._completion_with_retry in 4.0 seconds as it raised RateLimitError: Rate limit reached for default-gpt-3.5-turbo in organization org-2YlJyPMl62f07XPJCAlXfDxj on requests per min. Limit: 3 / min. Please try again in 20s. Contact us through our help center at help.openai.com if you continue to have issues. Please add a payment method to your account to increase your rate limit. Visit https://platform.openai.com/account/billing to add a payment method..\n"]}], "source": ["graded_outputs = eval_chain.evaluate(examples, predictions)#\u5728\u6b64\u94fe\u4e0a\u8c03\u7528evaluate\uff0c\u8fdb\u884c\u8bc4\u4f30"]}, {"cell_type": "markdown", "id": "72dc8595", "metadata": {}, "source": ["#### \u8bc4\u4f30\u601d\u8def\n", "\u5f53\u5b83\u9762\u524d\u6709\u6574\u4e2a\u6587\u6863\u65f6\uff0c\u5b83\u53ef\u4ee5\u751f\u6210\u4e00\u4e2a\u771f\u5b9e\u7684\u7b54\u6848\uff0c\u6211\u4eec\u5c06\u6253\u5370\u51fa\u9884\u6d4b\u7684\u7b54\uff0c\u5f53\u5b83\u8fdb\u884cQA\u94fe\u65f6\uff0c\u4f7f\u7528embedding\u548c\u5411\u91cf\u6570\u636e\u5e93\u8fdb\u884c\u68c0\u7d22\u65f6\uff0c\u5c06\u5176\u4f20\u9012\u5230\u8bed\u8a00\u6a21\u578b\u4e2d\uff0c\u7136\u540e\u5c1d\u8bd5\u731c\u6d4b\u9884\u6d4b\u7684\u7b54\u6848\uff0c\u6211\u4eec\u8fd8\u5c06\u6253\u5370\u51fa\u6210\u7ee9\uff0c\u8fd9\u4e5f\u662f\u8bed\u8a00\u6a21\u578b\u751f\u6210\u7684\u3002\u5f53\u5b83\u8981\u6c42\u8bc4\u4f30\u94fe\u8bc4\u4f30\u6b63\u5728\u53d1\u751f\u7684\u4e8b\u60c5\u65f6\uff0c\u4ee5\u53ca\u5b83\u662f\u5426\u6b63\u786e\u6216\u4e0d\u6b63\u786e\u3002\u56e0\u6b64\uff0c\u5f53\u6211\u4eec\u5faa\u73af\u904d\u5386\u6240\u6709\u8fd9\u4e9b\u793a\u4f8b\u5e76\u5c06\u5b83\u4eec\u6253\u5370\u51fa\u6765\u65f6\uff0c\u53ef\u4ee5\u8be6\u7ec6\u4e86\u89e3\u6bcf\u4e2a\u793a\u4f8b"]}, {"cell_type": "code", "execution_count": 54, "id": "bf21e40a", "metadata": {}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["Example 0:\n", "Question: \u9ad8\u6e05\u7535\u89c6\u673a\u600e\u4e48\u8fdb\u884c\u62a4\u7406\uff1f\n", "Real Answer: \u4f7f\u7528\u5e72\u5e03\u6e05\u6d01\u3002\n", "Predicted Answer: \u9ad8\u6e05\u7535\u89c6\u673a\u7684\u62a4\u7406\u975e\u5e38\u7b80\u5355\u3002\u60a8\u53ea\u9700\u8981\u4f7f\u7528\u5e72\u5e03\u6e05\u6d01\u5373\u53ef\u3002\u907f\u514d\u4f7f\u7528\u6e7f\u5e03\u6216\u5316\u5b66\u6e05\u6d01\u5242\uff0c\u4ee5\u514d\u635f\u574f\u7535\u89c6\u673a\u7684\u8868\u9762\u3002\n", "Predicted Grade: CORRECT\n", "\n", "Example 1:\n", "Question: \u65c5\u884c\u80cc\u5305\u6709\u5185\u5916\u888b\u5417\uff1f\n", "Real Answer: \u6709\u3002\n", "Predicted Answer: \u662f\u7684\uff0c\u65c5\u884c\u80cc\u5305\u6709\u591a\u4e2a\u5b9e\u7528\u7684\u5185\u5916\u888b\uff0c\u53ef\u4ee5\u8f7b\u677e\u88c5\u4e0b\u60a8\u7684\u5fc5\u9700\u54c1\u3002\n", "Predicted Grade: CORRECT\n", "\n", "Example 2:\n", "Question: \u8fd9\u6b3e\u5168\u81ea\u52a8\u5496\u5561\u673a\u6709\u4ec0\u4e48\u7279\u70b9\u548c\u4f18\u52bf\uff1f\n", "Real Answer: \u8fd9\u6b3e\u5168\u81ea\u52a8\u5496\u5561\u673a\u7684\u7279\u70b9\u548c\u4f18\u52bf\u5305\u62ec\u4e00\u952e\u64cd\u4f5c\u3001\u5185\u7f6e\u7814\u78e8\u5668\u548c\u6ee4\u7f51\u3001\u9884\u8bbe\u591a\u79cd\u5496\u5561\u6a21\u5f0f\u3001\u8010\u7528\u6027\u548c\u4e00\u81f4\u6027\uff0c\u4ee5\u53ca\u7531\u9ad8\u54c1\u8d28\u4e0d\u9508\u94a2\u5236\u6210\u7684\u6784\u9020\u3002\n", "Predicted Answer: \u8fd9\u6b3e\u5168\u81ea\u52a8\u5496\u5561\u673a\u6709\u4ee5\u4e0b\u7279\u70b9\u548c\u4f18\u52bf\uff1a\n", "1. \u4e00\u952e\u64cd\u4f5c\uff1a\u53ea\u9700\u6309\u4e0b\u6309\u94ae\uff0c\u5373\u53ef\u7814\u78e8\u5496\u5561\u8c46\u5e76\u6c8f\u5236\u51fa\u60a8\u559c\u7231\u7684\u5496\u5561\uff0c\u975e\u5e38\u65b9\u4fbf\u3002\n", "2. \u8010\u7528\u6027\u548c\u4e00\u81f4\u6027\uff1a\u8fd9\u6b3e\u5496\u5561\u673a\u5177\u6709\u8010\u7528\u6027\u548c\u4e00\u81f4\u6027\uff0c\u4f7f\u5176\u6210\u4e3a\u5bb6\u5ead\u548c\u529e\u516c\u5ba4\u7684\u7406\u60f3\u9009\u62e9\u3002\n", "3. \u5185\u7f6e\u7814\u78e8\u5668\u548c\u6ee4\u7f51\uff1a\u5496\u5561\u673a\u5185\u7f6e\u7814\u78e8\u5668\u548c\u6ee4\u7f51\uff0c\u53ef\u4ee5\u786e\u4fdd\u5496\u5561\u7684\u65b0\u9c9c\u548c\u53e3\u611f\u3002\n", "4. \u591a\u79cd\u5496\u5561\u6a21\u5f0f\uff1a\u5496\u5561\u673a\u9884\u8bbe\u4e86\u591a\u79cd\u5496\u5561\u6a21\u5f0f\uff0c\u53ef\u4ee5\u6839\u636e\u4e2a\u4eba\u53e3\u5473\u9009\u62e9\u4e0d\u540c\u7684\u5496\u5561\u3002\n", "5. \u9ad8\u54c1\u8d28\u6750\u6599\uff1a\u5496\u5561\u673a\u7531\u9ad8\u54c1\u8d28\u4e0d\u9508\u94a2\u5236\u6210\uff0c\u5177\u6709\u4f18\u826f\u7684\u8010\u7528\u6027\u548c\u8d28\u611f\u3002\n", "6. \u4e2d\u56fd\u5236\u9020\uff1a\u8fd9\u6b3e\u5496\u5561\u673a\u662f\u5728\u4e2d\u56fd\u5236\u9020\u7684\uff0c\u5177\u6709\u53ef\u9760\u7684\u54c1\u8d28\u4fdd\u8bc1\u3002\n", "Predicted Grade: CORRECT\n", "\n", "Example 3:\n", "Question: \u8fd9\u6b3e\u7535\u52a8\u7259\u5237\u7684\u89c4\u683c\u662f\u4ec0\u4e48\uff1f\n", "Real Answer: \u8fd9\u6b3e\u7535\u52a8\u7259\u5237\u7684\u89c4\u683c\u662f\u4e00\u822c\u5927\u5c0f\uff0c\u9ad8\u5ea6\u4e3a9.5\u82f1\u5bf8\uff0c\u5bbd\u5ea6\u4e3a1\u82f1\u5bf8\u3002\n", "Predicted Answer: \u8fd9\u6b3e\u7535\u52a8\u7259\u5237\u7684\u89c4\u683c\u662f\uff1a\u9ad8\u5ea6\u4e3a9.5\u82f1\u5bf8\uff0c\u5bbd\u5ea6\u4e3a1\u82f1\u5bf8\u3002\n", "Predicted Grade: CORRECT\n", "\n", "Example 4:\n", "Question: \u8fd9\u6b3e\u6a59\u5473\u7ef4\u751f\u7d20C\u6ce1\u817e\u7247\u7684\u89c4\u683c\u662f\u4ec0\u4e48\uff1f\n", "Real Answer: \u8fd9\u6b3e\u6a59\u5473\u7ef4\u751f\u7d20C\u6ce1\u817e\u7247\u6bcf\u76d2\u542b\u670920\u7247\u3002\n", "Predicted Answer: \u8fd9\u6b3e\u6a59\u5473\u7ef4\u751f\u7d20C\u6ce1\u817e\u7247\u7684\u89c4\u683c\u662f\u6bcf\u76d2\u542b\u670920\u7247\u3002\n", "Predicted Grade: CORRECT\n", "\n", "Example 5:\n", "Question: \u8fd9\u6b3e\u65e0\u7ebf\u84dd\u7259\u8033\u673a\u7684\u89c4\u683c\u662f\u4ec0\u4e48\uff1f\n", "Real Answer: \u5355\u4e2a\u8033\u673a\u5c3a\u5bf8\u4e3a1.5'' x 1.3''\u3002\n", "Predicted Answer: \u8fd9\u6b3e\u65e0\u7ebf\u84dd\u7259\u8033\u673a\u7684\u89c4\u683c\u662f\u5355\u4e2a\u8033\u673a\u5c3a\u5bf8\u4e3a1.5'' x 1.3''\u3002\n", "Predicted Grade: CORRECT\n", "\n", "Example 6:\n", "Question: \u8fd9\u4e2a\u4ea7\u54c1\u7684\u540d\u79f0\u662f\u4ec0\u4e48\uff1f\n", "Real Answer: \u745c\u4f3d\u57ab\n", "Predicted Answer: \u8fd9\u4e2a\u4ea7\u54c1\u7684\u540d\u79f0\u662f\u513f\u7ae5\u76ca\u667a\u73a9\u5177\u3002\n", "Predicted Grade: INCORRECT\n", "\n", "Example 7:\n", "Question: \u8fd9\u6b3e\u5168\u81ea\u52a8\u5496\u5561\u673a\u7684\u89c4\u683c\u662f\u4ec0\u4e48\uff1f\n", "Real Answer: \u5927\u578b\u5c3a\u5bf8\u4e3a13.8'' x 17.3''\uff0c\u4e2d\u578b\u5c3a\u5bf8\u4e3a11.5'' x 15.2''\u3002\n", "Predicted Answer: \u8fd9\u6b3e\u5168\u81ea\u52a8\u5496\u5561\u673a\u6709\u4e24\u79cd\u89c4\u683c\uff1a\n", "- \u5927\u578b\u5c3a\u5bf8\u4e3a13.8'' x 17.3''\u3002\n", "- \u4e2d\u578b\u5c3a\u5bf8\u4e3a11.5'' x 15.2''\u3002\n", "Predicted Grade: CORRECT\n", "\n", "Example 8:\n", "Question: \u8fd9\u6b3e\u7535\u52a8\u7259\u5237\u7684\u9ad8\u5ea6\u548c\u5bbd\u5ea6\u5206\u522b\u662f\u591a\u5c11\uff1f\n", "Real Answer: \u8fd9\u6b3e\u7535\u52a8\u7259\u5237\u7684\u9ad8\u5ea6\u662f9.5\u82f1\u5bf8\uff0c\u5bbd\u5ea6\u662f1\u82f1\u5bf8\u3002\n", "Predicted Answer: \u8fd9\u6b3e\u7535\u52a8\u7259\u5237\u7684\u9ad8\u5ea6\u662f9.5\u82f1\u5bf8\uff0c\u5bbd\u5ea6\u662f1\u82f1\u5bf8\u3002\n", "Predicted Grade: CORRECT\n", "\n", "Example 9:\n", "Question: \u8fd9\u6b3e\u6a59\u5473\u7ef4\u751f\u7d20C\u6ce1\u817e\u7247\u7684\u89c4\u683c\u662f\u4ec0\u4e48\uff1f\n", "Real Answer: \u6bcf\u76d2\u542b\u670920\u7247\u3002\n", "Predicted Answer: \u8fd9\u6b3e\u6a59\u5473\u7ef4\u751f\u7d20C\u6ce1\u817e\u7247\u7684\u89c4\u683c\u662f\u6bcf\u76d2\u542b\u670920\u7247\u3002\n", "Predicted Grade: CORRECT\n", "\n", "Example 10:\n", "Question: \u8fd9\u6b3e\u65e0\u7ebf\u84dd\u7259\u8033\u673a\u7684\u5c3a\u5bf8\u662f\u591a\u5c11\uff1f\n", "Real Answer: \u8fd9\u6b3e\u65e0\u7ebf\u84dd\u7259\u8033\u673a\u7684\u5c3a\u5bf8\u662f1.5'' x 1.3''\u3002\n", "Predicted Answer: \u8fd9\u6b3e\u65e0\u7ebf\u84dd\u7259\u8033\u673a\u7684\u5c3a\u5bf8\u662f1.5'' x 1.3''\u3002\n", "Predicted Grade: CORRECT\n", "\n", "Example 11:\n", "Question: \u8fd9\u6b3e\u745c\u4f3d\u57ab\u7684\u5c3a\u5bf8\u662f\u591a\u5c11\uff1f\n", "Real Answer: \u8fd9\u6b3e\u745c\u4f3d\u57ab\u7684\u5c3a\u5bf8\u662f24'' x 68''\u3002\n", "Predicted Answer: \u8fd9\u6b3e\u745c\u4f3d\u57ab\u7684\u5c3a\u5bf8\u662f24'' x 68''\u3002\n", "Predicted Grade: CORRECT\n", "\n"]}], "source": ["#\u6211\u4eec\u5c06\u4f20\u5165\u793a\u4f8b\u548c\u9884\u6d4b\uff0c\u5f97\u5230\u4e00\u5806\u5206\u7ea7\u8f93\u51fa\uff0c\u5faa\u73af\u904d\u5386\u5b83\u4eec\u6253\u5370\u7b54\u6848\n", "for i, eg in enumerate(examples):\n", " print(f\"Example {i}:\")\n", " print(\"Question: \" + predictions[i]['query'])\n", " print(\"Real Answer: \" + predictions[i]['answer'])\n", " print(\"Predicted Answer: \" + predictions[i]['result'])\n", " print(\"Predicted Grade: \" + graded_outputs[i]['text'])\n", " print()"]}, {"cell_type": "markdown", "id": "ece7c7b4", "metadata": {}, "source": ["#### \u7ed3\u679c\u5206\u6790\n", "\u5bf9\u4e8e\u6bcf\u4e2a\u793a\u4f8b\uff0c\u5b83\u770b\u8d77\u6765\u90fd\u662f\u6b63\u786e\u7684\uff0c\u8ba9\u6211\u4eec\u770b\u770b\u7b2c\u4e00\u4e2a\u4f8b\u5b50\u3002\n", "\u8fd9\u91cc\u7684\u95ee\u9898\u662f\uff0c\u65c5\u884c\u80cc\u5305\u6709\u5185\u5916\u888b\u5417\uff1f\u771f\u6b63\u7684\u7b54\u6848\uff0c\u6211\u4eec\u521b\u5efa\u4e86\u8fd9\u4e2a\uff0c\u662f\u80af\u5b9a\u7684\u3002\u6a21\u578b\u9884\u6d4b\u7684\u7b54\u6848\u662f\u662f\u7684\uff0c\u65c5\u884c\u80cc\u5305\u6709\u591a\u4e2a\u5b9e\u7528\u7684\u5185\u5916\u888b\uff0c\u53ef\u4ee5\u8f7b\u677e\u88c5\u4e0b\u60a8\u7684\u5fc5\u9700\u54c1\u3002\u56e0\u6b64\uff0c\u6211\u4eec\u53ef\u4ee5\u7406\u89e3\u8fd9\u662f\u4e00\u4e2a\u6b63\u786e\u7684\u7b54\u6848\u3002\u5b83\u5c06\u5176\u8bc4\u4e3a\u6b63\u786e\u3002 \n", "#### \u4f7f\u7528\u6a21\u578b\u8bc4\u4f30\u7684\u4f18\u52bf\n", "\n", "\u4f60\u6709\u8fd9\u4e9b\u7b54\u6848\uff0c\u5b83\u4eec\u662f\u4efb\u610f\u7684\u5b57\u7b26\u4e32\u3002\u6ca1\u6709\u5355\u4e00\u7684\u771f\u5b9e\u5b57\u7b26\u4e32\u662f\u6700\u597d\u7684\u53ef\u80fd\u7b54\u6848\uff0c\u6709\u8bb8\u591a\u4e0d\u540c\u7684\u53d8\u4f53\uff0c\u53ea\u8981\u5b83\u4eec\u5177\u6709\u76f8\u540c\u7684\u8bed\u4e49\uff0c\u5b83\u4eec\u5e94\u8be5\u88ab\u8bc4\u4e3a\u76f8\u4f3c\u3002\u5982\u679c\u4f7f\u7528\u6b63\u5219\u8fdb\u884c\u7cbe\u51c6\u5339\u914d\u5c31\u4f1a\u4e22\u5931\u8bed\u4e49\u4fe1\u606f\uff0c\u5230\u76ee\u524d\u4e3a\u6b62\u5b58\u5728\u7684\u8bb8\u591a\u8bc4\u4f30\u6307\u6807\u90fd\u4e0d\u591f\u597d\u3002\u76ee\u524d\u6700\u6709\u8da3\u548c\u6700\u53d7\u6b22\u8fce\u7684\u4e4b\u4e00\u5c31\u662f\u4f7f\u7528\u8bed\u8a00\u6a21\u578b\u8fdb\u884c\u8bc4\u4f30\u3002"]}], "metadata": {"kernelspec": {"display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3"}, "language_info": {"codemirror_mode": {"name": "ipython", "version": 3}, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.12"}, "toc": {"base_numbering": 1, "nav_menu": {}, "number_sections": false, "sideBar": true, "skip_h1_title": false, "title_cell": "Table of Contents", "title_sidebar": "Contents", "toc_cell": false, "toc_position": {"height": "calc(100% - 180px)", "left": "10px", "top": "150px", "width": "261.818px"}, "toc_section_display": true, "toc_window_display": true}}, "nbformat": 4, "nbformat_minor": 5}
\ No newline at end of file
diff --git "a/content/\345\277\205\344\277\256\344\270\211-LangChain for LLM Application Development/7.\344\273\243\347\220\206 Agent.ipynb" "b/content/\345\277\205\344\277\256\344\270\211-LangChain for LLM Application Development/7.\344\273\243\347\220\206 Agent.ipynb"
index 476235dc..8b107496 100644
--- "a/content/\345\277\205\344\277\256\344\270\211-LangChain for LLM Application Development/7.\344\273\243\347\220\206 Agent.ipynb"
+++ "b/content/\345\277\205\344\277\256\344\270\211-LangChain for LLM Application Development/7.\344\273\243\347\220\206 Agent.ipynb"
@@ -1 +1 @@
-{"cells":[{"cell_type":"markdown","id":"2caa79ba-45e3-437c-9cb6-e433f443f0bf","metadata":{},"source":["# 第七章 代理\n","\n"," - [一、设置OpenAI API Key](#一、设置OpenAI-API-Key)\n"," - [二、LangChain内置工具](#二、LangChain内置工具)\n"," - [2.1 使用llm-math和wikipedia工具](#2.1-使用llm-math和wikipedia工具)\n"," - [2.2 使用PythonREPLTool工具](#2.2-使用PythonREPLTool工具)\n"," - [三、 定义自己的工具并在代理中使用](#三、-定义自己的工具并在代理中使用)\n"," - [3.1 创建和使用自定义时间工具](#3.1-创建和使用自定义时间工具)\n"]},{"cell_type":"markdown","id":"8a31726a-82ac-46e4-a51e-7747fc4c6aed","metadata":{"tags":[]},"source":["## 一、设置OpenAI API Key\n","\n","登陆 [OpenAI 账户](https://platform.openai.com/account/api-keys) 获取API Key,然后将其设置为环境变量。\n","\n","- 如果你想要设置为全局环境变量,可以参考[知乎文章](https://zhuanlan.zhihu.com/p/627665725)。\n","- 如果你想要设置为本地/项目环境变量,在本文件目录下创建`.env`文件, 打开文件输入以下内容。\n","\n"," \n"," OPENAI_API_KEY=\"your_api_key\" \n","
\n"," \n"," 替换\"your_api_key\"为你自己的 API Key"]},{"cell_type":"code","execution_count":1,"id":"312f4c23-fe27-4cda-a645-8e1519c2febf","metadata":{"tags":[]},"outputs":[],"source":["import os\n","import openai\n","from dotenv import load_dotenv, find_dotenv\n","\n","# 读取本地/项目的环境变量。\n","\n","# find_dotenv()寻找并定位.env文件的路径\n","# load_dotenv()读取该.env文件,并将其中的环境变量加载到当前的运行环境中 \n","# 如果你设置的是全局的环境变量,这行代码则没有任何作用。\n","_ = load_dotenv(find_dotenv())\n","\n","# 获取环境变量 OPENAI_API_KEY\n","openai.api_key = os.environ['OPENAI_API_KEY'] "]},{"cell_type":"markdown","id":"631c764b-68fa-483a-80a5-9a322cd1117c","metadata":{},"source":["## 二、LangChain内置工具"]},{"cell_type":"code","execution_count":2,"id":"bc80a8a7-a66e-4fbb-8d57-05004a3e77c7","metadata":{},"outputs":[],"source":["from langchain.agents import load_tools, initialize_agent\n","from langchain.agents import AgentType\n","from langchain.python import PythonREPL\n","from langchain.chat_models.openai import ChatOpenAI"]},{"cell_type":"markdown","id":"d5a3655c-4d5e-4a86-8bf4-a11bd1525059","metadata":{},"source":["### 2.1 使用llm-math和wikipedia工具"]},{"cell_type":"markdown","id":"e484d285-2110-4a06-a360-55313d6d9ffc","metadata":{},"source":["#### 1️⃣ 初始化大语言模型\n","\n","- 默认密钥`openai_api_key`为环境变量`OPENAI_API_KEY`。因此在运行以下代码之前,确保你已经设置环境变量`OPENAI_API_KEY`。如果还没有密钥,请[获取你的API Key](https://platform.openai.com/account/api-keys) 。\n","- 默认模型`model_name`为`gpt-3.5-turbo`。\n","- 更多关于模型默认参数请查看[这里](https://github.com/hwchase17/langchain/blob/master/langchain/chat_models/openai.py)。"]},{"cell_type":"code","execution_count":3,"id":"71e5894f-fc50-478b-a3d3-58891cc46ffc","metadata":{},"outputs":[{"name":"stderr","output_type":"stream","text":["/Users/lta/anaconda3/envs/cookbook/lib/python3.10/site-packages/langchain_core/_api/deprecation.py:119: LangChainDeprecationWarning: The class `ChatOpenAI` was deprecated in LangChain 0.0.10 and will be removed in 0.3.0. An updated version of the class exists in the langchain-openai package and should be used instead. To use it run `pip install -U langchain-openai` and import as `from langchain_openai import ChatOpenAI`.\n"," warn_deprecated(\n"]}],"source":["# 参数temperature设置为0.0,从而减少生成答案的随机性。\n","llm = ChatOpenAI(temperature=0)"]},{"cell_type":"markdown","id":"d7f75023-1825-4d74-bc8e-2c362f551fd1","metadata":{"tags":[]},"source":["#### 2️⃣ 加载工具包\n","- `llm-math` 工具结合语言模型和计算器用以进行数学计算\n","- `wikipedia`工具通过API连接到wikipedia进行搜索查询。"]},{"cell_type":"code","execution_count":4,"id":"3541b866-8a35-4b6f-bfe6-66edb1d666cd","metadata":{},"outputs":[],"source":["tools = load_tools(\n"," [\"llm-math\",\"wikipedia\"], \n"," llm=llm #第一步初始化的模型\n",")"]},{"cell_type":"markdown","id":"e5b4fcc8-8817-4a94-b154-3f328480e441","metadata":{},"source":["#### 3️⃣ 初始化代理\n","\n","- `agent`: 代理类型。这里使用的是`AgentType.CHAT_ZERO_SHOT_REACT_DESCRIPTION`。其中`CHAT`代表代理模型为针对对话优化的模型,`REACT`代表针对REACT设计的提示模版。\n","- `handle_parsing_errors`: 是否处理解析错误。当发生解析错误时,将错误信息返回给大模型,让其进行纠正。\n","- `verbose`: 是否输出中间步骤结果。"]},{"cell_type":"code","execution_count":5,"id":"e7cdc782-2b8c-4649-ae1e-cabacee1a757","metadata":{},"outputs":[{"name":"stderr","output_type":"stream","text":["/Users/lta/anaconda3/envs/cookbook/lib/python3.10/site-packages/langchain_core/_api/deprecation.py:119: LangChainDeprecationWarning: The function `initialize_agent` was deprecated in LangChain 0.1.0 and will be removed in 0.3.0. Use Use new agent constructor methods like create_react_agent, create_json_agent, create_structured_chat_agent, etc. instead.\n"," warn_deprecated(\n"]}],"source":["agent= initialize_agent(\n"," tools, #第二步加载的工具\n"," llm, #第一步初始化的模型\n"," agent=AgentType.CHAT_ZERO_SHOT_REACT_DESCRIPTION, #代理类型\n"," handle_parsing_errors=True, #处理解析错误\n"," verbose = True #输出中间步骤\n",")"]},{"cell_type":"markdown","id":"b980137a-a1d2-4c19-80c8-ec380f9c1efe","metadata":{"tags":[]},"source":["#### 4️⃣.1️⃣ 使用代理回答数学问题"]},{"cell_type":"code","execution_count":6,"id":"1e2bcd3b-ae72-4fa1-b38e-d0ce650e1f31","metadata":{},"outputs":[{"name":"stderr","output_type":"stream","text":["/Users/lta/anaconda3/envs/cookbook/lib/python3.10/site-packages/langchain_core/_api/deprecation.py:119: LangChainDeprecationWarning: The method `Chain.__call__` was deprecated in langchain 0.1.0 and will be removed in 0.3.0. Use invoke instead.\n"," warn_deprecated(\n"]},{"name":"stdout","output_type":"stream","text":["\n","\n","\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n","\u001b[32;1m\u001b[1;3mQuestion: 计算300的25%,思考过程请使用中文。\n","Thought: 首先,我们知道25%可以表示为0.25,然后将300乘以0.25即可得到答案。\n","Action:\n","```\n","{\n"," \"action\": \"Calculator\",\n"," \"action_input\": \"300*0.25\"\n","}\n","```\n","\u001b[0m\n","Observation: \u001b[36;1m\u001b[1;3mAnswer: 75.0\u001b[0m\n","Thought:\u001b[32;1m\u001b[1;3mFinal Answer: 75.0\u001b[0m\n","\n","\u001b[1m> Finished chain.\u001b[0m\n"]},{"data":{"text/plain":["{'input': '计算300的25%,思考过程请使用中文。', 'output': '75.0'}"]},"execution_count":6,"metadata":{},"output_type":"execute_result"}],"source":["agent(\"计算300的25%,思考过程请使用中文。\") "]},{"cell_type":"markdown","id":"05bb0811-d71e-4016-868b-efbb651d8e59","metadata":{},"source":["✅ **总结**\n","\n","1. 模型对于接下来需要做什么,给出思考(Thought) \n"," \n"," 思考:我们需要计算300的25%,这个过程中需要用到乘法和除法。
\n","\n","2. 模型基于思考采取行动(Action)\n"," 行动: 使用计算器(calculator),输入300*0.25
\n","3. 模型得到观察(Observation)\n"," 观察:答案: 75.0
\n","\n","4. 基于观察,模型对于接下来需要做什么,给出思考(Thought)\n"," 思考: 我们的问题有了答案
\n","\n","5. 给出最终答案(Final Answer)\n"," 最终答案: 75.0
\n","5. 以字典的形式给出最终答案。"]},{"cell_type":"markdown","id":"bdd13d06-0f0e-4918-ac28-339f524f8c76","metadata":{},"source":["#### 4️⃣.2️⃣ Tom M. Mitchell的书"]},{"cell_type":"code","execution_count":7,"id":"f43b5cbf-1011-491b-90e8-09cf903fb866","metadata":{},"outputs":[{"name":"stdout","output_type":"stream","text":["\n","\n","\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n","\u001b[32;1m\u001b[1;3mThought: I can use Wikipedia to find out which book Tom M. Mitchell wrote.\n","Action:\n","```\n","{\n"," \"action\": \"wikipedia\",\n"," \"action_input\": \"Tom M. Mitchell\"\n","}\n","```\u001b[0m"]},{"name":"stderr","output_type":"stream","text":["/Users/lta/anaconda3/envs/cookbook/lib/python3.10/site-packages/wikipedia/wikipedia.py:389: GuessedAtParserWarning: No parser was explicitly specified, so I'm using the best available HTML parser for this system (\"html.parser\"). This usually isn't a problem, but if you run this code on another system, or in a different virtual environment, it may use a different parser and behave differently.\n","\n","The code that caused this warning is on line 389 of the file /Users/lta/anaconda3/envs/cookbook/lib/python3.10/site-packages/wikipedia/wikipedia.py. To get rid of this warning, pass the additional argument 'features=\"html.parser\"' to the BeautifulSoup constructor.\n","\n"," lis = BeautifulSoup(html).find_all('li')\n"]},{"name":"stdout","output_type":"stream","text":["\n","Observation: \u001b[33;1m\u001b[1;3mPage: Tom M. Mitchell\n","Summary: Tom Michael Mitchell (born August 9, 1951) is an American computer scientist and the Founders University Professor at Carnegie Mellon University (CMU). He is a founder and former Chair of the Machine Learning Department at CMU. Mitchell is known for his contributions to the advancement of machine learning, artificial intelligence, and cognitive neuroscience and is the author of the textbook Machine Learning. He is a member of the United States National Academy of Engineering since 2010. He is also a Fellow of the American Academy of Arts and Sciences, the American Association for the Advancement of Science and a Fellow and past President of the Association for the Advancement of Artificial Intelligence. In October 2018, Mitchell was appointed as the Interim Dean of the School of Computer Science at Carnegie Mellon.\n","\n","Page: Tom Mitchell (Australian footballer)\n","Summary: Thomas Mitchell (born 31 May 1993) is a professional Australian rules footballer playing for the Collingwood Football Club in the Australian Football League (AFL). He previously played for the Sydney Swans from 2012 to 2016, and the Hawthorn Football Club between 2017 and 2022. Mitchell won the Brownlow Medal as the league's best and fairest player in 2018 and set the record for the most disposals in a VFL/AFL match, accruing 54 in a game against Collingwood during that season. He would later join them in 2023, en route to winning the 2023 AFL Grand Final and his first AFL premiership.\u001b[0m\n","Thought:\u001b[32;1m\u001b[1;3mI have found that Tom M. Mitchell wrote the textbook \"Machine Learning.\"\n","Final Answer: Machine Learning\u001b[0m\n","\n","\u001b[1m> Finished chain.\u001b[0m\n"]},{"data":{"text/plain":["{'input': 'Tom M. Mitchell is an American computer scientist and the Founders University Professor at Carnegie Mellon University (CMU)what book did he write?',\n"," 'output': 'Machine Learning'}"]},"execution_count":7,"metadata":{},"output_type":"execute_result"}],"source":["question = \"Tom M. Mitchell is an American computer scientist \\\n","and the Founders University Professor at Carnegie Mellon University (CMU)\\\n","what book did he write?\"\n","agent(question) "]},{"cell_type":"markdown","id":"39e2f6fb-f229-4235-ad58-98a5f505800c","metadata":{},"source":["✅ **总结**\n","\n","1. 模型对于接下来需要做什么,给出思考(Thought) \n"," 思考:我应该使用维基百科去搜索。
\n","\n","2. 模型基于思考采取行动(Action)\n"," 行动: 使用维基百科,输入Tom M. Mitchell
\n","3. 模型得到观察(Observation)\n"," 观测: 页面: Tom M. Mitchell,页面: Tom Mitchell (澳大利亚足球运动员)
\n","\n","4. 基于观察,模型对于接下来需要做什么,给出思考(Thought)\n"," 思考: Tom M. Mitchell写的书是Machine Learning
\n","\n","5. 给出最终答案(Final Answer)\n"," 最终答案: Machine Learning
\n","5. 以字典的形式给出最终答案。\n","\n","\n","值得注意的是,模型每次运行推理的过程可能存在差异,但最终的结果一致。"]},{"cell_type":"markdown","id":"5901cab6-a7c9-4590-b35d-d41c29e39a39","metadata":{},"source":["### 2.2 使用PythonREPLTool工具"]},{"cell_type":"markdown","id":"12b8d837-524c-46b8-9189-504808cf1f93","metadata":{},"source":["#### 1️⃣ 创建pyhon代理"]},{"cell_type":"code","execution_count":8,"id":"6c60d933-168d-4834-b29c-b2b43ade80cc","metadata":{},"outputs":[],"source":["from langchain_experimental.agents.agent_toolkits.python.base import create_python_agent\n","from langchain_experimental.tools.python.tool import PythonREPLTool\n","\n","agent = create_python_agent(\n"," llm, #使用前面一节已经加载的大语言模型\n"," tool=PythonREPLTool(), #使用Python交互式环境工具(REPLTool)\n"," verbose=True #输出中间步骤\n",")"]},{"cell_type":"markdown","id":"d32ed40c-cbcd-4efd-b044-57e611f5fab5","metadata":{"tags":[]},"source":["#### 2️⃣ 使用代理对顾客名字进行排序"]},{"cell_type":"code","execution_count":9,"id":"3d416f28-8fdb-4761-a4f9-d46c6d37fb3d","metadata":{},"outputs":[],"source":["customer_list = [\"小明\",\"小黄\",\"小红\",\"小蓝\",\"小橘\",\"小绿\",]"]},{"cell_type":"code","execution_count":10,"id":"ba7f9a50-acf6-4fba-a1b9-503baa80266b","metadata":{},"outputs":[{"name":"stdout","output_type":"stream","text":["\n","\n","\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n"]},{"name":"stderr","output_type":"stream","text":["/Users/lta/anaconda3/envs/cookbook/lib/python3.10/site-packages/langchain_core/_api/deprecation.py:119: LangChainDeprecationWarning: The method `Chain.run` was deprecated in langchain 0.1.0 and will be removed in 0.3.0. Use invoke instead.\n"," warn_deprecated(\n","Python REPL can execute arbitrary code. Use with caution.\n"]},{"name":"stdout","output_type":"stream","text":["\u001b[32;1m\u001b[1;3m我们可以使用Python的拼音库来将中文名字转换为拼音。\n","Action: Python_REPL\n","Action Input: \n","```python\n","from xpinyin import Pinyin\n","p = Pinyin()\n","names = ['小明', '小黄', '小红', '小蓝', '小橘', '小绿']\n","pinyins = [p.get_pinyin(name, '') for name in names]\n","print(pinyins)\n","```\u001b[0m\n","Observation: \u001b[36;1m\u001b[1;3m['xiaoming', 'xiaohuang', 'xiaohong', 'xiaolan', 'xiaoju', 'xiaolv']\n","\u001b[0m\n","Thought:\u001b[32;1m\u001b[1;3m我们已经成功将这些客户名字转换为拼音。\n","Final Answer: ['xiaoming', 'xiaohuang', 'xiaohong', 'xiaolan', 'xiaoju', 'xiaolv']\u001b[0m\n","\n","\u001b[1m> Finished chain.\u001b[0m\n"]},{"data":{"text/plain":["\"['xiaoming', 'xiaohuang', 'xiaohong', 'xiaolan', 'xiaoju', 'xiaolv']\""]},"execution_count":10,"metadata":{},"output_type":"execute_result"}],"source":["agent.run(f\"\"\"在这些客户名字转换为拼音\\\n","并打印输出列表: {customer_list}\\\n","思考过程请使用中文。\"\"\") "]},{"cell_type":"markdown","id":"16f530a5-8c50-4648-951f-4e65d15ca93f","metadata":{"jp-MarkdownHeadingCollapsed":true,"tags":[]},"source":["#### 3️⃣ 使用调试模式"]},{"cell_type":"markdown","id":"951048dc-0414-410d-a0e9-6ef32bbdda89","metadata":{"tags":[]},"source":["在调试(debug)模式下再次运行,我们可以把上面的6步分别对应到下面的具体流程\n","1. 模型对于接下来需要做什么,给出思考(Thought)\n"," - [chain/start] [1:chain:AgentExecutor] Entering Chain run with input
\n"," - [chain/start] [1:chain:AgentExecutor > 2:chain:LLMChain] Entering Chain run with input
\n"," - [llm/start] [1:chain:AgentExecutor > 2:chain:LLMChain > 3:llm:ChatOpenAI] Entering LLM run with input
\n"," - [llm/end] [1:chain:AgentExecutor > 2:chain:LLMChain > 3:llm:ChatOpenAI] [12.25s] Exiting LLM run with output
\n"," - [chain/end] [1:chain:AgentExecutor > 2:chain:LLMChain] [12.25s] Exiting Chain run with output
\n","2. 模型基于思考采取行动(Action), 因为使用的工具不同,Action的输出也和之前有所不同,这里输出的为python代码\n"," - [tool/start] [1:chain:AgentExecutor > 4:tool:Python REPL] Entering Tool run with input
\n"," - [tool/end] [1:chain:AgentExecutor > 4:tool:Python REPL] [2.2239999999999998ms] Exiting Tool run with output
\n","3. 模型得到观察(Observation) \n"," - [chain/start] [1:chain:AgentExecutor > 5:chain:LLMChain] Entering Chain run with input
\n","4. 基于观察,模型对于接下来需要做什么,给出思考(Thought) \n"," - [llm/start] [1:chain:AgentExecutor > 5:chain:LLMChain > 6:llm:ChatOpenAI] Entering LLM run with input
\n"," - [llm/end] [1:chain:AgentExecutor > 5:chain:LLMChain > 6:llm:ChatOpenAI] [6.94s] Exiting LLM run with output
\n"," \n","5. 给出最终答案(Final Answer) \n"," - [chain/end] [1:chain:AgentExecutor > 5:chain:LLMChain] [6.94s] Exiting Chain run with output
\n","6. 返回最终答案。\n"," - [chain/end] [1:chain:AgentExecutor] [19.20s] Exiting Chain run with output
"]},{"cell_type":"code","execution_count":11,"id":"92b8961b-b990-4540-a7f9-e4701dfaa616","metadata":{},"outputs":[{"name":"stdout","output_type":"stream","text":["\u001b[32;1m\u001b[1;3m[chain/start]\u001b[0m \u001b[1m[chain:AgentExecutor] Entering Chain run with input:\n","\u001b[0m{\n"," \"input\": \"在这些客户名字转换为拼音并打印输出列表: ['小明', '小黄', '小红', '小蓝', '小橘', '小绿']思考过程请使用中文。\"\n","}\n","\u001b[32;1m\u001b[1;3m[chain/start]\u001b[0m \u001b[1m[chain:AgentExecutor > chain:LLMChain] Entering Chain run with input:\n","\u001b[0m{\n"," \"input\": \"在这些客户名字转换为拼音并打印输出列表: ['小明', '小黄', '小红', '小蓝', '小橘', '小绿']思考过程请使用中文。\",\n"," \"agent_scratchpad\": \"\",\n"," \"stop\": [\n"," \"\\nObservation:\",\n"," \"\\n\\tObservation:\"\n"," ]\n","}\n","\u001b[32;1m\u001b[1;3m[llm/start]\u001b[0m \u001b[1m[chain:AgentExecutor > chain:LLMChain > llm:ChatOpenAI] Entering LLM run with input:\n","\u001b[0m{\n"," \"prompts\": [\n"," \"Human: You are an agent designed to write and execute python code to answer questions.\\nYou have access to a python REPL, which you can use to execute python code.\\nIf you get an error, debug your code and try again.\\nOnly use the output of your code to answer the question. \\nYou might know the answer without running any code, but you should still run the code to get the answer.\\nIf it does not seem like you can write code to answer the question, just return \\\"I don't know\\\" as the answer.\\n\\n\\nPython_REPL - A Python shell. Use this to execute python commands. Input should be a valid python command. If you want to see the output of a value, you should print it out with `print(...)`.\\n\\nUse the following format:\\n\\nQuestion: the input question you must answer\\nThought: you should always think about what to do\\nAction: the action to take, should be one of [Python_REPL]\\nAction Input: the input to the action\\nObservation: the result of the action\\n... (this Thought/Action/Action Input/Observation can repeat N times)\\nThought: I now know the final answer\\nFinal Answer: the final answer to the original input question\\n\\nBegin!\\n\\nQuestion: 在这些客户名字转换为拼音并打印输出列表: ['小明', '小黄', '小红', '小蓝', '小橘', '小绿']思考过程请使用中文。\\nThought:\"\n"," ]\n","}\n","\u001b[36;1m\u001b[1;3m[llm/end]\u001b[0m \u001b[1m[chain:AgentExecutor > chain:LLMChain > llm:ChatOpenAI] [2.74s] Exiting LLM run with output:\n","\u001b[0m{\n"," \"generations\": [\n"," [\n"," {\n"," \"text\": \"我们可以使用Python的拼音库来将中文名字转换为拼音。\\nAction: Python_REPL\\nAction Input: \\n```python\\nfrom xpinyin import Pinyin\\np = Pinyin()\\nnames = ['小明', '小黄', '小红', '小蓝', '小橘', '小绿']\\npinyins = [p.get_pinyin(name, '') for name in names]\\nprint(pinyins)\\n```\",\n"," \"generation_info\": {\n"," \"finish_reason\": \"stop\",\n"," \"logprobs\": null\n"," },\n"," \"type\": \"ChatGeneration\",\n"," \"message\": {\n"," \"lc\": 1,\n"," \"type\": \"constructor\",\n"," \"id\": [\n"," \"langchain\",\n"," \"schema\",\n"," \"messages\",\n"," \"AIMessage\"\n"," ],\n"," \"kwargs\": {\n"," \"content\": \"我们可以使用Python的拼音库来将中文名字转换为拼音。\\nAction: Python_REPL\\nAction Input: \\n```python\\nfrom xpinyin import Pinyin\\np = Pinyin()\\nnames = ['小明', '小黄', '小红', '小蓝', '小橘', '小绿']\\npinyins = [p.get_pinyin(name, '') for name in names]\\nprint(pinyins)\\n```\",\n"," \"response_metadata\": {\n"," \"token_usage\": {\n"," \"completion_tokens\": 104,\n"," \"prompt_tokens\": 322,\n"," \"total_tokens\": 426\n"," },\n"," \"model_name\": \"gpt-3.5-turbo\",\n"," \"system_fingerprint\": null,\n"," \"finish_reason\": \"stop\",\n"," \"logprobs\": null\n"," },\n"," \"type\": \"ai\",\n"," \"id\": \"run-1d856a5f-0d28-4156-bda0-c1bfb8a1e22f-0\",\n"," \"tool_calls\": [],\n"," \"invalid_tool_calls\": []\n"," }\n"," }\n"," }\n"," ]\n"," ],\n"," \"llm_output\": {\n"," \"token_usage\": {\n"," \"completion_tokens\": 104,\n"," \"prompt_tokens\": 322,\n"," \"total_tokens\": 426\n"," },\n"," \"model_name\": \"gpt-3.5-turbo\",\n"," \"system_fingerprint\": null\n"," },\n"," \"run\": null\n","}\n","\u001b[36;1m\u001b[1;3m[chain/end]\u001b[0m \u001b[1m[chain:AgentExecutor > chain:LLMChain] [2.75s] Exiting Chain run with output:\n","\u001b[0m{\n"," \"text\": \"我们可以使用Python的拼音库来将中文名字转换为拼音。\\nAction: Python_REPL\\nAction Input: \\n```python\\nfrom xpinyin import Pinyin\\np = Pinyin()\\nnames = ['小明', '小黄', '小红', '小蓝', '小橘', '小绿']\\npinyins = [p.get_pinyin(name, '') for name in names]\\nprint(pinyins)\\n```\"\n","}\n","\u001b[32;1m\u001b[1;3m[tool/start]\u001b[0m \u001b[1m[chain:AgentExecutor > tool:Python_REPL] Entering Tool run with input:\n","\u001b[0m\"```python\n","from xpinyin import Pinyin\n","p = Pinyin()\n","names = ['小明', '小黄', '小红', '小蓝', '小橘', '小绿']\n","pinyins = [p.get_pinyin(name, '') for name in names]\n","print(pinyins)\n","```\"\n","\u001b[36;1m\u001b[1;3m[tool/end]\u001b[0m \u001b[1m[chain:AgentExecutor > tool:Python_REPL] [16ms] Exiting Tool run with output:\n","\u001b[0m\"['xiaoming', 'xiaohuang', 'xiaohong', 'xiaolan', 'xiaoju', 'xiaolv']\"\n","\u001b[32;1m\u001b[1;3m[chain/start]\u001b[0m \u001b[1m[chain:AgentExecutor > chain:LLMChain] Entering Chain run with input:\n","\u001b[0m{\n"," \"input\": \"在这些客户名字转换为拼音并打印输出列表: ['小明', '小黄', '小红', '小蓝', '小橘', '小绿']思考过程请使用中文。\",\n"," \"agent_scratchpad\": \"我们可以使用Python的拼音库来将中文名字转换为拼音。\\nAction: Python_REPL\\nAction Input: \\n```python\\nfrom xpinyin import Pinyin\\np = Pinyin()\\nnames = ['小明', '小黄', '小红', '小蓝', '小橘', '小绿']\\npinyins = [p.get_pinyin(name, '') for name in names]\\nprint(pinyins)\\n```\\nObservation: ['xiaoming', 'xiaohuang', 'xiaohong', 'xiaolan', 'xiaoju', 'xiaolv']\\n\\nThought:\",\n"," \"stop\": [\n"," \"\\nObservation:\",\n"," \"\\n\\tObservation:\"\n"," ]\n","}\n","\u001b[32;1m\u001b[1;3m[llm/start]\u001b[0m \u001b[1m[chain:AgentExecutor > chain:LLMChain > llm:ChatOpenAI] Entering LLM run with input:\n","\u001b[0m{\n"," \"prompts\": [\n"," \"Human: You are an agent designed to write and execute python code to answer questions.\\nYou have access to a python REPL, which you can use to execute python code.\\nIf you get an error, debug your code and try again.\\nOnly use the output of your code to answer the question. \\nYou might know the answer without running any code, but you should still run the code to get the answer.\\nIf it does not seem like you can write code to answer the question, just return \\\"I don't know\\\" as the answer.\\n\\n\\nPython_REPL - A Python shell. Use this to execute python commands. Input should be a valid python command. If you want to see the output of a value, you should print it out with `print(...)`.\\n\\nUse the following format:\\n\\nQuestion: the input question you must answer\\nThought: you should always think about what to do\\nAction: the action to take, should be one of [Python_REPL]\\nAction Input: the input to the action\\nObservation: the result of the action\\n... (this Thought/Action/Action Input/Observation can repeat N times)\\nThought: I now know the final answer\\nFinal Answer: the final answer to the original input question\\n\\nBegin!\\n\\nQuestion: 在这些客户名字转换为拼音并打印输出列表: ['小明', '小黄', '小红', '小蓝', '小橘', '小绿']思考过程请使用中文。\\nThought:我们可以使用Python的拼音库来将中文名字转换为拼音。\\nAction: Python_REPL\\nAction Input: \\n```python\\nfrom xpinyin import Pinyin\\np = Pinyin()\\nnames = ['小明', '小黄', '小红', '小蓝', '小橘', '小绿']\\npinyins = [p.get_pinyin(name, '') for name in names]\\nprint(pinyins)\\n```\\nObservation: ['xiaoming', 'xiaohuang', 'xiaohong', 'xiaolan', 'xiaoju', 'xiaolv']\\n\\nThought:\"\n"," ]\n","}\n","\u001b[36;1m\u001b[1;3m[llm/end]\u001b[0m \u001b[1m[chain:AgentExecutor > chain:LLMChain > llm:ChatOpenAI] [1.26s] Exiting LLM run with output:\n","\u001b[0m{\n"," \"generations\": [\n"," [\n"," {\n"," \"text\": \"我们成功地将中文名字转换为拼音。\\nFinal Answer: ['xiaoming', 'xiaohuang', 'xiaohong', 'xiaolan', 'xiaoju', 'xiaolv']\",\n"," \"generation_info\": {\n"," \"finish_reason\": \"stop\",\n"," \"logprobs\": null\n"," },\n"," \"type\": \"ChatGeneration\",\n"," \"message\": {\n"," \"lc\": 1,\n"," \"type\": \"constructor\",\n"," \"id\": [\n"," \"langchain\",\n"," \"schema\",\n"," \"messages\",\n"," \"AIMessage\"\n"," ],\n"," \"kwargs\": {\n"," \"content\": \"我们成功地将中文名字转换为拼音。\\nFinal Answer: ['xiaoming', 'xiaohuang', 'xiaohong', 'xiaolan', 'xiaoju', 'xiaolv']\",\n"," \"response_metadata\": {\n"," \"token_usage\": {\n"," \"completion_tokens\": 45,\n"," \"prompt_tokens\": 458,\n"," \"total_tokens\": 503\n"," },\n"," \"model_name\": \"gpt-3.5-turbo\",\n"," \"system_fingerprint\": null,\n"," \"finish_reason\": \"stop\",\n"," \"logprobs\": null\n"," },\n"," \"type\": \"ai\",\n"," \"id\": \"run-90afa3d5-a827-4279-bee2-4447fd057653-0\",\n"," \"tool_calls\": [],\n"," \"invalid_tool_calls\": []\n"," }\n"," }\n"," }\n"," ]\n"," ],\n"," \"llm_output\": {\n"," \"token_usage\": {\n"," \"completion_tokens\": 45,\n"," \"prompt_tokens\": 458,\n"," \"total_tokens\": 503\n"," },\n"," \"model_name\": \"gpt-3.5-turbo\",\n"," \"system_fingerprint\": null\n"," },\n"," \"run\": null\n","}\n","\u001b[36;1m\u001b[1;3m[chain/end]\u001b[0m \u001b[1m[chain:AgentExecutor > chain:LLMChain] [1.26s] Exiting Chain run with output:\n","\u001b[0m{\n"," \"text\": \"我们成功地将中文名字转换为拼音。\\nFinal Answer: ['xiaoming', 'xiaohuang', 'xiaohong', 'xiaolan', 'xiaoju', 'xiaolv']\"\n","}\n","\u001b[36;1m\u001b[1;3m[chain/end]\u001b[0m \u001b[1m[chain:AgentExecutor] [4.03s] Exiting Chain run with output:\n","\u001b[0m{\n"," \"output\": \"['xiaoming', 'xiaohuang', 'xiaohong', 'xiaolan', 'xiaoju', 'xiaolv']\"\n","}\n"]}],"source":["import langchain\n","langchain.debug=True\n","agent.run(f\"\"\"在这些客户名字转换为拼音\\\n","并打印输出列表: {customer_list}\\\n","思考过程请使用中文。\"\"\") \n","langchain.debug=False"]},{"cell_type":"markdown","id":"6b2ba50d-53c4-4eab-9467-98f562a072cc","metadata":{"tags":[]},"source":["## 三、 定义自己的工具并在代理中使用"]},{"cell_type":"markdown","id":"fb92f6e4-21ab-494d-9c22-d0678050fd37","metadata":{},"source":["### 3.1 创建和使用自定义时间工具"]},{"cell_type":"code","execution_count":12,"id":"4b7e80e4-48d5-48f0-abeb-3dc33678ed9e","metadata":{},"outputs":[],"source":["# 导入tool函数装饰器\n","from langchain.agents import tool\n","from datetime import date"]},{"cell_type":"markdown","id":"8990b3c6-fe05-45b6-9567-06baec267a99","metadata":{},"source":["#### 1️⃣ 使用tool函数装饰器构建自定义工具\n","tool函数装饰器可以应用用于任何函数,将函数转化为LongChain工具,使其成为代理可调用的工具。\n","\n","我们需要给函数加上非常详细的文档字符串, 使得代理知道在什么情况下、如何使用该函数/工具。\n","\n","比如下面的函数`time`,我们加上了详细的文档字符串\n","\n","```python\n","\"\"\"\n","返回今天的日期,用于任何与获取今天日期相关的问题。\n","输入应该始终是一个空字符串,该函数将始终返回今天的日期。\n","任何日期的计算应该在此函数之外进行。\n","\"\"\"\n","\n","```"]},{"cell_type":"code","execution_count":13,"id":"e22a823f-3749-4bda-bac3-1b892da77929","metadata":{},"outputs":[],"source":["@tool\n","def time(text: str) -> str:\n"," \"\"\"\n"," 返回今天的日期,用于任何需要知道今天日期的问题。\\\n"," 输入应该总是一个空字符串,\\\n"," 这个函数将总是返回今天的日期,任何日期计算应该在这个函数之外进行。\n"," \"\"\"\n"," return str(date.today())"]},{"cell_type":"markdown","id":"440cb348-0ec6-4999-a6cd-81cb48b8c546","metadata":{},"source":["#### 2️⃣ 初始化代理"]},{"cell_type":"code","execution_count":14,"id":"09c9f59e-c14c-41b9-b6bd-0e97e8be72ab","metadata":{},"outputs":[],"source":["agent= initialize_agent(\n"," tools=[time], #将刚刚创建的时间工具加入代理\n"," llm=llm, #初始化的模型\n"," agent=AgentType.CHAT_ZERO_SHOT_REACT_DESCRIPTION, #代理类型\n"," handle_parsing_errors=True, #处理解析错误\n"," verbose = True #输出中间步骤\n",")"]},{"cell_type":"markdown","id":"f1a10657-23f2-4f78-a247-73f272119eb4","metadata":{},"source":["#### 3️⃣ 使用代理询问今天的日期\n","**注**: 代理有时候可能会出错(该功能正在开发中)。如果出现错误,请尝试再次运行它。"]},{"cell_type":"code","execution_count":15,"id":"f868e30b-ec67-4d76-9dc9-81ecd3332115","metadata":{},"outputs":[{"name":"stdout","output_type":"stream","text":["\n","\n","\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n","\u001b[32;1m\u001b[1;3mQuestion: What is today's date?\n","\n","Thought: I can use the time tool to get today's date.\n","\n","Action:\n","```\n","{\n"," \"action\": \"time\",\n"," \"action_input\": \"\"\n","}\n","```\n","\n","\u001b[0m\n","Observation: \u001b[36;1m\u001b[1;3m2024-06-11\u001b[0m\n","Thought:\u001b[32;1m\u001b[1;3mFinal Answer: 2024-06-11\u001b[0m\n","\n","\u001b[1m> Finished chain.\u001b[0m\n"]},{"data":{"text/plain":["{'input': '今天的日期是?', 'output': '2024-06-11'}"]},"execution_count":15,"metadata":{},"output_type":"execute_result"}],"source":["agent(\"今天的日期是?\") "]},{"cell_type":"markdown","id":"923a199f-08e8-4e70-afb5-70cd3e123acf","metadata":{},"source":["✅ **总结**\n","\n","1. 模型对于接下来需要做什么,给出思考(Thought) \n"," 思考:我需要使用 time 工具来获取今天的日期
\n","\n","2. 模型基于思考采取行动(Action), 因为使用的工具不同,Action的输出也和之前有所不同,这里输出的为python代码\n"," 行动: 使用time工具,输入为空字符串
\n"," \n"," \n","3. 模型得到观察(Observation)\n"," 观测: 2023-07-04
\n"," \n"," \n"," \n","4. 基于观察,模型对于接下来需要做什么,给出思考(Thought)\n"," 思考: 我已成功使用 time 工具检索到了今天的日期
\n","\n","5. 给出最终答案(Final Answer)\n"," 最终答案: 今天的日期是2023-07-04.
\n","6. 返回最终答案。"]}],"metadata":{"kernelspec":{"display_name":"Python 3 (ipykernel)","language":"python","name":"python3"},"language_info":{"codemirror_mode":{"name":"ipython","version":3},"file_extension":".py","mimetype":"text/x-python","name":"python","nbconvert_exporter":"python","pygments_lexer":"ipython3","version":"3.10.14"},"toc":{"base_numbering":1,"nav_menu":{},"number_sections":false,"sideBar":true,"skip_h1_title":false,"title_cell":"Table of Contents","title_sidebar":"Contents","toc_cell":false,"toc_position":{},"toc_section_display":true,"toc_window_display":true}},"nbformat":4,"nbformat_minor":5}
+{"cells": [{"cell_type": "markdown", "id": "2caa79ba-45e3-437c-9cb6-e433f443f0bf", "metadata": {}, "source": ["# \u7b2c\u4e03\u7ae0 \u4ee3\u7406\n", "\n", " - [\u4e00\u3001\u8bbe\u7f6eOpenAI API Key](#\u4e00\u3001\u8bbe\u7f6eOpenAI-API-Key)\n", " - [\u4e8c\u3001LangChain\u5185\u7f6e\u5de5\u5177](#\u4e8c\u3001LangChain\u5185\u7f6e\u5de5\u5177)\n", " - [2.1 \u4f7f\u7528llm-math\u548cwikipedia\u5de5\u5177](#2.1-\u4f7f\u7528llm-math\u548cwikipedia\u5de5\u5177)\n", " - [2.2 \u4f7f\u7528PythonREPLTool\u5de5\u5177](#2.2-\u4f7f\u7528PythonREPLTool\u5de5\u5177)\n", " - [\u4e09\u3001 \u5b9a\u4e49\u81ea\u5df1\u7684\u5de5\u5177\u5e76\u5728\u4ee3\u7406\u4e2d\u4f7f\u7528](#\u4e09\u3001-\u5b9a\u4e49\u81ea\u5df1\u7684\u5de5\u5177\u5e76\u5728\u4ee3\u7406\u4e2d\u4f7f\u7528)\n", " - [3.1 \u521b\u5efa\u548c\u4f7f\u7528\u81ea\u5b9a\u4e49\u65f6\u95f4\u5de5\u5177](#3.1-\u521b\u5efa\u548c\u4f7f\u7528\u81ea\u5b9a\u4e49\u65f6\u95f4\u5de5\u5177)\n"]}, {"cell_type": "markdown", "id": "8a31726a-82ac-46e4-a51e-7747fc4c6aed", "metadata": {"tags": []}, "source": ["## \u4e00\u3001\u8bbe\u7f6eOpenAI API Key\n", "\n", "\u767b\u9646 [OpenAI \u8d26\u6237](https://platform.openai.com/account/api-keys) \u83b7\u53d6API Key\uff0c\u7136\u540e\u5c06\u5176\u8bbe\u7f6e\u4e3a\u73af\u5883\u53d8\u91cf\u3002\n", "\n", "- \u5982\u679c\u4f60\u60f3\u8981\u8bbe\u7f6e\u4e3a\u5168\u5c40\u73af\u5883\u53d8\u91cf\uff0c\u53ef\u4ee5\u53c2\u8003[\u77e5\u4e4e\u6587\u7ae0](https://zhuanlan.zhihu.com/p/627665725)\u3002\n", "- \u5982\u679c\u4f60\u60f3\u8981\u8bbe\u7f6e\u4e3a\u672c\u5730/\u9879\u76ee\u73af\u5883\u53d8\u91cf\uff0c\u5728\u672c\u6587\u4ef6\u76ee\u5f55\u4e0b\u521b\u5efa`.env`\u6587\u4ef6, \u6253\u5f00\u6587\u4ef6\u8f93\u5165\u4ee5\u4e0b\u5185\u5bb9\u3002\n", "\n", " \n", " OPENAI_API_KEY=\"your_api_key\" \n", "
\n", " \n", " \u66ff\u6362\"your_api_key\"\u4e3a\u4f60\u81ea\u5df1\u7684 API Key"]}, {"cell_type": "code", "execution_count": 1, "id": "beebf047-9117-43e3-b7b2-1f06cd3d4275", "metadata": {}, "outputs": [], "source": ["# \u4e0b\u8f7d\u9700\u8981\u7684\u5305python-dotenv\u548copenai\n", "# \u5982\u679c\u4f60\u9700\u8981\u67e5\u770b\u5b89\u88c5\u8fc7\u7a0b\u65e5\u5fd7\uff0c\u53ef\u5220\u9664 -q \n", "!pip install -q python-dotenv\n", "!pip install -q openai"]}, {"cell_type": "code", "execution_count": 2, "id": "312f4c23-fe27-4cda-a645-8e1519c2febf", "metadata": {"tags": []}, "outputs": [], "source": ["import os\n", "import openai\n", "from dotenv import load_dotenv, find_dotenv\n", "\n", "# \u8bfb\u53d6\u672c\u5730/\u9879\u76ee\u7684\u73af\u5883\u53d8\u91cf\u3002\n", "\n", "# find_dotenv()\u5bfb\u627e\u5e76\u5b9a\u4f4d.env\u6587\u4ef6\u7684\u8def\u5f84\n", "# load_dotenv()\u8bfb\u53d6\u8be5.env\u6587\u4ef6\uff0c\u5e76\u5c06\u5176\u4e2d\u7684\u73af\u5883\u53d8\u91cf\u52a0\u8f7d\u5230\u5f53\u524d\u7684\u8fd0\u884c\u73af\u5883\u4e2d \n", "# \u5982\u679c\u4f60\u8bbe\u7f6e\u7684\u662f\u5168\u5c40\u7684\u73af\u5883\u53d8\u91cf\uff0c\u8fd9\u884c\u4ee3\u7801\u5219\u6ca1\u6709\u4efb\u4f55\u4f5c\u7528\u3002\n", "_ = load_dotenv(find_dotenv())\n", "\n", "# \u83b7\u53d6\u73af\u5883\u53d8\u91cf OPENAI_API_KEY\n", "openai.api_key = os.environ['OPENAI_API_KEY'] "]}, {"cell_type": "markdown", "id": "631c764b-68fa-483a-80a5-9a322cd1117c", "metadata": {}, "source": ["## \u4e8c\u3001LangChain\u5185\u7f6e\u5de5\u5177"]}, {"cell_type": "code", "execution_count": 2, "id": "8ab03352-1554-474c-afda-ec8974250e31", "metadata": {}, "outputs": [], "source": ["# \u5982\u679c\u9700\u8981\u67e5\u770b\u5b89\u88c5\u8fc7\u7a0b\u65e5\u5fd7\uff0c\u53ef\u5220\u9664 -q \n", "# -U \u5b89\u88c5\u5230\u6700\u65b0\u7248\u672c\u7684 wikipedia. \u5176\u529f\u80fd\u540c --upgrade \n", "!pip install -U -q wikipedia\n", "!pip install -q openai"]}, {"cell_type": "code", "execution_count": 3, "id": "bc80a8a7-a66e-4fbb-8d57-05004a3e77c7", "metadata": {}, "outputs": [], "source": ["from langchain.agents import load_tools, initialize_agent\n", "from langchain.agents import AgentType\n", "from langchain.python import PythonREPL\n", "from langchain.chat_models import ChatOpenAI"]}, {"cell_type": "markdown", "id": "d5a3655c-4d5e-4a86-8bf4-a11bd1525059", "metadata": {}, "source": ["### 2.1 \u4f7f\u7528llm-math\u548cwikipedia\u5de5\u5177"]}, {"cell_type": "markdown", "id": "e484d285-2110-4a06-a360-55313d6d9ffc", "metadata": {}, "source": ["#### 1\ufe0f\u20e3 \u521d\u59cb\u5316\u5927\u8bed\u8a00\u6a21\u578b\n", "\n", "- \u9ed8\u8ba4\u5bc6\u94a5`openai_api_key`\u4e3a\u73af\u5883\u53d8\u91cf`OPENAI_API_KEY`\u3002\u56e0\u6b64\u5728\u8fd0\u884c\u4ee5\u4e0b\u4ee3\u7801\u4e4b\u524d\uff0c\u786e\u4fdd\u4f60\u5df2\u7ecf\u8bbe\u7f6e\u73af\u5883\u53d8\u91cf`OPENAI_API_KEY`\u3002\u5982\u679c\u8fd8\u6ca1\u6709\u5bc6\u94a5\uff0c\u8bf7[\u83b7\u53d6\u4f60\u7684API Key](https://platform.openai.com/account/api-keys) \u3002\n", "- \u9ed8\u8ba4\u6a21\u578b`model_name`\u4e3a`gpt-3.5-turbo`\u3002\n", "- \u66f4\u591a\u5173\u4e8e\u6a21\u578b\u9ed8\u8ba4\u53c2\u6570\u8bf7\u67e5\u770b[\u8fd9\u91cc](https://github.com/hwchase17/langchain/blob/master/langchain/chat_models/openai.py)\u3002"]}, {"cell_type": "code", "execution_count": 4, "id": "71e5894f-fc50-478b-a3d3-58891cc46ffc", "metadata": {}, "outputs": [], "source": ["# \u53c2\u6570temperature\u8bbe\u7f6e\u4e3a0.0\uff0c\u4ece\u800c\u51cf\u5c11\u751f\u6210\u7b54\u6848\u7684\u968f\u673a\u6027\u3002\n", "llm = ChatOpenAI(temperature=0)"]}, {"cell_type": "markdown", "id": "d7f75023-1825-4d74-bc8e-2c362f551fd1", "metadata": {"tags": []}, "source": ["#### 2\ufe0f\u20e3 \u52a0\u8f7d\u5de5\u5177\u5305\n", "- `llm-math` \u5de5\u5177\u7ed3\u5408\u8bed\u8a00\u6a21\u578b\u548c\u8ba1\u7b97\u5668\u7528\u4ee5\u8fdb\u884c\u6570\u5b66\u8ba1\u7b97\n", "- `wikipedia`\u5de5\u5177\u901a\u8fc7API\u8fde\u63a5\u5230wikipedia\u8fdb\u884c\u641c\u7d22\u67e5\u8be2\u3002"]}, {"cell_type": "code", "execution_count": 5, "id": "3541b866-8a35-4b6f-bfe6-66edb1d666cd", "metadata": {}, "outputs": [], "source": ["tools = load_tools(\n", " [\"llm-math\",\"wikipedia\"], \n", " llm=llm #\u7b2c\u4e00\u6b65\u521d\u59cb\u5316\u7684\u6a21\u578b\n", ")"]}, {"cell_type": "markdown", "id": "e5b4fcc8-8817-4a94-b154-3f328480e441", "metadata": {}, "source": ["#### 3\ufe0f\u20e3 \u521d\u59cb\u5316\u4ee3\u7406\n", "\n", "- `agent`: \u4ee3\u7406\u7c7b\u578b\u3002\u8fd9\u91cc\u4f7f\u7528\u7684\u662f`AgentType.CHAT_ZERO_SHOT_REACT_DESCRIPTION`\u3002\u5176\u4e2d`CHAT`\u4ee3\u8868\u4ee3\u7406\u6a21\u578b\u4e3a\u9488\u5bf9\u5bf9\u8bdd\u4f18\u5316\u7684\u6a21\u578b\uff0c`REACT`\u4ee3\u8868\u9488\u5bf9REACT\u8bbe\u8ba1\u7684\u63d0\u793a\u6a21\u7248\u3002\n", "- `handle_parsing_errors`: \u662f\u5426\u5904\u7406\u89e3\u6790\u9519\u8bef\u3002\u5f53\u53d1\u751f\u89e3\u6790\u9519\u8bef\u65f6\uff0c\u5c06\u9519\u8bef\u4fe1\u606f\u8fd4\u56de\u7ed9\u5927\u6a21\u578b\uff0c\u8ba9\u5176\u8fdb\u884c\u7ea0\u6b63\u3002\n", "- `verbose`: \u662f\u5426\u8f93\u51fa\u4e2d\u95f4\u6b65\u9aa4\u7ed3\u679c\u3002"]}, {"cell_type": "code", "execution_count": 6, "id": "e7cdc782-2b8c-4649-ae1e-cabacee1a757", "metadata": {}, "outputs": [], "source": ["agent= initialize_agent(\n", " tools, #\u7b2c\u4e8c\u6b65\u52a0\u8f7d\u7684\u5de5\u5177\n", " llm, #\u7b2c\u4e00\u6b65\u521d\u59cb\u5316\u7684\u6a21\u578b\n", " agent=AgentType.CHAT_ZERO_SHOT_REACT_DESCRIPTION, #\u4ee3\u7406\u7c7b\u578b\n", " handle_parsing_errors=True, #\u5904\u7406\u89e3\u6790\u9519\u8bef\n", " verbose = True #\u8f93\u51fa\u4e2d\u95f4\u6b65\u9aa4\n", ")"]}, {"cell_type": "markdown", "id": "b980137a-a1d2-4c19-80c8-ec380f9c1efe", "metadata": {"tags": []}, "source": ["#### 4\ufe0f\u20e3.1\ufe0f\u20e3 \u4f7f\u7528\u4ee3\u7406\u56de\u7b54\u6570\u5b66\u95ee\u9898"]}, {"cell_type": "code", "execution_count": 7, "id": "1e2bcd3b-ae72-4fa1-b38e-d0ce650e1f31", "metadata": {}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["\n", "\n", "\u001b[1m> Entering new chain...\u001b[0m\n", "\u001b[32;1m\u001b[1;3mQuestion: \u8ba1\u7b97300\u768425%\n", "Thought: \u6211\u53ef\u4ee5\u4f7f\u7528\u8ba1\u7b97\u5668\u6765\u8ba1\u7b97\u8fd9\u4e2a\u767e\u5206\u6bd4\n", "Action:\n", "```\n", "{\n", " \"action\": \"Calculator\",\n", " \"action_input\": \"300 * 25 / 100\"\n", "}\n", "```\n", "\u001b[0m\n", "Observation: \u001b[36;1m\u001b[1;3mAnswer: 75.0\u001b[0m\n", "Thought:\u001b[32;1m\u001b[1;3m\u6211\u73b0\u5728\u77e5\u9053\u6700\u7ec8\u7b54\u6848\u4e86\n", "Final Answer: 300\u768425%\u662f75.0\u001b[0m\n", "\n", "\u001b[1m> Finished chain.\u001b[0m\n"]}, {"data": {"text/plain": ["{'input': '\u8ba1\u7b97300\u768425%\uff0c\u8bf7\u7528\u4e2d\u6587', 'output': '300\u768425%\u662f75.0'}"]}, "execution_count": 7, "metadata": {}, "output_type": "execute_result"}], "source": ["agent(\"\u8ba1\u7b97300\u768425%\uff0c\u601d\u8003\u8fc7\u7a0b\u8bf7\u4f7f\u7528\u4e2d\u6587\u3002\") "]}, {"cell_type": "markdown", "id": "05bb0811-d71e-4016-868b-efbb651d8e59", "metadata": {}, "source": ["\u2705 **\u603b\u7ed3**\n", "\n", "1. \u6a21\u578b\u5bf9\u4e8e\u63a5\u4e0b\u6765\u9700\u8981\u505a\u4ec0\u4e48\uff0c\u7ed9\u51fa\u601d\u8003\uff08Thought\uff09 \n", " \n", " \u601d\u8003\uff1a\u6211\u4eec\u9700\u8981\u8ba1\u7b97300\u768425%\uff0c\u8fd9\u4e2a\u8fc7\u7a0b\u4e2d\u9700\u8981\u7528\u5230\u4e58\u6cd5\u548c\u9664\u6cd5\u3002
\n", "\n", "2. \u6a21\u578b\u57fa\u4e8e\u601d\u8003\u91c7\u53d6\u884c\u52a8\uff08Action\uff09\n", " \u884c\u52a8: \u4f7f\u7528\u8ba1\u7b97\u5668\uff08calculator\uff09\uff0c\u8f93\u5165300*0.25
\n", "3. \u6a21\u578b\u5f97\u5230\u89c2\u5bdf\uff08Observation\uff09\n", " \u89c2\u5bdf\uff1a\u7b54\u6848: 75.0
\n", "\n", "4. \u57fa\u4e8e\u89c2\u5bdf\uff0c\u6a21\u578b\u5bf9\u4e8e\u63a5\u4e0b\u6765\u9700\u8981\u505a\u4ec0\u4e48\uff0c\u7ed9\u51fa\u601d\u8003\uff08Thought\uff09\n", " \u601d\u8003: \u6211\u4eec\u7684\u95ee\u9898\u6709\u4e86\u7b54\u6848
\n", "\n", "5. \u7ed9\u51fa\u6700\u7ec8\u7b54\u6848\uff08Final Answer\uff09\n", " \u6700\u7ec8\u7b54\u6848: 75.0
\n", "5. \u4ee5\u5b57\u5178\u7684\u5f62\u5f0f\u7ed9\u51fa\u6700\u7ec8\u7b54\u6848\u3002"]}, {"cell_type": "markdown", "id": "bdd13d06-0f0e-4918-ac28-339f524f8c76", "metadata": {}, "source": ["#### 4\ufe0f\u20e3.2\ufe0f\u20e3 Tom M. Mitchell\u7684\u4e66"]}, {"cell_type": "code", "execution_count": 18, "id": "f43b5cbf-1011-491b-90e8-09cf903fb866", "metadata": {}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["\n", "\n", "\u001b[1m> Entering new chain...\u001b[0m\n", "\u001b[32;1m\u001b[1;3mI need to find out what book Tom M. Mitchell wrote.\n", "Action: Search for Tom M. Mitchell's books.\n", "Action Input: \"Tom M. Mitchell books\"\u001b[0m\n", "Observation: Search for Tom M. Mitchell's books. is not a valid tool, try another one.\n", "Thought:\u001b[32;1m\u001b[1;3mI can try searching for Tom M. Mitchell's books using a search engine.\n", "Action: Search for \"Tom M. Mitchell books\"\n", "Action Input: \"Tom M. Mitchell books\"\u001b[0m\n", "Observation: Search for \"Tom M. Mitchell books\" is not a valid tool, try another one.\n", "Thought:\u001b[32;1m\u001b[1;3mI can try searching for Tom M. Mitchell's books using a search engine.\n", "Action: Search for \"Tom M. Mitchell books\"\n", "Action Input: \"Tom M. Mitchell books\"\u001b[0m\n", "Observation: Search for \"Tom M. Mitchell books\" is not a valid tool, try another one.\n", "Thought:"]}, {"name": "stderr", "output_type": "stream", "text": ["Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.._completion_with_retry in 1.0 seconds as it raised RateLimitError: Rate limit reached for default-gpt-3.5-turbo in organization org-2YlJyPMl62f07XPJCAlXfDxj on requests per min. Limit: 3 / min. Please try again in 20s. Contact us through our help center at help.openai.com if you continue to have issues. Please add a payment method to your account to increase your rate limit. Visit https://platform.openai.com/account/billing to add a payment method..\n", "Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.._completion_with_retry in 2.0 seconds as it raised RateLimitError: Rate limit reached for default-gpt-3.5-turbo in organization org-2YlJyPMl62f07XPJCAlXfDxj on requests per min. Limit: 3 / min. Please try again in 20s. Contact us through our help center at help.openai.com if you continue to have issues. Please add a payment method to your account to increase your rate limit. Visit https://platform.openai.com/account/billing to add a payment method..\n", "Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.._completion_with_retry in 4.0 seconds as it raised RateLimitError: Rate limit reached for default-gpt-3.5-turbo in organization org-2YlJyPMl62f07XPJCAlXfDxj on requests per min. Limit: 3 / min. Please try again in 20s. Contact us through our help center at help.openai.com if you continue to have issues. Please add a payment method to your account to increase your rate limit. Visit https://platform.openai.com/account/billing to add a payment method..\n", "Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.._completion_with_retry in 8.0 seconds as it raised RateLimitError: Rate limit reached for default-gpt-3.5-turbo in organization org-2YlJyPMl62f07XPJCAlXfDxj on requests per min. Limit: 3 / min. Please try again in 20s. Contact us through our help center at help.openai.com if you continue to have issues. Please add a payment method to your account to increase your rate limit. Visit https://platform.openai.com/account/billing to add a payment method..\n"]}, {"name": "stdout", "output_type": "stream", "text": ["\u001b[32;1m\u001b[1;3mI can try searching for Tom M. Mitchell's books using a search engine.\n", "Action: Search for \"Tom M. Mitchell books\"\n", "Action Input: \"Tom M. Mitchell books\"\u001b[0m\n", "Observation: Search for \"Tom M. Mitchell books\" is not a valid tool, try another one.\n", "Thought:"]}, {"name": "stderr", "output_type": "stream", "text": ["Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.._completion_with_retry in 1.0 seconds as it raised RateLimitError: Rate limit reached for default-gpt-3.5-turbo in organization org-2YlJyPMl62f07XPJCAlXfDxj on requests per min. Limit: 3 / min. Please try again in 20s. Contact us through our help center at help.openai.com if you continue to have issues. Please add a payment method to your account to increase your rate limit. Visit https://platform.openai.com/account/billing to add a payment method..\n", "Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.._completion_with_retry in 2.0 seconds as it raised RateLimitError: Rate limit reached for default-gpt-3.5-turbo in organization org-2YlJyPMl62f07XPJCAlXfDxj on requests per min. Limit: 3 / min. Please try again in 20s. Contact us through our help center at help.openai.com if you continue to have issues. Please add a payment method to your account to increase your rate limit. Visit https://platform.openai.com/account/billing to add a payment method..\n", "Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.._completion_with_retry in 4.0 seconds as it raised RateLimitError: Rate limit reached for default-gpt-3.5-turbo in organization org-2YlJyPMl62f07XPJCAlXfDxj on requests per min. Limit: 3 / min. Please try again in 20s. Contact us through our help center at help.openai.com if you continue to have issues. Please add a payment method to your account to increase your rate limit. Visit https://platform.openai.com/account/billing to add a payment method..\n", "Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.._completion_with_retry in 8.0 seconds as it raised RateLimitError: Rate limit reached for default-gpt-3.5-turbo in organization org-2YlJyPMl62f07XPJCAlXfDxj on requests per min. Limit: 3 / min. Please try again in 20s. Contact us through our help center at help.openai.com if you continue to have issues. Please add a payment method to your account to increase your rate limit. Visit https://platform.openai.com/account/billing to add a payment method..\n"]}, {"name": "stdout", "output_type": "stream", "text": ["\u001b[32;1m\u001b[1;3mI can try searching for Tom M. Mitchell's books using a search engine.\n", "Action: Search for \"Tom M. Mitchell books\"\n", "Action Input: \"Tom M. Mitchell books\"\u001b[0m\n", "Observation: Search for \"Tom M. Mitchell books\" is not a valid tool, try another one.\n", "Thought:"]}, {"name": "stderr", "output_type": "stream", "text": ["Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.._completion_with_retry in 1.0 seconds as it raised RateLimitError: Rate limit reached for default-gpt-3.5-turbo in organization org-2YlJyPMl62f07XPJCAlXfDxj on requests per min. Limit: 3 / min. Please try again in 20s. Contact us through our help center at help.openai.com if you continue to have issues. Please add a payment method to your account to increase your rate limit. Visit https://platform.openai.com/account/billing to add a payment method..\n", "Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.._completion_with_retry in 2.0 seconds as it raised RateLimitError: Rate limit reached for default-gpt-3.5-turbo in organization org-2YlJyPMl62f07XPJCAlXfDxj on requests per min. Limit: 3 / min. Please try again in 20s. Contact us through our help center at help.openai.com if you continue to have issues. Please add a payment method to your account to increase your rate limit. Visit https://platform.openai.com/account/billing to add a payment method..\n", "Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.._completion_with_retry in 4.0 seconds as it raised RateLimitError: Rate limit reached for default-gpt-3.5-turbo in organization org-2YlJyPMl62f07XPJCAlXfDxj on requests per min. Limit: 3 / min. Please try again in 20s. Contact us through our help center at help.openai.com if you continue to have issues. Please add a payment method to your account to increase your rate limit. Visit https://platform.openai.com/account/billing to add a payment method..\n", "Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.._completion_with_retry in 8.0 seconds as it raised RateLimitError: Rate limit reached for default-gpt-3.5-turbo in organization org-2YlJyPMl62f07XPJCAlXfDxj on requests per min. Limit: 3 / min. Please try again in 20s. Contact us through our help center at help.openai.com if you continue to have issues. Please add a payment method to your account to increase your rate limit. Visit https://platform.openai.com/account/billing to add a payment method..\n"]}, {"name": "stdout", "output_type": "stream", "text": ["\u001b[32;1m\u001b[1;3mI can try searching for Tom M. Mitchell's books using a search engine.\n", "Action: Search for \"Tom M. Mitchell books\"\n", "Action Input: \"Tom M. Mitchell books\"\u001b[0m\n", "Observation: Search for \"Tom M. Mitchell books\" is not a valid tool, try another one.\n", "Thought:"]}, {"name": "stderr", "output_type": "stream", "text": ["Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.._completion_with_retry in 1.0 seconds as it raised RateLimitError: Rate limit reached for default-gpt-3.5-turbo in organization org-2YlJyPMl62f07XPJCAlXfDxj on requests per min. Limit: 3 / min. Please try again in 20s. Contact us through our help center at help.openai.com if you continue to have issues. Please add a payment method to your account to increase your rate limit. Visit https://platform.openai.com/account/billing to add a payment method..\n", "Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.._completion_with_retry in 2.0 seconds as it raised RateLimitError: Rate limit reached for default-gpt-3.5-turbo in organization org-2YlJyPMl62f07XPJCAlXfDxj on requests per min. Limit: 3 / min. Please try again in 20s. Contact us through our help center at help.openai.com if you continue to have issues. Please add a payment method to your account to increase your rate limit. Visit https://platform.openai.com/account/billing to add a payment method..\n", "Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.._completion_with_retry in 4.0 seconds as it raised RateLimitError: Rate limit reached for default-gpt-3.5-turbo in organization org-2YlJyPMl62f07XPJCAlXfDxj on requests per min. Limit: 3 / min. Please try again in 20s. Contact us through our help center at help.openai.com if you continue to have issues. Please add a payment method to your account to increase your rate limit. Visit https://platform.openai.com/account/billing to add a payment method..\n", "Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.._completion_with_retry in 8.0 seconds as it raised RateLimitError: Rate limit reached for default-gpt-3.5-turbo in organization org-2YlJyPMl62f07XPJCAlXfDxj on requests per min. Limit: 3 / min. Please try again in 20s. Contact us through our help center at help.openai.com if you continue to have issues. Please add a payment method to your account to increase your rate limit. Visit https://platform.openai.com/account/billing to add a payment method..\n"]}, {"name": "stdout", "output_type": "stream", "text": ["\u001b[32;1m\u001b[1;3mI can try searching for Tom M. Mitchell's books using a search engine.\n", "Action: Search for \"Tom M. Mitchell books\"\n", "Action Input: \"Tom M. Mitchell books\"\u001b[0m\n", "Observation: Search for \"Tom M. Mitchell books\" is not a valid tool, try another one.\n", "Thought:"]}, {"name": "stderr", "output_type": "stream", "text": ["Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.._completion_with_retry in 1.0 seconds as it raised RateLimitError: Rate limit reached for default-gpt-3.5-turbo in organization org-2YlJyPMl62f07XPJCAlXfDxj on requests per min. Limit: 3 / min. Please try again in 20s. Contact us through our help center at help.openai.com if you continue to have issues. Please add a payment method to your account to increase your rate limit. Visit https://platform.openai.com/account/billing to add a payment method..\n", "Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.._completion_with_retry in 2.0 seconds as it raised RateLimitError: Rate limit reached for default-gpt-3.5-turbo in organization org-2YlJyPMl62f07XPJCAlXfDxj on requests per min. Limit: 3 / min. Please try again in 20s. Contact us through our help center at help.openai.com if you continue to have issues. Please add a payment method to your account to increase your rate limit. Visit https://platform.openai.com/account/billing to add a payment method..\n", "Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.._completion_with_retry in 4.0 seconds as it raised RateLimitError: Rate limit reached for default-gpt-3.5-turbo in organization org-2YlJyPMl62f07XPJCAlXfDxj on requests per min. Limit: 3 / min. Please try again in 20s. Contact us through our help center at help.openai.com if you continue to have issues. Please add a payment method to your account to increase your rate limit. Visit https://platform.openai.com/account/billing to add a payment method..\n", "Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.._completion_with_retry in 8.0 seconds as it raised RateLimitError: Rate limit reached for default-gpt-3.5-turbo in organization org-2YlJyPMl62f07XPJCAlXfDxj on requests per min. Limit: 3 / min. Please try again in 20s. Contact us through our help center at help.openai.com if you continue to have issues. Please add a payment method to your account to increase your rate limit. Visit https://platform.openai.com/account/billing to add a payment method..\n"]}, {"name": "stdout", "output_type": "stream", "text": ["\u001b[32;1m\u001b[1;3mI can try searching for Tom M. Mitchell's books using a search engine.\n", "Action: Search for \"Tom M. Mitchell books\"\n", "Action Input: \"Tom M. Mitchell books\"\u001b[0m\n", "Observation: Search for \"Tom M. Mitchell books\" is not a valid tool, try another one.\n", "Thought:"]}, {"name": "stderr", "output_type": "stream", "text": ["Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.._completion_with_retry in 1.0 seconds as it raised RateLimitError: Rate limit reached for default-gpt-3.5-turbo in organization org-2YlJyPMl62f07XPJCAlXfDxj on requests per min. Limit: 3 / min. Please try again in 20s. Contact us through our help center at help.openai.com if you continue to have issues. Please add a payment method to your account to increase your rate limit. Visit https://platform.openai.com/account/billing to add a payment method..\n", "Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.._completion_with_retry in 2.0 seconds as it raised RateLimitError: Rate limit reached for default-gpt-3.5-turbo in organization org-2YlJyPMl62f07XPJCAlXfDxj on requests per min. Limit: 3 / min. Please try again in 20s. Contact us through our help center at help.openai.com if you continue to have issues. Please add a payment method to your account to increase your rate limit. Visit https://platform.openai.com/account/billing to add a payment method..\n", "Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.._completion_with_retry in 4.0 seconds as it raised RateLimitError: Rate limit reached for default-gpt-3.5-turbo in organization org-2YlJyPMl62f07XPJCAlXfDxj on requests per min. Limit: 3 / min. Please try again in 20s. Contact us through our help center at help.openai.com if you continue to have issues. Please add a payment method to your account to increase your rate limit. Visit https://platform.openai.com/account/billing to add a payment method..\n", "Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.._completion_with_retry in 8.0 seconds as it raised RateLimitError: Rate limit reached for default-gpt-3.5-turbo in organization org-2YlJyPMl62f07XPJCAlXfDxj on requests per min. Limit: 3 / min. Please try again in 20s. Contact us through our help center at help.openai.com if you continue to have issues. Please add a payment method to your account to increase your rate limit. Visit https://platform.openai.com/account/billing to add a payment method..\n"]}, {"name": "stdout", "output_type": "stream", "text": ["\u001b[32;1m\u001b[1;3mI can try searching for Tom M. Mitchell's books using a search engine.\n", "Action: Search for \"Tom M. Mitchell books\"\n", "Action Input: \"Tom M. Mitchell books\"\u001b[0m\n", "Observation: Search for \"Tom M. Mitchell books\" is not a valid tool, try another one.\n", "Thought:"]}, {"name": "stderr", "output_type": "stream", "text": ["Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.._completion_with_retry in 1.0 seconds as it raised RateLimitError: Rate limit reached for default-gpt-3.5-turbo in organization org-2YlJyPMl62f07XPJCAlXfDxj on requests per min. Limit: 3 / min. Please try again in 20s. Contact us through our help center at help.openai.com if you continue to have issues. Please add a payment method to your account to increase your rate limit. Visit https://platform.openai.com/account/billing to add a payment method..\n", "Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.._completion_with_retry in 2.0 seconds as it raised RateLimitError: Rate limit reached for default-gpt-3.5-turbo in organization org-2YlJyPMl62f07XPJCAlXfDxj on requests per min. Limit: 3 / min. Please try again in 20s. Contact us through our help center at help.openai.com if you continue to have issues. Please add a payment method to your account to increase your rate limit. Visit https://platform.openai.com/account/billing to add a payment method..\n", "Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.._completion_with_retry in 4.0 seconds as it raised RateLimitError: Rate limit reached for default-gpt-3.5-turbo in organization org-2YlJyPMl62f07XPJCAlXfDxj on requests per min. Limit: 3 / min. Please try again in 20s. Contact us through our help center at help.openai.com if you continue to have issues. Please add a payment method to your account to increase your rate limit. Visit https://platform.openai.com/account/billing to add a payment method..\n", "Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.._completion_with_retry in 8.0 seconds as it raised RateLimitError: Rate limit reached for default-gpt-3.5-turbo in organization org-2YlJyPMl62f07XPJCAlXfDxj on requests per min. Limit: 3 / min. Please try again in 20s. Contact us through our help center at help.openai.com if you continue to have issues. Please add a payment method to your account to increase your rate limit. Visit https://platform.openai.com/account/billing to add a payment method..\n"]}, {"name": "stdout", "output_type": "stream", "text": ["\u001b[32;1m\u001b[1;3mI can try searching for Tom M. Mitchell's books using a search engine.\n", "Action: Search for \"Tom M. Mitchell books\"\n", "Action Input: \"Tom M. Mitchell books\"\u001b[0m\n", "Observation: Search for \"Tom M. Mitchell books\" is not a valid tool, try another one.\n", "Thought:"]}, {"name": "stderr", "output_type": "stream", "text": ["Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.._completion_with_retry in 1.0 seconds as it raised RateLimitError: Rate limit reached for default-gpt-3.5-turbo in organization org-2YlJyPMl62f07XPJCAlXfDxj on requests per min. Limit: 3 / min. Please try again in 20s. Contact us through our help center at help.openai.com if you continue to have issues. Please add a payment method to your account to increase your rate limit. Visit https://platform.openai.com/account/billing to add a payment method..\n", "Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.._completion_with_retry in 2.0 seconds as it raised RateLimitError: Rate limit reached for default-gpt-3.5-turbo in organization org-2YlJyPMl62f07XPJCAlXfDxj on requests per min. Limit: 3 / min. Please try again in 20s. Contact us through our help center at help.openai.com if you continue to have issues. Please add a payment method to your account to increase your rate limit. Visit https://platform.openai.com/account/billing to add a payment method..\n", "Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.._completion_with_retry in 4.0 seconds as it raised RateLimitError: Rate limit reached for default-gpt-3.5-turbo in organization org-2YlJyPMl62f07XPJCAlXfDxj on requests per min. Limit: 3 / min. Please try again in 20s. Contact us through our help center at help.openai.com if you continue to have issues. Please add a payment method to your account to increase your rate limit. Visit https://platform.openai.com/account/billing to add a payment method..\n", "Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.._completion_with_retry in 8.0 seconds as it raised RateLimitError: Rate limit reached for default-gpt-3.5-turbo in organization org-2YlJyPMl62f07XPJCAlXfDxj on requests per min. Limit: 3 / min. Please try again in 20s. Contact us through our help center at help.openai.com if you continue to have issues. Please add a payment method to your account to increase your rate limit. Visit https://platform.openai.com/account/billing to add a payment method..\n"]}, {"name": "stdout", "output_type": "stream", "text": ["\u001b[32;1m\u001b[1;3mI can try searching for Tom M. Mitchell's books using a search engine.\n", "Action: Search for \"Tom M. Mitchell books\"\n", "Action Input: \"Tom M. Mitchell books\"\u001b[0m\n", "Observation: Search for \"Tom M. Mitchell books\" is not a valid tool, try another one.\n", "Thought:"]}, {"name": "stderr", "output_type": "stream", "text": ["Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.._completion_with_retry in 1.0 seconds as it raised RateLimitError: Rate limit reached for default-gpt-3.5-turbo in organization org-2YlJyPMl62f07XPJCAlXfDxj on requests per min. Limit: 3 / min. Please try again in 20s. Contact us through our help center at help.openai.com if you continue to have issues. Please add a payment method to your account to increase your rate limit. Visit https://platform.openai.com/account/billing to add a payment method..\n", "Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.._completion_with_retry in 2.0 seconds as it raised RateLimitError: Rate limit reached for default-gpt-3.5-turbo in organization org-2YlJyPMl62f07XPJCAlXfDxj on requests per min. Limit: 3 / min. Please try again in 20s. Contact us through our help center at help.openai.com if you continue to have issues. Please add a payment method to your account to increase your rate limit. Visit https://platform.openai.com/account/billing to add a payment method..\n", "Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.._completion_with_retry in 4.0 seconds as it raised RateLimitError: Rate limit reached for default-gpt-3.5-turbo in organization org-2YlJyPMl62f07XPJCAlXfDxj on requests per min. Limit: 3 / min. Please try again in 20s. Contact us through our help center at help.openai.com if you continue to have issues. Please add a payment method to your account to increase your rate limit. Visit https://platform.openai.com/account/billing to add a payment method..\n", "Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.._completion_with_retry in 8.0 seconds as it raised RateLimitError: Rate limit reached for default-gpt-3.5-turbo in organization org-2YlJyPMl62f07XPJCAlXfDxj on requests per min. Limit: 3 / min. Please try again in 20s. Contact us through our help center at help.openai.com if you continue to have issues. Please add a payment method to your account to increase your rate limit. Visit https://platform.openai.com/account/billing to add a payment method..\n"]}, {"name": "stdout", "output_type": "stream", "text": ["\u001b[32;1m\u001b[1;3mI can try searching for Tom M. Mitchell's books using a search engine.\n", "Action: Search for \"Tom M. Mitchell books\"\n", "Action Input: \"Tom M. Mitchell books\"\u001b[0m\n", "Observation: Search for \"Tom M. Mitchell books\" is not a valid tool, try another one.\n", "Thought:"]}, {"name": "stderr", "output_type": "stream", "text": ["Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.._completion_with_retry in 1.0 seconds as it raised RateLimitError: Rate limit reached for default-gpt-3.5-turbo in organization org-2YlJyPMl62f07XPJCAlXfDxj on requests per min. Limit: 3 / min. Please try again in 20s. Contact us through our help center at help.openai.com if you continue to have issues. Please add a payment method to your account to increase your rate limit. Visit https://platform.openai.com/account/billing to add a payment method..\n", "Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.._completion_with_retry in 2.0 seconds as it raised RateLimitError: Rate limit reached for default-gpt-3.5-turbo in organization org-2YlJyPMl62f07XPJCAlXfDxj on requests per min. Limit: 3 / min. Please try again in 20s. Contact us through our help center at help.openai.com if you continue to have issues. Please add a payment method to your account to increase your rate limit. Visit https://platform.openai.com/account/billing to add a payment method..\n", "Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.._completion_with_retry in 4.0 seconds as it raised RateLimitError: Rate limit reached for default-gpt-3.5-turbo in organization org-2YlJyPMl62f07XPJCAlXfDxj on requests per min. Limit: 3 / min. Please try again in 20s. Contact us through our help center at help.openai.com if you continue to have issues. Please add a payment method to your account to increase your rate limit. Visit https://platform.openai.com/account/billing to add a payment method..\n", "Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.._completion_with_retry in 8.0 seconds as it raised RateLimitError: Rate limit reached for default-gpt-3.5-turbo in organization org-2YlJyPMl62f07XPJCAlXfDxj on requests per min. Limit: 3 / min. Please try again in 20s. Contact us through our help center at help.openai.com if you continue to have issues. Please add a payment method to your account to increase your rate limit. Visit https://platform.openai.com/account/billing to add a payment method..\n"]}, {"name": "stdout", "output_type": "stream", "text": ["\u001b[32;1m\u001b[1;3mI can try searching for Tom M. Mitchell's books using a search engine.\n", "Action: Search for \"Tom M. Mitchell books\"\n", "Action Input: \"Tom M. Mitchell books\"\u001b[0m\n", "Observation: Search for \"Tom M. Mitchell books\" is not a valid tool, try another one.\n", "Thought:"]}, {"name": "stderr", "output_type": "stream", "text": ["Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.._completion_with_retry in 1.0 seconds as it raised RateLimitError: Rate limit reached for default-gpt-3.5-turbo in organization org-2YlJyPMl62f07XPJCAlXfDxj on requests per min. Limit: 3 / min. Please try again in 20s. Contact us through our help center at help.openai.com if you continue to have issues. Please add a payment method to your account to increase your rate limit. Visit https://platform.openai.com/account/billing to add a payment method..\n", "Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.._completion_with_retry in 2.0 seconds as it raised RateLimitError: Rate limit reached for default-gpt-3.5-turbo in organization org-2YlJyPMl62f07XPJCAlXfDxj on requests per min. Limit: 3 / min. Please try again in 20s. Contact us through our help center at help.openai.com if you continue to have issues. Please add a payment method to your account to increase your rate limit. Visit https://platform.openai.com/account/billing to add a payment method..\n", "Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.._completion_with_retry in 4.0 seconds as it raised RateLimitError: Rate limit reached for default-gpt-3.5-turbo in organization org-2YlJyPMl62f07XPJCAlXfDxj on requests per min. Limit: 3 / min. Please try again in 20s. Contact us through our help center at help.openai.com if you continue to have issues. Please add a payment method to your account to increase your rate limit. Visit https://platform.openai.com/account/billing to add a payment method..\n", "Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.._completion_with_retry in 8.0 seconds as it raised RateLimitError: Rate limit reached for default-gpt-3.5-turbo in organization org-2YlJyPMl62f07XPJCAlXfDxj on requests per min. Limit: 3 / min. Please try again in 20s. Contact us through our help center at help.openai.com if you continue to have issues. Please add a payment method to your account to increase your rate limit. Visit https://platform.openai.com/account/billing to add a payment method..\n"]}, {"name": "stdout", "output_type": "stream", "text": ["\u001b[32;1m\u001b[1;3mI can try searching for Tom M. Mitchell's books using a search engine.\n", "Action: Search for \"Tom M. Mitchell books\"\n", "Action Input: \"Tom M. Mitchell books\"\u001b[0m\n", "Observation: Search for \"Tom M. Mitchell books\" is not a valid tool, try another one.\n", "Thought:"]}, {"name": "stderr", "output_type": "stream", "text": ["Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.._completion_with_retry in 1.0 seconds as it raised RateLimitError: Rate limit reached for default-gpt-3.5-turbo in organization org-2YlJyPMl62f07XPJCAlXfDxj on requests per min. Limit: 3 / min. Please try again in 20s. Contact us through our help center at help.openai.com if you continue to have issues. Please add a payment method to your account to increase your rate limit. Visit https://platform.openai.com/account/billing to add a payment method..\n", "Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.._completion_with_retry in 2.0 seconds as it raised RateLimitError: Rate limit reached for default-gpt-3.5-turbo in organization org-2YlJyPMl62f07XPJCAlXfDxj on requests per min. Limit: 3 / min. Please try again in 20s. Contact us through our help center at help.openai.com if you continue to have issues. Please add a payment method to your account to increase your rate limit. Visit https://platform.openai.com/account/billing to add a payment method..\n", "Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.._completion_with_retry in 4.0 seconds as it raised RateLimitError: Rate limit reached for default-gpt-3.5-turbo in organization org-2YlJyPMl62f07XPJCAlXfDxj on requests per min. Limit: 3 / min. Please try again in 20s. Contact us through our help center at help.openai.com if you continue to have issues. Please add a payment method to your account to increase your rate limit. Visit https://platform.openai.com/account/billing to add a payment method..\n", "Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.._completion_with_retry in 8.0 seconds as it raised RateLimitError: Rate limit reached for default-gpt-3.5-turbo in organization org-2YlJyPMl62f07XPJCAlXfDxj on requests per min. Limit: 3 / min. Please try again in 20s. Contact us through our help center at help.openai.com if you continue to have issues. Please add a payment method to your account to increase your rate limit. Visit https://platform.openai.com/account/billing to add a payment method..\n"]}, {"name": "stdout", "output_type": "stream", "text": ["\u001b[32;1m\u001b[1;3mI can try searching for Tom M. Mitchell's books using a search engine.\n", "Action: Search for \"Tom M. Mitchell books\"\n", "Action Input: \"Tom M. Mitchell books\"\u001b[0m\n", "Observation: Search for \"Tom M. Mitchell books\" is not a valid tool, try another one.\n", "Thought:\u001b[32;1m\u001b[1;3m\u001b[0m\n", "\n", "\u001b[1m> Finished chain.\u001b[0m\n"]}, {"data": {"text/plain": ["{'input': 'Tom M. Mitchell is an American computer scientist and the Founders University Professor at Carnegie Mellon University (CMU)what book did he write?',\n", " 'output': 'Agent stopped due to iteration limit or time limit.'}"]}, "execution_count": 18, "metadata": {}, "output_type": "execute_result"}], "source": ["question = \"Tom M. Mitchell is an American computer scientist \\\n", "and the Founders University Professor at Carnegie Mellon University (CMU)\\\n", "what book did he write?\"\n", "agent(question) "]}, {"cell_type": "markdown", "id": "39e2f6fb-f229-4235-ad58-98a5f505800c", "metadata": {}, "source": ["\u2705 **\u603b\u7ed3**\n", "\n", "1. \u6a21\u578b\u5bf9\u4e8e\u63a5\u4e0b\u6765\u9700\u8981\u505a\u4ec0\u4e48\uff0c\u7ed9\u51fa\u601d\u8003\uff08Thought\uff09 \n", " \u601d\u8003\uff1a\u6211\u5e94\u8be5\u4f7f\u7528\u7ef4\u57fa\u767e\u79d1\u53bb\u641c\u7d22\u3002
\n", "\n", "2. \u6a21\u578b\u57fa\u4e8e\u601d\u8003\u91c7\u53d6\u884c\u52a8\uff08Action\uff09\n", " \u884c\u52a8: \u4f7f\u7528\u7ef4\u57fa\u767e\u79d1\uff0c\u8f93\u5165Tom M. Mitchell
\n", "3. \u6a21\u578b\u5f97\u5230\u89c2\u5bdf\uff08Observation\uff09\n", " \u89c2\u6d4b: \u9875\u9762: Tom M. Mitchell\uff0c\u9875\u9762: Tom Mitchell (\u6fb3\u5927\u5229\u4e9a\u8db3\u7403\u8fd0\u52a8\u5458)
\n", "\n", "4. \u57fa\u4e8e\u89c2\u5bdf\uff0c\u6a21\u578b\u5bf9\u4e8e\u63a5\u4e0b\u6765\u9700\u8981\u505a\u4ec0\u4e48\uff0c\u7ed9\u51fa\u601d\u8003\uff08Thought\uff09\n", " \u601d\u8003: Tom M. Mitchell\u5199\u7684\u4e66\u662fMachine Learning
\n", "\n", "5. \u7ed9\u51fa\u6700\u7ec8\u7b54\u6848\uff08Final Answer\uff09\n", " \u6700\u7ec8\u7b54\u6848: Machine Learning
\n", "5. \u4ee5\u5b57\u5178\u7684\u5f62\u5f0f\u7ed9\u51fa\u6700\u7ec8\u7b54\u6848\u3002\n", "\n", "\n", "\u503c\u5f97\u6ce8\u610f\u7684\u662f\uff0c\u6a21\u578b\u6bcf\u6b21\u8fd0\u884c\u63a8\u7406\u7684\u8fc7\u7a0b\u53ef\u80fd\u5b58\u5728\u5dee\u5f02\uff0c\u4f46\u6700\u7ec8\u7684\u7ed3\u679c\u4e00\u81f4\u3002"]}, {"cell_type": "markdown", "id": "5901cab6-a7c9-4590-b35d-d41c29e39a39", "metadata": {}, "source": ["### 2.2 \u4f7f\u7528PythonREPLTool\u5de5\u5177"]}, {"cell_type": "markdown", "id": "12b8d837-524c-46b8-9189-504808cf1f93", "metadata": {}, "source": ["#### 1\ufe0f\u20e3 \u521b\u5efapyhon\u4ee3\u7406"]}, {"cell_type": "code", "execution_count": 8, "id": "6c60d933-168d-4834-b29c-b2b43ade80cc", "metadata": {}, "outputs": [], "source": ["from langchain.agents.agent_toolkits import create_python_agent\n", "from langchain.tools.python.tool import PythonREPLTool\n", "\n", "agent = create_python_agent(\n", " llm, #\u4f7f\u7528\u524d\u9762\u4e00\u8282\u5df2\u7ecf\u52a0\u8f7d\u7684\u5927\u8bed\u8a00\u6a21\u578b\n", " tool=PythonREPLTool(), #\u4f7f\u7528Python\u4ea4\u4e92\u5f0f\u73af\u5883\u5de5\u5177\uff08REPLTool\uff09\n", " verbose=True #\u8f93\u51fa\u4e2d\u95f4\u6b65\u9aa4\n", ")"]}, {"cell_type": "markdown", "id": "d32ed40c-cbcd-4efd-b044-57e611f5fab5", "metadata": {"tags": []}, "source": ["#### 2\ufe0f\u20e3 \u4f7f\u7528\u4ee3\u7406\u5bf9\u987e\u5ba2\u540d\u5b57\u8fdb\u884c\u6392\u5e8f"]}, {"cell_type": "code", "execution_count": 14, "id": "3d416f28-8fdb-4761-a4f9-d46c6d37fb3d", "metadata": {}, "outputs": [], "source": ["customer_list = [\"\u5c0f\u660e\",\"\u5c0f\u9ec4\",\"\u5c0f\u7ea2\",\"\u5c0f\u84dd\",\"\u5c0f\u6a58\",\"\u5c0f\u7eff\",]"]}, {"cell_type": "code", "execution_count": 22, "id": "d0fbfc4c", "metadata": {}, "outputs": [], "source": ["!pip install -q pinyin"]}, {"cell_type": "code", "execution_count": 23, "id": "ba7f9a50-acf6-4fba-a1b9-503baa80266b", "metadata": {}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["\n", "\n", "\u001b[1m> Entering new chain...\u001b[0m\n", "\u001b[32;1m\u001b[1;3m\u6211\u9700\u8981\u4f7f\u7528\u62fc\u97f3\u5e93\u6765\u5c06\u5ba2\u6237\u540d\u5b57\u8f6c\u6362\u4e3a\u62fc\u97f3\u3002\u6211\u53ef\u4ee5\u4f7f\u7528Python\u7684pinyin\u5e93\u6765\u5b9e\u73b0\u8fd9\u4e2a\u529f\u80fd\u3002\n", "Action: Python_REPL\n", "Action Input: import pinyin\u001b[0m\n", "Observation: \u001b[36;1m\u001b[1;3m\u001b[0m\n", "Thought:\u001b[32;1m\u001b[1;3m\u6211\u73b0\u5728\u53ef\u4ee5\u4f7f\u7528pinyin\u5e93\u6765\u5c06\u5ba2\u6237\u540d\u5b57\u8f6c\u6362\u4e3a\u62fc\u97f3\u4e86\u3002\n", "Action: Python_REPL\n", "Action Input: names = ['\u5c0f\u660e', '\u5c0f\u9ec4', '\u5c0f\u7ea2', '\u5c0f\u84dd', '\u5c0f\u6a58', '\u5c0f\u7eff']\u001b[0m\n", "Observation: \u001b[36;1m\u001b[1;3m\u001b[0m\n", "Thought:\u001b[32;1m\u001b[1;3m\u6211\u73b0\u5728\u53ef\u4ee5\u4f7f\u7528pinyin\u5e93\u5c06names\u5217\u8868\u4e2d\u7684\u5ba2\u6237\u540d\u5b57\u8f6c\u6362\u4e3a\u62fc\u97f3\u4e86\u3002\n", "Action: Python_REPL\n", "Action Input: pinyin_names = [pinyin.get(i, format='strip', delimiter='') for i in names]\u001b[0m\n", "Observation: \u001b[36;1m\u001b[1;3m\u001b[0m\n", "Thought:"]}, {"name": "stderr", "output_type": "stream", "text": ["Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.._completion_with_retry in 1.0 seconds as it raised RateLimitError: Rate limit reached for default-gpt-3.5-turbo in organization org-2YlJyPMl62f07XPJCAlXfDxj on requests per min. Limit: 3 / min. Please try again in 20s. Contact us through our help center at help.openai.com if you continue to have issues. Please add a payment method to your account to increase your rate limit. Visit https://platform.openai.com/account/billing to add a payment method..\n", "Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.._completion_with_retry in 2.0 seconds as it raised RateLimitError: Rate limit reached for default-gpt-3.5-turbo in organization org-2YlJyPMl62f07XPJCAlXfDxj on requests per min. Limit: 3 / min. Please try again in 20s. Contact us through our help center at help.openai.com if you continue to have issues. Please add a payment method to your account to increase your rate limit. Visit https://platform.openai.com/account/billing to add a payment method..\n", "Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.._completion_with_retry in 4.0 seconds as it raised RateLimitError: Rate limit reached for default-gpt-3.5-turbo in organization org-2YlJyPMl62f07XPJCAlXfDxj on requests per min. Limit: 3 / min. Please try again in 20s. Contact us through our help center at help.openai.com if you continue to have issues. Please add a payment method to your account to increase your rate limit. Visit https://platform.openai.com/account/billing to add a payment method..\n", "Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.._completion_with_retry in 8.0 seconds as it raised RateLimitError: Rate limit reached for default-gpt-3.5-turbo in organization org-2YlJyPMl62f07XPJCAlXfDxj on requests per min. Limit: 3 / min. Please try again in 20s. Contact us through our help center at help.openai.com if you continue to have issues. Please add a payment method to your account to increase your rate limit. Visit https://platform.openai.com/account/billing to add a payment method..\n"]}, {"name": "stdout", "output_type": "stream", "text": ["\u001b[32;1m\u001b[1;3m\u6211\u5df2\u7ecf\u6210\u529f\u5c06\u5ba2\u6237\u540d\u5b57\u8f6c\u6362\u4e3a\u62fc\u97f3\u5e76\u5b58\u50a8\u5728pinyin_names\u5217\u8868\u4e2d\u4e86\u3002\n", "Final Answer: pinyin_names = ['xiaoming', 'xiaohuang', 'xiaohong', 'xiaolan', 'xiaojv', 'xiaolv']\u001b[0m\n", "\n", "\u001b[1m> Finished chain.\u001b[0m\n"]}, {"data": {"text/plain": ["\"pinyin_names = ['xiaoming', 'xiaohuang', 'xiaohong', 'xiaolan', 'xiaojv', 'xiaolv']\""]}, "execution_count": 23, "metadata": {}, "output_type": "execute_result"}], "source": ["agent.run(f\"\"\"\u5728\u8fd9\u4e9b\u5ba2\u6237\u540d\u5b57\u8f6c\u6362\u4e3a\u62fc\u97f3\\\n", "\u5e76\u6253\u5370\u8f93\u51fa\u5217\u8868\uff1a {customer_list}\\\n", "\u601d\u8003\u8fc7\u7a0b\u8bf7\u4f7f\u7528\u4e2d\u6587\u3002\"\"\") "]}, {"cell_type": "markdown", "id": "16f530a5-8c50-4648-951f-4e65d15ca93f", "metadata": {"jp-MarkdownHeadingCollapsed": true, "tags": []}, "source": ["#### 3\ufe0f\u20e3 \u4f7f\u7528\u8c03\u8bd5\u6a21\u5f0f"]}, {"cell_type": "markdown", "id": "951048dc-0414-410d-a0e9-6ef32bbdda89", "metadata": {"tags": []}, "source": ["\u5728\u8c03\u8bd5\uff08debug\uff09\u6a21\u5f0f\u4e0b\u518d\u6b21\u8fd0\u884c\uff0c\u6211\u4eec\u53ef\u4ee5\u628a\u4e0a\u9762\u76846\u6b65\u5206\u522b\u5bf9\u5e94\u5230\u4e0b\u9762\u7684\u5177\u4f53\u6d41\u7a0b\n", "1. \u6a21\u578b\u5bf9\u4e8e\u63a5\u4e0b\u6765\u9700\u8981\u505a\u4ec0\u4e48\uff0c\u7ed9\u51fa\u601d\u8003\uff08Thought\uff09\n", " - [chain/start] [1:chain:AgentExecutor] Entering Chain run with input
\n", " - [chain/start] [1:chain:AgentExecutor > 2:chain:LLMChain] Entering Chain run with input
\n", " - [llm/start] [1:chain:AgentExecutor > 2:chain:LLMChain > 3:llm:ChatOpenAI] Entering LLM run with input
\n", " - [llm/end] [1:chain:AgentExecutor > 2:chain:LLMChain > 3:llm:ChatOpenAI] [12.25s] Exiting LLM run with output
\n", " - [chain/end] [1:chain:AgentExecutor > 2:chain:LLMChain] [12.25s] Exiting Chain run with output
\n", "2. \u6a21\u578b\u57fa\u4e8e\u601d\u8003\u91c7\u53d6\u884c\u52a8\uff08Action), \u56e0\u4e3a\u4f7f\u7528\u7684\u5de5\u5177\u4e0d\u540c\uff0cAction\u7684\u8f93\u51fa\u4e5f\u548c\u4e4b\u524d\u6709\u6240\u4e0d\u540c\uff0c\u8fd9\u91cc\u8f93\u51fa\u7684\u4e3apython\u4ee3\u7801\n", " - [tool/start] [1:chain:AgentExecutor > 4:tool:Python REPL] Entering Tool run with input
\n", " - [tool/end] [1:chain:AgentExecutor > 4:tool:Python REPL] [2.2239999999999998ms] Exiting Tool run with output
\n", "3. \u6a21\u578b\u5f97\u5230\u89c2\u5bdf\uff08Observation\uff09 \n", " - [chain/start] [1:chain:AgentExecutor > 5:chain:LLMChain] Entering Chain run with input
\n", "4. \u57fa\u4e8e\u89c2\u5bdf\uff0c\u6a21\u578b\u5bf9\u4e8e\u63a5\u4e0b\u6765\u9700\u8981\u505a\u4ec0\u4e48\uff0c\u7ed9\u51fa\u601d\u8003\uff08Thought\uff09 \n", " - [llm/start] [1:chain:AgentExecutor > 5:chain:LLMChain > 6:llm:ChatOpenAI] Entering LLM run with input
\n", " - [llm/end] [1:chain:AgentExecutor > 5:chain:LLMChain > 6:llm:ChatOpenAI] [6.94s] Exiting LLM run with output
\n", " \n", "5. \u7ed9\u51fa\u6700\u7ec8\u7b54\u6848\uff08Final Answer\uff09 \n", " - [chain/end] [1:chain:AgentExecutor > 5:chain:LLMChain] [6.94s] Exiting Chain run with output
\n", "6. \u8fd4\u56de\u6700\u7ec8\u7b54\u6848\u3002\n", " - [chain/end] [1:chain:AgentExecutor] [19.20s] Exiting Chain run with output
"]}, {"cell_type": "code", "execution_count": 25, "id": "92b8961b-b990-4540-a7f9-e4701dfaa616", "metadata": {}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["\u001b[32;1m\u001b[1;3m[chain/start]\u001b[0m \u001b[1m[1:chain:AgentExecutor] Entering Chain run with input:\n", "\u001b[0m{\n", " \"input\": \"\u5728\u8fd9\u4e9b\u5ba2\u6237\u540d\u5b57\u8f6c\u6362\u4e3a\u62fc\u97f3\u5e76\u6253\u5370\u8f93\u51fa\u5217\u8868\uff1a ['\u5c0f\u660e', '\u5c0f\u9ec4', '\u5c0f\u7ea2', '\u5c0f\u84dd', '\u5c0f\u6a58', '\u5c0f\u7eff']\u601d\u8003\u8fc7\u7a0b\u8bf7\u4f7f\u7528\u4e2d\u6587\u3002\"\n", "}\n", "\u001b[32;1m\u001b[1;3m[chain/start]\u001b[0m \u001b[1m[1:chain:AgentExecutor > 2:chain:LLMChain] Entering Chain run with input:\n", "\u001b[0m{\n", " \"input\": \"\u5728\u8fd9\u4e9b\u5ba2\u6237\u540d\u5b57\u8f6c\u6362\u4e3a\u62fc\u97f3\u5e76\u6253\u5370\u8f93\u51fa\u5217\u8868\uff1a ['\u5c0f\u660e', '\u5c0f\u9ec4', '\u5c0f\u7ea2', '\u5c0f\u84dd', '\u5c0f\u6a58', '\u5c0f\u7eff']\u601d\u8003\u8fc7\u7a0b\u8bf7\u4f7f\u7528\u4e2d\u6587\u3002\",\n", " \"agent_scratchpad\": \"\",\n", " \"stop\": [\n", " \"\\nObservation:\",\n", " \"\\n\\tObservation:\"\n", " ]\n", "}\n", "\u001b[32;1m\u001b[1;3m[llm/start]\u001b[0m \u001b[1m[1:chain:AgentExecutor > 2:chain:LLMChain > 3:llm:ChatOpenAI] Entering LLM run with input:\n", "\u001b[0m{\n", " \"prompts\": [\n", " \"Human: You are an agent designed to write and execute python code to answer questions.\\nYou have access to a python REPL, which you can use to execute python code.\\nIf you get an error, debug your code and try again.\\nOnly use the output of your code to answer the question. \\nYou might know the answer without running any code, but you should still run the code to get the answer.\\nIf it does not seem like you can write code to answer the question, just return \\\"I don't know\\\" as the answer.\\n\\n\\nPython_REPL: A Python shell. Use this to execute python commands. Input should be a valid python command. If you want to see the output of a value, you should print it out with `print(...)`.\\n\\nUse the following format:\\n\\nQuestion: the input question you must answer\\nThought: you should always think about what to do\\nAction: the action to take, should be one of [Python_REPL]\\nAction Input: the input to the action\\nObservation: the result of the action\\n... (this Thought/Action/Action Input/Observation can repeat N times)\\nThought: I now know the final answer\\nFinal Answer: the final answer to the original input question\\n\\nBegin!\\n\\nQuestion: \u5728\u8fd9\u4e9b\u5ba2\u6237\u540d\u5b57\u8f6c\u6362\u4e3a\u62fc\u97f3\u5e76\u6253\u5370\u8f93\u51fa\u5217\u8868\uff1a ['\u5c0f\u660e', '\u5c0f\u9ec4', '\u5c0f\u7ea2', '\u5c0f\u84dd', '\u5c0f\u6a58', '\u5c0f\u7eff']\u601d\u8003\u8fc7\u7a0b\u8bf7\u4f7f\u7528\u4e2d\u6587\u3002\\nThought:\"\n", " ]\n", "}\n", "\u001b[36;1m\u001b[1;3m[llm/end]\u001b[0m \u001b[1m[1:chain:AgentExecutor > 2:chain:LLMChain > 3:llm:ChatOpenAI] [2.91s] Exiting LLM run with output:\n", "\u001b[0m{\n", " \"generations\": [\n", " [\n", " {\n", " \"text\": \"\u6211\u9700\u8981\u4f7f\u7528\u62fc\u97f3\u8f6c\u6362\u5e93\u6765\u5c06\u8fd9\u4e9b\u5ba2\u6237\u540d\u5b57\u8f6c\u6362\u4e3a\u62fc\u97f3\u3002\u6211\u53ef\u4ee5\u4f7f\u7528Python\u7684pinyin\u5e93\u6765\u5b8c\u6210\u8fd9\u4e2a\u4efb\u52a1\u3002\\nAction: Python_REPL\\nAction Input: import pinyin\",\n", " \"generation_info\": null,\n", " \"message\": {\n", " \"content\": \"\u6211\u9700\u8981\u4f7f\u7528\u62fc\u97f3\u8f6c\u6362\u5e93\u6765\u5c06\u8fd9\u4e9b\u5ba2\u6237\u540d\u5b57\u8f6c\u6362\u4e3a\u62fc\u97f3\u3002\u6211\u53ef\u4ee5\u4f7f\u7528Python\u7684pinyin\u5e93\u6765\u5b8c\u6210\u8fd9\u4e2a\u4efb\u52a1\u3002\\nAction: Python_REPL\\nAction Input: import pinyin\",\n", " \"additional_kwargs\": {},\n", " \"example\": false\n", " }\n", " }\n", " ]\n", " ],\n", " \"llm_output\": {\n", " \"token_usage\": {\n", " \"prompt_tokens\": 322,\n", " \"completion_tokens\": 50,\n", " \"total_tokens\": 372\n", " },\n", " \"model_name\": \"gpt-3.5-turbo\"\n", " },\n", " \"run\": null\n", "}\n", "\u001b[36;1m\u001b[1;3m[chain/end]\u001b[0m \u001b[1m[1:chain:AgentExecutor > 2:chain:LLMChain] [2.91s] Exiting Chain run with output:\n", "\u001b[0m{\n", " \"text\": \"\u6211\u9700\u8981\u4f7f\u7528\u62fc\u97f3\u8f6c\u6362\u5e93\u6765\u5c06\u8fd9\u4e9b\u5ba2\u6237\u540d\u5b57\u8f6c\u6362\u4e3a\u62fc\u97f3\u3002\u6211\u53ef\u4ee5\u4f7f\u7528Python\u7684pinyin\u5e93\u6765\u5b8c\u6210\u8fd9\u4e2a\u4efb\u52a1\u3002\\nAction: Python_REPL\\nAction Input: import pinyin\"\n", "}\n", "\u001b[32;1m\u001b[1;3m[tool/start]\u001b[0m \u001b[1m[1:chain:AgentExecutor > 4:tool:Python_REPL] Entering Tool run with input:\n", "\u001b[0m\"import pinyin\"\n", "\u001b[36;1m\u001b[1;3m[tool/end]\u001b[0m \u001b[1m[1:chain:AgentExecutor > 4:tool:Python_REPL] [0.0ms] Exiting Tool run with output:\n", "\u001b[0m\"\"\n", "\u001b[32;1m\u001b[1;3m[chain/start]\u001b[0m \u001b[1m[1:chain:AgentExecutor > 5:chain:LLMChain] Entering Chain run with input:\n", "\u001b[0m{\n", " \"input\": \"\u5728\u8fd9\u4e9b\u5ba2\u6237\u540d\u5b57\u8f6c\u6362\u4e3a\u62fc\u97f3\u5e76\u6253\u5370\u8f93\u51fa\u5217\u8868\uff1a ['\u5c0f\u660e', '\u5c0f\u9ec4', '\u5c0f\u7ea2', '\u5c0f\u84dd', '\u5c0f\u6a58', '\u5c0f\u7eff']\u601d\u8003\u8fc7\u7a0b\u8bf7\u4f7f\u7528\u4e2d\u6587\u3002\",\n", " \"agent_scratchpad\": \"\u6211\u9700\u8981\u4f7f\u7528\u62fc\u97f3\u8f6c\u6362\u5e93\u6765\u5c06\u8fd9\u4e9b\u5ba2\u6237\u540d\u5b57\u8f6c\u6362\u4e3a\u62fc\u97f3\u3002\u6211\u53ef\u4ee5\u4f7f\u7528Python\u7684pinyin\u5e93\u6765\u5b8c\u6210\u8fd9\u4e2a\u4efb\u52a1\u3002\\nAction: Python_REPL\\nAction Input: import pinyin\\nObservation: \\nThought:\",\n", " \"stop\": [\n", " \"\\nObservation:\",\n", " \"\\n\\tObservation:\"\n", " ]\n", "}\n", "\u001b[32;1m\u001b[1;3m[llm/start]\u001b[0m \u001b[1m[1:chain:AgentExecutor > 5:chain:LLMChain > 6:llm:ChatOpenAI] Entering LLM run with input:\n", "\u001b[0m{\n", " \"prompts\": [\n", " \"Human: You are an agent designed to write and execute python code to answer questions.\\nYou have access to a python REPL, which you can use to execute python code.\\nIf you get an error, debug your code and try again.\\nOnly use the output of your code to answer the question. \\nYou might know the answer without running any code, but you should still run the code to get the answer.\\nIf it does not seem like you can write code to answer the question, just return \\\"I don't know\\\" as the answer.\\n\\n\\nPython_REPL: A Python shell. Use this to execute python commands. Input should be a valid python command. If you want to see the output of a value, you should print it out with `print(...)`.\\n\\nUse the following format:\\n\\nQuestion: the input question you must answer\\nThought: you should always think about what to do\\nAction: the action to take, should be one of [Python_REPL]\\nAction Input: the input to the action\\nObservation: the result of the action\\n... (this Thought/Action/Action Input/Observation can repeat N times)\\nThought: I now know the final answer\\nFinal Answer: the final answer to the original input question\\n\\nBegin!\\n\\nQuestion: \u5728\u8fd9\u4e9b\u5ba2\u6237\u540d\u5b57\u8f6c\u6362\u4e3a\u62fc\u97f3\u5e76\u6253\u5370\u8f93\u51fa\u5217\u8868\uff1a ['\u5c0f\u660e', '\u5c0f\u9ec4', '\u5c0f\u7ea2', '\u5c0f\u84dd', '\u5c0f\u6a58', '\u5c0f\u7eff']\u601d\u8003\u8fc7\u7a0b\u8bf7\u4f7f\u7528\u4e2d\u6587\u3002\\nThought:\u6211\u9700\u8981\u4f7f\u7528\u62fc\u97f3\u8f6c\u6362\u5e93\u6765\u5c06\u8fd9\u4e9b\u5ba2\u6237\u540d\u5b57\u8f6c\u6362\u4e3a\u62fc\u97f3\u3002\u6211\u53ef\u4ee5\u4f7f\u7528Python\u7684pinyin\u5e93\u6765\u5b8c\u6210\u8fd9\u4e2a\u4efb\u52a1\u3002\\nAction: Python_REPL\\nAction Input: import pinyin\\nObservation: \\nThought:\"\n", " ]\n", "}\n"]}, {"name": "stderr", "output_type": "stream", "text": ["Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.._completion_with_retry in 1.0 seconds as it raised RateLimitError: Rate limit reached for default-gpt-3.5-turbo in organization org-2YlJyPMl62f07XPJCAlXfDxj on requests per min. Limit: 3 / min. Please try again in 20s. Contact us through our help center at help.openai.com if you continue to have issues. Please add a payment method to your account to increase your rate limit. Visit https://platform.openai.com/account/billing to add a payment method..\n", "Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.._completion_with_retry in 2.0 seconds as it raised RateLimitError: Rate limit reached for default-gpt-3.5-turbo in organization org-2YlJyPMl62f07XPJCAlXfDxj on requests per min. Limit: 3 / min. Please try again in 20s. Contact us through our help center at help.openai.com if you continue to have issues. Please add a payment method to your account to increase your rate limit. Visit https://platform.openai.com/account/billing to add a payment method..\n", "Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.._completion_with_retry in 4.0 seconds as it raised RateLimitError: Rate limit reached for default-gpt-3.5-turbo in organization org-2YlJyPMl62f07XPJCAlXfDxj on requests per min. Limit: 3 / min. Please try again in 20s. Contact us through our help center at help.openai.com if you continue to have issues. Please add a payment method to your account to increase your rate limit. Visit https://platform.openai.com/account/billing to add a payment method..\n"]}, {"name": "stdout", "output_type": "stream", "text": ["\u001b[36;1m\u001b[1;3m[llm/end]\u001b[0m \u001b[1m[1:chain:AgentExecutor > 5:chain:LLMChain > 6:llm:ChatOpenAI] [12.76s] Exiting LLM run with output:\n", "\u001b[0m{\n", " \"generations\": [\n", " [\n", " {\n", " \"text\": \"\u6211\u73b0\u5728\u53ef\u4ee5\u4f7f\u7528pinyin\u5e93\u6765\u5c06\u5ba2\u6237\u540d\u5b57\u8f6c\u6362\u4e3a\u62fc\u97f3\u3002\\nAction: Python_REPL\\nAction Input: names = ['\u5c0f\u660e', '\u5c0f\u9ec4', '\u5c0f\u7ea2', '\u5c0f\u84dd', '\u5c0f\u6a58', '\u5c0f\u7eff']\\npinyin_names = [pinyin.get(i, format='strip', delimiter='') for i in names]\\nprint(pinyin_names)\",\n", " \"generation_info\": null,\n", " \"message\": {\n", " \"content\": \"\u6211\u73b0\u5728\u53ef\u4ee5\u4f7f\u7528pinyin\u5e93\u6765\u5c06\u5ba2\u6237\u540d\u5b57\u8f6c\u6362\u4e3a\u62fc\u97f3\u3002\\nAction: Python_REPL\\nAction Input: names = ['\u5c0f\u660e', '\u5c0f\u9ec4', '\u5c0f\u7ea2', '\u5c0f\u84dd', '\u5c0f\u6a58', '\u5c0f\u7eff']\\npinyin_names = [pinyin.get(i, format='strip', delimiter='') for i in names]\\nprint(pinyin_names)\",\n", " \"additional_kwargs\": {},\n", " \"example\": false\n", " }\n", " }\n", " ]\n", " ],\n", " \"llm_output\": {\n", " \"token_usage\": {\n", " \"prompt_tokens\": 379,\n", " \"completion_tokens\": 89,\n", " \"total_tokens\": 468\n", " },\n", " \"model_name\": \"gpt-3.5-turbo\"\n", " },\n", " \"run\": null\n", "}\n", "\u001b[36;1m\u001b[1;3m[chain/end]\u001b[0m \u001b[1m[1:chain:AgentExecutor > 5:chain:LLMChain] [12.77s] Exiting Chain run with output:\n", "\u001b[0m{\n", " \"text\": \"\u6211\u73b0\u5728\u53ef\u4ee5\u4f7f\u7528pinyin\u5e93\u6765\u5c06\u5ba2\u6237\u540d\u5b57\u8f6c\u6362\u4e3a\u62fc\u97f3\u3002\\nAction: Python_REPL\\nAction Input: names = ['\u5c0f\u660e', '\u5c0f\u9ec4', '\u5c0f\u7ea2', '\u5c0f\u84dd', '\u5c0f\u6a58', '\u5c0f\u7eff']\\npinyin_names = [pinyin.get(i, format='strip', delimiter='') for i in names]\\nprint(pinyin_names)\"\n", "}\n", "\u001b[32;1m\u001b[1;3m[tool/start]\u001b[0m \u001b[1m[1:chain:AgentExecutor > 7:tool:Python_REPL] Entering Tool run with input:\n", "\u001b[0m\"names = ['\u5c0f\u660e', '\u5c0f\u9ec4', '\u5c0f\u7ea2', '\u5c0f\u84dd', '\u5c0f\u6a58', '\u5c0f\u7eff']\n", "pinyin_names = [pinyin.get(i, format='strip', delimiter='') for i in names]\n", "print(pinyin_names)\"\n", "\u001b[36;1m\u001b[1;3m[tool/end]\u001b[0m \u001b[1m[1:chain:AgentExecutor > 7:tool:Python_REPL] [0.0ms] Exiting Tool run with output:\n", "\u001b[0m\"['xiaoming', 'xiaohuang', 'xiaohong', 'xiaolan', 'xiaoju', 'xiaolv']\"\n", "\u001b[32;1m\u001b[1;3m[chain/start]\u001b[0m \u001b[1m[1:chain:AgentExecutor > 8:chain:LLMChain] Entering Chain run with input:\n", "\u001b[0m{\n", " \"input\": \"\u5728\u8fd9\u4e9b\u5ba2\u6237\u540d\u5b57\u8f6c\u6362\u4e3a\u62fc\u97f3\u5e76\u6253\u5370\u8f93\u51fa\u5217\u8868\uff1a ['\u5c0f\u660e', '\u5c0f\u9ec4', '\u5c0f\u7ea2', '\u5c0f\u84dd', '\u5c0f\u6a58', '\u5c0f\u7eff']\u601d\u8003\u8fc7\u7a0b\u8bf7\u4f7f\u7528\u4e2d\u6587\u3002\",\n", " \"agent_scratchpad\": \"\u6211\u9700\u8981\u4f7f\u7528\u62fc\u97f3\u8f6c\u6362\u5e93\u6765\u5c06\u8fd9\u4e9b\u5ba2\u6237\u540d\u5b57\u8f6c\u6362\u4e3a\u62fc\u97f3\u3002\u6211\u53ef\u4ee5\u4f7f\u7528Python\u7684pinyin\u5e93\u6765\u5b8c\u6210\u8fd9\u4e2a\u4efb\u52a1\u3002\\nAction: Python_REPL\\nAction Input: import pinyin\\nObservation: \\nThought:\u6211\u73b0\u5728\u53ef\u4ee5\u4f7f\u7528pinyin\u5e93\u6765\u5c06\u5ba2\u6237\u540d\u5b57\u8f6c\u6362\u4e3a\u62fc\u97f3\u3002\\nAction: Python_REPL\\nAction Input: names = ['\u5c0f\u660e', '\u5c0f\u9ec4', '\u5c0f\u7ea2', '\u5c0f\u84dd', '\u5c0f\u6a58', '\u5c0f\u7eff']\\npinyin_names = [pinyin.get(i, format='strip', delimiter='') for i in names]\\nprint(pinyin_names)\\nObservation: ['xiaoming', 'xiaohuang', 'xiaohong', 'xiaolan', 'xiaoju', 'xiaolv']\\n\\nThought:\",\n", " \"stop\": [\n", " \"\\nObservation:\",\n", " \"\\n\\tObservation:\"\n", " ]\n", "}\n", "\u001b[32;1m\u001b[1;3m[llm/start]\u001b[0m \u001b[1m[1:chain:AgentExecutor > 8:chain:LLMChain > 9:llm:ChatOpenAI] Entering LLM run with input:\n", "\u001b[0m{\n", " \"prompts\": [\n", " \"Human: You are an agent designed to write and execute python code to answer questions.\\nYou have access to a python REPL, which you can use to execute python code.\\nIf you get an error, debug your code and try again.\\nOnly use the output of your code to answer the question. \\nYou might know the answer without running any code, but you should still run the code to get the answer.\\nIf it does not seem like you can write code to answer the question, just return \\\"I don't know\\\" as the answer.\\n\\n\\nPython_REPL: A Python shell. Use this to execute python commands. Input should be a valid python command. If you want to see the output of a value, you should print it out with `print(...)`.\\n\\nUse the following format:\\n\\nQuestion: the input question you must answer\\nThought: you should always think about what to do\\nAction: the action to take, should be one of [Python_REPL]\\nAction Input: the input to the action\\nObservation: the result of the action\\n... (this Thought/Action/Action Input/Observation can repeat N times)\\nThought: I now know the final answer\\nFinal Answer: the final answer to the original input question\\n\\nBegin!\\n\\nQuestion: \u5728\u8fd9\u4e9b\u5ba2\u6237\u540d\u5b57\u8f6c\u6362\u4e3a\u62fc\u97f3\u5e76\u6253\u5370\u8f93\u51fa\u5217\u8868\uff1a ['\u5c0f\u660e', '\u5c0f\u9ec4', '\u5c0f\u7ea2', '\u5c0f\u84dd', '\u5c0f\u6a58', '\u5c0f\u7eff']\u601d\u8003\u8fc7\u7a0b\u8bf7\u4f7f\u7528\u4e2d\u6587\u3002\\nThought:\u6211\u9700\u8981\u4f7f\u7528\u62fc\u97f3\u8f6c\u6362\u5e93\u6765\u5c06\u8fd9\u4e9b\u5ba2\u6237\u540d\u5b57\u8f6c\u6362\u4e3a\u62fc\u97f3\u3002\u6211\u53ef\u4ee5\u4f7f\u7528Python\u7684pinyin\u5e93\u6765\u5b8c\u6210\u8fd9\u4e2a\u4efb\u52a1\u3002\\nAction: Python_REPL\\nAction Input: import pinyin\\nObservation: \\nThought:\u6211\u73b0\u5728\u53ef\u4ee5\u4f7f\u7528pinyin\u5e93\u6765\u5c06\u5ba2\u6237\u540d\u5b57\u8f6c\u6362\u4e3a\u62fc\u97f3\u3002\\nAction: Python_REPL\\nAction Input: names = ['\u5c0f\u660e', '\u5c0f\u9ec4', '\u5c0f\u7ea2', '\u5c0f\u84dd', '\u5c0f\u6a58', '\u5c0f\u7eff']\\npinyin_names = [pinyin.get(i, format='strip', delimiter='') for i in names]\\nprint(pinyin_names)\\nObservation: ['xiaoming', 'xiaohuang', 'xiaohong', 'xiaolan', 'xiaoju', 'xiaolv']\\n\\nThought:\"\n", " ]\n", "}\n"]}, {"name": "stderr", "output_type": "stream", "text": ["Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.._completion_with_retry in 1.0 seconds as it raised RateLimitError: Rate limit reached for default-gpt-3.5-turbo in organization org-2YlJyPMl62f07XPJCAlXfDxj on requests per min. Limit: 3 / min. Please try again in 20s. Contact us through our help center at help.openai.com if you continue to have issues. Please add a payment method to your account to increase your rate limit. Visit https://platform.openai.com/account/billing to add a payment method..\n", "Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.._completion_with_retry in 2.0 seconds as it raised RateLimitError: Rate limit reached for default-gpt-3.5-turbo in organization org-2YlJyPMl62f07XPJCAlXfDxj on requests per min. Limit: 3 / min. Please try again in 20s. Contact us through our help center at help.openai.com if you continue to have issues. Please add a payment method to your account to increase your rate limit. Visit https://platform.openai.com/account/billing to add a payment method..\n", "Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.._completion_with_retry in 4.0 seconds as it raised RateLimitError: Rate limit reached for default-gpt-3.5-turbo in organization org-2YlJyPMl62f07XPJCAlXfDxj on requests per min. Limit: 3 / min. Please try again in 20s. Contact us through our help center at help.openai.com if you continue to have issues. Please add a payment method to your account to increase your rate limit. Visit https://platform.openai.com/account/billing to add a payment method..\n", "Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.._completion_with_retry in 8.0 seconds as it raised RateLimitError: Rate limit reached for default-gpt-3.5-turbo in organization org-2YlJyPMl62f07XPJCAlXfDxj on requests per min. Limit: 3 / min. Please try again in 20s. Contact us through our help center at help.openai.com if you continue to have issues. Please add a payment method to your account to increase your rate limit. Visit https://platform.openai.com/account/billing to add a payment method..\n"]}, {"name": "stdout", "output_type": "stream", "text": ["\u001b[36;1m\u001b[1;3m[llm/end]\u001b[0m \u001b[1m[1:chain:AgentExecutor > 8:chain:LLMChain > 9:llm:ChatOpenAI] [20.25s] Exiting LLM run with output:\n", "\u001b[0m{\n", " \"generations\": [\n", " [\n", " {\n", " \"text\": \"\u6211\u73b0\u5728\u77e5\u9053\u4e86\u6700\u7ec8\u7b54\u6848\u3002\\nFinal Answer: ['xiaoming', 'xiaohuang', 'xiaohong', 'xiaolan', 'xiaoju', 'xiaolv']\",\n", " \"generation_info\": null,\n", " \"message\": {\n", " \"content\": \"\u6211\u73b0\u5728\u77e5\u9053\u4e86\u6700\u7ec8\u7b54\u6848\u3002\\nFinal Answer: ['xiaoming', 'xiaohuang', 'xiaohong', 'xiaolan', 'xiaoju', 'xiaolv']\",\n", " \"additional_kwargs\": {},\n", " \"example\": false\n", " }\n", " }\n", " ]\n", " ],\n", " \"llm_output\": {\n", " \"token_usage\": {\n", " \"prompt_tokens\": 500,\n", " \"completion_tokens\": 43,\n", " \"total_tokens\": 543\n", " },\n", " \"model_name\": \"gpt-3.5-turbo\"\n", " },\n", " \"run\": null\n", "}\n", "\u001b[36;1m\u001b[1;3m[chain/end]\u001b[0m \u001b[1m[1:chain:AgentExecutor > 8:chain:LLMChain] [20.25s] Exiting Chain run with output:\n", "\u001b[0m{\n", " \"text\": \"\u6211\u73b0\u5728\u77e5\u9053\u4e86\u6700\u7ec8\u7b54\u6848\u3002\\nFinal Answer: ['xiaoming', 'xiaohuang', 'xiaohong', 'xiaolan', 'xiaoju', 'xiaolv']\"\n", "}\n", "\u001b[36;1m\u001b[1;3m[chain/end]\u001b[0m \u001b[1m[1:chain:AgentExecutor] [35.93s] Exiting Chain run with output:\n", "\u001b[0m{\n", " \"output\": \"['xiaoming', 'xiaohuang', 'xiaohong', 'xiaolan', 'xiaoju', 'xiaolv']\"\n", "}\n"]}], "source": ["import langchain\n", "langchain.debug=True\n", "agent.run(f\"\"\"\u5728\u8fd9\u4e9b\u5ba2\u6237\u540d\u5b57\u8f6c\u6362\u4e3a\u62fc\u97f3\\\n", "\u5e76\u6253\u5370\u8f93\u51fa\u5217\u8868\uff1a {customer_list}\\\n", "\u601d\u8003\u8fc7\u7a0b\u8bf7\u4f7f\u7528\u4e2d\u6587\u3002\"\"\") \n", "langchain.debug=False"]}, {"cell_type": "markdown", "id": "6b2ba50d-53c4-4eab-9467-98f562a072cc", "metadata": {"tags": []}, "source": ["## \u4e09\u3001 \u5b9a\u4e49\u81ea\u5df1\u7684\u5de5\u5177\u5e76\u5728\u4ee3\u7406\u4e2d\u4f7f\u7528"]}, {"cell_type": "code", "execution_count": 26, "id": "d8e88bdf-01d2-4adc-b2af-086ece6ba97d", "metadata": {}, "outputs": [], "source": ["# \u5982\u679c\u4f60\u9700\u8981\u67e5\u770b\u5b89\u88c5\u8fc7\u7a0b\u65e5\u5fd7\uff0c\u53ef\u5220\u9664 -q \n", "!pip install -q DateTime"]}, {"cell_type": "markdown", "id": "fb92f6e4-21ab-494d-9c22-d0678050fd37", "metadata": {}, "source": ["### 3.1 \u521b\u5efa\u548c\u4f7f\u7528\u81ea\u5b9a\u4e49\u65f6\u95f4\u5de5\u5177"]}, {"cell_type": "code", "execution_count": 27, "id": "4b7e80e4-48d5-48f0-abeb-3dc33678ed9e", "metadata": {}, "outputs": [], "source": ["# \u5bfc\u5165tool\u51fd\u6570\u88c5\u9970\u5668\n", "from langchain.agents import tool\n", "from datetime import date"]}, {"cell_type": "markdown", "id": "8990b3c6-fe05-45b6-9567-06baec267a99", "metadata": {}, "source": ["#### 1\ufe0f\u20e3 \u4f7f\u7528tool\u51fd\u6570\u88c5\u9970\u5668\u6784\u5efa\u81ea\u5b9a\u4e49\u5de5\u5177\n", "tool\u51fd\u6570\u88c5\u9970\u5668\u53ef\u4ee5\u5e94\u7528\u7528\u4e8e\u4efb\u4f55\u51fd\u6570\uff0c\u5c06\u51fd\u6570\u8f6c\u5316\u4e3aLongChain\u5de5\u5177\uff0c\u4f7f\u5176\u6210\u4e3a\u4ee3\u7406\u53ef\u8c03\u7528\u7684\u5de5\u5177\u3002\n", "\n", "\u6211\u4eec\u9700\u8981\u7ed9\u51fd\u6570\u52a0\u4e0a\u975e\u5e38\u8be6\u7ec6\u7684\u6587\u6863\u5b57\u7b26\u4e32, \u4f7f\u5f97\u4ee3\u7406\u77e5\u9053\u5728\u4ec0\u4e48\u60c5\u51b5\u4e0b\u3001\u5982\u4f55\u4f7f\u7528\u8be5\u51fd\u6570/\u5de5\u5177\u3002\n", "\n", "\u6bd4\u5982\u4e0b\u9762\u7684\u51fd\u6570`time`,\u6211\u4eec\u52a0\u4e0a\u4e86\u8be6\u7ec6\u7684\u6587\u6863\u5b57\u7b26\u4e32\n", "\n", "```python\n", "\"\"\"\n", "\u8fd4\u56de\u4eca\u5929\u7684\u65e5\u671f\uff0c\u7528\u4e8e\u4efb\u4f55\u4e0e\u83b7\u53d6\u4eca\u5929\u65e5\u671f\u76f8\u5173\u7684\u95ee\u9898\u3002\n", "\u8f93\u5165\u5e94\u8be5\u59cb\u7ec8\u662f\u4e00\u4e2a\u7a7a\u5b57\u7b26\u4e32\uff0c\u8be5\u51fd\u6570\u5c06\u59cb\u7ec8\u8fd4\u56de\u4eca\u5929\u7684\u65e5\u671f\u3002\n", "\u4efb\u4f55\u65e5\u671f\u7684\u8ba1\u7b97\u5e94\u8be5\u5728\u6b64\u51fd\u6570\u4e4b\u5916\u8fdb\u884c\u3002\n", "\"\"\"\n", "\n", "```"]}, {"cell_type": "code", "execution_count": 28, "id": "e22a823f-3749-4bda-bac3-1b892da77929", "metadata": {}, "outputs": [], "source": ["@tool\n", "def time(text: str) -> str:\n", " \"\"\"\n", " \u8fd4\u56de\u4eca\u5929\u7684\u65e5\u671f\uff0c\u7528\u4e8e\u4efb\u4f55\u9700\u8981\u77e5\u9053\u4eca\u5929\u65e5\u671f\u7684\u95ee\u9898\u3002\\\n", " \u8f93\u5165\u5e94\u8be5\u603b\u662f\u4e00\u4e2a\u7a7a\u5b57\u7b26\u4e32\uff0c\\\n", " \u8fd9\u4e2a\u51fd\u6570\u5c06\u603b\u662f\u8fd4\u56de\u4eca\u5929\u7684\u65e5\u671f\uff0c\u4efb\u4f55\u65e5\u671f\u8ba1\u7b97\u5e94\u8be5\u5728\u8fd9\u4e2a\u51fd\u6570\u4e4b\u5916\u8fdb\u884c\u3002\n", " \"\"\"\n", " return str(date.today())"]}, {"cell_type": "markdown", "id": "440cb348-0ec6-4999-a6cd-81cb48b8c546", "metadata": {}, "source": ["#### 2\ufe0f\u20e3 \u521d\u59cb\u5316\u4ee3\u7406"]}, {"cell_type": "code", "execution_count": 36, "id": "09c9f59e-c14c-41b9-b6bd-0e97e8be72ab", "metadata": {}, "outputs": [], "source": ["agent= initialize_agent(\n", " tools=[time], #\u5c06\u521a\u521a\u521b\u5efa\u7684\u65f6\u95f4\u5de5\u5177\u52a0\u5165\u4ee3\u7406\n", " llm=llm, #\u521d\u59cb\u5316\u7684\u6a21\u578b\n", " agent=AgentType.CHAT_ZERO_SHOT_REACT_DESCRIPTION, #\u4ee3\u7406\u7c7b\u578b\n", " handle_parsing_errors=True, #\u5904\u7406\u89e3\u6790\u9519\u8bef\n", " verbose = True #\u8f93\u51fa\u4e2d\u95f4\u6b65\u9aa4\n", ")"]}, {"cell_type": "markdown", "id": "f1a10657-23f2-4f78-a247-73f272119eb4", "metadata": {}, "source": ["#### 3\ufe0f\u20e3 \u4f7f\u7528\u4ee3\u7406\u8be2\u95ee\u4eca\u5929\u7684\u65e5\u671f\n", "**\u6ce8**: \u4ee3\u7406\u6709\u65f6\u5019\u53ef\u80fd\u4f1a\u51fa\u9519\uff08\u8be5\u529f\u80fd\u6b63\u5728\u5f00\u53d1\u4e2d\uff09\u3002\u5982\u679c\u51fa\u73b0\u9519\u8bef\uff0c\u8bf7\u5c1d\u8bd5\u518d\u6b21\u8fd0\u884c\u5b83\u3002"]}, {"cell_type": "code", "execution_count": 37, "id": "f868e30b-ec67-4d76-9dc9-81ecd3332115", "metadata": {}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["\n", "\n", "\u001b[1m> Entering new chain...\u001b[0m\n", "\u001b[32;1m\u001b[1;3m\u6839\u636e\u63d0\u4f9b\u7684\u5de5\u5177\uff0c\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528`time`\u51fd\u6570\u6765\u83b7\u53d6\u4eca\u5929\u7684\u65e5\u671f\u3002\n", "\n", "Thought: \u4f7f\u7528`time`\u51fd\u6570\u6765\u83b7\u53d6\u4eca\u5929\u7684\u65e5\u671f\u3002\n", "\n", "Action:\n", "```\n", "{\n", " \"action\": \"time\",\n", " \"action_input\": \"\"\n", "}\n", "```\n", "\n", "\u001b[0m\n", "Observation: \u001b[36;1m\u001b[1;3m2023-07-04\u001b[0m\n", "Thought:\u001b[32;1m\u001b[1;3m\u6211\u73b0\u5728\u77e5\u9053\u4e86\u6700\u7ec8\u7b54\u6848\u3002\n", "Final Answer: \u4eca\u5929\u7684\u65e5\u671f\u662f2023-07-04\u3002\u001b[0m\n", "\n", "\u001b[1m> Finished chain.\u001b[0m\n"]}, {"data": {"text/plain": ["{'input': '\u4eca\u5929\u7684\u65e5\u671f\u662f\uff1f', 'output': '\u4eca\u5929\u7684\u65e5\u671f\u662f2023-07-04\u3002'}"]}, "execution_count": 37, "metadata": {}, "output_type": "execute_result"}], "source": ["agent(\"\u4eca\u5929\u7684\u65e5\u671f\u662f\uff1f\") "]}, {"cell_type": "markdown", "id": "923a199f-08e8-4e70-afb5-70cd3e123acf", "metadata": {}, "source": ["\u2705 **\u603b\u7ed3**\n", "\n", "1. \u6a21\u578b\u5bf9\u4e8e\u63a5\u4e0b\u6765\u9700\u8981\u505a\u4ec0\u4e48\uff0c\u7ed9\u51fa\u601d\u8003\uff08Thought\uff09 \n", " \u601d\u8003\uff1a\u6211\u9700\u8981\u4f7f\u7528 time \u5de5\u5177\u6765\u83b7\u53d6\u4eca\u5929\u7684\u65e5\u671f
