FxLUkjzFn5ln-HOT!LmVh z5{GfIp*Jkh{G3-uiQ4lu6uGhKGY@QFfoo44JD-$-&KCJ4@3PX{!NM2|!4l+qTy>tW z1EZ`-WVOVI;+wiv=LEq?z$>|Q(G4-~UmMt#cqVTsH<>-ho+rZr@6DRJ$cxl4E*(w)+&bVy1` zOG$Ufp+UO4Q=~bBbhm(n(w&Fyj`!yGujl>XH@%R3@0mTbX00^=!AURqE3dcu7dAt) zO&y2mhXwaJ1Hr~s-W|uU{{K8e{~RHfAPjb<|1o>SEWoz$ySI!F{2}HZFp=JuL~>z? zkB`swr4LERvN##W@BlD-;(!CnJKJ#;;Sa)D)SV)A-=dcu3deUB4xsnQC5?H?Y#i}a*69E${vASi-$DE+&+-?%0{Cvkn# z`WM3iM2oKk;jvK&gLn#E0m;kn4yjTPyW zn_r)4AaR|dC#r)&?)?Gg2GyOIst$MrrW%F^e1j(TUo2&sKaY*O&l<|WAer^?2RN08 z903(t6*c-!*7lOJX!3@2sob+O``mdz(Rcns*)s2QRfvIQf5*xt2*`&+U*HILxyG$6 zEx%c@eW2*OWy@$rI-(Zxg-nw+A0V0am{$dpEU2wq=zjieb@dLJM7ObF@%kOWF0rkI zJonaJ`*<^=fyO7jh6ov39A8=OAJ2hS=X}LSL9l6#CDOXkTpv4}9j2MWj|MO~tB=3^ zm6j^-?f=#Z1OaKdU5WI{DHb`NbU*Z>iFxF&0h{XPtptUlq9U3fH8Wr;EDV@pi(GmD z>NqHNUT!FU{!22iiKB$I&)bhB9v@i%2OmmJN-g)LRlplN#GzK_W6lu_0y;XnW;{Gy zeB3@mtqRwAE^{V)2r(RPL?f^~D{d&?$U{};t$2M5f&_hQPQyuSQ$5K>&06v-oO**9 z?s#J8qJ=2|66Y`0Rr({mC!|&FB3p8~z(?As=f3F~8mZY;npd4(>|IH=3!wZ1d}T}O z0dw?IH}PgDuE$ia{G-CCuQJs7+QF+T3zJo@e-lE5?BcVO#S-hLClcCXUo6~zXhaDp zTIKpF`k;=*nDZZIhyWi17`7s5F3=2EMu8CbVee66IKkG7dx=!o;rebjA0!ho?y18e zMm<71AM49lqPm|{z+Ef}&+OW_Poms+EMky%!`yG0<8mUL%J|H0se!r+WsGfYv*_>< z)z%{mUazTN;@aTlHE5!+Icyan!Kja@1iFCM*(>EiB8qx)?f(ESdT<3`GCVt*w=FMc zgA``3jv$lLByzU4>_h|wTCOEXk|E-~=+nT&`RY)9)B6|;4D5Q`#WtZm`1D8rx z-XoIMX;@wxks>58uxOa!6rg!MmdyOzB|=G3#7dGnL=X?ycEb$LWKS|mLQbLh)c3hN z&oAGm5F>>7R^mfh;d*H0@icA#Al#Fi=n<`0o8P5+ofX;tLaSNR8B89;w&gIw+@_!*w}i zN${)0DY+>ecORw(u4JBDY9J5VQ55`5jwc&e)~tpsq}2}NzP)7JMc&(c6}=6BZ(B_` z$}o4y{e^+Ah{5oz1Aah-bl&ZcGV}LK^lyTW0r~VsWCemGclCdgeG$?tx(N6;JFYv? z1vUZ>qUi$8CI2Am_A9~w>xO;n)gMSMkxmYPFhh)A$!h@a{+ZnSkhA%?<=~MnZ}(R^ zwG4%?ON4mwFi;e7#OvJbi4`5^KlJk{j+vRurx&h?Lt=V@lMmM!3@AZwXDR*kGx5;~ zmK@#Q9Fba>*LsAYnxS?IZ)UMB@z=3w^Fz+jguCHF)c9#Qj^{o7)sW46Y2+(hx*4)u zKClQVc5{=S!}OD0#h!ov@gw5pILd*m#4a&Z9B6Ec?%KdlXQ|oTs=^Jf&o5VW!f+}p zg&gjtcHcW3PuwuTgpAsmsW>ETaSFES;>fvhXG`1JudHTAD-i#f`HJ zEegsRb3uG|Hf%BG!>_eejwNC9HA3&zFK*dnR>y}&!Y0o(j~?pgC5QhKS3p4zv`1Y~ z22iI*a{MjCB>u|Ag*AoM8L(ylUC7gM@HXN0Y=ThKpoi-F#)17c;smE+cBbwAi`WK9 zkmu+y{cU?HAVCG})PP3>iv;f6&_gbwROtrsuS@#8Yqg1%82SHXUo^O{`OA5CJh|3n z@H6~8@R+fI&BqcZ3uQ(JNbGGUZu9}GxGjLo23E}CSM9jlA$cHGyDf|rO#t>YR6A{a zqaPWh0I>jn+WNQSWys?Jw=&*zLd&K3P=6iB5>Of1jJgi&67;vKx8=3@a|A^lDwEbC z>qPbxx3shvs`norX9J$8BI=PfXOYb+c*6`If4cY4@7k@u5reQW42BWnrXHeE+K)>v ziF?8*B*|c%->TO+Io4D5k-dk@nVAfLTYAevYRRcWM#ezuo7#+2A5BJ0miahrj`gM1 zWurembDn=UN{YDN^AZs&GN0kp@?t5FU=|Ucj(c~sSxxjBsf^S&d~5u9>E(wBAXvIK zRF<3ONh}6v*e}lQM5NI7dP81*61FlrE}ILg_q0eE4k2V#X~Ea5!c)Mw0$q;_lHd@e zdhA=aJ2N>}ivCQWFgqMt~j>;t3MQ^m`)7I{roSXZ)D6lZ#0FN_wWUzyj z7BEF>H#hFPVhs*1Ov`$g>sRNHB~?*0#`67(3{?+R_9KB|jK*)`7^=7{B%p;^1|h$ z$F@M{8WMJHoO9n4mfpP-p3fRyMNA+)iUblWht&6p-l+b-=l!q5J$Z65_%J2t)?7kg zeNd4rd%`G^g`L@Iclk-y9e(V8HN9vsznIg)fS9w-`&dAc&sy-}KrjK({h7x1 zn{855s*WFi4LO&S-^6tm6L9GqXSZe4VgY=0qgciE`Onh)@GKWC*ewN~lC-7YO0Sz% zSZ3{Ef^V6Y;SUid?C}D=VsXeAd?MvEXhV%UXTMZzz$wQJ1fI329K2cpO z^f9hQo=~ah4?!6Dl0^DbA^@$M=$9$|u(%`Ix5zK>QW#rM>*zEU_k*nRWJ4x08|Yi~ z$*cKk9~j}~j@@|t-$u}tI#`rK$urAh)gaDxJIHSf4+_~b+^2lDV(bjWs!%}@6n@Lm zMb-l&wGoa@eP3C4rc@r9dynKoqE>rnABk6HW|1SYnS76|Jc-v5!d~y`Q~r3eAiN;L z7VH>Ruvd z5@Xh4WR%|5FQu`Gc`saL@69K2URNDNuA<|T2ZOo)9b@<~460uZVdQx5Zjn%oR|?xG z!i)Mu;MgRq)K`KtL^mjX@EC%-+o=&hpi?I=#k+-L;b|~btJDOs!h|wJ4N*&elmCk3 zuTdk2lCw7Ey}vB(`mR20MuV5~x8O4aqsO`B`}Oo!%R8@O{3(~_jG&nM!#f0>(+{l# z6~Oq+bW&lJcj5scvT`1OJ^Op}8FZT7SbJ3?aY)qJ@nb|bvGDo+y?;j-yi8ozWm8h} z!2zShNOzZ8t*dVQWEjhhh@x85xyJ;7!8Cww7A+OZO{dw%fI`A(XRNtoQhDwA8Ia zu(5-!=n)O0Sh2hNmthU{Vt|jFR>89Vi2|tey4C=|!nfK;AL%T;*1ngOFTy?_!`)$Z z|HFRxY2Mu1hUDd1hn=Lzh23BK@?hzHQRF2UX{=e#xm9KAMl`|z)^HkLKq zSMX0NZ15bh6VcX z!a=fD1P1Rc$M5b*%H~ce&oWG0;;J;X;#&}p@pEg#v6U_Pc8Xi8T2-AsJ|2Gl1-jRP z%=ylGNS7Hi!w`KFKSrdGhrkouUHo;Kgr91NXLGrLEqINSf2r+J-eN7%p3s?)*w)97 zt-urLQM$Ue%U1=Q3z?1J-2q@{1@3MtNE=xQ;EO!?c$(0Ce#H)^Fro3_(ome47pB<} zyVVu_=I&4fM)x0O;p>t(IAF8C@k>QS0s=t5ppg1^I{02NdaP?^z5KNzJ(D_FD15i0!OBxpNBBK zQ2?PwvDvt4WQpsIsc(r?%GIk3AKMwY+v(k8r5sw zol#eAK+Y0!ud-=cb~^{kRfLZmt-%w52P^`+q|R@$DNwyE!7F3j00ZS)}vX=gj>5yU09`oEG-EJQC$Nj^(`GD;$_#8kDw$ zw6JH&+VR?=P98=?`A(~_w7a`2=ulb1x-Y+5>j#5}nAd5M6J{^ndy; z2AKGHQFP)@C%wSt2vsHib-3o|`-5!&icBJNn|rURZ49sD*pF{E^Ig^L^zPMX3>-NB zKFo;83-BIphfeF%wW$pO-JC)rk{UhT8}3KH{wg#uSQ(0f>3Sbx1Owlxto!%)b7Ko& zHWn20WS}Yy|3XV(INwjA4C2?{;CWusF_!M^629`7G4*TRU#*7QP<7M_c9C;IR|E9BtFeE8RNCds( z<6G?Sf5e;|C0)Yq_%*@FH%{7CSI1?$y9Ut~O;6bYgvzqdnfCKGS4pXIPquvD@bJw) z^YV!OH@>CcVqK7R4NciHA^$FP%Wq?g=SQ-8ybPNukg6Q4_u2qi$_YbqAJa zfrTFq!D<>B{him3MizozfKy=t5x4o=?)@usN{s*-Y3%M|cQJ%ysgRU`k+GJ*;@Ghf z|AqU^)Ril72H3MX2ewz|(|Rh6`sPXl$5F(e=*;l}xwmgAzFl$XVFNBdrUCBp`@euJ zR5~Tz+fM=Abh3=xxH|EZMTH5_6%$_ zEPwij-u{B&r+I16QEM2BQS$;CEw-iiiDa^0*vvuj5*Dy%FKfUbbLpkT!PSf<6tp`f9IT`-nCB2Gv9Gq zd~uro$Ttk^+IjoBqTclcRQ69b`D95pH0R`t|4q`JKkR+!On({ggnDV;BhQ0l*l^!L&`zBLv^GaIP z>P_!ka&TP5UI${4*M)7-*2ZYRx^C+5{A}AR=LHAbXuSI|QUKv1UN-nHlA0jBG?=>H zJ{gges@ZT1*t8ys(O{mNC{IenlJWA_+lA;GQ}d1>=UQ-LWl?KLoCU@T&<>5J^#4uz zxY|sMTzr_OTM%m^IuaV`k`+WxcFCe79;3sc>Nc|a_?i(5Tn=m6UqG*j^S_-30%oMT zOpv0|>>i9PND`wuwlJ~y!SBmZW$sI(xD5b)LYTOYPC5u%N_c#AJ98)Nt*m^xT-pHPlY&4+tLTsPDpY+P5mH9aMypcfrd+}ovg8P%Yv5VDIKG-!Ej|X^}q~YTO5AXBryj1W1k}tU}p8 z-0sQ&x#)6y3@cyi{lf`wSl7VgRx2*GhhKI4EBzOsuj9uO z;qpW7K-c52N(lv4Yxd47?On8iG^$uqw|K}@vPoZI-a82jI#`;KN!$~4j zQ3^ytuZssl^RKN2Q0>xGYOd2Uo z;;EXZ>Wz1oiw~2v+SeZR#7xfgn-or_{xtRWrzf9e6Wc7gH>TEU?Rre|79JV-X z7Q_%EGYJnA)Q`0(ptbsuZK_3eDWYf(5N$GIItmWptCzCP|J9A2aSXLLj)sQTG8nLb z@MZM9U}Xm-n}z(x3*fxU-u{rxem$wfB#tnW3j+65B2MH`8p};hZHh?yKH49fFaxUY z{X@F>>OD)L<#dVfwLL-XJB){NK-OF53niT_o@t~^_&of z?h+nwuH(PFAMlp4%bKfMT*)N{39w&Y>pJz`qN-SYx5;$;gkpQuZ--x#nU)C`ww`(u zUdt1HmfFU-(+8}<98H@IqJhpW=0t)nt^O|dn3i5h>)pP#1HoiybRP!D9D@d~b_-%y#I^D!BYh|isI04WMp=(9_ z2;*Bsy(|OE@uUa_IqQkL(`2j0SUV5-jR#W}stczqS<;cpPjjWOKf&l746DWShx=@w zZjF|suL>{sO_ObNCxuwwg{(r8o~}+-)O|OJi_S_8iaPWC@C>h=^Rf4I?Q|?VZhdqv z=Om_@$K2KC+1<(q50r#8=zOf5%YGh^J4S={`C2(&e*ww2U3L-x=5Z0#Oz29a#gRi| z1GNQ0>-2I#A24(aHtPRwKl_*M%KP}n(tA%6lkfSS4sth=(GfH>5M*P#`1Gft?YsO+ zF7tM*SbFqV>i+JuIH1w*sVR3S^5)7hd;BQCVF4FPt>S#`spj|+v@#Jzlu`ANd_?$; zl;vRsiSYGSM2W}Xg#Us11r=yZ>Hrkjlm5we0vRBM6yOBjBIogU-Ihx)adaD9_KB_2 z3_~dzs1|VSX>J}n+{pwKgsxm#s8msMb3(F_8kmzvlHDQQ`#L-+P_N5{Yuc zaOL!-g_BB!{t%XGyr`U})KU@OcIQmcM>ur?pW>9Vsg&Ccb-x0%L`!KWEOkg#mM(* zR@8(>{NY=7Ag}78c3>%biAb^GhsJ(OQ zQ=5uCZf0MUKZ8WoTV@T}k>_jQ5d%4=7cQ-9WJ{fHoFm5st%NxszEDsAUqEo_)_m@; zxn>_|a7J?d{(2X6*7YnR7h1HthFx*}6?3t@wba$WUb-;J&Qjg9U>SP&Vnf(}mUHza zgFN_nPcQxwa@6V>wp56_Hua3^1%1?cJBfK4D{z}=rYr(B{j#T4T`5DxmM!#5=^?(; z``<$*bcU&|f}-QI$Z`zjC`{_jC{@nQ`3V*oe2mtHi4y;S#BpkRZ8g)4{7iJ4*Y`04 za5$D_OiOP@jqPUhH5#;k%(Z(Yv%RVg9qhvDbl|gqi}J?~j~3S`uEDQw$+%!kC@5}i z-gCbe;0l=Pe396XNqbvSFi`uW#bh=+_0a@mLM=`*H#f&{u``w^75Sz(CjYlv3NN9V zo4R@;i{8)Q-Wael33@jJB*PnsC&|DZGcISMIzirR-td`e)9==#Y}J>7(Gi#D*FQPA z0Lw_Pn}$g9Mk!m+wTs7g;axhvV?on4_r#r>9g7y|w{r1DExjR?C26p17uK-i zovVIT=zvXuF2|`Coo`6wW{KLmqBgVwSkqMpRD{Ujg;3`T^5?%z9Xv}D*RQcJAW1nM zP(aLwtd3YHko3nm@xx~UT-2}xB5DqBt&VR|kkfXOXxAo@>09p8ryVUK>==Q6vQQRW zOXHlPU?;fvlkjB?UTZRPLnps_2K$Rymg<(Rc0a{f;yqydLRI>+w>v&LV`qa_TsJ~3 zsqqahqb)j&H7(QI_RyUbPjE2&i3VMGeA z;lUcUHUl0|v)h^{e1;x&yopAR|6GKB4xSS?d>P6I z5WI{6Wp|uB9rrS@`%vIS-dEt)SXpU~6~dbF+}x}*NR#iA+zjDV+AIE) zEwCBBZnY73GGzpvGcsD8#Ek%2#F%A2mSxLDDsv%`Z{ZWQKUR047}IZRQFAlPQ?!9ke;)3C;9iR=y-jg^!}SNy?w2sL$FuRh zWnzrc7)c(7iemP@zRTi;njVnion!aq6ztHuulDUzgz7kyEx?`nQC=?N9!%h?S3B$qB3rURXZIv^?Wa5M|gQ&tW2Gg^5Z8R@-H;@># zo`9K^aPP;u+^hfv|IM!KdQygB*oV(LTj$!xZ=;cON2oDU>I_FibDJ&1L+x+V<2gVF zG%oA1iWQT~(h#}oT=q#3UsmN-vuL<({w5yHXF#p=8+85tfer_HpPe94_^Zs5(w?~G z$VCh5yJuX;5>dtx;>XmG2{Fb>8B)3@g;DMJM34sGDjhEGoc522PVFTf;%~olXcvIG z2oBc)p=yC>P+?pD#v^^t-K1bgf$h?bQ&z32h4=Q-=SoiuF)h1Wufq|2%H`r}O3b(| zmu8Xs^>zAJ9f1Md-VG<981v8thYWLvV!yszG(k{cbxs>DO5-)czw5d0G1h69IloK9 zl(F=#^>v|3;K6osgc_Q`(0lB{(vKzj5(hBA%{gUj1XSE>2n4dM7aZr$ec=)1-n)~8 z?oByT-O@<9r0ceS=$dS`IO2VBv2o;X zYqaSKhNEt2_CQvN6~K*c#51u|k!k&9WyAvmHjz=&@6_#H;=N$7T(xH}>)1jmYk_Do zI{5|_#3+?D->NZ!?ujfjT$?XhMMk;G?&@7$Yj9GS2Kp>2jn0l<1&*D*6x8wfak9?b zEHsvnW$qZKb<=G}*H@%#&n))s2Lu^0-BwIPw%gaQTSM`hM68{{Ex5UAPqDMoPVO!8zo`Ou&TtG6qr)y4km zxs>5eJW&FdmF2CDX=#qsZ#5*FLEATPzeV|0lU4_w8S6bCyDoa!Ph2 zW=It%-K^;9Qr&c&8iQSSDo?qt9Ji8HPhF;N(zriruy$I2}?9SJ)O*B zywA?;r1I-ao3TSuY|MOzqa#(8&vsJm$;x>W5e&n7ViJ<}tE=6SHA9TmR?4ER-tqL5B?+@TvOuBgwOf<0)ChZ%I!^Jz z0L`dujsu}rF)Zs;C4J2==l!)CZFdQ%MQ4p9#rBXl(fz0da=qjaZ0UJxQ7ivG9ZD5n zKp%VLhO9d4v@bVRdqaM2PbJpMr}qVl?ko#7t2{>39>Cu$+KNA-awAx9(Hv0?7!GXg zY|!UDr84+<&I-m0tK({q=Jrg>J!C^5+sYS!mRZToZpy_F&Fl7oc6dNA%K=fgXo>K;Vq_-g9L?3zA7 zxkv)>#}~U2XzAC~yXACXrau?S=$7A<(%d(~R3h{rBMSIH=U=hT!cr;oo=!4PJYUIJ zoG!|2iAm5|0{5%Pwj?8Hi<8mKB2`29HZJMq&JnV3xF{i}C%*co8C*CKTq*@28_^v&mje*{5!?D@|yySLJ}Ms=@V! z!qjECLNREnsN3KW^iP%X73PoK=v{_Fwc?$H#ZSZim!cJyViNz{QGHkrA0mZ1 zZ*sxLJQD{O=gU%}+?@wPpNbKxP4s&b2MjJvBBu6R`U=HMLwSI1wU2rG4X@c{11O<< zErssG^An6$|M!?9)5T%Ko?c9du@92DX9=H4*02u!)puWpE37Xf3Fx8js`xZsXnZF@dm$&2Z zZ`;8y2D3K0O0SL5_?qd8?yR1h0v)3pQcb_l*d0MBm9@yegQeJE+{}wy2SoSGc`DNn z!@(r+l5b|$CWYTCnzye1BQTjBCG;uk0DO8ZQHg@M8%ZH|Sz{hBI3-Wf{4S*F`<+Q` z&!O)QdGsTe=TK%FR``nU3Y>ApXA{2uw;qL~#cKU)HCZ5a9z^j-S##z-Z-~`@@MQDa5Q1Vvgm1-Bv!3$d?+97iTaYO|7!$Ln%{wrYCA-~9Z*YMe) zOQ4IrEp5b_ZRK|kXM9F25YlwKQ%%LO05Eb1boUAaiBa7|tzkzByHuzO>QFFB?CQS5 z_*{MmCoOW(&LXiQ%+)j>XANnqRN#R5O#ieAj^WZJW> zJ{`Na+b&`VpNcC(yp9@Xy~w6to=!kcz?~fepmyr=in@rlvjGx#6C`5z{3jbY92qET z4pg*6X^Ai8oLB9C($1LiMb9+7A*I-FygDGqAX0^D`c(^y@H z%+ztxQ2lQP4EI&><^xEnSe8RY<+Uw`M>}-~o9_;%&6aN5&NXqrKpneSz}~bZSBLEU z$m(f5k7;eQxe;Rf2)H%)GFNJUB^;pXydblvwHWSW3V#}T zK8wI>7L^`rCXk;;wNuy|WlMSfhI>vHuss3PMQB(Io(Hy!pnW3tEl~?`852YyyJ$+KWnLLEO-pwuMAtx~qI(d;Fa!Ey7J1*9Fkq zw(nJ2mB3o%)57AzlNVX|Kdp~WQy!z}Q(}I4`$GRG!=6WqA0n&)Y}Up%iPw#^t&|}qI{nZ^sWpAS-F!0E4vUM2=S_X1-90Lp*4X2Hh z@m$}}9;l>%Sd755>|ZvUAIM!2+@sd?2=k3XR22j``7J`eYvp!HmYfP+g&lrtno|O&d$cjZ&G&5ldOiv-AmVveY_#B*Kv)|j_hvDJBImQq5yDZ-fj3DkGAdOwl>}TVj)5 zJ&tN;gJH!U-7t)xWB9V4PfC!-v)F`OP6`1A&kNQvp)CuwdKdc0>-L*C4EOX=a%hq1 zIAluIeWqvR^1KDTSpt)u53~2HaV>>0$zR-+OoziLnva$&iVci94}vaz9C_?pZ&r9T z-KE#r1vXFj8*vz*aI@K5%BIo()^HmaDn_^@)-dSR#Q=ctBabp)}Hn+yyo zdvV^Dp6{i^(Aq*&iSlG%(sQ%mEj<{ObqM2Nw`Xzp2$d|sWFK{69xZQ(Uu)AoZ>>j;;16*X>0 zNB&Ifx#4TMboTHNY)h>lw$J^1gi5^@=AYs#HnFqFo&Gg-Fi>^7`Xr9ZJ(Q)&`N6ix zeq^gwR$6m|)B)r4qS+V2LDS!q1IIMTfGEmbG4Ss*D#B8YuX^@lC^Y{mhHQ-OHag#M z@K_VM(c{tF8DiaDtyub*yP|xEl+}MaN*koU78t@}lwJSvT(K8!@MRb`RN@h^Hd2zU z^U>*USL{WA7mr1g8jBiQ@Ybe%<``kvYk(P+Bq??V+uWXuGQ2K;kR z8pXs6(|(TIpX=K5YJrtIM%=4eW>UO)(3s!2Ka=Tg8$0ejVn3qOr;9hVBuoSw+8?8` zWL7RPRA$zYQZIYRn{nO#K7aM3p&-6dIYK`he0w1Xx)p)6T(B{MHW(QV>b0#vjwSC5 zz1F`DkKUe~{(USDL@yLQY^W^8faASvy)HD)g)IWq)$PKUEf;8M z$MhA%be4f7T|TGz4jRJu+WV!?@|vii$wk4IT?M;`J@#h&UOQ&UbLgS-N7@lPrv#{{ z6F{y|&8|eY21*`-9DOmG&q{12OJhhD@Z`ZTebBa$Rh#X2>F~--&6N{EGef_6KuDc9d&ZNK~13NpKK~!#jSr)dwhOSbKg>A1no3`I$K*h z-nkf0s;X>~|Np|o7%N;qu>oKnj=oYJUhXD92sXQIq3T#`D;}HZ)zlKZN@QfhOV-ux zC5H2**s?UxNn~SVV=H+GX7x_Yr za$#;`uZFme0WB6T??ViptBd@${YgqpwmT^p><|yxLQRixihA4xUVO^-!$OC`r3dqq z$Jttql~K?|&!O``LvB?GEyi|Ls!P&THsox0KcCc3Rom~2- zI}SY}jXUvshC;#tu6?~HqfCn`r6w3z{YhYiZ-td}5o$rm=J`Oz`1y0S+C+1U;dQK5 zn?mO%*nQy>#NFqioM~Ajxkd8D{cifC_~+1Y9ENfX|9W!EZmaT(`;AEZ)I~B+@qv)8 zJb{IsMaD<3&_mI8(5CF$9sRa^Roe!GVsIlT^_xk)BO*sQR|1B59Wk(@6n9|2A0_7| zqouPY<@5$>bXXo};^NXUFiMNbzFpr+Nkk$-A0(#_uvz6I4+d|P39DZ}{l6ws(9|m8a9rk4 zIXu=WHb4qxOsaq?+5BL!GfbbG#M(GVb+rfxV0V`bNqH>b5@f~k$r(iUD!4r+|8zit z-Xu}ZK=TlCP#XR5iBs~$xijS&6HE&hfn_G+FVL2^m~bYvoSKiN5ECs&SyyzbsX+x6 z1o#3)u|cy;V;)Plf1JUw#?C3rh<3675#Kx0HP<*Xw)28S!5&Fi#N-L%$4x|mPKWg# z=tDW(7FCpV2|>>k{<|y=;}520Hx5T*Mzk#*4=(94k6R*92hQb2y0N$EGcByfjtzs^ z43Xr%90#F9Bd0J;U$ApdX~hVU5W%ID+d8Z_L*8QLGUWgQ#dM-S#lD@@TXIm9u%e-b z9Q5n4PZBD9;Gs~_1gb<)ebwUza;{XkDX=1B=I_;g3qxzuNa_eC!7)pEho&XX*eP62 zAirW$qV9RAoI$g^y0f6&>ExZ`E;pQMFJy8`>dwlE0{-&TW4%B*SI29xxu*vo+&ib| zI$B-4`sakrUCDU&?>J%Go%#6O5|*>#8$D7uhJ*UZ8Re08+c_N`_ofO9>^YlX&WR^f z#S%r|y8U$XJk>V+?k0e|+4WkeM94lodzT(xT+u;xp>{XC^AD*hTsFv^0^G8cZ3i1x zqkOt#f6<$`FG%~+5nS-9WytdR+Mi3WG!q8pKM*k~FM#qv;xF*?d!;Ax#1Z;JdhVCC zYR|WcWi(d;LH46MrEBlfzA(+sG}FOx_KK@$MA%f99(;PNwq0T@364&H1mf}=Zi%22eSRib7! z%7f%)muoR1FWkT1Gxqo+^dkn5JQgumZ;n7ij2uGLrA+mVcjftieb;aEsI>@x+o=Z$ zlKW^O=$&RlxJJhDa|F&idKMV7(;?*9`7IDboIy*I~0V~6skxkqq;INK&^Wd#j`U4MrW z{GF?M_vLR&1mZJ8|1p|TW1w4fmP;$x5xhNwIADnPwWj}6=yNl@?ZWd}MdLS#;^v-8 zn=0qsydTybr+Scu5{{-3^*bn3RoAH4T7>~_pzLZ`JAw{#_KZz1Tam2l6j0S0*sZ#ucr-l+s zVtYSdXxf7bs}O|@sL{wdpwLrLycdv6Q=uYY_3z3<^~4z0bhdD}$u}Kw%rL-f@#!3E z#KUQPX~^;fj~ihzxF{)k7*f&1E2;)}(Yd=u%8x!9e2R~4LJK6OxvREk_3iI>)?@3y zQ9_7OC$K`Pz#Bi2;<&mvtRA6h$f+O*Iu(KF+y3c#4}aw!NQvgH!Ij`nhkC{q>Sb>> z(YdFoM4BqE38+_PciDuBpPMpk>BZB{c+h-V5rW&)x1d}zBU_}}H=d@(3;F**oARnD z6BYZZPRJp0&Bl`GN#Ctj8;Y$D-YKrmF!ua8(%iyuQ0l;IXl2dLj@ocSA4_;y7P`L_ zYH9#`E3-LIovdJ5pm;AzI(J?Q-E6e2Mr7f%{i^)(<90K*=yABTttPyBXn5`1BKM|h zAyFB3oa)#`SGSSuXD7j5|9A6ZI&a07r=6;gqI1K`s2Aw-^?^rRAF@OLXd@!wJF)Ay z=KrVD`t4z`)@NwPwCdKWlZM8W8r5v- zft}EI`hk5b{uxz}YJk!29zwdV!gm2z=CQZ_DdA!NplCZvz1X>wqND>%^53~iUJWwb ztl#~b>-D^aH(A>}*kbfYx!(^wQ`eLHFmfg>J;#t6@0PP0e^`vTXx@b(nZ4_9>>)B3 zmjzDof}~P#3>9^_#QWhcgclz!29DiWs6*AALa0y^m20$`wHOdWv7g1B=4CFpnVq ztDvR)WuwJGN~J}T75(4ISf|~2MYiZHk4)_PClmf5so1->vwz zHW7QAf*qe@1G6uw4}$7s;$`Q<$PN)xA2wbdwSW=$&?u(m@sgjerHGw$)^JnJ7n-hC zNemTw4k+qr6&Cez4Yn9M+%JksObn(tW}gmp_YnaH55OWcMU}3EcEq@AJHpc2+=A|! z&d4K?Bg>eG+M!w9LF*Bs+Jt`9gGbz0yu;+Z!D!jGjS#>8D4@)nJWSe||7)s51v4nd zByM+scd}yx#IkRv-M7G|esbYRsy#DDlkC27w7xDI9MkTG8Oh}M+%o0H$LM{0*Hv2Y^!Mx{EA{Sx{tcT7${-AGobTK5BZA+m@`q%1{evsEV#{6H^X{ zz%%NlnOT3FfMs2Lwm(*l4*!|l{xeIYu>^2tQ`UGR${aB?nt@?+dLOiwadn9 z>+=ttwsrNXstLsdU=Su-S2aslb=+I!<}aE6qgN!3JYx;~h^HD@9R28#u7NBN41=yw ztR8YNIS6v7x&ie4%}P*a&=FWk@b8o0Aa@_;Bd8G4gWmF3#`u5(@uje?-jEAM`Z*Zf zk_iM<3{Zp`;<3-XlBC#p;z;~e7wjI3h7sIvGDq2r$NoQgQY8Sz}8qmR`4)*=`EMd4L>M{XuZN zatn?rEtj*yOTY4aMyJ7=8L~_DGO^p5Ppb_RR{?YRrI5e#Uj_`t@Q#T76SpB!l+*}D zQbW9~Hpn7#N3ACvPJk={7zuYUXQ2xF-d}dd&b>%eV#BHYHuf+w!uiWtV~pjmCi?w7 zrA^k|8s;@2Y!C4lBPegS9?t7K6{d4BOb8c!Q~~~nTM2XHa7oW}NtyOsF0+UxGE!WD z@4Z{_u&fB8Y)=%uXajH2IxAX=$HN?%oK-%BnJKpwWxEBP2L8Nsr|2`h2NT9Lvo7AmS$(28#oWlt8Fz-Pb5vZ$rvkli1n^;8g1J{I$t(v+h3Vtj*XddduU2KQQ}xI zNvePeUNzDN-;>S=gDWnPxg8RWlHW~5Q&oM=qqENCFO!uYhMMG?Be|YR#Mh1{BQfJ| zg%`BaDaF$VIf8toM8jM!mT4^jJ!jd&hvrwZ4STs%6~!2| zc$+Z51!lcI5At@d9h*S~h7e!H>y*fxM^lhDi4HC17gD;C*{ye4p^LE*k<_{*+U+1= zZ|ge?IHzo=?RWb{xaZ-&sIq8Ch=yR91Lm2MkBsIQ(&sN3(toCDOh~?q>QFCLx;ic- zwA=hbA-zL+@s%RZ(-?j3b7OB`wcoUuP-kb5i?8=EP3M=Uh{o$A?kP~rmBIWV?MXvr zrSqazs@P3n>R(YUKVth1rF;615j;n4w1LLBJc?>|4-+S+c@o*h_S)96ZQaWL!7_&p zKvym2ZlJhfVq@4+=x2W7x{?Ni$h0QMX}c}G?xHe43ypdth$&*{7L1-ZA}1OyAXiq% z-GZQ;2WxFft#vOgf)Na>vqfwsseAqq2$G(&fIAmfo0z z&?k(9jk}BXzN=P8rHk~=xB(%%ar~gg=^r(yw*7UqcQc@(byF74G69V6( z8)KIM|Lv{_<_Jz1lK_zs5|e7lL+(`MJj$XrY1bb%V~A2H(uM#nCzE%K`?8LUFo>Pt z22i)hCxcI=rMpCbEFn`ndz>&`Y=r05AaVb&7TraIRO{80FnNt+PvXct;)^7~a z0C@joclEAnDI0OAW;MWW;xl)_Lnz_-d(*PUk8guyJyEB5ON3*)KX$~zmRDtF7c7YS z=Fa%OU3MuY@joJ6>#8=OXOli^!r?rBTh(E`7PaLcwlF=OG}3x3S6uW!Vwf5dE6PCj z04zaIDf&Ja{ome|gEZjOn+Kg>W9mfgb`92ZC*5Kz+kGV-UbG2*$*R246d3N4(waWZ zBW)o-Ck^STCi`wl_l`to;cGI@P^xG*H!jg7`;SEMCovLhs_CF9@hKKmaS@W5-vh8B zMtUxJRjzlEK_A7S_v|ea`;X12w!eiKsSDuoi@+a3$C5g?yJ3hRw{kbeEoj9tWYVLJw zPN=Uak(hvHOMeLP*oETbMV2v2yHKWNyUTl8r5Q$gNs{)fyG+(9J|EC+3%g&ogRZ0} zWj;bY4Aby2jlC}a?+F^grQi&OL*G__#}l|Ggr|if*^w;A_qbslu)bU$YU79x6Qm}@ zI9w8s3e(aa^Urg~1^bf9FBYAGUFcGw%y=*?wnh1+k|zmG3WrcN4B(N2@E09BAAa^& zi`_z%wLKUx`T}6u`Ra?@E6Jg8GX@#M1CCfL4I(> zJ8FM|oCAg$J1k;xIE790N5I3*|H-)ajLuJX7kilQj`#ZhoL^qD_u6Z&HRqUPj2T_*t#Pg~nuL)~cw&PT`e$Q!O@0_SAK1Lb zl@#y$vW*4A=@yBXc4`4kyzaa=ap18AxX+K;+hwWvJf8fpiCsKe@XNyV=Jb1YFKU5& z70>dDaQ&i@ftt`y8|Hm38ctDotMAi4SF=g(2z9_(TW&o>yuQV5Tc{u&6+L6B($8Hw zqPK;U6z+wB_73Z>sGDEBc=1O$}itJs8S`kjfBjQ4WZ9_%36g(QL_cZ3|d}f}(VEbV9rM zcIR3djZyk$Z)}{@V#wgFR7p3o5|!Rdi*WdZBdYIg<|8Q`U9iCi*#>PH^yL zfM-4<{IBf$oPkYvZ^XNa+F{*s-aYOeQ#;1O%e8LJph~SYkvaTnzzE-`cPSj5P|?lp z`$d*JH+6RZbW9A^TRXdB48U6d)@A+v?QG4P35sSfuFV4Dj}}NeYaC}NG-}U`t_3-Z zLzMOc*g-PPPVLfB^9!wdV~yQ);{w*M&rIZc$8ERZBIT4sB5(zd8R7)ls_{w^NU+oPImQZPW#xK+K7lv(XX^GvpB10OUF^e@vzR{ zTaTcu3&UGsSwC;Yty|13%-hGqI`}RWgrvQh(~nlN-$QY)Vey3Tx2-92)DVs1{EOpf z_0P&S^49YG$~gQuKV^;=o7cDIdoTChuf!bVbCbLQ`y?*pdK3S4yTel(Q0yb+=uyJ# z&jjcz(E`vF{I~q@7I2I=47~6Vh7I0##B>(7#Z(`J?bt;_${p&HHd#2XCQ)uzq%|KB zx}}Lj0ACub&d?`a4CR2kYXY>zZC)ebf=D`kum3gZ2T@2a2)k=b+)wp2HknUdP zX5_xSM89LzrrZ{rUC~=t3)1atMje4guy6Fi%|SvF$K(sKrzy94LLK1{YTLF{S`AZE z*nq;Ww|>Ea#h2*Ub|d0y+iGh~ZLL-A4)rSf?>B)~?jOooFfOArLKR8yM53!_l2b@> zDZ+qw6q?SjNa9&D49T~_$2niVe32{+AEZa)13P^pRnk026a`kfe_=Cdc|+CX0=O!e|htJGEa zqBJqVWPZKCI*sQRh$33Rl%tg;a0I<+{jPDm@99fL}P%%{Ah1ih#29x(CEw^WO> zn2A_1Xm1SRU2<=gPb8lG+D3RH5f==3dQD(%#d8cFMsk)B_@&VnN!V*vHI1WP|2nyx zv8(|GUnFw7Eg4dM>;(Y5MfcRlrZ-vAPxA2I#lcRsb}Gh$$j~E)3RtTh_;xxzs8FP} zxo5l`cU8Nh8_7}aQ=9L7awd^9y0su!x#*B;a(w7VK7LqHPPcz(K5{U$G6LVbBh=CR zLn6dwt=A_&;JR$5>18_=Wyx95ubC-kJkk5@`D~CwU>RHFT8_%QvEqk z7}X+Z2IJRiRLs}QpqB^#mV%V+C_n7r-c;U{IRy;T`~Vs@xcy!Tj3Gp`W=L<$@Ln-h zAfoa8FdO5#c#Xga7Br0JnYnxw(zEiEI1D!;gi4Vg-yraLIfVQPOPIoPh!9O2J_1n} zCysiIj?1pV0b`hk`dSbxK2zXCYRPD4G}?*Zn!)t6hx%kX}jlebWZT)xKL=$ZuE;FQl zUj~NLN{jW4FH3YA?-X9+-6hK;(>jeS;Dob?zGUXk6MZ>X8mSOeo$c98zSbdV; za<^^N50@a{SGuCB_)M->eSD5JUjWXN%l;5?h%&DFl_YU~1y`B{!Ih-gH`vQolQ*f> zElp`fr_U`KG9_-aYBF5xnD=T6vWKU+iXI}H%`Lu^LuAj9Jx-5&+WSp2;qZAuIip%h zo5SgVb<&4qR~d=a8t0!_V+2R(=T&p%!o|798Z?~MJ~eF(s!^ezNW8i@W6}-7^eucu7)~L7qbq1-$lh#H$qkVQO09SwS=Oo1ljf6moPQ&M*-QI@Hf@?MnBl$fMeoXzdP9sS5;(9 zaTaYkufE{FH+|s$dI>dvD-i@}NzwzCeZh=|LD1cqN<1#ZibmJh1UvQ{BqE%`uaQ_n zna+Iu+i;N&8Xq_dSBQ-_;uWMZ!tlq#wVqg>?;yqEzQJfBQttdD+JWBl9FenCyXZ*} za)R@Q&us}XHp>0H1rf~4Sj-G!QXl z`Q2wRO_F3%AI(Q7;H{7sSI|$sSg}CesA5;J{Xo45i)gQ{VH|a%;(XeE(nc+E0T(;m zvC#2_^mqL&;suqzL|3Bx9#+cC81H7%9a*;N9~t?hZx}lS)^X3*W0e*rPAM+}+X#6GIsX|>h9vlpW@ zI;>sP;sB#2kaG{y%eQrjifA`uJk6L6xR0!@Gu%1gzU`f#%5Vz-v+)VnlJOch2`t-| zCV+X4F20AJc@`|VCeQ&SGLLuHZFLF#C{B^br6Nn}Tk$;oXzSQ#QaAVp0w__}o#8Ec zF@+eGrRC<)IM(kZib!S7ON?Hq#!w^rAWP(>pUNd#t2|uADtl~A5po>3wR!=>nv)(5 zjJVZ))x@>m;eybi%v!(bT0J7X*B`}Fo>G9;qd35%I2G5Lz#LZGJSXGc` z=k-}9rD-CwHV-n&ytxg|k9R&gNmk4~C{M|Fzw~#h$0PNsuG6Fp}LZW6ZRrNTc};b#z4k#5J{SHEdjyY z$WnM2HmByw5+o5ceN|L;Vok87c@(b(F z>j7Fpwus+UGk2q(_8P`?9bWqk9W3e-cE?$F|1^^|1|HAqzJq; z_W`^+#7qGrujlL%SR0YV!FO@hHm-?qVFY#fvOmMRus5DUg5C3Y1IfO0zo0K3_qK9xueL3V#BM}K zr2$Ty5_ElFym9T~?g?j?mNM4MZ(4_ZFb}T>)o=O4K_UP%X}+T6RaC|zz{;&w3Fe06 zAH(<5lLQyF_apBX4s7nX5bNH0HaIx2JUF-Gi^%v53vDS4$|zY)tl$@#Qx_kFcnvnw zi!KMzUq67E=vBw>@dD#`C)9E<#xHsq!<6Y-HAq)o;-T&|oIA7*^9&zJ)WE!NARIo5 z^MaMvp{9z%GRb*yl}%Hib|%uI7bEbxh|Y80N7La2W$0(4Ndn_O_CLLLK23L-qzH_a z#(JVO^|@e*Ga7_8?j;*DK5dCak1>CqQ=L_1c%h{>_#?j;DxMtC*hjj<@*+)l9&SE# zpgh~*4$X9XpX%>g=ZQ3>XY}l&3{2#(A-7w4r}&iB(n-M*nV#dZJm*m(>%7w4~J%9wc_%2jg%2B zuXVtk=FM04W{1>VVYZ7zvP{i@saj2sxr!D+l=?Nl1*MaX_E)(?d?Y7MNYuETbEK%I zrCEk*!m7-R?C>(DJOIMBGi$@KnpRzs4y}Q&<%AmQSSnpjz3?Xm@oj;5@E;Bl%=+ zN$ESu)Brm2+ehKS-$jc$!cVzclJW6T09#*pvGNr|4Aye8J}dxLc0lZ5ZI3TcP!)cw zZhKw7rZ|*x|WFV7En;< zSG14_X~?J!=-v$uT6OupQ1AdcZIMu(H7Bbkf?(W!34{Q^n=8X9%595MVVJ2PHbntc z+<3UXCu?jB>Xg12ZX)5BIU%DBxJoIYym}b=?wFw?vUUmI3*{GhT>`ZGjC=a;xF1q) ztyVv^Jx@wD@v0#%Kb;cNoSX%R>$63@!|kvwcI7Qy?1KZbhgF95lY&Nc1eTcjoZ8o{ z>)jfyH`ZD&P%=Dz=?Rg~e)svCH3P`N(jNJofF<7|qUUZ=0R%+MV^uq)d-CRDXa6Ez z{KSQ&u!UU=$Te_y;NJ{$JEQTO@QX1K#R6iAzoe9)4kA2f7Me8ncKxPl(@`aqg$n-t zstWM^0c`cz^fbGUo(Ub^G*sViq**>HJ+0MQ-*l#JH0v>kuR9hXeSKn$beshjQNEmS z^N`g3`zx4Z$(2WJ4W#h;=kr$|vkxWi$T!51!<9j93KRjx;<=@|^a1l;y}@zreRb6t zxT8WN6#l#{MI331z@3flujV*iv0-yBc;P5H&)4)OB+rFuwam8Ql2Tt-!t9|l4KrQq23A&tW9*?`Wv0s?-q8V@=u8}gCG%%j| zZ%rFQzRFR6lfJ9s*`O)}IQ>EHLg0}W8xMAR%K?!2SpgTtZxls;4ER%pT*2!cP%Iyy zEyLVMJ}o-ZyJ?da+u9NtcKVFjae70@ZnRD8yVcB(+={edP~W5==WlVl;fK+QPQdzG zcks$QL147Obp(qvvHd12nNC)I7!czN7I!XgBMCm$C)f{1i;hblth4D+dSGx5uRrVx$$B>idi~PE~$gR zf>?G}KJ~kAAV+ciFIG9vk*=2-_oM4aJQo<*(-oBm`m*IWGQAY;zC;fGsPI?mb!ZLK z&UR}9i#>!29^8K3TC~|1u7|wGY-g)w$fobf9#Xr4ExO~qKJ9}lO`Pc|!AMF9+Uoyw z$~&BaLVsDKY34fW!foKjEq}LIZB%MQscw8-6YTB5p17N8ZHhnHzH>@{+8Fu{(;_O>&mO9%W!CL@#^k#YJrEYy4 zJK^wrxpFITnRxcc5=@Zy;n;s?)~lkFfvyO57tL%OcBb(;4Oi&`4q+S3oq9N!;^l3w zEB@=hkzshg+9=4di@NH#?>Tix9 zmp7g&5?^#v4F2FKqdB`FrNrZ(SKf^g(@+$@m8VE7cXFis6d07uyCiJrn?&NODKY=2 zXJJN*Ffuy_Aaa^&lSaPb_>BXMJLSD)_`N6~^Pd&m5=#<+r^*UlkoUQxrDzX=U9lzD zj}hQU(=GF;Ilv!QSu#Miju6XQ%H8vpsd(Dx4 z=NRty*s|Fg5!rC7vm8waRDR$AlZO0?hrI~}yQ)4b_%{i`ke`CTwC}i5qDj>okP zQA4d%43$!v)M>_Oa;N7&Bmduyj1xh+1`5GCnjrd5nebkn8SM&de0qvEhZ3GFVaYGz zX#%orZmP24heZP89Z+fUY`KATv3Z7v~*5wi99>i z@82^7m&46PvVPpvepr!<(OvYZ2e+-#KNFm(x^+EXEf(X|C(W>E3VFk5`SFILd`^_(|oy%H}i=El{_~ z2VCOYpINfX%JjAn#S=fgf&84&p`kzeyjh8bXse@>SRon_O@ntYIFtOm1w;`VL*`8$ zh6%_4FEZ82XAjbTuISz;HF-Xt*@9S349_TB02X9g{NK}(m-%LJu1?lWGV~N14w2Eq z9oZp;v;_XOp5uGe?%Thz7|Cg91%SzaFd#qQo-^h_W2ixlu*JxxrK(2#79aA zZ<-Re-(-PqemWMB@m}}x$*%!;-{`z4*+~tZ5PTCtiYT~ESWY;o#`5!b%eSVAa6*bp za)FVFAx)tv&aw$K02a+iN8!KSGcv-TY3Rt_6CIt!DoyyT_w9n^bu8!UQ0(J|c?`^3 zdYl`Av8(7oSKwNaq({y1e|Z(k9dXjqC5UWF6ia+t`MERWuYXJn4(5?{cWP)O4#K;> zW}TCz)I!?c`m+C~hk!6ZR;TT0^!I~G={&Dv+EGJ*eWGv`kgaO9sRa58FyWGb!GSPx zX?vi(LCAqe@R6dMlTg;|I%};j_5!2N91~UQICwQ7kVjU%;l0am8jO)%mCs>fFhonG z*{RV>t!``>4~5Zyq0?Xk>|tAL4VGtZb+pvZwdRDu;S~&jSu4c#-d1WI0e+panp}wF z8=KU52`QPw%+rze^0s}5cAa5hU@3!N?zTjY3N5xm!Wt9Kf4B-(AjyUuYZ}@ufp(WL z^cfelwRd#}M0T5fDC>mq$YzW`4GaugLhuoZ+haPhA(UVzqR%|7yIoFA|Dg*#uB9y! z=lM^GAL<2o_b9kDSHtx zvVI2a)paC!fagU;k`7Is6q#cctaXMayI_ zWh>O-{H&)_o#9yr_dxk+c7;NBxt~In$PCd8z@ZtxOgGE}>}nD+$}$xEU=S9C_L40b z$ClUE*Dr(;*p=jY5o#zV12XmBi(&xNyHz9)$B~_**NZDs=z2cAXqD5y8uU56q*PsR z*yWZ*v;6IJsj=q7Pfv~+1HBjcvu)skcyLVz(p$517ydeqMbNh8pu~)Y8U>t{7V-1M zZa_270F=XD3f3(t`R660E{Qn5pu9ZlN%AXg0}OmX9sNk^jyaW;b(U7DK(CpR7h%T` z$JL4Z>zJaX<3=)SAbO_Mr^I?Y|9qq3FIsvM=9HUW*I`8O0$w0rEE@aTK&j~f@E+VE zp|@MnuF({8J7+_wjty8XZxILXc)7+SUoY(JT!H#9g1#isy;vgnx=tqj@|wu3aGT4- zl2^UE4=CIbh()z!LHX~3#R#uvsyVey@X;W9b7_6?pxWV0wvVo_!2G*`+*&@(<7s=%b?}vf z%V}7u=*KUlVQ>L&1i#p-=zXhnC7}^YCc#YVliaS;P)+mO%JfDT}Z4 zUap>GKll^DEDsA{@pAd24mYf24oc(4fc{~9^=Y0h1k9yo*hZIg5!am;G|gvH7Zntg zj1Q|cZnLg3I|(C|`8Jd-0Zso9;}XShQyGsY6ctYp@Wd5-jw}>4L^g0n?p}Bb)Vde) zKbQUF2lnlsimIl-+8^3xmfy}Y_nk>i1^s4CRt>}!{wUY|{ogg9d_euth9LM5zu}3s zHJqNjfLb$Yod}1lf&4@;b2x1Z=@keBPY4msT!KK5GnjoYP4tX8FD<^YhfyOtKH`W( znQ-5Giq!g_{*}_u1s}hy(+!0-VqL8 zwYKRZ1O@68-7TMMy1)Xc*$$PV#1hHV=p*FpX&JX!E%s32Za5D@6aUyS1}sZtW$z^P zH5+xg>~xo2{qx2FiZvv0k9Rn{6r$LKm<%5+cd8@FlbR3%sbvl`*P3Roig}@)3EoZ% z?ug_Gf)CoIEuXjF&apZElD`pXBe(he5&Kiqhs7R^imv|Ts`rxD@lH+6vq1hWDpZ^> z7MYNn8=W5oy{ZQ_JJ#Vh4xNcyHE&mD%R_O_5*k(`_IpuE53(VGrxbZlgkoHXh)3=K zUI2H}EUP2UN;(|g$ZVAp&`>oIJ307C{-~~pp;EqZ*R*?fvz{6#rA4j04_G&RgQ_NV z7f9QVpfJLd<@}boP++0JaGbTnrs0Q(>jrWXP56HqQ`9r#;#4#sKQjgtDMU&Lx=y{H z0c{MDYiw}c_dM2*cae)Uc1&o}aN)weVi3w+QzPFwQg&s&%W*F&I>In(ohS~a~ce`>CSWE#rPW)i-omnR0=WO$_l z*5Fsf;gT20)AC{(zebEy4N?{8#H9sxstJVRUy1jtujlPjq^O5U5hSzA`KUgh%H8;W zUV5T=R|6Y*ytVca8{4es);_0@woq}qkzcSl zcZ6BFJ0j>j(~Ygwd?ME{SC$Wsr@SM$Gy$XQ8^gjqv(r`WB)MN`15ay9p$K4akXD{a zr&()N{i<$4i}C2J^hjp)R<|L!jlV#>+SvIjZ&*V}aWfvTUu&IF4@YlzB)OvDL26Vf zJ3Zs4=cSt5S&VWQ&QRj0tG_nR`Tty;fK&}9RkAWmX?>d&4mb=!lDr5Qz3#n1>egm8 zDZ};uOKTqQCy*pRO64)(8b`!p<(=5=Gh}45_VT-q9i_Sv4{~OwCY{A+tnDUl$3nAJ z)rl;ueHlYUu)eY}U_Ic85EY0bC2o1|fD;`|9GrW^1O2Bk_|Hq?!Gm0V_ahxEi0N&0-+rmF;o~x-x^ZbODPuN< z&W-!kG*k^3V(#~4izNggw3zB{n{V3;?&YWs5?h0w{{kn{Htc?4kDoWqNL94!8xc{Q zC>{Lqx=IT=r}75%lywO??ZilFvn776pY`+=9;4qrDxew^;=m3_NQ$pRJXdlLWIg)l zu_TXCQs4!BU_+Yk{sTQcE-?VVDIvUD8Y))C@Ym2QvzWBpQw4Pd8ZUG{%_A>sy7oQ4 zSH5!+Xq18LX4^8;R88T z&Q$d7a`K(N)ntBJhv|+6Og5ljq34;(2r$`Q0Qhx;43(M>3;&Y*%#f<3Ixsrsa^AW8 z4M_gI#=tXn6e4lXS|G*P-O^Eabuh}O1R9S5L#8es$_~U#xV_4?Z|?)!O%57a@mB6s zf#DjQzmBtBqbko44;=ZWFU+TJagnb{Y^P??gl88)nGdg8Co}vFm@k3J+DS<~K~hwY z>ZduXu^Ve1IGafKYRfMpNv%!m8QaT=y5N|lpp1Qt*Sr4~%CDYrB05u>razh*{n@4e ze)G6?q|nk$Q2NUSH7vy^ule?NCtH`+$>DW<)Ka;77J5^8gt-o@Nm6v6M1E%$IzrGB zk<$%KtJF_SVFs*DCOTu7sasiO1kNb92AyQO7RLe@%2h(?r&zOuFv=C^7 zq6l7Txh;nmA=Q(6fmm4c|BvAx0CYTZOW(!UdH)MC{q?1RB{h46P}&Q!m!X%n(*1~x zSz*6d_WrqHLv>Iay|tQzh(+2#Ulm<2u6L?+(h7Zm`R@CtO7T2qYr^$Q2Egz!v6+O-nVr3KVVP@s<=@Bp*A+o?{6{`_b=}tG$D0dz z>q{4+qf7PyuK^wjyOHGP;D1&Q7Zuo<)RHHT|KG;sL^#6fVC?IG3>TIJ&t0chLLiV( zx)I_p3s`Ac$65g!Iz@iX11bnaSAP~2od(w6vZhJ+aB>IahAmU=QVdT(GUZCkSM|L6 zZ58;9I)e@6n9~X0SQd#p*ef;xsCsnVA?K5@aQKDQ2udDGO`YO!PjbLDY;?&kV4+y7 zr~5y6=KizFcxg``!*~D0)W4sd6F80cb#--pBMfz2B0PxVxZu7oImyV#te6RVE)SF) zzkpq_0P|Cse7eg{d6G|%IQKOJIq$0>UgLQR%Qk>r&V?A@>R1ktqsA-uOf*}ZzdTx- z&BT41oB6;pq#z%-T=26lWaLJVR5)x(&zPkLoxuCPx$R74XW2V<%sf@@pYIF!chUi0 zzYuA-{hw3nPn7=&rysI8-@eI01_$%Mf9G*eF*Y_{hM0DtS)Y~^gU9W*WX@7eF~Jy~@{qsc4#>&{Ut^MX$b& z(XP|(ipQ6+=arl}b?~L~(a+$o=;$DN#z@xPz-C9oxrwAt+>xrzn5_P+N)fJa$OWuA zM82iiMPP1;HSx?0$^Y4yuiR4Z@{xpUy=~qIK=cdOn!Z*J6MF+(1?~v%hKp@ju*wJL zBdT{}_`%THR%;oGvn-g0HMxiQZ-O%M?~=lAw{$jbZ-1y{+GUMHKu&%zEE9>*>AbMCbTB}ig6uNswv1`+O#e-YS z?#)iNDAOwOV8!|#!Pq(kqvPt#F?T(pEc??E!C1ox%#lOPK7dZqd2{AJQ4s$a1>7&u zDT|QQ4FnqJrix!lDZKxzuZNO@v-Xn92wVvn+_s-HX=t`z}Bm`U!Mqw*{pS%K`(jWlWUxIk-FXh&=}HnKjb7k~v~!S#U6 z$@{XL62~T;sEpfU;Hr2lwsUEoAhp;}3PC%TwT|&sPn9E<+SE{u3!xF}3Wg70?4n>+ z4#<8#aI?OYrbG!plQsRY&dC(CO2=^&;D{i-R`xyLDgQZMO6skuE3CLgULt^$!CukS zPpqBCzVSpR=ThP!QE^6hIN$lL#^#0#QA+RT{K6muz4lDP*Gk+1nMIHQ$I6s9s zLHp{HCX?~bCs&z7RmOPrIF%Gm^9~+M@RLu|D6}zf$jgAIrVm63Lza*=u1BD+1S`j$aHe0eP2L$YQ9XG&l`|Bu=NsU zPD*8N3Iz~YqB^hz+S+$#%m@+jxNw-X%<@d*QXu1YsU$PxC7^es9l4ovQkw#W$+Mgc zi^+)rBrw%{W#>j#T?{|yTIzL|y0Xv6Hy1#X?x(bvCx-0$ zt8X{MN9VtfUeKe(r^bkRB>-N#zo!3(PyIPDdcl&1Dre+cqy#=~c#=n<&t&vuawMgM zLb+uU86j}p`0ZaxWm7}PokBz=!Z{yXNGsWJ9>`(19w;*OXE7{GmrAyiQe|GZBi{j| zn9?bchn52cnm8teN$Gj1UG4+w1DXTcGyYb9Sb?64lw2;pPF^s2{1F$iJF*=7!6t}4HG)jBga71uQ zM1uD$d}*B)o(FDg-JUq%)l^2HC-d@oHaY8^qaNn}njwEB)K3s{?SHsZB_<)$;2^^D zt$gjU?D^>jlh>Meeq`7W6(DHvA#n@mXdW(q(e zm2q;|wXp9dt><6Q8)5Jo34$t#s4t^$RzZC=Wkl}YF_*Jld>^_i9B)A8_6^<<=y(!4 z4q^}KEJg_6wbKD4DTtOYRAZr1`HYO|B2D$zZ=M~hyRu)Abp*Lo8`*Ae-G2Tg-1^l@ zNi%5%@uM0|{e}K1tD=l%33}NCZoMRAy82D?=;1uxIDsvuTp39gVIUE4;a-=Qdb^VC z8jAa(!2EN4&J{H#7Z}x&%y%jNg=t3}S{MQ!DHLYVzNx)TjAW4u0Ck9TI z5ub|jgEkczEiJy!P@7)9J5Kv~DK4Wn0wZ}5&txWLl-ou=GHq85RyyFtWcCiF@W_id zml>HD)Z_nc#^ z_Vjo^IqIA&RZxly0;ciTjj}jJw+p6K37aU2m{QIcuxmKQOu_F>>N8q=%J(@!LHe3` zW!Kbr?Fqae1a;`P^p=d-SZlv z9sn57E?q7N1ZLD^IG5H8i!uv5vo9h_lpIa7|3Hpqjl81avayAzYBH1I{o{0epXV_uza3q?% ze#(>kzF9^P?YEV^S^m9J+pS-G{2chnXdseIZ;K&$~c51i<%McnC zrcUBGNtOd40Wmgni(^!1_Im~ol zHno~hsoNr&stOznG;%Jfsy5)7jrXQA6mK7uQ|T@($r-z^XZoKeo9>@^=!cW`Q1MK` zDGT-wFv?nYtpsojNp4U>QwMS21*EEM@BNvsR-~D-ZbHBfC9_N4yXyCg3i2D?u3*94 zB|aZNx`Qe9iTf#x8kml#e`TG0hhz5Kd7v4l5Wg1&Zaa!N6%1=@M4(#nTrL!P_@({E zP)$_T=&2xJqxzpJmXh!hCm>u7&8J#JQvX`%%2|vM`~Dd+AWeKcup$_Oxzn1s!Bn>1 zrqU0eO<-S{Uq!}rwmo{i3L*fPtE~R+oinojUDnoVV4-)>i6~xP8C_;>xQMoqbU@@H zwJ5t=xPs*1o&3fm2QdWCng?$~VNZcH!00#%mm6>AbdY%_dvA8i3yzSJqtPmj-4$y%) zbDaZdsr!Cwr2BqL!fC9b>+*^7=={Y1<=FSlOr9J2JBpQ&uEvJr#wmvIS_ zA6KYaNpg?;Y%KOgS(cqQO?ZB9X^z8ztxGKamU?>+*|NIJtXCtj07XeXf||rNqBqez z<*voZ((OkC>u!hoQRjCT=b(=DpmCLY2tywk-W*)%e(mBBaqWK5Ljy$aOAG94Fa2o0 z;q|7W5~y`##c;R$*Tr&j$kP{>G~=-Ok@7PBWWe(cd>AcY!Cxg2d#+85Vg{$HcfCv6 zT01Jr&=K_jNX*V%2exa@^5{gQ*L~{P{QfyoBoQ8~kPwdH&!ib}iuO98NEc#bPaz^* zQ7kPXUlxL7DT7dK#Xd@}st}dt9NPy&D58?^XaGt|4f_or_3vBxUUW>Syo|R-QoAh? zFCvFf@gC%_s-U0cBnK0c!Wo6eu5t2!SB`b>-Qdl12~VzAt%21>YMc7z<2N28_KDrv zFhRXIcDxLy??<$6!tLi7CA zQf=|6zd0XJv2Tf5IsyC^&%-VG-^aK0fCxFc?OM1(G;zd7+UQB0&a%(_h|;3&??eD8 z-l&Gw9+dSB_n(j&p8tazh0x-0qU(N!X5}vlJWe+KKEI@V#|YuN{rW>XKD2uHF>UY0 zD|B9<)zlLf7N(vO*(LRe6_zvRe{4m2q9PRyPWoUFOwM(xwrfcrtUxCo`ev2&e;mx< zIstQwXQnMLJA(B4Qd5Cae|kFdNebY8cJ`qN1CD>BB{l&8d|e1T;HBs!V>=LZ z-<;QiPY@akaRAJ(eG`KE-EYMGt#DB)h?R83*=l7wv|7IW=q3u+ z6aekHMj_#IUt*V_VBl3;aUm$sb`<07qItwL;pu(>nSy^mDd|xDHCWHP^*rRX31se> zhpJu^UlTjI(22*-$$msO3R<5u(_O36#+)}f@mEs%R0!{r=N)l_*}hJk$|H!~eN_cJ zNr00z)ScGM>aLRlGw>C^DTc`lr>CWfT6*Xsa`wK&Sek^z?|KKe?W{EJJ~}frF7az# zMc(A+l^N47-}$}X2U@r>IasNY{;vWxMlQ22X6NRJ-yXwTV+)bg?IRD%sfxjt6#$Q3 z#j6B0?9|e>`FSXWZSs{aL{)_FqW`JAsZ+y)IhaSJ^V?>0BzsBx7lZd2m?&W!^5 ziu5s|2>aCqqfT;hdO}X7r*+j*iM6kyU#5M!9t32F0Hc~J&LnxNUqoAxGtf+QoL?(i zgD9yX1%>;w3u^b%1X=G0!7vC0U(VR_-g^9(aiK-8AF)5folDCoVl-F%V~;@9Kk`eM z!q&66)r4p>l#>{CiCu6AHw3odvp~cGkK|g>Eq`Ei(V1pBNO(8dz|l(#F5ih-HplNHx^-^AL z48?=IZ`)<~WU-0U!kaU*Y*|Wbc#Mu+Mbk`xnB-LQFmICul+kyk+A;H3BCoC)Kx+Rt z&+C@~^1P9rdW*LZ6nK1w$JspKaYh66!)xQYFa&G~Ml5-FYG?jv5A) z<+fUR8d-|Mvm?FWOaCrjb$ol~@{2<&Nwyrfw%^AZ2_LoKR10$!-@wxpx5HdZg#;;c=){6iYV#mJ1Z|<<7H13;yAf0i# zlYu-DYsG7N&JMWS`3%-R$Dh`pB(D&$^XZdL*+o?53t-7*g@3y1f1h6O>CJ9lgv;8H zC&L2yWna`RZ`ak-*bJ0cbzrUsDaIJ-3Z3I+0#fe9_{HSU^F z#*4|^g7LhmUyT&~4HWyIx$n<~XnX-|Z1_?{Q>q4PK{d8F0(z4#RPH|VdEjXk(z}p# zEO-Vzp&LEpy`kJ!i%59?r(*R$s6!B(fyU)?cp@;asuu%;T4uFkzVut_$Tn$`JVAq) z;WG;2&y`wCmd#nHfuGnS9jCxStUz3hR6@DxnB0>hr9j6+Pif>KFP5jd1$FC;&#E=Y)uD@U>>x`D_Ygb;Dge>@PiSq1DMe zKMI0oz%oVio}-3#`Z|q$q?^=2#&;kFcdok$j>dg}*LCDDz~JFQ@u_ zA{BcmVEVqCq1Aqtkveg@xYI^fe7(GT2)*+671qfVJ}cX8<2ySQ;+yGpvJs(Ns7y}0ufZywftyZx2B&eg@9>waEuVg0*TT~qu0umO3%P?E%L zp@UIXJ^J*<;hj$N{_|hgFtWK(f=Rpke5K^3gCaP6^VSFQiPncK&CGe&c)Og(V!pMW zQW5HH^RiFjl=vCgaAW6*@wC?xAOBTLKuLJ;S%wPWc^l-%x>nJSX|SEW|& z>+9=9j$IFG`qqN?s)gG>qEv^rtBF$Cu-MWxjVS z7|jSJQZZFw;P{ka&5pFG+Yyv>CNyR9I!NSuK+^Mfw!-1S{~*zzDgUMNWwzf`zPcjJ zUKrY~Um>S)Dpvh&j(bM+34@)DFHEJ~pA36@)6Yk?>fLUkDEu9f!p+Bs^|KqTZ(N` zvq@*-ycE;d$g}n4P8Sd3p_IG!UD28G16lg~nh=kWPmJUM5-&y#f>~md8PWDfy?xVa zYmK8tG}=(u$@Hjcn!)x;YJtJ;o=o2nL?j$ZIC$WPas&aX!(~~xrYsKuEy?|*41@aZ z$G3N`CNc~b?$2ZdRP-5<5zs4mN{jh_Ukpl`!+ z?<1H$j6u}{vhIH8rHT)t`QQC+Op}|~bt=IQI&0+Uff`IzWJRN`jXzA6h+P|2z(~tJ z9V%7brZ~x_>E#5U5lLiEd zFTAD-__I1=yWo)lvRqw$8eY*U6-IAxu+@1)>lF4DX|JGaRu~aKGE458d zr{Y`LH%%{C!1UEJwtC1>NP$s2*?b%U?wIjF&w zl^WD`FZTeK{y;Nsa-=4Hxt~hr98{ar)v8 zHh+3-{hN|=3n9TzOrUnC=_$FQ*rt>Z`nDXs3iLY05Y>3g=QmF_Gwk`-v;W1Fx(CA4 z8QyB~LQ5&25a?@$AtrI-2dSmr~; zfzz9qeq)UL*M|GE>wq8X=kmzXzhcY%(@S`8jbJTT=`*hkf=HPs;-*7=M$BpwaSZ2fy*{ld$+9mgyR#={(eNX=R`ukXp$DWwNAXs`CgDS)kNv5N{}O!y$B^AMhkp?&Wv=pvr`rQLf{+u z-d(Nzj6qOP(5~-qy4R^@4O{1UYIU!iRqPY1Rtz!%W&##I3$aV9f38z!Lf}EV0vis4|C!3Gzn|`} z0RB+Xq3w)0f22pYO`<zD*5x`IvtT^kI4~^|hSjrG|Q*%{iq> zZ%)Lps$Nf?)PXRmO#;Rw$mo*r!OkAY*c(8;AU6mvQV@0z)B}fy*8GBV)XbDaV`E}U z%gTCzqE{UUgvQj3bJM0;n-IjMy4{LNvlS&-*(nH%zSn#{9|nS>_9ta{N@QpG0GS>D{F4=}q3H7)G*^7_@ z7P!E2u-*d=c*2$TctqRle*0uu%BVf_Kuq?;smf2=Z)|WBlP#som%l|$kcC`Hxjwb0 zwkKO4cDWTZ38nOlZhJRm*B|u{nm^b|JMZNe_sFR$=N!ET%a(ACiS9%cdu-{8ky%Zl zfeA;iY!$_txfcCww@xAYf5actY;Lqk6xJ2P_G1%|iB$HzShRHd`l2s5PU-7X%Pss{A+>5}wuFCIRX={nI8 zU<&y;?zG8m3x$bM0--c`F84OEptAmiE2Uc;c2vVYdDVV+wj!CSuP4%i<>0^!&e76M zoou-$b@1SiM+P5#PMziRa*th{xQoMwA}|w=>?~-Da0v7yA|_C}K=i69e?x%p@I541 z-DCR~cUig z!#8N+8vMmba_0=(BjB+SWzTJ! zdAZfH9og6rf&p`ucnJL67gyQt9kD)ZV&L49gbawk(H|E{6XC}rL?gW^b(?Y^NBf== zSkC?PvgEA55r3-;5B)Z{Dl#3tcV59O11`)0=KAHzJbOQQk4%PzQ+#Mjm+9E1CnqMn_JFa)UW=nO`-aa74Q*1U zt`9C%#5}{fd^mZx>q6?Avazzu^|JyBenSq)<(8#K4i3v65N`Va7492=lKcGA`o`)xPoO?t6XR|ocamglVgKP$ut$^LrDZh84Mi$(rCnNMG^!ze3R`=}6vq+c&BmIn}yZL-4iw4i;^r*u!MMZ=76!_UlMDGYRL+EF;a_Tz^ z0)lF-0v6Lnq)x2AmP&osY^EH>O&~miHJfSHyO7oYwl%t1Dr>GB#l*;H&3v{!u)`W6 zA4;)=p=VW)pNoHXopy#wuUee?bNt;;)u#9OGLoDtIR0B@Xz9P00S4v#y%#>)JNel4 ziRJvPj#YK9en*QIeJ#AFtVy%M4d zK=Xf8sOT@?L0TrNq^C7!7Gmm-ClDcH}{sl%0#*h<*wvt3eaDNDHOKl zrkChHYIFtNYR7OV`t^o>mOJ4R{4zP)r*c*CLv7;7n^O@%JZa-fi=gIB)vL>korSc& z{T@jI`u)i1RAVmNp=)>jd{c}}^SBUSk zn#rZG_{mAzJwMOo48%@>{N$;|Mz$+kJ2~U zGf7k5vI(xf9O9Bv-|C0%+&Sf6rQ38Wm5D%G%3-cd8#musD0^qRg5V}&e-)DsCc;T_ z>awW(W6%vrZE4$uY`+Ax5n!QJfhBN)d6MX>kD4mJl54y57lWHpY0 z2<~3^6vIe|=eDV*~k9Nn%i#Ln6YdKRDFAgTHj6v#@kSCLx23 zNi!XJg=gqiXbRVRLV*F;-Tey#3S!gb6`Eib+B+I4P`VAhB`2>zTTU>eIa^SqOWr-r z&(Eg(BqS}MTfyfX^H-&K5cXt5@t3(qQ%1bJPo~$Y$-@KrVi_*b{Ge&u_4@ya%{Aud zX9KI*to^etMCIJbU#(RtT}#}wI9KQG{Pr$TM<-=o-po+P@`#J$r#MR@*J+6x?p{Dn zQhhkn$8BrAuXNP~S>HL~Tgp@RCD61$Qz(TFdfL^7(zuix%j%w|;zPv3t8_CI-avK< z^^qo_wL@K|>M#`_mRJDOO;nQ?xUE9!N*_Ftav$?A?{z>33)J$D%=jqH`@^Ud)$y^U z#zprd$Ea^#JUg&!IU0bwm2lFmACI+R%Soh)C_Llyh?U*}+m$-mWBgJ4r z(08tkNe9Z%BLN|Uc)BEsjXUy(HMCUlkn>O?0!|3Z!Dmt5V+Eo%Tb~yAn|YJOKNt z?DN8<<=}19UINJPX6q%s|2`-hx@eZ?=y^8m<^;?O#O!N4r0Ls|VP@HrlI0eSH7l71 zOHBa;h^3iXDr;`_Sq5X4w-5-#I>9d5nB_g!j<_sVw~1y=3ce4YTS#Fh7j3ub_(J!B z*D{mmIsS$>e?&zyHIpwzL)Hl$r^q_qocOu|W|6Eyf)z*GeMBMz*QbH_L4mb4{RJm-20U8^#vW`L*o*)-90&&F)fz$K%f4^2ocu+6uaG3 zy8MY4Nu-nU)y9;+xAC!Xt6^8Y91H*4B+77&w>N0}*Uws~&Xb$weE|3pl(DLn#GJnr z2+t@iYMfQ^AaB$x-MMVu+dL~>p2K$^RVBwySHYb&?t(BLBbccsLf$S$K)N>=ar9=1 z#9)eZM!*b_{9K$Kn;>T#3z_4&SN%bh&K@3>0$;I24!@q_?dI2lcAw01EW4Apw|$XM zd0n}}O@K}Pz@Xg~0|4+{8^W!F2Y+mZP*n4ewT+s|44?91DNTXrE-UwFXw+!#+)y{h zmErAee1Z!x6X3v@;@Qm$(K=pUUeYv^4zc{6sWt%*Bg!F65+UM`w}x|&j+8rv7Wcan zD}cz<%_#V~3)JjY{&|jjQ4qfdpZfCpt4 zqmMJdZ9lSjQftClZECY^aa0nXbGPQ|I5IP+7NfkugL_>ZHqyzc8VEg`ev|LO%0*l| zAw-kK>3k~kAiDSi_nWbFMu6HisWuE;j0#Rp-=!r&HgmDQ6d7bzd25z@7>Q`gbF8c6 za?M(m=hl{^geRLtraR9Hj#f|fbk9JQU0X>4lW;}r@cp<*$LMmE+r3Bu>SImZnKC#W z?DaViwLZ^fEfHeMx1N_+_xh9Iq-PHfKb4+zOv5{nO0utm{0s7>=)joDccmf+x*(fP z2f9=sAkeVcw&wO(nbcsgES9;Rv1sYDHWH9xgQ5eSS=dxk#@?~aT);fFU3}E=DF?W8 zwPY?m26P6_IcAA^hF`7;S)?p%=6{t*fMAH-%jZY!c2r8J_Z&1XQHoHGR44*O4J;$9 zQ*7SGh-OYgm2jMOYyIpN)V0X}PPvQy74R9O#M0%3tFK2zcHO-S zv);IW=|5BGG{IQ>^zpwsm!>w~yJ38q3wFr=aGlRdx(`5K>E{MCDFUs)egXn24cH>&#5|< zNZCc`lA+6mgOy+-*F37NNcPBblOA~7Bkb(iv(*t15pRJFYwbYO2Dg{K;0%Sve2{|9Wr?d%2J5Q} z9j8Mvm5<&F+>5fvcn{nRoAniSwiYnLw(AxH2{yl^$Zz*uSq}_7Muv75D$h^X?8bK# zZ2GKFze0yPN-thzymuy;q^{uiQR~-Fd(Z)L$+=JOyeH`2UV2gDP*1v>!s%qA(JT=r zT(vz5`R_TyP{fBP{-YHpWGh zG;iuUu$cq!mt1r%AZJ~KQMPg@u4E#8f0$*(Hs54G@3!e)vu0Vn(U=tbEu$@K$Y9X( z1FK{Ff`--?X|gRHy=#v z=~%iIyvOG>(S4(d{}A~_iOJhaJCD zZHZE0Z*Y4vx{P5p7D-B#v^bf;`5DzTt|gJP+(07Y8bggK8nvOu%iI0>lp?74)aJk& z;qncBG~RA8kkV^jW~3j&~z&9WQaE-3i9RxkH5tl5&_nAZ(7$jttuX4 zl)0)kvFSL_eV_Nz?)qTu!dupRRVtz1I^YUh-Gw|}fnJ5{;bwg`FV-`EB4GtatN06} zi1nttdH+FnOHtv~Kbe)25|Hsho+?lR|Vr`9QJA+=^**aVUFH(xK6w%UYh zk-sz47-nk&)&dqBnoXcw)tmNdgQLr5U}Xtd4&4PLE$s0N;1}m0x{+Ff92ClGZ_@A^|lek_WWbk*m-Y2qcGRPrAEF{w+TW^l6 zrlTw+j|L{KJ<~e{>uA(CEfwtSv#A3X?;dcu;f4FfEnp;W*1ViIs`YF{OWrOpa8rR& z)XK7`TB2&Tl~GngwWSosT*HLSpO=5HujrEy)z?17Fgx16+EI|+zcWEB{a!Q`#1WI~ zIIwwl%_6&|VMF+raF;>SL$>%3Ym6C;-GTU1rpUYr}1CVADmoJ+|N7 z2$C5+WcbA`R$pa+Q8hSa`*YQ5O19-JMa8p)CDpIuLUHi7S>#A-_D(lOd1BaJKWkU# zb`nZ0T4(fA18&1~i-^|eI@h-mXgEkl=Z6Vc&H8D zVFWsrs6zEjAe}J`B}3Va)+dUH+uq2D0O@0W78&A17}7KAi42LmeonAZZ}_l;Gqx zM_vE+8x)Aa|J(4MtD1xRrJF5qJpoE+T_T8Uc&;D`xZv8x^$vdd`{|F|4JtZlc=!g} zVjiLMjsEhwmxnBmyQ`qd91LPyDCllS@ws%90wWCU!XV#GZyl#3vRUum)Mm_$zuV>$ z=3^s)|6ay=7Fp};(f4>ST#DLVGBid!zE}QYxz3RgL_WgsfvmFDbdDO#Qo}Vz2=zjE zwljSq^WBx1^1S;&#f&bAvXo?LOqImZVgui8JPbu}TkWt5aP5|qi9XvKE6r-&C6BU% z=9Q>EQy_yZrFY+9_WG2Uieo01_P$HU)jmWs;QFzHO@LZL)$HOjNdiZ{7;%C?hxYy{=PP8^$>~y-x11F@7CouKMQ|^VWK{;&s5`%?Ym|DKjUBtYyp#Ou?zaAUr zq9X4vp68;UF|zk-m!tKakfbe_rhSLbt_P&X%VsCR+*m6(IJmY`e1k;B@3mM;?>)0p zrCxu(SJ`LfH~;FHjh*SSgK*%pSvbvAJF$YpAk~j~?tQi17nC5j!OP-ZREFy4s>McHPw5fp1trw zy}gL%2qQ$a*r-pRl#lBy$Ed7tT=@)=8VdHaqX^67y)pA&&f6v5(e37(|jE>B2^Vs*n3YWfU0(qtm$ zGXp|q{9i5uCVS|?GFzWaG z)h<&#nSt^#vVzoN%7VUv@N2Z%p7k>i7Do9)QmeE5(=S|9+~Xgs{^h0c7JJ^$IhZsd zXSMPZ*;H#()*5(6T6i*Bf)>wu^#pxmO<2%%;{AQvgSnJyt=gKtSe0n|6k7LgS%cv- zPKe4o3~9a2u+Kr_dMn!F7Umt}{SvCE->EKRS1uc3rHBi|nf@tAPo$G{n?EHk>I-L$3S)QRj{Ee_wd|7fkV)Ejsf5({HiMN{qYsDc66W!p7x_I znB0aT&L@#-(zJ^bhKs=^g^5X@4W%=vD!3GB{AP{*&6DJXVOLe4iRv>pTQ@=5vEfTK;a`o{b1l2NCZSz#V z;7Ttp8zFRI8Ev(M?nZQm4wfAW**j8Y3U^dtsBb9NLI8KoGMb()&CMm5D>9(Tw9jLL zmk5N)3)(4l(|IoN53Q4>R@9uDvIe0V(0AsTTNMP=7#u_GB~jpnukf?aH1c<0h-xR_9s_Ptq=)LII+XY4KKnT!4S^3J zTVQ`BOWZT@+FD^Mr6kMrjV2A~rxCU2M)g?y*G6tZEq7xeHcPYG_C$eZ_8HHZ4IdJn zEh?m*cmjBB?sWpW`NfMDSRhq3X?FXA=SXGA!ZzPu->|y_jsVXcX?iAfcFb#G3i+e@ z0o~!rj?#bm9)`r!nwZ=Dc_yk&o9T)@3d+pch|s8zc&Da09iz8l$np6?4rlA=UaPH= z*_sF1s4p)hZX;02Zd!L(NUsYADaX&k>{JHbGTa59-UnX%U8o)&2`SArXyaN$x@Qn1 z3kC8xDSH{Du%DN;y^q2(ygzgToUZrjXTEEUs#C72t4e9FdPZ)JnXF2OYP^63)}Qy=Zqlmd!ic_V*cB%iuLGgSrB$-gJ6v!u@A-JT^WCBCo+;>l43i2KU%`8jfKY zrO=l8?mQl5$JfNHU$_JAn;87DST9+&r4ofONgzlfFYkWBy@^pF<^Lp_0W%xzR`q9> zRJL|%1*s1`$h$9!9~_60b%6BY)md@8HJ+UXFP|AX^#<=q_U_jW;{#{F=X{FrTFx2q zn;dDJ5%%b;aTgzCQM&!y%qV&nKGp7?y&1+ws(TA9y0`LWCM|b0cCT;Uk%#+5xa%T$q&801kloQPQ$r5zAMtjkuku)N9C8XC_5Yeu$77<+!2DG$e{TE5avlqfRLIRYIQ;OuN zTc?mkPE*%>2gLb+{QpvYZ8FMio%(JOsO8wr4VMVLLK~_&w_I$CtId+y`5H1>kY1Mf z@|d#+=dv(|sl6Y*2OyJ+t&}O?@HT1Kt69X+*0owA)nv=|Tsi%kPVT~=(3 z=_(Jh@qyb_LPVE}PhKp_1@=Iq2uCGgPt7t zF`;rGcwJHW>%$=h^MrFnBpY05C6WiOR5DA@$(#}p5YQtv4|RI5&_y$gez2@|eaWi2 zlW^2;F%U@5zu7Qkc$99}wEj$tP>-~4p+km5yR-QCan~48nluEX9|I0mlE@*ABb!nv zqrHHML=}43&8d`x{-r!T2t`o!CnH`b6cKZddFd0A z>1*|%lxcC2xkwo%u4+8^9e4A`_a|6g_be-&o`M4d8wCYLj}3aT=vU*nL-iw`Ek7;X ztj3Gc8?Bry5Pbq{#!rd5GsnsTi^v$pCZLTYc#+Z|Ha8GriORmH!hbD*_*%_LBH0M{5*z8}OQ*x8ry_)ddzRgCr zq?SOfJw=rJcLYe5_<;-^2>7}gMQ86N;bjFdD!})s>}p+7`UdNSNAR}2YN%yXftm$E zObCnDm(ETEbFO^4epF|%A?`v(hUBHo?qK%*BX#{f{VQE|R%^+4|EhZ78MOb?3p~=I z)w~5-2XREnK9nRVT$4Dk-H$HhB=xf(86$1)vHZn#ea=>-&Sd9~mu?>CcS6m3&S5V4 zR%THhL*~*I6G|4{mFNl;^8sj~@6DEHk!BOs2yy$T?_32S_Mt04z3Ri$Uy!h(L?$(VfDao@e9A?RewW)S75$QxCS)4N+8p5GqGz(Gu=hxvEW zTSAn*oVel_K?e*wEq(3D{!Ukh54(RMTbc23cSP#JepU`o3WRCKp2dp@(^va!I~Z`6 zZH4Os=20%%c67FS`6l;Hfub47qsTTo0J=T89NG*pt=Vi+*;EyqGKhdjV>V1GrQg>gn zvw4NdJg)M6A5mVkTSo-p5X(%Y4|;o0gF0f|USpA0{_^EeA6F}K=#4R>o6FnFmwMU) zpYr@riKpXbw4^P+Ya{!5^(w8eZALL^Cl2o1c1v;b#)`7s&eMchc|lI$LrX~CktuWt z51C(^s)^)-Us)=$&^;2%3BTcx=DlXf^<}OgCpJ>;V#K|LJaTVlA5~=#(o6E_>^)9w zT;e5eH9NF`<+QnW88yo{LYI{k>hCYVGu2lwhXl?x*dl5RHG(HZnP0=2O>wlQG&`Sg zsl<|Qi$>xS#cn@C#GMY%uqh{t>-F6Ww+3aiF}f_$+76l5GJw0Nj8f6mN4rg^<`>@^qHKcOa+)O=$UTt_rjO>{eHtIflFi_J~x=P@AM^8E5yiyc`!yO5>AkZ`~Q z(9-(>+45PMf8oYItBh!+-$`uZ-I%n)n`p{XrbFe=(P?g+a<*I_QtzvG>K{~?bN9$V zsM-1Jdfy70SShaYXfydZ&TRZLytV5+YBO^ABN@YPI*`tTEa}02xLDV_rRhDhUr(C* zJwc-E+|1!_l$Zm%@k~(#7Jum1_D}JKSk4p@f#|bAnBc&enry24W9}^=h1QR5K*7pr zONnaxg+~$3c$lSQWq~Rm@7o*cFZkd)$y#bcne>z zM~Atca5V=Y(HR|dN&dh`{3AJPj1jxLP@Y|Jdec>P#PU2$$UI`@hU}B_0>fo{8^H#- z(|W`DNx7D``^y*Cu)lnoanvrUQMyiH6OhVJi=!LGeday=iNQV#x<2KrQM=0D{XhJD z_+qk+YCQ`+YX@Z1p@3GguCK4Bd7nRj-aBnJCFNAcweCl{y1MSnt|S_4H9@L$TNJ>4 zYWb|9G#k-Gn&7AKWj^o5HeMfUeegrj>00Q@+bU#MxXT}a2)s)WD{!j1?N9!F^7}hE z21X_(FMIoD62W8zM%~D`jCy;Iadc?l$$cLU<0fCCz!R(_U zv3lF|ZB9N>A6XAR4}jnF&D&O&4y!}|>|c6#jKAq)m~bXo*^cz92kAQO(vug&O-D>` z;Q|0{&OHWywkaoHet&KVjZb5;723CWzbZc1@!Xu0GC6nCN9hFOa9fyvNG0y=^{$n@ zI{L4?{??Teb$ih|y*xT=(j0u^q$gM9B+GMo<7$F|{{7!CQ9;+zzX@bAJK(m9gC0^9 zZbt28?zs}Cl+StCkaop!&(5h1^(dZ9mlm04Eby55e?R^!{nhllZBzeKn+d#bTU(p= z>DiE&&|Xs*uvvDPWSxsux}S)^j;M{W>XZ#D)f@+J0?A)%4144IV>Pj6Z!yTGahTYAHw8+HcL+}VsU-l zzi0)QC#Gg3vb1Y;PAb(Pmgsw77yv;H&Ej`#*dA8|-W zy@S>NwhuY(3|FkHya_FQK$gqSZnz;$5I|Oc!T-!#v`lxW6DaEQ&-%>c2eN(KspeZ*2shV3oSpr`NS};>`v*^c zFWi2T0q8*-U+Lp*xaPU4c?YIJbL?X4DwuS7!g~fh( zlYU7icoU(gTvou;V~74i5D069|N61iI0D#aL;=R-u>Sl1lOQ)v36Jscc6av^-Y@4I zkSGk|-c?XkY!qm}Y4-8?{+~I+?8!}ofaV+n#?)|fDmP*Mw$1J(AGdv6#(>_vqdfa> zNCiylqi-I#dhfr>&4Bv%{Yn9P)4yT1AEHmOQLhUeV<^e`xVX3&-P^nVTilNV^_Zy_ zkkt*|U=kbcgx^RiydbRk=<}xO8im!b)GywAU+oXJJ?HHHK{!YZ+&Xyj`yhm3=z!7a z(sd^KQ!ih>j0B{8OX>P`&wWm0U|H!`0TmP2jD%1BT{65Tkz?CTXo3luMJ)aJ z;nd4mj4Y>f#IL1JqOWzP?VI%5KvXe9q!Eb(mjqAcvRGD)nB|jN`>f8LCaFJIS6;3x zo(Rkg1x5({eu@1rqLzUFas@g6PsMqn8c+<=I1fVcezj09kBK&w!8`e_*%vn8JXoMw zT3QqR15gzk{j~kOu5sLc^2i8g85jlz67w4^v8Ag8850nZj112$&W^%k|0damIGWUK z)=lo6{~y04e^j)2abdx~DV#!~*fhhknpvU%s~bAu9x1F!BoZh538b;FU+?Malu7`< zIz@kR)8^%?A}bqyTHmn}R;h}gOzLe~XPpPTQVRb2&jA)?yZS2kQ2&6CYx+*aiUzZ+uNzd|Rt)b@72&F4493^z8QUQdnpz3sreEOj*U9b?U)4 z^%}}gZfNrb&whDTH9xwLmzP%t=gm?*^P~?XF!V4do=IK@U4{{`I2x}C-06JPWTL-V z#G*WLXiZdL%h7t9n1(|nbyGn-)d~0OhawIz#z&iQxzLArjcWFTP?uR)7EmlImAdrg zyd zjb6%&=g;fH%|$K&*M+$D^z>j}bc`MvjwL|{NbgW!05 z380@Ld#M)R`O%f>E$Xnn?=}jn&!{dI?hk#$fD3CRGTZJMlmrlX7u^fJ-5cYXxQ}`8 zlJ1*Y@kp9aX$*Z!;iaEy0o7Rl${$+Lba`81e4X@Rn8|(F-XPGhSZ7gEzA9y;Z+x*=X}P+pPi2hi=jR-4SnJ?Cas5zJ{>rfr z1iB-aex&I^=l`-R5YFOeBo<5xfUXsko39a`WXC7(Bho)YH^wseHjzCHQ*{ORFeScY zJxYlo34{gwtY30Gdd5VW2AdQ!w*2>X8q+P9qXt6*3lwwWzB5h9EKoEPX|D?lo=B0j zsO(uEb9aK~Z+DrQ>#jK7NL~#Kd*DR87$~?)IBiNycFSDP@}9I^YM9^QKTs`>BE|@2 znS~QRWf+***n?D?nd7^raLWg()Omdy^WgD^9raNw`p{oVwE>HxAI!eJeboDKdKpSt zbOElBi=)nIsa6t!-i&|=uot`+l_B?eT$ZF&j6A$M6GHj(69Td%sqs6=1Hj$YP>Q9_(P4@~?vVr$pnR zB{%xN(=UOTdh3S`sr3aO&EUj0<+T( z_`VW<9&%<=4F2~GMHc*DX^X7*Wpb^p&D)B69!0 zBqXi?ldw3{W-9z%13SNntm@!f2*J=WX z#fzC}kLe&L8!bhm(V$Nz=9xaL#P{Ewyj0m z#7=^7m$`<>CGO#p4@+Rgn6vJV2ca{gPkjmzM)ff3pk+Ecb$oJAV#wgKOi-ux_#Lz8 zX4H)dMmw3!gXOC=gsY0pBNkJ3ZB-J$kp?27U_W>oCv;mf%I(n1`*E#A6hW_;-QFVN zOmg$%Yq)NZZJQn4n!@?K6AF0Bd)2qU*J-rc;q@2_2sSVf%i^VskROIsKA{~Z$;Sw% zK|gQUc@+f*%`?SU%KWuMV#REH1#NQ-qkEMP_R*l2&g2A*>ds1A+2*pI(xTIt51Ohl z<_Fw&Q@ybfpg2CQy1Sa-HJQEL8pW~&8sCAgJm|`BPso$@-xkmmji76)1P`>((@$Whm z1xLTNypSphXY14PS7e6l;lC2BWDxj)*L7C9EMKo6zKyH*`X_Dx_ zy;{kV2HdnOM*7M>YaPtY%&=bbc%VU17wfjeS5N3NHY*D<4lLN-xm3jbQ(iMp_dPndW=sIC<^oe(COJ>sYLeN0Gk z;+Yg+NVdz2D!T5g9H3Hr6hmt!|J!BkY<&pZK;E|_Se+`czkgjSwfarLDq`EM5|dh7 zX1!Llq_ejDfK1spx|KGtt#%n`#r~D&(0fZKh6$>-M$toqnfoZ@F>RQJYv-#AyBC%u z)YNdd20KA)wEP8gH!>jRbB{%I^y6f`>?gNR+*U1ydo0WYmkR+)X=dG8iT=(c(;8aC z>?-;rD@!2oZ9Y1|;h7-(=AKsIo_^RMu?O`ilX$IhYm(AESzkFv;Fb&o=;`o!08h_B zuH*qKm0fo9ZJ!I&{iks8Pt04$D=BF2Qt_;VK+$Xs_D+YW!y@K*Xu|y2J1#CRY0j5` zo#qmn+Dpjo68UxhJKaJF|lu?2R(XXgUwTy1b#^8cVzr zjT5(M7Ic|EEw+IF^rpjN&}WxD<2WGtAAwG?(ajHyu6L<_>t84d5U0U5%#yqH0bW`c zNHk=OHMMP+2DetEFvs7?lQe`Uv1j|ijb3{dO4D-;OHQHpR`$W><)bUeYe{!k5jTVX zG7V9>3o6`e|L)n=xK*xT=5vPs2Qf8)SFfW_u4;9cv_5&+utr@ld>t~F3MW==MGddx zf~+U#c2$cP_%Ka^Au~W@ACrH>C>w}y3~%83q8|5lou4jUoxoLYixFz`DvlPiZaRc+gp7r z*(aY%*WO?3{T^XgC>sB;MgWBx!HOj~UpfjLplBko@qIHP?d*OKqlRY}-|?CZ$b)2f z;XA2!P3W6}o5=%C@|KBMojHBl*JnFNVay+5Lz=g2fo8oKB;y8&&q~+|v!M<1De&t+ zBi+d4H{IFm1>Lp+{{ zkt;HwnN7gJ#{MSj*6OIBSz9&LzlZug#T%YKRjtjWq?F$PD1yB3-E7#NOQ}txLVQo2 zF7s<0wM>@vFn4~(Xts0UxA}sb96lWT58VAD|0r?