\n", "\n", "2. \u6a21\u578b\u57fa\u4e8e\u601d\u8003\u91c7\u53d6\u884c\u52a8\uff08Action), \u56e0\u4e3a\u4f7f\u7528\u7684\u5de5\u5177\u4e0d\u540c\uff0cAction\u7684\u8f93\u51fa\u4e5f\u548c\u4e4b\u524d\u6709\u6240\u4e0d\u540c\uff0c\u8fd9\u91cc\u8f93\u51fa\u7684\u4e3apython\u4ee3\u7801\n", " \u884c\u52a8: \u4f7f\u7528time\u5de5\u5177\uff0c\u8f93\u5165\u4e3a\u7a7a\u5b57\u7b26\u4e32
\n", " \n", " \n", "3. \u6a21\u578b\u5f97\u5230\u89c2\u5bdf\uff08Observation\uff09\n", " \u89c2\u6d4b: 2023-07-04
\n", " \n", " \n", " \n", "4. \u57fa\u4e8e\u89c2\u5bdf\uff0c\u6a21\u578b\u5bf9\u4e8e\u63a5\u4e0b\u6765\u9700\u8981\u505a\u4ec0\u4e48\uff0c\u7ed9\u51fa\u601d\u8003\uff08Thought\uff09\n", " \u601d\u8003: \u6211\u5df2\u6210\u529f\u4f7f\u7528 time \u5de5\u5177\u68c0\u7d22\u5230\u4e86\u4eca\u5929\u7684\u65e5\u671f
\n", "\n", "5. \u7ed9\u51fa\u6700\u7ec8\u7b54\u6848\uff08Final Answer\uff09\n", " \u6700\u7ec8\u7b54\u6848: \u4eca\u5929\u7684\u65e5\u671f\u662f2023-07-04.
\n", "6. \u8fd4\u56de\u6700\u7ec8\u7b54\u6848\u3002"]}], "metadata": {"kernelspec": {"display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3"}, "language_info": {"codemirror_mode": {"name": "ipython", "version": 3}, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.12"}, "toc": {"base_numbering": 1, "nav_menu": {}, "number_sections": false, "sideBar": true, "skip_h1_title": false, "title_cell": "Table of Contents", "title_sidebar": "Contents", "toc_cell": false, "toc_position": {}, "toc_section_display": true, "toc_window_display": true}}, "nbformat": 4, "nbformat_minor": 5}
\ No newline at end of file
diff --git "a/content/\345\277\205\344\277\256\344\270\211-LangChain for LLM Application Development/requirements.txt" "b/content/\345\277\205\344\277\256\344\270\211-LangChain for LLM Application Development/requirements.txt"
deleted file mode 100644
index 3455d43c..00000000
--- "a/content/\345\277\205\344\277\256\344\270\211-LangChain for LLM Application Development/requirements.txt"
+++ /dev/null
@@ -1,13 +0,0 @@
-DateTime==5.5
-docarray==0.40.0
-langchain==0.2.3
-langchain-community==0.2.4
-langchain_experimental==0.0.60
-numexpr==2.10.0
-openai==1.33.0
-pandas==2.2.2
-pinyin==0.4.0
-python-dotenv==1.0.1
-tiktoken==0.7.0
-wikipedia==1.4.0
-xpinyin==0.7.6
\ No newline at end of file
diff --git "a/content/\345\277\205\344\277\256\345\233\233-LangChain Chat with Your Data/1.\347\256\200\344\273\213 Introduction.md" "b/content/\345\277\205\344\277\256\345\233\233-LangChain Chat with Your Data/1.\347\256\200\344\273\213 Introduction.md"
index 8e7272a4..39119e53 100644
--- "a/content/\345\277\205\344\277\256\345\233\233-LangChain Chat with Your Data/1.\347\256\200\344\273\213 Introduction.md"
+++ "b/content/\345\277\205\344\277\256\345\233\233-LangChain Chat with Your Data/1.\347\256\200\344\273\213 Introduction.md"
@@ -1,6 +1,6 @@
# 第一章 简介
-本课程由哈里森·蔡斯(Harrison Chase,LangChain作者)与Deeplearning.ai合作开发,课程将介绍如何使用LangChain和自有数据进行对话。
+本课程由哈里森·蔡斯 (Harrison Chase,LangChain作者)与Deeplearning.ai合作开发,课程将介绍如何使用LangChain和自有数据进行对话。
## 一、背景
diff --git "a/content/\345\277\205\344\277\256\345\233\233-LangChain Chat with Your Data/2.\346\226\207\346\241\243\345\212\240\350\275\275 Document Loading.ipynb" "b/content/\345\277\205\344\277\256\345\233\233-LangChain Chat with Your Data/2.\346\226\207\346\241\243\345\212\240\350\275\275 Document Loading.ipynb"
index 776f0d5a..f6d620a9 100644
--- "a/content/\345\277\205\344\277\256\345\233\233-LangChain Chat with Your Data/2.\346\226\207\346\241\243\345\212\240\350\275\275 Document Loading.ipynb"
+++ "b/content/\345\277\205\344\277\256\345\233\233-LangChain Chat with Your Data/2.\346\226\207\346\241\243\345\212\240\350\275\275 Document Loading.ipynb"
@@ -1 +1 @@
-{"cells":[{"cell_type":"markdown","id":"cc2eb3ad-8c1c-406a-b7aa-a3f61b754ac5","metadata":{},"source":["# 第二章 文档加载\n","\n"," - [一、PDF文档](#一、PDF文档)\n"," - [1.1 安装相关包 ](#1.1-安装相关包-)\n"," - [1.2 加载PDF文档](#1.2-加载PDF文档)\n"," - [1.3 探索加载的数据](#1.3-探索加载的数据)\n"," - [二、网页文档](#二、网页文档)\n"," - [2.1 加载网页文档](#2.1-加载网页文档)\n"," - [2.2 探索加载的数据](#2.2-探索加载的数据)\n"," - [三、Notion文档](#三、Notion文档)\n"," - [3.1 加载Notion Markdown文档](#3.1-加载Notion-Markdown文档)\n"," - [3.2 探索加载的数据](#3.2-探索加载的数据)\n"]},{"cell_type":"markdown","id":"89e612a5","metadata":{},"source":["同前序课程一样,我们同样需要先配置环境以访问 OpenAI 提供的 API,配置方法如下,详细介绍请参见其他课程"]},{"cell_type":"code","execution_count":1,"id":"bb73a77f-e17c-45a2-b456-e3ad2bf0fb5c","metadata":{},"outputs":[],"source":["import os\n","import openai\n","\n","from dotenv import load_dotenv, find_dotenv\n","_ = load_dotenv(find_dotenv()) \n","\n","openai.api_key = os.environ['OPENAI_API_KEY']\n","openai.base_url = os.environ['OPENAI_API_BASE']"]},{"cell_type":"markdown","id":"63558db2-5279-4c1b-9bec-355ab04731e6","metadata":{},"source":["## 一、PDF文档\n","\n","首先,我们来加载一个[PDF文档](https://see.stanford.edu/materials/aimlcs229/transcripts/MachineLearning-Lecture01.pdf)。该文档为吴恩达教授的2009年机器学习课程的字幕文件。因为这些字幕为自动生成,所以词句直接可能不太连贯和通畅。"]},{"cell_type":"markdown","id":"dd5fe85c-6aae-4739-9b47-68e791afc9ac","metadata":{},"source":["### 1.1 安装相关包 "]},{"cell_type":"markdown","id":"8dcb2102-0414-4130-952b-3b6fa33b61bb","metadata":{},"source":["### 1.2 加载PDF文档"]},{"cell_type":"code","execution_count":2,"id":"52d9891f-a8cc-47c4-8c09-81794647a720","metadata":{},"outputs":[],"source":["from langchain_community.document_loaders.pdf import PyPDFLoader\n","\n","# 创建一个 PyPDFLoader Class 实例,输入为待加载的pdf文档路径\n","loader = PyPDFLoader(\"docs/cs229_lectures/MachineLearning-Lecture01.pdf\")\n","\n","# 调用 PyPDFLoader Class 的函数 load对pdf文件进行加载\n","pages = loader.load()"]},{"cell_type":"markdown","id":"68d40600-49ab-42a3-97d0-b9a2c4ab8139","metadata":{},"source":["### 1.3 探索加载的数据"]},{"cell_type":"markdown","id":"feca9f1e-1596-49f2-a6d9-6eeaeffbd90b","metadata":{},"source":["文档加载后储存在`pages`变量中:\n","- `page`的变量类型为`List`\n","- 打印 `pages` 的长度可以看到pdf一共包含多少页"]},{"cell_type":"code","execution_count":3,"id":"9463b982-c71c-4241-b3a3-b040170eef2e","metadata":{},"outputs":[{"name":"stdout","output_type":"stream","text":["\n"]}],"source":["print(type(pages))"]},{"cell_type":"code","execution_count":4,"id":"67a2b815-586f-43a5-96a4-cfe46001a766","metadata":{},"outputs":[{"name":"stdout","output_type":"stream","text":["22\n"]}],"source":["print(len(pages))"]},{"cell_type":"markdown","id":"2cde6b9d-71c8-4851-a8f6-a3f0e76f6dab","metadata":{},"source":["`page`中的每一元素为一个文档,变量类型为`langchain.schema.Document`, 文档变量类型包含两个属性\n","- `page_content` 包含该文档的内容。\n","- `meta_data` 为文档相关的描述性数据。"]},{"cell_type":"code","execution_count":5,"id":"921827ae-3a5b-4f29-b015-a5dde3be1410","metadata":{},"outputs":[],"source":["page = pages[0]"]},{"cell_type":"code","execution_count":6,"id":"aadaa840-0f30-4ae3-b06b-7fe8f468d146","metadata":{},"outputs":[{"name":"stdout","output_type":"stream","text":["\n"]}],"source":["print(type(page))"]},{"cell_type":"code","execution_count":7,"id":"85777ce2-42c7-4e11-b1ba-06fd6a0d8502","metadata":{},"outputs":[{"name":"stdout","output_type":"stream","text":["MachineLearning-Lecture01 \n","Instructor (Andrew Ng): Okay. Good morning. Welcome to CS229, the machine \n","learning class. So what I wanna do today is ju st spend a little time going over the logistics \n","of the class, and then we'll start to talk a bit about machine learning. \n","By way of introduction, my name's Andrew Ng and I'll be instru ctor for this class. And so \n","I personally work in machine learning, and I' ve worked on it for about 15 years now, and \n","I actually think that machine learning i\n"]}],"source":["print(page.page_content[0:500])"]},{"cell_type":"code","execution_count":8,"id":"8a1f8acd-f8c7-46af-a29f-df172067deba","metadata":{},"outputs":[{"name":"stdout","output_type":"stream","text":["{'source': 'docs/cs229_lectures/MachineLearning-Lecture01.pdf', 'page': 0}\n"]}],"source":["print(page.metadata)"]},{"cell_type":"markdown","id":"5b7ddc7d-2d40-4811-8cb3-5e73344ebe24","metadata":{},"source":["## 二、网页文档\n","\n","本部分,对于给定网页文档链接(URLs),我们学习如何对其进行加载。这里我们对Github上的网页文档进行加载,该文档格式为markdown。"]},{"cell_type":"markdown","id":"b28abf4d-4907-47f6-b54d-6d322a5794e6","metadata":{},"source":["### 2.1 加载网页文档"]},{"cell_type":"code","execution_count":9,"id":"1a68375f-44ae-4905-bf9c-1f01ec800481","metadata":{},"outputs":[{"name":"stderr","output_type":"stream","text":["WARNING:root:USER_AGENT environment variable not set, consider setting it to identify your requests.\n"]}],"source":["from langchain.document_loaders import WebBaseLoader\n","\n","\n","# 创建一个 WebBaseLoader Class 实例\n","url = \"https://github.com/datawhalechina/llm-cookbook/blob/main/README.md\"\n","header = {'User-Agent': 'python-requests/2.27.1', \n"," 'Accept-Encoding': 'gzip, deflate, br', \n"," 'Accept': '*/*',\n"," 'Connection': 'keep-alive'}\n","loader = WebBaseLoader(web_path=url,header_template=header)\n","\n","# 调用 WebBaseLoader Class 的函数 load对文件进行加载\n","docs = loader.load()"]},{"cell_type":"markdown","id":"fc24f44a-01f5-49a3-9529-2f05c1053b2c","metadata":{"tags":[]},"source":["### 2.2 探索加载的数据"]},{"cell_type":"markdown","id":"f2f108b9-713b-4b98-b44d-4dfc3dcbcde2","metadata":{},"source":["文档加载后储存在`docs`变量中:\n","- `docs`的变量类型为`List`\n","- 打印 `docs` 的长度可以看到一共包含多少页"]},{"cell_type":"code","execution_count":10,"id":"8c8670fa-203b-4c35-9266-f976f50f0f5d","metadata":{},"outputs":[{"name":"stdout","output_type":"stream","text":["\n"]}],"source":["print(type(docs))"]},{"cell_type":"code","execution_count":11,"id":"0e85a526-55e7-4186-8697-d16a891bcabc","metadata":{},"outputs":[{"name":"stdout","output_type":"stream","text":["1\n"]}],"source":["print(len(docs))"]},{"cell_type":"markdown","id":"b4397791-4d3c-4609-86be-3cda90a3f2fc","metadata":{},"source":["`docs`中的每一元素为一个文档,变量类型为`langchain.schema.document.Document`, 文档变量类型包含两个属性\n","- `page_content` 包含该文档的内容。\n","- `meta_data` 为文档相关的描述性数据。"]},{"cell_type":"code","execution_count":12,"id":"26423c51-6503-478c-b17d-bbe57049a04c","metadata":{},"outputs":[],"source":["doc = docs[0]"]},{"cell_type":"code","execution_count":13,"id":"a243638f-0c23-46b8-8854-13f1f1de6f0a","metadata":{},"outputs":[{"name":"stdout","output_type":"stream","text":["\n"]}],"source":["print(type(doc))"]},{"cell_type":"code","execution_count":14,"id":"9f237541-79b7-4ae4-9e0e-27a28af99b7a","metadata":{},"outputs":[{"name":"stdout","output_type":"stream","text":["\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","llm-cookbook/README.md at main · datawhalechina/llm-cookbook · GitHub\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","Skip to content\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","Navigation Menu\n","\n","Toggle navigation\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n"," Sign in\n"," \n","\n","\n"," \n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n"," Product\n"," \n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","Actions\n"," Automate any workflow\n"," \n","\n","\n","\n","\n","\n","\n","\n","Packages\n"," Host and manage packages\n"," \n","\n","\n","\n","\n","\n","\n","\n","Security\n"," Find and fix vulnerabilities\n"," \n","\n","\n","\n","\n","\n","\n","\n","Codespaces\n"," Instant dev environments\n"," \n","\n","\n","\n","\n","\n","\n","\n","GitHub Copilot\n"," Write better code with AI\n"," \n","\n","\n","\n","\n","\n","\n","\n","Code review\n"," Manage code changes\n"," \n","\n","\n","\n","\n","\n","\n","\n","Issues\n"," Plan and track work\n"," \n","\n","\n","\n","\n","\n","\n","\n","Discussions\n"," Collaborate outside of code\n"," \n","\n","\n","\n","\n","Explore\n","\n","\n","\n"," All features\n","\n"," \n","\n","\n","\n"," Documentation\n","\n"," \n","\n","\n","\n","\n","\n"," GitHub Skills\n","\n"," \n","\n","\n","\n","\n","\n"," Blog\n","\n"," \n","\n","\n","\n","\n","\n","\n","\n","\n","\n"," Solutions\n"," \n","\n","\n","\n","\n","\n","For\n","\n","\n","\n"," Enterprise\n","\n"," \n","\n","\n","\n"," Teams\n","\n"," \n","\n","\n","\n"," Startups\n","\n"," \n","\n","\n","\n"," Education\n","\n"," \n","\n","\n","\n","\n","\n","\n","By Solution\n","\n","\n","\n"," CI/CD & Automation\n","\n"," \n","\n","\n","\n"," DevOps\n","\n"," \n","\n","\n","\n"," DevSecOps\n","\n"," \n","\n","\n","\n","\n","Resources\n","\n","\n","\n"," Learning Pathways\n","\n"," \n","\n","\n","\n","\n","\n"," White papers, Ebooks, Webinars\n","\n"," \n","\n","\n","\n","\n","\n"," Customer Stories\n","\n"," \n","\n","\n","\n"," Partners\n","\n"," \n","\n","\n","\n","\n","\n","\n","\n","\n","\n"," Open Source\n"," \n","\n","\n","\n","\n","\n","\n","\n","\n","\n","GitHub Sponsors\n"," Fund open source developers\n"," \n","\n","\n","\n","\n","\n","\n","\n","\n","The ReadME Project\n"," GitHub community articles\n"," \n","\n","\n","\n","\n","Repositories\n","\n","\n","\n"," Topics\n","\n"," \n","\n","\n","\n"," Trending\n","\n"," \n","\n","\n","\n"," Collections\n","\n"," \n","\n","\n","\n","\n","\n","\n","\n"," Enterprise\n"," \n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","Enterprise platform\n"," AI-powered developer platform\n"," \n","\n","\n","\n","\n","Available add-ons\n","\n","\n","\n","\n","\n","\n","\n","Advanced Security\n"," Enterprise-grade security features\n"," \n","\n","\n","\n","\n","\n","\n","\n","GitHub Copilot\n"," Enterprise-grade AI features\n"," \n","\n","\n","\n","\n","\n","\n","\n","Premium Support\n"," Enterprise-grade 24/7 support\n"," \n","\n","\n","\n","\n","\n","\n","Pricing\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","Search or jump to...\n","\n","\n","\n","\n","\n","\n","\n","Search code, repositories, users, issues, pull requests...\n","\n"," \n","\n","\n","\n","\n"," Search\n"," \n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","Clear\n"," \n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n"," \n","\n","\n","\n","\n"," Search syntax tips\n"," \n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n"," Provide feedback\n"," \n","\n","\n","\n","\n","\n","\n","\n","\n","\n"," \n","We read every piece of feedback, and take your input very seriously.\n","\n","\n","Include my email address so I can be contacted\n","\n","\n"," Cancel\n","\n"," Submit feedback\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n"," Saved searches\n"," \n","Use saved searches to filter your results more quickly\n","\n","\n","\n","\n","\n","\n","\n","\n","\n"," \n","\n","\n","\n","\n","\n","Name\n","\n","\n","\n","\n","\n","\n","Query\n","\n","\n","\n"," To see all available qualifiers, see our documentation.\n"," \n"," \n","\n","\n","\n","\n","\n"," Cancel\n","\n"," Create saved search\n","\n","\n","\n","\n","\n","\n","\n","\n"," Sign in\n"," \n","\n","\n"," Sign up\n"," \n","\n","\n","\n","\n","\n","\n","\n","\n","\n","You signed in with another tab or window. Reload to refresh your session.\n","You signed out in another tab or window. Reload to refresh your session.\n","You switched accounts on another tab or window. Reload to refresh your session.\n"," \n","\n","\n","Dismiss alert\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n"," datawhalechina\n"," \n","/\n","\n","llm-cookbook\n","\n","Public\n","\n","\n","\n","\n","\n"," \n","\n","Notifications\n"," You must be signed in to change notification settings\n","\n","\n"," \n","\n","Fork\n"," 1.2k\n","\n","\n","\n","\n"," \n","\n","\n"," Star\n"," 10.2k\n"," \n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","Code\n","\n","\n","\n","\n","\n","\n","\n","Issues\n","0\n","\n","\n","\n","\n","\n","\n","Pull requests\n","2\n","\n","\n","\n","\n","\n","\n","Actions\n","\n","\n","\n","\n","\n","\n","\n","Projects\n","0\n","\n","\n","\n","\n","\n","\n","Security\n","\n","\n","\n","\n","\n","\n","\n","Insights\n","\n","\n","\n"," \n","\n"," \n","\n","\n","Additional navigation options\n","\n","\n"," \n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n"," Code\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n"," Issues\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n"," Pull requests\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n"," Actions\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n"," Projects\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n"," Security\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n"," Insights\n","\n","\n","\n","\n","\n"," \n","\n","\n","\n","\n","\n","\n","\n"," Files mainBreadcrumbsllm-cookbook/README.md Blame Blame Latest commit HistoryHistory143 lines (94 loc) · 13.1 KB mainBreadcrumbsllm-cookbook/README.mdTopFile metadata and controlsPreviewCodeBlame143 lines (94 loc) · 13.1 KBRaw\n","面向开发者的大模型手册 - LLM Cookbook\n","项目简介\n","本项目是一个面向开发者的大模型手册,针对国内开发者的实际需求,主打 LLM 全方位入门实践。本项目基于吴恩达老师大模型系列课程内容,对原课程内容进行筛选、翻译、复现和调优,覆盖从 Prompt Engineering 到 RAG 开发、模型微调的全部流程,用最适合国内学习者的方式,指导国内开发者如何学习、入门 LLM 相关项目。\n","针对不同内容的特点,我们对共计 11 门吴恩达老师的大模型课程进行了翻译复现,并结合国内学习者的实际情况,对不同课程进行了分级和排序,初学者可以先系统学习我们的必修类课程,掌握入门 LLM 所有方向都需要掌握的基础技能和概念,再选择性地学习我们的选修类课程,在自己感兴趣的方向上不断探索和学习。\n","如果有你非常喜欢但我们还没有进行复现的吴恩达老师大模型课程,我们欢迎每一位开发者参考我们已有课程的格式和写法来对课程进行复现并提交 PR,在 PR 审核通过后,我们会根据课程内容将课程进行分级合并。欢迎每一位开发者的贡献!\n","在线阅读地址:面向开发者的 LLM 入门课程-在线阅读\n","PDF下载地址:面向开发者的 LLM 入门教程-PDF\n","英文原版地址:吴恩达关于大模型的系列课程\n","项目意义\n","LLM 正在逐步改变人们的生活,而对于开发者,如何基于 LLM 提供的 API 快速、便捷地开发一些具备更强能力、集成LLM 的应用,来便捷地实现一些更新颖、更实用的能力,是一个急需学习的重要能力。\n","由吴恩达老师与 OpenAI 合作推出的大模型系列教程,从大模型时代开发者的基础技能出发,深入浅出地介绍了如何基于大模型 API、LangChain 架构快速开发结合大模型强大能力的应用。其中,《Prompt Engineering for Developers》教程面向入门 LLM 的开发者,深入浅出地介绍了对于开发者,如何构造 Prompt 并基于 OpenAI 提供的 API 实现包括总结、推断、转换等多种常用功能,是入门 LLM 开发的经典教程;《Building Systems with the ChatGPT API》教程面向想要基于 LLM 开发应用程序的开发者,简洁有效而又系统全面地介绍了如何基于 ChatGPT API 打造完整的对话系统;《LangChain for LLM Application Development》教程结合经典大模型开源框架 LangChain,介绍了如何基于 LangChain 框架开发具备实用功能、能力全面的应用程序,《LangChain Chat With Your Data》教程则在此基础上进一步介绍了如何使用 LangChain 架构结合个人私有数据开发个性化大模型应用;《Building Generative AI Applications with Gradio》、《Evaluating and Debugging Generative AI》教程分别介绍了两个实用工具 Gradio 与 W&B,指导开发者如何结合这两个工具来打造、评估生成式 AI 应用。\n","上述教程非常适用于开发者学习以开启基于 LLM 实际搭建应用程序之路。因此,我们将该系列课程翻译为中文,并复现其范例代码,也为其中一个视频增加了中文字幕,支持国内中文学习者直接使用,以帮助中文学习者更好地学习 LLM 开发;我们也同时实现了效果大致相当的中文 Prompt,支持学习者感受中文语境下 LLM 的学习使用,对比掌握多语言语境下的 Prompt 设计与 LLM 开发。未来,我们也将加入更多 Prompt 高级技巧,以丰富本课程内容,帮助开发者掌握更多、更巧妙的 Prompt 技能。\n","项目受众\n","所有具备基础 Python 能力,想要入门 LLM 的开发者。\n","项目亮点\n","《ChatGPT Prompt Engineering for Developers》、《Building Systems with the ChatGPT API》等教程作为由吴恩达老师与 OpenAI 联合推出的官方教程,在可预见的未来会成为 LLM 的重要入门教程,但是目前还只支持英文版且国内访问受限,打造中文版且国内流畅访问的教程具有重要意义;同时,GPT 对中文、英文具有不同的理解能力,本教程在多次对比、实验之后确定了效果大致相当的中文 Prompt,支持学习者研究如何提升 ChatGPT 在中文语境下的理解与生成能力。\n","学习指南\n","本教程适用于所有具备基础 Python 能力,想要入门 LLM 的开发者。\n","如果你想要开始学习本教程,你需要提前具备:\n","\n","至少一个 LLM API(最好是 OpenAI,如果是其他 API,你可能需要参考其他教程对 API 调用代码进行修改)\n","能够使用 Python Jupyter Notebook\n","\n","本教程共包括 11 门课程,分为必修类、选修类两个类别。必修类课程是我们认为最适合初学者学习以入门 LLM 的课程,包括了入门 LLM 所有方向都需要掌握的基础技能和概念,我们也针对必修类课程制作了适合阅读的在线阅读和 PDF 版本,在学习必修类课程时,我们建议学习者按照我们列出的顺序进行学习;选修类课程是在必修类课程上的拓展延伸,包括了 RAG 开发、模型微调、模型评估等多个方面,适合学习者在掌握了必修类课程之后选择自己感兴趣的方向和课程进行学习。\n","必修类课程包括:\n","\n","面向开发者的 Prompt Engineering。基于吴恩达老师《ChatGPT Prompt Engineering for Developers》课程打造,面向入门 LLM 的开发者,深入浅出地介绍了对于开发者,如何构造 Prompt 并基于 OpenAI 提供的 API 实现包括总结、推断、转换等多种常用功能,是入门 LLM 开发的第一步。\n","搭建基于 ChatGPT 的问答系统。基于吴恩达老师《Building Systems with the ChatGPT API》课程打造,指导开发者如何基于 ChatGPT 提供的 API 开发一个完整的、全面的智能问答系统。通过代码实践,实现了基于 ChatGPT 开发问答系统的全流程,介绍了基于大模型开发的新范式,是大模型开发的实践基础。\n","使用 LangChain 开发应用程序。基于吴恩达老师《LangChain for LLM Application Development》课程打造,对 LangChain 展开深入介绍,帮助学习者了解如何使用 LangChain,并基于 LangChain 开发完整的、具备强大能力的应用程序。\n","使用 LangChain 访问个人数据。基于吴恩达老师《LangChain Chat with Your Data》课程打造,深入拓展 LangChain 提供的个人数据访问能力,指导开发者如何使用 LangChain 开发能够访问用户个人数据、提供个性化服务的大模型应用。\n","\n","选修类课程包括:\n","\n","使用 Gradio 搭建生成式 AI 应用。基于吴恩达老师《Building Generative AI Applications with Gradio》课程打造,指导开发者如何使用 Gradio 通过 Python 接口程序快速、高效地为生成式 AI 构建用户界面。\n","评估改进生成式 AI。基于吴恩达老师《Evaluating and Debugging Generative AI》课程打造,结合 wandb,提供一套系统化的方法和工具,帮助开发者有效地跟踪和调试生成式 AI 模型。\n","微调大语言模型。基于吴恩达老师《Finetuning Large Language Model》课程打造,结合 lamini 框架,讲述如何便捷高效地在本地基于个人数据微调开源大语言模型。\n","大模型与语义检索。基于吴恩达老师《Large Language Models with Semantic Search》课程打造,针对检索增强生成,讲述了多种高级检索技巧以实现更准确、高效的检索增强 LLM 生成效果。\n","基于 Chroma 的高级检索。基于吴恩达老师《Advanced Retrieval for AI with Chroma》课程打造,旨在介绍基于 Chroma 的高级检索技术,提升检索结果的准确性。\n","搭建和评估高级 RAG 应用。基于吴恩达老师《Building and Evaluating Advanced RAG Applications》课程打造,介绍构建和实现高质量RAG系统所需的关键技术和评估框架。\n","LangChain 的 Functions、Tools 和 Agents。基于吴恩达老师《Functions, Tools and Agents with LangChain》课程打造,介绍如何基于 LangChain 的新语法构建 Agent。\n","Prompt 高级技巧。包括 CoT、自我一致性等多种 Prompt 高级技巧的基础理论与代码实现。\n","\n","其他资料包括:\n","双语字幕视频地址:吴恩达 x OpenAI的Prompt Engineering课程专业翻译版\n","中英双语字幕下载:《ChatGPT提示工程》非官方版中英双语字幕\n","视频讲解:面向开发者的 Prompt Engineering 讲解(数字游民大会)\n","目录结构说明:\n","content:基于原课程复现的双语版代码,可运行的 Notebook,更新频率最高,更新速度最快。\n","\n","docs:必修类课程文字教程版在线阅读源码,适合阅读的 md。\n","\n","figures:图片文件。\n","\n","致谢\n","核心贡献者\n","\n","邹雨衡-项目负责人(Datawhale成员-对外经济贸易大学研究生)\n","长琴-项目发起人(内容创作者-Datawhale成员-AI算法工程师)\n","玉琳-项目发起人(内容创作者-Datawhale成员)\n","徐虎-教程编撰者(内容创作者-Datawhale成员)\n","刘伟鸿-教程编撰者(内容创作者-江南大学非全研究生)\n","Joye-教程编撰者(内容创作者-数据科学家)\n","高立业(内容创作者-DataWhale成员-算法工程师)\n","邓宇文(内容创作者-Datawhale成员)\n","魂兮(内容创作者-前端工程师)\n","宋志学(内容创作者-Datawhale成员)\n","韩颐堃(内容创作者-Datawhale成员)\n","陈逸涵 (内容创作者-Datawhale意向成员-AI爱好者)\n","仲泰(内容创作者-Datawhale成员)\n","万礼行(内容创作者-视频翻译者)\n","王熠明(内容创作者-Datawhale成员)\n","曾浩龙(内容创作者-Datawhale 意向成员-JLU AI 研究生)\n","小饭同学(内容创作者)\n","孙韩玉(内容创作者-算法量化部署工程师)\n","张银晗(内容创作者-Datawhale成员)\n","左春生(内容创作者-Datawhale成员)\n","张晋(内容创作者-Datawhale成员)\n","李娇娇(内容创作者-Datawhale成员)\n","邓恺俊(内容创作者-Datawhale成员)\n","范致远(内容创作者-Datawhale成员)\n","周景林(内容创作者-Datawhale成员)\n","诸世纪(内容创作者-算法工程师)\n","Zhang Yixin(内容创作者-IT爱好者)\n","Sarai(内容创作者-AI应用爱好者)\n","\n","其他\n","\n","特别感谢 @Sm1les、@LSGOMYP 对本项目的帮助与支持;\n","感谢 GithubDaily 提供的双语字幕;\n","如果有任何想法可以联系我们 DataWhale 也欢迎大家多多提出 issue;\n","特别感谢以下为教程做出贡献的同学!\n","\n","\n","\n","\n","Made with contrib.rocks.\n","Star History\n","\n","关注我们\n","\n","扫描下方二维码关注公众号:Datawhale\n","\n","\n","Datawhale 是一个专注于数据科学与 AI 领域的开源组织,汇集了众多领域院校和知名企业的优秀学习者,聚合了一群有开源精神和探索精神的团队成员。微信搜索公众号Datawhale可以加入我们。\n","LICENSE\n","本作品采用知识共享署名-非商业性使用-相同方式共享 4.0 国际许可协议进行许可。\n"," \n","\n","\n","\n","\n","\n","\n","\n","\n","Footer\n","\n","\n","\n","\n","\n","\n","\n","\n"," © 2024 GitHub, Inc.\n"," \n","\n","\n","Footer navigation\n","\n","\n","Terms\n","\n","\n","Privacy\n","\n","\n","Security\n","\n","\n","Status\n","\n","\n","Docs\n","\n","\n","Contact\n","\n","\n","\n","\n"," Manage cookies\n"," \n","\n","\n","\n","\n","\n"," Do not share my personal information\n"," \n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n"," You can’t perform that action at this time.\n"," \n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n","\n"]}],"source":["print(doc.page_content)"]},{"cell_type":"markdown","id":"52025103-205e-4137-a116-89f37fcfece1","metadata":{},"source":["langchain现在的版本会自动提取网页中的内容,但上面的文档内容仍包含许多冗余的信息。我们需要进行对这种数据进行进一步处理(Post Processing)。"]},{"cell_type":"code","execution_count":15,"id":"a7c5281f-aeed-4ee7-849b-bbf9fd3e35c7","metadata":{},"outputs":[{"name":"stdout","output_type":"stream","text":["面向开发者的大模型手册 - LLM Cookbook\n","项目简介\n","本项目是一个面向开发者的大模型手册,针对国内开发者的实际需求,主打 LLM 全方位入门实践。本项目基于吴恩达老师大模型系列课程内容,对原课程内容进行筛选、翻译、复现和调优,覆盖从 Prompt Engineering 到 RAG 开发、模型微调的全部流程,用最适合国内学习者的方式,指导国内开发者如何学习、入门 LLM 相关项目。\n","针对不同内容的特点,我们对共计 11 门吴恩达老师的大模型课程进行了翻译复现,并结合国内学习者的实际情况,对不同课程进行了分级和排序,初学者可以先系统学习我们的必修类课程,掌握入门 LLM 所有方向都需要掌握的基础技能和概念,再选择性地学习我们的选修类课程,在自己感兴趣的方向上不断探索和学习。\n","如果有你非常喜欢但我们还没有进行复现的吴恩达老师大模型课程,我们欢迎每一位开发者参考我们已有课程的格式和写法来对课程进行复现并提交 PR,在 PR 审核通过后,我们会根据课程内容将课程进行分级合并。欢迎每一位开发者的贡献!\n","在线阅读地址:面向开发者的 LLM 入门课程-在线阅读\n","PDF下载地址:面向开发者的 LLM 入门教程-PDF\n","英文原版地址:吴恩达关于大模型的系列课程\n","项目意义\n","LLM 正在逐步改变人们的生活,而对于开发者,如何基于 LLM 提供的 API 快速、便捷地开发一些具备更强能力、集成LLM 的应用,来便捷地实现一些更新颖、更实用的能力,是一个急需学习的重要能力。\n","由吴恩达老师与 OpenAI 合作推出的大模型系列教程,从大模型时代开发者的基础技能出发,深入浅出地介绍了如何基于大模型 API、LangChain 架构快速开发结合大模型强大能力的应用。其中,《Prompt Engineering for Developers》教程面向入门 LLM 的开发者,深入浅出地介绍了对于开发者,如何构造 Prompt 并基于 OpenAI 提供的 API 实现包括总结、推断、转换等多种常用功能,是入门 LLM 开发的经典教程;《Building Systems with the ChatGPT API》教程面向想要基于 LLM 开发应用程序的开发者,简洁有效而又系统全面地介绍了如何基于 ChatGPT API 打造完整的对话系统;《LangChain for LLM Application Development》教程结合经典大模型开源框架 LangChain,介绍了如何基于 LangChain 框架开发具备实用功能、能力全面的应用程序,《LangChain Chat With Your Data》教程则在此基础上进一步介绍了如何使用 LangChain 架构结合个人私有数据开发个性化大模型应用;《Building Generative AI Applications with Gradio》、《Evaluating and Debugging Generative AI》教程分别介绍了两个实用工具 Gradio 与 W&B,指导开发者如何结合这两个工具来打造、评估生成式 AI 应用。\n","上述教程非常适用于开发者学习以开启基于 LLM 实际搭建应用程序之路。因此,我们将该系列课程翻译为中文,并复现其范例代码,也为其中一个视频增加了中文字幕,支持国内中文学习者直接使用,以帮助中文学习者更好地学习 LLM 开发;我们也同时实现了效果大致相当的中文 Prompt,支持学习者感受中文语境下 LLM 的学习使用,对比掌握多语言语境下的 Prompt 设计与 LLM 开发。未来,我们也将加入更多 Prompt 高级技巧,以丰富本课程内容,帮助开发者掌握更多、更巧妙的 Prompt 技能。\n","项目受众\n","所有具备基础 Python 能力,想要入门 LLM 的开发者。\n","项目亮点\n","《ChatGPT Prompt Engineering for Developers》、《Building Systems with the ChatGPT API》等教程作为由吴恩达老师与 OpenAI 联合推出的官方教程,在可预见的未来会成为 LLM 的重要入门教程,但是目前还只支持英文版且国内访问受限,打造中文版且国内流畅访问的教程具有重要意义;同时,GPT 对中文、英文具有不同的理解能力,本教程在多次对比、实验之后确定了效果大致相当的中文 Prompt,支持学习者研究如何提升 ChatGPT 在中文语境下的理解与生成能力。\n","学习指南\n","本教程适用于所有具备基础 Python 能力,想要入门 LLM 的开发者。\n","如果你想要开始学习本教程,你需要提前具备:\n","\n","至少一个 LLM API(最好是 OpenAI,如果是其他 API,你可能需要参考其他教程对 API 调用代码进行修改)\n","能够使用 Python Jupyter Notebook\n","\n","本教程共包括 11 门课程,分为必修类、选修类两个类别。必修类课程是我们认为最适合初学者学习以入门 LLM 的课程,包括了入门 LLM 所有方向都需要掌握的基础技能和概念,我们也针对必修类课程制作了适合阅读的在线阅读和 PDF 版本,在学习必修类课程时,我们建议学习者按照我们列出的顺序进行学习;选修类课程是在必修类课程上的拓展延伸,包括了 RAG 开发、模型微调、模型评估等多个方面,适合学习者在掌握了必修类课程之后选择自己感兴趣的方向和课程进行学习。\n","必修类课程包括:\n","\n","面向开发者的 Prompt Engineering。基于吴恩达老师《ChatGPT Prompt Engineering for Developers》课程打造,面向入门 LLM 的开发者,深入浅出地介绍了对于开发者,如何构造 Prompt 并基于 OpenAI 提供的 API 实现包括总结、推断、转换等多种常用功能,是入门 LLM 开发的第一步。\n","搭建基于 ChatGPT 的问答系统。基于吴恩达老师《Building Systems with the ChatGPT API》课程打造,指导开发者如何基于 ChatGPT 提供的 API 开发一个完整的、全面的智能问答系统。通过代码实践,实现了基于 ChatGPT 开发问答系统的全流程,介绍了基于大模型开发的新范式,是大模型开发的实践基础。\n","使用 LangChain 开发应用程序。基于吴恩达老师《LangChain for LLM Application Development》课程打造,对 LangChain 展开深入介绍,帮助学习者了解如何使用 LangChain,并基于 LangChain 开发完整的、具备强大能力的应用程序。\n","使用 LangChain 访问个人数据。基于吴恩达老师《LangChain Chat with Your Data》课程打造,深入拓展 LangChain 提供的个人数据访问能力,指导开发者如何使用 LangChain 开发能够访问用户个人数据、提供个性化服务的大模型应用。\n","\n","选修类课程包括:\n","\n","使用 Gradio 搭建生成式 AI 应用。基于吴恩达老师《Building Generative AI Applications with Gradio》课程打造,指导开发者如何使用 Gradio 通过 Python 接口程序快速、高效地为生成式 AI 构建用户界面。\n","评估改进生成式 AI。基于吴恩达老师《Evaluating and Debugging Generative AI》课程打造,结合 wandb,提供一套系统化的方法和工具,帮助开发者有效地跟踪和调试生成式 AI 模型。\n","微调大语言模型。基于吴恩达老师《Finetuning Large Language Model》课程打造,结合 lamini 框架,讲述如何便捷高效地在本地基于个人数据微调开源大语言模型。\n","大模型与语义检索。基于吴恩达老师《Large Language Models with Semantic Search》课程打造,针对检索增强生成,讲述了多种高级检索技巧以实现更准确、高效的检索增强 LLM 生成效果。\n","基于 Chroma 的高级检索。基于吴恩达老师《Advanced Retrieval for AI with Chroma》课程打造,旨在介绍基于 Chroma 的高级检索技术,提升检索结果的准确性。\n","搭建和评估高级 RAG 应用。基于吴恩达老师《Building and Evaluating Advanced RAG Applications》课程打造,介绍构建和实现高质量RAG系统所需的关键技术和评估框架。\n","LangChain 的 Functions、Tools 和 Agents。基于吴恩达老师《Functions, Tools and Agents with LangChain》课程打造,介绍如何基于 LangChain 的新语法构建 Agent。\n","Prompt 高级技巧。包括 CoT、自我一致性等多种 Prompt 高级技巧的基础理论与代码实现。\n","\n","其他资料包括:\n","双语字幕视频地址:吴恩达 x OpenAI的Prompt Engineering课程专业翻译版\n","中英双语字幕下载:《ChatGPT提示工程》非官方版中英双语字幕\n","视频讲解:面向开发者的 Prompt Engineering 讲解(数字游民大会)\n","目录结构说明:\n","content:基于原课程复现的双语版代码,可运行的 Notebook,更新频率最高,更新速度最快。\n","\n","docs:必修类课程文字教程版在线阅读源码,适合阅读的 md。\n","\n","figures:图片文件。\n","\n","致谢\n","核心贡献者\n","\n","邹雨衡-项目负责人(Datawhale成员-对外经济贸易大学研究生)\n","长琴-项目发起人(内容创作者-Datawhale成员-AI算法工程师)\n","玉琳-项目发起人(内容创作者-Datawhale成员)\n","徐虎-教程编撰者(内容创作者-Datawhale成员)\n","刘伟鸿-教程编撰者(内容创作者-江南大学非全研究生)\n","Joye-教程编撰者(内容创作者-数据科学家)\n","高立业(内容创作者-DataWhale成员-算法工程师)\n","邓宇文(内容创作者-Datawhale成员)\n","魂兮(内容创作者-前端工程师)\n","宋志学(内容创作者-Datawhale成员)\n","韩颐堃(内容创作者-Datawhale成员)\n","陈逸涵 (内容创作者-Datawhale意向成员-AI爱好者)\n","仲泰(内容创作者-Datawhale成员)\n","万礼行(内容创作者-视频翻译者)\n","王熠明(内容创作者-Datawhale成员)\n","曾浩龙(内容创作者-Datawhale 意向成员-JLU AI 研究生)\n","小饭同学(内容创作者)\n","孙韩玉(内容创作者-算法量化部署工程师)\n","张银晗(内容创作者-Datawhale成员)\n","左春生(内容创作者-Datawhale成员)\n","张晋(内容创作者-Datawhale成员)\n","李娇娇(内容创作者-Datawhale成员)\n","邓恺俊(内容创作者-Datawhale成员)\n","范致远(内容创作者-Datawhale成员)\n","周景林(内容创作者-Datawhale成员)\n","诸世纪(内容创作者-算法工程师)\n","Zhang Yixin(内容创作者-IT爱好者)\n","Sarai(内容创作者-AI应用爱好者)\n","\n","其他\n","\n","特别感谢 @Sm1les、@LSGOMYP 对本项目的帮助与支持;\n","感谢 GithubDaily 提供的双语字幕;\n","如果有任何想法可以联系我们 DataWhale 也欢迎大家多多提出 issue;\n","特别感谢以下为教程做出贡献的同学!\n","\n","\n","\n","\n","Made with contrib.rocks.\n","Star History\n","\n","关注我们\n","\n","扫描下方二维码关注公众号:Datawhale\n","\n","\n","Datawhale 是一个专注于数据科学与 AI 领域的开源组织,汇集了众多领域院校和知名企业的优秀学习者,聚合了一群有开源精神和探索精神的团队成员。微信搜索公众号Datawhale可以加入我们。\n","LICENSE\n","本作品采用知识共享署名-非商业性使用-相同方式共享 4.0 \n"]}],"source":["start_index = doc.page_content.find(\"面向开发者的大模型手册\")\n","end_index = doc.page_content.find(\"国际许可协议进行许可。\")\n","print(doc.page_content[start_index:end_index])"]},{"cell_type":"markdown","id":"d35e99b4-dd67-4940-bbeb-b2a59bf8cd3d","metadata":{},"source":["## 三、Notion文档\n","\n","- 点击[Notion示例文档](https://yolospace.notion.site/Blendle-s-Employee-Handbook-e31bff7da17346ee99f531087d8b133f)右上方复制按钮(Duplicate),复制文档到你的Notion空间\n","- 点击右上方`⋯` 按钮,选择导出为Mardown&CSV。导出的文件将为zip文件夹\n","- 解压并保存mardown文档到本地路径`docs/Notion_DB/`"]},{"cell_type":"markdown","id":"f8cf2778-288c-4964-81e7-0ed881e31652","metadata":{},"source":["### 3.1 加载Notion Markdown文档"]},{"cell_type":"code","execution_count":16,"id":"081f5ee4-6b5d-45bf-a7e6-079abc560729","metadata":{},"outputs":[],"source":["from langchain.document_loaders import NotionDirectoryLoader\n","loader = NotionDirectoryLoader(\"docs/Notion_DB\")\n","docs = loader.load()"]},{"cell_type":"markdown","id":"88d5d094-a490-4c64-ab93-5c5cec0853aa","metadata":{"tags":[]},"source":["### 3.2 探索加载的数据"]},{"cell_type":"markdown","id":"a3ffe318-d22a-4687-b613-f679ad9ad616","metadata":{},"source":["文档加载后储存在`docs`变量中:\n","- `docs`的变量类型为`List`\n","- 打印 `docs` 的长度可以看到一共包含多少页"]},{"cell_type":"code","execution_count":17,"id":"106323dd-0d24-40d4-8302-ed2a35d13347","metadata":{},"outputs":[{"name":"stdout","output_type":"stream","text":["\n"]}],"source":["print(type(docs))"]},{"cell_type":"code","execution_count":18,"id":"fa3ee0fe-7daa-4193-9ee1-4ee89cb3b843","metadata":{},"outputs":[{"name":"stdout","output_type":"stream","text":["51\n"]}],"source":["print(len(docs))"]},{"cell_type":"markdown","id":"b3cd3feb-d2c1-46b6-8b16-d4b2101c5632","metadata":{},"source":["`docs`中的每一元素为一个文档,变量类型为`langchain.schema.document.Document`, 文档变量类型包含两个属性\n","- `page_content` 包含该文档的内容。\n","- `meta_data` 为文档相关的描述性数据。"]},{"cell_type":"code","execution_count":19,"id":"5b220df6-fd0b-4b62-9da4-29962926fe87","metadata":{},"outputs":[],"source":["doc = docs[0]"]},{"cell_type":"code","execution_count":20,"id":"98ef8fbf-e820-41de-919d-c462a910f4f1","metadata":{},"outputs":[{"name":"stdout","output_type":"stream","text":["\n"]}],"source":["print(type(doc))"]},{"cell_type":"code","execution_count":21,"id":"933da0f3-4d5f-4363-9142-050ecf226c1f","metadata":{},"outputs":[{"name":"stdout","output_type":"stream","text":["# Firing\n","\n","Saying goodbye to Blendle (from a colleague) and to a colleague (from Blendle) is a very normal and natural thing. When done right, it can even be a beautiful thing. \n","\n","We advise you to read the backdrop below first, but feel free to jump in right away with the 'Here's what you can do'-section :). General note: you do not have to do this alone, so please ask for advice and help!\n","\n","- **Backdrop**\n"," \n"," Saying goodbye to Blendle (from a colleague) and to a colleague (from Blendle) is a \n"]}],"source":["print(doc.page_content[0:500])"]}],"metadata":{"kernelspec":{"display_name":"Python 3 (ipykernel)","language":"python","name":"python3"},"language_info":{"codemirror_mode":{"name":"ipython","version":3},"file_extension":".py","mimetype":"text/x-python","name":"python","nbconvert_exporter":"python","pygments_lexer":"ipython3","version":"3.11.9"}},"nbformat":4,"nbformat_minor":5}
+{"cells":[{"cell_type":"markdown","id":"cc2eb3ad-8c1c-406a-b7aa-a3f61b754ac5","metadata":{},"source":["# 第二章 文档加载\n","\n"," - [一、PDF文档](#一、PDF文档)\n"," - [1.1 安装相关包 ](#1.1-安装相关包-)\n"," - [1.2 加载PDF文档](#1.2-加载PDF文档)\n"," - [1.3 探索加载的数据](#1.3-探索加载的数据)\n"," - [二、YouTube音频](#二、YouTube音频)\n"," - [2.1 安装相关包 ](#2.1-安装相关包-)\n"," - [2.2 加载Youtube音频文档](#2.2-加载Youtube音频文档)\n"," - [2.3 探索加载的数据](#2.3-探索加载的数据)\n"," - [三、网页文档](#三、网页文档)\n"," - [3.1 加载网页文档](#3.1-加载网页文档)\n"," - [3.2 探索加载的数据](#3.2-探索加载的数据)\n"," - [四、Notion文档](#四、Notion文档)\n"," - [4.1 加载Notion Markdown文档](#4.1-加载Notion-Markdown文档)\n"," - [4.2 探索加载的数据](#4.2-探索加载的数据)\n"]},{"cell_type":"markdown","id":"89e612a5","metadata":{},"source":["同前序课程一样,我们同样需要先配置环境以访问 OpenAI 提供的 API,配置方法如下,详细介绍请参见其他课程"]},{"cell_type":"code","execution_count":1,"id":"582125c3-2afb-4cca-b651-c1810a5e5c22","metadata":{},"outputs":[],"source":["# 下载最新版 LangChain\n","!pip install -q langchain --upgrade"]},{"cell_type":"code","execution_count":2,"id":"bb73a77f-e17c-45a2-b456-e3ad2bf0fb5c","metadata":{},"outputs":[],"source":["import os\n","import openai\n","import sys\n","sys.path.append('../..')\n","\n","from dotenv import load_dotenv, find_dotenv\n","_ = load_dotenv(find_dotenv()) \n","\n","openai.api_key = os.environ['OPENAI_API_KEY']"]},{"cell_type":"markdown","id":"63558db2-5279-4c1b-9bec-355ab04731e6","metadata":{},"source":["## 一、PDF文档\n","\n","首先,我们来加载一个[PDF文档](https://see.stanford.edu/materials/aimlcs229/transcripts/MachineLearning-Lecture01.pdf)。该文档为吴恩达教授的2009年机器学习课程的字幕文件。因为这些字幕为自动生成,所以词句直接可能不太连贯和通畅。"]},{"cell_type":"markdown","id":"dd5fe85c-6aae-4739-9b47-68e791afc9ac","metadata":{},"source":["### 1.1 安装相关包 "]},{"cell_type":"code","execution_count":3,"id":"c527f944-35dc-44a2-9cf9-9887cf315f3a","metadata":{},"outputs":[],"source":["!pip install -q pypdf"]},{"cell_type":"markdown","id":"8dcb2102-0414-4130-952b-3b6fa33b61bb","metadata":{},"source":["### 1.2 加载PDF文档"]},{"cell_type":"code","execution_count":4,"id":"52d9891f-a8cc-47c4-8c09-81794647a720","metadata":{},"outputs":[],"source":["from langchain.document_loaders import PyPDFLoader\n","\n","# 创建一个 PyPDFLoader Class 实例,输入为待加载的pdf文档路径\n","loader = PyPDFLoader(\"docs/cs229_lectures/MachineLearning-Lecture01.pdf\")\n","\n","# 调用 PyPDFLoader Class 的函数 load对pdf文件进行加载\n","pages = loader.load()"]},{"cell_type":"markdown","id":"68d40600-49ab-42a3-97d0-b9a2c4ab8139","metadata":{},"source":["### 1.3 探索加载的数据"]},{"cell_type":"markdown","id":"feca9f1e-1596-49f2-a6d9-6eeaeffbd90b","metadata":{},"source":["文档加载后储存在`pages`变量中:\n","- `page`的变量类型为`List`\n","- 打印 `pages` 的长度可以看到pdf一共包含多少页"]},{"cell_type":"code","execution_count":5,"id":"9463b982-c71c-4241-b3a3-b040170eef2e","metadata":{},"outputs":[{"name":"stdout","output_type":"stream","text":["\n"]}],"source":["print(type(pages))"]},{"cell_type":"code","execution_count":6,"id":"67a2b815-586f-43a5-96a4-cfe46001a766","metadata":{},"outputs":[{"name":"stdout","output_type":"stream","text":["22\n"]}],"source":["print(len(pages))"]},{"cell_type":"markdown","id":"2cde6b9d-71c8-4851-a8f6-a3f0e76f6dab","metadata":{},"source":["`page`中的每一元素为一个文档,变量类型为`langchain.schema.Document`, 文档变量类型包含两个属性\n","- `page_content` 包含该文档的内容。\n","- `meta_data` 为文档相关的描述性数据。"]},{"cell_type":"code","execution_count":7,"id":"921827ae-3a5b-4f29-b015-a5dde3be1410","metadata":{},"outputs":[],"source":["page = pages[0]"]},{"cell_type":"code","execution_count":8,"id":"aadaa840-0f30-4ae3-b06b-7fe8f468d146","metadata":{},"outputs":[{"name":"stdout","output_type":"stream","text":["\n"]}],"source":["print(type(page))"]},{"cell_type":"code","execution_count":9,"id":"85777ce2-42c7-4e11-b1ba-06fd6a0d8502","metadata":{},"outputs":[{"name":"stdout","output_type":"stream","text":["MachineLearning-Lecture01 \n","Instructor (Andrew Ng): Okay. Good morning. Welcome to CS229, the machine \n","learning class. So what I wanna do today is ju st spend a little time going over the logistics \n","of the class, and then we'll start to talk a bit about machine learning. \n","By way of introduction, my name's Andrew Ng and I'll be instru ctor for this class. And so \n","I personally work in machine learning, and I' ve worked on it for about 15 years now, and \n","I actually think that machine learning i\n"]}],"source":["print(page.page_content[0:500])"]},{"cell_type":"code","execution_count":10,"id":"8a1f8acd-f8c7-46af-a29f-df172067deba","metadata":{},"outputs":[{"name":"stdout","output_type":"stream","text":["{'source': 'docs/cs229_lectures/MachineLearning-Lecture01.pdf', 'page': 0}\n"]}],"source":["print(page.metadata)"]},{"cell_type":"markdown","id":"1e9cead7-a967-4a8f-8d3d-0f94f2ff129e","metadata":{},"source":["## 二、YouTube音频\n","\n","在第一部分的内容,我们学习了如何加载PDF文档。在这部分的内容,我们学习对于给定的 YouTube 视频链接\n","- 如何使用LangChain加载器将视频的音频下载到本地\n","- 然后使用OpenAIWhisperPaser解析器将音频转化为文本"]},{"cell_type":"markdown","id":"b4720268-ddab-4c18-9072-10aab8f0ac7c","metadata":{},"source":["### 2.1 安装相关包 "]},{"cell_type":"code","execution_count":11,"id":"37dbeb50-d6c5-4db0-88da-1ef9d3e47417","metadata":{},"outputs":[],"source":["!pip -q install yt_dlp\n","!pip -q install pydub"]},{"cell_type":"markdown","id":"a243b258-eae3-46b0-803f-cd897b31cf78","metadata":{},"source":["### 2.2 加载Youtube音频文档"]},{"cell_type":"code","execution_count":12,"id":"f25593f9-a6d2-4137-94cb-881141ca99fd","metadata":{},"outputs":[],"source":["from langchain.document_loaders.generic import GenericLoader\n","from langchain.document_loaders.parsers import OpenAIWhisperParser\n","from langchain.document_loaders.blob_loaders.youtube_audio import YoutubeAudioLoader"]},{"cell_type":"code","execution_count":2,"id":"5ca7b99a-ba4d-4989-aed6-be76acb405c0","metadata":{},"outputs":[{"name":"stdout","output_type":"stream","text":["[youtube] Extracting URL: https://www.youtube.com/watch?v=jGwO_UgTS7I\n","[youtube] jGwO_UgTS7I: Downloading webpage\n","[youtube] jGwO_UgTS7I: Downloading ios player API JSON\n","[youtube] jGwO_UgTS7I: Downloading android player API JSON\n","[youtube] jGwO_UgTS7I: Downloading m3u8 information\n","[info] jGwO_UgTS7I: Downloading 1 format(s): 140\n","[download] docs/youtube//Stanford CS229: Machine Learning Course, Lecture 1 - Andrew Ng (Autumn 2018).m4a has already been downloaded\n","[download] 100% of 69.76MiB\n","[ExtractAudio] Not converting audio docs/youtube//Stanford CS229: Machine Learning Course, Lecture 1 - Andrew Ng (Autumn 2018).m4a; file is already in target format m4a\n","Transcribing part 1!\n","Transcribing part 2!\n","Transcribing part 3!\n","Transcribing part 4!\n"]}],"source":["url=\"https://www.youtube.com/watch?v=jGwO_UgTS7I\"\n","save_dir=\"docs/youtube/\"\n","\n","# 创建一个 GenericLoader Class 实例\n","loader = GenericLoader(\n"," #将链接url中的Youtube视频的音频下载下来,存在本地路径save_dir\n"," YoutubeAudioLoader([url],save_dir), \n"," \n"," #使用OpenAIWhisperPaser解析器将音频转化为文本\n"," OpenAIWhisperParser()\n",")\n","\n","# 调用 GenericLoader Class 的函数 load对视频的音频文件进行加载\n","docs = loader.load()"]},{"cell_type":"markdown","id":"ffb4db5d-39b5-4cd7-82d9-824ed71fc116","metadata":{"tags":[]},"source":["### 2.3 探索加载的数据"]},{"cell_type":"markdown","id":"0fd91c34-ac19-4a09-8ca0-99262011d9ba","metadata":{},"source":["文档加载后储存在`docs`变量中:\n","- `docs`的变量类型为`List`\n","- 打印 `docs` 的长度可以看到一共包含多少页"]},{"cell_type":"code","execution_count":15,"id":"ddb89cee-32bd-4c5f-91f1-c46d1f0300da","metadata":{},"outputs":[{"name":"stdout","output_type":"stream","text":["\n"]}],"source":["print(type(docs))"]},{"cell_type":"code","execution_count":16,"id":"2cea4ff3-8548-4158-9e55-a574de0fd29e","metadata":{},"outputs":[{"name":"stdout","output_type":"stream","text":["1\n"]}],"source":["print(len(docs))"]},{"cell_type":"markdown","id":"24952655-128e-4a7b-b8c0-e93156acbe1b","metadata":{},"source":["`docs`中的每一元素为一个文档,变量类型为`langchain.schema.document.Document`, 文档变量类型包含两个属性\n","- `page_content` 包含该文档的内容。\n","- `meta_data` 为文档相关的描述性数据。"]},{"cell_type":"code","execution_count":19,"id":"d89bf91d-d39b-4682-9c56-0cde449d6051","metadata":{},"outputs":[],"source":["doc = docs[0]"]},{"cell_type":"code","execution_count":20,"id":"e6df253f-ad9e-42d5-b6e1-47b7c0d2d564","metadata":{},"outputs":[{"name":"stdout","output_type":"stream","text":["\n"]}],"source":["print(type(doc))"]},{"cell_type":"code","execution_count":13,"id":"80e4b798-875e-4f0e-ba16-5277f8ec1f62","metadata":{},"outputs":[{"name":"stdout","output_type":"stream","text":["Welcome to CS229 Machine Learning. Uh, some of you know that this is a class that's taught at Stanford for a long time. And this is often the class that, um, I most look forward to teaching each year because this is where we've helped, I think, several generations of Stanford students become experts in machine learning, got- built many of their products and services and startups that I'm sure, many of you or probably all of you are using, uh, uh, today. Um, so what I want to do today was spend s\n"]}],"source":["print(doc.page_content[0:500])"]},{"cell_type":"code","execution_count":14,"id":"7f363e33-6a4d-4b78-aa7d-1b8cf6b59567","metadata":{},"outputs":[{"name":"stdout","output_type":"stream","text":["{'source': 'docs/youtube/Stanford CS229: Machine Learning Course, Lecture 1 - Andrew Ng (Autumn 2018).m4a', 'chunk': 0}\n"]}],"source":["print(doc.metadata)"]},{"cell_type":"markdown","id":"5b7ddc7d-2d40-4811-8cb3-5e73344ebe24","metadata":{},"source":["## 三、网页文档\n","\n","在第二部分,我们对于给定的 YouTube 视频链接 (URL),使用 LangChain 加载器将视频的音频下载到本地,然后使用 OpenAIWhisperPaser 解析器将音频转化为文本。\n","\n","本部分,对于给定网页文档链接(URLs),我们学习如何对其进行加载。这里我们对Github上的网页文档进行加载,该文档格式为markdown。"]},{"cell_type":"markdown","id":"b28abf4d-4907-47f6-b54d-6d322a5794e6","metadata":{},"source":["### 3.1 加载网页文档"]},{"cell_type":"code","execution_count":21,"id":"1a68375f-44ae-4905-bf9c-1f01ec800481","metadata":{},"outputs":[],"source":["from langchain.document_loaders import WebBaseLoader\n","\n","\n","# 创建一个 WebBaseLoader Class 实例\n","url = \"https://github.com/basecamp/handbook/blob/master/37signals-is-you.md\"\n","header = {'User-Agent': 'python-requests/2.27.1', \n"," 'Accept-Encoding': 'gzip, deflate, br', \n"," 'Accept': '*/*',\n"," 'Connection': 'keep-alive'}\n","loader = WebBaseLoader(web_path=url,header_template=header)\n","\n","# 调用 WebBaseLoader Class 的函数 load对文件进行加载\n","docs = loader.load()"]},{"cell_type":"markdown","id":"fc24f44a-01f5-49a3-9529-2f05c1053b2c","metadata":{"tags":[]},"source":["### 3.2 探索加载的数据"]},{"cell_type":"markdown","id":"f2f108b9-713b-4b98-b44d-4dfc3dcbcde2","metadata":{},"source":["文档加载后储存在`docs`变量中:\n","- `docs`的变量类型为`List`\n","- 打印 `docs` 的长度可以看到一共包含多少页"]},{"cell_type":"code","execution_count":22,"id":"8c8670fa-203b-4c35-9266-f976f50f0f5d","metadata":{},"outputs":[{"name":"stdout","output_type":"stream","text":["\n"]}],"source":["print(type(docs))"]},{"cell_type":"code","execution_count":23,"id":"0e85a526-55e7-4186-8697-d16a891bcabc","metadata":{},"outputs":[{"name":"stdout","output_type":"stream","text":["1\n"]}],"source":["print(len(docs))"]},{"cell_type":"markdown","id":"b4397791-4d3c-4609-86be-3cda90a3f2fc","metadata":{},"source":["`docs`中的每一元素为一个文档,变量类型为`langchain.schema.document.Document`, 文档变量类型包含两个属性\n","- `page_content` 包含该文档的内容。\n","- `meta_data` 为文档相关的描述性数据。"]},{"cell_type":"code","execution_count":24,"id":"26423c51-6503-478c-b17d-bbe57049a04c","metadata":{},"outputs":[],"source":["doc = docs[0]"]},{"cell_type":"code","execution_count":25,"id":"a243638f-0c23-46b8-8854-13f1f1de6f0a","metadata":{},"outputs":[{"name":"stdout","output_type":"stream","text":["\n"]}],"source":["print(type(doc))"]},{"cell_type":"code","execution_count":26,"id":"9f237541-79b7-4ae4-9e0e-27a28af99b7a","metadata":{},"outputs":[{"name":"stdout","output_type":"stream","text":["{\"payload\":{\"allShortcutsEnabled\":false,\"fileTree\":{\"\":{\"items\":[{\"name\":\"37signals-is-you.md\",\"path\":\"37signals-is-you.md\",\"contentType\":\"file\"},{\"name\":\"LICENSE.md\",\"path\":\"LICENSE.md\",\"contentType\":\"file\"},{\"name\":\"README.md\",\"path\":\"README.md\",\"contentType\":\"file\"},{\"name\":\"benefits-and-perks.md\",\"path\":\"benefits-and-perks.md\",\"contentType\":\"file\"},{\"name\":\"code-of-conduct.md\",\"path\":\"code-of-conduct.md\",\"contentType\":\"file\"},{\"name\":\"faq.md\",\"path\":\"faq.md\",\"contentType\":\"file\"},{\"name\":\"getting-started.md\",\"path\":\"getting-started.md\",\"contentType\":\"file\"},{\"name\":\"how-we-work.md\",\"path\":\"how-we-work.md\",\"contentType\":\"file\"},{\"name\":\"international-travel-guide.md\",\"path\":\"international-travel-guide.md\",\"contentType\":\"file\"},{\"name\":\"making-a-career.md\",\"path\":\"making-a-career.md\",\"contentType\":\"file\"},{\"name\":\"managing-work-devices.md\",\"path\":\"managing-work-devices.md\",\"contentType\":\"file\"},{\"name\":\"moonlighting.md\",\"path\":\"moonlighting.md\",\"contentType\":\"file\"},{\"name\":\"our-internal-systems.md\",\"path\":\"our-internal-systems.md\",\"contentType\":\"file\"},{\"name\":\"our-rituals.md\",\"path\":\"our-rituals.md\",\"contentType\":\"file\"},{\"name\":\"performance-plans.md\",\"path\":\"performance-plans.md\",\"contentType\":\"file\"},{\"name\":\"product-histories.md\",\"path\":\"product-histories.md\",\"contentType\":\"file\"},{\"name\":\"stateFMLA.md\",\"path\":\"stateFMLA.md\",\"contentType\":\"file\"},{\"name\":\"titles-for-data.md\",\"path\":\"titles-for-data.md\",\"contentType\":\"file\"},{\"name\":\"titles-for-designers.md\",\"path\":\"titles-for-designers.md\",\"contentType\":\"file\"},{\"name\":\"titles-for-ops.md\",\"path\":\"titles-for-ops.md\",\"contentType\":\"file\"},{\"name\":\"titles-for-programmers.md\",\"path\":\"titles-for-programmers.md\",\"contentType\":\"file\"},{\"name\":\"titles-for-support.md\",\"path\":\"titles-for-support.md\",\"contentType\":\"file\"},{\"name\":\"vocabulary.md\",\"path\":\"vocabulary.md\",\"contentType\":\"file\"},{\"name\":\"what-influenced-us.md\",\"path\":\"what-influenced-us.md\",\"contentType\":\"file\"},{\"name\":\"what-we-stand-for.md\",\"path\":\"what-we-stand-for.md\",\"contentType\":\"file\"},{\"name\":\"where-we-work.md\",\"path\":\"where-we-work.md\",\"contentType\":\"file\"}],\"totalCount\":26}},\"fileTreeProcessingTime\":3.936437,\"foldersToFetch\":[],\"reducedMotionEnabled\":null,\"repo\":{\"id\":90042196,\"defaultBranch\":\"master\",\"name\":\"handbook\",\"ownerLogin\":\"basecamp\",\"currentUserCanPush\":false,\"isFork\":false,\"isEmpty\":false,\"createdAt\":\"2017-05-02T14:23:23.000Z\",\"ownerAvatar\":\"https://avatars.githubusercontent.com/u/13131?v=4\",\"public\":true,\"private\":false,\"isOrgOwned\":true},\"refInfo\":{\"name\":\"master\",\"listCacheKey\":\"v0:1682672280.0\",\"canEdit\":false,\"refType\":\"branch\",\"currentOid\":\"1577f27c63aa8df61996924824afb8df6f1bf20e\"},\"path\":\"37signals-is-you.md\",\"currentUser\":null,\"blob\":{\"rawBlob\":null,\"colorizedLines\":null,\"stylingDirectives\":null,\"csv\":null,\"csvError\":null,\"dependabotInfo\":{\"showConfigurationBanner\":false,\"configFilePath\":null,\"networkDependabotPath\":\"/basecamp/handbook/network/updates\",\"dismissConfigurationNoticePath\":\"/settings/dismiss-notice/dependabot_configuration_notice\",\"configurationNoticeDismissed\":null,\"repoAlertsPath\":\"/basecamp/handbook/security/dependabot\",\"repoSecurityAndAnalysisPath\":\"/basecamp/handbook/settings/security_analysis\",\"repoOwnerIsOrg\":true,\"currentUserCanAdminRepo\":false},\"displayName\":\"37signals-is-you.md\",\"displayUrl\":\"https://github.com/basecamp/handbook/blob/master/37signals-is-you.md?raw=true\",\"headerInfo\":{\"blobSize\":\"2.19 KB\",\"deleteInfo\":{\"deletePath\":null,\"deleteTooltip\":\"You must be signed in to make or propose changes\"},\"editInfo\":{\"editTooltip\":\"You must be signed in to make or propose changes\"},\"ghDesktopPath\":\"https://desktop.github.com\",\"gitLfsPath\":null,\"onBranch\":true,\"shortPath\":\"e5ca0f0\",\"siteNavLoginPath\":\"/login?return_to=https%3A%2F%2Fgithub.com%2Fbasecamp%2Fhandbook%2Fblob%2Fmaster%2F37signals-is-you.md\",\"isCSV\":false,\"isRichtext\":true,\"toc\":[{\"level\":1,\"text\":\"37signals Is You\",\"anchor\":\"37signals-is-you\",\"htmlText\":\"37signals Is You\"}],\"lineInfo\":{\"truncatedLoc\":\"11\",\"truncatedSloc\":\"6\"},\"mode\":\"file\"},\"image\":false,\"isCodeownersFile\":null,\"isValidLegacyIssueTemplate\":false,\"issueTemplateHelpUrl\":\"https://docs.github.com/articles/about-issue-and-pull-request-templates\",\"issueTemplate\":null,\"discussionTemplate\":null,\"language\":\"Markdown\",\"large\":false,\"loggedIn\":false,\"newDiscussionPath\":\"/basecamp/handbook/discussions/new\",\"newIssuePath\":\"/basecamp/handbook/issues/new\",\"planSupportInfo\":{\"repoIsFork\":null,\"repoOwnedByCurrentUser\":null,\"requestFullPath\":\"/basecamp/handbook/blob/master/37signals-is-you.md\",\"showFreeOrgGatedFeatureMessage\":null,\"showPlanSupportBanner\":null,\"upgradeDataAttributes\":null,\"upgradePath\":null},\"publishBannersInfo\":{\"dismissActionNoticePath\":\"/settings/dismiss-notice/publish_action_from_dockerfile\",\"dismissStackNoticePath\":\"/settings/dismiss-notice/publish_stack_from_file\",\"releasePath\":\"/basecamp/handbook/releases/new?marketplace=true\",\"showPublishActionBanner\":false,\"showPublishStackBanner\":false},\"renderImageOrRaw\":false,\"richText\":\"37signals Is You\\nEveryone working at 37signals represents 37signals. When a customer gets a response from Merissa on support, Merissa is 37signals. When a customer reads a tweet by Eron that our systems are down, Eron is 37signals. In those situations, all the other stuff we do to cultivate our best image is secondary. What’s right in front of someone in a time of need is what they’ll remember.\\nThat’s what we mean when we say marketing is everyone’s responsibility, and that it pays to spend the time to recognize that. This means avoiding the bullshit of outage language and bending our policies, not just lending your ears. It means taking the time to get the writing right and consider how you’d feel if you were on the other side of the interaction.\\nThe vast majority of our customers come from word of mouth and much of that word comes from people in our audience. This is an audience we’ve been educating and entertaining for 20 years and counting, and your voice is part of us now, whether you like it or not! Tell us and our audience what you have to say!\\nThis goes for tools and techniques as much as it goes for prose. 37signals not only tries to out-teach the competition, but also out-share and out-collaborate. We’re prolific open source contributors through Ruby on Rails, Trix, Turbolinks, Stimulus, and many other projects. Extracting the common infrastructure that others could use as well is satisfying, important work, and we should continue to do that.\\nIt’s also worth mentioning that joining 37signals can be all-consuming. We’ve seen it happen. You dig 37signals, so you feel pressure to contribute, maybe overwhelmingly so. The people who work here are some of the best and brightest in our industry, so the self-imposed burden to be exceptional is real. But here’s the thing: stop it. Settle in. We’re glad you love this job because we all do too, but at the end of the day it’s a job. Do your best work, collaborate with your team, write, read, learn, and then turn off your computer and play with your dog. We’ll all be better for it.\\n\",\"renderedFileInfo\":null,\"tabSize\":8,\"topBannersInfo\":{\"overridingGlobalFundingFile\":false,\"globalPreferredFundingPath\":null,\"repoOwner\":\"basecamp\",\"repoName\":\"handbook\",\"showInvalidCitationWarning\":false,\"citationHelpUrl\":\"https://docs.github.com/en/github/creating-cloning-and-archiving-repositories/creating-a-repository-on-github/about-citation-files\",\"showDependabotConfigurationBanner\":false,\"actionsOnboardingTip\":null},\"truncated\":false,\"viewable\":true,\"workflowRedirectUrl\":null,\"symbols\":{\"timedOut\":false,\"notAnalyzed\":true,\"symbols\":[]}},\"csrf_tokens\":{\"/basecamp/handbook/branches\":{\"post\":\"o3HTNEDyuKtINffBkguVz-P3KUwBN04ZM_vvyoNKymcy66lDUtXVvEi7EvsbgFoz2d3qgU_earsuIftbbtKlcg\"}}},\"title\":\"handbook/37signals-is-you.md at master · basecamp/handbook\",\"locale\":\"en\"}\n"]}],"source":["print(doc.page_content)"]},{"cell_type":"markdown","id":"26538237-1fc2-4915-944a-1f68f3ae3759","metadata":{},"source":[" "]},{"cell_type":"markdown","id":"52025103-205e-4137-a116-89f37fcfece1","metadata":{},"source":["可以看到上面的文档内容包含许多冗余的信息。通常来讲,我们需要进行对这种数据进行进一步处理(Post Processing)。"]},{"cell_type":"code","execution_count":27,"id":"a7c5281f-aeed-4ee7-849b-bbf9fd3e35c7","metadata":{},"outputs":[{"name":"stdout","output_type":"stream","text":["37signals Is You\n","Everyone working at 37signals represents 37signals. When a customer gets a response from Merissa on support, Merissa is 37signals. When a customer reads a tweet by Eron that our systems are down, Eron is 37signals. In those situations, all the other stuff we do to cultivate our best image is secondary. What’s right in front of someone in a time of need is what they’ll remember.\n","That’s what we mean when we say marketing is everyone’s responsibility, and that it pays to spend the time to recognize that. This means avoiding the bullshit of outage language and bending our policies, not just lending your ears. It means taking the time to get the writing right and consider how you’d feel if you were on the other side of the interaction.\n","The vast majority of our customers come from word of mouth and much of that word comes from people in our audience. This is an audience we’ve been educating and entertaining for 20 years and counting, and your voice is part of us now, whether you like it or not! Tell us and our audience what you have to say!\n","This goes for tools and techniques as much as it goes for prose. 37signals not only tries to out-teach the competition, but also out-share and out-collaborate. We’re prolific open source contributors through Ruby on Rails, Trix, Turbolinks, Stimulus, and many other projects. Extracting the common infrastructure that others could use as well is satisfying, important work, and we should continue to do that.\n","It’s also worth mentioning that joining 37signals can be all-consuming. We’ve seen it happen. You dig 37signals, so you feel pressure to contribute, maybe overwhelmingly so. The people who work here are some of the best and brightest in our industry, so the self-imposed burden to be exceptional is real. But here’s the thing: stop it. Settle in. We’re glad you love this job because we all do too, but at the end of the day it’s a job. Do your best work, collaborate with your team, write, read, learn, and then turn off your computer and play with your dog. We’ll all be better for it.\n","\n"]}],"source":["import json\n","convert_to_json = json.loads(doc.page_content)\n","extracted_markdow = convert_to_json['payload']['blob']['richText']\n","print(extracted_markdow)"]},{"cell_type":"markdown","id":"d35e99b4-dd67-4940-bbeb-b2a59bf8cd3d","metadata":{},"source":["## 四、Notion文档\n","\n","- 点击[Notion示例文档](https://yolospace.notion.site/Blendle-s-Employee-Handbook-e31bff7da17346ee99f531087d8b133f)右上方复制按钮(Duplicate),复制文档到你的Notion空间\n","- 点击右上方`⋯` 按钮,选择导出为Mardown&CSV。导出的文件将为zip文件夹\n","- 解压并保存mardown文档到本地路径`docs/Notion_DB/`"]},{"cell_type":"markdown","id":"f8cf2778-288c-4964-81e7-0ed881e31652","metadata":{},"source":["### 4.1 加载Notion Markdown文档"]},{"cell_type":"code","execution_count":28,"id":"081f5ee4-6b5d-45bf-a7e6-079abc560729","metadata":{},"outputs":[],"source":["from langchain.document_loaders import NotionDirectoryLoader\n","loader = NotionDirectoryLoader(\"docs/Notion_DB\")\n","docs = loader.load()"]},{"cell_type":"markdown","id":"88d5d094-a490-4c64-ab93-5c5cec0853aa","metadata":{"tags":[]},"source":["### 4.2 探索加载的数据"]},{"cell_type":"markdown","id":"a3ffe318-d22a-4687-b613-f679ad9ad616","metadata":{},"source":["文档加载后储存在`docs`变量中:\n","- `docs`的变量类型为`List`\n","- 打印 `docs` 的长度可以看到一共包含多少页"]},{"cell_type":"code","execution_count":29,"id":"106323dd-0d24-40d4-8302-ed2a35d13347","metadata":{},"outputs":[{"name":"stdout","output_type":"stream","text":["\n"]}],"source":["print(type(docs))"]},{"cell_type":"code","execution_count":30,"id":"fa3ee0fe-7daa-4193-9ee1-4ee89cb3b843","metadata":{},"outputs":[{"name":"stdout","output_type":"stream","text":["1\n"]}],"source":["print(len(docs))"]},{"cell_type":"markdown","id":"b3cd3feb-d2c1-46b6-8b16-d4b2101c5632","metadata":{},"source":["`docs`中的每一元素为一个文档,变量类型为`langchain.schema.document.Document`, 文档变量类型包含两个属性\n","- `page_content` 包含该文档的内容。\n","- `meta_data` 为文档相关的描述性数据。"]},{"cell_type":"code","execution_count":31,"id":"5b220df6-fd0b-4b62-9da4-29962926fe87","metadata":{},"outputs":[],"source":["doc = docs[0]"]},{"cell_type":"code","execution_count":32,"id":"98ef8fbf-e820-41de-919d-c462a910f4f1","metadata":{},"outputs":[{"name":"stdout","output_type":"stream","text":["\n"]}],"source":["print(type(doc))"]},{"cell_type":"code","execution_count":33,"id":"933da0f3-4d5f-4363-9142-050ecf226c1f","metadata":{},"outputs":[{"name":"stdout","output_type":"stream","text":["# Blendle's Employee Handbook\n","\n","This is a living document with everything we've learned working with people while running a startup. And, of course, we continue to learn. Therefore it's a document that will continue to change. \n","\n","**Everything related to working at Blendle and the people of Blendle, made public.**\n","\n","These are the lessons from three years of working with the people of Blendle. It contains everything from [how our leaders lead](https://www.notion.so/ecfb7e647136468a9a0a32f1771a8f52?pv\n"]}],"source":["print(doc.page_content[0:500])"]}],"metadata":{"kernelspec":{"display_name":"Python 3 (ipykernel)","language":"python","name":"python3"},"language_info":{"codemirror_mode":{"name":"ipython","version":3},"file_extension":".py","mimetype":"text/x-python","name":"python","nbconvert_exporter":"python","pygments_lexer":"ipython3","version":"3.9.12"}},"nbformat":4,"nbformat_minor":5}
diff --git "a/content/\345\277\205\344\277\256\345\233\233-LangChain Chat with Your Data/3.\346\226\207\346\241\243\345\210\206\345\211\262 Splitting.ipynb" "b/content/\345\277\205\344\277\256\345\233\233-LangChain Chat with Your Data/3.\346\226\207\346\241\243\345\210\206\345\211\262 Splitting.ipynb"
index 958c6310..d708f067 100644
--- "a/content/\345\277\205\344\277\256\345\233\233-LangChain Chat with Your Data/3.\346\226\207\346\241\243\345\210\206\345\211\262 Splitting.ipynb"
+++ "b/content/\345\277\205\344\277\256\345\233\233-LangChain Chat with Your Data/3.\346\226\207\346\241\243\345\210\206\345\211\262 Splitting.ipynb"
@@ -1 +1 @@
-{"cells":[{"cell_type":"markdown","metadata":{},"source":["# 第三章 文档分割\n","\n"," - [一、配置环境](#一、配置环境)\n"," - [二、文档分割重要性](#二、文档分割重要性)\n"," - [三、文档分割方式](#三、文档分割方式)\n"," - [3.1 基于字符的分割方式](#3.1-基于字符的分割方式)\n"," - [3.2 基于token的分割](#3.2-基于token的分割)\n"," - [3.3 分割Markdown文档](#3.3-分割Markdown文档)\n"]},{"cell_type":"markdown","metadata":{},"source":["我们刚刚讨论了如何将文档加载到标准格式中,现在我们要谈论如何将它们分割成较小的块。这听起来可能很简单,但其中有很多微妙之处会对后续工作产生重要影响。"]},{"cell_type":"markdown","metadata":{},"source":["## 一、配置环境"]},{"cell_type":"code","execution_count":1,"metadata":{},"outputs":[],"source":["import os\n","import openai\n","import sys\n","sys.path.append('../..')\n","\n","from dotenv import load_dotenv, find_dotenv\n","_ = load_dotenv(find_dotenv()) \n","\n","openai.api_key = os.environ['OPENAI_API_KEY']"]},{"attachments":{"image.png":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAqoAAAHUCAIAAAB9J50RAAAMPmlDQ1BJQ0MgUHJvZmlsZQAASImVVwdYU8kWnluSkEBogVCkhN4EkV6khNBiEJAq2AhJgFBCDAQFO7qo4NpFBGzoqoiiawFkrYjdRbH3BRUVZV0s2FB5kwK67CvfO983d/575sx/zpw7M3cGAI0TXLE4G9UEIEeUL4kJC2JMSEpmkJ4BBGBAGxCBHpeXJ2ZGR0cAKIP13+X9TWgN5ZqjjOuf7f9VtPiCPB4ASDTEqfw8Xg7EBwHAq3liST4ARJneYnq+WIZhAToSGCDEi2U4XYGrZThVgffJbeJiWBC3AqCixuVK0gFQvwL1jAJeOuRQ74XYWcQXigDQYEDsn5OTy4c4BWJbaCOGWMbvlfoDT/rfOFOHOLnc9CGsGItcVIKFeeJsbuH/mY7/LTnZ0kEf1rCoZUjCY2Rjhnm7nZXLkWE1iHtEqZFREGtD/FHIl9tDjFIypOHxCnvUiJfHgjkDdIid+dxgDsRGEIeKsiMjlPrUNGEoG2I4Q9AZwnx2HMT6EC8W5IXEKm02S3JjlL7QhjQJi6nUn+NK5H5lvh5Ks+KZSv43GQK2kh9TL8qIS4SYArFlgTAhEmJ1iJ3ysmI5SpsxRRmsyEEbiTRGFr8lxDECUViQgh8rSJOExijtS3PyBseLbc4QsiOVeH9+Rly4Ij9YK48rjx+OBbsiEDHjB3kEeRMiBsfCFwSHKMaOPReI4mOVPB/F+UExir44RZwdrbTHzQXZYTK9OcRueQWxyr54Qj6ckAp+PE2cHx2niBMvyuSOjVbEg68AEYAFggEDSGFJBbkgEwjbehp74JuiJRRwgQSkAwFwVGoGeyTKW0TwGQuKwJ8QCUDeUL8geasAFED91yGt4ukI0uStBfIeWeApxDmAA7Lhu1TeSzTkLQE8gRrhP7xzYeHBeLNhkbX/e/2g9ruGCTURSo100CNDY9CSGEIMJoYTQ4l2uCHuj/viEfAZCIsL7oV7D47juz3hKaGd8Ihwg9BBuDNVWCwZFuU40AH5Q5W5SP0xF7g15HTHg3A/yA6ZcTpuCBxxN+iHiQdAz+5Qy1LGLcsKYxj330bww9dQ2pGdyShZjxxIth3eU91e3X2IRZbrH/OjiDV1KN+soZbh/lk/ZJ8Pa85wS2wxdgA7i53EzmNHsEbAwI5jTdgl7KgMD82uJ/LZNegtRh5PFuQR/sPf4JeVZTLPuc652/mLoi1fMEO2RwNWrrhQIkzPyGcw4R9BwGCLeE4jGS7OLq4AyP4viu3rLV3+30DoF77rFpgB4Fc4MDBw5LuOA/fWA0fh8r/7XWfTBbeJCwCcW8eTSgoUOlz2IMBdQgOuNANgAiyALRyPC/AAviAQhICxIArEgSQwBUafAee5BEwHs8B8UALKwAqwFlSCTWAr2An2gP2gERwBJ8EZcBFcATfAPTh7usBL0Aveg34EQUgIFaEhBogpYoU4IC6IF+KPhCARSAyShKQg6YgIkSKzkAVIGbIKqUS2ILXIr8hh5CRyHmlH7iCdSDfyBvmMYqgaqoMao9boKNQLZaIcNA6djKaj09AidCG6DK1Aa9DdaAN6Er2I3kA70JdoHwYwVYyOmWGOmBfGwqKwZCwNk2BzsFKsHKvB6rFm+J2vYR1YD/YJJ+I0nIE7whkcjsfjPHwaPgdfilfiO/EGvBW/hnfivfg3ApVgRHAg+BDYhAmEdMJ0QgmhnLCdcIhwGq6lLsJ7IpFIJ9oQPeFaTCJmEmcSlxI3EPcSTxDbiY+JfSQSyYDkQPIjRZG4pHxSCWk9aTfpOOkqqYv0UUVVxVTFRSVUJVlFpFKsUq6yS+WYylWVZyr9ZE2yFdmHHEXmkwvJy8nbyM3ky+Qucj9Fi2JD8aPEUTIp8ykVlHrKacp9yltVVVVzVW/V8apC1XmqFar7VM+pdqp+UtNWs1djqU1Sk6otU9uhdkLtjtpbKpVqTQ2kJlPzqcuotdRT1IfUj+o0dSd1tjpffa56lXqD+lX1VxpkDSsNpsYUjSKNco0DGpc1ejTJmtaaLE2u5hzNKs3Dmrc0+7RoWqO1orRytJZq7dI6r/Vcm6RtrR2izddeqL1V+5T2YxpGs6CxaDzaAto22mlalw5Rx0aHrZOpU6azR6dNp1dXW9dNN0F3hm6V7lHdDjpGt6az6dn05fT99Jv0z3rGekw9gd4SvXq9q3of9EfoB+oL9Ev19+rf0P9swDAIMcgyWGnQaPDAEDe0NxxvON1wo+Fpw54ROiN8R/BGlI7YP+KuEWpkbxRjNNNoq9Eloz5jE+MwY7HxeuNTxj0mdJNAk0yTNSbHTLpNaab+pkLTNabHTV8wdBlMRjajgtHK6DUzMgs3k5ptMWsz6ze3MY83Lzbfa/7AgmLhZZFmscaixaLX0tRynOUsyzrLu1ZkKy+rDKt1VmetPljbWCdaL7JutH5uo2/DtimyqbO5b0u1DbCdZltje92OaOdll2W3we6KPWrvbp9hX2V/2QF18HAQOmxwaB9JGOk9UjSyZuQtRzVHpmOBY51jpxPdKcKp2KnR6dUoy1HJo1aOOjvqm7O7c7bzNud7o7VHjx1dPLp59BsXexeeS5XLdVeqa6jrXNcm19duDm4Ct41ut91p7uPcF7m3uH/18PSQeNR7dHtaeqZ4Vnve8tLxivZa6nXOm+Ad5D3X+4j3Jx8Pn3yf/T5/+Tr6Zvnu8n0+xmaMYMy2MY/9zP24flv8OvwZ/in+m/07AswCuAE1AY8CLQL5gdsDnzHtmJnM3cxXQc5BkqBDQR9YPqzZrBPBWHBYcGlwW4h2SHxIZcjDUPPQ9NC60N4w97CZYSfCCeGc8JXht9jGbB67lt071nPs7LGtHDVOLKeS8yjCPkIS0TwOHTd23Opx9yOtIkWRjVEgih21OupBtE30tOjfxhPHR4+vGv80ZnTMrJizsbTYqbG7Yt/HBcUtj7sXbxsvjW9J0EiYlFCb8CExOHFVYseEURNmT7iYZJgkTGpKJiUnJG9P7psYMnHtxK5J7pNKJt2cbDN5xuTzUwynZE85OlVjKnfqgRRCSmLKrpQv3ChuDbcvlZ1andrLY/HW8V7yA/lr+N0CP8EqwbM0v7RVac/T/dJXp3dnBGSUZ/QIWcJK4evM8MxNmR+yorJ2ZA1kJ2bvzVHJSck5LNIWZYlac01yZ+S2ix3EJeKOaT7T1k7rlXAk2/OQvMl5Tfk68CB/SWor/UnaWeBfUFXwcXrC9AMztGaIZlwqtC9cUvisKLTol5n4TN7Mlllms+bP6pzNnL1lDjIndU7LXIu5C+d2zQubt3M+ZX7W/N+LnYtXFb9bkLigeaHxwnkLH/8U9lNdiXqJpOTWIt9Fmxbji4WL25a4Llm/5Fspv/RCmXNZedmXpbylF34e/XPFzwPL0pa1LfdYvnEFcYVoxc2VASt3rtJaVbTq8epxqxvWMNaUrnm3dura8+Vu5ZvWUdZJ13VURFQ0rbdcv2L9l8qMyhtVQVV7q42ql1R/2MDfcHVj4Mb6TcabyjZ93izcfHtL2JaGGuua8q3ErQVbn25L2Hb2F69farcbbi/b/nWHaEfHzpidrbWetbW7jHYtr0PrpHXduyftvrIneE9TvWP9lr30vWX7wD7pvhe/pvx6cz9nf8sBrwP1B60OVh+iHSptQBoKG3obMxo7mpKa2g+PPdzS7Nt86Den33YcMTtSdVT36PJjlGMLjw0cLzred0J8oudk+snHLVNb7p2acOp66/jWttOc0+fOhJ45dZZ59vg5v3NHzvucP3zB60LjRY+LDZfcLx363f33Q20ebQ2XPS83XfG+0tw+pv3Y1YCrJ68FXztznX394o3IG+0342/evjXpVsdt/u3nd7LvvL5bcLf/3rz7hPulDzQflD80eljzh90fezs8Oo52BndeehT76N5j3uOXT/KefOla+JT6tPyZ6bPa5y7Pj3SHdl95MfFF10vxy/6ekj+1/qx+Zfvq4F+Bf13qndDb9VryeuDN0rcGb3e8c3vX0hfd9/B9zvv+D6UfDT7u/OT16eznxM/P+qd/IX2p+Gr3tfkb59v9gZyBATFXwpUfBTBY0LQ0AN7sAICaBAANniEoExX3P7kgijurHIH/hBV3RLl4AFAPK9kxnnUCgH2wWM+D3LCWHeHjAgHq6jpUBu9q8nulTIjwHrA5WIburJ48DwwTxZ3zh7iH10DG6gaG1/8C3C58iXTvVm8AAAA4ZVhJZk1NACoAAAAIAAGHaQAEAAAAAQAAABoAAAAAAAKgAgAEAAAAAQAAAqqgAwAEAAAAAQAAAdQAAAAAdNIawwAAQABJREFUeAHsnQeclsW1/3eX3ntH2AUEBQR7L4glthhQU24SNVGTqFFz03Ov+d9c00yiMYnez025lsTEFhMbdlBQUbCCBVBElipFem/L/r9nfs8z+2xh4YXFsO+eB312npkzZ878ZuacM+V53sKysrLCcBX45Qg4Ao6AI+AIOAINA4GihlFNr6Uj4Ag4Ao6AI+AIVCBQxMy/4slDjoAj4Ag4Ao6AI9AAELDZv3sADaChvYqOgCPgCDgCjkAFAr74X4GFhxwBR8ARcAQcgQaCgJv/BtLQXk1HwBFwBBwBR6ACATf/FVh4yBFwBBwBR8ARaCAIFJaXlzeQqno1HQFHwBFwBBwBR0AI+Ozfe4Ij4Ag4Ao6AI9DgEHDz3+Ca3CvsCDgCjoAj4Ai4+fc+4Ag4Ao6AI+AINDgE3Pw3uCb3CjsCjoAj4Ag4Am7+vQ84Ao6AI+AIOAINDgE3/w2uyb3CjoAj4Ag4Ao6Am3/vA46AI+AIOAKOQINDwM1/g2tyr7Aj4Ag4Ao6AI+Dm3/uAI+AIOAKOgCPQ4BBw89/gmtwr7Ag4Ao6AI+AIuPn3PuAIOAKOgCPgCDQ4BNz8N7gm9wo7Ao6AI+AIOAJu/r0POAKOgCPgCDgCDQ4BN/8Nrsm9wo6AI+AIOAKOgJt/7wOOgCPgCDgCjkCDQ8DNf4Nrcq+wI+AIOAKOgCPg5t/7gCPgCDgCjoAj0OAQcPPf4JrcK+wIOAKOgCPgCLj59z7gCDgCjoAj4Ag0OATc/De4Jq9e4fJwEc9fu2/frrseI32VxxjvAUdgTxCI/YoAfS8+7gnPGvMmnMvTfk5pZWVQKp57WVkZd65t27ZtD5KUbdvGIzRQbt26tUa2uxcJWxWhAOGCcitFIu0eT8/lCOSEQOOcqJ04jxGQmqOC6L2iwvLCInMNieQq5Cqwm2nngoKikJTHUHjVPn4E6GZWKB1t71+hU5dTUlGjRhhderkVXFhYVFiIB0D3blRURP+HrFHjxrLKPDaBuK6uUKgVWVCINwJXytpeXmYRfjkCHxcCPvv/uJDe58uRTkRMVJ+pIVNKdlm8zVNsWoYSdA0lWPxetwiELmcT87plWyM3699meQtD1w4LAOruhYWNzCEoLwtTf+Wl5/No9HV6BWcDAZj0l+NwcDG4trH8UKelODNHoBYEbADUkuxJDROBKr0C3acY3aMqjIGGiZLXes8RyPa0Kr1LzOu2j1EEF7YW5proq2+XbStr1LiRlYU6DIYej1dkJobN0M0HNuegTi+EUQWzxZmzLSFRziTXtedRpzVwZvUYATf/9bjx6lD0qIYIVLBVONU+roYqkPFQHSGg/mb3YOq4JytMqRmuo3ISNklxzObDOtaWLVs2b95Mx8bSt2zZEiKMPA/ENypqtGTJ4o2bNhHfsWPHJk2aVHgDdSdTlGfZ8uVr1qxp3Lhx9+7dmzZpggxIItvv467u8HZOlRDwvf9KcDTYB6khFE0lXZMa/gYLi1d8LyKQGviqvS4UGebbZv7qUAA6uRgWFjViis9Rvvfee2/WrFnr169v3br16aefjqXHE4CscaNG77733k9/+tMpU6b07dv3F9dfP2zYsDqUJMsKkebOn/9///d/Dz74YNOmTe+4/fahBx3E6kSNsGQzetgR2EME3PzvIYB5kl26ZuPGjevWrUP9MdFhBVJ1k2fAnflQ8+bNWrRsyRwlJkmfZlEQffX4LE2V7GTZFfrqHOpLTO0VVGrtNP/Cmu4lwTDwbL+vWLFiK3PtrVux8yx50w2wxHSwNm3asBLAXjjr7VX6hsmD9c7dMYh8bKlheznm//XXX//KV77COX9s/3HHHof5J4lH9gXuuuuuhx56CNjffffdkpKS//3f/90bTUBdVMT1P7++bbu2q1evfvyJJ1gA6Na9O+KxDIAXEMuNDREDMSkGakmKNLUElH0PmdTC35P2KQTc/O9TzfEvE0aacfYHsx977NH3Z81iZVTTDwmENkQLswTap0+f3r179+rZs3OXLp06dWrRvLlN4aShMpM55apQImlS9epBQ6Tp8h3TVMlVwTYk6FF8jFVGXVbJmMOjhElFqlRi9UhiuKKWDvPWKIbyxsdEhspZlMrdVp6ZfWIXa6lFKkDCSn9UqICs1ZcyeaKsUebARBgmRUtC7XqnJWGm58+fv34ds+V1Jf36YaUspUZ50iwVfyuTYdswdW+//fbEiROfe+65Z555RpTw/OQnP3niCSccethhAwYMYDYsqSr41N7EaSmCPZsrG6aOXM2aNsXNPfDAAxED+iZNGnPH62WdHw9g0eJFeMPKxQYBMcRHtiuWL583fz6p8CkpLm7Tti2BbBFQ8gi7WbM+2LhxAw9t27YtLi6usoPA47atW1etWkUDAghZZs+eTXHEM+Lwhzhqa3w0TNIiqpQVmyCKZzHZKxWtgiCTWsGckwaxb2QIPJivCLj5z9eWza1e0gsrVq4YO27chAkT0HRZFYNOxCw1bdoEdcwaQIuWLY4++mjU9GGHHcbSKJEQb99epv1UI6bw9LQgScE2JfJk2UZlRF70lek7Xruq9XQVWWKuWEPtklKudCsEMUmBbKFJUlamKtQ8Ggd0beZkjOxrpi5BkNROB3ryqaCKpCCKqVTcm+pSpapWtU5ysezLy5Wpoo+ixewEANT2hlOGVij8sRUFWIuwZ5x5MzPWHZRsMk2SUo081DKUIW4QR7Yq2ooLFeOGffrtb3/z6KOPffjhh3/6058uvvhieMLDCs0Ko5zp3ZL4L0ipNiKGafeYMWPuvPPO1avXrF27JqUtWLx48V//+leWwY855phLLrnktNNOa9WqVRXmerQ6c2UMG/FWCAIRosSaQFBBCWVor2iP1Xv1yLT7/PPOf+H5F9gaOOigg0466SQ6J7l4B4ATgjB5YeLEa665hkCbNq3vuOPPRxxxRBXOety6bdtNv7np8ccfw5ozZG6//XadMFAqd3g2btJk8ODBhxx88JSpU4cOHTpq1KhOnTuThCTAZX2bigQA5YWTZEMs9pCQRK2JVC7uxlfYiIyH9Aop6UP4axnLC6iXtZM5HPZ2j1q2ohTjlkBeKbM/1GcE3PzX59ara9nRL8xFmOigDj77uc8yv2f8S61Q1Pvvv//ss88yBSRcWlr6zwce6NWjxx/++MdDDjmkS5cuUHKhPrhLLgWIgQN3U6CyFiFg9iDQo24UhmyHtt80k1kaLnLxMRaUtfSj7kRKQUsA7pQlGwlBEhmcGBJUnNmJoCfJa6HA2TKiOXXuGj27DSZWFKmUj4SqBRzE1ogtLam1HsUQU8Ej4e1F2zG5CqNB9Qql+MCF3Ga4wxtfRCIVHFOjZrx1UbaJzQPEqWGziKCzCQgHSoGbGSjIiBWBqhoe8QA4w6ZUkzawRVRedSdSb7hZfWN2wZKCSe/A9tMHkl5hBUBrIHAPGU2iEC3BzSwRL0kI0LuYbV977bXjx49XRozr8OHDcSI3bNjAZjwrAZs2bcI5ePrpp//2t7+dddZZmEyYWEGBpXIJI2obqmUdz3qXukFqOyEn1fKm7SUxJK3kS7gZ5hWo87r/iSeceMsttyxbtqykpASrjORWRCJCAXtk8+bNg0OzZs0YNWKlu4ojTFnkYHdj/vwFPPbv108EKlGpEHMNGjjolv/5H8ZXcXExroA8HgisP6TA4iNyGZKpnOITPRLoSYWbilarUCUrKIw7AhJAPCFQ94MPTiFjitEHDRzgI+ktSwCdrxGRy0rPMIncPFBPEXDzX08bbq+IjXpgLgLr9u3bf/GLX2RdlLCZ3aA3Fi5ceOWVV7JQ+cEHH9x9991oq9I5cyD70Y9+xL1du3boEa6oIAjwCAc0fuNG1tNk3RP9EiYxRoCtCUocgh1eaKFg58xqlpfjoRBAGWneiXLjO0XkpUSYo+zQa9AjNSSSwe7SXKn+MmIp7jQGGiK5YKUwRtEywrvQ5riIGkqxPxYvM6N3tYPxU6Q4BErLyKPMRkhN8EFO4gUFOhVepHJBjszkrXoFpqQZqaGR4mzWIDRPqD7xCbypB2PEspEFhTq0AQVmnkKjswVvLtAQWzGB2MyGogImhnehMcH8E4gSIgAVJAbaGBkDqg5SEQOGyz766Ic//CF+JI/HHXfcv/3bvx188MG9e/XGzWLRG3N79tlns+/O8gCPX/rSlx99dMzxxx8vQ0gWSuEiEMuiMuTluVGjxnKtSDUCegU+TdoHIn1IzNxqkpnkNm3bnHHGGZFO2SlaSzWSgVRyAwoB2WaeTb4UnNg0EKxdt07cYGV9KdTF8vJBoSZNgIKLyG1bt1Ugm/YKKz14A3C2npMuAICt4BU34x8o+Us8lInY8ues41hLiYNsP5RqaPP8QvuSkVxcFrBeartRkVusmpXlVz1HwM1/PW/AvSN+4yaNe/bsycJ+lj0b/2gBYj766KMhgwc/9vjjf/nLXwj/4he/YL5y3nnncWgrqx3QIMqe3TQlRgcMme2xGypzjj5i3iG9k+WQLR2VJ4UFQfPmzdk8Zl7Fa1tdunRFWihRVTIOKtdMQlDKGG/MgCnioFb5Q3FcVpdUTVtBwXCaEKGOohYrM95hcZWiQy4jV0w0oiyMsyXeokUL3CBVgdVUSiHMBR+skdaNmdraXm95OYsrgBBKxlCZWxN1dyig0o1yjRtxoRarV63esnVLi+YtWrdJMLcimL6XlcHToJDfE6bEVv1MTWkV+QFUYfWa1UxkERuHDxkkBgXRLoKI0mAbs5MRDKJkMd7gMvGtCWJqDAgB7ls2b5k2ffrjjz9OEkdJLr300s997nPUgty2olNYuP/++w8+cDDbTKwxLFq0iEMGHA5gQty1a1fkoV5IqEKTO/YsmDlhi1mlOhvWb2jZqiW9kVIABEpdVCSKtIsBpLIP/wVTjQDUsTC4FDAUB7OYocOkDgptXQECyKfxBXQMhdXBEgHIHVhFkK2xgt0VkhSUdMhg+A2EYOBhRUei15FKTWlBGMYKkouKIy3cFCmBFSZLlJ/xS03YbohdkSJITQiQLXUfLZc6XyK6/6n3CLj5r/dNWDcVCDoFTaNhb/egK6VupIBQS1IfXTp3GTV6NK8n8cj27YIFC77//e9369btzDPPNBvAP80zpAfTaSgKfebMmWvXrsVss8WLCe/bp0/TZs0wAzgTHJ6qvSJSsuTlJDbmEz5Llyxh3xiDweIwGrCkuKRvcV+YoHGjCjM1VliwcuVKZpNEkjpw4MDi4mLVjjSqwGVVC/qcmLlz5s4uteNXKFDWpeGM1aFKKFzezGY/GB1IiZTLKUhmq9OmTVu+fDlqlDAODW5Th/Yd9h+4PwckkYQS4W9CFJSz6D1v7ryVq1bOmTOHc2e999sP+s6dO/NSWYvGje2kd+oNBPqABwWb/rWZGYso78+cuWjxYvQ+YIIAx+Oxi7pTL7JbJSxLqAzhYJuQbeqUKYS5hg4Z2qNnj+XLlr0zbRowwgdI4dCje/eOHTsN2H8APp+sFGKDGE3Pnzlz582ZO4dqlpaW8qo8jKnL2LFj1T14pCn79e8v+XnkSmsdAumSxoYN62X7IWBV/xOnny67FXIkYnMA/pOfPHfs2HEPP/ww8ffdd9+5555LNUVDFVh8AkDQYP3n+BNOoCNhkRfMn8+renhgK1esoCVAlRq1aNFy4KCBPXr0SPjvwh/4i4oTjq++9irdAOd10MCBvXr3BoqVq1bMmvUBPtPUqVNFhkMzadIkkORRrsaJJ56ISLNnz0ZItjNAOKHcsuXJJ5+0+paXb96ypX+//oOHDBZK9M+33noLtxh39vAjjqALYeTDUCzEyXv11VfpeBy86b1fb3odZGyR4BuRizvM2Xqjvv369cNPosvZ+kG40pFo5VOQyiIFqdSRKI4FPMRmRPCuY+fOXYYNH0aHpyvOnTsXnMnSuVPnAw48gEjI3ANQU+bPPfQKvzV0BJjlAMH48eNPOeUUOjca88033yTGdhzDz5+g6HVlkUJBMHvTYLjwoguXLlnKHDcltGkKYe7oqRdeeOHHP/6x7EqVwcPxrltv/b+33nxr65atos8WEcMcSsDw/+Y3v4mWIMuHySvbySwpo9osSyqGss+YMSMSc7JMkVk5FWP5tm//+9//jiYVPRZdkRJsyZIliue4w6OPPop+v+Xmm6tXCglZ38YqYKfFGTX9yCOPXHjhhVGMGDj55JPvvfdeTtRHGWoMLFywgPfQcEdixmyAJfT7778feSSt7hFMXJ9ITEPAChhjTDbwgx/8gB135pSSgcYnQLsAWhZ27E02F+HLL78crLKQ0nOiAOLGfenSpQcccIDyXn311YrHkENJWVzKRQALR2tyDoCDqPQfKMWN+6233oqvCROcJ1t0Wbdu3LhxAM70uopUrK/87Gc/nTx5MuYzcoh9gx6F8zrsoIPIRSdkQUXyQMA1p3QOh/5IYmWLtlPSO2+/wzmAWApm3l5QzFz9+/fHtYUYIZuzqhEubGeGJAnefPPN4skd23/2WWcp4fnnnycGE6764n/wUiJJVPaXv/wlHYmGPvbYY6sz/PSnP/3YY4+pDyi7oRrGNQwtHFoTB47+xgHD6hx43RBAZodXD/gOARWH5tBDDyXGRIJVQIawX/mBgM/+q4+ChhijuXX1mlt85SVT+r2RMaMtKmLSwK4/L26hlSZPmjx23NjPf/7z/FqQph1QMdVAj6NTmMPhKxDDUSnmiFzs36OQMJBMIrmGDBny85//nPUDJlvGv/KFAUAt/uH3v3/yqadIgQkXlKxGbt22FRXJ9OtnP/vZbbfd9l//9V+jR43itWmKtiEa5s1ZZpKfeE2RRcYdGpIIoCi12mG5QmVFw1N28fPll19GRTJDRRIUJcKgXlGRLD5j5PhizKSXXvr2d76DwWa6BgJ4P1QWSuoOfyZYmzcz+9qEy8X07lvf+tYVl1/evdo8FZGgnDF9Okcs//CHP5hIwSBRKEwokVSmvPfccw9WAQ/s0ksuZQvZKhJ2ecNKALVQPrtjIfCi8CRYd2nerJl2AWCCkAjPPs7//M//8JWbL3zhi+3aJ7sYuFIUx/ySgrhAgzqSkSUQGBo428uZ1IJbBIp4gcmdsJKUymIPMYrkDIE1YgA/m5eqsZjBJcqKu+2A20E2ZYE5SxePP/bY16+6ChqMMR6A2s5gWbeO5Yprr/3hPffc+//+3//DiCb+AU2dAaSCeeUQi/Jy7PBXguWzBRhyIj+WGP70OuLJpK5IAKniCv/GDRs6dGgPTpBxCWdbqAgLQngtdAayCCUyMhxUPt3DArRfgAV6Nt2IIC8z8l/96le0HettuB2CDkmAEW50AC4+Y/Cdb3+HNQ8whzuLAXQSaozwMHzpxRd/fdNNDzzwgMqiA9ANkE0daelHSy+66KLzzz//qquuIhL+kPF2jxpRWfyeTwi4+c+n1tz9usiwoWukPbOMpIayGtOsezCuEDNDwt784x//4CQg813eBkQxRTPJVIPvpTDREcMRI0761KdGMUPCcqA6UYIvvzz5pptsJsoS+lVXff3GG3/NSi+aTvRSjmg3poD/+Z//id0intfBL7nkEtY5KQgB0K1Yx59ffz1L3Ey8vvvd77IqzhFFiiCV6Qq6L1sphYlHl7M0roJ0V01RfBX0QQVHmujWoH9xaNjLGDRoEBvYnJFEk8Juw/r1f7vrLrQwWZ559ll0LhNQ1sl/9ctfYTjRqkcddRTTaFQ85pbq/Pd//zcTU6zpb3/7WxarWR5o2apVAngolfB7777345/8JKpszlhwsT7MhgUYspXAcvodd9xB+I7b72DJmlfnbfXC2sB8Gq7IEGFoDkpEbBQ9E1mbmJYXfLTso9deew3nCTcLYX53883M78+/4AL6A9aFVuDFNiTEmnIUH18N4fFXPvGJT5iNCTZsv962kZEtKxhLkwHQogBYFNbGX3rpJShBj0ZnHYVU2SrrVDRWirlctGggyaIKsRmvBsLmsSzB+XxS8E6++53vDD/4YGvuRo0Q9bFHH/3r3/5G0jvvvPOTn/yEZSEMG33G2ITeS6CGCwkCbFFm+kMMs1+Db8QhvnHjxt5ww42IzcVSCp4K0pKVlhUOZ5199sBBg+i6eFQvvvgiBUGD8aZbkgWvhQ5MpGrHwjuREiaWpUcjCCF6NR4wdaER//3f/50WYcWLBgIEYOSVQroTeXFJWRr59re+1b5Dh4Qhf0goLHzj9Tf++7rraD5yYe+R56tf/ap13ebNkZOttJcmTcKP/Oc//0kfKCkpATGy2nCIwyTpUGLs9/qPAN3LL0dACDw34TlWQenUcfF/R8iY2gsX0240jsYBlpu5fsyyaeMmlmRJ0uT4e9//HjvQfC8lLiFiuXmbgFe8oEHLcEc5spCLJYNG/OHG0r0ORUNwzjnnYO0w80aTXmtWr8Z6fepTn4KAi/1RNlkxUaSj5rgjlZK4/y0s/pOdtYeUQaW/GG84iF6L/zE5Lv5LxWODn3rqKatRuGyWx2Zqaem3v/1tsstEMRs75uijO3TowOIEpwpQ1pEbCp3F7SjYiBEjeERgKh5pYP6d73wHGuw0s8zrr78eNyumUgVKnDF9xj133w10YsU5DDwhKhhZTXnjDSWZj1JQcPbZZ7EGgKWPBaH95dCIjPsFF1zAHgHMY1kEEOaKK65QQZz6zCYpHBlmk9SOSqJRnnryyVjK17/+dUxXJEZgvI0oecwYA6K87bZbcXGwZ02bWnVoC6pMB1ixfEVkxYYFDYFzwPcDVBxeI6ss1FQ08Kxx8V9yQjN/3jxcE/LisfEdAmSLGQn8+c9/FlvaBbZKqnrfXg6An/3sZ0V5+OGHJztTVenK8V9PPfVUkbFVQXosDiEvu+wykuIhiT/+8Y9sFREvNvQBVpvoh2wAiQN3FuRIrdgCKCtjfY7dsUjw61//+vXXXqcPRFloGlYXWKZKlh9SUrZ1QNLgyoy4mMsD9RoBcz/9cgSEwK6af2xzRhsy6ZeuYCYx8YWJEcyXJ7/MO11K+o//+I9ot6rs8aMisei8+a3FxpEjR2K9YCJFzDzpxhtvFBOcEuxW1q5DpukpgVdeeYV9dFEyMcUvIVJqtM7NP6UgJ8Lg4qgU6UepSKae8nviRJZ9jbi7D3QQSzACTOmYaUns6667TsYPnrqYOOI6KJVZJsgIFmVn2Vdkq1auQnHHbXXm6KAEjYij+YcPUz1Wj6MVhIYdC3FjVYCVfxYGIBswoD/7GpFMpWBmMAYy/6w3KHKnd2TQBSUBjsLhNqlG3FnJ+P3vf//ixIm4VhBQ/Wi00nwVf1WWzD955WDx+Z0liy1vLMWqEzwozC2rJsySVdw3v/lNAQgBxHVr/hG7SttRxOZNlcw/Dh9yUnr2Iqa6+Y/jK5p/qlBcXEwDCSjxoQgCXATGjRvH2gYzeyjZKMLRRB4RMEboEvvttx9JLJOwkKMDCpYRUQKZKJn3c/hDHoAW4dz8B4Dz81Zp8VODxO+OwE4QYA0wLJ+idZiEtW+XqFeWcxcvWay82JKpb3I+eiqPnB5iNsmKtLQeWUTDkCIGXcOL3V/+0pcUOWvWLOUilZh5c+femq4uoLZOOOEErRPABAJ0FjSiZJOSrQdO0eOFwBa/QaliW+d3NvXxNpo2s51a6iMoZO/ZHsY5QFmjm0lFjZ515pm9evVimd1EylSfWrCKy7qFMME0xgUGMnIYDSiYohHWZxbR3RREfUXP/qy0Nvv0TB8PPdRmq1ysx+BUiYZHiRFSCvClTh4xAgzhQwwWlKVyGIJYyxYtLrrwosMOO5T4lStXYQbYSlAu3cUwss0m1RYOIKiN2Atg7wNvj6mq2hHzzIrC5VdcgW3mAxKPjhlTOqdUqw5ZnmTMlJv0H+rO5J6Nnq7duoKtilCj41/xyIwZR5DlerFiys7JOM14ssx3PQxzgMrS88hFPGcFbHc9s63ABwkwraRGesltRDaAkium7jSAm8g4AkDaDose2FgmK72wkO8GcvBFxb32+uvU1FyBAD7+KD46DiiY45HT39jcAR8ukyP9QgBsWag7ecTJbFjgauNA7FQkJ6jXCLj5r9fN968WXpYs0cb24hOTTmRC7c0pLeWQueRjAXzg/vvbXE2vM4WPtEj7SIUxoTzjzDOxmtDzMTUOzRHQ3A43ghe6eOQAFLuVmt+Y2gp6Leguex1RWo9ziP+4/x9sXjKhZAe0Ys9SctTdHVHxZrQeS+koULPzXNL+5QX7DxjAi22KO/LII1u1srfzWTQhxug5iVWYfJWFR7bDzTkwo7uS6SkVl23Gl2IpWEw4JYD2J4y1hhWXxds3Y4owMwTR16eeeppOt2E+mcZRkmCJixCQsULQNnygCZlJxXIgAATwgTNfUGjd2nbHMRi2SRw+cMujLih1pRG79jeIisDkBQFsEmcOWIjGVsX8HI/gQ1KskXCGAyeAvzgfVEHVtHvax2IWBXjxpE+Y1MIZMqpDPayskEyJdK3jjjuetSUigPe9d99l5x6aKnx29RGsKuc14AJ6QUiT0gLhMneA1Cx9CgVEu1piSsfWD65tspJRaB9foiBbcAiv+UHVsVMn3GiRs9TPC5CEhQOrX6Wls3mke1x88cUMDYMovQgjDWNWvZdG58tLWioQN7/nKwK7OwzyFQ+v164hEDTGjkkLC+cvWMB6oyiY4LZu0wZNhTYM6tK+t4PyQelwhwYV2aljR95cEj0zJgU4G7hg4UKFeSNRi8YyjVKgYmLffQsXcxpeuGf2z0avrVHnrGNV1M7v7D1LEVMsRpSpGFYtehv4JpwRQwYx4pBXq9b2DpVZv2CqTbBC+5AA2Vn8OGDQAcy6IOB1fC4CQoDFdnavxaRrly6VDIliw11GGsvHdwjEBzuHF2VoJxBUAGE/Ihcu5qUCjXu0Rjg08QU/dk8sqfIlmSvH7eQJ7mpluKkKPPKiB+fX2A9ii4GzkzpLQQ9hBwc/gJN67BZxUI4X7eTB1FgGyyosivBDFNHqIx5MIKYsMkp+1gZOOWWkOLz+xhucYKherxr51xK5exwimmm71FJC1SQcX8aIAKS+WGtgtObgO5BhDZ8MyasNmaySE5xfe+11ojmpYB+ZCN8eYBxZNwxNjOenrxspK92b0za7V8dM4R7c1xFovK8L6PJ9jAhgnqSpd7FMKYhsFq3oEm+TifSSTYpkWEfUF99DQ2uZ/ddSdmFhcXGxcrBuj+XDDmFW165Zo0imLOKAiEx8zAkImgv3Icz3KLPSl87sOTF+qRw7+otAYZpkOXbtglLCmPDpQgWlqUTE5hwDLziKGSqb+hI2gYKsSUXCVBXFC7GKZq+aF8agFIGWUnhEX//mt7/p3r0Hi8nBXxJju0OpiyJY3WV3mUj27DkHR0AVolmNVFeIwlMp5xdewkX2JCn8YRWB0wbacagCiD3uKkJZlmZjsMo620HH4AvQSIs948LSDB82HGPPx4CfePLJ8c8+i+PIwrXtG02dit1inYDVghokKSiAYTHfq2Ejg8sMov0eT3SSCIV2Lacj9e/XXwKxqqHTl5Xkq4uHKhLWzFLtQVraVZLpec3UlWLhz9oM+WS2k6YNfc+GU3iTZUeuEh2DAQW7Jk0a2zcWKR9wwm9owJCm0VqC9YTQGZo0bnzgAQfgQPO6SiUh/CG/EHDzn1/t+bHUBm2DkjV9h+EoLODtdRXLlA7jQZikaFI01VAkd1QMqcEi2i8EcqGzMIFopf169xYf5p1caG00OMvTiiSnlZhezI/Jaz5EsIBEa7anDVjZAz5qn5LX/FfCUAXcHrhFItODO7s014dSq/FZcvlAaGRFGk1gbjo3XMY/VIdANASkMAMDCvNsKl+Y87/+NVlKqZxS8xN+w9p1a+P0N4ubwom7o28DVObBaoTsNFPJrA8nKtYMTHhrdrtMVDhm2iVEV9ysgpZc8es1PFG63QMfXEMuHllt7j9gAK+i8aLHrbfeyvkA9n14C4O1Ez5H06Vr1Q8NqQyWxAkEnskHbsWZuwIJWXyVNO26Kr1C0BxDMM8xx56ShxILOU6AE2AeQBAgEYIBFdhXl0oxmcpad7PsYfDQCXkkCAGDuiI7i1LhwxJ7KrTn37cRcPO/b7fPxyUd45/BXzH+0wlolfKjHhE9enzDug3vzZwpMrbD+URolSzxES0j/sqrHxLCkshYotf4gq+I8RiqL2OSpOy64xmYNQ3GE2uJHoS/La3bxoIptyhqFCAbyLIiHnruEowkiZSlrx7WlBpiruqpNcaIklJUHDQmZNC/MQmnAemr8NzRrK7GUojUrBpPgo1hyqrCDYIYA347Agr3q7oTREblVRLScr5APxMlYapzI4YsEeG4DBCFVxZ8Dk5UACXrAcV9+3LnpCc26Z577uYTdZh/8VEuyUBYThhOiXZAiBeZeMYseowl7iMBSUUTRE9xp4IJRqrJZcRpfatkNM476JaGiY0U2+mHm0HHCUF+c4F2TH/dABpWoXLtdVVk8Md9HwE3//t+G32sEiZqhTLD5CxbtikO+72cZM+YqT/Ey1cs14v7UPI9nz59+yhLtKDMRLWTDTEcTF+juPT74sEwiJ4Fc76jp3CnTh1Z6ieMgmIdUpGbeAddy5VBrzHzj1sVUSfKBoje7qGgiscQQucpBe7Iw8UjHOLshwVPzt9VybWjR1VKqcEVsWAFhiGBx6CqRWV3ClWc7kGKRAzVxRauU6eEAAf+OSHP+TUWrnlNiypElrFQwCGS1mnRsiVg2vd84MDX8MPJcO7ZS7XOykCLaEkAMsVzCiGWorzkAiXllW1AWkol0giCySELIsEqwTPU1OoWKkmr8e16a5dw2TQ09Af8NtpO/Kld//4DTjj+BD5Bw3sQ69at37jBzpOKvzLqjgwrVq7gR4+UNzFgqRjQmzCFhby/wHaSsjRv0YLVmiyT3QvDdvcy1kmubOlpuJI8IJnGW4G2AhcuawSGDaciQhfiyYYMrcWGWjiJQqtpLKxYudLNv0DL47tpB78cASkL0w7BHMZARMZiTPUnFlhkLEqzOzthwnjIOHfGFwDbtG6jJI4pxbNvvM8mC0EpxiGoICam5BIxAWYbTzxhPwTH1aKFfcGGpOYtmndOPy8/ffr0NWvtHAB6jiRUFty40FbYG1QVSo3fX2HXgP1v1o0xgZE5ZMY3XLKv6VNiiSIl8ZgcdogjwU4DQQq7RfNZJYuVnhGAVIvZ0RXwl4lq1bJVcXExhFhi3CnOxzEj79GzJzNj3CNdnGvT1a17N2bPfOuN1Xtm/0ymqdSOCiJ+R0lRLkxmFSmVSxkFo4qAzJKsISygprF2CZFE4bJwh5hmYlfCmmf1Gg46kIW+QInxh+mMzDYUCkpKSk4NPz9BzyELbwGYDxEuYxsAxLPk3VLmr2bAwq8UhiKSc6ApecH8+fOeDb8vTAxf8umQfgYgEnz8AeTURc9Q6Roge0kSNlD0+SMQW7BwwZb0pUFgNDGC/actKF1i8NbAM888w/sje0keZ7uPIODmfx9piH1CDNRBtI5xQTLRUyTZIqEdFEJWmxkU2uthvCK8YIEdzudzgfbekVk602h8vp4vuqhWfB4HDwA+5EWJhzkf3KzvqTjMw/QZMzZutPeMsW284EcAPpyei78uw5tgfJWMcrWWADcrKAhHoSxgIvALE18YPXo0P4gyYsQIvoVnhiFcWMST0y8C4R+oCkqygkJZKD7FY5ZiUp0EBEiurECJpZQvfOELyvjG66+vCh8A4FGiUnUlGaqs1m7c+MCDD9x00695s//+v/9dkSIwg7oLVzRFkbaK5JQSF3USmtCmZvjDRZthShAPSssb7nzliZ7DI4fLcSlooD78qmBxX47346LJ3ogbNDCiS5CddtZn8CEghnJjz6S9FIbsz3/5C84BTagi4AAl9eWSPYPzwg8/5KN4KoJP7/Hjtonw+8AfuYwJXEGexB3YM9nEkDtsgAJHXB+y5Mu+rNWph5PKZc3EpXs4TckQYzC+/36yo7dngnjufRoBN//7dPN8zMLJEKrQ6sZAykLnwjC3HCf+xje+EV9MP/aYY/TbJJa9vAANzyd6RMw3//W9VVSzFRGtBW+4BWdiydKl/JqZVmg5Pxh/0AxK+FCKROJNQn43yHiG7XO0PMYC7RYCpsD4Dj+/DsB30detW9upc6ewsGkakJXwMz7xCTFhIvjGG2+YeYiKL7ynIMPD7/nyA/Oi/Pjvpo9DqQZ1UREvOvJxIcl51dVXo5QBlkvmkAC14DLXp2w7vxrHZvkvfvFLzs099vjjxAdOdsPuxvAOA9YwlRJTWSxSYRZuolchqRCS0kmlOJMZSNOjZCZqcuDfGt3kMdewgL0VO9i5ahWt8O6Md/W+mfFX1WGB+efjgIsWsd5D0bhurGroC3SJGPI+g7D0K+yZ5qmJGOZepmctCwv5osCf/vSnQFvADJjfYlaYewJ1+ixLnD5VWEQNBGGjWlfQBF82+5gNQ1xlEFXPrhdBwVAjJZt9N8KxuIBnYFBunjqDiN8s5hnXecyYR/gEkC29yJU34IVEUiA+PT9YtXjxkuhv7YYknqVeIODmv140014XMipW2WPK44CxSjUtFiwld5Q4y7C8RDRu7Fje2+ZgNo+c2cbA8wsxHBk3M8B/QbViyOMCwA033IBhRumj3CM3Aqz5o6D50gtveak4vpHO6wPII5FY4uarODoJyFfb+Po63xbU6wCwwqKgOgnwMvftd9zBcXExufLKr/PLKPCXZmvXth0/DM9hZlKRmX30WR98QE0h0IURw4TgN9z46xv5eKqY1NVdFclyqx6j1Erx4WjFoIGD4rfcUcqTJ0+KS7JIjoLmYstj5vsz+WkA1DobH+wFfO+736MtVDU4m+mt9apUboZS8dwVYG7Oy2AADsmCBQt0OAABJAmR1vrBCSBGfYBU4oMnYOvM/KARv8mkEp6bMOHue+6CD4s0xiR1CmHCj9Dzs0A0B5R8zK59+CVfO60WmjMUYb8MxJY22fnEEz++rP0aCWNuX0EBFo5fOsYZ4heceeQdAb4PSNeSkGb0wiVhuPMUw5UCif03B0BCEgAHeST0oirb5JGP4W/YJF4V1WSFRpwtNsRrDYyk+PpMUnSaK3nc2R+hHTOFnS9zcLH9iI+ofP2Qb2LCprR0Du9S8ntIixctsqZM3TWIOVny9ltv80MMeMBwUEPvrGRPr8cI7MK0oB7XzkXfVQSkjKLmQmtw/I1vh6ECUKnES5UwQUcp82EWtLPeJOYdcQwPn+zlwz4xu7iVlJTwEdnx48dDydyUz43xefbPfOYzTOYkFhPBsU8//asbbsCiE8M6P79uwmdNNRNC3eNHEGbSRhE/vu46VoP52Vx+JOZb3/wmC8ioVqwN+pet4dtuv43PobOnDB84YDJReciDTSEGV4av3V3+ta/hpqC4+Xg+b5fxrjnft5e7w7LEa6++yrL502PH9umzH5+81Qv0knMP70JjV5hAmdgKM5l2RIL1f3DDc2L35IknngBGPoYz0j423AyDyUE/9nGZAfODtm+++SZFsMaLWzZk6BAVp4aTbdgVAUQjKWJrEqkYzC38ZRX4nT2+VHjGGWcgBvxpJg4cACPTWUwa9BXZwwNGiPV8wMeZY0fjrrvuwtjefPMtkyZN5seQWJ1WEXCYPXv27373O35DknIp8dLLLtPvIOOiZcSzpufoCb8QjdPzta99je0ePozIzhHWHQnpEi9Neonm5jtCysWnJ0ecdBLfXxImVImuQ6E5Gzm8hMLCvn36sLjFhxExkyw/sE7DRdEMFr6BLf9D5fKZnQcfeIBmWvjhQnbBONDAggd9mxOaHOZQrUEs89Wd2AXEYHfuiGErLeFQBXdKOezww/mNR8YO8NL5WUyi7XDFunXtFt+Vffqpp2+++Xcvv/IK46J/v34TnnuO2u1O8Z6nviDAYPDLERACE8aP5+N66rpoag6c671qHSOv0qWx4nwcFKPLxIvseAzx4lFzLOYTfLeuR4/uVfLW+MikBIUe2wIVGcOls2ezQpDNhYL70pe+xIfi+aRuNp7vmfMDKvwWjglgc1GTxMLl5TgZ8SeIslmyYb4ixyfohwwZrEgmuFEGAvGD/EOHDnnkkUeySYRVSozUD9HCh9/5xZGK8UGcIFkaNWvWLP1aD59aYyKbZQWknHvH3zKFnrmwPZj52FgxhS/pZrOjvnmcMmVKJOBLzGmxFX+zkvN7ARhR6Fk+4YxeBVGoILY2/rBQ5EmAH4YBnEgMQyQHf3HO8kck3MH4ReTIhM4WwzHwm5tu0s/5iLPxLC9nQq/PS9BF+cEkPgoU6QnUyIdvA/Nrk+TllImYcLKATkLn1PeAObnCl44giKKyt6Vf/KNLsOYU4xXgJ3OyHy2OAnAANuIAJZVlJs0bMZEgBvA1Y3EsgOG+KOnl8It/sbjwkz+XksSiDt9Czg4QssdL9NOnTRMT4MXvIRXvVvWlLcj7s5/+VAS13OmE/Kjgbbfdpu9a+k/+RJDzL1BJp9TSJzwpvxFg+ZEKYpT4zq5qytopxk9Lzazwx+o3aWyfWuM7vkzlf/XLXzKpQk2g5rBPtoAbLog1rcF74Dv8d999DzN4lHVkkg0w4cMqM3XjJ+QJJ1uycMgYvL7FxXwa9je/uSnaHvQda/h3/uVOfulV3FCyTJTZZejXvz9vopsAYR5FQKGSkhJ+7f7000/DsGUFiGF+NQcNy08HrVhhv7LDhTXgbro1BBj/IbpgxXL7tdxKBGGBBDLpCJJQuyJmkUPEkb5CjwQzSaoI2BxBX5PKY1JWORPrxvg0bElwj29wYcUxXfFXFZjCYquYNP/gBz+gXIEPB1qDQrXCIWEUxjjHIqygUC+VyAI1AovYxAp1J4kAbPmg8g+vvZbWF0G8swgkkI0+XGBPJkmiu4hpYvC/6aabaFCdR1M8nS1yI4BR5zcML7r4Yn3wR7KpOpEbteaUKGQnnXRi1y5da+TDkhL96kf/9aNhw4dbJw87JoGbOYd0b+0ayEZqFKgswtQFnjQKhpMeDo1iuGOM8X1xGuLvMap0IwtDSR2GyrIF9pXLLgM3EcR7mJyHL+2HfYe42qQGoo4qiw7Hcj25GJhxGBrAmXaxtlFHTfsneyLiA0QCjTYmfPU117BQxHDTV5ajMDHAyzv//o1v4C2ZACm3mOqBPEPAF//zrEF3szosAJKTj/awQcjyLNqE8c9lFjRsQpOKzkGDsNPP2iBmmBmYNAt3DH/Y4K259JNOPJGf4eH0NWvXaFtpMdQTn3tjrobZZmOSaVONawwJx/Jylpovu+wrRx11NN+F5YP2y5YvT+xrYQGqn5Xnc845Zzi/iYIdkmbNyhL8AHQxv91+++138GvoLJhjb5jwcbIMMThbgADnjR5d0q8fMaxOY/DR43xPHjaRIUmcQ7T6FhVhAIQSsGgB3CiDuVU8mpTFCfICl8x2MLr2prUxJFvgzEJ52zZtv/zlLzMnbtu2DWvIxjDlw9E6FDcbGSNGjMB9wQng51uWLV/G4jalcMEZawqGI0eOZAmdR7JzSWbdAQexqT7GSacoTE5owjd/7G7SmGcDw34l/diCISOrO/KiyEXFRQyrUaNH7z9wIBvqEJMFUcmL88EOi8pV7UCNVMUQyF5kwWzzk/NvTn3z0UfHbNi40RxNfl+usJA+QJcAW1b16WPIrE8CZLNnw82aNqPoMY88Ou6ZcTQrvct+pZATIUVFbdq17dSxE3NZ+jMeKjZSG+2IjQBsJWDe+FAVbY0TAHSArG0Lq5cdU2hJEusrdI+S4hIqRX/jKxQEqBRSHX7YYRwqZPlB2y7E076wbd7cjphY4wZBKfrqq68+eeRIvFXb4IcumPbhww9WRcjF2ZTzzhtNEzMoOnfuYtljCxYUstIzbNhBtA/7CPQW5aIFqRGs7NEE4ksaBZSFr8MD1cMvERPuoqGXUhccROrFdhJHL+X6QED7gvz+Awacfc45vCWY+CLKqPL8no8IZLbo8rF6XqddRACVhyLJTrhrySi1IoKoYhJNVFM2Vlzj1iarpkynyMX7YG3btcWoZ888ZzlX4ZQUhJxFRaxMsDaLzERChslE8WXlsXBUwEoId6NHsYaP/CAJFpcjcvwCHvYGDQhJVlTjkWpAArLx2WpWB00xxmf7dkxXKDO5mbIORh1WXPCxP5xRDzvlWUpkoGKCBRKEMJuBNUk0fwGSc8qBsjBIrKnguFQQp5aDHBBwmQUNdkKSq2iKwAIijx5VephEJt+BUVmkckHHtj0ykAUacLW8qR1K8gagskWQUUlVKCO9cQ6AsEO0cOFC7iRhtGhNAqRiCxE+y1N5b7/99h/+8Ifsp2Cx+D3oDh07UkFYcYcPpossPOK+6K1RWHERyaUAfFhU5zF2S+McOgyQUjf1HbWXCrWM9nk+LfnQhYwV3rBSs3fieYS5Imkk+MTHLCVlwcFWC8IJ1phkMoSmIUYBZYczl/FVRULAmABj8E6qdrlQa2Or+gRU1f+JYzmBjmSNXl7OKh1el1xDigBD/HV2l+hmLP5///vf590BCGusr/H3q34iUElD1c8quNR1gABaBi6McO6mcYJSsKlG0GKJ8jJLZN94Nx2UajfoUdPKno2MMkGsQ1voKQjYV9bWMgRBlxk35peJExBMXcwbA9CIHrlQf8xxmVLHVAQQgcUYZbCUqbGMZAqg7DAUSMLqhaba5JWSJYA9UHWwebChONPcQX1bEUE8AsQhM3cUosWHK0EvmATeUjcIg1lSMuKIg4wKYXuUkLwrn/lVHtiS3VKDFQmERsk/wqQy3eeFCAJWbMhrxCEDt6xIGIYQHeQLN3IRQ4twjwiJBsG2l23dvnU7bWGpaUPjZgAaSxYWCc22sm3b7fd7lEt3+UYKKyOlJRJWFF4pBLEuBGYWHolxTaCjIcztCI5jTKqUP3mwSqj5QABPqEZiKyh4WhAThAb+1snTNrIK6hciSDaG9k1JvABzsVKzRwyi0j3I1bRxU3O+6Pm8eBKWT6JsMA881CCVFoSgIdWsuzlnlAOh+X+iN2FCV0xGU9iMIxIqG4bZkUhO+nDoaTQx2/sIBk8iRUYWi6Tfpv3Tuk8oz+6hW2LsZe+j5CZGEAU3goUKKzp8CQDmkcYD+YSAm/98as3dr4sUELqJy8LomqCNZLlt9qBLqaYh0wj9mksmJk2p9BdmiY4OTgalWDIlmVoL39gPEiTxlbLaA1Qo35TEVllNTuOAnQjTZ7Sq/YKt6Vdb/MR47+BCDMsbBObOxaNMvkrXFAqBKRTSRJ+m3JSFJ3Si6IlRYvIYVDBhiw9CKj5hEOKVhXjkFTKkopTNJpmdSkxvzBKqZYhZxvDtnYR/MCcBiBAKBEFyaI05kiGHFcRTENPyB++HGLiJoUokD3UPtt5oyEYM3LhbZYM1Ioy54i4bRiFAbU1jotklU2HF1XpBKQG4G+DCKkQicjBV1rIsOiDAjsyPlUK1oAi9Sy1FuErpEIkDhSKU3RWCjotdgMRLsyV9OUZQkGL3oqImwYJSiuUKlJhVslAcV2CYGt0dVDklM3/LWiSQCUZY8qihQQBXQ0yNDOZBYESySikmHT7mRIZaQJZkNzTE2wrIdGM708Mns/jmD6TEcxxB78XUIG+QNbw3MUmbdPiarKOE6BrIPapeI+Dmv143X90JH1QJegSOIZh8Ri15jFolmJDEJ0gLNxWW0TtpdMVfUsXTogIHZUFxoWGJQ7uhUisy1BSCCVdUiJCYbQ7SSmWjVqUoZbqMuKYrSgIBbkQQxzRynL8SD42gkD5NpU3srKWa1bPVdTLGguyRQvk/w8FiwqVys48YGyXBChzQ0UyyjExK3/S7rQoYO/uphcSqITAV1yMc7B0zo0gQNrFDdgOWfKFUASWzAyvizd6HsqGHFdYRQi74wNAAJNWqacQy8EQwP0Ye8Sc7VEWNzC0TCJIhysmjarejuwgoAKNKIWQUpQljcqtlJHXNPESDSTPbrCs0jdU9cwWZrX1N8mAsSbQ6Zvqtwia81RuIE5OciAGlIZsu/odGR37JbAKk0sZiszFirtKt1hkH1OjTtqPYuKYC8uIglJLeqO6hMsQ0JVMLkkKX5s5ASMRDcubu27Y9/9xz14RjK8Q//dRTR1R+Xyb0CvG1+4eLPoxvi7BIppMrFckeyhcEdqJz86WaXo+dIIAKk75ItYrp7qwCUn5opIlI0oV6JoZ4rhrLIB7KSINqThSx2Q+WT+1VLuMZOOyISYURCKUkZac6V48qiDtz6B3xIT6RRAaVB4pGA2MFta1rEzyCyRVBUBGqoOyT5aJqqSWwcsMpaxWte8wue6RIWCV8+JWV8F+wyGESjOJm3VmHBoy1PYpYdyCGCRwUMNsfYuLdyIAobQuIq3CwdDv3hrtlrWaswp0AdSYcCaCxwqyOwb1LA8YxdRdCaQYC2bn0yJ1LMYpUTPYepTJTHTmrcTPG26bIaV3EM8uEsAkZZroBLatatP1m0oJIksTcFFU5GP5QCbORXDBRAOtrgbCvr4ISlMKDdd30sohQbcgJKnugSkaNwrqbJIE8RgqWCI6YGE24Ik9Ki5FCJWa0VgjVCX8zzlPjxtn+r6aBmPf++QYX+/3E3HvffaWlpZI5kdwETK45c+bcc+89vDvAM19o5i2PKF5K4n/zBAGf/edJQ+55NaoM8iqPVfjXnlqF2NbqU21l+g01qvVMFn6bmPqWUquSq8ojJYasmQmc8QqWKehfC5shrZJvB48pKWwjZ4XNCgbFms0JuewKNDE+G46RMVApNS2u5tRUflKpBf9nbR58iAQ/UjVrN84ZMXbEU/HGEP4ZZBRjkRkmhLOPFTwjoMlSQpKS+CiRLgRqLKUyScUTxII0Rll2M5NBYDW3hLSIigu3RWjEKGoUpK/oITzizkBAgEULwzTgkGTJPEgMq3soBdZk1DkAiwxXleKIsxJxYytviotJlUoZcfgHE3LRu8SNcJYteS37Dq6YlM0SaUPWUPcYFQLEi57AgQcccPLJJz/00EOrV63irUu2APjsD7sAHHqNmTjxx0e9eEOBbxIQyWsCvAfECyxs9OBT7FC4mN8D9Q0BN//1rcX2prxRy9RtIWjJ6pyziiwbrqVoYyIViaa2YCWNVOWxFj4xKWap4Bzm35GAQAVNNITZyMoyZDPuKBwZ1kggSTLmyahill0EKss55o2R1WOUVD2+SkyVR3JJzurxJNUYGWWwgFn7Si2o1BgZOVAKYd1DRp6SjHbqIJRFKraVhwqIUhoVJA5GXHlBxWIkRipLBQcrrOZrhzQ7qJS4mNyqiMETHI600FiMxadXNpzG7fBvdeKIJNDwDifvUr744ot81gkWfE+J9yRHjRp10NCDeGNTTHmflo8o8GUnPV544YW8kYujgM9iHky2CXYohSfUJwTc/Nen1qqnsmYVUza8+9Wp0JB7wCOjZ3efS93lzCKTDdddCXXP6eORk1LMtod5s5WYzuOxwXHLxuoGGccp0t2S6rJVj6l7RHaBY4UYddGNaysw5Y8fwEsKTPS//73v8coMn9Dm+9kvh2tH2b/97W9//coreTWGzyOyBZNy2hG5x9dLBNz818tmc6EdgYaDALbfKptafY7H87UDXvrnRLr2/kWAiWJBXicYKkxsw4GplpoGlwlk+g8YwFc4+eYSv1bAT0jw3r/eYwQ6IOboAx8A4Fc52Bfgy4C86w9LnS8BYdZWCu39D7/yB4Eadozyp3JeE0fAEaj/CJjpSY+PUJuZ782cXTqbQ6NM/U8/7fRmzZth2KAxk69DAGGX3T2AbMvLK+KOw8RXDhcusH+84Fc6p5QX/BSPvefzWXz7jwBnO4iEgzwDbfPYkQh3ALKw1vOwm/963oAuviOQ7wiYHbKjdskx+Oy+u0yU7QLwwpt2czhSV/lEXr7Ds0v1k3sEXGa+8YzSnS9sf/wUcds2bVlxbcIAAEAASURBVLD6rAfEbwbYaYrwBRAWBqwYlgjc/O8S3vWDyM1//Wgnl9IRaKAI2Kl9exdDpqvKwb1k0p8eQgSi5FsIDRSs2qoNVpbM3Yx/Ydl2+7Rw9ANCihHgSGnqD+AsFVgu/icTbzpUOzVpDP2qtwi4+a+3TeeCOwINAwGMD1aKs3+8yBacAftJGzuLzmVJYVVAjwGQWk/fNwzIaqqlGfHgAcjk291ATCKVg0jQs33+4FFFew+Rknz2XxO09TXOzX99bTmX2xFoiAgEiyXTZaYIM+XL0bvcD7LmP2Yy0w6IWRgjqjEQqT2QRwi4+c+jxvSqOAKOgCPgCDgCu4ZA+pLsrlE7lSPgCDgCjoAj4AjkAQJu/vOgEb0KjoAj4Ag4Ao5Abgi4+c8NL6d2BBwBR8ARcATyAAE3/3nQiF4FR8ARcAQcAUcgNwTc/OeGl1M7Ao6AI+AIOAJ5gICb/zxoRK+CI+AIOAKOgCOQGwJu/nPDy6kdAUfAEXAEHIE8QMDNfx40olfBEXAEHAFHwBHIDQE3/7nh5dSOgCPgCDgCjkAeIODmPw8a0avgCDgCjoAj4AjkhoCb/9zwcmpHwBFwBBwBRyAPEHDznweN6FVwBBwBR8ARcARyQ8DNf254ObUj4Ag4Ao6AI5AHCLj5z4NG9Co4Ao6AI+AIOAK5IeDmPze8nNoRcAQcAUfAEcgDBNz850EjehUcAUfAEXAEHIHcEHDznxteTu0IOAKOgCPgCOQBAm7+86ARvQqOgCPgCDgCjkBuCLj5zw0vp3YEHAFHwBFwBPIAATf/edCIXgVHwBFwBBwBRyA3BNz854aXUzsCjoAj4Ag4AnmAgJv/PGhEr4Ij4Ag4Ao6AI5AbAm7+c8PLqR0BR8ARcAQcgTxAwM1/HjSiV8ERcAQcAUfAEcgNATf/ueHl1I6AI+AIOAKOQB4g4OY/DxrRq+AIOAKOgCPgCOSGgJv/3PByakfAEXAEHAFHIA8QcPOfB43oVXAEHAFHwBFwBHJDwM1/bng5tSPgCDgCjoAjkAcIuPnPg0b0KjgCjoAj4Ag4Arkh4OY/N7yc2hFwBBwBR8ARyAME3PznQSN6FRwBR8ARcAQcgdwQcPOfG15O7Qg4Ao6AI+AI5AECbv7zoBG9Co6AI+AIOAKOQG4IuPnPDS+ndgQcAUfAEXAE8gABN/950IheBUfAEXAEHAFHIDcE3PznhpdTOwKOgCPgCDgCeYCAm/88aESvgiPgCDgCjoAjkBsCbv5zw8upHQFHwBFwBByBPEDAzX8eNKJXwRFwBBwBR8ARyA0BN/+54eXUjoAj4Ag4Ao5AHiDg5j8PGtGr4Ag4Ao6AI+AI5IaAm//c8HJqR8ARcAQcAUcgDxBw858HjehVcAQcAUfAEXAEckPAzX9ueDm1I+AIOAKOgCOQBwi4+c+DRvQqOAKOgCPgCDgCuSHg5j83vJzaEXAEHAFHwBHIAwTc/OdBI3oVHAFHwBFwBByB3BBw858bXk7tCDgCjoAj4AjkAQJu/vOgEb0KjoAj4Ag4Ao5Abgi4+c8NL6d2BBwBR8ARcATyAAE3/3nQiF4FR8ARcAQcAUcgNwTc/OeGl1M7Ao6AI+AIOAJ5gICb/zxoRK+CI+AIOAKOgCOQGwJu/nPDy6kdAUfAEXAEHIE8QMDNfx40olfBEXAEHAFHwBHIDQE3/7nh5dSOgCPgCDgCjkAeIODmPw8a0avgCDgCjoAj4AjkhoCb/9zwcmpHwBFwBBwBRyAPEHDznweN6FVwBBwBR8ARcARyQ8DNf254ObUj4Ag4Ao6AI5AHCLj5z4NG9Co4Ao6AI+AIOAK5IeDmPze8nNoRcAQcAUfAEcgDBNz850EjehUcAUfAEXAEHIHcEHDznxteTu0IOAKOgCPgCOQBAm7+86ARvQqOgCPgCDgCjkBuCLj5zw2vXaQuLy+vTlljZHWyXY+pwlCP2XttrIKAEBt9DcLWlnX30qygzFXlMZPiwX0Fgd1rI3LtXsZ9pdr5LUelUZjfVfXa7QQBN/87AWj3kgsLC6tmrDzqdkdFVuaAza6hlIIkMpskXVyjRk7IqglbVfi6eE7KSmthj4T1X13wdx51jkBhQWGN3ab2gmhZa1y/9kkEPiZnf6d1R47K84Gd5nCCOkegcZ1zdIZCoFLnpqObtbOrsKgo/C0vKqrN94JGfCo0KRq1vGB7+fagXAstYLa+Qs8SVi4C27dvj/yt0DTJeAYZopDby7YXNSrK8lFS3d5VZZM1sfoBkFQIYmNxWUlqACHSeaA6Aqbara2rp9QeUwnn0MfoPBZZXr59e3mjRo2McepZ7pxVYBe7X+30eZMaMaylRgzYTE+vhbDuk6J428vKGjVqrAZVMbvRYXZVPnpN2hmjANm8VSL3oiTZUj2cIlCbBUpp/O+uIkBv1mUZUJ1lZTxiiYOZNmNtc91gjOnoBHbEt3pSEhMMPgYb25/NSyqllJWVwZaLJFPflKuL5PLgbWRLDMMS4qKi2iTJlrLbYUqn2lbzYEIodLtgCfIgQZZzoMpGeLg2BICrbJt1MyOiTRWoLccO09RzZKGsM23bRtM0atwo6WyhP+8wc0xAgNz9j5i7XgdoBTBUWxDgUnUUtvgk4l9Qy0SY8vJGjStsvwTeS9LAXE4Gf00HppfCyGMEIb4KQUrof/c6ApU0714vLd8LiAOebm192jq42V319WC7Q6dPPYBdwYPRAhModYcVWgU1Ik1iBaRKh/IqMQzax5KVGTux3VYOEu0czLHlRb7KBrgSk7p4SEphEpnKYmIwy2TwhxirU5BWpUGmKxtZF4LkGw9QAkDMc1Sj8qUsPpfLcKZ7lJUpE0ysVzRqxKOKsPjgtO2UMwRwI/dOKVVWPt2pNV2au/qtoIgV/Jd3ZhMg9U6iVHsvQHFcgJBosHSks5hEodKQBETGfe9J4px3hEDiq+4o2eNzRSDRevR1dejgBDQqCsunmUjUM2piR8yNSTDM4sZdxDZmguFfvXp14yZNWrdunRSXMtKjxhJjncItxZ5tdGElNNgIb9myZcP69S1btWratKnR7M3LpAp1p3TCeoyGqmLcBzkhNWKuAKCyWIpf1RCgPwCj4VnJO8wdK4Ge+pEYfyJWr1rduHGjVq1b4xbIpFmP2oXNBUlVTdg8j1CtMXXqqxp9Nloz3VgQ/Gs7sxwU7ghDR9Ew3Btto24ZSrFuE4ug+iQhgG0qhQsxBNS/FpkoYcMJ+N5/nbW1unJi1KO5Kiw0Xxdzu3kL3Z3+zWXKtGI4VBWAkSHLB0PS1q9fX1paumHDht69e/fq1Ysp87z581944YUWLVqceOKJXbp0gQyeFVw0ohhjYcjF4Q1byhVPuE2ePHnu3LmHHXbY0CFDoKnEoYJX3YRgrnJhlxw1SF2fGsqNaxipE1ADTd3IlSdcBG/S8XarTtu2bWvUCAbWPehJuIlz58ydOPGFFi1bHnvMMT179kJdqxQjyHa2tLhsvKnyND7+zRLEyDwIUC9qsWTJkvnz5zdp0qR/v36t27QhctYHs1atXNWpU6c+ffs0Zr1dndmQsbFQI4Z7FY01a9bQphs3bjjgwAPbtG5tAgSZqrdUXYlRqY42GyrcuHHjggULVixf0a17tz777WflxzFeV6U6n1wQcPOfC1q10tK/ufBqGWYfLfuIzm0Wt1Gjzp079+zZs1nTpizih5ntdib+NSjIwNyGRFCvWqjHY1i7Zs3jjz/+xhtvfPnLX8b8Y6oJX3755YwlnADMP4XiInz00UdbNm/u06dv8xbNNaQpfVtZ2cJ581Du7dq169ihA0Ye/tCvXrXqz3/+8xNPPPGjH/2opKSkTZs2tdZsTxNVKcqFEccM2aueXTp73bp1zDJlSqgsKrJ5s2ZI0rVrN/aboQTJpCL/CnW5p3Xe+/mtKVN/DqzWrlm7fPkydnaLi4vVyrmIkHijNE3jJo03b9o0+eXJt95229q1a2/41Q096XWsB4RWUCPWyFkEarVlH320ctWqVi1bdu/RY0/8khoL2qciAYSKv/vuu/fecw9raddccw3rJYw4xuzLL798zjnnYOro2xE38IFeC+AfX0XKC5YtW3bvffc+9NBDjzz8MKuG2F1Eigph70lCZSPzTRs3MutA81x00UUXXnih/A+6h/WZcEVKD3w8CLj5rxucpfswaZMmTZqIWZ448c0336RLH3744cOGDTvqqKNGnjyyQ8cOYZFrl0pklsAFKaNHZ/rQKZazvGC//fb76le/gqZu3669eDH5YGBPmzbt+p9fj/nXkMM2bFq//h//+MeqVatOPvnkESeNgFgGtVmzZkcccQRaCVPxMSz+S0juQqlse9lTTz314osvylRg+9mJaNmyZbdu3fCTBg0aNPjAwX2L+yIkHoyyRA4eiAjQPQCHA3psA4Hs+7Pev+eee/r163fVVVep50TKnQZwGqCxbhbOgWKcSopLjjnmGPh07daVpIpWoDuqD1VmKmGMjPSioldfe238+GeHDz/4/PPPb968eWXafHtiqFKlzVu2gE3TJk0EPl2aSObcYGKwhMZS4F9Q/8IC1AXDbevWrZSeLPME9SLh95JI1JdCo/9Hx6Brcaq0Qga6FgRhs+lfBs5eqnx9YJvP5r96f1IMdy76HIuc2ZGwJ+3F8N60adPEiRNRwfD8whc+f+2111LK7NmzcXjvu+8+1MEnTj+9Y6dO1UuBTCqDJAIaMMyAiSeGO3q5adMmyYyhsGDQwEGXXnIZmrpv377Ku3XLVjyAqVOnJgv+6KOgo7ktXryYpFUrV2pKLZ5t2rY999xz2TtgOQErmxVJDKvHMGgZvSZnMACQcWlgE4jyE0ZiKCW54k2aII/YEokaIu8BBxxw5JFHYvip8sqVK1k+ZZtj8qRJQ4YOPenEE486+ujqyxLZssSNvDCsUoSSjLhy0cRwSWzRVFAGbUgq8hOpKsRU9iwEoMUEBJRUw2NFQhKCZxQDZQdniwnFQaEwd9OD4VRUNQYJTZV4y2j9JZwgKSxkQ+e1116rUjV4QqKMsUQ9qtyKcOh7ZCcev3DY8GFt2rbhsU+fPiAMmbKDjtUlc4kPd5MS0xLkoTWnT5/Rt29xiDPqbOnKkuGRVjDtWjEp4qYYJKlSQYun5HAiIekJaX2VFIU1KLiQIxDQn3eEtpFl2kX0VWTOPlI6UgGa2bbQsuHRdlPwrROBrU+ZLKH8GgBUiYEmAThbhGUO62EJNz0HIQnCc0fEiueOrpMCsTXIkCXhgWcQznZEPtnUCrahaUiqiMmULlaWFIZbpLHeHi5ijMY6SUHzFi0SVWZdHl0BRcgWuFTkzYyRkDfAV5kmPPlt9xHIZ/MPKkm3y4wQYrA9jFV6HGMi9rbdhzDNydR/7Nin4fypc88dMWJE23bt0EeHHXpo2zZt/nLnnbfccsuggQMx/ww21t7Xb9gAZZfOXVhrRQa2xFjMxxCymI89hiYZIUFyxoeNk1SvMWBat2nNRiM0RK5YsQIDj3vRvXv3eXPnUTvKbd6sOcsAHy78EAIoN2zciGUlrCLgz9EB9BMcKB2YVq9Zg4vAyOzSuTNzwZUrViz88EMkhL5Xz17R8m3bujUUakOWi6qzqLhm9eotW7eyx8FF5Np16xCJWnTo0MGWFhjGVXb6w0YgQuK+ABRFwGfzps0rV65YuXLVlKlT7rrrLlYsUBg4KMwds2od/hx7tNSgUDp26Ni2XVuyQyPDU4UY7wfOgANZp46dQBtVAw1Z0KRUc9Xq1TgZ7du3p7LiKUVHFTCoFEeLACArFh8tWkobtadWHTpgPN6fNQuo27RuA+zNmpsLRXboiVy0aBGcQaBf//4gQKScJ5NNdIFy/br1y1cshyc0HTt2ZIMmMiGAzMwd6VQktW3bFrbUhTZihZkYZIAtZHQGWpP+g8UlkpgPP/xw8+bNVIdHW+YNF9w+Wrp00+bNyNCjRw/ilZ1EE5s/cAuQEk8Mk0UKhQn9hHgGCrtLVv1wsRA1Z84c/F0sHh4k3qRKIe/qNavZioISVBGe8yWURXfp1r27Ohs0XNAvX76cpoR1i5Yt2CM3N9RECHZC7AgXGSUX8pNdxo8qUEeKoF2oI7jBRGzJDmgcWmzZqiW9kZ69eNFiKs4CSXFxsXqaGNL1ly5dSmrz5s0YlRATr2YSgT0Gb4M+P3fePB6BIpGzoID2XbN2LX2jVatWokTQCttslaDXm0+A5PRhmmn7tsSDxOjBUGOcctVG1gqF1pTcOTTAtgv14uLM0IeLPqTurI1RX5Vl3AOxOq1YURBjnL7EI2xpKMi4DNLg8pKFR9qCO03DyKUHUnqXrl1ABjIu2p3BTmcDHB4RQC44LOSVkLRi+fKNmzahKNjmgCeiMh4ptHev3owvmpW8kNE0rFNSFjyRAq0CnryebGKopwFQodWafatly5eRRpezkYhaKyqijy37aNmatWuaNmnaoUN7xp05E+luF2z92nME8tz8088wnHQ+Rjv9jOHNuJHtAjsGFXd6ufXIPb7or3Pnzuvdu9eBBw7G9otth44djznmWMYtgw3FrULfevtt9gVZpx05cuTs2bPfeustMzbrNzRp2gTVPPjAA5n+MiwllY3JoBQISEYG+dNPP81Q+cQnPsHk7NVXXx0zZgzjGd005tExjH+KO+igg9CJb771JqMRvcBOBLngQKHsumHY4IAOPeWUUzj9Byals2c//MgjJSUlQ4cOJRV6LAoCMIZZjR920EEl/fpROsOPUQpYsFq4YOHUN6e+//77KGIu1FNxcTGzecLsOGChzjzjTLaNM+q8AmJri2CD4aNRjQVln5j/evXuhbq88cYbUT3UjhWC2DpYuClvTHn33Rl4GChlOGMIhwwZcuABB3buYupbQEFPYMb0GW+/8zYrCrQL5hC40IlUdsCAAZzDMGtXUFA6Zw6rNSeFCzWHSNY3jM92dlKYTJPr0xdcAKRbt2xhw+KjZcsOPfRQCn3rzTffmzmTUtCbsB1x0kkDBw7CetGaL0+ejOdEc1OL/fffH/G4sBwQC0BqjIGcOmXq9BnTaR0eKRJnjU2iAw88kO0PE6OoCK3K/sgzzzzz2c9+FjfxtddfmzOndMWKlcCC1YEn2zeYTCjhduedd3Jv3boVivgvf/kLypfqnHDCCew9EY9U77zzDlAQz2YBjYJgFEfjMhsztR6srLVFGAsMk3nz5z06Zgx2/Utf+hJ1XLd69UsvvcQO97CDhvUf0H/KFFrhXVClp9FjDx4+fPDgIe3atwO82R98MPHFFymRJGz//ff/nV6DTufkiro0ONC13n77bTokppoDKwwWuu7BBx9MW6tp4IMkFd0lhNSsVGTG9OnUhV6Ki0s1gWL48OFWl4IC+h5dF9COPvroQw45hIU3JMEbowXxNenJUCIMp3Nmznxv2vTpSIL9BlKKPv7442lumKho7lhHRtCMGTOWLF5Mh6FB6eS0EfgjP0t9DCVKJ0uN6oN2VFPSRsaz0Izu22+9NX369EWLFxOD8aZERs2hhxzao2cP+JhBLCykC02aPPm0U0/Dy4eYIYbkZ591NrWAJl7GNlhE1fr9mTPxKuAJwvRJ1ggPHGzdiYLsCidqaRQsN32P7oSRBn8aF53AAB82fDhUqsm6tetofU4OnXjCiQcNO4hOEi88tmfHj2d0sH+PVJh28KGjtmje/OhjjsHTYlzI/IMqyoSrry0gmRJDCTPBoBTUCAwFzkdLPxo3buw706bhRnNUgp4A1NQarbhg/nx6L34Dh0gGDxlCZya1xr4RxfNATgjkrfm3rsxFZ7GeZsOTyQpdCsWBiqTTM2sZPHgw44ThLmNg9HtwMcDC6C1iNJpWDQaGQPce3U859VRKZ6ZoXb+wcN68eRwPoNz1qIN33sF+H3P00UxQ3pv5Hla5f//+rMyfesopONeIQxbGSbbT4ytwwgDTiNmCAJ3Csn9JSQnKHauDUqZ2KGWSeKRcAhhOLghgZQzLyma+N/ONKW8wokjlYvaPSMzwUMqsJWzatJGV2w0b1qPo0aGHH3bY5z//hd779dZsA4OK9sfGowTJgkVkWDJiJ4yfALwKB/NzIpw1aQiFZG/WOkhiVwipgqyxoxCPOvJI5v1Igq4fOHCgkrAljz766LPPPkvpmPCWLVusWbN20qSXXn31lSOPPArF0StoOlw68Cfjww8/jMHGzsGBEoiZPm3acccf/+lPf/qIww/XbjdI3n777YIOGgpST2ClFBWGUkPdjx49Ghm3bSvDWiASeKI00ciYAcp6/fXXpk2bvnDhwk9+8pM8Pvjgg7NmzUKhUwvmx3LyzjvvvBOOP55T9FSYImgIdCs6lABFAxcq9eXJT0BMg5599tkYKoShHT/4YNY///lPjA0CfPDBB6hyVCoyYB5eeeUV5kynn34a3QaLThfq1tU26clFuTQ0Psq2rSjwMuS544476HIURJ8HHGCZMH78J88997TTTsNq0iXMDw49loIM7YICZngvvvQSDC+++GLurO5gR/EA8FdeefUVWrlr165YI7oKKNFJzjjjDLjR6FgX3EoWKqTcS0vnoMF5aYW6wwebDTECYDNkkhEYJ2zRog/pwzij2GBEklWz06/BEyKjOh5e1wMPPoiBhyECMJAZCOBGRoaMZSwvnz9vHuYfSKk4PDH2TB3ZALv33nvJgi9V3Ld44ot2PofGZfjDBEM+btw4qnbO2WfTcFgp+CD22LFj/37/39+dMePwI47o2rULTU8vev3113EiQeP+++8/5+xzkK2Wi76KxYUAVEEehpzRoe7HHnssTYmH99xzzwE+R3MuuOACug39n9kJ0wM6Ei0IwbPPPMOrBEyjbf4dVApKBoZApAA15Qzvk08+SUX2H7A/Sym4+xMmTADkU089lbMX5gEgQJj0oBawtfPmzafnE8ahYSADBXqAo5qAjzCUsnnL5ilTp1JffETKYjioCnQSIgEWMM8bPVpJKBkcZXQOPg1NTwCPCgDpGHBmeQ8Z+vbpqz5GdhVhVSgvp/8gOUgS5tQkIlGpae+8Qyujdqg1bbR10yaqg08J81GjRoGbddHQUWHi154gkM/mn54kw0l3oY9yFhfFgVpHB9FHGee4/GhbnN89QTDm5Uw7Iw09i1nt2asno9fGZ2FBs6ZMaZoyJGK/J4yixFV/9733mMPhR6OaUROsKL40adJTTz750EMPIh5KQcztaIy8mbQwamSr92H1AktJddAsDMtvfetbONFQkYTG5KW+O/78Z5QIE0EceWJY2SMvipU1AnJJgxh9URGKEg1Cxn/73L+V9CuRwsXAY3TxzZ97bsJnPvtZVQEfH+OKbsX9v+KKKzCxHNpnYRmj+Nhjj06Zsp5aU0cKgjPORrI/nQofIm3wc2FvkYEAkdAz+bG5S5cuZ5555g03/AqTj0ggiTnBMcLhOP74484440wUJRNf1ktmz/7gkTFjnnzqSarz5S9fwrIh5oRcqCf8Et6PQPtQTboBfJ5//nm0/EMPP4QGwfOjROKpZpxURTQkKQiTlzogkmqE0IA8fPiwr1z2lY6dOsrfQs099thjlIvaxb7+4Ac/QGfBmRga5cWJExEGoJCZSqL+xj799ONPPEGL44hIDMrFycAwPP/cc4RxFzBUINOkSVP0L9aCLaQrr7yS3oWoeHtAgRv05FNPDBjQn/0F1O1vf/tbzBK+Qu/e+1FrkKSlaFBsA54BczXMHuaZdSGafuqUKQjAbpQtALRvD2VokVTF24MhQ1lUUKlIRf8kDKpI/o1rrkHCrdu20bXwCR555JHx48ezMECnZbZHTekeoI2HNHrUaNa06MDyZfGTHn74IfZNjjj8CPbIkJBWBxMG5h/+8AcGJk1z3LHHYauQADHsX7jwrbeVbRs7bhzmir7BQdr27dvJKfnjH/9IWYxlvDrrtAUFCLBg/gK8gUsuuYQWodZQ4iigAcCNoUeJGBt8L4CicXmVhtM5WGI8LQZdU3OGymm4R8Y8QsW/+73vYRfZTYN4wcIF1BTfq6xsGzWVaZeEtd/xA+gndGCkuu6663BJ6V1ELl2y5LHHH6eH0NMwk/Qc+HTu1AnZcDVYL/nOd787oP8AchEmidl2snoZnAA8UfwDLChjBEeNmQMiIfOs92c9+NCDWE1aBM8MttaHCwoo5e2330FjcBi5Q/sOQIqXc/fdd2O/6b141T26d6frQEnr0wdgRTjoH+seunAk6AmawRPDoIMtkNIzP/e5zw3cf2CTJo3RBowUOiSw01X6XdwPZxTJEW/btq0ShvFLw+GmIORXv/pVXKKQug3PGJcOzXzKyJG4PhDTdXHTIYb5kUcdSSvvYFKRiuh/dw2BvDX/qr7Zn+BmoqRQr3RovGMsB3191aqVzBJYVurZoyfb5KLfvbuZscJC1Apq4uqrr2YoMqrRy8V9+zKi2rVvD4GsqSghJsA0Dmf2rLPO0g4ZRTNKu3TtipBmCZ5/ngV8ZicQS6rkTzCTikQ7M+rQWfJg0MUsCcj8K0vYNuuA5Wvfrl2//jYC2ZwjiVHN+jZ3xBAlVoEAbBmEhx9xOONZ8eh6Zi0PPPDA+AkTmC8yXSD+zbfeQkLWVxm0qFqqJmLmZCi13//+91i+zp1SyVP5RVP1ntYqQYbjCMF3oUYYP3w1Vm7BE4uO4saIjho1muVWFLpN37sU2LZlq1a33nrrxIkvHnroYSztwodmZXrKmgQ2lbzijBnAI2EC8etf/5pNSg40sFitpKoiZZ5Rc0gEUCYm1GG7YdSnRhUHy0GcLD2rSrNLZ3O2gPkWMshkksqKKJKgBGlrGe85pXOY2QAjyvqgoUPxL6RkmfGzn//b3/0OxccyOBqTYimY9iXjySNHHnLwwVK4lPjFL36RqSomkwWJHj170vGAS3PuPn32w3LEGuA2AR29AqkoQrNqtO2SpUt5/4osGAw6Cc5NvKilTTRxncusS6B8MTkISZhRQ39gUZrNqdjoIIzZRonz6gHrQzDnok9CTIBeJ0o4YO0wtNOnz8D2XHH5FbwIE/GHLan33nMvXiY9CoEpTh/HCOKwecfmeSFzbqatzPXpCRIYB4JFfuJxPQlQFhfdj3OLeH5HH3V0YizZgGjXnrwYWph/4fNfQIZovDGuTA/oNrhQmMZQ061PPf009uyC888/91OfisOBPtO2TVu22MaPf9bOmmRwkzxV7hrpgeEWnDY6Ej0EwRgm5tgUFiBMk6ZNwQqvgkUFGpc2IsW82w0b8OQOOfgQnbwxVyz0CRVBo/CEhPj35OLzDCzRxUMYxGDaf/GLX1x66aUvT36ZR3LRBBTUZ78+nEEmhkaloxJ50YUXsQnCQMNNDB3POjwwIkOifKyayYSbpKbNmqmBEkmCl8DBHQw2b4vAk4wkde3Shb6DN8y64NIlS3mFBB+OTTQW0khF/gnP2RIF1eRdlWOPOVb9kOZmSQAvk4YYOGiQBGBo4ATjSbA+etjhhzVp3GSnyEs2v9eOgDl3+XzZfr8dFGJ9j46OomTQ0plDr+JW+MprrzLB3UME4ANzdP3Ik0/GS4XbnX/9KwFO/N18yy1MLHDkOYBGPGObO/SMIpTOyJEjZfvp9HDgbur1tNNIRaORy3SfTcbCul9VO2pvD9teabgIoyAUtiMOimzcCK0aFLipcWw/DLlw7eFJjMh0RzUgEsY1KjviGcmaUmBFyIjkDFfm/cz4cRSwOqgKFp9xLEhFZQwdMpT5k2aNEBvn1MNQKfEOsXBDDAJccMimYkLwPHhXmAkKiglA2GJH75vqTI8OICpTWPQmGh8FirFEFjwnNDuRTG1hGDnjnVx5xZUsPo8eNYopKUlSf7HQ6gEaBUVDc8AF4aAfMmQwFtcaK7QXWWCLceWIFuYHrKChRqoLyxgYXewZxglNDXHpHDucVVJSYksmzZuDuYHHOYby8l69erMUBM54DJKEEpmW4SXAVrafQmFON+7frx91ZzJN7SCGA5MwAtKtBCQAIDOfxuzRlxYvWkQPo8SWLVqwVcEpCuavUNrSrmbZmQ5mbEPr2ZpxWDeGkiAtPnjIYNKi2CzY4uNSF0yI6giliKHhQtFzEcANZT6KweaASKvWdg4GIe3avp1I6j5k6JAJE55DTiVRHJelh45BGFeD1mdZmBENR5KYE+NIYWNOP/10+iq9haan24A5XUWG07gVlLMHgPAUhOUbOIgZKm9LmnODYMwBQBgM33vvPdqRvjRt+jT2UDi/cvwJJ9hwIH+ADr+TtqPnd+jQkWoBL8xruQKE1jpz58xhXZDBzgwBJmBCs6v1WQEiknUpSqer09CUhWCsZ2BlqYJ6Gv0qIGFjBCiIh+3MmTOnTHkD1/bEk07C9pORVOu0BQX0fxZ43pw6lbMaPFIowtBAzJ45kGQKKKx8kIXdSXojdcEHUl5Ktx4ON+MX4OM5sGWkUy5xNiiCJARCuJATDGAVwgYXfjlVo3swLeH0omRjYwUaWE2fPo0lIuTBxTn+uONZIVV/Q0hqRxsxYSstLaUsa6BWrdgc+fF1P2ayRMMhloQx2fzaAwR20n33gPM+k7WwgLGH6qHf0JPoW+qtdGr0BefXOOV0xJFH7KG48KR/M64wfnR6isNioXNnvc+JnJlYJib6xx17LGtZFKS+i2HA3PJIxqBrTccw5vAAmFjjlKDcSYVzGPnJzp/kpBaMTe7UxjiEsYpdSVLDyLQwrMM3RmymElZ0Q5ZCdI8C3JMswaBStCm7VCQMA6Xv17s3yh2NgP7CoBJDgIxMI1Rr5COLWKFkeWufzUh7lO5Ii1BBle9GgRqqHGlPoaXM3LJozHF3pibofebcWD5LDpWn1pRKPIeQqTvmB9dk0YeLEJVH3AJpUiSRKUPBccCqR4GdithF9UHWSAmSzZpxRN+2aRCMeKkq4ikRPYVyx7pEbDHUTNfAEwnR9CZ2QQGmnYxkYSnYBIt1B4nCAlY7sDp8jFnEVBP9iLfByyNkschgi/nLcTkaBXqJhwCsb5tIKUMFsP3YKnwIXKLZs2ezGk+vQ9fjWrHCrDZTK1kP0WXnsu0UCxetYHIFXopEEsolKSEOmWkUzDCiYs8UjzwKIBKTVO54J8zq5pSWylsyJW7dPlxB5nZt27JwxToK68YWy1igOuEoXHiyknCXsSVYylmzZjHKiouL+5X0oyrqgRBgksnI0ggVhJtASwoKr8DQcAw6GoVIk42ii4poO+RBGwTrW0gtEIMYzo0wG4atLsmM3WU9hqIxluKfplf9a6mhavgTb0yZQp+kB7LAgHciAAUss396Bf4HVQNDTB0FIQO2PxnRgYkaVIhZjdih37QZ3cKhPcy/tWZ6iTktwq6BDDg1BRkQZFbNkmQTvBZEQ7FYpyvcUmDrNORGMCgJqCxrRJUX7opMC6n0F0rr/B3M26YjRVioC52NE07oQ5IkDKnMH3CIQZsFA9yU7OIrq3qs7rCpgaeInrFPgIQei2piKdSYqOFiD6wkiD/khkADMP+8s7RsGcOJUUEP5q7BQ4CZCUOOKWNumNVEHXs8SoRxi46zjc/RoxnY/7j/fs738TIbkaznk5vRwojGlKJJeZT2CVrWBjqpDGYiJRgyI3x2nkEMFyXGQmUa4mNGQLNeqDyGMba8UYFtakolRSaR2KaPmXfiedVNY5/DuhBjw3jfDlecMEqKslq0sFfybLTLzqc/FMvEDqtDLeBgzNMSUbegr+JgQgD9Y4FQF8UbeTDqaEBeo2BGiKZmJgIC2BjgSuso0ZJMLKGjKJnIwY0XzwgTQPUomSwqTszNnqUKLsmf+ZMlNnqEDxYu4RDEjuQi5k6j00DcScIUVRCHVrKeFlY4SMWgYgzQfRhjNQ3EoRQrhhhgUwNRrhodKMCNJLFVgDYlF9rc6NPLpEuBMZ5huQIMr/3P/7z3vvtwKCkX48c7kBwLR/MyxzK0uWyr3firCCKQQ+PFWi1pIzPhJknYNrJc6UWZEKPNqZrFgZlhnianf5csXoJpZ1KITTWekGVpwtH6lFYcrGD6LcQwpMrMkrEBY8Y8woI2S8qYBHoap9b5RAR+AH4GTU9F6J+xIjCMYZKQk4sYXXhi9EHRCDHDnHeDt2yBFVgBPqlJJ0hZ0SfpjQxPmESBqweSVOtC5ZylpVymszipWYUDTaNGRZwbYZbMtFpMCCAqC3vigGDkrc6f8cXF8lskg0a1IEYB7kwpYq8gnrOiib8e1vMRjrKoJgoH79k40OIhA4CLs0XGnlWtxurS6Af4QGmrq6HvCXfwpM+wKkMS8TDknBBuK+deR44cyZkkHDVLylwnHH8C3JgyTZz4Av4NTcyqz5DBg4877njOJFn7heHAPYqXye3BHBBoAOafozSdO9OfUAoMaRsOUnnhYx34yLLBOWBWEylMGSFYKfhjBhg59E0GVf9+/TnRw3i79tprOerVn4NaLVuSCg/eOGfIEZBUsSvTrZkFEIlgRBrDpk0ZY9liFR/Ukq0c6Apj35Q+jyI2xYMu27qVGMYhYdJIskAgi5QEND9QKmrFBlmY/wEXS5UASF6msygdBiRnypAfAivImFWoSOYQpKLOpDrJhQCBma1ASBPBH6zgTLzJYPo1CGvqwwwJJ7NJonU6dezI1wAQWPITsHlq0E/4cpYr+E9oLuw9DO3Oqmzz5shAdpirsiahaR+mejZDtQmQFWxo8NeCKSwEFA7bRInASEmk6EN6xQ2jSF24qJRoDD05muF99BQl63gURPfAC+RoAsQgo0g4Y724OF/Jqi9JmD0OEwaG3My+qiLqPMTQJczFUVOGSlhVQo1CTZOqkZGt+mu6dQMQNlCZ17IoNX/efOzQJZdcQjOp7gZBwIq7NUnQsFauOYW2U4s3RyRJwtxkSi9WM0jmkmwQwIBEEzhofB652DiXmaF9WW8XZ+LBxQQPji8lJDVKlbvVKNSRdqcTAk5xcfFnPrPkgw8+YIGNeSTrJRzsZ3WNwQUTGJoJz1xRMJKScWRymV2kqvwFeBM15LXK0iTl5bgy2OlsXrEkUT3cGCSaJKRkelqmcGNMTSmaSKbCdkAB1y1QkBYQtQ1KJOIQEsqBFErnbqdbwmWYJL3XmMTLlAxbbyasrRqyl4bwWrGzUlNvEsxVuu5KikwUQCRqag4N+Jm3atoGrFRBk9Pa3a5YZYlCPP2ZS0IGkoobWdBjxid0AwCGFQJjzrt168pCCGhwEEcHkpQNIVlfYXuInRqmTzh5s2fPZuuWI5//n737gLPzuA5Dv30XhUQlQBCFuwAIAiApdopFYqcoxaKaVRwVK5IsK/aLHceRkxfbz5Z/ju3I+Tl+yrMlS4od+6dYvdrqIilR7AWsIEEU7qL33rH1/c+ce+8uwGIWLElR9yP47dyZM2fOnJk558yZ8umyZKlWVpYnqzNcWD303Dlw1Dh57tlfvjlqA8XYszR704038j1mh66opTgldZA0MSazGrrm8+5SHAnmnTYPc6M5RaN/p0TTleefdtrC0083bMhf/roc4UYC3/7ePXvNMNJ0QEOWzkyxCggsHY9BVUVH5gAMJeSBsCZnq3kjfmSTJJgRSFJQivBkqni7c4WHB3OM+khN5MLKRVgipPWxLhYsywzb9mD+VeuvyTEwAVy4p44GKlHiqSEPtAnD5Co6m9xKo0euQkaFNqWQ3Vwm9sepPgc+57+zZLTUrbfeShBoLBMv1eFjb24x0Qg+OOslI2ev7ReckFqcgKYeYNDWhbQoRaU2btjgXPK0k6YRIuFybIwZNlJTwQggLBsuZkIVfssaeWvv+D3iiZl9qWDyKnwerKzmhA/yMi92CNgPBYytkI4NAQAhxZubbX3auWunVEodzRFfzMQsKmuRbMyCxMiXNIbCG0GtLFIzY841dUhGMOZYCzD3shvRaSvjwk40OjWA/Qv9EW/Cujb7h4RLQjfOWiTOY97okYrgpKH6s+i2apeThduZQWYXmE2LlrcqnabQiYHGAkWuXZzmB5x1DE6Wrq4Ai87YJcaQYYBak1KXnp4eu1AZAdqalzhrrTNUKCz1Ci5Vh3agLbUNIpur8cZXGQvB8MaG8ePG6Xg33XSTJQZ7J7nWk5tJkg7sGgCDF9+iytUnOZAwGSdcKudSh47TT1/43e98j91z2WWXpT6Wmo+WdisXBW79O4zs8iTBWZ0atgzU3pQudi1f/rilMV8GsfKoA1ds1nIElPPcHmRF2yFbyyUwEu3IePSovkdd8im/IkZnylyoxd6RFRfvibxZ2wJcywgSKgCBpcQyeWn9hacv/C+/+1/cuoEbtmGqSwAUg9jg1Z91V44BHlPw17/uegcZdJtcdrH1Tw+N7lp/XhgHKvrghSF5+eUOK7g8el+ZETrwzVWok6U+0MPEU9UkiKFeE1vPryZKIh8pDCdw3MBjjiUmxkOZ0Fj3svogzNdq8TiLUDoXnxNrVhD1YyNEvFzsg7RUdPTK9toRgyrzVrR+zoNLFK0sbwyz8EFUnqDKPRsdHTlca5OJTG5uLmqvCuwvaVgb/4HNrD0+BDfsAJQaAA0NduS6EsAFJssff9xWKTEZ771mzRqLdgKhU8ujpiFKyopgVlNMLlRLTzDKj1hJPATr1776VRJNuzjKxeKwZ/usM88iC2z9tXOeOAAMFTzCNpMve/xxLXvVVVeRnqaVoVoaG8UnbeqCA+CJcqrigx/84LJlj+GY4mgRm8Npne07dvgZSrQoG0tCTA20BcGFo1W2HvVDFo9NVehHicdPfMNJAURmJ6S30JO63O0l6GHfMJIEmDKUPX84a88NgH/yJ3/y8Y9/3J4R8KXoarFRztFPae6slwQ2R00YQivG27N923YH6lwKpDoQ4g82OnWGt1bxbQmMCV/mHPmOzhAOKhj8j5RhQVuBrhAjuRKqlpg/VV1ArsBQuod8J5xworucZbnttlv1c+zK7oowDDeVN3CcUtPzZakwr+APAhobn1i1Sl0+9kcf27F9uyyYxg5QF25hZgEMSdowQUoPAqKPeeDUCQNTweanBsosylJfDx91dK3mZvqJMaEz5xYNvQJ8PhZc7D2kVjF/OLbUFLasb0JCG41eto7G3RhTpzCatbtGZwZpcc3BCDap/cQnPvGrH/lV1xlFDyzskjdpq5T6VH/knT9v3uLFZ1Dz9hbgp16thkkDtzl2/ePnP79ufWw3SQTq8QxoUZt5kcHgtkl2o22YxQKD1sModKWV8aIKI3nyVNQdG6cJFM7NgE6j1Xarj370owjT4Z1N1Q/Dtmto4JRyEPFP//RPMR8xVgpsCpl/2nw9FjDLNfCGm6P+HAcOvELVvyFXRqyhnn3aiZR3v/vdepjOpx8bewYPh+HVV1+NiyOl2PNjqlIMCbMrc2LSgSCzgYuRYQ+LLaxOc73lrW9hz5JZ8KcwGjtuLE3JXCAUeBqdggX8ta9/zeFmczV2yYKqWyIoLGK0EvDDz5il+S8Gth1nBApFsvTRpawNdRRpnJNQRKRhs2FDXCrMQCF2JVFLWIEDWOFnxHh4IBMzQUlENsVRb0lRVnnSU2roOpNzxhlnUroG6sOPPEzyQuttf9nnPvc55dIx8ipdPpwJwWEXYToAiNfGJpJPEgDaPRtFcOu2bbjxyU9+csn99xvtzjKx/9lV/nV2dZoi8Fp/+zvfpiesO5hzExkY6ygXE4p4pQaYODZSXXvNtRjItfhP//QtLh9gKABjNZF75k1vuqGzqwu7EGDKaLc5ifyNr3+dDMU3wHEtz7e/TfoIB3/ImjLjwS4CVu2O6S2cExqUmVWV3bE6zjkRDVAc0eorCYPhZ9K5q9EsEOtQqMXBYLHi/vqv/sqbSRrTzdJ8qYOfWs4W5HCC9KBtzpxTHYUnPU2FtTXiUcUQUahzmzeWayF0M1mYQTYBmHFqpphuVhu91vpwa7XspZwWfnrXusFR9FT7RqRGnwxisIs5YzhQFUpPYgqRraxwjFq27HHX6bDzyi7yuF/WXtHPf+Hz6m6cGkSBpTyFOdFP4NQZdGCt71iNLDDbhQ65WwSwV15g2Z+HScXGplgL8MCnt0U9/F/4hr0525UrWtA5t/AxhCWtXP5nzOEDMEOl8g1nbjk0uwzAlXzuMI4enss9Rak6MGBoGJGldBhiTMGDJZBD5WyC23ztAdIPdYA4YnD4CDPXnMH9EE57wilveOnKoCtZK3x48p8oZajBdcW/9K536UVunrCso5rYorgVy5dz8LD5HH9gx6hg1rTwozTSCIxJccCUrigFMxlAuod2UV8CClUwKwLxitO4iSVEQ7UPZMfIKif6kSVFdyKWm5tNe5SFe6+57DKSBCo3N/DtFb7FPZ74rH8aIJs2bsROLYJdaqSTpzRLi2REDerB58mBV67zv9iquEKS6VjGNslijFEhZg9ukCaI011slOqOz49/2WVzoNIobjIhKVjNDqk7DcXfYJ7HH87P/Jv/7jcsNBgDoQ7L3M7dwMKAjajOzk4E0ECA6XJn/1wAp+vHFKyctaO9qEm/yDgmTE9PD/M8hFqIl1BjDnH1dHd/9rOfdQjeshnfMsuGlSMA+Ac/+OHtt98xY8bJ8+bNd4EMJDSBUwnesntUBJjtivkzfkfJgRzNlApfunHr2iAxhqizc1YoHiPIly/noGPZkMiINF+nuWMwlxt1EnNIhERFQMfCZ3xigCjHJdJ83/59xjPhAsYI9wUButzVNxybyV5ILDe86YYbUGKigGMkmqopMSyPI4fPO+9819rUztDPnTf3ddddd9PNN3/jm990k7FK0YV4Cz8V8q53vuu8c8+FSqOj3MVtVMgtP/3pfUuWdHV1tbQ079mzV4najtRjS5GbMZ9vbqY19+zZzRqROvIh9GEjntRIPB0DOBUz+rUaWabvwcJpKbtba/bv23fPvff+1V/9Fb7Z3EATm6sRiOecc/ab3/xmNx9jCAzkIISQp7oaWaiGYSvQlNkrJJlcutuJPfSf//N/1rH1KPeycTYwm55Ytcq1DW7xM1e2PrJi5UpVu+GNN+iQqf6z/zPFUn8L6BiYFn21DA3Ea6AnVj2huOgT+cTEerCl6E6MUpdsL0r09IUL8dZY+8hHPqJNdQn3YWCUttD9XEvMzvOoL0Nl1aqVrHQNaiXCPvDEHeWm2dnYgDMwc9XQFgaI3sUPRLGhij5Gp3rZFQgMkfq2d5XE+Buar0o0ptl4YWSJr/UuAdx+ovsJJrhyoUWqQ7yu4frJLbcwnmhofUM/MemncdFpXN9x++05fGRXoq942LIDK8xs2W3btuOJLhGjuPQZ4xGprh76zGc+4/4fvkCGJvUvu+6hV+jV8rK0XMCnz1TGJnxV4qXWnqwUPe1OiB07dzrc8Wd/9mcG5pzZs13qAC1+KtE9hlSmXGhQur40WByE6lirvrAktfNoO8CaDJdsDmWXkCdsCz1t507DYY+uBSFpgNEg8Q3LuZEUHbSFERgcgDN+NjTqaaopEmO9FSEvdS7NMSg3EGDdl7/8ZZeFkGb4wDq0eIr+e++9x0jXsoixAwCFelE5NhlHBIdbtBRTfz0/DjR/7GMfe345X+a59EtdOftiijDSQd+iNalA35N1L01sOdFPy/NCqgOB7AaYG36oXvLD2DDSyEp9mmJ+21vf5rit0lGFGLe1uLjeJbXvfs97CDUzVAZ1ynpT2Ne/4Q3XXXtt+glgNlToOUPOSScmi1JIQGJFQYSp7IpWIoOmdvCXQU24EO5KFGBPKNfAmzBhIoveDe2mTVu3bSUgjLScaxrABqpD/6QqmWIQ4wzMhpkVV9f8Gd4Gp0XEqGwcUp9JUqecRbyaIuxVrzrrTW9686RJE/k/6BXIU/QkfwJbeVCiLKMa8RpFnLxcF0hFgEt1bPBBM+JlyUcFid2ucvCPICAZMYGgnj17DlPJFiEGEKoSP5yz58yBTQCjmAh4i+3uRXnjDTeY1cFZ6xg+x06i4Q+w0G2NTRT/lVdeSd7BhuGaD6PINZoGExZpBUlVpQiGU4XAtaH6kosvAQ9zYVzQQqswGvQESOz/UE3TcTXVlNpIy9IQ1JUaKZSwdqGhPfm8HeanlBjGYpHV4vCHZ3OUN/WsubCRhcSUcTRDjRSHCZBjjoo7V6Kfq4UOj2+qphRLNrmrlIHli+v0jVwVFqPbJrXQfeb6A/jm0RwaEdkamhAHefarzp43f34OqOgcBV7nATy3qyvqNZ5bOAxEvUgLymgI6HV6C6o0unZRR3zQKPv348EBkeeff55rmwl37V4jCROyTcP6KZ1ES2GF0nMIyK+Iiy68kAq0KUS8vLqWElWQ/Z2tHNPkwh92P5ZmJw/3T65rFEUI4c6du3Sb3HYOHmZDzAFLfMM9dMI/bfr0tFEYRxSp9SY8NzNm+Oo/BoU+BrNas5gFcmsReiAc0zFm1syZrCIIc7xregOEn+8db38H/zYw9OuKqiCA8xooDsQ/1ROVKh2eo8XuInhwAxlw6gC6jT6M1M7OTmTjgwpqQdy75NJLQmgUPZ2s1j+lqiOOGf7IwHDEA9Yc6gKh9uWFI3BMS7QmGNJAKwfDS1dUEMbqfmI8SPZGjFscIDl9wQIfDVEQUSbBJT/6pH5lFNgNowPrzEaZ9hUzK5g000jEUrxSL8XxBbp2jDWQrZz4n4ox9bjnwIFhG/A5ZHrZg+ruOp+BpBvSxOSOnxmJ9hQK0UfLGIrA832GUY3AoFxjhufKhMAF43nDicgYh8UoYfu705uEes973qPHQ2JeFep5YnzkBqbEgGxZaohFCvMkE6+JrZaUgbIbbtidQ8eLZ+IYddSOuj65pjWe1FDVMGfSyJ8RY1SXc9L82/mZO4PTTIg0JDrpMHjcNPIXf/k/6Ak3gBKIRIDROxI/Mp5MSQ1AoEaVQMargsecLH+aw1GrNn/5eo2YrHgC57tWhIZw4M2cm+DG6gAuzlUyiNT207w+3mV1wAcSXQygFn7i3sgNyWBqjyI8WYWRFcGrWqRSwBNwtVwCmRFYMoRos1TE+HOpmekygFpFwByTXd5EFcsK1lDLzk0x4StOW6Qh1LYuTbOOpCpzeTM1TKp8KcA9MNlSWcd8Z428tVeSXet7WfRT4kzk2UlUWUbdWO0YBjUKE2YkkiyL69slbnIZI7UbADMpsyQPg4xyskBL1UjS6/hLAND6tEsSMDJvpdDCRvPdNFNqVUhSwcgo0nNMXj/xwVhjijG2Ntvst3mzCYNpQ+aqUVIpqNofZIzHqn+1zysL/pHwCqUF3ThCMrAwWD81JAKAo4hYuAm3pWdk3oSsweOzRoeQrACpL/V098ws+vOYXBUWRX1DgHjAJ54ssYazVnRi8HP9hg0sPF/usbsQGIZgS8JDKwAyAyNRjQyDASAmI2FQvgrmz0TlzQSpccNP9sraNWs4O5m5TA0xaQgek6uWvR54rhx4Zar/58qF0YB/utGl79p0ner/V37lVwgvpbOvCc1jtMVoUHVccJoK8Iua7xqTKXeysikvrGXYucN7T/3n7P+4FPpkJAo9RhA8OWY4F1n3L5l5WYtjcA5jODr0nICPznr0ryphNeJrgaPhjsevFPj/Eh+OR0nPDsfzpSeZrwz6719s1mdHyjNCJZ2lvGeEe9aJT4PwBXaqF5j9mahH8EvSbZ5vD3mmutTTqhwYnpZVY+p/jw8HnkKLjHC4KSMASoxwbV57fMoeJSxFBBAxbtb7+J9/nLPuQx/6EPdmOleUycC3gcCWe3YMt3NOy1QzajoKz5PRPjlmuNhnQcIzZR9GVAk9J+An5R4RUSWshrAWGAF0nILVso4TuheM5vnScyyLRls5PV86n5ZBT4Pw2Ho9bf6nTniB2Z8aacY+DcHPlOW4pL1U5R4X4l/2SIZ9yy97Un/mCYylhvLQoFyLqRNz8iIm/FojPHIvx9rGon9Uwdc7LBPaBuxzBk4rWXGMlcWdu1auWOlTtnYLW+i1TEgYgR9FkfRy5FFwJqh4AABAAElEQVSdppeCA3Ul8VJwvV7mzzoH6rP/UW/BVJlZTOpCwqqslpWDUsV9mQtjo07KCy4g6bcrykZlSwAsgI//+Z/bj5Mb2eyut1xnz7Avc9i1pFK5HPCCi60jqHOgzoE6B+ocOM4cqKv/48zQJ6OrTX/ZAR4/7aCxZck24Fzsz0gZBZ6c/WUYw9tvh/D73vc+9xbYhWdPmZ1BiLfS72jl5a+9nEFgK0OtXi/DKtRJqnOgzoE6B37OOVDf+jfqHaCm1Cn+nBDzllOZ5tAOQeUm8DQRflb0JTpVhO1i0/iGjRviuJFTBo0Nrufz8VBHhmpmDebWrJ9RZ3S9gDoH6hyoc6DOgWfNgbr6f9aser6AI9U/tWmC/2SX+EiY51vO8ck30gTJ8MiYLKMW85Tu/YwEE8C8HSPOLj4bEmvIE8NLYj3UaHg2BD9XmFFF/i8SM3qlP3N7Pftynz3kv1jZny2An9uK/2w10yuJ2rrz/8VtTdqMXqQZR3+z0rHS5JiFhREEBGSVoIq6DRpjnUJShUElpsasRM6OqZUybAqIKmscsZkxMUBSNjqO1OVgYPNOJDVDYSRMrbinDiRpZUNijeyAHFG1zJj0PDWSQsNR2QNBQQH/SFT5Mws9ppQqJU8uIqs5XClsLMw5BvIosCczHyFPOj2RWRJPrfkqaJFdRRIx1XAUfVSVKuBP/lND/uRyE2G8RzKnSuFRRYxoGniOwVmBrCEpPAxKj34iF7KrV3ihP2ES4TB5x+Y7Gkv+qpXl59M32TMlPRXWStyzIaCaXRVqDMkWqVQckpFEVuHrf+scGA0ODI/J0cBex/kSciAvhBmWMiPkb0jeqj4Wpqfj58iYopvTSxHXgDTFl0so+KwOYE8NSap5SWLclBLSuih18AkmkGscNW7UUFVzxedEC9YQfrL7fyQ9kjJvLWMtJooodkYECtlgUJ4AGc54GGq5ElvtHRhKcsYEWMjjCpcyMlBVr0wRM4wTa55GZNdgCu5K1eBJMmrY8maYrHLyPDJWOTBMUoZq70Jh/KoWc1TtSmQ2h/gogtvp6GuIapieHEBkRsrrGQlQLW1kXJBwDGSAlSoIZE1rGTNQQyswMikKK7iygEjSQ8NwiSunEriCoUAmWA1b/nzKd62UaLCj6jQCvMbVp+otwxiO5on8taQRuJ42WOuxpVNVhl6y69lU5Gnx1hPqHHguHKgf/Hsu3PrZgXWPUE1WEv1JeEoW79SOAinlA7LMrogwj/iRspH4JSvFZy5vuRxcDGlVpJ4/JV8I6ZCr5VFowoOxFSABkowQeeWJyMG4ET0IKmsErgOrQCaW8oHwIDKKiidJi4Kqj9QqHRUNlFnhARJ6ozy1SPCRpfokGqDDGDOqVLlayHBy5K2qRjgCoDAr8fmVkcBwIMOVqpR7EQCob7ZImF0FlZiof+FShY6i8CJ5INQwDIl/5DsbBUhSDqYGGSUGxrjfLeOVGLe9B8ZK3ZPURIjtyBVTixTIjCNjEjiAyrV0mQWY+Iwc+c7skRoUBkDEFBTCEVnqnjgTgzeY6I2Fp5mUMdlJAkN5MgAyUD1V6QmWlVW7YHhYEfFEUiGkMKPKjWoNcBxhiT86ecFf65biKxiygJJasAblmSSAfsgzr8iISDqrpPoLQLx64UsltRaoIq//rXNgVDlQd/6PKntfCuRl+hIClIwpCj5ETJE+KYYy7O3nU8QUjRuCtUg16sclsiHXXLxaBJYYPyJnwARUhLOglmbXdLt51IU/TgEQcEUHVWT0SDmYCE3l+gb61/asddOnG3lr6gq2IJIAFShmR9SJoA65XciO20Ir0lYuBUEY2cuT2TOs7gMD5TN9kTseGISSNj8r9Afa8nE/v6vyOiCF5eD5cP98LXMhb2QpQcAgAsKHkdmDvvIEuiqSLM6bLyQIiC/OxTecdu/a5X5o+0Dd/hS89V+1Oql4goKneiJ2REF+RVlVzlDPe0tzuH4/75YGrBUbqja/plSVokSjr4TaS9UrsiDJN8ZGHapsEVAMjsecXomllQVGtkLAIK20iOtvaV9IApvY8qg7ePRDgnfpHpACmwoAjiwylKJ1KttLJ/pkxaRJsoiN/lA1p0B5Eu3wO/pL6NekJDC7ZTZXEArxCTkyI3ZBWqtsAmSt81uXgcSjWzY16eQ+yjBt2nR38gfNpR0yS4CN8O0Hp7RojcIKZ6CsclWGUuVSp8hbw1MP1Dkwqhx4xX7yZ1S59rJGXmY227Zv8x2w8iGTnb5USr44aJBkp0BMeVTRKymSioQKeVdkGYB8IsYTiiGENflHe5GSxDdBJyWEYlFm8PsWuBt/fUveVzviKsMQZhVxlmhdwi9v5Cqfke3p6fE1el8N8DkvRkDCJIUAIEwVkjTU2B7Zq08kFYJDLksoSQkvXFRLAEtNVIkWBQkcHKgiy7yJOOEjpqTWENagaySBEQ61UcgQoLqCpGIeVckM1VFRcridagnlTU1u/v/6N77hqkRfUvGAL4xNVrsXvfCqYFbQyCcxi6kVgQxhBGSMDxF98xvf+N//+38zxdzCRA/F1feBL56AUZkqH+hjN677wltPd/eMU07xccJEUkCHi1CLwjd0lRv4S4kJGbXL/hB1jY5Bod5151333HuPrzO0uZQ+CowHJeqoF4GpaMpa21WrU5KiKKh85vFrX/uq0yWukmxvax9ur8KWLB1kBpIJKKgRzQSs8STACs0CnqQzAtFPg3vazgcSfehPWHNkRtSChCffW7ds/ad/+qcHH3rIFzp8Pie6ROFkYsvWx08YZPfAX9AXkoSj5HgAyAKSfeNzDPD7jkbGS6o/dQ6MNgfqs//R5vBLgJ+08k0BnxVxQN8qgJ8+vZOf88pP0qEpRRWxNdgf34wp4qgiMIVpAp8Q9RFAH2iv3dsPTDycssNJriWeEI2e8iGQPbv3+NC4j5hR8yU1JkYSU6gpIDP6SUqCMavzfXofN/MT/BH4aYUiNKMUkaUUGROJtxAAAVkKYEXbiU96vJM2gayXjxaSrfkz8YingmSABEksj0RYg5FT2CNVCEIT8TCBqlI7k0OPUYhhGkVZ3onfDyn5BPJSFispiCxw8SoEg8mvu/pskrCCUs2op58Q0l2yQJupQXnJmGoEi2J6WTSQvBEolNAoN954o4/8+qo69kYk50R5YPCIiaeEC4b4Rf3v2r3rvPPPd6MzVIrEaiyisH3lRW5FiGSb0GeUuCwiUZhtkXQmVvE4+8CDD/yv//W/XAVx4oRmGTE8CmxuxEz/4PQr0FYdVK6N8nVXxJ9z9jlTT5rKNaK/+dbiTTfd7AOGeb40ekVhb6Cq1KBSHagSIa745hBIrBr0X6FTL48uUkwgmNP+0AkxPFAF9xp8smjlqlX/5//8n/e+972GjJjEiUL8V00xBw4e8NVakL6SC1+YmE1NBlrYr42N0MqSubwBePKn1DCGG+PbTnieBEjtKUawb2T4PHcBr7/qHHgxOFBX/y8Gl1/sMoYa3Me3bds230fn9SW0Vj3xxB133HHZpZf6aGZ+hS/kHalEu1Q/TUY6k8kEmYek+/u//3sGxCWXXprEE3wCkatoDjB+kqFEpydh5Fq0aKFPzvv0e3xUFHwRqZFapJ6/aT2ENGyIhU/XB/23//bfxo0dl86JFKCKCLlZ1QqRPUtNg6BoONKWd6EaXRGvUU5VAWQmJKlmane+7uEvlRUVArqQX6G/VpEovTwCyQ1I5A1skpRamAAk9VYC57vGKAGVhQGXSvajxloo0YIEzK986EO+S+k7wsoC78m6Uw+JU7mSslCpMEuKSPw1tc1PBTYHcGSOZYimHdt3uH3ZpP+X3/9+zv/eI7356ViKJxollW4pTi7w+cao2rw/sGF8mitNYYrRWEGhSGmNVf9E5g2WRHStXpWfQ0M+lSve48PwVLJ4Gje7QfaKhASQSbfeeuuSJUv+6I/+yNcXkxXXXHONa7L05PEnjA+wQnaNOYG6+iQq7/zeIEhVrfW9oK080GprDMQvlDBELIhkXjlqWryluQV7AUuKvEKlY/iG8kc+8hGQAvCptvhsazhhBh/IS40yC+AsOsyOVohbtHSgLQh5gD7/+c9ff/31CVN/1znw4nDgKJH04hRZL+VF4MCYMfG18je96U1jOjra2tvdyveTH//4Bz/84azZs6dPm97X3+fr4zTo6jWrWQnEEFXaeeqpU4vzmbxevny59Xtq5oEHHnCh7+RJk+fOm5tyzXy9+4luGEgu3+qG0KeNIfHRcR+u9XVOH2OdcOKJKe9cA+xLqT4Evn3bdhcEyaLczq5OCinkbEubwKqVK8lERokvwK5ctZL2Mu1zo/DGDRuIZN+Pn3PqnPRAsBhSdRGXZsz79u6lkMaPG482qv2RpY8Qxy4b9uXE5DBiiHL0PLr00RMnnMh1bJrlwiWp06dNm+Nj6m1t/Bki0a92qgzGtUWZXXEmduajvt1uGQWX2DTw+6h5TZqrEd76bq9PHrS2tVq/R4PvtT+x6omFixb6iTlr160TSV0Bw9uO9nY+GA72EaUMmUpqjjFjx/K4LHv8cZ9a903enu6e/Qf2m1v7smJnV1fsDCg6A6maRkOsWrWK7mlta+OmVsTaNWtNTC27mLubQ6satL53rF4nT5++vWcHbPPmzfMTHqVDEl+e3bBB+86aPUtB4qmxUJm1p6h5ur979WoL3viDDzzVmh4D2R/0HA5o6IMHDmKXuyxnlnWfLAIagQz7pCW+oWrlipV8DPBg9alzTpX6+OOPuzBKlXNWjW9idmzfPmPGKVpfER7UylKjS6N4YMMW5iaWVkyKhgac8TngGeXj8U90d2MChqALmBYPaor61zOtOrFFdDmlnDJjRprCiFSQErds3eJSSwEMx0BN0JZeikH9boiLYtq0aejBljVr10Ku1SDU+vrzhBMnzJo102YF2AADQ8bmTZs2bNwIoQHiA9l6taJZHvrGa17zmqc0aGr1rQfqHDjuHKir/+PO0mMR5uBPgZJpwh5hYpSeIL9OX3g6RZju0GPzP6/fClWEa/j8J0B/EC5f/drX6DlTyzFjxggwCO64806ymzYliebPm/fayy+3Bk8smjjSrxQ/L6jyOfOpBxP0e++558677ly+fIUs0BJ/3JUCP/3pT9/97ndPvegi6uRv/uZv3vnOd9IBMj780EM/vuUnZyw+Y/36dStXrkIV3WNKet11182bO9es89DBQ5/+zGcU6p7g3iNHeA5oI/O8nu7ujZs2Ec1UAvjrX/e6ufPmpZeVRL7lllvYJVSyIlCFBrPDr3/96wKhaMeOTZ7HavRQAzH9ve9/D5NJZ7lIZ1komKuvvnrRwkUPPfwQj3eo/xYi/mSWCpuptEU/ZbDssWU33Xgj3wmjgXaZOGmiLNdcfc2cObMVYWrY3d397W9/m9CncoLhEyeqGkH/5S9/+Q/+nz9QyvIVK+CnnFAL2BuraRqkXn31NWbk9tz/+Mc/3rN795vf/BbaYvuOHV/96lcoxfEnnGBDwN69e1GOIRdffPEVV1zB/siWNT9247I20hBUWldX14UXXCAvNfzmN79Zw/3VX/8VYlg2f/7nf36l54ormUdSNVOqf9TScvZqWCeyQDD95OktY8bgp3gpAhn2VqJFGfqYA2luV9fmLVvWrV371re9jQLbf3C/JvPQxBhLnavyeeee+8Ybbkh3Dp1dMMXLWoDuobJ2A+zYsRM/Ua5emgwNN9xww5lnnqkjMT3F4yq0v/d7vzdl6hRWzpe+9MXrrnvdlMlTxo0fxyCzMnXbbbepDvXPGqPpL73sMrXMQpWC/ww1NVm2bJm2QxhPPgaeffbZOj91bj/BzTffrPoMTXxgFV173XWIQSezz1sSG0Kt6XJZNMGbbrjhwosukqRR1GLrli3vee97lbJu/fpvfvObSn/ooYfQrCewVRgcCxcuev3rXw+zLHhoLebOO+80uPBEA/ks1lVXXSW71DQ4BOpPnQMvJgfq6v/F4LbBrxjCKAvz8+CBA3fdfTfpTNP4ef8D9xOaHj7m40KQAhVnJ1ENG5FK7tBM7AAiz94l+uOaq68m0ezUe/Sxx2h681QqkO75EHd0Xx+B/v73v590HsuZ0NGxdOnSL3/lK2aTUs877zySlzUASWtrC4EIXlmKIP5MZLPcffv3r1m95qYbb/roRz/6rnf+Euftj374w5tuvpkL+gMf/KCZPY3O/kAPeDw6fPgQ6U/B083/9td+DR6a/h/+4R/QTDUyBcy0fvjDH37iE5/4wAcg+OCkiRMfevjh73//+xQhFW5uTbLXqmx3WqygDwwowrQSh6lGXyjGdji/8pWvMBokvfrVr2bfmJpnJFn/ute9joCmAGgR8VQm5YHIe+655+/+7u8E3vWud9FziPnqV79q74JPHF1yySXKfeD++xFDmvsQoqLFYAg2sg8WLVyICdhoXv7FL35x565dRP/pCxcCsPN/9549h48cBm9quH37jp6e1Tj8vve+97TTFvCI0C7/+I//qCFEqiA184UvfIHGtVpMi8Dwgx/84Itf+hKVQ89p4gWnLfjYH37sj//rH6sX4tUFzeJZQoBr/OFKodu0l6asRWZf9TMD3jwr3jKyOTCZ6fO6669nB1iJR8knP/nJxYsX6ycYQrdRct/+znc6xoxhBulyqFUjrQwDa+z7P/jBd7/73YWnL/w37//ACSeeoNW0LwZ2dz+BQq6F6669TsDDGvjjP/5jNaLdda3du/cwdPoH4iQeFYvt9PHv/M7vGD4KxR8bSFH4C7/wCwCSVDxnVv7bj/xb8/6HH3n4c5/7nKZksGpKWW75yU9YBpijD2zZvOWLX/riV77yZU4UaHUbJOvnnad2/s5HP4oG/hh945vf+habjDGqCD1N305mIk//VxE/LbcxENXXz+985zs8T9oIAYrWb5kpv/3bv62NLHDYIsMZwubjl5JRJLcQzPWnzoEXjQN19f+isToEahZG5i65/37i7LLLLiNxSMZ9e/fdcecdZpMsAMrjuNBE3OfUkHChqGgI4pWkDkdud/dtt99G95M+kyZPUtx0C6vjxn3jm98U/5Y3v5kQJHbNoro6O6dMnQqArIdhy+bNBOKrL76Y2I1c06dLJVhzQimmZuIIe0h/ZPzhH/6huZFZr5i3vOWtpvUPP/IIkgjWWmUF5KUo6CqE/cIb3ygVvJ2AZKtZOyVN/a9csYLB8Wu/9mtvfOMbc+ZkwYJ4pZVxFQa7/Nrb2qLs8uCtvzhg/v2Gf/WvsJd256dFFdX+rW996z/+x/9oabnMIGeg0D55ivbSSy5Fxo0/+hH99Ou//usXXXQRTQaP+spOjpuncqiYDT/66KNvectbfP8w9zrgGw1Bwy1fsbJGgKpROW9/+zvmds3lY4CZGlb0vffdZ8XEXJMaDrd4tvtQA+VHx6igbycqF6vFfOpTn8IEltnYcWOpFk3zqx/+sJ0Z1AYz4+1vfzvfBpsAEqisLlPSFiPktaUA/mQCFhWbJEjDmZzmPoPPOVszrVbwXBdIUtYJdNWYMRvWr6fhmFNpHpnNY7I2wlim1eJFizs7T00m5Ns2QFN2rNN8lhuw4tQ5c5BNl69btx5Bips5ayYMlKs2tYqRdGb2YFBxV6i+erFBAeAPDNrls5/9rP7JgxUWVf8AI5Kph1RFqP5lJ1zKZ/DpT396xfIVcnEbWBSwI5IzQF4rQevWr+NRsHGVfYBLipo7t+tDH/zQKTNnKt3oUP0/+IM/uOTiizVN8jOpyrdURokzL8aX9hWpe+hUjOzOzk7dg+Goy11w4YWqL1VNGZe7du+2HMMMcoyCjyf8Dtku1XlCIq+/6xwYJQ4cH00zSsS9YtCmGDXoY9yXQ8Nc3KYmRCdVxAKYO89K/Vyz3trupBdU9+JlIKwJYrMiE5e//uu/Jt3MUM9+1dl0iUkbtcrfbjpO2Jn8EaOnn75w5sxTJO3Zu1fpJBqtSR8LsxjMTc2Zpk2fTuWk7hePePqgq6srpo/FtqnUtEo9eU0aEnmp+82TLEbIQrziAPw1eAGPGPoMYXQ/Ajyndnaee865LIDDhw77aZEVGFc23e+ncmgv8MRuqrEKxVUC8i9lcMbixRddeJHJNw5TVDiP4TYe8s0S01BRm3AS1pwc1DPuLX30URUEEIS5j6gs2dIZpssmrFQUSAqPUyF1v7JUlpmy8PTT+/p65RJjHqnWppgUW0p1phKvr0IpIczngkcPy887qaWozjrzTFwSgzALBIwwBJvu22uuk5jXQnjWq16FVwDMzyktjUuPKUuTca4ItLW2KV2X805/TJKklIobyq64wdiZGHwszZcE5Bsw1AFcVq8hVFlMizX1E09E27bt22nci1/9avzX0FFWQwMYP1kna9au0dNg0Fs0tyRM082uuvIqHR4F+ozllcWLFqHc5DhGR+l10fPC5RAPo1Pk8NPY+NCDD/JAXHrJJewDfRgkE1Ohb33rWznqHcYL4MYGnNFwYSCWnYaMFVtbuE82b9lsRp62hbUVFhXLu72j49prrv3N3/zNzq5OvUi5cM6ff9pJ06bBj5lsPgacKpvxDxNTDQW1g4OMSOadDiAshvrXytrFOpq6oFB27hMuBwjFf/jDH7ZGZlxgjgd7R54fqeKu/61zYBQ5UJ/9jyJza6hT7BIK5IT97jSHKY4n48lBgQWnnUYIZkwt4wsM7N+3jyii0QlcsyUqhCxWCl/rgQMHv/DFL37nu98leggsDwFE55mj0AfKJQTRmxqLEuju7hZPX5qmkF/UVdJG3plfmsqnr7uiV6p0y0jiE3wiCEEBBQkTskwh77AbyqPi8kqlSGrIIzIMiPHBoqZGetFuic7OzslTJgfCsicL/fCQzrfffrtI8Ilw5Jv7vaXVlvY4CRZqpugMdNHBBH0lV9F/6TloaWmmZekJ5f7lX/6ln/QgboDEBEm+a6xcvgHKr2vu3MKoSrnkvskiSPwMzA0NvX1xWhJhtXppBT+jspXrEwJ5Uq4cqwMUkizKUjVIqEkPbch/bkMcPnBI4HySpEZQwTl37jy0mSNrdPXVzbRUnndQTcCsH3YJhJ7M6x2B8n/GH/WO+PIUEDaZnZuQ6xwQ2qqpLX566633LVmSfQao5lu/YYNdmUqX17KRLR3aGoC2Y/OdceYZqFUiDPoYDpmOZzVlF2lHgPiSlGVX3vgjkutIZ7PkESxlVVTbhR6Flrur0BC3KcApixqA9EZ2mWFHXe29sL7Da8U4ttuAbmYWX3LpJZoMEgDaJZ1PoKPDFMImT54kSThbqkKWP4UGjgfsZa/4xQFjmLMdWSGMEs1n+4uFGM4Sk35GiSprQeMxOmR57FdVaCArhy0zsv6uc2BUOVBX/6PK3gpyYovgINq4ZkXx9VEtFG2KmJRTZFmInuNCTln4px7e+773EXuUHzWmdBoC+iJqG01oyG6RBByBl1LPnBJJ48aO9TOFUco+yanAqkJ5WMWql+OC0D6lZITHM7JOfqbKp85JWwizIPFEqzAdmajkkopCPJEqhSXhJxsFPTWcCVzDU4sXSOkvO+snFYww0mv4RwKT2lF6U5NJNhcCUe5RYuaFygMeH4hvnhvzazxUd2fqUtxnTb0zkPDJwJEFCdOFYOCXMYFrADSlQlObollN0eyt8KJ6YpaOb4cOHgzVXtiioAAbGuIjCd42NrJ06JXgHhVYjvsrSMtaGVHBKAu6F9zXlEihQsuQTZZ6o9yk+dUXXWSCy1hxm6HzF0U/RpLFEXN3FpLtBNGyUfmY6Ef2rF6tdQq3xY6Mxxz0y9jn5Elfn9Kj8xbeYQKGJBvlMdHPcO0tb4ZBwsIjxZlvAyAXDjeAg7KPLXvMKgbWgatwqWQI+GJg9TsfWH3EVINBonC4nYoNJ0HQQFe5ZIs+Y13/LW9+i5O3lj9WrFxp7Z8vxP6GKy6/XF4Y9lePR4ZNU3/qHHhROFBX/6POZpLClCjVAGnll130S5c+snHDRho6db/JCnFgujAsVF4YXeSOqS39ZEX/jb/wRvvA7XOm3VkA4nmn169bZ+GT49o0ETAJZV2/u6eHbCVfQ+CVmVPlEF1jo+m1JBNTHt3Yf55zlKEGy6Wc2CHpihwWiHBVlKvEyHDMdXizyzo6d7QkD1HrHbmq17IqWsZ8BxuKNUOZmUuZNllGtW/Ooix6JOLt4b6+np4eAOVnXN5SUQkkfmGoZYu0ObKswFlktEIz7B0V9mpqUjuNQn/gHivtF3/xF7VLZqTAGAd879aLgXZ1dZnOmnAvWhzbwVJn2BAu0k8s9VZETfH4qab+V1QC13QGsKRfX+Gazl4RbEmvQDAk5r64bDEbE6gQF/qeWA4CQItwuj/cBuVwoFrTVRpaQWjGcJBqZNtEqhkkmaBCuGfPbnpU9sARiLK9kn/BRuwNmjON7dg6LDF4ZVTGssu111yjF8nLyHBGwEZ9fcmU2i59ec3Lo76NTVbNEaml+JAstagyJhzev19d0mrJ0sWHOVVI0sQ4kDHxbmnGHAaZbQSO6oEPZcmg7Ovj4urs6rKwEpHlMJ5APvKrCAqCw/jpdqmyNdVY4J934o5BabsG7xHDzqQczdm1qgjir7wV3kJVaBuZKqxee/fusY8vqRWjGzh0YLkk2jHGS6NO+9a3vu1I7xF9xk5bSyc2LuCGU5Qf+MAHhI/BWf9Z58CocqBuaY4qe6vIyYsUGUWYmvYtWrz49jtut/2YQLSWbIHQAfHY91d1qldzPq+/UVoIO8qbgjn3vHP5qFesWH7XXXdZw6YVLrzwopa2VtvWbA6kUz3mcHy2//AP/4AYIlKpiCSUAZBcUFFmxDdB6YwWv8XhI3GZ4M5dO20VtAUs7JiiGHhuFS0p6a4FKtUofKAJwJCwHgHKKTRQ9SErK6qx7MASTXgmpDClQvp/6Utf6unuRpaMLsxZct8SLtZU8Bz1FVaDLkoLQjqD7I6IquAWoGJTy4rPh06iLLWILOApNgHLwx3tHVikjsigQW+6+Sb2BOPAZgJy/NZbf7pr504ZAbONnKW0vmtyaaqt+vCoTq3cYEhpGjH9/X0aSMYsPWFUCE6oKjThRqEZjmRLZ2eXVW27GZhBfOyxKWFoiJnyz//8z1BRaX56aMpw/hfnip+ajxrmfrehXRM7bUhP00/OTcibFIaOLGXRuBWGlBOAaBYPg0Dwu7oeP2XK1PPOPc+xRvaQ/qMdtb4LcXVmN0zAoIFE2kiBAG3OAS47ZztNiVQVwi4V0S2ZU5Jk0eug4jMAoDgrF5ofB/TDpI3NytngBB0vghZXwd7ePsc6oOVvwBlIUK/FswpBRrgYwuRCDG8NY4Cp7RSGPZ7qrln1qM7OTgA4Axg3gm/VrpJ44gqgprCl/ASpRsBqMGLsA33ErpG9+wrZAxZo7PvzdhjBjQgW2n7/938fTMeYDtakTbh2+yhOZ4MQ39zGoUdlWfV3nQMvDgeGbfkXp7yfz1JIh2MqbnsUpXLvvff87d/+rSTawkEpOuYYsOf5MxZnQxsRdmNtK2tsuuaaa8kmu82VS9KdNO2k17/ueuKJPjDdUe7aNWuc/TPxPfOMMyZNnkyEzZo5i+azo55UPX3B6ZdfcfnrrruO8nCyywyYKYA28zybvBacfroVTSaHGO/e3iOkJE8szzN9iYxaLVJu2kUIRiQwADt37iBIE4xhkV4BqSwh+gMSApuYJpFFOpePYIem/ubTnxa2TuHInPPZxD1K4Aec5kutUAE3CKVxoJSkQYC+sRA+krxM5edQfWA2bFPzmEYfMwXoqu7ubrNMLpNovjEdlrEdJb/t9ttZTo7kWefGZMwJv3dTE33prQzEw5b0qG8GxOzbtx9v7F8DAzJdFhoLE5IqPAxzkLIpFpjIyN7YcNWVV67u6bFhntpDCXgButw8khup2H5xbTOOeQJzUYEml65PUB2VstSthdRFWCvY8cBYSTvMskJSGO9CdRIf3HI/rnq1xUTf41Y+F9XpA5/6m7+xGM+3RCVzpNsS8cu//Mv6EuLRQ7kiA/y8+fOci3Og/xOf+H/PO+98TaY72YnCCMNzrQZMLl1Lr9PE7FQXEjCUdaDoFYUJFKfD9DS3+wwuuvBCrMZ8JaqFEyuaKcvCkEJjvGRXD2w5dOhg2GRDg5B4rMS7buGcc89loDjNob3OOftsb/AOoKI8MWT15dqyZStSRfKPAUNS+B7KA8ZCviMJrBl1kcQExBnWqiV/Npmdp7ffdhvm27iAIcizZ4LnnyMHAh3MSoTDk2yF4yYEkrL6u86Bp+dAXf0/PW9GLYUcJ5QJoJPiVnMKa4D5T9gRYcfMR58fCYTR1ClTTe8Sm0lK19wuktrBMCJJuU7xO7wHgMPz/vuXUEIElh1815XbdRSKQg7tHTt3WBkl0823SEMX/P2H3/oP3/7Ot2+88UfcAFSRRVxbqCgMP6lDGU2gTzxxAgFHbUNCSsrrLSnFaNJm4igSBtvHJk+eEqqiMZb2SXM7FeKzLuVJJGoBoXmhOFxyLY+JrOP1Fm5lpJNcoYMSzgybDPFQuUrxTiTm31dceSUy/KzFM0xM+yZNmiw14aWiAUIzSIrcT1NSe7Mtmix95BFUsQkQTIO6HMkaNtPELTSvv/56hDlVcdedd6YD/B3veIeb+yi2trZ2Gos0VynvrL7JOhbBo3RlUSqozMWFdJ/Y56+l3AqHqlyXQYmdgCedNI2ap33F22xoldrxeloEYQDQ8573vAcZ7LlUz5pYoRMnxtXLmhPxYHierQJodJPO9nbcnt7V1RVNyVArthpK2A06Z4V7oZLj2zx+4jw1hhLYko0ima0ORrrG4J677+YDUAp+/uqv/iqdhy3aQh3pRW1tomxaf/3rrldxDiTzbzobHxhzPggkr3sd/ESsLfoWXDZsWO8oHZNi4cJFsoj3RqVCHb7QQ/RDRzNaV6xAsCTr6BecfwE1j7lIZSJMLS2O2qTflhYeHEdXdJKJ06ZpJrShwfkF7NHWVgHmzZ+vO6HccRwHcoIJxW7DPp1TF1KF4GdDOIemTJmcC17JDVcG4ZvxYnUfhLo7C/CmG95kOQDAGWec+a5f+iVL/kxqqPD/yiuucDmSywQBQ4tm5aatplzGioWV7DNRYP2pc2AUODAsJUcBeR3lM3EghItxXp1ABGjOU54p07NNyxknHcC8oA+URa7R8SQsH2PIl7IqTF6b/3lMUygzuofc8Z94MPRNiCFfNPEtsva4YJ8cZDSYB5uvnHhCfEbWzUKAiWBoSXmeYbkEMl6h5KDt4nReSjQVEOkB44Fw//4DNF96PrlJydv29g50Khcw48hTgXdSoDifMQ7r3LamLM6MsWPG8oR/+jOfds6b7uSDtoFBDaLQshLhkiXqzfYr3FYvCOkJFRFQLzLXkzxhjviPOEZblF7WF9g33T09vDU2bYiPLFihuWJBt8mnenggzGLd8+p0n9m8orEaBwCXuvbZUBb7PosHH1oZ+bcxxFZ6P48c6eWNp9J47Lm7nQWn56grScHz8uA5+DFjOjQMnAiDjRbREHS2dX2q6FOf+qSl/d/6rd9yLh+YLffRcG2xHAMHXJnRUoWPAcpC/0GCCUFZOUCRU176CbFKryg/HEPfYBzD01IqBaFEBhD8KMEyl/hye8DJUEvWsaU04sFDBxFGsWkwalhZ4PFzzZq1uhlLlNqDzTqFQrNnwowMng9trQOL1wf0IlaT0tGJD37CzHBhm9LcjD9KPY1FNVWE2buMmiC5h+HQ4rnWYcEkQ3Ralz5xXGEX05a1xChUZW0nSXMYOFHPUlkxqFIRaOHUHN7MxObmFjd2WDW7+uqrr732WlVYtXKVFrbMr2p+qjIcgAXccenkIbJZ5yefPN21h1octVIhVzVdK42VoFDGUnRyG5L6U+fA8eVAXf0fX34+K2xG+5OHNOmQkU9OelZIjwYaWYQwEUOjELhpYSiLJkiJn8WlkBIDjbBAYvAWAyZNB7lClBfvRQLAHPDW8qvfpwFfy5uBWhF0CJVMMZj1jiwLBjAVsKJUZMxy4c+AvKS/Kb5V3ssuvWzhooUEsSQPW4cnnFfZTNRNSmRojQA4hXMRAaSCKjSMqGCWG1nKlCsn6BkZWYqiTbshI2k7K9mp5KL4wp8MeCej8FkdU5SraWYMRpVysVEMDEkb5B7lUgYwJPEZ8K5RIj7asaXF+ktPd7evNzG/AHioCrvMfuXDH7bR7L//9/+ekRFfTMy0KoPJpaBMjaTywG8bPV0tMbNkiYhUlnCNHhhSj8qZM3UFWGCiNWFObFH9oqfZCmWPR2wEwVhVyxK9o6CkqVBYiSnGVtKgUDUVTgvDT4GaPTeSpCQ4V5qSvZkKZ3QYfovqHDpTAx4iToIRXT2RUPDg1StMjbIrBVrYVA2qNF8ye1IijEiQvCn28bE7Tfc5SGrxAvlkxVUBqkBYlHo1cRjmmPjMJfmY+GMy1n/WOfC8OVB3/j9v1j3/jDmeSRkyyGOci4l5xvF74IM/VX4WRB6SZDFrLne40pEhzdMQKTu7yfEKJWghIP2gIQpdAqFTeb+LRzf1VmVlOg/x5/yy0F/qEnMXT1QrtIuahhilv4HAJj4UScRF9b2z6iIlEZQh88rEPdRMURUJYzrl4Ptf/I+/+I3f+A03JdAJjIlHH3vUkrMVAcfxa7o/C0p9SbfBnH7sxtBowyoNWMrlgC+qInRw1fgQlXm1jlyhGOL8YasfiT9wlXD+9DZrpCRFtjTGsb2ALDM/gahs0T010wFYmk2FCVHxQFdm5CAV7Vc0U/nebrajIlTKyrG5LCc5fQPG3NFKNsvMzf9BSeSJpg6mSS7Ep+ZREIBKBQvzxQQN+kXZ15ZzaGG6EBoYkoascJIUNNiaVxZ3sDOxwUNNqhp4BGjr7AA4pplYGIk5gcMSLdaYdyGwOJywq2oqRbuXtCQYT+LLhoV4MfDbO0phJydhxpxAWT4pJC+yERB8KGwsKdHTkqQsMbplIK10gJo1KTvI6DnWGqLzBVFODkQHKksJjlJG54/YeBKetSRLiYgaKUhhKs7fEL/LIzUpj0CpS5CX/SffGS/p6C6aaOvvOgeOLwfq6v/48vM5YIupSRFIhrpsBFxKhOeA4ulBoYJfOvmSkjTEWcpWasyspUyAgoDykE7p+fQrRaQAEYUqScLepB/VmMIO5pYWm6QquiRyVbW4/CW2HMoCJ7444SM+hWBga7LSHkVU5aBAJFbmhcNoKzB2gJe8nZ2dV151lc+mufbfmjrHL/8/xzst+J53v5vTPkmFLRHWqIU51Ef8F6VCFhD5qyp5h2OqBkpUKoiqzFwjVwH2J3Q8PP4LJBU/baIEphBPwGegKP7AX4ybMMtK07Bd5E5iou7FXMCoAhhIoi20VDkml+0o0jJzT0+P3e/2PNo+Yu1j0+bNNgG4jYDzQ56obOFtlChDrb7xu9S91KKklKjyotprP8IgkLXo40pkqRRsSW3YAbUiCoT4wp74Y8kJtwWiiOwY6qIRne08ejeorAnmnT1KRw3NKm+qxmR4ElxqE2wv/KxZUZBkOHq71ipFZDfO4mpFZJVh0LKMBD/jgbBUQZbCueh+ESiNJy8Sk07mGHAxyZ/kRl9vnw193B6yAEN2wijav4I4EEX7FiylwIyOUkpc4A+YKGm4uOgbFdIq8PU/dQ4cRw6U8Xkc8dVRPS8OpLxIuRDi5gU/icqbzOWDJWXIkYo0gb64pmsFCYSg96dIt5gFhiwuKqpMxEMUVmU9hDlnSmAZQxYXEU96Ijzjswap3qQG6lKvDCe2Ckml0MzoHUn+FfgKWPWkXGLwXrF8+e133GHl20ZuuyanTJ58zjnn2ocvySywssyRqJKOEq7p2pFFSE+y2S+hdMIJX3H5VomMKgmPZIKCMrWKPv4meYEtPCzhAKCHgqQ+hyCG1UBCigeZWbxhq8VkWeaa6dsI46lYGwmTCsP3hX0mivo36XSAsKMjPkl3ZfmwQmb3VlBmyRIzXIvJVO8MKN1TgxHpZy1JvIZmNebKdy0pwSSODAjXHpAWNfRA7PUfJZ09bSRA8l9MohUIMsrvBKvFZ1KmZq9LgHzDHLNtBxTzMmn0JxMK5hqRicQbWpG1Zs2fSV6txIyslVL7KWMMBF2qufnxZctuve02t/75epYNBOEiqmr9WsYnB2r01MoSUwsnfMSENfDk3PWYOgeOAweeQoodB6x1FM+OAznga4LgyeP/2aF5CqgazmPSiFpJqUIkVcRN1RrwszL3KvoGQELWCBvWWNWdyZI84ild8j2LS7TekoZjBMumwoyXlJI33yPFXCUX2ZfTqRFC8JiF+dyNlUUcVVaJqsX4VSsugWvvJLXida/OxQGLz8XvyDmCD4mnkr3wTbhShawvcJlrdS+1CAaVY3vJQKlyZSliRmbPjOihV4aRlPLyZ+atEFD+2OaWxy4gVJCM/ibASOAsupYEoJaaxdWyRO50WyTftHVYKqbVuZBfcJT7K9lObJOAr0xTw6AZ7B9q5FSPKoYzPKCDnWHEsDuVKg5KsVGMnjaAgREX0VI5Qcr6VFOL+bfIWN+BwWlWPxobYgsLxkMe5cYDs7hY5ggkMsT6Fq6Gh6sozwpxaoGYQkjZuRn+G50QuxDJ5WDfpcUeJIByvl8A4timUGgq9MUvSKSh2I8or4AFBVE6jKXCgEBUkoLaKAodOBauhwq/mEUFuVdSVDDKVZaPAmOhX67yVLKXWsItrmCsphYKgyJP4X8lXGjL6Pq7zoERHBgW0CMi68E6B+oc+LnmQOgoerRoqlYa06cDqJtGSyG0GiXZ3Bt6U9Rg42Bfk69U0220dFOfSXHjYLuwBBtGBx3dYPc0tjdT23RV3JpDN7Em+mkoIRcfUHXNVNkADR8arcSDDf05GP8NiOeNsqtScuNQ+4A/TV5ujWQQwGCu7RMSzQ39MDIluHG4vEKtumGSqgzrIJAXvRyFFqXJlPE3viBM4UPuvgTqvG2QGi7IB1StAV1tzeIFYzUDzQV/FKoYyx94EGVWnlDhsWKBclYCU9rGgGIBoFz1WyHHShVx+2DsGWhg4LgcGH7a2r6H/kH4o/6OA7S0+Ms4GEYuhWfJhkpAYbE087updRCGHJXhtQpDJqyLpjYLJGFpsDpQ6G95Vwmt/61zIDgQDt76U+dAnQN1DozkQMy7YzWEaqNU7cQcGGrysR8KhxKlBekUKp/WonrMqc32yxw6di4207Ru7KNVm0LnxcS+kaoKDQQu9tlZZ6IGRfg/p94xV6Y1y2RaydR9KK3w+vhVIP1VYigzU3Qv6J2bML8HipowTRqb46uM8kiMeMcNqMNYkBIRdIe1Ej+CKIVBFoQjpYIc1kTOQeAELMBQzOH3kLM59o5GaUyNYq4QnUMDveG4CBMgSqR7WSVhq4RfwU9pCpbKhGhCHMqbwl3iKGbUi6UQXFK88xNhbCEqtsnA1WqTaJwUCEtCRLFckvhACCaKLljkCjIb+ny7sS0Iiw8+NUUllYDg8McEAcDqT50DR3OgMuSOjqz/qnOgzoGfYw6EOowZMzU72NTXNNQ34Krf1kk8+tSK+xDMSItuDK1CV8VWz5x2Dvo4YUyVa6nQUDvUep/5d0ujk5qS4sbHkpEGhcGqRG9/b3NbB0jYIEv8YHzuibaMIvrLnLZ4ECoT5AIZOi2QD1opSMJcHQyDeD8hR/jAYG9L27hEnpjRACiIDyumYaCvZGmNNwAx/gWM90CwwflHMabtUhO5iqDKVRo0fnNb3gVUSZUxNH/BrFDIUcO/IN4/eLKOYeoMNfQ7HdrchA+g0jMCwE8wPg3AaHDXATL8VLR/GQbjn3qz0PoGm8OoKoQFaBgR4QwJz0hjX2MsaLA4GBxy1J86B47igJ5Wf+ocqHOgzoFjORAzTnsJYrLpDGPb/r6GDdt6N2za1jTUS51xXTcN9ps9+EbuxBPGzO86ZcK4xu6NB1Zv3D3QZPs9z7ajcqa31gL6Fi2eM/7E1t37B1et2niQ8m/pGOgbbDX1HTzQ0nTQ/UOzZp+y48DA2vU7d+8+0NDYPshSGOznGR/sOzx1ytj5nSdzwS9fvXfT9r39TYOtjbLKC3P/mPbG0xfO7hjXtG3X4Se6N/cOcrC30dmtZtkDB5ub9nd1Tp8x7aT1e3rXr9918IDFCH6ImPrHrv+BIyefdMK8TncSNyx7YufOfQdhbGlspSdhprcnThizYMEMtV+3df8TPVsHm9sHqOaBxharA4MHW5sOLlgwe+KEE7buOLR+/c7Dh/qRTflyw/M6NA71zpwxqXPWpINHhh5buW2/m50ah/AxBC7kfUdOnu5+yZM4UrrX7+5Zva25fXw/Z8ZQU1tjb+PggbaWQ2ecuaC1tWXz1kPr1vu6AWvFbV20viWL3tbGI52zJs+eMXnv3kMPPb71cEMrPOEpYEwgfmBoysT2U2dOmHBCMCp8Cl7ZvMOhY5u7/vvnkAN19f9z2Oj1Ktc58IwcoCvCa87hH1vQwn3e3N6zc+jP/v7Gu1b0bAkXduP41ub9dFhTa9+eA794UeevvecNk08Y/8OHtv3W3363YfLYDivX/QMn+vjvwb1jdm38zKf/75ZxUzbt7fuzf7zlwU2HtraMaeinZPvaG3bMadz+jtdd8O/e95bVBwc/+6OHvn/38i1D7Q1NHYyMGf1Hxhzc/c7Xnflv3vWGOVNbvvCT7v/x/bsHTmwb39xqUj9+oH/irm0LJ7f8+cd/feKYccs37//9z/5w45H2TTRgnOfvHT+04+TGrb/5yze897ppy3f2ffaf777l4dW7msYONLU2D/af0n940uCB97zx/PedcnVLc+P//MaD//RIz4FxzWNp6P4+2/fHbFr3hgvm/e7vvbtpbOv93Tt/93/+c9/YKet6TdLd4HhoXMP2GQ1b/+Q/feS1Z01csvnQZ796280rtw62jGvghRjoPaX34KyO/ve/7ZKTT7lkT1/D7//drUt37t3TbkG+qaO/74T+voaelb/+r6/7yEeu932Fnyzd+H/9f9+acfKcTX12GLS0Ne2bNLTtpKbtn/r473XN6Li1e+dnv3TTPZsONLSewG4ZO3Bk6qH9CyY1/eovXX7KKVO27m/98J984/CEaZs0WGwJ6J8w1HvCoX1zWnf+19/+15dd8KpoqrIiID1MgIoV8IytX0/8ueFAXf3/3DR1vaJ1DjxbDsR+dN5iy9ZF17dwJG/ZP/TNb97acOHFDbu2Naxbu999uL1HNje3NazbvGXB5CP9XAINO/YfanjwsYY50w+7GelIr/t+N2/ZeHLjocE+V+jQPY0Pda/dumpHw9gJDf0c1b1HWvesbNi6cedpdNPhwYbuLdu3rFjdMNje0DLG5H1D76GGJ5bturizb8CVPi2rt+wYeHRVw7QT9/OHH+nd39iweV3PxNOmWSS3S85pgyUPL28YGu9y4Ya+5oHGw3va9u5p2LwTSQ0NZuYrNm7ZvqKnobGjoXUcj/66wwfW7d5ww5ULrbqbki/tXndA0Se0HWRbHDmyl+9+5Yrd86ZaxefHONI/2H33gw0z5zfQ0L1Nfc0Hd7fs2t24bZ89fA0New/33rdmvQIaqP/2jsH+I+v37Fzf3vv268+2SRIPb31keQO7oXXIvb7Oquy2yr981Z49FzOybB080DfQcOudm862fM8iault2beledeWhq1HwlHRsPvQkXu61zas29fQOt6XAQ8OHF67eWNf18QDh46gvL+huef+xxtmHY79B81W+vv3WPafNfnsCy4Yd4JbumPnQOwEiHMQ0aTPtv3rcD8fHNA5DL36U+dAnQN1DtQ4QO9QbPb4DfokYiw0N7bdtXbwml/83ZMWL3zNvOarLj2TFzo+40O3DAyefGLrqxbMnjV5woPdmx5atakvPjNt1jnk7mXbBccM9l94/qLJ0ybv2HfkrgeX7tx/ZKi1nWIqTvKBxoHDc0895cyF83bvP/LwY6t27j0oa2xuG2xgYDQP9J08ZcyZi+dOGjfmrmVrV67fwY5wOyWftiv9xvX3TW5vOff8hSdMGL9+x977Hlm2z2eom9ttp2cPNDf2NQ0ePmPB3DM656zbufeRx5/YfeCIvX5IZorYN9gy1D/75BPPWjyPq+LOB3vWbt/bG0cAQAy2DQ2M6T00beLYc85f1DJmbPeGHQ8+tvKw6zBabAm0Es+R39fWNHTuWYtmTp+8evO2pcu7D/ZhWey8U4BZfttQf9fMCWcs7HQtw0/u6951ZOCwLXluPsAWHxDyha1Tpp599gLHNB/vWf/g8h7+lcYmNbZ2MNDMvd80cPFF5044cdyqNZuWP7Gmd8D+wIKcdTPU0N40OG/2yafNn717f+9t963Y33+4v8lFXmXHQePQuLFtZ8w9ed60E3ycoKWhrWGg3ZZGexzLHsBaE49CIB0Mo4C4jnKUOFBX/6PE2GeLtmZ+jfrgfLYUHX+4rGNU0GQovJDmgcMTkeHUJ5UsaSTkk9KPR0TsWYubi44HrlcMDm2E93aPcfybADMAWu5ZPfgL7/3IglNnvenKhb/54XeZvGcTFnXIQBhoGXSJbisVaAtbKgK6NLyL1tuj5cvWNu6Ekio6M2YgbkqKmEApoECPvGKpakvpA/1HGlrarHCbRQPyL5BzUljJLxvfZNGE3mWnXQCUFo2zCYE8NCNMDb1xCKDgLMCQgLTFYMCxgXImD4wsamfXodpznMfu+SpVAll64CqP2whQEYcMC0xGBoz9d1DFB6gHLTeode7sS+RS/WOkyJw7JWuYE39QFSaYU31BiCff4j2Rtwwmmy4NEMj9Q5IiDvU3HBoYau7vO7FlcKyTAHFksSUOYVrhGDHoCppRfAXHg1fZpKNYUB31C+FAXf2/EO690Lw5SOJOlaJ+Xszx+UJJf47540QWcVAVQLVAciCR1SJruKV6QiCOsnrOm+ny+p0osTw1Mn4+A2bwdA61ZBs5Fbju0NDDS5ePb289eWLbglNntpYUbVqOuJWD7qFj7bqTrS11FYVUdDDdVdRWnAioaoXQZ8Lxj/lVOIzpsc0/zu5xK9BYoVapujDQKFLajbIciNMDka8ldiCa0drCF33L9Xt+BD4P9RhoLVwYWaG87TIstzq2uFBIX4I/igwdHN8sisP7zuU5d2/270/ofjP9QjsApXBlBHgFvb+qUvIMoAuE9fVywC8AJPjjFYf/4y8Tyq7AmL4naXFdQkko6KJ/s7FEVamHD04sj//wJoovxFQJKNx0xrAI70aOjKAujvjZILh87Z7v3/HwwKHdl587/9yzFvg2pZrxHTSNvvpn6ASTi5sh2FaeUokM1t8vOw6wUOvPS8YBg4QkUnwtIJy3s4UEDMlgZPsbz7O5SfQlq8nTF0w4h9qnv2sSIatc4o+pu2ompqh+1SoSGTw6Hg/eQjNSzUMen9IJxVNuPEyZWsrKpjkexf7s4dAMoY3i+H00BeU5aVzrVa9eSIPFvH+onFMLleaUuf3/oaJKDrNVeilyyx7nBEOPar12LCjtGPz3u9rM2jtyW5gO5R0GR5zlL6BAwlMQPcI/mBr7AjINCh78MAjAO2mPwjjsbudba/jOY7oedkackC/3DQTCAHe+MJp+YMCXnn3bL9o8DASX8UThA3YY5O0FYinxMEoUEZcNsCPQGasVCozaSSowrAojWI/KiFJVXAmFHgCGcKRyK9i7UNwBGCUV91Qt/BdRRHTvyr+SqxSFuOCqyomr/PPLRUVe+RtRQCASW7jf4NBCz+be//R39zTc9bVPf+53F5+7CFus0RQTCNxoPaWRCqVRG3WJFlFYoRDLotyMGS0K6nifFwfq6v95se04ZTIXiY+T1W5pLeMkcccoSgugDKTjVOBLhiaFguJDwNPr8c3fELriQ6KXWBIiax2SogiNECFFBpe/x+EFMwvAk2pEwHyFXeVnJjFTqB9klP9/7X3mcgAAQABJREFUTmWWbhiqr0x5tZXwYFPrzv1Dy1dttGd++oSmxfNOCYUV0/TQZ7S2uXPFSU32p85L+V9pSThCb1e1Wei0+D9URjWuRBXOA0yNUVo8dCksLASaTwp9Fx1H/wmlH6DxSb3IEWTEnXvReOV3OXsfLRkUAXBWMQqIZo2/YQsqPS7HsZMg7NPBAYfo5Q3LwJpAYAmvfqAO0HgiIUwW75JSokN7O85XAQkMJQuwogwzY4DLCmtBHIRUHrmzAglfzRtYgvCoTTpZZA+ctXzICy9EiQAVFLiEYM68hr4LO8Z1xM3LOji+wTKaTzBY0WFbBSkojEZVz+r3QaLwoFs7jC4lo1nLVyDuuvp/KRuVoyxGeAzyGBUximK4B0kCZVC9EkZLSAHyNESqyvqvUsespje54PGKf4UVIbWqDCn8AHUcniilyltlYXJzq61aFamUPE+AJOM4FPkziyJulqVQg/5ouM27h/74Lz4/+6SJV14047RTZ8S6O01rqp3akyqOpg0dn/Pz6MaxauCS29BtlGvsPS+KodagckAT7Uy/lRl+USNRZCk0RgM8/N+c5xRz0dCuttWbuLQb+2PuHvmLO920HLa4IjjyUIzR4WJ8ce27hVAeluaAuwooezZeeJfCkrB3QPujAM5YGmi11qEch/MgD/EIf/yrEV1RbSWqRGZ5Dvsn2fEng0FFPGGF6GLFJaCWIrElkwpbAkH+xIQCXyktEvwrxeeYiWrFP9FhUQXWhIlsLlts7ItKHbbJAbPAZQu4cSDwjtpTqpyvYldlQfiIiNoTLRUw9eflw4HR7RYvn3q+DCnJOWgqpCSvSLuafzPiQguGnB0xil6GNXlGkmJOEPPBkAu+J5QfwSMYBVxrSozlRDzuiSGtynsYH6mYAq6qoYeTnnsoWF2cDclnmPft2bti5Ypdu3addtpps2fPDkoUFHOYikHw3At5heQIOR275Iq8LpP7wd6GO3+wZNtrLpjfOdYFfpQSZUkNhRMnfllpd1mPUNHjFTbEbJurp/yi/oELywVGy2sHulawosSoh9DhRU9QkPbPR2JAW1L29YDoKqELZdVTGpupf7rOlB1AR7O7eCOeuo9O09i8e8/eJfc90N4xprOra+pJU8WFeRCnEspSewyrtvjAVYW8Vtj379n98MN3+tTTWWedOWHqlGKwFo1c8hZ/Q5SdTxgNYVVUflZ1GwJg9Pkr5lPQIdlPyhsnhCjlmP6blksL66VABY7SPSMgAd8jY4mL6gZbSlJwDeHBR1ccx68AlRZkhhHjGwoNg80Nhxk8wZYoJ4oY3SeHTJaRVa6Vh7ogasRTH1wjmPESB+vq/yVrgBjuI57169YdOHgwBk8Ml6Fx48addNJJ8YFUo7fqrB4B/rMUVKniZueYLUZAf79KiVG7ItQqdfHlutVrVhPxEydOnDZtWhGHZGYR1sepulz7GzduuOvuuxVxxhlnHDhw4Cc/+Qn1v2/fPgyfOjWUBMKOEWHHqfCfGTQaJXQGzrMAcsM4lzg9t/isbe1j+1pb3ANsi1985Md2eh023PJlHi6m6OxKVZlSVtl16cLQoocog4rCFUu9BWR47PV5SZEG86FDB3du371z6zZu/Rkzpp84aWJzhwvsFCIdHUGYvGwByD3FTGjctWvnAw89eOjwwdmzZi+Yd9qyhx667aYbfavobe94+6xTpvVa22cpOMff5B6/6H6KjGuNaHWh5pbDBw4/+uhjP/3pbb29vYcOH7n2uuuq3bPo8CB0uLdGXYpaKy6NSKs+ARP/h60RPBMKLcyqUckSLwsLpajwmp6XFDwq8IURYSEVvV7hUSzBACrsLgWH9eF/ZxN4L0opUmOZ31mBjoYW31hy/3IYCoHHuxQeP0bhSY1+6ODBLVu3+gy3njNh4sQZM2bEANdi+gdbxLBS8dHfgTgK9XvFoqyr/5emaXPAKDuEIAkxOHj/Aw90d3dn2Jhpa2ufPHnyggULTpt/2gknnECGjOoAfhG4QK+bJajjkiVL9u/f33nqqZdceml7u8tJKhqX0P/GN74xZsyY8847j/oXj0tZ7xCNx+VpbNi9Z8/NN998imfGjHHjx5NQvmHvaW1pjRKLpVWKPS7l/cwioZ8oreJtL5PIZhfeNAwd2dPRfLjJZr+B/qa+Ngf7G11RG9NtciQ+oUfCU3kVPRdNx2qwTBB2QuFEpEeXL9v7xMR6efT+UI+h7Oip5m3bti9Z8sDaVU/0HzxMs40d2zG789SLLrt44oSpxSlTyU5VttpoaCptAl6wHzrUu2TJg4yAC8/rW9g1f0xTw4R2U+SGsWFCD6xctvSeBx46eOjwtddcc3pXl53wG7p77rv33h07d5xxxplnnXu+jmCFob29o9k9+61t1jTiREA8Ssy/Rw1CcXpnZVpe0isvOlw884IJkBjsK1A5uT0RcDlw+VGsHnGVqX1tiGNIqP+KGcoqCKaVJ+0DuxKMDf8wATpGAAeNJB9VaAk3iRuLB5sH3T1A/WucsByqdUg0x/lt4Gzbtu2RRx5ZtuyxgwcPGekdHR1GmIE8a+YsLpalSx954MEHx44de/HFF3d1dSm+JgCPMyl1dM+FA3X1/1y4dfxgDRhP4MsXx+O+/Tt2bLcXje+RpUwvGlE9PT27d+++/LWXs5pJOurzGBJAhke0yMVjko75mTDeHlmOSf0Xf8qFYG+QFcpH5MnUERHHBmtZbLNfu3atSrFpRGZ80mOCsHPnTjLi0KG4qS3KiilTRfAdg1HFQ1U3V08zVyXzMZQkfzJvpaxqoe5j4fB/+9vffujgoRmnzFAusORwQh5T4jGYj0kdWdAxST+TP62Xm2nGYfkW19frLqGPhhqn9faNH3JxTWN7Q3toa9/yq1impUexFzRXtljoOYo+flT+p60yqcYR6+6RWrUGGhr27dnzwL333XPX3YyIse0dlou27tq5aecOl/i8+qKLp0w9SaMPj4JYOgiMmsYxxbiLf6Df5J690TpmzOLzLjj51FP7BgZmd3ZyK+zdf3DDunW7du4cfO1rwmKwPD40tHpjPCdOmXqm83Mdreeef+6s2bP4hObOnRsHbSrqv0ZuUh8k8yOIdZhe4UlDAaqGQ8WzJUhXMTFnL0/J7sXIObpXx68CmHDB9+AU5kSK3LXhGgV4cqVMWlgOMatGPlPN7/aGA7MH1hzq6B3rywgF2nJA6P4AHpUnx8V99933wAMPsODVu6WlZc+ePca4Kw7f+Y53aI6du3Y98cQTEydMWLxocRKhEk83ZJ5hoJGN7PUnV+OoXnF0MmyeYySeGATEWmTs9I0GhLmFMHnugvHo0n7GftXV/8uiwXTH0gX7zfh/+X3v27dv/2PLHnv00UePHDly7733nnjiiRdccIExvmHDhiX33Wdo0ZQmrNxrZ7/qVRMnTdKVdd+HH354zZo1+/buBTl+/PhTTz31rLPO0qcfWbr0sUcfI1CscLPHjUkD9fHHHz/xhBNe/eqLx44be8cdd9C71hqIvG1bt/YPDBiorzr7bD+XLVu2adMm4xlh8+bOm3/afMOvv69/7bq1jzz88PYdO4wr8/U5c+acffbZ/Ofr1683tzauZs6cKbuf+EuzXn755dOnT3/owQfvvuce2l2ulStXfumLXzzn3HMRyTWYXkEZgxXVJxQMyd4/sG79OrXjpVdThtGUKVPOP++8yVOmAORsVB0FqZd4tTYLkUvg0ksvbW1pwZP7lyzZu28fys1FDh0+BAONgbytW7feftttZNOZZ555zjnnqCy2yNvZ2cn2ogYUZxLzmste09Yex82VZbFgL/5j0aRJUyZPXrd+PTGndS688MIq1a+Qv0UnaQur46F9QhXuO9A2MLl50Eay+JSuK2a1FZEZPvvaBHZk7WXJxnxa3VNJKMvqgWj7tu0rHl/e33uk89R5b3jDGw4fOnTTTTf2rOl57LFlZ5997v333798+XIW5KxZsziQ9AdyX0MsWrx4/mmn0f1FNxatpyfv3vWd732vuaXl9a//V4bMbbfd1t/bN27MmB/fdPMjjyzV25mh+w4cGDNu3IqVKw9+/WuvetWrAOvVh9zLu3fP6QsW3HLLLcaFoTRp0iT9QWU4iYDpWnFep6Wlp2fVww8/ghKazMqRgbBp0+a9e/eZ4y5cuJA3qbJ54qjqF47UOINdmZrv4GpyMP5UgtWAxEp6WFYxqS/qv7dxyEULseneF43OWjTlC3/578f09546NiwUIwgNTGWPzpyoR+ONP56urq53vetdZNE3v/GNjZs2rlu3jvBhYD322GP8AUbojTfdaCy/+qJXnzTtpHVr191//5I9e/fmoJ5x8owzzjwDG+Ui9KzHkRjE17bt28kWsmvHjh06wObNm4kjSdbvdAb1sopn9BmbIQBXrz7S20uynTJz5vbt2xUdcuCSSydMnMD+WLp0qSEvO+HJwiMMmy2SYGIcBI11pNHgzMsZZ139vyxaJ3seM5lOmqZrT59uPnrqnFNvuvkm/VXHXbx48eZNm773/e/r0IB1enTzDej0r33ta2lrXf/WW28FLClNXbmsYr76oosMpGWPLxPJoy6XwUmoGZBGGh3f0hoKEipizhCl8+i2jvb2rdu2CYAUA2d7W5uBN278uFkzZ/as7rnpxhs3FEoIPji59Jkdl19xBdVOiSp33dq1tD5Pe2/vEd5UIvuaa67Zt3+/MSlVFcgCuvP0hQthUOtsBgH2eHIjpyzeTI3vfe97MkICWKq6oOo1r3mNYcx2YRLBLCvmqMiWLVtYDJKQvXHTphtvvFGk4khnVgJ3gkCgaGxC7Zq1a8FjuMpSJ4899qjv0TOzcOngwYMiWT+2KF5x5ZUwsGweeughuZSldmwL2zU2bdpI6iX9r5x33KtDHWtch9Tjzv+QjR0dTW3tzW7Fj9ktDRQ6v2WwnOEMC+FZPanDgMqb/yJclbwCGo7v/fCRwzpPV2fn29/5ziitqWHMmLHLHltGgmsaDaR1Bkt/4KmnISZPmZydR/PFib2GhgMH9y+lddrbL7/0tUcOHNy9Y1dzawu//lY9sN/xgUZ2G/OaUUhhrN+wYf6C01jVK1at7O8fOHnGyXP75/Z0d4vnpoJEQ+vJSNMPr7/++s7OuevWrfnJLbesXLHCWIRNp4LqwIGD+/YdnNs116pdk82LFfNnJHdUuhodNY9fnqA4+FD+5KsSNSKmGhzBQy0Tn1AMV0FxlLV3NM5s6+vQVu5JCKPNLNu6TdVJVsVwHP8qATZvGvTgwQOahqp+xzvfKdIAOXzkCJOamDLgWPl4Hm136ODq1au/853vYKYmKLVvpMt37tp5xRVXMKeEKXvD2ZDft3efuYRWuOmmm1hs2p2MgEQvAa+xGOjMu7vuuuuee+4xSI1ZXYhE0mTwo8qnkx9ftkxjQYjRziNACxU73rg2GTDh0XlMCYiF48iZlz+quvp/ubSR8UMh0Vi6LzkS0/fOU3V6OolmfXTp0pW+lrpxo5j58+ebZ9PZlBlz2JR35imnEIsg5WIpq9LSRx6hII0BE1M923iAX0c3CKWKAWlgxM9iLkAossse6alT5TK6tmwJK3vRokX0HPVJC4rcsH49lwPbfNPmzSgxEyL1Vvf0mDU/tmzZzFmzxo4ZK0ZBUhcuWgTDypUrtm3bTgSghMXNFnn4oYd6+/qmT5t25llnEZTqG2OPnul1o2tRKikFiyg0pTCwWQCTJk7iJ2CgGLf48OCDD7JmWAN8JKZrU6dMOePMMwf6+1GCAGxUND0dedesGdPRMW/ePK7+LZs3r1r1hCTcoCXM4ULZuAImvakNoWPQw93CH0AM4SqBpWqvvfzyVatW3XffvdaGcXv2nDmyiGk4eHDcuPGZHfGvnKcoeFIdJ3VKy/pTxzX+yb9/e1vL0LmzfXInjLC4j84OASv+sYM9V2lGqq/CjJERJVyLqAVGMm3K5Clz587bvn3Hvn17v/3tfz755OmdnZ3nnnvO5MlTNK6G028PHjggwFujoTUuC892zqUPP8IBMOT+3r5e9ATOocZxY8e1t7U7Czdrzuyzzzn7CUbqvn3nn38+q8K2Dw4ACkPMnNmzF51xhq5o7tjR3tHnmz5l2j523LiODnZv22kLFkydMnXN2jVcVt3dPTt27Ozs7Hriie61a9bbR8j1ZeDQQPqDQTxp0gQWCRsFeRg4snbD4SdFPyniKbKCSbAqMLZrIc5wFkhsgvBz9Zb9P3xkeeuh3VecPuus00/nqtHRK1sQhos//iGDK7wp+/b/4AfftxBgpBNTk045BZ/JENwwGxk7bszppy9ccNqCvt6+e++9hwTjU0yvYUqYu+++W6OYu5M5FDnLAA+ZYprDSITBQDtt/nxyZv++feQhF0xrqwXAZmoeAHh+GjMlMStWrODwIyLIUsrezgPkEUpSuQ2IOD/vW7JEmANSEwdH9PUyrRLUvY8/j15+GOvq/+XVJjGeqxSRcePGjqXhuO54FHVx+ozD6qqrrtLLGcg/+tGPaEcTdAJRKkBD7pJLLqG9urq6mMnsiQP79+dsm6Y3PKKDDw4JUHIVgV0MAtEUJBe9DXGPTJv2gx/+kDExb95MZRmNd911N/vdgNy1ezcTnhmgLK5vRoORw/tqeO/auWvH9u1jZs+2AZhf1DCjMmlrpgCHeX9/H0oIBc8Tq1bt3bx5/PgTFi1cKK/q5tIdVGmd5NsM3ooAC3316p621jYuviuvuHLcuLEPPvSQiqOHRYIkYlcRKD/7nHOsSkBojl54BuugCZypkmWCK6+8kpjGLjv92Ew5vM32VDw3EGB7TKoGBzHn6quvJqTMEjBWccQHDwF50dLiSzFDCqJCVGzJ/fd/97vfFVNtsVfO34o+ifVktYsN5CdPbvzA28+x4D/GkbLew6H/W1upfgfw6LxS8+RDrf8+LTeeAeL/Z+89YOzMsvy+l0PlnItVxZw7MXScDjs9PTuz1qxmbFkCbMuytIAFGBAswzZmHbQGBKwkwIYNCxAcJK0h2ytrPTO7nt2dtD3b3dM93exuspmbzUwWY+Vcr17073/u9756FUhWkVVkkazLx6/ud78bzj333HPOPTfV1NYg12lTZANNfOnSFE2GZevb3/42egCEQbEw9+3btr351ls0Acrcj/74R5ABxADxoyJUVUqvpWyIHxLiAGKejU1NHR2dCAzCt23btmP7DhoX8kA2EFJVXb171y5EDoqsiCanswMoCIctATp/8403auvqkO4YwCD16anULfTfW7eZm2hobHz99Tc2b9oEzTOcRd0kAn0srIn/u1T0jsi5xwe1hqK4rNG6GGNrjkwGfm0m7L019r/98acXT3/8f/7n//7ubdsUvXTz/T1yv5/P0D+OkQCtBlOiLRiWgB1a7ZWXX3n+hefp8rwi4MEJmhYWfjB5tbeX1kQzwIaHEoA2//5778GyiEn78olOh02OCSAUC/w/+MEPaA744Usvvbxz106UtsR77332+ee0IM3NUAc6QVd49plnNKFZlqwor/js88+uXxOnunzpMnOaRGOQQFliWTU1DCFgjEz8CZm2EIGnV3+o3/ffD0oemzTr4n9tNZWW/BQpDz6CAoxIoj/EE9wTxsgmgzCGggEaGQ+5I8UhfZ7wLCJgCSAQQmfiQLZZ45WwTLoTzjE7ZKrzIPZIQtelQPgmvYKE8Au4Id0DkwMjIfWuaJT1AeTvMjF5EKBDYnElLXYzSqFX05ekh4fD6AQTk5OIYfgpzJThGgYBvrJQADhRPlhzR7aAEU8kXMcjkNljHBUkstck1hmBJ50mRbaxoaGyqpJPZIgWT/9ndRGVpkRyY6qPJ1VAMaJSRIMrUDogwaMJ7OnpcWlJDhg25o9QIsyeelF9KuKqjxfcmqAJVlZVke1MKgVzQS1wnzCQUEdyg5tQR7ge/ifMmW1fkt/uzEGycJ5OIDU5yT65SLhQnmSRfCCjre1svQtDQBIziv6gjraDvL/1rW+hfSIwGI5jfkcP+PnPf/7d736X3JEudBDGiGAe4tGGfhu10Qsc856annYEwBO9ULqZfYDeCIEOaWX8AtSmwwmEDKBywmlrgslWjlUPuRwEmUgmq6urCYcqIDzm15jVZhYMXZwEdDdZzkzhcF0PCKFJ5b/KTrKf2rG2X5f+0ET6k81VXByqCvRhn9E9Q/ATu1yxyFNWASRDVQAkoGE//9xzl69cQb9HO2KV5aFPtcN2Q9cGDPX0HZzDcBbOJiyFaGsikENdbR14pi00p1N02Pwx7INV7HC0BbCD587ODuLT02FSqAmMRvhEzhAArQMDdFwCwqBB+QgNMJHE/A7dnOkkjAQkx6E7AjP0gNGR3BzxQBJQw8NpvlVoimVnuS7+l42yVU2AFELuxuJxxtBffXUWXpPJZBmRt7W2QeUMprFoMdCHE8ET4U2OlCFx+hVcjAkzdhBAxBcvXsAQh9LAWAeA6VD0EbocMgyKp7e4LkaXIAeNVEz/dQIenkJ/woJKieSJI380CLqse6V74JCCDPFJzxwbOcOOu7u6mR+lAPKk71GuuBPOUEYfplwv3DICElLx0WPHNiuhVJaCIiyduDCp2FKMnYP4CH43+15eXkEORMPei3ZfZ4IfOU0tSCiAs1m+ohRoNHn5CkjEkg+KwBU8Hx5Et8d+SHG8AjM4IS1PeIGbBVTFwU8kQrWQEBYnRxFYBYDx+nUNIByQT9gTDEoPhRnaMBqMXL6W+/4//KesMHvnufb/5G//dU6U5cJcoVpHN2FethRO0j4ALkaGh1mNAStHKux74QWmexD8rCZhQAmN0Vi0CBKChSk0Jd2BtkAFpAXR6tToMkmoI+BHNqC3JdFB7RUqAlrogXxoNZpeZM/lvLZGxC0IdTGpjiifilt8ApWd8MBKf0wd6k3MKTCjRDSAocOSJzQEZfplAQlJeHUey2B1HgYcpQlgtUQ8EE0GyipkElCBDGSlBthvdQAwtNNGoIKZEow3GOp+8fOfM2U2MTE+NDSI+KeFwAO9mFk/THTAQTPBvjCqoefBzQYGZdokHGEPVnFEBtvGPpSWhnMsC7PBlniCsuAGhl41B18hDDxQDm3B69DgELyOLDSiKCvjKwWhT2zatAmy4RNFEB++CrOlXCCkfUVAD6fVVqsplpfvuvhfHr5WNTZUC12yvo+RCIoq9k+okUXOXd3dNTXVKMLsDGSqG8LFLMbaPczRcCj20sD7rvX2wshI8smhT6D1zz79FEUBcyhdEfsknQ3pSxclPh5MbcTBT3VgW3BDBDNl4QjhKVZicpE4FJeekZAjXJPk4TClI1DhvCRkdo15Nax5aANSvSsrHf+la/lJ8JAPJZID+jg50G/pvSwCYH0ACYmAI5AuTz8kW/CA6CE+XZfDD5jJY3k/PZnIxmg0+4sxn1IGBpj+GGa2gqWIdGwOFSA5RQA2pkLiAKqtmvwJlkZMxKw5Ar0Uhyjgqcqi73OLvGEAqwDJYQx8woEWnpRLZLaEsYJyanLq5EmtqyAQUyepLOIT90BqSKAg7jGiBxGGmPvfff9cy8HnX8zHkbF80kZ/HJwdNMpnD3mW7YyPKzl2I+znzPLS0G9//evMvkOuEA82IcibNsXR9BiWCSSEXkB74XGDSHIggtvNRSOiwzHuhMIJN8mtUSPLaEiClAJeMqHoW7duQmDd3d2kJYQKUwTh6L8QGLQEkZCDtAzyiUQhzvqGekgLCYcWwpoypsNYwc76MgceAJAJSVxCPKvsUM/0D6fWQK3RLcioRUDA3kyqD+Srq4iAQBbhYh7BcgPDYSkuqMPsiIUPqOhH0sZmZr46c4ZOCnpZkA8roy8TjqWQ5ChPROto78DWgiQ2nZyOqWU6xIcNsvAC0f7BB++jNNABaUeaB4TDIlAgYESMiD741QdYGSEGKARFn6U8YKWnp4dez7QCrICsWppbfvqzn1y+fIVob7/9tqM9mh2Eqd2srUX7hs9VbrhHnP26+H/EDeCKhwQRJ87B0RxFoggj1195+WXmyGFkLJ1jDMRQgwiYsKD7ysqKnp6NHR3t9J89e/bCOqF4VjNBwXQkhDET2AhjJs9QHZDQ2BKIQAfAoT7DBOmi0DlP58cDPJRO5vQ09S4m4CUmC6zpxTKBqYwIe/fsAQzW7TMHT2dGbceMxlo55DQaCZ2cECc4XW5kzjgAqOhgbO9pamxEdSAmwHC6EdNxsGHhIRgkIdHgI6gvcNuurg3f+ta3X3v1VWT8yMgo6gKBRESToKzNmzbT82/fuj06OoaQYEEiPbe6qho0UgUKRa9/7tln3bR9b28vSgBjQdISGXyqt2MhMFUDSwA44Tk9NZ3l5jdBIwceLDdts4Td4xD58PrbtzWVCGbgbqHxcRf5iXoi/GVaps3CGWbQUY9ASvPmW5GqMS6V505fN9xEtCAu3QKBB6i/x3MDARaWPvfccxAqbfTHf/InhNOUNBmLLegLbuLJ9Q70PJoGiqVpSAX50abQHu3OABNYaFxeJ6FeY+j0ESiNsSOLQ5lQQCSQikkE9Gxm8d9//30oFl2BPFlJykwQpfCEOsgQvypXYB5KiilUgWMxATKMbsUsMmolYNAXKAvIZUI25ekBULLEpACGAkq3NV1WMsuODCrk0V8iOv6X2Rs+OUvAEvO8n2jd3d30C3T6P//JT6g6tkOnuKNzg5ZtW7fBsujvx0+cgPMwo3/gwAHwBq5YQEN5NBbIf+nFF7ds3QJzoBWsJY1B2aiAfFg+jOETHth3uw91HJ6DkkFamAaze3t27/7o179m5wV8AILBtg/BoBC4ST1GQcBGM/3sZz8DHhqRZaHbt21HC4RDkgmUNiv77wcBj2WadfH/KJqNPgv3LDEMwnqYrYcEYWcIFXGiWIzZbsb9CG9ok8jwmu985zvIfujYjUj4hHWUqXrqwBIb5iNRkLFxMbolEEuXeCJbkhJJVvChU6P8Ump9QwOT+teuX0NlpodA/azNYdSOfk0PBIBEMrHJQsifLkHRTLPt2rUbzseMGpmzWw8A2C2NZQ8jAZ0NTgok9CsyZEaA3ovyAVQMvFj6yx5oVurSRak1M3PPPPMss/ccC4Isr6isgGu7NkCgukxQ6bHbE4iZgYJY6Pv2299gfEBnJpCQDZ0b9u7dA0Pn9aWXXqTiNkuSqdaax41nvtLefU5+JWZLayubsJsam8YnxqlaT3c3StWp06fhHa7uPRs3MlhpbWtjHpctl1SN4pw9kMwZgzJ7AoqIDALfeOMNBhlgGLYFbGSCTYKyiPnEOaql8SLn1YcDOcSp2iOBNGESJG5KmGqtgwHZVj5rAHggNFAiqIbRIwxQ12huPIz7mfva+8xeqIsImJehLuLQmkSgidVGW7ehVg6PDKMoM7+FsgsciB9t5bdNLryiunEORMO5c0yrMc1sOZftP3AAUqRDkTlbS6KxKM3NYhGoF0h6enpod3qBUwfVLzZtIoRwp3O89eablM6wFXFC90EOQaXgjMUz5P9AuLhLYuMexe+AxuFHNA7aGtPjYZ1wODkVuNLLeQy60ljEqQRqydV0yFF6FhKaCRfYF72JDsgaPcQwPKepuYn9yazkwCTZ0tKC0kyne+cb32ChAJo9PIS08Ct0evYwg8at27bRGUGpA5tGRFFjTyCDeHof2KaJ2Tp05ivt+8fqyDierf90W1QHxi1wEuJfvHhxZGSYTkpbwFh4oqthrUGHgzbYwMy2Z1rZx8pqo8gvaO14JFfWDjRPGyQgH5pzT4hSNsPiMl0/HDaHOKQDgBx4LQIVBscrDIiEpEIeqw2x+VkcJBO8DFrHkVRGSFM1MFPTJ30MO8OmH8JoBi7hhL1XtMrzWIbXMRjRsMULvsbiAI5Xw1DPUp3JSSy0lKVacNSpls54Bw+odFtb4BcK42YGXdmYk5HWZlJdcqIBFYW6cJeKiAaIIKFjAwk6ivBQDIfXuFIQBvRq+jPlEtuD0+YaXFpwhcbjsiWOSwjSHJx+KdTOH7o5VLhPcHlMjpSOSZhTgNAGMF3+8Ic/zGTS33znmy++9JLL+Yl4MqjXCNaah239Gbai/qo3/xv/0T9ua6/5m681/Zd/+3tVwr8tDeGyXJs31dTpAzvXFmrBublBn5Ty0Ucfffzxx1C4Gz4iJ1yLU6zbJ0IcErpMjKRtJzeBJoxda7oIPHFKaAZ/53fgu0x4Soxh+Xf9yMgecvUdGi12AmiPaKi29Mef/vSnQAhUv/v977PZxOXjx18xj2PYDhI1AmNnDijGcMdSzNiHp7L/3f/+7tClj//R3/vNb7x5EH7hzv7z+/KKgVGSkRCu3SFCvh/sWsG9ggrncRFgYryDOgJBF2kZrc+iq1hBP8RPTkJMkljs4DkuQ9d8dG26p1rc1D4GJAyTOPADbeAbb3/jwMEDTgngK2yQFVBwSPximLPwuvyeruf66P+RtTcMS50FAYlpzmyYPpU7mBxHwy/mRVQYsrFFBkCEsIIGaQ2hE8H1E/cVhojHBZIgEDHBzPxZcUmUy5wu5iQfHRLnVAfXf4jgeqaLqdzovdaxKdcBKY+VwiBaZeFHj5Hc9NbNEs3lRs7OQ56erq1YpvcU5ayDnEBUCuVv+goekvAJ5xJScXEGgwRFQWix4ohAMPJYaQ14QgAJ7FI199XsgQnnd7VjiKD84f6WoapgygqrE8gEsMkNRwQt/Uun2T70wx/9EG61YUPna699jbSYGQmnXKwjJHmCnDAHqxRDD7ELDj3Ajv6ZmMwVanPpDGZx2lz37RAJvNGacFJwz/uDORoIapHQJS82pBhDpy20xttaGQ1SPYbTBkMhEO+XRnuzTIFXogkKIlgLOthcU7rIRHAEgIdwm2bWdz8r3+OTKyGKTEIAM4pCN8JqzRZTlL+dO3cdPHhQixavXIGoWM3u8iemn9XqeICZfqfTfWgfsYFAoK05/Dv/zt7CdFtXd22xSo4DrA4IKlX9lI6AFNcaXvVfVZzqO6w6PNCuClL35DACT1EgApJYMU0hcKlod8I5G0BrdBwOeXddG0IQNWgs5EJ4QiTMI/z4xz9myQimmjfffBNrH3ZQZgrorayaou8Th5jASV8urzAmI9L1hlWrhZo1n++6+H8UTUS/ZNkRA32jafgKQNAxXD/BD6Xi6EsuxHERBVkcJ4NJrm5j8knshhd3ijULmp0QNUFIBMJ95qUSeUej0Co8sT/YqGKY07DbgQIM1iHp0srcCXZim3ORiSiLgtkAxLJtPZ3rrsSiREJIi99yEC9SOOLWeKhycvwUHiYuzChTSxDo25LHtlmRKJRFiItMFvIbYE72s7qJCMJk0RETL4EAINhd3S0QFDu25MdRtqopQk5J+E6AV0SRQwEtGTK26+7u4ogSllaw4J+riWZmtBCd+KyvZCKgWP4T8tdIDqxqSEk78RpH4t+6eTsZHN+UZb8EBMSFPWCPw/lZXaZDfx2ZPgACQKa1mJpCzWciHI/8hBijx0/z0uJSO0yBppUp25Gfy4EnCzhoR8Fk8kPJuf8WWEURApQ4PPHrj/UUni5w1mNxKEhpSFikWyLQNznbDqnDKtoTJ08gbACM5BixUQWwQuN3BRF5NZyBTRHZQIhluajFJhEDgaaG4GsNrfFAK1o5PYWHdS86sFfxFQeGalJ3OghFSQmDXVjRDrHgGlTgXLgaMa+twrySCuf81hJKQUxCcLJuglKqYNyAED6pNmpSqQtkxSvtTjhTcsw+MC/A8oIf/eiH7nwOitAJzd3dnhpnmVMA6UnNV9yKY+PxyjD8e7/3e48XxE8CtMYoRc3GgKBCj7jt1augkannpwPQKxZwLnE3C1cPsfhkRba4UlbsMufpyJ2vlk7F03kIxy3EqoADHhtpWbcjkYVYbBbU8OI4LOHspCaOH4FPcFvlah1VKVzvNT7rFefXiHcDgOhkiGDxSipiw2VLDg5RZK4qmFOQ9WH0DzJRxc15X4s5uIQuFX48ju8oLrk5PUkerwqz+bhyrDhwxZQwI064CcWRN3OTLEnjIKbamtWc63WVebhP0OIxXkb/QTbIhaZTXN5X/Rsv7H1pT9vWruYoRmfpr/ysdSWCDZVea90nuK51SEzLgHuerqUIoVHcLDszOKyDaW5iXQgKmDcQVExby6kmlTYpknNAKCsRxhybloqwTP1u5YpQcisXD5/wu6xElkqizHG8soqF1TkY25gPIgTBz9CTdYsvHnwRU7Y33CwhZpKvmAMKIZvlmPyY+GcUJzCZA+gfy5/tHRq8PRDLp1naQ3eyaxWpimn2KwbB3Iys3xlCvSYTigx7QiMWpKKYt1f1WiK4PoufQGWnFnQWAqMlQojkcqbDml7uRkouMk/lYyoCiwkwurCACaWB4Q/7d5iOYYEIZwqxCMBBYiWIKuTsxctc2T2lzlSqp7Tuj7jaPl+DGiHEUmhE/h6fUbgjVzoDPl5dZCNizbW7PqDkige7lGB2nEuBFkwSitO4lkzoUdZt5uXmIvtPV4p6joS/geeCir2OLk2Gim+AeUB6fVZylFLUn4lPNBsZyG89X6kWOHKgBJyfFVE8vyXHj3NxyEcclvlpO8IFO4QzKnhJLD5VdoNCVxTAUA0sHMZMVAqv8HFhxArVU2KPcwCN1xu2ycSH1EVmQpFxBgDA+lnziIc4PP1oT4RH3Nk4cyZQiOSyEVZdTqYK5YlgeSAfCc6wICAc5ZwWrtyl6iJX/TwKfSAEgExyouFdo9BMfnasXbXlqxzjqBMn/U/EJA4Aow+4hJLWxXR8xZWGEJkQR7dWlFeWF84fc47Y8DqP/3RfyYEQiIqVg319nCYZRTXE7Ox6LnEwZSGNiOPir+CT2tq4Xucxa2pflzOboSYU/OlHt3/7v/6DwK9/+P/84Pe/91tvSTvzTGSrTp8OIUADTmAOzOC4Kvu8yHUlEIIjsiS34ZbXUuS4ry6wNE86uE8bLj5ftT6jZAwDeWhb4MQk2gCTdGJ0Rhul+eP3ACjqKPO+Pj2v68b/pba1epk5karI1l4s1Bszus9zn3Po2s/C4vifROJFXuWJIvipi1PsGKLXYs74XXwi41WXKEZDG3CdjTzF78zRzTSQsS6nACILfhWhovXq520J7MFnhVKG/VVYsRhXohvx+zxUcUsq4krxxhyWvYOHOBZNmbpKApurtcthNkPiqVTPSb5aPPduwgljrhXKBIGbeuBbMRXAOpFcDDCVSJJf6MIpH31TIcCGxwWa4ADb3j+Lq4kScG4NzUlzMPkm0jMi4avjrqpOKbjK/X7cImZ0Ze1nxYtfDKGzH/wYK+GhCAiJff3UWLf5ce8vQZG49pCjWYWiLIjTrACBMrHzh5+DBs8sIgw8++R/9t984InkWoE4ylLVsv9QrEkIy13tgHzFKYfZBPLyiTDmdV2wmL7LSqWSJ/mZlLRX91AmyhI5pNwQRFRDr6Vx+Ma78lYm/MNBBvROgtX6fAyH6xsb+Vks5UOvc4Th9o+UZujn7SLbq3I1jCkzP0LRszCEL1audTDjA4rDfw308cTLAm2bAjufyYYKZhbQQlpH7MU8l/pXtSVDXDGFqj/75ofKw6jDPiku/Y4OpZGJY0GS8sIe0Focp36jNqIfGHp8HLnM1RaGYqueRSk2sSLwcwnkQcmQ3QOfcTnIo6qyCmDEEIjlUMtnc2pDl1wZuEy8T/f4I+hL4pNtEQ+L4+Qe2a2Vz+vi/14toS5gVCQaE+3gREYlxGDkPUsQFmX24ZJ4qWaD1bH8t9LsICzrd/5HeeaFzIvvR/WJUpn4IDr/YsV58Us++Vm5+sxmMvvBq6n3qZjWQegCXbaLpiUb99WvfGkSfSpm6MUrlluKAaIppjnf40UshvPKp9JULsSLZn/8tKWgKpWhzg9U+5bKD4/7Kz/HIB2JLI+hFOEo5SqSrVa6CxT3U1nzVAI3oUv6Ve28tvgfWca9SFQzFLg9UHj/V4eSsejWtsoX9myMhbj3z8aWhRynzAhgcG3NZ+hx3QO7iGPcaizWfRjCbamLqqam4ketJRAM556OaH599PRgS16KXwVYJHmKKDS/F65gi1T86wAi2HP2VYFO0My+eqmK0fRX0ZxwtWjOHOTp2V48D2Jy46v7VPyiTx4tSXDLoSIUocO4lJPGwFIHrWcsXYs+FxKXUk8Dx3lc1SUvFc5UeJZdAGW5QHUkzYpbK4hwdB+f1BVxCY4moRjTY4Rf8qfBLEyJyY0xAK94nJnFk/RK5DkvpPgqUsZZBOUm4pmN7MWaF+J91x8ld3y2iGnyMhqy9nMRSG6gCo1K5GHdy9zF0YsgUVqPuvzvDiJL6eCkesV2Ii+oVK8Ua4CRg9Gt5ViMNpvX4+BbVQ7yOCDgXjAaGRhZieZFN47ojbSMCrzOPNs3SrO0BMUAL3rxdf3vY4IBdXfX4R3fMLDl9Z2Yk9jRQn5jH/x4i3iKzESfoDPlBIW5YdacMvy0Ehb+y+p5jM8hsLWADsY7Olj4u7/zT1hZ/rfe7nrmH/8XnKUHSjTKU+fQ+izeXf8ogiSUEcu/bs4qZR9lmvJ4qPBDZaVKGApVM6+fSBHy/J7AdYy7mP9a/+tLjmIzUktqZNU0YUIEVd3s93dtcb+mPkJciOxhkkZy+OR0AWCuPJDGPhOFUMIczKzQZU/8G6yavxct4mxGDIC9liBA1Kp2lM639pzB5Mx1ywCOHkytPEdt1UA+YhWsHq4Ql71Q8Fi7dfF/j+ZDQ6SNsSypF9Hs4knW5hCA1/iE8YXAO9CCkYqpqneIYDmvP9YyBkpY3OKNqFDX0KXVWBjiRZrNxBISz8hKf93chMgNRuMxIJixl9Dl6IixtKQV93s1dvZ3tkPkYRVdO7q3b2zfVMV2kUKe4xYidAZRPx1BC+tmeaVBI1BZmeEzUNZkmdTgkkBLYjvWqaXiuWqRjQmrYnKHJZ7u5yLZx8fj4QPse1xVqT/Sk0A8/ECme5EqZdyE+rokDgOltfWzwuNHc9m6NNzFFArMFCKoZNCSY0qWb2kuS/SrDCNCbBP+Wh+z6ACgTPxEQCHwYVpitg8h2kLELSx0IdhqDgv1dRp53FXKoEKTqBIHzoEZpx55aRYWsOZD1sW/msjnUPMa0k09EihrknNqfNfrHIU4EuIpTu3F8f74r0Yvsxx8bqz1t6cRAyVk4yjKGDR0iJNdtMhRvRBQ5FNXcRJyAb2tLB4xjCKs5Sibw2MnYBWNZVP5sXQwkStwWAKfTd57A0KvExWhUgWNURaZZbGXyTDOHjxsCtns8NCgTmIfG5tmG+U0x/HptrdiNUCC62uEOE/xy+Pz1zUfIpJla4k4R06XJRJJTqTloLrWlrZ4RZX2V2gIzTgej1rZkAYWQeDCWhPoKMehwHRCYhUd3ySR+XGVEfscXR6Wkbw0GMlLMygmXOQvEVkSYadiqAQbB7u2mclkBvoHbvfdpr2c4zAGopD/Ivms1SDQ4GPCR4rrZDQW9wVzzWllZRUXPbe0NCejHHEmPGYydiuEGUWc7F+r9VsSXOvi/65oUqdx63iMVNzYpFAY6e+DX9n9eamJick0d4jZCfkLO4DrwdZ/Hqe+cVekrH9cEgagGC3IXtDsDPPh0QyFuZWcK0miHGYUjyc5gpybkTk/MarzyJxzotTbXlEM9IxPxdfV+WvUXuA0WUBliZ+2TIj1RwOpSCgLl9dmhxyiS6u3BBB7SSRzirUlueUwHzinIucz0yPHjx+7dr2Xo5rJgeVa8ViU41+aG9iohl7gO4c7mRaKOS/Aph937Xk0VESwSKRoGwWH2E9ND4+P3J6eTn0xORNPlLU0t23atLW7exOqQZDxtdXcxO6dqumHlyDJ1C8+sLSCg7UKMxOBwx8Hzh2ZSb0TzGv9HRYAlAuHVrXU4k0zH31uaa1XAU5+Doa4JJRzDr48e5YbDjhhk+M7OU6H6zR5xpJJ5eyE5/yc1uj7LE3NAVAsnLrfHhrM3L7J9mZ2FnC1Y2d7x66dO1qam6kjOHHOqaokMDNISYvMyXBNv6yLfzUPzbl4K4nRweBQzPOFdGZkaLjv1q3x4aHx0THYH6Qh3YDm17JbUQV04OVjPFE5W+7Wa/2uu3hR66FrGwNLab45VMSLWO28dEYQ8Oo0d8X2D6jKTJ9zvFk0ylplZGBjc3MtNys0NbOk3hCi9GYS9jK/I61a7JV+UKjjbjaUnBhP1FfpPBYbR0osCzoxQyvXDQ59EEzuwU2Vh0aPeMZHBy+eO3P29NGJiTGuej/wwo7a2jq0IMQ/G+c4ip/+VkxfijiysFyK39b23xLINWCAF8BACpyWyHHdDBoymezw6NTt/qH+vlvv/+XlCx1dO3bsbu3oiOgkWqumhtF47uGsGKYNslqZaQkZg2/fVP+H/8t/k5v6m3s3CZWcvpELKyLzCsVmuke2fLb2Fc8jV/5h9u8f6OeA/a+4l29qqqm5Zeu27eVssucEDMR/IsEUzyzru3f2ayUGJOlckVt7r6arcbHADIc6j4+P9d2+feT4ca4n2NjT/fwzz9bX1nAeK/V1VUazUy+4d3OtlVqXwjFvuq700xPud00/22rWhPPbkf2r2cxgX//N3t6RgcHsTJpRDxeeVFdUxCPRGDw7EqYL2Dl7dIGIlOW5zmdmc4PX3x4vDEAXjl7uDvb81ubqwHnJ9GpEwp1GM9mMBhe5bDrLFvH0TCY7wcCQ+wY5taSsrLa+vq2zg6Pjg1GOPnX8/e6lr/BX1RnVNs/oP1uIxD68kn/z3/t+14bWv/5q4+/+x3+jCkpH6si8YXvdZLTWOsEiENRcldc/BAiD0Fz69OmjX546lp4a39jVsWFDW31dVaIqqeQYEsSJiWu/YhbFv+RD9Q0DboBc/LAW/6oiOhLKCQTkvqrvage4wo8u58ADUkdHx7m+7uIFrr4c7ujq2Xfw5drmVpO6JPGVP5GMOfJyeBCehC3hPBMMpgOFOONzDhqYCcYmAsGxQoBrbivzuUQhzK7UXDjL2D3MBKbLhrTzuZR9sHKKFgjmK7TnkgHNxOTUsRMnjp06gfrAPT0cbVRdUwvz48wN7OEMf9R2ypBm8kF1Ja3pJyDP3wxaAq9UWuunPOmjnPNx/erVob5+MPnSwQPbNm/m1g/WtOZ18jotZbqVzY8IESS8E5JLilgL3qdy9O/apkQdhs3RGFAxPQxdGcrgQhjOfhm4efNL7o3u66sur2isrolzP52m7mJSdq1T0850AuIrCR3adQRl5Tl1oceqVxQBX/9bigHa02/S0vBSv6OC0hBx63nO2CsxyS8fZ2uyRLuWgSmA09tz+amZ1NjU9Oj09K2LF6+cO9fQ0rxz756qxkaMTfBiDEzIFgeKSZJ52a/gqwcpPcKkjkb/jdHR9khZbaSJU9pNyNlqfbyie/6YhHZvEgbqFSL+IGezTH3w3i+OHP74xYP7N3Xvba6rDrEsnX3pmWlLS0wrZ/Ge4rK1p3HkFazkKmRFta3mZI3A9ApwgUjsrBCVYVUeBydEq6ti1Tt6ujvbuDH42OlzP/7xD9/5zb/S3M4Fg8QXZ5Ek8fIo5jkHYvDL/JINOlDUzMACCtMcBJzNVXJco52IhbohkTQn4ZwXjfX5brxMMbWJQ0v9GdBMTc/88r2/PMdZ+j3dGzdvYq6K0xUAZSarE7QsFaqMdIDZWs/Je02/iHHfxVmtiMIpYNUc91lbOzk63nv58vsffsj0xyuvvFxZUYZaJdTym0u6tDT/hJ+17eiearqnyrk5G+s0InqcqN1QgIdz6vGmRsdOHP3iZu9VjpFsaWyqr6qJs9DZpjjTeTRuhmPOrqcMHAMnQ9FKsSt4ejTYffowbLh8kh5qxSXUx2ihJB7H0GjgV+IcVRDg6A0PIVpOLDIxPsIkK4biUGgqk+4bHrx++zaDu03btu7cszecLEMkMMR2mRSvQynJfcW8Dmie8AcRNYXeyAau3ZyMF/INiVxHQyXry7mnjW7DZznOCELVlcRT93H1MWDhsZlf/OxPT578/Fu/+fWOttYyDZtQHrK6oI6BslgnyPAzstz08DIueubj1o+3Jj0OeNuq7gEu5MxSA0KUuXREbLSMA5YCsfjwwPi7f/nrW31D3/4rf7Vn8zYTHw4JJptnyU/oFUfR6B+s5WT8Z+5Rsybcyxz94vLoH737eXD85nde2r7/2WcZm2I6QXVz3Em4Uqvq76wzYQXjgoHx1Heza4+Mjf34z35y9Vrva6+/3tzWNjk9pWvDNPeNScildnUzaGaze9J81JgTrtB6GPpD5devXDn86aH29rbvffe7yURMd0mge+nwIU+Yar2kzdyZQFjT2HjqxD/kTbeDvNU2ThFwDUQQbKhQmBmfuMjylitXmNSprahoa2oq506qbJ5rqnR6Br2HhLS0tgJK3uPUDc1phGIdgx6tPuGe1uO8/uLirT8fMwzAGe/dgLYIZLZi0AZiTnSwmHO04X+xWCIsQjDYIgw5z4zjYMamp24PDQ2PjzEj0LN5M4OwuK5YFD8SsXkE6Gezkh46imQ5kGHjDBSGtVg/gELDob9Ryg9kWF2O4BHEgIuE0QV92rVI1zI4SMm0aPa9X/xZ79Wzr7z0fE93O7JFkgXp4SkORcOHNADnHA4oVPVTEJjX1zvg0Uu11v4AuQHvVH8hBPj5uYoIC7CafK6glZ4aSIcC4fjI6PTHHx++1Tf80qtvbd2+k0MMxWcsB2toopGPE//4LTtxGE0CKBS0BqN/+ungb3//DwOH//hf/8Hf/95vfROdwAhFMttsNZbMQCtFGYxQYXaYj6RdvjA+OfHuL987fvLUm2+9xXqUYFTzCFoIqgYhrstCHpuDEDyPlzPQlwoy2BHzLxS4a7yQzbAC7Jfv/sX+ffve+NprlVw9jOakDYE0qE4bZGUA/giGvTXvHgMQVxiHpuS6POmL9CscrcV/3ib6+49+/vn02Hh9TXVDdU0F23RiUdbsMDnLdh36GMt26LrGouBJTjH3ugJ5kodjfb7gVyA/0wNWuCLr2T1EDCyJvTmWWAIVjP1OAtpRBXGN8EQhEIoeHJbO0JAZR8yvuQLGpyQbj+rrbwz0f3Xs+GB//559+8qqqognw6NzotySUlfGaxDl81lGqNB9KDw8Xvji6NlYPtvVEH1u1yb4IYN3JI4WvBRLdz6b8MozxM9lZj58/xdnvzr+G2++2tPdxvnIEuSII8VwigVZI7+ogMkvvzryFDNV7YQY9/ExefrQCnoD3kKoiPtCld14I5MOhCLMNSIxamrL3nzjxfc+OHTok1/V1Na3tHfa8MRjMotW3EliMkVww5Q45TccrdChv6M7g1wFzgELkAmn/kNlDqOu9Ll5ScOAAdqJ+ni42XA6M33kiy+uXu994623WJNIojSqSmmDzDbPY9Ywc6u+nDcoPiQdiD/YQt78+tc//vCjmpqag/v3x6NeTwRRIBNLAL14OVk/srglve6RwfDwChahi5mIkHWKOwoxDtK30JHrN375k58WplNbu7p7WtsaKipCmUw+lYqHgoloJJtJswOKHsVTS15gX/AxnayBadS7e0vXb7kf+fNJTFo/uleRBSzuuWeEkuQCeaWcg2YJuS0OdglUCyMsIdcnKkqRO5ZUaiFS4AruB815X8W8jULg5SHW+WmniWxLGmoEuTEmGQpVRKM9LW3bezaO9vX/8mc/HR3ot2NNycDcIiWXAHE/XuXs5hk0WAesQKB/pPB7/+T/+Bf/9y8+Pnwyi0ThdjlNYLvOpKrg6FjElNmAjpXPnjh+5C/+4s9f/9pLLBjkmCCGTS5ctmqLZ6KDtLws+KlTkgs5+p/upyaPLo1wUiy96JFQoDpIC9gHVbOZY/gEqIwE89npeCzwxusvV5bHf/Lnfzqqa6UwroDhUgwoW+HZ7PmGIOHILypXQJmgkBC3eRLJY20qVQ1UhGfOXzWccUL2oGAkgDEODg1/cez47j17N3R3s4GtWeIAAEAASURBVDTVpimU2KKpNFcNB5bjnz6Ij4tnDgru9UKlqD4rdTPsruTCz2CwqaX1xZdfOnqU/avXs7LXqTn9C8ac8f9euT7670/X6F8dqWhP0+o9hHSOM82Zx8xcOXf21JEjtcmyLV3d5dFoMJuGJ1fGIlmG/twdHokWwoFsPqsltLpMQvoyvVB90To09IGDBFyI81IarziVdC+nOOTqMlosMoXZx9ICF4t3hzABtiBzAu8BmypAwfqz0BVBslrPzdw+zQ1amP6xCaEiK1YXH5UuR2tVKEU4RnAygEPYclQeu4/QLmH/MPMk9BcMxcorIt3dZ69e+fDdd5/Zv6+ts0uk6OTvSmMSIJEg2B8k+rXpn0nPwFfXJnKx2udHp7KFUDKk+92hDesHxFbXMijcFvP8yFDfZ5/86re+9Q6L/AFTXYZhbjanXyyqVxGVj4wFFfDwzR8XBzq9c+QFqddKgGrhwMYn5qMnTufx67J6rXl0zCSTNuFbSMTCLx/Y96//zY+vXLyw55ka4V+6Aun4P4sB84FD3W6kL8TRjIwy07hkOgXb0vSMzPWaTGJ24U6U4sIxWWv/Xjg0Mj757nsfVLD9tLWdnW8oJhgh2OEHHaIZePBToJcdhcEpDRxV7Ml0QiL9QFs2AuzNoVeyRKyxsbmy8srnR75ob2uPxLiAlO9q3DvheQ2i5h7Mfw1C/CAgiVeVUCo0C8UXZmYunD515oujzTW1OzZtLo9GgtkM95nE4H+c8cRhJ7b1n5kvaF8S1EZmLANkNQBsmoNM+TFW085aexLIOhG6ZfEnJfxOP0xz/LyvUI7vL3oocvar+IfPZ5eHCQCHiOf9HO+YF+i/Cn7r7guhciF+lool3afktzzonoLYxuUdhYhasB+5X5FyIC6Zi2Dg7qo9nbUSxACga3MyGWgsWgjUJMt3bNxUHo2dOHzk3JkzjEaMKlcce+JiDGboH856LKrnf33TQDQxHQph4hI5qfkhTkcjEjuzv2DhzOlT7IjduX1rgiGt9Ac2BrLcT9fa2A30yD8LJLzYT+Z4kIsyWtPnBMpa/Rl093gAvNeNVAvQJYmJ4I9oC4BmUMKBcAxNzjQtrftsbKx9du/uQx9/zI5zaWGebPX+kMBHNF5ynBNAafFcoLZCAxU+iqSkvt3FOXGF4CcO49grV6+ePXd+565d8QTHMNA8NJDW+ml9v9QXc/x1zNRR9VptHsD0fx7kD/aHvojDJAZG48lE98aes+fOXb9x3e4SF6pBZqmIebDSVj21mvzpcbQNzq+vfNns1YsXTh0+3NXSsmVDVxxTQC6rRf70Oi3p9M7zUZtDSbhCgHGYZD+f+HF6afEnfmXy1YWEWAVlE28SsUWxvdAj8e9JdBEq/tKfH9+Poy59v04FzP2ZFXJ+oMvexYQ+XNE+w5/ngd5dlj6ozmOB9wvok5fO6Ef8e6EGBtkY5YjCcAhXRmswdQQ7gy2MuWwRYzVAJstt59FCoSIa29Hd01xdc/zw4bGhoQIyVQJghZ3XylgfTL5AJ/QGyhmPxwvRCHu+NQPmOVG9eaW66BcoZCbHrl6+cGDf84kY3YUApId6kyIqAmnv+TP9QNGUof2KBa7AX49o5/aGpQTOK9tVfF7gwtfSnPkKdulVaADhQCSmp/QAZhQZpCNvafzcgf3PZ9LT585+yfoJ1V3lLFoWmGEzodkSrNhgcDoQGgvkJmggU9/I8Y7jfgcolKY+a4xxeHT0k88+7erpqa6pyek8Bt3kRMlYQPVXkTwwrKlJSrCC1vjP1fSBnuq5rINBTQqx2h+zC3MBjc1NbR3t73/wweTkpJaE4dQDpDI9Fu5pEf80h/thv4KjsNDG+lvh1pWrh957v6e1vb2uASNXuMDp5trHqkVKEa45CXOxiQygIayvmOpY1KGbLonAQIa7tDLhoCxB1jEYtGVZNGs9SRF51WBY766XaFQXDKQ1ZGPcx+COeYSwFpMwdxRBWwBErR3VvC9JKESrwLTVhIVBJoM1OhL3tB95ui4nOiNkCc5HgvMoXZEJQ9vUEeWVHs/ZYdSaY8oxJqIIhTjcMD0TS0S5QiwD5hAI3OStsYCteLCeDxk5YEqfS4DoqYkixmmOdl/w07AP9PNDLGhVCU7HAkNFkBDH62cKuWiMlmC5XTaWzVQFgxuqqnoaGn/ygx+ODw5a67NMUJeyZJjN8olhSUSxSBOQDrqgUC120ehSXUa0l5lpzUzHC9momptRKeTDLlgkA7KBlmfVgo1Fg6FPP/kwkJtsba6KslVAg35G/Bj8SWc71HwVdxGqKaUg/LgijWqkjK5T+uMTYC33R54kuQ+3aEFLyccltIqoh7kqZHQodEG9TWMIsAfvyaFosaVouqwyf2D/jvPnTw323xKSBDFqltfPjAF4bMC+EY5FibSBssjMc4mxXS3l9cmEzexSNBuVoSeHTEWf5/jktDbCR8fHr1zr3fPcs5wS5OhI1Gp73qBMtgSY+UqgWNPBC+QtXfy0Nv0A+YDOUEwHBAPqnfQy9o/x27Fz1yeHDnHrgZCsjkz/ph8/YGkPKblRyEMq6xEX4yjAnlpjhTFruLeXcX9Lff2G1laN0W3Q5ZrOJxcGZn5TGl/2xiNUhjheNFEDuoP4NTyYWTS6sAZwJDVVUd1VBTI5FI5xYBZHoHGskBhjtjoSpZ9NzMxUJ8p0kHoadkAAXZI5BJQBpLAmCFl9IwbANzPHoXsCjNMqhNZZGJeLZBGzfsEgh9BxziVrz0KxKNVBDUL5SGXSyWCYg47GJyYJ12pzN1aw7i+cQfAuCx9NHggebpYL0JMd/05ImY88Q69QIXkqapCoFZ4xBsBdAhWxeEdj49DY6Gcff7Lv1Vdq6uppB4hEXNsadGGGS0esS6s5KYkYtF8HSCAwMJRvrmJPAkv+aHXpwNIC4CEm9QUtfUjLAq9cvtjRWl9ZXqbN/fyIMIdE7w+6+0u1sN5g6L6zmpfwTu25sFAXcpf4oAgNgC5lOk1meuuWnq/OXx0dGWaAqU+eK6LaeyVDqWjMS9Me6UJg1476//X3fyeZD7RGZ6AYzRxItsu7qAagUYQ+SJ6xvP9W3+2a2jqON1N7qflnAVYhRSD46/t9T8nHJ9wrtLjBfjjEFEBDQ2Nvby9XV0QiWvNvHfTxwICTaI8HrCsCpfUFxq+BmdGxU18cjQeDe3fsgM7tJ4Ln5wpyHX0hcRNCJBwP0MdTnA2bbSGfymUYM9liabgjfTbCaIwLslASg9FoOpefTM1waPbY5JSMRxwZnEjMEIPU0djY1FSaUT4rgLE3MPSnT5KckT/5yO4gU4E257BUgAGCm2sqYsTAKb7c+a9ALfkR0aoNA1AvH50YP/Hl6V9//tmps2dvDQ1O57LIe4DUABS9lsWPlhoGJZuBOL0yI1DhQsHC351BWf9SggEPcQ6VDsuGTUWx0VWYeVmbfDVOrW1itBi7Uvds356enj7xxdGZ6WkZD+wispKM798LSOw+hNRYdyBWz/gvHIh2tDZWV5Yny1GeRfooCESzGS4jBoqTYj3Ud3tkeKijoy2iWX+ricSPjX3JiDTLcySwn2QZq25Lfw/CvtSPl/bzwV0I+sIQP/LyPYAjzMIPwFWwqramurpS88p2n94dsiMNtgS2YSB12ISpA4XLE8FkkhOAWKgsPqLrfu5g/3fSXU/14GBqOnXtxvWm5mZOMVeb22eGMRrJGKYWhUFt45PuWvUsCvn9B1qvlD7O6px4bPOWzRcuXGDsRIaGKIe5+8/+oaV8wkf/NIZzjveIW9BgiOrU9LkvvxwbHt6/d6+W6WkuDvVYw26xOjlPDdBge66DzxJAt7I/ii27azA4mZo+fel8U3Xdng2bchmkNvaA0Mjw+I3r11tbW2vYun37FlecMeJn8FTfxFkazeXJMrrmdDo9HsjeunKtobIKO4StCmaXgRaShhKsQ2Alok6GZyEV5gA2hVMFGRuUPVBLcuthUM2FdM6boNU83qzjRdUmgG+hwNT0VP/QwM2B/qmvTicTyZ7unh1btnHqETkzyxUvL+PCEpYGc4KrRgs4Q9ZjY+earfea83mtYkj1gfObCgzT1rQTrQztEc6P+aJ8MM91gXs2b/381Mlzp7/c9dyz3BnExiQiOwXUz+r+PGbltMIkQgL1lcH/+T/9ayxw3tbCFBf2asl/DXR08x82KnUc6QOFwrlzX8UTscrKyqKVG3gdwbg+szRw/Pq7tEo0F0FeNn7gbIIlFOBH9j1+Poumdl+J7MdfNNqDBaoXM8qXZUX3IOSz9fX1l6/eSs2ky2O6DQgMOzh8WA2hmlJxY3jCL14f/ePPv4xM9r+zp/ulvXtsFOKUxjvCRiYiMDvcfnxsvLG11ZiKF18Et+6sVRzbkygxpivMgLtgqL2j/eK5rzIc4VBgl+6DqKQPG9FPuPgHnT71WrNofT5hI/0Dp48de3bbjjjL+LLZCEMbxK0+qY8Zo6ErmfWzpEVcVkpv/Y+o/HXxYMzT6ZnPPv9858Ytu1u74Ig2CRC8NTBw7NTJqupq7vc+e+HCR7/+qKG2DkHOsB4a2rNr12t7X4hXlF06f/HIx4cOPvtse1MT2olMgKy5DgVT2QwCGjUgHI9y8wRDK80raJwnW59EgCPJe8n+kkrM8ZKJ6qLNByxCinLtbDJVHisv4waa3hvXJyYnN/ds3N7Vw35WbmSHteuneROrtdW9FMNzsl5/WQ4GHGmVppgTUpT9RFCLYwaSPRdC5OC90KbODSePHu3a2FNZV4dGaAmNQEuzW6Yf4hRpOL1YU//hxprgd7+5FSkUhXSzKVm0GGza2lj0ZhYBiCZw+cLQ8FBTUxNXY0iGqTfxs2/6a9AtE5jZ5MpqrvMCbFp87pclvJG4NMMHRdoSSrxzFAq3GUkaWFhCbufztTU1Z85d4dpZLxnAFmH0/mqhCIsHVRHtGQgGbvVP/6ufHr95+sOdv/sfHtzLwF1taP/uWLTTKsiCXs9207KyciOux0mM3bFuK/mBDqHskAqagZWcEA9HX9MySa25kWFUuH583JMv/l1buDZRt8LGNT525sTJusqqprpaViYxstacvZpVo5xZtxir4rszhdE5yFNRnHFMVoIg22Q19xOLh9IzXJbOQa10aa5xc5oF+kF9Y+Nf/e3fbqirv9Xfd/TYsS+OHm2vqtu0fRtjfX7isgzxmW5lIVcwgnQfHx/nKjhgY9BfWVlRHk+SP2SGzcAxaDELg6QU8NkqLMFHQuia3Cqrq3c/s7c7leofGuy9dm1gcKhvZGjkxHhZPN7d0alZfxY1ZHMRDVAkepxTckCg8sWQ9b+rgQGHXo3SjEg0yMCfy8VC4fqqqpqy8hNHju575eV4WRmGAkcMRhr3CYtTK2FyuWCeaSfaNzuTGxoaRFmuTkbra6qQ/NAnpIfMojjiQ+T0ATjjxOREfU25WSDoJcz93ycMiyQTqZU49bmS18fbq56koxEkWKRVMcFXVl4Gd3KNfofKWf0ldLTmmPbIFipujtcERmK5YBStARpAL6PH3gVPdH8ai2eWKyhzuSTXLq+7RTFglEzzGL0TA6YPygvc/sfYTDoTDfcgvW7RQlcz8IkV/56qpsaw1tIfjeZZ8M+9jdeuXH5p77McqRa1Y39Yey/VW58R7nLWF++GeJpdgtq6Kkt1eWWFNuvmMAPAlNGjM4zUOcWF7geRYCnFwGA/xvKRRLylvf1gWdnNmzfPnDvb0rUBJV3HatIJddCX7gQj7bUbN959/y9v991OJFhfkji4b//OrdsQxsh/NvMYKd4NwiV+k22ZqPlALBKprarGUNHCtERj09mLFwFgcGTkxLmzFVgvqqs1jKBsrBLFrMXuHfcvhqz/XQ0MIFw9ghSJQsJqMU0C2YiRhSObOjoOHT+2Zfu2pkRChOFsvsb0nSBfLlTK2VhZlJV93EIUDFy4Xvhbf+8fYT377ss9/+1/9neTUQSUprGkqUIUJmEgBtYloLN2d3TBE9WNZMhabuF3iT+P6v3MPfQUZ7Pm5rCQKYM5An3nIhhuFQbAgP1oHAwFVZy5RBBaKC9PZrPporZt7KsEKq9lETpagC9k0zELGAMi8UAiIe1Qjoqw80LsYiEllIY4v43+y0oKWfeWYMAoWbSDx/CFzIDrJxIJM+YqEI8mkSVrLHZJ6jXo9Tn5GoRtBUAS0Rv7kcgkv0J+emKcWf/25uaaivJgJstmPy1nt6ZyWrY1Gun4Le6I4L6JJZsfJgRByCpA8yuITQBhbOm8MvYJcQlEocD0Of2UCyFwzAu4EFuqHUFpiMQw4nJLp7b9zaTTpB0ZHeWqTabb337nG19/5xvhaPTTTz+9dfsWFYK8cCKvIoXdEdbFa1AMLdInfyFb9h3ohros24WD4OeZ3XuYeowlE7eGhy72XsX4T7mRMEe8w+Q9p4TmnTcqK35f/7tiGKC5S51UTZqDhp9JxwPB2orKjpaWc2e+Ss+kRRliQFJJ75MwHNSib8ha8gjBwkqTcxenRmu2haqbWMeKeoAjYikx8EbRzBmVV5THuPJEYrUEA6X+kuAlecmK0RUguZ9q5n7F1C5zT+YVA91fNx07T94rw2I0ImgVDJmbWoAZziUpfn8Yf4VssM04BN0+xA4geEUspmElXMEA8MGdDw5Agw3H6IRxHU7HSAI1ghdNDxiruDf2ZdVmntHO/5lfxvq7jwEIx5zfvSB697HYBHdsKT+PNeJ5Ykf/pfhVe8EX6NL5wsDNW5Ojo7s3bwmxtA5zJUtjbe89w1j6nViA5zyJ5r+7YNpZUazDyW/drpiEVzeVLkOoRHmQHXTakE1e6lXB0PjERF9/3/TU1HRm5vDhI0j67Tu3R2PRDIdJQzvGuWX3U5Kg5lBbW7q6urhYora65vK587ADvlAcRfMjmk95PgxL8XiprBbKjbOMVHmtfyBfZiFAFwvLd2zdOjQyMj4+cam3d/fWbQDIHIVsAOvu4WNgljJd2ZJUtAVqI8pkLBTqau84ceXyQH9/a2eHR4f3D6RRPQWIJsKosLxn8Ddu6g9XjhYC04VCgq+iflGgaRsSvDIBcCpqKpVMJgKI/3RqPggPQjuk9ZIbeH7WwOF6LmUDxcIiHOqKPFrpCPFezaNXasoBXmZS4VW1ebjOB9tsyOFomL4WDKBmGbR3hEVtoBkWJ+IVjeaSymZHmHBeCPYaG/gsYTxqjEqji7n4vWPZT+8HQ5Aejh2XIMKxVuPffouWfF5j3idW/NMMCGDbBq29yMhe9fBM+uqFC9VlyYpIOGoWM25WocOY9UwxeLGWVSv5nvlNZjlJp7YPGo0oJZ3G8UuJesI0YrJAdvJp/GTRxyfGP/zwwyk20c+k2js7Xvvaa11d3YzsVRirSNhl584eCLN1J9GzceOlq1f/8oNfbezZ2Fhf/8ILB6rKyrIzXBEWSHN7inR1QPByng/kou9aoOA55xFjwBm45EVFYB1uaz+Ludua2xqamkYnJrjqm4MK8sCnURGrD0gh/ki9mTNk45EJANXQ4cSyVMbrbsUwUCq9LFOptHmsxDQZz1BlsqwyFr9y7lxbZ4cMxx5lWIN4rW6UulSANHhEvdDEFae9mIQJxArJ3FRZtJY8nKiAEHQClJVmnQBtANJ3AZRK6SSlXPqCA3rJ2uMsJVkOpFbWkJ9l7l6hRlcWZMjCWO2PNZODFbXIQ2q4xgCCi8hZrOKWp8bc5klnFU434RQXPA/TOWy5p0OWs3Z4iOOPowDh0evG+kNNoADEP8MHDJyhBNgamwycPcvaI00RMvowwW/Ncs/RAq3qEPowa/4YlgXKwSqoWuCc+F8QvEYDPP6/RqF7ALAgYxkniw0kZoJGn83eunatsbaGw33N4C9haxucaE2jfGOaLhHPYur5cKAz8DNWB+NVD5S01yAE6xln5yHIOaSNY9o195nnuFYtkg6ywqAskXxm797t27fHItEtmzbv3bOHSX16aJwzAMIRVgwANLlMz6TYOvX666+//OqryN4f/OBHP/7//vTI4S+Gh0e1BE8KOrTn2OKdYJwPs6vOvKcxD8dCFJ9aIDlQXnRuMbOI0VhVVbUZJ7IDAwOcbEVFdZkVpVNjq3qRE80W54XMBqz7VgUDNkTFdgW+dRZbPBzhuJaBmzdZwC1ZYa05p+ClUooSQVu+Q82AKqBgjqhrDObidhCVaQbqIJTNYLMkb5kMFnQjvsMyfXLz816Ch/qRjtIl/i2+5KD72aIbrW2nExLjrtyMDis1Rkq5qsc5u3R+ltohOtlWJwC1az4P9rL5YFwb7Up+S4DzwaOUILGY2cKgeSGOCYBvoQaFpbY88s1tra/+9jssFDZ0WHe0RI+XZCpiYP3vKmLg4Wq4q1iRO2Tt1mJI5c8F0pnB/gFGzBXlFdo4x/GN1ms0NFffWapDzMNtYUWkp1vx08BBJ2voyCcM+yyfZRl/IKJrzcZHx6YnpxCljJFi4XBVsmwbVvRCYZANgYePdHdu2FjfwugtnZrJM3yBOXG2j/ZbFZhrn5ya3LVzJ4dKXrl46dL5C7/+9Uc1lZXP7d2bYX5XugcdW2AsFe7F4jkuL3ZawlW8HBk4zKTL4omEjimcGRkaCra0EotFDAyhpOp4SQwBAqMki8XKWg9bQQx4uDbK47BJTN7YuqorKq/39Q3eulXf2elG2Q9EHAIXQtd5Mvi0jnx8Mp2vyyAgsZcRiBaqGFJEpZGatFxQR0Cwn/Jw/uXTyfxqSEXG7sA9CN4YPcPwXTMPRoOL5U9HoedD6GgA5IaRgNW+ODdZIL3WA9x0G63epWLeeNv7srb+mLinxiz4Z20gbJwLGMWR2lvDf+fffT4409nTwQJ+2f1R5jUOMY6xtuqwDs2jxoApiI8aiNUsH1lqPZuj9DKZ08eON9c1MHyBd7Giht4i5dlkqd//7w4MeWm5gHqTupRygAXzM+nO8qurV69+ee7s4OgIR/ycPH789MmTXR2d1RyBks5wZSYaQDaVYoH9s88+OzExceLEidRMKsrQn2sGNTWR6e/rZ5wtY3s6/dOf/PSjDz/MZjI7d+5kMT5T8vi16A8tAf2FzYrYGUrHXXcHfbGvqof72dhMPEXDerEK+LmWJHLaoFXWDR2wZbARidUM0huILE1osXzXw1YdA9JAGcpmsR0x7cSJb4FAIhZLxuOnTp1GqtFeRh3WPBAJP2l5S3REhc60NoZdqFADbCLBHM+1q7fOXxy6foODh1mhQl5SP7RfxYhGGsEdnBHWcgBYmI+JdtVC9inVXKcfRAPcOxxCz8YixTEDxCnWtzQDR6w8kf18R/aHI2jqwM5h2lkM/iJlMjRbgsxv8AoXWJrLavuBwX4OV3oudF4cU77c4cAoYRy9rMl+YlO5uprg/meqXj2wqaOtlSqq5XUsmb6uu3UMzMPAEzv6h/1pxaw0fvEpuhaz5he+Ovv6Sy9i9mfArb0AQZZOS9LRSyT0luZcdvQ0fl6vopPlCxj29z3/wru/+It//gd/sGXrFjbyXbt1s6dzw8F9+xpqarANXLty5XrvVTZqw5g39WzcsmXLz372s20tHd2bN3Gu30Bf/6FPPjl/7itAbmppevW119rb2z499OnI2Hhrc8vhQ5+2trQ0NjRm09qby2yCbhaASeuOGAN9Gczdq6dfY8B3leIDlQJlPHHCiC0DJJQNC5lMNhYPh7nwTbE8TmvKjyKvu4eMATUf2ic83sQGRMwUEufEnjx/9iU2j3CAhNoI8i4KxeVQCHnT8m7AjKinwevLg//D738/WV2+uW0mkEtrxB/RpVBMsjHlhRooYzrS+S5Y0Df+O+K6S7wFn4zcCLXaGMWpw2Eqi00Mj3LaGgtlEmVlniYOKTslwMvGQSRFJRANo/UP3u6bmpxsaWlhh8uZM1+NjI7se+GFWCLuFszrgiJwpym2BWCsekARVGtQ1/8WlKk4alkxH6rEaxFQ+9s/lDvWOxJOD+1sTWxq66QFGTWg2YgM1t06BuZi4IkV/47xOXYkws9mx0ZHY9FoeVm5zs3Vqh+NhyT5MGPDxpbrMBDagMTvVfQw5PQ777xza/uNialJ8t2xZ/fGzq7mpiZu+OG4nK+99dYzY6NldtAvA7X9L+xra21NxOKs3G5rafnWb/7mNNfqhIOws9q6Wrb9vPjSy00tbdeuX79y6fJLL764obWNHfmweyQx3d/MrfD85cI9J76XGilimEKiEOJqhIeyMDPgGFZhjYCDwOhtMGET/15OLg8SeZnNKWD9ZdUw4NDNE8ZOq2AK4saR6vJK/MNDQw0trZxlCWndV/nK20xjyBhWx7K5IFBbH/wb39uZjAWTwRxr+mUVCMTpPS6qoxu/L5QU6sL8L3j4OdhLYi3J6zIhre4iTKezvZxNceEiGw0qKsoxj23Y0FndVBvITM03M9DflchUhkjk3Fl2/p7+3vf+bc7RunDhfG/vtT27dyP+r128ODIysnPXzjkydUmAPbJIqOWBQoUVr+bCMvLlmZG/9g/+KPDpH/2b/+v7Wzo6rXXgTL56/8hAXS94DWLgCRX/kuxyHpuh52eyQ/39dbU1ujCNXTEmv7CZMSjgjA2NKpbWOGTI8T6OfyEr8ZEDSelhrPQr52y+lvatrRs4pF88CL5MBIlWWR23dnebPTbPxe0wzo2trZvb27ndneFbVzK+qa6RONLnsVvIvs6hH+VNe59Jbds+k5qpqaqSMVfmPEQyklniWpZ/GLBgd7C4OniV5gWfk+gOYPdZ4DoGWYxoIRZqIe5VuZpdASMJRaIKaEMwRZpOAGZZ848E4KtSAknRCSn3ciVRlNAl5ilPsSmKjbdIXiXJZ78KGyWObIQjc3zA535+FFfc4ln5kZbpcbn5eboiyMMPwaMpG0c0Rp/epyL0tP7SyiSeGl2xmY2iZfK5aCHMHRJ1lZUcz1fX0sxKNiETtBDJoi8tZxeLxZ9GuVoDqrvpoTh0iRmmGgL5SEw3UbN4jry575qWsppCu6JRrvwzsFSqV3WvLaEXHyVLh8VVQRV1VWGan0uyj588dezo8a7OrtaOptu3bvzqw19t2bLx5Vde5cgBOzuPsjCPiQgCQW9njbZICFkBbuGigwWjsedfOLBz9954WTmHcpw4c/bMmTObtu9IJphHp0o2/c8KHq8v2/ohZcdg+mE4KixmoO6kuoNm/XE+oOCrdU/7CguhvTSBGIjFAy0tgS3bOHYMQFF8YHhGbpbGslLiWedoSF8hFKMVMS1XlkszG3fdtygGhCavcez7ksXJork9xMAnVPyDQZrEGJOQCevK52emU8yMwicZsKABsFZPBky8YhEaxBjJ34Pg+WzxVYA06pKGxpZIH6Qg/mu7LhxEjlejDV6Zi9ALfIn9uM6jr5rMhFk5Z9G9r8CVy3B6KifxB7JcvGYkpkoBvGJbd/V4YlFsFMWIvupnDMTzuhysi4sfk0cpzSrHYoj3lT9oIjBC8R5ZSigML8gCZ8w6cAgAhgHgFyiWnCj3dCrXi6caOK/yNl4NAlQaufD/ztm54u5SljJ0ny1bvGpjlUb2PAh1L/Pz8FLND773u0tI2/mwURcX6IcUYdJfF+h7vAIAyrXuvQoMipDJRNdEI/6xy0S4ESqX51xI1p+CTJxazf1ZWp4lZQIH3YLuotaglW/2Ff7kJ+/FY+G93VWv7t+VZM0862fpWXZEHQVhT7PqYklzYl6UYvVVK/tNXlLEEr1WE/LGDIWuQR/S0D9z9PgJLlrdd/BgbU3d2OjwF0c+5SrN0bHxYKT8wsULlZVltTXJSxfOT45PcbFmbV1jx4bORDJeCGZk5Gd7jtDP5EVwJsMCgMCNGzcHhsfTueChw0erq6paWlsa6+smxicvXbo8NjZGwU2NTRs62pJl7AigQ5DaoFpiDe4rmkYoYi9eSaXlKdTRsuFXowt5MMlw1i/LNAKB8mhOuMKJyO2r/pgrzcmFKIpaaPaLfPy3tC7O+vMuGABVs7gztJW+3iXhI/705Ir/uYiF1XN4Psb/B2wbtfPcPjH3zS+V4Dt88aPcr2c2X0Hj05kpDlI3Zr+7EjyALaL4cJFU58e7X3geJB0wlILhYPMhfJCc7zut4el+UruK+NXxPfeT13LSOM0PCod9h9k/GolMTXMwz4OWL2VWE/u6vAKcTIwU/qu//88CnS3/wdvtLx/cy9IZIkS1ilYFoQWYSv2ghS5Sb/JHC9GZ6tyDQf+19tFs1AwLZrGQscO2prFx374D4xPD3H6QSmWOHj2JkG5uqr5xrTcejQ8PjcfiyZ27dj/7/LNl5XHbxhgtoKLno9yVePnKldbWrtHR6bGxVDicOPPlxWqdfN2QKi989tmxL78809TUjDp14sTZF57d9cye7YnyaEmnWwTehxbkaeReh/a6P1s0AtmyQJp9mrqRiQ1OZoIsZRQPDcD1gtY6Bp508Q+vgCPBqPL5VGqGgVFR9t1/w7hRsONC5O1UZg2VSpwNOF3IfUuTkuzmeYsmBytAD5PpxUhegbN/zKfBLjHw88cSFuM/ir9FpHlAOsCcmmIDm3vANJusJOJigSUy0FrIV5Z4AwmLJSnJsdTr5+RnUfrV/C63e6L3Thl4wNzp84LirBH1MPHv3jijJ8wJ5MOTk34bm5CwrwtyuGsAcGDIwGymu8xYDZdB8m7e1rG1q2NztS620BwQE88oAQCu/EvGjnfNeLkfAQTkUw2ZIrDfZ1jxRx4tzU3XrvVyaVZdXT3+qsqqymqZ/UdHppgCv9Z7raGh4utv/0YsGs+mCydOnTly9AsOROoub6c6KBTsa2Hnjy5sC4YZ/W/o7Lpy+eq13qtfe/Vr1TVVnLM5MT5+4cLljZu27N+3n4UvJ0+eunDxUveG1kR5g8S/Tw/Lrc6Kxvc6C9QsIuBHY3BjSAFDAPYNax2VR/Ooc+n7ulvHwCwGnnTxT02NO5n4n+YQe+YsNRdwv851ICeo4HcuIydL5mbpKeMWYSV7HXkZQ1dpKt9AUU9XPZ3zYLSaY/GGw6nr880kIH9lKyzOL3hpHuafItJUpse/HDzug4Xi9d+WCtt87qb2cW1kSLMMTXPi1ZGAw9RS8veBuUsSPgnseTH8lFaMwejIZ26x84Gf+3XxN43wIQZn4HdRWJ8Rj8enRgaLba1gYvDU6HkZpWhpKb1G91DaTRbTiP/G5EB+LJWP5ex+K/LUAZAmWIhT9KnElXdY7FFEtFlXUwAY4d94/fXDR46d+eqrVCpdVVnR09W5ZevGxqamdC7Frt7G5rrde3d0bNjAORWBSBlnVl6+euVq7+XGltpINEqbuC5j5CEMckhOeVmCK+/a2lpq6utz6ZnJSaYHQ2lOOSCwo6OqpnZs6HY1Goba+GEY/++JQzW/ur1PcNQGkFnyoWUKnDfO9EyR0osMYDbyPbNfj/DkY+ApEP/WiPAxdtWXsTtIHWAuS15uK1tqN1EG4xA3WJAjZZhuYJ/97rncgpYc3/SPeZUSCPR+m7y1gwrg004MWPiS816ViA5WH2KHIUOaitPIyoL8CKsCxB0y9cEo/T472EOIutWOpZ/n0oAPtqvX3Igr9ia+LwVHiqYT65TL/DgXQ3Dxj2SDwu8PBMOB5Lm05RwH6tqqefTGfAyZwrVPzPpnWBeiIyBtB72ITYUJmJV3Dvus2EX0R2MUiCWvsbHha197bWIyNT4+eeiTjz/++JPhkcHXXnuNM4ozmZmurs7Ors7s9GREp2/NNDfXt7c39167vG37RoEsk3guEmXxBAoM21lZyYiPg7S5TDETyHO6Rr6sPLF166ZDhw4NDva3t3e0t7dv6dmQqEwEclxkcH9YXUnEuPYVINJFNBGjc8zCidzUeOCjXwYuH5pJfRM1H/UsHSqgublbzVYSgvW8Hn8MPLniXx1D/xwHhEtyrQ43594nPyxtaeWs/m9MCSYLF54/5EPu2hDPBIGBYSxDqVbYSf3HlGl7ro3hGyhmF/C5lAcF2FgFAIr1sUL0srAM9wnMC2OmFmmBkrUEWJIdgplk5yGGhfOXingJlUihQqQ5y8Z5vac+uPwtwMHAE3EEa5QhVAVqhEqguD5/+Hn5lXoVsxhsPglZOVJai3ufFVjMQfAYtHgc5CoLRWFepSQelYufv6DB2bsysbelPoqlKwPlYDmz+isW04kXCpwz3HcdYamZu/wsU1QACEzNND5RVV/FSVDau0DphFpdDLGzGfPFq4hfz9mP9+ujPI7roTUzada4c5vwTHqGEykTZRUNDU0N9bWnT586efL4pStX2zs2YPDKpAu5DNpJlD00GMBSM4ziM8lkWZQjLHWxNptvbGWDdq4wn5AKxFnACtLyiThrArjeqJBIxPbvf2Hjxh4O8rp6tffGjeu3r1858MLemobqEvq43+qsWDoICt3MUG7n/+3eWfMn/+8/DEz372wXQdnh3SgIQsJStv+RRskMvBVsvRWr7npGK4qBJ1T8G/0iLRAh8ooXYw/Lc7oefx4QgTA7620IeBt5qbeop4g/Gs/lTSMhFa+SFU9eqQQWZQUfkvXK1NixW/QHozZ24BdmxVuv9oNWEAKXVSmnwO9QoU9O1BkyEPBwIB4MUTMApabBvqxjmXWNgVUELSAUgWcJY8SXgCFcyQzrwrdrUUXwivYudyDEhLri6xMlERcxj6qh1WsK1CgJ7GjfmKwinvAlMsKAzwydJTLt6TIvwRjpAcZysVA1LHC5YHIwDDuVhaxcW1AIPgQLr+zCcpUgGTAYanTYFJkiTdWQciqCfyWgufC7P5WdVUbpPKisgGXmM6cUZUoFNIK0M/95LwQqOWeX66bwaSaeIbOa0YpXUzuEelWZk9kDvoATK14I4niD8NR0+ue/+IvamsYDB15CoifLyhoam2jC1AwbbmPhSMW16wOXLt/o3tCmQz4C0dt9Q7duDTzz3DNlZZXQi3bn6LBP0RcbCbiNg+G+GTI4C5SZ8zh1uclegMHhzs7OgwcP7tq16/TpLw999EHPBqYGqgSMquoqqto/fFdsZRoAgNmpqF2XkFl1bXBXTbgy2FLNMokc7UPH0gZI626Aarzqzi3kV8ZD98Ov2HqJDxEDT6j4XxSDRvliIw/gvNRk5UaQRR7gshQrtFEF669hLvaRTmk8UszfBqEPULoldX1XT+O7CuNFhr5cnmXfHDnAyXzGixUHKGSWNbg94JXi4TqTQuAhHA6z5Rqw+gcHpmZmAIzzV8uTZbXV1Rgnkbs5lpJprRlXNTKLHZrFlw00JXKojhQGrQN3dZDHZDbTtLJFM0pkuCr+rHAhP0JgIasz7HT8KRyR8SvR8LNwXRGIhk5AICVqhTk72rSZEYdCwKiRQIbUhkpiqmAxXz5TiukKTuq72xCYWubaRmIoQ05ozGepGCoIgoUk8XiU6nNsjfQQbShXrsqSHHUghbZ04rPC7/UQBM7Njy8NwoAsRljuX0uuHKTWgAbegbQ1OrQhlqiPtiakraHPQNgULUTr+yo5w7dAAatM+0tP08XTqampw+c/jYajtbV1lHz06JGqyvJNPT0gll2Qg4PDv/7w1yM7tlRVVo6PT5358iwt1tTUwJgecVgoZLiQixuMaB1oLRouCxZi8WhFoBA7dvR0W1sbx2tGQsnPDr3be+XmwRdf5LDt2zcHy8uqUB1UU9Ua58hz1SpuZdzrAVoMJPVyXf0AtrB8TGayZeFcLJaw88yIMNuT7pXh+venCANPi/j3OuxKtKxYI45ebz71/pKxG4f78i6ZIj5lfN2dmk9sMbIHdxSGpq98fD6EJ5vNonNQLncJ8lQMJwQcmI+KR4lrq9ZCBBwqrMPWU5nMpcuXudtAwrgQSMS53TBeWVHB5QhNjY1AGg6ybimfsfOFYLUg0lDJenPTpewlojPniSusMmErtCP1uTCJW1AyGZKgiKEzBCM614GSec8wio0nghnWdWVzcdh/kAOU0TIAIxKLCYe5rAQ/Il/HLonJkxX76KLRJBKaYpHoWbQWawDTMQwkAw+ZHQ5xqwM3yTEFG7p+48a58xd2bdvW2tjEYcnEi5WXpXM5lB4mpzURi64mvUzNiBOOlum8YpX8PlLfvTBDrLAunQzM4NvUEf7TP/yn8UK+NpYN6ZhMjbPVqrgVL78UOsORGoNGNRUqmM+WJxMv7t/H0r9Tp06gn7Hasbw8yf2ZtTXVw6NTyP/WlqaNG1uZDshq6V4ukSx75eUDG3s6WAeQy00HQwj+aabFuWojWRafmJwor67au3cvN24c/eLotd7effv2t7S27ti+jVOBf/pnfwY4NOLzzz+/ceOmktoKP6WQPgo/AMDDaSIVzhz/uQuj/+JHH6T7zv+d77z4yoGDMmitbvM8ikqvl7lCGHhaxP8KocvLxlP7YbwWQOfDYwKCoWeEmVfGmpJ0Mv0WkChcLCIJtJL9UBxXI0hvKTQTo1ETIwXuAtCIQDZPcW1A9aB9RLzKpBOjRNnJGWoLZ4UAh64ja597/oWKisqxsfGbN28MjI6OTEzsCgYaGhqIygY2JAz3C0m6o9lIBkcRotgxySWZiM9MTxNOhiG7+iiKkIqEkK/YDhLhSDwSyaUzmHeRXpOpKc55iSUSU4j91FQiEGH359h0ihuNtIEMXSocTmVYG65hOgIeo6kua7bGCoZjmXyO+5cplJPgAxm1MnEoTToe1WEUDMazuWiMK57ZCkejB9Edxqembty+1dbWWltXR0xMEkSaTE2jtUASHDUTQ10IhrIcBm2O4tVQjp6c6mGk9ege4NkJd9QnKKhQFgq11YPrUAXajeZnUDIJh6qFE+liZptZTYCFHZlbQHso3N3dVV1dk85iUkLfRY0Lsv4foxvL92ZSEx0drQcPvrChs3FibJTDvmprGyqqKnVQYS7z3LPbd+7srq0pZ678pZf3oStWVlYWctO1dZXf+MYb06kU1amrrcMasO+F3du3bZwYn5iammL3f3VVZYSVAYGZ1azjcvMG8cZYQAq9PhgYHI78y3eHA0fe/86rO7CVYPaSQUD6gaOt5ea/Hv9JxsC6+F9269KZvNG+sUc6H4zQ5YLVF3mF2ZfNdvlQRHZj2eYKHNNPohWTv0zkWYH06XAsiraRzmS4RCA9M0P/xyMoxLHV5en0DlrJlGXXdWUSwE/FfNiQzLQxnBsZaK6Rrdls1y6vaG1qGhwePnzk8MnTp15//U0+MkfQd/v2pYsXJ8cnuBARBs0iLE55YyyKokN27OK6cvXK9HQqHotVVVWxxau5o43dWufPnkP8b9m4Ma5o3JucYgBXG43v2LFzOjVz5sIFxH9VMHxh4Dafasoqtm3bVlNdc+78ud7eXpa4MY5s7Wjv7O7CJgH6ZtLpC+fPX792nZVj2P/r6mqZBmYrObtIJicmTp48yV6SmVRqbHwcnaC2trazq6u+saGvr+9q79VMJsO2NO5r2NDRQYZDg6MXr1zp77sdDYframr2bN1e1dCQTiGPMsxmgx5bj/agC1NWpsGUizY4oAFgzEDac+BO31jhVx8djxVyG5ujr+zbpY8Qd8DZMERZq0hdWoAgBKFoUI4AY/YkFGasHwhHdfeV9F0plnQ1KQeogpFwtKKMWwAChQ5s/KRxnQHqqSwvr6zkhIB4IJ2rrKqyupIxp2qGquoqqzhCn4oxQ5BLJSuTyWSssaHGzjdkxklrAxXfc3T9R+/crL7QovqzLSMeaGwOdPcUYlKXTV/GAOYxqEcP7joEawkDT7j491kS5F/aA0r9y22O0qyUv0lZnjAg1hQz0EPcwjSzTEVHI/inkcp4xLkepNhSME2gkxmMMKTxMcNRXRwcCiejUURs3kzWfHOw0feVgN9KlV8KyxL8KCgMqzVu06S4YQwTPboR96znctxTBy/n5JatW7Z+cfSLi5cvdXV1YzznuuRYJIIxAKiv37h2s+82i7DYgMVlrMeOHvvqzBlOcWjt6BgfH2dZ9tj0NKe8IkFRI6qSZRQTibHjC9mauj0wkE+Uw/eZqb7dPzgxMNReVVvb1lxeyA9cv3n46FEt1AgUGpqaefb3958+82U0Ge/csIH7jo8dPs6VS3W1tc1trQwBr2Gm6OvjgjhuXwxMh85fvMAwsbqmpr6hgeubL1y8iG1/JwZlhviclBONoBxEgqFYHPPy5PHjJzgWt6m1lTUat67fSI9PJg4crK6ogFTAD/coghlmMbAggCvsCkvA6+pFEaHogB3BosNj+Q2MFf7Bf/+vdm5o/7de6zz4wm7krCwltnqOyHQCBK+MIqvhZDmjDCNfVNtwFMKXaQgvpI9xBVMXYII0poCkHLM2IFtIpbKcDEhUPmMM0zW+HIaYZb+f5hGc6YL7/dAqpLRLb5eurk6i9QOqNjsCrFEQ+vQmVG2dvU1ZQOL0WQNrNWp85zwNvLmfVWPgoXdphgSImSXJowGp2VQh4W2VWmYuIGv8bSEOjKKWBvUieF9awrUc6wkV/36zFhutdOhLmMShH+d+24c8PIISL0C+y+SepfeFgpeu9X5y5Ei0opL+57iWWeIfuEgD1c3mqZvzKqse563nMEqODQx+55132hrqtbBNaw+k9ItTwStXpuRlYkooYSU/y7V0FYyMkCDKZgFQTGBOMdh6Fku5hm7wL6QsYm8qNTU8NnL85PGaqsrnn3kG2wCrs9o624+dPvX58WPM7oeyuQuXLjZ3tO/evZvRGTBdu3bt3Pnz6A093T2YXtLMCEQjXLLItAFZB7RVPcp9C9LJgsHqhoad23YmWhpZEnizrv7UiRNg7+D+/Q2NDczvNg0NfX7409sDfY2tzbeHBq733Wrr6tiyZWs0nkDtaB3p/Pijj7DqNzY3T6ZngtEopoKdO3YiJhHip7788uzZs+0bOju6NrR3dgyPjHRv6GpvaWckemugf2JyCph37mbcHGysrUfz4LyayiRzQ1IXdPETu+xtTx1izKOrZeJ7BaNDL0xOsJcc4qK3MOeCQLk1FkpOhIYm06wtiYbjRtluKaTkvk2XrA6dAQOTIzQl5QAHyw7wMz8EfbNJT/KYg4isaFbBBwqYixLxGApgGGuT1AJu8UUBZYKM2R7kIe9O/KMT8BXSgPogSYS8hZMHagGFquOwnNZZDig6bb3YdBHhenUqe7dWVO3suwjEEC4GoBDYgVspq+9ac8rMGKtYOfQXVEFZdDAX0XsqzVPlwJIharbS0pZKnWLcuUl91Et2PCnuCRX/q9k8RX1a1OR+knJ0QFZDaUwUyRQKQxMT1c3Nb3/r21k7YtS63p0pa5nQ2mSe+juMUAKDk70ZPmZz/+x//J9SuYxuYWdUjUyFfz06R9km7qV5oBXJJguWiiAxJuMiOcwVGibDpJjCgGtjVWdpHpImmx0aHNzasxGzvJhyONTEcHtk6MszZ8ZS01OjYxOp1PM93dW1NZzGytR598aexpZmjPMUwcaHJNMfKkvlhvKwdevU2B6CgVR6phWLQXf3cD4TTsZrmxpjySQD7oqqKsbokWiso6L8/KWLoxNTTCpfu36TFWJ1jc2xZPnUdAo4uSMumiy/1T+4i0pFuSE+mqioSpRXav1gPl9VW29Khj4x5Gc7digaS5SXsRSElQfJigrsEFXXr7U1cY1za2dLS2U8qVWLdnqu7CLsPmB9A0sQHl2rFUtW62FB13hSkoNBtt4D1XVXI7Fp7dvU3jiLrN6AvLEXHi6wmM1K/aUsIMCpKObVmAsAXVJsbcRv8lijeUDMVpRFDu7fqxX+ualQGDHI1XdhCAxLkNh7nnurWSMX05ZQjPk8EY9CPlnzgc0h5EMpdsWhSkR4hrFREUfTCmwAkY2BJKtTU5V9V+fALEYxvd5GATQSjSXtOhtIpAM1CdoNig/rKgabm6RyT7ub32Ta0PJ0u6dF/DviL33ed7v7HZDc6HQ8eWhXdwS2GJzJZSOJRIGVatwvVlWpxWVinIq2cg4QRLlkLGAwgOay4UyW5ev0ftYBoB88fNm/sILCDMZWG7cBIwAjTHgSzh5FIERNScST8Cwt0xODzrObixuZC5oUyMc5oUWbGN0C+QJ7u5mJh08zF80qPxbZacU+kx3sRA+xfruMspihlxVdkp4Bq7AE54P7MbaGOzLCI08mFDC2AwQ2d3AVZ+0AGluaVYNio8ycJJKJ9DjtyYC+MDU98/77vyJ5JBbXOiru00skWK7IFCtigulx9K8MRmjtgAtiIaioqhYx5HXODGNN5jtQRyi6pq52+44dJ786wxTAiUK+o6l597btyXiC2mVnMoDET9lkshpHrwlnu1RlAQAa2cSRevyn+sEYmDd5aVJQSBAVEo3/qwM9ZXNZF8v+mfKHkPj50pcC8RPiRv8hLDKFLdt6mBooZFJQgW7BRcfKpiAYmhxDC2P6fGpah0FEYlCGzoJgayh7PbSK1gQ/GXINgPLEJENy0Q6vLKMzLFiJa6KN1DT2s4cN70OBqUBgOJAeBngsgqjZtIlxqbUC8SOCQ5xn3c3DwJMs/mW3LDq6gGNOdHA8nv0cvxTmZfRniEijDIRHNpdg0nqGq7XC3K05mcsNTo1NwcHpcaOB/oFBZqOv3LxJ/vQ/nTNSAkwRqCX9Fdlq2IxM11iRwS4BiC5CkGWsnIvGVASBmKB5InIwCWC3VRAd/6GQPWVZcVYk3LNYKEAiqW0AiSjGjhoGclUHKYfBnCvJkeaMnQOh/5+99wCu87ryPF9+DzkDBEAkglkSJUoUFUlJlizK2bJsdbvc7a3unnF3Tc3UTq+3umurt3ereqprZ3dCrWtndtZt19id7HHbPXbbsizJkm1JFCWRFIOoSIkZJBiQQYQX8N7+/ud+7+EBBEBEJuHy8cMXbjj33JPuuSkxOnr8wyMlsYLyomLmUMTYwIA1ciyfYFo+PnzWaI+MUikhE6HOlDSpVSRzOhyN4ANgKQFj7eiGeEpL9djVR4KPjuuY1vtJlFtDoLRxk7DnO2YZS745u0297UAgFg4xjk3/LgxUyRQmAZqGZyaNr127tqyiApCBBHNkZGiI8QjZEKxHYIdddlpAhSdTLExQZwK0I2szLL9khaNqSpPQTEOjo0z32/HxjzMrsPPM6fNnOl/d88aWzbevYH15LIZSYTkiawEwQTAiySaHTCF0mgDhCs1GGB5KIRFeAauoTXnwTBNMk8G0r5UHlpB2xgWF2G0ab1dhyURlYiQ6VhgWZmWJEdE2lqEwWQFwGbEWP0DYZpxJ9xNcIeP1wsQD6SJ+4FZ92bhXiCGyDfNDa9RErl4eucF4o/3tlZgJ4tIGDFCq1UjZaCYB8aw0RVCQF8pursELgEnJ0wAVRb4vtBbGC9c3VlSoyTCDfThroPRFAx4MG51J4HCP+ypHZuB+EgW4yABCJEOc/hh9IhU8TLrc1HB8ymbuXs4G1y5hLhMeBZCy0n/vvUavxBeaK2KClI/qIzlwPMgEYS43onFvQpVb7rMIVCJXl9lAd03HuZHV/9SIX1jDiaLQE2nGF8O2WIvxWj9nnw1cHPz+P/6ofeMG6AvtNTRwkXHCV159TdujiwaRlY4epwZq5reOEHNxeBRRZjIsnb///m033byRjdjIPv8nTrraAfYWSAR5H+l3sdraxpIDARzccX9mkO1UknFfCrWXZqr88bNnahtW1Kxs7OvrKygrPdPTVTPYz76uMHP/wEBnZ2d9XV1ZcQkal5MbO06cLIoVVFRWJEfjpzt4OtHS0lJdU0OXmv3a+nv7OMMFju0Z7GUpVyIk3wANh4+e2Zj04xmN0B+EIjIhxUL2DF4HTn8HZ0h+looz3X1Ne9u5s53YBytqaiJRlHSmu6vrw3feWdXWxsROZlmO4Y3AtyyjQU1Mk7ClgN34WHlIhvGhkVQC8yNz4ez5U51nmtrbWDtQWqwjY9miNh6ne4pG8tpKpEXxQtVVbjlXvlwoko5aD+nBdqbzYk1xKlGmZ/3X7gg0K7g7ZvfBAABAAElEQVQFbkg8KyCvLvwABjwucE9wj5NeugjX+xV7hxml2CkyVVhotHZNxV/+yePRjK+cZbD6QJvYJs3YBrTnggOZuOY2vYjhqpDL2SwB4Zk37iWRLb7gsCAY+MSjkw96aZHHmy37aPG9izLNNaB7B/dKGPNW/8eDPSE0YEp+5v/jKR2WIwgzUjuGYbgLBJIZTnij0rFpsxkBAn0P8rT8BdB4/jfQ3UdP/S+48URSzCzW6nD5ITlchUXHo5CVz/e5L3yBBUd0H8Os+vP5hoLMkFJsde9EQPOhIRJCghSKIUrXGULWsjlNus489dRTw8NDfBIZG3dAxfrZ/YIrutAM8PA7VwTjr1L+PKBuNR47xrq+wZHh9458GCssoh/f3d2dGI3XNTY0Nzfj2y8qL9uwadO777+75+ABVtOx6R5T5angnVu2VJaVJQsKW1c2HT16lB1dNm7cyIK906dPM0ugprKK7YMaauu6O8+++sou1txT4pmBnqGBwWB5TSQc1o5+yRQCAH2F9JFRop56OuQP00YZ7ZcgNNJNYG8fHDbVlZWrWluOHDkyNDCweu3ac2fPdpw8VVJcUlVejsHCDAU2n2OOPrnRtsgXmkQCA3dCKlUcixVFox8ePtzf3d3W1oYXoa+7u6unu3FlAxPTTp04UV5aWhCNYGpk/TReq7l2nCXqiUzwRFZWcs0y7czRyDloIjHtSwX9TAIIMIGy+bYNjfXl1eVs0SixiQXFVfJVeMSJjvBUmqsaJqDE2hNw8lHjIlxtMBcNR1TNeRZFgngicdQw59XP1hJQoR+7FJ1GHwRMzK3KhjJaF+SNJ9STqF3CiPxsvEz9aRCMEWB41gcC0eAI4sPvEgKQCZBZMJLB0cZUWibjEjCwNS3DVsBoIjD3dp2AI/FqfjPqo2JZaSqBG17JW0gHDNVOv4upPwGm34SFFrPOSQBCqBRxuXdjdtwoE9GKaBh4LCcGTzxgqKAQkTUNJkMxAczr7GFZ/avB1PrZ1p25AY0G/YGQ1tdBR8zVQplxwugwyfHisqgoFIpp0Bqnc6oIdzRbjSSSckTPK4iiYSFbCYbuZ4kaFiz6Ek3GpHc3ECCuE0m6uJbgil8oPweCWMVgMe8reMVigdk1WgyeGYZFbDTW1DLvr//8hd70BXzjKMv69qbW1lb6+opOz7upmcNW0evnT5yCEesqK9nmpb66hkHZomjstptviYXC+ANef2UXGG6oWyEXPUPyfv+q5ha6+BzS0nX+AiKhakVtUUlpVaxobDReEInW168oKSnG6cDJAmj5UGasqqycQZwwQswkCbhl7XdRQQH5Z+KJTes2FITCp051HNi9m6mFjXW17e2r2a4gjEQYG2ttbARy28WXXeESkYC/ubG+uDDGzcoVdckN608cOdLbc6G0tLC5tXXTTes7TnecPXGCmQRlpaUtzc2V5RVgDfknW4QBaRNOakivg3WZVpzU3pMeL5N4Fp+hKthCQxH8zfjqSv3/9l9/MRxIr6pKS8kApcQkkhr9D/tI3urPVQ6TAHCP+bjJv7/KsC68eKk/9fvVtWaKP12OY6f7vvfS3rG+M0/cs3H7HVvcDI45FaQGV5vrCic7fOmP8S9vTetjQKvXIUeactcKG9GJU/z0doyMeUwmMPUTyEPElwIzXMZSTOIZvnhxdOgixM/zqAVueMQfyFgeNwRl55U/RQ2AzQQfpSIImfiEhc9aXe0PhkjRL8xU4mhxcTGiEiOArND9GAdYBVwVMchqIKNkVQ7FjwUjYct4HqDwBqIWhfPV1cgqdfVpfApkzPPVsvqfG+KgOWhEZiXzohn05Z4+HASjXWJkcGLu4hnAHGXNt/alY04+1qgYaX7BU6WQNemhQpeLSJOBcOO5+eW7+KnyZP94Ze0lfIgYwZbW1L9MhuljN6/fgKKFOakFk7PhR+BRTyWhUVtYj+ebVq3e2NbOsn7qzfYs6m5IuJAgGQ0GN99yy83r1p09e7a2rhZ2h3XpiCNBGMVfv7p9TVsbIiUaizJfn4ldBRk/cqWksPDO2zezGRC9FZRtJBSsq6yoKrqF8hgyoBRmAtJVYKtXmN96LNQjQ1ZsItR14UKRBUklc/LTCX5w2/3IFFwFNATefg6ew2HAFISxeByR0dbc1IIHwvQ6NSsqqK+vrUlQ7VRK28xpfgAHUKlBpWa5QiQ40vWX3xyCoJxD9FlFRfiZM1/IEpCZYFWpf8e2JsbMmTmRTo0g71ngCsi4u/hDNQT/rPK+8pGuVbgWARM0D7wi9DtnzLnu0X/49eFzh168t72e7raYhouW/c0/KK1MPP0hL9bewsUSPjJedWwCvEmvmxg8ctj0yPAwKhw6ZzMMF9D6og+JLW3iSVZs3Ckjm6Mbo9FC9HMhvjB2AAnrBf/YQ9N4gfhKOFUwppGfACHLBmsjIyMcAjnKUF88zs2I7kZ7Bvo7O04JNfIOyEmAIAXyQni5uDgci8aKiiKxKLKaW5Q9kgdUAjnFQvQkAHvcEyR/QLR7MFxMBdR19m5Z/c+nweg+wlpnui509/axX6w/Vnimp/v4iRMHDx1SJxIPM0SElxvKMf7DUp4HwTiyh74hXGeZYtPW1dXV1tZCoLgf0FLzgf6KpTHdL673TGmN/3OL7wIrnWnxzCBjvjVX/IOqi0wlHVtg9YX/6M8EokUlmm+Npx03olYLSqSh5uV/DgZaVjaKH3Hgs99/KMj0fQiaDgQ76wWjWgdYGA1jdjAMLxWWZqd/Jh9m6H3oLAA+jPnUj5fFpoOIyJPFCBSKCxEYrCVTpCXU1VSbGJUI03iBTDr1TrA4IjYjjBwU07ytCCxaDamseSFYEvJFSnDguUHuALxrgYxmGIg0kE04Iq1m8gGQfB7UsritClAOBgaukJnQ8/DFdMfZTgCtLQmvrKvkuywELfmz3r9FpymuOuSLi4drPDc0luuTQ1+iIxkCJefiVb5EMXNVc+rfnT8217rQlOr5WnDNqu4H5UnxZ6T1OckCdySneMRHBwf60fSDAwN9/f1Dg4Poe3hEBzIXFTbU1RYWFBUWFpXSE0fvFsKUHLFholFKVXmb2tU4wrh6zVISytsDIv+PuFFgkNp6FRIyIlrIEkcIfnv2o4T9tCUKg4Tao3Pw4uDQ0DBWwtDQRWyD7vPnR5hdjKb3+zHHqyori0tKCouZ11uMQUDVtZW3CS5cBlRZhog408NEPizX7/2y+p9z24kcA8GBwYG//m8/WLVuLV4mHllNvP1jD76+dy8cSPeISThax8Vmfyb30UYUAwERoEh3727ESNmX3puJMXPx0Wjvvffe/fff//jjj/MSLZVTJHOuw9InoOKE3JU6Az+TlBAKdBi0wo1JZTY5AFOfimCTa4AA+QIbM6Pe/G/oVDnp2EwJRWNKUcjS4IDG6GBKitAoDLMiJI7okWpEmqE+ORJQrCTSYjF5Y7gnGtqYHPDv0Qz6mebSa03zV9PwiZjYVpaneUDN9uIRz6JJA7Q468QyrBVgWEcCxiqJGqRYMsE0FGDMKaR2ZMjSa9QkhbJrACvNAJuKSGcaJTjRRu2y6tOgNtxd1QsQ0kCgglo5LXC0M/PgV//3TDj4Rw+2/7v/7X8KskbCN8bMMqw5Qa8B16sK8UevcKhLTcPQP7xhqhDHFHNb8chonaSIWwzI1FZoDfRY/DmjSWVYIsd3cLF1RSyzTKavt6evh006ugj9/QPwSEV5ReOK+ob6enxh/KNXjZMdSxujHFsZulIHSRmKkV3GXD3qMVt5EpzTOi7gRupH1SUHdNCnyxThAJBkqUfOcGTbprCvpLa2qbERyAl0ouDgvv5BNuPq6us9d/78hXPn33/nXViyrKKS7b+oAidEMOsIp2A8oRVGsDE+BrNUVJ7QekOEZfU/52ZEpEvKp9Prb7n5y//DVzXqhU4JBpN0KNEkHCOLBspALmlmB2AtS+vIauSLTrKBJknubAExgvEAWge6hHD1yRQVV+KTSkrRAl7lF1988dSpU8REo0Dkk/jERbt2rlIL9gNgKi5DX7OS6LSrw+3gpF/PVkXUVDwshlXl0dZaWY6CZjsgsMXogKdZE1gDrheOCUFa2BI1DIbJQYjjaoN5qHxuVQpLJYUmW49nEaTYTGUL1WoTLAQiiqX1z3488aNQJgdRB6YPIbnwuFAizkMKJjZOCrWilalOvOQvQQP5ZmyoO6ISyNrEnUMFNoHVHDWKGWDJZQyoVAe+i2ZPV/ViElqth9eWGVHI04g/PVRYdvstJQ1lPjZXoKEYB3NGjNp5OVwVDEA4IF8UlKUcEa5MXSlHuE12J5DNR1aI9rNNa1wDUzDriJd4+NH5Z06fZpFOYnSkuKS4qaHxvrvvaWhsoHOPvU4csQmdb2zkuCwUmEC5ec4i4crYwt140gD2EQ+Nf9FXxxq6uyQYw4rvXCzy545yJWEkS7lFqAaYBoAU5WwOA8OfSMR5H42EWxobm1uaSQJv9/b2MpJ4soMtPc+dPnGSSV2VlZUrm5rKK6s4ZIQyMPohd25IOxHAS8C6fl4sq/85txWiH+JCYSMYE1IDY1AGS8Uu9PRLVLKZHRbuGCe7R4tZeiuVl2KUd2CAtYGDmlWCoYB3OhzmoBpGufhK0HRxo13YSeSVHzJ4jPXPvSe5eMT4GTDyI15T944jHXzUGcbBG4JQErOiF2FO6WRQKajRkWYrqBOPeSAmNg3Nd2QBqXlv0ei9M+IMYyPfhDAF8/WN111FWmSJGzEs0y+dmKAoircshTgdvYcGowwaUUVK7CCd7K9eWuYCBdWv/DWvQxCSL291iqPsOiXSpsa6oVz+ks7knXXIsC7kAhBUEhwggDQGut67rFSHbHC3in41g0EBvoCbxQ3CDxvt+nxVzf2BwosZ30jaF0OrWF1l7FhjEQewrzbkVxNrV6NsiIlmMIJXZwH8I4TYzRAnACcBy9Uky9Soeq5tM6E1ecCYsD71hQvn3zz45ujISE1NzcZ1azjRakVdHeZ9tvo44tj/TLwLRPLmO5pwlE0k92is4pI49swmNwbKPZCRMU/uxfiNKmt5GSXynhJULL42sa8sCb7zkbEA3ei7gs5Do2sBdHI1WofEl6ksLa2prNy4/iamJWIKsIP4qZOn9u/ZW1BSsn79hroVdcpBXE4RwviNEZbV/9zbUb4mKTM0NuJcnBcMXey9+Nwzz3GkLDJeKiKVqqutW71mDYvRGfCCED/44IPXXnvN9R1JwWSX9vZ2/EuNDY1s3cNsFcwFDpXZuXNnb2+PMrdTbt31tttuu3XTJnr/IugsdxjxZzmJt9dAyEHj2MPJA49Vct+Mm3lCJxtH2ofsaLimD2W5NL9C2UwUWQjPIsFu7SL2VmJL7UkM3ggGszb45LLGA4MXD7EocSZ8msxUHsrCRbNk9spED5EUvD/uQVcnl7xslJ/eyW8wHpSfSSE+2I0+ula08ihRb7z/+nOtBGQdjgpUu87UAeeyT8NjpWNDheFKUycaf0G+ywaSWWNccSmOrpXq3FhwiGyNgB31aoCJ9uGHjEj7+oZ8b74V9H0piINQlhs/I3QjsxkRQabuRwqz7mSi6xVEzRW93nGq4803D9ZUVd279c6mppWsYWHkDkJQtk48uQKMxh2luxckJwhwTODpguOo6b5O81563RWnMpS9ud2AWM8GmaXMf8wVhN9W0oKfNgXBvg9Hw4W11StX1I7cduuRo0feevf9Q/vfSN+0sbGpBWpnpoBwIazeCGFZ/c+tFSEmozURFh1VDbZhPoaDzC7Z98YbI4nEqlWrCmMF+Jde3vXKL5555rHHHnvooYcwk8+cOfNXf/VXTzzxBLNMITI0/b59+7i58847t2/fXl9fDxHCSLt37+bQOQ6zgZUQvUwgoCCMAOf09mCl8HGinhv8Sxg7DyRuhaBsyPuiV3xCtLgI2b/ZqFP9BcmzCa4Ux9dIAxLBqk6GucIUgd49TYb6h+HlCuBLDpZcIePw5koef5WLlbvJRcq9mXAz/pk7dOqEZ9eS7tVMZUzIcekfPBgNe9A7XUlGQoA+WeJnMIVupXp1SENANnetloFdc5VYejRdnRIm0AkPIJ6fDDD+VJQEv7J11XDLVyoqSvPULNLFtc9lQXa5EY0bZzQoCb1khuYY4j944ED7qlUPbN9WXkKnhTM0Rpmuq4imgKcrI5fpZYu/NIJnVFj+l36d8AYogHt2NRUWVUVXT1k5jBuqB2B1wYFXXFiw6aabVjY1v/Tyy/vf2MsQQF1j04Tirv+HZfU/tzaESjzXuzk9lVjD/er9MOFr3Zo1n3v8cY1F+wMsbN23d+8zzzzT0NDAdH2WsrBHzcMPP9za2gqBotGxAA4ePPD6668PDQ19+ctfpvePc5hoHHH7qU99Cp8Bj/Sr4C6G1jS6TNk3TIDPJkixmSo2q3prbHJCJmTvSpDacvcoLLuxT+JzPV8ptAoYkco4kA5eB5sD7MpBMw7FdHem29HvslfU14lgiA4Oj7JvA+smrNvPAJgAJsosJe50RS2/ny8G5Or3x+Xm1wmassaaG6K//+St/mTrqtqo/DcQnEw1Go9WcpNr5lMYVjI5sLipqanp/vvvi0WjOMnNAnRULK2rfPPpez7lTE4j3T/XPGWXChWXDcTJ/UiiOiqZUbN1xnhgiJb6PvvsYEfHqdqGRnAIVi+b8/USYVn9z7mlRFmQOpyngSOmkWteCQKRA+OY89LSuJJPUuRNKxPx+Au/eoH1MEZQ+AnGysrKGhsb0f2QNSYCJ9azRhULYPXq1UzpJxqWA59WrlzJ0jjsDKYI8EhgusBMTrM5V2KRExg+JuTp+GrCq+yDw59wOLsglpxFcGubXbnk7W7cFRmJRWanwkgcin29eOJ5E20TC+DrpHCpPDHvaC6Wq43KNenDe/LAUehyGs9PIth78v7Q6maG5LKym/EUE99fuSfW+6k/pIkT6kbGGPw/fqQ7MXC+fqVmduEN0PIqgsFPFYQChwa9XQ5LiAHTU5AxqA9ktGUeBE6T0BzlJf6bS0pivhJNV7NZRIwLGC0Sge8LaiCWz/nYIYN5cByrYceKMhWJTgrBVXZBuS8Kvoz9ZmsxwHoyFAS8aiASdlaMXiGu+YpXhS4Z4tcXBM+8BuuKf2OEZfU/x3ZUL1Nn1ahnDs3Ah2YOMIHPlrVktIIFE5F57pqzpkEBlD1lYBCgy9WJh3wYKlP3N83Y/0MPPvj2228//fTTW7ZsMd2fZh4ACbEloGRcAtgQZCG7wI2uzhHeqxUdQTCtkeyM7Bxkl+Om2cgUi6ML/8lPP4wwe7D24SJeNiYf17Z6ab8cLNPcOBGR/5GsVVx+UNMSrDqSK4YB8s++s6+TExmgFifvy+UwYjkt9YUhXa2ClHhk7qWvutT/3f/6fxWWFDVVDwdYrMG87rBO/dXCCVGm0CzZu9RgLedvGADbkLe5BJHhwj+vkSunz4/uPNSRGjhz380rblq9RgPhpp/d7NN5I88xAELo1V2vVlVU3H3XVmb4s9MeG3JAAy7znBEw51LElosXLLfL0qFEt3oFoA7AJZBNOgCJOmGaYmyymm3Hdu/d/etf//ozn3/cYt440/7B+LL6nyPZGZUg5aAe1DuSD90cC7JNhNGGjdO7Mfue3t5Db77JLheV7FpvHIg56WJJMyhoT5jKqiqGBg4ePMgCGXamJCJkt2fPHuYG8hU7gLEDhgOIfakKskyulUuO+U3xXQYqqQqTWJflUjKaTZwpy3NFeKrJXNhg3lnvAsDsA3pMUlwzhykgcHmPJyOKYrmslHs201xaa3V9GU+kO17nAMjFnRjlajxJNGLgata//FFpH6tYPvlIYywUiPnLQloHwD4LLHE1q9T6/yBWamBS9a4G7B+FMj3bGp9/hnN9Ldi5x0eODf/Rv3vZt+cff/jdf71p7VqEBp0RpgYuECeyYmU9Z5iwzAyAZ55+euOGDavb22OxqOjaaFtF5Mh+LuXlRMdcEi00rnGilgfIUkfTA7mA15NMW7+fHYI47+PdDw7zob19FQaBFekweQ1x6kIQsaz+54w9rVxlcw2WozH1T4dqM+2Wuf9sGx/q6Djzvb//Pvb2SHy0b6Dv2PHj2+6/f+3adUZgkqLYCohIZgpQKo/RcJTdMdH3OJd4ZEt/9D1zAr73ve/hKkD9YwR85jOfYfsMt5R8zrBewQTUcVJpk59zn83Uzj3N7mZyZpeVZyRg0yWisVLQoVsFufFPk51qFOVyaY/10rwnl34pzF4aIubhwZLpCzcuwoTBfy+X8aTZbL032cer8RdApdTp/kPeOjCWbVtH4trsH2ulmIMOtMxRwyjcqHaA7FTEogFryJs6N8MPxaKQtB0kK0VtObkMPbM/eENqYJWRnkM9eWXzzP6dOvsleutaVZgCEK0ixbRKpxI6OUyGFucQ47Dnm6mi6SDMvmcMib6+N3uVZJiQJiPYStq3oti3tike0qgAu22rtGwqFT1NAHHYwzgLnJ1s2StTWXVKwvBmho18N2++bc3qVW/s3v3yyy+9vPPldRs2bNywkX1IoQJ5y23s0ihC8g0J5vrQpCe5coGosjfKVZSj97rI0S4hqeT8sfcWZapLrkrExwS1bJXGHKsTqmu5KYtsEgceJSG9kbcyAWw7MggJiFklyAlkh9489P777/Fl9bp1t27eTC+uf2gEyKyBJmQ/FXDXzbtl9T/npoJ6WL3PQa469M/HNq9sewlBsJtEkqkAnZ1nISyWltbV1+3Y8RgLAdSPt6175PxntwBYHme+BTam1va3kQhbUbKuD9rDGigvL/+DP/gDFghovN/nKysrxyvA+zkDerUTLB6XTM4JWSGZMWNAdCG2iMZ0XoVsAlQ+L9y77Jfst5kydHFnijFzLk5yTJN+5qTTJFrC18CDWJVGYeCfoX90QMfZ9N/94KmCaGjL2spHH7gjFmEFgEa45KPS0n/FQVyaqlgsyGbAeRZjkumCVjs2o0HZXoLt56Ml0o0huDOrShXdkvD+6gan1WSyAEc6UBT0JYZkqUTDvlF4fLbgUe0sqmkmUqHCsMdYh+z3RQIcOE0HRahRi8whT2AypJNEf5Wbgymr+dgDo6K87L777h26ddPJjtNvvv32nt172OOPKU2tbW24KhFckITyMZXMvR7Vwc7BKwXPS/QuuUoQooNlY1INWQx6oX12nQ3Auyngz0UDC9qSyywPpGuAvdekzRWAgWC3cqmqRLBhFgb3CF5AZX9PFlVByKz17+joOHbsGFdma1WUld+19a7mlpYw/o2CAgbCMA6oxJTAuIKux+uy+p9Pq2kemQuyU9PsES/6DofY7fLJL3EqWhCeoydfXlGBameOjOu7M6gPZZNAwpIEMDCHdCUS/f397DDFI0TMBlWDg3F2CyChNgkwymb4321GOx9Yl9NcgoFs413yYfnFOAasF2jDuhLRPl/8ou/f/58/9rU2/vOHqx/52F3qJmkRIBvM8VGyFtk6o4kznvXi3EnKAxnzEjSz03Qc0ix89tzArldexkRnA1oKsglcKlCx7Y+uVymI/e0fPhTNHfIzX9iXSoyyIf1dd962bm07e1ibzs12uWcFJ1g3ilbOBBw1Bb44K/61VDNouzbqtdpwcQKiji4Nu/eXlJWvaGgc6OtjVTOHc3acPs0G3gWFhUxwRqBxpSfj+jy5gtHQ3Es388uRiylmGQVZK4HP4zN0conzboRJGldL9dSuHNPhZKxT9jIssiIaYauXnCJmRoYVLStjoH/g7PBQTw+DtGxc3McxRcjnWEEBspfh2toaDvCq4sywkYT2/5YoHtU5hM4qygPk+r5dVv9zbz869/j82VXbhAs7wpobSVNFOKpqxYp6zpXRxlKaHsjMGDc7WqUgifBDy1Ulw1c9FZIcOHCAhf633squPmEMBXaWloeAAsbSSXnvbOaOUhMWjYFddsvXhWDA61zMmMX13GBoVDpS1h3jGgqOQu9tTa2rm+pbK/AIQJdBP0sDtFO1Q4VJ5JxEnxEv8/yYj3KHWjSe9Slxm+Ng017RkdNnezs6ex944CFENv4zWMmpHJjR6Qyui6cK51ETFc+whLoNgJ9J4fvftfPl998/vm7tOg6a8brys804j8Sc+gdJCXYRTYfljVEvnOCpWocr92oBV8EP9Mkkg5XMW1pRW8dqQA7RGRoeYtNSNgM+f+7ciePHkWXgnx42E5wxBQilHLZdUoLpQNMQnGI2nSpoNC6GQARI+XEUuOEFFXKV9MjM6Xu7CpXCl/Q7OSAzJVctaEsWVVwfkabAprMHBwc5kQjfPnuwsgcwpIPUBR76aSsbV7L9muArKeYlEJCWZVkiMNYMsfu3FUGB5OiKuAGuy+p/zo1oja8LpMCuvdipEjEBLYCRix4ywQMp3vbcTRC6qJSV05EINwoBfzQUJRW6n40BeP+Jxz5JfNxQ0CIDAXzC8GRjbfEAti00R+43ENnNGenXXoLZyIA82XztVWAmiAAcopPu18FF0DY6BfVfU9iX7L8Y10EMcoCBAv0ME+MOsZnyXdi3HMoBz1BLr1dzEXDe2qg5e7OPcdpGtK6+ac26m9Ac+MyAEIakLrASnJdVJQsDZG6pAVvQGucLW6bZBBf9A7ZU5Nd1oe9i/zlVxPXj55C/l3kuBUqVE67ZKYx1wyH87aZEXfFOY+Zizu9GWFVbS1mrAmM4Ov062Q81X1nBKAAqGK2PJHRbm/T39Xd1d3FSyVuHDg0McubeEMgoLChE1XKKN2PqSDxuC2IF2ti8qAifPMudkIQYbRwX5Ey3nOrNhxkhyZG+SEtJ3HSamXrMmuJcP97xflC6ngMIKXOQR2C2AkuBk1LWrFlTU13N4gUahROAOPmX7pzysYDPleYxmc2z+mkaVTCQeObxhgnL6n9+TanjICEpSDk+Gi+IxLiH3lKpaqxErQDkhChOfgviHGVOQALa4uU777zz+u7Xjx476pYCYoy+9dZbyILPfe5zra0tiCoolYEAOAQiI1v5VyW5FOYH5XKqZQzMFwPS7nIgc7Ake1jb1DrfWDwQKwyGo+jVjK3907CXJKKTlRR1hQmV7mEoNZo8sHfvaFzHSaUykWMd3efOXnjltVc0syvN0XcRWAwIqYlzuc0XIfNLJxe3U+rCk6GHHcI4xrqlubmqsnwkPsKh96lMgKlEMg0Ml55LY7YFki3mGS1EOo6hHPUffS/Tc5axRO1un/ZztqYmcC6SDBEyNYKOAcDkD5kAZs7oJa9wbXLEBuKOXcuoK490sgkJ2yTAjMkxfOyIOF4iAFHeaGi644hEjAYjJUdQXuWFsKwevhQfLr4riK/YCnSlKJ0bbIimlStR9UDirBPyB166Vah/iAGhytGgVAAzAuhZua38KcvqRKX4i0ymV0ZMnLIMw1Kc2ucGCsvqf86NCY1LMCJLLLA2miMlsQY43ZJzLxiEYhIf5/1yuit0A71IgI6NlZaV3X777YyQnTt71il13m/YsOG+++5rbGiA7iBZAhv+nDx5UkKXkTvseGQW1AkT28QZkx6QqPs7Z8iv2wTiuZyOyXGg0ACPXqVaza4NZhfrKlVhpmINrYh24iACkfQasx0cjlaXh21USwSprebVBMhShCXNsdi1NSA8jZgDlkIY6c9eMyF6lC/8ZlfrqjXBcMwXGEPeN7XE+gf6gArWkaViFANLwUe5XK7sjRDjpAFX+gPdH36AV7uurpINwOgjpP2MUNhagDkDiM5neJHGwSmdZrBww4bS5//rHwcSf9BWJW2nzzaKbijLTr5bQOVN+GgFk7W1KUezBcSIjhUlt+QQRY0TGUd6cThMZD5yFdmwD9HYGMoYF4FsCXxMGuqUlMMI4CqZaSNK9g6fTU7iqUzie4Rm7ynCBfyvTLeilV3luMGRQOkE/ooGjA4MbIllDczaFGxrGgNaOBTMXBG/qgUgZcaCYeYNKFvRzyINoDggr/p1Wf3PvQlEyM6Ql/MLE3I0MVpaXvqv/sd/xWAYVsHwyDBE5CjJ0T2kftNNN/3lX/4lREmAhDF23eS+WKwAIsOGwHOF+v/yb38ZLqEE+Ie0IlDjHFEfFGyK3yh47mBfzylsbyXQ4jS+vLiGBJA8hbz0PpowWjpczTJnRyjXHe6dsJZaoe/PRCqEK68CmWIWqvGj8tYr0vQ1k9SqoJdmsepq7UdmQrS7d1fYB24AMh1EAEwo0PNdA59/8t7K6hVoQlSLeIx5AMwLc2SyWBDNIx+ZKQqwNmwOC3MzeHFw165Xh4b7AZ+BwdRYPM3GfERU/aTTsvW1lJe50DZ0mumQ4PXXuHdxib+1yF8SKC9FWdkUJAYnDYkeJAtsJqdDqQU3Ekj2jKxzYDqEy2EuAlG/2aLp4j65Z6KHQ/jcI0TTJ9GTAq3mbnIZukfv6hWSfZetUPbZ/hIH+QlkBHKxcpGi2AUyK+y9IJEosT8OcstKEtvy4ArNA5TGbdUi2uCVL6SwLJwcsqjX+WVZ/c+nASEOyUNH0xAG5ncgUFVZySzSH/3oR2/s3hOORqB+mZiMwNkJ8Zig0JBozhbIOmLiSiZEcvapo06u+MTYBviLX/wiG/6QjznunFyYD7TXfxrYDpaUBGF1JVyrA7wVvJ25shV0zOuxvV5OkhfZeIv018tdoipbkHw2l4Tsx0s+XPEXoIwyQaNUOkTLIPHUQeYrcRQXa5XITCgP+daXja4pTdaXFNhWL7hMQbiU1dIGKRlJdJwMmoiAhgiGxxKodqZ6UQf/0OgIPt9gKEozsAN3JFTg4GHGzTWAeWlIerHO3IdugY1zcjhOniEAMCiiRr1o2T/3MqZU0znglPg0Isn4r1lyyTHfwMXUaHwI52N5UaneE2HxMAHxUAUISSaWCIknIxUeBLzDPXH0UjWx29xb1c5rUP4SW/+1StNCOgunvfVeuk+zuboEBocB4nIRFPIDGSSgQ2UqZj6a7YW9M1QKmab1ScbMF5lWJON3o4Vl9T/PFhWRiUJgOnEv9MNdaUnpjsce2/HIx+ktIV8tDvJTzv9cMZZITxAhga+5e26wKui18BKLlRmziidCtUuWRvX0UQsIE47mDAQLYjGsKIbieIGudWw8FTKMV68Iw+YaFDCmaKIrAsNUGJjiHQQJyXmye4rvuVe4tVLHj5+srKwpLirGNUWqtobAP/7N/82G76WhuI5QZ2iZRXfwgBH/EspGsZkpRVkjrLANj44kf/qzp4eH4n5Uvj84Go8PDsWffva5SCRGl5PaGVVoNxjAdk0iXr2CwRjWK4+iUR5OAnzhC18oKi4SPwtG6U5+LFV3A8xSMAb6XJBJvZDh8l0jgTAu3v+g+z9+99nBU2/9r7//2IP3bQvgIpl5Cd180SLcKgixHnplzLiXnswyIacYipBN4LWmJTPrJ5vExVae8wwUZPibggsFBN/sCpgeyOMlj5doYBq5SIBPYc2PR73+75bV/5zbMJ9mJF2gEiMr5A6deNaMopScFwmid14jWcqzK4fMLUPRp81GIQ8JX/HPlRVhs4P3CsWSC8SnaRDCjwR8hpm4ku1gejrUmnWf31iLDavXpGoaa7XcNb+gWbZ7fpIluoeKyFn0ZAXwV/17PU8BI+f8vfnWO8zU3vHxR6ury32ZVCwQLo6mmfIXsRVbiHPt9q4MjWKlbZcIcMuWsphGG45lxvzMKR8cSmzf/nBZeTW9M/Tn418KJ1him2YCjZ8TCZcSjlnmLcwIZBSInHf+oaHhv/3bv4Ojx5LMCsKljMiwC1dzopjimmXm+dHIRC4cNS6/gH9wKPLUOwHf/qP/8rdHmIbH+KFt2kTbcL/UQQw5KXilAlsu5O5zN7lPC76ZupK5gsahEMKmjrxgGK6jDJbV/2I2FuSPo087eiAU5TCS5U8BKKxLGWPKgomPrcC0WEbXSMW8FXQew5ludGDKJDf8S3gWJxxXcCMlEMLzLzvAFI8JPg8Fk9l53OWyJDjKyhIkiXlxTI9OgEEK0fqiS1L+HDPNqXnhU9tLqKM8pdImJi4o6O7lnS9dHBr82j/7g2Ag3NmTeeqZ1/2JkVtWlTy6fYuUvmkdN6A1R1jmGF1+/nQgHGSS//BIkonzrA6LRIpw+EfC0Yus84on2G4GdmNeANO+55j7UkUHjUYamjgGgTDLh8lpuCj6+wdMHzGFwe2w686BzpLT3MAx64H+PUf/Md2BtMGYr6LS17gywzJImcyghM/zy3xuoCzHvu4wsKz+F6vJJPedvtdYnJncOf433Q8HmsU/Y4Ga7Do2xrwYBAdXmwDIHsOagUJwST9qrCyxbgtwkvj8mc+ltRZBlhKBD+RptscxQe9eEURNaAc801lI1Mw0Hy+QuvjHnToCvgkJZiSDJfooMxQrig5pSDNXmCvtSDRHWrlymUPN8PRdW+/Ax/7d73z3c098ZeBi+C/+n+/fuX5VcGzlQ9u24PMnDtmhuyyVJv9P54jJZpvDQe4m+2WKvy5b7D0psEAwYoYfM2iC3/2b7793+Ojx091+f5gvqD60KKNBoJz66KAihRw9XAmsU/ZkTAKNGJYvaXYHOX/hAj4roGMWMGsRNWwuctAP28busyjIAZ59MeNfK4PKqjhyY9QmoPH/RDLNQeRk5QrSlxmzsY/EIthVeVki55pQAfazGMuXGwUDy+p/UVpSTOiJQZyi9FXxqmZlq3WTXCk5BTFtoU6IkMQNdWvYDsbmn3GvJBxsaddps7ghPkivjFdEsmgMJ29MVhEjAPShwjooxZNQ4xEn3s1C4k1MsGhPSGFtjMOPPVBwVaBsEcQTK7Vohc0+I+kCox9uNB3aSNS9nJQJJgKT0+qqK9ffe/PLO1955hcvFK/eMTwUPj0U6B1J0BaxoHbawcqFVPF0aTa+ZT4pn7xHsYinU7wb99G1kgg7P9gsMKdyIISgL1xAcUxlHxpNBCKx3//Df1GzoingxzeGmgsmk3EMGqubqmcFuWzJUsSTn/Mi3rv6uAxBo7wp8vdp9A81z71myLMjzfDI7/3+7912221wNdvZgHlbseIAc7CpplkNnYP8cpCabCC2yhO7qHSlYYaEL5DUz0e/QT0R5rFTgj666xQ5m/mAPUdmZIUw4yqo9KBn1xbOtJoi+fKr6xEDy+p/MVsNnR1hQUsoHJd3WpzGUsCc9JmN2pb4YN4fKo4DhbRhMFxn4QZV+ZcKZsQNwV25kYxECPn9PewSMjwEPuOJBJuCOa+1ofTSPCyLK3sRnFaioLU7usLF4Uh5URH0gEl4ZcGZqTRHh4wrseMKa0xYtDIJgxAhzpULPQOFsQIOd9/x8Ud+/uKeHz77nG/jut6If5QtrTSepWlRtMsYXW4b6LIipSnsNwkAj4rtrUOVu/Ii19QTkpCnxaAE3wguiMRF7csSiPSxh1ucoQk2xvbHU6MaHUPTsmcOpQJYIqkxtwl55gqakP+iPDh1Cz5R8zjq4FzuMQJ4ZNsZdpthsiqPzEpQjwD3CDMT0asBlgezkSKOK/3SviCTFkzdzgMoaufwTYfDzEt/0hcb8ZWRIfv9kDWFahbyPLJeTnLDY2BZ/S9GEzsexIuXSnd2dSaHhv0RuFoDltnc5Q/2bPPsqyn/4rnE+4/4YHNKdqmMsKkw2cLDN6j6RyyBPCQ2clPmEv/AmQkr3tOdYdIExyPGM5ldbx7c9eoujlQAb0KH4VzdHruZEplL/tJB74qhCgBsTmBeMF6TTiV9g0NPfPozbY0rrynpmwNm586dL774IgtWJ6MQ34AdTn3n7XfQGCXFRdu23fvK6Enf2ydQsyxaEz3STO5IuRwSlC//nTrnJvdzCBJ6sl+54dEV69pbiS14N/KlybegDewPHzn5wZFTbIERDBX0Dw5duNCzZ8+eSOxtnlGq5MPWxGh9NC/jZWjabCkuw1xBXgEL+SPgHLHm5cJLlLsz3FH+3NPFb21rY1MvDAJ2rsVgYYfbaCQmU0CzLviuDvr4z+tj52U621tXO4c0YT7gG/Zlenzx3sBYSmVoQiYnkIldPMzONueFx1OBUIrja2vtHBTc6AVI46vHzB49eBjOFg8hWA7ZrBzDK0+CJze8lJ6Atex078lML6Z7zEKQgy1bzkfy77L6X4Rmh5SkvQL+0ZHhd95+6/jRI3intUwZJx+9GHacoBBkVI6+pylTNE0kQjpdWVl1/7ZtgRKWB6uNyMSj+GnSXnevqSUiG+bGZUKfnm0TwZEc5sbYDPOzXysHJyDXE6EQ2ylfSCQ++9Wv3nPPPTo4kTjG1Fe11vLtq72sWQEIiPDrcvVkWir13Pf/ARcOQKqiV9uAcwAAZ64ryPZzmzZtklN6ImxESPrGmBlQWlyWYWtUf6ausmzHXbf/9T8+X1VVymI728/SkbSoGizgtJIw5idNJj1kwR6lyWlc8MBNVHFk4lkYLxcj196wwsMZF3SJ6RH7g+lA9I0DH/gDJU0t7RyOXVaZWLV6I9wE2eBK9weiHDxoOZO5QaDq8csP2eLy383rnnZUU2psT0VwA5bUr89423vwEjdAR0fH0aNH16xezfF3fMMW5GUylYSLCcyphMmpnX4O5ksgvhQ6ykLCqFCQlmtLgWEtAM45aiTgq6uI/tHd6+LtoaaqGu3URDCY7c4uoldwpH+WjfwrSxGEKApiaWZIrhEr0AhDIKt0igcbRBOPCAaNnuAvEWAOUhMR9mB9J9AlmI2brAk025Fp0UwA0qmPGnaxfOh3yRODIYYkFdIMzxABZXnpHRqXotrXVZ7L6n9xmgvCYmYPB0Zt27b9wW3bGQ6VSBDZiSq5F01znTHAAvJ56jwVyDrNADd9BekYI1bxknGqu86Y0zX/UcgxdKhGbFuK+1OOUyZwYengLMWdmsqku/sGkpwgEgr3cp7Y0DAHc549ex7LAJS61FetniY+ET3MSbR+J8KZE/D8eGvYY5xtx6UY0E0M/ar1JMEu0/ZLXxNAhoRyVESBwF5bW8s+05cg02KqEbBhJUVTaWbb+3zMXyuOdJ+/2NszUlRVkE6moEjmCEozja8utwrnV4ea57+T6EcNOJS4b04o81LxlBuz1rUlHLkz3T+YSodu2nDzTbds0hED2oAowH6xUiqS6Jzxk8tKpTLIbdJe9y5kLYvs8zz+Gt+5dOCKtoZDCaAT1S+1Yyd38x7eRNnv3bu349QpuQRUI8BjkyJg5YcNpBs1BCTMz/Dg2mUGuChUlbQJJSqRqB5I5GYbMKD+/YFU2t/eWvSnX7un4+Raf9/JBGORApJPWXtF2ZgWnKGwhX/KoguoGWBiHIQAm5AxNUXZC11xxpeSbOMBjwgk1cfUv2ZLaM9dKuvqSENjp5KEBZOY19wQk52McZGSEGxTCqOBypqUjKbYPUcIKGd6FyBNW0BqRIbWIQrtBecCjQ3NyDr/yIZl9b84TS+ugrgZ7OfACZ+fVcjwHbqcTq2oE0KULXyZAEVK7sqQz3B2sB0aBIlLxrihbpdebHQFwySwF7F0cnamjPQoU7ekFXyjjONydHIser6ra++BA0Px0XQkmvQHhoeGjx45yglenOGKzMtKmCuIiIlFATPNinChfakF0o0+B+M1dKZbW1uD4VAKyCXvsq0qGXdVA8VLPHo4BxSekJVOJk6ETD4Z2aHppE2uh6ZDRcHMpvUrW+trzp46/vyzzz/52Qc4T4XM2KZdkt2QQG3zAg/2m4Lwnfonbi6BwxP5+PzRWGIofuFMbyKF2ZGJJ329vRdPd54tKCljyQKD/SgQ9ovHlw4liK08tCor6VMF4dxuuBgM2Yf5/aWJXUKnmagsm94DCasPIQNXVjwRx5DiJW/spY+z7MCt1JpgcWDkrs4IwA7QRoYcnTduxOQAz4NVuZhviXkD6D/gcQAJXyx6UO5UPa0NyJO+7njm0NsH9j7/s4p/8S/XtbbjA2D2aSgs5edYzKV2eeYVsni3VgBwxkfiu17ZxUmADz74IMo+EY+zCz/vORd437595eXlOJ9i4FD2PoyksRun4DE5DTy2l7INvsxJQA7AL44zedjd1cWOTxXlFdgHmBcqk6UgoRCloOwpBfZE+MqCza6icl4BczZoVmYqiZSeCt2Lh4lrPKdl9b8IDSQrXnN5uWYQSSJDbFhY0kxRx/Fm6DuenbrELDeKLuncKKp4Xp5GxLRx/EzJp850Md4iXvMLXhx2MX0JuoxRcQ+yIzJaHU8zk6Y4AC0zlEpe6OvrHRzcdPvtweIitjW/2fpNYlodqKgpVFclSEypZdQu6tybf9K0qq+3p+fwBx+sam+nUkzcJELCiMHUA2hzegq5f/WCk6mmO7gloEiNvi6BSi5T7fSf9ifTiZR/LLmiJPS/fO2zpbGof6i74+ih//6TH318xydqqmuNOogt040goleAG6ynK6FsL7yLfdWKNBfQjbwRx+gZ1GICBqN79u554cVdtStWssSATlphUWnn2TOd585DNegQnRQvnMJi0v1WG1coWVhuLu8luKJUXK6gjqZ3uoo34PCDDz742te+tmrVKt6jhKAN9BDxsVhwSWiKggLJDXbVGvxwXC5VBHnYMTZ3z2HDxXGIo3pWQ2gM2we6UrdCS/wxOsmQHX1leZn3XB6Go6f7/+7513pOHImMFr66c080E2htboZrgIogxAGDAS84HNq9JhN8ixXInFkQmERHjx31HfPdvvl2nZfLf66+4JkzZ775zW/+8R//MeeecCQgXSZVCa7Wubqs42DQVLVW950aWveJr4zy0JuiLgyt9vf1PffLX3KC2uOPP87+6FY52wzUuDJi1gDaXZ4AsEywadQAoCpbrWkyilRzTCbRxcLBdZDPsvpfhEYyIpL5DW1JPECMpqJ4hMhyTEa0mUJWjGHkQuHkwcmBbuM/2b7K5TIZzJT5NfaN2gERNRLfwp+sckhnogUFCDVUADJCYwHhUFV9w7pNmwrLSjEI4GSt7ZbUEx4maZUrVj8rXM5DaQKdXcaotpRoOBI5ceLkmc5OQWLGgcnwyZPqJW6WQNrOsvoO4TlC0g0/kGq1ys9EWtQW0DMVVWMYfl95sf++O9sLQ/5oquFYle9v/+ZbNXUrHnroERwDUL0aRvXOzyN7rw/Ze++vUKcf8lelZAFg3Jf1/dEYKnHT5rsefvQTyVQ6kWSEJUwOkAg9ObbNowdp+aEqgZ9sKCAXBHjuYdFvHAKd5Yfup6/PG3ic8O1vf9vNSpFv2bQ96kyNPQ7eZCxkwXMAXwZsVzRJZPsqfzd1hjyjMiyVt872Od+T+NZLH/jOHP4PX320rqH4hRd/xZmi69euCWo5IiaEjAavPOewyQKxFH+Zv7x161aOQTlw8MCdd95J6ajhRDJx4sQJjkCrq6ujUiyQGOjvP9XR0dvbC2LLKyoaGxtLS0sdYuGyrgsXTp85w7ofVlKUlZbV1tXiY2MfBVwIjCxgdTE0wNkoNTU10WDw3HkFIpOcTdPb2tqwMMDN+a4LHCuMv4ET1Tlc7eabb8ZEE05onemaZSkwco3luaz+F6FBoB/3g9chO7iMf7xBY6n/hIAzhrsMf3uAyFtFEikYnR+DjJNf0P7NLoNFqNCSZyEsmWREkGHxs5EfdWNJ15tvv8WWrqMsSY9FT57u7OzqCpWWFZQUOqufOOr6eyaW159acljzCgBsiQs5d+imaNo5omf9uvWVVZU0GBFlE1hfEN3JPZrAdfldy6nO10BwCsnqIriA0zwa45AJZqNkagElBpjqFwz2DQweOXkCxVsVTJ879eHq1WvWrFlLJgQlz+3+k5eN3bqqj7/N8Ype8VGUANLIIdTb3ffh0ZOjo2O79x4cSYULSqUeWImOogWp8AUI5QZnkQ6cJSix03xqlGxxl5aYX/r87x3eSG8Yo/G1yTddfM6Pvwl1wjZJdF9DWtZPDxV4UGZEnr7R+ZL7TYp4SRX0gvx0NChX6hzBVFIiXUGKyM6CP1jq81X5hv0l5WW3br7Flx55eddLiKT1a9cxcAD2shH1lxp5aMt/u3j3rHpob28HFe+//z6TdunMMP+xq6vr0KFDt2/eXF9fDwLRyi+99BJLOcpKS2nWs2fPEvOhBx/S+emBwPFjx55/4QXMBVQ+i1QxsB555JE77riDaLgQUPNv7N1L5h/72MfqV6zgqHRcAhgEGArIT4yPu7ZuvWPLFkZh3nn77Weefba5uZmEGAE4abAk5EqEtESEi1fn6yqnZfW/CM1lXCROdgICmqa7jsKGUcldgsDJudmxmrr6JLSVxBJwPBrzLwKg88rCSViBsXiBvKxOGcQkQojq+iPh/r7+Hz/99Md2PJaOxRI+X11LS21bW+/QUM/FAXVdJK2AwhN0iwrOHCtGc9qwBeIDQTbQP/iFJ56gS5HLxZGBw5drQRPZue9X7SZLqCJNqU4LGlsa76HqFfRKt4imYezCrwmMgbgvcLw79MSf/qdIWdHWWOoLH9vyxGceb25qISOGweW4tRYSsVq25jmgySYoG7BmclacYe1PBGCgQRn65k/k4KHDO1/d0756Q0v7hmQmeqbzvKaAqQxAZDc7F4gL8VAMaSk4+9r7ah+9+3n+8ZrP1cSrDtkq8E5NafP7iIZCYtR59+49zPCnl8knIdZqZdF166XMPnt/3foIrrpBhfNTdfJiTawIX0CRrbQE1fHR5M9+9vSKFXUgAcSM+Ud9uMZ8gVF/3dvH0GfMg0PVB6Kxgq13bfWNJV7ZuRMnTUtLi87YlThxRqlKoxZZQsgrfJFuQQj4wQHw1ltvdZzqaGioB4Bz584NDQ01t7TQxR+6OMTq02efffbhhx/evHkz8Y8dPfbyzpcZItixY8fIyOiPf/ITuviPPfZYc1MzByUzpxJbgdm11KW1tbWzs/Ouu+9GqaP7L1y48NTPf97T0/Poo4/yZnRk5JVdu374ox/hutqyZQsEhKV+/vw5DIWW5hYsNmrtkX0+1hep4tdLNsvqf1Fayil+P+LgvXfe6ThxkikokJ0NZ5vKgtZmyWQaN1A/sramFg9ViZxgkoASDUg673fdE6xkG2N76s5pnn8yzTT/IJNxK6prdnzm06yVTjK9j4ozmVniCWkvKcqFUQHXYKZgFqXt5pkJE5fpXtCDoQtiMhSl4LWLGX8oUGTOPDNfimRO2HElOFC5oSCp2EsA1Vw05kwxtJFiOVmaJeSpYNQXqS+sa1rdktnxmU80NdVQQehe0RiXlXoicHG//BqY7uI13iw6rihIJvZzwj0xpSuhajbB5coOvpE7ttzz6GOfwd/P9HBZKGSuqW1g0rYBdLk6FwwJp9Bcl5aeD8ms7s2wEMMJLa6CefiBPW0UO8TBHICFrf/jH/8YvYUtSO6T/ChZiri0XGl9DCspfg3fc8MbinSFG8HnFUp612SgEqRga/6bv/g3f/In/zN+M5ooHYhnghhh/nhgtLsnxuAZiNW6jLFUOBDcfOsdQd9BNnjYvn376lWr7QQi4noNdilki/UGOKkQipbJsK+99tp7773X0NgwNDx05MMP4RrkGwWdO3+Ofv8jDz/88UcfJSY4bGpq6unt2fvG3u0PPHDs+DFcBRyTyAxBrCuag3GBgwcP4tWvKC+vrKwcHBykH8/YP/Tzxr433nnnHQ5Jv/vuu9UWGV9NbS0q/8XfvIgHAlHDJINPffnLt99+u2xVIrCeRV4lYf0jG5bV/2I0PWyLILMt6EtLyxoaGjiAXO5QY2D41uTI7ApSRuJMxArzijEgjDjJQ4zPOkDdSSbmgvc997xINzmeyN0sUsYuG2GG/5otz5UpOTBigpFe3HHSCumkdYvoS3kzgNXlk6LIpI1jheylAWzWtUSgID5oJhqXgGva2gjo1UCuyzqViM1rulmXtTgRDU4JvrxA14oZ1JfaKUBJjQqi0aJoJKHq+YIF0HdZXypSWh2ta6jR2kxUOc1k1KixLrjAu/DXVZO30qDSNuCExdkEAEDs2vE0nCYFdQAAQABJREFUGLoXLvQODMaZ3h8IRU6eujCSSB148x0cCnIH0LdnPSFT5Kz3r7wVLE9dQbIRkb3NXnJFZ1/M8a/4K6u00fQQIF59ri4b++YvLilm3Br2ZBY+oPEJMlAcKgrXg02DNB8UBzox7Ub2rOb6Kx5a337yBORiEVHZ5ocswes9xtCdW7d86pOf0DZHaPlAwofxHAjGA5XR/X2+vb/BAgAMgEslEkWFJbfffgcmy3PPPZd5xLdu3TrEiA4ZzlYzrxQgyEHtAcAfB7OKnQBhXrqpboUKEvj9WlzauPLEyRPwCzbTe++/j/e+qbmJeQDob/z5Z8+d+81vfsNXCiLJ8ePH9+8/AD4Z3Sf56vbVjst4U1xUdP9997MqCv+BDkeBgEhA0EhLmt4XLn21haYRZ2ijtrY2RgQwAsgcykcyYzABGMMQakrDgHWupqrAR+DdsvpfhEaGmc2cZtJSdOPGDYyUorQdYZJ7lnm8u5nLIyPomKFlrtAwg2Xcw5IS0NoeR2TORDno1lEtN0RDXxLUTTYhQpSAZMr8AvAKZONcZLuWLNqjxIEsekp2Bs38svdSOSmjUUyXuf6wQQKcqc4+Ek0dSjQAyorlASaVFNFLrbvx+9zLK3kDwIgdmS+GKdVHwtH9DEsYK7Jy6MRSFU9/XEkIJ5dl8k4gOX1sn/fv38eCBQSii+yUmSxXvy8+lrxt020bVzFmnE6MDL7x3rCvwF8fTMTCBVCkNmehX+6nF69684+XRnU5DNBoNKCIU7WHioIR1nZhCLASjTSBaLR/YOCffvFcQUEZO/dj8Y7E0WWBPfvehJJRT665SWfOf51o582kGK+YB/b4i8WgClgJVEH6aBduwJhMHBsjwU6l543i37r1rlXtq+g/upj5cGilGj48kYWHVK8i8I2oBOyqbmQslFAQ1cPd4dWBGEY8oM5YI1c1aza+ihsFlZkdABf2pbXrDbICnomB75QvPuRjvAyxoF4Ew9ujnJBx2623YsvsfGUnWdBfJgcCmRuJqhBrLUCWBOE1LSYbRVabGXnEpbEtSQ6kmW4YJZFlL8JgJH7LnVtwPxw7ehTQUfkrGxspl3qTAwPzjMdjawIes57p5TfU1//Wk0/iWnP4LywsAP9Ao3bx+dD9vEedGyHL+UTgDQHFD9mQLy8lN8SeJNJ/V1mKU6FYoXrmnyF1pmrc4N+W1f+iNbCYxtYCwc3YsbAKxCq17YjNOOHyhRlVsmCGOYPMd5Mla4FH8aOCSRXvVsyLPzwTSNsxuNA7PE+3zLZLnT2vTgBLQsEFMajBn32xWH+FqlxelOeKdG91ReKblnBxxgHKpbl2b3LAZuuUe3G1YYYeRS6ELGHQCUMQS9Nm3zgYUU+JVHLXa692dp5d37Y2NRp/ff/+gweTvoJIEr8MGoIEqB+Uu3JT5xyd5tJaY9q9fL86iY9+PXHSY0n2bXG+m2AkZs7/8NDI2LETp5/44gOlZdWoKi32DgRs3AdrQtKbgkQPjomy6jRb0FL9pTgqACSuAPgPMFQvqxZD1ziZBwY5tNeQOT0UeZ9VCVKTD7oKc1bmAYtDQUcmFWCTo5Afy8d0rmqba6CJeefll/1gjAKKXeZKWlka/N17WsfW+6tqihnvx2xJqL2wtaLMvQ8G9zPWHo5FW5qa8QdYFcjWKpbN0/6SoV4Kbqs5RUwVbUKa3IOiuloYihBiuOjx/7++ezfd97a2tubmFrCKTLN9zSONDQ3btm9nRJ8ceM9EgdzUfSA89NZbt956K/BgIiQSyd0vv1xVWYXzABrMKX7umVWAn2ZoeFigAoGP7SJ6OzvPFBUVY38QQSuqmP2IoxHxrBb1TKgc2B/Bm2X1v8iNDsHDbJihWLae4IAaxWdGkpctDdHjpg3b1HGpc1mqMlPHhQK32XyQvNA07oBUMqENQdQtkKk7UZ5nY8/xL1JKgC95kPCiGPebVJr7NOnl8uP8MCCyyLYnxMlIKjvVTJkVfalznedo/fjI8Ms7X+qJB3Zs+/TPXnu7L1QQ58w9pxrULcYMoFc4TpDjuYnkmcHKNDSMAHR/hP4pzIEEZj4h/nLO78n4wjV1K1c2txWXVoXC0WRyDGJWf5hc2DZAKsg6aBSRs13GC1iqO0dyxkPUToP6dGRVGIPrcdnlzC23J9MfQsVlgxdJ7KS+qcY0QgHOA/OpylpFwjoRO2xPNZ99AC9kx96LcgXQQc6MjTY1FP725zaXhG6uCXLuGFNqECdsicO6WnWOb7nllu6env/2/e9/7Z/9c1bKWUmzqsDsYSKmcnSUZtKQcgsLCiG2AwcOMGqPLi8tK4UOxzJjK1asYFz/lVdeYZyeqX+cjHzo3UO7du3auHEjqOLQBD797Gc/4x4DArfB/v37mee/49FHaRTcBlgJLArAsqEuNbU1bW1tMm7CYewD7LO333575yuv/OHXvsboA/ckYWUBgRsWH7Lwb06VuiEjL6Ng0ZoVeYHsYuYeJqp2nbItJhCysskdS+RE7/RlkgkjVQzpITuxZrFYSQ47SRLmAqxlXROXr6SrRii1cw6kr7SJuApdFBNApZNRjqPlYMh1jHIQze/GVclMGy8DakR5qlc25H/Nvlv+uwAMqLOuFpQeIptpiESKJZVm+vQLLzzT1dXzpd/5w9MjRb5XdqZqq89Vt2juCerLXENSk2o2ZQXR5pGpcieO0X8QjysWwMhg4plnnzt5ugsvOoZAV0/v3n1vDgyz1KNAU2UZrgYyDvJhVIHsGcOSNSA3shW1gFrPJSnKBisEA4jdY2BAAKDPetvmzZo1Bt9ZDR1HwAx0rQEPvTJ1CUKvc+N7yWTPMF6Xih87cjjkT45c7GOS3v59e2/ZuNo2SuIrwV2nzjLvrRCe5jwsLRxAkjOdLVlWUlRUG2PD5KJUPDiM04Werrw1bM4YLSzs7e3vutDV2trGfE/yUdOZdMrLc3FuyZZCw+GItvZNJktKiteuWfsXf/EXTM1bv26dijYvPeKKhXxg9ac//amOcYqEOzpOb77ttnvvuYcuO8Lz05/+NOr/O9/5TltbG7P6WSX4W7/1W2vXrcOkYGb0M888w/ZBtMsnHvvE7Xfc/vjnP//jn/z4W9/6VllZGfMASP47v/M7TDykKZlz8POf//zrX/+6jAAErG3LTfNJuMELQsIscb44+LlGcllW/4vWENAQYirClj3RYIJZTpATatqbt+9KmQ2F+bWTKJLPxh0RnZYNfz0zwgMX8WxdLkicHokJSDoqWlgrocnXacT67GtLDuqIBSV/gWKpxgEmAZTV/a7WE3XJpKjLj/PFgNEGuBVxTUMqEBcTMQ8dequlpQ4ZWl1XHhjM/PzZ76KGm6viQe1nmAqGmYwtL681ltSayVD9VcOpFP2VUo8wQq1JAgODg+++/+GnPvNkPJFiTgQ7Pnz68789MhonIdHJCr2LvkRXGd2JrpHOCydmwJhDEGqkGuFBUIRyYtcaepkoErQOHM0nuIwMMVX4iuFCmCZ/YcDw4G64Bz/455jXduFsZ6iQPe99YxvWczzgGs/5rwiGS0t5uQvD89pVkKETv495FbETJ/t++vrhwc7DT2zfuGXDLZrhno4DMLvrMMT+6quvrWxquve++8rKylVIDqjLFTPH72oxUMfZ3EKXafoNGzeg4+lz161YAWLJEGTih2dvgPvvv5/5fac6TpHkk5+sYcoes/rR0PTUV7W1feUrX7lw/jw7/+A54BMHVDItgJjM4/uzP/uzgf4B2oJNf5CE9Q0Nv/1bkNMoWwKQP5HxLmDDAQF7CTDzkVkFRGOTQQDAjuM90SRaP6phWf0vqOUnsQ+PyQT9dY22IR858U98MMfgUiFVoFSxjjGSRGM2KEfkrspK/Or559958xBzfzDvhzhdw7aykugl/tyLzpbgiQVgcBNlEfrWAdPUmxwcrqPnqueuueQLuSEr2NGVYtnmClxIrstpxzHgaBK1CoFNRydCejBY19jw2CcfrW1oyCR9paWZe+/QMfIFmRTd1ow/wbjTmPrJNi3Lsqe95IIeL4o7P51+8+TzEXWeWVHfsOGWWziQhYEA6IwxcHQos75wqsuk0PKZMKwDBUB7pPfsYNmF5Dwx7wkFLdoD+EG7cAU/6HWUEJ7k4aEhahofpautT2CP8tAc5t3Q30uLN+rltSqe/QE/MTXDdd26VdvvvyeTGvZnknhSYlF67HOtHfFD6UyxbfeH8R/kuKGO077/+OMTvn3P393aeAce9PRo0M90jeC5s93PPv/cirr6e++9l2Vz1Eut7zH6pbAv9A05Ix80+8PNxfP78dWzQg+UYS3RppQuHcxUj1SSUf/169evbNI4lDr9WvTrndoHphk1QJGvZduiYIBMvG2qrWlYQEigsUhIhuSGxqdEkpAQAwJPqiDxZdgWkEwokdZEqBKuFDUtFJNLmn5Z/c8NvcbS0sqQD1vUIv9SrImC/JiCGwx0d/e98MLz+/bvk8kJlXOQJXKE7otNY3ZkOmN5CB7ZDZBpW1sbji9GtOiAqyfCcl2t2GVutQwCDvAY86djmbE7V7Xdtn4DyhlZFb5raxl2MRY3ckTiUumcTDGwZyx5/CPiSdKKgU1/2l9WXMIeq9jq5/t7sTaYYEgvg8nBCeYv0RHSnuVMPNbkZWbm0Kkhm1mURRSkpywUFWupnDEhnYB0VYaqgSS+mFfsfS0EtbNVEZClIbxHVWUWjXst1GAcBmhj+j4r80kzq9tb7r33zrraalScP8zW/4GB4Qykzvg8O/9jGaL+NYCACWB0Bt1AmtZUWV3oeQQSLFlVwUh1f5hTeun7MVCFSWk0oENvuLHtk8kMWsaAFpaJIwKZ0PgTHsYrs0R3VMdN5hWp0ubGhiJdfkAmGlbJE9reomH+E9lNoqevr6mUo8x5wAkSDfu6RwcDYyNVJcUVZYU+GTqowwTeDk20J1vrklr+QoIXGP1QBIrUS0E1hgeb/jNjKEK8ITfFCEAwFvBVhX1rVyYjtsItwQZAkb7+vqd+/lRDYyNL/zlJHPGiXKx2xnzZUhbtrzBiCMOjIS4WnkwSUgKlc++0tXgby8kG45mKyGABkoQfEpMU6GqZXywDZcI/S6l9GcYRXFa8IeeUJqIShBn7owEjTTiRcaZzhKXmhS0ZE5QoGESiWXiU6CMdltX/3JrfiR/pJAxvyEpsB6FL8EFUpSUlDz744N333+vNqtUYK75BP6KNqBZ9puKMsx3XyPEoj5YEIT/EEGykfSqwBfhx1BWGcCnHy4YjbVXVvJfUEZGrHIFiY4yCb+78baykIjEpyouLC8LR7nT6TA8HiWmtdyoO97Jzi4BSxU1hSxWK4VXwbIJFoxx+Jh2yacCre4sRwCcBMdsss1lcob8GeX59Z1nzKwTeQotBbK5d284IvS29xMzznTmX/rff+JtYYWzbLTVPfmp7QQSlr8MZbFmmWs2UoZrMWtBJWMAAL/zMIBCKME2t36/VV/ZJRKMPBBLqoifvTe6vvlyVkAWEwrkVk5nWzMJiIHuQe+8Ux8XMRkJPFRbEurvP/d3ffkezg1KJ5Gj/6rYVctvjLPSnOR8Swwfd5eWkkrycvTy0+tc8cJo2qMGRX/3qV9/+9rfRc/I/ABqmuj8TD9e901ugJEl2ApCpEItFOSxp56s76Vs/9NDHKiqq+GhKkRKEeYJuFj9Y1patZCBnFBEQU3pQ4MZJK7pJyBVBJUcLR3sG6LWj5oHKbfVDtHHosqRib5TKu8ndjreFXrmKedWztPn3XuqP8J9l9T/nxodH9aPbg76F82x6E1TFPeZrHc4o8aS2sOAbJqe6/nrgv/7MHIwbiQhH4s63eX/GnKh/sivkNLyh4dHBQYzc4dH48MBAUWERTAWHWMeLOIrNL48dZi5w6q+oYdtgNM0pGuUlJWe7QxzXebjjVMn6jUzPQRRJL7NYGSMdGaKy6YPIl0i5AIEmWA7XMwZoxrHCWFRD37LsRI5DF31//4O9vtaVkXTPlz77EISNhoe2mbguvWWkjQbzSM+jP0fw48Qo8lD3ix80osj6ZrF0mRDRpb2OsTiuVjlvN5ipKC996KHthTG2OByLRdLlpcWZ4UH6uqhCRgNUebA8joGJFdd7YZu/ILu8vIwp7nqS8mbIHzSqM4z6L36n/6+P78eJzn6ZKNxzXef273+DqYv33Xc/uh+5YcLFesayD2YociIA83oyytH6CNw9ZCDdTx1sVEWtrpEBL7iKM10amNH9+DWgL25swfO8yl5ONAsMLKv/WSApLwrsBxfCskxJMhEG/yCncNtJIxIYmjIOk9BkRY8+iUmlmKfl7Qn5o0wZD0vg1sPhhxeBkQCG9RgHhYvCvsB3/sv/d/b4cbn32eYimWx/8EGllkj1JIf3Jy/Pud9K5CtXBurSmaaamjPnOgd8/vdPHK+sqGitWxFmqTJdPzz/OtAow2xD4KR8/nnOybkXeV2kUEs7/BqG8IS71r0ugJ8TkBpmgqpQ8jiKw9qir5/Kt9Q2NVVVNVakNOs/TTcUDaNFKE6JGM1cthTYwH7W41NKcRRlSf9ladgeL5vTlY9Ae4MJfrCz/eSuB1HTBCllcUQaj1kyHg37m1fWFERRbMloUB5qlv1hPRFHhxmCAd4oW0dkE/kYyZLttROf/jGb3suxPSEQxf/uhaiPqZTxVDATHOju+/Uvn6+oKH3gge1V1Szzw/QSqgma0kuJMhzUAosbHOjKlxLk7uBciCQwI9lcQdgBqHmB4c26V8tLSGq9VAhfplz1kpl6vbiwLeeWj4Fl9Z+Pjdndo2slwFAE0v32IAea7nmHamTRv4QbbK2BLD5o/Gt2XGaR2cMnRHpYFC7QoD9mBGyKwPX5vvZ7v7/j448kR0dijMmzQgmjQJJBXOJ4Sw8LCA5McZ2MGTr0wUbW1FZU9LLGNh7f9/Y7OHtXsVgcwMSg2mqUqTrqxFB/yuZqpS8QjAXUYGmTGpK9yokClra0q5U71UK1SyCr+wUx4+mP+XyF/s7E4MBIBGNX4/1SHeb7AkwI1xp/Nu0+AWmzSXC10DBFuYCb/5sixvgrCQUpWBRfIjHc39cVCflYccYbrYPA268bOAzj2TZCxpYSalz+49nozvKRx0WLEuVwsWC4s0Zwj+z7z4QjX3Kkvrp6sG/wpV//prys7JFHP15eUekSCB4rgxvJDcvAfVrEq2tf5Y/FoRENTfJXwbaYgkeHFm7o32MB8FUOAgMJXyZvMBS0mxnBJCkxl8NSYGBZ/S8Uq0brmLiyB4xefUl2MLfdQqBgOlAwAfyKJLUe1UzFOXlAJlC/W8TPzELEAdyCqwFvfDIZZwAtFgqzDyYb/fCGqYB00Ijg2JqycjczlTTNt/y0AMFcnHgyURiN3bHptq7Biz09vRf6+/ccOsRBHSvKK1ZUVcUKgCXA3ufqBQKDSRPrv0xTwPLr6wQD1imEqERYECRLWDDvmHoF8UViUel+LYpTL1I6TIHPBHdvt9NcMJlgBfOcEVkGlGkhN51mmjTX0Guqie51jCLQvXpPAyHKDy6CZ9tamv70T75uo4JsxcNEPyxnbCvWRDDpEY7RPExhRcrS0OJdJ+crPrdCpbuFebWBoZ570gYKQr47QqnyitJ9r+/7/I7N9267I1ZRqaayZrqsCJpc3gKeNaiv+QrsaxRk/0F5McfSePXp0vT393NYH8vzOPSPo/w4LxsLgMhM1Mcg0Lo+1cV6ElQrL1jV856XbxeGgY+y+jeG8fQmWJxIaNOjVfNHTWoh+ZiNinsLTQm5um3B6bJHgmFOsYMn1YXH38VHBAWeYuPA6TO2L/KHqdMPuzI3RuzNNDuUvIb4OBlNrrQAij81xiODAuYxM/b33NJOBQusyxQ01ed8FFDJ+FgiEmOHbV95pPC+LXe/8+Hhkx2nOIF36PjxDzPHisLh4uKi1avab1m1OjWmqTqyUyxb1Xuq/Kd558FMqiXwRE5T5gJeOywhnOQEsnx0o3saGGuPq7Qn2DDtaXiZG0IWANwiJQV23Na0IiKbiuKBkp87lalmlzocTmgpumea2W7VNdNgfiU7BCotFDP+ML/MljoVOMAOh1z5gR1+pqVoZgPfrjQ7P96zQiJDd5+ToTgxMRoKNNRVRzRDhi46NdW6Rk2hhbPBnqMkZZbNKQ8VutXkYorTrTrEFl9tJErjSCbcgmSj7Nati/6Xb3z1rb0H+068de+991RWlCXlpZO3BhmijGRoWe7AAMPqpVdYtmqKZveK7ahA3RsPytkiGQFiClyVNbeFhjKxBo4fP/HCr15gCz/W+3HiFOf6cJ6vtgIsLX3ppZd+8IMf/Pmf/zlr+nEDaM0R1oONMFIqglFznG3HKoPZoDfjh7IIDj2KgPAkaI6kuk8OYmpF8B7cq4/89aOs/nON70iCq6OQ3Pupb4gklkBDMzdveBhfP3LQOalgP51awnxczpXigR+UiDCAm+xh6hzH3woAegxy7+H5Z9GqMS3GBJP6eZkcGmIAjdNSKQ/fu2Qy3TCAQeRA/Vn4Yd3xLOd453BBIqQEkxfYlzw05meb1qYVDb5wcGBoqK+3B5cAnZWB+OhgfLSouGRNQxNTmNlxQAN22eLGocm+me4vMd3PRZh9wukyXNL3gCdwTfJyI1kjKWQGGpKIhrDaWHOYdFVcidjrLXhEpG6jxoC0sZwvfrE+VBHGAOVZv6znf7xuQs+NGqxuphfVyhZo+WzjeiiBN43ZOfhjdHggPTZUXBj1jcUDDJNJ8TNheEzmPOjDv5dkzn9eBnyVBgfz2czyUMkrV6RUM0HP+q8TEWVByC4hcUGBv7bAd+tt9cU3V9bWVjDCoKWZSmCBtqRn4vby8l5Av7ojYu5Hzkpn+p4/9puz+pfWFzZgER1foll+gQDnS72++3X6/U888QTbKLGDL5v6Pf3009VV1UVrC9nXjwVNoyOjuAHYypcUqH+2NXPchELHSSD2sgCj4SpwgwtS9hRjM5B4g9YX1dq+jWb0KIHVUjfZDHT/EQ/L6n9uBAANYVuSJhwI9Hd1f/s//Wdt8Is9oL33YT+GsCQdeQM7hlDORNUaAZKIIGcuDElAQjIhiRJYbDEiuXDcX8Y30NPz0LZtOACQu3T8WWhvumfmXBfyFRbioMwoy79OnTl94N23u7ouAEvEtmyNFYRKikvqV6yA7cJMUUzEsQngWMerCyn1Wk6rtgUF7M1se9TIr6MesjrESB/tusSETXVTZJVJ9LhWvJarNAVsoj6rJZatFvdLr0T8j95S11RTumZFTUTdW9a2SLYrtfUjp8jmI/mKs3wYlfvw8Punjh/mtD3W9MUv9q9pb0E3SQaImyUuwA2D/sbb6G+oRT14kdZlgjiemFkuQzwooV5ZwpGRzPGuHv/wcH2l9tW3QATyt0CDacK/7i0fg8h9WoKr6qPhT23I4yBEN3OeL1v6a1f/dKattZX9et97793CosLXXn/94MGDKPsf/uiHzBP83d/93braOpwEnBV05MgRnAQYBGzyw37AzS0tRGAfxl/+8pdsBchuhuwS+PDHHq6uqX7vvfdefe01zAjwg61w9913c3AA67EBQFS6HCZiYFn9T8THLJ7wsbEOuqa09MnPfjZjCk/SUQP2dPAzCEWUM0oC3RziGZKD2WFEswBmzl7K3OIRjXTOmeUUKuwDE3MiJivx8A8wmqi9gVE75hXIyoKZs5/bV9spnI5DOpFJXxi8uGvP6706RXSspqKysbq6try8qqwsWsBmZQyA6IA44ITDHSROEs2tvOskNo5XcKJWRdOzlbrtSYKUw1/D4erJkeH40GD/hfPyUjJ6cnFIzS7RzF+7uz6q6RrQ5CWj0mbXrqz1/+d//6ec0lMSYMc+aSzsW+mQrFRVDW/ghr98w2EDMuknGYZz0olVLfXbtm2trakYY8MfzuTVuT78HWOvBNP9cDPBuNy78gj60M1c1QGYmV6yFAXW8T5aUp9OUnr/g+4//3//+/kPd3/jT7/y2IMPYp4xxjBuHVxCg/q0lEGOCQQXAmtMTk3UNqf8HT16lFMT29rasJhb21rb21fBViPDI+hyhhZbW1uJwwyAzrOdv3j6ac4oam9vZ4f/7u4uEqLyP/GJT7StWsU2/j/5yU+2bt3KsVUkYR4S5/o89dRTjClwtiF7Bhw+fPgXv/gF4wv33XdfUWHhEld0KZG4ZHkvq/+5oZbeHGZkNBJKpBKVxcWIQChbNjyjoWgFdsVBJcgbIKdwGIefcbKG28aZfKYSLYEimCQVxcLnWBOa8suZXWH6Cxp30BsbT5spr4V9wxbBT8hW4X0jwwcPv9s7fBFHHNtvblq7rrmmlkUH6thyoKjriMi6lu4HYsdml8iZhUFzbaRWpdhyMRTWES/S56x3kG+TKmtaEw2VHnvzjb2nP/wwwUEMqP+BgVg0SiKHDUW7NipyWSic5iea7EtTSRoBgNbxXYdxb1Fl5gPS3Fqxbo1OzaRKrpcKXhYDM0QQN08MYINO9ejoRYYD04lRtvItivqrywuLYrjqEA+wRwjbXa4jjz88rOUhjD6E9VBB4myCh2sTSGDdhtfJPp4qeq2rwnd8dJhjbSnZx3Ihs8mdnp+ihaZ4NZvyZ4zj6iAjRmUzNwG3WMiHTYxef/CBB376s5/98If/sG7tujVr17ITcHl5OROY16xd0/Ze2+nTp++66672VauSyRRH/3145MiXvvSl1e3tCCIkHhr97//+79/Yt6999WrKwJjYuGED1kCsoAD3AM4D8mdYobm5mUKxDP7pn/6JTG666SZ2PuDNjDB/FD8uq/85t7p1eCBFlu8m6X+Ls7U4T3yI558JUVAZfBdE/SM9NYTuCA9mcFwxbYmIFeLy2f0X35DG/KuYEZr7r/V16o0x8Qr2wJHHHAGsDkpfCtJGanFox4lzZ06e60z50qXFRbdtvKmpuhaFxhweQHVuYc1hxgiQmQ+0493BpQBpWtxdqQ9UKp6Iszsp4454Pvj19/UJA3j7kyl2bIj4/C119bxnBLJ4bbiivBwioUlp/KxQvFKwzr8coNUsRipLE4ss/YELfZl/+NGvCoO+m1sLP/XI3fRhyV4Gn5H+/Iu6flKKvsWh3m8i4JloLPTB4fcyyeHU6MXTHadKSwqxjf1pVvaLn9OJeCAS08C/G/tnHNBRg/sjszkXXAng/jIM5FjNDApJFg5QwsWfRuoUlfqqa5hwj2nGyE2AvZnln7xyQYaxsCRhgMWoP/KTscZP859Xr1nz5JNP7tm9u+P06f0HDtBNf/zxx9HQkTDHpck9gEcN85oL5/vRlUf3F5eUYDrgzGe3g8bGRjQ9XX+EH6mampuLiotJONDfj2+AMQXKYkoBcpKjfQpibLbYzTksSGmtTloOEzHwkVb/WQ4z3Sk1PavAEH4ikYYW5eQPa70K23YgCG1UWL19jHi6RjCiTZmC4CVKjc0vw89KOjGKuBp7wttbRQAyIRYRojFm2NtF9sbyZgX8ZSORpcODWFbiLn26u+tiIp5Kjt208ZaVVdVhHJhanoReQP+LyWEtJjtiC+if6j8rRE6sqNIomYlXPslqMl8ClTOcXhbwKxQBrNCRoROsbRfw9iaShdFoYSQyHI+j+AuC4dUbVq9vX02vGY8NK5+03llzPoSWSVW+QhDPqxg1gU+TWIKc7GBDx/0XM//H3/x8a2tT6IGVjzGxmkkBWL00v9anQPGq31QVtJzscxaQS2Op5acKl8acKtZSvZsCKkjeGeh846euLT12cXc6lYyPjgz19XUVhn0rG6ubmxpjbI9JwFFkM3l9nGVAXMYGdAivfXKQuwUUuuelKzSHNF5IjbqI2a/eo8OOR1XqJIgdxZYMSA2PUoQi8FkMxNtsJtm/2Tzn8ldGbC4jKpNl14l5eCWAKcrVqL9m8BGF+DY/JkSPv621rX+g/8TxE8wEpI+Oqx9djs5G/ePjVJ8qGOTQXuLT79dQmgX6XHxCBjJDkDz5SrZ8VWfMqG/fvn2nTp6ENFlCSExeY16QIR8dutyVVA5IHnNvJlbCe3LRXK29ek0Z7/p8+ZFW/9Zk4g/XdtDBrBoYHqDHY+akTHuxJz42soGPZUTAiPxspQ3ERf6mxyziJCKZZJOLyEiZDQ4YGFq5aMah9CuShPJ41nAAxrV4zM0ayiZb8F8PDzbhC4nVPzI6kkiWxQrXNjYV8TKVsAkPms/IP0GDekDi2GIbkDEzOznoVKWJ2CYZzK/KWPost1rXU2+XLlza5pNLsxjAYLIPyAxO2Tw0tN9/9tSpt/bvHx4c7Dp9erC7O9bWpnNwNRCkfjGwX1Pmy+zxCIVDb7SSKkC/jboEyjqT0YsJG3wKRM28dZYNGEPZTCJnK8owYE3NnR6mAYBP49/0MP40TYoFvZ4BkvF8ncqUjvcCN9mfSQ3oFQUDjYbDbH6V2L7tnps3rg2kh5n2zwFgSqS0mqyjwUDsZs35tz7oeJ68serq6uqdE0heqe6z9+BFtrwFjGiSYFwnwaQHyI7DhTg8TIIHoaRRGhZv5iVVrHkG0cE4ROKGvMcJeYI4yQR5P5wa5isdd1b8l5WVsbSPU/gIsNE3vvENdgKAlej0Dw8Pm+6XhY1NwExAOvr4AND0BHwCTOtjoh85UlkWCJCndkT1aaIf0aqqqjjWCEeCRGUgcO78+UQ8wYiAZGcecBPqkPd+yltw68Wf3DJTRr+eXi6r/7m1FgQARUN5KegL+c6jeAs96GfvO/bCddkpmqxuxxl8xi7PJz+vUJMQ+QCIYfKfc3yG7BArqywEMYwt6g9xiJhZvZ4MyEvpcskldzcTss6LnH+bS4JvA0u7t79/KB6H8SqKigsZwaPgFFN4wkxs06avmgGWZoGDRCDbmgNMfl7zugcA4c6EimYWzCuTOSa6tJDJ9XAxBI41towvjnHKZOj3H3jjjZ5zZxnoqSgsalvZVFVcGqXhIQ+2coVSTA1cWsAcIbzC0R1BsRebHMeIb8SEMBIrOEWfLMBxv5kCjQqYU0tGjgafUDBmMc4DVA/bE7E0dRPk524xJkfLj2D3E3PVK964l7m03FwabXJOant+1uGHF1HkIEDzIlOJztMnz57piIS2stA/NRqnzdE3/lBEJ/rQQwU9YwnhiWEgstDECYwlU51eZyEHyeRCp3smARmYdieKEy+8Y7xh1BdN+IqZdswDVhtWqNczni6rWb8HaDMo8hLMjDUEpJubTArm/rHSAe3+zW9+k8evf/3rRUVF7ALE1DzU9v/P3nsHWZbd93335dTvde6e7kndk2d3wobZBYidBbBYJIIgkgTLJMECSRdJk3IVWLYl2ZZtSVWS/rBMVdmmyrasKklVKBdlqUgQTGBYLrAAdhdYbMbu7ISd2Yk9qadzv/yeP9/fue/16zTTE3pmuuee6bnvhhN/+fxO4pxfzE166uh+3ly+cpmvw8PDr7766ksvvXTwwEG0O534N996E0ti165dNLUpKjEguO/p7mbzgLfeeotMtm/fDpviPGAVALuV7tu/T/ilrvOlq2vHAlJoaZx/i+AFmMIQeZhE0v26CIH6vx4afTSLQIxIRHFGBjC3uaHQ3+qFSytLLxANSmSAC/Y337VoTklcakurvBRz6SBJal9UlLsxd4KKYGavOmR0LSSS5QbApWadZl76eSqa8m8WQC5+RtaG5v3SxbsSG+WS0Uyenn8pGYv3tXdoBxhOFGVwDt2GQSMBg4RxCyGNtVSw7KHrZO5/shpSbfV9GpX1E6oBfg60Si95EiDVJgd/bhakavmqLwg8NC/pfHxZES7TRg4GIQdWlUJjXJ4kVq3kOWRihyVEgqraLiVJQDFbO+MAoltcLH7i8NOffvbZ0swMW7jRDRGGdKa47dksGaWaWGrlsVYCJKuVpdJYfpU14FMp98ZxzsrjKuACJkYIRIGAztH4rbXPwLswKbkTqIiPN3HV4uA+Ln6/9JtmLUnWSGkc4z/SDGFZn0RGpjmx4KRJxdBc4Wz68ZAH2hz7Hsu3isJ/8yc/6uvK9XS2sTgHLaWawix8Yp06QQKAf3QW+MDRPLiyNWZggW+iPQrUhZdLAkPflgwksIyUUPCJerPZ2uWp8ji2GyapMEiNdb25fBcX1gI7ySKKhWtgE26d1e+zpKqj2vj/wJ9YAEue81AqdPd/4Rd+gRn73/zmN5mxPzszc2HkAjPzWdGHtt6wYQOb/zz33HMYBF/+0pf27Nnz9OHD3//+98+cOZ1Kpa9cucLC49279xzYf8BVjyPIqQQNY3pNOpPZ9/C+U6dO/cEf/AGL/RhEOHLkyNWrV7/0xS+yoIA6+ICylI2HRptaRJZ7JWAZ24IbjZ2Q2F61ZuLqsKavgfpfFn2gG5Qj/SAdiF3EDX9JHBGkGMQB9IGkn0TufEFkoiqkLfQSk1yucZ907J1RVIPmlPO80vXBOlAq2r5QCDcy8/VLj5tsvZht26ESXAaWKfWUZILPpZsZclYKV39HvuTJOi1yVXMsybyyGw8Uo6IVUXRfKBYYaUP+ZeIJOv/ILdUDQ4QRcNyd7NpNiZIAfiDzxu31fikfwaHRO5aVk4kWzvuBvARuVQNNqrLkRDegk6OKtzDXBEpsQlSVAwV4KwCD8iCtwGFBGt06YEBJyfkDkUouV4py1QdmNYbZUVGfmV9ZLCGhkDL05Jm7hCeyXCkaXNWdqZUrp959Jx1PRMvsa8J2eFY5ynJK0zIh10aVrd5r4UKFTephXAJ6aSz2p8Wo9UqlXKWUYBN7QzgOEDUtxBwUsYM10y630kajzLmEPOoN1GxIJFuAy580XDOAI4DdfFzyxvBKJgqGZCUCeZY/yXkgCkQsRndU4IrmCeaGLlmyB6pFHMzel8sHuq1fvDjy/ol0rQJ3zE6MXvzY4Scfe/ThBIP97gR6A4xhnoSQGSuB8MbTAleLub1r/DiqpdjXGq2q3jCo0nOR7Il9hCPe5g25/+5LT4Wndjw8PGwmBqNyZS3RNCNtLsVN3qnq2oQHfa91LtRT1A2BSJiIaxQcMmgm3yyCjx2HI0MUUZmdRwf9NOeWRSLtuRyT/+m1489HGtBr/9znPnf27NlSSQeax+Lxjz/zTP+GDefOncM4GB4e3r9v30MPP9zX38ecG9YLfPRjH9u0ebPDKxXkcBJWAbCkEEOB6pDbM88844qjJhKejaD+E42wlnDV4IyzYhsURQPYlgl5qkiwgASrGrX2mLnR5CV/A/W/JFj8l2JH6VORsTN1oX7nb4fqoSZ8AIoiBy/E4fMjkfXWCAfSoZ+o1JIz86QVMRp84xdnbEIcaSNyFcs1KRZjgid1wSjVl1M8iij5IHeiurx+nvQ/pVlhfxEs1cL8llkgAWd5+wUu8aN6i5GV1L9v0Lyri3JT3fhTe/m5hQBA4XYsdDwKKE4EgSwXsRe9JrVRsBR8EcGwrd7QHN0oioLF1Y2aaL92TxqSaAcezbcHPo1sKZEGMQVIQ5HaktlBIpRQsdgLjDVWpianJicncN4WZvL4DGkaP7wq5vNkqmOV0QNs6qIV3F4pP8ucIqq7ZdNWfLz0+6mIOomqt+qiqjSra6/WykUNofLq6UKLbrmaoeP4ifc7kjPTGQFfyGdquRG92i4KN+pcspV+lkt+s5cCGpEawcHQPfHa/+L/iB0VDKcuzs1dhSUXDGviV7GsjzH3TYTHDk6cRgMlsdGWje+xfx0D0JiF77zz2vjYBdR9Iux1dWaHNg8m00lN+GV+H04h0YDlJsAIUvZExu6lX3jjx4ENYlkefo2oi35pAPNzzHQQg4S2DCR+5YsPp7yHE1L7Nbx1IkjR/qKkN/mCDBBmklly+AEcnfMpiSRTPsKjyUn5ughqv9QtfwsDep39/h599FGLKFJi7p5DaTKRZLXeY489Rhq+MrTPsP2HnvzQoccPjY+PYQcwkE8d4EOsUlwFX/jCFzDKMAWIbEk8PArOqcA0AkwKvrKRAPERCBKaPuHMVUmNcs1qEhl1ttFVvF9Ml5B/VQ3EEFT75lKui7tA/TfRKAJqDUbBMGSY8yrAO0pF8oCrJtyZqNANhiH3plugQUiTKHrU8HyxSH+RS8l0XLVQLIpJtGmPExBL6U5KdRVBpzOnJRrFUmaEDKbiyghZKpFEEYpzoM5YTDrfKqcX/LH3HNxpEVQPPhp1qw8Hz8Krqpoqf/3QqEIzlkshkJCrq6J7tRBqzRTXvxGMGB3ncG9paMkRRAj/qKgaQmI1By0t0wm+VU/DWiIeVtYmKXUnC51KgSfaqNbpK8wvDwAvBGrlyVgJFoct0PSrDDQ0sWhmenpygs3F0PeTE5OzM9P5mTz79yjnWjXLnsZt2e6uTtZ28o99x2Jx5ncAQo/9l1jdFw1FmPmv/iAmhaxFBxXVYW0HwzPN1FFsgqOXSXif/qWfb29P7t3WIe8/Sk2KjRiGDBsgAbKmT13TAYX74xHACH32wb00BLqIDmjLQs7SKgtCI5Jh3E/d8iMje15QouY7/5vr8etBdOWCffJfCbu0D1VnnyvVUiLOTPJCpaJpD6FQMRIq79u7Y//+hyCFSL2SSsZ72GJPE/vnzFO/vipEFOwX4/+0PlJo6+P8iDd+IrkonFLgJwYHxwuVE6NT8crs1lx8Q0c3mKKOYgDHGDfOcOkY7PRA/m1t2UuXLo1PTLZl0nKJ6URypgMxmiH97eSOQdJl4prW8qKRNyLQyREYHlb1K8eZJokEupyuC4jmJSyMeNMqp3q9q7tnenoGYSiZJtEny4P+A14BBAiNpIm0leC6E5lEQgxuJwpSLMt0KatRfgtOJBRFivhrlB4BgjzXSy1SoFuC/KHcqcnpWJwpPY7sbgdfzSrcFzeB+l8GDSBa2lznmlRL2P6mQ1hGS0AYcgKvTemqcvoO+1lAPdXq1Mz06NjYbLEwjQ6ZnUbZM0YOSxBBcSwzuIVn2BFqRZQtEGKiP1cdszZqeelHepxQo0gettAxa2w6lGxLp7MZNspMt2ez7dk2uIKExMZfjQQiGj0QEbtkmJJqNFqqFU94iwtsmabzGpZ1fxQs+aJ+HboYMcaz+3JbPEDdgIOmM0oyRbSuUIUwkkwp4n0KUc+fHgbtEFPbPEopWOkQX5yqKmqc+J9KGffbO9wJJg2IbVof5saQAg+sUGAsY3xs/PKlS2w/Ts++nJ9h63CsKCIw03hje0fbwCC7hLKYmEXD5Ik3AsNJpoTKMIUhAKjrQ1aof9VbN1RFsKWqqgq/9rNGL7QT6NMG0SpNqnoDHaH/6be+FA1VBjJFr1SoMgNALKBNKCQyaSdYkaZ17RaMWv546f6IBy1Jvhtk/PikIy+Ce9t621DeJDeysG+NMhYwEN/MjWtxIDF9Nj72X+hZ+VFhHz/Cp3K294h6qoED37KH0jhW05QTCzzZx5mJr8VKoVya8qqzw5t37hraEmKbvxBLfOkiikGsMIoiuaugX6yV2bhf+Ds/JhaVNgBWHe1vYewFz1Z55aDY6od4J89c+70/+e7shRO/86WPDx7uNY/MHSBFIAc8hoeG33zt1R/9+JVDhw61ceoo6+tgKG0MJTFHJWBiSQgZemI9aVaeBI4my1oMMTo5wrZiXoJ1rmxxAjOadWC6RJ/apWMAtYQPEVcqssG6pt3wD3XuWg3bqu1mfMB/7n0iniASpwcSExMBg8AnL9VFQRiifEso4cKtA6UqrxrqtCHcJ5XqbKH4o1demZyc2f/4LveJ6NYm5bPWQ6D+52GwFa8YgbA0VKgutJY4QyBM9NEDI2Bc8QaPTU5dunL58rVRZshDefF0KplOt+WyHYODLFdNMR0lnZa6D0UwHrFtoUU2o0BzSLSIaFsLVE3U5xX9UXANTYX7S+4D/AfofjYQL+CY5j8D0rMXJ8dnL4xgaZB7Vzbb19PTz9gXh/DaIL0ol+36jVXQ+TzIboFFVxacRLGaIJb1dIeDsRDNRydLDtS9OAwnCQJ7R2A8JLEsA6wlRjQRBPK/2Si+3B2qixPR3NBE2J6ApJEoETfrpFGrtPakA/C1UvnKpYsXL4xMjI6OjV7Lz8yCiWQ8nm1r6+zcmEkm0qkU+4KBHSpgzE1nvsbG/eSjM1n0kt2clSXoAWnqSaAYiIOcM3mBpSIKUQwn8dytrmsxAExTtqhl+v+YlJFsJvTIrgw7PGszq0qBueywAlI7xlGU7AEkLM41XECRfEUjLhkMZvpiENOvzLZ5wdDQ0Brzvqzgwc/WqMxl7VfI0rp73aoQhzVnj/v1lkWHLoNz8bdNT40lEvEXX3x9emq8XimNX7tcKRUyHKzrlcw3BXGazSFebv1zdVAB9reCWt9KFIDOfhOUzUSMejnkjU+Fvv36Ne+N13/lkz+D/oQmYQFkjavNrZRgaciHYa/+Df0P7dt35J13Ll669MShx4a2bmVTS0SL/plnkQJhQXzm4seK44gmHACFH4iDPi6Xnc+A9X50zdXXJhMltMX6RAX+mF/iN8+jl093B2EIycmOr9DV8Y0zTYUK454pCdBOAOCF1aEbAjxTdgQFPSwRiM9bCtWV6LpBfkQjsWgxX/zgzJkf/+QnmBEHHjnY29NLzWB8Kt2gmSUyXFuvAvU/hy+RgAWRkYl5GbaQZSgipQ8jMQoQDucr5UtXr4xcuUxfnyXx7OXd1p7bdeAAU1FQI/FkMpvL0T1H2UvxS5EjPx1ZqXuBZBEvqbugp0aZfsmK4UpvfBA/af0MuwhJvZFWNunMLFvLF2ZmC/nZqYmJscuXLly9evr8eXR/V0cHZsDmDRvQcJQL09IJUsJmUSsjX2OY5bimUbnb+CVr43QMLNtDCTO/UCjnCxfPn0u1t2dy7VrmwFQjVhvgJwCMAiFBmNFPYwAS+Sd4qh8q44aP9ClQRtqDBVV/9erM1PTs5NRVVgAXCtlUuqu9fXNvb1euvSPXTnefOYJICEEYdca2fcpZegx3DfYTGUq08KzSZVIIeFxtsqJ1LLSFi5KrUnPayq+rvVyLF0AKwfCfQPOY+nZ5tP6jN96MhKo7etOPPrRDQIE7zNIijiHFEOO3VuBapuFEc398XxTH5dF8zWPzft6t8qaCS3j7wdKctHfY8uW7lesK9WNILSr/Zn2Eah5QYVJFNJs982h+qdTd2bljeEu9WoxsH+xsz27e2M/2OoAAtasEysWRALeNG71f7aAKy5ti2FIzQm2e1+0lujDcpP7VHtHtLRsADvwIEigCYbh561Y6Ne++884LP/jhe0ePbRwcxAhA4uHghEMBKwwC5Fx1REQ+26qaVge9QDejX+nQWxe/rtFVwZzOlcxO+Ang0//nj2zJkwxx3tG/sgYKrDIC5HkCUToeHVSZ3S9jnEeMBvS0Spc5IflA3ZE2rchw7XJWOyXqUTFU3cmJ8RMnT7FnwKUrV1OZ9BOPPdbZ3UVRpOczrXBpW3Nbo/eB+l8CccKuyQcoEZcanVH0AJRRKObPXrjwwflzxVqV/SR7Nm/qZHpJdzdXhoij8RiOMNKSFG8ycZgIIE5QVmIH9IwrrIUVRcrNAO84aSSetS/iXek9VhhDdvJEW+RQoi2dzKRQd3T96Z2V8vlxTsa4Ojo+Onrl0qWLJ46/d+LEpv6+oU2bc+k03IM9TobI62ZZ9/ZGMsD40xgKEOE+L2eSyb3bt73ygx+GEnG8JQQmOrSlMlhU8RRrD22LXa5RTlvE+2KcSptoP8eqFArM8SnM5vOzM6j52dkZ3lTKJSQBEiiTSA4PDHZ3dXWAp1QKUcIeveJ4uf21hYHEiBjffITOvWCw1TsNDS4WZ6b05bL2/ciSfahEH3/3Frp3oHToFdKi3dZ7lAIZGav/8n/7fyY29P7205sefmgvm9lr6SNUjWkMACWKbZ5Ua+EGUp+UW94bRzh90HhratwkOOgycKtsAM87EQvBLo349mvcYnwy91oIEH+p8qSwRDYQplyVIZ/RBK5jTNbSaryjIf48E73gnmE/fFGheqmcZHeNUnn3tm1Pfeywlx+Xcx4+4vTeOqvOyFpIt2xdLZV0rjqreadquiY6n6EBuoozIBJnaM1Ne7HyETtUaQGgblwz5W1AsagGPFsg0TcwiHV+/tzZc2fPXHz77XeOHmVlXXdXN3Pxuru7xKAqzF8MIsQKI4YKq6/Djix0NgG0LzQEHMPJgBGSMjtA462SnoYpS4wzrsx+PvhESYutTwp0v/IhlcUAHQ759LskIhzdyP1BFShOJfvBPolyyYShrWoV7wIbCl26pMWFjN4WwHsqvXP37k1btiQSSbyn1Ios1lkI1P8cQudow5Q9NMXqtjwmZzTGRmdnLpx7/e23w7H41h07Ng1t7ejG455FJznpBiUxacVki68DjPjIUopfbMQ/cdD1wnwKVWT+m8lJHn5istVLrArTS3RA+BBNpXo3buzftImlaNMTk8ySvTxy4cR7771z/NiBPXv3DA9jtsvQNloXs12vFnfjm+pg0/IllNUBpx8Z6sxmPvaRD0+xdyon5xU5U6lULYyPXhllYkABy59Z9xIRNp9fvW2pJoldC3A74whMkmQQIR7VdLyubC6dSeXashlbQsScC0VmCjdjIhTtBIKMM6Csbge5SYMpN0Ody9a+qhA38mBZmGRRKmZ3Gm6FEaVyIsawxrO9tFzW4sXIVuZQLVzlcB/2dEJURLqK/cPh9jbMSaf0aJlu1FRgBBwEKp/g56CCdrWJAibxDRgCq90QXfdggX9NGW05OktXOVtUl7MS2aMu5MtbJbZ3Sm4qwWrAxew2auji6lHdUmkmmwxHDnieSI3oZ9FHfnaWLS5KhVIhrymhxsZMDs0XilNnzpzYtXu7V5rxqkXrC1C2ClZtCDSCCjTr23xvH+2iGKsShCa1C4hRYQEC6wTDFmLWbv/o4Bqzaika0BigbrEWSgtbkDGLH2qcBJbYsXPH1qGt7LRPx4N99Y8dP/bWW29Svnb06+/b0NfX0dnRnmtn9jI1k2cO7iW9/hMMJTZehgMJ7nMfKAT84IaDxVDgSiBBZ7XXmmqm+5mdqLaQhWQIb7BTCWQrE1xTDliJqvOoGuXol5wYdVV22LVmNDCMOslOnYTR0ZGRC0z7JVomm8vm2vvYkbCvP9veztEeABdPH8IFQnF1d+SoTNd+CNS/UWIDkeIfyMgoCRYqYXCq+1098v6J53/44rOf+vT2PXt6+vvZmVp0xKE/aCPMQpKL2jT9lLRQCVYtk8KgRp/ezdsv7lxxcKRGdFLJ8JRdK+1E/uqtmIQzJSa2tJd6j5rPdne393RvGR7asXf30XePfPev/mp8YvyJAweTGsXwuwkrrsXqRXRtgI/lcFPLBDSP7kMvX+B8gKkZdWXm+zDbCoOf5tNszACZAA7aJCQmD5qIx24rqP+YplfYHAJNy2daEHGx3EEDbgADpgHW3UuEECiL7gLviaVhbqDcwBQlKhj4hQl0CdsVGPCJTFKEFNUR/N3hhxZdKRo3a/NXTbM2QF2a/Eco8a6jFxMABVio1NI2e1VxiKLvSEX7da/clZSWVt2yUjEU1VRKCw48is8dP+CQiEIWsPcdKxbHfbac5VxpBiAuRGkKjhAHBsR8Vhz30vzEqEMSrCulp46/RwZiLMyuc1eY9jlynoOaWO4xNnZtNj+L9wgdhZ+ZaPQvGRJKp9JUGX5JpTnUOtb72N6hrZu8yqxt3me1Vu0AEb53rtZ0Bya/+c2KOpg0H1fjhiJ8SFIpncXMeDlnUtArACbCi7PQDJ4rK99B3TXRpRC1WwY+WbDhJ7ZFNNrdw0hj7xD2On632Vk27BsbGzt5+vQbb71FQgzvtrZMR0dnF0Nt2VxnB3uHMmNZk2yALeg03tWwpoSmKW8hk//idJn7GgGEKJzoRIoK0aqHdfNlJYRwBYpycOOAL3n0IAxMAFxT/CohDoRarcCo4uULYJwasvEwSp8TB5hRhYKnkp1dnVxKFOQAAEAASURBVA8PDbXRYUhnEqk0wxLmt9VuydQMR5DIjYx8COhhfYRA/QuPhlbdGLr17Fw9yAPo6oOLI8c/+OBTn/+5A48fSmbaOObPUYKogXhGYUpM8CmEDCQRXI+AWHVPO+eIE28UjPLnRZLSczW07owy07M4hOIhcZiDe2Qhd9wwI1Yr6uq1zo2Dj+Sy7R3t3/3OX+D03rdrF1NaJCiVm8uVClk2yuquBt+Gt8YAQFotHqYK1Yrb05hH8S7w18zetIFTr6y9rvamfwVoH6pkQhAKcMUw3sGyghpeG5szISRZwLTwbylNBYIl/kjBvbJyY6ku8twV0KJplEQOSnuvDNn7Gfc0gsZe3Ri7cxmugTsJPqqJ+rczf2WdhUobaoVsMqv+EyaRYKEOppSwQRXwOfXgN08Acy+QoT6G7RNEqIl1oAV7TgiUsSfTSlTMNwS/UANsqYSjVQpzfnkRAf8cruWRpSZmdQsPBEhIlq5m7VbyJfbInJ0eYx+Ya+NjLO2cmZ3FpEzHZTpkU8ktg8PpNNPXYhiL2AoUTxVIbkPOWIS1eAzrBxoMxeORenkaDlJdBRZDue6bPGTv9ehu+OLiuKsPkjv4o2JUlpPh0HnFC8XYh2BjuXZ+5CIzZlg1QxUAnFWkoURvVANy5A9sEbgxROjKvV38VrkxDjJXzFiMbXtzXV199Tp2gOYkzXIGVhEVy+PoxOSV0TGSycKibx7GxiJEmXvLD4MFTM5lRrTQYG+QumABU4yPsJhY2MpW+QQQrpdY9UyGJpRR79yXKuV8iel6rLMu4dThWE4mA7JqQLMF9b2qnoNhjbYw82dg8+ZoKklZ7C7MJoPadViCSJSE1ufq+N0KFAYFE6NlDJD5FVKl1mgI1P9CxDlKE6GIGmoIhvMXRjZt2brv4CNRlqXK/hTPOX5oqpXWXCwHx3KiGsV0EkFUdL2gmPMofcnIfuHux49hdOneIDnJBG8Va3JiySTDV6XJ6Q/efW/X8Da0qdXNcfKSmd+dlwsBYTW31sNjyHYJcXUEtaJKfAhceK17VAQXRTUESd67JvGWODxJwaOPLIJZFcB0XqvE2kTmv/Jzd3bjP7v7xVergJN9StjMVJVxDy6/xSnX3htrj2QlhCU84L5lzr/HqbXQMw5zljyAFikX1lTKAWv4aQIF6JODy4Q8NIGOqQTS8ArgTLtHViollD2CH3plQNd9MLXKa6XVf+KCU72wNbemCeR3MDsNsa7+t2qoU2VxvWGSyGdUrE5OjJ0/f+7ypYtM/2RyGBs20KVnyt62oUEGgxIxj1Wd9PE5pTesc/lwFmBskBv5GseKqlz9IUF28qEm3MjssBo2vlJDF003jWDpiNd4XtVflBGgo0ixNtXs64p+7VO7iod+ua+vS6yietAkWU5LVPVmqrZkexyzkg3L97lSCsocsIa6ungEG2CWnjfrl1DFUtflirsvFQtjk5NSy1pBAs7U0yY+wZETj+6TilgATKoiEtPZmxr+tyC7TdstywHAe+wMHRKAdm9jiFY3+HV4ITuD/n4qiXFRYmohvQsrF1eDER2E4IuURnt9dDY532TtzQDuPo4bqP+lkeNwDyHyeXJ6OpeSRxDSZkwaylLnRETiU8ZSWTSI5yZ5TiL3xsHna8fQaDxzAoj5mdEk6hVvhDGHk9FYPNNG3WcLHAAqAWrzuW6yTjeuz83GMAlrtWhYSaqwCVbJDLKj+wZ8XUssdyVRB9D3XkgDOKngdp5VZHo/JicabEw+tkepPrka8iNRoYcGnEm4smA1VWT3f1G6RS9Wlu19GgsgSWEA7VoJiIW9WBzamp5hymS1VMLhamCTyAZP/vDAXFOEOXsyFpGX1zzSzKGjo86i6hgLuooc6yrlwEgyaJV3gD67RLnLhvR2K+TZxFWpeb6Z2Ucm0mlM/5Lip3KxKIrl0sWRc+fOXjh37szpD+js9ff3DG3etG/vY3AA4p+1nepjoiHEIBoskCFTLdVLaoCyg56wJzQ7lm8sbKQumlzmnlQrBpXYnkLNIRDHhQYlNZ7naEtvFn+di3cH7mhIvcjiVgY6XGFbNsa+9pWDkdre3gzAZsqwZAEqFW7R9NaWet+B0l0WMry0cF/z9mUUYnyDJXCqtksCRWPpNtYjaA8J88to5j+IxyBwep3kmtBn+t6pfNwvkJ/69rZ/F59aaivM8VWFQjtqn3w2RODHeW/sqxmNciDKGMDFoOlDjIlYzhgjVCActzFcIUmWozANDYi2VWATwU2Y+ZVo+dBSqzV5G6h/Maj+HOqlOoRl9wPD4Nxi5diR90/u2rdvcGiYtX9QiGSQhIgIAbJfjHkJT5OQRklNHbc44vw3SxGWT3NzEYnk4rlaqzLqilGiSlUfGJFA/SLaKKM0du3y37zwQmF0DL8b+r9J3nP53fU7NYBxOoO5MZrVwIe6k8N6kPxwMwPULBhSL53oVQJe8Y/22r2xrmAuxCgg8AxBNjVYMOKFhIQDncpW8pUGwOsg7JJz9fMhC5dLI9+V5njfx3NttAUA8vt7ach8dqZy/mL+Krq86sWYzGWCV7AhIN0NIwsaRjZ842oI5yPTxN54/bWO9k4WyqYSCRYO8BKtbPhkZZd4S1iVTFcdEODkgPsW3PGOVTBS25UyXgcm6Y1dGx25eP7KlcusfmVDDPrzgwN9n/nU03193UnnS8aHnEgISzgYRBcoS3QGORsVIv9oF3qLET1aSYnCKAwkvYFTwo+pFYASBYZ21UrJFRTb3bVcW1+2Rm6Jctu3lIF9gmaPhJn+C1uo9vKvR71cLhQPJ2I1FKpEVN1z6+WIIxq+7ZLnZaDGCyUE5vCpCPDJhii8hBnR9sybA+pUg3t9YlDdtuBlHx9c/iIcw3dcGLG62YWXVlWyX7bKSqAy1EKZHmJwJVZasz+Utfhe5FOcncGkUH2EXM3pJo6ZGkZVkJrOdyAudyQmH188kDtWsLWSVy7MCSH/xZr9CdS/UAeGRWiGdHEM99CDhhErmhmSSPV0dT///Hf3Pzq5a+9D8YRcSRJORl4uPiTWSgPSW5aNkYwUkfJsjbHM/bxcLI5IcX4QaxjpI7qoghiEizkqrOKiXkQDe1VeYNuKF77PrLhEKsUM5lyCXsLiEubnflee/DYJ6K3lqW5U0P9nnOeiCMhqtZS2H4zDAYB9cunEyXyXJ9fMAbs35HIn7SFJYMklU3ww8mJeHRr5t/y671xFJnP4aIByLvncXUvqNXlLSxDTdHTVUQZ2Va+3O/SX3/yn6UxyQ9t0jF5wucQqGIgOaSoZLBkJQJaEgIM5+qrKCrG9e/ecfP+Ylgvanpga+U3iiWXUN57WltZwF05a7AFcDJrpjVBGyvOL/5gTGFjYmZ+dZEI+G26WS3nUTTIZ6+rI7d65pb09l9FMPUZzmZhoaNVAD+ttZyXNFejoG4Wh7AlUGqWO4hR7ssaB5Xy0ANogtfzl2NUcIOXSaXI9mfldf2XVyFPfWwLvpS0sLAmNxsfb+G0pG8ufCZVYSKBKjT56bPzffutHl0+/8d/82mcOP/4IrzREorbeTGVE5kbolHSjdKqMdYGsC05skYEogkmy4I63JinxrlMNTT/m5A0ioaqlgFG5FMTkG5IxgkNcxcAtw6PATQPmOG4eyEy1Y/qgsRWEQKMWfEiqgoKKIGOKYNon93iarDW8J1teEFdSXHpfhckmIDZXoElCXgqmrgKW0uXLu/URAvXfgtwW3IqgzXFU5TSXWOwjTx1m/s+PXvnJK6+9dujQ43s5tMomr0ISUKh08PzAs1EPhKQ7BUU1Cpofc+GTUs7lZvksjOIY0iJZhuIckalUH+IQv1q1cursmR+8+EP2qj6wZ8/2wU2vvfADXGCLMrpnL1wTBaI5kPhQlEIhOHVvEHNAILLPkVZrOJX3ikocS2pcLMZ2pptjdPUNVIx4nS/KxJVo4LOcWqrgnhddSeEA7dtx9kSZLXlYmrm2LMpi7b2QpmR+FW2iUwk3ZLKhxw52JsL1FKsA2cFCHmXJVYQm0EWMa3SfO/+PBi8Ah74yk+7ZZz5aFIXSga9wmiKLr6am2SR79trE1Qt57WrJR2ZssWccAHZqhBuKwUxIpZO5LFO1kl0dXZl0qqsjm2aJZwJrnL1dsXLZoZERaG26oVq4QMXEHlYZ6/mJYKiqi0C/XxaAhLzPniIX+4qfT74GKIeZD1F5CIhoqtRxmrVUyVw586/kvuT7+bFu9UmgdGmxTurpZjZU8OpY6N++NFZ7481f+twTxJFxFjbPSjPSCm4cx1gRonI1xthmrtz5mUj7UqUGQ2jEhKJBn8lG7EjTqAII4DRUoIlFPQCJVTeKjC0YYfxCzgOxrPSv5XkdKKpOkr2yJJ3O1nh/VNOGGjUhCnJCjK/SVJ4MDF8EqMIWca4MnvmuBssosdAQGDwYQNzbdXK9j1TCvYKoaU3HrRCD+gv2AO/Xq+VqPJoox8O1tsSBPfu37dn72ltvPvf83/z5X3xn185djxw4sHXrVrovEI0brNJIpggI+rfBMEQPRKOrW1pmeVv+kGODp/Q8F4zZID4xHGSLZJIQEgUTYBnjRVEnOcjoZYtc9D1sjhOwWDx38eIbb//0+PHj7IHDvtyPfOaz7R1ZlrnAWDG6UWXtVK/MXXPnSr2f7tDeVh1dJQsI4lcBw32wr5IdTQgKVESSHDHWVYduPrPSIdBH5IV+LKOGELAX1734tSBvP43LS7VpqdF1s1hjH2kx/S8sYEDKimdmlHvFinf1WikZCeUi5e5cks1PkdiykTXkqz6bYalquyOz9BzAyHVgKATmBrEI2RRiphsMHhGvJ1evZ/mG+CY4ILkbnyv1qgFjfkG0WIPsXZjDDPO15d536Pcz4ocIrmL2ylGI+6pcsQOIQi/TnAENEvFTaT9/86lruMEsBK5+XVxV/QeXX+PKS0djc8U0Pt3J3wZMoUmnn2koCAuz4K/Wybm/3Xn2sTQcWK+aopes7dJVMn6S2HGfXcrrpG/izs/OdaZ5MCUqviWnBn65dzkLTI33ujdpqVKaWHURuC4TiGy1sguVwBCYH7NRMV4rDrTAm8bL+VF5snIXfG1YAYsir4sXgfpvoNERDkRiN05wocWZrgL3M2UOLU5Hg3Mqd+zcwTb/Z8+cefnll3/08susGmHla19fH7sAsYBEPRFT/4wzuXtXANYnN47yuapbsxRDOp+bnE8tQQJMFVKvA7eYxqiY34ytYacAcFQdO1VdHBmZnZwoVirZjs6nDz/NDlycpY0zFaFo+2+RMauYZKlYNq61LWXc5VtjWGtUsyauiQuBYhFvrnJLAvbmslgUu1UiLfq4Ll8g9xDeXFG12u70/Lna3/8n/0dbLvPJRzf8F7/4+VRcBGw9KUlIkAdRWqcahJoUnoc598Cnpq41oJHMsGW9R/8NmS0LUBnNLsBDTcppvFvid/msmpFbDI3mO18KtDzfzO0KCr2Z7JaLSzEGAkfvPjTUbw4zxsceOVoLwAxG8Ggd4OWyud77BSBulHi9JOvj24KGr49GLW5FoP4Xw8S9kfSjF4+uJUijM3MuFErq0N1ER0f78PAQ+1zo7LjLl5nNdObMGcYiiYRrkjlN2AFd2uuinYRkx5wTiTnLRCaFzT418bWQzPRsNgLWBj0iK1w9Ixxo9sXDV8rmlBMW6OIze5Yi2EmDHW13bRvu7OlhZwKWMTN4aqnYkd52udLAK3lofZQZEmR2z4La2CJz75KwvGfNXbsFM57MALhkPmqe82yfe+FseNfWof5r7MCOK0nv1e1Xh5x7o6uF9HyDxi9W4Yvf3CCLB/wzYspBAPkiDLDZj1dOeAWwImPMTVtTtzcIAQQWQSBQ/4tAYi9QvLAMi1lx/qOtEUrqazNFRYykGc/MWGJmMbtaDg8NM7kG1c40+zNnTo9cpB8+wsZSTkkzhYlDslk0KLOgvb0tm2UqIRmis52rYEHx6Hv2pZLWr1Y5MpiePRtVMYlP+5JOTbGVPXtU9PT0sLMmLoe9e/Zu2ryJfOgT4d3WNiVYGyj8eogduCgFM0O+AvOq8UArqL4cAIE4WAD34HEhBLBYcccS8Khy7mF0Cj/5xo6NvamODe3MplO3kqWkWKV4AeTOUnoZrkG4pxAQd5c4jMCzaZm+0wppZp6aeT7Fe1rNoPD7AgKB+l8GDSbO6NmgqYlBv1ldZ+0jwdpZFpPpBAi8bEhHm8GiGXdsLrFt27YdO3bAgTahtY4/gAWm9NHR4tLfk5Ncr87MKJVtj8XNwuLrdSwFzAuKZjY0AwoDAwNsQco/DAhtV5Fk2NXNLdAsP+5l9qvvpSQwucuRGQl8YtcNBDSlKElj1H9hicFzAIGFEHCdRUa8UOnq1jOoXmX+SEfyUnl6Yiap2QDq9GtGXmPIVlstBeGuQwAMGdx10ex/Zj96hRlv7CpnW8TUE6AfY0ONsvgbke96LYMC708IBOp/Obyom4zSNL3PuZOscorj7mTnCG2mYX1obUxnwXz76gPhZ1d/iCUDth0VqjpdqzEGj7anGKfsEZoEqWQE6KLC+cQ7OFUzVMnInKuStabdeUkqqkQkJvFpJT/xWZutIQZtnaVJStgGLo4JbreGimwZJmBIYFGBwYsAAktCwOhZp/ox3q6RJ9FccSrZ3cdWkgwwY1lqfaUIjz8RrOXirktmGLxcHQj4UgSRUqmF4x2p2FeHN46nH2cxpOb917wyxy15taimwwbYWR0UrNlcA/W/LOrQuKhpFj1xg3RDYfOglaJR2QRystt+k6hdp93JSErarWNhY1R7VO64EDDDmWVsn3iBuWDuUpvJL7292AxQumZQBYhD5iylRcdTOp78loQyLFh9gLWiiYqqEZYB2TpnrA7IlClj7VCmgRRogja4WRYC9OY5M060wmnrrByB4KaL6RLnJWouLLSmdQGiO+3Yh9nJbUBYy0JztT7QBWE7I1bSyw6jf7JjZ/Qf/+OnY9Wnu+IFMFbxEBQVuingxscObwM8rRY61li+gfpfFmFOfaJHUb5uBFR8ozXQ7LSlNWbcGB+po+5UK0lQz3wytwHmeMV53c1AQBfDeQpaqbfiQBoMe1kVNv+Agph2wDQ+RhbMGQDbm9nBZn9YBnQFNDLAuV9KR6hoMw1FlLx2fB8w/4qB/wBHFK3Kta/FVNLrSIpovNrjFRIcoCe48E4qBeKyJd7mLQhI6y5TjKZdMq5vdr4dN8oOBYm2UC7s5digQc5Avhmm7nLFguLWAgQC9X8DLKFBLYapWt05h6c0a0PWKUojmpz2pna1Ilojow2fv2VyKxcZFjbOKlbWgyYiqBpmEDRzpAKue09Pnz/FwxLQRpz+WSnyEMhVG4QAAjeEgGxHI296jZCVXE25TOjXPvPIho7coZ29CWkU9nKRYSBCQ/Vb7BvmG0S4wxAA7iZkfEvM8yamSkc+OB+bndo30Ltxw4CpflYALppjdIfrEWS3JiEQqP8Vo012gLo7cwHR54wD30RwXxoxXHy9s4RzyW7yrjUfSVyXoeXKxYpWAX6x/i/vG/VQAtkNjRh6DkIAgetBQLQjEpLfiFttfbGpJ/SP/v7XGQLI6ABANsHnXVREJdtXnBGEewEB4I8Ml1yid8DUnuPvX/udf/ZHH/z0u9/6X//uwIYBJhBhqFnFAgzdC/zc32UG6v8G+DF1K+HmbubFNtU7740eWiM275s3i6Kv6EUzefNmQUHOLHB5mY3SGnFFRQSRAgi0QkAkjyNJ813oO4Yj5TI9y0KMUf94LZVNQF827m+ry4ljk0ta0wf3dwUCoAkDzZz/XDicoZ79IDLshd/RWmSkO2faMv1Ppj9/QQggMA8CgfqfB47gIYBAAAFnwlq/Xjv7M5cEi/LieP1f/5s/7krFHtvV/qXPfTSCqrHNm8z9rLhBuBcQ0JbgptkZpdGi3zougHjSy+YqzC9mabJm/UVrOrcpCAEEFkIgUP8LIbKS56W7/StJuUpxAst+lQD7AGer834Y9ud8H+tbTuXr//e3vvfYtq1tiY2sMGMzYBaY2jfTPzY9hbeBGXA3Scbv1MsEszEYsFDjPKa6NzOLbwanv43d+J/MqjPX4N2sYlDWfQyBYC7YrSHnfpNygf6/NTwGqZaGgBzJWp5qKsPUv+Kl+y7VUjOci6s5ATE8A2gbcxLoY0CCgsK9CkKVW4jECo2Ql9bWTDYLmHnCOhJPSwSCEEBgPgSC3v98eARPAQQCCGis2GaTYANoCqlml2n+WDR2PhrNR8Klej2lSQGmUxRX6/5tgDnQMXeZegR3IQf3vuyvSD1U9BIFLyV3P4eUsOWP9f0D5/9dxsvaKC7o/a82nhCOkqT8sVRP+wHYRr88YpvbWnxVQIsEdcIwr50gtUd7r1cKMLf4OwgBBO4CBFAXOvAXb76C0SX6v1zuj4QTbCEBLUKXRpKs/2OPCXMCQLoNar0LVQyK8CFgmGCcX7MxvJg3k61c9GqTCWYByDDjH3s0SQoFAAsgsAACQe9/AUDu+KOW4aP4OS1ABwF4dfbtZwk+5weJHSVA2SE4MjM7y/toRMf0IV0Zc2VxfyKaKBQ4uksR5b5zC3zveAWDDAMIzIcA+oQ/zFNsADNMufE4AcgrFdtq5YQOlUOdEEPbycm6bTiWRalBuNsQEHboXGh/37C3Y6jnd3/zy7HCRx/d3mXo0BwAhIrObQ4sgLuNmvu9vED9rzaGODQoMj4xznl9aH0EpVP/nNrHMYClYhFBi1nA6QDlcplDArlSISdPecmRP4lEgmdYtylkV7vGQf4POARQG+rf808mQFl+KecB+OD0mZ62mZk26RH+pFVQO+4bloLuHnDQ3fXm4/N3W4ii3vH8h/o6Q5/7cF/K60t6tTK7NbMZmIZuArzcdcyshQID9b/qWML7dvTo0d///d8fHh5Gi2MEoNE5rre/v39o69CGgQ3RUJQeP0f0fv+FF85fOK+9AmHliE4WGBwceGjvQ9u2bU8kExwjGLDxqmMrKMBBAL2vwX25neRVrnu5pPeLv/nVTFv8sT1ZbXmtrqUNAuDSQgexDEA6JlAz94SAzLdfl56/MlV+48K1eGnyod7McP+A0KiBRaEyCAEEFkAgUP8LAHLnH+m1j46Ovvnmm9u3b6fTTwFYACdPnnzppZcGBwd/9rOf3b17D5qeaGfOnj127NjThw8TBxPh2tjYK6/85MiR9z772c8+9uijd75mQY4BBJaHgLxNLO9TR5+xKG+gM/T3fv3nY6Fqd3y2XpytRrFaMQM0tkwM1L68BWYULJ9l8OWOQwCYyxhrbvJ58tzYv/pPz0+efvt//tpnt/UPur0/bfbRHS86yHDNQyBQ/6uOQnr20WgUV/+TTz65e/dudD8zAMvlyrHjx/7wD//wj7797a9/vRNnANJ2Zmamq6vrZz/3Obr+NmMg/P777//qr/7q0NDQgQMHmCKw6nUNCgggYBBQR176nE3+GJ1iel8kkwztHgzFmcDqtdeqRTNiGRyochQ2B01qVosUUdD7v8sEZDP+NM1fE4tKIW9qJvL9d2e814/NfvVTVXPIUKHALrvLWFkrxQXqf7Uxxb6pCrMzmtzX2dFJb4m+Ph0q/PmjV69+74UXXn755a98+ct5E6gYCu25XDyRIA52w4YNGz796U/jPBgfH+/u7oaNgxBA4C5AQP5ideoVoEPGnc5drn37L56DeA9saf/EU4diOP45iJKBKk7DlH9AO8yZD+Au1C4oogUCNkpjUzBsRUYk40W7vbY+kMFaDZMYbtVfIDxagBbcGgRg4iCsKgSQjGI89kjjWsMYqHJaL7+aA/jU4cMMB7zxxhvFUomv8XicqX8lPAN2anA+nx8fG+MNij+XzQXsu6p4CjKfBwEdIA/hSqtLiYS8q1Pef/8v/tM//f9efe7lI9VQjGVl0XAkijGLfcDaFk0QMEKfl0vwsIoQ8CWLHC4NH78kTNSLxD3ch4gazcXgk1P/q1iTIOs1CoGg97/aiFP/iTJcLwq9bgtwtMSfnlMum83lclevXnV9fXz+qPzvfe972AGVcnk2n3/33XeZH/AzH/4ZTf0jH8tqtWsc5P/AQ0Cj/tZzpHMfrrDALxbRvLL0hqmuwUomXQl7KcFIBOn8BOqCujf2E1zuEgR8NKHgZajZE/MwhYsINhk7AHNiM4g0GeT6IXepYkExawECgfpfdSwZ63ms4qPfH6HDFItygx2g96FQLKa1/lQC5kTrF4vFP/mTP2GwoCR/QD0eT3z6U5/q7evFW7DqFQ0KCCAwBwEmk6E5UP908rV7fAkCbMuh5dnhp1ipZRrahtdGmgF9zsHu7tyh7F13wA3xc0XT63w/RMfMDHv+xJApmhMor0yg++8OUtZWKYH6X218afwUdU7PHhZE91fKFbz/jKfGYzGUPZ+IgOIv5PM8tre3/8av/0Y8EWd64NTU9OtvvP76G290dHZ+7GMfk5UQyNjVRleQv0EAQmM7Crb6CTGfT9NQvLqm+Rc21QuZeDZCp5I9AJ3yYVc5OprNDSwDAN4dCIAAYUdXrcCss18IszIjqUhkWyx+sl5LxmJIHH1SkJAJLAADRXCZg0Cg/udgsXp3CEd4Dw8/gdHSeDRO9x9lzyNz+nAM5Gdn2RmQCmAlbN6ymVV/zA8YGPQ6OjpGRkaef/75jRs3btu2zfg9MAFWD1FBzj4EHJFJxajzKNUfx8GcL+mhUvUqzF31ohEdCMCOv3RCMQcU0/cEBGC8axDA1a/TGDiPwa0A7O+OfP1zO6qHf6F/Q68MA2FEyDErwL2wt8ElgIARTQCG1YVAlAlSodCFCxfk52fmn82XxghAx3//+99npz/0eiQqO4xZfhgK+APwEMhUr3vJVJLdgU6fPo2VgP2OFeF6XKtb4yD3Bx0CEB9Bl2oNr3+NMasE6n9qqp7vqhaKiUjUKJFjAczhDDW72A863O52++shjvIraKf/ehx0gaItm8J/54u7EvVdXTH2CasyH1MWGzJFWzgwH1BWWhACCDgIBL3/1aYEtLbm+3d1djKbj1n9cCKBsf933nmHYf5UMvnMM8+wK8DU5CTviexGBLADSHn2zNnjx493dnayGhCDgDerXd0g/wACQAClEeawOCzOqPz+qIys5+3u6emIxFN84RRZTpU11ULXUn5ljpyTxYoCCsJdgYD8LihzBmgqtuoCyKuXzxLNMkcx1Iulei2VSIMTpA8uAC3RZHJAoPzvCnLWSiGB+l9lTBm/obSnpqf/+rnn3njzTdb7oeBZys+Ef/T6Zz/zmaGhIafXYc6LFy9961vfYvU/owP4CS5evDg5Ocmuf8OB53+VERVkvwACtXpFNqim+kVqFa+3J/Tv/tXvZDLJ7uRMjHF/1qbGkvL62xoWGQAEnhfkEjyuDgQ05CKFz7BM2sb+sdI0T+Pd98b/+b/5zpl3X/jf/+HXPvXRjwgdUvoafFydigS5rmEIBOp/lZFn3XVG9/fv348Dn8B4P48o/scff/wTz3yiq7uLY/3cQv+BgQEm/L939L1YNGaegDqbAH7hC1944tAhDALeBBy8ythak9kbid3Zmku5aC+/msb4CfQfk5nQnp1p5EWyno6GyjiRK1Akk1VYGIAbwNzK6mKuQm3ubNvWV24APGGWgGwAbIHp2ehz52Pe6fzkVEFY5LWwoq7/+mp40Jo7AIFA/d8BIF4/C7b5OXz48FNPPbU4GtMCGBHQogDPS6XTX//6150boDUmZjurAHgf6P5WsAT3c+IcytDAEEr4DgZUex3lrj4lKiTqoU1OnbmajIR70t6m/nY2/PFCUVwDrEj1p5VRoTtagzvYmPWXlXCuP+QCtpnc+7Sx5sUrSPRc3evPFhiiIYJRCTgMMLP+aOD2WxSo/9uH4fVzkFCk744WX6zaeaPRfFgTLrY9ABbnpSgSxX7ExRGCNw8sBEy2NyS7qOhOQsJ69Azoc5ZfGEVy6UL9N3/nf8t2tX/+Qxv+6//yF+n0U5jO+dPsP0wPX9HcyRoEeV0XAoZwvDNOs4N7ob+u4YCEV8UroxOZbLKfXl83p+DjAwqBQP3fBcRr8p8GR6XBlwruNbF0pO+ywXH5sp+DDwEE7iQEpFzo1sto5dwfLUjxjpwqdiWzE+xHFY3UqhV32p/sWlH2MrR9J6sU5LUkBMCU8+07B2HUq8S8gjZtCkucyImjEIz9GxiCSysEAvXfCo3VvF9O988rM5Ch88ARPNwaBJr6GN18azmgLiKhCIP7qHnGAND/k/QlN7QlM166I6WD/uRwDtcqbGTpjyuHdBOEewYB/DSUja3G1H/Qp30aECeGf3MdYgDcMjHcs0YFBa8qBAL1v6rgDTIPILAWIYCe0B89SOezwvlfQ1Rk45dr+en8rOtm4tOS7ncd/0C13DM8o+SdqmdqcDSCV+bKiHfhbJ1NRMBhPcSxv/z6RzNolOaeVTQo+H6DwIOn/sUSi7GgV6180bhv/C5OEbwJIHAfQkDj8HcoaEw/Itc+0/vIlL/8dKo7G0sksArsDa8cO6FhHKcE/HJHgL9SMBq2fd0PRmqh6EB36hufPZx/onNwsE+O/3qoEtZ5jEKjwh2pXpDJOoHAOlX/DSp38qmJKx4dr0ha8YBMq2u3EovO89wIJm/gnHkWQTMXdYuWmMfX8v2u38L6jSbf9bKDAu8xBIR8I2FRNNu8QLmiZU0mvZ2aSftrV1+PmafRUCRKnjPFdLHkVcu8YjaA9phnbwrW/UciFKolADolqBGsEo2H4PeGEBC4zZxygykAcg6Wyydm09+Sp9MY8fzT8fe2bQ9/4xt7E97ebLWCrNPIf4gtRLX7nwWTeyvJePkigy/rBgIPznAdwjBUEYM0wkL+kvBcFAJGWQSS4MX9CAFRL/+ljNHKd4BsyYzJY8oQLUJAveQS5YFwPhOqc5qcSjOj07anVJQWzW9fVZ0g3DIEVo5C4ExkJLkvzDXyzzAAE/+l6/nU/LvlygQJ1ycE1mnvfxGyEFJsuV/IF1JpO6lcPHF7naNFRQQvAgjcEwi4iV3qjrMKz2bruZ0kbqMypvuVHi5h2xj5zLo6Qn/v1z7fnUk/tDkbl5uson2BNTkgCPcQAmh4DDMhge4N+v/qaOnH7x4Nz44/sW3TrqFhhvzZmsksw3tYyaDo+xQC61b9IxPhB/a71rnk6hKFE4nk1PRUR8pX/02EKCYPgRhrQiS4WSMQQNdD2NC5ddEheE57r83m86lkCm3gWOCWmiJmsGN8nduYQ+VqA+3h3/7lTyEvbI/ZIgPN2AAhPA34B2z44ZYKChLdJgTAVMyykK8F7Bx/f/xX/8m3vVf/7D/8u3+4a3iIBZtRHQ6gZYA2lulcBbdZaJB8nUBg3ar/FvyIMRCRbLVbKBSRmC2fgtsAAmsVAjZRRYdAQt0cweOsWLaYnJ2ZgdQh+NtrGOoCowIbAN6pMcw/U6yPXJpg6+n+TH2wlwOApPc9VgCG2JKS7iWzBB+ckcTbA+2dSy3kyOePTANX9HK8SLzT6zvgbT4biic8jmrSO30OQgCBxRBY9xxrm5EhC7WnXtR1khZDIXgTQGDNQUCjV76O92/UC/fqHBuRzuioN8KtNkr5oFDIQIoF/5kXujTu/e7v/eG//+Zffe+Hr1XxJ8vtL8tD/9yqssCDdqvgvo10NpXPXJea8+F5FZkAMbYQrzBZ05DDsUCGqdsoJEi6TiGwTnv/sool+7hIJPIQjcSSiZnpKe7xhOEC4N2cI8BiW1xi+/NlNOSpp7nAE9KQfDGatJBm7st9ckcFrT+wqGomp6lksz28QDjosbUVll5tad7IPNTYiKZ0+3/8KI0fhfK4a81E6YNwRyEgBMzP0MEciU933xGvdD9vvVChVGpPpTTlGyTZEJiZBSL4+Xnc4ImT5DlUVtMI6to9Pl+o/8e//smBHUN9nZVKDY0fj+BsFvLlIJAxoLJukGfweQUQME4zBrthZIvqLo1OPghho6bpaQ4VxyUkzW+CbA4zc3cLsiel++OXZNwHYZ1DYJ32/o3EGwIRnV1nD7N0W2ZicpKtMZBSaH+5LhvBouvSyhqt942Ic7/X/zoX727dUZ9Gleba1Vp44yvvXARdW176cZtvkADNQNSWTPXBoOi/I2bL12ai4GYVIQAOkNAyxCBuI3ThKxwqV6sz+XxbLovUF9Ys3EI9SMuwv3kTpNuFYPLv2DAaTs/Ww2j/cCgqC9jKuFH+RGoGJWg+BDctEDCUCsouAPMVAspAKuOvcSJonEUaafoo9Wod61AuTw3+NzK+3m8zkqtG8/F6aYJvaxcC67T330SIkbFmSEUj7Z2do2PX1KFnPoxX45hSmxarqI7MkWbNdLyTieA7P/3XfG6N0RL5Ht9KEKsVVkGEtYlrGnX92hLBNXy52i8RwRKgWOQOdvBaWVnLFRG8XwkElkAEySTuMWvZ7CVUJYad61quVKZnZnu6ejjyBYVAj5+gEXzG5u1gyZUUJ9WveBGsZts3vh4Nq0vJAYDnWT4TDZfq9TSuM7zNMjr8meeW82KKa9bdfeJxcZyVVWp9xwIwjn/VTFjLuW9u2GZi4pppJGEaYCjvxWa9OBsysAlwmKPG7JuLYxGXvRCTvya+lo0XfFg3EFjn6l+akMCkpFAok8tFE+nxyalEZweiktPKw2xVQi+G43QrVQlPcSCRrc/DxVLVwqFY3YshPxGjchuQo+K5uG7etQxsSVimYWv4rRFclLknq0rj8c78WvusvvTVWONA9WTfSC1EqqiHei1SrSVoqueVLa5EtdXL9egkvRsBDYE9ZN5+FAfND7GfC81nlRd6gFhAQDPN1KGU2Cc2YFUq19DA89uA5F36dXP7Rba1SDRarnv5en0sn69HIx3tHVHMAYdo8/9jBKy8Vg6f0A9Zu6PioQaNe5XLG7xagjXloiIogFfa7ceGH0Q5jsTc5vM8+FyiyWfORCBjorjsV16dBySmkyvqnAh0YI2F++UVtl3cKAMw5MW9mY2VkWuhWWZ/2JIAcFSVbLgRAYirCWJ9n8uFLF/OrbAaD240H3rgwYHRLO/7HxzrXP1DzBCxyb5QMt22ddu2i1eu5jKZdCwm1WW9IkVRLFH/nMjiiT1PeImwQ/2zdbZXZz8Nrl61ipq33c7R+PVKraKpT5qBrVFSJ2cbRLDKBIAsJeDMqFar5Qo7s/FExRDbZRkktWQsGqlUEnQQOLqFdUGxmFfhC+xtjW4IHFdLBwZgYTQsKjYdX6f5JCFnPeobAsrZAEqHE0V5EQS7INw9CCDPzShl2n8Vaw9bbaZYujo5sWVoKA6iHaqMQm6hToZVsgCteMFEDLgZvGIxU0f9h9kK2FQDTgfGAaJNzIv8YRuzS4yh0D2QhzSTTx++7ncUcwv1WsdJgCJ/Bnh3417coMXEB8hm1dfqxZD30O6+/+cf/VayMrGrE16VB1PcSyxk1I0sgAYPuzxdZW5QfPB5KQgAQKC3BgJsuW6D9cjnWsde5bt277k2MVFWb1g9V7bFgikkQ52PMyxR5/7gFgYI1AGigx/m1GxiaakzqRLxuB6Np/gBz+SjoQS+khVON/kV1Cdu/VsVcqBO1IDisAFQAKqjmlNBH9A1p1Fs12rvoUZpC9aHIQcwVBqBuwV/TYKAhKVBAAi5WnvVIyE+WXHj7p24MrOgkWXwuyoQcCIZSe/+hB28TeBDK+5ClQozvjXpL18s7d9/0Nzy0J9h/earQ66QgY75E8mX50TZ6Nh0oVAqlqVHsCBlHDNBgGjGR2j9OWqyUqXs3V9rJXgThKUgILDKpvO/VXRYz410NpHplbAFEywvx0EuHTowHNm3syvXk67IGwie8AKQ87JB/C3Pn0w0yQ18fnOTopdNFXxYBxBY571/SUfJKPVWWfnX3d9HbyVfKuWSKXr+UYidXrFkmdhDrgL98p/YEl308Su2w/ns1LRXqUSjUWbS8DnKohoCmt70LlKSeyVqaFYTva7XJClJVtaTajD2soRjpS77deEHU88qVPXGWqEeuOdDoXgsiuHCqaxUiX5/cXY2FhGi5QKIOJWhmqiFLYF2qSFkxdUqgvAosXO4gIHNIMlAoxlQVK+COIo2J1jIrOWJ70G4wxAAvM3QvAfN2o+/XivXapMFxn0jXf39UDwxRfn8NKM2E6/0RugVRaCQ6l5HOvRf/d2vZlKRJ3emGA4zZEMlYeaXOeqWprJiIY/GjZUEnYkDXD0UuXG/0no8EPHUTXeAwUZX90Ts1TTG50CgSAZODb3YdxcJZOvE35Fr+R+dPB8rTjy6qWv3liHLEjORHoqDv7s2slMZ7t7HDrFAqmN57lVQEOZDoFVsArXWR0Xk1doB2rpV/9L30mGm+H3S99j5r3dgYHR8vC/XYZ/gH9e7FdKQcug4eA/0mc6u06lC1ff39Lx/7Ojwjp257m6sB/rQuA9Qs/S65Hin/12p0skmwDY8GbWoR6wd000IczXKcDxm35e66PNNkQ6eVs3w8iqs/iKt+uXs8OWkB95amf3havX1V15NJhLUUAaAXxNpepLwR3T+7N50vvXpeMbvQe7TszOlcgl/b1dXVywarVUqAIhynNiwtCrZCne/4oeGTPHfBD+3DwEfyq0ZCc6iXvmnQpFKvXp1/FpnXy8Uq1hC0q0HWbfQBQQG70DRdW+gK/SNX3kmTv8yXKyVZplu4OH1558dCii70AxLR1ALCcCvitELGTf48dbrtw5TovIBOQIJENJ9EGgBviSKWNrkyBwYmz4CbHEtvyQGZhhgP33+2v/1H58fPf76//JbX929Zdj1PcwwW4IchGLhRJ/cxZWl0T0KVLFBWAICDpRcm3/NSMYSho/mq/v4xlmO93EFb6NqIvqGoPEJPRod3r5tfHJyanYmFmd9jB1Ybp4uTfJXv1d/4jxElNxguAfqw1u2VoqlP/7Wt0YvXWL2E7FicXMciDOlJXG/VkIef+puuxzIBlWsPEUhyq2FVlru3Sf/alFu3GCX3BWEtrehDLUUicEnpHFMIwEejovJa9f++Ft/dO7M6e3DQ1Q7wqCtZd+80jr3B6+bnDGjgEbD/7SoUp6enqlosKTW0d5OKgmlQCrcGEV3J4bIBpdMtarRq8mp6XyxOLR9m8o2BDdI8VYqA/bFCOrIQyK6RfF350KdbaFMKo4bDI8/s0iKNp5EZMxK0aEKxsZO5WfzHAZI7W6l7CANEKDjEI6WyxUJErG1C4aTxoO9lTQC5g7XJbZnKCZeORM+eWS0VA0jf6qasHwjLJj4cQ5/pABcv0JB1KhI8LtWIbBue/8NhJg+kyiTSoeTuvv6sp0dpy+c79i5k5lyUnuK6qttmcB+Csky+AbneVsq9ZEnn3z1rbee/86fD27ZMrRrV667K4KH3c45JQHClyzofmlYXdkhMi1Xy8HNAyCWWdoqbLlAGlXAVbURiZdWKZ5VVzVCn2BZFcHCXrkdeMcMAHpiNg2wWJgt5GdPHDt65uSp6mz+0898YqC7h7mO1QqjtiZLXD6upcpNeZkDQblzgylTqlfPXbg8MTZGce3ZbCKeoAFs7IpF5Hz/ls6vjZ+F/yr4uWMQAOUN7BvehXbhXfgX9SL5Q6iIQql87uLFvoGB3r4+IyEhVB9vtSKy8yjEcjHD0js7UvvX3/wPTIH9md29f/vnnk0wCGSDX6J1N+xlziNStbVlJyamKqVKlJMBnUmgfFqo7VZrta7TASNwylXIZZiOgfxisRSx+bzWcPvEXeNXJOAjWyhCdgjd4bQXbfcyncKK4nLBL2DmvAkOy8q/WHnN7ChRGRRLpbZ4UkM6QZgPAWSnAdWE75wonh/JnlostiW+3j+v1rn6N5ljUtLXlvVELrt9757n/+zPtg4M9KQzzJgXUjWACi+IV8QjoFbuNz2iWbn2dnQ8e/jwyMVLR04cf+2N1zcNbd22c+fW4eFUJs2860gkRiZK7UtADX4qK4K59GSc2+frI54uFBEJqooFuJt8lROVMXZ2bgyZGURVJdX/YzFCpaxFQuVSeeTcuWPvHT114kR7W2b3rl3bN29h/3cGhyvFspkJlq/xvWXR8NiSoToK6P4wXf9ipTKVzx85enRybDydSGzdvIUen/zA8miIB/z6WWZOwre+sdfB5Q5AQHgXPehKcJC3N7rQ4eYgS8hmfHpy5OqVzx1+Cp8WH0RImJtGRreMF0e0MkiNGSYL3u/9++92PbyrLV7/CrMNOGoGw4OqydQlUliuL2OcTCY3M52n5xqN4WDTWpkgrAgCQjOwhKvFldywf7M5WqSVfZHAVydlFMNwqxcy3U0EAeyIx7gMfj6EGpzJtEx42o0pKJf5gWQqUBgiuQaRQqEi6zvaFI1792l+mgf3SUzVAhOgJnRB4ky1NjG95kCzztW/051gBSRVdPofK6TCnT3dO/bsPnby/dxDDyWjUfrNMIrwCKdYh8m4SqjUSr4aqBU74irYuqG/v7trslB4+8iR7/7pn7G92sDgwEP79m3ZOtzd3ZtIxisV/LBK7VMJyh+xyMRs+Ffqn8fWQCxj7MY7izJvgw4ZEXIEir1hTaXXzAS1x5SxJvpVZgsT4+NnT59+9513zp36IBmLbx8e/sJnPptJxKORcCIcidNq2kgWJLWrqmhPlpdea8oA0wgi7OjihWKRaxNjb/70nfGJcVyB3RsGhrZuTTJWUq3RF6mVilTbkTv14c9lYlkGlzsMAcFWfWuz0hA/SHSjGckdJBFTU+v1YrV67P33d+zdm+vsRHOQxL7eTk3IQyv4xA21cAXqYNIroqJzy7W2nkIszgBY0vAuy9o0DaMEmKGiilC4LZPN56/BVLCB/hx9iC/c3e1UbF2nxVdfKrJ1CMN3QkA9NDExiT2HBUCzxbPS54539WOyAyA7LhR87Q8KUdRwlVm6Nf40PZMXCADr3HPbGnxJpe/CIOOdxUIBMtNSonCEXaT0XtSnTIPQgADQAFx4W0OlQjE/NXUnDtlq5H0Xf9e7+m+hWvWSEUB1L57NDe3a/TdHj1+emNzQ2clbZvKzgN84gSgmxFDbUvwSYDL6lFQTa2OxeDISP/zIY0/u2z89O3v5ypXL7586c+Q43JJMp3IdHdmO9q6enlSmLZZIwkGYG/zBqlorDb3AX/jhEJrwkzKfF3iE55i9h+VOPAQodSAGHn43MF+p8q9SKZVnZmaujY7OTE2OXb3CxP5apcZyxC29fY/v3tueyaQSyRRSQ3XWWkT+KBK/PZ1CZ+JIJFsVuKh3wDUcLleq09PTozPTl0ZHL4xcuDY2Xi4WN3T37Nq+vb0tq0Fe7SSmJlB3pbZgTdDK7qaAMCPKfQyuN4aAo4EmPBck0Fc29atWYyzlR+RURJ3q1rFvlVwxOsnq/MWRQrV28NFHo5rOIopXbqIxu11IZXxbSRDFQbBijpB2vGBbIS+ZkBaJhErQJRNDISLFQQORoaKSBkrr7et/96enJianM7kMyweZQkLF9V1VMptgJeU/gHFqtQhYBoJlEJvw4qmJyZlkKu3UtgkN61y4XorQy3+C+BHAAl9+Iqz3yee90VHYXwYZCFIczeHU71IBLKt3EPIYzoyFw/mZWcYQWfBTroE4JF6Mr05kLZX6AXoHtwkOXAEo+6qZwzUZT1yaOAvE1IW04PPDWgDMulX/oGop+KPNQV2ovbdvz8FHTp89m860tcW1BRDnZPGBTrAWMjlz1zGOs7JlUsv2RuKhR9OxZCiWLMdTg9n28pbhQrk8OT0zMTWJyhy5dPmDn75T0jK8MMwcjsdSbW2JFH3yeDKVwkgkJJiHH0VWx9HxrZXUJMJavVQsouNRvflCgbPbC1ppXSwXSzNMwi8UyyXyprohkrN5UXcm0zMwmMvmkokk1nqMcQi71qsVpoS5zAUI/qu3yK+ezPyQksCuwSsg/2w0Oj46+sbbb4+MjeLfp1Dm+Q8MDu7ZtmPLwCBUws5BllIzAyTDeaOunfKUAjC5pJxdkcH1ZiAgwDZA5wDo3uiliRvohL0cCCCd7hh4FfAxKyOxSxOTl8bH9z/6KGSGlNYAjsaxLJlle6sXctCfNrNC18uC5a+4ySuko1kbB7KMcT5pQywZClI3oovw0PC2l196bmJqZtCpJN65bmuzVbdap/WfDryqm66OBqr8ytWx/g0DcY7unQviWuPn5ivBHP8d+gfUp+ORR9uzp/v7kDIaz0SIyVhsRl50Q2a2nQkfmMzUmc2NX7vGOmFclRUjtKbiVx78dwS6KJt1/wLMAArmWXGsBp00G/LSohtGXS+OjPT1dCPdAQJxZIWJQddAWLfqfwHsHTJ80q3VY4n4Qwf2v3j16onTpw7u3YtsZQAnahPjUW9uDN6wKHLXjYlTfpVPvVYtl9C1SYzlUBRayKbS3e3t1foASNeCezbdq9aZfTcxNTU5PTU5NZWfnJgoFGdmZ3Gs5fPsO1BiZLRcLrl9eOZXteYbB4kEhkI6pYABnk6n+7PZ7MBALpdLpdLs3wflxcxuV/8eNoeHbXkv4qPKrCvzdbicrc6qupqvB7VGV/cG4SGPcQgLA5ujWixi+GcSieGtW3dt297b0YkTUisbw+zuhmeiMTZhkh7YkCP0bk/KMwh3FgJAWLYpXY2KvFNYfijZWCQO6cyWS+Fo7MjJEz0DG3bs3QMS5FhyXROh2Qkgw/dN10mplIXIHqWCG9mLU/ZskV0yME1rbDFJcXQwYRa5pmraodaFUKhnYGMu137t2hi+KluX2lK8CdGW5+C2BQJAW0MmbPfL7pwh+hPsUL7z4UfwIyJS1JEX3/oINQ7mCew4lkSSqy+xoSf2q196qPbJjoGN/YZB3lmflZ9lVJK595EB4VQyNTQ09Nff/W6hWNCpwV4oGo0gq8iCr2bq+8W2VPrBuQWcDIJFy5A1IKvV6MNhYDFV4tixY1/54s8jroGFcETnbI1A5UFR/010yAGOScxWKdnswUOPv/jd7/706NH9u3bBHJpIhQjFXU+MGuuWZNyRUGi3AAMYRzEMgCtfZgCPxNb8QfkPhHd8A+QRD9VQ3Z2plMc6bCla3Gsat1VuRLX/UsINf5E+KJpZjiYyoTBeSPTbwINqIg+cqmTr95QFG/3idDIfLFIAKS1TX1dcfc4GddlyNU3f5F1n2QAIESryhr9KNR6JdGSz7I3Y19fb29Pbjp0RT2h2t02YUGvxKBgE1AZLZK1R7jwHYTUgoE413TNb3wGQET3QkhARw/KMvvrWm/FM+sBjj0bpeUg3gGfNxAdNDte3gRcIQ1alV8PrD8FHpf7Hrs2MpQtTETaREFnWmXiANQK1cU/Z+i9aqNe3b991+uRP9+7Z2dWZIbXeE1yddBeEpSAgXMNuzOStMX3v3SPv8pvLdbioYMEg6KPUsbDFZ7lfVKv/LWwciP5c77a4t61DtjpvJe4IynYZNuU4NJISh25GZ2dnuVweGxtjCJPy6KU4GUgEJJKptdugKVfFtXxl6NVNiQAsBHyxjMNOTEz09fXjGBCcxXr8Auw1AKgHQv0LGwShg/6TZkTzBrXdPjBw6KmnXnr++ZNnzm7ftIm3OP8ZWMUNYKwiRCLPeO8o1vIBwUpu6hkzgNmB0rjEiiMSbRSNDdjgJ7rLsLN5RBVfffOmUWhZkGQBheiIHnif/ClPMwZUZdxMPttL0Bovc5C3WRvEZ4UQhWOpuMw0/qT6qL6qjKVUe+1ZqfVF39yvtUhSh7x7O7u6Hj/EqCMvcQPG6YJwXGiF6X6ASsuByRDLhr6eMnDp/RsycJVsvA1+7xAEBGcjKtBqej1cheJqLM0onzhzhrWmTzz5RLajQ+BnPJ4TnmIxzR1p9sVvpxpu47koVKYpsO0R79NPHmrr7hjqj0AYOuzBiICxZtGeKArCgFIwh2uPHHz84vlTpz840962ixEpKTXRoiUhoiW8naqtx7QGF80vEgfnp2Zff/2GKNE3AAAyUElEQVTN3Q8f6ujsco0Vj0sY+cH4DViz7wiTQGBA0CCU5Aul0cmZWK0USSdSmQ5xeh37AP4mznWDdU+yuezWrVtff/2Njz/7LB0NtJ2beEhnV/VDhJkZct2M1udHE5X4udSPQ/EDCYADTN988839+/fTWWJsDsvA1/1rBAY3ook10owbVlN6T4TrayloWS6zSLh3y6Ynn/rI5Wuj50cuYPaCV9AMItWh0dk5Lp24TrpPUo7NtZlQG+IMVK6VEFuig3bGzuFBBDT2Ovtv1+jAR9kMHXVeK1cxB9RPqvDJ/2NWjbvH49Dyx2lC9N3YsDdWrTPGG6vUomhfvPrVOmO/ETzwDFvoiBVm8lfZfTAKT+KBqEOFOqCAPxQ1HTN8Ungn/CCGVbOXCSZP+GxbICejcUYa4jibqWmpTNFMT9BoAtuPEwAI0JF56+wKshRglsk5eH0nIGCGmsgSQENVUCUux2js3IUL7F71kaef7h8ctM43/UWWZVhnz8zE2y0bVoGi5EqQv4y5fz29oX/5z772L/7HL379K59MhMoMPvCVzxQEYRhVcOcTQ6ajY2ho+L33jjLgJa2vSGaguuvtVm59pxdP/fSn7yBQdu/ewxAg4DMI2qWl6fYejLd5dXw/rGCSMH/7natf/8b/++hHf/3VH79lc455Z7r/OmxqfQbT7SF6/48++ujJkyevXbtm/n4lM6YHybC/TP8HNiABZQTI2yVZTxgdHb18+cozzzyTSnPCos3JXVPQeVDUv1NSKC7ImTYbL4BJIXPD0NDW3bvev3Dh3NWrHGSuNU6oTAlcR/pSdZJaZjpIKvJPDKlD1jVeEJE4NtUorajFINpzj/nOOAj4ykdm0jBubk56lTj3h2Rt/eMDH+W9Zw4XfThm2/GnzXbozkXkk8BqKJUxTxD1BCiNrxquYBgW0jSKZNSCfBgMsHpbpdUOIi4O0un2VrsfEpiPwIBCIhpjmZ8Nb9BwoxAmgOEMwEjQ5DLXkyBh829xzsGbm4GA4cYRmIiNPyMDeyMMYq2WWeDHnxeaKJbe/eDUmStXDj75oS5cVnK8QwTmr1I+EtP83i5u4ICoJrKI9K1OzHbdMBBl478si2UpI6YjsyE1GSWQMa4HlckFUxi/c233wwem8pVzI6OFIla0VU+uN6hShGl/qm0DTO5N69V9vd12NPK/J79UHvZxf64hrho00/hecGi+MSirHx+9dm36R6+8/jOHn+7bMCBeBr76p5E9H2LmwRR5iFj8UX/K4a5cyxzx+r1472yx7M/T0aQd4+JGYfN+yVK7lkkUcMsGJpsGBx87ePDE0aPlQpHhbRvidP1d+iASfb4l58vRFo/EvHzXwAPtdbhxVwOuJH3r3/xmiD6JDEzoFQH6kyeOD2/dPLR1S6vJTT5rJTwQzn+n5Ay7rXgxNDF9KRrZ8dgj4Vz27Z/85Fp+dtuWLamoJtYhwrR2VgKLmJJrsCw/oneNgjFR0IxB2x9LUtJxKVHFIvSHXMeJBYQ802VGbUphXy80CEds3giiOO71n1xleXJr+61AiYY+i4GCdgYBaWF7F91d/czcg2XTvMiYVdCJwPxgSHDVFHO9VK3VZHoBlKhWYGPI0UDgYX5+RGmptKI86GEeRNRV0PL9OaBALZqqrVg2l18EhioVEOXU4ROINm0JQjEFme4XDk0U8u+der9Ur33o2U9u2LhRapWgTCxoxrhC49k93cIV3EIDGJ4MZ2pPGdz/16brb79zIhUJb+qI7xzewEbzIsWaxhyQfZSoDWaoL5GhpVgs1d77xOFP/ul3/vTZjz+176HtcYaSSkUNBLAOUHTrpguImfRn5De/osCKvAxisl3nk9v8qPfTU7OqtAp0UH/+nMXD1f5ojnx12EkyqdV24hItFK150emZ0vdfeqNv4/Dwzr1hVnJi2vFfEoHcDAgGDUHHBwlOGisUiROKVnAAZjyvO1nAc28Q5JsoqUkkSwLL6E618LyOtswzh5/61rf/6CKbhe/apUKwPqsluR1ZEeBojAx5bX0DuiTQiCVdSxfINdIqZ1V31wwDg0wAebeAOYKbb5LmCoaJei0WCZ84doIV/z/7mU/LRdoSHBhbXty/tw+E+l8a/C1YCrNVzq6dTLN/5/XX333/xPDGTT25dkwAWA7kw5/gHtXn2A/LQGQhH4BYQ4Shvpp6xdy2spl9bjCG6MmviK9z/adb/HFlL5eYoojQKHC5WCt6f0cyWVFJ6yvSPLiJPkCJEYOjAyeyLRJDNZCEnDaKACGZuAYakJzt1oCAZ33/2LXR98+fbetsf/jgwd7+PsTxqgIMakY1aTKr6uBdvVj/z377Xw70dn316U3/5B/8hgwNtI3RPBFF9iJ/1YiKYdDgknr44YNTExOvvvpmOp3cvXNrJJapVYrMi1W7RJ00HkuaO7mwlHIhYzRAqMj6vqYClUbHo9qBjLVRTbAb2TqM0mm80BoGEND7mAKxUrH64ks/npye/bmf/3JbezvulVZ5sqD5fDKAGTCFA/uu2X4pr4J6wtRiQNK8MpJdKw1k09/bt//hfa++/jq7mg4MbsTNo7K0/hMvDrJQEo+iNbXJAmS60tzvm3jCCrUGIc0gcOqVs7agUgMbb/1IvOAAFLytzIs6/cHJt99886kPf3hww0AzgzV3s7oSZM2AA1qIRAaHt+Vy2Vd++OLx0x/k+/r7Oroy8TiCDK87q/TdAidoBt0vUSfKb1iPWASIbIKTZdZsuN54fY6+mmTUvFkz8AkqevMQEOLnC2+zFx1duOwUxaKZyEHZSqaSBmUfxQUjsUP0SISzfM6dPnXu0sXBoa2PffhDsVRKo7Bma0JL8wu5+YouncJsWX2SrYtFwshysdIR6toey6VZ/gw7IA1hBIKJS5ObcEBNa6Pxa6AzotHERz/+yfzUzA9ffIXdLoa2btTWm9WqppprYgHdUjnRpPx4JJDfegoAhkMRwTCtM3wJzQYzYR29jDblihkn0QGWKy+9/MqJ9z/4wpf+Vnf/gPArXSTH+zISQ3mZASHY2T8gin8l6hXwXJIYOwPfDagUolYO2kQs8ujBgyMjI3/5F9/5+S98sYPTPiMxlitrLQFzn7DvGM1UszT8YzryJsyLlVdjlWOaVm+BiuNECtVAKnO1mNln0x94QzsZ8UK8M47Lt4sjF/76L//yox956tDjj8dtP65VrupqZR+of0EWZIvVapW2zs7DH3/mxJH3zrx/kj18+jq72O0/EY9pYwCJQeLgg7OOviXiDYzLa77zlpt5XGbcyUsFi+puW0jOvbjzV5qj2gbhnkOgFdlSqVKmRg2qGYrTHo1sNJ1YuzCV2Dq6iriJYZJOzcxeunrl6uREyQvteeQgPiq2rHAkZ5lI+65OEzWHBamHtiZ/BOEU1N2bLIVnQsl01StzKiSGCSP+VgF1b/lPx0iqhvkvnA0tjU77ah/7xLN/81z5z7/z3FMfOsRSwFgswfkTfFFC4jiLmcxXqyGrA55lc21BB4sibIaxEE6YG6kxdz5+ATrnAkMMO2B0dPylH716+syFz3/hy1u27WCnDcFRi/XEybpaFnY154Hd+dRj9/4FTDD/2Asl0MuNzxJvLfVqjb74noik68xlP/PJTzFz84Xnn3/kscc2bNwUi8fU7beMapwKiMMiio9Bp42vRdxJHvNvQaDlpuwBuKxYOE2KP8oeaJyqor3UwpHzZ8688dpr+/c+9LGPfjSTSjpXSANBC7K73x8fePUPuqF3m7QpFMKLmfTeJw5tHRo6dfzEpQsXLl250t3RwaZO7Zk2UUO1os6KhQZHGTPrjTjM6Mc+z7/oWyPB/C+r8qTignAfQGARPYAZaM6mCokezJMqb7jGHekPys0aQ+54k7OzI5cvX52YSOeyW3buHNqxI5ltIx1EiGPAzdJYtfZRMbQOhWkVqlVM28d7qei0V2bXKvX4sFC0EFxrAvnnbF+qrVUpdOa1CZUmj9ZqlWSq/TOf+fyPX/7BD1788fnzF/fv27NpoNdjJ7tySXlzPg2lsb+sL4pbTeZVa9/qZkx7CMKy7BvrFKiNvFAvnGegRwBUcf7PTM2ePXvhtbd+ynbKX/07v9TPlA5i0KdkRF224mKAWF5kYALH5aurYB4NY1qdPOadOl4pFeScZzGSk2vEEC1eT09ZBKu7nJxeV1fH3/5bX/nhSy+9++672KA7d+/O5tpJb/t/aCoywlDG2/yRb5d+LVwdSubVFGAbYgzq0gY0Vuwm+g6FpqZnjh89Onbl6iMHDjz5xKFMKkXrSTBvTs+8/O73hwde/TsEiRdtWYvNdMbLk+7pfri7a9PIRQ7ROX/m7IUrV9hLv40ddjs6u7NZjF9cnkYqsJ3YEKlsbOo4fwms64PY7+6FZaty96rwQJckZIsmFuLB1KX5+aUQ5Fenn2HRwqVabWJqenRifHJmmnNXI/H45h07hnfuaOvuQhRp4z9oTR5JJ8UX5nzHwc3uGPTyZXKQNf9npmI9bAyVhNhF9HqrgJSU3JSuojvr3GT+1zCHTbKVfaLtZ55+trOz58g7b//VX79wcN+uzVsGu7vaw8k0p1B7dCWXHvtXIRbItVGYe7E2ruhfwcXoQB15cwBwo0P5+DZ1bWLk4pV33z1G13/77r0HHzvU2TeAtjHsas1lS/NdgxvgaAJDbhe5Z1QEe3N43pbBtt/9xtdKk09s385uEMw7rrFXFzaaEEYFrhuaEagypVfL1Wwm88zHPt7f3//j1159+cUXt2wd4pAzthiPx3D8YKnKjOVHRsCaRNACcKgZCHbfJGc1FEugY6yorI+PjZ0/d5Zj1Zgf9vRTTz20dw/nvZs8F0jNYrgBbBeUdJ88qjNxn1TlnldDbhyhH5sZXhK7qEp17+q5c2dPfTAxeo0t+Jmf05NOZeIJZnsmWdLHoj7+sxTbPLfXAeaapI57jpI1XoGlWcvoik/snksoVThkkU2VqlOFwkS+OE2fGNGSSnb39mzasqVDE4sgK3nSkc7cOH+xSWr1K1cvUEPkIB1VDQBEY98/XXv2F//B4NaBX366/3/4zf88J8WGnWxTEOTyF8Pov00IUMP5j77z75QZOn52cvLVn/zw6JHXsplYf1/3hr7eXDbdlmWHmhgOVoYb1Jx5rOIelMvaCdZyNQPgyQEvoGgfTq9UqhTZ/DtfnJkpjY1NnDt3fmxyuq0t9+STH966bU8oqhObBFLrW0gEuRnHcwDhTg8tcobNuFgQSkLO9C4Xw4lpz5uueSnPy1UraRYC1LxytEYnz7ZptIxc7W4ETQ37GHIRcsTlOOkf/+Qnp06dYs/R/7+9M4+R5Lrv+6ujr+m59z64u1ySu1yKXC53KYmyacaSaCmOhZiJFYQIDASOEQf5QwYCBYaCHPpDTiAkQWIENgIjTiInUUTFdgLFEcQYliIrtiQ61gFZJCXKvERS3It7ztHd1V2Vz/f3uqt7ZnaWs/Lu7A7n1fRUV73j937v+6rr+97vXbt27mJ5gPHxcdYj11IT2DB4++mJ7CuK3sr1rX5onM1yHdWKk/b6YXYylmhvLfDMXjp16mS31b7z4B3vePDB7VtmiMWKaKqGW2Dl3ZPFcnG3+n1o/Q9LyD8LKn778BRYoRZb9+7Zundvvtg6f/bs2TOnL549c2lxke2e6J/TL0QWPUXwEYfiwlVAYAUCPC79w1rwesB4btTKwJpabcxO75uZ2bZjx/TWLcyd67/qIQF1DdgwcXvR8rTxeoUjllHlQPR1+ban2qzXPhmYeaa2uDuZn0gc73trdPo8qIagJKG4/vsUZeXlHU0brqkiRGOTUz/27vcfPXrse9999vTpk9/41vdxZf8KRgriD/1j2rDwG/rULxe+/AEWXFNkWpdRjQwt6kGdYOeOXfcdP7D3tv315gQQWpkCm2ZQ6q0iCEGDm1LSQOLIt/kJXg1Ys6DsCValG8nCGO40Z5TeSKQ1XdrGP+pqoht8x9Zt73/00ZOnTr3wwvMnT5568fnn/YBEdgS2kQZIH1Kg0f/VdF5T8jc8kJ+NsyQZ4KZ4NOrFyoOqj62iltx5YP89h+7evWsXU12sY4vCkcFYZemf8yViNsxNaP33i0ov1PKwNyt3pZN+hf6myNtZ69LlS2za02IjPhpvWVdtN9UEMJPKcBCOgMBqCPAQyahrB4zPDn5sBcnrtVKvjzeak9iVtPSC3qV8eGcTlCdTEfTCkQPP2I1/xJSs6cj7gdRYWjJ+Yb748h8/PVlNb99SO3p4X+IyFzEIkZ4BwrL0LApL08HbkFirq0ltoad1sc6fP3f+jXOLi/NZr40thB/RILpHaOOeyTulpqF/Kkb+uaO1maTs5MVnfHJiy5atzYkpFa3yrEqP4DMAcQAhFX5/ZYgShz6qBBs4kQRb8tBAZy3QXtslz56c+/yfPJPOvfGee/a/7fBhkuwmKhzfvaRYSnEQe/VvaaJ3XlmgyoxuXcRmZqx2d+HChcWFRduAnHEbFqwUS7ihhquncZN9KBjBvuSwXFOLVW08TcfGGlNTU1vYuKIxpvIUcvobPXxON+hzG+h/tCgHT+0I/fsfi0p8+EDrWV/+FCwRE24CAteMgN4jeo1qXJjRv17U+tiDV75Pret/2SvomtNaSwRVZ/tt8SIr8ksM5zee0b5mohyWsq7StS+7hFa35AfhfyucOfjFLH1NmuvwZPx29SDDwBv7qgRkWTYoUitoFbYqhYaXTtwP4OF79MDXQg2eCntA4GWrMjLoIkr+51Mn/+qH/5374898+omP/rUP/BSitBK4Njkb1Bp9KY1KvdI1uvGS82fv77OBi7p3NtOhjBsa+jVyvIVyH4z/VqKDk34aVrplEfO4+0InyKD0VS8vfwL6CZfPhEKUwQdCw3dA4AoIlI+YvVD8U6Rgwyu7EyvokbIHjmv/kdcNPnjLw+ssPiDeiJOLi8XzL7zO8he7JuM79+/ACa1Y0ZIGlFUSuBtVjetrOHwNhwhvtVq12Ub8K8QaiBDqEBZZj434OTOdeOjRvxoJusLPc7NhzjuckApMRSCtTrv9D7i515P6GCs2UTWjL4FKBJU0W8Z7haA1O3j9LBcWh8qqqqbUEoYvwzULuxUCAs5KzAeKmY8KblB4eJTv/EGgDf8d6H9YhP3f0NLXWFnV9Y/BILTd+VO/g67/JF3tJzuIHL4DAryv+29SuoT9ADpY1HO8nf2DVL6ffGhuS5cbiaESp9fXNPQ9x+70heLjv/Lp27ZMPXJ8x+37flIjELW/Ger43429THW3QsEVDtJclMTRt776fJvLW+xE5oeMSd58a6G0OusVMqjyjOI0er0aIsgdqUxoxiixenQERCnzKvM0YanmiGkElIjEjSa1msi1uZePJrpbya3TU7k27a4hFM/sCIKjET1kyp1lkBz78SyEAcu1lM6otFv2OtD/sGh8uVJfp8TLx6Kkf1z1njMrUP8HO3j2R0X0vYZO4SogcFUE6Pgt2WAkYP8VY2+f8o2zru8dzf224c1UUJxrddwXnvru3YdYu6/CIu91FquRuZ+Zskz7gsWl2uB/JBurXS7NcvlzW/mTWk3AhnC3fC3Jk0wqDJbTNAhVfUBM1SuFE6mWQa2g7bQkn0MXo2CrOrD8ksRg/2eEKG8oqgCFuzynnUYLdiHXu4wExGP2LC2Rt/qND7wyyrCkrLQRLhnXInn1NG+Cz7IMlrnzF30QDN/+6SboeAOTDPS/BNzhz2uJc/+m7zt4RpY9OleKEdwCAqsiMHiOhi/9VYOu97sHXodatBwvz7zGrqEZ/9v2XKiMt+LEzAI2RgF33v/yVxBdXiUPK7yuCYEVsTeIgyf3EWXphR/SpU0y5x6WHgniL/uornBXUAttpdSHXG598GvOzU7SXwPpy7CkNgv72/ipACuF/ZAuSJbWw5z8kHJuqWjkqHwmbynFbpAygf7fBNhlT4OeeI6VP9U3ERO8AwLLEViLoWjZ44eI/hO4XNh1vkc3a1rGWI+5ZG1XmpSY+09Wq5007dDo5+3PeD+1KrWozDD5kcuh4ypXJQJlNtcnd6uoc52dyZTeFsqbYCql4yhs/THM8BXeKaVlehiqlGIvIas0UEIqI+tPwdy/4NJ5F3cYlkHfTGyDCrDijMS7PpdXVOn6iL6pUkbz5R/LUZebqtr1TzzQ/xJMy5IuL5Z4lzeDH2/pEC4CAteMwBqeojd5Dq85yTVF8ETE7jxwimzUUD0Tx2CQrLO71264XgWugdFYFShi72mykSdsEbAm2UsDDRAYZcelITbinSpK6N0vuysV4SDfo7m7Quv8TZrWvpxkqaGMgF8dldVo4bbsB/OV9jgrAJMMvq6reX9vImtUk6tdXy85V0vjlvF7y2c20P8t86wFRQICtxQC6jDmYE6/vuhEdnNztXwG7k+tw1qdzJoXgAMNUFqq14lhlNrGPTwn92sANz4bJCT7jHg+d+3I3Xtk+3/+5x+q99oHmmavofi00IQGrr3lyezGo/1WSyHQ/1utREN+AgJ/TgSM9VlFFtqn3d+B4AfWaoap0UhNNW6PNqfqB5q7JiO37QBIuj7un1OBjRx9nQFQ475f79IYUjdWi5iVWS1qtbyTRdhpqJNp4v9GhjTofqMQCPR/o5ANcgMCGxoBjRcnA/zzXbjZ8eijv/jBRtUdO1BjfXlrcFIViNiNgHoA/f9mIwg0sx5lXqJsywXyDsdBVTCK4JUzC7//zIvp4vmH79jxwJ13+WEGavcH08x6lMwGS2NzDXTcYIUT1A0I3CQEYHRWsaaVH0Vd9vzr5ZULsct6rha7Wt5Leq1qmuYaTM4uPax8znLXZQuz5KabpPqmSZYyEutz0txL2WKyOP3cN0/+vf/wmZee/eonP/yzf/3972X0HyM4RP6hWDbNg7H2jIbW/9qxCiEDApsFAdmMOSD2qNffySJ3vXab3XkrSVGvprQ0eywJyFpytjKGOChYmNf/6fA2F6XLWgwRSzF3es2Xzo6719mmodqziQG4h7f8+pfMhkgxPBgbopiCkgGBdUXALPlKkZljWJjZSP6lH3R/+V/9Wxqa77l/99/+2Z9paO/BHpvWa+FfGQEYfG5G6HVVc1MnpvoWlTStIaRR/xgCVGpR3aVN15hQ1Y071eIoIOsECBaATf28XCHz5c/8Cn7BKSAQENisCNiIPvhDs/+0ptxiL/7Mk9/+6unKyYWiSBntnyRav4YR5xoZEI6bgMDQnq85Ghp+ib1GFbaKtmFgcUGWAdTwTNZuwgQwDH0TVA1J3pIIBPq/JYslKBUQuJkIGJ/TntciaDE7ukMdOa+KbXecqk5fdnG71E1b/WICsCpC4JcSlnW9oLC08g9d/BSRbRZIsz9PizxlPQY+BYMzNDRgXZUKiW0EBAL9b4RSCjoGBNYdARGGlvdJaeVDHfQruxps0kkTRgLS7Z8zn1w8A/dbH/O6KxgS9AjIBKMxgFYJqBQ9N7/oXnmNNX/KvSRo+nOEGkB4YpYhEPr+lwESbgMCAQF1KEP5vj3P4n6M78eo7KLuXpc1Epn9ratfnMNHtQR1AITm/7o/OX3IrQwYhuncZC15eMfM6fvf1qzXqRdoSQaUssKhBrDu+oUEb2kEAv3f0sUTlAsI3FQE6ErGdiz6qNDSn1/I3Gw3y3KmAOKeqg5A14BI5nrvKHNTc72BEqfmxbhMCJ43udZl3rU9/fkPHi0Wt9+2fwK2t2mBmpnpsxRqABuoaNdB1UD/6wBySCIgsLEQUDvRlpRh2b8uRmNa/zX6l0+fOtVM5865Gh0AGAPw0pBz2pxWQQhty/UtZChdw/qijjX7/cyLaMf26N1bd9SiHeOamEnfP6VCAWroX+D+9S2fDZBaoP8NUEhBxYDAOiNg3ckwPM16tfNJfbrmfv7xvzI+M3n8EEPN2A+I9X9pW2qpeQIHalnPAqLWxcFyi9B/yrdqa5y1LcPlueKFMxcrvfkDM9XdM9sULO/E7M0YLP8GWjiNIhDGg4yiEa4DAgGBPgLdLqv+8elB/71e5WLhLi8WY41oPCoqru3yLKnU2QnQdgPUvoDWGFVjMxw3GgHon0/Xxl2kqgtoAAaDMLuJ++xXTj32kU+4L//Wp377Yx/8yz+J3b/X61I8DNi40VoF+RsOgdD633BFFhQOCNx4BOj0F6UweIyuf2b3dWJXbTTUhLRtgNM0jugVYCVAbfaDeZlv1gFS7zOOshbIfqAhgXZAURHNU2YPVPwYQuMvCyV/vDWxQJFshOFgAwHcFZMTAxE1dJ3PUDicZ+IVhG1v6JxAOC58cPLSOHM9KlzTGc23r5wkS5I2L/ZOpvlAuMTQuU6+1Lm+Qjju1vUuL3I9EG4TIZV2X6IW3hkRrtCDI7P+ea+5YlgS3pMc8eEwyUTymvdnWmg+hgfZoPFZph+g6Xbd5e4+EVfHcAK5ROsyjiToZYdzQMCe6QBDQCAgEBBYioD4AvqAz2CZBToAzp0rvvTVP01r9f27mw8cvn2clWQLSLfbi5hZnkJJEeMBmWyuPYA0T8B2oLEV541XXZxFyZwrmkVR1QI1NiZNU9HEs/y3xILqZYAIkUzyfOA3+DXGwGCzD1jXFj4UDRPWJrOrOmBqtqOkbcLZjVAL4BFmILwXRQuSpnHxbF3Imf2JSJJec4LE9GNoZ4M0I84y4RKD+LgVxVlRNLV1nt/rcCA8Up1mwbT1wtHN+uBj9YggnN53kXZihhTBYpyN0jmomubJogKqriUtuJYz+STrqtMsmnDEes3BBy+EayWGFMM/d0LSH1xEXSTVu24ibatapiSt7qLilG7hCAiMIMCDFY6AQEAgILAcgUGTEaasFq5y4Uz+c7/wK27X9N98dN+vfuyX4CdxEU1LfTPD3A8vF2+zGDBMbiQGzSNWLK4JaMWY+EiUrS3ozQPO01/hGmI1LiWNMJ4IaTRjYuCWlewICbOyAQHjDUWWonmEsPoAX6qLSB3jZS1CPCI8KZSuqNEkKxiqQP9SA/fEWtHyZWWjvnCM5YrhaxBRhS2NTCAJedliVqWGqn3hBJCGclNMLxxszF0pIqJP8xIucWiOmKpJwkuImXRLQ4KgfC9tKLyfvuJzCDFywRUJgBn6xKp58KFqJkARqsxq5J/FCKeAwAgCgf5HwAiXAYGAQIkALXk6/2Ekow7W93ft+ra7ju3YO6HWeFcNXLXbxcXGfBVC9EQ1tsqsfPVHZJEaZJZrcppnuDINLoz5aNOL2fjAkgOm0rdIrb+cHSmJ0djIBlcjWnxsaDuNY6tQrCI8wqIgHaSFFy4Rdo92tlaeGt/9VvWAKdFH2QMAVtBJrd/BZAxPllwpXJKVB8nTgZwYzZFiwjFC0GRXduSJj1TgVB1orqjy6h8IJyyaG8dbcHkrBX0pR33bBxd2Z+LARYgqKOVHZOwMkL9qFj5lix5OAQEhEOg/PAcBgYDAMgTgGJgVssS0D6MnsM8cr4qDe/OolacTvYhJ/zQsrRVrHf7MBOjTnUiaHuuyvakObNUUHHvPIkctUihMf57u1GePeKQbZZWKiHpRgMYsH6QXJEgtY0DghEMC3IylgYjypN9Bvl64ZzubE69mtA5ja7syXofvYcdSOKyNcJQRgUq2KYYYJJMZjXKQyvr33jYmgLR93cI8zQ9f43vVJhicr7QKZBoXK6qJlJmBKyoH9okknHRNd1Ij9YxYcR+WvnByZ1oZBl6RJcmK7+1AKvUiwEEHcb/k9b36KoavgAAIBPoPj0FAICCwDAHjCrgjZ+S/2Ewd4xyN+htx3Ga5X/xx7/WiRN3PfCC83JvIRZ+0f61/3cgPlrOms+wIZhvgDjJSNHGSZ0nC61AQu8DH6F/uECTx1AgWN6vOofa1HCXfLjCkqy2sMMajJlyBZAa3t5yX7IWMCGdkA8yuiKa2Hxkg4bTJTaSp3N9Lz2fU9DM9qSsoA/0PCakDwrhWqaIPNQokE4AUwYsL01zaKqql4kNaZpUbrzn+WAt8eM4KbmmZNN/NYW5SUvD0xSl2q+e+8Yx7+ele9gHKQHWcfnSTEU4BgREEAv2PgBEuAwIBgT4CvrteTXpIC26k8e7eOONun0zS1Hib1nY3yhn3DrUl6iuX2Z+A0BoNYohI5Ce3iH57mNK30yFC8RrOkJ3nOgssBtO/TqJnXepQGBE+bWG1Y5Fp3fySIHuDfBCOwYE7XSthi6xvyZE8/sW9Rq7INHdjaItDSHGor7LISqGciPztz+wB8l0pXKLsw4U/FM6UlyL9CEqOW8/Fqh8g3BCVPQA/7cunbCozim+HdOJGX8PDIyZHoll1wlegyIqy6Iosc3fvm3ziX/+j1sJLR++uauyA8u3lLJU1lBquNi8Cgf43b9mHnAcEroJApOX84EL4Ka+krg6PXDznOjvzbBoShlLgfBrcMi0z2J+gBCcMtFzYekDqtRZLidm4pAudvn/oGBJLXHfYLLWlg00gQhRW9Cb7AgGNOem9JrpoWLRnQuQnEiUCTj0s6xoGTxSkaxYC/robGM+x8NNuJrgUZ7AgJnTVC4xDYySb2YC+DPoCqAdIA+SQHceAB9PYrOoyCKQ25l6iyBYpCgf/kcKoRET9jwrHBTHo4CsZRJSaBGatBMCKWZpPWJGizy93hKn4QQnEQh8OCSaMDoSTBzpmlLSZX/DMWIkhzaPbtzf27qy73uGxOIupnOGjfhrNk1DwcAQERhAI9D8CRrgMCAQEhAA0A1loTd8iYiodNBJn1AAO1g6ki+P1ejdyF0Xp6s6HgpkYUBWZFZnNz+uIsbwUdajLekDloeiqUkCHOTxk1gBuePtAyWI/S5KQHCJqFhuyC66ht0pEGGbmFXmipQPkr/Ba5A6rBF69ItP4/QLhag9LgiRDjamEy8iOgUKd4fA4HfEdoliKKED2qEBgQGBoPhsZex2kga6JrvEKdMIbwWo4hGo6asvzkXBBZLEIQOLYINgOwSuAL5ozOoHbVYWjjglnkp/0WCrcdxLgjnA0R0kL0KdxNKRGggtrLuRRLU1rvdS1C3exXVTzXlyN61QcqIr1NNvClgRUvcMMBpZMOG16BKhU8vSGIyAQEAgIlAgYqcHmYrZazrY+zr3WSZ9/9dLc5d63n35aNMz0vjhj41+YZ6poH5htPvLgvc3Zmf/zze99/XuvyQAANTPHH07sLGyfih995KGt05Ovv5793peeusSiwZ7Ai7haJHFn4R3373no2JHXzsz/yde+8+rZc91qrZOnXdnGs2bROrh9+j3vPNEbq/7el7/1ndcuiHlhMfUx9Ir23L7tjZ9498NjtcpLLy587g/+qNeodtUKhxLjGmveZJff+67Ddx868NLL57/2jWdPz81nlVpWQP+QcqfhFg/v2fpjbz++kKS/+8WvvHa+wwoAam0XRQ1ibV2887aZH3/4oWpaee67F578wz9KJie0yo9a0wiPk875v/SeB/bv2/3cn536+jefu9DpZEkVzdUt4tpjrnXfwb3vPH70XNb77Sf/4FJWiamQwPfUltguoXX+vkO7f+QdJ5Io/fafnvni178WNcc0VJAKVxFX8rjSPffTf/FHt22befrp73/7mRcv9roSrhGQvaRoN6LFE/fccf+9R85e7PzO5//vfDeuuoSaR7soFjvdZP7kT73ryI8+cEzTCjNWJuolrNMUmv/lAx4uDIHQ+g8PQkAgILAMAbjVWqwM+uvRWo4w0O+ouB0HJ79/vnjy87O//m/+vbvzAJ0BrtF0rYqbe+Vn/sLd995zuD3r/tP/e+2/P/Fl58Zsgh5zBTtu7o23HWodPXG8Me3emEs+9PHfF3/PTqrTm0ZxJ3FnvvvPPvq+Y8eOvD5X+x9/+IP/+mu/4Y4cc9Vtjq5s1r2pz/2tR+87cfzofFT9F08+842vvOrySr+B38rc2Zfe974dDz38CFPkTp2v/YO//2l34KCbJnWEpy5L3CtPfepTH9p36MDLlyv/5QuvPPnE77i77pXw9ryLF12z9eGffsex49Gp2P3dT37VvUIshGOgKFyr41791s/9wkPH3/Uj44l79czEP/nFT7ijD7pxTOtQMBaMinvuc/d+4V9u3ee+dzb+9d997qkvfNHtO+xq26k3uHjeTWa//Dd+/J4H4pd70S/96v92bqdUUos+d+2u+7MvfeRjj9934sF64l78wcw//vAn3T33u3pFNheE5zX3nd868fDxxvaZZ0/H//RTX3/x6Wfc9oOmOcLPz84sfPzvTN171L2WVT7ya59zyU6XVVzWdvXUVVP3tf925D/+w3c+cIyhh3RpKDtU5QL9L3vMN/1toP9N/wgEAAICyxEQ/9E53cW4rBnqnGjH04hMaJLvqF1+4F13zTcbRVqpVmp5uzrdyQ/vnK7HRd25I9O1w3du67qa9QbktV6vnjXu3t2uISTXDPqHDm85WxtLazZhP48qvTjet3/7zDgq1JJs72x830+8PZvckrkJm/e2uC1u3rF1vIblu+dO7GjO37EFRsOYTVdAgx3tFtxde8bTIouLpJq4PUd3N/btiBEO1zEggFWC9hxqVtRDMZZmt2+N3/beY93mlm40EUfj1WJxZ7W1b6ZRL7oTefKBfbPP1SBJTAv0BPTGmMmw99Du2Ykkx5qQ1NIsuX//wSPbYpKh9Z/HKQsQ7LzP56NZyQ7tql5+5N6sPt2LJ5OoXi/m99SzPZP1ep5P5dGJu3ZeLmate1/Cm1QAdt67pVlPciz3Sb2yMHl03847tjgMBLJbSPN45/FarKUSJqrZg7dPNiYPZ5WpIp6Iomojr+6f6M4265gCpqLi7Yd3nXfTSQ78eRL3KkW298hjB/bs1KJJsvtjbghHQOAKCATj/xVACU4Bgc2NgFqo7BcL8zPzL2HPGO7iKCtq3Ty5cL5YWCw6UGAlYyMZ9pOL8my8ns9MO1dvvHE5v3i53zhnyECaMJeuW03bM7ONWjXttKJTpxlIoDoFB7ULWtLVNB9rtpvj4wz4u3RuYb7VjSsNElLvfdSFzCbqbqZJe7h56nxnbkFj3YiddXtVbTvcrlc7M7PjlTRtLRSnTnWSSsUG6tlqA0VRSbOJ8azZnOhl7vwbc7S6o5Rqg41JVPu9M9VwU80kq9RfP9tqdapesV7WrWEtL1pjjd7MTDNJ0oXLxakz7Uq1KuF+sABd+0lrcrJoNJqdTnH+7OUuXR70lTAKAs3JtctQe7xZaSfV104udPN6P9fSnP6FhfGmm5oeS6P08qXi7Dlp3k/dW1yShemppNFotBbyC+fmVFOKqoym1GJCjHWIuqg9Nd4AxpdOL3RyxvlrjAa1nqTiqsnizHhUq9HZkDAGgB4HGzwYOv439896Re4D/a+AJDgEBDY7AtAyXd/YqWljYw1n9BtVARzTvKhCbrIia9g6LWVZsnsQOldJu5V1o7SeRrI3c1CJkLNdK1TeSeKG8T6xrXuBOoSG4pNSF5lMJYA3sazjQjTC+MBiryJb7HbjtA7BmjzVMJBsN6jaQdE4knASxZHBCqjrhbM3AUyexOrUZ61C3Jl64KWYfKYCdFvdbloZ845I4EOzG/kgkGsMBAP0ajhyEMXG3+lCc/bQnAWINbnRIRzIgMLL4UxWenm31evWKiw8rMMLQbj5Fr2CgZLMq6x4dwJ46JQKlQBmSEg4mptwBfURJUeOjMpAtwpGGa0ejI0fGHHX0WthtWD6xmD6A159H+8fzgGBQP/hGQgIBARWIgAzaVF65sWptdmF4mlI1mQQ0Kw8nFj0hwFuSZSzJD5NanhJDWN8qR1ASawNBHfCu3neZbtZWAxzAlyVJuwLJD6FhjkIq44GS9+Gt0OLqTE3hnv8sA6oxStS0/Q8aDjKbR1bhNPS1YQCnBhvr/H1GBsQLkJUWITT3+CF6z2H6qqNIBylIVWs+/yJUZFr0+gQJLURTUIiYsb8007vC8cGQE1BnSKmruYI9tlcwgmp5REZ9Mh8CNVp5KitECScyg0JSnOcQcnG+BOFpKlZoSQTGJYLlxY6iIGOYEKmQE9OXJhYrXWgegJzBzS9Twv9Wa2CACwjmPeoNgC8iozUhZIihyMgMEAg9P0PkAjfAYGAQImAX00fkhEFQ2xYy5mMl2jEvmaSYZrvieAYzAY/YuLXyIC4JjbL2PuPOfTWbQ1Dw8GwE9RDM5S2PRP3IC3iwelGZdZQp/qABCWmkCJM0aZd0vYlcSgS43aBBb/oRAW7C9AFwAG9i/psbCJfVFGMXI0wjT0llbUJ1aiGBL1wLVqoygP6UMUwqpa4vNsmozHzCeBQZdMzNwJ4SRIT4YxUhNapy9iCBxoBSHR8VdcwWtc3V9ZKZ2aEMS82E1fpZi3ZM9jtUBP8VFnAXEFANCdlP8/RhAMn6TKsgIqW5U5JyKhgh9Q2XFTDsmtNM8xkFwETUxuRpGNCCGF/VMg81F5IOAcE+gjwFPWfrABJQCAgEBAYQYA3Ax+4jSalWpVqSssbCvKtTO7ERvYhKOzINQfWcfjGX1sMc1168r64+QBl4NJ9GJwQfNDADq9P6bssurmLI+3Qt4/ddxiKMYfSz4Rz54UPopeRhkLwKn1Hkx4GtRQVRpUCO0w4d4S/Ig2XWiwT7uV7GaUXjqq96FBp6EokL1fSMS+5jyrpb0sXRQ1HQAAEAv2HxyAgEBBYDQHxyoBLdK32rh0ryATfkmb8hQVXYB92NICJWPNplZhlKlcXRLBlx1B378d5QP+ELLUtg+HPx9+WjstkXuHWCx9I9HfXJLwU4IWvmrTRP1UeMlFGKQOPpnsFJYPTZkYgGP83c+mHvAcEro5AySIE0/Xo/dKY+JSe5QXcU14vDX7td0sFIXmNxLY03tJ08RtRsQy5Ujhepe9SEavfeeED/zL62oWXUQYyVvlW94ChYYhYPWCYq7UKWUV2cH4rIxDo/61cuiFvAYGbigDcU9KPvyhvr0GvUSmDaD+8tIGE/veVFFomnFsj1mUx13C7BuFrkLKmIErK6gEW+koJr0lMCLSZEAjG/81U2iGvAYGAQEAgIBAQMASszytgERAICAQEAgIBgYDAZkLgetL/WiYRrCXMZsI/5DUgEBAICAQEAgI3AYHrTP+we6vVmpubIytsE871wvw8jlzj2Fps3YQshiQDAgGBgEBAICAQEFiKwHXu+19cWPhfn/3syy+//Nhjj01NTj3x6SeyLHv88cd73e4nfvM3Dx069Oijj87OzrJgB3UCW9VjqTrhLiAQEAgIBAQCAgGBG4/A/weAVTCnJfqnIAAAAABJRU5ErkJggg=="}},"cell_type":"markdown","metadata":{},"source":["## 二、文档分割重要性\n","数据加载完毕后进行分割,分割完毕后放入向量数据库,进行向量化\n","\n","\n","\n","如果直接按照单个字符进行分割,会丢失文本的语义信息,从而导致无法正确的回答问题。因此,需要尽量保持语义的完整性,分割出具有语义的块。"]},{"attachments":{"image-2.png":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAqwAAAJdCAIAAAB4brLbAAAMPmlDQ1BJQ0MgUHJvZmlsZQAASImVVwdYU8kWnluSkEBogVCkhN4EkV6khNBiEJAq2AhJgFBCDAQFO7qo4NpFBGzoqoiiawFkrYjdRbH3BRUVZV0s2FB5kwK67CvfO983d/575sx/zpw7M3cGAI0TXLE4G9UEIEeUL4kJC2JMSEpmkJ4BBGBAGxCBHpeXJ2ZGR0cAKIP13+X9TWgN5ZqjjOuf7f9VtPiCPB4ASDTEqfw8Xg7EBwHAq3liST4ARJneYnq+WIZhAToSGCDEi2U4XYGrZThVgffJbeJiWBC3AqCixuVK0gFQvwL1jAJeOuRQ74XYWcQXigDQYEDsn5OTy4c4BWJbaCOGWMbvlfoDT/rfOFOHOLnc9CGsGItcVIKFeeJsbuH/mY7/LTnZ0kEf1rCoZUjCY2Rjhnm7nZXLkWE1iHtEqZFREGtD/FHIl9tDjFIypOHxCnvUiJfHgjkDdIid+dxgDsRGEIeKsiMjlPrUNGEoG2I4Q9AZwnx2HMT6EC8W5IXEKm02S3JjlL7QhjQJi6nUn+NK5H5lvh5Ks+KZSv43GQK2kh9TL8qIS4SYArFlgTAhEmJ1iJ3ysmI5SpsxRRmsyEEbiTRGFr8lxDECUViQgh8rSJOExijtS3PyBseLbc4QsiOVeH9+Rly4Ij9YK48rjx+OBbsiEDHjB3kEeRMiBsfCFwSHKMaOPReI4mOVPB/F+UExir44RZwdrbTHzQXZYTK9OcRueQWxyr54Qj6ckAp+PE2cHx2niBMvyuSOjVbEg68AEYAFggEDSGFJBbkgEwjbehp74JuiJRRwgQSkAwFwVGoGeyTKW0TwGQuKwJ8QCUDeUL8geasAFED91yGt4ukI0uStBfIeWeApxDmAA7Lhu1TeSzTkLQE8gRrhP7xzYeHBeLNhkbX/e/2g9ruGCTURSo100CNDY9CSGEIMJoYTQ4l2uCHuj/viEfAZCIsL7oV7D47juz3hKaGd8Ihwg9BBuDNVWCwZFuU40AH5Q5W5SP0xF7g15HTHg3A/yA6ZcTpuCBxxN+iHiQdAz+5Qy1LGLcsKYxj330bww9dQ2pGdyShZjxxIth3eU91e3X2IRZbrH/OjiDV1KN+soZbh/lk/ZJ8Pa85wS2wxdgA7i53EzmNHsEbAwI5jTdgl7KgMD82uJ/LZNegtRh5PFuQR/sPf4JeVZTLPuc652/mLoi1fMEO2RwNWrrhQIkzPyGcw4R9BwGCLeE4jGS7OLq4AyP4viu3rLV3+30DoF77rFpgB4Fc4MDBw5LuOA/fWA0fh8r/7XWfTBbeJCwCcW8eTSgoUOlz2IMBdQgOuNANgAiyALRyPC/AAviAQhICxIArEgSQwBUafAee5BEwHs8B8UALKwAqwFlSCTWAr2An2gP2gERwBJ8EZcBFcATfAPTh7usBL0Aveg34EQUgIFaEhBogpYoU4IC6IF+KPhCARSAyShKQg6YgIkSKzkAVIGbIKqUS2ILXIr8hh5CRyHmlH7iCdSDfyBvmMYqgaqoMao9boKNQLZaIcNA6djKaj09AidCG6DK1Aa9DdaAN6Er2I3kA70JdoHwYwVYyOmWGOmBfGwqKwZCwNk2BzsFKsHKvB6rFm+J2vYR1YD/YJJ+I0nIE7whkcjsfjPHwaPgdfilfiO/EGvBW/hnfivfg3ApVgRHAg+BDYhAmEdMJ0QgmhnLCdcIhwGq6lLsJ7IpFIJ9oQPeFaTCJmEmcSlxI3EPcSTxDbiY+JfSQSyYDkQPIjRZG4pHxSCWk9aTfpOOkqqYv0UUVVxVTFRSVUJVlFpFKsUq6yS+WYylWVZyr9ZE2yFdmHHEXmkwvJy8nbyM3ky+Qucj9Fi2JD8aPEUTIp8ykVlHrKacp9yltVVVVzVW/V8apC1XmqFar7VM+pdqp+UtNWs1djqU1Sk6otU9uhdkLtjtpbKpVqTQ2kJlPzqcuotdRT1IfUj+o0dSd1tjpffa56lXqD+lX1VxpkDSsNpsYUjSKNco0DGpc1ejTJmtaaLE2u5hzNKs3Dmrc0+7RoWqO1orRytJZq7dI6r/Vcm6RtrR2izddeqL1V+5T2YxpGs6CxaDzaAto22mlalw5Rx0aHrZOpU6azR6dNp1dXW9dNN0F3hm6V7lHdDjpGt6az6dn05fT99Jv0z3rGekw9gd4SvXq9q3of9EfoB+oL9Ev19+rf0P9swDAIMcgyWGnQaPDAEDe0NxxvON1wo+Fpw54ROiN8R/BGlI7YP+KuEWpkbxRjNNNoq9Eloz5jE+MwY7HxeuNTxj0mdJNAk0yTNSbHTLpNaab+pkLTNabHTV8wdBlMRjajgtHK6DUzMgs3k5ptMWsz6ze3MY83Lzbfa/7AgmLhZZFmscaixaLX0tRynOUsyzrLu1ZkKy+rDKt1VmetPljbWCdaL7JutH5uo2/DtimyqbO5b0u1DbCdZltje92OaOdll2W3we6KPWrvbp9hX2V/2QF18HAQOmxwaB9JGOk9UjSyZuQtRzVHpmOBY51jpxPdKcKp2KnR6dUoy1HJo1aOOjvqm7O7c7bzNud7o7VHjx1dPLp59BsXexeeS5XLdVeqa6jrXNcm19duDm4Ct41ut91p7uPcF7m3uH/18PSQeNR7dHtaeqZ4Vnve8tLxivZa6nXOm+Ad5D3X+4j3Jx8Pn3yf/T5/+Tr6Zvnu8n0+xmaMYMy2MY/9zP24flv8OvwZ/in+m/07AswCuAE1AY8CLQL5gdsDnzHtmJnM3cxXQc5BkqBDQR9YPqzZrBPBWHBYcGlwW4h2SHxIZcjDUPPQ9NC60N4w97CZYSfCCeGc8JXht9jGbB67lt071nPs7LGtHDVOLKeS8yjCPkIS0TwOHTd23Opx9yOtIkWRjVEgih21OupBtE30tOjfxhPHR4+vGv80ZnTMrJizsbTYqbG7Yt/HBcUtj7sXbxsvjW9J0EiYlFCb8CExOHFVYseEURNmT7iYZJgkTGpKJiUnJG9P7psYMnHtxK5J7pNKJt2cbDN5xuTzUwynZE85OlVjKnfqgRRCSmLKrpQv3ChuDbcvlZ1andrLY/HW8V7yA/lr+N0CP8EqwbM0v7RVac/T/dJXp3dnBGSUZ/QIWcJK4evM8MxNmR+yorJ2ZA1kJ2bvzVHJSck5LNIWZYlac01yZ+S2ix3EJeKOaT7T1k7rlXAk2/OQvMl5Tfk68CB/SWor/UnaWeBfUFXwcXrC9AMztGaIZlwqtC9cUvisKLTol5n4TN7Mlllms+bP6pzNnL1lDjIndU7LXIu5C+d2zQubt3M+ZX7W/N+LnYtXFb9bkLigeaHxwnkLH/8U9lNdiXqJpOTWIt9Fmxbji4WL25a4Llm/5Fspv/RCmXNZedmXpbylF34e/XPFzwPL0pa1LfdYvnEFcYVoxc2VASt3rtJaVbTq8epxqxvWMNaUrnm3dura8+Vu5ZvWUdZJ13VURFQ0rbdcv2L9l8qMyhtVQVV7q42ql1R/2MDfcHVj4Mb6TcabyjZ93izcfHtL2JaGGuua8q3ErQVbn25L2Hb2F69farcbbi/b/nWHaEfHzpidrbWetbW7jHYtr0PrpHXduyftvrIneE9TvWP9lr30vWX7wD7pvhe/pvx6cz9nf8sBrwP1B60OVh+iHSptQBoKG3obMxo7mpKa2g+PPdzS7Nt86Den33YcMTtSdVT36PJjlGMLjw0cLzred0J8oudk+snHLVNb7p2acOp66/jWttOc0+fOhJ45dZZ59vg5v3NHzvucP3zB60LjRY+LDZfcLx363f33Q20ebQ2XPS83XfG+0tw+pv3Y1YCrJ68FXztznX394o3IG+0342/evjXpVsdt/u3nd7LvvL5bcLf/3rz7hPulDzQflD80eljzh90fezs8Oo52BndeehT76N5j3uOXT/KefOla+JT6tPyZ6bPa5y7Pj3SHdl95MfFF10vxy/6ekj+1/qx+Zfvq4F+Bf13qndDb9VryeuDN0rcGb3e8c3vX0hfd9/B9zvv+D6UfDT7u/OT16eznxM/P+qd/IX2p+Gr3tfkb59v9gZyBATFXwpUfBTBY0LQ0AN7sAICaBAANniEoExX3P7kgijurHIH/hBV3RLl4AFAPK9kxnnUCgH2wWM+D3LCWHeHjAgHq6jpUBu9q8nulTIjwHrA5WIburJ48DwwTxZ3zh7iH10DG6gaG1/8C3C58iXTvVm8AAAA4ZVhJZk1NACoAAAAIAAGHaQAEAAAAAQAAABoAAAAAAAKgAgAEAAAAAQAAAqygAwAEAAAAAQAAAl0AAAAA6YQNhgAAQABJREFUeAHsnQdgVEUTxy8JIQm995KAIL0JCkrXT4qCBewdxPLZUZoFFMWu6GfFXhEbNkSQIgjSFZQOEkLvnVASkvt+++Zu83KpyMF5MCte9u2bnZ39776d2dl9+yK8R7yeCI/550nnfxO8/ghxueWVdG45SRGRHm+EJ83rWb5q6qefFYsr3LT3tZ4KpT2RDlmE4WUIHKZOkv+HNMvb3Ied1+HpRHxUwsWfhb8OP9d1QNSdV6idDF44O8yPeA+Mmzzjx3FlSpcqHV81Ym/y6mUrqteuXe3iCzwJVTwFCmTwl4JMHbOErDJkTcmSSRMUAUVAEVAETmIEdu7cOWrUqF27dnm93sKFC9evX79t27axsbFhVOUIb7pVejaSs/yoVaPjI4zmRp2vWT9v7PhCMTH1Lu3mKVXMp019qjQ7JUkaGfknN81lPgrNjpNjOuQsp++OYwSkpXt270tdsHjer9M2rdsQGxtT/4xm1Tu09VSu6CnoWABu/kakPNn65c8HoZIoAoqAIqAInMQIpKene9PTIyKZG3sjo6LCrqZuI8ARPj9aUGhQljgDUo54Dh32FIn1KVTMIT8GEeIS8F9Kupn8O8F4Ck6AMsWrgURGznTPgUOeg4eM/REX6ylayBMV6aHZHDFEFJ+EXPiFNOkESyOX+qsIKAKKgCKgCDAXTjfO7Qxl58yTMy7DAaIIl9Z25EX/Beg8qxH96T5lyR/5ZzDw/3N4gIokuBHIyCXlONz8LN2E/ygu3AOyGu7O8gN3+Uvz0GCYJixnYAEgvSHwiWCrkmU1IoCpXioCioAioAgoAicJAgUy1UNUKb9WOdu4VZLclLvuX4eLpc3E03/hY+nn7PvrykOU4L/vz5bdX6F038nsdMi44zdHIsx+BZwPYgHIfVOSY7b5yUnIkMqfaP7mRyY3vcYVAUVAEVAEFIFwQCCzEWAlFt3sVrYoQvelQykufaIBWpLLgBTL+IRHRBDUv1NyZIBc5lLqmnEjSzVPuMxaoCKgCCgCioAicCIQyLIccCIK1TIUAUVAEVAEFAFFIPQI6Ap46NtAJVAEFAFFQBFQBEKCgBoBIYFdC1UEFAFFQBFQBEKPgBoBoW8DlUARUAQUAUVAEQgJAmoEhAR2LVQRUAQUAUVAEQg9AmoEhL4NVAJFQBFQBBQBRSAkCKgREBLYtVBFQBFQBBQBRSD0CKgREPo2UAkUAUVAEVAEFIGQIKBGQEhg10IVAUVAEVAEFIHQI6BGQOjbQCVQBBQBRUARUARCgoAaASGBXQtVBBQBRUARUARCj4AaAaFvA5VAEVAEFAFFQBEICQJqBIQEdi1UEVAEFAFFQBEIPQJqBIS+DVQCRUARUAQUAUUgJAioERAS2LVQRUARUAQUAUUg9AioERD6NlAJFAFFQBFQBBSBkCCgRkBIYNdCFQFFQBFQBBSB0COgRkDo20AlUAQUAUVAEVAEQoKAGgEhgV0LVQQUAUVAEVAEQo+AGgGhbwOVQBFQBBQBRUARCAkCagSEBHYtVBFQBBQBRUARCD0CagSEvg1UAkVAEVAEFAFFICQIqBEQEti1UEVAEVAEFAFFIPQIqBEQ+jZQCRQBRUARUAQUgZAgoEZASGDXQhUBRUARUAQUgdAjoEZA6NtAJVAEFAFFQBFQBEKCgBoBIYFdC1UEFAFFQBFQBEKPgBoBoW8DlUARUAQUAUVAEQgJAmoEhAR2LVQRUAQUAUVAEQg9AmoEhL4NVAJFQBFQBBQBRSAkCKgREBLYtVBFQBFQBBQBRSD0CKgREPo2UAkUAUVAEVAEFIGQIKBGQEhg10IVAUVAEVAEFIHQI6BGQOjbQCVQBBQBRUARUARCgoAaASGBXQtVBBQBRUARUARCj4AaAaFvA5VAEVAEFAFFQBEICQJqBIQEdi1UEVAEFAFFQBEIPQJqBIS+DVQCRUARUAQUAUUgJAioERAS2LVQRUARUAQUAUUg9AioERD6NlAJFAFFQBFQBBSBkCCgRkBIYNdCFQFFQBFQBBSB0COgRkDo20AlUAQUAUVAEVAEQoKAGgEhgV0LVQQUAUVAEVAEQo+AGgGhbwOVQBFQBBQBRUARCAkCagSEBHYtVBFQBBQBRUARCD0CagSEvg1UAkVAEVAEFAFFICQIqBEQEti1UEVAEVAEFAFFIPQIqBEQ+jZQCRQBRUARUAQUgZAgoEZASGDXQhUBRUARUAQUgdAjoEZA6NtAJVAEjgWB9LQ0rxNgku4Ero6F4YnO6/W4BbZxG0Ee4u7LEy2hlqcInLwIFDh5q6Y1UwROfgRQjRGRkWlH0nbs3LF169YFCxYsW7asWbNml1xySWRkGJj43vT0AwcOpDm2S1xcXMGCBY8cOVKggBmXIiIiNm/ePGXKlJ07d3bu1Dk+IZ6Uk79FtYaKwIlFQI2AE4u3lqYIBBuBv//+e+yPP745YkTiqlUpqaloyh49enTu1KlwkSLBLir4/DZu3Pjsc89tWL8hqkBU27Zte/fuHVOwIFXAKti1c+dll102c+ZMDJ0qVap8+MEH7Tt0CL4EylEROLURUCPg1G7/HGo/Y8YMpl9mlpmPuZeQVa9evWHDhjnw0+TjhcC2bduGDh361VdfHTp0SKb+okHTw2RFYMeOHaNHj96wfj0LGPgArr7qKowAwKIuU6ZOnfHbjHRvOpcbNmwYN358ViOAvmeQNR010pOdm8BH4PgVHMJ8dWnDU4MicGogoEbAqdHOR1lLJmTLly8nkx1Dc2EghsKFF144+uuvC0RH50Kpt4KOwC+//PL111+npKSIBYBHvVy5cjVr1owOm4ZwVDe2Jl1NeltERFpaWlRU1MGDB41e9xqDgDuYCLgHpJrACA1dDucHSwlFihSZOGFCmbJls8JL52RlZPHixXAgzuJCpUqVspJpiiJwyiKgRsAp2/R5V1zG5DzphMwM02lpagTkCVcwCbye77//Hh8A4LOOft555z377LMnjT+ma9euLVq0+PPPP9H3FStWaNOmjZibAiDWwNq1a/9etYrEmJgYzKCcgF23du3KlSslb8rhwzmRaboicGoioEbAqdnuedQaRZKcnMzEyz3s4rllckYKs8yyZcvaORkpKKFSpUrxS5BLKcCdPZciyZWamhrNdjAyOAsQaUeORDm7w7LNJaVkeyu3RDzHzoQTGkphSxoJMss0Kc5/uWX3+0UoHTIyWnxE5tzz5n5XeIoMxAkGCAdYMhLJNjuT44ULFyIJarJ06dJ9+/Zt0KABlCJYTrmyZSWJlEtEfgWZXJgIGfTZQidVkN9cSsx6C25SdInixd9555158+bBpGLFiueee64VhraDCG8BKSKGWQ5wBd6Y4Da3DBSRkXStI0dIiaRTCT20lpsrny8KjeVswSSFOLK56S03EomnpqRGRUWaCkCdmdKdyxDDy+uFzPRKf/vaQrOFNICDXioCQUFAjYCgwHiyMXlrxFtoZXet9ifv79Chw7p16xi76tSpM+qzz9zeVwYvZqKxsbGSxY5lbg65xBk92RYOZ8ZRyZt/C8CMwuTKdcD1Fe1zPPvUBn4LSmQSSYm5yGZvUZBQWnqrJu0tS3y0Eak1NWH0lzgcYJstZ1+i11MgusDevXulLIwwXgogOwZBgKLKjzDCU6omvzZXVhlIyR1zm8XHyig6w8+mW+bZRKD0GsMCLOrVq1e/Xj0aiiYSpe5j6DQZXZRL021YHUhPc7OCmEuMJPhAkHrkCJeU7kXxOu0YUEd3XuK8bQG2QoOpYe9mBRYaGGYQREWauvrrK+myWGNNFmFLj01PTY2Kjk5Lxd411owQG4G9GC756pO2XI0oAv8YATUC/jF0J3PG4iWKUz07MBGP2RvDdEoGXDwBZTABXEuwMrDyu2/v3sMpKTIsFoqLY4O6m0lWyPbt23f48GGjtyIiy5Yry/QImgPJB7A5iGAZMB30KXiv5+Chg3gj8H4fwW0QXTA2Lpa7Zg+8fwDNyj8gheGYDY+GA56GyChUTYGoApRrzRdLLzWyl0SoCNKSnVlmcvIB8pYpU6ZQoUIsSGfVDe6M+Ymjdbbv2I6jBTQoOqag+a9kiRJxhQplCyB+GsHNvF+XZvRfobhCRLZs3QJ9XGxckaJH92oAuZL3JyMDyKSmpKA1y5UtF1coLtvaQbx37z6ag4pHF4guUbKE1JHusWfPnr176AOHUbcxsfwXU7JUKSyt/ICQlWb//v1UU9RnyZIlIQAcJKQUOiHFESeRX4yh7du3m9sOl1IlS6FHSURC2sunyL2eLVs2W/1KIpZT1qaHARXk3QSwpavQn6FkswVQQO+wz/Rj7BXHwNi3dx/6m6ah55cqVRoimnXzls0IlZiYmJCQULVqVTiLjPwiGy3OnscCbIA4dIgaUQpYlShR4th7VCYR9UIRyBkBNQJyxuYUvsO4xn9MyMyvExiVzJUzhDF+ETLgYd7mV8Mj3nrr119/5RYDdKNGjZ544gnf+JtBnRHbv2/fSy8Nnzfvd7ixJ/zpZ56pUaMG8e++/+6zzz6DJwPi40Mfr1O3zpYtW9gBN23atD/++GPXrl3JyftjY+OwQk4//XT8Ex07dqxcubKVIaMAV+zwocOTJ0+aNn363LlzsSR2796NykSvwIQJdKtWrdq3a1fCUTM2E5JYnggwZsyYOXPm4J1m4EY5FS1alLy1a9du165d9+7duTT0gptlkVMEpWHANQEVNXPmrJkzZ7AZftOmTag31B7csDAAsGXLlqyF8+YFklh50Hmff/75jz/+CMhIAhPKTVqTdPPNN5PCJRPovvfdV6FiRVNAPsLuXbu//+H72YRZs9HfyFC4cGHZYMhre5deckmx4sUpHU4WkGFPDpOFdpToq6+8ih2wbOnSSZMMwitXrNy7by/2FrWASfPmzYEIZ37B6GiZoOdDIh/J448/vnLFCqzAosWKDn9xOO1FP5w3d94zzz5DhEbhlyqzeNSvXz/4490hZ/HixZ966ik63m233QbBho0boSEC5o8+9pjTIU1fLlas2L333ot4UpgxQPErpKUvWryInvb777/z7iU2HwhjjJYqWbLmaafRSVq3blOnzumZKuI8KbTa4CGD2aZAWaeddtpjjz22bu26sT+NnTx58urVq7EMSLnxhhsRllIoEXzGjh1Lb5w1axYHPGCvgCSNzsuQ9MYel/aoHl/dtrgPDv2jCBwPBOhnGhSBPBFgEsyec+mBZzQ7g/E3myzp3pEjR9peio5kJGVMzIbSSZo9a5bwRLUwbq5OXC3E/fv3t0y+/PJLxmK0rEzCGMohtr+QMZSjqObMnp1TKaSvWbMGDuXLlZdTaMzmA2dRn8GdFAK6qmePHosWLoKYebCbFSL9ueDPNq1boxcpGhUCPQLAgTgpCHbJpZfMnTMXVeTOmEecOWO6mTXyIgYTRJkrw81vdPkAQJ+hEn4ePx6TxSKJFXLPPfdQOkEksflIId64cWPZD5+HDM6S+ZLFS7CiUNhkJLutHRFSmJV27tx56tSpbgFge8YZZwgx81dOKPr000/ZR4JfhCwSEAwCg1JkVPny5a+99lpm6jAJEAlsUXtkgZJt/NhnEJiaOvg0btyIdFghBocgyS3eh6RQxJPK+pByGSh0PN5tWbF8BWQ+fJy7Ihj0EgFbtlW6RcJSZBdC/fr1reuCIuDgYxIRQQXr1q372muvBaCBwPg/atWqJdIi9nvvvQdEzOxFPCR5/fXXRX76CY/PrbfeyjYOqYitgikuIpJSME0++eQT2BICENNLRSC4CDhurOCyVG4nIwL5MgKcijMUMmgyzjLAMZMjLduBjMQPP/yQ2Y+Ms3fffTcaUSjdRsArr7xSrVo1YcgvQz+aO2NwdwwCxlDGfWbG7gFdGgGGc+fMYZO5jLOibMiORqdoRls0CbfgiRgYIuPGjWOMJpcEmCxbuoyJNUVKXgRgZCfg6BZdQnYiF1988eZNm8kl5eb5C+XSpUtbt24tCkaYgBqSoIEoxaZzC3X19ttvH0k1gsEZI4ApLMKjGkUGfqkUGakFShcVsnTJktxlEFaJiYlnn302hcKBgsgNW5AhCGcSCe07tIeSLARZVrdGAKI+9NBDmGK2jYwkjnUlPC2fM1u0WLRokeHgCv/ACOCVyNi4OLGWLHORU34x6VasWIEdQC2oGgGTAUokpIIILL9Mu+kzyCIigep9991Hx4CJIEkEYupCjdz8id9xxx34sWw94OA2ArAL6Us2F6LC56233oIMBwBeKHo7OCOGSIWEiCqFkiJl0bhie9lSNKIIHA8EdDkg4OnWy2NCgD560003DR48GH1MwMHMpIeJYFamuE+ZPvJLFkZtZvMMi8ShtOMg8UeHPLpzlzm2iBXZ5mie5s1LlSoJwcaNm/Cj8v4YvnEGd87MoVzcBjjPMzh4PaQPeXQIPnxx1KO8zzrrLHQkCoAxl+Pq0MTwgYxcuBywP959913KERlQDK++9urq1auZhiODmfRfcknNmjWKFi2GC5fZ9oQJE3AXQ4z18P4H7w8cOBA++QlGsMGDKRrFgGzsb0BtIDxvsSMYd5csXjxj5kzc0XDDP4/WR/irrryS2ToqzXjXHUU7fPhw1q2hISPn65FIHLOpQoW81wIA/6OPPvrrr79EC6J1MGXwzRDZsX378hUrfvrpJ4qmdjNnzBwxYsSTw4ZlcoNLPb3eV199FW82ZBUqVMCsqVXrtOLFSwAdanjmjBlr1q6FkLvzFyzAJc6EGPABkxRhcLS/zMUfuP9+tClrIrQg2wMxnK699hom1qhVuOHVIE6ENQJZOlnPYUTsAomKuvrqq3nRgKIJGHKnOc4t4vTVN954g4rIfliYswTDShNI0uimLiuWs1ZCD+EW/Q2PFytB//3vf3EUULeAKtBqBhDHuEQSmoYeztIVDc0/eqP0fAqlz7dp07ply1asdBw+dGjFypWsEXBYMvjAgdW0d995p4qzkyCgCL1UBIKGAL1NgyKQJwL59ASgTnhpjaGTgZU+yoDL8SwBzKFhIRwNKg52KBlt8RVDJtpowIAB0r9lcGXsxmOMn5Yh2FgWOMbTmK4fQU0++OCD4seGnqEZx3VSUpLhL9PNdC9zO9GLsMIWeeaZZ2TV1oiU7oUVWgS/a+XKlURg+GBMsCNMmOBSZlVeZmyoRlwX6ANhjgAM1vBHZ1M02Rs3auQrN6DC2V0iOZM/qSYT/UGDBmHQoGB8tOlemOP3ZqVAaPg9/fTav/32m5sZxaFQRXLW3UVmN0EucYjZktapUyepHWbN//73P+wJyULt8Mw/+uijwEvtCLwSAiyWoXgCyCuuFOp/5plnsv6N9WDFQI2xQaRnzx40AULChBZ/4YUXYAKNsDpaT4AVAAnx20vdUaWrE1ebjuEP7iIw+4QMDPEQCJnlI5Gff/4ZqJ2K0paR3bp1Y1uAu74YTLiUrrvuOqosZABCZ5OCKNbtCaAgSsQ7xbEN7GWh0J3+ZQ72tN5///3CBPfAjTfeuGnjRuoi/hVKpNHZ4CKNjukw4eefA0TVS0UguAjockBw8TxpueXHCJARGEr0qIxiDHaoNzPGZQnXX3+9TIygZMbDfTs6WyOAW3BgKsbIyOhpeVAQxHL58ccfowOkOLTpt998w7vacgu/q2wpNwVFRDz88MNShPl1skMpKYz4aFOY4MJlCGaDGxwohRkwM2MZspnjsrcAn7x77Z+hHwIpHV8Fi8pWyFwiFCrFIRWagAkrOsag50gltYOGgrBRRDlRBJTMpDMMBUdC4cPdf2AELF+2HD1qahcR0bRJ00ULF0rRVvL9+/afc845MAdAQGaCa2+1aN4CjU5eqTs+DIwGslsCG8G8u+iiiyAT93jdOnXtLSLHyQhwSyJGAFCjvLEjuSVBxCAO0hhz1nuP2We7kFtU4ijsCy64QFhR9yFDhlgmAUYA+ptNrNz1l5bxlzOdaEowZw0FZ4Y0uvDhl/allaUIjCdcDvaWRhSB44FApoMv5HnWX0XgnyHAyEVAF7Zv3x59DBNGPlZwD3H+a+aAwmA51rx6EMHOvuIYDQzEMu/PTGhOh+3Tp4+MvLxwZZ4BZwM8AzqUxDk7tmfPnoyqXGJ/TJg4kUIdqnQ8z7xKgEiU0qxps4cfetgR0NlX6GTnXXD44AFGweMoZszFXkHVsWcbDjDkPT3hTEaUGTrACOC8qGbk9Hp4E48tb3ywh8Cseu064/rOI3g9zz//PAgYwTwe9tMxNUQDOXL63noXKPC9o0uwkJiOQ0m98M+zDOHmLzVyp+Q/TvVxY0APIrv37MZnTvVtdipaqHAh6gW8PXr26NKly8YNG+1dtgaI5xwB8PewAESLs7WeXIK/pcSGu+/e++T1DRTn0mVL0Xz+dyMs1XGP0NCU7rReprKQH8uA1XepDu6iJ598Ev8G1fD9I4+E9HReuLjh+uvpJyRQzffff59cREzbuQIFXXHFFTVq1CBNGshNQGuaLJGRoJ20evUB/9NhCklPp7+1atny8ssvB3aMJ/YjkOzirVFFINgImJ6nQRHIC4H8eAIsD84Uwl0sXRWnN4O+vSWRF198UQZH5kNsk7YzYNEfbk8AsyW81pIewEQ8qCRiZ6BpKA6eTG1ZxiaRLOgtKYVbo0aNCszuukYAVvcZnRmC2QiGl4Jditznnb0LL7yARPgw9LNs8dnIkbKPgbsYKJRCcHHKLWrp2YuH0hDZhr/4Yu4ccCbLXBbVgqJl1cCWQUZ8zvChgkfrCYDJrp278G/zoj8csEKYAb/77rusdwh/K63F2ZZLhH0VtKwgw14EwdxNEFAp7DyKgB5RL774Ikt5Ij0BVJPXGm3RNsLODLoZghFYUTJfM3LeTaAKphY0r/NPLsEH34y0HYbF6tWrhY/bE4D/idO0jO/K3zUMH3/438svY3vBATQwFDDypLNxX4rwFeqn17+KwHFFQDcGyrOvv8FEoHKlSviHcYeinfCsshKPnmDUkzIYRidOnGguHLcB6wVEnKtMh68JMTvgcvzii4+fp0njxozL4qxmho32YqKZcjhF3mMUPpxi5H59URLNr/PKPs/YqlWrZKbIaC3vbeMAL1e2LK/P/fzzBMZl/LSs77Kr6+133mHSz2quKGDzfDoTuwyeOcRYbMYnwYICRhKTO3EI9+lzi5Ei541yNWvUQONyRAFEmGIsEHB+QA4lwN4PSk4UrnSOhALe7777jr2NzGjRhWwSxA7AeMIMElUHPqhBI3nmgMDiNkAR8hKjVaKWyja3pFx55ZUffPABidAnJa2xZHlFjqI6ebEy9wOkkixYMGZ3p//Mn0mTJ9MTcuJGraWfwIoImx/j4+OF2DLHVqvKthizZ9DHxt7i+tzzzmPXIe4HWCUmJvIGDfsEO3U6/5prrjVnPjrBl03/KALHHwE1Ao4/xqdeCQx/d915F9utmTRHeNLnz5/PgQFoMoOE1zN9+nSUDeMxioSXAnAmMxHP6ZzgJk2amEw560juVq5ShbmXjLNsrXIK8W7avEn27ZOXlD63GF2bU2BOxojMLwYEszfEJkBMRf773zvWrl3HLnq2uWEKwJ8NBOx34704lDHK8sILLixXvpx47KmdHfezKctRCes3rMeeEGlZOilcxLyTlkvAjY1SQXdSOjNIlEe2xFJNTJr82AGCJzJcddVVzGV58R1FSN2xz8yRQbNnsyWQjW/XXHMNJwUBr2zhDGgFueSX9xqyFcmd2KplKzwHmBrgDJLuW7nEBSWKyIUmn7cChHfnAlJzl5N6vR52CBLkrpTupqQjisFKIlmoDkanj9g56JcWJr1QoTheCsgmu0Nat06dYcOG0X9AXoxLXlHBBn3jjTdZjMACw2vCawulnU0qmUrXC0XgOCAQaOAfhyKU5amIQI2aNWQ7GAMrwyInAAoKKFfOCJJX8pg+svaJmz0nC4As6D+G2twR5IhdZtVCc/DAQZQZ469zNrDZIUicwF2JZPsrWRiRuYu8KGni5CWgd3kN78MPPuC0ODQ9jAyNo5YwZVjOP/ucs9nZJ4fzMGnOXVTuom5xBggZK7550iMPEEFGoaDHCoWUbjNyaUWyiXlGyIUDA87oe3wknc4/XwwpKg4aBGr0yCOPtG/fgdUZzDg2ZKC/s7Kl6OLFfOcJZr1rUzjyD+GFAwjY9Nwj+TFocufgvouoBHeKxHfv3iURg4krAEVg8HvsLZNDh8zqib0U05YzrXEjZVsWlFiW7LQYPXo0FiQWMK9XcHY1nRzMWYngVUzcM9dcey3vCoJ4BmeNKQLHBwH1BBwfXE9trgyLjIC8ND9mzI8HDx7ADsCRznSHN7y3bd/207hxaFlomEGe0axZ7lCh8yC2O7ezJWZmecg5b4DpMhNrXuGCObsEeH0ceuK4bRMSErLNG5DIQAwxr4Az95W8QtCpc+fGTZqsSUr6evRoZoq8JnDo4CG+Sgc9awfvvfcep+a9NHx4y1atAhi6L5GES/bzy9I4l8nOu4iI7SbLGpc1Y9LJwtuSWQnkVrbpuSSK2wJTAH8MTZO0OunHsT+OHz+es/lwCYA5t2gv1BJGwNChQ88797wAblKjrdsy7VUMoJFLVkCoNU3JZQnnyxTZkmWbKKVke0sScyNwbFBLkK1iLlfOnGNBt+EuhqndZpF7ifCEvkYN37sh2XLOloNkrFe37ksvvcRqAnsSPx81ilMZcFyJNYG3iVYQE5NTieyrpNly00RF4BgRUCPgGAHU7DkiwLtzLVo0x/nPqIe38/d589A027dtQ18aBeP1spetenx8jvmdGygk9DETslw0JSp5505ns73XY14XNONxBPNaTtcR5szm2aCA7z33srhrh3LEM8Re83oCZgEKjDVytrif1bIljlxUGgsEvEm4YsXKtCNmDsea/b333Tdz5kzLIWtZcovJX8EY4wCgCMwXFHzRIkVzWUSAOVNnECAL09iGDRrmUkTWQnNPYQJqahcVxcaLihUqtm7TmgMMOKKA2nGkLuCjtoEUIwB/AJZcxtq/88EIqkDIaYXCXTRLDNaRUIT65jNkM2/PJicy5AQgNgBAZ5PHlSR2FQsVtHLv3r357oBYaS6S7KO+bpkH+4y8yEnbyS/+ADokZ0uwD4BvQPMaC3tXP/rwowV//nn4sDn9iR0tvEXCchiOgQwWGlMEgo1AHlOQYBen/E4VBBjpGON4UQqHM6vs7Gj7ZcoUNMorr77KLBPFhh3Ai38oePe79VnRQdEyW8reAvAPvrNnz1q/fgPDK954VLXsv4N/fHy86EumVl988QVxX8iiMUjHkkBRoct5P5DNd4zvVAE5mZ+xqZAzYmVVAvXAVL5p06asEUyfNv3FF1/ge4pQIjl5ORY3axUCUqhLzZq+RXSgQOUgtnDIROnUDjH+XLCALQiiDfkiX5my5ri9TJRHfyE4mNrt289pCnv27kUS2NJAtBoeGnarzZgxgzOb2cIGenjymZjyYoItCpklkMIRRrIr094NiMCcs56kEfn17Q4JIDq2S7pZQCexKFmwEDhbo4JjoOTtEgiwULHwsspij6nAblswfz5LWjT3wr/+AkNjZxDy0SjADuGB5GSsOgLA8tqiJGKz3n777XxJauyPY3gJBcsMYbDGOHKRSFZ5NEURCBYCagQEC0nlk4EAE3HzLyKCd9t4CYpRkjjzyCVLljC/ZHRm6EQTcBANETZkmfE6hzEUHcx72+gYGWkzyiDGRi5nJz9TKNQMYyUamg8F8QFcbnLr0ksvNVRO4Di8tWvMF94ycfBfsIGA42J69erFaQG33HLLuJ9+QqMQ5s6by1sAV19zDf84lYgUmMEE5gQOCbilzy3s5PKz8fwyebKN5xJhw51IxS/WCQslRALoDSKsQKelj/5mNCfTOV4ADx9BkANxA4j/2SUT/V69e93ghBEj3qREcYmLMNhn3OGYZOqMJLQUOyJtQUCB3qWVSUEd8roHNPZuQIS77AwlEc7shMTFHUBwLJfoS9ginrtxRTDYGhAdwUxzciZEdqvseEGYcMMEDpx3yQsgAfLAoYCzOAINH3G4/oYbrr3uOs6HeIjjp46YDSimIKd2ARmzvby5Tx/ezGT331133bU3y/aI9h063HbrrWyFkbyLlywR6zNbVpqoCBw7AmoEHDuGyiEQAdQJM0UGR07CwQ5gmGYYZYLFp12ZSJGOtubNQAZl2ZtmhtEsWhCmpJOXE3I4aYB9aQHFyOCO+5qP8KIDuMscnfMJUE5GH3i9V15xBafZw4TA4M73Z4VMHAEkCgcycm7Bt99+yxv5vLLFpsU6deuKpk/ev5/zA/iIMLu0OF2YDQqSLhkZ+zltj7UGKxjWgY3nErnu2usQTGBBwb/88st4GrLSI+H4n8e//rp5yQKZWRvmZCTqmJXyH6RQBdCY/MsvnNoEwp9+OtK8JOm8x2+5UTWWVKRS0GNp2VvgYBb4HWULYpzGiPsEGho0wFzjXELMOPl2M9zqN6ifyyuOln/+I5SJmmSZKZMZ5b/w/zVHLYEnZ05k5cwbrZwWhQsEYnb7Z/sBCJM9MnLB/AV8BwjjiRUQQteuXVlKcTNEGPdltnHW++lRfGzim2++4VDtrDTRLq+Gg6ixXPPDOSsrTVEE8kRAjYA8IVKCo0aA0RYFTzZ88kyUZYUVlcMHf9EcKD82B8jhqeh59+hGRnLZFBkBGZexGFAk7FdHl7B5nRGZ7XhMLrt1u5BT20S1wxY3ACfekMvwwdSIjmY7m1FjztyddW4+w4NTG+8CasNRV2Y9m/e1ICOLkLFIwWE+cCOlVOnScpA7PJkH47pPXJUIGbdI2bd/PxqUMV0AQmVyOkJ+wIqJjeGFAujFDMLH8N877mDXAocSUjs4YyqhO6k1r9dTZYqDEvuG8wngD01+SsmFRiBigT8hPh4y5vq4+qkd6s3MOx0vBChNmsQ78z7fBtKef/75lif4kGIuHdkSV63CtYNLJmnNmoPOhnnOaeAzDSi57hd1x1XAhgAKxY6hUuS1fP5xBCYNGjSAJ81BeO/99zGn8Bgh9oFk840DQDPSObgRkU745ptvcl4QVgsI79u7T76VgJXDmyx88AIFDqvExET6Jx+jwmKgu0oRu3buBI077ryDDiNTc46lwtVkyjjKgLcfnlhUrAg8/8ILuEnYZCo86MmsKGFuUhHkp46NGjUsGF0wwK46ygKVXBHIDQHdGJgbOnrvGBFgsMMIYI0Z/W1ZMW72uukm0QRiK9hbWSNs1GfUZmRnlZrTZjiXJj4+nrGS02fnzZ3H5inGSgIZKQWXfjHnhF1MAOONSE/nPXi8uxgKjOYwQQcwlLMMwV4wjAM0AYsUrHZz1+hjr5czW2QiSAoeBUrnCDm2Cxg9k57OwjZ7uTFfOM03NSVlVWIifgJ5Z4+NCC1bntXUOdUgay2yptxw/Q3oXebfR47AKYVxf+LECa1anc3qCeVygi9H96CN0J3UjqIRGDOIOnIZMF/PyjzPFABEKcITbz9bLhCA5uDgRXZFiLOBcvHcoJ9Q5FBCzzYI91o+WKELEQafT5WqlTlKgbbo1asXipk1CzbYo8aoIEvswC7ywId1EN5ECBDPab2AtLwvkZmNpbxo51gtXr7txGYOdjBgmjCn571H2gguTpt24i70XHIyEt0JkKGhA7D0w0ZLTFVqN+yJJ3rffDPKHjKMIW5hC6Lp2TGAJ4aVLOwhtu9xl67C7k5285UqWQobiJT8B+RhFYDdshgiNCuA33zzzVhXiBQTU3DLlq0/jf1p2fJl3AJbSuF8BV5CgT+X+S9FKRWBo0CATqlBEcgTgaM6NtjNjTGaM/zRMQydEtBk6G/egUa1MNi5g2Tke762B4948027O5rspDNtlbvCk8GRgH5iiiZOAhgaPvw4f1HS6B6T0QkQE2fHO/Ng1K2wcnhEtG/fjrEeqdzy8+o2egvpURUQo8lQHgQmtWyqF26ksyEReyIgr5tP1jhaloMUySv1sqwkIiJxF4OGPeSzZs6EueHPxw+dWbWponNssKGJiMChLUhmLSjHFL5VuGkznw8GB2oHE2oHqvyKSHCWUKliJXzX7i2cAM4hwBBz6jCLKQkJCX5aIwwcRH5+YcUl/GkFdroFCMOxwb6jCT0eLBK8PlIvqkl15AQ9OLNvDsXszstMGiMJqwsZIJBfSqE4dvkJsbhVsELat28v0iIJxEgFPX0Am8DyBFXMIPwBtiJE4CYBeslLIqzYYgJbjAObnQeEjwVL3saNG2M82Vs2Ig2EAwCLFitEiGFLXyKQYougk1MiXhN5O5SM0pktK40oAsFCwFjKGhSBPBFgh3x8fLwMWygApn1mYMpfwHWPUx1Nw+ALB97C2rPbvPOWNQg/txHAuMycidm5ebPOz4FxWVgxULJGzm6+bMdcn3SMn2lpcEBRobylCvYXViQy2+MTBmuSfDN+EcxWjknk3XffzbyZMVr0hygGiTN2s8jtVic2Y54RCmIxAsFi/J8VRjDYSkClUTt0J8521D9HDAUwJDsEBg1PBO6Nf6YnqB1rE8yhxSSCmwWH+hI44Y6DEFB4olNFBqb73IIY8wgPNu8QshSCXUWiCC8VoYFgWyMh4Zmnn7Yn5AsHhCeCr4CiJQufzOFLxL46OkYAE3RuwYrtkGyflCxCwHHUyMM+03r16gEUBRlhHFWNH2LpkiWQQS8B8fjSMVofAhgKJYaF2abq9GIhI8uM337D5mNTpIBgynaCfGGBdIytH374AXpriok8eJXwGwkx2wyx8Eg3RpsrmFyO4YujhVMlOCpAFL/F3MgWYcxNejs9FjKyuBhoVBEIPgK6HOB7yPVP7ggwvrIdmtfx2fnEAQDO2Xl2hMw9qwcty+jJLJAxjm3PrIkWK16MvpxHNuc2gyCqhZkTS/XsX2OGx8I5mobBFH8vTgX8BO3atjWbt1kGlo1qAXxNaiS+dLYloqpx/uMbYDEYrVayZAkOikEH4wOXj+oaJo7WcfNgUOaNbQ43ZFsAiwvbt29LdY78Q70x7rP5scelPSpWqig1yprdzSogjmiy8M9OMRQVphUTXALwsnOwVq1a1I4VEHgathna2ceG7DiTmVlyfdppNannPwjUDnAuv+wy1v/xqGOxgS18SOfkYGDp3q07BpA5GelImlGhLnwMXM4yCnNfVka++/bb6b/9lpS0eseOnbQRs1v0MRqx24XdEmokiJFhJRQ+7LrAymHtAEXIpoc4/1ehWc2BsmePHlSfUug/dAM6A1pcOPAJRCL0CvDHUoQDathZPcFtUArbiFr4ZI2IQLwxP3By1RjWAqwtgjz0ZDdoFMRxTyyCoOZpaxZlzB4U540SmoOjfGvVrk1XKV6sGPYFFbd1ISNWAmtPnK1EYpXK5qBlIla7C6X0T6Qi/Y4777z4kkuwQtgLspHNB6msCh2Oji5Ir8bx0/WCCzCADLwutG1xGlEEgohApm1ZQeSrrE4yBBj1mKJSKUalox2bJvz8c5euXRmUUQwotqlTppYsVdKO5m6gZMgb0L//s889J+l8WwWfOQpJLlF4jMuMoQzNJUuU5DBaO0oaqbI1Apyc3BUO6H60LNNfInGxcbzmB3NmkTKmw1YYZmIbEcE2Nz4rDAdyoSZlaxgZUXKoOuHM79EiY6UiLzxZcoY/sjFnxTmB8YQYIhJVS0s3xxbZsmwEJgQw4ZdEK7klyCVCFujx80cXjKaBKB0bS1jxG1A7Nx9e+mBjJrIBHefbYCugtZm9o4ZRxrjKYQs+2HzUJQ+pkNpvvog80Etd+COOEd9lltqRbhS/0+7GO0QXdX6pC1jZXCIAl9ykJ1OgOADEkshanHnxLzKCiojFAEGRwoVLlCwpHLgMCLYgI4Ar5ERvSPy13r1rN99xhhLBcGQUK1bUXVAAQxdvjSoCwUFAPQHBwfGk5+Ke9xztwPToY48xKAMRAx3rvhx3Y8binGc5RpX5A/u8rAVAGkqF4L+Z6W/uUtm7ZvXVpbaFBcJIBM2Xialf64gFwC3kYQ07gMZe2lJsSu4RNz0TU74fk5XeipStBQA9TISP/GblkEuKZOFtBRAAZ4Jdq86Uy6+xbCL0BC7pGBKHFZYUtWAWTrCUeUdcetNWwRfx61SbHsCNdGT2JbqEFKwCcsklApsCaWdfm5vcPkp/cfLiH3YYwcfc+RPA0N462nST0V/rEiVL8M+ykkhODAPI9FIROHYE1Ag4dgyVQ44IoB7wn/OGmFDgI+WgGBng/lXD3L9KmBzRPJ438kDAr7EyRHBp0IzE0MayCpm7PEdLnzs3vasIhCcCgfOe8KyFSv3vRYAT8Tj2DvmY0XKKcMUKFfKUVaaYeZIpQWgREAdAaGXQ0hUBReAYEVAj4BgB1Ow5IoCS4B103q5mqRgi3AD33HPPv3ACmWMF9EbOCEib5nxf7ygCikB4IKBGQHi0U9hJKbN5dj5zFq8Iz5tXHNJuV7jDrkYqsCKgCCgCJx8CagScfG36b6kRm/B51Yr91QjEFnHe5mJPH/vJ/y3yqRyKgCKgCJzyCKgRcMp3geMGAKe/2ZPn4+PjOc0GNwAbyHMpUPwHbm+BeftLw78QAef7AryVJ1adNNy/UEwVSRFQBHJHQN8OyB0fvfuPEHBW/vmcDO++c8YLSp3j5DjUBVWR+y508965c8YcuaRgDoIjUXLlnvcfCaqZ/iEChYuY03vIzFYPc1Zfllcr/yFfzaYIKAInFgE9LOjE4n3KlMbJJ3xkj8+lYw+g1zlkrbD/sPTcMIA6wsPZgpyhxrvbvMnNQXjFcjgYIDc+eu84I7Dq71Wc2ySnR/DNPY5PUBPtOEOu7BWB44KAGgHHBVZlGkQExBOgOiaIkAaXlawFaAMFF1XlpgicGATUCDgxOGspioAioAgoAorAvw6B3HZp/euEVYEUAUVAEVAEFAFFIHgIqBEQPCyVkyKgCCgCioAiEFYIqBEQVs2lwioCioAioAgoAsFDQI2A4GGpnBQBRUARUAQUgbBCQI2AsGouFVYRUAQUAUVAEQgeAmoEBA9L5aQIKAKKgCKgCIQVAmoEhFVzqbCKgCKgCCgCikDwEFAjIHhYKidFQBFQBBQBRSCsEFAjIKyaS4VVBBQBRUARUASCh4AaAcHDUjkpAoqAIqAIKAJhhYAaAWHVXCqsIqAIKAKKgCIQPATUCAgelspJEVAEFAFFQBEIKwTUCAir5lJhFQFFQBFQBBSB4CGgRkDwsFROioAioAgoAopAWCGgRkBYNZcKqwgoAoqAIqAIBA8BNQKCh6VyUgQUAUVAEVAEwgoBNQLCqrlUWEVAEVAEFAFFIHgIqBEQPCyVkyKgCCgCioAiEFYIqBEQVs2lwioCioAioAgoAsFDQI2A4GGpnBQBRUARUAQUgbBCQI2AsGouFVYRUAQUAUVAEQgeAmoEBA9L5aQIKAKKgCKgCIQVAmoEhFVzqbCKgCKgCCgCikDwEFAjIHhYKidFQBFQBBQBRSCsEFAjIKyaS4VVBBQBRUARUASCh4AaAcHDUjkpAoqAIqAIKAJhhYAaAWHVXCqsIqAIKAKKgCIQPATUCAgelspJEVAEFAFFQBEIKwTUCAir5lJhFQFFQBFQBBSB4CGgRkDwsFROioAioAgoAopAWCGgRkBYNZcKqwgoAoqAIqAIBA8BNQKCh6VyUgQUAUVAEVAEwgoBNQLCqrlUWEVAEVAEFAFFIHgIqBEQPCyVkyKgCCgCioAiEFYIqBEQVs2lwioCioAioAgoAsFDQI2A4GGpnBQBRUARUAQUgbBCQI2AsGouFVYRUAQUAUVAEQgeAmoEBA9L5aQIKAKKgCKgCIQVAmoEhFVzqbCKgCKgCCgCikDwEFAjIHhYKidFQBFQBBQBRSCsEFAjIKyaS4VVBBQBRUARUASCh4AaAcHDUjkpAoqAIqAIKAJhhYAaAWHVXCqsIqAIKAKKgCIQPATUCAgelspJEVAEFAFFQBEIKwTUCAir5lJhFQFFQBFQBBSB4CGgRkDwsFROioAioAgoAopAWCGgRkBYNZcKqwgoAoqAIqAIBA8BNQKCh6VyUgQUAUVAEVAEwgoBNQLCqrlUWEVAEVAEFAFFIHgIqBEQPCyVkyKgCCgCioAiEFYIqBEQVs2lwioCioAioAgoAsFDQI2A4GGpnBQBRUARUAQUgbBCQI2AsGouFVYRUAQUAUVAEQgeAmoEBA9L5aQIKAKKgCKgCIQVAmoEhFVzqbCKgCKgCCgCikDwEFAjIHhYKidFQBFQBBQBRSCsEFAjIKyaS4VVBBQBRUARUASCh4AaAcHDUjkpAoqAIqAIKAJhhYAaAWHVXCqsIqAIKAKKgCIQPATUCAgelspJEVAEFAFFQBEIKwTUCAir5lJhFQFFQBFQBBSB4CGgRkDwsFROioAioAgoAopAWCGgRkBYNZcKqwgoAoqAIqAIBA8BNQKCh6VyUgQUAUVAEVAEwgoBNQLCqrlUWEVAEVAEFAFFIHgIqBEQPCyVkyKgCCgCioAiEFYIqBEQVs2lwioCioAioAgoAsFDQI2A4GGpnBQBRUARUAQUgbBCQI2AsGouFVYRUAQUAUVAEQgeAmoEBA9L5aQIKAKKgCKgCIQVAmoEhFVzqbCKgCKgCCgCikDwEFAjIHhYKidFQBFQBBQBRSCsEAhjI8Dr9f57oDbCBEucYPH596BzDJKkp6f7GtoFy7+q6Y+hcppVEVAEFIEQIxCWRsD06dMvueSSO++889+gDNLT0mjDB/o90P2i7t98880xtic6zxNxjDxOnuwLFy684oor+vTps2bNGmChuW2Lu+MnT4W1JoqAIqAInFgEwtII2LBhw08//TRmzJgTi1X2pUVGRXFj6pSp48aNW758WfZE+UhdtnRp9+7d69atO2XKlHyQn/wkqHkwGe+EdevWYR5t3LixZcuWZ5999uHDhyMIai6d/L1Aa6gIKALHF4ECx5f9ceKe7UKA8ccbl7E3Pd1oiEiffWPnjkZrcNfrNcojwoNSifTTiCef7NAIgdfLjNwEXxYnklNtyBIVGelM4I9yFo+85HAc3Ulr1syePXv79u2zZs1q3749ZeFjwMIQf3hUVJRURERKS0sjJas80CxatAg+RYoUufLKKy0BTJza+KpjUKBkJwgNCcLZoOfAIhFb0GeffbZv374unbtUrVbVss1PxHKG2CnWNJBYTnJJuURsoo+n1zSSA4wvAUmo2rx586Kjo/fv3x8TE0PGxFWJEydNrFixIogVLVoUNtK4n3z88eGUFNxFpUqVskLa4iRFLolLxYlIimHiBJtRI4qAIqAInKwIhKURgG4IGNBN8+AuTjdaA/0WIRrZaTT3EE9c1GGkJ9LQ+YN7PV/oMSLkZtqRI1EFDEqmRKMeIo3azhpcVoJoEcliS5dLq2B8ytVxcQszfADXXXcdivbiiy+WFDQlpRNPc+wVYWU4mPplIwR69Eha2rRff33woYcqVaqII91XulPRI0eORJKP/9DxZIeRo+2kLCjFKoLWsRQcI4mincUODI7Bgwdv27atfPnylatUJkuG/ST5c/7FlBEAhSQlJaVgwYISRwAjBmUbOyAzC3/9rJDo/qZNmt54443IULJkSaGeMnXK3Xff3apVy3r16mEEwEfSH37kkd27d7do3txHaUoy9QIf+Ih9Y4idVFuEZOfSEFgby4dIZvH0ShFQBBSBkwKBsDQCskHe60lJTWF8P3jwYAFHZ/u0nUOadsT859M9Xs++/fuIx8XFCR+rA1JTU0lBE8Bh186dhQoX3rt3b+HChWNJioyEDI2VeiTl0KFDqMZCcYUioyIpEUXCfaM5/HoMPXcgOTkmNhY+hsDhKWXxK65slD25ChUqFFOwoEz3q1erPnToUJQrKZDBDT7Q4GNAWlQ44qHBowtGG23m13aWLREzg09Lg4wi2E534MABBIAhMpARxRZVIGrXzl3R0QWKFC0KQ4qIBivHIKBGIobUhV+4pUJ0BL1pArVm/p28Pxm2lF+4SBF30TnFjWERFUUWshOnvgUdQKCXRjGyOY4HWJtqpqYWLVYMwUQMN1uylytf7rXXXiOCUcIv+CCS85ss1TFsQSAlJTnZpBw4eBAo4AYOBCLgAAHZSY+KjNqzd0/p0qXT0wxDUOUW6YhEAEaKgCFSGe+CBkVAEVAETkYETgYjAIU67ddpv834bdHChdt37MATft6553bq1LlR40bSZN//8D1b9vrc3AdDYdq0afjb8RKf0axZj549q1WtanSnE9h9xgL01KlTmUQy9JctW1Z8zm3btr3qyqtQBHv37fvll18mTpz4999/k6NVq1bnnXceS9QRXjONZsaIJNylLHa0Va1a9fzzz+/erVsJZ9rKhHhVYiKlz5w58++VK5nc165dm+xt2rSpXLkyOn/jpg2vv/F6UtKahx9+uE6dOmgmNj2wz+DWW245eOgQEcRmXtuhQ/uLLrrYZMkS9uzZM2jQoMWLF6P/tm7d+uCDDxKpWbPmfffdh07dn5yMbDNmzPjrr7/Quy1atPjPf/7DEjtGxq7du1955RVW3Lt27dqlc+e4QoXgjZxfffUVurBRo0YLFixA3ZLr408+njV7Vmxs7NVXXdWkadMsImQkiCInF2IDyMqVK4GIeuGi79ixI0p32vRpH3/8saxZ/Pjjj4sXLSpZqhRlsTECMtQwmGSwc2IYEw88cH+xYsWfeOKJLVu2vP/++9QIVuwRefLJJzGeGjVujJBLly5Fl6ccPvy///2vTJky9IebbrqpVq1a6PINWzZMnzZtwsSJiYmJtC/elwsuuKBx48YYQhgrJJKF2vXo0eOjjz76448/IABG8gZIopeKgCKgCJwkCDBYh11gfRolXa1aNSRHtTz99NOy9ItDuEKFCugP7jZr2mz9+vVStV69eqEbOnfuXKVKFSIyLyRyzTXXoEuEJml1Urt27XAPEIoVK0brojjhgx1wyy23mHlhWtptt92GGia7mdEyQYyIQNP/+eefyNCkSRNmi6eddhpax/YMyB577DFc+hSBU+Giiy6COaoI/iVKlIAMsZ98chjeC2hYyD/99NOR6vPPPzf1SkvD9V0gKsoR26fyUdioKOTZuXOniO3+XbRwEdlt6chJHMEwBVDwd911V/HixcmO8kMwKNFtqGHu7tixo1OnTmjT5s2bY76QAnQYBKRgo4AeuWAlFacK1PHDDz80dk/OgbtM61GlYA5QtAu5aJozzjiDufuR1CMPPPAAPDGkKlWqRIRbiEQR55577vLly8kOAkCBCgdkjCem6WyYoIlZDsCvgIauUaMGGQlkpDmIdOjQAbjsWgncAJCif5s+HUlXrFiBdpe6047FihbjbrNmzXjZJDXFzPu//+47HAOU2LRp0+gCRh7y/vzzzznXUu8oAoqAIhDeCBi3c9gFtxGA8Ndeey164oUXXti0adPOHTtQPAzl6NqHHnrIDO5pabfeeisDOkG0Mmq7W7duaDiU8ayZMxn9YdK/f38IEhISJvz8M1NqZsZoPlTF5EmTmM6igT799FM0DasDLEJv3rwZZYlSR8swiyU76tPRRx7m6G+99da8ufMwKaCvW7fOnNmzIdiyeQs07Tu0nztnDkoXmwP9ShbmvkuXLEXOrEYA81dEggblzUyXKT6uBRQqpgNxeAYEpr+LFy3u168fCgxzBAmp6bq1ayF76aWXkBw+r77yCisdyA9oqMD4+HgUKgRsuEO5Ulbfvn1R0iNGjICYgmCC6kXjYrWA3muvvrp0yZIVy1cAETswcg84VHCiIHDv3r2pMlnefvttdD+5MHowSgSxUiVLPf/886sTE4cMHkyjEJ599lloaJcAI2Db1q0YAUiFSwCzjFcGBg4cAJMGDeqPHTuWyuISoA8gIQYHlN9++y1Arfp7ldTxkUcewT6gmmN+GEOlcE7IFP/SSy/FhYNI33//PS2OAFh+NO7P4zYlWBIAAEAASURBVMfTDdavW5d7NfWuIqAIKALhi0D4GwHpXkZw9DRtgNpgionuueqqqxjuL7/sMkm8+eabUUXlypX77rvv0HAkkqV69erMPkeOHMnElxQ25aFxmfVyCR88BGeddRY6nqk8KUxqmR2i1HEeoM+gxyxAFU2YMEFWu88880yMhvr166NNMTsgwAeO3kV3fvLJJ1yiMhHMRJy8ZE9MTEQAdO2cOXOQit+sngBEYus7ykksFciYm1KXr7/+Wli5f+HJJXoLsRs0aCBZSGFpgGk9uXAtCD23UJk4CbADoJfEwY88gvJDCzIzZpLNjB97Ap7CFnOB6o8ePVqI8/OLuwJAjLRffS3uECsSPO+++y5cNpUrVWKlw0p12WWXodRZDiAF4myNADwZuFUky8svvww91hWzfMwCKxUoYeGxPESKTcflAODi/DCU6V6MGywbzAUYUhzdg/YCvQsvvBALw3LTiCKgCCgCJysCYb8ngN166Fqah4nm6tWrN23cyAo6Op4lXiKkoyREjTHzZnBHJ5FYuFAh3NRsAli7di1ufPQE02huodeFAMd70aJFoEQNE9CjTDGJoDiLO4sFxFGTLOrDHzICWuTyyy/H3U0KoX379qgcppVobnMdYSb0/E1KSnI8FjvZq4jKQTbsFfwW5icgODxxceO3kDswrFEjAQMFJgG0XEp+xICV/ArNju3b2YVAIlocFcgt0tHQpmizoL5eyPref//UX3/F8c6qPAAiP14BucWv1MJ62m16thHQkOKAi/0T/fr3S1qThKOePfxSOrnwv6SmpjRu0kQ8IsLnrjvvxL7BzMqWrSTCGT0tcVpBIsaBwOY+w9ZU32kQL7UjRYhxfoAbrn58RR988IHkornpPLt24RzZyS0ywpDI9ddfn+2uC8mlv4qAIqAInDQIhLkR4H/F7MUXXhj1+edbt25JcRZ30VhWPdBUqAR+mfDZZsOTzVgPDevxRlVERFSvXo1L9s0xM+blOta8f5/3BxriwgsuIBeaDJ4oURQ5zIymIdVRNlKQGAEm7t/NBiWXVudBzoY1/N5sPKRQnAuoHCLodfhkv/3cMQuQEyZSCkyKFjX7Fdj9zm9gcOilsvYWl7v37GHrH7qQZRSCVZPYPdzdtcv4JxAGfDibjz2AaESsE0CoUL5COucl+AM0/mgef4WSSfZtt97KAj8++QcHDWKVhK2ITz31VGxMLC9WCAto3BCdVqsWphXvIuZRgHPb1NRp2dyJDZnHw2oLvxg3TwwbhvNGstAKxhKKjMTskC0mEHPJikMOTZJ7UXpXEVAEFIEwQyDMjQC0kteDx57A2261Tz89Pj4eZfb7778zy6cpzFAe4YmLM/va3DqMsR7XNylE0AQoyISEGvwyWWTRmv0BaCYumRGyZg8ZrgJ0A8HRoMZzgEEAT3MygU+dmRknGh29xAJ/wRjzXhnB0DtdgrUA9hX++uuvKPXGjRqVLVcOYvzP/Bo6JziEmX64C1tu2lRkEK1mU7JGILA0RAwTx9BhLs5iudA7tcH+iWKboaRQF6qfmmqsE+wD5scBFoApOmthuaa0btOGZZFnnnmGbfz4ad544w3eTfjhhx9oI6kUsuF0ER6kHDp4iPrydmWuXH03TR0dZMgoITCXIy5kSA4B+p4lIV5PkEtSxHlQtkwZWoS8kl64cCFu0Y5qBwTiqdeKgCJw0iEQ5kaAx4Oj/osvvkBz3HjjjU89/TRbAmkjXorjXS/bWCg2G5eIaGjRlAz9TATZ34c1gIZALbGywMIzmwDYASAu5erVqqHOcQaweAwHDAjyoiqY0bIDAFUEE3QMO9pJxAKwxZEoioq9AgR0MLsQeIORRCwJfM78WuKsEYen8W9nvSUCSLpURFLMskR6Oo5um4XNCiyQb9q8GSOAzYZwgxIyqRq1loyLFi968cUX2f5w4YUXTJ78CwobRz17HaR0eEKWu7S2RImQEXBYdjHb69avxwuCM4C9CLz6KG8GYkixmQPsbMYZM2cAPtsgbEruEWAXAoOzE0CKcrnEjklLN4lCI8s01AILL7569chIczAAQeouEXPt8Rw86PMTyCUEBJjwKykCiMT1VxFQBBSBsEYgY/wN02qwIZxJNmM0nmS8uNQC1z0bvqx6sPVyr2f7tKozuEOA4sGYQMOhLNkrjjNgwIABuAGEIQRVq1VjrxkEHCSwZetWUtAE7CeAcsnSpagHLgnG9eAKpKB1nHQPLnGc/0WKFMYCQO2R/uWXXyI5EVcOV9Q1x3WlZkRFJ3GS7uOPP84puYdY13DYOocUReP3RjyoKR3DqEbNmsTZZ7d7l69EkYHSsZ8kI2cM8CYhWxDeeutttigCLJzF344ux2+PubBy5YrDhw4TyZAj5xhwJa5eTRGcC4Qp0LtXL+AlkZOUEJ73+JmIz/htBuaaqPB9e/dhLsCP0rNyFRgD0mWJh7azmy454AgaLDmEBHNLj2GBGwD3xjvvvAMovoZyDnqyNEQEVcqyxRE5eOAgOxDfeP11+olNd+fSuCKgCCgCYYpA2HsCEuLjWUVmjs6WN+PUjYjgTbPZc+aIuz5Tq/g0v5PmxJnZif5m3zhvi/31558ff/SRURJOQO3xEjkqit1tuKyZQ2MZTJo0iR3s11x9NevWn44cyQY93nSvX6+eWRfIEkTVYBdQCofzoPPWrVvfq3fve++9FwvgueeeQ/nhVJB8on4CeGSbKAqKX+4OHz78vffe44XAWrVrc/IPGhf9FxNTEHWFO6R58zNY9eZVSV6+nzx58pQpU6686kpcJqxxLPzrr08+/ZQXAZYsWUL1eSsPAoyegQMHoixZXmGyzivy/3vllXvuuQefAU6LVatWvfPOu3FxhXCHdO7U6ayWLQOktZcIhnhoXETq2LEjL1ViQsGKeT/tUsk5HMmYJ+YIo/28uUfRvFHJqxas3OO3uP322y2rgAhZSJFfzlPiKCQYYgRwwhKvhGDEUBYpeFxY2hgyZAimzJ7duy+/4greU+AWZHg7sJxYmomPj+cgo3fffZf2wfMhDYE9JMzd5Y76fBR7JNkgck7r1uyWcN/SuCKgCCgCYY1AWBoBDNMM1gSg55U2BnfOC2LbHS/C4bPGk5+QkGC2/Tsru2waQPuakT1jvu5vMmdfIRfMGtFSaNDSZcpwSBw6DHWF/uC1PfaysYaNpr+/b1/eQ/v2m285So/9gzDESsA+qFe3LhzwPJsinN3pIhhx2PPLl2y4Vef00/koAB8/ZMshAVWN2YH2wnyBBgkpHRc9RZOdX2Ell8RtKFDAfEmIA4DhaeidIpjNS+lE0Ka8Mscmf17nYz0e4wPNh+JHQXLUAep2ws8TJBfyM0GPi41FKX704UdYJLzdgN2DAKwCdOnShRMDWRTgDQgwwXBZtmzZmqQ1qEO2NfAOYS5GANIiJMLwUj4yYPEgHoGm6dWr1/n/OZ+vCXB58MCBKlWrQoxphQVABCvkhhtuoApSX5g4+UxzmxS/BWCsK5q1QBTtQgOx4QB7hdC+fXte9aRe6HhqTXvdf//9tGynzp3JffXVV9NJWPch0KaGSYQH1d65cydKgcA0gb9EU5w/4MKBgNUeauU0qpHKf1P/KgKKgCIQxgiEpRGAoho2bFgZZ/kf/cCxMyhUczDOunU4Buo3aFCsaNG58+bhVZbBmtG/RkJC8xYt3GM3G+I48Rd9QyLLByg8FC+zc86RRRPgNp8x47chjz4KT7bvoWzQQJxHdFH3i5ZwuM/SpUyXcQCcfc45cm4dr9RDib50KwdME9zy55xzDh2Ew4Off+75bhde+NfChahbXpZreVbLv1f9zeuC7EuHID4+vv+AAbysdkazM9Du1Iv1CF73N0W7wu23/7ddu/Y47RESkTgLuWqVqszs0dPoMOoCFKy+z5o1c8WKlcyq0YskolzZnYe+TExMZLkEE4fZP9NoIOKwXnzpt//3drJzGBEOdkqndihR5vEYKzha0MHAwlE/WEXsn6CI1ue0dgkVGKVExONdSnNu0rx5wAUF7gqq06Z1G5S3Ed4YSR7AuenGG9ktyMIBCHCUMucLIS0rCOy34KgGliTQ0+SFHuNj2BNPcKoxOx3Z1CA2ASsIqH+KwObA64DkMOcoJCI0K1XjVGDYkp2tAByaxHIPmMu5AlWrVsGHgiUnS0XAiAsEPhxUAL0EuPXs2RMzkdI5WwK7wfynQRFQBBSBkwIBM1iHXUWQGY2FDjFvmjF1c6aJDNMElJbMGkWPoo2oHcToXXbICyUpcJDA6E/9ma2icXEI40NGB4gOW524+rLLL0M/oeA5sE9ykZO3ypi+U5B8fUeUAvylLN+c1cGUcs3HaZxZOwTcgob308jCd4CEHjllkxryID80QuZUkJu87G5SHH7mBzJuGUb+RITBAU46bLkp6VSY1XGouEUuLlGZ8HFAMjsBpZo+H4lMgtONg8EWZIR3Xm1gLcAnqrMxkIrwEaCoKL48ZGkDI0YY/34IxMUXAgWASXFyF9ONrwFhn2FbcMvUIrpggWi/VUqrOPyRHHpkML/svgQiRx5hIr/0BLYBQi+VpSxK5xb7D5CWZiUjl6Y6DgjEKY5LQCAY6R2Lyvwl1QHHJLqCZBfYIXG3iItKo4qAIqAIhBkC/jE3rMRmKEed+ER21DzxjAHduZHxKVhnf3jAqA0HgnDgD+/0s2eN82Twh/NGADNd5rvsBmC9nPlfR2fa7csSEYGVgdLyle7/kyGPP4W/FGrLtQTMzl0kHisn/N1sJSN72AMCZJaV3BLNJ9VBx0kimjLGQoQk/ngASpa5KS7D0jDJRnS/nSFkFEFZqGGc+Ry7C1zZ7oQwxBHG8GJhnp0EiIsvQThYPkQcbYtuNao9G6n8FoaVXCpov0rsr69DF+GJifVtrbAFibTuS4sbt+xWDB+B7QxR/hMMbE4nQhabPQCWzIR6pQgoAopAOCEQlkZAEAFGCTG+8zYgngA+OsABvRw4z6Iyy8DoCawBtsWd6xwLGMRCw5qVqOEvvvj84YcfsafuZK0RwHLckD2bz03ALblEgaNQ1bvuBkfjioAioAicSATCcjkg6AChluSdOjYW4P/HAmARmv3k1apWq1W7ligtbIWglxuODEEDKPgq0qhRoziYOdsqyKSZYwk4pzlbApjwIgCvLLKLgp0K1o2fLbEmKgKKgCKgCBwnBNQIOE7AKltFQBFQBBQBReDfjkDmdeB/u7QqnyKgCCgCioAioAgEDQE1AoIGpTJSBBQBRUARUATCCwE1AsKrvVRaRUARUAQUAUUgaAioERA0KJWRIqAIKAKKgCIQXgioERBe7aXSKgKKgCLgIHC8j3k73vy1Gf8dCIS/EcBp7v73zoGUE/GON7CcaMtBN1IKB9Id7+JOBf6c98dRfdSUk4j4pUE57I9fcLZQHw8cpFDKgvlxLShP4aV0d0/OM8vxJqBvIxW/JuKc25iteCRmm368xcudPy177IIJB/PrdE7GFqKUCyyGv/RYkHHKIl3uSroVL+j9iuZAEjotEhjZXKOfLTSfkZxGS8OUSplzvc1ho1IjIqbi/uKIuy9zKdFmMdwcDu4UX0ZnGCc9m1u5sM5ySzgIk2NklYX3SZsQ9q8Img7Ke+vOMbFygu8JaCtzal6u5+aeABlOviLkLELqxXAjhxzzGNOyx6OmHAXBycFFChc5YkZUM7hzNGSeBUG2c+dOTBa+zhx45mCemXMlWLNmzcKFC6tWNZ+BOE5VzrX87G46H0tyC5PP5mCg5zuTnClZrmy5osWKujlkV0ww046kHtm+YzsNxEkVfBzr2FkvW7oscXUi35JISEjgaCwqBWe+u+HmTH2po7uaRtWRGBm5beu2g4cO8i0MDiR1ZwmLuG1uqQsyk8IXyHhwWrVsVbxEcamFu+J51svHCusi82O9c8eO+fMXcGx5mzZt7NGceXLLloCvkSEhX2YpWapktgSaGIBA2HsCsIsZl3k4zdzRMV0Dahi0S8dW5fGG4Q9jxox4a8TUqVPlMmhFhDMjBoh/Jj4ZR389ms8Vzvv9dzgkJyfz8adffvnlQHLyUY0v+S9908ZNfGWYsyB379m9ccMGPgxx5513zp8/P3cOUsFXX32VwyWzJRYCfiWSO7eAu5xSNWjQIM6sPE5VDihOLkVO8+tvOonzyzM1YeKETRs3+nq40/nJJVkCuEGMbjh86DB3CWR58MEHOYF79DejuQwgPn6XmHMjPxvZu3dvPvbN58EcWY619Km/TuVLWnyTk5pzvBWVopmoIMzpn3z6ki9RyTHSpGAlQMNpY6RwsCYpjw19jK9P8dVK4sGqOKywF+HpHnyEf6ZS/E1my7V3LfG+vXupAp9LtR3ARmBOV+RocEa5PXv3MsySC3OZw9T5LtratWu4a0KAMreFZYnAirJ8KGS2AKDl62vPv/C8+UTLP8XJVoovij315JOrk1ZnEUETskcgXI8Nlgfgt99+GzduHF/9oXKY2x07duSUOukNpn/+s0AvJKv8ejx8fvfXX39dv34dqfHx8ddfdx2f0KWTcbIgx+LyHULfEOAY/tkWiDwiDBEC9Mx0ORKfuFtIc8kXgDyZEhEjIAUySnGIkcgEW6gZffnKMN8b8Ke5i+DuyM8+41vG5otEEZE81UjCLxwKFyk8aMCg6vHVba0tT19ZOFqcCsqvTWRlhPIZ8YyYTmCYAK6PP/5YPuXMhwr79OlzxhlnUIoVRqoAuQjP79DHhy5buvSOO+/gE8aof1QIVt3rr7/Ox5epkyAs/PmVpidRGPIrEXcRhtgFnTCBjGTIJk6ayOcE+TghlgcKjI8QotT5zDGnR5uMOQcaaM/u3XwAOpfzkkUMaWLhZMSjSZxGMTJw6f8og0gOmf+mAyM//hbkFjQiP5ytaDYjTeD+7JPQ80sWO6OCWOiFA7e4NKgijPCEsVOorwivZ9asWQz3AwYMqFipEsQwpKvwiQeJB4jBN6afHDZs1OeflypYCg5wpggi7oMgTRX4sEVGDSwPU0EufEU7yaS4LzNIHTTkEgIfmR+uWbNn06DMuQcPHly9Gp3ZXzvJ4O8Ptjh3KTbRRyuPs5HLIGmEcapz4MABs3jktOCKlSv5XGePSy/lG5UiLXoOAfgoaMOGDQ1Dryc1NYWuwl2CQcDf7lIKv7Zc02HkyXXkFALJ5eQ2wAkxEY4250Hu3KmzfO/Dpksu36/TpnQP8tkvbsgtGJqI1ztn7twnnxzW74H+fOPDlyvzH6yfr7/+evAjj/CRUhFDrAEnt9NGPk6mi0p/QxgoIbPdT4j5AjsGNN9ExeWWAYW/7YSG0cN2ZuEg3MxdaRFifhwoBT5cimAZlA4cGaX7293JajA0952+IRkl/VT+DUsjQBoSbYHlSD8gSIdg5NqzZw/fijVqzv/JnKNuXenWHm/y/mQGQVSRcKAI9OvEiRPG/PAj/kY8Tm5NYIf1gOIQ1Tf8u4Y5iE26a0wnl1xCnOmWyewI5Of77TffPPrYYzy0TAXcHMhlLIDMtbYEPEI8bowdo0ePBi6+VMSiIimMStAwbt55x53QsOjHQC9FGYYOsNDYJ1AktwTMk/r27YvfdcyYMRCTPmnixEsuvZRJIf7Q2JiYXyZPlm8xw0Rkg8wwzFx9kATQgwcPpaak7tq1a/Xq1dRl3dq1MBw0cOCPY8d26tTpkUceKVGiBCnvvP32q6+9WqtWbb7sHB8fT4pUUzhzCXOT6AwOUhAlkmIDHzhmKMc04XOICfHxLVq04HvHU36Zgqg45C1ZNhGY8q2DLEFKlF9uEqG2PlMPWFBXjkki+QRD0akZDWRyGYlFYKEUSEkU6IS/zSI0dtA01Y+IBHZTWT6w6YDsK9Fh68PFgYu70EtxQkNro76tSbF40SJcMvRz7poSvR5ksBWULL5bHg9NtmXrVnqPQ2nAf+3V13bt3sVnqS3yNsLdgIpwieT8ijxyaYsIiMhnOd0cwJZmIQU7Epk5qZrPXpunJnNDGTLniZO8sJXi5FcuqaYA6Huc/RygIWDx00n4VJW0IHMPTFVpI3lAGHyYVVesWFHovRHe1157ncTSpUrB340Al9ZMFEFNiVKcS3TYksstsMmYnr5x40Zq6nxD1XR0ARQyypVmhUwupXtYDvQ6HngW9/lcJyXyVfGdO3eZzukEyAiUTzDSej18jNvYPezUkZ5pyJyHi8cgM5jQCxRGBmenlEgiZPxu27oVuMSOzIDCj7AIYHkSkf6GWSCfVRPMLTeGX0zMDD4I5Tz18IFGyIysJDrPlcjGJVkIgoMlk9JP2d+wNAJorYkTJz7zzDN0EeK0pbQu8bfeGkEbY56b3ux003/WtCiJ9957jxkt2ZnOslIVFxf7xx/zGe/oQOap8AfMf/orX8xzF8foSY9Ht5V0Ag8Od+mILEXTp4kzmyRCLqQVYhQny2wsNrv5UBbLq7t37WKeWrhIESq1cNEinIEUir7kSeShMvRmzpG6fds2uJUpW9Yqch4V2DIW72Yo2rPnoosuQhzGjjmz5+C0RADcmzEFC8YVKlS0SFFEJCOQMrqZGpUuIx/2xcvKNwIQHj6URWAAgoCAqsCPvWnTpuT9+2NiYxmg+w8YQK0TEhJ69ugRGxeHqGXKlJYnnVyFnM8JgkzK4cMVKlSwXwj0Y2lUbNu2bXHAAtQVV15JoUzvmGhi9IADc3dT6JIlixYt3r8/maGwapWqPi1oRjIvkiAeWIGDDKlUh8CXG/ft3YdaKl++/JbNWxYsWMAIct111xlVnZ7erGlT6BNXJzJZgWGA8rCyZY1Qo4V//YULqmBMDOMpjQX/BvXrr1mzFm579+xBkoaNGoE5ebEwVixfUaduHXKtX78eECBu3LgxX7BEZstc4rQmDFm22LtvL6YPX7IAAUbnrdu24n8mI42yOimJXExDmfUuXLQQ/uiMsmXLNW/RnJaVJ4KuRaHkot+WL1e+9um1yQtS6KrEVauqVquWcjhl7bq1YEvHa9SwYclSpQ4eOJC0Zs3yFStox5UrVyI839Nq0KDBgeQDS5YugQ9f2aDKLJNXQIy0NJpjgbOSMn/B/BLFi5coWbJGjRqYcexyaNKkCQggJGQ0Iu1FcYUKFypZokT9Bg0Qklu7d+/GDdOkceP1GzZQBQSmRFwywJLtI7xt+zYQQGA+5I20VF+W25cvW7Z8+XK6B2IzGYA5TGhWwRNWlIV3irx0LfZz8OjVq1ePzk822oJPhSHetm3b9u/fT89s3ry5uDEkI3kJVPyP+X8AIF8VAZk/Fyyg82zYuJHimHWUK1+eZ4rGBaIZM2YgAKBRo/Xr1uMYKFuuLDIvWbyYxxM8EQMXFA9U7Vq1q1StgtjoKgwpqkB26cOlTLeJKFO2DE2DGASqw4M2f8EC5DSPxsxZPC90DKxwbPrEVYmbNm8CT9jSBAR2SMybN3d/cjIo4Z+gCkwUFi9fyuBDFjjwlVSKpi5z5syhvnQAp6JmSAUH0mlHIpAdOniIJfaaNWoIwY6dOyh985bNPFk1EhIYIQVqLIa//vxrz949tIIgTFunpKT++def4IxxMHvWrALR0dSILNJLfQ3kK9j8IYXKJiYm0oVYsChStCgQnF6nDmUJFXfhj4HCmMbTTVehsuXKlcPS5xY08itmFv2KioBJs2bNaAJBmOeL8a1ho4a4JUQA4Xxq/oalEcBzMn78OEYW6S62ZxDByMU+wGbn2TiWFl2+bPnIkSPp0/TXN15/vU3btswaGUSWLltWsVJFnhyKZuzo378/TwgPACMOTmy0FAPxmyNG8FBBTE+la5577rk33ngjvXDu3Lk4xPiuLr61H374gcHuow8/+va7b8ePH89ggV5kAEVy1qrpmvRjPmeMH4K+TkHsRWL1gQmrrC/yZF5/w/V0/TvuuIOZB147lpOTVq/GXmY4u/nmm+nxDAfDhw9HPZxz9jnIs3nTpjvvumvEiBHAcu+99zJgIdKLL76IGMjPiMAscNKkiV999dXfq1ZhDZx++umslPPLlxU//XQkBgGX55xzzrvvvDP2p5/i4+OhAWpwAKXeN99cvXp1jAyGJyRn0Lmvb1/qThUQFTfET2PHICGfC2LsY4gEGbQIy7fI6W4meG7ZvBlI4Yl5MWvmTB5aGC5evBhYGMjIhfeeQnds3/HYY48hxptvvgmHiRMmfPX11wwc3AKWyy+7vEPHDqQPGTI4KWlNu7Ztx40fzxBAey1atAiRGOhRwBATunXvfjf7A3bvJjv74M2InL+AzfHMs88yNiEheRmPaIsePXrQoIxfKBva+j/nnff440/Aj1WS5597rtXZZzMEo29YUcZIat++PY70rF4rvr6I2waRUBjoFfDEMMIUwKgaNmwYpVAXSucRwI2Brv3uu+92YFqlptKmV1555V133UW9KBSfx9ixY+HDEI9FiPZiMwTeDvoDrmwYcguD4PDhQ4UKFeZLTo8//jhd8amnngJwusRnn3321VdfVqpUGacLIrHwz6NHoQWiCpx9ztkDBwyIji44aNDA7dt3UBaCgQMLOg899BCFso5G98MIwAz97vvvsKexXDET6WwlSpa46qqrrrj8CtahsHUeeOCBDh06LF26FAL0VsGYgizq337bbUVdm+kQhhqheN5+523sCQZxyuJxw2TkEUDfvPveeyBME7A+yDI2ZgpOL9uM5KUjsZhN16K9IOP3tltvZcGeDk97gSGKec/uPYcOHwJD3Al0FcHQMkEB0wrMB1gNpNexFokYUhwN3aBhA2xruhaPOXUhBRoa8csvv3z55ZcxAjasX09vQWY6OfsNsc9Rdy2aN8dupsdu2rwZkKdPny6FQoPm43G+9dZbcYMhA/Xld+Xff9OCDAi0wsBBA0nh0+c33HAD4wkI07Wwb3i46CHsiuBxmzZ9+qjPRnW9oGu/B/oVLVoEEMjOU0kbMb7xiNErkPDbb78pUaIkUEjpdB0sM8YKKkIKq+z80leHPjaUEjEHuUU/4SHlsmbNGkOGPIrFs+rvVR98+AHg0/NBmC7H4iyDBnFwo1C8fYOHDKEiXbp0ue+++4wRgJ8Me53g1M5EnJpSHfoPzxS9hey0b6dO5997732IYUzhrVvBiu0X1NSkREQwLAwcOJDBCuY8v/QWIpj4FDp4yGDMI0Y8HiLGLjgf8S9VtDQLu09ZX5qUfir+AlbYhaVLll599dU8ja1bt2YUCAgsB/w+7/djrBR+7OIlStCf4GY85/5A9yKIyUwnNgvwjulKnB1DPJkTJ0zEDU6/pPtyi18M1W8cJzyf3WPWAs+YmFgIGN8ZkjDJhYP88gw/+uijlEYpPPyMBcKE37POPDMhIYE5B3ECnJlhoBV4UM2s2pWOPkZzYIWgs0nnaaQ4srBWaqRPT7/7bqMk2LyNSvbXzMsYWrFiBcQjGP4REdgTDGpoAiaj8EFnMzNAYPLe0qcP6sfI4VSfX0x7nv+qVasABVVjeGW+y4SVyQcAPj50KLkYeak7rAhU7dyOHWGIPDy9cLj99tuhByXsEmQYOnToWWedZQrwGF80vxh2uC7IS1x+EQz5MYxkomNIPR7MNdTblF9+oWjsLSiRh1+YMApcftllSMKwi54TnBGAQZNEBizGNQtIQAQyUvr2vQ/YWYoijtro3r07+uPuu++mIu+/9x4dg8C4vH7dOlQmgyCmBg4G8qJEGSjRkYxfmEqUfskll/AuwDfffEO3wdJCQ7O2Atvfpk+HDwDSuChdFGq7du3oh9zCAGJVFVhQ4bQvOrthgwYwYYzDf/PJxx+fc/bZNDqGDiX+PH5848aNMECxSGjoL774glEP2ZghoSBpPua7dLak1Uk0HOMyFVm6ZAlzcdQVlgQFoVfISztiMmLhoTmwGJgBE8fqpUapKSncRYs3bNjg999/X7VqlUxSqSMVZ582Mv+54E90/JktzuQSMZg3Iz+SCIZ8jpIZOUU/++yz6BXWlZo2acITjUjktYHqUPRNN90EvNgoaEECeo6MGNaQMU0HDQp9dMgQBn2IbV6JDB/+InmfefppIN26ZSubQjCpYfvE44/TLlSWb1oiHmvtlE7tpv36KxlZ44cn9itxdA+IATVx7BWg4xa9FF8LKGGWfT5qFO1LLwIHjBv6Et5KaLB6yUKLs05Be1177bW0LF4BOjMi0W3Qc3QD4mhozDJaFvzJiA23f98+8iInrcYPOhtDgRUPiCmCOS6zYSLt27dnMKTdyT5zxgxs6549e9An0ce0LG09dcoUVGa/fg/QW9igBx+6KH0DgQEQgZOSkuiHlCXF0Q3WrlmDwFgSdCT0MS2LiXbBBV3xddF16dUAwswHhsw6yAXb9u3b0Y6AgyVEp2VKg4EFW/oPNMjMI7NyxcpdO3dKdai4qVp6OlMdhruOHTvCh07I2E4nYeShRXBZARQNLWuOEGBAwIqHhQru2rmLZ4EWBDEqRR2RjXLxl+7csbNLl85U8IP330cGiiadPiOdB4sH0xluGnwaRUbPcPk1ry3jBvDrhgCxaVRS5DfgVv4v9+3fjyeKUujKom8MT0cNGCZoDEfNn/ef81BdqBAoJ0+axJ3yFcrjAcYs5ZLhG5XJU/r5F18gEFnICGWJEsWZL7LrjekCfZQ5B48o4zJKl7kFNrgM04z41II+/eGHH9J369arxyPXoWNH+GBMYFwP6N8f5cekiqeOZwZrAAud+TdDEpTWuIYJYxxkDG1G+MzBAsXgtXnzFkYTBlCe5FKlSzPE8IB16dwFEHhQ0bWMGkxAUcY9evZkkR5lADhMbhi82D/Bg3rDDTdiBPAoUh0e1Af69Utak4T6pdYUxMhSv369fv36McCR8sf8+QxbBhZ/wHQyLef1cpcJKyKhGrkJjDzzTP0ZShjsyIL6BxOGYMyULz7/HP2BJQGMLOIww16TlMQcKC3tCOLBjdGhTZvW111/XbXq1XEPkh07A3uLW1IyUw0iDL4Mmn5Z8vHXLDh6aYsXX3gBw+uaa68tVrw41Qcl9tOhjMENAuZbdp0VJS0zV6wT5rvYJWy8Qh4rCaWOeOst+knbNm1oSuRhkAUu2gJPj8gEGoyD/KKVWcoBf/obc256FBUEZAZ05tzDX3qpYMEYFLCZ+6YeoQ9gqNFJ1q5dx+BLYFfEwAED2RBKJ+zapQsZxS1coWJFwAE6OjYdjOamKb/95lvQRqQGDRvS7nRUfDYFCkSzKFCKd7G8HlZSMK3wnNkGBQrqNW78uO3bt/Uf0J8hHthRSGzlQUGiHlh6gJiCMHH63teXgrp27XrmWWehUFFm7gaAjK6CLqE/0NOY6OMtp9dh/n755RfYjjjPChWKY28B7rSEGgl4ztyQ0nv37t3H81u2XDnSS5cpzSYY8UJxiZy9e/XC6qJTnf+f/2AE0IF/czS3WwYoCVI7FgWoKZes959W6zRQQoDyFSrQlWECDkDN053Rsx2rmu7C1GLEm29SCx7ne+6+G25M7uFD+9IZ6DnMGej5GEncwlCWRUAjhtNJEJVGiY42Zj1djoJofSxIpry0PqggeXx8PMp748ZNqD3WO7CNaM0Xhw/HaTF58i/cooLMJSpXMfY64EPP7AJutCmSSJW5ValyZbhRi4oVK0Egzwh36eT3972fAcd0uYsuJp2moYPR0yZNnMTTTSfBWsKbwlQELQ7sFIF/hVagajVq1uCRoRiqQJWlOPcvHYMOgPGB7xMwE2rUwC2EGNhtAMjThIVRvXo13F3Vq1UTrxLCYFcxc6M6sKIWa9auffChB7ds3spT1vOyy0iny2EpIi1rUggAXN26dXOXe8rGw3I5wBkBSuJTpbVty9Hw5pGLiKC3FStejB5mbx1VhJ5Kj8EA5wlEFZlptL9jOexhbBQ5cXQqsyvpXsyZdu02K+/YpFjE9Eg0CvqpZMkSTJXM+wsijyNwr169UOEMzbB69513/1r417p167E6mLBSCx6b5AMHMHspgsds0MBBrPIyQvFEMYaig5lRxcXGoREZeTdt2sgKt6EsV3bcTz/t3bePQQG2DJdMHEgnoEJQjbVr1fLJIKmuX55SFMOihYtIY3T75JNPmC0hHpdUBDBxxeP5pxZYGyQyUrdr265gwWgmEFjTiE11cBFzC21E64AGTg62MrDDnDkEcywz0jvmAgYNEKF+eMJ5JmX5gIwZwd9wsMWr/+6773IrPj4eIwAlAT6MZTgtABbPBJNZFmXZ5AxzwGG5lBkT4wVY4fnEkoOe7OjRUaM+R2FwiYTgQyehZeUueRnKSQRbzIWRn45kUZNLekL9evXatWuf4y4BdLvZgYo/yCwPMW6imJlGIwCFwp/moxcxQMNBymIAZUSWyqI5EAME5FJ+Gf4wwuD267Rp7P9ABvgz1SOyalWi0NA0yEwcnrQXYzdFIwsKg0sqDpP9yfuZqJEL/yerRZIR65AsdEipHRLie+dWbEwsozOCASaXMLf86RvS/6kCsy6Ge/onvQ6yAwcPHk45TNHmqTObrfwbZfwPJWVREJPiQnGFsH7Igjw8lgzZxf/P3l0AalVkDwB/j1YaBBVEHyFIqCgorImxdic2Yq6xrrlrF9jdgWKsutYaC4LdAQK2gFIqEoqBqCD1/r+58333fe8RivpHkHvR++abe+bMmTMzp2bunTp1gqUCILHSiOYQlQ2aIXQWL5ONEn8q5UIGB46Zwl/U0sDPoiJ6VxzYdJjy1VdYjQhffcjBJ1VHAuRoDrTm1C0330KLSHft0oUaRl4MDjMdYpN1p8gEv7yCFRLRuiviriEhx0bC/CxDU2hdsrIW63U3nAJYcpmPaMYuZpvth/AwBPWAzlK1YDWHn93ffe/u+o7+lqlT4IyEwRYTsVJpGFzsnhEjhqtBJMZCiRyQpir9bRaghwFHEfbt27dXr140/SE9D1EpeJ5GTICPFNpmIRF/wmPgGRKakAJEMPm1agUh4ydzSt8FC0b3JWWNZzEP3DO7daI79FFgQq35AVuoMPwfOJbgkY6XIskm0zlsaPBRZCGbVWdgQ0uuImmFFRrJ1ATTwLxu1aql1QEbWbbaams4mc7cIfNow402POqoo+KMY7RhOMfMwCN/mCmq0JZ8zcvu36XSCGi0QiNOM5+m4hgyoIqLaTva4ld3qdlldbxV4pQbr8Z3iioOW5MjzkajsJZNAEVF1A9Iw9f2me+rfn/ggQcMGTLUDDT04xSSQBgYd2U7tO8Q5bhPZJx2+ulkE3MBjHmrLo0CycRxb9qkKVNXKWLaf2QfpRLoyVs43lOKmAcOGGglApIgPYvCPkGqCQbY7DzCExWHgskGupAovIqLBemiYBIl48QrCA/MHEr3TTbehJ8tZBcLCTDaIy1dtWoVzVFFbi4VFzFBuO+77brb448/dtHFF9ND4quxIDC2Cx8I8rXWXMsdtXbPSaS0qCsIoSQnpPPtxa5YhSxPwyP6V4uKiykG6gEGtZDvnkaHBv3SYACTsI0bNYpoCY6IIUGSqzlqcfxXqlfvXnQhPiK4Z8+em2y6aaBjQVey5TM81IiE2vA3ueSpPVYqLU86/Ewg4Qyau7hIpSEzf2G4n9i41VZbEVsx27ICwjqu01EbFUFYHrzIWAz9lPBKJi7Fp3grwbihNZllsQG8QCS1a99u0qSJaglcjBdqPMhvo5OnbBg7eBWaFYi0TEOAMiCA5QZhvjRUrvyvsr8JklIb02ycxGH4PFMRYDlBRSWWlkydFIolN00AkLYo5CfaJa7UaAsOotdlhGOUp8wsRoBEKJVcMZH+lBf42aChRWtr+dYaLISfcPzxf91qKzCB+IR+FCLPYJMz05p9+UumK+YplaM5hUloSn9JBJgCHeN51Hz+JukwEDATTowSIFlvvfVvvfVW0kBffzF5MoKFr9MmlCUS7W+cuBSHa/qP0/GBf08fpwSYa+usGyJ/ND0NiqsYLm3mqjHSFpuT3rU9kp0iQVqsIs2pkPA0EJY0geq1DeKVl1/mDgGL/SgR+ivpF0PKj5DM9VJZf6VoTd4QjUtWS8PjpCDhV7VasB6Y9Z5quD7yyKuP0thXmQ2S7AkVJI4kmVxyxo4da9hwJ+BnK3CcDGORBrYs45gcE4VNq15mE0ulEWCTmqVNi4vBw85fcbgIH+27336GSD771/w1sI0bXhojXajNYn+cXUabURiHVIo3jMXEEQyzpajI5qN+/fqbk7ZZibJygoX3U2DjmOTyLwK//sYbpr20nTtd1lv/v488kiraOMptU6KNFOfi/DRjRhobNPQjTu2Fkwlv2UycXBo26DdPVtfQ5uIrJDMvpaIgkddh9nXLZTJTe/ykQB5JkcczZOgQoYWITRX3P3A/dWKaFSAKU11IUCyE4mF2HH3MMaKC3ffZB4wpFyHN1++nfV+rdq0xY8fIwTcyvRBJSEehnM+lzCRpegop5qENJWRLYEKyD2i55WoA0+TwVkiClpbCfO5mLKIiXAkSSBu9xTB3rlAH+wwezZFpkVJCr0FNQ3Bf1AJn4l/mJVbENb97oCeg+aVXrJTt4q1IpmTSnFxZNp+BhzZeiw4NuYFuJfKO4M9VErFhLEeZlOzcqVPHeZeBEtkKU2HVhelYSWhTqDnsurj++uvbtl3D8hAXSpjHuxUpIQDSdGECn8l04WseqqmEmdgLQG/6KWCum5Ky8y9eiIo2NZz040cjRxbvtFN8hEtCU3qKkZcfFYWFyqWFZzayiWjjjTiIAlRs0wEDB2y08caFraal6GRLSzLr1wvvdJS7km6IOVGLp8qsHNii/8AEuk2IBU9WX72VRZYtttjCAKbZchXND2c6Llu0bPn+Bx+s13m9Tp07zQuovSwerLb8wUcX0jtg//0NjAhpFhUWWUh1hWDzpjXBHhG7+Tp37nTGmWd2XLvj0GFDDznkEBOvIk7MzQ+/efHoJjsijRxeUAomAOCFbdKJImfJ6Ws5pA3VL/3TrFl+KrKKN2iSC6RtOgaty7YM20SsmeGAuJElJLFAuw0IXgQfduih3jGZl4xlKifxDpe2FhtwJMIlF19i3UiCeUsh0dNs4Qt6X1BSUvJbGmRWUH7GIqViRIl4c20fTnaRXHPttfvvv5+YqgEXq4jSj7ZAkkxj2wtX0kIRlqzM5DiO5YB3d1HnEV46LP/PnSuQcMVlV2y73XYxjAxSZseOa0uwZLnmL7zwQp8+fc7v1YukiK4PGWrj8Wuvv9Zk5SbEPYymgbA/25aMNqw1ISj/vJKrMA8j2UGmJboLJUKj7AkOH+0oWsv1XGfddRvUb4C3MFvEZYtQS6pA1YsvvGjXm1I+uwuBUhYF7FcSzDy4R4/b+/ZFsJ/PPPusKQoD2asUVlB7x/79WL6OYJ2ftJQwrETKT2AR0h1+dz0LgFx+8aWXyC8Ey6EMrL3Q1vb8s8lij5MaIp8cX18MpW/UG0yfpF9CVCBxR/Ahmh28Ivoprevrb75BgyFkPwEZtKqX55o1I5GtHYIpfwXZG2mL+TEdmJkQjNqEqeGhdLwipHLMVt+1BctawiId2q1bt/A00fEBRWmpYax/7caKpgmV+e4771gBiUhi38V0uOcc2SQjIcLoik9hVp1XOZKQbFAzIsbwBG7nTIpUj8QSOSToxz2hBEXs6Bbgtc0Kuy688KIN/rKB4n6GdiXg7nHcxsUUdcmOHQqEGjNmNEo4WqNgBmCJh/5mazKHEyQ5ZMCUNWbcYzqpIXdjTOhWYp1JEVXX4DcH02pWlxQBH68APT+jQhhZVE9Nlmx881Ei+JD5T2Z539IwRsynn3xqMcIAsxEjgUlieHG+xwZHcoqL6FHzy9f0cMasUakJ56LLdYHGYkL4DUs0FkLxQhQBUXwESsxszJgxLML11+/yl65dNdBLj5ivS2OF6Z0yQ56SX06ZYsXN2LZlWCV3/zu8f4EJBAwrjUdukCuF85aTGPeXXHyxttN8LIaITS8THcDCxP/665BZnkDbePWUC0DSs4hJAlqxfP4uV3v1iyZfdtnlgu2zZs+ycu95KMAPyW9PnjBxgkHFO9fB+dJlfxHvx+qtW9PiOpr54idlb6ab3ayialWrtWnTunHjRiJSTz/9FMIACAkPHzFcEZux1BUvWyssYhpjBryPpHmhWqUWNyX4V3wYhqOE5pdVv6ymlspIgG7WXyXNS47/xz/s84rChX9J9datU7fCOF7UnjVgA/KSEm8QmUvmDzVsHdo4tlTPzTXn49R2D6olqS+SZLy3bNFScfPZEPzppxljxozzKA7uSIkJbBpLyycfDUQSZO/ue5uKDI6Y737ooYfdemsfs/qCiy5q1KePgGeLFi1s47JgqYg56Ut8xJ/dy/ZJiVWIcSG1Xt161rOV8jbaln/9a5xnQY6Un9vlSEqA6GO2sz1E9qnZZFCndm16kWBiLyPeRPJ2b9zMbIMh1WLV394ls85r34x0Jr9JJfjxwosvPvf88+wJVVAehIJNZC1btQocSGY4X8H01mW4R1iYpRrraWRpZJR7jsLSIjBsC8t4tqCLatq51qplSwBMEzZ+nTq1R4wYudNOO1t/Ce7pgQdS5GY7QexVCO8IaBzM0ZIIFRWVqlFYm0SzdqMWmZYkdAEwSx5sLAPAIof8ClcElql2V0y4R4UXgaWBwRqBYS8EVogatnPKWq8+YgLqQTGtABTLJ/eDexxsgXPAwIGffvYZqY1XVoiBRF7lABVI+jSpKo7BkKNeDfFaBC2iQ8Vg2Ge4x4XCE6uqVpXsZQlAieIsqDY0JGQmWocpKdKmszCfqsAZkLbl2xlOX4pXhXYlYxgq1iG91Kt3b7sc8N/Ox8iTQGBxMVPY+OF4a7ItC8iwLV8R4W4xK2gCwzA8DJCQNkEC8nIsCY/wCiokGfBmgWnI1yT6TQSlYkPQn/BcL5TrQV1sWwyyxdwNdZxXi32sHESk0qM2AeCSjSY2XtApVovVpdIQQEpISdLiEbnVFtWxEUWVWMO2yng584rLr4jv9Js+xqoZalYGqsJoiNSV9XMkODyIj0qLBB6sWD3xRP+nn3pa6Fu70GljqZmFpbnyyR9uTwyuwE+SbLbZZttvt123zbo9/+zzjGxdMGP6dKuEeuTc885j91jdM1V323VXq/deJjRrbA64o+8dZq7PM6BftFIHaaBXOsmWwrroXduerrvuWtbA6q1aCe8FbuimPFBsgBwF4+qVN0Xt2hs1anQIaibAenm5GjWwyzQ0+IEZTkceeaRxBU3ad3H4yeGBMPffHDxYR5eUlFgqNWAaNVpBWWOk6SqrHHbY4QL7tjo+9fTT6h0xcsT4z8b37NnTqDDsWWBwuogL3ovdlzY5eURikJbEFEr0NZNF69IVt3yDlsW/5abKUscA35EQ4UmW0zpLsP6iCPvtDSFNtt56mycHDhRDoxj4bcaQWWoNiTLm+gAwUY1yo81oluaSCsvTPXQhsUL+2mzvRR3AcQXBUxd4wO6I5PP16NGDZKEbaFxLgFCRY8BIfxsMjV2rAJwY8wek96rZDTYJChia8KaNOUDiCNIikojnG5n2nF1xTqhgVlf1augsY4mqAXgKZ8g1jxNivFBw9llnAycEbbUThKA51mizBgPIPKS3bLHxqoJN5gqRHaS5GcWpqlq9mjTVS9/b7qe9nMJgxZeWmplCr8hIKiomzrz8Y38ZCU6mXH3VVVwfj7QCDQoSGtqOMHeU6E38ZAeY2LnwYGnp/gccIAKk7TT3LK+VV6tG2wETUDG3yQvWgAbqJgTgvJ6CXy1BeBUXez0dcgZK9DPkP/nUU4hXnSEEG7BCdgXK85dHwCCBUx5H1j3QmWCWLy0nrgQHPIlKw+iIQCkf9mF/kMvopGmuufpqgxY6ZbUo4vFVlj639rH7UkeAtK2P7iS/omkFEj/LSOSSJuwN1eWvuN2PXrFGa02B5QSPjy40b9785ptvsdwAEDw+p6WgjaUlXF5jM/IZH6+99qrQiD3zTAcBHosCnO9LL7nUeIAi4mnfrr0PaRh4PDbEYC82aizk7mSxNwbpKitKwleGOsxenbetR0U2ukOif7UoFokYpCM96d3wEMh1YeAT/fs/9dSTIlXCgTQlGKgUNO8wv4IF4KlPDhi6DCAGPWvATKFcRcUD8qRP26zRBrcfeeRRhvhee+2pmTHkBi3awEjEWnRxyCkq6rZpN4aCQfj88y8YMABMB1viPXr++eeZbiCRpCEYIjNpV7ltaJrsUlDI7j/332fzhObcc+89lhS9yArzY48+ajArW3iZzmYZ+WAIiRYY9sJp551z7u577M4NsHwpAqeuk08+xSzwkqHuNkl9pEg922y9NXbRf9dedy2ce+29N+FJvBhj8AAorEj60EMO1U1Dhw5jlRqoVauEsFyUG7mRE74aHmwjE832Q5PO9mTei3CpLcDekYEEpCmtXlYXX1yEAHCsK60xxix1H3jhN+P24J49vRzIhEUbMXjDDTfGGQ3Arn7BJEi8gRU2VE373msyhx92OEqQ4qZG4RD3kpISjxSxrdhOLGNY+A1ym0kJ28svuywlAMyye+HU0nsF2ZG/ogwNW5l+jytig0nCR0IICG+vCkzFfDqM4y5CHqvyHryfYd06kePyx44Zy9sQrUKhz8JEOj0VCgMZS8mU407dels6vhBM3cIDQD48bmSr+CSJEEspYqqINPgWAkHjZ7x4Hmi06YluU2/MlAATCxbePY0EF2bGNDxe7H79tdfgASYTEmJXk+NPOVQ+sPjT3YRHP9UeMVConACy3uSMOe7eLjPfODHeLGcekVYyUwwYCFhj5bgCl5KN/cGjTQggtd8aNkzZ8DspaIFAFSkzZSpOaeEVUyCBCjeZYNKekqMuyt6E95amugCceOKJBAd5QdykBeebwPlQIBljCaXhFiFjIg6/+Ei+RAIexqQwLFl2dvKpBgYcLqVl07oi5ljQUzzXC5gvPwccdkGFKy1SmI6ZkYaIJOboQSaUcZgrlYTB51MwIC5rDjwMX5/6kUiehDf1HSkUxudcQjY3F9KnrFiNClUkOGJ++AVnQjbuMaXj8M7lB+hwpfVKx9EbipSfy+FnxMz++/qbwq5PcOTwFKJK8yMBMKAwLltEMHc+JaPEqrm0fikc2GnxSAmA2JvxZ3zqRWKNCgMjzzqERQM9UpsiiYkUrOxn0ihGkggKVADgxwTmDoPbW68VMPiZgMxRixlRiJCAmjRxEo8lIEmuciMq34+epLVLky3Ykgq3wupQomkqCiOwoHhEW5aTnxGABepxWAKeQrZEtL7XGTsuli2sK8LHnLS4qtPx4FGgPEd7GB6kpY8BpM1Jh0egNrkitkIA7bHio2DMLHsUQZfJ+1K5HJCabGR3ms6ZlgU56aNfkUgtRAkxw6g2UjxM+2jdxxy+z/L5jTZyWKMlzUviI3dxgJiGKrqk8WckXib144qZ0f+QTpsmpu2KT93Bs7u5dK40U4LbUYFImWz2aLYXQkqHRuWpqvAInrXWDiH69JoXCachfQqVCKQrzeGxsbjTn6YVmDjZNIpP4AWB+FS+hDsG1qxVNhTLuBSeh1bwsWKReFeEJ+QqzISc1+KqkFmhperygQERnddee418obrEb5HHTVmnYxnZhUjSNM5LJ0QFstP8kBnbkgy/9JGECwdCrDtZKQhwxcULCkKmnQ4GTmOMG11YSwjb5OrPZUfIQpgQWk+u9BEGCiCXwYTYT9nESfNTeDkhXVzM+UufShQSY5DHR2l1FuxzwAlj0vyIFjrc84ZkirBidfkH6YitQGQhQtsn8+Dl/hbiLP8gci5Em1zxURiZyQq3nwpKF/ZLIapYdYBJ+qUQs2Bk4U9p463CkCsEqIAh/kSJGLV3W66+5hqbUVBDlQrRC/u1ThZiCjFIBzrmN4pslPOdkkJgYPFnSOTTKUB8KsKU5lRIaLhuLmRLGTZk5EdaxAybLi58MyvOl0KcjVdsnMOQli14nMLHhHuFqtPmKKR20jIVmAEBdG/cAABAAElEQVRNHHiAyre07Ke4ReXKzVZtltZZ9ijNWvYSZZJ32Wt71uLFxwGS13wTJV58VS64ph2238GeBrEEr7DzgXhCAqc+Q2S1ZcGFfuuTqtWqMW7K7Jvfii8r/1s5EBRAsgVSp4Qlm5y6/K1of0V5lFjgt0Ri1SYazT7ys/U221iAEzz7FQizIhkHfjkHyu1Z++XFMsiMA7+cA+SaJbpp30+z1yn183558d8dMsrZFG3w0fklibv+/+cZqCV1mNKqs8QfywEjAQH/f52+qK0TmmKbsphtx0nDQouKJIPPOLBIHMiMgEViVwaccSDjQMaBjAMZB/48HJjP0uCfp3FZSzIOZBzIOJBxIONAxoEFcyAzAhbMm+xJxoGMAxkHMg5kHPhTcyAzAv7U3Zs1LuNAxoGMAxkHMg4smAOZEbBg3mRPMg5kHMg4kHEg48CfmgOZEfCn7t6scRkHMg5kHMg4kHFgwRzIjIAF82ahT7xc5AszroVCVXzorXQfgFvUUhWx/Ibfydt6s8PratmVcSDjQMaBjAPLPAcyI+BXDgHf3/Ii78++y0vputI67rnnnvPOPW/MmDFpzmJOeCXaJ/Pia/Hlqi6jsVx29iPjQMaBjAMZB/7EHMiMgF/TuRz6Sy69xGc+fb96kco7UGDgkwMdCbhIpSJwNCZSkyJNLBKq9959z1k7PkofPo1TcFX4WfAkS2YcyDiQcSDjwJ+WA5kRsLCudRCFK6d986du+MkIcOSuo1F9bCz3tMDdDznlNGw4R0s17vGaf5VJEQCFT6ORgQaZc+eEozPSr5tJpNgkwhJDQdGIJ94jwrgG4dhN524JY8jMPVWqfEH58YoFpQMB2lSetjIMES67ZxzIOJBxIOPA0saBzAhYWI+J9jvEwsFi9F8SQk/O/SwudroaO0BJmtgVEykiOcEKSDQrze1ErPgoHsQHYdSmvqQbtXtOueZPvwDsGD2P5MdjWsKRtaWOvsgdOOtgN49cod6iYp8aZQKEhYmCj59HgHBUV3KgFkgA0r6T75CyUCy5AmHFRU7m8peVEFGlj0IVyRmpkQnoBxYxO4wLhSADhuzKOJBxIONAxoGlkwPZAUIL7Dea3nkeDsCWcMT17rvtvtHGG82YPn3AEwNeefUVxR577NGhQ4Y4qHunnXbyre8KiD4e9fF//vMfp4HRms6722effVq1bElr0rU+D+4IO6d6U8wbb7TRLrvu6tgxj6hV52cPeuONL6dMcaiJg0QdHO7QHaev3nZ7H5GILTbf4v4H7odz55133nabbV948YUBAwZMnjzZUVobb7yx87ydAYgMVXwxefIdd94xduw4ir9J06a77bpri5Yt77rrLqflwnPJJZdQ5m3btdt+++3h/2TcuIcefthOBcfsOgK8R48e8ejufv37O5t4++22/3D4h2+88YYD+py/xxS4/fbbHR+sIsfK7bHHHh06dKjQ9uxnxoGMAxkHMg4sFRzIjID5dxPFf8IJJ9DxDn9znoct/S88//wNN9641pprUsPOrVfslVdedRzOaquttummm1YwAt4a9tY///VP6rl27doU87Bhw1588cXrr78+utF0sISy0L7yyiuqoEodcX3BBRc88cQT8l0iDYMGDfppxoxDDzusuFLxoEGDHa3NKPn666+ZDt26devVu9cjjzwCEnn8e9rdybPdu3dH2MiRI52J991336ndabBDhg59/fXXe53fq0+fPjx3VT/26KMc+b9Om7btttuOHTv2uH/8Y9y4cSuuuCJUQ4cNQ8P999/vbFPNfOaZZ4YPH+6pSqtUqYzgI4880vG7jRs3qlKl6pAhQxRHduH5ofNnaJabcSDjQMaBjANLIAeiWsruKQe40dI06FVXXXXLLbdIfDd16gUX9F5zzTWPOeYYT6f/OF1+u3Zt6WAPaeu0bExw3I8//nhngdP6nloOoOlFBQTbedL8Znho1lkzZz744IPrr7/+jjvuAK1Sffv27dWr15jRoy1ACAkwOA477DA7Dzzq2bOngrvsvPPAAQPefeedH3744Z5/33PxxRfTwco++uijG2644RZbbCHt0RFHHtGxY0eoWAxIevfddwcOHAgnowRhbdu2tTNx6tSp0II//fTT11prLS0CKRQBlbIMIE8vvfRSlYox3HTTTQhW1//+97+Oa699yCGHaLiyH4386K1hw+LKRQUmZD8zDmQcyDiQcWDJ50AWCahomMVNcw69Pe644/Sfx+6bddv8kUcepTsp8uo1qovVV65cRQyfqx3KgypYHKf1+eXt2rU76MCD4vnxG2ywQYj2zw77+yoVV9pll13atGkjR35JSUl4YzAJDIjDW923+UCN22277TVXX83n/uH7H5x2r6Ajxk8/44x11llHQde+++1L+1qt96hzp04C+PSxzQTc99Efj7J+IRhQr149qNbswIBZUwLBSZShquWD6tWqW/BHKl+/fv36DRs2FC3QkAb16wP79NNPp3z5pdAC5JttttkBBxywXI0a9hGIMWjrl19++dJLL22++eatWlngKLcXAXx2ZRzIOJBxIOPA0sKBzAiYp6eKg9aPuVO+nPLwfx/mAdPTPGMWgA1xRdWqeZrCBMgCC8AvGlQAoH379lWrVaWtIzB4Uf0ILOquPJ1qPZ62tsoedh0ml4L9n3iC7/75+PHfTZtWrXp1W/uUdUm3ad1aWD7iBM7pf+6557x2aIWeehbBYARw93+cPt1q/QorrAAmBZZwKc6Dl2ABuE+YMEGNLmED9kGkYcb0GUj6dupUJgIjo1mzZswCj9BA8YtwDB069MwzzxQp2WabbcQqNCEWzO4ZBzIOZBzIOLB0cSAzAir2F1+c5pz67be33X67NXi+fuPGjQUGwCW6M9yp0orFCn7TpgBYDAV5809Sq+kD+tvqwLXXXqvGRo0aRSc+fZqDzO/Gp56t3F999dU0+sorr8xlF3Kwq4CVEWMDiIyJFENMFNYorV3uXbp0OfKII5kmuVcaiorsJGiy8sp2HcKTWjiSmnZH374PPvTQ888/P2rUKOsXn3/+OYNALKFCRdnPjAMZBzIOZBxY8jmQGQHz9FGi9YYNe8vX/XbccUdb7UTaecz77rsvjTsP9HwyaGWu88gRI6hqvn4KUaZNZZXp1txzK/133nlH8+bNTzzxRCvxIva77rqr8ENaPCaiUrZT79xzzxVsOOKII9Zdd12uvE8ACdGzKRgQap84YcLEiRNRUqF44U/qn/K21mDLYaPGjexwTJ965JqvrcMC8hqC1xM++OAD+wm8PTFxwsTMCEhZlyUyDmQcyDiwFHFgYR7tUtSM35HUoGVLS8d9Mk5IvGvXrrbRlc4ttbGOp04vqsg9uukhAj937sgRIyn7+CiSwV1WcMTIkTYGxk1zTz311Pnnn/9VsrEfTBr8V5dLWdfUsAVxmtg7v5wFwNH3KiA1HJ+6V07CDxIw8L9FGlZdddX1Oq8nBsCAiC8cemS3gXf5bOO/9dZb7f6TM3jQ4Msvv/zbb75FWAxpyPHT0j78DB3rHTfeeCOEkE+eNPnCCy/497//LZ0zevLGixwrHTfffLOXERg3TBDEMzisetx15512C77y8itgXGGTRHZlHMg4kHEg48ASz4EsEjC/Liou7tSpE0183nnn2Q/vtX6r7/SlqLs7zfeXrl2tEXjjzqt09erW7d2799odO6aIxOHtpPv444/FErxBUK1qVS8crtKsGXUbdaS9gVH3u0sxKyS8ZOglvaeffvrAAw+0k//zz8fHXYc2KoZK7SdIzAWQKlpjjTUYIk8++WR8X3/06NHwMDhAqu6oo44aOXKEbxoC0Aq7C2H2yYF69evZIahFRx99VM1atVgb3u7zAQPfP2bliPADjnbDX//6V28nojZQ6FNF+T0QwG677bY777yzpKSEIYItIiVskWOPPdZPxsd666/HPvD1IRSnDMkSGQcyDmQcyDiwZHKg8jnnnLNkUvYHUkX52S1PK1PnvGH7/I8++mivwjcvKRF7j4rWR3U4wfTfFltuuV7nzjXs9ctfFKc4vA10dszB40tBPiRwzNHHtG3XlrPftEmT9bt0EYQHBrkAg4/5bLLJJqyKlVdauUpVlkYVkfmDe/TYaqutatWs2alT51q1ak79duqqq60mwMCbVw+Hvk3rNiwDFNoDuP/++6uifv16G2+8if2DjRs1tqW/5vLL161Xj2mxySab/u1vf7OooUb0uCz/r7lmh6222pouZ0z4KpGXAhqvuCKqvB8o1N+zZ89aNWv9+OMPderW7dy5syYoq142hP2Ggv+IXH31VswaNgQ++MmAsE8QQmBY5J5dGQcyDmQcyDiwhHMg9+n7JZzKP4a80qLpM6b7iB6neb5azYI91Vi46j8vnWFRv7SoWvVqUYlGgOhhz5uWM3vW7BkzpjMpqNV5sRXmMCC4/vAvv9xy8evChWgjpH3+3lzwtaLC2j2yhwDZFaqI2GpUrx6xFdZVIR1tF5AOJEwfwWlhAqPmJSOFyRIZBzIOZBzIOLBEcSAzApao7siIyTiQcSDjQMaBjAOLjwNZ2Hbx8TqrKeNAxoGMAxkHMg4sURzIjIAlqjsyYjIOZBzIOJBxIOPA4uNAZgQsPl5nNWUcyDiQcSDjQMaBJYoDmRGwRHVHRkzGgYwDGQcyDmQcWHwcyIyAxcfrrKaMAxkHMg5kHMg4sERxIDMClqjuyIjJOJBxIONAxoGMA4uPA5kRsPh4ndWUcSDjQMaBjAMZB5YoDvzZjIBwBuBScvmoziJTuuglFrmKxVDA2QK/ou2LgbBFr8J3k9JChY0qzE8BfnsiHOeQfCRKXa7wKar8F50XDXn5gQTVohVfKHRC2u+JcKG1/czD2LRf2sAlhep5GvV7EGbwzMuHNCcOLT/THESEdL7qmA6PY2Y+fx5as4yljANLvRGQG5RLD9tTgsNc+rmrECYUTGfkzxVcop+HYxDypxIt0YT+DHE6pFDZF3ZWYf7PYFmUx0YM1jlC+sUXX3TWw3nnnevwql/DzIT9YUT9gkG4KAQG2PGfffbJuHG+h72oBX93+LR1v4RFgJ15UWGGxX6M6jNg+/kp+7s3okjtvwvSUaNHO+DDuWixUeGemOMplyRiOt5Vim8RRNoXRdmfcly+Qxr+y64/BQeWeiMgNygTo9XYTQ/o+y29k86BCkhC/m+WAmEKJdSGTxEnM6xCLfP9GZoWpuSfZOb9XnJtvrz6JZnz7+JF7Fzd4dPLKSodSrAGu2Du3AqfZP4lJP0SGDU+++yzjq0aPHgwI6B//yf69euXEvBLMKQwZPpVV13ltKpPxn0iswKSCj/TUr8kcd755x/cs+ewocN+CfCiwiwSYWHC5KdbOnNTDGkCDdIgw5Q0wwpmpZM2t91mmyOOPFIigKVYFpXuRYd3btkRRxzuEJA999przlz/5iw6jnIlnPN5yimnOHJM11/Qu/d22203ZOgQTc6xKFH5Ma2YYZxo/blyXIa0s8u3/Otf33rrrXJIsx9LPwfKvv2+dLUlTuCvvvrKmHa+LeJXadq02aqrOvXntzcEcoPeJHT+HmxO62nZsqUv8EuTApTxD9//MPKjkb7zb3q0atWyfoMGP1Np8OByIDDz5Bzf55Ahx/cRP5T7fIuDdG6vueeMn/fffz+nVxJUUWZFJqAhV7yglvkiDBIsnFkYmpDSkxNrxUViy++8/Y4GOiXImUARw4jhw7+dOtXBQq1bty7EmRJQVnvh4wWnP/roo80339zzj0aOXL5mzQUD5p7EivxAidOWJUJrw+mLQeP64UQlpxfGI5IrMiSHo+IfBZGdawK1nTwPKrx07oTPJ8RjmgE4Zql58+baHsunlKTo5IweNXrv7ntPmDDhX//6l6MU+95++5NPPbXttts6V8lJCiDnLZUW/xUJfXTHHXegLZxyufzy/ZPL2VFGyCJ1BKowYdSoUe+++66zKiI3CunJYYsjqsK4Sn5GHipSDjJBIQbgIAlVFCLMpYMWLT/8CoAWxKsF5RcUzScT2iJ8JIAmO/XUU/Hn9NNPD0AJUfNFGFskxOIMbkdpR4wffvjh5MmTZ86apUWFHJ4vhjwRv7nTS4sIn7323gtC54U6uixV1WkVuUTS3oqZye+UwjThzE/Hk3pIkrz+xhsTJ04cPny448Hk3H777Q4X/e9//4t0awaq8/Siiy92ChrTIeArLX1r2DDy0JHl66yzTsgpvArYHrJjL6dyqRAySy95HFgqjQDD2jV27Ngbb7yRdkzmZxjZa6zR9sgjj3TOPT4bx7+F2477++c///nMM89A4gy9a6+91kF/EaGqr7r6KjkkslrOPeecY445tkynFsr9/GTICb6kPB3Gq5gyZYoDAIPwzVMJbSplSGhqzh0ZZNC0adPM3pyeizOM/guBhMSAKKglyriAtgBbSrZEgfIPoio+kik9fvz4rbfZWs5TTz213nrrxUd/P+64QYMGcUceffTRmFN4n7eW+DTmR/xpo+Kj77//npaVnj5jRqERUAEViVzYg56edPJJgwYNDvnUf2nQ4uQ7PCuvtNLNt9yy8cYbR/zxXoitMB2fRnH/6quvDhs2rFmzZs5Ndt6jR4PeeOOcc8994403EKl3nJd4zDHHnHbaaYGrui3P7bSvYXbQInH59VdfKYKk3hdcIBiuc/facy/Dg0Z59513Wq2+uoMZAatCja+88grDggseiVnQPcKX68rSIrQZ9kxSBz8yMtZaay2K3BTYaKONFoRnQfmMJ3wItSTCOnZTGHjJxJFfLicZYymqOIrKYJKmFQ6tFLIskfBQx6nCuVNpWQBpukIiEiMzx/kAmhu0oa686RuHSizreXgQ6MlNAa146aWX2EwpgATMTsnyF8rYzIB7rjhikcH5/nvv5YBLS+nIo485uk6dugYDmAAWOaNswreIRH4ZngRtBIu0JeXmcyukPD7O1VtU+r9+//t+2rTddt/9lJNPqVmrpvz4qAKW0C2B7HKyLkAm3IlF5i0ox2nj5nu3bt2kccMQGjly5MyZM7k6pckC02fjx3NRVmzcWI3o1Ly/HXUU08REK2tU0qehm5Jzw2EC7I4VrphIcypQnv1ccjiwVBoB2Ef2nXXWWeRvHGrus2fPMZT5zaQ2WzVKkF/HaCPYypkqvv32WxjcBWC7dOni5D2Kx1S5/vrrY5DA07HjxkV5hIZYHRgWSW4O5PJyhASYGHXMZeTz88I3/o6zusLczj1KZpc0Iv0PYRB85adcWdV5QUlWRJjco1y1+T9BwxWxM6ZOnQqAzZF/UCTWMu27777++us0J1ToShoScfoViJnnKpcZhFXQ3OUyC4pUyC+0ACJUtWrhLES6GZ00rr7gqXsUTjLMMxkA8lyF2LApZkac0hL695577rnzzjtp0w4dOjACWGaXXX75c88950zk9ddfn2X5wQcfUOGpyNMdyqoxaIv8lWtB0qcgu3fvLkq/6y67GBKI5LU/8sgjNPTOO+2kUgCPP/74pZdeKgh0wAEHFBIJj6cRa8QZ5HgM2xQoG44pwtRCWBtmRySXGMmGG2yANTlifu2fwCVdmRxlWalyiBIHHVNcbNuBSmvXrl2B4ABQWhqdy9gX89YMIJaKSESYKlfJ0RkfRfYKHuhZdolM1/Qfpwv1LFejRuQJGnKYi4uYgMYnYtK65CjiZ1K0lN0cTLrQ62FYGsA84JTymKhUpQrMJjJDrW6duqGZYSBVRiQDzg8JAwywwbD//gfou1wcLhnqM3+aKYheaprjOaDYQYmmREQYJ3Pn/pAcqqmWalWrBZ7O74IWJGsY9xJ6/ZqLD5CILVWtVk34bfmay8d2aWbEUdbYuXNnzPipxnI1MFQmMuIjP6z2a5oG1tFrSbHcoyStXoYvMHUpNe2HH4g4AH66R9mFjYozlQwzGDRqm623sSaBLWVNSVD/OD1EkkITXIHv4Tk82vL9tO9r1641XzlWhiRL/dEcWCqNABL8P/fdFy2AlIHGnLQ5f99997Vp08bsTR8tWiIIhKARCYI4uE2np59+2qzgDZghN914I4UhoUYzJM4uEp/4YIUQ01y0DTfcUByv5vI1TYWxViw++UR8QiRNSG2XXXcNkzR/kVCjPv5YyL1Vq1ZCDrLhEaSFh36y7iAHGbEW5xp//vmEESOGv/f++2t26NC2bbsVV1yxeo3qkyZNYsjXr19/rTXXAk9nw0BQtmvXbvnllv9p5k+wffPNN+t07PjdtGljx4xp36EDsc6t1KgtttiiSZMmaI5VxOrc0yvhR/qr6Ntvvv3k00+UbdigQadOnRuv2DiGKMgRvoW1asSIz/O9VlttNeIG8d9N/W7s2DGDBg9ee621iIwyXEkKtZ+P//yNQW/UrVu3a9eumExVIAYzNb9FyxY8Od1622231atb1+akI4484u6778aum266CbzVUic14/OUr77iqbw5eHDjxo07de7cuFFj8lFwf8SIkXXr1dV2MCj86OOPKQlN1ol61iiyzKm7kUrrowjlAwYMIOx4Qh9//DH6dd+nn3xa0rykcqVKTwwYQFexCFdv1SqVbqg1GEi/Hj16bLnllhpu+A0dOjTsw5o5U4e+/c47jRo10tdQka3UmJCA9pastlqVKlWnfjf1008+eeXVV3WZGIziusPwGz5iuF7TUkELBXfaaSdhAOp/xx13pLYQrPk6feRHH4lX16A8fsM1bOjQc887z2AwkjXfFKMnehx0kCjL008/NWvWbFSdc/bZ6667LoW73/77abJAMStKSFnbt9pqK5Gz1F1OCcE9I1NPDR40aNbs2cLyhx56qLiIVog/25Sw/fbbi528/MorGH7YYYdZ2jjzzDONXq0zii6//HKhGkhUYa3qhhtv8EgaM/myW2+9tb64+993C+Dvv//+VppsmFB185LmVmc6r9e5f79+d911l5whQ4bsuceeVapWUYVppbHXXHut0aJH0IxyS1QsYP4DauG3mkMjYu/f/va37bbfrvXqrXud36tR40YGDCOPBBg/XjSrtPGKKx5++OHabpbR5SeddBJ68FCEMmjxqlWhPeOMM2KcKeVJMDmKi0y9Bx544D//+Y+xrYEYe+QRR66zTkfz67LLLzPmyRbsfeS/j9RvUN+yYKElYfL26dPnwQcfdFa46W/MnHzyyU1WXlkPDv/ww4N69CADP/7oI1aAwXP5ZZc3W7VZhS0Fl112md0k8FvTvPCiC8kH7cVDbN9m662/+fZbnW4kkHtmR82ay/fpc9sFF/Z++uln8LOkpOTee+/Fc1RdeOGFegSpRA0aOq69Nmn12aefXXfdtc8kfaFbTRZD3Yzbc889GzZsWMaHLLVkcGCpNALIVv43MZSY4MHyNItcEiYwQU9Wcu9+JYehKS2qWqUKhKowgik22w4I4l122cXEeOTRR9RCxxPl6gr1lhbdfNNNF19yyZQvvwwTvLiYXrQwISzBxbEk+dCDD1ldGzV6lCKUUFzBhdwcvuGGG3r16gXMmuU555xDBimoLlKYcW3OwGZ+qlFZs44fSXspK7Np0ybHHvv3k048yZw/8cQTwZPIhKYZfvHFF5t4nF0Sir7ZYYcd6Fq6E+ZbbrmF4zj+88/HiWEkix2XXHLJXnvuCWfkGC1FOMa0eiXSR4QpOkko0lCmsDYpqeo6tescffTRlgyIp8g3ZFx55ZW77babzjrhhBNI/J9mzFABYRExxzvayOuXX34ZQjkRIXjE4zZJSmQLqhMldPM6HdfhoWo4gubMmR0NF5IdJdYsTjzpJNjgQQAl8Y9//MMiPR2GvVQOFnXu1IkBMXDgkwyy5s2bW08HieEkPvOLwqDj0aBPaUHiW7DdBYagp12EB9g3lLEcYr13795/O/JvaVsCi4qLd999d/LUnXCHFv2k6ttvv20U7brrrog0kPhK5D7BLfOB++83Xk4+5eT/9ev3Y+KwwoylRs7n4z8nlHUoXWg8axd7RfxJL6eVSoBPTI1ZuBHzUYLCkI79mYxnKqQsP8KVv+toSxv33nNP01VW2XqrrSjUp558ihlkHO6zz75a/eabb55w4on0VqMVgjUzccJEW1twsmPHjoynJ58cCJ/BWYhVjdp7/PHHQ0LxI/Xtd98xOBU/+OCDjXljEkJTaZeddx4ydCgFYzHe3Nlv330/+PBD2kW0zygyX4ToT/nnKYbBPvt0ZzYxsEwWk1FQBHKmEhuRwsN5XBry5pAzzjz9vvv+o0YjATdYV23btUWbnxpl6yKcbClz6rlnnzNZTDTFLS0h2ABjYWPeqquuqvt+/P6HmTN/EseaM3v2/x5//MqrrkLhHnvuwQ1gChsGDM2De/bUWIP/vffeM0cMWp075M03raxRfuwVBkGuU4KMmmN3i11Bzzzz9Nprd7SDhBJ96qkn//mvf1500UVYyodBJKuagYIqkwIZKWPhMa/NYlUYRZigUrxq2qQpAj4eNQpJJsvue+wxetSoocOGHX/C8ddccw0TIcUggfmAGdBsCHaktsgM+35KSw0Aq0T16zdg+LJl9Y4hZ3jMnDkrFQtEBNP2oIMOQuoee+xhfBKSpJO5hjlsNRaAjYdx25PZzazfe++9k0FZSEWWXiI4sFQaAcZ9UDaJus1rrjJu8uoo14WLvDLoBaeMexe3cq0113xj0CBOCVfs9ddf/+CDDykVSt1sNyHD/Cwu4sqYSD0OPrht27b/ffi/gwcPItHoS2SY4STIW2+/RRIRK8RQjDGIKtuda2WBJNpggw34VYBPP+30l158sXqNGrwQuwF4ojIDfFExw/+8887TuPU6r9epc/BWaXGzjppvK+pQsya2gDnuuOMIBaX435Qif8785OUQiN26daNQNcqydL169Wk44pvOI3mt+ucCeUVFrBbAkTGmd0xASCphAufAmjR/ztx+4oknzHwOGXlESZAI22yzDUl9xx19P/tsPJXACOBtoApz1lwrRClIt5TlEeGzzzzL3eeivfLKy/369Ydwyy223HiTsMavsS+88AIBHeRU3tNFCSGVdH5gvi5gFfXq3ZuKtQxE9Q4cOJDOvu6663bacUeuOa/Fyg5vjzZ6+eVXiOMzTj+dEYk5xHft2nXWXLMDSbdKs2ad11uPVz127DhSmxyn4zffYnPsCj04d64GooSj/+bgN2kdtkuIqS7gQiJIfYQ2xK+3Xmd7Ssj0AQOegJ9MtEaw7rrr1Kpdm7Hy0EMP2fx13vXXs0v4Z9SeIdela1ctpeFYFepVlnjVHWI/8mNnudsJyzRBYUqIp65IdpqpU9L0fBOKYKkQND1UUlJiVBDu7rz/bbfbjnV7+hlnGEi0r7Aw4KpVq+hctqMm0EDcdysp+Exppfh1DU+R4cKssfwhH6l6wZCgrT2Fh4lDaZllPE5jAJ033nBjixbNR40a3fOQnpx1gat1O3W66uqrI8933203vU9VAzauBBIgcfFB/3Xqqas2azZx0iQIjXP9u7lRXVxsCFFvKGRAWmX49ptvuPUiWM1WWYX7jsOG9JjRoy3/H3/CCSYUo+rUU08DyRpQPDZHggq897771HXlFVe0bdfOsDCKmOwMONvmWb1RVZukdDPFKWbAOdZ9KNdrZWypVOn11143B1dbrQSp1LMWmTsXXXgRaWBvKV4Jg02cMMEA22+//dimKk0pmTN7DrNSXdSqua+j2ZoMBfhl+om3PQ/uWaduHXqaaU5KMFZkpgSkCesgqzRdRRPwk/QgfBjZpioAbUcDKXTiCSfKYWqbamUFE7Er3sleJ9AYc6w6LSVnwJiJTBlixDgfPXr0IT171q1Xz8RskIUBUg4uSYkyA3NJoupnaKldqxadR2jNawEoafpZSPsZFL/gcZx1VapUZlObWiat6URUUV10JDciCNpEQ3C5bK/lLd16yy10sFAB7fTF5C9MfvUQI1DVqlVb8JMQ59yY0gqagQSZ6Wf+E0PebmAN9Osf3vgi2h577LGXX3rZNIPB3J41a6ZdigDImhtvupGwINrMfDlirSs3aUJwg+Sj8x2ZDtIsD7qQAUEpUhKsFtpIvqta9ep97+grKBp0f3HxuHFjBd6DyEuesiHgiZdZHfiApiQ+/9prrwIR1qO6OLv8dXvihgx508InHUnWnH/++WKq++23PzCN5fIqoixZf9eddxJeURkk9RQhVRF0klAJwvshJLmGvTUsroCqmvRkbfDX1+7YMZaKd4+wJYppnSL4qZa99tqL9y+CSvoQ5dwg7JJjSMDw97//ne3IZNm7e3eRWxLWEGrfvt31113Pj8RMEhOXdClvUlRjq623ohHTSmliK/pPPvnkBRf0ZkkI5/7vf4+nxAQuJVfgVBiXpVxeERdEEoj9+z1xxOFH6LXddgvKjxvKPujd+wJ6/b577wXPXiTThY4ZWJz+fv3767KIsXnz5ogxTuwl5MAho0zlF4fYiUyLtSmdanQJTf2la1fGmQAGnfTaq6+lRl4KWZgI3KxUqUaN6qu3Wl3rVCo6YsC0btOGCiDo5QDAVaUAMBdoTRaA5ojuMCjpSGqjECf9ymgAy5hgE/ft25ehIBMkcyFC6l8GUKxRmu/YslVL/dpmjTb67scffvziyy+pWyNHqMOC2p133cXEpF/NIKMLWyLnAbOwbRBBNmLQrAr9wHZENg4DC6+UVKpEFa3fZX3wfixXYzlzDT+/+vprhIn/ucAw65kjwcDMd6tMy/wkAOuwZatWalcXi4capoMNhgS22MDDc+Y+PB7VqF7deBbjKWQLYj799BNMYKSKEyDDMLYcwBR+++23Zif2nOoswchHhopSMuCxdwF+BAgi4qcJvvJKK6vXI5gNdd1dr349GPQa78LwiL1WSEOapt25NC4VWVYLQyuRqtHmVm/Yc1C5EssDPWkp/aUu0gn9VatUZaGqFBPwUL2ekpAoEWkwPtHvMtTT4lliieLAUhkJWKFRI8IilSOBoYZkULfhIkoMSonfyOgEJQVcmbBTnalORnNrzBOCoEWLFuauKkJFxUXTvptmkYzS/fKLL77/4QdTNGROm2ZjDnXvat16dV5pSpUEE4EFbcKESL5YbnFxIrZKq1Stmnvpq6h4xx12YHyohCihmVTHp0nWZUvZQaiChK1NQMeoLPVPLhCOphzp8MH7H5A1dCRpQvsGOpIZvtJKK4pqwCZuwbagdQLByexHmMA1ERm59+CDD3z22Xi8df0QAjBhRV9L4ztU5AsRNnFi8ET5AaKUhDUjCZdiXaS/NU44udod1lxTJiPJqkSCL/AnGhl0sLJcDTkejf98PDNJQkFhZEaSdKRcAqnSHknHS3snTZ4szYcW+fREuBIAs6xK5SqbbrIJ/iBPJu0b9TqpBA8YYosEjAjpS/HevnfcIcLBjxSHoLo49DADoOoiW5hc2Ivz33wdjLz5XsEKcCVNwJxQHcNvzhwiEnyszh8RYyvlchgB7Cf52uJnZIt2gt/qr3+NtiAkZD1RW1Zjadh+GHGmmUm1RRQV91TV2ujO8WV0LsQOUCphSKWwSy7ZUkfpQm7kwOyOSyqCirMIFlo/XZ4awy5pFmFKhoRBC6ciH300kvrUXj2qCygn2ABAYpTGItIamKDMeSa0ErXtEj/Qd+hhNQpxR3jKHiow2BlzIqnSEpEwCGNHQBIwJ1sI1Wixw6SwNCZOU8hPwHF0RYTl7qWlInNmykorrqixBh+OuVgwGsjeZepJhNrVk9/Ew1RKqg0OeiQJgGX4r7/5Rg6zJfYI1utZitPQ9tmG5i2aw6DtkQC1+JUS4+chPQ8xy9i1bFmGmoUzyyKiKQiANoWUpoPB416aOd8EAE0DGfiZ1BUISCu1Ipn0TFo29poWKSITw/WO2v2UEOUygwSB8IQ4MphZ+fLT4lliieLAUmkE1KpZyyK3oJOBm5taYcCG4ejnDtvvwAj4rVxOJ0BREXufg8gIiC61qSWAVoifLvQCGwe0Vu1aXrLnkYwZM6ZwNkbCyiZVIkEoElKMohK43nmnnW07Cjo1ER8RktoITUoWEU3uKGJStHH6eWreQmUPBNlE+3rZl+xmmBMTNB/kZLGKhKOhjZiVIn0I+yAlk2kcqklmP8WjdZtvtnmSU8SsGR/2QAXGgozzvKSkBE/8lAkD3/rrb74+9NBDhg8foe2UpVqiMiMseDYgY71p7RF5aFIiNyHkAXsKUisEnCOAu5BPzA/3oMaC8FWvn6lcJENlkkSQEMrSChI69LciM376iaaPCA0YNlO6LwGekI8XebY3adrUB1U45SITupv6sWQQy0Ib9GRyxSqI+Pgo3iM9ASy5Ch9Jy0sJjo9QGXdWo7x9e3s8wycugPkZ4kxpv4SmhqL8VMxBEoA8hrCNnPLAjpiTu5eW6pQQt08Uv4EUMZSDWcAPkGVVLwCmMJuPqDeiVhD1LSwbpyHl9Pe/H9e8efOo8FCqt9gBBmchnoWk+e4GuaFlTYfrGSE1mRXOJxYoWkjZ+ChwUMVkxNxSVrVVLcaxxXjOOi9ZLO1nMZiAJpHRPu377w1aHaGlxo9xDnPUtYVtXwhCzjcLXikzNEdepUrUMKPTz4YrNEz7N3ZqoLzg8nP11qvbxyNiZznP6ydeQjFN7OLMjec8sJ/cDPC/UAGjH3C853Es4C+gdHyWB1FXh/YdBLos/FkwNQasiWy37ba/CG15VNmvxcOBpdIIMJnXX2/900877dJkk1HkFEUgpmX1kRtdYdr8Clam0w4q41gwIJq0UBFnqkjXtgGYirwKYToB55NOPNEO/KdWXz1O6bRqYK505pifZouIsRivyXzU0UdZGC4pKQFAY8HGcYchbl5TUJycoIGNRwWeyv/mm2+tmMphoMBG63MmeKfK0lPeSRs+YoTwrE1PZBa1V79e/eDj5R2FoB7KCxc5caIqjsPxIvViwqPlVJBUIeDJn1apSz6vTmBgxPCRDeo3eHLgk02aNrEbwC5lBevXq0dMS/C9Ro4YaXOW3WQRobvvBLiIQsQrEmqnkStVim5iCpYmgm+U0BwoDFeOSlQpIorgJWYudXBkEyNBJmY+/PDDFL9wp+rwx1Jl2F2fXDjjBcjoJ2GmLuZU1a1TRxdTOZ5qPsUbgUcMH2EN2Bo8ZzRGLGzMjI9y94S20IRyuUVowFuSndETn/AFNRb3mIx6gQaljY4++hjphKmVqlerPmbsmEI04DWT7hQSj/mAZVJCa6+9VqGUl0/LoiF2ceBqsrs+VS0pWvnSANwr0JzC/GyCBeB7tDGI1a5t24gzlqIpsYsDjUhRlpgZVPEvrixyTOuE90T+sT3OArXkKkL7ArRRBcojPPuYfmJ5u7NOdC9FVc4IwI75IVScEcDeAh8wJ7PFXwsT+kUztSlHUvmKQ2YSWUmzdbE1HcyxCGjjRXw65cspwgmq8ArMfAlIi8enBAKH24qPMd+9+96YQ1wUdrFRJ/JhkY79BFgti3qhPBA/v2shyLze+exzz5rX3A9VJxMoLLMsCNX80Gd5i5UDS6URYBqISXbbbLOSkuYW0U0eOd622mbbbWPo+DeyMIzX/OgnoE3XTTfZ9Morr5JWETeRdjGT1RLvRrzp56ltgzY9XX/DDSZkQAI6EQ3S4WcQtQR0zi2jY7p162YPLVueSLJ/TUyPfuWpPProYzw8Ph/dGWshHMSE+aZiDAcffLDgvyJkogA19wiMxb+SkhJbtChIBIOxQdeyPUoQSVJ40Sikc3udAm1pG5EZZJq4Q0JnbBScrqBuEy3iCe+/fbt2CEMq4v2k2d955116HXl6ZNr30+68607M8YoUz0lxriEFL5xAg3bfpzvMjKekkkCApQ3Lt1wxW/dVpO9inPaKy6/o0rVLrB0w6tz9LLzjdvwp33aBli1aCnjYmSGaIlCMD4Kld991t9cj+UlgDjv8cEJfyF1ImRfF3W/SZGUY6AOb//Wg/Vz2BNg+xqjCKJsVPNVG6z6KuyZ/MdnahAUURpjmswB23HEnazQodwUeRuWB1CQCz/qhG2SCt37kzauzzzmnefPmwsVfTvkSW7r+petZZ54lQmN7x6WXXublTwzhH/t5xRVX4EZsYNodRDl6Xn75JSNEh8Lsq4tMqPbtO+B5JDLe0yJ+RiSF6iFmKu6RO+LlRNpjOvkZ8pXS0gAPY37AewBYjNca/0EHHlhjueUs5YwcMYJjvUbbtkq5AtqAIHxr1geXbrzhBivEnHjWgE9uGLdGCBhXBVIVUZ0rPlVvSMyd6xWYU087Vccx8vDB1DAI9RobFwz40Mww2ULZECRgm4SOKLJV0HTQy7S1OFmX9bvER2w+Q0j3+YAuSBeViY1CQQDuvusudrP9ubaahtYmeG0gMAAsZtnbKFpmm+F9/7mPfSnoYmEuIEgupCA50JG0ImFt7meaudFGGz/62GM2WlrX32LzLfDq8itCcEJ4P7QkoT+wL+GCn7FgvNPu3g+0u4XBitTnn3+ucuUq5ICOUEI+m4YlIUw14IknmIzGjJ22JnjE5x4JC4mELgsK5q+qmMsGre07zUuaYzJu2NJhXcy20M0331xdgYC89RNISxbUIlXxjuMYr190kPGwQsOGLG/zjnTykwlboS2FZbP0H8WBpdIISEeSxTPbvozG3BAsUBi/iaGJNrSwqCLGLFQbbbxRu7ZrmBCiAta35JOPLo+IGHpi3333Jdesr7uIfheJY0eMmROt4AhMmJA1ttIoCDNsFI/lSULKVmfhax62rekUlSCneUjZ87EIYm30wtjYsWPJPjPThQbxALtzo6vNWzLTKD8V8S9FUAXGGzdq9Olnn3GevKCPzrh6EomP4tU895O3625bEBiiodCttOMPJDAEUK5ew/MOsVoIGkVc9JZSZMSWW27x3HPPo197yUTuUewCIQ0K9bXXXqML4RFT4bVYi1WpLe/kqYilnQReeVIFwWpfWNVqgR4NiXd4PJKOCGMiMLZqbvQ2b978tNNPo8Xfe+99uy8BuAhxdokXsdRFrtFGJL61kvfefY/Nsf9+++2xx5733nsfYshivOKcsUj4eawc1ekdevqM089IzUpxDvkh5FO5sjiBlhJqX37xJao0GT0q1UB/lNXL1WpU22Lzzb0b6W06S1dkMQAOcbv27UVoyFYdRw8h2NID89H4gQoMoRzNyjh43HMNr1QJt2vWrEX7/qXrX0SefN2Ibyozbk+JYL/wrqJYnYR2RfUZRmky+D2Sll/BhwOsLoNEvpFJF4Ix/TbfYgtd6alLQTTHy7tqZqixfeIJJ9iOqr2YJhIjFhKB3VOCpaGNP+NTSAJAcfGGG23ow0i0lL20hpYZYYrZvJJMjbDcHsZzwaYHFCZ0FXnhjQp88aUXmRHLLb9cvTPrsZ90B2r1ODCTThAuaUVYilp3nXWfefrpq6+5Ri0MdFMs8CS5TBA7T1kwXu3rmbwT6JHtpdKUaLS2UZI2J58ILSxsptG86mqr2hzDZhVCY0Ipa5KaKVY5lQrEJAM+1/w8oviXmWsiG8mGFoJZY+xIlgRgpeSwCw8/4ogERyn6SZiVm6zsJ4B4wWOiJYwNSp2c2XijjZgLXlUw8A4++OBWh7ZiWJsOgwcN9h6Qid/1L3+BQUGmDvpyeMr3nUyjiPWPwpKSEuKIRWLLBTvJIDf7NJktWL412a8/ngNlRusfT8uiU2AOh5GXnzbSac6iI8uVMNYhcdHE302duupqq5H4nhnKtrmZJOYVWW/einj7HIenVIixblGAOqd327ZtRzZ9O/VbEp8+8C2gzydMYA6nS9G8ENiIbyKSXf/RyI+++PKLenXrJc5H9TFjxtCXgqhifaqb/MUXs2bO2mDDsM9cMFNB/p9MDqvXe3wGJGogZLO+PZVQF9VlT7IVATJCRbSgqW751rZkZy0Qf1qhnd6nspcQAAdXQcrYnfeTqvAPP/hw0uRJfDg7+wKffYbh8/CBAY1FDMUmnxdibn/uO6PvvmuXvlcBwds0Rxd46Y6gpFbV4lKpt5mnTPnSiklctcFn3ADwwfvve3naor7XHb06ZU8yZiK+ZYsW9k8FnyMvXrURATSlbUc6InYbhsMz/rPx773/HtFDLyLM923Qz+1mlOAtGJ/6t+vQ2yUEnNWN4R8Of+fdd1ghdGq79iHIwczCfM2HXLfiMEuCoBfMEH31ZgdPnfphZsGvRwwDTPMRJxvx1OLjfXazaz6yEeyp2IaQLIGrOKp0typYRXSJqI+PO7F41MsKVK9RBIYA1R2ks7qmTftO8+XoFy21y9KLc2IepCqeUxvaddmll9n3V07NRKYs+A6bndv4pRO9DkC9GS1CERqrTz2FDZ9xzPCOTCbEMcrQatig4S677vL111+de+55jVZYwZZMM2SllVemCGOFemeGeEyzZraqyNFkZW2CNdh8YMrY0yK6So6y9vcYw8CYBWPHjcVSYyDiGTtmDAbS4r5CgV4fRIIHByZPntSocWMGND4bXeywKV9NoUT1SyyIP0xwFVlEMMCmfhsWzowl3/aJc5nlh0hldbHqtBSwr0sxI9Ro6hmrgc5mzdwFOTjZFCF45Om4SRMnYcWs2bPQoAozC7usXIwf//mMn2ZgILDYHQYYU7XZKs28jl/YQYHDRcVGptCIaVu7Vu0GDQP9qY4kahAsBwGxUeldWb1mzJhi3//w/UorrrTSyjkwr60KeHg9x/TXCmbrivYxeqeU019cTM0TRxqiQxVXNVKFN7RaEAJvcanRCo10hxapBQ8NS59HlCOgorOYFySJvotk479pGAlL6PnaLPBpBMaEPdRWuHS9S0OsepB18nEsbUiWWFI4oLOzK+PAUsSBYKAlft7ioVldW2yxhenqdUorFypdnLXP20YvLLClbG0TimDK3HbbbYEdi4shKvLNHA4rf5r1s9jqnZcPWU4hB5ggflpNEL4SRPwD+8X45EVYAGKjMBq8MGKF1EC97NJLbb4ppDlLLyEcWCqXA5YUAyqj44/gQKFHtRjqVx0XUEWxXvN2MVS6kCpsSbEc06Z1G56orQa5j8CgqiA2u5Div/GR5ouz83T5unF5eDF3x2+k/89aPKyGhLWb8E6+HvkDO8UOCetrd9x55/0P+OxHPYETul+mT0sJIfxZ+b9Ut2vpXg5YqlmfEb+0cED0XijV4oL1HSsFf5iEFbdN3ukQErefQOheVFa4GD0UwOKhSkUu30ycOWvm2mut7bN0S0sn/unp1C9WMK1TtG/X3i7gP7C9ViKssHi31uuU1o+sGa3eunVcLVo8o/QPbPvSWHVmBCyNvZbRvNg5wP8v28G22GvPKsw4sNRxIG+zLnWEL2sEZ0bAstbjWXszDmQcyDiQcSDjQI4D877QkrEm40DGgYwDGQcyDmQcWCY4kBkBy0Q3Z43MOJBxIONAxoGMA/NyIDMC5uVJlpNxIONAxoGMAxkHlgkOZEbAMtHNWSOXaQ78wW81LtO8zxqfcWAJ50BmBPwBHeRzYE5c8S0tX5rzYs9CKPD9so8/+th3xxYCs3gehTfDku/k+A5JYY2+KTZm9Jj5PioEW1A6wRpuAJzu4xt5XntbEPD/a75PnjluIB4m9P9a0f8jcvux81fh52J8ml6lcnwBMK3dN4/Ch+QW8fJF2PARyeRU6wpFvRim+3Rihfzf96fPCPqcn8/Y/b5oM2wZB5ZZDmRGwOLuerrfd+x7HHywb8Q6oW7hL876Ou8/jv/H8Sccv7ipTL7ErFKaw4fK+/Xr51sfPgZ+zjnn+Gqeb5X7wLi31SlsOQf37KEVyQdkFnk4KeiKhoXjjnwJx3fmo02wOJvsm7UOPevRo4cvwi7Oen/nupKXGH0P2PkIjrrZfLPNnJsQq/BtXWcj6TinPDz55JNnnXmWLzrf/e9/x2P6fjkZb7/11gEHHuCrcPMWkbnffvs5SH7eR79jzn777++szlGjR/2OODNUGQeWZQ5kXwxccO8v/NXwwqeF6QJ8lBkNF1WaRHzip2NU+GSsgQLYsmQsFX8rJVrghILwcwG1pCVzBcu/nluh9hQ44Cv4wkxhOveoKFBOtTvUzultvkS22Wbd1l9vPcfGMF8EM36c/qNPnfsaudZUwFZYyy9Jx0/yqUst2JLyat6yFeiMADIlYqk0nSZSJKGsl/2TfgjpfI8A8FV4P+NnTVP4X52IyCtUAdu8ORWrKN93FZ/mfy8Ej1b4iNA33/ow/9fOUPDBFl9rUe6ss89yhME663Rs3ryFs5KdiKixujKePLQQhMoWPnWwXszJ01LubzTmwOdyMTl/4kM5uORHRFuIfF6YmFMIY5DINIMWBCy/EH4hYNmjjAMZB3AgMwIWPAzm93GYEEQtCicIh8jr3KAjQ/kEkl4P+YnilCcR7yQj0ewKkDhO4yUnkeQkZsHROHJyCCNocveV1lhWjTkNJh/ucJpXgSZLBW94lr8Kkvms8BepjhFLcyIlfqZEBsyVijWQtPWxPBrFIby+GO/Dn74Dyqd0xIjjSRyXomwaZA7h5dDQ0FK+taNTIoW+Nu9zpjJTgiX8AJzSoJSQg7tHDjoSqo4fGQ2QBYRF+IjHPSbSzBSbfOn4NHLVPVRWUGNaNiQqVdKKSHmKZN5ERJtaEoUAhdgCWPnWFUJKa6AzACtk+hmKFfZpAlGYg8NRrRZmggo9aOAlnzf2yKlCp556quY47kURJ/c4pdBX5c8/7zwn/QQzq1IlRyE40bEcDapPvkgYKClke/5TwbEijwLgPFegIRlangdOJotHjtxhxaou2nkAQvF5+BNyFtDLoQjUpUWRY3GwhYx5GAUyXvGRZuaGUJ5p4WnSRn9/tq8jquyeceBPz4HMCKjYxSQIbZQ4uLPdPbYwT+j4XmxUclSaKKuzucgR7hSlHoUvMRdP+Uw/kBlEG1GVSBxpR3U5mTfKWRIqijPyMYAlV7QAgjAtLXVOoCoiDC81Vp3S6qOtwGpUD25ZVLeJixvVXHGuVIIZkVQO7zAiVxdUUSLPnT2XYKXg69SuTUmXE4sBLlgAP82YIf6vLmeCEakSPli72667RmWPM8BSqmSGYuEs0RnL1wxHCUv78j7+YFq4z5njALTwyVu6Yc4cCMsVTxD5/jmqSmeXTvvuu9q165SjKqjP2T9On664E+o8KnyKNiEKJwTG7oAsfapSQXJHMlZOxjuqEM3EURGbBlXOstMjof4ysyShpvzNwECwo5ZhS7WaetOKMFMt2lXYrYU4AKsOnT73O69tBNKaupPZYmelBXWxKn6aGYwk0Rf9EtVbBPBTBAXOyBOZzmrbZpttZKpu1uzZTsxTa4sWLRzhJ0e+iI5LLSn/JXBAh+odGNIWhSqS4ecwmPgoafh82AQD5LEskswFpKrAmldAEq/SMJsgj8dVxyIQypHWBAfcuaTl4HYEM1RMNNSmh+xBpopwfnDlShKBq7NnO+sv5VvsTfnwTE/mL+ZEhttPoIha8AGeWFeOvOxPxoFljwOZEVCxz6OEcr7nGaef7rTZli1bPPjgQ/S302NPPvlkR8o+8MADRBJX+NBDDt13v30JGudlPf/C87fd1mfy5C88EoB1WrnzZ0mZd95555hjjnGw5mOPPSYeSzpbkSVBmRe0hbKOcL3m2msdDW4R95ijj3Ya9/333++UccqJ2VFSUkJoEliRSsoMAbfddptNWLNmznSgqkV018yZP11y6aWWYx3Vtcmmm8JPUx5++OEO8bTQTnaryIHFB/c8mP+nFWijA5w36iR1kpeodQ4NeI2KFdGjhCNZeeBBB9kxR0zvs88+OGNR2fHwDAJn3V7Q+wL+HswpB9lGjyYXXai4g0ot3zpSrGqVKl99/fUtt9wycMCAGYlkd4quE8+cvZuWjQk1jh495oQTTvC5ftFsZ7meeOKJKiXc4RwwYIDD19Gj0nZt2x5z7LHO56VTx44diyc4A4x2dOgfImlZGJyodt211zoFFT0OUXUmvaf6hVodNHjQxRdfU4AqpgAAQABJREFUrKP9dMh91HAV6Ik/6TNVW/N2BC08DnjFDZskwlG5pUW77LKL3nT2vI5zHqvO2nbbbY895tgVGlU8NdUmyiuvvPK1116Dlj5zqgo6mUi2fSilU/rcequTmrXOGX0nnXjiaiUleG7sxYZbgnFAjFODjzrqKAcxw4CYN15/ve8ddxhmVCbrc4fttz/k0EOR0atXL/f+/fs7tN7dKoG7EWh8nnfuuc8+95yBIaKz8047UbGCPXfcccegQYM8NRgikmiL2Ih3w403ojlaxp06rauPqPt5GYVUzHcg8mGHHfb+e+9RvQaASeRkev2iFXr/zrvunDRpsrIGtoPqbVDAfCfYGhuvvPKKoahFzsg+9V//at2mDUpwHtmOoQMDibMb1B6rNian/zj9tdde7XPbbfoF04xeY3j77bfHTDNIA3fddVe7CJ9/7rk12ra1pGX5w86PgKq4Uu06tQ895JCddt452hnzNifLyTiwjHAgMwLm39GcBlJs6LBhY8aM2X///QkO52Sffc7Z3Iju3bsrQ9ldd/11NFzbdm2HDh1CuNOLu+22u71yNOsNN9xA5bAbeCRE2zXXXEO6bbnllk7g5pdzrTggxB8ZR4JDRc/ZlVardu0rr7zi7rv/LZz71y23ZBA8/fTTECoVPct77733xhtvdJL9YYceKoeG85PqpddJVXJwwMABG1OZlSs7wMNedxKTbKWTCOh+/fuxJ0pWW41toV7Sk4u/5557EqYDBw68++67GSi2+6XsiDJ9m623fvKpp0hS6pbV0rJFC/kMFO0KIY0Cx5nBgZjHH3+8W7duXbt0cXYIa4nk7XV+r9atV+/3v/8xg3baaSdNc9z7W2+9RZfPawTQ6K+/9po9axQJ9YwwYW0aAidhuPmWW7qsv76zyXWK7rjpppvat2tXs1Yt4t4x6nalNVl55c8nTHDELSOJEXDfvfdSYNi1+x571Khe/bnnn6f1KXttGTJ0yAUXXKBr9tprr2arrPL+Bx9QNmIQafPThI7DHDQIrR95xBFCJkLrV111FRV7yimneIqZhodOZ2Ct0LAh/aqljrf/xz/+kSKJCYr5/fff33HHHTu07zBx0kR99N3UqXXq1KVf0eyy4MLCsAnDRaX985//rLn88nZlXn311UYXa49D3/+JJ5zLrl7dOmL48LPOPltfaHvDBg3GffLJkKFD99xrL9VRurqJVhbznzABVyYYRWyL6tWq1atf31OVuhgH48aNdgI99b/3XntZLLAX9bHHH9d9tnzqqUsvu8wQ0jTnwQvsP/jQQyCTSEqFxhUJNum+V1991dmGhx9xBGtA+sSTTtI7Vo7w8Oabb+7YseOee+6FKmYNbuASlf/ggw9oryocWj/srbcYHHpW7abDSy++aO5Q6n9nLVWp4ng6DU8rfv2N13v17t20adOjjz7ahHrp5Zcv6N2b5YcbzGXjJ1TdsMEOO+5opE35cooexytzp3adOiNHjBg9Zoy+y4yAlJ9ZYtnkQGYEzKffCRoboHgePDziftVVVyX4+KZjx4ylJvnryca+Obf16fPkUwPXaLtGl65db7n5ZgEArpjoK/VAqFGxVBeVCRtFzo9stkozilMImiRiB8BJW3BtOeWnn346x8shYPfeex88qli/SxfeKtXuVQLaHZU0H/+Gqj7h+OPXWntt7rWCZ5111sMPP8yJJOsp6Q8++PCLL75o3KgRr5R2V1CCtqD+B73xBnm3zrrrRpJWXHEl4Qob/nlFzIJrr72WwVFoBKiRsO6+zz6jRo9mBBx4wAErrNBI9HU+/EqyRBqee/bZOnXq8C/jggjty9N96+232rRpTTlh5oEHHkjjcj0ZHxGmAja0bbDhhoIEmol4XaDJ9913X/v27elOeqJBg4Y1a9WkvGk1lgTLw+KwN9OsORzSs6eGzJw1a9p30+rVr8fte/SxxzThyCOPpPUpiVarr37mmWdQDOuuuy4bQgcJ0hxwwAF0zM7Tp3/19VcOx6tAj5/CDEGXNGiAXRguh5I79bRTaX0REToMzTivFhF4inDlJk2oNybFvEbA0KFDjSVtxxnq/NupU3U6pRUV20UXXUTR6qPtt9t+t913o/Bs62veogUO6EpKUVm1g9m7e3eKmeF4+RVXGFoq2mvPvWosV8OIEi9ptEKjj0d9HHuZoSnoYrz169e/bds1+L5hZ19+20qI6RcX8bONWOw94sgjUaJRTAT0H3P0MW8OeZNpYkCeffbZOABc8CmaPtIVLjar4jvuuMNhhx2u+6xBMMXeefvtT8aNQySLUO9QwF26dDWKmMgG9t133bX25Zfvu+9+u+yy6woNV9CEnXfZBQHU8yeffmr63N63L2LsRxH5YJfz8tlJab0sM1qcvWhgsK032njjnj17PvPMM2IzRg5ikGEsrdlhTTUyE9k0uv6gHj08gs0ruoZrii1LZBxYNjmQGQEL7HeSgthq3rw5gUKXCJ4PGzaMs8Ij8Z+f5Omnn34GTFiYguEG/fDjj7wrqoIkSoW7Ckil1q1bU7fRcybTgXF3GAH0wWmnnsrto/NEZZVad911WBWEeNWqVbh3VBRJBwnP3jL56p06cZSjiO/Qvj0yOJQK7rvvvoQ11Ugj1ttgA0ECXpdIwLBhQ70eNnHihAkTJ/IyO3ToEBusRhZG1SpV2SW8TNKQ/ijkhXaphZ5IbkWiC8wX6WiRFELG9FRe7XffWXju27cvjoHkiSrEdqEdWrZsyS+0OiCsQnvVq1svoq2ABzwMGuIpBUYNUIr8bMTUb8CfbIBvFqfd12jThhHw5ZQpjRo1ph3ZT966dGE+80JZsXctov+oXpAwMB1mzpz1/vvv0SthY3ylSnRSaF5x8fI1azaoXz8JdJc5mpE2mJkamNm5Uyc5gLGrXdt2H3/00bvvvssIkKmPMJOVI62l/E74Y/HCO59V4Fp0BJ1rtFmjbr26aIgAyy+/HNsi/CwtbdS4EV2lB/X7jOlhT4bdIQ8+8IDxpnZtNyypba6tF/aaNmkCmPqER6t18byb9pCn+aEDk1dSpXNUFRfjj8EDJz0tkBM7V41ghho5X36JaUJfRosctTdt0nS5GstJFLYrpgGgv2nTVaIB5+RlsQfrFJ+NH48AeHTl4DcHMwfBYymT5YMPP0Sz1tlN4BWYH3/4ccb06bgEmCsPwGDGYQxXxKSDOa0azboGYSIHOiLmM3Y1JNLPILN8YDxouOLMDsBGgvgKi7ZJk6aNGq1g8PuX4owNye4ZB5YpDmRGwHy6O0a5CUQikpAKUrU4rOKTcSRRLOAnyyCKD9JKiNiCq1AqxUPHgFGWQI/AXsoCGeSNHWmJHg2u+aBBYBgZgpMRzKYwaOvUqRvRKsy3IsJUxXER3uRsiXJH4ABTqZLgNuE7adJEJojlBhFXXjv5SIyKDSCYChz45EBtYV5wiKtXqz57TlhVlcMZDUbJ3LAwARsMEXMZfqm8uAfgKgRI0wjQsi9sU5g1y0I17UubeopyNUYJLtRMOmMRL5kotxx+2KGHzXvquSJR2cS6qA1MRjna3F966SVCnNLSOgEPLdDA5ZZfrvveewOgDARUaEG7K5ga30+bBoB9Nm7cWM2IaGkUOfqLgYJ1YhLaHvazhRc9KocOjWZa2raioq+mTFGWYRH6MulQtIXth5Uqf/XVlAhYyBnxdq1wFeDIJS+84AIrGnxr4Ws6kmlobwGcLgRgGmUZGW6Pghah06pBMggrU6VqCZTOnSt+U1JS8sMP3ws7MV+0SFey0nBDEZWBDF0ioeFFAbP0HKNnzlzvA1lISgmma+fMma0gg4O5plJMUDs7zDHwxjNINlZsjqeKQjjfdROEAYZKXe4aBZWEfNyWqXXjxn0iP/C8tFRIQyBEy+3YEPa3EMCyMX2Mc9paXRx3CBs2bBCrC/hhyV+eagZU4CN50lQ+4qN/r6waPQrsnTOXtS1OYIHpxRdffM4ugTVCXGTTbt0QmUeZ/c04sCxyIDMCFtjrhEh8RupF3UCaxEt+lHfuZNN///tfmwDEhPfp3r1ly1aCsZdffnmQXHkM5RKJw0RZnnH6GTfceIPdfHxfrgkhvnyy1Yu+JxmDNE2EtSq4cNJEmzv9p3ZCHwAwQty9YcMVCDtK5dZbb6UjKX7GxIYbbkiJ3nzTzQKhK67YGJ0C0amOg5bEDg1MUiExv8vDJDvX8PzPcqCezZk7h/Alhf/StavPucih26omnjG3ValVmjU75eRTPv98/PARI+xsEOKWLxpfDlFimsSykWOsIiqQkpN580039evfn5NtL5sdcwMHDnj44f/Kx5OO66yz6mqrffrJJ/TrvffdxxISu7YmYh/ACo0anXvueQjgUuOJhDiOiIVSVKNAiHcRpa1yYLtEyp+UMCYa3jJBlA0AyWV7I37Wq1c/BStMoApwYY60zA5rrnneeecJBjCGBOH79OlDEbZo3oIyA0AbJVo2aGi60E+uv1aovY1w0b9OrcZEoM8SQwSrpdHD4OM9GzyxOvmx4kJrBkK1B4CKRBXhbY0ay1GW3H3EgIwXWB00+M03kRaNWu1FCUsCZuZErK7w7mmFGpglclQdh67AgNUrYTQ8R6d8PSJ8ZLOepaiuXbvaa7nySitdcOGFIl6s1WjgioaoDrDGGuppjbrYAOPfH3fccSxjtaPcUwmUSyiTNlcQq3JRZUs/3bp1E1iyGPTQQw/edPPNho0QXcSpioghrSJLZBxYFjiQGQEL6+VCoRDT4U5a5AtJik7bAcAvsSeOZ+PJDz8mkQDuVwqXwAe5nC9NVDVv0fycs8+2hYrFIKIr9G1blnw+n31cgqKQ04K0ftgHnsSZiU4izLqAfddcLS4U740obN68uRrsSrN2LsBAMay62qpccHKz1eqtqEZSnrAjMYnyPO25v2kbC5pVAUSLK+YU/lYQ2bZxuewps3edtoTWnga2AEhksFpEvy3Vt+/QgZ939lln2SJXiCRNozDEP4qKOLWiwXZilpSsFgT3008zCCh4xhaEbB2VRl2iLirBxRrADfH2jz76iEqjRCdPmoRF9m/SQ1SsWpSiyRgTgsmvvPqKWAX61Tn5yy8CwDwt5bIrMnbs2FEff9y6dRst8tFcSzBY2qply5TsX5JQESIFFTqu3bGkpMRLEALX9htiFwKiBQCGYSfmgUuqEMAXLR86JITQ6TaUcNnlY4XXCgwS3rNNG3a/KxgucfXkXUfJX0ISU0MDsUJE3bbB6BbHyAGuJjTUMLwtNhkExtUnn37C4FsY5kQTA8iNq4Qow7VmzeWFiPSjnaFqCZQmhuykyZM01lLIFZdfYdRYpzfacYABkQyo2kqZYkxMOK3+pO0yDLw8Iu5lC4gEe0LbhXaCrbAAdc7OA+licOCbVsOMDKxCdWpILax12bOMA386DmRGwPy6lERIZBlBlgqdKNTiz8J8wpFoFoq1c3ClFVf0ihelDowwquh4JY5JlM1KEIUlzZvb1WVHmBfh7AAXzCSR7ajiI3JZRLzv+8995BSxCJvlfO+hMTWuv/46ryHA4G1DymnDjTbc4C8baAaVuNOOO57fq5ctT7vvtnsguLSId2UHFgVj51ekir6JbSlsedrMwkzpmO8e7Jf8lWt+yA0XneQJ4W6xX2Dj+BNO8GqWLyJ88OEHXtvj7hPxN95wg0VfCc43M4Ww3mTjTZSCNhoKETc6OYU0NPU2fPiHtlYwHQ455FBVkfL0nyBHwwYNh48YbqMlYG0Rahb/qFe3rlfR/Bw6ZAjITut2atWylU1kt99225VXXLHX3nvbLjd23FgxGzy0P3HDDTbgjl966aX0jSZ4RfOdt9/BUp9Iyrcy95d9tvXWWz3++P+8aLCrHWcJ25kgVKadaBikeORSLBDTKKmA5/tp39tOyNRjkaijf/9+7JLohvppQ4UxYP8/BWwjvabZ7CkOj7eWDGwfOfbvf/dOndCO3QZ27XnRUXDbXsXTTzvt+uuvp8nEPGg1w6PX+efHGEwgLBo1iUHgZ2EnIi829aCDDvJGBg5Q+XZaeClGzJzqvf3229dac012rXV9HBY/12pvEka2V2jdfH9GO0Qtq7fSFzvee8+9nH5jQ0WsKG89iF3hhi2uhvo7776DdQL1DDimkt0bGgVY0MgLAnvvtbeVEZ+UVntKuRcC7Zfs1buXBIvBDgZbOEtKSmTm6ElmcUwbdXaYbr3VVk2SPQdqYRNb9fjo44+9OMoU8+ZIutaWK579yTiwDHAgMwLm6eSwcE9Nhkgm+UUwhQ19+WVOPz0iW0n54MoUF4sJ289s9fTcc8718jGpzW0iQJVkSQSPOLkKq5Hxf+zdB4AWxfUA8DuqCNJ7vVNRQEVUsBfAXhBLbNhQ04yxJKKi/mMvKUaxx15iQzT23lsUsSPYQFRAKSJFikq5/292vm/vu+NAIIiiu+h3s7Mzb968efPazO6AE/WEV6XFh+1ztqDgcwK2YXNk77/vfoKey0jW2/Y8Z07YQM5oIPQJUPL6lVeGAkglEKOHH3a4aGeCWDFXOLq89lGHFouLbFlnXngqUC8jFosmTk4JKJVcVGCostDF2/ZcExFtNJETSiUSNmYCq11aqs4qqzz8yCM2tfFT/aMpW7ZoyYKhO/XonnvusduRt+ddwT323CMBAouwpOJXyNaCutfrr7vuOqYPZ5cHSUDThXxQPUJVrx7Uru0TC/VsgPBqpdb1xdMbb7qp2r//7RZMGwJ69e6FwHHnv/cj1AqeYllZ165dQxClWrVtt9vOFnSU9Aoin1LYwJuHACoTsCq45Bx77HGNGjX21N5GTyLZdRacyAPKpPo16WsuNF0ApshWjIYNG7BdaLVQccECtghbh5pmy/gihb1yxpeSgypLpd8B/SAGAlqxfug/VkIcI/aWDaHGctve2044+uhbbr319DPOwHjAMrOsXwifSMdhCrglgZlo4kQSBboZk2Q/BO1+5llnQYwxYQggY9MG25Fd27lLFzac11btGVS9detWVg3YGTkGKOxenosiV5c/0VAwraodccQRbFlvslgRiL2g/hkHKNB7223tkLWNXz4VjqVfeP55rKrigf362dP67LPP2fBhH8aOO+1kycx3tMSA9MsrA7aaUu32+iGaplXfcost9S7O3IhGHBprQ5hKTw2fBQ7xlcP69/euyptvvoXy3g0RuCpHO0tlFPjFUKCCE/OL6fX3d5RAITIIGs5BFPHTpk8joIVkyTJPBattPeNyUX68N54cpWLjNEFZv0EDt8Q6ceMREbOqm+QLelEEg6w6UUsQAy5tEZROpeBpeuHNSZPDrjchUBV9ol8B6ViXqPp65tdhsfy775o0bbpavdVq1Q6b0qkEolZzgLsDPO2kHXla4dKRjCQ/C4bjRWhaD46BWeoWwhAorBWrM1Vmeqf8m290KupRoKx9qAhbKOkdsqQuFFStX3w5eTLFbB8AWiGCYvL53ALpHE3RjmQpOuTnWgmmVbEC9ktGonnNAamBDRsCbACsXh0EvRb5sKrQomULkK3T+9KfjxOrpe5EX6EpLqJU6M4YnKChrSzo2pdTpqhL4lOQAGpLL7795ltvNNj35zt6BpEGElRo1LARcyclXZpQGNkt1cdx0S6y0y6IibwMEashgh8QEHO258BA8DILexdaTDZs6hpbp3mLFpxXJJ01c9bvj/w9Q5CRMWf2bHX12iMdTFvXd8VwoLa8aGovpF5gHgU0N+Prr40Isuu7QVEx4GBAi4p0zW+gz9dfI6w9hJHmeAxfKRwJpQwCUo0+DSSigA3AN8QJfN83nP7V1KnW8rGQ1xBQCdow9LTwmjVz5uzZc7zAGZfkPZoxfYYPSxsv5RnWhiNF1f4ANNeKYr6XNXnyl2PHfiYTnzNN7HIwUhEBNPEupd1/4RMXdev6QBBA8SmSgumTBi7hfXtCG9RvAAFDyWzSOvhuI5IKIxFSjB833o7URg0bYmk0xPyOwdQvywSRpIWdytIZBX72FMiMgCqGmKCP6jlK+Vgi1VhuCZSoSAoz1XLrik8rwS3MTNOqKJZrK6lY2FYolqgZMGOjfmM6Fotw/Mb8NJEWjokg2igrX3kLlcO/wittRWYh8FgmwgxlkqtyxQKc00exiViF5GeapI8k0uYqtwXDJHYtP1c3aTStWwlUHKMUYNopdV2pNE9ryYwtxkQcLNXT5kJDCFmROCEzf6kYk6rE1lOY8gvT+Rq5v+mjAAEayQa38JugRIEdeeSRFsuffOJJBk3EIZQsGI4UQpVPlRQuEncJ3CKIlYcsv7xiDpfcn0L4SBSokOexmMiXyxEklpdZdbEC4IUtVmgl7Xt+IAoqVUimtQpBKRGHDAIhP5kXaYFcZn5cFPaIbSo/Rh0qNJDcxLophJSdFi6Z5WQU+HlTIFsOqGJ8owqJ8q6yzkyK5x7lHdkIIlU88WkluIWZabpSlTQ/1o23KQKVniqTK5BHo7BAms4lQInvAlRCKwWyCO1XqYnC2ot5VI5bRQugPH/h5kI/cxq4SsiVjIlKpEsRUzdWjzlprTQzJtLqKUqh/KItgArFErutUk4KP8CpeKWPQiIZrIhVzKd+uLzloftYID+mEVIKIWJYfptvKI1exFFOC6SJfMHc38L8lESeFeaHonmCVMqvdJsDmvwpfFQ5XVXXCuvGdForTcT8dMhifiBlAZViurBMlWsWaXM5IHkIacW0QJbIKPALoUAwq38hXc26mVHgJ0gBE9BWUAH/sEkwiRP8BJHMUMookFHg50qBzAj4uY5s1q+ViQJi1zFwXWiUF3q6K1NnMlwzCmQUWHkokBkBK89YZZhmFMgokFEgo0BGgeVKgQqbtpYr5AxYRoGMAhkFMgpkFMgo8JOmQGYE/KSHJ0Muo0BGgYwCGQUyCvxwFMiMgB+Othnk5UoBG1jTPaxpYrm2kAHLKJBRIKPAL40CmRHwSxvxlbW/4SsCyRtrYetc/tW1lbUzGd4ZBTIKZBT4aVAgMwKWZRwKt3AvS/2lqbMi24KX5lZwi0tIDN/D8Uq9wjbS5zDM4gFLSLus2NJT4IedBSuYdVdwc0tP7azGj0iB6uWHbfyIWCxl09RAWsNrVKZr+pvmL3MCtPj5MImYjol4E5RkArrK17dUjIWrfLoMKOVbC1UDzOSzeulX8JYBYKUq4MPZ5Yu28SutWomfWlvCLoSP5y/0RaBKrfzvt++8/bbjFn3O1od7fV9vi823cCDh0sYD4tCETxfPmeN9PNcS9vF78fdRYcdHOb/HwQTfW/inWQBxUmr4vK4DhLCET2Sv4K/o+BS0LwR/NWWKDyf4/nFEKUVsGUg31DEbQ4f64LGPSY8bN27SxEkOEfBtpjizKkGulMnuHDturO9w++xxnB3LgMDCVeLnHQsJvnCZJcxZDBATM8jJRDwSG7Gn+uJcBh+u9oll/J+2UokOaX5MaIWIEH1TbFEtOtnLQVO+aR2+ern0F7AqgW+MHn/sMR/h9k3rpQeT1VgWCqyUkQDsSzbhGJdPf/twuksicNL/bPOCGaeHhFYcgxOvkHaUjnbzH4yrQO+kXZ+AvWvIEMfdvvzyy+VPI0pLi5iumHmOb89fAWDymTQYlQP/31Kxjz6oHuSFk5N8bH9BOOtdfgXAFZF39ICT7hx65CBXVo8D2RwO5Is3qleotZxuoPfwIw/75Luv3xtin7g/6+yzDPdSg09k2THHHvu73/3WQcaV+xjBVezpEjYxc9ZMx+udffbZqBeqABL/W8L6iym29PggEYrhQIdaVQE4BRgTBt0xyhMnOs8X90b8H3n44YMOPMjRQY7qCRDSKlWAW8qsSqAq3prFjhl0/pNTH50cyFaLvL/INtLqaaJiUaS47fbbzzrrrHeHD/dh5qOOOurAgw589rnnwiwuLsa3qJQbsqQiuyceCx45mbL8zW9+4xgqxKkIuKq7ReCwcFGnNjgs0fEN5Y+WuG55lSTlKA3ndlbKjLc66Bzq4cOHP/3UU9JBNhYVOaLiokGDzjvvvPg5xUDeJTOlFfzkk0+Ra1Hzzvmc6Oyk6XJkquxUlZnq5HyropEjRpx19tlGoRzO8ks5udsJmcsP3s8E0rJYbT961zF0ZGtni1E/dBKUHD/au3dvh+b97+jxQpzwS9kE1VhwaXTjjTd29KrTU8LkSRVl4qCTlaTYPy64gPB1Zpozy9OqisYiYdIt+ooTNXbN74wZX7MnqCun0aSV5BNbzGTHy8bMtFZaZqkSs2fNdq6d6U1K0rLOdjvssMOiRxvprF/+FfS2iK8mgGRGXXbppfAZePLAl//7MrKce865S9X0kmCujPElFEpXL91iiy0ohs6dO7/44os8b0cULlVzCiNdPATIKTixbq6PyU0On/Jx/X7wMSqjojHy61InECy5iiuQrQI0JZGuQlalm4TsisVDLCs9XMwtlByq6zRqpy92WrtTOFMg31BEL3Bjgif0kgMzi5347GxAY+pwQo9q1a7tcEZweMAaqjT6Sfe+D/lF4BdBaQJKKTKxrKExnZ0FXFpaesKAAS1atnT21CLA5LJTxBJSJaGyihW0wnZ3nJJnEpgn/ZYwfU9vOXaoe/fuHsV6zmc699xzGXMOY5TjjCgSIBDE0VBBT4VhTYkZq6S/KFnlSMXOxuqx7oQvJmjl4kEXr7veujHfb+H8CuyzWNZIG334oYduv+MOp05XGajAkzfccIM+OjMzVoEhHJzYxLEh5aJ7E/lhUf0KuCWDde+994xMYl0OeUoRSBPaMoKRRDLTXscC4TbpYjpkacVKCY6Wa1FwKhVe2ltyg5XZu1fv3KFrS1v/Z1p+pTQCMCWGe+aZZ8yllPPwjdCfSOZee+4Vz71dtiEDh+zj5sZZgbmFAufOm+fWkWsUklNWnWo6f8F8/Boje7GhgNX8EFd3fffdt4GPsX5evsQykbkj5EL0tGJCyvEolvErNOpkuVdffVXa5akZ7I8uOwg1GgHyF4bmJNmatWpWyE/ECrNGrZtuusmp9lz5KPuuuvoqx+kSlAIMID/22GP8QipEOifUyKPQlfKG9BpufAJH3jmr7f333ic9RQKSuV/Wv39/gUF+pMN2Yx+lHcLrSNxTTz016pWYHzslHVF1q1F0SNsKOFSrxgwSBjjt9NNJB+fCbbnllrTFgw89KFGhjxHoon/jWKhSpTej7YBP8lSj2gKpEEO9JkID0ZLDpj0LIZkC/ZqiHWtpSIf8++bbb9PIdopdwDzRXXgGu6Z1aR0UmDd3bo0aNclN9SMaykcEJFyhfEXFoVgkl04YQfH8Vq1apmcKpO2qmIys2gFAwGHBArFcYQBd89Rv3759GVgMzUqqhX+cdHmhhuPAJywKtxRhiXibaz3PRSn+SUZgbNfc7+aOHjVq3ry555xzDjtPDjzDg4RK4W/+XCgJN4UzS05oKGHyUCW5woAmtdzplEMCnRxN/zVq3FgOOn/wwQfy40DHKt/M+Yb9FNsFU8xcle++/Xa11eorEJuIbfl1KemqRKUIPLJxBBt/UwzFaXgLzldM8wHJpSNpl8ACiAhM+eor5myOnpErEvqDFuizYIFZidvB19MkMzn7KhE1hTMxhRDRiMBjlTQ9avRo0z30Is9pgUuToyblxGKxeuwO6sAhlvfU3EmBx8z0Nib8KmYQDc3CBACzHMlQLgyHK60b+4hFQ6NF1jTnmc8ShcsTjhJ1umboV8IqAasCCCmoX1pipTQCDBLf5W9/+5uBT/ghjFocziuvvEJi7732Mu+XbYBjrT/+8SiqvEaN6tdddz2l3rFjR4eXm9gcZaf34jMLEiYzK9tao7NXw5Rb6IKbQ1H9Bp8G3GSWRhFAwoZwQnKp51xgsp+1IRzPw/Y0HLRat95+++23wQbdBOkfeeQRq2WWyuSoRBdGDpaGHqFff7X6lslzE69a8bSp0xw4y7MHnMnvoodoblEKso/NAQ2Lo/TTX//6V7cbbrhhnz59gOJht2/fDhxTcc63sx0+qy7Xn8gIx7wm4sNs9Q/xHT/Pd3Smu8jqnnvuiQgg0PejR4+mV8R1Lb4aITnCkm3btLHWy8Mz11FDdZBJQwQUxYGnvoAPgq7BnGEBMbQV7FELhrHMzjvvfMUVV3wy5hN1q3RKFFvCi3wU6fXRfm2hoVprdezYpm3bkSNHRunpcN51110XtaH67vB3HTjbqlUrNPxy8uSaNWutseYauq8jMFcX2n6DCEuOTtZlGkV3INmpUycHBCupoXfeeWfDDTb4eMwYVHXqrkcNGzZUWCQGuUpLV+/cpXNwhoKgKopDNt3Z03PnNmvaTHOOwZUvrjtq1CihkREspM8/BxliXbp0wVQeacL4fv7FFxaAa6+ySrdu3Qyfpg09nUHfU28bbbSR5phxVC+LQeawYcMMUJMmTTESMw5WaB41gQOX3//gAwJU1xzC27lLFywKDe1+8P4HTmQuKSkZ+9nYLyZ8gQgw2WjDDY2lAumFo8Kgz18AbWH2sC2jWjVL9eusuy4lylTCeB+NGqX6lC+nMPIcxFxaWhqqB1slkBdhP/zgg08/+0zXmONa7LjmmtB78803Id91/fU/+vBDXZbj0OG11l5bl4mAiEAcGiXV7bZ+t2+//eYDhT//3DR78YUXjUKr1q30DjNoxd4OFR00vMbqa9iMQg50Xb8rVBmjhqN9u3Z4g/bVUKuWrdZZdx1NoIMq8j/++GMywSgY9CaNm8ybP69t27bmcrTLmXHvvf/es889i520gv2QUUfMRH4DrhOmgobpwAxq0by5odIo2124AkxcoWLsr5CkUdYchJHOI8h0KOkQ++sXnNdee80cQV70RA1mkOFzoQZmM0nxfNMmTddaey1I6oJanJxRH41yaDXcWrdqvVH3jVQHBIe4dBmTNG7UuE2b1qaJAU2bk4hEjnBgNfyd4VO+mhLkzCqrOCR67bXWDkEp5ZJdRzqr9fjUWOtvsKUC0wOTTKQEIIJrUQbeRhY8/OEHH3455UtDxhFSK4o4UOGmGCPVOsvwd4ejpC4YhXXXWadBw4YkyeuvvY7mBNsrQwO5mjdrVrr66oX4/2LTK6URgBUoReOacFT48X/kHPqSfSAUT3xj92UYV+xLFQ0adHGsO3jwnSaeKXfRRRfRo1hNPhEmVGDDEYWNHVdfffX+/fv36NEjRSPWvfnf/xavE1ylaKlAk/nmm2+GHgY1pbt2Xe+44/6Es8eMGTNw4EDzkFB7/Y03SElz5oD999+9b99jjz0WKD3lRo8fN65Jk8ZXXnllZHe9I9Bvu+22J598krKhqNZff32rGKSVAMlbb70lGnz00UeXlpRe8I9/vDpsGE1A6j333HM6aPqJ3jNo+uy2m71CQG299VYnnniiGfXZp5+tWnfVadOmX3HlFYBst912xBC5A2Get1rwDNqJYBZirV6dQ0P2RZmiL//4xz/i6swTTzyhsEYJIwWMzhtvvmlP3wYbbijwwKO+Y/Adjz/+OI2FqjA/5JBDTGnK5i+nnWbm77brrjfceKMmrLXbeUBpKRbJSzk1a96MUU/r/I9GAFPp+OOPJ2HHjRv71VdTUUaMhB98/XXX0awklB797ne/23fffWn9f174T/jIoSBpHch06NDh1FNO2ah7dxXdujAcSwjYy6+43ECDQLQZPuFlQ4l0dPZJJ57Us1dPtNUFnLb55ptT7cLg3CwQaFD04YgTphMnTLjk0ktJcGkl/cofcPzxjRs3kYkh2UOiX5MmTybvGBkIvv9++91w4w2WnJH97bfePvWj/0M3XOf28ssvf+ONN6CEn9Fwp512PPGEk4zsoEEXjRs3HgSRUgygCYNufRdXIz6UPh79sb6rCwHjqAyK6U6H9u11fPCddzz77HOs5Pfffz+uoLESDu3f/9BDDmEqqx4uVl+1atiVlhWIwuGRLPUb1N+9z+6H9e/Pojrn3HPMC+L/9DNOZzn17t0bQ+LqCMDvsFeHXTToIpMFArA1wRUwMa+59trh77zTs1cvwd5IQ9MHp+26665pXQMH8wv/+c+p06aJ9huFO4cMwagmzhlnnqEX/Q444OVXXtEFxYTBTGq6WeDq3PPOmzN79nnnn999o41QA7mslEVrADVoL5sG9tlnH/BZdaeffjo1A2domC9mItUrDLb11ltLUG/Tp4fWWfOUkJU+E5luO+mkk7SlUVEHJFISw3Tp0vkvfzkNqLvuukvI83e//e1vfvNb3REX/L//+z8Mg/c0x2iTGSZUtWp79O1rvws+ib2mO8kBI6JHOgLDP//5z4bJU9wLCCNAc24JLgXggIxXXHnlm2+8MVfkc/48TLL//vv9/vdHQgB6cV7Dn6/S78ADdTxtK7boVyt+eT6D77wTSxPUclxBoB1wACHGehOM0SkX4YkOiE+d9+vXb9999hWlh21gl+TCBtq9/bbbt9xqS4TCumeeeSbiA8JrIlcPP/xwYGNhBpa4lxE0eQ2ljhsgrLLbbrvZC2IQDfRXUwKDRXJhcpRH7Vj9F/2L6CvdZaYdeOCBdFLPbbYxwSpdv/rVr958480osP73rlEzeJ1TG6cTBxkv0gqRe6JNgMtpKbbtRx9+tM4668jEdtxfdaXlMKLZDUIXqVAD07XHHnsIqZGMvCIAyWuZkR3JdJoV/jpCahP3pldpaWnar3lz5wFoosbycDCjuONmjtnuliBjIoweNZpH4tE111wDSYXTJshZuo2bIpM7PmDAAFLYnNQcc2HHHXeEPKz8Ro/K3DNtSKi33nzTvNWE3Vt8EZoezMMOO8ymG/go5pGKEj179uTpgg+BBEzxlltsoYkzzzwDejRBXHFQ3WYOnvHn48fzV5T0SC1lZDIRqJxEQ+TG8w9/+IPRp+oWN75BYVW+EGfbbbflQD+T1AWcow//2269dexnn5Gq0hT2Kaec8vn4z+/5z3/omF69emkaGQ0WE2Hvvfd+4/XXKY/TTjvNLRsCY0z9aiojhukZR+eiCy9kYJGSiEMf2HLBpb7gggtgY+dzbJEVK3zCduzatesmm2xy/fXXa+XiQYOUhKGSqKQJsk8TnEve2NVXXaVFqkgrYIKjFcPq6ZA771QRk2iRVXfnnXd6hGhUpgs0BiuwFoNYHs8+8wwLAKiX//tfbGnDPMW/ww47kPUYePKkSRJIZIrRtZgB8yPLP/7+d32hwAaedFK3ZERwoOpEqi6A8OCDD2IbpgYTAdHQVrvxgjDKC94YZSoHEagfTjYO1Pd777lHMRTGtzrFf2Ua0h/eucgDCFsdTzjhBJ166823dNBcY7JIwIEmUIuCYVNSb3cOHgz5SEPVEWGdLl2YpNJGUDzvvy+9pHXxDwNNhVBFUDWClBwT1my1VwAZJ06YaAgst+vLKy+/Yr0Meuutuy6WfjQJyymMhmYcZlCSsjcEd9x+O1C6YCxg+87b7yBg2gtpg3X2WWcZVutuhsatTK4CkjKb5NDrt956K15CdhVZnODQWGCiP4q5mALwoeb3P2B/oD4ePVpFnUobkkAxGzzJRl1AW4bXnNlzbLszBMiFaMJCnHUWjF6wzFSxL0TvsBZWtBBpTDfdZFPxBhwOPqqyj9mCiIOLjKkrbdHoGHc6mEDjlqCz8qIsxuiFF14AirGrOYRiq5m8OmgfkqeY0CPlxQ49tc9RjyI+LIBNNt5Yo8QUsSNT+GrQoEFIhEsJN8RJEYgJm4coBZaKYUWfrTW81VbwgarW9RozBHJ9PEZ0rVLdX+xtFUFswvcnfuEVF1UheL4wqmxYwoseWvjR0uZgC9yT1nLLoaGzcao2uBqk7YDjB7D6yREiO4ZwNU1W8v4JMgY76c9rMa/IR0KKZymeTGfQrKZB2NybVMPlNKh19H332Yc1oDzFEFrMdyRYyLk4WcBowsQJogI8PMrmvZEj8TdFa4IJnpuQ7HpS4O9///vBhxwsKGeakfJ2ftFqALJOuAK0Pr+WFKCtSfOLL77YNBbh4MhG2sXWd9l55+MHDOChklYkrJIcBQiAE/FJfwlB6pP54pUKmptO5auxGzhPescL0SJnhTwaMuQucBjpZj7rHiiSgpIAFOTYLiuEPRdlqJcDGQSh28nFSaWdQMhn5P6yIYRG4/X6G69b4q1UoNKtdo0vwbfPPvu2bNkKiQxBrVo1aRTxYesj5JGBwE4WAlgqxuWqf/1LMAM+iMkSIo75Pd9+920K2dB7KQ1/Ug9sPnjSc1w3RqEy0ccxytttux2CaEjJNdZYg6TW9E4779y+Q3tjqiQZ/dprwwzNLrvsAk84CDmoYnzdYn6Y9z+Uy90fGnvtvbdHmPDrGTM0yqRTBsWMGg7UBOlJR/76iF9rhWLo0WNj3dEEW01EmgvFvVN4zY5rYgl1IeAXR0Gb+6u6pgDEyVzD5i1aUAZvvvUm9JQE6k9/+hPtAoIhU4ba4Gh6FC+gNOQVj3HjxvLRt9t+exiu17WrbeqiPk8/88zUr75q3aZ1tEch3KZ1a3hazY2sBYguGAjNhS1dZUUsS3Z2WJKwE6CsDJ5IiobA9urdm51Bo4vE5NsPfQlpRVlXCxbUWaWOELFasfsIaAXEpGjcqJGSzZuFlQjRJkROIQARGzp54MAdd9qpRfMW+++/v4oUMxNfMZ4Jf9eqRL3V6nXu1MmgY11ga9aomTQbfrSoSpOmTZVv2aKFWJ2gtMyLL7lE13bYcUcM9t13c6lPCAAIMg2tpyTJ7bffbjbhDQuCJpcgHCqtUnsVFnq7du0RzbhrIkUYQMOESfRCQwBGw1oBIYpLL73UKpidiYArwB7FYDjNqwSccgWkcRRZahxXrbMqCHBzGWKyxegglCttLk1Y16B0IWxvx2abb2ZMdceKIdH3wIMPkAP4cNrUqWY9WQTnTTbdVByUVcGFMMqQcanONLzuuuss65BIcRuHl3u1oheagCH6I07aLvdMGm8/8+yzhJuxIM367L47OyNO4TZt25gZZk7bdu10wXJPIblSOL/AxEq5HEDN4EJuR5UD1qB+g8ZNwhrzcr8wjUnFRqZ+WrVujXeZtK533x3+6GOPEal22uNgZRgKJpU5YyZQZmaLp/wbKHHHn3j8cWVigHTc+PENG4ZVXlKYq3HcsceOGDnytddfZ3qLBMTV0HJmLZjkVCmA5K8g80MPP6w5aSKVJiBoqKjf//73Ys7EHFodfNBBZgXfjoKkt1gtNDTpo9b5551P/BExnBKNkuaEvikaqSdEf9XVVxN5Lv2F7UwbkZKlvXKs8oSmGk8YcALf1HY2bhb1b62XmLaErwhTAAQ65p577omhRZnPPPsM1eIiI4a+OpQKjMC4OzwSheMEJtEYFvl2ilZZpTZRHqd9milx7333ibKGnLKiJk2bECJkX2GBSulIXrok7PgrLi4tKSFi9IukU9IAUc88MMONti50g1IEYkyZCAZ61uzZdE8KmdfCa0dYBuLdd98tn+DDqwRcWkZ566N6AIJfghIFtCvRollzxhADzpKN5XuNGhq7UFFSSQ4Q6R9h4jRMaBAD2LIyLizjkhJQRaZLu36jpFYY/DFAf/IJsThu/Diu+YxkTxld6x8lV4hhiiq+lSY0KcWYactIhw7t3377HexHzoLsgr92NUGDEtD8sBhqTuF4xH2vXTtsUIgoyaEG8Aw+n/PNN6vWrauDekKxxD6mdSWwscL4WRBIo4Bw0LG0pqNuIxMAVFLrsJWmvbbtvW0hEI/lawXxUUbdQKZ0L3pS30/sSKyY03IYpTgka9aqZV8OCMymtm3a0mH4U089RX8T572R79mRYOMCd9m80zv87y2M6B6E5pMNBMpjYAhg1KnTpk6eNFmB++67T3ALcGkENBx+aXemnhUxOtIjdjbjEjUCejkr3O6LnLESkYyYx47oi1sA40yMjwTJAY/bFJinJlfsAnwE1XHIqFEfmY+EiT0cIQJaFLaLal11Ca0AHrqQP/86go2/WJftgh8497GYfHtE5IgTqIIyxppbErqfzI4e3bvXX201nGYs5KglFnXPtGnG9KQTT7Tmopb83fr0McGtbWEDdh5+MH1SywbPGFpzVkmxGasGpqHLsOkdyEjBePZUSo+SIc0Nr8xf8rWyGgEdO66JaSJzxPHDOtjTHKNszM8fYlDxPa4h0LEUZWCSa7RRw0ZkseZCWHhaiJLJZNjKwaBJlcBqdElESYQgJshoBaiyeEty42msbDtfVCoKkCCLuvjQGlIGQI26zB6bdWVq1Jo6h4yhwB3hN5sw5gC048SjopKuBAwJ9zNOP8M7jQIP/AOT32tFIVCRzHZqiUY0u4TvYKLil8kyZIqVubRwGjIRjbnz59aoXoM3rIycgGRREblJvkhwakXFYULLEkzxaYQG4ahuLTDDXBWbD+rVzK0Qf/HFBJhbb4iF019O0vbbbR9viWkUSB9VncjjDrcg3qJ+nR/eBInlWWbSUdgpg5hRysSncI7dLMR8nm0pyTY9Xr5VHourtVeprSLlVAGHJKqkF5p1GRoNuXKKar5w7zz0okXESwKrkI+J8DUiaXPK52Amr66E+sk9gJJgRh0gj2slfm4nwayZM+n8OUmMJE4fJUPp8BtEZNpBXYOE0IJHdeuWh2FgSJdDyeKueJhiAZ8C8zT2pdBES0DN5zSHD/UkCz2hId1ZsIBvT0Yr8O0338hJ0K/iR0eswWGJwYMH29fy/HPPW0EfdNFFTZs1o3VU1FW/sEJzWk0raF4JkFaUiZ2VdiW0DxlKupVwMbncSoTqeYzirbtI23irp2qp6faPR/3x2OOOtWvhpptvEhyy4/KUk0/mBoQC6ZVUK6zrqRUNONn1KZSC2y3H4zrzR5etPgTaJmvqdDaMtGhfXoQHTgSF4dKBTptCW//BlsUQ8QyYJFXARJ9oOqgYrJTQiyI2BwkwfPg7M2Z8LR9hU1LEXvgFUBOx3YUbjY9E4ELHg7GVM9wltBjsieSlp0KjGRAEIrhmJNtOQTaIEAaKFKXFJTQKZ+LRPhivNfFkSL8hQ4ZwKnr37q1AvLAuXtIFG2XQPzBDAlxCu/gh9iJM52g65yv+wv+ulEYAfjrk4EOGDXuN1xsFGS4xwJiJ8Xhgv36kwA80rviMO4irsFSUPrNmzyLdNGeyBcM/uay64fgxY8ZYArAoxVlvnTiXzGE6O74sQHYAJYY5YsRIlSCfFzi5RJxpEeDCv0HDee+gTp0LL7wwnZNml9VQsvuJJ59kAcRaPK0XX3pJ9JUyNpcURq5IMdqXHF+tfn2Wk+UMU4iqoOm5oQqYmQq4tCI4icAoT1qNHTe2atyS2GxsVC1lDIQWdc1sBDA+QqiIg8AjZQ9mhEzbaTqWUT40ESx2GqguHQYgxys+5UyALOodb9Nfo+9Kb783kbBMKBUTfoPkh24+J01AJnkalg9iWneYg1BK+xWqJfsYDCvhZXEB3bCK8voYn5b/JjomjnjS06TV5HGkGKOBw6Q6MYdttAKB2JYCCqa3KUzQAqjkKnyKmPgwrvhajeq45pqXXnaZMImCsS8SyseKWowJj8jKNvaBlpV9+eUUQxPCJdWCSaR3MGnWvDkOiS3GymnrAWCEkvzKJ9bt9rCIa7IAGFSUH+8CTPlKuMWL+N5iCLUKqxVAkBSw8dYPJrGm+9e//822R1tH7YQNgr6sjO70qxX4cwRNzxLxgApYBHAwSa0cHUHJSNhcU0nzoUwy3DIL8QmZBYTKVYk9LSsiB4RYBKhZKk2bNLFk4CMNaZnCBDyBQk+/XO2mzZqysYzbBt28uBDCJLFA0rpkmYlsObxd+3amAAdXwGDPPffQk/AsGi5u0m8/5BlAHtULWhjQhHOiqAQWcWQyKz0NrSRUkrbt47nnn7egY4lwzTXWOOPMM+3zYF0pE0vGX7dJnTBU5TkhN1zoKQg3/vPxM2fNwv+R84lKyIvcGCyhUEEabkCczrBi35A8ZCbDEUCDaJTFIOn4M88662ZOXdu2KopSWJbqvlF3ovVfV/1LhMz+mEIjgPERNhLefjuP5QwfvejUia3wx6OOInBUD9MqIVdAOj++EhHtX/JvTi6vdCTgAZx//vnbb78dloqmrph2z549rTKWJJOflFn+nUqcHvMc4wp5kaoCgD4RyDLVlv07MDEHXJiVLWJmWjq95uqrcbzFQlNCgj6zgmCnT6dOnak3U7UQz5Qp00Th08K03ViUhKCu+PNmm24KIEVed9VVuRF2tgvFg0APoY+5ccstt9hqTihE55UgfvCBB0TVROb7H3aYufT0U08/9+yzw4cPV4t+XavjWpxJb0jLsaKhp+xrrVsaXHXVsEs/6qGITyVU463Q9GOPPmrzF2ropvJCmqKd3DgohdXcJHbCCGAG6QvRCbcIsPw3maGUxMRJE2PwwCPSk/FHR7b+Xke/HFDVqYhqJfwVLc8pkBEkCCtqxLsjiFQy1NZCK6mdO3fyJmd5+aIixpnQC6Fmj5iwCpZQ0at6CJIiISdNqxuqFzQUbouKVi9dXSiYuo3LT3Js7PJRJo3GAnLSRAotJuQDwZEifK0i22EnBiCiI5buHchp06db+klxCGXDi6bE9GwIR9M2fSr2TlhT3q8Ne01BYtreK9aPIC1Qhc1VwqHybXGRtWEahYw2BTRqZdfaDUry8OrWq2zPVapOWdIcX0yYgEm6rLPO9ttuR7vghNq14vd8FrB0gWL+2txuRxhz3MJ5OZCE3rFTCW0C6fC5YTKDKBWgZEVDBHdh1xjMK4dQQO0IofARPWqpGwIlJR1oILpcdYsvLOzCYjGNJSSMrPJextO13r23nTRp8lNPP01TojCUaK+4icS0tfWS6LCs/pe//AWeQ+4aYrkBDmZWNKA//+Lzr2d+TbUXtuWprQ+6rC94gGGUPvXImKbGkHzFmHcWIqleuwTWXmttr1HwBIJRlV/GUmv27PD9NEwyc9ZMCLhSmGnaAFmzgKcdfORMbN1cUNESISBxXFilXH/t4rcbb7rR067rrUdAyXEBYsXH8iWC2AnhxSgN2QUl+uvpavVX22/f/SxQpq3HBCJYy4AzR2uDDTbUc+KLoecpqiI7MqqOVQgTkCtV/8XerpSRgDhaJSUlxxxzrM/IGHuWKWua1yJYapiDXVzOn8s+uEE6JtFgIFIu9xlRe1WIJDvphKRINBOMCWKuKoPpFcbEfzjqKCtYLPebbr55jz329E65DcM2HtusR/WavVOmfFmnzqpsfBLEFX4STAPXJrMrnxFyTZ7QoYBOrmPeORQ/BPD8v/7VV8O0SKxwGQH0cg5GN0lsjf7g/fdt62OL/PuWW8gRhoJJQigc8etfs5lssKLg7Z2OSxt0g4a8WGiNADbaMkV10+QRkCfBfShJKFgZuEDP1I0BQ38jYn4tjlJUWvS1/wMP7Mf6IRQoIRSDD3sf0YgDvyK66EMekZgEolVPPjSwEXLodtJxe6wsBNpwR79CnjZSnrTiWMQyS/4LPcCVj6R26wq0zV9ILGSBxDJyJRPvwbC6tfx/8ikDu3RZR39ff/01g9inz+42gkWtpgrI7Btblqz+XH/DDa8Oe7VFi5bGRRxFl1moucHLjWQF3a9uxCS0WxbWtnEaQ41zg3q0mtFBw169elEGcQhiiypG9CUi+9HQdp9RJLaIEsc4s1XLlkS87RoMC/u9o0USqiNEcRFTDBv888IL8Y8BYuaCExeqWGBH/eEPF1500XnnnyefflKX1mRPtG/fQYsu3YBBTMdfXahwn+RutulmW2+zjeVe+05Yk4imd8bUe6piY2yCUCu5CkHFND5EPXqOClEMQRS02z8MXghOLLj2mmtefvm/JpSdB8La0IvsEQgFtwQbzJPCpxJsfMOltrJSCRh7h+23p3jMI1SywVZF6lD5MBzJJV0JsQgt5JeVseztV/c+G0tCQywMnNCrV8+jjz4moFhQl8nrKauan43gyKshZtZdQ+7CJz6MMWPm196GNy+u+tdVot8ffzy6b4qdoMUAAEAASURBVN89evfqBbLgGYNeQ2EHbuMmRvPVoUNZ/AobxMMOO4zLmyJpKxzbesyYMSSA+eUdPGRPuxMok+y4DCNt/iYfXaVEvfJDGkQmSQsrycmx489eIuUxoWhBmCkJEE/TDtq6KRjJUrz3nnvtGsGKjCrQCIGePXuaMjvusKOdNPpumMgopoa+G9YddtgxwtEF2BoIq3t8Le7KtdddR3QQRHYVEC9qsQbwjwmiSnohJprrCyNAT0VQOGkRMUMocIhcem06iBd2Wnvt3x95ZLIbJgXwC01UcENXOhpg/bU7rc1Z6d6juw+YsAB0IYx6EEqVZ+xS9y75MBxezJmQya4TPMSRZaTbhsqWpO0oVNPvpRdfIj3NbYFNvMj35Xhdf911phNef+CB++FmQYvYIs5MCdw5duy4Tp07rV5aqjy+10qcluaJC/40YsRZGgcLvUIm7YUYvoUAb6xBg+wAkH9mxy/HglJXzIZEb8sce9xx9CWjWPjX8rw3GkgrACl1LdqqzRE3qyFprhIZ5o83DxWI89+0cYlzwnDvfX51/J+Pt6IsrYOw1TtAiDxdgHOs4v0cVchrAIOCKCryylwMn1CHIKtFtHkhSl2Tma6i4JkjNgeBEKnRJNl/5xZucWelFxO069Ymc/PcZiLVU2osSSJKOkBcMcipC0GQuRI8/Q05VEUq2hLFDLh8T43Ieut1JeC4fWB4u9obBB7BSj8DmORitXgNWjxg6NBXWWl2YvIOmVa6w9dR3pUWjrfqyfHM8/AoaOegV+6+6278JtQkHsCtIUaPO/a4WLIQSA7DBHkCFDF33XUXWL34wgucXQN02mmnMyO8iuItQRx4/J//bATBsW4Mq8MPP5x1CD6lqI/yAadZA8LVqnlXLSpg4pgaQHavSBDQyBjRVkbJpOvhx63fwmXX+NRWeZ8fsK9NTIjNwV+HJ43bbYMNdF6VyPYaD1AqXnXqrHJgvwMxLXPQxQqJTEX7ohxM1uu63rBhr9llgle9VGlTi0wd0feYyMErDp/dlDaVbDJgaYlO0VVmLhxoDhMEl8pUBom8KqJ6UBX5fuXgJEawnkZaqcsyU/3yy6/gIZxx+um2xZmPDzzwoM6mVWJCBEWIjklHF4KA4c07m2c332LzN15/48GHHhr6ylAz6IrLr6C/7flt2rSZHkFY4UMPPdRWPtxl4piJO++085odO7KkSQASBqqFbdnV76UJCm/YsFdNsaZNw6vCLjY93oglxU70PXafyUiiss6FBmFlU56B08E4fD6lwK7yrmlsC5w4ahEOmuZ4uriIdaU7G260Ie1u8YJZJk75zwv+iZMV9kWjSy+5xBwhBrGBZR0LpkSZLkdQuumS1iM2R8e11uItMMtOOfkUhLKLiCjDPCwAvBSrxF/2B0OntLSUO8F0RmEGE5wjNPKzV89eLDD4qE5GI1cwt7PLAGfXYihAc8z8eqZvmpo2BKbbXOEFZV6wfunFF1myHoWnicaK0cVEtIaCAshiYjRiKJHUFUvDghQD6ZzkATmfIueORCBqCeDbkBXq5y9xRfuwyltP2nKriiixN9ddJGOEAJTX/FRRWxkohZjwt9/G6jYimQZmoEZjAZEMKHmnmXqIMOnv+GYakx+esCXRAE8vdXVEdTkQiHG/iKwcVcxtrXBD3crXOiteoxIhJ+SVgcB2sYsHDd2mJQO0hFbBQ5k/n8nPWLHCIipI9u2xR18WWCB7OhYB2Pdf4IOmXGwo10SCjJzCK8KKBIz5IivsrbjhGZ29Cx7hpDgolht0XUt6J0dJdEPV8DS2q1T+iq3k73IFqPCAZISQxxY9WWkBTjLihaAikDQn10HFkg9aCJmkrWBCBLR4lCuc0iHB3Ehhg4hMWsVtrlNJlnFxpTQMhfMYpnRIgUcgud+k1/FRrEVVR2YrzAzNJRybq1XwJz6CjHfEvVoSgCQXZPr3789J9Sq/8TIlI8BYFVauWDLmp+l4q9cGSEX5sYpfpkY6lejItIqE0SksGatowiIXX9Y6tPkeMzGtF9wxDLavVCXeKmCTZkAvoWHEE3xTz0xXRk6KUuFtIakV8AhBUh4rrBKf6h2i6UhsQnkQwm9yxTKSaOvX9PS5MOIihSMRMFkQNjAChUkKEUuLFUKLmXKwnJkSEQ5NJFea0FlsAGYOYPkI5KBGmLnyyVNpc8EnPWIXCpkzphUA1piiiS4DlA5ZrkpZGdERhW0kSK6xX/CflXg5YMUYcAxhX9DTloTfuIM6NF1cJGbuKrQleXC8mUIPlT/EtTK9QvUEAvfC3pbgeQYfJgc2WOL5JiTsJ485oaHkAqdOxR2tER8AuAjeXM8XDH+tBaYxAwjDJ6KEzz3l/IoNpOWZyXxEV8RHGZDDlZTwF8JeyDG7ZOSz7Q8PXwQKOUVWUmuvUpwPUSSLCPwJnplHuW4WhV2TPJjYRPoLsgBs7jYPPEE2fjgsZHH1GjZoYCVF6NgL5ez6SZMmW9cQZky7sIQJCEecQ/lA/AT/+BtWkCqD4esXZqkbXQoOlv88khP9iEC02NkAOBAwPuVOuVIgufyKLcXMMDQJ6YJ3Ip0go704HLYduFI4EXj4LQAV4eT4040Vbq9PJHwVK+JMuygC8PwVq4Q7286r1/AF2QJ4SXagf45R3edCUwmAXN18T8uBJmRJyBsg5K5InaSDIae4OG4KicjkepGsd3kYiZyrmP+Tb64ovjIesjWZEt1tcYg9xPcY034hYPmoBqLmmorV3XBnfW03TuFIao+EB0KB5BKZySfDX7gVgMg9QfMO7TtgZt+9sW5igYNFzwLmfNvgVlpaWghBOqLHqZWOFIhNyzf6Yak7IJTbBBrLFGKuU4UAPSKFCnPK00mXkSVHtIRi4WkyarHR8JuSpSwEY+xALIeQpCLC5IZEEBRVXbGMJxK57iTkbdCwQXwUWolDlrSupM4WsoHn4UqRLAAV8uOMSL6YHuZCQbHw1JUvAKyQQ2guudyGv0iRp1sUHZA0mn5jsV/ybwUx90smxKL6njJ31QXKJ1DyvNJtwscepPyXAxL5M8elIa+KVgqe5mot9KeKWrFMIRoFcHKzMT8JK8NLSsYyhCMNYobECK2SlURzedOFbSmXb66wQHlD8Wnhb0GV8mJ5ggDigoY1CzPfojLPx2qFWGIovLAgKASx6DSYHgbE06sgmeblnpOSSdQXKaJGJ6AjhAAkgiogafqoHM4SpAprVZGuEr1Fg81BKKiVwoyJ9DbtQiExIuCFgeQaLACbolAIMGRWVWbhzEU2kcJdTCI2Ucy+rMnWqcSfVdSrhFJ6W4mBq6iZy6rcx3xJ/OD7FldeceX5fz3fdpyoV+h4y9iiR9H+zpet/LdqmBVRimUqsGshmLQjhZl5zqyQV7FkDuwSsO73IFChjXCT61TFXiw8+mm9XPl4XxWSacnyRMVi5flJqgLA+Gyh8rlOFXS/EpBfzm1uveeX0+Gsp0tIAaE8sV/r92Hx78e7BCEt4GvfpI3RiGi/VzHPf2AkhRMh8WO1/gN3biUGjysww4rnh4VJBhPBakvRYgm88++3SxYGkeVkFFjhFMiMgBVO8pWnwbCKkY+h/bhY866ilI8opbcrBqvYXPTwKrk3KwaBrJXFUGAFM0PVmCRBqRSTNFF14Sw3o8BPiQKZEfBTGo0Ml4wCGQUyCmQUyCiwAilQYY/JCmw3ayqjQEaBjAIZBTIKZBT4kSmQGQE/8gBkzWcUyCiQUSCjQEaBH4sCmRHwY1E+azejQEaBjAIZBTIK/MgUyIyAH3kAsuYzCmQUyCiQUSCjwI9FgcwIWCLKx53hiy/q+1PTp4UP8y2+WPY0o0BGgYwCGQUyCvxEKJAZAYscCIo/XrFEYbrKOj7setrpp8Xv9ldZIMvMKJBRIKNARoGMAj8pCmRGwCKHw6dyLr54kCMuFlWCWeBR/JXwnRAngnz44QeLKr/4/BTO4otlTzMKZBTIKJBRIKPA8qJAZgQskpLjxo594oknnau2hOrZJ8R9Za9GcuDYIoGmDxb+ZHX+K9ZL1NzC1VPIWSKjQEaBjAIZBTIKLBkFMiNgkXSaOm2aY+5y3/7Ma+iFSzu6N6e2k89T2xlQWKaSRndr04Df5MiufMV8OMFnR53O52QzEJSJV4Qm03Fb+Tx/cyeBFraVpTMKZBTIKJBRIKPAUlHgx/ws/FIhuoILO5HaZUXAWbfnn39e3br1fvvb3zqnhDK+5557XnvtNeeNOlStpKTDEUf8Op7wVnhEBXXulMyLLrpI+d13333zzTen+50N/+qwV53F6Si8HXfc0TGjTrhy2titt96y1VZbU+yPPPLw9OkzWrVqtf/++zuZNNofzgh2KolatWrWXH2NNeIB4T+Rr/mu4EHJmssokFEgo0BGgeVLgcwIqIKe9PG99947bNgwbv2nn3ziRJA6deoccsgh8i+55JIhdw5xpI3DwZwo89RTT7333vtnnXVW0yZNCgHZHzBo0CDmQp8+fTbccEOnff/pT3965ZVXnMfTpEkTiRdffPGcc87p2bOno6+fffa5559/QRUwndbpzNy33377+uuua9qs2bvvvnvaaafZctimdetvv/v2tddfh8zFF1/sqGwnhBa2mKUzCmQUyCiQUSCjwNJSIFsOqIJilP1ll1524gknOD12tz59nn766QcffNCp9sOHD3/ggQfW7LjmzTfdTIsPueuurbbaiqf+yCOPUMnpigGn/+qrr3788cedJj7wpIFO4bvrrruUdwDubbfddvvtt1977bUdOnQ479xz58+brwmX6P/xxx//5JNPMj7ApOnpezaBOAErgf3x4EMPPfzwIxdccMFxxx0H48wCqGLYsqyMAhkFMgpkFFhKCmRGQBUEE4evUbMG79/JdVR4XYsB9eqJwPP7rdkLyHfq3Em1Nm3aDBw4UJlXX311xvQZQZcXFYnbX3jhhXT59ttvP2DAgAYNG8hUEZyWLVu+//77CtPx4gFTvvpq5HsjY/PNmje3BNCgQYNWrVv37ds3LhMUleXOzxUPGPrKK/YR9OrVq7S0VBVmSqyY/WYUyCiQUSCjQEaBZaZAFlJeCtKNGjVqlVVWiWo4VCsrat++ff369YXry4rK5i8IWwJ583YSdOrU6eCDDxY8sDlgypQpLIP58+c98nC4WANWGewVoNTHjBmzWr16NDqtL1/C1bRp0xrVa8yePbuouKj7Rt015w2Fo485hg0B5r777qvMUiCdFc0okFEgo0BGgYwCi6BAZgQsgjD57Khx4y99L3vevHm5h8lWQLdhV//s2X6FENZbbz3qnNq2BCASINJi/2CtmrUaN2p84kknrV5aKqJQtiB5L6C4uGPHjj4tIJYAYPwFgXFA/bMwXGt3Wvv6668fPHjw0KFDP/roo7PPPnv06NEnnXRSKMYUKCsrLq4WCmdXRoGMAhkFMgpkFFh6CmTLAYujGcUc1b8EHc/v/2bOnM8++yytM27cOK8RtmvXrkaytK9Y506d7BPcYIMN7k4u2nrVVVdt0bLFzFmzLCWs3anT2muv3alzZ/9JeBp1P4ASaTqFL9G4ceMjjzzy8ssvp/vFIbytINLAjCgONbLhKyRVls4okFEgo0BGgaWjQKZFFkmvWrVri9LzvG30+3z8eG73FptvLvOqq64aO3Ys42DChAlnnHFG9WrVN91009XqrRbNhe/mzm3RosUf/vAH7wFeeuml3jPk01vm94LAnXfe+cEH4XuCM6ZPlz733HN9X6hKxQ8UN1/Jd95+J36ykCUBoBy7BW1WeOzxxw86+KA7Bt9hlWGRHcgeZBTIKJBRIKNARoHFUiBbDlgkeSzG2/onsL/lllv6QsAtt9yyXteu++237+233+HVf0F+y/Y+EWgz/w477FB7ldoUt2gBbQ2it/yPOOIILwHy4EtKShTo23f3xx9/4oADDrAlcNasWd99+12r1q0mTpoY9H1ZWQzv5wyC4rDvzyVy8NDDD1lW8E4gC+CTTz5RzBsH7AC2xTvvvA2HHbbfvnHFtxMX2Z/sQUaBjAIZBTIKZBSoSIHqfNmKOdldjgL26tuj16hRo7Zt29K1PXr08JqAOD993KxZM+7+uuuuu/NOO9myR6/T2WFnwJw5Pbr3KF29FAjRfksEDerX97p/+3bttt5qm/bt2jdp2gRY2wa333477wQCYoegwl06d95wo42iESDHPgNfF1hnnXUA0VaDBvXtM3Db74ADdu/Tp1r16qyBatWq9+7dGw7CFdmYZRTIKJBRIKNARoFloEBuzXsZav78q4SIfJkvAonwW4yPGjpx0cOOPIq6Zo0a9DHdb2de4Sf8woJ9svsv/CY7+eUI7tPbKs755puwf6BGTV8ODjnJFYulSwPltzkcFvhSUO1atcMWgnyVWTNnrlKnDghprZ//iGQ9zCiQUSCjQEaB5UqBzAhYruTMgGUUyCiQUSCjQEaBlYcC2cbAlWesMkwzCmQUyCiQUSCjwHKlQGYELFdyZsAyCmQUyCiQUSCjwMpDgeztgJVnrDJMMwr8fCkQdr/YW1NFB70tk+RW9ayK4llWRoGMAktDgSwSsDTUyspmFMgo8GNRIJoCP1brWbsZBX6mFMg2Bv5MBzbrVkaBnxkFsnjAz2xAs+78NCiQRQJ+GuOQYZFRIKNAngJekfXmLaU/39+iIidt5J78BFcEwvvCefTy+Gd/MwqsRBTIIgEr0WBlqGYU+KVQgGL9bt5cX8VwulZxWVENX8QKqjacrv2TIgELIPtQx09qRDJklpYCWSRgaSmWlc8okFHgB6AAHZ9sDvSX+//1zFm33nbHsNff+HTsWCdlzJs7Lzz8KVkATg77cvLk+MXPH4AcGciMAiuIAiv32wG5L+sFVyFnjy8Xw3z+vPnVqlf+Eh8xVKPmMpLLEQO++5t+HxB8Aq96jWWEtlSsMX/+/PS7woVxS+5LuOXH5D9BuFRgl7ywVuY7fLm4OKDxwze35IhVKhm/81gpM97C32Cl1OOaFu5ij2SkuoxviF7nFdVSOYixdaCqrLUY3KpEOGY6+KpWzZrp+GLg5LyqgF/iVJf53mXa4qJ6l6fA/Oo1coVjFeH6+Cjl6kqYBIBLP9zFRQu+K6r2TbWix14f9Z+n32r25uh1O7YfcvuN1Yrn7bzTzkVFyzJlHnv00XdHjNh+++27du2a9rcStstw+9BDDz311FOHHHKIs0WWofryrWI4fGvcqSJLCDYOd8pss2bO+scF//BZ9P32289ZqUsI5H8vBo1pU6c6TW3855/j1ZMGDvQx1f8dbAZhqSiwckcCMLHP9Q8fPnzkyJE+o7tcZjiJT1aSX5GOZhdh6pcQXHLKxjmWljc5o6zMz70i8jd9urhEEKQ5TBZXbNHPqF4HGOoCl2XB/AXpf7rp8kXkRVddDk+YIJdddtn63bqVlJQ4WXHa9On/Y3eWA06LAEFZIhSaGGtIppdjooJ2L1DPxiSFofCJJ564xppr6t3EiRPLH6QlliyhdQ3FQUkRSKumijzNWZKE70ynFY2+Eycwg77IdBn6yNhApZ0N6YLepa0MfXXoZptttt566z377LMsoNdee+2EE0649dZbecPqQjgtGaH52HZQMHl7qPDp4tKBfAscizlpVtkLb42evmDVolWarL/hpsXVql926aDpM74qKloWdn3pv/+97bbbRo8atbiml/6ZI8VfG/ba5MmTl77q8q+B2lTpUUcdtYSgn3ryyb/97W8UcCz/zvB3/vOf/9xzzz0jRoxYQgjLpRgOPH7AgMuvuIJF9eJLL2UWwHKh6tICWRbLemnb+IHKT5069dZbbnn8iSewMrnmgN3evXodfsQRTv35X1qMPp9JRdKdddZZL7/88pdffgl49+7dL7v00q7rr/89wAmyhVYtCUq1vvj8cwYvRu/Wrdv3AEnkchCjS3MVKqpYj3j+29//duWV/6KMIw4pPFa/wwl32mmnNGf5JiIyjzzyCBp+9dVXjmF866236AwHMlXZ0MLIV1ksZlYqXOm2csWKI1JlYfT54x//SBIxAipVb9mi5RNPPuGMKI/SmEqKhgS5+emnn77zzjtzZs9Z/JDlmi7ApxAZ50+O+XjMcX86zsGV1HK0RMAHUxipQ4cOzz7zjFOjFuauSgiX33Kr588fO3bc1GlTHX7h2CqPWAMj3n333PPOe/XVV52FXa9evXXXXeeyyy53ElV5xYVS5tpHH33k11GWZduUnXnmmeZdp7XXNik6d+6MAjNmzHDYFSqpCuGPRo9WuEXz5q1bt6lVO7inehqhFpKosPvhKYSLqjMoxn0x+YPRo91ut13P7ht32WDDbq88/8TzL764yy59lsx2jk3lftkoxpcBrDnpSoNYoeiS3US00x4tWaVlLFWZRFWBUcb1/PPPG6OqnlfMC37FgudfeEFhzkF4VhZOO9t8i80daFJaWgpU4RhVrBzGcTFPKxX+3tsXX3hhzJgxGiWL2rZpE3BZrvC/F4GsAAqsrEbAF198cdW//vXsc8+Z1tHhEBJ4+JGHJ02e/MejjiopKV0KWVkVIxBqfJ3nnnvOcb1miNthw4Y98OCD6+RP7csxa16gl/Nuorg5QXKojdS2tSJwxZVXXnfddauvvrooIqGcNltet2AOgJAWWHzC4kIuSkHOCvLnCRLmqkjJ7DlOLib6Gd1wkMmg4QhqFMXcEotaSl3GxBMM8jpUX+iKwANuVTwMpYH1q24oWa3axx9/PGP6dDps0KBBDmOsX79+WqaQODKj76hiOSZy8xewrvA0j1W8zT/Pteu2sAAcIjTopuUV0GUU4HZTC8E5Lq6GMhxxl4R4AHIBxU6C+azZM6NlIK0Kb9qt6ggQwznyw21xkVEAXNQ9DEcyFil6IZEEdXJohIFKKJgWKyuaO2/u1Knspa+mTZvm6exZsxQCmZ6eN29+w4YNaTE2QES+AuTkpjCfyoOQ3oF27nnnPvzwww685rgHMpWV/eW00554/PEaNWuuscYa2nr5laGDBw/m5ScPA5FjQmHNx7GWA752PHWxJxg9outmB4r9+te/ZhycdtppRx55pDJalxCcc5r2ySefbBEtoU+O0/AHUMgOYuCVcAVSlM0vqlajyLoRK+z9UWOnzZzVoG6dHt3XhcGee+79ygtPv/rqm7167VivztKFi2FuvBIbIOAv4Te0nuTri+GT49IRv2lEXQG3CuBMA40r0nheKL3oCxfF88TTEQEKHDXwj0Sgarx1ONl335mPHikcHiUTR8ORx9ANc6qeAxVxShae2NMYI0RtkpPHNcrqinBUSltUUWWhwDqr1onwE2IXjx8/3qPYCYzZuHHjQRcOkmCsx8z0F4aEmLppTkTGr0z01Jb+pOtlhSVz8JPugxPmWr7vqIq4xLWOWKkpKSkJfXGlMyJWzn5/eAqslEYAziO2nnv+eYnAVXky4R+q+rbbb/vzn48v1LL550v6Fx+zT1966SUVzj333D322AOnDhkyxOIfPo5QaFbLEIyDzTbdbLX6q5kSHn399dekKm1nDr/99tuzZ83eYostbC8wT6ZMmTJu3Di+F4QnT5rUsFGjMPmTWT19+nRRB0cGOywY2nGOTZw0Ue9atmw597u5Tz71pIW6zp06k6dJjVAPSq+//joRVr4kWVxspr3/3ntfTJiw2aab1m/QQEeO/MMfDjvsMCb/VVddRROT2uLzm26yaY0a1Zs0baq8ILbYCQmiv5tvvnmrVq0gD1XuHeDd1u8mh3QASpcV07vgTY4YAe2NN94Ywh7NC9Hm6qY03RBqdevmxGTlhUyFnYmYPffYs1HjRnGk9Ev1999/H+bNmzePJCWnUW/O7Nlt27XjChNS2267LVJPnjS5pLREZ4VkaOVNNt4kEuGxxx7jdzpwOQpxOCgMcxVHvDui41oduc5ReKEnsqM2AffKK680atio2wYhEjNu/Ph3331XZALZYXv22Wefesopznj861//evddd61at+6LL74IOPRWq1cPzoB//vnnb7/1Fgw36NatGpvAfotqQZ24eJrRdCCOhY5atGwB28gqUOJ1dWjfvqS0NDFHgvKTSVU0qN9g6pTJb771FhwcUc3c/Pe//23E+e5H//HoYa8NW3ONNR586CFdiHSOBh+qfvDBBxzxdvnlW0Hp6dOmN2/RnJkFma9nzLDyYliN0cSJE7TFGkME1MafQvrOwPy///u/Aw7op1P33Pufbt02gCrMddBwa0vYZsIXX/Tu3RsdPIp6JemmTs8/5uhjdtttN0djYwZTgEWOi0aNGgUNbIyptCgHkqj2zZw5gGjIGOEQs0YT+ptYGGHIpk6dhsi1a6/6+tDh9t2st8n6Iz8c8+38BZ26rN0QCxcVbbzxJjVr1DF7ZkyfVa9OjqqRtkvyq91wJUWRTmjqT3/60/33349XjftBBx0EmWuuvvrVYcOU2XSzzVgwTC6dNVOYMn867rjBd95JsICB337zm9/AP4512rpe6DWh9PTTTyMIptp777133XVXCnjEyJGXX345VldFqAnYnXfe2dL7jTfc8PQzz6i45pprnnLKKTHUhNs++2zspZddipjoDDHNsdXQZ+jQoddff/0OO+ygoXvvvddkgcbvfvc7c23c2LFXX3PN2LFjv/v2O4tT8OzTp8/WW29tRlsjGD16tOHDWmecfkbdenXJpfvuu8/sgwlSEAhklPJHH3M0hjzm6KNLV18d2p+NHXvTTTcZLGhjpF/96lfQhhLgl1xyyaRJk3bbdbdbb7/1008+NbPWW3fdASecsGqdVVkceUqntCn673//e/PNN2M/8xHDEEfrr7++mNbV11z9+OOPkxKCUs5Vh4lz7XFFec0stWIogBVWustMPvzww7femnuzFV6vdB1wwAHvvffe/9gpMsLMcZEXJCkpDKAZ65dPcNutt5Knnpqc5IjoaLDEv5r629/+ltogVjbYYAOPqAFqksw1edq1a+foYTPETFBGHJ7ENG9///vfk7kKu0pLSx5/7DE28sgRI2l9unOvvfYy1XECUAcffHB0UqdPm0YwmbHCd0DRdi+9+BJH/4knnigtLQWHLJOPRBMnTKSe4QwBS4DgwFZ4I/QlySfKlURGUg9uxx57LCkGeU5P7dohVkGc8fDINVVOOukkhUm3TTfdVN+lya9HH33UIxdrCXBVQq2Gjd54/XVPU+cJVpxCsQe2VNu2Ie7nIj569epFHiEvUUVOcW4A1zXl//KXv3ARJBhh5KDmpI31RRddRJREBS8czV7ROgj0HLsBMePVs2dPmswjohklCTJCGRA9RXnE0QoceFr0liFGotCNsjIjopjyqO2WSvaI9QCgXqvCmICPjqQ0lE/KY0tDYKTcohX9x7bbZpttVImSUcidVAXNEMhZd511oKS8jsHw1FNPJd/jOj0lGivythFNvg6qyHhCseitogaPnB2D92gLrSAd5UElM+b0jjJr06ZNHKno4fXr14/ADRxYvTrtwjCNqw6RvekPMDfZZJNddtlFE9ItWrS4c/BgrdNeBhfO9BCa7LPPPoislQsvvDDYssnlqVoeYcKY41fr+++/vy7ACucojLZKCjy88PwLQNHEOLxZs+YHHty/eu0G1Ru2Gze3bJ+T/7Vuv9POvvXZKYzdBWU4eK+99tlll77Dhy/1vEa1gQMHdl1vPR3RTc0ZBZgjI62msz169DhhwACkMxbUIYJjeIihNjupc6dOqGEsMCEGsHRy6qmneKSACbVBtw0spUsLd9kUApQ+iotQ1fTcLbfcggde/u9/t9l6a8Yru3yXXXa2tQKr9O/fn/gyu61gMixgQqkTL6+8/DKUzMcDDzyQHFOSemaZaZG+lA8O5KEKq4022minHXecNHESa1V3tIiq8l2athIXxONWW4FgXnTp0mXPPfcUF2RAyGE69OjeQz5QQqqahph8/ImrcdHuu+8OIDFlQOGvvLFmEKAhkajjLtNTFcTBfgMThkeKwgvYO+64wyTVKa0rLMGyfP655wXMWNswNByI36fPbgyjSNhCCFl6BVAg+JQr3cXVI1kCi1d19e3bl9meW1Ndpr7h3Q8//JBsIq1WqVMHQJas14EijwqrMlrJbvNn2217SxC4t992G03Z/7D+lAohS5lFRUWSkrxcwx22356yIRbBNGdoGrr85JMHkpvsiUMPPdSUU5HSffPNN03FVHx7Kg0OOX7jjTd+M+cb9rJarnXW6WIqEqzkEfXDzlDGnDSBZZK/SiKA7pDj559/vtapQP4B2RQJs91222lULV1o164tPX300UfrEfli0hIcqohGvDZsmEnLWgdTjsIlJSUQkCbIuAUCJ5SEHOPC0idJCSZoUKWqaAIoDoTVEMD1BQWQjtuqaY8IMi5XsGDEu4uK6tVbjVKEcAwGyFGSoyxBhVA/gASjKolSUmYEE71OAmpL04wwT7VCMlKQtHVUYCgv4ZEoAiDGCKr9+h1ADJGzKcPEmLbmDDfSMQLYGeskpIAV8gaLpHp1KN17zz3IyJACeYvNN7/99tt1AQ7EHItELeIYwspzpFh1UMIzXKIHH3xQMbX0F58YdLdKvvDCC3FobB+hchSgIagxwpdohiQxqtdaSXRtSWxLKJ7PalAiJ1heRR9sg4sIcSMOMmwt3p9yyskGK1ISHE9vuOEGzBmZ4c9//rMR1CjKMC9Ukca0Bjc1AowgDPGGsSC7VUd28N0iDuLTuEYNJnI0javpDNYGvQjbtdZai6xnHUqzj6d8+SVuh2pCilqNmrRp0KbThLKyHY4dtPZBZ9700sdTF5TNLiub/d28o485tlfv7V9/I1h1hZcxQpx4YVG0KnwqnTMCunblE7uNRgAOwW/CS2JjZhBdi0nYfJjW2BEsOApk+h5z0u7BdJs3TxXsTQeL6xiOvxcYAZxmPTWpw+bQsjLGPVNAya+mfMVA79lzG7SyCKhFK/fd1l/ff1dffbUm4GMGCSzR8Ux2aYYIVE1YLdqpR8JdcMEFTENrOoBA74EHHhDpYSYOGDAAeqwQ3X/rzTc90qJYHXsC/rC99NJL2YgYG8KsEyNF+3o0beo0Y7TvvvuyvJm/2tKdrbbcEnOyMkEjB2huWh9NPGKawApDMoX1zjopopEGn4z5BGKYmbjA6h+PHu1p4cWY0C7DxYwzj0AjPJlKAhjSMCFXcTjz1zyNbRVWz9IrhgIrZezFVqOogTiAZE2lKzyjn2L4r9KzJbhFd6LZdjDKgLI3B0QFuMiH9u8fw5vkoGlGUlxpjf/a69nIHJ1rr7suhU288iFMYP6HeS7+hr8vvPAiVZThXdEWJ55wgvQ111wbp9wVV1xhJkSX9O67705B0U+EBaHADjDfyOJx48c9/NDD5k/Hjh1v+bedkbdccfnlLAyPKAmKXOwRNBLBGpv5Se5IWIvTL2BV9BsXs+MtBEhkAcl777mPQuWjiBbC8F//+hebQxkS/MspUyRcgJD4qAElroOc994bOWniRN68hmhWeoVCGnzHHTBn6RMrWqRUuON777XXoEEXif4RGVdfddWNN97E9dQ0afXoY48GleiqVsz2uvjiQTDnHnmqCWT5+9//jp7UDHpSMIYA8akc+BBbfolCkprNccrJJ7M2zjnnHMDIdJo44J1cELZLfPAdg3mlBB/g5OCgiy7WWRVThvEoXyP8FUfW3IcffUSl8ZmoPQsHzZo3Z/OJErMSlIHAxEmTmFwCs+Ty6aefrhckL6XuqepXX3U1wkJebIDaYw0gCwR23W1XlCFzA6dxBF95JTc0SfQaWJcAKZpbcyVSn3zySQANjevQQ/vrIymPLa2+oyoIwiTQ0wWhDorcEBCy8nEL+TtgwAnCzjiN3gWZ4WgoIfbeyJGUHmiwMojUnvFFcyYapcKZ02ilKxYG/Nprr43mMnGPYah8ugeTK89g+vfNNw84/njBMNFsZgoGu/KKK4QTQKb/vLkXGRK00g4drr/mmrsGD8amM/F6cbXWbVpVLyvCASzD1m1bzflG9pxCNEwr/E+jxGvACQNmfP21ArpWWKxSWk/NWcRhKvFxPY3rSqYt25SZYsUEZPnCfxBjvmBm41LSoYMeefrSiy96WtiGtSqjycQ02VEVPfE8/fr2O2/HNXhtMUlRgMHRuk2b1erXp1NVEf1iEgkz4skRI0dQ7cbaxVawWGCyEGV2z/kNcbDq1Q0cfOqsuirTfNveveUYfaKudhJNhC1G0jT0rBbZ64obIVDSoUQrMidMnKAMZAJfJdaetOZwuRUi4pQhpZjW27VvZ/J6hP026t6dpWt/CZZWBht7nY8x16GkAwR69expatDi7MtCykszzVnDthxuv912QBl0DhVrySyIsww0xbCcSx8RuRACTLJrBVAgmPAr3dW0SZPooAQJvdBlKgpHRyG70MPvzyAxMaK5RFb26N594Mkn01JEofAaMcHnJuhBsdBF4UlgdOVNjxR0+3bt6HiTZ4MNN3z9jTfM5G+/+aZ09VKulTKmDQEEFKucEyaH4KYnyD3yBdq2mkdQSsYYGvj8V9FmfobJNv7z8ZBk11vb9sg8Nz85H2b1J598yuk02bibJj8fDpDqBS83Kp/imSZoU+EK/qWnHFZqddDFg95/L+h1coqVwOhJC5M+5513nls2jaDCrFmzbTjYasutUAz+HCBGAHW4ZseOuhmUa1GRGU68ItEXX4R1QV6IVV5YcS8UgLnlG34h/AkYXtph/fujHjrLUV1dUl4ChppQiyhRcnCXLhTq11/PgCQLQAFi97TTTz/7nHNQSV+IGJpGfrwOPeQQQwamptkTiE/M7bTTjmeecVZsKF+w4t/iYroZEezoNKAlJSVNGje+5pprSG0jYnC1AwEaWjVS/pBDDoEhqlPPkW5oIgA/Z07QK/YcQJLQlEYWPKbjgMNHPntLPoB+F75QiTs1b34IySijPHGsp0YfKJypO2Hci4qwBDYgdpHXI8jEIZAD1d/+5re0mqC35RLajr0F1DPPPAOmi7m5R9++jAZCWYiCZEdbHFIJH3DkYGm7FoypW1PSiDPR0AcdkNRMXDfZb4gPsbe22AcsAI+ktQUBalUv5Bx00IF77LHznLIirFatqIzRaoOiuJD/bDFdYBtZsAcqzHfUwDzpELdt15ZmBnZxo1lReTdt1izaPVBVK+lywygBYn9lMhFimur1vgP9N2HixJytljzglxsCtah/Dn0s7BfNyY1oD6WZEpS0UTMW0lpELnURxOyGDLZkxukFNYltzN7YHS0mpqB6YRA5Jzb9oLxXo6MYjMXiL8j24riYXzS6QeT0e2S3qSbMKvBdESv5THBp91L6Ar3WrVobytCQbbDF1QQG7Fb5fPx4kz3WtBIJFNay4cOmKDGPOI4Rpl9gcaNxp/WDOVVtgQYgbB5B6b2R7/XYuIdpnqKRVswSK5gCK6URYMaSsxRAOl0T1icAOA3VLIO1bh0i+ctGSnMMWPYu7tx+hx169ep9w403/OMf/6CbSWGWfny3nqI1AUwSbhC5SSWnzXkZCXO7JRb9RhFphsTyfkMTc+fy6T0FgiCAq2AuyWs2clNSUBIemUIER5ir1aqJOrikO67ZUcAQLGVo62hA0C6ag7mQL+ljvqlSaXIWAo9p3kCd5G0FJYlpjqwm9Ite1xBsYZjWMvODFEjmv/LylbHhSPCQauSXMPMpQk7zrrvtFrusAKnz1ZQpbl2ghc19IFSrHh4VFUWVQE2ApTkNVEtoCPmIgEal0Tw2Z3udknrq6XffhU0PxJZHyvh11atXV/SbFIvGUy4z6Y40XcUDFgEWwHj00cfeeONN35OhrtLqykTEJKzSW/GViNo0YJJ0QQ5U4aF1WNapWxc1oMH7t3uDqUQ/hTLVayAjjmrYcBW6uXnzZi1btCBJPQqkSD6Nol2X7hCs8l1p6/HWL3IxEWy8CtyS7MrGXSYC19BYB3Fcrbr+YgP4GFBqWC27RkCGGNJBUgK5kZw/KqggNiAezuZDh+GJtaSuWphKZ7UCYOhdnqopMhJaVICIV1gB6BmrMHYwoawSl86wKgkCfabp2EeQUYNiUJ23CgIklWnZMi6WFX07156S1b6YOfmLz8dX67CmEfUuxccfj6lXt94qFfeu0z2sKFdEDBAJYOPtkvyGjZYJqtALiCauv15IJ6CMEfsjrDgYHL0A3IM4L9AzNhG2zySOrL1BWEsZRPBIv/jKvIVKKOmyQYxlFEMNlHEZNchQt+KI8gMlE9wAD6jNDy85BgSSmpgQ8vKDUEgwib+eKuRXcCLG87EHbmSOhJ094OqaAmUBQ9VdEkSLXxcKGDwoubSr41BVRruQsTbKIAi0SqpASeNJNUyi10EsRNEXMhPh5ncuuqmmiTBrA5PgxvoNwmJTBJWUzX5+NAqslEYAPuPSMTMF6qMrFuZGYmbuvNNOfffYgxjCjjhuGegKFM4enrhxop3koFCYaDO3D4/T9zHaJvpqty0xpAmThMpcuK3I4n7NM2DNK/PXbOEgktE23psPntpOaEXNHI4zsqSkZMyYMeXQkl5EkQEI6c79Mp+HvzscUPk8IRWjwdG0aRNi3VqGfP4uVDVh9pIX5QAXnZo4YYK1AOj17t379NNOM+e33Gqrsvy+98J6ZJBGcyIgeSCWYM3Sxn7BbV7yTTffvFufPtBQjNRDgZatWtWuXYtY4ZQIn3CwBCf5oGpT1UCxjqSV9z+Ro7Mut4BIeBShhdYKXJlEBBYTcyBQirxkaEgTOpaNmEEGLlRJr7KyenXr2rjHV7ZBj+DW66uuvloAQ1uhybRkkvAqndco6IBx48axjeRZg48KXhcsxMvROzaHIRAusvQ75M47RWJz3nNxEcdOB3VKD1ert1rLVi35Z6FWIn8l4uVWSDZ/V/kvpsQYymAYm7pLS0sTVItJamndveTSS6wHiSjw5FirD9x/P5TmJ7asp8Z03rz5tWrVHDVqtEjSxj16cOCEZDiv3HGN1Ug0Mfiqi9ms33V97iOzQyt2LVTGJkHeo6Av48t1xcVffjmFRYt6Bgyry2cSBfVZo0bjRo3oEjmWHuywC/qsrKzOKnVWX2N1VjXLxqN58+cWFXMWq9WqSct6n23+Z599UmvzNQGsXq3o008/wfbRslG4ygs+VeYvJpNqintBQpkcj8X9v7ESgCFOHrupU2/BdsECG0T8xvLKUWlMsXfefhvFBGPkpLpQ9yOgwl/QVDcr00wDpCQ6e2Rq8AdatW4duxMaStgSj0ngfMItJIO69S9MkIgJDpGOPKWwNUEwrbiZDuSAfbv4NhBIN8OcCkXxklbcyIw1PWncpIl5ZNbYOhCjIMrYL6yAW1LFXAAnKZ8QPMzXBC5iAi+ZXAo0b97CKPtY06+TjTvwRUMjjmnNiNhivnj290ejQM4A/NHaX9aGsZEo6zlnn0MZM8xJB3tVzj3nnKOPOYawwF6mxLLCDi6apV9rnC4bnY477jgrmmZCaWmpGcXYN1cZ2nf/524zVqyYIrEkv5jm4MPMpyTMdiFxEW9ruiWlJRYg1bK8DRodc9/991MeaXizEkAIuBo1brz22muZaTYK2abE57a5j1fHy0ST0aM/hvnYsZ+9O+Jd0Qu2iyrgkBaVoFV5S2rEmcl4p7mtCgf3omJVYiJO+hQCct111122AYobI1FwHxeUiUnobDrPocFO6ty5ixxY0cHQ48MxAoSsrXpoWlvxgm/AObmSRNpULuFJTEX4wjZR8XN3brnlFiYUNSZ+M/CkgZVQDdCqVbvm2muPOOIItoiFUshT8wY0bS6K1LRJio25QBYTi7aJ2KVlQ5YVIgVE8km9xEoJ+x7sZDTENN+ll102Pfl4jq6RevJ52x+NGmUb1Flnn8VCChI834V8Q0GOLurSTRds6XgJAElS3bzp5pvO/+v5n332KePDVhKU/+c//4kTRIYuu/xylqIcIX1VDM0B/Q645NJLb7zpRjvPd9hxR7vYMNt9990PE2h7qTK0kRgBDKlDDj3k4IMPEug2iIcddliViMUuqKIJaeYjWe9bGnoCoCr25x5zzDEXDRpkJxxM2Ou2ppsv9k/YnHHKqacYdOStADxht/bt2tJUH3zwPtOVNfHllGmTJ07S9xYtWlYovJxudCHxUctZPQQVEw4UzLA9IsRgFix4+qmnbMrzMs4miZUZ1HP+Iih8hcPmCeFJW3dtTRBlYQ3Tl/kii/sbbSYDJ6BoWwDhgJMRR4SGFn/q6adVhiTFneAVQEX5lrBfUMIEIHxUsbHApmaF+UjGBUxBPgYK6zyMl/+D1g/qHB+afX4nf/lleJRczDN/99t3X4txXuGLfdRr0kbHbWA0X/JIBIs51tJcTBT+yuzQof16XdfzopDlTrcuLgpWZH0SVgvPzcLqWXqFUWCljARE6phgG3XfyH94S06YwQlPJjZyMDlJ9mWjI9bnWXL7eHVegSMHgbLH+/TTzwBQsG7kiBGjRo+mD1xyeDm2vErAwAxR3lz1L04St/CStrZNNfK0rMKywQ/sd+Cpp5x60sCTaBcbpmJhk1nwmR1TKGIsA8enZqDZu99++3/44Udq0aaKUT9qUVTm6vDh79KCBBCaQOaYY4/RdAwDqAvDgFvBFXBLrpjH/xCN9BbZK0OH7rLrrpxz24xICkWIoFg29DIRSXmAxUQPi4GvwBaBD8eoVetWxKJi/Aa/sVH5Z5xxxocffjBu3HhIyjdGIivMLPLFmjplnMMmMVkiYn6h4TfCiZmIKxH1R4gfFBf7sLxXqh584EHRV/sBFTZkllc8knYFCZR4VNIkLNLZkScNecq13wH90qcR59hQ/BXkoAksZIocuHQHwe3zokcVCOglX6Exapdfdtlhhx/OBGGhXnP1NRxf4g9KNk8EJNgNPXrQK0ICEXJETzpStXB0pCM1QrVEAbA+YWIjngHyiYjoxlkX80kAKziGwDZsm8mZm9S8WIVVf9tNrC7ZUxkVsIZyW9teesmqjb6DXVpaKm4cm8YzVmoUxkui31bB+/bdvaSkhMGUIBlWr+AccMtzTmT+8HUK4Z+bbkJzrzB48w2SFrltFWQdMgVYqzZg0pGRaNrlC0KAYgPKLTKGWWLghFXWKK3x1EsjR336/rivVm/d+M4hQ4SzrB00bBh21SzdlRC6sIomAvIJG/sN3rQrYbnIV+5i+cgSNLFNEmJ+zHfGDfMxFgAkrw6Lum/UXb8wlacNGtS3RIV6IjFiA2nhFAc54YJAIiWgYCKAZoLYeM90eOTRR32QkW9DVpjdNg/GkYJPCiRNJJCK2yQzl7DynhHBSJ54U4Dm/s2vfy2OZWgYYWkVQ9y7d2/egnUr1f0yB+Mo1KxVk/zcZ999fd7AwpZ9P9jJfCG48F7n5B2ZIE9i5CChU0qEFH5MACj4x+FhQpkXthTg4mnTpjN0tBilR44OlWpmtyuWAsuoJlcsklW0Flg/fxWm5RFRfpfZAlAX+9qJZsLb28WgNgHWWGONHXfc0XYqbVnOJJX4XsJrJrkIPIe+b989zD2hTitwcWlASVUE41u1ai3CZmpZVgA8vKE3fz5b2De89v7V3k2bNfUGzieffkqI04ga2mSTTbm2xx17LJ+y5zbbgMNRNbfZGcwIksK8ghs3yzYFMsKk8mYRp3PInUPuf+B+Gkh8Qr5IuLeJiQ3zzUS1l5j5Ykrb+helm18yy5u7HddcU3m4Ae49MWiIJ+sON0JkUje7dO4curPDTj4fENy+xMX3ljBJp/tt27ShR7mnxCX9QaPTTKQMwb3D9jtYGVUFcM3x17meZNPHH39MF1IY3qzbOuljs6bNbEonbnQ5yiORc3rdigzlpzrzgpwFtnOnzkR2req1rPvY2KWbcKO5fQ3p7h3u5nMzj4x+SUkJg8Yjo8adghhQsePEGYCwJVtLS0t699427FGKHFVWtPeee/0/e+cBYFVxPfx7X3+7b/uyFdgC7NKli3QVwdgFFSN2jRrLZ/JPNMWo0agpRmOiiTUmKsaOXUBApBel94XdZSts7+/tq/f7zZ23l8eCBVGj5F3x7dyZM2fOnJk758yZMzOpKam4awEjdQfoYcR85+23d+zciWCDP2wfv2jWLDGbwcR9xRUI2vz8PJoAkh5qasJ/ipGXw5HQb2gdzAaIZEkShiv4w5oO2zGYoqFrgiEvN5djLpuam6kdFBJDc6BAwEZqIWjWJSSRyHWcVRmgsfxDFZTwKso95xw6G77uOKUS+ac//RHjPDZq6IeHDod9w4aNVBDxDBj9mY7NjDM+Lq5vv350RaxoFCoeVaH3MkYjNsA/csSIGTNn0hNoX3jImsKoUaOJh4F0xV5dmxvRZaETdxAwUwXQcCA8JmXW1CAeJYAeSPdgo/yWrVvLy8pY3EYDoDnQpQiAGTkxfvwEikcRwO9jYG6v3Myc8sp9Ly9ac9XZJy9ZugwbOPqNTuLR/VDr6dOmw3MIJieOMhgLaQUhgjUtITGBXkf/xOGAVJar6NV8IHRaxhe6HJRffvllEMY3BZ9pTciGIQCPHzceR3y+EWQ53Q85Sn+DsUDSMeiWNB9NwDdCU9L64Q7GPHvWLD72xKREXQfQqBeavZxF5OXlsbcFRZMOwyQEaiEbgxNkFPTrx9cKpOgPel+lUgxT/QuFFwL8YVURdYEjnuh7aKh8y6hN5RUV6PH0AfoYp6sxdsnsbDFNTkqurKxgn8u4k06iTW+4/nqcG+iQdDbKxbrJSCU9AbHBcKbFKH2eQ8XpRSx1pesLcBIb+PmUoAc8AEQ+9C4UFA5ioolhAqjYpANzJAxLoj++8cdoSwZzIvNGw98OB8JLQd9OYd+vUujffKsY91haRo+mm0obg6wFqYgxPlSuaZFHcsqZGQMHfT0Mo6+8yWkf8FKiII0IxsbG8N3KT4gsRDIbQEIzvghIXfrwi7eXQMWZ6roBmSQ+M355wIZnPqMPIynDEDA8rLZiloQw8EAzwILsrlGDVDHz6fpQBZKugmSkhOQXehh3GEdkrcklqBDe+7o9oMvOLxlCvMBDLfQ1YFkLyKMk4mEL5kcIQZCFWQDrPJ3sfGfqTLmiajp2fghLSiTZgh4wK0ItE0Xw6DZYWAqkhAcAThLmIR02ojwBj4glXtIGMGTIgVjg1D2SaDsikcdYIGR2iYEpmpiZyWskYRHQegVJpT+QC4Yz/ZV4IE4uaZOqAwpu80AAvzIj2LDPw084I+NFQfQNvV4SRlZHVpOwiJR4sN90NS65ZBiyaSAAYhFdOM138RC2CBD9AUb2JZoMnQmekATlkkhvp6gI0z7ZSQRmRUH/w1qLsHn+hReEbNN1EZDpiXStEBYpuoSM4Zcmlb0OAGQAHwOcRP7JGjFfdHvcwMivQyKBKhzUsTm74lySPIBhBWqB8BLFuUxTfKrSHFQe/c+y9xcuyu+ZNmVg9vP/+MuooYP//uij8FBsEfhqjy5yxfxb9DbxGFWTr5Js0cG6+vNv7rwTiwhSecqUKchyGp2mgdsSkrbgv3CurrYmO47DRMrayQYFjk4SDuudXBbPJwEkZIhfGl1+mHpz4zgMlxh5JH5JYWSJ4ZhD/9DLOXmTOYNEBU5GA5hm9HxZZ0kJ5VIpGtTAIRlilMgrGATCiA8EYEmzDBh5w4HIvhqZpp+KTYTR6EaiKBQOyLobsdHAt8iB76sl4NthESOaFISyuMieypfAAMrDh8dHRVfmS2OMI55H9GyGeN177iCpepJL91GXAGG0+oZdvoSwGNHd/XTY8IAFsCxC/sokypJuiSDRhyOBjBIhSdIMmCFOMLqKXF2ilCA4+TUIMF7lMIe4MlIRMoDJLF2iUYygRB1SQb0WEo/47VIUoFk1i+IgGJVFoNUUBEOMKgSSxGyUJUb5rodI6k/VGCllnIgQZ/4HOU+dGCGE+K9r+BD4zcJriTkoqVRE/goCdBc2fiEDcUVLEUUdARA4D30oEXspcbLAF+ZzAABAAElEQVQWMlGO0Sh8PMQTCX6KY5iUGAzpwquMCWPQi5YkyXh+RbtAto5H4uc3HC+1NErQqy1oOIxCypWWG3LJ6uuUQGNYRJGFR+aF5wSE+KcIvVF4FSdt6AKGMI8EFvRQrp6XmbFUbngLV0S3vkg6jV8CPGCAAPa+y1cZQ1fBoG3EiCrrrGBjm4yU5RKGKrk6QhimsLoTY1KmTxi1fu3yhBib3+NOjI+/++67qIiB7WgDlCWZIzUAo2jwSMKMXgT7qbhQW3UtEJoBIDMaAGHZl2TpMEsyh9eDAd2qD34iARbIJduFyhd+umIO+oUAj6ylnYQaJ/itoE5ZDqqm4guHCEEkpUZ2CdFeOlo9AH3sBpE0C1J1YgzagCNGgut5xDqmDISZo3+2MkYA65+bRCgjKTpcuqDhoJorUgVhul7LV3n4o7JNhqqJwiPpgbEiUo8/PFM05tvhQFQJ+Ew+y84a2WWPCCq+266ezVAoYYxchwciAQ4pIuJLEF97xBMJZiA0ygLQiJSZjOwy0O3LlzBGlm7II1+PCCkixWcbpvCz8AioiBoRPjiII8q7sncDE8gjH0O0dkWCR0poiTwSTyRDAA/XXafBoISAMfB1oTzkrwFJ7CFh2SL6CCrjZXHw9pD8ES+HZI9gBSCRtMkc3WO6hupIJAKyK17Cy7zyF8hI4G5h49UIGLmMADtB8BHLzc1lRcBQbozUbhll/GelHg58RIINJBHw+oqAqgzLi/l/l50/aOCAjFj1wumTMzLSOTdAst/I9eUD4I/sHrI4+RsZLxDqnTPE2QSKwkoZFjuc9sVqTETTy3IjaJYRB3+NJKPWkaXIPmP0HAncbbZ9EFe4sPAnY2AOA3T1h27kGeVGwkeGyR75KuENkozSI2FkFhkTroLRHUWaGBMMcgwMRuBw5CLTZ38+RsZo4JvmgJgufNNlRPFHORDlwPeCAywTmLHL68sr3QTAt0G/Pp3lJ8DEt0ueMB8Wdh/9lbHqUG3qmyJKjophFbSr9G+qsCjeKAf+qxyIKgH/VfZHC49y4LvEAZZaDhpsvn3CupQASpbmcyH6OQHsM60t3yCJ6AHSSP5fUIa+wWpFUUc50J0DUSWgO0ei71EORDkQ5UCUA1EO/I9w4L+hY/+PsDZazSgHohyIciDKgSgHvtsciCoB3+32iVIX5UCUA1EORDkQ5cA3xoGoEvC1sZZFRJ6vDd1xgUgwRBNHBXzttdGZLX5YuOX5avgleRIJGMTr9+H5vtD5feBllMYoB/7XORD1Cfj6ewByKbr15SBbDcHa5e99MOkYQrr8Dp+sQPhYvLeOMfsxVOKos36PSD3qukUzRDkQ5cB/gwNRS8DXx3VN4Ry3PUV7OANYiKiIh9duMRGJx3OwqbGJq4za2tsidxR/LRXeydG5+/eLMxCP4aFRuBmB84M5EBc03/E24pijfaWlXLJwDDWOZo1yIMqBKAcO4UBUCTiEHcf0oiqcHH7jTTdyoDcTU24J4vBw7p1ramyUaNmEHQwEkDTibE9deoljaN1uXgHgcFkuguNU85/+9Kccrfq1CCSQ8FAWx9ZyROix1E5m50BiiRNrB4FuCJFSHE/LbzheUxYuWshNB9zD1A3yC18pjnNt+T3c1C/LvfyKK/7whz+49bt9xX7uo330k9cQ+9zqe9FFF3EJJGiPxZxwePkglAdLH55kxNABxAHAX+7hPP+f33YbFyh8E8srX46EKFSUA1EOHG8ciCoBX3+LysO/GLKRiNww1NbeztnoPq/vyaee/OMf/yjOpRcHepoYypE9d951V0NjA0RwPxsXAiHzuLKIe+HCAqm7nD06aiWSkpISrh7hWp2jy3woNJWqq63jGkAuPiaFChwuMsv2lXHREXfWHZr1q7xxrh83u3AzoXH2WSQWQ/84nIZIsC8MG3i+EPIrAEDbhx9+yO15n5P3L395GJWRLvGNUvI5BESTohyIcuB/nAPRY4OPrgMwWH+h4JHz17POPJMrv7hGjENYOYAFk/iWLVs4PRSpxiRa/DGZuAmwtLSUKa8gQlVnzpjJ9YCc28qvlApfZY4bUSGBRNOwyXPDGzoHGgaFRqR/XjBMQNcJbdSai03BEz4AFe3ksOl3cUkxVw7W19d/Hl49TbpNHM5Mw50CHmJW+cEPfvD5qA63E3SDP7yIIwDoUV/YrN0yfuErd8DQuHDscEiDqh07dqKcUQsLFyJ/7nN4TQ0kn5Pvy8B8TvZoUpQDUQ4c9xz4siLhuGfEZ1UQsYQtPZyK5NNvoOGV4ZWnsrKSX/Ea4aCOoMfMm5mVde65506YMAG5i4UcGcwdowQQb0hPAn6fHwEgs4OBRYGevXpyKSeLCAhaZoeiUEB1Y8Bn2fMpCKFrIOlGCYKNKXtVdZUU/1DSTZZgr8ZEAS3G4jrkBfwBCQZa1i+I4RfMFMRVv8g24sUVK4ctB2D2gGwuMZM0Sy0BMCwi/EIqxQkKu3LKv5TF/byU0hUNiFJSXOLzekmCsWFWiOhDnsjz2AXkoUUQA0slTn4JUwS3F0oU+mpAlz6nX2wTjgeU2ukKk4wh3NggTDV6SvhHJvFLKfzSuNSORRwJJlO9Xh9GHeJhL9lkpPFLDPzEF0HeZsT1byTBZ4mQVFpc5gI5AfgdqaYQYbBFZpGYYRfcpqbhV5FRcAbMcIAsaISQRBYiIzstWaQySnHi0ZeoDGqjgSgHohw4XjnwBfOP47XaX1gvBu6PFi9+4sknmdoyTCcnJ1133fXnn3feihUr73/gfq7rJpJrRnEr4w51JPfVV1/NdVsSrd8f4Cq/FStW3HbbbdxBwvWsr776KsDcEV5z4MCsWRdxH8mQIYMbGhqLiooY2Vnl5UY7LjLPzcm57/77uVn8oYceAhXXkzMVJuntt99mgOZOtksuoaBrMJUjzjdt3PS3R/+2efNmILkjjpvCKZTrwG+55RbjjhzI+9WvfrV79y4G/Z/85CfQzPXkP/vZz1iOmDv3jVdefRU5BPDgwYO5jHzE8BHz58/780MPcZv4E48/kZSchCR46eWXnn766fPOOw/kGLebm5tXrV7NDfFQ9fDDD3N1vawy+LkwfsmSJfDthTlzPvjgA+6Ue/7556kdAoVlDljx6aefIti4dPznP/85VSN+48aN//nPf9atW4fcAv/pp58OkdDDigMLAYjNp556CtbBYWiW98HL4uSvEGa4VmhKa2vLvPnz//3vfyN0WbbgzvILLrhg5syZ3BOPnKPQeR988O/nnmOBhoxJSbTXJTNmzCDVEOwQQxLEU4X7778fIn937+9QYv7yl7+sWbMGAcmtfZh2bvjxj7lC3ji/nlo3NzUtW7bsX3rRgGH74ULeH5x+ektr60033VRaWkq9IIYr6aadNg0HEYN+mu+B3z8AZ5DFM2bORKGhF804f8bePXueeeaZVatWdXS0c9MfzXrzTTdxfTsYJJFggKs8DfX1f3rwwfXr19N2uDWgYr722mt4ohDPHXTDhg279dZb+/fvzwVXsAK20MFeeuklUrkagPDtt92WlJxM6WvXrqUpi4uLCXO582z94SJmWBfd5GK0VzQQ5cDxyoGoEnDklmXK+/gTTyCcGEkRS1v1B8nhDwjft3feeScrKwtxHhMTi5RCTPbu3duwXUuTu/D4Cwbl7KpXr14I2j179qSkpk6ffjom9oyMTCQWIzjSdPLkSXFx8QMGDAAzD9M1hnjIIsCY3rdv38suuwxUhJ966unMjMzzZ8xobmr+9R2/RmhdOnt2ds+eyNFFixbl5+ejc3D/i1ElpD7CAClYU1NLEmIvOysb8pCyb7311lj9QXQtWLDgl7/85ZNPPnni2LHAIwj/858Xr7v+eipN1ZCIVLykpKS8rAyViKWKU045BaGF5mEUhDhE3qBtYAzo168fMl46RlARIFFiTjrpJNwFduzYAXJKv/fee2HgM888DWF4DoIHnQlngtSUlKuvuaawsLC6uhoBya32/QsLuXwW4WqUZQQkn+HSm2+99dhjj9EEyF3KpTrIUVSEa66+Btk5d+5cUmkCnAwQbMuWL3/yiSeZgrMYj6gDG0TKqT9OgjgbIraR1r1690K47ty585xzzi4oKMRmgw5BrsjrcSFgw4YNj/z1r3369DnzjDMam5rg6j/+/vdePXvm5/dBfsu5/qmnnGK12YYMGWJQTomJSYmDBg3EkkTLIpKJodaVVZUQAJemT59Ou1dVVcGT3957z32/uw8dSNYXJEhrbCd/e/RRmHnxxRdPnToVrQ5dE3Vk2rRpFES56GFoTv/4xz/ycnNhxa6dO+nSU6ZMQU1c8tFHOKPQjrig0qIPPvggCgSaaGJCws5du8rLy6imzWqV1wgZNEcDUQ5EOXBcciCqBBy5WZnyIoTOO/c8Bllu9j7zzDOFlVt/GK+RScwRmTGjH7Dkf9dddzHrNZQAAACUVwzLLFj4c3NzGZcBRvYwiAPD7+uvvy4MCRdfkpWdxTi+aPEiRIIc6yWSvLzc22+/HXHCK0P5Cy+8sHLVqvPOP3/L1i2IJWTzjTfdxA33/fr2xSSAjCeG7BI/RSOnr732WsZ0ZBWTRcQzeNA8Xn75ZWTMjT/+cV5+PjHJSUkP/P73TBOpyM033bxy5UqEGUnPPfccqOAAZPfu1QvaFi1ejDaD2cNusyNfZe34RdLPOP98SNq8eQsawPXXXSfN3xBDEpyh1pCHJzzKBEIOKYXM/s1v7gQAZqKsoBMwH/1w4YfXX38D3Ma0jiwfN27cRRdexA2lkidGcTIA5Ta7va6+Dj0M2fzXv/4VJCSdPv30Sy+d/e6774AnMSHx1VdeQTMAOVWAKlSoSy65BDUOsQ1DJCqUmE2bNgGDXkXLIkfRLWAaCtAFF1wIGK/oZ9gDgDfYS3jkqFH//Oc/8fyA1eRFNiNiKyoqhwwdeuWVVzK9RpvBhgSvuE89MiP94aKLZq1evQY1EebQu6gkMpvWISPaDM0KwpTkZOpFXQoLCuE/zERpoydgI5k/fz4VRHhTd8T/ooULR4wcSXNjnqE6qDJkBIYYuBfrcqHTAE8Yfejee+9BvfjJrbdiq4BmNAMKhUtSByUvtgSQwGHJn+hvlANRDhyvHDg4jh+vNfxq9WJgZar07nvv3n333Uhcxt+Y2Fg5JjKUc6U94yZzbgbKvLw8ZA+G/SMWBLCMR84REHktiAMzqORcmUhxeSsx4cu4AQlnIZCSnML8nnSExKiRIxmdG/T1aQQqGZFMPARY1QcDBFMAr5FjN4O+fAWAh1dkMLmQPfPmz3viiSeYl69Zu4aMsgrMgO+88876hgYqjuli8uTJWOnRdUBKXpBDld1m63bXHEWIZB1ABPWyxFmBOnkoHEh6qpCQkID1AWaChwc9AJqRakxSCcCZTnZRhvRUqUgJQ0IYrcwS+YuMpCLYORC0qAv6ve9CAUpOSZ4wcSI2htaW1vaO9sqqKuwQlCUpTE1NZeqMFoKfo4Ft46ZNv/jFL0DFQgy2dwwGEANC9uWzOoCVgoUVmE+1yGI0EGEaAjMA/KEslgZGjBhB7Tq9wvMAYFgBsNWGIcAGT3g1SiSsN4eIEZD6bpFdu3Y6HI7zzz8fDUDGX3DhhSys7NmzF5wwgip73B5WXl577dWJEyfed999sBRUqA7slkQ5QLmhQTHqbN++HR8MrE0UTS7Q5ufl8wtwQb9+WZlZAFNEWno6tiiqia756SefYL5yxcZSd8iWrWkQHA1EORDlwHHJgagl4MjNyroys7FXXnkFMzsPc3GWSqdMnsIYKh5FZaBkuMeHzmFnaHVIYSxxifTDHkZVMbDKJCwBOoBApP8v3rpkvwyEAXRXPgQhQgJJAgYhMBSV6fjUqacu/fhjimbmhx0bAvS1ZzHdBNkRaSAerUUKPwBKS/cx0FML1BGEaO+cHKziiJ8zzjiDiaZ0hpg1axY0R+JEeGAoRkxShiD78x9VhTB4RXFIQUp32O1iiqkInMV79y7HyWLlyob6hra2Vqwv6Ao4HgIvsZKLisvS+eUtsjTIJgY5J2bMKSkSQOePglpGuXhEsnzDk56WFpkXwwbAnDVkYGPSzyQYqY9hhkgK5RcRCx82bdxITyAJ2YxRBO2QIoyMuDquXr0aMwxiGMaiK+BxJ+WrQevBomkZIxYUYWVPIIMe2FJXV49FgSYgTJRodKsV8wOLLCARj6Li3kdx8KWgIGzGIBotilxUgZm9jkkj46mnTmWJQa50AIPeBlpaHLRM9CmRFmQRClsChp81q9fgh1FQUMCqDe4LqLmUdQi1Rp2jgSgHohw4jjgQVQKO3Jhs2Tr7rLOQ/azaLly4kDVUVgeYUIqBWJ/DkY1hlMfn92Fvj4+LMxBFjvNGJJBiZFdVZJIYiHXJaoyyvLKBT4p/pIjIpQs84OSoTQT+4VJm64Oz2rdvv3XrPmEfHSv3jPXX/ehHQ4cMlcWBLTIg5GJXDPFp+pybtf9f/uIXIMSKgMCAOJQZ5DQALBawSMwUE6GCt92999wbEyuW/yUSKQIhUQuGutkDZKFUk8qGS9QDQgnQ0yiOybtMRbD9+o47MGxgG8A+Dw8xXwMlMGuasD3w6GRLVETqOA7+oL5gaWBmj7Ggva1NaBv6lJpaIIwpKyM9o0eaMDDgpkc26ggSUhsa6sGJ3mDgOvvss5no4wDxpz/96W9/+xuqFUSgaf32t7/FnRMHRhZinn322VEjRw0fMdzIRU0xqmNNwZ8O57v8vLyiPXtYTQiTqvcT2AWYrEKYJ135qRzNy5voDfoOBVQQIcUjGAjx7CdhuQEA8LCsQFms2qCgzJnzYv/+A0499VQwoPRQ0KmnnnLJDy8BKQyBWcBTEToQeWWrEYAtFEsSRPLKg3Iz9sSx6HysRrGwgm0oNzcXFwQ2UIj+CaIjduiuWkT/RjkQ5cD3mgPR5YAjNB/jI+KN0Y8lYfb44e+N+McvDIVAjofIG8ZHhloGWUZt1sLz+/Q5AqKuKIZaguQCMxJXDL26TPV0dorNdvoDQHcp1yURw2gYkMXQHYb617/+hd/cXx5+eM6cOfjZTZw0CbMzGoYBIHPxCnpZOgUgAwoKCv1+H6b+xsYmV1xcUmJijJO1jlgg2Q6AVsHSOD5iLAcwL8QSvuDDBYJgvQrAyG1+yN+u9YswdfKPkDH6Q6li25ueS0Toc2tgJHkImPWffrp1y5Yf/ehHyLOTTz75hKEnMAk2cAn8ur8eMULY669GqhGAFwjFxKSkpcuWiUbRzQasdGAaAVtCYgLKBEYdHOBRaAQNuihduHAR02tcOgw8aBKzLroIh0f2AsBMaoGuAAHEDx8+/Oqrr8aXnsWCisoKSb/MiKq0dOlSFI4XX3yRNfVJkyZLpwQyAgAkzYFVQGY52MpdLUJjQrOA1NGRC4ZD54cLF0r8nDG1ePFiTo7q26cvUlziQS0YMXw4e0Doe2z9YBGHeJYwKGj37iKvzwdDWEGgggSAoU3BTHOAM0zYYR0tMytz1OhRd9xxB/28vb2DesFwaBM9R/Z4SVD0N8qBKAeOOw5ELQFHblLOeHn2n/9kaRk9AK94JD2Lyn3y+7D8zJi7v7r6D3/8AyMmQzaHvjFpjtz9dThGBmJgcnNzOaYej24WpAcPGjQAGT5wICcIEYMMNrbbybFeIpGj9uEIicG9a9XKVewuAzOmYHwUWCRm/b5HaqoY5LvGbjDk5eUhQtAVWOCHYHzRZ868AC/FB//84IUXXoi8Q/DPmzcPxzFqxIoyWS697LLTpk5FX7n9tttZE8FRrm+fPljCmapCMPsUWpqbp59+OpNpMVnsKgsayIt5HNoQjbgiHqS/S3eBcipIPIIK2wMyjHk28/i333kHHQuhSzIwAwcMhGb8ENlPAbfPOvtsY+JOXskiAJCIuP6dddZZc16Ywz4OudGA7QCVlRXUkQk0AJzWgIcjUpNUMlJTJvdEsi4udRSKA4z9cvjQYe/BIRGZit8AZgCMAaNHjUJaowlRd3ZAHKyRoqBhwCKkLysaWB1KSkuwCgAgYWhT+gwAuPvRuKxB4B9KWTwCQFMy0tPl1P8F9lKaTGPGjGFvITZ5VvTBTMfDZQ+7Ajw548wzaGJQyezknzxpctll+x577O+//8Pv7/ntPaiqNCsaG2YMAvBww8YN8+bN/w1yfdy4cC7jD1zQH8jAHRKfVnpOz+xsvAr27t2LlwOcQRGc+8bcWRfPomOjSRhZo4EoB6IcOM44EFUCjtCgYhTngLympgceeIChnDNuOPkHKSLMA/rjcDqZMr45dy4TLyQf4hOxASI8+PgVhn1svF1e+uTQncMtSGis69gVcPn+zZ139h8wAEssDuSYwRnfcRFHVCABgSc7BICBgDFtQ+bpM0wRxxo2cKPHjMYTjRkbUzcWBRAYqBfgFxARD5Z/yENys9GftX8kPdvxWb947/332bsPHma9ROfl5gHA2jbyD+M2xU+ZPHn2pbOxhLObH8NAYUEBYowDD+66806mvOMnTEA+Qa2hBUwYP/69QYPQErZt3VbYv5DTBaiFzjCx/CwpQtxSL16gCvmKIxuiixknIpB5MKsDVB4AsiOZ2C6PlMKvcMyJJxpKgMQjWkhH7nDaL551MUx4/7332BRHKkWcf94M1rZpO2BYyAc/GzE4n4By0TzYQ3HF5SIVYAAEQn12DgFsleRIAxQmmhUJzRQfC7merl15xRV4BgjgrichPh6Jywr9Pffcw7Qbf0n0HppYpiM7YTX9hP2KmCVIkkpAuERFSUhMnHbaac89//xfHnkEdzxOIDjzrLOoAvA0JUv39AVUB8Qwy1J0A2oRZiZ1tFouuWR2dfV+lvNffHHOT37yU9oULQ0dgh0BdBUe7CtZ2dlwg7CoZ1cTECZGvrIIgoWDfo7lAAsKVcbskZefR4/ydHpaW1ulCaGrxtG/UQ5EOXC8cSA8qTreqnVs9RGCTVVZpWbevKdoT3bPbCQQoyRYsTOzIsvQzPoxM1Sc9XBrj42JZVAmFT9BcjEzZjqF0zuzYaQ7M3VJTqfH09zcUr2/Ojc3F2zM7Titr6W1ZX/1/qysTI4KwMDOsIssIQwSJDo78VyuWOQxJCHnSMXazpwVSY90wZUdOcrpduBf8vESCEMn4JwfY2puyIyO9o7yinJKhFrEFfFYqhn9mWsSwDAOkcgDwNwesRGOsKQZClvbWhEjSCx4Qhbc93gQh+CRgkT+Ag9aqo+TGnxgMR48MIEsCCeKlgh5ZUGB4hBysJet8FQzv08+HBOHKXLeDsYAXTaDCqc/ao3C4Yp1dfM/QF3AbyMuPo7S0UJwnkeGwXBWTFgFoEXsjnCJorI+P9sEOFwBKzdFxyfEG/RwqxNJkCrmu7oFBTCWaIghI9Ri+8G7H6NCrCuWCbqshfELwTQKaytwAzZSC2hA5AOJKoMFCOT43lMpupDBVSM7HOChCBw1klNSyCV5CItwM0TJ4CAKqJUchngMMOSlA8gYjBBwCT6wAkAnIRdcKK+oQMbDNGokVlg0pam5iVxQKLQB/VzCtrZ2dmGwUMKaDWtStHtZeVlSYlJaehqNBeVUCiMNXg7yQCFiDJqjgSgHohw4njgQVQK6tyajMEKFSZiRIAdc+cpMC1nLCPvKyy8z7BIp4PWVZmaUkTFGdhmQYAcjRQHhGf/ByENDZAG7xClSdBElZmaqyoSVWTvr0GedeRauAMgqJq/E/L9bbrns8ssjCQ4jwQFNn/EaJRj0GAEjKTIgUsmpimmolAQS3vgFOLK4yLxkoUxBtT4HjQQzsAEvwESa+M94JAClEBOZ0QCQAbgBf8SvPm+WwJHIw2B6Gxl5JQ8BQygeLEKyV0LqrSPLPQhg5O8KgIe5uUQCmCEpCZPXyChfuzId9tcoSydAJksKQUIJ/PKEs+kwkZHdkHd7jSzMoEd2JJLAA83hLDoZhFHOZEMchI/EEg1HORDlwPHFgehywBHak/HQGHYZCnnCr7pjHZN75pFIHZkT2SUBDCFm5DVQCwB9ZD2ISmQTcUZMZICMIOERMpBHiocuiUoE4p+5Gqv1WIOZszL7xLh9xeWXXzRrFngAIK/IGA4YpMm4g4V2ARyMl6FDs4s4I8agU0bK4mQu+WsAyCxd4isSJFLcC+N/uIKymjqgFKhGoYdk7noRMoxWENIL8nQuybx6ZGQZBkkiXbCHxIMO8+KdJ5JQwTDxHs5IEUYf0GHlD/qHmFmLtQ7xGDCEwwAE9OIiMnUPGp1NBAwidISASiF9MI9wDj2oFkht4GBqRDMRadAjASSFIiyp08mWSToHw1U2SDiYZGQJR0X/RDkQ5cDxw4GoJeDo2hLRe2D/fg6qy83J7T5cHh2mY4XGXAwlWJK5qhhHPKzNLFJIK7chhI61jGj+KAeiHIhyIMqB45oDUSXg6JqX2RUZhJQV08+jy/u1Qx8kRp/2MfXTZ8Q6eV97YVGEUQ5EORDlQJQDxx0Hov4+R9ekuplW3DfzX9cAoFsSY6gC7EqI2gCOrjmPA2iUUaGX6n/C4a5aifjoE+VAlANRDnweB6KWgM/jTjQtyoHvNAcOinkZ6rJNda36C+K74r7TFYkSF+VAlAP/JQ5EHQP/S4yPFhvlwLFzwBDw+BR2ewz9gMBhid1go69RDkQ58D/LgehywP9s00crfpxywBD/36X6yUWr7xJFUVrCi0iCEd/JPhNtoW+HA1El4Nvhc7SUKAe+AQ4wdst//OVIQWMo74r8Boo8epQ6VXiroAdEVYGjZ983mENsfRU7SXnEgWP8+QYLi6L+rnIgqgR8HS1jfDty8DV+vw7cXycOg86vE+kRcUkWHDHpOxAZyQc9LMntFs24KIbG/8YTSckXl89RTqrS0BYsr2n1qUp7SNlb5W7zHh2OLy7lK0Poh2HI3FHH1a/MxW8oo2gRfVcRGkC0db4hJn/H0UZ9Aro3kDF2EpD/WFGVAQkqzofRH2OlVQSAMN7D6YfGAmA8YUg9yogPY5GIInGFE/iDTArq5RDmn9DgZHZxqhA6vYjV//BX38QoQNg3yA//6w/JehBUeh6RKNPCr5pi1t/Fj44wnFG+EMPTPQ2iZCxYSaNQSaZUMXV0AoDMABBJDAH56BTqMxLiVUXcgUtyuOSDxQlgSbPIL+OJQv7p8QY64mRewCxdvNDjZDRFiPy8SBziGgNRoHxEnJ4kYiJZLSL5XwLqOzGNPOGs+h89b5h+Igw6EdIkiZiufxKZTr6eRoIYi3UgHZAXva0O5hOJTPe7ThQSr13V9/iVR56a29iy/+af3PLmOyu2b916y7WzTxyYABO+/MM9mR63m4Oludvpy+f6fEhEC/djVVVWnnveeRxI/PnA306qnO9+eYEXKR05mpqDronJy8vjUoZvk2B3h5sLHbw+L6dBcyLI4SdYHxUxnDHKBZUcWc2VFmTkxBEOHOMgVC6PMPCIY6k+47hoOECbckIJ151wHLWR5asHxKfKf+LT+vJN8/nFRTbc50P+j6ce1SjxXeQVR99zMz2fB6e40+o8x0gl4oTRP6hofkXxKYq3659bUToUhV+mWNz/qsOIXyF+5Nh9hJJBE5Yqh1AlIvUeb/yKDwBMIKZAcsnUkIjUa0QamaBnc0nbivVVB5pCFB1GLtKAJy///Jr+j4BOo168buuTBPAuH4ppCyoNnVprQOmk1JCyr65j7qIN7y7c5EPSACRBdQR6mCK6Mht/ZaqgSxYHJgKyIhBzMLMeDmoCUuKBfABkJTgJGabKjMKmzT9RochSupCGgUgTJAoYYjx607QpSrv+r1X/hRSQsJdTJ4KiA7zpYZEvqMBAErl3QSBC3tKGiFRNExTqfCcsCiAeIEF6QGnzaM0erTOgIxKJhzwgoj7yH3UrKqt/f8GmxUu2BUJKfZu2YVfDum317pCoNhnlr14N8hHBadCSJ1QoiF4A4fwDnH86teHyJJAoWvR1QS5NOW95zZqdnb7YLLdVKWpKKGlP2lLWFkYkO+chlB7hhYsJuDmJS6HmvvnmEZKPIerRRx+99Sc/4WyrY8DxtWUN+P3ccon8+5IYOSac+zYN4OXLl3MV54knnsh9XewT1sebr2HMMfAfMcAQx20d3Pl5yqmnjB49+sYbb0QAHxHyy0fW1dbef//94kotVWX8vOGGG7gym+su5fjJpancpdnQ2Mh90jIGmLfefBM1URYBARxPzk0lTz7xhDji+pgf+bn7AwFuFONOtWPBJwn+5JNPFi1adCx4/nfyfkvK7DfBUDrfipUruTONU/M4XZW7W7jSbfr06cdYllmMyIzHKsPrsnX1q9cX+0JcyW4OKHanVRs7vN+E4XEx3MqmT2lhn1mMx/pjBOQrEJpkr0AYhgn/IaYLWqaIKZ2Zf5piw9Ig4iJyCOnC/6pSWas98tQCv9d9+slDf3jOMEvXpFDHSllCpevCGy4pjKgrNqBPO3ftC81fuqWqvqPVHYx3qcOH9Jo6KXfh6pJ3561NizNNnSowS4NBeC4riInQFwW2CPoUrurhlX/irltEU9d5xzo9uhwVqSozc/5IPNSSKoXDQc3JDJ0oVJhwMZHo9UrpeUUZ4ulK5W9bq/b8m+sOtPp8JjWkxYQUi6KGrIrHqXqG5qWfMXWQfg8u1g1sDCIbbJJTb0GmoIAfYQnVCzEHaYKgwmnAHZpqIw4JrCoeVVmzpePjNdsaGttNIS0zOe4Hp44eVGDiNqEwtTpRBl0wjVxvLtz96bodyYmOweMGfbCiesHiZdTv5utmDClw0b3cbi0uRnWaLWCg8LYOLTZW2JgQ+BbxV+glXBal6iwVINRfsJ1Io4lV0TEUZU916O3FGxVH8qjhg5NpzUH9du8s2r27Iji9J6ioxJd5uHgJScONTdz/9GXgjwqGcVnM7wSTj/WRQ7zo+F8JWUtr66OPPcqFUlyxKK9TkrRFkhUZw0UhHMjN/Z8SmHGGo5o5OJzpOHdvSmIi8369YUmJ2WQqKRG3VCcmJrzx+uvcDJmVxXWjX4P1ntu5qBEXUEE2l34xj6J21PRf//oX9pt//P0fXBMqa4Rs5mbLRx55BCMERVusVm7DokE5m6TT6z38ZqwvyQejFrJvQIy8xrNPnz5fEsPhYKDCzkErNzU2cSHq19LrDi/leIqRUur7VyM6K930vvvuYwYD9bKluRiXY325KFZ+sV+xVrr048ftV5avL1n2aW3A7A1yRZvmtAZ9q9bv3n/uiAtOL3RKSaKP4AzQYkTif32YFuVGjlBy7NOTxI9Iwqarj/QCVGSiDvwjIId1ckQiAMbPrNCs7C71HGjhohpVccQzz0N+CEElKDFJiQoGUYSOh3gieQRIl3BtDyhvLih54+0lyCCf6vSDTHFv21Pcf9Dlm4oaWoOpOalxbT7FpktO8EsRJZFAdBh7N+K6bPh6afIE/Ih+1cUovXZCwFE7nRxwiwciPT7ljXdWf7pxU27vXv/vhrNkZlGRiIJkXXR1SEg2wdSQkIjt7cqKNZsbggktakJQE3Noi+qxK21OpdXrcZ/5g0HMuXVJH8YluouCsA8zRzaDHilkKpg/2dr48mtvW1zW3/z8UpdVafcrby0qn/PesvaQg/HfpqklFU0xrtiCgsECkcB2yCOLoXV2VWlNWmpur15tmlJU3V7RHHQ6/CFHDCaKN97asXb16n752VfOnp6SIHKs2Fj13nvzevRIueiCM/JzHERJ5hs9CxijH0En/+ASpbg1ZfWWtka36oqPHTW0l8usnDTU/sYb6oGaBnHV1OH0HULswRcuTuThOzrcym2M1BJavIoGOJg3MkQqr91GXiJRaLqBdYOJTO0WjsRJLvHahSwySeY6JEZMMA8Rlu6Ojr179jJhMIYI4CUlwvqtX55kEEZMeXk5Yo/SJNgpJ5/MXdsxTmdiUlL4WxBdRnTobgUZaI9AVbfqHfraLSPjm9li2bRxIyran//8Z3QXBPChOQ6+dct7MKGL/sgYI5zaI/WNN97Yt28fV2nLyM2bN7E6YDCZSCbW3FcJMRTBKxdtv/bqa1XVVTILPQf5bSA8SAawkS0FqyPADAYaGRHexXv3opqItoiENCAOCxwsKyLJ5/UW7y1mxcRoyojEaLA7ByIG6+5J3913Gh5r1cMPPyyHLYNQ4rFo8Trj/PP5coz4owuITi4MsrVNWkVdoF1Nys3ShpzQv7ZFXbF2W7Pm/HDtrjNPL+RDpHszCnPlutercG9tYryKZiBHXY+mdHRqAbfi82vcuIvS7PMpwYDGPM8Zo9os4vahlnYNBYYr71HEWdP1+DSbQ21p9/s7vUnchetQ/QGluZkbhJUYp5IQp1JWTh/n2AmjGH9Gj8+tbNLiLUqKS7Wrwp7f4VX8nVp8jBpjFYZvYe13Y7tG07ckuVSXTagJfr/yzrKmVxZsC1kzHFbLsP59EhJj6+qaa/ZX+PzKnvIWj+JK6dmnPag1Vot5amqiQI6AFIOgotS3aG6PwiXD3Fvb4RGDQVwsUwExqeU2vTiXqaExYDaHkpNsMKfDr3Cvr6r6E+JtXh8BhU+Smkr+MPFtael0Oh1JidyfrJTWhD7Z699THxOMs1W3aSncD6xLQdYFBAf8SoxDMMpqhhhzh4/KajGxqrdV83kUq10ZN354XTB9Y5Vlz74DDqXzpGG9U10hl6Vz1An5HSElxqSE/EpTE7cnB1NSLNxpDPYWj+YN0Gpqgk3x+hW3R4NpFrswRSzaUL2z1hLT6djfpqUlqnvKQ3MXba7zxffqnTRq2OBYs62urDgrJxu2sIZC3blMiht622nNgAKrnVaBH0Vqb53iNcVm9O1ncqojTuqnxKo5uY7ULFNdh7ZgXVt9U2q8L/OAW9NcamentnRz865aV6c9qTVga/RocU4x84dXnk6lpVWDoUkJqkMfZjuCSqtHs1rVgFdrdCstPu3TnTVN7a3TRw7IThfGiaxE0dwtLc0sJOh9+Ut1f65ikvKVb4rvaMuWLZWVlUzIWC3mbmLuX8YGzqL+qlWrqquqHE4novHEMSfK+5qXLl2KTEUekKuiooLBt3fv3ieddJKhT4BQCgkCAGzZvLm5pYXU5KSkiRMn2mx2JCjXIGO/HT5seEVlBQYJ6Bk27ASmvIif3bt3Me3Ozc0dOXIk12WBCjwIrZ07d+o3Spszs7LGnjjW4RSXQbMyCJHjxo3btWtXZUWlz+9jOjt27Fh+S0tK1qxdi02b7KwI0GsHDxnCpRsIjF27d2HijnW5qMWQIUO4grmivHz1mjUd+rNw0SKAhw4d6nTGbN68GUZhGxBfRUhram7esGFDDXdeB4PpaWmDBg/mIg/wIy+ZpcDMwYMHw5aysjIoHzSI9MGSLZHyCeRUH7ADNTWsm+CWAQMpDtUDDMuXLVu0eDHXRpP00ZIltMIJJ5wgJuJQgPqhw+zds2fHzp3wjTuvueZ71MhRHe4ObhvnFWwsXsAualpYWDh40CCY2a1PbN2ypaS01AkHnY5t27YVFe1hDWLt2rUgxEuAIjZt2oQDAW0B2TgB0LhbtmxmFRajSF5eHooRbId1OEzQbag77gW0rHFhN9Mzrtvm0nB8CLjAOsYZYzKbqCDZQQ5O7BB79+75aMlHrAjs2LFj3vz5sGvgwIG0GvM6GpS8VosF3WvUyJFczN3c1PTx0qXgPx3TrxgtFNQ7uEQubvSW/ZC8Cz/8kE8AnkNPtypHXw0OfFVJaSD4bwT4GFACpBNA5LcELXwzixYtpI/yJXxF0vQJNF2nth5BFbCbbcPye8w+I9VvVkt3OZrbQm4v6rDoeMWVoY+Wb9xX2eALmm0W04iBfc+c2DMxVgjvzaWhj1ZuaWjscLtbU1IcZ545Or1H7IsvfcLV7SefPHzIoMTaOu31N5Zy+/vUk4cOH5b9wutb99d1ZmT1rKgqdbfVnXvWdGTnkqVbag40BYNqjN03dcrIcaNT5i8pLqtyu2Iyt+0MrVyxMcnZPuOsSTnZppoGbf6HGyrKm0/on3bBOUPaETNLinbtazzQ3GC3x/RMSz99yoC+vUx1zdo7H2+s96rJsepF502eMMoea1fb3BkH6go725A3fq85vqrZ+vA/d/maauNjbDPOOHH0ICF5PEHl7Y+qduzchxJgUp39+vWpqNhpszded+0ZxaX++fPXYabo1St79+6tFqvv9v87r3gfrbC1vqGD1uGmpcbG+kCgYfKUESOHxKM9LFlav2t3KaOnw2EfOLBvWnrGgo+LttfENGo53ibrIy9uvPicYT3TTWUVoWXLdxyoae70+GOdtiEDs2eekdvaob27YMfOkupeeX2bqqu8rTUzzz75kh+ObsUC/06gvGRfit131Yy8tHglxqZidmj3KfNWNu3ZVdrY2BQI+DMzU047ZWTvLPXlt9eXVx7ok59/6cyBlTWh1+eu6gyEcvoNLq/1fbqto0XNd/kDj83ZPPqEHJMpvtVjsanOsQP7z5yW6LCqmm8In407qCxf4/5kQ1GPtDRuc967dy+LxL3S7BedNyojWd1bFWrFTGrrzMuLa/dqq9bsa2xuHViQXVIaeuuD8nK33WtO31wZePSlHWNG9t+6o2JPmb/BnK21Op5/e+v4Ub2nTUqqrNdWrq7cV1bNDIyK9Mzuce7pQ9NS1LcXlm7bU+NKyPT7Osv31zvjepRWtWoh36RxA6TxHz3A5bQySvrRaFDi6MpikPyyD03G8/zzz2MTZhSmXshBZPxVV10VDAZee+11XuUo/8c//hGrG5/h7373OyQrQy3aAMKMGMb6O++889JLLwWVLFjOX5EiAK9cuZLBmgkfSbNnz/7Zz36GpGKUJzxp0iREO7NeiuArBv+DDz6IgGGOCM5f/epX1113HUnLli377W9/i7RAivDJU8pNN9108803M8XfvWvXZZddxrIga/9trW1ujxt5ya2bwP/t0UdfffVVlrcZQH74wx8yof/H448j27ByozFADCoFIu3uu+++4oorEPxkQQIBAEI0D+qLfoC9GnpYgkR6lZWXQ9LChQuR0GRHukMz5skRw0dAEknI/jFjxkAJANS3X79+WPUnTJggeXLwV1Uf+P3vX3rpJQgDCTzs27fvNddcw/I/GX/y05+yHAAwhKFgDRs27MknnxQXmOkPBUE8i/qSGzAHJtx/332Fhf0hNc7lQnBCgMfTCQEnnDD0zw8+OGHiRJnX+H38iSdefPHFZ55+Gv2AWkM2nZnsAKC40OLbt2+HKkwRkDd27Invv//BI3/96/vvv//3v/89NyfnhRdegHiYA50sJ0EzAhim4XYA36gySwmwncbCsxKtIjY2xmq1odzEJyRI7dDt7gDhM888Q4n8Pvfcczm9ez/19NN0flZkGO3JS09i6eGss8566KGHKOXee+/FTvPySy+dcuqp1Pquu+/+5z//ee211xKm99KFaKZLZs8mI+0r/R+N+kYDkRz4XioB9XV1DBlShYysjAyTWFdb95WVAIzeTPIwtza3aB4v/DFlpqTFmNQ1W4JtDXVWizUvO8vn1XbVaP9+ceGeypqOkNmruVjM37V3baxNOWNqry3FoYefeaemPeQJ+lnPYyW/15CCAlvMvPXVJsUzZlo8DoZbKkOrilpwTRvqsfD69vKyNm9MaMtuq8XNNG5ruXfNuk8bGpqgQ9WCdrU1K6dm6MiUxau31LQ50+JdDnvSml1tPZw1Y8Z3ZmfH7KvVFq6u6PQoqZnZNR3ak898uHlXjTvk8oqrdj3bi/e1e1uvnj128Se1RbXtHr//tPGDJo+xJzhUBIYzTk10qR8saQ6oNp9iXrutNEZTrIGgRQm0tH846J7TmTW8Oq/y2XfWs2zMqj+uc6t3b1KV1p6ZbT6zsrXMvXxbi88XdGyrM5s6UlJji+u1v76wrqy8zmZihhfzyd7SQMif6GrrP8aG795jc3at31AWEEuPpoC/pbyluFeObdXelgZzEqpUR2NN0Fc3cdKwjmDo4SeXtrS6O31BVXUqQfenO/cmp2ekp9pWbqguqW1dWbTRpXrjlGbcNbAlWE3K3r2lTkswNc6cHKO4LKrNpHSGlGdf2rl4zZ5AwOeMiccYs626akdZ9b2/PKeqWVm5vXZ7VXDQiP4LF+5YsWF/amqSkhhYsrGyyuOIccSEfDXrdxTFJ5l7ZhUEMHaGbDu3FNUMTxmYr5ocwpCDBPtkW83HmxqDar3FIq6TgIrd+6occY4rLxyydXc7/RNrSkI8k3JlxerNoaBv+pRh+w9oG3dW1mnJqKuexvam1gP5Bf2Xba7yWRKxbgQ9wbYde/MLsivbtMdf2bFpR3Ew6LdYnEjfdSV7WjwdN1w97qNPD2wsbtAsnU61M6iZsrPSOjrVOId9UL6Y30EYv2axwUOYndBWj1IHCM8sERjIP2Z1jMj5+fm33HILw70UbFdcfsUdv7mDa6wZqUePGk2bMGtEcmNARpAwWUdUIGkef/zx8ePHk5evEjnNgyAn8r333vu///u/O39zJ3N05AT4BwwYcOUVV+CDhrhl8oqoO+ecc/idO3cuk9FLLrkEMYC9mhgQX3311QgADH5AImV/+tOfIpzQFRAzuLYhIZiRI7TIe/31199xxx0rli//f7feiuzHYQg8/CLgKRHJhEBNT0u//Re3M9997LHHpk+b/vIrL6O7/OH3v4ewCy64gIX/H/3oRwX9+r32+uvIKoaUjRs3orhDp5yBoL68++67F198MQIJcfunBx/829/+dvnll2/ehLVAgTCGKabgqFNYJpCp8AeSUJW6jVpcCP6HP/yBafqHH34Ix95++22AgWSuDA/ReKAKzNSRVywB6EyRqw9wFcJoIPhQU1PzwgvPT5w0iaIRxsTTIu+/917//v2vu+H6N15/A71n9Jgx3QigOuLx+y+dNYsiUMWoOzzp3atXXFx8p7fz7LPPRor/6U9/GnviidhLyA73aHd0AjoYvYVGwVpALS6YOfPfzz2HnH7ozw+hOKLtPfDAA7ACCY35ZMWKFTNnzmSyDivQAAwyCKM8YbcA+Ne//jUw6J2YQ9CE4AZtcc8996A9oEFCFdrGT269lfbFsfHmW27BToDR5dlnn0VzuuH667F8YAlmNwqWCThvNpkzMjOMgqKBwznwvVQCgsEQ3U6Mc13reZEVI5IFziMmRYJ9Vhi0PP6Q0tyqtXktbYptzc6mFRsri/Y1WsxxvXtYLz59DOPs6x+Ubt3rtTodN94ws9OrPPfSare3pb7NW9Oq/eHp5dWtttR017mnDsWqu3P71r55mVt3hzAO25SOnN4q8qOK3QyaC9HldCVv2xNq01JbTSaX01+Ql5yb3bOxzVvRZLVojkvOnzRljG3Hrv3ZPTP21oUafSZ/EPOmJTffdMCDA5yl3WfHN357sa/O47DZ3IPHFcxd2bG8xO232k459aQTR6T/44l1bU0d1e3eBkV5b2OVx+LMiNFuvrgwya6K3XgIDCwfqrKlqr3D5EKE9EowjRoxbv2W0v376+rdLNYru8pDb68sr/elDsg1nzRq6N7dtbuKDoQC9n59s5jjllY3u0NmqzXQo4ejf16fXn0LXpnftHO/J8ZunXJSP4slbeUnuyqblSSrIzHJNm9FcPn6vWazY9gJPceOGoDdF22gf//kms6Y5btKchzu686daHdqGWnqH/+xfl9jGxP3ay4+qdOt/ev51Wa/s6Ss3WFLamk3h1SXagkMGdg7J1EZVJggzKIhpbKmsT3kT8vOTGDhgAmwikuH+6M1uzxBx7SpA844re9zr9SuW7+qtqnB5lQLBg77eGtziTf2r6/s2191wBRjnzKl/4hhqV5b3OMfb+5tM51x0oCcjIH9+ybS1svS4/ZUhEpqbb97ZNHUST1nTR8gFyxKqmraTJZgyHNCn955uTmr1u1ua20vq/XVtGm7i8otIUuPBJfLrm7f6Vc11awGhw40Y7MZWJDWsjOU4dJOGTswIzV04mjz/oo+H26rjrN2nDamT0Fe31Ejk19bFFi8uSY+Lu7C80b3SHa+9MamPdh52v2NDVpNhzNoTzar/hPykzN65Hp8sR9X1Y8ekB+LT6ned8UGFj+LG4oT1wJhLhaGAOQiwy6Ga2kVGDxoMOKNcZwOgGgX/SDiEaqjPq9lfolYJczYunr1mszMDKQRoypTK+QW88X29rZ0JZ0PERvvko+W5PdBEzEjEd+cO5e5IxM1qQQwG2N+htc3uZjQ//jHP25pbaFcJMWUKVMwD8yaNUvQoaqM/rfeeqsMIPhZhsCcgMzgF/qZ7AYDwd27dyMsc3JymN9TL5YxkD3nnnsueFgyx0SMwEb8PPKXR1ituGjWrBfmzEGOMjUEG4IcSqg4Rg5ZYzYvMFYgzHidcf4MlBvUC+Q8shZgUFltNsoCAKqEZ4PuNgETli5bClqqg8BGXJEdVQkaEEivvvYqNQItJT5w//3QRuq111wD2VhWZLmRv8h7hCVazqhRo4iH+I0bNzz++BMQg1Ed8zvEEE9Z8BMOG3kpgrD0jIbJyHEE4T2/vZcBsKmxkVRWbTCJYwyA+Gf/+eyqlavY4MCSuYFBBuR0HBiqmZ2VDR7oIVBQWAgACi46HDCsdyBZ5Wo9GoAsXWIA4Oc//9nVV11tNptoLHQjqEIFgYfoTORCjYBCqoM6Ql7paUFeiYSikfHYD2gdfjGZUBwNgdJAg5555pnEo2ecccYZbNZApUOPRPdCncICAdsb6rE1BtAJ8vv0AVXvHAx4JixAlCurJomM/h6RA99LJSA5OYn1LTqZPsJ1H8Li4uP49o5Y2y8ZiRmA/WD7KhpYfFT97btK2vGxCiI+E7XLZ40dkGMqrQ+tLqptVpOz4qy79zTvK2v1e9riHP7ktPTl67217pDTafrB5OHTx7vsVjU0eSKf7bvzikwhf++0JBuDclCprWny+joTk2OSE80bt7mDmtlp9U4Z22/2zLREu7p4iXe5GvJq5k+3FicnFY4bk2W3KAvWBb1B3Avs6WlxvXuqdoczZHLVNgXa/eaVn2z0a77BhZnxyeq6t/ZVt2NvS/AGEhd+1N7Z4bOp3r65fWIdanWNOxCwZWS7WAVgLd8shnoxU2RRfF81a83mtAT7xTNGDR9mKq2Or6zZb3Xa2bq3abe/vtkda1LPnjZlwlhz44k5/3dHiWIK5OVn4spQWevxKJZEV2j2JacO728+0KT9+53dPl/HpNF9Zs/MxZJRvT+tqqEsMd4ZG6PMX7LeHwrm9Yy59NyBOZkm06hsCGjRlLeX+B1ae68U01knO1hoX7ouUFvTYlIT4ly9t23zVFU0+9ze+JjOvoVJ9c1Ke6fX52+bOmnEVef3yYpRrThAaGx0DnW6vXazN7d3EvVC92p3a/MXb/Zosaozoa0z9t3F3uKKarPNXJDfG1+Kfj1NCbGuqhbHppLGWC141vg+0yZlJ8erafHWbJM/2eKdPCJpYJ5JbNXQlJsuHfvWvD2f7mzo8Nvf+WinOei7+NwTMGZX1daYWSYYlHrtFf0Rrpu3xbc3mzWzzRtUSiurWZHPzEjFn2P77kqYndUjJQkTQrqakhzj0Goy4junTUjO6Wliq+IJBT2Wrd8aozZNnzCxX18T/gofrdrUqbpS7K79+wN7dtR6m9vTrdbcnjnl1SFvwG9SPcP6Z115UWF6ivrKO8IDJCUVSSxIRZ9jB2Obx2d3xgpRrntgMs62t7Vjs2VIFWCKcuGFFyJBxZKtECJf/DD5Y+3G8KdjxsbDKqzX52PM1SWRkpKaIlawVZUfdrLtLipi9DdQE8lUEmMAkoCi9Vx4NliAwd5AvAFJgBF/QP8ByCE88zPS00FLLgTDurXrPJ0elp3JhaEYqwCQjPL8MtfEFk1NkVg8CBLWaEDFdGDUqJHs9AMJhUphL+K75g/EIJM2btiwdds2xAwTfSbQmJ1jYmOJj6RKhCMUJnQgyEBsI3clGF77rIl8/PHHmam/FQAAQABJREFUrMELtUZXpBDAMpUA2szh+99aW1rRlnC1YyVCQvI7btx4lAAWWSgCBwUjvlsAlQSTwHnnnksFWQ055ZRTmMezFIKKYzRsUnIyFYGB5MUEguKCSO+Gh1chjGVDHkkvhHVHztIVCxtj8NNhv0AwlJKcjL6CsoLixY5KxmrsE5SLTWLpxx9jGsHSAD1SmehCIP4KGroewuxUpGPQ0FhBZBLaCW4H9Ap0QQZ5bAasdKAqodVhFqJXy9xHoLULbfTv4Rz4XioBOIagEe/YsR0fpsOr1Ce/D11QTIK+0kM2PKo6/Vrl/spQoK1fRuK0qcMWLN2zr6bVbOlMilfjrMrWPaG6oD1gVWpb3R8tXc8glBobnHHO5BFDXc+9VuRXtJ4pjoLesSlWTNUKYzFUHqgosWr+3IxMJl/NDVplZY0/6LHbLakpallZdTDg7Z1lnjSmR4pd5WM9aajt42W2fXWB7aV1xWXFJcW9rvjhsNo6vMjMsbGOxERnnEtNjItxt3bUt6ofLu+sqqm3WQNnnXmi169V1XYo1h6egO+DD9fEKFpWonXE8MLTJuXj8+b3BGxmR2K8OA+E4Q0ZIZu/vkHDU8+khfr1Thk+yMR0p7mtEWnCoNbh1vaV1Zi1UGZccNRgE2aDHUUhX9DjijH17ZOBO2FVXYc3ZBo0IG9woRnForg01OkJxDu0yeMKQN7YrLU11uHClJkSx4ja6sZG7e2Xk9g3wyT2H3A4AK6UQUR4qSPUXtC7F4czCD/Bot1BDitQzNu3Fxfv3uFUrbnJrpkzJ/UrML82t6oz4HeYPedM7ZMWo1KEWCpUlbLyIA55VpMnOyNWYFaViv0a5hZ3wOwLdi5ds0vVAk6bOmpo/jXnDXQqSmqcmuBwWJutJtUSZ7dfdNbAtDixOFJTfiBR9WfG2BMdijWoMJdmD9+Yfqa87IK3lgTnLt7c2BnaVV5b1ag11VOXkN3Ued5pJ/RKVqtqkcDs5AxabNYaUjs8ASQ+WpVT3befsxhMfXJzYDj+gy1N9Yq3Kc4W7JUh/Phw4G88UBeveJKd/oH5Yh/D5m2h+pYOfyi2vK619aPqmEBnuss2ZdLo805PW/5Ju6ejCZ/HcaNyszNoKaXT16yYfHhcMq7DMn737ddYQslMSxVO/DBH/0TQjG+//XYWwuU3gZ2ZkVSXi7omKGMP+zWGfgZ0wlKQAMWsixhhb9O9CA0wufCPVEZp4BfBL1EyggPDHn1imAtiXWA0F9g0bfbsS5FMyIlIPQDkOI6JIsSykYV/JpOfgZ7yWFTGak38tGnTWJw2mUQywBg2sBI7HQ45U4dCWTTJDodTKAq6EkAgXEthL4RDyv4DB66+6qqdu3YhbpFkwgPDYsFPDeahTEjZY1SQvEYYBwKqAFVhhPofBDZkC9d68Yhag0fKYAKUjtqkJx38aW1je6uPjMxcqZfEn5SYCDCaDUrJ5ygBYpDTFKwdNrsdkwZLLUyUMYy/OOdFyDDKkA0HqTGxMRQhu4SR2i2AuUPERMhjqfpIVhjA3V5RKGWrwXm/P0BZFMoyFnoPngG0Dg4fmIvgDG3NEg8uiAYqI2DgFEzQ8AjGTTDQt28f8koYNDy7gwEwUXIJlQtNkTAMZBUgFGRPAV665sPVC6OIaOBwDnwvlQC6Fwt769atY24hP1Q+GDoQvYEeduUVV8rPSVo1D6/z58cwZiK2WzuVmvoDNrN/SN+s6ePNHW29Kz7cdqDZ8+nW2vzU9JqatqDfmxqj3PDDk3q41B6JSlqyajPj9q801lWFQh12RwLnaPExiUNmfGKPQH1dUyjkys3LsdnVnRu8xZUHQmogLS3G4lAbm+sdiicz0ZmRoMYK+aX0SlF/c9uI1+e3f7hid3Obee2npbPOOaG+1qto1gRXTE427l5Kj2TX7tbOXWXe6qqigKZOGFFQ0EutbtDq2/yMbbPOGDmoj9o7zdQjTohJm01Fs7Gj3oQ8DfW+Zn9/VBlGI5aNg37lwIGQt70lztQ5sHcCc2tE1v7KBpui9c/Pj2HnQosn6HPHJqk4X+Nm/867K2zW2CSXPcOlNni0hsY2q+Y9dVwBdnPUl/aGZnPQi9c9/+Ic6tKiYIvYt+DOTurpbdb8rBxoOLq7MFwHO7QYCz6PiieguWsb4pTA4Lw+THkclNhYa7MF8jMd06YMz0pVM1PVHsmq3aTUdmp7sAqEzMP6ZBamqaxMinFOrI4qpWVVVpM53mFKjLH49B0Bbp+CB6dd9U6fMHjUCak909SMFBUTCCpCc4e26GPMpZ0JZmco6EWQuls0Z6qK4Giq2e/wtfTNyEpg24JFYV+Dj+5gZQ+COn6seeE6S1lLoN0n8K7dXme2xqW4rL0zzBzUtHt3qLmxDqYmJ7hKKkKKLcFmCqb3SOto0/ZVt+Itnt4jEXHhb9OaappjLPbe2cnUlAMWmLhX7is3hcxpSWkOs3A1aGn0WDRzst17/uljC3qqhZlqr2QTuxg8IZJqLd62xHjf8Hx7rO68ogX9NlVz2i1YFOi3uLOs2FDmV8zZ2ZlyMKc/8R+CBHts955/pOmdhJHDsRxqCfN9iU+sS+dGTOqfGwJVlZFCzHSJDWReUVER3yCPxCY/Uky1iAogZ18y22YPy06GbwQGwk4Ip4iH4nijFJpXVECXCjI9Ly+PLDw33ngTMQgG9AWgKEUIMH0cAF5k0TEQjyyRr8Kej+KIOyEKtdnM1J9ZKeIchzKsyvFx8bfdfhtCVOg3SnhHgyic5SZ9qx6ZJR6QsHWCsPRhxPUHhBTElJeymKIAEH44oUJqHqJkdFz9T1ciZGMwRzriEogjG154pFBW6b59BBjNEiKO8DMyGQG9FVS4im2ch0k2bgr46915152/u/deSqIJqLzcKsUaB/sgmECjMxkYugWoEc1HW4ivivxiNBRV5hFshMMqm1k68RjolpE6ooyRSjyF8gqeAAesqCqOHbAakwmLGphzLrv0MvjDOk6si9FONDG/gNGpKEKg1VuQqKysbFBBC24WskSAgeFgA37BjwMBexloCPxXWJRhMQgHDokNSPnwCjAECMzR50gc+MzecCTg71AcnwcLgRi+0DQZDrArsl6FNey+3/2OBTwIDX94R08yQxEDcXVdsMPLITGdI4f2xj7fL8thNYXcflNtS4DJKzBBxgnFwUYAVwJbtpT1m5vqakOYphPsDlPQVFXnX73Fv3JL8MW3Nm/a01yL/FNig2rivlrz+x8HXnl3dVOnSTPZCgf0r9kf8rq9OJalJzkyk4UZoKVRW762ub5OmzQmtld6ho3xKKh0uJWGJo7CC8bGMs3iw1TSUjGFW9cVlTW4TXEux9gxAxJsWGIZurSQGmRci2cTnVfbtqtzZ1EzYpKvoFd2fFANldZ5/v3GvgXrg/PXeR+fs/mfL65qZN7qxacg2CsrkQ6xcxcToA48efPznGL1ULV4FWe9P3b5ptBTL5dXN2vs+EtLTXKalJJizW4KpMQp+T31Hel4o5utwUCoqdO6aW9o7tLAax9tO+BVVLslpUeqHVFqsQdMCZt2tyxZH1y6ofX1D3bur9fKKzWLPc5kcdbUtW/b6Wvp0OxOV1tQRffAcpAIe9u09RtbOK0PS0N1Q4vJahlc2Cem69QhDOAdLAc0HvAE25MTnOnYUvSDCTnwJ8gOR2tcmzvERkS8JouKAnv2hjqDyopNoQUr17d5W0YPSurhstgttjffWdbu0Wrq2ChoN9tTWjrta7eHyuq1V+dXPftm8YfrghuKQovXBBtaOmJtlrT0Hs5YZcOemna/taFNXfqpb9n64Eerity+zrhY07ChWVW17ppWtz3WlZTkKi4LefydJtYpcntAv4ddo17Fp1rbOi1rNrSxG7DDrzW5Pe2KPWBLWbkxWF2rWdlqooqT2hCsWZnsxlQ+2dyyrQR/A1TJDnZZJsVYM5NUFAgGNv2IIX9HezvtS69g3+O6beWaKdCnD8stR9/7D80hRnQxRIef8Byx61X+lZFMozm5C5oR6uz0Y2kcI3lWZqaEQegyyuM6xxotnt4ff7zEh3qlafTSefPm4VSIGEPWHIr4yG+ICjYW5uXl4S+GDZzimPaxoPDG3DdK95Xy1SOoEA+H0K1jCmNXhchsbGhEziF0WSBnVREH/rvuvJN1/ebmJoz8kMpDJqHIo7cF/I1NjTW1tWRB0hlkDR82HIsja/yvv/46ZgYMEti6cVJjbjplyhS9OKPMcIAqG9nDAT3l1FNPhRUcyIMdAuLZdPD6a69BA1sBP2ccA5tEyO67Hdu3k5GhD5dGbDyCLbrPD9KR7XlIbyBxlgSSlRqhsXU9EkPXm/jLcEoVWlvbWBOBHmnVIBL87LYgHpyAibK75HdXdlEZybquGPGX3RO0GnVhRZ91ir3Fe0tKS+x2G7IZhSks8nXzEusIZGefJGXRLoX9C1EX0GzwHkVpQDdCVcKvYvuO7egxsHrOnDk0Aal4mQCAHsCuRVk0dYRyuEcW1nci6YmGu3Hge2kJkHVgIGAZTC4o0h0ZYrJ79kTZJMyAYui/3Sr8ha98pvTlnUXFqinktGhDCmItfiUnTY21hvwBa2Vtc7Mn+4ShCbbFwdoW/zOvrE+J85qC7cHWihsvPadvRkZuVpZ1S0tjh/3leRvize0Bb9mlyRm9e+EM6PCEnAvWVWirdltNJpuNRXZPTs+U5kats93ttNqyUuM56YWvs7jE/e85C2KTM3ym+LKqhhjNM2X8aMbMpmbc7zuTk7A3CzN4bs/4FZtLOFbDE/SOHNZ3SCETVyXGrmalOItrWz9e9Wl1SRKWjNaGklFDsocMmYZE+MG0kSWvrHD7bW8vLXWsrVQDbmewY0xBhqul3aL61VB7r0wzE8q9xRU2C9NNNSWVGaSalpbkN9v3tlv/9tJaYQFXnKZQS3oPFxPZvUXFNrW9d0YCE3pmdpwz2D/fhQTzmBNfXbzd5HfXBZhFaxlOJS8/hqMOnHYlaI7/tNhdXf+pw1ffN8M5dmJ/DP+dmso6+sIVG/Zu9l3/o+k98/JCW937mwPvLd66Zo1J66xWfTW//L/LfXa1sbXZblEL+vZmEiE3caCx1bVqNc37OYUhNSk9NQGTjJCFGT1UFj5q25vWby+vqyvX3E22kK+gX5Y3OGLOO0sbvZ35+ek/uqzHyy+Zt2w6sHl7WU3DJBY7vAEzZ/etL2naVVl81YUnr9hWs6+qzrG+TrU4OhDmns60BMvkk4bTSSpb/D6Ts9On/eudTXarra2jzaJ2njltXK9s9Z1FNehheF4wpq1aW4OWkpJkxoRJx6Jr0TuZmKzZvHf//l1ZPc9B0PjNitvq2F7Z1PbKgotnjO9fEOeyB+o7tQ8WfrJ5vRrscAfa9884Z+SI2MLaunabyZqb3SPeIfRF6p6c5EBjQEQFtYHsT9i6K1jR0JmV6srtnXxQXn1hp/8sAGQhU+sQJIeng4cDMr4TiTH/pptuxGMLSYk/F4P7zBkz+nUdPkMkMGnp6TjH/fJXv7riyisRkwzTJcXFJaWlt/385zjGd9MwhDw50oOJmM1v2IdxF8cnAK97Jnm4CiIz7rvvPgQ5+3ekCVBKo4MySZfrCEjGjQ0bNmKgxo7Iajq2Zdzaf/HLXzLp5AyADes3IJxkyX379cN/rWjPHjzd0HKQNEw6peQDIDcvF/c0hiD21GGER7fAD44Va5ZdWPw2wID8rLoY9WNGy1Z7XNlRKZje8IsWNWTwEMo9SL8O3f2VSE2BDKo/evSohIREtl/CfDZMirUiZhTNLZdfcQVaDpVCOYtzxV15pTCUGkUTiMQpBk9VZRciGgNGBRr3tKlTOfWZrY/UjqOLX5jzAnL36aefjsQgw5F4IlPZtcFZ1A/9+c8cLwF+jFJ5ubm33X47/pKRE3Tm96dOnUoq+whwqoDhrCPATNQaWhZ3SzjDaA8ZbBaQW0XQnJ566qmJEyaiXKJCAfPmm2+ya4AKYnKAh6w7YOyh4c45+2yURbH+deyqcWTdjovwMU8W/ktckB0OjRVfUwxNqLf9BwyQPrQy6asdFsTgLiwBmtLUUGsLNfVOtSRzOKZZycg0JcW0JNmbLf4DePYN62u69uyBPWMaVH9dXU11R0tNblbSuJEZzBPOPz93zMh0m1IX8tZ0emrGDSucNCytR5x67tQhsZYam1KdHt969sl98hNbc2I6RuaZPO3tPl9NrK2uMCeFTxMCXElOc4y19EBtZXVRYmzzrPOGXHpBT29HQPHsc2o1wwdksFCNMW54jj1NKcsyl4zq2Xrt+TmZDhVnyEGp6i3nDR8Y54s3B2ob6mpqK5Pi7CePP5EZDe7F5441/+ySCTmuVkuoOeQ9YNEa+/dLPvOsEztaq5O0yoKkUN8eJrtZOVC2I87U1jc7PtaiOC3KtImJhRm+VFNTbOjAaaN79unRlu6q751tMlvV+v1FsSFkuZ1ZKUoAnWlIvuni6QMSAvut7tKshOYZY9PzYw6kOyr79jT17qHeePEJlO4I7O9o3sfK6cRJQ5OS1YH9TCPzLQmm1s7OOjXGn5qqnjEl9eyRaTHB2raWiuoDe5ua9hf0y+UcpJqqQJxaF2+t7d/XwvlIMIsSGeramn2mzrZMe0deqjWNw5cwSFqUzAT1p5cWFqZ6Tf7aqury+qZa7CkjhvVdsHBJS1NRdnzr9bNGZbrUscNxrmiwWrxVNS2ZWaYxQzkAqcrqr4hTa4b3N02fMjAh1t/eWtXWUu7QKiYPjX3olxPHDTTXV2mt7TiP+tJ74NfhCXaW94xv/PmlY2f/IN3Bub+BmnRbXV5Sa06K6m2sSDQ19kxSOdaJ3VSYTEYPSXeqB8xKS3KCg0UZl1WdMqZPD1OzQ2t2WDp793AVZpt+PGtiXoJXc9fsr6psa6nskWIbN7rQ7dNa3OVWS92Qwkw6AAznt2+ay6oFysorOFOy1a+8vXC1qgQG5iTjvnroqdJf8KEytWLEt9lwqBdH9yDSENIWccBj+OGV6WDXmwIA8AhWBDwjOwbtyZOnMMtHD2Aa99u77/71HXcgj4HX8YjlA+BvvvkWnPz5bOe+8cZ//vOfvcXFONBdedVVzNhQNRAJRhH4AfAhA0lBIGFqS/GgcsbEQCLu9GL3l9nMDgL8whCB7F9gZwFF0CHwA2AebJCqFy1MEUyI8b/D8p+VlQkZuN3h/c5eBgCQJSBEzNx1150YzBGZwCclJiGEeqSmLl68uKKiAmdD8EMqZICcXGghC+YvwHefxXgqzoyTHfx4q5FKdiChUPBHJ4Uw2bsJYEkkM3jwnHzKybi7M7vFNIKOsnbdWsycEoAi5AQdtDKGX8JCpKkKlz5Q1pw5L7KHEO9IzjNgzi2GslCIDZxMwfHVhzza6LHHHoVLxJORWsBbasEDJmiDQl1NFQcSMKjic4exnTV4ykIM48yBVyO2fXYrwEngeSQx4KHRmamDikh+iZf458+bx5aQkSNGcMwRNHDqw0ljT9qydStcoiYSUiKhIlmZWZwDgfmBLDh/wCs2i1Ii5y/Nn7+ABoIk6OcUBEQ+JgG2I/5/9u4D0K6ieBj4K+m9QyAhCZGEkoQSepcqHUH8pEpH6aioKKgURUClIwoIiFIFUcqfIh3pBBJCD+mkkN77e99vz9573nn33RQgUYLnEO7bszs7Ozu7OzM7u2eXQaC5nQWEb1iEA3w57dq2pfits7AJvMKDoFBWhnuFQvM/OlK9Zsg5ksyuLJbPXhLWg5tWhxPlzAtMuWbXVsydH2Is7TIU5teG62Q+mRK6u3PibDRz9HuYStJJNRVT7f+aWevgIDsGmvPT+lrf3HFy7dwFtWt1CXvOTTbEW+cGP8/udivlTcPxfNC5CnbG/NpJ08y6LfxXtuX1J9ecj7vQkn6t776iGY8qNwDN93V5k0qH4vlHMqHcP5fcjJ9Sa8+/j+WceUcjwgyDUeBMAkvLdq75iKxd60ofsDmHLhwm6Mz9ygqfMCIgVIE/lauZAz9BqOiPp9QounXrQKLR61w8xwnYyT9vkfPsQt3ZRuYezqfBGUsGDl1u39F3cbYR1LZoXMnJQWDAOnN+raMYTS27dqqyBI4w2yYcL+ggI98crd2lCiTJphZTZgVIYbxt0zzUAmGc5wS8tYC2jZNbG2g8bZEcUGgHQLuEFRRXWK9JFgVmLa6YiBhnPjet5CRwnGJtVYVrdqkJH1zQac4SwEOUU8ZOJPT6yYxaJxo5LZFbxeKpzyA/mVoLm/N9tQU+Y9E/np59ye1vtm29+Lhv7bB+t0CEA4Lat6i04yG0oHZZXNusSaVle2Jn+oLAIpW1iUG98N8iyOLFoYgOLaxdVPCFaG5EapFOdlgnS/sacfL02vnY2LoynPnYODkk2A6FJbWtYdbZkm75zsiaX/7hyenTxp7/w6Nsw/zDn/82v6LpWcfssuPGbWywqNPhKzy0g0DIiMus1sniACbJL31pGY7eevedd1w/aK97e96qwqaB0Fv8F1RLnfIKaMzPOA+I6Yi/RApFzCLptrKFohCbrMhx9i5auNCJgSkGJSWNEHRkjIyBlAaRtPXECRPX6bFOrCl946iATh07+lq9gCfBb++gUpxj48wvGpSOrCPGNtCQGh5ZeJ7xAQwAr2m8sCrEmJgUKK9fqTQLTkEyZeoUX2FE/RqR+60rd+mhqebFU6d+JZ66X1npE00KkpN8tC8558xhRSGvDmHSLimyWATjIGU4Tyq3/JprrEnFRvopfiW0bdc2mmVp3rIBWcRDy2HDgKCbuUxipM8EfANJMZvuA/BEDIUsFZXTZ4SjojBBQsqr6dMcfzVVQzdrau9nmTJD9qTVpMaw5QxbNOLqcCRGfFpcGRT/q1EFU+5/tfpl6m26plsSxI5uNSzd6mN/OF1IR7ZrHuYXPq+n20xPAKxJiOntTteh6cUHqyrAt21TWdE6qECqkUbyw5xu08nX7IUuD1FkPT3U0s4uu/YgScjRw1s2r1y7BWkf3hUH0m9QYPpwUgolR7K6x6gCScAo8gBTa74j0KVpZWefRyS5Arx6JB8EAqSHOBLad1ZiMougudUX8cpOCgIDq6+rAlZ5UcXx0Kii05o+lwyR8CrdL0ZRbK2TnU5Vvi8MY6+CSdG4puIr7cONeIAQgwvi7ZaAVh1Vds01ERWAxQStSQE3qejUJXA9UBvSVKuiZevKbq3DLocAFkR4oLy1FX8wGiWxRcBiDm1nw8GSRskyeUKicrUX3jIdOnYObJdLAaGymNA0tIJ/rB9KfUmz8BpKUfGqila2BLYvNLSEtk0r1+warhUIE+ukjdhsn4wZ3rxmTtdmS3p3rNxgjSq1DkmwJPXCLhcYMCzURcZm6FZc4rewI1IRbbugJ0QiHmEq25p8DtvRQx9ApEr4pFO5gY1JDxTJYNIH8EIHi9SCW6NtZY+1HLc3ZtzU+aPHzrb5a7evbrRp39b4A6bwJIQVX8r/LcjQqJ8SxQYu+tVJ/6D/GiIJLK2LRbOpeucunQMqT/IHQFhNSFzTseAoiIl4E8qw267axLHgpA1JgU8he2jwBHeET/OGQNKW9AT9ZO7uNUxtk4fqMvsOhSY0CCTgAW0hkIDZZcYCCGAKYlNyUPfqFdAmr9AlPbGgrakrnwuKDM7kMNoSbAl9Eb9fawryhgdPqkLpHvGx3EJNIkCGYzHCL4ACfJXVty4xPsERSBKIMbG4GC75BdOhY0dfAyZ01WWJYBwq8gYuheombA0yIbGxAguEC02Q2gG8Ftz+oehiK+N2lzW6pMTAnKSqZrDGIlox0YwovNbUWKDBbY4Wiy/t27ebNWu271TZTIwDMJ5sReJrZCZUHsmxTRkfbUnVjP0Um6kOQ+RSkEKB86ql4YIFUIgvdIlscXk4ciBqopwbGQ4kqovAJb4Njyi+yFN6pfAkY5o0Lw5NUEF0hT+JqoiQUQCETp7cSygJkkKWIjZFBMWfwASRnSQT8RFZVCpSA/4kS0GYxTB4OcKwLqDV9SOdYgx3TyA+4kpsFDGSokKN9YnZE9iQFJ+IJORLkHtFSUJaSE8DcYtxzBV0ZkKMX2sisVfFkkNCwtKQBGGSPwzuYnHhL/sjeQ0/MZ4OSwIm7v76Jx92BZywJSopwSRDSFUi+GBAeILYCn9DRpFJrlBijEoaInkJpp7oyBBghfRMXjFSYfUvAoQSeDtmT2hTOXHtNu3W7VzZkgWWUBvyAU5KFAxPseKFpEhS0nwBMkEbO1iwBtSCFyRmTCAj5aJEqkiAx8CEjoTGANS2beXuO6y36w69B2zQon+v5m0rBu69+0YOJAj9KtC6ok8QpgnXolSNvzFzWQsgBUCJhfaw59wqdCKjCxiK8jqdXEZsaUZoyWtVSAzXkFjIKCq8JP8VI0MMvhVtFOE4Lw9ZUowhMiwHeDJxdeGAsvgUykqqXIBPw0XKI2yhUsXIFEm2iCLWQHYBWyFz8qdYbPksIUPyX1rBmKlIT8S07N+G1cErZlbSdhIDBSUNEV8LNk2CXUxokZKnSHyMzlYhhCPmOP7rsx081vkqlSvFPS/2cccWt/+DTcDPn0UVgOvX12uMSds0lpVSlzUIYlkxKeaq+62PNs2eB1IO5PZRyopMwEAoymixcRSkYyGOksJrOmQS+BQmg6t+MIVP8NJqMYvoVPrHz3gLwyuR5EtFm4zglJ46sGJ8ijMQkcIVXgrg9aJDUgEw0gZDBPA3yRCVeAArFpcUFiLqouqXFdOKv0V0RXjvCe+K6eX/hsISyJAcSPMSFEjyFCkpWBjF6DrSA1QBKCDxf3wSJCEl/ksjBVKcaf0LBFjySFz6k2bXtm1uu2gyd09yypJijqjib9o1Er9AUPop8gifZgzxopLkLKosfBoGasZqNcRtVbLQ+v5qr2APCSerM4WqZvJkCVtZ4WSKGST+ykKY41kJHDAudRBdYwXaJc6eAaeBSEDJ62emitvGDgzHvdtryS2hp4b/QrcN/+XPf5cDuRHQgP9R+tY3Ako6agKSTLaDZgz9WAwRn0hBLyKLWFL0qTyOKeITZ0PUsuJSCZqgCtkS1DF/GNBJKEDVaeNQrgQRwSYvlJnkNPqDACgiqSsFmqhAA/ow6GO+MGWNJYTYkC0ACiTYk4iILyQ2IDalPaYWax9JCJZ4UpbEutK9JIwqpoScWQLCe/IENQc/uISiUHm6L1ydnD5p8SBSHODqtH0Kyr8euCWH7VrSQ/EFyNAcAUGCIayQRFSlSBLOKJ2jHrLgtgk4Qs5kih4yJZihDd7XBH1IDVBBKCfEJi9JtiSzUagFY3khNkLHUII6BhPYEAzo/O9fwGafQcCbaH2vomLrBaj6mELeVfAEV7lyV0DZrILCc5RL5QAV7vlc7RL70FJLWKEEFgAaTM3TtQbZEBZ/Pxd5K1R+DrQcDuRGwLIYFPrpUsVoMbE4TorqMuYopnorBDMxAWt4ilnrAmm8QCrzk8gy2YvAQa3FcPoboeNraVqIzZa8dKiYUvgti3KpVCWZ0ixZEspG1iup/ktahEDEEwIpFsCfBnsWGy6ErGn2JK2AuI6laY4MWeL8QwQLp5ChDk9MgTYEMpkEszFJ2I8n1KYEMolfzk8hV7SHsvlj+LMhXU6ZeXLOgZXFARKTCZ2761cWPz8rntwI+Kycy/PlHMg5kHMg50DOgdWcA4lzcjWvQ05+zoGcAzkHcg6sLA5EX/3Kwpbj+YJzIDcCPnUDrdwR0hBbw5hPRWLM7jcGPlXelQ4ciLASmJwns9KRr14IvyDNkWXa5yHp8+TN0lASjmhXEfKSslbFa/huzapP8fm0RRTyJUg+bd6lwRt9ISlZeIqMLfxmRyW/fLHQmCqHDzgjzgJVcbdMjMp/v0QcyI2AT9eYcUSl4+TTZS4HHZfEUoTwf55FsuxwTXGWK/Y/FGdl3Qdg/4N7f7LMj+FszH+I+0sphri3V0vi5+lpIW+iV5ZSyOeK/jyEfa6CV1LmLP2fqvVlDM9K3WIJX6hW8oOYSE+IyJZioBZfEwoCdLiWKXkKGOJL/vul40C1g6+/dJVaVRVyOqn7Oh2G2n2d7iu3DN/RutvD0RbOLfk8mH2Hc83VVxvnDtoM+3G/AJtuBg8Z7Fo2J4G7UebzVG11yZuI2VpHwTtodmzyjPv4Y3fNOTLF89+thf7Ayvxk4kTHqrsLzjm4Jq2frZO4+OeBB/7ZrVt3JwSsxEohxgUN//7385MnT3Yl2GpnPqJfB3BM76OPPOJEc2fu6gavvfra4sWLXIC+XEY9+8yzd9x5h+NvHdSzXOAVBAjtW1tx9913PfjQQ84h1ujDhw8fNGgQOh3AQ/cLuEtpyJAhI4aPmDV7lnOciA7n+Thz0G2QTgkEFo5z/qxdZQXpzMH+axyIMiv/bcgBl2U5ltwVWORmfFxeTCr94Ac/8NoQPsYUYUsBnFXuAo+yuWRxSNZmm272ztvvlAUoG2kyF8tKU72+MegNY/6MM85wlHcdQCktDuhNbgtNc5YN1ITTVbMprlxzYZqr1rOR2bASvZpmoiTGC1/+u98hybUlBcgGxBQga2pcfFKAafAn1iWNdoiY885icWnk0gJOTr3zzju149IAysaHyXKmIimMC2zS2qWR2YBUfOvZs6fD7Nxx7pfYpQ9cBuPA8wi5bAxZbJ8hDHkWf3xVnYhq0cJF5//iF2zNXXbZZQUZWEdDpu2OPPIIH3w/9+xzdakrEKJa7rj9dkfxa76yj9712KOPspZcqusc3DqYpcADWHYtVN99PDfecMPoUaMBq34dTqFwDODSURdBIw+XVlBJP/HqfHsj+oP3P2D7ut3HObt77bVXbAI3DJlIIKlsuWeddRZ1e/HFFxfaa/mkFUlc5l9lua0HV++55x6AhxxyiFLiKf1e2QRuZneoMPXvth4H9HrOPfdch/2J2WOPPd5/7/3YXpEP8bdhgeKXIRwawteLSWqKdWym66+/3knN9VLzl1XJgXw5YKnml9syLr30UjeUhPsu47MCq2IUXnyyeEma8847zy0jmjIbnw1blQufzHyaZxnY6r5wC6uBpWgd3YXI5RTl/JniBSEgTRxdHeZxs+rSMjoxLpCU1D/CpD5Gr+QaGbG0T+FkimfAlUXO9soSHMJONig6MMtmSSM//OBDV6poxzRmRQIoLyk05oqn0i4bA2lo/uS09n3325dYJ3MdBX/HHXe48f35556XN1uXZaP6DKmQZ/HH1zjhg01ncEK+SHbACjJQLjXyu3hJcSB8BrKSLGaWv77kEtfDLK0XOZvW2bfunkFevKcnFqXvCEQySgtPxtQyxoJbZH7z298OHzE8Ufjxg8oijmS9qviy1L+Rh0tjV9l+EnHp0qwBZAcPX+IkePihh5yd52KebBs1LLgwYp01UVyqbwizojEJLvxJWcR5A63r1vwalc7xZSVz1D3+2ONoa9O2zfhx49yEhHKX9Liol+NT07O8C30p+dOwdNGaLxtvspF9LRtGQAAjjRx0UVXFPCIqp0+fURY4j1wVHHC8WP6UcsBo0aFdPsG7bh5JGMXxE+3yCB0EinvP6nd6/djUgj1LHWaTXGXhMitaobSkT/UelHmd8xaFaCBZ0CGcxVTymk0KRGcuNYn1aggf7Z54i0ma3fgEH7OkkdmAukPliTCFQEJbiBFfUROug2scrnTLZhQmYjgQgteRNCg6HgU8RINciAmok4xU2oL5Cxo3cSdzsGLBxPgSnPHVjSzOLXfTTNnU0FhFCwMeMCkqr+b00YcvHJ9QIige1mUWCo/DdL/5jUO+ttdeIM3/Tjjh+EcffezOu+7cbvvt0iKAhebLLNBm0cbGWoZtFGuUzSLGq0qldp5Osji5Ey/iwcaTv3uyCZ8zZWP25f5CGChJdhKUdInl5k0BIpETxo93VU8cU2lSGqAMDJxNNt6Y/d2iefOWjpYrPpwytbWLNRRKYqMXU8Jitgm3nlOtaXA26X4ph7HCRTUupkM/yKxdCwOqPCUIU8xpIOVh2eojW3GSoArFZ/q2ru4eQlcCmmfH1EFvvKEzoypFXjYQkawIbWWzp5FJy4VenaX8mquvMdF3e5MuoYcPfestJIkcuPlAkAp9+ZVXLMdcduml7hIUQ6L5jVsEYi28xid9DYGKygULF6hy5GdMWrjAyK1OtxcU8yV/ayvYgsBcXxjekzGlexiqS2qC4yrLyXoZ85eVyoHcCCjPTndWPvnkk7Nmzho9erQ7T40WDj2gsWs+9eRTH3z4gfUC/t7ddtstXoZmIL322mtuU6Pv2druFN9pxx2NP4ttLs4i6E2D3HcJ1Y477ihLScF6POQx0kh46sknp06bRhnTJa4D79+vHxEWjIyaGqk88+5hMzsPqVts0X/AAHmzsiyaICjkwCcIttt+ex7p55599s3Bg93exsZ33/b222/flNLNCE1Ihgwe/NrrrxuHwog86KCDaEGVinelu5Pj7rvuatK0qdq5w7ukCjhgyQPH0EbHbLjBhjvsuEOsF1JfeOEF4mbS5Ek9evTcc88902tSWVpyTZwwYd78+XZFcFOv1bUrqkaNGv3Qww8dduihL7z4IjmOpd/5zneIe7UYOWqU/RkE67bbbLPZwIEqjlpmxIiRIzUc+aVQt4vuvvvudlpwPquyUqzIUBX77L23+2DQ4+Z1Zg0HtUq5blWjxPa99tpr3adOlr3+2mszZs50FZub2Z5+5hmzN3g4SDfYYAPXqwMoqX7JK6pCk5lAL15sibdfv/6PPfY4+ikAEpnmeHvo24PeGIRa9+6401YHC1KPrlu8BJd0P7bLwgULunXvrqW0BWotauy00079dIZE03j9aNiwnXfeWXZX2quUfmK9H39cro3Jqm+ep0O2bNFi3d69xfDhjxs/TsYNN9zQKe5WKMwI1TEiRC1GQaWH8Gl7ff/991966SVECrvbxpHvbdu0DfO24vPXv/xFw331q19dd911IdE//fK7cCmrUXZtWwd46umn8XDkyJHGlFofcOCBysIf/NccXMFbbbUVVFwFsfmiUYgGI0hnxnMX++61995t27QxVHDy7aFDXx80aOLECS1bturbp8/WW2/TqnUrQ0x/QAY73pDUeXDmkUcf/XjcOAOWf1sqs+Chhx6aMGH8/PkL3C+MXRYg1CnlQ6F+tRUjRo54+umn8VA/WbdXL3fed2jf4R///Eej6kZ05BNPPqHDIwwzd9111+bNXD0emBCzC3O2I16f0TRuxbUYjxiNsmD+/FatW++7777ZEtXIaxxHI0eMmDlrVvdu3dRXG7355puWI+2T2P+AA8AY1Dgw+M3BL738Uu91191jzz2LDZLIqOQuPl3IphTbEbp3X0c/TwGGvDUEW3QqQoAP4NXXXsMQe3c+HPah9pLlkUceAfzBhx+SV0rcaqutuQdGJBVxtaDea6WA3NNJgBlfGuib3/ymUfzee+9hI9eXNkUw0acP63K2KIFv2aKleINaA2204YY6gwYiwfpt1C9axmEvxaOP4t59991nHU27bLP11i1atMz2t7QWeWClcUDz508JBwxFS2itWrUmx6lAykanJ6HIKXwnPek/C72W+gxOF6KTmzDYYimektDpjVL6jJQh9L///e9TYKxdqAwbAFbmdPS0UGHx1Oo774Q9AdSbUQRMLqUogog0VqkNhI0aOYrIlhpRcTMq1Fi12AlP3BNw1llnwqNo9j7Jtd9++5qJErs9e/aUsVevXp06diKyjTcI4wOer96F3/SfYalQtVPxc845R9Ivf/lLA9JMy/hHlfB1112XVkHAM2P6DNeQS0KSjMrFtJtuvNGeR2wkBVghtIjxjz+uFQklLl6MBtoXTg/+KNpF4KwcgpImQMOPfvQjglsu7kpq4MwzzySnFAEJDUG2kqeqgDlE5NZbb834UEdZ/GqaAw88UEBzAMYxJI0YMYICuPqqq3BANREmC5x/uP76SBKBvt1229EKsrRu3ebev9176623YppKyUI2EfdMDcBlH6xwNS3McFre9gpMdY4++ts6jw0l+GxjAbewFgemn8CMM/oJSPCsDRITQ1CuOGTvs88+s2fN0spYZEUmLfekk04Cw7gRs99++5Hpu9FDzZtrJowif90BLztuwA+VBgKpWwqffvrpHw37aNttt6Vu9e2IU+k33XQTqi644HwxlB8MrVu11qyQiNc6ejt7K90TgAZUXXjhhVSX7B6dTb+lIGN/jpi1EQrj0ACPAPyZOmUqlaxjMBcg18o//elP4Vmjyxq0I8tDXppMswZGrbOOLHjlUtqYxKbUTDigEdmUiER8LC7+8mZDHguFASuMa8ynmAW8xt6iOw3cbCDDSK5QgeL+Ca+6CqsUJORdu3ZVr3PP/SkQ+h7mPffYQ+nww4A/V1xxBeRyGb+y2BNgKd12BAz88Y9/rH/2799fp4pDAD3qFemEMAbs5rHveMCAAXqFGmlK3YB+BWA4KEKHHzliZIRnTp144gmYyWyN2QvYkr0sRx11FGqRBw++Kc5oinsCrI6puOt9Lf8zLpVigIgBw/Ij3xCpr3pVug7w7jvvEizGaWw1fNAKthEoDiX8HDCcdtppgI10TSne4pdhIqZ37946GO5ZaLDl0xDeeaeddFQNBwm+GW6Glb5NsvXq1ROqWDR69AF9KVYq/111HAhmY/5kOUCdENMMZ4PEYDAC6SQPmGgE6Og/+9nPzJVtkCZbjXZ2q1Tjh/J45plnCBEyUSdev29f8eQIBWOY2RwHz7iPxxGIcaNNLNdAgoRKYEcr+oc/+qEiyH1eU3el2yXklUiNqT/5yU8IEaKT0qVsqFivm222mck6bAUj4MwzFUFPG4Skhq2/0DL8qdibb75ZktpddtllPBPivUapJ2zLEoPjH//4Byfhn/70J1Uwes0svZpTqizD3HyUGmBhROL9UgmqgBskDgFBmMIJjKbHsUhhIj3PVa5JBrmAG/96/F/EvU1AFDMBQaKZJ5F9JN2/n/83tMgARnLtvffed91554svvDBl8mTaEWfGjhmjUtQPkUFSAGYDEV5eKT988/z2t78llKdNnaoIgtJ6vCmOmQfaaFl1IXreeftteTk5UE6mCyCJDPKQU3ilLrLATPyRa/J6vfzy39GaqhwfGLKPyGgEYB3BPXvWbKrOMqcmxs+hbw0FrI+pKQDL1V7HjB5t+qsdI+fVkWTEPRIQPX+57bZf/epXcN56yy16AqWSFocDuuif//xnMdGRgAPsNmi1l06o4j//2c+QjSF/vvXWIYOHgHzgn/+kt0455RThn//8Z8o6+wc/EEa54gh9agOv7MtjQmEFg0A8ArxCSNFCmBoBboXRuCzRuI8PEqYnK4RNAwxaj9Zh8M2YPl1DK+7www7ThTySVFYRHTt0pCZ5rTgJ6FHqhxeHpmcQ73/A/rD95je/0c1oka997Wu68U033QjhySefjKW33XabYaJd9DQWXiiv+CDGiGMi6Jb33XuvbjNtavCuHXnEEfaYUNU4DObKK680UpjIbDUDU0wRQe3FF/8KwSxRDDSQb7nlFvYfMKMJ2fTcS17nzVcvnGFAm/vKy0xPjQA35jVt2gwG3OAdMVT1JU1p3T2aMllRgGmaGP9v+OMfjUq+k/XW+4pRgOf4zxwxHFRTEYg0m9dLqVitkxIck5ityGNMWFhRLgGldlwv3HgAXOOr2wSWLllCjlkbAsxFgduqKZIpJgaSCeMnGHTqa9uyrmWPlIFvqAZjpXFjXREwawCwEXTaaaeymA0i7plNN92UgjfxUBy+8Zypta8koGL6gDemeJh8OKOfe9UW3IcGtf2zBoKPaxSNXfBnq5aHVwUHciOgDFcNP8+NN96o3x9//PEpBJVmQLJ80xh9l0gCaUwGXVjsskYCq98wMGYk2REtI282ASRvVsrEVyLDsKGcYGCbU0gGZJQOZCLBl44oKtN45n9LaZBKANFYYqIRcOyxx1LhdAzVQgqIJyZod6KWZUD4ql0guEhtigp59H2Ml4W1TjhSfoCZ8BSnAUwYxexpLgEACiUXokKKScA8NLFBbqjLKB5+dgxJx3FCFwYiEhsiIjHJI57oTq9+Zdxxxx2iwRGZ5jc+SOXKNpnAN5KF2qMqTFZoEdsFIp8jGSQR/jACvCrLr1mL5qBCiGw89ykU0aMJqBPkwGPmxIUb4JcswQcMJ8IIYnNrkZEAgbKPVDWlxlQEx6gfPNRJaLtQr+SjhisTntBzlnUQ4MEN5SLsqaeeYgbRqfFTkbqyamppcTCUSlouI0DHIKzVSzdQIsUfsiTtq4LNm7dgFTEQA6trCpu3H3zgQbnIcXh447t07kKXUEgAFIoPhx122MwZM83/hHv27IE8c/r33n2POWhT4QknHE+sp0YAVtMiBDcVDgOlS+KruBl8Vr1JQtW111yjLbgTFC0CgLUM3cbcNGoykQLKVR1mLs1Eu3DC6/CaiWOf40eMne3UldGnIqw9vvrIk4Az++D24sWsPQ36+GOPhc62ZAlrkl8HhVFhA2cp6gB4e80118CQRUJ5EwK6pdIjhTDIoqexP958481YmiybbrKphmZgYbX5gCoET0BtLWeY1tfnI6QRpC+ZkcOTFFWvOI3VuHETVpRhEpuM+YgwNQVPzuAzU4yy9Mq6Zcz92qcE9WstiTmCPNNrhXr1+/Wvfx2ffe4kfNFFF+HbFZdfLsxIPeaYY6DFw+jGwCVGpxGqu0Ya2E+YoE8yUge/+aZWYAwRRNoOctmtjOhsTDEIPcpVZUIMpL6n7cgQI0LXnTN7Ng6wGuMUX1n27aqFZaDYS3VpY5MNGlFFFsVw/ruKOJDvCaBo6j2B0RVhadDYEzQMJAuI8Qi0atnSVtmqaiv0tQP697eOleQobFB6+qmnLblZpDTrpZzoA+NHRkgSBOGb3bJPhLHk5tl007AmTUbaa1PdqJG5rynpeHOH5OHy9TVPioSX1WqcWQ5xHCN9o2wA+7r3J+ec07NHj0BtZSWXBqeCSYD1Wn6Fbx5yyKabbWaMGe0pKrIAzfSQAWmKwOQnXsi+SBtIgZIsMS9ZIAshGBdcw9794u79yDqbD0h/wOpl7gIVw9/6AkEobH5sadP36+avUGFaStKWW2yFgYQFtiEPASQgbpiLA1blefPmonDIkMEKin7UNG8MyOIJYduPk9ViJppCaSkzrUgeFaihlQuhCvI8M6FidoUe/e1vX3LppUQz2W0KeMD+B2y44QbhFsKw6F/HvQif/qrv3vvs3aRR47/89a9WQyl4C+pqB+Err74q47vvviMyEFBRYfVXQJ9htFGxLJv1N1hfDGwF4pNtU2Ioz7SImAog1gujeE3SVEanzknycrFw+7NCgr+hUbXdW+oIEUi+q/4D+tO1Dz344JFHHfWL838hSX+zsm4tnOUH5vjjjk838xP0n3wyKS1CQHWoKMaENaMDDzjACgKhT6YrsWQpF7MaJXts45gyfCpCh6qkA/bfbz94Yn2zyCmDmclitpWdQnxtLaosw2ssxoe+yn4y0+XAoB03HzgwNEnSKAXu6WOZXXiKc3oDDN262aXRL+K0RMdhhoDBgwcDyBLAqW4lDg8ZQIwbPLQQEHsy+JatWqbAAzYe8PY7bxs+4vEwjdd+XulXMWkFQ7WLMqEO0ua7MMRsKa37MoJ9BuGkSZ9IwgTuSa4IY00/pImZMocedlgWg7IM2+HDhzM1eq/bW1Ksj+KUHgkohDPZsEhkdvsePCEyEVofDR+uyUweWCQyQcJGMWTwAXJgfIkcmRoXmDFBwc+bOxfAEUcc3qhRY+ng7YFgSMWOymiwRBKIqaxct/e6LAbpSkSDysadT5E6MRky8+Aq4UBuBJRh69J6nv64tCRYKBXfBBt+hqv9QbPnzG7Yf0N2seXsAEnSzG/ooSZNmhohAA0Mo4LZLjBnzlwO1ZDatCnLIKWbyQ94VlDYBdFjeXT6jOmTJ01+5913d9t992R0VZlkmNkbxhYsuDTos1tuviVIaloMPQmtli0tWhOFSjGVySrjQE8yIMPQbfCIjOIvpoSvGCJGsA3gQ02ThwVgbs2zwjEouxkwdQ5DEITFx44kQWhEkqS333GHeQz/uWNY2rRpLVdok4qKuXOD3cDCKOar97egFYpUYWm7tu2U27NnzwiHfo5Wggxd2NWsefMCqoT4H/7oRwM23li5VI65u2mNSXm//v0ra5dlBBBth3zjEDpDY5m0WUTgsVe0ualfTbzvvvtxBqQECFBFPBAIiAYoYmJqASb7sgJhvihrNBf98qKHH3qYmufJ4Em2JqX0NLfOY++n/vD8v/+9zbbbmurx024+MOwJx3CU0KyszJQOnFyvT59mTetOPSLi2ZSbbLLxU089/dfbb9e7pk+bZuKLn2kpSwtge2yaZQNYv/96sjChGySduXL9vuujfO+99uZ/VkGNouty5NjUErp0gyflpBLttUSzCXcWKmxQT7bRZCOFccMC1gUXXOD7Xj5qc1xOi+j0wkZ6Egyc/qcROTYieX6zeAJA5kmJycRlgglwzAIycl4cU561dKpVnFNPjUv7qmxQWzsoQgUkdDDPGZ3aSJWqq4LJWL8XxZIS/PWoylBQCIbSq0L5qgOeDcQBEyIThAbImmusCUUk1UQfpFHPuAwAieOT91H76syMA7/kD84LhBlU/SciqR+Xv/2HOFCnS/5DBX7hiwn9OGrpRO1le2fZQRMBmL2cqByVls2OOPxwKtk0xawoVjebMYqJhmwwPMiQXj170r7RV0bDRGlNK/P0WkXeYIMNOcCZ5KaMyopIaFASjbMOTIzZcacd+eh44E39rUHG9UvTRCqHB48XlD/AHPG555/beputKxabHxvrlVbgogVw+umnHXXkt1noXIhkesQZR74wsRKqjDn1J8FWXk3NuTHMTgrA2WpHLImYKCCsqGBkMEpM6+njY44+pl//fuQ4X7F9CkXwgoiJeuvdoW9zYg8Y0F+u/fbdb8SI4fvtvz9ilMNjTNzwRTML4kQtxZAGcB4McHsMTews6NLKYmKL4EC0W8CLKeRK5B3W0YUH7L+/7yYUzRR48aWXGAGBKmWnGjItKQlE8adRTFW50//97xfsy+NOYNJpLKsgmtLEPVWWmIY2GzXQ75gB5iDBmlSugBekV80U34X1Gbk89UsOdlGMtFX7jtvvYGldccXl1133e0vR+IzsbBZmgSUbxgffD+XBW9Cnbx8I1+7WDYWmlayELH7lZrPDtuYaa+y++x4q+Ktf/XLhwkX8vbHLZXMVsmirpJqScI6dgUtZsJJw2LbWogWnUTBEQNKFNcGVAiy2pq7+2E6PGRG26dDQ/Nj/uP8fvB0FPElxiggTcRQEDLU2+LHP+JN4XFgSIKmoyQ4mSjaCeC2pILe2bRkzZsy84sorrBfwCvAM4TxDmSUayTAkbIJp2qypzxpjTIGA7B9VT/oK/KKREwP1QJIo6WnSmLFjwFpUUimRB37967+7/HJGgFFsoBnRaf8p4KmsYEzrY7Nnz3HqT6hy/P62flcJFCzvSVvZ0AaLjb4uwTpkCONAw7Zr1Dh4T8HrwzqwZREZ4QnCzeirrJq/YD6+eUoKlysUl3z9FMRvwqISmPx1FXFgWSNwFRX5RUdrpCYP8U3ckC90Fd0WBG450uN44AZgBxiTxx13nBH4wfvvk7yhWycPYSpM7lDe1snKoSmY25JMZazChk/7whr2EpaE8BprdOnZsycrgdvTDsFC6pIlL7/0khW7NddcgxYMaJMCkW1OSSyqAn8mK8GUxVTGdJAZztV86Le+xZA3UA3LlBgKgK7iIz333PPW67Mepy6Xe5oaql9ZafWUhsYNVk6Q4sUHz0x5wdhSxIIRTVfdcOMNrw96vQhS/FtkL/GERUqEllGy2cDNSA2uTuOfvChC1/v7+L8e58g94ogj2TfNmjd7+5134nYB5e60886sIu59fqVyfOEAAEAASURBVGmEqYvZIS4R1UGgJt9csA/iTgvGDT6YFuOkAmR/8okn/3Tzn9CTLVou7EQe1r3/3ns8mbZHmZXSGT43948svuw3l2n3elQWXyIq2Qllut8a6lVXXWWqLZ1JwdSzZMOeUApIMp0mHv7RcK3D2mMKcDbYcSZp0Ouv+wwP8WSrBv2bDW5jx6JZXvUtllbmL7XEwLIKawn26KOPofCCdRWXFTIc1l2ZjNpaH2Z2WDaKuPBTL3riX0/wh+OnEm3jogKt3WQLC1yqrMIW1fzggw/ZYd/57ncBhDlogyc4sYq2mjMDpDdUJNlMdrGgAWF3JDRglTb605/+hAaMxTTGHHg6EtlWo2BLLQAAYSZbWakiDurQVXQwhg6EfOwTP/nEaj0TB/2m1L5SYeqpRVKdwrCFmV2LAwsXLeJ2YqriFT4EK7i2RqRluEi/ZtV1jVBtJyZGZitirATdVlFBZ2MmOWCLonEkBq50KAXkNTU+rlNNmvLdd955+OH/Y2+wVmN30m0Qqcs9/9xzFv71lhCfGYmB/ooKnw2rqY8jjBfF3X3PPbp66MwFmoKWXa6eTRgYcpA5vXr1Ij34wPRD8nD48OG4Z59pAV/mj/GNCfwTVit0P7VQktLtFpr4ycSI028mRwgGsoORVsnIECAWgtSdEPiTP6uaA7knYKkc7r7OOmxtGpRqNzhv/+vt0ayuy5B0Zb3cmI87cWgLQ47YfePNN0eMGJGOMyuvRgVBY8nc8KYMLA/X4UlCUXBwHXPxmfqfffbZceu48cB6sDWJMw2MnUpG4wUXXEiFcA9+8MH7xJnZM18uNEagX051Op6qY3DwTLAGnFvn0BJy0GKtJIaFNW/OuuyqtngTr7feGmovJIHIRazclEip4GW0YKzKJ3/3u5aQUxvCuFUj3gV13Guvr1F448aNJylM3LPbFyI2wPGhNsgLcpwSIsetdDIgSNg41QMDXpVjdbwinuFCWTKSKC2aEqs7d+5ErxBS5/l469xzMcphZzT0W0OH4g+J2b17WOC3D0A7QvKX2/6yw/Y7WMY2cVQXk3Krn4MHD6EjfbZgw5dC04ZjAtA0VnmIp0033QwTONjJeqsDOgPbRR3pHm7SlFENAxrFzPjwww83T9Uc9qlpSu3LyWwWzmkPLSlJsgtoSvvkOX3V5e/330/rs8aoHIcOdV2zK+80p7RNc/Q6HU9QNiwujfn+D74/5M3BzpBI1PMH5tMKlYql2dVfMWizYMFC4gaIawE44Du9E44//nvf/z6S7CfVJYZ9+OHUadP4QjbYcIO0FJB6EbeKzzQgoWLpDEZnSRERnpJEjM19FtfF8N7HVhZOAylmgR49e9jZ4GtGHYlSwQ27AXQSRtWGG21oM5qwbglntAZOO/XUkJ1SjFom+cUunPfRhCZGp9k8j5cqX3jRRff87W9MBGvVXC8/+uEP7SmRm+WdWhI61b9feIFDxdZCbUSz4iELkrJmU9jMz0LSXWwu1UttPtWFgt3Z4EGICuLVLrvsovro+f3vf6/PsyNVKlXO8mEd5f2Ngw/2WacmNih23XUXr0rR5fT/3Xfb7c477hj78cf77ruPimvM0AQZFDivm22/ww6agykcmcbtgQCPIgqehqVZAQkMhJFm8MTCJb++5Lsnf5cry/eoNkXZJWAjIf5ftvFlsa4RcwhXVmyx+eZYwQ3pwwGTCuwixAhGeKwpsMtin8lmDLWoCRXkRmJpnXDiiSQD/vhwg+SUGoHz31XBgZy5S+UqRzoZzRlI0OiOfH26r7M7bCOKS2Vy2iyts5roEy6EoyFKEQ4eMsQYICAkxe7LvCXZKQ9ylphYp3t3wyBbMBFjhNABIk2p77rzrjjjN3goMMfveyCXuvVWWxGdO+64gymX76TbtGnrUx9fvcdUh+iZL9IQ8Bv89orzo9owb8T+8qJfqgXV/sQTTwhY2vTBbjL2CjM2Jw9QSz16rAOAGEKAXUiocs6MclWBfsUTRowB36lz50i/gjwYorJWnWmCRYsWv/76IGYT1fjDs892IgqSOnTsGOH90s3Q2rdo3knEs5BMfZgXXu3wUkT0cNI6Mob5ayJVzXis2ZM7pImJF2VAHH/jkEO6dFmD7MC6E086CcE4Sd+/+957dIOPMsRvvsXmxxx9NPImTw4fszVp2sQ+A5pAA0HOnjB/JeVZZs7hUTWFMv5IrkgwxUCktm3bzlTPzI/RgOFEFX8AfwlzB1Vp1WIAEhW0/zE2imkXMghQbUHZ8FWoC1Pv99ddp9uQ8mgg6Xy0edKJYWu0zsP+QxKtw4xjNFxzzbWmgBZobL7bYYftqXOTSBbM/z38cLdua2sa5dIHwk0yS93XXXvdVltvzYbwGYXewnz0bR7IyNh27cJyUpyv68Bow7qfnXdetMAk8XV8++ijqV56Hbd996Xns4eOPfZYzOnQoaM6Nm3aJPZwZOOMvExPDNQiMDR8tthyS4rBRNxAsHMNJVit3MYUYfGhfsQ4FCiOMp/z8cYbO8YCA0hxLFp2KnDfGhiemtug80qzUrEBTaL7QyA5qYn5a8cig4kR7IwaZxFinaZ0BtekSZ8MGTJYS7l2y84PyIPySxbCY/arrr5aWzP1HK6Ah6yHo448SpL6YpqWMrje/+ADBDtfjxtMjehgVQuVSoaz1sGotu3aGSYy6vDWgLCdWyI99CmW5VfGDTbc0MDRcwYPfpNhocPff/8/HG+VGlWGklLgPOqob6fMTzEgTEGM1NhwyFOQkaLhnDplbQWkbt+9ezcDU1hlVcSrtkstiQgQgSNmB2BzA+iuNq6a4egAphbUPIMiyd4dSRESzXYIagvfK/VYpwdXigYixMSQbIQS4wbx6AylJ02F//o/2SWGoW//oyqMG/exHmVzVUSb/646DpRZl1p1ha1mmIOXLhy5o1ubLpQhPp1wJGkku+9tZs6aaSQH6Z9Y7oVcCSQxRHNQdaHrZ+RUGczJZNSMxABu3SacWdQQBlVoa9WylVlLHFENYRrG8EOiAYUhS336IzAio4CmdbLZ1U4W+pgRYENQOlXKwgRrwC1w8+dbC1AEIRhjyhaUzWhaz9RQYirpQmo58kSbjakFTWOPcQkbFechrEleggwxXsPEp7KS6cA1yggI3osi81WHVlZ0ELKRyUspFB773SQGIovNgVcaqMDMbH1WOIyrPq+nMvlLShQnPTF58hR8JmSz+MRPmDCxbbu2qM7GNwyHuoctk3PVkdkX9r6lkrfIgYa5ysZgHTwUdlr3FEwp+MyNwYQy3eRfid6UFCAbiCRxwrMRsx0sxsOTBc6GwSMAw9k6JWCzZs7U39Zae23x8clmjGHZbaplsqe2XYzXfLqrFmyYJcZEwpSLh0FRNS6ceM3a4CJivOKJWhvUMGNOgE/yNGRUWgRiHEXavEXz0uX8FCIJQOvgIMteaTTEZMKVV11pvmFSQQ2nSWUDfBL2OiC7bOpnizT05s6Z26Fjh6ZNmlqdXEY1g/SsqMU3BX2qMaKazFwitLmvD4pj7bNRm+daEQ7kRsCyuKQ7EivLgsikpcDEdOy7aQyousiYuhRlE/FlM4a85cgoG5khZ3nBpRGQxJdFHiKT3b9hHrQ8thSAM5cdLIugRF6siG0UkUAusAwaCgAZYwv/I9mBsAzxJa9liIy0RXsiKbReliR12cSUwZmJqoctE98wCDIYNGH2VsYoLAuvpiHXMnnVMGPDmEhkRBVTUx7GJOcY8thb7eLE4jNriKE0JulmpZFLf08JSMvNwsbUbEz58KcsFJK0XOFs0Sa1jADH9fDqpcNhacAlxLD8ormQRVgCs7TXSZ9M8t2pjUqO985615YGv3LjVRDCSPaK8HxFYMpQ+OmbqQySPGqFObBC0mSFsX3ZAGmO2O9XpGIgI7BM4IWNFr/GfMheFMcCJqCM6BXBGWFWRFjEolcEJ8hwKkiYaJc+ob5JfKQcZPoAFYlsGihEltv2JToeQSgQMJQrorTIzPun5kmZGtRt7A9MK35brxDTr1ipEJ95sq/IzqQUgmktImT0iMQ08FLFx6SGeVckZsXzhmL4q+N0cwVQ1yQ72ADGIsrWbgXQBJCIIf6WZIGWn8Dac/yAzWpLCUC912T7Nx7qQPXil/cSWF0cUA1hESZ1Gd0tyR1255c8yx3gKQ9jxlBK8nDD2AviDL7YH2I8YImI8USwsr8sgIJMKJtcjCzQnHkVfGvoWzz8VmQszRRTyv+NRaxIQeXzN4iNdVS1INHMZBpys36WAJ+wK9IQf+uDLOUtGbZpWiw3fc0DK50DuSdgpbM0R5hzIOdAzoGcAzkHVg8O5J6A1aOdcipzDuQcyDmQcyDnwErnQG4ErHSW5ghzDuQcyDmQcyDnwOrBgdwIWD3aKacy50DOgZwDOQdyDqx0DuRGwEpnaY4w50DOgZwDOQdyDqweHMiNgNWjnXIqcw7kHMg5kHMg58BK50BuBHxKliafCBW+WinzQdmnxPYlBQ+fECXfEGJUgVfFmpa8FqOX+jfC1+X6QvH8C0XMUlmYJ+QcyDmQc2CpHMiNgKWypnxCZcXsWbOcqReuHlnGh8nlM/+vxPoS2pPWlgr3MAucd5ZGrnhAXkcxOlUQz5f3cfKKY/28kE6pGzd+nLPkkPd5cf2n8jsgzy3MKP9PFZiXk3Mg58AXnQN1kvqLTukXgz4S/66773b7yO233x6Owlht5P9/gX1O6nWQnMPSTzrpJFcSu3rkiCOPcI798knJcBXDnU/y0MMPuZo5XsG3/OyrHoJB4wIYx+C7gXc1MgJcs3v4EUfccsvNq55DeQk5B3IOrB4cyI2AFWunoloi8UeOGOEesOHDh4sLZ2KVmwg6n98RdaWo3YbusMBFpZeMuTfMRQBl8ZRiSN4dGebiVHflUUUKSmGWhSGhH7zyU/iygVCfZNYO2IUork8tezhg2bzZSNld3BKvWXPznruOXCji6qMbb7ghC1YobsmSbCm46kzDyMDoUXCBjauP/GbzftpwrFcs0W9JdjEK1RYl8Sri0dzuNXEZT5r67nvvIsk9BWIizjQpDWhWedPXCMml4bYed/Jm41d1OHawkaNGonnYsI+WUVxDziwDOE/KOZBzYHXnQH6V8Aq1ILW4aNHicOlng8c8lYQtSYoXiJXA0m3h2Fc6o3i5QARwa04Tl7uUe+gkd8CXIKeKiPJwV5sn4x+n4OOdPTCFlOyTvCVO+nJmH4VYBI8Z468b693VS41VZy7dyWJdRth1L24Qdz/YjTfe6EJCbnP3r4M/8OsHZnMVimtQ/XiTUFRIYFAeIbN5P20YhmUgkeT2s4Y4oxUyc8ZMNyt+76zvNQQQoxU0bsNuUNJwLDYN5FI1zecm+LKoVklkbUWkZBnVVy7zVC3Kdt1VQlWONOdAzoEvAAfKqYQvAFlfKBII93nz5xOj6SQpK0xdCOYCsTQJ5cIUp0vAspHi5YrKzBw3uAoWLwEQYVxl5nrytNYx0itd6LD47CIuzC7mAu9JEBa1d1IuO4ATvo684nQ3zqpVZM7sQimKoJgLi/QJjrTQSAa15w7loLkTS6MkNSVVIE2KAZUXcD2uC8eoOo9XN42ecfoZ3NHHHXd8Cl9AUlthsR9tKc7IKK/Bb5KYDjhcV6kUTqBYwWzc0sKKgE6tSwDQM3/efHzDJeH4lMCM/XisVtCwhfj6jgSmmqvVXOMrb13GxPGDCWmM21oxh/NAN0h1bWyaFCYNFAnJIEzTPm2gMly9iJn1yCtBUhvuDgbA7PtUXC1Bk7/mHMg5sHpxIDcCyrRX6sJ16birx7fYYgt3ih944IEvv/wy8W1qLo/LLl3oufnmm2+9zdZHHHHEsGHDIiI6xhWfX/3qV7fffnu5fvGLX9DWELpkxTXhbvW2Or7Pvvtusskmf/nrX8Q/+eST+++//9ZbbbX1NttwOLuoNyVo0qRJ55xzzvY7bL/tttvuvPPOFqEpDNfeX3/99bSmjAcddNDRxxxDcNOUL730kuxKhOrggw/mvqZv4vx+m222ccHr5Zdf7o7XnXbeyf2nLgV37/vmAwf279//kEMOefWVV0vUg/WOE048gRFAYynF8/hjjymFZaMKELpjXgV5+2dMnxG1fkr2osWLb/vzn88996d03iuvvHLccceFtfNnnvnjDX/cY889/nzrrdwbsjAOLrroIt4CJOGwCgpbLonM96vuKr7ZZpsdcMABps4lFCouaLXEE8814oJ5V9luvPHGu+2266233hqJSZD8+Oijj7YRQfNttNFGW2611SmnnBI2dRa19WOPPor//Qf0d5H5WWedSVmyNrIGB93v2tYLL7wQznN+8hPA55zz40mTJ1fUhEnz+PHj7HjYYsst1eLEk05MVT5j63vfP2unnXfGJY4Q7hDcQ8+vL7nEssiCBQvvu+8+azqIMf+OVYaf++SXF12kDV95+ZVI4fx58445+miF6m8xZuLEiRBqBTHMmhdeeGHffffdeMAAPUq7Dxo0CFhEiKWnn376Aw888LWvfW277ba76aabIlv8sniAjRo5yu4WffXVV1+dNn2aG9+BbbHlFrrcpZdeGs2vNEseyDmQc+DLyQGyIH8acoAYveuuu9Zcc03XhVEeNISLzCmkDz/88Cc/+YmuYGrL100dguEkAEPZu1Wdcm3apMlXvvKVrbbcypX2Lra/8sor4Z84YeLAgQN79+7drVu39u3b9+jR484776ScOrqau30H+Nfv29d8d7311qMJwNNGtBrMsuy+++59+vSRy25Egl6JCHCJWd++fVkhFOezzzwb0RLoHgC9evXidobH3Ne15QMGDHAtvZvF+/fvZ3ud2+W97rjjDoDXXnttNFP2tW7xSybxclm8h5AurK6q+krv3rAxPkaNGkXfuOcbScq1HiHMPhj38ThZ5I0z6UULF11zzTVgEOkGdzVifGCmHQa4cdlllyGJ/kYVHuLquuuuS3njMwPr4YcegsomdopQ3RVNLSFeQYihpaSWPG8PHQqgSZOmoZm23Mr97tj43e9+V3NQddSnUiBXTWDxDnv1jdbGH//wBwR067Y2DjNE3AqvjaZMnqyIlBXMMq2sKVUHT1DLKGFjHXPMMWJkwYctt9xSuYhUU4qZ8bTpJpsolKkkSUDbPfJ//7do4UJ53a3OelCu5mMigI81ity74IILwKM/vo4dOzbS/MQTT0Qw3UkF2SUovPuuuwBrSsRrEZAKsgEz0o+BqNJz/K67bi+bNH/5y19iMstDXh1st912k519wxGiXYTXX3/9PffcEyc7derEJosl5r85B3IOfIk5UNjT9CWu4WerGtFPB7sd9dprr43TJjPvv//975QHI4BCItwtEpPUL774Is1h1vvII49wpZqmk6f0JZeA+TfFsPfee5u9UQw0PbVBT4B8/bXXaakPPviAXHYNKyLfefudbbfdBgAhTk1SBnDutddezA4i2544QtlEHDHnn38+NXDqqadMmzpt5owZVIuNZvSr4kACMNtGuT19wnEfIl111llnmfC99957Jnno570wIVbQW2+9NfjNwVHlpLwyC3zowYdolw033JBDQkGSsAIeapXbQ0EffvChcmmOW2+5Jc0oIAmX8AqRiYnwsezI+MlPzqH8fve734FhKFRXVVOHv/j5z+GnkGimhFd7SY2bB6l/tKEQ9zg5GlU3KjEC0IzOE088AVU2ITIdFP30U08zWZg7Dz74IKvkwAMPYG0cddRRlie0DhZR5wwCFhLmM4Z69uz5UGJ5TJ0y5Wc/O091fpOYKVmGIO+MM87ANJ4hYPgmlYNBdVhFr7/+uuowrZgIWoFLxkoKzcrCQDmT7je/+U2Tpk35KkLFFy3iPlFTBJvKz5g+vVBQWEKpFcZ25t2WW2ypUDG8Tdjo4bDxymJgRmhc5qA+xgxVU9pdQ+tv1113HTuA+TVi+AhNgJhmTZtygei6gwcPZqGmRsDIESO1Izw/+MEP0CCJOUjxsznYZzo/MuJ6ViArf3IO5Bz48nIgXw6gdksfze3DdHKTHvKFmxkVCFKSPKUJhKlnLtPddt3VvIp7wHxOPDXTomXLE084gWA1OwTz/775/9ZYowvBOm/uPK9gTNR4hvfYY49NNt2EcuIwYFLITvKasQ0cuDmwoPVra+2oJ6OpaipNRggPP+wwMp0+aNG8uZjq6kaUX6vWra3ZP/3002aWpDYDgoPBTgJJlBxpHhb0Kys32nAjDmSTRfNyqlcV+I1vu+02k2XTvgEbD1ARGihlhFJatWppbVg8vdK2XduFCxbGyShNTM1gUe+v9LbwAfIf//wn7ZvmVZy9D5gWp/vtO3Ro06Z1dSM1C7tQJfrlxud36N6t29cPOoipgS3m4irzycRJUp959llADIh+/fqpi4ksk6sybKms96DN8+CDD6mUFYemTZpCzi3PWUK/+h4BGVwb+Hzot77FmuEQoEFxksrUKDj8ycSJHTt0GD9+PJ36zwceWLhwEbL/9cQT+K8kdYzl4YB4r1pEmKFgowZ2MQJ0CR3AarpZtSJUmYWEdXT8CSeeqGqunEePGsYvC7ALKuxCqjZq3aZNZEi6MXP77bdjmowaPYptoUSEWbLh6reKZEVJm7777rt0v+KodudV8FJ86//9PzgZFr6iRAxz89nnnlUFBkenzp114J132gkS7a5czWAx6Owfns0SPfTQb1lzQYOKsBjgZ7tYLUL2nl/bUzfLNwfU63D5S86BLyMH8q8DyrfqiJEjrO/27duHWCdh64CiDqutNTGl0MQToBzO5PW8xI1P8Yz7+OOrr7lmyJAhY8Y4mGVGq1atTY+pDTBQrdurF7nvkVcMzf33++575NFHfTk2evQo8Uqkw0wiaS+TS1I7lk4d0koASraKvf322ybBSj/zzDMjZNOmzWbPntWzZ0/xsiilY6eOVCwd4OHHNnfkFTjl5FO46A899NCf//znbAgKNWYv/CqpqlJef8XMnTfXp4m0II3rNQKv0aWLulMqESabPdXYwQhJMAfKkycFEx/xiKZZGQoLFi6gitTdRn30R0ipaZaSAC3I0GErtGvbNgWmMlVz/ITxFuYDYf4vEqAUXKWJ+StUp7pRo6Fvv33qqacCYRlEDS2gsUJ7FXVgQJI+wgiqrFCEOFliSnNKuFkzKfPnz0Mum0cH4LxhSjI4NASXRoQEw4CQHdp6mBMLiUpmbrIUhwwZjFS9wtIAJvPf3H///fLyEOy66640OoNA6RQ20xM2VhVF7hVyZo1u49E5GVix+koXwzKIxhxT4/LLr5AFTt4Rjg0bOHx3yjS0XYM3i3kRCc5/cw7kHPgScyA3Aso0Lg0RdFJ1tWVlXusSCEIzG5OKcrE82ybKdn6ZbpoX7rrrbmZy4OtlkLnWrrIa+u/xxx+3uMsZyw1grkaUjxs3HjhbweOVyM6WVVVd0NNReUQtRZoD3mOP3X/603Npi4A+Wdpv264dPRqXAwAoTi6V8vvoo4+yPJ5+9pkX/v0Cg4DetW0wegiyxWXDstNJFIxVDNhiknqhlvLLQgqnPCmJX8YrNQsV/EneCgFPhBeztIzqS8+FZfXwJUVgDmCOcahYQlFD18uc2DTUPHgGDW7YnXfmGWd4hUcuRHTu0oU5ElCl0/P6xQOO1NYjLNKd5LLh7oc/+qGZeq9evayy20Zwzz33RO9CxFQvY33kko484ghdaMiQt95//wOv1o+QaiuAFRb9itVoqyCVr+56iCeU7BvFanQF08RbrIuAJmtcNFPScuwrpPv1ATtVoWU3gPz6gQeyOO+9915LMJwQ1qF4leyKTXPlgZwDOQe+lBzIjYDSZiVGzbl5wD2my7R1dUXBDghKIj5pIHklQz2Czo8z+dt884GXXHKpTWFErX0DdbkKmYMzPM6AfTtgImuTvAVasvjss89++aWXQbVp3drmPqcSmUfutONOvM0io4pK5tVV1BuHQYxBp7wffjhsne7d11yza4B0IEEy7S4WGHTDnLlzuJ+jXmvdqtW3jz76sMMPh9/+cNsazC8hAR8rEjPGcLQe6BUq7bXXXjNf5ItmZ5hfUhiJv6RvWlBdIGFIFltAXpdcLxQqkhCMTgqvbdt2lBwPxze+8Q1wdDzXSEM2SmK48GFYHR8/btxaXbtCIpJppVyL5U2bhQWCupKC9g6PGNg4DNhYLLC11l7b3kw2RGyUOvhiiDkSk1CVIiwBThAnyCsr777nbjbWId/8Jmc7I0ARlh5ULZYbsWrBFFWxnECdsjbfYovevdfVKPYT6AZf3fmraKOhfZwS1wJ22HFHlbCTVC1GjxplUydDkB1gIYB7Q0uxFZDqgbC+8RGKYJ6eduqpepfNEFaIrBewJ6qqqu0ttOyiQ15yySW2dtrlYDtLJDKiSunMAzkHcg58aThQ3wP8panW56gI4U4Q04hWZ98a8pbZkldC8IorruBI56kOkjqzBK4oMRQLjcITYKLcrVt3293JYpvgRowYESffWYrIayqcruYopvO23mpr/tg3Bg0yd2RzQMYKsRHMgr2v3YYN+5AWfO/d91DyyquvSmVb0Cic8Ga0I0eOErZ8bsffyT5+mxNO15dEfNvPr9DoLUB/mK8nCtFugBNPOmnypEko5Ej3KT7joHGjxkkl6sjs0rmzXM4koPgtSFvbppLNLE8++WS7H8Ap0T4DLhOk1iwpaDhZIooSbHV4lxKK8IgUoJmQbfbMo652mOB8Pa1QNqsNd3ZNXnDhhQAw6q4777TazQKI2zBTeuSNrBDgyRCPRTY34DmFF6f+rAdf0/ktKUgLWoYX+cijj5iIWzVHJFYU61oPHBm88Swk6yb9NtoIk3lZaFZANusxnmSU3c4PfenNN97IZkaVsmTZe+99qHNKfc899mjfoX2rli3tZmBM6E42lAR/T2Xlnl/7GnX+8iuv+PZPxa0H2RioadhqahG3UATLo2i4JgWFFRmBPn37WoHSkS6++GLVkf3Gm2584sknEcamhB+Y7SzOwLArRSfBE6hi3izBeTjnQM6B1Z0DuSegTAsSdl3W6HLqqaeNGjWaPz/O5vnMfQXglwrxZLPRrYQ+8U0o+/ZPFlPkIJfnzfNKsALO7GsLbmYTQVKVsOZ03W///Tp17DRh4gTbwkEq3UPX+mqAe3azgQPN85RLeVBsnoGbbUbB2AzIzyyLje6nnXba+++/Z623b5++TZo0njxlCjluVrdg/oLUSW6iG5Gb/3Es05Q23LFCRNqv3nWtrgpNvA3BphHZd/317Yt8+OGHd9nF/sdKGxh9EO+LAwQjoEPHjuapwJgmwChRNlDW3IGEORVRAVvagxceRcffuPxxwvEncFazPGyZhJOdZD9/+gl+FhUeYhSHDW6s2bWrWqOKTWOZH1XQUqhZeBWz2B/tCfz0XcN3Tz6ZrWYtHLXyUoFMKLsUs7ng2XWXXczF+Wx8/WE7Z9S7wa7IPKEmSa0VjUu//e1v1cKnBHpC165rqogtCAj21Yklf1+HotmGfMSrYMAUuB5boIK5ye7RSU497TSRMvq4g7GCSIv3LAm9jeH4pz/9SU2t36NfKXYeUNiMPxyIdUR5avrAg7xQRlKKToWMk0480XZCm0n/dNNN73/wgeqz6rgWbDA8/fQz7E9kMtp84JwGPEmzRyT5b86BnANfAg7kRkCZRiR8xdp+dcMfb3jm2WdszqL1e/bsucsuu1i833WXXcnzbbfZNpWJu/reumVLfnt617TPooATZnr26OEMGXg+eP99shUGSnTGjOk0YyySQPcdoM35JoUkL++0D8ef+Ne/IIGZ9HY6kNmqXeUUCae3+J133lne/gMG2HlgAsfrYNEBZlTdeONN9LqNcoo2be3bp88uu+7KH+4zOVu+YfaVWizX9B28L93JervGEODTcEhCdYpKAqTXC84/X4kMBTrYgkXbNm0uuvBC03Qzb7NSs21u5/33269ZshGh4N8uqkWaMtaOfRCsHvzcZZdmzZo6/0cYA1EFA2MrlsWg4TwP6rCiol37dgwpZxXgPIc/4nuss455qsMDpGYfPARAMTOATJ0xCspNN93M3joMVIXDDjuM2cRmKuSqrDzpOydZXMA3AFttvTVt7XRkM2z2h+pgMssjW4QwPF9Zbz3KlUPeKzJoUBsqsc4euhQ4luXrvvU3WJ8O5kHRQJwNPuLnd5mW3N0HleyX/+53bw0dKmyxAOcDhqRTiInYUOJzPhaDnSKxIkq0fg8hxgKLkai1/MRasiAiY8+ePanqddZZRxhn7PeM30NGnH7tBggtuMUWsSDmyOVXXDHsww/1mT/88Y+MTmG1RfPuu+2GsS2at2Ag8i7wQ8geC02x5YGcAzkHvgQcCNLkS1CNVVSFKPV8HWceb065gkLQXjy73H3OZwK3XMIIeqfCgTQxLQts4YB+kkqsR4DYZMG3XBG2s6W56HsS3IwQcKpO0tSSgNnkgoULud/lMq0sSU1fKTMEFEyEYqy8jhMuiSwmrpy/sY6KLtgWK4BVRRxCZNmCC2IFWyrFisNWNOy9CPtAC4o4TSwE4MRbDpWyVwyUQifLQ9D6agA9JalQYazfaG5KXW57lWDIvgZsjqBeGcf+cx3BzHb0Cy2q9E+nIGRjskXn4ZwDOQdWdw7kRsByWpAojBAEYhSLy8mQJBOd4D0rAkynLk1vZUuMlNTDGVy9QVJnSwlZ6LF6cdn0QrgMtjJQiXcaB0JVloexXPb/UFw5Pqz8opNvOiIfVpAbS2MyC4AvJLTU5+ZqSRGfHWdZHiaROPn56Vz5zZFjzDmQc2BlcCA3AlaMiyyByvDdGtm93AwFubwCmhiqOiGeFFEWOZNCPE9AVsRnw2VzrUhkXekrAp2BiYZLJmIlB4MVBSXl82nU5ErhycqqyXJ5u1KoXSlIQpWjrZux9FYa5pXF0BxPzoGcA6uAA7kRsAqYmqPMOZBzIOdAzoGcA6sDB0pXK1cHmnMacw7kHMg5kHMg50DOgZXAgeXvXFsJhaymKAqbAcJCwP/k08BB/D/JhbzSOQdyDuQc+BJzIPcElGtc6i+1ALLhcrBf3riUBV/eKuY1yzmQcyDnwP82B3IjoEH7l+i+/003QGBCUvP/XRuoQcfII3IO5BzIOfCl40BuBJRr0qziD58IltgF5bJ8meJijX1p6F98wqdihX8roaJfBHZ+EWioz8r4NUH9uPytPgf+262Wt1H99sjfvgwcyI2A0las8SWgC3d8NhG1XnJzbCnQl/49StvKCgcSObJ/sXPv/Us4klRd8meVx8nX9pCQpytZpBYpKkFb8hqbTlWy8b54LNOkRYRlkhpEZbE1SFyhiEBQ8VCKz8zdFSqpLFDCkVhupKSOmCJ8w5hiSvgbc8WY8vzMQq9guH5HcyV3mXxJMy2btjK5igRHsrPElwXGmSzk8uHLY1lVsehZVahzvF92DuSfCJa2cBhO4e61iiBvwrXxFY2rKv6nbCXixH1ACxdVzJ6LFc6Pq5wzZ1HTJo3atKrEB4cAJ0/CplLmfaZ35RU9Dp8pf5DOMjpRIBWFJacLiC+JAV8SSW8FQorHEsRACcyyyYsnNn4eDKE4lwI3OABq2eWulFRF48inPZghW3TAkDyRaSkfsjCfIbxctBHgMxcXqUVYGlgakfEEMKnK+pyFLq2IzxO/XPo/D/I875eYA6v91wG6fnqWzmcWBCUNTJjNnld794MvvjtsjCN1Tzh09z7rtG2opwpSk1CI0g9EUCMpsnovhdhCXMwgrgDt4Nd4xVAykoPJkQjkFFUIlKKL76WY6kHGxPgbS6ojNcWdYhATkitZPwsrKv7+yOAHHnqo+zprbrvDtnff/fc2LTpefNGJLZoEiuuqmCJZ4YAKDhk8+Nrrrnvt1dfatG3jEgRn6bvUZ6kIAkVLTZQAoTv67rrrLncduRRAjOt33X3nsoN4ErN7AVwRFK9Kiogc1uuSAhciH3jAgS1attBtdKFjjz3WEfppSWBcsue+g3323deVksvtWi4Lvvnmm93rmEI6ktmdQ9/61rcG9B/QpGm9G6fSUtKAA5KV7poodyhoacf+u9nBZQo9e/ZMYVZpANnulY6XMaYFOZ8KE1zxcPDBB7sTId61mKbGQNJjCy3k+kRXHrRt2+bCCy+CMDTrMtuuBFXZV3iefuopdxwIaFNXKwmkkEq/9tpr//Wvf7lcw6UYroRIk1YkgOGnnHKKDnPOj3/cpm3b9BTnhnn1EL3ruOOO++Y3v3nYoYehQdENwf4rMShxd9S4jz/u06fvf8WC/K/UOi90ZXFg6cJ3ZZWwavCEeVu4TH20K/4IX9epkcIjho8Q+TkLNBfjA59fW/HWxNbPDG/6wsjK6Yta8ofXewy14CGvXRS0d6KlvItMbrtNjoUv+C2RY3WBF1OgxvXBptiBwiR3Eopo3U5c6/D6GufJhxsB4hOugfU4vH1xxeKaCrcMiw/TVY9fktCvuPgviSxEJIVD5HVRbcXCGv78kNlr1qcfcoSoJCEE/B9unlWJ4eNrnnlj0rQlHTfebve1Nuxb3WXDMXM7P/zC2LmVwT5IavkZxbs7fm659dYXX3xxvT7ruf/G1UpRpoeaFqhJSEp+xCypWRIO9o/uejXKwIQMtbXu4nOR4E033uQaBTf6uF+HQHTd309/+lO3HEGzcMECFxG5Cs/tO1DF2/ZcFXjppZce/I2DWCSQoME1Tq7hocXpY48bBVkPl1x6KeQuWwJTR1a50MwZMxTh5uWY3S+dgTa2xfkXnK/WMi0NiXhXO9JwrgIChhhFDxs2LJ7kr+4xY4EJ9UtfGs4ItezUephqK2bMmIkJ7qByLCb7yZWMrodw3zEd7A7JBx58INxQoEU8SSBmx9IUT3K39cgxY8aGey6A1gbKOUj8ltAT6lJszVDBYh1TVGlA3o/HjRsxfDjaHnzwwSwqmGk+TMN510fFay3TjGUDygrFeZIepau4EduFWIsWLU4PA02LSAZMOCcUKjXSdXQbxpnMYurAMiVBHuEzceWDJdlLXsvmARPB0iqEQE3N1KlTzzzjjKuuvlrDyBhgIm+LfTbmKoszj8w5sFp6AuJQ+OC996686iqiIU6/CCx3r516yqkDNx/4edqVSzRRhkyBFgsqWldWLKppsBrgSFuCYXFF1RIWAwERdWttRTXRV2NKX71gcUVldVC4jaoDwOJFFe5kqapuFG4QDOOzsjaZ+85dFObdZok1NU2IGkcSByMhOAVCDUx4liyBrBaqQFJtyM2QCMsTSUHher4gbBN7AFrJCXrX5QbBbDdD8isAZSK3OPMj7mA5sBJgA4SAJKuKh+tz5H19yMTR46e269Bh6y26Vbes7P2V9UaMGfnyoBGb9lu7V+cENik2hkKpK/wQuyNHjHB74SWXXOK3VctwbWAUUn4ZQu4+rmcWoKka1aEy4b/Mo/bvvf8eX8KkSZOOOPKIffbep32H9u47GjN27HXXXffkk0+6yPGUU09Nc/zsvPNat2lDPTMXXOv3p5tvfv311++86y43BLZs0RKYu5V/cs5POnTsIEy8mibedtttbtFlZboRMVKVYisJUCz0hJt8Xesck2hHN0r/4frrzVN33GGHPfbcM/TbRB2mqILyS+5UfPvtt92VLD7CIDLI96S+Ij1wBs1afIKqcaFwVRUwE27/RZioFULfiZdVJsWtyEVWRcQVvXr1Yj+FW60Thk+eNHnYR8MuveTSv/zlL26+btaoWaosY5Z4hRWyIwEFPEHJikGIXlugTdPwq6HQO8pjFr/ZeqVklAZClmAbvT307f4D+qMNEgW8OXgwH48ZfEBbzBN5mJIUqEhZF9IMpSVugUKiusTZf2S1mFBMZaU7uyQIQAlGvMBiPE8MmtALk/rG11ijxo0aByM+gY+ExPgY9huxhazBrA83YyFFh9dSitBbcFJMWW6Il90TsiQMFI4YxTBAh48Y4R5z7PUaikhWlEKltEJSo4ghJSYP5BxIObBaGgEGAPv9Rz/6UbxjPvZ7MzyTp5+e+9Nf/PznW2+zTVrDTxswhoz48FvZeHFFk0RLluIAsLC2YlFlxbhJtf9+8a0l82qbN2vZZc01+q/XqlP7IDlmzqsdNW7OjHkLOnRob6479O3J48aOWnvNzltusk77NoZyQLiAs2H4wlEjxruwddONO5Ezo8cunjNn0oCNurZtUzn47YXz5s1r265x36+0oKrnzasdNnKGu/uaN6veYL0Owdqoqpg4sfbVVz+cOo3yaNytW9cdtl2jWfA6F4ThjLm1bw6dOnz4KB7mjTZoO3LUnAXz5nVu37x3r3B7vSpMm1E7aMjkKZMmybt+n3bt21YyL8T7939PvL5gSe0GG/SxDwDGLQeu/88nxn00evZ7H87p2Tmo7bBdMuFSoTBRy33CXHPGkCFDZs6aRf2bNBNnQdlUVMyaOXPIW29RhNy5nk6dOoU2ra1lLkyZOrX3uus+9/zz7tJ1i3E9EVlZccMNN0wYP3677bc/6qijqPAgGSsqunXvbhZrBn/7HXccceSRKV2UPadxlIbJbxUHOL1iNaFXr15iXOjcp28f3u80C9EMxh27aUz5AH5SerW1nOe8ESnMgAEDnn/++VdeeeWdd991ATSHv/t50RDpBDZy9OipU6a2bdfWZI54HzfuYxdP9+79FZTARsdg19C3hvJX77DjDtQGwR+bl0JylzSO4ZWrigHEQqmT94cNk10tLLi8+947/fr132yzzaKqTglbRsAqRvdu3TVQ0sa1PXv27Ne/34MPPKCB+DYQzzfggTMiQaTJMS8LHqpXeCoq5i9Y8Nqrr06dNs1VyGGBIzGqxo0fL9ChfQdLMAIA2Tr4z4RZa62uzVuEyKU92GsFxxj/271/YwSY/2IEDUoOKBrbmzZtQm0nzRo05ScTJ77w4ousQxODXcId1s1gdr3n2I/HurSTLfjoI4+4crrrWl3RnxaqS48N12RPcSF1+w4d9CIUcjMw5jCZd8RMA3LwSS0rMIQd6dfl3TontoPXIafPmKFFeLkQzBsyZuyYKZOnbLX1VrGgGTNn8j248Tlp9Fr3dHNZuX/cWNh84MAOHTsG6dNgXMVyXeusSyDMrdAdO3Sg9VnVH3z4oYIMrkGDBqkvDlu4Af/WkCGYoF222WYbl0qn1cwDOQeyHFgtjQDD3n3zxl6QOJXBjo5VEqY4777nng023LB169b1FEa20ksPR8VmSu3fkoqqRZVVjSqrwqCv/1CTs+bbNDDyoSdfnTG/pqq2iUXfxTWDN+3V9YTDtu7do2rUJ7XX3vb0u+MW9OrZfcmSBaPHjm3dqt38OSMGPDfih6ft1L515cRJtTff/dJLQ8csXNJyiRtl76xet0fv9z4c2qh65q++f2ifRhXX/vmlT6ZM2XC9zqcdv90aHStnzK3569//PXLM2N69uvzw1AObt6q879GJ993/Ym1t8wUL5iUOgWF3PNzqe9/do2+vMAccOqzm+j8/PeqTeUiteHr0ur16TJr48dxZk3fYoscxR+5sr98Lr8y882/PfjLNZxCVjas/7Nyx8Z67bPDVHXs2a1o55N2acVNrKpo02mKL/i4qVv2N169q0q7NxFkzXx8yZvetNuAv8DQQU/V51OCNVn/4/x6+6qqriC3S+fTTT99zzz0tez/26GNXXHmF2UzLVq1Mvunyk046ad999+VCv/qaazh7efjJevhOPfXU448/Pm1WyptMbNGyJeBUc5N9usF66613/vnnr9GlC0E8ccKElBa6JM3eqXMn8dxINL1cnqw+kCSmebPm1CcJG5a3l/EkvACfIk9haVOKwaMiF1988c477/zrX/866niLFGeccQbLwEIAbwHlct99fx8+fIR1ClR5OOHpSIoHhW3btPnNb367xZZbUH5kvV0O77//fquWLefNn6/Qww877Ljjj6elTIut31O9aB47ZuziJYvpvG23207RKAmT3HROnJLYMKA6wcoLHR+eKZMnT5s+XSnGlKGnBbnlH37o4R49ewCwNGAHw/DhH91//z8iJt77b3zjG9FAnzVr1l577aWtqclrrrmG6r3sN7+hleOYfeXll0/6znessp999tmKQ11DWmKMJMYEh7/lP9Y/BoqfNn3ayy+/vOmmm44ZM5pjRPNB8u6771522WVvvvlGy5atsH0BE6FVq/POO09nM+fm5NBt9MAZ06c3btLkxz/+sS4BDFcx/N6//e263//eFhAYOnfp8tJLL/3sZz+joRU3d86czbfYAn4PVsBw99133/DHPzJ3mCC4RMv+4Ac/2G677Z586ilNrA+fcMIJOo/FlJ/9/OdzZs/+6+23M3CRrX11hltuvuXiX1/MGsAZTamCCIAKM+1WKdh6KTsYxKNGQcsvpUsjQCsceOCBRx99tHUQXd3AYRFioy0O4lmu3//e99girB/jSBEG2o477mgw+28ZfE4LzAP/OxxYLY2Ajz/+mABdWiNZ1BwzesxG/eomZEuDbBifSL+g3pLJepCCia+9FJBmffuDmc++NHRebaM2ndv0WLv7+MnzRk2c9dbwac+//vE6PboTKvMq282qXvLOuEkd2zddb+MBw0dPn1Pd4tXhsx7+99T9d+v44NOjn3vrk2m1nbp3bdt1jTVHjZk4aMSEmqq2jauqF1cFH8Ocyo6zK2rnVbTlnFdcbUXV/Nr2cyvmzKtttXBJxZhRNff/67k5FY07dmzXe831Jk1ZNG7ilNEz5t/9wPM/PG3HObNrr7/tXx9MWFLTqHq93j0aNaoeOXryrNlNmlR3mV3TbE5NxYRPam/7+ysTZ1Y1b9t8jTXWnvjJ5GFTps94ZFCLDp23GdjqxUGjFlY3adGs1pSV6ov/1u7W4aP3Zg4bOXbJkmgELFMpljIsvBM9RKTAH//4R8Lx+9//vtnSc88+d8GFFxCyxxx7LM2tZe+8804iuEePHr169SLsyGhS20Sf2N1nn32C/NIqibIg/kSSm7169koLjAJOZJCkyY6/NIniCYvUlUHZy8u/TaDbu9elc3AhCAOI2WMWMBbCiVezwBUxeWT3pMXRl0T2G2+8IVJ1vvrVr9LclDp/FQ8BMFO6SZ9M2mzgZuo1fPhwimGPPfZgEFAniJk9axb1T5SbtnIn8EZcdfVV9ChVcfGvfjVh4kRbDuk/DpX77rvPNgsWwPHHn4A5VBqbafvttz/88MPV9IEHHuCK+MtfbjvjjDOztUvpLAkwSpAdzRTbKUxb6UJjChO0GnOkhBWFdYcMFlqTO+Q73/mOtrNb89FHHzU9/e53vrPffvs9/vjjDAiWUGTUrX/+s/k9p0KcqWdwlAbB6w9Kxz2MYliAIAS0EdV70003hqoFo6Xir3/9KxV48EEHb7LppqpvVYjdcO+992677bbKAqCP8SoddthhGLVur3XBqNes2bPu+ds9t956Kz195plnrr/++tSzRSUzDYq2b58+wz766JZbbokWACQvvPACYHsJzzz2WFrZXgFrRlqnU8eOe++115VXXvnW0LeYQRw/I0aOpIZZKC+/9BLkCsXP3r17t2zVEjY+FXVXBfbciy+9hDnXX3/9Zptuyh+QbSxG2NVXXy3jod/6lp00LL/777/fZliGHVZgNVIx2b7FjTfe+PXXXj/3vJ9ihnhMY2H8+dZb9T1dwoCyy8a0KXAqf3IOJBxYLY2AuXNMCeaGDp1MVkqakvA16rJDqARg2a9FC4Csi4vsBfCi6im8du7Umlh8d8y4rXbYuF/fqo9G1/zimqFNK2rGTJ5NhTMCFlY0n1+1eK12Sw7++k5bbFL15tCaa255a86CJkM++qRf//Zv0Lo1rVt3XuvgA9fr07Nq8uSul13/1sy5i6oaVSkVhnnVzWdVNp9f2ZSzMgg3qw8VLedXtppX06SmqqJJ04rttt9u6vSFA/p1692rauSomlvvbTF+0sRxU6bMXVj78pBpoyfPm1vRevP1u3z7W+s3bVbxz0d7PfTEK3NrF8+vaWIZ4u+PTxg7s2lt4xbfPGDL9fpUfTRyvTvuHTpx7vgXB388oF+fD0aOnVdb27qpPQx2IwQjwG+n9o1HWoCYPCUse4Yn0cMxuGK/GoucogCI6ebNm5mZkekXXnghRX7kkUcee+yxBD2JDJn93sTo5Zdf7tUSqIm+qaQwgGyzmmVSM3y0a629VlkSpGbjiUhqQOS8ufNmz5lNfdKyZKiPFIhmkJSKRYS4SLxwwcIZM2fQAVzA7JUsnoZhVUOe6lCfdHME0Anjhn/zctqdaqcF//nPf0YjgC5nH8ybP4+qphs4hyGhe3wrIRBqWlVlVnfwQQfxcm+/3faDBr0OG/362muv2Qfztb32OvHEE03NlRvneQ89/PDe++zTvIXdfI15s/GTPjBGAJgjvvHGm9BmudewFjGGmWJbpTAasMWUdM7cOdttu+3pp58he0BSv+kb+kgw0PaLvuuvDwnVe9hhh9LEhx56aJ/kYdDMmT2HCvx47MfvvPMOFw5TBuRyyWPlbLLJJo888shTTz65+267W+n+x/33a9C+ffsmYqBgw5mU8zQce9xxND2CrZQ/9dRT9LHmxi5thD+U7q677mpMTZk6BbV6oD5JAcvCN8AYRQ8+IA8YPtPTuy1ZojPcc8891dVB7DzxxBOsQ9PrPXbf3YBg4SmLdcv9vv4GG9ga8s7b76gmv73GksRvz2kv46uvvsqo3XvvveMKDib71oDjRP31E7aFVh41enTHTsFNlT4WXCRZcTjzzLMYuFpgh+132H///XDjoIMO0j0UbaUmeDsqK21kmTBhog9kjjnmGLXTozjDBg8ZwuBQKEpStHkg5wAOrJZGAKntSbbplpFrBomPlD5z60blFvV/dUWNf2KM84LuS/AaRut2rTrswDWGT+7y0tuL/nCzlf0FduDMr2g8b0nYgmc2z89eXbtovQ5V+w6sbtqoYnGPqhaNq+ct8NFU5ZzFFWNnU+pLuracvlO/6paNKtZuXLHN+r2eef29RsmefvsN51YvmFe1wL7+xjUV1comequqbSJaBHN1Rc+1qo46oOvIiTWvv11z7Y3vvT9+7oRZNS0bN6uprGncpHLi9CUz5y9q0mjubhuvvVGXyvkLK7bbqPqll5uMnmHbYiN7Dwd/MHlWbdMlCxdPmVQxaVrNvMW1lU1aLpzdfPLkeXPmVoyfPGmxb+jaNq1uFOS9wtkB3Tq0HLR4AeInzWYfVKb9hkqzs51NVpbh9NP+++1neTUr4i1+RxuCSjPfkpGap4+pZzKxf79+FkfNZYkzuWx/I/ukNsRPwpJxCxYstLhgNhazp2CyRwxpDCHIsx08EpWVTRo3Jqmp/K22Ciu1SVylnWs6FcUpxq8JIrlsDSKomZqwgy8mpQjTgMZB+f9n7z7grCqux4G/3YVdehNBFHUXRFRQMbZYwd419hQTezS/xIKK+UeNLZbE2DUaY4st1oglNqyxYEeUIqKydJCO9Pr+37nz3t23CyIg+pOf78Ln7dy5M2fOnDlzzpkzzSsD1KA5xsONiuKQ4OCNMUZmjABbBvbdZ98xY8fYIsHFbb5WNT01HJZoa3k37NQpznOv2cYyAup8odkuk9D82F2SCS8qDUo/3vbHFKTaVQ+r5qKHadu2a1GuKqVc0ysqgjhfhXzELf2lKela3qPJk6dQYNTkL37x815nnU1tw5DtEsGm6evVr1cWKBYaK0aqFAsgJjMUXnvtdWhTOx0gxSP98eCP73/g/t/85jcvvPA8M476pL1krAM2hR8DzBHwd91ll6uuuopjfMLECRZDvPLf//Kp4LFAPvtqrI3PZi+68ML58xdMnjyJ14GvxdQJCCwDFBDQTI0bN7FiVNgUXlmyDJW+96DPwQcfzFDRcL7iTORlt0UvhYxH/+pog+/FYcFjiXkoPiRmVlh2lzDG4YcddvPNN+sO0u+91168L58M/QRXugrUAABAAElEQVTRmHoMXyqc0wKjMjVCy264oSI8Enfo2EEA/mu1a6cdUTj5UvOD9+RlU3puuvmmpK7B6ER5SIb0oZ0DAUMdsxkc6CtSR54kDy+86CJfPTGvQA30YugHT4FUmK9OlCA19MBPhgxZqlXLnCcBsfvK8XoijHWXnP4j2FgB5EcQIflH5BeTsnf3/vDlfh8vqN9QSa3abDRm+oKFJaULdUWJw8o7S/cWVpQtbFAWTC0r+UtLjOFLFy+04S0zf2Gmon55RRm1lynXJStK6peX8lUrNSmxRKHzbUFMdh0afJu2Xkh7B2VTQUZNn5W99+ERr7zXb+aC+fXrlTRp0blVSePZcxVdKuP0mTYuNCARGjQI7auIigpZobdo4eL5CxdJMJ8oa1Be+sxL/7H9cEG2dO7iJo0y8+YvrMdiCEiUljZo2DBsPZAv+b9Wq5YNy+tZDzmbyZChVAidQGF+bJOjRkV52tT6axxGGNHQS52KJpqJMMKXqpBNwARzOUFYUUEZ+xrFVhwz1YKbvIgn5uhdE+GkqnDa6MAactExwZOff8zFEojS8HW3WXPN5s1bxI3vUTJKZRrYfvFWrQIyDRo2oD7ZmrAKjLRsZtJqyVSxNWunnXJaLFCtKe+GyZK0GAMg/Uot0WG0iF311gTkN0TEJMlvIqNpbhZAaAyvmiHoieDqjz6wuIyOulKuFoKn4ezceXM1uhgEZCEVQFyBIE/1pZdc2qxZUyvYH3nkES7u//znqc0225w6xAmhuNqPEq1XDXF6TvJQcim1UA/NaVOWnzB+sPnCAohDDj7ESkOZ2H9qWhvkUt4iQOPjLbfcklq1Uo+eoxS7bb45kzEUniAGZ1Py995zz9Chn5qnQHDWUDQgot6TjP2HppFbYkkQIzQs08PJbDL+GN57rSNxNFAEIMDLEs0pNcV12le9YtESWO7KVOVywNMbdu6sRawGULpx/6mnnArVT4cOZZR4ZOzapSv8YQig0gHRQXgYsFpo5tqPTxMnTBAHlKkQmMurxEaNGjdrFrZFhOyJghcwr+HxCvPUZ+PVE5KFec668MUXnx8yBVZLI4AQ50DjeqUn6jSeHnLQgQeaKotMX+fr8rwGmZqoPT9m4o3DeajTBcRRlNh8/+6H415/t3putnGXrpvsvltVk8Ylp18y0HxzkISxmOyiMuPyehlLugNAipU5UVJav6ykvDRTUVoyxa71+eWTZ2YbNCuZuyg7+osJfK+Gk9wAUOD4Vjo5YWpAjPP7LH3iI65fWm7A0/etWS/1HT2npOkO23feefv2E7/M/us/E2aMnymLsho2br5wcUm9euUjx02bl20q+8Rp2TkL5vpYr36wCZo3qpg+c6aTf448ZN/mTcvKK0q+nJVtXD/DVGjV3I7BBovnZG2qByrWBUYL5i62l7pZRf3mTespg5WTWAgZo+STTzrJJGWo5BIPPd16jdZqHcVone+0hYcU4xIIAVaOqRCNOn8+HVZeP4z+yUaPNH7rZF9v3XWtrB48aBDBar6TCE4bnbi87rprJ0yYaOiW5iLcrfkCiu70q1IBqyA/c49CN+nSJa4xNPwKaIf9XME/EQiRtGMKrVYg0X9iLMzevNvm8VMKAfQ0MYetobxpcpoMl7JRGCKJTK+BLz3EqAePZfDB354H4G/0aVNCYMZNdxLTMV4ryitQSXY4r7Soz2FbUsKSOOTggydM+OLWW28zHW58b+CbVqQwwC5JcuUY32va3AK8F+yAaK8buHfqtMGAAQN7P9b7k0+GLANmIXzhCNAvF7dRNUeRzREU7WY5lHJFoyRXAd180sknsbfszJk9Z84xxxwTSJqHCBNVi4SKcXwJ5513HguA8wDD9Dz99CZm6pJNHCwDaSJN0DzMjwTyLmrcqBFDM/oMYgJ1xLcg09mMD1apOX5WCxtFNU0rmMdxlolZCe4lsz98EFpWE6eYgCwvPIMpUPBgJEsEMOEee+zOeJIIPyhacbiXSWEGIU0ODY9XmLPnIt0skvDYp1pZVSVLmrgYKFIABeoK1tWFKHy5lo+1aN489Jy8FYz7z+7Viz7Ql1a6IrqIPhhERtDm9RZnGg8fl/2werH/H1UvHjB88cDhi8dMyQ6uHjdzweJ5i7Pbbl21+UZlo0dlDZPLs/PLsvPtRiqx6X/x/PqGzNngOafahcsWmyDIli1a3K5ZyfqtGpQuXvTZqBlP9Bk3elr2n4+MG/DZ+IXZcsqVz8CQuzwzv0FJZtS4acPGL540O/vO4JnjJ02ul1lUf/F8wD8a8MnMRZm5i0s6b7hOp6pSMePHj8su/LJeKWdDpvMGDeoFu6Lsif8OffOjRZ+OXNz72YFTZ9Pc5eWl9RuWZrpVtW64YM6C6bPGj5rYpcoxKNlH/93vtn88/emgUSXzM+3bmGKnJgm7GirOnMVEKW3WtFHTZkGeBkGUPJa8/fJXvzJvutTHMremzZoSO9LWwEqyeuUAMAIjp0y1Bl3rUIVM5pOhQ3m22RaJOgu5yLslLQDxpLmV8PPmzye+jfu1GXHpv0+meAcOHGQJQqEXQRGUBFA5jSKdpxCvGBOjsVCCdrAAkmRy0S6eoGLrPPkKFlYzMGE+Pk2+ycabMDL4hPu+8YbVc2u3WzsgzKJKals4qxKoW4BchFxaWkajwIENQfTbKEgtUV3WujMpzAVEOH7z9ltaci5AdaVUqvVNYfFogSQ2zvRXNGjQs+cZlNbw4dX333+/L+wkVghSDP54MDrQQ9Dgf4ZS6DLJYxIheKR5nDIZ++UobLZanNCRt2vXTZkFWnz06DGWucV4AKnYACR5coDyf1QnqVHgG3ND2KZ3795aHFhWVKqJ4WPBAS0r0soMEz1m9znSgQFV0wtELe410jOWwJjovGFnS+coVLPsAwcNkrjTBmGj5m233aaOMRn7IOZS03XXW88CQ7sHo5sBSc3KS8bVAR9cp3E5/y1IxOG6gBX7GMnaCC3luAWefBSGhiyFKj+FH0v0CzLrv6qySvb33nu/sqqq80Y6R2fmptmlU0871UoF5gRjAgGBUjqzAyVffPEFtQBw6pSpanHllVdqlIS6aUOlhRQDP2gKrJaegNhiLH2nz1ol5HAY/Z8536NHj6qqqtiRVrpVdRH/ycOSjAn8hfMWlvztrqcbLJ5WlglzdbqZ1eV77L5Tq7XWKqkYV5Kp/9Dj7772WsWwUdPqlzQtzS6eO2umETRFbjFBvewiw2U6BEC/zg3KZuctWrBwjaYl22+1wdDhY6cvqnjyxY+e7PNew7JGC0paBxd7Ynooe6MObcZNnj5l1rzrbnt2zWZNJnwxfX62WRmPwNxZZgfatV+n7JNh87L1ez/Vr9+79fsPnbZ4Yb0KhS1eOGNWduMNS7ffZtO+/ceP/TJ7xS2vLpo/PVPeckFJA5MECxY4vzDzk73bfPLJ8LFTZr72Rv9BAz+dM2fBtNn1m5QuXLNlg+aNSzp1rHpj6LSZs+ZEZRe0pCMNBg0lOVu1DIstVqEU2WvPvUhGSnGNNVpRkJbm3XLLLdSkHVb0c/J8ZUv6+pODDuIQAsHWrx133GHrrbchDUGjDEwYGdItNXPUAbIv9etXRdLQl1xyCR+DrV8WW9VJFmF9LUx6mkPbKgr+fHslWrRsEZApLWlQUUHK2/CGgU2giCT7FVGIokjT3tSb5e42C5iBtlmczrNdFqm469ENenUQK3ydNnXaKaee0m6ttU7+zW8YE4WfkrKCB0KJwe7BiMGiCg6fCy644MQTT2BqKI73ngNGAlvUAj4LFvz9llvMRESffARIG1ls4dAkCW78241UkVwUbSgiOfr37rvvpiCp8D322EOkgvw68sE8uiV7cetEBAVCzBVf46+1nJbiw4E2jQliPOC0PgbgGYItgWDRvrIgACWPZNHmKIQmnAJRum14V1515W233kbdsn7ibkwVZ9mwNal80KS3rdFeRBsI1ZSat+hBm1ZWVnbfeWdqWNvBxJiEucP/xCZQR74BWfgYYq1rmjY/holYAV7Y6ExJTkFLX3t0726mwyZAhi+w6oXsHAzsKq+Ms+rqaitOunXbguWtR7Bm1lqrne0P/T7oZ1sBNOwUrVPx4muRAiiwuhoBoauUlJAjhafBiEn7c0ywom1M5EQNZyRVv2RWRYnZtUbzs07Ua5EsDDDNny3Nzispb/ijLdv1Gzq9/ydjJk6eNXv6tMr1OmXKmn829IMxo8YtnLc9j3l5Cd/AXNJUlw6CNZgFs8tKZpSVNC2vn9lp23pzM92fenX0xGmTOb43qeo0bW5Zv8EfBx9CmDjIHLxv26kz570/oHrGXLbEwo023mLi1HljRg9uUF5Rrzyzy85tPxm96KPqkeMnfDll7JzKjp3WyWQ/HzVs9qzpo0bN6rRRk6OO7FS/cdVbH46YPXPS2u1aVXXc5O1Bw2xWDiv+M5m125Ye/4utH3328/7DPp8wcbaRROtmzXfaqkP3ndoajW+7ZZObe8+dMXPOmHGLN2yZ6AMr58dNQhnLLWSPJELtFSXvkulpU+uxjaJuuOHGxo0bzZkz16kANgRaVc7FnQjcJTPlYkJzZzJWaHOuPh6eJ8xeGwNRA06N/OVRv9x0080KM7Pr4pNGrmgVDGqZKfRuCqEmkFBj2QDxJMVgR5y15QbudoKF9PRcSUn3Hj2MbhkB1dXDNt9sM/GRyAn7hELEeCgYw9Pz/3j+327624MPPsDcMbI3x8ENY/m94bI0NSgtEWJtOCaZozhOH9T6rryAS7BIon6ifkoTLGxeOPLIn5oRsKjCSNdSx3ffe8/yRusnLFGkXSorK4d9/nkuWyZTVVVF49rND77mOProo5l6gAFOc1euX7nrrrtaFtC9e3c7+APCSbdFWy5r89mFPZfuhEadSlkIaVekZHHLqEBaEZgwklDSuQjW3Mm4yy49Pv54iFUjppwkw1F+v4pGlvpbrdnnuedkV9mePXv67f1o78cfe5xBhFdNycvLFOBsYAvazucoSTNZCNehY0drSLt07Qo+jJh6DCNnBHGVwdD6VoMWRoAplZA+eQoxjzG5XzTJP4Y3SBea+KSTAGHd0uioKl71bS2h/vFStCwtADzxhBMsumQTw42hhmF4MthVVp+kxdWhZ76o4t8fKAVqtOYPlABLVNuoxH+iYurc7JyFIUwl65Q1/TKTaVRewmPvvKDxk7NTpmedErhGy3DcHschZd+iSYnZbTv6bTtrbAK+Ycjq1J5psw3vMuW0amnmufdmTplb3qplvcr2Jc4OUsyNDyz877vvN6s38YZz99uovbUImdnzM5MmL54xI7NOW4v4wjS81QAMiMYNw9rD6XOyEydnJ0/JtmllXtAivYxBPmdAo4Yl46dm+7w+qlGztddeq3S9dlbCZz4dk73iHx9MnjHnkB83/Z+fb9aiQYAAwxlzM+MnZp0/2HbNkiaNShpZMmVtUSZz2iX9Px0x/Cc7bnDm0V1Vv+/ARWde9WzrRvN+96u99tq2cYVpjsRSWYJ4Xx9BeFlFSK7bYx1Tk01cymQ0/brxRhsZ2Rgl0xbindAyf/4CB+qRg8sAbTw6c9asMfzLY8ZYz8iM4NelA2IufmkbAkl/kVH8LVUIcqtKr/SvKgs+tlxTaeahDNbr4EPtcRUYaKYivk6C9NVwzcZIzurrrr02zpRHfCCAAs2bNefDsCsPoZo2aZqsXg/8YxCvbQBHGekN/gymrUU33jUSZVvUS/ZyyIWYzCD7zsN8RLIw3l41Uy3G4kaoXMrOqPnLn//ibMQUpRigWuhgagMR6pCIqaEtUMChBYDPmT3baYCGnqxwc+coRtPQeUoHIbaduiAIlW8vjyzS+AoCE/L8C85/4fnnL73sMvZEsCiTruV0yF5nn20sbh983dLnzkMQ0+2qCVU6eOaMsAaCH8UvmNOnTRdo0qSxw4BhYlWpgbv0G3Ts2KJlOElaJIND63w5/ctA2GZNISmLsLyIHNsdKGcrxfOXVAcaRtuOseJrZGiK8dUUCb3rE7AzZ84aO26sxYA0Pdw8EWwOq+nTwXciNUzE2A7qgYNksYIOyuTq16ZmByTwAMX70qRpE60QY9LfgNvcucir0TWHqrVec01MLgEzavac2QguQVVVlbqI1MvGjR07ctSoddu3N3kRzudO6JwCLAaKFIgUqMtqRbroKVHrr9EgjIMoSzF1uo8ETvhv2KikZUVJdp1wZQCJEtKELhkeHoPGTUJ28VF9NSrNNEiu4rW2fuqs7EcDhrw5YIRrirftVtVjxy4jx2Q/GjyovGxeqyYL1l6jBBi5mpRn2rQrzbYLAOsgAHJFw5K27Usy7cOngE/yX0oIj5+bff7pp2dnWlU0KD/8kP0ZKM++MW7O7Okt6i9eu0XrZuUlFo6bUyDKmldk1mFAUOph/jo84DiMbfdtO40ZM6rfh4NmzO/qZoF3+n/myNoN1mu+4XoNLW7IjxWTDCv4QxlQxoWZCEQxHnItDniDqlDlkhKCO0j9r3uI/gghjsPqJKf/iO86kUu+Gk4tGVkYQ6AbgNqZZmRcGB/DxHGUyEt+SmNMylKfzkeik2zvDov/Cx4IpDhE53nBx5zCS2PoISseaCYxyBWVijDyGjWmyQRonfJWYYmlhxa+7fbbDJcdlxtjCn+p6jp506/UWNRkMYaVto7/63A/5ViTf8InKlBDRHxMiqfZY8DCzy++GM9G4Qixft40PKMkDPStp83oEQMc+id7Wpc0e4XJEndv5B8KMqr/GBH4J7EG4qvqIksdyqRcxCLJgwl/kct9E2kMUKrmfxqTaPbG7da2SiY8yB4DfhlwoLFQI7uKKcQ8YFWbz+UtzC49iyqFFgPLYFQAMRgIzrYKifMSIZReEhCLxxtI5kFYLORBZmhJjsKpqyaWVfwtUiBSoJYYKhIlpYB+Q38TcfRrTsGn3wRClwquSurfE1b05qVhTarg5a15i4TWYWnfBo1KunTp1nfg1JmLGvd5f3qffm+5N6e0XlnL8vm/OnRnbgYlpullWeowmF8zKOOkZ+cKSjo690PlWqVbbNbtlQGTp8xtcvW/3nIBYaa0fkV2UdWaZdtt0dF6Q9gmx9AHvwWjAe6psQJj37fv2vCNt1pUD//ipbfHd+7UdtCnnzWqv2D7LTZZp3UpfVJQrZoKfpMQQUYcB8AJ6BWWVioeVGEEUkspfhOs6uSluY16Tcr6rfNpOV8vvPBCg9SxY8buuuuulmpDmLxezrx1ksW87JIIYTlBzZkzu6qqykk1fAx1AK7oqxI9cf1gnbxQ8kkjBn5MKhheS0rGjR/nIGTeGgNWO+nNc0dXf1wTgLy/PvHXlZWVMXEdmCvxCo5cqwraUhGItYufQnGqudS+utTMKxgZKpI/jKGw3BjO/SY0l1LNWfUBIYHYHCvLaSuIZjH56keB4nTAUtosCI/kCRLay5KCOkkRBjB5MzskXzJZAqTWj35pojSTmTgvO2h49oW3Pv985JhZs+c2qGhQ1b5Nj607/3jjsia26qWuhVxBIVfhkxZVg2GQuCGZ/+4O/mJm9vUPZ/33/Y/HTfmSE7ZV82Ybr99qj+06dF6ntJH9RXkDJYBNUMrr31AI9GZnM4+98sXTzz/bvn3Lrbba7on/9GnRqk2vX+++dqOShklBkqU4hDzf7AkC7hsLqVUCZFn1cFTO/HmFA+JlJV7at7PPPtvxANa3/+bk3yx1LL60TMuM034r0gxIxJP8tR6LZRZZ8HG5S49NY+c9CnBo77/ffj/7+c8NsnOwEji86zRoYgsWFLF6BZebIN96tfKYfOud4luvSbGAb50CRSPgm5BYV/MkunfpsjgmKCiCoqZ2nQqcXEI4y2+47TNIcm52iwdsABD2P7gYYk9Ofo3XCx9FBkDhSUpP/tpqlgy/woIGlxzaRDzLBTlOUaP1TS6UBT+/gP9xi3/IHXLkCwrv4ZF99uLMXLsjlJr4QyzfNsJpzOtoxuNbMAJiuT+E35wDPFo8sX1/ANWmitSSnRd0UoGH4AdQ9WIVixT4vlMgep2/71j+b+FHdPmf08dLQaJGES/lo61PIXfNI3UY71L52XBKoEkEy+voWV59mlik44GdSxC0cgCc1/tLu8YwpsiDjnlkCviGrJmsU//B17rxgF+R3PhWGyo/WfIdayalY3ASGySUH54ke3BFqDUk2QAhqjSg6okHGIdQ8VkJCoSZncTKkxe5I61XAs5qmKVmSBrMzoRVf0jVXw1brIjyD4UCRU/A17R0kNVRPdZJuBwiLDraC/MF8Zc8QEYlH1RwHlSYFY9lhZi01BCXvsTs6fA/yZr76E+ElEAu4WDIlxYypcCT4vLw4sAsfM8V6Y9vIITfZA1g+OhJTAVfg8lSfIoUWAkKRIaMvyuRvZilSIEiBb4FChSNgOUgKrFV5/luFeGS5eetgoBHgktM8t2iVYcmxdciBYoUKFKgSIHVjQJFI2B1a7EivkUKFClQpECRAkUKrCIKhPnu1f2Jy45CLSyyS04EW91r9O3ib5YiWai1PKXYhBYSczQkvoa4m2v5sy9PEXXSONsnHutmubjSw1fNGtGok3Q5XlchqjWgUs9MGlgOTL6lJDkSLSf0iHDCALE6NZVaTgjfy2RpLZYMwDdGBhbCTgVNJh6zpVlWZc2UkhS0yoAn0GC71OZWylLjCyu7/LVbXpxXRIzULT2pTmiRRBAtb4l1oXzlex2wqxz+Vxa8en5Y/Y2AMKce/BmhpU25f2v7dFfP9l0a1qiULkNY2vfCOFu2QmLzDMlUQ468kdqF6VZd+JX/vuK4VgLiD+ec83yfPsGqC4sZ654d+7UFBn5ITpf72pTLmSASzUb/AQMHOHY38tty5v32kqX30CxXEdaSUBj+JcQJWxWcfPed281KhEDEgfpKw8tVhSUSgaYWTlR0zn88GzhYjQWVig0XfiMnF0BwkJR4zOYUwngWb8HHbxBM+0simr4BoHzW2Pt0hKXJN1XwRHrmM2TcmzBw0ECVSmOWMxCbow40edNmcn+jUwsXLFyg0OWEWScZ+0GrjRw5ctCgQfasLol8nfQr9ArPiFgKdqXxXKFyV9/Eq70RQKLNn+dC89z9Y8X2/lpeDKOGOML+2qSZjI7qqjQn1EpLsArY7e2s08QuWI78K5jEEa3usO//wQdEzqCBA/95110OmFtBGCG5Ojrrfr99933sscdWIvtXZSFfXMh2/PHHk4PfE05zdIGDCOmwr8K5MF43iWf1BF0SLkVc6OJd5xZcf911K20KLKktCktcMoz3HCzoPuVjjz1W0YcnN/F8E2KCBod33n3n2GOOcTmhk4jcALTV1ltfp1J5sriXcuYM94DUaEqc7A6I2BHoIUdBO8jZeftLIvxNYubOmetKp+VsnWUU5CSl0MqJZbNUgs+eNVuCQghq5BauZV8oVZg+DcP2i/Hj0SSNiYG0jTTcJclNWnpZnTTL+QoUDnRBw0kn/Zo8WWqNlhPUkskink6D1sSxxVct/CVLXN1jVtctgoH/SkqcEO5O1YT7s07T3Lxbt3hYacqvK9c8gM+dN++dt9/+fNgwwtFFLy59UZxzT197/TVKsbKyco/ddzfSdJsZwbrVllttscUWRhW4zeVdbiupYb6EAQFs1LjxZptuOmjwYMeDux3HJTGyE4VuGZe42+abOzZVIJjWRJVbQ8rKiDAHlbszzfXkdSoCakwrXmJdyq+MaWSanphLRw/I5c4998fMnTunbZu2O+y4Y6cNOkE7AEkBQqvAvv/5z3/uhrTjjjuOTBn88ceuS3FEuZvWwk13i2tO6IvFAZKWJUbRCUYF4JKCfErx5OGMCEQc0MdVcocddqiR6r777Ufj9n3zzXhPTCxieX8NDadNGzFyJOkfIceMsdxCmsSKF8bElOJDxoSqKhVfo+mDJWJMWotclqQhYjj+RrCxgQrja8K1qR3jI0o5CMqKp9znA7n4vPzVOm4icPWi84x9qoMSVKOOhLnh15CPh/Q6u5d7bjCVKsyfP2/atKmKc8I8T4vsoZpJxRNAIUt4zXFlGDHXqfiSdIvo1fkFlgXpmGQBEBzITwEYtR9y8MHu3Vmz9Zqx3OhnyuGgJkm5KShlQbGGYOFzjS0ql0+A07uaXsVHj8p1QxB69TrrkEMOdZ+vTBL6dQGgA/97ndXLkV8U3pTJUyg/Jq/GSho+1Dp3HmIt/k3QSegiFCuVYhgCIXPyJE6X55/v8/Qzz7hLyTHGcPMhQTMkiMiHSiVPjE/Rk6CQ2iNGjPjjH/948UUXuReD5yTcLBAJkcfk+Ree11meePzxyC1JuwEZBtx+gQXNU+dKgpDCV8gkAkSNwev3fr+/XvnXM888c7vttpMx4FrwxPTh15N3S8QesWTigny1grFHJASxlTnZhpxvF0imcEIgqWbshkCkn2qBS18iTVzTMGfOLf+4xWUcl15ySYpkmqoYqEOB1dIICJybybgPzRXgLABmslphqbZt2vzPb3/r3s9C6VCnwsv1WlJCIvz1yitffvllOn6XXXa5+aabKquq3NJxxx23P/zwI+4w3W3X3b6c8aWuIsHvTvndRhtv5PhuHHzjjTe6YC1gmNyZpnsA5Zq+NVq3/uUvf+k2UkMxd3y514uocg8pIe7EeLeL+iSxXuoId1lkB83lIu5tc3c4h4d4yMf+EAVKeNUbS0tjJ8xVLekJHw8efPU11zi9nNp2mjpN4Kw6t/NxEroNlY8fBFeOwtbNIvGWGqCiiMrJvgQcJGd8OcOv7scH+FyfPm49cZW7K+AYQC5V69Zt8+OOOz6eee5MeEMx1Tn1lFPWXmedWkjmpUnsxgHtJCZGh6qGAWI9t+KqZvfuPSQgg9y188ADD+y1116x7rkKrsifXHGJetZS4IQY0JMYkKIaCVTNS7QIPodeooAjZfg/UoMpSq6YEvuhcKiAGduFC4Wl96h+XQlagLkEofQ8WbyC4zhCeiX6x6GKDeDsgD+Q/dOKCpEl6h6N7nE/PdtOyggqrVcsClhphAXcMPTxkI9HjBhuLgM/iGSYarsePXZxE2CNrMw1SbI9dHGtc3Bjg6Y4hyKSWoTAVzyxmn4pJ78e2TEhXjrqqKNOPfXU9ATGQN7EL5l03tgstYDG0hfj3sRsrfUt/wK4y4Fc8oQ/Y6XEzJs775NPhrq+RyoEBAcaBg8u2tGtnIjRrGnTk04+abfdd9MrAx1SZnCMR2J7+RVfU3HYhb219tBmaVdgaz4hSELAMOniuqb33/9iwhcaUfvFNH7FBzoE9vCT88WKieFIIjAjT8ZcxrUur5o3bz4yKjGmiXUJajKbZeyyzgNLJY+eHKHlTMCgr8MTvzJ6ItkBj/DFB6iZheRP/w/7A8VQy4HK95T4WvgLDa8ggBxRSpFPk8U04TWpsr/Q9lvTNVAhmZOKKQNnRqbKmwUhq/RhGivcQhnsG6ehRCJLmQebJEtaxQlpc+e5sDFYPEmytI7SFJ8lKbBaGgHYRh8++/dnE5J4V29K+kX2iwkT6DwmMxEQ+uhKPWGtUCY7Z/Yc5kW8F87o+dXXXjNuIKZp0CiasSwxTcJyP/LFEf3KEyOZgbteYaDDIMWIlZWV4l3NssYaaxAHgLjSF+86KZ0bAFs7jl6Xk5HBMGni5KnTwnV2XvWWcKMM8V2/nrCCVIhKwNMEROgYyQOTnDhIbkoNHL+Yd/Tde+65R2I37TZs0FAKN/YOGDCA4HMLKhHAJuAqlJcFAKxAyJhAVqnQ2ZLIADz0vtDbqyorDz/sMAbBYYcaqWf57Z977rnq6uoDDzgoXp332quv3nvvvY7Wp7bbtl0rkXKhFUAmd/yGbgmUkLKcwjtvXnlFUJ9KVOW58+ayKriIXXWvyu5f32ijzi+//ApKuigPnJV44OlRojkjFXFmLfqLYbGxkMaPGy+SgF6j9RoVoe5BqChFE0MVwaXUNMLMuGbNwi1EAZqTlRfmplpxC4C8O9q1YcNG8X6apH4lHELxOhwJ5s2dq/kxCQZwvRvIjRo25OZBZ8CpF0RADXAU7VO8WsYnD4I76h983ChNUxcJJtJNXtUZVl2tOGlc4VOvrMyVS9DDeIrQvujmFhkx8HRxwPDhw+vXL4cMOwDB3cvjqvs1WrUqT665kwwoGQPCyenCzMEGDQOSPokMFklFAxwBOn9S27ZtfQrKTGsWPEiEpAgrC5ylwf8Iri5Sws29w1q8cv31VRa9mVY+4UMZAyj3YS5YAAFF4H8VRzrgNdSMmTNVxyeRs2bPxswV5RWRgTWMvMiouPXWXW/N1q1DpcIxyfOHfjpUevdMulVPSXIJwE1idICb0l2GxJUSVeOChQsRAeRQhXnzZ8ycwcbVidK7/iAPh2lTp6q7T7JHhkH/HCkStlEd9hlSKGv+gvlli8swgIrw6ovQ1krUCoGGSQtqDlczwyfSEnDNim7hPsDx46TBdVpcepHSiIkUmzptmqUqqkMQISYL1X1LPkmjIpobrQBHEMDlUk0IhMs8S0sxiVsrw+2U9crUQnuxzxTBZorGYsPkosKIUvoLSEQAX6GSsjhgoAeyJza0BFDSlMoKkhDQevWQS6ERtxSagI+SecB1S5KYuYZcc2bXr1efiPBIoA+GLIFBcvy2YP6CUL05czlt8H88iFot3BpqLgB/RvaL2UPe4rM0CqyWRsDs2bMe7f1o4JiEGRNuD9IZz/l1mziLnviInLq0Wi8rTmfwWacFTXfS4cG9+eabXbtSeOg6tlMWFsfTUQrgUlluvOEG2fVsTte//e1vdPl9993ndlSfXJ8qpYeEvOOOO57r85wO4xp4A3TYultFGhYMZzvl8fzzz7smjnwNEj+ToWvdIz548CAobdKli6vNKysrKfVXX/1veXkF5wfH/nvvvfvW229jfTLCoJwgF1CQTm66wUhC92ABiHH7LOVBBeoeZIFr6V0Uu/0OO/BhMA7ckmd+1AwIVAspxZlh1kOV4d+nTx9GEoQNQf796L/XX2+9ddq3//Cjj6L6YRxQgW52B8Gw76OPeG0+9MngbOuttu7StYumeebpp4ePGNFlky5GHtIcccQRsTgWQLihJ5vRqysrqzKZV15/7bWDDzmkBhnCLRnM17RvElOIaq1wwh877bxTx44dKZ4333qLaNh6m61/eVRwzJiRISgJwZ8eeeTPf/ELcoSrRqPAhzRE83nz5rZo0VJdxASbLBG+qRh6v9/7N910kxki3AhD3ov/+c3/dNqwk2TuCdxtt91oMtXHKgzTo3/1q+tvuOGDfh+QXKppbQEPkCaeN3/+22+/DQ53tDbCSLvuuuuvf/1rzINo3E4O2x8zduybffuiPAxh4jJ7JVpBKQsW5ZFShEvlTzjhBLS+5957x44Z8+WMGVTmwQcf/Lvf/k6XueKvf+3bt68mu/Of/3zo4Yfx2N133405eXTcQO9mevTUTCIlo+TwRrdu3Y488sidd9qZCn7qP/+57PLLmXfEqxrBkw4zW8S/VYvaCX0mTZ7EHHz66aepMV9x4KGHBm88mBdddNGbb76p19x0883wdBVyr7PO6rjBBnqZXiMxBrvmmmueeeYZNfLg51NPOXXHnXZ86umndQ23D1jngfOp5/brtkfD/fbdj55ILMugdailO/95p1qo1KGHHHL9Dde/+OJL9Dp8eJUUhw00ulJYnMaL9OKZZ5xpDZ0sp5xyiqZ3V+SVV155wAEH4HBmOpgYktMO/tDDLXfddZc00YZm3FdWVboveJdddjnwgAPL6kVFVWLVyD/+8Q+MIbv7kWU0BcPzgcIwwVeq5pOOduIJJ3TuvJHIf913309/9rPTTz9dYsAFUO+3v/0tUsCTSiYc0G2TjTc+9bTTWC1qSlhJ2fP006uHDwfw57/4OZgw6Xl6WFqrjmYnyUNwNK5rBs/5wzldN+2K/00cPPjQQ5oSg+EE7YiSeMlCCn4+Ca659loNhAMJsdAqhU9+6C+OWYnauDcWwehEqB132CEao6SWpTnoDCDM8byCzCRiy9h5QwMn3dP6DF5JDKPX4O1XX3311ltvVTW5CDFOI3yok6Zd3riBBCPKXn/9dYYRIICjsw74wP33//vRR/Vi2eXSvsiuQxXWoBgupEAtKV/44fscHjtuXPB9JdwT2aLw10qTUSNHRXm9ErXQeXAegPooHyzZTWZ98EF/3KyfBJ7NlxvD0hOIspDdhcWJj0a9TxEmCU62ykU0vPTSS4aYpPbZvXoVoqpMCZROo6QWgKnck39zsp4muyKYDnvuuedDDz5kKuGCCy7Uf3Q8c5xUAiPADLpBxmuvvQaIADcDY0JPDi6ETIb0pGzOOOMMotCjLNON0pg/I48SnTcPwpZWSKZHSaDE+Ev0X3jhhWCSgy+88IJXKUkBU54ktcmFJ598UmIJ/vKXv5As9IqRkK8sEpVVHWMRMIn4TTfd9IILL+TOIcvGjB5jMEfcGJXCmYAANo7IAYG229zlraFtEowoiZQlPzCoSVIrJEFyFzv7xiiQFiGgn3rqqRHDhxswUxXMII37aO/enTbcsEePHnSqGEJZ6yCUgcztd9xhwhV66hghR/TYLtTSpIkTSRkU0BySaTjTPWpBSTOG2AEogFxaPLgo69c7vefpxm20LxGGDmaLLYS87LLLUFVxNCv07r3n3oYNG5x+ek8Vh0zvxx5jk2km8u7e++578j9Pdtlkk+49emhrYHlKIMbPRMNhuWuvuw5V6QmY3H///QpSCslLDhLKoaF/vO1WP9rSQNMQjp4wkMJXyDhi+Ah+I1YLhd21Sxca4o4777Tg4Oqrrtps883pUZRR3NZbbYXTDKY1N0kNrOIKCa5pzNNpdIXuuccehqGPP/74tddea+hMy5LyqPfUf55iyEKMTdO8RYvQQfLOp5eSSSWajNmNbahhNhOYUKUIrU3BQtxaAb077qA56DZwEn5IRsbJJAziS29gvf32O8yYMROqDBocrrgWzVvEynI10fTCHTfo2O+Dfmgbu6expew4ZIcddtCt2IJUPvyVq5WpVb3JJJ1Oh8Ja/L1331OpyspKKhkagSEzmaqqKiserh4+nN2jIppmnbXXHj1qlB6k9ZkaW3TrxgiWnbo1xtCCep/pMF2PacggICW0L8cYDoSYXK5ebNO2LUWrXyhIccpSo7332eeJJx7X76IlZ91AdKuoxb///W+48U2y2smx+x+4/48b/FFNNRy6MeDcbf3Qww/p7FttueV6661PsAwZMgTpdIQNO3Xikaoj1tKGhgAD4i9X/EUvVkGjC6zFzEKxc/7wh4N+8hPy09qC9997/8ADD9h6623wlT514QUX/uGcP2CwCAf+xvdMBHQw97f77rsfc8wxBMK111xjXH/euedCwA4CBJA+EjZmNNzTp/ho0W2TjTd56+23Hn/sMWRUdyvDdKW/33ILQiEI/NkHKdrFwJIUWC2NAMynmakKD/FRp1ZY3zg+7Y11vi7PK6VuGBrWBZWWElUsSsqM6gryK68UdfQ0/FUwJfAU6ijYYkpyRLwiDDg23mSTr8yefNAhz+p1FnYnVowtouT1e9111x573HHWGDKfDeWpiv4ffsjbRq4pQhX0eRrUKxlNhfAW0FIG7sQZ3WDISIqRJnyxehd6Sk/iwJAwYisQ3F6NyKGaYigMH1YL8cTW5l1wo/o2227j2nLeDnu0DHQQjeYjYRcuWHjfffcaxzDhCWvjqksvvVRFevd+lA6jUZQLH5fB667U88QJE2BuaCU+Fhr9pV9+OV1LpDgI+Ao4Ew1tIUjOyliYoE44QjMepYSin2OQvQcDB1k+bYgfRhXDhlFaGjrNSKhdccUVCBgUpJXMl11m+KheOUmUkISOZwcAYowoJQqjCTKKjGoJ2Y3S3EavaLSiTphHB+x/gDklFGZFmRjCrdaOsVyNYw468CCD2h133HHUyJF9+7555JE/1XZKxITmuZCI1hk5auSzzz43cNCgPffaC0PCXIlGmayoiLxpGgRHExTWUmedeZYERvAkbBz7br3lVocdfrjEEhTSjTKgpfY/4IAzevYMBE+mYP9yxRW01O23306my0JFXXrZZYBjmMlTphiUG7RRaSndBCztxJOUrrEsEwfxO1R1YPo8TsrvsQcbgpfimaef6dq1q4xqFyyA/KSy7G/07cv06dG9BxtCPLSxaGxBv4wDepT5Mmdu8FezA1gJqJ32x0JMmEQ7bL+9ZsXMTLrDDzs8uvRxzoMPPqhR+FSkD0o7sa2Tv+Fn4cIFO+64+58u/lP98voc4+xsPY6DhFsFk0OY7jlg//1Lg+VfdvbZvbgew1LffE9RKcCZZf+49VZ+eGyzcbLq4obrr6fa1YvVqJSdEi4iBDAMlQw444mcYdUZy7IbmI+kBIVKg9K1u+2+u26FOFrHDwhKZATwQGDOwYM/PuTgQ1QQ0WBoqIAn7f7QZOggo36NAzlpQAZfgjitwLwjE156+WW23b777IN/2F6Y8KtGzwoFn/LWl7HWQQcdFPEUv/566592+mls1h132qn/B/3feP0NjMeWxbq+skUUgZKkFsaGP+px3rJTzV0abkWCw9PcDcEYTLTSUt1KbaNDNFbZLwLwq/EQoI/6du/R3fotvc+YhNTiubnr7rv9hvZF5NjAshWfpVFgtTQCWrZoQduRmxhryUrpFXgudpIlv35tDJgeM/9g41FMhnGJM+rKqIjcjAnYpcsDSjetw4LUs+5HleJdv8sCkijgWTNnseL1OoKeDtAlvFLnr73++tm//z0xauKAfmVlA6UjiQldbvFii5JQifj26hMFTHBTdQx2I8LzzjtPh6HnZsz4kiUugT7PkFc7Koeo4nggCwrRSytMdnBW63UGDR06drjh+hvWW29d8pBi+7D/hwwLwAnxKVOn/OfJp9SXGOrapesGHTv+q6qK7h0y5BOzmApSfXKBn5nxLplBnuIQJxQajKdMnI80rVvYmkhB5FG9sov3mHnhQixEtTCcGmGa0pQ2sIRjp04bDhgwcNtttgGEiCTyGFKEb5qx/TrrSObVVwOXK/96pQkOQygsEXggWZqkvvDkRCVDpRSvIVhjHlh5RX+S2CfTEKSe0TNrKfBDNsvI4HflsWfNgIAZNMpVV18V4Yz/4gv+VUNAlaVxqRPxZoIk69p106eeelq8IuCGbigpIEF8WFGsZANHDa0FGzdpPHbsGJ/kDcRKFr1ij6BIClZpgcMnRB8YAhK4XM1K23SzzbiRqChU0tMUxLxARkBg1XnDDYEleevIWWSRwFiZBSCB8BY/2oJSZK9w4InHKhAGjQGkuSEWk8GKt8GUExPhmmuv4aI3JuaAwSQSxIfpAG0HR2BCSuKf/7wTE+qtqgNgPlXNX3VRhFaTS410ATzg1UQzHGLRiCmvB6qSAVWvXn1tF9dDIDsNDaJm8ku1yGj6jHUoH/ugQYOGrFgFwT+KhQgtcDJ9mQnL2cDU0BMnTVKiIfvll18mL2hjx41VJt8PJW3yAunYVSxFRL7wggtiXwBWD8VOur9HAFi5oB3xV5ywUqJvQALxIkXQ91pKQWwyghE/TJ0yVVvopGBqO8hIr0aaRjvC0wNaKGUJM1GMR9Eg82vCVh9h/UdjQvzO3XfGfqwu7Gd0Lhn3SZQ/vrLnuFJ89UQjAKNec/XV3Esa/dxzzglgFy3ioZRF7zjjzDMZRrjIAzdDO3UBJ+BQVmbpgDpOnTJFJ9IWmGTCF19YJytBfNBKytBV64jgUIniU0OB1dIIMDmNLQytMKv2TmqDHwJ3elLHck0tVygUlkXrQoF9yD58ucfue3AkGvFQe8SxTkJ4LRfIgFTAKk0swkMpsmAoDGMaripPnN5Lk+UCSb4hnwzRMdSUOjeCV7QHDsSZZMxw9UUKYQXxQFpEJpzI8bC2PJSXSHyDwttuvfWFF1/k2zRNqB8ywPkDiHV1lEUdCT4B/lK/NJnpEIH0CSQpkLNw8In4CC6TZO13EB/ZIIyC8CoJSnHipLBV11ht9z12l3f27Dl+QQ6ETbYGGSuTsLEdCT5f9edciSUls+fMASR25hQNpaybjOnFCCvOICz9ujwBxcmlLJmtV5IFkp7CvHG5E/jiVccAC8FlCfiQ6UliCiAu7gOQ1ASFN5KSI+AkQ3bpPVFkC8hF8yhFuQFCEuMzQUyMoiRNDJIEbAVSu2WrVkG6J49mQmefApUSyMKhZfOrw5QY29Fwn1TluzJ8FMlwifompI8lQinBP0p8CPikdgbWaqv1A85JJKyEAdFk0igrEkTYoxYxUOd3cqLqqJzCeNpCPYJZGUrLLREvTCAMOq8UtwqCcCDhTxqRejAvHoyn5KHvYwAmKFZevyI1VWu1X0yU/KJqQDtpymjYqQhzx5MQMJA1kjEkTygDVcRCDdVnOoTf5BEwtOUBuu9f/7J/WBxqw5DeigVKAJQn9+pPUl9/negAVQmoyYULqVjBjJ26hxxysNqFPGVlDH37a9h6VFqXrl1jg2Ij+EidjEwCfOUCGH9DQckhQhJIlqAZmNZrjAkJkkfdxfjkzciBNKuurnYyh+WWUZjk0n3dH0CsAQTHKEJarg5huJE5XjEqbiGj2AEaKBI8BelVWSZcYowmsJpBW8ilMfVGwPUgrgUTGVxKyFtVVWXVlBmHOnKABfPsM8+8+957CgJTZ8SuuZ6VQA+NGNrzq/giReqHHlgtjQCNffjhh9PKBbwb2hoDWel72GGHRTW2km3LbtSFAEu6L5jrV66///77cwYylvkDfNU5I2/5+rWlSIkNY0q/HuqWSWtmEZdzS5526qlxQWwOVCg7gI1FJBo2OCTY0bpHFAcSGLFJw5iAVcTHJ7vqTzzx1xGOQiOE+Kq/6UWGVnwJvJcEq6GAIQjnQRwrEB9RiJBW4OvAZeE64toVLHiLSEZ8YhExJqlr2B8VlaVyeWshH9MohTMwDETmBPdDwDAv1CxTB83McYhPxBw1Jnurli0jYhGC3zXbtOEMFNDnFVpYzVyaQMACXFP6i8wLhVyu/CsJmsIvDEhGjxJqYeqknjqVggAfadZeu53R8/HHHx9XM8RcKiiREW00AUTW4JGWFdkm6u9Mia2t2vG0006DQ5SksVIkZqRAzJdWM9A5QohFJuGoMKh/EwfkMoe/tjaIN0cb28WvJyaL+QAUE8IlJaSwdQwCEyZOSID7WGK2Av1lab1Ga79MtyStnhYzLV28sl3Qp6BvBn4OFkbYYdEs7VYBxBJPrCOhTx2iibUadBX+5ImRNodtnrE5S0ysrNW2LVIDXtiyacrCEiLwwpgQDpXIqcxYn5QmKcBCaDwB4CAFIx5NzDozxEVGlqgpIskTM4oUsOmDAxOe2sViT+kTScOADtYMJAyLb7nlFhYn+YavLNjk7op50RuEyEg1RQTsl/KkCYIEKPiexnP4X3/99cYzRCW3H68+WVSQ8OuDMFd3lgoDkaUONWYN1lUpFkCzZk2xLpr4quMUgotfGzZsFCMlsyDaSgjC/N777jVLgj7wZGlxlRmo8M/dd++9SLHxRhtv2Dl4nuJjo/INN9zAr2luxcLStdq1w+fMgvz34t8VoECwKFe7B8913rAz7zF/gD4T+UZHIov/eP75DPM4jPtG9SoQc5jSiNnwHUAyMfTGpD/qYJhemIFPYMWnQPblx1th3jo8oU8m4pw6+fWJJ3IhEiWW43700YAgwnJPckJLlHf27S5cyE+oCDLUiN/EhJU1uo3pCcpbdpOISgQw6iFjlFdfexUkxpDCoGcLwKRJk7kKzj33XJMIcT2wnkmfQYZ7gCTVV4VfeeUVK9dMPUrs1XAWVrGmedwI/1iVEAE4QcAAJw11V1kk1gozZ85il0yaPBkCHI/iRVq+/keTBOeea+2b1ebEevAWeAqklKEPCE5fCKPqhALBJb5gwQadOhXQJ2RSbhjYJUQDP0TVfmCpiXKfwqnDNWmACmImDmpD+flPSWQKxrITRXvVBFaDA8ezyhSTL5SepNtww87axeyMN+JMjWTxKF04gRd+IkxVk7GGfAkz+GowW9WhAzuDh8ZCNhl5qi19t2JLRhMimlKhKZDQIkgd3wMpgvKTngdF0U89/RQr6nj8esIJWAIw6SMOfmPNg4GS7FvzyQNSpA+GFDbLa6Fg2PyyeDEbwqA88XXDPfjwA6h82cK5uuVJGJHimPGFr5gmEwPOgI8GWOXANxC51Ffl1s4UswZVhzmZp63XWMMUEj43H8Hyzn3OZAxb4e9VfW3uAMpyTq9aNfqWhFO8Yq44ggw9d/FiO8hD4oSeYoBKO2xAKXkiTSKcPKh8nTMZikefYkk778hyziOPOIJlEzPmE6tzjkihxZW6OCzUV5bFgcBaEiSGpsczjJjoZVGoybiPBw82Qrjs0kt5C2g+c2cRGXBk1MpegRIufJQbO4g1nlpWd859zbdPYWL8jtPAsT7Gghg+DGVJkCIPlK+AeJYsK4JCOZ9MzSjMMiDtFTZoZDJvv/UWgbDGGq2bN2tmIkAyYye92CcphQkKp56QVxGOXyxh3N+hquruu+/in0AZuRwCzSu5UefOZ5155tbbbINEFgZFUsSM06ZPx6hoddWVV1q/SVjBX4K0FgLgSOwXzLS4YmBJCqyWngDV0Ms232xzy16wnc0ChEfbtdZiPNI6vqassGSFvzYm6bdEYxhbEMcxPfll3ZaJcOyOpWKXU0zkS54rS1VjoebzDjv0MKKZpJU3QAvI1gxARcpFtRMiLH0CznLZJ594okmydiZCBkpn5hzLLMrEw0/oIasCqefKykqT0+bsLVDQf5577lmJLVNSd33JwJFZrXNSqBQtFcUPz9lozptMcSoq37v4KFyMyA1KqPDYeWy2MV73lXg1LjThCqUE2aC91JpQiNQQJtm4JYiz4dXVJ598svT6JNzgzySyyNxG7Vf++9999t7bQiqPvTqqrLLDhg077rjjCHfCN1F4Yb42gmVmgfPxx0OYU+u0b2+GnkwkK7ffbruYoPA3Uruw2xd+jWFpYrLYUrGxxNC0UZ+ZZdE20Q6oA0qDtm3bpl27tRk0PLSGGrvtths9r+5BrCS6c68990K022+73ey7lV9WM3kFx9r1ddZeR+1C1RJtR0jn5GmiTSI9pfQguHGPFRjMQSYaoWxEyAsqO7vNV2X5RViYawMIeKgWdfRmaygld8s/brH9UhpH3yjBkkOSnfDFmdZ8RCLItf76lSDYOaIKmunEE06EgHBUcVQC/Ck5NMdC1L8ho4N02G3KwhU5eZrX3hwesAm87fGTjye1OW/ZRoabBLSM1gkaLx5x5JFYUYkh46Iwi5+q7QAheWBFtbNWyfc2a675Qf/+aGvc7KOMfm3kw3tODjDfwe3BpyVloEzSlJHgknnN1XrRIo4oBKRgkGfSpImWWzIsMAAq3XnHHebp7Q6VPsfeobOGgiJbipcr4Xcmb2gCDcRCUiNtRP1rJkYSi/yIww9PvTixy4OCpR2eYVkia1uyvffep0+f5995+x3H7pruUZCZshHDh994499GjByB2pwoqK2II4YOvfnvfzcDyOI3pEY3+Nxz793bfvpjHceMSXDb5GmuvViocLOmhABUEPoDDvNQk/wjgRjEN+OOxyysQQTChDNy9uxZgVxJCyrdfLzhhPWbsvPKSAYGgBhAGKGwHFD41qyNbRTIa70t4WP6RpjocFYYgUzscORAFTtR4/oRQbrPvvu2b79ORCpCg7zpfx4s20fxm1XfxB2SGvbgYWs+zLIBmOO0mDObZUKNHDHC8WVmT958683PP/uMDa29fDfphgiEpBIZJRaHdrV0VAXzFIswir+RAqulERCaM3ksMzngwAO9YtAYmQZWuoFBwEmO6AJBgLnuVw+0Oky3v+uuu4kL2s5X7M4VYbjjTD0sDgFCgswKIqCkxMhQVyEj9BadT3phQ0ndAOsbTlrzwjS+4447rIYlgQ4hxQAAQABJREFUfPfae29F04K+RgEkSwzQ91TIY48/TumKBJYjzsq1Z559dsyYsZbQs064Rh588IHXX3+DeDrld7/TbUgK8pQO48Omp3v06EEOftCvn46g23Cj2XbsCBRdSymKJrB4AohsSFpV6+B9BTVu3MSvR88PEqRePbX2SwuBSQSQ10wKCh6VdH6jGVRCEwhLf8KJJ3IJmNxVQfEK0mRhmVs2a1uBuujJoAl4QNbzOSRMEzICDEMHDBy45Y9+FHz++jb65ts9pve7ZEz8hD8MoAPl84aaeK+eXF4VTuSIVwGNEls59zWT6dChw5NP/odWBqGqqrJnzzOccBA9TNJLLOW6661L3zOtrLF4OBlwED3HHnusUWxC0jD+M9NJUwZFG+eVg3UYJu8xg1/AgWJOXXD++U6otOYj4qN0fuaWLVo69iRQO1FRGAMjoZJA1LxGfd04vrbYgiAmte3vOvyIwwd/PNhuq1d40SsqdunRQ/ZYa7+0KR1v8Saz7Ec/2oImxgkpiXA175rNY5TWI2am69VzWBN7zpAOVhBWLt4Q9kSDIADniqgtWxXEZYVFqQSNDj4ViFB777V3gnk4LI8BIG8wcwueqF2oEwvIHYpAprMJ2KlW9QcrI1HPNPoDDz6olwG1xRbdTj0l7JinvjSJbpbgE6iqgHT5hXqpOMcy5wRS77PPvnrH4Ycf1rv3Y45twI177bknaPIGYzHZbBKyJwMAAet1PNBkCpj5NoUnRucCiv9m5IiRVsDpAowwDSFZpKcKah3+dp90CvCPP/54cxyXX3b57XfcTjU++8yzymLHS+NsH3LAWgonMXTs0EGhrlSw3ZdkQECSh4nJyn/xhRd1cI401aFZZY96G6rUrS7GjHBiwU9/9lObCWGiRukSioiYX9zoFIGeZ/Q0WsA2DAiiAM640VePA8GYJixFz6677qrukI+fEustWACR/3VeDW1hP4ZRR7yk21580cU9dukhAYAa/bbbbiMlJFAESUXT77LLLtFaAkensNFDfa0NIsT+dPHFTB9nCYjRrdSLxcMoMVgyZUYORDT8rrlmG3RjJJGN4GiLXxx1FJUfEmQzRi+2L5lbuTTxqTChAj6lYTyWs3RSQMVAoNjq/BCyWjcwUvLEwDesED8XCCxlx1GRQfpAClAMHcldKSbGS+A1TRORienFT5k8GYbxNWJIaliJE9PHxMwHFnQKUCR7QqQYXoeYd+GCoEKsFX/l5VfIsk+GDJFM95g5Yyb3mt+IkjQTvphg9A9JYbloaOmNv71KD1vjM2qAZRAGPknVDAgMjHACH4aj3CQAIX4FBw5G5BETch9ZrL8FLa5R8vpeMmhIUYUYqUe4MMBjMjHoRqwQBD6leQXUNKIqHB/G+7bbbEt2KMsWfHupDUryH1fsr3JVEHyBsKMsWWMIhNgUkJqGmCRlbHev1cOqjS+VLrvRsPYSGeubZoyvsnDAitTKNl+xGMTExor1AsGrxBGTuNo/JoifNIrSxcQW9FtdXa2ZRHqkATx+AhBNxMRPfn2K2UXKxWyNmPilmeyuFvDALbYOcBGorZjqpRQAISx7yqXBhE1KtBIecTyKgEDERBZNJpM0sYIWycdPoaSlPZiHazeUkhhJGiJmDxM9ST9aMhN+Bhxj09lKVHpC1QU0nAGlXTBQshZMg6YkAiTSOYUml2Tpq4BehidBNiMADY918ggFjsQeRPCA6aQ6XwOtEiKHpIvDlJ9XS+HYx3RwaJs8I9HfwTS5//6QMnlixphAgXJpAq9KCTRHikWLRKpFTA9VRddBOCRO8EnRGDN6NLKkdEvjAREGQavBM8JMu2R89QsBPTG+ao7h1cPZ2V4DYyS8EcJ5viI0YC6LTzHep/igZEQVJtL4Kpn0mEq48BHvEaNrEH0xe6h+wvN+fVLNwiyxymIUAb0vpwdJGNsr/M23CLAQU1lMgsfS+JA4PosDi+qVadXyH4p/61Ig59Au2kM/WAroRYSaSQGjQFMe/7t0ILm4BA2AXnrxpQMPOrB9+3Wu/OtVJkS+S6yGDRtmqZctyKZXvstyi2UtgwKkvJnsCy+8kPvK1NIyUn7TT7W9Gim0uH9n3Nhx55x7jnkEvGGEasBK+Vm9SP8ZWHN4pOmLARSgbTgAiqT4nlNgtZwO+J7TdPVCjyCLHdVCpf91zE2+cAYaV3EyO87M9vomTcNh+N+lNImuUb7N/3VqFBFIKUCTYNTo4f92meGrdFYSb3r+6KOPNmPihJ9GjRqadjDcdLqikyqKFkDaWGmgaAGkpPg+B4qegO9z63wXuPEi8kzy7FVWVaUzvt9FwV9RBm9hkPJhkVKY+I7zkd+u3K+NCU8jB2N6i893WXRtRIpvNRTQCrZLOIHYohlT0d+9duGKYIVACCZhUu/LLy18sXBYr7FawpqS+LUG42KoSIHVhAJFI2A1aagimkUKFClQpECRAkUKrGoKFH2eq5qiRXhFChQpUKRAkQJFCqwmFCgaAatJQxXRLFKgSIEiBYoUKFJgVVOgaASsaooW4RUpUKRAkQJFChQpsJpQoGgErCYNVUSzSIEiBYoUKFKgSIFVTYGiEbCqKVqEV6RAkQJFChQpUKTAakKBohHwXTSUXWehGDveki1G4c//rce+Kc+qrZPjwSLMBPZXAvc1nhdWt/SvzJEk/LqvEWwhzIiGspxxJt6r3ZVLTSZNYcZlhJ2PBsIyEnyTTwFhqEDm2yrhm2C32ucN5E2etLm9pbWKkemnXLxza5M0hSl9SsD4FgLxBL2QPhvud65JXwM7B6z4p0iBVUKBModwrRJARSDLoEBuD7ELLBIR8N3vcl4Gbt/8k0PTnEXv1BTnpayq3dK0V/8PP4RbugM7JZriPv/sc6+2jKMnQek0YmZWuFIlf5uAQ2Srh1c7RdXJrEs+IMAT5OrqagfH2nfuSelAtbucxu0pjRo2KoxXoufjwR8ff8LxDp93U4ud4s5DdcJ/OD8//0gDApTcKBGvjs1/Wcrf9Dh0uZby+RtH3XPvvc7KhWp6MnwEiW4wDMchNGoUD8n/xkV9TwG4IMdh2OO/+KIOG3jHBoywpskdgCuBfeCGkhJX3YDjCpxAYedb5M+YQmE3cTjGu1HjHIXFSO+sA9diTZ4yBbviPRc94LEmjZv4FKyA5MD/EM5m3Rpw9tlnu5VjrbXWEpPez7QSqBazFCmwDAoUTwxcBnFWwafY80PvLgl2vdtxXFiy1VZb5fr0tyL5VwHaKwTC3SHOUHMxues63A+0Qnm/KrET3V0uvvnmm7tTpEXt01jdouRWkuOOO85VPbKPHjX6tNNOc3eOq27CMX+JNnXvDpRclI7+RHOdUurVr3f88Sc4kdCVdC+//NKFF17Uo0ePmEZ6Fx+Az0S47tpr3WdaKHwN7K659honljvCSEo3mjMXXPvmTpQgpvOPE/hdgdpxgw1c9Nwofz1S/mOtvwC6XqVlixbb77BDrQ+r4gVKbibULq4+qqPpncjkggYH8DmF90dbbrkqSvuewnAnU7y9hllZC8WkvbDNueecE++zqfV1OV5i18YD7gN0dVCtg7ayGYagu21wwrnnnLvTzjuRAJqDoXzLP/7uYioS4Jw//OFPl/zJzd2/+c1vXCzu8EF3hLrI46dH/pRNKbHTCd3x4e4PB2i6IwdGhTy2HAgWkxQpsFwUKBoByyJTUCH5p04PjCIg/uaT5P4WRubCiYIYM2YM7aJLuxBMUp+iaKiT/Zu+JgZHHSA1KIUyQ6XS6nA/phoiQSmMZkIgwRDi6eAmF1Og7WJMHIID4kYyMU5Zj8f9havcXMPq+sGC679iFsqvzthUfK0nuY/RxWhXXnXVeeedFyHHBHSw62dYCfHVRSJObnepCVTTqrsd0b1qrtOVRl1edAf8+PEktdvGEqRKXVVHEbqkfOrUadG9b1AIpWefe85FSmSuaxRcH1wLpUyGjH733Xe6d+/BE4CAjo3jbLjkkkuqkicS2a/aTXcL1IwZNdmz7qBbBL201pJ5FO3KBte4bbf99l7hFhB2DW5+QFkDIakIyC5TYcSoqlD4mow+qRx2CZQAUa/02reo+WKL1wHlciDFuba1MD4NKygiw8UScQZZODSc5qx9+1/MJYGAX4+U+EEgBzAJQc+TFpEGfBQffyOE9FP6qtbCys0lRoeEh4MxXRJu+0xgLwE8m3E9XSBaVoLSfu+/P2jwYDxAbasUKoUreuvVQ71CLZtiUsNPobAapNxwkTKkxJ6IZ03tSsIhxzNnzsCZ8+aHK6y8oonbj+6//wGWpVubmzVrznPmk4t9QdBNjBDuuOMOl4sCzpXlWkIXWbkc0r3bzZo209w18GtwKYaKFPimFCgaAUuhYBR8+qdvsYcTGYkoyd2HEWWWT/q23xAoMQYNoIT9SuwREfUfuUzKuMWMUCD342vIlZf1EisUWMnEp71d2Celx/tLhNMsoTDFmaJesIDAjVmkBydAcLlqJhsHrJKlXwVyTogku5/UAogRUf3E9PE3nzAMbgCEfKy10UqAW1JiRO7+8iaNGzds1IhuzsnHRG7GLDXCNIEV8mQy6ABaEkxLqAnMnxfm3V1y55Ze0pDQlDj/OVA4fVQ2CSflCSV/3c26//77uw1ZdSQYlzx0bXQe1KGhNpNPyvfef/+KK66gb0484YSdd9opLSIGwEnGlKXbbL11OvWgRbTp+eef7zB5XpBUnQSAtRUeTgAhLAJITIHAY4liYEkA4lP81dZLWgBa3zXV0AazrD5mWEh1ZRfhnxI3srl5OjZiZI9IKAAlDhVbqSeSCE6KxJpgKN7VvxnmB3Jl3UgL/zJ3JqbtEusbCsXMugCLwS3VUMTk8VttTMDxxEr5IpfrbMXEWqQ5YsAtvgyQkkVMnyw0wAz8LW0mdD1Z0K02+PAmictwo58GHM6hgYMGGYVz3kStH7MIx94nDXxgHn0Dsuc6S9K1xUsgSYOKisWLgnBYqjEUYSa/SfLkR73cz+mqIeQK3pcf/Ug0npk8aXKz5s2ilOA2YF5EyhMmauRmL9dv/vvf//7Vr36VoFAAuxgsUmAVUaBoBNQlpO5KuhC7LpF1j+2okSNd4OrOcreqG1nqigsWLjTL2O+DDwxJOY1NuG6zzTYm9rwaubLr119//bfefHPipEkOFdfb+bRJGVOwr7/xhuGXIWmf5/qUV5TvtNNO4qdNnfrue++ZuSTITP65LLxxk8bi+QmHDRvm7lQH+1NhHInAUmO8jsQHpKmT995738y3QXCLFi0MbeN15sRT/w/7y2u4TFe53aRL167kNcnMXFAjF3QqSxbjDCPaQg1Nh7lE3Byni8/jhSiGs2+++Sa0DznkEFJJHV999VVzyZQ94FtuuWWnTp2qq6ulWW+99Qy+VdnsALRdWjpo8CBCzbhnm623qepQFQlN9/PS86KD2a5du/XWXa+hufdGjcx95sRfki6K16qqDsh15513VlVV7ZB3mOeUft12W8p7UD/5J+iLRDFH6sVWTpo6B48zlvfeRcknnHii29yjXM7nDn/V3U3Hat1jl12CegnaMIsBxHz04Ue33377aaeeig0SmV9LYuMlVzW61nna9Knl5RVsGgyjssOqq99++20E0frmOKjbTTfbDFn69++PMtgjosrZ8MrLL2+z7bYy4ooBH3102OGHmzDmKza1pF00NFXhHkjzTRCQEbkKMV+ucGI8SYk3rHVwUZ4bh+ldmPCZU13Qs/LDp027bjps2OejRo9WfV/33mvvoICTGg+vruYsGTtuHDbQZaCnmh2qqkyBAygxDonI4GpV2DaplBhfP/zwQ6SAv5vjd91tt6B9SzJ08yA9Z9AgV+jiWH2tWdOmFQ0adOjQga3pK5TwMzuM81xfC/xc8EQCpi0O4dg6ArlUSa2xPR4eNHCQO7zFM+b23GPPYHEl/MPqrR5W/eFHH1LS6KCTYkXrUQrK+cqggtDTZxdjXn31VbJza3Xfubuq+QR5HLXTjjua8Or7xhtDkivCn3/+efVydRa5oXOp8gsvvHDMMcfEWnxlScUPRQqsLAWKRkBdygUxURouB7v55puffvppIoC48cqLSNBL/cQTT1gNZEUYQWAY17RJk+OOP54sNnjl7qMdASBTSBaJSaVevXqZl+Xooyndv04N0wdsBTrYOOlPl1xCbiqFgJDlkUcevujCiyurKmnKe+65hyRVEOEIrOL22GOPiy++OMqyG2680XQyfUzgKpGutYyIdjFuoIYtB4P2ggXzmzZt9utf/xp6tNrD//rXP/955+zZc4haMKmKW265JcxlJhOWsFXNhx56iGYyYRGNAOVCw0QGCMq97777qGQB+Cta7c4991w67PLLLzfyJuJVhH+bvUIhyUWQGgV27NDRVPq6667LyUnREnNKZ+hQeNCGJ2H358v/zDBKGyMO7Lbb7scNGjQ0c3/TTTdt0LFjm7Zt1TRNs5yBmCUR6BAv8OUkNgFhDBO2jlmAwYMGHXvccUZd0ZVdp6wRw0fw5ai4VWCJhgqY0EzIfvHFFz322GOczDwiItNSIob33HvPQw89OH78F5pYlanGSy+5ZNttf/ziCy/88667pKH/GG2qTENo7muuvma33Xejy2P2T4YMufbaa88480x2EhPtLhfXfvmlZmJgVVUG28i0NE+yljImZppY06A5VtQOSKyaMGKnrq6//noMPHfOHCpSffHnBRdcAJlnn32md+/HQJ48adK06dPpKoQa+sknPc84w1dWyFm9etHuGBIjiWE0MwKOP/54lNLuuBe2kaoWzV1z9dVnnx0u5IVw7FD4Xy0YVePGj//ZT39m1oNxg+HRBMfOnDEDD8OHvj+7Vy8q/8prrqEgWQCtW7fG8O3WbnfJny4x3VZo10Ya+g02RV73B7ZMmklLIVrfvn1vvPFGxhaFrVLw79PnuTPPPIsClkx3uOqqq3zVQFEasKtdeM0aiMBzDFYwoxHj01+10E3gaY6JRQURj1xaU4fCTvrLZZdfzsgQf9lllyGay6wtNGA24RbsMW/uvAbfg0s+0xoVA/+XKFAzVPq/VKtvUpcgF0pLDa+JdVOGfd/oS2n9+c9/5pEmI0jkv//979QbVcdEIL/arrUWFTWJql4wn+z77LPPlM4aMJm3ww7bs+5feulFGpGOsQKofnn5XnvtJdfDDz9McklmkEc4Ege8hb/4xS8++mjAbbffRhRRk6BRtFa9cTDITlk+/thjnw79lPh4+eWXWSTwtMiAbXHP3fdwErAqDNRYGwTZ/f+6H9q3/uNWw0SlGC2RsERt48ZNZHzu2edo1qOOOooQB82TUkxeki599UmMR4yqGbCiDzujz3PPWXLF384DUZhGMi4KEpNG5DN4+OFHjF8/+/wzdolPo0aPIvVYNg/cf/+TTzxhshN6iGyLSnRop+XGQHn9ckTr3r270aDFAdEHW4htnfTLfs2rgFwqcIh1eo6T1kQs42yvvfc++ldHM7aWWsSUKZO5UgjlwlKk3GTjjS+66GJ6hfhWcV9RU9OkKodCXXPNNlpKK/fs2ZMyuJSgLys96pe/tHYMU+22225I+uijj/bo3iPoIf+S4WMsiAOcLyrEhFmezNx581xdLwvNdNnll82aOWv8+HGYCpM8/ngwRIZ8PEQg6LwVeYKxlrABu3bOnNmUHK8DrtMu2BXbAwYvPMlRdNrpp2tcSwuZNf+6/36r3HGFmZTPPvv02GOPoZjxiWY1fGe+HHLwwXiPOyRyUURK+oWLXBdpyqxEb1IK3/hLL75ETVL5rNux48ZKaWGjngiy3vG3m25iH+gR6LzFj370/AsvYCoa1BwNu5yRMXXK1HPOOSfA//qqhxSxvjjQglaG7Jlnnska0KmZF88//wJjSxqYIwX75ve//72vEDOb8OabfW/5+99ZtBIs+0Eu3Y2ZqFJ47NBDDo2FxlzaNDRrJsMfhgn51dijKvXkk09CxqfoZ4KDha4otuyyil+LFFg5ChSNgLp0i71Ul9P3jAmGfjpUCiqWqibZ+775JiFu5Lp2u7VJfC5innM6/qMBA2JGWXT7jTpvtGbr1qedehrpNmrUaIM2+sbAqF5ZWeNGjZoTZs2a6eQPPvRQo8aNDY/oCaKwR48eNH3w5E+fThwAeFjyELUQMMSBwMBBA5kIDz7wgILYJXEKoOMGHa2Np5/Ia0Mi86CmkLmLbX+CNuC8jmpE3sk14YsvLDLiUKU5QC6sfxQ0yl2qxIkOCVnGjB49ffqXBqbHHHtsUN4F0inkzWRgdeoppxjlb9BpAwiYZSdGFcQWUS+KqvWaa6op+8DAzijc71cJbgM1M7jGXmya2++43Ugx4rZUDAvrsjzhKIJpNW1d38ATzUvDFDg6x9YsBDJ7zhzmURwdpvHQMH9squjIn/4UM9DxsaZSplRh4mCJzTbdFK0YNMwmTUMjEvG4AvXE8yhwvdDCcZAa4eemMHIvwV1jvA43/h7zylp5g44bdNqw0x133Hn+H//Idmm/7roH7H8A5Tpx4iSWRIrkcgXyitNQ9bHej3HyK07b0eWoNPTTTwFhAyGLkf1+++7XoKLBPnvvowUx/5BPgolA5bds2WrzzbsZtatO9513lhi/BR9MgZWZzstEXV1WVspTdd+99227zTYmwo484kjDX4qf0wVMTWOUvGGnTuCYY1KcSNxieoslhBQMXyyBnsblfHUjRgwf+knosMt4VDS4PZKHWfPG62/A3Mj7Jz/5iYZQOgUsYL5PT7Q4f9zYsWiy3377aaw2bdpg7Pr1w9coGZZRkE9a2eZEGGItaLMJluRb+Jj8Qs/Ideu2b496ysL5OKRVy5byMn2WXVDxa5ECK02B4nTAUkhH6lHSXOJco4YIlJawRTokO4ue1CM1/nDOH7zSiF51dYqWaAaLbtPbSRm6ga1AeNENcQwUFGQiA4hFfxkTnMO88Xzy+j89RPQQEywGityAEDQWQ9RGRDzPgfGgLGSxPc6KJvUi9qDFZCYagDLb+s477whIA2FpDO8AJ8gINY7Hrl27dOu2BdFGqEkWgYTfxPSpeS0IKcKsv8GKodL/+8MfCF/P4YcfDv9UpEpuYCclNZBbWpXNGvdLoHa+yk60DRg4gFOBAoOkzfTRjikoqlYQHZR7wgknXH7ZZVQpV7CaxsrWSrdSL1D1HH7YYepyxV//ys7Q7r3OOmupwKSMJE1LF4iRWvlnP/uZ2Wu6wYgfWQhunyIcyTTrwAEDLALATkwxcObMnqN1mEdIZqVbrhUkTZojMgwI6YgVrKC9ssFKsNJNXsDZKn5lmjJtGq814+zzYcOAYq4ZeQcLY8Uf2TXWkCGDeOzpHqwOBjXmFwuBmeh1aJY2a9aU4QJJ3OUrQ42R1/+DD2hrud59711WIAaLJIJ9YaXg7FGpSCVetIEfDJTdRAPS6VMcHmAyQSyn4KTZc6+9+r3fb8yY0XqBNpo8ZTJbFsCXXnoJF+mwEGNGl5XVs0qG6ZmjJxDLfPhj3n7nbYnZxOoV05qhwGZTpk6ZOGGi0uvVr8/eDbNmydOhY8dopsSetUzwGR3hqKN+iUq2kJjB4bc4+Cc/AVCuWPGQPWchBW6JNNGoZEtYhpnEBLrlJ+xC+uJTpMAqpUDRCFgKOXVFgka/5Ui3Ot28wFP/eYqQNaQLY8ds9qijftG5cxiURAFHaBJ8ERCBInsMB0mZyHTJRArr6CCEQKJuSS6DG/qDANLtGzdqbEMR0VlVVRU1SAoKwJhLTLQqvNoIl+BTs0qZL79Jk8b8/AZGEljGzAtLElVWVhqBcWnSuFTpM888++KLL/FOX3/ddQ2SfX2xoKBjEtygF59YkfiLJjzAEEYW7tlX//tfsxImUwvTBE1V+wGQFIuGAml4es/T+bHNu1NjdBW62a9fO0ettygxe3TvbqaDc/jBBx+0bgtuhZSplWFFXuAmuQH01tts8/9+H/6Z41BNcxDi6xRBBYqMSjEWkpAouHM9CH7JpZf+9MgjH3nkEfv+WXJpdqvezKlTUZqYLlFr6UMVFFFaYl0I4giLEa9BEwVQpr0it4R4HBV/w5+gWkKRWKKsjHq+/bbbHu3d2+AZScvL866dJRoiZlnGL8TUkTnLPU754Wr8w+6MBkfMGJFUtRxWCZVCTbNZA2hLGm+7/XYTUkxAFXHSg7EsAwioUCmGUWGl8lXu/0H/q6+5mnmkLuhjGSzDMaJ/+mmnnd6zJ7P14j/9SWPpL7f8/RZIcsXzZrG2jzn6aDs549xHIGNJCQ6PzfpVNQ1UTh7ISKk3+eUHEheRFNAf2SGK4KbidfDELPFXRdROgsLIpYZB5joydwMg540pj84bbmj5Jzw9S2YJVIVfsjUgmE0LFs2aPVv3sVxGicuu15LQijFFCiwPBYpGQF0qRTHnl7I5o2dPoo0dYB2AqUd+aSMbEoFo4MOXM+3J0hu+14WVvEeA6acUPu89aR4NCGMLg8LCHUeSiUkFluwhRpyF/c2bN2nahKwcOWokZwBFIh4m/NgdOnQcNGhwh6oOP97ux7KY3o8jyyBySkpIWG7PAw880ArzP//lLxYTWONdVVWVSnnSLYz2whbnmdLLnqLtVdEgsDCMdA3LTEgbLLIG1CIOSSWWLAj6sN4qyDivHsIr1CVB0oJHlbVti3XCAujRo0dFsi4hLahOIMyPly4mh4899tiwKOGZZ1gDQKXJwBcuiEi/fH0g5o0Ydtui229/+1sGitUSXNB77blntD9SKCyYiopyZE9jBILQTqqm1niDHWAd6F13341WNIoEHNonnXSSmSCz3fvsvbc5BSvdzN8XAknDMEF/rUCjo6IA336Eo5AE20T7phkymWSW5A7L7I8++mj+KtsujjjiiILvSw9GAuKmms/JrIRXi134kzSxmajKyso//eliyxUifdVRAmh48hByDeGPog2OOXuYifxh22+3PZJKT/95rVMpii3qwNGW11z5VxlPPPHE3XffHaGOOeYYW0IUI+8nQ4dyM+y7z77O3eMD2HXXXTWNok0cNG/egjdlzTZtwgpKzRCxSowMCbzJvuwndo1NNtnYssqp06bqiZFp2SJMPcUxMix9tZfHkr3gWUlOR7AIw1cdgbcgwo+k+KqyggVRVmbS0JyFRTkWUVq+0GWTLpwQhVkiHVNQEX8OD5ThBUzLKsxSDBcpsEooUIsRVwnE/wNA9EDjg9defc0ybNWh70lDQoWM2Khz5+YtWjz11NOW7FK6vtJMlnTRmrHitQRrkJhhbO1JZFRQhySIMcT0aWFx9fY7bG9nmlVUYThSVjpt6jRLnIgkKoRcC4OCJZVb4pS26c4Aiy+UmABz6pQpFhPZmhU36d11913GVfCRm7OUJ8NGRK8U8OhRo6G92eab25hELkuRWgBKM+Ag+GD54osvqhHFY6xPjYFERELynbffNotBrG+19Va8pmmlompQBColNkAyeE0oEtPEX3X6oF8/v3Z5MQUMl608t5cylX1JjpqfIBnz0+QgnHnGGdv++McwEY1EHhmj4EaNMWPH2HU9aRJ4k8woxwF3GFdF5BKtAEh4zz9eAYmR6LDvPvucfPLJsGLzffjRR/lUub9mJWy1oA8iMSPO9RLFEMMagjI+9phjEFbjopJfChXdxJtytkSDP2Dc2MSMSBAxUFYHNqUBn/11kGFqwGTEyJF84+b1aQ5L8GAQi4jYS5biBr5PTFWnF6gyf5VPaTUFYsY0fWHAckNzE9oXT06YOAHdvAKopscdeyyet+rl88+HyZJTUYWZC8JK8bAp1ZS+Z91SWqPHjOYYiK2gUsbTNg58PuxzzipgzViBiT7YDE2sk+AP4y3Ht3BhhgLP/sGxWhYPgAky/4T+wipCaubjzFmzmObRYqC5ze5bXclqjI6BAgSTYL7l839z33v02AXyz/fpg+AcGHPnzOVtmjlzhupjUYN49oeO9vGQj1FBKQ8/8jAqsUU8QISaJ0yFzjGQlhtjUvozqqzCMVSwd2PEyBFaVC08sTXxDPtPXpY9+AoSZgDpbpxMDZOtpynkYqBIgVVIgaInoC4x9WQjHprY0mj93Lw+QUz6OPuzZatWzlhl1FuUZMUvmUVek93z5s/v2KGjV7DIoEKIUSMSdiJ1ZtLQomuDWqLhr1dcceLxJ1rtb02AAa7BPYE4fPgI0m2rLbeM43saIoUmC5EaBc0Jx59APRsFVldX853CkCg04vzJQQdZzMUgUATkpfeJ9LQ9jww2HUCYhr3UJZk3+75ppaGBVIQfRRVJZDejfQ0Wq3/Q/wObHmkIyAf3QFkZ/4ENjbzlVVVVxJONT6CxkARg5SHOcpZLOCWmTEYyDnyfcrXIZrfaemvTEKYkkhwlvAg8Lg7biSsD0pQyQikMgpkTCRAQWq2xBvcvnTFs2DCoRghRDKOq9WViYokGT6eccgrcxCRYBVABZnIiTQ6ZBDH1Sgs1M2IYTSVrEZNB9kYa8OVKSTa80Y5Kf/mVV9BZSWl9I7YQhpVN/MavaIj4CuUNFmnobyMAUFaYMyMiMjDXBOYOqLrjjjuO4rEtjbmgQY2qTzv9NOSVOPr5I864AZAauy2TMZmtdK5mK1eQhZtESpjwT4QsNewTAdT8SgK4cT9DRCyw4NibrnR2rf0LzEGrHMYkKzrTbMhl/aRXlOSeYZAhQiSRYbpmffXV/6oOAwg0jAcrO2u4KOzfo2UdpaARQ6UmT9b0MjokQqd4/733LcKHUr/kEgpFO9IYfL4Brqbejz7qk6kOlGzatMmhhx6G1VHMWgG8hFZw1nc4aRS60447tV2rbYpwGogIg4MkkqXxCGipoymM3/3ud1VVVeCgITcDhwT6W5fHxYIfeAG1Pt2MyFxxIn0FM+EB1A5EANtvhMwQCeFQntMAyYQs1wJXEyKwjQC0HTTkXZzLoluxqhlS0qAb94ZtQcwm/Zr5yDpJIaeYFwNFCqwSCtR0hlUC7v8GEOKQ9OERpQ8MWaz3pvgvvfQytSObqNI/nncev+W4cWPJi7XXWYcOM5QxbG+31lpt2ubUqsT6LcFBxkUjgOuej5XOmzZtKt1AqG208UZEpOE7l8PYseOshrId/+xeZ9sy0KrVGrQ4JRTlOI0S1wo0CasOM+JtC7Q1//+3dx8AWhVX38B3QUGlSFEsgO6qMRQVBewkIrZYSTSvJnYwGhV7L6+vfiYmUcSusaLYe4ktURQLSSzRKF2kg70jRVHZ7zd3nufus7uAqGvI4lzx2Xvnzpw585+Zc86cmTtj2GrKmaAxADW5zkyxV/kB++9PWBPlxKI1TWf8b9AQ9A2xQjvyYYwaOUqIDwp8pyBtXmtkGQZ8uUdgvf3W22QlkcT/b0jk3ndZ7nFC+CLO8WsRnFdoKhQpForcqFzRPIYRvNUAX35lbaMQEtNbX0PwBPgS8u677r72mmvhtsEG65N05tGxUSrm3DOqDChzr2nk0+S9GQ02jeyEoE/fyA4PGItX1EzV2r2qSmVZdE22Vhc1K7PwioqKAHJ2yZRmwh5TgLhnByhCKVe2AfDhJucKs08KZQ/1WPzCQkwXmmaRrDTElRzR12DcUP+k/957703lSMUOEBnzPigQ57333vUZoXAq2ZSE79CUggVmZdz/O+ssLUfty5F2jKs9IsN+2Xw77vgzhgKL0C4UPp+T1vJyuMGH6oUhKPL48YY27djRWoiObiJoBtwcVHI/5uhjaCPKGMOdOndWR1RsNBS0ZPdaICLRAhCimoDGB3DsMcdgctD5g3z+avXGbw46CHq40t6wrVAajKUBBvo6C2tSyxS+ZsWads7Xa2Qnpo7GGsAz5tmg7s0pmKAxOj9/4ECDaW6Lxx5/zEeJoLv4oovhqYq0RiPm7j260+VaWnTRlRYZNZfscBuRLH1L31vsoizsCQaKTwQVAYxBtWf7HLCxVKvOznoRfvc991DSVLipKnaDaSAzR+iX0tQR1JTvh1W9eQRa3FvlsgpHTwxbhz07XBvu0KG9lT1ewdA8XRAF2QYMxh5aCFPSKz4STaWUeLpPCNQnAlnvSD/VCETTPvRw15df0qNMAR3SU3zlRmy/RjO8+jEwpg8pvvD1c40rzOpmJ8bGUNJWKtFymiiQv4QjcVxKLeMg5BWu4PkOPnnJxYnMuPHoEybhIsTAEC8bQ1MhhjXuvRVTmhhubMHfKCDEyy9jkiJZYZLQKwjGfIXEt24E8hvbWS/PUUFKqSmvgvitpp3lJZp5X986Gr2J77KroDWGRp80jcc8fswOw+FfMdxN5AflWBbRZOS3UPAaBALDBYIZMuJElgKR4hVpVsfMcAuBWXWHWGgUyXhSTb729p1INLxyUpK4QvQ8U6QsXovXV1/RkRpSXr+l7UEqlhzRD41YrkiENpJdzKKabMZPnq+0LhnZ3U91awwevY3xY+bVabPIpT9ixsgxplcxsnw5PDiuQ0hGTd3lb2sRZC2BiNHA7+IjDiWNiPEVGa+rXK+ExKKVFipwUoT3i3nzNGMdLQRmbMglfrJvKyRZxEyZ477BYZ3buCnGjJGVPeRbvGpxWAwOf73KrxjuEQjxHs+xy8THWr/YwwkoYh+PqWoBmCdBNt7Hm/wxjyChy2P+yo1LvzMlIZzNscUWm5voCV2+pCfmFNJNQqBeEEjTAbUtqmh0+403zPlaMYxvhPg17F7Aqzq+FWOm0mhc667SEPeGNUYJtQKNQqrt/+zOuC3Giby5Ryo/58bXdzkFgz8DlPhYSJUNJoSHYXrdK8yjForspSQGRqWxwruMgoLHYb23McdaA03lrVXkmFA042OT1sQ6O8CwjDnCqWAQb8OD0rzchyQ1Rz8h+8hACZ5xFB5rZAEUYlBYVVCNTGnknGaeNpbFLkKFkOoKCAGqiVvYEj9WlO4X+RFe90Zg9TLPbElm7m/IXtXodwaLLuHxitSM5osB1fRVkqu0OB5lZN+FPHJewJyr/FWtmzxmHh6TKGac2xKuEfotwJLhX4tsaF3lZTwExsqjR4+2XU9FRQVFOWHCBHM0vkoNH86Eygx0SgsVMi3CaySdN2PBFKME/B9As0qG7m/ffnVbU1iIymD62c928BiSZxd+8qaehxTe1flTi3nvheSB2mSdFNUBGmr1QyYBPNbFMMbJacab/DGnkCfMX8Wb2O+0LsZT06bL7bbrrhp5HidPnm4SAvWFQJjHqi9aiU5CYBEIRK05ePBga6QNdzyyYCxB4PJlVZCJMcIiKCzZV5E9o/nJkyebSM5nAZYsV0s8d7DgwS9XlgkUXn0QqU0zShZw7Lf//t5+Ux0WoM5OwDJBYBmdxYBcU9YirLHmmmZPbJMQ5siKBsQSR+D7YAACRv+vT5hgTpCBGACpaRN/H5kmmj9MBJIR8MOs9yVW6ky6zX/n3eC7NtyMo5yGJeD4bKPJAsSGxfn3Xesq11TC22+91bx5i5VWagud7wJR9AegwO/CauQqiyP1HwLmdbV+3ZDvuzYT/R8IAskI+IFUdCpmQiAhkBBICCQEaiNQPVda+016TggkBBICCYGEQEJgqUYgGQFLdfWmwiUEEgIJgYRAQmDhCCQjYOHYpDcJgYRAQiAhkBBYqhFIRsBSXb2pcAmBhEBCICGQEFg4AskIWDg26U1CICGQEEgIJASWagSWBiPAxzPhu+Hsn0246rG+UC4Qr0ei/2WkQgnDeUWLy1aI36D2logMhzK6wpFMi13Ur4Mknq1gI7mvi/ifeP/NylUVTmCKyOTMFYCqP3xyyl9zk1VI4D+/+ZoEX/Parn/2ELStUIynpG5C6Yo3seylVPKQyEaInF2lcb7jPXoo1IuAUpCc4VpcxVwEihCzs/2lk8lsb1or5tc8FntKjoN9C2ol8QrO9j9dfOlRi0J4zJqiHTMXdgrrApIsXlChy2dZ5LAsXtIfVqzGZ511VsMucXaIaNg5xGkdZeFgrnorTkbZR8nILsWfJitaKN3ibL0SpHSQCSF+tp3LYqX6DvVBkI0eNdqRay1btLSN3YhXX33r7bftuP6NNupBxHlIjzz6qL3YVm4XdtYL/NfHNW7cuN/9/ncode3atT7ofScacXcdJBardBkAYuaR7fBzyy233HDDDVByhMF3YuUbJp772VwHXd52223Dnhq25hprtm7TOufqG1IqRH/44Ycvv/wyOxhWVlbakvLCCy+0qfKPO3WKzaZAvO72O8UQR2UOuuACOzE7OiHfo/PbcVIrlazrRUDl+OQ3eUYxJHbSmJ29kC+97FJHldruOo/29Tdhk8dCNwnSwX91RKt9IW2gCaiNum9Ua9vQr6dfjEGk2PLZYRPfmMMihYX9zfkPzBfLsrDIP+Tw+lOZSwjFOXPn2Ex07JgxzP/6qulSs5EKqRfjfQnBE7ItLU5dNpTOBi/CbcpW921pyIcffuDoNpvlOWGIRBgxcoQTiWz/F5OXxqyXe2y//NJL222/HeF19z3hhKFeP/nJVltt5YDHb0TfIUNPPPGEQ2ic2iJhfTUSpD6Z+YmjkG1qW4ufRQNeK3K9PZaXDX/2WQc+1SVYlx8hEydMVI8RE0mU4qGHHho6dOijjz5al8ICQ+qSXWC0PFD80iTxXv+6/vrrbQvo6Eu7DYI0j784NxnJ2q4dBx/8618vOeFCXT/6yKOPP/7YXxy0/UaoJoEnnnjia+PGxTSRhzPPPPORhx/hGBFBkvsfeMDJPQ8/8ohh7uLwsDhxZOQohPPOPXdu0T8RU0X+IxuLQ0ccmzEffvjhobcuxGfjOGanNqjKKLvEJCDtvbj4ucSYRtK2LnbaoS0y5bsAT8D8KieITpo8+btISIA7OWLcuLGO16qLwOLzvLC0HEKXXXbZ4MHXQcNVN1oKaZhGAA/SV185Y/WSSy5x4JsW/9tDD3X8HVGi36rp79R0opt0/vy//+PvDvG0+6kBRLNmzTfffHNdQovJlWXWqL5Nw2JB62DoxBNlYivUkVxeOV3GWXCOH6yoqHBygRtHydk91PjMVaoC6xazbogs0Hd6jU37X/n3vx00J47d+vjfHGBIoztUzeDPgXJnn312XjpHpOTFjOz5nTN3rkNN4uXRwWvwd02aNImLwJnFzz33nJ6sFB5ddnlzqiwxEQ9cCUHFqy6fxTfhL3AkwblTB1WofeKcRUtYON6NqeccZ7wtmkIptfwcwiACMldGBLoQJ2O12nOYhaoGkVkPrpiRCOEmS15KPCeSi8iIW4RdkpAqE6Axi/iIci0iwuUYYme/gdWFXJE+xmKOkc8Ylzh2Fm3OScyxFpmQMCP+3PPPGSW/9957kSUnSmjhDnQOm/KWXAGCDI2SsHCLiBopDYxFLg3J72MWIUJRb0nuUpbJkydTV84IUK2OHMRALbKxLQVksis+Sosr9IX5X5EXWFhvN9t8s+7dezi2avXsuAEugWHDhs389NPSETmVbwtLlPGDVO/evR305zykeCRBpBwyKvZ93QcqoXSxPWRNCEsew2/JJZWYKCD75JNPvDpihDYV48RfEWowj1ROLesIIZPsyqlOnTJFLQtjsOSBpTfjxo5Vs/opJOsO0OWbE5S1hIFDfDo0K/zzlB2npCDl5UMff5wBMXvObNFqHQhSmmN+H7havCuvr5gkq8aQNvIWJGSGTDyZPfIZCWOvgFjNrGpl7TE2JALkmWeeGTNmrBqvdejG4nG69MeqcZBJQymurufsmcuvuEJn0CZUtio3HtWZCbV4Lvi3Losxrr71wfvvOwrF0MQRn506dTJfRcMZKtFDbILYwkKTKi+jrsSv6yurxUChUVaVkSCxZ/I06gmIZCqhKh42KlUsCxeZaDZMJZgUsHmz5sss60TSxqUzZ8LpaoevxFQSQgNBai92AOHxsCIOUvu6E7XXXHMN6Sac4/ecc86Ri6NfmjZtMnXqNFLYmfexdPISJ8ijBcuZ8JJidvSqY+JaNG/hlDjJL7jgAlaFSomC7ImhQ48+5hi7vRJJy5RXtzR8hvRZSXM+Y16he6vdsioMTJ04NQo7+DtLRvxDDjlEfzasB0vd85Yykov1k0tGyLN2VPG8L75wSDQBSFEt13S5UG4yqGr+Mo2XAWmoKRel9eWXooXjhSIyxYLkztIoYZ01B2r3xE6Wbj7KoaSZAmjapGmGbJm8rCewMzwGok4KuVRVqTxpo39FdeA2vo1lE+Imtg3h4QTnzJIX3xl9pCclgy+nCuVtknBnwDkOOJDKiCuCDfnlhVQQx40amW0ZcPgA8hXnITCToX4xGaMFJrMG720smpYPIg1MeZUClwVYxCheMS13bFazVQCMzV44pQLb2bNma9KOFe7SuXPUapF4kUBoDFlyGH4pL9WQ+dQbkfGh+zRqpAuoPuxpqshWt6hsWL9Nnz4sgGWXWVanQPnDjz7CrYSRMSHaUlzVAZzG5Y292mabbbbYfPMVVmgGw0Awc4Mj6x68+FdScUNfK3rI2dZNl1uuqrxG7ooglTgh7VfzHYIslRwDh3ESM4sAfMkd0Fxd8Kqy2IRQwE+ozqzH4Ectf/jRh2RIgWymqgPBkmvGG2/gM2QajkLO2mr2VlWq5SCvGgXjQISo1917j2ConSw85Flerm9MnjJFKiWt5q0ko1q3MY6RN4g+/+xzTaIgRmrGi3ZGk6ZNNMsg9LKaqFEA8ZU4Qz7EqQqldhjzx598rLUjW5Ne9ZM2piXoIBGc+MKwwYRIQKNm26hO9oO/qxbNDQmKqipHeg8fPhzPharNWpLGyoFMG5100kmaQq2+sZgFzCiVaf1Ul3vH2zjFHOWrrrrKIeJapylMw2jnoZFN/3zun8huuummepeWF5nRRQ2IOeXsje+AnJhvfCWtk9a0S1qNj+HTWbNENtLNW7b2Kq+jjzpq//33x/99993HV6l3XXbZpVtQ3lVlq6y6SiSlY8iF7Ntwww1lIbJ1au9/8D5SgbdMLjCVCO7mLZrzgjrfxaCfkSQhGcH7ig3HlvNS6rTUOeWKjrd0CZaIhjGjR7/z7ruMhngEe8w3FsfvkUccsdNOOynjaqutNuvTWe9kJxTzxJKqFAlB+fY771iOJNVHH37UjBXTrHk0KZg1rCtw9ezRY4VmzSJB5sis2bPEeePNN14f//rWfbaeMmXK+PHjHd0GdpFF227b7QzOFGHIDTc4YjWUuab4y3lb9A3vkROBldQ0pJhOuttnn32uv+EGphKRxylyxIAjOnfprDq5T7g6VAH70smHaoe6Ouywwzp37qz2M8kcslJG15zZcy686EKnDGseJqT33XdflHEInAsvuqBNm7bcOc7EmzNndqdOnU895VS533TTTYSmluBkwriwAOzq5fzzz0dHduDt16/f1tnoXG1ipqKigiXKw0l3gmXvvfd2tO7MTz655tprWUjYcC6zRtWjR4+99tpryuQp199w/eTJk7GEFNBYVEbDFkkwaiHAFc+07dC+/YAjjrjyqiv1KVM8alzpaKabb7llmHHzzJmKs91222mT6CuR5AoiX6s0nn/hBX2Ns+qYo4/ROGshLzJIH3vssQcf/Iv2QBl37drl6KOPUdFffjXv2Weeue3221U9Dk886SRKrn+//j9aZ52ciOwYK7qeMwkVllfMFMbaa6/NhOU/4MqyjuGf//jH3M8+22KLLRxUrSnG+sgpvPivfw0cONAs0kEHHXTddddx5uEWVnfedZfIWlc8FdokiCGvZv/rX/+aB0sSIBxz9NEUsO6veSjFAw88oJG2bbsSY1R2QXdWlWnJQ24corNTY+v++MfrrLOODth9o+7dNuwWeYDk8889/9e//VVB9IszzjhDn+3bty/6NL2VEAqidhi1ArkeOTjPHzRozJgxfzjnD126BttXO+Sl00M1vCeffFKbFMhLD5z1unb95f/8T7TbBJIAt9x6i3ZFYmixStSmdevfHHxw5GTihAlXXX01j51K2XXXXffdZ99gKYb2+alJvX/885/YaLdKu7677oaPSZMmqTWrXgSasF+lXbuu662nSUdSC/wlVW6//XadSLsCDseSaQumZx751VdeuW7wYCICmPpCvwP79ejZQydSEH1ZtNi63Nx66y0W8ej4++2334wPZljVgR+VZcSilrVhyNcan1x77bV6qE5Bmm211U8PPfSwFZZf4S8P/sVkkEC1HJXCYYce2nGNNXKW0g0EGqQRwNQdOXJk1mKCIlAM9na0JbUNDXfixImhoXzbC01aUxfVnkhenZZ0IHHkyEJ1aLqua7igpxGadDbxeuWfr+yzTR9N87TTT/NWqsiYgTKBTohr9/feey8RoBPqLTzwvzv77PMGDpwxffq+++1HqDFjTUZq9Lo0WU8YYd89lUn8OSuW7AslLStnERvEXz/4+g8+DCt+iQ/TnIcfdtifzj0Xk2TczTffvNtuuxFkomFZt0FQTJ2T4NYt8UCVIksDYcYsA9Wy7bbbiszJr88za2gmEoc6QR+pfffZR0ld6MTr0MMOUyLS8MYhN5q510sRNLWsaAIlNF9u6CajVVdbFf2bbrxJn6f2Tj75ZHoFelCVnXPhkCXgCPRddtmFciKFjzzyyD59+sSh7fbbbw89h8gtt/xya6+9Fv/eY48/fsKJJxYZITyMTb/6WnelUQ74DPC1ECUyqmAtsY0uuugiQpxio/6hQawD6pzf/97htsaIxDHdqTGIr4BPP/2UJH/6458q16rMGVDXmtzpp5/uFxECbtq0aSanpNpjjz1YfuPGvUYiKyY1pixjxtwLFuYgmtK64b6iVhlbGvaJJ5zw/gcfUCdqXCpK/f/OOGPb7bbTQjBDNGuWQCZnoa2ylEIzM/Ni0kcWKGgz3PtqBKqfzZ27yqqrCn/pX/869NBDGX/vv/c+Axe2AklkbVVlqSkgjH9tPIlJGM+eM+fIo44kOhF34faCQYNkccGgC5ZfYXkZyQV9NUjnQYknX9k1vGywXmNAzGK79rrrNEvdBLAPPfTwU089fekll3Ttuh4TM/L86cyZQECKGosj74gtqOk/lBkZSj1mzGgr0awiFG41g2lA9UU3GC9qitRVdHdFjRIoVJV9/NFH1CcHlSelZlniYfLkSYbBjA+NEB04qC8FB5pALEnCPg6cfPml1jJo0CCjaqtKGzdeZvSoUXSbJSbOxX7hhRcGHDFAh1JTmnRwUw0dagpPQXIjQJMb//p4mlu941bX08vAzuY9+pijheNNXTMR+OEUZLe+fc2JPPnEEyQJPJXOSEDb2HHHHZnb4is7ChqGAX3r1q2CLZKVVEbcWsoYJwLUJpY0sPDW+pVPPunXv78GpoL0IB5Br0yhqv2zzjzzpZdfpl+brbDC9GnTzzzrLAN0NcsPJxWI3pgxQ6Z8FZHUAn+1gXPPPZcFwEyXC0NWd7YQgUQiXoz+//bY384777zQMtutAh+jtZEjRxx33PG77LwzgipX59IXNIA77rjdwkw1TiIRUESiCmJ8e2vYQ4CcduqpYfBQ9KbIC2UNm6TCNlaHDLlRTTHl2XyjRo1W41q7vqPsn33+uewUSnYLLMgPMVB7anCXfusEenYiR1/dizX94gsvajffrlzRb0ko6MyxdZLj1117bex7Wo+xl3DtSS/SXfVSrZOAI5EJiE6dfuxe82XXiyCa8RMZSkAgqOVREr169dJVKDydECkjEl0IZQJuuaZNCRQmbWT+8ssvJz1ZIXoXxlx6BdUuU0pa8i232EIEwsswhXzRVQgFXJn+X6NjR7mfeuqp7Gg9nJEkptzhxoPKMhATP4SdOM+ZS+YDrKoyEIylloV+qLvqn7glPQ3XDF+8VTQxwaLgQggdY2s8IEggGtEeeOCBui7FLwTzPL077LCDBU1XXnklsmTEL3+5R5+tt3bWnPjEN0m0x+57sG/kJT7csGT8jT1F8IFT5G32rFlG8BjgR6lVuSLEOMLzmxiH3KEtnGp/1513CoFht24bqCADJmAClrWBZyKYyIOhE9w33UWD6CEAADPRSURBVGQT8h0dGpes77vbbqw9Gl0bMKDkern77rBQkZT0FrycnxdecEHPnj2xTfJyTxu5ktr9+/cncLlGmHQ9uncnFt1bxKoBmEwR2awT9IxR0LzjjjuMyZSaRqfM8IZVYtS6SMNfetqwXtuWS2iN77wrI/4AUGgPn3z8sTam7vAjnFicOyf4q+jap596Wto4vaWY/GQ4R1z1YcN4UUyPAnkjNlh/AyqWKvrzFVdoRQjKiOqi79m+8rpxyBBcsTxkpGH/68UXpWW3aYpQffGFF9ApxV9CI0Kmp6UhtCDbmryWll2FZ5F9/aEJAYqYpoC1zNLko0aOggagsOQfOc45JALVgohmxhZBFobcHptsskkc1l9+2WWq26hUTPXrXtHkBRmVJaHWjm0F1zZEAMs1V18NfFUsGnUiDvPUPeJKzQsCN0kob+aatyoIDqwBmVLVahzz+LSYAA9eSZtfCqV0GrxOwcJAR/zrBw/mT2LsMj7EVLlcPqSZWmMEH3vsMXw5cH7un8+pJs0+Fg2AWguW+Nhwi07IJXTccCkv4oxGvqJrr7lGeT1qtKSlWrjsskvljr5mg0/caidKfddddzEyaEqF/fOf/ywt2xEy0mp7eq6+IKNahZKdZq92SC2cDH18KCgUgaDAhkyPOupIrZoXB1n58iIokdalOSEFdl5SgUrk0pYUUxWL0Lt371heEo+xhVWfsGFPMdU+yYx+VtzwEyaDMifN1Vdfze5BnO9KElCrLBkNe/JJfe2oo44iY5VIfKlKKeSkfrA3DdIaoie43ykDSshvrYuq83aBr2rFXOBjHIhQ2IZNtJFmdN+995508snat8GKJJEyHs488/+IBn45ikorv/POO9t36DBo0AUPPfgQuaD1c19rbVJpwUxv8hTBvzzwgJY9ePBgnUdnY7rq88xbLgESX//Qw/XDwFvubi5hlDTnukSQGqMMBl9/PU5oGh2VIaxjK74cD+zXb9r06RT8scccq4PpbMpF+xIQ5B1L/9Df/tZ4HWGDHnL513vvPfC88zzG0ikRxXPH7Xdceukl7nGoc3qFeAkvhVsQGSqxDBRWFnffdZdhtGEBEWm9AjXP5XvFFVesVbmWD7f0Q2Ll4osv4ZmkNhTEK7rf9CHnZKNGjflgSaX999ufPmYEQAwFvVYXNdZnasg1GmSlnJBmRB5R6/raqieFKisryS8mDqiNVMgOUxsMFPW+dZ8+s2bP/mzuZ5GOQu24004UlUYFYTqATmXQRDkSefh01qcjR41ChNnEgPOpm+Ejywm2ygsf0Zo1b858bNG8uQ/Poj+za5curVq35hsgDQHAtDUyjkqO/cQhQZwBAR0Ng1A21DMHzznEdbTSSm3Bsv9++6kRYtGkLW6jyaVQKyy/vHBN6/ABA3661U/VYMsVVyQKpR09OnwiIY7LjQUK/Cu6UyyI3yAiq6qeevpp7cp0hoxQrlhzTQ5kIZzGERa/RPxG3bs3WbYJDOkzqI5//XUUGHM5NUaGqmFmadVqE8L6Ec4nTpw4fcaMLLuwks4r3GJPy8RAnlyTgIzx33333885IZcwQM/md6HK8qDglXSNjmtQG1QR0ALNPH3xJtIEiyJAyfy94it4Rn4Z+AgxuPRWCrqnmC6svSBjjNR5/kTT/Lb66U9VPbMVTCpFIKMfk9KqVhnpAhGiaiLZwBpXwrUiWWvtEMa55m20qke/9tq4li1b0NAGEtw8ZkygpNOd/buzAXjAAQcAEEELVlBwGZf7hY8cswn0UGj0EccSbQo4aHuMzGDvkEN+qy3BGTVxiCyUNUvzHSoXNfxsvtnmbsgTHVPNBoIZVlZUuPIS1b15dviz+gVLkRtMqkwWnYYgz4RpMrYvJ5MWqEUFQo0a6W6avW6iw5qyVAjdx0ccl156Kc+TqZDOnTorEhCURfsHkRpXEYYxsURFHsLIAf+yNtRRX6Z+9GIii5WpIcYaF87PEe6XCat8imnT34BAg5wOMEOpn2RNodjfQ08Il+alE67YqnY/zF5+gx/N15iM+WxAYLTBWo/zx/RTbIKceDvvvAuhr8PoV4xZck2XZsvT8U8//TTHgG5GoMQF+QYx+qpGvOFGG2GWEvJq0qTJ2rRXxogI0hlYZFBrrIHXallazTlRyNbWYfhmfTKHFDXjtcEQgrrWBuuv/8KLL5KbRABPOx8mmUVOQYbIo13MXIpPfBvx8MxzNiodoWYmcr311489hJuBql5//fXIHOv+rJ3m2zeeQ6QuU3ggXNQIsiJQcpFdRNjdQshueE6aNOmjjz72yiQokapbyhRvwlFw41WXLp3PzhYn8h/qxvq/uuawsGTJah/8d+zQAQPQVmoCImZkYLfPvvtyVITHqrKDDzmYy6GmpIgRq38JDkv85BtlKvbUnSTC5YgbS+QiVwLJQSkjQdPnpKRhtxiKFil+/tlnQStUVRm6hRA1nWki4szfqBQL/FApVWWqhjqniFCQV5RTJDI66kLmRCFq8YIM3lAVGQLokOBZLlU0ASmvMSyzTGNmgIRxLBt4zVYsQIkAfWrYMGtctBBi+vPPw9ci+RX5pPUzn3IIltKgFhuKSeexHS3Js/CdcJcRaR7MrMyhaoLGTTn1UBbWFeJWdWckcvLm5sZ6xdeFTwURV6vQVDAml5BdhmEsaUyWo+qRNGfssiR0Robmz/v2Pezww3W3GLPQTQKVsrZt26Jv8OeplEKMGX9DWebPVwq/LtE++zyYetp8NdZelFghsTtoHgorvspaMVtwI5wCZhryz1PVlZWVb735po5PD9F/pZnGexYDwvJCiekARjYrg8uKHKUTRwS/6teXC26grcg++NT4N910M7pTfwmkGIJZT+E6x3NQn8FsK5l/yZ71lxA5u2KHlbW2La4wxlZkIzYktWb7DQ45gk4zNmKWu1cKKLJhScio2NQjzbq/el/zZs1Wy7yn8a26U9HEo0kK+hjURFzAMOMWHIQnoTrh9dfbbNoGJrNnz7IASzEtuejUOUzmGuL33a0vxoxqTKT6ZooZzWmUNwCFit/+wATbYpJ72gD5QCIpat66xHQva2QLSNYtww81pEEaAa1bte7du3ccHhVaZ5CtoSe4+vTpY2z33SuUHjIbza40TOeP0pop6WlTp+aUw+ro+fN1J5kKdM9jbhkOC4AdQhYQcwSK8WtsoxpfXLjk0WWRlIVUZBxz2Awf7yW7Qd/j2Iz9Ns+o9MacmQ4jRwWnwPyhYslWLkrDaDFXbtcu9jRZFMCxGmDu3CDOMrqRW7+Y5P3jkLCkgKGNWwNcksIrbFBdiLtZtklYoC45ggRo6FpF/nSq2K/km9+Uclt6b5RDBYlGK+jGCKqmDh3a+4JLtMhVdfzyMAiQF1lJDGEgRrC6G1exrvPI/A2ADQXM2GDx1KaWRy25UbySp+yWjCiWTWFrvw2SmuqnEKvwRqqzUbJShyqm5OB53XXXxVQBoWxYZkVVFOsRnyy8LuHwmZbKQgf+K6/cjt8oGBnZVx4Sktquuv6PnJCkgbFwBTEX8iov51Q497xzJ0+aXFlZSZ3LgnDM4izyJ5P4KMDQr4vhR9a6wZvfgG0Rpfym2CJqU152Wev5Le8Pl4TxS5aohqMsdh/TLJACSHnaTGAZ4o8aPeqWW28dM3YsH1uBjZgyG7tHAIN6qFqsXfli14glKpIp/EXcVRKYsZYXufhCC9lrz73iEkvuDcVh0Juh0LyLUWr8zWmSGPiUdZOmTQkW/oMYL8BaXrZmRYVHPYUYEUcuBgnTpk5ba+21hIcYriJ30YYrBIYXYsQ/Jb+S1A3M3pMk1iFefMklJivZvnS/X3YA7bvA9l9CtOZtVZjU1wJ11dIX3AnRttau8/CIvF6s6iMIuIOewcYhv/2t1VFWKXJ78PEQPkC79pprH/3rozwKbBTrWNkT1pDqDjlB1jMRLZVGXllZAU89BeUasOSx000dBKrrps6r/+KA8rLtt9uOVjY1q7fkjGpJTOadd9pJq9J6vksjsOx57tzP7ISlIfI1cfUzMBFcNmjHMLluLGgdu+W7wuNYfM011uAs5dyThGY1kjZ2odqjeDIAMuTlLcAtPmdMn/HWW28ajvfacksLCak60kTH41nl8MzlRSxaXhCGP6WsX2nlHAbWTAWDgGRoFBYl8DGSlWRH0NzLLmtQSJeYjQ5SKRuCwCqyiqzZ7k023pg7WnZWJ5ACyis84FZWjp/p06eZ8eeONvJThMrKSmxExqL6zMWEcFdMGxle4K+RgaEbCmS6eU1cGV0Zshg8oR8poFK4KS+P9r4xE3WoOGgaUnCuuKGDS6UAeWHobCgQ87UwYoEMlAaSREDLQgLzsVxRfwosytjwPvLjRnkl4O1n2EEDyHHISF9w0iqdysWtGgzJiuPRXMnFLJCLb0OuRaNMiCf06TwjGE4XgFgaEsVl/BWHXItpcwpoBjqBZjCChZcqr4svvmjM6DEWf+y0406rrb6aUVdYTVZkoJRUTjDclJeDFxtMXsM706sxCZsbJ5SE5hfzzaAJ+2mGRAsZKUoeRnsTJ2qosRLfevMtfaeyslJh+a4i8fC7IMaE8ppYXeGiA8455xxrCzR+Vm9eEJYZ3TNyxAhcaQkZEoUKLGCetepYxuy3unpBijHR8pgl0Wrc5tnF6vDoGjbsSS4TvFk0oMtpyausEtb9fC01jZ/GYqVpMCo6z0kbkBwsJunvvvuujXtuvHr79ga4V1115f+deaZ6kanIEfM8VWhIhWZVCKuFZY3XJYIRn889/zyP4D777P2LX+yOpbffejtbwxiM9Zz+om9iTGLEAhHLG93E+EZESme9hZ5iF0jMG6aXklKVAlkeql7BidYD9j8AMhddeKEFOucPHGh2FRqckZbC8HFOnDDxpJNPsobRcKK0+9v6iSKg+/k1KysqONgsMPp8XrVeKM003ddFoM5gqG6U/74Q3Z466d+/v/VB5plIJY3JOiardSxlMv1JJMXe8q159xHRL3b/hcZnSZHFAZY+IVVRUWG1nc5BcLCXLTczEXX88ccZQ9NYP//FL2hZxq9eQYlyYZmnx5g+YOWVZS/0gUE/FWi4sN1221oBSwv22WYbXjJJ6Gw9Af8yypnXB1weQ0/Ts8vLVlt99Th0MHZnmlCKw/8+nK+M+heTWYCZLbfcwggDHd8mMUTcmA1FwSsr4S0RYOlbONOjZ0/fPh1x5BG+X7A8u3nzgCEJo9eRs8cdf7yVBFSIVIa55hF5PiCPWmCmeMV7nFEbwlhmTAqOO8IRXEIIAsuLWEX2GOcAFIJzi+CEP/3MMxYx+AZBwdFxGQq75EJFr7tukCbKbr2PGxfV+LYZlvnzORBEjoF+NQac50tE6eP8VbyRxE2Wg/F78MqGK9Au5/b3SgRXpMn5H14WL3rC14NMPfCOGDnSXgjsOfNE4X2kWFXVcsWWvbfais/EkgumgJhq3BcZBBnTRAMQEolHcRzTRXere+XKiM3nPbJQQxzDX+aXQBYYMI19NZ6YKuRbcoUyaB5lVWRoqxVbecNM0ThNpkyZMpXeXfdH67IAGH9kPY9riJxdeo1A9aWuo20qWHIZ4fZXe+2lMVvyQqxLYkLXSi4h5o9VELICtUtmWaQWO1yskkgn8mgKSaFMOZm9ClM8H3ww8PyBmp/60uz1U10gGgcyLSlW4dY8FENWWbxVuphp8GrMn09b3HD99V4hwvC1rxTDoteWvaSMLEU2YIvPSE5yKkc9Uz8aMx3Ml0NzC1dMPdf3hBpFNFWjyaVVyFqRNcicPfHF8ct1p6JZOXqZpS0XXHjhHXfegQ4O8siFm/Kyli1aaEUEBNMK5nvtuSeob775ZqoRk+rCokvSRnyMGdq2aNHyyKOOYi7r73//xz+GDh2KW3C1WnFFRXty2DC6EAPS1rIJWFcqZ+qUqSKMzTbJQTMWJzKDcxfYyZwZ06ejsO66P9ZblfSRRx/R35VYNxFZ3enIVuZqJ9iOyat/y8u0eal4xSjpFi1bWndpSSz2MHbU0Ud7Re6RjSuvtLIPjphxGnN0M1jHx6wUuPJKK0VmQG3xp/WqPlDk/PCtEyR9pazHmYJS3ZWVFVqgdqtDVfNQVmYFD2cA85R4YQGYnZkydYoIsQHoF02bNFG/4kyeNMlv3tNLifyQ72uMLRoKELo9VjmIjbpcKjU0ahoyDIfqdL9vVSoroTQ4Hz75eh59UoC//awzzyIPIj0NkQDivJKjdnngAQcwgXUYs/76MLVK9LRu00Y71tOMVHRvK8xJH79WleuB9jJDStvlMzD4Q4dYpEFL+dWLzNhxpkVBSTvKiz7Wpq0MoPJjeU2IUudMIgJFlzvxxJPW/dGPSHC9jtYXn6lEcZJBNhw0UY0nmgyf5ollJxefIO6xx+4GNGQNhmVHgqDghh1D9Cud5PpTQJo+ppMK/ufALzFErPNG6Py0BWRkakROfrF7qCVeEEu3rD3cc6+9SBNf6LmQYl4osprTyZUFqgJDFZaXderUmTjDxgsvvrD2OmG0ZITk61ARrJAPuS7epXQkoF9KXtrgY88EBAVG/JFiyAhXxdED4KNzkYVE8pqBe7IJhyQI6e/zS6uWinMBocmJb1rH2kDomc1RBWS6svTu3dtby5eJ+1JmESSYpBIYS+0Xay6GJ5XMpEMn5Pjpp9asaSHBCMimjbVG2jQaEJGmEDfGRht06/a3xx6zEASqsjZCpUt8aUa+E+KoNWvWXBaxaKQ2r5U1oRSYAbQV44jARI1jxodq/37lFe3fLKxaILgl18bMtYkWRvD8YU2aRNWCIN7EiZRDPyxe4Dru2GMvvewyy+DtDRDUle2fe/ViicbIZpkgDPz4WExX+Mv4vvnmm8y1a72KIKaljoBVCgibydZ4MKy9UVf9DjwQ8urUW4wpBc2NgdCYMpxlQU906NCefUb7aq7hK4P119fvNFrOMLjpU3qctAx9xUQHQQgLiTxhVaeOFbr+BhuYv4mrYXzVOXXaNOKCX5p1DrTSsmCp99Zb33brrTvtvDOGDR7223c/gwH5HnTQQfKNBHUZPeiee+9l3Pfv399yekQsDrCC2HfwnOS6YbcNN3zwoYdY1fLVEQyaJS9FD7zcivfdf9+DDz0ojoSIgCvnR1mUSI66ti+sbJlAN2sqc+fOsahUVeI2FHn+/Pil8bHHHeuRcLDaNycSbmx9Ni/4DCQh94wZSAwfCnHeWFcrWO2YURWRlSx8xozp99x9t2UQQvCjsPvsvbcxmykJaKukWGsAIS5UPavIVJqy0OtsNQtgNUJiJC61ia1MwVddZRW5W0Wry6CDMlMvM8UCj6uvtnqXrl3ZoJouoHwvo9bCi3QVEWiQRkBkXvVrmn41WQ2uWKL6+fub3xxMLxrNv/32W61atdZetSGdUI4ykCknng9v6FFb8WzSc+M9fvlLr6x3vezSS4c+8YShmFXfPPZ8a4bIHdq3t4bLeI6SYOSioDNbTh+smaqqHX+2Ix+GUhjLZjKruggs5d+fc46WjYEQmmkmCXUDnwxF85YFwEDxraB2b9wgL6NJ7nI9lrWhq/uSp+fGGzOo9RMjSw46S4INXHQMLl8ybu211vZZM00TFUDoV6uuGr/eUSiCRsejeAiU/v36b7HFlrLDywEHHqg7VVZWWqJB2lorTp3Q99jAACGIGk0vU7YR/tdZex1DUj4AIMjXEJkhslZlpTXeBt+y0JPNoKPseyQLESwyIvr5VIy0dG/4jB//OkEQZSgmAyCLcYkHMTaKnVWi4WJjHLVD/Ws25lCIKl8KgNHYVsiG3Tb0CYAF55F2lGVGn++/997yK6xg0sd6TMKI9K+orOS5kVZM68UsrYAVIf7BB++3bLmiz/w322zzVq1bAURTsZ+PaHSgbeWoZ8arxRwhpKqKkv7tIYestfbahl+MQl4coLHPJFHRwu2qpGFoafw3qOUWABCoE7zRi2oK7CedeOLrEyYgorwqmuh8ffz4wGpFhdY7/rXXGKaxXNZmUtu8LCh37RJ8tswC6pCaRIqqsyTWghgtnB2GoNrRPulFdrA2YD47mmJ4gCqHFsobbciTFHVuzCT0FIXt0LGj+bV333uP1lGtsrYUX8m9tjsNj1p0IxXSlPwx66chaS1mELRwhwDRcBBzYRKqKsKoWstUOipTMM7hQA9BGNr66ZFHHqGmcCKJtSOnnXa6CWb6RhLtXHFoWSqH8tCYma3vtmlzxIABcAjcl5X5uoxSYf5GviAZNyxilEioido0ok3bNkajnCq6lf0Y9E0Ov5JyBDubOWXUa7WwSlEKOhYdLiW9WBEUxMBjyy17rdBsBVCz5DhRIgVVaffS6dOmKZoiKKYP5dn3Sm0lbzSJSvPSPdWdBXci0388KLoP+xVoWYFCXF/uMJhUB3i5r1DjmWMVWepIQGljwbDITFtENEVjDx8OlObiXjs86qgj11yzAjh6Zb9+/TRp+luflVyz3Habbe0RFtvMZptu+qc/nvv8C8/zBjGpVmq7Uvce3Y1VcGX4rip5IHQP2WkMttzQBRTQVkgap6nJjz7+WGvs0rnLJptsHAR+to9k5MdKZ1+cPv/8c4rQpnWb7j16KJdvbayJFsG6K19CAU0zVo9pp6BalRgeQ39qsJcW833xnhFmz2pYWmfIKAtxYzykLxExTASrVLytxQPZqhsE5zlP75e8AIWRhLQuwoL+o5vdi+CXGa4ijOR8elCLVIyASIycv42Pstay4zxCjClrXS6PJhcXzsV3iUmvGOi4F8crfKLAyMiTkD76GNHJgMCnCDFyjIC4yCEkQyMnVXirdLNnSxXjiOYKmc6cGRjLMhUTIDbRY44Qu+7ztPiJj1m6+VLxr2CGMuOEEI3CAxR7QsKY6hv9BgawXfIvZhR+MzaqH4shVm7L3Ui0UPASbutmHZMrAhmalytGi6/yJB7zezfxbf4bX6Fg4Btjlv6WJiy9D3GyopVCLQIirtKY+b0kpbUpPGYUKzdGE6I4il+gX504QzJ/9FQEpySsxq3WUlq/1e9ijVQ/17zLWq+eGDsU3nBiBM97YV1LKUqSFfgPdzWI5OFuXCAqbfOi4k1gTBPjhPuMiMdwk+UbX8WSWkVLZVLVrMMQd/58MzhMZ8sgYnON1Ep/cRvAzGq/QDZLKFD2kXgeP48QiQfoimwIUadCIqk8SbyJdBQwIlagU8J/Hs1NfCuyfhqyCEHVVemtwIW1nxg5/Na8gljISUX0SiLgKoCf8VMdXLO+CuHFQDzkuFUnqXknTihCcdas5ssgc0L9ZgDWepUeG7AngD7IDVv39Xxl48zwUe5yJWt9uRsya1q7oZzsQGd876ZW1oxiVww0zsjfRm7DGKjk0rg5XQUYYRgBlLwp3ErFVV0rvECqZImsCALzfGN8Q4d4Ez20xnyunJS3RgP5oxvlQsSvV4ZK7JJapTM44FjPk4iU37uRtnTBTnxVK1OBaBoflCaMaau5zQZtePPJvg/EuVVYJBzyVDKuDBqMM0ivkF8Yqi3uVTdyteM6o1MaAQjoEoICY17YyyPkN6V5x0C/RnWl4e5rxV/0Y0wLJYO8eJ9TrkW29DGnWasN5ERKI+dk4VkaXiBSAqqQusUJSUriFKiVNIxSmvl93lpyVguv6pDKk4SbUEnleTe0hsN8BpmugkLtlIVp6ZyZaso1aebh8aYWRDLBW97H8siRbP5Yq7V0+nEnY27rfsxh67xYYgT45ag3pK5RhOKDOs3BrCa7EITzCAGD7IpkIhuLrlYx85rN6VTznxGK4fFX5Dx+gLu4ACLLNnwrFLNewG9NnGOEvKIDqQhiScpqP1bpqwXRyd+X4lZCqcatOKXCrca7TOaIUCswPUYEaoiABMrXIJB1D8vc6ANuQ0vro6r4mlSLfG3czHtZWVnplxFAsIU5giV06fN8bvYjWmPNNXnzlhAXhWxh6yvhqVOnGPfzoJL41L+eHDdUDijV8xRQjeJGOchDy4ub73xQI0Z6WBII6HoaxsY9e/o1p0Nf5ariP8yOvYasqHj4oYfGvfYafyHtbn7EhKALb1G5/odZStklBL4FAtmy82+R7oedhH+M4RzkUX3obG5wGo65TXbAdYmLj1A6Zcs/Cl8SdV0Qo/Cw2LME5CUgXjMelgQGKc+FIlDdU/4Lakf/5YgmEDioIsdLoJUuFKr0IiHwNQgkI+BrAEqvEwIJgYRAQiAhsLQisMQ8z0sroKlcCYGEQEIgIZAQaCgIJCOgodRU4jMhkBBICCQEEgL1jEAyAuoZ0EQuIZAQSAgkBBICDQWBZAQ0lJpKfCYEEgIJgYRAQqCeEUhGQD0DughyVrl/r1+1LSLr7/uV/QS/vyystXZ9f/QT5YRAQiAh8INFIO0T8B+senvgVIWjcf6DWf4nsnIegVNe7Clr39BF7SvyDXnx2ZUt4extbE9DmxbYR8EODd+QRoqeEEgIJAQSAotCIBkBi0Knft855sRxPnbkPcDpKUtuR6D6LRRqTwwd6kAwX0vbJT7s31Ifl53X/vjHPzo4xIYFztpx4rCT6Jyp6pgyG4PXRw6JRkIgIZAQSAiUJSNgAY2A89mOPcEF7V9xY9qwh0++M0mpc7rWhpcSRad/5sEOKbJLmB3FnSIYyGakAvVs++HAQUwl3zrGgTgh6+wqvc9Dsp2MG8V900SI4ZFzExD2LY6BOZFChEL6AreFt3kBa0QqPNjRyIZ9YVIjligLRnz77Xf4+JNPHKZQ6xiYBecbGSyCJk6+5Zt9YPPiOxzWkeq2Ybc/YMeOHR0lPuypYc5WiRu+Rk5q8RgZExholnAYo3mbE49oF4pcQiUmzCmUvEm3CYGEQEJg6UQgGQG165UmMAxtTBnTEo0aOevCZUt84XRP1B+Gpwa+LrtVOwSbos01SlTtFNGcuXMLG+lnWt9R2e+//74zfOUXlY0j49xQqw7bcHKOUzVQoxxD7vb8z/RxfGUzMlvnOhhNfMmr88oeHaftzMCo4eIrfIr52Zy5jshrGrc1ZEZkZk2MgBreZISavCLZwFjJ2Vwe80sECcUvxMzOL3GuQrQwnITWtWuX5s1b2BXcAR75zuGSzJ41OxwjllkPBWrZcc9z58z1asVWK8q9sKd3br5k8VgAZhYcYbzLzruwb5zUt/XWvT+fNy9ONxSSZEg6I9FjOOM4O0wyFjAaBJ/OmqWYcVN0CCunOCKoOCUVXh05lL3IoNCi1VUMS38TAgmBhMDSiUAyAmrXKwVAUdBbjnW/8KKLHBBCWzgp4JSTT+nUuZO3TqO6/777rr/+ehuGO1t26623PuSQQxxn/u4775551pn84Q4dtqm4Q1od07nLzjsffMghtLvzyx999FEjZkfFOw1PiMMDHdA5etSoK6+6yonDcnG+cDycFE9m2cU3y+6Yc8fn0L6OTXN4muN3o0p2Xt+VV17pTB2HmLVdaSXn6xg0GyjP+3zekBuHOH6XzeEEWOfk7r/f/k6hdT4Khh0o7LRfOtipvgcffLAzwoPBUbycN+o8dRw6N8+0heDp06afN/A8B7nefvvtiDv6zymfY8eOnTfv8zZt2joEFv1nnn76tNNPdxAtiOh0NG3yT7ffMGSIkxGc1nr8ccdT4dF/gIJzk53cijh8bLS+Utu2bdq2dZRw6XoCet3RSh999KEjx6IWd1ZvZJO1tPMuu0gIebXgnFmMOb1NcdSOM8qcMQNbxQSRuQPhwEGcRcWes8gACMBp2rTJOuv86MQTThz+9+EOOMb2CSecIAtVz9yBv1Phkf3NQb9ZUrvTx/Km34RAQiAh8P0h0Njh5d8f9YZIOajYsjKDyJNPPvm118ZtssmmDlmnBemt3XffnWaiYGgIR9o4Q4xqGT58uJPFnflNm957372v/PvfDz30kMPpKT/H3706YkQ49nu99R5++OEpU6bEg0acj2dzflpn7JgxJ59yitPEJe/YscOUKVNvuOEGZ3JXVlbKbtiwYTQWmyOcLlhV5dxxS/B+/vOf03noDBgwwKPzyhBnUohPbTMRzh90/oMPPujkbOxRpdbWYX7TTTfF6llnnvns8OEOSt9wow2p55deemnHn+1IFwanQzb2lZe0rJ8999xTEVSfQfM999zDoOnfv78kTASZ8tI7ix0UL7/8shvnxD/yyCNOamf9KNf5gwY5Un386+O58dlG06ZNe/Svj27QrRvzyCHKDKZx48Z167YBBUwTY9vZayDiTgBgZCM2m2FPDnv53/+GbYvmLYQb00d7hZfjkksuAaazXKPlBA0qf87s2Y48/+jjj1hOThOvqKiQO55VUGVFxdrrrMORAN6B553HgcGqW3nldoiYo2FPqB1ENtl4k1atWgFNxV199dXvv/f+EUccUWuOoyE26cRzQiAhkBBYGALJE1AbmaCHystnfvLJyJEjt99u+3PPO5dNMOONN6Iz/O/D/043U5DnnnsuBUxHUkgWrP1qr71WWXVVjzM//dSA8mc77LBskyZ33XnnxRdfPGLEiN122+344457+JFHeAicQW4wTZ/R5TQNJfe/p5/et+/POahpxGOPPZbSpZZkZ0hqov2oo47iIXht3Gtn/+5so15Gxmabb37LLbcga0E+UqwN6+fHjBnDZ05DO5h4k002+d3vftdqxRU/+vhjB5tyM1CK3TfqbqL9R+uu+7+n/++aFWuyPGZ9Oos5EuYRSlzx/PmyzkHBg3t60S+VyQdAYZ8/cGCLFi0//OjDN994gxEwZfJklhN9vEzjQnNqt8oqhx9++Pbbb89X/4c//oFLg8fC8v6Ro0YxZSzyP+Xkk53C/OSTT7Iq1l133eOOPS4csZp75MvKpGUrAPauu+6ioensLbfY4le//jXnAU5k5xeqe+y++0orrzx06FDehfsfeOB/9tyT88MR73Q5DJdfbvm/Pfa300477Zlnn91+hx2mTp3KxGEBAIdVpKJHvPqqamIVwZnL57nnn+u4RkeFZV6I3KNnjy6dO8soXQmBhEBCYGlFYGn7XK1e6smMcpMmTZ0J9uK/XuRwptcpWiNLamPCxAmGjNS/YbR5678++ii/NyfzK6++6i3lZMDKs01TrrD88nvt9Ss6hpo3B2/igNZnT9AxBu4ukZ97/nnqyhzB/fffRz8Zsgs3NjWzQPuibJTPMdC4UeP11utKV0kyecoU7PHYo7bbrrtiTJGbN2tmJC1rRoAv6wxe6fu777nH+JjW/OCDD9Dk02663HITXp8w5MYb3nrrLS74isoKs/i869WgsUQyFRu1rPBgEmWXkIzr5Rgcl11++fQZ09u0btNtww29jEkK0bLkXBdsHfFbtGiOMeaBLyNEwDM6bVq3Xm755eFAYQsRXjgtvpBVoCRfbvzrrruOw0MZaeWrr7nm1FNP5atAjZnG5+HUYziL/JNeP1EjzJpxY8cyJhgBbAhoLNtk2R49ejCG3nn7bXX03rvvcWmYROAwkLss8A9eN0yWL+bNY0woHefB34cPlxFjLhQtM4MCT+lKCCQEEgJLHQLJE7DgKrVmjS7xiZqP+gYPHtynz9aHHHxIq1at6WlqjAf7iiuuMO6nw6hqComOiXqF1z2eKCq8WfNlKEIn89Lo5qopm7Bgr/hFwLSpU6ViH9x2221eZco0LNOjts1Ki2aMvsIKQVmWZaYarfbFF/Nk+snMmbNnzUJ55XbtLCmkyK3FM49tjEvZL7vMMk884au9ofz8vAk49JE91YifIwYMsP7g7rvvufPOuyjpww47zJSBtFnuEYcwwi55rHFvWsRkhMUNRufG6F27dj3ppJOYKfnOB0WDIYzUo+MkK8IKFhBE6g5cZ6AMfeIJBo3LyoOZM2eymUJhs/V6FHxeH2CUo2UHrAHZnX/++a+88srLL7206WabWWXJ7QAZRc6WIjZmbUCe5wOAaPKLAMG8hhmHDz780CJNOEybPo2mX6/reuEzhOJuDXCDgFL03HhjpsaM6dMtsGCcbbzxxnKPjOUspZuEQEIgIbCUIVAtc5eygn2n4pSXU7HGoDQBrzt3+sMPPzJ27LibbrrJEn2UD+rff+s+fWIWtDfHPd1mVV2tTKkQ6j8aB9nIk6ajFsMYVMy2bVeit6gfHvuWLVqG5YjZurblll8uzkNLTiPnegitkLq8nD6z9k1kFkCjxtW+HHkZGTdp2tQ6D+sDQvKqshiBmSLpTjvv3KlzZ14E2s7Hiqeccsptt97G3In8YCnaKPQ3kyVkV2Q146SMQ8JCuQ3W3+Cll1+CCZVsrMxIKl03F2MqY1Dn8SFYFY3cRoK/+MXPb7hhCF+C7CwjMOluUgMD3ktSSJH9QSTiKXyP3fewT4CpBOsPvGyybLBv8CNCsAPChff57CdLEAYOHIg9Cxc68Z2suy43QKRvGaYSzZz5ifqS0r3k+bcMffv2tcThxptu4hvgDLD+A9G4CiGykX4TAgmBhMDSh0AyAhZQp3QGhUpD008uvmXL8l984QVuAK5po+p/PvfcPvvuKyVFFfWWJNEIKKixIlXh8YoBeXyPVuxbWzB58mQGxyqrriI7OpsmC6Pv7ELK5VbkcJeR8MslsPrq7WfMeGPkqJHde3QvUG7cmAd7g/XXt7DA8JfTO6aKyYPLvrxMFlSji1f89ttuG3LjjVRmtzbdIgU5ULcsDIPsiZMmdunaRbhRPt8DdYiOCPjvtmE36wp33nnnP/7xD//4xz8ZST5QjBTCb2A0cOo3aFmWRCCSXRlW99//ABfCMcccQ7+aF1i9fXtj8RA5uhFiqvLyhx580NJL6yWD6dC4sfUHvCbBq9GuHeJsIEl8OBBSVZVNmDDBUj5uAWN3iw9MhVDh/BwWBoLisccfl0RMsw/WQAx76ql+/fsrCBdCsFSKV4/u3RlkvsUw0cOE6tK5izjVjBWjpb8JgYRAQmBpQqB6HLk0leq7lIXcl5y+9yGZhXhUFN1JERpxWu6+cc+eVMuLL7546623mn2nSCy/t+L9rTffjJnG5DkDmfYLWtxFqbAtrDc00Bw3dpz7/fffX0YsDJMCPu2b8caMwwcMGDRoUCTiN95IW33DtVDeiA7GEh5oLLrfEPnII480NN+qd2+jYWsVrQYQjsNrr7lmwIDDUTbbbQqDG0A4x4PPH/C26mqrYiPjLvwwL6ITgh4NKwdnzRp0waD4DZ63vu67/PLLw/eBn8/z6d3cuZ9Roitmw+sChaDIg63gMahnv8Fhv4yHQoSqKmXHw6GHHmqC//gTTvBJ5L9feUXxYoT4Z/To0RY8mqf3DaS5D2v0LKgcP368eQ1fGaAvXzMyFDZOPvzwA5MFHi08rKysVEwmC+sKh1C9ccgQBUFcoOqzWOH18a9ffNFFEgKQG4PXRBWIYIEhCqLhsHfv3h06diituwL/6U9CICGQEFi6EKgeCS1d5fr2pSH6qRlq1bz6Aw88QClSfvziRx99tFfUjFHsVVddRdHSqYazvpTjQJ41a3bLFcMsdalOxYQIIfArWwp9tdGGG1qn5os1OqZVqxUHD77eR/ZULGXWp08fEw2Ull8D5blz5khFc+bU3AvhhLC4D1kJLZ63GYAtB4xuKXtDZKNeHwiwBq699lpzGayBOIKXKco+mqd9ffu+0kpt5837wiPfPk0Zyxvxcm+GfvSY0SbUnxo2LNo9Pu2jWWFivhzzFusZo3/22dyZn8zcbvvtt9yy17PDn/UWh/7R4oigVs05m6UIy5tvvWWvhXfefgcFPONh6OOPWxHJILACQyoxDf2BfPhhh/3lwQflxexAkLNEKY4//nhbCMuian7wSbCBTNAoo7ys9j/jjDOgbR0i5ocMGeLTA1lI6GtJFKh8RkD//v3V3R133nnf/fcLlLZv390C01XBTWKFBDPIJki9tuwVSxFhSb8JgYRAQmBpRaAwbltai/ctyhX0WaYzDNmNL998802D3TUrKrimLVXzlsqZNGkS5W2ISRWttuqqJto7tG8/74sv7OrjU/hddt015iuyBXoUrbUFFrSb9X99/Pix48aJs9baa9NqVNTHH308YuQIg1GmBn91hw4dqCLhY0aPeW38az6NY2FEahzvxsQ+yYvz/dzjduznCfe1giGyMa5XPtIzpYBzswzYwzDNh4gIiBhMu+SFbaq9Z4+eLVq2KIUoeuYnTpo0csQIrgI+D2Tnff75G2++ucMOO9CjSo2y5Yc4RLNXr15KByLf13Vo38HcBPX84IN/CZsodOvGYkHcxxFm6JHy4aLjAHzBaCUBLTvvi3mMAN57my5su8025w0cSBNn8yFhLQKzyeI+3yAgbhYgbofQbuWV4xQ+6BhnFgyqC/aNe9/4QU+56HXZWRLI4SFVpx93+viTjxlVvX7yEzXHXpg4YcKo0aOZNREckyOsJXRYLg89/LBPFplofDPsiVJk0n1CICGQEFgqEUhGwAKqNaiEOJy1+myZamVARxocxwRRbVBX8ZG+59P2yDFAQRbi1IwvkJbyG+0MWiqsA8ge6SeOcyTkG0hll/s4Ee5JdqVpYwQxXV7FuW33ke34ls5mecThuVLkDAsvnQuPkcNvpoH9zXSwSXeL5sKOwmhaJ5jj4JGiDdGCVVN9ZkGt3Es5CbSzQvXr14+LxYf7NlKUnk/+kksvMZr/zUEHHXHkkQqovHiLaWMSxQvmUwnOCsIIML43R8BnwNPCMshzD8XMcENHSSWkzgNBpcvgxYxLEbwSLqEk3s38dKZtoGxpYHcHllfkIUZOvwmBhEBCYGlFIE0HLKBmc5WTa74YKbcAPOZx4qugMzK7IbcAQpyixVArflQw0QLwyqO1b+EmaOzw6DdeBsHxJs+u9G1IWKIg3RfThb+1NH1OoVZ4dZJQgoJNk3MeaTqDoDpaNsdR+ug+8FEz97oR6F1rIGyyZK8ePnlr9W1gYNmBmfj+/ftjT4S8vJFm+C3BMA+kvd1LUoqhkBjoN4bnb8OLAG41PvlAH9vumXc8HL6YwEznLmFFZLoSAgmBhMAPAYEawv2HUOBUxiWFAF3bZ+s+bdu0sRmwxfxffDGvXbtVDOjt+WMmHle5Yl40hywAbgMrIeLGxgbxJcp90UkX+pbRYzWGRRLWFiw0UnqREEgIJASWOgSqnc9LXdFSgf6bEMi88Rgy8uaB5/bnqzcrH/0HfAAsAH55fv/FZNrYXeRFux8Wk1SMFmcf6pHgN8o9RU4IJAQSAksEgWQELBHYU6YJgYRAQiAhkBBY8ggs7sBryXOaOEgIJAQSAgmBhEBCoF4RSEZAvcKZiCUEEgIJgYRAQqDhIJCMgIZTV4nThEBCICGQEEgI1CsCyQioVzgTsYRAQiAhkBBICDQcBJIR0HDqKnGaEEgIJAQSAgmBekUgGQH1CmcilhBICCQEEgIJgYaDQDICGk5dJU4TAgmBhEBCICFQrwgkI6Be4UzEEgIJgYRAQiAh0HAQSEZAw6mrxGlCICGQEEgIJATqFYFkBNQrnIlYQiAhkBBICCQEGg4CyQhoOHWVOE0IJAQSAgmBhEC9IpCMgHqFMxFLCCQEEgIJgYRAw0EgGQENp64SpwmBhEBCICGQEKhXBJIRUK9wJmIJgYRAQiAhkBBoOAgkI6Dh1FXiNCGQEEgIJAQSAvWKQDIC6hXORCwhkBBICCQEEgINB4FkBDScukqcJgQSAgmBhEBCoF4RSEZAvcKZiCUEEgIJgYRAQqDhIJCMgIZTV4nThEBCICGQEEgI1CsCyQioVzgTsYRAQiAhkBBICDQcBJIR0HDqKnGaEEgIJAQSAgmBekXg/wNAiUFoc3TuzwAAAABJRU5ErkJggg=="},"image.png":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAsAAAAK8CAIAAABurZ4CAAAMPmlDQ1BJQ0MgUHJvZmlsZQAASImVVwdYU8kWnluSkEBogVCkhN4EkV6khNBiEJAq2AhJgFBCDAQFO7qo4NpFBGzoqoiiawFkrYjdRbH3BRUVZV0s2FB5kwK67CvfO983d/575sx/zpw7M3cGAI0TXLE4G9UEIEeUL4kJC2JMSEpmkJ4BBGBAGxCBHpeXJ2ZGR0cAKIP13+X9TWgN5ZqjjOuf7f9VtPiCPB4ASDTEqfw8Xg7EBwHAq3liST4ARJneYnq+WIZhAToSGCDEi2U4XYGrZThVgffJbeJiWBC3AqCixuVK0gFQvwL1jAJeOuRQ74XYWcQXigDQYEDsn5OTy4c4BWJbaCOGWMbvlfoDT/rfOFOHOLnc9CGsGItcVIKFeeJsbuH/mY7/LTnZ0kEf1rCoZUjCY2Rjhnm7nZXLkWE1iHtEqZFREGtD/FHIl9tDjFIypOHxCnvUiJfHgjkDdIid+dxgDsRGEIeKsiMjlPrUNGEoG2I4Q9AZwnx2HMT6EC8W5IXEKm02S3JjlL7QhjQJi6nUn+NK5H5lvh5Ks+KZSv43GQK2kh9TL8qIS4SYArFlgTAhEmJ1iJ3ysmI5SpsxRRmsyEEbiTRGFr8lxDECUViQgh8rSJOExijtS3PyBseLbc4QsiOVeH9+Rly4Ij9YK48rjx+OBbsiEDHjB3kEeRMiBsfCFwSHKMaOPReI4mOVPB/F+UExir44RZwdrbTHzQXZYTK9OcRueQWxyr54Qj6ckAp+PE2cHx2niBMvyuSOjVbEg68AEYAFggEDSGFJBbkgEwjbehp74JuiJRRwgQSkAwFwVGoGeyTKW0TwGQuKwJ8QCUDeUL8geasAFED91yGt4ukI0uStBfIeWeApxDmAA7Lhu1TeSzTkLQE8gRrhP7xzYeHBeLNhkbX/e/2g9ruGCTURSo100CNDY9CSGEIMJoYTQ4l2uCHuj/viEfAZCIsL7oV7D47juz3hKaGd8Ihwg9BBuDNVWCwZFuU40AH5Q5W5SP0xF7g15HTHg3A/yA6ZcTpuCBxxN+iHiQdAz+5Qy1LGLcsKYxj330bww9dQ2pGdyShZjxxIth3eU91e3X2IRZbrH/OjiDV1KN+soZbh/lk/ZJ8Pa85wS2wxdgA7i53EzmNHsEbAwI5jTdgl7KgMD82uJ/LZNegtRh5PFuQR/sPf4JeVZTLPuc652/mLoi1fMEO2RwNWrrhQIkzPyGcw4R9BwGCLeE4jGS7OLq4AyP4viu3rLV3+30DoF77rFpgB4Fc4MDBw5LuOA/fWA0fh8r/7XWfTBbeJCwCcW8eTSgoUOlz2IMBdQgOuNANgAiyALRyPC/AAviAQhICxIArEgSQwBUafAee5BEwHs8B8UALKwAqwFlSCTWAr2An2gP2gERwBJ8EZcBFcATfAPTh7usBL0Aveg34EQUgIFaEhBogpYoU4IC6IF+KPhCARSAyShKQg6YgIkSKzkAVIGbIKqUS2ILXIr8hh5CRyHmlH7iCdSDfyBvmMYqgaqoMao9boKNQLZaIcNA6djKaj09AidCG6DK1Aa9DdaAN6Er2I3kA70JdoHwYwVYyOmWGOmBfGwqKwZCwNk2BzsFKsHKvB6rFm+J2vYR1YD/YJJ+I0nIE7whkcjsfjPHwaPgdfilfiO/EGvBW/hnfivfg3ApVgRHAg+BDYhAmEdMJ0QgmhnLCdcIhwGq6lLsJ7IpFIJ9oQPeFaTCJmEmcSlxI3EPcSTxDbiY+JfSQSyYDkQPIjRZG4pHxSCWk9aTfpOOkqqYv0UUVVxVTFRSVUJVlFpFKsUq6yS+WYylWVZyr9ZE2yFdmHHEXmkwvJy8nbyM3ky+Qucj9Fi2JD8aPEUTIp8ykVlHrKacp9yltVVVVzVW/V8apC1XmqFar7VM+pdqp+UtNWs1djqU1Sk6otU9uhdkLtjtpbKpVqTQ2kJlPzqcuotdRT1IfUj+o0dSd1tjpffa56lXqD+lX1VxpkDSsNpsYUjSKNco0DGpc1ejTJmtaaLE2u5hzNKs3Dmrc0+7RoWqO1orRytJZq7dI6r/Vcm6RtrR2izddeqL1V+5T2YxpGs6CxaDzaAto22mlalw5Rx0aHrZOpU6azR6dNp1dXW9dNN0F3hm6V7lHdDjpGt6az6dn05fT99Jv0z3rGekw9gd4SvXq9q3of9EfoB+oL9Ev19+rf0P9swDAIMcgyWGnQaPDAEDe0NxxvON1wo+Fpw54ROiN8R/BGlI7YP+KuEWpkbxRjNNNoq9Eloz5jE+MwY7HxeuNTxj0mdJNAk0yTNSbHTLpNaab+pkLTNabHTV8wdBlMRjajgtHK6DUzMgs3k5ptMWsz6ze3MY83Lzbfa/7AgmLhZZFmscaixaLX0tRynOUsyzrLu1ZkKy+rDKt1VmetPljbWCdaL7JutH5uo2/DtimyqbO5b0u1DbCdZltje92OaOdll2W3we6KPWrvbp9hX2V/2QF18HAQOmxwaB9JGOk9UjSyZuQtRzVHpmOBY51jpxPdKcKp2KnR6dUoy1HJo1aOOjvqm7O7c7bzNud7o7VHjx1dPLp59BsXexeeS5XLdVeqa6jrXNcm19duDm4Ct41ut91p7uPcF7m3uH/18PSQeNR7dHtaeqZ4Vnve8tLxivZa6nXOm+Ad5D3X+4j3Jx8Pn3yf/T5/+Tr6Zvnu8n0+xmaMYMy2MY/9zP24flv8OvwZ/in+m/07AswCuAE1AY8CLQL5gdsDnzHtmJnM3cxXQc5BkqBDQR9YPqzZrBPBWHBYcGlwW4h2SHxIZcjDUPPQ9NC60N4w97CZYSfCCeGc8JXht9jGbB67lt071nPs7LGtHDVOLKeS8yjCPkIS0TwOHTd23Opx9yOtIkWRjVEgih21OupBtE30tOjfxhPHR4+vGv80ZnTMrJizsbTYqbG7Yt/HBcUtj7sXbxsvjW9J0EiYlFCb8CExOHFVYseEURNmT7iYZJgkTGpKJiUnJG9P7psYMnHtxK5J7pNKJt2cbDN5xuTzUwynZE85OlVjKnfqgRRCSmLKrpQv3ChuDbcvlZ1andrLY/HW8V7yA/lr+N0CP8EqwbM0v7RVac/T/dJXp3dnBGSUZ/QIWcJK4evM8MxNmR+yorJ2ZA1kJ2bvzVHJSck5LNIWZYlac01yZ+S2ix3EJeKOaT7T1k7rlXAk2/OQvMl5Tfk68CB/SWor/UnaWeBfUFXwcXrC9AMztGaIZlwqtC9cUvisKLTol5n4TN7Mlllms+bP6pzNnL1lDjIndU7LXIu5C+d2zQubt3M+ZX7W/N+LnYtXFb9bkLigeaHxwnkLH/8U9lNdiXqJpOTWIt9Fmxbji4WL25a4Llm/5Fspv/RCmXNZedmXpbylF34e/XPFzwPL0pa1LfdYvnEFcYVoxc2VASt3rtJaVbTq8epxqxvWMNaUrnm3dura8+Vu5ZvWUdZJ13VURFQ0rbdcv2L9l8qMyhtVQVV7q42ql1R/2MDfcHVj4Mb6TcabyjZ93izcfHtL2JaGGuua8q3ErQVbn25L2Hb2F69farcbbi/b/nWHaEfHzpidrbWetbW7jHYtr0PrpHXduyftvrIneE9TvWP9lr30vWX7wD7pvhe/pvx6cz9nf8sBrwP1B60OVh+iHSptQBoKG3obMxo7mpKa2g+PPdzS7Nt86Den33YcMTtSdVT36PJjlGMLjw0cLzred0J8oudk+snHLVNb7p2acOp66/jWttOc0+fOhJ45dZZ59vg5v3NHzvucP3zB60LjRY+LDZfcLx363f33Q20ebQ2XPS83XfG+0tw+pv3Y1YCrJ68FXztznX394o3IG+0342/evjXpVsdt/u3nd7LvvL5bcLf/3rz7hPulDzQflD80eljzh90fezs8Oo52BndeehT76N5j3uOXT/KefOla+JT6tPyZ6bPa5y7Pj3SHdl95MfFF10vxy/6ekj+1/qx+Zfvq4F+Bf13qndDb9VryeuDN0rcGb3e8c3vX0hfd9/B9zvv+D6UfDT7u/OT16eznxM/P+qd/IX2p+Gr3tfkb59v9gZyBATFXwpUfBTBY0LQ0AN7sAICaBAANniEoExX3P7kgijurHIH/hBV3RLl4AFAPK9kxnnUCgH2wWM+D3LCWHeHjAgHq6jpUBu9q8nulTIjwHrA5WIburJ48DwwTxZ3zh7iH10DG6gaG1/8C3C58iXTvVm8AAAA4ZVhJZk1NACoAAAAIAAGHaQAEAAAAAQAAABoAAAAAAAKgAgAEAAAAAQAAAsCgAwAEAAAAAQAAArwAAAAAGs3ctgAAQABJREFUeAHsnQVgFcfzx5/EjQSHIAnu2iKlUKBQp6WlRg2oCxX6ryv91d3dlQp1w1qgLVDc3d0tIS7v/9mb9y6XFyEFQkuYK73s7e3Ozn5338zsrJw7PT3dZV0+ny/TuvLy8kJCQkJDQ+XutS6Pdbndbkmsd0VAEVAEFAFFQBE4mhEI2bx5M/XHMuASKwG7gUvsBom0XqrpcDT3E627IqAIKAKKgCJQCIGQsLAwibANCDEduNteB14VyqQPioAioAgoAoqAInB0I1DIgHDaEFgPYkOI+0FtiKO7n2jtFQFFQBFQBBSBQggEGxBiQ9iWBGaEbTrYgUIE9EERUAQUAUVAEVAEjj4EzGJJqbXYB9y5xG6QsNyPPmS0xoqAIqAIKAKKgCJQIgJmvaS8xFAgYN9tu8GOKZGGvlAEFAFFQBFQBBSBowwBs9vCrrLYCjwGGQ12vJ1SA4qAIqAIKAKKgCJwNCMQwmyFs/5BtkLQozOlhhUBRUARUAQUAUXgqEUgpKiJUDTmqEVHK64IKAKKgCKgCCgCxSLg5gDKYl9opCKgCCgCioAioAgoAiUhUGj+oqREGq8IKAKKgCKgCCgCioATATUgnGhoWBFQBBQBRUARUATKhIAaEGWCSRMpAoqAIqAIKAKKgBMBNSCcaGhYEVAEFAFFQBFQBMqEgBoQZYJJEykCioAioAgoAoqAEwE1IJxoaFgRUAQUAUVAEVAEyoSAGhBlgkkTKQKKgCKgCCgCioATATUgnGhoWBFQBBQBRUARUATKhIAaEGWCSRMpAoqAIqAIKAKKgBMBNSCcaGhYEVAEFAFFQBFQBMqEgBoQZYJJEykCioAioAgoAoqAEwE1IJxoaFgRUAQUAUVAEVAEyoSAGhBlgkkTKQKKgCKgCCgCioATATUgnGhoWBFQBBQBRUARUATKhIAaEGWCSRMpAoqAIqAIKAKKgBMBNSCcaGhYEVAEFAFFQBFQBMqEgBoQZYJJEykCioAioAgoAoqAEwE1IJxoaFgRUAQUAUVAEVAEyoSAGhBlgkkTKQKKgCKgCCgCioATATUgnGhoWBFQBBQBRUARUATKhIAaEGWCSRMpAoqAIqAIKAKKgBMBNSCcaGhYEVAEFAFFQBFQBMqEgBoQZYJJEykCFQ8Bn8/nrBSP+fn5/O+MPErCVFxqajAphIrLRskOHCWYaDUVgf0i4NZfxX4x0gSKQMVDwNKUvozMzLzcXGrnDQmJioqqeNUsS42ysrIyMzN9+b6Q0JCYmBgA8Xi9GFLc09PSZs2ePX369GOPPbZTp05hYWHg5na7y0JW0ygCFR6BkApfQ62gIqAIBCNgDbJzcnMff/zxJUuW8LZBgwYP3H9/dEwMY3GP5+hyTD7//PMzZsyg1l6v95VXXklISDAmgseTnp7+wIMPvvzyyzk5ORgWDw0ffsuwYWo9BPclfT6KEVAPxFHc+P+Zqhu3udu9a9eu8ePH5+Xllc4XErxu3bpdu3Y1rmYdCpYOVqlvMzIyOnTosHTpUlK1atXq559/BthScxz6lzS92+NZv3792LFjN23cuGv3btq3Vq1ajRs3bt++fb169SiyvAf9Xbp0mTp1KgVR9Nw5c1q1bi1WwpLFi887//wFCxZItZOSklatWiWvhCsxtmDPmFxm6qMY54Tx9FipqabksimYeL0UgSMZAfVAHMmtV1F4F9n6+uuvDx8+vCwGxCmnnIK2o/ZutSAOrg+g3vwa7uDoHEhunys/Py8lNfWGG2744Ycf9u3bZxrUmh0QlipVqnTxxRc/9eRTEZER+AYOpIh/nkfWP2AZwAmOh9ycHJur7OxsIsXiIXLUqFH33HNPWloavA294YbrrrsOD0bRAsnywfvvP/fcc8wWEX766afPOuusosk0RhE4EhE4unyVR2ILHQ08Gw+Ez7Vf00GgsFQeOfLVejii+0ZmVuZnI0a0aNFixIgRYj3Y7YuiJbx3794333yz4zEdv/7667zc/filDjEU1kKHRo0b9z3ppOjoaEyEuLhKgwcPpu+JsUtx+1JTcUgsX7582bJlO3buzLf6ZbFs7N6zZ/kKc5F49+7dxaY5VJHy6+B+qAgqHUWgFATUA1EKOPrqMCGA8PW4C4m86tWrR0REOIoveMtGATztZixoeY1F2ThS+pfNO+OxNogtdoDozwj5UmdDjOYIDI6N4VIksXiznWxI2DJ0zMiaR7LJEn8nb84sJRFxphHdkJ+Xx7JHJ1dCnzIkgbMIiTEJLDac1IqGbZpBr0xFrEsS+O/WBERQyrI8wv+vv/xy3333btu2Df+/x+1h+0ftWrVYhJFqXSkpKUKHGZb//e9/derUYaJBZgps8MXi9MBVYHbALhr2sDGByI4pe8Cg5PFQ38iIyHvuvpvJsuysrNjYuJNPPtm8chlL13BioRFiFYGFQeOabmH1U2crQwdeQkNDWadJDgJBnABFsT3TqkE+tfN3Hik6l3Yvxs8hNMlC89smDpHiL8H8KiVXED/6qAiUHYED+YGVnbqmVATKgoDRIJZ8tBM/8MADFw28KDc3F71iR0oAgYuaIZyfx/S5UZhIWCPTjUkhUr2IekeSBqiwxj5Yr+BLR9Dm5rMInwX54eHhtiIX4W5EeR5r8v1MBhkuvIV5qiABwxjrEN0oGKtI3lqebfRHiDfEJhJgx4WfXJQKHnIW+fvjrTKCMJFXcIIyoCyqDD5wS7wzpYTtapLMMl6IttRbMdjYvJQYAB4qSL0MFaul/HdLc5eYrdgXlq22ddu2Z559du3adSRhfWLVKlXuf+CBk046STBkmP7QQw99//33MIvngWWe11xzzZw5cwy9AP+5Obn0GoixFBQALb4C7yxAsnNoaD8HJSlp/+vi/pgKul01ata84IILjLkQuIxBAA5s0wiM8okBZBwqfjYsFumZ5KKB6DTSUhCAJrlIL8SE52KtB0lcdOKmaEyAL7/hSBnECIyGiMdDx8MWhxOvZfSYSOs/O6MGFIEDRiDwCztgAppRESgHBBLiEypVikP82WJaCjEyNyD+cvNz9+7ZSwKjI93uatWqkSYoPTFomtRUhrPuDRs31KhRo1rVqpLMpgM9pP327dsRsox+8Zzj/4BOjeo1omOiSUzKlNQUZru5KleuXKVKFdJLQbxC8aempOxLS4uKjEqobBbwI6n3puzdsX076k10PBxWqVw5PiEBas4LImgdlhDuwbPtdsdERzNTXicxMa5SJXYVmroWviwV7tq6dasoofCwMDEgoINeYj3Bnj17WBrJW+JDvN6k5GSnZUNNDuxCae7dswtwMMSysrPgGbKxsbEJ8fG00T+jafGAM3/atGmSMTEx8b333mOgL/WlKvgb3nv3veH1hr/22msoamymhQsXjhk9+sQ+fcJCw6QWqPGUvfuMXvR6Zd+EAcHnY+sE3ostW7awKxXjDOSTk5NZTlF2JiHiT0xls7LoDzzS4lWrVeUV7Gfn5FAEBUkyIukY/kdjzRq1TSfhLYjxlh5iK/69e/Zs3LhRMoIhFytG5THoDvMb1q+nLPLSGcLCw4Cdnik+j6DE8kjTp8Ct240lSkeVSLoEIKSnpUdFRdZOTCzaqYolpZGKQFkQUAOiLChpmsONAFIYpeX2FfbuWpLd+CR8+Jg9ixYteuGFF3bu3MlINDQ07Oabb+7WrZufUUsJiKz8auRXTKKz0z8iMpL1a6zLIw2vLGXgRkOsW7du0qRJE8aPX7hoEdqCERvT3lWrVj3mmGN69+7dtUuXhITK33zzza+//oq6QjRfe+21xKMmoAORb7/99osvviCAzr7l5ptbtGw5btw4Es+aNYuRdE5Odnx8QlxcHNRwwp915plR0dGmaLebgqb+PXXa9GksIaQWKCF0Q2RkZOvWrfv27Xtc165NmzY1jBoDpsAwYsD66aefTpw4EQQYWbLtEF21evXqP4j64w/m43ft2rlvXxpVwFpq27Ztnz59jj/++Pj4eNKX2oowZRSnKVB8LDwyes7NnTlr1l9//TVt6tSVq1ahEWGbmqLJWL7QuXNnoKhfr15Jw+hiS6SgObNnAyZvqTIUOGXBlGtdEoiJiWbb5JgxY1atWoX+480vv/56yqmnivXAI5jTKGhZDAXW3sIMsyF//vknG3kWLliwbft2dDyNVb1atTZt25544okYKDLzJaWU8U4pX375JQyjxZ966ilaJDMr6/7776fPbNq0ic4DtwD7yy+/LF68GJrCPAbQa6++lpGZwfpQlPratWtJSTLefvzJJ2PHjROAodmjR/dbbhlmMyNNgC1LLf7++2+6EOqfihBPC9avX5+mbNOmzXHHHYf1ZueyA9hbZCQxqL711lvcR48ezWLP+fPnY6GefMopb7zxhp1YA4rAIUCA3qaXIvDvIsCIGQZQA/ZADR2J2iC+lIttn7iXRYLzS0A9I6alIviUGbRx7dixo2HDhgzduLAJUPbEMyJEe+GZYO3ejz/+iPZCOtu/JRH0PMIMg+NBgwYxDX/55ZdLArQcxwZIKdxh74477iAluZDXKBsMFDQ3xfEIb1zyFmWGpj///PPXrjHqhNq98frrjRo1spd6kNLmAfXfo3t3DJGCGgWAoNB+/fpZhM0NNYN2FxOB7MIGAV5JuGbNmmeffTZODptnO8Cg2dgo1sU2TvScvAI9U1peHubCww8/7GTSFGHxSaXgHDXWpnUbGgs4bbL7DUCbPQtSLrDQ7rRFUC6pLnttnn32mUceeYQ7NplEcifxnXfeCQ+ADB1gp4IDzhkgXigqziuhb8IeDwYcxiVmYtGCIIUZJIkBbe7cuQWl5PtuvPFG+xVdhVe4ELAFISvxpuEDYYnhjgmYmZFJ38PzQT8ggWkqCzfu8Gb1x1AC/fv3z8nOcdYdBnr16kVX4a2dBf8HYew2MMdjAXq4WJy5CMPbmWeeaXNL57n00kttw5Hs5513nklmNW5QXn1UBA4MATOy0UsR+HcREJXgNCA++eST0g0I3nLhBmcAiq9eLsQ9Q1Lqwu47DAW077nnniuCmJH9lVdeKdU0MtT6hwMDT68oe5HyJEalcbeVAW87duiAGWGLZnLZcMG5GBAIaCgwRhRqkhjG0HBOaiTDhli9ajUnOFEQydAMKCHixeAghvRwy9tmzZphuzjLIgzn+CeEPnfGlJgItg5DXTGvASawAU276IYNGsyeNRt3gh8BSweXaEBQq7w8hs5XXXUVnBgmLQ6hBldQxt8DcRNvrQqkOKqDZ8JmtbSAZdjdfvvtUgVoDbvlFpoyKAsMYJQYU6+IbSEp77rrLvjhgpMXnn8eM9EGgUgBAY1LJI9SFkCJOyGorFIMiJtuuknyUgoGBBkxqvABgAPI2PRpO1S7XRCOH1Iy04TNSqR0A7F1wMpMPFn/iKF/OnEb+dVXmA7wbNi2OLfQNjfJDjMQ5MKIwQViV4QW43IaEGx19newgH2DtU16ktm5NKAIHCQCOoUh8kHv/0UEjJbC24stwJDaZpBYJiBY9ZiXxzlILNFnxaWM6VEPjLYZwFm+eNdPP/3EEBblRPp27do988wzmBeEmVNHhDNxwPCaWQYjrd0eBostW7aEIEKfohg+Tpk8Ze68uegwfPibNm9GggspKNi82AFEPG/xbPMW/0H37t2bN2+OMkA9MD2B7tm8eTMJEN+Eif/qq69QkORq0qQJDMvcNsPKmTNncnAyyhvKK1euZF4GR71ocX+5lqlhl3vvvfdCn0cG3yhCPAoQh+cNGzbgmZBTJtE3zD7cfMvNWBtwBQ+GlMGo+AuZAm8A+95775GYRFDgZKcTTjiBUvA6ZGSkr1q5avyECUznk4B6vfTSS5g7Z/brh9YzRItBKFCW9QqHhzyT969Jk5h66NGjh0zWSDzmmCHE3IG16YD2RQ3jV/ESbVGgCpgvlA63jzz6KO1F8krx8e1p6XbtsAtJgArnhChWX1IKj8CLQYBXiSkAKeUA7mhl3FHMMjBnwQQBjEGZU65PPPFEwQqm69Spy8YH3B64CiiaNp08eTJTVMBIMrqZlEu/wxYhO7YS9Z0+bdr9D9zPnAV9m8eo6JgTT+wNqngRMCY2b9mCt4m60KOgM2/evCFDhnz80ceszJDZtKC64IEghpRVWLTDItUqVXr37h2URh8VgYNF4CANEM2uCBw8AqIGnB6I999/X8agvCJg7lyW2wCJbIJMQWRnc2dEiNGAoEQQo13OOecc9ATxq1autCUm6uS3334jI6ySF/3KIj7c/mgg+f0wNmUxAZFIZ5JxEVi8aBE2B6odQY/1IEUQLtYDQbxclMVwnOkAuLWRYY6ctQgksH+uEMTOQAegXYy/JHDhcpBVGpISaizgCLw0fyHLbgWbDgFItWvbFg//5k2bhBTqHxc6uvOKK65gsIv6IRlj32HDhmGaAI5A6vRA4HXH+gEciqD6zErAHgyDKnlxwMyeNQvcbE5Qh6io008/3YyO8UiEhbHIgNl6IW4nKymAox6VBmXyMo5nyA7UMtlvGLA9JVZbE2M1vmkXAlzE3H333TI7ABEuWic5OZlzI1avXm17ocCBRiQlFpixPCxXyqmnnrpmzRonY//IA2Fn/PzzzzERDE2357777sOSEN7kblgNdFTmvNhpYrh0ud599x1TDfvKxQw2lcKQpevarh2MDJZf7Nyxwy6OluUkCc6hwsBlOw+OIExejtmmUewGdXogKIsWHzx4MM3EipNNGzfZqNo0NaAIHCQCOoVxkABq9kOAgKgEpwHx4YcfQtcpkQsVY3bS+VUdApThHevj0KOoOyT1xx9/jOZgtI0ARa+gCHGSo/CcWUaOHInOIwt2AUNqzlEWce8sEclOoZ9+8ilaHAe1aFPuJRkQ6FreorNhCT0txQnbyO6ff/qZ4Tv8WHrEJRqXUayzXiLiyW4PUkmMXimUprABQaHt27XHaUEaKdFZLmYQ7hk0tNgB9erVRb9CX9KUZEDAPKqIunDBAHaYPU9PRrkEHFQaw30qJRMbGGHA6OS2pPC+1H2sRRUouFMQW3OZALrllltYBwoDMInKDJRm/bWUrsRAFrMADKVeUKhdu/Znn31mv3WWSz5e0YIYKxREr0A3C/+S7IANCHslY1EDwuacNi3dgKCvUtlFCxdi5Qjg9JPvvvvOXwWrqxtqAWBZKUknN1ZbaGjPXj1XrVpFSinOaUDw9rbbbvMbxAGDzAmLhhWBg0egYEhk/5g1oAj86whcf/31iFG0Ag5n7lysHZOLNQfpGemITHq/6Gw+msBICzVGFEoRr/6UKVOefPJJwlSEOYILBw5EOouy4Y5s/eCDD4yKQrC6XORlRhn3OFMb0JS6C2XCZ5/df8A556BBjXC39ykUAUiIMyRliT4vUVfOJMzD4zbo2bOnRMIqpssll1wCb85kEBEGnn32WZQTaXiLhoBVZzJnODo65rrrr+vYsSORwgN3lI2kwXSgdnjsIQu1zZu3cLgC1ZeUTjoSFmc4rgt7LSHD+nfeecfMI5iTpwNncljIk6Vhw4ask4Ag42geWfnPJoWCZEULCMSwP/amG2/Cn495RxxZ0vbtw23DkJrFsMzpYPdMmjR59apV1MVfr4A7RGg4q0DTsJjg/PPOJ9KOR3NLSt6yVvHCCy/kFQXRK37//XcMiAAv/+pfi2Hm6B5+5BEcJ7AHtyxWwE1ieoJ1Qomfv4C37LTTTjvm2GPEAFowf4HtcQmqBp6zIYMHi+34j/bIBNHRR0WgFATUgCgFHH31ryGAw4CpfeawWTrAlITzYusEih+ZaBQVc+QeL1Lysssuk1E7kUz/84hghXt02+233cYUta1XJICClLrhSGfcJrsw0OvGSghoYkkQafmBmXc3xQWEuLxy3kWgs6GD2RAKNUQKLwRAfx/frRv6UkrBJkAT2FwJKTwYxOAUQYMyyhQlx85Slss5y3KGGzduJIrTGelUGFgAUOMtCokqsEzEmTI4bO0XBUDm+OUVeWvWqGH4NMczcm6XCQmfkgAzCAyhzMWSC2aUBMNgykWemzZrymAan3yH9h3MFIPX+GaoMosAWBvLqP3iSy4ePGTI8y+8wA4LOcqaCpAmCDRicOabpayFj2h0HhcGfXbw4kkiMezhsIFPwv+RixU5VBn7FX5oJnxOfueKE/NA3+OYkB7dewAXWPEbARz6W1FMWIXDUdwQLPrqP1JrZaMCIKCLKCtAI1bMKiD40ElFxR8xopuRoWaUZh7cbDVk1M5AE8VALsaygELCM04/nV0PJHPSYcGdKEjENJ+xRtRKYsHRmVJiju3UiaE2rnVnMnll30WgszYQa8Yf6V9fEUjidrXv0AHeeGasie+B0wKCGAtkhAU3e0ExnojB1IDbpKQk/9vCf5hfqBS/n1OSsFRYlsG8AFkxxQoTCH6CJabeJTFswOpXI0eKdiepAbzwhZNc3lI1NBkLPxn7Fk5S/BOKnIWZDZIb9D+r/4yZMz766CO2WVJlgYglBbDKIk3WiLDclWkpJjichguc2MywnAVPVfHFBGKbN2uGBwskycX94D+uUbSfBIoq/NdS/DarRfAziVn8QU2Nw8G6sH159NO3c8o7cwBrHot1WGPq8xmvGOHAm0J/ceTQvQtF6YMicKgRUAPiUCOq9A4FAsMfHN7jhB7IUORnkKSuUb16eEQ4alUG+nZpLONn4ztedDQQLgri0fpvvvWWcyQqiZG56EVcAkhYlqQVqHybVuEABSUnJ6EaxSVQ+KX/iVfwiUYs9q1EslARz4poBMbEMFBsYlNll5vZEKm+2YNSrNqxMtvbGYolJZHoTtsrgAMffOzHormYrGHLicTDwCcff8yCSlHqRAa1hVO7QROtz+EcRWkWjZGMUOP48Fq1a51e47Texk3i/u3339g7wwwU6xxhlWRcuItYWMqyANkgU0DN6hskYA6LSAJB7BWkdLnq1K1bp04ipEiGE4tdos63BxYuBcZiCWJS8q/otX7dOuNUC5y7yjIaKgKfpDTpA74HghJpU+BRtp9YVrQdbQL2CR+FYvVBETikCBQvwg5pEUpMEfjHCCQnJ4njvSw5jVTlW1keD/P9rL6UpQ9kRK/Yy9ycdDh5GgGNUkSd22NrZ4KiYQS0rUSLviUGglziJC82AZFYDLBKMu4F1oNjSG+PQVEZ9ioKIlmmXxJN5xFYJaXh7EteiY8E3VlSMoln8wBpYJJHqkzAWXEDdQkXJhSVwjKTOpaQyh8t9O00zLnI902YTjqz35nbd2z/7ttvX3v9dRaZ4uFAubKDkYWQ9qkMdkYJlAUEJo+YeoE3LgydEqsRRLrkx2JNgaLJpaYUyivzv8MasBOzBYMEYp7KlhlJ789SMuYkAxxmdvDN2NRMLp9Pdog4IzWsCBxyBNSAOOSQKsHDioCIWpQckve9994zusEcG2Eu9lageGSGQmLkXsU66UG0I/qJwH6Hknzqwkmh2HCQUiyaxtYK9qugGPvRScpElqxCWK9AAmd6m7gE0C6sIiEsxNGjbDsMSuN8ZIsgSwrEaMDmYNCPESb4oPvQwc7EdhjiXBgQLHe1Iw8gABFysX520ODBPU44gaOg2X+LUUIkZzLz6DT4SCoV5ysnRZVoodJ95uPgzMsIfdmeUyjBATxYm26c+SBebENIoaS03vo7pzNjzcDnMEiAwyypbl0AF1LcJeBMTxiahqzPh6eBpb+yt8fE6KUIHEYE1IA4jGBrUeWAgIhXxC5L699++22GcfY4fl9qKnsFF8yfHzQ+Q+aKRkThMdnMlsK4SmZDf7EXQhltylI1CipXAS0V8RfhGKeaoOMxiMkFCxaYGKNLg974H6k7Hw1hxgfVS0WioiLBx3i8S7iYU5CjLeGHyR2Ok7r66quLqTi6qihXaNDCQ+ESCjGLJW07z5y5GMglIJCL2SWaic0y7LHkIxdwzmpafEtOl5LNFZsR9lOu27V5y2bx9kPcrNkMlFgSh/uNt1klpUHTaPPiDQgn1sWqeFbDME1mPBA+H9Ybn66AQ7t2pXPiZKOMWUonqG8VgbIjUPx4ouz5NaUi8F9AgEOQ7rj9DmtlQyjr6fg8I1yxt5Bzme686y7Up5PJyIhI0iB5Edls9BgzZnSxkteOZPZdjph0Ejm0YVsN2AEnfZsTZ6SEJ0yYwB4N84Exe1TqSERGXDIcRUVNuXjTunUbAqUQhAFWQbIHhMV6KGyOs2SJn4OkP8isCim5tm/bzsICljry5aflK1bwuhTi9lv2X9ww9Hr+3XjTjXwxy473Uw/8wf9h2LZ0M9/LxtVvTQMEXltlwQNrJpZx5re1s9eQCprx8Rl7xT6XkwQobOdGlQJy/zBk+3I4SCs7p1AfK4mS04Nip8FQY1EtFcEOZGMFbSoeIDsBAUGVNDToiuUrQHvmjBlYTrRR0cTOjBpWBMoPATUgyg9bpXyYEECGopDmzZ9HeezE5IsYTz7xhCyNRHNwZtTECRN4hQiWC/cwXwqwEnuZ7x/59deyOD9Y8ZDC5eJ4RxwbBMhrRZTjDfXwT6mz3+STTz4RJz/ZgyjwyJnHHBQtC05x3eOSoQzBoWhZUsfmzZqbHSLWjkegg0LRlPYajqeefopzKtnMeekllzz44INwEsRDUF55+/ffU95++x3+segV+0z4D0rJI5MOGA0sy4AxhuYsMbHdS7wVbvGmsPWG06z5orYQD/ZGuF185JrPTMjWkojwcLallGXZRFF+gmJgRnwn8I/LhNKFpSLJTIQgJst7gxKQkWMqsC0IUB3OuTKfdy98UZB56XKxR4OTP1hVetmgQddedy0nUNn+m8I59EkRKHcE1IAod4i1gHJCwBbWuPHZKSBKqHPnTpxsfcmll3LKspSL84C9GAzsjHS2RDCeif5nnSUqBKuAc6ZZoAe1ohP8HAj9wYcfsr0QUodhnBfQiIZxYVWqUJJZQRrGo6+99ipDcPLaF7kIc0ezPvTQQ2xA5REbgm9es7uP6R5bGwn9Qnefr3mL5p06dyI9VV6/YcM111xTKIH1IGiMHz+eWQYsDDw9K1auHDBgQLEjbGd2ydi+fQebWzwQnCXqrK+dnlWTtvdI/CJ2MjvA/AFhvjDCChg5PKqgpcDA8l7cc++94377TchyNhnnhhVktwv7hwFpFLQ6+ZgcwTLAWi1K1sRYbSH1xeNVbDmDLrsMtxmJsZawqMaMHRuUzLZuOQiVdSEATrOSxV50Qq0pAgpyBWXXR0WgPBBQA6I8UFWaB4sAwhiDgAv9EXQRKcJUDt7B/XD77bfJkQnomEGDBnMmBGqMz1ARgA8EKzsD+XiVzVNoSChHMrDLA1KZmRlQuHXYrZyouGDhAlkPjzLAJ8FU9O133P7oo4/ipRDRbFM45AHoBznnUQP+Ukp2fIhOWrduPUcPoT7xbMs2UeoFINg91JFvZPAIqbCw8IEDLwwLDTNllXKxjs/rvXzwEJkGgg2WULBFFjOLYbGcCwn+rEvAtcPJ03v37BViLFbgsCYSlEKbVzJcPrt//3p16/IIMwypOTyUk5TED0QkdhsKkrOh+N6EZMGfxOZGwvYldZc7kayR5HDrB4cPx5q0PsmBNs/bsXPH9BnT2djBueY8Sl4OeTyYj2nZDNSoWROnCFMhXNhAHN+JkQob9BZcHX41bvkk2EFKGjFrRowYsXDhQja7puxNYQEvFyl5VbVatYsuugijjUfMPnrvU089xc5hDERKJDI9PWPe3HmsR3n//feFB/bpALisCCZGjEIbFptPDSgC5YeALqIsP2yV8oEjgJxlXIsOZVgVRAUR2a1bN477RfugFZ544olpU6cRiQDt0b07Z0lhWPCvY4eOuIU56BARzMXRyJw00KRpU0PN7WJyfdgtw5i8X7d2nVlA4HYhlxnYdencuUHDhgh0ZDcqgbWTJEd7JSUlyUFSQcwYYramL/quhJhi1zBaQ2VTC1Nh53K8Uuk3adIYu4HTG5mb4MuNaHGGpOgwtD7rEsQegh5A9ex5wgUXXBgRGVEKwzAmhky344/nLHDz8a309KzsbI5u5GPoHOjJ1yNjY2IyMjJnzZ71xx9/oC8hDs+NGzfiywuEi3pxiCx61apdGw+8tA784IHAewF9qoBelPOjaB0sOYgzO8AJHzLrZJMiFxePND3Hb/BVDtQ2neGTTz4+/vjunDpFXmlE56Cfdhw6dGjRLY5CyhAv3N0gbr+yA8JD3Tp1WUmziQOgfD4KGjJkCODg1sJWIJ4PvUoycnFGKlNCmESkxHrA2qOa2Gf0K74kwqntrKUg17XXXDt79mz2DdH9sEWYD2Iuo0uXznzbkyWf69avZ5kw1aRe0ASTcwcMYC4GfKQgvSsC/wIC9Gm9FIF/FwEkJgw4P6YlYtHM+hZ3nXHGGZJl1KhRKAOEL0M39g4sWbwEOkhYBnb4Lli+0LJlC0St/K4Q3JyShJdbKkuAxQGIckqQBEFFSSRSnmGfPfyFsRdffNEJFwNfGCAvd0bMzldBYVmNKKXw9QqUOjsRqIjzIguPvGKgLIxxfuKUyZNtUrxyfo0Tu8d2yAtlW6PIxyp5JB5XBAN9m4gEcL2w00GqKV/jJN4wY62yxPHz1ptvciAmFGS1IH/BWS4TGVBdIM9JkRgTWZlZQUWU8ojbHytQiMChHaC9pMmIYd0A9gQNt27tWgOX47rnnnvsXHxB4/TTT/MzaaFg82aTpZooeL5L6aDhD2K4kIyLrHwv224OWgdrQ15xxwcTlJfZBFnZQNMLjNzpTBxAIkQkPb0O64oFKBCxk5ERJJlukzR8OQwzd/68+ZiAUqKklGSkJMAl9Alw5AlmFjaTkyV+FzZ9/E/OVxpWBMoDgYIObfc8DSgChxkBBDed21ko8pdHY1YUd4lPnpEln3/E34vARaRif3D0JLmQ5pakduPd/fCDj7AAhDLT5C+/8hJjZHnkMODjux0/evRohrYycJR4CpQANGvVqol3nS9No8YkEsYQ9BKWu6WwDP+iM5yvgsIQFBUiWQwf1vy9PPJkija7I402lcQEuHiGenZWMev8Gd2O/Gokx3XHxRpDyk/EKhj0UDw4JG699VZmcBh8FwyvKccyUyjLSmsmeiRsmLGORISBK668ki9p8YGPyKhIkpEG5OVCx8MYPnysGRagnHfeeUDk9rghKwRLv1NTNmTiZ4I+Rgx5YZ6LeJmxonSKYJjOCoxXX3mFMT2vuIqShQ3Ojfj88y+Yb8LcYYUHNbCrQwBS0Ln88sv5Dkjbdu2KUoCsAdmCnbuUQoCU9ivzNvDKpnDzTTfz1RU+BUIfs78tDouklDRk5+IjHcxHsCgHPuUEUtoFgmIWSErY5rFlq5YYi1TZXtmANSyAk4wsAIWHjHUtzz/3PJUCMftMbmpqM2YCFlaUXihSHxSBQ4qATmEcUjiV2AEhYMS9y8VAED98sBwsjiCLAYlmyNumTWv0ImNTBsF8U8r+nBKyGNGJ8G3Ttg0nGaxatQopjJJITDSfn/CTtIQ8vmVWUOIcZsRGMmutpVkuwBxH8+bN+53Rr137dmTp06cP1AhgnHTo0MHJVNeuXdn3gdqDfiPLgnG+dYbDw8KY22bUGBLibdy4Ca9Qt2hrZxpcEtgLFMSwm2+UozPQE/Xq1SNZaJh8o8uZ3IUfpX5Sfc7fHDdu3MSJE/GTM7JH9aJaOPObKRu83Bx3jd4iGzZDwfZFSLvdLOaX5SN16iSyddMmzSvCsHHKyaf06tnr+x++Z40Cy1GZHAEH6LMhgs+IMKbHUxLN2NrS/aQ3FLj5FahNLzgAffQ66VHAPU84gTWD+PZZA8HFupdKleJpUGoNcVwjAFvK1AhEYAnmmTU4s18/P6lt22CJjoFJkdwguXev3j179qRXEAMyQdzwJU/G/XQ8EtSoXsO8pSIg4Hax+IPSyQW3ScnJsE1xAo5J5na9/dZbAwcOnDFjBj0HW1aIiLljJ5PAJx9/8udffzIZRB2tEswEnBzCbUgFLpxxGAeYO5i2fJyM1RLUDso4oiDLKp+z+5/Nd8gEPTLBj80SHgj6s1Bikoj4AFX9qwiUCwLBI79yKUSJKgKlIiCSzha4pab1v7SFJupKTkEwaqbwhTRHRqMHMCwgzmNQGmcMmnhvSkpqSiojTXQMMyMxnABNtsBo0pm4cDkFT5RXoKELoguFCjgvFG00gegtu0Q7pR0gB2FcJnJ2Ao+sHsCCEUOE0vfspRIpeGAwOHCroNqpAiZLVCSBQuWJKqVSxFq1LPzaSuusMuWyooK5IYnEhqhSuXJeXj4HTznpGlYpqRhizlQmTEruFC2gwSQzIHyoHX2Jt58TMykCMiQyQ38rpaQ3mV0uPEN8Icxw7nJ99PHHaHEo4iagaFaEoHF5Qx0xv7AtaHcsSGNA5OYy1hcKQXfxnYj3hVcWYX8SXhleLY4h5XyF4UhvIYZlN+ZNkU7oJAV0zrxC3Y4RQEhjmzigTV3AhzXFODloUBJTCztLgCmDuDE9A1/TkEJNWwR6r5Sld0Xg0CJQ/G/p0Jah1BSB0hE4ADFXkIVPHpdwvjLylMsu2hmWSGcMeoVRNZedPijgTBz0yn7cr/VAygLO7WxWwMQXFvd2SjtQOId5Eq5Eb1F6sVVAHxfNKFqq9Eo538JDUXCYkgmiXAqrJaUU0PCRcMUnxDuTGRVoIWYsicLjafuRmRr4pFzLHjG5UbRcTjqE0bvcS7IeeGXr/qJV4BUMFHth5Ui8E6tiU4o6L0rcTiyvbOuBeCYs8MTYCYoN2ATlV2A/ktgZLjavRioCB4mAGhAHCaBmVwQOKwJHlVZwVtYZBnEeg2IOazP888KOLG7/ef00x9GIQPAA4mjEQOusCCgCRyACthPiCORdWVYEKgICakBUhFbUOigCioAioAgoAocZATUgDjPgWpwioAgoAoqAIlAREFADoiK0otZBEVAEFAFFQBE4zAioAXGYAdfiFIGDQoCJf84AsEnI2nvZgmhHHg0BtjtSTf8yiMCO0KOh4lpHReC/g0CBJPrv8KScKAKKQLEIoC+52O7IEZCSgN3/xPD1j6I7KoulUGEiORcBEDAjMKfCIyIAQbc5VJjG1YocKQjoQVJHSkspn4qAHwFOhOS4SXngUE4OuCRsH2NwlMDEQeYbNmzg/Aeq3qBhAw6eCvGGlOUAq6MEH62mInAYEFAD4jCArEUoAuWMgDmpsZyL+G+TxxVhZnOObhD+202k3FVABNSAqICNqlVSBBQBRUARUATKGwFdRFneCCt9RUARUAQUAUWgAiKgBkQFbFStkiKgCCgCioAiUN4IqAFR3ggrfUVAEVAEFAFFoAIioAZEBWxUrZIioAgoAoqAIlDeCKgBUd4IK31FQBFQBBQBRaACIqAGRAVsVK2SIqAIKAKKgCJQ3gioAVHeCCt9RUARUAQUAUWgAiKgBkQFbFStkiKgCCgCioAiUN4IqAFR3ggrfUVAEVAEFAFFoAIioAZEBWxUrZIioAgoAoqAIlDeCKgBUd4IK31FQBFQBBQBRaACIqAGRAVsVK2SIqAIKAKKgCJQ3gioAVHeCCt9RUARUAQUAUWgAiKgBkQFbFStkiKgCCgCioAiUN4IqAFR3ggrfUVAEVAEFAFFoAIioAZEBWxUrZIioAgoAoqAIlDeCKgBUd4IK31FQBFQBBQBRaACIqAGRAVsVK2SIqAIKAKKgCJQ3gioAVHeCCt9RUARUAQUAUWgAiKgBkQFbFStkiKgCCgCioAiUN4IqAFR3ggrfUVAEVAEFAFFoAIioAZEBWxUrZIioAgoAoqAIlDeCKgBUd4IK31FQBFQBBQBRaACIqAGRAVsVK2SIqAIKAKKgCJQ3gioAVHeCCt9RUARUAQUAUWgAiKgBkQFbFStkiKgCCgCioAiUN4IqAFR3ggrfUVAEVAEFAFFoAIioAZEBWxUrZIioAgoAoqAIlDeCKgBUd4IK31FQBFQBBQBRaACIqAGRAVsVK2SIqAIKAKKgCJQ3gioAVHeCCt9RUARUAQUAUWgAiKgBkQFbFStkiKgCCgCioAiUN4IqAFR3ggrfUVAEVAEDiEC+S4X/1w+l49/wXStiCKxwan0WRE4JAioAXFIYFQiioAioAgcTgT8RkIhW0Gth8PZAlqWy6UGhPYCRUARUASOIAQQ2m7jgDD/u/mDO0IeTB3cgccjqELK6hGLgBoQ/qbzceVbjkHLL8hTUe/g4W9lw8YhuQ6ajI3PIWFHiAC4YH4Iae6HlIWDoMo9325xRHBhqIup70FjWBJvQUX7wTEcFBRpPRU8lkTqsMX/1/gpe8UFVZpeqiCPNub7pWNyBbqNhIWCFW0ECJfESNi+Fxtpvy17gE6A3YClINZDrsuV53LlEOkm3vQYZLqK9bLjqSkPBgHtaX703FweD6Lhp59+6tmr5+cjRpgf6b99DRt2yxlnnLF1y9YDYwSZtWnTptWrV2dlZx0YBb+Kzc/34+NQaQdGkFyALNIWwF1u96ESrPvl58EHHzzl1JNnzZpFXSh0+/bta9esycrM4pG8ebl5wZy43aJmDM/m8quH/Rb0TxMYfvLzFy1c+PXXX8+fNy8zM5PCDOBud2pqaq9eve64445du3b9U7LllN6CwpgysHcwRUAHjScdLIiOiTTK8BAYTNKCwaR8Lg99z+Xatm3bqFGj+MnzG8nOzvZXrdRiTa2tjkFjnXjiiSO//ho6ZNyxY8faNWtpL6kL5XI562V4cFAOZsmZtExhN9SxGz7/dsyNdw5/8vnX1m/ZRqcxhgSlOAoqEzFNpAgcEAJqQPhhk98zmg2NO3HixOUrlh8Qnoc40/TpM6ZOnZqVdYDqf93adSed1LdVq9aff/75gXGGnN2wYcM99947dOjQA6NQNBd2w7Sp06699trHH3/8IJVQUeKlxMyZO2fy5Cl79+4lze5du666+qqGjRo98cTjPObl5V1+xeUPP/zw1q1+Ww3GuIYMGQKTKG/CqI1SiB/Yq+ys7MWLF59//vlVq1Vr1br1BRdc0LZdu+rVq/fr12/06NFYEjQ9vRGjh4Dh4T9w8Ut5+eWXBw8ePGvmzIPRgiNGjKhcpXJISIgBuvBFpMfrSUxMPMjqwh49H1b//PNPJ6m09DSMhmOPPbZ+vXqnnXbaWWed1ahRo2rVqvXu3fuHH34opOed2awwNGEWk4HfxYTx41esWC68X3PNNY2bNH7mmWdIRcwff/xB5/nll19sAvyURo0eddlll44dO9aOPICAcTRYFkK2y/XHrBVfjZ28fEda/TYdKteonufLt2YwDoCqZlEEDgSBkAPJVFHz4BMMXHl5Zgzkd0L4jIIx0tsaufryjaHvDdkPdLm5uchBMiI4UD78x4iEvN4QL/iJGCKNhxJJUIJuIBmX5DXaw2LAYsYNcV75MzKSs8bHxHi9Xjs+Ni62c+cuSUlJdevWJTcZeWtKZ2xk1ZSwXHaWQIT5SyR3hlZIVfTuK6+8UhKfkriUt4ac41q2fBn6o3Pnznfdeadx/FiXDAodqUoOWgMsBL1dovAvdzsbgBeiacPlcoVHRLRv1z4jPaNFy5akB5aPP/64ffv255xzTo0aNaCTn4fTxfXRRx917doVBZ8QH2/8JcVdQaUUcGI1OjmKJhAyFDHy65H33HMPVkurVq26dOmSmFh72bLlM2fO/OXnn9euXfvZZ5/VqVNHEkOWAA0XxEbRGDqV12JVUlp1yfN4vYKVMMOdR4mRziBs+2N48Pls6AgbHkw/dFs91oN2/P7771G37dq3lyzStUgpj8JzKXdS1qtXr3///hhnUtCkSZPoae3btatTty7NAZ24uDgpunSazro4S5S88+bN++STT9q1a9ujRw/eyu8Rq+L2228n3PW441q0aB4XV2nlypULFy78+++/v/rqK3x+9s+EEYWEhTJl+YuAJ364Xq8RFNYv5ZhjjklLS6tfvx7lcq1bt44eVadO4imnnEIFc3JyQkNCly5d+tlnIxo2bITrQmpNSqmdMCZhfxHWHzuBHWlcMy431sPODN/3YybsSEm96Lz+p53YJZRubOYu+GnbaTWgCJQvAvvRguVb+H+Juuh4cf3xo/W48a77+UM3MwWwe/dudDbaJc+Vh8K3eRcJno+h4PWmpqTy80bw8VYUPAERCiTbsnlzVlZ2nbp1QkNDJRJ5FBIWJhJQCO7Yvj0hIUGsE7zrCC/DjHWlpKSk7dtXq3ZtUor0scUNQ9X09LSMjIzaiYm2xCFQuXLlp556CuEVExMDA+QijN4KjwhHE5ALkcfAi3hISUWEDbkTmYc2sqQ5As75ijD08fqGh4enpqTk5uXBNpEkIz25kLyUFRUVZeeCPooI4LhTOkEokAzzgYIAUGSzVM3O5QxI1UhJcSge2kLeAiC55K3EAMXOnTurVq0KezZKVuF+etHR0TfffPP1119fOaGyswgYgxps5eUznDOKk+xE2mpbypIsVBYfeK1atXiEK5KCbUio+U0RMANZ6z+pEWjQJaBmCBIODZ07b+7TTz+NoXDllVfed+99tWrXCgsLwwfO3AqGC+NUYYB6gRnZQVvcJ9TLtKZlC1qFmr5HMjAhWc2aNW32CFA6cGE2SjsKM3LnLbn2pqRAOT4+nj7PuJ9LmKSmXNKN9+3bZ9R5fj4uEypIPEkpy+LNlEYuHoUs4G/csKFR48bSe6FGAn/HyANV01iwhPnYokULkwtFHOI977zzJk+efNHFF180cCCMyEVBEDEFWBdzBFWrVaXtAhHmb24OlrrX7UhG9wMWr8cL/JQLA3QuGsjUz+sFcEwKfs5MaQ267LIqVavy69i7Z8/2HTu+/PLLlL17KRqyVE14JgyTmzdvrlHd9LdQ2lcACtwFhKE33DB48ODIyMic7BzSkJfEdCU6TygOFfqny4RJHBERwVsu6Q8ks1LmZ2Zkbtm6BXOfxAY069diAqCXa/2s8k1dMrOzvBGRe3Nds5asW7hqbdNmjfuf1h1E6HYW3x4WQ3BZNxPQSxEoRwTo0HoZBFBllsh48803gXv4g8PNs893/fXX1amTGBsby68dGYrIQ+jv3bNX3iLuGSOefvrpDz30UJMmTZBECOKOHTvOnj1bCJIMAffWm2/iI42MjIII8r1Tp05t27bFLy1E8E4zXoEIPluEIx7sHj26//jjj7zt1q0bRgDebKRtpUqVsDyqVKny6aefSkbuixYtIk1MTCxCB2UJfUbM33zzDcIIsohyBnmUxdAKgUX6Cy+8sF27dqNHjTruuOMgSC4Ggh+8//6ePXtsmkGBNm3aIBbDQkMbNGjQtGnT5s2bjxkzBmpkeeuttxo2bEitkWvg8Oijj6anpSH0ceSCBoxt2bJFqCGCX3n5ZSJ79uzJ+FW805Ctz5CtXr3WrVvPnz9fxGtQ6fYjZFEM+EI6dOgADnDOwBFYvvjiC9JQ0+7du3fp3OWuu+6ivvDDBatTpkyxKZx55pm04O+//05B8HPvvfdSOk7mSX9NOuGEE4AOslgDRFJNlDpc0RMQ97WtC//EuLHjoAawTJwDoNhM9A0qtX79emiiiadNmwZQwx98kBHtRRddRIfBuwB7RWv32GOPQr9Zs6ZYclTN5tPYUvn56Gyo7dm9h4pQNToYXNE9UIGtWracM2eOnQVnQJvWraOijFolMVW4+OKL6RhCcPq06cDS7bjjGIsPu+UWWp+LHsXMSMcOHekDECQXjYj3Zfny5YbVnBzaF4apJghjYkIZq+Xkk0+GyKWXXip2IR2VdmzcqBF2GGVhjDIdQ6PLjwWCAwcOFILQwvRBNfbpc+LECRNwuvAboedMnjSJsoTPU089lSbAy0WtieQOzrxKT0/fuHHj2WefTT+BVfoMHRL+ScDb3r1706nob0KE+66du/AYNWvW7J133sZGFK3Pj4hmTU5O7tOnz4wZM2gR9CvzGvAsMAI4eeU3QoDfLD8ZskBh0KBB1B0EqDU/H5gxXTEv76WXXoLhRx55hPQYDTQQ7f7888/D2J133imuI3oIzj/o0FtuvPFGhANVAM969eqSgA4JyAC+bOkyqs9bemB4eAS9cfKkyfAGZX5r+DZO7N0bkXLDDTfQBzp17jLmj8mbcn1XPPJa10G3ffLX4p2Y8n4BRg69FIHDh4B6IJAMJVwMGXz5q1eviYiI5HdbtWo1ZNncuXP/97//RYSH3zB0KGIXIYf/efz48QgjhCle6A3r1y9YsICxCGuskpOSaMl33n33gQceINC7d080PVOn+KiRIwzciUQSkR3hggZC82Fb7Nq5c8HCha+99hrOTzhDvqCHEPS8Rdwg10RUHdPxGMaCDDoZSzVt2gQhhWxl8Dp9+vT/+7//w15B/6HSiME9y3Dc+FR8LoY4yPSBF12EIYIgpkYI/Ucfe6xps2YwXywQKCSyoJqQv1SZMSryFMuJFQOvvvoqCvKkk06iIrigH3v8cd7eedddTCqj6RlQos6fffbZSnGVUFdPPPkkI2zQi46KxnmAbQHDSH+g4BJXAXSMK4iryACK+B9/+unSyy6LjIjs27cvPKxatWrJkiUvvvjiueeeC2M4AxDuixYvgmES4A9HhTPD/dtvv6H7nVXD+OARBhiMkgtmUE5wiIZAycEVohw8aVnUMMWJkRQeFhYRGUFGfAMs4ABbFCoagjR//fUXU+BvvvEG7nfaa82aNZ+NGPHyK6+gadCmaBQuDBGbB+K5WJCBtnjggQeBBf55y+gcnBl54v7CVgCNnNwcXmGUYDHAG+qc/rNs+fLbbvu/ESM+F8WGpsnOyenU6VjUJImXLVvGSBqjBLO1cuUqe1P2rt+wnuIwJcEEvR4VFUl/oDjiwR8NBwMrVqzAZl25YsXv48dDh7evvvIKvOGswiRFsUEWiFCQWMDYYdCvXq0a9aVPirKkw6M4YQBdSO8Clm+//ZbuRzx1B3NWF2F0Dho8GDYqxcXBMyaCcyoQfUxPoKGJtN0OG9ZvuGHoDfQlfhpoXPJi1oD/Bx98wKwES3Po7ffddx+/PuwGEHv2uWcxCnv16jVgwLlbt26LiY3Zum0r/NB7Ic4PGeb5NQHyu+++Exl5I1Ym7S74wyQtRd0BhEE/Xod3330X5kEJs5UmoEb0Lgxlp2eLQr1eD92JpuEHBSmYoUQe42JjmzRtStOy2gZLGehAgNIbNmiQk5tLv4IlFjldddVVdF3sBjIiBxAIVHnkV181aNgQgtBZnZPD+hh/88VUysr17cn0LVy2JLF23ZYNk2LM5IW1odP61VieCyqhlyJQ/gjQ+/UyCJTggWAAxy8clcCIEIHCmBvxyqhRBiuoH4ROtarVHnvsUeQLjoRJf/2FPEUDfffdd9BE0bZq1ZIsyHSyMw2BzmPAigAa//vvEMHZi8BFQGNzLFywEGsAfc/6gJdefBGhf1zXrsgyRnhTJk9ejS2zek3PE05Aor3zzjsIbhKgCbBd0JQIFxQJ1GS143PPPUedkIZIfzTizz//bKqYn49gRX5hr+AGgBrWA9OxqDEIGhCKu5DXCF+GmyhsNC6CkqJRoo0aNkT4zp83n9Ei+VhQhnTGcBEaDPQZt1Pxl196adrUqRgr6Nr33nuPwSUyEfZQkAzLEI4QRGjaJcMkl/1oB4hkQShAMXu9bes2iMD/mNGjIcUr1DZFQxN1whATgoyVsWP4AV1yySXSWLYHAr3FuHPIkCG8pUGZGKJeyH0oYG2AP6oO845Gp3HRWyCMfOeR5kNxIuhpYhYoYOrBHnkx9WhxWo1HEkMWTq684opRv/4KzkAhDNh14REGGAeTiz5jx9sBA4EFAs0KD4D/xBNPoJLXrV2LFgdJHDeoSRk9Q+HvKVNAA3cFChvPFlYdqmix5YSgdMwjaoe5gy6fMH4Cph7JMI9glTZlPSnuAZa1UguS4dGhjSZMmABvmCx0jE0bN+3etRtUmQ778MMPYQmzjA4M8uAMXHTyJYuXsCaR5vTq2dYAAEAASURBVMY9BnGag/l+dB69VxxmpKEimAh4U774/HNqgdVF77WrTOl0bOxmLDODj+WGgQ7GNz2WO/2fSH4gGGqYZddddx0QQfb+++6HmcaNG1Odt99+mzBDdrocb2GVZDQHZisocYmnDROcsrClcFSw4uHqq69+8skn+f3SsWlfCoUr/FJ0tnZt29L/qcvqVasAHOcB9haPJMBZIh4ICoIxCqJobAse6dJPPfkk5fJjZNoFzqkpsgJDBxCoC5DSbWAe8AcNGsSAhHWp5KJopAQeGth78oknIIUYkam68887D/MF3KZMm7NuT86HUxa0ufDau98ZiS80XZw4gR8NfwNBG10NKALlgoB6IPiZl3gB+THHHsNr9AeCFQnOz57IHTt24p3wZ/P5GjVudMH5FybWSUSCILjRQ9gciFGG0atXrV68eAlC6pSTT2FJI3kZdqBdGHmQnx/6ihUrkfiMdxGdZMdPgODGF4puQCwxZ4uYYxcfCSgOgdL/7LMnTJyICCNMDEOcrl26MJib+vffkyZPhk/mAlADeEFIYLwODE2spZfCLQxQyq233opukBi8suiYFSXsOkGXMOQiC/YTWQwpIy7z8XOsXLWKMWur1q2ETucuXdAN6Bs2nVavXg1L5dFHHrnu+usfefRR9B9q5qabbsKnzeAyMiSEOsIelk1tFhA42BNSxd4pmkkGRLwx2rweJGztxNr16tfra/k/yELVwAqoMVYQ/eh49Bwc0mosloyOKTRxLkVAEzaioqPrRUcj2aFZpXJlrCWZxo6JjeUtSqJOYiLGEFnwbFtbOSZfeOEFxv1QuTIJeIctMm7cOJQxrSaU8fOjEqDPZfwKXI6BIWWhJtGF6FeGv5LFf3cko0bSzXA+sUQAxqg++zXoHviEtm/bxqQ+LDGurVunbnZO9q+//oqaxzLIyszEJsjOZpefuaADGt9+8w3gUyLtRyH0QNoFk4i+insc5gGWSCZ9wHDkyJHoWiYOrrjiCvoA6Zn4aNmyJdlhHp6xTfF/QFaKmDd/HiyRhu5EDHyiaDEp2OyATXbB+RcYJnw+OH/u2edY0sh0kTAm2XklAYOXhKw7bgBaEA16yy230FtAkp5zRr9+Dw4fTk1ZkEGL3//A/TNnzaQUTHBUMi3CytwOHTtCCTcANg0BTBAg4vcIQRI8cP8DRL7xxhvY5Bj01IjS0Ot0GFY+8vO0WejStSsNTRZ+qtVr1MAcx7W2dcsWfBKSy05pB6AMw1wEIMXSFgI0N/zjd4EUGWvUrIEVSwylY4s3b9Hi0ksupYtiiFBBBhjYtbiCbr31//Bxkpcu/eGHH+ENghQ9bJ/LtW7TtpDwSJyjvmzLcRXiYQMGFzcngDZXGlAEygMBNSBKQ5XhCMMaHLM4ePnlo0dZmcUoQVzHklNkMZKeVQLE8AtHWqF1RCb+8OMPCAVGsVgP8lbECgkke4YZ8GQwEiK7LZLIi6wnAYVyR0lIgARYJ/h5kSlmXVts3JatW19//XXW3KG2Q8NCxWGO+iQBIh59QHFSkNyNAMplBVvBikgkHWSNhHSszDeJqZjbhaBHf5ALhoUUSivE7cFAgUnmVmxpC01YIhlrA5nUgMDgIUNkLoaBIM6GYbcMM1QpyZJxMGkgspZPYieRHW5NuSVcsHf1VVeh6hj641BhkA3NU04+GcOFyQVDylqMCTiYTWbRWYgXdQV7DCk3b9mcnJxcLGEKpYKM2ODcMMC0VHY2IaoJq8RACvtM8jJnNHXq32D79dffjB49BiRJACyoYTQrfguz8MQ6WIJHZnOgRkaWCIpQh0nBkEjCqArGxOg89FzQKxKYlGZzjdGsvBX8qRpaB4tBJpWIp/Og+59+5mlWQoBhTHQMFd+J38Isq5RlqWaFI7ZRpGWpUCmqxiI9HCosHWBQy+AYNUzfxqlDjUzKiAi8WYCAhYFJJMoe/KmUqD0IwBVhm22m0mh93C3wZiDF/M3PJwG1gD6PWdbUAI0OhmxfIDuXjYY8BmIMaNJrI6Mi8VFhytB8lE52yEJtX2oqbhjqjk4lkukM1DyWIq9YGondY5rPQpulFIIeq2IhCzhQoLPfd++9mNGsMGAzKqYwP3BsXHwMeCNQ3navpi6YKQYwj5tuhgmFQcMUUvcePaidzXZQwCCZlyc9nBkZCsTHQJqIyEgjQ7xeEvCWGH794EbPSW6QLE1MFWAY4nt27ybspfNYHUCsB17xm2GeLz0rOzwyKj4hgTWdUWaFpl6KwL+AgBoQpYHOzCtz2/gSBg688LjjuiHoGeLjTEYm2tkQgvyojYCxpKodj9QgvG+fOVgGoY/W8esAj0cki6QkLykRK0h8O68IVkPWutCJ6BDeMnZE+jCGIgE00ZlsSHvhhRcwAu648/ZWrVhJF8UqDY4uEJoUSi7hUIgThoJdEAG4IrFRNghcqwqUK0XbWcjFRTLRHPggMK2oBVPRTGSgYCwKpiJkadumLdlJzx3HieQCOuwbiqYIdINdEOkljGVmijMWhegO8+S8KJrTEbj/8OOPU6ZMppq44pk1wLHBSjejYy05a+wTtxkBoypAlWj4DAsNCyJqC1xKgwHcQWBllKvbjaKSipCXC7siPMzQEcbS0zPgivUi5517LqWQ2DDJO7eblRboGKP6ROsTLRXAErCyCwWJowjAwZPEiD8pKcnKwuoH/xIQw4mxZvwZycII2JTjMa0A+IRzc3N4nZ6R/uhjj6LVenTvfvY554AzfeCFF54fP36CGB9SnEx2GAasdqGy999/P5sRcBLcOmxY/aQkVgbwyPibSuFhogi6memWliamUOk2xBhmrIseaNcI24U4Bsp0CRLTqcjIW2OF1Khh2t3KZappgSNcFXu3ePQjBzOwmhCfcMedd1AvKGJYEwNBzPQ4yyinXBpInCLE4xQhhpRCnNoQgCWYAVXCMMadNCj1M/v14x9p1q1fh92ARYVjY+mSpR06dpDspgoh5hdHx6VFDBFrYyc8QFPSOO+SAAuMZGBicMCQ9JlW4y93MprS8/PZmsEdMKgjHeD222+jG2JfcTfAeTyxMcYWNHjJRWKpFDyYIt37MjLYkUGPycp1hYUETp8s6NlOvjSsCJQLAmpAlAYr0gSL4fjjj3/2mWdZeUVSlkQwOjEGBD/mwG9VfuBCiN8+lx3Tpk1b4hk3cxeBwivkCDJa0iPFuFihxsY/5IVEyh06/kcCdlhIG/EXsXv3LsZ8DFbwkQwZMgQ1icphmIZWI1VBdgdR4h1P/qBF0hrsImeJszyuZu+ZZWqY+uD7zctD9sEqiRF7yfj5c3KYXL/yqquCOKd6ZODtrJmzHnvsMVTavn1pzJIwP/1/t94qRSJMIUhZFvFANU3RfpaK/QM/eNdZeI9/fl9aGssn0Xks5GT62aqCuTlpYGTARmJiHYbFyGWhSYmiFElsSreKREyje2xohAtjVdFSxiQxlEkLz7IeE+3Fys3KVaqINhLKRh9YIZuOxNNAaDgT5oXDJmAnAiNg1qJiGEVHRVGKlcSUSnFwjunDRbk8CjI2PBY/ZtwJcUwQnBk4Zoy7Hi2Vl4ddJdYqybiEDaO5TYWNHl2xfIX0yWHDhjFel2alt+N+oAgG6PgeyMhsCATJDjhCxLSahQOPaD6LvDFzsT/IyyPrAaEguUiD4YLKp8SCDmwaXYgF3y3uHF3deo+ngTpecvEl+PDo2HBCMuqImWPb3LffcTtzaixQYDTPut2GDRuyGURamcSGDYttAcKypVzM+NiVQmWT5bLLLmNVB2VlZhn7LOiiRmRk+TNmU8sWLcyAwXAaqIkNciAbpfO2oFyrD4kxgIsrNi4O9LCuKBo/IuHLLr2MKTMANDQ5eCbfDBV4FHpE2pBSpCfflRATF+LzZrG5Jz9gOviT+rtZgBH9qwiUIwJ+X2I5lnCEkBbxXcAsP1Of2QHBbxixhTjmVcrelLVr12Skp6NX+EWTxfzajUAMyJFAfiMIrDDGB+4BJmgZLrNIiiUUuElZ9GD9yk0KprRRw/gw3//gfRybxKA5WMfAnDpERD/Zks5kCJTF3Ad6FFMGIYULGg45Xw9/L5MLxEhGkgurJqN1+bUUpAOyyQ5ISjjEtXvttdf8OmqUZEFMs/gAwQr/8EaAslB+TJewGA3TB4FLPK541n+xVjTHmnDZvGnzkMuHwAnGzVNPPUmABfyjRo8WmkZRud279+xhOSR5qbhhI6DpJE3QnQQsW8PRjHatWasWUzkDBgxAZTILAGMmq6XvAcGofJ8Pyw/Nimhu0bwFLggUMCWKWDd4WocoEyMZEfboYPz2rEMkL0NSpo2IxPoBZOjDv4nxeNj8wg487CFWokh7oczMSoK//2a+xhRhNRBECMtlaYJ8mubGm24cPHgwNh9vQYA1niz9w3mOB2XDxo0M+lG06WnphNnBgVWBf4K+RxXMIFbaC4qWRrf+Gl8OzQGHFEGts7KyaQUc7Ch+Y0BYCJLR5LVqagJWd2VjAr59eEDxUykc6cxogCRvaWwKZYaIMCYFSx0lF/MIzBGwuJJ4sCLNypUr+YGADJwnW8tsF8yf//rrr6UEjnOGmRkzzeoESoVhMvqLt6rAo/OSBMQI2/KKUlgRSb965NFH6OqoXgw6rARWDfODkjTvv/8+6zRZqfPRhx+yAoNCsQOkyUgQGxsDOPRquhkQ0WTTpk/v1bsXWSDLI1qcCnIOBCte4YHZSVnvIsSZ/0q3hAA1nTlrFiYpb+PjE+isMrlg2LZQNb84HqyLvGCLWbZq1SrDs1nka3Zn8FPC8oAZESywRAdm8oK+wVIh1qCQhrz79qVSQVa0wJgQNPcAMIhsJj9qxlaKxIBIy07L9HmChoFOBKUaelcEygeBoK5XPoUcEVRFTBo15DcLkBFsK8DfMGXylFuGDWOt3PIVK/hVI0kRu6ZOgZ83ssOcOyQiPjBcM7LS5UKuXXHFFaynYxMdogdRspldDIEjd5AJrMZiJQH+ZJQx4xuWyyFHGEHi3+7VsxfSGdEhw1CLXsENDcEMKC5oFsE9cP/9jMCQtpgmaE0EE2FJynpAGDMq07oYuPGIkmNml1lVEw5Ic3JR0Lbt21n4jfxt2bIVR1OQCZ9wmzatEZ0sF2epPHL88ssvxzDCE8C8O1qcqqFokZXwj+BjJdqOnTvuuvsuFAw7IM4dMAA+0U9MtTDabtWyVf2k+pxgmJiYyAqyoTcOFQ3BUBjFjIwVPovewYEjOtgIcNqppzZr3pwEaCasBNn8BvPEoMgxU2CDSrF4hatZ06YMT42It6Zg+CtQ0Li0BVkgi7mBFsEkYvvcCy++MGv2LJr45JNO7npcV5oDfY8fhcUWW7dto6Z4IDjYm70eV1xx5dln92eVPgcQURHKYql/8+bNUfDQtDsDRdBS3GGVUw5Rb2wIZLUpZkHLFi3Z2Q8mTOFj9vXo3oO1dcBIC2JBskdDdA/Z8SlBEyKQNQxbc0misWKioymUdmfynmMcYZJdA6goY6IFZh+MCeL1onrJK14uBtxJSckrV64aPnw4G4PBDf4XLFiIMUQRXPRJLF0cJBg3rN/kV8AmBSizsYItsvwu4I1eCg9AhyeG0q+79tr/PfzwY489Pnv2HHDDGsP+oC70AfZbCtRQNm1R5IIxq1jLwLCtJZeLUphhYcEHrqYFCxec1LcvY/YlS5fS57G9cDPAFS1OZZ94/PE+ffs2btKEQjG+OaH86aef4VeQnNyA2Q3WhMo6D2wdVktgtNGC/MToezQoKyrmzpvHBgf6P94sln/aDI4dO45dP8lJSes3bPj5p58wODhLg3WRWJOkkd8OGzKNuUbftaZsTF63G3cIFjZTS/yuERegQYA+z+nd3//wAw4efjJ0WvZlwMnNN92EI43fS9euXbBLqAKNwjRZ3z59BRarrZEWBiVsyUiXu0e7Zp+Hhq9aunLrrqwa0QU7hG3ONaAIHA4EpIPq3fjlrWlLpkL5uXI+DMIURcLPm/EWkoXGYLjQq1evpKQkhBGiDZcmPgkEB/LRzEEELqMy4+PZjyCobt606blnn0XdIrXRu8899yyigQQM5iiUUlhO/7Z1IhPeUS7kHeM/jqvCekA74n5n816Adj5jXzhBqMkgZt7ceawlhGHRixxQwxgX9pCDiCcuhCwEEf3CTM+ePSG42toRJzHshKQKt992G4kpcfasWaw9jI2JZRhHAsrlbhaKWzobiYwuQdmgk3CDsx0UOYgKQYLDFd5mlA2vmEsmBtG8fv16RC2soqI4pwg+cZiTgIKwBhjtUTQ0EbUITWwdKU4YC7rzCmcGzEsWZliio2OYR0Dj8opRKVIeOY65Q/UpCD5hBmMCBgAZow0GmE2fOGEilKksQNGsTPuTgBgsJHQSFOCcGYpPPzGndWFSUHFiuPAkoQ+IRBnAPImpsnQMArSCaVBr+x+l023sulBZ4uEEC5K2YLsNj0TSfyCFqqCVaXdIMWaFAWDhvCOWN/IW3CCOzmOQSi65UOHAznoFQyQvD4NP9keADHxyVgQdEoIoV3opbYempO+REpbMZUrOpSNho8CquExYvkDfwNUByHg1KAhg7777bniGJm0EqnRL6UgYQ/DA0VUwTEG0AlThFj2NQUxK0sM2K0I6HduJQ594uy/VLLCFT7bX8hioivlrcZRHlWmyd999V2LsBHQedlRSI+nh8Atl+YFwWho8wx662fhvLFQ5MwOeaUH5AfIT5lgt+IQlate5U2eMY2xZ1jXDD6TQ7jQKtaAIDGIABx9IyTZO+hvKnpRc2ASsf8JvAUuAyQ+EJpN9m6THFkQ+YM1I7ZgIue2228hFGhaOAjVZOGeWNSJSERoLU5JIqAERpgwywayhsYxagKJ9IUvjwkDHDh0I+y/GKnm+jHzfzf/7sM+l9385cUmKOTRVL0XgX0Cg0FCJvnvUXogxhj+IJ8SHDCIRBOYxPx/XLgMppBvSyu97YPk0qwhx7Ft+YEATuUYDkh7pTAC5JhQQ4ggvJAVKi0h8AAzo9+zdy75Q7Anykh5BQzLULV5i9HdycjISDRFjOQw4HdnasGC1DZEUDTUWaskcMAzjKGZQhWXDNjNSUbqV1twIQx8BKjEoWtgW3wNEEKksJuAtUo5H2CAZfBIvxMmOtkH1IAXnzZ+P8GXDCDvimLuFrMmVm8fZTatWrmzcuEmDhg2gYMZJLrNrAFIgwF3AkUfCwhJ36jJj+ow9e/cgzQHW8BPwlJA46BKWYGbDho3TZ0xHSzHMxcEjIKO9WrduxQpHRvloemsw15VVduLwl0ahOIth/6w86lSYlAYiDYoTTwn+fyaVaAXjcGe5e3o6BwWyyA4VywiS2plKsdYkLIyzyf+eOhXrh1dodKpmVwFwKI4Y7lIRC0mzN4RHwryCDu8Q/cbE8eUzYYEZShHMuSRULjgX3PS0ULNDBxeCLLCjFLLQiJACEO54QZhroCJ4pJjcsQulRrylIEpETQrmcocI6Tm2hLxJ9ZNwt4h3SjiEAsnoWuTEEKHdaSOAhZpcdBKAorti7qAISSkdBrKcfLB02VJW5LRr3w6bktrafYm8lEIRNodCTZqAEnkMeiUJuOMnAG3qi/sKnUoyeJDEtCMooX2pqcHTAp/fGrlITwzmy+Ili2ky9DQ/AfPKdD/P7DmzmXZhDSlV4BeXti9NkCcjp2Se0LPnjUOHMpaYPWdOlcpV+H3R7jQEbyHFT93wai10oN9SsvBDDI8k45FygYIwG1ypI50WfLBRkCc0BwMJHhEsEOTCtwfU9DeYpILE+Mlm50hbW6lMc7ryPTle1x9zdzz+4mvVa1Z+5bGhcXydx/RWvRSBw4qAGhDlDjfuVnQDBx7gW0CI4BbGD8/sANvQGSqJNC93Jg60gMPDHrCACXM3okKKZRZjC+8FgrvYt2gFtDhmxNcjv+52fDeEeLHJCiIt46Dg8UgJHaFsF4b38HSqwmX+4yd0PF4lToJi/lG65f471T8u5EAz+FxZbtfmTN+jr30zde78S0/vfcXZPeJCXNayFwZCdP79/gAOtGjNpwg4EDDDRL3KCQHkDsMUJtFZ4oB/knEPgxLUJP5kHJ7GerDcHv8hwVQEiMPDG6M3YME5TKAIC/4Ijl0SOV5sAsZqgMlIlKE8PJNyP5zvz8AotpT/VuQRa0zsp2n+AyjTf+hRXJZHw/SlUvre4ebXanf8DfER7nNO7rVm3fqfR42rERN+zkmdo82BI9Kzj9jOcbjR1PIOCgE1IA4KvtIzI3eYTWWGmxMYWWfHZCfTqJxRyCE20TEcYG92u1UARVY6CGV5yxwKyyYQ1qWolhAv51cZtIo1DpD1eLa516pZiwTFpikLJ0dYGlUT5dNg9EPm1PBAMLXh7HKmX9k6unyKLhNV1gK7XczQdGpR+ZL+p86YOnXbjh0796RFVo02h4eUvp2pTAVoIkWgTAj8lyzrMjGsiRQBRcDSEWp7Hp0dAauRy+3CWcf6FzkklXUZjAW580/7xdHZL/6VWqsB8a/AroUqAv8UAb/e8DsdAlrkn1LR9Ec+AqxRtirBhl6WVAaMSbM6V6IDAf2rCJQ3AjqFUd4IK/0DQ8CvKA8sc0XIVchE4OGoB6QiNOohqoPZ50SPMHN6uBz8PcX/B4sCH4S6IQ4R1EqmVATUA1EqPEfFS7/gMXUtEEWEjBiSCN4cXoFEschBccf6ebI1aOD5sAhKu/7SEwwe7DW0lrj7//4DYGxi1inoPBmEbdClhIK7pC5CXrJZLWUttz/MLVPAn4YUAUXgaEdAPRBHew+w6u/XSg4sjG4jtgQt5khYTkE5CryABSnG8GmpVOGrnMr2kzXVD+jvQHmU7jeqOMqgzMUbtrF3mLE2sJrpaiuvISpGQAmULEND3hlmLKuKRzLL0LOEbBqtCCgCisDhQEANiMOB8pFQhlFy/GeUmqWkRWP9O5wbvR1QsQElau1Ps3VoufNFSbJCDT4I80lHo7atpWqYAsTwy2HWmZj9XaTlU6duKGQHiJDFv+HOfHE7UNnChMCAnHKRF2akXGKEE76cxkdaCeulCCgCisC/goCXw/D/lYK10P8MArYOcovK5CQa8/XlwBQCQTvFYeI5UB7qMdflzva5+SIIRWNDWDaOZUuUoHcPCYdo7ux81+wV24c+8PzURStrNW837NHXvhs1sWqNurVrVLrj4Zd/nzynWdOW8dGhZTAgjMcCAwLr4bl3vn7j428iKlVvWLcq9TF5/TUNVNjBPVHyj2X2fB3y1c/GPPXmx+t3Z6W5Yu577OVJs5Y0b94kNjrcXjrnyKpBRUARUAQOBwJlEICHgw0t499FAFXlY5i7ZPWm4U+++su4SQx2C132WLhQbLk/wNLEmUvuf/r1ET9OQI/6uTLaFq1s/pTfhe2S541cn5K1I8u3z+3akJa/YW9Gms+LjVWlToPpi1ct27AVm6Bsl5/Vhk2ar9u+d8bClftyTF1skEtCl3jL+DBb9VLyvBv2Zu7Iyk93R2xKzdmampuVH2pTKBsbmkoRUAQUgUOJgBoQhxLNIFqiAILudpqgeB6dl7wlxk7mfOsM2wmKUpBkdgInNTtSNBlDZLTUlj0Zk+euWLFhh0SaNPJZDcudbmeRgJOHgw87ifvZRoW7XMs27/5rwaoF67fDHo+iMu3Edo0OnoFgCm5XXOXoTHeINzKKzyeHxlRyhUd6wsJhoHO3E1wRsT+M+wOWir1s9myg+Jnxr2un5vEJ1eYvXblxa0oAYWMJBaWXRxLY8YRDo2LyQsPgITw2jo95uMIiwyLCzedb9FIEFAFF4F9CQNdAHDLgbWGOzuUfH0rKMR54V1q6b9PmLQmVKlWrEsWUt9fniw5xZ6ETPGZSfPv29D27d9dvmBjmcUVZX8TJycwIDQtPd3syMn0xke7MHNfqNZsqxcVXrxrl9bhCIeszh97zedDULNf2nSm79qZGxsTWrhUXYzUm8XCSkuFzh7rDQ1x5Fie5ea5Ir9Fh8IMa3rkrfcuOnXwlun6dGlGhli/dMiDS3SFp3phUT+wu0ntc3jxXhDWZIbl2ZWSv27S5du1a1SLD+EYRH4505eVzPGSG+Ry2m29UkIyijU0qkyDgYB13QwRjcMMdry1bROb3IeILCWWygJkJ4MrIcq3fvC06LJxpAohEeU3yPFdYvo+soRnQz3Vx0l44qOa53JbvPtcqwtAHE0sVA5HtmzBLDyhTbCCWHfIfFInle0v8oVAfFSz+J0DGqvFuGiU6LCQqxJUQHbE31c0nkiirXq3oJg2SZy5avn67r3E1wwgfQ/R6+Cy4Kz/PBQNZ/HO59uzLT929NykxgXkODg3ky1dVI9zdurX7dvTvc9dsqJnYItY6TDAnz6AEArSLNUPj2pPqW7NubYOk+nFRtKEBgSs6OhLKMZHhNSq5Q3zZfLcrOkpO5rRe600RUAQUgcOOQPHS87CzccQXaBSTXQlLH2TnuSYvWffpFyNXrV6HavO43NGREcd17jho4Dno0l2ZvlETpnz+01hfWirfJ8xyeY9t0+rawRfXrxYaGhY5c9GyV0f8xJeIu3U55o9JU3bt3sOnkxs3aDrgrNM6tEmMcBvL4+5HXl26fGV2ri/fG56akVWtWpUTux075MKTw9FeWa4PRnw9Ycr0Pn16hUdFjf9z8u6dO9q3anbrDVd+9eOY734enZ2bhxWC6goPCe/a6ZiLLhhQt5rny1///OKX8Sne8J/+nDZ+7OiEsPzKUWGvv/horts1c8HaDz7+dMm6NXzmmY8WNq1X96pLL27ZpLbX7cFAeffL7yf+Oan/qWdm5fsmT560Y/OG4zt1vOGay0NDXCN/HP/519/VrVfn6YduxxQRVz5AScDr8VKRfI9rxYbUD0d8OWfhooycbPzy0aEhrZo1GnrdNTPnLvjsmx9zPeGTZsy5YMjskKx99atXGnr1FdNnzvpl7O9duveok9zg9wnjt23e2DSpzl03XlUtPso0g10AxYBVNt/P5IuQJow6NhuX+XCiB4UtpoUvvOCTmXYTmgC5Y8Lc8RGhsaHuxIQY325vXCQK3VUt1t2mWcO5i1Z898voYYNOwT4J8XBmORZD1n0P/m93Snqrzl2nzpm/dXdKqM8dGx553eVXntStIdWnpn179Rjz15Rfx/9xwnHGgDDMul1Zea6Pvvntl3HjO3XpvGXzFj4lmpOXiyF1fOf2V106ICbC2CiV46I8uVnxUaFVYrDVsqLD3ZF+y68Qz/qgCCgCisBhQ0ANiPKCeuWaLa9+8PWGnXtadji+dp36GftSVy5fOmnhur6Zrtwo11fjpn/5w9hKNep069UmLDR83tIVfy1Z4Bn56w2D+1WOdu8NTViX4dmRkrtt/NT6DRrXaxu/bt3qqStW7/zim8cbD60aaQbSu3NDE+q3qFqrTnSlKulZWQsXzv/q19/5XvDAs7qFRriYZd+e7hs5YVZqemZsTHR8Qq0sV0R6rm97uiekSnKj5AbRcfGZ2bmLFy0ZNX1BRnjElYP7RdaqW71Rk7lzVleuVLV9m7aRvqwaCbEMpucsSX3xnW+27shs1/m0qjVrbNyyZen8JS++/eMt1w9smhSXm+/anhe+KTfsw7ETU9NyK0VHx9domBkSk2F0tWtHbtjm3HC8B1ghjLBDDONiPBjlKa6B3Wm+R17+YPnWncmN2ndu1iB7X/qGFcunLlh0+uYdsTXqVKnbYOnqNYkJVdo0SArLy0isHJuQWDtt1vwd2e6fpi9Om7I4KjKyWpX67sj4fE8EWtxeVAhxGFi4dO1vEyZhPzC655tIuCAw5dDluV4PJkVsdHTfHt0Tq8SHmveFegKM4lO5oN/JDRJrVPK6+nRqu6dhzVqVY4jEx9OxReOff588a+7cbXv61qrkxfdAdrxK2zM9GzIiVv41t1bdese2S96xdeeGlSteeuudejX/r3WTquStnhDRulmz6TNmrVy7Jy45HqsGp0Z2rmtDTuSK3NhVk5dUiY1u2K4738JesnDBD3/NS27a9JQerUnWsmHShWee2q5pw0qhrvPOOKlK1epsDLUcIoXY1gdFQBFQBA4bAmpAHHqojeryuVatXsMYND425v+uHlA12p2RzXTDCVs2rq8cybSFb+yYsVViY+679fIaCW58BlvTWr/43O55MyftOf34qtGV8/O9XldIlDf0hsGXtGzZKDTKtWZr6tsfjFy2esXYv2b073ksWW4fehVTBpHRLk+Ym1mAiZPqjPj8y59H/z7wTD5m7WJuIMsTERPuPf/cAe1aNg/zMWYNwel93lknnnZq77hKHka1WTm+pSvaPPL40+tXb9y9Nb1r6yRvftisGcu6tGg09KIT8AREhLqZKxn3x2/bdm0ZeMH5ffp0iIx2b9zl++aHP8aMm/DtqIk3Xt2PSYSUvPC9vojoyNhrzunbvmkjJmjCvfl8GBC1V79uzcaNGyTWrCpT/lgPKGbHZeyJJSs3Ltu8o0bt2pddfEHb5FAWc6btPXHxwkU1a1WPjvO0b9dm5do1jZLq3nDlaeHMOLjdEeEunzfUFxYeE+45/+xTjm3Tgrkb/lWKwZNQ4AiS8Pxlq7//YyaWBC/MZI4p3jzlu/lwV16lyLCOLdvWjo+35iEK+CKvzAQN6teZANdJ7RM9rkTC/MMSatqwSu1aNVYuWzxp/pJ+3VsyPeE1VcEO8YR5vf1OO7Fnj27xcaEp+1zvvD9i1ryFf02f1arJSR6fCyOiS+tWM2bP/3nM7y2uOYefH8yAYV5uTqgvp1PrNhecdXr1BE+IxzV+eoN3Pvxw/LRZJ/dojeXRskZIs3N6khgL6fL+vWCJaRHbWrJ41JsioAgoAocVATUgygVuNJA3hEl5767dqbNmr+rUtkF4qKtOTW+TWkmsvJs6Z93O3Wl9+3R1ZflS97h257vyva6G9eutXTRny8aNDZMqM6BF34V5Xb2OaxwRYhzdcUlxHdt3WL9+/eKVa87ufSzKMCrShVGybPn2xSvWbN22Y+OW7Rm57ghfHprMfLTSHZrrDsNh3v/EtrRxpAtiZuIjIc4dnu1eunz7vIVLtu3aszd1H3MrLJTw5eay5iA2xBeVnxnnzUuItJQh6y1crrnz5kVEhHU/rkPNaLPPs35l95n9e4yeNG3h6vUZPhf1cnmjsnI955w94LQudf6fve8AkKM40+3uyWknz+a8Wq20WuWIMgrkIGwwJjoc+IzP9rPv3fnZfhd8d36X7LPPGXACTAYRhCQQICShrFXanHOOs7uTZ7r7fVU1MxsQIM4rQNClVk91ddVff/01O99ff/1VlUJ9HaA6gGkIYcPywmXLCwk79CLwHQ8Eb9mj1e6IqTQDI6MNDY2Zjnk2Hee08dvWl6IuBJ0G/hWyViOYdTwgE22BLiJi6oRTrVm++HPXLAa4GimUogpSbyKIogyFYu36je65EBfZb4HwBM8HWis+VHLUphcK050wSMwM1IcDlEEQckMJ0kr6yKqArDauWV5Ref5sTfO2NaXwNUEeeFzgctrtK8rmFaZppQhnd3HZGWnHqut9USgJRMkw8Nz8gjy703Ws/FzfZ3Zk2Xl0DCZT4GyhjoWWlRYXZ6qge+Grk5eVoTGYukfG0WtoINrOApgFKUItkaJ8KhJQJKBI4CORgKJAzLLYAe0szC2eM7+k7WhFzb89/ITbZijK8qxYULJs0bLUDNW52vaAbNj7xpEjB47IEswHnKTWc2JYqzIF/DF4J8QEeONFsHcA3AgAGOgkG6zfJgyz+cERr6DivOPy/qOVr7z2unciIKl1Jr0pGuMiUbha8Cr4aRJ0gRahMnEyTg0HENLRN9EG9r1Vu+vVt3r6+mW11mixavVGCT55xN0zilJqLqyWg1opZJCoTyK19of9EYfDYdERGMOGBODHbuZTrCmDvmF/VNapebUkmWXeEIuxMTGtnWST4M0AP0HqRwkekE7dFvEGF9EvBOoFmJttXLF0cfm5iof/9MzzuyzFaa7lC+YvW7p4Xg5ZpghDBlwYYKsHcuMiZElhDObVOjkClsjon6bj1dSggt4hcVYjn+cmjhEMdAHj8J1EoJQ5My8T31KoKheaw4BiAcosMxQ6HJRM5l04TH2QqYNtV8x9+jlHXWN7b8+YNdsKzkTSUsyTSCpBQqtVOg4KFhwvw7wckmUI30y1j8IsU0nJ3JPHjh87ce7z1y1h9GF+0Mvw/4hYNERo0Fewx4RarYlxUJVIreCElkaUqEC4lKBIQJGAIoGPVgKKAjHL8gfIADiBMLkZ1m/c85mVlaXHzlW0dfWeqGwur25ZVdf1wF/uEPQGrUazbeMVyxcX8rEIbBVQIDS8aOBjxZluYI+G+NvF1HwUuMsgE4giydGYGLNaycT56fPNv39ul14vXLl9w6KyBUZDSmdX/2PPvBTxB31Ud4iqMMkfxYIFNnJl60H6h8VHnn42FJW3b7liSdkCg8Gk1ad875//GUsSUCcgCmsp4CMQlWOonikiRCmBeULmAhLRP4C70CGA6qJKBc9EaC1IEUXgJnCZwCq+TwzOQZGYYSjUIQ9aQYGbGkeIyCkWU0iEBvDtL1xXXlV2/Mz5hta2isa2uobWYyfKv/e//9Lj5AWyukHCB/JCGiDF4BNGCBBEIrsQp0oCrWRKl546XfP8vqPYjYrqDbiTNRgksyxruKhe9P/FXfDkyDIQYu8SqEUn4QBKiqJGdIddy23dtO6ZXa/XtnQV5sAzgTWQj0qixJPtIpANNQkaMrlBFmgQDgn4Y63N+gWlJ944UF1dG9y82GLkaYDmIeu1ArQWFEQ1EBCpjKoLrGySvySvyUjylRJRJKBIQJHAhyYBRYGYfVETrMNPv8jlu/nsLfO2XjnPH+PON4Z//OuHz9S1Do7LBUX53F4AWWzt0kwCKnRaHUhPVhVitA2klGMCUBurAylqwoiNRYydfb2AUmuKCSaK6ppGbyi6esH8HbdstMDiDeTWZBh1woRPBMCDApkVIUQIbgJ+cGEge+rsubFAcOmKFbfdtt2pJwsvkSjGwsBXmXgYYrCvgj0ESy2gK0D5AHzBBJJis/d6J3wRQgSUcQWj8njAn+tymc18MAqg46FCkNJx5KN4iXl9EKdLVZkawVpKUJQE5CWBEJS5dAt/1ZrczWtywXxrl/Tbh59sb21489Dbn92xQatVQ1LhWAQFUAn8DXlilSEqCzZyZvwQWnTGhGZhVAlx5BsZHW3r6CCCIMmAb/hTEg4Azxj0W4RoVIpi/giCflcVgnKKG4rRJpBn1AuZb7ty7fOvvrX/WPm1m0pBn02OYFkMjDp4ZPnhaoE+IItpaQpqgTQ2Lc15yunq6uptb/eWzbNDd0MeotmQTogXJBJCt+A5EZK1I4HkU4IiAUUCigQ+UgkoCsQlET+MEGfPVfSOR+aUlZrtBruGKy3QZrrtLS0tfQOBwnyH2ax/c/9bK5cUlxZjhSAfjnJdw762usp1SxZYrBYtJhRkOSyr20aiKTZNMCxX1XYdKT+r1am2blwDc7tRQ6bwZVEMBGS1gZ8Yl+uqaqMTEzpMQFB40/MhLaZBYIWgYAP0ApyP+cfhPBiMhIZ9xCkgGuKqa1siMozksMpDLeHUWDGo1bd0DWAFB9ZfCBKn0fF5c0ubDh/fs/uw+9Z1YHVwTH76pcMhn79wWRkxt8BhE6YIDPEFDapARQgYO+MCyL12ovbl1w+mexx/e/9tJsrYVHFLCIJQUVlf2zmwZMlyt9vggFnAwedmeZoa6we8Y6Cg12lkQe4bGeoZkV2Yi4hE9HAH5cJaLiiQmZepgT1RzKXmCLy74dq1W65dy7hiWZEJOaABAMihtGH9JTxSLyYk6iIgz+J2C7904bzyMxWNfWJJGrE0kAvqlApTD6QK3LEJNzQDSIMpEKwi+LVcuXnjcy/uqa9vmDdnFVwmQVEUhBg8Vzhi6UFAQdoIogImqmallbsiAUUCigQ+FhJQFIjZ7wb83OOnv7uv/8FnX80sKPSkZ2p05t6R8baW5pzU1AyXMd3JX7N9y+7du//zxz9fvmyhw2H3+ULeob6R3o7ivCKb1YKdDyKcLsybfvTLx+wuTzgaq29uGfMFr9u6aW6OHdso5RXk6Q8cqamq+++fPWq32Ue9o10d3dFQ1KQilgSGZAS3BGLDYGCJnl6zbOnOVw9W1jb87LePuG127/Boc1O7KKuhimAlAADVarZkp2f19Q3/8sHHnUYdZuH/6r4d127fig0njhw5NNjXmpOb0Ts8dPhMRZ7Ls2nVYugEEVhNuIhRDhv4KGwJDOtQI/ASV2//YE1T8xgUnIRuMU3cdMDdOzjy+ydfzHj7TG5eocXm7BsYqqqucViM61euhiRLCrKtek1rS9vPf/dYpsOqioVvvfVWHpoOHA/VxNYzCa7x2uMJpBeoM4GF4jqrF4nJ/IRJaEgXcKGcxuOMB1TCAsQFf4WVi7Ckombny3u+c/8NSBdkUQu7SAzbTBAFBTLX8BIWlmg4shkWqxqvoORdv33F7jcOnDxfceX2lWodjz0dqDOHCMUOG0YhjxqlpJhOllAQj0pQJKBIQJHAx00C+HVSwmxKAEZnrGnAzH1efkFmXkFNY0dlYw9c6aKiOH9O4R237ChKhe8gd9sNi7Jc9ueee/bkqQpereEFlVmnXlyy0Op0AaJiQH6sLOQ1Q0PjNXUdEVFMSTHfcvX2z1y/AtgDv/316+Z3j177zHO7qs/XaPRGg0m/oKy0vbEZRggC1QB1nVangx8EjAIUjSieFWRYP7/jxsdf2ltb31gVky1Gy7ZtV7/xxptk4SVFtQyH6aartj32xFMV56ukiD/D4wqLOxYWab5yz+cfevih8xXnzlSWa3XqLKf9y1+4ddFcBzw0seWiWQ7YVBEzF8IuS8BIoF0cygl8AggJBDLsTKbHJU4mTvg5xSXzyxZX1TU1dQ9LKi0XixZkpH357s8tLHbAR7IwU/VXX773oUceP3H2vFHgM2z266+PWYwmDR/D8gXUFVcI8AHRQ2VIBhoFiuNKhimvSdoHVB7imhkKgg6qhtBK8nPcbs/Boye+8LnrjVq0V9ar4DcaI91Ea7UIklUQzYKMzFCwwCD4gQ3JauIXLV548vCB1p5AUQG2mVSZVYJWjkAzQkFIzMhFUdDCS1SxSDST0lRuigQUCSgS+DhIALOs+FVXwp8rAQiRyZFEMPbniFV/ArtNR+T2Hhx8FPV4HFlOHqsbcK6zSiPGOOJnR6YVJuSewSCv1We4+BQ9j+EyAOZYddt/PPg4Hw4/+KMfDA9jq2gpJ9uspb4OcK6MkRUSJFuvF3aOsZhK60412FLgG0AWShCbAzGAE+JI0XEYExMMZSYB+FL0T8itvYPwf8zNdtv1PNZhwgHQQBERWyGFBOIm2d4yodNy2WkWLFLAFwQjfdy7BsTevu6MDLfHAbwj7UVBGO5HwrJBy6eQvR0JrJLKaHVoIAgSnw6KtSQzYpQ9kkSicownZ3DAycMncu09geFxX5bbDQsNYBjmAdj2QRMZvBLX1z2uFaWCVKvNQFoaQPlozIhFnpQUI5eMkkhSWWA1Jh+nZErycqGXU/IlosifLAJ5gu0xifvhQ6+9ffjQfXfecuc1y8AMmstaSpd28iGZg/sGdrBgPiXgChTwHRjhuFdOdv3xdw8tK1vwvW/eBhsQlC2mxqnRV3IsymmhnKH5WPkJghfJYYJT5VORgCIBRQKXXAL4KVbCLEgg+ftOIoA9zKyriIHeqOc9BcBWEvCoBU5ocJRDVBBU0AJgijCY+XSLETghYmNpOmxFnEArDpgQZJyG4DCSVYjMrE1rUcE9AgN3KAoZNt5jtaEawA9eJcEbnnqAN5oZd/ZJ3iKGKrIsfKrFgwxIQfczRCRvAXL4oJ4BKQVwzSRvUQRLMJAMN8CCVFWeJweaBGMGOUkpHusRiLMf1CboGfHKaEEMuDGeZgE5KW36glVJOCMbOCELXsGR0JZthHcH8rNEsvs3VUQwIgdj6dkpSAeUgiu0HWsdRXY0RbyG6R+JeuOpMx6n5734p6lkwDP4MQrc+mULTx09VFNd61u/FLuIYust9oroXDwPvYGwjZJJ1QP1QVcQuPw0e2ZaakXFucGRW9MdRBS4iJRQENYnSofmJXJQgiIBRQKKBD5uEsCvsRJmRwJTf+XVwFg6rJ9JGhABCFTRxZWsQLIYfYW3xFRAfBIAJzK2fEAPJX0LKDWeGd7ZqgEW1yaJIAeNJ4jhmXDCAt4AgIFOzLqeTIyXph8AcGSYCnY4CwpviKMfAmLx3MlPTj9ZAyMZzwgovXCYko6ieLoQgQsXZaloO0pp2HKXZMYpZJNpJPJu6e/1ZhqBqQ9JYohAyJDk+kXpTVvWp6RYpEhUZYCfayI7NCBaBWROAi3JZAurDLp1fqbp6q2bW1ua/BNencOOckwaCQ2K7DzBiip3RQKKBBQJfAwloExhfOw6BRb7hq6RF988ipMnH7jremK+Bux85FAyVadgMvvIWfqouw4igbkIExk4lgxTKViFgj8nzbvqTdPYxRkiUDAwo0SkiF3DqePkpEQ/Dj0+jV/lQZGAIgFFAjMloCgQMyXykT8Dk6BDwBEBg1RYKjAwncSVj5A5RYG4kPBhLoJgyPHicBeFXYROS10o44y0uIKAvkaM2Sw+Fr08g03lUZGAIgFFAu8uAUWBeHfZfERvgCiAJXggwqANHULBlY+oH96/WvQUwmQHxbWC9y9IcrDCybyTVJJJSkSRgCIBRQIfawkoCsTHsXuYDgFM+aDOAbPVmBnoBrKXFuDeWd/FtOTS8nQxHIBvwjrcTPHxwTprRpM/+rZcTHuVPIoEFAkoEpiUAIa4SvgwJZDEjXdDDGQgyzc+GBq9fwuIZz+j/P55P1iOZIsI/Q9WlOWeSuCDlU+WpIsjWdmLYAHFWK5khBZlIopzQN004/FkNReq4SLqi5OZ/oFyyepnVDA9o/KkSECRgCKBj6cEFAXiw+wXutgRFZJdiukHbgw8GJyQB7oik+oQJMssBUo3TutiEO9i8lDGsTESa0CS0fcrOiM7K/d+hUiudxYkKcnUBAmawDaUiiclsyTqSiYgQvLQD9zIHmBEcyNHbFAVjjRuRgsxuzTFKyVeAz7iMVbFRd6TZZKRiyyoZFMkoEhAkcDHQALKFMaH3Alx8IKawPzvGHbgTi/gFVEvZosn5qPHqgRR4CKraFboU8QllACzlGPCOr1mhfzFESFtY/VOz5/QaxiTpOGJXCyFFWNplHnCejLQ0iQBGaZ2E8vAxJjMrEQUCSgSUCTw6ZSAYoH4kPs9jlOApbDMDY7FcBZDikmFbYUS49okeP25jDHwwyLDfi+pxW5SGaZs9PTnUqfgig2syApGgdfSVYh/Ps0PTIFIi8eeGZh+wE4VxHJAlQLcoDzhCsbIAZ7Ym8GgiS92YFVA/kwzwOmjkQjZAgsbUeOPIaEcEPWOXdhME0edodv0Wg77bbAVEx+YT6WAIgFFAooEPnESUBSID7dLgWw0xHiusWvsb374k6Jsz9fvvzffjZ0V4YkXVy9miycgaNdo7Cv/54cFGanf+sq9c9OwLfK0ofb/uCK0A9e5mqbjpysKc9I3rllhwRmZH3rAlIM3KB84/HYg4Nu2fm2q0wrzDRiD2tQ55DtT1dDU0TcwMp5qsy4uKVi7bC6OwWQZsFB2yOurqm5o6hrs6hvW6/UL5hauWbowLYWcck428sI25CH5VEVDS1dfR+8Ar9KU5Ho2rlyY5TSzzbugXsyWMD90sSkVKhJQJKBIYBYk8BH86M8C15cviSkaQlVd44gvrNYZbHYT0AgBJzeTMfSshvNV9d6AqDebrVY9humzqKJAO9m3/9Abh09cv3Xj+ivWXDygJpSoyXZOkcpk4ozYO0tBS+gZE3/56PMnz5RrucjqlavscGHAxt4c19wf+slDj9W3doiCVqU1TvgCe4+e+tLEjbdsW4yNuaActA9F/vjUS6fPVgZxGqneHAiIb5yoaO/3fumzG80qcshWv1/+w1O7Dhw/4wuHjZYUvz/69olIU1vXN790m00/y5NBM1qqPCoSUCSgSOCykICiQMxaNzGEm4GFSMTF9INkBuQB+ja39UQ4jSsjR6UmkIYUYBvOqphGAWXwHC+JLHhgOgaSyOkToJwkyyJoD+tUvMJVWVPPCaqstFSrgSenQdJEUEnUkix9ATngHbvYOxZHQWbGx+PGTVfmzi0rm1skaAhsg/+p+RmjrCKWjjtjGBHGA5u4weP7BpqHuTeiFjLF0OuN/vihxw9WtfG8oSgtQ2NMgV0H2UbC3Df/7v+NhmNbr7zyrru2oczvnji2f/+bT+w9sPXKxdAPMPPy4J+eebv8XFHBnO/87f1WM//481VPPfvsofKqTasXz8+14hSrR3bue/mtIzhL/R+++53CAkN7l/R3//gf+46dvf2zN5r0mM1ICvB9GVcyKBJQJKBI4JMpAUWBmJ1+BW4B0gCKDAsJasokBVjl9Yntvf3Do2NDwyNuR5rLZs7L8chavmswJKtNFlfW8Vpvb3uzFI3kpdo2LsgxGk2MJxRobm7JyMlKc7mJ5Z0PwIRwuqLZoOILC/O1Rq03rK1q7tCZdTq1fqB3sH9wFId8FhUVLMq1GXUClJKAyPUNDOJsr7xUF87xwvmWAZwO2tEuhgJ2s7GgII9wTXw2Cb9TAskq8ypM/wOS27uGB4eGRocG/FHe5vTgjO+52Q4TjgRDBZHI/NysnAz7yJjY1tKiwzGTshDmNJKEI7wlnGptt5mKizJIThXXPxpt6ezoHxwYHhu1e5x52ZnF2VnkgCxqF4G2AdGxi3HC2EJKJBoWcPonD0ULx1SKnKCB6tTSNfrg0y9XNHbaU7OG+3szM3JNZg1sEj6J+93LJ3sD0WWL59923dZ0FTm3s6QgY/8BfiKmHvLJvJU/V9V96lxlUUHBD757v8tATrG6dn3pnpd2hgPhgA8eEVxF/dj+kxUWq/lvvnZXaT7cJzi1R0hPT21t93cOenM9aeBwsqOnCE6JKhJQJKBI4NMjAUWBmM2+ZjgMvQEB8xHYjrqmc/zJnS/V1jeNj0+oVCpeUtnMhnvuus2dM7dl2OcXNK++XT422Bf2jYmybNOruq9ee8dnt+EIR+DTi28eeemll+644/M7rtsKo3qUs3QMDv/Tz/+Yn+X56v33ZZtTavv8//7g08Brt83R1tIeisREQW2xmL55z471a+bDXtHYH+yf8OmN+pyC/CjPRUTuj8+8dPToMbtJf+9tOwoKoDkwM8EMIUBZEVA8JnCP7Tr69tFT3T29shgWeRUAPMNl/f63HyjKdpXXdPzswd/nZGf/1V89cOrUmWeffTYcliKyJoSzJ3EKpYrXiMHlC+Z856//AsdvVzV5d+3dd7bifCAUlng+LErpLvs37793VWk2Jh3QWIgOQA6XRrIbA9V1RInTarhgKGQw6HGgFzXS4PBwcgx6RVPnH596obV7+Jprbjrb2jvc11tYWAhHSLhMdg2GT52t1BmMmzeuz3SRtRcw6thtNtAXJTEQFEWr+rfPvBwTNBvXr8PJ4OQcc5lLt/ImjToSDsFdEqaUU7X1w97xqzauXjgnFVUiQIlw2OwtrXwgiAO6SWD6DY0qN0UCigQUCXwaJaAoELPT64ATQDHuFP4ITeDc+baJv//Pnw76AptWX3HNti0Ws+HQ/rdff+O1iErb4w0P+f2haNjnD1x37Q15WRlvHjlRXn5q77HKq67bajMSE/2J2nbZ7LY4s0SeUIM6crK+eyCiybO4BbtrVOZq2gd7x6MSF1KpLTs++3mDybT79Tc6erqPnK1cuHo+LAuN/aO9E0GDwZRVYBsMyj/9799V1jekp6Z95av3z88xg+y7nfcowlihUh0+2fjoi68bjCnX3XrX6pWlaNSe3btPHz8gRi3ZAABAAElEQVSU4nb6Oe5sU9twWCq0Oe12ft6ixV/LyuLVZkFv8oa4EydPHnrrTaOK33LDzTEVV9cd++HPH4bScPWNn1m1Yok/JD/+9It1VeeffvGNpaVfhN7w3Iv73z58GKdzh8Nh4qgBMcpSOBzSajQ49Rzw/7UHHsj0WKGTwSJytqH3N398smtg5DM3fmbz1iUvfvek2WRyu91YYxKUueb2zsFRLwouXpCLLzczbEQjKMebDFqrRdXSFT7b1JWf7szPycJRI7AukAMsoL7FIvqUFOgsmL9468RJrUZ7zbbtZKqC6jewfUjRmJoXLCbi7qpoD7PzZ6NQUSSgSOByloCiQMxa703uNEBt8uMh+bHndo8FYls3bPjq7dc4CO5wZXds3LysyJOb8ebxZnVgcGtx3ne+/UWXicwiZKdvrqk4HQwFTQayEKB1VK5vHbKnONPTclAQmAqVoqGxLSYJnjSP3UzyVJ8tN3KRHTdddcdN6w2Y2gfI+Zf86ekGs0bWwN5AfAmHhqLy6gXFjf3S479/pKqyelFZ2b13fL4oF9kJCr5b4AUyA3L6/LlgOLZu1ZzbbliAkToY+OsvXT9+0xablh8Pyi29/QPBUFpePnLmpGpyUtMxXxOKAX1bD725y5li/sZ995fNc01I3ENPPDEYjWzYsPHKrUsMet7J81dsWN3UXDfgnRgPyxotP6FOGZUNZHZCi3Ui2JuEKBCSRorxsiBIgmAaiak9lNcTlT2/fuSxsUDwjrvuvX7TvPYBecLnS7WaXS4XLAdwEYViEYhKS0rnwLrAfDLA3sjQmIw5GT6q1/HV1fV+iUt3u/LS7chArB0C19Q5GoyFnNZMrcncH5A7+obmpGXZDGoLVtui4RIHz4nB/n78tWR6XBCdEhQJKBJQJKBIQFEgZuk7wOzaGMtiwErvVbX1dY3NTovp9huuTjXBik+DyM0rypyQudbmRg0vXrN1fTq0B5zlqOKkkKiSok6HHSZ9GBuqO8bGOT7d5TY7DUBuoOB4lOseGJVUurRMolJMxLj29mZbiv7KdSvUMhlJkymAiTFBjLkcTlTnjcjdnb1hlNQa/vvhJwY7u665+podV1+Z41FD+UAGcn4D0XoQZuoSQHGk6vQGWaU6X9f09Eun5hbl5LqtBR59ptNAXA0C8sDQiEGvm19ShKpBDbWHItzuV488+eIrDqv1zttvLS5KA/SeO93W0jYQimjGxqJ7d5/UaXWYJujuHeDEmFaFdhMXhKu2LNu8YVkYWA1WaN1xcRJJovWS26lBO85Vtj/86FOizH/hzru2rC1CpfUNPTFJtDusaWlqKBDw8Gjr6sa0zOKFC5lAyESMxA0MDEQjkdzsLLOa6+/t8ZgNWW57agrR22CaQMGKpvqImjPZrXa7UFkzrJbU2WkZFgPxbJXQOwLX1y8HfP5Ut9OkIy1lho2ZUiPsK0GRgCIBRQKfFgngR1gJsywBTMYD7QYGh0QxNjcvf44HaxTiRm+NitgSAhOx9vZWnhNXLJujkTh4PACQhno7pUhoTlGhP8ap1Vxte2uAl905meYUHoANrBociQ15/SKvyczMBZGOXn93f0/Z/HlmnRobJWGmX8RIuq7WpNOlp6ejX0MBbmRgWMWpj52pVEXDGxcvufWWbdlm3ghqVOEgo2+4I17IDQL0cW3auPFAdWdn/9CTL+5zmPQZZvWmVYuuvXqj0cD7/D7vyKjHZi3KdgChTQIXiIn7D558efdutVp9z513rFqagwkCpA90DY57Qxqj9cihE+16iRdUIVmQ+JhKjKRBvdIRw4kY5kYGR2WqeQk8/gnAdkEQYIdQa7hwOJjmTAXMP/PSC519vVabq/z4ifry8jCvrWrtkUSpr7/3d4+8eMe1m8we2+DwMMQ+p7CA6TRoxbhPHh4agoQXLigNStzoyJBZkAsyU9mCFygtuM40NERUvCs91WLgG2obdLIqJyPdbORD2CYL+gJ0l6pmURaLivLQdqI3UCMTiCOuqBGz/PejkFMkoEjgMpGAokDMUkeRoTwuBAHDbuxENDQ0FopE4LoP6AIGAWYwlIYqAEya8Pm7u5rycrKcWg5wDtdEoOOpk6cEXlqyZDk2ZIL/4FB3n06Uc91pgGFkwDaLPb3dQ94hq8O8oMQBBeVkbU1QkPMKC5x6tQZ2eJ4bnpDbOtqsVrvb7QAfoj/S3dGJAbxBqwdLp85U9t9wVZYZGgvhh+IeXpJdkWZAIJoBaghzciyP/NtX95xoO3zibEVFTeNYoOeV1/NL5pXOS+0d6PeNjS0oyHOoeDgfwKay99i53zz3PC9o7//CFzevINoDjAaxKOcfH7ZqItdvX333LStsIgeXiAkYaeB+QS0NaDhmEF7as2fPvjfQ6mSAXoM4dAlJFA167T//4O8z08xjgYjJZAmF5bN1HSAQkbX+aAznioTDgfr6WtWN22Mi5/cHIIxCj4DZB61IBN7XP1xXX2OzmjZvmBuMyH6fT4iIRo2RdRimXRp7pN7hqMFgXrywGIL1+cYESbQYocDAHZQYIUZD8hOv7/NFA4sXz4cKGEFJamfCXRRlPZRCSRQE1snJFigRRQKKBBQJfMIloCgQs9jBwDyMTKkiARATMY0vjU34gJGQMtARQ/1hX0hj0jd29GFlY2nxPIATScd8RJRraqq3mfXAOTA0MSGPjQxyUszpsuMtkAyrExs7sG8EV1KcA5BD4tFz53iDwZmRDvsGlkuAVENbV0TiM52pLk86uOjrGwpHoouK53ztK7cdPVy955Vd//7TX/7r3351fjrG3lw4JmIGgQdExwWAEsmASRXOC08BtaDTcdtX5a1blTcUuPk/f/xIS1NDR783O9/T2Nbji0YWr1yu0ZC5ld0Hzv1u58sGR+rdd9yxemEmdCYSBLLuI8SLASnYPdAZ41eI0I0wMyIQIY16Qy5syUT1qvkFubENV2BbSTCEFCpCMsGCgBQoEOkOE4wZ//evvz065pMFg4w281xz59ijTz/t9Xu/dt+9+en2nCxj9zgWn2Jn66gvyMX0RCxw2Dx45IgvMLZl6zb4fUgSL/Ekz3gggHki8IkNxY+cON07OFSU6V5aTNQ1MRqMSpHxiXEYRGCxQK+dqepv6ejOy0mdk5tBDBs8WR/b0D4UDIfcNkthqhXOlQn1MSFOyrxyUySgSECRwCdYAooCMVudm0AO2N55DuNUeDNo1ZrT5ypPV69eXpqKBYLHTp47WnH+c3ffc+hMtcwbSgrnw/wA5QAD7+5+/8joUG5BkclITOaRaCgiBiWVXFFXs2JBpnfEt++tI/tPV/gj0RUrF4NjH8e1dHSlOOz2VHdYIAoKqq9t7RRVBpsrw2IljgXna5uwcPHazWvnu/n0LaW9zXXHqxuefO7lb3zpsx74ZKhVPOYvSOXUIEDEkNAh4JUhca8fOt7e3X/d1VdnZhlEkeseEifCISwTtXky4DfQ1NEvGPVzFpcNcdzu18uffHGPZLDf8tnbyhZkQEUYl7gUtAtqDc6YAIdq4VR97cHKnvULM4C0ra1D1efODXZ1/M3Xv8R8MK5avWDL6gUomBBikhWSgjkOFYwBmBBxqmNOG06+QE7YSCa8vE7y2Y3q1csyUR2BdoFzuxx13b0v7Dn41ds3jUflXa+/fezkicx017VXbUQpmAkMFmOMExs7O4eCK+BoefBE61uH3tKp5c/feG2GlrCTne4SVWJNffPoxDrsGFVRM/Tczl0pOuOG5UvnZJA9IUCntdf7k0efGx0ZvvbKdbk3bVQRBQJ6HQIiuJSgSECRgCKBT74EFAVidvoYwAMoxmFVgCAACB6XL12SfaS2pbvnu//2C4teG4FLAi8bPObNodixqkqLUePJcAFzUApz8McrGyKCrnj+AodDjUSr1WC1O6OqvteOnTl29DAficYiZEmCQYitLs4DprY3tmkD49guqsDtwvoIBKBaR2drMOyzOizIgOF1fWO1w6zJz7DBpqG28Pfeccv5f/7x28eO4kyH22/cCD/KSe8Hgtv4z4MbuB0A9X1BqaK2+ciZ6j2Hz+pNpiDqFzlYLK7fumXxfAvUi/7uOo9RPSdN29g6uPfVl7GjlBSRHvvVbx8VwaZo4iVniukHf/99l5tfvWzFsVM1DS1t//XTX/9KLap4XTQiWwyquVlkIgZzBDA1QGJkVmUK9iZ0GZIIETENCXEoE8gdwqQPPCfGu3GVlC60U/VCL3MePb96wbKaxp433jp2/OBJWEAk0W+16u69+YZ8KFWoSOA2rl5Xcb7l6PGKM+caY5gBkaMWo+5b9965vjTLjL6QuM/t2PDqwbcrGuvv/dY/afX6WCQMf8/N66648+Z1kCwUCLDQ3N7d0j2oVUnZOdkwmkSjMRV0RiUoElAkoEjg0yQBRYGYtd5OYh4QBdbv3HTjt++/54W9+zoHBkRR1KsFt9O2YuPyuR7NgsKcHIfdZYPvI1E1AJ8mvXblotKyolwsn5BjnEXD3X7j1VGZ7x8dt3CRDJdzXnFJU0OtFPXlWYmJwihKywvy07KzMyxqmDEAadAY0u2mVWVzl5YQ/0GEPFfKvPzsHJsemAejyNwM4YG7bj51+GB/X5/XG1FbteQQS1q7migQNJDjOgU4cJiNwtXbNgt6Y/fQaCAUdWs0Vot51bKl2zYXozoY8BfkZ1msLsTtevX83HRRhOcH9rrEHbyIekHOyUhNc5CFlAUu/vsP3LvzldfbOtuiYiAWE0wG29w5eZtXL0SVEBUmNHCOJl0SEudi0v5AE4ibRkK4GvgbyDymM8ZxxqYQXVE2d+3mdWgvZmV0Mod9La9dN3dkfKy1tSs44dcb1Cl64cZtG5aXZoA+OgX6weaVhVL4rrdPnh0d90PyuenOrevXLC9zE42Kahho1Nfv++Ke1/YPjvoktdZtNa9fsfj6DcVsqQt4gdw6egf9YbGwMH31kgKkqOD1qgRFAooEFAl8yiSANfeJ3+ZPWctnt7kQImwAgHbACQz+mELAjD4e4EgwFJDDEc5ihJZAlyRSvAdWYWMIrejXqUxANQz64QAIdzzAGB8NwhbvlXUjUXk8zKWoOauJmNbxCkdfwKEShnpgPFLgEgEItCBGT9OIRCVs2UjOp47GtFocsk12m8b+z3gPVGeZiVNhnz/gHcIEBsA7RlQLqu9QccDhABqAQaspzs8ESzCNwH/Q7+e0Ws5uIdoAcJINtFFvkjiajIBacLEI8iAD1QzIS0gmKJJtIgORcexWabPZ4CgKUmgRHBCJYYC6PtDS9MYITT5Pi8k82CYCQaNgwwBxxKFAYLUroB1OmphVwYLSsXHZaOFcOt4okreAfzQU23Fisyk4QwyKHPaGgCTTrDzsCuAE1OCtEiYy4SFe7Gg9in2vtRw28EBPgTjkBQMG2tPpk//tN0/CRvFPX//CtuW5WEQDqWnwjrHNxDGNZeVBkYAiAUUCn0AJKCOn2elUoAbTHkAOUIKAYT0ABWNlg5lACv7jAkpRICMPBGVVZP5BS90gtCoCuiQr2aaBNwscdoNO18cBO04BQ3WSg+Iz20WRPuEGajBy4CUmBTRanFpNSJETJBK4DqKoemRc+tMzL2CCPxbDSB4KCeUVygTRIzG4h98Cn2pWP/Sjv8M3A2VT9TynJxHGGyIIuONio+54cxK10PfxDDQXSUBZYDbUI6suhbOQtyiVIEgZZcWSdyq65BMirF5ECJeJqRdQwMUYQAReEZA82MYSFAB/hosUQjosNriTQDQVjs34OFWcw0G0EKbroF+Qh5hqqGoCXQFKh0NHMiCKV2SNBa0LOb0Toe6uzsI0x5oludBLQBN7aJLXSS7JgxIUCSgSUCTwCZeAokDMWgcn4SM5nGbY854VEOCZmY14QBIgvHDfJKuhwJYkjmRWLzH4J8PUOE206IXtV25auHi5JGMXJyz/JABMwZfc6f4LXJpFw4iAOfqWIigt/kFvjD64oPh74dLv4PEC2Rgb7AXyswuJ08hSQkhhKsIMKoQCNIzpQpuRB2/fgxnGA+7Y9Nqgkm6+fosJFiNKcwYd5VGRgCIBRQKfBgkoUxifhl6ebCNs/uQCDF5o5M/yAYPJQk8aGGoSwGaxRDr5fA+wnZrtYuKXlPjFMHAReWB7wIWASZCRcdFuUWEDDBgtJkNSWJNJSkyRgCIBRQKfWAkoCsQntmsv2DCGgkA6oD+xflBQnAHfeDVtZD+rqsIFubosEpNSggYGMUJEuOKTHJdFAxQmFQkoElAkMKsSUBSIWRXn+xNj2P3++S5RjiQKEvMBeyDuD/FYEhBn0bhwiRrykZGlm36idqJ+kc4k/z8yZpSKFQkoElAk8NFJ4MLz7B8dP5+GmoHXU+YPktjNIhDApcSjSbxL1huvELVegoqTjfqgHXsJePmgLMzMn2gLs9xQpYuuDSXLdonwpkh0ZlHlWZGAIgFFAp88CSgKxIfZpxRvUCFBR0A5cfYncfpJE2aZGSxYiNeGj2n4xt4kq0M2kpMFGpuae2o8kekiPyepXmSByWx/Rq2TRC42RjsDNSbbPoXxhGqQoBXPFs9BPyZvzCxBsyYaEM+feEyQUT4VCSgSUCRweUtAUSA+9P6jRgCgySS6x0ewTKmYRX4IrL0DtmjN0ypBNgqANJHGknlYabyYzDCt6CV7YBzgzob7H071idaiNhKdYiai7ZzCBF7TJ3KDPwQ+EqYdSoNphIQEycgcJigJ5aZIQJGAIoFPjgQUH4gPuS8pwFBgYf6MqJ7AD0FKwA4DJgI5UwPLMDXlIuMgN7UW4vR3kSU/0mxgmzkqggvwDB3ifyyBD9QO1IuLhWQEj1NrZwJkb1l+SJhlIHxOLUZLYp8rZMCrSU0IeRiVeFXKhyIBRQKKBC5LCSgWiA+52+JKAnDFG+JeeeOwPcW4cukCpxn7PAEs8ZaMe2fgC3mcgUzv5HpGGZqBbAEpcc/sOZpiMlyxfGGaBVsvziT+TkofeQoRToTb9eoBl8O5buk8q3Fyr+1LyhvgH+JH7YSBgDw0OjE67tPrtFkep8NMdudg0kNXYB0stq1Etr7h4NDImNVsyky1YFuIuKJAOxlvse/nkDfW1TdkMRmy0qxGDd1pNK4mXtKmKMQVCSgSUCRwySWgKBCXXMTTKmB6AM6T5Lnatt7f73ytJM8zb8E8G8F1uoEUcmNu40LawDQ673x4x7gWCbgaurwPP7+3JD+ztKw01YJtoy8PBaKiZeCRnXsXlc5bVlZiBc8fFt9A/f7RyB+e2NnY0e0NhX2RqE6ldpoN12xae8vVq9hunsiDLbGPnG1/7uXdg96xYFTE7p+L5xV/8XM3ZTp02FoKAepF23Dkwd892tU/NBaI6nWa3AzPV79wW6HHrPmf9O47+1tJUSSgSECRwEcsAWZY/YiZ+PRUTybH2cVxNbWNE2Epxe50OHDSAgmw28czvFMiyYLvHmEaw9Q7CJ6prA3HsG0zaiGnZ6GiqRlYfEZt78zwIacAoU9UNfpkwZaWZrKQ7TIRLikPjD42w0Yth0+eefPY2e6xcFhl0lo9I1FddY/vZ0+8cuRMO+QJzcDPcXuP1v/Lbx4/294fUBu0zrT+iPDKiaoXD54YiZIDRHwSd6Zl7Kvf/7dj9Z2jktaSkdUXVb1V3fZff9g5Ts0SrEW0WcpNkYAiAUUCl6sEFAvE7PQcgzeAOwskAns4nf9mVvGoyPn8EbNRi2OfobXFeK6tZ1QUdKk5RTB0+/yyFBPtJrVteofIosSTcxZAC3YJ4Bc0AI2AODn1QopwKiQhFqMKiC8QkmTBatHqCRM4FhPnQqkamlph0MhJdRtxjgZVIPAORUCUMEk0CnzSKHkkAQ+sPsRxrBSMJUB0TIUMj0xYzGarnhdwtDdz2aDNJnAI+wnNRssS4qCLCxEEFAefY74YTm6zmjR6gVPJEnbLxjbQwGNYFzBFgQzIT0jRzJXNnTgTJDU1ladnVIUoQ8GgHA5HNDqtCcdbIVBTDamLRlhLcIxWMByzGNU4W4RMCyEXJUpkxrihibQq8gbJEBRtDWgSsio59pkbtpctW5WVY8ZOk+VV/od+/+jQyFBtY+u6pbnQDypaRv7w7M4oz999+23bNpdKGu6F12t//8TTB6qqrrp6vVHDdw7LP3v4j2M+//XXXXXrjs0pev6titGf/Prh4zVNQz4ZZ6Ogk2kD4qwoH4oEFAkoErgcJTAdry7HFnxseE7iZZIjjGhDItfYMXTw6ImO7p5QKGI2WHMzU7dvWScY9J2DAUljDHGGnz/yZk9bC47HzHSYHvjstvQ0D6NQdb5q3+v71qxdu2bpMnIulhAVZf5XDz9qM+qvvnqr25PaNex7bs+bGpMOp3afPH7CO+aVVYb8/MLbtq1Mc5pjnDQSFAZGvSqVkJ+Zjt2pozFuYNT/6mt7g+Pegqz0m2+8joIwapsBZ9B5AK5k3gCxruHgngOHajvaR7wTFqN5+dyiz27fpNKqZBW384W3O9r7Nm9evnhxPlQBBJwsOjQqPf3002aL4fY7b8bXS5a4Nw5XVdTV9g0PIoNNr73l6i3L52bhmNBQJLznwKnayqYv3HZ7U1/XufqaibC/OCe3bPna9oERrUaXnZ4OxQKY/fLe401NLX5fIBwO81q1zWlfvWrlsoV5ODUMTB4/ef5U+bnlK1a0tHa2d/aExajdbNiwavmq0hKjASeMEsaS8wZEJ4sfEE7ah16LiDGtIKh4opSpZH77xjUqvYrpQ6h98Ryjw2buGR6CcoY2ImXvoSN9Y+NXb7/uM9tL0UAfx23cWPLzp+XecMCvIhtdv326urWrtzA349ZrN2fpibqQl2pLSbH0BgO9w75Ms4UwpARFAooEFAlc5hJQFIhZ60CMbxkOA5MQMHAHtByqbP/RLx8KBMI4sVqjUomRDr78jGg0FSxY3Tw8MSqr/rhzr04WNZwYjMZMai7gC3/3W19KoWdRvH6q6s3y6pzS5aIOJ0pyQc5U2dLz0rGa+YXZKwUrzo1s9vIvH66MSGFBfFuORmNSJCJrDlW0pFgMN123TuRUdb0jPWMTBrMxqyDfB78/mfu7H/28u7u7OCfrc7ffCeWAngkKHJ0R0A6iPQAvB8bl7//Hr5q7+2QpojWmBAN9zQ2d7a3df/ete4C9w2Njb5844cq0lC7OR6sx4ofB4Gc/f6iisuLmHTeCaDAi/+nJN/a99RavUePMykAoFAoHW7r6/uUb95fke/xR4dXjFbX1rS19Dzd3tUpcVMXHrNdcbW3riPl9qVbzvKJUHDbhDcp739jfPzQSiuD4cRwErvGHao+er/mHr39t6Xw37DfHz9TvP3bmtaPHVDJsGdoIz0nRcFfvkN2eNiffzg47ZeodGhaMCfAEkXH+KLLBeoEkWcsODyPN5jkzTspKmEOQ0toVGhkb16jUubk5eAxw3MHDx7RazfbNa3FqFyPr1vJqWacSdaDZH5aPnTkD6X3mpptSrXG/Fr2B0+l00GWiUaJoEdMHaClBkYAiAUUCl7MEFAVidnqPYA+lBGhgF4Bi39GmHz30W4Ml5Qu33Lpx7SKMhs+VN7/x5htz5hYNjY2HguMOtbR++bINa1ZluI1vnWx84cUXG7sHI7Ic4fiAxJ2u69DZMt1puWwKAEhZ0djhl7Q6m8tgM2BcXl3fHAhFnU7LirKFq5ct1Rk1O3ftO1NR09zWiRkHWOxbBr0DgYjH7bGmaU/XDf7mNw+N+QOr1m26765bHJbk/gQzoYzxj6F2/7j8te/8YCQY3bhx42ev3eLwGF7bX/ncc8+eqq45UdO7qDi9YF5peP/R7rFxLJqwaqHicPsOnK9vqkMD123c4A/Lz+3cv+fNN5cuX37PvZ/JsvMtA/K//PiXbX09lU2d+fme3tFgQ++IX6UfjoTXbdpcmJfFRYJF+Xn1rZ1yOJDmSLfBfoCTvQz8ui1b83Ozs7LgEsE3dUR/8otf9Pb1tDZ3LpvvDohceU1LTGMqmz9vw4o1uVl59e3df3r8iebO/o6B4dxcO+ZRntm5/4Vdr8RkQRIl2GNwajmb2BAxecFLVpP2h9/729wsYvjBbAiZ1YB2xqZdAvKbBw4NDQ/NLchduSwPHXHoVOd4ILRgfonLRJaYQr9BR3dDO4tJZr0ZXib9E1xrT5/eYFxWlguNChkgyWCQC4XDkiS6XHaiaM4U+ex8CRUqigQUCSgS+DAloCgQsydtYA8FBngfYCDeNeB7fs9bnKC/5brrbtmyyAwk4birVxeWFbj0DusL+85oo96rVi994Mtb9GriKyAum7NnFxmaGqnRu2tA7hoMpTrdbncmqGKkC/RqaesRJcHhtBuo6b6ptkonh7982+c3rCjByZBkuqGkqPrMOZtej2E3FI62/tHBqLy0aO5rxzp373wWcxA7brjumi3r7BbC6HugGDAvInEvvbq/2ycuWzT/i7dfl23hQxy3dtWC1/fv9Y4M9I+NqNTpmYV547yqoW8gIMlGmW/tmThw+ECUC63btDov23iuaXTX66850tw3f+4Wp52HxpPl4Vdfse7RnS+OhCS/zLX2jfb7IvPmFt932/WLi51mNFPChAJ3pLxSLUXn5udCLBAI2n7N9SsnRuTh4dGm1oDXH1Wp1Cq1zmy2wczTOyGDSE5u0X333Vtgw0wPV1BkPXgor7mlJSrLyAAi+YVFG6/cHuG1sGBIMjQnmfiREOJwYIg5zRpLSgrpHgrtME/gExKYCHN/eGLXgSOnszNSH/jy7Tot6YLDpyt4raG4qDA1sbBTlLlTR6vUkuyGn6qWr+3zjviD68rmmdS8gbp3oOFjY2Ne76jZZLaYid6mWCCYtJW7IgFFApe1BBQFYpa6j+ARQSQMLtn4sqGxEaPkbLdtx5ZFNg0ZrZIsIpeVah2Ocq0tLUD8rds2WWDaFzlBxcnhiEqKZaQTdQF+/uWNHV5OyvW4LB41wAwoOB7BrgMTssaUlVsEUoEY19HZmuqyzivOVeNcabqCoL+3X8WpMtJyoK54Q3J3W5cgqwZGJh587BkzH/0///t/Ly9xpajJXAMywKeSoDNhd5ougWQ893rF0zVNIq/auGplmolXRziDlkuz8hhnD4R7MRsCrlJcvMpi7PaOesMynCsPHjtf3zaQU1SyfvMVaMLzu/f7JU1wxP/df/mPFL1BDkexoGIkGDAKksGsBbRX1ddpZWnLqsXrip1oIL6LWB45Oi73DAzrtNolS5ciEWpQTUfksWef7+lsicXkiKSC/hCR1fqULEduOiYU9h8/L3LS4tKS1BQVGoUqgOhWjRa+niadSiNwMZFbvjBnXklOCK6atHcgK9pXZP4C+fU8Z6ImB1SHNxJPtIf2kdhPHnr0VG1zWpr7m/fdvTBLD9fUCZGrr2/R60052UTCJsoe1m2eP3PWouHmFmWCclNdLS+Jc+cUGTREyAggO9TfL0WiZUsWmNFIaBDT5E0zKTdFAooEFAlcbhJQFIhZ6jFAAh3UMnAAAo14xzGWnZOfa6XaA6pBFjj9YeQ94Qt1tLfoNPL8IodO5oBAwJiWhjoxEpxXMs8X5TQarr2vF4CXnpsN2MbAF6DeNxQZGpsQeT4zOxdm8+r2of4J79KyMpMeJgyioKDSutpqk0GT6nGgrlCIGxseEyShvKImRS0sX1Q2p8AJAIN/BRwcUCMJFzKmoy6Q6vVODEwEIpK4amkRVnBg6QRmVXzjciwiadRau80GHESTUuy2rv4uuHjUtAdeO3iEV2u/9a1vChjXw/7RM6gyWVxOu82g1cmyFgN/TkjX8FEukp5qBxvl1VUaNV+UlQGgpStHuECEG/ZHmvsGZZ0uM98MJ5Ljp/t+8qsH/dFoVporvyjX7kodGI0cPXNe0GrScg1QLyrrm+HP4HZaoQSoZQ7eDPAV7RnoU2nVmK0guoLANTb117V1hThdhCgMMD+E0UZEcNfI0RQtt3HlArsJ9gIC7ljxUd069NunXqqob87Py73vntsWFVjAHnKHgrLP5+fVKp0OFh/SKVj/MhGS62orzEZrjseFRvX39EI1TEt1M+0BQgpJ6JcGHc8tLMrHI7Q9BCI9+pUAg0pQJKBIQJHA5SgBRYGYrV5jqxZAjRyPLca4keHxYDhis6ZQCCNggwvW7IjMjY1PDA93z5s3D5YAaA9qkQsJ3Onyco1aKCmZj+mJcJjr6+uXZSnV44adACgI0Onr7x/3++0ua2EucYDYX3l+QIqlFxRglSC8AqEJ9Az4u7pbXBkZLrcR+OT3B/t6+4wa3ZVrr+hobj11+vy+/Ky7r1+EV0BZTPZj1QGzP8SViSmSAKtjodhYOMqreb2WeAKCPozvLc2DQ8MjHqczNysDpfDtKcjObegeqG337d+zeywUuue2G7KsPMwPgSg3OhHQmI133nXr5hKHHc0H1grEkRPNAbgOx7jm/r6CnFybxYp1oSQInFnHDQWDHcHA3LnFqLVtVH76lQOBqHDLjTuu27rUbsPUELdzX/vp0ycLs9KhjU1IXH1rj9FsdHvsYBIBikt53UDXxBh8Hq1ODxoCA0NFVd2zu16dkLDqVSMKsDFAfkSfA9Jr5ahNxy+Yk2E1ZSLzaIh7/Xjl06/s7/f6N2/cfOv1m/M9aih5gH/MEMlElZPVKo3OYJygMocmd/L0WU4O5WcWzMvJhZ7h9/nwDbCmYEImHnqHZCwSSbVZNy8uRQbUCxsJ5InqIFLoE4oOkRCV8qlIQJHA5SQBRYGYrd5iKEAm0BHDmgODXo+BfntnN8AKsEe882Df7h5ypLtOwelP1M4vXIB0MgpWA625tvZmt91mtxK/QWyZMO4dxEYPBqMepn6gFPD49PmKYHhi3ZpFKIUqqsvPpQiqLKcDY2Ee3oAcV9vQGuM1dleGO9UDNG1t7ohGw5vXr7znzlVnzxY89sijT7/0Sn66beuyXFj1MXegw/QG5k7iAQTigagKZPKeDOCjorq6adQyzx4UuMFx+Y0j5eFwbOPatZ4UHlgIPJ1XmPfa0dO/f+y5ocGBDfNKNqxcAopYnhDFZg+SFAmE+nsGpGKHBNgGTRhmgvLA0Mi8HOfp883BsOxJTXPasTVGPEC5aaip0UTCK0oLkHm4d9Tb36bTiDfetNSuIXpMKMp1NjcJkdCy+cUY7jc2jgfHwxmZaQ5POlw4Iau2Afnxl1+NSsKqpcsKsoxQ0VBq66YrShcuCMsazFlQOwjqgXpGtn/QyDFobJlpHrSlxxv5w4tv7jtyWlLpP/+Zm67fPN+p56HrQNOCXkLKqOGlEYrGsMs1JogcoNY5KO89ckZS6crmlWQ5eQjWAdVBktu6+sZK7KCJgr9+7GlfMLhu7epstwChofuGAvJLu/dh3egVS+aXFGRh6YiiQyS+AsqnIgFFApeNBBQFYta6io4qCbYT3wKeczrsBp3+XFXDC6+d27J+UcAv7tq9+0jFmb/53t8fr6zlVLriorkAWoxr4ZzY3D085vdl5ObpdKRHAFjwgtSq1AcOvV3gsowPDj71zHNtQ16dxbBqWRlyjItcYHg4zWbNSnVDTUGFgLeapkZOo3WmpmPZAlCzrrFRkCPrVyxM0/LbVnna65a9efDwMztfKsq6f06qXkOADOUor+QGCKOEaBQmCrfN4rGm9Az7Xjt4NCvzWq9X3vXqwSNnz6a5nbffvBbgDTYArnnpqVibODI45LCkXH3lRpuRIC6CWcUVZHoq29p2v/pmqsGyamFGKMAdPXNmz769ixcvmHf3zQ11DUaVJsNhN0EzYPhJcbSjvtYkRlaUFMGtURWc0EghMRLY+2r56kVL21vbXn1tX0f3KHB81ZKFsLt0trTxEj8+EaxtGhJCzo7u3jcOvFXb1JbqsF2zeZkaBhY4l8icx65x2J2steANEQS0n12wB2Cbr6DIPfHiqy/tL5+Q1Dtu2JqenlFTPyjEwmouBiVj6cI5Ki1nNvHpTnvP8Gh1de2y+fmhiPzoky+crW3KTfNctXEdzsIA5bnZ6eWnpP0HDq1ZVQKnzZd37yuvrEzzODatWQ5HWjQUPXWyuumxl/ZCxSzIySgpzCL8xL89lDPlpkhAkYAigctBAooCMTu9BAzAcJOehkVgCWHNimXlreOHTp35+aMvPPTkLjESMho0BYvmiEbhfGtLus2c4rTAtEAmNTgONglZZy4uLXO7eBj5HXb9guL5DW2DtQ2d3//hf2nUGpsjVaUTxXCwJC8DRRqbW2PBcYszxemyYtgtqchIt3d4ICBG7GkuMIPHutZGl1mbbdVj3yI83r1jU0dbZ2v9uZ0vv/yVu2+z6ym3ANFJ6KIwTl0D4Hs4J11909b1vc/s3X/07OFTVWIsqtVrFi0rvf2m7dBOcEFxMcJLw2XPshtHvGPXblu7blkaFAu8giigRvz11+/+yR+eP1XT9q8PPSHIMElEBI3kNmsLc/Mgos76WocgzvVYHLASAFRp5fg6DrQ2Zpl1GVgHyXElmTmFmZnDNXXPPrPzqWdeEgTBYbVjeUhGqiczFWsyueaWZlGUAsHgL371K33Yz+t0drdr89pV99++Pd3MQz8j32+62QVBbqYgJR5pL5Fqob5gsyeYFKobO2IyrxKEF3fv3vtKTC2LKk6CAqEXxP/6l38ozjGD7b+8+67fPvpU+dHTp4+fwyIOnV69duWK+++6Jd3Cg2G0Y/vapTU1VZVN7fd94wdwX1HxUm522t2fvXlRsR11oa/RF6caOnyCITevMK+omGgPVGlj/Ch3RQKKBBQJXC4SUI7znp2eSigQFAfp9s/Aib4Juaq5v62nDwjnsJrdTpsn253u0r9V3oBDl5aV5GHjajgEYO/Clt4g9ncqyMvJdWvhEoFtmNtHZOwD0d43ZNLLGenpdofTPz7CRf2lc/NNJvXoRLiist7isBfnZzmxhyUmCOBFUVELx4U5JaWZKWTX5mNVbVpeg6UBJh2ZBAE/7b2hro52q0FXVpxrwSqFuP0hrvFAEHEwo2iOIr4Yd755rKm1c2J8wmUxO1Pt+UWZaSk8cd2g2Ay8HJO4itpubNxUWpTvYSsbMUmAaRdqWekbk6vqu7u6+gPBCatVn5kJA7+xICvTaeCrqlp9IamsIMvjgNaB2pjlgjt0vAaTJ2ULig3YeEng6jonjlZV9Xkn9CptbmaW2+kMeIMuu3HhXFvvmPz//vu3h2sH7rnj5lSrLjbYa7bZs3JyCrIsbgN2diIUMfuA/bNZH+ODxsiWk1RdiXc9EiEc+FUeP9c0EeVFIhj8xwQF3C1hmpGxufUVy0t01FkBW21WNw41tfVM+MMpVhN8L3Ly09LMPNoAJ0yiIshcU3/gXGNHc8+ww5bicVgyU63zconTKMQFBWIgJP/gx0/UN9bdcfO199+8Bks5oOVM5Wd2vpEKFUUCigQUCVxiCSgKxOwIGCAEeCDIAzCMSlg+KOKZKgeAUrxl89yIAGDgOIkdh+CXpxWDGpUBnvzIE4uSNRrEuT8S5NTqaEwzEcPO1ATtGNLDCZGPyWYtWWQIOqxGlNVTwIYXRDQW1em0gGItPfOCACBdlYAWwiSAC7xhuqSyumuorwc+jaCAvbEpmCKKtzKG+KIkWfSqq9avYFUgP9qB7RngSIi9qzH6x4ngRHugdgtwQltJONRSL0NOioEMqUytDkh01yaJ+Awy0WCsjyjYgG0AgcRBAhs/kg9QJSEW4yJRGQCu1cDGAasFQXcsx8BiVygEeqxSpaJDM0+2DP/7Q48390/85kffy3XwWHlCzgSBgUHiDNj4m8I58VUEFRLwQSpELL679ZRU1goUJ24RNJ1kmxqRseUUbBgStpGAiSIYI3M+OjpnAf0PdaE39aQmIpcQT91I6VIXKIhQHZjvJFaBwt3jZHvwP3/xh/GR/l/96B8L7TwUCNhslKBIQJGAIoHLTgLKFMbsdBnAJgkDGkwAADEpFGHHpiQgIZHEKS4x3OZVBEnh7kBG33EARQRwA2cGzq4lCJoMZGAM1YMOWJPpZFhMasMoltdhlp6+RZ3ASOSBJQCB3kjVgMnBcemNwydqmzoiRHeAGoDCZHkBu8OxEIxlWFTbqQKBsgA/EuARSZlHdfFA9Q6wDeKMGYbXHF04KVOnBj2xgxC5sAysIPIzfvBIIvgCEtBONp7Drt1qMqnAspN6wTZmB6C+IA0UoRhhEgcqSq831Dvsxfg+38njyG+QIP6kIEt7Ag1hFZMICeTNVE4mUylZPDJ+WfrMO5WnCutdKA2ynQPjn/UJ45fkIftE4SWmjcy0XjCMlaPgGelwksA90N0sjQ1tXbUk304cURmbcR5n1qo8KxJQJKBI4OMrAUWBuIR9w1DhYrBhep74Ez6mp0+y+s70ZAqJUMyclkKLAsycZuHOHdd6/REZCzQZ0pJXBFihRrDht01PcJqmxLE/SYomx2/JxGSEvoiD9NTEd4tPEnonsCdSUJboAxSAEcdFjACwBkCHiIYyXbZ1a5ZjEA/tAV9lliFOlpaajCdipOS7hPd4lSwxqdrQ6pLpyQjjgQkQiSzC7mgImMxJddxw5RVXbdkInlk62noxVSerUCKKBBQJKBL4OEhAmcL4OPTCpeKBoTADJ8RxYQSMGQEM3xFPghyrniEfiWNaZMY7kh3X+4ZJGu+bdVqGi6CdtKZQL08y59Ef5UZ8stPM2zVkjoDaHaZR/bg8oHXMyEOFCCdZ7JeFHS8gY1ysd9j948KwwociAUUCigQuQgKKAnERQrpsszBcZuCEOHvEHWpEErpmNA5vkX+m/jAj06V4ZMwxyu8Fp+AdDUEOcjYHawhUB3ZdCr7+fJpJsTNSSfmTLmDi/vPrUCgoElAkoEjgQ5eAMoXxoYscFSZhIxn5ELlg+sEUBQJMIMRBmz3E2ZnyZlr61ALxrLP38V7aA9wUyfQMy4IpgCSD76XxzGD9vei/Xyv+DFLJahn/hOEENXwm374fB8p7RQKKBBQJfFwkoCgQl7wnGEx8tAgBHtjF2HgHM+8CYdPzsYawO6Q2RQW55DJkFUB7YLUzvticxSTrk7Ep/EwtQJIvmGlK/veIMlLvkYG9StSQzD5diiQTSUm+ZqXe5Z4g9i6vL03yDNbeyf+lqXYaVcbDJa062cxLWsu0VikPigQ+WRJQFIhL2J/4hSILC9kBEGyjg8nfKrykD4nPd/CBF+zdZBmWB6kIk6nsmSRhywMso8BR1VhhQQ6sZgsQwAIWPSIXVpZiVSEWlCJMITJJaSrZSao0O5wHCQW6kwESAN5QINi4H/GZJEkREsh8Q4LVhBsA8uICMVysananWRM3ScKpYagRixqwyJPQoPoK1kuSJ6xAhRsla+D7zwKQ4qw6FoGr6AVqTNT87p8XLJRsRKIceCMc0pW6kD8W32KVDXIhEHGxGH2M32j+6aoR4RZ9CGkTIdDGEpq0tApnlEejag3WdpDX5EYJIRsphq6BwynZM0sSsE852ZQcGYjccE0ywMrEOSAfeEtupFpyMgku1ndYNItkHNhBpfaOYvGi09IpKfKCptLyiCZ9WGg9JIFWQfLQLFOXwKAtODcVrOO7SuudSjKuRMbpszdT6qfECEkE+p2Jt40mTN7ADhqI1dQQIZ3/IuVoWSIrBJCkPMZJT9aA1zyRTyIPyUkDLR2P09LxuPKhSOATKwFFgbhUXYufE+yaEMGh1Y2DoUhg+fzcySMPyG8gLoTEj8+FuYi/vZislAD5BQRNskkB3bABleCHEj92gz65qb1HlMQrynIY3lPSyM90jHdlI1E14TgkcqMBqb530OcPqmQpx2UpyHLD3TJBBVlm0sEzxSFwwXibmoNlThTBJ6uMtkQQeFEWCGRi2wXyhlSCR2wpMeYLqQXBbtJOpUXqTlCiBBK3CyRegM9E7imfFyg45W0ySkGGsU5LELzHpl4TEe50TYfZqCnOS1dTTuP0IMgpzYyTmXzH2oRnHluDjAcioahoNxvYhhPVTT3j/kBJTqrLZiECpbWyorgTOMSB48FYJBa1GfUGLIedHkjOd1adyIO3RJOhR5kPTojNfV6fP4BzyTMcKcV5jkQ5fLIKE8Uu8BnPw4pMZ3NK7sQ3jyAxtITEKhs8oSD8TEcDUCFkpym5UnhavQnikwTjtSYSpuUmX17KCG0ky4IdvSqah8Z9YwtKCrHJF1rONCRGGXkYhZkVJV4n6c/MkGBA+VQk8GmQgOof//EfPw3t/PDbiF8WDEOHo9w//PT3h8vLt25ej20AEOhPZfyXnI6xaRpuKEB/lhI/SXggFx4TKaQ4HtgL+sCyJO5I4oXB0YkTZ6t9gYDbacf4FbhC9lyq6/uvhx+pbGy6Zstq/CSzkVniN5VVG6eX/KC8kCcWwQ9993Dg148999jeg68dOXXoeLlOrVpSVkzOImfWiXgDkuVo2elPrGaahhu7khVOS8DWVVhqevjk2ZGxcU+qC/s7MCF0D47+5g+PnTlfsWbVsvj4MoFRyUFhXF5J1hEB3sYDi1ChkvrBeqLe6REm9ql3VjJBZ/KTagSEO5qB3AB955sG/v6nD/cODCxeWGYzkNE1eYFc+Ig3ZZIC1X0mOxov0Ja+8dCTO195/dBRp92R6rFDOfjRrx/b9ebhuYW5GRnu0fGJY+UVE4Gwx2UHcQR82XpGg0++8Mq+tw877PYMjxOISN/gW0aUK8IAC5OxRAo+KaKjlsEJ6VePPvv47gN7D508evI8rBmLS4uhwVBJxe9TiiE6lRwRGMtJ87BHmoeJmpVMcIMvZ1jk3j5ROTzqd7vsRFVkbR8L/+K3j547X7Fh1dKE6ECVFqN8xhuWoEaqYXzQt4x8ki36BcFrKnf6DrIKcNz//ekj+4+fWLJkqTuF7G9C3iR4R5ymkD8fBFqI1sFqJMSmNZvmQa5kiJdIPisRRQKfSAnQP9lPZMs+Bo3Cr8/QhNzUM2RzpeEHCfZSDE9hI8avk4QL2y7AWoDfbPb7B4bxFpshYidsclRkPDkqxmBXjvcT/eHEKwzEQQYwQyzUGPKSPRTxjxxTfa656z8ffvyF1w/F6C8m8qDejn5v31gwu3AO0yfYjAb7KZ76s/dOmaHqqChiuIYlDz/749OvnzynN+o+f8tN9962Y92KJdh+kYx82Y83+U0lkyikERJtAT4x/4C3Em6wDJOqwHAsRlpEmksD7O24SC7oOtgIk+5cGRX41pHIv//+uadeO+KXyEwQ3oKNyvq2o2dq2ruHkR8zMrgQYW8Z84wuidM6iBghTFIFkiBFckVxdhYikCByv8tFOE4WoJEL5KQ8i+QwVJj9BdYqjGRB/WxNnS8qmkwmawox8lE2CFMUjMjmX+Rk8GQNlBOIADwiJ+5gqmdo7K1T546dr9EYU5DiDcrnGzskfYo2xYlzR2s6vT/+/bPPv3qI9S/y43vUPTJ+qPz8ifO1hhQ7IQWpyjwaDrzEgSlkUoDWDxkTRqYHUMC3AhL+6R+efvVklUqvu3XHtV+84+b1qxYZqAUFfJG+oWTpncRpB8ZvqC0myTGIlyoBeEsxn84PxLue9DK7wDayoSG9Qflff/vkH1/e58MXAwVxsJnM1TS0nig/3907iMzIiS8RKkOnEZNegnhypoE0koqVUMYe6tjXlX5bknXRniR9jT5lOUFtyC/XdA5YHKk6g4klggaKkEbRCx2BgCaTby0qxVeNxSDGxBQG0lE7vicQDPY4x95s5HtO/65pIeWmSOATLgFlCuMSdjB+c06frQa8FRcV4YBv/GwBywVqFcBJ1gA1g0aFYy/I718i4GcLQIwbzu8OhSM4bttowH6R9CcN6fjlopCJ39lAQNaoeWyNjCl2QUV+TpEY5rny+s5RUVewYDmUCfIbD+yPcbXNLTFetXrVaqI6xDjoJGYdryGOEhLd9XEKB7RI8gYbBnZ2xC97XW/w0LlaT3b+d779l/keck4Vtm8Co2zqmv7mEiLY8BkfsopMnSMClsjvMdiWuWBEFlS8Sc0JavKtIwBK8pK3yBIRuZgoYxNP0kaKLscw9xMWPDlzAH7Igxt+qeeXLfpf3/wWTvAiaXTfSWQWBS4UIY3FtAbwSk38I5Cb+BCgGLFe0N0wfTjuguP1Ok6tJQ4EQDNkJDlpNvox5UZyTHm8UB7GJ04MGRgaC4eC8/LSkAuJIRyH0d4pq7RpGZkqFTmmCwN4g444oNCm0DvcCligtQCTwD+ixJhPGctM9zxw3/2RSKQo34VeO9fU65f4TE+a1eVGd5yp7xyOaDKLF6KXYQRCQZTKzPTc9xd/EYmE8rNdoA0nCNI+nuyeHkzIB6LnBSivtO1xDsgHGACpup7AwTPVVk/mN7/+5dIcLTYAJbuiUsaIpQm6Eb6aZHaJUMGXmciXyYl8oi7ejy82z0PnYIYu1kg0DTXiLb69oYikx0HytJehDRw+3TQaVaflFeNAOJBl03zzS+f+r298M91tY8TJ1xhiUZFWQJ016VVoBWkIqZOSpVoX/cMh33ZRlI04DIW+JRJI5KQJ5BFXRXU78D4jNdVmIjyiapaOSCCM7y+PY3FBAduWIx0MYCYN6gurIhiBwsCbtGQjNjQK3YG/1oaOPpc9xWnD3ytRlonolaBI4JMuAfZX9klv5UfUvv/P3nkAxlVce3+LtCuteu+9W91yB1ew6dh0Qu8EkpAAL4W8ACGPkPdSSCAJodfQu2m2wYAN7l22JVm9915Xu9rd7zd3pLUsGz9D+F4AzyDW986dOXPmP3PPOXOmXJTr7p27zEZDanwM8pQw7NDt2lNW39jQ3NbJ4CYiNGhOQV5WaqxksLqmad++/QHBYR7evmUVVa2tbX5+frnTMuYUZvuZtLGppgw2b9lb19RS19Lu7+sdGRrMp568PQ3z5s7Ve5he/nDjpn3VgzrvstrWV97p4jvUM2YUBQYH1jbWm0xGb5PH2+9t7Gptso85EmLCF584O0oTn0eXdUjPLbsrXvx014DeK8LTa/tnGyvNupl50/q7uhrraqalp+RkJUtx2dY9uHnbdqvVevbZp6IJmlp7Nm3eGhEVozd6VNfWt3V2e5hMmYlxJ8+fafZEZAtjA42yr7S2qr6+vatr1G7z9/NPS05JSE79bPueD9ZtHTOam9ra31j5ucU5kpeZmpaZtGvnzlGbbfq0ZCHTtWH3DiZm6hqa2jpsDkd8eOjs/JzUhGj4wT7o6BtZ/9kmT0+viOjoypqa5vY21ENSbPSZJy1AnROEEtKUulBRh4bDFQBppiTjC+Cbdx/YtK98z779MZHh99x+jdSa3QOu1s5e9JNDZ3zjgy3NdbUYeCkJscsWzcNZjr5Cm65e/REFTi8qCg8L4gKzo7yqbndxcXJM3MyiApRlS11DW1X5zIICdqvi/tl5oHrI6QwODzGadS+/v/uTrfto5YqmrpdXbjQ7rUW5WakpUc21ja3V5bOLCjDvBgdtn2/aPDpqS01NK6uurmlutY65kqKjTl2yIIjPqB/W5FanbmNx9ctrNw26PAKMxj1bN9Tt1hflTHNYrTUVZWnJ8dNzM2EbO6O7Z3Dnjh2Dg4NnnXUGCy1a2vs/37gxJCzc0+RNO7R3dGLBpSQmLF00my+SCISld6RzoHhfSVtnV09fv8XHl4/DZWblVNY0rf54i83p0drW8cbKjRaXLTMlISs7aevmrdZRZ0FmksBKA6d4f215dU1LR8eI3R4THlaUO43PoGtTgrruPuvnGzZjkUTHJVTV1LU0t9DKcbExp528gNO66IcEjABprEprALT37iv20DkSI0IDtBO94LKxtWvHntLWrp6u3n5fH9+0pPi5Mwr4PD3Zm9u6Nm/d7uPnHxYRua+0rKW9Q280Zaclnzi7yN9b2MotvUP3PPBEZGjQzPzMufmZGUnRtJoKCoHvPALKgPjamlgIKUGMf5F6ekaNDLD2HygL9g2ICvRH2HVbXa+8v+n9Dz8aGuozmb1wkVfE7gAAQABJREFU5I8Mj27aUfofN1+bGBeIKt1T1fLIqyvFMJwvUQ0OmfzCekecITvK7o1KyY7zYmle16jr0aff2LWj2DlqN9htVoPZptPz3a5wX4+cOQtr69ufeu3dUZO/0eBc+9n6DQ6rwTkWn1U4ZtHVdfYO2BwP/uPRvo4W/A7DOk8vD32X3XjlioXGUXuglzRvDkKhVUTc4j5hMv51puJLWvRePtWtrV2r6/30jsCQyE2bd+3bveXKi89OnZYshmI63fb67udXbTCNDZ22/FSGs6t21z735novL4un0cWKPIeThYEevsZdNg/L6Quy+XA2I+O3Vq5b8/GnHT29YmBrNGAcREbHLlp2xptrNjf3Wh0evp9t3bdzy1Zv59BN11walpr06CtrQn2986fP8fARzvnVH2178723O7p6XQaz0+npb3Rt277/x9+/gu994lnZV9n61JufDLuMFh/z0NAQZhMMmA37WvpHb7x4KSKeauIwR52gfiYHcccgEgtDW6IvH4l21VwjpMdfvWFbxTsfflzV1DowYvX38T41P18mQOFVt490WHXDLv07H37iGB2y2u1Gs4/n9vKOEde1y+fj4m8bdj308qrg0NDwlNyQMPGxDBj4dNOuF95adem5ZxXMKqCgt9Zu/mzTluTUjAQKdepqa5uob3hkVFW747k3V486TCazed2GrVvsNm/XcHBoTHRi1PtrN6LL87LzcbWU1DS+8PYnnb29/sFBXf1DfP3Lpfc0GUpaOvv/45rlYtA9EWCbvx6r64PPt2/cWcbkRXNb0+srq1kBqvcNqq9v+eyTD66mlbMzcXUwl1DS2Pv4mx/ZRvoXrziDHv7R3ppn3lrv4YmrwmUdHmIWY9BoCrCU9est5y7JpWNBfEfN0ONPPtfcUGMTs0eGEafB5OU1c07fvtr22tZug8Fn2+6yiv2lRqftvIvOi8pNeuillSF+Qdm5hRGBRoynDz8veebF16zWYdvoKPMyHp7en+2s/MH1F+fEB4P2zrrOx9/7vH9w1MfiNTjQz3fnbQY+KlfSSCtfshRbis4pTA34wBbBBNcMsm3FO8KCzAnRrBQRNsr2A50vvPpqQ3XNCD3eaKJ9PfTbLuixnrd8LhXbXd388MsfeHrj1jD0Dw2OjhmcevO6baWWgPCZOQnMYZl9LUUz53yy7tP91TVvrl2bk5p83lmn56ZEyfeKiQ16o8Bc40HwoTmNDu10IloFhcC3CwFlQHw97YVk4E8TC0JIYECgZkrr+OazLTEmICQwECH11oebX373o/Do6J/84o6EeM+qavsDDzxc0dRcWt8cFRc4YHWV1rf3OD19vXwyM9KXLVxoNfr/9ZnXGtubNhaXZSYUDOh0Dz23cu3GbQmRcStOWXbS7NTydtfTr75dXnHANzTAEuCREhB99TXXPvzMy4W5qVdefJEZl7NBHxpm+HxLed/QCPrG38/vgnPOtvgFvrzq08ryst3ldStGXJEWbUPgJBgmyzXWtVn8vM4+5/zPyx+zeJuvvvyi1JjQAJNeb3e9uWpD36gzLiWVqsmxaX3XYHP/6PycdGQ0f+v3lPfpLXxkdNa0tIXzF+D4ffaN91oaqjfvq1i6IJt5h1fe3fraW+8HBQdffd2NM2ZkjFh1b7zxTnVTa05hlj4o+r4HH56WlHzThT+ICvAwuayxYd5lNb09Q2O56XEmLz3K7N3PSv752tvWseELL7l00cI5fX2uB+7/W3FV3bqtO1csX8oexuKqxl6H55inV3xM9MWLFgaHhL307kc79uz6aMe+qy9eilLBKX3JNT8YcRrtYvXGJAiE6WDQO8fmzSy4/eZrcUpTQTzVDNNRtMWltS+/sbK8tomvfkVGRqxYvnz5qQV4NNxWWG1zZ9eg1WQyxSdEn7xovsni9/ZHn+3au/ettRsvWz6fT62V1LW2Djsig6P8wsLpJ/gD0FiCoG+wJTSKj3aib/ZWNpj9QyNiYim3p881MDhsMXmmJ8UnJ3hcdPH3/vnCWzkZCRefuyLER3woNTxYfO6soq7J4hcUExNKvfC3tPeN2lye0cHhpy5fGJ+UvgpL7fMN23aXjDqXM38yuZVpQbNFf+ppZ+6r7R6y9l964UXZKSlGs37Yqft0R+mw3hSfls4SCpa8YOa2D4y20QoZWaxgYLJmc2ndkNHPZDAVZqcvOnGezeF88t0P21satu0tP21JLqVUdrj+++9P9PT0zswrPP+c5THRlvVba95f+3FCWkbijMW/f/DvObHRP/7e8ogALxrBO8iwt2a0e9QVHRfKbBNFfL675W/PvjLidJ139orF82f39Vr/8MAj++rbV2/aFhN/ir9Od6C1p9thHjV4JsUlXHji3KjwsBdXr9u8Y/v6XfuvvGQpjQIPKG9RX22eAhuiuXdsYGQkIMQ3NiYG/Pku/B8f+2dbZ+fFZy5fvuKE3iHX6+9sfO+9D9Zt2T17fk5MsF9NS9eQ02C0OwtysmfPm2M0+z/69Ktd7a0791UU5SbyZTWmA2+88qTTT1/y2tvvFpfsXr+ndMOu0tkFuZdddEFEsHegWXw1bYrRdkhvUzcKgW8nAsqA+HrbTRoSYsCDYNpRUjHiMoRFRQWHeJY0OF56f11QSOgtN1+TGC2ESV6K55zpBevXtbP2jU9Ctw/qyhvabTqP66+5cX5RHClYKJ6fm/3pRw3CIa/T7Slu21+8Pzww6ObrrspPYwCuS0nSp6dF79u/MzW1kBQWD11rbQXe/unpidlxDNGF65u/Hbv2+HgYVpx+yrXnzoAO2qK1f05NeQlfo7LbbA6zWRugHYaDthoDsnzi0tbbY3HZg03meRlhkf5MPOhKSju7OjtCAoMyEqPpQ9AcHtXV1zeMjo4WFU1HajPxX9/Q4GMxX3nRecsXJqFf8Ums353Q2FzvNJoHnHiMHa+8syo4OPS6qy+fkRspjpX00f3s+rNLG6xRofodO+pDDCN5iREzMkyBHuhmC4Ds37nNODYcHxEUYNaziGT9h2uN9rGbrrpi2aIC1EO0r37pKUsee+bZ3dW1ZxrZSOmqaO0Y89AvW3LC1eef4M/nxnW62jnTt5UU2zzEuFasANXpMgvn9TnNI3xmk8eTg8vp4bSFpaXZmdLW1E9VU++GXWVrNhfXNrX6+PpOn3vC3LyME4sy+BiH1FLgAEmasrur02Gzzp839+ZLFwd7C+Xh63tGZUVFa097j10XbtKVVNVw3EJ4WKh/gDA0MRHq2gdaenr1Js+k1BRUNWtvW7u6UhKTIMgfMwO9vX0hPl65ScG+QN3V7GEbyE2KLkwxUCjs0eGau1xMH8THxrLqApqtHd1MEs2fM/vmG89jRQLBY+Gs7Vs2s1yGDFPqylOS2Id6DNZ+f719QWFqrJ/4Ijmeg/bWNpPRY1pqHB9Jx6xhDq6uoYHlO3Nnzabo0VFXVWMba3AuPm/F8iUpLBillXdWpn/YUMNKBMiyNPL5F15pb2875aTFN192cgBLdnS6i+cnLyhM6nPoPthQFmjrzY7OnJHq7at9vX1Yr1u1awdujPCYaHOAvtOue+HdNQMOx3XXXXnS3FSqGRjsfdqKMx556tnShnrKanboqps7+kdGT1u48IZLTgzxEo3aPHji1uJ9Y+K77qJn8jdeX+09wgYqLa202fUWv5CAMF96wlOvf1je0nXmaaeuOOcEUvr56C8+f96GdZ/YR0asg057kG5/SbnZZLjqygsXLyqSL+OBE2e988obo6MOL4xLjvrgZTHqsHl+cPVZTW2LP91cXHygYeOB2vW/+v307MyTZ01bND07gl1YgjsVFALfHQQQAip8DQhokgHhIySVtsxRLK3aX1WnZ5AaHsKqwRfffKt9aFRndj7z4luenmI5Fkc6tbf1uhwOi9nEfEfPkKOusSU5KnpBURytgqwksr+vC32QnJrA0jCm//u7uy+64ILsRB8W/bN8stumq6uvGhsbKSzMEYKM0V75AU4NSI0NZ5EhekXsXzDo9pYeiPT3ml+YiTsX/pCYIwO9rtHh2IiQIIuZiWpSCr4nwkRdtH/xWrt0TY1NttGRpPD4JH+hDu0U3d3RP9Q3Kyfd4qljkSfr6QaHXXV1jV5eXjNm5KI6qmu7WaAeGWCZk5vIt63HRbl1xDBmi4+JYhT+2sr3h+zOZTNmzMyNZD0m9ZXwTYvzIntdabm305YY7uOH9cDaOrF2T1dSUurpqQuPCMHm2bS1urSmuqAg76QTxOifAOApaWlDDoPVaaCOrb2utr5BdOXJ84pCx/cR6BwjVpd9LCU+QSpdlMFN11/CMNd+qE4VNaeJXLoA7/EvlkJ81bqNb3z4eZ/LlJORdtE5Z6Un+oVrxgHWg2Bem/Ig2bDVVVNT47SNLJs/J9Ckp2qU5WdGLVnGbF6YQniSqpvaWLERFx2OviMv3pqq5o6uwRFvi39sbADugS0l9XaXISkpydcXLnTt7e39AwMZcaGRFj2J9+/f7WnkHI4gxt+UKLFdt2374OhQSmqyWAZoddW1duqNnqctXRykWQ+kGbNax5yOyMhoStSaVkNt0g+lOOy2xFgcI2KRLJSt/YP93T25qSnUkZ2OTPdYna6KmmqDwTB7RgF02pqtNqs12Mc0NzcpRNh5ohVdg71mhy0tPo5SKqsGt+3YkxgVsWz+LFYromiFIWLUhfvqYb695oCPy5oVHwFQ0Kfd2dVZU1Hp5WEKiwjF1thXNVZcXZufkzt/diqtzB8tW5SbiiXAtA7puwZcbW0dZtfYqfOLQBO2qanLNmJwOmIjw6V1Bf7u+nJBo7fgc7DpE8Iivc362jbX6vXrmBcpq6q578EOGpLFSZ4eHhyn4eGJF8bbOaarbWiKigiblZfDV+OhQBG2kUEO3EpMiuMp64K19aTiGYtC4iJ9Lz133qn9rn3l7Q89/tTmPaUVJXvD/K8LzR83B6Hg5mcS/OpSIfDtQ0AZEF9XmzGLLTUgloHYddY/5Gpq6/QweiTFxVJGaUW50+AxOjJcU3VAm4cltYfOZQoPsMSGhyLUaurqBgYGTl0wE2WJ8wCfOb7WjrYmVkrGxgQyM9vV1cm0/+ITZwV4iqcU1ts30tbWZjZ7JidHI0w7B10NLW2RUbGRYSFCUCKs2dbf6eJMiLi4sFBvg9D92lizYv9ei6chOiwY7cKOS4aWh0k06X8QFBCOrZ2dRtY/piYJT6xmu7AgkdXurNAU0hkzxSG+MFlT38BaQhOzCzpdY0Pj0PBQelRgYrAeuQ97LZ2Owe5Os86RlZrIbXVNDU7+2Khx60FKeSpF6MKZUVUX7GtJig1jiRqA8NveK/D09vUJi4pEt1XXt9g9PbKL8hkWS8NowKUbGLQaPb3Do4Tq6uoZ6OwZwLGQl8jGCyGyB226lvo645j9xBlFMobImqqGfodxjP0oWtHuH86q8jQ4Y8JD/MJMgM/Sx4ioaLPFR2917i/d/+rYyNWXXBiR6g8FpwYI2bkmDI3oujs7Ayxe05ItvtqAm8qOjDgGB/qiIqJo6PYumqnDx+LLxArKHYMAkFu7B5niyUyNYSMJnqdPt+wymrwiwsNRSLh2GjDgbLaCnBxRC6euqa3FPzA4MjyMwbTJ4BjViW0yG7bvpEUSk+L9vfWiiNZONiimJwXTXihs5hqq6urgJDcvF1tnypoP2IYCq1wHh0eyMtKl/QpXzQ2NLHOdlpFB6xBJh2SqpaG1JTgk2M8i/C49HW0O60hkeEBiuIFWIPR1ufrbWrycY/mZ6dSutaXdPqaLDgmMD8OI0gxBpkFcNJpu1Kbr7Wr3NXug6cVJWTBn1PUPunq6evzNXkkx4dDfsW/voM2WlZmJAwrXCwTZGFIxMIr3KDRYLF8YGBzt7ugItnhkJ1pggAR9I67m+hqXfWRWYZ67IrJpBH96HTNlnZ397InJioulPx84UOrUOznUpKWlpbuZLZhOvcNucNrpqFEhAQEWz9bWseGRkdysFJPDEchuWJpYp9tXvMfbYoqKDsWOpxUIElJAw/6jM+wrrn7pjbetw8P4J4KCYTaUVDxVQSHwXUJAGRBfa2simzVZhbBobu4YGRxhx1lWajzL8hEl0UERd/3gmoJUZODBwA0iqR+NW1Me4GXIz0pGKSEZkUHN/a7+ro6UuBhIjthdnd1diN6QECG4Ebb4b9vahzp7BlOTU3C6QmTPgfphl4dvUHhQWBDL6LxQvYza9+93OcYSIsOjg3EWiNA74ELu+3gYU7Uxohhoj+u+g1zJKx5QUEefo669c0hvyMjOYQyKrO8e1RVXVHFUQ1pWJhqRynLYIkqRJXIpKcn4QtiTWVtXN2a3ZyTHSyEOMF3tnQM93ejUvNTAnm7XUG+nxcMcGehHERQkDQjKpSIVtS1OvcnHzzM6NhbzhQSEkuqWAYfBEhIaEhOB0j1Q22r18PSPjMSJzy08IMHXr9vK8rbk2ETbmK6PdaPd/fNyMiUDlDFqdTXUVuHSOCE/lkjqjUb87/sf7HWYRvUmPA5aOfIHHesw6cYWzS78xQ8u5LRNRP9ZSwoKi/LfW1+8fc/eivr6n957f0Fq9BkLZ2enJMRHBaISSQOrtEhna2tSYrw3vhmtang4ymur7WO23PQ0lFxDRw8LKwN8A7IzhdlHGmETtPfpDKa50wuBwmZzlVbW+Fp8oiIi0P19Q6765hbYnT5zNul3lbb0WMcCw4JCIoNw5HjrjFSfznCgqs7f3z8kOIBqdPUMt3f15qRlBqInNauR/b07DlSw+C8jK/1wa5E6dw+56tq6We2ZlTedUvgjlJaV8ls0vYhf+CSypqGht7937sy5JvYw4Jqqq9WNDKbFpTPPxbGV7NMdttp6uzrCA/0zkoPJ1dDQoNcbQ/x9IvxEv6VxnXojx7NCqr6lpxMXkdmSkBrLclqsNHa7HqhtY58GUzt58RFYDGVle7yNjshAf5xY/EFhEKti/admx1hOahp9BiRt/b2Z8ZHMDxiZWdHrzd76+poq1iXMLszEtAUisU2CIOcvsGm6HOyC8hizz8nOwGzsaK4xuKzLTlh449WnShMEK4SmxNyhU+HweO/TDU6XIz01LTLYwgJYKt6KldPdGxYeHBYeQLXHXAY6Eqb58BhWWsvOvRXrNu2pbmwPDgrIz8k6acHchYWJIdo8oexhkOWPa2VPaA2jfr7FCCAWVPj6EBAOb7E7AH3Y2tY+MDAYHeIfG6y3Wl1mo354ZLizo3ksVThjETekstnZFDcUFOTj4amrOlDja/KJDQ9DqHHOFBK2ZE+JwTqSnpDg56V3WJGN7L93bdnZOKcwlhFYXadr3cZdI1ZnVtY0SFFwWU0d5x+bvb18LHpcwUQir6tra1ijFx6Em1nILERwS3Pv6IgjJDA0JSHxi5pf88drFJy6tj5rc9eAl4cxOdEP3QNjNp2rroPliWbvACFhGSX3jLrWbN7K5H1CUiL6jFOPWrs6OfWBPaiUSCAXOwJ6+/pSkxLRRWzS17MoDWXDMlONeZQBI7nKyvr09PjOzo4+62CYb0BQoJg2piLCEmpsY3VhSnSkXyB6AW3riYO5qbFlJDsa+uiIz0tG9pTuj4sKS0yJY86ooamRxRuFecKAgDiAj45h1TXjVAgxCXVIXQDtxisuGtWZbELLSPEuuCWwoM/ocsRFhopxM7esBdHrEgP0152Vf+aCvJ37a7ft3F28Z9ffn6qJjYkuzJ02Z3puXmo4jFVUVo+OjGRnZEKcqhGqu10frPogyNu89MS5qKjeri776LCnUe/hqR9xiqkB7KXi0gP2sbGCnCyKK2+24osKDQuMDA+GJ5qyobnBz8cUF8uhIbrW1na9gS2TXt4BAgcqTprWTteYwxARHhsWFo0mrqtp5ACkrMw0as0gmzbi4kBtU2hQYGigt9SngjMtMz/Q6R50VTW1Gz2M6WlC8RNDaGxs4sI/0Js2hUj/mO6dT3aP2J3JqUm0NZNW9c19nP2Vl5vHdhUMBfpbS3tbe09PZnIiGyChTB9wGPX9w6N9dmF6YoqRhmPALCbdQFevY3jUZDT5++txurCzFybbOjpHbKOhUTQS83xM/XjR8Rqa6oZ1ibwX+LZ2lg+s27QtJCQwNTkJ+qwsGbaO5Obm0kOEDYMHYtjVWFcVFeQXZNGLI1JIxN+Ee5BL66i1u7vVx98SHmVmHsTT04JHpKu3e2jI5esteMYaoG80dY/6+Jl5MUtK9nl5mSPDQ8VBmZw4otOxPpS1PrEREUH+WOm0j5kNvev3VG7dXby3tKy1vTsiJOyiM5dMz5mWkxnBYdw0AW+B4IRXUq9rG3Ru2bHHqHMunpXr58WCZKJ5pj0WXVUFhcC3BoEv0iDfmgp8wxhFGLD3QejCtrb20ZGhwuzpiA92DUSGBO1v6Fr53rsB/hfMyI5hldzGjds2bNwwKzvt/HPOdNp1na2diXHxvl5eXHO+E8OajevW+RkMSTFRyCDrmD4sPLy0su6vjzyxNivFbPHbsrNy0MbORH1mejpqCbk8zDZFl7Onv7e+1RkZqG9raQ6Jj6mrq/E3m+I50UjTowzo25rb7Axhw4MjOOoazwCzvuPzFeNYuoWZuNDregZHO7oHMtJTzNoyNzHFbmMxnaF7ePTN1dtPnTW9urz8rdUfl7V1cWpFVFQEaqC1s6+9s53VGDmZYrUBdMjV0NzCos3snGkU4+evj4yIOFBR9+6qtckpackxhprG4fffe7uqsvyPf7i7f4DFG66Orp7K6qHMGEtFbXNaRkx9Rxff+MhITaLLMmDltIh127d+tOrjRQWFMeGGdZtqH3/t/TH2TcyanRDvPWxzVVdXGp0jRQXTJAOokOr6Bmy4GQXZDDGlnAaT0xfPROtg30wJQqprySRu0tqgaDRBQoA+al7S/MLEzsEVr76z5uMNm8rq1jS2d6T/8GJy7S0pc4w5ujq7cDsxLt9f3v7oyy/gZj/z5KXpMV4UjYHJcoKhodFPPq9KSkrauXPX6g9XNfdbgyxeceGs9NA11NaY9K7wQN+4KE9MkPZujk7oScnMZpANn6NDNo5h6uvvq2oY9Qg39da2Jk6L2r93D0P4qNDImDB2GuoqyipYI5AQJ5Y7yFBdP9o/OJSdOo2jEUQfnYinaag+f0Mjdo43SI2NFGpSazIeof85KOmtDzafefKc1tr6VeziKK0ze5rj42PI0tzpqm1sx7bKyxEHNkCTLA3NTVa7LTYuWt4mxsdyPCPncr6xesu5Z87utLrWrt2+9uOPr/vehZiPY1abTWcoqR5JifWqq2rIy4nv6u7iY2GJyYmyz8zImlayb++27dsWz5+TGmnevKfl4adeGxy1n3zi7LR4qqIrLyuB/fy8XMkALNc14Pnry8/JxBMmLD9RG5gVteIfyHZ1tg8Pdufl5uLwQKlPy8rVr1y9b/++9z9Yf83yhXaHq7K+c+3a1U0tLdded31QUEBVdXVQaFh4WLA4wUMzCksqyjwN+ujQUD9PCDK/pesfsD/9/EvNPQN+QcGXXn7ZgqL8uCA9E5G8+wRaQRgmWuDtWLNp97MvvR7o7TkrP8uPBa6cPksYT0E6d+PIHOpXIfDNRUAZEF9X2yAAhMxEAPA3Mupsaao3u+yF2WIkyoP/uOWHd/7+r2W1Lb/47f1eZkY2niNsJPP3PykgiFMYduyocNqHkhOiA3w9GJw5HAbXqKupttYXJ3+QHxT8vPULTpxf3djVPTi2Y3ed2dsSFBXbVlEZFxYcHYBzQRSRkpRkNlv2lZX/9I47PXUjixfOWrLkZPtAH2ykJSeSAAGIp72/u0ln606OyyYGPc1pTtoY6Mg48KihpppVaXnZWWRnZT0xZpOOc4sat/S/+NrKd954w9fsZfDwxi8RHu4X5mdBaNoG+rqbGhPTpgVqq+IhbbXrqqurzB7OJScUsa4QiC67YMWDjz5bUdfwk1/c6W32sI0MWbxMhYXiaMXwmNSwwB11Dc13/fp3PjpbTlbaDd+/rqe50WtsqDAzgcoicU9ZlL916/aKqoYf/8dvvNnvZx318vGdNz37wrPnMCuE46K5qiw2yDsiEB+2KA7Vu2P3LqOeLztkgSeR8k/qlsNfA7IQJGgiv7jBmtLON6Sl2TnprQ/y1t12zSnnnrXs3ffeNYtyBGPlNfVeXr4bNm1bv327mYkQu9XX33f+jOkXnrXIT1sdEhURzmmFY66xvz72CG4UaFu8WcznKJqW5gm8+E6qKy06e0ZCdLDQT7o9O3dw5EfetHSqAOdJ0QlBPv4NtXX/+Z93cu7F/OmFP552SXtjfaRZlxXtHyRcNrqq8r1hAebE6DDp/iHXnm2bzc7RrKRYVkgIVUWiiSC6LK1cfUA33JebPg8eRU20urAotal391urPnjn/fd8DWO+vr6e9qGEuGCO4kB52wf7h7qbpiVHsg8FeuhB7ObyA5XeHvrFJ86BdVxfi+cmf76raEfx7qdee/3JV181Gj04gdXb2ys8ObGno8cz0L+zp/fnv73XrBvKTYxLT7ytvbXRNTaKJ4YWQQFfsDRv28bPDtTW3X3Pf/uZvAd6BgwGj9nT8y67aBmtzMIO5qRiQn2jwjDVxLtHVbZs2eGpd+ZPS7MwqUE1RE1lhcRTGqiqssxsdBTkpBPLw7zM0GUnztmydftHH6xZ8+b7vJgcKupp0qelJDFDsb+0FquX1caxkcGCmhZaG+q8XPaEiFCYFDMkYr2tR1xM4pKl6fMXzAz3EQuNWSIq30pR6kTA/YAv59Nt+3psurlziyw+VIIgwBtPJrhVQSHwrUHgcMn5rWH9G8ioplmEPOBE5qLczLDw6OmZCVKIp0V5/vrW72/etqe7t4/zAT08Pfx8fZOSEk7IjUfQBPgaLjhnWe60PH+LGIOK7zDrdGeftsxg9sqIE5PByJ0Z02MtwddVNbTo7Va2+/e7vBvqHp6emREdyFhLKMjFMxK9nJdXllfp7MNens4Z07N9TR6nLZo/ZtfFRvhrQhRngz49JebiFacUFEwHQDulyemKQ9GUapU4KGfEhFx19slzizJ9GVGhXfS6QE/9lWcvjQ327+zq8PEyxUVFJyUkVx6ojoj0Tw41w21isN9V550VnZSOmoECIhT3Ndo9PTUpPZq1ASKmKCvyZ7fcsH1XcVdXj9lk8jIZo6PCsrMzqXheZtjl55xaW9cw0N/vZzbm5Yhx80lzp8/OS85JCEI6488we+lvv/57GzbvaO8ZpFahwYEJseHzZqXhtSYA6QWnLAkO9mXJhWQA6T8tNcHPz6coS/gwpPKgLC25QHtcgovcUuvIq8m346nEcgfNJQ5NSKWF6W+96iwaiGtSLFs4z2jw5sCj1r7OsaGBkAD/hPi4BfOmYReKzX46XXpK0NUXn7e/vGJwcBiVHBMbExYaWnWgPDc9GWYgUpSX4RvgOzM7E/RYyzItOfby88+eMyufLQAkYLfBmO28sqoqnW3Yy6ifUSCWCuYmxcWc4ZOXlwq2+KJOXzLb5G2JEWskRCBBanTIlcuXzcnPAD15OKN4gCmBhwGzSMcWRL/rLzhjekG+ySHmpKgaGF553ulhQULHe3oY48MCc7IyivfsiQxnYawvCjI+yHzBaSdGJ0TBJ5MHLCaF1KyCnKSE6IxYJp/GifzgiuWfbUuqbWzsHxxkRoIPfSUnJ0cF6SP8gq+85Ny65pau3i5Mq8KUBH+Tfl5BdlxEyLREFm+I7PSl2264ms+Dtfb0eRnMWE44rpYsymK+gw5Phzxj8YlBwWztFFNrdCr+MlISL/Y5nbNKgUKrPnGihto/AoqM5FjvUxfPK8oWL6bWlLdet+LT9OSGxmbriA2nnsXiFRYeNC0rnZMpQn1NV1ywgnM2md0QzU9w6ubPKpyekzsrOwMmDTpPXD7Rgfo7b7sMAxOeIUs8BYn0lOoO2mRcz4iLzVk+Pr5FhQXUQgQIT07mTq8uFALfeATE14++8Ux+axhE74ImYgvpxjWBa2QKgRj+mJ+223V2bdeX2aRnU6KUIdqXCjAbJkYtWnZIybZBJbB2rKnPZQkYP3Kgtd911++fGW7vuOGic885KUXqCWZnocCx/KxmM3mKz2Rwyx+CjF8CS8i1DQ3i7AGOJiw50Gzlw9weRoeTtRMiiE94iYCX3eVhcMZGhqbGhxJFXcjiwYSxlg43LBn4YrXNzrGZeo7ZRlxSBGngxANFItayixUA1I54sss/EnDrngwe0nTVELqXlDictWpQnGBY2wvLMQOyImKKXaQSQUwQia8lGSllxC7Oe2DfB14c5nEgQDJqoX0FgrQoSFb8sxHhIA+k4eSl8eAm6o6ZeDJensYNP9q/4pc/WYpMyC1oQF8mIFJe0GS9rK3Q6TCXUOOUg7IW9dMWkYAMnIOJyVMAwh9A8ZS8RMpAXhkDKYkeup+UckHDENTY/cFSEm2VA48EE+IwCxczYKQnnsS0C0RRbBDhObeCBy0IlgRhkZhH/MlcWvx40UT2OXVM8HMwA6choRfh000ZbmUu1o/IhYqMsImhXBHgkG6gGTRANMC3XeyiNakybMAwdFheKpZWDLs4BCJIa0GQkWyIDZ+i9XRjRrEbmU+zcs4UZij2K+0+ocxFOdSIlGzVIdDrKItfESmyknAceJ6SRP6JpNo1v3R5aLLsl90izF/whgZgmGhPIUJ9JXREcQ3n9FaIiCaTLketAHjmBAvSk8CTJMIsI/khgYJYPbp6e/UvH3imICPxjpuvStM2KIlEUBR+If6goYJC4FuDAB1eha8JAQSKpucQBYxQkQRCGCATtADQCB0SGDkUySwEoJBSUsQLuwLVzgqz8UghTyb+SMPtlq0lf/rHUwERsYFhUYax0crKir4R+9LZc5eeKKwHpDbp/TQ5xF4Lg7ZYgYyyCElNY4T1YVLS6vp6nY888mx3v3WMY7MdSP5DAvVgAcEZi+f86KoVsC04h1VK0qjI8Xcgs7dobpkPja6Je5GSr3WJeWGjB4dmI+vF6jbxR1ZJR5qsKC6+MwBZ1gUgfycHEksufagIHGvJSKNVBK3AWghu8JgbvDyN/p7i1HCktXAlQ0noC1hB/8LKiDjfx8WZnOIOsgTt0v2PFgVhGkSrmrzXEmn3oqFggYjxCy3peCpSUBJaStZLJJNEtG9GmFhtwInIsu7E81gLkg30KHtfgYr1nsRAQWaVpEgo3syJXFrFRBoCifljyI31IK/RteOZ4UYPCoJhEgvrQiMKV1h+EJTs8VgDXCQjCLZlcdotP7JYTQG6jAa9jWJEVRx8NYLKykJlRoH0BFliRELZypKoFkO5rIfklDOYkAlESrJpC0jpeaF43egwHPzETADnf2psieqj17WPc7IsIwjzhbUj2n4HUYYIGpua6TBRmtb4mhtA7+KkU/oJBQpKMshkGnmRWaAlHohVz+KcMuwjgYQARyMtbug9IoFIJrPISGE9iHuZYaKaYC5AE1QPPVdES0dX4kF5yT6z0zY/LyMh2I3G5D4laKqgEPi2IHDw7fq2cPxN5lOIHy1wIa41ETMepcWISXAtESJJ+3c8uXaY08GYSY/Gc/f09oaE8WkMa1tllcXgiosMPzMr9ayTl4lPAU0YLsy3e+g5gnlcSruJTMg6SElNKgR9qJ/hpmsvwwXg8DAx7JsSWMhmdNmTo8RWe/4ghS7SCIof/kdWiipAmgd81kJMbWjOcBGjJURy8+/4pfhX+xOPIcS1XKwny5Ui282DyIQRRhniSoNRM8i0G35kBSlYLOHgDAtSyaiJBERonIlo8cSdQNIbJzuRWvxL8mML4xQmEnMr/0TEJCI0CuxjaUkwJiARKbCpNOtGTOvIQCxc8usmMLkUWTX5S3qZiV9i+NVSYjaNc0GB2iPxSWkRiJbtNp5yPG6C2ng53I5fHcoGjYyVItxS7ADiQyJG2kROgMjkgl/RmBOZJVnuxg0pUZoI46bn5E4vaAr+ycJ3wMWUnejH4zFkkSTH7GN8rxbfg3B90WNEkoMoyWTjfVqUI55qmIg6Q0xLPoH9RALtX54KO5Zk/C8pCO+NFkMNRcXkU81AlM4EWOVP8qw9H08hr5Gkovoip1b4eIrJ/2Dd6cN8zEuLspbOzscNRvfQwvg/h5CbnE9dKwS+qQioKYxvastM4gsF3zbiqukc7rWyf8IZaPaI9PNKDWMQK8QZf1IBc/FFAbHmlolSXMkYfvFe8Dc5yJRSVo6LS6LcUm5y0iNey/w8msgiIybujphHRX4tCHxtSH+pBv9aWP8OEZGG0pH7O4eEWh3OIG/NeBAWhwoKgW8xAsqA+BY0HgoeL72ci0Wyo9QRToxipXaXgurLSnzS8yfDFFEnHxEp/yYSTkk1kVn9+81C4Mt2hG8W998Jbo7WBDyzuVziOyxMnIhVTyooBL7FCKgpjG9B4zFQEcc5s0JN81WLwYu28mvyAOaY1TsSTATSa1k0WuNx8gnxB53S8skxEx+noP759yGg2urfh/14yUdvAiYyxOKMiRUY/3ZuFQMKga+OgPJAfHXs/j05hUpnbndCs0/McEtz4BhYIqPMK9Nq7lY3kfH8SEBNCI6vthM3RxeKx1Dul0wymccvyvp/zdMX8aHiFQLHjoB8Af8Nr9Sxs6hSKgSOEQHlgThGoP69ySYWfEkuhOLkf00SyWu3UPrf2JR6WWQiiJsjOlG159qP5uQ4JJOWU/0oBBQCXwqBya+ofKHIPv4ifilCKrFC4JuDgDIgDraFfK2nvNzfuFf8IEMHr8bNiYNVOfrVREb+nep70DKK+AkKXEwkn4hS/yoEFAIKAYWAQgBXuNyVf9xDgaLUtquJMxmEytT2DTL+PuII/bhHSwGgEFAIKAQUAsc7AsoDcbAHsB181O54dfX68vrWiMioy89d5D7c8GAidaUQUAgoBBQCCgGFgDz7ROHgRsDDwxidkLS5uOyJ1z/4cEMZmydVUAgoBBQCCgGFgELgcAQm7wQ8/OnxFcMsBk6IwpzEc846w+Bpefnt96ubh/huk5jaUEEhoBBQCCgEFAIKgUkIKANiEhjaJWe8LFs8MyUxvqm9d8P2/XwOUa0inIqRulcIKAQUAgqB4x4BZUAc7AJytwGIBFn0N19/pW1M99nWPR39riknPR/MoK4UAgoBhYBCQCFwvCKgDIjxltc2XojP4fCBCdZOZscYMlOTa5uau/v4ELH42IS2sxF3hJrPOF7fFVVvhYBCQCGgEJiEgDIgJoGhXXL6IsYEZsT0mUVDdseussqDVoMwHpQBMRUxda8QUAgoBBQCxyECyoCY2ujSFYHLIS4hzqbTV7W08xUrFRQCCgGFgEJAIaAQmIyAMiAmoyGu9S62Yoi5DG8fi8HL3Dk4xBTGQbfDwaupGdW9QkAhoBBQCCgEjh8ElAExta2l9aD5Ifgopd4lvpt3aBBnd06NOzSFulMIKAQUAgoBhcB3HAF1EuURGhirCgPCbh8btdl8fXzHjSyixgPWw8GbiUj1r0JAIaAQUAgoBI4jBI57A8LtSjjUJMBo6Ghv1zucIb4WFlROfBHDnch9cRz1FVVVhYBCQCGgEFAIuBFQUxhuKA5eiNMndbqtm7dYjPo5+dMwsibZC1xOujuYSV0pBBQCCgGFgELgOELguPdAHNbWbOLEK9HU5SorK40PD44P9lMYHQaSilAIKAQUAgqB4x0B5YEY7wEupwjcsOdiUKd74LnX+2z2mTMLQgI91IrJ4/0tUfVXCCgEFAIKgcMQUKPrcUj0WuDG6tKt3VK+cc/+iNDgmfnZ3kb3AojDwFMRCgGFgEJAIaAQOF4RUB4Id8uLlQ1MXpRVt77x7iqHw3nKgrmFaSEsn3SwJkIFhYBCQCGgEFAIKAQmIXDceyDcCyJdOmYxxpyukpISX7PxnMUzz182x88gTpQyGN2JJiGnLhUCCgGFgEJAIXAcI6B3iWORVBhHACxYAMEyCEwGs06HeSUMCO1PYaQQUAgoBBQCCgGFgBsBZUCMQyENKRZC2NnDqW3EwHrAjMCkUAaEu7uoC4WAQkAhoBBQCEgElAFxsCdgQ2BAYDFgNzg1v4yew6wPPldXCgGFgEJAIaAQUAiMI6AMiMO7ArYDCyKwIzAepA+CNMqQOBwoFaMQUAgoBBQCxy8CuOdVmIKAZjfoxZkQ2gwGF5o7YkoqdasQUAgoBBQCCoHjGAFlQByh8cV6CJfbNyP9ECIZ8eKRdnGEbIdHaYaHyPIFFshRHh1O7FhjvqCsY82u0ikEFAIKAYWAQuAYEFAGxJFAEhrfoNcDDtaD/BXWAyskjpT6C+Mg4xgbE7kOy8eWUQgSDn/0heSO+kCQ0oLTJX0nR02tHioEFAIKAYWAQuBfQ0AZEFPxGxkZaW1ra2lp6evtm/JscHCwubm5qalpeHh4yqMvuh0cGhoaHHQ6HDIBan6gf2D5iuV33nVXR0eHwfD14D8wMPDLO+646KKLKOXLWjlfxLmKVwgoBBQCCgGFwFEQ+HoU2FEK+NY9+vTTT88888zTTjvtvt/dZ7Va4d89uH/wwQdOOeUUHr3//vtHqZf8pga5uPjpT3/6wIMPdnR0yvQi0uWsqqxqbGx0cMKl5ocQj77SvINkjN8x+1hDY2NtbS3X0oDggvCFZGVxX6nQo1RcPVIIKAQUAgqB4wcBZUBMbWs0PKod3b9jx47iPcVuHVxbU/P22ytRzzxieuOQbGjqCYXN04M+AJduw4YNu3fvHhzieCphJZBNPuWXazS4vJ2i6t263zHmcDMgIqcEWapmNEiCkprMwsTJEchqFDBiCFOeTqGtbhUCCgGFgEJAIXAUBJQBMRUcg0EYB5EREZ2dHRs2brCPcS6lsA+efe45ZjcCAgJQ0vaxMXc2Ho05xpjdqKiocDjGpIkgNTt62mg0Ck+DSxglPJ2ci0UQRLW3t3d3d4+NjaHR3U9FieJkbWdfX29rW+vo6CgJKBc67jTYFja7va6urqO9w2a3eXh4aPtOtecchCWIjw0ODHZ2dlKKzCjNC64JwoA4iovCXYy6UAgoBBQCCgGFwJEQOO6/hXEYKOhVFO28E07Ytm3bqlWrVqxYkZiYWFlRuWPH9uDg4EWLFr3++muenp4yH3bD+vXrH3nkkbq6WlSyyWQ+4YQTrrvuupycnH379v3ud78jsrq6+vLLLzebzV5eXrf+5Cdz580jb19/35NPPPHxJ5/09PSQJioq6vbbbz/55JPR/HqDAZPi5ZdffuGFF/r7+1Hz/v7+rG84//zzo6OjNa3vYh3GCy++uHLlShJgW0REhI+O2qAjuWpra3vrrbdee+21zo4OfCkUnZSU9KMf/ejEE06AOLW7885fbdq0eeGCBcyw+Pj6HoaBilAIKAQUAgoBhcD/goAyII4MEJ4DdPb999+Pkv7hD3+IK6KxsemWW27RNPrBhYrPP//8k08+GRcXd/31N0REROzeveuDD1bhVCAyRLM29u/fb7FYZsyYERkZ4elpiomNleXVVNc0NzVPmzYNi6S8vHzPnj0PPvhgZmYmpLADnnvuuRdfeCEgMBDLA32PHfPsM8+wUvInP/mJj8Wno6vzHw8//Pbbb8XExC5btszX17eysmLbtu2SMv6GV1555cUXX4Sfs88+m9LLysq2bt2Kg2T+/PkyTW9vH0x2dXdPdqUcGQgVqxBQCCgEFAIKgSMhoAyIqaigsAlo8Xnz5uFseOmll84999x1n34aFhZ2zjnnPPPMM+4Me4v3MspHf997770Z6ekM7pctXTYyYv3oo4/Wrl2LO+GGG2546KGH8FtcddVVaWlp+C1MJhN2ABSg9vOf/3xGUZHJbO7r67v66qt7e3pwWmBAMOnwxhtv4Bh4+umncTmwkBMvyPe+9z1MGRjA5iDZmjVr/Pz8n3jiicDAQLjF5XDXXXfxHVEoYxns3buXXSQ//Y//OPOss3A4DAwMdnR2sLbDzTmWCp6PjIwM04Qrxf1IXSgEFAIKAYWAQuBYEFBrII6MksnkmZCQsGDBQvQ3unnPnuLLL7uMBRDu1BzwUHagjP2cMTExTCKUV1Qw0G9uaQ4JCfYweuzauZNfuXCB1QleZi9MB4I7O7mys7MhiIeA+YvY2FjsDyZEMFywD/r7+7A/QkJC2P9JrtDQUGwIVmAcOHCA9RD4EvjFOomMjOSpj48PdLjw9vZmOwbzHUFBQZD9dN26/fv21dTWsnSTWZi09DT3btKbbrrpqaeeYqrF4uPjZkldKAQUAgoBhYBC4NgRUB6IL8QKlXzySSe9++6727dtS0pOZhoCo8Gd2mA0osUxL9isceWVVxKP7meBAoFJhBGrlZWVUOAWD4GHp4fx0CMfOAFCPJqIZHkE1IwGUhmY0YBScnIyGXEayFWZ6enpzKo0NDR4eni0t7XBSX5ePjFi7aS2lYPSCRTE3+JFi9j6gReEZRxYJ7m5uUxewL/bAMIXQnDXRV0oBBQCCgGFgELgyyKgDIijIZablzdz5kymJJjOSExKOjgHoGWy2cS6xSVLllx//fXsidCWJ7J3EqvAgKpGtWMBiEWRWozbVjhKeXJfJelxXWBeSB3PBYFISFPcmGadUIrFx+J0OCl0ClfQX7BwYXp6xjvvvrNx48YqLbDSkxkT7CE2Xhg9jKQR9FRQCCgEFAIKAYXAV0VAGRBHQw5T4NZbb83Pz2f/Ak4CphjcqVHAWAn8spggJztb2g3yqdT34yk1PS1MAKdLbzwmnZ2SkkK59fX1eDLwMUg6TF6wtTMxMRGvBlMbRJaWlOCWGLXZcDpwSwnjJep0zGUkJMT/4OYf3PKjH3EUJus2nnryqXfeeWfhwoXUgmS2URvbUzFQhJWDMTHhCHFTUBcKAYWAQkAhoBA4OgJqDcRh+GinI4hjlrRhOssYL7vsssTEJG5ZWOBOjZMA/c0EQVlp6WOPP87GSx6hxVH8b7755tYtW2VKPz+/rq4uph54iNqWR1u6iUy+EEaGFlgmGR8f/8EHH+zatQsDhbj9+/a//dZbwSEhyUnJOCEol3UPTz39dGlpKbdt7e3r161ramokJcdHwAkM7Nq9u7evF8sAnlksyXzK5KKfevopNnT8UzvZYmCSVTSZH3WtEFAIKAQUAgqBoyCgPBBTwcFwQA/LgP4efzzxrzs1uxumZWVdeumlv//979l1yUoIljSyyZOPZXCkNIcuzJo9i8SLFi16++23//rXv7KHgvMY2FfJERFuIlMu5MnWbOtgtwVnS9xzzz0stIST4uJitlxefNFFKSnJdru9sLCQbRQbPv/8jjvuYKkEWzBqamrEEgrcFXodezrYG9La2oohEhYaNjA4UFlZibNhwYIFJBD1cjrZpsHGToybc+12P1+/KWyoW4WAQkAhoBBQCPyvCCgDYipETB9gN6DsD1oPU5OIe0b7pORwJ/T03XffvW3bVs6/RjvziFUR8+bOlZl++ctf4n7AvGApgpfZPGfOHBnP7xfRp2i2fbK/g+Mc+OgGWp+5DPaA/OiWW5ibICNuDxY03FxXB83qqioILV26FD8HZgRPsWNOPPHEV197lQUQ+CeYpMBQYMsGm1EhRaF6+Suu9CPDI2wEdbOkLhQCCgGFgEJAIXCMCBxyOvIx5lHJJAKYC+hgflHw/X19jU1NnPIUFR01eaZDpuxhXqGnB3+Af4A/McLToD3ABJEJ5K+0P+Q1lLlgayhGADMXXt5i7cLkQOK62lrr6CjzHXJlg8wif0mJSYE7hEeJiYl4ICRx99PJpNS1QkAhoBBQCCgEviwCyoD4soh9lfTjlgH/iMWULuHkgAzK3D1F4qYqLYuJGRM2d5CEODE9cVgYJ0u8Rlajp+UUlo1BbACdEiB0eOSUNOpWIaAQUAgoBBQCx4DAISPgY0ivkhwBAdYl4CfgoCee4V04PIVU7dJ6GNfgh5sOMhuPJ+l4tlyyEJL9ogdtBS0ZtzJGUiYNFoacfBExODY0IrhGYEymFPkmUZalqV+FgEJAIaAQUAh8NQSUB+Kr4fZVc4l9EsLJwKEO/7o6xzLAWviqrKh8CgGFgEJAIaAQ+OoIKAPiq2OncioEFAIKAYWAQuC4RUBNYRy3Ta8qrhBQCCgEFAIKga+OgDIgvjp2KqdCQCGgEFAIKASOWwSUAXHcNr2quEJAIaAQUAgoBL46AsqA+OrYqZwKAYWAQkAhoBA4bhFQBsR3oenFXs3J2zXlYRLfhZodUgd2pXJAJ6d0U18edHR0DAwMiP2s2gGghyQ95htO2nA6HFCQNA/uev36MBxn7+sgKKqqBdjmXz7IcswV/cYlhH82JEnYj505kUuce+ICgWPP9X+fEvbY3T2lXMn8lEhu3ZU6/NGXinHTPwKqWvfjwHvx6F/uihQ0pu1d/1LsqcTfPQSMv/71r797tTreaiRPg3DX+ru5t1M7O5yPit39618nxCeUlJZwnndoaCgfLz3iKVtuNI5+gQnS2tLCKaLSHEEl86Ey5KNeO+vr6HmP/enXsmuX4mjZpqamd999t7e3JyEx8V+p+LEz//8pJZhgQbAL+Ut1VxLTOr29vXV1dS3NzXyN1t/f/0tR+P9Unclk0dOcJY+xGxcbNzIyXFFRAashIaHypJbJKd3XVOFfqQWY8K3gmpqaxsbGkeFhTq+f2je07d4wQPjXN5ALXiUpdwXUxXGJgPoWxre+2ZEda1av3lNcnJaWtnz58n9FDH2jsdCLD40+/+ILyGWhePR6JOarr7566qmnCn3/lc7D2LBhw8p3VlaUV7S0tDAyCwoMjI2LW7Z06elnnMEnzb4uNOANzj///HO+rIa2+xfJ7tu3709/+tPcuXP4Ohojya9W8X+Rh68l+/DI8GeffRYVGZmXn/+lCPb29Pz2vvu2bNmCnj7jjDPuuuuuL5X9/yAxX779wx/+sOyUZbNnza6rr7/9tts4yZ7P4xUUFByxdBrROmL9+OOP8wvyY2Jijpjm6JF0sKeefHLlO+8MDw0tXLzol3f8MiQkZDyL6CU6jJg9e/acs+Icl/4rvixuBtavX48vcOGCBXxVxx2pLo5PBJQB8b+3O/qJRG5JzS1BGPJawFHJlya+iAop5TnTDAjE9aQgCaK3xNiAG00FkkZeTEp45EvppdTy6Z986qm33npr/vz5K45kQMhyD5LVBIpwY2qDEsmhYGGiRlPKm5pd87hCDac/WWDDDQUxVESQOlSdSwoynmung4xiAMNwX46TiOT2IKkJ3iQn4/EuHSPvjrb2xKSk5KQki49PeHg4H09HnPEtsSk8H/2W4ggvvfTS448/zsdLoQN0/PJ59N27dyNnh0dG+J4ZREgmanpYB5CR4494ypVeL/g89ARxUYxWtfq6erQ+31YVBoRWO0QwdSeLLIXqCwoOB7hwMYV/iMhI0oOe5vk/WCiJeepOI65JJrNQuibleepOJi60/7iYHD+lXDdBwRW8aQTh052F7IKC1g3kNcWSQF7L38mJBUEdKIk68pS2+8c//sGH3zAgeEQQeSc1PTFuluBBVER7+sKLL3z00UdnnnnmlVde6e8n3A+TU04ufQq18SJ0Yt6EXAQSE8mvvJ6cV9CcQGlyvJvmFybQUguy2n98zc7oIcSsMEm1GMriKWEyVnw19/4/3/+rX/0KA4JHh/MDhclQu1mSkXxf9+VXXomOjgZSTIeAgAB3AioBwbVr1z777LMrVqyAMtMrBqPoZsQDhVs0TS6UR1Agxo2V5IrfP//5z3yxDwOCzCKN1poyPbeipegkOvGtwYM8qKvvKALKgDhCw7pfHvcz+bLJ28mvGTFHtB5463hESgLvEqdMi1ud/pVXX/ndfff5+fs/9NBD8rve8jWT6kRm4fdYAhlRwPxC1jpq5bhrxj0U6c4ra4Gw8PA8pJWlYIMxd0pNfB4ihckrpScX1GWKLJB5ERzykUisUSOGa/etm/7ksrjmfG75CNkqL6644ood22Mk6xcAAEAASURBVHdcdvmlP/vZz0WkJvJIKUlROhdUBAMCVmfMmBEREcmij1mzZr333nsvv/zyySefPLkId7lHudi/f/8///nPzs7Oc88559bbbnMLXNh4/oXnl5+9XOZ18zBmH4MxAZ3WrPAzngBetckOYiSffOyEXASZkgse4SxhjEgVREMbRPWl5SSzSFKCwhcP6WgGKZQFelrTiQaaJKZliZIx/Mt63SGtJmS9YEog65b42j3suR8JBSfSaMF9Ibkyav0G+pCSFGQy2eXoCYTxBoXRcRoiyTgdDB5tzgJqpCSyo72jp6cbL8Ik3sYzyiLcDEBE8iDY0+k3bdqMjuTrssxeSQDdKYGXayIneBv/cB2RMkj+JZIiDRQPVeSH2HCTajFOUObQvoVHRtmI7keHXEz0kNTUVExVWBKf0pUvlWbBHGRSy4ZfDUB4o6nClEdusu6GI4bqACMGK5Fc1NbWQuGXd9yRlZXFI3cWLkSVXS66+uDggOwzgm0tCbcEnnIhmldLLInLeHnNL4Fk/M/X+5hECw4O5k70solqjtMRb7eHbAWZS/1+txE4RLV8t6t6jLUT74lOh8Rva2tDr4SGhPCK8mIPDQ1x29/fzycuExMT5QcwScnrhBMiKjLK7GWeXERnR2dnVyfJ+Po2sgOyBCYpS8vKfH18+cZ3Zkam+NSF9rYzHGDyklJiY2Kn6PvJNCdfIzUG+vv7+vvJMjmeawqCLBqrt6c3IjLC19NXyJpJA4XhoWGc9kyUhoWHEQ//1M7P11cOlaAAXZPZxPfHZd1Rn97eXnxXo6mx0UyNIqMQQEODQw2NDSHBIaFhoZMZoHRqx29sbCzEueApVeNbIRZvbzQBRWNRRURGSj55tG3btgMHDjD4xwYCKwQc/EO/ta2Vi7i4OKw0RCTeAr50yvfT4Q1xN3PmTEai5eXlVDMoOGgyD0e/ZhDPd9IZAWN53HX33W5kKGt60fSiGUUQB7E1a9bACW6D4uJiZtwxXIqKitBtJaWlOIT7ensxBFOSkzOzskwmEyKY5RS7du5qa28DTDwNpIdzsOVj7us/WwfBTZs31TfUBwUFIeWpJjjs2b27s6uLUmjEGTNnHP4dVyqCSqOOdBtWaURERNAtJaSyjpCl52APsSyAa/woJ8yb522xUBeR1+mkuxbvKaYrUgrZ586d6+3ltX9/SXlF+cKFC9HEQi25dFu2bmlvbycGzisrKyG4bNkypniIpNtPnz6dOm7fvp3SaQsmy4BCaCNND/HN2ANlZT0A4ufH8pTcvFw+SU/pJfv3V1ZVLV68eOeOnVQcZhISEshIMpw9W7dtHRoc5vX58KOPsDwWzF9gs43u2r2bzkM3CAkOLiwsZEZJVpNfas0HZmGMTgjPOIq4ZSjM9+h37twJSyRgfoe8zGtQL5DftHFjW3s7tjVVSE9PT01JFW+c0UiLUO68efN2bN/e2tYWHRVVNGMGpszWLVuoBU2DcU83Eyr1EF0seCHj3uJipiQcY2PRMTF4UNyiwM2quJjQ4nR7cKPrSquU282bNwMj7NETcnNzY6KjYXvT5s2s5i0u3kNWXx+f7JwcUDpIkA7pcgqcDxygd5lNpuCQEPiHVWqHEw40+BhOfUND/8AAX/3Nzsl2D2wAhHakTcF/zYdrgBonR1ZmJhyyHpm+zbeCcS/Rc2bPnu1jsVTX1OzatSssLIxbby9veKALEYOpMi17Gi46Xtienp4PP/rQw2jMzMwMj4jA/wF9AIRncOaVOci5uvpOI6AMiPHmdQ+D0LtPPPHE6tWrkcjInTlz5tx9992PPvoo0+14TXkVUTyXXXbZ7bffvmXz5ocfeQRdwivKO3nOOedceumliOmtW7c+8fjj+0tKiOcWofnjW348f8F8JkGffvppXuP+gf577rnnySefZPTMLTPBlIhtASskPmfFivMvuIBrHknd5u6BUuNyixjC27lz546BgcHMjIy21jbkgjT8eb0RWDBcXV2NSkMQMFD72U9/lpCYQMahwcHn/vnPt99+G6nBLAA6+De/+Q2MrVy5kirg5CTNiy+8wJwI7tBf/vKXGRkZN998MyqKFYswT2Wp0WmnnnrKKaf+6f4/Ic6A6KILL7z2uusQWKi6VatWP/fP52qqqzEUMLO+973vnX766dTihz/8IRW8/vrrARZxA5HsadP+8Mc/tre13fOb3yChGJcjWM8777xFixbdcccdL7zwwvPPP4+AY7F3Smoqc7rd3V02uy0oMAjGBCB6HcMgPz9fzLQDB8rmzJ0rIo8tMHLasnkLcv+mm25yIyw1rvyFON6Chx76O/AC0aeffopwvPzyy7Eunnzqyddff4NOgqwEXhTVz37604WLFrW0tjz88MMsdMDEhIjVOlJYOP2//uu/AgMC7r33v/iau8nTkxkTxD0a9K4778Qe+v3//A/6FV1Lw9GyJ5100n/+539KfqDgbv2Nmzbh3K6uqkZbYHh5mjzRPUwEwCRcoVQefPBB+dl34smIwr7ttttod0AG6j/+8Y9oa6ixOBR4gPfOO+/8+JOPn3nmmdSUFPinaOJfe+018EcfYEeyvIAJl3Xr1tGTGdfCISBgfKxatQrDenTUGh0dQ7fBFmE+nT7MCFvaGQxzIyLCr7nmWlzlVOTTdesee+wxnOe7d++yWkchBWh0p4svupgOD1YwTF9F+eHex0Z5/fXXafURq9VsNg0Pj8AMTMomlT0fLUV1urq7icRXTwVZAYOhRiSo0kvrautwzrPUAEj/8pc/f/bZ51xQd1Jizn7/xu8vOWkJtziuCBgoJSUlGNPYo1hLvO8gQHreoKSkJFaX5+XlydLlLxnRo3/729/AU2sCJ10IG/Q399wjjLDDAm1BgCyvFS8O65PIRR94/fXXRkdtoEpXodYA8te//rX8wAGKfvHFl954401KZ2HHZAMClmgyisboFC+a8D3ol5x0EqsrMPqJp+6YxX++/34PT08a6xe/+AUdQHLU1dn529/+loUjTqeLVgOKCy64AJnAS/qXBx7AdoFJpB+dgAb9+c9+ToK///3vmCP33vvbObNnM51H+9LKV15xRVd3F6xiwVRVVSHBqMLPfvYzr4oKegtmHwxTBcZLdGOaA7KHQaIivnMI8Gaq4EaAN/zee++VxrtbtWAx3HjjjZ6av513wmz2woBgUMjogSEj7xu/6G/SP/fcc2iIKVPyvEj5+fm8dbfe+hNJmcT0I3YQoB0ZPcTHx5MGOkSSAL2IsYIYc3M1+QLZwe0dd/wC4cWgkCwoBlQLby+6gUcbN27EpIAZWZakiSJn0EBexK7MRbx8xDDu+9//PrVD38uCsBt4hIjBMUAMchxScCsBkawGBwV7enjCM48YAiKGSPnmG2+gkMhLBUmGfIHmJ598wiPG3ETCpzZYR/fxXP+Tn/wEXUX1oQwpEvDL8JEsiCFSEk8W6CO2mHFgyHXJJZcgKyFIKD9Qzi1S760335Qx/FJHpJj7VsRwf1gMdiE6AztAZpmcXl6TBdOHsRRrFR9/7LGNGzag8tEfFIeGZghLV8EtAZElS5aQhUEwcpl2gSbCFFMyOTkZtnnU3dWFBKcP0DTtbe39fX2j1lGIz5o5CyMJIwA76ac//WlBfj5mnGxfNw90GwxTJmtQpWLDSGvrtddcg1V3003fp16oc+gwUnzggQfIgvrEdGD0fOutt3IL5bPPPhstyFNSkh21/eabb1LE/fffDz/wTDJu8TCREUzo1UzBwFVOTjYLANH9mKEQgSalvPPOO4ykf/e739Elzj//fLoouh+nBT4PujGIUXfi0amys1EKrJ5wwgl0jMGBQYxCdDZ6FDsDQxa1Sr3obPRA7A+yg+1FF13EEJ9rRsbkkji4f2GV94seQhGfrf8MYLGkmdgiIxyCP2YQfiMqzhpGyiIGGxdqRGJn8GJCitu7776roCAfK4enGCU0YtH06XNmz5FeDaAAtFtuuUWC4y6dCzxetD7aVL65S5YsJiU20OQ0XGM0AC82NxA1NzVfddVVcEg89opsL3oO5hTdCaMcbrEkMOKRJ5hQVArn1hSCwH7KKadgbdAEZKRRMLUxFMglOwyDHF4xbDLcVCSenJ36lpWWIbLozBgTNAQUyHXPPb8mBnEHk0Ric4DhY48+Sl5sR+C6+uqrhVG1aRPMX3jhhUBNb8SIxDeDPOE1pKUwaDCAMBeoi91mJ4ahCz1tMgPq+juMwBEMZ6FYjtfAm8w4krcL0YaHACsbeYFWY1iC3uZixsyZ119/3VlnnYU0RPRg5iObkPsISnKh+G2jo7zYDLVfefllFLAU5aTkFb3yiiuXn302GhelSAKGp0x4vvbqq4y/GXMwzOXl5ILXGw1qt4+hIWTPm9wa6F2k/Jo1HyJ3YmKikb9IZFQvYgLZSmA1ZU1tLdqXcQC+BOQOqg5NgM4jC5oMsnD49FNP/fnP9y9bthRmJtPnmmSUgvJmlMOt5AFvyg033HDNNddImwmH6mWXX4bao2ikDONylMfbK1dynZWZ9dn69eBDSqQMwggKJAMfyCLTb7v99uSUZMjjeqG+jIr4pSAGjqzPQh4xnkbhARSOHGTub++9F+1FLchCE+DzkAz7+fvBPJGDQ0Myhl/pVcdOgqwMf/v73xFz7gRc2Gx2pCHswQ+88Tv5qbyGLBfYQKzUo9Zz581jCMvEBzIUSY2R19jQQI1wSqH/sJ/y8/IYqP32t/fBEj5klC55qT5pgoKDsfYgiJc4JDQExw+jScZwMbExWGn4YBhf0t98/fw+/PDDyZyQZdOmTRgu8+bNRWsyTMcNcO5552Ey0j50HtqUp8h69C4ZY2NjUHuUgp+Zvkcvkk+xZugP1Je60FuoMolFxScVJiNFBIs6RN31t99+GyYpszA0GXVBSTAexcW99OSltBdDavvYGOyJFp82Dc8ZINN1WcaLfcDkBQRpLMr90Y9+xPvibfHGU4XnnGT0UlACEzotO18IvEdck52CmKGgrVFmYOhmEGoEWgqa8jcgMCAwKAhnPtzyCL/UXXfeRe2wLTCz8J0QiZcOjzomEotk0bgUjcLWOrQgDBopySnUBaVOXTAvMtIzmFY4+aSTwIo5F+wq2TcgRTvyP9KA9x1tirWLYVRQUEg876Obz8MvyEp2EZxOejXvEbY+LwsmSE52NjzwajBnQRBdhRAc7O8/aQmk1lLsXqZSLBWivwERaPN2kx6TFJ1NofQNcKB7YOhPdl3wiGSBQYEATggICPTx9cEZBgOrPlhFYmDBEMC9h4VBYxXv3dvT3YPRTH/bvWvXiy++eN/vfscbB5I8NXmauKYJ4BbACcxxSD8ru0h4NYjhZeEplaXGh6OhYr5jCKgpjIMNSo9nRMILyQWjB1Zp8e6hNXljUecIONQGYzhEG2IF8UEM7ySKn0EvLxWEUBjNLS2827ztvNuIV7Qgj3i1unu6WW2OnmCrFaKTgRrjHvZckYg3n4lnlAcXSBO7zYbBQfpwnJBSyk/ScPAGhxREceeeex46kpUQSHM5moQxbAUENKIfT7WQKZGRzBogL5CetTW1ZEQOoKQvu/xyGLv88ivgkGT4eSGIbYHhAA/EQIpAJCUSMETQ7rg9mcSBPSQyfkv889grgMYcCtIfvUVe/wD/VatXkz8gwH+gf4CnmGXQQbUzhEK1QxytI4fUJLvs0sv+53/+hwTI+huuv4GlJEh5gGUUy0wKSwQY7jC9wpCU5oBn0CMxgVkPHK3wRkPIGLF2wSXMFMBkmllGItRAAwrjaXDzmDwBHB7IKOvofuSe9kYCEolcZogJJpSCXQWMRII28hRmgA7rgRh4E5PKLJ0ZGKBBGU+juaFMQ2AcADjZUYrcUneSVVVW8ouilS4KrvFJ0EmgNoUfNDFMpqWlS9cOdAiCiF6Hu4ZygQBXBysGIAIeuHMwIGpqamhuPGcMCkF1cl5ZL9m6cp6edtGWEk6Ie5dOwgI1yS22EZyDGC8CULBuhheBMfTI8EhXVydpKI4+DwN0l96+PpBh/m7mrFmURSCxANDpYv1BYlISj6gCMTzigveKXFxQEfQWngzGxAWFhViTuHYoFEBEevkKaFtPZEHEaJHiKYH2ZeJfmI96XV8vS4P6/f38GNOTWKzs0esZN9NzMPWIkQErgcTwX1hQKCjExjCXwUQAHYbFOtSOKTP6syA5XpZ4QWCbAT3/0T8BmYx4UyZIHuFfYBX8aSYIc0b4RdiueeevfkUd8VLwWkl9D1kKAXmZWFRDe2XEr14PaIBPem5hmGRc09D0NNjAtMV5J15bbTKCDBAhl+SGeBqSa7oigVaAAj2N1RKAC9oymcwCbqzIhpmrr7oaw4itofB/4403YFqRiwYVpWhB1gjEMO5ZmHLnXXeCMLXD/IqJFauy3AxI+ur3O4mAMiDGm5V3hiuphrGyEV7c8g6wSguXoEyEAJIiidu2tlZeIZzVzL+SF8cD6oSXHAGETxUvKLl40dA6kjL6Q7yi2ptMvFydxISlXE6FXBOizaUbc4yfLai96h5kkUW7f2EJUtBEPPDGInYRsmgI4iHLr1Ry8MktuXA/Ioygg6zZsmUzWgfdzFCSjDwlI9SQRwg5IRqMRkZdkmF3ifICzYQi9A8IoI6kR3gxWCIlmMAJ1aQIiobaLpZm7NjBIwJ54QlkhGTUiWEiQ1hgFWMUTaQy8mPSWjIDKdKQiwErrloWamCE0SIYbY89+hhskwz6WCpUGcpDw0NW6ygXQhPIILZEiFqDv7RauKYsmKc4wJGpQAZ9w0w2WjA4KEg088QjGJCye5x5g4HhmswFZ9QCK4DBGUv2IEKALE/x9rM6Hc8/LgpMNOIlhzIjv7QMvyQmUBZaEzBxIDNilnUXz3Q6zh2SWbQ7Edfe0UG7UHeZkSgyAindDFWGr5iyaBE6kkwA26BNJKwCFKs9yCtpUi5lkQwMbVjEYxMNDWuTeplAQKAxjgN5hQLWAqmwA9y1RsfBNNRoLyY1iJfJKEXMWNFYY4zgZc20FfuQ0nqdTEkpMEMAf0FIp2Pi//XXXnv2uedofV4ifFd/+ctfiNf40WiLttGQ1MAUUdJfomV3J6M3Un0fX18ZQ8PJTgiS7neZrKJoLRAPWcmb2NYAk1p/0HiTSYTpQDx697777sNdjwcLnKVFSAceT3Skf9yl0F54FzDreTdxVWLW48xYv37db+9lW5afm3loyOvxGI1HjF1u4ZMS6QCiHbVXj07OYh0anapQEP9ICTOFEZ6ShryY14K+Jiggglfp7LPOojw6A2R5hPOMPxoIO4MYFkCIa6OHWLYsGdMKEmVpFg9c4boIDQl98aUXGUp9uGYNrsdnn3kmMirKbYtPYUbdfpcQUAbEeGvynvBW4APkHpmIpMCzykuCgg+YOOqOF5gYKf4sFrEkDR3AJAWvH9KE7Bnp6ahVphXwQOTn5a84ZwUeWnYJCvXJu63JLN5H6LPIjuyQQtPwixV/7bXXcsELyS++TTliFkJkXMqN8yn+0QQfrzVDTO4Q0wxeSUmAMkwSWV1VJVLqdOhyZCLsRUZEIhsQNqRhaXpySgqRzJiiQYXs0OvRN0IoGPQIR0SRyCwUlRijwzx3/CI2uOUaJkUCKVO0chnXoKv+H3vnAWBHVfbvufdu301PNsmmN9ILkAohCUWRjqJ0hYhK+QQV+Gx8+tkVVJC/SvGTJh0RpCMdEmoIkEYgPdn0ZJNssv2W+T9nzr2zd+9uyqSx2f0N4e6UU97zzJnzvuc958xwlRmF5593nm2kCEZziYK3KdRH8fZMgl7K8CGiHTplH/IMMz/yyCPMKcGGQM0zRILPhqJRUiyhpAFRWWl0pHF1NHD5kjZz45E8mZ0nqhXbnqGYBGBw5Gc/+xl9rE6d6leRoJYxDTt27AQcG9j/ZWlDhw7t8/Lzcfwyd88SsPIThm4lhs6woUMZ1pkwfvynixbh6OY8+aZKafZtahg01Blw4RJH/ftZ+Ds2JMJ0LS5G3eOr4BLpcPvo78LW1MNQCN8Dd5PKZvUKYdAK1nJldUxtb2PUgguj0F/aQ8pgtCZXY21q8vXuiBHcM3o4k6q3LNZAPyUrA6e549wpZs/Qh6Yn7QtvdxhZJ3dSsYjSf9NDcp6kWL1I3Se1Sy+77NzzzmM1xP/785/xpSE8pqqpdan6lh7X3zf6M4nWnEMfU0CULkMG+JDsA8RhTbWZmEkAMkXnsuMVzjNusCBSHXd/B8ImOW/jcYM5vQVWdpx+xhnnnntu/379rr/hBpz8SWCpkOl/jWBkZzJ0wUUK1FVcbhecf8Gbb72J+3D27A9mvjnzpJNOSo/l71s4mAgMdb05cyaNkn26CYDBiv8Di7yoTfKNZwT2I2bupEpnzWtClnQvsZblCcwLwTLGtwdhSu4VmcfKvJtuzhw8pnRsmIyCwxX3iRfAdAkIBRp2qL3snnraqbw1a9XKlX/44x/xIT3w4IO0ijapTEl03LII7Mp2blkl3V1pvKdvzOgxdFjRoNdeey09YCYKoNdZ2YW28DebEN54nkNGE2ihcCf269uXJwrPaWnpKqvOp0ydgu+dwDxIhGSjEWRhJA0lIxcvvPiimSkZj9NX4xJmCpYHHQK6tqSD4V8vbn0jljzXrj1DB+1IlpnkzID/4x//wKOOykcnIeSIkSMI9+5776F96eIw7kCzhcYtKenOGAq50DowD464d9111/TpF2/atJkRaGTAf8B8fibcPffcczR5NjXjYfbkJ2XTDHrF4YzVr+zgOiV92jUu2Y4+7RoruzCJKItp72wb6nV9bAGIxcY+6XlJmpECsjNN1eOPv/bqqyyRYAIKTmwmdvXr18+OHRQWMPAfYt9qU6KjEuiBkQKeGJty+i8tvv3n5ZZUezYAZxj2JhYDDT/56U9fe+1VZOauMTTDSyC+853vME+evponXX2rDIFxY8dRIqaq4LTn3qG2WebADBhCcgtgcvXV10yaOJH3K+M4sdqHcqIAKCCZMtmFKHAGDp4tRnyYpoChA0AuMYFuhZesXwp6geMnTCBfEkc2UsC9wRAJiXCS0uH5QHnPnz/PuK/M3I467h1GIUqXYXKGAagnrAyc/cFslARmBKsWad/RIlRyUsNfAkMG499621hplJiT1FeSQiQKmMTlKW8ytJfsLTNwvFEnLKrHHnsMa8wGZnyHvjXj4kZAIyNvf/IeLfvj7duUwYXligcescu3l/N00LPnkPOsqQGRqVRe+AzrASERz2Znfr0wVjXak8Vdigf07495RFeYZxlJVq5YwagW+WE4EtwIn14hU2kls0ulj8j2jL1OptxWVpZOv/hiTDeWaXM7qLfGQmi8eX10Thtu3nVYYCIz47K6php7jgJSt0nTMMfo8V4+jcHEIXfQnrS/VAPmt2K/Pv30U7wSm8A8wnT0icsjRkWymSOqp9btUYNfvEHek+iUri4Fi3m0I8ayZ6YItRdvFBEpDpWHioRJyrDj3ffcw7wuLGxma61Zu5YBR1vIHFqwSKS6uoa2buPGTdQr1gPzSFLDhw0fDl5MN8QGOy3MfffeS8VuIIoOWhYBeSCS95NWhXrfs1dPegOoMTyoNLWoKyYHWWc4zyebf/eZG0EPafOmTUyDQgHTYqKE2KdXgfOATiGP3PPPP7d+vVm1T8q2gevLKxQLCniGUd40Afh+mVmG6w9NxkIP1DzpsK7s8isup8nwMvQGvP1cvZadJ58pCGTB0ONll19Oa0ITTBb80jRfMv0SJqjTBrHGAT2BVLQdzLcYOWoUzgZsGtZoYVjYNwFTQNaUHnH4EfSqiYLvxOpFWj1y55emxwgfDpM4DQddFQJwyXZh2aEpJABtIEoLhzzJ0voAB9VFI0L6TBcYPWaMN95tp1IaXUYipmGlxxwmzTgdHSb9oSOx2xhzYbXFb379G+YbkjuNF2qGgfzBQwbT3eFesOANi435XOg8tD7w6YelEWp614job67bu1cvhjmYx8ryCjAyTo/esu4N+sGDeUVHapCeiBTTRp+Gx+D113E2wJaBZ0oHXviPHDGib5++tLw33nQjy1OZxAoE751AxjqgsNYNw6wR3CrkhY3yg+9/n/WrLBZgEgnlYiyMjbkp06dP98Vkh4jjxo3HjcSyYQhz08nUioRa6t27F6j/dvvtWFog4hIM0SvUQ3xpVGl2WEjJ0ACvM0IMiNHQTz76aHQDiodqgAok92XLliE89xYbwtxfTz2j+xHdGA3MVPDeGcots3eNLMDF/jRvQwkBs6/3bQ6yIKlBAwfi4jIedehhQnmv3aQ4kOTXPgu8MYJax32n1JxnlewNN9zA3URUHhAqEkIyDchGsfwtGXI3O6ln0f7FLrdX+WUWzjnnnjv7gw/Qgu/Pnk1dxdDHhsC3QU2jLKSAIHSgbXHYN6X2VD6lJi/C8Gs2z7OREjtEGTEZb7zpJjxDvDwe2iTCPfazrt/xYhORlNllsie/3Mcb//hHZstif2AqYUFSWOYNEIxfbg1OLAZuCHntNdcOHDTQTw13Jm0FXRqWQ/PyidqamvlepWWFDqWjBlrhmbThR0nfYTQHH8bMmTOpt1gqtB4wZ2ottZQ6SQ0ka2oy5gu5UD9ZpUKC3BGaslOZTfnRR88+8yzGCrM4mQxBM8I0Z6brcpuYM/sKRrCbGD5sOPcdi4SKQTvAS7F4Vx7VlfrDGEe6MNpvSQTkgUjeTVoKmhV0Fa0Y3nKeIi6gS7520deYiE5zzK8x9lPNFnqOp50ZdqhnrGz6FvRoOUkX//c33MBES0yB0tLV7Bx33HEsSmTyMwni+ua55XGl1eaXxgV3KJ1+9ARtN88bTtfuJd1pTWjaaEdsA5de4TiD7/F3v/0dTSH2ATKPGjkKSWh5USGo1VNOPYV14TgzaKZ5wmk4cCfyMJt5EuEwXQpefkBgGkp+sSfwTH7u85+jsaBlIUeaCeYwoh0pLC0CnlLaSjbOcBUTh7LQ/CE8UpE7l0iZpGg4UGas8sBLTPuLIqGJJBZefUICB4ZQRathc9gEiYVhRefol7/4JQYT79ciQYLhHB4wcADRmZFKFIRk5Bh5MCyQgVYY2tvKt6H/SJl56ZxMR7TbfTiQKUtRaDrPPucc5CcvVCl3H/ORk7zTiTS5lWykZtNHm3LXmO9JI85Jpnos/Hgh0mIy0iudMuWY448/Hs/Egw89hLr61S9/Sd2AEmnSxKMLTz/9NBp6VDWmFSc/z6TUG2+ED112ml2IoYMzrAdygSo5coMw4LAwuJu//tWv0TqmfjL8H4lcfPHFGCJkwTsMSBwn0N133X3KySfn5ecxuAA6LA+u0nWm0UcMTBZ0A5NgWLtL9SZNpGVx0A9/8APKQmeX+ox4CMm9gBMy0PclOzs+Rf1EJBQ/AUiHWsScAN7Sgfy8XglPCcT+96c/tdPoWFwAW+oxUWxNpo5xxpomYw4fw2wSHgEmo1CvqPNnfelL3AhuK2XhwaGk3CngW/5IwkamZI08zIS1ZxCYgnTo0NF/NkkfByGLe1mfQgGRity/+73vsR6EpEjRioHvhBQoJvN2SRBKNkHucpfOnSmIkdmrWZ4IZm7Etddcg2uHYTVmaVAhsczI2EzrabgRnmIiFbGByRRX8kLy8ePGnXb66Sx5YP0RZisDoOhvngUsNlJj1jYRuU3sMwpjk0Q8dmg9qHX/9V//RfNDcRYtXkyLcdutt1GHuYrkNAVgsaMSDWUxR8iAZUBgBkFoE3juOHnMZDMPGi8INRBzjRuBOYLDFU/Y9u07eNML1jIEunQpZqUGM0wxX7g7TIZgFRUS0ufhpo8YOZKl1LhUeWrwHQKWZZy0D5QdAjA0pfOsxsZS6UwLINDAtdsCyrOPReBxtY0Frl1UIO07owW0qSSLQcAlHkV+ObQh2dm8aTPGOw881jrPG40XjRwvw8G6pxmiu0DTz5NmzQVz1UzANBuJ84Dh36bVpme/ctVKPIFE4SuLJM5zbj0fXrPoTTQjprfR0BfkF2D14zNAldIEIBK5kDgttQ1Dk7Rs2XIsAL4bgcymGTKmDzPhTVmIxfOPKUDDzVXO0HklR6QaOmQoCp5FAdnZZk4lDz+J81JI2mtC0sqQEcYW7QhZkBoOcN75w1XTeGEdeLMg6e3xth9aGcpI4qSAJGRBM0eCUOKQdJCKWByy0fsnFjLSqtpMaWFhTntN447yZp4gLR3NKKn97re/ZRog75siOuYOTRUnySjoZjMilnnNjutyO2wKNjUKC1I/DOVFPGRGY5koLNZPuHR22Sc8G0Iy2kW5SMfMLfU6sqTADnFJnyhUA/QTUcwJJiRGjJEHQ4al/HtnZeAXSkS3OZq2OycHgJwEV7pghERUABKAfG10KzwpIzMZ4WfiqrUR/fQZ1MAOIwoYzX2BoSczlgdhyJeSeQKYtTlUUSqqjesJb+6+nxR3io9AEgzNwUkfWsY+cLBrSQcmNi5GFSVC+Xn1k4gJhngwWXx17meRseNnQUkpIJU2IwCHzMPA2UXFo55zSBQ2E4xazQTnmtpcqrF3+8w1O9xAwb35ksmJI+ayieFvFIG3KYDMlpTzfln8MGYHr0bCuNm4SgGRkEfGPuwccjepBpTag2yGOcgfYaHB7bA1pEFqnlTkRDCaBaoKYXgRi5WNYnIvSIp0MmLZQ6qfraO0MNQBgpECSSEbsZhVw9OEMLZiG9k9q8UHQkjOmNbAm4zCEcypzFClqkCScnHXiM7aWlMil7k4YZoFpjmbTkLqXjcpm04e0gRkQAS4ffaRsxF4lnjA9n2jZaFP5KdjHzZ8iXTs6DXSpthL/kOIDHSkGPjgeTb+1fqofhpN7VhZ9zBwkwl4LS+5N3XRnEPCnV2lwbINpQ3Gb3pIhNppoibh5EYitN10oJ95+ukf/uhHdIVxzvOKgku/dSlq2OeTCn4A/nrmUZMZUZwmz/tCZATIOPSDZe7sPEc/5K6TalKpGPWAuE0167tOzc90tzu7TWe3AXabxV4EsJma39SDw741JvYitT2JsifF3JMwe5LXfg/TbAXb7yVVgntNoAmzfa/Tal0Rm2yAgyMIYQY02rDlmc3EmKW9QlampfM2uh2MvLIbLP8mMrHpBfvddaY7u9q4JcoIuSfS0ZkGC4P6TDtlSgf9abw1hx02mM4RCwKCFWPvQvtqp1H0jOI0up55s3YbPpnCznP0s9h1Uk12Seky+tEzdnadWkbgXRzuNp3dBthF4nt9yWaanrXZb8qQ2ussMiKm55VxyT/ckzB+4IO502wFO5gQlNeuCdRrpl2H01UIpCtCX6MfCDI8uoxW4pQmcfsYk53NkV+GHng5wS7UwIEQyeZ+IFLewzTpTONOx/0LEOtrxXMLBA7Z9jARBRMBERABEdhfBGRA7C+SSkcEREAEREAEWhGBnTozWxEDFVUEREAEREAERCAgARkQAYEpuAiIgAiIgAiIAAuXBEEEREAEREAEREAEghKQARGUmMKLgAiIgAiIgAjIA3HA6sBnvmzhgJVs/yfsvyWCN0KI2/7nqxRFQARE4AAQkAdiv0G1ms//Zcfu72UGe/Jypb1MuhlFAxEvMeSjO7zBl1fsvfraq3xpot6eCC6pR92w83fs/q5T4osnW7ds5eMdNjACGBm8W+CnY87swcZL+rZu2WKT2oPgzT2IeWHanhW8uZdE8omACOxvApGf/exn+zvN1pUeCqbJ9xDwDp8mz+8JHZsmDTcp7Cz9PUmn+YfhPT7P/+d5vt1sX4X7+9/fsHz5Cj6L4L8nOGgR0Nx85IzvFr7yyqt8IpJXefI67d3eiDdmvMGXSHnJBC/Sxo7hGwFLly7l81329dL2fU67TcSKynvN+TgFXwfgawVBhW+G4Sk7XqE9LHszlF8iiYAIHDgCehPlvrLlW5p8rYo3zL/+2ms7Kioefvjh5cuXf/c73+3areu+JP3kE0/84pe/5FM0fDGSLwO11BacjwLw7VNAtWvXlm+p033nPZt8S4lPYOxFkfnGx+9+9zs+3Gw/XIINxyun+DQaX780n0Pc+RsY0fpvvvkmmSIJn0rim5lYMHz5jC8ybC/ffuttt/J9IF6bvSci8d2QN9+cyeem9uXuN4u4rvOrX/3y6MmTpxxzDF9raBYiSQgREIHmREAGxO7vBr5rNAcbzgBCc8grEf1ofAJq7ty55mtA3ociv//97/N5JL5OxJf6+IoPnnkC8yVPPjxDCn6sXe8QcumyZXxFFz1kPonrfUrH6r/GiViprHj8Gml5f6Xf4iPyTrJN+jm8Qpl989ZLT080FZ7eOco4PXcb3cjmubgz3prM5zzQyqjtvv368eEfP6L98A+xsBUgM2fuHApIynzEG5Pr6KMno/7ffvttvorZlq+D+qXYNa/UNyMw5p577jk+WXnuuefyEdEPP/qI1LgdXjc6+YkgX07LjaGOZNocexsfMh0zZgyfRrPfP1u+YjmfGeQzHATjOr9+WZoUiqv2c9X+VfiQqf31TyZ3UneHlP2+vs2FAH5G5mqq8rAPOvsuTpuIn7Lnsgoz5GDLiPeFYDauTZNEzKFfIfhSt/d5JNKxwWyCZszCC/n0M88MHDTI3gU/BTNPRT4JS0q/ItC6CciAaOL+27bSv2DbbtvUcomRCf9S+g7B6LbypQa88fxyic8983FtPq932623nvC5z6W30ekR/X0bwOZuf/1Lu1ClVvHQqFs5k9L6qg4l4akfm6BRHinx08OzTwGNamBLJeXnzk7jb0X6Gfk7BPP377///j/84Q+o4b///e982Nqk6olhP+Fo962/AbcBwcaNHcfJ8887//XXX+dDpmh9+wXFdBl2uk+JEN11n3/+uUg48p2rrppMp9lx6D2fesqp+QX5fAjRj2uzxrajREbTp33JjDDIz/cD+SQxO9g9BOarg1XV1ezYq+yw2WKaNFPaFC1OmnyyFPOBD2+aS6mNwEShsJxAtTeI7qlwzkd5Lbf3im6uUpLk7U6ZFzY7P2K69WAy9b6nigCkU1tTYz6U6m2+mWvS9D646hU5ZCwITyRzt1OVGWuDYCYp7r5nt/GtV75YZrBSL6xh6QWOxaJE4+uXXLGCkbg2ERCBVkhABkSjm+469J75EibK4MixR+JaoJUs31Yej8c6dOxIqzp79uzhw4b37tM7IybftMVuuPWWWxhEnzBxIh8FXr1mNb1w3OCYFGhE46VIqYSMuP4h6c+aNWvE8BFNts58IOPdd9/F037YYYdZtWEiGgsixJdzP/zwQ5Tx0UcdzbfFkZlSYOt07NTJKK1EYnNZGVMFe/Qo4TOeePjJiK9OFxYU4D7hI9SjR4/G+kEbzZkzh972MZ4C9qViZ/68+evWr8MU6Frc1Zog+CRIBDVPIstXrGDoYdy4cfaL2KDAr4AAaPY1a9YMGjQIlwwiIQAuBz4azmhFr969+NgHsdCs48eNKywqJJdBhw3CW8MYEF8bZyddgF3vW00WjfL15ngcS8jTbZzka+Y2IgQunj79hBNOYErEv/71L8Tj09jnnnPOSSefnJEy5brqqisHDhx0xRVXMKOTj39yQ99///0f//jHlOKaq68pKCyoj2LssdBDDz2EqwNTg5Es0IEdAfwwOFQefPBBSo1GB8VXv/pVfq2E/PLZ9pv/383YTMDnQ+1f+tKXjjv22Jv/9Cd8V9+45Btjx40lHYT/7e9+BysGy0aMGHHvvfdSCU888UQ+t7Zo0SLMrysuv6JDxw433HAD3Mhl6tSpF198sf20N8X59+OPv/jSS1QeauCUKVMu+trX+Eo3WfM50xXLl59y6qmUccnSpUSkAuNCY+fJJ5+cMWMGO089/fScuXOpG+ecfQ7R/3TzTYsWLcbawDd2wQUXTJ482S+mdkRABFobARkQyTtuG3S6cddfzzD69egMLjAFgdYfVT11ypTy7duvu+66X/ziFxU7dqCmzjzzzP/72986d+ni1xg+Kj373dkoAMyFO+64A4Pj21deRbJo6wsuvJCdW2655Vvf+pbROA03mzWz//hW9fXXX19VVdWmqE2Pnj04n+t1nVGEfJzzu9/9Lm06+pEOaKdOnZDyy2edlZWdjYa4/777fvq//7t50yYEowN95513cvKcc86hlX/+uedGjR79+htvoFFWrlz5v95G0//vf//7tNNOwwJgyB9V2q9fP1wFl19+ORMP0WRDBg++9bbbpk2bhqQz3pjx7Su/jYbDsKBTTgH/8pe/oFGYfovAOPxLSkqeeeYZYpHdrbfeypyD7139PXays7LWrV9/8sknc56MkAQdjDbyypXLvAQO165dy+HgIUMsEkpaXNwFpcjwDaounZNx1Ifovid25oxBy44dO5b5E9dee+2ll15KvgiJ9UYiGDTxRBylS8oMTHjWhrtq1arr/ud/6qLRM844w/r8bXbgnTNnLnYZ3/987733PpozBwmRk6so1Lq6WlwaXgomOFLdfPPN3G4sJ8hjL/79//5eW1dHSK5y6x/95z9vvOkmJEH70qF//vnnqVE3/vHG4cOHVdfWIsN///d/84tRCFvM1mXLllHrsBU8w26rycPbFi9ePG/ePAxEXALkMnPGDFw12CvcuzfeeIPqWlpail4nEQyFhQsXUsm+deml3LKbbroJbxCmCbcJs4lbtmDBgl/96ld4I8jrlZdfee3115GWpKi3ZEriVK233nyTslM6JpMSC5GmTZ36y1/9Euu2d+/elIUsSJlSM+00JaP+ioAItC4CMiCS9xslwR7N4vXX30Cze9ZZZ9HC0tRykkuxeIzu8g9+8INu3brR1NKk/uc//7nzrrvQVU3WF1QF6qRP7970I1E2fD+T7iDNLkn5uieVcfIvnV18/lgPtPWYLDTcBK6rw11sPCJf++pXF3z8McoPH8DKlStWrlyFQYCqY2YfkxCvufZaLIa+/fqhqDA16FbiLCE61gb+BlJg32Zjd/hFN6D1KSOqi5mMFPzYY4+rqammgCgSZmDcc/fdGAdopssuvwzLA93cvXu3V199jd42Zfn7//0fFgPp0zUnERTM5s34OMqY+YGFgRFg9SW50D9G5dA7R4/OX7AAVwfLEzBHKBQaGhWLYISx4vHbqVNn1DkyIKTXvU9egRsKkqIwQoA1ACITwHOq20JhWGAKkPKbM2f++c9/pps+ccKE49iOPx4JI47pcxMLu+qsL30JdP+491664P/85z+PO/Y446VvuCE56DCS8BZgDDEn4+qrryaWHdfww0Ib3wNVApWM7yERT9xyy1//fscdACY7tP4j//wnOh5TCa8AxHB+INtdd9914403kgizNbEVMLmu/PaVxV2Lcb2UriplwiZ3E5kJgB/L3kE/R7uDjYKBRfXr2LEjivyRhx/BFfSnP/1pxMgR3FbMXOwebgdWBZYiJ6//3fXcBcwgJMEI+GD2BxMmTiAp7KFx48dhm3ILXnn55Rt+//t58+biLPnVr3/9+GOP8YspxoQSaMybOw/xcAvdd9993FyMHkyNISnLL0M8HYqACLQGAppcnbzLKC200ccLFqD7afHPPvtsBsLpuqH7GXeIxeK0/jTBt99+Oz11TuIweOmll7Ak/FqSrs/ofJ9w/PHWvEAT/PCHP8RJgM8503rwIzvOP/7xD3wbmB1oaLLAOYy6sh3Zu+++m447ahsfNengIMFhwCWUH1KhkFDDOJ9RJDTuxJ04aVKeN28RjYsxRCZN5ltQWPjTn/6EKKzywBTAZYK2uOeeezhEYXzy6adoiL/+9a+oDdz+KKe//vWW8847j3yZqLhx0yaIEYzDCy+8EG39jW98g4ywe9D9F188/YtnngkQioMyu+uuu5AQ7zoke/XqiQODXK778Y/p/YMR2ezyBwuja9diUrbnk3MyvAsv/Oc/V19z9ZVXXXXlVVeiy61tZ6OQAhv72F4/+tGPfvPb355++umcee755//3Zz8DCHJiMXEG3XzKKadgXbVp2xY3DDeaMiJYekZ+muxwCzAO2KGYWG8MYSAb+zaMMREWLSKFo48+GuuB9JkZcPIppxALjwfk0bJrVq/hKtYD1YCxHlZ2jBw1kqEHnCKAwm7Dpvn2t7+N9UCaffv2PfroowgZiYSxrjiTtGu8MRFbRps1sY466ii4keaRRxzRrn27nr16jh8/DiHP+tJZuHyw5zB5MW4g369vP24ino+lS5ZQc7AXFy1eZNNhSgq2EVhw1Rx/wglEpKqvXr2a8TusBHIBEaXmF6koF3FZH7SlrKxXz54TJ070UdjU9CsCItCqCMgDUX+7UTNHHjmWJpiWHaWICv/Nb35DG2rHHGi+zz//fBQAOzTc6AY6aqzZq4+ftofLnMkHtMv2HB304SNGWKWeFsrbRfF5WoKxA/rQk46ahLKhI8tcBwYXUFFs+N7JFPMFnVHSo8exxx47ePBgOpdML1j06aK1a9agHXlpAZ1tWnlcCDT9Ril6HXQjf2qhhM2abj2X2B8xfPi5556HcYCGwx+OCsFcQEEy/v3O22/jLUf3cB7LggEIRu6RtGzLFigxmsMQAzskgi319elfnzhpIvkyRkPCW8q29B/Qv7hrV7rR9NeZroG0qJyBAwfQI3/yyadwQlxzzTUXXXQRbgmyM3oxrf8fQad5yz1Myb3lAHbMonT1aoAgklXhX2Mg3zMakMEUh3/eIU51OKDOCcmrHejxP/300yBFDIKlq3+8NXTft28vL9tS5idlEfGLaiQwO0a+1OZftTskCAqsNNwznLFgOUlw4rKDbcHclNGjRllWnEUTd+/W/cMPPsTxgPFHFcLoQRLMBUajTERPJ2OlmFKTBK6R+hU/9fmTIJSMhLhVcnPZwdCxvopIliFo7Q8qFSGfeOIJILBD+txNLFHg2LRSJTPmFxUANwb1ykhLYbwi+FmOGj2KJwK3BF6KP//lLxg6//M/P+nUsaORU5sIiECrJCADInnb0VUMsZf0KMEXfecddyxesuS1117DJU7fmmWBaBN0IQ0r2iKbbmaW4YYCoLFOrzY0xxxaFZJ+nn2i2/Y94zyHNhZtOum3bdOW6EynwBRgh+YehVJZWUEwLJscz62NvsEssN6FbeXbmMBPEiXdS/Lz8jBcbI+ZuAhJdCJazUGHmDRN7kbGZKZmL3nCnPGumDModFJghyEMo05MXzyCdjPjMn36IAlMXn7pJROUzSZo/3hR7Wl+UWzWgmln5kz8HL2IRUIH99prrmGInbF2ArBt2LihfYf2NpYdvECZmeipvj77eDi+Pn06UtYvkkRAvyze+lWSMoVwzZoRNswURpoAizHEBZu+/0u58HPgKjBUTVJJABnDGZwFhaXhx03uuC53gUtwNvmSg+vk5uRa44Nf23FnUieC2SjcBaIQHp/Bpo2bmONCgagbRoC0jfAkS/FtTeOKST9ta3CQdt7Kaa+SEeYUKfz4Rz9iHgz11qwQiSeov106d0lPwRfPz8hml15qvGE/+clPJk2axB3ELnn55Vc2bNjIlB3s2rT8tSsCItCKCKj3kLzZpiMVMv3OSy655O577mFmHH1rxulxgKOKaMBp+ul2o3I2bd5Ez5JoVpGnVxajpTxNkKGuSIHlhekhM/ZpqVE2nGRMnZYd5zPeBTQZ7ThxO3fqjLbD57F9+w7CLFu2jG4iV+n007GmQ4lC4iSTEAhPRNwP6Hj0B9LiykZnEBdzh2DYPl7WDadieMqJuFaLWbVhfr0xCHrieLZvv/1v9/7jHw8+8CATBhnHGThwIMSIwpZRFnPoJcQlnBDby8s5gTDjx4+//bbbGKk59dRTUaEM/yMSGo6MMCn4tZYKnXJ27KwI44FI26w9wWiEGXEg27SciU52TC2EDOcpKfGYUIJqBCC+HzQwZ0yh+PWSXfTpp7wvsk2boh49epKg1fppuSUDm4herPRLdh95sKiIiDHkX926bSvlsodWfzPJ0a8PAGGWBq/H4N7l5ecVFhYxCsYUE0rvp2CFpL6xcseWkTMUxGNt7hF8dt3vt1eJwnQTUw1qanCGscJlQP/+hw0+jH3W6ViDiTBs2D5sCGD+2B1fGm8neSNcl2Usv/j5z39/ww14lahUlKVhQB2JgAi0IgIyIBrcbDzeDF4wkI+CpBNM28oAMF03AqGTmJ72xS9+cfr06fif6VgzBkwYOonGPvDWxTG1LRqLGgXgtcJoFy6xNJ+5C5d845KXX3rZ6oYGWXpajVYbNzsqYv68eWececZXv/ZVpiZYrUYHmndIEAVT4OprvscEAmZUzJs7Fy8FjnqWY+A/pwv78ssvX/FfV7DMj3TQzfQLER4ldMXll59/wflMBqRnTy6VVVXIEI2atw4gM91T9AZlJH3OEIUdX0h8G8zvowPNCDrDE+bdVnM+YqYFs/HRkWgmQrKhz/hlnimIUJDGPR5ycIaTeEVFJR5vnAeMazD54J+PPjp61GjUKkYPcAiDoUB83gJJ7tZgQieRcvLVEWnCWGi4H9gIbA/trxWC+QT//f3vMz3iqaee4jwy//a3v2XMvl+/fgMGDuQMEbmzrC8gDXTz/Q88wAseGLTC7WQSxT2S8hPYEplCxWKcJzz2GeXCMuNFWOlZYwdgXWEi2PEm3vzB3bHicetR1bhqsDuZ14JRCBwcWuvXrT/xC1/ArmJZxKSJE8ni17/+NRNQSZmxqp///OfLli5lRgsysGQD8wIzCKONKudJYtwhcOaX1EyhIhFb/exJznOS/dy8PMLDnOEzojMiRkZMOqFuUEkwWSwQfqnD1TXmIyBsVAngGh9PKMTwBCmzboWIc+fNY0HNHXfeyWAWGfTo2RPxqHUF+QUQZjYJU0+wtm0i+hUBEWglBDSEUX+jaXxpBJ999lkmrtM+0nrihMCeoMtLG4pWQNHaOQHEQS2dfNJJDKLTWNsNnYZVka7bmMB/+JjD586bi3ZBi7CCf9qx02ij67P09myUb37zmygM9MRTTz3Nadp9fgnMxusKeEM2yzTeeYeJEW+THRkdP23q9777XRpxXlfwwezZvDnh0UcfRTGTGpKzDhNL4tVXX2UZCIqf1PCXoAKZc0cAKycKnqSwHPBOp4sNB3SPySU75+vTv87wOWsjmU/68EMPYyUgD5MwcKgQBglJhOzqas0KT3bgVsRgfDjMvApMBKb9M4+PrJlKySpEBhRYBQBMArOIAJ5M40f7kv66tWs7de4887WZ2Eks4kC5IlK6VB4qhE3+Tf9jwkUi2EwM0pMUK0HIBUlIv2/fvpdddhn+GJYzEAot/uvf/AabBm2NvcMNuvyyyyiRVcbYUyRr3Buey4QgaFM68dxrnPaUGs/Bffff37NHT18M7u9xxx2H3XnllVdClUzJEZWP74e8GO5h0QdzSP9088233X67l2ecanDxxRdDiVy+/OWvsDKF1Zt4ZRAS7xF5sc8EEWaqQgYLIC8vF8aoeePYMKIZdw6/1uxjB8MLS5HNWg84nKgGiUQcS5D7/o1LLmEVCfM0qauIRzBWUmCXIJvFS7IkxSXuGmewGuPxGJjHT5jA/BgqFbYp548/7riXXnn5tttuQ0KMBuavMPvyiCOPeH/WLNxm3GieHVtpjYjaREAEWgEBGRDJm0zjiyOX5p52H23BLwoJnYGe87tWLFBkyhu9Ny59/vOfZ30gkVnrSKcTjYj6weDgVQo1tTXME+QSJ2+59RaaYHrDdFVPOflkdFXjSmXb/aFDhtLQozbwDKPYyNqqXvZR0Q888ADp0FLTFUYBYB98+StfoZeJmp82bdoDDzz47HPPLF68BM1B1qedehqdZmZE0t+lz03W+Cpo4onLyxkRgILQOcbLgg8AS4CTTBdA/1nZ0IiMp5ALXfPsnOzbb7v92eeeXbjw49LS1agx5DErDsKh448/Hr1LkUmfREiKdxChnzp36oTqOmbyMXSs8e0z/4CMsCHwB2BIMUJRUtJ96NBhX/nyl5l8YNwknItMAABAAElEQVTpbdpg2cyYOZNXa9z/wP1oxzFjDmceqFGWTZkLjQHaMyhgvOtvvf02neaNGzYyQIBsTHola2MKmC2EJNy4DRvWw7xHj57Tpk6jM81Vq9TtXEguoeCxYABC/x6DgIUf7773LjYB7gTUcLpUuXm5V111FfWBSkL6PXv2wnJiPaR9QQgWFdNoGGbCrNmwfn3bdu1QscdOO7Z7SXersNlh7S4amlsDzOIuXY4cOxZhuI94rbD/GNwBL3UsWlc3b/58Fmugy7GTeFG3eQGDyyssWb7blymu+KLgQCHdkMsaIoQnOw7PPuecnr16UXN4TQjTLSnXuLFj+/brh+PHvlaLxcYmovcWc14NcsQRhxMeDwQ2FpMeWLtBwTEaqJCTjjpqwfz5W7ZuRbyePXpgQGB5jBw1CiO7Q/v2PUpKdnZrdF4ERKBFEkhOyG+RZdu7QtGw8k0sFCGKjVaY9rp01SoWRjLvgfb0Rz/8EfPq7SVjc3i+dHq3eI6ZUIlWQBuRL/1y2m52SI1xDRQkbS4aAh+16Uc23EjnsEGDaNOJQhgWc3p63by3gM5l+jxN4lZWVLD8kq6wGXLwV/e5Dq9GYAEqXUgWKFrlRCYIw0m0PgXhJMKgEW0sLmHNJIX0vOLYTzYvWwQu2as2NZN1ZSUT/IvaFNnzSIe0JMJGykZab8PcseXjCN1DGARAlXKSrjkbh7b3jPUDGYZXZsyYgdWCAcGrukBHbx7lZHNpiGpPj0gWqWymyO+hCqGYMQdxTmDyMC7DdBCEJpgfwE8dyc28Bw+vFQNR2cDoh0nueFYO4akDnLE+DJOgGUcw0xVtMM5Qo5CH7OwZotgbwSE7MCd9LE57NfnrOlXVVZxMR2Fk86IQix1S5qovsD1pw9hg/Nq8amtqsfOQIT2wvZRuq9lbSTrIw62MRWOw4KYkU/bqM4dsybi8hzsapfL4hSVHbSIgAq2BgDwQmXeZvjv6O/0sytHq1Dasg0B1m5nz9YaXaUbpe3oROG+VFkfJ5jUUwnRg4wzuXzr6tPjpidt9vAh0N4lCu9y+Qwd7ktRCkfqMOIkCy6EH3HAjFifQIlZse2h/UVemK58SBj+/H9WXkzPkQ77+pfR9e5Vf1BibH8aer1eoRla8EhZDMhRnsBXSo3BozyAeG6HzcvNYHMv0BXweFAEvgh2JsB1iE6Zhmump7WLfArcB/BSQFjUPE9S8BWF/vSH/BomZKL5x5l0xsdLo1Yf2Skx4azrY81bfY6n5wTiTLhLnrVS+bDDPwG7ihswEBT8Rf8ePxRmblzlj66Rn0KQHMMl4kuAssSnYwPX7JoR3ZON6lRnytkQZZgFV3S+In0t6XbLJ6lcERKA1EKhXG62htHtXRvrc+ITxUY85/HC/0WywY4bNjUZsMn3bH6XlZXCBF1zSE20cLPkigTSV0zhMk2d8MdKvNnkyPUCg/T1JbU/CZGRKFD62jWXGpy95nTNvr8IAYmFntC5qjZ6M8Ht9aGXj7uCfZwyisMCsdmmw1Sv6hqeD3470+HvBJD36zvZ3kewuLu0stQbn0zjsa1IN0tWBCIhAyyTQoIPbMou4P0qFnsNPax3vwdLzbAui0CJjSeDSz/BA0Ghjd+Tn5Wd09YLlcgiGRqPDxFhdngvHloBxd/wD6ZMM9lfJbHb7KzWlIwIiIAIiIANCdUAEREAEREAERCAwAb0HIjAyRRABERABERABEZABoTogAiIgAiIgAiIQmIAMiMDIFEEEREAEREAEREAGhOqACIiACIiACIhAYAIyIAIjUwQREAEREAEREAEZEKoDIiACIiACIiACgQnIgAiMTBFEQAREQAREQARkQKgOiIAIiIAIiIAIBCYgAyIwMkUQAREQAREQARGQAaE6IAIiIAIiIAIiEJiADIjAyBRBBERABERABERABoTqgAiIgAiIgAiIQGACMiACI1MEERABERABERABGRCqAyIgAiIgAiIgAoEJyIAIjEwRREAEREAEREAEZECoDoiACIiACIiACAQmIAMiMDJFEAEREAEREAERkAGhOiACIiACIiACIhCYgAyIwMgUQQREQAREQAREQAaE6oAIiIAIiIAIiEBgAjIgAiNTBBEQAREQAREQARkQqgMiIAIiIAIiIAKBCciACIxMEURABERABERABGRAqA6IgAiIgAiIgAgEJiADIjAyRRABERABERABEZABoTogAiIgAiIgAiIQmIAMiMDIFEEEREAEREAEREAGhOqACIiACIiACIhAYAIyIAIjUwQREAEREAEREAEZEKoDIiACIiACIiACgQnIgAiMTBFEQAREQAREQARkQKgOiIAIiIAIiIAIBCYgAyIwMkUQAREQAREQARGQAaE6IAIiIAIiIAIiEJiADIjAyBRBBERABERABERABoTqgAiIgAiIgAiIQGACMiACI1MEERABERABERABGRCqAyIgAiIgAiIgAoEJyIAIjEwRREAEREAEREAEZECoDoiACIiACIiACAQmIAMiMDJFEAEREAEREAERkAGhOiACIiACIiACIhCYgAyIwMgUQQREQAREQAREQAaE6oAIiIAIiIAIiEBgAjIgAiNTBBEQAREQAREQARkQqgMiIAIiIAIiIAKBCciACIxMEURABERABERABGRAqA6IgAiIgAiIgAgEJiADIjAyRRABERABERABEZABoTogAiIgAiIgAiIQmIAMiMDIFEEEREAEREAEREAGhOqACIiACIiACIhAYAIyIAIjUwQREAEREAEREAEZEKoDIiACIiACIiACgQnIgAiMTBFEQAREQAREQARkQKgOiIAIiIAIiIAIBCYgAyIwMkUQAREQAREQARGQAaE6IAIiIAIiIAIiEJiADIjAyBRBBERABERABERABoTqgAiIgAiIgAiIQGACMiACI1MEERABERABERABGRCqAyIgAiIgAiIgAoEJyIAIjEwRREAEREAEREAEZECoDoiACIiACIiACAQmIAMiMDJFEAEREAEREAERkAGhOiACIiACIiACIhCYgAyIwMgUQQREQAREQAREQAaE6oAIiIAIiIAIiEBgAjIgAiNTBBEQAREQAREQARkQqgMiIAIiIAIiIAKBCciACIxMEURABERABERABGRAqA6IgAiIgAiIgAgEJiADIjAyRRABERABERABEZABoTogAiIgAiIgAiIQmIAMiMDIFEEEREAEREAEREAGhOqACIiACIiACIhAYAIyIAIjUwQREAEREAEREAEZEKoDIiACIiACIiACgQnIgAiMTBFEQAREQAREQARkQKgOiIAIiIAIiIAIBCYgAyIwMkUQAREQAREQARGQAaE6IAIiIAIiIAIiEJiADIjAyBRBBERABERABERABoTqgAiIgAiIgAiIQGACMiACI1MEERABERABERABGRCqAyIgAiIgAiIgAoEJyIAIjEwRREAEREAEREAEZECoDoiACIiACIiACAQmIAMiMDJFEAEREAEREAERkAGhOiACIiACIiACIhCYgAyIwMgUQQREQAREQAREQAaE6oAIiIAIiIAIiEBgAjIgAiNTBBEQAREQAREQARkQqgMiIAIiIAIiIAKBCciACIxMEURABERABERABGRAqA6IgAiIgAiIgAgEJiADIjAyRRABERABERABEZABoTogAiIgAiIgAiIQmIAMiMDIFEEEREAEREAEREAGhOqACIiACIiACIhAYAIyIAIjUwQREAEREAEREAEZEKoDIiACIiACIiACgQnIgAiMTBFEQAREQAREQARkQKgOiIAIiIAIiIAIBCYgAyIwMkUQAREQAREQARGQAaE6IAIiIAIiIAIiEJiADIjAyBRBBERABERABERABoTqgAiIgAiIgAiIQGACMiACI1MEERABERABERABGRCqAyIgAiIgAiIgAoEJyIAIjEwRREAEREAEREAEZECoDoiACIiACIiACAQmIAMiMDJFEAEREAEREAERkAGhOiACIiACIiACIhCYgAyIwMgUQQREQAREQAREQAaE6oAIiIAIiIAIiEBgAjIgAiNTBBEQAREQAREQARkQqgMiIAIiIAIiIAKBCciACIxMEURABERABERABGRAqA6IgAiIgAiIgAgEJiADIjAyRRABERABERABEZABoTogAiIgAiIgAiIQmIAMiMDIFEEEREAEREAEREAGhOqACIiACIiACIhAYAIyIAIjUwQREAEREAEREAEZEKoDIiACIiACIiACgQnIgAiMTBFEQAREQAREQARkQKgOiIAIiIAIiIAIBCYgAyIwMkUQAREQAREQARGQAaE6IAIiIAIiIAIiEJiADIjAyBRBBERABERABERABoTqgAiIgAiIgAiIQGACMiACI1MEERABERABERABGRCqAyIgAiIgAiIgAoEJyIAIjEwRREAEREAEREAEZECoDoiACIiACIiACAQmIAMiMDJFEAEREAEREAERkAGhOiACIiACIiACIhCYgAyIwMgUQQREQAREQAREQAaE6oAIiIAIiIAIiEBgAjIgAiNTBBEQAREQAREQARkQqgMiIAIiIAIiIAKBCciACIxMEURABERABERABGRAqA6IgAiIgAiIgAgEJiADIjAyRRABERABERABEZABoTogAiIgAiIgAiIQmIAMiMDIFEEEREAEREAEREAGhOqACIiACIiACIhAYAIyIAIjUwQREAEREAEREAEZEKoDIiACIiACIiACgQnIgAiMTBFEQAREQAREQARkQKgOiIAIiIAIiIAIBCaQFTiGIhxEAq7jxPmfzf76WYcyT/hXtCMCIiAC+5FAyHHC/O+64RB/tIlAPQEZEPUsDsKeNQMaPIUNLAMOvIvmcTW7sYRTur5867YdGZ4i1wnz7yAIrCxEQARaEYFQwjQ9bqoVwmpw3OIuHbt1KqArk5MVaqIFa0V0VNRMAjIgMokc0GNrOngPqN31DIb6hzLlWPDO8MPTvHZLfOmqHU44O10w1+FJTqWQfkH7IiACIrCvBPy2JREK1QzNKerUqSA3Esa0kA9iX9G2rPgyIA7u/cQo8IwE+4B61n7S6dBAjpBxLxA27jjRcFFdpC4uA6IBIB2IgAgcOALWu0kL5GY52+vcHOwGl9bKtysOXM5K+ZAiIAPi4N6upIvBOAoTrpMIOVW1zrbt7vbtFWWbN1fXVEWj0YQbi4RiY0cNLi7ugCux1s2qDedFnYw7RQp6mg/uvVNuItDSCRgng9n8toVWKitBd0a+h5Z+6/eufBlqae8SUawABHzfQ9R15i+ue/aVWavWl1VVVVZWlMUTNbFoTdiN5iRqulw5vQsGhOeH8J7nBjMevKfcf8gD5K6gIiACIrAzAnRsvNbGti30X5hrZfZtQ8SxGp2doWud52VAfAb33T6EsZBz3e/+npVfVFzcddjIgSNHDOxanFXcJRyJu22zQ0VpBoP39OrJ/QzulLIUgVZMIOQy1YrWJ63taXjUitmo6B4BGRAHtyLw/GHOs7zCcWodZ4vb4fghnX9w5eeYIYnBwHPKv4gbioSciDcBwhfOi+cfaUcEREAEDgQBz+Ngmxuz5ML+S2ZE62SP0yyKAyGD0jxkCMiA+MxuFY9iwolkObFcx/ENCKRhvlL981m/95nJqYxFQARaEQFWbqa1QK2o4CpqcAIyIIIz25cY1oZPSyHiuFgP3AYzZMGT6/kn7HXvyO7qVwREQAREQASaF4G0kfbmJVhLlcbOSfJLlzQojKPB2gvJPQ5kP/iUtCMCIiACItDsCMiAOMi3JMMySNoLyRe8JWXhpDmf2mRJpEjorwiIgAiIQLMhoCGMg3wrkpaBbxT4O43kqLchdh4mIxKzM9n2OHhGbB2KgAi0OgJ+56W+wWl1DFTgvSUgA2Jvye1lvPqn1Op5N2ReKpXucagP4dkCxijg3+6tAjcrHArzeqpENMynb+JxIpGytSn2UlhFEwERaBEEMBPSGxZbJj6OxTzueCg7wXsmzdzJsJnCbXa0icAeEZABsUeY9nsg84wmH+jGz3WD3Ai5Jw80qUTc+PatG9atXhqPR8MulgMtASu5G6SmAxEQgVZIwDMgMhoSlntlde3Rp2NxzzrzXlveGcV/GWFaISoVOQABGRABYDXvoHxs191WtvaNV5+pq6lk33dNNm+xJZ0IiMDBIJAx3830LsK5U479QnFxt0QoEnOxHRLemygPhjDKo2UQkAHRMu4jpQjRCgwcOnrYiJGRiIMBwfvr9b2MFnN3VRAR2BcCOCIb+yITidD2qlh1grHPLGM+mAzkgdgXzK0urgyIFnLLee5jCTced2qY9mAGLsw/vsXbVLvRQoqsYoiACOw5AYYoGm4cuzE3izkQtBbJORJMitAoRkNMOtoFARkQu4BzaF0KJbAccD2Ec/iep/fxXZqCRo3GoVUmSSsCIrA/CDTZkzCTrZ1wwmXWtXFPYEOEzEe7tYnAnhKQAbGnpJp/ONOhwOHAWCbDF0mHZchrGZq/7JJQBETgQBLwvoqVkYE1FnBV2vNmB0MieZQRVoci0AQBGRBNQDmkT3kOyLT+hpqDQ/p2SngROGAE7GCF53xINRMavzhgtFtkwhkzc1tkGVUoERABERABERCB/UxABsR+BqrkREAEREAERKA1EJAB0RrussooAiIgAiIgAvuZgAyI/QxUyYmACIiACIhAayCwB5Mo7fQau8wnicQcsNkrTO+1x7wZ1Z7fj782i4RZoUjiZp2il0vqlasmQ/7fXb4pEU0SKeFsHOYhM20okpqInEzID5QKnPybfLkjlwmYHtZEOBDFz8h/l4dm6YXLKizWYPAmKVMsK+cuI+miCIhAayVAExaN8zUMlnHy7nveBZFs01orD5U7MIE9MCAapNlAJ6F942btcCiSsiG8sEab+vrV29/1jw1vwzSowVyw13hLMxd4ryJvVzS63kwVTi1BSinyXedB9FQ2qb8mQvJDVpSCZJLemPTrTSTKZRuigahNBDy4p5AG+ROJWFYklOANc6zmNHI2LyEPLhLlJgIisCsCNN1ZWZGYaSxss6bmYle4dK0xgT0wIOorFXvmwFehlTWJdRs38emmIf16Ji/QRzd1kYCebk7LMBk57Yy3a+2A9LMmJW9L6r+K6ti6jZtrY7HDBvTMMjaE94Jm099m20mq3rUGP8bQQXKTXXoG1bFQXTSeFQ4X5nqnPdkbRPQi+Ke9QDYBSmp2jGlTn2Rm1IN57LlnElWVO0BEWa2UB1MA5SUCInCoEKBFTESywtkFoUiu15jq4zmHyq1rRnLugQGRJq3Lx1ZwdoWMHkanfrBk9V/+dkdBfs6t11+Xx9cgUVlcM7++wk2L3PRuAzVn4lk/GnueZo47zvuLVt925z341/52088KjJ/AKErvYtMpNj5rUkVmz1nCvpcLoUJRx3npvXmzP5o7oE/Pr5wylSJkWXEaiZ+S0uvXe/GNTwQtTZqN8/tszriRkLti+SfPPvNYXXUFNoReQvnZ3AflKgKHAgHTdGXnTTnupDHjJpuBDL9JbdT6HQqlkYyfDYHdGxDp1SmO+WAtBAbPHGfF5h0ry6NHDxtZ4zjZ3nAGlixOAqNZmypOUyeT+hdNbJQxQxSeK54EEnEXlYilsqKsetm2ujEjh8Y9w8XWdBuN393qbxI0/XH+GLmMlW2NCQ621bgzP/pkxjsfnZhXFEN+LzWTZsNEzRHR2Lxrnh2SDIy95HtCvBCf2Y8RMhHt06vkogvOCSfqwomEFewzE0gZi4AINGMCtGMJJyu/fdewS8tHA0mDQXNr2rhmLLVEa14EdmNAoDfrUtoTIzUeD9FHp36hOPmE/OLlpbVxd+zYCVTAGm9gIcfTWl6QBuU0UVLp+Bc4Y0YUvM14LkiTbzi4Tl4WnoAwEyu4Whl1lq1aE407E8aPR1arFK02T0XdVX23WZAOEsbi5jc3Yp6bsGep5OeFTj758yNGjxo+sD8Smscoab74aZsdMsVs4hIBMJuYMJGIOnnZRmD/UWPHytYg5kE88JqD7Kzcdu1yiyLMiTLNgKV+EIVQViIgAocOAdq0ukSoLk57nsW+baH9Nu3QKYck/cwINDYgqEj1g2H0y6sdZ9W6HctXlZZt215ZUd2mTdvuXbsOHdwjkhVavKy0oKBDu44lz8/4dMvGtZW1sYG9u08aM6x7UbjWdcqr3U8+WVSxfduUo8a3yTHO/5jrlK6v/mTJoq4lnYYONNMm1m+tnT3347adisNZuZs2rt+8YUOOm9O/R+cp44fmZnsGRJVbunxpYTgxceQgdDgplFXEP5i3oDZaN6BPj6H9uluronGlR9nzD/mr6px5n6zesGnTpi1bom6opHPHviXFg/qX5Oc4m3e4q1ZvzMsr6NE1e+W6qhXLVtTUkSmftHTccFZOyInEo326dRkxpDu2QtR1lpRuWVy6du36ssrKiuLOHUYOHXxYn06FYYc1D55z5LM0IbhtfM7bDYWZksKHva1t42HxWobPrIIpYxEQgeZLwMwfD3sNmJERX23jprT5Ci/JPnMCGQaEHUhIGhB03KsTzivvL3ro8afWbSqrQa86kVhdvGP7dt+/5jsl3XLXbtzqhrJvv+eBtSs/pZNeGclvG4pN31FxyUkTqxLO8i1Vdz/5wuY1K48Yd2RRToSVmNV1zhuzFj7w+D/POv+U3gN7om9fm/XB7Q8+FmnbJZRTuLVsQ5usrOza7G6Foazs0OTxQ6jLFdXRTevXdmtf2KtDKJJwVqzect+/nnxv/qKSXj0vvejsWq/fb6t8UuhU/Ud4Bla21riPPf36i2/MKttS5kSyttUkOuY5g3t1ufKyr/fp2W7Zus1/u/vBIQP7Th77tfc/mvPY489vr82uDsWqsVTCuYVOIreu8uIzvjBwUHeKPmPWgn8+88Li1ZtC2UXRRLy6dsfA7t2vu+pbo3sVeotQyPCzNCCwYbCuvDkoOZ95rZIAIiAChwYBGkyvi+E1nFgStGPaRGBPCWQYEDaaGU+gHlXFnRkfLrrxb/9gncK0oyed86XTCvKcx5969Z1ZsyI5kY8Wr9taU+lGsnMqIxdccE6PHj0ee+GNBR+8O//jhWsnjGjXsWh7ZXXp2nU9uxbnF2YZ7UpPPdtZvGwp++OOPBJly78PP5zLAuRY5Y7Deve++KzTcsKRhx9+evXapTM//HDC+CFI80npmg1V0UmjxpXFnFWLN9137z0r16zv3af3lZd/s3/XbFSlNZ6TZkNq7gWH9t+sD+c98tRTTl6Hq7/7vSNGdy2rcZ9/4oVVixcmQlk1rrNwyZqqmh0jRg4go8mTjzz88DF1obzaiMNki1tuf2Tt0kW9SoqPPmoS3pTX31349wce3lZZ861vXXbspP6byt2bbntw4ZyPnnv2xdGXnunlhiDaREAEREAERKC1EMgwIKwHC4s0hPO/vM59/MWZFVH37NPPvPC0Ce29nu2l5x137LSjsttkPfr8nFCWc8oJx3z9vKlF3uSADdvGYUAwohYLZRF9/ebyytq6AYMPw1DAaCDRrVXu8lWrcnJyunXK52Rt1NmwaUtRdvYXzzrjpBPHssKCGQbzPhnxwppFO6JRhk6IMm/Jynh2YcnA4XNXJR6+/9H1peumTp40/cKzOhcyR4JP2Ru7xAtoTAjPkk7eOY5jde7CTxfVJtwzTjll3NiuiN8jO3TJhSdWV34eDwde/o+XrMzKCQ8bPpA0OrXJ6dDGCLC5zn3oXzPXrVjUv3unb331/N49s9dVuM/OeGdrLHz+RdOnHt2f6aKd2oe+9MWzbl6ydMuWbamaYgTQJgIiIAIiIAKthECGAUGpk5oYp/3cJRve/2Tl8JGjzzp5fNuQUxQ3dkBd2OnfPa/ccT5dUlqYlzN2xKASb7YB+j5Rx6BBqLBdh+yCXPY+XLAoFg5PnHw0xgSKmXTLdtSs27xp8JBB6GAyXrpyY01NvF1e3lEjBnf1nAcVzJqsroyGnO69+zB5s7LOeX/uIie74ONlpY+/8HJ25fZzzjr77JMmFOU4WAOk4FkPyGwsHk9wc9esJucUA3rFXbtlZ+e89PIrie3lwwb1792/V68uoQ6FIcQrjzkfL13Rpm1hcXEnohAeM6I65jz62BuvvPRS/+KOl3/tnNGHtWde5/wlm2YvWVERSywtXX3LHYsLEnXRUF5ZtRuLRXNyPavKZKtNBERABERABFoRgUwDwuvEm/ELtrkLFsbjifEjBrcJh/K9VT702lmPwPsS1m11N61ZP6h3pz6dOuZ6KzXwByz6eH52OFTcuZhVAMxG/OTTZYVFbfr07WLdD6T83pwPa+OxIYOH8EoGto3r1ldV1vTo1W1ASRv0MHZGxTa3unxrXig8uN9Azuyodrdu2Mbsy9mz34sm3GmjBp9+8oROOWbYwuh7/vc0PzMHSY05EIhnN65gAOFmmDhhwjsffPru3MUvvPLam2+9nZebM3XikeeeNS2c5Wzb4W7bsfXwYQNyswwEcifWvfc88+o77/bq1uXnP7qyZ1GIhSeUFzdGTW0iPz/rvffeyUpEsxNujLkgoayC/OyhQwclszQZIpc2ERABERABEWgVBJowIKwWjiacVaWreTdUtzYFRREnB+2KkjavgTSKdtnStUVZkZIO7YuLcrkU817TtHF1aX4k0r24CwsoqmvcrWVbBwwqide6kTwzwREnxDvzloRz8nv17pXnvZhhzbpNvOqhZ0lPFn9iAmCIbN9SvnHVyrY5OYP7lGDFLFm0gbWcWY7bpXMxL6NcuWLFnAWlbUb1yo8YI8ZaD9bhYGROWQ8I6I/EdOuY/T9Xf/2tWUsWLV60ZNmKpavWPPn0cz1Luh9zzOB331vAi597duuCPwPxKuPOow8/9/rrrzOZ49LpF/UoMkMkCIZhsXrF8tys8E9+cM24gYQ1+QDBGCiO09bzW6SoGESf3YYB5d2bNBBNCJOca9rEFZ0SARFosQRMA17fRKYV01zwNtP/8g9SJ/VXBHZFINOAsGGpSdloxVgU/V23tSzbHRSKMKTAPP/szdtcpyg0d8GccLS6T3HnTkWm2qGVVq/aXrl1S7u8nIG9e6F6P16wLpKItc1v0yYrhGWAGl6xxZ1XWt22bce27dpxuKPSXbJ6Q9zJGTFyNJniZkDtl2/Z7NTUDCzpWdzWLPtcsGBuXd32CROOufDCLzz/4sJnn3rowX8/0anvNwZ3yCPN5ObpzdSBJwpPAeuaQ876devbtu/QMT/3rCmDnCmDSre6//2rmzauX7NtezkukPfffS8/O2fQQEZgnC3V7sOPvPDmjDd79+5+8VcvHDWgHTYCBcN+MmaEW5MXiZatXtF24Ih8z3rA3GGqR8WO6ux2+dnGWuG5a/LhrJfrgO+Z/D0nTLKlQHwDNTNfzn3WkmaKpGMREIEDT8D4adMefpoG22zRUNi380VcM3+8UZNx4CVTDocsgaYNCFuHDhs0YNb8xc/OeLfvYf1HH1a8fvOOl159df6i0i9+5Yz1G9bxJuhevXpGqJWMboTopi8LRWt69e7dvwcvguK90aHaSMEna8reXrBtQHHbt95/77X352/aXj50eL/OxW3RvmXb46vWbQhHEoOH9sU2Yb5Cnet8umrFtprqaSNHsACEbd6nizg5dlj/Hm1CF5w+dPO6Me/PnX3nvY/85qqv2QGDBjZzUi+aoQxsEdK8719vZGVlHX/CsYcN7MCrqOYuXra9tianIL9Xvz6Vde6nSxfltWnfoUMJa0HveuiVt9+Z07FDyQUXTe/TO39bhctsDN5D0SYvUpTt9O436LVP1j76xH+K27Y/enTPmlp3eema5198oUNRwYVf/mK3Ir6iYd7i/RlvpjHg6ed/62RoynpARINMmwiIQKsj4LXTTZfaNBymEVbj0DQfnd0ZgSYMCGs9YBic/oUpM9/7YOmaNdf97g/ZkXhNbW08HunTe1BNtG7L1rL8vEjvPj1sjePNjOtWrch2Yr26dmbJJnMkD+vfLT8vf+3Gzb+98ea8eJ2biwcj0iG3oHO7wg5FoZyIs6OisrKqom/P4i4dk151bIWlpatYWTFq9HDGStZvjG+v2FZYmNunS7u2ESc/Ejrj5BOWrVw856OPH3/q9a+dNhUJcQ8YhemZ0r7hzA5DDDg55i9ayesfXn1rViQ7kkjEq2prw/kFxx8z8chhXWfNW11dub17jx5dOnZ6860VL7wyIxTKrqvZ8uP/+XlOqCY7VJcVivXr2f2H11yd37XdMVOPefvTFRgcf7rl1j/VVEbjWCPx/MLc00/8XG5hrh3TaQZPnnn6aQh4x6aHgh+701A0H9POaoTOi4AItDgCXuNAW9Vgs40Bv143kL/JprhBIB2IwM4J7NSAoMJ1LQr98MpvvDjz3Y1by6JujOWX3bt0GzVkePv2uYePGc70hQH92psq6H0PoqS40+TxR06YOL4gx0wOKOkY+s7Xz3/13berK7YX5mT3HToYxVa+YcPE0YOxBsJxp2Ob/ElHjhnUp2eoltmOZj0Fgyb9+vVt16nbmGEdMUFQ5JPGDucFU0P7di1gzafjjBnY9qKzTlu0fC0fiiqvcdvkmWkK5IWoiGGqf2rfKvUr/uviDz6YV7pmfTQWys7J69Sx/bDh/caO7EPiHQsiZ544rXf/wV07hNYW5J72+eOqqqOReLwgksjJioZZYVpd2b1zxy6d25Fs/26R71xx/qsz3964dmNVRbWTndO+XX7fko6Tx49tBp6H+nvLZ8bCbizixLLCEfbMS8H4Y6hoEwERaNUEjGO2IQDTbCb4DEYk5tJYmMumMdcmAkEI2C/B18dIpHVb6cQzEMDvljpeSenm5YbaeHMCGD6wyzKZiMCcgEIzYGE+jcFrK5k+SS3MZSzNi7uh0q2udnE5uPkhph8S2Oh776sZMW/mYXbcyePjFN76SWZLVnl2AG93yAubkDtiDks6Sd98JDNs0qwlbthZsrKifHu540Y9jz3jJ2yMmSQoDKY0vx3aFvXq05WUdzA7stJlKWZuroP8DPIhc4GXFK+btN4LykIxeaUr774oyjKjERQB04TAdrJnXchAwIKpijrROheR8nNDJI4hQmr8Q9SUAWP2druRPutIke0L0x89+cjC6759EmQab2TK4tg3Po4vWVsRc+G3q41prHzmY9XSBW+/8WIiirBkggHROEoTpxoH0hkREIGWRKCxAUFLSXN+xIRjhoyaEE2Y7yzTBNqul+eSMC0pbUiuu21k/05j++fRADHfi1NsakRaUt3Yl7J4uq8+ATQONcRUDyoPShQdWRRycCpUOyH0N2MDvAEKdevtOnGWM5oEiBXCfxCh8+vpXbQ432bhzdPd80NZxPcMDhOl1mXwIivi1PAOqXCO8VWQh7dRO1n3wYIOtCBWABMwedNTmyzSMO41krA75lNervPH31+/bhuzFDyzOcRXrKn5psON8Pg5WDpx5PDBl33zEjNkQhGwApAn4tRFnTbZxojhq1oc8jBgOlBaOumYBe0xL7LN4g6KaREY0RLGnshGWPRzwuFdVNGIecUWAYw+d00iNnevECajJjfC+5vd55d/3kPrX9nXnXi8Lj8vu7AgNxFLhM3Dzwa2jG2nQmaE06EIiECLIcBjn2wS6ovEN/dyaDHiMfpluIVp5NQ41NPR3p4QyDAgTJ88WYlCpmNt9TtmhA1H75+r6E68Amy8iRLtzl9jynqa3gSz1ZDo3lemzHXPEOE3lJtMPC/PLgv1rvGDtUFSWA9ecuYsL2pwXJtpKhBOBhefWzgc/vpXz6vNQgTPgDAZGmXMxkxMPk2bG3G7tS3s1MZYD2ZL2SghBkq8kNZqYd9ewe4oTAlGcAprCRhZvT1GWJDEWAz8ep/xtNmlSsqDacLZWF6o5I/xahiLLGngcBYJzS8Om5BTy0fwIkzAbCJiMn7AP0yS6lLS/6wLB/Fii5BpLfx/6Qk1FjP9qvZFQARaIAHTziSbrWTpaJzibjZDt97bbsK0ri2w2CrSASaQoaMzc7PaJkPnpDRy04HTz/oR/R3/aoMz3kHSuPBDNFKsjHWYIQrHPWbcsLhvatSHN91tUkI8/hkXSNolu5ueKfv8sw9Nxnkb2H+e7FU/jN3xrzZO2c/WlogHFadF6ca6WCKb92oj5Mo11Ru21/Iyrmo3K2ZfquXH2dsdcuFrnFHXjdKd4OsdBga/GWLubeqKJwIicIgT8FswWw76GzQajPqaNsKs3jKHXrtxiJdT4h9EArsxIJqUJKMiNhnmgJwkY+p4KMTKh0bWtMnQakseBQLusT/Ojtqky0vsBkUk2QbHXtjGZ9KTSO1jHYQXLVl950NPrd9WV+sU1MZZjVJQEc0vj+ZFw/k9e/efMrV3KvA+/zXfK+UF24z+4I7EfJL1sM9IlYAItFgC2AysmTMD0LSq1gNh9uSKaLF3fP8XbG8MiP0vxR6naAZLGGVgnkSjKOlqPn2/QcBG0bwEd2MMEKlRvCZMigYZmQMTj/+zC9pnFXaKV2+Ph3LCboEbzY+EeTl4XjTKq7Q2btrEWEyPRnH34kQo4TkzImb0h80WyutU7EViiiICItCyCTC2Sk/MNhSuHVzloHFT17IpqHT7RGBvDYiMarYbFbxPIjYZuckMvZPWfm7yeqOUbISGpxvH5MzeFdcm1auk6PvfOZtJD2bOputsLnOratx1Ze7i1fF7n5jxycfznRP2iwFBMcgwXVgv/wzRGxZWRyIgAq2WQNJ6SJZfLUWrrQh7X/C9MiCaZU2z2toTzcpnTzRE0+gcQTNK0yiISaHJkw2TbuKI55OBBOIWeQtHmZXAQccunAgN7+UcNSby2JPVvLGhiZh7ecqKya8tU0bJ9jJRRRMBEWiRBFINhP1r2g3bgrTIwqpQB4LAXhkQzbiWWZu6oWW9K24U5YCVxiTM/xgI/AN06nE18nDGvHwiWut93HRXEga5lp5DkHgKKwIi0MoImMaCdRjJ9s+3ITKnl7UyKipuMAJ7ZUAEy+Lghz5gJkHgoiRtCOKly8TDigHBGY04BiaqCCIgAvuHAAOq9XbD/klSqbQyAi3SgGhl9zCzuLZRyDyrYxEQARHwCTAfPdVS2N6N/5s67QfVjgjshIAMiJ2AOQRPZ0UiMb7AHvFWqhyC8ktkERCBg0YAMwETIs43AFjzbr6dY+wGtR0HjX/LyEgGRMu4j5QCf2QsHEpE+C6Z91ZvU7CM12W0mLKqICIgAvtGwBgQ5i25LP+207vxQJjjfUtVsVsXARkQLeZ+8+jHysvLVq5cEY3VeUu8aQvslz1aTBlVEBEQgf1FIBSK5Pbs0b9r116JBLMp7btr8UrYsYz9lYvSackEZEC0kLvLQ8/rtbZsKH3hmUdqq3Z4H9Pi5TDqT7SQ+6tiiMC+EWjsjeR1tfknn3xm7+7da103buwGmQ77xrj1xZYB0XLuOS6IYUOHjv3Fz7PNR7tsf6LllE4lEQER2AcCmfYBb9mPu5HqulBtLObyXUQ2+R72gW/rjCoDooXcd76GU5fghfaRWG08lOCTovge5H5oITdXxRCBfSaQaUCQYMIJJ5wszAi+ccwkSt56x6cx9jkjJdCKCMiAaCk3mw6F6UbQq/CbAPbkk2wp91flEIF9JZDRGpg+BvMgzMiFaSkY4yCAPJf7SrlVxZcB0WJuNyuwaALC9vPg3uwH71s5siFazB1WQURgfxJww07yG5xec5FhXuzPnJRWSyUgA6JF3Vn6EJ7/wfyoPWhRt1aFEYH9TMD0N0iStZt2trXfdOznfJRcyyUgA6KF3dv0eVB6K0wLu7kqjgjsJQHPOMiM6w9xNnk1M7SORaARARkQjZAcyifSvA5mN+3wUC6VZBcBEdhnAru0EtRU7DPfVpmAcWFpEwEREAEREAEREIFABGRABMLVrAOzEItNL6Nt1jdJwolAsyEQMpsnjRwQzeamHFqCaAjj0Lpfu5eWedUhs35TTcLuWSmECLQSAoxfNDGEweRJb9V3KH3qVCshomLuDwIyIPYHxeaRhu1N8GU9zX1oHjdEUohAcyHQtAHBNCm+vWe8lk1YF81FdMnRjAnIgGi+Nwcfgnm3C+962enTne5m4G1yTiIeq6qs4CO9MiKa732VZCJw0AkYAyK9tfAE4J0xBQVFWTm5MXPZeC5NS0MPxAblwEaxp70odsFn6sJBL4YybGYEZEA0sxvSUBxjQ+z0Yc2Yv8JD7y7+dMGzzz9TV13pzYQwT79tARqmqiMREIHWTsCs4QxHjj32+AlHHUM7gfFg3itlPsmX1uR4BgUBk6d8k6K1w1P5kwRkQLSYqhCKJxL9+g04/+xzs0Ku94a5kH1NTIspoQoiAiKw/whgQGS1ad8xYfyVtjeyu+7G7q7vP9mU0qFBQAZE875PpgeAA5E/Zi9tM9Of0g7ZdRnOzMnJ79mrH9/ytk7HDB9Fw/A6EgERaNUEeBNlNO7GEny9N8HcKRoNM3wBEtu2GHPBa3kY3WjVnFT4nRKQAbFTNM3kgnEmxBPhSKNHuNE6C2M1hCLRGII3CtxMCiMxREAEmhcBM+vati7eLOyEaTuSbQvWA64JMweLrojalOZ135qHNDIgmsd92IkUPL7Wz2BdCmmheJztFf+c6St4XQgucNXMvDSPfUYoP7h2REAEWjUB61hg7mSSgveXH79tYZ+Gx2wmhGdBeHsyJlp1vUkvvAyIdBrNa988sAmnpqqufGtFIhxvJJz3QDc46z/d5hIH6jc0wKMDERCBFAHaB+8zWkl7wbYdXrNB62HbFs4l8kIVsdqiZG8l1eR4g6qpg3rTov6MMTm8o/pTqXx3/zclSiM7xVxIpPpEqcYtlZOXrh91F7mki+SHTz/p5VJfYi55AzsZQXaWg5+kFchfD2fPW2stOSSUPGXKmdrNSJXTJtvkn4yLNoMk6NSBDbqHstqkSd8Lv+eR6gWRAVHPotnt4UnAeRjPjcTzQ4mchuLtzc1umIKOREAEWi+B9BYkbd/u2l+UUTwcipgJEta3aZQVuy6zJlDkYSfsRzTztlnBkdzMuCtzsriaUvOpK7v9S57+5u/bmRmenquJJj6at3DL9orRg/v36tbFE4cIRk8T3I/hp5G+Y6/6UiZS4TPKTJT1WyrnLVhIkY49ZmyWk8gyiZtQ/G8TsVHSEzcXjHng/2PXy8pEsCdNfC8dc8huwgA0w0UudpHZSaZqDmxiJqrN2UujQX5+svWyrFu/acGiJfk5kcmTxpuwJuvMjTGqsD2fJMaBt+yfVThWgPr0MuM2PiaOtuZPwFSnhv+av8ySUARE4FAksHsF4o1phJl9yQskoq5T5zi1zL4KOVF2HA5DsVDYV88WQVO6bM/ghNCuJkPUbdQJr9paffcTL/7+zofW76gjIzM9w9O8Nn30mf1ny+A3mjYne5ieqw1GXP8fYte4zqzFa//fA0/e89SLFId8ycUGSI/bxL6fSlITW93PL7aBnUxCJGMReLNKktYDZzwzwshiE7Ca3LgF0iXOOCS0NTlS5+E/6+Nlf773iSdefos7YvinLqVrD85Z6exfD5eXoReYKETc800eiD1n9dmGNPddmwiIgAgcSAJ71M6EQ+G46/zgut+UbihPOBGjdeKxwvx2nTp1C0WyBwwY0KVL+2nHDOtUhIqr90vshdhWn3neDqPYal1n+cYdy7dUlzs5JQN7xrw+e1LdptQiOaYrew6NKk3l7V9ND8M+5+0/AmMGrSirWFsVnzLqMPrmsbgTiWSqVQI32tIz4aJxMPCHqampCyaS578xWKy/IekFSDNQbMpEQRL+mQQ82Wwx/ZLgSPDETlo27Fe5zrJNOzbWZU3tP4SZ9D4Wk0ZqIykjE2J40b1dY4YQnX/+5qXsH+1qRwbErug0m2u2CjUbcSSICIhAayVgNR8aaNDIIwp61UVD2YxWMGgRqyuormZdaPi1+ZXVNesef+Xtv/7mG+2zk5rM6CirG3fLzcywcBk7QQvWxJy6OrcwP5Rj44acDeW1GyujA4YMi4Wd7VEnWlXXJj8nN9ukbQYaTFwH44bX8qLbbCTS4QznCWD+hBw7oYxdwpfviGVnR4ryvcUmnAo7VXXO0tVr8T1MnDjeJBsx6RCFdLJTipniGMWevtnETXETjOBghYCoNupUVUfz87Jzc5xcL3OMIZs7xoHR5YiKPAmXYSLOkywnTRKekDgSKqsSvIwYArmMGMW9QaOwU03qDI+ETImIRVLItqHCXVhaVunkjDpiPGdskfEP1da60agbiYSKCk0ZIUn6FJQ0rCSkVBdDTjcvN1SQ4xl8HqX0wu1sXwbEzsjovAiIgAiIQGMCZkAB9Tj9/C9Uu2b8nMNE3InXudXVRplt3OK+8Nr7r7+9Ai3IMEe2tTgaJ9PkGZwZIafODc1euHrW/CXrN5dV19QUFRYM6dv72GOOyM0LrVizsSIa6jtw+L1PzVu/cnlNRXmX9m2Onzx+/PASskZnv/T24o8XfnLk6GFTjhyAakS2pRsrX3pjZvn28iumn43GXVq647lXZpT06eeGQ0uWLNu8qSwnO2vYgJ5fPuWYwiwTvqI6vrq0tCASGjuiF7oWRbtiU9W/n3uxLh6fdOSoiaMGmvloGdaDAZIsTzzEUItTumnHCzPeW7W+bPuO6qLCwjHDh3xu0vB2eaHKqPOfNz9ctnzFCVOPGdW/c3YIuyFUF3Jmz185Y/a8ko5tTjxuSrvCUHmNO+O9OQuWrirbUh52Ij26djn5uMkDS/KRB1vh3UVr35z10dhxYzu2L3z/w/mbt5Vn52VNmDxt8fqy3ML8Pv07IkB1zHn43y+u21ZRUVEdi8WzsrK6dy8+lgL0aW8MFMf5dE35Uy+80aPvoGgsvnTZsu3l5UX5+WNHDDrl2FGFe3zLZEA0WYsP5snGNXHvc/ee5VRFNsnsz8T3XizFFAERaBYE0hsHKxBNhPEOsPG7J+2FF4whfa87nvKEM18wlBeil83Vnh1D8+dlJ0IRrAf6s6ab66Vrc7FZpP96mZsfgvOvJuE88uwb9z3+XEUsjKkSTSTC4fBrb83qPWhon5KC5avXOeGc5196I1FXF4/GuJQTSSxbu6HPty/uUZxbEXNeenf+O++9061Xb9Oh99T/J6s3/euVN3Pzcr7p9ddffv/jB1+c6WbPYtwgTurmPVrOmx9+mJ2X/aUTJxKloi6xft36HsVd2mUb4Rev2v7rP9y8qXz7iOFDS3r3taXwZU7b8cqE9eM4Hy1a9/u//t+arTtq3Kx4KIfZlK/N/qQu7p5+wkiozV5U+srrM9t26jasf2d44YHYVOU+8PTLsz9ZfuqxEyKFoS0x5+Y7/vn27A9rEqGs7Pzq6lgktPjNd2f/+foftC8I4Rp5auYHL858770l67aVramsjkXdRO++PQeOm7Z2W/nIgX2yc4yRMW/pugef+U+lm+ut1g3H43wsaeHb782+98bvY1cR4D9vL3jklfecvPmxRIxxGqR3E6F35swpKMr7wrjD8LV45UkrX1O7MiCaonIQz6V9Kst/vvwdX449uZW44xJ428KJmHFUJas5j/kexfVz0o4IiECLJMDrJjPKZZzwboTVE6jJuFlGYdqKjM4nDUnyX+qC/WvGC3DveynaAHasnjzo/rqJRJ1bsGJNorogRMjCIvOZDVKP0JsOh/JyHWTJZt9kR2yTLzKg1aoSzlOvfnjrv17IL2zz5RNPOGnKuMKC0AtvfDTr/dk5BXlVde6S5SvyIpGRfXpNGn/44MEDFi9b/5c771yzcVvt9orc4tzFZfGNZeU52fnDBw9BtnjcSUScdZu3ba6oOfqIMah2cnx/UWlNVnb7dvlHjx5x9IQjQ5Gs2x95ZvnijxetW49uZluwYm1lbd0xw4ZTkJnzN9x3/8Obd0SnTjzq4nPP7NU+RLJNtqoYIlygFPNXbf/jHQ+t2h6bOnXqGaef0raN89QLi+9/9Mk7nnp16vEjc10nv6hdJDt71epSNz6J2RWVjvPiuws/XLamsEPHM848pTrhXHfDAx9/unDiuHHfuPCLHduHPlhY9be7H1y7dsUr73x82nHDt8WdOYuX1TlZm7duG9Sn1+ABAwqK2nTo0qN0+WonWjeyf3/uKAUJ5UamTJk4YvS4AQN6FxU4Cz+tvfue+7aVlS5aWTa4V6d42Plw0frKSFbXzkUTRg+edPjYivKq+x59dvO6le/M/fi4cYdxS7AhdrvJgNgtogMbwD60qTx4lprcdnY+PbAbCbtlm9YtW/xxLFoZcqnJbE1W9fRY2hcBEWgNBGwbgo/f30KhcFa//kO7de/rhlA69P65mnY9FZBL6dFSp+uDEocw9tcuEezYqbub2/1Xt7zUtU1OTjjRpXN7r1cTZ7Vnbk6kU7v84nahk48fnufZEH6CtFlry93HX3mrLpx15UVfPWFcryLv2leOHzP5yJFFbcKLl2yrqqoYMeiwH13x5fZtWWDq9Ckpuec+zBKzrhT7AJ26ecvW3JycPj1ysRVyIk55rbN2+cq8UHjS4Ueg7RjpX1+6tlNBwUVnn3XipAG53qKD/5SUlC77FEcHFky147w+e15NTn6vIaMff2PFE088nqipuvCsM04+9ogOGEPW2PElTtvBJ0MvvjbuzHjng9INZeMmjLv0olPbZzk1jjP5qEGPv9huxdZ1Wyvd3kWhkm7FWeHwlq3/v73zAI/ruO79LrDoHQRAEpW9iqQoUaIKJVGdqlSzKMtFsqzI8otfku9z7C9x8vI5730vcdqLHcd2nDi2JKvYKlShJFoS1SWKkkixiF0kSIIAGwCCKETH7vvde3YHF3cX4KISWJxL8O7M3DNnzvxn7syZM+XWd7AgIt5TWdv18htvwfiPv3nfhCzvW+/v3XfocFFh0ao7b5uUbS0EWTA3tXh6WeXRA7WNjeSxvilQV1dXmp9zx80rrrt8VpLPUuMI/7ufvpLhi7tw0Vyr0Q94pk0pePCBu042BaprmveXN58+7Y/3xTPTlJ6U4wsAVKDiUFVJdu79d9916eLJ6AoJntwtOxe+VV1zqiXYeTgy16tTFYheoRmpB/Jik5q8gPImul5jQ9OXUPEsHPJ0tbQ0+DsabFtdRFZ9cdBnioAiEHsI0JpIg2I5Qm0Jtk9vXLLH384hDyz6Y5ch/0IP+42B3REH2TPvkJOb7/dl7attPlzbkOz1+w7Uef0dHCiBaYLDdRM9LZecW7Li6vnO5IiFDePzLyr2VFVfdMG5l9vaQzKCsJnB31WYFc/uyh279+BfOHd6SZaVjza/xwfLttMT8koS0zMYdlfXnWo63bRoznRUB9u84fG3BWqOHMlOTFy2eEqqx1Ne0eBta5+Uk7pk9rRszvBGpcB+33iaZYQTCybCE6vDpr0HO5Iy137w6b5dewrS4v74vvuuPa84wxdkCI1TbIOUBLa0BT7auDXOl3j/vbdm+qwBHH1zZponLz+n4lRFl9/D+onigglJ8b7TzW0nmwNoDE8882LlkWM3rrju4nNyW9s9m7duPd3a6qlp+8XPf57ob/F7vZ2+5N01TV3erswsS6HasmUPppUF00tWXDozy2dtoyVppo+qyvdPzs3JzUy0DNABz+e7jj7/6traxoaWlvamps6WNi87ZUpzcssmxbEY80hVi7ezc2Jq5pLpk2BqKxCe5KS01q74+ORMGX2arPXhUAWiD3BG5JEcFMurRy2wJhYHfjHHlptfdM11Rb44ah0GNYvjwNlpTEVAEYgtBJzNAf11Z4Cp8TgWEqBM0Oew4sBqNZxE/c8+nJjUP7B/T6DlyE2XLLrusjmMd9mAsGBmHIYCeNPG0W0zr8GdP+fFo507dwe6Apedt4hejViE0CgmM+NhD9Y37Njd0dk+e1qRWAIYMW3YeiDQ1VVQMDEpJ6Gm3bP70KHTHS0XX2Ido8SeT7rVMnJIMgAAPnhJREFUxua2g+XlWRNyxNpRvn9f2+nGvNKs4hwv+gRs66s7m0+dTEuIP/+c+aRYXhNgp6g3MfWDbbvS4zqXzV64ZHFxSkh7QNdCINEVnJLjJuOg19LuOV5dW1ZSWpzhtbQfW4auVk9b06mSCZkFmVbg3OL89ITEmlPNB2o7tlecfuO9DWVlU6697CJ0i6r6roM1tSe9nQV5+U3trbaBxNvZ1ZmfmZY7KWfm1BJY7ti52++NKynIyeMxGLJSlYUaVR3V1cfmzpmTlp7M7tb1G3f+6skX6poaMrPTSopLzy+ZcepU21vvvltYXNTRYe1K3V3+RVvH6Un5xSWZ3hQb55NA0Xiqxd+eXZBLRqK8VIGIEqjhIqOrR92zNL7Qe2u9M+4a6vZHksZ6N5nza+2ylsPgtuNYLYNeioAiMO4RMA1BsDFBgbC2X6IvWNOo9IsWQtE0NOFIEkvOPMDBH61ZwNuV6G389lfn5iR7EwPWRgxLabAbOdKRP5tPd4KoHdjhj1RVJQQCBVkZjIDQD4QhLobIzA7sOnh4El1rdiaNpFyfb9/t9SUWFBUlJHmbmgMHKiqIMmvWNJLAIMF2x53l5R2ewLxz5tEpNnZ5Dh8/EvB5pk0tRZ+giST3J+tP1dScyEhOLJuYDtuDe8uZCMhM9S2Yv2jj1s07d+35YMPMOy6dYa3eYLWI9clSODlyEJJEfo/W1LS0d2RkpKMhWQ07Z23Few4drGutq50zJT8Be0mcJzfDm5GWVlPTtP3A4Q8++MCXlMrOi2lF1k7Vxpa2uqaWlOTkf/37P8myESM7pMcdzQPxLIiOHo2Li588MV86b1KBYPPWbQGvv2xqaVqGt74l8MTqV2pb21betvKGay9Kt/WMZ17YnBIfN2/enM4ET3uX59DRqg5/Z2nJJOGJ7nLkhL+isjwjxTt1yqTo1YLoKXvipL5BI0B1oei7PD5OEKNa2F4riCIJfnqTWhMMNw+tkF4uGgI+rGfZJTFq+K1P5PBKwsLm0kscDVYEFIHxgQBtiDQj3Q2CdSKANaZmyEEfREtBw+MacXSPZcLbIMOIETCWf7lghJsDC+ICTfRcjPIxA8AaYvoq/iw+1n8CSBeX/FmrLEk+OSGeCYujlUe8c/KgsIg8nsrq5vTM1L2Hm1raOwtysnMyLJbScR48fDwhOTUnd4K1JNPrOXbsREpySlqatVUB5aChNbDuow3t8d7Z58wj6ZrmQEX1iVZ/G/oEnCHp8nqrG07VN9WfM3NqLnsuOjz7d+5KDrRef+HSe++54tW3yn7/+yeef+nVi+Y9XDQhkR6edO2Nq91ZsdjYl4iawnrROO/hI0c4oxMo27ye5rbAmjUvJHW233HFstQ4C2gUo/z8/PLalpfXvVVTXX3+3HlXXjw/1S4DX0KSz5fAYRoH9jYsnZWJ1mXLae2MhVVBjvdA5enWlubklOTSkiIeoVdxB/At23exQGNi0SRErKomm02FM8puuvlirAtcza2BrVs+I38lJYWsyWhsDhytren0dE2dVmZpOYT4PW+9/8Gp2qPnz5t6wYLJZDPKSxWIKIEaGjKpDfLGUDkWzC5cv2X3g9/7/ZJz5zNpV5CfPWFCVkKgtTg/c0YR5jTr5eKtiGdjMYqv+wovZQ4wEeuFvPZijKSu66UIKALjHAFrWBHqj0JQWCHWZR9fJA7bH7xZDRUnI9jjkJBZVFode+xOv9XYxvL+6q74xBargWKyImHH7gM79x4+XlNj7bNgNMNBldYhzhZHi52TvWWVCApAMB58s6dP/eDz/Y+tfrWkpPT8udlVJ9qefm41pzX8+Xe+s3Pzlgx/+6yC/GIWL9i6SGV1oKa+PjclYX7pRBb+oVZkJaYfaq5/dPXbt9x45eadW9asWdtwsiU7a0JufgGqzJ6GVtZkZKQlL5pnHfCAeZZljOWHyhm7X3ThEjrjlgTP9gP70tOSz5lWXJjk/fp1U4+Vn/v+hvV/85P/+Je//ZN0ryfdyo211sydFbhhzPF6szOTM9NSj544+fiLH3/l9qUVx/3//MtHjhypPGfOlPPmz2ReBtAY2M2ZP++tHfuqjx9jNcR3vnFXQbrXbu49Bcne0uy048erf/Gfv0p46BsLZ+Ucrwuw5/PVdW/eedttt15z7hdHqk+1NOfm5ZVMyQZx6RVau9g5Up6UkpidnQz/5q4WzpY4frTuwKGOnCzf+vVbX3x5bWtrW1nx5LziHLr8gyeaDtXWxqck7zhUVTS9pKGx4/W1b2z6eGOa3/P9e+8t8XpQO6LUDKIkswDTa6gQoNSpgtTX//PdZS+tLfl8x55N27ajCLa2NXd2tid5OuLbG7778FcuXDwdAwUzguxWthdIOtPv+SY6n3S7bRqpYt2B6lIEFIHxiUB3b917/l0NC7sgOSXBHRFtgWHr9/7qn+iK4pIyu+J92FAtHSDgS03L9vmSCifl3nrt+SmsZAwZGXjck7X4QmF2Z4jZ/6ZrL/ts76Htew/+9f/9x0RvZ4e/PT0lefH8eRPzMivL96UFOqYW5CXYcyKnA54Tx441nKopys+fMTk1lQMnvJ75M6YdrK55fd26N99+zZ/kL5pY7K2nE83MzshA4Pq6Uydrq+dOm5qRaM+ncMhEe2Dvnl2eztalixchwsGq+saGUxmJKTNKCpgyYJrj3ttvPHascm/5vseeWvvgPTew+1HyEZLbyrZcaA/05xhHbrv5+t+veeOJZ1984cWXOru6OpLSFs2Z8Y17bi/KCS5MA00sAfHezuS4uFUrb5ySH0eHzSQCEhblxN1+/VW19WsOV1X91f/+e46PDAT4rog3b2L+vPnWmtOjx462tTTNmzgb6w4yiBiHDtbQR6Sn+komTaBHn5yXWjopv7zi6N/89V+x8SI+PjUrK6e9uTl/QibLObnq6hpO1jXGeROefmb1s08/RXeUlZo5s3Tq1+5YOXOil44JtS/K9XjIpz1MsAaMwI/9mljpUPDY/VhFTDnVNgYOHA+0efzN7R0tzW0+akxrw5LZxUX5iUyhvbmhfVd5dVecaKj9ldHUsf5GVHpFQBGIJQRM2xN9prA9dCV4Ty6eP/niBTmJ9hJIiYylk5V6b398oKbF60tNZwMkh0x42Uju8WSlp6cmxxdP9GanWKsU6c8I5E+6urC0pfcJPqQvauJrF7WBT3dVHDlxoq21OS0ztawgZ1ZhwfTCzI8+2VHb1Hb+7NlTS9JIiaH2oeNtH2/fMzEr6/IlZWzHYINHRU3gjU+3H6up9sUHCqcWFhcWVZVXTshJP/+cUobe+2u6Nn++dUph8QWzLf2AKKyKeGfj5yfbOlZccV6m11Nxqmvjtp3MiSw/b3panIfTo+sDns17Tu6rqCzITl+2ZFoG9gc7L67s4BVzCq360dbAx9uP7NpX2d7akJ2TWVBctHhWUUmGNw8LS8D6Ulc7bK0Dr75oC3gvWTh9ur2M0dpHiwmEVZ9+z57Klp37Dh+tPdXYynqI+OJJeWWF+XOnT6AP2LGvpqKqqqio6KIZeXhJFBwO1rR8uHVXWqLnkqXnpSR6mvyeLw7Uf7JxS3XtsazMtKKiaZMnFx04UD59evG5s/JRIZ56aetvn11z5VXXTC3KPnnicGJifGnRlFlTpkyfFGctDRFrUFhRRQxQBSIiLMMdSGWxZhlQRflD8eSPmid6PnWCtw41kErJIuH9lf7quoB1ptuALldFHxAPjaQIKAJjHIEoGwJaJbsnM7mN97YXT0wu4yNZhoPtkCYLw4M0YtxFUeDOBQktGE2ZeK271ebZz3rceobaegk9ImzbUQjgEBfkI6Zyvu/ASJ0pAFInJgSsdaAfxSZhtadxVsRG2lI+f8V3ImyNR/p17vzRxnLhgAkMiUIIS9C4IxqBJC1sRXiJQiDJbd514mTdSVZQEgtiBt5QmgvjQ1Fe5twZpQl8/Nvmwx4QGu04TvazJURI1CnLcmMLj9j8kS56TLptULGeYW72xKGZkQsLBBJjn6rXg+rGBTG/MBcURXuQEB4RBTcCc+GGjOgdndaGC3DgEdyJiAMzyI9+svrTz7b/04/+en4ROzotYpNfaGBi6G1+fd2kXPqi0GdDioCpdWj31ukt2L0oLdEY5JkUM4FcFC3nhKQnMpcYJoXhFPbEGRAdlTOGuhUBRWCcIkAzI/2T5N9qpAI+jmSymh+aEp5ZHbVFQgitFnf88idxeSYUePnDA5Per57P7M0axIKz9dWH0AURPiEVnnhIRUjoSq0tZ3YIHSEjbE5noheEXv5E28AtvR2xcFj54BhOL7si4vDa3LrkS1LSSUMPJVoFrOjsn/rtb2qa+MyWlSaPWD1iLwwNisjC9aULZpYVr8pLR5mxYqUw8cOUjv2cOPyxrBI/cVFuILCY2D03MgfpLMGtcC4CWVaJX7zcOe+BySSiCDdLDouYSRUmHVBUgh0/wpMdssyKkIDF2n2dbg8crzw4IT2RqROeJ5IRe+ctScCTO19lD9gIuWNG8gukkZ5o2DAgIIuR7TohtclSDGyXXTFDKdqlGFQ2UTKY1Ah0SIUJUUT1K2yiIlUiRUARiHUEpKWJPpesCrQmK+iS7CYr1LlZLZa1LNLa1giz4DMHW+u51XxJvxhUOcLJHDGMEyohNI5Q82hrIjZniGFvj7wsYtmwbgfyRQ42aVq9KdMTwcvqHem7ZTEG9PbWD/hweWWjqD8+YE3BkFPbkIGBI3hZnbE9xoP8gfu/0uJNavdxFDUdbsAKd2hGhBRmJGWlWT02/4NZDqbCRDQWhXhMHZZdxM4gd2nQLQDlkoWmoa9xEgYBT4MWAjsDmCVgRSDbQUWZYPknZBbYbMm1CsWSHU+ntd2Uy4LH+sVjlwjR/R2dqQmdM+dOSYv3JGDxsAwW6DP2ZcWmuDGCkIiBIfgw4o9OYUSEZfgC7ZIMsu9224XdI1FKj8Km6h056q+vZxOG1LceNC5PvPXiEIWFl6b0o6oELj7qVQQUgRhFoEeDgMda+kdTY9vPzUDYkXeako78vNTJ+RYZfZTdUtFz9uDjoO92djdC3WHRulxxu7128tIXCi8rC6FAkZ91Zd2BNpG1pT0ksD2GN2JAGIyMWmD/BfvgbuY2Bb04/Sp3/syjkNP6hZHYKkiqWwEJUgi4QSGkHSdVIzVxXZc8IrBbPpteYhEIE4uppRNYCoTkzioUOyb5DXHowVuit3cGTpw4mZSUnJ+LCgF67NiwOg7rssjpdiCEa4+49uMIN7VARABlOIOcpdLt7naFKlZPGRy6bs8HTp8f1cE6CwJNNFR/grXUSaVuRUARGHcI2LZzZzNjIWBvHJCeSO4QmKZDIOpuShyQufk4HnU7oyLqJu/hcsXt9oZcoV+7lzMe2yc9tLP766nudFPbSRqvpTqIxwQZmQjBrmCZF0KXCyaCg2P28Mii0IQiyi9UEQhDNM5Hxu2KIrIy/2IIrNi2x2QkxK/Hr8/nnVI4oTvIaA/BoCB+3QR9ulSB6BOeMfWQOTI+bpvAiSo0A+iReikCioAi0DsCGB6sI+esXXvWKN221kMd3jn2zuIsPenRaw6FDH0w5FFohD4UKQ0pjz7EHtJ0emWmCkSv0Iy1B4H4+LjGhobyA+WdnUxinfWqNdbwU3kVgVhGgAYhvE3wT5kyZUJeHp+awAShjUav5W/mBITCAjIczF5jx/ADVSBip3B9vvh9+/f94he/aGpqip1caU4UAUVgCBDAxODu8xJ88V/5yr033XhTwM8GSQwPEMjfEKQXQyxApqdVxoLKDWYM5bcfWdFFlP0Aa2RIpapSPR2LKNvZcBRF6tYXcWRVVBTESqIIKALjBwFW2Ln7PJSGLr69xyZxpj2DXaRbgeDco7BFlGGaSIyjaC+vdObRArJ/awWcsWPJrRaIWCpNtGKOPbXXQMRStjQvioAiMHgEwgbNtkKBYiG6gxm5DD6lGOOgczu9FqgqEL1CMwYfWNt3uqxdx3opAoqAIhA1Apby4LZPRB15PBAqOJFLWe0wkXHRUEVAEVAEFAFFQBHoAwFVIPoARx8pAoqAIqAIKAKKQGQEVIGIjIuGKgKKgCKgCCgCikAfCKgC0Qc4+kgRUAQUAUVAEVAEIiOgCkRkXMZyqK73Gculp7IrAoqAIjBGEFAFYowUVHRiclZMcDt3dPRKpQgoAoqAIqAIDAwB3cY5MNxGYyw5ac7+IpvRItQaMRpLSmVSBBQBRSAGEFAFIgYKsTsL1qfZ+Ey9mCHCDp7rplOXIqAIKALBD3kDRPBL0AqJItAvBFSB6Bdco5rYOmjO6+/sbAnwiXfrWBidnxrV5aXCKQJnFQGrveD7vfFx8fzax1ESopci0A8EVIHoB1ijmzTgi4/bum3r40880tpymnYhYH0q3sxljG7ZVTpFQBEYWQSY8UzwJa9cefvll1+hx9eOLPaxk5oqELFTlv5AV1lpyd1furuzsz2UKxQI1SFCYOivIqAIdCPgjY9PKSud6vf7Q40EbYUaIboBUtcZEej+Gufhw4e3bt168ODBuro6q0rpdbYRsDr/gKehMdDW1uUJnHE+wlpDySxGfHxc2Edz+s6Jahh946NPFYGYRMBraQ4BT7C1724GeugQfF0nLS0hI9VGoMeTmMREM9U/BIIWiJdffnnTpk39i6rUowsBWxcMeDoD1njC+mdd3a3C6BJWpVEEFIGzj0BwWMIXvUNtheoIZ79UxpAElgLx+OOP79+/fwwJraL2gkCcGCEsM6S9JsomUx2iF7Q0WBEY1wjQTBh1gVbCuMc1KJr5fiHgw/ag2kO/IBvNxKgN3ZpDsEnQdmE0l5jKpgicNQRsO6W0D3LXnd9nrSzGaMI+nbkYoyUXSWzL2KD6QiRkNEwRUATcCNhthVoo3bCoP3oEdBdG9FiNdkqH6mAaBUfYaBdf5VMEFAFFQBEYSwioAjGWSqtvWR1ag+oNfUOlTxWB8YmAaSR6y742Hb0ho+EREDjj5sAIcTRodCIQevX1e1qjs3xUKkVg9CNwRg1j9GdBJRw5BFSBGDmsRyAlW4ewmgD9LOcIoK1JKAJjDQFaCPMXUfbQMCTiQw1UBHoioFMYPfEYyz7WVFttg/1JDLsZ4KbjibFcoiq7IjCMCHj9AT68FzxLkFPohjEpZR2jCKgCETMFK9qDJy6eFkHPgYiZYtWMKAJDg0CYgoDyYB1ea59HaTUZdjJhVEOTuHKJTQRUgYidcqU1aGisr6g43NXVGcqVWiBCSOivIjBeEUApiKgXeON8kwsL8/Ly/P7Q0bUWRBFpxyt2mu8+EVAFok94xtZDr7ezo6u+vr6zsyM0nhhbGVBpFQFFYOgRkK/yhi2uRn/wTcibELAvewpDVYehBz+2OaoCETPliykykDsh74rLL/NaR1rrpQgoAopAEIGIDQJ2h66uQJff76XJCBorIxIqjIpAZARUgYiMy1gMZQwR8Afa/SyM4kBrnbwYi2WoMisCw4KArRdwc+oH1sH3+B1rH5xPh0UMZRpjCKgCEUsFan/R22oPLB1CL0VAEVAEuhFwf+nCbiSsYYchcegSJkwdikDvCKgC0Ts2Y/GJtAA9Woru5mEsZkhlVgQUgaFAIOKQQlZHBFsNO5WIZEORvvKIRQRUgYilUu3x8tMq2P4egbGUW82LIqAIDAYBW3Gw2gdbj9CGYjBYjtO4qkDEbMFrexCzRasZUwT6j0C4KdJuIiQYp3H0n7XGGK8IqAIxXkte860IKALjCwHXmMKlUbieji9oNLcDQ0C/hTEw3DSWIqAIKAKKgCIwrhFQBSJ2it86mZaT7UO2yNjJmOZEEVAEhgMBa+2DtXWrx+7O4UhIecYoAjqFETsFK6fR6gbO2ClRzYkiMGQIhDcMsu7BnrlwzWYMWaLKKMYRUAUidgqYw6OwQMTZRojgiqjYyZzmxI1AvC8+Pz+3o73j5Ml6PTfMjY76o0HAUiqsg6wxQdh6RDRxlEYR6EZAFYhuLMa6C+2ho6O9sbExEPCP9byo/H0jcPVVl95+24qEhATI/vUnv9q9e1/f9OFPExMSbrnlWsJffOn1zs5OlzecPmJIcdHkpUsX19bWvfPuRxEJNHCUIdBDT6DFSE1NS05OsqY9g0aIHgSjTHgVZ9QhoArEqCuSgQoUiIuLq6ur3bJlS0cHH9OyLm0MBIcYu59/3qLbVl7PwHHTpi01NSeffOJ3psSjz2lmZsa//PP/gv6HP/y75uYWlzecT0pKyv3330P4f/7nY11dXUKQunzZ8isu2vb5jn/4h/8XHmUwITNmTL322uXHj1evXv3yYPiEx7388ovnz5+zefPnGzZsDH86vkK8cfPnz5s6dZq/iyGHtBaWNWJ8gaC5HQQCqkAMArzRFdVLK5CfP3HF9TdaX8axv4Uh58yNLjFVmkEjcO01y5KTk3ft+uKFF9fBbMWKFQNgmZoCj2Qi3njjjW1t7S5vOMOM9LRvP/wA4ceO1XV2BhWI+fNmwmTSxEm33HJLeJTBhCxYMOeeVbdWVFR1dAxxf7by1msvvHDxe+9tyM+fPBgJYyKul4bCb6mDQwxyTICjmTgzAqpAnBmjsUJhz2TG+QN+rx/NwbJIBq2SYyUDKmdPBOLirC+s9gyzfGnp6dyPHav2RzdVFR8f12UNMXtchjFMrL9QOuLtQWp7IhKw6oaHRDWS9CazYRhRGPPUOOz6a/kMZ/NIHFHyccXCG5Q5ALbhD8dbCPoDC6esvXghwFWTGG91YFD5VQViUPCNqsh8FsdWGaxRRUgwbQ5CSIyd35LSyectnj9jeml2dtbBQ5X79h1av/6zjo5OcjBjRumqu2/OyEjDfeWVlyxZsuhUfcPPfvZ4xMwlpyRdc9Ulc+dOz8nJQoGoOHzk3Xc/3rv3oBDz0VZx0IPw5/K6GH7pSzecf945EvhXP/gOwjz51EsHDlQG61nAk5qaetNNV06bVoJdg4TWrfvw0KEjTiaSqZkzyrJzslgzsXHj9g/Xb7It506qoPvPv/vNvLxcPKWlRT/4yz/G8aN//GWXbfZg6ejFFy2Gz9SpJYiBiWLta++dOF4rMe+++8aZM6Zs3brr5VfelhCw+h/f/orP53v0t6uhf/CBuwW9K65Yet5551RWHn30seeFclzeKUBKn6xrQzEuy3/QmdZzIAYN4ahhQDsgf6HmQBuFUVM2UQtCR/tH31xFH5mRkV5dXUt3eMOKK758z81x8darytxBfX2DYYa7oaHJeJ0OtIc/+9P7ly1bkpWdWVFxpKWlZfq00vu+fsfs2VOdZFG6m5qa0VSEGAfpdoaWQRCYkOD76ldWLlgwm6/JJyUlIvP99905aVKeYV5UPFEylZSUdOTI8bwJOTfduPwb99/JIj5D43Scqm80XtLiT3Ri6O++64abb7py5swpx0/UdHV1zp0740/+533TZ5QK/Ztvrk9JSb7kkvMKJk6QkOuuW4b+tPeLA5WHj6GCwMrJ+fTpFuMd3w5LidBLEegvAvHLly/vbxylH0kE2to9XV283pGb2oiS2KT9oI/IRANHHoHMzPSHH7o3JSXpjXUfPvbb5zds2LLxs+1zZk8rKytOTkrau/fAqVONn3y6LSsro6ho4ltvf/TU717etm13RDmXLj13/vyZhyuP/uQnj3z88dYPPtyUlpZSWlrIWoctW3YRhV5/+RVLcbzzzscsinR5XTyxgmzduvvyyy4g/Ef/8MsNH29tqLcUl4KCCQsXzkHXQUf5xX88+d77n+7eWz5jehkZQdfZ+8VBaBjxf+uhL5Op51b/4emnX/300238zZ0zraSksKGhsarqODSu67PPdpyorkUjOVRR9fOfP0GWRYG4+upLUA5QQX7yb49++OFn73+wsaW1be6c6WWlhZ9u/Nzv97e0tLKPGQEm5GZv3rKzsLDgtpXXNje3AibmBxywSs9IKy6e9M67Hz/51Jqdu/q9e8Ulagx5e2sxAomJ8UnWdp9+NUIxBIxmpXcE1ALROzZj7QkNgPyNNcFV3iACjKTp5uk1UQ7EYn+qruG51a/xeNGiuf2C6cMPN/3t3/7br3/9LAskiUgHjGEfR3Hx0K8cpOde/fzr9NDwZ6C/1dZpUHFEYKZd0CHozpm2ED2gsfH0S2ve5Onic+cJTZT3xedaIDzx5EvGckA2gYv5DnQjYYJmwM6UWbOmYmu55ear2Jq09g/vGPooExo3ZKbN6E17GDdIaEYHhICugRgQbBpJERgGBErs3n3fF4eYCzDsDx6sam/vSE9Pzc7JRJ8w4Wd00KMzoTBlSlFeXk5ubjaWDKIkJyeeMWJ/CaprToqaIhH37z905fKLMJOIV1QWZFi6dJHhzFwG7vz84ESDCe/DkZqaLAsjZswo489QykKKgoLc/fsrCETxeuHFNx785qp77rklJTnpwIHDmzbtMMTqUAQUgSFEQBWIIQRTWSkCg0Jg8qR84p+sO+Xkwqi99mTd5EkFkybmRa9AoDqsXHnNwgVzfL544ca43Ml2CN2dtu3BMHTt+CicXMCj0pJC/gyNONCKkNOpfLgInN7JNh9Cbr/tOme4uHNysk3gvn0VmCXKSosIefOt9WL2ME/VoQgoAkOFgCoQQ4Wk8lEEBotATW0dmws408nFiO0YhJysq3eF9+FdteqmeXNnoDSw2aHi8NHa2lNpqSnf+/M/6iPKMD1CbDK1/qPPPvlka3gS7aFDz8IfuUJM9n/8k9+4HuF1TlKUlk5GWUFvYNHlskuXoE+E02uIIqAIDB4BVSAGj6FyUASGBoHDh49esGQhSwKd7PILcjHFt7a2VVdHa0JgryNbIWDym0eeQ3UQbkWFwUUJTuYDcPe2daI3VocrjrAFNMHnO3asxtBYn2zxWkefmZCIDmdadSfr2QyC0aK5pVWWcEoU9qc4+eDFREFEdnJetHTRnDnTFy6cvW3bHhd/J2fXI/UqAopAlAjoIsoogRpzZEyi698YQ6C8vILNC9LnSfHF++LuutM6aJItGAHr5CPJkdTGXnPH2YLt7dbayZycTIkSF++9bNmSUCU2EV18XF5DZjlaW1s7Oq1lkhOt/ZnmUYhldwiPzGWR7SdTXV3nLp43c2aZiXjl8qX/+4d/dsftTEYYVj0cp5tb4MJmCp+PNir4iN2YBAII2ZHA9PSUv/j+Q3/5F9+aPJnZH4ts2aXnM9lRVXXsw/Ub17z8FvRs+0xOYeVHkMnpptMETixg+UUwZLw6gEEvRWBQCKgFYlDwja7IoZXU9jf2Qp7RJaJK0xcCWAuefuaVe1bdfO+Xb12+fCkmh5kzp7Lx8sjR48+/8Hr3oDlYtgT0Wsq795Qz7r9n1S27du9jkcGsmVMwS0jaEsvEtbjYl3mKL1xKNJtDBytnzJjyzQfuPnGi5plnXjW2DYidUYKxOdfMdtXU1D3zzCucf3XffXdijTh2vIbOfkpZMXs3tmzd6YzoTLTikLV0NC0t9bvffRAOv/71Mzx96aV1Bfm5s2ZO/f73HiovP8wkBedAgM8X+w5yLiescnKzrrn6UsJfXLMO9QCta/uOvefMn3XD9VewslL479t/6OqrL0VL+9M/vf+LvQfX/uFdZ7rjzm2+ojXucq4ZHgIEVIEYAhBHDwur0Y6zj4xQ09LoKZX+SLJj595nnnt16QXnclZB4eSJ9Q2Nm/eUv/b6u+0d7faw2+IlnS53ExKewktr3mAH48IFs5kT4enBg5XsZvz2w1/FLbE4c1pi4bX+enrDGRLy7Oq1q750c1lZEesT2dxRd6peYrkkCQZ6usWjF4977tULlyxisyXrIVAdKquOrVmzjntvWeBE9t88+sxdd9wwYQLrI7NycjPr6xs7Ojseeey5G1Ys51AsDutEJA5+eO/9T9a9+aHwWXnLNYmJCRs3fY4FQkJeXfs2WzovvHDRlm07OayCKByU+eKaN6675jLWpSYlJr72xnsRMzsuAgMcYR4IdPntGhVBaxwXIGgmB4GA94c//OEgomvUYUTAMrAGPA2Ngba2Lk/gzBoB88rHjh3dunULQ7dIY8hhFFVZDzkCbHRkl2NlpdXnDfiiN51SVsI2y7qeOzsGzJCICMa5DhxHTdfTXz7IU1xcWFV1NMqdF/DPyswgGY6ccqU1aVIBm12Pn6h2hUfvZVMoiyqYmok+SoxRomLOnz9/6pSpXWwb7qUwA56utLSEjFQ766pjxFgNGHR2VIEYNITDxmAACsTppsbjJ46HvrbM1w70jR+24lHGisAYR4D2Ib8gPyszyz52JHJboQrEGC/k4RVfpzCGF9+R5I5lODUtfebMjGBLwE9ANYiRLAFNSxEYSwigN7Aw1+/Xz3mPpVIbVbKqAjGqimNQwjCRiVW5s8M+0RrzhdcyS0YeVgwqHY2sCCgCYx4Ba8qCJoPJTi+ra3udwtAGZMyX9HBmQBWI4UR3KHj34wW21AWbXKYz7e81i3MoBFEeioAiEFsIoDZEs5BFGpF+tESxhZLmpncEzrw0r/e4+mQYEdCOfxjBVdaKgCKgCCgCg0ZAFYhBQ6gMFAFFQBFQBBSB8YeAKhDjr8w1x4qAIqAIKAKKwKARUAVi0BAqA0VAEVAEFAFFYPwhoArEKC1zXbE0SgtGxVIExhcCuhxrfJV3v3KruzD6BdeIEosO4fX4PQE+YqQlNaLga2KKgCIAAuwNt75cppciEAkB7ZYioTJqwnhzfT5Poo/tmToOGDWlooIoAuMIAb5pYh8tM46yrFmNFgFVIKJF6uzQeT2pqfGpKcHvKJ4dGTRVRUARGMcIBMcu/KgpYhxXg4hZVwUiIiyjLFDf21FWICqOIjB+EAg2P9oKjZ8ijzqnuogyaqiUUBFQBBQBRUARUARCCKgCEUJCfxUBRUARUAQUAUUgagRUgYgaKiVUBBQBRUARUAQUgRACqkCEkNBfRUARUAQUAUVAEYgaAVUgooZKCRUBRUARUAQUAUUghIAqECEk9FcRUAQUAUVAEVAEokZAFYiooVJCRUARUAQUAUVAEQghoApECAn9VQQUAUVAEVAEFIGoEVAFImqolFARUAQUAUVAEVAEQgioAhFCQn8VAUVAEVAEFAFFIGoEVIGIGiolVAQUAUVAEVAEFIEQAqpAhJDQX0VAEVAEFAFFQBGIGgFVIKKGSgkVAUVAEVAEFAFFIISAKhAhJPRXEVAEFAFFQBFQBKJGQBWIqKFSQkVAEVAEFAFFQBEIIaAKRAgJ/VUEFAFFQBFQBBSBqBFQBSJqqJRQEVAEFAFFQBFQBEIIqAIRQkJ/FQFFQBFQBBQBRSBqBFSBiBoqJVQEFAFFQBFQBBSBEAKqQISQ0F9FQBFQBBQBRUARiBoBVSCihkoJFQFFQBFQBBQBRSCEgCoQIST0tz8I+Hy+/pCfHdoxIeTZgWagqQ4e0sFzGKjsMRgv3r4GljEtiIHhprGcCMQvX77c6Ve3IhCOQH5+/pIlSyZMmHD06FGeTpky5atf/WppaenOnTvDiUdJiAhZUlIyGCEvvvjiadOmNTY2trS0jJJ8hYuRnJy8cOHCRYsWLViwoLCwMD09vba2NhAIGEq6imXLlpWVlR0+fNgZbgiidIDGHXfc4fV6Kysro4ziIjtbNYfaO2PGjKamptFcji6swr2mHMGfckxNTf3GN76xePHiXbt2dXR0hNP3EUJBfO1rXxvk29EHf300ThDwDaZBGScYaTazs7Npgo8fP75p0ybQwEtblpubS1/i9/sJoXWeNGlSVVXVgQMHDFyoHbNnz6bV3rJliwkcMYcIidJjhBxA0nTJ9Me013TJA4g+AlHoCW699daEhARnWhdddNGbb765f/9+CWSYSvHh/uCDDwbzvgNmXFwc9wEzCa85TrGHzz137lxqI+VYU1MzfKkMN2dTjh999FFnZ2dKSkpaWhqJokmcPn0aR8Q3LjEx8cILL+Tp+vXr5W3FTUHAbZBvB3z0GucIjAFD9DgvodGQfVeHsXXr1lOnTtGnmvZo6tSpDII//fRTpwKBhrF06dIjR46cFQUiXMgBI+nK/oD5DHnEiRMn3nLLLWgPJ06cAHnsQxkZGSg9BQUFhD/99NOAP4SJvv7665hzBmx+QJIhLJQB5GvUluMA8kIUlKEnnngC/bi6ulo4RHzjqB68hhCgdpiEzm5BGDHUMdYRUAVirJdgP+SnrTljGxqRhljOiOgNTkUBCYTA6BMikwT2IR9pSdw+aHiUlJTU1tbmpIkopJMAd7iQLoJomEgWnHl3MXF6GdJ1dXU5QyK6+06376dOhllZWbfffjvdw969e19++WUjJH3DjTfeiO3n+uuv/81vfiNRzFPxnjGViHmhFIxVwylJlDwhG5JCCU/ahPSRLylKQxm9A6OLq2K74vaRqItSvNHQ90bjKsdjx445k+gtj65YRBlkQfQmnlOYcHeUsaIkC+evISOPgCoQI4/5SKdIZ3DppZcyBc4ABcvBoUOHdu/ebZqeL33pS4SvWbMGqyaG7pycHBnObty4ETOpU1bTDLEs4Nprr8UC8eyzz+bl5d15551iSsVSOn/+fGY6XnjhBWZnYUX0yZMnf+tb38Lxq1/9yvSvdG/Tp09nFQX9HwOpjz/+uLy83KR19913E/ell17CsAFDRtU//vGPafIkIxjteRqeERNdHMS97rrrREhCRGYWAbz33nuXXXYZs7/MwjBkf//9989o1qZFczF3ehGGFQZkk8mO1tbWgwcPbtiw4eTJk0ITfbpgMmfOHARrb2+nn3733XfvvfdezNQYEurq6pwpihuTD7ZrRp9r1641RcMj3MxfMKmEYJgiKE1nXGoCIlHiRETV2LFjh/Mp2FKIlClKG1Zx6glFY7Q34p5zzjnEIoPEEi9uAGSMy/ILKEH47bffNlGczHE7aw5eKaM+CuWCCy4477zzKCYqg2FFcTB/DzJkc9++fYTTx7MUgBpeVFTElFlFRQWSM6FmoohDyjFKnlQ2lpUACDx5EaSquGayKALqJ3CRXxKl1L744gtXok5vH/QCJi8daFx99dVMRpAR1PTPPvusvr7eycS4KaP7778f769//WvWQDzwwAO8wnidbxzv6bx58yTKww8/TEZeeeUVbEgDfjv6W0tJWkqHl724uDhi6QygIkmO9H7WEVAF4qwXwfAKwNv75S9/mY5E2jgaHVpk2pRHH31U5k1Zgkf3zyQxzSX9H4E0QFx0P3/4wx+cPZMRFJ5EoS0gBJ2ANYaiQODFLWxxwEGi4MZhWNGMXnPNNYTQy7KojbRuu+22Dz/8kL5K6BEShsiDnLSM0hudMSMS19zpAIyQBIrM6CKsGKDFJ10yTjNKS/273/2uoaHBRAx3GMnDH7HyY9WqVaQFdHQh5AUlgIbyqaeeklxHme6sWbMwG9DDoT2QZfKOcoD8dJMwD0+XEFQE7pgfXHoegQjz2GOPEVHKyERHc6KjpUMiISRnBoRHRoegYsiSaiSnpyQvKJTQrF69WjQ/ZtMRibswFC8EdACEQAO8FFlmZuZzzz1nlEWTOg5nzcErZdRHodCDIjPFRGGRKWGF5JQgKKEKE0JesLVQgXGjFZE66KHooN0aHUJKUO5R8kT7hCdqKxoYqiGqDwoKUNDBixhXXnklYJJNdHGKgBIk72RcpBIa571vegGT2sj6FVRb9GMWKMAfDebJJ5+MqJCRcYqDJHBwpw6LAoHbvHG8jLhBWAKRkwu3IG+qx/DV0mhKZwAViSzoNRoQ0EWUo6EUhlEGOjNaJdqRRx55RJpgeoVLLrnk3HPPZUmdSZhO/Y033ti+fTstJkMujAp0hGbVpCGTJphGwbTIKAFMxKIQwIE1EAzohfiZZ55hsHLzzTczDU9vajjQCtOS0iDSvosVhORY20+7yQDOzObCnxaZcSeBiER0RjCoQa6M0HW5MmISMg6nzKTFLD4aA+0+Y32UCfoGEkJyQ+9yEN3k1/UI7/nnn09bzDARgwFyYlC55557kJO8C0+J23e6aForVqyAkmVun3zyCbLReWCGQXswOLuShpgpDJ7SvQmNi8CYQCRccgH4//Vf/0WPQi/LMJdOkS6KQoeGHhokIWOEumfPHkKgYYALSmTHrKWQtJwpMgR/6623MEsgEm76XTLrjOIUTNAgxMkB0wUGA2eh0C9KoVAfyCDcsFeJnMTlEXc0J5QtHFRm6iqZosphqqE40IRQO9BKH3/8cXpiaLhIUVKPhie1EZ4kjULQ3NxMdNGuqOe//e1v0V3QcVlrQombhSbkgiLDvIEC4cydnbg1DXdGemKhgnz++efvvPMOWQN/pqhQlVCPXnzxReEjuZDsmBDxRnzjsLdROR966CHyznsq2oNEdEYXZM5YS5EEyuhrKUlEXzrofJiUTEXCdkLb1VtFcmZB3WcRAT0H4iyCPxJJ0wmRDANuM4hhJ8XPfvYzoz3QJHFhet22bZt01Yzb5CmjHyMiNPKUENzcjdeESLiJIuFOMkJo/Rnu0ESaORSSo40jUIbUhhvmXKQy0RmRw9+VkX//9383GXGmK+5wmWlA161bJ4NjhpJ0QtDIQDw8upEkPF+GmMUHgCnaA4F0LS6eErfvdOmk6fYwLDMdILJhAKBXlrgGAZMoDoqVphyHUbmcT11u4cMdOWVsymgVzAlhLoOkoUe5/O///u9f/vKXoj0QAg0iQUMjLgwNH+MlhOJjkSwO5KTzE8XFRBFKcxcOzhwRQpZRXp2FAr0pFAwk0MycOVOYkGvchLB3UULQ1XDAQSZ64IPqRi/OuBaFSWgkXbkTckaeaA+QMa8n2gNu4CKnDPExzOBFU6TGkhFju0LH+ulPf0ovblKBzFxnpJdYlA7lLooRnF999VXCyQVpwUpouIc7TEI8csIbHisipTA8Yy3FNNKvWkpa0ZcOnJ0VidJEqt4qksmFOs4uAqpAnF38hz11JonpG+gnvv71rzO9zTiJxkgaa0mb5oYX1RhmJRCv8+3FzWVkdXkl3ElgQsID6RgIZMzNgEwuTBcy1DZTHsLfaBjCzWTkvvvui5gRI17E1IUn3Rt9vKFk0oFwsQObQKdDYnF3BrrcwIv8tPJkhCkA7tDTewmZcOg7XVpJyARzw1xkI1wUBRMuDnIhnEVBdD0N9wqxE1JJjsrgzD4GHgwbDPcZcMsQkIgmL7DF62SOFzOVM0R0Duw6zkDjFjFcXrQlZ6GIYEYqFBqqKzoWg3giUn9gTucKGV6yj8D0fK6JAzEDmO5H0jXC980TYwyKAsQkShWlQKWiypsi0wQY/0kC9FiNccUVV2DLQTzna2XyKI5o6EkRLYS8mLhoh2jMaHi8vxIoGTEEfXt7IyNcInJ3sh3yWhpl6Yg82HuMwDikGvRWkZyU6j6LCOgUxlkEfySSpmnGKE3HRveMOZEkaXwxQmAQNk0V7QiWXtOaQCNe2kTZYm6aG6FxeaGXEGlhTa7CyWhwaQoJx/JvyMRBoNjkDTeaYwINWTQZMcSGichgvGTZyVMENjTO6OI+IwGoMheArVW6eWSmqxCGkpC4+05XMu4qAsa+ZJkxnwtVEYxBKooLBcT8lKsLD8+FyaBTDAOv4Y/ewJQQsycmCWSgBTcEwsfldfIkorA1NC5hhIORRxxGEiEWr6EBT9alsgyCTprpJ4TkEVMekEGPhR8vVVq8JjkZv8pTAoVblDyBFEpiUbKGoTgIZ2ZBnmLKYr6GomcaiIvCwvyOoQIlzBVLvH3Ti2yuOkBEQtCZqGYoE0JDoDhc3vBwSTeczFCKw3hdRSmFaKIPoJb2q3QAkLREZu6Sem8VyZCp4+wioArE2cV/JFJn1RgXozHmOBkoc6FP0DHIegVpIEyzKALxlHBmPWgNhcDcITBuHEIvIfJIQpzhhoxWXibg0WnE1u0kNu1Xb9xMRrCjML3iyoiTFW5h4mRlQpyUEQNdBMLNGShueve77rqLsTKDUfo2NiPQ3GP9Zuxuohj+OJwcTDiBQEE/ZPQnIaMIGHpKLFdcIWCIRm9K78LEgZMzbrQZZGAkzYoKsToYDsYBmbghxgGfm266iUBmstgRg0istaSDZFbeUELGZbymcZdAwuWRk0YCzd2KH7oMsQQYGme4BKIuUNzMXDD1YOYviMVT5MRBEZAL5DFMpAKb/jiUpvV7Rp4mFssdDEPjQG8TJpCxAAKDBGXHuk5s9ajFvGLOFT8mFo6+6UVC12tILLLGI8pCEpU74RG9Es4jeYpXLuN1Oiwi+4Im5LR+Q5GsXxOOewC1tF+lI8lZqdpXxNoVeqi/owUBncIYLSUxfHIw7qcrwkK4efNmNljKrj/6OcJJVNoIY+wVMWgQCZdBj4QImRGyb6+QmSbAxMLBRDJxae7pbs3FeBE3LaxQCnPuzoi4TUaYKw3PiIsY7xmFFAnDEzKs+iYANCw0NO7PP/88nRxZQAeSrsvJ0yUGzF1s2SIIDatEpUQkdeznEtHJygiGA5WFR3TwDM2d4bgZrxMOB1pwvCY5Fyvhz1No0MYoFHLBQBkFQjpRVu8LjfAXt5OJ82lvNBJu7q4oLi9kRloThaUwdNv00+SILpaabFZ+oI9ifqB6YzYw9DjQh+BspmzCU+mDJwUqZiSmD0wVxQGY3HkkCQGXbJfAmAdobHuh9EmXYbdTEuPum14kJK6zDqBTUsFgK/k1yEAMW5fXhJgUxWHIXOEuTFxew03SwjuAWtqv0jEJGTnDRTKP1DFKEIiTQtJ7rCLABO23v/1tVo+bDDKljRvrgtNWjD5heiwGPZiyoZFpSBPROKi7uOUugWKowNBqaHDQ/nKnxadNNOEytQ9/09HylM0anBVBn2fIcDj5440yI04OTne4zCYJV0JnjGUImEfAzfo4LgkEOpDE7Wy18bqScAnDugGwQh1hfwp9BoCgAVx++eXC0xVXArnTBaIR0i1hJyBRpjMIxIubENxY1CllCeTOFZGVBAqljICFmMG0dMPiNfeITMxTcfRGI+G9PZW4ZAGHkwbjNitg0BKuuuoqHrF8UijlLssdeGSqGRoV9gBiySND3F+evDUiDBzoyDnahLMWxCyPIYRjFTioQ6xEEPBaUehcUu1NouKIkp7SZ32PRJGSxY0aJMY5I4xkxOWFMuIbR8lKRZXZQ2HuugtDJz4QuLwDq6VSBEwG9at0jHguGUy4OkYJAnoOBFU0li9aXjbXsfeB0SQtETPcdAw0c1iqJdtURLzoCitXrmQ2neaGoR7NIu0FBnAnDZTitZpJ+zLAoRbQ8GFnpkmlyeBQBx6xIgxuGNJZv4mNAZsBgVihGSyyMI3TKSBA80BxwQ7MdDs9ojAUkUjB8Mdxxow4iXELkz5kNjSuhJx8JJs0f0z6OMMZWrHennEhI3U6XfbvMb1CFw4CtPXE6le6DHnZzQH+qFBcKHbgj3KAW9QCZ9JON7sqgJfCZcKCRBmLo8GgzUADXFIKuCUXOIxUwoRwE4j8aHVYntjBS7nQ2WCTIJvOiRWBVGJJRNwuni4aScjcRZK+ObhoJC7mFhQjoAZezCSGIQ7OraL+sDniwQcfpB5Cg94DE/YEGkNFRKnOyBObEBtZZVkoKh1Qw1944sAoAjhUeNw8EgMSsBsThVPIM9KLhNjnWL5KgWLq4D2FLdw4jkVYCTK4BXOXl/CIbxyIwRbx2NeKEYXzyGVChOjCh4jCirskJHcRydAMrJYOuHQkdZdITvHUPRoQ0DUQo6EUhlEGNAN2o7HHmvZIJiboZjgVn92GJlXeVSYFMFHSeNF10TISi86JpsdJAxmXhIjbeGmh2H7GIk0UFOy6srWS6Nj26dto37E3cNEhEZ09nAyVGCbS3TKKor+k2SU5tA1ncrgNf9ySEZQhmXLmERlh36PZdmjiGodLSJdXyCIGGg44IKAdd4bgNo0vp1nccMMNAMsyOihRj2jEMQBIRIkVMQlXILn7/e9/z5oGionxIt05hnEUCMicrIShufP0tddeYxcD5Qu89GcIhq6G5gcsEhdiGaoKHxMoXmFFIJoQp25QWKwv4UIGlshQmmxAMJSQcbm8JtCwctJIoPMu9EIjrFwcIgbSi9OVoh6Jw8kQSwOSo/2g8bATmOpEbaQgzD5PIQ6Xqg+eVEX0XQ4YRbuVjYiEsK+Y+iZ8qMAcKkWhQyAQEcLaZM5IMFlzCnlGegEBDR7FEYWVt4OMoHbwqtJzCytXObq80PT2xqE0cNAIOhYVlUvmCiVFI63La0CTcPEOoJZGUzomCSMMyUUMFDH0PnoQ8P7gBz8YPdKoJMOHAM0NHTkjfvoGZypYAugnGAGz1h3tQbr5ASv+WHrh79Q8SIthNHenfiACEM5GL/SAfiXXW0acmRphN+ZrBr409DSXQ5U0nSXDXzLLQcXmNII+mKPlACYqmgv8PqJEfEQFoFzoY+jAIhKM5kBKga56CEuBzMpCkIh2BYECArCKpoz6oGfGCrMcejzKN4UOTxgOuCgjvnFo9lRU8HH204MszX7V0uEonUHKr9EHiYBaIAYJ4JiJTqshS+pcEstgWvR9GiwZnbhooveioIQTY9IIDySE8N4eRaSXwN4y0keU4X6EbmSs5QNIi76f05dR71iLZ7ptzA+wgm1ESMNToWPgCg/vbwgqCFd/Y40SejNYH0J5UHD75nZGAlf0iPTyApqXcZAZifhaoVcNRrUafC0dZKZcMKp3NCCgCsRoKIWzKQMtl2m2zqYc4zht9DZs70xAYAri6G5aeQzjGJwpF0zxFNA4xma8ZH30v4ZaS8dLXexPPlWB6A9asUjrHPrEYv7GQJ6Y9GGxCDPurIFgGYpIjOGBVQjoE2MgAyrioBEY/a+h1FLWmqDsai0ddIHHCAPv97///RjJimZjQAhgmWSHFTZPxrsDYqCRhgwBpqixQ3BnIinKmYshS1sZnVUEKHTWKNiTDEO2jGaYMqS1dJiAHYts1QIxFkttKGUekonzoRRoHPNiLYXriwDjGIzxlXWKnmtM5Bk5tZaOiZIaASFVgRgBkDUJRUARUAQUAUUg1hBQBSLWSlTzowgoAoqAIqAIjAACPjYfc+TtCKSkSSgCioAioAgoAopAzCDg44xejq7j+OGYyZJmRBFQBBQBRUARUASGGwEvh+aSBucQh38UeLjTVv6KgCKgCCgCioAiMEYR8PIZAhGdLy3xlRpOO+e8MD27ZowWp4qtCCgCioAioAiMDAJe50eVRiZJTUURUAQUAUVAEVAExjoCPnP2/ljPicqvCCgCioAioAgoAiOGgE/PHxwxrDUhRUARUAQUAUUgZhBQC0TMFKVmRBFQBBQBRUARGDkEVIEYOaw1JUVAEVAEFAFFIGYQUAUiZopSM6IIKAKKgCKgCIwcAqpAjBzWmpIioAgoAoqAIhAzCKgCETNFqRlRBBQBRUARUARGDgFVIEYOa01JEVAEFAFFQBGIGQT+P/Ejf/UoWCNNAAAAAElFTkSuQmCC"}},"cell_type":"markdown","metadata":{},"source":["## 三、文档分割方式\n","Langchain中文本分割器都根据chunk_size(块大小)和chunk_overlap(块与块之间的重叠大小)进行分割。\n","\n","\n","\n","* chunk_size指每个块包含的字符或Token(如单词、句子等)的数量\n","\n","* chunk_overlap指两个块之间共享的字符数量,用于保持上下文的连贯性,避免分割丢失上下文信息\n","\n","\n","\n","Langchain提供多种文档分割方式,区别在怎么确定块与块之间的边界、块由哪些字符/token组成、以及如何测量块大小"]},{"attachments":{},"cell_type":"markdown","metadata":{},"source":["### 3.1 基于字符的分割方式\n","怎么分割块取决于我们的任务类型,当您拆分代码时,这一点非常明显。所以我们有一个语言文本分割器,它有一堆不同的分隔符,用于各种Python、Ruby、C 等不同语言的版本。在拆分这些文档时,考虑这些不同的语言的差异性。"]},{"cell_type":"code","execution_count":2,"metadata":{},"outputs":[],"source":["\n","''' \n","* RecursiveCharacterTextSplitter 递归字符文本分割\n","* CharacterTextSplitter 字符分割\n","RecursiveCharacterTextSplitter 将按不同的字符递归地分割(按照这个优先级[\"\\n\\n\", \"\\n\", \" \", \"\"]),这样就能尽量把所有和语义相关的内容尽可能长时间地保留在同一位置\n","RecursiveCharacterTextSplitter需要关注的是4个参数:\n","\n","* separators - 分隔符字符串数组\n","* chunk_size - 每个文档的字符数量限制\n","* chunk_overlap - 两份文档重叠区域的长度\n","* length_function - 长度计算函数\n","CharacterTextSplitter 字符分割\n","分隔符的参数是单个的字符串。这就会使得RecursiveCharacterTextSplitter比CharacterTextSplitter对文档切割得更加碎片化\n","'''\n","#导入文本分割器\n","from langchain.text_splitter import RecursiveCharacterTextSplitter, CharacterTextSplitter\n"]},{"cell_type":"code","execution_count":3,"metadata":{},"outputs":[],"source":["chunk_size = 26 #设置块大小\n","chunk_overlap = 4 #设置块重叠大小\n"]},{"cell_type":"code","execution_count":4,"metadata":{},"outputs":[],"source":["#初始化文本分割器\n","r_splitter = RecursiveCharacterTextSplitter(\n"," chunk_size=chunk_size,\n"," chunk_overlap=chunk_overlap\n",")\n","c_splitter = CharacterTextSplitter(\n"," chunk_size=chunk_size,\n"," chunk_overlap=chunk_overlap\n",")\n"]},{"cell_type":"code","execution_count":5,"metadata":{},"outputs":[{"data":{"text/plain":["['abcdefghijklmnopqrstuvwxyz', 'wxyzabcdefg']"]},"execution_count":5,"metadata":{},"output_type":"execute_result"}],"source":["#使用递归字符文本分割器\n","text2 = \"abcdefghijklmnopqrstuvwxyzabcdefg\"\n","r_splitter.split_text(text2)\n"]},{"cell_type":"code","execution_count":6,"metadata":{},"outputs":[{"data":{"text/plain":["['a b c d e f g h i j k l m', 'l m n o p q r s t u v w x', 'w x y z']"]},"execution_count":6,"metadata":{},"output_type":"execute_result"}],"source":["text3 = \"a b c d e f g h i j k l m n o p q r s t u v w x y z\"#测试文本\n","r_splitter.split_text(text3)\n"]},{"attachments":{},"cell_type":"markdown","metadata":{},"source":["第二块是从'wxyz'开始的,刚好是我们设定的块重叠大小"]},{"cell_type":"code","execution_count":7,"metadata":{},"outputs":[{"data":{"text/plain":["['a b c d e f g h i j k l m n o p q r s t u v w x y z']"]},"execution_count":7,"metadata":{},"output_type":"execute_result"}],"source":["#字符文本分割器\n","c_splitter.split_text(text3)\n"]},{"attachments":{},"cell_type":"markdown","metadata":{},"source":["可以看到字符分割器没有分割这个文本,因为字符文本分割器默认以换行符为分隔符,因此需要设置空格为分隔符。"]},{"cell_type":"code","execution_count":8,"metadata":{},"outputs":[{"data":{"text/plain":["['a b c d e f g h i j k l m', 'l m n o p q r s t u v w x', 'w x y z']"]},"execution_count":8,"metadata":{},"output_type":"execute_result"}],"source":["# 设置空格分隔符\n","c_splitter = CharacterTextSplitter(\n"," chunk_size=chunk_size,\n"," chunk_overlap=chunk_overlap,\n"," separator=' '\n",")\n","c_splitter.split_text(text3)\n"]},{"cell_type":"code","execution_count":9,"metadata":{},"outputs":[],"source":["# 递归分割长段落\n","some_text1 = \"\"\"When writing documents, writers will use document structure to group content. \\\n","This can convey to the reader, which idea's are related. For example, closely related ideas \\\n","are in sentances. Similar ideas are in paragraphs. Paragraphs form a document. \\n\\n \\\n","Paragraphs are often delimited with a carriage return or two carriage returns. \\\n","Carriage returns are the \"backslash n\" you see embedded in this string. \\\n","Sentences have a period at the end, but also, have a space.\\\n","and words are separated by space.\"\"\"\n"]},{"cell_type":"code","execution_count":10,"metadata":{},"outputs":[{"data":{"text/plain":["496"]},"execution_count":10,"metadata":{},"output_type":"execute_result"}],"source":["len(some_text1)\n"]},{"cell_type":"code","execution_count":11,"metadata":{},"outputs":[],"source":["# 中文版\n","some_text2 = \"\"\"在编写文档时,作者将使用文档结构对内容进行分组。 \\\n"," 这可以向读者传达哪些想法是相关的。 例如,密切相关的想法\\\n"," 是在句子中。 类似的想法在段落中。 段落构成文档。 \\n\\n\\\n"," 段落通常用一个或两个回车符分隔。 \\\n"," 回车符是您在该字符串中看到的嵌入的“反斜杠 n”。 \\\n"," 句子末尾有一个句号,但也有一个空格。\\\n"," 并且单词之间用空格分隔\"\"\"\n"]},{"cell_type":"code","execution_count":12,"metadata":{},"outputs":[{"data":{"text/plain":["177"]},"execution_count":12,"metadata":{},"output_type":"execute_result"}],"source":["len(some_text2)\n"]},{"cell_type":"code","execution_count":13,"metadata":{},"outputs":[],"source":["''' \n","依次传入分隔符列表,分别是双换行符、单换行符、空格、空字符,\n","因此在分割文本时,首先会采用双分换行符进行分割,同时依次使用其他分隔符进行分割\n","'''\n","\n","c_splitter = CharacterTextSplitter(\n"," chunk_size=450,\n"," chunk_overlap=0,\n"," separator=' '\n",")\n","r_splitter = RecursiveCharacterTextSplitter(\n"," chunk_size=450,\n"," chunk_overlap=0,\n"," separators=[\"\\n\\n\", \"\\n\", \" \", \"\"]\n",")\n"]},{"cell_type":"code","execution_count":14,"metadata":{},"outputs":[{"data":{"text/plain":["[\"When writing documents, writers will use document structure to group content. This can convey to the reader, which idea's are related. For example, closely related ideas are in sentances. Similar ideas are in paragraphs. Paragraphs form a document.\",\n"," 'Paragraphs are often delimited with a carriage return or two carriage returns. Carriage returns are the \"backslash n\" you see embedded in this string. Sentences have a period at the end, but also, have a space.and words are separated by space.']"]},"execution_count":14,"metadata":{},"output_type":"execute_result"}],"source":["#分割结果\n","r_splitter.split_text(some_text1)\n"]},{"cell_type":"code","execution_count":15,"metadata":{},"outputs":[{"data":{"text/plain":["['在编写文档时,作者将使用文档结构对内容进行分组。 这可以向读者传达哪些想法是相关的。 例如,密切相关的想法 是在句子中。 类似的想法在段落中。 段落构成文档。 \\n\\n 段落通常用一个或两个回车符分隔。 回车符是您在该字符串中看到的嵌入的“反斜杠 n”。 句子末尾有一个句号,但也有一个空格。 并且单词之间用空格分隔']"]},"execution_count":15,"metadata":{},"output_type":"execute_result"}],"source":["r_splitter.split_text(some_text2)\n"]},{"cell_type":"code","execution_count":16,"metadata":{},"outputs":[{"data":{"text/plain":["[\"When writing documents, writers will use document structure to group content. This can convey to the reader, which idea's are related. For example,\",\n"," 'closely related ideas are in sentances. Similar ideas are in paragraphs. Paragraphs form a document.',\n"," 'Paragraphs are often delimited with a carriage return or two carriage returns. Carriage returns are the \"backslash n\" you see embedded in this',\n"," 'string. Sentences have a period at the end, but also, have a space.and words are separated by space.']"]},"execution_count":16,"metadata":{},"output_type":"execute_result"}],"source":["#如果需要按照句子进行分隔,则还要用正则表达式添加一个句号分隔符\n","r_splitter = RecursiveCharacterTextSplitter(\n"," chunk_size=150,\n"," chunk_overlap=0,\n"," separators=[\"\\n\\n\", \"\\n\", \"(?<=\\. )\", \" \", \"\"]\n",")\n","r_splitter.split_text(some_text1)\n"]},{"cell_type":"code","execution_count":17,"metadata":{},"outputs":[{"data":{"text/plain":["['在编写文档时,作者将使用文档结构对内容进行分组。 这可以向读者传达哪些想法是相关的。 例如,密切相关的想法 是在句子中。 类似的想法在段落中。 段落构成文档。',\n"," '段落通常用一个或两个回车符分隔。 回车符是您在该字符串中看到的嵌入的“反斜杠 n”。 句子末尾有一个句号,但也有一个空格。 并且单词之间用空格分隔']"]},"execution_count":17,"metadata":{},"output_type":"execute_result"}],"source":["r_splitter = RecursiveCharacterTextSplitter(\n"," chunk_size=150,\n"," chunk_overlap=0,\n"," separators=[\"\\n\\n\", \"\\n\", \"(?<=\\. )\", \" \", \"\"]\n",")\n","r_splitter.split_text(some_text2)\n"]},{"attachments":{},"cell_type":"markdown","metadata":{},"source":["这就是递归字符文本分割器名字中“递归”的含义,总的来说,我们更建议在通用文本中使用递归字符文本分割器\n"]},{"attachments":{},"cell_type":"markdown","metadata":{},"source":["### 3.2 基于token的分割\n","很多LLM的上下文窗口长度限制是按照Token来计数的。因此,以LLM的视角,按照Token对文本进行分隔,通常可以得到更好的结果。\n","通过一个实例理解基于字符分割和基于Token分割的区别"]},{"cell_type":"code","execution_count":18,"metadata":{},"outputs":[{"data":{"text/plain":["['foo', ' bar', ' b', 'az', 'zy', 'foo']"]},"execution_count":18,"metadata":{},"output_type":"execute_result"}],"source":["# 使用token分割器进行分割,\n","# 将块大小设为1,块重叠大小设为0,相当于将任意字符串分割成了单个Token组成的列\n","from langchain.text_splitter import TokenTextSplitter\n","text_splitter = TokenTextSplitter(chunk_size=1, chunk_overlap=0)\n","text1 = \"foo bar bazzyfoo\"\n","text_splitter.split_text(text1)\n"]},{"cell_type":"code","execution_count":19,"metadata":{},"outputs":[{"data":{"text/plain":["['test', ' base', 'ces', 'e']"]},"execution_count":19,"metadata":{},"output_type":"execute_result"}],"source":["text1 = \"test basecese\"\n","text_splitter.split_text(text1)\n"]},{"attachments":{},"cell_type":"markdown","metadata":{},"source":["可以看出token长度和字符长度不一样,token通常为4个字符"]},{"attachments":{},"cell_type":"markdown","metadata":{},"source":["### 3.3 分割Markdown文档\n","分块的目的是把具有上下文的文本放在一起,我们可以通过使用指定分隔符来进行分隔,但有些类型的文档(例如 Markdown)本身就具有可用于分割的结构(如标题)。\n","\n","Markdown标题文本分割器会根据标题或子标题来分割一个Markdown文档,并将标题作为元数据添加到每个块中\n"]},{"cell_type":"code","execution_count":20,"metadata":{},"outputs":[],"source":["# 定义一个Markdown文档\n","\n","from langchain.document_loaders import NotionDirectoryLoader#Notion加载器\n","from langchain.text_splitter import MarkdownHeaderTextSplitter#markdown分割器\n","\n","markdown_document = \"\"\"# Title\\n\\n \\\n","## Chapter 1\\n\\n \\\n","Hi this is Jim\\n\\n Hi this is Joe\\n\\n \\\n","### Section \\n\\n \\\n","Hi this is Lance \\n\\n \n","## Chapter 2\\n\\n \\\n","Hi this is Molly\"\"\"\n"]},{"cell_type":"code","execution_count":21,"metadata":{},"outputs":[],"source":["markdown_document = \"\"\"# Title\\n\\n \\\n","## 第一章\\n\\n \\\n","李白乘舟将欲行\\n\\n 忽然岸上踏歌声\\n\\n \\\n","### Section \\n\\n \\\n","桃花潭水深千尺 \\n\\n \n","## 第二章\\n\\n \\\n","不及汪伦送我情\"\"\"\n"]},{"cell_type":"code","execution_count":22,"metadata":{},"outputs":[],"source":["# 定义想要分割的标题列表和名称\n","headers_to_split_on = [\n"," (\"#\", \"Header 1\"),\n"," (\"##\", \"Header 2\"),\n"," (\"###\", \"Header 3\"),\n","]\n"]},{"cell_type":"code","execution_count":23,"metadata":{},"outputs":[{"data":{"text/plain":["Document(page_content='桃花潭水深千尺', metadata={'Header 1': 'Title', 'Header 2': '第一章', 'Header 3': 'Section'})"]},"execution_count":23,"metadata":{},"output_type":"execute_result"}],"source":["# 初始化Markdown标题文本分割器,分割Markdown文档\n","markdown_splitter = MarkdownHeaderTextSplitter(\n"," headers_to_split_on=headers_to_split_on\n",")\n","md_header_splits = markdown_splitter.split_text(markdown_document)\n","\n","md_header_splits[0]\n","# Document(page_content='Hi this is Jim \\nHi this is Joe', metadata={'Header 1': 'Title', 'Header 2': 'Chapter 1'})\n","\n","md_header_splits[1]\n","# Document(page_content='Hi this is Lance', metadata={'Header 1': 'Title', 'Header 2': 'Chapter 1', 'Header 3': 'Section'})\n"]},{"cell_type":"code","execution_count":24,"metadata":{},"outputs":[{"data":{"text/plain":["Document(page_content='李白乘舟将欲行 \\n忽然岸上踏歌声', metadata={'Header 1': 'Title', 'Header 2': '第一章'})"]},"execution_count":24,"metadata":{},"output_type":"execute_result"}],"source":["markdown_splitter = MarkdownHeaderTextSplitter(\n"," headers_to_split_on=headers_to_split_on\n",")#分割文档\n","md_header_splits = markdown_splitter.split_text(markdown_document)\n","#第一个块\n","md_header_splits[0]\n","# Document(page_content='Hi this is Jim \\nHi this is Joe', metadata={'Header 1': 'Title', 'Header 2': 'Chapter 1'})\n","\n","\n"]},{"cell_type":"code","execution_count":25,"metadata":{},"outputs":[{"data":{"text/plain":["Document(page_content='桃花潭水深千尺', metadata={'Header 1': 'Title', 'Header 2': '第一章', 'Header 3': 'Section'})"]},"execution_count":25,"metadata":{},"output_type":"execute_result"}],"source":["#第二个块\n","md_header_splits[1]\n"]},{"attachments":{},"cell_type":"markdown","metadata":{},"source":["可以看到,每个块都包含了页面内容和元数据,元数据中记录了该块所属的标题和子标题。\n","\n","我们已经了解了如何将长文档分割为语义相关的块,并且包含正确的元数据。下一步则是将这些分块后的数据移动到向量存储中,以便进行检索或生成"]},{"cell_type":"code","execution_count":26,"metadata":{},"outputs":[],"source":["#加载数据库的内容\n","loader = NotionDirectoryLoader(\"docs/Notion_DB\")\n","docs = loader.load()\n","txt = ' '.join([d.page_content for d in docs])#拼接文档\n"]},{"cell_type":"code","execution_count":27,"metadata":{},"outputs":[],"source":["headers_to_split_on = [\n"," (\"#\", \"Header 1\"),\n"," (\"##\", \"Header 2\"),\n","]\n","#加载文档分割器\n","markdown_splitter = MarkdownHeaderTextSplitter(\n"," headers_to_split_on=headers_to_split_on\n",")\n"]},{"cell_type":"code","execution_count":28,"metadata":{},"outputs":[],"source":["md_header_splits = markdown_splitter.split_text(txt)#分割文本内容\n"]},{"cell_type":"code","execution_count":29,"metadata":{},"outputs":[{"data":{"text/plain":["Document(page_content=\"Saying goodbye to Blendle (from a colleague) and to a colleague (from Blendle) is a very normal and natural thing. When done right, it can even be a beautiful thing. \\nWe advise you to read the backdrop below first, but feel free to jump in right away with the 'Here's what you can do'-section :). General note: you do not have to do this alone, so please ask for advice and help! \\n- **Backdrop** \\nSaying goodbye to Blendle (from a colleague) and to a colleague (from Blendle) is a very normal and natural thing. When done right, it can even be a beautiful thing. \\nSaying goodbye to people is also an important part of keeping your team on the right track. Firing can even be a part of your [Personnel Planning](https://www.notion.so/Hiring-451bbcfe8d9b49438c0633326bb7af0a?pvs=21). The most common situation will be when you think someone is no longer a good match with Blendle for whatever reason. This doesn't happen overnight, so try to spot situations where this is happening. \\nTo make things clear: HR and Rick and Alex will help you with this, but we want this to be on your agenda. HR will take care of the process and paper- and legal work. Rick and Alex will help with the tough conversations. **The most important work happens months before that and that's where you come in.** \\nWhy? You actually work with your people and see how they are really doing. You have 1on1's, off-sites, projects and feedback sessions together. All the information flows to you as a lead :).\", metadata={'Header 1': 'Firing'})"]},"execution_count":29,"metadata":{},"output_type":"execute_result"}],"source":["md_header_splits[0]#分割结果\n"]}],"metadata":{"kernelspec":{"display_name":"chatGPT","language":"python","name":"python3"},"language_info":{"codemirror_mode":{"name":"ipython","version":3},"file_extension":".py","mimetype":"text/x-python","name":"python","nbconvert_exporter":"python","pygments_lexer":"ipython3","version":"3.11.9"},"orig_nbformat":4,"vscode":{"interpreter":{"hash":"4d8dc73ac51fd938ce7dec941fbf542c26232b3529b0c2a6ebc607bfa3d5aa69"}}},"nbformat":4,"nbformat_minor":2}