-o8_#G0gba7Qg0l66@;Ymmg93?ZO&pVZoUWTQS43C&3fDGo& z<}NoIa$S)V4p&pB1I9e;)ZHo{0@sNFejuEuKQIb)-q=}ba%IqLj2bZJWwtJk<5G4x z(=*qG8_~1f_B9u2dz5TVdQc*PyKd=Ruey{h*y&|_qK7YO}HJ9LlI|^ zL+n*a{}CO4WckO_d^A)OxhOB55uen$p=Zcn(wDt3M2<&;<`_QYUzvo)hMBK4(cPn_ zX?OTKBpl`b>YC}oCnYn0^N~um&T@C@nU(Ip831JQ9}9`_r;0yj=R;AzUlbZ_xfX%` z)jy63C_)|(c-ijo;&QdaevzCBX|!jE?-shwcv*!1>@te7bjE#{e8CRSsqeWB{*Lv@ z2&2~bg?bbCRrQVk$AhSmk2c7nOH6&(GhGKC$ovP^YpDr}vN!3t1)BWg?=5C`o&+-C zCr{f#&II?U7Zo`!cl*58NV!_00IP0SWHah5FXCvx4ik{ItrYs_nz-^#|Y!+*Us#G^V zoE?>5wq*7)y&ymTLB^&FYNf=?Yu99E5s6n>liJk&Xt(RP7C~MEY|#+K5GibO>EC9n zE3|A~#Yv95=MZU=VxW=2EN+k(@b7)g`#UNG$O`{sc>vo@&bVbhSl-TJ6?aYGOD$^m zs&oPKCe( zEl{O&2`_7IHfbk=w{E&S(i+O1wLM=?cxBL%L4)adZ`R;Y&xuPN%a5=aJWR2 zFo)OB9>4a31Ib^8A`{?cj{BYdl*vuh>|`*2@1~cists97UdRdO!0`%FzmiPoytWr` z!Aot2KybHr6UkJyz7f4K>M>FCD~nX>G6FzeBqq4M+5yJ$_%K5L!O?$IHB-n)|AmI8 zJsW3HkpF!h5z6V^YfK70fADYf2iCdao4D6Q^56aAwGx0r@E=P!xRnbCIXE`P2f6A5 zFM=cxPTx^~-#Viac{{o!y#uh-mHcvDTd=%&hSEuR!^b!AtlW@OAg*d1j0*UbL2y;_ zezNukM-1#aY7^*?3PyM)#XxNqUp9^A5ijyMA{J*7k~9_nW;q04X{@2&NKH^u!}0g* zsyn_)#L}vT4{NY#|JR|Is|nMArVBYk3ESWF zuk@apAv}2x=_yi-(<=c71bn3+IeZKL5I_;vcnoNU2L~PZJAO~!>f`PwynPWLyl&le zliQh4Fz^4Ivv#u(vQ%PAx?;*voG5RUmT~;ucS(i{-u#BH9$Xx z=ep*yKB6F}gGH$ZrScg2XgLXf?#=x0Kr9+m(5+zXH_^0dF__@<&;;n0d%X3Y)03#u zGm>&|hv=8oguSx?^2UIAO#O9A-9on{I1f>}0UKSF;02S!@Z+{J=p8@GHy*Sr8UQXj z%3zaq@|R?Z#n0yxB#TnJByd7ZP}OzwA;K+%`O^Cv{n2! zaU_$IlofYM$`6PUTD283&kpK#oZr2XrT1(8eOjblQ$dm|Xdrd*{d+`q@PT&Ot1$TQ zR64XV20qX0sInJwZpy;VqXmK z5gnGb+0F&iAGK|r2Kg6F2UYF&$=^us>KwkM?#^G(vY&1i?%AVaOkhg`D^mKi(fKw% zpW-Yu=;F{r$J(zOZ%m4jF{%NtFQiJ|QI`1`RaPdA)SI+Ly;-P{hUgOu5^YaGC-2oJ zG#uKVI_AG3k2E=1^U9em_RGi!hV48IOl%y~Q>ve~Yn8N8{u@_n;i#P|UGuXmwea{m z7nmGDVe5gL>vLpIYQ- zr0hW{YiRvsw>N5C^&`Zt0|-HTkBV}U7S}tTs5I*>=Pn%irjx9=^TU*QeaCeZ3-o?r zsf~6P?`qmJIS1n`vwD-0D<20-bs>z%znl>E<{P{qOJQFX${h&*^;OK2&i|Nh3O>3wHexdLm#z{IDI|_gT^I3Pn5t&kp|uRzp_RHo~j~#iYe7dQa zv9L3DXi5Vlk3#0$PrKJ(_GArIPpzvL+og^~+97w#o5OoVzX%edvY-$ zQ)5bxGOO*j1X|K>?Owx)Ia#Ig9}sPS=c$=6Ha{Has6Kk|NHjTI4^rH5N2N*cE{2hC z$Qrk@h+30yI~ewH7Acfg8J)ok-)XH6qSaaJ^V|#Ku0vAKE<>l#R+p~^Xwy%Z(oG4? z*9sZNzjNn_5$9ktN=K9UVL)7M!<`hYiu+_LaJHbqVC{=7?Fa8ePeu~~XHc+PaU|j% z#~h%LL&63CC2FPgLu+Q!aLCfkSYE&kOOaw}jGDmlG6alLm;9rZL1DXOy}H?>Tdl>(w7uQ!32R;+WEyv8CI}S<6fS$nlnM3N1V1hye9pw5`|+QGELIkbz-# z0$K%o>Dsyug7*J>omGy0k~{Y(ffwO`m@lC*C+X7Ts$Mt_fWt%G>ZDFHf*AAvIACk- zD>q2}g?e%7Fju+*UmLEb0OaC4FCUVG|M@pKSZNt*8=~35YA%0$Jsll7vGh&zqP zR~FZT`KN08-ey?-e3`)ip!0(Ee>Twyap*@hJXVM^JtQ3eb9c%u)FQlq9&J|d!h!;w z2;YjEK!GhdoR5!B&NR0_(AD+xEiEmeJhPjPXEB(~qdpx`Uq3Q&7Zdjws9mXXDu4d* z^WXA2o6C}}xBI!TJ_?pAyKzHCVRFaLG;Fh}thRVDWo+d{>`h}i%)jsZ`X10oo7^*tB-hj_E3O|UJP4rwUa{&JJNsAznCJ=2S;PX}ZjtuU%>;&0wa31` z{XmbhXIl*0KDOfF=qo+{YF2$%Y4=NNV+j`>4!_-TyF}{!t8|g<%G$wRou1471d*O} zq`bCn^C8zl0}L(Tpy_Zn>i@rnNdN~P;YkNv9#O_q4s@f&-p3mBvV>Vhd5jcnPMXM$ z<8UrODOhDh1g(*bBMImw@sN`;Q-;bXcoUwMDy(mAHVT>N`ieb6A1^0ltr2OMgo8V@ z5^B;>P^9~JpfvXd{CXW1>`vytXL5l9n7=|RZgTE`m;Lug%r_(qjEo%l`T3>OO!RG{ zYoocMYYEDw_QfA6&U=ZY^(hFn{lOkU8$CdXJt7vNRjeZ zJGP&t4%qalD3ipe;pf!~!09eAakdINP<{NFsBXeN-mn)fU|Ec*Kg*W(&MvRa2=D zox1GEb_VXj2xH^D5BhR>BW17rM~Xqi_9zj)8Y6hif{Fz*5c{F)9s3QfO)9|Lum98D zdxul`|9{}ei4qNpRAzaXY(hrHDWM{y>=~hK+1t^(6rmw|m9j^&H)T|2_MX|Y_xwFi zS*QB+{r&g5uHW_UkFMK&?)!eN=YBq3&zB+Ch-o1YcK}1QPe5k$NZ@19KT(M_M&MCR zO!bwuKZQeu8Bph77)uTf3y8VfS%`)T6$Mq{PeD3j5x@)Q(}sup1fa% z$Cs12)@F2lj#4I9dQsdJ5Xvupt{VJ|Ibtn6Ki#J+Z**9E_xb^qC7Zww$LvqTkter= z2s)EAY|liSZ8GQ9t!*)leuTF|RC(M}@s<(T_>~j#*Q66w@k#=OB(7JF3J<)&)+HWrzP8a}^ZK&Z6k zUT%FHpN7p9IeVcgx*B-jl|Ddy_RiptjL#%@Zs9{O!5Zd^_vO-K=f~97~y z+Y%qN@7BaXA72k^p5B@qv^5mTE7iBFKE8Ep$1?FAs^+>6W`-LW0a1A}zOQN}-%qZt zS1?EDXcX`X-ScjqxO~C=n!#||T)2?YW9CL;s>O*t1}h$kj8O+pZxi67M35Tx>HC?t zc82X>+cU3FP+Vms^*k4sb{3ThyU6r#OFn^AuV)Wo!grF_fGYliv3c1rUAG+O(7 zV@lt)`bK8Ar@G?6o`cCPsUvOthZ*P63X>(Pj2$DkFmOa?2+@Nq<}ycO#c8)qhaK%U zF@@cNqwiV_G&MhfTD^ugIU!Ow{s}ZFH@C8wnClQdb z6}Oe#j#)m5*V5V=pPE{)`ceK?!o_xbw+M17D$86)(vyt1A!TP5R|cB9GD9Vq-_Irw zD6UeEUlnLfMJo$BJ!WoNM=4K4q$^I#HX4wwoxVT!lNT2iqiuHJ8>EjRXAlWbzJF5M zK|fmxjpRg_S~lSkCKF-QK`3@2-Kb8^qioT8AyK)VGx$SiWo4zo3!j-;DC5OGJ7&1n zagd34pGdpuH}-S(<<}b)dX?kWI@a5Dnm=o((y6VTC3jc`g}j#6@%%z7CKkA%$6nHb zjI?R>=GtDMZPjrG6?QHoVXUXvU6oa1c9@c!+$=pSi*G*QqUP*Ey@d;xN=k&hm-;Lf z09xdQg>;qP7ETN5TO1U;Jv%R?!9{*fsWq~yUFZE{hq?Dj_dE5pj2)7%v8tz4EEng| z9NZtwd>F5%<8tC>vBpawQh}O{?u(mr@IMQz{dnLa;h=2+0h(*yOhJJ&p>w2*T51-3 zQ{6HF2lNOE-~{9o@C@YQ8V;?OG#V6+tbNq8wY^c{-*U^9X2!v+x^>?0+-y+$jYP3Y zRN;76SD0A<9Aeyl`vhJ4?T87LMEZXkQ(x|N34a>79dHx^mR||-BiN>ot*bBs+&VK^ z?gs(GpJU$LfQo1YT%>C;drX49%y^zx=&V;yZy*%Zg-Rbiw#$;E^O}S*jh_OeL-HU$ z&vHh-O5MM%u`x0soQZq(b%R|VUFt=%{mGQv>7Puah&J1J^cWab;v87!WP#4*`#Z(l!^_p-QQl0a2IOdO|S4Y`_s z3nU*qZOwNLfq~#f#_wmNwp_gJ1~6A&6i_%uQc_-o=A>iixVYYa=ro9ZYod_r#Kn|i zi#IIwOg7x)PxP}55I^1*%kstI{K z$^Fl5Sn?QA;E%%vs`k;p=9y|i;2N)bTc zo2-o*!u{aUDwAb-on!0XmhB4MPfEvz5$uc7vW+G6%$3CeMQn}glFxPC*>h6pc|2?C zpL%{X)A>UO6yqX4cFeRfzut`cA%lwHojdQKB)-1BzPl;pP>`jGVN<9*Lqi26 zP&_>k=o=aaPg_=|6_k{SlC=!C`RD%cHaBj(AT+8M#mgw(*E{;rXx38B z0c&}P5WbZ@0e>2Y=IO3oa;mQKBDtpZv|KmX$Rmb^D_X%bduT5=$g5nX$gKP-s^v|{ z2gj(}v%5WoueUD-l8g4^4~iOyiQxA1WH|4}#W!kOill~QSE^pouh6nv6o+s+UMBADA^ zRds*9%H;yy7Z-$uVgc}6!M!qTu>i%#UtH{hU9Tiu-`*#(#@NkvsAibFBD`l&p@~AKgYL*tPz3u`xi}S<5(IvB<%djHk*o)1NzZxpNixDosXmokpz-=-*RBveOD$*1RprVbzV2YU*EzLv_yn`~tfXA^_xoya zuxx#}61SqB(t~^eoxZZYshixtLx`4x2=rIACf)4IPN5@#S0^qj;8ed$L722^^c7#L z9=(C=J6=G1T~yhxtaAB!qC8&MEn($U#S>}6?#kDBa$(OEnIvPF9C>QqJ^8O@nIpC( z0Y2L{EL%FXW;Rk$^Cv-hm5B{%?|!(ke^~{vA%SnZWOAKJk+FO96FNRR3byMnXtjTs zSqoNFUz+9-kQ)i!0ywsb?05}ZkqWxc7I z%`HI_-SP4G7sZbkmS1^Hch{Y@V7wh7F}t)_e_&fyLd`c2M`W*yQ-1#z0-1C~dLgze z&F@uct-QpEgp0T9xp;Z~*Bauyz}h(Ir5nsv8mN>o+zl}6Fl+LyrP3e=x-q=cYA>dj&BKIgh&~_al(~GU)F~4avO0&2@N#ISGc_1-j9Kf~$RsiHBgfNQb8J-6F;lr|AIL@b-YxQvk*}!F8Kb_um!Y?~3 zD-DW9g(5p7L=s0F9^~s~f9QoePc_TjhmRy~%g%2kQDwY%hj)B$b0nacMUlh2vA4WS zOG?}bOh`X@dU+{}i;I8FHQ^$efwI{uVVGjnEw9hfch%b+k5MYSemPzrkI|svT@}O& z{!NK^wd1qWPhbe_dgWUZZO3mgga=XJZlB}f8FW#ZC8$h4<2`#J-sLu4TJaGl0S&y* zfM-omdyq@uz;!7VieSgi(XSX98>g3)lxUKbZmCpQ10Ecth9&NfmEPoJwA&%+cQGft zN#E-!Xuq_-s6oA^XZs-ScnPoDYa+#5w8JXY(`edLK;S@%yH(^EsP)lB&^H7k!#g;1 zi&!4LbVjN_C}4n{JS_Vf^qXDeRPW0Ri!#Q^R;lBq5!?x9ib-tJClG5sFuY9;fOkfA zed)-Hqx^#~O+^wY`?9F&fiyQ-(BA(&E+m}*4V$56RfNxuWJbs@#D?VCN^Tovs4xnU z0cEDKUv>U8<{aF*aQPGO0B$b@flvZ_hrw92ObZK(vEw-ePMN!n)#4;}`1D%Pv7^Qm z0e{LM5UHU~Bz{nBH&@kwG0xkn3OI0arcmvisVH1{|7w%lcIoA9QgTMAA&;-|wput( z$2dRUTocUnW+KQq9xv{GZL`fo|Kkdk2f}&rD*GSiZAU{GJ|r@Op7y-c6_wnG)tL6Q)sr(R4SVwjaYT3DRRn#m?|h zMm{(uLKD@6FG^0>{k6{JB)a?B32B-`R2Ms{Do)d{Yvq3*>+fg}tQfnOZ|9_|lQ|zU zZa;8-z{;m0w{tzj44;Sw<&3~V;{LoqE8*cf>%Wxo+`hH-+l~th78-=gz^*qo8?Wv7 zY3H3NSrj5ej=t}gMt*r(dH{(munfiA=dP9QKKV|sJ_a4sAGDkFD2I-Op1yuru5!AO>hS2OL3POR5gg<$;-lO~ zDuRZqOS8Lp+j(*EIipYzl{hZsXg}5-aV@Z>#DknXB{ECIxd4SL>O~bSq!p)@YfBS( z-W7q~eZ-IRuFRNfo82QjqC?OH0`xOlv52|3xfGp>fE0_7hLf$daC@rr;Q~4F6?^?< z^+!Fc^>boNRm6y~&ZwKG+KO1~P4?SpxeEoEzJgc#5I8EL^H8nNQS6Z(p znAR#Gg_((*$lVYV{S|?$9!K>|W)Gk7N99;OV)eIOmwu0~RY3|fVV)rOCT^SL)_hbb zD;0Jd87}JadcYb)acih7;|n|AXTQ zaB#Y0_Pr22gvI<=a}IJL%n2S_^YH%bLvUaaF0QjUyTtJ;e`nt{Jf&sU*I+DRkuip` zyUChzY|LN{C6v<)u0S$5IyIHcgGzu;h4})@{Pe$RLkOJAy0PdrSoy{45hpVyKEO%peOIYw$JbD z_?qQSw>3A__{j5X30cIp@dtObu%VAWo_+`HmUGjLsgYuNz9g;_e>WLUw>70WU+IWK zhmDv^M$)KR5IMRJA1M{YW7@RTcX9h8!`DIYP>G2I{>BFTPZA|N__C^p_*#2*8RHsg zMHn-6QzX(3l1C>ebL@FY%Q}bS8LD&x*IDa`>F5b2gi36{y{!*>Fu-y|(Z;H8-PyQ6 z&nsvE#)5Z&+>3a@L%@!9Lir8;5^S5tFOBQ;+pB{6fR>G-?0n<%*JGEjtCyc+QER-H zaCZAE$FD($zlz>;`mMtjG(_k&QbxIN+WuOK0}DgJCl$!i9h#p9tej!txBSDcg+_%F;3K$)KMg~675j5t0*4+I7&0wWTxibInJ9VEiN7#+ zprfR`bK&u+R{*5Fd4u(}XB1=Qi_Nw{ASXLp6;<#rEkTG8`*TN;X#6!xbMu*FD;{M> z&>bB(T|9E5dnq{3jFetyMch!PxK6Z96ka=N`UnxisQ+uD)i3>WE}$VSdS1c4i^t_X zFvoE69Bf>rz)eUgH-k|QKc+EJr}q?71?qGlH3JuY<8{;xkTBfEY$I?;3HCrWtZ`3j zkPETjPtPa0(1Cx5tW02@g?f>FIbFs%;|zHzw{b_1?z$&AcfzN+%Uc5ry9?%2pyi-N z&{h*07i8^PNkL`{O zi-)D=1%z{L-`Sj2?IUMg(o*M6=q!3tosaF+F zmr`Q%wz5TwVrK8#*Lv<>1`7;LcnNjR(YC7pd+f2KedffY9;^1fHlss8-z(oK5uT_? z(4|xFtB6;E`7DMlwU@F&w6=S7ToK6mnV5X%X7{#!`p86tZdGWo0rkv_Pf^&VBolO4 zo7NEzK9l&F%DVXS^e@1wFQjdYc3B2V!`|P(# zeS+E5Pp>muBGKLyn%+QC*z5O|yby>{G4Hw*?n8I~f+Q95I%>PM5_ZU|ZH^ipf1;IO;^xyqIGpX!*1zj# zHXh`SNXZHg8!g_!{p9DqX_zEM8qYIc>f+WREX~U|aIo65A~t=hZoDGaK^ z`u@?%*iA!J#v?|=GdH7}Yin^}LX?IFnMW(SVstCZno20iz?^B3g2PE`yc6uI16^*C zCpKrA28BX2{YkYvB`A8*fj?RzQ%#KU^v@IN;&v%wA4!joXZ8R}-{bC@!p^Wmr*y$m z?iVb``puV!+Jp9+Bu95GJnk|cohJ8sre3}~!PQc4*ESivCj|4t0XOwG{V07F?Ki9c zc;NZ|fc`D>!CSP;DlpzVBJ=pwEz6H((HVf*-nD`kIc5^)PK@!r+oWQnr+MN|CHuV z#rL1m+*Zo}-`Hm82E9GM*m-DCvZnXi;w>q6Z$P-LT-EUI-7Dc@UXtMAUZoXXs5B4v z%3s^zLZHHk!2u;Vy*azX-2u(8MAG!`mar1ktQZ~~{8ZR!*qZis;W1+3(=%E#Lt|lPYMW<&lEL4fQ5>_U%+K`1{_X$`@2K?`bPRH1@!nXf-!7r`Vv= znlc&v!@Ikj2%-5lv!S_GW2wZPsjHZXE#F|+ z{hGE+v)Xch4y&VFK6|r!JgcbB#oA7gY4D~3fQ3y9-#p~B3Rby0eH@5hyJFTnuEg^$z`u?blWl(vJfxV&WT zwN_yBtvKwMtQe38=Hpt0(|fCg4hk-4WUWkp zbEy5)XYryxnVrP_pf1;eD>WwS4BTpx8Mvoh#OdH}+3j7iQb%0I>!vOCVy5J2# zk)tc^yRwX77r0yC0gRWLXOvGSgS~8)N;E#kp8oks1UC)vQo`?k`}B-=kbD_gs+-l6 zCH9MBKFh%NT8;di-*>mZEC}@sE%bVICJdh($85(BA*BY zra-Xth}QEH_YsI)2#_W_=~e{P3$&W;Tuh>)7tsq688*}XIYHB?`3VnJqEfX2Vq8z> z_t^7^J1iSUk1VJXTs8<6xic#zTul5eixgVSc}TTGa#K}7(Uje4g)hprqm*`B4?#EiEg`=zMhXqn09`CSzE7r{nozwY=gv zfnDFlanV|*O;?<1;?|8xLg@oi*LSV9n^K{54&CX`e^$X+xpY-S4A-sdXcB2DFtydU zo7#Jc?wFt#g5>@QWhZ!CXk!4$7T6&7UXIu={t~xoPf?Jncl^zWPmEt~#wIGMiu*8q zmc>+(T6}n+oZnMp0t(-Fk7bYN&A_JdHzNtzEDjU*shL<(+k1r%3V1{Dfrjr>v|5!x zyhC+2q~fh5PNS2wN-u(ZL5ZLtU*xuU793n6oUSqTGqe}Oo*;?ed9VuXFBvy$3wop- z7M`H9KA+sYtX{HCmf~MvviDM0Y3HNv8cRxK-yuu_EAx01EVAsm?eiY2JO8Cu1)hedb1d-s^<1G8d6*>*n{`nZr$H3*+l+<2Q((y018`lsZXN z@lQ)+O?_dk&0ibI?P5(g*Ydg$@Q^z;KVOC}N5~UPo62)3KA|#Ta9J+sh z#goqL9{1fzMKb}1fp;a zdpVTssh)HWjD;3krm$WYD@S-%-7oWH?fhCx{@R`?oHCR>#$mVdBgtV%KTZsSNqPdgW@vq?l~tBT@@@!{LBg4mowB;^o-9 zFE`IOz_Lb$*fKyh3iX(#(#7e4NT>(Xr{$2l$YkV5R@meAa#dZYj%<1P$iNJX@;9qQ zMr0|6PWdOH+_KUU*d5LcB^)l;92-~Wz?vyJtI~8yd3DBqTMU>bJ!&l01u`DWR7QmAHadA!qN zG=F_Lzn0Z$v5X`+UXr)ZJ7Hx^s>609e&t?b?%Z(5cU~;%Hu^8h{(yVf_m)(BGa@UR zWar-2K}ejv4B35eO_H-S8q2&vX}IDZ*W7L5B;YAvIS=*8R&K4!=P%V;7LVtzujS06 zydRVAT79eKC2)=`n#A1G_}@;ePKQNn+z5A)W!iS@UXLN=&Luh9zL)ZDqY0(>C?O~_ zv^Wbz+NxiU@5Sy{5DM~7#v}O1MCEiA3w511p8&1s4^7M5m8^5068iYHvEye2b|{eY~- z1&`2ebj5lkK0QL=!{RRL1ylg2{>CKy-BKa^yq$Lz#;o#NwG!_`L92+^#5_JjIMBJm zpM!2sY_{agzgP+dRI1KcT6+2b&DhfHi2eagW{-WD+viya6eg5O3Z0PTzKr+FlsoETxuGUtemR-m{|F zU`+A|Ae<8qSl>W$lu6a5@8!@dSE?`KVnU1GUM$)$u{%r_lMUPxd0?8{HC4tc1xCv) zwFFzRu7)ytJ6stf*Ol{qs-6|dl9ASDO!tt`iZ&c+8yTG>2-!h z-BzmLs4|Rc620&$zh!~aVdiUQ0zRVjP|f6FdY#>3MDri1*Cs3@*9xguE-cNZ=LaWb zk7bdd2dP)O_GFfWwO0${554~}mFYsRYVlbt0tiz_L#`8y$~_LW_!KxD3Xkb!z>?^D zrKKNgOnR+l{0mBcH0X;oIy|DzOf|r4b_Ss`-jkQZh;cO^8jtRw z!0D<8wAdZCrbiT31UW5ad3cgthh#-WN@lC|ZCv9Yf$ zEdhYos270pqNRe;lgYH;dR(D*{0D0tk2<0i_UrW&Jzk`9DV!APz6@fa>WNF3(DBf?r?Y~vO4 zQy4ogxNlk%v)ESMZ*S=!mMMQ(bF8+&ED6W=!)ZH18%_Po4_Mrd&zTG1`Py{?#9zM_ zb{*3#?SE$PW511IsqH)H2r@`7E~(=n{@$b;G#UQnjU)EkSQAY|Q$2%37F=6rMC@qb zmq(y&v?wt&>HVzkAl5=-bqn4KP=ma|kP{x_?@gY8COytRU%K$OHc_>ZHR4`PL?Hg! za?29P)Ocxpy0uH-MA6O?oq8`V&{OY+a zRO7F;+Xd5AcOhZJ*Ih8oGkx<$zINS@xBKy7ji1Q%iQLuDX2KC*lj>rT=m_F%8=pWR=jmz3tFj-+QXA6!$K-K<&BRZ`EFIhzSqIiPp}wb5J6J$I1js zP)lOG^Il82s*OpzKs*Q-HaJbJ+~OK|5)R*JsgHTv%EC?x44-nQ6+l&6KeG5rj6sd*OB>KVsTZk# z=u%x|%^snJ!X9nMHV9#6{m*Eg2LIydu$G4ai0 zZ)xQH1AJ#Hg3ohT1o0-HdEefPs%%a;bZmoT+6gkMq|=4NZ~gc?j1$>&P*~_Db8E*n zVW(sAG$@UCcs)+-7&l@F;~&?YaHV*jkiWL%<_j?ux*9U59p_f+R?e7^agx%koV~a# zsYk2k-yN%WM77lBeKln9p;bap8 z{Cv+hbaaG3sl=%&jFBfRuln+Uz)babK7prZX|b1f|CHm>jmR;My4i_4KOs6%b~ux+ z-N#OHIJ=fM%i`~gDR{V_d}@C){@R?cnsxUBm2dAp9w_6mWO(V-oZDWD9n-6QbLB-1 z7^glgnctqL-1+*N!obtNbOSjhO@*ekS)cg!LaN_syq8dYvN$o^laB$){zZUamptN7 zkYh7F#qiIA0#qe^enhbM35QJF8u8t_sOv-C zHzcos;3`YLPkYoJ%6?l~7|{%v2aj%eTGGdH=8s+FxVeGQ7?wn>+*){eyJ$l7%S(Ks zCPlQ}SSFpSNg*Bp_ma(6b0$7G#;Ux(eT9Vskfe@fqG+hSNaO2%>Xmz!ai#UVP!h=u zu^7cOU#BNDn-Su=d`#aSIjr`SX*}~3T3h(er|@lcCQ_&(*(DsNuQ@?;lOXAF+jP$q zv)%oPEsGMztS37YBCyr9+V>z9$z_uoISy2*pd=(KmTiwrh159uvxDMcLa!3^QK#_ zef}RYB_Q1@8WOXHW2k~L5OGJ61d>y(bCT3jUrn>zp5A>6Bs(xYV@w?6!9 z4zm*hVxDJS8vw~R=O%I(=ZTcjGd6}|YRt5% zL;N-ya*G#NQ>gQDeFtGtQqL-CGVd16z$JlA#$^G5{=%iE^b;gBd<6*FT1*&WZJn#? z0g*>fPtO$1VmG%^D55&wcPfyPYLsp|F1hk*(r7OT1l!SWG7hwq;NmxuWM?hKL1m-N zQ+u4no*aEv;z=2J&Y(%!BDCw|#CZtfJ0^_5VSSh`vDG0b*G_bZ%}4_Fd4$8cHQRo^ z5rZaVWvo~BX6!f!M0Q$t|F@vmEE_mzlmmXw4!50{QI#{bk%+8ANcas4oYO3hfF zR{DBZbY#d?^`#nL2C6_IC&&6#YsQdjW)7V(2=1)4-?J55Eus^AwyR)$T4?=+?s^Gz zm%{0@bJOk)s|;^X=4X6Wj()NcQvzTnOYTg~420{At&(0y^3kh;Y;5god`>)$cQRfr zH%o7_V|))#SN)ewAF1OoT50TBM%6^fJ`eYw((EBIbTIE#%ASb{#q2}q7$mW^$1%>A zj+$v>(r+;_J9)~^DdvU_R->*X+?ICg*%`<9fj>K3b2g~xp(2gkx2T!5TOgNq8C}7U zch8S@E1k&)Fa0Eajmx;ZdprJJ-Y0yPli?>cYd>vu=j#2AdGg~Cz2g@kZs~ZiTJ<@~ z7~K?T)&1c?ZnD+VEY$oB0lgD!{$VfO8wl^%WiNF=s5*#@JeF*E1rv|s9e?Yq_Qh`3 zydeD)?JQSv#yqdu20~1j)}(@~ai48*u^n20_%>L8(N=6W^)a${VVAazyBowVxYeC# z2KL#0l-&^Yquway`O|H>P4t>{KfVH<+?g@zM?(8n6J3rK2pf+Q;C67J@fkWH=mt{R zD5mM5`brNO?>dyO9pt03+btGD^3?NM%Qytk?fC_dUfm$=-o2wB;qHP87YB&?HHfPv zrj2y1&Uc2U88kmHD^mOTZ1=rNOVY9pvu0Qgq(Bz+$^HNQuv09UY1Y{6Khh%j?Hdv< zX*A&p!f^ou`l8iy#boNErmIksGjgHd=uMTwn3-y+C;!wZe&vM+WNMe8md@Z8FFIlg z&tt{Z3k7>>Mw^rED5f`@>N^x@sCde3)qlQoQF1tsxd;x6cxeR3HrtPaei{1OjSi{} zM{XJ;S!5=muf|+2@A@H{P^yG5Eu9kzNZW-t)yD9Xul8{y$@)2`1MGZvFd=he|zRbY!7H<_gCc%m?uhKg9$(=Qi zXMbNuk*de!MgY!Q3in33o?U>)Oy3au7g9J_E`vBI{uRght)u|4Z2=NSPy!rqEV{& zMRCE}Wj=2KwjKd#Da@XnfELnZdmk3n08O*Gq1wnuV%j(g^}|6If7*K&aC-zU8Jr^S zB==x_>On1(*BJusIWo#_I2BQhAWDbzcsPH;+`VNm?LE8(?HSZdY&sr)G>_4@NZDQ* zD`cu}7av82|tEou6-fg#8ZuacwN3f1i(67$=TTnd|SER1F0PA-KM5 zE#B_NpTaL}=163Lux_l*Pm%e*T87jZV&dJs?4v)G)E^fLetIYg{?P9$xaQ|RXqhw;4~#t9Yf{?^-7a7E|ozQG>-zb)QX zh@GfBN7qRF^(p)ry6P5noYJ3$(bgBy!G{%6^<*u1*WCLvWH5 zKtt-*az`QXzzikk%@zkdxH~Rmk^?P}yQp;)oO#6wrquW23vi|sA3#BvQz5>8wv}|y zXL4n_DiXtTX=!OQ-3OgAT8X8wS`IUSiP9!#|BeMTM$7EAUma1Gl2>=Iz<^A=EXBgO zTt2M6g&SO}v+C;>S)j!jk9dTA@AFj;VaXbNUDvX-PCeZ_3-uLhGE94G0*&+hcNM;5 zzI&}K`iomvj>q|9&u|zM(rKF8>4i~7_rta} zzsJkZyzKwE1~GJSzJ!M!(}i44)~%8RpEa>17~>24uySG305iXCWl#!a)EwQ`b8=Ahd1+*q44tez*7fkzsX3 zS`h7H<$J$HE>B0FeQVi%TtpfFsM0C4)+3QtK`S*0D<5`;))zAK* zmxusx?PXd`fW;SgXwdP>=@EdEV46SUquBwG8iu(sOlkK6yXE;7mLW%Y7wo4Y^|e0r zn!Ay~a?zJ71G)6&8k78HTLp?!X^WqKO>ehUo)=!UDPQq8^@cXsqCs)-EA|eour?s? zJ}RMjti(8)kHi`hPqlz2xL2m>W0ab*zP20*8b7?JTVZaoNz3b6lGnt)dk@=sKXx`! z>Ge@I8X|6jg9}Hmj{)#SGJoDK-*@`8!T3z>xC5)M2sv%n&V3&ctY5@aD(l1(purYv zv!^D&%C+LUgGqDRstsKk&0TKMPn6}Wdr7vuE;v!JYX~?*5(6TE z@yaKAOpFAQaRL36!GU>T$VE`YNn=C)x*?wnJ29~t%z

    tZO~2F(K4@H17^*8h4H* zI~(UM_S<)0Vj!4!=e(lpFX%EVP+waihD|mB_SRhNKMAZDXRS0j3Fi<+`>jL14+H#q zrO(>UYu5iGLD+6uN;w2}id3w8q9jC8*L})v#&xZq)p}^kbczxKe_HnqoSOPN*;BPP zS_KKA7g=%r!DjyZD;V`7dBfBb^N_XUh$qvo_aYhTHo zzgS@oIaWD-C$Ohg7n8V6-p+s&KGzP>DtebMa3YN)AoMEBE{iFa3CSONv2$YzdWygg zN2MdF_8t~(N8LbU!ZDDIWl3kz8I==H3YrG^4I`DOfD>)8K~Mg2c79nE> zS7=DZITHbmfnm%cF`=dF^;G2$|E6|FO<>M}n<*hTHh<{=G1yv23x3bBH=9RH!P$vf zUuGN+m7&CJhod8F;Ec49mA0uW|3WOru9gPA-p>`px4o+jV`$8tWW((0by{1&z^~pw z0ITm<1^`p8z_}Yv0e~4<0>9e#0GwdP3Hrh9S{?|!dzm~7?c+A&y?r~BWwEQQL&%z=115ptx;+#oDBJbr&QK_4rzemb ztHLDiu(mi53E-#*jQRfg1)UY;G&ZE*xG>fbPNK@d-E@ zkz<^F1p_{GS{rbxq`?Gs12}XKP+&cHM;b>Q#XVSnDK@b415HlrtJ8TO9~1#AP8on#ebIzGF1LuAI_||&=c#mtb3?aGieeJ$~d++=CZB3P1r{X`2=tikwQING*Ho?{?U7D8j^+<7RV*DWoopX! zt6YUZq(egP8QZYm`$aLXBv0Ucb3jL0TEsDm#Or)}?eBqo6BNrlM8DuG`}`~6-)4vj zwtV6v+bOme6@R(HRP|x#)zGeC6+gFK#%!?AyZqblpaB=wTQ^nSwz0ydOT_cAuZrR2 z`2LNt_<7&)0q3~^`tV{w!>9pXTER0}LZtQ|d39r7zR0>%`LrJOX%!L(jl2}eN5eK! zUD-D~&s96ny;eltwVuwptwQsR_@pOOy5ZapO9M!*?>K?mE!2l1}D*1-mx$D~nznaD$arM=XXBcDTfDHY( zB$VSx=HbZEu)XvQAEIX?S-13Ty?E@T6|K*lkhQIBcdJaQ)$dmX=YmI;j_al?e$o4w z7=3leRH*2eT3&@9lXwP~dQsQy)lE0Ogc!OX5i+dwXI}7%=oTzqt@qO_;7?&PEp+h< z`_W&oL3q_blT?{>hIIQC=c`#G#V;q`gnU!33PjDE5H(}D9?r#R>uqTEKK;m<37fYQ zsWxxdJBMZlt1oU)AVqiWDD~45-$k#c?eZ+NeyX0gxyMt+;ES@!aBYQIIr4P;dQ;?P zM8G=xxmTm2r@7yAMeu*qv3OzeUG~;7iMptB&KAoh-#bt=JlaW8!DYb{?pJCl))sGu z@>{;%N|IvgY3XT!H$-+jn8^A#=mleM=q6#ioF`q*Tc5ELa;fj@NN{S|tu`I+&M_UA zGGL$__C4S?P0%fpn7-Vod&H*{Y4}BDSwYi6F;(cEy?NgIclr{#o3xyGh);QyAIU+W%yk7`_D(l zY@_e=CtWq@5t6@P@kF7zrrJVHYvM#uAk19E(@iRaC4|)&d#El4X_4WR>CgJndB!0# zuWMN8?v1EJ{N8CJ^Wq0I9Yz9qZYrHV_XL6U44hp}bMsYG=*vdeIxpJGAAI0#>U~-9 z7o}>)fYXD)6?bM9JDetS@yC9=uuaG>h@JYq=G*AVgCp5umrgQ}aLE^@ODC}G-_wp2 zMB9)cIbLGY)ySKa9aaJ=)zUfXkn}dc9NC~yhH)tKK|I`(iP{nD;v9^h2VH0PztCrM7y3X%;#mDq;5)8>1&%WJ@sDFuJA+}_Cd5*S1f6t; zgkdtqb*e+gI;;|zD>EP|DeJj(j&PiE&uoc1kHV%3Bq{uH-n@9nJhrkf&Y^9 z{|A@QJlAqLbVshyGAgcf(bG=T@@vLls0-sna+;R9d~9rK$*vsZ1j2|{^eKH25)v8A zDpC!kj4Q>hthmTHkEw61Z>~<0`U>FF*&9!R!qtVI71&5vY`w-<_49MezIy%cgFdq( zU%!5J8m@k_+P!_vAA zPS&BJ`7dez^e+FGxOU1Aek+~lbcNr+yVkp1P3A(qJw5m3;DlQ9PX7&NssPbdEDJm4 z3sa5EEI)s(Ik~VioCC*g!&Zuv*N%s3t+}7om!*BmJ0$mIZK>00i@VT|RKF&IvSd1# zWsH@47L15tR5kPTEFFz`;S@VLg^UZ;W|3*Zn4!MTdrg(;MIrB4vvkD^_|Yl%8Fu> za$uinR8N4Q(adk&ytx2O2u?oQt8xJt#RuA6DGSb*KcsHlL(Nq9R(j6Fl<)FG2C$vV z43qS0%6Hq14eJ*d7gr(Dhmqss=Sykj(U3Hy#C*+^gib6Bz3oYgh6+fY7!egfqFfygT# zf5qP%nuDdFZyojDsV#0V_pK~ljwB{MIyyuQVYu>t2r^8-pI?{ISN+c>HzUji86eg( z{U3Zf9SAeZcV9g@{~x^pZjP4r{}Iw0Ey!2?5JAAXoU$^blP6E!n$y$M!viCT0h%N( zE>5a{$um20MV}Rab3akJ0PfHAH=Y9ApO8aS{q$^K0aevk7u*pDjBzv2FUjqM_;^8T za8L>3H~}RaA2s0GN2aZ8z%e4(HJ*TI@bp}GIJqHG0I?p&B#rTHZY2t<7 zW}B3kMt^4j(QeORM91(9H^3Y~qklRWNCti9c(L280U=?zu~D7yuBd&r*+WfD4MG3I z$0*;j3Z z=$KA%qg}S*b+ILB^S-yLN7PjyWt_i_{PdoGCml^;W`dCQeD0qC@}IesQ(SysS5FV? zuw!T)K7A+~gDJrHJ7@1pa)1aRd0RIB5Fq)Da&@1{!NSQSvhBB$_viP&f8{E{Br>ov z#zZ8&H^Wl=>^@4Uoa_v=aNMevnuNSPk}^Hk@A=)X=nyU@@#?+;sqp8a1eiYU0^&H% z@+LO+5(^89CHQ9wuP7_)*R-~>vNCP|RqXFP`Qx2dCE$1{AL-S=9ncD}#^&azKpf1G z+ire>77*8fr*M%m5VDRwk~@lSw_ESR7$We4>ip>3{ZIcC_j36DQ8@7E=rj=HL%&TneY~j0!*3(dO4#o#lr;SKD}JpgDDKF9d=)jKHGnYc`53U#LT{*Z zna^!3kK-c+^cq0i#kaL-v#n^VtLGcbrDMmTINM*nK?If*>{@dFBFUVgwl|49yg&;- zP8Cuk^LyOrs0D#p8spX8AXRi`du+1;=GSf@ZT`rB9y>NK>Ts~@`93Bre~AlH$P0Ac zOclz!Fy=PZ@v#s;p1-ZpV`zAQ@tfWL8M@hF5X+89n*ed*xQ?7((Qt3s|NNe`BkzkE zy58(V#sAn^4bT9NX3qlMf4YagUc5;5hj>5*h?jn5L;JEk9;otgrXKvaz4`aYm2q?+ z?^ela!|ZDkKb7^rg#A-+|K%7p2meFsME|Q}|BRCVwaS0R@&CGu|GJBRd5QnJi#-tB z|GJC+x{H5=(SI5U$Rz)_`Iw`Hv>x8zKj51y8MwYa1AQYSK~RKRy1EunvES#q?K;0Qc;(9B0tPvew|W5Z_>*}585Y2cr#!a} zDSX=riHQRejT#w4F1ztj)u+kTPv}YgCC*qY(WiNCW4Drbp|xAcm&dH0GdEKf7m3YvO0H-QK4h8F)wd(V18#{iBP#iz=nF=#^+4G zIJyrJK1cS}ffQb;x#Zba`e< z>fCZ7xok-$X;}tQL^~-wB-4V@M6Kl|5!WPkr}Qd4S+fYHz9Vdd_bbNW6=~Z`BD+r5 z1Eo8ia-3(si1o{`w(QFi=;k#pW2JOnWT{Uxragkm1BEI%iWWcn1cD|Wym1bqNrqJJ zZdDH2c~i#yC}%INmUNemNz7`FhSC&z{3yuwL2Ps(ce)BY7j%*~JC?S`mHdL=a(GQ~ zMGb%cxE1zi?*E&@x0=#sWMm*5pAps=2Ooh>j~GWYpG*%v#YTZvJAJeWVwB;nJZ>RiMt^t3(FrSzpHG8@#Ca`Y|(UB2U! ztE7y1ufeT8k}T*J7UHA3+m2R&-v^cg`Q^o0LI80_{*qNr~GV z*%^mMfKd<-;RKWHcH+F)Hjtk#Y6EZTOUR!NNLQG(MO-lE#Pa9d;o|(AN?#$fwD0!1 zu9jCQkmhXI@(xA0PSqdhcx0U-8oz3XpXx?fd0(bf zJ^VudxMGp_n6>X%RIta|Om767MF23n`SB;~tEs`uM#w8bHtwXB@fidi9Q=Bg*19>~HVN;_0f0)+y6HrKVz?Y^ zdmyghXj0;oS{^h#aqGoc?6{O=sM>hppfK*$NQ%UxP)lN|EBx}6r}mgUmfD($kZA z!`Hu)v=fIz*_( z$8Q4R6MCJsRl*y?J+B)m!LI1DxuPpFzg6OUKgcJW3Mv0tEPqs{f4sAHA^gTIm@msv z*DIPe=_y12X%xM3-}QER@qnZ_BOL=82hL0Gch)kzH}5m=RWw5@WvrEAiz+?l@q;DF zgR8R-C;^v%)w}(b00DJ6oeQlZ7A~ke#-ALGxsjF%&W)vBnCd3_9A0IcR+{+ElYQrp zMM{+oA4Ry+Od7}#%{i`5KDCs7wkoFauSDoCx52s5P8I^EoR)$egq9>k8O;|3Rc=k* zC~e<3lZfM@e{mfWe`K>Ed%K}9(RYd8FSlIT1C!6_yAVJEdS>1Cv<21dJk>tyla;>J z*IiLqHs_j+o!xNYbjf2NHsd}1a=U-IM|90e)%gtTmPDbvygY;m#tQ+9$E}0-ZTaBA zyYjX9{{DXR?B6$7PMt#Y9LP)AGHOj%+L3T^IwZ9}{+U5o%5Pcv2p&fJvYv{8NLxSKt`FN*-KgT+ zu3DO|q)d}YB7P`CDHNr*#n){k4Y`?iU=X!ZBet@2$aZ6oME#E}Xqe?qVxsVPOOi;m zh^a6P-F|ij0I6|JDUps14Gp&l_go$i8|8|3Z)@NOH#ZkP-shn`%p=+rfAh1O=&QNG zkHR7%(e7m z;<0#+0cc1j{pev-bEamA@6IM7T1%g^UJ1bOnaT#HqwcjJ?qAM5q#F-G%N<<8{;1fR zgPYb@ZLbuj1L~8HbVMaFDs4Lw1gw1qb|#LTkGchkH>4fv?Ce~NYI)VqOc{%{Zz~G}2y&&qdE}we+CwQt*Y4f0N5vKbl{R@6NfpOApa{u=9mIzhF}Qw%g-GgTk>)%I(?c~To> zZK-Oc+7LEgZpZ3DXjuuxu6oeZxXZA}A+q0LpiH0IDCR2Wr#CxCWtw9$fMySnBp&T! z`Jf9iIk)jrg~PUns@h@-3dU^>?imqW(ln1A{|Nk2k|2-LE^0M2M^S^I&w0=`c;Api z?KSUp+@WMB^Mpy6$7iET-}3T-`OgpQ+!&nO&wz^=90pycTctsoa5HMF54x#mR_4dr z6tQnvQO>No5Z6^EARs^j%?-JrO1ANsthepAJbZmCjLJO=Qb;*JyAwMCfTqFH&lda8 zl*~^H^T{^GcDYTK8ArFsHC^C#G&mq4D45T^pjqP?LM7&yo-)L{m@>9si{h9Om$CG? zXT@Z*3{l!$huZDVdXF3^>os94jQon(O?GfBplZ&!&#%k0S-Y5}IetV(Xej;H&^|YTcB;5?x3!k?y7XX(ssfn?bYN(>Tz3>fOILD ztZMrK@1Ey!3JZ0e)K0Up5xOsn`_c}{miuTl*8fxuE~;vnOWfH{H8^P{GKt7_>?6d~ zWhupRKkDZu7(t`VuOlFJFY!~)c=(*CqT+ztPJF9dWffxfhOF@wf&U$;e4-K(ok7$V zn2xTl?yc&4BC*29uJ-O zJM_~_qLPxjpk^}xWlaOdut>Jzq~p~QC=T{=d~EEPt8rsI^+s+drE{0@CcOLQ5J6Xl zdOklyJd2x#3>H6npTax8zCJhmrOl42^C>45fuAm*oDB-8l4ar&?Eunyn`I)fU*nqN zgsQ-hPP%3RBbZCk1)ibTgw?~&?$c;N6EDWsxoNPUUr-UXWZ_kbk`AMKz2r(L6t{Da zGb)Hm>mI7e{zlngJ5k0t4e>RO$pe(uh@FCOTJ{*jK|@=^9iAt`%F0T}6V1CJb3oj*A>oM(`zjoC!T(Ja z&~0uC@gtnJ&ttW(ePiEk-N_LO#0?)wiS#IiwQPxFzUV9s#3v@MQRMqSl_2ImrW1|H22K22uHGeHJVScy}!^l{paoaR+MFu(BK*Jiv% zyd`y1MN3hB`5+iFem}cvu+22p-$R|n_%l7YVfyo##lAb9UhF9xyY;_@vrm8EuNq&k zTO6q)jBr1#{1WAlo1i;C)8zUNU?K$^Go57XP^~cqS#k093MJ=EZ5eiSV3uCCiLp{> zyl2MhUGjTscBVjjl#K^%)b6l{-3v0yAGQ_)aV1e6YoySJWCOqHNtl0;+oB*?`k+RBkI~PWNVQ_%|N*Q0!n~8prGTo=*T;q!2fCo3+33Zvofqm-@vJe6&dR z(?h6uvvY5?L;XfQR29}W{0UAN6scY)h5A+xWTu%z78uT0t>} zY)gxSdZ%k8om@EU-I>|Kz11Y3mz7`l6wVkCM}Ch|bk!%n=hsTKpSJTkx3$jCKRYVz zR)}V=)BLub7t%4(!#1Au3JQiyGO!yyZ{}U^(kz&yG5`}pW6y_+XtD|$+4yyg9+0K7F&8V~*f4Y$O*L1SkpeN<}Y7~7oT#QW`2L{6=Sn^Yg)XVd)Cf(faZk!%`p|z)5@$T zwQ>o0F7LWkX&b)|JPkWySO0pPMc7gvKqUk8qvbIRQg0p3#LfINHntPLV$Z5*8lQirp}^bGvc92YJngQNtCThDoc3w~mA=_5 z`Pwp*+hq(z+1_xlLc}W^c`^S;I)IuV;Eb76qc6dnmd#6uy#|ItH!3Vh*Ca=*&TK&R z{$2Bd%hY|wfK0JX@J`+2-6G_&m#U@k_hB!BG zN!N_0gqBqwRA2BtF?J^ZKh>S5~4+u`~-c9z9iSV)z1KGWQ}*_jj472(IgZ7AabpD?IZV z&?1@d@8TlJuC+~D^6lE5BDceM#sl9tT-_ABQ`J$fJ@2zXLzjds7K0eBtN?@`Y+9f!GvD9--H~N*W3jVUw+THTdYTq^E}O@PmL zEfjIU8@EL2xSabJKma9;etYG9nd{ru#rX`+kZy+%G2h44larH)Pa=uJc+t>k&)<$c|F`(EGN5HRCDza{N9mV^-F=etnO3KV6a;}>9Zt)G=E{F}fK7bwIEtj9ty_%=RFg@3$8^dSU6v$l zQr44b^pbpI;33M--X5brC?!Ml5J1I87nd+?DOOwmphEENouZn zNla*+B52&)v67Q^o4K#D^}}ALSJR0dd#IS$s8sh^$4Tt*NDq;2PBE17tDBS<6sX4B z@5+kyEd5;~_lb>{fm4l%`rFjkgcKUe3QMz_{^AfN^7c1cU?CIt^ga*;pFW~n2~e)? zddlfrjM$00ErK=}cnCW*y~RU@%}qV3k*|0(asxH`Ql;PTH!(eQ19a9+BJl=IS>jxSHz z02qD3;%*J|DOq%xpRiGJYvDFVNE|+aB{qz$vMYgXqU>7O?GC%2SLkA@zD zp;->`m-WEu3j-@}n3ugTZc6%M&Q<+T9DW~bke`P{<> zHE)U6v6Hoz6gA0hF;-{NM-{Tz*C}<03@VCx7R)en1ND*5wS6G0bo)c*(f!ZR57} zmZ-vT@@EbEC#yX50L?z4>L1tjxFpn4f%5X<8N%6JkP5-h*x9`FdV;$^Ke`hRDV97k zS$nST>@r8=qx$$acfth5b|U>n=Ia7+GKXSx%Vpe3N=AL+E$h85*K|C5ZCD;H6*j#{ zfoiMt9?NCaI9uz7-LVP6KN{_@oRTsYnNMf^#-6R{K4*lb?Y)u9VEa7|Vc|@)X8Tz8 zdD(L;Zlp&>Ul}ArrH8HI4ODk{i;J_33bM&83vN< zW}qi7$^2Kj3<<+VrByT^YeB*xm+F+5xkwvl#7OHZ2ET(GFBEnDvg**w)?3`7Q?$0O zG2}X3v?0HwOyL`d6!$>w!{7qfNfJJqa5534z`KkWnr~sxQ_qQBYEaG7pdB6*~MQQZ9T*uEcL5d}y%l(R+huDuMHBQC*e+)Xzb|CGFi4tCOhzq);`0>h& zZ(0&rKU86?yy)J|`)?ejiW>8Ra45w(K9+@5vD^K2r{#;V%AqIHp9UI40}yep%l9%j z(xI1cS~9{Clm%fezTQDN)oV>u-TGO_S`A3Fc0ZU4x@f(*I3cNIXeVjB<^6m)SF0xf^r zowx-lGU&nmX?Xr0pZ}Aip_T^E=;Eaxy#v$Jg>Zr`9jJmZPunA;+wTB0RT$jbu`|73 z-&@~M=EC^5fQ^E}Ar1HD<>h5;AvCK-NJyw)#L^q%r(*W-^Y1+T$r`)$_exGs=l}oe z41T^7bcJhpmfFmJLeEOYei}gAu}@j5B`ho~I`GTI5=}>gZN7D|5Mgh)Lq$(!uX>(h z&pZG|odM8*BriPM`?7QlWy+5$^68p<41Chm!N@Y&wDf3J)etWG!wH)MgMqm2Y*P^` ztUN8hn%G*@;@GB@vQr1r)6)rXN*V=V)j@_htatHrci-Od zEsl;ZC3PGOT~kLN%sBWb;$ma%KvxK=aiI*%s1LMRE>Hu|ZAa*{8xKyftfWOE9e}jo z11Oh+SXwl;x1NeZsoNaJr5!<)F!%O0XRK}_O0kCjyk>M26(t72l$Ut*C)g;;4wQEI zg9>##eXq0gTyk8U>RgSgwB3ji_H(~fLYW7P6keE~I4NXdO*+X2Ayn30Y{COX4wj>O zHguAAqX(JynK(heJaON^VCup)kxoKJrZ=bpY$$L$&GLDUh*GGVh+w4*tTmY==s);t z68Jx~wH`TN4D@eu4OJ9XY50;CYGQ0GWDAp5QmX9aO8iL#4fPWDpXmQB0so&%Frkeq zr7-R+Lk{jugT$1!vo6&m`RAMSfinVz;0+96sQazNpVEsz@dbVS7ghWqKtCn7HNpvq zn;!9^GD7~Y2Z)$=)Li?|dkTB;61pZB4y?`(JGqHkRu>CV7r62VFdrZUq&c&hx3Z5k z-_gSCy?P%=wNH^&ZsZ$eN`k8&GX`+q#62^bf4A~~3Q^geb_?8Rg#BP8o5Z#jmANMY zXWVx5J@;nrsXJ&RtQ3u7b~VA}K!WWhDlMWtR5zNXqz1mf*NJ#8QIY6Fg(W8!d~cOT zXntGq?0n~;gn#&x`#njZsA>O@fylrU@9ykssi{Y_rUzql$FVL z1f0MS=kF$BECc3vf;7zHCmp&srMTx()uQ{%+uNj5h2fNz=@`v1A5ueP#3WyjM#c|@ zXl3bXZNp>M#r?Sy{d8y*b<%@wMHh5n47GHq#UM} z&HJ$s3G?X~aqGELlI_LgiCzuViJTm1A;;-eGz$|_5N0Kw5SVMb5yvEn@hiFna}#e8 zw2tDfL3Y{|1$D+CgVY2Dp;-N_Oua4<-WpPrfs~>5Kb{4!QO8BrPb3;}{+#xp>dh?3 zK?nqozokC^Lo&eAF(?)apOHp#Y`6V`JJ5DuN;NgZJwX+; zR=@ywB4p1}Z*``G*Cnfnq4M6%+umT|+szkd$8r^^m#aB>Mpo#xxc%76aVPwCkwLS% zz;f2~YbNRG*Kt4V(=AYY&kwf#vX7_0WzpJJ#pPT^PnpyV%6<>wc1+8=H{B;|Z!nYg z8^WQ0gft-tFJMMGxAL{Ky0?fIx0~|e>v1Tn(>l!1Zm@5dTqK~M82CNr#?>L0hd-C< zaFm0Eisjb3?Ggv~b~aqfL)U0+x#M(8Y){Ae=f_3hE?b& zEX{Lwb2TM~i1Isv)+Q}3ZkJ9A^J1RBC(7Cv{)jn5AZjez>BoEOBG{u-SV&%}xa$(!g*lto|!4qe~B}lVV>gpqtmKC>4 zUep+Qx$FkjV8X!4C1>6O=iZlPl4e3f-x3OjZV@3b_3!drf+A?Xhzz!9#wh!Phi|v{SUX%Dp_KGPor)q@RzYxGZnW%6a z>`vR%wCx1NpH>pGE1GsgRno^zcAYH2YGede5->W6EuvT<_*vl_KOMx3sWPO@@0!lu zAr#Eb9ieXQLF2K;jP7;MFN;`ht6PJOI(`gNswG=^d}(QEEPBo(o}^lgy$6X0Dm{%o zh;>a6L;kd)HPBxisC;{I?;IC`K6?<1zv5r=s5G>-wT0Hqu05!3Q|G5yxbiwMM@L6z zHpLz5hK%B&nb&>mhUknlw^JLQjgsO!?Eu=5*emiswm$SCpbPEiyVW?2l3dn@_s z?CjVq3Rne028fRL;a#44Cx*(Vu*RmQ0QZ4g*a4jD)AqnldL&ZC>i~Sg z;N0->ea=SJzjvT1Uhb4yNG3G~lP!VWYd_&!s;#*mXXb`AC+8W()nUwCk0#~C!))7g-JQQJStp38JDip> zzKfKwPm5NTnU0*~-PV{k{i!6L)G96^_2S-~g`kZOGJEiyFZbSXVw)QP?c<|r?U7E^ z#Qac=+p(e&LbmP9Qp3nv!lk=J*C69#;Y{R2uepoVCSA=`zJcaPyneI?P%PbKcGPu znJkrh=#GALrcO|H4d1CO%Mn@2a^`J5c2IB^>u}9yPj_cW!@IKzgvORlK5ab>EH5FI z>uE7jG2AOpluzWiW0>ctEs#9~gERg`)n8mnsypZ{%)^P$U!Bcqux5F>&DGUGzZNXt zzF+cwOw3nqEbVZj?q(J^1>r^Y>!=Mx5jf_4WIs!f0oRs)erd~dZV=STx;|l~o!5@i zAdq%1E2`0NmCY}4+@rg$46&En^Zr0ppI!*R%`arlm=THO&qzG^)XTOc&h=LCm&|r* zK{O;i{2A13YqT<-e}FMI#Pr~HlJ2U^w+9cuc?lHBCy^fv=uPs;zICkq24g)!Lz9Ep zXG!DSK)30tPEw~p&?C5Cbs-B8xk`4pQtHyN# z@2T1P>}Jv0p4s{-TeM3;ERL7VmW_zx;>Aoer-1acaaBUaQ{eLwn0)~kFZIz39w-m2 zWQ)GQpJ`zlX`6yw1*wPOF(muIZVh#jn<87d&m>pQO)m3!YTAZNHEEYb-+cT!zXC7x z){!<6`UP~JXC)-bZ99u;`Y4bx0!7asyI8^9EnO zi=HtB&q(MSlHz~sVwlT`rw9o>XB2=WQc}BLe}2k&aoKcN3u}CIWK|htj|Z;5+FR)8 zDke~0(X$HYV?5!kErfzX{4(sWlNw$8NzaQvx2B(RypSjadl4&G<*S65xHT4v)!95P ze1+Y^>_hHwB0uHFENPv-GDCf*c|NLOax!-v)p99=a}h_3E#I(bJ~g<~b8XMVf?6k^ zmTKaLb-Wj19IpO8TRqqWnT(P!zMgJL1W2S*<;<@%v?0m{P2FTw&3sk0t+H`2F47eg z5ngywm40aDMr-i&npIMiEy+!)p{Fy0)DvuCr0F-uS}=?plj+L0O5FLFRKb=f6^4N3 zLk14jw(rGsK!*`6EX_${Fz_zSPfiGic2*ct=fTV@fhP_m=bJw?s2|^X*_A#itT3PV z8X5tUoW4ozj}OSjNygqM6?U^|ONRIoYSek!WfvgDF?A~~<)7I7zLBFA`DU^$3nsaT zH|b4ppG@33v3imGlnYGjKwa{v)z;sY0F4z1he!|K&DsF9u46phm2ZL>;+|nsX3kvi zbqV7$U62a^3BpQ3|N)~o&sz`(a6tv?`IRCv0ULN zpTm;dE(z1zE8-ool65sGpU5pBSpLcZCS>ckxQ3AiU&qTG!D5QgHDcgPnZ0SnNkE^>!y*M{%p{QBFTsJM!)(z|nB!qg= z1_*|W7MbYC4bPc8#+U6bQEtMwjaa33(|H#@M9-)^V2R#&-Es5r;EHC>=Ywm$X)%xL zgiSAs?~>B--~D!XUoQ&ib@LZ36>s4~<~_~z*V{x){F;?^z*8#b!aOH>wR`TYy>Pm~ zm%oUg0dS)0P4Qm}?0D%`G?RTVl6$|)>FAsjWuRqiVQOZq-9AMf1h{>03du0Y`RN&G zbW74(D4BD9*8e)seh%K9#O^Hj=*RWS%m=2zDmx*^(>*nMDvVn1 zn0y$s2>L9wZFONH^M1Qqgp=hcPJlDc$!^!uFnfS0_=4F8 zg@p0=3N3I!Nm}7@pd=yLNoX*fc5>M?Cpqi*73jD}?lg z9#X?8KFFDZzm9SnS^T^i(>1$kz1=USLD+8oy;D|`b|?Wex0&I$X>FMaTWiqTwLiUu zJB*CmG0?R4_@NTL^sAOV?Qp-+rr*Xy*d>kJ9=DD7X|r*QXVB1sL}Xn3F~(el6zqfx zw-1=Z83>G&YeX`c$a<~WPscL3XO#ra)sAd==~Ik?Wq3!%x@;5rCBw!7{XcV3zH9rE zz+-0+BCm7Telxw@Rk53DIrBd8wkN8g*k_V&!bkBJ$UIBV;0-O)ts`JLA#ZAFIL-+` z3Trj_6=PIQEvda#L6?@nLCuWraao&C9k80?^w zqUXk3?-qq9cC$=0XJJa4Cgmp*;lbaHYFsxvEALvFEPfK(sPikG6|7q_T+l!|Ama|; zBGX(Kz9@|2cbYzrM~;z4rh3IKHyS5%`&~%=1Kqn?NtfVF$i{?Q#e|N_L0^$CGRjLTyq9lo% zJ?C=z!jd16FNM#pQlGptl4$R~3Jr??5_H!oNCjCw9SON^0P?mC44Z zHQ&sb=GxpY`TLuhEf>_Zd~U^fw0Pma$nBPvlrI;;%N^K#-`NVq6B=vzi#Gf|!U9An zHGa1_D0REe`Z6-^b+=KbRtccWu2pwuxO`PBrRs*flhaLu`{~$C;^Reo9+_XcYOJ<} ziqK~noV9T?ew2@5TS*kP(|+qO2|-2*uDOk17cJ7zbW5vY%7;9#7JGOHWG{2`o1b0& zeq8E1tzaDH0u0gqyBLjH5ix`>P;DV9CzW8kV&;1&8@=WKrh=9 zv4*9lS;MvlepUqPh$I_ye06awwjytr92Om8y8czncd_m41A(yJda>Pj5hOB$lQQgH zmT2bq%j;n>D5?ADOb~gA$zuxuR_BB*wRuc33AA)D@zxvY>j7F zD0L&e@g(|HzE_M^nt}ms@J8ezynnl>f-SF}PmKDad>D*rD{|d`wfCSYcqEUiv^Ms! zX7D#nwX4xkVORv2J>Nx^rG^C{H`{3>BrRCy^mcZ~!6;5@0)5aAu;24S_)aPAj{Dsi zs~Ap_s+ymTrWhbf5t@1x%Pl@``o0b6vo_^XSqaYYAj2L}i?P+JqRR42`4zO&I~a4= zW#S1=+s6Yu(ZWibyPG3wmT9mT?N3&&vuF-3=SD|6E0I4f)#vTrL9L@q??tsFAhgm{ zaWR&y1uhD>_x|E({a z6f$Ys&&Sp0lb}xne{_Zt#V<0%Sf2lU7ABbGwsoTGY4HbR`T;{mdeYrv#8a(S3Ql-w zwmQS4$soUzu~~tG%L*dGoa?pO$j3v`kvf%YePUgLcrp;u(=hU_weUmf{sy;Gjs8n{58L@r5f zw0|@^(Zqw2zYV}~^e18ZeR`Z*$5r7a&|+8?b0F{bExLGRct%7w9FGON$>Hv^cCHyP zl!MK|+z_J*Z`4jKrZ9qsU#IeAHEJ3j4C-i6@4zNWea{3oM&;grE0O!fiX|oFJmXa!Jatdb5p#=@|l{w(z3M9id=crWh;U& zX*EKwE9`FmMtY0fE|sKH+!^%6ypR|Pm1?gfv-*C_lrSe%v-M;V zsWCU4WVmcOm)9higA@`EeM<67F+zT#Q5$8 z%+4^cluyT1R2U%*hyz7$Ev*f9sHn0}5xv8-lhwx3fT~&i?sDSC>8QnJ6V>o?qRUh% zvdq+bs0QyQgzRhM(FYBP5=U z2i*qGLkoXr)_XuAa(G zF8<>w)8qD1Fa$X_Q z=cPH9lI@F0chi(Em#h1Y6l9Cfm#Zt)bdVa?_2=TDFC)g=8)Rr44QRT%s%C?|*7MfQ z!vy?R5rf*Hl=f`lFl5$Y?;rOnZ`a1!c8d9u>|z`Y^2VZayBgt>I!dH#=!NuXl9rc~ zKHT7T*xeFThI+*+#&T-4QlEK~Vn_6qUgRfMAi z#s&@yO@d(dcvRuZM-BL}*KUngl$YO(Qq*V0CJzda(z~+h!zKo8#HH(b_A$C?F_Wnz z(sCS`mhyCQMEen#S6--ox1crc(Cfeon7?=u^vh{JevO&CV)k89 zWLtedunX+w)6HzAI5IhlIjdx>w);KlGJ0WN=?vX&6&v2eIbp=0Hg=JJceJICU=OOi zhFdKDMZ_CLKqVq0!#KjDvYSfPw^y;ZKrjbkhGny&fPLeYQn?T$d%AqlcLSvGCzDoR z(?7tr9nTO z&+Op9GVis!IkaK@gE()C6wltyo?RBO){K5KcBVQwX(vB-iL98OsW^-zN^TpY!XGX% zDrxg^c;~#R%r222vosaNIxA6zuFcB6P+CEYb>*)UF`1W%R_XBZ)E19hgf{mATZQtZ z2t!Ke%N1)+Fyd=UlI?_0t5# zuGdCI=ZP<8#?@}lNB2=DQvnKsuKA^&9LUa8Pk#1#`+f^!)iw?Dd{BP%zTIOy^fgMj66K^;92qW#xm$FkbV<(cAyZ$Im_bp{Kog%$bc3es} zGQZvoC#%j3%_7btlfx0@osjCk$TPx;=E_X6@SEQVRdtn0nk}bfqLz%fvZhzpq?9 zke5h|@-BFP)MRe{b4r8(QV)*e0vTkZgNlLWgt<}ru)_Qx&O`=Ph7fNYAvN@2&* zD{t9L4X4hlLD_1eDIXKMWWD2TTF9Qe4X+2hg2ZlO`A?l68RW+rae#hxS8^1f(=F0|8 zeqlwF*`D+@Wfj6YavV-a$(r(#KKV{WdEMl$soG)A9d)M1_T+TztuiKzxAZgPUiWqh z3V4ice)h^tQ51*&y@GtCv zreRQ*{Gw28Exf6cM5?b{5%ei+6-S@GXul;F_AdT$kyv>;d?0_ zW318G*G>otLNnjl=&KyY6{owyi@0oHSenf0F3RS_jm5`|HP&k7bjQ}xz3490#VCc7 zc%WqL=S1K8jd+Lt(xcIl?NLKD%R1KqP8-(OC?Wl<(FXlz_VPDCqB_di*_>*=?29x* z%gq`OyP2Aqo*5#$#-Q}b z&B!uAPF%^kbtt#bZue_9Qc}EdCoKv8sz(Cl<|bj!_BAxyTb76v5iZ1LzI6P?2?-UN z_;DkZ&@ZKdWJt9qTL#w7|4}AynMz)P`)r0^lvq~&zG9A^;LvO>xvvNLWsAsa=T{eY z?w!`Yh@{n&n~Yu1!dMD>-P|U)E8$fzdy=ZtB-mq?dgs(z-*n*C`PJ)$80#`~iW(2u2>$F1$wx1h`EbP82 zpuh{)BZRrzat+;npGPt2<*%T+2&`9fT33bh$C;@y1^|T;!5h93Fc=sg!>UXvtkM7` zaA~h_e#;5!Xdb_zoJ(Ha<@~$%;yI?z^qyUl^eUvKldO9N!|;czb(W_WkJsIeg-Np& zchSawD`D1?AdEa)N^?(G)|o+A?tb>DK^`G%i@7I3He?grhEdNxcN;5{dEWg2r6R^y z8@pi<(pQVPLlny2EyuaPcR6rsN;9piJ1g7Z)(*QezAXz;>(U19$W`$jZ=5b3zxNe86_*dRGLGxqk7_Qs*ZJlZ&S=! z)#r7+(svvHTFAZ!owwi695wvw?_85?Z-izJED1%`kJhOJ&BKp=*Hju=i7xK>u3Szu zECFKGUd`EMi-~V0MA%vtpGjk)}jnr2Q{sr(1$4xhuSt0}C3 zo_`!tvvp<5en5FWaW2e5_&0CS)-6bTR(HKLqRSn%s#-Ib;9P_`#v|-*$eH~(?i^?2 zQ(#r!T_w?z@H%7KfG-!26*br5O~wg3&QBffSFR1L$B(h%PnAxTPjF$c05zZcXb2Q# zu71Nz5OP8{jv6aBKl`w|Wu%cB5@RR+<2F3zJ{6jUbgi@vdpXqafDv1;CUETVt9V%w zyD++s)q!%Y8Rv&&=M9~>DA@Hh`%#fob(Dq$sK)6gewExZpe*C}jFpqT zoPf)>ATY+mI#ladPoB%G}t#HQHlL#A%)C*TeqLJ!o^aL(^C1u)orA_Bv@%Nw@0od zCZOD|3s%k>#r+JS<0=RxuHJW7zicu{-gkjhzd@ar7s2Zn>U&+u9sGEji5>gU#%E=? z5hy%FLLK-%Ik>tCUCz>InzIyi{W!_&Bzc)KB$1Axa4$`ir0ugt?f$^C)Kv=b?mp3&FON?dlj7dH#`})sLaOH zcBwsk;CRy3SQFc}*QzPz*^QEKYlHN$jvG#P;f+$yYttC_#s1d=V$XIPG&{!0a6NC& z#7e*^d|7TMjCd_A40odm5i5NRw+=P0Tjz>{AYofj7ko z-5D{rB^M)5Nw|~U86Pi79v7MYYolenpK&)hLTGi0|2W9sZZd{`DtH+o3m>oK+DbT3 zU09JHrE%L4{l(!pJrvt~LQ-|?&CPW)mp3VJQkD%u*I?MfRmBZ1dIQDytx{h}9L3Yc zW8Hp^7H}0pWK~8e;RSUSt@G!EP4%NTdj^JDIEOQwYY=x3o1zT#tCf#inS_YN1vXUD zo-98%`od%ryug^mh3(RD0&jmA&k2pKqwbe`B+29AR@5GSqPa4mtgpOl_R~IefcvXA zF*J0kp#Gci9Qx?C^^T(f4HJlx{LeF31wM`>JC@3|5MfyP```ZlNfFpL({}kxs7msq zjsc#hmzkK-G}Qd|NHG>RAAZIU}~v@3#cMt-2d;XPCA&i~fA5lTEt!NyN&&eyIi#{6QDYSC*5bF@t5vFSO0 zLWL_5eq3ypk$-Ejo$vd)65$?ck~GRwYxCj6jS&np(Y{Jga>*Wh=q_~x*@ppM3x{6zg6<}e&6JjO>&NO=Jg%rg zO#vrKJ47$4Fr4O$9AP?{GiNMn`bscFhV0exm#Xcv;>sneyS~`H60Hi#@sH!nq zPhN$SJUSWu(oN;4cD(6>n9`3QYxYb3-E_v1Z&KR$q~3{QgI$5$QC&%;*pE?;zpVzWPvqPF@ZC4Q_j>r?-j6g)3yzfiZu7FpfGNBPztNls}su3}Lv=Bi+m zs~4Z?I(=8nnF<&xnX5~rh&D4gWKuY~P@6moWpB1Sxb9+gUKCZOl(gCpJ2h3`IS&+_ zU;3a;4h!hC2U|SCQgH&bdU3=%qS@FNUAQWHr2D^V8g0Yah_i`#yn`1e`YL%kCZ*yR zUJ?)+H=GFIqV3myPHi;b%-1Q%Kbh!zoBSKY!B<;Cu&3CHAf!Kjp~nP&-Lu%$JyOUy z@}S^gFMBpiBq15UVNMBF=?k$iUCFjcv?KPEt*j{Fb|(7enCzJ^gv{%`15TA%ilUYq97>)tn9du~D{^O(UJIf#YS(3P!3D`WXD`~nV8B6Evxes+-$*f!Y; zN{q(L6TJ8EZUausCPk+3pSb ze82fUe$^Mt>O}`(k2(*CEaA5uS9Y#rxkuI+B*&K9>Vn`?w-inj#ow*Tt!%&6#1;uD zm{krKU&jga1A6$R60gzC@jM!V&a?lz^34{Id+Q-S7=2?SAg!8Ct>#utLwrMTLu%sqN zZ0F3-{*)M#;nETH7b?Wqq}RwAc84NW9pQ*BeD{lMuBD#bj7vN+uhuHQi$`1s2?x^# zT^@s|I`HLBF$`F`NeTsqtBtjiC~|_tij$%vMK9Lw+RvDiqSjlA$q@A#g@`=~{G`kL zwqF}9(yT#MGv{WfYKcf^!u4r#!+b=h*hMqrO$OImOM+mY_v4?FO0caj{jE|6vG)y& zx$=C>Tm%DQ;6U{W*J*eG*}V&Osk{spp2J{Uu~3_AdO%eKE0DBR;`1Qz9OjFNnw6gj z`UiNtPDKiOE=5)*_M#2#NZ~GmWZEXj`NT|^7Y7;le~*tWMoFF1cAm*(d!pskX;&mi zrrpN$^j>wj1F`(f=iAtpM!hqAtMJgJ3OyQwOG|;B=3=1nnXif}hZZINfLwl%RxYw5y0ttN|2Hb3yJgK|9wW;(^6#Oeo=nD9xWTSAM*=XJ`~q9^-~eSMEEm+fKdywROm!w2P2HJ=}3`Iamn%x7;IO%vzPeO3Wyu>QaW&*Y9 zH!?P82ehI|Y*vsZFCI(?EpsBXJ%g8qsA7INODUh@qu zRiB13-XV*B751cmt}E3Wz#iZmLhM5sfI{dO{O@u8%VmY7KrL78DljEMuck9BtY=RM zlc%iu!Xce1#E#Zo78v~e{KQi<9{E$EK$Z*PM=b0XFVu{#yI=6lFg4IQYwC`aJ0|xd zI>)$nx`Zkv!aQ>Y&Ju1jI@nC{D|NBoG*i^HJ>0;r8n#8&V66IZ98!*>@j2V9uj9hb z!)e~)w&nXA(Q};f-Ku;{?aIMUQO~Etcxn4V7AudkCGilYm-v04w zd01^k#EwlmKn`dOdhBaIZF`r~TKMj7XB)%?E7)!XFi+sKY7_Th(>wX=ub{~-=x1YZ zuu4(c`v1Sy;sfE`ZM;o%omS)8_d$Dv5%NVcfe}lH$@VVn0i87+Dsj=~^GWvnuO)Do zqr{79pO1S6i5_Q967BXb3g{+zx>(gd&!n6YCSD}(>;@tP=R37)tr$$0W=7aw#*TGQ zO3%dxd5k63Pb%1$FP*l=N~H{asi8I9tl!X1yc!pK6n0k$o1Q`~Zfflm6?|HTM{h!u zJ1@0^mrGk^yFKDCV`+WIr^nOs#m^CDMx)o>!aL26mNbhiquETFTUzbaJP!NLRh&OM z4wI|r6l{a6iiI-RKlbS&^J*~Y&G4nBgRcCR;q%8QP-swE_u{h*srzl2q2%a8dzJiD z3@o08hn`k5h|Q!{mW3CT$qulsENbr?Z;G!IlDZ)jm;2;Jl)_-5lf-4ERyz-voh`ZU!e^hX3;zRF&DHBW7JDHqRn zy%n^{D4emJ2_10i723ozPjv4haT1rKTMeYv8@|P!j7=4o$oX=y;R?+wy^*!5h(X-G zCz{i@6H4C1^FY&Jfa6pt>AVx8+!UBpw!t@^8g|s29IitgI;kCe^|aZOgG@s!7b;4p z%Ac$$6HL$w-|7)`mG-EL-_~6R+XTVwXLu}1G%Qy3#SSqD*La5Z_1epW3%$*3&Rc&V zL9ld4ese^Q#|v^djLfd|HdmTL7TizlZ#6#1rt)>VXQ-fYXasNL` zhNF#eKOrHnf_c4(kkqR`X@D9L?!!4?wDqj~CL_H!D(S>LC~+RgD^=@8tS^&x+F2** zr`~Mt*B^wP23J5Ho-H_+TiDDKn785~m~@x5dh#zkzZCLcGFQ1SG`{l0_YA(yR=rq) zc)S=8Jx-pEeUTKd#B!-PxqR*0TA%C^egbtWt}0zTRQ$<`JYh7aw>7XZdZxCp%SGcb z&BukLI=0+iS@6Pf%T0BQVi-LR{G4`@v0Kg-S+jLSN{`C4s_YqgWm7v0O zx_M_M`+`Ivn94o2#jObwG)SDRZix+|3Z@DlyzUk<@4OZ=TtOUmiQ1Yuxv#@5QrB*n z+443B%vXpX#$XKY$FD-)Gg@0r2NG2dj~|>-rQObK{{aN%AatREq85?97MT|V_b&fU zxEv!b?G;``Q((NO`J>E#;_|7K+N7Mv1A& zg;{{J3DlS+HAm>%Je12S;DVJ(;_a1EVOI<3+&U2P@9GlmAtv1HuT$K6bKH;exvo3h z)DVda#(2$c$y2?`$_xyMR9erCYc8_|#ANqXUwv}i{2>aF7Ml=)h@m5vn%qrYT19%o zNQ%+BzNlAuQH2sZe`VeuV(>-82SudYWZ{tAwMunl{Au9_v)*8IdqHG4B|K-?$!Cx| zz2uc&q?*?*8x--sWc}Z@`3S2HzB&TXZQh3aIJ}iX0oy<%Rl5>FWWMT;J+rBzakW(h zZ*L03qzDgOn`9n0Z;HoEJ;%`S*rqdI4)=OeHPJNPiCA|U$NOn3gTBCPjZ^G8a#uxZ zj@xJ%m%P)NG&VnScWs#HKjI>$n|*Ouo2uQ+S(!R&()C2w)^BEHb{@uCom)CQzISUb zSx62#qa{bPZp2{pz@-=S9xsuxVX)VWIc zONk&t29LJ1w1^_az5Eq|N_w51a;7%0v$H=rla=}K{{QjO`@i~F(y{?eXnM4Kp!CRT zz7hB9Sg~_FGi1x4YG1A1+`eh%PLGloi>=y2-{c+MH`sn4&u|8_r%e&r;n&Sgk4?Qq zV&WFO=35d2PPTL>>uy?|IyOF)=1B@jEH-=;n|Xtgy?7$=oD>={o<nn>2a16KhM!=#VGi9`Tu#*5+R@5&Pj27>pXE_G!)yWZJZQLMMrFvuYHlK$GU8v zuPIO{cWpSfGB~JUNMyumtw=`0y0CWTsvKQ$ujCPSM&;XriVu)dY#I#20#C3!wRMA7=(cg)JO-L0F$dP0uJ4Rj_8TWU=T1KE)L#@YooMf1Y6uY2pLdCdJUeiesDSen zY+ikI_t^OaVhTA-KK;z=6)ZBiUV1T-GNlz>RWOnN3~%_N0lgbJi9j-&3dD(CQi;Oo zy|uXVkUoW4P8Upx`e0bk`)3s&Y-Q^YC0WLSy7WC(hv(D`=*Y(jhK@m-p8PnFG&yut zhd=!<`TOhLM}-c$4I?~ou9m$#v&t-ZJJ5{X03e@B!AIIjDlpHHlde{LV(290EQV$u zeoO0%-Hb^wo9OImA10o)kBz2?&F5rQzA5fY6XvamSwJ2uoy8+|iE8rlurF{~IqicTQ4fDqveYY2Ky1Tb! zxiM7Pc53&F{*tmBBrF5^tzd`7mh6%MP4kZMi$Yy`m+w8I@PQZzdWs+!8IeHIc&U2V zxTZkm_N+H#U+`4_)%5-%XMg_W3l)Yb$*UnK0%k5D2Vp^6_@_%tc0zbbK~}pJ8RM1w z93}%H!(G}zDE)gW*>bN{RQ0VEqa=3U8yO zjA6UO_6iYXyd`{8pI+$JInu@jgS`(rI2|svQ(rKpY#a1v_`fXTw%;;aFI4k_xU{j}&y{ ze}4T=8%#M{`&60zziNgf72AFoBr~SDF_=I?jVxK954G85s`DV&qFS_4*wbcn`LvbG z=Qi38BWM4{$oA#=L;FY7!Q)gj2DcpM9d6-4^T_;nPSw+sqc5u*yG+!(H3cklUqif+ z>R!Rw;8w9vYP9KwT~jrB21^={Ez(EI%oEB8Dqt~Ke5VD-dI1$bp2azM_aqQ>5Fq1z z@&a`XBo<_gh)@YUz{R;sQ@{P^E&!haYUp+7P4W`|4v*V+i`kw&-qhOPbZ--YPpYp{ zBJ643$4LE0T}UHA4?&C-TXf<|s2y~_i=K1PurT#oxT(A6CXU^neH*wQAUf-#ZHZLF z>BHY>BqsgR=jN9d4sGXD-WDm22@~!9{J=+QC6suJ2<}y+H!52}!nnw&eht1vY9~_i zTR>v5=SDu0pVLAxG@`dt2n&_kZw$CKNU%M86*X=RG8UuO0nmOebkrKb>fgN+D& zjBL2u(+4c*WV4pP8A=6}No(M!TDWDVM-L&i^zif6 zn559CCdXRY>vq%eay`ASZ2`yX^e+T6s?KwP0Jj!)!s~9E4^Lj8Qy9T!RTa+ojX;A*ML`%!lb1p0)=Xc`9Bb6F1A~8;UL` zl(CaCh{vH}NZ zP8#W&{}%oHF6;a?oPsvnd0|y<(Z|P!UiKihWU3z>Pj0aAnK(Hnu=gVhO2oMD-gyta zNRJGgd(iJMDIRz2<|QfrCt@CxLq7|`=~T{*;?sNwrTDf}kAFVPrT`U+c^9UB*I^4u z_ou}?#h_Z!G9@0#k?k9WQ8!itKJ`D-Z_0r-bERXM0%<9aNj4tCS+KOR%i|DSSOr zC5P{Nso_-i7Q3X)n<|FDm6%xLqm?+3Y!-h(TJ1c{d5ecQA@U%+ zecAT!uk7rF`(G&S z2hvQ>VAr5ThfA}GjV5hw8dG^MHk$QtQy~wt$9?Q!1~qAECj?S-&`=158NwgJiGUFF zpKbbyhD=OdaP#I|ocoPD^Za=2tbk2L$)tX(m8Z$fmy6plGU6Z>qDKR9OY*6v`B<)Y zwV(LtK()BmbYzZ%(W`IzVv2Mdowh`-E!4=VnZ9TciT5^+giquX2l6 zs=$AB%L4G9Xrx~7z|8VpUecmkLJ`DktIwL)%*j_#6s`lFPV^=sU+!icliI$;2r44t z_@!0+$1?xy*1faOUj=7^=^ndU&axe7OibegINjCP?`w(U9Y0aiE~Un`6)ZH-zX;E# z9c+z`g^BsbQD5gxQ1TZ)t`O2MD1!uGJv_%bhNJ$c=`3LDSw+@Sn&2ku@z{K->eO_+ z6A0RX&UQQ;Xy>7ySeAgM3X>7Ys$$@Mcq$Im3wga)6oxq|Bk+)us2-z(!HNfqjQv>4 z>MDJMLwIo(q-8Jk>==R~0TCAE|nHr?U+(B$k5_?QN2sNp5gX+bdaFbcl}ITNDiB;vHpZT_0)TObDzmwpYj zy4&TAF5_6EmCTG-ugCJ)=Sg6J&VoT>37_EnBCFK=t{AtV;w*NapNI6gf0kx@)? z;+t?7`1w<|EG#Unx5-@PewV3j5I3^LTIOU3hnuQE!JeRP0XhxMpM8guJ;i`i`b+vt zVZlkjve>8cJYKb=6wf*moaeo+9PU9XkURM&T!dyiZY8hr6fyoigusjX7oY$rQC3o5z9EUvr`cS#L>_GL?%C6`?Zk`D?9cgb-@e?oxRO)ARyAw5)o<(@byXPI}ueTp=u)tXzByWd=Tn=OA zYyj?IQ!+9%F@#l<3h)z3fXXwA!nMHL!rne4T`U}U@f{tH)AVy60<<0pg?~nH1xe*k zR&d2jJJ6$HyT!i66V1MmZ+d_WqV!<8t#LM1>6M{)Fi{fQ7UvC z%2UU5-YWwON}+x@*HVRxj`~SnlizJfVL*1QQ)aftyh-NMA0ps#uR3!KD4w~_b2`<( zLEh|er`6i*5cnpB5Z8!kPV;#-+gTlnQWMH3uV!ThvY-5orEh(B!OupIbJ>sPf6kI^ z%L>HIFtCE~gR;c=Od_2B+AXgN?PIpcuRPOMXDQjL8k_!e1Vj2Lx#xZuK5kpkb`6}P?SHWg@#4& zpbeErZc9uC#s8Fdr`V|Crh)E?!s*W58y#(Cq1*E#J2JH#?UcuC;SGan>%NDARq7V`4xzdd()*i-1dj&;7cF;K;sXr;mvkQ`RQ-`I)`rvwpV zELIrUGQ*Xp#}avbBvH_;RZR3dm+4)ffdF?p)vNN)k?&c)S#!+l6DQEgdQbBRE(xXt z;7>lqH{nEF;dk_0?fMFZ^s`lxQ$c<0!rkV1Dol7N4o4xwD*YyjAKXUD14~vJHB6m; zXY?_A<7`yGU>DXf9;b)BSa|8hDCmR{lqC%bK{D`z)#Z9{m4yy3*m()Mu(+FVv$b;u zi`B*}?;kvnUx7M=J!cqx!TZ_x1Ht`<2&14!_lB_uaV?GyF$X!&cIL9JrB&{+f!4Y6v=j6fTk=91t!- zoXK#ovid1b1SzvA4uek9G@gz9x;~N{c^Hbf8XWInUfQZsLl5fc^)8oK{7i6;**;-g zow5H@dOI4P<=H5hCsehNzUQ#bB$ZORyb*TMsbHzfmfo_k6U?4L4(caYn0-q~7u1D1 z{WBa>vbr}&2_Fu6`ssk|xf`#9aL@Uj&s|D`z4W5Pv*6bHp-sroRO(wl4x@r3L65r5 z9!t~L47up`ILPowrAfP+$9M*B=F{=cpbdmC1@4ooHAql0wW)qmkYf+qt0Fhq zIVe=8?sc6#(bKjIiV||NPPpA3n;)$Uh zAJi`(Rc`QTeO`78OG&@G!bI~YrfM(eT|sjOjf$bc!ii6GrLnb14@5y7x`S!u5G_8+X;ph zEWiB1owDJ({I+m9Cx$}!y%6awQ=eHF^H6V;SB`Yr#LLU;HAXt8bQIG^ey8Zh$x>zW zEdNj~;dAxz{>yY=5M*}NazQadOyLvj4T6J{r6L=NxPqY>Rq0EX;UU>rUM5C&}!bikF?Zi@UE*KNw&;g>bCmp*4ie z7LFe?*)j~Be^RR824~xX2w)^a3d}A^ z66LZksXsr$2&lE&h+R7^9zBxvHm;+E3Ga2uN(%Nf526Pt#A>tiIX`Jl!O- zKD5P7`EEP&X-LRg9+tb%{5o|iutNLcD4LuuT;AE{!?r{o)#PCKVAmpjE}8P51O=G< z$6^`PE&na~v7)K<6mDb7byGo^0o}Gw_Uvi%ebgTHLn@=I;xPXdNS+5-3 zratz^eXxT5cF7iNO#k;|!+Nul|YflO_dW58y_R2LE8-$!nS}_KAlb|sv zKDJw%N$AuRP>#1m*^NhyDnv$_x(?4QqL2J}LNHBd=%aGoeZdbuaMA?bAyeVN0wKY* zLSaLe=phc)EZUe70?;o_Abeu*^Y`)vH~n^;n%veZgaAfMkcS#cz+De67}tKOI%dgd zg=fkCWcSXlt)*Duw2F|9jY?>UG9OSx##zr6V!Kges%98QR;NDi~Ti`UJ5Q=#TJRs(t zJ&gAkcnI=M+K8%q$MK_UDZ^|T5Bhy4pWD4kD`}G6_4({i`DvE3sW3SYR)|r~jZF$k zk%;L!p>8%6lQoF(o3H@-;9J5Ibjg%g(;P558%ZizqBo|-1=PvvsCUa{BNHp5r_4fu zGt6>waM4aZINIdNR(Zr0glAENOtIhe{coj(dw`o3gI=@yjx6r2qoKKQxES|4_99-C z{loxLpda3SixNvY72v*FZ**H=mSypDDdvs&DiUj?$*+e4ij!a+v*~NqJEY> zaOm67{wzB5p!Nw=?wg<_q>sJD`!b8F-k@kqX`+2F#%8w68{Gw)2(+<`YHwAooM8nl zLKDc)T{PJ{;%Opaws-Zz;X~v-y2ALcxX97j%)VQMXy~m`GJ4wFv3F+^X0h=Yq-{Wd zDzb_}cH=9t>uUzemW^A4WwZn3Ny;oLMeQ&YQqd*(2_zpF_?r?Fws&F3Bra;!gQqD( zX<%BBJ&&~odk0QB?IhH1ipfDPPoPjyq7$x!*A|_4(>!QN$RK+pH}+BH zI!HOJ4s_mH4`!Y^4l`MVTxR*npHyaS`h+jj{WxoXNsB$WNt&+M0YC`6)9Oe0hp zL0fj#&FU!D+5C&*!Z?|vS06r+B44gNU5+xLls)7ME_pNaDHmGq>xb#X9%}uLcv;bs z*ytf;1UGWXNX2{j#cPY`8=MJ}9?9c?Cuy=_M(>lXyb5u0G|=;h zYx?x z(YC1y?J%?}IHxreo_+0K4qbfbiTiwnueuuoOFp27<|aY=Pvsy$8vctHf)GMZV zeC~XDC^S>Ez0$mv)H0c-X<4vbfN%_)r$T8UWEnOy8K8XS?R?&e8scVyGO>}3X6w}( zwR&fBlDBiu#-JGFBO_MntW?2x?vaMEk|`;kNwA~pn_=UIgXcS1d^lQy__U^BNtf?6 zj^;DXS_ zJi!4+;?tWWi9w4Tlpkem5#Lh_jPw_&8eMt4lRXrX3o0bP%MVkgKJ2GjJPXuKqPZ*| zl{?#d$m0T|B!4oIT3>+L!{m@wlPuwV-u}F!CL%jjH0P2q)NFH|aOtkS|4Fw{FX7fv zd?l0GaYhYbD&UzyU!{T6u?V{Y*CGk!53H_GZgr3lM6D|Q>BK{d@+;-M%5RFu|NaG| zyY19qbBU+UT62(fowW5fC+Xrr;_=i;fk|7VMB8>v`lDuDv%A|jLwnsQjO&}&@rG?a zvORR%BRa$KwuY5NtJ;DzlcnGvJTe-mS~JTm)=PwTQ@&jJ7~Okw;y=Z9VS?#Nb=g*w zgWa7a6-*5;~DaCcZpZ zmB{s?G)qm$ooD-VI_>qN$=e#8XTd#-OaMZu6|pu z&Z?{x{n%@u;t5EuxVpx>-tGP?zaN9r5u2?k7}a`?pmuHq=_Kx=aec&{t?A zb%Kcl+CLImzTI1Mli$WcV@30+T0GlMy_$cY=RkGuH>Kms>#?+pt)H~xe?uCxu8yxa zURk@mNHHF67_Dn^PAhb{~d)BI3Oge^mbJ(FTKujX>7$0Us+UlpOkN z0YF4k8E=9!0-x~H6-VRvsvoncWPV2bL*&4g~ z^D;qs(uEN-O^o4%o|A+wyN$hg6F?q5rWAHtKHOlGuFDcpmxNpEq(`hZkxm>G3oZoy z)eJcug>=g!K?>nxu_!D)o)d`{)(A;ZK`orhmc9kT6W+;Hm58QzxassUb9nU znsP4+X8a%}{lO#r$-_hI*YABzLK-4XR*{c;?Akf}SK^pc&*m45$71&xL3`3bH_&+@ zWUT=OgRO+hovoW=@g$z>a<@c%=3ADmkR?C(SqPa6PsTeG!OEwhH7<;eVfK1h^-Sek z4g1?MuwnNd#4-32V}(G7v*csz?7a7>{E2%XQtxKdR}C@GJon4i<&S2fyf3ONiVJ)M z6H8fo?Dh>TNN*b%*VH<93m!k!`6DclLy*ac%EDy3Q$jGZx}M|Gtrnu$A{-;NR@eZg z5Fn~FY;0^eytYG}QKzikK(m&bfXs__S;}gOZ0*|KoMh)R*(P`b$iH&N%0x`3esCNZ z8CXhc`sR(N%hXxg>;J%B5G&QN<3}Hlq{iEDLnFR{MPqQv7vMJQw_#c-xWv%a%#@HHNwIo<9k&;TMNIvF|zAOK1-dy~`Sq!Q`_ADXmapaA3dwui_c z`%_R`2&0Q`N@kc-*T$8@wsD|aUk~580+Cc$V@XZ)+rY5#C+vzDae*wl(f6WWg`2zvtYnek6lsKUifuXC8yU9zSL^cY zRPP;-OLthetfT{Svlpo=xve#%r>MW!W9=RhzCeb*Sv5Aag2!bcyG%LQCE4;cEPtJE z7SiXKcc}<%KG_$Ijw$vk#Pr%Xe}r1x$_vQwbl!L|W7`!Pogb!217_X~l9~413{<)= zgV&*7r$U79ROkBA{{(ZFC-0gY*kGFU%m7LNAtzNmFU3{Fks1bbzl%~~q`%Xq1?N{7 zQL>KB!>7K29Eaczv+NWj}dtWVS&UC+!hX~JG=(NmM=dQ zaxy)E+DUkctN+0(aLp9vX|?Hys?fR-{5Oz2DHk}}@^MJkEB|cf^1sEh(E#s0H#I{E zdvrsI&aYWmx^Z*IgDAD!Yw!OMH-7ZRn{2CIeH}^`(;6yXxhC418{@>v1+zy33#H`s ztdKK9qPuN^)tgY1l1Ihq9!J_*^Lf(HubT#xd};D;ts!UzG`#=bD>7-YdWodrzM1I`Gwi zi~L|z_*GA9%H{3tt%Kc%YVqtUNm_SCvS}^FTtOJ=p0~+&N1x1}$-azy`&m*6PO0cE zc64agimr8nSjf{c5V;W^pT^MPjpGoYu7pj0bBZ0pA&KHb+eEY*)j4tYSCTE1xMxw9 zugfxb^fs9!jk*A^W{>-)pwaE;J@X@?G3wkb`yw}$iewj3+3HV*7&RuoW7#1AY8YD8 zx=omx*RmQ%MO2^Pj2&o6AvI#ru>f5LJez@I_z{PRJ9h0x4)DQ2`1yD?dVSgCBxsVs z{b;%4d^Jjb8c&{I4{@_0l!=IcC!Cs14%(ARYb==BlTmje@BxDrCSQ@V4IT!f(8>w3 zNeqf~w>aZ+YbRBdYq#MGpQAn(Koi1L1|@O+!lI-#ZEvdQKc!>uY* z#JL@JNNRVdCx2|ju?y#HWv{#XHZRu6=}z&YBG6Ti|7UDCQ}g!=K;wDS%5V!pj0moP zQEYDi-MV#TD#FX}19@hUKKJsYi)M4m|cqZ1w=z)OH8-&%XO ze~&VY34i?#+l1)WBAe}QU1u`n!X4_`TIoNAXbQmmqTFn7vaTGIaYCsJls3Q5p$V`S z?V*@YLVk<}%LU;*zcz@x6kSLGN1Xk%+8v!F*xcaR@NsO(BAE8=b96cNOKB2(llJ~z zdwFU)Cjowf1GQ#z+MlHd>Z}sXZLdMEQSc|03R;n8rF=y2s2U;T)}0iGABp&1l_=5r zvxZPKDHf!x>3erAeNprs`AxDNV_c_5>JL7aa#8>8A>dLeHeEqNup6{f9@*Bt6U8Ti z@yP^@zEfxc!@F#xi1%Yp`c4>gksZK|I~qu~bzICXK=exd1{DH;lJ&WgtM?$psp5T# zd{VL6G(D>8aJ%YalykRI_MOl5@WKh?Rsi-fdn2#1htcUTM~y*GlNeescxpdYnm|#b z>L{)w33(NGW1m5)8dyGX&&$w|;bMko{D#_a9z&}zDZLvjFOypdQX_#Dd~wyvgL$sg z%3}4y)(`g<#o_fV<#;kI_M`;gvux_V_S~uisEsg(inL9hu_4co~JYLBJyFGLVNIn9co>&8R zPs=3~$Pql0)~L|tXH#xdbw^QfXp6XjUiXSxhTv7|d6!7yip#Rvvgd1;14@oOc7@*ayUEUr9BolWE)5wZ^bs~uk01Xp)9J=}x|ivD}j`{tYF zvO!c|*e1xOFKjk*2?-WV2g&_Zb zT)hQUlx_DtOpJ6264DJKjl<9=N=i$&v@moxf*=jj(vnJdhje$>kkZ{Xd^bMN`+o25 zzt+HFv0&i7?sH$~T>I?3PxTHk9!Qega5GvdSRn4P{j62-LR}KiAmjIyZzidKrJx0g zEgF`hjz40GrER=ga_SO>Vh>fIH+g|bXvhg+La-$>u0N-|YTwM3Zw9Kz$+En-i^wt- zvuPv`!i6SiP$HpZ{y@^J?7P47J1_3**4-Ed@6BbGowCVl#bGV|GyG(mX15Q{X@VfV zH2yyM3^^6+G-02E>^(T1;!DgoetZe>aWKyZgM_^O1# zBbqrZZS%DF$rNCzF4_;jAAq=xmee?H+nitCAWoM1)u`$?b;s;&hL@qclCc(Z@f|!e z6dZ{o<-X;Kk^0UT+}7csPvVEA&N{+g`ph6klG51jiSxewy+%>xSpyoczu1jl8EM_5 z@Vg95^jbs2HKZdmdfp(+ zqRryFji$DSf1@DviJBCU#vM>54q*lQV&q8dL2I1Ha1N+^X#uqg-86Af^X)-Rl8x|y zdr)B3xTUj4HMXAJ&o4NoSKL6`q#RUwn8EkQFgdF!hO$0`yw$|6<{U_$w|)A1KGI0s zG*D!>D92JV=C5Lc0AgB8@k!c^&<`7g_f{iyTG|gWHfs`D!iN;D-4wsNiQ9=_*i81s zJuFzH4AG4E!2$R!R($h6Gp(n-h9UnIxl*^z_|jEtKK3t6%O<=4nC%;Zm`#_(XO)*l z_gzfR@qO1#xWZQVs1zTY3{@!&_alZYe-|`c8yTLIe+HOAzyO%tbx;fLny^K5?i(}w z4BU_E#QIp#xsEeqo|3YR#dPT`U&RUtMoce?^u+tp|I_&sD+VcUY3OP-{t}%gW9Guo z7emMyS6^u{c&~p|p7Agb$_@-v`*&l=PTs%aHtF6fJ4YGL+ii%P8>Vm*H^u zfQ(;W(eMF-n0D6UXtg39my|(bYlaxvnRB<`h`9$GZdClYeEiRw;rXf2`WA+~4_)Y6 zmpIGSD%gs03-;Fu%Q6NM%`Vd$cFj*bxB?Sh!bb)lI-D^7%(uQ$pWBMpu2hbWO90b| z33mJpT8bQs>vWUVHu>>Jjma=MWA~Spa?Qc=u(ItO@pe?&-$e&BB$@HClK)-;p5F(M zZ7Vjww;0k_$C7>a28)0>goG(^a)=A)4z=x_ec)5eE@l+d)_S^R6nHuvjz;oSCba>` z$z&3|#dMU1f7qc}y4WgT{+D)SE`aFxbGE`v^5mtw!Mcufg(0^QKPmBj$TRy6hfNOF zP4~~%Q$9!Y(1j+S@IKz>W5yeYTVMqnchWe&3kKifciL}jWC~DA~r2T z($0lt)t^z7Tzn~9MqaM25M@S9iq|^-my2Wm3~5UR;^&1*M&9_|_^tK3Vuo6y086{R zOa-pG_y-TF>!9skBuWF88r_g=_CC24gPt80Ej+A{kV@@?R?cr z{NTJuwU^1B&7PCMmfseMpz9uvJLR)JIz?t|(xwsRg<7IzzMIx0d)5N~Dn^7<*-y%2 z`WA|>EtbO8ckjJr+pI;A8di$|;BV*;l?04vN5aq}Xm&+*^utjR(Pm13iGL?oTP9HNnG9ogXW$BwaA&kRDi#_dS&Bl~}3IzLJ z#P4R$ebD^xn*EqBlVflvQcih#iDn&^_5a{JyzoiY(eJKLk@NnE($`H869rAa0U_ z5pmAk$(uU;R8zKen!oT5tpUBnDMu3Gyv)OWAQk_9`(VFMV=Zki`JOvtI0hNQ{z`Y+ z3P}rbVek3K{eM@wI@qAncEeXSl{o;Y+`xppS$)O7+jtVaJNt@FKp6*uNbu*XA0S5Rld!jMO@kl6>e2WJk>1ZxyFz$j-e}| z?TWZXyict56$xMbs*AabQk;jKX?EId0YH|-k2Sii9Lr-5>z`K{+A?oJwLP~Q?Fucq z1=>|%`3F2dEs!VcPa*Q+N@4vKZL6r(-bSEPEM>7FIDOn8m>S&f#^+f2E%8!=LCMMz zaMK0O7>^x{e_mn?NNd(jgEx_oK6n2C8Iok)(ZJz{lp?@uTJ7p{oCXV@68oh*a`OqK z82*3Lg6ANepZ%uU z*LvnDXr?XcQkbXg`Qmr!@f4$vuWnvJL0;sk-zjQF@~$bozPq|FD$9Pz;*RzO>T`61 zZRP)_pD8BA#^>CjpMypeJQYgLWsAwdF=A!qiIO7b9tX>vNrC_l2fYnz3r5mn!;54a zR@6}XWJjJgBBNO(A=mQ1WTtEe&hr5WtG1Ai^LF` zT;X?|uNfMdo}+TQSCpJM3E~O75;y~lDxtujhf$h&Mb?S5lc-qWpOg;XcK`1`8PDkJ zfMu9Unyd+OT#b=uGt-uBSN!u_!q@qYhq&9oQ$@(VZX0vTT_keCv(`t7+9jhxhYJ&@ zjCH&;ey7E5!+(O{ZzzZv02=?fSWFI4@!~43ey;-XMg#&z^U{pqLnZ}%;ojr z;KW&8ofgQP=lS^@)t0D1nKe$+ZCf4)RTs0S0)YDVH&jQ;K(0ZU5j^B}njj}N-EZ+r z>2qar4AYE1YM`O-37nuhLApk*;awPCEBY3ICt;m;V+) zlSmTnCbqw7OTFhuP7HdUC;TovrR6V|R@5`>3nnW=$?4Kdsw!!oc+OSwD``K^g9GyGRG2&rO)YvZ@Z zAJ(N)7-KlAw2JsiZ2-MwI?WZ`gwsiqFgl zv5E-WxAg8Fc`X!1#$!4#V;t`>2y%Qq{d9Rz45F!N5vufZ8^aL` zdLY%c5{i$r$w6bG)fv|s^3jDo#x%Y%WPH-)Kk*2ZjDADZzH14WhUM5VxLHoJ`op#) z$=^G^Rd_SCxSA(g@iSehN%3mqP*iIOhJ^hO`}wii`nV}uPWao?JciCTI%u=?3by!( zz}s78{fgppS$uoE53hm=^344+ElK6?^PhlUj9kMm2l)Js1Mn}QFz$yr1%!*-TaX@P z0#mGN=jhB1#YyHVsEB-)TBYE}uAVuG&X}eEvr~hZ0+$0ctASEY%xh2-@_pr2*5I@7}u zO0vtG<{$OKs}gbOdPiiOUh%_!^WyjS)M@X2^(Ia1KYlAC1|5*Rslu8rHIE>(TVdN^ zA~o^|Iov~Yti$P_gc`GgE4kXA+b=i4@Pw9XJ(v3UU{0bjQb3^6Wjb6v%D;k^ZZx`C zc=V8BD{@Cfu3K#%cMj?%mOM&%)-3rz?5+K*7;~ENp7OqBg+d+q(QQQw8vib)_)#ns&wLo$85=`uWqwD!Wvp#U8M`;qddv&NsRu|!VDSMix@!nsyJ9Hqm4)W0sr@=pQvJK*MK4eiv^S=*<1fCe5 z{U!$i{%GW{FF$J*t>-<@vZY!!>pMAS$0-F?T$2eL*%(LuvVHz;$CX6DfkL}LB$f^tHaC6WDWkIYktD2TRTi>V#&!9G4s3lWM=sr1kCo`!E2T)?BD>%PDbE)dw6lw%+w4 z_q<2TmtAabHbd7);<@&8fkCw|sWu}OiBj6E;bXk#f5~Nk$rfJdJ%~E`%`%V8Qd#sf zk+V{{`#m@C3UN#MQfFv^vIa4EwPhM{_1gn%9KTG%UF<%U;pM2ZSB^GUEldNsY}mWi zbKDTmOFf^x>qFBR#(2Fk?uWG~O8yOcZSMtC=$I;uJLR|6%6%&+Wo2AJpflGSFz<5S z>8;-J<*R((92Y%A>-+jMvLqlq6q(f`rh9_JmC^#42Z;O%NR@0$oBbU~u#e=DFa0h8 z%fhSGS&js!%NX>hT02nHNN+CyR}U4>|BVLVIB69U77To7u)VK;K%Boo?$&~#%y;xS zI9H*Hx>TQkacwgEL3i^E_2z#(jdmXq9;cl*{Ey^Y5K_PTOe}}zY_8`9?d~imPj#(E zBZJu@0LHv(Xlb3=EAxQpX?S#6bIx62afFh$39l>)85ye1Zt+yJ$XBy9S3Elp$y%~t zjSyO3)O%Pn_t-i%Og2Z7KOsGQh$?EnXaIW-C4uYD)kfX!@%bh0M7Fc+cn!yj#C9)gmGXgT5Y_q!f@$8U0w&3`wDh9l5IS*A9~k^MBZ@crsm4>IBII z=h!Gp%oL&*mK|45bo?7LJlolDg}JxitE0aJz|y_jZo9IfJpK32{$q(Y_S68&fj^-P zlay~4#7{+>{ED5)aHX2c1wlPI0|Ey$)Xs<38R7bk^!1&6&@@wA&to03RB(~4>^j02 zAmJWyMcSXZILTcb=7xSZs~tVDUD{A`f80nFae-ZQ+W*%Wp&yvqH=|O>3g(}2aM(dV z&n!mHj7Sp7Z#+_{3!8mNW&kr9=Qh}6kkP&E9Y=&Cd z4i`XIC#PpB$AKY@ey`USyT|1pV&(3ZoT~RK%;x77ofjd>WDngAeB9j1t_Pe#cne3% z!#b}R8pA_jV9jpVm3unaPd=pc4lI|Q;LCc((xc21GlY9%VND_{*1zZ*{i zHB+@z6a7BbS8;8I@K5t{e7U^!vT8^ZOaw>}PG`4=fYDI4b_=RT6@dbp1|5;Q1X!}? z)jA1P`-Et0R_?!cUPWTQTv)SHOp`QgHzXnBJ>81Ncl1W)MRv32f%Fzr{=}?ay0}jF zC|*I(3`4&NWdHCJ(p4*mJ9IDFlodS(HBv4Lr|Sg1*6g3s^EtHVCCC3&wxjC6Ey zb0)AZG4W)dG%2ha@LKk1O53Ra5c~8I;`1YVEM71_d@ct7a7N!%9teblMGWl$Ewb~o z$U_zhjUp}N;_}iZdpR*qaGp!ydg1!7Lbk&23t*CYU9&k?&Le7JnSPs6ShMy0s$j|8 zz%~6?54;~c4jsGn#*6c~OLdtacyP@sa-GHppF|t6nR7x1k)L=lSCXcQ659G4D2^$9 zysHzxme5?QTWff;hNg&n7TzDv78*t~L2%yw8t4f`8$lYgJhT$8heG;R;T3jugAej& zw<2KRHq0??Y(Bplk#H+v3#9#WLy-6k3raF+pg{GRt9#xgr$I%ZgyE;)+zSilN)E&w zAHb7p$A|Om*vAgGc26+meZ!QdK>oXGPFjbyQt&__`9&N>T@4Jz)NAWwEcG9F!W@hU z7>{$VYc%r&a*J?B0Hc&d<$1akYkZb#i-`Kd`?I&#*iVQBkipN^!Cmjx%^sSx=G@>C z*HMSPs3*wWB7WtksrH=Jr>U^$echpjy&tmBK4G8mVtpQ$2;rlRQ|SJk+vr1%Pl(C4 zG1!@pHz;3W=V=4d`8y9r!Wvc^kK&5K6n>shuTZidJ^4+1o z#|BR%-A#mMV4(Njcgtd6(4#kmJ7lkZx48Op$z#5H-a5G!jQ6d$=|Zbvzk1#Zn0;2= zjw3kZkbbM=pLhvBpwFE#>=4gV*m5*KSsgX3%4G7;Nie10veACKN zBNxJofEGti62V3P0)+H>E6sJ##cGapQ{(W*yC?KnhB+Lp-s&i3rcte!o97Iaeq|#M z*go5y+Sh-Ot!}#I%bR_KJ_*0}O}AfR03QeO&6GO;4&ojyw0a-e9G}TN$9Rr9OcD4b z_ETEJYO52#KbbjN7)%q^MmhT^<#dO0``Adscy+f;#x)lEoJa9R9g%;;G{HUH`CRdD zZ1FH$h?{wGrBa`s)%y(3Sc>aBSF3yzYD;zYqF9?9V|fyzeAXL$KE|;Fncc6JoPU%O z?jlYTYID5gS>qJke#-l9LY1QU@>SAarzv1f6soFB1+wv`q zY^ctRe>U1#@3n&*D0QuM!JLWF4Syyw)T0O~4Lo~?4l5~no9YPahk(PF2@%;Jk; zG~%#`Crj|sIpYlu;$h#d)nQlI7^1;cbasK)d#k(@RdhCfE5gFJv6AQjgIU2h)Zg}& z6OXli$-OKG-$y_rtc*+KGK%=LD^ zX1=E79x8adSF!Il?4h^!fz%OpyL34Rj2(U2`CIBCCjE|H!22{AHp7w^uy5dxr}4bF z;XvSajp{+ez5Ylv!kph16LQ92hJ*&UZWUK7{8PHjhZDd6dKthBVkD&YV^WU_+O;tos-I6_zbD{}q4@V`79!6Yd z`uLiM;#1wr!v|SKPa*TEy98w75L6i{{-7VQxXsX{U*us5LM6;@r*Aapbu~}9t9O`E zfEl9XEaPWRljKAsU=r9imC`S+ExaK2PwF{iOw5XuSRZpF0#@C#7Vd^-e2@LgdEDfn zm5It;&F$XsyK5yMB##^Pov<5Qe=-!oIi6|dg!c<=u9`*iyD{21--!{^UZu2zp-&i9 z!GmG^B$82!=9r+cL5o|ax$k5{1-%j3!%Y@0>$BaQbEY-@5pGpa0B4KGCp9Vz;U+=w z6De8$?3PrSD^|NjNLKGY736a$@(Hm!@*4RGk&#XgS3Fl#S*t4^1<#-SLTMQ{yr z$x*|Kc1?Gv(@z4J4TH*$v~u&lq}C;d$!RzOP7Lc$hD#Dn))h29tZH-p@ct_2E6^6d z$?8+EZ8gE-q-3SOEU{IPV%hCG)b7w-p}DJ>dv}zndsFd#-gJ}wZwv#{HsIg@KTUtI zBG$2e&5O30;(}KE zgTCtSq5-S{46FF*5A&+#FWI!m9+-45oRXb)lBNh^MQ{rqydp~%Pk#bV3>5dVBB#`x zCgtHN_TP%;9qOfN<0^7IK^8v{|hIHu=7WZy@%9>wh&zZ>~Xk3IJ9N_VP z5Wiq|ez{^62$K^E!Z@c9gZ<$NUK4nck6X+@i9&tT>AdhU0USu2?cEF?9m5U~hnr#b;o9ky z1Uu>AHj=jspCZ;|OxmM&8@lL8+iR)ZGW37D4Lp$l=d?M(jMO7363DH@bpTnH*X`2l z66@02V*+)V==({zOLv(}liBt>tBaK_l_?qRG&L#J=i@bh`eQ<2tsh$CJ>9+vJ#P=b^1`=5+V zt%4kBeGW!0-40SDQ?C9oIuQ6G)~Hv3EYo1S(k7)Lcs3%wZ^GfB`GFQxjf^WaLg}$r zX70o}w44r-BE+yczF&m>fP#UUu;)cEjsts z91V-+CFg!E4e^G7F7PKHTC@2kU&fTf~QixVfg1nUOZHj6yCYP zl|cOddFH?(`@qakLgrZ{VFqZ(RimFOPwvCZQvBmmD|K(kknXXJJjdz>_*`VzIFQa* z!)QP|g3=k-wWFcZl#^;9A7rLeTNVVjN&b}6U2nn{83olo{`!mM0VNfUFFYVDq_HoW zp7Re48BZV=(T{#EU^weX0vdXX1nCM_oj)F9Wv{GBJ^5G|?NuF!xYg+RZj9gbL2jq! zt@^3%>FX!WukL?yvUt3VZBeFXN8PZKbjz`H5}`m`_nhO|FZ;&RqSaTaKgV_)%{C8R ziB3qZ{yq_}dGoU7v{-j?N8>M=EA|R$|J8n;mh`W?uJ=sj)dBYx^ENT8_Y1f_SM5Dt zt9zd?Fj?1a#BUAs>%&jvK;+f-vtE~rS(5-eCDgwJzGx>|MELU0kHd2&-_mXe-{r&) z1}6)d%hWS5I3aIq0v;K@6?*4$0HnzZt88Jr-UzpcgMZ9K7JVX|Gcix~2 zEx5PY_}EljxP{B{KZFuJH_5UmxD{d6AfZqc7!z?}wiL2q{?y#Y;f&&F_!7yQ+`e7D zP>O*Ve>ydTLA2_uB@BC=%t&Dl9FiFX4tYJ08pWo&h0{;&6r>ab?)mL9#8N4Wc;lJI z8dht8{VPng5t=y`knOT-L9aK`LXG@ht50^}QO%tp-a zx_WEe+uU7@6bUg=j@L91-tDgdEMIYkxY~PZC1se{`h3LDros$T+)+`d_bkz|l!}1pyAM z^HXeFZJVYlXjvywa_PK9UMj8Omn1J>Y%h%Oy6LP#*QE#+61$(?|Af3XK=7c}C@Wo- zq7}=)$_Suxo--;I-WlWf;X^EH(Bv2K7~1|udpW; z;##xeaGKDSh11>3X_7y0&;Btj12|AU**&>E`I>uF9cC|$-_y%An^7d#eVkOOVV$yB z-O7x`-=t2T_kw#S<2gsrVeOa42s@4>(?)EN2QCDarJj_gzGC%#wj)lB+kiBTctQ`w zy)M`Nyj$QV-2Y8-KIc!I0&tKKLU-&W8fi>UXa&2)A+?lYY(+~_mO*P4tH(@6ueG+X zy`%~twa6r|&t{Awt3>a&6{3G9CfRd%u3&~=B2CXx?jLtkMJ^dBrxg20ZvDFSczdUJ zV}*-k&1u|4J%kSO5KYJhp>b_xFy6dh$V9VWPc7bTniN$+SdpPH*(PIQIuEc5I2$XTvgGBM%daVT z*~K-7YhmYTsr|`uaq`x?vjFp|*u9AFSZ+Me=Z8Y3P4Ac}e!^z*CQtD3z%8oUxpAH7 zF$?Be;@oKN`9iT-qg=lHd=*NZ4SqhZ-$%FdBmop75+idp(v}&x-@rihW^Kx3l1?#E z*)-=L#$KlS{*?5)fjq-tjW^X@bq1Ij#bjbg<}s(s`h2Thnbzrp4@ACCy56C0=czT`O}CRoLda z=YhbvTk#}C!NZ79~Vy;#vL->FOAd$LZv)|n`Vk)>ISA8AltSvVmd z8RAZycxD-BL9CNROf-&x8ujBsj!j7N6fh59z0}0sqKrF@m+I`*g8sd@vi-iDS4|)8 zzLH>H4jOL)!kT);4Voj9^Obm)Q@4rMb4Ykp0%`Zv86DKUgHEo?#402^!R*L|NadjR zMh+O!Ff+C3of#F53OltXo3-)_|H4I15mc7qYqdHgeiE^kATUJBL})$tTi@U-1*unX zC#fxchTs^ECzk?0lK_sFBiQ(7?YSm8!)4a~u@3L<>{;XB_gDQbYWD%e*F$TXfeiMx z75#cutv5=*!GktqlNS~^@(jlS1?x=}@#1ZtW_3b75uWGWcbRQBEi86Ql07P*$k@_f z;=fzL^{F*@zjpUCFYS{H%&R8VX-d<1^c}HD+U&;VWFDFrf?rIODyJkh1DgVeOr<|O z%$uR`Nce)zv;b@s%)?)p*t~o?bvr~SkRO|>8oQ+4xZn;y1d|D`semuGhrhTWqMGcK zbwkg5Yi4H1^ojXDdsHu!vwZo(-+MCTNtRN zC02%|MT85Q+LmgKn8E|hXOJ9=o9opiPpm)cx=yOR4!d>3UI!A$0*4GD`<3H+QQ|mU z)xpg`F$WzMzI-VMzVVsXb*Y+eI&d=anYZhvIFINlH?F^==h;Yf3snpr2`Ei^H*%bm z?spy4Aq4+r(9yT=RH5LKw>`{YCCuc+F! zH}5ZAy5**A>l@DE+-I?luM1j|F*G|^1(loq+_Vl3ZQSMNI`6OeF`|KFyUCxU&`aA8 zZFvJpQyN?4kzZcYNlw_4qMQ)zpn*|NXBgRDb!=VqRM`W$X#@>vrWq}a#+uBs!z=V~ z#VFs0=pp{BAu=;IsElj3w&%W=c)KlVSja!}d_CrN0;8hYJ4f#NzG&2B_vUv0cw9b0 zEvKCO*|ooaoW@JXOxWe=(MT=j6i$FZ0CJ-t5{H$o?Z-|ILHROf^x5Z&WD)GsqiOkc zUCPB92B`6Xu!oQl!M$FGI8UTtk`LMu>DsfM(1-t^bDX`fz{A7a`;40s^$41O}$2$5VcVZzatY$aJpO z34T`=iQ`dr!%k$AJ-6RHdV@}>(7!JhTE>0^)E&`?Fy^K@_kIo7l-11wrp3~jEru$h z=cK#X7#|e2=5Hfz^TYM7<;dUzc~*<^f?zE4J`9=ftezG&dm+!$-9%kP+98LI2S`E}CH+<o%utwAj!C@nNCQvkZ5 zrM&bu;}}F@v>-M+;0^2MG}cK!`W}d~R=VpLmJ{1ME+0c_N0LA~zxX;4oGNoH)Y4;9 zwSF6nD`M<0eEX5+rzHHA4*c}yVwom%$W0^~Ipqm?y|7{sJC#Sn5jv6(@>bl@kD?<{ zZ9b!*weR+KjcHNiBMi|^cTIf@p^o{O-l44BaRqcX1lf~?$MdOcv2mL})s8l?lVzsN zNZ}K*6@7XIg+O1oJ{18DuIbshtUQ8mnK&HrJ)abh0>0M~i+>Kq_L9%!F( z66lLo-vG8ZqBkyph@&&_To=SmU=UC9S&baAU~cehq-{v~*aRMEsxs5eV1!ZMHF(e) zz+_LO+M%n%Htc}S4x?OHN?SAb8EYyJ(=TdGr0=3b3EX=zPAemkd#x_% zEZgwKfY)4aachNSTE*OluL=~>ltttInZ^J1EbU6pih~5X#R+bdj`!)|6G;L^=>b3&VJmSW0MGT`3 z8Ci=6$wsIB`gHosT=wy4t@lFuVfpriI;kdl;_)S~&Fr|dq#r#PY%tY4PEvpFYut5p%kIDk3nTRLo z8T%)APEJ9qsb456m_Mj+Tzwmy+nfZ$r(23VXp|-txmTGz5MTiUDH`FnCeNAF~E8xs=}Veo%GI#k(pSTGi|!$oNP6sRbn8XeOt8y zDtFgnw`R8?X;$eYI1TP>^ew=_{+EeGhejP!9}{Z#QjVEYe3aPsO=b+2NS<7bX9i!! zGy`y;ibYHfup<_(RG!&eeFVTSB}7Z~IAQSPvNdr1#5q}CacLUD1?OHh#LVt)jM8A= z9S;g>Lc0gN7EUSRAx@UFt2&2yOB$`~=LxEm^c>mm;Q0#rhTYd{xRpj%CqlVi2X~se zB7o55{JA@zpAqkKldVIBj*Ini8!uPB$+8Cr_$|7? z7SrHodAACqOgudY0MNd5Taor`i63y><9{kPvWt7@U`Ry!`2`Yvo5_N2>suiZN41A# zek;j=@CqO?S})NtCJ0G!w%Qk5xm?jLAt!4iX}bU`)HpTl0c6bC-YMW9aUS-vrWdoM z^tfj6AmN$F^xlP)w%ye{bdpTphDhzK(K8M?ks0JWMLs3# zxj(nxQF6D*A^|OYjW)K*SO{Z{P3B^hUT}|rAxC6P8 zmb&%3c*cwbwT2id=D&vC4JOLWonvGl7D$b%$}l}uxP}Q@!A;cP)|j!K(xuptr&#X%Nzu0x5gJytrA1c^l%z!>%H zaI1t5x#DJY!ebfOHQLPH@hsxsH;2+qN@ARiGVcB=xQUQ-%aBOKY&_=YY2_1ioo6Ku zxr{ER_*$+9w`u_7i}U78v{B*GO!PMC9#F|$s*G-i>YdTfn;onRTsU7Oc4O zM8*iyjJy%3U?o@hQhq-g?V7UbdS7pl4eGo>6WUC1pj{gZ)xTTq(bWB#&+%xS2NEWZ zH+LZUvkEE}zqXS^wBV%&Av!(wEDM`1D&XQUV0(74I-w`SMsl%O7H)=IGQzh|k{=?xCbx4PhxZxQPr6tF9k6mRP1p_`y3d&tm|cV#q*J?{SQSwj!;nM(d%pa% zEi$FTHI(9aNx2cEYcVgf><(3icg?ewO2#GDP=K}tcj^Ql{-sF0Jg7bi0Y&?Us0-nS zNnhz{5V{w^w8sM>ll=B857XaycP`1rWe~Jff21F zT6>)02OB=?dSh=XBM55w?7?f?*Kgp(W(Et+q*T|Lt{cX%2eU(=TEEt!$A zQiWkl9}x8MCip$)Ur-X?1g&F=nj`S)Ii7iSr`cX7wP&Xe8&#tAMhb~eijcWYZZ;JA zBf4YAf>W55yj9yZ7<&W4FPL#e@xE<5atku>&N zk}UwB_uJ*gM2x(^PZjatzKa2#;mWlLLH0!cyPMsTc{Oe5v#a|BhvC_2eIIB)TTKcD z5UFsk8$v%t^bzz7LYfr~f;;{*IEK@xM@yq+EBEV7yHMoU)0@Pr581&~+3%R5?YW~f zdffz$vY%bzPzdm@oX-x#g2RWiNM7~ik<_eCVy~O%^R=QGO1kkTt7sVZJ0VRVH#$K2 zn3fbGTq90`tH};u9Bw|9eHmRk6ugPsq9UT$ypqS~`B7~5C(bEUG7Uxy?S5-F!vD{< z*2W-qOZj_X+HeVuuh4k9`rHeGA~h!Q$D>djA)+Xu>>)>squbJ~TZC!+Q1_OvBixqV z;ld4U(BYEG8Cws<<~ zj~)UeMSa>~pZ~5`dVfumxe9)~M#G!wJJMa;HzKHRex9<)-0Bq9_|=6A?>rJ4r9F5l zC5tx%ijNQN8!a8;g4_Pej(VTk68zEGSE7#Sy8*(biYeWbTcACt&j1+pQYnrr%$rYW zq;v;#^1foU4hx;W-}||I3uH!8v{ryp`8ADf*A#_r6~1RC8VV=6{bG{F(QyQd1rzqb;wa(>UOxGu&`bB$5O z?BA1?*o;g9v7RSC;}$(yRPXk!Lu&)I3N0yGKEJ9Lc29P`sj5ThOw+n+AmET$x}|=B zA!(j((~??cwSi(+>)IEL01DCdCUYG730}@oUq#xsrGOc**nw757rw2A#uK>^o!4G= z2)+(V{w?A7W-H*Bee~yAjQ_7hOV>kJs%^p(IBntioW~|os3Fw@3&Hw~MC0#IpFVva z5~gq*>q!Vd%Jig9g>YWD9w!XzxO4=2ic#)s@m&eY+^rxH?4U>}Ih>hN4muUrJ@+0X zrX#=+$CMrEJ*Pt4K^yZs33iF{=l*)r*5cFH-W>J=CsU`*cF-wF;4X(E7%}w(F{ni- z`GmR}XN~U!ceSL%h}*0AU|0kxn`1wA#@qJdi!#kqfE#6rG=Z2U8HqzFn;ryL@BvyW zb8~YUY~mCWsS*?t_wQW!4|f%sRe}t&vT(9EMpD-V<|On8vvK}t>2o-w`8QK|ujQ2_ ztXzvy>YL?99tVeiO&hE+DWEKpmYoZYD>C_?v zRA|{#@|q;(ToQ&-n1&56bBf}7j^WG0U-9V#&}%9Y-AbesA~dwqhKI8mrtwk62$GS& z!b6ueYl}viCbf#K4CkCmZ`@9*>(BN?)A@I?$0;a8 z$b@=qK?nkk54L+1hIXGw2P&`VjHe>(87a`k%VT0Q+3;o~zRQZb+ae3S!Vjr^y>=GL zk$QBI^vtL0_!<}1a=V0DFmBd=v#Ygs$f(sHAjgvyJlkt@PlptWRyyFian7fCEJ-Dq z@LL8Hgs-yS4`&vTg(PwfSgn}EA8fZ1{t#-*=(!F4%~}Zm!nD$l8uo3mio#9AEy#~1vy$T8|2)YFM2}#m z`;A$QHtHFul)*R|VehxWWd_bWyd0c&%qRDpZQ=L+U=b%0=%R54_l~$ehYH7ydy)r# zKJhU@GRB4}xA)Ca;I*`lwx0K7{G5Y6s}_BPm*<=`*fP23$4d6SSR=Zn$hl41au0&g zUb9GK$7zgboD{GD_0ZY=ky`f@C43zqM7rBkbEfJRZxeHzJUqOV*3DB}!?A}^wjz6$ zTAIy@;Nhd-!Iy$KB}~qkORE9%mQp0y<1Tuhm-|dAynG8Qgrv#y0@3 zm=!#8tMYHSqB^y)R}F`nT(Y4phw+3i9`p=rbE#!b(6~5nyuc(jpeFnC@+fpszB}x4 zXt*bjZVM1C4~%;q5_u>-6_rAWzzue!4fot6^T*x}umkyJwO~Px#mNsySLGJP^g8kN zMLEAJ)ZH-x*U&JY;ND)d$Vq?Vt?UwIO)}-);0X+Q6brTY6L`NN4!FUWzF|Uyy!>_| z2|5WyI9I5~XiclE@i~(AppsmCM+W#dZ0?$LK$^R!`nPYAIOqg*nL~C6Vb-jhxKd_Cv%-&`_-iqeGx8n3Y z$UyVxX~m=_evbzdZ&bZy3M1JuZH3A&S&_wWvtRlffmWhO0!_= zLV{tns$5~`s*9WinHz6iW~5BKeCC>|^kPc#GWavE`|vo(>)Q3EOJuuR61$l}y+eV- z%pRw+5Iv7YnZ*^|pxx4{aNVgnA~p(&MQzvZ9AsoKaCpbL;nXHBXv=oIca!<8B>V#< zTSu&Vii00QS2z4+`UjEqH|$Cz|1fat>7st#X9FW)sxfCaHR(OKbk5zfK|I z3v50?=bMwNQQD6ZFX>hnQ_mnqGRfczhREXKkDPBXyVbPsY=32r%81zBzUPshL2v)s z#&B3a+h#3YrV%8iv)b`7qP&|j5`eY)Kb6(kQe&00Ewvpq%!@V~&5Ufl`bSjrFRT0? zDT+aAyqcQNt15COcuhmmonMfDGKr_Y%VOMOv2xt^k|f>10XZ9=qaPNgA{PgXdbRu8 zEIQo?$fnmH&1kI4A|SV}-SDMFmpcQKIIG0hOS)HQ^KX!{^J;!Z!(XIhFqw7a3U8-b z@hd?B2*<5xfmlyg7B|HAdr8~+ZE#@k-8y!>y{YM8N}X_Esee+esNN(StnoXWtt^D6 zpd5N_S6DEy)>NNigEk^&LM4jR@;>hH>xf}y)^9zQ9jgxM$UY29U5D`HuT8Xx*pbX( z)O#YK_(6-@+M$C)&To!=)%AGRzS^O+L;Km+E=Zg!0+XJJPEmw5*Klm0$ka;Yr2HR| z4}dkS^B~^jo~df0Bn)f#Jy8l*<=m_NUoSX3p%xs zcJIPy{mM9Cz#x3A{QCRJi>WjT@2)hpe4YxAAb000nb}VG{Ng@C#zS$u*oKSt1`qFE{l z)ji*32qG1aD&Oq*6rOb^q;BnA9C%@txyZYyJKq##HNKSC(;WJnL35rp=;ZkPFMs{< z+(GSvPMtq7H6?L*VO*jYz#G5`(|`B&3~4rsMx4IVF<~KGPVLn(T4=3;&M8MtS?>MC z_CcTCJ@)T_dxtWvtENv)Xfp2ZT;YCOd+FM$s?TO<++QiOxJQ)w=gaE2KlQDPcfIku zD5EW{X~LU!jj*gG)*dk66VqXDKvTR>6j74DPFgCvP7;!%q~YKZd*Y$><7}vShK2VS zEvk4%%BWMn_#Bzn)rMtF%5tx$v0*|E?kVJR-hg)Y%@F;5ISk@W`p3ZGy5!B+Mj7Xl#IgkxoOMt392zT0Q*)e9!X+djRiwE*U57PBczpkmmpCLPy`fjEB_xqJqj+V+F z-{-bW%JgX+!7W$ZkUmNuZph@pSdPiPQ!2?G$dCyGm1p0`X6%2JM1S??J@`l@)0;!7 zWM5m(WbX$?itkkeAUBnI=HkYryyl7#9pyHkdk0`o`H)Gb|DZgb*1yYZcC#H&No0_8 zztL=&p{gI6V@z$@3NC7!r!JQkGGt^&#=&#F3LA{%8pUq5kAOVoIAOB8n2xc*|GJ9) z+1B^jH6@Ks1zN+{e#?WjLVz&N$*VSz?FlC_glR*CwdZ5$cS2S(oY>0SE!q87y^RSD z3m}#qrm@(|1n$g+N~R{apkCw&r5WY5rbANH_mp47Fo3Ef4?#8o7$;8f^?kabiGrLi z{SACR#B?x(jN&5D0=r`=-I2&c_Z?G0G6>JdqHxS$ySQxC=-p;O1PW@n+H-#1kCI^| znK)mAVz={*77i{ttXF273*?*MecDawxqU}{M&xw>(r3b`2y-mE)jQj-NsW(T|1Lb= zN9Fbsa+D1{%NIk_EB)>6$4UN@tjMLBKp&{s{?85>e3^Fj&Sx^zoMgT( z68_>dRt4k6Kp&-h$BTufmRg)?Dq|Qdf=1OV1f`+fYFhuiVpWQaBcKZ<0EVZGCxF)0C z?rxT@1@`~q=UczO<2XCaxU<}S@4e?a=RD_ORH4Lx0@p~ab$8cGQ~xteNn#us_UJ!)a)BDr$FFIsMAX~O=vze zTNFjCo-Mw-%S18KU3LHNh8@)KO5&r6{b>9W-7qz(rLoWTgw#lPXrrx)$ganQAjP^l zMW^$DhQDnK+MZq?1H}x8UyoB;SF`nvh`!*ZFb*C$tBdBUYkh4vF^=BhahfBqer*=< zp}k9glG#wnH|Mf5#U+oi*G3*AX!TcL!@UcBd&|F`y+2UI z<~M)rUY+HA#c_!sY_X?0gnXzeF<+a1wt!;B>R7%0pGJs(Ufg^`@>UT)B|(9>gLK>_ zTZf}es7AiP2@E)zNlICqE;1w;)5&EyprfIaH)Xt8h|3NV86xr1M4s1t$_noLPqG;= z9=EHVNb?Dx>WE9EJ9H8ud22T)L|}wqM0lV+#znPjrxOztz~f%sO^iCf-!4O78skYL zF|hSy^n`e3+vkf$w%}*UMee%c%OJYcXhYS{?dE)xFi4wY_K0T58$;e32gH>blR^TUw6M$VOrR zp};!7@MmhBRBtR|M`76Wg#L+DME2@-{>b!qBDpp#MeCnZ;C1VT^ts2{Co@zy9t+DC zji1hWDUM)?`QudkOH}Z~*inM2Y?tEvv#tyV?Ec|+&GLi+{;~u%zOqNwMP`NaDMz2u z{{ISUTNq8dz&|iU%=wG=izDWW&wVdF?Ahd7rr{WUSFp z6;m5S6f|$o{bcl|MP7&!7+s}DEN{YK1*#{T!{4P*S`w;h=P!u)!65qkuc`!40tnfW zZ(5Lt<1*fRS~~6wry1$yxiJN2nTB_#bXJOn#~ZQcZWgMu7sQ17nMye=2|^Cb&2b%& zMYDF(6WpC5_d3Q^p`{em4=V@CwI_P0QZ&t9i(kNi1Tzxd+e66Vm^WgXKD=7a^kt!U z;6{OG7S7Yb6IamN;EV28kBkNl75)9u9#ciV6CM*A<#~q>-Rb^0c65Bd&HVus|D@7* zEYcq(gPz^{wULkOchcL*xfU)MD^VoIeC)o_NlS2{{`K(7qMAi*f=sh9We{hzS()-e z|B4AMy8hz-wkrP>A|Ac}MlwFi`vqbWDaOLh1R>l!iHA2kgNsM4?9oT8DR@VBi>ljQ z2_d_fL5e6X*dwShM01itxFt`H9|@y*(i=cWJ>7ml@R4SQCWh?f`eoNU1__0SpP_{` zax|C3@j5OG`K(dma>mq$Hw7kJpy2D=c7?lVYt&xwoM4y{RSNdzPS=0!cmux5ympFk z=U(8UKVa@UVp+H;SSFG}lA;9w7IDOh46ugFa)D23ex@jbV%%ef_Y!Q`?>AGjMPUw+ zUjdk1`WJIfn-zT6h|k|=6tC=7)hheMc*V7=P*{xdWz$88%gSbWdgCZd<4$3+l`iS7 zu<9h38Yc?Z zg2U3_G*<;Xec2pCwRm#Ehq6J%=zq67mOs*aY;R<+zA=V;^|lq+cxz^swz-t={mbj{ z+qlA*GN^r#5Gqa0aPrJ|RD5&e}Ub>V$-AKZ)v{2tv*R_hJVgoxD4XYJRY%)^nC zD7DcNiaCYJ9KTc(%AL@luY$S7YC6N~l4nvr?ph3;i$!vm_{D(huZG|;p|m%!H5d3sP$2?;ji+{K&w7fT`P&F3pn_`N!f5m+z}&tlN3f zzB=x&%-pPLcCc#73%E3VtA&%(X?D622*R>`P}F-qTrAahL;C00eDHtUHf zCpkNh_7OO?v*=Pa!&{;Gr$JXY!DQ#iMv0jn8H>q!Ev;Oqw0@@?jYIpgXz2 z&@+$4iy|!0>fvr``@1~;;dI3Kph>sOp#Ac?{O=f#&M;$Up8dyx5Oq z)jj!{`>R;Xe(q!qR8j@lzUR08v|L6J(0{7c*pj8O{B@(EkRxDOeA8*4pPk*PXl=9sAKbA>80o`VKhwX-LyL^NA)y6uc+V zC*c!=&&GJeVC6g4t2dhKm3J)_`InEa1ulO1gnw2YQVJvjXW#G)yz_lbfw3Yzzj0(n zmm$!aY<1g)TXd_K<~sy2$$qgx4p0pb=gbBprZhW zS&j9h{h)?xd1kBNENLtMOx*rC+XY(Lr!KI)ZC<{O-!zL%wq(O`ppK&D(1d$q$M~chMTK^5BQ# zJ%zxlzM`;EH(gTA<-eOSlLM0@-05O}rlsEq?9@)Q#bN2>4gBE{h*QWRB|9$dX;3N>*}PGnecAjq@uKC4=&H{7Yoa=HG;4=XAq?5+f0?{Bg`ilyuKY zG?B~CPX-EhoI3CjT+fQVf4?ZOy~Uc`jjDXoB`+@gC-~Okdt;~s1}ew+ur^NCcR%VY z0CNyYIc&%#5L!C3;PE(6I{u1Z@~qM@`~;LJPIy`uV6DTNEVDXW+xu5tkIeKEq4{sid5kLEcyrJtl5TDmYAfO3cF|Yr z$G@9&cQtMQ)So2#zNpN(VPUVl7|Hr!17CZ5+eX}f#F8&EN-c8MKmTI6FP3B93L~sE zcSFUHra+)o0rI}UiPe2n%t-nrvVf7g=JBp5NO?f>=7fc>dEm$_$G!)hy3<>;jskh1 zv?pk?bR@{m9QJy$w)JF_PazD_pb{eS4RxEzr22cw4n^wD&Cpw29$)T-KE{Quy+&4= z<&(E#_Lr482JR(cdI)k-im=UoUN@eXkbOsrqbs7x`qL;rM1X0&chb)?nr5tjt7H#5 zMB*i?_C=B?o1&tkI-w&lA+G@lDk*uBB^US-^pgmr@cR8ku=ag=E3pFgQn*yVeb?^2h@2O*-zU!8d{`W@Xw2IX2x)Qc&7gKB3K7qQ)kM4=P z`~=%XppA`<5iWrRph$Sud-R&$0~xW7mFlaP(0DxTUtk3j&0oDqnRhIEQgb&*KWM4$ z16wNCZwW52$`CDB`9+`aJ>Crp{<;0%G#Cjxd}A~){Cf04HFwGP$p3rni|b*az2$bj@~!GyTJ^BBfh}^`^l;lV=2PX%%V>RN|J)ZT9yIH{xD1Wgc#iHToOlh9MT_{m)uBc(kiGo;YglITw#*R zJCl*qW26|8GjW5e8!oqN*Lg)e9GTf-@-r$gyfG7%4l-pft$jjvONRemIfgg9<@9njv| z19t^7Z9r=?nO?iOVoq~~eqV9;( z9utU9l!ox(cS%^FjQLj2zq<6ovASV{3&;$L!S{b%^*Ief4r_8Fse~uxqMt38O4|fJ z(F|G3^LgsmNIQIZV$}nIxf4Q#^-U{WBPaaL(g?itpp`*2R$sh{XhdZJ?5Sp8K*ghd zw_WieG3|Rv@3wbgu6p`Mf5w2!zHmyqW~ZUkL4>%q16&oSew&L04o8vH(OoC+M*%LD zmv)U4Y>&OGc@OKNll0_t|7O$t>$;*5#-N$b5r&sqW8?cJT?c0*h4dKQO(3onkx&Fz zUmF-09EFaEk`a8n|3gA{>`$LzkexHBtS!(>cX-#zdsr1+VN+#0DN6=NeotbCCB?C- z#YI<4(pQbwf=UsPigCt|d_sFpCPgFVP|EFRdSF$L_gkfN8|FcBbNbsq2$zaHqa5ovS7SopLRgm`!(6$_3q8?%|5M!sVQ*RO8Qz>4`XJjKP@7Xla7!1 z$YbZdrJPo@|7yqv?-e{cq2%GZ38IHupn$8p0h)*o!)YW{kZ(KR`Lnk_MU-f7^2PLo z{$ruJtgNH|7A_KtM45Ng2}nxRZScg)W#Se!3=e5xIp>=^AABb|(>hquP0|n2-B^N1 zX-o%kPp+$JqJpawd;i?3!rHI_;ZwXj;;-q{eY+;vTlJo&pU-4?OeH+)d4AkVa7x(7&wdT&W@*yMa}W zcm=Qw_h?j7Z1xNE3v{2;!N&|3fO1myyk=;Q`4$+<=y(5I!iQ4ODH~`y7AF1Ws~pJ{ zEQ!^)PYaHXX3pqF_{>mA}^AE1>MuZp|NSlvnoYnEUP_$K0onn03m-Ll*0|m)IjU&BG`a&i=YTFWH3O`$< zvV#0Ov8ccSMsig>p%M(Jx>`m9A7S+aKvDeS8-YH+DuZBQ;)vEiQ3A8NMfIJV830(c zX)t4m9%=YrHq46f=nl!e;KS~=o-sw(6Hl&l^-B^oVBf4#w}z77G`vak>hQ!qJkua} zoTSrLv51jT6!$u(!4zevhK9W1Mm){bmW7r2PF%0)3wsF7G|BDBqL^rj__Bh!xbQbK zrxNBZ$R~5_Pt5wEm^4?M3V}Vu)8nMWzM=zDDeHPC+-8Jk#Menquh}m#zoY|1O<1Aj z^4MacX}0LK|DFO=23q0gB))LUjP@O?*;mKD;e7w0O=n0PG0!(`?C`s$Ox-EUr$X2bP*8YMA&N;aA81mhg6r!tFmqg_Yzvi z{Z+?I)^aFT{$H#31snMWsT^@fnBOx`1S3a%2HtM3lWPi>5CNTO5nv1AYXU$sw;m}X zhU!hAh#m&}YCz7PHXnO}DfcekgW57)SgE>-Y}$!&=!*o5eOx8dFlAL#?$KCl1&AO) zw>fBC3kaBhcXYwin=^faiL7=}Zllt1)+(1wxBp)Cr{NEu)`YNA6dk6%D|SZEj2w*% zvIk%U@LLu_^g0;ph#*vmWk ze{GA!~_1FQ{9QYSK?Zu>i_H!4ZK9)RXnqatxpuCLm1)}~5< z9+Lqe2B$!YPX#xqCBi4&^bZ~BRd86-Qk2jxlknxdv;PPIrrikhLou+e1?u-Xr?1+M zvs||_??G0TlUTK+47D&9shNv@xdAa;f5VUT-81;0z_ZS_V1E&AyWEkecg(+pFZw{w z*)(4W>zr!pP2a{wl~rnJVfsu_6Lf2WO3a>Z7{st3{&G*-@My+J?;>?a0{$P>9-Z#y zl&^%Ij#yKR_Ub}wYby#%Y60D=sH*UI%s9yLtKs^cSz{sIsDi8dVr~^36R1Xprt;a& zP$hROHi)ClckGF85ds zQ#L?o@WWXY|C^ZiCp@if7g~ZN#XG_+AiyE0G+V3j$kas$;%>Zbyn|~*{GQZYGoN}S zkU*}`0(9j6lb_rZnKT_E!3T^zAaI!Uv#E9K%{MNI7Va0S@3sAz6|>B~$_LlJuy~aP zjBLN^x){pkewu(dx92+w%PX+l%(o;J(w|O-p0cDsTT3Pz=cl(}fO>hS?0Y$q=t){P zXW;#ILuP5$BE9O*7Q*(0tLp+gWZLvvtDx_9HW1$kEDe>+aTb6*Ukxd+0~tb z*M@$22*{)H1hIN6hy!NRakT2^h=ALsulK>Q@T(0q@46(i=s4B85|T||>dxl|p;ySQ zU&68svr`NH{J~0qybyB=l=bDI7X9RcZ?(GsWbBeW_2n?#oAqmBu(9nh@*=wuLbRI} ztW0OMdVRhn^b=#0xa)LU20WhF2_V=h(zYM){pl$BmbMh#(0W@Re;@~pQ>)?(*NWTR zzKqJrAJlV{LdDXh?x+!0@@EJcBT_S<#3Z0i19nt*9FiPd$l_a3Q4wB%5jMMkP#z^| zIKe!JhbdB5^#pZiqSD$-;-%^SZ^zGpOBt9!>A56qoXzyQblRo%a zJ^rNVrl(ADytu&o--slima*zDS_)Z0t!JIx^Qy1Gnw|r$n(y>1?BbH+#gB^PMQ^|H z9+X%cpII7l-N~s!fBsHSF+%-C|4W_;{#0OXvzRfxw1j{Dy;<2)ekZP8CqKQx`i(?A z^j7=VC}hdWBv>sW?YtG??e7_}hjf_m(djr>OIV=vDoULaq&n|%Jy$!7e9R~>jT-Nw$To!32v!Y{(D^Y7WSe{w>H%t)x zSEO%v(vLFKyUBl5qxRG`rQ-ozljAu!{-1doDVmNpL*DQUkH#R$ReaV zx5GK7AAc?3X5ut97U&FFc_h$iiXGa(p5?nfGC(@b`JOh!c-zlvs)5583lgDFEW^~v z5f>rJ9If`^$rEgg{`!!CtfT$p%jzf*Y=m}>puJ6AesL#&36_UE=7$a;fJ<3@>F(IZNZEk??^%c76IRf`IKqs&mv?=v*tvX;;QLVNc2bB z07HSEwQ|bFMOop(2YMF6Ps|jDC)T|zG;wtezFpNiJcpKhX8{6;>e7mJD6CdAc&Ty} zp;Go0(P-8|4JE|RK62;y^TM&11q6erjSmYVzK=IoB5%-qG)bnC0p$n9GS zp7q3z_&(S=^6cDS;4UIUJF{^~CawE57Iw~xVZk4K#aBzRG_IiXm6vw)FRDx0aBzP& zt*dU5^ZbTn3;&1g!b+FeR+KQ6`OY01C5`=s<_m5O_2CHdHMRD3%A+!!+x})LBM`YX z77L+qd-I#gvkx*Y0{!Qt2V~x`#I|>fx(Y~HaYI^1`&ODo8B`Kfew;q-Aq0LaiXtS0 zG)*z`zvUf!Hs7?nM>zExD!O*cPO>65;J3U7o>}ao`c?A0>I2+xfwf$BDs}{ql1Mi> zp76BLd>u0*$XgPq@h5O+7b0dI?Q(948FO^=KL|n3Gp6$m+)ITRb1H@D1#q(j&hgNE zdg~9dw;Raaw1VSRAj0^8im6QcVNCrI%j|`&*N%3}9b%K^bAv6yvJG2%BE8Rh;rb5a z+)Ge|x0<_p&fBPq=i5$cBw#PW*)h?YW+@Y5zs2VgNuBT?FEV3umEegdm~Y~_f}Hr0 z8ZoBejTi@&jZWhR<)>B_bP_~9vo`@r{-v?jUizfP3RlnXFEp^sww${ubU{LG<&G$_ zL3R}l@m@zJ%Wv9X470amjAq-v?MVFgX(Wsk6eTR=b(x6izSyFc1A(l>Js&W)haWAs zOHRxz0v4$1D$K0}1gZIRB)#HP^0Jo=$iig);i^^DEc>BQ_+y-eNCrHuduA&#+jU;El$7#fXN6Pa(XNKEHUM zRW~K2h_W(*8f1}BuJ((XN>*a+D}KW2r^4oK^kBMj(WN``&+K^h>{p<>XFE7s zQTrpyOFNr}SGiZQss(^@{f_EY77Tv=kT$ zNP|J|)JSD$gaIW|C6%4fm*|xFR~e!2yeQO$3p3`v2k;r_v@!;*oP(v>lXmMEw?AA#vaKIDXd6)!;nJ&S~5?!k| zl8FQt9d~hiMKt5Ov9@+APT6$cK3liZ6Uud+eK$m-Vt%)ZU%G>SCa=vE8hm(Q09r>MKvKzYEJ-=<+g}QSOp$(k z1HTluZTYm91N(kR?8izE$YyE&hfYU1HL_1K>@-Cm~!E zbQ}$Aun*>r%WY30WVzXomWk?^1ULIpCoA@Q(uKzh*GW&3*55=pWIy)V$g`%XN}Vu* z{2WLV>PW8oh97A@(yzmJRnBcY9YmDBpAPTWVa(b(lSSpCRXf>)7TjnF&v3CrJ&#HJ z=TnXBY+*~#L~r*aWYMrDk&L7_{iuU~xQ5t%E|w3ax4?NWTOb8H{7t1%({~$&9wW1t z^HaT=MsqLilKaiSBxUZOL%ao(`%kVH9szTp%1KUYC=b{VZ)EU?e0W#Pk73}->kN3@3(<0`|pgtPks`w zYJDD(e9D2WT(l~n&YG<3VMsw;0$yptflh2b(LOgeJ9#aHbm7uoT^WFhRfZkH*ojQ$osaq{j^)AEwt^otb)OqXGjzR z75*IoNwbBK&4wfn1Pr*{UvHrkbPn%7S_as+t{kPLuTL@BQ8AmXzK~LMQX!=YT9hFQzm7IHp|`puDSV3AnDs}Q1MohRXSbtD*An3%+^}{Tb*;~y;c3=$4^_)RC;_%~I9pqmop%GCphARXFX_zEFVu4-*3le_Y|w*SQT;4Fxl7++u6n z^z&j(dR(7h+(2F$d5HfOXFBC#6Ib`NdpYG6L280yCwN{-6jiYcVDAGGgO3-ZEPf=i zycK*$r7Q&}wG{bQRR;Mh#nSl;2g->!?D@6npVD1^VE^=aUzzgPbN4~Y_k=m35yeb> z-#AgJeO+la3j%DmRz@|z+{SmLN+K(o?%pB@tolsie`a^!`zc{&i=*<6G4A>NE!t2( zr1~5Q0VdB|@XSe8EWQhAzbC~rH75>ogBg84dA@k`+$bBS3-Sm_x64k z_rB@4DF!wi&!I*d`8a2)|oej;jE5*3oHVnO|02RQYC#1rguGf9HMsms}}< zAXI>$9c90Y-LGDYdMrg^nTPtgyPIti?dvBo3c1T4sm86(7dL7I%~I1VnKos z#b&Yvw6x^4zZ&O~}RzzJ&p&0|!OBpcOAN@*pGc4f!s>)83%x)Ns`noqv+N zSFnE{%(~h>5<*1N`z(!+l8qwY0tdJ|u{*cHB$_i@ed`=^ICmW~LqG!LHWXx1>FixY zoRe{n!BD52V<>KiATK zZz~N{ot+VCef9d@;&Ymm)Yv)SpeL9ui`^U0yObw2-d&EQ?1E3Ly#uxY5|Pc}vxAY) zu2~dE--uM<9-QmojFq6<9TfK>4sH@s8RyuzK#In1&RCXPY$S`^G{YBci-pzT{S3|M znieEVz?6KPh9d&6-!?nFhq3OFim~1_0dpw-EmuqAJV2xzR97J4S3;9W0=w<#>(18{ zQrjbxrlT^oG=A(BT6JmROH=(`7wD$GYWQMzR^VWH)~Aq(dDl8#`#RSzqF>t31=o6; zxrfZdTna770>x!O8_>GBAiFyMcvgVBPhEj5?!@LFUiA1ON0ml7g_VNGxQ3=^7jQDM zIbSy%YQVpZ@F619Z3p+jv-Rq#rIj)CKZZUG%bpiPX1*9)lz-JS48LETGh#Yz{k4ag ztC}kXmWK!rtT$m0WBC>LGJSxI45nI*<*MR|Sq!Dy-XAp$CG)c22XlKy z9Rd%Cf|BuY_E^EMMzQK&p5d6fB}|;`X~56_(PtI>C1$yO*F^VbEHWzW8?PA_ckH0K zMCuwEX3{~}4-)0fNgsIW!1W;mL<05gi{{Z2(m76-E3(|*H!bI+_neg+bkArrzfdW0 znzK1@vvBLwX24%je0y3djTB@->KS(v$I~;;@r`8XjiI?KzoDtWihJLUN+Vmy+l|QB z1)D+GLjPd+fM0L8<&<1NgbE~|%!`FZT83&<$)U(TXx}cYVFjjqj3my*1sP&*1laAwm<0!8v zFVAMfjgcpih?6&U3N#gl&5P^KZIAG6--@F%0w&DaI9^8x3k+o=sFru8qM>AQrX>@;PMaULHzTtxpZp9sQB8< zv6i_b_sY4r65r0v^lJ6&X!p75NNAHC)Tn8d+_wben?kwb{W$fT+6fi2H4v^_O+G|^ zQjGXXqFrcdZkohxx7-Y5EcpOl|Igl?M&;5IX4)TSJ%Q~NHC6Vp*Y!{8TC=49SwLV> z*+rl!7}y^z{^;m(xY&%O;%{B&gWEjDVn-gK^oa16*#L8+Mt+W84ce2cowS&+zUM2s1)Q&)cdg@UW_B18Q45Y?IZKUs^% zX3tm_*9)9kQ*dXOHtWw)0quv!np#YRe4-R8ww5q^U!idT4SCXZYIk*gxQr`fw-NFZt-?Ck_V$_2d ze}5JnFDf_z)Z1wq2hP6nVhGqa%*5+EOp4%fi@^W-g z8dW71ETtDM#Pr7KIe}TglJ+tGOgw9K)WwUTEuYyVCt%T&2$&#OZ&)BMD}O?%4)6Xn zwHLfyU*!F#FZJ)Kyp01Qu!w+RjG4;J0qy1_ntFQH{7YVCR36KIjtv%wq=L%XUPH(M z?*qYpFs`nOQ~1-=ar71A4A5>zMOrF;ccxAu>}I16by-CRVJJD#En^zn$bD#|mCB(T z_Y^&>>;vCBCK;K5M;ei;;QQQh zIfP(}+18$Nllah!VazR(qN=Zw3^|HMR7a6L(tT~`_}1W*DSuV)o^YI8Mopk4| zqalZRrquW9uU4?>FH6siWw|XLy)j4IuIE;%$U(VaBSw8hqIvxYFmbjef>l$f6iaDe0-EeA$cJGj;wuL`f^Ra){d`3gJR#ks|Vo6^r z=f&i<68kv*%aWRL@%*O20drW4{GigX*DloJc$2D3RoMl)zc)fUk{OB_s>)45?n&F$H%?QZE5;7{?~j`?8eS_yE-iG&4+ z&{z00Q@`cQfvj=6!AlYuMeyWFinzcQPOF#O76+HJhY5EKZ7_TX13r@+(%g^MZHCTb z&TDEJj4bz}+H;MtpVN4xdP|s+ll;>PXX4tTo(W_0dz$AN%~2v7r%c#_Ue7jCNj|P_ zjL58CA}ZghxMPoEOy-;avx$@iC5jKto2Ekg|hsvGGG;px|6 zw@e`@S=X7 zm(^IP>WUwU*96S#1)6%0RKOj~knLcHVY^M}E`Bd9%NIM|e|Jo$BoN zw2q~4&Y0$z&nn)E4ANjbH7rByG!`I-+IMtak6`&Wz2cw4btjFcKEm$wbPq<_RY!o% zJ44X8HKA`Azc(=#!L}-}`b1+xGDx`InA?c}sf%%NSO-fN7!Mzea^;3hX`4nicMoul zERHzLdz}vWLkU9vMhMWTgW_01Rsqc&BSFoSSfuG%N0;<{{c@)(sh(UECD~NBpWjS) z4{4-T|EdvP@Ntke=MNf6_)J;oVb7*BX~D1Tqv*)hJH_^0=Ghu@eU0Y5^34biLDSLT$-m>(v#(DxFab^R6;hbe401? z&Lc}_FRC!(8m~%m?ly{`_|S#X_WkoYhg(i7iaDmO-y}?@9$ME+iJox~N`Z*AI8Xf) zMQ$jByF*x?%I`=FUP0pTov7EvM&hl1909W#u7Q@WSQl8J3<=DIHQoq)Vow9dMaM-x zd`r3e*_1CLnbb}D-i*FlwHL~EjsEMAvmATFe+4vM1p6_UCo-p8W#>y-{-n$*{O-L2Wwsz~1c8p*=2i&?Qqxi{9*xU4AFIjrtX17|VS33Vkxc zvAo8C;rwjPn=a<--W_4=qDQRFl?U3rsYDB2BV6ZI&rOW-6oFd+KDGvF5l3;`Q*>!; zxpso@GVFq&;$8OWR-(n!%T)&_vE4s~sQ6jCMUC?h+Af;1P+Qo%FK$Ahxw*qyyT8r- zZ^k4R?ApZ~gmZwzwGpgXGB?dEM%L`j+*i|lyOYSt+SzFCC}dcskx5n^SM+79B>3g& zYNnf%*H|M&53nPaBHO7hhwa&wA{VhzqLMq#HKX>)*6Fkk%-QZ;5Q=r{LMzQFqX`j8 z3vIsiGRESjb5rNpv{vmc?tgEbZAH)-FR8>U$jsw%>~HOF+#J*CBThm;g_TC%%L69e z28Fax@meiZtQd**86NaBH*=odQo@xK5J5p?vnmz1eEw;S)b8dXB60u^)3r=j4dAi)dhuB`y>!L%k z>Om})eV?9l2cfror|^wSd{jR!Ibx&mkaK;(V`a^s87u&fe2W)g`4lx z0C`m!jil&5F+M&GWJ;1?9|Ed*tv8Sw3Ir5kKfr&EYI?X-nr?`8Ahgy>_VTZY@b=c~qTYP-O$i)xI62k?IO+o1-!J@w<;hcQj$Y;JO!yJ8aaq_= zqbo!!21-2iv7fs&l^_oxgsX9Ap^MZi4;C@LDjvy~hC8!9&xae&-tr-$bLUd|4Y?BJ zKkV53wfLZAdwx zxtO&E*8%x5pJ6v++{olt457?2ingE2Z8C`b$4= zeD>CM-ia;U11uhRa+*Ym?;v4UpR3x_@4njB6d=3(V#inO9 z4S$abKC~7N*P)`-Iwkm^p@?jhrXbyw0fqqdRa*vcEL1rqd7Eq5**-ILWb>QJiHVup z>r?-h4j&EX*~`Uo`K7NLojdlLT3VMMsZ+OZ*yg*r*BhkVG|-jG9}0Z@a+`9$iA8S+ z?V8%WEKM=`O#yuao09f}{D}mL!?8pY*wI4{Qh|0xT$?y}ahxt*3g5K#Y;ArX17+lUS15M7Ulpb)=M5G$W_pw0B1N0Jdaz& z6Vqq9XXoOmyt5?BYdB}H*0btp1;rGVxT0Ch7)Fhf7*zuIOgXYTf^2_+%F*@X^}^*N z`Mw+qy)|U`LmJ0`M*j6{>Ej3Mzh4~YaF@ibwVfUA4Y^OV)t_f0j3y2*?|XoCAB~e- z^bw}LS;Ai4P3}B1cqJb2{w7O9L&Gm*>AZG7MB_f-$36^Cren$2VHGgoW^^+%{O33o zl+M&LM}kj7uQw7euGXUG00zJg2(bxjI2{z0%=IU0VkxRGrSiF2say%7xasp(O$hV8 zS_!tTn9wXc2cnZoI<0fV&xhWl@<_eseE#T8+Nd8XXHBqgp!UaFsH0z$g=*R>q4fD+ z0>2jO8U_$|YjVrWkP4U5SjUj1dHMM}CY!@GcMsa5n;4bbs3rZqNVbT8&xxrR0k0&u zeIYqIw>uVmS4Ua-F0;ZT;d%gW96)QFpOue{xX%H5t7cx^;pNYUp2&u`FHJi3=^S{w z>(-?duqBfD5zH+qT#TH}k*@b;j;{bd1V~EZo-F8$V8?%~DH|_cDI?B@ z(LaXZcn9UIQ_1e8A{lwVGZbiI!CA0jVfphL$4T-oW2h|0`(nR?lD0^eh93|ftcYN{R?FIruY{aEXP zWQ0ljL72h#yz&5yozGy2z~onypdV(S?|skVM?mE&zBko1@whc)c_BX9Wt_9t*phlzdJf>~Mj~WAKrt=h*sos9TkY-9mig^ydM-(1(?jr@@EnTzHP0 zY!viG>oMKGj>CIFP^yD;K@cGznY9XrR)qCHBR5f?g>41-Bc&Yy&C}%lSZ;{E2c}zI z0_5Pq3U6h+p*fqWznU`0pf?n#w^T?TvrzomL^7m$mrjN(<9+kPW=KMpf&Tu6aTIK} z>}F3Q`wlQic;N23QG0dOsd>3?VAM@htEM~HpA*WmhFqVum@oA%GVp2fRW5K^$(}-i7$jhrkGNL zT@dVMivOz9#AQV{;ZqbF`cC~A=GLW0->bF+|BZ^7HbuZMl}U|Jjm&;JB-ZxPzGiVY zFBlbB!h^E(@}BQVzbaMltC^&DfC!jc=XMcpH?t+0^}}cnYb}2h=58hDW|-r4tKeF# zV~Nv6ZCZvn1#pyO37fV>!FC6MR#n0S^RW;4f&=f6)AZbVqRC?biI+ouX!nwkB*=ud zW{L+$-4OR&m{ha7P2{|TLmoYERs4N;BFi*sg= z&m=G9P=zuvT548-1R;w6o%RJ8T)#x?tMwc0E_;mDTNQM%^ft@33Wwbt&*R(ShlNcd zvYatzNr8_O>lI%NfrdP+S&AA5|G3W&gf-qXoT7IJKf@$$f~V_UBqcRD`&;X2X)k^} ztm_k!i`qUmH29K>+S`}!nV6Qp`5kUE*pyxzgK*Gt9BH z2F0b=d)7Pq6F+?q)G%`|3x5@a>3G|<#a#aB&ftwlg_J zFm?*uJf9Mg(2(1Wz^gf@JTj_>T^ag>zM(8~#6k;(^N}P_Y$n6)$Og1EEHj3U52~O~ z?9O44WsTtyV))G=>duITNr!b<|4_nk6D?FQJkc};awnz)P)w*vvGD!UT)dBlHu zsS?_xlk&cSf@Am1uCWYOrA~9mLiN0M%9i=wkk8tayt>;T+r~Ijg#B1PtIT`tx4e|1P=LcfPr3q>+90_2?`S_VMa4Z1mrD~%T;pTjJnr0x@cxQ$0U?P=pIksMXO zzwqA4-PEP7&-FOp^PFNQ^O}F9`L52vwJbrIzcQ!6&4^WD8qMSK7T(Ed_40pc_6Et! zQt@5ddVq znD_f+PQ%|PJ(hj=U}vv3<=oDkX-@Z!J75CG?w1V(fGHBcWb#Q@T~ZUY4A zJOktDcxYo(Ad)M`Ir9PG?z*J#U1zfU!ptX8F72cfBJXcPXC(6CV-ef)zfE@b|aJ z42s=xAIo3fOJo8qST=w}^+>#23&+rA$6^-Dx};2gLY0CPY~N%|f-wuW%k<>B@S{%8 zxBt&23m9r7esTMH_6u&Mnnp0C0Vtcw>!?Mrs>;Iaoe%)9@D+Wd7_+pv4^kb(si-5W zYc_+h$q4&Vb5I7l4Ln?2OQ?hgkD>Wjb7T8PFls94!@xS=QIK%M*It&p81lRUW*R%( zS^B=TtC{%YzSu@rwj~1{OYFyptG^S^TO446?{_T4YsOurkd3C+rwA2SR!#y*ox%?g z--QCpXy`4vX@6l}UYVd>v|XX}vZbEqixl@k9X|MgR>3`Du-uJ53x~uJbdp&%1XM%& z#xLya$!>GRAAUhK3;=EyCli!GhO3N=SAZx~ekUdT2!hnqmaZye;*)WJ7C-7^^5q}l z{hy*IK$51+#D5{c*W2u2&X({_cC5|Gde22O3f}a~y!`h-nOs$3+C`oQ6HSYNbHgpK0%4i7k7TpP#UuGU za#IcK{o22wUmSP5?>@V3goZ*5_QsU%*nh#(aEy;uCWH$O!>1e0i!{oJyy(S z$LVbgf^I$#DVA3*XGAgWx6SumM7R-ObLqDdU0MYW0(G16$sy2jl5 z8;a)_cmdxI@R?y0ba*g|C1yq7eDMu81ncPw4m3f^0bjudE@9_^*t|B9` zVZ!IEFfne+U*gPo(|v?pnUObph2;zunN%V>E`TJb7+!7t(yp$pH%G+e^xmWP|55dp zVNL%1|1c#XQUU_fpwb~o$3PU2#sHC)meJCT?iea99fBy`IYx=Jh|-K^^ymQ_>^}Kk zzw7#c@8cLxc(B2_&*z=5kU%x5l%-u4egCX$jFf|Ag#|kiXpvg3w=yiz%0bcs_GsD& zpq9Mx9lFm7D^p)4DSG%_QGdpbGLs-|5_`*HMr0<8`SbPa;Xkj<+oZsp@;zYz1~@kE zad?rhWckcCw4{#b5sk1hkIG>C?(^We=(OM)z1uU+v6zS6Z49C-~5EuAh)B$737hGDL@2=_v z2dMr!iouV(KP%2x`H9SBHg=_a{UgTdCjw*Kk70k^6XEd_Mq+f?%kcWBLXKzUX{Y%M zx8W1X{Veh!lzfv#LN2j*sazz5kdI^paWFbv;oz$#jmHbmKZ8TWr(B`}Uhm!4Y$jX> z$o^p^Z>)}k;e(Y#B_sg*nO_xYLE&_5KQYU4#Xr!Z5qkzbV2{ z#?RFTzNqDGY*#w{dRC(9k^|c8+4u%JzBFQu54`!-`P+AzvE2O8$FeJl3ts#eqW?8h zzy2QXkpXv9{7Cy6(~l$Luyy~%mmj9WbN^M8W!gwdE??%><#eDzq@8SlYr#q?8PDFA zFkyV@*%ziu+vEhKkL&B}L%ym^C)q!H-DBY*zohUOZ_CNb5P(Ynqb>ylPxuq&{oeur zLwUl06%sm}dC)GwcHRn8O3oa0-4x%b6A%0110nj{i1@u#0h=2x{<;s^tPLg=4en+x zP0E%Tr>7!*d8_KyT}zSnJ>rnM1arhYRL9`J9&D8Oa>3W&kzK`86O8R*MB1C_ORDRA zzT?pTe-TmuziiPkwZLhxffSqjt&mEm{U`j}dt$>c7j12Ahi zGZV%kzgbV|{L<5r*)oTy-NMAX@2_&5ewEr)75g7cL5!Z@xs8ym?{sgOb}M6y=Z7bs zVNaB9?k9OYZXw=#ZPJE23k!-dIofLlwCi&k9-ue<@88c2c=xw;$000H7Qt0($J1hp z{Lg85l4nTvYn@fhT3r;LE-RF+D82mfglpNwJFLJ@g1~p#ckPSen@z_`l4=L79EO$LXGDrJ{v{4qq{4Bs6v_vzn?^xYrwdlA#ybfAN6#I4L}^K^ z1TjYnr&Cr9R~OsYK3l0>wC_uSf+Fa4-gq==ck7TH{~+@@r2tx#nGKnEiRSI=aB{5l0cycx7~YJ_pk4Y2#dk%o5I&mw zZP)PGSd-S0y?2dj>BfNuBh!Ph+|AT}#a{q+k9KjxmALZUF2^>3mg;s60nehHv_6UL zvgrF2hT0f^cR>lWpv?#!B80^2J1y5Zed7UC>jJSBWM)0rD^_B+-k(RsMK^G(?f<|G z;ZK8M_lzkmtu*VYpia=!N0;LPsIaKs*6*PEm2I{uX{JorA&csZL6I6jx1%6!Y$2~5 zANlfvU!UqN%oP-Pe>^azS=$^)xBvH@aA@Qi5-kD)_h}uOH9G&(X}dxyjrBp?6Iw=4Iut;m=Fk-0UkBDQ6YtZW4&1(_K-}$7KugLkyET-h z(-Y(P(7;3FvD{nwg|#PnAIPebWl=ZYQmTEUq)D%d^`;K;^XJ>(2#C%IlAoVRW3eK{ z`8ZcqI!&+WzBysTyxui;u7PfGma1}BR)_#|zDDyyd;{#TlyaMF7O$E2Uz>@;L8n9h zoLDVCB75<0ee@CuvC-Cq^?ayjkh4dLPW6DJbJf6LWu5wqTKd0#W)^9AjLsF%M%UAd zh7<#>2|3gM_5k@b7TXeA>Zzo~PMYlU`m5$*)Jd38G+@%{ub}{4s|A14RMZ#FYpjD){ZqH8%i5(qh3Y;pWv(4Tl2) z0{Xy{c8|wnWtRO=J;=iCelga|Xe`56AG^^dBb#Xga$o%!YUFjZ+B=+?iKW$=L4I-B z@X6x1$1;ni>O(PRotU0wmO-(b6{JN^@vLsHk)TK)JIhjX-z*SWqy13>d%r_&0Hmpj zC4{5N=67867OR)L_)VOHPR7=I362=xzp8hw^hvJ)HV$fw9R{7Of+;Jy{-r*UdU2e= zmUpdU-dQth(f}9`&jMB()Pm%4Zp%IJ4L^YJc!OeG1a{W7*NkMt0G3GLxhA*MD-4Pu zp85~rgN|GRZFad+tG*FZ z)pJQ@Hm|Pe&j0QsG1_igD+4+z06LpJAJ~|p;G4vN9K5;;rcm6oj%#|{X*A#0{TDy~Hz&0lMXX*)wpO}m=haDN z&@`Y6Z=)-J@Z^z}Kv~sej#C(LMo$6QxcphR!WrQ6%DmDD1XR##Nm;)zSkY69i{nj) z`I5}TBs^AmSwCr8B)89Tgv!*a(R-!Mvojs)!XzfAG96^sOQrBo`hryC6J!=s?D8K5 znOCD0=hBEifJ$hsaO;+Ft?ls5uFTD{8@9KPauS%ti_KFz1Om|t%r!VpK-jFyCQ$)< z`mJ-K4xKaM1BXoji;^p3+r_;-dMR8l|6Uu<-O3x=Wj6ImE{{&lQU)mr+SnOW+yq7X zF_Y}jnwV2^LMbt$Z@;P3t?pAU2x~|w()7Juyuo19JUcq;SyX@kc5OMsx$g_=ufW3_ zE&y-wTq8In>lmQzrGKo{AL2FZMYX%w;Cy})%O4~If;ZKXfQAYHXS00*R=wJ?rBQzp z+%iIy9#2mRSrD67){DuRK4H0x9V=8L0nz3F3j^==dptOit20{WmXp&v4kq@xmdw$> zd^Db!;X-gq&N4T~Cr&%!ec|QfW&rNmtP?D$@SS=HaQUucSoaH{1JKhU`=ol3da8>> zE=3%}wT;5WJ-TAR*-7M#-EFFMYwKO6tmii&K$YDKh}g5hf?!>D z^92yBqsTZ$s#xfMSlx70G`dKq{Lr(&e)|p^%PFK8nsy|x; zU~m=FF+7X={caDYvh3nq;#wJjKso$WD%D~^WAF_!&br%KD-b!}d+g=517Qso_3Ucx z%!{dy*jp}juB$PDKwQ{A)KM-yJfgYaNdUK68xkZh^|d?7306+gw*Oop`xHtabW%^D zcyjAIV%^Z-aAx}ko{IhsV8_}CS@`s~Ie=f9G~xo3ti zi!2@NG7$HaY;Syb1?@6mlm68Xz9$Xm$Fnj4B2PrE(T_y-1wMI!^1A2yxH^Y%*~<}L zEU-M3oMJu(R1Y@Z>)@h+vDbdVQ^lV9lgmma&#)dsf9VifWV{PJx}vup%A7jzReP(p ztj~K@H|uIwe+E$f>*bAglssB1TsrB(-kQUdmw$B(+UKDLr;FUq39C62>eB`YddR^S z3V9>}Gi<`o;98I7A{U?^%Vs@vywZ;{ocL_QVKI*hZUB5cNT!c)l@>zK+u z?gdj^@G!y-1`~NH!}PXw4ZXScRSZx)i(XPw!>z!|sU}|s%Y?;PC3wT-*7S8B=SHZ) zk(X_8-Y;q?e6}2z0g{X)wgl9eFSlo#GPz*g`w#^IXK60@PJRn&kE2k$Ac||s&~@k1 z+W>Uiu^)#8iLW-_u3Yxk3(5T05^2fnTf8`pGp8xl@};6or^sfxggC^u4` zAzrjlZ!MS-xJWbJFB@q^KWwa1LLoUakk!<w)#$m<}}72XSM zoQ3b|Ve4Lf!TAwkhsFZ7GNr|c#0e)Q`}%InHA<+^Pu&&jb7n^iof1pDh(w}&Gmr!G zzy`~Kz7gU4WmMjd{QfRSQ)e#Vc5%yA`_W!=t7kmRL3hj}Sm$it0`nC0i6v_L4I-o} z;_6Z8H{;*;lxC{Mh#iLIQnwDHVA?{ZcWU&DNKfpj|7tCA$0$_IVwaJrf0KPfxND z_naHY)g1bx8u4*{6I{YM^UcL6hBY(VQZ>!YF7{u>?WTUGnONE^1Tg=JSwmmV6JuAN zIZ7`vI?B6(JW>q2%{HWHerggVll(!}EqtAYoGZ;{NHVVxdU`b^Q+*L>2h&f^GZx(- zl-RCpc{D?*o2*p#G$UbmR^+(%c?_+I{p|SOX3D8%0et&^wYicR4Jm|bF+pv z4gZVHl7!3Pc7MP}3ktwfGRts&v*!q5D2Psxoax5yr z7wRz<^{Uck%f1^w22<(g7JdA?S~=hzZam%2X!WHmK`C*HPSnD7g$No?M`I(84PuI7cw+x1DJktwcP}MLjImTkoL^{`o~A_+e-O z02>HV&S)yyUVJP^bO%tc(3s4G=e;mAWMFJ=$0zUL8|Oov$J^*;(9WJdJGMAw6vEBU zhcM20<}N~G-5qBGR_5ocH(4f#ckh{b-Q`vER3-`i5svabGuBU*c5 zbMkZ-(K<_Dc!!$DT#;JwkT(?QW>#l%`EIO328WH z^)~wWy|K;F^YKC3(UtwRKnLzwF4u=~BKtVcMiNmJ$m>(ZnhMw&GMjRJp4M(%outJz z9mdlu1hh6RMR$X*9C&zGS(b;`e)a$k8AdeeUP7n$DoQR1NC4Fg27=?UIuch{QSmY- z!P4ztZ15Og+ZqyJow$E(h9foqK4};5;PL_tET5=AJBh=D5;971{017P-o|Y-cT<7p zu5pn{qN>uVn%8X4<7pfB5-A^x|_n2+u=*3?zngJ{jkIZ$dL5I0?pI2A~2_j_b?hZ#JTW- z?Od#noTB+2UXm~=oD|W+J&(_F>rUr6WGpo3IaWmm1kf#XcF1(gc%Np3RYxHYS{d?5 z{eO?lj|%1w0C>gUhPd%f$tQn5drnp}IWuh%+kyAqB=!`yiyTFZFQ~W)gTFX;bmQyF z+X(s^W7iDhd}kHGUjZh6ri5&D3uKyI$V)MseKF=?!lPi31I|6u=@*lqP^Bamx@Kwk zLcYt%G^-3ILFDl85OmCYwPPMCJ;cY;>J$0NrJoqHfMrOb&`VR(_I+!1?Ao-1vr^AK zvvb2oDus7Xg+=@(CGGQurH?H#oBJx1uh!nM_$G^TX5{ZSHxhO|zn(fo;nU7b!IOOQ9XTS!ouY$qC4HzziuDlR|9a__+| zA5W`ezBvXBW011|w6G_)M!z;lffce&jz2?kJNW3n1U(fEY1%cGQ@&OMFA(TKz(7Yr zaZ5rD)mEGBKET%ipkPQIE~0^gYhsH1EWAr5?#VjHub13M#RO_00|ZWQ4QfA%~XhshpZ z@nl&us5{RG zLA>#GpVU6damwn(jJ>#HHT%B0S2GR|NgS--8ly)`vNrrPB@hsosv`fxgU;AH&cFVC z@K5O6*U1(0;Brkz!d1OR=FdXo%Fq9v$87YOE)?O8Ux0s>rvhf}DH_2IxxfdwbSwUf z>NBul|3tF;g`cNyY;;`_3JSw_$N+16^EsTJ^jR1!yNqsDraLZ|3ku9lXm=ab(|^mr z1iwkR!?tz=xaf8)W?E?Ob^LNMqz-upkfNJrD!vYI6O7RSg19+0fWwOQ$+f*Xpfl2^ zT+u)0SlNCjpaTWNfPvIT1smV&#vcZ=v9m#r^#SneF1F+1mNEc2Ahq|+>FOp6C8G3_ z-OOOK|CDsZB}ye(7xh)8o*cfv67p#j%=RGZ{BXY)zzO4VxmL6DCmj`_xIU2M_k=!; zyK|p~yE!`D%svlckmn@F*fpfmRDa_TpoGuC84{=c^7+-v(SoBgHsYXI(0h?I*>xATwP{YYk_ zP*Iz{b($uTU)3W&)_b$y#+buF19T54)ChJGgbljmaU$}H5we}>w3?J#wUiBVvT}Yl z_?7TiaN*BO?94;(O%mGD_yOa}eZ*1|N z#(ZIW#t^CasAbJ+vVHYt<{pA+OJ%fyy$T0G8%yqGE%kfSwPpoWfXs5a^mK^Y@P=x6 zMwRE%$fj=%9jxUIyPB`C><#v^lr0@Cf{b9SoeWEjSLV8y`Iym%QsQaeklJs(XFr&M zqkY68y#wyen%%29acP zZy_`xHv#T^Q>bui4L`xtYgZeE{TkX}UuxO&)qm1wtvBo_JF-eMFHGEf&!qKiIc}1d zMpMlk;Osc=OhV_bB@Ge`VQMc*e9`nHin805ED3cCY+%v%&GK|MN$7WXf-Oh!ZcnX9 z52Pp{SKb#84#dl|^xovsBO`LH6Ppc}Wmo6>uXsw6WqlE&T@yNG91OzZpezE+*DXW^jJ4;4`3bmN?} zwvLGg{jzXw;dTXWbf=2T)US*6GRH#a2G=7wgtN9Wm{RLIWbM^=w?V1eaF41>lnoj; z*opp}gLpYcj9DJ>g0>jxb;||Lsm@8luKbeNn0u*)vhs4eI2l4ZODO!aoQ56=^aKOs zfck*cTD%>m7YtP-b$sFXX6~ck&-kXF?ygW^0M`JFR^SG0@l8jWYP)uJ6N^1o`OZ;7 z=c*n}WYB18rGx-4`C4cHu+ohiG`w~MW_W>{U(!PT#lqr!p#Al`=bidXx(j_Q=E$=eom)%pEJPLpO^bpQbMGSab=vR zD}lYD>fGdJpP6WJX&p0JS9zMYbq`E(`FtR4E-0U>kb~f_4iFgX%`H=OiMnX7ql>8` zfvf4o*Y3-K?u7^jGy9|U;o55_IT|unSe$UnPsC9UdP)I3X9diY!ku8}>kYu4Fa?xn zpQHgz@x14x97>D(@M*@=5F$0n$M>M!UvDgGEHOUF6%AAHx_`@mBus%SrHblE@9u*I zS-?e!Gq^TbHm;TX;)RBlRmO948m;URezr8*FrPC+#g&YHgQ`jGO@6Z#%^V!v=x zRZ9J+I*Z75Qre${+_)GLJ8xkE#mV@?=Q@%s;Pp#>N{uuC^D@oqd|PRxvtmy@jP8p0@^b{JPKQd+=LdS2C$ayN}vwl}PoMIMT{p{`in#L1*&F9p9du~nzq;hcO(=ofb<_i1>9{L;+S9WkJSAIT` z`+7GB*QhF)=2GLvaY4CTU(!3N1M{c|w0}7o0&zZpGR(ijGj73{gtaD40`5z@XSC&* z)NMmuJzR`Z1dYX_nc`{4D}{{?8j^-$M$KL+b5EzoSXPvMBjTuoz4UDGeviRhar*xo z`~w?+JVv6MTzHsx@zBd|_NywK)Pe6}2+7^dP|}yO_$=?E@z38c`c^G*;#o$On`C9I z1v*)vo@Q71Mkp{Jz!h`186~M?b&1?L7o8|aK8QjMelN?9sQv2kHM(V|A#5|W{(9#g zYTrguIFxOdK@yR3o1}mfznX50x-&&cP|C&QFxyleaT#A?veVviTDtRcLDHDnxG=MQ z_M(v|R2L@IT)tF4DYRa3(nIYr^!rAZnU(Xz{uwjE!Yb1l3>@SU)kfbA8C^)r_|3yi z5r4&<=Dq%%`*;ki&$Xx3OADts7b?|B3i>E=e3oj+osw2`Yh)XTWC4jwV?cDe@%)@C{clU0achl0x1>g9r{@Lth%4=w0|L*78nIIp7b0O5y5s0<7h}v= zAMrF0s!>xLQ4RIgLXxAB#Je#5uqYaibp2`U5=YzAA z#7*(M7(=_?{~+kPo}`8X_kMi7iLabW!Bf^ah%ibnXH23XTz-%cuuCb~hm^>CFB7@F z=VUgr3Fzv7v6&`K4%;4)ixzl_MXyDfD&l)pm0TcT+Pc; zD$c#TBVr_EWM(J2)03^tgN3%A41d2&-37rqKJFfDLJN0#`XZ?nj=!55k1L=_Q1_fM z18x&1wXMUY_L~L2T)6bSh_LY9EKE6{#$)Er3D?SDLp>cDNY(cfe^5P+HqigM1MtM8r zIW63G=uX6Vci*cmG40;tb`DYc!3r@$HhdR>0@vcRCjP|7TP)p0dODoXkJ}2W&Pz2# z&&{&Tir9NS(WTVpU&48hwwP3hYoEX7&yC<#${zTu7(bl8lo|&6*-m@LJaO=|@Q%my z>}t(-@WH1qcW`6q*A@A$Oa?<-A9(P$0@D3JMm0V3uk5k?y5+m8<3k;L!RczCs*~7h zm|W1zkkEOSZgkC#qHr#|E&e3#ywYIXY)KC{T2gj`0o7bp=B@@!l#sr>74mgQ#eJci zI-)WNJ30~2zoz`h4J|*0Sz%wT<5J>0ERz1$(v_d!22Jp&43Z^N$|a|IM^iY&`}i5& zNJKhR=stc{fPDOur7{k-j+7d$luusCJI#SrqkkQY`O1<4=kWV&-swK7ZT%xRfYN7P(j@Q zRY6Blw6|_Lz&6B~r!D=_&dX?Irc<^E!Bg(VS#`S85U)Ei5Ow{FbpIPFnf|OQ;5EGD zPHsxiu%`{r+={&ZMd7!({nJILoz4aZp!Rp`#&rgbu-Y^!UNK5WwD8WpAJ3nh6E81v zI((CXcDb+M|B`!s++YIaC^4G6992v2w&)BL1}whT_&KmoQEh31(#oT0 zU2!+SDW~H!<$Xs?tbz^lO8=QnWwGSTVH<$mEqV7_Rt44BOibS_ptB_jBB?n@>uA{Y z-*c)KG<<$Dr9x-mGhRb$YwN68&?P_ubIlhrYnw_HG`bBAFt4&uuF6F(uRE61j=YSa zdU8DS9Z@+1YFpe!d0NKNZ|_w@McC^;pUKs2k4$)?SwF^htR}WyT)l=(&Z5abp|lHU z1L4#Kq@*vL`lLe!$X)?uH6KwGRozEkB8vspXpt?^-MZQ`uPZFa%$f^g;6hiCbL$>m z?*F@j$;nEq1pCd%9A>)ck!fFKwjE&PTXVoMq`s*&3k)xeo-=Bg08uxXwz;&F?_fW7 zu$eY-En8RqSTjCD-S!ZdnVCruC9rcyCa-rpaSExTkGvCyC&?4*H#&5GIiHo!S`Ckx z=7vAmfH9M{_mY^$bLzOZ@MU_Ty#JPyV*c&H99>^e=L6ES(+n5ZY+S_XH2H$;__DwP z+6cD_0{;;9f4v(gLSHGW;Xpx9_AX+h6+A7r?a9S5IZdUyN;@n2=#jO8fYn3y5N>~l^??>c4{KviJr*SZzy$gclZph&0^g9DqceV5VQE6`1x_}@vH52Y(eNy zfo>q>kl|v1;uk;4C(&k8**{#@uXR!N6Jie z3RZWT67_6F2<+r7KM__9yRIVW9{d4e3$0h+VPAwYhZ+8PvEhf&#L%8%b2yT6{cX6TGx#uJg&P$+M&iHbg zVOPF;_6jwz2RgaO>_5)jZTkZGuj@a3JNhM_j@Q7ZDa^)yIHj7DZ1L+pbQPFbMB__S zxU#)}U*>xJG`;;>?9HgVBaIam6&A$A0_6J^&q!B%I-ki&OEXHF^uWG-(|E-|%)>ci z$HF-zS-^(8D@~=wt;0moHju+sW=$#$#Gv?w&dX^t49JqawYD7C7L5b zbWLUUS;?E>(1-YX z0*6Jh)u|pM%s&i3Bl$+}l37nF-<{K}nxAq7%PcfYMN~I3eHtJAAHeaI2FGuSmp)UM zzoHbasT7X&_Nz?3480VjQKyEJ^@LH3kjpM(bIYx!L3%!%4`z>U$LM|(kxqX7oT@V- zN{P+Og2YjA8X2_GDVl9H!hN(ugOG`G%mb!nkMTI;Wk+vugLQ>Z80b6QA7fRz%zWMjOE^Si$T(?Fu<)w^mT+Iln|7Lq3}w=USKF1Du0LCC5p$_EZ!RW zfq0=Kq6KgN-GkC-)p;S)QRlStE?rimwK)6vD1?=DHb8tEJ8h~nCp)!;L*?G_kSw~a zDlEs9jlYonRw9OZoSeNKUC5f5xI5I43pG7N+vHGCQ`!!HeibcP9G?{6k@)!0{xTVw zLvjxX4qO-Z6qT_%8Ywe}eJW@X}UFL(aPvE_24 z2lmmap&>^=r24EZBL)(I?W!04;la`Mvb!?Kks`=v=v_-o`EFCC5xQKeDUGm_k<|F7 z7{4>k&nUdp5SYLzzVQG=Y!?5+6%%{rW4XbG(X@vhdx5iV`!qjlw!+sko!%*=nKixf zUk=nV&m4}ML_j}L4J_{Ro{DS*N11^II6r4YRv zbq7p`uQOQSL7X`eYZB1giw}IIH@ri%QN&M|7950^=dqVPBu`yL&a%y_Azj1``T9(Q zkt8{YqtjBSCFQoy&n|}_L*%HQLmh!LKb|{OD)KK6U4N_xWtL?jlzR#JsI&nI<@mi2 z_nIg5=0sfg;9(%A%+vU=VBH;R3=cWt;Bo80NsfnWk1N}$I;VJu_30GzncdsOgs!XG ziwgdyJHMcxU!pU$HZhKg!z+PdNeZT>{aX2t)IQifG2d#f#9S$g8bRg#72P;0>L=cG zD!i>(sSl#ZM@?B%on&bP@3;yag%ZefT^{m3+85Be7v^dX-(wap_*DFNoIQ0x%z`d) zDM;3mhf<=>$K331hAp$D)y%m#gO9S2{1v$j?>%DD9d%ptL7MG9kHH@_=aN`8vyE%4 zpM7xIqIXCV&a8}sjeL}X9-!;{m$Sg2Q3lr#n%o{ug$E;A4H*F+718>8adT-F$xhJ^ zxdTy`We1ZT+F4>}YmhSZZ}wVM@3-a;VQ_lbTpF(&ivy7~k!bD2c;E$x*3QNY{6GgjtKq%}SU9tnZ#cGYUW%-?k^ zdA%YM#QH>PZ$=-@+BkKV4y`T>tST9;Z2YpC?X~B`+eh0q$8$U80i?57Y?c8> z;_xA-aVg*vyNlyFYw_`DtZFNeOd&Yu_n9PCS7`UIcRR{l)%C@qSAU@_YcQQE^JMI0Cg(z%Bd?K!{7|1@fS zYC_2N;9*vDM-MQ!N>PP_r1g=d3sWqx7wGokrKAg}NARh#aXvzvwqK6Sp1h8R3_d-H z2PU3dB=?x=mXWE-rNG<>np$alj6K;&N*rDD|AwJ(aAUo!*KP2{rUrDBT4$;;S?Zoo zEoz>BBE(E1Z}|C?&`o^O{f(9&g;PurZHZ<+wk3c;f8Uw@S~x|rAbCDNsqd0$nE-)H zS_w>$RwRnI%?cZ=u>2k(dhiE#`RuztVDgDLpk0q2xLabc7D&`&c1!74{7tiSGx3OJ z_Z_#<(_OwvpBjZ6jC8?`+#*fCIT3Z{R+Q8hGlq<1d)rQ!KoI%dupLj!?MFlbJ&aXt-PdAFPoib^4(v;#s*CI>^WpKDOR020OiQ{hAFOlTFD;0AiMElZ4wyv- zy~bb+4k1i|8IRkXJ|}cosyJe&V{I0jgW_xY9dUR>Uq|~1M7@ZO zLnsOqEC{CpW*1pzNSIGQNiI7vj&3OmLkFcEnR|VyH*xo+rf4Wc&ImZ2%PoA2o|x4K zcQiUCP3wa>`dlf`AK+xBYo2`j4y)P2P@kzIZ^e z_AFRd5Wh*jGQs^m!I$f4^(FmJH9TlD)NoIPS}Qj3YCszEx7A$23v%g~3I2Q^4biqmt&Jez^UK!%XF)bQ!x zB!brNZjfXY1cq4Q-KWIg!RJzO_dg`m^C?Mw>S5W-Ur-x#?_lU`VuTgrmiR3vtX&WNp#{1IftBAB2*&jD>{PmkSorY35 zP0ZSEaqlK6k~M_*X|xX0eFmt5Z#q13&dtU){1=?&Crxb*GGv5vGx_rQuH-J)uGcXa z`Ic_3?GB(h!Ukdw|XYjTGGwJ zefhUC&?X2o8>`=ZgdCM>027Q*0k{9d?}uv|!BKZo`MSnb)Uqh$M}nKijzdoQ;i@=0{FE(_fqe#Sh6@IYaN7!DY0lS_XA^JHX}(@D_z_rI{icU6J`n9e9; zw3AfL6<9G%8yTylPwKNo(i#lOqf%Q)P{J&s0r|Y1u0M+Cwt7}yEnuoV=d$p(#~h08 zdgS#e4JPiD?5{xR8Xe~EU(t|*BpLbAp>!T2KD&4{AkKjft)DcLD+zqsu(=`qU%+(8 zz!`MH?hnK1+Fgghxhjk5(ceC<42r_xtp6o>6FH3{* zaYs*)%Sqdvh7wPNe^df6U9XrPKj0(fP_J5B4%em8t|FI^1!e_LbQ*j|@wWjuhRGcUny?)=`D zR*A;5F(nUb9xd8-QSBZ@^x!gJ$yOO+YclgFE0?+7eibc$mUW(RKbnW+)(4<5n>u4I zT%rmuJhgT^D}^JPCiuXH+E7@MWQ<8}q}j5^ z&Yb!;+G`Fq{vQ#Pe+G(59PapMfNBZZ&m7MQBd_Hco|!wwV4C>7qr!!8NF>wloqPZA zHD4(Q>(`zuV(|zL(tVwn)v@)Nj zrmV3ZwDp|>2V5M%`2*P%K^}IAHQTg2R++t9n+LJKJm{V9nPt81%7RIy3C494#_zJ> zUcf`WBfZUo>U&GP%YG0u58tCtwH%q$!DKWwpK(;Foe8PSm7QsYG?C~L2kE{p{{Wy~ z{%;Opp+O6@!s|;(XdUW?d9PVM3WJDin}%#WDkXjSfb%FGwql>JFaEVfc*iZOXlJ?& zJ0WJymEq=nbJ>yO^>%t`-K^}j(^H{$zOKtF@g=&Sb@QkOj;a$ya+{uKYhJaTZDU}i z&_UZ=5f>RUc=Z>}@|8gnVjvJlj-g?*exu&vraT!L+8sgDH8vr?T6>0L`$Rf_f4jWA z?BppB#n6PNwKNTumQ9-!#`N9VZBIL4_jv!-`?^WJWM|XFR*G!Dp2kYy3J`_55@8nL2JXpWI z6Li)e=z0DbYzC*uD5dTRU-kdMNV<%nE4bzXMzj z5f<~4W}6do&RR?gwTSeC+39H}!OqycVSmxtxiSz!Vt@zN9ee)`O%y}x{qc-*!+y)f zRa)?dcq{SKXqmB+%MaXTr_D%#X7zzq(pBxetEB~_?dk8fKheNKBw=s=WAeeWz&@eF zbG8rNIxcF}U#5wnHgU^rG!HJpN2M$O8%Xh|DHRcjGAf={C*F9p2k@N-z7%8uQfA5V zN_12pYsGIQrJq9dy8hR`bA7lGvWD_2@vmIEf5*FkA%7E*YqTu|OXRQW5R*9fwI$e!1e@Ke3ltQ4ch- ze1+?GIoHL;8A2F3(~Kr*Bisi1P8Pk1-a_qEU7yCmE411{7dZ(qTswZ|=Nz-`v)>_p z>^=jZ3$kB?C{=;6G#)|??$l?CF!Q=j70Rr-4FpujPl*!bgHx$M$A7C^k#QZ*|KEQR zah*5h0V_BqqO0@KAZP#Gwbc9WR0aUj0Z=ccz_)$2kC%)pGi7VRs++OM|MTnr#816p zB2`5|`tfSt%iQMFZrQ zwik;%Mq9sRQ6`Q7i}@VPZhaNV&w~jWd!+=mc}64CN6ug^1r?v=W)o(~5v%EqSTnJ| zDb1MA0^sup%p|>K5Koxrj(7C5h0UmQj?eIM2dOm|kP9}qu9OW{QUiJ7!L{`#*+;{5 zB})SEQ%lW53Iy&$9P7!Znq?oKO7qk~fYDaK|FY%=>65E)bS@6trz5>Y0p`m>f%te?C$TS=qgbX>vQkt7dnwN_UISC*op zO2OGmFG#Cn`TvjQ%cb{)C=!H|`EFDQSL(8uJak?b>r#$Ws|F6jtt_Pc+kX88jb<;xJIoeF!#UF=#wWa3Y38k6j zNGB^(6zcS32=1Gi+wLD?KWx_$_Hj?SDjvAD3rO_L`@=KtD_EtCzR|Wz`-@w_m0b$- zwWQ$BaZnpF&_BuBB9q1`|C2y)W|XnA>!}H-=7GPsTZFDvf2S078ql2KHW92gi+aLd ze=s0oVq$k$m$z)yHsGGVcIE$H34!UZbs zEzx(P`?Ab6mh!GXF3i?d=6?M71~&<*-<-9&n z{QGWE2}ETlCEhT#A?}Ct|FhQpumeC(8mpZ|`DyRyO;*zL&Exo%>ZA9!X5p0gb?b=&Jy z9O=6hwQaNsfX5hIQRfTh^>o;j$=BnaQU-q2$w4&gntA8H1vn8u~^xg$Tg1U*)JXX*l#HWo!YL=0B@UrE_XhsWw6F ztDwWATq4$zM^RcANvhwqV^u-X@MKOnA)`(m3u!95HMTq5%&X?0FKTQXR3m%x-#x8HD@xnJz<7!WeaL+E9hpseI%!D!N zLaMoG*bh<{W6jCgV)}}sLTPn{vJI!xLB@TG7~_O(9IdKiRsBgIPL8P%eS)`iFBeZG zhrOwys_a-4n_(Je<7zy58K{@+P?Br2!d&LU&5pDG!k~T55F$bP2zxj=aj}bfaEgX( zGfTEyM$zKzjv_E5P773mU2N;iYH%+L?`D#!wY%7MLb*K%Q*%$Jj2Tww2fWbau-NK< z+fNN$j&(K@L;2=ZMUeqzA|hEiIqvAE`Y*{tR*kBphkU-4hASzW1N}X`zfVO=lIl6) zptoAExo?LYICmk(L~VtP7+`1&JlC9HhLkh*k2jD7k8j-G*sV=9MOV$>Fm@l#4=ALn zLUI>e4rI0sURp9PHiD;XEY`~z%u5T+Hdfv4D5vAxLdO}NR1F(4X5G5IIfk<4*1q`G zf1a_^_IQ^E6vrUau(!8op(?oi^Z`wBKXo4t3R{oDQm z70-urAICTfz|bd zM6J}^`qU9AtU+nIg1^@f zj|T#+r*TTvq`yFx#R0myx?h>ly#pn`0RaSFMf|-l@-JwLT*~_w(3KO|`$ueK@C>F+ zQs61yriSxHSVciOLq*?8Qc3j}y0sHRt$gvi@O#1%*#b3OJClq4cRi+QqD4&Xt=Q)f zLu5|Mu3WCW^Nq$k3Mk>$w&DS52;9)j_x=Wz7$bg(^s*IypLCy}J}r{#EgLkvlzM|i z+~;=w965n&*VyNwn;-Gr!V+K-1)V@9)B9sIc;(k)4*C0|!K3y$4t*GFYTQ2dE(pgQ zCv%{fxeu88PH~}Oj#-@j0N7|QrVpNgj2f024V<2eaZ8@XxlOYD$Zlc-3=9peo!Vs# zFePdLnyB#_-4wEjIKA2(G7G%Vs{!syG)`b%rS^~%0mGqhUr>iKvBc4S_J?|_VtlF# z%hWqBiRA`>pV;AH9%|(G5#eRrzMH??-pa`p71YK`R3yyMowa9W<^Q!SN+$q*&ctTY zC*R|cH#(Rnm}5W%KZNE`+Ml0K^j$g$2aA#X;y$QT&euo%s8+a*Hg2rtx=@*>fgfo4 z4|o&ndX;YS0^frMCp=gH)b*z$HUIfxML@-~y!9`*H&K~nCbiZM`&M%@rI>la(xrCA z#`R8{IubRh5g$-kJS+!ASUmXP(zM6o0^Ziqs3#sWzLrnd(MdiQ3KPGyW#o8yHVwz> zC=CUZEjOV^RzI6x%*xxjLb}4ImhVp-WQ-c`l8X?RB(__sY`bYDCn81VvXN#NB7qV~ zqUVb&O%_Ot&Rei|Hy;`@%$UwrV$es*)u}Eg54K@A9S?@e&#|R7$u$2TSyveqRok^; zBt=?E8ib)klukhqDG{W*k?t5$R6tUt8<9}DhGsxXDd}ctgaL*ShMw>6KJTNx>sxDn zoHhJl?sN9paqVkg8`JT=cX9}!h3li$c0!yN@RcYXGz$E(s9PA`-^ke9y{unC7q4bg zfjgy%L%$T<7JDZ5lYEE6n*?)ecG_`S!{^q1b=nPR21K6=jqBGQ%S!a&Sexc<q|a zF&(IxJxq>3C7Dlc4Eepc#U03EfY3LEgXW^&G<0}x0?5x#%%!en^}sPRtQ*BkWU)v( zZY#8r?-6rc456MBGfK{>W=l)CZdWwF55_xOTb3ihrDXNEyr-O~qZnKYD6{3?&GFWH za`wa!>w8=XZ0LRUlWmy<#^I55yMR0qy$wKzuRAncjQOWnlvv?Gjb-bL2hR3CuY@!n zk@7gm#}Wg zFh&wyJs#d(|C>z(oGUs;R0n+YlJP$bfgtdaenj~1=3+@{;Fm+n3v!Z}%1nAXJ`Pf^>4InBuf+tolNFPIMry?KL ze1@*HCXobp+p5-;(Uw8oa2~9h$&46NIC6N8oHJ5C4Z~A?49%n4pdZ&vBG;s%-5Kpx zJUvlnTuP3yJb|N=%2WZ}oA0kf%F6@JkZbQn)&Md4oB+HYX$1)HR~gPn>BOD?8TkG{ zw%Gnw^VCuD@tJ15q#3)6mHM5~pug%;PF1sjm6(!4TOa-NO4I5t++c=yyM`@;V#pZ{ zqT#|KYA8)#$1_E&>lO#B!@BHJ3I}glR2GXZ>+^m2n{pV;DZKh2=D}rjtmU`W6Obn( zm^!F2A-S;#k@*OibNs`ycK(>Oa*TctY)}=WRlI}r_sbKvy8BLbcy zusVBFnbEVsblqKj-75t%LJ+S^b6eVOgUl48&kl5Bt1tT8a17IMbBDvt5?oO@r3rnA z>qz!cz;Jqc{~?vh{%_@Ig(o?CQpu02i+g}9sz4l*q3a?7{a&K7;H>lM>F?Ob6&^y4 z1p#0ZfUD8ITqg6#&Uf1_egE@($!@kr;&ZW-)2NfEcv>i|yP+c#L-P5J?Ud>7lu4FW z+jEXqHo22%r_QR<{wYN3nm;XMB`Np4Y{eriMGQqId~(saLmEeeQjmaA5^QB>!ebvh z(iZCYlMOhgLq(STB!y+#9@M8}u@k`)n~^Ngp!24Qy*BwsG@wWDJymx81G)lgsZl{8 zpWKfVD?0Y(c%e9>x}^Cpx_~|j;C?BSBc+kX{*mPx2jr-&ww7F(bJQ3GLEmh#^w zfST4pYL=Iv>A*O=v$r?xbA_i+^*z#)gUs5uMcpHr5p6fwSQfD^p)2Y&U8WaYJwVZl zc%J;|o(J(#63XnE2KD{;K2lgUpHpB*frqNJ zS0_qgcS*;@iA2X9EAr=iN8|Txb&ZrJ37HL@PpTGBGFbN29|E2>W zcvkE=CR#R%;t&7Dtp2s9FR`+70|DD^)q>|5k_#7x+O$`DDG>g>GM)3WQ8r!|zG^X* zG)*>X&d>?J4TD2M5nPxS%pZm}rk%DfRE{G)yiwgesc)NUMq|4$99iGzXl4`0dVCh6 zzqY;M6Ki?AH{(!FA3*%Uxif3U_sGaQH>P!mSB~^W5?^gBKfPIH+3s83_xDU%unb^F z^bWok8giK35;LXeGu-{9mnJRPI=#P5UxCR25b0;d`SSD6SN|L%#{#cjKj8+Tf+;m= zYQ4gp{IwJ)@du^`TBuI4&ZA6j*;pz*U?nF_)&Hp3sq0BikzsZSCH5qwM| ze9<`szKS~_VA(TpD5Y?`3T!pmv(~8yF1+7eIVV&dB$kCPv~m^7hB()Ebxov`--hkV z@EZUCeR@o^sxlpyryrSJGb+fT;UJC4!_BrE!r$7~1+Osov(ahzJ%mjXdXEj5{7~hO zuKK-d`d<{elSSYlGOhsyf?M{9!0$i4CoF2UqeO4n-^R5L2_;>dN@++%@|YzBv6r2l zomrS`i^s~29*IoXATyGIxbLwbW7reY6L)?8g%uVyM+?EiSGMSDA?j(ER^ZdN6LAMa zRLtaEoWT1RFq!EZp+UY?wr6uJ@ee|00De3GkBhlov`xlFIc}aPd;*jhewRpEA%Mf- zbba?+;ZMQ+&nw)cVCHx@Fb4@mRxZ)YWQo?Sjd0JARpJ_yRC8CB$D5{9&W?@U#;faJ zzC}wCPa2}XTUS{r=y+e8UkMcBGw%QZuR?AUA>=`+<|ZW}6)Kl<7uHG0?dj^Uq1f11 zGnpe5bL>#Tg+l++N0g>wzV%*qt!x2eN zw?99zNE@&f?xXLV@ZTr-?*)lqXgx&aMI2MD3=U4@UK}ZD%EE`-0F^fR}9}vBzAKzc9C`cKlA3R;Y0m-15_^} zbq;z17iQ_QrR_hk`#HKH<;Pm2vu6an2J?5>CkwR$yWJbYPXnHzdh1+##vsAvYYXZ3 zL~SKhocV$g>7`D)x}^m$_zTmZPMhtj@S`lW6zzi7Mnd7ET5{T#t`g$nccy4k*2(NP zjA)k^Gb=iYURU^4EE-h#NhCQcH59mVKQ9X2c5{%q;HES@m3+{ASXhc|_P9Hju=R2^ zez)yixWS>9NIgxm{DkkMl=EJgk&T3xQ)Mo$q*uqwR z^RE~)ejQ^TBtOIMO~g<~Fw`~2`+Quy`&D_{7H^Tn@|)n?E`zu$(K*~5;N$`Ry*}J` zvh^(UMnhel2uYZ$)p9huZ{d9>B264HJCWf`CeW9W^&@@k+=r(+C)0wrj?8Q2WmR-V zDwO059QF!I@1;{&*duv{dmA*dclUcy{@JatY{>qrfP>w~+p%cgFOnQtTg(Ci0wi|lQJsO!|qB1;`z8AO(Vq4Ybflt=6}oH z(xZrbiq^#=KyqPSQ>nsljNH+zQI<|1hxpOO=jC6MA4D6njAkv~G=kCQJLilRm5D-7 zB`CV$$S6QM@BD2lVLrus**V@sDS-S^y7so1HwAlJp}v)|%sK*h|0)jbd+V|;ZEe>U|oF&dg9WDmG$$0|< z82wvUM>R)A{<)nJH-#jkyzyjCKIlRt1H-Mn69{O(f{)+$w5^MKh>Eou!G!8>9|w$N zGnaotPJ?G99f|zb^cJ-GDnEm|Nx;_KI&M;*eL6OsXx7$5mJhsdOX!qTORVO{1lQz@JQo1K4mlp5%_g4{-SStD8Y15LUMC@K?=z-Pm)@)H9o#H^2wvQwQMbeSdCA32Ggw)XhM zK8o0LN)aAtNrHTlNzxEL_JHM=dX#@vcSS#8V0zE#LLO{O5=j+Y$=D$>-IC=w)l)ts zWPNy=L510rPN^|l;sw5>)N#W6Moe2k9 z`R6SuKep@|iJ77y?#YaMpKg^A5(eAoRtti;(3?YDv(ygga~Ytez)XAk14`)wa%Tpe zf=#DxJ7OKZyEw=sY)xoK7OK+46>Z^W+-5N)Us;uY8@PI>EvW`v6)r)0-V63C+ zv|@%4Rus0(_&j+b8=E3ySKC<1vI|Ll3bWjdX^nfeg74m0Y^J zrW-)dKi7{k1B9oSyfyd)xFFZEvf$P{_a+nldk$U%8g-t;A1ruVE4St+|BNppsczA(u& zeWjh)p$-1w{oP&%sguAIU0Mx2G773}7@XDa{&?_L>2McN)>nF|`3_*0@Gma6S=z`7 ztKT-|i(RA3a1cE>`Om#o#i+#H5CZ@Tj}&jE^v+WTom<~CROp$3)>$NmQ>u50nqk4f zhzY6FlpQLfBB;Q;sz*@JSjKXo?mQA^d&Vfp;kS;oVmY$fH!I}eM)}(ebE-Ol##UC_ zu^Pq-S6lO3Bwl}1Zb6;?a^gs?5e*NqdptjMThaS0!Ash;F2<=@)74JRM}rA#LguVn zwQ&7NBG66249i6N@>*J97LXmZM3gl-?`=gGo!#-Xwp;712&aGOB>WZPo>l>dWoSt4 zw|6UN9!_?nlQu^;ZqO=9V&mgYWKT^4Spr)`kmKdi%T(CwG<=izdmJMV@S=zGCxHTy zdy3Hm^))Gq&v=D;ha{8(|GsgsmcUeq=t^1nlt(8Ur76TaL79W^PfnLI0^CiF%|4mh zn{jxrS+T(Pi8hUH4ALmV!@Zttq-DiYg}z`4S$QWcKik{sw%fOheRnyBkQ=Cj65fPR zRggR$t+nnj#?qGl5Vs;h%OU_PB#59laUJwp#9gL1epyqMdMY8vIEUb5b-S%9nwnB{ z#cv2|m1Ztto7`{|+CGoHmGPJoRV5`eyAqL|`VkPazZw5YP%wKF$NoeTkO@#hG^6=w z1J4b^jCrVL_t(NomU2zcl#PZAxdI>wW$S}pWvBIFsd%_XPJQzI9i@+O+z-!L zdY!|wm*4plo&bDLJu!=!RJiJDDRNuL@$`J*!-?r1c~YQSIsgOAz2G-*b06X{T`gna zuTUR8>PU^&dQ)HJ7JGUKKxFk|pC>K6PJrC-U165qcbvpV zF}V1z-040(b2npjvnC4><39~br&B6Gu6{WA_LjW^xkKR{evez#7&Hb}s0rwJbe7qn z*#k)_N3D8TH1!>CF}sc`_Budcng>j%B3f4{X{T)vOsOdjLObCM_Ax$lsZLcC!E}=p zHm8!NZCQtv#vR>VK8~7G2z)($5V@&U`&#izJZtGOQUgabwysWpvUGBGsvun<=@knX zFXpR@T>fnutCzy_?)%pH1M$zwpMWa!`$_;Jd35UftK6Z$i8n-ZeqhwBTY%8HQZZ?PV|#KWzDqnxi(ca|9;4C47n+gW*cm$tmNvaVSSSwtb{M@pRn zN$Av_fEA>>RHr2({rJj_xI`#a+UCJCapGMsbO-rNuhvUTP|Y4(P|@%8e?Wo+AwV5v zEx;?Gt_N@NsrkBDE0N?q1-gz$8P_NNK;A~9X4pF!s(kZ>&j*hQewL?ppoSW21-+R| zD^Ll1$ZZqklx6AOF!^3%aNqt@l+38h6z?*N`s>fYtlPPJxkhWI!f5_M@bww*GiEoY*!I-8RfyU7+$qf^LCQbC0EdO?aSx;Sw zL0L7)fUBC6%!n8JUfBUc$oF%pY=xA>FaP=^S_7zs3FOiMA(*5O!5sdvUVNWW0N; zg(?8vB{D5~VjBE6AoB70UH30|TX_qgX~rM?xOMs)r@WD7XR=F>XDeO;Hzr*DqpR<^ zx00a_5ZO8SFyTqn6r`fk^Oe%Ap80zl8zbw1&6-mg0-J^0aY4nBfCoHnjMu=A2s?5A zJTzUP)U1h}J@jM00pbbwJ9J$9$x5bKW8_w=Cb4AYF={}5{$(=?R&Y8&K9qGbRbO`6 zwJEk?sC37r>03eIh9qO=QKolQ%ubWfa&X{hbr3+KwE6}KVCOJ$bnP+VYpD_^`0|V* zMs}dDTyJ)6WdL4_Gv8vdswF|m8_0I|&ok6|7b3Z-wf{w<{oWxFPX=cL51SYb`!Z8m z0Q~5I{>2PGX#8Oao3=f-W`tlzuD34l1Nk+8C(r;C45-alQI5DCuj~&O)|t{)xie0F z9R?P@$TxOa^P#{j3mijLJRAeh&?5WUR}GPYjKJE~V~NlTBm&H4CMm z>GGOZ#BDm7K-Ye4M-I&zZ9kO`744fr^~_s-ZRhJd4FEWh_)9%#4CRzkJjeK z%=o&Hni%I1?cvt7_;`O1`og-vJyNz6>kch#81&_hd)Ywpuo5ss=cEttD{|_w-0k~J z>K~7xX{{Ap(<^H^dwL~jy6Wg@(%G6O)!exUYee3=-`cQl4NIv`yxLXCmX za$EWDJfMdw9tKWw@4WHPR%uEv;kjnQE+B(um$_{@M5OoPz35zvI{hJFiF_6m4*uSt03=BZs zvp;^s!xIlTBGMZ|EK3?1#9Re7=t9*=LOB&e^uaY0Gq;?;j*CVad*<{h=A+|&fEVM& zyIZ%W%7VK?&n%qi8e0FVs7rA3VU^h%!d^C4NfyI`fP$zG9-KnLN@40F@4j5Y1K@($ z5Ne>Nh%8c?bL2*eB|40E-DZbW@wyDZ z`UzQ&&Wkh2)_T>}=H@|uLoBVVq1__WSnJa&myI@-o?`3i#BA8ldd6QszS(Iz6wBq` z`Byo|68}clyqUzFY)pgYDHrH^h%kdmRBy_iFe8i=8`lH^kbw&kzN9Jdv1VpwUILjC zzEIfB4KOW{>P*FTxVOhUfku-gmGQD>04b-sJxbb@h!)uH>4wkzD%5~ZKCR)VO@v?s zxPx4=W<^rr{ygF`F?}W*Agak3@1Z^#*+1R*9R9jYBjWXHqBoTy*745kfRSChZq3(A zL%TLolSa<_1r*h%4)YRBg~%&Eht^g1iIP~Z)c2iXYGG27Og!guBGqK+-G|uQl@KG` zV^Z)Wcrt|k=!j)BCq2?_vRNE1empHxsg3w40XLu5HGaYOH8Ok)%_(c<7&YMJo1FRb z{lqVn;bG#WYUs1#2u;$W%gND+<0B!m;iGJ~FTBBM2;gCXB}l)~aar^0B!I`X(?k)= zwdlG9ner|okBy3y8kb>XQM*elk4Dbg(>yV;ialiXI=Q5wrhd##r^bWlbQ_obxKfpGYp zcQ>UM^=U_U$zeOhse$}Go?vpfJ^ZT7Ya0^MNy#58-te(oNhZAYE!9Q!KnSDjLn(O$ zb(`#q;4+p9#v=KEu@<9;j{3GtR}-zROrlPw1?hUI81+4F*_IwQQ*mew7EY{Bb%?G_ z?&%hS2YMh?mOqgAj2{9rHlA?nA*D2I5XZiOk3%d`v|U|#>zd&C&qwwFAbe${rmJP$ z`xrwhf-2O_dx@#<{uc(NJ4EIg6QX(FL_Z1HsNzP*QjqWMyb)F~{JxrUEcDJUFG6(T zvvFsH_I=VKJP;m!jjc?MWfe3!Whwd58pB)a_BPJJ!>@ZCpz~0j0Qd4NF%O%ca*R`V zaAHV^zeZ9ef(ueFWWF*SM_ySLAjicvMb7?0|Wq*JuF ze2{(moV?K5D6xOez?pY9>fx(Ok(Occ;2;>`?s=!eFCKiULrV$$OC*EZc5w%PMfL*+ zoi>tmT*y=b!NR&*jO6($1@X!5$}07iNrC94+iH7v>S)e*s2pMn$y9tkL?Acer(p{e z@_GRi{hp78U9>_lc6_V~HL%%A-H`jvt!FcwPhU_7GJ>Y^rsTqDi=|1DT%ex;=Hpzz z$FYXrfDCZKj5n6G_Auhm^GPb%PXvN{G$T<1>Uv9v;D#-~x+Jpa+wj-0o3uof8DP;^ zvB9XP5#6udqbXjJSRVI^5~4lM2e4Cl$pdEu@Y;v=HJ< z{zbA`k0Y7{%*&F8YCHKY%W}b!8sI0>@9{`7B;0WBcDvKL{Ww0&)OP_ko=)89w)sBW z0dGK6lFHC}v*}CjpWbx}TA`k~ajeKqq}RsCfaOvRzL)g`J(~TIL8~w@F#lrA!8ADl zJ{%RiCogKVQg49;sJEzZ3Hhn9fzG`*%8RK0gs&H5C3j$GYRd|=-MXN2EF^)JW%J$C zR(>1v?M*g--b1a}4{YVeAMc*Y6oJQX3}tDQwZN__Yym~jwk%9=g$CQ0yA+ALSh#OP zRsi@!^mNeW%HLn&t*`2ZKCZ6q46*drI}8v>QS0WGfktF~XIG}(2QCtkwef0OF7fdO zV$AZ*F2h?6K#zJTsC1G|9J(#Ax?Wk3jSSt+B$*jE40ZN&2KHA2WZ{s-MzP5vlpv2 zn6nZpA2%Q|;On~|OJk$Gn4s-6bx8+M1E-OM(g9+ z($2=p^rkWRa)`3+E^jt$8W>)c`KaE(KFav@Yg>%-$F52QyaWU13k8SZ8a zPjb0z{lZ;%Gl3Cv*N->&Dk_H2Q*T)c*+O;ErdW4w7DS401fIzkrp5CoWFf`N?q5h) zNH~E)X47q*6{9;ts2?`S7RYs0%YxSoKs*%hhTOm3B@$E|TglkZ+j4_0j+uR1dgi!c ztQ{agB+7`NnVBgkmiN|hKSEXyWb(>;Tl!LY+jJhw|a(wi3cmreZyck3hi; zFRrQ8;X2v&MH%a2mbbY?RAosWgHxsEzD-FkKaTxy|NRcf{u|N*LzrJ|tr66{Agek` z3W$xY*)xK?UO2>i8I@-3Z+)-}rSxQU2tyl#FR}+te(lQnb=j6%tDrA%2S8fC5d+?tv|qMMPl3Bqxp~(^zGqwd+n5dhCOfRg+U`;O@RowQuBp z(C{&9TxG85CHsj}K+AWdd$*Z|U!;fATZe>ZXEJs^aPt0IP8A$k4lpTbI^i56&*>7C z%}ym2c4rW{rAx$d*gLhGu@X){RnE0-%o7kVNr0qNglyU6;u2ZiTCL9iSp2Q_Uk!35 z3DARS`hvW_tE>NBGZ}z@fuq5s%XMbj>8o#%5$U^)lQzzEVYM0OH>$6$I)VZtV=<5> zHpk_}m*8wOK%HtBU93U+SlR5lU^-9dZ+eT8y?Zs8{8=q$X#-Z%1=%&k%*~%(o-}EP z2p0(7PBi)ROP;6#1#2XK$a`R_gVHA$7@j2W8$|)0l7Ne za9aBM8tS?EtZ*2R9b!?Z4Gk)}37qsao;SEpM^1msB%t>W!`Y+f2`aC9;$%yTXA3f` zUO-(2nq2^eN&TRATfn>c`!|L*1BuljZ7$27um1g8PgIEEvhQAmywfxz12k6(RdMpY z2N3+;`K0C4)$LPt79O0eOC~;DvWwKvJI__pcg)X`zSd+x@zyya?uPml9+pYJGVL%? zSR5Qwzn=A8mVg~fFJ@&i;J1HpEh(74p~RTVp$@e8!L5kCF*bpneiwtCkDc5Y0j{)B z^d7&)Ugy65tF)lGPGJfUB7v#7WI`et-*(~@Md6OVCYFyg~a{)t3<{4 z3v&GsIKcOyXf|yGy3EV_^={i$)_ovz-_wJ&&mTuyxtIl-5$eLw_A@#At?Y~NahYS^ z#01q&Joy|z_{?xr19?+DMnu?P=Yg)CBUw5bdr;=z6#z+=>=w9XZ+{a|`1pN_e=mBX z+79YkIva!ii@lmqkNMz^qY6fZaTn4lgpxZQ<%a!3qAC|(_&<;q`2~iO5232l2Fn)X zHM{FJ?ubA}@#{Z>Uh)YA>Mt~ul??(V*jz3lpw{A1U5g)ZV3Xz5<^9-A+IDmU1UF+2-C;`~$8vpl_Kc&G$m zCj7fw=f4>ykY~!i0I_CYyz-L1Ah@1bjTy=yrMpebSht?;La;zQck&^-Kw1+*j^!(3 zE8yXO<Q9=f`^6{{XvT3P}tB5R?X-uGDR8ycolE+rPr z2-6=XlG)iq8v@io5Z!J9z- z|12X^8Lwk@w)9#pcRCMNX)Yo(6<#oltf7(EajqRgcOyp%S=*|HcEah*fegT~&2nzw zWT)}epBDa;@WX-mM0qfrzfU3@AFsQky(x_1OL7|!JPex~I62H#T2O`q#fQap6P-PoS&$*>N&mK+0!PYx(QnEi2bQQ+D&Z6uW%zl<5Ea+^V|*txGr)D+`2kr~x6~ z-6Sykm=vmc;AG5s!gpg{zw22`_;~YiqngB#YWitt9ChCzSxPQ$b!AyB9umyVVbnix=G?lxwZ-%EHa|r%=tr#novcv$ zW<=AGA-r-XQRVxg^nPd_arSb8_V3{z06^0KOt$Z^kwf=y!}#ag9`6=|dydyUFyZP{ z5#*}fADO)40edmp>iss=@XYtiYuS^_GaBJTz*7UH2Lnf|yRsw^Fn|^Ys7x{OlD%S3 zU`TQ$k~p6Px1HiW>L`5Lf`v0DVG0nOF4tP-DhJE9c(-qJ(Lh7k=8}00ZLW3Qc=amU zDEW-+q9}Q*7S4lg)I=7@end2RFF>wP^LQDq#n`IMpSZsKWfZRfe$RU|-H-qO=bw`4 zT@Cu^ZIm+@IVt~KHw>~6@;)sYZ{4$K9oFqQec;T#P@|%yecp z>2gU#xN5ZUUJ~|_Pe6cVA?iwfB%ue_ z3c$@};qHI??SH6XBrn?*m%{ZX=j&#t&JftPll7?%*F>=E38J~%P!hqUB~Ep#&yeNb z9M$$`L%mCBXmO1vUTgn_br=5*WqWe|++|4o1Wd-h+8HLqA=MWI^Pkw9m|I}zKR|j3g{AV+ zz1}H$*36akKQ@!q_2i{-r4uu*11%I0aH+ur{Dp zeN65o@?pn5$h8$oHduR0y!AfTdt1ypBmdV8RLaThtWO@?#+>06^243Kw{SF=bzfMR z{go+8G$G;a8@MF6^4Hjo+U&d9%(ly|oXFYYKmI zuHO#mA$i15inA0jv^9`y(6f5Vxx%z%{6GnU1exzJwN=gzx_)= z#IWH?Be?R7QjiNFF?w+8>eA@@>auzf%?yN}7HG}HlxG}e9JKNH+#4+i6y8WeNjwio zUBnnkBh_-x@S~kkazG1lw&V(ZWnaq=vxp&oQzQ!WBtb2Im0S!Kf6=lf9s5?JOJx=9+$hV{CIEYW9S zaX8%Ya>*3`-rynuep{j&p?z_UUsA}rF^pUu0nmtR=Wb%XsyAd_v|gx{mRq!5!!|RowLK=zvK!i5`+R$Hw`7wwaTMx!4YH4wqC1Y zvng8k>{7yT#uUtGyy$px8+JwuvSq>jn%dg6boxwFIjlE6S2ZzCzi^5#;eF2Rd$5wL zVVM~~>a;Y6EWuRAUZds_RIu(nrjX|}iJ`q^z>vrZbT>IfBbHzIz7=iOgCPq(##fKd zcO1f8rnyezJA4j0c+5JifMo?df0HrUt_h@{P7?oW+Wj}W%jN>6Q(ap*E}C0=dPZA% zO_nUE=6(#_?MyBK`fFipx#2P}C8ny_7C&y2#6an7hvvm|8CF=Hh_CQ5NtSh{-jbnE9&JS=br-PMpcyMP5nUyr+_5I*U9 ziUJZ$5dzP}o^K^P38P^T>*}q;n%FSHzhDIE@L6!(5F`nn?(T9llvzpg79N<6a-6mM z((mg=gXs&H@Nj-H|7F0G967P_g+^8dmAv|W8w!m7ah4<3p#Pae4&CoO=J&bv z9hoC51bPb)NZ*Yad%(5XTD z;r;}$UQi`IX$o4ah3dYTJf1e544x(cehYi7_pfFj1->Pro^jA{xLk-UvDtj)aB|65 za%`$GJ7ox$eDs7-O_0k+SBtw|J@$%K|BYENasOx8DneuV3V+bfA357asM~ zgtveE^zR#0qMq}4_&=PBEk?A*p8DdOZ1jkQy52tXddHBzh*t7Iczybk@OqM!$*v8a z#B}^EN_Z2eb*!4*g*JzwC+8LscQk z*IIsYznYZPe`=~*B3O)gKiPw#fC+Q54Ci`D-=`>d&}_7G-wA_yNg~1* zWrXO;vj6r1H?OPXP)u(B|L+A3*aR8}&gTz)AnVd5sq|XXYxMxIj~iN;T?w?^#_tU_ z2_Q^-1*de*nZL=nfv2JyQNVcXzE^cX_gu-cJ2B5v^pCNX1>I<-&Sy1v+7aqJNBw9X z+CD)bkYvJ4MEOuvoWZYI1?thsrE6bRVlZ#Vpk(YWO=Wto+22cKCGS)0H6mcQpk@Nt zJ6y)H6>Fk1Ogry@-JTjg3mx!??xDFO*ud#N+eH0A%W7D<%L@WxsUPTs{SPNS;R=h< zMV|l0Rp3$H&HysCm#jK}0@t4irhZ+c3SYdIauVgtdr&^85z+4DEH*2yu!L^ONTJyv zrgw3v-mjhXo^_-(4IfH`pL*`cwjS;{Z~mkV_U#N{Sry1jPJL~1@rdW)p7lC2%X6UU zU{YWkVk$`iapk=ukI+C?vQNQ4vI?vF{^ilT56;$N#0&w*bn)fxIdhv z8+p%gIK>|;(*GIK&kEV?m1KvNW;A=9+*PHI_C}+)#~PV7a9T`r+GcHl=fLio+wi!k|6YNJn|xbM-}jIy?|biEyD@}c|0i0V6$88DWRfV?s4^K;$#NV{yEIh z(V1ZWJfj*PZxT>54fV~8I>}I*69+cK{tk{zl9&S+L__Mfe^NBr2`txW!Ea$2NjPsWcE5AJ4ou`3CVSa8aTi zCUbkX?M>z#7^ zpOA6D6mRTOCVBA1=(h)qknJRGkajAP{$Rsbfn76ZIv z9bSKy4>_CKNP4!rvooNlR2em<>1f>;62H9iiHL>o9A)6n08JE~BH@hqAYSy;2sDMY z{jII7?ZxB*{JcWLh_#F`dyJwC42?#bV66LY<8?DpdPtpWa}a|pUHtQ60vvI#Nya*( zn+s|XgofkK#T(yQJ**Q5W^QyZs=z(^SL1?oaN(evAHoxJT>%YA;oWV z!)ib6yxs<#q}lmQ=Z|T$kv>La@d8lvA4iglzqqJ)@d%5Z396Qn|7vAuXrirspb}Wb z8IMPo)~No8!OPp5y@O(lKGsZu0*jmuDjMM?%G%~CS-n@}qZt8?7zCKsav7giI)z8T z@zVBMC{jcb`jZS079Z0se!*PR2yuV`tl#l14k+pV*GbJSd@t69*k?-Y#d#f@h?eXa z#rX|iejb1Gjv?`*W6DtdTv04D7%(E9Ghm5ZuNbl4dmM^b-Jw1T2_Xcm&+;;8c~MWe z49p^s4qNZ!OnjCa-3FwVxF7*ool#IC;SM^##5Pf#(zbS|uvIHNuc*3)aM`ktttRM@ zuGp~Q*I`?d;gpK$Me}&m@%_r7G&-q z6-k5e%<$Son@E{R+Mi)(z#Su~0QpTH(UFg?I0a9%&c7sMyqpGVTF~$rkFMcu?byP&60vZ>3SHn z6N4-el)MJF$27OTT6rbFn|~_NTbqTJ=aD}$+lnnm(S=bjVRu?ZZy&mi=mcbBeA|BT z`YTxu&_BsO9;(fzuHQ8(vdX<9pN_y`If1rFOWtwO+AL2 zGR4)X2s`p+PibvecEFz*iRJ%=<)z}6P`}AO6}{%M{9nvhr)ux)7Je#5c>39itSzNr}>@oPvYQDv>Aqerbpto)#JPJPnlLvqJ{0#XyyI*pxc{TCQ`?yimPdwLw zdhfli^$Io0i)fQqMrGvQUx#ou?iAjflW#cA=(|ilFM8-lLM?h0p`d8M*C4rXY^p=j zMrrY(2nlGIGnF}>WqzXYaLNZ{JMX@y7Y!;Khn*Wk2gMOsVI0)d-(&@6GN}RsVYzvE ztkm}lLJjc){!ZGhm4N(Y+L+Ax@xT5#=RN*nz#;NtKr!MmAGdlfu+l3tL_dl0S9@@A zQ)6-C7ys-m?7K{T-9<~5x7{A!A{)lIb4f<^p5*?pWC&?ueKZq-=?3d#EV;)ld_5bu zeDPQZoMCcpix2OIv{m59VTPKgY}OtxxTC|x9(k$FH#&IDuc4%eb{bK09>9VaxL6=! z>=cfY!oN%QX$|DfXT^;*Ls10td}^BE4ldmTv}fJ zLA-x9OZM_Ke&|i9G$YwPYsL-RW1p{Z|EpI$hLyD=tky#kSKWgmFG39BS0uXqrN5;Gw&%{TucIGt^=&vvSRdP(KJ^Yh_82d*MI&K` zl)=Bki#JXk`!55^8`jgfZmIXAlRg|7MSbTkFDclt9rW-R%q3xx4Z*+!Vd32>2*L0b zKt<`0{_~AIS9}O7rZZpGnuTX!J`r+@q<(a5Kqd>+;A#|X&t(2Wgst6)k72Ug73_7l zqL-Db+=IDkwCbv!s>ADx2;Jev6mSc&GIoBc!ySvsUaV59{Y>|NW-B#zr6cu3q_{XM zY30Gu>WNy*6Ers2OqX!BR_V*n{pqJ$Chxo)$X>Ah7&xCc9e6@dz2Q@2(l(I5clfKT z;l~KEjJ;F7KW4dRiBzwxMeKe+nU~=fzvL=fZ|lW#vJNC<9;sbz{c}SIc7jBD2d|&` zc=&@RQIqOFXVouDCy;@_QU7!1&>gCu7hhJ7>w53}^93eIo;#j|nQG6#cy-~$4Ftjb zXKt#m6rfTp_maERv(#xd2F@$zV$L2H>_v!ApKz^{5W=te8n>W@S&|9EWJNNxO_%Pf zrJ9U+M}oFei4MAe;HdJTryHezaf0g?Jl!@apib~9d0vF3hQ_;evE{} z9ig?Ge{60%jXk0}qye>L z=I(7|9X3~;L;1DUL?QEGeIs!f!0Iet^?z)Xgh_w}1X?7WekUCEAEPCi@(VSx8|*|F zy+YJ}iXBTNSiTvm1M+emK~yHMc`P-2;AdDB9bjEjWoSvja{H`eHyX8U#%CBTeSF3i zdPY4U2rplewh;41So#TIhgU!MGE2_}UdnqK3x9?hOSw1yS`nJ8tPAY6 zYC12vg2BeGN;d4rXBuPs%K_u+yn*}u0EO=RB1j%{dGCe8wA8SgL!*eg^lL3fvX{-4A zcOUeJFKLlof$gZvEtg*gYdyT#E9bI#b-%`SO^uK627mm(_xA{1{M;2kFgiLqevThm z-njJz>VJh}k4#7BsG=v)I)26(&bKZvqGEEh0~ccE_ASHy^==643$G@VZyx`BZnDIn zh94OOo(;0bxHso@l4V(!6#0%hu?+B6U%JM^OpuxBYaVm?8=6gQ-H?gwy@E+5KE#l> z=Z^Fk3z>%SM)c_Wt*}!yfCtJe5>KPh;Qgp z13i9IMn=N{L`xrk#mOoo*OBh)iO0Z$@u8!k(L<4L zUkU5w!4+%tXjX$T;_HxPZ3YY;IB5cT_}dkv0j^+pt{nRIzpj8e^w-Ga5a`Iy=@BR8 z6z1rkIxdpQD)mV#d`kw!Cf)Ia{#$PMg)GK5K2lfb$UJ!>bv|uv{+a`fTMHPUlm)b=Y9?2urKt z)8;xMP{YRdR$gnZ!D*RRVPEUy)$!nctB8p-%hs#;l#R?FP3v8nA;N;jrKj4^k8s zcR~27>+9=Z2s*@q$Pzpa$QIb|_X^J0W2A=^5)C!thmJ1PNT7Yh39}{U)en);vY@E# zSvtc@QANa}h}U}kCUo%CYkNa!kHe>D{D4soB?h!w$v8cC54gK%Ad@C5&3JHrf3&*1 z?k23t=-7T8VRbjGbY`{Xih$>;2WDLC2`>&Rz3)8(pn7NA0!L_cP^z=!Gd|%U-E6Ljr1LD&5DW0GX^Q?k1}{QRcwq)p?;cP|F+HMnL9loN>> z@NNWxfSt-XTO`m?0iIkZP||gjY2s|qFi$E+Y<-H&&(G(gOG`~9{ptl0u{yLtufH4N z!keqNKXOa7lJOIy{|LR(_h|{VA3XWr!V>Ip(m?L~yrgXhUAwc6p&>)yFOf z_y5>?^KdBFKX907I+2PvrBW!N5{fdmG0Hh@LM0??M<|RD*~T)aMV*ACELlbivdg~B zQbG(y+1DZazK+3|nfKOdsBh=`{oX&`>w5n={ZUUd&)m;_fA;;68mrNuOqQu`s-66p z<|}X0SQxj}?@8`bvSVSFmj4v3zrj(QwEk9(G~ z6zSZfK{x+N-|_){>&0$U{jP5}Kt}>7g)K1wp9@<$lTX{oImye(rPD~&W%l&M2YrUR7;E6?iVhAJx-U%i*fDt<1-o(%-Lws2+|%Hl4%)4< z@1FgArH_-gh~|nLLHIF-E|4=4qj&MU=_(V>%YBO{dwpNIS{7_G2%@OZc*gXrjnfDQ zon6Jnni@tUK4Nt5iDT__UcYRFb4eeVye!1)o1O9E{v2liAdV z-?iG2Xvpx(uz==7-I%LPag%Gqy%`iv| zVeYdie(g$vq|P1fA^UhB@^ra8Jv@^-edraSa9;!R10JahY=9Fg4X^Z~pKhqq3!yy^Y9pyGQn zyoQ1$10hz&xwR4Jf_k9dAZnKmiQP?il_xY1eVLK43Li+pd82YI@rtX!Il=LAyLk60 z>r91LELrWZIQ4j6B^yeN8mH`*Zp9@j61B1sUQ9u4x`|C?(E42r z)O01{@|NX3{ggj#QLM$RrJCRyk9j+B)Iay++uqwAQNRqao-l@`BR?;@;Ed%uMrE3Q zl=z~M8ulI0;PL$D96JfQ?Niwhw1oEOgz3k0ucQ6@+~pjlAAeGZWFkAaSs8c+rJ;8; z+>>!7h51QV7@y48?V>Wjv~4+kgD!JtGVG-po&}&o3hmWk!?JuUnCQZ3&sZjb1t{ey zrScgt(7kx+ZSYgsri8jDPB4o+Ky|8@b>S)#mu!PhSldEp7N5j6k0Qhbo0{WU_y{0O zv%DRzTQpUinYTUHm4c|qdQ5qG)ycy*-J61t9W1P!WxynETY7C75?lwW+tZpFRSZ3@oLy4V6Q6Bn(__!EN(2bRc9wHTFm|o z+xOj56xe~r%6C4rAA*(sw(35vUTg~0oLFD7G=)liQIc{CGZbmzU3TO+Caz6&x~#m8 zLhgnhh%-Tc@9Zm%9R~JM$SX4FuF>Phf;{xltTy>uhJmRL@5k^TAc|yL!yvAvMl$d^) zO`^kat!k?$w~_!Sk1|7QamaV&n>q}3adFXkpgMA-i@@tEG?RBIG&I!O%`I=_V6=6; z#Ff38mL==MST#hs!AY0Njn`&M#SYeIFk+^EyJr5pKKk zh7~E-ZqQsb$XZ4@-<;(&&C=@6kaX<$e7Di@?_}Yxul!>uFJF~dy7C+hn z9(+0M=0y*+Ry2pwzKQh~@yyK33+oGpKSwbbZdV0&*uEXQM;bnx`VFip!Je0mndL;I zy<>JA(%u8s8M{$WWb=II%j6FhBWS~RK`zZ2nJWfZ=U)=BW47jBb}SVJ_R!lc?y9Wf&EE`IbYozc@9HQ2(6B8fR@U>) zAWB*bfpW0(zoWZ{7Yl0jV1)7G+z=}%CsqnE`7nZIaoGg^dEtD7S67XdRNY@LBDm)a z%!qB($NPMZkG1udVf`Jh{EqLQ|-%0kXGvLZH`@)ivn-gLrJ;!aH|CRjRW#D zPqwQTAiZ8nDK?#OMtta#N;wkAh21N31^t0PY|cri)n)WS)!byswNH6*lp3UWj}3dX zp3KheYSzOR>Uq&V3$S@l$>dcU-?0tw_}j6w?I(WZaq@v9Dk{dC+0iefykuz?z9i`b zp`a;w>rWgM+%1uHcfOE=dUnV5eAhnH_VJuy+j2O`=YdRXDH9(IMPTyA|X{{Y{`!7 z<})3nFsseJ2F=f+NsTX!4OWfSAc#u6k+|X{Q*{r^@m%ROC@F2^@q<0`_)%tYLu3JB zX6NQ^Z-d}KQlNji#^zHNFNQweZbUoasDv8^PfR3zplB4EmW-PBDiW9Nt(&R7Ze!vD zvGdhgqv>4~8S4DdQ%loT;V7Q@9B`7%p2=0#TEU#AKDMy1@DNn@VU&4EOxPx7Nm~KV z8Z9_UB@*k)YV`a_J9whK>YAVRmopvpr3?*0;nmy@2Y3A6JC{61#xa-iB~F%@vyl1&{R3qDbxS#({NLNV*EM4Tr~GOZ`dwX+&@)Ih5^M20SL&1PR5J7fpkOgA5 zW#ewu+i&|q7z;LM2BGhFZdb*7%bS;6DeSXNkX$e`H&6EuN)IP9?`;Dj(?Jr%2&A9$ zoenn49%F_gWV|MKZTC#E_MgX>5B9UfnA2H|Y>Oi5bm0b;MSpdG`H`Hc*FCEg6Kdor_%j zBGB?WCnj&rqGv#*@-ys?|BPg1-ad2E&W);gzxsL@LI^4?u3HynSrB_VgL+F=^xS+{dCuJraF?VecBx{fc@b9(3A1AS44a#X)j0DO5NCGh z>O8b2OF2SMRrm@s@AUI*>J+WT<&wh=_Rb#Qb^Y5!gR8$t=LSi zbx*6F*vBwCq1AN-cy>V0JZ?{=II;%4wVQyik(beFW8jk~x7Gw5!l(@C$gkkh8p3!LBGvY3uJBqJju8EjM9HP|(nc1k0{ zhede~pY%oL@(Ks-KA4DEd>(%+Y}8i8eZtgLBO=en1N2wLmaB+Wds^0RP(07h1OYpZ ziW;T<-T7S!5zXxlRRmo52*)@EJ)kl^ceA8(z6YqqGdDv3C-=_{*Eg=OG!;*ge{5|~ zNHVgRi;9dqxM9og8>Y5nllRM!E&C0=pVLatDgCpWTfZ6sf1cSDMNVH_RABJQ%gn+M zlUXT!WLFi+xrKui_RT3_(K6(5OAU!tV`C1Ub$3NCi!OdT9meRQ6ZTBfqa6r6 zn^6ZQed)zy5Hqe?CpzWl-09l;CZJ zr0c~j0#6tzpAZ)waJ}$KUQW*C^&bl#dcOJGd!0(~=?%0U{fEA=Sm6lFl3q9-wK!@0 zYAZ{JjUgI@?V^+67-~kz;qh8eLrA0Qa?Pl!W~WE&^Vt+rL>1-k27W_}0u$<|PTa!v zR<@9ySyYZkX>fRUum>m~F~{wnt2v&Mv-iZ!wn#=!VvOgTaTT%iN1{Ey1gIe4-V09K zUd#_Rus-zK%l`~Th5Z?6y1vq3&^+D%lPB-0k4(WB@ZftNBEzWL3NL`aB8jm| zR}bYSm|;!-NFzcoSSTaijc2!tA6bGd#)ME0vgUU)ec(eT9@A4V6>cs6(K;JGDI*l< zf-?(baAzzdsJDz?#Mqy7<%(qU51SP=dK%Uij}R+eYIB=JTyG`qMt2Yo6^k?{UNU6& zz@9G(vrUWm>DFq3tbynwgACU*FK{XwQYjl|6_I*JqH(<1E*cS|8)D|5x^Nd47lYza z`5p7t5=xh!*1=h=2{|fZtqHXDY~QGvl01rvvrka=%d7Id0xdRJZ$h7b^(pQvqwa90-dq$k$+tGj=iAcm%xi1Gnh7@&R<@YBBm4|TT&(GrMR{s_ zR_VuHiaFNhRJyr8uieq!E8DSXI03v>$veRm4EXP-`%coUqPpf1X4;9&_I^O#7M_D@ zRO2*zD{H1>Y55YKqgg@HzU<3vKEWwG;IFiEazlfVt8xjA!pBTxdpU_mlJ3UCtcBp` zeD3#y^ijUrktL&|MeVH#o7AFD-}z#i=`g4+Gkd-3a41(cp`eg$8*3niSbCRSI5_DU z?7Xy%*pfd5v-nzdn&z{qW0I9M$lfLHF0s64uidu_a9s%Z;ud33yuA(tLKoq&bA|UZG}W?6$kk?=u{uI3_+e5YmXpWE2*?C`tUh&I9#Y zddls&sz6QnfGRI$bpFi)WNq$z2?O3w%Ep=K$<0!H3{~j4&1v`v+S&9Ijf1yh?h$Ed zmo1T9xk*+R(A5dew+Y=l80d&kMfmaMYF3p}<6b8Rr0cHWU{h}BjuOrL~U5}MsL zYEC~yFQ|Y|H^KDOWQOf~kdEL;Rp4OqgN!>2Q=6Q4(s%5pU~cGf_o{)oF=MFO}f@&CV z;1ku@Xcw94lHGqbw~Uj{0|K!JC1)3J`-i+F{*d#QVSx5D*Q=ryeUdn${9q zs&k&Lfi-6@o$Y>#cy_KYyKu&~L*I15$W+;)mh9I-63;T@)RU!P_RYpkH3yd;M3 zE!mi2Yik=-+gvLGK;cs;?Ig_}toJGiT{Ov+glA;ysGJ^d@@1;dsD#3fhIBi4Nso`+X3<7FMm&jmNn3EL ztqEyu{cs4hP52YrYDF@yJl;{NzH^Qhz1}^4f}D4m8Ca3#@19iJW{9_Teu_hB*eJ)K zBLhV)=~+-s5-gCPFn%;zx`jL8nlbKUI&NaogRcSeMpdbtp`1wrK4P$@2Ay$BFT0_~ z{nNs3m`HvDfqLL8h{Av(pSz@w0p=IvSUv69yrd;@ z9`uXnE2bx^@dPq^Q2|ctH-Ar45E)EM%*aTwKzfub#$KGcVW`1gq`Asa@}_ zs`dmjwz0=w6LZIq(HYjy^3fj)CnRBerXpau~X1GPpJxtK($f^jhCr- zHg;FuwI1l3MFpeU9yDC~{FzXsu6{57v1>KDW7crhV}-B+xVKWqk$Z4 z_IO2`S$Ot8ZzP<}=&V7P_KAcKGoOX_Zcy*$mZe*nQCBQt9Y8LaMkAlbHU>?BX;*r+ zY&GOIA$SFYO%F#IB<7!%%jwS(-uT@@v21}F5@{j*eIgbXwHBVKc1siO#4B5Tnn9=m z)K|!9-)W2%>G!tJw%2w~$=hn!#fYTH)(47`4yH7lnz07{q{zzza;doX1$ea^e5s8l zBVA>33`c7Vuiu$~#1Q1{<~kkV+Zyf zkKg32V6SKP8Th5c9jJth>BSR8xpYRSf9|8z5Pz!Br_AU=<*>aoZR0Unj?;F^>2s-{{;V|Jt1 zrQ%OW3Z)F2x%|hOZZk5IW{&I(qDie8gOt1|6iDB)+#OmqmqAPztx2L}3#R6c{Ee=W zVe6|*B~B(cxe{)f)0*WyFRHW`2;VySY3{9#S-XMrmT=cT)66K+F|xHsU&F09e!AX7 zg`3U7VvclseU)!E%{tOSzxLLsi8WFQck_Fo277VqjsPxYwNU^9(_D%GFtqES&Gk^qKg^kD$>_?u~P@bT18NY0)Kzk zo0mwxQ5z!ohm?ck_CG|?WE1l93{Rv1W@4EUiSscuE@Cs2tw&~4JMyfG&!O`Nw%e-6 zpC4)+zEF2mhwP)#se@kiy8YBAt%R|&;V-J7YQF4q|FhtGYj5&Mn05Jijk37Wz+8y?Y5Rg)PtdtWEA079I#QR~)W+>d7yv{+5msskQlTRJ-Ylb9b*e{40L^ zme6M28!k0cgK*E7u2+FaFIH_p`I;B9wJpqp2*dQ`-zdu6rsZv@^SeXBx1B>y@07)kHJb{M|143TQ4>e#&zSq{m9L*E ze(8%K?*{dQCJ*-SmL2}w@xt^>&7jsf!tZrt=DO4RpA5I|Kw+1CLWqjX<0@Sh?{!f= zC-L&W(*cdQA~cUwSo^y7yI&FIJu<6kQAg=LDFG!gMF@m3$Lef$=cKGq;O28VHEY^ju(bhoMdlLWuvE(5zGJ>E4Rbv%WzQnsSfhjn1Rr_Pw%@ zyVoC5Ph9$7p_}D$?U-=+7l~J_uXPW>*v~BhW6Hv3^k*uJg2et&!2WtQ)SWvWjrL{= zK~#b(FHjcuJfDqR?y{3^NYSda?^;akmq9HRDtzYoO<(Sf(Qql@Wi->P*$6>_4^1k4 z=}Gf?-qh|hzb-$_j6F^#v-0uyYTvP5THnavSDy(pjRkVXfnt8&o1cc3iIwYXV-BeB ztGkX|cGVHb-tf`5f)kQb*ReEzKr9S;ax>=H*j-a0?aC$RGzT?p$bf@>lL4xJiPpax z*8Z$l;=LEMznL}*YG_IQLZ7J7E5;YCf6t!Fa=7B-TX+2SPpsrmf-4>FR&%_$!{@Ik z{Wi7N$n30Zk+RZ${NCN`7)>4CG77=E=ZNifl|?n*lR=LkXv%c}<3O%yP+QZpLHLt% zh@5aa@VS5owvg*GeOtZHLGmBrdgLvHmnq1SEJ^kHnpfWxO~1}+7oFy>YE3b}Dms;8 z``iqKzRUu}JxBPd=I~3DvQuZg@;;k*(5?k)7Hr*!^P0MQuJ@0d$ZesMUYN+De*UU1 z82d!z@<-|BgbYm9%r^RA4C7IFSSfw!QLal`j5?*tv+JEzMY8BS6|q#}jtF_arV}?E zoON4nP8ItW%MZ>L;fMQ+eWRRB`(BucMoJGBm1gOL*HeoAQ5e|I!aK-Z9&_#~vYf<* zx3Rb|{!8!mM0AXIp=2y4O;jX&Cga^wEOGIUNuuO6TXaP9!iYVYS~B0*A1lv{&!X$G zQ_mmv@ytp6yCa1j++_^E#4a07a-QF7VN^?HOkS>c!#K`{G|#ZA^5I3P-VCd%LQtiu z(y@@$8Tb6&OV7vW&c2PUQ|0GGaWuOxffQf7s5xf`92Ezw`#4QBD}iozvcu7f> zZ5s@+lVB^!(d-u)T~q1d-_mr_Xy~U+{MAc!v2gD+dpY@M(-YZ zH&?26NRnR3oH|YJvtYZbFzPboh0_Tm6Xb~1>QPNlMgb+Q%hNi>37>EhSmFS}SSZPJ zZWk+|so`R?`|wpI&&CM)GL<M|#s_>lb!P2wc_y0t-Q(L0S92)ewJu0F>OqP{v=kEu9T5PcEF_Gpc4_2gV)psY zpjf5y4?iqn43JSnO8#E7yha29LptI;qg{Bflx>Je*urb?&(7?M{1TZl|#Je3S*PF2F4=7b5fq3c~qW^)>Rlf6j zdf{-d`O9!;p^t9*f_(`aoFLr|`R@+P$%WM?>KXN*?tEP$l=7ly)ycN8pvc2+5tL*f z-~1HTv{DZ6{TNuXq&OGB^h?vv$*Pra>vBoe)#n@elzZ&&bZ_GAylHG^miB?#+S;l; z!5wW0dk=Jb!o=KM=Z<5xggH%JxMws-1n-B&Mn#S092{7KN+uFi2_s({99?}X=R%VR z6|53fc8c3*R?p{d^|0Lz&TC(v0wa%8iR`DXLWgjwuE`^dQL*ob_m&u+)$1+^KRu$Y zCb&`hKy79n$Cm&BgcAZo%PCLq*4ZKd7f?I`JJhgqIXWIuq9ko??Z(XNaq<1BHB4`z z2~id2zNfMHNZ*;h%0tUK^1U`aljXEGo0H_}8#R2FJ+{fAqATnM6C~>xAx>BI(F?)SR1WkMabC3m-ax7B+XDq#n*E45AWC&o$$*_5Q%) zc4&guuMv!?8@8q*yKt-~^W@s&RtYU_y}~A!I~{m0y5URv56$=Q-yex3@H)-<`ebyK z=<0QLP+;$G`KHSoE5SWRU&b^Onmlh{c3&=V4uM!ePKHn zecw%E&VI4JAO*>I`F0EE0}hV4uw=O>-82w4w1@jra0m;y9)${hm*#&P6w@0^owy}0 zIeN~F*H7r2%nzHn1Smgrsp;pEgKt!stqH&9l88su+viUl?a-DGJl0&QOTQHSJ-oQ` z*f}jrBgCPL8&XTJwh!+3??!rCT*f8>Im$mqnhNbtel)- z&#jYvK8*R?>m!+Da}uwgk)dI7MPJ|b zCQBi_Nv|?SE()azVfilIeqi7jUR_h14I)mtzUPAf(6fp7bk)DHB<9^>_yUbL)V$QhPgSKC_77)gNVW9=my3ubTo%f1C2aSCX zD!b;Ka&#AQr6A>wUaYz?9Hm4A)kEKxV}fncD=x~eez10N%CH-x^bHdJ1|VG`R}H!82Xuem29~w4PlLdVT`6F>U)b3Y8(YeI2h`kY z-?3b^7A+az_wBYRHoq_n=zNmTEGaQ{=I`!cXbGjSRIH7)=Vw&c)ND4@d_l_F@^)0o zy;v>VJ1@W4i`Tu_ceNj<{7+zx%6YZ9{YtSwf8Ha2E{8*8GPxg2WHOkF(mej&4)Xcl z`$%c->E&f_6{l`ZAd~Q8;~jSQ!4MIH8&N80UM-x8tT@w3XETKd@_;2F#~n z@-J|E{Eh_PV%hwGI_C{4SC>1k2tqQ_(+vR=HbLVbY}wPM+#ZCFjg19mWI0E<9bu)) z&DY$~YKa>EFNgulE%bI>Q^y0CB>q;tglo2CUU)(xY_c*`I%O|T2<_PDqBN>|;Du6r zq7(eGGkP8W$+PV?Ha5wYsy(;!66>FiKYA~|#iesNF9OHG@eshp3944x>0jh)U8trH zf7hn$lB}#tn~S5L9FHedAWzob3uO+)yok-BWm1wdI=#B29_z~Yv~;I=o0pdV=hpHByiB6m7DmPe{)5$04U@?f`4_BMnHsBqim(;S)z<_Tr; zFCF*1wN(bi!XjD|4qjbkrTtJn%7`NzOw(I6JbDj-0_$ct>br#f0S*#}pLEZG)SkhP zs3%#CKK4R?4TRJkr%&qWHO>)`+jqcTlV^BCvTM!J#Wsr#p-aC>a@8s&KDd3jUQOkM z`<}T0+dLRNdG?|8fX+fOhRupaUxsBX#c-6Sr3-LJ2jmidWsFTpn&_m2K@^(H_U+d| z_~rbz)O%^XO2XT>Ckwzzx4U2ZGJ2f*M#f8ITeN^0ZS&Q$%04UIIX$-_BRNOgMd;5; zg1jbdqdiv*B`jG6_zNXnO`PZ`N7?{)s|I3Q8=dr_eiNeuWaMEo@2%0?(okLgCPVy# z(f%35QnA6$+LP2kS{ep^h9a~y5Q4-njijV-DZ{aoC9}0B>=N=g(yLt8vbhEMZu7tB zKV$6NNgXE>`pI!OEg^@5poUzb_$^O_r1-Uy+SLz_H|l;Dv!u76Z1uD&rA_XCy5T>S5*KTvXfpg3CnI@DSzCEr|Q`~pWDKzVNO6X%-vgIw~z zG{p^BC;May_8tk-LS#@g?-lTd=rrE=o7yd+urW9@~89}F>F zpju*XM22%nVU^J>2U2YP&!e44ibR4w(797ZmncHn{;eK*V{R_h#lyr?!XQEes zsi_T0RJHdha(1$|w@m?>K9f{k^te)cUPFjxVJKtDhP6`91$Pe*4_6z3N4xD;u5}(> z^a7c6!rXPoJfDQsqds04YH*C6lJ<*-{y1I}O|=>7n~NKd-~X^i!qpXx=$UJaiHb@= zL*!*;bN4`OeL&$}j zx#hk0P~A)IlidyBe(u>%hk@WhwZ%>?0EvQTJNjGi;xMYFHnuX%B?7w&k<|;50PmYY z2mg!a#>T^kNIK%hMMYPE=q;MKAN4XW7_<#x-8Ei2lT}C0o{8~VFYQp9 zN#VsP-n%_;aSfWcK_AA%sTzfUAto^Vz!ey{)f9@+2}kt$d=tT{rW43JebBtluq9s- z?^8XThFN1&ChR53|7|UU*SDTP|zI_!xnLEf_`2$@WdX9l=ipRPfl*B_YV5=N>NUIURvDOG04i0kA{F9)ULutkT!_ ziya5BP+ zR%t@jfwv_^e4IdpYZruL;im( zJV+nQPTh33`M>A`KT`L`^IIJ2b5cdHpitg5JHqV|&FTZ7(Miu`me&48P`3dSg@kBmS6|*C2Phuf7&sZF{nYO;_o|=Y4-cC~* z)c?FC$VnM|3Y8BZiBq_)rsu-zkgciuwn4>z_Cc{#^PrJCCXx0#oy!q<{nwE7Pa1O5 zeP9|Ka0@;4t9$jMWc)wGYJRxw$nU@+H{3_kYwswh0oNW_$GCBG_bkr}?o~ zXV5R^%vxSlIC}J=l(aN?CD}9>PCVXpW_4XlW#Ai>zQg6LHlcC8I{xZ48){AwfxnV*2Oax~IB?@H1M zklJ(bXXG6StUNt!_C>_Q)3b2n1K?|}bgHO$FJy|oKmLSMnGIIi1%X&T;Qn>FAig)v z-@+bFFfDlE1C+l{*Of0K%34~951b%9>R@CC`s{_0TRSt>0*sGC0gj^Q^N>IG;C_=# z-x9J?%Q}-?AflcHLcIxT=MO|PxNKwZkwCGc!G&l6WvxGcNIjIBk&LGc#JKZ*@h&p& zLIx=~c@Vw4A+u~ot%kl=R8(w)-%;Fs8!hm|3ZQ4I?dZ>PV8xnnii9e7yG%^3I1igU zqZ>10L=EReA4!jZ+Rb3p*g#DOii;a0|t z)mAT#7`OZb`lX$|Vtxw%*F~r$Ara;8R6BZ)aB#3TCgo1gd9sh+?2UX-vM&F%L+c7x zNBWD!RpLEm0Bpx(uO_!&tZ26@mN#!EZN$tfzDG^8Ms?@Q@%qfFVx7>;1Zk%|8>M&D zPSuV-YlwNe^rgMPx3e~DU@a?h#18Px#rD^Ezodyl5R=zgFIxHHW^(kknAw&qf=yCG zX%D<>DfjY?l_V)J6GtmJt;E$Q3XfWK^SH3Lwk~{WmZ-3{M@s)neR+KQ8{nQZ*N-1| z$)0lekr=rar}c=Z-EAj1k=_h_<$lPfI(qCrO697IuV|8ytKtgFxKO<_uTXTt)2hy-`CX$x-A+d|&|qU!_O?J87nk~zvwxhpOeCh& z6|zlIPpu*2uH+GwD>a{Yt$o5-_}ccjTJ3K6d-2{YJ<2t)u_e5BN4rX0r;3eZJmq^( zVK|Vof^@qz-vk2)I2e3=7~r-aZ{N=OVD+1DV{xp5sEF6BW8>pZ>&zbD3vnPV5=&T& zoN~9~ijMOD7~VCn(lZ$%ae6|DVmSIEG%temS@29(E^>7_&MwIyQm9m_3Z@hpg3&VF zZs)=(OF&Rta_`j0$VeOho{*F+8q%}G`cO!nTv4RP*rN47x?Sq z2adquW?xcZa90;hmz(y7Uf>`vfB|lc39-;pSH12{!ZAxO6lw_=Gr^%eai=6du7ykd z8NWaPivIn~WCuuQWdVzV_FI?oy;;LX+pf9aboHon6QDTl0!@{?UmQ$*JnLhUM)q3U z&Z&z)Og!>xRQgp+To6Bj^taXJ@7}aNMzbKaP6-YI6zFx*T&ry_V3`{harmgr91Gmq zNQAZBUB5x87oqhxH5J!-OOTFgdAn|Q|9NLGb(Tln1=xxY2DwQ3itu~;#_WT>m55o}64NB@T~#-^40YzsYZel?uO*^K{ralG&5Y4z)BIxedq z@ITe94KvyKV!-aeDn0)D#W5iPE?DT%)ettvG+8CPZx>o13o4qmC!uhScGeKh*$JQr zaGRr))%Tv(pO;wsrT=+Ab=TF-uWk3=))KD+w{@H^2U9x!_3Q7eZ;Awf`Q#Qc@P9E1 z!EFVRkJr+f|GMZ71rWb~GJd4y7wcv1jDR6E6+wVjacBK1xc_y7N3H{Hxwrk=i|-|Z zKP|!0@}OkK2Ha+&uokEN*ZY8-4JB#il^**w!2A=&YQSwZ*Uzuj{QMgdNKZh9=z+t7 zn{xk76Pz8q0JlX|MyyfrPmlTzK`@^~fQ!F%OTFp;8BzZc+7DFnAEB)=0HDGD2<-=P z^q)lgNzD8w(SDGt|EbO&_1S-_^G7NA|BsDknbj)tKeh|@qOdZCR%Js$e)s5|L%v7!XO|j)(@({Rw82?F)KroX3lVxfUwpfE>PP8 z-kvfk9~#QK-6dEb^@9KfGvqEnSdaF+?R@#uG(+*s7|8In7br4bag^>8d3}VYn(!d{ zfyaXEx%SDgWo2c~Q{C?sV6gm{noF>sjiaF`Qp_!yxf5n%>|GsG$9l!s9><3d>Uo}XJ$kK|QAm8Y7J^w( zC(LciK1;Wczj3kCS!j1WJH)`W6$@LYBo}da^FhDHtM3;(@Mu4GQsB8ef8NPxaL&r9 zK73wACp+?-OLWymY5h})7qt>^p0lmG+|Y0^{uNZr_^k2A1+McUmm$;KJP*aiy;;r8 zgwBe>4sw52ujg`8b^loQe4G6w%|y7xmQA@TQzdNwTSXBGkEYp8_Ei1sZ)3Cg8g#f8 z5~3W>9lhV&R~cFlN|Y3DgSdHpr8F)&OwQ~@qH~btl*(Xqy^VA=4uOC#4ZU96OX?4| zi2cf~`364UB4GwPpNHRs>Yf8{H$S8u&)5M;{Fr?Xwga zZm|kRUUUtiM^Trhf;T!|j599R;)g$Tkz=`Gb!aLX#Tw(zz6Lb>omE7@)y$Z1XEwG{ogTc01gAk5vpo^N~K zXJV=UW^K?wf&45CO8RRhT#eGMJ~#L1xxbweWm_EuleaCKqr_i=`bof93%xpSFn+EI zt-IS~438b`-TV_v-%i)uniDAQcv>GC)Vr{-n-1O;?Uu8v;(w4MC;T?xV4M}Q>kODa z=dkVAe425#RK}>^}jfruFLT`~+Q8KDYC)GzrZ(IOJ#}GUTiI2jbTI{>^sV9>)8b`_LMHw_n^&rr*wy-3ko~`8Z8~ zW6pN`9d~dfm$`@8d22ToE%p&gUw96nH_b zWdj7j{@lhnFfH&p;XEM3Ke!5}g{vM4ygh~GX(j%Sn; z`O+gb3!(e!dZ`bcZ>sTQM+Ap}lyNo7Op(-#ONC5`sfHKJK}heq^xvfUc*QN0JxY3? z7xq=;+@Fz6BQhg)>atg$f#HCCQi6^@AkxxM@%zMu7s0qG`WH|YUjOW%{ue#WQvI^u zU-r${e$q%hIkFd07eyqn`7qa0d)mD=2mOyrjpS|kgUbWZ;?4f5=aTJ96YfN{vIfDB zSElw!JWYgAvq`(OGqu4e@6+9Gokgx`>5R(_jUG9F>{dj!<*3tIup2}p9z77acr#Vo zyVW{8o`PY`9!&V#ckc7)`jvq+Pn)MfXSbZri(^TBgcEmvGuAJ7bDn8aK4~`n=iP{} z>ZcHAfXX`n{mQ33&AzzI5C>EnC-89CEI?khTv#kXUVl3SFZfmo%hOhFo3o(4gGdQP z1R(8AUIp#o-i_N}lzQb|+Jojl79&onX;|gV?<|qpm9!O9*qyNiDsZtNV%(87(zqwN z^aPZrAwjcx(-BLOUyfa4vbVfJR9eF!2vl{Sfa1t@azo>&ZE9NKHoB3COnn>S1rHZu zu`hHOi1JgFO1d}=_~xAo`zPDmYHX*cig~t&r;ZULFIuEdn(VGGaR{Lnr1R|N7g0LQ zJ|-_V>E7wue4E6*q3>p#)w!W22Tju$ z(u|ALJdgjK|2?z4Zd17lNMu1f5XUaGymiL@)mgX@<5*JOkf$UAAx%5&8+qHzMg%-i zq_we-%$SR@ns}aLEN7kS*g@(;^swjn{yGip!qb~?3c?>Tj{XhA-hItpk{vIX#j~a2KwI7=6B<(6ERd2*mMiYdCx^?U zqLERnvUBAkPfPq%+No{@QB}8NWq1GPvHJs#tl8c8*+n_%r~7zr`)lev<_bFa+_vUL zWAf>(R{}2JZ%Kl(x}SA_K=ID zY2+LatNgs)9u;3TIqJ)wj4DmbD5%|EP$v`FpyO_!Qa1)M#s

    k<(@XNsvCjHd=)vSzd(iA1M`eBODYbApn{|6Ey&f?GKma`B6z0(hJ$(WK` zlt>0~11FF#FgrHVlAkxESN$lmkC_cBW0`7jLW0>8WJ1$GEq$|%o|-Orh#JL(JE_wb zh3hf}eyjJu0>sOZ!g*N|aw#Y-OJz)~VwO???O7j=!QTrb{>Arsby7!BDxjGn;wtEPF$0h|~NAU-zpHq!6 ztlNT%XkqQkeORA4b;iq*qW+&^F+0EJ`6Ou%SwK$!4I`9DUyB$RawS(m%R`lkSN$)$ zW;s?zzMe1MxeDhWNHqx%H(qJZvF)50X{b|v>`ughztaxQZ&*l#3~GIx)1;0p+Iaob z!a6y94WgF_5LLT9A1N%!O5VsaPg%^Kb6TW)uh|LS!~9H8wO(_I&d% zHw3SAY&eBL2sNA1{_R^BN^k8xq3hR6O`zqBC5dKlQY8YWpahpnvzgoGV#*75wdo*cFQDx32D9-zXsh2y|MjPb^}qkyv}_vAT5eEy@ri%S~_P%<#H*04-eS- zdDLfZ`V8)#!R*hgArGEHY6>>)$l9RV87ZZ`Lt_H(`b+P>ovL4bc;?iZ2RH(*b;t*T z4+7~anajM7MWe7(gX1g){JGJB*ec=naofA-m*1WF73T-i2e0_du{B$7ek<_lVo%K| zig)mqY0j<20%6HZYGwwDuR3*6GIrw88=D1JEKKgaIn()KthUP)pJ2uBvf@+YCHLoS z9vD2o*JG4YY3Iw=-&B>7TCa9neTgYQbFFQ;1b_SNvvu_c2Gy&juDMS~LpX(thfh+D z_H^SO8C2=cl=-1A_X&`X2YFM-Ux`oyng53UL-LKl1%b{xKTKf$bzC?FAiL))P!Yej zUHg)l-~Abqov)yueRhMqu=lggSAMo#dzx+jaO^OjB|^2e^-NeRv+kYH0AP zbv`EIkR_Ma-&Sr(7XYgF^U+e?$?P}z{RiqpF4a*5TMexEnSYuqI9-10gK@`8bR*y! zcfay_YLnY)<1xaL7*IJ2l&Ab;E*H&j>^d{EyEwp3ukJxw!1QS{E-KB5iyV)Kuit+mldk}I zZu>Ej^{IdCA#LVZtkn_S`9s^cl!7M1H2rVe5jCXeRIbTYUTru0)Ar=yY4i14Sx+mK zh1sk3M$d9FdbiOVD&sTrYeN38m7x_5Ulhl2eebN*to7j$@_4XBQGE{>DT=OXa~U@H z`(`jcW#J|&=k6a%PYjt&7vCqu{HIT!PR}~5G4S=|73hjz&WavAtc{9fZJ~Ww;ChjJ z=%eGjDG+bj3|T7?=>-d_1oZUuE?vC1CB*>UghHqy_z8JFUZM9nf5q^t?KLgggL5}D z&6c>oyYEaYYxDG(Gj|YmRf-lvxc?qvuXm?b&pry+e;M?p zW}kD()&=)#_7l`3`}Ef}4*T4tD`?8o0>c*gLIUeaoYX!jjZAzI`)KHE5~t{7_UOm- z{{$s3an$9!7fwqy|ND=HSIzo&funf0zpxELJoxuw(&h=0$A_ZZmHX0Zn!9RTYh;AG z(X*%H`qAR41HR*OOUk49%#*c?+OU7T>=D3D@uzYiU3R~`yz1>v-hafohBXSogVgBp zbliQ%QEXPPwQ|nrsr%wT4FW938V|e%4YF9WK~$IdR10O?p4#}_L1TK<^W|G^ANd4U z;ntVq{(fNcCkn;XtG&GLk5`PjQ}{9FoVN#vy7#7-TN~HQMnguC{FBDBbm+RBdfi(n z-P*YHG5*1(n#9;)*Hz@PCZ$W3L&81A?ccFiKIgqmoEwW_s$Ze&x6HWb(2zxE%Pa;# zQF6h8uu#>H)z(*peN3!yqYfyz^E)fcB|kiSdkc zNxd?5-MV#}fP&vai)4-Irkyvs-h$o~)M(5N9W+Irq8*=`i10A%zYe=1k1`uu%T6W7jv^aRx~7@b3K-pStKpc3{n^xzdJ{EvWe5SXDtXkr|vm_$b~+iOx$Zk zZ>9Mzv35iMjxd*lcGkncSC0nmyetRG7{Tt(HXpu2*t-7?S+x*X1}<8zc6daf8r=_#-s}{H^-* zkI~Drn-b66MH|@p`A^0I{u%Dcb`^2B_zgYCtI0}D@nQ1{`#rKf(cgig#zLSdJ1(v zc6D7oIP9--?J}iuDlPk{wT|&pA}y3NXU@2zf_RUd#=F@soYKh5v`dKMEKlll4EN@I zB1Sjx?p?Bgamn?4aoTkCy}Qw=DCV^tvrg7VDM*>wc-36=;bhwBpXO|hm4Ed9IsYui z!j^{8QAie!u->J+wG*P*x5GEMo*jARq_A@5zRi_x9vgh>yzJ1_Zfs>`KZmZS^fl6s2mVIegus*|}cWE}@COOg3(Xmzm)ACMCT=r`5)g2@3 zddDj4y2c0H(~J#`d%{H+y$Lbj_JBEl4=Hoa_IFK@!#*_EOhbf6UtPM^GQV|W0~qQj zQ8Kv)VtADWn4b016}B5ax+g~okz_6; z=h%f7St3wk5Sby)D37-Q)qSZL!@rx>a+ zs*L{mX)cKH_Qf0a-4 ze)I3aCCE;Du+rf#?+$r_xF&8$zsy?p%59ahTZcm?(z`pjJ8L>=(=k3~xK)_BF76R` zLzJd_t>rc?C}v(n-lFK3Ig$B~A9GPilzM(oTjAMLP^F%FtutDA(V zYT+qkgxshj|86*bck{y}7pCEAlTk*-W@b|nb?9~@Dsf!`2FC;U1ta*(-IQ_kgUgcS z<}u6vJb%O~1x5i>ywAU7<_gHgyo{z>Y4i2Uk!0-z&&LYltRpa+cy+!L^KE&M2 z@V3k8=|S&vEjw<56}1|qk?>azL&;(C0XpVQ&X}ap=jOK+mbV22*eB>pQ0{CL9AObB8nYkWSa?tFcHN}jH=j(WN}^0?xwi^dG)EnlV5Z8*fXO zoG036cZ~G@1r%3Kn*xso^5knJSJE0!%#t|owo?3C(!~gD?=Xs z`7}&&ThaOX5g%#Z9tN^BuiIna-a(t|beX*I2@VzGbXfAOCLTDt1VI&jzCHZ2A~sPooh{m(Pgf zy9(pHb9GP~Fy=4_0Y?v9W!3h8_5*Wn!)VTrIW>NSTO-N@j#?@=7{Wn#>}HWHaF%p3 zzwd+2UDZ`UKA!<{tUVnbUVC9#(w`5_v>NJMKr7QaTJM9ULE##=vLXHIqhp6>`$;|| z!;hBub~Jth6K_SM_}JlBd%Fcz`%qUkGgRAdM1wN2B8Wt>P2aN1Wsj4SGGfTVvktH^o1L$DWBZ7H_%8VzkPCLTfoe zhJwYV`ex(GS63FDn6)Fv*xIit!Pvya zEv7{m=Fg|-X z#C}YVl14L`CCmZLB(KkReVNOHIozK+)fW8NWt>eCKsaDqImX{G z&isFtDQ+W$+iUzMk4MWTWCq%@Zt=RKfBY_#aA%W9G#xD0uXu#pKxnMCrTe`0m4KCP z`1mcFna`wh6$9`i`?weFS528DTsBbas!qM-KRl+&K~o+txR$dg_vyyt+hTmhLAMpa zg1REenX6@K7p(a9;&ItEI|rfYa+*j_W?Ttfcbv$LFc^?>F8z$JEHpXfpHq`}2)y%45k_UpPE_4JQF7x7QVQnM^Osh(q=L zXJ_6+UH*bRqN4s52=hsxGs@7r+3>O|mud1dXpQ5w5Lnq3MPE-k9TBk_H?rKljNuO| z2d$Tfd>538^@T%UYMAHaRzt8hvZcVyQ z!{vZ}XMz+|E%a5miNqyz#N?B!dBNlB#lnsEe+>3MEvYnuPNl^To%KKQWLBTQHhcTy z`<9>qrqjC;DPTrsnNQmua-(NnYfH`3hwRG5fWd*9*;lW&bBAuY0S>vGM_R|f6&8oM zcA3Y;$BRzPB;>K)sJ-YveT(Mu3aV&DpIT$cDu#>gIZ5pph`cVFHv8kvgB-Nhv7#sG zDOP41ecvair>DQ@4CA0JlN~HN?f6XODsF)Ot^C@ zcj4H^Osa{SQ~Jw3aMC_HUh#olNzt+7EuGIh*5CQ~YCZo9yoy3?%aT1aW}Kz^j|cQF zULwG!hNz}}wk0)8>dbyVf=H}roI93sP$aAM(%kWLC6@D*ZllEyTo@gCW5&WG8>kZX z%_+S`H^8H*aT2c|&*o#XD!^orwWMi|UX|F`p-e2}`rn)AH1?%BQb`_JtxwsfWC zr?#JaW#*<;UINIupfObMBG_+BcDFZ7QQXw_HMYNX+m$<0H>}&E`op_n+NQn6pO>hN z-y~9Kq9!%2=EJehf6Y(LrM2>i`s~(uy*hM}z{AKTmu?==asAo%%d4mfwa)jR$_< z9=UhyMS%Gx6furBR&<0zP|e==aO)yBTH_DLvN79r`B6fly7Gu#EoPHPN)>L6E*LLA1nF_YU@4B z*b1N7fdu6^`d#ml!k$WN)-98Jvq3^AK*Kfh=$o8MCNl1KqiM8vCsbqyepCb`CS?{i zr=C(BQvjyCSJQpWlo{5a$JJ7}J-FR;b#;Z@Z}YoDXX+kmo70G40nwQcmv_eV1`L;! z26SG?6k6{p6Z?uVJpN;5{%b$I+1UmR@9rcPay{u4?&hZDWj`O0s0FW_+q`Oo;+lxj z9NPXuiqeW_JM!zcprfwo@Mm%Xk;_45K-_%vNlZXTUy0?M1s|E9>HBegm=C?F*{p)V zEiUeqF%kS+0S9|>TpX=AB{2U?gS`Mh`{3U_;3(2CC?xUecZ`thK4K#(vkSy2q_4Oq< zfA^?qBUB&-(*f7qG|0HkIF?Jefgj|NglX#$y+t<^mezSzjaVcX37LrK+a-AxgqA5> z9aasf4ICww7Djz8~oiVc-JA^&{bx)Pfz^k7>JB~)Sjw(A|^v-MN%tG;rR}f&h zzdvJs7l2tr`P}1-jPh?|{V%wvLTgN|Cn&dvNp>+tk=f^s7=>B$qbhLbEZ-RNI*swv zj_dV}g(W0qc?X%O{)>=gT|Of%?(c78{K>D>K1+y(W@2%_?lxhxw-|1K1iL(9`77sZ zy@yx|e=a<&6{*^`0A5XIt|{#Xm5zH0E?*DT&Tmdl(}tmuQtIkUQ>Om4(#!*U1X=zD z=0c|O7j#zYy#pAicM?hu^B`o*N4%?|%;(`FT~12je3-e4$K1&bGv}v`nY~*?7Kz7N zg@E3w*tdXk{r``#t;cRzN6&C4#0TpCDEsnws@JZ4?L!$(r4pq{g9^S%a~VB4ljPq>-c~WDJ#v3>kjc+Rl02)AQKQ=l9?9zMZ{&_x-)^ zb+2`;>$;W!HwN2$oFKPv8z>CX)g9P3M5DO=z)WZGz#^t&jL(;PShAb4JW`8r!l^`< zrF?#8OxOVryt?ddKl~>Q{= zwAxntFUanH-rswA@7|dkXfKOB;?`E`s-Xs0xN0%1BIYh!=mXV9&87?YIDNiiek51V zM%YOYiN4aY)VI3pokLUc)PafES z%=4&|WhK(?(!Yxta>L?ENNuv+8ny;k9o3>8B$UfFG&JnR*Vxfv9OQOj84*em{EUyj zQiqp;cV?u3<8CQQAVn^M29beQscVh;?@d4OMs*$lW>Hb-+K9r5napqE+Foo|tZx|A zFvqZ`eBb?%-~#!W)%wbEc>lh5|HHJR_2?ID%V%H++`3tY{RZ9TT9=XH zi-1y7m?hg2%RmUu&!U$ot=G}bY2V0C$FUn%B*sfmXt9SiPFrsJR+M4;FX|g?7Kb;O z5HJCoFWcMy;w${m8wl0|I=41sBpYLTF9=D|{+`-}?rTp$a;<`yuhR`oUEB8@H(SSH z30}ow3A~kOA-_AQWT4@5E_$Ax_oV0A-Z4|nk?fOEgs!>m+k^uT;DNNy%YTf`K|xA4@g3*VPW}favG<^j(-C_ zF1TA?8y}x*&#LjLfc!TfX5;5It|vbfUF_D=X@O$xT!DJTAbS>jiGK^e;MML;ZuAA{ z1O(+GFE9;ug5Ce+tSkjsMr}Mkb|VLP$qaqi1-B;#5;DebQt7?o+i7gm-8U!8Sn2J7 ze+1|A9_focBj9wP7O#voV;rGU)$V=u?n^e0o~j_{)>UA-i}U@oN(6tlZDPPQ{8^7R z+t9Fl4ecg11`E%+_f$`NbY@QYrdjVb*(n1Zi2pjTJ!;Hh?`#=#l4`Q^KsTWqtp({s zOvauYcZb^n08qQNtGuq&&7P2X`tSbxOH#*ve{v`xU78k#Wg^7B*O9ueTWyT2_6in` z{I5JOc|a0B$fpsd;&EQDv^Iv)zl$1I0*CfNakqR*G!TTu^eT@{=s!$4ys4MdMHwoD znD@kTj1YbQn>CdXae5J(D=7Mjf1YypYah;lF4#0cqCcE12*e-fneiRZy$0orIU1~% zsuZZqVa&&_Vo9gNYlEKU5^uSI@feTA}%)k9^hN}1Ep#0N+4)n(V z_e<=l0WMp&Qi#4zN8mrlz3nXSmj~z@T!!CT>gScZgRUGta*NJ<_E@F7h}5c@#`OJ<fGJq?I%-^u^d0Y8#pjtYTa41%=v^a>5@}@|29t$VJ6utoKjYj?;I;zS*5vTg-SnH7iacn?9-FXe8*|>)EV-`@9l8Ckv)tzm z`pER(_fm+guiryI3LPV8pDtg&J`ZMc1#QpJCQy1IUmt4p^D?|<2LB43F#K#sN%(`~ z%dYSe4H~mOrhxZoP}&a+AY7?~c>P{W!nFtAu*f0*5#=`v5ihI^6^SJ`aw%^}BJw4# zUH2OzO7m-C;cnFFE~ACp%mQd6wIHL$Z=DNFUC%;T&G~*F#%RX{otS%RD(&QLJPbHG zIukJ^$N;7Z9u+-xvYZoxBh330B+p*i%KorC1LX13e^J9qt4=BRZ2uFUr}7D32Tw_` zo{cEtOr|Na!JWK={B+!h|2aXBj{67K=ED`9s3(^M%l!EHBWxcB4mQoohLQw8VLnF&5Dun<;IOWf=;*{3$zM;HMdyh7inym4BWgu))giYCu^G-Jw zrSs#%>M&NC!v+|QW8+*Y?@uQ_UWE9e)mP7JKb^cTyz5u>wEiKQy@D2#@!5xV#ZvgF zhe0JOM=v6Y!8v{7F)F2qVH(*nqf6CL)a_)v0i8+)X0ZD}n*0FZSop3x?{|gd z$8Na7uVCH4>3S`rGBPYfkPm;pbt_Gr6bZ8&4p{#)apk*K2*#;x*|N4!^+L2ZtcC`_3yFw#H1KLO5GNr=o$ni zgAr2p&N3#9b7I8BiXLN8E`5JO)be3zDhb+AazCj<>?bv=ca+d07ZK+GSOcy6n;aV5 zjommMTgzA05(Jg2$+MNSXaCq$%59X#c=F4fmE1S1h^pGzX7EEJfB|naFjh$G;@?f=5hTo2GxPO zQc0YVU&)pJg9(Ke-4Wvb{nJ|d##gj`Q>CkIB`>?3=%0hTMY+i3!26wnfapeCZoD6N zRDI)E4ht^kgHUx#ZZmw<*9xo2?qA047!VDI=EA)H^Zq;TMsZ&k_gF}z7o)$J5>aem zJpWtHuW!VcZz{IcjVMD%X|uWy&RZvZ5JQ{~RgV$7ah3@i>%z<(Xf?S8&0NMOXko>I zzF*B=U-u>%Rt06cN;^(|IFnha%y?2f?#ZvKFUR(%3O>$Z!l2YV%HKfak09Li#4`A` z@(l0?+i)I;C9c+9fF>(jm8s|)yJK{3Y96P*452{BQ4LwI&9#73wr-R zPkhrDwplHz?3mZ-gRx8R-1~cnx}v`zR_}gU{uqDu@d_4HCu|Ba;0rHTu+vY2a3J5@ zD!7Q#me<3UUlq352`4g=#RK|~8Q57ZxGR3W#SlNAt8~KMKLi z^zrc}(Dq@(k=hXXo$n;d&lZoqOn2Q2{;co!1Sq3h=R(?$p0*g}=R@4m_Ne9L4%V%j zMN22oLXUVJ;f-+UQ8)jEX2n#DNPCeX#{-?{V2{ns`;TH!Pihft6h8y2oTXB^<2~T3 zYQRv5w-drREE@I05Ud_5oIXmyYR)1w6Ss`guLOpevoIaoDjxxC4dOI7z z?OVUCr?bTl6FQ@fiFk&{w+Z-sCnX?*KKwt|TsoD_dM8@Su6M*sH~{F6Git#UJ4m3- zL7O#HfX^1`{CvfS`r6<^p7VD7eCZTz!1Ir`b0899pV{E0IXXB{KF_bc4Hlkg3xl_6 zX@l zdtbd7yxnRN#S|76?m4wxWZZ%q=GyzfQWV~R1>ETF=R zwL#2z<^;C?8Gw{hL#??jt$DceYXBmV4;dJ0?gXop6?HEoBEoN>S@{q)d)6*FCpn!o z<~JgN^-VrQ%DQ%8HqEr5Xb#a#Q%6mEC%=T#D}dAr5@x4ZJo1Yo(poTCB6=`gaAW z7oGQSzfj0e%0Arjf-}y@`_Bf0ApF+7C?|)bLp+JV9)kM2o&!Z3u;M0%3d|5ZUOjyDxrB|7ajDE+s1zQkmOe+zRy>olN+FD-5L?;ha zGAgiD6HvCBICvu!ulo|$mq2=dJhS#8348!%`bA8_1=kdr%ubFl<1oev^fOG}{g7IL zG+Mn9X3!o0S9dP?2D6^Y$gGAcVm@KFiS$h_@CCXlco8$F3DiXuSh(jP;-lQxlp+r? z2MLZ(tceVKVcd2ijyuiO`3FDU%Pq|D?U}{q57$5$HFeiaHcf7@{Tiu6r~I`8#Tk2M zB>)4jQ`6k!ysrM^l#g1&L5xUeI}Z0lh*8-g+N#U}vZ?o!kcJjE*>qXy+#$~D+y!{y zRl&CJ$BOAN8Stgu$mW`!^=r@WC|@zu2bJi9Ar2GAiRo}LFh|StZ*j{WWQ-AV@KY5K zTPiU~G#^-kc2pjTKH&~Hf4)5ABe4d_XBD!iwQ8i8o0-w>fbvWD^5R*XPMEJImMuei zk{Qr^=16u6?9jK2`oaJ>DtHjn6yjd%ebKWAKcD!_C3^AQe-`*~v5t5%k>Bv=9n&0UTE9wLom0@P;H z7C>)CWblS79@sr9qF*6}o(xLW^J9-s4Db&J`PrDc8Pu&bUiI^ zjcxPcgkpYd8? zE%U3S2q|Bj8XIRi7N&R*p;2_bLQRLevT(nnmRYp`Whq~C88XNq-j6OqtpL@`t) zMiJHY6odY{NIBdEp61~@*B)Vd^JDQPZ$o?|s+RU*dD9wj|EjLoN3d!%DhQ2tsFR2Z9Sb4I(;>=gY8<;w8UQ#ng* z@mULA1o)FWZ-`lvvzkrX4F!xIB#gexCIZ=pxKp`UC(-A(nY*?Zdpc5-g)Q)4@uSJ( zkWe(d231X&m>O0_r2`U;!8U$uE}p!1Bx$x;Rymf4l>0p&Ck4hwE9bPo2U7D>Kcn6 zCqMUlvwQ!FQ3~JlNX=gO88=XNI`rq4k#x#WNbu$OB&$e8Ui01`0vWFbBvNU6S^+Jm z+!SjsnYZemRNm}uOCE`b<`5z_8NerF^Oz5`$1ml<`=h9;8SSya@N+`0;4#&ydthV( z$HiQRuz2f|4JZb{JOM`8J)VB*0SJOYb$(^v5O&R^jL{Jcyq(OH}s$;AUF(Fw$aAuD^!1JpVo1{$b5A&h4Rgpv)Gdm=94 z;;*m1ekO>p1q%3Ayq8OU14(=T7a*MvK;kq9KgOzc6DNf?zIhWUP2XF0d_jSp*UvVB zfsMo@01LbC#2}qY#F}(|8twjgaDg{Hny)V7xr1czaNgNYO7*De$C403KOgOAt2RldNLYw)X9ObXrg4O@ns1t=WIp2R}bQ;)Yl4 zR{piwZq~v9LDC=_N-T++Kb}hglf~sQa@`!RMh&xwAxWrd+skq56~^oiwNp)jJDch_ zP}45Mztchim8d14&kv7i&nf--L6iVuWy4s)=t_?C45pYn5ANsd={W35`DP{c(#1DK zGA)K&_IHs=LxK_Ldq2}Zot$Kb^2>+H{sq}>g`yvPrmR>tzmEvrqKA>{<9hc|A-EFj74G-dd{7XXRJ#fD4}C7u?FPK`e8+ph zEmy!`Zg4Jk_cLBeD|1fh!1)>9JpyXp-(CBf3NLg%G*=IrcF_->e2utf?8n%5GYg%-;wf9LOp$F> zz0qCo<+(6NF1z($+_8T5YS4Pu9^8vVRxtIZ7KjD{)IG9;U~czKlFrTI*(Shgv6*7i zxP$9g`^ubYG41a*EWM7g2F1&gN|j-)W#v<{qaH)yCLb)bQ*&;rC!h`97(HPzif{|G z!_U?Ku*+ZHfatY}rRE2ObC|fvC_9XITPUDh-Sc>n(~Azjqym)wMv5yGly3^v-eiFP z+K>p-Bqyx}p5`G;VQv^Fjd{{kczB2K_mOM2K>)N^PQL)Slu2qM9Dg^DRqvY;G_QQ- zE$Lw=#cv$X^J_i_KPk;=YttTVzlOUpnJsQfv8_--u2=Tp$|P?tmN-xRR-Y$1H8$Cr zIlC9Uf8ks$(9>bs=A~?K#d{IF&{FzqdsoLc{^1#aAeFBUVwSV;MOjMgya%!kJ0PJd z`Vj?9O*rnJ2*cM(?>})kzFxlef|bwv&662VOpo`q7KCMJ=ajt$A^|vZ-Ld5e2PCIX zu9;-;ZH<)QLqT*TYcU~{4qvw(?+qb zqqz|FlnH)!e&*#Q$itFk)oAuXigAFOze@PklQd^op#}2Ku4s+3*=!l*U-%IXwxn<0 zp)x`eQjHtqOwHzdPg?0J#qJ815OS@5fPdXte!1?8@AYr8Tn ze`nwpVU#Ym$m=TpN#*!`Lj-Qq6C^ixC~~9IV29DY_;S zLaPn!%`r8Kg^wrXKlVdl%Rjq5(IVZhF;>}Lj&5leSdx2~P=sffJW z{T4+-s)%~u$oDYOYx|K^v(yj=YuV-b7#a9;lwVdxz2haWaaXY>qwa7-9 z&;6Tw+1;?>rp0HjUcP)USNxW;_zZCT;$JprPxb5(S=lW={YH)X!eZvl72-U00-ujB zlHi)7seeiK#jo;?LK{D+qqKh`@&HOqJvG^0y-xBA;>>IW zeyf*9p6A91E#?$hZX74&3h8X4+d*-hf3Do!@Y+w?n@?u&X}Py>!<`*GcJmT z9pz}ARRq7OS@MJU*dKF&+POA$-durmB$8HUuW15xesTFdai`mlP*;Y82b7I1MFX{u zcUGFm`tUB}_Uk1hm%S6~y{T60z}Grw9KrS+lE9q#I*WKJryML>{1&3jL!>T$dO<>S zXRyipK%v8a#X^wc-;w#t@Y1{G|n#`y;vzo)jM?vhtmz_=V_OJl?_rKW9dEt1Lt`n~6A^()j_2U)e~b z9h~w#WSjgDZpuA5jMBq%!xhyip2`u^To(B$Kk+k}=mP&QRg8iv`WoCbC*#gR3|+Q+ zts;_76fnX?ii$KeHH*x?N3J|}87vK%28~Hj#LZiT0FlxeqVP+0v!7It?VW~b5}Dna z9Q28E?mALRM~A2K_%4WZw38Y&ZMs5D8cHyL>2rDZFZ-l7S{}>-<7K55S5kNtAdX}= zy-*e;qtH>aKXC(LyGM{L0jeR*IfD?VI8v^wO11S)e|bkv;55F|@O9=;0D#7LREo>6 zHe8|T)}`>KAfdA+Uya3^=D?$XoyudrZwpL9qE@EiV#^Lz?y^5c)!*O?s&kt0oPV)| zJleT5evIynm0OIfkH6bW3bDm#3#3#7v5}V$N#vbXBukJNY zwHj}@#Zlj-|5t_Srwq}-(|7vb*3IZMMeJVxg`3w!a~n+g*;@z~XvkD+5Q>RZeE$1l)w{p&2y7VPpGywSrebcQfPqBEcW$|GVTIHa`mJK$4}irKec$jW&m?LAMDO#$e?JapQys2eWb}95*Yap51YjplU^HOTt!Tw z9Yr8TN8MgJVh9w$1O7do{iz4%d_SPoQI+Q&q-K6}?({K>$NPw0)7X&EcrB**xS){C zgKNnt-SKndqeYuk#;iWCvnqA{$RsO^=c_0A?KW65!(+|tC8PTj+uiH4W_6U8g@l|x z{PO$9h?kB(VT_Sl(w%7X>)VeH)?Y;%_h^ah%xC+3gu(zKzmD7@$)!XjjguG&ThU6N z$(3$!cxxt~UM!oeOYK68&8!pd`HBIMtD&WZzD8egI@M~us4xu!UnDSkYp zaO_0gG6|{I%iY~i4RgkVaPOG1x5<5{RM6HIj@$7B@9AJYb+x$JEF%%>3sg~oB=1nS z!vpw{BGM&O6_jw+VXA}~b2y+X!-iGPH~~Ygr~2D)Ur;lQ8bpazQ1S`EwaydGM1O1l zVowgo8(_2~gOQhT@7qmf5X9x4Cnh5Mr7s9Kk@}c?s>U+=-JzU z??4~_=?IWt9@^pZe1!Zdr{{z`u_FdwQ@AEG@?;8M2d|Cv<@ zu2{n2k{F{kk(b#XKt$&y{THc}_`V|!tHXJOM*(u#z>vM|3+yO~R=ud~{7$fq{I0XURD(jQmIOa_s2VR)Q*u_?XU+Y?D* zMmi@SLR!N}X}tC*J3XKmBYAs%rsaA`m!{ny;E`^h@ylE}pF7?QI@r9&FM7;iZd=QO z4tF7031RfWhVsSR@{V+ZdzG_ewlT+7HH;xXPLONC#Hgcy`b;Xx;dlD#lMg^rwQtSs zYs!5{l_XHy%?cp{wnc-6Q`T61Uamkv-3=gexwGMT@8ylL1f^?twg%=-E-`V?O0g~( z#j(8va8W}@kZbFibdT9Oo*2d2WLo`d^=L0x>eknhdzT%MGBr>ct zF4IM zlWZRlln&VKrPh07^X3muk9mz;R>L;9oAW&-taT#&n7$L3CP4Kql<7zEjI9kEK;$%qq)M& zao-FMcN0wr0L)}4JZg0xXQf2)KUls#FCW;YA+GaI=}2zHePSDmg92_W6YnA zy;WHCLM?I?57oQ~%lpaCD1#?##X&NFdQ`8}kuh}o6TcpBw7Xl+llOuN9JqMcsW^mB z7Ye>XM?xw`;tTpkXtIWQkpG0ZH^-^0sKQKEZ_*E?rJ;zjL#Fp|>S4I+e=SkxxFSq( zK3*=vjka-8ECWG;?=;VhE?&`5K)hdjr(%iRU1@`fG zXnU2&RbAwzEb`9IhV|}7L;vVL`q33?R_fcLfVsN&A9NuJ1t7p$2iGR!3J+Y9`=TOB z_&D9jxZX6Rka`=fj~Wvz$5QU^dT9qd;338NkGVfnlk&;zdGCkriq-j!(fk|(o6JJ7 zd%8dRxw+ol%mXE63VIhiNZ-AbZ7z<6z6Drd^KV(KVBe?o!~gq#M4Dk0rEWLrh30wi z5y{vNG}ni43$tHICa-h`U-JSVg0b`1uF2Hxytr(yQDP^o(k9X!Zu9YuzQO7@ zoD()?q&E`yDP#G#;|(iOe0X7U@{J{guaV>VK%n9ad2BsoEEmHCU;< zgi7|`4}z;^`B|`Gh>$XVF7^g1Ecz*TfZ8@dZBC{275uW{il4CbbWr5I=PXq_@r&qcTWXuk3_76yquaN(E zs3&3JNyfjkj9(WyorOC2VMk6!_90Bfa0r08{R0BH1x!0vtv;oW)+(pp6FUPLsbu3i zt+>4`0{qD+pUizv(s&CqJnxtEjLskH>idgT`CWrZn3>E;?d>?dE%rw2B9U)rL&~=NI zZlvqpWtj>_AA!@h#-27xNoV3Mk%Rf`Q1?H`pF7n4sYL$rY1r6ypb4wsy7jOGC~a|v z`RU*s*JbqwZ#L}qgZErCFLmB%CSXUh#HLokO-~pN2a|6QnI4UMJz6@Z6z|o;kAcjl zj{hF!m$#8|qTrA z;O{a#Kkyn8Xtg;c4U1tIG~2KRyaUhsqgKo#c8w3%6s}dM3yiDI1kVlgH%rHxLEee%GPGRBr9sow1K7L4 z_q53?G{ZPw+zE)yWgeZ{T9FbAP#4c&hSnpxE`Np{D3t&|t+X5Bn0(ML(J`l^ z^!8J*@n%L6I!sWj$I5BlLq|WPqU%GHX5dq+)1^Zcm?@_b3_TaE;KOSqADXFT(hb&E z%`svpO^~iP2wl)q)Ftgx;5L`-_lE;Gw8>R3`KM)h?9L26-_qt!7;9G zkYC?gjlKHgaRuO_k`&K}9P=mCVYCzt2KHk&Su#lMH`)I2bfOp4JCIWdptdB_T>k^w zJVShiUIczbdwZO){>41(geo+{Jdq;Q2Lr29BvY?7e~T3=paM@(33wq_5ewa9$E%n^jejrAPJflYYG72fMN^2lJ8unq#N0*lcI zCbg(JwB073ZjR@CzlrID;5ky?HyeF?$_A?_nI=m!lk>#E!8ijElFAxq?9yJ(@sbqN zd4ezTFFV}0^&Epn^$>yqb*z0a!tW%)9*AKy{{2*cPSOVKxw+F2`CA(VWa7rKNXJ27 zo0;`OZFxu7olv`WUci0QL~)8HtU@Z`-s)O%-(=ee zSjN{=6XL6_OZB7{Pt%?mAZoAXOhzN13EOt7WeR_yK5I^d%aXs5s@d;QL|4PXWG9fS zM1!>{A)JyjB-|$u1dMr0Ev;5pLUiNv_q8;sCx4;aV&WKL&g<&ETo&S-e+ly%en^^R z?s>!WdC+>9V@TX$B&=oEsqam@kBrD=WORoDzMpPFFgd$Ityog65}1w;H6TzmI7Fe9 z&_rGX$QV-XMK48jT+U&P@e8pHTDHUvOPK$i{3!ESe^i6<@%wKG`u_Ur$!GTz{2=gS{9#K4_tWuwnSk z<8B-WkB8A{V&KpgWK!)hxrZDQ8w(b2u-Ieol{^hVzgrs~XzO?}$kOkR(F%)@u7;Im zA*knr%r!Bh>)G!3&LnE=t76RM{;<=pVQx*WfW$E!U7SHY8bS3&xnqhNIhOa*phM zzJI!J4yM`Oj~?=zOLd?Y`PksxSV**$?AyS)_;zy`Vfe&H-YWgqXy$s7xkf8P^ zW*+wfU>4LG@N|?Xl>nw5{7aa9x&bd@@?n)QBYiQgA1^#(3Y_h=%tex$^j1tI#4W=Cmjz?Jh;E=e z(s2?)g?XkFRwK=Rgk0~_@fVlu)NreBMmNQO{e`1Bl)wvd51}N3qF@>Ryj9bNuM+%d z`p?9iG$E>qv^9$qV=N!<$5B)LU?JcQKAA#VHuCzGCe!}qxWhB!Z@(Jy%2`Vt-(w!* z==LV^sU1eDsPT6S2hfy=LW>HTcQD5hgAV?l#x>oOlanR;JwCQ=?+ttyLUD3Bq*)vk=IoAT z87F913*4&{pLFdUqAenZwjp=`uRLW6PeRLcIK${pR#)J)eL+JUPTmWbup=fO@Q^HC z_zJ7keNfuB6c_C9pXx&tEMhug^q1Zz>A#PM-QVRWUrAiD2Z^KBi-o{LIQ}@66=Ag} zw_ZQD3~}JblldP3LtKWU^8e#=uvkEM`jo0MaT4V)xJC5&oIi&An@GA7Z%<9A`ibm% zfen}`@8Fm>X-_RM;;H10id0eN;v-NvI0yD(N$jZvMdPTi8b!aZ{t30uYy5AL6I_SSb9ltt*QlmNRV15jChv4AO|qG`glGf zGwPOG5xw(lW5gVuT5~cc9@qg)d0ss&u1;ix&%;45KMW<86W<5v@on(Coj?$l5Vy^q zi7O85q3M}EaEMQ{4f`UoHzD;cjpfM4L+S6%<*3CTxPnqnGK;y7n1VU>B{14O(RS^y z$`nAl(K#PAuSR7xOvyzT%VxF z)7$@Xf$-L3-KjFV0*q7%-)}Q91p9627x#n(3t9O|=U@}Yg6=za^&u7_Rev9VS4ixFvFOP>#HIUHXJSL?G9m$fJ`d1`3 z91_rrV7Bvix?T^@dE?h8sNOPqvG3cag7}M!<%-2iVcdQ_9RtGOTnh?+s9AtqtMOyS zg$Hntctl+^H1eJ|3zdV<5^R4_Vdx-ZF@_aCVOXf@#^_5m81rJaD9@O;XIY0tBn?BS z*8d@7OXR$I8udlm>rvgfo2FoP>F(^VLfz5C*~$Jj%OIB-e3MAqG+aZ^-8|Ko86-en z{OkL((6Ue;-MtC@iY=_RMW(@3OBDC*p3aPP{WualN>YezvruIRxETZ zJjmC#SkS_i1wcThd#z@7rXyDEcrSuuY~T-+14h5C{z{BoPw5NhuE+9DCFjhT#w?u){? zKB>QKnFR%Ek>7t^w7TFnCwqN@OSh^P8fD*Cd=}jt(wkIVD}JL>W=XG2clNxbz6~Lz zO7{UBx`&Msh?)iid%KD3W_Rm;{<0!<)b}~=yr_o8aQRe~+ZYhvz z4ywF*`&`(lJ`@i$DZE%Z@YLoULuV` ztB-T`k*hjQXD|E49i_RJLvE4_Cn$8#82UfEG1DS$)E?1Y;i|3CJ25OR?pAKjag=?_ zeSYqRol1CL7i0j}7lsUphv5mm=qn+$ttT@yq)d}2D_=NF0aXII*6sl>lBRIYPi`iQ z5|Vn54Y64_)fH$d__QhcG`n?VwqR05cKS=s+DLZrd#WGlnqjcVsmWipk<2-WdYDf< zebSbZ+ajD(LP}O(V1{z%-O)2@ja@Qewp$I!|I0_f>Sden;QAr0o>MPKb7$L%UfJW4 zeFQMH^p(v}abYQDYFdy|Y$S%7xb0D&8Y`c%4 z>Lzov{w0Zcx+Suak;n5LNZ^|8zelBV*b|Wk+>O(OjinMww1-ZH^v)smAMY3)%{h6& zg{$*{u~)d)A#N`tfye?ZBjI;IHmlKTJOdBdhiIA@6$q7Tv)^NYpj>0@6%zSAu^g?~ zrUN_c<(gm8RN5gIn9?y$=*^n2kES<#;SCiW@YtuA9NnWAMnOSX^%-XJEf;qtTwVAC`ptgV&6}&>4(kKt#5Kt2%K(xQ zCA_KJddG72?!s;w;CM`bt?Ahcz)&NN%HEp}XN6;@yQL04N|oKzfylTJOC@=(;eX3l*#8b|@c(^#-^ zwp8(b`A-dW-nJ2w!ivfsx9PnnLj-*Js=gU)*~59!e%xd=E@+f&apOsXO+fhWdP9x$ zQGz9gKIp>Km=~tXKJR<;Ch9^-S#-Fr68na^F^^TZwOPZdSr(P0OVY)u!rG%px}zg{ zmTDDB1F95jaFGV@K4M~E{Ka@<9&e?%;vPDL$U|vJ&^ep3B9Q{(X-yqw65EO%;8dDm zF~fC(D|Tp2OnTA&=QQXmCpj0r{VOmcKJlgN2ikky)cy?ok@v@FLZSoTnO3MeH-5oE zetyNH1F2*8P4xlx;@_{$BIuux!%Q!rExV- zPo+P|>0VZ-XnE%w1oaWmYk^r_%GslN)gRky&D~|}?Uko7*5b3XVdLT4Hs5{DimUHT zorckPnklor__ePbE3!Vb@kVLke%5WRmy+;Gz+XmMF0E*Ir!pp_N!o9&R)1C}%G=Bb zWOZT5ts7h}HNS!HX50P)&E?rm-0nqvLV}rGoEntKZ?!$1yLX4rAfwAU)kN~Ew4efydXcO93gTaegbrRWOwGM8}|j&uk%lTzFn z7VWy#d2RDn4cRsdi!Gk@Z95%APh3zHC`r58um*y^fP)EW!L{$)JY#xq}_N);VtJF8I7ZOe*WvL8lLX<;tM}(wb_nns;W$>;x9y{xx8r zi)av>_v58DBp!|qpxRqhX?_WHSLV%jq=5Vz`i(yl#RT$5g}U9(cp zx!~HuWSocYr++mgHN;=NYfrq;;nv{jX1PsUH0uY66|~18z~53hrq|s^;Bmq&(^dBw z<-^Kucq!5b)7izQ&&rg->Ep+=;lxh3I;o2!$Zyex?m6Lb$8tTZ@}8e6Ux~=P1z-B% z0DnR$ho z9YGZNO;uwi^-#z{lPPTX3w2#-61O`Ucp=S{j(gg$CD+pOGb^4A7=-ABvokPeq#nc5 zbWV}tmSC?c^aq)mkxUqZW=O3Hxcg=DS>&5;x1dA6$XR_jHe8TPo9x9xZ2A0G35!Bh|kdLs3m z>o+=g#wUwwB?JW!#?V6s655hA#?HBW2g2S>?n1{UA7yjUPwUz`-}Ovrw2gMsC}+qZ zW++Yw{q_ktMbhwVzFX(-hZ3^B7do8Bw^qqq%m|+nl~wmvH)|IAYjno4qD`9lJN8GV zcUWJ){$_56-}9!@{z)^6v#O^ISeY5Et0Yxry(mfv1(eq8Nt#%5-#_k(Y}voz>KF~n znnLW^5{t0H*pF@DF+c$84vzhXE`Zn6^Gj$+9>>z9?ZcIWCT8nyQF(vW$%F{W3x2%H z*f}8L5f`+0A+zM8Ma-#7g?{DNE~u{F0!XlHSPc4n4`7IN&eUNaNHWshiBX`vs5+0f zGb)t1nG=O!obvCj$2At6W1k`^O|fj_MZH%Kr|ut}{$zH@8t3l~m>vDJ!;T%nPa=LQ zgJm)N8YMMr?vzKL@)BsCxo6RjjVm;qfC*R(IAkIB_S!;uOJL$_Y(u3bU!}@4g}=$` z21nVUukz5V2G<7{6jSQ!cgKkLZuhk*(|xt2U)gBZT~#)a9vf*y%9lJQ zhlY}gCa73iXzD`Yf$bENN*+O^TWfh4;O+Z+iO$MJvGMm>M)DjIXh2qSJ?+mk>`Ma) zAc(1!Yl_H$gRVE?)sHw{bXJ?LH#2ODmn$nF8Hl%%_0zro+uL`cVo}k+i$fLf^!TdgG!RkV9*wfwzktZM1nC5XYx7>g$h3g?x(& zq|$Z$h79z-tJFV6{Q#Ia8+c_p0Y*Qx`XH_gh`F$Jx#{W;4Q240ak{$jVUuwVJP+$@ zq*FIJ&v^0IBCMiC*k4@^Iqo~iQJY*xuIl!40owYsc)ji_+1pnazAo~MF1~InaaF|T zdsD&8ffnioqiv*;x_4iVLa5u3Lk$jBPdOE}0_|OxEoB>XkXIQBRj1yNik@BBP67U# z8m+(Ge6f=zdg0PbWa=gzjLPbex*&tr+wf~&x87VCyz?7aHnRtEYaMOIiG^t(o_!pC zEtNXBt^hHW8*A1!FHt}m{6nP3@@ZmQ&B3_bf+7V;Xe}F8jn8=xQBLOol8T{iAmiuZ#S7YY#GSF^EAfKHMt_{?3=c4TF_LXMB5Bx zm@~Y@`j7<%s*NrQ+^td+P#>Imx!zuZ{p_*pBjZXk?>VLlb+~!?`!_ahy_r*PrJ%)? zZZ}h&eZ{Tg=9hgy;Jj=_yS`L*k?efT`h7h%v#3p+_;Xhqa=rfof3Co_RkOzOsj74T zK4;}BsQGklf8JYhg<9r2b22ZN9}{QSVys>K()FTUh&L+1jZ3zC5H(W5{?4*SU1B>| zb8)uLsgtS#B85fkL6t zsAZ)${PkP*`K0Y{Infqf_G|o8jfxK8tsib2aw2a&bF!DC88+miFn=Qwm0vw)h40`TTmn|vVjf9Z2r!ttB# zknQlS-)QO}k`yr@IMv~2)n=5BPrQcEta;0U-7^4!`T*i9-53dsbx@zmd!dzxZZF*U zMv`7}kNIfY1Q&v6_64<`U!->9=ZJc)R||@+?#4*MpqMS?5K^Ft{?MR_0q4EVnqPjQt8O$|#StEz^OIi=XYaU8LF|l<`2`hT zc+xqNngS5X-IR|T@DZi*)9!TN6Up(leJrqI(j8T5LOB^d1OIs@X|q@T>-wBrgyc-H7nRVsAiVu3NdoC(%p=0wA;~_4Xel)bO z3O?5el0ZQSZpXQ^e(kx;3~_gxo)deY4?<(^q@Arwffv8Tj=EH}hJz&eU}zp(aiC`yuk7;bWF**HgpR z)aHfmU7F;6(*5&m$nMv3v#OP*6upvJ@>TN@)J~hb_`bHi(i4@CK`nHsF)n5XPaNA| z7U{UI!CxiZ2G)KrjnQLYqNp_Wq-HibBj+SWSz83pkIxx#vZ(3!0@Tkvf<++5iYEL3 zFLI{hJVy-ed9?l16oY3Kq1HAn+Xm{AZQ=s+n%fiQJKRPB+384V`1J;ZiNp&}SMFaJ zG*w4?=GmfS4;p?|2rNh!TmMJ4-^BR%&RX}b?fNpN=Im%x$c<9|LaxG8aOy~HZwFYT zZua$?PbHIaVL!rtpM0Xywv^;h!XX#?E^d137ag-_&)StW`+r0*3XpwTyB$?fR0$8D zCLZ>{ga!$@zkaACt2SFTx_d92^(awG2WtD{`A^hs;nzNb>`mmk;A8g-mOg(A?s&lN za&_7IhP$!%?r%WQe==H!ukUtSE`L26)H}+&quPuAp7e%`ltZP_Ajq` z+ow7govf~SEt3=~zWx%2I7FXs!~o1QoI9Yy+3+bUE>~-3nGM1DByltEE0@t<8s+}$ zLj~1;kV3HBj16v%fe?f})Sde&RL5on3DsIg6!BiUz1R5X^WhC^Q^>L(xWr7?i8l^a zW?cWI=S{~Yek*5k0jWGC5&D} z{XP)mJf;6og(*-@-R=FoVKhu0h7=2Q{(4qahcQ|mQ6KL(8u#eE4O|Vvwfv18|AKJI z3#5F}iL(#Tk!5F>_-pJKLCMl@|3fbwxY~(>k&XWXfr_EY?fd;-x{Ul_>?M95rRO^I z-xR|2ATU;GC_V}bp-;$Z#+S3=*ZlpX4b>%x@P>y*#4G)_kbnQFfycr>@iV>(Nd5PZWHpW_X9Qy60U@+q zLu~+Zv&7~QnN;?!&rEgTIRE{db>1>mxdI(KVts`x3=SGnDgih4(GRBeTzu>d z`ycBC(7EZ`2KnC}RP2TsyR7E94q|+}@SAsi&ZGT)=gaJr+Qz-_{Q)nJ-?)QJO#y<- zNe^-ec(551^RFR~ArBNYM4d!kf3izff<++7j;YRc{3$XPVC*;&`9n#exa|Fo^PviM zRSyU_b^(#v=`gv$!_v5}ooL}0_^2b7)!79O@FS{I4q--<*^5y5WZ16ON02+g#h4pt zE=D}SMHecoyQ0vq)Id(H5brKXE}$3Mdg|>>9Y$+44F@kK}J5hq*GC-w;4-wkS2-A=%#x zqaHTiI7Hb13P#!HuJWLD$A|0)JGc=m>+wMJuMpKX= z&&xI#IJv{+lYr^m9dSQ`yfc~-GaIjpjD;q(IiEBq|1HNHKMQY!$1x!Ow|&5D;3<6k z4#ktGij>DFl>VeKqU??adYo%8UD7aptmX1LTsKOXeIBSbCJg~v z&LbUKrTo_2&n}Juki0hw%bkDcD}WFA&!MV6qR%~*@co5BfBE<|=bOToM32dd>q)t~ z;Xe7AffDvcqT6w1Ltnf9=g_mS(kjF^sl)=k-wl&AB=#W>5I&asXzJlTH2E)I ztQiE3s+1yaPmm|4llDn{=E0Z9?#CQ z-<+Bak0orkuf1{Nh-rPbC- znxOfb2=NON7v}gK&1;yF*$|d($^9KtQjv=6!nXp=0ya2YZX@=so}o=Mt zenD&bZ*lC+=_3-6)>p5{{O&>A$WJCn^2u-yY9TWko0I)o6Blh`UX2Ja!IT7lmpg6c z^l#@g?y{mmZ+i)sAl;J7}7p3@ppqFRw)rDvz1EBehaCcrmTCJ zj&m@R9g)uF)lRgN*f1R?0DBgx#&isi*@*x!^8dAWt-(-*VYu1SVEWNTWQ#GWP_w2f zg@y>NZkAeIP10p*8qC;9BbVB7n<<+vDq2faSku%RjY_Orwaiqgb}E!n2`%G(3G34H zR^l)jzxvhwJUesF?m6FizxR3H=XqYkIBo||yehS5@I@6--Q;QzBlqrlxU?gsP{8NT zvfP(Eiy6T)Y2W{Fa`~^C$H>1y0U1Rk9Z@z$EsL7AW(=V2e34Xg6u5{o_#Zk*FBTGnTDtX8HMCh3Ce2Vis-ie=rbEgEFwFxdrFj+K$@HEj#q-9-+8RR z98@S#Q{*-Oj{q0ilI}CQVGpQzO~LS-jY)!^0~u>c69vWkmszFV9CGEXg|S6xE}236 zX-nla##-1Hs;BXQ5$I|42q3yaJB&@Vqio`U~ft-H`3`kSGyboG` zOAfyUn-)bEUZJn58_KgaG!KZzm65mPZQRR9$HtJfPQ6(79;C#&#INIRQSybbiY#ve z&_6|Sp&hSn-X&XN`1F4lruhU3+fYVi6JHi422Sij zNo>b#=eY^V}2bg_$dVl0u{DC2sDLN#Ve7pSXSi99LeSD|5fMJn`!e5@ni!sUeakgQ;+Kk$ekeqGMWE!ky7!`mv* zbpJxKzmWRXNoFnP=hyPIknNLyssdl>(#)Pf5~Uw%d$c>lQ$T%8FgQK#24@~PdCX;I^r1mBAQonm4(xUiY6G2%UfwhDNK6sb7T2jHN>aFkB$OGUQ;`Vg zi}eQ_m0VXyJl=Corv=QGexD=VUc!uoMs8EgmansN{(0&RmW)=?=tCTdB4dxF`=NfU z-D>}K67vfH3i}O+t45!hTgrs<%{K==`fQNiKlTa};fN_RTfHSAjD&`<+UUf|Pl#VF zpT6@ivq?uTu7Tel7BQ&?0#c9v_-^zuOm)Q$*!jhzKi5! AsQ>@~ literal 0 HcmV?d00001 diff --git a/docs/slides/ml/37-evaluation-metrics_files/figure-revealjs/precision-recall-1-1.png b/docs/slides/ml/37-evaluation-metrics_files/figure-revealjs/precision-recall-1-1.png new file mode 100644 index 0000000000000000000000000000000000000000..b6955f2b330a6e32e7f6db450864b74966fb63df GIT binary patch literal 115030 zcmeEuWn5I<`u30_ZGkk3fCwWy@RdH+aG4k13|`A}f4-1%y7_RuIFI>Z)gULX8C5j zb~DZYuomHWZiZn?6Z@Ra3L;RL=SwEb^=7F?-t;I%hVBY)v`3NDuvsm_TPY}?!|gH> z>+4qdEo<1AFKN8W@)<*%*rS4C?LR9wobXKho{_&VXN zDL*11q)2Z^yK3R4y5)QOg?Dsg@a^1{V+f~7XhEanx4=2h+YGch3MRMwngi6H^VYBV z?R=dkGsbjV2185)`#J=YjNeMIEx(&syP%pPTC0{C7k>9Z7hHU~j#0!%Cx+0rfx~Wp zbI)EaHWF_Xt|iikFgHFn^f&Aj zd_c@o54&z-xL(rv!wG{yIiBxb`MX&MiMm6GVZ>-b`}YU&e5C#D{q1H=VSN@lf^HUS z@5=70#+UWl%-P<6P?~~m8wP*GTDKp4)1B$d(VgMbBs@Ilj^(j{P%Y+J;BHaHcPq8j zs+C?BQ8W}y0;`zo=O=#B;8ESfq-zGbl{l8+L2$M9C$}5LLd+VsL+F@1CPpSj$J%V- zt>dkbo(V0fiQecK-j<)2Jnv( z_y+=ECSaa@a?UdW>+Bi}e*DWPB)DxLkT^*8p2QPJjK$&et~ZP#cUGCV-H?qpxI#<# z$uAoU2*VGu{a!X)^TWTH@Wqclfo=YF`j;w$G@dl1m0ZV_&X+Z|5#$}D{(2Q z*H2Vc>uPhYgYoD|DKI!a87A6vF8sIGdgTz1f{2A!sP6q&8D3`qbi%p3c;!@)|3Qv; zWq^U@gyu>7hkH&JM$d_f{lA6&f0XD7zJFj~Q$vH_wgA^321D;D&X0|I?p#eSMbU2; zBQ?NGy<=Zaef!w(#0l{i2MgsY_ovvKcXqy(FF`FsA1ewN_2yrtq6%eq9V6)K?Pc<% zw)S(~NTiD`JW|e}zIrvd-F+)x`O%|mYT9-xGG*n9dCj$zj(5Dr$Dg6hbX`}aN+tq@ z3@7RWIE97Tq-mW#yUxk!u4QeP)QeQ0o-orb3_>4b1o@;Ua2e^3Xdb=n(V{xQHtE;PPvUDLU)SFoF=BP@4fl26) z<3zxSUHsujN>XLz2wJ$qABvV1+k2mH+LNYY{r!p>_B`1J=Lq_of|T@`!P4IZ;6ma~ z=lNq>*Sm(<)6-)O$2iyEwmr;@D7Fl*ArX6OYGwu*`ivtO@4jc!*wzL+IzS%9<|36d zBO)S#&9W<0b)2TI$jZu|cPh@V*osmI4e&Mhy+qhsxVgE7#KbH*{^;pxEnVvERUIgI zTF-DB3X6=4TsChJEuAsd)$9BNN>|87ZR#rHxmsq65Eh|mR26b8kLn>9WUk7^gU%SQ z+%6Ig65X4P!5Hz?Yc+I-57*Y#hE!}sE60c|g9&bb)$4UPY-ww%d2l9D5D>_K zZRFTYWT2+@7j%#2g$vsWA#qO0Hy9arv*N5qEaVH*6g+mDb!(qOOt&Z+hwJ6t)B}G7 z08$M=C+{~QsAJ>&hNpf%E$m``UM<=FeygQ>z7orGbYAs?P>tlpPH8%DJ)MW^J-5Tv zAP>JVItvpMtCv0YuInaryA9G?P8u#QW%(@+p88(gFC^FSV9mcT`5XP{J8^bma#2d2 zXpM;ogTV8GJ7!ueEG!q+&CSg(r#~xj-kf*i%aY5`3?OJ-2v67u)dsE1O6Pg=_4_QA7>Tk=<%e|hZmpm^j$E7$cW08y%7jKO zpd~cno5jXKFr0&(i6A)$WTv36KU{2~FFPEF6>z5*@Iwo?VvFH<^ZGqRuC1-DJVGZ& z>7_`xUa_>;Z_V^y1~l`eIrh+qepbB-yrt;R;5R>G2m#6YNPn!ZCqGf*qMWR24l34U>pMpJOn?+VZ=$X zBquqUsbsZ|YARj#AT8g6mFOUm?w}#EYJaWy`%8E=cbU*Zv+kiahjuKq6dk>Qvt=Z! zq7qhqbbxZ;d>`*TpIV~BIkBhYI)16`DqQSfPAOI#1rbAQSR(6bUF6LlC@DE$ei^x< zAD7E61E5g6z*M0dR)OmDk{ik;KE`cppu3LGeP_&fstkFMb;++d*LSI~GFxbOGIVPE z9XkvX@1|P0^PT-|{lqHmYN_2qjM=yc5uNLbM9F5a77c+VBsP~lXk;_X;f>J)h@s(5 z7Ct}SdMQ0JN|%vD4vV3exz(LAh5cC#B~&Ft&XqKsx9l?raiz z-`ZSCMOCV1s9)PENdu6~;m-P*utAuQkG=cRsdp=55Ugmh%qqFfKW-yG$6NU$8o6)0 z+gn^Y_2Gih*sDvEUlIfH_afLKX+m38spK1SRR?wNjvl#jj>a~4{{ZFTz{ENRrD*losiB+nV+bT|4k;2}J=jLF zNAp6hU+&rm3>)iSA9hDCg~Z3Rqg-c%zUOh5mX^juW9T@~F{a%3>SkhBM*;cD9=U2& zIm0=DtMNzhTE`qajM1mJ4>iq+=Xu$hr=8JGVPBpSYajJEv)*E|Aeu>Rr}%j?HujqLRnD{3vHZ#+dEfFq#sENqDbqCx7O!xnml z?KkXe<^fQ=f!v?wGg=xftSp1j{&IeC9DsZqoPcf4B<2>*D>nfvRK>QSLk|ftu^`DPh$`>~}IguQi3SRv6`a4|h}@ZnEzJ zc5}zTfuKS2;V=}IWTyM$@|7!%+m+iQGo9MoMa31ZcRa@5FvocAkNMIqXIayNWy~W> zEcAL`ju)Yh0|5(z+jJyEkOF7<-6FyDX1pSHqaouYr2D~wu8_4HxGZgGBhNFi}!c;^Q}3*b*j#duIp{+g9~7 zGt@7MiVZOI%2vBXv0e?b$sA139jPxGYafAf!t@mt6znkbww&s!UN2M})z-cmvTg>q z%_Q5ji}azAiZarlAp+=|L?@m?u=^9=7PlM-qX7crv~6 z<V8Svk2&1Zhml`MDM5QK=epMo7?#w!`q0Z6Ukjeii7}&6_Wl zM~X$sg11RPP`9%QC0i^UJt~4CVyH08V~to^ zddRGA+d!i?e}hOaJ3y&k>(&@G!y4y%(qq^9Dvc7r434g@L(wMG&y|1;p(;_?85tkK zb=?IzvSQdq)pXrdD53uso)-Y&Nw6_V&4$<8`VOw#yw*YZ_W3;5%ShTTWYgr{e z&;!t@w!N4bYD+PPI&Db1+YI=tnNjjFHV>5ArE~E{qNDWWY}hxR4jrue{bmeE%(0yq z{kuT)NeO*T>E8eIWK88a-v{f!2BmnKUlN?GaEE z)L_a&-2OU>2`Rt5?ZgpOS*=%Gh2kAH@}eDf-`Xk6c2l5rn!Jz_9pGZjn5LGg$!OM> zWtZnSEWaX-unI3hRtlJ>-r!ka|o+>45B2Qaa~B&opsm&BnI3_7q@q|Yy*aAq%uJebQbt?ewGw}N4Smw9r znW-vT6p<0la3WT7iO-}WPG5;Fy7oS(K?4$d<%g_BSe&D&z34)3<|TrcS`^P6Zbkyk z-=ephu+PN<9Rq3gi4i#1=!Oh4v;K~rTUY2o<=N-uPPp$g8Thg&q&#JSJtE+Ix%+{0 z3idjX7;Me$!?8#j*xgqN1}v)%$dc}D$+1^VF0MB)1Pw9on6YLQ#1xib!h4y!W}elH z|7LbFgkFP#gSGsf6m4C3ZUB2WII3LvM(~W!me#8F0@p^|Q|hekLsr#{7rf6A3(L!7 zR9gMTPQtV$$Na=6RN!cTeX2u}WK+9U_?OqNU^bp-2mO?-)$JEs0}vs|a|xYo0*dVq zTAG@Zy;_!Gb#?d8bB|;rEUyLG_f-}GzN29-%z-qXDm#V(p?Bu{V4-k$o@)A9>5r!j^n6}iV8j;KGp;CP@-L%8X~@ij*bp)RaPZv^&AvYB=xze zv%q`o{MqtIUt=1Aq{pPjf=`nPycEx2qT`s+gmT{&nz`*nC)Z^Q*S3#T*DztNhZEpAlc8=k~= z1H!sacGmDc=MkrwR*jHBG^X)cvgU<-NhYcTrZ+>~onkhi%za9+$*$`eJYO0r>255@ zOiQzV2`3oP$;mEUYge@{O-z(bOHWS%w%#A!*3YgCuo{e9Ou(t|ygiNhH0pX>sp2W7 zS?d>0Uh$2Qbb0%*NCZu2aK(F(OWw-L>ML>B(s2pu4vSumqY6+0n#{H7z@yLM1_DZW zoq)N^SaVFyqr7Xs*ggjKCuL92izhl{#Q49Q7v%NjxXj2C{t`=q-V`S!ajSu!v@qd+7fcnJP=pE6n&2OioYV z-@nQa`cq@-!d^dqymphH;HnwdrYiFP6)Zf(x$z7Q4e!sPoM4rF)=ASn>|jEb$mwo;Y0f6s`#xf zdkPAQH#>K}cVm1A3v2A?2;SJ(sO>h9+JCx8uwPy-Ji{+2B=mh^_1=EO_#EiLg9kBH z`r6vstG1dK#K_UwW>q$sb`B2BaJcyCdvbCfhJ=P1wa1B^-r{0uhO)}s+}gUo?-rpw z@tS*Er2TGDZgAh=D#At6Z0pc7zVG$(Wwhq@Okq-zR9$`j_7XhAiQtKfia<6E4NX{4 zQIV6SFZnWSa9rH&t&!%Zt>I*%$3O<~4=Z=NeiV-84)&rC8#)8g*?Fy|re+Mmp%v2A zr3{czn;Ss(eBpeexUzBxP>IDyUVC-H&h+v3@88F9wG+qO`tMp&5>=6E-2-_&zog#J zN6=}{OHFcyamT^<-xiXC;m5>qXWVA~-~ayiACl?W-Tb?& z|Jl<2{OI4=#qZAm3`srjx*Q|;Z*WT-4-;Hdlh?y_6|^P~14SNr&{EU?vG6y??Z!u0+%s?f z6^38k%o(0|-wrhk?tBxe%b%5A`L*H^FEL@u&>NmVfi}nRm~i<=(VQe!e`2|KIUYAL zQKPqu;8Zx2X6=bX5MiL!Rqn&V?I63suEsSMS=sL1?}MRUxp(GzQeAAH(9SIq z@2$ko&0Pt?{l?Yv@^>Z(DD(X#fbsnU#kZL!Uvy*9pZrzc#m#mb<*)Df{@R!%O% z62(FaiV#}Kz6eRF-^7rf_PAwSqcTbTFLY4v5f0lI=UvzmhIdt^(BV6n_n{X|p)#km z%fU)!U6KqQi{G-fbIxMMIV(FFT0Rm?Y)BhRw={nt+EvT$erZN)d-(k1jZ`_Ma6uwM zEzhsl!3rS;!dipd!jaN{EI<=jfOK=%DF44K0N}sNW~kua_wN$|QCl!xf!xnBSh<%% zDT+oCmPX)N(H|FD;hS3&q3`MIhKT0H@6H-ZMcX`9zR{liqp{vKwm7d1i!xY82EoJ4 zRyH`eJ#eoS*8_aD{AvEHVSjy>jP4nnR9B-ylB)!Nyc$p0)1h19Zs+fI!r59cs*Rqn z%IF=q!KSrStH#^b%ec5;{$niW!(=09`3XIr$F1N6Y`X)@GP1=@?fArYtU}cCAQ;){ zKdm=tlJtFTYyA4a7)8huFOkz{3A$)*kT97ZRt@E>JG5g${xJRBMn9O;+~~8Kp|K#w zGZ&rof!aC$JB#h#ZT|4H*QHq_Gp8 z9PMT%q16oEbX%rt*mR3a&sNZUW!*IMwYx%j?&Po*^NQ1_hSeFVpM)_l$>N22-4l#F|v(;Bb=Oys#K zL!r>4R1LBsZ3aFL^Q0uOOMl&EV(weH+RbV_GSE<&?Sj@TCdPR*hyK8wCd-W?221s{vW(|@%~pCN z^EhLqT{gc*;ZVs7vGFlmysTQ@O*Zk|Zdp@?ScikR3`$^OMRRzK(M9POS_v(F(C1jP z%r!a%!2*c62XkiE9?dOM4X1o?$g?Q9&lRx^3u)VELsW);8rW5Tv#K365R=-5hCqbs zb1tKe>3(DLDhnW7(QH=8>%Y)ld0yR|MBB;uMtVs zCZkvwb5Vk&wWSiAJSKBu?C^6EcvR3qABMYhrfOqM#3XHEF%{!rd*s*sIzi%_=h615j>sOrmoNaoU7 z#WdMmr*ePglAZIVYLA}YhQUQPUi!r!3UGX&l^R@@SO>rj0k~A> zaAQpd>o(qKn<4M`48vap;QB#ZCiDh9EG<7E&19FvTRC604;N@uCK<5OE%RAeCmgc< zuEUAL)$~xzG{~esH+V`c#J}MaJ|Ere%%UCO;Gp+5m{87Sv_?J+W?vvfzOXxu|#!~(DnQhc(WjYh-(_e|xI91&AR+p{s{NyQIh}#dbF!X>UopY%23L zj`il6(K_*cI}`gQ!xs+EP5pI(%sUgbqH()kLSb4OnG)rVAk>JsWd&|O?ADH{L4mu4 zlYNe_eAP{InLg!q*aeGFkA>cN4d%z{ST%~%D^K+LA3PvAcU5f=UqEZXB>J<O8vXc<3$0~ZQ5mO@c)PgCt>TN+-T(% z@$PtFELYqHgZ8kZ-a`F?YO}dPLXlajc8cx#6IB%1jFpTaPXw8HzI>BWl&lG3G&sEv zvl7;7W{_uWN*~|@SH`>ie0u3x39kY>i--kd5|5-Cr-7q&i+*vzhJ570L6ph95|{=0 z_~z1iBC<;$Vk!U1-;Vw7=c)#hCguTZ#GO)WM%hx4nyLY~Dic`HK20lcfYWJsQHOPo z+B|<%8Oo-@*I}j+q55qAmULm32=?Axj!kb0p2=ORAiW#*VT+$JiCIpjOryraWbWZ1 z^lOSC#>6^r1yf;Zw&sCDt~}k+G+y(K+YUm1v>ZG=gMhIWBah4zuQJ4-(G77~ zggEVXfn9?oV!J^v_y9^pLCK*tX1Jzkw4vClCC)0<*GcL}j?w&3H#BTY{&2=nV`Y1x zDwb-K>8&2(mA$J(J!Mg2)fBY<#-_kP-qZS-+ua^P7M}gI&0Wgh>qL`()6W}m0BF>f zO~>5%8>rEE!U#lhd)@$9%jNyn-qCQQ6~(~L^rYyNY3PtnbJXW+!3~&Fn#y~%A)kUV z;i@aHuDAs{L^rehE_MP)XM3=%$`!`5XiS1gG$K)(GoU=8J!o|NHL6h?0KE8X$%h!c zzhAsg-p_S$f2X`CT%L$FvpYlbNZc|B*VzP*o+DpeRx^rPE0{e92X7G9xu>}Ahme6T z>IdgifTW}#QFB{rJrj*@|4X>nV2&|1LVbvLmyh6<+FX?iAHBIz(!z!@kxNGB)Bp=F zKHqN=MXw5&Z~c7O#Mi$Sf|uxN#8edMk6rOSyN5lTkDLs9I6e?4oT`n!9W-^)krUi* zxudfs8wK7+JvJajv|jO@nOYw9YYPhx7ee%R^)W9*J1F7$h}3j_p0Lph{tES>5@Jj2 z-|N4Dk#{7wu`Q8_`-&N>HdLdAS2r~7+ILOOsNd0@bQrVT;N9{m9I@fOBogQ z7L83mX01`wuzcz^#Y2r>SpeHdK!J?4#%jNP?eywiG+Yu$V@m6^^B_K)d0v6rlU>gm z<&y51(^J8&k!E;?J*+~(4<-R*aLP!Rwl@*yWnj@DZfFd7yn$5bx5#Vg(p%CT4pKOT zK9ReJin_(RgzGabEkxGtI2wI-kLOFdm0m~WezC~}z7~ZE6{H{Yn+sO$+_MSKl)2T8 z-*lNw7ieOQQ{|ug8KuY0k`B9$_u(8>e4W_gK{x@fI4)PT5*qBhhhiHf`Xt0mit<=gifbu_?G z@RQ^eC+}}|du6pmWC#OA>^hne&e``0-rk&P)fP7V{LEU)KVJV*aBV3dLG`Ma)M9_T zz%@Mo=UXF7VCdSxG#N#&UI0QTKAIsuU5kkd7dOU#bOdA&TKTB{`oVaUVBkHTD&c(!R}8sttWkBW5&4EY-_a*rt}ESt9emmB}g zVS#ME-J}Q=&a>c9W_(ndDeheo-{r5vx?r9u%KA7Ed^1?g-mcN-5F_`_y-eGMXo9sV zB)5$Gall{WQFjSeh`O_Y6y6i6AtEdTfacNJi!wPb64bJIk}id2Z7_^8TeC7)m~>iRT$Uq zHch^jubr#DLx%p$BTJcFw(;b#j}-MZv>gd~VWt4$YOpL&R>&stc006;HQw=Cnhvv# zxAFye4^SGwySl$QoTVbm|Adt`Mn!eHEW+t*QS`>x$sXU{Mb=D<|BXQ6dbcsC>etsNAC?U=coxF&BlA|PB)28OOL7-J?F7wr?_rZ!fU0DnK3!{1Vql|&b{GoDtIPhp6yyvo>VP|$gzW!Tu z=Z{5a70EAiw#u_y^X{dbi^;lO*6r-`>fsi0eWT63>9;0_-g3&WH@>wwB{lby6Xcr( z5F2}L1~ottV4B7Zpch)bIbjhN9jOX(eCJGgmsczRWJ#WJ-afod_@mDw66YP2t-LKh z65aeufzKp>CKTIK#=r}|$;N3ijEJsV2Ia&^(4PFQrhO7{1}%p-QdmFC$mocn_Vo)CBVA||iJv|WJ0T78>^r8E_K zZ6ohu$=BouYs$*y&5;s-8ZOGh>u9nX8(t(!T3b)ji5jiWSo0s1%uFpd;R}>}5x3qE z5hN!+s}s?`J+5MOejk1K8yior@TByfav|J1d#@o)O=0d}ulb_FsPo&%X0xdTP?GYn z=*e)w8>SbgCbBXZqr*`=uET-%OY9(_FE-fG-Q5=h0@i=lY`m@l<2cmbq{^OK8SEPj9j<7z6}N|7!Yk@icDj}$AotV4_2vMw!(Jia@_UNv zv`7PI?cn7c_a8%_Yvr)PA}F#}F;0H^>GTTZ%Ck**nO zck{RtBu-K`Je|=1O`hsxy+P|%{KN9V^uyKpTf0tLWkZQc31yqfG-gLXIQP{o5Z8JX z=B$ej6-7%5)HA5Xeo-*L&w$uu=JPH8sX(t+Wc@(=B+wncPNUg7PzCKYA8iIQD29Ua zSvf)CB#5hJ^^CVo-jt19vtg`p-03_t?0y12Sj8J2w)U~fx}?f2$QY+swtFQfe_ea; zIp4f1q|ZVivHZ!1mg@EICMI$=dW$$`>RY))4_Z9;?O*H&c2`dZt2Df_2&}i#=WqlR zRGs3dO_EVFB9&7Zn>OevyyqAq@ z2i*#8%L{$*HYQ_qO0(1J7ZYGh0&U8`l%w7LCVCuU*A%wGLd9#s;|tBJ z%tn?49wXI>bL!>dG=Ox>^^1c3Di;7_$CXLpSTEeagRME20o^l zg=At~@{pEG7fzTc4KgKlyh}0%~tA7Lx(<8=vHO* ztqwuWw;jw>SF#5MYke>ieu?VcwVZ95hG*un&_70@e%1=ay*55~h=!!R2a|QYKRyj3 z&W-;eDXEdMIc@5rH%V|aOhxv!s6+HH$X207QDAJ!Ltp~OAt`$>e&wnGBwAUE&`bT`*36Q-fZ;+LJpU>Jf)Tl*xTO( zj^KifcEdX-@ZW?J51U<2ciux^IfSC_VUNUi3d4y~Yze5t;+c7&lvh6> zv^1y2M6@}Rea#s##fAo^5>*%O$Z7pWFm!%i2@jsdvBli$)F>`J+m4fPD(USddWdtHIjR$M1STsb7J%Gy}Y&<6`fn; zCPm>!+nRDwl;mA?J_W`Y`dX(a5oFlB%70uI$j-al)+>%eZQBZ}FcdlaP`~0O!b5(M z7)32yT}v?`-ErG1{(Kj!{^ytxApc;%+{ADFS!_E61Psg|d%NaBBB8?abwk{6sHvT5 z^3#fPRpO?|iWshHBo2IC`B;C%*j*dAA05JB4UIr*c@OZGOG8ZUN<>#WvQ@4xcg%>H zK|_nluLw+i>@zg_Uaet+|8sw&iU6e?`(dc{^Z#e+I1ldlII-)VnJatPKd@vc(_=nD zaI1N$JPp6jawCo7M0FhDp2MUY)88;5&Pg8P7RcdSL9;~nc^|CIzG^^m%k?KG+VXqZ zur|f$<4g}S{h~g10P4eBXE)9E7xa*6i~=pbwSYS9XG!tHTb5BvW*SwSQ3rCTB}lzW zOjVKbQWaLinU3Jcl!J%Uj&(fv8B39IIuOm2NcfB@tkHw)%G+Vrdp~QIUbVnjV$9dR zIIchXN5^u-^A-E6F!#?@ggw%k0g_U{@w%%%#m(+S=#B*Lx`DmahXzL&+1k$dAp6Y%C%9b}^%2k%Y22U&vntoW>MVMxa`nIC=NQ)xT`1 zlbz#JWaXAosX}5D#$r+NoZ~yS-d-6iO1gaQOQ+j~DZ+iIc1RAi47&;3+<@@R>r`G= zFW`CMz{O4%O$%|Blc?lUTv@QT311%Vzw{F-*-Ak1^5HQtG=Bw|+D~vfw}Yrn#7!*` z$&niNZqMv67k4>*F9(XBhw1Jq!(WzVYsIo6L};1O+YU6b&m{EB$SxPnjmDS@sBygv z>aNoDSD|Z6|6X~j4|Qrlq3e6Pcb@pqlBc zLk~x$&_=qS>&jFO|wL%9>1tcA1EvOg}p8^Hu{v^Un*&8 zSH4H`oPI}J(A6s}^ej$@yB?og4O(c>_$%T8eQvYo>Xm&%*FBc!LjYbr)5DmWx~53O zyjtF5&C;<8adw`fY~6#>(ym%m+-8uhdZ^3fJM~Dk``x!w)ck?};d4?WvuWC->j7em z6^wJx-OGzY7T!P5as+ZKS7}RILCN}yqWR@d-fp1cEfFHZY+~J@HQi0iXXpmM$&}Ac z3+vXC@=H~>g_?_5&rY`h_RxJ4CEX}t^|wLbu_b%Dy>SCt#heKSdwWI1t=N@`NeVy* zjOCm$q}kx{1hXbx^SX$1m2g!~+Fj0ukToNNlOr4SxY&6G&%UF15Ze`$lLrQn@S!XZ z6wuWdlpYZfWJ2~te{#<-7>duha+{6ytE#1=vv{*KV&zMix6czjBExgnq{}2SN$7hZb#ymH(l%yvQ}foK!wwd5y=aPz zyR9qwQ(F(!=hHL`sBDQGzkf#a#f`t-FGv5PIcr)2Xs7$?C0^4UXvycfbgReGTo38~ zvj;=^4pVw^=8Z!1xpPy2!_c*dkQ9GY!@ieg?4~Px5%%w3L86skAKvQj_MTIu`-w#A zm>6ibpP+h1Yk&}P4f{A7%FT*PXfKqnSJ)3W=DDy>6y*<;Rskv9xtVjHRr_gvo}#-$ z$DwuL$i{~Y-xQP>qImW_iDS>EwY_GKhfziPUNW3yOQ)>%_#NtoUI29EvZr}N!3+#$ zNxH!B_33v3aB|C~&gvCQ{yf$8Od{cKzN1)ShUQ3$#OT98hS=e?x5k9q^E>dfXz5pe zJUZe*#EeVVtated zj~C#@c=1bbRroqoL~!VvTojRcs0V8YXeDikS|c=^nbkV)^K(aa@9&Y%JmPKeh|xAb zn>1cdz+sCxJ{tDFay~yE47Bxbz^>Dpy2FbJ5S{Lmt7a(;tEUK;qvyqUWwN>NvuvIB zP}iyyjv|sK?%F_V4VbWn!}V@4u5Wx_RW(rQ5Bc!}Xm>SJE5^6b7q#dU5koFeZ_SMV zY-Hu*1FsJA4g1U7R&Q{8jI3e_x%`7AEIFy^9BZ@pyd3kXkjG^c9@Jxs78cxFhN2?Y z3v^N_Ds(e-?_}yC8vMAQb9~j8VRkeBk&x4hNQC%|zNnx5V!IL0MBsMNU1X%xv|+h6 z64GViG-sRI39=#!6Wm&Tc5=uN1epH69I}_e!=P$kArPXRY9Ai9iOV*+=4Q6}fTctF zCxE`W`N9cWXujzs0os_z$uYcnysxq=hWzIx#`bDNOzDx51i0KP; ztUi->!2;&@9SVyYv1qjO6uf6H%^Nai96k2^z@PF-eyt>z?a`5d)d;W=cnHDb0RccF zjD7#w79LwAJi=XnUkpJt=_R5)66;oJ5gDVZIxbAt$!@mvZsKxl2TNZUZyz-V(mh1dCvb4cU^qLxA1S4bZ)|B!HoQBvmTjVBs& zxU8(1eAYZfB+avg)%q?03LXnf(M3{dIZLCg3JHB?abVD)J4thpDAZX}wkJMIsTU=2b^XVSgd;lK({h?9xUt4-~O|Kf+ZfO?mE4Ymd z9K_w_gglkp27$4jN4gK3L7^8MQ}w~_3TP?@Yn%8;nSfYLsCvLwKzS{B37+Q4ZARKp zgoh#`C273P%rBf-wqDC=1C3Si2%D=OGt`Elt?Q`cnyBqL{p?0y=WfjniSaU#o2>NJ z@yDeWnw?)zG9O_Q6VuClOzV>D&UQ*j>8Szhuld-(`#0by!t=aDQ>u}^DKD#FOE#Np zngS&S{PTffSa(lB$!qug4YL_ z4voZ?wk4+|IcSnJJ7rmU*JwT%Jb!Uv;?l54KCZ`bz#;`rm==%&A9ZdsoSk`i40LFo z&F4Y?0#`pg^_A_kOrc37!OCnNf#>=0ZkzasJ%iTtDv&$AQFG>WI|v)ai3 z8po`Z`yz3p*%Q@AKTSh#40Dc>S|==QPJX#JZgDv*D_5KWzf2@qY-DigI#B%#9-l1mT>R9d`4NhC*7xOjK~I@ zZ?|bx@Gr|@yz-om;yuvPX>vZuD^SWe2P)K)5&NzJid8o&l)bBzwl)Oo4XTmZrYn7w z{z<h_f~r0tIdVYP2Q0^Cyb5$SnJHao73k1 zP=r^+1d-vceNE_WWXzF9x$l^WjmnH0VCfH213A!Z6m!Oevf;o5M4c!(%HF zmvS!MN2Xm_O9dm0Uii@GR7jT?OJzDde|z2ywblgp6z=Uwd|V716^AZSUOhAd@|mWt zQPiDXC+8Y1uku`arM1Uc9!VY!W@WA}eHL@8tWw&MFsAs_bSoW{Mf^!k%4>%lZ@=&Q zVS6;!--O|UmkZAhdder3i#C&Lzpw?F-IqN|&_w(bXZxLC04+bGTGy}TJe9kxTV&n5sn$^1CImRr(2PgDA}6q`3%@f))G~ z8!8&v|QyxOX&Ok3y5tE$BG+niVwx!Kv<(aFz&b4t&2GrGPpKU7w}4jdlpLLjIr z1M(Of8ynvb4Lz0ql%6i<<8!wxpZwbZ&RcGwmNa!+hjtOwu0^e9nc3nnn09M>y93$g z#zsQ|>{-%lCHRQ%Kn`p_!_Bv<0tjni?g#4 zAIaa%FzE3WUM43eKwfK+w%qFLM`@ue%ur^C!9inG%V02e#@YiDlhk#GmczKtZ_Ikg zYhQanVGA<=idEm4*uoMUK4yvW?0uc}At9o{x zo{HSDD3k8<#6>gNhbbR6%n#IyvptX6!Bym2JkNm1*n8pdk?N<33t#yu{~5C|uqQu< zJYylqlOF?y5R~KMe10-`ph``O*%;O6qG=-AG2?t+!=%G)?xb5xiU7Er0ea7B;~(5p z{3(HyLmRASe9OF$mU z-rBQl4h^?N4T`AoolGa-)p~&pK=sv9lb8QNJiQ#r``LxG+>4NuPN^Q^z1!PzNBv(v zEPQp4o|=)hyYE~cFFNxp?zP-}m{DW2FK+4M@~KQZZiTQhIm-f)f$WK*aQ#G_vij6A zeu(qR&VjqlyUFLT!)$nLPOI&tRe+!-wg;_^{}R;s8zvO9lH6tAnSKe|6K?AT40ttA zgoSkt46x7!)t7apr8?HtPZbSkw&hVpM=?J3hC^UnOgZFlP8$Ag*f%j~Amksq|0+QI zE=2%itfQBJYz3wS-%bxuu=c2@MczIwr_{bbj#s4-G5BX7b5;)jy;Lu3(TWUBMHcW@ z*50?R`@291>g+4JR*%1E%{_||^75Zm*FPR2E{;K^II(WmJh>$Gx^2(u;0RK@6kIhM zQGG(cy>>1F^%LE`(ER^<`Sc0mdAMH3bhMsqT4+I<`JQNno$r2T3ZI_G={GslCIj2( zFSnrP`M>COUcc=P++k~TA6W~Rw5Fk*S5<5x}Ni@2;K|*#BI{ z&s9BBre|i9s;o%X=`}PGtVfCf8CYeh6s54_9Vbz0?qgxVfu^>e`^A53;vajGdFZwO zFyu2(q3kROvKG0}Q#8r&r;9FuT8h8K7QDf-yYk0`Bif7`_A)r~mMK$VERT@_i6 zookIdt=TsY-iygv8%T}|yr?_9<&^}`23I(q1$>f{BBTWrQpXK3iv#>$=`WZcpB)$1 zOT|$RclKQ*`NyJ81>h&X)^@+Kd}b!3YmgJlML|hOt6ium3@KM*!pBd^oH!fxZ@K+2 z&O&0;dAB3E?=#f!38k;kRH7#F-nj);x%bBBPuco2X-~q@{t{JcmcMP}JbQ4tL7Ab) z3=BAZbz6QO)^`IvZTUdip}5TNtUZdSoNyob+7zZ7s+Hk10}Kz>b=A3^T(8rDYVNTc z*k@gle*2djh(9Bk{eSGeWn7fo_dX0rqlh3N9TL(?N`rJODGky&gmi;~hysFiBi-F8 zAYDq=&^5r&9nU?+IUYR!-}m+N`J6X81H;_+z4zMJy4JPUUOW1gy3;hB)aheQnXS!; z9ye%WKE{tN^1#C*```kxTXd5P9i2Qd?|yd0$UZ1&2>s+=UI1eQwCMtBX22YCZ~mA* zz=YOM@u{nG8Jc3(f@t>5a)NKi*IA72N*i?10P{yqw!o{7*n_tkd3NC_FIkVQov!Y~ z>D6E9P&QQJ$S8)a| z3H%ZvYq=tuf)~TT9v&X&aSgd{gHEFsjRYbd09lppKvr263vn3*;6_+)Gyq@o%+2gy z8V79S-eY0f^Wa%IH@(Q=J{y4lX_w1*j|+-~8mdap!LUy3Aw?gK2Br3{7(wU#hsq z#;1A+K7B@`-np3ax+T#H_T?$4+i_fXnNI(>Zc`Xq+QkJZ%zoiY4&ySI_>_mh{c4;w zF^+e^_PNdDz1z3nB8B{wZ_x2MvUqxwx-JbB_Zpm`@LFF#ME0^0D>X*&0^&dJGu^m^ zJUx)fkM0zaqQFX});Insas39KSb0K<3YCU4ZXsz6HJxW+JMmfsJO?ic__xVT)URqT zs1DMj*dN!a80rbp?Cu#^4iiebok~efSEz&`qfkR=E4!Q8S@5J}_N)Vbm7qMYYC=-M zE$LnOfO7b1%a5)4V#C&QNxHLP4Owby?Zd}q?Y;^= zs7oOTfB9!PPJR<%l3zsF%4ne}`Mkm)Ls%_7nYA=}u<@BftE{zhgWF>J|`739wIVHT?D!v5NT zK@N*H`%?neXHQqP@iuyncX3%?&Uc2nTzT}#uzH>m5#*}VER;JmTl)fK;opbrVNjDQ z(B+osKtEUxmKU5+QpbThc^cD5b5B(Te7?>8_ML1ou^$$LX^JovLYX%3Fz1*pT z+$G?#Yo3gn{Z)h z?y}arC&0+6Lh4E}xm^C^o~cTNJdDL9GaFf3FDb0zf7Icep@zcO-A4PtE`G;wy+K5A z@m6V8lZ)BfnOUf)^xK>D7bL9CbL}m7=MKSw{MyJ?=dj7E$@Aw z2p`cq&l6+lASETf0@IcF_(;=HKN40L_&`e{8~8M^QP*l1exqwT}E4B1vK&uEnLU6`&HP+V>{Efx&KRWJRmb zoGh?bd>&v$L!9jI5>p2Jdb+=DrkFl-s!pZ^bdq7nw@WJ(8{N}F!oU#j6XNm2KSWSi zwA42;^;RPg|JIn7m*!H1NR({VX^VD0`zhxM>0KgZMn-lh9BSSN(RV}*QB^hsNSc}F z5NE@`sPrh!Rwsq5J0|UZkA8|e5VC{nJUFixuE8M$J^&zpO@VLA@RG)CIfMh_Dwy~} zoPcL8fzr&ZuY~$6$(Y!!@6_86{L+u==%tLbeW~H)y3S6#%Sadr0`HGSM^1_a>_v!- zQ!Tt3a=8im7MIH!7M9M)q!PwXem?AJ8m1Gw12{1fo;2E zd<{p?B$Lu3@VmvqIIJYOPud}8=Vc#L*v>4p?bc;5K5pl%gaC~Q)b;2qidW_at)0Em z_KlT}R^<`f35=`IvdkpuWQLaPAMjt~j1c2ms$wPX|1mR@yIFSoYuvXZ z$kkoa#> z?PO%XAFd{d7AR`ku^eZ;Zk1^FLx+Z`)di0W3@?`jq+$s*o%mQ3kOiC@oaF_TsP40w zGl~cEX^87MMcea5ro=m}kgyJZ!{KOe_xbS%SPBT$8ZHZ(xsY_pcBG2KLLcFix=6po z0iyOFS?!?vP51t-Tmnn-p3jgMA8kzIMLCrV-;6ye_c7K^yj`rMV}+ACd+%5=H5WAO z<8&`T0~0ktkv$4mYV0JG?LR^)p(#{lleF$zxvCujKmqD~!efuLT+IS2OKb+B3rmG0 zAfI82&`9ak#Ub3sLA6X7_sdM~X=B14!M>0T-s4OU zUV?8Ga`oD8;_|NyO8j)kOY&zf#=bB9rK*-?*uO2R8?5Y^BezSnejMTZ`zG!wo1fR zj@vmbjMNxMvOLDW(|}~yKAm+^zCWEZ4XVUAc#efuqs) z!U-QjAnvp9-p2ad|Nnetjw<>Y+j)&l@%%`lt==N4{L$Kh^iuVT%xVppbcyyEAxc?M zfORDz?WLsFX71_Sc#*I#i>#G?LUQ#FuwHCvO6C6)z+RD#5m)7905O8qLXd-jn(&n~ zHrZbppufWIF%Ti!a9t87T>% z*V<~v7C5bIoB)`h4g+90xSTJ3<@nBce)}hu3M(Y&YBNUheBfe!yljw%-OS%PIG#^~ z-nvEwd)kdXyC$;6e(5#7Or54v?g`I|?e z6-P6wYg?82{X|s4cSn;0#C-)@&G&!1;`g7UD>hjnG_-kn2qCb6v3lKy!&V1`={=o4 zz3S&yXw?)dl{|6Bj@>4aLiUUFb2?!~>v0~|SoZqq){8(0l}BsTes6OG3?Mn#YE3Lo zBtx|Yy?Ngg%BDg93%Ma=`OmB=Fye(svPGjN%O}GWN&LpECQLjFpv9_%^z%qE{EhQU zDV%dmZO?S06dE4<5~n!??X;is(IkNS(UpI@p07S$9cLnX zebXT$gbUt8^RNA^Pv^QW6;4VbKj|m-bFxeegcxv81&ZY?2qshNwFZj);s*=zRa83O zJ>A_{X6nt4Tma_M#}}ZOTH7q}aMzdxx>QrSMdsa$i$`b;4^^~2ycs?al?voov05@x zi)9~8eKK!aRcKvFfPP9ZRc2+f33+5sjgl#6b^Q47=eqNu!Emp%SQ&cMZ#_X7L4zgx zT@EybVO~a@E#h@|&ZO9McH&M~eWWmdahj`q_DLi_s?AC;e5^=B3GzIPLJz5<@IzXs z;@A1JdA6PUE9>_O&cC)eozdIa*nWr~s2R#Jc4K5_u^O)^RI!8gxOf^0ARfl9S?0ID zIpz0PNYqbtn49Us(^g~X=Fwm070~(#qrGp`qAzSv4a?WSy(?kQ6Sq1p^BG_3BMrqN!;zEZAe18e36(laY?Ov;;6%i5kfH|`2Z|OHEY?RFy zxXaR><9$@?IF(eM8LJTK+kDD_+v4+Ba0NCuyTU*)?(U4YcH{aSa3J;E-tjT(m)S|9 zRRmmoKTCuG%g2GELfT`^Z@C{r7}~X|cDDHQ>Zfa+q_)>GMdx?KNqenf;G2jV{jR5p zfkkTP(-p%E3w}^^KQU9mTXZ&H7rEm3tjE09$|m0$<8+6=kSpFc4iTqR7~`xZ->rBY zctnjNz$Wm{7YAQn2O3s1Q*l+m?(wc@?UmvTJWi!gm;@tN(e48#Ve0SQPn&`U{$Tj* zgG14%VLg&@-Nd`Mk6~(%X*I%SrODf?mZLV(=+W{_hQoS+n{|&w-0cO;s}s_e)N$`k zXOt7)z4_egxiRxYXRpzj53(f_59ML|Ps^|XxMf-lOpUo_GpOtju-;4SoysU0vX)Ho zR%q7J@{^(^IRw8dNP5s2OhT0BOG1bzSpi~6=`NH-5_oy61oiDF5(wpoSq&eSjTM;Y zQXQlY^;v@l?-#7O-ok{quQ@u}oH|C{F_mmuvg<6@=E-zCtL;R{_zqv}Ish0hyL9dv|ARI(U!sEWAX2g#;LpCOmj0NqsMQGKs^%LAkP)USyubeozU^G`MNpcm~{Oym*T#DI!9% za(Srb5o~HH(48@gzwN_3(O)hV_CR%a9`5y@f?bu)OHBeT`p=!Ea5jdMK>!|7(%gtH z@j|4`Or%Lv$!$G5P@8}Iiu!mcTyf`dWtd>Tx=DW3QXGhS)-fhd)Bi4hXBFnAQ5pe#?01^>R1+8-E1Z$P zJnzr>8lXg+T9!DNwO0r-xj0pJTS(xMT1r=wOjUyp@!%bXd!N8-1o$$$%<9;Jz|4ug zaa4~tU9#)e*Dqc^$${0-VCH#StjO==sWWYrTjXpxRHvqzy?=vq3G7pG%fz_J;iKaw zxudxvrA>spgYc{m0Ip|wW;ef{{l^}O7$(7r;t{0^l^_?)6S8r%zoOl zv!l8pn1w!OoSmqbnX<@1s3*nQ9yS6X#X~@*)CC| ze1o|rG%DBq(Cw-qs^gHA{BUIBI{LuGdMeMSjWGeLl`(unXrUZTscTH>VG+iViVj|afi95tFEj^k4$eXf(ka6Lgq zLrNICeFtrgV|Z0{GWFo6%xWlIAhUKpxwTCf72A9>zJqGYC&jU5{ix3Qo3Z`O;Kr5c z{#;v165bIPVj`>}qzW+uR)BY(>H8hASdWXtRS8o&0*mAcHsD_+`#C+X)n=J~Kqw&L z?U^d+4_t{$&pxD;mPy~8-@ztxmoz8A7{^5oseQ@^8Bs-2>nX}6M8woS5@DSwIV-bq zL`0WKE-6{(H|>wFS2c!KOIdUoGSONG zu2RnGvpEaO)AbspL#vZ%D9IUc`5JU}nI$TCA+gpwNHxIqG6I;*rKa6ePsUDJ@03eDwg*xOE&5``hF>o#&np6h%q=-0u@zkT*g-n% z1fIB^q)qr_v3Wnt$hVqalnvZulC$|-xy+_-+o@02U(%h7TB0R+1h)o1&Y5`h-U7~T zsZ{8Qra>GCRRksnxd6!iemDfr@5l|CMe=sUI*i89rl2dV%9BUa%*D+jR4#3ZI|rK# zCAOdHW6y~14(J6Siva|`NCQ9quueJJg`Hy|7zVt68w?6`yWn9M$c?GD#@TlOO%2!- zjVi})3=DRy%JoiKEN?{!B{wT=eZ%B&FLMdWt#szY=HD?4B=JluyBy^WduTrq)Mo`^ zcBGFzjc;9Xe*o}|P*JGBfojW_&v))A-~Cu%jJk7cc|PFF$3d$}c4MwX7<)t)2j;4o zZ}{cie;OkB3Q~`|Q?r`RUGTYrlAPS>4Qv5Wo@npGm}b3)<%zGS@CM#JP9XYrHXJqo zR+Q?eBf7WFUYW$H5zyp=|1hR#>lTr0Q6>F=1(G{g9=_UraTm$xJ1B>J;}-t*oFY6j zMXOCmDQG6LkssecV=dY|P6@CR`J}K9&zoolw9iLT^5BY%5otAXdMpqubhg%6)fc(; zSLvPdo=@vtO+;hdEZCSTZoU|U$pR0k0D|#)-}0N|YTO!U; zfp&IpvFAnlZWurn8$1AHU=nRQw;`$7N2hby7O(|P8ZS3YF*axS%cRHLj|L_Oi9Wem zhfTS}EuY|vdVn3LutM*?L(IXg2+=rBnx;t^Y`5i&;iX8v+jZ@Rr+8PpTqP&(35*N& z)!OO}YB`*WL6>|x%vyT>5v2D&gp0@QFr1v!q>PFSfXIL-f|0o}bcGX?Ul|96j;K3E z_nc7UQkWU}Hs6pvENTpfY96Szio=X61o0TL_Y-Y+!8O;snCRWzGkEV|i?(YdIpYgLsbsYa!6g(%zASv9EF^`x|VJiP@qir?5Wh<qq>=-e8?cD~@i8G9s55XVdM306uCKv7EdQdNDy>)Ow0US>u60kJt$kw0R7e~s!elPsixx$XePRy|2g(V|v z%S!v{?a=L$1;Rv=$BoLXavY#<@=&-AF|;OX_qb%jT^D9S}YF) z^dQ~qx169P+nAyb!6YP4xM(Pwcn&M(L>B>;raoW){$D3m{6L&pI1J|o4Mra?z9gPp zWUunEBSNf0=8Fl9%qy8#GPe5$@=+bDN@6|RuRosOc|+n*CfeiP6uXqa=Zc)Bu6vu_dry zm~=RwVJf-|bI@SqNn~iNN1-6Z)-M+?U$EPIMn*{4bSYt#3g=ptAy>9&J`aaHJzqEOY$~VyPkT#IN zuVYkHV7HG15Kwop(yJsT@r#H4L{K}irccejB$Gtb@yE@6XqTKCxv#fOmmM(Ws>I(y z8`Y+aQDvZAxW-#6YE*oOpYbLrV&4m0qE$I=vD+WS2C>VAj#^k7E#p1Jw`5li^JJ^6 zt@dswoS8;HjP04hq#2X>qA&8&0mRijz51wK`sJ|=S{;XyJ6QwheR6X1(QG%%TPWB* zPd{bh2J(nDisr8B?5AlXMQiaPQ%e^&UijHB8pS}hzH7BDZ8*;9O|F{!H4kb&jc2q>Ru955}Ck(f3_P z^0LuSW8DDejO_Mt|Acy`{wy(1r+15^Qa%Cokn_Q44~ehXcP}FQ1!QyD4Tus9xs)L% zQ;eP)AZ!xXtXKW~Asg$)yA?w%s$4HR4)z=J^YUc9I$(Ks7omIh`OE6)qe|zra ziZTV*NJEb3?Q-WDaFfp#38jj((+o$inwGRbK)R2`y`;R8r$Yw|^%)31q-G|5+y&Iy z7t1%(feIx7^k|Ba{F92_?OqjOU3>5wij#2C5GokEHr@v)-ToQ_i9ZSbByjGABvnbs z`+1v8#Cg8}$?ED*@qkyDb^J#_!21<#(>6a zoj+7nf^c?Ddm7&-VguL)Nqysy@2ML?raZLY-@O!}U+vWE>S6`Kbg`Kg{yL~ND-2^0 zyRaOmfMD(ZHIjrewfh=a9Ky)b@MzI4!XiLIf%^6o?Ut3M9L*#i zOyvVKq6%-UReA(W)acnHWH*OCz;Mc0-Fh3d{iVMeUYU*5BbVg?OF23jq!#`fw7gys zG|E^j`!qVt4`JCQFp<3reg9N9iK4-UOtWRZwzp_TtY7f{4#4e}#xSS`bDc0b1&-nt zC+ei$((u!f+9&Do<*LRuouOcpxTF#|x&db|&fT_9p{z&nR41`MZ6lEB;rm+YxtD(q zp7oj6Pu$wij5Y#7eKwzZu=#GD!JouE4=q}@uOmBCYW851%8c-tF4p6b%EHzF;;`}z zyLm>mySP%T>rlxZk)t3?_$|${r`V+?Qil84>gHIPV&v^eJ@HA24i>p3uKC_jLfaU9 zZ-|@MFe$a1H|=105LFLWpDoU6xo^XCO;G4X)PjO@ORr1?eZ)3(l=S{F4%Nd8>Yak; z`Xr0$^&@P#JIiNCEfO^=L~9;ls1cH*Vj= zcRY9sRZBOMZR(Uvvg>vU{d4lDmG3cN)1a!j3{uk=Y^vwBTyhypP8sI4o!x$L6V5eI zNE=}=t4gj&jm?$cLM<-2uydDV{7r%3MG7gyn1%mPWr?etVw5q@*|Gy4V38-g zvR`jsW06zX569^ujHAKF!WV6Vko+9({S7>11Z?ip=V(ce$a@VFG)S&wyz>tN^E8Y+ zWv>R%t&x%v8F9J5G@YDQ=*q9G@#DQay`2hm)i^+f1YgF{53Rowd?D&ycS!7@1(Iw2 zO#5>yf5jAGJT_l7E}t!uTsMW- zBM7ot#O8&}91X_jA$ynOuQ-{q1Vnu72q)s|%-iHOG~s(Dv0`4RgO`(6AI1SARHOi* z>ibt7DYU<8APOqzjcc>=SCx&OOL5rh+^?pwFB~pg6+(a2Po#-^&e{@L)7=fr+htdI zrlRhJkalGH*pr~bvsvc3wVdX-xN+2~-Dp@YW*D>?pcyRi7~byX?|s-uxWVD0i-t$? zM%6wzl1i_n{=P}Pk;fLY&ROO$p1XeeOua+yT?N-CFK(bn9iQ8Vtxlyo7WO~}$~|h) zh$W~8EAp$O$)CF=MK*jnCwi%({HEJ|q)N7Fw1y?OX0*DDsH>#1wh*n7ht`Jq<4m*n z)J$g7J5GY;N=D7WRhqWA4;)jgUE|*cUwB}OxwokX5U)+~IliRhI+d;cC-SE1HEK%`;3bfrP~55PT$v>EVZL=3tH14V&!iHV(i*Oq z2IkU+l+ofhMcPQ#&j8KW3W_H~R-@E*mZz6n_lJ-(s-Hsy0<|G!?71rb{khE$Y1FsS) z^HX%Djf_<7v6m0J=VQwvqGX8a6ku}bT()d?#w{jw?IA*!>gJA>HO(W{81 zXo1sgixo`3ttojVdC;doJsZuVPiuz4q-?FmOMr&7{?y`mAy8(VqhO8u;?8yZi@fAHgpf>=W?zb3e!Q)mDJQ zQ)$WYM-%lmzun+FEOBec+-~x){?!YB&UO9~UE>mMwyfT$D$Yjv3WUS{mFvsIft%_9 z9GWrgBAjZy!?_~dYQ2+jLoOm2ov+gZX18sY`|hzyF38pvTr#S6WBR?)6JA4UfLv=#-@w z!mZix7Mktl0@6*VIi-G0FMK6bi_})otdptajOS+b3Ol!l_2YqKuV)`{-VY`55nW-% zKE3iJZ}YnJbM6^fdQX?=07)D6I?sC+Q~W-=5U2zSkqB#}!QhHW$n7Q^EBC8)V|C#0 zQ}e6lp>_1{M~qTmfljD&^@fh@821e33TyXw;m&JTC2x@zp-}}CMC(ncX_OLi?;Mx( zku1&5Q=UL-ZtVtkE|yF1nl9OPS8q;s9?(oyCX6zuIjvE7vHF0=d7acZFTdO*xey8G z*U}w-;lJ8&{z<`bH&pm5*K8q3tpYYK>Oi73{vgvE`MSXYzcWK^##!XYkeW#T_3S)aVTk=x3I7%+;Z+E{l=@2)&e76QZ-5ve7{-w_CnmApt3u z(!-nrp64M#%&1kpq1}YUc?{pmjfseAlSrf3)ic~mL2_7XH)>VAE9sNtB#|6*D*|1> z{edrhYa`Tjn9$f1s=)4BZ(N{~EVkj=S}t?cVXM=$9u9p>ArEIlZmzS`8rZ6v_*Mv4 z%GAW=8R=>a)CIV>L%sbLZ{WaHvJT48evD*Sgq0#Y-bkkjJ-)vlJpxtjnfe+lzw( zIkAC2!&rShAMI0>XnpJDUK?J;-yP8Z7>7MH%$*m$IgyD_8ylz@k#1qKvQ^F1Eb$0m zx@_!)7Nzln)s8^gprg3-)Ry)jG}FmF$I3L%2v>f)qRPwJ(+gC+@-H1*E zYuOkJ)}YbYlx>bT-;>pLDnPJMAi!3J@lUxCCUUL#dP$c3FpOB zmbVf#a!uKSr3cXfakpljkgnlM2M3NB2go*H1331IrLHRU?yALoL@i#Yw@!nfbCRKz z-T8St;>4;J_$1g|Jm*Ck5a9X^Xrdu}((Yuv#mptyxgb^ftWL~ZNxT&W+Ru|{5vDIZ z)yd4xpPo!3T=K1PPXlJ<4(o_j*w1+JXWdjCmSlz5{RlPr(A4%zW2A#~8ofKvX^9s! z&cbw-KCR2W*hzv4FUa~M!i>O%@%`-T%2dS^0g`zpAhZTfZ7RI(swAeE2h1NjRv#UT zY~AV5g|BZ~<^@Nj(vsrzpB@aKX8Y(`chj}QE=h?GYN3^l0Yq?60 z9lP=2k22&`BMUL1#5$GC!%Pg%%U7PIsxSnSu*$w@!Nm30e1oQHidJsLAf}+eDLk8% zhM;9!U!T|f;?|ortbx0T=)&aVHSd*W>(qhtFl~dv@>{p=$Q)}FUu=HEtXJ*vG@Zc- z=su~lXUDta07u?>>Qb&*Osy_mzCKowJljLIU(zylOFF~KCs zZs$Z(>VK+tFn>=T5v48mFuR4;p-(3BS^Em{!qri>d*lF*LLXGZ~D z_6unZj}spBS^JyGnanfy;V}}@w4N%Nj^x50(Af~UzZ{cYaJ<#voz5WkXUAK zzgc~+7>dx+Q`8rZayv}0K!<^BV?w((Io~DZyfYbo_rmYAgN6_$pyyA0OWPy=uAp;cRq7pvpl?@wli1t`W$$WBOOVj0u;))4T~smv z9n=ZhHFjKuHv2`kqQLmfk@(T)cUv1DUU92(TK80WB{0a16e9cmN=~05-q@XO@+@iA zqAIQ8qoUZmoalvyKdX0@W)Pnm!)ODxyD!!Os$0C*TT}8s2e3$ud@wy%S%+2UZDP!e z{QZ7+k@YpCGl@oE<=(Yg)08R(de#cwnNOJ$2Xw~S8UKxs;VOGf$J zKqq)zocY))2IgQo0=U(9eg@wT~n`eEz&<@~G^$)IE_9+JK z!FIzcYQtK+2ERSp&xcAjLnw}pFw#&v1i2d3gqXCU?=(=j zJ7lzth>|&;-*Y-JKOfa-Sq@5V83ON5YWTQ#Q3L}`S88cvM&oPtjbGR5hbnDUGL0X6(uc<3$k z4Jl0Q47BxJ?d#&rfG6{;T(r{F*;HBgOE=Nb)r`oYXfzNgt?FU1OJ4J`GTb;~@{Kh} z4(Vh}cTE!J=+xA_*OfNIac=u4`sJ2-X3V$C5J7CHn(o`l9%x)P)kJxvzhiJLw+BxB zS#%fcaO9fg_X^dY_fh19xJv_9=e+YGhS#a!E-r4T*9FkwK1ezD5_Ns>QvmGPY`Z}* z{LXg-Y>TIm!YF^=qI$O@ym}*g;MnX4*lE=hX~N3_9zFPH{6^n0U zZv$s>n}f`E>x~IOlNEBzb=yz4cUp0B0Rz1vb>D6t9@zty#&zHsBSRQmka)Y&=Ea_~ z-jSt5?YjTy{Y2%2eC(|{+UJ%?AxDV*`9j4cvK4-9G|pP(h1Iv!VukEPrv|f}4W0!8 z{jfGnhEtmLP~IYEY8SKKk$W`LPd$@=mIx@r`S z-5>Lo1a4$5E{+H;k=s6lqp=YAqt~_{*$|IhFPu%!`JGgP<{H7j`iB2qwPB+{?z&&B zviH@ql-+o6 zAl!E1Y%%WLk-P>ewoNTFAI=$}aD;n)6t zeuB;AHLx1`O@hp$Y_+b5hmZZ=9!RvQ$A_q9Sp!Wzj=q6KAXgLL!*P&^`dFr>5$q7S)A z$~RV1;&8IN#A-3Zc(NF-u*l+d5_I$4L-K{4n%&pqVXne_0OJ^%SS zZymkRHOd<+{mRiCb`)POU1oxMZ*#eR+930(5da_dkE3U*CiT;5_tv?5yttnXZrp(C zovqw_t;tY0d2uwg^7*JJ3r%lBrZass!1!WG(e1E}V>B2ztKGhUgAO$D$*aGzV{|jb zi+(3vS7rljPgUHfMFsM=a&&@H%ov1(hxwtbwC;T?HfWDG4VZrOHffqhDm-H9=^%NH z$!bx&r*@TWq+^i#H0P_N8f~y`bZY=sRMdR z^}L0 z3GAu+-a^b6L&1j2b`}uRxXGJNY0awj>*)ov+4VYwLLl=&KyYPLe_?bGOv1~#Fz0%i zndGTaVL48DU;JIxp@i_!*7QH2{*$)vApqCBf`W+-w#UZ|kn`sm=K_cfF!RybP>eB-cOu#f-S$+Pea z*WTAF+=8M(y2_7U6TdKbRN8mw2EXWC&fRO$a+}_*bWBjdB?1KH z5Fs5z?{XHNccFdITDPOEcM1jdIyds18Dn)7_pk%c+#)Z?wONgx4{x(Ab3x>E#1wkN)9Qa3eiE{b8{?M!WDn+&Z}C^vKsU@mW010NB=nhm@(#I>CN8cHb9^MAa=b zW+fhs6<5|5D<5tP(6JJugCj9|ElQQ80|B`2VnO-Ig6tp z=9;YH0Hdk?L?R)-4A}bp3;lk+@?pe?o;6#H-=hL5i+4P$C8r3_x$x&(dsi)sDMZ?C zaz`y8+qwSshq26|T)>s8a>mQsNu0Ep(6kGUIzlPRD~2nd1OR{tSC4&M)Pk97uSP<7 z3ck9mjL?7Vd4BxvY+SAEU}GG>#UDHBudyX!XP-2J=GLx#{_V`=cfWC|$IMSTC^8m? zNsrOn-w_xj?B`d`BUX^w-NZ|4t@+slfF+K8l1%l2;AUdwDvWf)!@rJb6KSf**heT z)e1=hb{oa*s*{J!C}bTyF>FhdpvL@)8P6hsW?Aec`(c)-8P$z8mGpIH*cb2tzF~N| zY*0VV>*@?F^WbjShx-y;v(0{NBh5fk_K&If=Z)y;BJLWankLL%)<6ovf$L~*HJn+; zu$cs#j%@iNVdNPB{zCBTq+jev2Jk=Kx`r302P4HXzCa(4f^tXbXrb<@etD!{bMlmJ zJIU?>+0}D)440WY7rQS6CU4q%sQ0#Npzdul?14GzN>AUI+? znsF<{h4WlVa1sS+u(LhCQ3z1xN>Z*vFP@iWn45XjN;Xx-{1PM%ANkI=TT+FWSQ^h2 z6WzABEusKVz`fVQmOpD_Yirxv;{4ZnZr5z$@3)UBL)GB*aJhkRGFl(X9trKwRV$3_ zOW>6mEzoY;?Bkm_*y|V6rA;Gcb35GNsWh2L-a8Z6?YLiJzal@l7Zn*P4M5O3pH~LY z^S?Se{r&aVUa?D%LlK%dp9El%h=RuHttQIu)Ia-Q^9AQ~gF2L(=};&kVei`a{oC8e zG(vD=kEH4UC6vE*r4j}}UaP%~C;6v+Twln*Z*63~;ff4CD#H}Tf4k=2KQmMV^e)E> z?mv6K{Qa39uV#ThM0)KHvi~~h=>KW99R+|KvvF$g_`l8Q5fJ4EKU2K(ziyK}R2%r@ z_`%A?|9BoC?P&l@dwxoz{GV4RuLV9?3h5vJjd=e*9;zLvgyR*L68oQ57jgu4aF~oH zm0sVCcReJ8LkI@y6dd1$y}dTef4=qEfaS^x1Wo=W*1Gm-VjSSipnE`p?Vp#scI)FX zL0sFb@A~0+e_G6c2Kt|Y{@;l6pMm~|p#S29{(+_cA?SZD{{MDL|GD`8T>N#?dCg+} z(EmZ}{|l1-3zGhaiTwW|NFonF6aX|1jr?&SJ6om23~@Z$tQ?(4lwmkMfS8oq zPgU7g4>3;I!2#hWnUJOY>p$bR->@_^4uOcv`eSZkgT|M41mSVF(o|5{VSD=Tr;J_O z)N+l-k$WL+)$Pg0@VS&wg?FBBQt>mO0+Be<4*NH$|1r#14-kP*zTRg1_N#mDKM3LP zfBgUz9wfXUCjUpF*gu}iP>h^3q`S^#FVCLLu7l!h4p7|G_F{J}GpVcb@_@w*+))3H zlwafY2&$X!acEm=(vKI?eqY4@<_EUE$0Btzr!AU1ulByC%PavBQIuE^o)jR}8@0Z< zW4D?TApPvwvvT`YKL^N2C!mEH0(s66PJYj=sp=6sKw3(7g3gTC^t&3aIbajYP8o(FM5uY(YLlATw&0O-Z}lhm9N?8rmgAPr7?q$@^!bPX{U5x*H}T- zJo+HHvFjjtzBLOIQ^XP2OZUrrBHGCcD;aPb`l0|Jtg$+8&zeIvQ3$aT9_stL?+;2G z<_vkP^d&6qw39{c_3^Tl%i||H19iIxgWz|a zn4)+{51D};b+_CWWCWkh04L%ocs&GE-s+`DO+!F-UCYg10umx!x>u)a1cILK`BsN- zuP&iik%01hlv=PRcB6yvZU%Xg?u{nb^wuzHnY7f@&oyD6D7J+CkUN`vZV*kp-@K+# zTzkv(R1c8+b{ntG8dbmK884fwLV-dHia0J%WWT_fY{S_!wCfhvlpc~-%Un^!@I-+& zFGF%}h(nS^VZG{dPt1MhsNC2l43;|bQ7!xTAETl)CxZn}O$m5jX65PBPjsygR}G)6 zB(cD>)O@%c51UHs>BX#1!C?^$Y8smZt{mZNGJtppoVR}Dnh3twa#G#MwVJF@EqY%1 z2A}acIU!%eRt+SNaTdt@&^x@VPi~$j0@V$=W~uiQmXUB;M!N%RST%A#l1X#%s|-u| zX_n7g>=KILu@B$r>ZcL&-ZX*BJd`*8mKf3`_k` zR#TzJCGS?12y9iJQ5+E;S*q=BBSh^iy?~((hRRxBXv()1rrMNa)wi?hg5?uB||sA=SpzF zy-eemaTN6zr{isq^6GxW<%NyW+{*`LWS8;%?q3nqC$p7kb2EAF&H?EgjI>ddj5vWL zh5dkMo+36gnqDFU`lJVLn|0^qGbC8-xk^C|;Po?WPMK5i%($h5QeQqa^ArkZt~sBuDC`7uZp%f5#bH*xY?#4QH(QzYIK8Zkkx_IcxJ2-fY>geNl-U2`TJ zwF}kT*-ZM%f(LId0K$Dn@F>zPJ_{R-MyJtpxlhJq`%b*Kj3J>zr`0J&0KBTsYIrdW z_uuhIk|7II4@e(jG`XlP1u_P^K$0t+_5FeKEg_5TQBqHhGq01SCBUOCeQJK^R{eHckG#SOZ=X*+_)wS3 zx_x2#>tOtWjG_KYs>XoPp?StZv(~tJ?S^atdmp>O2Ri~6zDSQd=DqBc$H^HFSduk1 z;cu17dD7#To>>m0YA)?WIoH;IxM*OKM1|hz@4m;4NpKk4)e^STMN}=0YUN3uz%aGO#T|8Ngama*Kn}$@t z)-@{VfOKVtQ@uR*SOR4@+;}s|eFsbJi$WIEosPO~qK7Vb#>(c}tuJ2gRN$aFE#|R- z)8}}bB%FB>KqiQwI_6Am(B}|(Y?D4&VA+p4_T0|V*IXIc_nYuIL{v@sT*&P{+~1sA z;vBk%1;RVzN)+lSO+JR(4@E`!#VcS6-#{S-W4rg=zeC%qHsYWW@?&{@V-ciT6}c{%KxXwBnW8X9%W9PHJ1Ij{`f@L;r6F-k2(h4IqKZgzi=9; z?vXW;ZH9)S^z-vhZ!AuQ&CTPq+fNRVGp}?^lJd4LNWLBug2O!vW~}a;=$7&8RdmIT z@QskXsIf#`nOp5gIV~I_4h-kI`u1Y`JbBEIo>i5Yq}S({D{|Eo$(^1YuQZ$Q?nuue zxsOY%2D8<&0(ve9FBiISeWc+vRnAtV3#}5wpWKqL&n_0d5L*V1+Pd%xb+jSpS{Cm( zVwN={e*tI(T+GX0cyP^fix@t{Cr*=g%b{&8-ojivwgTPia&w|nt|$19!6i3rn@jSv zl=N70ow&899m2&5$&>%%M*si2{p)W=*PdM3f{jb1+Rb%Q3t*{)21cXBI2Oj7COBN+ z^1XQ0c28X{SIz$1k&Z)(9j8QX;S~nOYwP!}jA)3Cli}fh3W(;LbSG}pS)#q=@hbIF zY9{6#i~WUoKe%uE!SMc5F7vxGu8?Rs>tMM>akN0QBwce5y^^B@#A`FaOX?Kw&L{=eC%Yq4g$MbmxWlvp(JbtV#d&Expfh+_RpnA7FK8 zo$l-FlNkd=-(ux)ZOHhyx1o3XE1VYkn$5L9fuN$GQ)O#xF4+H23dcj&h&&>Peo?=I zK$|p`?rl((Mgkd;rsLXpg8r*5;{W+o8BGZ7yL4Pl7c}(U)yUsJNKfM+QY$NmwG#Oe zTIQ~3zvcicIXnOId`+rg?R+oHLOPdL=@TGX5rPDQBJ1^MHkM1e+dn;~XN?^h?}?s` z6?JQ8&3G_&d+~2WIsf(PTUGHZa2yq*wgE>cyQnCrD5Lk-ds+4K+jaPMIjC7JQOAz^ zAihs86`&%4u&`!C%<-}y`TKXPxNNl?bKLHXcNfler3}+fp(Jv{s&+fF2K=n;Y>dfJ zwn~W;gUkF4ci9~%qWIa4Dz3@bK;L;XB|cq- z(UaSD0}|B@kSjCjF%^^BE+D6zZQ}pm?^%lgv=ar!8`Etmn@i^RUd*)}&v1FNGBGic zlle=ZNk@S~Gk3CpUIb*jqB%?%8{pX!YVV+qSFE61onp5}589Kg?Ze`ANN2k7^#WHb zV5nz&E^vk%u2y%SKfk0r5L zb3}omU`;wery*~bH#T5mF z!8*LAqDHNkLBRy>XIt-M298^ggK`~dFP&Ga|B1H_6sIgeQf)P~LWSCs{w{iE3o^BT zLecYCa47D(bfo{?v{5(N&;KXH{r`XRDo!?0D24l7pwd!}FkjawF^3dcq;t7^wDvuc z8}na+KYT0Zg_py6y$WDs=3axG`X2jfwezjVRdb1KLJ5m|Kd15p-5n~;+;gQA;gcHv zevp1)@uJA?d~ahrrPxw#N$$?_crC8od`SK~q$n5%iIDBDQW zK+kqPK1$tR($aKQi`16CG?>_f!Fl@1Qn|~vIa_76-Qms>M#*Jo*^EeYsd4c0=k0Qj zW0x!t-GX|LulJuFTMJiJG%E~@B{@3U?AFF#H13Gh#MePj(><_GwqNLz&dI8{NGJ3h z)*1bh)G2S1`taC;Z4;B&xCci0vUXqd&!W7hfR%OYRy&dVl_hZl_m@i-urs!UWx~)F zKyRNb!>0M`$d?PY`{mp^dEF$N^HXES8*QQ7`!-;(_Oo1uInMdNs?h&TRLT`zWM}g# zX2UJVkbHB6%yeI^}cs@en=6%TLzq zDW4Pi8A~hc^s3o&3>Vhi-SJ_(X0P_BXY; z@=4KdZ(;dR+2}X22^0HnoIG}GRlA9Y2{+z2uWr(A{`j=4v!7kq>dx2wzqA70<^-hV zc=`8cW_asZwvy9}IpJ4;cy|?RutpNkUq|3eAltpFeHC`%#r^nQ~qPM|A!6dJ@_%QQcLiqTIrt9b2dC;_vS|+VwvLNcD60 zllq>=YP@*4i1o>a4UklD@&-x+YpBz@k95N7U}k^=YNq3D+gTmS5lZfwkf^3q#yflS zWOa?EfX|L77JpVXB&(g@6Tv$I z!rG_K&Q(T6My>t~9xvb$PSdTQK(9b02y{JZKvoGu#~Pn$$Ww_8fF7O5xl+W`OJj~4 zevRdDG?O-b;YLc?@s|Xz^>K+JSFd3bN+)josh)CDZVHLKsT?yym|09s=?$g22^IGJ znX7$bj1mXZGOdC|3C0rDt+9@VznSg%_gSwb0iQ6}IH7FJ0i#<+?3r+%78K&P3u#g9 zs!F0v`ffjo@D0ws1qj&s1$^{4nm;X}7D2-`UYpca-MJIU?3LYdqGcqZtubpoCxK?n zk5^c(3F7viersW6HF|p&2J29)2(#edY&)$eY~?g*whz@-32n7--2DFcB}4y?kBNkC z2Z1Lb%x#ePV?_(><$|O`(kSf=TNUyE236F_Bc$CtK z@8h%PKADc-In zP34w(wU4r@kAMtwxg+xqDMJr*MTXc4afDAMCZ00}&rCo4%sRJ>=zoY7U}71$_=00B zS5Ao}$6=S;PPL2qI%R%g@T%mLXv3?Lx|Gozo9EFs1ryIKse)N_tG<;X4Gp~Ll1Ts3 zAfa4qyE7hUoQpq3SMAt#tSOl94tM3Yb5D#P$@-ESBN+0JB@+J`!v6if87IMVWBf^e z<|Uvz)7$7*5^ocjaJvQi+I6>~yKvOW0lYdLNCwr)*CA6gQ&EDBazs>?CUyfiBq~rl zA7KVt!KT*~!3emxaiV2-B^zC(l!9IZlz#v60w{JDR*Hk`P?-_rB2!mb^t3E}s^fNv zKk(gKHo96ZK2a*L^x{mzA)JW0Ft6i$chuB~?i@qVy#RV#TzXob_`QZrcq_rq+W@iO ze}3>yJnl~R;}z17(LU%Q_F_?py`2$n`vGK$H1!cBvHf4S>2PZaQ!rF#0gc;frPQm3 zy%*+i@~w%D(l-mjd9U0weq|ntHXW27#%u_*qXaA+BMiw9IGMMP%Az{Rf26v;Si#nv z{gJ{HH|68IQjD6Sj5Wy1z_WQz!doz*XHJE_JJi>A2v3`hb;y#7vm%(OmcNWd&~?aT zW@xwmj}6a%)ZxiY7rdxegDuQa)V&zaS{%E}k?uFLnG z0i^p#F2#IjO>i!LYTR!QJPnBes=d-=WqPeR!`a!fs2Lgx$~#jEf^!rp!pMBCVWY2l zm#N@UE6fHpV}vro(V+)uj-D*TzOgaIsp^*mOBLORaH1!P`xoWx6fZz%M7Yb9n^$9GBi;%<)CH zD!lw1u{YnH(MBUV2Ffe2lJqh{{{Qu9$-$?6@iV`6M{5CFlA&YU#>9V4M_HLs{Pd_q zH~R-YXiA{`aA77Xr+pn51#6{9#E>Y~6^bdrqNV4C97aB0`EILiUc7Y=|LKSrK8H;n zQ|4IS4kGU)SKIWR#XZfYW@fpOTD89xjnfIsIByc=D`eeh=<9EzcW_{#3B|G}a`kEEt+EV3Lb`2PRwB#>Y5Y=v{Ml+wo6s0 zTjYZgeXWXmjI_4JkX3$`{bVVbH@>aAiqBD=YH8`qaV`Jm?aYSZ3qM{>OH@s(SNf5!Vd4&t31=S6J4ar2S&i9lSB^rWAj>$qbK)#AwTho5W}^>zac#JvEWf^! zrDiz%t==nwuQaqn$?IAaM`Ka`wHY~GQb!8Uige=>Zk-v4b@tmuv*t>Ew^vmW3Q4Y& zYP$8O=0f7a71M!C!iI@!8(9X?=NKm=ydpU~jHT*CDlBWmS4XH|0}?-0%w+onZhp;~ z+H++gEf(wJ)73-c?({1#uQOA$I%t{V_-$S06jLOB9HZxOy@VrY<3jt84-nO?S62w% zBmiHCG-H+T>WSKik-#rfJj$Xhprjx&ef7#UWWk$KlJibHYl!HWiGQqA{r_S4KmI0R zchz(N;2qKiI?$!pCGxn-`3Xee;t@iMgmleRnoJSl^b*1l!NtPY+rvYz1NqaEy8~C) zI~4e>J)EmbFPtk(iT6dadt`YTBB^OA`2-fhwLnQHU+8$Rw{aot}Oj1 z<)3{IyH(xImfPL7;rQk?6fXZGzx^Y0B^TF&xsSUArZ)=6$;q`^pHMRs3=%EU;hlh5 zeWs*atmHB6{a0^5eLf(T1m?Tgb&;h9F*PrE-1e+{{h(2LUJY*r=6n05j`?n-RfT<* zl|HUAPK8mRkBTKDhBi|y324p@d6|PuhzoL<&x@(8{o1(lV>w-w(nu{v<2ANi1-l#> zm8@jN43jFhktTx+6)lW>W z26HG&WZZeeV|TL1eG~a*>HLOcc-;P*T{K%Rb>mVeGFt(&u#tun>3PO{SXn__f=;nJ zzZ7bIlF-j6@aM4P{gyn_39s@qagz>@eq$z`HpcNYRKA#qp8Ks=lnZ(q&O`DxtUUzad9O7#vOebt&XhPpoQA7{g8s z5*`nW-mCdq!^smfwVF4ub%-8SP7dfNKp&scmA^b3!D`X|WcMES>!(=}-oGEae;vie zyUJ^L)`c-R<*00qPB$9`2*c4T_Ubx&IG#@6EW)C3o^5BwfjKtGxgzzpdOI z(n(6}K2j0ZnDQm9plX4!nKt<0R1jJ4-yhdMaZElE@YHnr@oP1c!oqGPxox~R4KW6# zJ^A(POK8h22nD3kF^FMZ5FQM7&5!?#mErsl@aaB@O$w8n*}2!ZE*m`cb>f>zbP&wy zuXFaZ>u_8qId6sG?sI)AI~S$#TzFcm-zqQ0$t6fLeu(v6;YiI_+1YP|361|FczB)X zeS-HwPQr7&;VifNfjzabV=k@hauMeW1Y`g-b;V_Dh)`7~n4SYrLem#4qRuOUS-2vi z^4Q!?v#RUUgEdD_?W)Ll(>z$xnPp>Hd*!6+sR*=$bfOG}SK~A)>yN4z+9}6{3)V-9 zxwCX6w2Zzu4pK*SHfA!awtcr*n=kB)RaNSVnGJq=}|h_fxzq%KUXDN5f%6A8wwXlQ?3@Ia1rGs({)rTmXaOYRx^5X^j=enfqx zmdmcBsHJ)T=yCFww&mk6aBl+o%j4q6i&F!0d9e+iV61IZfU4D&f;Ru&AkV0FTbJ&J zU7LFKgC$@2^@{2?5yvEr%4(8}{+}9FFaP}04Jp;aPde*`I#^_L1{^fUi{$->!XhH0 zegXht(%undWR%E9owx{|9&I8b*FjB{G^0x08d%GVO(qu0CIhh=^1y+GPs3?TD(2{m^g@?KlWdsD$X`#^)RdY&A-itoih0IZ4o?bRBCrFz$ z891HEkD>-e!5L#kVcwfMmU0S_^vri;q>=^Co5BiU+l#h~`kD7f!PqH~PxSB()PTuQy`L zB7&CU85=)3sAzqledY6yrQpBGrFi%g=l1{@q4`8ElD+5_$eWMSK6Sc+DbT@6)>*{kI-Ut>9HoHPwjESK%Khc{DOw+?&5WiZWVpJ6AH^f0}b8V18gq)t2q zzM`FMI;K7-Do#yKtfhd~gO=XM=!f(r7HJ~=wE-9JVShE-|BAu?T@y@@Kwlv($!QtQ zX5y`pJ!N}NHbB6sh5bEStuf*(XW3FC~=C=>R zbQvA!#lvFK1gS;N z`;fUH(TY3f>l)&2NQt4a>tK@NZ*xlNHT=LhX&Du|g0h+<^oo!h4c<_|bzajDQaq(t zURk8m8mHE{^N*(Y`AZPMtJ5u~fNcX)$ufGbD}2?fKHQwW@ZD_Tb)>) z7Ymm&;+#ELwpW=Dav#!0w?5zS@-p$pX!-Gq zpgwVe`0ut?5Hxnv8@NWaLsknQnM8DU%45qBae2`I4c8Z(4w0IMX8hsQU zApFf{>RTHasJ4ryk!#H%NT^S1J! zDC#0&4$zpRaD4jYv@q?3J=seu+_#PMR@HsKS<4Q>0$WddrZT}$?kD~CJW}z@rxWGde(n#tG&r%_1=k$y$+K z-Dm0nvR7H_`@Oh>vxM4FF>(ydRkEKRU{E?j($doTlUDNbAIGlI(k_p5LA_KmC&7hs z%LrEJoIf>I-HN;fI*n*X}`? z60@hI`rniRU3i<5Q?cv8)Ws@LGOmm^aEyk22P5bd=O|;A z8#8Q&+O)3=Xb2q^X71RkJ`F{y=aza?f!;8g;20-8u(0RP(=D4&Gyfa?*j|oA+>ske z(#|Eb>as_U*Wd83USw>-{E@q%rx zZmUnOFGGm|5_e65HxUjfolzJ`_3n%yfx{Kk5WGS%3GqzizyNQVZijdU5J9E?V^NSf z2vBL?LRe=33t+WVD+|b8sCxvwb`+ft*z~CKE6TX%>KT< zY)8A=e7GkjNW@Ipn>nCvag2=6^ZHip%;dRJEpKC3U2i~Ceu!)gT(@CDVv}d4Z|{Zk z(qtl`r}m0)w_h2hw{U-GT5Xl9jVH%Y_>>t{j}hv_veoO~qTr^?1m2!UocOT1(PKXJ zMY4mRXUz=LZy*-=t;R((t8CNgzCr4`V=|UjH;o-Ya^ei~)Vm!Ry<6u0#3frxP)ZHDcWOTLI<{j+SG1+#R#6<^BE1^Z+ ztdW#2UuqMH9RNWwPCJq#W|H6#d2~2&8aX`t0^*(_?Iu5P$o$Bnl*oR8iZdJ_w*3yd zkLjHs*)NQg<(SSE!%k1Y_d1TW&F&ItQARBOnXxFiCQUJr;b` zbPf^>x{KM($_u}AaDOZQ?>7DU)xGZ7ht3a#A8&N*jzv%ccu|0vrTv}h+Ubn~7acut zs~gW5MPKJW8LakqQ>&D&8!MLH=;Yd2kyl^;eC0|X_GqlOnb3b*CTLfIb(b@J?UaZ5 z=(pKe{PMl`V%`B%eDi+9rsdiG9|vO^-y(D3@vU}&$_ zi6AFu7vCG;0`P?R;$Msqvwk!ue)KWfxd~i5 zN?Lji1u?3alO3<4Ueo^q1H5IVrKQ)zIL&;;k5T8i+B?fFZ{(AC&$5B$t%L!0znxRHE--VRvX9C5xX^p*LGj}8VjOFPb9nBTaiZo`q;Prc+Y2T4oOs^6EIwo=u z*DeSFiVziFE`pvwb((lS zq1+gYFiB#m4plWDUVK@W^IFG~EXoz_#lQ1HizydNZL z#d|4O6z$#jc%jICOEhRkNt9{4HP>Zticl!3NtxHM)YiyU8Zqe4(wzDOEycK4uZZ)`8c1irm z+8HQ6?vnllo(B<{B``HD4Gfi^pI@=fluR|wI7(N2X%$E>B8rQ-d-p~mud?RmW`4HU zz}g@s0Cu@0dUx?7Pgfz1V(h6grpz<%%*!v`5bj3C?_@f!Qs(FPDMDlL4cHSmnNTl8 zvF>h-2y!!D2Vq>zP z&dm4hrSgUW;DZoHq*F#|AH}Krs01+<_ibzu6t8&su6A53?m*?^`f;Xe*C`S1bpR}s zLa$p^Hgqu@flviG&E44F-{(e*@Hztp!!&4~BY*&ESa)$`Lhw>>;H{p?-tfLY6%ta? zJV(A?CFBZD<7;DM4#E($M|)9Tk+1&)!4<$rD%nZ3{S(7QNmObP9z97;V3pc5s<>EX z@Y9x++sT@97^%Q)oF9=zZRU|$pY}V^{<2c?(frH4Z*HEHM@hj7k6usgwsv_`OEnrD zR(&xxad}&kEz1DNCL_@8e4(VIY=smd&>OG)_Qg29EFvn(b<`6G>>`Gi1cjYeElRwC z#ZO)@04s~Ml|$E0;o-M|A~Zplw=!390@TJTAVW_logQU~04J{qvS*l+2*+7zUlQII zCx;k)Pe^=1sqk`lpiBJJ?GT?9l-CyHHCRaPH{2&P@|8t-DIIxpqXJ01|IU zr}Hl7j*pR?95k4C$vt9h4v%)Ogd+)8YaQ&mW*_d)AxZ0h_qG|8Wer;HHyYzAftk#v2yaa?D zymFd6kqPOTWbb7X3g%%os3)jB5N??&`bkK08}A5om+kA{8)tkkiG=`dNE=y&v&eSe zmQ;L93@hYqh%GUJxN=C%Y-7Jsxeij?G zkweAIl6~C|pyeM?8KlY09|02qh8ltx70iiRaLdwLh>Uv;yu56iuWD4P^gjOh*E0^h z+^FpxoK?q6l)mNcq$PY!v8VbX?>%`bz)N!!_J_~zX^hJVBEFONvWsUJzj@ng2OC%7 zI2;kY)2fLEG|Jwmdb0%KHX@t*`D}HD3X$yN<>>8LK<)gd?kT;EALtE)S+2G}o2hUw z#SfQDYzLk_mVN#_{368E8VJX*&q5lrjl(rmfS4x;jZLC7|ZNJbKk( zmDn0Zeq5hq-zVz`m{z+-@DPCFbvwRVy1-dkU&{ss&#NTt_h#;-!)97T5jb6qt0U!s zI+2%6e8h^#2i|_vr@E+gd0o}}dMLTPnwQFcdggGXA4B!4vYNge|0ZHP!*@v@w<|6F z4se4m?a`x0@6@|Q*J?JGX^}LSIr%0$(QyLZdK#vtnWXLJ$&R4ecN{m^y)a~uL+rx$ zF4ub)s{Jg*=97IbiqrD#xb4Sw`wccjZb(f>YFmB+v0{u9Day_+|1F4)EtV`=tPLE`bbY*@xEF9jGV3GlkIYX3x;k zLswK5p>=QQ)#ARRoALU3H>T9{BdJ^*!<6mLQ2!Rv^Nzfe98-fdRku`B3^Fn?kpsOl zdX@CtxyV*}McNF;`gL8UV?p|NaZiJpwUOJb0~*NwL|n*K6Ds86hbi zmtM^PzOkb_FlRaou${%M8X4tE3;JNEY-%X`*M-8 z-uu|1*5{;^{o%eI^@MM?gC5iTrh)+fwHo8?+m8U6{VEEnCuL-m$}y&cIW8^T0v<}W zBMK-_xu;Ky0|bNz%1{C=somZeUXx)lo0SL5!cO?FW9^aYjpo_a<*};|GR?$?KpDPy z^#zQ8pNdQOMi@5+>4Wl~HED|eSEClUrrpwd+4LI0`x^}#rkINwW_wB(K1^dBuE#bH z|Mj;Wkgr;4Ak|%?RqLKi}9fQM98MF#MB57l26__y)Bh zK$fHi?Dnn*J8#LdBpAV?Fpl0JfW~x2-*0sM$#0;8`#B6qN77sC4!zf^3>_jVWAF-G z4^xwSh~3tB(liC)s)QK2x{B-^h1_5LlSg>z(*(6C$@v7ggrz%T`?#HL+!MzfLP>~O z;+7}tu3T{tr9A$Vat?KQ-HgQaYV}4t8-jHXL?vnf*@4*t>5YvYH?yU8i#5qY8tY)N zixJYPERU4Q*@rG7JFhR(1^`)=>1%H*h4tOHS95ZRJQH}Vc)ce&qVmGE)lI;A6*4}a zAMV=NX{bGSBBU$=9$hVAzQV_-mvkdIcc1@>Ok?}G-~7D)ZF}DQGTr2$qH&A-}w2-0*nhPKZ@NC9S;vc#)y)f7jGO{DL?LcXB{(E?JxgCHuN1HDN#Sv8ys9Hy}#+Nq@WZ*|MK$= zW8B@lM!8k2#;y?`2)D)0xc)AmLRlp5F@OjS(yI1;1k5Bjjekl_y&W|G6!*q$p}_Nc z@GdJGn_Zqb@EtugktSliX6E!%<}{y#A-Di6gyaNrL)nG*uC(p)0rMd!?Z3 z4@v!VwJY+;cYwZV8Vn?S0xIw}A}SrmnVFf0@=XFz0{Yh{;iR8Fm+;c?T>#n_|JZ-1 z5lX$f_{0Q7)yU3YD#^H;In0VFc)_8~DmBrwMa%G8(uOd$O2U`Wi*HXDOf9govxnCM zK`5pm$$n`lj~w8;euOI=9Kxu2$;hHMKS+a7v&?%AZ?R zB91HWE^*lo*)!%5!l=bf$`T;U%&2z!?x@{gojf?ezLa(1vLTI$Iex=?jy1{>6?fw zCIh6n=A>BI{$Zr{`tDHpZ9(Dk5>QtvKq{A;s+MJ6+SVC{#Z-`k8@n~1{Lu@SCF(B` z0jY0?XgckdLJs%JV0Sz2j_%ioGh1B=N6Nl(zk^voN&fK?eyq#?i?t*7LDdi1>0k*H~&$>39=OJBx69G5M%X$hT!tW2{kt`(R z^zy<3x3AO#96>$d*||Af-TU|N_12^yxo&N}RQmEJYC`}?=Jti;#5|GDPGJS3ABX!J? zy6;6A-c~<#b#+)$fp&!=FhLgRo`+g*F!>h>1|X^qHVDBL)|)h=I7+A!>vl-VQCN49 ze;B{S2ZSV`uVhTVN~*Xp(5u(3xH+c)6Px5qOUwJ-S4sT$4(Qj}uKyyD+)^g?!nx_n zV}K{Rvj9W-bax%#K`@^}jS_X)3IWyu0mL7a1ZOB2;sd21NgQEfn=ThuC6Q+VR4$!6 z8S)FM15d+;@FX#o9p2&CTEL{8W;Dl14YgqdIo0;&l9+nsKcq^0DJ>iE-9VhbeXw^yTKKB!Zj3M;);Hu=fj^I^wwza&UG5+O0KetgPbus!)P z6IyNPZxmy&P8ddV6dMzoBKh=lsrnO0p$Q(!-~P~gqNlTCF3y6e>iQB`*xNmKtB+o+u@mB2?II9xi>GxtGZZZnnEv%PEu zcSPct5c$@x{aCk8M-x?2VmH&AYq76y^IpVkRvHD$Xh?b^#&IVcXwC=MZZH4Iu!FbA zOG!>*4VXr3Y;LYF(K!q}BfosPrzxss;fjO=k>0%q{e)eN85OugW&aEo^}&QeAI!Oc zB5>v<#nGT+_eR8EzK7$ujO;nG(6)sv?qpq~vX$K5JjY+p_IYwmjSi5N zslR{sE)$7-rgzAD=Ea#h$dH|G54dg^QDJ!kH<)e73C$^@>%^229WR{dQBvK)P#on2 zenf!t(@rE4m*mT0|1o>}E@tIU6dNeS8OkX!Bf){c4I;0}U!Xi{LFB0C1ok9b1I=ZY z0Q1YQqu~_^;Rn@#Yc7}rXJ~!-i0x!?FGD^?Wp0XHzpke1koOx|9W4gJJ^@7+mYI16 zz?%_ZG=D@cGcz*;o?j&cDW5)l`a}-+S!jgWP)9G#4$>|>9=i1KaA(CBa2wp9KgSju z%cW6lfMSP6$sip>c}>*}T~i-=f#^;Fs1==DBZ#}}xEdwldNda9H*R@19vVvc+j)!) zu2!G47BF=|-V@F4TBgQl!s#fU zgjE@?HKP4&Ve%|i$o{i``}Uym!zVhAcH)cO+B!-1c`7-vlm2k!lt-1pocy^&96#v; zpIOg&XdVj8$glu+W{a(cYuB!|AMZ}+!`Taa&l)R&?+d0Bom7;S4ScHuu5pBd2Z!Wb z0&rzv_n@R<8X|Una~>qOK!Nc)4DMT>mL6W+1~6Df0Nj{ViCG~QY&|2su6|3I%3Fhf zy2B8A$nDw9(=b88D(fIf=ng4E)!EijKSG6c<91l^bXd5Be&f$7Mm20uY|5pJRIwE? z>bJZflR@*>NwZt%yCS(tdA|ne+3%yRl7#Okd!|qg|j`P|; zzexsUZrjPAUojQ()@0s0eBzi7$D3=ikBmEaf)x3MfKWyYOE2|-4uZ2K{Wn{_yy{Pg z9OKBl1@hXr{yK7)IJ~ZU?SO&#^5{tV!%;9%&aPc9?{T;y&?^W7qv!V)26LhaqdVsS zFr2Oc0X7EQ_lpj~Lx6TGfc-^beV2l;X%C~UfQ$Kz{6XI%@%=DK;z5zGt z)7xBJN$!)aST?4FLuSs8;Ma0!Pd9oOt>c9lDalCn5`nHrgK3+Ps;M z9@X~nsH2n0P)x8O&OhXLPmG9Q0^Cbze7wcn+_s|*Xd!-~l&~#g5Oo3caZ_tVGf6lP z%xab1E|2sYn$^kBOX@mPgTV3Iw7bJe5bg!w>;{z;;p(0p&UXs2+5`NlHYh#p2563x zPY4QTXF3`|mM&3f>(f?gJIX`d0WGlvoN|7CM=nkPqk%aYrw#k<$jkTzH?>mfYZha( zgJdO}{39woy^@l8+g7Uyydgp^Tc+2K92nq9V(v!3MVw!Gq3#6i2MGncO*)#X^x3)U z_EO;ez_7aZlVt2!7VcZeS!k(jHrnKEh*XSD_Bj>bs7WET*y40o;M;45S}fPqV~ z(<3`sIk}RY)v7sqXD~6lVn>?3xL0a+ZzygrDM<aEem;QB<$d zM_+a(N8DpjU*th2F<^vp!iPdz=3VPY)yOexbpVWax4?gsAHCfPjF~$&>vBbz?056> zj7fs6x+}q>8B|xW^V$x**#a|xpw$YXn(+V)moO+M6VhOVgt0+dH*CTU))W4;6lWtV^F8|DXb z0De6y-5*X<>X8X5%}HTz&?>bb!*`E;on_`sW1e75Ch+ZUgGix9AllgY$QL=@NkohA za6W|F`>Q(~>s_?IT<-_`HNW{SaKPOsoNZzb$$P26$6^W6*c;wCTaC{^> zy!X=Xy{M<#w~Bx7x6n->#E{!1t=*rpIiilB$vg(zuPog1%r#*vuE3)Q=WK#HTouL@ zES{_u@P(fxSf6bq!(D@+CkfSm-BE>`KH&>JK>rG^g4J z)%CMWbXO-X4@`=V$w>+0E^R&IamD0n8p?@kkWMca@kPgd`g8+O{uTIuIM6p-onWM{ zcM+(+s-bfO*yR@o#%k0u27X*Rs}cp)W;{9h8SL2_W0I&@cD>+=gn>B0>3F4Vx{-0U z%P|;T8kJnf%ryLx$uWC3g%~(HP2yFp?ur|oME;0HwwVw~bJyIWuID2t0$V!&Z#k3s zMIt(jQn=QnLTDxJy)uKvj@W1GhqfuSv_&i(gK-poargO*vsbfil3Q6v zB!`{;ic9|Hq>FiMQI0~1>7`UONHnYYY56()bR}K;IAz4oAI&>GTH~5@+2xEp!KJXv zKryEkU#E7+i@|^jed(;M>Nmb^&A3Rnp-TxKU_4bNwQ0btyS+UWkll?wAQNFvfJO>6 zGoY%303wtN-Y}N+AaGK`s<`%CpJoKvn$X0c(5r#3BtQjgLDVPDI$sg|K<6Z^OubG( za`I^7ycxq^jBO1K8;>0Gm+##=txQ%9;#y{Gv43Y?j%ld>zYh@98j-gz8~C{ROAqCR zTRq-PKtBfSw>knYC~!}##M9w43DC~5a{XD)%AQ&(pjC+rVF~8_8(lPSa`WU%kP5+Z@pn_T#H#8P=Gt{Dtv`>|rf&}H4v#O-5jya_ z)l}`jXn^QCe5Q(;EguJg9-^|Y9*IJ1)yd&nMc7S^TI&RfeZV<~Yg<+|r)%h2HxTjP z8~uDnlV2_Gb)bZr_b$I>WE)7bpP2VtqgYKAkLvSAl7Kt{z|4FXXt8w(^FPM7Fhl+d zmtWv&XXjSF&x$iWgNYgZju`(Z2CMVos=12={Vo65j8@w9YKe&>?(z(j6C_@Z{wcI=C61>c4`Q?U9)k3ojV zt!&WIk~9%+cQ8W5F?lJ;Gi)E=3b>9FfZyGW9n|hWE5+m6Ewscgd}9m1AS-9r0C`u! zSEucDUFuPC8{zmwsU{FET%Ajd4NDRJ&}ED*ryfHO7(IxG>?hVg)mP1O_9`jttXXMS zw55MI?`(hwl1FFmD?VXJh-~~F3^KrIt@f(MLZHpBWP{&j`HDr|t)%e8o4#L0Tt~U0$}3m6y-u z{|Gh)eSkfIv)>mK#9npEWi`!d*(i4aXQh?MxQe}DB)v3bsu;mSzKdH zQ7Iy%RsaJu&Uf@Fukn4$5o_V8&a&^9S-RsVc5$@reP?JXdjY!j`|s9|m-~_lwK^Vy_D6Kp7U&$>L2zRQB8IrJ)#v0xHW~;ZgeX(< z&&e+^(+Mh4gfAH#AlI~?Kfi4^+gX$&f_}CBGs5TKavjr#Pw1qZXxZeweu?x#57S+gJmV2r!=)Usy3<(;wJbVKS7w0(qqr7WOc! zsFNz28`wjVr1vq$hr0#a(_t)1=m0S*3xH{2s}4XMeh(`*SGPLcDT}J5 z2c|TD>uc`XcHL-W35XOMa>&Zc;(xbn^xZsuO+xF*lXp2EOTJy;!+-9ZQ^tojsDo(2 zDgc%(N;0iMwq$KGL7&@)@E27Lf=;ekjQcxy6?aw{s_$CB2q z>%Tqteg%-dDlb?fr%t6ZB>C>GGKFkjdfD}KGw_Fi)1E|^(8b83OaJl$SYj^-=Pk_A zEP5^d{hZSRu8bq&0`1J5ZWb9U#TC%yfK-Nkbu` z1X^_pJVm3jR5P>;(MPqw1a2DqmfZ(d#fL?4Q=9zEPpWZIXK=;F0T+2#7l89YPGF@t zFpui1vNH+JXzl1Id3Ibe;eq>VKH@AP;nh-?J9?`SCCo(Am<9HtlGD(bE2XV{P9N-d zV@akcT)LDO8cMzo=JT2J{~u-F9SHURKh8y@L`7sbB*`c%Td5RT*;}cEI68Zs;~ix- ztZd3&$zJDr7b<&iC*ow>+1uUkdCK^_`Tp_ytLxnB`FcJd&&QrW=;WQ8d@qz#Dn^pM zSQY$8qQeu_bJEhW zI9jH`z`&p&hezxpzUVJ~m4X(YwF@h!^~cfnm?gP5@3uM5RoAxJk=iLoU69JLh;x;q z(X2X43wFsS7pudb*n6>a3^qp z^2!cMs#EE~`3QyfQCE}V?Xyqqr%Pu-_K$Y$Qmq-I4df($DT& zoFA4Utf+KOM8-a0or{d@5bhLmWP;$&OvkM&U9nw2)}cX`z}uAxeyDWkOAy7sXQIMA zMknUle1%(3G_M{AO>y=$0T}G){y90Lm*P)-A{vna>@r6Abe~SZ^z)y*20e2+v>e(> z>?uKYNMGBf$k?m}Bz*NZm;U&5L4RSroC4GY$kn%eZdrkgj0`IT$_TCyJAjuW1GQ zpQHxA~9$}QYNfUF7q{F~<^#Na%O%JouT$>8i)V0hr-e@{aZ4z!wj zJyZqVJSbQyfm;QsQkCjfJ~{%zrTHw(btfSpp7!yeR8)FDARm$Cj0NO^^}!8U%&%YHh++fy(L#Zcz6WCYgA3Dk z(xz5G>8`N!a$Jh(EwIGk@14A)W73##?J>2;1nUW=Bc1s!m_BiYgVjP659=$2Eamuz z808Wf9(n0L1J$XXH}#muF(vm+Fax~u1yHWwC)1#?#=>0}K@_e{LXcR6Yrz6Z@xJ${ zO3epo8^D40IMqQzhH9KOu))im3J%2Rae}0Q9o^ z4#?ml(H8^4gYv{?(rHY^3qqsi<&yey<)B;R6^phDDu(GxX(8` zxT>nY>X#7}?F>uqFqsAo#B{BUwemeksqseT51(gV;9YRa?LNOek^la^#5Xx}ZV;uQ z1tCom#N%`EN%1*%{KDn)I=j`BE+@sWsZo`ls*pRf&!|`6Whb0`BAoV|*tyM}3rt`e zr^1Uvv%Flr{bFF6yn zo}-W~V8?;b^hDZ7oRl!ggd?hDQdZf8*%qK=Tnsu;UZN*sRy9=RZ?y7 z;&6lAiZ3LG%0Ke^7~{dcS53?yUCxuu;3mz2ZCFe+C3x2?wdz(nOz8#pW@OueTJU97 zQS0b+;0pTG8ZzBJ+e~!b#xUsA%1KzkF`XXbJ|NXfLd6!OoJSk-NO=I?7_sf6mL8_O zNh~l9%;&>AdMkC1jI6k!Ki5>g6BgTcY1&yidotS@R=|sfa)&9FKGe`}^jke#47Xmu zC5Bn1tSHO67tA9Y5Xy5gvid~|B&)dKhSqCyF`gdQ2M!z{HWgeDPsQ3RR`HdX{eD(P zXe%hWBFU>M9`T!fy`%&zBgo8#lPh78$Yj`w&{W#1gqtyO&Fo<$A zK7ank3_mCQoy?oijB8qDN!P@FX?*VEs!#I^)@$?Lf>qv{I<9wgUZT`PYo%PI4jni; zFD+U}FVe3j{K^OVWqG(qAlpSlx`^7WmQcmipcPyP9-kS3^$KJ+s6~Cj6qc9wo!V^R z;3<#LQiHev?ckoCo&~=u&U&^jIx`JaUZ_OzWVLeGg6dPl6xh;u`DYM^cnf%ik&*KV zy%@-|eF)qA}1{f9_ zzwWzpK7WfYMdQ0tG4~-A_KV}ZD--_3KNHW1X0$3X{?JkWQHIccLESUzTHcxgF z%S6P0O*3g2(!h1*@@2L2p#1B-eDF!$6H=glj@S+p<4;(J`N#K%GUQkb`M#C1-5LM0Sil(<10-R6kUa-5MX| zY*vqQ{PD^f# z%{1kW%AGqe$67*^;J9Fa|BNMCqE@X_TBb6Rk$#j_hmY@%nx`H)U+=^Vi0 z`mZA;vMJN;$cFRaLsgLl9B-(6$E>kfrTi?b7Y?nsu~EBXWDFk|Z|qNgsw|nvU4tqC z*(=V6^ZiIZ9=DvnhFQwuULMR`8l`xTABukS<^h8WG|uBxD=2r?Kd7g8-IAp1UCwnu zZ%d1TfNQm|Hm$_>O(79am6b5E_t`==D$n+Rxt?VF@Sk~w@hh|;Gfq^mjnK{kbELn@vp>E4Jiy=X6 z%_`r2gbn$XDv>tLW=9^|C!$JBi-4U-k8?*X z*v;5lEMjz;)5$?Ux3fvEd2m->-yfhti>B(`U^fG&TfTjl@C4`Wh~ZzuDlpk_J;ya%5^(i=!GQs(>us?c7BStu(i zz6I8WR?i|(1AhP=>LM_t9I`q&Y=N5cl$CHw@bPVs)M%-1Zk|SLr%dEcD|2y#r{2hh zYM@GXO2Z)7m1(hYiH;Ofgs*61pFqyoU8qjG;@tBj?l@+vjPDIB3%|k(Bq$Z0|5^GcB zlL|1;<5z2D6(`;` zE=Rz)1Jp8@U6Peg!>?Bl(6(*CrZQYhWF^ zL^+`K@I(ILBh%`~_?Y)9@x&wy;vGFC;pri^7bd1r0^a5yX5axLu1}}61-*%lafmGy z$_rTqOgtq)J&j0w24{jXX!h_<%C(UCR}kan>%^2bFnc&OD24O^FSC2g9j-edwEbi> z7ptwKbAf0J+>I3a-au+#&SjMEg1~fIy^3a)n6zJ{JRAx$l_*-Z9EA|`qTme09DKJ{ zOGCXpUfpZL<6jT1?wc<4LApV-C!oORfw~RpuXSt6|0e<5 zi*G0QWX%Ls^Dp_3Pr!7XL`6eA6O;IPP<_Q$)>K4K)o1y`Lo0$GUl4Pu_4`9_+q1Gf zZc!y5q$vw>(r$&`Yg&4k9a?mB{3iF4V7<(Jd!vz%8Xs~}_Frgk7CQ>@xHOHeuAf!> zuEj%ZWldSkclmR$aIqb6JsI)~&WseWt)kim9o(9rwZ};}t0Np?QQ^E};znKaw4(IlVNZ5AE0U6SPSOEf`*b|Yk$1H zq7KpP{oc$v^1|V@2W-mV!se+QA$nA+*nGM}SAu&0BE&FP{MV@evpUKZOq?3fZ$5!w zA}8kBL5t{mr=|`-9vVD*5a`}bw3#>t(GX(t^Y~XMhJU5rStdDQlshd!qVhiGH299< zj4a8r?0gpk=~>kW$b9${tDxEkPoH_+pdc?bngf}fe+&hNubY=xCSF;d*iv~`b8Qwh zz}$C_ss3O%cIlI522vUb;hQf1>PSVQTz&XTioM@rlfUL4lYa6ET+zY5j^7t;^a#lck+!$e#$_Va>Nd{VU zqsz^Q5aSRD(8QM;^hk8Yo#(}L^Ipnyk?;5e6IE|de6Ov|ax7fp0=eOV;~D!e7OxC& zY2xcmGqS})PeyS=R=rbxAXHQ$dD#Pf>+eAZp98%nHahm=HP;OJ^2#(>BzMnHRjl1U zO3fzhBo71XnfzCe%!2+~uNt5DQckP2(w#RS3)k(RN&acJIBf)khVh8QiRNE*1^3Ef zDN7XbTtuAN=Q;<^%YOYq?VUpD#53L0!_r*{n!S2F^}Qh0bLnq|$vBVAeZaS9qTpu# zSC+c0I~WDtDIe&*t~Y3@9yyoy?-@&4>rWog%iWcKS2=nE>RvDL#W_hS;5W zACg=IGv=KtZ`jG21fzaTCC$$INUkLYuFT=gzbA4^{B4Z9tbkJI9)s4m9r%0VJu9K~ ziG--o+?YcSGD~^YKYdDiu*Bx0b~)yQ%8g>&x;vOytRr?+vX0GI@frcXh&`a3 zm%+!f!2Df;Q4CU-dX8 z;-CEb^JP&}6?gdwFf3N$U4I?6u1o?{R>i(;tanAbf->1?%s`AYW@7->;3{g(mIvdG zAR&d2QPOhAdhUEcj31{Z$@ zlHs=BHqPgIl1!gNI;Be&LbRXu9-EL5_kWvdZtZ8rt0z#%r6IogYR2mvG~^pz^R)N4 zD}HAy*-n3JBTKR}I`qHb{j*C|0As#8PMiX_O-#+q)_cRO4(J;dJ#!XnTg6-xVnvRQHN-pXoRc`U_nf4VxAL+#EN2aPgjwYgj!%mvN>|tX1@WKD z#cT^2kew=fWqZlJ4Ci zf{HFR2PK|%9ASIxYRIU{dZ$p`9DJ&a-in*jK*4uSi`8Rkc0}=kas~W6Cvy%FDFt#N z&KJfA{bl^t7M8(Q@;+W3!{hWP^tsK5_x|5k#3z!?lVqpXCR`cj{8(1T6>C2?HS^s{ zB8Un*koykdhxqvIsZ%F};IZlb)24x&Z1X#pT#hr+>qZe3jyu#V4z!({9e=r!Q?n454sbfX6MM5Bg>wpciY&oEO{J${Tgc|51ctBm5h<3VGe4=pO z=e2h?zgNCDI3E_~^!d%r1M-!>8v<|%1=EZ!xVrgBuIQQO@Y8vE>eyGc%Hp@D)hNtFy8I#ZE!ZnNQHeokNM>b2_ z1Qns1=cW`7*>lC7vI~bONwm?z?TPovJm3S-jK2eADifsHuEMGXID3>fk8xg^$e7S> z;Q$q}7FPxL!T|A-fzh1h>5ygmL9$zSOf+FINm#SjvCzdH`r5?rv`uF}y?IG|_jzTL zY1JnEveMyCN>N3`WJ>K`gf5|s;;Z&gB2is8I3Q}`kr`&uz@#vJ{UOKehR zi?(xJ*ETnH@g_>ODfAgp}rmltE>yFdLN=qRf3&IT93>wcM5h?pMBgI&~0yD z^|9$NGtVW7Z?@U`sg>C3q?nxROPO*k55UJ{LAu(%>T2+5A>;V`NG<^ zkoO!mYLRGB{y&J3dXRWk1Z+P;rMYD=_~_cI+62`pNMwpkrv4vX{(Fr9sx=d7hTZ`^ywI&vn z0H%QxnW2Bqf}%VAO-{DbxkDa-xXYW_EiKjfC0EaTI7r%c)LC#g@$FfP6rz3)a1jL~hrsiH z&YkQf%SN>dUz`lo?~!<*t)k-QP?L>#Oc)wWSpJbMHKX5}QdQQG?dMEQePAtf_j&#T zokPHx{0OO(b52a;iN9=H`NAt-FQYD}Ar!Vzonv{WDBEAIqJryEEzoQK7ZomoNwEO*%Yz`YLH!_+C; zUU-;KK!f5@7Mc44eNGSbv_wP$mz_@SC*~uZNTocv@J!nR(c~^!Y@XBow!n|SlG{v+ zLmV8IzSb042XhTL!6b2Ey~7#YFZ$F*ZCa8(l^@?nC<`C~EeuagJ>3GM?FpUMJ{G`h z+`8t##NX&;tb1c{QMM7No^$U}Tgg$B@-l{Fe4Og2MXM!5p8BEl3s?)#%=>_h?4lxy zwkgzJs?F!`1q!4?RCERSN0U#-5bh86=N4qFrGC=4upBN)3!jclN;!z7cO?Xs(uq*F&-@gnMTaaM&?>DsD)i9375C}pggBko$FwvccYk>4`# z8nVcA6;)Cmgv(ScvZak>O|i~2(5WJywvIZrMeEM|qC0|wkBdcnf7@3ap5Os&DHq?M z{1*`z84x~n(G};&-R7>eXoLqjJ5jM=9+^2hjvp&ep*#q^E%gsj{?;fUi6dlVQr z^I-)x930LcsC!llu`db-lmdE7eS7gQ`{Gb_hs*(9E@qxOR&EgPavXCyv9iJuYWHE_ zt5|=3J3V_}xiFtf?O6uC7bz(vzWf%}>C%+ETll|=BdGoa$UyIb&jCB2p^rr~c_H|;Izt_Qn7%s6vSOO{bi3+I#?aoA zgpwI7k-z3jEgWq4t!ixSc6ouWq4qa#{mchv*znBU=+{XXcE!USgg^S!F6^Y`uy`XJ_4(E?Skl6<%=>qlb<9x^x=Mf9<1e$#MXFsf>F2lB<XJ~GshTv(&>b`D=A1mHW^3jV@ITU z>zV&((Eqtg8=`m_?(LG>;>rR?A+6)%L)?c)>1#`c_@^1va|Uy!22QxTy7=ee?&QSv zAm8ioMR$Pig#0l8@mg*7C31P7U9nI7WZillij3+P8#2cz_mUCv=^ZymH2w_Z`r8eP zvrCi>zkS-|uJYpsip8GMUZnw(klXxqwkToyj=+b(kDeqSB@kPf9X~`i8(kTEhjgI) z>F;qr9!G2tPb+P+ek;pov4Rva@5<-_%p)t9`Z3CeFE<*kre_L=_>!sis@DM-vQx#e z_20JvOBurb@k8!qqhdQ-w}o}ska2@fl-Iv`iOA%~@gWl8;y^joA8Ik~r^_*NG+P%~ zV8KrCFPvig_IT5V+*yXWcT@;%)6EA829E>JZE0a1h#tE6iie{C54w9>PZ;+Xa3Mon z4(3dZU0~{b>xD!Ql;!B06c+k=0?2ojXi?EH5n*L~wdH;m-Z4Pi!L$k@TUd_xaV)~n zm|ev zz}pUd00#Bi+Pzz6QI{R`GH*S@pJRj+LY9~rQys+l8M9e1KUoQ;VF@U&OV9AHX^c`Q z^KN`%eyR()4;*BLiFQP5d)vvs??cg@d;+fSK^I17er{Fh(tJ2Lu6EM>#H9~E6Jb4_ zz07gl$UL0}ORJY$jd2X&4Kb{(`{EkH;uuhL!g$hHw>iiGh-GBdFnyZ*v|E+|F1nkWQBo8u>b{Da(b_uh_CjQoceMb0e0LdX zi`qgvV8r@FMmlLwO^-g(*VcC9T%c@_@)k{5h!$U6^*8#rBxO21Ir$9j`kHyf7|XcKV87Dt>+EPnPmpnB*ohtr44T}jER{E zc7(oEgcfrfl~}vG!O{4!DIEXQqQVy4?y!E7dz53OlH7c66}I)6fG}Als#PON*sa`2 z#km7;tEHbtpNk3|=~Bj&2!w`#jjB)a3DU6wP-{tU>SGm>3$**OAPpc^ZIX;nFKjbx zMnQz`!op1c^TU24)pAx<(@njN7MAtUotdD-}R8}#jGYzFc>zSZ(*UkZfcy7kGt;U3dXvU45|gC@U5Vt_Bi z6=s&Q;)SWw&Eh?<=BsCpo8k@XZfR%b<$e-fE0dMvoSIpA{Vv-PfSpg1l@2 zN4l&m1oxB8T~j4ZmZgALbZ<0v^AE?Pa&34LLyPV*B>I^ zwCHd8oOTd*6IQow0x_q-NdL#@2`Eyaoy-CR2l0Z*HN72~eo#XvqxA*9N4beUG{b%!y&_Jl^?`g(2`LH{J@i|7z{OTH$?7cFAdB$2VR zmu*g?YzQJoZPcMVP>81`vH_ZR!lqxD;Ke2bFXn!1nSMZ?Y~hv3Ik3gEYHxhEzVJj* zk{gvh(5*|&U=~?2uUE45cqirK%d4^1(T3pW2e27|l9Ft1=sowx@-%MzR9))>bJH(} z{0%#sPZ{@>O#I_Kxh1!DNn+J(S@#l(Zz|in@kG5OZ?Ld>$sgt69EK4f!ZU`f_T;_WQR#oIOcP!ge_{VEYTQTYR99 z6{%t|VP63Daa6%zsX+OCY0*ow! z?1=SUa8%p$ZJUnPT~wF^<`fZplge`t#hssQ?_2p6z{-bhEZbV4tO*_YK)%Jz=#D;v zkm9T|2_sldO!Hf>&-*BUh-biASxf(R$18!la5%rMy^6@-e%t%X#2PzJs}jQ#YSR8g z+wa`|kn9D3rcwN(XB+KRXCORLQA4bjS~u%oM|wP7Ygq2dmZCR?((gsi)JsHvNhzDf z_TB}ale1m1d|dwI_Yf&U6kTxH+T4=eX+I?eWdjl3;HD1$?y*Jq01>L?IpC6nya|tE z+R%QZXq%ggif+RR;a~fzt7p8x5l7RP z!{yHHEBVo`5{s^sk!+MY*L(*G$~m-bpW^jT6Y4nvV`U8^C!`7WgA)HV3-X2vffi4x zSy{Z&osW&p=gB@)=PTj+6@v z3pWv=(_)$PW%l!WsplYM=}LpsDw!6Rn)F3ngxT1!kORk)NNn&Av^lKoa&F^?&%k9f z{;`xQ<&ElUnU&I~BEj%GxKpzAPrQ~P!|*%x7rmc|thBj6?g^t+@^rUzhrPN&I0{1t zWn1!P(UCMP@uJ_()z9S{6goVT+z>6QN|^uHFAThO5>R~xs5qf-NYN;p3*%D$ezvja z9!c?WY2T4JLdu)-tN3pV{N$b+(Ndv2V)MC4Yr+KH(ffS~fyxe++$7NlCQfYN#vb;n zrqzs8Ry{*;!DH*;qPO33y)sn%?ymoaF{YDc>^r*o7sVIJwyWaFN%v+k+4o4g-1YCB zis`&Zaur>Klw)LVy~n*GsKX6>ZE;@?64v?Kn?YQj?BL<(9?`?zil26|5mf4-Oa)_s za;y3uh*`XQZ&0yC@6Y=Q6e4=tCi{*+u?YY~cbQ{gTV^rhC;v6KL&w!R+H_sxz5Lyf~%~X`Tz8{NK059b{ zv`Ygzk3bp66rN`TO1fI>A`aBB~dE<2(}fRp@jTW8gpvOa5l zfv-#h!32#ccB?JqHcx2Yxtpy8{%hisAnu&DaZyw(cV6&Al;Q#5!Od{UeZ^C9GI(`c zIacpa012$9N)93Vv0^Kpe3n(jTW|Oj=e;)_tf1e`Q8%HCNFyqC3)v+nw_QUTuTexh zkD?*MD1Qt%n#v#a$Jl->D)Q4y<=(sP5fGyYf6vLkCF6<6lA4kB(lOhRUXhvEKeE5O z`BVv)4IB=C-mYQ4b=sYU_5nR3Rb6^caP21CgsXIsWl;EfZ-j!nSSrMbns!hPn4{lxpMB1fuxgA;o( z?h|mntZltl)>D@LP+NQ3SD8#hdVgkSKdt`PE+myd8v-@kt}E^3FIQiKoxil3+@*#c zA|Gw*tRdsO59?o-KX6MrGaM&nYT9$jX&mtl{ zZ00(an~@s_a9P_>-u|GG0>Eu=q@A?`Zdy3e(zW`zemzlUgOCI4E2Ws2hgu~4Nnkf3pH!^Cd^?fA(QWNq{$Ky4)8A$zOl*U-piPH5DGYl;7U`%ImY3JFIb_ z_`$?ti}fxBvh^m-bKuoC8PwIcz96GyQ5jq}&zdO>tv%=fAH?#`0MFaOfu$vkuGe0E ziulf_D$~szkKc8wfV+ct<}g)CR#P)8tYv2!A?xEp?9*~)jRA4&l61YLrSFppMfh$b zhGYx`_}K)_7Qa!2?(BZ+7&{3AJ4;t<4Yu=yRk`1LC7N=;-F>E@-__I-BoN>$t$uH) z9AydU?6cJd6umlj8@JzHIRQ5)$qw(?5nNX}5t201f(*Qjg#kEhKRdJ(HvDnr;f`?H z;{1D6MOl+Naz6AYE6{a)HMYXmYW&zfPSd+=M3)dOt8FJ-j^aMNo}9&N4aG6qiWzqo zxPEnhv{y9+u_@BQmz4)Cwl=^aYtlz%ZN=<7EvlW~w?5oK%e8}~TR&nXhBI%UWZt1j zjTBi&I9!){0*m9}sr(bi-yuu@?Egkszdu-)-H<_G2awfYQ#@ zf$rXUO+W?;suXuJZ(`z>TZ4T4JK>@7D?3o$0_WXwK-pi74+w940W5ZF2z5chOk$G1 zyd83ddSRvvh6%Wkb9d*`w=gsGG(go;o!5A`z96Fvh(dv|N3e{M0JLjvY7+YrnD{dL z#zrp!hF1J6`+4LxsnarwA}WnaBnOa>A7x5D4nikKMqbTYiFJk>7kS9_^>v6?FFZT5 zSEQ()NR=u0!n!StfZO&V{kJa?m`8H*W=|)uL199Y^B`~mXb;6-;qGpbN07CfU#O~W zSxsq>7Cb2;az=|C6w(#+^tLh+sg&h*&R*{XY8k*ixUxiWhq_WPB1U_9mTOu& zzYbOVBpNz8*i~m>iv?Zo1)J;xI5#5TI(xf!0WJx(?&IS`FtI|(*tf@6?xPjy7?lS1U7ne&9yleW#Njpku#50JBelZ8$ z>2rBvzw^mKq5^3x-X=1_BDBX#FK`UN{zL*cdgngV4K}5>w^_plz3%2tc7Ed`=|X#Z zP3H{Ztq}Q^9OKyQ&+?RQ|D!~HSn*VWn)CG(zAxi40`m}_OiX2!7Fy8$_x$m1$i{in zu8i+O3)uzAyBQh&#CR}%9$4$yv9ZMk6=(5}H++_(+9Z|`M!?3wh{0N1riScR87Ao8NsJj z?G_dSuU77I(Qdt937A%B)BAxt{1S1QwkrmL8u`Go+TYu%-*9?%2e?~OjRkNM2c8`v z&LNNt$r~T9<%4Uv8+O-R-6oXn4;b;f@s?JnzmKKSxW#~_WG)O_j2%q4 z+SSQWl;k=6E{m5-Em3aw%m08~0pK+;nR@3EO!~;NGN!92u^cHU8FOgya!*gO067BIgYMO@JK*-?`NeI7+WG)o#URgix~kJ|ht@(l zY}y2xMoF{(QA|Ag-#wlK?w{DN3@YtAYO{tnN{!THjzs$lXZwF+FWX7QJ3ps=Awcu7 zY- zY;35#Wm#=~HuYI<##glecq@qdEREK`1k=u0V9e{kheY=9rhpqDul4nX@4Jj&RKy`S zhqVT$&sL6fpV6PW#6nz1;2t&EPCZa-UKcW&0keJduqQy8CKx{5jfX5`9-j!Z>tCwN zaP;e}ZsSw^{WG6>JLStxCs5?+>NFjEHjqSi#L#O_ZQY510vl@7tu zQugER55T)mtaWYsVgMgvJoI#OGC;qlSKeT?XmOI&)@UDY@+ZmNd1?o`0-qs3=?K&G zF8fhuto8HC4#NNCk?DW~6)W(4c)WcRv_KJB5Eg!b{ z76-S5DB}Bh8$B3IS5vwosr>)rp^qPPPXpTSd6BW!Z zQ%Mloyv8S~&ocI`ly`(V{aao_uWG8f#r3yOqEQHpnn%X$1v^^0YCFU%359h9Nx5M? z!vynZ4nO9AMe_0)=18{1)xez}{v{U{`N3uMCl(Az)NaHCQCylRDITN^7NjJuz)T(7 z`_*pdJhcemX%Lqh6%}GB=--=_iAVq(z}F#nR{$SjOQ#bFsQ}i&86+%jZkT|D8Qsmu z;%-1zlt~=T2{e5a?YBqJyadZ|%~Yw|@6c-d1%W)Iw1;bTK%zOT`-bh8ghGp_$s#*6 z_!l(QL~(OhhkjRT2P%!yKnO6`pE43Q`!iSK`&1@PceG;Q1>l$l#e;`b9Tj%=@CP-R zh^X=NqQy>L3gY64tM8M<9(Q)qXZ?_qEm~U8)IBV`6I}j#J|HY1DAVEe-5K1<*W#0t z&nr}Tx~{GfwSMIUA>Uo{_0JV02N6A&B^`P@hcdZ$C)dSp53EQb+qU2>&G^RzFaKrtGrwcGOtW@){v=}XO|bTVu*OsNWNImijhUI5+t0(s zFF^Zn5zsc}1eiK-t8WRp6j&pLwN=yB)?U;kG&mwp5J!!hg6=NO;Yd%tl4p+$z^KWY zh#JYq-#$IVgORlNzqvaPgLy&2zg6I?woAQg6_9%4)tupjaEhYRiL>lMPObVB(Cv5@ zuv5gA*DxT@-k9~!GTUJrxgLC76f_tv1+y}EpYblm3s!&WEh_w_X)$c7@Q`d`6 zhoGR&wfcU8IM8061-|46X8>~`{6L>H3H&0IAc9<~z*SL5Pa~Y#GmL~2592@6czmS9 zgVA8(MugSQ8eOv(O%_McRJtY#y*^qDrj`%K;eW>s3FkQ1tBv%7HriEd;T4mQn%mm! z+K}syZ$*B&8|eaBaLnXka!(w@sa-4@I78w__d@g!Qlm7EceR3?#jae-8%hlzpOu*F z@t%B6KE(L^9&{-`rUO>Wv;9tN|Zl#wJqf+i|KRO`p63XlU*I{hFWvA_4^9?^Y3IqBN5OSz1mBfh9If&gLE+3y7;G0f&+U2FQy*0j$G@< zNn5!7R#IVlV+{aM)eDC4hKrziNTTPa1}a=lDnrwFn(`Ls6K9-{4jxMqJW3-bomhTl zOUk6*H37aQUEW9|ZDDvvNW1mk+$p(38uheI&e`bbgA@-bM2qv?hpPj5a(dS$krEQRUIagjuu3B zM;Ng*k3POT&J-6f4x7GMgT{p>4d*E!qGBy)y!VlwRDASt62{lN5}$+^#CU&64x z>#YB#;RBdAdX%uo=Qbi+HJ0532DH;3MpepvL*wqe=TcpL_eybI?Ebs~?9PhWHD#pS z1;$$oaBo6K)<2E+k#E`CYcm8On%p)j=b&#yaZL$dV3}c%iW(6vf@(ur2(D}6tb3*N z+-ULoY_0z!9FKuZPb&&Ti@|^a|Eak3UtIqDfwOL(#TcV~U*ge(4RrBhkLB{Y_4{@+UQv@frGtRh{vq!r2pJuGqQv8#n^r>e3N3Px;bY z?Hi_%{-raARG4&sJ`3ekjXYbP>HUyRi-TZ$2~>u+-Z7(HmohKCPs6e<-}mv|qYH{0 zGK^Q2Nuxg<4O{sKvT``aLU~DXs>}&g!+gg|eG$o%cK^OGSzzhMU*c0Q>2+kqvHJ!= zdIHM_rJOX4(!8@IkM}BiGY-paf9QdO=H`~UtiZC?9G<#u@QR3Jm$b3W+oFR4b1JK< zs|z&J*9y;FF3rLAHZMpP<|{0-bc7)#h|y7-Gl+CX9$p!#p5|t?d_fr{ag84;6C-Wi z-C}LnV^*N6qIUUgXih+d>(WUWmCVmWDvVe8D8gViS5v^KvHS?jWjXd$RkvSf*R9 zsKv#_;e$?!2=v>j=b!F>@p-U3!mD3M_qk8Ba;0A0d2|jwDj4@NM#8b$9T(-ZDs`pr zRztqs@0M>XMAphMM~1l{%RV1Z!D{dJyZ$}<#@IJ0Utfh1uIqg8MD?Se!eh_W!dRG* zX>~la>kPN*S0xg$qfuv+&a*c69e2;@yn%Mc$bUFJn+%^|Zk`Lw@W1ZrG4DOrQ_5Ky zJJ%=VP@8{6<=mPHVx9K(Z}YizT6t^?KS=Lkb3eVLCEl)f@>b5RcC~vR$4lph>^xqi zW@KcDGija9`X(1RlF)aQO;YEyaC(r%uegFF3fw2F-={0apY(q%I@3Gahy;{YkW!L{ zU>C#GE!XN>2V2R_zo_>XsdNM7nD2E3l~)9Tx{x6BK-J?7@_1}=oD3X)$9U)^KI$}q zS0i%uJY2dfTxL$;{dv_=O@6X>=aZb>VfRVAp7QJd~M>CSffAQnTv39FgGRA z0!JZ}`U=;p&Z=jdz7qJMqB~;Z_J>=sX48$GV46d%Z z*<93qHfE~0WQo5ku`GyfDzTE%MZCm2+I?EcZW~sh`Hoo=;cpo`bOaw%?JnVxUGm|L z6{njBV}F>En>lB%!HK1*F{9v?Mt$&a>1az(1(a(Q7C|ySW^BrNJXHjtzVqyg`j@EiLHXs+4>O$9oqOAJ9C3n5ayg+n z_5e~z>1JV1+g#a#H~Wj8GOXm!`wm<7NczpePT!uPM@2co2Y!=A3@5?Sg=g{3a~;D| zg?qdUAR8wAJc$8S_UJ%?TvE#-tl^XkzC9s`ICXR=5b9<+bFK##I~VP=F<~qtAo)Fa z1zIu^Ry^d#GX%PKt>=~<901d4Ds+sIZYwAe9}%oMzY@;Cb;o1d91!oy*!DgD?5;0Rs!w)$X%+=zwxt$ z3luQgPqFS-`YG^;Ed4R%n7q`u+6>s_StOVNUlX_fJ&whmbk62T2^Un^*#mfv*$K-v zH=$_Br`49mYducu!|d>XzsyRCu&;cR_bY+(myRXs6j-#Yt<05^fKI}uxl>>Oj)X;= zDDfOcPIvMvmLE0Gz6`$E-yfBDe!l zUKLV84Ti`)k^(}nSNTQHWq3iLyBZ?j*UPmy7D?iyhUsQ}{xf_s*}u;T@QvI(sM zJ?kk79g|DG4geE{et1;|=iJCFvK&QIhZyNjOL-i7c<@Br@>exjkDZ;}SDE!MGB;dZ zT_u-4(*)%;O1lmkXi*;FYLYR1oL@0`v)LW{lY+vcg;dFypeF=o`n*1G!iKe3BbsCJ zKgcYKp#J8Bb-XJ%T(SOX@z3zfyh_ZfurXEhx1De4Z^s?76t#X)O7|qEyA1PC(YEgn zWnaWCX>P92sLJS1BfDH!e=M}SB8c?gq|vV9(u9@9VA1lQ)H7gkm{fMjXyn!50Kp+( zuW05DG&RuzUEb1GTENie0?&(L`JUxo*BqxDs*HPVZ@-)d)C^npR+ z^i7WKczu0+l}&Sw+X#=p(YH=RM?=ZQ+~7c<-S>IkpErKk z%AWcC*0rv+zU#XR%oqP?aCX~p>*LH7QxTsTVm<+x7T%;Qr$(m=d}o{Z(sl1vJhk1g zPb8JeDt2szl>Q1K&R#rQ2{XD>gn+#{0{sB`q>(@_`_G{RxMxHLSF7I|idy-FA&1QI$50!e455Q>rATp0d$*(VaQ#Bk5aoQ=e z@`Jje&KlH1JM6v5^vo)c@mM_}y2y!*J8p{^Z<>1s%)%&K1+R*!bYB8%P*tsoIR z6SgR~qT|XvZ6O%29;MA^a5myQIjM3BDp8N#_W*(TK|M-*{+5lbzOlLML4E>XVV$@z zo(C8A!ef`eg!O~0YW!l}id6HS`_)G7XFJKgwZYF#E2)zFFS@Xx4B(L>CGkoW3ulo^#@uB(0u+g`)Ob2 z)$vhgAtn01gq2!E={8$AykJ2c_co8ZIoQJ%M)jfLF#$Ts!Lj7DIUsFrh9PL|^tg{| z&_8vzDO$FL0m|vhRe^Y%pb?AFp}V~hc5>}%4>#S?EMy7$HcwRcwMZs>-+&Z5kAZY^ zK~jE!^nDWbc!+a8yMzHwyy`V$dddWq#yL00V21Hd7}j3c&NxLDJ#DD?Co?syY67+B z-h+3Ro|L6-`$?PcHPkAWmd~$ZiGLo*UP}n0=R4?^CjObG-%-8b<&ni{SbbJ-VC{Ns z2V{I?Cc@M;Rq_Rb|BdAOuglNnlS6`~TF{YFhSN^9sJKI3Ry%8&4ex77TVGdJ2Qhe8 zwvO%ajHC20Grg{-PcVi%^!Z4UB~NxZFyU%BfO1qEnDEr!YEaG4Dq`L5QL6Xb)*uRw zI(jv~&wfYbX?B(@DK*2DM=A_n{bd@e3w@TP#=}sFt+yeaHGSyyf9Ahr*jfa$rnd`fXS%_KXwjqO8bFa4=aV%`sHMwkm z%~+E)l)Z1i@z^kpi7{~{ab<}A$SgYE z@w7t*KaQHeEM8s8(yc5hxv>53X_x;B+(G$%5|NHBO|E{*SN5@U^k}dBU}Udz7g<1= zz}YHXz1mE*1UeIYsf%-P;_Omc0o22M+-=7uRnSA%DEZa1ADxRrD|w5_roj!DF1O2I zas{)7=??5u`d*gHbJb_TO%KLybPp!K(^!8}c4xWll~7Lk8o6$OaxF2HG=hbUeqYE{ zUtd4K{O⪙6OF0|#eaz-8*>Db>5h%YL?(Ht`XCvxCWDn`KU?6hfVE6^wy))GCov zdWHw>VhyOTTkA{S8EuFN3z*UG2-G1Cm+l% z>VHWgz*(5SztXSvIsbec(R-G#AakBjsTs$ypSg0rO_e5wt83Q|J=p%VkiY8L(A;}? ztoj~w`eOti=r7Ubb0N$vcnGx}PkEr+Bn-z|+R{LcyY#~5b(ef1i_@Ie%r7Y`tDkom zQ8Ghkr-rtUc;|(jM9xqQL2jE)wjvgN8<{`NEM3X7`EJ@zLY+Nq&t4m;HqNCE@1!Jk zcO@T(WU1Ekw#)O=(MfNL<8Q*+>-CQ`Hfsrp7QAisjusHAR4dLpxe3L}6E(_9o>k8C zfd}1_9&B&FKygo@w);^BhdzF@mxIRNI`% z2QR;?HOXXhJJWa_%?!j_!%9vMjik~mA($%2z$ytMzM%;RGoro8Pms6eGHdhIAq*8( z<{y$M7uUpQI++$l1}=z-?N=I=>}N0zM%R&tc@8ne|6-frV$4Sxg^!kSAm-gD(G45E z35tmIy4eTJq*(i1N#ULg-5;uy<5M$_lU70*zO_p_Q8hW8ud+$w9`!qP`AqqwY;IqX zzI%>STD)=}0zblfkfeIx$4-8-%?!J+p?oe5tul2pNR+`J9ZaMrk~7zH_5K-FZ1#g# z12JQ|^qKfCH8pofK|X>Fc}3F*(ge&n%sP(hpjjG_SPf?b#jD08o(J2D2Q$zQNju!v z<`+4T6GM*ouZcg}6yz@*pvtwLdDjYK0~n9zmtfvWtnICZF-T;qK0u8l%UN+_-zm5} zUZ|tIxY~w|8t5-~e$2L?K*zc}zES>DO*nIUEcq%756p^p655Qv&@xfKi_BigPZ_-X zMsj_iA?$kcwwK zxIR#g&MUg%btA9N(Dkwl8>gQ3Q1tX1)qVMpmnUufVfFS5Tyv9BBp}xy%&_wq#!BXI z3hJmOi3VteBOtZq87VeN9sBcH6ZKxL?k>;Q`Nv>Cbp729GriZ^x~Y&*4_AA!pJ6Rx zA#`jvLf_$9dmZtn&4nkwKiYMo#GOT5I`sMMGd#dta(W#hOncG=dicFYx1Y5!zn*<` zamV8(qe1lz+;=eUY06i3GE$>$NvYv1p6<$DD{aO~Qit~>RHw%k4{pNQvZ|jyq2@R_ z%2HgZ91?~`YNJ% zFe2LB0$u%!O9^g=dvF(z45F(qt%CLz>hCUld0O$E+}Zt7=cb8<(|q@lP$wu|y5T#98mHVfZ_8e!t20>=Ym$NA zs6Afj7F&*StCfe12!ObwcXNd%crwy=)TQ0e;5-=WIwlXbx3&LFv19%8IT$w4>wB;` zv<83V69S*wD0}XDMyh2@3OVne(4VP==hFj(`aj5T03ATOt)R6dRRhfDV%*noork3^ z<=jr&ietF?cAndNrzfJ)zrSrym?mQ^$mO03!K$5xa_nITyFO@VX04a#3SMibt=la} zQ9G2wpC;mW9Sc`DG;h{{n@73YCB_8{>6U|iR0x-2++AL)JeO|P7!bzAhN+^$RhEtx zKG*H^olf~*Z5~)fIhl+sk~CXd5%CSDOT1qna6DOBi^6c8x3+k zCa=w2*lIZ0T^fnmz{T_7w8DKs;R@8TT)M5xMK$PX9J?Rf;r94Rtnd| zh2M);)HdbYTz>#k`#<(UWtiw4`y`sb4x3QI12?VBHgX^gWM0#`^F)A8d)C^UnOm=i z#wk!08`6WK8~MDZVVWVCqi_vZX$B-}TtoZRVsGt_ifj=1#_0$maP@W2+rWP@^goB$ zt^_U6zW#C9-$C*!jdDZpL#nTM@b4GvqSnx9(3%Dn-`Kt2<=b zuQp+$U(7+DFh5_*w2M;*3b&MUll%iG2S%@$l}7DXK2y4#Vf#OUbps)=!m8fSseCLh zFM5tJr`nwPK9gG%WwV_a;shRQU-q~-Dc<#F2ECM4jH^ze{0^5j?dy)Xx*e#x*GysB z@dL8pb=1)s-~O}y_aTvCSUw!&a$+aT0-2LBLR0ZkVpD^NqVOgVP&ZOvd=C7l1wQd?4Q`H)3_q&)A3@rswbd_eH+D}69`g#51V>Ui$2;M$&6=@ z7x)+~RhOrcZZgzkLSn|?FFvQgqEYq{-LO?PT!*2Wnlte$UaToL(ZdaE63q*ysz_*3 z7q1x1%Ue3F1;+6$*q)b|o6_sXj+$jm9r|h5OhNT)?uzqtjyD|cG{g_(1!6`|uCFgs ztNU#?AUfiyWg~R{nu=oq=tJk5mKr`}=2ocNaarvFciJ2UgM6)b`Bm8CGWTr?4E|Eu zxh!r%Yss?*Use@Ms;1v}3-hlNS6@~%@^%sf+?wqvHxs@$EN5x){f~`v5Z6w*^}@O< z!E7SQk1kZIkAgkGybOp>@E)JidKJ?YG7?hv6(-Ba03Y)(e?KXTvPkMEUkK#OgGJ(W z1os=nv-wF#N)DvE6$wm)(=FY|NU(6+_;^Hl(YkKAeOs?*($HZa+|G)$LMUh+Zwb8` zWWKm4SYW7rk?ypj(*I{#6Hb8QTT%NxrJeJryMGzp6^^NX)G%O;ym_|@;xdUUqpG{9 zC%)5`Rlghc?0x@yZXIo@NSW*cMH1ybJQ!WDHL;AL-f)u_JcjwJ(C%UopVaKvY^SZC zFTIY6Q@t8}7d>aw(ztNnPy=fGX9rpoZD~ktUG?>`D-{=yDEh1SBn24G$7f)@mKoF> z+U-z2p>Z+IZTxAXrft5HGWF15AYZf%(ZL?4p~h0aCKS>ObuzR!LN~lTTGqO>lC=)RX&05EZMb)$0dwW>C;G< z>kGYli{Ye^Bv-BETl^V3MpXj{UyAFa|8q3#qa;vcGxvmopXshRq^ryP3ew6ONN#TaYA4ww=C1%h$tbV0M1Gq7OpJHV3|h4hQ8pf~F=VTJaaZwubPuMkC_*w;X6Qs0TU|X*|RL-a(g_$+VpB zqbZ`sleeA3&&X1D?nTQqaTh4o`g&b+K$cx?xkyi6wZ95Wy-h}z=1S zo(Uf45X5!2spYrm|I*!}=+SSM?p0|1cmZwWINux%phF$ZCQeg}>24ctmFI#w$Q<>>cUuUss~eb86ClH<0fOh$@AzSW-*sz zGsJb5!G5){33j=N=+E!`yLY(eGn^W~JtLi4KR$KT+D)Ptib%luq0UIQQsV-<_vUo^ zY2rp;T!~fIK(g!MZh;}J!hhqsnKY^|f6G|vGq2Se=8dP1GC+2 z!$bw6xSCHO&sln4XK#D=d`EljfMegAY6NKY+*Wl8>LPqYI=y=jTQ4Hu>7t+~q z`3p^w@FHr>kg2qH{wh0c!ybnLy%F=&>viYSy$)@D8i?gXHW+maV1nLAbk)_WJ0bI> z$xy&HQ{b3wyHC`bB{|$*tllem&nH?SWz0cf58BI(TwAjNtrHw4=^t!iM}L~S^EyOz z2iM4bz|n@3cp$UVGn)4L@?nEd(jv~k6*c~WKV!aw!ldwnpV`7-$j_qwSDrD$lcJZ0 z2eJW&)|ORO8WIOHy@&X!AJ_3SgzVX13NYU&4P8L|;gh(oCBsad7hA-+s6CV3`Pa?k ztCu_UZ1zA84EatrkJ)WK!N2msZPU4a-Pad58q zJ(M81$3aN%_47f^R^&DQI(hWq%gbp$hKHGd=wAwP#^bJepDH6&qejYYeIu*YW3`s| z+|^>~wPSE%?Bu9v)xvNxf=6snYeEZEVD7lLlp}-X!-vzk%jVV0L$f*9P$=#v(wo|U ze}#m)^u?P(JWomCqG((n+ACRf!b-rm-aPDxlAA0?jV+}(L=lNBN5|i=E79qB^_Q9A zt^C-aB+T)LIX6Tehp$3ce6BtnJ-xK2>x<2M1q@K*y=gOpmwmLQD%A`3y7siIYn4%|-yb+Mb(TU^6}l)4?=6HHe~AVnO5P)dsR ztdsDoHS)Z1cw0w~u@T+*`NTbYrMDligl~~%ykAKRp?tMBwFY5|y>lMkJvkk4UDWPS zw9oM`&nwZ80fwnZ+fqt43`1BlH0~YVVNcpBq4d~Hva$%fJ{VX2wDwT~k9>O82&{|D zYK*)9mgPZ>z#@&daF+nzb0&{w@y zFPrz3Xi(y}fjbyJgVZT@zHFvLQV3KRz|1H%`TK=8ibDo=m!B6%N)zrB{mp`Q3CyO6 zR#S{v-S^BzAVGvNmmIaAQ1yp&!V0~)+@tI_9i%KrpE$`iFV&+bDRXIlu-|mvt(Q;^q8rsuVRm;& z-{?lj)Vy2SQLx|@66ALxR<;$#Gul_cW@$Y5HFTu-1j zr^`=<%USu6C+B%#MM#^k%y0avH^O|FOM19ETgNy1F8ka}q(3qSPj&dUU$TCujMBZT z!qfGoW|%JmS`2MeNzBlL`_q3z_e}3JeJsS;RtnXD+m~sI6h5{tWZt5_#?#+1?69E@ z%`bKdwy{Oj)`-lx*Wi8n-7}VeL6TEfedq5IIP0eDd0)t=vC?NxJoAoCb?~3H8f7x| zI*)&(B&@Z3w7W0UpJ0X+zwqYWSQ!N&o_^ls^wMWRn<8dk2fZ~3mr60u$)k-`-lza0 z7j=twq~XhwGCX4T0g2a12WTNaYsi~kOPARX`T{rkHANPzkWrg=8-wYjlc)79A$1P5 zZt-R&(KkCg@cycae{2--836kR;PX;kICh4NBWdsm)mV;<{`D&!nN}%P?Rh9Rt(HVa zerD1x&*VgA?+ewXSMK%emz!XXG!m9tau2?6U9=DpL(6L1-?wTz7q)XOM!|>hwxde@mpH5=l3n)mLxIi z9nX@)augd%o^emIZ!&bWNt z@r_Ns%VcRmK*B8jx zpZ-Or|2nODoEDA-MNfmx*CoZb0aX0A$a&JHElGuxa)O03w-5!DA5taY4g#9OmQ#W@ zD^YmIAKWSU(p)W%S2dyS<*G(H*z>KYUxR;h*BC>SfFh%7TESi%4r5=LND9>`WB*_c zzLhH?6JWjg_WDuvql7a>!cy~aEfwk$yC_l3g;xd-*T&>`@6BW!$UWY z#_z{zm#cbZi@!>DSu=ab%PVFtkks)iSJU{^mA!h$=2N*x^&6!*YIIzcFuUt9XPZ%} zMms`WH9aeG@aYftgayM+UEe0zHS{Deo7K4_mqOx2r2Kx>OBl zvCV?wg;oM*!xY!f$ApfnH(6B0S+Pm3s7w_pJ3euFvV#iCl+vrPZ)xb7&cEB8(_(P8*jn>x8ej0ZGZ z;$FKt8ruUi8pALf-u8XPHlwlu(S>SZYs=M=Znt$)xI+PNzc9w0oExlFRLcKmbrIMJ zY7WdWCujE-`DU!dT1unFQ<=gj6|V-BCkf>);Sm#Cg4r?ladekrNV;~v5llI&kYxIM z0)?p)RNZdxuo@EO%_*KeOaxEOXj@8%=PwLoF4|(Ca{Dgx&QATAFuPCiMJ|KQ52qiZ zgtyI<%n6css-%KdJ66L~8HJeaQSbZx6&HJ)#Zdo zd&PowIMw#@rh>D-+wk)559&!y5SyLiqy+36nR2-Al@1o;%p}gk1SQPoF1P3bRM?}l9l zDzL0c$Mf8#$p^`CiK2vLWXdXoWd5Uzg-t2p`a2GenfJv*q*nPG;v(IuXz?c(IW-0olg@QJ!QRapIp1{8b8UM>6C2}_?{VoSF@lP$|= zw&{$jA)!g%{;t_cTl}^em=4~dNBmAoOq$`IZ%)N zW8hvE(LD%-t=ru3j9+5u$8h{46DdNbF2-Ey1Gr1xxW$pM)WS;E^W9h}!o=aUvT#gK zq+Od2%Ti_nFUJwjDs7kxM7-)ro;O(Dn?NL-i+8yY?EUQ~ zEsUAz>4e~T$6t?`U=D>rUJMw|$)BtG0&KBmS^R1T?Bxp;<#qk~6K$lB<**XP(%bu0 zf8|1h&)ynK=`Od%Z173F~BnOM(c-#~7^-YE|GTr&$Ix0}hkJ1FPFZZ#rM1 zV;ZdPhw9T#YMVe#Sk{p8DJ4o}Dfi#{V_}Ip$xA(W6o08j%csURWmsh+arWIi@5-&z zL8C&7Y~HlU@RBNkBt>#W$qBaCS2N(afQS2|z0$EVjP&ZK6a`oRKF8asITj>H+A&5Z-GiyjM=* z$J%~X{HzwVV|9`Wpq2=_?P&HzXml&i((RTp$K%H)K(~GLXug;B-yFs_V}`2*8`#`e z7{+l6=nQFziffV`4V#kYu79bb;n4#vA{_hiQImBv9*?PCSN8AM&Eb%5W`gj=CP~mD z$QzFH@P&mg2_#w^?M<0yVD6`$p(@6u1@O#nMOxPvDYH)V`S>d%+a6f=xmzF&PnCBJ zUXYZnsMf{OR~;m)Dx6h0On0?ux6{`^b+6u29V}IZoxm^i><;&qrZyrsTak%~N~=xJ z1-bFQMCR9t>Xn%ZcnDc*?*SMv3=Euazvu;JF#Ev1wXgdYmpwVO~> zD8H_n{jvN_fcIc{{Jr{ac=E$v>(&2GN2Xvt^B*b>XoKc&czY{iQ_SXzx_rV>X4Lkp zucG8Scx)eGJ!c-yV&eNf){sdS3t!m26}>K22~ETkN@RJN^nm81F=@KDT;L^*P}NXi z_e8#>PWHV8CpW8nIx9=R%C~QqXy4WR78QZF2lJsDu1lCufgj&_$FA!pE7Giv$SZU{ z`tD<_Mx>n|0V1i$?KZPf^^fMOoaRHVml}jbaP1>Bp6t^zZFGK6P(CTMIQgm}vY7Jy zdS{e7Z&gWIj>1Fza)G#zpnv${o*IZtSGC(726TR>>RIU3PH+iMT-SjC9M714=9xRo zZFIHXyJMhXJ`sV%b?1}BiU8OC&%$S=^SWPza|9#Ob*rB2n0sFRT}%T4*iEn?!Pq8& z&EkVMH}10Qe%Lmjfu4V6qytBgJ`XGhgD1A{BeRan69liZ$|DR&ID7 z8+~}HSMAuW0DhTun0Ik>;)53pRt5D#Yt_k*RD=gb3k4f@yp^l03z0Sw1)9B{zkeT5 zmIhvLF^8(GJCHLLYFxrGF77S$6;A}X#gL3aeOr)o%6GPcdwK2laxKav(d*BRr5 z+^^anAQe?}L@zVH-Kf0{T)V;_uANhur~1W+ZST&ve|)#gwp3bM+BDgm5CZ21DPPn$ z&QaNy-4CVNJz-_}ucuE!q(GGUdigq&si}E6(-+f@ebZ~$C$-Yw^|G{XXN%hfzCZi& zH^JP$G{buVHwH4c0}sVxoMQHokjM$SZj-D^)1F%|dL{2MSH5+<7Gz}@KG9Rt75~i? zV1}lvdH?irUYMlDc4D*JH8*CSA$ zoAy`oZv5S?{MX-!UjZlEPoY>$zF8&l1m%%_a&rF3xcbO!AFsV51Dzz2F*S3@E|@>f z>rIFSzbGs7`@c(!G)N$4y${Qshi+?Ze}B%z z$~ZpqGZ1SiJN<$PJly&Y6!{y7`Ny8VLd+_}qwDEs1hc*pPd`68`^lFr?*6Ev^eux2 zW5)gj=d;Xr!PSp+Pn{97200mkkeVA&a*E$YRMDIK4< zX@9xq>t+gBStA1X&Z{@lS2xNPCUYWDf$@E#s zMzIy=o$f!16p9h)&S-`e!NFt3ieq{W&&I-ZYeem<+ZRepHMS3+=?59Hmq)5fA9U<= z!h9vkptrP~PLv-u8v9w*{G%jJ0JIoUH486e41EsyJmDC=4TH;dd0u$caX|#RQ6mEz z=yub|F%zXr>~#AFwUlTO1h>iq#$iqX5#msLbaPNPP^EHPPcuJupWBD+1nd0c7lT$&Zx07y^NWy5_R#XP>Jn=D z1M4SxhizcR`R~=r84SnyqSH;eD~09r9pZBMp}ZOS$@c}4P8T_3fDZVldT|I2qFZN3f7Y)MQS8lQ@_`Dp*) z!B05B_oEh~hi-)OLbO@}qvLK!T9H4dS;O&7)KR_-LTt)l`n25NGauk7fcGPEALXEa ziv_7<3yo&O5IAwz7cyRU*Ry!d5rtI=hkbjPz1FWo)WUFE`T|+27?s{Xoq-SwK(%lc z!64~|b8uxyLWy>mZ}9GwS1F`dcvdZ>mRX&mob}%S!zl`JH&FHnp>VMz8sHG@9jU3r zMx*4i&=>z`jqd?{c`hgSm-zTE(yL(yGK*gb()(>}@}~>=zt8+XdH$n9{hu!V-#z*V zZ-g-<|37R9U>}>~wctb53RB;Rxg$UmHnORH^BZv=7?u7+>q>BdL_5Umpow8N8=h2j z$l$*D;5v_qT)S!8`-Xzc6>DY4*@EizBLDiO%y^UWir3XS9JEwE5xDd&vzHD#K$+2w z(d*_bcH3=iaD%8of>jP59YYssuFBcVZU;LEs1aAilrQ)iBU-1XcO*O(1GkV-pC$d< zOU(P-d%38my?jphQ7C~TokGLyaTwyTzOkf-3gXY;S@8-mA!B7$w?QBGmUR5fH|My) z&@*SY$!;;4f7(VJg9al zDG1z)cZ?q=8RH?~k9Arm^k~!!Ml7|5G`>4B?*IIpz(h*oIA_Q0;gcs% zWcJ!r$X{AxujQhVo$M=4I4zpz+|M605JSRFhnDIMvjiQ$FX!&~;Xw>9y+0}FKwYi1 z8_F^>sh7S0T*Ia>mZpT;^c{8Ce*z=FAOIsSzzFP&VZTk}{0S7mhhiIZC$KF4lau=c z!=y6;XNh~W=uemPTWDj5i6h?@OVR!P^7B8xTms975(jdlI6XAv4#68-@uNj%-E!+h z53hr1f5lww{BOv|4;b}vuW}pS$<-+=8x%R1^2?C)Cmq$(T7E0>*tqQzOVO)Qo@39= zsm8ui%i&D{ZSq!apTfE$1@Tj~rhYB<1w6TO>xrV$oB?8=FAahycV-5!ldm2qxGF<0 z!_|Gr;Nal)(MlnbZgIolsG5oxVo2_MI2UcjuU~G>$t)X;ei)g}4B2zd9iI61?csIa z7Z;fboF5v4j`$)gq=5c#TClJJ#K)U$S(ycXI4;wUQr5#M8U z$|sKs{N^tFJ<&fR!C&8>O-Pv@6=dK^esHpbm}_H8j?l{0mIsGs0-Aw&T+uI=26J`B zx^i=JKEab*6~qswE{v9#hoje!I(Q`1H)R<-N@f=p*v5@mS3)-#Uu{N8WFB{}juy{> z9=`HC-C`Nv#uWRF$tR>jv*g!B9A6m-cGVj<`c@$MzG}i%c+C6K-ylar<000CVOu5R zdyPt7jz0&3_`C>BQc+xbC31!yyMqzNq+)2b>-U~X-7iGe(NALE7UEVjG~|jlbj@C^ zJ6^Y&i`1#wwuPe3FzR1wt}aMFZ&R0 z36JM7*9pYfYYAE(iPk%>`{cJ{z40tTi|tip&QQL-qJu-}DLW@;R zZ)0+HayVpBKH*qg2(-Sm(DgzSiQqWnQS5sIbjJ^1G_S=D7(cN|ao%jir%B&pEyo=< zWTwcjT=I)OS-qJ~-MkI_I!$E=?1WZ&z&Jn%YiCU)869oI%&Dn7XY&mB1QR9+^C`buKw zG40h>lX{1K{L0CB+Xc&q{k(%VY)UbVD3ARoeQ__b4!Q(U7Z+gt!%c5>A2bl$F{n_> zR7vD0EiJVJEw!VKN=pqDm5x>H;VOx(0RZ~*v4Y`a_vn&e^`DQUiOrur{Y=tL?|Cr2 z2dy$oa`|!gTB)DG1FbHi#}vtG1g89KPr7ZiZB94MVFp*ETOrG~K{vE4SN(~dTQvH0 z3!Ry)k<|L_euwwtf-7f~t@g>47$*pt6@l+mtpx4U=|=UQS5-C)Yvf-3qf4lhWP9WPZV`2A~{>m?cPqSKVJz-7uJyTQczHs zJv-irww|bZ+nDTmWL|kVA8*BJ=DF$jo>Cj8%NTyDO*eslP*7eu zeqo|i4E(3r#hkpnK>bU#)AK-brCwmB2Tf3X9sNGz&G~e1Qi9$Gio)R;T-J~V>w-k< z_Ssp&)LxKx6NLyvVwzEqd1zcuYZ$ZSe1L_LWEYiI^%|H%^M3Ry_tUMP%>wnYT!JQN zBSVYlUQ3<{6T##zV&XtSddnEj3&D60FCa!E_?8P<+e-k{!|9A@}vl%i2uzF*Ox@i2D3OM-H6I+8Gs#|T7l&sVrXMRZ_MZxbb%Q2rN$Ba4>YBr# zQZtG%KE7_!7{8`X*JmH)1x15i`0>5lr(TBVPz*ro-}_~6Sl2$5s`)4x;g7E(lw+^{ zoW84j=a-1thAiL5UgiP09p!Y#V_()-g5k~zgkJ<-MCuj4#&k{EZy-su2bdJtzb`l$L z-t_al#@Ia8e1)*<09eQ|g$|28HQkHjgdDkFq|49kP?x2%6Y;oJr{%r{$HM>QpM_{souV zm5dl;Tj!lmEQ+gDyn6R*e6HYJCIE`cIufa@Qcm{bsJQ>}#K=5@kJ3I;ipLA|;IA<= ztK6T)xo1>EW1?7ID0r(gKH*9Xzh%_P(Qti~P2J&-ZY9`OGgWobpH@3dEwk_f#&#$X zZ`sD&xzdVW=y7=z*d24lruX_6djRds{kpo{>UjB#r) z;&8Y@28?rP4#*5X$`Fm)0NwJ%4>(EOo8#?ryw1-YiI8A`$$J%K%&U7&T%&ioqfv_| z)L28(aA*4{rQya=?!vPx;Oh5!9s+#&p>l?sD{k^6B^mq4Sg9pdHw9g2k9+q{K~pRM zKo1+b_<2&DJ1wd_?)E1q#t?-~DPkn%EJvNyzmUDs^=u&lrlJ&Of9%>xD%UEHeG1j} zst02aye!W{FcTPV;|mU}2$~vb6}%-fJrbUJ;bq-kLQdx2rs1RHMY=mW9RfY82)uTW z$vPl$13L^wg+BI~l+aUCW2|-EEt*4b-4nLrBZh3@@J!hJy1HB47tMcZ-4Btdy*V&{ z=e*RbX~6tof8==x-sm`b7f)nLxtnMa?EJ-wm^3hcQDVO~g^^p}3Xujm(75-^YUFG| zHyH>QVS)A^PCijjh)$FNKy`fa(So9-J^g}5(Wy|2Zmnyn=67+1$Ef?rZ!}EWec6&y z_q07YLi3W%i~E;&0n1K(oc2ZB>xUAjNwOK(R^#?gE7ALnXK&9X8DS0y*~=?1FMkr6 z7s}HZGc3`Pz55%BL+@b|}lJTQ6UZlId97(e1L2 z6>w>fVDGDPSXsRD$=WDn6q`_p{qBp-Ylou<&leZCm9gdauJ?Gz8UbTzu0R)G{iEH8_shH&$r{;Ae^ISLj_N6 z&$}31)s@XK|1zSRu=JMRb@2wx$>60O;Zl85(~KH0Q_XJ79R3!Lv}@mtLqgh)tgD8r z{t)h{d^u^QhYT!jx9vz-^Efd0Y!Lcxg@l*-OF(%#a(HIVuVkEJaUfeW+^;?-YLz#| zB^8Qq-M;8qP8FERV}`6mI~m# zEbFHi#MuZ+sp|NE?1YX#CTw$rJG{*Ee6Y6=OPrtXL=NlQylE63(ZI>Yl0 z^io)k0w*)PmNKH-hmE{Af!|9ufOYYcD3unj@L8`67nXaqexSXcr`cqFCLhi^YOaWK z+Yl2%_ej!2EGVxNR@BO{ezNPw*Z&DTb6vWdCdM=CJ=hpH{~5r26AGEv;<>Hi@?i^weIY zS{hkqMWe)!kD_B$iZO=s4w`>v@H}{W18dxy%M1m4a3&H1IbRK1YBcdq*reUw0g(|h zJuO6h49_R6eB~Gz=o*iIKd}%y48CW=&h%EfITLQ5NUa*3uV2pkDhy;isTQcJ-dyj( zGxJi3U93@YovlmYiOrEj-*ef3`pmEM5?{R&3I@_3@Vxv<={N)@>@}6nhm8h+#bWit zC$qlGS(28o*?N)oeox(#I`_)(PRn58`yRuUS7l)Lm%@fy7e%|>1U-6$#E11|!-gN> zBzVrC5sN%3t{kTVRe3ut3F>JwqwFc*xxufAO?t{nHspKnT$fwGm~rG$sgw|0tb0N1 zC`QFKXBZoU6IrX0Y7m^*a76mfsIrz^@=9*Mpyj5HjrCAGv?Z91M$43k{VrG8^CILuvqAr>HfW#L(o*AWtz)DMl8dyvGnE(0GVj z;BmYsuOIQsYilnuPpQg5PEVc()J_T=2Z~qkrv`9cK5bTlUp-neI;W;MQNHp;F`7#t zSB0g^*PH0(O7&Jjm~vRax?fvxVGBSzaT;FjFZ?BnJZH)fi)kz%%G5&2(cun8uv8Ta zni@q&GwLypnn~=)dXbJtd=R%5s8#)C$#SdzYRN3FpC+Y*c=et)pRblO(LX1C2CCe20$%5Xs30F3;ZR+cZEiN0G zWWp^At}C~;<34)#+a#P_fAT|KH3KCRHMq338#3Xx`qiJ-dCDg&o;t63X@$hGfd(h; z)|5M5A0`az|85~*`T7rKGyZ#JV@>y}sRh{D6hyMA^)q0aTjI2?*U!ko4Wc+R;3l^O zI?7R=mi_#pd1=Fs$y@C)(P5(S{o%dE;-Beo*RBvQgxfjceGk@fa2w=p`iAFXo(I4F z^s}yNY2~$(6cdCCHv!=T3ksYJ3a59$Kxfzb8cbDD97w8Fu)EUV%0+Ojq3Y{jq3SSZ zl1g(1!-$Hk@u}+S>UQoezPb1O$4I&tn3UBUzZ#+4&28<6M?z$S_!oTc>NT4L;i<@& zPIAjG5_P8S30P2p<#O|W)=J>l=E{)P;ecOho*krN19aG{e*BBq$cq!-j8odef|PE~ zWs(WBn6as!%I$}Mc*ZKdJykkj6=@08T}v=gz1To}kBs5NRQS3BatS{mQXQ1CbsWx-b}!jI!Ta3gHQM zAFU=Xkck?@i|yia(x}e2LcB)GDcDr(Kdr4`EI%0U`f1qEE&svM`%BEL5qA`$?u23J znnr=spShaTdyBo2@5mS?jpO5m`9`p9>{J@8k}QF002+Qel>KcX*~|KT{!?-?_e8am)2Ep~RZ<@3 z@@dj9&#Uxl`RlJZPLa_V!t}XBA#@Z5Il2>sA zf65!rbbR1*BdK#Z3}SuU`GGCz)=|gUs97>6Jkc@Ep+BC&-a_C>iK<}P2^eeqDU4Zm z><-}meGJ^Un)ir5h%>tZuD`6t6Aw%+Vx}JGfszU#;>=&wzv`d^F1gkDRJ(Z`{h&NK zaa>5Ugf9uGa(?kSh06U0Lxo1%VANS@Aida_eDLvdW?{?3r4K@!DW?bEC88Vs@H_I$ zC#i>-dUuC@XCEbx;{X}ha$cKD#RU{?U@^DjX^{S8}H07m=vLe z@rP+_z_3F+kwB4;iCf%uc#8NelN*HH0>5Bd!pzo3 z45y?8stq)8#WW_bV;_P6!0(cA^NcKZ6~PG3q}wbkEF^k;BVLYi>d7C{AIyNTm(`%a z43V_gu>q_-rAmMS0M=oqx(H=#K@ZkR21oAdRUS9Lha4YWXPU@B+Qn8oasDt$-}(uW+iTq(ykj54|ft4aeUs*;<)!O4DJB1zA_ zgPAp&c%xO<-jT6(8r>_)5V^c;!KQ0}w3w|4{}_Ds^Z{^?6sJR@aHM$a?$D)Kek~uR zJ$eDtQ4Ts37SAAm692y;TyfLF;-Ck9Sb7zk-EuD zWt!vBwvOj`9_Q#U^Ok^XHAx+-Sn?a)9F-rS?<)rEBM7=~PoNzHTRvX|Y|9@!rTxh( zIRx6Fq3disq76@E`O6B9fBM549~3sZP2E(N{?9q3DdJpkqCCR%fTc>&|EK4aXt)3hF~n>?WikDS#3*2Tz>0&Z zM-i=l|4<9^hoGG$Kv@sI%4MzpMPlaf&fbTX{Bfy8Bn|}o7&a3mDDZM?wk_Ps6|lY3 z={tCT5q=TazhUc`NM`ZhpUk9G;udB5@{zjG|CEB=6YxJ2>|>3E{HIr`!&LmlYsyRh z?J5784loXbV#NhlvXs+*(lyN2P0{#3P$h5P{rB_kx}~P6$-J|GD3=|vsXtB6%Ttq%8BFidRF!#34~^qAo_WO;`))svfK(33BZ zw6yp~3L5n%_Jaf`Z-Gh2)?buS;|{}5Qg?ejzU!CJ0TfucS`WtQ3j9qgDLn?@PlwA6 z{`=)H9wq?Xq8JFb^a7elMefj^oGw7m*)g7ab>yogNLyZ{5m3Urc#RPxSEIn^tAex= z+rP36c0l+od=LG)(qw{)(%w0w;RTY39~iUWx)loWSR39Okms_NJ?KsnLk6!8x(okw z2FWjhkh)eBU2^xZU9dT-12C>;ol0}H)zf%AI|%0h1V1X_Wa3q+lTb) z|4qbp5U@X?xL+Ivk|vINi-4sV4XzlZ#-#AOg%)UOPS%F<<6nAf%VMLv&QEzPhwkWt zNH>s9WJr7O9gX#uv=3>Po`5X&_p1lgU_qW@w=kMGB!(cb0Yc~4-D!cY* zDAPEsOhRS1oyE#+kR(I3D7Tmu;b3e{=(3_c#9Fs763bL4YhyRmq8KYiOBt8eEt1fM zLy zRjZ7ozk`X~<2$!B;(q5s2g9zH;Ryv4a%S@|I?HnqN48A9Qx%UXcjKEZh39l};NA}j3ho@X)1Ck_L)^ z0U;Fpa1-jJ+Dg{934lT5uz^SO$juLl5NwQQ>lS234$2(78Ilu|HVMOdG+UL+xlNOUosc3^y}XnJBR{Bi96-(Etc%*Heg)kJ(uIiIpmrE24|j`wJJ0JK zdYhJ>-t;Ler4{m;bYRf;!=NjcW#Qg8@gGmtfd`(*-VKUik#-JhUTN>5roCk4w@x*w zPt*nqD+&rW*FwlP9`U@`@Dr0-jkr`)0Aj|pKEqYAxk>c|eXXilCwc3xkf)>$-_?A< zL&J8C`w~{p`&I^QB+vA!t;k&wN)vIK+3T1r1C+*&WtgxWOFSXz($l+|m$z};5@I&( z4c_DI!gL^WACMJez~c1Q&X3HvU0+KeuZ}AfjMfT>RIUprcvkd@pDE-NARwR2A_7die=`?+ zR5d_*fol4NRv=Irh#?-XB-W}`=bq-V$maU={S*rRh%a^pEoi_jRv$`n6ZNj7H0iHE zN(EbMHmt1!zvu&wv@*ig)isw9g&J%{2`1}Tr^}jIW>nekIsnT;9~pOZX2Bh&18dR( zc3Zx`4x-%4CdYG!?T>gA*UkCQn+0&T$>3H-EF$I?bTx)57F{XLz=Nmk8V7>V>(#Io zL@cr;W!OC#ODK{{dS$OCYM%&>IEbG0!P{R7=XX7l@&YvJP)}eLcXYGII-&pMERuy3 zjh&UjKL^wP!?kMifW=9Hccx|ZOu)+yMm&;=gh%;tOUPS`T7zR>DVt8+!;jTiu0d}$ zuHbJ7LC7{zalMnKfHq>S(&si%=SE8>D|}xh@7pfs4VGQ6^#^Qw9qMi(%U(;YyP3E> z=T&qQ74$EFDeRS^QE}t2>^01$%M1W1s6vic@cLPjV{B}!6WiF?ZmR9l_T5IMg{>p( zLLbmA%~UtSx=RBA!KO`-%!c2UgKPJ`!zcncrC%7GVp6Ooz}ZI#Z%F0qIA?fQ@yk10 ztQN~XhSbGoJ2EPh@g#z`0?jB+Y}_SQ0(#rfdp}Xp(ZS)|y5Vui`g7aYkf|tHL7E3x zhdz)e$?Nktxo?D~^?=1DqX^~H3duZxntqZ$sw`qV{#@6uZ6LOFA#Z#n;^yAjHSE{E zJ12ghk+}(UQ5z#>;Ql&6azl!%5!UV(qGN{bBb+_m z388C#kS%%Ht`Z92O5f?1IS8~DHLKX4q!F<4lqyXf%maM?pUG^vvTRQHB_>SA^qfFN z`PbnT{QL1KrsvK6Xoo;dRDsI!?bkqB(^=Gf?!Rvc&U#nCl}yWB`w_>38Ah>V_9(*` zaeKae0`wa=s1UbowJose0{a-nj^!CZrbyKbT|W6e2pbJd3SB-*{n!2ee|LW$(!15j jn~GZQ4^NZ-HBA?2+bWNa=IB;AOTfp$mTXgO?RDl417_I| literal 0 HcmV?d00001 diff --git a/docs/slides/ml/37-evaluation-metrics_files/figure-revealjs/roc-3-1.png b/docs/slides/ml/37-evaluation-metrics_files/figure-revealjs/roc-3-1.png new file mode 100644 index 0000000000000000000000000000000000000000..c095894cd3e9df8b658e733580aa0cf788cecee2 GIT binary patch literal 97626 zcmdqJWl&sO*DZ{N;O_30;O_1Y0fH0U-JKBJCAez{7Tnz}jk~+MG=7_$^E~hQzB=#k zTXm~eSMBPCUVE)IWy~?h?l2_dFtD3g!fDVO zNEV`^N>-whqITAHj;i)wj7%g=Y)u?3j8r5=z`(eoqSSQF3DhtI(wk~NQ2Y*@E-H#g zdSOqjwN{zr=S7^UmSdcyjvb{93NW$8%- zeO|3n9#kL=aQs0scM==+sEM_vC85!(ZDjd=H{;BAZ`J8^6+X7{qju6NCB#R(3i_R? z&6&xr#fc+3^*5Gl?;SkWFoNjO*;Bto_FL#zvM0GLPw%B%sB=wLxGLESf&s@r}SnP zJagmRg{I-cA5SB;E>YEs1$s3~vXVuf_30Zh`YHK?^)e8g2bo-+ZXR4UGE-qTz(~#HkSwGmlB4-vpcf!c9ar`6HasldNEU?hJ?Dlc^qRh z8K8^Bk|0}nYa8Sj!{P0l=k6Dp=K^QekJq|s?_a#si4?t(pO63SJ~LM% zZ$bfu@5AXIT>FyO-y@$ zldEKNMzluky9xKdm>H+6*8=)vvN=)a0rLQ>;qP;{dOSY18WAlL>e(%`P6y5uW_XtL z&V!57nT~+hZvDNvU;2BTS_m)ieIfmhmed>AkJv`l;e49yw0kA5_!W!=3hC9XztrUC zX|k(7KoF0B`82t=z?ea6KW*O)3C3Fu-Nh4A`E9Lk3vB#$%680lSo0s$U1xCAchq+v zcFLBtoc1_lvpTKJuY%jPNLF6X7SWog=c6$W;_vS1HkMV~#|-`k`-Rcdm9rE*3R|}Y zdf=Cxaj8$4KX!@Jv29t+?1tbci6m%h@1m_UR!9Zgt#9Pgg1BTsHZ7jtPHu`^eP#I< zD+BtSF0A?98G7q`vk71bcH0Nyu0^yfA74y69#oGYZAMyT*4CvRhW89@ZyCZ>ve026 z>~!YP95wH^5KI&y)g_znfc^4f;p(=NetE`T@+dTM%7*58qUOERs^>;tFM}L^G#}yc zH`{7E11l3Ka=%q^r|vaegW#G8?CH`_!~>KPAKhrX+fuHA&3m`$y*@sB`dmRyuYon@ zyh6TGy2JMw&5nQq1eeKYX;XQ5FgnmR3>bKb1sD|Q3LNyp1HC|TBnRR@??CzIK>p_% zLg?+oUe?BRFfbu7X))nX?%>Cn@7=X;X8L222?ksVcwIAg<{da z_9Wq}*O}sF-KiJALs5=e1cyQh;$MfdED48YOyqlsfB%@m03`>k7a0OJ7VKY!7&kba zkn#)k)wz^E)V~b~6hX*;ot6S+2Z{zv{2qU_ha4P@pA#ej-T@F_=oU^dj9R~L1&`~`uzW?e^-{x$*)nB(bg)cYU8(z ziF=Qg3w53vQBsb1upc^3xNRE;GO-TXA%Fx__BA>P93GFdrF09!RWn(=F*ag!$~%cQ34-_+WR?ni3T}Qav?Fwxyd74K257f$;D|M-{^5u)lmTeQ2W2ZO`*&12 zP9HcpIfg1ZFiDPzU1F++wX{w20vEd!j{9f7bDIq)=+{g zjDQ9M9qypRTm*JRDUff9VMxDsNal#1c|OpDWjO6GXE9PuMeHq_RI9mzyBAt3vM{duPRo6Jbo%I}&JgMKMbT#;>8y@J@cL{|P^K z!)bN=^k$7P1f6W)m?gzQ+MPN=jrii@px{f9P2mxUK* z$>F_Aj9omAR|T|YwS!ibQr*Lt@#iy+7TmY)2Lyav>thb$Zz1hmg2eJ&j>5F_n!^C$ z<@4Rz76JbJm-gF5tII+17@Q{+6_tW_w1XcsDiU9x_5>Z*eC~!KaanH-@CSLk5V~Ri z>8=9kjXp;lv?9<-1heiWf{NAa2S!npH@s2F++iH#j{`gaZviAt!D1xowD`{%pKH|MlntMy09p^AfEG2{rcC;k=xFmGH^^7s< zw;567AOdK~yOsk{B4_63&0#nru;}63oiU?{e6E$NHY&z#8dj)6hwc0LT^- z=q6hm2r&{?4t9334>Wz=LjyF_IVu`;t_^3}sKaefONYaqQ6$kRF z2BJ+kYg{ZB#sfqy6xn0lT%@1 z<7c)h$-bNs#*SrfUy>s(ja~GAW~vUD>8;)6d|sJIm*6F|?Mu|2+t2#E0rY7C;y<;P zJX>uUC7^?G7hpNAXo>SPI_G%Zh7r@@5e0wr-f}eEl~OutO{niF<7=P?X;WJ4XiP@O zm-oXn#{aHm+w-+(*JwM+1@2D@u#T)i1O2?@lCmk~6Z z*mfD4--~zCZkiRsh1qPGrsGN79CWSIAz`iey`#|zy5cv8Gql}Ww>6)+LAc3U7w<)(1#n1jugGlosi1dYIZ@}h9PQvx}nizqJt}V8sT%^U1WE>q0^J|KI=YnG1 zS&>UckJKyf>^B%8!~`q$9qf~?EH!>p z%ZhXYm9(Yh&*_;NY2`TG8DwL^IfwhSe;|!cPKcmJFu%II;m_{S2pKUr$J!FX#S^c( zdS8Gr2T#PN&bpCaT3J(%g5W)@wf5<3R$SBYVZ>u+ z9AhgHIFcGXnRCp8UeqlLI@&3yHBQO*i7|it;uD0j8iea{)xfZ(StjPMgBoeqfoQ`1 zsV+SNpo^ZUXrT2{{n$PX)*#RBZCT8renEG9%XmD;Gpt+VY2eY3{h5BPwIH`Gr-_CXGybvgOvlR+VB#@^F0bcm5+KGapsqmE{wLvF>=(>s|CPp8!hj&oDm z1@qeA4!F#2PgXreg0I|b%Zfg1+3%g6%!#bnTXSbgAO|C_;Eyx6Tf+pK%izQ;PnSI} zX~`V2qPmT=k2Ck2GjV|7o?d>=?YLDo<$B5N$y?-a0T(Ds@)Ig&RPKyk#3!i6Dp}X% zjtUIX@dt3XdN*J2sBtOVZPi24wrK~;t%ib}Tr}yU=BBG&BNf%Atct6vYa<8o%#s?Q zgdzgh-R^$sXZ6R)GwkPn3v@P(Kj&1c29Q&znx2^;r8=ltp2*Knle%p`$W>NH zg!97+^?MuVm~=DJAkDnb$}6uHIezXCgWh<+1pwDJYj2hEu~PQOA|M;BLdXa3WoSOffQ=;M=+ycT||ZC&y+ z&i7;>%ZzMi6zUJ#I{T|!?47aRCZ|3tJsoT?aW6pzgzr`$5aJ6!aAg_F6C=!vaO&I9a)qq~;DT1?hTy{@fx!vxKqw3zySzUpn<7U|1%1HeDa>BcYpMRDrY z#!D7si|ROJ=evqOOGV>6POAUe88zZqB7!XKcU~;I+p!)`JJF}dg2_|T!jZal0;P8w zls(GzE`7O@!*in5+wF|lBg%z+r@`^FiJvTLLZvF;U9`&ZwMemC+%@Zalml{%YB!ut zY&7RiQY!C??$-EB-_i(B(jOugU(b|Q)5oVRz3Eo^@HPJnoM1qi5pl`m8F>t!%JqP1 zVq&6u+Kky$c_HhAxWZTiZWm=vHnqvo5Hek(_EL+4YTOKlKX3u@#Vb3wzLD-ztj+m? zrAG*D`%zQwiem#8P1-wlP&W6Kk9kvaGz=FckE6dFEpT8#)a}KIQxxiJNryW=%Ps}xdsTM- z?pc!E&OPay3@}L+y>5ckZI6DojnaY4E=Imss0tUPb*PHp8{D0{dF8MWvkA$CCL$!YBb}xe9;^}w=akPG4r!NdHwrbmZJK8Zgt66Z~08fOW3z4 z#Ra1T=6I!y!!zwWC&cUB)RK_rrgwvsYuX)2Y{yB6U`)uFzDx1X?92$2w3(+T%D7tm zNV;r}HRyr@zB@PHQhu7vr<9e>rgv%3II>R+wOaNw>0RAv%Z^sex`*+5!sipZCTpXB zR%K0k#H7d}F&Msq;^HAuqpR($lE-1$N4Z#9;74? z!K8q_BjMba=p6H#ERfE#7#>NYUor|)6u9q|YMV1*GtnWBb-Be!LH{3U>kq|;Hja>W zgS53$)u=QZucyCt+kGN|8_VDajLE;z(RZd9%^D-KpQs(JNC4 z_0kDZ;)Ww56h-}_O*nkSTO2lQNmc;-z^sdQzY4EKfxQF}4DkQnsmBOLuT?9x3&>{F zuD7mojJx{H3vhqFo>Gjc!zgQQ)zS04H!)fTp)s#Eg$8io*MA0T@_@SY*9q4XJfj3} zz_RAovfMio5%W=@+3~=^7o{yT33J$Ek=?OM4x702dW@mV;LK`th^!=AO!kIQ(}RpE z%glYRE!o6|TEn)A3f=ZHR>)L-&KM%ftGI)!d7wA9hg37dx4i`R&3fCoNI!nshVsvJ zvTGh{M0y=ErV5#K`Z}(K2US-e*;zj8SWIn zx+Yz{GGZW<;Kf27!<&cgoZE_JNBC`fGIC8sJ|eSPK;8c61{g9z02o?1JA#D@3f|oA0}wXqpuGl2^R43`5&t>{05utIUS2(S-!trTO3yI3Vy z6-I%I;u=SGPH8QY^vqWpU_V7^0S&xv()7(-79Odd7?dr>8I4QoKZ;6#H}s1I$wKQ= zVNnUsv8b%mNhm+ZT=4Hy?O*eLJ4xy~ZD1MqF4xyd{T7CIQ$1dQ%B_S(@Ip`9OV|wZ zS>BaL@q3|UF24mxc>OkC@EIy3gKUOZ)-nYGYfBtQ&EN|O2F3{X zs~SM)l3(D@%65lWQuyw`9ryzjtzEwNay^Cdkg&180Lk=2wjKYVPm}7CQm5S($P zi53<7msGpeR$Scl%=m43QFxO7cqB5NqH5G<56C=bM!DeQ& zZ;`dm9o4^)XRoX{?cx+Iy|DbB7P69*?>#ph4J@mloVvLhdP>(6CTr+k=HH2rwJtof zV)`{FV^V#M194sg3+T%!8 zT!m3f?~$wt*!}*ln`Msg{_JJ+<~9D*5E%Y^abe>Jap!%X7_)B3v;rZN%mrvL{6%`y zBn!bXKtPt|UC#K$KQ0lAz%ZKI5WJ1qS=!y7sTOR9SR4s$(1z2qz8yHzR0rt1%W(}A zoXcNYDAudCgC=F&&7RMOWiZjGcsv<7${aLM_RE5^rn;U2#4c64Icw|XxigZ03 zmMqCiIywNj8+#pWLDV|DPSqPaF;~X;1p}tym^@vh8l&)!H<877qv~7vELwqkWMM0P z#F=K8{VU z81#@QcC|vqD$jT)@{{H9zfoW|$O#XixD#wf!|`F#+XRnK?ZHq39nW{TexY%3`tXti_2HnYn6e+kuYX&1OOa8zaKJ^?R{zy{ zUP&_yP4I?&a`Y$u^ED*P`xAnAS{vY(w__912QkmnbG=Rc|C9CiL!jD4u!}tgJLkV% ze*b*UHp!qvz4cYs$K-ZaiAsNSAlbd6S)G9}i{40QIMQ2lZqCG2bbexzQQz?WlQmIr za#R|l_B%q>h+=56u*x0vcI(Pw6JIz7lQkj%SqGFLA_-G~k2r5eq5o;WE^=4-uM$ni z_s+1q4o7n$PagdTO;bsNSepQVn6>UmBmM}F{ImZl9;?=G-5MfXMVsJXcVIX#zmWw& zWR4`RUe(f4luC%fkmqni8wu!pbK5pbfVovdGFOx75tMG3I|O-KppeH=a= zgS0ZQMqe`dF?r>LaPYyLlgMqWuAa+pOj6Y1D#b4_GLA2T=8MAFn30@Z83mRt=kVpo z#@N2%!c52WvfteEsE}moM<7#4)wNQJ-V!l-qy=3he}wv3doNRDRZPr|c^EKbB`KL4 z+th5x8zz1cPw$;HJ*sw?jc>ql234zBM@ZE*>;7zEp7Qb{d;E2GjqWC3-eJ-`E?kg9 z-?egy<$!DVF?Pu1Ab2d8c)ZlWokXTdVeq^M`NvYIxA31;gD}0)TGejSKUS@eY92K1 zFw+l_pO9Eg=-1FJaYz#UV=ug=no#j5$g(+!ft{x}P1pU?g+w2oYVCxi=%|AnYY^ch z&#lSHkpVZ1zzYl=KVd>W`&_mZGUinUbk2fPj*TBIODPWe_L_UM9kxz3k#7aZ zQv!@y9JiS~tV33i_oKUQ@&pv~13#X=YxdLm)A`^-%>mmELnwX&Hh&HO_Ym?ZsMGkA z%pCoLuAxvHJv|k-mX{HO=Mx;8{6Y1P>ZJR%q_@%1{PcF2m1GGIB|lK|zea>}xW+*P zm{%~Ij`N~?a9hmtk5am$;rLIg(U0myzzl&BLagq;MIT*Qog~GxKZf#_=q(mMa`-x((QTF`!BB10Uw3Rxy-a-704YV;EU?1ZJd1~gu_Z32HF^=m)-fxoL;`5|SJ-PsqXZ}##(x4;bI&fP0Z;*Hn z?_30tw3U4(!La3~Y3BRl*A}9aJ7(u@u>C%=H@iy%*_}ijL?r%Gg2$kVeiIFJ#+&or_E&xW}6#o7!0y z?y{L8i~;CBtUH&Kl*d8fVCcuNue5@mU_PZAYas67On63KyQvj0-#0VJsIrPW%eVkIH`$vIX^ zW47+lderciN86QKS0;%ugh9;``z>Z#iv>0Z_%?MF^vwy^+`aflXV3{Vm$X*dzTFb?asa zKOb7$%eillier}=cv0fotdr8I)w7M@7}v{5SHzzA3@%PS^RqfhDYmQ}-KXg~bMiU) zayGBf_)P)UVcgF?Bc^$^p(cY@RF))~AR?-y@JMkW%OnUAIh5&m9Wx7~`;Cs_`U>6W z?@ZpLM_qMWeLshkkxxPoOq?*b4f%@%`v^*wU&Z6M{);!o=mRjBlGUD^6S!lhAe^&O`?^Wht(+A7GxZ{y2^7rwaydz|m@^*Y#MjU|45!!UDA*%sN32 zvZ)$KbIw(Kg!hImXUCii^Vva6`wT%}nmn=Pr4^EDNI#z>^ZnxNk=$;+_|Op#UfFIK zD%c!Y{wN<85yPt>AdKBo2YjRtId?y+KXF7Jp7=^wL_FSvBuMg{-sHE0bkC1ag8K(G zOTV=?CtJFFNdM!!pn@4 zPXvE`R!j!6n)q2fOx&ZzbOg10nf507hD#sj1p*$?GO`KiEYR_LVHVK%`2U&G6b6vC{AQtuIR!(@TJRvvS%qxcYu z4(cALRud2CPjZturm1SeHe>yWGp}(AVB)dYeA)|?XI4J z2cc5CSU$PP={LIS6SLbUpR@jBS-oBod3q(0-<_X7@i_XqG@Q83H^)xQ^JcBjW_OUD z)di#G*u>#B4svhzbDj*MRQ$pmJpOxgzLGibOf(Niay9u&-N<|1$5_rUtD4Uhg-Jsi zzvuB*d)U`?8jijGf$AqGu$OBzeSqSD)wAvTp^>ynx}U5@q=oKA-0XvsAaLFf<_W!f zfV$4b_w1Y%MbT%-+so$Ov58kedi&bRWP-O+x?kW?YHDHc6x1I@`XLD*^xy_@bvMDG zCD~gVu`{j}ePt_Wgg3vwZoE(A)MC(SQFg7Z9sHaj_(v3iLi=W}!@OP3pmqE;VBi9f zj3IwC=8MFT0)>t>LD|WMzjh+LM||@$u<~i&fc-!l8chH&cX#9^m@(;KDd}U<`%Sb=(FXaTJpiuL za=75Gh-I(O)V{LgRT7!eWVRc|NEZszObhLNuCGw#DXXxIvdT|NbA-2>3&j9gDcMfu zy6=B;0hE{!BO81E!1-y{7M_mt!=%TD_a^d>BKs53Qmh8kp8JESDyn*?uEa&%OIr*n zLzW*7)Fqq3j=tVE#(Ens<0x;LLc@x|1vol`$%>Zf={HbhrzBEHA`(rL2OApCrDpCH zt=mn^POSm*7`Kc1)h!ehU87g7d!~$Ikxlogx6YnajVZ?}OA?Br74DyB$tEJnF+Bna zrBUPt)U0+fSOj_daLs^c~$Q>9w z?aDU=nkQ4RLT}#q6EV!zrURgKre6pP>9gk+7)e~7H|n8`pN$7&l&K1_eGov#=kHtL zS69-xHnZNA$RHSCe}K2Pb+&mySQyOoQ}b2Nv|dK zlRLxbmafn2tfYEG1nD7{A^=0VZtU!#t)M02n{C<^&OMXNQ~2=Z$d5U8u@f5LyL1GC zYFbnsI0B}h$8v8XG{dxrBB znZdJ|f_g+Ll&ve&JJH>ubkEfoT&)M41{FIikc5GmEYRQ7_xmPmeDs~zi2Z|X?Zy>` zRMWIvEv{QsM^~A)xQx|4a82ZRJlli4?otDXWKTlKV)A70#|IJU*x@4N?L807A~b>5 zPwgRRfVCK&u6>}(=P6swl`K*7eEy2#gh1t*C7V5~{*`YSerkaGlZ-f!LB0Wvn zjCs(|4MDPb%=cE7AFul`6S(9i1uN6d5S%?zlh7}V^rGI4X}9V0tMdz5xu$e;c2@W8 z!NBC@gm=>^P_+Qv&r7hfGOkxT!GyH8LTK|>t+1oQEXuv2`1cLOqCx{k#jJIw)QqI^ zl92K6VBKJpvd7r);|?EtqGq^k{xP;=+G&zUVw7wSk?mQ6e&fVn79|H87A1K_M}OQB z<{d}}mYXxo{NLokhqnK1UUj<6W{wod6`58?=mlTo74dm=G!PI?du@(8=dNRaBMHbf zaFaS@#7^jQUxOTSzUagG{O%p5--D64`f!iYz;)wMrTVAto}$&yr_~z^DDcgEuGeRW zzA)B!nl#0pj@_T#U*|gxsfBfbq{Dp@U3W5l#PsP;IiPa84`(CP(-^@22D56Dl=K9; zonVtrwqht8Rv#~0QbVL29K+=-Et2#JJihU1t51~bzOwgL74Ab9;YwNJy~5n?^=HKK zN0*Q-m7_#Xiw@!;4t~}N=C~S}v%&DOW4LmZbIXl9>G(b~J7a<^)=W81{Ja2j@pwn0 zW+b7+DfU)$qCmaDRed8#aDsF!pSP?+kq@o% z9h7gCih)MD5;fLT8)s7Djp8mhU(o%tgm$A3R&KOI8R(Rn;PI<{(f0gk&UUwlwVUqa z!Qzg7Tc}cW^<19zpR>s~l=Oqx;|A$#>uZ+9ZerMqnsMAwRqGJ{`}c|ECBS@K!MR90 z21#TERvBT9ZjF6Kl=V+a5BMxzZ1Cpw;yJ7X-W6rbv@ZnycUu~RIBB8Q^z7ZfM0vB4 zg9x5Iq)02_D(rtcqEHE7?{W+#w?F?~(fvwBALo5s3>v}kysnybP(DPI=RruVBTv?2 zOO+Tq+(IiyEklxiJ~6!X4#jesoN8?^f5Cw)ZFIMraJ|Pclwb=N+J30A=Vvnl3B5rUAvn+gxi0qQzs)0=tZh;F50@KFYY3h4cM$W;TjlVvvZ_&&`) zrg_g2;(`oJ@AkJ~5{r)IQ6rJ0Cp?)CN|}F|KJSayr^<6c?*wQKqeop3u!yqNh;3<* z2e;g04~GEHos!E)G_Wl7Dt40aYE<~mnj0&yN9VMfO|TR_7WJ1}k^d-+969r@OTozo z14@P*zreIQd@|OA0avcc8~)Po{f2b`DLM@ytAsRVBkTx8Rd(0 zW5?DviF+-nlB8f5*z}xSw4jv1u$E2~_eYJ2>M4aEM+PG+BnmHzFaZ`-n z&VNK{qhD4&6)2}BrNCpP@?nS8i-f=BC7{%QSa`uj$Oa6K#;R(RA0aWr=~-}R)YHw4 zvkW#dF(Oe+lkXE5%g%JaN{Y%RKk(Ep&9tbwW>fJK6BrKVFyHmvcD+)d76I@S73L+A zkO-ksDb-I0@!KS46Pgt4h_*zL?U35*P0)4~AyARFN0~ z%aVj6U0Wwj0Z*#+2oy9M>;#aHq<7~Z;ztF)j zq+R4M&{UEe$q>)j>}f?hiS%bdgd9C|`98yWyN)86(k(UxpZJ~0Z0=>_CCn8Sj)Rv`Wo1-EX{NP%-j~LY>#2 zW3XD=%J|95-shFf#P9YKtNAM>cqIXp16z1%54^{GSpcQv zUMMx!S2hyhV!UudREYn2_@q$NC>ruIK4HaG84q{XBAObsvq!YGTT$WsrnJecxxZ@@ zd9G^(_8t{Fu}LWw8Qx5ugEm^czkd~lF(+~=(Gb#NpN6R3pv&3dNLI9`gNmKm;N}H127w1Ej zE}fvVfb~cE>JQjFGOfS+1bz&}u-D4B;?i|`MUXOGbL98GNB05Q>6;2nNDt67L?~@5;m=`vEpIJMS{vOHJGsa2xiV3ss?;$~aI#R>)JslZR?h;b?;N3m0HLRQFKODR*0iYGy~ikQ%DepU+YpC$+X{v$s!AZ`DvD3T!Jt@1t4JPH51b5@GCo?K$`c&A_MOm8qIV1Y=w5!kI$YUwX1S;L8?Dzw|+6BVF@{} z1Y%}!X%2)i-35K9pe!~o=h}53vCL7NWJI}r`ZY!TkDNk5Jjm-D1DDEFuC}OzjksG2 z-OSO-5?0{rVfxv2X3w$Be)@&)aFwA1m{qQxfG2}C<&1T4F z79ZCJH&|{CBR~GL5_aC7O*K~h04sZ>H{1`D04ZkdG8+F=1c*@t=r)$NqG98EIFuBROKWq>`vNhsO_0C) zeNV(U45}AAg9n!iO1Rm_`@xK5V&*9qX7{84YVP7qU29AsD}JBtiDA=wC8D}{*rLx8 zGmTBXznX1N5ZC_o{)26B17MD;Qa$g8_v_P%U%(!rHOG9}u%?7SygK*?Pf zNi#|&hWx`>ZJp!XESC!J-@t1KZP$heW>~f%oO$u^k}ds{mXtmCs(!K_5HSsRZE0maTaNL z$k?nVD&}F+HMz0ub4%GW4g2F&lE~gm(-n}}EGvP%7sa<;SjX%ASqLpi9cT=3;P^n~ z5upY0uhf6{FJZErOs^zPw!!L$%xa7nt>AT97W-mPDi$bHM47li<;feC<{iEemTy^` zlA^4X)N%d4`5g{R?_c0ZCmfj%hHx4y8zm22+Z&u4@sbm_r)*EZ4vexGzq9lX8W6P? zu*aqo!03k3GGg)Wcp#(umr75yPf~1mX z!G#8JoB-;}d}iw7Tbt1&f50HK9p4~qnH5IhWF!}tl%)O z&`^u{EZBeQD{(q@kHrnwq!OzcYmZD&Zq{1)1{8)_dwr3Oij(UvopqI1ggX~%DDziSa8G; ze`LUYs`F`UU`#i#>XT0V{RbD$Kc zGJIpPzJ84h{2TT7yFsL{2Yg9#E;pa2i~`1=(OySaYEBlqU8vflro_dOh6${~synQ+ zh4MY9MqM(~-%ClBq&)aAk;Mq*h)DT$q&TxfN4L6B@p%47o6)#R$vG(TM zk%H0tk6$tS)=t;FEAN&4X!2Q=6l-PI(9k*>by^Z;22#&M8m-+a(Pv|M+Id#Tg4ft0D;OdiU0FVe_1&x$c+Ls%+-RG}3LnN_BN<)LueF`jNVRY23h_vwgiHvUww3 zne8m*{5ur)+HVbu8{p1FGA@6S;c^g9R5)^J1QCB1JOog~O2H;c&h&jNI#=**yh5oc zrl0n?aVT{?yHG}>1?e8Xi2#*}BOdB+{qO4F7GSi9m|?o7SBV1PNS~h#CoK_DiyhN-cmzgXJCg}74C5*XN^IJ4)Q}e`R znbgG8M&K`Rt-Am)m~(9nu<=H?zv;0?v~hTPc0Dy@Vocw9&x?x*j;{Be17=vgL}S;u zXZb^=M;wn2b>Uim9~ctU&MU`%8>jUY4CF09En-T_&a?*M5en+*kXgC1^SonjBjM*J z*JTj1ShP3nJbc<72t&#jW+b|O&+=~wg6 z@Y9#wh*SVdRmZi(!6`3Xkg<&fwzPw@2xk+pOf0<=2{}snu(HLKvF00;bQ;40l{UsT zklo;#Z=RYJ4iraO996$tpjm1`E^M@XIL4dn^pls*!QS!wgEO;hh-+Eh8)$9f|2j!!J?mJ>>GHB{}eWrph$O!DNrHz2m1YLKv6ORL^UR~ zk4|Lyywif@baBRJE&JHN{#Cuj*&;Y5$&J#h5$9J0dI$l&cbO`*7<@4r#e25Uq?6o~J`R6U;IR5eP$FO)<5Rb?o_q27SR$^|h zPw!{a;kL8U`@@bNW~=fpJnX*3zIZcx;A>eQDgF{+9rR4#MlXAwFC7Q~CR}eiy*qo~TA z?$;!Q#2!m3CA<;C{LPx~K#~9{O3(?btl^&i^%R@XJghmd%gJqCUd#h9rN8Xd^&>nb z7%Sn|7(E2wV$;CN=QuWb#PBnTJ(4k7yl~!0Md6$(*9vaf9qq#ahtoww3AYThxC2&1 zw}!ECth+m2E!8FaiL24xixsUofP@Btjg=oMOK7e2X;$9JC8#UE!n2oRBz|OM7lfiG zCvilbpG}w?E(j1Lzc`x1<+TkJ+|wnoQH5YMix7k8A-P;mWR_)eSe z&353%U-Zk^qUjV$A0(|fW(U=%C+v3Y$ccYqSPnG=;-KM#3bpF_L>Y!+TqN%jYwQ9m zydWJAXf=Ciu`HEdq5CbI^qYlF3>sr8(CE}kAks4CTWtPGVI6_o$ksHQ+SXPYPl*sU zOH_oi0JDQZ{KfKvY)yVeAY-s8u0_%enK1!j00MdNE0jC)fgo!IDij1$1xIf-;!#u= z!o}Vbe4$N8i7*b|WiS`6iB|UP%#e4++H~tZR;aLIkN48zCI97ZnwQv{>5*ahKP(iJ z@bmNM-Et9G{EVwtM14oonHkp87h8mzVB-(gR#v3LJ~#(opf@_{B=V8r>2btNqefd@ zr1tYCU2^^PJ>EoC54uAYK$Zmxw<-CSxL=X*b(mWyL7UL-)z9JCNZ~-}R7KI3#vJ>W zswf>}&@QfhU)XBi5Ip7;@_lDCg>Eah( zJ#TAhceR5p=oEAGQT87=78qTVc`aTNVldE}1ws1~*Im@`C|uu0Ie+!=bbLEHxJD^g zw42{?6yoX8#-#;$mKC($T#fP-z~Vmj17@4Hzo*gTHWq=K;47f(Adqr_tlM3S`qNao zTsc6rj^AmS(aI{SxW-{%X~|U*nSdsLg$;Zu5}q9KB$yR$Gp3mNlfg*W6a79$J;qr? z@lIry2=If>65UQz*4qLdr%$9-8jmunte`y+LXGMHaM` zuRdpudw=m2wlLEhdA;Ws4k?^=fl?c^Dw~EoU^*#3Lt@|rjbb+e`(y?t$w&!D5WuS^ zN27p5ZAO;T5E(jMt>V3pr|sy zZ-FHd8GFMos@`cXI)rmwXYj3~8zA+TbkWu@PtpHmU4H;n?KfHNFh+5Sa9>#ch+_;z z1{^I@HcS&;(4sJes;|v9|&ti9RUIv-Ease;WUds=5Gj31X%LEUM+j-mY|Alh#e%W%PjLW3{9W{q!6 zbvIB9Zp!br_-p%7Wpf~RypHhkNpI)hWq(KU(`v=Z{t4#rE1&-n+?*4n*12nNb@NIV zoD5uw5Ff#_9V4VPGevShQVFuoS<8p~t|My zmAf)oYf{ZF5Q2KA`Wb+C%D_{8b)NxJNH{}na@g933*OGco;DQv6_5QNw!Si~u3(22 zC|;ZvcXy|_I}~f7xVyVMMT@(;LveR4?i6=-cYhmt@AIE<&i9?!lT5O*CRv-0+oJrl z*H^0V=k41@d$xDEo7|3vGZq&IZK$MiM0LSIZ|zISf`IGzwIDCSzh7XBf*s&rx*B}$ z@qsK7t`o;qV&1Q}PjLb&ubaua@Kf!=UCn-1Eh7{p7II`EQv* zXa_Wb&LF01meXL}_Wi;p2Y}SGc1Lz^p8g z!_WAsa3&Bx)_Hb5kQWg_uHY#kYpG61H7cwYIf)-? zgNIQlgOAfP^a<4IPs#a8@m>y}VW=O*T?CAt&F#_&d9>hppK!Mr%AOmTbQpujiYas* zFu+Fz*Jt+V6zc;!`oYbPgrBh;J5PJJbXi+J@1-2*k`aX5I^QE0_;*?e-vG=C%n8)n z0|_I89wPx0X>~yb+_<#!O{h*{(=od&`X7n{hi8!j{&pK-&P;O^rVF;~mqbLEEVUpu zu}$>#p_Z;lj|J@M_4?(Kl;gJas{MD-BM4%a-jvHz@RyGsmn#plGskrGU}e5OqU&^$g_@gZo~3%G6}o#D~+8u=>|oGT74w0)2B z73Q-8qqAH%Nt&h%BX5)uqR*)CYcru^wgzXn%$j>_hi3qs@`&!V?e=2S{oUQ2`^H;| z?-N7-Y$eeO}lj9`31t$r>u}6MUFGTuvo?tnTIr0d-@20j! zU1K}2ZvU{v`@TL*pSZj1Lo4HgPt7*f%R@#ibo>}m0&82Lofo<;d9fX9jToe=#3;)t zPG&F}n5x-Ey^>21?I_#csyo0Pgg1f+Wn!~jwKX%#VhE6d$8W(mW`4(mTD8$JYP!#= z-xfQ}5SGQeK56}E=j1nm%4g-lo7{#0 zcg$!B@Vq`59ZUCo#;axXs%#dNEW^pQZV9Y|)|Gd*F8+)X9v&AoqDzl!4h5SVyR`PN zw&WnCLNIG;6cB&ed3mIJm1o$+U4G->Nf1Wr9 z5zuf?FKE?K2eQy6);6KtvQXB|EIX*{DTnD3Y) z$KW^)hjwGp+NgOj>YNpXY$75Ie~R|8Z)q0W zPL!W}ffNGCGo7}C!Be!Gr4BqvC|M;pOK@V70=e1{G3oFU=u{@S1J|wpJmAfy8PlNa z)2W*Qz?3-j(MW6p#Rtx7r- zB|57+otcG$rP6Aj86k?agrn6;svn$Bf&9+xZ8Vb$gs0%Ka&_T+Iz%oh8F?;Z{E(=A z_0^C>tgJYJ-zI7JGk<)>Y?ZNy!$KW@zLdtDTvMji+0LhS?Jp!p?}@w zSI9t%hX;6a%KN!CCa(b5=BY=w6q`kDZ8_y&8rL|Gy>D#DT8bGG9@Dc4ZX;wMw+q^n z#jWz3;Xg9#`=f{OHOtO};t|{L_Awwe%9d2JrH%+yyxOZOQY7|c_bH3i$NM%86ia__ zpy4%nBnCQWcP_w{+&laV&V*ABf!Q@xc!|#iEMOF$y=8QXe%B;7rt6%L<5&T<=r&!xg+&irak_cNoEbIEMg=?G*T-UT%=i(`#r~Ghm z{K$`Dg7XpDg!e@lIkg&d1?Gr7GrH+(8+Qtkh3e5go3 z9;XS%{s?REdDv%!-Bvtc>5FMYt`G@3#tW}f7!KLcxqp3etu$m7@gOMW029g!{XZVq z2MLv5)Ua#AKbrkiDA>fp#`3p^eHqILhZ<)9ypzl(>M8h*ghW&hB%7-iv|UJwn!b=; zOy$xi=;bd7G_%(T=VH>AwZCW7ayPulfTIP_%x@j`3?{ZTZ<{n10_`rZMBl#pjpQ1L z{RDX=MBYGE80AfKbzqx$Y@>XMR$x=Uq3-7+ZNt#2D z&K}MrZctSxJr0Mu41Vm!bzu$ogKsT%r~wn|#&&0=i<^C;`l>N{6oMGp?|A2Tp`c89 zAYC0uEiAn=Lc*Y+*B9<@hq(&P8tSQsq4k_H!(H4i^_h)Z(B};Fat1 zs)ZDCb>A3Neg!1Cm|d4ssjlch%hKruNAx2FMFV!wT=aq)}QuHtXof>W@K{>8&Lte{w4) ziE%=4k$7!8mXopDMf}9o6W=LC{Ac*)+=YoQZbc81@qq)X-|h6RCJ!4HTVDWc2=WuW zJf4!AAG2v+EUn?R5(`PEk44|Wpr%dvJ`0cJS>TT(%uS*M`!K8qGilK>o2Ar5)Zl&L znoEh9yI{h+>lYG5n;LCC`S@_>19xX=5Jyv3%KW31fJ^G8?^SeG`IG{FYCi^Q5^5w4 z@r~E;O9!rf#+i4}-fpr8sG!{;0A%J>jFTOV_gD6eR7oU(9X;Zw9PU}dT;S>_^EfR1 z6XhIabetiEQ(p({?Os6l2avHjG~d0vXUJ>&oTi@4*|hkLZLO@ftR3f2>kBtF?LZ*M z?E1TYNsv7l?q@)-W{Z!+av5v4ta!j~XkAQl$cEhS?-s}T^=wa_dy!r90|{inz&SP> z1|JnHYlh2@GbUex7ewcMh~Q3_W@bT7=$XyejhygN&F-iu*T%qC!u;2W8}O8%6omI9 zvS;>YtYr3ju{UEqhw_t4wx!cii!CmEBVH7B@zce4>bj8v@RojGKu9ndKEUQmQ8;+OAalYZ1VIL2Um@* zW7lp5=bwzar^-p&E{REAUB8|#r~aEiM$r`qZj~O5!*iuO)jP?}=x2JvqmUA=J6b4E z@|4jVFtH*jY-FA(%#;0+4)tF7Ai1T>iY%@zzXjX=yk=P3t>(PWDt!7j*23RR)3iwT z&Omy{0TGZIp7)=~(w=B0nwH%3o(nQK8uQH`^uK(ai`v53BdMP*`V95&mNaU*k-TdD zJbg#)by$3nxa;C3q?8!-zc<7NFELt|WwBUFw0yj#|GF4v!-B^@u<%t1`?8zh<_YyM zqt-C(NO*BMaC{~mOpeX{z4c8894=;eR?8pb+rd(`OllwS{4P74S!^yp%CjQSF%~Vc zW9Y;9niYDYqNYGWi~qlpMstnjFTBB8_i=E}yR^YJi4>2`o`v!B;DJiiM`4IHBoEL_ z%4eVQL2Kf_XEd3n)oi@RVP1zFi{4f^6`ShI7zU`bnfk%?jQmsM_&<8jkVL@Sx-}#$ z&NTz*iw#p_ScS{_5+?nSQrwakneq7o$^|PoPj0R$&TYwgx5?oni3zvd{S0bTOFrvH zIPlFLRXJ&525$e}h-idojpilvsA$ntp;b#xCIqjQf^BzCaelw$p#)FHB0c|*$W8A* zP;HR0P%swRi=R%FMoGxxQfE#Nn#9A1#K)pw&jhF=5#8}k*bnZbM9^enq_(5}R~_m2 zFeY(971Nuk`VRguRFTt0^8_cBtde!Q4FP#_J6!}Vf^zc-hqNbMP%5r|!z)A-_obcW zXN2JdUeJ%T^L}BCz?-vE!6y?Rirm-08Wt6+I)?Ytp7_>w6GPVben&w;c=pZ3pF5N$ z@k?L*g3n#{LtqOI2OgLN`^NKus$MlmKj%dq;;dk5ld*C!rOqKi|Fb#qV!ceC>>#M@-EUCARfX8FV{H zZW1@ug7HxxB-n~%{TD*Jflt3`mJY2pFGfabxI zs-O1TLh={aT1$${L3A{(B@mkC{_P|RbdQ1}0RCRh5~)%ibCMWn z#c(Lo$kS&hN|=gl zj(rkXBsJ+<8}=SNfX!O7`W)WcZwY=u7jkUF?^Wa(#u}z_l4to+*y_%$!vIrEXK;k_T0NJHp>>B&?d0pKL zi%qx89~PI6k~mwKims4u(8&tJ(4~1TNoBbAdjl+BZ#5E#vAX};AK76Y*l~)s_+R6v z-S~yL^osaxu|g@jaeoL<@epdlp84M;V1LYAQa#YVU5%Y0P=1EQRbIk0DxU4~H%5E~ z8(duRMyfHLwcPyJ9A9sO9`BEkb7;42ms@)L@8(hltkPc%{xqe52|Z>PKb5EyY6Pxz zpgQ4aM5oJKXt=-%#HEbXjv?G=?ThH*%ha<*o^1SV3YqH%K_Ot|#+PC;)JHBCEYh$f zzNW@?*!(!=!?x(#vVQ?-x6qZ#g#k!WBy0Gf&$cd3>y9qv3nx06X1m!}`#zP8ObE;R zM1(aoBcVhX#w)&M`lgvh2CA+J3S4oeo#@+SI75s58xy zi~;e!`w^^kqOg2_@TrmCg8!Z!SpRQ{CnT~l2I-SQ`A;TkUo?_+ikD!<(kh@r3)7I> zjVNR6(s^y{A*Tu$OEoa_ADa03+{JDp@VXJ1d=DdxLiVZTWkPE`VIP?F{vUG(bR442GslwCQn9DYIXaZV6ggc?<8M}2cX zJWPilOa*ild74Ghl&+fO4x0_#4vE4Y)(tI4zT9+KT!6ymv5pM{G}r2_TjfS18@7ME zoVF5Z&Uo)Z^2_?2y@+rL0TbDwDMs+JSWb#uI;w};W(3PGot`qvEw#`W7J-4cFg=9X zKYWFjh6XDBJ1J%5#{tx3JZF{Y_YGYG&V}~dPvyi@H`q^J6ObPkmWR?1(>Qv6h&i$1 zro4uHrE-50NPz@BH9FEZ_j&I!0Vp6GpI5@oT^aosOz?q)y$tNQ`se!Ws}Yk2xF_tXA`tU&*SovJi0A0*lx-J%ViJZLmTIfx*_nRbEJdwYi_@-2Sb;v(mD-B370Q>?AesU-JG<14h;U@6 zxcvf(*KhLTIY_k5K;IG4dyOF|39=D%91}ruzYYb|?|_)0!EAYXOgyU0FYa?Fe$GwxYQ*s4o14Sb-O3=r-)NCf|(}OYCD)oxot<6oqNJ2y?l~`smtBNCOexSfWe3A z?ub)hAYe!TUo)ZHTUQCJD8f5LkCN5q5)KQQv5J0GV8@B691`omxL=JS?{5n~QH^r` zG#~$?5p_*!>sY3w?l)UbN0eZBIbZRt|dnGSiug+q1u(I-)7}l_bF#m6L*uEQMko?u@VUd#Izk+_OMxXMxPx zGV=q*&z;Pv=%jo7!yNIZZY~!rc|nsz-mx(>7AUKW=PQrIovn&f%q}LB_$8uj%;;A7 zv%YT~Jt)H8q%X>xsOAAhcIKt6pPLG@bWNL+;q3KAHIpg}o^QUib`dSzO)&^OAJ(ny z^g!N?dISvr9c$OpTe2Vjt$2K6&|9=;eD7wzq5oc!RlJdqU*yBzkvOt&CcG9E{-Qk5 zSm$bQC=G^V@xb|&_#TPgNo;}`Hh3by_?e~_l`gi5RQ^e{FC?|2__KbUV_>BUS)k_% zTfO?L?kcPn3&};*=Z)VH?+^n!U;SN^!mU_;f&rk?j9!LR0^uiKEW#Fk0>qx?U-M@jZP7Tc`bLC^L z=A;T%rzLZ8lEPEoI5jOLO^0SwSG;&pmuzF}!)Ua+giM@EN#|WlHN^Y#gfMYz=SKy` zzGPHC{_6B?2eu517)hx@1!dJ)dV{J-(wb|HaptM}d)~44PcUp2-k)jRXuYrLX?O-E$qvgQYZ$Q z>ECxY9n=e^r~FA0Wz|DX7gtla$&+iLkuAd|zGgS#+Nq&m3ooxOjIUML{Nqlr#kpXx zKwwG3FI&C#TJGN#y*`uf8xoUAoD>%k{%%0G9zU2Hs1F8)X0jrfTj%=Cs}Rkb5Vt_j z1`!Q*8a_+1&1_3k6X((6Ckw8~;4ej`4Hc#Trw(_+q4Ezy`dgSsnQL9Bt50RPZ8cK~ z^H(tw7^`|;h%n=(&YGfGMN5MK%*PZ9E5MCSZHP}c{ywn0g}V`INj|0>D(ZZ z>M86q0kJsO&oF_3S?Cnn>}F2`K*^iviHK!zXee*_XG9cz->AV22?J6d$HRS?-)pto ziNB1i+x4{|4;BdX|`IVV~xwkZ<1H^t7l6|#2KpI0(> zHGqrt(KiIrF!^o2<8c{uUFytfIz#CF=6tTvu7HJwMfhrc?|)PK_8EU>yQmS7`A0VZ z6U4621nsL$(rx@s)XX&@{m;hdWxdf8cqR>*2VvzCNa`&6i0>yEjLiG8;&>|J&&`0? zXf!!)iN%t$iEoB9xnEK%C1;?%B(~@K1Q9=2)Eix?-$uVg{YK24N%E^DttwYc8;4lZ zIXmtkH4+;6O~}mrr>U91XB;VLv1P#c7%v3v)X<)!pkwR)Q_j`Ee?R}fhl#x-z%?n$ zW1;HMv3L5Kez|TgMRQ4dMn;`%LaT@VijHVY)?M`r0dUkNv-;H^!^9w0$z3APT zB7)zQDgc7;?d)E)7H|{2F+rpiAJgdpmOSR3Rbxf&{;bSJ+Z>PE98!2+{<7jd1lvOQ zl;3@WY`G2ZQI<{*G?cnbt8J9gV`5}DB{tlT4ysJ2sgl^N(y`UuWH_(Jg|^pzB07%VZNOn>`55N7z2jRzu(|8h|1<&jFCj(p??Lx;IrGR%r`LaCXVXpO z#ce;D9MU{)uH3be4U?nha}2JC#DMM|fd#v|X|+J{Y}^Nl~Yix&04 z@EV$~ze?5W2eGYMCZ=?Ip9qBl>`}c}Tn}kgDs}z)94;>}DM4IvyWdK#6X+HV724ZR z772!8Q=-_ahc9GCxx)fOw(p@Sk{=qTaDW*ueR_|hchaTY;t4#FdkmSC$M7w{yu}zV zLL^17@ieCulOVoo!;xq;%f>&(yG?q12#xnUDchH0dc{on<6^8` z-G!5$J+2KT|7IU=*gh`Emi~|ydX;c3y<0n$NxxXZ{=)kKXddYT+`w(Pe__nsi zVWr?xzuvt&lCLy@;jT>cz~x|BsAc!oeWr?IjFJ27J6e0+JrX2VunsYC#@{U{)4QvKxlmnP@nz?9>1nAzawXnuKyt=fxBCUwq&^IZ|p zn-6?PaTd#PtT_ra7a5=U;xLMM%lC-JD`36q4Nmiey&&-?S#&9BVQt95xz7$8kKvI? zGq{}ek1&(})BOQF{(;n|5ZU`jxu!)6sOrl$-B(cYp?a{--hgJK)!k!Z=2eK+lWxRF z11!HqA@*!2fkyf}&BFr-I;~xf-=N$(i6}L80^Ji&lzdA0B;>a>obT$7ATR*xscZR) zq7^uBIYT>&46u}X5ef0c;n@S#F|hyf>?F*@)h?&Y#O|_&fGf1PjN4nq*%# zWX4ftxpio=M5ibVL7m{ggM3@xO*SiwDsO*LUC_ZOBsGGMkBkp=`N&%02`C6I z(=i#36Lj}491k-{hekvsTwPr;Sn#;AmEa!gYF|m!b$Ug_m5An^FNc3Cr*6}tU7coQ zM|{{L#Jo83j4`kl^tDsX<(mLH^O~Xok>e*P$@%20S450XQf)`rZ6me@bqAJ1BQ{Lk zy7)seN&C7w$-dW>xKYGabaxZGlOMxvj}lAw=#qkl@xo0{mM>aUrzvUShM=P#)?+l0 z$6t*M3tRoJtIcI1a>ZItwBHVrHyfD7Dp@P-G~x~*201h*^?lD~+2C@hsxkHODP0q2 zE`N9}^tJ;;shc$1fhg2_wVUC!V$8v3GD#xOSeTi~&--$xm&5uDNaYf3_J-Ltx5+HE zc{I}~S9Bb^kB~IouDC6aew-D4?lSi@L73$gK6Jd663g|P*c&^#{#d>L8SP{<5s=GQ z^0-XP^jQb@0)Dw!xGqbtg!pkXjJ3vX zoYi%)_%!c+z90{Ep3kr+H!t}3316zKGcYmcVMI??SGRqB_N5``A&q9TJ>htzwV5w_ zn-{naxgzu_MDpg8`!WIEtpG0zIcC@^V`pc_@4V{yXrb3SCCj&bJfP*Dx3QtCmjrl$ zd|C4e=PoW?n&;zjeF&D~s@)jR1)%fZeT)HmjG+WDt9$j}3pNEeD-PIO=OY@VP%3*D z*Y*34Lpn(-)ew)z0(O1xeBCfO=fPp_b{=}J#lVK88;aLeWwi5X1PP>u<~tGfR)mIu zXA6Q%eua@HpJAev1&iR|iR6-1U8wbZb|s$Lu9=dtd*m2DZoit8`lg~n3E1S&an`dZ z2-&s|*Qp-@U7dh4-jSLMh%w9Ic9Rn11E5eiYmVuL3knJf4QaCpsB!fwgENzpL=FxP z9*y^{x@yS-`SW^Q6Txqy&kys{V->IfhmT%XXlxRP{pEB2uYj`KyNUQ z^LjjJ?9YqW2qqR576c`Bxb)zYEXitgeP2&saOQ=EE`}0RK$;JUM;}_pnSz13JND37}}_TZ_tMZYMZ=I$EO)>NExy z%kfZKu^%qVH;mq42OLUL=w_y-p{EF-aGi?WNdMkP!qQAOE(wO%4dubajPWx(_CqxP zU*sTIQ1R8c;o-0HUKs%abgyuS%?2`T?cU0}*H=$K%3wsBK+wxSTW<>2l-t?b!r&{r zymI)`b|;<0^oQcZR5XJuSY&*0(zfYIFC`_V4O^pZ!G2|OR_zXz0)wxtxB1VpzYaat z9*zl}ySw>-!j|6sVx#_?-2HZt4ocu;jrDN?bq2p?$_wiAJq8%ZNt<$?e#zpu3@BF~ z@PsDH!t00XkFuDHk$lE6(HdO`)nnlMvcN!rc1u|l*X8Z zfnj~JB$)4`>&(L`wv7DB)oytL%ydCYA*9YFK#NTcSVT^yikXOiW)lVw6SZi@8Q~z^}4K zgrulzGM8{tP-xq!f+&xfuS}RNJL(!u-_9Y>qr|9cd!yT~Xu*M>LISf9B{1>yFt&kM zVf_gSU+jx{sI%PUP*O$v7uL_LbGe$M8S3_AnalXQU(iSjTg2K9x9wKH_p#&gLf%Y0 z0Ik*>RVcyz_%Ber>&I5v%(GnrsRY|xXUYpCTXtQ$U89|Dn3xG8vA`$EWaKsw4b?QQ zDs)#KY8|erY%7oyn4Y?Rg;jk*1w%7TyBX-yUjYUa+f%xqBuCpL)mwdE^DkNBAqWZn zEmcA^lPI3NlRTf=4x%^{B0*YV-ItJ0mZZ*p|J!uS_W~J0C!wWl08R*?wNwE*e~5WHL~ZH|viIR!4`t=Y8GlwRt~fGP|8t z$v0$=&jwcn`Jtgf2_rkeqeVe{XJwlmj}@Y~fdtqzsdmu`gZtt%QxTgV*$&<;E)P zjKMZr;$N8yEqiDNrNtHwh1dClfjZ}?^0BHN+P(f#ul(qb9I+WO9w9KG|8`qk5ljLV zECAeDuQxOc3g2BWPBnweiLTSk2tYi32H4~e%|NQ6R^07MdGUI^_44Z(oMVgZueMnH zay{QaH1zQvQ()#f5YIK}4a)hVPXc1ed%&ALe#CWq-mOC|04{d$I?8nlHy>gC39tzV z^e1bkQ7AUc{3NKs%LttxX;V|mPbOj(lQ;v65=s7mr}BdBw7R(ut<&V%kW%$so%Szh z61uPp*x!E`dRqJCee%!}-W~VXRdWZ$dfh&y%3@gEhSuVOq{@6{OK+`mzG&-r^?=L9 zz_vuXhnl{?o1p-|;x|PR#{z}6TBR&V6&&MxZ9(xi98MH)?pVVFU(Zu2*F11&cqO!l z%hIUe--z_$dw#giNzn3C36`Y(@jDX+m8_7A0+~<0ABhx!P%JVLSmuC0X3!Y22@UTd zERE|A>IQ`)tr?4Ki-2!^#8t`T9!J-k3#luQ5E~q2fK(l>@6+nFr^Z(SC=AqANudACYf%MIP47b z9Hv|OJu_xC-NF#?xC;j-*|zWvDG>3G?xwHF7yZ4Fg6P4JoK_YZLw0azGP`L&R8&9? zMg~&FY-BQ+nX#vGm)-W0XczkjvY;zis)J9grhbi@Es(U45#=BQ_ACZp!Z8#M@%-2< z>->^9*l^@5FJG&pxA(V)D9FSLCh7L1^aca3j86H4M}hEDoEui08#*OD@wP)x`90a^ zSMj2{u_jAxLs`7X-l8N6{9=WLutkSD2m#3|1N`6>J?+)nSto-hlbjlG0 z%<3lUI8|P@OWue2z8|23)-2E@X&||TUn~}4&)8MtqoM?yg8&bYKZL5b9Lv&#zCY;5($WPsmV^z|=u~fj_ZpiB;T0|pN?f9w zrU|EQx9!56#aK(3Ki^l7375|6%O-0=n9|`ja~(d%?+YkJu}ME(L>z*y94sN*Eh<7| z8idAL{;f-fjYt;1>`Ek5v+sC3Q*DYkLwWYRL}LR@j$y9s@|{B?_nz@DC)lt%>)bEk zRG3V${e-*f_!uhxYz#`MO%PcF7O4|nMFIYnDp-B2ZjK9#RGwfAM9+fQP%fAs$-iMT zZolF-NlPh6G{Ax;S;0tLJgf~GaRIri5k-$ZmPdPqh!*P}JSRZ?WEicgogdqRZ;Ti! zgirNuLO0p7*LCqUg!))@CL7|j7EAO}sj8AHJ^g!vd3Vi0aAA<*VIj@;@KTIKu^v+9 zWd%d~g5lIe$d>Z*H@aJ(2l%!)JQz;4!f7d6aS)&C*~FN)JkyoB?KQR>GaXK`B3|2{ z4N1$(gGYX6OgGddLNrQQBD6rb6%nKo_Z6|xNz=#gL|@@A(2zsaM3R#9O=ATNWehF! zvfx&Pp}$Y1i&9x3D@i-JU+1BC)vRsuQEa**e*8*ml<_@%ivyv1?x~Ni9Ps=1jmEJ6 zBLcxacH$4G2V%q$>Rpl${Y?|Ql33!8Vk?cndClZEH|hYtTZ()+QENN+j#mb&%6;Ts zRi-L21Ao}x?F%FLTOF56exLH^z;d?1vNW3DN4~)-yJ9}F5M@=IVx-U~e`2&40<6l4 zPvQG5BB_Z{HS{Q8{a_GLF6_Z|fqw|U+cS6{ixc#i!+V}dANa>eT zJ*|~@8zz$qJWJE?KXz%EoRJj$GEFA>AKlr9TSRDblZcQO7=g8oYg zNMPH54Wng!-gM!17YHA=Of4n)>5SQ6!5NG?pKUU(shASn7dVD?gf!;QuBd zB(QZ;%7Gz+Gm_#;~fi}o1g_LJz!ZV5#F06^!+bG?yT0vZGRHN zFXG5$TjqPLd-_MZ8$D@oAfYa;p;Ke*p23+G$1W)?E_(P=z{)Q54WQKNssC$hXrB(? z$zX>?W?%uEZh(KefEZlla+*qTFIf1TB{rs#q@!>tVbjLsK^WN&e#G2H{)ouz@tp#b z*H^vo=DIcBKN;ED;ZPJ$K}I-8C5X;ive(gQOp{P`fb73pC)knU4bA@|yj2Tq6{WN` z1i86~*)H9K<*R@erY=b5A5nJBahNcyNq*1w_>>B6e%bi-zFzB*te{vf%{u$kVHlkt z+`1vQK%Q8}w|j+^kztCE_cd>}L>}{Y0j_VVB1$s$SldTBgxlv~Y9pfAA%#E1Annao z?~nw^5BPn7j($^MMc+a?1k0{i{~n5uettC3UupdLHTAJ~ z(^^g?rEcqBA#Er#L*Y;;h0W?)SG>Uxn&35^^G1VO9g$M=&DNF+RcFzRSW(;0$?AYe zms7l|=e7n(JzChtg}R&#DZ0`sjUWG#^P9V8!32SPN{%r93?!8Sm?!5mq}EE}3^e?* z)ZGH!RTccC<=8UIcxh?#FCy#fj-^Fj-H=y1qwWiG>KnvUbEa8CRn^A!mI!%&_QG3E zwW|og{W|0cwb!doOg8)Oqd##)9Ey?drfZSw*?dhGzRB2Cw5FmU%3p+#+gu85D(cXRNY)W|YiZri_vQ%m#d%G4Q)Q2?wmA-uF+Y) z$0{n0#{%a_1)O?l#6aGRJ+3kk-e#KaaPafi-32q#>8k9tri)Mb(u2_j%g8qiy$5_d z2Ly~lJTgVbP@xrel98A{ePthZ7}HYh>HZU!)+kVrK=&xR5`=)5Ay*Hciu2`sJ>KG~ z>jA!|b8NE!)9t=vahK@kK?1QmgnZVLoLg5%RT;%9TX{T=*PmY>9B4ZI{;+5jJ+QC9 z)x>G9fJaq1*#6zbJ~ecO@wxe8vu-RW`>^khTWbmWryxSA1ZsbsHR!zObCTp3dkA+J zu{a>o*svKQtN3a;+HSX%uNHh@bApeNv8wJ7LF_b@PxI0uzSA8zP`AhC5PAXWaM@lU zf!ZbX^*>PXz3@WzHXV}#3M@f_QJ7CQ6x~}qk9%oP8a0di#Vo4Mr=g=G`IpIG2p8pB zs<{ouG?ROS3lgds93uNZnpxIQh^TDq7$fk>A2=YWrP!=#=Qa9WZXDC$4xG#?u|G;+ z6Gr|5|LS%l_b@lxzeTI2IaAE~S;H<()-RY96+0nmwvUd(NO^jbNd2JYWB;HgKiQ3B z%}9n+o=`vl56w`1m_Dz)cr87TgSG#i-X5r6Oo~*!TAc;y(1D^b4b%S?I)f$n!83c@ zSM~n_$KOw24JnY}>s)IBZ~y8ss^XPppLJeYiOLlRGxKI)fYs+}rAfV%I@`wkXIJC4 zU0fX9n~j^atNWGbE6dsNSe<^C%AfQ%KX527YT=zaaV>>R$ics*dhf3Z6u%XqbTkSi zgSN>wcsMs5Iui|L!vK=ujBOV9;ERMhKBrd@+8X_vIzHxj_uh|WaNU*M!mIu1u!(pXdDWJy#LS2xk$d=tjl9udb4Wo{li zdPlC>!(G}K9VKK7I>Q>_>{$am?bCD8uMeZ1DO@=enHA<~z&8Rx0=e>po;c*_hMSmE z=n!GzzB>}$Ur*}6du2(>sgz1PDlK=ZQPg4Ojh zpI>s?Yq?@^Wh$plVngz%Jq3AouJHa**(Zxm$BNh-8l$j@JP3PFv^)5@L@|aYB`*DV z`~>K(^2aJMM+LJH%FInX2=hpzX?7|iY{X{CC8l|C#xelZcBLT#`|WdEICUI+!?~EJ z*uGqrxl?`o4svn)$sCl!mpAFF;VHX%>Jw+wNRxR{u_I&zIjR?w^IXcu4Xl=oRPuC% z!=j{mOVYj?E9fz#O>MlCv?X=YNscpc+Z%i&E+F{lBq035G6bLBHUajuYFHkcgu}-{ zec-S(t$7a{A%|)#{X4HtEQ@H+EPUgLdzS=vmUF}(DrGS=x0i7uwzcsxJsoH;B=au` zzh}YZI(j{+@#h=-TLUFwYKLFaX2Yvmw~wBa2c&@5+XBvwqnh+Gsz$X6|HEZ&3L%}( z;oJS-sRjck)u*QQB9tyUJdKorL-|52u?M&@jLRDfa6%YD1EenQqfXxg?J~_i(FKjA z8mF)6TfiHCp&$@(50j@4K;;Ydd;YMZ8RKMlN!Dc;qP97O8roiPB%%hZ<$opGvZrdg zab;@L>aDAy`A>)>m;qe-7pu;`7Jz9Ik(CEwV){;mnYJ!S@*ntrv?+5W2o({e*GQK% zyW>9Gt#cF4GYd9r=cH_dUk~s1qi2>oopjuL(Zr(qcwfSh$GwcEkUU71S?yJfOF1~;ofZX_pz(~QeyyS)V2`0nd zPJd<{cqD@hS|ESxK$hm&6Qk;fkR-ZIoR4Sr11y@*nAm^jFR-kfp}>=A%8g`swZv)G z&cZ~Vj62XXm)Tdx_|d$uMA*p{5Ef6V5Ca~~4&!6-N=OQ9dKChQ!A&JW*0~JJp`g3c zeu-%a7^F4-t!dsnGJ0w@I?atVT+);}Z`QvH`Xyx3ext(N|FW!5Wi77!oS+2|Sxev3 z=NhsV)#(Y3278E*es87f06Z6)F)trlh7+jD{72~Q6pI&iDqN<&^^HvsLp#!@d^OY@ zDby7ZMJQ0^1kn5pL%r}sAe1N<8UF(MUsj-4IY@56kp)~n2s*a%?2=Zg%eQarVdEl_ za#;Yijlb!aNQP8($~Oaz8yfA*A+QW&n*n`fA z+W3I^n?BGZZL+}h&`&bF9QkiRsouE?3%S#mqYOKH1KFB#-Ts z5=-fe%11YQ9p0UuoElSbu|Yx$$o+ehG*zU3=U;o;9PV0CrjZlAWjRjJAcmgMNPjpk zulP-9C1UWx=}ORz6Su}|YYyLe%kyO8cb%MyTxLjunj4(Y&=4?OcU z3dJ@oZN~9(c{G<5TY%tM`dM;g{N;{%;|l`wLx!v$ z6&_&?3`!TNK%u9bze3%7cZi#{*UB?W70Dw{6NFCtm_(B*;)R+qtAp&Hxc}k3pnQ8u z9||O(7=uO1`v@H9Y_T=ykHlx%E?%>izIQq`+%kLI$*5e2287_j>8SJJ&O_s`gD#;2 zb8u^N0pSOc5Ef8CCWj1%y3}X+LE01bciw%C zzn@T`Vti+Ga57}V%`j_unI=J@Vak&iZBz?}pe+R!fwG*`yHIA_#^?w1QK9#bnOu{* zC-$R~rX}&2y!M#jRvsOLQq{oK`u}xSMS$vG1UcWH6aXM2FgR;S0q4y(#l{AXG&;8VKO$V;$@bkS+FqwFvc#-WUVRGTgJLg0lw4k& zFZMsl9=rrM+`ZD&Rv#05H>D4Zay|Nr zBsARNX`cS#H1q>>v1fY_2p!a{U(EcS3_2>YTBz3@KC^D#l0Prk54i6|9#jD}+15aR zkm~JZ)W0AE?IRAomogr8L~QY1_1BVBB%yM?#@MZu$IN zcJJR|!&^q-l?-je^^nFE`@n^x4DiK z2QI6k$(_W45<4ZToff|HgNco!B%_x5Cef z?O*!-TCsnjw610BD~O>6uf_}BZ1pYH92W7s{nrv5W?3C(k}Y9R@Ioy;Z4HsQj7|#~oIuyo zc{GCVg}o<7iwTl+Epu#$PDAkuoZ68G_yf^XyifctLi^SfTjMtFoc`wOM7TQ#GimD2 zkasr`j}SS9sKQGZBb^P)%045r1YHm}Ws+X6xK(8;rH%?2_0(nI6{sfvEjJ08-mny% z?7lP*o(RCvY-Ic^X`Y68l}{kcQ#!wIyN^29;eO;RWoHvCRxTr)zx;-9JSc^z*=Uq9 zTTRZ@gL~u>2>YoC5{>zK{o?d3mMb9f-zhv`mp`BY0#a52A~{wB8^7GnElE=o7ltL$ zOG}iZEIP~eH5$B^Qg{1Wtmu#X`D_9g1)Qnvmo zy=K+z4U|iOx$Co3FS^7nQ0af;^?(KTpaXek02}XE6(BP}6_}+!?T+*`b z&t;7=r!NtU8x;5(6)Xyc;qxcCRyNJcZEYL2k?d^jUZgzIpaQ~IX`$a$UTkqksWtOG z1BtZFPLy!ah<4YL?mVSQK25|erh0?})Q>WIwV!x}#?;RN&$pxl z3V0+D34j~@I&vG|GApWebs^(shk$DgkLM5T{)7pv^N6(}yQ;s$-FxX)=CNQy()ZbB z!au%awYx=7Eqh{p6m-5@q+Y!A7^oc6lP%(h?4`3ZjYJ^i4hB1>KJ?@NhN`W@;z1L_ z=XP6Y(u8d=9)%5%IzIz~SuN0prN(&0c)oI@4~?d6?U<^c9N`fC>_;~K1^~OlwIVO5 z1%=A+N2hda6b`7g%xLM9%S*)uOv!d~+b&&MQN0W6HdYdc8Q-sea;fQ)=7uCwxTvM* zMXy5jm!Kbg#i6J$>t1{5xkU%#Dbw7PGZsU8){s~1*HcFg zp*V@)=HQ&#K^IAEv!ZLW$5=@w9Df@S;{(|ttpI(+24@6C1UiLQgl&bOE=m#V{Gtpt zI+*y=CoJzV50#?(@cuL*y8)taCkDdcp0QzduFRSHJuN=oum$t34XRuYnT3I z+^Dv+Ek+c(5(mV_Y!jOQQBn9MUj@7GO%wI6YCedDcfK-wrGHg~tG=jlT$SVKbAt*B zvf(Kv{>ulfLXxqN%kNEd|@;HJhxr95+W z!UFnIUM%gH&E5GUOab~@uvM(5VO>Yr@oTn7t^gi`u5Z6Q3r%ZnAOoX4$+2Uo znEC7IQa#q2p=nHKQw~=$PgHLWb_m4xPi^cu0{M=t~940D~pY&ypu#q{{pH4+U#&TZq>!TOd0LJm+7!^;$ME6lM*@n!TOq=HyWMjdb z5j!T=o2+<_R9IJN(p}W9)X!K$Yj>B*jjVbo)&dp15p&f-2^6@d%p;Hj{vT2>ecHlFpjr$%|8b;Qa$rgXymaPj6 zd9and`_nm;bigj6q(QzRBMgyU{?ElvQ9_8{i%ymrd4^WVcU{~Np{|uXcg6-~+oD@xnIG{D zzwfQpqG8XoQ=F-nz?7ZQmr#*^lr44yA4^bTYaW^EYMddeG^ZHkjTp=~i14@}L(!7J z#@eo>L8$4){<{iufRy;5#x2{C6m$avK0{qYy>Ofi4?y^kDikF9r3qUp5wAams+Yw~ z*7%W&Be$n<$>HLpxxgjXdXvP$Rp`=SYSfZg7heTMs;$E@AFYE@M?IaRUy&3P;`wyQ zFzv@%(>a=X8#S0$=4fAxfqpRGhwG~9Bbpy?ZHh0=f!KHKD- zgwj|*BUm2YLwa{W;neY1n8ERcWJBgh(=n4cX+#XnQKdnI5Anh)At8}PoU1ipOO3JC zH3IBbvI_MPTk~Bjzd@$*BScs$$-URP|A5>mteOK;cpmqOUw|NZ;?E6mQE7S&LOq6A#q$(VU4j?8ROBcoT zNww1ir`^Cv3j-;9Jw@7(|M0C>zZ$tnN`hf0D7!kco$9P|L{)J(p>XthyEU@YwWdx= zA5-rF&hXBC)~JRLIK|?(dfuo=?WvX=OncKP_*HzQC6Ze7i1)uIV#c78zW1$~G`4zp zT)e&?Ta?;60}}hE&BqcOhg*81-Er#TNlPToRCLV$HrGjj+K3KLzWGTrctlSL*s9Te zAezj`KIPt=xY$3qH5n2=_0;=mvsLtt5vzQj@K+a**{P}0p_;HHujlZ3w_aW3vOUI7 zShUJ%Z&#XK9ZlNm>(%M8>D22Y42Ba#q!K=-xBI|;4?rQLmXbbYv)z%bP^O(KR%7FQ zII8T&YinGpBe!5JQK|IDV$hTX$e>ItI@PiAULpw|S8$eHN!NkpVy$H^z-3RAXf#f} zKY9V!=)&!#C3Ta@oX{8g1C|SzCjia48f0jVh;A*EW?zTlJgM94Kp>s8RcmqMDAsD# zB+LZB5rN)4K2IN5)Cm9=`D!{_lAR-!2=Il;Szwky$1J{r7&kg7S?}g!2iLtO8v9R# zoBh!9C!0Ew_Mc80xZl=!+ZN5$Y%-ljD&v;`(k6KiOyC+Mk zCxdn@mi-4Tn&OYDhX&J}2b@XoQ>iyk->N6UZ|*V8q-rE#hwKLJ5mBy$}!)_b&z+r~+}m_=x!&BjdAX5qmsF%66Nqwz&7a7w>!J z#`A&Oj-5Hg1__rm98f3ld9-M5yN>ktr?aiPMFa2;_bMlC)AfwnRU0(w?M$qVg(S}k z*GZjEipR6_Dr+;NE7+{zsAABlH;m9F)}^QZbURKf=diT3Wx{1Mcz-f?^0;FOBFPKQCTWN~9<5#O_jBRZL*GKeXS|X*kRRH4p=GT%`>n`=Yd>{k zq%MTK;ftD7b_()C9_&kNtRHf%OX2BUtSSM!YYtIvvth>Nt*@-qW9VPT$&+;M>f1Em z$Mo|R*h~_{>|?T+HhQG#`l$vG+g!{ei{v>h`kEi#D%3g}7#P?~McFjEzWk(iIo7{$ z@|a6dt;+KEc;br3`y8_1wq1$O5(CNA(VeJl2B&xC*r$f9jg@6i^OfaHhuYU+B$i%+-N+WA!4^|KRZtRd2$pI0P;rB%pBeu z&on++s#oY5>yM_IWSLbL3P2@RT)e+ImEm!@0{Ry8Zj(Ho@9a*SZ>S+fDvei~ zIIa(8!vQ=ds|PX?GljcsrdaLJpv912x1TCiUQ;p@pH1-xT2tU}S`|T1cuxp!W|L=0 z(}nmduM6bH2=U9U=rwu=y>Oy#7>7Tr*<4yv7Qnp=#c8_aCy@Jo^l04AN!+`h)lw>4 z|7!nu-b;f@eFh;4rxf&zd!Aa^6qW?BD}}^dLw?bsAC3cRgFiD$Jnz7zV)F2NHVS9J z4GU*rt_$9v7pofXU)Kt^c~1V=c;i29FN(69FjvW?g1iFj<=|#1%FELk+pW!ff0aR7 za*G)>?eJn1?ibAE=D$3obGmYd*u;(huk8yHO z{4cl5o|p83hFuw=5WDJhMe7~78v@*kyy4xKI8VI}Yi*F%chiUGD$jr^#b_)|zy$Lr zVkZskx;EpZzYimf3^AaTIyEBgFn;n4Z8xw{p3BcoDfoR({LIQ}e~|U_Mxe_1b(PF} z9jTkbfXI;p_6iseqDt9YBt`_KkVvN^D3{MdE3loVLXS9tDnU^>JXbBx_okHU>o+_d z3uhWW^+rO8H zwZ<%8bJOMpSXJ0|F0sY4_0D|&J)CCP=J10Hgaty?{P|h81-Ht&FFLBOcv)@v!n(I9 z?cB*WLvrJ+c~-Z20uRApjmrLflY=lps>ZU+fWiu|+(C2sd=@YE-6OdNWPmf>hA4DP z^mwRH=UY}Y{?Oarf`4|n4rjX5WvdS&Gw&5sm;1g%CKb0U;$J|oMKbj`Ivh4Xi~HSn zIyk_p>ZrOOu8r#_GG^}ezY=ZmXb~P^g*=}!4eE96X2j5bj zR2xo1=$UkrV67hJ95$6BkONd7@>XsS_;7Q>2)VxTuENzHmNf1y*^VmMiZ)WEI0>=@ zz}?>MrhW(9IBt!b1m|5@3zF=^)9QNd{K8DS8ljm|cIt7o zjoNWltxoGvY${+(!jWw^Rj(bH^6#wbD5rDtdON6R4a)~kU2I4mQK|4gSuKlyUr{@* z#^pHPe8@K5J*YIkBowkEao=t`gYt$_;6?-=FBNMOa~4APG4r`w++|)l zJaA06Cmqb{k*55a7wSlvHWfx3tM+{i_TSuBW_)<;p`7=9y_NT_zqCE0o|p6P>T=#n zw9Ef?9$srH)R`c^^(p`OIlbro;_D5|LOo`(nlHKPY1Ar8 zwRP@Bk>FW?w7IA0pX62l$3 z-kcCJ2{+sBju_=2k*f5yW8~xdeRy$?lo4A@7Yeu{D^@P=sCCX<(K zbJux!l`4M9<}FZu8snGxZ(ad>jTJEB`8IaF9|YSksoZ7Rv>V;d{8#?Iu6= z_xI6G{i$^pDk>|lf3z7gPV|m-ORhm?A;aegsaRN8ABbarHTI5FRMO|t*FKwiiP z$M5~mlV+>J;$PGyOEeX1d2jLh{=#&?^>ce^YjRh|{~0IWS$15d^wspcbOI_I6Wh5! zu!y&z`Ly$HS_W>ENM}V;{aHkpYNDLv#9_#&>Sv~s=oB_>z{*W-#y!od;<0? zlg#eQ*eDPMhja;k*}E8gku+Q#GT40{9Lyv;m0=XBQ_*bj0b|w~xm!DL7*!P?KevZb z9Rk9*7%fx{2Va!W8xnI$p;5|R&kLJ2mt^jL5kR;Ah$tpgp}u$2{@sbVy>-@`JrSME z7PI{+XfxTve<0LKnR%6Jm**6JM@M@)K~U~KP*;k}L0O*kq2hO>0MPyyd<3-a z2xifM-|lzYaRomV%YFjpx;%6dEvxo7SDWE{iY7VD(ING&)GT@3h+D`LPaZ%;MhY}- zEs`uB0K3}s1(4K8ULQ<tF=6vMEoR^tOOt14oj7 z0g&349pGeYNapw96hp*zhr)!WpkQ?jr+RR94X^u!p6NF2`5FYOE}&f8W3P~Y ztxo{BOmEaU`h7${*VZ@i{YU*%;{O6*ER>#IgSD$a8yDPxT+%E}^$+|C5< zf!fjdU@CvA+H_X@xGK;WLDvXhN@yho@H!UKw?3S3-2-(8v;*pCGPahRoVid*8n8WU z&n ziW3HhflQ>*+)zs)BS}e_i_sCm7npS-JbV zo4ze%4SVpB6rkh8IAKJh{qth*FQGZDdBNuC5B@e$2lLU*yJDRVACt?||$W3wi#l$o)$)fJG?so+wO!ot` zjdzXbiIy$tfLG$1oLnU579v9vzhdX<}+PDlAOf0obX>Sv#z_6ZOsy`r0L%V7$#wy#$%Q>A=46 z?dMNk50-@KTZZPV3Gsk}Q8op>mq%NZ@eDuo+ApDaBB0_1fI&TD6ofi@etMV$QblEB zKIcdmK!Xr(zEL+wqJVjSyduF?sv`POpTtQU+?l_!x8z0NhoJHN>GvdYa$>PBRgCw` zgTK_(bjy?7oa+r_#%OD;S>}1;O&+N_@TyA>8Oa;7S1-4IGrV}!JnE>lSE_?2dRxA{ zZ-GX%tu_}06iEraAgSt(I#@F3f5-SiZR`~X7x;?wn1NeCV zwKhm${tdAz0CHQihxQU#{Dnz#^+P^ol;=hrNJw!*2{^uOUkTLVYU+l7fH}&zg3Ja( zaMaxGgYfI7yGgcTcrpS4UKb|bxnn>wC9~@B(v0qt!KA!Tp#%Si9R)ON@&jH_8>k;e z-Lu#s_lqvA5|?T%SLKMmS0F<;k|#-1wd+r=COuL;4DFbIHXhYn%^^~^KdeVNrlI@+ zHZR)rORc|p)M7I;&?$Jd;N^~7U_Yvg=cA!No!_A?5d+IV)aaqCWy>!<6(-X2Hr^s_ z1`|7e>&lRTI2mLGzg?`%Ro@G?IL%+iKUw1-KzXBsjYzdn%_W!r2jwW&g#kDwLTG!p zzG7#1zfYjNU(dLZZO88IR zk>sjV2iNIUxPV@tI_-ep9P79UnFT#ht(`_qoa2E2< z+!D1~X?XUtEgcn~A2ui_5 z0LG1uEG(y!N{oMFI5H3IG)BH0&!r5^sTo7B?k}sWi%W3`7wfvX@!Ut0uSTlB`_4bz8LrpvOjz+1ElkII zPq85m0#24VV%NDrD#KZ#gF$Q|9|BhI*`eAbiQRQ6wHP*JPV+vpfk|iceJ5~DkYS}& zAojr6Y}Gq=^P6x(Rwh=`h$)yk`{fE3OqJQ9_ZY5FF6>POA(u3Doc8Hgj=fR(y$&qy zMGOs*-NcrGBHx%J`~RPe7hL-Qu|u$BHb76!6F0+L12+?|IWLe$nQ)pMDl?s)ZVBmkx>qkg^rMIT;w`FAGovXi)CZ&vQA&D>Q(xl_}EJWK6EYYKd@o z_FfvsT&?LtQO$(dfBIK{SDb|NwYQ8Sx-SAJEV(x8-4O^5s&W@j{_8pbWKVeI+0x)V zSP9=_@&k3efAgcinWj7`@USo`08w}f*$cX)A`s=B@k1bIT+d(iQWc$%ke5IXHL@l= z&(`=~Eb#9OChG?v`U(+!2&A%XFbP&HNn*4U;K(bw{}2nL5SB!P4b^D&>+1*sKVE%vdFY<7;r8pLdZ~QjL#_^@ z+*nEhVQ8o1T>t+Q!0$~Z0so)HkjfRoOBHQTogw)xiwXZFib5*lhe3nvbSY+2d+vEa zqy^Y+Qz)YFi>vY{?o_}45RqSG^Pw;RRU2WGtLEI<*Q&DSrG(XhsILleUBl-~|n66(bsfbI@Y{(mwy>&nNIxst`8Td#@u$1WKDO z5CBy$gaismIK%vr@xO%gJ+lKdb6}FEul6VRcM>ggs!gF?`CyjiSOKddsqB#B6xHec zZsPDJ!NK(VVF4AlxTSr&iFO~%jfm1n+P`m8h7`mKZ{cgRn!BPzU2b}@_e9nk)t49` zcXSAwX-lEk|C`SL6IO{~Oei5Rv9KmYur-7M%WmQ4L_ka)1C~uJno1_;Rcq#SI8ru# z05ZWnz%iXuuG_1qnwp%fv0vQ;xGkmE3Y#DHBiMot`f)>JZljNEf8PO-62u21`RH!; zaJ_r6#0v?tTcKDy*zC?e6|4+{{%;2ZLJ}O@mo%Wb2$1v7+la3Lc{LVJ5B$DNquz!RnV2_erbuN|cP2vw(PiBa+X$E^&|(jm zOTKxv1vK8=<~Tb`|F%^5X9YizLs$}nFUl)x!}X`dnXL60GMy(T`sQ;PcELK9sXKHb ziGaoCf4)T$FZd~C2u_%SoK0X{A#f0Om#rT?I6+u}3H1e>){qz0*XkIPoogHF z+TXwPQXe_{-*1h71C&<|@!8|qEjAP8yZc^x05zrM$y7cDAUAs5U+oJ4trR6q!TS1o zyA|i%d;)>FTtFAO0I;`DH@x8IPAUFYeP4;^Hr_?-GM)Y)HEXrz^1|t9$s~JT`{ToAz#frPdpEg1}HB ztOlqiB9I>-2M{QPlU$Z)0LB~JO;Y{;eHGxP(t29&?d-|6o{ZZl3!zm`SDL3yDE$1> zxgTF0zJ83=g3lOGAH}tycAu?XcYo?k=EPV8X{u~JPJDCGcjcwqF7vx4_~E~qW&20C z^!|FU=J#+u7awe8eE`Bz3$6_ve#l{aC z$rtHj?^z%R)pfJAsx=pV#l58x_-p(S<$q=Zjb5_w^;*&F7BVNDR4|=Njb*Slsxh$4 z|E7dqw^YCl^=%H5gQzWod^RtuN#`pA`4arObD6vtz$ckdmisr~>#tlTI#<7%*9~zv z1wJ=9_*~rfZ%35Uu$PYQhcf4px?&IOjHVdYn0@aUt5mD`&IX*#SR?R69iX<2>A~cb z%8OiR!FDn>hR0J%soVN$B;dz^Ns_Lh*UV~iFT$Tunr{be@Ei}<m~YLG z=5>Fd!718|Fs9yaCYH@hcJFHND}tez%5O6N3va(i#M&`VW%1!AsL-6rXI4=vE%?e- z5&j01BI?)K24lb9<5*A?wE@|_OBoCSUQ}D(GfThpV+eZ z${K<@8qK;*Y|5P;Mn*L3%zD8s$1XYwa`iW({j`##T@t|8?R85gTVqdCZy=R>HDB2; zzf~-~O_+gB%jrNyMeS^VDDbX(Y$8*neITe%#{z{VpjU=pR{&pAdIob)1(Yb0ZHSz2 zO;3XADw{2JD@!>@kL!jPxl9Tr%fD9v*hF8i8dx7OVJQ3e5c&o^@B7Wk1miyC(t9}{ z1y#1x2?NVDaSDyc5`qx24~sJ4(DH!X7$DRXvJuY9ujzuz!y51W0!&@VyBZ?Zd(kn->l|SH z=d%AMF%<8-I59kFzgkf-rLU;qnyI7Tj;%e}ibQa8v*6y&KA_|+t5(heo>a{G+Q)~6 zLIuPIR<=Yu+iBuTt@%5JBt}(y!LBagA+R^R`sr*bOP%!|%+nEk1bKNTJB{5Kq%Xy@zzUDh zll*Vk2WA6!@+ZUdqlJ7;Kme+PvRDbM(H(9c#;tAKna?ho)~(Lb6{u!73z={!0$xo% zjPH|QV0i^J4uW7oe*)pXIH_b+1zESi@uRU#H5U0cP8f*zHQ%MPeRy1=3KLpysJW=- z5TXTQ9N0|W*<2ApBYt0Bk1&Te|4hiv{~qPZn{+mUtJXQq;8kz?&yoYSXQ{LqsEA;R ztdo^yE)w6Thnt5PT@Gcg% zmO+lbj_C>51uo`vAG4*eC+d*g+&SM1!#mMIq*pzVJ~#d(^!tO0&SsE%dIk+?WE0@J{aLBO6ABIok7hF!RNe`>o5~; z+0z|491Li3!OkTba=1bR7DiBy*S56=mx4HiM%N;%OZ0c$)%znIPjT(1x_3>nwr`5J z+*{V%B~;!eH03shJTW^Tn=q*Z&~z3z4Z~ZMEwBxh29ZTNQ_S;?%$FFoVQ~YYD(4XqX3OtERofm%(wdbXg*q+@5v4rXIVI*s7S#F40d?G>8KR* zGu+_9aExmM`K9BcQtj>spw7cC)?}cmU@BOFF9^?JSuJt^*4dcO^&(`O>5Q$mubX~g z#%9k4MMkJ@mL~Zkk8Ty2ZDD%2Vjo`btI_Sh18(;u+#3_Ei9j)DCyH`scXz zjreW(Q4uv`T_UT#WvbWK(QGO=vf%CofF{On<}N6pI(o4jNyyY?Vs=d7t0#le^;$NLB!UHlo?(I)m@!Zgi^N zcDI2@F`3ZvY^@z;{17Mz(w3Hf9Y%BF^Zz2u>wy}}lgoq)cdCF+>N*Fs|6~ShR2p2;O0>5HRQaFVCkhQ@pYk67zoU>m7bT zFPC^6$eKlfRwwd8s+pKHlx_W0Be-P0D|_yNC8Q+7(hflJZIudlV!McC%}pxDF9{bW z1NCW)sRG!V`hhD+q8&I}(Gi_4m2t6C$ll^AJB#ili)gLhyhbfAv+F##V4AYDCMJWp z`yMqbn8pMNc%;Oy%AZG8c;7}s70a3rboVF4*2)Bg#Z0X5#+K(R5eZ52Pp*#zC5JAe z4Pb`N8%k3lDj{_`PY(03(-9!-NXk$xw)?a!(;XFO5BISB=5|BbZT$L}f;>_9I#}j! zROAnZtDA>@0q!o_4t`3oN~RA zO+Z_l)P9-ZR9DLXd|DaeS8x9&D%{3sn-}!{D;fY4h+{S8i+jL%JW3wiuWI~$it7oy z>z?UMk(~K!pWKF>KmlxOl*j2ED)F0^lmMCx!v;6m?V{h8Vm{UFB1kn{Hyoc$I%b%f zBHGoj{OVzwwn2C?p}a1$m;;e54u{+0%7r_(+;FUV*k*5^Zc+YcD$5akR`&;A=V~e2 zyZ~$Bm+cl>P0}JHQk^pjZ^!8VJpQ{=62KBjjlRa^$V&gw;=#EE9p@1(M&FPIvK`1@ zo#!OvX&E73vFy1cYRQoyHYdUOeSVQ~csAEve_aF1bOa1G2RAl_WACfQ_AT;WdCNQ; zkKSO2cPKjl%-zUSgTflwHAsBGP+_&$>UtJs_t1P>&*_*x5iLWB>blUAxNOylJa7rS z*|718W)B#EmjMtv-#J%9KIopxJH2i9T5G;p$^4|-WA%%R>S-O-Be2$Z%7q&sp_nmk zHHBYH4^VJ`tpKrZ11g{0>K zUB)CzJZLZU%O!~l5fW6|}j=7*FV{KvY zeO}}kg=q32dAn>gNcY@0a7aPvnZ(Uk0Slt_!E~1&|5d}n>~v_i!w@3tjl>;MRlJK) zjOBUNV3o31DGLJ$=j`K9#wJ%*aj|~&YB*&=ljY;~ND-Z(Y%MG!+gyssnwzeSL%5_K zJk(yI7;J|tt2?ro2>}2DP(hX-Q!rZ)>#Lb*K0V>SW}U~YZHrmaTk;XLqh@qTzvX5k zv&&({qSQsGZ&vf4;#n~51pdtOTkmdag!>7By;)K>>B(eEvtBA&fLZHM?ndyJsKdIS zCa&C%Z2AN5D4*9H9{}j06ozE8ZVevh(;m=H&3>hm0Of$!1!%hObWybEIhgKFk`0*7r5Crm-8@wq55M!Gii zTck7~Fj1rJ0j$|{qBpPUX{yyFI;kRX6qZ?E1gXM(Hzyo_ptffH1t6gs_yeFXuu%Na_=9`?EG2gwDEmSOq(hMheAIK01hMR2`Gxu()-=q1n zy}LWf(E6A`X0}jeoC#9^M3T3r((5&%&+1Oxq@!p_RN4SQp`c?$r&=X@7qRxo%hY@b z-Z}CNE_UI~N9DCYP?iP2nc8SQjh3st*MzGfmh_}?mIbQavFgZhZ3>7SR-lC{vw5b} zTc47MzWwYt%?tqJL~pYFVb0Erw65g^Sb}NgzZq`+e1-xE)}N)r8-QA^X3OjkXM9l$ zTD_pT!`CSNP)n3AFxZEvDn{#mU?F)J#Z^GOL#(tlQp!=9Q*pT!>k~3#i&0?Rxr=Wy zWZ>!hn(@-)(0p+OKi&W3xiNsH?2m#)x~#c=B1lXe%B>_|Edt!`D*w_i`ti7sfjWrq z?49+6Mo%X|W)s$564|6URRr>}Jd&`x-jJdqa^9ky-tN#yC+VGyoP&*bmv{`GhaqWr z)+tU^ozbCQlW;G25^V#>uIEn4)LRUrkz15@^5f`_z{_rg?;B!&IACkSd)5X$jRG_w zFZuTfrK-H)w{kxxl{gWgo|J?+bwJOHn}qA_z9R+e=CPQ=xuG?$b!W-`#7gwcU9 zmb6+vw5(eR2()>=+buNut<&i*_d3chopLi2qgjjM*!n5V8Rx+{G5Uut;m*_J zUQy);8Jq!-b}K>2rX9M#iCDpL09>rm)!w+>ynY;-FtzW9v1Nghmb(HfGi9pjHYAKA z-B#7OKPqy8hQNo{3C-wS5p4+ZgRL*muFJIVNBgd!O_%Dd+n%pol1VtV$vegAAl6YK z3TUFfuZO=OL*cdSL)4QOE9ByB=)p1vNnbT+X13MdtKcvih{kC0%{*jeNG_UC8Q2EUY^J?KDw# zl%VIB$cdZT5c|11xNqprQ5{>e%k8jy;d=o(n_9E}((>^_^!A^WEv?hZrYpya3T0SZ z;@MR7ICVUb*N!na!=C+IyT8>Z-WKI8n2=WdHAr(k0%yyL06xfLg|JKSbMEz3X-!dS z2+3-Zi$=*)@=-MOwbkL@$cN+$@aq~m5Nxne_CI#qtZRrpNE{1iyjWq?0|ufjz-d7_ z?$?;BW70LN9g^F^9sOVk_ZbyDl< zDJi=y2_|BcVWu~pFfrrXQzcDj%A(JVUOf?JhbE5??>tux^ilkY#co0CQe#@&pr2=7 z){+14x;G5C+X4z~0l573w5(Pz5X2S5Z!-mVMz z-=z(47r5IW&6R&^Z4V3ovK|7NZYHKp*mnl`1xJk=_h%QbUzro$;y3}~Gw=IH&68Mv z>!pQk3|jPGq0TOJ$ECX4NR1DP}%0R1%u7s|U&qY20Q7e+;ke z<=yHc2H0z(w&PO!FAf>>2F#^Xmfd(SSF%5s(>OwdYnWi`;I|5tQh!NAti(45&e?t< z_jTo3z~O7mCcsks6>Fw#Ax(O+T^aWLvc9Dg@+|i~Q`DF7S9cghhwyozp^*45Usf#e zD}pJR8v(wKL%Y`Mi6j)YXr#$-FEDK~o_s$IL#kwNo)-~%=-?aDo(YFSu<*)a9L$yy zy93bgXZr*BSNMK9=X|rba2LomecqxH75xSfeeqc>kLCufFMLjWcft#r_BdOu*%EOR z0O75f54B)FtC1V#mzQwb@-Pzj^UcV|RFCI+o0&G2>StHK_u~KqvOR^i#rUzhp$7^y zP+%$(+xmQ6`q}OFOnmJu9goX_mNWo`+Yo?fzm%hUMmWN)8_-e2}V`oFF{Xt)|R zvk@Hr0sLOFz8f-G@-`gj`=*=P}Qq5Ms2BQ#V;4AMr=NLK)wwAd)Kim&SZGVmxc|TXSWbi39nls{& z3MLF4lFhZEK^Dsmt1%Y#4E(9G7G9Y6@SG~5|H08F#y{aIfTg@vWlk*?dCzWIGY$Fik-{(C&H{@+;usij0hX;Bvqbbo**iFj+#6%yn}b<`Yjt}l0Q zoc8#rAH5EpMeZ2kmzN7y>NF)c4zPyFf3B|GLF+J2?e-Io@c_L@ff7zuKam8>rtlpU zdZi&PELZl=NdDi>EX&F!lU9XZMkn~Vw#EyD-c)6rm7%-jSQDGqo8W*~d!9@h+1Ub! zjwi|oo?Tp<_%Wt`hcYo2{XL%{PW){;w}(}p~iTd-9%DygCbQvworlc zJv7E=l$mbjj9FKc8{ZEQ$DyICdcZ+&qrcBq5r-OMI)9RXl3%N8BmXREyKPUww%Y1{0*65qA^;XLy#wrfz=jBgSIfvRu7-B>%d_Mq~SH42XK$jVW{ut(y6VA5fs9VidB=UJzHx2B(El)}zyx-h*g9no)e1G(1KNIuPVvVr)4ariGgs>O;PK1dy zM3U|K^4oK!l{ddsB`@=ie%X4Ctbml@I#ZOt=?6LiRiUT)KU_5zBNcxG9w5v@zCQQGO@@SR2C4O*j?@T z>POWpUv0lrY$r0EAurk`HwiDWRE|9h7-GT%f9f;0cl^)E4yhJ`qSS*KB`S!0V!QEy z#I)rl*$kANH)*n3NaI98_L6!J%6{06}Zw>8D|y|MycG=VPT_m1$y%i-54j3h9B z)v9w*2>oRZ^TkN}$(}SHpIaX$1WJNM#M6H z;P0I}Typ}2?bq)e9`iq}?Zhk7aeH1Ri+XfV5Erzl;U03Kt44TS{EYdQy2l5T#Pt=QZ4xd z6V(V2hT#!Tlj#06EC0=A4o@;d-*}lTIu)K?U=&^#7vw|8Y5z!Unq4UE;}~-#Rf;>{ z8yij)rR-#&*gdBzF#ZER)|W}W)7up8Flb5Kwk&Ztj@jEhn8(*oePkOn{r9;66ZGKP z3UgNq8KUED!N%pHsB*0iHtbgW@j_PznfGq59pMhBhnrKSJH1yKY1W8)0iJx$p0y-6 z^sOiyJ6#(h+?{&_4hOnve=J9&1T1QxMBlmVAYEV~aLDANX8(va%LQr9h%?~5MC z%j(NBHlrP~Aj-gIyUW#HddfQ3UtC8PYj-rYbO!guM;u`s$=vQX#=4P~3f4>J=7^j^ z)jzpCd&>661~Q)Dv}lM-6Mk;zQ5eM%*NW#09Zdf05o8>A|DBB+tKY<`Q|tlXB?U)a zMx5N^dD)!SfU`S_ZN_?r+Ou#;i+Ybn7jfwKlz-?^V7LPdq)a9f=VR_-zTFu7(TXfb z+Z!Uj?%fobZY7Q2iD~OksJuwhCb=ITVRJD; zFu*`ZUU45SM3z)C#4_qVB8<~h)h1W1RptXAR?|o!p4h-m3ofk!5+IGa5I5zNL?#(r zB%Ft=RkSN`z=Oh_V>5<)H*h?PYBx>_Fs595Y|s(YrIWwQb$3#-3*`~Dh`yeOn_E;N40Rca3ti$D^> zkI|WZn+qMoJ3CzmD3N@?(GUleO<}KN%QxR|-+IDK_T~BWylbHJ@f zJ%wQM@i$tOAK&Mf2$siBq~%Otze60P{*|*{FFpvTcXY~S{Pq3q!zdmf)M_mh%ukyx zN5s?8I0Zk6_*DTEPoy;0@#pJ+0A3P)0mcarf>?(b?5_fAqV%aP(}{Mt9JXQRvV0$R zD5F78=i+Vm4?mdv@|yB`kYhoStz1XSpXF(BguUix}ht74aa%DB9!14L~4Ea0S}0wXMTNh4Is zC`}=I-VWFvcVi)ZBWSp_ zWf@6lt`4SYj!tA}P&|A=fh2p9e;5UhgQ*d3H@(@nhzH(y!RhGYKtGeLIm2|iJX$Zi zT@F*jMyP&#p(OOO_TL)K`%MX;4g6;C$~ES}dk`Zf%Xzm4_y~Cz z*<=@>)P%8q!(m4PN4fx`P@`=n&fkaSoA63~Q(H!$L3I6AsWcdWt#(RysH76IScUff zFzNqN-DQAChb*y{qkd|6ILQQ_vlveq(QN&zeZa<-QE_BOj@~N5(=mb`E!=c{y)&RN zf<^-b|0KLX^dLO=O5xiNhs(0ctM~-^S6qYqfiDxD5`x8K>Vs;4MBh(I+MzZs-XE@8 zk)nI+0mNZWt+HHce8<1B3N+Xk*Q|YTgeeRGlS^^znYWYZ)f*Aa?Dfw6FDP+bb%T%$ z;7`wJe$3C><{Q~aZj}bx>F8G9eO-SPEV|Ig{XD-=KoELQGqegm`ck7>m#{&Ba6W}& zns^YB$>QPWaLyLubin^EnBC^d3GB(IOxCVs8J<^ z3k)fGm)_lgBcwsVg&F2WTygu@(|Kc7ao%%ErICW?j0OCAyH%Yf?&%(JRfB2s(T zP7dr{O`Hoiyzksy!);bv~r`hJ&Z+06+QOTtS$9^Mi@>dB&T80SL(~wXLrJ3 z3n+w~w*}voYEf%86L8-|M3CT(GlG)6aZ5}AT3i~KW30IU4djh=(7-+cZV$sRz6KRW zz#0MS6mKLoaBSr_KDl$CQv%;9g%WOr^Aogz7SvuX*{lDhBDG3N5~^q7l)N%=M*Q)s zBovbgsq78R|FLxzKy_qW+Xg~{gAESo@b7&@Lx+N0Bfa$YDWXD zoCN+N0cLCiavq8%Be^{-fp0Gwt=lSEn8+Mo3ZKvqTxLB#^pS{VF)F{QgVmqV)-*HT z&@aw+W86zCp!`t2mo{NC*mA?kR^LW@`Uz;EQh$ye!@j#L5>n%u?E}$6J+op_-C#-& z!F|kju6-1vIR1`y413DjKbSAcqsjkHs{?u?fE97(_W+7#Xq5(mj%j;EQ=v`#@RmIG zzfno8(dTk2fhXHZdley65+3r^Om=ms`XfnaE-XD;-De{s=Z zC!;T6q=TC6B{;0eeG}H4?78yjZv!WK0#p>g7tkEa&u^+P^%r2Ui#^rd9!@n=?sJ3n zp`I-1fsrfpjlMyGMitn(LTJ3a)e+lqB1QxN`4v>&ZylYTktI>xs&}RV%AFi@{8!BX zE)_mc#z(v>*~OKQUf-#FP~}O_wK3aazBPLXT2^3}mo$`JcuZcmKL>?8fv*| zxMA-HQq#_0?uZ?ss*924{505oO5r(^N~4JGmtu*Qx=9@|PRLtuOLuD>VM@Fiq9K8T z0j>gZ0r?uSwQb`xmyesbvkeY(;vL5Q4|cyki56r@RSXO!|Ad_fUI1MzFGbA}ki?NT zdX>NfU!B-Ct$FLAlJWY&F3a#x{(G=YJ)iq7T z8qYQ64PKY1m_!TCFa}g8=>J_lG2|rm5mrDN?n11-yW8Z0C6@QIVNm{uWE5fcnn1|m ztFPkRFt-~c@ozCH7w?&MQN@&DzB`!r-%et;@9?~9@LM4N7-`z;$ntA4s?3}{XdC4z z60xTJ6}&gp-&YPRv^$H;c4PRD+Tga2jj5gmrJwXS&fq+01%B*r<4SAD5S+^1~=1tN_&C*LVoj-Ooft751-}^87<49048}&=}hB=cP!eOEy2R%yT#U`%ye#&~1JF zsg}fEIQ!~eTeBOuOiXpe;mBu&kpA0EUY5gI=~q}@?(Fz3w-+k?-?e}|RJ5eJ=S|{I zfU0b2j6hXZN*)>Ov1r%N<_RNiMXtygj9~N{=6Npu-_-^?#{hM6J$MY%P@!TZ0By&} zUD^alA`$3kAR>*akC2^S`~Ix4dv9RIb%lFp)=Z^eQOT_>vN;mehjDXzVsAuR9u1N0 zb)@5Ib;?1?28JbfT+sY?^HL=#Hn->X_IIM&r_1TJ2=*D)!VS<__sb~ex9$2X4bUdF zy;whCE$M%WD2M*v-2k^WY6NqD<;{EVb6?x~V3|ynaYSvnNeZQH}yPhzdJMHM0NNH=}=3yu;PFuRlYJ1+i&)Q+>}S=>LA*M}x*+N8p6F*glw&J&IlyCi6{Rieg8LrspA*REBkbG( zw87dgoh;x1$^J0kVD~%o5v9rUAl#D#)f&e2C>;qAsV`*w=;UMA$wY#;8n5LHzNl13 z_CB_zRLd8bAH-!|6jb3pA|%X8+Di)?BRLf5eCrlb^|*kY@cy2hOBT#fxD$vSnc&RI zC7Vc4S$1}f!NqG4#BHqI7?;xQ8ekFN`}d>*ULz`v4`sRq`N7oaa2v$CtmSt1>x&r} zpSPfLh|29^N7lU3Y9F`Nd8#+gR^A*U_k@>2G-O}bTcXtNs+LVZi zwh#Y{dH;D#fnT8n+p;qKYfPnA7CkmMHWmo=6iyoyhyuLZpI@3lo0@E5S&ML#z1mN( zJx&nRFEpbyGkrbz1G*HK+uIR*b92S0{5%3?xUi!4RjN8~&NV)f$RwKN?Qc`hw1tn__ME6R(#RM*E)LBWW2xT$O`uoRl~WU-u; zqLe{oa0zQ_zKd{U3Kq(L%)MSA{>ONIW>CGM-r|ShfVvTWZjT@3YSyS(SWLfr4+Hrr ze;=mrk}4uV`&mtyUM2p@CXDOud@!iNekWoFXa8}5-s9fe`}v!CPpJUskv(ldikz1Iuik>0B%{U#H%tDtsbsNFc%qRfo5GP_n6*Gjve8(|VGE)|3vdL(* zT?qyI0va`t0eXHPrN7Ct2v2b!ZQl6v5^*yQ#{A$9&LmmJuDV5rnrMtyi!SL5*irj(B+mRh1jB2#5s71YW?JyC>ny1c+z{@1+s7Dz@Qfs;!f%hcya zb*?Q=(Y%*zp83_Jxx0h_k(lsdol0nd{h6}fbGwd$=p8PidN+{z2`RE}00tB|uJn?%6Bbl0`LM5>J}KmT)ahl0%_fdbIOswPR= zu)^1g^<|_tXClCZ)@Fn%WA6pFNiIM=JLJL^O49@4zp``Koh z_RC%qonT#KaKNGX%^q+4E)4z=XG{&?6EkFG2#qXKVE%}*pJC?+V6d#@QeOBNfaH4m zHL;bZ<+uVoEz8RCJnrcoapFCR(_#~g2RoWRketAm=SSY`N*cgZ$T^1MNe{2f?k~7h z!bR1JqOjQX#o8E)&(tRXTaWGTyIvJJoSKryoTbM8IuEzeLDA)p^X$rs`O*+N(9Vxb z=U4x_4H78-Y+pN5p^UkMOgIV0@%>YYQ#f}v?b{uK$CuA984dcf6e#d{+A`|7@sh&l$nQ)8(6LFiZs+YA$q$hOqy|fs zK??!IV;0U1-qHN{l9CV8zo+@_@d;l3aVymDB(U_)k3R|a@+`g{*PLUtmm!e9ayQTE zC>MN-K2{I}Qv~DlhE(Ta7m1}zt)vu0szSSC_fgMzrv44CXjHIR4)y#3m#`0kjw{m? zV4v(y+)S`rW4=`=vAV0Q>StSmENKrkC#yW*RfZn~kIe84K;o7hey@_wuaNw6>gl0> zu841}@;?gyQL>Q~vi*$&syq5!j|?J=*L;I-jZK{jC*9^#o7Y?ugC<7G^E2}HHtlq+ z^gMAX&s|?Q>z}XUtXrPNZ|M-UC0xZep&yL@)Kgp=wD0&-eeKcKutHbqaak~TRc;(+ zta@gaK(=e&eD>y|+~e4)3M8JNJYqmb^D_NpYL6nQy#CPb7?1rDwes<}dCrN*;l0b( za1-`dZ~ppHD5!h@qSz>Kv@RtwG(^7nC{$u}wl&mVbAXAw%5xVU`6v1(i9!UN^2B{@}YLp;267ZLwQEU%FLSBIMfAG9Aw z1!_W+@3Nu)_kDV&w@mD*KqM0PNqk*c4W6(}ymW7dOx>Y2Ldk>pZ= z#NG>$Ndfv`(X1<=t_#wslq%MnhVhTOlT2JM7ie<7k*ISk-23Q*Y*(z(|H$$zDsdt4pN z=WRu#r^~MSO#G^`UM}qz0ZQhwPtSz88O67n^tur@$H;ZH&;_Y7wJJ;0q@|I8-l3rs zuu@VQdBw7)P?HsKO<0Fir1rLD24O7IVKse$PUpp+!KlAUVDua8gLWnK8~mO&`3u`e zabU;2y(j_W^uPLWc_5*5zBXmpW_ziqq94`l(<3;jH?y zFqlzrATxld(DtXM{g}vmk6U~0-x zY`QV+0Y{Gf)8oTV!(J(Q$q4HRZ}w4EjmU;GfVU8bO?*~;Te3ffW&vO+YG&cRW1u&* zZx~k(giWdIZDKaB@Y|p+tL6)3P)y(bvy~)P(FH0Gy>2~>CuTG&l=Q~IKog+?(Gakb zWOG0Jn+ql)f9^f&_#PCdSBCLgALBJ`gXZ`F(3k0|;8S=q%M1`*^TM9?AW!o8t$@kd z46@}8NK8eR{o53j#fE9mjX&p(etY2=6os|0l)}Lv2(0{0vDj@tX?MFB%4gd%Vj0V6 zIxJ!9bOAoi$M1^OFPKX>-c z$(jWm%0=ij%P!lgCCC`3?&fFeuS5^rb^uOn22iDt{#=&OaR<;# zK9Mc7K0R0i`d^tC>~}z>Rxi+ z1fehaHud3dR2siFqV-T_(C*Re!Bv61)%5wOMn=-+MUuM~uQ-8z_7*r9yKIY&qDcdP z@!xAa(%a80wbj)_GybvG@)0#vjFBZp(xH{jOf_dH+lq>aceNvfLNUJ}h{Wb>h=cBA z^T_LoXXhpA2`oD4_Eqasv)P1t;tAjqPJiyjjwuiN5&+MxN9HUx{#(PUK6hu+_l}G& zC?WHT`gVT#@jI{gGapenmqy|HC_q)o@A&>6`giNoU8}FY-+TgK4@P&PP&5PZChg^= zrW4<3PBs8*FevfKvUc&KR#wPv#NOBBctzUA(*e5JYw|C#&ZMT4X#yQuQ?3se(?#W6 zCkasw;tBEa0=6hgr3!`KK~VNU&f`52WTNLV(Adx00oG8HJQG3c=gvoz*LVU9;ymob zqmNh69;Oo7LReRR+NhMz^R?~vMw7*QA;V~G9pb#tT1rw`^C&3`BSon24{`7fDanlv z1-7&#O27HUFX8+fVB+LE9W4zMecy3Gh>mJvm5-E|^JhIVK*O-clfECDlk6_n?NrBV z-MDo<5xotn9jxfRZEglp$+$^%ly&9kDNm&Ep(}%yB+#cou}ylGYqM1jd&;pR`2`W= z)9B2`D{Vg2x}C2;8Qr(HCj=t|Bkj!W@DxZsK?I0Kx|yPDUvfzxPp|Pes|M33zVXzO zq<<@pGf+d^LV!t?X{)lJQNwo6-6GYV1$MWT5MAB85hRSi#v`T)WAsSxX&V#UpllOc z21d)V9aRQLfn8l^i|4G0Mw+ut=67{S@x;ar#mg6>0L0om>U#&~_!h#SYTn;+-T9q@6bp)W_v>MHFz1; zA{MRkva-lxC8-pJ5G>95b0k!$CuqIJ^VKz^1#_#-bQ!erO7um?WicFt4b1zy08&6B zF~bkZ>UC6a^n)-RzEnXSD-qwll^9M+*LMyL`N^}wr*NfUWz0ahxUOGw$rf%sLJ(9S zdmH9<3GQs|ISxQzzKY1)NO=#U6w*ii-_{2j)kH$TvyLz>@x$K1Bci1A$letrHN6=1 zi70=qNe!E>NLM)zF&rP0O8Tv9S8{>6&~3e+y$@pfG@BWYQ)g@48A(@#C!EgYbCpQKxBamtpG z@|c<9rxL`bNK8AiSuO%~_H0p7ak5>L{ey9q2J2p#$;~QXQBqz8JZBSp6&T#3A&R+8 zFH2WD+di8U`?a56ZJH@x{iVZ+L0~?Oj+2EM@w4+dbKzUIW z7cWXH?k_pMFh|zyD^jQ^&SKmz@|O0kv|tKw09Hgh$_4_h0>Fg;AY?_e?{jPuoyCAs z`439C6R-tw!uYs!^3i}K6$O_Mny@7Zf>UC_LSkW% z9%zq!{n%v4v)DcP%G1C{9K$Q;!Riv$Rd1T8!JCfIWQms{G@HN0e>sEr-E1zupCzgo zJWSkC3kYfZ@ly{m<^BXC6$GD_g`!K33E_Wl%O{7F#BdHm%p5{_vh6GsttQDFU*w84 zrXU2@z0c|yEopyUx^abu0i9D^Ts(WRx4RodZ3`qe#_n& zfVt!=IF4`Q3+)^rB4mm1ByeJC<}u@xM$k0oX(W4e*}DvUM@2UIRGFc;9OgV1_|ESm z2`UJBVv4~adEywl-M#=lmmDsv)4D+Aeq1(_#<8up$mx}?R1fk8;g&<2KT`NULnZ1T!>#=w z1XWjmSC-y1dL%y&$n^D{*zMFT9ayrU9Dl9Z*jPE5{WZ;?k_}0Zn|5tC! zQmrR>Ny%Ank{L3{MiW|v-d99MU@(zlr2l>{)V=$}a;Iocc9;V~j(DG?&%MQ2nQG61 z>32NXKsS;jUkta@;9Bp@!+qikQeG@%{K|Of@Y&}($cmQ555ut4#sr{6i zalsMtS_OH3^rnYOlWT(mQu>_UT33+$)uPh`e4X zu)=q#)$m5`Bv#|F!Zb>y(U$wu!H>(+)ixM6^&UNz3}qSzcD_wk8UqaIi}@$!p{+E|K>4Er!%0b#H`t&b5swr-(+Nh5TY%1*B;}F9lPg{t5c#`gTee3OoT~`j}Q=O z_AHmTbY}6z?byx@!;^e#U~{-_9jz*w7w7O8&E6?ewR>O0wY<2z$Lg*Ft@UUuK_`7s zA;>ENCrW_s^`{5&GA(HxBusLGNgdOrnadM6gNH{Rk@nu!kf|kmB!_jsFQtEe`v);rk1W;`K~HH*dwG?W@*o1~MwdldThI9nIT-e86LC&vf2>-UC*8rAt(noG?j>gti88pEX9TrduO{~TrHky7i}#4v)t z|7KEJq8YoqoT4UPzjFKY%v3Y|7H@+cN4)>CESzeI^$_1WpB?RGw12D4GHW?R0#t5p zdBB-o2OHvcCD&8z^aaCShC7zG^FHY63tYuNbD|NWuw6n%&xH5Al3LnuT+7O+tL?&~ z(k$R?ozFyP3MYvSa||UBdKaiv?bEg(Kt#Ah3nN!-0oMrsZL<=O5iJe{paYx1m!-l4 zCmyb$R%F}vr(f93bc2?UjM~Nazb}DJ;R9yc1TrQNj`vv3Cgc0sZt}W-WPj9IS2T}@ zdcq$vzdbC)%^3jbRPw~9@pwnX9wjN&k=YdnzEr(k@kPnPe_Mi)1jXx(etW57dqP(3 z-`Z7*;=FsVAKwz0a!0DHOde!2+wggp=$41I;!vKB>B_koT zOQ2tPMd3}+_r-EXgOBY@)QTEQaribb|C5evI@ue9iT&tPiH3k?xBZ1nA3`2e zGB;?4X^@Yn(VpXN5S^C;8*Xg8Tye)l_1-$}bK3q{F)r55ZMeOD@x`NOQy#mPK`0aD zpLYm@8sW}WyXctgO3`M|KrmTW!f=aAAcXIVXrp~M(UMB%9RxIA^7p~TWhO|)3j$9AwyHZ|xXG6xuJ0AS2wwPvk?E{dX5m^lNxbsZ z`o={CAfkm(_VNeUx&QeQ0>7C_yiv<>1iDcBMRcqPI$QmOQG%WKf6-EtSE|1WXSP|2 z`H;w7nD01Y6u@tDjsz5UTcT`No?FM?+Lh$D!#owk2Z~hQeR6qeXje*FfbRGPNrDMA zkPEt0IsRsD(4hD%I3~^Wq2TenO3xGbHT>Uuw&(jmg}|VCuMJ{nQ{h01m)_Tx-rsHD z1bFq^UetRQe;r-o$HOXkOQ}pKM$nu**lm7keF7ZdUMXQ$9Py5GC1pV|u4R z^75X}ZSVDf1y`4aG0EGK2+59Mwb^JY-);g=vVM{Sl)6uOU!LmJx}pM9zkb5Qqb~Ai zVx5G4@)p2HNWf;G*kj}`TH^Bz<$9O+p~Z^Jk^p(}F9GDgKe(fzU^9ku!p)sHed-%F zMigutdpB?8cOM`;j-SB6?}N?Eeiwfkb#X7`tp12}#Z4ineKPWJ7sZQ+h}hRHs092| z#r0@>r9IB;#YX_HjO_hX)x!w|V@aX2pe6|9L9zF>yykW`aNl#*g(Ls(gz(qcQTg~l z^;2JFzX+(ptg)Se;+3(Zu^)35uANyn>|FLuUjnLmRsF)_$XYlvA?z!P>g`W=}A>&Yu8EpMx3;a*!B z(<><5wEr#5-(ZXL9m21uLT$U5vwZf5ZBgNLIH&!b+RGaZUPxbma`^BLR#}0LCTd_9 zR4X6rvTJHcY;0kAUU?wFwieDJjtTOg6DQ&`EGkUg=UP~dZ`eK~=aa3r>w7j6oo2aI zUtj0&Th7YF?u!6`{a}(`BSxF(=NBoRy{!@_f(^~qN6rkm>t6(Z!4^Z@WwtK%6#3I9 zKVA+38q91K5gg&)!y+N@SzBBCoM-a}_&ndhu0X$q%g13kfe)Mx#rg&UO~{5QT*rHE zt~VM^%x8ZctJq&8?@t23O4~jHN2{Q;?z8Pf=!d?(GanxTGE^o&6rL(;ftTsFY4_jI zMCeMtU_E)ke?8L&|$&^J{Og=m!&w`jR*UEJIaN zPz5*5pNrAa`USi96+8tF^mxnN zgpHbEO5f#x1AakFx<=)l)4n2R{r4+sivol&Ux8hWl_u3^A4JcK#|722HSLWAN2}d3 ze7ZjjX+G~My$z^M-Om&(cgPO?FubZS9vcm?B})tB*R)tJD-6nt!J(&JKVeNbnR zl+T`LZ1Qt=xhbfTDu(+z_wf96WFPFtw{#dOdhG8RMxl@lk5lfoe&=)1^p>Aa4e;?}8gu-9D8_>^w_SFEIuTAe*5SI@i4}n;{5*^Os zm&Ggu9jC>TGLhjaFrn8=Q)5mJrC1K=P2XGJKr+R_d{wjQ=Uj9}pYZqp`ObmgIqcAW z-no|#(#eyC$Cy){i$`%SVdC*~?K^|eq zGR8mCx!wC>Qt{BSsEMleKutKn{y-3;!7%!zxV45*;F-8sTa%}yaFueJKnm4hwattA zULw3t#P9#`a{#dbXhP{Nzs{$J$qjR-c8zu-Y9VIyYH_qt)d?$^B;p>n%eS}A7=_=l z$QWqw^@(9XP6<=V?Kxli&+iwAD5&01PeghzrQwT9s^G#yOh8m}<+?HWxiZ)e>s=GL z1ddoG;>!ew=H^1nCT0GY;xZX6X~3>OLL9@*StE$=$BzRIRikT7wF7*D=0EJKPypEr zSj&Z*=n@nf;fp5_1UmJvMXnwyZIe{gM2gJ!@(0#G+0oai|0XEq1N2K>)epuXFI_M9 zZKB)QyD69ELW2hrth^puleyf5+EG2z>7+5PeqfW|Ust9W1SUJaewhw7$S;PEvku=x z1V6xa*>Z-w{MXtC3;TakYBqVs6%-!P3ltJKBz7ljx=dMG+GJ@14!1Mj3Ud?>O>ObA z5S)%Q@X(VacxXF)wz>8bgkxJ*ZCEdYm#=I=R@TOL_YoI2bWVrrCBm@>hobVUCRYmg zVB)n&1$AKKm@1+N>}y=y&MB-%(l$PgbZ@N7^%m!)Q|OV3Lr&;^IUj!TReF-!{tU$X z|ICa3`!|UL!uzM1qz3cufpNb!bvGe+RkxQU#9q3so}EVO>gy==TnuGAsXaKKUAp9U&8ygU!&89{csgZ_45H!7MWS74%?6*RM60QZspzjZu_N+~E709yRyyZf zn%uKcSA8$?Qa|8U@lzC>Pe#FS=tqt*A2bD)hJXAc&;ZtO5x`??wm4D^2~G8nwS4o0 zZ9#LFHl)-(r+*Zu1lyfnRG*Z@Jr0Wlkh0U-@``ueqyVMSGGrevnzu+r!oko@3QIKX?rzW89V<0CuS+07q3(eUsl? zvRYK#K+DYI{5`qOK)aT75E<~QA&e_7miWc&)=wi@5-)Un@EdDwqS-u%4B(D=(6#s@ z%mX3lIY67*W=|L<;;VY2p}<$DQh0kh9PzQmIUi|G7v;@a-Hyc4zYc<;xU`(~$$+X3 z0SjE#-$S|>k3PL+;guSg804KkZff0bLG?}=m(K9$pHR@A>MEj&$P4Ih5tHKm%uCRa z8w5rl01@%M&DK;Z%?>BM`tAE{xMs1O|M)5(wTWx7AFKykkAf@umQ0vA$|W25UjYu- z@Ib{pFZ-itqXAw&RG^{^M$qR#jxUioKVFu?8wy$+%@1IvPEluF`Xo@oL^t>D{ycW*woVvZ2 z@%CCZB&hbL!HH_SKYGmrHw5KhUzEY~7d4CAY2S$vXb5A%a1^d-BUoFi%jnLz4Qpoh zVs?IgckMVR6}-=tHRK}b=r}<-ZU+&r4IA)RRO!X6rNFhzXljVj+zx184Ge4^m;em2 zculUVzjeoYHRMoPWMzeYvj9WSpId}3A0U))3Uo)LiV8qrTAGOj*6PVAbC-}{(!g$9 z%Y%9{@XaB_T3oH8VsDm{+SX)i+5M)(!ZO@y<3~M*pU55ct_Utt!k!YQ%EA&LZt)tcu9~B`{APW@C&%U+A6;$5D#@S*n^CX5y_s`o({EU zb9pO8n!Bt_tXGidk2ng%)ZZpRDCJJ#EXC%4kyrQ77pU&n|M0y$74p*wwxiY7g&xhE zXsJHAIz`}CvBM8Iz+p(y90g^Ar4!1pt@) z6SHT0IHBku`>G%CADZp7OL70~Z*mNE{YC6W#wE)GW_h0iyU^z1DwQOP!k?^q&KwgT z?NbJt;sx8TXL{^=i=WF~E7E;)KJ?jJEJ%3ojr zLEz#(*8_k-SDTEH6&4rg0KGcKXDakf2V!Up%!EYpZ_c(SfRZgq5NMyd4f5{pVx93; zlu#s^(to&u^gyLpb!_c{ab+|@lCinE`;2qU5k`a4q8Il%YFYb;I8j8JWLXm1bMf9` z{>^P&Q@XClB4skLM)9~}+ zp9T-MY3N?UNs+H5)#E@1YGLy&X|gS)TKx|DC$1I-`Gu!c265#Km_3+%6P-lDXt>KN zvZUKPW5Q`|Rb_71Za8BzG*f*|yDCv`pv`^cdp>Hi#5{vK>*jI#&Uy+OVymWKm*|bF^n-x@HrV0^#)Ib5BWA0A4X?RkaP+ z-#$Q@eFU+?RcmsysMEt{a6e|z)#NvPRKmgsI!XT}>0n^lAFeXJqv2-+EmKuuM^JcK z^-H9_!;8=*r+Lwu*c`j7R_^L4OEa_#5kWyFYTNGEer;yDV8Ht>D6ZtJRnda2J#UA5 zqYmAN?=D8w2Sgs+Kqi>a3#M-q(HmdxJ$fl`DcR&w8Gua1id5f{MWm>%jMa~7y4Z8M zL|^&tz5wmTi&p+5j$##*dg6|L-EJ*VJPCMj8ck*^4bK5)+!&DTUNUI{$m;nIKwF)}vza-()aXwDns|X*7x=(N~o>J1%i+KGH^-n}?Z<_k_h8YNkC!-!JAV(`S2x@LY z^ZZqAD3)6h<#bb4If>Z;wLJC=&OWfqOl7KApOhFtZz@z|d-Bq&8^{>l5XG7*J21-Kt4OFH>)?M}ub|!;E8l8$#{!`C!5uZLu za{(7}+}!LMZT{;wrD*aI9vxj@*EGi2`GM&Ez-$v**uUanwFHSFYzDyJp8zs) zv7*BO2TmFnTJ{?tP)`7u7)EXYy!jij4CO9A96FVJV{*{M72|c^kjx4M1A^=8F9d)k zY|(B6{LHQz19Z?Gpv@nU^`v)bi5V0oUV*K;xw)}_yczSrMbw7Ex1`LFg#tGP87phN z!jvUOI6-gxUYDPEogM0;t;+{)bYoO17pwRt*(+*h^oFXjA)y;ynUiR~KA@0uLkc!$ z{*FCRI5I3YpOJYSEjtMHcYDAQjS@(vkqRlLWdI9E;}nAGOjU0iOo-}3Ou>f}s+nj=RT%3qCE7Ygd(GxHv2UK< zk4WY{LKa(jYhuVC--E5!>5eLLn9ZO2$07Kf5U6UiSpLL(KQDh4H1Dnskjd1oxW);T zE6~2GS|~JaaewDiH-brb!=C4f6)lu_YR=?AZ!^{H%5FPYeQdv?jlv>xYlwB0Qy_z^Qce28Oi{R#te2xuFyz>Z9{C)#1QssxrnlI-*rcvT^SSj{G zJT8=!Y_(5c2H{ZX>H+^1ODp{haT<*veT4iJ(o*OGi7OKh7+5m4TfW!QN2a5ZXiL#OO3r2f~P5<_uS6rG!;E(%4(34s+()1?pI zZT%dhl$8!j);gkKuooslQXK;c31P>T>TU9Dc3)S&mA`diQnFA8*-1RQO`rWZO$@(< zs+63`lI|%%lL|8~m&2 zI!W_U-Hvw!bDD`+?q^iQ9?IWvDEh>+zafmbiaLaO^}H`#h0pPWqL_3i@X^F%P?{a* zvk-H+s!?}w;aYUvE1}rj0!i%y1V6+#ppK|OAw2*rO}pqgZ`qE1VtfB=pA*m81+uX5 zX&#qq7cco|)M`of&C`S%I?WVpaY0EWB*eSt#QRCZ_1Tvy)4yOD+1MF5C{tW3u5C?Q z`OfdB4&IwjTP4jEQKe2r(@C&Zh)!9OxRKoN3tE*eW-HVk@N-zmmk`fY`-g37@^7_a zzkWbwXxWKghx=msYmMVZ`)>r?(52myi7u#rXmn6i-~=5Z86g$;QPYz zhM!FHtQtJ6++vDE|IOdm@@@ItsG{eJcXt5POiw@&dtu`LhuBxU~@+yX@Xmz%t2-cx<@orMFtJuP$m;;N*{qiM^O?cyDm(?bpI@V#E!aujN_F+X^^dY{OS-IleRm zFg-uJi60!w7gM}PN{fu92i(4YILgKHg%G9Mah}tW1gZnoOK1J7@PBOXfJz|voS!31 zYn2Q)9)(2@f&vP7b0+}r`aO7Zw}m3?aU%UOr{@_dCO+_!gHTkMx&V(dTy82`6onfw z<|^SN`1whva55{hD)D&&xmwbZpxzF^S}l~e*XLWQtQMXCZ=Ra^yWxw7|G0NKOJJw$ zz~x~m?i&PtSNA@F+ljaX+W3(RNtK8g>!V(!o|-eZ#jMvA(gQ=8_@@mVjr<&2+v5YL zi0Z>!enxf$*If6%2L&@GwsRNv4KrsG-l?7Urirvap1Q_CY^n{`)f;m>w~jM@#zQF1 zu)H>TKdA6uytXBD`r@S)5JLV!#hs;`BQ?fOr9W*`>h)3HYpOCW7v$jWl_i{ThV{HJ zi8JQRbmb8*_9xd7&sy|1{I2I3&6I#5QyaIF4C?g*lOZ_|?*{iPt9I z-BQAX>;5I}CV?NvzT@NaN+m3_(=lRaBWpQZQS*#wkHeJc@v1*Xh%c4Y)Ns$|!n$X0 ze1Ex>x?4qDX*qj$U1E|R)t@fWDR(Yy&0Ph}XoDQHP0>&)@X^QteLe@zry9-s4FPAy zp;omE28B~NJl`ptl3=4SyjfAOCD2ka$=5IHhXK5#X^_-l?|LMZy4R1B#mb$7Po2Ms z=Oun)W8n~L6Ps=>v8sx3CX1wL+?^vPHqG{IrxWw}86DE)Q8^uaQtGJLY4UDJmOh7c zgLm#b?js&9&cwDXUj)M@GV+Oj2YXsm(d->?K9SklIma)#-}^&|%4H}sP{vG3DpMcb z>6QdbN(N5XQ4HWiws}``rjpiq|250r!peVy8t=k9DdhsJ9m%8->v}-7hlOKl?hC*w z#r%9a*gcO`(H2+Ha!`_#HeGCRc;?YX-hXihj2{6ORIM}LE_R~lboofJiF<>;$#)BpWYQnt?gK>q9e4fM(;eq$f+*$2o@P8a8$5R9b-~|AK91CFXGCuFdhKz#Z zHOGI~NaP1Np9Y2!^3;sg$2kiBbOAOiifqaJk0;^wK!f|*Uy6j-@mtS`w!&tLz{BNM zuk1^7${%Kvvw^n%aFQh(AXgg{AG?V*yx|j;(Ei~-eg3b# z3H%2VP?W%6L)V^hn>RFV|0#e2nlmW??CIR%GqHgz7?e^b_J@G!I?v^7YYgC9e(433 z4RxaM7fYCGdt6MGeB&Sgi?ixJd~uQa zF%(`85m$K^iH`OKogw(j9L}InpnD+zGHd@BS)QtNH?3 zggCFhj1rZkyzvR++QJ!FfwVl`PPZ1aoUHj*JD=z!@w!yfV&4EqIXQ9hAiO7FuV!jW zO1?*5GbMiv_lj%jNbQbcflh)Ss&F^<$L$ z8gah*>$F>xy&@561h`8{l@kBXm8sqQ(-)0T;|q@DfHlM2#}*VP*#WIlO3vDvJtNdl-7lS(}&ua8@?YaQtS z{lZOTfCCnZ+8l5m&Es`CY`)S?;`eHC?K^?q$ED~P1i*0ywMrT-?k?q_qUkH|ovU?) zItJfIBkIb6FWv^_R~rrCxdQO0Ng5giMuZ$|pxPsrT+BRt`w~NS8T!U+j(_kRuYCZt zWZA%Sbf`<-$LH}1ZToSDx~iEYxERUH%%1Co+htJS%3479OEskU1nZ(i75co8MC(YO z=uUG=r6G!6Lrpd>64RVxo-59`X`+8jh+oljImbYCais|FpKjh3WxQ91-+p2~aqW&V z>FoHF9Kt05pO8?S59e#K&S}}e$^A#7Q@|Bfj0RfFYPQa1-2~__K)WG1&>?C28xYnC zD@QV|b^tK;#D00)b^UA*{2MXP^k>F$>`~mFQCI81ZxZAs-?TW5@ z?NM#C@_8I6F$Y}Kyq=0Qcc0*F2(?+=URY*^g!7S*$5&ya{p@_Y0(VBUCRXf4*bMke zG}T$yZ9gLik`Y)t6wW+tWq2voW7;pt9s}d!67q~~jyc)?I4?oL>WPwU!jd3M1D$94 zv#aQ-r~)>igBbxG_+%6R9BMY<~s`{bd<^NC@W z?`&HmdX#&leD%Ydxvze!hD{IO=Nt%KsVASdG!GQBjVBJZ+C8kp)7mX9{v{K1g$WEG z3RDRBMWQEqYeV6M!H%Zd71c>7P7N|fnBK8Fcn}91{Yt;Vx0U8?=-k%7*)#?<_4$KP z!YLnNsXEe}rzF2edz>&XWTesaKZy-1$ReeM8Faqw3tBfE5p2HBzPPA3-os;6Mxg5P z$Q7oCwTWUnu$Ko1J4HuE^CnN1k^evD-mF$>9 z?(XhxLAs?Esid@Y!*g)n&wF2&oX-z|@`D*F+3;YLeR0w#7;u zuwZ^wuPkW+yyHA)E%QL*fr-&~7_TKfjoX^gS*EG``3cEF*+^6yhrHts@(%6PvP@u@ zGxx{!jO`EZ(8B`>*nT(Uy?1_ck2*lB+&<)rgeLKhTVKIahsX0%ayAH)DIB|82B2HO zb#VAtp4ZM$3M%?F!>HS6xvS0u`CxjFkfUjyHb9})6tl5>PLZAy!vo?-3KpSz=Oz5x z4$l!*)v-0&9rAGA;6N1)ODMzl=GmhF@cuYM^=43s?i0eKs@>UuaNjNlmC-)JJsf-l zko1d#?!P#h;D$0m=j69w)fnT6pKnuzrd}sInyUtql2WB5!@VIIpCmIhv=JRjx;-IA z#&kf&t7vmmnvaR4nNYvqoIIb4-5Au@kxAPhW|+v7?69~`=KE`t&IN&=KM=N5%x1vs7nU$Yztv;@wijH`R>ewF}BHk96mq; zO~L)^Q(?Kg6vkW5s?3vwG z%$7V>B$M8Kb8JKGi_wV6%vcO7%z6k)PbtCZo4OcFRZPLnWv9p|z=mv_Ec zIrz^k){3zDIFCd<`;wI3+!x9?j(-yI|Ey@j2Nw1Bq9%L=cA}&!%-$~cNju>kO+;g? zf5QkM_(1wFoyn98aO|Y2ts#^A+40A1??wwtCBa1&WYu=k($)wH9efJRm0DQl8eR+2KOLvu z%tfOOrXDfSS^au~bp3ao>Z!?N4%3npJeGl2feaIkCIIt$K)pUcKf5ffM#niK41Ket zHPUWto*`Ki*~RYaBs*+{w-1 zQL}7x0;B4Ysa9mH;o(7`ie3w@6^r2$F5k@H_-_iIe@@+o2nw2#UXAe!&nsunUx%pl z5TNk|D!IqUJ%Isq7vaTtw&G0=XYksdC{P30H z@me2?sj@q_TrL?4y^O5P`e?o=N>OjP9>dY1EKeav6CNu>p;VD4`nvmXnhtM)78HS3 zYAs7Uq`KQB3tTPMqpmGR_vB9lIwi)8;!;fQcY0GQCD#7q*E!hhnJNfLv*nvTy|OQR z39KyXXLOtl)2`)5n=gn}8+%ymcIsVUi@kk32~2JdWIOxO*!4H( z7T|#GNr89*PXcEyB*oiz*!0onl+8Bainx-X%&(Mdxs}d+KC*+i0SB#${wjpYxI+YP zi*5^_$8Xou>BV)6gW1x@u1j}+|BbcDef@;ZVWn%=Nz?$l`Gm5m^Ft|zl>z+-<9X}) z^2dIlg|+Ltjkl`@#L)LtCrG%$W5;4821aj5hTV5wzGYvOc>j}JPj8lCI~qXvDB~cH z_q$Byi5h%<22_HA1*pwzp&Z~Gw3zi_?1pHHl}^fqKkM#S<{U)0?k4JmX0fJF!q95X z8+nP(5_AC8f3gM4E=n%s^`0w^|0JD=H`M8jpxvJ_+@jXf89OCGNPB}HsZr>I#=mIU zmK>zZFdCNp0ch3+pk(_$c@-dR0Ejx0M^f3Nud4$G`z5m5A?n4^q_#r>KcMneaQ?{`6R4D%jRo{&V26#|$k~R4|>(bmVG|;Adn_uwaR?J9&Tp(V89~c+58r7UJ8| z#*6yD`Dn!r56EjiST`2Db|l~lC^>Sg+WFOYOH0}u@u3nQ4g-&DhsEaF#YzvE9yv2K zZ#>*Y5BaZTTYwN)36!LFsy9`g6rq^p7csr%9CL!+396}SIptpPN~U5?5baREe$e_| z=m78GM4WoACsD^8jO{6j&erf4IWqs>oJhd#M-4my$)bclq`H?FRn)SoEtZk}eKH0f;~9<>3T8)`u*Pb3M;O*jni8ft zP41H6{nVa|ueQ5F8N1XZ005I6Jm5%RG z&cWMqp-IH$?yOGZcT5fpSMbYR^9qcM?>?q2nZ0=L0`M2ALq%;L2nR{>8Y72jzOKpY zrp8OuEDvTwLkf~oJb(4lY68=bIv7@rYUbI;idU%aZe`k z#fXdNJW9%s+#pxGc@_3CI?`tq$YQhGnx5W9q)IUmlpky`+2@7z=elEQLJ!;;>ERB@U!Ka z6C<2x26oSZ-b;)36O0*neMp;8eM&%NFI~U-)Bq>g zv{2?X=KqfQ{;%8mtpzZh?P)zUx%$DLbq{4rch_lPuT3F#vPbw?N)Mg8?f99x(Y)qJ zyrj)L+(*yDOh~9r%7F;##Ry~8h{-wC24C1wLPTXgE~^_Am1T`!W{^zrd1a6iyjF<_ zr6;@WGT<_kY@+|W;`tP%eFfOv;t1Jcre4W@t{$s3((;3um`uTD{q48EU*#KWEJt~i zWftl-X)lAMJw&8@&tYChR=QsEN7)BX3gkB6p{}@>n$?j?WXEGhp(6lc_S0R0Kk8v8-d?h zcEAI$i+k8)`X2TSA&X@6Q4#aiW6Us*Qcb8i?fw#^6Iq&O09mIw&F=Qj1(-l(2)E@X{sNZitTwrH!AjTw`y7;HQJk#@215j29v<4{3B0>w% zY(AMj8x{EH5Ln1inp=gYGJpZBx5QPXQ6rF^Ic`!ZR{DGUGkN`(%{bHm~-&I%cALLOOku%ERA!laUv60B&_*@JHZ7l5>F$HWT32_kPrH* zy-SfU3E*zXLWu3@=CN@8ZT%)fP(+_i>`G(pvO(DKUXiqqk!4D{5guwrsbb~Tb|wYw z_9^rK_G3^!QLxw@*8x1?zE2MI3|}C|j6$K-R$PhxHFtd4)b`v$OVzR?Cyr!aV9DA! zS}1?aso1BUkutLTd|h3xQbLCPq-rh`S_q&=6ITCVIK@}-N7<>@YH+dA*Y<6%Dba_2 zg~zYqB{?qrss3<#oqG@I8yEWM|a*Qyz7`X#N0E=YLYE;Znme(b3CvtYNV3>+?2%fq=z{C$ zXsPEp^4=r&D4ft4qsxO(UeMl<1UgFp&d9}67=IfX=m>j) z%*yp+NG8?gPg+=Ihg1L<^i}m^22*gD@k2mOcU%=RTc2p^tDd#`#e&y`))dU4@fHtW zQQcbl)hxeC)ZyGAtY+n zMnklBhSwv=4RA!FCC9F7zY2}?y!ZkYYT}!V604D_NxJPp%y+!>rUm(XM+;ZY<1Nui zg(ePex9hK7!*o|sYl6Se7$rgg&#OSnKAL*z?w@(G2Uu*+nBd2HYyS@@^X+a(NHEpEH~a9Zb!KZ1CIy<*mh%a;UcYl%=kJ@f z!iWN2Gcl>CL{V0B+_~EV)X4j5Z)-eQB1z_!3~P8ZfFY1}7#Y#02u9>s6Bw>ZWX* zr@rzsHfSvA`9Q_Zo!a7fP(rS#t}gL5kc5#ufw&f>GV|+Kn3zlL#Ia#ck%YP8;iyY3 zmm~Dj;^OSx-GIBebgpU)`igsgvtKN4|ADIuLUo4%)6KMN{6#-20Rl)+_iuZ>*aKCtzjJsa5Geml&MSRD?Dt&isOHX{OJQvmI zlvyBM^$ZsNPnv!}J`p8fvn-?sh4KXlnkpSXTx5|irP=^8JA}`day7Nkboc{a@Xq87 z>ew?JKCm>PP7RyImMhe+_U^-YGjvY%@p6tC!RS1r+3+=(b~pjN`R6F6YvWM-GO7(gw|S@mec%E^L6#dqG0gkFFdX0(t1vRE~}yiS-3#$&07Qq z9WSX*-@{_US{hWmKK!ew3w#d>GY~)N2cW*FkM~X<&UswT@{H3%iYF`7n>LS)KE#@j zEG-JOnw!W)Yn*>Usli;AEn7Dy;P$VD`J9nLK~wS`xpkMjk|wTtm|V#XSrHLLIX|>9 z=~KQL7!Yr24orz+DCEADDhLw#=H5n6K=C!;-_fME0M9GoL=Sd+=5I-aD1;x=L^6D^ z*r+RQN=Ya->~p)4u~>ZU9>nKW6`UXbjJ#1+HoV;+VRGhqx2$<=Y>Q|AvEQd&KC-;@ zR5wthuIYoSHuJPnEJG{KyHJgP6*{4OHb{U~UmvOujWtEQj0M+wGUm2IgaIV6K%e2O z%gMu6%=h*`I_ekXQLA&b}$X(%K)0*YrG4gni}h89PaaC;p( z!2B7CGm_iKy=|F(y>9QwMd}=_d|aFJXUHg(&Uu9#seV3m%N07T$QO@>|^B$W9u_ut0$Agnk-KC z0no{l&8?TW^$mJUt${Teo?nq10g~P@vjx=>{H>YN0f5-tf}X~Tk|uWqV0M`ri}`s~ zL&O;(#oeH|g;N=0HvI*lYf2x`H<^ax{&%1iECHk$`YVZbX){jBS_m|s`|a1Qb4fqG zP(7*{z4oI8VX~)`zv6$IpzKJ)wZ-#-fozQtO|{hT7ods1wP2|ZVhY)nO&?m}@(;fW zSk|-31TrecwaASRCH(hNwvk*xGXx}&oe@lY58h!~(zJV!!lJ`~)IrT@l6~t@nVN0c ztv!ZVlS@m7AztTKoIqTdq0>Il)EP1oiV<_3`qEG@dhic0U*37LYb5mZpO_f9Z~yrx zu=X_V=zK|PVSMJHT(8mUT#FkYn?8@LHc)+c^&-%1bkp`I;-^;oOaBcHH*A-Hw`Lr( zxfBqF&XAx*pkf`56UE-?9VFD5!%7pFgvHq(m2_W2Gr;U_X#MK)mzbQk4dYX+1EfrY zCkO0GUWeCRr_ttW9gi1}jZWl$l$BLibr6!VP+|OB;;^vrs@@V3N|w$-X0xv@6wNgG z%N1u#XKqYA>Sq;>&2-H)x3kg94MK^jsfP%ILIwy4nMsi(J}_@-l~Fssa=U+@7CYSj*m|Mid0c3}&q3AlGw@+v7@d<-;iR28PhmUhqEbC3@2kpW zqOLfk=*KU6X*?i+1#UhRke~zp1o-(y1O`8MtYIyv*GsWY5J6rWnC&U0TMTbV{R!Xw(y~S+dJEFX+6#5;8#YZgiDEwrD6*}Cv)7sl@@4e3 z`Ibfq*mc}Hi{}oA3J&MrIsbKhSTL^y=)NbH!lESA77AG2JLbls(`3zewwgaeUmus$ zpPWqyPU=i`H5QPS{Ejh#w8JpzE0=s!X0nNiOXF!4sr^iLIR8sbK3ZFB_M`NiPI5dM z0=5+;c{mv-@u&@)p=b1)f^%2OFpJ zW$f*3b{zJ=_g-3rI4nWOM~&w3t+&d(DK^76C#Im0i-dTPOh};8W=k2>`2i%R%{kk= z(V63bdjM+mN}0_*>3w?fa66ZS>402Hp5<4D3|X*kNKhYI$uRXoqZ5n_#TU^k>(Mq( zsVm0H3^r<9Wf4Qf6)t(jvDO6Z-_|JRjbW8$MRcG}JbJiZ^Q%ZN@vmf}WYFFcg z4-Co?`ByVt1Evg37UNX3ckMZT+JEqBkl-`IhNm=F9E)!$qtm;jm(Y0dCrz_0!G}L) zne<+k0P&wYrCN&{Ks}{v@!-CxciI=q zsy{d7JlIT{;Y=I>QNi8aB}{&*u0(+4yToTZgd%edSEKc8JM$Rc|6)#_A@2-R*ZS&e zcpjKS`~SScKZfoTM1c}OBiJ+U11FGTZu2v;#R~a%7K522M`)}HrD^f>(*#n6s~+_S!}dcN z>Db{ycU6@}3#TjM^7gsD%WVyLokwvNsJi4@t+I!O2W+qy9vyghIkwI-9WH8x*5dIh zD((#qJ-T*_yT?g?lreD{NIKN1*;JbJYc2Sk>jsb z!51ekHGV!nWfz?W$hBv|`ePjE7O1|k6!a>{nX8ryyFvV%Enz!HzVMQfO5w5VwI&ce za8=*&H87JNzk^y?=(sVMBlyr;FPuHdapNFM3)iRG;a5t)l1Cfw;IVQ zyGVpYxbH^GV^wAfh)DQZ?mN@I%?)NUplLcLwC&fLj)ppzsO?m*zktm;Gu`I=k6Za4 zBua7+p)y>NZOZv91xrJ`dVfkl!hy{5qtbyw07nuT=Q5k8uItk!QgYxnu zAm4lx_`Xyr*&h)FbXcprufB4&OpkE2ILBnPZbnr8>x4dq(PcXK1k_>iTn>JQ& zaW9oiWNK!0D*b(&0~g&;o*P1-sEm|SqCerqqE@GFb$(O5F6SsziEpd!Sg=8>L3v=r zOCtddDjtHvB~tY=&Y``eI z$3eQLb=J+X$ThX-?o`Ip#}WX#N72A-!UqYG2PK^={^(0^CVQz)ZnS+{cB28;e%(T9 z%H=ditL=JxITlw_y`HC)7*wy=wX>E+f15jq_8f^RKH(oC=t<;c8|Q?y`D% z?Ph*@D~s}NcGhVvSpTy4QrgjWX5A$kk*VQec0|ce`4yAkmt=YpyV$|joCz`i+l@E| zm4Upnx3+$Lch&p4iyrLb8wKE5+}gYiGVsuZI9>s!2mZ-HI%bH?e03)iddrg+FJa<(p^U!+zZPp{ZL zw~ImiDAtIa;Zhpgw|?zobXj8|Ymz)dM;Vpqz&VdCeSMfhhvhb-j;c}*J4Bb5ox9OC zjnsU4Doa*x%s|C=t3{Cz{@8Y?R`olGE!_(e^iIDkIhOBH3RRY;corA+;wUx_d7E>J z@@PucKTYRNib69YzeK5u#acICmn5gCUbGs*QTDRMpLIvMjNWX;{j!v9&5r`= z6GyL-SzY}MzqEd-TT?8Qm{c9^W%2>@Ty)z0o*d58TE|Srl+o9z$m2cDi!E5b(rBpo zoN!#2Ontb)Rrq%452$#A3zvNmhQDycZG4CS08*I0QFkN>nb4E@w&S=E;6W((v;BY=#{N9`sM{k zQMVS1(7h(>#-|*&2QA-hwS6p1jUyv(DNLWUaP^!#iMQ2oOhEhS+UAOrKV76)F6f7+ zWaKo7q>Tw$2z`w56AC0UMy3L3~#z%EOb45m#4Ds03qN>=f zs0oG&0V};|E4JZ>}Xr1u*8lc7mdJMI3bgJW%;RUwzP%v$Sa>ZGb<^ zbA61vW(l<8a+>7e4?pdZ=k2$eJ*ecj!IFRotnRj#?R08Hp6 zlo$+|Rq4%)t))#>E5M!0ZqF0-`Jm*uLCIOMaT9g2N|H!v!OHTKA&~B-=;xLs~lv7;MQKg=g@2k7Q~KnZG=mW_%gMrzIl(6 zutT$dU1Y5SVbmOQ`2JTM0>s{gEeM2A0KG zdQ|alluJfbP4IjWK1Y%?-ckJ67Wc2n78Z@;E}Y{l{NO}R=C@N9Zaie1)Iln2t3oS{ zltPJm^;(Tdo!dlGQ&H+#rRAE?P(xYM6!(>ORq^BgUCXJT{S}*EhFoeJsJGHqigRo6 zSQv{YDB#c!WA!r|V`ggQrr0Z2i-x;V)0EB&ztEw2`xT3o7X}@7|w& zbtOv1D_)cBbmfUMPo85z|7xy2zn4Nc@>L}>Et%@{ylEgIy*N2=qV=W!SVE5e#4#89 zYeHVZ-Ymx;!M7w2{|aIU2m$wibxC9-CZD4p{L;&@oM?sLV%C$SxMis{9Grcko)5=M z&$p>W#rq)ag>9=j<{-0e?jmo1*@q`5$%QzX$U`BJ6;k@@m$ z@4ylB!YoIW-t|wAXT;TMv@6`GG6SJoy_%pA2KRtI0wlp)KdKMWwuf+(dKRCN(tJz_ zKvVv;ojzMcfa~Sa+L;mi)@JN@!(@UtQ&ArFqnr;kuURzQz7n;;z+b6SZ-4fIitqkb z0g^3LZ_C|Op^D6@rbA=}#2czX)$fln+FTmp!r5xCcq5T^bt^9;6*+tO6R=nO@D@Xq z?~;$ueEFtThl!1hGQ=C)M;b`ceQERWl(fl>)O)#LVRPQvAcO$GyJxpwS_TTbXfS#* z8&nPHVr9TePiz%B24l^;d|?LTSvhzYhe+JVX6z4N7?XqTE!$6xC2$j zp%GY0?uOBXXuP?OA?7bRu5e&tI2RFF?q};l`9cUpmvAt-u2--tD~g1g9?6XXrBDVL zAG6Cw8~4c0m9-D!Tfgh(GjWPY$|O?*y!U??E>AL%s_iVdW%M<(UGLpJ{zN6cn$h(A z{E{5GxuLjXvfZ&x)*8_ z23dTv`pnRG-j7EqEwF{wx5o+$>b+UP)VuRW`V-wAw|L`(nkfyk?P(+Xx@f`XtxoG0 zoCQMM$tA^`(nv!xTjP^HJ^at2Lc$3{*sB7FA>|Hb)HfdOle&%~Q>;1fI;GJpWfIFs zM3TYR{L#~#RuZ4&qdQGR3da=eXE_!4oP#=PQ=FubYTh3Ma&%cD5yo;pXoX*_yg$@g zA9+?EG^Q#cnXbx=@hOoivbnKSs9UT)KE3D7L76FFmmiH%Iq-C4X2R1y;rA4YNt89pQ zfEb=mAu?M;w=zL^nP0LuOOeI<%MUWMEz^&8uY}JB_&J zjFbv>E|eX=rZ!KA7<+?lFN*~(g*oE$7T99L`6x!5Kx+Bj;><6BTD-`V*T?s! z?u507;HzXrK61ErRXIv-P-#zA3U3%9if;@1PxVTOEG>c4!GiKWR>g$CMsstZfpYIj znx?H~^36(AS@$6@>#lK9V`D>i%TK4gYBvhB&+?Wq#rf#TS7BmD1_n^vJV|~%LNJmn zLv?ZhE^__M+>!nM<{a-0WIC>>5A8|q+Y8%pZmadJ8 zY&9hs-46F=Enrq}3=<12LWXOHlu9vreFjiWN@h0Z+I-T`vEQ2=T^$4Ac&&eQ(m3}m z_JoM*GzlnRFhmKjVs10t6W`0v;hzlri9P{e=*buQB7#p>-PM_fO8r6*wM&%T`_vT* zc9yGe5T@UI!)PWM-8T0rx{9@b9bu+q=m~5m!2>K>M*f0V;TXvlix{ezG-Vqdy2zzT zqwt{L_Z^3xkJTjMlOnj!}f(ffEH@IPX512)aqp4{6RGUB% zoXA$s74h@ynHLX*1Wrde>nHZq#P*frYg9BGvERsWP!Z!YU~`t_-f zEFf8Qnyn4SPFNL{4iL+8dsnIc$BPUYsxvx|oyzq_@A;`#$7oO1hr_+yP`hVdZ!KJ4 z#2Knwt-8C}so{<$DH+P}0+8^6I^JmnK#KmxGe0(LS|0Z#+CsKlyTQoqOIIt zAbB)C*HAAWe+~CM2J1rT34@R7yuj63}3pQFf*4pQ~N-Rl6G#4)zwyK zQ;B)i;(6~%;j8{Rxz%bfYV> z$Yt)!f=nGGd~H!Jc}92pWmrqFPM-qUImlx&24q4@19x z%9JYWS|m4OjayEw!kxxBj>g!`yTQ)d!!FS_UUZ-gwCq%%bn-SIy%zm8FM4zP!b|h` zwv5T{l^^KmpT~h;4M7vG@GO)S$uwuvxJH3*@zRJJbw*Ep`YqGtJk*y{?tur>S=woJ za!wO!@3RpILL21(TI@>aPG>m!rE~fD8+`la<;E}-h(FQ%{@a{9zt*A|#d3{eOnz?s zPO05Kw{gD(h9`0FI4{XsYoVj|EpmCq?YqPIoctBU^AN_=1v)W&Eanoy?+>>r^)*6? zn#sH_BOJ*wQ@s%W{%h3@FgmF6_Kt??&A^yZ;cOB7Xo@sEc&mVpsm_C&v(}B>7^m!3 zr(9el)h)qOp6ubbZTVazzl*LK++!$^fP3AA+Nn_LaH@4-^V4WQ^_!u= z=-gI^cso9ITKF@K@zQVS6GeYu#crAKWXF|Qi|DMO7PtJ(yBeyuh`!Y>@@OsVEbc~P zsGXt^-YTA2JGj-Ops{|JYT72=ocW~i`RUH?5~HBOMCIE#Dux8yjE_t6Yv78aXkCsn zE9t^bAB?wGB(gayCk1h-3Q-nWnJ==wjWUaGsTD~)npeqmP(8|aOQeqr=5F9r2A#il z6Dd-} zSJttZ*}Rwn7*^Tpk6f`~y2d5c{kYT8?*QGEZ-&`ew;#PWsh(nd5z3fD%T6Wob+Ixi zMq%2nUpOmeg}mz~x%sCMR;zKMovFp`+mq0B@_|U!+WBj0sQA)X=iKNdpORmqu_5P1 z3`)f0Yxa|(2cOMD8Vwdz$4MI_+6!)k1LQm!RIUrLAN%WlQY6ZWF7H6vT!}}Z*ZiC` z%!Z2+cngEyUEdA&#m6QQ)<$B}m0l1;H7a?#Xs+*5QLzN^ z?$-(nt=P3|Q$1)vjL9xfW9~nzU{t;5eE7n0A9lby#}~M8YuWt3AH<3W?KWP2sl$A` zf8_aK)k4E!A?pM3Pi-)E1xld${!h~zj?7$p3aFv|1_U9#$(o0VtX;cJ;MqiVZ2}mx zi|zbyxAt#yfZ$<}MK-__^PSP=(~QaPN!~9p$(u7b#uZoMozFn#_PF$;D|xIt$%JzmPEON*Y1T#ZQID}~gq{_)zz)?DQM>z_ znuV6pW<(&^Wt!lo+tqN1TfG^y&JW>kP@mXzs#|I}$NmDTKc_~zcbUR4-peKUUFbM6 zO$Q2qrQNgLTi8Q=6KCmI79x_}r@zg;Fe_@TB~LE`eK;JR9C?m2qIJZ}tvZ+VwLZVh z6Xrq>C}VUtc&fZ9fA?YayXT*up*lhcv)Zd28_7^TwVLb{48{kbVj3t2=9f9Q1(0rC zvGlhd(5<`K(d+yU0w2@4oSxUvZkF2615bWe=%+C*!)g8-pznDLyCw={+nW}FZP>tP z*NdyVfuPc9~5dFOkd-j27q)8?(;=SIfZW*U#aLVwwjs@>aK ze$SP!IZho|oOMr{?phM}28$ZAB*;E{wknC<#Ei9d5$;V}p)Tdo!Ce2la4C)wazYc{ z#n?o4B}5evk5a ziRUuLrndJ8{_`%vdMl%mL-^JMYe@7)p=~jSe%QQ0DKW|7hZ*va_!P?@i_HNPs-LN* ze1}QS&#K!fm9YAvP(wdHR~aRU>;bBir4Ib%OXl-cdi7&7wAQywk;IC(FPNd!v_X#@ z#^d+h<(4L>QE1&L~( z&$WPnNKNKOV~Un0Q9T2Z)Y!AWWZ|T_J#Yvdj>z=XS+`>~mq!)C5#H zX)tx&ZR*{=RP(L49q|^Lk0de9jJ@Rk{UbLJ36D!jrCft76oW1XAY-i7s0So6S8dt} z04l~+x@l0VX}ai@V7{vf?%mEz%*l^H0IA?Z`d+EGm=XH-6g?-C-4&&J(v&vW9_BsJ zaEN(SupyC4`ck~(ziy&rM_W#YeLzhY>vnTl%!aEu)X>$qG1ODiK)sO`2N8_0T%A4s zs*%6KY*liln3Ey%IJv2lfPL@u;^z8xzOvuQq{Y6B4|E=Ew}pUSaXxiLuj<%XUTQvV zlVUsp@9##Y*jtc-FL9_=b|kHF8DYgPksVPP*!K&&L`RCPv(kaj@qW%hrs45!LNI3k zl(5#(l3}d`XD^swWJ}P>28i<~$YBl)gp$uw{?lWi6PZ2Zp&7s|(0_H-KEFirTj8 zB_>DZA-~Q-lSS^DGOws4xomWeVu2*)>jG_iaY+`VPyFY1O(N}FOw*c$p@;$)k0dE& z^}@NIL3QSXvB9QBy!Ol2neZ2}9n>wb3z14%w}5byKB#I0XWK(Ng;nAOUn<^NFeeoP zhG3B;=ptBH1pN?wuR{0KT=)E>o)12d;-Ra(& zRKs5@_hTnD{SFezF4)bpF{d__gU_FDHBta185R5%(4)#<0_0U~S3NEVzrK9klVD7z z+pz>`1Z%Ocy4%s&tO0uA7_ZCBEnd9L3Pz*g8tw(CW~fxPZ2YBCSOy0*^zcQ=$j%LZ+`YfFJ?CxlUJl!2QbD#*r zWYC8s22}&rXh;U;U$gcqJ9R|Eu{Uu8Pb2fE-8Z7e(jEXR6_PCxL!-^@Os@_thZ$uV zq^xfpZFLCdTmam+3RGH zN%u79W8`O{79|;qB23h>Z?!@H5WwVv%YgTK&AcnQ6_7OrmDwE4g)(&fKAd%}pN?!? zaV>qSjnr5!b8UkhfwVDQDYc&Z77U4HU4#rQ>77zf(Cv zY=oXPsErjrnRKpT3u!%x7F;l(W%p)x2$Tw^?LA~8OZah2wuB*L+}qn(uz6Q-8YD6z zXOt7Ip2@ZAXNn`^A_M4xNb(96*Sdo`%2wMu$ZQ)3Bu=Z3{|USQt2UVvFK}9RAEbgE zh67VB^;5UiaX20O{dG-#<}i`2Xr-J`P29dwgWs?;g_p25#i-=@TSRa|*Dz1uh$vjJ z$omp)p&> z0$p${X!vMPruUs84=)~a`msUnz_@t$QzK5QMA&! z$?uF?;GAS;e@+{9PF}yiZHs_mh%Q~>XV_2<-xkLU1#{ZbO>V76gg!@-{SXBjUkisH z*27I;45o3m>mrnOm~{^q89KEZ1xFV9>(i-Mv>GooT_`#ys8Z76cMM_e#uxWycw2(= zWgA(JR832+Wa|lrQH>gOn9bF1u6PdmY2|oq5mT-R{-^I$ILF|CHD68*^D;zX7#TN; zpi+lMBqf?wk$Hc4s?w?ao$#c)>6-|k!{7j|S}F{vwFYETE!N zx#?OU(Z-|c&TOX~t3y(`$L0mQW-c?gL!9pAj&iAo?3-P8-A6v#{(#XM)%92RKwUZ_ z1#hIy1ZGipv9=XAQ+<<8sWg_H_MeVZk^11uQY^zM;ssY~eh|BlX(I!gdJ0^yr=i@V z=?ecL3b6&>Vbi}t7-?7(@0=Y=#@QyqsO*f7R`^a~chc=(BhS_@iJcBALeB{B!4rb) zPM}eaO{6`@oN5LSTW&%B{ZRTYucE@n8-7EL8g7omg&|Km+K39tvm2N56fU%{e?D`od3 z2tc-GMsmNT8Nr9XAD*86vx@M_ae2ZLs`Nu*8%${&5|9|_hK7Nw*7;X58A2Bx>Z8u+ z?@VMpDM2CO>Dgfj1`h&Cwd>%85oWkoPcO|0pd8B043w`U0H!<=IHTV8Yd+sbl9}%_ z(Tzruemx?+L$))H_#yrIa0wVma+u?cZ31MxH!(Y}MC@h%PkUDy59RyyEh9wP`ibl* zTE@P`#3-apq#fB(R4PJfl4V+?w8)xWMM%XES%;K$Y?Xb_TGlccjNv&q{?)%88FUPMQzaasm)(gtY-_Q39H%CQ0UbT zygGj-cb86p`$&RU;Od({9Q);L>p^X>C;vAe)!r~uTIc^cOHU6P-gNFfGaZd_4~72Y z8bEf?19L3i#)gcSzF~hcWe%bjNA^)*)Dci>mmk0;Es$6v~K10(SC_!14A$s zJO3(?Y)oiI4n|*_KTOz?JHovk6vd|BNRjKWPp^Xtv&pafLp_#@RZU=_*KKzX#Q(Qt zT=sGZ+^E3a!H0!!pziwn_a}r|@{%_N#m36rShXfl;Z$k)n{%Jz4I@?8#1O+4^52~M zUUZf_2!%uk8Ftly_l499+OjU%_LV;};+G>=el%_?@OYa))8lV+Yyt#$$TK zX-dJIc%jG;;7}udqQfwh%VHkRcGg(H_wldhB-m*R*C6$zGW?Fp%k~GKB zDr&0;+DwMCBUkZj@m*{3g+|nFY9H3bK#cKx=l3G!lNNJ#x4#Y`%jQ*CQK9915G>o= z!}DX!Tnx}@@JO}I1Bq^FV^hwz5eZ3E{p@?IL==fl9$BzlEu>`~H-Y25q1QJRS z`^H(Y#onX$zFK8Zi9ZspIG2gI@3pggexW1xr~|ZnEaT{bM#;`zBJA!4mUEO(QtdyC z<=oiO;KuV<1qKC)Jei0OG73yjSHw>>9FOL5KDIDVsl^nIH0ZyJnH5`{DSI$;Ds`Id zWN-hX8TfLr^fws^2?-T2GT8zT>a;s`f-Fad|I=3=N_r-oD!F*aCmNK^40xS+jEf!e z`Oa3JX);+_jr-KZI@)~XP)p03b3xZ2MJ2&%Q#=5vI~hSi!3k*lzYjt#x@&cYGx(;? zqnS+_;|&XZq-f~qPLAIfWY6!y$#~m`UUv#BN~d)#x;-d>^mk`j!J99khzy)nV0v-y zl!B3U$=!cKq+_nw^w%dJ-adtWZ=Z3r_O`*4SyI$aymNwA`3pDMdIBQt?5>`bz5YI4 z>`pOO|Jd3an(GM;wl6M>FE(nde_1rt(pBu}MTxXd-0n>uw!#c9P9|cHVivK$U2Qab zKDFT3t0-o+dcC-k>NohtlU<^n z>4X<%>a5&sw~L_Ps2Lu~($xlB&BdfPnY$S7FidG!-r-DtXT(az39@sea!cZ~8uJ2V z@Cq6ITL(J0&t|O~fu(W{t*?sF#C$(e?kR^L^v(=XenL!H4qZE&s*EtBZ_FreO_nB`)=h%=1mhFr%Vef{O7=BhiaX{yBP`4w1@X$+|5Km@ZYYK?ajnU)=<`sJZt1Y$Nf8~}52|BS#7O_O%Mj3T*A!VNca2g66g z;Pp`tWc1ce&(S2ddTP7C8V@h(XxkuahdWDzaWJ~`fV@P-P+J&B6NkeGKb{3y^svdf zbIFt6K9}85nXKHNx?|TfK0dzabTRr@ednR%#JS-NW=6@n`r6lFgJ~oM<;j9rj1U$T zL2Ds4qjT#U8SUA(p|iaWU0B3D9913HQo7$*)1~IbT&fg|%*8o+9`1^hV#M`b>ckJK zW83R@HU;#~Ev$W+8WFn-%z63aBo0K9h^X%j_ULz8&U$wjF`fw?yG@VK8LNA8<8WVN z3Z67TJdr8^QgoP-D_kZQ*u($B`tJI|LE}y>w$#{{+dAkB`vrR6U;tk^Vn8EeJs1TuP^Ap zv<9lRM1b(z%S~ubc!DH!it7l6QR3#9XdvkB2!CWNp4p$NQccozY|EFH}%YM2-0ky%PXi2cvh^(JN>dcgVwMQ3Sg+2>ilziah z`6QFeaKJ&tpxcRj_|TytkwU~MCA*6s@#A2+*p}rwV0!2fuQLheLC(v6?1@jadOWJ$ zfVNh&uTQe?Fb87s8oB!L@bHGvhvCw7fLje;VGQS<9LcEN$Z%A0eHW`CeMEIqz0XsP z6kAwYMMCz%?nJ@WOgQxSC^MVXJ!u^b1sKCp8TVK+w~hAdeAYc`;UcZDKM*I&Gfd`X z5%!+{F?P;U0t&41^B;Pg`+S=Dxg@d|C%LWJO#}j-7TnD#jxdc1wjK!0TRg{-!e=s& zfR($*lv?3+jrUTl5J#?X<%YTWT)K(5*a?zt&%-;h)3XXOLEvDcXIE7S^bQ3li zlNjZE*JTEHU+&VKAM7e(Q=ZBg?pMED*1d4QK3~ZJpFK`jX>$?ILq$+p@NnP>UkVLZ zKEf%+_v9*dOa{oXT|+w>H+5v5KQ5^59Dn%2t~muZWmZP&c$~zNCOja1mPSrZV{o%} zKf3e8nTnO9zW1t5&RHbhiroAT2k?8nuyolE{W#KKsh{%XY^Lh;TWj2Ez3#bogdD+SCITPYpXoCY!ZhT0o~~Bjb;j1y?KJ#2s4P ztZs6{G{a8a72WM3Pp+5??q2(nY4zA^715Ck{yA? zfduB*7W`}@RY5-Q3*oyg?7Y=#HK|b)+f60~z)6KEAtd+SXm|!jcX=L&OvmIrkGklh zi9wh&l&a=XwE6jK(!)KH4|i?^zKxeEDtrq-SoI~C(s_b|i^WiPSrrYH&2y1bS#Ewf zqSEB`+&7br>Qk+-(k4AXoReZ$N@|XvU0wly8)`0gku1DUI^T5Ifz5_@6PuUhOkiHjl)Z}o;X2)%aHLiVK5@Q0@M|`o!5wnhC#5~pz@X%zN z-O23wgsjWo4lT;nhgo^yySGkDi2uh~?3b7{C>qY7AVFTN5L(JiKBLOQ4*Y8_w^l1V z>|R@2+dFrr4`|KC2Zw~r*0w07vx;6R+UMX@%r3nH%R6%*otg0=YPV+I(nF8jOe|J8k31LQ>26FDxAVd!3!rgDP|Frk?>ui1VVg zb!miafb)C&Vh!RmK5x}i_ro#u_xDd^#M1Y}nf(oAlQq~x;(V-s^G?__OVOu{HbwcS z>za9?G9ytgH9!3Kh7zQL*9h;Zo1JQ@X`6z+>Q~QHJQfjitv^^}cP^)zxuU9c(5u^J z^$aVML0oc-#f@)MV5h?LKW=A~tE~YbeT!6)6}~@2(Q|InEG&y^O&+m5*Die^#(emi z^}E2$xIXYZF6oN*1@jYG7o2oA@lABh94B0CxeZP8JnRq`SUPD2{AcC^ zvs9h`tPR)ArF&4-`=QP^oKgP}74eZsTgID-@3CkKXS&?m-qQP&upG=gl5XDMNahnd z{vs4XO!o%)+)-1qtGaakb}rFpe-TlR5Bm6r#3v*iW#$`cvB^{CieNl)zWh*BZT-N{NSPs`3Va8nwhFDMBLXttd(bp__dLv)1}wSUeQNPio9v< zHiYTX0&HEc(!dv`cYYGx{hsZ(NWXA-W>71eKnPU#cOH{s`EL|>8M9l{ivRre={Pl9z&gxP4q+T^(}sCh9;NG-$K6=Jm)owUL=l0r9dG3xt*>=6%i#7^= zUTB1c6X&nFa3{bhpH7x4Tv!^VpA{3JMTZU@+IZ{Mt#s#pgV|oO#VybDABJYsYMrPg zlQjuMEyNf0(*h#ANA2!io{E>h8iNua-#MkfU|%xf6tyhb-B{fmjm}ls=jK>0j3f4OWi)#fMjA~EN@(6(8^;}CFk4o$kV0w1T%;7 zSRP^*vQOLD<=$R6&gTP3xYLl)o2XK%^}{QfE~?(%j0^RvX8jG6^s|H={pc|+puQw2 zy7B}lawxy}wxjVYkEnaQ)6_Ht2sy}5Cn`guj=Sd*WOMp>)#tuGyJ1PYr&JRFlrbpH zLHT%)KxOqRwK?>fh37+Ut11Pg>Wh?7OnAY@6gg=Pu{W zPmt+){5nYrcAa|>i@s^|QM%D2?33DaOzZAt@j~Pg6ap2;md(z|xQu_+nJ_`*m|N%% zR(pn8Fn0RP8S+xvn?J6#hxzv#)*o>o^H;}3ByTTcr8DfD0`f(Lh3?~)i=?J#*!&7` z-J=FZTQm9EmfY)=-S`Su;?@;VA3R#Yn&wfYnI4YCg-80L-@2%|O6MEV3OwZ(>XQx{ zZNR5`eq8$tnT?x50@kTZAET3ZJy`JDn<7oL!@%^^JMjdp`6F@I-6bB=&A|@)zeEbq%DRv00$nM6J zq@)1YbF)DX4h|4snRH;PNTj!Bo{!d$j=FR`%3~}Ck&*T0mv+@Tg#-uh-L;GG(z3v8 zKgzlKQza`-XFO)`pI_q_*8mfvSLSIGytEeFi73&lUnPh#!o!^fc@PSDC%fb{vWi{f zHac!YE*HJ_ebuS-WHloV2Y0Sh8`t9`V`P*|`rO#6U_d zwu^_*=|#JUL~e&e0|M%z!k#<+GG+w+jdj^?BxRKM$}+DQ6m1G`nomQm7VRY`_ysw2 zg+ObV1DuZ$)TfinU$nI7bv9sh%s5rnUtgA6T~#=3+Q`6>GkO5$4L)HxLbFmXs{HIX zrDpSo5t}?tLM?xn9~V>CY>j&#;A@lv(}`Gm@<`j;TJNg0OOmv_fR~|d!`&KMY0}E| zpXxnDJH6+q*F|Goyr?Z*l#_~TMoxa6;e`#Df2LohI}9kD?x24-pOD^H=k zLY$%Gy@lO_Wux+IO<>R;R6t3xN%Z}qKlSG4X9+M?hIL%-;p)E`!T&tvZi4mfnVVMn q_Z=h#R1X0};QuH2zuU>~MP?5Ckm#_kX*mP@?9(&SeZAZI`u_l(Z`(lt literal 0 HcmV?d00001 diff --git a/docs/slides/ml/38-conditionals.html b/docs/slides/ml/38-conditionals.html new file mode 100644 index 0000000..3656300 --- /dev/null +++ b/docs/slides/ml/38-conditionals.html @@ -0,0 +1,900 @@ + + + + + + + + + + + + + + + BST 260: Introduction to Data Science – Conditionals + + + + + + + + + + + + + + + +