+{"cells": [{"cell_type": "markdown", "metadata": {}, "source": ["# \u7b2c\u4e09\u7ae0 \u6587\u6863\u5206\u5272", "\n", " - [\u4e00\u3001\u914d\u7f6e\u73af\u5883](#\u4e00\u3001\u914d\u7f6e\u73af\u5883)\n", " - [\u4e8c\u3001\u6587\u6863\u5206\u5272\u91cd\u8981\u6027](#\u4e8c\u3001\u6587\u6863\u5206\u5272\u91cd\u8981\u6027)\n", " - [\u4e09\u3001\u6587\u6863\u5206\u5272\u65b9\u5f0f](#\u4e09\u3001\u6587\u6863\u5206\u5272\u65b9\u5f0f)\n", " - [3.1 \u57fa\u4e8e\u5b57\u7b26\u7684\u5206\u5272\u65b9\u5f0f](#3.1-\u57fa\u4e8e\u5b57\u7b26\u7684\u5206\u5272\u65b9\u5f0f)\n", " - [3.2 \u57fa\u4e8etoken\u7684\u5206\u5272](#3.2-\u57fa\u4e8etoken\u7684\u5206\u5272)\n", " - [3.3 \u5206\u5272Markdown\u6587\u6863](#3.3-\u5206\u5272Markdown\u6587\u6863)\n"]}, {"cell_type": "markdown", "metadata": {}, "source": ["\u6211\u4eec\u521a\u521a\u8ba8\u8bba\u4e86\u5982\u4f55\u5c06\u6587\u6863\u52a0\u8f7d\u5230\u6807\u51c6\u683c\u5f0f\u4e2d\uff0c\u73b0\u5728\u6211\u4eec\u8981\u8c08\u8bba\u5982\u4f55\u5c06\u5b83\u4eec\u5206\u5272\u6210\u8f83\u5c0f\u7684\u5757\u3002\u8fd9\u542c\u8d77\u6765\u53ef\u80fd\u5f88\u7b80\u5355\uff0c\u4f46\u5176\u4e2d\u6709\u5f88\u591a\u5fae\u5999\u4e4b\u5904\u4f1a\u5bf9\u540e\u7eed\u5de5\u4f5c\u4ea7\u751f\u91cd\u8981\u5f71\u54cd\u3002"]}, {"cell_type": "markdown", "metadata": {}, "source": ["## \u4e00\u3001\u914d\u7f6e\u73af\u5883"]}, {"cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": ["import os\n", "import openai\n", "import sys\n", "sys.path.append('../..')\n", "\n", "from dotenv import load_dotenv, find_dotenv\n", "_ = load_dotenv(find_dotenv()) \n", "\n", "openai.api_key = os.environ['OPENAI_API_KEY']"]}, {"attachments": {"image.png": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAqoAAAHUCAIAAAB9J50RAAAMPmlDQ1BJQ0MgUHJvZmlsZQAASImVVwdYU8kWnluSkEBogVCkhN4EkV6khNBiEJAq2AhJgFBCDAQFO7qo4NpFBGzoqoiiawFkrYjdRbH3BRUVZV0s2FB5kwK67CvfO983d/575sx/zpw7M3cGAI0TXLE4G9UEIEeUL4kJC2JMSEpmkJ4BBGBAGxCBHpeXJ2ZGR0cAKIP13+X9TWgN5ZqjjOuf7f9VtPiCPB4ASDTEqfw8Xg7EBwHAq3liST4ARJneYnq+WIZhAToSGCDEi2U4XYGrZThVgffJbeJiWBC3AqCixuVK0gFQvwL1jAJeOuRQ74XYWcQXigDQYEDsn5OTy4c4BWJbaCOGWMbvlfoDT/rfOFOHOLnc9CGsGItcVIKFeeJsbuH/mY7/LTnZ0kEf1rCoZUjCY2Rjhnm7nZXLkWE1iHtEqZFREGtD/FHIl9tDjFIypOHxCnvUiJfHgjkDdIid+dxgDsRGEIeKsiMjlPrUNGEoG2I4Q9AZwnx2HMT6EC8W5IXEKm02S3JjlL7QhjQJi6nUn+NK5H5lvh5Ks+KZSv43GQK2kh9TL8qIS4SYArFlgTAhEmJ1iJ3ysmI5SpsxRRmsyEEbiTRGFr8lxDECUViQgh8rSJOExijtS3PyBseLbc4QsiOVeH9+Rly4Ij9YK48rjx+OBbsiEDHjB3kEeRMiBsfCFwSHKMaOPReI4mOVPB/F+UExir44RZwdrbTHzQXZYTK9OcRueQWxyr54Qj6ckAp+PE2cHx2niBMvyuSOjVbEg68AEYAFggEDSGFJBbkgEwjbehp74JuiJRRwgQSkAwFwVGoGeyTKW0TwGQuKwJ8QCUDeUL8geasAFED91yGt4ukI0uStBfIeWeApxDmAA7Lhu1TeSzTkLQE8gRrhP7xzYeHBeLNhkbX/e/2g9ruGCTURSo100CNDY9CSGEIMJoYTQ4l2uCHuj/viEfAZCIsL7oV7D47juz3hKaGd8Ihwg9BBuDNVWCwZFuU40AH5Q5W5SP0xF7g15HTHg3A/yA6ZcTpuCBxxN+iHiQdAz+5Qy1LGLcsKYxj330bww9dQ2pGdyShZjxxIth3eU91e3X2IRZbrH/OjiDV1KN+soZbh/lk/ZJ8Pa85wS2wxdgA7i53EzmNHsEbAwI5jTdgl7KgMD82uJ/LZNegtRh5PFuQR/sPf4JeVZTLPuc652/mLoi1fMEO2RwNWrrhQIkzPyGcw4R9BwGCLeE4jGS7OLq4AyP4viu3rLV3+30DoF77rFpgB4Fc4MDBw5LuOA/fWA0fh8r/7XWfTBbeJCwCcW8eTSgoUOlz2IMBdQgOuNANgAiyALRyPC/AAviAQhICxIArEgSQwBUafAee5BEwHs8B8UALKwAqwFlSCTWAr2An2gP2gERwBJ8EZcBFcATfAPTh7usBL0Aveg34EQUgIFaEhBogpYoU4IC6IF+KPhCARSAyShKQg6YgIkSKzkAVIGbIKqUS2ILXIr8hh5CRyHmlH7iCdSDfyBvmMYqgaqoMao9boKNQLZaIcNA6djKaj09AidCG6DK1Aa9DdaAN6Er2I3kA70JdoHwYwVYyOmWGOmBfGwqKwZCwNk2BzsFKsHKvB6rFm+J2vYR1YD/YJJ+I0nIE7whkcjsfjPHwaPgdfilfiO/EGvBW/hnfivfg3ApVgRHAg+BDYhAmEdMJ0QgmhnLCdcIhwGq6lLsJ7IpFIJ9oQPeFaTCJmEmcSlxI3EPcSTxDbiY+JfSQSyYDkQPIjRZG4pHxSCWk9aTfpOOkqqYv0UUVVxVTFRSVUJVlFpFKsUq6yS+WYylWVZyr9ZE2yFdmHHEXmkwvJy8nbyM3ky+Qucj9Fi2JD8aPEUTIp8ykVlHrKacp9yltVVVVzVW/V8apC1XmqFar7VM+pdqp+UtNWs1djqU1Sk6otU9uhdkLtjtpbKpVqTQ2kJlPzqcuotdRT1IfUj+o0dSd1tjpffa56lXqD+lX1VxpkDSsNpsYUjSKNco0DGpc1ejTJmtaaLE2u5hzNKs3Dmrc0+7RoWqO1orRytJZq7dI6r/Vcm6RtrR2izddeqL1V+5T2YxpGs6CxaDzaAto22mlalw5Rx0aHrZOpU6azR6dNp1dXW9dNN0F3hm6V7lHdDjpGt6az6dn05fT99Jv0z3rGekw9gd4SvXq9q3of9EfoB+oL9Ev19+rf0P9swDAIMcgyWGnQaPDAEDe0NxxvON1wo+Fpw54ROiN8R/BGlI7YP+KuEWpkbxRjNNNoq9Eloz5jE+MwY7HxeuNTxj0mdJNAk0yTNSbHTLpNaab+pkLTNabHTV8wdBlMRjajgtHK6DUzMgs3k5ptMWsz6ze3MY83Lzbfa/7AgmLhZZFmscaixaLX0tRynOUsyzrLu1ZkKy+rDKt1VmetPljbWCdaL7JutH5uo2/DtimyqbO5b0u1DbCdZltje92OaOdll2W3we6KPWrvbp9hX2V/2QF18HAQOmxwaB9JGOk9UjSyZuQtRzVHpmOBY51jpxPdKcKp2KnR6dUoy1HJo1aOOjvqm7O7c7bzNud7o7VHjx1dPLp59BsXexeeS5XLdVeqa6jrXNcm19duDm4Ct41ut91p7uPcF7m3uH/18PSQeNR7dHtaeqZ4Vnve8tLxivZa6nXOm+Ad5D3X+4j3Jx8Pn3yf/T5/+Tr6Zvnu8n0+xmaMYMy2MY/9zP24flv8OvwZ/in+m/07AswCuAE1AY8CLQL5gdsDnzHtmJnM3cxXQc5BkqBDQR9YPqzZrBPBWHBYcGlwW4h2SHxIZcjDUPPQ9NC60N4w97CZYSfCCeGc8JXht9jGbB67lt071nPs7LGtHDVOLKeS8yjCPkIS0TwOHTd23Opx9yOtIkWRjVEgih21OupBtE30tOjfxhPHR4+vGv80ZnTMrJizsbTYqbG7Yt/HBcUtj7sXbxsvjW9J0EiYlFCb8CExOHFVYseEURNmT7iYZJgkTGpKJiUnJG9P7psYMnHtxK5J7pNKJt2cbDN5xuTzUwynZE85OlVjKnfqgRRCSmLKrpQv3ChuDbcvlZ1andrLY/HW8V7yA/lr+N0CP8EqwbM0v7RVac/T/dJXp3dnBGSUZ/QIWcJK4evM8MxNmR+yorJ2ZA1kJ2bvzVHJSck5LNIWZYlac01yZ+S2ix3EJeKOaT7T1k7rlXAk2/OQvMl5Tfk68CB/SWor/UnaWeBfUFXwcXrC9AMztGaIZlwqtC9cUvisKLTol5n4TN7Mlllms+bP6pzNnL1lDjIndU7LXIu5C+d2zQubt3M+ZX7W/N+LnYtXFb9bkLigeaHxwnkLH/8U9lNdiXqJpOTWIt9Fmxbji4WL25a4Llm/5Fspv/RCmXNZedmXpbylF34e/XPFzwPL0pa1LfdYvnEFcYVoxc2VASt3rtJaVbTq8epxqxvWMNaUrnm3dura8+Vu5ZvWUdZJ13VURFQ0rbdcv2L9l8qMyhtVQVV7q42ql1R/2MDfcHVj4Mb6TcabyjZ93izcfHtL2JaGGuua8q3ErQVbn25L2Hb2F69farcbbi/b/nWHaEfHzpidrbWetbW7jHYtr0PrpHXduyftvrIneE9TvWP9lr30vWX7wD7pvhe/pvx6cz9nf8sBrwP1B60OVh+iHSptQBoKG3obMxo7mpKa2g+PPdzS7Nt86Den33YcMTtSdVT36PJjlGMLjw0cLzred0J8oudk+snHLVNb7p2acOp66/jWttOc0+fOhJ45dZZ59vg5v3NHzvucP3zB60LjRY+LDZfcLx363f33Q20ebQ2XPS83XfG+0tw+pv3Y1YCrJ68FXztznX394o3IG+0342/evjXpVsdt/u3nd7LvvL5bcLf/3rz7hPulDzQflD80eljzh90fezs8Oo52BndeehT76N5j3uOXT/KefOla+JT6tPyZ6bPa5y7Pj3SHdl95MfFF10vxy/6ekj+1/qx+Zfvq4F+Bf13qndDb9VryeuDN0rcGb3e8c3vX0hfd9/B9zvv+D6UfDT7u/OT16eznxM/P+qd/IX2p+Gr3tfkb59v9gZyBATFXwpUfBTBY0LQ0AN7sAICaBAANniEoExX3P7kgijurHIH/hBV3RLl4AFAPK9kxnnUCgH2wWM+D3LCWHeHjAgHq6jpUBu9q8nulTIjwHrA5WIburJ48DwwTxZ3zh7iH10DG6gaG1/8C3C58iXTvVm8AAAA4ZVhJZk1NACoAAAAIAAGHaQAEAAAAAQAAABoAAAAAAAKgAgAEAAAAAQAAAqqgAwAEAAAAAQAAAdQAAAAAdNIawwAAQABJREFUeAHsnQeclsW1/3eX3ntH2AUEBQR7L4glthhQU24SNVGTqFFz03Ov+d9c00yiMYnez025lsTEFhMbdlBQUbCCBVBElipFem/L/r9nfs8z+2xh4YXFsO+eB312npkzZ878ZuacM+V53sKysrLCcBX45Qg4Ao6AI+AIOAINA4GihlFNr6Uj4Ag4Ao6AI+AIVCBQxMy/4slDjoAj4Ag4Ao6AI9AAELDZv3sADaChvYqOgCPgCDgCjkAFAr74X4GFhxwBR8ARcAQcgQaCgJv/BtLQXk1HwBFwBBwBR6ACATf/FVh4yBFwBBwBR8ARaCAIFJaXlzeQqno1HQFHwBFwBBwBR0AI+Ozfe4Ij4Ag4Ao6AI9DgEHDz3+Ca3CvsCDgCjoAj4Ai4+fc+4Ag4Ao6AI+AINDgE3Pw3uCb3CjsCjoAj4Ag4Am7+vQ84Ao6AI+AIOAINDgE3/w2uyb3CjoAj4Ag4Ao6Am3/vA46AI+AIOAKOQINDwM1/g2tyr7Aj4Ag4Ao6AI+Dm3/uAI+AIOAKOgCPQ4BBw89/gmtwr7Ag4Ao6AI+AIuPn3PuAIOAKOgCPgCDQ4BNz8N7gm9wo7Ao6AI+AIOAJu/r0POAKOgCPgCDgCDQ4BN/8Nrsm9wo6AI+AIOAKOgJt/7wOOgCPgCDgCjkCDQ8DNf4Nrcq+wI+AIOAKOgCPg5t/7gCPgCDgCjoAj0OAQcPPf4JrcK+wIOAKOgCPgCLj59z7gCDgCjoAj4Ag0OATc/De4Jq9e4fJwEc9fu2/frrseI32VxxjvAUdgTxCI/YoAfS8+7gnPGvMmnMvTfk5pZWVQKp57WVkZd65t27ZtD5KUbdvGIzRQbt26tUa2uxcJWxWhAOGCcitFIu0eT8/lCOSEQOOcqJ04jxGQmqOC6L2iwvLCInMNieQq5Cqwm2nngoKikJTHUHjVPn4E6GZWKB1t71+hU5dTUlGjRhhderkVXFhYVFiIB0D3blRURP+HrFHjxrLKPDaBuK6uUKgVWVCINwJXytpeXmYRfjkCHxcCPvv/uJDe58uRTkRMVJ+pIVNKdlm8zVNsWoYSdA0lWPxetwiELmcT87plWyM3699meQtD1w4LAOruhYWNzCEoLwtTf+Wl5/No9HV6BWcDAZj0l+NwcDG4trH8UKelODNHoBYEbADUkuxJDROBKr0C3acY3aMqjIGGiZLXes8RyPa0Kr1LzOu2j1EEF7YW5proq2+XbStr1LiRlYU6DIYej1dkJobN0M0HNuegTi+EUQWzxZmzLSFRziTXtedRpzVwZvUYATf/9bjx6lD0qIYIVLBVONU+roYqkPFQHSGg/mb3YOq4JytMqRmuo3ISNklxzObDOtaWLVs2b95Mx8bSt2zZEiKMPA/ENypqtGTJ4o2bNhHfsWPHJk2aVHgDdSdTlGfZ8uVr1qxp3Lhx9+7dmzZpggxIItvv467u8HZOlRDwvf9KcDTYB6khFE0lXZMa/gYLi1d8LyKQGviqvS4UGebbZv7qUAA6uRgWFjViis9Rvvfee2/WrFnr169v3br16aefjqXHE4CscaNG77733k9/+tMpU6b07dv3F9dfP2zYsDqUJMsKkebOn/9///d/Dz74YNOmTe+4/fahBx3E6kSNsGQzetgR2EME3PzvIYB5kl26ZuPGjevWrUP9MdFhBVJ1k2fAnflQ8+bNWrRsyRwlJkmfZlEQffX4LE2V7GTZFfrqHOpLTO0VVGrtNP/Cmu4lwTDwbL+vWLFiK3PtrVux8yx50w2wxHSwNm3asBLAXjjr7VX6hsmD9c7dMYh8bKlheznm//XXX//KV77COX9s/3HHHof5J4lH9gXuuuuuhx56CNjffffdkpKS//3f/90bTUBdVMT1P7++bbu2q1evfvyJJ1gA6Na9O+KxDIAXEMuNDREDMSkGakmKNLUElH0PmdTC35P2KQTc/O9TzfEvE0aacfYHsx977NH3Z81iZVTTDwmENkQLswTap0+f3r179+rZs3OXLp06dWrRvLlN4aShMpM55apQImlS9epBQ6Tp8h3TVMlVwTYk6FF8jFVGXVbJmMOjhElFqlRi9UhiuKKWDvPWKIbyxsdEhspZlMrdVp6ZfWIXa6lFKkDCSn9UqICs1ZcyeaKsUebARBgmRUtC7XqnJWGm58+fv34ds+V1Jf36YaUspUZ50iwVfyuTYdswdW+//fbEiROfe+65Z555RpTw/OQnP3niCSccethhAwYMYDYsqSr41N7EaSmCPZsrG6aOXM2aNsXNPfDAAxED+iZNGnPH62WdHw9g0eJFeMPKxQYBMcRHtiuWL583fz6p8CkpLm7Tti2BbBFQ8gi7WbM+2LhxAw9t27YtLi6usoPA47atW1etWkUDAghZZs+eTXHEM+Lwhzhqa3w0TNIiqpQVmyCKZzHZKxWtgiCTWsGckwaxb2QIPJivCLj5z9eWza1e0gsrVq4YO27chAkT0HRZFYNOxCw1bdoEdcwaQIuWLY4++mjU9GGHHcbSKJEQb99epv1UI6bw9LQgScE2JfJk2UZlRF70lek7Xruq9XQVWWKuWEPtklKudCsEMUmBbKFJUlamKtQ8Ggd0beZkjOxrpi5BkNROB3ryqaCKpCCKqVTcm+pSpapWtU5ysezLy5Wpoo+ixewEANT2hlOGVij8sRUFWIuwZ5x5MzPWHZRsMk2SUo081DKUIW4QR7Yq2ooLFeOGffrtb3/z6KOPffjhh3/6058uvvhieMLDCs0Ko5zp3ZL4L0ipNiKGafeYMWPuvPPO1avXrF27JqUtWLx48V//+leWwY855phLLrnktNNOa9WqVRXmerQ6c2UMG/FWCAIRosSaQFBBCWVor2iP1Xv1yLT7/PPOf+H5F9gaOOigg0466SQ6J7l4B4ATgjB5YeLEa665hkCbNq3vuOPPRxxxRBXOety6bdtNv7np8ccfw5ozZG6//XadMFAqd3g2btJk8ODBhxx88JSpU4cOHTpq1KhOnTuThCTAZX2bigQA5YWTZEMs9pCQRK2JVC7uxlfYiIyH9Aop6UP4axnLC6iXtZM5HPZ2j1q2ohTjlkBeKbM/1GcE3PzX59ara9nRL8xFmOigDj77uc8yv2f8S61Q1Pvvv//ss88yBSRcWlr6zwce6NWjxx/++MdDDjmkS5cuUHKhPrhLLgWIgQN3U6CyFiFg9iDQo24UhmyHtt80k1kaLnLxMRaUtfSj7kRKQUsA7pQlGwlBEhmcGBJUnNmJoCfJa6HA2TKiOXXuGj27DSZWFKmUj4SqBRzE1ogtLam1HsUQU8Ej4e1F2zG5CqNB9Qql+MCF3Ga4wxtfRCIVHFOjZrx1UbaJzQPEqWGziKCzCQgHSoGbGSjIiBWBqhoe8QA4w6ZUkzawRVRedSdSb7hZfWN2wZKCSe/A9tMHkl5hBUBrIHAPGU2iEC3BzSwRL0kI0LuYbV977bXjx49XRozr8OHDcSI3bNjAZjwrAZs2bcI5ePrpp//2t7+dddZZmEyYWEGBpXIJI2obqmUdz3qXukFqOyEn1fKm7SUxJK3kS7gZ5hWo87r/iSeceMsttyxbtqykpASrjORWRCJCAXtk8+bNg0OzZs0YNWKlu4ojTFnkYHdj/vwFPPbv108EKlGpEHMNGjjolv/5H8ZXcXExroA8HgisP6TA4iNyGZKpnOITPRLoSYWbilarUCUrKIw7AhJAPCFQ94MPTiFjitEHDRzgI+ktSwCdrxGRy0rPMIncPFBPEXDzX08bbq+IjXpgLgLr9u3bf/GLX2RdlLCZ3aA3Fi5ceOWVV7JQ+cEHH9x9991oq9I5cyD70Y9+xL1du3boEa6oIAjwCAc0fuNG1tNk3RP9EiYxRoCtCUocgh1eaKFg58xqlpfjoRBAGWneiXLjO0XkpUSYo+zQa9AjNSSSwe7SXKn+MmIp7jQGGiK5YKUwRtEywrvQ5riIGkqxPxYvM6N3tYPxU6Q4BErLyKPMRkhN8EFO4gUFOhVepHJBjszkrXoFpqQZqaGR4mzWIDRPqD7xCbypB2PEspEFhTq0AQVmnkKjswVvLtAQWzGB2MyGogImhnehMcH8E4gSIgAVJAbaGBkDqg5SEQOGyz766Ic//CF+JI/HHXfcv/3bvx188MG9e/XGzWLRG3N79tlns+/O8gCPX/rSlx99dMzxxx8vQ0gWSuEiEMuiMuTluVGjxnKtSDUCegU+TdoHIn1IzNxqkpnkNm3bnHHGGZFO2SlaSzWSgVRyAwoB2WaeTb4UnNg0EKxdt07cYGV9KdTF8vJBoSZNgIKLyG1bt1Ugm/YKKz14A3C2npMuAICt4BU34x8o+Us8lInY8ues41hLiYNsP5RqaPP8QvuSkVxcFrBeartRkVusmpXlVz1HwM1/PW/AvSN+4yaNe/bsycJ+lj0b/2gBYj766KMhgwc/9vjjf/nLXwj/4he/YL5y3nnncWgrqx3QIMqe3TQlRgcMme2xGypzjj5i3iG9k+WQLR2VJ4UFQfPmzdk8Zl7Fa1tdunRFWihRVTIOKtdMQlDKGG/MgCnioFb5Q3FcVpdUTVtBwXCaEKGOohYrM95hcZWiQy4jV0w0oiyMsyXeokUL3CBVgdVUSiHMBR+skdaNmdraXm95OYsrgBBKxlCZWxN1dyig0o1yjRtxoRarV63esnVLi+YtWrdJMLcimL6XlcHToJDfE6bEVv1MTWkV+QFUYfWa1UxkERuHDxkkBgXRLoKI0mAbs5MRDKJkMd7gMvGtCWJqDAgB7ls2b5k2ffrjjz9OEkdJLr300s997nPUgty2olNYuP/++w8+cDDbTKwxLFq0iEMGHA5gQty1a1fkoV5IqEKTO/YsmDlhi1mlOhvWb2jZqiW9kVIABEpdVCSKtIsBpLIP/wVTjQDUsTC4FDAUB7OYocOkDgptXQECyKfxBXQMhdXBEgHIHVhFkK2xgt0VkhSUdMhg+A2EYOBhRUei15FKTWlBGMYKkouKIy3cFCmBFSZLlJ/xS03YbohdkSJITQiQLXUfLZc6XyK6/6n3CLj5r/dNWDcVCDoFTaNhb/egK6VupIBQS1IfXTp3GTV6NK8n8cj27YIFC77//e9369btzDPPNBvAP80zpAfTaSgKfebMmWvXrsVss8WLCe/bp0/TZs0wAzgTHJ6qvSJSsuTlJDbmEz5Llyxh3xiDweIwGrCkuKRvcV+YoHGjCjM1VliwcuVKZpNEkjpw4MDi4mLVjjSqwGVVC/qcmLlz5s4uteNXKFDWpeGM1aFKKFzezGY/GB1IiZTLKUhmq9OmTVu+fDlqlDAODW5Th/Yd9h+4PwckkYQS4W9CFJSz6D1v7ryVq1bOmTOHc2e999sP+s6dO/NSWYvGje2kd+oNBPqABwWb/rWZGYso78+cuWjxYvQ+YIIAx+Oxi7pTL7JbJSxLqAzhYJuQbeqUKYS5hg4Z2qNnj+XLlr0zbRowwgdI4dCje/eOHTsN2H8APp+sFGKDGE3Pnzlz582ZO4dqlpaW8qo8jKnL2LFj1T14pCn79e8v+XnkSmsdAumSxoYN62X7IWBV/xOnny67FXIkYnMA/pOfPHfs2HEPP/ww8ffdd9+5555LNUVDFVh8AkDQYP3n+BNOoCNhkRfMn8+renhgK1esoCVAlRq1aNFy4KCBPXr0SPjvwh/4i4oTjq++9irdAOd10MCBvXr3BoqVq1bMmvUBPtPUqVNFhkMzadIkkORRrsaJJ56ISLNnz0ZItjNAOKHcsuXJJ5+0+paXb96ypX+//oOHDBZK9M+33noLtxh39vAjjqALYeTDUCzEyXv11VfpeBy86b1fb3odZGyR4BuRizvM2Xqjvv369cNPosvZ+kG40pFo5VOQyiIFqdSRKI4FPMRmRPCuY+fOXYYNH0aHpyvOnTsXnMnSuVPnAw48gEjI3ANQU+bPPfQKvzV0BJjlAMH48eNPOeUUOjca88033yTGdhzDz5+g6HVlkUJBMHvTYLjwoguXLlnKHDcltGkKYe7oqRdeeOHHP/6x7EqVwcPxrltv/b+33nxr65atos8WEcMcSsDw/+Y3v4mWIMuHySvbySwpo9osSyqGss+YMSMSc7JMkVk5FWP5tm//+9//jiYVPRZdkRJsyZIliue4w6OPPop+v+Xmm6tXCglZ38YqYKfFGTX9yCOPXHjhhVGMGDj55JPvvfdeTtRHGWoMLFywgPfQcEdixmyAJfT7778feSSt7hFMXJ9ITEPAChhjTDbwgx/8gB135pSSgcYnQLsAWhZ27E02F+HLL78crLKQ0nOiAOLGfenSpQcccIDyXn311YrHkENJWVzKRQALR2tyDoCDqPQfKMWN+6233oqvCROcJ1t0Wbdu3LhxAM70uopUrK/87Gc/nTx5MuYzcoh9gx6F8zrsoIPIRSdkQUXyQMA1p3QOh/5IYmWLtlPSO2+/wzmAWApm3l5QzFz9+/fHtYUYIZuzqhEubGeGJAnefPPN4skd23/2WWcp4fnnnycGE6764n/wUiJJVPaXv/wlHYmGPvbYY6sz/PSnP/3YY4+pDyi7oRrGNQwtHFoTB47+xgHD6hx43RBAZodXD/gOARWH5tBDDyXGRIJVQIawX/mBgM/+q4+ChhijuXX1mlt85SVT+r2RMaMtKmLSwK4/L26hlSZPmjx23NjPf/7z/FqQph1QMdVAj6NTmMPhKxDDUSnmiFzs36OQMJBMIrmGDBny85//nPUDJlvGv/KFAUAt/uH3v3/yqadIgQkXlKxGbt22FRXJ9OtnP/vZbbfd9l//9V+jR43itWmKtiEa5s1ZZpKfeE2RRcYdGpIIoCi12mG5QmVFw1N28fPll19GRTJDRRIUJcKgXlGRLD5j5PhizKSXXvr2d76DwWa6BgJ4P1QWSuoOfyZYmzcz+9qEy8X07lvf+tYVl1/evdo8FZGgnDF9Okcs//CHP5hIwSBRKEwokVSmvPfccw9WAQ/s0ksuZQvZKhJ2ecNKALVQPrtjIfCi8CRYd2nerJl2AWCCkAjPPs7//M//8JWbL3zhi+3aJ7sYuFIUx/ySgrhAgzqSkSUQGBo428uZ1IJbBIp4gcmdsJKUymIPMYrkDIE1YgA/m5eqsZjBJcqKu+2A20E2ZYE5SxePP/bY16+6ChqMMR6A2s5gWbeO5Yprr/3hPffc+//+3//DiCb+AU2dAaSCeeUQi/Jy7PBXguWzBRhyIj+WGP70OuLJpK5IAKniCv/GDRs6dGgPTpBxCWdbqAgLQngtdAayCCUyMhxUPt3DArRfgAV6Nt2IIC8z8l/96le0HettuB2CDkmAEW50AC4+Y/Cdb3+HNQ8whzuLAXQSaozwMHzpxRd/fdNNDzzwgMqiA9ANkE0daelHSy+66KLzzz//qquuIhL+kPF2jxpRWfyeTwi4+c+n1tz9usiwoWukPbOMpIayGtOsezCuEDNDwt784x//4CQg813eBkQxRTPJVIPvpTDREcMRI0761KdGMUPCcqA6UYIvvzz5pptsJsoS+lVXff3GG3/NSi+aTvRSjmg3poD/+Z//id0intfBL7nkEtY5KQgB0K1Yx59ffz1L3Ey8vvvd77IqzhFFiiCV6Qq6L1sphYlHl7M0roJ0V01RfBX0QQVHmujWoH9xaNjLGDRoEBvYnJFEk8Juw/r1f7vrLrQwWZ559ll0LhNQ1sl/9ctfYTjRqkcddRTTaFQ85pbq/Pd//zcTU6zpb3/7WxarWR5o2apVAngolfB7777345/8JKpszlhwsT7MhgUYspXAcvodd9xB+I7b72DJmlfnbfXC2sB8Gq7IEGFoDkpEbBQ9E1mbmJYXfLTso9deew3nCTcLYX53883M78+/4AL6A9aFVuDFNiTEmnIUH18N4fFXPvGJT5iNCTZsv962kZEtKxhLkwHQogBYFNbGX3rpJShBj0ZnHYVU2SrrVDRWirlctGggyaIKsRmvBsLmsSzB+XxS8E6++53vDD/4YGvuRo0Q9bFHH/3r3/5G0jvvvPOTn/yEZSEMG33G2ITeS6CGCwkCbFFm+kMMs1+Db8QhvnHjxt5ww42IzcVSCp4K0pKVlhUOZ5199sBBg+i6eFQvvvgiBUGD8aZbkgWvhQ5MpGrHwjuREiaWpUcjCCF6NR4wdaER//3f/50WYcWLBgIEYOSVQroTeXFJWRr59re+1b5Dh4Qhf0goLHzj9Tf++7rraD5yYe+R56tf/ap13ebNkZOttJcmTcKP/Oc//0kfKCkpATGy2nCIwyTpUGLs9/qPAN3LL0dACDw34TlWQenUcfF/R8iY2gsX0240jsYBlpu5fsyyaeMmlmRJ0uT4e9//HjvQfC8lLiFiuXmbgFe8oEHLcEc5spCLJYNG/OHG0r0ORUNwzjnnYO0w80aTXmtWr8Z6fepTn4KAi/1RNlkxUaSj5rgjlZK4/y0s/pOdtYeUQaW/GG84iF6L/zE5Lv5LxWODn3rqKatRuGyWx2Zqaem3v/1tsstEMRs75uijO3TowOIEpwpQ1pEbCp3F7SjYiBEjeERgKh5pYP6d73wHGuw0s8zrr78eNyumUgVKnDF9xj133w10YsU5DDwhKhhZTXnjDSWZj1JQcPbZZ7EGgKWPBaH95dCIjPsFF1zAHgHMY1kEEOaKK65QQZz6zCYpHBlmk9SOSqJRnnryyVjK17/+dUxXJEZgvI0oecwYA6K87bZbcXGwZ02bWnVoC6pMB1ixfEVkxYYFDYFzwPcDVBxeI6ss1FQ08Kxx8V9yQjN/3jxcE/LisfEdAmSLGQn8+c9/FlvaBbZKqnrfXg6An/3sZ0V5+OGHJztTVenK8V9PPfVUkbFVQXosDiEvu+wykuIhiT/+8Y9sFREvNvQBVpvoh2wAiQN3FuRIrdgCKCtjfY7dsUjw61//+vXXXqcPRFloGlYXWKZKlh9SUrZ1QNLgyoy4mMsD9RoBcz/9cgSEwK6af2xzRhsy6ZeuYCYx8YWJEcyXJ7/MO11K+o//+I9ot6rs8aMisei8+a3FxpEjR2K9YCJFzDzpxhtvFBOcEuxW1q5DpukpgVdeeYV9dFEyMcUvIVJqtM7NP6UgJ8Lg4qgU6UepSKae8nviRJZ9jbi7D3QQSzACTOmYaUns6667TsYPnrqYOOI6KJVZJsgIFmVn2Vdkq1auQnHHbXXm6KAEjYij+YcPUz1Wj6MVhIYdC3FjVYCVfxYGIBswoD/7GpFMpWBmMAYy/6w3KHKnd2TQBSUBjsLhNqlG3FnJ+P3vf//ixIm4VhBQ/Wi00nwVf1WWzD955WDx+Z0liy1vLMWqEzwozC2rJsySVdw3v/lNAQgBxHVr/hG7SttRxOZNlcw/Dh9yUnr2Iqa6+Y/jK5p/qlBcXEwDCSjxoQgCXATGjRvH2gYzeyjZKMLRRB4RMEboEvvttx9JLJOwkKMDCpYRUQKZKJn3c/hDHoAW4dz8B4Dz81Zp8VODxO+OwE4QYA0wLJ+idZiEtW+XqFeWcxcvWay82JKpb3I+eiqPnB5iNsmKtLQeWUTDkCIGXcOL3V/+0pcUOWvWLOUilZh5c+femq4uoLZOOOEErRPABAJ0FjSiZJOSrQdO0eOFwBa/QaliW+d3NvXxNpo2s51a6iMoZO/ZHsY5QFmjm0lFjZ515pm9evVimd1EylSfWrCKy7qFMME0xgUGMnIYDSiYohHWZxbR3RREfUXP/qy0Nvv0TB8PPdRmq1ysx+BUiYZHiRFSCvClTh4xAgzhQwwWlKVyGIJYyxYtLrrwosMOO5T4lStXYQbYSlAu3cUwss0m1RYOIKiN2Atg7wNvj6mq2hHzzIrC5VdcgW3mAxKPjhlTOqdUqw5ZnmTMlJv0H+rO5J6Nnq7duoKtilCj41/xyIwZR5DlerFiys7JOM14ssx3PQxzgMrS88hFPGcFbHc9s63ABwkwraRGesltRDaAkium7jSAm8g4AkDaDose2FgmK72wkO8GcvBFxb32+uvU1FyBAD7+KD46DiiY45HT39jcAR8ukyP9QgBsWag7ecTJbFjgauNA7FQkJ6jXCLj5r9fN968WXpYs0cb24hOTTmRC7c0pLeWQueRjAXzg/vvbXE2vM4WPtEj7SIUxoTzjzDOxmtDzMTUOzRHQ3A43ghe6eOQAFLuVmt+Y2gp6Leguex1RWo9ziP+4/x9sXjKhZAe0Ys9SctTdHVHxZrQeS+koULPzXNL+5QX7DxjAi22KO/LII1u1srfzWTQhxug5iVWYfJWFR7bDzTkwo7uS6SkVl23Gl2IpWEw4JYD2J4y1hhWXxds3Y4owMwTR16eeeppOt2E+mcZRkmCJixCQsULQNnygCZlJxXIgAATwgTNfUGjd2nbHMRi2SRw+cMujLih1pRG79jeIisDkBQFsEmcOWIjGVsX8HI/gQ1KskXCGAyeAvzgfVEHVtHvax2IWBXjxpE+Y1MIZMqpDPayskEyJdK3jjjuetSUigPe9d99l5x6aKnx29RGsKuc14AJ6QUiT0gLhMneA1Cx9CgVEu1piSsfWD65tspJRaB9foiBbcAiv+UHVsVMn3GiRs9TPC5CEhQOrX6Wls3mke1x88cUMDYMovQgjDWNWvZdG58tLWioQN7/nKwK7OwzyFQ+v164hEDTGjkkLC+cvWMB6oyiY4LZu0wZNhTYM6tK+t4PyQelwhwYV2aljR95cEj0zJgU4G7hg4UKFeSNRi8YyjVKgYmLffQsXcxpeuGf2z0avrVHnrGNV1M7v7D1LEVMsRpSpGFYtehv4JpwRQwYx4pBXq9b2DpVZv2CqTbBC+5AA2Vn8OGDQAcy6IOB1fC4CQoDFdnavxaRrly6VDIliw11GGsvHdwjEBzuHF2VoJxBUAGE/Ihcu5qUCjXu0Rjg08QU/dk8sqfIlmSvH7eQJ7mpluKkKPPKiB+fX2A9ii4GzkzpLQQ9hBwc/gJN67BZxUI4X7eTB1FgGyyosivBDFNHqIx5MIKYsMkp+1gZOOWWkOLz+xhucYKherxr51xK5exwimmm71FJC1SQcX8aIAKS+WGtgtObgO5BhDZ8MyasNmaySE5xfe+11ojmpYB+ZCN8eYBxZNwxNjOenrxspK92b0za7V8dM4R7c1xFovK8L6PJ9jAhgnqSpd7FMKYhsFq3oEm+TifSSTYpkWEfUF99DQ2uZ/ddSdmFhcXGxcrBuj+XDDmFW165Zo0imLOKAiEx8zAkImgv3Icz3KLPSl87sOTF+qRw7+otAYZpkOXbtglLCmPDpQgWlqUTE5hwDLziKGSqb+hI2gYKsSUXCVBXFC7GKZq+aF8agFIGWUnhEX//mt7/p3r0Hi8nBXxJju0OpiyJY3WV3mUj27DkHR0AVolmNVFeIwlMp5xdewkX2JCn8YRWB0wbacagCiD3uKkJZlmZjsMo620HH4AvQSIs948LSDB82HGPPx4CfePLJ8c8+i+PIwrXtG02dit1inYDVghokKSiAYTHfq2Ejg8sMov0eT3SSCIV2Lacj9e/XXwKxqqHTl5Xkq4uHKhLWzFLtQVraVZLpec3UlWLhz9oM+WS2k6YNfc+GU3iTZUeuEh2DAQW7Jk0a2zcWKR9wwm9owJCm0VqC9YTQGZo0bnzgAQfgQPO6SiUh/CG/EHDzn1/t+bHUBm2DkjV9h+EoLODtdRXLlA7jQZikaFI01VAkd1QMqcEi2i8EcqGzMIFopf169xYf5p1caG00OMvTiiSnlZhezI/Jaz5EsIBEa7anDVjZAz5qn5LX/FfCUAXcHrhFItODO7s014dSq/FZcvlAaGRFGk1gbjo3XMY/VIdANASkMAMDCvNsKl+Y87/+NVlKqZxS8xN+w9p1a+P0N4ubwom7o28DVObBaoTsNFPJrA8nKtYMTHhrdrtMVDhm2iVEV9ysgpZc8es1PFG63QMfXEMuHllt7j9gAK+i8aLHrbfeyvkA9n14C4O1Ez5H06Vr1Q8NqQyWxAkEnskHbsWZuwIJWXyVNO26Kr1C0BxDMM8xx56ShxILOU6AE2AeQBAgEYIBFdhXl0oxmcpad7PsYfDQCXkkCAGDuiI7i1LhwxJ7KrTn37cRcPO/b7fPxyUd45/BXzH+0wlolfKjHhE9enzDug3vzZwpMrbD+URolSzxES0j/sqrHxLCkshYotf4gq+I8RiqL2OSpOy64xmYNQ3GE2uJHoS/La3bxoIptyhqFCAbyLIiHnruEowkiZSlrx7WlBpiruqpNcaIklJUHDQmZNC/MQmnAemr8NzRrK7GUojUrBpPgo1hyqrCDYIYA347Agr3q7oTREblVRLScr5APxMlYapzI4YsEeG4DBCFVxZ8Dk5UACXrAcV9+3LnpCc26Z577uYTdZh/8VEuyUBYThhOiXZAiBeZeMYseowl7iMBSUUTRE9xp4IJRqrJZcRpfatkNM476JaGiY0U2+mHm0HHCUF+c4F2TH/dABpWoXLtdVVk8Md9HwE3//t+G32sEiZqhTLD5CxbtikO+72cZM+YqT/Ey1cs14v7UPI9nz59+yhLtKDMRLWTDTEcTF+juPT74sEwiJ4Fc76jp3CnTh1Z6ieMgmIdUpGbeAddy5VBrzHzj1sVUSfKBoje7qGgiscQQucpBe7Iw8UjHOLshwVPzt9VybWjR1VKqcEVsWAFhiGBx6CqRWV3ClWc7kGKRAzVxRauU6eEAAf+OSHP+TUWrnlNiypElrFQwCGS1mnRsiVg2vd84MDX8MPJcO7ZS7XOykCLaEkAMsVzCiGWorzkAiXllW1AWkol0giCySELIsEqwTPU1OoWKkmr8e16a5dw2TQ09Af8NtpO/Kld//4DTjj+BD5Bw3sQ69at37jBzpOKvzLqjgwrVq7gR4+UNzFgqRjQmzCFhby/wHaSsjRv0YLVmiyT3QvDdvcy1kmubOlpuJI8IJnGW4G2AhcuawSGDaciQhfiyYYMrcWGWjiJQqtpLKxYudLNv0DL47tpB78cASkL0w7BHMZARMZiTPUnFlhkLEqzOzthwnjIOHfGFwDbtG6jJI4pxbNvvM8mC0EpxiGoICam5BIxAWYbTzxhPwTH1aKFfcGGpOYtmndOPy8/ffr0NWvtHAB6jiRUFty40FbYG1QVSo3fX2HXgP1v1o0xgZE5ZMY3XLKv6VNiiSIl8ZgcdogjwU4DQQq7RfNZJYuVnhGAVIvZ0RXwl4lq1bJVcXExhFhi3CnOxzEj79GzJzNj3CNdnGvT1a17N2bPfOuN1Xtm/0ymqdSOCiJ+R0lRLkxmFSmVSxkFo4qAzJKsISygprF2CZFE4bJwh5hmYlfCmmf1Gg46kIW+QInxh+mMzDYUCkpKSk4NPz9BzyELbwGYDxEuYxsAxLPk3VLmr2bAwq8UhiKSc6ApecH8+fOeDb8vTAxf8umQfgYgEnz8AeTURc9Q6Roge0kSNlD0+SMQW7BwwZb0pUFgNDGC/actKF1i8NbAM888w/sje0keZ7uPIODmfx9piH1CDNRBtI5xQTLRUyTZIqEdFEJWmxkU2uthvCK8YIEdzudzgfbekVk602h8vp4vuqhWfB4HDwA+5EWJhzkf3KzvqTjMw/QZMzZutPeMsW284EcAPpyei78uw5tgfJWMcrWWADcrKAhHoSxgIvALE18YPXo0P4gyYsQIvoVnhiFcWMST0y8C4R+oCkqygkJZKD7FY5ZiUp0EBEiurECJpZQvfOELyvjG66+vCh8A4FGiUnUlGaqs1m7c+MCDD9x00695s//+v/9dkSIwg7oLVzRFkbaK5JQSF3USmtCmZvjDRZthShAPSssb7nzliZ7DI4fLcSlooD78qmBxX47346LJ3ogbNDCiS5CddtZn8CEghnJjz6S9FIbsz3/5C84BTagi4AAl9eWSPYPzwg8/5KN4KoJP7/Hjtonw+8AfuYwJXEGexB3YM9nEkDtsgAJHXB+y5Mu+rNWph5PKZc3EpXs4TckQYzC+/36yo7dngnjufRoBN//7dPN8zMLJEKrQ6sZAykLnwjC3HCf+xje+EV9MP/aYY/TbJJa9vAANzyd6RMw3//W9VVSzFRGtBW+4BWdiydKl/JqZVmg5Pxh/0AxK+FCKROJNQn43yHiG7XO0PMYC7RYCpsD4Dj+/DsB30detW9upc6ewsGkakJXwMz7xCTFhIvjGG2+YeYiKL7ynIMPD7/nyA/Oi/Pjvpo9DqQZ1UREvOvJxIcl51dVXo5QBlkvmkAC14DLXp2w7vxrHZvkvfvFLzs099vjjxAdOdsPuxvAOA9YwlRJTWSxSYRZuolchqRCS0kmlOJMZSNOjZCZqcuDfGt3kMdewgL0VO9i5ahWt8O6Md/W+mfFX1WGB+efjgIsWsd5D0bhurGroC3SJGPI+g7D0K+yZ5qmJGOZepmctCwv5osCf/vSnQFvADJjfYlaYewJ1+ixLnD5VWEQNBGGjWlfQBF82+5gNQ1xlEFXPrhdBwVAjJZt9N8KxuIBnYFBunjqDiN8s5hnXecyYR/gEkC29yJU34IVEUiA+PT9YtXjxkuhv7YYknqVeIODmv140014XMipW2WPK44CxSjUtFiwld5Q4y7C8RDRu7Fje2+ZgNo+c2cbA8wsxHBk3M8B/QbViyOMCwA033IBhRumj3CM3Aqz5o6D50gtveak4vpHO6wPII5FY4uarODoJyFfb+Po63xbU6wCwwqKgOgnwMvftd9zBcXExufLKr/PLKPCXZmvXth0/DM9hZlKRmX30WR98QE0h0IURw4TgN9z46xv5eKqY1NVdFclyqx6j1Erx4WjFoIGD4rfcUcqTJ0+KS7JIjoLmYstj5vsz+WkA1DobH+wFfO+736MtVDU4m+mt9apUboZS8dwVYG7Oy2AADsmCBQt0OAABJAmR1vrBCSBGfYBU4oMnYOvM/KARv8mkEp6bMOHue+6CD4s0xiR1CmHCj9Dzs0A0B5R8zK59+CVfO60WmjMUYb8MxJY22fnEEz++rP0aCWNuX0EBFo5fOsYZ4heceeQdAb4PSNeSkGb0wiVhuPMUw5UCif03B0BCEgAHeST0oirb5JGP4W/YJF4V1WSFRpwtNsRrDYyk+PpMUnSaK3nc2R+hHTOFnS9zcLH9iI+ofP2Qb2LCprR0Du9S8ntIixctsqZM3TWIOVny9ltv80MMeMBwUEPvrGRPr8cI7MK0oB7XzkXfVQSkjKLmQmtw/I1vh6ECUKnES5UwQUcp82EWtLPeJOYdcQwPn+zlwz4xu7iVlJTwEdnx48dDydyUz43xefbPfOYzTOYkFhPBsU8//asbbsCiE8M6P79uwmdNNRNC3eNHEGbSRhE/vu46VoP52Vx+JOZb3/wmC8ioVqwN+pet4dtuv43PobOnDB84YDJReciDTSEGV4av3V3+ta/hpqC4+Xg+b5fxrjnft5e7w7LEa6++yrL502PH9umzH5+81Qv0knMP70JjV5hAmdgKM5l2RIL1f3DDc2L35IknngBGPoYz0j423AyDyUE/9nGZAfODtm+++SZFsMaLWzZk6BAVp4aTbdgVAUQjKWJrEqkYzC38ZRX4nT2+VHjGGWcgBvxpJg4cACPTWUwa9BXZwwNGiPV8wMeZY0fjrrvuwtjefPMtkyZN5seQWJ1WEXCYPXv27373O35DknIp8dLLLtPvIOOiZcSzpufoCb8QjdPzta99je0ePozIzhHWHQnpEi9Neonm5jtCysWnJ0ecdBLfXxImVImuQ6E5Gzm8hMLCvn36sLjFhxExkyw/sE7DRdEMFr6BLf9D5fKZnQcfeIBmWvjhQnbBONDAggd9mxOaHOZQrUEs89Wd2AXEYHfuiGErLeFQBXdKOezww/mNR8YO8NL5WUyi7XDFunXtFt+Vffqpp2+++Xcvv/IK46J/v34TnnuO2u1O8Z6nviDAYPDLERACE8aP5+N66rpoag6c671qHSOv0qWx4nwcFKPLxIvseAzx4lFzLOYTfLeuR4/uVfLW+MikBIUe2wIVGcOls2ezQpDNhYL70pe+xIfi+aRuNp7vmfMDKvwWjglgc1GTxMLl5TgZ8SeIslmyYb4ixyfohwwZrEgmuFEGAvGD/EOHDnnkkUeySYRVSozUD9HCh9/5xZGK8UGcIFkaNWvWLP1aD59aYyKbZQWknHvH3zKFnrmwPZj52FgxhS/pZrOjvnmcMmVKJOBLzGmxFX+zkvN7ARhR6Fk+4YxeBVGoILY2/rBQ5EmAH4YBnEgMQyQHf3HO8kck3MH4ReTIhM4WwzHwm5tu0s/5iLPxLC9nQq/PS9BF+cEkPgoU6QnUyIdvA/Nrk+TllImYcLKATkLn1PeAObnCl44giKKyt6Vf/KNLsOYU4xXgJ3OyHy2OAnAANuIAJZVlJs0bMZEgBvA1Y3EsgOG+KOnl8It/sbjwkz+XksSiDt9Czg4QssdL9NOnTRMT4MXvIRXvVvWlLcj7s5/+VAS13OmE/Kjgbbfdpu9a+k/+RJDzL1BJp9TSJzwpvxFg+ZEKYpT4zq5qytopxk9Lzazwx+o3aWyfWuM7vkzlf/XLXzKpQk2g5rBPtoAbLog1rcF74Dv8d999DzN4lHVkkg0w4cMqM3XjJ+QJJ1uycMgYvL7FxXwa9je/uSnaHvQda/h3/uVOfulV3FCyTJTZZejXvz9vopsAYR5FQKGSkhJ+7f7000/DsGUFiGF+NQcNy08HrVhhv7LDhTXgbro1BBj/IbpgxXL7tdxKBGGBBDLpCJJQuyJmkUPEkb5CjwQzSaoI2BxBX5PKY1JWORPrxvg0bElwj29wYcUxXfFXFZjCYquYNP/gBz+gXIEPB1qDQrXCIWEUxjjHIqygUC+VyAI1AovYxAp1J4kAbPmg8g+vvZbWF0G8swgkkI0+XGBPJkmiu4hpYvC/6aabaFCdR1M8nS1yI4BR5zcML7r4Yn3wR7KpOpEbteaUKGQnnXRi1y5da+TDkhL96kf/9aNhw4dbJw87JoGbOYd0b+0ayEZqFKgswtQFnjQKhpMeDo1iuGOM8X1xGuLvMap0IwtDSR2GyrIF9pXLLgM3EcR7mJyHL+2HfYe42qQGoo4qiw7Hcj25GJhxGBrAmXaxtlFHTfsneyLiA0QCjTYmfPU117BQxHDTV5ajMDHAyzv//o1v4C2ZACm3mOqBPEPAF//zrEF3szosAJKTj/awQcjyLNqE8c9lFjRsQpOKzkGDsNPP2iBmmBmYNAt3DH/Y4K259JNOPJGf4eH0NWvXaFtpMdQTn3tjrobZZmOSaVONawwJx/Jylpovu+wrRx11NN+F5YP2y5YvT+xrYQGqn5Xnc845Zzi/iYIdkmbNyhL8AHQxv91+++138GvoLJhjb5jwcbIMMThbgADnjR5d0q8fMaxOY/DR43xPHjaRIUmcQ7T6FhVhAIQSsGgB3CiDuVU8mpTFCfICl8x2MLr2prUxJFvgzEJ52zZtv/zlLzMnbtu2DWvIxjDlw9E6FDcbGSNGjMB9wQng51uWLV/G4jalcMEZawqGI0eOZAmdR7JzSWbdAQexqT7GSacoTE5owjd/7G7SmGcDw34l/diCISOrO/KiyEXFRQyrUaNH7z9wIBvqEJMFUcmL88EOi8pV7UCNVMUQyF5kwWzzk/NvTn3z0UfHbNi40RxNfl+usJA+QJcAW1b16WPIrE8CZLNnw82aNqPoMY88Ou6ZcTQrvct+pZATIUVFbdq17dSxE3NZ+jMeKjZSG+2IjQBsJWDe+FAVbY0TAHSArG0Lq5cdU2hJEusrdI+S4hIqRX/jKxQEqBRSHX7YYRwqZPlB2y7E076wbd7cjphY4wZBKfrqq68+eeRIvFXb4IcumPbhww9WRcjF2ZTzzhtNEzMoOnfuYtljCxYUstIzbNhBtA/7CPQW5aIFqRGs7NEE4ksaBZSFr8MD1cMvERPuoqGXUhccROrFdhJHL+X6QED7gvz+Awacfc45vCWY+CLKqPL8no8IZLbo8rF6XqddRACVhyLJTrhrySi1IoKoYhJNVFM2Vlzj1iarpkynyMX7YG3btcWoZ888ZzlX4ZQUhJxFRaxMsDaLzERChslE8WXlsXBUwEoId6NHsYaP/CAJFpcjcvwCHvYGDQhJVlTjkWpAArLx2WpWB00xxmf7dkxXKDO5mbIORh1WXPCxP5xRDzvlWUpkoGKCBRKEMJuBNUk0fwGSc8qBsjBIrKnguFQQp5aDHBBwmQUNdkKSq2iKwAIijx5VephEJt+BUVmkckHHtj0ykAUacLW8qR1K8gagskWQUUlVKCO9cQ6AsEO0cOFC7iRhtGhNAqRiCxE+y1N5b7/99h/+8Ifsp2Cx+D3oDh07UkFYcYcPpossPOK+6K1RWHERyaUAfFhU5zF2S+McOgyQUjf1HbWXCrWM9nk+LfnQhYwV3rBSs3fieYS5Imkk+MTHLCVlwcFWC8IJ1phkMoSmIUYBZYczl/FVRULAmABj8E6qdrlQa2Or+gRU1f+JYzmBjmSNXl7OKh1el1xDigBD/HV2l+hmLP5///vf590BCGusr/H3q34iUElD1c8quNR1gABaBi6McO6mcYJSsKlG0GKJ8jJLZN94Nx2UajfoUdPKno2MMkGsQ1voKQjYV9bWMgRBlxk35peJExBMXcwbA9CIHrlQf8xxmVLHVAQQgcUYZbCUqbGMZAqg7DAUSMLqhaba5JWSJYA9UHWwebChONPcQX1bEUE8AsQhM3cUosWHK0EvmATeUjcIg1lSMuKIg4wKYXuUkLwrn/lVHtiS3VKDFQmERsk/wqQy3eeFCAJWbMhrxCEDt6xIGIYQHeQLN3IRQ4twjwiJBsG2l23dvnU7bWGpaUPjZgAaSxYWCc22sm3b7fd7lEt3+UYKKyOlJRJWFF4pBLEuBGYWHolxTaCjIcztCI5jTKqUP3mwSqj5QABPqEZiKyh4WhAThAb+1snTNrIK6hciSDaG9k1JvABzsVKzRwyi0j3I1bRxU3O+6Pm8eBKWT6JsMA881CCVFoSgIdWsuzlnlAOh+X+iN2FCV0xGU9iMIxIqG4bZkUhO+nDoaTQx2/sIBk8iRUYWi6Tfpv3Tuk8oz+6hW2LsZe+j5CZGEAU3goUKKzp8CQDmkcYD+YSAm/98as3dr4sUELqJy8LomqCNZLlt9qBLqaYh0wj9mksmJk2p9BdmiY4OTgalWDIlmVoL39gPEiTxlbLaA1Qo35TEVllNTuOAnQjTZ7Sq/YKt6Vdb/MR47+BCDMsbBObOxaNMvkrXFAqBKRTSRJ+m3JSFJ3Si6IlRYvIYVDBhiw9CKj5hEOKVhXjkFTKkopTNJpmdSkxvzBKqZYhZxvDtnYR/MCcBiBAKBEFyaI05kiGHFcRTENPyB++HGLiJoUokD3UPtt5oyEYM3LhbZYM1Ioy54i4bRiFAbU1jotklU2HF1XpBKQG4G+DCKkQicjBV1rIsOiDAjsyPlUK1oAi9Sy1FuErpEIkDhSKU3RWCjotdgMRLsyV9OUZQkGL3oqImwYJSiuUKlJhVslAcV2CYGt0dVDklM3/LWiSQCUZY8qihQQBXQ0yNDOZBYESySikmHT7mRIZaQJZkNzTE2wrIdGM708Mns/jmD6TEcxxB78XUIG+QNbw3MUmbdPiarKOE6BrIPapeI+Dmv143X90JH1QJegSOIZh8Ri15jFolmJDEJ0gLNxWW0TtpdMVfUsXTogIHZUFxoWGJQ7uhUisy1BSCCVdUiJCYbQ7SSmWjVqUoZbqMuKYrSgIBbkQQxzRynL8SD42gkD5NpU3srKWa1bPVdTLGguyRQvk/w8FiwqVys48YGyXBChzQ0UyyjExK3/S7rQoYO/uphcSqITAV1yMc7B0zo0gQNrFDdgOWfKFUASWzAyvizd6HsqGHFdYRQi74wNAAJNWqacQy8EQwP0Ye8Sc7VEWNzC0TCJIhysmjarejuwgoAKNKIWQUpQljcqtlJHXNPESDSTPbrCs0jdU9cwWZrX1N8mAsSbQ6Zvqtwia81RuIE5OciAGlIZsu/odGR37JbAKk0sZiszFirtKt1hkH1OjTtqPYuKYC8uIglJLeqO6hMsQ0JVMLkkKX5s5ASMRDcubu27Y9/9xz14RjK8Q//dRTR1R+Xyb0CvG1+4eLPoxvi7BIppMrFckeyhcEdqJz86WaXo+dIIAKk75ItYrp7qwCUn5opIlI0oV6JoZ4rhrLIB7KSINqThSx2Q+WT+1VLuMZOOyISYURCKUkZac6V48qiDtz6B3xIT6RRAaVB4pGA2MFta1rEzyCyRVBUBGqoOyT5aJqqSWwcsMpaxWte8wue6RIWCV8+JWV8F+wyGESjOJm3VmHBoy1PYpYdyCGCRwUMNsfYuLdyIAobQuIq3CwdDv3hrtlrWaswp0AdSYcCaCxwqyOwb1LA8YxdRdCaQYC2bn0yJ1LMYpUTPYepTJTHTmrcTPG26bIaV3EM8uEsAkZZroBLatatP1m0oJIksTcFFU5GP5QCbORXDBRAOtrgbCvr4ISlMKDdd30sohQbcgJKnugSkaNwrqbJIE8RgqWCI6YGE24Ik9Ki5FCJWa0VgjVCX8zzlPjxtn+r6aBmPf++QYX+/3E3HvffaWlpZI5kdwETK45c+bcc+89vDvAM19o5i2PKF5K4n/zBAGf/edJQ+55NaoM8iqPVfjXnlqF2NbqU21l+g01qvVMFn6bmPqWUquSq8ojJYasmQmc8QqWKehfC5shrZJvB48pKWwjZ4XNCgbFms0JuewKNDE+G46RMVApNS2u5tRUflKpBf9nbR58iAQ/UjVrN84ZMXbEU/HGEP4ZZBRjkRkmhLOPFTwjoMlSQpKS+CiRLgRqLKUyScUTxII0Rll2M5NBYDW3hLSIigu3RWjEKGoUpK/oITzizkBAgEULwzTgkGTJPEgMq3soBdZk1DkAiwxXleKIsxJxYytviotJlUoZcfgHE3LRu8SNcJYteS37Dq6YlM0SaUPWUPcYFQLEi57AgQcccPLJJz/00EOrV63irUu2APjsD7sAHHqNmTjxx0e9eEOBbxIQyWsCvAfECyxs9OBT7FC4mN8D9Q0BN//1rcX2prxRy9RtIWjJ6pyziiwbrqVoYyIViaa2YCWNVOWxFj4xKWap4Bzm35GAQAVNNITZyMoyZDPuKBwZ1kggSTLmyahill0EKss55o2R1WOUVD2+SkyVR3JJzurxJNUYGWWwgFn7Si2o1BgZOVAKYd1DRp6SjHbqIJRFKraVhwqIUhoVJA5GXHlBxWIkRipLBQcrrOZrhzQ7qJS4mNyqiMETHI600FiMxadXNpzG7fBvdeKIJNDwDifvUr744ot81gkWfE+J9yRHjRp10NCDeGNTTHmflo8o8GUnPV544YW8kYujgM9iHky2CXYohSfUJwTc/Nen1qqnsmYVUza8+9Wp0JB7wCOjZ3efS93lzCKTDdddCXXP6eORk1LMtod5s5WYzuOxwXHLxuoGGccp0t2S6rJVj6l7RHaBY4UYddGNaysw5Y8fwEsKTPS//73v8coMn9Dm+9kvh2tH2b/97W9//coreTWGzyOyBZNy2hG5x9dLBNz818tmc6EdgYaDALbfKptafY7H87UDXvrnRLr2/kWAiWJBXicYKkxsw4GplpoGlwlk+g8YwFc4+eYSv1bAT0jw3r/eYwQ6IOboAx8A4Fc52Bfgy4C86w9LnS8BYdZWCu39D7/yB4Eadozyp3JeE0fAEaj/CJjpSY+PUJuZ782cXTqbQ6NM/U8/7fRmzZth2KAxk69DAGGX3T2AbMvLK+KOw8RXDhcusH+84Fc6p5QX/BSPvefzWXz7jwBnO4iEgzwDbfPYkQh3ALKw1vOwm/963oAuviOQ7wiYHbKjdskx+Oy+u0yU7QLwwpt2czhSV/lEXr7Ds0v1k3sEXGa+8YzSnS9sf/wUcds2bVlxbcIAAEAASURBVLD6rAfEbwbYaYrwBRAWBqwYlgjc/O8S3vWDyM1//Wgnl9IRaKAI2Kl9exdDpqvKwb1k0p8eQgSi5FsIDRSs2qoNVpbM3Yx/Ydl2+7Rw9ANCihHgSGnqD+AsFVgu/icTbzpUOzVpDP2qtwi4+a+3TeeCOwINAwGMD1aKs3+8yBacAftJGzuLzmVJYVVAjwGQWk/fNwzIaqqlGfHgAcjk291ATCKVg0jQs33+4FFFew+Rknz2XxO09TXOzX99bTmX2xFoiAgEiyXTZaYIM+XL0bvcD7LmP2Yy0w6IWRgjqjEQqT2QRwi4+c+jxvSqOAKOgCPgCDgCu4ZA+pLsrlE7lSPgCDgCjoAj4AjkAQJu/vOgEb0KjoAj4Ag4Ao5Abgi4+c8NL6d2BBwBR8ARcATyAAE3/3nQiF4FR8ARcAQcAUcgNwTc/OeGl1M7Ao6AI+AIOAJ5gICb/zxoRK+CI+AIOAKOgCOQGwJu/nPDy6kdAUfAEXAEHIE8QMDNfx40olfBEXAEHAFHwBHIDQE3/7nh5dSOgCPgCDgCjkAeIODmPw8a0avgCDgCjoAj4AjkhoCb/9zwcmpHwBFwBBwBRyAPEHDznweN6FVwBBwBR8ARcARyQ8DNf254ObUj4Ag4Ao6AI5AHCLj5z4NG9Co4Ao6AI+AIOAK5IeDmPze8nNoRcAQcAUfAEcgDBNz850EjehUcAUfAEXAEHIHcEHDznxteTu0IOAKOgCPgCOQBAm7+86ARvQqOgCPgCDgCjkBuCLj5zw0vp3YEHAFHwBFwBPIAATf/edCIXgVHwBFwBBwBRyA3BNz854aXUzsCjoAj4Ag4AnmAgJv/PGhEr4Ij4Ag4Ao6AI5AbAm7+c8PLqR0BR8ARcAQcgTxAwM1/HjSiV8ERcAQcAUfAEcgNATf/ueHl1I6AI+AIOAKOQB4g4OY/DxrRq+AIOAKOgCPgCOSGgJv/3PByakfAEXAEHAFHIA8QcPOfB43oVXAEHAFHwBFwBHJDwM1/bng5tSPgCDgCjoAjkAcIuPnPg0b0KjgCjoAj4Ag4Arkh4OY/N7yc2hFwBBwBR8ARyAME3PznQSN6FRwBR8ARcAQcgdwQcPOfG15O7Qg4Ao6AI+AI5AECbv7zoBG9Co6AI+AIOAKOQG4IuPnPDS+ndgQcAUfAEXAE8gABN/950IheBUfAEXAEHAFHIDcE3PznhpdTOwKOgCPgCDgCeYCAm/88aESvgiPgCDgCjoAjkBsCbv5zw8upHQFHwBFwBByBPEDAzX8eNKJXwRFwBBwBR8ARyA0BN/+54eXUjoAj4Ag4Ao5AHiDg5j8PGtGr4Ag4Ao6AI+AI5IaAm//c8HJqR8ARcAQcAUcgDxBw858HjehVcAQcAUfAEXAEckPAzX9ueDm1I+AIOAKOgCOQBwi4+c+DRvQqOAKOgCPgCDgCuSHg5j83vJzaEXAEHAFHwBHIAwTc/OdBI3oVHAFHwBFwBByB3BBw858bXk7tCDgCjoAj4AjkAQJu/vOgEb0KjoAj4Ag4Ao5Abgi4+c8NL6d2BBwBR8ARcATyAAE3/3nQiF4FR8ARcAQcAUcgNwTc/OeGl1M7Ao6AI+AIOAJ5gICb/zxoRK+CI+AIOAKOgCOQGwJu/nPDy6kdAUfAEXAEHIE8QMDNfx40olfBEXAEHAFHwBHIDQE3/7nh5dSOgCPgCDgCjkAeIODmPw8a0avgCDgCjoAj4AjkhoCb/9zwcmpHwBFwBBwBRyAPEHDznweN6FVwBBwBR8ARcARyQ8DNf254ObUj4Ag4Ao6AI5AHCLj5z4NG9Co4Ao6AI+AIOAK5IeDmPze8nNoRcAQcAUfAEcgDBNz850EjehUcAUfAEXAEHIHcEHDznxteTu0IOAKOgCPgCOQBAm7+86ARvQqOgCPgCDgCjkBuCLj5zw2vXaQuLy+vTlljZHWyXY+pwlCP2XttrIKAEBt9DcLWlnX30qygzFXlMZPiwX0Fgd1rI3LtXsZ9pdr5LUelUZjfVfXa7QQBN/87AWj3kgsLC6tmrDzqdkdFVuaAza6hlIIkMpskXVyjRk7IqglbVfi6eE7KSmthj4T1X13wdx51jkBhQWGN3ab2gmhZa1y/9kkEPiZnf6d1R47K84Gd5nCCOkegcZ1zdIZCoFLnpqObtbOrsKgo/C0vKqrN94JGfCo0KRq1vGB7+fagXAstYLa+Qs8SVi4C27dvj/yt0DTJeAYZopDby7YXNSrK8lFS3d5VZZM1sfoBkFQIYmNxWUlqACHSeaA6Aqbara2rp9QeUwnn0MfoPBZZXr59e3mjRo2McepZ7pxVYBe7X+30eZMaMaylRgzYTE+vhbDuk6J428vKGjVqrAZVMbvRYXZVPnpN2hmjANm8VSL3oiTZUj2cIlCbBUpp/O+uIkBv1mUZUJ1lZTxiiYOZNmNtc91gjOnoBHbEt3pSEhMMPgYb25/NSyqllJWVwZaLJFPflKuL5PLgbWRLDMMS4qKi2iTJlrLbYUqn2lbzYEIodLtgCfIgQZZzoMpGeLg2BICrbJt1MyOiTRWoLccO09RzZKGsM23bRtM0atwo6WyhP+8wc0xAgNz9j5i7XgdoBTBUWxDgUnUUtvgk4l9Qy0SY8vJGjStsvwTeS9LAXE4Gf00HppfCyGMEIb4KQUrof/c6ApU0714vLd8LiAOebm192jq42V319WC7Q6dPPYBdwYPRAhModYcVWgU1Ik1iBaRKh/IqMQzax5KVGTux3VYOEu0czLHlRb7KBrgSk7p4SEphEpnKYmIwy2TwhxirU5BWpUGmKxtZF4LkGw9QAkDMc1Sj8qUsPpfLcKZ7lJUpE0ysVzRqxKOKsPjgtO2UMwRwI/dOKVVWPt2pNV2au/qtoIgV/Jd3ZhMg9U6iVHsvQHFcgJBosHSks5hEodKQBETGfe9J4px3hEDiq+4o2eNzRSDRevR1dejgBDQqCsunmUjUM2piR8yNSTDM4sZdxDZmguFfvXp14yZNWrdunRSXMtKjxhJjncItxZ5tdGElNNgIb9myZcP69S1btWratKnR7M3LpAp1p3TCeoyGqmLcBzkhNWKuAKCyWIpf1RCgPwCj4VnJO8wdK4Ge+pEYfyJWr1rduHGjVq1b4xbIpFmP2oXNBUlVTdg8j1CtMXXqqxp9Nloz3VgQ/Gs7sxwU7ghDR9Ew3Btto24ZSrFuE4ug+iQhgG0qhQsxBNS/FpkoYcMJ+N5/nbW1unJi1KO5Kiw0Xxdzu3kL3Z3+zWXKtGI4VBWAkSHLB0PS1q9fX1paumHDht69e/fq1Ysp87z581944YUWLVqceOKJXbp0gQyeFVw0ohhjYcjF4Q1byhVPuE2ePHnu3LmHHXbY0CFDoKnEoYJX3YRgrnJhlxw1SF2fGsqNaxipE1ADTd3IlSdcBG/S8XarTtu2bWvUCAbWPehJuIlz58ydOPGFFi1bHnvMMT179kJdqxQjyHa2tLhsvKnyND7+zRLEyDwIUC9qsWTJkvnz5zdp0qR/v36t27QhctYHs1atXNWpU6c+ffs0Zr1dndmQsbFQI4Z7FY01a9bQphs3bjjgwAPbtG5tAgSZqrdUXYlRqY42GyrcuHHjggULVixf0a17tz777WflxzFeV6U6n1wQcPOfC1q10tK/ufBqGWYfLfuIzm0Wt1Gjzp079+zZs1nTpizih5ntdib+NSjIwNyGRFCvWqjHY1i7Zs3jjz/+xhtvfPnLX8b8Y6oJX3755YwlnADMP4XiInz00UdbNm/u06dv8xbNNaQpfVtZ2cJ581Du7dq169ihA0Ye/tCvXrXqz3/+8xNPPPGjH/2opKSkTZs2tdZsTxNVKcqFEccM2aueXTp73bp1zDJlSqgsKrJ5s2ZI0rVrN/aboQTJpCL/CnW5p3Xe+/mtKVN/DqzWrlm7fPkydnaLi4vVyrmIkHijNE3jJo03b9o0+eXJt95229q1a2/41Q096XWsB4RWUCPWyFkEarVlH320ctWqVi1bdu/RY0/8khoL2qciAYSKv/vuu/fecw9raddccw3rJYw4xuzLL798zjnnYOro2xE38IFeC+AfX0XKC5YtW3bvffc+9NBDjzz8MKuG2F1Eigph70lCZSPzTRs3MutA81x00UUXXnih/A+6h/WZcEVKD3w8CLj5rxucpfswaZMmTZqIWZ448c0336RLH3744cOGDTvqqKNGnjyyQ8cOYZFrl0pklsAFKaNHZ/rQKZazvGC//fb76le/gqZu3669eDH5YGBPmzbt+p9fj/nXkMM2bFq//h//+MeqVatOPvnkESeNgFgGtVmzZkcccQRaCVPxMSz+S0juQqlse9lTTz314osvylRg+9mJaNmyZbdu3fCTBg0aNPjAwX2L+yIkHoyyRA4eiAjQPQCHA3psA4Hs+7Pev+eee/r163fVVVep50TKnQZwGqCxbhbOgWKcSopLjjnmGPh07daVpIpWoDuqD1VmKmGMjPSioldfe238+GeHDz/4/PPPb968eWXafHtiqFKlzVu2gE3TJk0EPl2aSObcYGKwhMZS4F9Q/8IC1AXDbevWrZSeLPME9SLh95JI1JdCo/9Hx6Brcaq0Qga6FgRhs+lfBs5eqnx9YJvP5r96f1IMdy76HIuc2ZGwJ+3F8N60adPEiRNRwfD8whc+f+2111LK7NmzcXjvu+8+1MEnTj+9Y6dO1UuBTCqDJAIaMMyAiSeGO3q5adMmyYyhsGDQwEGXXnIZmrpv377Ku3XLVjyAqVOnJgv+6KOgo7ktXryYpFUrV2pKLZ5t2rY999xz2TtgOQErmxVJDKvHMGgZvSZnMACQcWlgE4jyE0ZiKCW54k2aII/YEokaIu8BBxxw5JFHYvip8sqVK1k+ZZtj8qRJQ4YOPenEE486+ujqyxLZssSNvDCsUoSSjLhy0cRwSWzRVFAGbUgq8hOpKsRU9iwEoMUEBJRUw2NFQhKCZxQDZQdniwnFQaEwd9OD4VRUNQYJTZV4y2j9JZwgKSxkQ+e1116rUjV4QqKMsUQ9qtyKcOh7ZCcev3DY8GFt2rbhsU+fPiAMmbKDjtUlc4kPd5MS0xLkoTWnT5/Rt29xiDPqbOnKkuGRVjDtWjEp4qYYJKlSQYun5HAiIekJaX2VFIU1KLiQIxDQn3eEtpFl2kX0VWTOPlI6UgGa2bbQsuHRdlPwrROBrU+ZLKH8GgBUiYEmAThbhGUO62EJNz0HIQnCc0fEiueOrpMCsTXIkCXhgWcQznZEPtnUCrahaUiqiMmULlaWFIZbpLHeHi5ijMY6SUHzFi0SVWZdHl0BRcgWuFTkzYyRkDfAV5kmPPlt9xHIZ/MPKkm3y4wQYrA9jFV6HGMi9rbdhzDNydR/7Nin4fypc88dMWJE23bt0EeHHXpo2zZt/nLnnbfccsuggQMx/ww21t7Xb9gAZZfOXVhrRQa2xFjMxxCymI89hiYZIUFyxoeNk1SvMWBat2nNRiM0RK5YsQIDj3vRvXv3eXPnUTvKbd6sOcsAHy78EAIoN2zciGUlrCLgz9EB9BMcKB2YVq9Zg4vAyOzSuTNzwZUrViz88EMkhL5Xz17R8m3bujUUakOWi6qzqLhm9eotW7eyx8FF5Np16xCJWnTo0MGWFhjGVXb6w0YgQuK+ABRFwGfzps0rV65YuXLVlKlT7rrrLlYsUBg4KMwds2od/hx7tNSgUDp26Ni2XVuyQyPDU4UY7wfOgANZp46dQBtVAw1Z0KRUc9Xq1TgZ7du3p7LiKUVHFTCoFEeLACArFh8tWkobtadWHTpgPN6fNQuo27RuA+zNmpsLRXboiVy0aBGcQaBf//4gQKScJ5NNdIFy/br1y1cshyc0HTt2ZIMmMiGAzMwd6VQktW3bFrbUhTZihZkYZIAtZHQGWpP+g8UlkpgPP/xw8+bNVIdHW+YNF9w+Wrp00+bNyNCjRw/ilZ1EE5s/cAuQEk8Mk0UKhQn9hHgGCrtLVv1wsRA1Z84c/F0sHh4k3qRKIe/qNavZioISVBGe8yWURXfp1r27Ohs0XNAvX76cpoR1i5Yt2CM3N9RECHZC7AgXGSUX8pNdxo8qUEeKoF2oI7jBRGzJDmgcWmzZqiW9kZ69eNFiKs4CSXFxsXqaGNL1ly5dSmrz5s0YlRATr2YSgT0Gb4M+P3fePB6BIpGzoID2XbN2LX2jVatWokTQCttslaDXm0+A5PRhmmn7tsSDxOjBUGOcctVG1gqF1pTcOTTAtgv14uLM0IeLPqTurI1RX5Vl3AOxOq1YURBjnL7EI2xpKMi4DNLg8pKFR9qCO03DyKUHUnqXrl1ABjIu2p3BTmcDHB4RQC44LOSVkLRi+fKNmzahKNjmgCeiMh4ptHev3owvmpW8kNE0rFNSFjyRAq0CnryebGKopwFQodWafatly5eRRpezkYhaKyqijy37aNmatWuaNmnaoUN7xp05E+luF2z92nME8tz8088wnHQ+Rjv9jOHNuJHtAjsGFXd6ufXIPb7or3Pnzuvdu9eBBw7G9otth44djznmWMYtgw3FrULfevtt9gVZpx05cuTs2bPfeustMzbrNzRp2gTVPPjAA5n+MiwllY3JoBQISEYG+dNPP81Q+cQnPsHk7NVXXx0zZgzjGd005tExjH+KO+igg9CJb771JqMRvcBOBLngQKHsumHY4IAOPeWUUzj9Byals2c//MgjJSUlQ4cOJRV6LAoCMIZZjR920EEl/fpROsOPUQpYsFq4YOHUN6e+//77KGIu1FNxcTGzecLsOGChzjzjTLaNM+q8AmJri2CD4aNRjQVln5j/evXuhbq88cYbUT3UjhWC2DpYuClvTHn33Rl4GChlOGMIhwwZcuABB3buYupbQEFPYMb0GW+/8zYrCrQL5hC40IlUdsCAAZzDMGtXUFA6Zw6rNSeFCzWHSNY3jM92dlKYTJPr0xdcAKRbt2xhw+KjZcsOPfRQCn3rzTffmzmTUtCbsB1x0kkDBw7CetGaL0+ejOdEc1OL/fffH/G4sBwQC0BqjIGcOmXq9BnTaR0eKRJnjU2iAw88kO0PE6OoCK3K/sgzzzzz2c9+FjfxtddfmzOndMWKlcCC1YEn2zeYTCjhduedd3Jv3boVivgvf/kLypfqnHDCCew9EY9U77zzDlAQz2YBjYJgFEfjMhsztR6srLVFGAsMk3nz5z06Zgx2/Utf+hJ1XLd69UsvvcQO97CDhvUf0H/KFFrhXVClp9FjDx4+fPDgIe3atwO82R98MPHFFymRJGz//ff/nV6DTufkiro0ONC13n77bTokppoDKwwWuu7BBx9MW6tp4IMkFd0lhNSsVGTG9OnUhV6Ki0s1gWL48OFWl4IC+h5dF9COPvroQw45hIU3JMEbowXxNenJUCIMp3Nmznxv2vTpSIL9BlKKPv7442lumKho7lhHRtCMGTOWLF5Mh6FB6eS0EfgjP0t9DCVKJ0uN6oN2VFPSRsaz0Izu22+9NX369EWLFxOD8aZERs2hhxzao2cP+JhBLCykC02aPPm0U0/Dy4eYIYbkZ591NrWAJl7GNlhE1fr9mTPxKuAJwvRJ1ggPHGzdiYLsCidqaRQsN32P7oSRBn8aF53AAB82fDhUqsm6tetofU4OnXjCiQcNO4hOEi88tmfHj2d0sH+PVJh28KGjtmje/OhjjsHTYlzI/IMqyoSrry0gmRJDCTPBoBTUCAwFzkdLPxo3buw706bhRnNUgp4A1NQarbhg/nx6L34Dh0gGDxlCZya1xr4RxfNATgjkrfm3rsxFZ7GeZsOTyQpdCsWBiqTTM2sZPHgw44ThLmNg9HtwMcDC6C1iNJpWDQaGQPce3U859VRKZ6ZoXb+wcN68eRwPoNz1qIN33sF+H3P00UxQ3pv5Hla5f//+rMyfesopONeIQxbGSbbT4ytwwgDTiNmCAJ3Csn9JSQnKHauDUqZ2KGWSeKRcAhhOLghgZQzLyma+N/ONKW8wokjlYvaPSMzwUMqsJWzatJGV2w0b1qPo0aGHH3bY5z//hd779dZsA4OK9sfGowTJgkVkWDJiJ4yfALwKB/NzIpw1aQiFZG/WOkhiVwipgqyxoxCPOvJI5v1Igq4fOHCgkrAljz766LPPPkvpmPCWLVusWbN20qSXXn31lSOPPArF0StoOlw68Cfjww8/jMHGzsGBEoiZPm3acccf/+lPf/qIww/XbjdI3n777YIOGgpST2ClFBWGUkPdjx49Ghm3bSvDWiASeKI00ciYAcp6/fXXpk2bvnDhwk9+8pM8Pvjgg7NmzUKhUwvmx3LyzjvvvBOOP55T9FSYImgIdCs6lABFAxcq9eXJT0BMg5599tkYKoShHT/4YNY///lPjA0CfPDBB6hyVCoyYB5eeeUV5kynn34a3QaLThfq1tU26clFuTQ0Psq2rSjwMuS544476HIURJ8HHGCZMH78J88997TTTsNq0iXMDw49loIM7YICZngvvvQSDC+++GLurO5gR/EA8FdeefUVWrlr165YI7oKKNFJzjjjDLjR6FgX3EoWKqTcS0vnoMF5aYW6wwebDTECYDNkkhEYJ2zRog/pwzij2GBEklWz06/BEyKjOh5e1wMPPoiBhyECMJAZCOBGRoaMZSwvnz9vHuYfSKk4PDH2TB3ZALv33nvJgi9V3Ld44ot2PofGZfjDBEM+btw4qnbO2WfTcFgp+CD22LFj/37/39+dMePwI47o2rULTU8vev3113EiQeP+++8/5+xzkK2Wi76KxYUAVEEehpzRoe7HHnssTYmH99xzzwE+R3MuuOACug39n9kJ0wM6Ei0IwbPPPMOrBEyjbf4dVApKBoZApAA15Qzvk08+SUX2H7A/Sym4+xMmTADkU089lbMX5gEgQJj0oBawtfPmzafnE8ahYSADBXqAo5qAjzCUsnnL5ilTp1JffETKYjioCnQSIgEWMM8bPVpJKBkcZXQOPg1NTwCPCgDpGHBmeQ8Z+vbpqz5GdhVhVSgvp/8gOUgS5tQkIlGpae+8Qyujdqg1bbR10yaqg08J81GjRoGbddHQUWHi154gkM/mn54kw0l3oY9yFhfFgVpHB9FHGee4/GhbnN89QTDm5Uw7Iw09i1nt2asno9fGZ2FBs6ZMaZoyJGK/J4yixFV/9733mMPhR6OaUROsKL40adJTTz750EMPIh5KQcztaIy8mbQwamSr92H1AktJddAsDMtvfetbONFQkYTG5KW+O/78Z5QIE0EceWJY2SMvipU1AnJJgxh9URGKEg1Cxn/73L+V9CuRwsXAY3TxzZ97bsJnPvtZVQEfH+OKbsX9v+KKKzCxHNpnYRmj+Nhjj06Zsp5aU0cKgjPORrI/nQofIm3wc2FvkYEAkdAz+bG5S5cuZ5555g03/AqTj0ggiTnBMcLhOP74484440wUJRNf1ktmz/7gkTFjnnzqSarz5S9fwrIh5oRcqCf8Et6PQPtQTboBfJ5//nm0/EMPP4QGwfOjROKpZpxURTQkKQiTlzogkmqE0IA8fPiwr1z2lY6dOsrfQs099thjlIvaxb7+4Ac/QGfBmRga5cWJExEGoJCZSqL+xj799ONPPEGL44hIDMrFycAwPP/cc4RxFzBUINOkSVP0L9aCLaQrr7yS3oWoeHtAgRv05FNPDBjQn/0F1O1vf/tbzBK+Qu/e+1FrkKSlaFBsA54BczXMHuaZdSGafuqUKQjAbpQtALRvD2VokVTF24MhQ1lUUKlIRf8kDKpI/o1rrkHCrdu20bXwCR555JHx48ezMECnZbZHTekeoI2HNHrUaNa06MDyZfGTHn74IfZNjjj8CPbIkJBWBxMG5h/+8AcGJk1z3LHHYauQADHsX7jwrbeVbRs7bhzmir7BQdr27dvJKfnjH/9IWYxlvDrrtAUFCLBg/gK8gUsuuYQWodZQ4iigAcCNoUeJGBt8L4CicXmVhtM5WGI8LQZdU3OGymm4R8Y8QsW/+73vYRfZTYN4wcIF1BTfq6xsGzWVaZeEtd/xA+gndGCkuu6663BJ6V1ELl2y5LHHH6eH0NMwk/Qc+HTu1AnZcDVYL/nOd787oP8AchEmidl2snoZnAA8UfwDLChjBEeNmQMiIfOs92c9+NCDWE1aBM8MttaHCwoo5e2330FjcBi5Q/sOQIqXc/fdd2O/6b141T26d6frQEnr0wdgRTjoH+seunAk6AmawRPDoIMtkNIzP/e5zw3cf2CTJo3RBowUOiSw01X6XdwPZxTJEW/btq0ShvFLw+GmIORXv/pVXKKQug3PGJcOzXzKyJG4PhDTdXHTIYb5kUcdSSvvYFKRiuh/dw2BvDX/qr7Zn+BmoqRQr3RovGMsB3191aqVzBJYVurZoyfb5KLfvbuZscJC1Apq4uqrr2YoMqrRy8V9+zKi2rVvD4GsqSghJsA0Dmf2rLPO0g4ZRTNKu3TtipBmCZ5/ngV8ZicQS6rkTzCTikQ7M+rQWfJg0MUsCcj8K0vYNuuA5Wvfrl2//jYC2ZwjiVHN+jZ3xBAlVoEAbBmEhx9xOONZ8eh6Zi0PPPDA+AkTmC8yXSD+zbfeQkLWVxm0qFqqJmLmZCi13//+91i+zp1SyVP5RVP1ntYqQYbjCMF3oUYYP3w1Vm7BE4uO4saIjho1muVWFLpN37sU2LZlq1a33nrrxIkvHnroYSztwodmZXrKmgQ2lbzijBnAI2EC8etf/5pNSg40sFitpKoiZZ5Rc0gEUCYm1GG7YdSnRhUHy0GcLD2rSrNLZ3O2gPkWMshkksqKKJKgBGlrGe85pXOY2QAjyvqgoUPxL6RkmfGzn//b3/0OxccyOBqTYimY9iXjySNHHnLwwVK4lPjFL36RqSomkwWJHj170vGAS3PuPn32w3LEGuA2AR29AqkoQrNqtO2SpUt5/4osGAw6Cc5NvKilTTRxncusS6B8MTkISZhRQ39gUZrNqdjoIIzZRonz6gHrQzDnok9CTIBeJ0o4YO0wtNOnz8D2XHH5FbwIE/GHLan33nMvXiY9CoEpTh/HCOKwecfmeSFzbqatzPXpCRIYB4JFfuJxPQlQFhfdj3OLeH5HH3V0YizZgGjXnrwYWph/4fNfQIZovDGuTA/oNrhQmMZQ061PPf009uyC888/91OfisOBPtO2TVu22MaPf9bOmmRwkzxV7hrpgeEWnDY6Ej0EwRgm5tgUFiBMk6ZNwQqvgkUFGpc2IsW82w0b8OQOOfgQnbwxVyz0CRVBo/CEhPj35OLzDCzRxUMYxGDaf/GLX1x66aUvT36ZR3LRBBTUZ78+nEEmhkaloxJ50YUXsQnCQMNNDB3POjwwIkOifKyayYSbpKbNmqmBEkmCl8DBHQw2b4vAk4wkde3Shb6DN8y64NIlS3mFBB+OTTQW0khF/gnP2RIF1eRdlWOPOVb9kOZmSQAvk4YYOGiQBGBo4ATjSbA+etjhhzVp3GSnyEs2v9eOgDl3+XzZfr8dFGJ9j46OomTQ0plDr+JW+MprrzLB3UME4ANzdP3Ik0/GS4XbnX/9KwFO/N18yy1MLHDkOYBGPGObO/SMIpTOyJEjZfvp9HDgbur1tNNIRaORy3SfTcbCul9VO2pvD9teabgIoyAUtiMOimzcCK0aFLipcWw/DLlw7eFJjMh0RzUgEsY1KjviGcmaUmBFyIjkDFfm/cz4cRSwOqgKFp9xLEhFZQwdMpT5k2aNEBvn1MNQKfEOsXBDDAJccMimYkLwPHhXmAkKiglA2GJH75vqTI8OICpTWPQmGh8FirFEFjwnNDuRTG1hGDnjnVx5xZUsPo8eNYopKUlSf7HQ6gEaBUVDc8AF4aAfMmQwFtcaK7QXWWCLceWIFuYHrKChRqoLyxgYXewZxglNDXHpHDucVVJSYksmzZuDuYHHOYby8l69erMUBM54DJKEEpmW4SXAVrafQmFON+7frx91ZzJN7SCGA5MwAtKtBCQAIDOfxuzRlxYvWkQPo8SWLVqwVcEpCuavUNrSrmbZmQ5mbEPr2ZpxWDeGkiAtPnjIYNKi2CzY4uNSF0yI6giliKHhQtFzEcANZT6KweaASKvWdg4GIe3avp1I6j5k6JAJE55DTiVRHJelh45BGFeD1mdZmBENR5KYE+NIYWNOP/10+iq9haan24A5XUWG07gVlLMHgPAUhOUbOIgZKm9LmnODYMwBQBgM33vvPdqRvjRt+jT2UDi/cvwJJ9hwIH+ADr+TtqPnd+jQkWoBL8xruQKE1jpz58xhXZDBzgwBJmBCs6v1WQEiknUpSqer09CUhWCsZ2BlqYJ6Gv0qIGFjBCiIh+3MmTOnTHkD1/bEk07C9pORVOu0BQX0fxZ43pw6lbMaPFIowtBAzJ45kGQKKKx8kIXdSXojdcEHUl5Ktx4ON+MX4OM5sGWkUy5xNiiCJARCuJATDGAVwgYXfjlVo3swLeH0omRjYwUaWE2fPo0lIuTBxTn+uONZIVV/Q0hqRxsxYSstLaUsa6BWrdgc+fF1P2ayRMMhloQx2fzaAwR20n33gPM+k7WwgLGH6qHf0JPoW+qtdGr0BefXOOV0xJFH7KG48KR/M64wfnR6isNioXNnvc+JnJlYJib6xx17LGtZFKS+i2HA3PJIxqBrTccw5vAAmFjjlKDcSYVzGPnJzp/kpBaMTe7UxjiEsYpdSVLDyLQwrMM3RmymElZ0Q5ZCdI8C3JMswaBStCm7VCQMA6Xv17s3yh2NgP7CoBJDgIxMI1Rr5COLWKFkeWufzUh7lO5Ii1BBle9GgRqqHGlPoaXM3LJozHF3pibofebcWD5LDpWn1pRKPIeQqTvmB9dk0YeLEJVH3AJpUiSRKUPBccCqR4GdithF9UHWSAmSzZpxRN+2aRCMeKkq4ikRPYVyx7pEbDHUTNfAEwnR9CZ2QQGmnYxkYSnYBIt1B4nCAlY7sDp8jFnEVBP9iLfByyNkschgi/nLcTkaBXqJhwCsb5tIKUMFsP3YKnwIXKLZs2ezGk+vQ9fjWrHCrDZTK1kP0WXnsu0UCxetYHIFXopEEsolKSEOmWkUzDCiYs8UjzwKIBKTVO54J8zq5pSWylsyJW7dPlxB5nZt27JwxToK68YWy1igOuEoXHiyknCXsSVYylmzZjHKiouL+5X0oyrqgRBgksnI0ggVhJtASwoKr8DQcAw6GoVIk42ii4poO+RBGwTrW0gtEIMYzo0wG4atLsmM3WU9hqIxluKfplf9a6mhavgTb0yZQp+kB7LAgHciAAUss396Bf4HVQNDTB0FIQO2PxnRgYkaVIhZjdih37QZ3cKhPcy/tWZ6iTktwq6BDDg1BRkQZFbNkmQTvBZEQ7FYpyvcUmDrNORGMCgJqCxrRJUX7opMC6n0F0rr/B3M26YjRVioC52NE07oQ5IkDKnMH3CIQZsFA9yU7OIrq3qs7rCpgaeInrFPgIQei2piKdSYqOFiD6wkiD/khkADMP+8s7RsGcOJUUEP5q7BQ4CZCUOOKWNumNVEHXs8SoRxi46zjc/RoxnY/7j/fs738TIbkaznk5vRwojGlKJJeZT2CVrWBjqpDGYiJRgyI3x2nkEMFyXGQmUa4mNGQLNeqDyGMba8UYFtakolRSaR2KaPmXfiedVNY5/DuhBjw3jfDlecMEqKslq0sFfybLTLzqc/FMvEDqtDLeBgzNMSUbegr+JgQgD9Y4FQF8UbeTDqaEBeo2BGiKZmJgIC2BjgSuso0ZJMLKGjKJnIwY0XzwgTQPUomSwqTszNnqUKLsmf+ZMlNnqEDxYu4RDEjuQi5k6j00DcScIUVRCHVrKeFlY4SMWgYgzQfRhjNQ3EoRQrhhhgUwNRrhodKMCNJLFVgDYlF9rc6NPLpEuBMZ5huQIMr/3P/7z3vvtwKCkX48c7kBwLR/MyxzK0uWyr3firCCKQQ+PFWi1pIzPhJknYNrJc6UWZEKPNqZrFgZlhnianf5csXoJpZ1KITTWekGVpwtH6lFYcrGD6LcQwpMrMkrEBY8Y8woI2S8qYBHoap9b5RAR+AH4GTU9F6J+xIjCMYZKQk4sYXXhi9EHRCDHDnHeDt2yBFVgBPqlJJ0hZ0SfpjQxPmESBqweSVOtC5ZylpVymszipWYUDTaNGRZwbYZbMtFpMCCAqC3vigGDkrc6f8cXF8lskg0a1IEYB7kwpYq8gnrOiib8e1vMRjrKoJgoH79k40OIhA4CLs0XGnlWtxurS6Af4QGmrq6HvCXfwpM+wKkMS8TDknBBuK+deR44cyZkkHDVLylwnHH8C3JgyTZz4Av4NTcyqz5DBg4877njOJFn7heHAPYqXye3BHBBoAOafozSdO9OfUAoMaRsOUnnhYx34yLLBOWBWEylMGSFYKfhjBhg59E0GVf9+/TnRw3i79tprOerVn4NaLVuSCg/eOGfIEZBUsSvTrZkFEIlgRBrDpk0ZY9liFR/Ukq0c6Apj35Q+jyI2xYMu27qVGMYhYdJIskAgi5QEND9QKmrFBlmY/wEXS5UASF6msygdBiRnypAfAivImFWoSOYQpKLOpDrJhQCBma1ASBPBH6zgTLzJYPo1CGvqwwwJJ7NJonU6dezI1wAQWPITsHlq0E/4cpYr+E9oLuw9DO3Oqmzz5shAdpirsiahaR+mejZDtQmQFWxo8NeCKSwEFA7bRInASEmk6EN6xQ2jSF24qJRoDD05muF99BQl63gURPfAC+RoAsQgo0g4Y724OF/Jqi9JmD0OEwaG3My+qiLqPMTQJczFUVOGSlhVQo1CTZOqkZGt+mu6dQMQNlCZ17IoNX/efOzQJZdcQjOp7gZBwIq7NUnQsFauOYW2U4s3RyRJwtxkSi9WM0jmkmwQwIBEEzhofB652DiXmaF9WW8XZ+LBxQQPji8lJDVKlbvVKNSRdqcTAk5xcfFnPrPkgw8+YIGNeSTrJRzsZ3WNwQUTGJoJz1xRMJKScWRymV2kqvwFeBM15LXK0iTl5bgy2OlsXrEkUT3cGCSaJKRkelqmcGNMTSmaSKbCdkAB1y1QkBYQtQ1KJOIQEsqBFErnbqdbwmWYJL3XmMTLlAxbbyasrRqyl4bwWrGzUlNvEsxVuu5KikwUQCRqag4N+Jm3atoGrFRBk9Pa3a5YZYlCPP2ZS0IGkoobWdBjxid0AwCGFQJjzrt168pCCGhwEEcHkpQNIVlfYXuInRqmTzh5s2fPZuuWI5//n737gLPzuA5Dv30XhUQlQBCFuwAIAiApdopFYqcoxaKaVRwVK5IsK/aLHceRkxfbz5Z/ju3I+Tl+yrMlS4od+6dYvdrqIilR7AWsIEEU7qL33rH1/c+ce+8uwGIWLElR9yP47dyZM2fOnJk558yZ8umyZKlWVpYnqzNcWD303Dlw1Dh57tlfvjlqA8XYszR704038j1mh66opTgldZA0MSazGrrm8+5SHAnmnTYPc6M5RaN/p0TTleefdtrC0083bMhf/roc4UYC3/7ePXvNMNJ0QEOWzkyxCggsHY9BVUVH5gAMJeSBsCZnq3kjfmSTJJgRSFJQivBkqni7c4WHB3OM+khN5MLKRVgipPWxLhYsywzb9mD+VeuvyTEwAVy4p44GKlHiqSEPtAnD5Co6m9xKo0euQkaFNqWQ3Vwm9sepPgc+57+zZLTUrbfeShBoLBMv1eFjb24x0Qg+OOslI2ev7ReckFqcgKYeYNDWhbQoRaU2btjgXPK0k6YRIuFybIwZNlJTwQggLBsuZkIVfssaeWvv+D3iiZl9qWDyKnwerKzmhA/yMi92CNgPBYytkI4NAQAhxZubbX3auWunVEodzRFfzMQsKmuRbMyCxMiXNIbCG0GtLFIzY841dUhGMOZYCzD3shvRaSvjwk40OjWA/Qv9EW/Cujb7h4RLQjfOWiTOY97okYrgpKH6s+i2apeThduZQWYXmE2LlrcqnabQiYHGAkWuXZzmB5x1DE6Wrq4Ai87YJcaQYYBak1KXnp4eu1AZAdqalzhrrTNUKCz1Ci5Vh3agLbUNIpur8cZXGQvB8MaG8ePG6Xg33XSTJQZ7J7nWk5tJkg7sGgCDF9+iytUnOZAwGSdcKudSh47TT1/43e98j91z2WWXpT6Wmo+WdisXBW79O4zs8iTBWZ0atgzU3pQudi1f/rilMV8GsfKoA1ds1nIElPPcHmRF2yFbyyUwEu3IePSovkdd8im/IkZnylyoxd6RFRfvibxZ2wJcywgSKgCBpcQyeWn9hacv/C+/+1/cuoEbtmGqSwAUg9jg1Z91V44BHlPw17/uegcZdJtcdrH1Tw+N7lp/XhgHKvrghSF5+eUOK7g8el+ZETrwzVWok6U+0MPEU9UkiKFeE1vPryZKIh8pDCdw3MBjjiUmxkOZ0Fj3svogzNdq8TiLUDoXnxNrVhD1YyNEvFzsg7RUdPTK9toRgyrzVrR+zoNLFK0sbwyz8EFUnqDKPRsdHTlca5OJTG5uLmqvCuwvaVgb/4HNrD0+BDfsAJQaAA0NduS6EsAFJssff9xWKTEZ771mzRqLdgKhU8ujpiFKyopgVlNMLlRLTzDKj1hJPATr1776VRJNuzjKxeKwZ/usM88iC2z9tXOeOAAMFTzCNpMve/xxLXvVVVeRnqaVoVoaG8UnbeqCA+CJcqrigx/84LJlj+GY4mgRm8Npne07dvgZSrQoG0tCTA20BcGFo1W2HvVDFo9NVehHicdPfMNJAURmJ6S30JO63O0l6GHfMJIEmDKUPX84a88NgH/yJ3/y8Y9/3J4R8KXoarFRztFPae6slwQ2R00YQivG27N923YH6lwKpDoQ4g82OnWGt1bxbQmMCV/mHPmOzhAOKhj8j5RhQVuBrhAjuRKqlpg/VV1ArsBQuod8J5xworucZbnttlv1c+zK7oowDDeVN3CcUtPzZakwr+APAhobn1i1Sl0+9kcf27F9uyyYxg5QF25hZgEMSdowQUoPAqKPeeDUCQNTweanBsosylJfDx91dK3mZvqJMaEz5xYNvQJ8PhZc7D2kVjF/OLbUFLasb0JCG41eto7G3RhTpzCatbtGZwZpcc3BCDap/cQnPvGrH/lV1xlFDyzskjdpq5T6VH/knT9v3uLFZ1Dz9hbgp16thkkDtzl2/ePnP79ufWw3SQTq8QxoUZt5kcHgtkl2o22YxQKD1sModKWV8aIKI3nyVNQdG6cJFM7NgE6j1Xarj370owjT4Z1N1Q/Dtmto4JRyEPFP//RPMR8xVgpsCpl/2nw9FjDLNfCGm6P+HAcOvELVvyFXRqyhnn3aiZR3v/vdepjOpx8bewYPh+HVV1+NiyOl2PNjqlIMCbMrc2LSgSCzgYuRYQ+LLaxOc73lrW9hz5JZ8KcwGjtuLE3JXCAUeBqdggX8ta9/zeFmczV2yYKqWyIoLGK0EvDDz5il+S8Gth1nBApFsvTRpawNdRRpnJNQRKRhs2FDXCrMQCF2JVFLWIEDWOFnxHh4IBMzQUlENsVRb0lRVnnSU2roOpNzxhlnUroG6sOPPEzyQuttf9nnPvc55dIx8ipdPpwJwWEXYToAiNfGJpJPEgDaPRtFcOu2bbjxyU9+csn99xvtzjKx/9lV/nV2dZoi8Fp/+zvfpiesO5hzExkY6ygXE4p4pQaYODZSXXvNtRjItfhP//QtLh9gKABjNZF75k1vuqGzqwu7EGDKaLc5ifyNr3+dDMU3wHEtz7e/TfoIB3/ImjLjwS4CVu2O6S2cExqUmVWV3bE6zjkRDVAc0eorCYPhZ9K5q9EsEOtQqMXBYLHi/vqv/sqbSRrTzdJ8qYOfWs4W5HCC9KBtzpxTHYUnPU2FtTXiUcUQUahzmzeWayF0M1mYQTYBmHFqpphuVhu91vpwa7XspZwWfnrXusFR9FT7RqRGnwxisIs5YzhQFUpPYgqRraxwjFq27HHX6bDzyi7yuF/WXtHPf+Hz6m6cGkSBpTyFOdFP4NQZdGCt71iNLDDbhQ65WwSwV15g2Z+HScXGplgL8MCnt0U9/F/4hr0525UrWtA5t/AxhCWtXP5nzOEDMEOl8g1nbjk0uwzAlXzuMI4enss9Rak6MGBoGJGldBhiTMGDJZBD5WyC23ztAdIPdYA4YnD4CDPXnMH9EE57wilveOnKoCtZK3x48p8oZajBdcW/9K536UVunrCso5rYorgVy5dz8LD5HH9gx6hg1rTwozTSCIxJccCUrigFMxlAuod2UV8CClUwKwLxitO4iSVEQ7UPZMfIKif6kSVFdyKWm5tNe5SFe6+57DKSBCo3N/DtFb7FPZ74rH8aIJs2bsROLYJdaqSTpzRLi2REDerB58mBV67zv9iquEKS6VjGNslijFEhZg9ukCaI011slOqOz49/2WVzoNIobjIhKVjNDqk7DcXfYJ7HH87P/Jv/7jcsNBgDoQ7L3M7dwMKAjajOzk4E0ECA6XJn/1wAp+vHFKyctaO9qEm/yDgmTE9PD/M8hFqIl1BjDnH1dHd/9rOfdQjeshnfMsuGlSMA+Ac/+OHtt98xY8bJ8+bNd4EMJDSBUwnesntUBJjtivkzfkfJgRzNlApfunHr2iAxhqizc1YoHiPIly/noGPZkMiINF+nuWMwlxt1EnNIhERFQMfCZ3xigCjHJdJ83/59xjPhAsYI9wUButzVNxybyV5ILDe86YYbUGKigGMkmqopMSyPI4fPO+9819rUztDPnTf3ddddd9PNN3/jm990k7FK0YV4Cz8V8q53vuu8c8+FSqOj3MVtVMgtP/3pfUuWdHV1tbQ079mzV4najtRjS5GbMZ9vbqY19+zZzRqROvIh9GEjntRIPB0DOBUz+rUaWabvwcJpKbtba/bv23fPvff+1V/9Fb7Z3EATm6sRiOecc/ab3/xmNx9jCAzkIISQp7oaWaiGYSvQlNkrJJlcutuJPfSf//N/1rH1KPeycTYwm55Ytcq1DW7xM1e2PrJi5UpVu+GNN+iQqf6z/zPFUn8L6BiYFn21DA3Ea6AnVj2huOgT+cTEerCl6E6MUpdsL0r09IUL8dZY+8hHPqJNdQn3YWCUttD9XEvMzvOoL0Nl1aqVrHQNaiXCPvDEHeWm2dnYgDMwc9XQFgaI3sUPRLGhij5Gp3rZFQgMkfq2d5XE+Buar0o0ptl4YWSJr/UuAdx+ovsJJrhyoUWqQ7yu4frJLbcwnmhofUM/MemncdFpXN9x++05fGRXoq942LIDK8xs2W3btuOJLhGjuPQZ4xGprh76zGc+4/4fvkCGJvUvu+6hV+jV8rK0XMCnz1TGJnxV4qXWnqwUPe1OiB07dzrc8Wd/9mcG5pzZs13qAC1+KtE9hlSmXGhQur40WByE6lirvrAktfNoO8CaDJdsDmWXkCdsCz1t507DYY+uBSFpgNEg8Q3LuZEUHbSFERgcgDN+NjTqaaopEmO9FSEvdS7NMSg3EGDdl7/8ZZeFkGb4wDq0eIr+e++9x0jXsoixAwCFelE5NhlHBIdbtBRTfz0/DjR/7GMfe345X+a59EtdOftiijDSQd+iNalA35N1L01sOdFPy/NCqgOB7AaYG36oXvLD2DDSyEp9mmJ+21vf5rit0lGFGLe1uLjeJbXvfs97CDUzVAZ1ynpT2Ne/4Q3XXXtt+glgNlToOUPOSScmi1JIQGJFQYSp7IpWIoOmdvCXQU24EO5KFGBPKNfAmzBhIoveDe2mTVu3bSUgjLScaxrABqpD/6QqmWIQ4wzMhpkVV9f8Gd4Gp0XEqGwcUp9JUqecRbyaIuxVrzrrTW9686RJE/k/6BXIU/QkfwJbeVCiLKMa8RpFnLxcF0hFgEt1bPBBM+JlyUcFid2ucvCPICAZMYGgnj17DlPJFiEGEKoSP5yz58yBTQCjmAh4i+3uRXnjDTeY1cFZ6xg+x06i4Q+w0G2NTRT/lVdeSd7BhuGaD6PINZoGExZpBUlVpQiGU4XAtaH6kosvAQ9zYVzQQqswGvQESOz/UE3TcTXVlNpIy9IQ1JUaKZSwdqGhPfm8HeanlBjGYpHV4vCHZ3OUN/WsubCRhcSUcTRDjRSHCZBjjoo7V6Kfq4UOj2+qphRLNrmrlIHli+v0jVwVFqPbJrXQfeb6A/jm0RwaEdkamhAHefarzp43f34OqOgcBV7nATy3qyvqNZ5bOAxEvUgLymgI6HV6C6o0unZRR3zQKPv348EBkeeff55rmwl37V4jCROyTcP6KZ1ES2GF0nMIyK+Iiy68kAq0KUS8vLqWElWQ/Z2tHNPkwh92P5ZmJw/3T65rFEUI4c6du3Sb3HYOHmZDzAFLfMM9dMI/bfr0tFEYRxSp9SY8NzNm+Oo/BoU+BrNas5gFcmsReiAc0zFm1syZrCIIc7xregOEn+8db38H/zYw9OuKqiCA8xooDsQ/1ROVKh2eo8XuInhwAxlw6gC6jT6M1M7OTmTjgwpqQdy75NJLQmgUPZ2s1j+lqiOOGf7IwHDEA9Yc6gKh9uWFI3BMS7QmGNJAKwfDS1dUEMbqfmI8SPZGjFscIDl9wQIfDVEQUSbBJT/6pH5lFNgNowPrzEaZ9hUzK5g000jEUrxSL8XxBbp2jDWQrZz4n4ox9bjnwIFhG/A5ZHrZg+ruOp+BpBvSxOSOnxmJ9hQK0UfLGIrA832GUY3AoFxjhufKhMAF43nDicgYh8UoYfu705uEes973qPHQ2JeFep5YnzkBqbEgGxZaohFCvMkE6+JrZaUgbIbbtidQ8eLZ+IYddSOuj65pjWe1FDVMGfSyJ8RY1SXc9L82/mZO4PTTIg0JDrpMHjcNPIXf/k/6Ak3gBKIRIDROxI/Mp5MSQ1AoEaVQMargsecLH+aw1GrNn/5eo2YrHgC57tWhIZw4M2cm+DG6gAuzlUyiNT207w+3mV1wAcSXQygFn7i3sgNyWBqjyI8WYWRFcGrWqRSwBNwtVwCmRFYMoRos1TE+HOpmekygFpFwByTXd5EFcsK1lDLzk0x4StOW6Qh1LYuTbOOpCpzeTM1TKp8KcA9MNlSWcd8Z428tVeSXet7WfRT4kzk2UlUWUbdWO0YBjUKE2YkkiyL69slbnIZI7UbADMpsyQPg4xyskBL1UjS6/hLAND6tEsSMDJvpdDCRvPdNFNqVUhSwcgo0nNMXj/xwVhjijG2Ntvst3mzCYNpQ+aqUVIpqNofZIzHqn+1zysL/pHwCqUF3ThCMrAwWD81JAKAo4hYuAm3pWdk3oSsweOzRoeQrACpL/V098ws+vOYXBUWRX1DgHjAJ54ssYazVnRi8HP9hg0sPF/usbsQGIZgS8JDKwAyAyNRjQyDASAmI2FQvgrmz0TlzQSpccNP9sraNWs4O5m5TA0xaQgek6uWvR54rhx4Zar/58qF0YB/utGl79p0ner/V37lVwgvpbOvCc1jtMVoUHVccJoK8Iua7xqTKXeysikvrGXYucN7T/3n7P+4FPpkJAo9RhA8OWY4F1n3L5l5WYtjcA5jODr0nICPznr0ryphNeJrgaPhjsevFPj/Eh+OR0nPDsfzpSeZrwz6719s1mdHyjNCJZ2lvGeEe9aJT4PwBXaqF5j9mahH8EvSbZ5vD3mmutTTqhwYnpZVY+p/jw8HnkKLjHC4KSMASoxwbV57fMoeJSxFBBAxbtb7+J9/nLPuQx/6EPdmOleUycC3gcCWe3YMt3NOy1QzajoKz5PRPjlmuNhnQcIzZR9GVAk9J+An5R4RUSWshrAWGAF0nILVso4TuheM5vnScyyLRls5PV86n5ZBT4Pw2Ho9bf6nTniB2Z8aacY+DcHPlOW4pL1U5R4X4l/2SIZ9yy97Un/mCYylhvLQoFyLqRNz8iIm/FojPHIvx9rGon9Uwdc7LBPaBuxzBk4rWXGMlcWdu1auWOlTtnYLW+i1TEgYgR9FkfRy5FFwJqh4AABAAElEQVSdppeCA3Ul8VJwvV7mzzoH6rP/UW/BVJlZTOpCwqqslpWDUsV9mQtjo07KCy4g6bcrykZlSwAsgI//+Z/bj5Mb2eyut1xnz7Avc9i1pFK5HPCCi60jqHOgzoE6B+ocOM4cqKv/48zQJ6OrTX/ZAR4/7aCxZck24Fzsz0gZBZ6c/WUYw9tvh/D73vc+9xbYhWdPmZ1BiLfS72jl5a+9nEFgK0OtXi/DKtRJqnOgzoE6B37OOVDf+jfqHaCm1Cn+nBDzllOZ5tAOQeUm8DQRflb0JTpVhO1i0/iGjRviuJFTBo0Nrufz8VBHhmpmDebWrJ9RZ3S9gDoH6hyoc6DOgWfNgbr6f9aser6AI9U/tWmC/2SX+EiY51vO8ck30gTJ8MiYLKMW85Tu/YwEE8C8HSPOLj4bEmvIE8NLYj3UaHg2BD9XmFFF/i8SM3qlP3N7Pftynz3kv1jZny2An9uK/2w10yuJ2rrz/8VtTdqMXqQZR3+z0rHS5JiFhREEBGSVoIq6DRpjnUJShUElpsasRM6OqZUybAqIKmscsZkxMUBSNjqO1OVgYPNOJDVDYSRMrbinDiRpZUNijeyAHFG1zJj0PDWSQsNR2QNBQQH/SFT5Mws9ppQqJU8uIqs5XClsLMw5BvIosCczHyFPOj2RWRJPrfkqaJFdRRIx1XAUfVSVKuBP/lND/uRyE2G8RzKnSuFRRYxoGniOwVmBrCEpPAxKj34iF7KrV3ihP2ES4TB5x+Y7Gkv+qpXl59M32TMlPRXWStyzIaCaXRVqDMkWqVQckpFEVuHrf+scGA0ODI/J0cBex/kSciAvhBmWMiPkb0jeqj4Wpqfj58iYopvTSxHXgDTFl0so+KwOYE8NSap5SWLclBLSuih18AkmkGscNW7UUFVzxedEC9YQfrL7fyQ9kjJvLWMtJooodkYECtlgUJ4AGc54GGq5ElvtHRhKcsYEWMjjCpcyMlBVr0wRM4wTa55GZNdgCu5K1eBJMmrY8maYrHLyPDJWOTBMUoZq70Jh/KoWc1TtSmQ2h/gogtvp6GuIapieHEBkRsrrGQlQLW1kXJBwDGSAlSoIZE1rGTNQQyswMikKK7iygEjSQ8NwiSunEriCoUAmWA1b/nzKd62UaLCj6jQCvMbVp+otwxiO5on8taQRuJ42WOuxpVNVhl6y69lU5Gnx1hPqHHguHKgf/Hsu3PrZgXWPUE1WEv1JeEoW79SOAinlA7LMrogwj/iRspH4JSvFZy5vuRxcDGlVpJ4/JV8I6ZCr5VFowoOxFSABkowQeeWJyMG4ET0IKmsErgOrQCaW8oHwIDKKiidJi4Kqj9QqHRUNlFnhARJ6ozy1SPCRpfokGqDDGDOqVLlayHBy5K2qRjgCoDAr8fmVkcBwIMOVqpR7EQCob7ZImF0FlZiof+FShY6i8CJ5INQwDIl/5DsbBUhSDqYGGSUGxrjfLeOVGLe9B8ZK3ZPURIjtyBVTixTIjCNjEjiAyrV0mQWY+Iwc+c7skRoUBkDEFBTCEVnqnjgTgzeY6I2Fp5mUMdlJAkN5MgAyUD1V6QmWlVW7YHhYEfFEUiGkMKPKjWoNcBxhiT86ecFf65biKxiygJJasAblmSSAfsgzr8iISDqrpPoLQLx64UsltRaoIq//rXNgVDlQd/6PKntfCuRl+hIClIwpCj5ETJE+KYYy7O3nU8QUjRuCtUg16sclsiHXXLxaBJYYPyJnwARUhLOglmbXdLt51IU/TgEQcEUHVWT0SDmYCE3l+gb61/asddOnG3lr6gq2IJIAFShmR9SJoA65XciO20Ir0lYuBUEY2cuT2TOs7gMD5TN9kTseGISSNj8r9Afa8nE/v6vyOiCF5eD5cP98LXMhb2QpQcAgAsKHkdmDvvIEuiqSLM6bLyQIiC/OxTecdu/a5X5o+0Dd/hS89V+1Oql4goKneiJ2REF+RVlVzlDPe0tzuH4/75YGrBUbqja/plSVokSjr4TaS9UrsiDJN8ZGHapsEVAMjsecXomllQVGtkLAIK20iOtvaV9IApvY8qg7ePRDgnfpHpACmwoAjiwylKJ1KttLJ/pkxaRJsoiN/lA1p0B5Eu3wO/pL6NekJDC7ZTZXEArxCTkyI3ZBWqtsAmSt81uXgcSjWzY16eQ+yjBt2nR38gfNpR0yS4CN8O0Hp7RojcIKZ6CsclWGUuVSp8hbw1MP1Dkwqhx4xX7yZ1S59rJGXmY227Zv8x2w8iGTnb5USr44aJBkp0BMeVTRKymSioQKeVdkGYB8IsYTiiGENflHe5GSxDdBJyWEYlFm8PsWuBt/fUveVzviKsMQZhVxlmhdwi9v5Cqfke3p6fE1el8N8DkvRkDCJIUAIEwVkjTU2B7Zq08kFYJDLksoSQkvXFRLAEtNVIkWBQkcHKgiy7yJOOEjpqTWENagaySBEQ61UcgQoLqCpGIeVckM1VFRcridagnlTU1u/v/6N77hqkRfUvGAL4xNVrsXvfCqYFbQyCcxi6kVgQxhBGSMDxF98xvf+N//+38zxdzCRA/F1feBL56AUZkqH+hjN677wltPd/eMU07xccJEUkCHi1CLwjd0lRv4S4kJGbXL/hB1jY5Bod5151333HuPrzO0uZQ+CowHJeqoF4GpaMpa21WrU5KiKKh85vFrX/uq0yWukmxvax9ur8KWLB1kBpIJKKgRzQSs8STACs0CnqQzAtFPg3vazgcSfehPWHNkRtSChCffW7ds/ad/+qcHH3rIFzp8Pie6ROFkYsvWx08YZPfAX9AXkoSj5HgAyAKSfeNzDPD7jkbGS6o/dQ6MNgfqs//R5vBLgJ+08k0BnxVxQN8qgJ8+vZOf88pP0qEpRRWxNdgf34wp4qgiMIVpAp8Q9RFAH2iv3dsPTDycssNJriWeEI2e8iGQPbv3+NC4j5hR8yU1JkYSU6gpIDP6SUqCMavzfXofN/MT/BH4aYUiNKMUkaUUGROJtxAAAVkKYEXbiU96vJM2gayXjxaSrfkz8YingmSABEksj0RYg5FT2CNVCEIT8TCBqlI7k0OPUYhhGkVZ3onfDyn5BPJSFispiCxw8SoEg8mvu/pskrCCUs2op58Q0l2yQJupQXnJmGoEi2J6WTSQvBEolNAoN954o4/8+qo69kYk50R5YPCIiaeEC4b4Rf3v2r3rvPPPd6MzVIrEaiyisH3lRW5FiGSb0GeUuCwiUZhtkXQmVvE4+8CDD/yv//W/XAVx4oRmGTE8CmxuxEz/4PQr0FYdVK6N8nVXxJ9z9jlTT5rKNaK/+dbiTTfd7AOGeb40ekVhb6Cq1KBSHagSIa745hBIrBr0X6FTL48uUkwgmNP+0AkxPFAF9xp8smjlqlX/5//8n/e+972GjJjEiUL8V00xBw4e8NVakL6SC1+YmE1NBlrYr42N0MqSubwBePKn1DCGG+PbTnieBEjtKUawb2T4PHcBr7/qHHgxOFBX/y8Gl1/sMoYa3Me3bds230fn9SW0Vj3xxB133HHZpZf6aGZ+hS/kHalEu1Q/TUY6k8kEmYek+/u//3sGxCWXXprEE3wCkatoDjB+kqFEpydh5Fq0aKFPzvv0e3xUFHwRqZFapJ6/aT2ENGyIhU/XB/23//bfxo0dl86JFKCKCLlZ1QqRPUtNg6BoONKWd6EaXRGvUU5VAWQmJKlmane+7uEvlRUVArqQX6G/VpEovTwCyQ1I5A1skpRamAAk9VYC57vGKAGVhQGXSvajxloo0YIEzK986EO+S+k7wsoC78m6Uw+JU7mSslCpMEuKSPw1tc1PBTYHcGSOZYimHdt3uH3ZpP+X3/9+zv/eI7356ViKJxollW4pTi7w+cao2rw/sGF8mitNYYrRWEGhSGmNVf9E5g2WRHStXpWfQ0M+lSve48PwVLJ4Gje7QfaKhASQSbfeeuuSJUv+6I/+yNcXkxXXXHONa7L05PEnjA+wQnaNOYG6+iQq7/zeIEhVrfW9oK080GprDMQvlDBELIhkXjlqWryluQV7AUuKvEKlY/iG8kc+8hGQAvCptvhsazhhBh/IS40yC+AsOsyOVohbtHSgLQh5gD7/+c9ff/31CVN/1znw4nDgKJH04hRZL+VF4MCYMfG18je96U1jOjra2tvdyveTH//4Bz/84azZs6dPm97X3+fr4zTo6jWrWQnEEFXaeeqpU4vzmbxevny59Xtq5oEHHnCh7+RJk+fOm5tyzXy9+4luGEgu3+qG0KeNIfHRcR+u9XVOH2OdcOKJKe9cA+xLqT4Evn3bdhcEyaLczq5OCinkbEubwKqVK8lERokvwK5ctZL2Mu1zo/DGDRuIZN+Pn3PqnPRAsBhSdRGXZsz79u6lkMaPG482qv2RpY8Qxy4b9uXE5DBiiHL0PLr00RMnnMh1bJrlwiWp06dNm+Nj6m1t/Bki0a92qgzGtUWZXXEmduajvt1uGQWX2DTw+6h5TZqrEd76bq9PHrS2tVq/R4PvtT+x6omFixb6iTlr160TSV0Bw9uO9nY+GA72EaUMmUpqjjFjx/K4LHv8cZ9a903enu6e/Qf2m1v7smJnV1fsDCg6A6maRkOsWrWK7mlta+OmVsTaNWtNTC27mLubQ6satL53rF4nT5++vWcHbPPmzfMTHqVDEl+e3bBB+86aPUtB4qmxUJm1p6h5ur979WoL3viDDzzVmh4D2R/0HA5o6IMHDmKXuyxnlnWfLAIagQz7pCW+oWrlipV8DPBg9alzTpX6+OOPuzBKlXNWjW9idmzfPmPGKVpfER7UylKjS6N4YMMW5iaWVkyKhgac8TngGeXj8U90d2MChqALmBYPaor61zOtOrFFdDmlnDJjRprCiFSQErds3eJSSwEMx0BN0JZeikH9boiLYtq0aejBljVr10Ku1SDU+vrzhBMnzJo102YF2AADQ8bmTZs2bNwIoQHiA9l6taJZHvrGa17zmqc0aGr1rQfqHDjuHKir/+PO0mMR5uBPgZJpwh5hYpSeIL9OX3g6RZju0GPzP6/fClWEa/j8J0B/EC5f/drX6DlTyzFjxggwCO64806ymzYliebPm/fayy+3Bk8smjjSrxQ/L6jyOfOpBxP0e++558677ly+fIUs0BJ/3JUCP/3pT9/97ndPvegi6uRv/uZv3vnOd9IBMj780EM/vuUnZyw+Y/36dStXrkIV3WNKet11182bO9es89DBQ5/+zGcU6p7g3iNHeA5oI/O8nu7ujZs2Ec1UAvjrX/e6ufPmpZeVRL7lllvYJVSyIlCFBrPDr3/96wKhaMeOTZ7HavRQAzH9ve9/D5NJZ7lIZ1komKuvvnrRwkUPPfwQj3eo/xYi/mSWCpuptEU/ZbDssWU33Xgj3wmjgXaZOGmiLNdcfc2cObMVYWrY3d397W9/m9CncoLhEyeqGkH/5S9/+Q/+nz9QyvIVK+CnnFAL2BuraRqkXn31NWbk9tz/+Mc/3rN795vf/BbaYvuOHV/96lcoxfEnnGBDwN69e1GOIRdffPEVV1zB/siWNT9247I20hBUWldX14UXXCAvNfzmN79Zw/3VX/8VYlg2f/7nf36l54ormUdSNVOqf9TScvZqWCeyQDD95OktY8bgp3gpAhn2VqJFGfqYA2luV9fmLVvWrV371re9jQLbf3C/JvPQxBhLnavyeeee+8Ybbkh3Dp1dMMXLWoDuobJ2A+zYsRM/Ua5emgwNN9xww5lnnqkjMT3F4yq0v/d7vzdl6hRWzpe+9MXrrnvdlMlTxo0fxyCzMnXbbbepDvXPGqPpL73sMrXMQpWC/ww1NVm2bJm2QxhPPgaeffbZOj91bj/BzTffrPoMTXxgFV173XWIQSezz1sSG0Kt6XJZNMGbbrjhwosukqRR1GLrli3vee97lbJu/fpvfvObSn/ooYfQrCewVRgcCxcuev3rXw+zLHhoLebOO+80uPBEA/ks1lVXXSW71DQ4BOpPnQMvJgfq6v/F4LbBrxjCKAvz8+CBA3fdfTfpTNP4ef8D9xOaHj7m40KQAhVnJ1ENG5FK7tBM7AAiz94l+uOaq68m0ezUe/Sxx2h681QqkO75EHd0Xx+B/v73v590HsuZ0NGxdOnSL3/lK2aTUs877zySlzUASWtrC4EIXlmKIP5MZLPcffv3r1m95qYbb/roRz/6rnf+Euftj374w5tuvpkL+gMf/KCZPY3O/kAPeDw6fPgQ6U/B083/9td+DR6a/h/+4R/QTDUyBcy0fvjDH37iE5/4wAcg+OCkiRMfevjh73//+xQhFW5uTbLXqmx3WqygDwwowrQSh6lGXyjGdji/8pWvMBokvfrVr2bfmJpnJFn/ute9joCmAGgR8VQm5YHIe+655+/+7u8E3vWud9FziPnqV79q74JPHF1yySXKfeD++xFDmvsQoqLFYAg2sg8WLVyICdhoXv7FL35x565dRP/pCxcCsPN/9549h48cBm9quH37jp6e1Tj8vve+97TTFvCI0C7/+I//qCFEqiA184UvfIHGtVpMi8Dwgx/84Itf+hKVQ89p4gWnLfjYH37sj//rH6sX4tUFzeJZQoBr/OFKodu0l6asRWZf9TMD3jwr3jKyOTCZ6fO6669nB1iJR8knP/nJxYsX6ycYQrdRct/+znc6xoxhBulyqFUjrQwDa+z7P/jBd7/73YWnL/w37//ACSeeoNW0LwZ2dz+BQq6F6669TsDDGvjjP/5jNaLdda3du/cwdPoH4iQeFYvt9PHv/M7vGD4KxR8bSFH4C7/wCwCSVDxnVv7bj/xb8/6HH3n4c5/7nKZksGpKWW75yU9YBpijD2zZvOWLX/riV77yZU4UaHUbJOvnnad2/s5HP4oG/hh945vf+habjDGqCD1N305mIk//VxE/LbcxENXXz+985zs8T9oIAYrWb5kpv/3bv62NLHDYIsMZwubjl5JRJLcQzPWnzoEXjQN19f+isToEahZG5i65/37i7LLLLiNxSMZ9e/fdcecdZpMsAMrjuNBE3OfUkHChqGgI4pWkDkdud/dtt99G95M+kyZPUtx0C6vjxn3jm98U/5Y3v5kQJHbNoro6O6dMnQqArIdhy+bNBOKrL76Y2I1c06dLJVhzQimmZuIIe0h/ZPzhH/6huZFZr5i3vOWtpvUPP/IIkgjWWmUF5KUo6CqE/cIb3ygVvJ2AZKtZOyVN/a9csYLB8Wu/9mtvfOMbc+ZkwYJ4pZVxFQa7/Nrb2qLs8uCtvzhg/v2Gf/WvsJd256dFFdX+rW996z/+x/9oabnMIGeg0D55ivbSSy5Fxo0/+hH99Ou//usXXXQRTQaP+spOjpuncqiYDT/66KNvectbfP8w9zrgGw1Bwy1fsbJGgKpROW9/+zvmds3lY4CZGlb0vffdZ8XEXJMaDrd4tvtQA+VHx6igbycqF6vFfOpTn8IEltnYcWOpFk3zqx/+sJ0Z1AYz4+1vfzvfBpsAEqisLlPSFiPktaUA/mQCFhWbJEjDmZzmPoPPOVszrVbwXBdIUtYJdNWYMRvWr6fhmFNpHpnNY7I2wlim1eJFizs7T00m5Ns2QFN2rNN8lhuw4tQ5c5BNl69btx5Bips5ayYMlKs2tYqRdGb2YFBxV6i+erFBAeAPDNrls5/9rP7JgxUWVf8AI5Kph1RFqP5lJ1zKZ/DpT396xfIVcnEbWBSwI5IzQF4rQevWr+NRsHGVfYBLipo7t+tDH/zQKTNnKt3oUP0/+IM/uOTiizVN8jOpyrdURokzL8aX9hWpe+hUjOzOzk7dg+Goy11w4YWqL1VNGZe7du+2HMMMcoyCjyf8Dtku1XlCIq+/6xwYJQ4cH00zSsS9YtCmGDXoY9yXQ8Nc3KYmRCdVxAKYO89K/Vyz3trupBdU9+JlIKwJYrMiE5e//uu/Jt3MUM9+1dl0iUkbtcrfbjpO2Jn8EaOnn75w5sxTJO3Zu1fpJBqtSR8LsxjMTc2Zpk2fTuWk7hePePqgq6srpo/FtqnUtEo9eU0aEnmp+82TLEbIQrziAPw1eAGPGPoMYXQ/Ajyndnaee865LIDDhw77aZEVGFc23e+ncmgv8MRuqrEKxVUC8i9lcMbixRddeJHJNw5TVDiP4TYe8s0S01BRm3AS1pwc1DPuLX30URUEEIS5j6gs2dIZpssmrFQUSAqPUyF1v7JUlpmy8PTT+/p65RJjHqnWppgUW0p1phKvr0IpIczngkcPy887qaWozjrzTFwSgzALBIwwBJvu22uuk5jXQnjWq16FVwDMzyktjUuPKUuTca4ItLW2KV2X805/TJKklIobyq64wdiZGHwszZcE5Bsw1AFcVq8hVFlMizX1E09E27bt22nci1/9avzX0FFWQwMYP1kna9au0dNg0Fs0tyRM082uuvIqHR4F+ozllcWLFqHc5DhGR+l10fPC5RAPo1Pk8NPY+NCDD/JAXHrJJewDfRgkE1Ohb33rWznqHcYL4MYGnNFwYSCWnYaMFVtbuE82b9lsRp62hbUVFhXLu72j49prrv3N3/zNzq5OvUi5cM6ff9pJ06bBj5lsPgacKpvxDxNTDQW1g4OMSOadDiAshvrXytrFOpq6oFB27hMuBwjFf/jDH7ZGZlxgjgd7R54fqeKu/61zYBQ5UJ/9jyJza6hT7BIK5IT97jSHKY4n48lBgQWnnUYIZkwt4wsM7N+3jyii0QlcsyUqhCxWCl/rgQMHv/DFL37nu98leggsDwFE55mj0AfKJQTRmxqLEuju7hZPX5qmkF/UVdJG3plfmsqnr7uiV6p0y0jiE3wiCEEBBQkTskwh77AbyqPi8kqlSGrIIzIMiPHBoqZGetFuic7OzslTJgfCsicL/fCQzrfffrtI8Ilw5Jv7vaXVlvY4CRZqpugMdNHBBH0lV9F/6TloaWmmZekJ5f7lX/6ln/QgboDEBEm+a6xcvgHKr2vu3MKoSrnkvskiSPwMzA0NvX1xWhJhtXppBT+jspXrEwJ5Uq4cqwMUkizKUjVIqEkPbch/bkMcPnBI4HySpEZQwTl37jy0mSNrdPXVzbRUnndQTcCsH3YJhJ7M6x2B8n/GH/WO+PIUEDaZnZuQ6xwQ2qqpLX566633LVmSfQao5lu/YYNdmUqX17KRLR3aGoC2Y/OdceYZqFUiDPoYDpmOZzVlF2lHgPiSlGVX3vgjkutIZ7PkESxlVVTbhR6Flrur0BC3KcApixqA9EZ2mWFHXe29sL7Da8U4ttuAbmYWX3LpJZoMEgDaJZ1PoKPDFMImT54kSThbqkKWP4UGjgfsZa/4xQFjmLMdWSGMEs1n+4uFGM4Sk35GiSprQeMxOmR57FdVaCArhy0zsv6uc2BUOVBX/6PK3gpyYovgINq4ZkXx9VEtFG2KmJRTZFmInuNCTln4px7e+773EXuUHzWmdBoC+iJqG01oyG6RBByBl1LPnBJJ48aO9TOFUco+yanAqkJ5WMWql+OC0D6lZITHM7JOfqbKp85JWwizIPFEqzAdmajkkopCPJEqhSXhJxsFPTWcCVzDU4sXSOkvO+snFYww0mv4RwKT2lF6U5NJNhcCUe5RYuaFygMeH4hvnhvzazxUd2fqUtxnTb0zkPDJwJEFCdOFYOCXMYFrADSlQlObollN0eyt8KJ6YpaOb4cOHgzVXtiioAAbGuIjCd42NrJ06JXgHhVYjvsrSMtaGVHBKAu6F9zXlEihQsuQTZZ6o9yk+dUXXWSCy1hxm6HzF0U/RpLFEXN3FpLtBNGyUfmY6Ef2rF6tdQq3xY6Mxxz0y9jn5Elfn9Kj8xbeYQKGJBvlMdHPcO0tb4ZBwsIjxZlvAyAXDjeAg7KPLXvMKgbWgatwqWQI+GJg9TsfWH3EVINBonC4nYoNJ0HQQFe5ZIs+Y13/LW9+i5O3lj9WrFxp7Z8vxP6GKy6/XF4Y9lePR4ZNU3/qHHhROFBX/6POZpLClCjVAGnll130S5c+snHDRho6db/JCnFgujAsVF4YXeSOqS39ZEX/jb/wRvvA7XOm3VkA4nmn169bZ+GT49o0ETAJZV2/u6eHbCVfQ+CVmVPlEF1jo+m1JBNTHt3Yf55zlKEGy6Wc2CHpihwWiHBVlKvEyHDMdXizyzo6d7QkD1HrHbmq17IqWsZ8BxuKNUOZmUuZNllGtW/Ooix6JOLt4b6+np4eAOVnXN5SUQkkfmGoZYu0ObKswFlktEIz7B0V9mpqUjuNQn/gHivtF3/xF7VLZqTAGAd879aLgXZ1dZnOmnAvWhzbwVJn2BAu0k8s9VZETfH4qab+V1QC13QGsKRfX+Gazl4RbEmvQDAk5r64bDEbE6gQF/qeWA4CQItwuj/cBuVwoFrTVRpaQWjGcJBqZNtEqhkkmaBCuGfPbnpU9sARiLK9kn/BRuwNmjON7dg6LDF4ZVTGssu111yjF8nLyHBGwEZ9fcmU2i59ec3Lo76NTVbNEaml+JAstagyJhzev19d0mrJ0sWHOVVI0sQ4kDHxbmnGHAaZbQSO6oEPZcmg7Ovj4urs6rKwEpHlMJ5APvKrCAqCw/jpdqmyNdVY4J934o5BabsG7xHDzqQczdm1qgjir7wV3kJVaBuZKqxee/fusY8vqRWjGzh0YLkk2jHGS6NO+9a3vu1I7xF9xk5bSyc2LuCGU5Qf+MAHhI/BWf9Z58CocqBuaY4qe6vIyYsUGUWYmvYtWrz49jtut/2YQLSWbIHQAfHY91d1qldzPq+/UVoIO8qbgjn3vHP5qFesWH7XXXdZw6YVLrzwopa2VtvWbA6kUz3mcHy2//AP/4AYIlKpiCSUAZBcUFFmxDdB6YwWv8XhI3GZ4M5dO20VtAUs7JiiGHhuFS0p6a4FKtUofKAJwJCwHgHKKTRQ9SErK6qx7MASTXgmpDClQvp/6Utf6unuRpaMLsxZct8SLtZU8Bz1FVaDLkoLQjqD7I6IquAWoGJTy4rPh06iLLWILOApNgHLwx3tHVikjsigQW+6+Sb2BOPAZgJy/NZbf7pr504ZAbONnKW0vmtyaaqt+vCoTq3cYEhpGjH9/X0aSMYsPWFUCE6oKjThRqEZjmRLZ2eXVW27GZhBfOyxKWFoiJnyz//8z1BRaX56aMpw/hfnip+ajxrmfrehXRM7bUhP00/OTcibFIaOLGXRuBWGlBOAaBYPg0Dwu7oeP2XK1PPOPc+xRvaQ/qMdtb4LcXVmN0zAoIFE2kiBAG3OAS47ZztNiVQVwi4V0S2ZU5Jk0eug4jMAoDgrF5ofB/TDpI3NytngBB0vghZXwd7ePsc6oOVvwBlIUK/FswpBRrgYwuRCDG8NY4Cp7RSGPZ7qrln1qM7OTgA4Axg3gm/VrpJ44gqgprCl/ASpRsBqMGLsA33ErpG9+wrZAxZo7PvzdhjBjQgW2n7/938fTMeYDtakTbh2+yhOZ4MQ39zGoUdlWfV3nQMvDgeGbfkXp7yfz1JIh2MqbnsUpXLvvff87d/+rSTawkEpOuYYsOf5MxZnQxsRdmNtK2tsuuaaa8kmu82VS9KdNO2k17/ueuKJPjDdUe7aNWuc/TPxPfOMMyZNnkyEzZo5i+azo55UPX3B6ZdfcfnrrruO8nCyywyYKYA28zybvBacfroVTSaHGO/e3iOkJE8szzN9iYxaLVJu2kUIRiQwADt37iBIE4xhkV4BqSwh+gMSApuYJpFFOpePYIem/ubTnxa2TuHInPPZxD1K4Aec5kutUAE3CKVxoJSkQYC+sRA+krxM5edQfWA2bFPzmEYfMwXoqu7ubrNMLpNovjEdlrEdJb/t9ttZTo7kWefGZMwJv3dTE33prQzEw5b0qG8GxOzbtx9v7F8DAzJdFhoLE5IqPAxzkLIpFpjIyN7YcNWVV67u6bFhntpDCXgButw8khup2H5xbTOOeQJzUYEml65PUB2VstSthdRFWCvY8cBYSTvMskJSGO9CdRIf3HI/rnq1xUTf41Y+F9XpA5/6m7+xGM+3RCVzpNsS8cu//Mv6EuLRQ7kiA/y8+fOci3Og/xOf+H/PO+98TaY72YnCCMNzrQZMLl1Lr9PE7FQXEjCUdaDoFYUJFKfD9DS3+wwuuvBCrMZ8JaqFEyuaKcvCkEJjvGRXD2w5dOhg2GRDg5B4rMS7buGcc89loDjNob3OOftsb/AOoKI8MWT15dqyZStSRfKPAUNS+B7KA8ZCviMJrBl1kcQExBnWqiV/Npmdp7ffdhvm27iAIcizZ4LnnyMHAh3MSoTDk2yF4yYEkrL6u86Bp+dAXf0/PW9GLYUcJ5QJoJPiVnMKa4D5T9gRYcfMR58fCYTR1ClTTe8Sm0lK19wuktrBMCJJuU7xO7wHgMPz/vuXUEIElh1815XbdRSKQg7tHTt3WBkl0823SEMX/P2H3/oP3/7Ot2+88UfcAFSRRVxbqCgMP6lDGU2gTzxxAgFHbUNCSsrrLSnFaNJm4igSBtvHJk+eEqqiMZb2SXM7FeKzLuVJJGoBoXmhOFxyLY+JrOP1Fm5lpJNcoYMSzgybDPFQuUrxTiTm31dceSUy/KzFM0xM+yZNmiw14aWiAUIzSIrcT1NSe7Mtmix95BFUsQkQTIO6HMkaNtPELTSvv/56hDlVcdedd6YD/B3veIeb+yi2trZ2Gos0VynvrL7JOhbBo3RlUSqozMWFdJ/Y56+l3AqHqlyXQYmdgCedNI2ap33F22xoldrxeloEYQDQ8573vAcZ7LlUz5pYoRMnxtXLmhPxYHierQJodJPO9nbcnt7V1RVNyVArthpK2A06Z4V7oZLj2zx+4jw1hhLYko0ima0ORrrG4J677+YDUAp+/uqv/iqdhy3aQh3pRW1tomxaf/3rrldxDiTzbzobHxhzPggkr3sd/ESsLfoWXDZsWO8oHZNi4cJFsoj3RqVCHb7QQ/RDRzNaV6xAsCTr6BecfwE1j7lIZSJMLS2O2qTflhYeHEdXdJKJ06ZpJrShwfkF7NHWVgHmzZ+vO6HccRwHcoIJxW7DPp1TF1KF4GdDOIemTJmcC17JDVcG4ZvxYnUfhLo7C/CmG95kOQDAGWec+a5f+iVL/kxqqPD/yiuucDmSywQBQ4tm5aatplzGioWV7DNRYP2pc2AUODAsJUcBeR3lM3EghItxXp1ABGjOU54p07NNyxknHcC8oA+URa7R8SQsH2PIl7IqTF6b/3lMUygzuofc8Z94MPRNiCFfNPEtsva4YJ8cZDSYB5uvnHhCfEbWzUKAiWBoSXmeYbkEMl6h5KDt4nReSjQVEOkB44Fw//4DNF96PrlJydv29g50Khcw48hTgXdSoDifMQ7r3LamLM6MsWPG8oR/+jOfds6b7uSDtoFBDaLQshLhkiXqzfYr3FYvCOkJFRFQLzLXkzxhjviPOEZblF7WF9g33T09vDU2bYiPLFihuWJBt8mnenggzGLd8+p0n9m8orEaBwCXuvbZUBb7PosHH1oZ+bcxxFZ6P48c6eWNp9J47Lm7nQWn56grScHz8uA5+DFjOjQMnAiDjRbREHS2dX2q6FOf+qSl/d/6rd9yLh+YLffRcG2xHAMHXJnRUoWPAcpC/0GCCUFZOUCRU176CbFKryg/HEPfYBzD01IqBaFEBhD8KMEyl/hye8DJUEvWsaU04sFDBxFGsWkwalhZ4PFzzZq1uhlLlNqDzTqFQrNnwowMng9trQOL1wf0IlaT0tGJD37CzHBhm9LcjD9KPY1FNVWE2buMmiC5h+HQ4rnWYcEkQ3Ralz5xXGEX05a1xChUZW0nSXMYOFHPUlkxqFIRaOHUHN7MxObmFjd2WDW7+uqrr732WlVYtXKVFrbMr2p+qjIcgAXccenkIbJZ5yefPN21h1octVIhVzVdK42VoFDGUnRyG5L6U+fA8eVAXf0fX34+K2xG+5OHNOmQkU9OelZIjwYaWYQwEUOjELhpYSiLJkiJn8WlkBIDjbBAYvAWAyZNB7lClBfvRQLAHPDW8qvfpwFfy5uBWhF0CJVMMZj1jiwLBjAVsKJUZMxy4c+AvKS/Kb5V3ssuvWzhooUEsSQPW4cnnFfZTNRNSmRojQA4hXMRAaSCKjSMqGCWG1nKlCsn6BkZWYqiTbshI2k7K9mp5KL4wp8MeCej8FkdU5SraWYMRpVysVEMDEkb5B7lUgYwJPEZ8K5RIj7asaXF+ktPd7evNzG/AHioCrvMfuXDH7bR7L//9/+ekRFfTMy0KoPJpaBMjaTywG8bPV0tMbNkiYhUlnCNHhhSj8qZM3UFWGCiNWFObFH9oqfZCmWPR2wEwVhVyxK9o6CkqVBYiSnGVtKgUDUVTgvDT4GaPTeSpCQ4V5qSvZkKZ3QYfovqHDpTAx4iToIRXT2RUPDg1StMjbIrBVrYVA2qNF8ye1IijEiQvCn28bE7Tfc5SGrxAvlkxVUBqkBYlHo1cRjmmPjMJfmY+GMy1n/WOfC8OVB3/j9v1j3/jDmeSRkyyGOci4l5xvF74IM/VX4WRB6SZDFrLne40pEhzdMQKTu7yfEKJWghIP2gIQpdAqFTeb+LRzf1VmVlOg/x5/yy0F/qEnMXT1QrtIuahhilv4HAJj4UScRF9b2z6iIlEZQh88rEPdRMURUJYzrl4Ptf/I+/+I3f+A03JdAJjIlHH3vUkrMVAcfxa7o/C0p9SbfBnH7sxtBowyoNWMrlgC+qInRw1fgQlXm1jlyhGOL8YasfiT9wlXD+9DZrpCRFtjTGsb2ALDM/gahs0T010wFYmk2FCVHxQFdm5CAV7Vc0U/nebrajIlTKyrG5LCc5fQPG3NFKNsvMzf9BSeSJpg6mSS7Ep+ZREIBKBQvzxQQN+kXZ15ZzaGG6EBoYkoascJIUNNiaVxZ3sDOxwUNNqhp4BGjr7AA4pplYGIk5gcMSLdaYdyGwOJywq2oqRbuXtCQYT+LLhoV4MfDbO0phJydhxpxAWT4pJC+yERB8KGwsKdHTkqQsMbplIK10gJo1KTvI6DnWGqLzBVFODkQHKksJjlJG54/YeBKetSRLiYgaKUhhKs7fEL/LIzUpj0CpS5CX/SffGS/p6C6aaOvvOgeOLwfq6v/48vM5YIupSRFIhrpsBFxKhOeA4ulBoYJfOvmSkjTEWcpWasyspUyAgoDykE7p+fQrRaQAEYUqScLepB/VmMIO5pYWm6QquiRyVbW4/CW2HMoCJ7444SM+hWBga7LSHkVU5aBAJFbmhcNoKzB2gJe8nZ2dV151lc+mufbfmjrHL/8/xzst+J53v5vTPkmFLRHWqIU51Ef8F6VCFhD5qyp5h2OqBkpUKoiqzFwjVwH2J3Q8PP4LJBU/baIEphBPwGegKP7AX4ybMMtK07Bd5E5iou7FXMCoAhhIoi20VDkml+0o0jJzT0+P3e/2PNo+Yu1j0+bNNgG4jYDzQ56obOFtlChDrb7xu9S91KKklKjyotprP8IgkLXo40pkqRRsSW3YAbUiCoT4wp74Y8kJtwWiiOwY6qIRne08ejeorAnmnT1KRw3NKm+qxmR4ElxqE2wv/KxZUZBkOHq71ipFZDfO4mpFZJVh0LKMBD/jgbBUQZbCueh+ESiNJy8Sk07mGHAxyZ/kRl9vnw193B6yAEN2wijav4I4EEX7FiylwIyOUkpc4A+YKGm4uOgbFdIq8PU/dQ4cRw6U8Xkc8dVRPS8OpLxIuRDi5gU/icqbzOWDJWXIkYo0gb64pmsFCYSg96dIt5gFhiwuKqpMxEMUVmU9hDlnSmAZQxYXEU96Ijzjswap3qQG6lKvDCe2Ckml0MzoHUn+FfgKWPWkXGLwXrF8+e133GHl20ZuuyanTJ58zjnn2ocvySywssyRqJKOEq7p2pFFSE+y2S+hdMIJX3H5VomMKgmPZIKCMrWKPv4meYEtPCzhAKCHgqQ+hyCG1UBCigeZWbxhq8VkWeaa6dsI46lYGwmTCsP3hX0mivo36XSAsKMjPkl3ZfmwQmb3VlBmyRIzXIvJVO8MKN1TgxHpZy1JvIZmNebKdy0pwSSODAjXHpAWNfRA7PUfJZ09bSRA8l9MohUIMsrvBKvFZ1KmZq9LgHzDHLNtBxTzMmn0JxMK5hqRicQbWpG1Zs2fSV6txIyslVL7KWMMBF2qufnxZctuve02t/75epYNBOEiqmr9WsYnB2r01MoSUwsnfMSENfDk3PWYOgeOAweeQoodB6x1FM+OAznga4LgyeP/2aF5CqgazmPSiFpJqUIkVcRN1RrwszL3KvoGQELWCBvWWNWdyZI84ild8j2LS7TekoZjBMumwoyXlJI33yPFXCUX2ZfTqRFC8JiF+dyNlUUcVVaJqsX4VSsugWvvJLXida/OxQGLz8XvyDmCD4mnkr3wTbhShawvcJlrdS+1CAaVY3vJQKlyZSliRmbPjOihV4aRlPLyZ+atEFD+2OaWxy4gVJCM/ibASOAsupYEoJaaxdWyRO50WyTftHVYKqbVuZBfcJT7K9lObJOAr0xTw6AZ7B9q5FSPKoYzPKCDnWHEsDuVKg5KsVGMnjaAgREX0VI5Qcr6VFOL+bfIWN+BwWlWPxobYgsLxkMe5cYDs7hY5ggkMsT6Fq6Gh6sozwpxaoGYQkjZuRn+G50QuxDJ5WDfpcUeJIByvl8A4timUGgq9MUvSKSh2I8or4AFBVE6jKXCgEBUkoLaKAodOBauhwq/mEUFuVdSVDDKVZaPAmOhX67yVLKXWsItrmCsphYKgyJP4X8lXGjL6Pq7zoERHBgW0CMi68E6B+oc+LnmQOgoerRoqlYa06cDqJtGSyG0GiXZ3Bt6U9Rg42Bfk69U0220dFOfSXHjYLuwBBtGBx3dYPc0tjdT23RV3JpDN7Em+mkoIRcfUHXNVNkADR8arcSDDf05GP8NiOeNsqtScuNQ+4A/TV5ujWQQwGCu7RMSzQ39MDIluHG4vEKtumGSqgzrIJAXvRyFFqXJlPE3viBM4UPuvgTqvG2QGi7IB1StAV1tzeIFYzUDzQV/FKoYyx94EGVWnlDhsWKBclYCU9rGgGIBoFz1WyHHShVx+2DsGWhg4LgcGH7a2r6H/kH4o/6OA7S0+Ms4GEYuhWfJhkpAYbE087updRCGHJXhtQpDJqyLpjYLJGFpsDpQ6G95Vwmt/61zIDgQDt76U+dAnQN1DozkQMy7YzWEaqNU7cQcGGrysR8KhxKlBekUKp/WonrMqc32yxw6di4207Ru7KNVm0LnxcS+kaoKDQQu9tlZZ6IGRfg/p94xV6Y1y2RaydR9KK3w+vhVIP1VYigzU3Qv6J2bML8HipowTRqb46uM8kiMeMcNqMNYkBIRdIe1Ej+CKIVBFoQjpYIc1kTOQeAELMBQzOH3kLM59o5GaUyNYq4QnUMDveG4CBMgSqR7WSVhq4RfwU9pCpbKhGhCHMqbwl3iKGbUi6UQXFK88xNhbCEqtsnA1WqTaJwUCEtCRLFckvhACCaKLljkCjIb+ny7sS0Iiw8+NUUllYDg8McEAcDqT50DR3OgMuSOjqz/qnOgzoGfYw6EOowZMzU72NTXNNQ34Krf1kk8+tSK+xDMSItuDK1CV8VWz5x2Dvo4YUyVa6nQUDvUep/5d0ujk5qS4sbHkpEGhcGqRG9/b3NbB0jYIEv8YHzuibaMIvrLnLZ4ECoT5AIZOi2QD1opSMJcHQyDeD8hR/jAYG9L27hEnpjRACiIDyumYaCvZGmNNwAx/gWM90CwwflHMabtUhO5iqDKVRo0fnNb3gVUSZUxNH/BrFDIUcO/IN4/eLKOYeoMNfQ7HdrchA+g0jMCwE8wPg3AaHDXATL8VLR/GQbjn3qz0PoGm8OoKoQFaBgR4QwJz0hjX2MsaLA4GBxy1J86B47igJ5Wf+ocqHOgzoFjORAzTnsJYrLpDGPb/r6GDdt6N2za1jTUS51xXTcN9ps9+EbuxBPGzO86ZcK4xu6NB1Zv3D3QZPs9z7ajcqa31gL6Fi2eM/7E1t37B1et2niQ8m/pGOgbbDX1HTzQ0nTQ/UOzZp+y48DA2vU7d+8+0NDYPshSGOznGR/sOzx1ytj5nSdzwS9fvXfT9r39TYOtjbLKC3P/mPbG0xfO7hjXtG3X4Se6N/cOcrC30dmtZtkDB5ub9nd1Tp8x7aT1e3rXr9918IDFCH6ImPrHrv+BIyefdMK8TncSNyx7YufOfQdhbGlspSdhprcnThizYMEMtV+3df8TPVsHm9sHqOaBxharA4MHW5sOLlgwe+KEE7buOLR+/c7Dh/qRTflyw/M6NA71zpwxqXPWpINHhh5buW2/m50ah/AxBC7kfUdOnu5+yZM4UrrX7+5Zva25fXw/Z8ZQU1tjb+PggbaWQ2ecuaC1tWXz1kPr1vu6AWvFbV20viWL3tbGI52zJs+eMXnv3kMPPb71cEMrPOEpYEwgfmBoysT2U2dOmHBCMCp8Cl7ZvMOhY5u7/vvnkAN19f9z2Oj1Ktc58IwcoCvCa87hH1vQwn3e3N6zc+jP/v7Gu1b0bAkXduP41ub9dFhTa9+eA794UeevvecNk08Y/8OHtv3W3363YfLYDivX/QMn+vjvwb1jdm38zKf/75ZxUzbt7fuzf7zlwU2HtraMaeinZPvaG3bMadz+jtdd8O/e95bVBwc/+6OHvn/38i1D7Q1NHYyMGf1Hxhzc/c7Xnflv3vWGOVNbvvCT7v/x/bsHTmwb39xqUj9+oH/irm0LJ7f8+cd/feKYccs37//9z/5w45H2TTRgnOfvHT+04+TGrb/5yze897ppy3f2ffaf777l4dW7msYONLU2D/af0n940uCB97zx/PedcnVLc+P//MaD//RIz4FxzWNp6P4+2/fHbFr3hgvm/e7vvbtpbOv93Tt/93/+c9/YKet6TdLd4HhoXMP2GQ1b/+Q/feS1Z01csvnQZ796280rtw62jGvghRjoPaX34KyO/ve/7ZKTT7lkT1/D7//drUt37t3TbkG+qaO/74T+voaelb/+r6/7yEeu932Fnyzd+H/9f9+acfKcTX12GLS0Ne2bNLTtpKbtn/r473XN6Li1e+dnv3TTPZsONLSewG4ZO3Bk6qH9CyY1/eovXX7KKVO27m/98J984/CEaZs0WGwJ6J8w1HvCoX1zWnf+19/+15dd8KpoqrIiID1MgIoV8IytX0/8ueFAXf3/3DR1vaJ1DjxbDsR+dN5iy9ZF17dwJG/ZP/TNb97acOHFDbu2Naxbu999uL1HNje3NazbvGXB5CP9XAINO/YfanjwsYY50w+7GelIr/t+N2/ZeHLjocE+V+jQPY0Pda/dumpHw9gJDf0c1b1HWvesbNi6cedpdNPhwYbuLdu3rFjdMNje0DLG5H1D76GGJ5bturizb8CVPi2rt+wYeHRVw7QT9/OHH+nd39iweV3PxNOmWSS3S85pgyUPL28YGu9y4Ya+5oHGw3va9u5p2LwTSQ0NZuYrNm7ZvqKnobGjoXUcj/66wwfW7d5ww5ULrbqbki/tXndA0Se0HWRbHDmyl+9+5Yrd86ZaxefHONI/2H33gw0z5zfQ0L1Nfc0Hd7fs2t24bZ89fA0New/33rdmvQIaqP/2jsH+I+v37Fzf3vv268+2SRIPb31keQO7oXXIvb7Oquy2yr981Z49FzOybB080DfQcOudm862fM8iault2beledeWhq1HwlHRsPvQkXu61zas29fQOt6XAQ8OHF67eWNf18QDh46gvL+huef+xxtmHY79B81W+vv3WPafNfnsCy4Yd4JbumPnQOwEiHMQ0aTPtv3rcD8fHNA5DL36U+dAnQN1DtQ4QO9QbPb4DfokYiw0N7bdtXbwml/83ZMWL3zNvOarLj2TFzo+40O3DAyefGLrqxbMnjV5woPdmx5atakvPjNt1jnk7mXbBccM9l94/qLJ0ybv2HfkrgeX7tx/ZKi1nWIqTvKBxoHDc0895cyF83bvP/LwY6t27j0oa2xuG2xgYDQP9J08ZcyZi+dOGjfmrmVrV67fwY5wOyWftiv9xvX3TW5vOff8hSdMGL9+x977Hlm2z2eom9ttp2cPNDf2NQ0ePmPB3DM656zbufeRx5/YfeCIvX5IZorYN9gy1D/75BPPWjyPq+LOB3vWbt/bG0cAQAy2DQ2M6T00beLYc85f1DJmbPeGHQ8+tvKw6zBabAm0Es+R39fWNHTuWYtmTp+8evO2pcu7D/ZhWey8U4BZfttQf9fMCWcs7HQtw0/u6951ZOCwLXluPsAWHxDyha1Tpp599gLHNB/vWf/g8h7+lcYmNbZ2MNDMvd80cPFF5044cdyqNZuWP7Gmd8D+wIKcdTPU0N40OG/2yafNn717f+9t963Y33+4v8lFXmXHQePQuLFtZ8w9ed60E3ycoKWhrWGg3ZZGexzLHsBaE49CIB0Mo4C4jnKUOFBX/6PE2GeLtmZ+jfrgfLYUHX+4rGNU0GQovJDmgcMTkeHUJ5UsaSTkk9KPR0TsWYubi44HrlcMDm2E93aPcfybADMAWu5ZPfgL7/3IglNnvenKhb/54XeZvGcTFnXIQBhoGXSJbisVaAtbKgK6NLyL1tuj5cvWNu6Ekio6M2YgbkqKmEApoECPvGKpakvpA/1HGlrarHCbRQPyL5BzUljJLxvfZNGE3mWnXQCUFo2zCYE8NCNMDb1xCKDgLMCQgLTFYMCxgXImD4wsamfXodpznMfu+SpVAll64CqP2whQEYcMC0xGBoz9d1DFB6gHLTeode7sS+RS/WOkyJw7JWuYE39QFSaYU31BiCff4j2Rtwwmmy4NEMj9Q5IiDvU3HBoYau7vO7FlcKyTAHFksSUOYVrhGDHoCppRfAXHg1fZpKNYUB31C+FAXf2/EO690Lw5SOJOlaJ+Xszx+UJJf47540QWcVAVQLVAciCR1SJruKV6QiCOsnrOm+ny+p0osTw1Mn4+A2bwdA61ZBs5Fbju0NDDS5ePb289eWLbglNntpYUbVqOuJWD7qFj7bqTrS11FYVUdDDdVdRWnAioaoXQZ8Lxj/lVOIzpsc0/zu5xK9BYoVapujDQKFLajbIciNMDka8ldiCa0drCF33L9Xt+BD4P9RhoLVwYWaG87TIstzq2uFBIX4I/igwdHN8sisP7zuU5d2/270/ofjP9QjsApXBlBHgFvb+qUvIMoAuE9fVywC8AJPjjFYf/4y8Tyq7AmL4naXFdQkko6KJ/s7FEVamHD04sj//wJoovxFQJKNx0xrAI70aOjKAujvjZILh87Z7v3/HwwKHdl587/9yzFvg2pZrxHTSNvvpn6ASTi5sh2FaeUokM1t8vOw6wUOvPS8YBg4QkUnwtIJy3s4UEDMlgZPsbz7O5SfQlq8nTF0w4h9qnv2sSIatc4o+pu2ompqh+1SoSGTw6Hg/eQjNSzUMen9IJxVNuPEyZWsrKpjkexf7s4dAMoY3i+H00BeU5aVzrVa9eSIPFvH+onFMLleaUuf3/oaJKDrNVeilyyx7nBEOPar12LCjtGPz3u9rM2jtyW5gO5R0GR5zlL6BAwlMQPcI/mBr7AjINCh78MAjAO2mPwjjsbudba/jOY7oedkackC/3DQTCAHe+MJp+YMCXnn3bL9o8DASX8UThA3YY5O0FYinxMEoUEZcNsCPQGasVCozaSSowrAojWI/KiFJVXAmFHgCGcKRyK9i7UNwBGCUV91Qt/BdRRHTvyr+SqxSFuOCqyomr/PPLRUVe+RtRQCASW7jf4NBCz+be//R39zTc9bVPf+53F5+7CFus0RQTCNxoPaWRCqVRG3WJFlFYoRDLotyMGS0K6nifFwfq6v95se04ZTIXiY+T1W5pLeMkcccoSgugDKTjVOBLhiaFguJDwNPr8c3fELriQ6KXWBIiax2SogiNECFFBpe/x+EFMwvAk2pEwHyFXeVnJjFTqB9klP9/7X3mcgAAQABJREFUTmWWbhiqr0x5tZXwYFPrzv1Dy1dttGd++oSmxfNOCYUV0/TQZ7S2uXPFSU32p85L+V9pSThCb1e1Wei0+D9URjWuRBXOA0yNUVo8dCksLASaTwp9Fx1H/wmlH6DxSb3IEWTEnXvReOV3OXsfLRkUAXBWMQqIZo2/YQsqPS7HsZMg7NPBAYfo5Q3LwJpAYAmvfqAO0HgiIUwW75JSokN7O85XAQkMJQuwogwzY4DLCmtBHIRUHrmzAglfzRtYgvCoTTpZZA+ctXzICy9EiQAVFLiEYM68hr4LO8Z1xM3LOji+wTKaTzBY0WFbBSkojEZVz+r3QaLwoFs7jC4lo1nLVyDuuvp/KRuVoyxGeAzyGBUximK4B0kCZVC9EkZLSAHyNESqyvqvUsespje54PGKf4UVIbWqDCn8AHUcniilyltlYXJzq61aFamUPE+AJOM4FPkziyJulqVQg/5ouM27h/74Lz4/+6SJV14047RTZ8S6O01rqp3akyqOpg0dn/Pz6MaxauCS29BtlGvsPS+KodagckAT7Uy/lRl+USNRZCk0RgM8/N+c5xRz0dCuttWbuLQb+2PuHvmLO920HLa4IjjyUIzR4WJ8ce27hVAeluaAuwooezZeeJfCkrB3QPujAM5YGmi11qEch/MgD/EIf/yrEV1RbSWqRGZ5Dvsn2fEng0FFPGGF6GLFJaCWIrElkwpbAkH+xIQCXyktEvwrxeeYiWrFP9FhUQXWhIlsLlts7ItKHbbJAbPAZQu4cSDwjtpTqpyvYldlQfiIiNoTLRUw9eflw4HR7RYvn3q+DCnJOWgqpCSvSLuafzPiQguGnB0xil6GNXlGkmJOEPPBkAu+J5QfwSMYBVxrSozlRDzuiSGtynsYH6mYAq6qoYeTnnsoWF2cDclnmPft2bti5Ypdu3addtpps2fPDkoUFHOYikHw3At5heQIOR275Iq8LpP7wd6GO3+wZNtrLpjfOdYFfpQSZUkNhRMnfllpd1mPUNHjFTbEbJurp/yi/oELywVGy2sHulawosSoh9DhRU9QkPbPR2JAW1L29YDoKqELZdVTGpupf7rOlB1AR7O7eCOeuo9O09i8e8/eJfc90N4xprOra+pJU8WFeRCnEspSewyrtvjAVYW8Vtj379n98MN3+tTTWWedOWHqlGKwFo1c8hZ/Q5SdTxgNYVVUflZ1GwJg9Pkr5lPQIdlPyhsnhCjlmP6blksL66VABY7SPSMgAd8jY4mL6gZbSlJwDeHBR1ccx68AlRZkhhHjGwoNg80Nhxk8wZYoJ4oY3SeHTJaRVa6Vh7ogasRTH1wjmPESB+vq/yVrgBjuI57169YdOHgwBk8Ml6Fx48addNJJ8YFUo7fqrB4B/rMUVKniZueYLUZAf79KiVG7ItQqdfHlutVrVhPxEydOnDZtWhGHZGYR1sepulz7GzduuOvuuxVxxhlnHDhw4Cc/+Qn1v2/fPgyfOjWUBMKOEWHHqfCfGTQaJXQGzrMAcsM4lzg9t/isbe1j+1pb3ANsi1985Md2eh023PJlHi6m6OxKVZlSVtl16cLQoocog4rCFUu9BWR47PV5SZEG86FDB3du371z6zZu/Rkzpp84aWJzhwvsFCIdHUGYvGwByD3FTGjctWvnAw89eOjwwdmzZi+Yd9qyhx667aYbfavobe94+6xTpvVa22cpOMff5B6/6H6KjGuNaHWh5pbDBw4/+uhjP/3pbb29vYcOH7n2uuuq3bPo8CB0uLdGXYpaKy6NSKs+ARP/h60RPBMKLcyqUckSLwsLpajwmp6XFDwq8IURYSEVvV7hUSzBACrsLgWH9eF/ZxN4L0opUmOZ31mBjoYW31hy/3IYCoHHuxQeP0bhSY1+6ODBLVu3+gy3njNh4sQZM2bEANdi+gdbxLBS8dHfgTgK9XvFoqyr/5emaXPAKDuEIAkxOHj/Aw90d3dn2Jhpa2ufPHnyggULTpt/2gknnECGjOoAfhG4QK+bJajjkiVL9u/f33nqqZdceml7u8tJKhqX0P/GN74xZsyY8847j/oXj0tZ7xCNx+VpbNi9Z8/NN998imfGjHHjx5NQvmHvaW1pjRKLpVWKPS7l/cwioZ8oreJtL5PIZhfeNAwd2dPRfLjJZr+B/qa+Ngf7G11RG9NtciQ+oUfCU3kVPRdNx2qwTBB2QuFEpEeXL9v7xMR6efT+UI+h7Oip5m3bti9Z8sDaVU/0HzxMs40d2zG789SLLrt44oSpxSlTyU5VttpoaCptAl6wHzrUu2TJg4yAC8/rW9g1f0xTw4R2U+SGsWFCD6xctvSeBx46eOjwtddcc3pXl53wG7p77rv33h07d5xxxplnnXu+jmCFob29o9k9+61t1jTiREA8Ssy/Rw1CcXpnZVpe0isvOlw884IJkBjsK1A5uT0RcDlw+VGsHnGVqX1tiGNIqP+KGcoqCKaVJ+0DuxKMDf8wATpGAAeNJB9VaAk3iRuLB5sH3T1A/WucsByqdUg0x/lt4Gzbtu2RRx5ZtuyxgwcPGekdHR1GmIE8a+YsLpalSx954MEHx44de/HFF3d1dSm+JgCPMyl1dM+FA3X1/1y4dfxgDRhP4MsXx+O+/Tt2bLcXje+RpUwvGlE9PT27d+++/LWXs5pJOurzGBJAhke0yMVjko75mTDeHlmOSf0Xf8qFYG+QFcpH5MnUERHHBmtZbLNfu3atSrFpRGZ80mOCsHPnTjLi0KG4qS3KiilTRfAdg1HFQ1U3V08zVyXzMZQkfzJvpaxqoe5j4fB/+9vffujgoRmnzFAusORwQh5T4jGYj0kdWdAxST+TP62Xm2nGYfkW19frLqGPhhqn9faNH3JxTWN7Q3toa9/yq1impUexFzRXtljoOYo+flT+p60yqcYR6+6RWrUGGhr27dnzwL333XPX3YyIse0dlou27tq5aecOl/i8+qKLp0w9SaMPj4JYOgiMmsYxxbiLf6Df5J690TpmzOLzLjj51FP7BgZmd3ZyK+zdf3DDunW7du4cfO1rwmKwPD40tHpjPCdOmXqm83Mdreeef+6s2bP4hObOnRsHbSrqv0ZuUh8k8yOIdZhe4UlDAaqGQ8WzJUhXMTFnL0/J7sXIObpXx68CmHDB9+AU5kSK3LXhGgV4cqVMWlgOMatGPlPN7/aGA7MH1hzq6B3rywgF2nJA6P4AHpUnx8V99933wAMPsODVu6WlZc+ePca4Kw7f+Y53aI6du3Y98cQTEydMWLxocRKhEk83ZJ5hoJGN7PUnV+OoXnF0MmyeYySeGATEWmTs9I0GhLmFMHnugvHo0n7GftXV/8uiwXTH0gX7zfh/+X3v27dv/2PLHnv00UePHDly7733nnjiiRdccIExvmHDhiX33Wdo0ZQmrNxrZ7/qVRMnTdKVdd+HH354zZo1+/buBTl+/PhTTz31rLPO0qcfWbr0sUcfI1CscLPHjUkD9fHHHz/xhBNe/eqLx44be8cdd9C71hqIvG1bt/YPDBiorzr7bD+XLVu2adMm4xlh8+bOm3/afMOvv69/7bq1jzz88PYdO4wr8/U5c+acffbZ/Ofr1683tzauZs6cKbuf+EuzXn755dOnT3/owQfvvuce2l2ulStXfumLXzzn3HMRyTWYXkEZgxXVJxQMyd4/sG79OrXjpVdThtGUKVPOP++8yVOmAORsVB0FqZd4tTYLkUvg0ksvbW1pwZP7lyzZu28fys1FDh0+BAONgbytW7feftttZNOZZ555zjnnqCy2yNvZ2cn2ogYUZxLzmste09Yex82VZbFgL/5j0aRJUyZPXrd+PTGndS688MIq1a+Qv0UnaQur46F9QhXuO9A2MLl50Eay+JSuK2a1FZEZPvvaBHZk7WXJxnxa3VNJKMvqgWj7tu0rHl/e33uk89R5b3jDGw4fOnTTTTf2rOl57LFlZ5997v333798+XIW5KxZsziQ9AdyX0MsWrx4/mmn0f1FNxatpyfv3vWd732vuaXl9a//V4bMbbfd1t/bN27MmB/fdPMjjyzV25mh+w4cGDNu3IqVKw9+/WuvetWrAOvVh9zLu3fP6QsW3HLLLcaFoTRp0iT9QWU4iYDpWnFep6Wlp2fVww8/ghKazMqRgbBp0+a9e/eZ4y5cuJA3qbJ54qjqF47UOINdmZrv4GpyMP5UgtWAxEp6WFYxqS/qv7dxyEULseneF43OWjTlC3/578f09546NiwUIwgNTGWPzpyoR+ONP56urq53vetdZNE3v/GNjZs2rlu3jvBhYD322GP8AUbojTfdaCy/+qJXnzTtpHVr191//5I9e/fmoJ5x8owzzjwDG+Ui9KzHkRjE17bt28kWsmvHjh06wObNm4kjSdbvdAb1sopn9BmbIQBXrz7S20uynTJz5vbt2xUdcuCSSydMnMD+WLp0qSEvO+HJwiMMmy2SYGIcBI11pNHgzMsZZ139vyxaJ3seM5lOmqZrT59uPnrqnFNvuvkm/VXHXbx48eZNm773/e/r0IB1enTzDej0r33ta2lrXf/WW28FLClNXbmsYr76oosMpGWPLxPJoy6XwUmoGZBGGh3f0hoKEipizhCl8+i2jvb2rdu2CYAUA2d7W5uBN278uFkzZ/as7rnpxhs3FEoIPji59Jkdl19xBdVOiSp33dq1tD5Pe2/vEd5UIvuaa67Zt3+/MSlVFcgCuvP0hQthUOtsBgH2eHIjpyzeTI3vfe97MkICWKq6oOo1r3mNYcx2YRLBLCvmqMiWLVtYDJKQvXHTphtvvFGk4khnVgJ3gkCgaGxC7Zq1a8FjuMpSJ4899qjv0TOzcOngwYMiWT+2KF5x5ZUwsGweeughuZSldmwL2zU2bdpI6iX9r5x33KtDHWtch9Tjzv+QjR0dTW3tzW7Fj9ktDRQ6v2WwnOEMC+FZPanDgMqb/yJclbwCGo7v/fCRwzpPV2fn29/5ziitqWHMmLHLHltGgmsaDaR1Bkt/4KmnISZPmZydR/PFib2GhgMH9y+lddrbL7/0tUcOHNy9Y1dzawu//lY9sN/xgUZ2G/OaUUhhrN+wYf6C01jVK1at7O8fOHnGyXP75/Z0d4vnpoJEQ+vJSNMPr7/++s7OuevWrfnJLbesXLHCWIRNp4LqwIGD+/YdnNs116pdk82LFfNnJHdUuhodNY9fnqA4+FD+5KsSNSKmGhzBQy0Tn1AMV0FxlLV3NM5s6+vQVu5JCKPNLNu6TdVJVsVwHP8qATZvGvTgwQOahqp+xzvfKdIAOXzkCJOamDLgWPl4Hm136ODq1au/853vYKYmKLVvpMt37tp5xRVXMKeEKXvD2ZDft3efuYRWuOmmm1hs2p2MgEQvAa+xGOjMu7vuuuuee+4xSI1ZXYhE0mTwo8qnkx9ftkxjQYjRziNACxU73rg2GTDh0XlMCYiF48iZlz+quvp/ubSR8UMh0Vi6LzkS0/fOU3V6OolmfXTp0pW+lrpxo5j58+ebZ9PZlBlz2JR35imnEIsg5WIpq9LSRx6hII0BE1M923iAX0c3CKWKAWlgxM9iLkAossse6alT5TK6tmwJK3vRokX0HPVJC4rcsH49lwPbfNPmzSgxEyL1Vvf0mDU/tmzZzFmzxo4ZK0ZBUhcuWgTDypUrtm3bTgSghMXNFnn4oYd6+/qmT5t25llnEZTqG2OPnul1o2tRKikFiyg0pTCwWQCTJk7iJ2CgGLf48OCDD7JmWAN8JKZrU6dMOePMMwf6+1GCAGxUND0dedesGdPRMW/ePK7+LZs3r1r1hCTcoCXM4ULZuAImvakNoWPQw93CH0AM4SqBpWqvvfzyVatW3XffvdaGcXv2nDmyiGk4eHDcuPGZHfGvnKcoeFIdJ3VKy/pTxzX+yb9/e1vL0LmzfXInjLC4j84OASv+sYM9V2lGqq/CjJERJVyLqAVGMm3K5Clz587bvn3Hvn17v/3tfz755OmdnZ3nnnvO5MlTNK6G028PHjggwFujoTUuC892zqUPP8IBMOT+3r5e9ATOocZxY8e1t7U7Czdrzuyzzzn7CUbqvn3nn38+q8K2Dw4ACkPMnNmzF51xhq5o7tjR3tHnmz5l2j523LiODnZv22kLFkydMnXN2jVcVt3dPTt27Ozs7Hriie61a9bbR8j1ZeDQQPqDQTxp0gQWCRsFeRg4snbD4SdFPyniKbKCSbAqMLZrIc5wFkhsgvBz9Zb9P3xkeeuh3VecPuus00/nqtHRK1sQhos//iGDK7wp+/b/4AfftxBgpBNTk045BZ/JENwwGxk7bszppy9ccNqCvt6+e++9hwTjU0yvYUqYu+++W6OYu5M5FDnLAA+ZYprDSITBQDtt/nxyZv++feQhF0xrqwXAZmoeAHh+GjMlMStWrODwIyLIUsrezgPkEUpSuQ2IOD/vW7JEmANSEwdH9PUyrRLUvY8/j15+GOvq/+XVJjGeqxSRcePGjqXhuO54FHVx+ozD6qqrrtLLGcg/+tGPaEcTdAJRKkBD7pJLLqG9urq6mMnsiQP79+dsm6Y3PKKDDw4JUHIVgV0MAtEUJBe9DXGPTJv2gx/+kDExb95MZRmNd911N/vdgNy1ezcTnhmgLK5vRoORw/tqeO/auWvH9u1jZs+2AZhf1DCjMmlrpgCHeX9/H0oIBc8Tq1bt3bx5/PgTFi1cKK/q5tIdVGmd5NsM3ooAC3316p621jYuviuvuHLcuLEPPvSQiqOHRYIkYlcRKD/7nHOsSkBojl54BuugCZypkmWCK6+8kpjGLjv92Ew5vM32VDw3EGB7TKoGBzHn6quvJqTMEjBWccQHDwF50dLiSzFDCqJCVGzJ/fd/97vfFVNtsVfO34o+ifVktYsN5CdPbvzA28+x4D/GkbLew6H/W1upfgfw6LxS8+RDrf8+LTeeAeL/Z+89YOzMsvy+l0PlnItVxZw7MXScDjs9PTuz1qxmbFkCbMuytIAFGBAswzZmHbQGBKwkwIYNCxAcJK0h2ytrPTO7nt2dtD3b3dM93exuspmbzUwWY+Vcr17073/u9756FUhWkVVkkazLx6/ud78bzj333HPOPTfV1NYg12lTZANNfOnSFE2GZevb3/42egCEQbEw9+3btr351ls0Acrcj/74R5ABxADxoyJUVUqvpWyIHxLiAGKejU1NHR2dCAzCt23btmP7DhoX8kA2EFJVXb171y5EDoqsiCanswMoCIctATp/8403auvqkO4YwCD16anULfTfW7eZm2hobHz99Tc2b9oEzTOcRd0kAn0srIn/u1T0jsi5xwe1hqK4rNG6GGNrjkwGfm0m7L019r/98acXT3/8f/7n//7ubdsUvXTz/T1yv5/P0D+OkQCtBlOiLRiWgB1a7ZWXX3n+hefp8rwi4MEJmhYWfjB5tbeX1kQzwIaHEoA2//5778GyiEn78olOh02OCSAUC/w/+MEPaA744Usvvbxz106UtsR77332+ee0IM3NUAc6QVd49plnNKFZlqwor/js88+uXxOnunzpMnOaRGOQQFliWTU1DCFgjEz8CZm2EIGnV3+o3/ffD0oemzTr4n9tNZWW/BQpDz6CAoxIoj/EE9wTxsgmgzCGggEaGQ+5I8UhfZ7wLCJgCSAQQmfiQLZZ45WwTLoTzjE7ZKrzIPZIQtelQPgmvYKE8Au4Id0DkwMjIfWuaJT1AeTvMjF5EKBDYnElLXYzSqFX05ekh4fD6AQTk5OIYfgpzJThGgYBvrJQADhRPlhzR7aAEU8kXMcjkNljHBUkstck1hmBJ50mRbaxoaGyqpJPZIgWT/9ndRGVpkRyY6qPJ1VAMaJSRIMrUDogwaMJ7OnpcWlJDhg25o9QIsyeelF9KuKqjxfcmqAJVlZVke1MKgVzQS1wnzCQUEdyg5tQR7ge/ifMmW1fkt/uzEGycJ5OIDU5yT65SLhQnmSRfCCjre1svQtDQBIziv6gjraDvL/1rW+hfSIwGI5jfkcP+PnPf/7d736X3JEudBDGiGAe4tGGfhu10Qsc856annYEwBO9ULqZfYDeCIEOaWX8AtSmwwmEDKBywmlrgslWjlUPuRwEmUgmq6urCYcqIDzm15jVZhYMXZwEdDdZzkzhcF0PCKFJ5b/KTrKf2rG2X5f+0ET6k81VXByqCvRhn9E9Q/ATu1yxyFNWASRDVQAkoGE//9xzl69cQb9HO2KV5aFPtcN2Q9cGDPX0HZzDcBbOJiyFaGsikENdbR14pi00p1N02Pwx7INV7HC0BbCD587ODuLT02FSqAmMRvhEzhAArQMDdFwCwqBB+QgNMJHE/A7dnOkkjAQkx6E7AjP0gNGR3BzxQBJQw8NpvlVoimVnuS7+l42yVU2AFELuxuJxxtBffXUWXpPJZBmRt7W2QeUMprFoMdCHE8ET4U2OlCFx+hVcjAkzdhBAxBcvXsAQh9LAWAeA6VD0EbocMgyKp7e4LkaXIAeNVEz/dQIenkJ/woJKieSJI380CLqse6V74JCCDPFJzxwbOcOOu7u6mR+lAPKk71GuuBPOUEYfplwv3DICElLx0WPHNiuhVJaCIiyduDCp2FKMnYP4CH43+15eXkEORMPei3ZfZ4IfOU0tSCiAs1m+ohRoNHn5CkjEkg+KwBU8Hx5Et8d+SHG8AjM4IS1PeIGbBVTFwU8kQrWQEBYnRxFYBYDx+nUNIByQT9gTDEoPhRnaMBqMXL6W+/4//KesMHvnufb/5G//dU6U5cJcoVpHN2FethRO0j4ALkaGh1mNAStHKux74QWmexD8rCZhQAmN0Vi0CBKChSk0Jd2BtkAFpAXR6tToMkmoI+BHNqC3JdFB7RUqAlrogXxoNZpeZM/lvLZGxC0IdTGpjiifilt8ApWd8MBKf0wd6k3MKTCjRDSAocOSJzQEZfplAQlJeHUey2B1HgYcpQlgtUQ8EE0GyipkElCBDGSlBthvdQAwtNNGoIKZEow3GOp+8fOfM2U2MTE+NDSI+KeFwAO9mFk/THTAQTPBvjCqoefBzQYGZdokHGEPVnFEBtvGPpSWhnMsC7PBlniCsuAGhl41B18hDDxQDm3B69DgELyOLDSiKCvjKwWhT2zatAmy4RNFEB++CrOlXCCkfUVAD6fVVqsplpfvuvhfHr5WNTZUC12yvo+RCIoq9k+okUXOXd3dNTXVKMLsDGSqG8LFLMbaPczRcCj20sD7rvX2wshI8smhT6D1zz79FEUBcyhdEfsknQ3pSxclPh5MbcTBT3VgW3BDBDNl4QjhKVZicpE4FJeekZAjXJPk4TClI1DhvCRkdo15Nax5aANSvSsrHf+la/lJ8JAPJZID+jg50G/pvSwCYH0ACYmAI5AuTz8kW/CA6CE+XZfDD5jJY3k/PZnIxmg0+4sxn1IGBpj+GGa2gqWIdGwOFSA5RQA2pkLiAKqtmvwJlkZMxKw5Ar0Uhyjgqcqi73OLvGEAqwDJYQx8woEWnpRLZLaEsYJyanLq5EmtqyAQUyepLOIT90BqSKAg7jGiBxGGmPvfff9cy8HnX8zHkbF80kZ/HJwdNMpnD3mW7YyPKzl2I+znzPLS0G9//evMvkOuEA82IcibNsXR9BiWCSSEXkB74XGDSHIggtvNRSOiwzHuhMIJN8mtUSPLaEiClAJeMqHoW7duQmDd3d2kJYQKUwTh6L8QGLQEkZCDtAzyiUQhzvqGekgLCYcWwpoypsNYwc76MgceAJAJSVxCPKvsUM/0D6fWQK3RLcioRUDA3kyqD+Srq4iAQBbhYh7BcgPDYSkuqMPsiIUPqOhH0sZmZr46c4ZOCnpZkA8roy8TjqWQ5ChPROto78DWgiQ2nZyOqWU6xIcNsvAC0f7BB++jNNABaUeaB4TDIlAgYESMiD741QdYGSEGKARFn6U8YKWnp4dez7QCrICsWppbfvqzn1y+fIVob7/9tqM9mh2Eqd2srUX7hs9VbrhHnP26+H/EDeCKhwQRJ87B0RxFoggj1195+WXmyGFkLJ1jDMRQgwiYsKD7ysqKnp6NHR3t9J89e/bCOqF4VjNBwXQkhDET2AhjJs9QHZDQ2BKIQAfAoT7DBOmi0DlP58cDPJRO5vQ09S4m4CUmC6zpxTKBqYwIe/fsAQzW7TMHT2dGbceMxlo55DQaCZ2cECc4XW5kzjgAqOhgbO9pamxEdSAmwHC6EdNxsGHhIRgkIdHgI6gvcNuurg3f+ta3X3v1VWT8yMgo6gKBRESToKzNmzbT82/fuj06OoaQYEEiPbe6qho0UgUKRa9/7tln3bR9b28vSgBjQdISGXyqt2MhMFUDSwA44Tk9NZ3l5jdBIwceLDdts4Td4xD58PrbtzWVCGbgbqHxcRf5iXoi/GVaps3CGWbQUY9ASvPmW5GqMS6V505fN9xEtCAu3QKBB6i/x3MDARaWPvfccxAqbfTHf/InhNOUNBmLLegLbuLJ9Q70PJoGiqVpSAX50abQHu3OABNYaFxeJ6FeY+j0ESiNsSOLQ5lQQCSQikkE9Gxm8d9//30oFl2BPFlJykwQpfCEOsgQvypXYB5KiilUgWMxATKMbsUsMmolYNAXKAvIZUI25ekBULLEpACGAkq3NV1WMsuODCrk0V8iOv6X2Rs+OUvAEvO8n2jd3d30C3T6P//JT6g6tkOnuKNzg5ZtW7fBsujvx0+cgPMwo3/gwAHwBq5YQEN5NBbIf+nFF7ds3QJzoBWsJY1B2aiAfFg+jOETHth3uw91HJ6DkkFamAaze3t27/7o179m5wV8AILBtg/BoBC4ST1GQcBGM/3sZz8DHhqRZaHbt21HC4RDkgmUNiv77wcBj2WadfH/KJqNPgv3LDEMwnqYrYcEYWcIFXGiWIzZbsb9CG9ok8jwmu985zvIfujYjUj4hHWUqXrqwBIb5iNRkLFxMbolEEuXeCJbkhJJVvChU6P8Ump9QwOT+teuX0NlpodA/azNYdSOfk0PBIBEMrHJQsifLkHRTLPt2rUbzseMGpmzWw8A2C2NZQ8jAZ0NTgok9CsyZEaA3ovyAVQMvFj6yx5oVurSRak1M3PPPPMss/ccC4Isr6isgGu7NkCgukxQ6bHbE4iZgYJY6Pv2299gfEBnJpCQDZ0b9u7dA0Pn9aWXXqTiNkuSqdaax41nvtLefU5+JWZLayubsJsam8YnxqlaT3c3StWp06fhHa7uPRs3MlhpbWtjHpctl1SN4pw9kMwZgzJ7AoqIDALfeOMNBhlgGLYFbGSCTYKyiPnEOaql8SLn1YcDOcSp2iOBNGESJG5KmGqtgwHZVj5rAHggNFAiqIbRIwxQ12huPIz7mfva+8xeqIsImJehLuLQmkSgidVGW7ehVg6PDKMoM7+FsgsciB9t5bdNLryiunEORMO5c0yrMc1sOZftP3AAUqRDkTlbS6KxKM3NYhGoF0h6enpod3qBUwfVLzZtIoRwp3O89eablM6wFXFC90EOQaXgjMUz5P9AuLhLYuMexe+AxuFHNA7aGtPjYZ1wODkVuNLLeQy60ljEqQRqydV0yFF6FhKaCRfYF72JDsgaPcQwPKepuYn9yazkwCTZ0tKC0kyne+cb32ChAJo9PIS08Ct0evYwg8at27bRGUGpA5tGRFFjTyCDeHof2KaJ2Tp05ivt+8fqyDierf90W1QHxi1wEuJfvHhxZGSYTkpbwFh4oqthrUGHgzbYwMy2Z1rZx8pqo8gvaO14JFfWDjRPGyQgH5pzT4hSNsPiMl0/HDaHOKQDgBx4LQIVBscrDIiEpEIeqw2x+VkcJBO8DFrHkVRGSFM1MFPTJ30MO8OmH8JoBi7hhL1XtMrzWIbXMRjRsMULvsbiAI5Xw1DPUp3JSSy0lKVacNSpls54Bw+odFtb4BcK42YGXdmYk5HWZlJdcqIBFYW6cJeKiAaIIKFjAwk6ivBQDIfXuFIQBvRq+jPlEtuD0+YaXFpwhcbjsiWOSwjSHJx+KdTOH7o5VLhPcHlMjpSOSZhTgNAGMF3+8Ic/zGTS33znmy++9JLL+Yl4MqjXCNaah239Gbai/qo3/xv/0T9ua6/5m681/Zd/+3tVwr8tDeGyXJs31dTpAzvXFmrBublBn5Ty0Ucfffzxx1C4Gz4iJ1yLU6zbJ0IcErpMjKRtJzeBJoxda7oIPHFKaAZ/53fgu0x4Soxh+Xf9yMgecvUdGi12AmiPaKi29Mef/vSnQAhUv/v977PZxOXjx18xj2PYDhI1AmNnDijGcMdSzNiHp7L/3f/+7tClj//R3/vNb7x5EH7hzv7z+/KKgVGSkRCu3SFCvh/sWsG9ggrncRFgYryDOgJBF2kZrc+iq1hBP8RPTkJMkljs4DkuQ9d8dG26p1rc1D4GJAyTOPADbeAbb3/jwMEDTgngK2yQFVBwSPximLPwuvyeruf66P+RtTcMS50FAYlpzmyYPpU7mBxHwy/mRVQYsrFFBkCEsIIGaQ2hE8H1E/cVhojHBZIgEDHBzPxZcUmUy5wu5iQfHRLnVAfXf4jgeqaLqdzovdaxKdcBKY+VwiBaZeFHj5Hc9NbNEs3lRs7OQ56erq1YpvcU5ayDnEBUCuVv+goekvAJ5xJScXEGgwRFQWix4ohAMPJYaQ14QgAJ7FI199XsgQnnd7VjiKD84f6WoapgygqrE8gEsMkNRwQt/Uun2T70wx/9EG61YUPna699jbSYGQmnXKwjJHmCnDAHqxRDD7ELDj3Ajv6ZmMwVanPpDGZx2lz37RAJvNGacFJwz/uDORoIapHQJS82pBhDpy20xttaGQ1SPYbTBkMhEO+XRnuzTIFXogkKIlgLOthcU7rIRHAEgIdwm2bWdz8r3+OTKyGKTEIAM4pCN8JqzRZTlL+dO3cdPHhQixavXIGoWM3u8iemn9XqeICZfqfTfWgfsYFAoK05/Dv/zt7CdFtXd22xSo4DrA4IKlX9lI6AFNcaXvVfVZzqO6w6PNCuClL35DACT1EgApJYMU0hcKlod8I5G0BrdBwOeXddG0IQNWgs5EJ4QiTMI/z4xz9myQimmjfffBNrH3ZQZgrorayaou8Th5jASV8urzAmI9L1hlWrhZo1n++6+H8UTUS/ZNkRA32jafgKQNAxXD/BD6Xi6EsuxHERBVkcJ4NJrm5j8knshhd3ijULmp0QNUFIBMJ95qUSeUej0Co8sT/YqGKY07DbgQIM1iHp0srcCXZim3ORiSiLgtkAxLJtPZ3rrsSiREJIi99yEC9SOOLWeKhycvwUHiYuzChTSxDo25LHtlmRKJRFiItMFvIbYE72s7qJCMJk0RETL4EAINhd3S0QFDu25MdRtqopQk5J+E6AV0SRQwEtGTK26+7u4ogSllaw4J+riWZmtBCd+KyvZCKgWP4T8tdIDqxqSEk78RpH4t+6eTsZHN+UZb8EBMSFPWCPw/lZXaZDfx2ZPgACQKa1mJpCzWciHI/8hBijx0/z0uJSO0yBppUp25Gfy4EnCzhoR8Fk8kPJuf8WWEURApQ4PPHrj/UUni5w1mNxKEhpSFikWyLQNznbDqnDKtoTJ08gbACM5BixUQWwQuN3BRF5NZyBTRHZQIhluajFJhEDgaaG4GsNrfFAK1o5PYWHdS86sFfxFQeGalJ3OghFSQmDXVjRDrHgGlTgXLgaMa+twrySCuf81hJKQUxCcLJuglKqYNyAED6pNmpSqQtkxSvtTjhTcsw+MC/A8oIf/eiH7nwOitAJzd3dnhpnmVMA6UnNV9yKY+PxyjD8e7/3e48XxE8CtMYoRc3GgKBCj7jt1augkannpwPQKxZwLnE3C1cPsfhkRba4UlbsMufpyJ2vlk7F03kIxy3EqoADHhtpWbcjkYVYbBbU8OI4LOHspCaOH4FPcFvlah1VKVzvNT7rFefXiHcDgOhkiGDxSipiw2VLDg5RZK4qmFOQ9WH0DzJRxc15X4s5uIQuFX48ju8oLrk5PUkerwqz+bhyrDhwxZQwI064CcWRN3OTLEnjIKbamtWc63WVebhP0OIxXkb/QTbIhaZTXN5X/Rsv7H1pT9vWruYoRmfpr/ysdSWCDZVea90nuK51SEzLgHuerqUIoVHcLDszOKyDaW5iXQgKmDcQVExby6kmlTYpknNAKCsRxhybloqwTP1u5YpQcisXD5/wu6xElkqizHG8soqF1TkY25gPIgTBz9CTdYsvHnwRU7Y33CwhZpKvmAMKIZvlmPyY+GcUJzCZA+gfy5/tHRq8PRDLp1naQ3eyaxWpimn2KwbB3Iys3xlCvSYTigx7QiMWpKKYt1f1WiK4PoufQGWnFnQWAqMlQojkcqbDml7uRkouMk/lYyoCiwkwurCACaWB4Q/7d5iOYYEIZwqxCMBBYiWIKuTsxctc2T2lzlSqp7Tuj7jaPl+DGiHEUmhE/h6fUbgjVzoDPl5dZCNizbW7PqDkige7lGB2nEuBFkwSitO4lkzoUdZt5uXmIvtPV4p6joS/geeCir2OLk2Gim+AeUB6fVZylFLUn4lPNBsZyG89X6kWOHKgBJyfFVE8vyXHj3NxyEcclvlpO8IFO4QzKnhJLD5VdoNCVxTAUA0sHMZMVAqv8HFhxArVU2KPcwCN1xu2ycSH1EVmQpFxBgDA+lnziIc4PP1oT4RH3Nk4cyZQiOSyEVZdTqYK5YlgeSAfCc6wICAc5ZwWrtyl6iJX/TwKfSAEgExyouFdo9BMfnasXbXlqxzjqBMn/U/EJA4Aow+4hJLWxXR8xZWGEJkQR7dWlFeWF84fc47Y8DqP/3RfyYEQiIqVg319nCYZRTXE7Ox6LnEwZSGNiOPir+CT2tq4Xucxa2pflzOboSYU/OlHt3/7v/6DwK9/+P/84Pe/91tvSTvzTGSrTp8OIUADTmAOzOC4Kvu8yHUlEIIjsiS34ZbXUuS4ry6wNE86uE8bLj5ftT6jZAwDeWhb4MQk2gCTdGJ0Rhul+eP3ACjqKPO+Pj2v68b/pba1epk5karI1l4s1Bszus9zn3Po2s/C4vifROJFXuWJIvipi1PsGKLXYs74XXwi41WXKEZDG3CdjTzF78zRzTSQsS6nACILfhWhovXq520J7MFnhVKG/VVYsRhXohvx+zxUcUsq4krxxhyWvYOHOBZNmbpKApurtcthNkPiqVTPSb5aPPduwgljrhXKBIGbeuBbMRXAOpFcDDCVSJJf6MIpH31TIcCGxwWa4ADb3j+Lq4kScG4NzUlzMPkm0jMi4avjrqpOKbjK/X7cImZ0Ze1nxYtfDKGzH/wYK+GhCAiJff3UWLf5ce8vQZG49pCjWYWiLIjTrACBMrHzh5+DBs8sIgw8++R/9t984InkWoE4ylLVsv9QrEkIy13tgHzFKYfZBPLyiTDmdV2wmL7LSqWSJ/mZlLRX91AmyhI5pNwQRFRDr6Vx+Ma78lYm/MNBBvROgtX6fAyH6xsb+Vks5UOvc4Th9o+UZujn7SLbq3I1jCkzP0LRszCEL1audTDjA4rDfw308cTLAm2bAjufyYYKZhbQQlpH7MU8l/pXtSVDXDGFqj/75ofKw6jDPiku/Y4OpZGJY0GS8sIe0Focp36jNqIfGHp8HLnM1RaGYqueRSk2sSLwcwnkQcmQ3QOfcTnIo6qyCmDEEIjlUMtnc2pDl1wZuEy8T/f4I+hL4pNtEQ+L4+Qe2a2Vz+vi/14toS5gVCQaE+3gREYlxGDkPUsQFmX24ZJ4qWaD1bH8t9LsICzrd/5HeeaFzIvvR/WJUpn4IDr/YsV58Us++Vm5+sxmMvvBq6n3qZjWQegCXbaLpiUb99WvfGkSfSpm6MUrlluKAaIppjnf40UshvPKp9JULsSLZn/8tKWgKpWhzg9U+5bKD4/7Kz/HIB2JLI+hFOEo5SqSrVa6CxT3U1nzVAI3oUv6Ve28tvgfWca9SFQzFLg9UHj/V4eSsejWtsoX9myMhbj3z8aWhRynzAhgcG3NZ+hx3QO7iGPcaizWfRjCbamLqqam4ketJRAM556OaH599PRgS16KXwVYJHmKKDS/F65gi1T86wAi2HP2VYFO0My+eqmK0fRX0ZxwtWjOHOTp2V48D2Jy46v7VPyiTx4tSXDLoSIUocO4lJPGwFIHrWcsXYs+FxKXUk8Dx3lc1SUvFc5UeJZdAGW5QHUkzYpbK4hwdB+f1BVxCY4moRjTY4Rf8qfBLEyJyY0xAK94nJnFk/RK5DkvpPgqUsZZBOUm4pmN7MWaF+J91x8ld3y2iGnyMhqy9nMRSG6gCo1K5GHdy9zF0YsgUVqPuvzvDiJL6eCkesV2Ii+oVK8Ua4CRg9Gt5ViMNpvX4+BbVQ7yOCDgXjAaGRhZieZFN47ojbSMCrzOPNs3SrO0BMUAL3rxdf3vY4IBdXfX4R3fMLDl9Z2Yk9jRQn5jH/x4i3iKzESfoDPlBIW5YdacMvy0Ehb+y+p5jM8hsLWADsY7Olj4u7/zT1hZ/rfe7nrmH/8XnKUHSjTKU+fQ+izeXf8ogiSUEcu/bs4qZR9lmvJ4qPBDZaVKGApVM6+fSBHy/J7AdYy7mP9a/+tLjmIzUktqZNU0YUIEVd3s93dtcb+mPkJciOxhkkZy+OR0AWCuPJDGPhOFUMIczKzQZU/8G6yavxct4mxGDIC9liBA1Kp2lM639pzB5Mx1ywCOHkytPEdt1UA+YhWsHq4Ql71Q8Fi7dfF/j+ZDQ6SNsSypF9Hs4knW5hCA1/iE8YXAO9CCkYqpqneIYDmvP9YyBkpY3OKNqFDX0KXVWBjiRZrNxBISz8hKf93chMgNRuMxIJixl9Dl6IixtKQV93s1dvZ3tkPkYRVdO7q3b2zfVMV2kUKe4xYidAZRPx1BC+tmeaVBI1BZmeEzUNZkmdTgkkBLYjvWqaXiuWqRjQmrYnKHJZ7u5yLZx8fj4QPse1xVqT/Sk0A8/ECme5EqZdyE+rokDgOltfWzwuNHc9m6NNzFFArMFCKoZNCSY0qWb2kuS/SrDCNCbBP+Wh+z6ACgTPxEQCHwYVpitg8h2kLELSx0IdhqDgv1dRp53FXKoEKTqBIHzoEZpx55aRYWsOZD1sW/msjnUPMa0k09EihrknNqfNfrHIU4EuIpTu3F8f74r0Yvsxx8bqz1t6cRAyVk4yjKGDR0iJNdtMhRvRBQ5FNXcRJyAb2tLB4xjCKs5Sibw2MnYBWNZVP5sXQwkStwWAKfTd57A0KvExWhUgWNURaZZbGXyTDOHjxsCtns8NCgTmIfG5tmG+U0x/HptrdiNUCC62uEOE/xy+Pz1zUfIpJla4k4R06XJRJJTqTloLrWlrZ4RZX2V2gIzTgej1rZkAYWQeDCWhPoKMehwHRCYhUd3ySR+XGVEfscXR6Wkbw0GMlLMygmXOQvEVkSYadiqAQbB7u2mclkBvoHbvfdpr2c4zAGopD/Ivms1SDQ4GPCR4rrZDQW9wVzzWllZRUXPbe0NCejHHEmPGYydiuEGUWc7F+r9VsSXOvi/65oUqdx63iMVNzYpFAY6e+DX9n9eamJick0d4jZCfkLO4DrwdZ/Hqe+cVekrH9cEgagGC3IXtDsDPPh0QyFuZWcK0miHGYUjyc5gpybkTk/MarzyJxzotTbXlEM9IxPxdfV+WvUXuA0WUBliZ+2TIj1RwOpSCgLl9dmhxyiS6u3BBB7SSRzirUlueUwHzinIucz0yPHjx+7dr2Xo5rJgeVa8ViU41+aG9iohl7gO4c7mRaKOS/Aph937Xk0VESwSKRoGwWH2E9ND4+P3J6eTn0xORNPlLU0t23atLW7exOqQZDxtdXcxO6dqumHlyDJ1C8+sLSCg7UKMxOBwx8Hzh2ZSb0TzGv9HRYAlAuHVrXU4k0zH31uaa1XAU5+Doa4JJRzDr48e5YbDjhhk+M7OU6H6zR5xpJJ5eyE5/yc1uj7LE3NAVAsnLrfHhrM3L7J9mZ2FnC1Y2d7x66dO1qam6kjOHHOqaokMDNISYvMyXBNv6yLfzUPzbl4K4nRweBQzPOFdGZkaLjv1q3x4aHx0THYH6Qh3YDm17JbUQV04OVjPFE5W+7Wa/2uu3hR66FrGwNLab45VMSLWO28dEYQ8Oo0d8X2D6jKTJ9zvFk0ylplZGBjc3MtNys0NbOk3hCi9GYS9jK/I61a7JV+UKjjbjaUnBhP1FfpPBYbR0osCzoxQyvXDQ59EEzuwU2Vh0aPeMZHBy+eO3P29NGJiTGuej/wwo7a2jq0IMQ/G+c4ip/+VkxfijiysFyK39b23xLINWCAF8BACpyWyHHdDBoymezw6NTt/qH+vlvv/+XlCx1dO3bsbu3oiOgkWqumhtF47uGsGKYNslqZaQkZg2/fVP+H/8t/k5v6m3s3CZWcvpELKyLzCsVmuke2fLb2Fc8jV/5h9u8f6OeA/a+4l29qqqm5Zeu27eVssucEDMR/IsEUzyzru3f2ayUGJOlckVt7r6arcbHADIc6j4+P9d2+feT4ca4n2NjT/fwzz9bX1nAeK/V1VUazUy+4d3OtlVqXwjFvuq700xPud00/22rWhPPbkf2r2cxgX//N3t6RgcHsTJpRDxeeVFdUxCPRGDw7EqYL2Dl7dIGIlOW5zmdmc4PX3x4vDEAXjl7uDvb81ubqwHnJ9GpEwp1GM9mMBhe5bDrLFvH0TCY7wcCQ+wY5taSsrLa+vq2zg6Pjg1GOPnX8/e6lr/BX1RnVNs/oP1uIxD68kn/z3/t+14bWv/5q4+/+x3+jCkpH6si8YXvdZLTWOsEiENRcldc/BAiD0Fz69OmjX546lp4a39jVsWFDW31dVaIqqeQYEsSJiWu/YhbFv+RD9Q0DboBc/LAW/6oiOhLKCQTkvqrvage4wo8u58ADUkdHx7m+7uIFrr4c7ujq2Xfw5drmVpO6JPGVP5GMOfJyeBCehC3hPBMMpgOFOONzDhqYCcYmAsGxQoBrbivzuUQhzK7UXDjL2D3MBKbLhrTzuZR9sHKKFgjmK7TnkgHNxOTUsRMnjp06gfrAPT0cbVRdUwvz48wN7OEMf9R2ypBm8kF1Ja3pJyDP3wxaAq9UWuunPOmjnPNx/erVob5+MPnSwQPbNm/m1g/WtOZ18jotZbqVzY8IESS8E5JLilgL3qdy9O/apkQdhs3RGFAxPQxdGcrgQhjOfhm4efNL7o3u66sur2isrolzP52m7mJSdq1T0850AuIrCR3adQRl5Tl1oceqVxQBX/9bigHa02/S0vBSv6OC0hBx63nO2CsxyS8fZ2uyRLuWgSmA09tz+amZ1NjU9Oj09K2LF6+cO9fQ0rxz756qxkaMTfBiDEzIFgeKSZJ52a/gqwcpPcKkjkb/jdHR9khZbaSJU9pNyNlqfbyie/6YhHZvEgbqFSL+IGezTH3w3i+OHP74xYP7N3Xvba6rDrEsnX3pmWlLS0wrZ/Ge4rK1p3HkFazkKmRFta3mZI3A9ApwgUjsrBCVYVUeBydEq6ti1Tt6ujvbuDH42OlzP/7xD9/5zb/S3M4Fg8QXZ5Ek8fIo5jkHYvDL/JINOlDUzMACCtMcBJzNVXJco52IhbohkTQn4ZwXjfX5brxMMbWJQ0v9GdBMTc/88r2/PMdZ+j3dGzdvYq6K0xUAZSarE7QsFaqMdIDZWs/Je02/iHHfxVmtiMIpYNUc91lbOzk63nv58vsffsj0xyuvvFxZUYZaJdTym0u6tDT/hJ+17eiearqnyrk5G+s0InqcqN1QgIdz6vGmRsdOHP3iZu9VjpFsaWyqr6qJs9DZpjjTeTRuhmPOrqcMHAMnQ9FKsSt4ejTYffowbLh8kh5qxSXUx2ihJB7H0GjgV+IcVRDg6A0PIVpOLDIxPsIkK4biUGgqk+4bHrx++zaDu03btu7cszecLEMkMMR2mRSvQynJfcW8Dmie8AcRNYXeyAau3ZyMF/INiVxHQyXry7mnjW7DZznOCELVlcRT93H1MWDhsZlf/OxPT578/Fu/+fWOttYyDZtQHrK6oI6BslgnyPAzstz08DIueubj1o+3Jj0OeNuq7gEu5MxSA0KUuXREbLSMA5YCsfjwwPi7f/nrW31D3/4rf7Vn8zYTHw4JJptnyU/oFUfR6B+s5WT8Z+5Rsybcyxz94vLoH737eXD85nde2r7/2WcZm2I6QXVz3Em4Uqvq76wzYQXjgoHx1Heza4+Mjf34z35y9Vrva6+/3tzWNjk9pWvDNPeNScildnUzaGaze9J81JgTrtB6GPpD5devXDn86aH29rbvffe7yURMd0mge+nwIU+Yar2kzdyZQFjT2HjqxD/kTbeDvNU2ThFwDUQQbKhQmBmfuMjylitXmNSprahoa2oq506qbJ5rqnR6Br2HhLS0tgJK3uPUDc1phGIdgx6tPuGe1uO8/uLirT8fMwzAGe/dgLYIZLZi0AZiTnSwmHO04X+xWCIsQjDYIgw5z4zjYMamp24PDQ2PjzEj0LN5M4OwuK5YFD8SsXkE6Gezkh46imQ5kGHjDBSGtVg/gELDob9Ryg9kWF2O4BHEgIuE0QV92rVI1zI4SMm0aPa9X/xZ79Wzr7z0fE93O7JFkgXp4SkORcOHNADnHA4oVPVTEJjX1zvg0Uu11v4AuQHvVH8hBPj5uYoIC7CafK6glZ4aSIcC4fjI6PTHHx++1Tf80qtvbd2+k0MMxWcsB2toopGPE//4LTtxGE0CKBS0BqN/+ungb3//DwOH//hf/8Hf/95vfROdwAhFMttsNZbMQCtFGYxQYXaYj6RdvjA+OfHuL987fvLUm2+9xXqUYFTzCFoIqgYhrstCHpuDEDyPlzPQlwoy2BHzLxS4a7yQzbAC7Jfv/sX+ffve+NprlVw9jOakDYE0qE4bZGUA/giGvTXvHgMQVxiHpuS6POmL9CscrcV/3ib6+49+/vn02Hh9TXVDdU0F23RiUdbsMDnLdh36GMt26LrGouBJTjH3ugJ5kodjfb7gVyA/0wNWuCLr2T1EDCyJvTmWWAIVjP1OAtpRBXGN8EQhEIoeHJbO0JAZR8yvuQLGpyQbj+rrbwz0f3Xs+GB//559+8qqqognw6NzotySUlfGaxDl81lGqNB9KDw8Xvji6NlYPtvVEH1u1yb4IYN3JI4WvBRLdz6b8MozxM9lZj58/xdnvzr+G2++2tPdxvnIEuSII8VwigVZI7+ogMkvvzryFDNV7YQY9/ExefrQCnoD3kKoiPtCld14I5MOhCLMNSIxamrL3nzjxfc+OHTok1/V1Na3tHfa8MRjMotW3EliMkVww5Q45TccrdChv6M7g1wFzgELkAmn/kNlDqOu9Ll5ScOAAdqJ+ni42XA6M33kiy+uXu994623WJNIojSqSmmDzDbPY9Ywc6u+nDcoPiQdiD/YQt78+tc//vCjmpqag/v3x6NeTwRRIBNLAL14OVk/srglve6RwfDwChahi5mIkHWKOwoxDtK30JHrN375k58WplNbu7p7WtsaKipCmUw+lYqHgoloJJtJswOKHsVTS15gX/AxnayBadS7e0vXb7kf+fNJTFo/uleRBSzuuWeEkuQCeaWcg2YJuS0OdglUCyMsIdcnKkqRO5ZUaiFS4AruB815X8W8jULg5SHW+WmniWxLGmoEuTEmGQpVRKM9LW3bezaO9vX/8mc/HR3ot2NNycDcIiWXAHE/XuXs5hk0WAesQKB/pPB7/+T/+Bf/9y8+Pnwyi0ThdjlNYLvOpKrg6FjElNmAjpXPnjh+5C/+4s9f/9pLLBjkmCCGTS5ctmqLZ6KDtLws+KlTkgs5+p/upyaPLo1wUiy96JFQoDpIC9gHVbOZY/gEqIwE89npeCzwxusvV5bHf/Lnfzqqa6UwroDhUgwoW+HZ7PmGIOHILypXQJmgkBC3eRLJY20qVQ1UhGfOXzWccUL2oGAkgDEODg1/cez47j17N3R3s4GtWeIAAEAASURBVDTVpimU2KKpNFcNB5bjnz6Ij4tnDgru9UKlqD4rdTPsruTCz2CwqaX1xZdfOnqU/avXs7LXqTn9C8ac8f9euT7670/X6F8dqWhP0+o9hHSOM82Zx8xcOXf21JEjtcmyLV3d5dFoMJuGJ1fGIlmG/twdHokWwoFsPqsltLpMQvoyvVB90To09IGDBFyI81IarziVdC+nOOTqMlosMoXZx9ICF4t3hzABtiBzAu8BmypAwfqz0BVBslrPzdw+zQ1amP6xCaEiK1YXH5UuR2tVKEU4RnAygEPYclQeu4/QLmH/MPMk9BcMxcorIt3dZ69e+fDdd5/Zv6+ts0uk6OTvSmMSIJEg2B8k+rXpn0nPwFfXJnKx2udHp7KFUDKk+92hDesHxFbXMijcFvP8yFDfZ5/86re+9Q6L/AFTXYZhbjanXyyqVxGVj4wFFfDwzR8XBzq9c+QFqddKgGrhwMYn5qMnTufx67J6rXl0zCSTNuFbSMTCLx/Y96//zY+vXLyw55ka4V+6Aun4P4sB84FD3W6kL8TRjIwy07hkOgXb0vSMzPWaTGJ24U6U4sIxWWv/Xjg0Mj757nsfVLD9tLWdnW8oJhgh2OEHHaIZePBToJcdhcEpDRxV7Ml0QiL9QFs2AuzNoVeyRKyxsbmy8srnR75ob2uPxLiAlO9q3DvheQ2i5h7Mfw1C/CAgiVeVUCo0C8UXZmYunD515oujzTW1OzZtLo9GgtkM95nE4H+c8cRhJ7b1n5kvaF8S1EZmLANkNQBsmoNM+TFW085aexLIOhG6ZfEnJfxOP0xz/LyvUI7vL3oocvar+IfPZ5eHCQCHiOf9HO+YF+i/Cn7r7guhciF+lool3afktzzonoLYxuUdhYhasB+5X5FyIC6Zi2Dg7qo9nbUSxACga3MyGWgsWgjUJMt3bNxUHo2dOHzk3JkzjEaMKlcce+JiDGboH856LKrnf33TQDQxHQph4hI5qfkhTkcjEjuzv2DhzOlT7IjduX1rgiGt9Ac2BrLcT9fa2A30yD8LJLzYT+Z4kIsyWtPnBMpa/Rl093gAvNeNVAvQJYmJ4I9oC4BmUMKBcAxNzjQtrftsbKx9du/uQx9/zI5zaWGebPX+kMBHNF5ynBNAafFcoLZCAxU+iqSkvt3FOXGF4CcO49grV6+ePXd+565d8QTHMNA8NJDW+ml9v9QXc/x1zNRR9VptHsD0fx7kD/aHvojDJAZG48lE98aes+fOXb9x3e4SF6pBZqmIebDSVj21mvzpcbQNzq+vfNns1YsXTh0+3NXSsmVDVxxTQC6rRf70Oi3p9M7zUZtDSbhCgHGYZD+f+HF6afEnfmXy1YWEWAVlE28SsUWxvdAj8e9JdBEq/tKfH9+Poy59v04FzP2ZFXJ+oMvexYQ+XNE+w5/ngd5dlj6ozmOB9wvok5fO6Ef8e6EGBtkY5YjCcAhXRmswdQQ7gy2MuWwRYzVAJstt59FCoSIa29Hd01xdc/zw4bGhoQIyVQJghZ3XylgfTL5AJ/QGyhmPxwvRCHu+NQPmOVG9eaW66BcoZCbHrl6+cGDf84kY3YUApId6kyIqAmnv+TP9QNGUof2KBa7AX49o5/aGpQTOK9tVfF7gwtfSnPkKdulVaADhQCSmp/QAZhQZpCNvafzcgf3PZ9LT585+yfoJ1V3lLFoWmGEzodkSrNhgcDoQGgvkJmggU9/I8Y7jfgcolKY+a4xxeHT0k88+7erpqa6pyek8Bt3kRMlYQPVXkTwwrKlJSrCC1vjP1fSBnuq5rINBTQqx2h+zC3MBjc1NbR3t73/wweTkpJaE4dQDpDI9Fu5pEf80h/thv4KjsNDG+lvh1pWrh957v6e1vb2uASNXuMDp5trHqkVKEa45CXOxiQygIayvmOpY1KGbLonAQIa7tDLhoCxB1jEYtGVZNGs9SRF51WBY766XaFQXDKQ1ZGPcx+COeYSwFpMwdxRBWwBErR3VvC9JKESrwLTVhIVBJoM1OhL3tB95ui4nOiNkCc5HgvMoXZEJQ9vUEeWVHs/ZYdSaY8oxJqIIhTjcMD0TS0S5QiwD5hAI3OStsYCteLCeDxk5YEqfS4DoqYkixmmOdl/w07AP9PNDLGhVCU7HAkNFkBDH62cKuWiMlmC5XTaWzVQFgxuqqnoaGn/ygx+ODw5a67NMUJeyZJjN8olhSUSxSBOQDrqgUC120ehSXUa0l5lpzUzHC9momptRKeTDLlgkA7KBlmfVgo1Fg6FPP/kwkJtsba6KslVAg35G/Bj8SWc71HwVdxGqKaUg/LgijWqkjK5T+uMTYC33R54kuQ+3aEFLyccltIqoh7kqZHQodEG9TWMIsAfvyaFosaVouqwyf2D/jvPnTw323xKSBDFqltfPjAF4bMC+EY5FibSBssjMc4mxXS3l9cmEzexSNBuVoSeHTEWf5/jktDbCR8fHr1zr3fPcs5wS5OhI1Gp73qBMtgSY+UqgWNPBC+QtXfy0Nv0A+YDOUEwHBAPqnfQy9o/x27Fz1yeHDnHrgZCsjkz/ph8/YGkPKblRyEMq6xEX4yjAnlpjhTFruLeXcX9Lff2G1laN0W3Q5ZrOJxcGZn5TGl/2xiNUhjheNFEDuoP4NTyYWTS6sAZwJDVVUd1VBTI5FI5xYBZHoHGskBhjtjoSpZ9NzMxUJ8p0kHoadkAAXZI5BJQBpLAmCFl9IwbANzPHoXsCjNMqhNZZGJeLZBGzfsEgh9BxziVrz0KxKNVBDUL5SGXSyWCYg47GJyYJ12pzN1aw7i+cQfAuCx9NHggebpYL0JMd/05ImY88Q69QIXkqapCoFZ4xBsBdAhWxeEdj49DY6Gcff7Lv1Vdq6uppB4hEXNsadGGGS0esS6s5KYkYtF8HSCAwMJRvrmJPAkv+aHXpwNIC4CEm9QUtfUjLAq9cvtjRWl9ZXqbN/fyIMIdE7w+6+0u1sN5g6L6zmpfwTu25sFAXcpf4oAgNgC5lOk1meuuWnq/OXx0dGWaAqU+eK6LaeyVDqWjMS9Me6UJg1476//X3fyeZD7RGZ6AYzRxItsu7qAagUYQ+SJ6xvP9W3+2a2jqON1N7qflnAVYhRSD46/t9T8nHJ9wrtLjBfjjEFEBDQ2Nvby9XV0QiWvNvHfTxwICTaI8HrCsCpfUFxq+BmdGxU18cjQeDe3fsgM7tJ4Ln5wpyHX0hcRNCJBwP0MdTnA2bbSGfymUYM9liabgjfTbCaIwLslASg9FoOpefTM1waPbY5JSMRxwZnEjMEIPU0djY1FSaUT4rgLE3MPSnT5KckT/5yO4gU4E257BUgAGCm2sqYsTAKb7c+a9ALfkR0aoNA1AvH50YP/Hl6V9//tmps2dvDQ1O57LIe4DUABS9lsWPlhoGJZuBOL0yI1DhQsHC351BWf9SggEPcQ6VDsuGTUWx0VWYeVmbfDVOrW1itBi7Uvds356enj7xxdGZ6WkZD+wispKM798LSOw+hNRYdyBWz/gvHIh2tDZWV5Yny1GeRfooCESzGS4jBoqTYj3Ud3tkeKijoy2iWX+ricSPjX3JiDTLcySwn2QZq25Lfw/CvtSPl/bzwV0I+sIQP/LyPYAjzMIPwFWwqramurpS88p2n94dsiMNtgS2YSB12ISpA4XLE8FkkhOAWKgsPqLrfu5g/3fSXU/14GBqOnXtxvWm5mZOMVeb22eGMRrJGKYWhUFt45PuWvUsCvn9B1qvlD7O6px4bPOWzRcuXGDsRIaGKIe5+8/+oaV8wkf/NIZzjveIW9BgiOrU9LkvvxwbHt6/d6+W6WkuDvVYw26xOjlPDdBge66DzxJAt7I/ii27azA4mZo+fel8U3Xdng2bchmkNvaA0Mjw+I3r11tbW2vYun37FlecMeJn8FTfxFkazeXJMrrmdDo9HsjeunKtobIKO4StCmaXgRaShhKsQ2Alok6GZyEV5gA2hVMFGRuUPVBLcuthUM2FdM6boNU83qzjRdUmgG+hwNT0VP/QwM2B/qmvTicTyZ7unh1btnHqETkzyxUvL+PCEpYGc4KrRgs4Q9ZjY+earfea83mtYkj1gfObCgzT1rQTrQztEc6P+aJ8MM91gXs2b/381Mlzp7/c9dyz3BnExiQiOwXUz+r+PGbltMIkQgL1lcH/+T/9ayxw3tbCFBf2asl/DXR08x82KnUc6QOFwrlzX8UTscrKyqKVG3gdwbg+szRw/Pq7tEo0F0FeNn7gbIIlFOBH9j1+Poumdl+J7MdfNNqDBaoXM8qXZUX3IOSz9fX1l6/eSs2ky2O6DQgMOzh8WA2hmlJxY3jCL14f/ePPv4xM9r+zp/ulvXtsFOKUxjvCRiYiMDvcfnxsvLG11ZiKF18Et+6sVRzbkygxpivMgLtgqL2j/eK5rzIc4VBgl+6DqKQPG9FPuPgHnT71WrNofT5hI/0Dp48de3bbjjjL+LLZCEMbxK0+qY8Zo6ErmfWzpEVcVkpv/Y+o/HXxYMzT6ZnPPv9858Ytu1u74Ig2CRC8NTBw7NTJqupq7vc+e+HCR7/+qKG2DkHOsB4a2rNr12t7X4hXlF06f/HIx4cOPvtse1MT2olMgKy5DgVT2QwCGjUgHI9y8wRDK80raJwnW59EgCPJe8n+kkrM8ZKJ6qLNByxCinLtbDJVHisv4waa3hvXJyYnN/ds3N7Vw35WbmSHteuneROrtdW9FMNzsl5/WQ4GHGmVppgTUpT9RFCLYwaSPRdC5OC90KbODSePHu3a2FNZV4dGaAmNQEuzW6Yf4hRpOL1YU//hxprgd7+5FSkUhXSzKVm0GGza2lj0ZhYBiCZw+cLQ8FBTUxNXY0iGqTfxs2/6a9AtE5jZ5MpqrvMCbFp87pclvJG4NMMHRdoSSrxzFAq3GUkaWFhCbufztTU1Z85d4dpZLxnAFmH0/mqhCIsHVRHtGQgGbvVP/6ufHr95+sOdv/sfHtzLwF1taP/uWLTTKsiCXs9207KyciOux0mM3bFuK/mBDqHskAqagZWcEA9HX9MySa25kWFUuH583JMv/l1buDZRt8LGNT525sTJusqqprpaViYxstacvZpVo5xZtxir4rszhdE5yFNRnHFMVoIg22Q19xOLh9IzXJbOQa10aa5xc5oF+kF9Y+Nf/e3fbqirv9Xfd/TYsS+OHm2vqtu0fRtjfX7isgzxmW5lIVcwgnQfHx/nKjhgY9BfWVlRHk+SP2SGzcAxaDELg6QU8NkqLMFHQuia3Cqrq3c/s7c7leofGuy9dm1gcKhvZGjkxHhZPN7d0alZfxY1ZHMRDVAkepxTckCg8sWQ9b+rgQGHXo3SjEg0yMCfy8VC4fqqqpqy8hNHju575eV4WRmGAkcMRhr3CYtTK2FyuWCeaSfaNzuTGxoaRFmuTkbra6qQ/NAnpIfMojjiQ+T0ATjjxOREfU25WSDoJcz93ycMiyQTqZU49bmS18fbq56koxEkWKRVMcFXVl4Gd3KNfofKWf0ldLTmmPbIFipujtcERmK5YBStARpAL6PH3gVPdH8ai2eWKyhzuSTXLq+7RTFglEzzGL0TA6YPygvc/sfYTDoTDfcgvW7RQlcz8IkV/56qpsaw1tIfjeZZ8M+9jdeuXH5p77McqRa1Y39Yey/VW58R7nLWF++GeJpdgtq6Kkt1eWWFNuvmMAPAlNGjM4zUOcWF7geRYCnFwGA/xvKRRLylvf1gWdnNmzfPnDvb0rUBJV3HatIJddCX7gQj7bUbN959/y9v991OJFhfkji4b//OrdsQxsh/NvMYKd4NwiV+k22ZqPlALBKprarGUNHCtERj09mLFwFgcGTkxLmzFVgvqqs1jKBsrBLFrMXuHfcvhqz/XQ0MIFw9ghSJQsJqMU0C2YiRhSObOjoOHT+2Zfu2pkRChOFsvsb0nSBfLlTK2VhZlJV93EIUDFy4Xvhbf+8fYT377ss9/+1/9neTUQSUprGkqUIUJmEgBtYloLN2d3TBE9WNZMhabuF3iT+P6v3MPfQUZ7Pm5rCQKYM5An3nIhhuFQbAgP1oHAwFVZy5RBBaKC9PZrPporZt7KsEKq9lETpagC9k0zELGAMi8UAiIe1Qjoqw80LsYiEllIY4v43+y0oKWfeWYMAoWbSDx/CFzIDrJxIJM+YqEI8mkSVrLHZJ6jXo9Tn5GoRtBUAS0Rv7kcgkv0J+emKcWf/25uaaivJgJstmPy1nt6ZyWrY1Gun4Le6I4L6JJZsfJgRByCpA8yuITQBhbOm8MvYJcQlEocD0Of2UCyFwzAu4EFuqHUFpiMQw4nJLp7b9zaTTpB0ZHeWqTabb337nG19/5xvhaPTTTz+9dfsWFYK8cCKvIoXdEdbFa1AMLdInfyFb9h3ohros24WD4OeZ3XuYeowlE7eGhy72XsX4T7mRMEe8w+Q9p4TmnTcqK35f/7tiGKC5S51UTZqDhp9JxwPB2orKjpaWc2e+Ss+kRRliQFJJ75MwHNSib8ha8gjBwkqTcxenRmu2haqbWMeKeoAjYikx8EbRzBmVV5THuPJEYrUEA6X+kuAlecmK0RUguZ9q5n7F1C5zT+YVA91fNx07T94rw2I0ImgVDJmbWoAZziUpfn8Yf4VssM04BN0+xA4geEUspmElXMEA8MGdDw5Agw3H6IRxHU7HSAI1ghdNDxiruDf2ZdVmntHO/5lfxvq7jwEIx5zfvSB697HYBHdsKT+PNeJ5Ykf/pfhVe8EX6NL5wsDNW5Ojo7s3bwmxtA5zJUtjbe89w1j6nViA5zyJ5r+7YNpZUazDyW/drpiEVzeVLkOoRHmQHXTakE1e6lXB0PjERF9/3/TU1HRm5vDhI0j67Tu3R2PRDIdJQzvGuWX3U5Kg5lBbW7q6urhYora65vK587ADvlAcRfMjmk95PgxL8XiprBbKjbOMVHmtfyBfZiFAFwvLd2zdOjQyMj4+cam3d/fWbQDIHIVsAOvu4WNgljJd2ZJUtAVqI8pkLBTqau84ceXyQH9/a2eHR4f3D6RRPQWIJsKosLxn8Ddu6g9XjhYC04VCgq+iflGgaRsSvDIBcCpqKpVMJgKI/3RqPggPQjuk9ZIbeH7WwOF6LmUDxcIiHOqKPFrpCPFezaNXasoBXmZS4VW1ebjOB9tsyOFomL4WDKBmGbR3hEVtoBkWJ+IVjeaSymZHmHBeCPYaG/gsYTxqjEqji7n4vWPZT+8HQ5Aejh2XIMKxVuPffouWfF5j3idW/NMMCGDbBq29yMhe9fBM+uqFC9VlyYpIOGoWM25WocOY9UwxeLGWVSv5nvlNZjlJp7YPGo0oJZ3G8UuJesI0YrJAdvJp/GTRxyfGP/zwwyk20c+k2js7Xvvaa11d3YzsVRirSNhl584eCLN1J9GzceOlq1f/8oNfbezZ2Fhf/8ILB6rKyrIzXBEWSHN7inR1QPByng/kou9aoOA55xFjwBm45EVFYB1uaz+Ludua2xqamkYnJrjqm4MK8sCnURGrD0gh/ki9mTNk45EJANXQ4cSyVMbrbsUwUCq9LFOptHmsxDQZz1BlsqwyFr9y7lxbZ4cMxx5lWIN4rW6UulSANHhEvdDEFae9mIQJxArJ3FRZtJY8nKiAEHQClJVmnQBtANJ3AZRK6SSlXPqCA3rJ2uMsJVkOpFbWkJ9l7l6hRlcWZMjCWO2PNZODFbXIQ2q4xgCCi8hZrOKWp8bc5klnFU434RQXPA/TOWy5p0OWs3Z4iOOPowDh0evG+kNNoADEP8MHDJyhBNgamwycPcvaI00RMvowwW/Ncs/RAq3qEPowa/4YlgXKwSqoWuCc+F8QvEYDPP6/RqF7ALAgYxkniw0kZoJGn83eunatsbaGw33N4C9haxucaE2jfGOaLhHPYur5cKAz8DNWB+NVD5S01yAE6xln5yHIOaSNY9o195nnuFYtkg6ywqAskXxm797t27fHItEtmzbv3bOHSX16aJwzAMIRVgwANLlMz6TYOvX666+//OqryN4f/OBHP/7//vTI4S+Gh0e1BE8KOrTn2OKdYJwPs6vOvKcxD8dCFJ9aIDlQXnRuMbOI0VhVVbUZJ7IDAwOcbEVFdZkVpVNjq3qRE80W54XMBqz7VgUDNkTFdgW+dRZbPBzhuJaBmzdZwC1ZYa05p+ClUooSQVu+Q82AKqBgjqhrDObidhCVaQbqIJTNYLMkb5kMFnQjvsMyfXLz816Ch/qRjtIl/i2+5KD72aIbrW2nExLjrtyMDis1Rkq5qsc5u3R+ltohOtlWJwC1az4P9rL5YFwb7Up+S4DzwaOUILGY2cKgeSGOCYBvoQaFpbY88s1tra/+9jssFDZ0WHe0RI+XZCpiYP3vKmLg4Wq4q1iRO2Tt1mJI5c8F0pnB/gFGzBXlFdo4x/GN1ms0NFffWapDzMNtYUWkp1vx08BBJ2voyCcM+yyfZRl/IKJrzcZHx6YnpxCljJFi4XBVsmwbVvRCYZANgYePdHdu2FjfwugtnZrJM3yBOXG2j/ZbFZhrn5ya3LVzJ4dKXrl46dL5C7/+9Uc1lZXP7d2bYX5XugcdW2AsFe7F4jkuL3ZawlW8HBk4zKTL4omEjimcGRkaCra0EotFDAyhpOp4SQwBAqMki8XKWg9bQQx4uDbK47BJTN7YuqorKq/39Q3eulXf2elG2Q9EHAIXQtd5Mvi0jnx8Mp2vyyAgsZcRiBaqGFJEpZGatFxQR0Cwn/Jw/uXTyfxqSEXG7sA9CN4YPcPwXTMPRoOL5U9HoedD6GgA5IaRgNW+ODdZIL3WA9x0G63epWLeeNv7srb+mLinxiz4Z20gbJwLGMWR2lvDf+fffT4409nTwQJ+2f1R5jUOMY6xtuqwDs2jxoApiI8aiNUsH1lqPZuj9DKZ08eON9c1MHyBd7Giht4i5dlkqd//7w4MeWm5gHqTupRygAXzM+nO8qurV69+ee7s4OgIR/ycPH789MmTXR2d1RyBks5wZSYaQDaVYoH9s88+OzExceLEidRMKsrQn2sGNTWR6e/rZ5wtY3s6/dOf/PSjDz/MZjI7d+5kMT5T8vi16A8tAf2FzYrYGUrHXXcHfbGvqof72dhMPEXDerEK+LmWJHLaoFXWDR2wZbARidUM0huILE1osXzXw1YdA9JAGcpmsR0x7cSJb4FAIhZLxuOnTp1GqtFeRh3WPBAJP2l5S3REhc60NoZdqFADbCLBHM+1q7fOXxy6foODh1mhQl5SP7RfxYhGGsEdnBHWcgBYmI+JdtVC9inVXKcfRAPcOxxCz8YixTEDxCnWtzQDR6w8kf18R/aHI2jqwM5h2lkM/iJlMjRbgsxv8AoXWJrLavuBwX4OV3oudF4cU77c4cAoYRy9rMl+YlO5uprg/meqXj2wqaOtlSqq5XUsmb6uu3UMzMPAEzv6h/1pxaw0fvEpuhaz5he+Ovv6Sy9i9mfArb0AQZZOS9LRSyT0luZcdvQ0fl6vopPlCxj29z3/wru/+It//gd/sGXrFjbyXbt1s6dzw8F9+xpqarANXLty5XrvVTZqw5g39WzcsmXLz372s20tHd2bN3Gu30Bf/6FPPjl/7itAbmppevW119rb2z499OnI2Hhrc8vhQ5+2trQ0NjRm09qby2yCbhaASeuOGAN9Gczdq6dfY8B3leIDlQJlPHHCiC0DJJQNC5lMNhYPh7nwTbE8TmvKjyKvu4eMATUf2ic83sQGRMwUEufEnjx/9iU2j3CAhNoI8i4KxeVQCHnT8m7AjKinwevLg//D738/WV2+uW0mkEtrxB/RpVBMsjHlhRooYzrS+S5Y0Df+O+K6S7wFn4zcCLXaGMWpw2Eqi00Mj3LaGgtlEmVlniYOKTslwMvGQSRFJRANo/UP3u6bmpxsaWlhh8uZM1+NjI7se+GFWCLuFszrgiJwpym2BWCsekARVGtQ1/8WlKk4alkxH6rEaxFQ+9s/lDvWOxJOD+1sTWxq66QFGTWg2YgM1t06BuZi4IkV/47xOXYkws9mx0ZHY9FoeVm5zs3Vqh+NhyT5MGPDxpbrMBDagMTvVfQw5PQ777xza/uNialJ8t2xZ/fGzq7mpiZu+OG4nK+99dYzY6NldtAvA7X9L+xra21NxOKs3G5rafnWb/7mNNfqhIOws9q6Wrb9vPjSy00tbdeuX79y6fJLL764obWNHfmweyQx3d/MrfD85cI9J76XGilimEKiEOJqhIeyMDPgGFZhjYCDwOhtMGET/15OLg8SeZnNKWD9ZdUw4NDNE8ZOq2AK4saR6vJK/MNDQw0trZxlCWndV/nK20xjyBhWx7K5IFBbH/wb39uZjAWTwRxr+mUVCMTpPS6qoxu/L5QU6sL8L3j4OdhLYi3J6zIhre4iTKezvZxNceEiGw0qKsoxj23Y0FndVBvITM03M9DflchUhkjk3Fl2/p7+3vf+bc7RunDhfG/vtT27dyP+r128ODIysnPXzjkydUmAPbJIqOWBQoUVr+bCMvLlmZG/9g/+KPDpH/2b/+v7Wzo6rXXgTL56/8hAXS94DWLgCRX/kuxyHpuh52eyQ/39dbU1ujCNXTEmv7CZMSjgjA2NKpbWOGTI8T6OfyEr8ZEDSelhrPQr52y+lvatrRs4pF88CL5MBIlWWR23dnebPTbPxe0wzo2trZvb27ndneFbVzK+qa6RONLnsVvIvs6hH+VNe59Jbds+k5qpqaqSMVfmPEQyklniWpZ/GLBgd7C4OniV5gWfk+gOYPdZ4DoGWYxoIRZqIe5VuZpdASMJRaIKaEMwRZpOAGZZ848E4KtSAknRCSn3ciVRlNAl5ilPsSmKjbdIXiXJZ78KGyWObIQjc3zA535+FFfc4ln5kZbpcbn5eboiyMMPwaMpG0c0Rp/epyL0tP7SyiSeGl2xmY2iZfK5aCHMHRJ1lZUcz1fX0sxKNiETtBDJoi8tZxeLxZ9GuVoDqrvpoTh0iRmmGgL5SEw3UbN4jry575qWsppCu6JRrvwzsFSqV3WvLaEXHyVLh8VVQRV1VWGan0uyj588dezo8a7OrtaOptu3bvzqw19t2bLx5Vde5cgBOzuPsjCPiQgCQW9njbZICFkBbuGigwWjsedfOLBz9954WTmHcpw4c/bMmTObtu9IJphHp0o2/c8KHq8v2/ohZcdg+mE4KixmoO6kuoNm/XE+oOCrdU/7CguhvTSBGIjFAy0tgS3bOHYMQFF8YHhGbpbGslLiWedoSF8hFKMVMS1XlkszG3fdtygGhCavcez7ksXJork9xMAnVPyDQZrEGJOQCevK52emU8yMwicZsKABsFZPBky8YhEaxBjJ34Pg+WzxVYA06pKGxpZIH6Qg/mu7LhxEjlejDV6Zi9ALfIn9uM6jr5rMhFk5Z9G9r8CVy3B6KifxB7JcvGYkpkoBvGJbd/V4YlFsFMWIvupnDMTzuhysi4sfk0cpzSrHYoj3lT9oIjBC8R5ZSigML8gCZ8w6cAgAhgHgFyiWnCj3dCrXi6caOK/yNl4NAlQaufD/ztm54u5SljJ0ny1bvGpjlUb2PAh1L/Pz8FLND773u0tI2/mwURcX6IcUYdJfF+h7vAIAyrXuvQoMipDJRNdEI/6xy0S4ESqX51xI1p+CTJxazf1ZWp4lZQIH3YLuotaglW/2Ff7kJ+/FY+G93VWv7t+VZM0862fpWXZEHQVhT7PqYklzYl6UYvVVK/tNXlLEEr1WE/LGDIWuQR/S0D9z9PgJLlrdd/BgbU3d2OjwF0c+5SrN0bHxYKT8wsULlZVltTXJSxfOT45PcbFmbV1jx4bORDJeCGZk5Gd7jtDP5EVwJsMCgMCNGzcHhsfTueChw0erq6paWlsa6+smxicvXbo8NjZGwU2NTRs62pJl7AigQ5DaoFpiDe4rmkYoYi9eSaXlKdTRsuFXowt5MMlw1i/LNAKB8mhOuMKJyO2r/pgrzcmFKIpaaPaLfPy3tC7O+vMuGABVs7gztJW+3iXhI/705Ir/uYiF1XN4Psb/B2wbtfPcPjH3zS+V4Dt88aPcr2c2X0Hj05kpDlI3Zr+7EjyALaL4cJFU58e7X3geJB0wlILhYPMhfJCc7zut4el+UruK+NXxPfeT13LSOM0PCod9h9k/GolMTXMwz4OWL2VWE/u6vAKcTIwU/qu//88CnS3/wdvtLx/cy9IZIkS1ilYFoQWYSv2ghS5Sb/JHC9GZ6tyDQf+19tFs1AwLZrGQscO2prFx374D4xPD3H6QSmWOHj2JkG5uqr5xrTcejQ8PjcfiyZ27dj/7/LNl5XHbxhgtoKLno9yVePnKldbWrtHR6bGxVDicOPPlxWqdfN2QKi989tmxL78809TUjDp14sTZF57d9cye7YnyaEmnWwTehxbkaeReh/a6P1s0AtmyQJp9mrqRiQ1OZoIsZRQPDcD1gtY6Bp508Q+vgCPBqPL5VGqGgVFR9t1/w7hRsONC5O1UZg2VSpwNOF3IfUuTkuzmeYsmBytAD5PpxUhegbN/zKfBLjHw88cSFuM/ir9FpHlAOsCcmmIDm3vANJusJOJigSUy0FrIV5Z4AwmLJSnJsdTr5+RnUfrV/C63e6L3Thl4wNzp84LirBH1MPHv3jijJ8wJ5MOTk34bm5CwrwtyuGsAcGDIwGymu8xYDZdB8m7e1rG1q2NztS620BwQE88oAQCu/EvGjnfNeLkfAQTkUw2ZIrDfZ1jxRx4tzU3XrvVyaVZdXT3+qsqqymqZ/UdHppgCv9Z7raGh4utv/0YsGs+mCydOnTly9AsOROoub6c6KBTsa2Hnjy5sC4YZ/W/o7Lpy+eq13qtfe/Vr1TVVnLM5MT5+4cLljZu27N+3n4UvJ0+eunDxUveG1kR5g8S/Tw/Lrc6Kxvc6C9QsIuBHY3BjSAFDAPYNax2VR/Ooc+n7ulvHwCwGnnTxT02NO5n4n+YQe+YsNRdwv851ICeo4HcuIydL5mbpKeMWYSV7HXkZQ1dpKt9AUU9XPZ3zYLSaY/GGw6nr880kIH9lKyzOL3hpHuafItJUpse/HDzug4Xi9d+WCtt87qb2cW1kSLMMTXPi1ZGAw9RS8veBuUsSPgnseTH8lFaMwejIZ26x84Gf+3XxN43wIQZn4HdRWJ8Rj8enRgaLba1gYvDU6HkZpWhpKb1G91DaTRbTiP/G5EB+LJWP5ex+K/LUAZAmWIhT9KnElXdY7FFEtFlXUwAY4d94/fXDR46d+eqrVCpdVVnR09W5ZevGxqamdC7Frt7G5rrde3d0bNjAORWBSBlnVl6+euVq7+XGltpINEqbuC5j5CEMckhOeVmCK+/a2lpq6utz6ZnJSaYHQ2lOOSCwo6OqpnZs6HY1Goba+GEY/++JQzW/ur1PcNQGkFnyoWUKnDfO9EyR0osMYDbyPbNfj/DkY+ApEP/WiPAxdtWXsTtIHWAuS15uK1tqN1EG4xA3WJAjZZhuYJ/97rncgpYc3/SPeZUSCPR+m7y1gwrg004MWPiS816ViA5WH2KHIUOaitPIyoL8CKsCxB0y9cEo/T472EOIutWOpZ/n0oAPtqvX3Igr9ia+LwVHiqYT65TL/DgXQ3Dxj2SDwu8PBMOB5Lm05RwH6tqqefTGfAyZwrVPzPpnWBeiIyBtB72ITYUJmJV3Dvus2EX0R2MUiCWvsbHha197bWIyNT4+eeiTjz/++JPhkcHXXnuNM4ozmZmurs7Ors7s9GREp2/NNDfXt7c39167vG37RoEsk3guEmXxBAoM21lZyYiPg7S5TDETyHO6Rr6sPLF166ZDhw4NDva3t3e0t7dv6dmQqEwEclxkcH9YXUnEuPYVINJFNBGjc8zCidzUeOCjXwYuH5pJfRM1H/UsHSqgublbzVYSgvW8Hn8MPLniXx1D/xwHhEtyrQ43594nPyxtaeWs/m9MCSYLF54/5EPu2hDPBIGBYSxDqVbYSf3HlGl7ro3hGyhmF/C5lAcF2FgFAIr1sUL0srAM9wnMC2OmFmmBkrUEWJIdgplk5yGGhfOXingJlUihQqQ5y8Z5vac+uPwtwMHAE3EEa5QhVAVqhEqguD5/+Hn5lXoVsxhsPglZOVJai3ufFVjMQfAYtHgc5CoLRWFepSQelYufv6DB2bsysbelPoqlKwPlYDmz+isW04kXCpwz3HcdYamZu/wsU1QACEzNND5RVV/FSVDau0DphFpdDLGzGfPFq4hfz9mP9+ujPI7roTUzada4c5vwTHqGEykTZRUNDU0N9bWnT586efL4pStX2zs2YPDKpAu5DNpJlD00GMBSM4ziM8lkWZQjLHWxNptvbGWDdq4wn5AKxFnACtLyiThrArjeqJBIxPbvf2Hjxh4O8rp6tffGjeu3r1858MLemobqEvq43+qsWDoICt3MUG7n/+3eWfMn/+8/DEz372wXQdnh3SgIQsJStv+RRskMvBVsvRWr7npGK4qBJ1T8G/0iLRAh8ooXYw/Lc7oefx4QgTA7620IeBt5qbeop4g/Gs/lTSMhFa+SFU9eqQQWZQUfkvXK1NixW/QHozZ24BdmxVuv9oNWEAKXVSmnwO9QoU9O1BkyEPBwIB4MUTMApabBvqxjmXWNgVUELSAUgWcJY8SXgCFcyQzrwrdrUUXwivYudyDEhLri6xMlERcxj6qh1WsK1CgJ7GjfmKwinvAlMsKAzwydJTLt6TIvwRjpAcZysVA1LHC5YHIwDDuVhaxcW1AIPgQLr+zCcpUgGTAYanTYFJkiTdWQciqCfyWgufC7P5WdVUbpPKisgGXmM6cUZUoFNIK0M/95LwQqOWeX66bwaSaeIbOa0YpXUzuEelWZk9kDvoATK14I4niD8NR0+ue/+IvamsYDB15CoifLyhoam2jC1AwbbmPhSMW16wOXLt/o3tCmQz4C0dt9Q7duDTzz3DNlZZXQi3bn6LBP0RcbCbiNg+G+GTI4C5SZ8zh1uclegMHhzs7OgwcP7tq16/TpLw999EHPBqYGqgSMquoqqto/fFdsZRoAgNmpqF2XkFl1bXBXTbgy2FLNMokc7UPH0gZI626Aarzqzi3kV8ZD98Ov2HqJDxEDT6j4XxSDRvliIw/gvNRk5UaQRR7gshQrtFEF669hLvaRTmk8UszfBqEPULoldX1XT+O7CuNFhr5cnmXfHDnAyXzGixUHKGSWNbg94JXi4TqTQuAhHA6z5Rqw+gcHpmZmAIzzV8uTZbXV1Rgnkbs5lpJprRlXNTKLHZrFlw00JXKojhQGrQN3dZDHZDbTtLJFM0pkuCr+rHAhP0JgIasz7HT8KRyR8SvR8LNwXRGIhk5AICVqhTk72rSZEYdCwKiRQIbUhkpiqmAxXz5TiukKTuq72xCYWubaRmIoQ05ozGepGCoIgoUk8XiU6nNsjfQQbShXrsqSHHUghbZ04rPC7/UQBM7Njy8NwoAsRljuX0uuHKTWgAbegbQ1OrQhlqiPtiakraHPQNgULUTr+yo5w7dAAatM+0tP08XTqampw+c/jYajtbV1lHz06JGqyvJNPT0gll2Qg4PDv/7w1yM7tlRVVo6PT5358iwt1tTUwJgecVgoZLiQixuMaB1oLRouCxZi8WhFoBA7dvR0W1sbx2tGQsnPDr3be+XmwRdf5LDt2zcHy8uqUB1UU9Ua58hz1SpuZdzrAVoMJPVyXf0AtrB8TGayZeFcLJaw88yIMNuT7pXh+venCANPi/j3OuxKtKxYI45ebz71/pKxG4f78i6ZIj5lfN2dmk9sMbIHdxSGpq98fD6EJ5vNonNQLncJ8lQMJwQcmI+KR4lrq9ZCBBwqrMPWU5nMpcuXudtAwrgQSMS53TBeWVHB5QhNjY1AGg6ybimfsfOFYLUg0lDJenPTpewlojPniSusMmErtCP1uTCJW1AyGZKgiKEzBCM614GSec8wio0nghnWdWVzcdh/kAOU0TIAIxKLCYe5rAQ/Il/HLonJkxX76KLRJBKaYpHoWbQWawDTMQwkAw+ZHQ5xqwM3yTEFG7p+48a58xd2bdvW2tjEYcnEi5WXpXM5lB4mpzURi64mvUzNiBOOlum8YpX8PlLfvTBDrLAunQzM4NvUEf7TP/yn8UK+NpYN6ZhMjbPVqrgVL78UOsORGoNGNRUqmM+WJxMv7t/H0r9Tp06gn7Hasbw8yf2ZtTXVw6NTyP/WlqaNG1uZDshq6V4ukSx75eUDG3s6WAeQy00HQwj+aabFuWojWRafmJwor67au3cvN24c/eLotd7effv2t7S27ti+jVOBf/pnfwY4NOLzzz+/ceOmktoKP6WQPgo/AMDDaSIVzhz/uQuj/+JHH6T7zv+d77z4yoGDMmitbvM8ikqvl7lCGHhaxP8KocvLxlP7YbwWQOfDYwKCoWeEmVfGmpJ0Mv0WkChcLCIJtJL9UBxXI0hvKTQTo1ETIwXuAtCIQDZPcW1A9aB9RLzKpBOjRNnJGWoLZ4UAh64ja597/oWKisqxsfGbN28MjI6OTEzsCgYaGhqIygY2JAz3C0m6o9lIBkcRotgxySWZiM9MTxNOhiG7+iiKkIqEkK/YDhLhSDwSyaUzmHeRXpOpKc55iSUSU4j91FQiEGH359h0ihuNtIEMXSocTmVYG65hOgIeo6kua7bGCoZjmXyO+5cplJPgAxm1MnEoTToe1WEUDMazuWiMK57ZCkejB9Edxqembty+1dbWWltXR0xMEkSaTE2jtUASHDUTQ10IhrIcBm2O4tVQjp6c6mGk9ege4NkJd9QnKKhQFgq11YPrUAXajeZnUDIJh6qFE+liZptZTYCFHZlbQHso3N3dVV1dk85iUkLfRY0Lsv4foxvL92ZSEx0drQcPvrChs3FibJTDvmprGyqqKnVQYS7z3LPbd+7srq0pZ678pZf3oStWVlYWctO1dZXf+MYb06kU1amrrcMasO+F3du3bZwYn5iammL3f3VVZYSVAYGZ1azjcvMG8cZYQAq9PhgYHI78y3eHA0fe/86rO7CVYPaSQUD6gaOt5ea/Hv9JxsC6+F9269KZvNG+sUc6H4zQ5YLVF3mF2ZfNdvlQRHZj2eYKHNNPohWTv0zkWYH06XAsiraRzmS4RCA9M0P/xyMoxLHV5en0DlrJlGXXdWUSwE/FfNiQzLQxnBsZaK6Rrdls1y6vaG1qGhwePnzk8MnTp15//U0+MkfQd/v2pYsXJ8cnuBARBs0iLE55YyyKokN27OK6cvXK9HQqHotVVVWxxau5o43dWufPnkP8b9m4Ma5o3JucYgBXG43v2LFzOjVz5sIFxH9VMHxh4Dafasoqtm3bVlNdc+78ud7eXpa4MY5s7Wjv7O7CJgH6ZtLpC+fPX792nZVj2P/r6mqZBmYrObtIJicmTp48yV6SmVRqbHwcnaC2trazq6u+saGvr+9q79VMJsO2NO5r2NDRQYZDg6MXr1zp77sdDYframr2bN1e1dCQTiGPMsxmgx5bj/agC1NWpsGUizY4oAFgzEDac+BO31jhVx8djxVyG5ujr+zbpY8Qd8DZMERZq0hdWoAgBKFoUI4AY/YkFGasHwhHdfeV9F0plnQ1KQeogpFwtKKMWwAChQ5s/KRxnQHqqSwvr6zkhIB4IJ2rrKqyupIxp2qGquoqqzhCn4oxQ5BLJSuTyWSssaHGzjdkxklrAxXfc3T9R+/crL7QovqzLSMeaGwOdPcUYlKXTV/GAOYxqEcP7joEawkDT7j491kS5F/aA0r9y22O0qyUv0lZnjAg1hQz0EPcwjSzTEVHI/inkcp4xLkepNhSME2gkxmMMKTxMcNRXRwcCiejUURs3kzWfHOw0feVgN9KlV8KyxL8KCgMqzVu06S4YQwTPboR96znctxTBy/n5JatW7Z+cfSLi5cvdXV1YzznuuRYJIIxAKiv37h2s+82i7DYgMVlrMeOHvvqzBlOcWjt6BgfH2dZ9tj0NKe8IkFRI6qSZRQTibHjC9mauj0wkE+Uw/eZqb7dPzgxMNReVVvb1lxeyA9cv3n46FEt1AgUGpqaefb3958+82U0Ge/csIH7jo8dPs6VS3W1tc1trQwBr2Gm6OvjgjhuXwxMh85fvMAwsbqmpr6hgeubL1y8iG1/JwZlhviclBONoBxEgqFYHPPy5PHjJzgWt6m1lTUat67fSI9PJg4crK6ogFTAD/coghlmMbAggCvsCkvA6+pFEaHogB3BosNj+Q2MFf7Bf/+vdm5o/7de6zz4wm7krCwltnqOyHQCBK+MIqvhZDmjDCNfVNtwFMKXaQgvpI9xBVMXYII0poCkHLM2IFtIpbKcDEhUPmMM0zW+HIaYZb+f5hGc6YL7/dAqpLRLb5eurk6i9QOqNjsCrFEQ+vQmVG2dvU1ZQOL0WQNrNWp85zwNvLmfVWPgoXdphgSImSXJowGp2VQh4W2VWmYuIGv8bSEOjKKWBvUieF9awrUc6wkV/36zFhutdOhLmMShH+d+24c8PIISL0C+y+SepfeFgpeu9X5y5Ei0opL+57iWWeIfuEgD1c3mqZvzKqse563nMEqODQx+55132hrqtbBNaw+k9ItTwStXpuRlYkooYSU/y7V0FYyMkCDKZgFQTGBOMdh6Fku5hm7wL6QsYm8qNTU8NnL85PGaqsrnn3kG2wCrs9o624+dPvX58WPM7oeyuQuXLjZ3tO/evZvRGTBdu3bt3Pnz6A093T2YXtLMCEQjXLLItAFZB7RVPcp9C9LJgsHqhoad23YmWhpZEnizrv7UiRNg7+D+/Q2NDczvNg0NfX7409sDfY2tzbeHBq733Wrr6tiyZWs0nkDtaB3p/Pijj7DqNzY3T6ZngtEopoKdO3YiJhHip7788uzZs+0bOju6NrR3dgyPjHRv6GpvaWckemugf2JyCph37mbcHGysrUfz4LyayiRzQ1IXdPETu+xtTx1izKOrZeJ7BaNDL0xOsJcc4qK3MOeCQLk1FkpOhIYm06wtiYbjRtluKaTkvk2XrA6dAQOTIzQl5QAHyw7wMz8EfbNJT/KYg4isaFbBBwqYixLxGApgGGuT1AJu8UUBZYKM2R7kIe9O/KMT8BXSgPogSYS8hZMHagGFquOwnNZZDig6bb3YdBHhenUqe7dWVO3suwjEEC4GoBDYgVspq+9ac8rMGKtYOfQXVEFZdDAX0XsqzVPlwJIharbS0pZKnWLcuUl91Et2PCnuCRX/q9k8RX1a1OR+knJ0QFZDaUwUyRQKQxMT1c3Nb3/r21k7YtS63p0pa5nQ2mSe+juMUAKDk70ZPmZz/+x//J9SuYxuYWdUjUyFfz06R9km7qV5oBXJJguWiiAxJuMiOcwVGibDpJjCgGtjVWdpHpImmx0aHNzasxGzvJhyONTEcHtk6MszZ8ZS01OjYxOp1PM93dW1NZzGytR598aexpZmjPMUwcaHJNMfKkvlhvKwdevU2B6CgVR6phWLQXf3cD4TTsZrmxpjySQD7oqqKsbokWiso6L8/KWLoxNTTCpfu36TFWJ1jc2xZPnUdAo4uSMumiy/1T+4i0pFuSE+mqioSpRXav1gPl9VW29Khj4x5Gc7digaS5SXsRSElQfJigrsEFXXr7U1cY1za2dLS2U8qVWLdnqu7CLsPmB9A0sQHl2rFUtW62FB13hSkoNBtt4D1XVXI7Fp7dvU3jiLrN6AvLEXHi6wmM1K/aUsIMCpKObVmAsAXVJsbcRv8lijeUDMVpRFDu7fqxX+ualQGDHI1XdhCAxLkNh7nnurWSMX05ZQjPk8EY9CPlnzgc0h5EMpdsWhSkR4hrFREUfTCmwAkY2BJKtTU5V9V+fALEYxvd5GATQSjSXtOhtIpAM1CdoNig/rKgabm6RyT7ub32Ta0PJ0u6dF/DviL33ed7v7HZDc6HQ8eWhXdwS2GJzJZSOJRIGVatwvVlWpxWVinIq2cg4QRLlkLGAwgOay4UyW5ev0ftYBoB88fNm/sILCDMZWG7cBIwAjTHgSzh5FIERNScST8Cwt0xODzrObixuZC5oUyMc5oUWbGN0C+QJ7u5mJh08zF80qPxbZacU+kx3sRA+xfruMspihlxVdkp4Bq7AE54P7MbaGOzLCI08mFDC2AwQ2d3AVZ+0AGluaVYNio8ycJJKJ9DjtyYC+MDU98/77vyJ5JBbXOiru00skWK7IFCtigulx9K8MRmjtgAtiIaioqhYx5HXODGNN5jtQRyi6pq52+44dJ786wxTAiUK+o6l597btyXiC2mVnMoDET9lkshpHrwlnu1RlAQAa2cSRevyn+sEYmDd5aVJQSBAVEo3/qwM9ZXNZF8v+mfKHkPj50pcC8RPiRv8hLDKFLdt6mBooZFJQgW7BRcfKpiAYmhxDC2P6fGpah0FEYlCGzoJgayh7PbSK1gQ/GXINgPLEJENy0Q6vLKMzLFiJa6KN1DT2s4cN70OBqUBgOJAeBngsgqjZtIlxqbUC8SOCQ5xn3c3DwJMs/mW3LDq6gGNOdHA8nv0cvxTmZfRniEijDIRHNpdg0nqGq7XC3K05mcsNTo1NwcHpcaOB/oFBZqOv3LxJ/vQ/nTNSAkwRqCX9Fdlq2IxM11iRwS4BiC5CkGWsnIvGVASBmKB5InIwCWC3VRAd/6GQPWVZcVYk3LNYKEAiqW0AiSjGjhoGclUHKYfBnCvJkeaMnQOh/5+99wCu87ryPF9+DzkDBEAkglkSJUoUFUlJlizK2bJsdbvc7a3unnF3Tc3UTq+3umurt3ereqprZ3dCrWtndtZt19id7HHbPXbbsizJkm1JFCWRFIOoSIkZJBiQQYQX8N7+/ud+7+EBBEBEJuHy8cMXbjj33JPuuSkxOnr8wyMlsYLyomLmUMTYwIA1ciyfYFo+PnzWaI+MUikhE6HOlDSpVSRzOhyN4ANgKQFj7eiGeEpL9djVR4KPjuuY1vtJlFtDoLRxk7DnO2YZS745u0297UAgFg4xjk3/LgxUyRQmAZqGZyaNr127tqyiApCBBHNkZGiI8QjZEKxHYIdddlpAhSdTLExQZwK0I2szLL9khaNqSpPQTEOjo0z32/HxjzMrsPPM6fNnOl/d88aWzbevYH15LIZSYTkiawEwQTAiySaHTCF0mgDhCs1GGB5KIRFeAauoTXnwTBNMk8G0r5UHlpB2xgWF2G0ab1dhyURlYiQ6VhgWZmWJEdE2lqEwWQFwGbEWP0DYZpxJ9xNcIeP1wsQD6SJ+4FZ92bhXiCGyDfNDa9RErl4eucF4o/3tlZgJ4tIGDFCq1UjZaCYB8aw0RVCQF8pursELgEnJ0wAVRb4vtBbGC9c3VlSoyTCDfThroPRFAx4MG51J4HCP+ypHZuB+EgW4yABCJEOc/hh9IhU8TLrc1HB8ymbuXs4G1y5hLhMeBZCy0n/vvUavxBeaK2KClI/qIzlwPMgEYS43onFvQpVb7rMIVCJXl9lAd03HuZHV/9SIX1jDiaLQE2nGF8O2WIvxWj9nnw1cHPz+P/6ofeMG6AvtNTRwkXHCV159TdujiwaRlY4epwZq5reOEHNxeBRRZjIsnb///m033byRjdjIPv8nTrraAfYWSAR5H+l3sdraxpIDARzccX9mkO1UknFfCrWXZqr88bNnahtW1Kxs7OvrKygrPdPTVTPYz76uMHP/wEBnZ2d9XV1ZcQkal5MbO06cLIoVVFRWJEfjpzt4OtHS0lJdU0OXmv3a+nv7OMMFju0Z7GUpVyIk3wANh4+e2Zj04xmN0B+EIjIhxUL2DF4HTn8HZ0h+looz3X1Ne9u5s53YBytqaiJRlHSmu6vrw3feWdXWxsROZlmO4Y3AtyyjQU1Mk7ClgN34WHlIhvGhkVQC8yNz4ez5U51nmtrbWDtQWqwjY9miNh6ne4pG8tpKpEXxQtVVbjlXvlwoko5aD+nBdqbzYk1xKlGmZ/3X7gg0K7g7ZvfBAABAAElEQVQFbkg8KyCvLvwABjwucE9wj5NeugjX+xV7hxml2CkyVVhotHZNxV/+yePRjK+cZbD6QJvYJs3YBrTnggOZuOY2vYjhqpDL2SwB4Zk37iWRLb7gsCAY+MSjkw96aZHHmy37aPG9izLNNaB7B/dKGPNW/8eDPSE0YEp+5v/jKR2WIwgzUjuGYbgLBJIZTnij0rFpsxkBAn0P8rT8BdB4/jfQ3UdP/S+48URSzCzW6nD5ITlchUXHo5CVz/e5L3yBBUd0H8Os+vP5hoLMkFJsde9EQPOhIRJCghSKIUrXGULWsjlNus489dRTw8NDfBIZG3dAxfrZ/YIrutAM8PA7VwTjr1L+PKBuNR47xrq+wZHh9458GCssoh/f3d2dGI3XNTY0Nzfj2y8qL9uwadO777+75+ABVtOx6R5T5angnVu2VJaVJQsKW1c2HT16lB1dNm7cyIK906dPM0ugprKK7YMaauu6O8+++sou1txT4pmBnqGBwWB5TSQc1o5+yRQCAH2F9JFRop56OuQP00YZ7ZcgNNJNYG8fHDbVlZWrWluOHDkyNDCweu3ac2fPdpw8VVJcUlVejsHCDAU2n2OOPrnRtsgXmkQCA3dCKlUcixVFox8ePtzf3d3W1oYXoa+7u6unu3FlAxPTTp04UV5aWhCNYGpk/TReq7l2nCXqiUzwRFZWcs0y7czRyDloIjHtSwX9TAIIMIGy+bYNjfXl1eVs0SixiQXFVfJVeMSJjvBUmqsaJqDE2hNw8lHjIlxtMBcNR1TNeRZFgngicdQw59XP1hJQoR+7FJ1GHwRMzK3KhjJaF+SNJ9STqF3CiPxsvEz9aRCMEWB41gcC0eAI4sPvEgKQCZBZMJLB0cZUWibjEjCwNS3DVsBoIjD3dp2AI/FqfjPqo2JZaSqBG17JW0gHDNVOv4upPwGm34SFFrPOSQBCqBRxuXdjdtwoE9GKaBh4LCcGTzxgqKAQkTUNJkMxAczr7GFZ/avB1PrZ1p25AY0G/YGQ1tdBR8zVQplxwugwyfHisqgoFIpp0Bqnc6oIdzRbjSSSckTPK4iiYSFbCYbuZ4kaFiz6Ek3GpHc3ECCuE0m6uJbgil8oPweCWMVgMe8reMVigdk1WgyeGYZFbDTW1DLvr//8hd70BXzjKMv69qbW1lb6+opOz7upmcNW0evnT5yCEesqK9nmpb66hkHZomjstptviYXC+ANef2UXGG6oWyEXPUPyfv+q5ha6+BzS0nX+AiKhakVtUUlpVaxobDReEInW168oKSnG6cDJAmj5UGasqqycQZwwQswkCbhl7XdRQQH5Z+KJTes2FITCp051HNi9m6mFjXW17e2r2a4gjEQYG2ttbARy28WXXeESkYC/ubG+uDDGzcoVdckN608cOdLbc6G0tLC5tXXTTes7TnecPXGCmQRlpaUtzc2V5RVgDfknW4QBaRNOakivg3WZVpzU3pMeL5N4Fp+hKthCQxH8zfjqSv3/9l9/MRxIr6pKS8kApcQkkhr9D/tI3urPVQ6TAHCP+bjJv7/KsC68eKk/9fvVtWaKP12OY6f7vvfS3rG+M0/cs3H7HVvcDI45FaQGV5vrCic7fOmP8S9vTetjQKvXIUeactcKG9GJU/z0doyMeUwmMPUTyEPElwIzXMZSTOIZvnhxdOgixM/zqAVueMQfyFgeNwRl55U/RQ2AzQQfpSIImfiEhc9aXe0PhkjRL8xU4mhxcTGiEiOArND9GAdYBVwVMchqIKNkVQ7FjwUjYct4HqDwBqIWhfPV1cgqdfVpfApkzPPVsvqfG+KgOWhEZiXzohn05Z4+HASjXWJkcGLu4hnAHGXNt/alY04+1qgYaX7BU6WQNemhQpeLSJOBcOO5+eW7+KnyZP94Ze0lfIgYwZbW1L9MhuljN6/fgKKFOakFk7PhR+BRTyWhUVtYj+ebVq3e2NbOsn7qzfYs6m5IuJAgGQ0GN99yy83r1p09e7a2rhZ2h3XpiCNBGMVfv7p9TVsbIiUaizJfn4ldBRk/cqWksPDO2zezGRC9FZRtJBSsq6yoKrqF8hgyoBRmAtJVYKtXmN96LNQjQ1ZsItR14UKRBUklc/LTCX5w2/3IFFwFNATefg6ew2HAFISxeByR0dbc1IIHwvQ6NSsqqK+vrUlQ7VRK28xpfgAHUKlBpWa5QiQ40vWX3xyCoJxD9FlFRfiZM1/IEpCZYFWpf8e2JsbMmTmRTo0g71ngCsi4u/hDNQT/rPK+8pGuVbgWARM0D7wi9DtnzLnu0X/49eFzh168t72e7raYhouW/c0/KK1MPP0hL9bewsUSPjJedWwCvEmvmxg8ctj0yPAwKhw6ZzMMF9D6og+JLW3iSVZs3Ckjm6Mbo9FC9HMhvjB2AAnrBf/YQ9N4gfhKOFUwppGfACHLBmsjIyMcAjnKUF88zs2I7kZ7Bvo7O04JNfIOyEmAIAXyQni5uDgci8aKiiKxKLKaW5Q9kgdUAjnFQvQkAHvcEyR/QLR7MFxMBdR19m5Z/c+nweg+wlpnui509/axX6w/Vnimp/v4iRMHDx1SJxIPM0SElxvKMf7DUp4HwTiyh74hXGeZYtPW1dXV1tZCoLgf0FLzgf6KpTHdL673TGmN/3OL7wIrnWnxzCBjvjVX/IOqi0wlHVtg9YX/6M8EokUlmm+Npx03olYLSqSh5uV/DgZaVjaKH3Hgs99/KMj0fQiaDgQ76wWjWgdYGA1jdjAMLxWWZqd/Jh9m6H3oLAA+jPnUj5fFpoOIyJPFCBSKCxEYrCVTpCXU1VSbGJUI03iBTDr1TrA4IjYjjBwU07ytCCxaDamseSFYEvJFSnDguUHuALxrgYxmGIg0kE04Iq1m8gGQfB7UsritClAOBgaukJnQ8/DFdMfZTgCtLQmvrKvkuywELfmz3r9FpymuOuSLi4drPDc0luuTQ1+iIxkCJefiVb5EMXNVc+rfnT8217rQlOr5WnDNqu4H5UnxZ6T1OckCdySneMRHBwf60fSDAwN9/f1Dg4Poe3hEBzIXFTbU1RYWFBUWFpXSE0fvFsKUHLFholFKVXmb2tU4wrh6zVISytsDIv+PuFFgkNp6FRIyIlrIEkcIfnv2o4T9tCUKg4Tao3Pw4uDQ0DBWwtDQRWyD7vPnR5hdjKb3+zHHqyori0tKCouZ11uMQUDVtZW3CS5cBlRZhog408NEPizX7/2y+p9z24kcA8GBwYG//m8/WLVuLV4mHllNvP1jD76+dy8cSPeISThax8Vmfyb30UYUAwERoEh3727ESNmX3puJMXPx0Wjvvffe/fff//jjj/MSLZVTJHOuw9InoOKE3JU6Az+TlBAKdBi0wo1JZTY5AFOfimCTa4AA+QIbM6Pe/G/oVDnp2EwJRWNKUcjS4IDG6GBKitAoDLMiJI7okWpEmqE+ORJQrCTSYjF5Y7gnGtqYHPDv0Qz6mebSa03zV9PwiZjYVpaneUDN9uIRz6JJA7Q468QyrBVgWEcCxiqJGqRYMsE0FGDMKaR2ZMjSa9QkhbJrACvNAJuKSGcaJTjRRu2y6tOgNtxd1QsQ0kCgglo5LXC0M/PgV//3TDj4Rw+2/7v/7X8KskbCN8bMMqw5Qa8B16sK8UevcKhLTcPQP7xhqhDHFHNb8chonaSIWwzI1FZoDfRY/DmjSWVYIsd3cLF1RSyzTKavt6evh006ugj9/QPwSEV5ReOK+ob6enxh/KNXjZMdSxujHFsZulIHSRmKkV3GXD3qMVt5EpzTOi7gRupH1SUHdNCnyxThAJBkqUfOcGTbprCvpLa2qbERyAl0ouDgvv5BNuPq6us9d/78hXPn33/nXViyrKKS7b+oAidEMOsIp2A8oRVGsDE+BrNUVJ7QekOEZfU/52ZEpEvKp9Prb7n5y//DVzXqhU4JBpN0KNEkHCOLBspALmlmB2AtS+vIauSLTrKBJknubAExgvEAWge6hHD1yRQVV+KTSkrRAl7lF1988dSpU8REo0Dkk/jERbt2rlIL9gNgKi5DX7OS6LSrw+3gpF/PVkXUVDwshlXl0dZaWY6CZjsgsMXogKdZE1gDrheOCUFa2BI1DIbJQYjjaoN5qHxuVQpLJYUmW49nEaTYTGUL1WoTLAQiiqX1z3488aNQJgdRB6YPIbnwuFAizkMKJjZOCrWilalOvOQvQQP5ZmyoO6ISyNrEnUMFNoHVHDWKGWDJZQyoVAe+i2ZPV/ViElqth9eWGVHI04g/PVRYdvstJQ1lPjZXoKEYB3NGjNp5OVwVDEA4IF8UlKUcEa5MXSlHuE12J5DNR1aI9rNNa1wDUzDriJd4+NH5Z06fZpFOYnSkuKS4qaHxvrvvaWhsoHOPvU4csQmdb2zkuCwUmEC5ec4i4crYwt140gD2EQ+Nf9FXxxq6uyQYw4rvXCzy545yJWEkS7lFqAaYBoAU5WwOA8OfSMR5H42EWxobm1uaSQJv9/b2MpJ4soMtPc+dPnGSSV2VlZUrm5rKK6s4ZIQyMPohd25IOxHAS8C6fl4sq/85txWiH+JCYSMYE1IDY1AGS8Uu9PRLVLKZHRbuGCe7R4tZeiuVl2KUd2CAtYGDmlWCoYB3OhzmoBpGufhK0HRxo13YSeSVHzJ4jPXPvSe5eMT4GTDyI15T944jHXzUGcbBG4JQErOiF2FO6WRQKajRkWYrqBOPeSAmNg3Nd2QBqXlv0ei9M+IMYyPfhDAF8/WN111FWmSJGzEs0y+dmKAoircshTgdvYcGowwaUUVK7CCd7K9eWuYCBdWv/DWvQxCSL291iqPsOiXSpsa6oVz+ks7knXXIsC7kAhBUEhwggDQGut67rFSHbHC3in41g0EBvoCbxQ3CDxvt+nxVzf2BwosZ30jaF0OrWF1l7FhjEQewrzbkVxNrV6NsiIlmMIJXZwH8I4TYzRAnACcBy9Uky9Soeq5tM6E1ecCYsD71hQvn3zz45ujISE1NzcZ1azjRakVdHeZ9tvo44tj/TLwLRPLmO5pwlE0k92is4pI49swmNwbKPZCRMU/uxfiNKmt5GSXynhJULL42sa8sCb7zkbEA3ei7gs5Do2sBdHI1WofEl6ksLa2prNy4/iamJWIKsIP4qZOn9u/ZW1BSsn79hroVdcpBXE4RwviNEZbV/9zbUb4mKTM0NuJcnBcMXey9+Nwzz3GkLDJeKiKVqqutW71mDYvRGfCCED/44IPXXnvN9R1JwWSX9vZ2/EuNDY1s3cNsFcwFDpXZuXNnb2+PMrdTbt31tttuu3XTJnr/IugsdxjxZzmJt9dAyEHj2MPJA49Vct+Mm3lCJxtH2ofsaLimD2W5NL9C2UwUWQjPIsFu7SL2VmJL7UkM3ggGszb45LLGA4MXD7EocSZ8msxUHsrCRbNk9spED5EUvD/uQVcnl7xslJ/eyW8wHpSfSSE+2I0+ula08ihRb7z/+nOtBGQdjgpUu87UAeeyT8NjpWNDheFKUycaf0G+ywaSWWNccSmOrpXq3FhwiGyNgB31aoCJ9uGHjEj7+oZ8b74V9H0piINQlhs/I3QjsxkRQabuRwqz7mSi6xVEzRW93nGq4803D9ZUVd279c6mppWsYWHkDkJQtk48uQKMxh2luxckJwhwTODpguOo6b5O81563RWnMpS9ud2AWM8GmaXMf8wVhN9W0oKfNgXBvg9Hw4W11StX1I7cduuRo0feevf9Q/vfSN+0sbGpBWpnpoBwIazeCGFZ/c+tFSEmozURFh1VDbZhPoaDzC7Z98YbI4nEqlWrCmMF+Jde3vXKL5555rHHHnvooYcwk8+cOfNXf/VXTzzxBLNMITI0/b59+7i58847t2/fXl9fDxHCSLt37+bQOQ6zgZUQvUwgoCCMAOf09mCl8HGinhv8Sxg7DyRuhaBsyPuiV3xCtLgI2b/ZqFP9BcmzCa4Ux9dIAxLBqk6GucIUgd49TYb6h+HlCuBLDpZcIePw5koef5WLlbvJRcq9mXAz/pk7dOqEZ9eS7tVMZUzIcekfPBgNe9A7XUlGQoA+WeJnMIVupXp1SENANnetloFdc5VYejRdnRIm0AkPIJ6fDDD+VJQEv7J11XDLVyoqSvPULNLFtc9lQXa5EY0bZzQoCb1khuYY4j944ED7qlUPbN9WXkKnhTM0Rpmuq4imgKcrI5fpZYu/NIJnVFj+l36d8AYogHt2NRUWVUVXT1k5jBuqB2B1wYFXXFiw6aabVjY1v/Tyy/vf2MsQQF1j04Tirv+HZfU/tzaESjzXuzk9lVjD/er9MOFr3Zo1n3v8cY1F+wMsbN23d+8zzzzT0NDAdH2WsrBHzcMPP9za2gqBotGxAA4ePPD6668PDQ19+ctfpvePc5hoHHH7qU99Cp8Bj/Sr4C6G1jS6TNk3TIDPJkixmSo2q3prbHJCJmTvSpDacvcoLLuxT+JzPV8ptAoYkco4kA5eB5sD7MpBMw7FdHem29HvslfU14lgiA4Oj7JvA+smrNvPAJgAJsosJe50RS2/ny8G5Or3x+Xm1wmassaaG6K//+St/mTrqtqo/DcQnEw1Go9WcpNr5lMYVjI5sLipqanp/vvvi0WjOMnNAnRULK2rfPPpez7lTE4j3T/XPGWXChWXDcTJ/UiiOiqZUbN1xnhgiJb6PvvsYEfHqdqGRnAIVi+b8/USYVn9z7mlRFmQOpyngSOmkWteCQKRA+OY89LSuJJPUuRNKxPx+Au/eoH1MEZQ+AnGysrKGhsb0f2QNSYCJ9azRhULYPXq1UzpJxqWA59WrlzJ0jjsDKYI8EhgusBMTrM5V2KRExg+JuTp+GrCq+yDw59wOLsglpxFcGubXbnk7W7cFRmJRWanwkgcin29eOJ5E20TC+DrpHCpPDHvaC6Wq43KNenDe/LAUehyGs9PIth78v7Q6maG5LKym/EUE99fuSfW+6k/pIkT6kbGGPw/fqQ7MXC+fqVmduEN0PIqgsFPFYQChwa9XQ5LiAHTU5AxqA9ktGUeBE6T0BzlJf6bS0pivhJNV7NZRIwLGC0Sge8LaiCWz/nYIYN5cByrYceKMhWJTgrBVXZBuS8Kvoz9ZmsxwHoyFAS8aiASdlaMXiGu+YpXhS4Z4tcXBM+8BuuKf2OEZfU/x3ZUL1Nn1ahnDs3Ah2YOMIHPlrVktIIFE5F57pqzpkEBlD1lYBCgy9WJh3wYKlP3N83Y/0MPPvj2228//fTTW7ZsMd2fZh4ACbEloGRcAtgQZCG7wI2uzhHeqxUdQTCtkeyM7Bxkl+Om2cgUi6ML/8lPP4wwe7D24SJeNiYf17Z6ab8cLNPcOBGR/5GsVVx+UNMSrDqSK4YB8s++s6+TExmgFifvy+UwYjkt9YUhXa2ClHhk7qWvutT/3f/6fxWWFDVVDwdYrMG87rBO/dXCCVGm0CzZu9RgLedvGADbkLe5BJHhwj+vkSunz4/uPNSRGjhz380rblq9RgPhpp/d7NN5I88xAELo1V2vVlVU3H3XVmb4s9MeG3JAAy7znBEw51LElosXLLfL0qFEt3oFoA7AJZBNOgCJOmGaYmyymm3Hdu/d/etf//ozn3/cYt440/7B+LL6nyPZGZUg5aAe1DuSD90cC7JNhNGGjdO7Mfue3t5Db77JLheV7FpvHIg56WJJMyhoT5jKqiqGBg4ePMgCGXamJCJkt2fPHuYG8hU7gLEDhgOIfakKskyulUuO+U3xXQYqqQqTWJflUjKaTZwpy3NFeKrJXNhg3lnvAsDsA3pMUlwzhykgcHmPJyOKYrmslHs201xaa3V9GU+kO17nAMjFnRjlajxJNGLgata//FFpH6tYPvlIYywUiPnLQloHwD4LLHE1q9T6/yBWamBS9a4G7B+FMj3bGp9/hnN9Ldi5x0eODf/Rv3vZt+cff/jdf71p7VqEBp0RpgYuECeyYmU9Z5iwzAyAZ55+euOGDavb22OxqOjaaFtF5Mh+LuXlRMdcEi00rnGilgfIUkfTA7mA15NMW7+fHYI47+PdDw7zob19FQaBFekweQ1x6kIQsaz+54w9rVxlcw2WozH1T4dqM+2Wuf9sGx/q6Djzvb//Pvb2SHy0b6Dv2PHj2+6/f+3adUZgkqLYCohIZgpQKo/RcJTdMdH3OJd4ZEt/9D1zAr73ve/hKkD9YwR85jOfYfsMt5R8zrBewQTUcVJpk59zn83Uzj3N7mZyZpeVZyRg0yWisVLQoVsFufFPk51qFOVyaY/10rwnl34pzF4aIubhwZLpCzcuwoTBfy+X8aTZbL032cer8RdApdTp/kPeOjCWbVtH4trsH2ulmIMOtMxRwyjcqHaA7FTEogFryJs6N8MPxaKQtB0kK0VtObkMPbM/eENqYJWRnkM9eWXzzP6dOvsleutaVZgCEK0ixbRKpxI6OUyGFucQ47Dnm6mi6SDMvmcMib6+N3uVZJiQJiPYStq3oti3tike0qgAu22rtGwqFT1NAHHYwzgLnJ1s2StTWXVKwvBmho18N2++bc3qVW/s3v3yyy+9vPPldRs2bNywkX1IoQJ5y23s0ihC8g0J5vrQpCe5coGosjfKVZSj97rI0S4hqeT8sfcWZapLrkrExwS1bJXGHKsTqmu5KYtsEgceJSG9kbcyAWw7MggJiFklyAlkh9489P777/Fl9bp1t27eTC+uf2gEyKyBJmQ/FXDXzbtl9T/npoJ6WL3PQa469M/HNq9sewlBsJtEkqkAnZ1nISyWltbV1+3Y8RgLAdSPt6175PxntwBYHme+BTam1va3kQhbUbKuD9rDGigvL/+DP/gDFghovN/nKysrxyvA+zkDerUTLB6XTM4JWSGZMWNAdCG2iMZ0XoVsAlQ+L9y77Jfst5kydHFnijFzLk5yTJN+5qTTJFrC18CDWJVGYeCfoX90QMfZ9N/94KmCaGjL2spHH7gjFmEFgEa45KPS0n/FQVyaqlgsyGbAeRZjkumCVjs2o0HZXoLt56Ml0o0huDOrShXdkvD+6gan1WSyAEc6UBT0JYZkqUTDvlF4fLbgUe0sqmkmUqHCsMdYh+z3RQIcOE0HRahRi8whT2AypJNEf5Wbgymr+dgDo6K87L777h26ddPJjtNvvv32nt172OOPKU2tbW24KhFckITyMZXMvR7Vwc7BKwXPS/QuuUoQooNlY1INWQx6oX12nQ3Auyngz0UDC9qSyywPpGuAvdekzRWAgWC3cqmqRLBhFgb3CF5AZX9PFlVByKz17+joOHbsGFdma1WUld+19a7mlpYw/o2CAgbCMA6oxJTAuIKux+uy+p9Pq2kemQuyU9PsES/6DofY7fLJL3EqWhCeoydfXlGBameOjOu7M6gPZZNAwpIEMDCHdCUS/f397DDFI0TMBlWDg3F2CyChNgkwymb4321GOx9Yl9NcgoFs413yYfnFOAasF2jDuhLRPl/8ou/f/58/9rU2/vOHqx/52F3qJmkRIBvM8VGyFtk6o4kznvXi3EnKAxnzEjSz03Qc0ix89tzArldexkRnA1oKsglcKlCx7Y+uVymI/e0fPhTNHfIzX9iXSoyyIf1dd962bm07e1ibzs12uWcFJ1g3ilbOBBw1Bb44K/61VDNouzbqtdpwcQKiji4Nu/eXlJWvaGgc6OtjVTOHc3acPs0G3gWFhUxwRqBxpSfj+jy5gtHQ3Es388uRiylmGQVZK4HP4zN0conzboRJGldL9dSuHNPhZKxT9jIssiIaYauXnCJmRoYVLStjoH/g7PBQTw+DtGxc3McxRcjnWEEBspfh2toaDvCq4sywkYT2/5YoHtU5hM4qygPk+r5dVv9zbz869/j82VXbhAs7wpobSVNFOKpqxYp6zpXRxlKaHsjMGDc7WqUgifBDy1Ulw1c9FZIcOHCAhf633squPmEMBXaWloeAAsbSSXnvbOaOUhMWjYFddsvXhWDA61zMmMX13GBoVDpS1h3jGgqOQu9tTa2rm+pbK/AIQJdBP0sDtFO1Q4VJ5JxEnxEv8/yYj3KHWjSe9Slxm+Ng017RkdNnezs6ex944CFENv4zWMmpHJjR6Qyui6cK51ETFc+whLoNgJ9J4fvftfPl998/vm7tOg6a8brys804j8Sc+gdJCXYRTYfljVEvnOCpWocr92oBV8EP9Mkkg5XMW1pRW8dqQA7RGRoeYtNSNgM+f+7ciePHkWXgnx42E5wxBQilHLZdUoLpQNMQnGI2nSpoNC6GQARI+XEUuOEFFXKV9MjM6Xu7CpXCl/Q7OSAzJVctaEsWVVwfkabAprMHBwc5kQjfPnuwsgcwpIPUBR76aSsbV7L9muArKeYlEJCWZVkiMNYMsfu3FUGB5OiKuAGuy+p/zo1oja8LpMCuvdipEjEBLYCRix4ywQMp3vbcTRC6qJSV05EINwoBfzQUJRW6n40BeP+Jxz5JfNxQ0CIDAXzC8GRjbfEAti00R+43ENnNGenXXoLZyIA82XztVWAmiAAcopPu18FF0DY6BfVfU9iX7L8Y10EMcoCBAv0ME+MOsZnyXdi3HMoBz1BLr1dzEXDe2qg5e7OPcdpGtK6+ac26m9Ac+MyAEIakLrASnJdVJQsDZG6pAVvQGucLW6bZBBf9A7ZU5Nd1oe9i/zlVxPXj55C/l3kuBUqVE67ZKYx1wyH87aZEXfFOY+Zizu9GWFVbS1mrAmM4Ov062Q81X1nBKAAqGK2PJHRbm/T39Xd1d3FSyVuHDg0McubeEMgoLChE1XKKN2PqSDxuC2IF2ti8qAifPMudkIQYbRwX5Ey3nOrNhxkhyZG+SEtJ3HSamXrMmuJcP97xflC6ngMIKXOQR2C2AkuBk1LWrFlTU13N4gUahROAOPmX7pzysYDPleYxmc2z+mkaVTCQeObxhgnL6n9+TanjICEpSDk+Gi+IxLiH3lKpaqxErQDkhChOfgviHGVOQALa4uU777zz+u7Xjx476pYCYoy+9dZbyILPfe5zra0tiCoolYEAOAQiI1v5VyW5FOYH5XKqZQzMFwPS7nIgc7Ake1jb1DrfWDwQKwyGo+jVjK3907CXJKKTlRR1hQmV7mEoNZo8sHfvaFzHSaUykWMd3efOXnjltVc0syvN0XcRWAwIqYlzuc0XIfNLJxe3U+rCk6GHHcI4xrqlubmqsnwkPsKh96lMgKlEMg0Ml55LY7YFki3mGS1EOo6hHPUffS/Tc5axRO1un/ZztqYmcC6SDBEyNYKOAcDkD5kAZs7oJa9wbXLEBuKOXcuoK490sgkJ2yTAjMkxfOyIOF4iAFHeaGi644hEjAYjJUdQXuWFsKwevhQfLr4riK/YCnSlKJ0bbIimlStR9UDirBPyB166Vah/iAGhytGgVAAzAuhZua38KcvqRKX4i0ymV0ZMnLIMw1Kc2ucGCsvqf86NCY1LMCJLLLA2miMlsQY43ZJzLxiEYhIf5/1yuit0A71IgI6NlZaV3X777YyQnTt71il13m/YsOG+++5rbGiA7iBZAhv+nDx5UkKXkTvseGQW1AkT28QZkx6QqPs7Z8iv2wTiuZyOyXGg0ACPXqVaza4NZhfrKlVhpmINrYh24iACkfQasx0cjlaXh21USwSprebVBMhShCXNsdi1NSA8jZgDlkIY6c9eMyF6lC/8ZlfrqjXBcMwXGEPeN7XE+gf6gArWkaViFANLwUe5XK7sjRDjpAFX+gPdH36AV7uurpINwOgjpP2MUNhagDkDiM5neJHGwSmdZrBww4bS5//rHwcSf9BWJW2nzzaKbijLTr5bQOVN+GgFk7W1KUezBcSIjhUlt+QQRY0TGUd6cThMZD5yFdmwD9HYGMoYF4FsCXxMGuqUlMMI4CqZaSNK9g6fTU7iqUzie4Rm7ynCBfyvTLeilV3luMGRQOkE/ooGjA4MbIllDczaFGxrGgNaOBTMXBG/qgUgZcaCYeYNKFvRzyINoDggr/p1Wf3PvQlEyM6Ql/MLE3I0MVpaXvqv/sd/xWAYVsHwyDBE5CjJ0T2kftNNN/3lX/4lREmAhDF23eS+WKwAIsOGwHOF+v/yb38ZLqEE+Ie0IlDjHFEfFGyK3yh47mBfzylsbyXQ4jS+vLiGBJA8hbz0PpowWjpczTJnRyjXHe6dsJZaoe/PRCqEK68CmWIWqvGj8tYr0vQ1k9SqoJdmsepq7UdmQrS7d1fYB24AMh1EAEwo0PNdA59/8t7K6hVoQlSLeIx5AMwLc2SyWBDNIx+ZKQqwNmwOC3MzeHFw165Xh4b7AZ+BwdRYPM3GfERU/aTTsvW1lJe50DZ0mumQ4PXXuHdxib+1yF8SKC9FWdkUJAYnDYkeJAtsJqdDqQU3Ekj2jKxzYDqEy2EuAlG/2aLp4j65Z6KHQ/jcI0TTJ9GTAq3mbnIZukfv6hWSfZetUPbZ/hIH+QlkBHKxcpGi2AUyK+y9IJEosT8OcstKEtvy4ArNA5TGbdUi2uCVL6SwLJwcsqjX+WVZ/c+nASEOyUNH0xAG5ncgUFVZySzSH/3oR2/s3hOORqB+mZiMwNkJ8Zig0JBozhbIOmLiSiZEcvapo06u+MTYBviLX/wiG/6QjznunFyYD7TXfxrYDpaUBGF1JVyrA7wVvJ25shV0zOuxvV5OkhfZeIv018tdoipbkHw2l4Tsx0s+XPEXoIwyQaNUOkTLIPHUQeYrcRQXa5XITCgP+daXja4pTdaXFNhWL7hMQbiU1dIGKRlJdJwMmoiAhgiGxxKodqZ6UQf/0OgIPt9gKEozsAN3JFTg4GHGzTWAeWlIerHO3IdugY1zcjhOniEAMCiiRr1o2T/3MqZU0znglPg0Isn4r1lyyTHfwMXUaHwI52N5UaneE2HxMAHxUAUISSaWCIknIxUeBLzDPXH0UjWx29xb1c5rUP4SW/+1StNCOgunvfVeuk+zuboEBocB4nIRFPIDGSSgQ2UqZj6a7YW9M1QKmab1ScbMF5lWJON3o4Vl9T/PFhWRiUJgOnEv9MNdaUnpjsce2/HIx+ktIV8tDvJTzv9cMZZITxAhga+5e26wKui18BKLlRmziidCtUuWRvX0UQsIE47mDAQLYjGsKIbieIGudWw8FTKMV68Iw+YaFDCmaKIrAsNUGJjiHQQJyXmye4rvuVe4tVLHj5+srKwpLirGNUWqtobAP/7N/82G76WhuI5QZ2iZRXfwgBH/EspGsZkpRVkjrLANj44kf/qzp4eH4n5Uvj84Go8PDsWffva5SCRGl5PaGVVoNxjAdk0iXr2CwRjWK4+iUR5OAnzhC18oKi4SPwtG6U5+LFV3A8xSMAb6XJBJvZDh8l0jgTAu3v+g+z9+99nBU2/9r7//2IP3bQvgIpl5Cd180SLcKgixHnplzLiXnswyIacYipBN4LWmJTPrJ5vExVae8wwUZPibggsFBN/sCpgeyOMlj5doYBq5SIBPYc2PR73+75bV/5zbMJ9mJF2gEiMr5A6deNaMopScFwmid14jWcqzK4fMLUPRp81GIQ8JX/HPlRVhs4P3CsWSC8SnaRDCjwR8hpm4ku1gejrUmnWf31iLDavXpGoaa7XcNb+gWbZ7fpIluoeKyFn0ZAXwV/17PU8BI+f8vfnWO8zU3vHxR6ury32ZVCwQLo6mmfIXsRVbiHPt9q4MjWKlbZcIcMuWsphGG45lxvzMKR8cSmzf/nBZeTW9M/Tn418KJ1him2YCjZ8TCZcSjlnmLcwIZBSInHf+oaHhv/3bv4Ojx5LMCsKljMiwC1dzopjimmXm+dHIRC4cNS6/gH9wKPLUOwHf/qP/8rdHmIbH+KFt2kTbcL/UQQw5KXilAlsu5O5zN7lPC76ZupK5gsahEMKmjrxgGK6jDJbV/2I2FuSPo087eiAU5TCS5U8BKKxLGWPKgomPrcC0WEbXSMW8FXQew5ludGDKJDf8S3gWJxxXcCMlEMLzLzvAFI8JPg8Fk9l53OWyJDjKyhIkiXlxTI9OgEEK0fqiS1L+HDPNqXnhU9tLqKM8pdImJi4o6O7lnS9dHBr82j/7g2Ag3NmTeeqZ1/2JkVtWlTy6fYuUvmkdN6A1R1jmGF1+/nQgHGSS//BIkonzrA6LRIpw+EfC0Yus84on2G4GdmNeANO+55j7UkUHjUYamjgGgTDLh8lpuCj6+wdMHzGFwe2w686BzpLT3MAx64H+PUf/Md2BtMGYr6LS17gywzJImcyghM/zy3xuoCzHvu4wsKz+F6vJJPedvtdYnJncOf433Q8HmsU/Y4Ga7Do2xrwYBAdXmwDIHsOagUJwST9qrCyxbgtwkvj8mc+ltRZBlhKBD+RptscxQe9eEURNaAc801lI1Mw0Hy+QuvjHnToCvgkJZiSDJfooMxQrig5pSDNXmCvtSDRHWrlymUPN8PRdW+/Ax/7d73z3c098ZeBi+C/+n+/fuX5VcGzlQ9u24PMnDtmhuyyVJv9P54jJZpvDQe4m+2WKvy5b7D0psEAwYoYfM2iC3/2b7793+Ojx091+f5gvqD60KKNBoJz66KAihRw9XAmsU/ZkTAKNGJYvaXYHOX/hAj4roGMWMGsRNWwuctAP28busyjIAZ59MeNfK4PKqjhyY9QmoPH/RDLNQeRk5QrSlxmzsY/EIthVeVki55pQAfazGMuXGwUDy+p/UVpSTOiJQZyi9FXxqmZlq3WTXCk5BTFtoU6IkMQNdWvYDsbmn3GvJBxsaddps7ghPkivjFdEsmgMJ29MVhEjAPShwjooxZNQ4xEn3s1C4k1MsGhPSGFtjMOPPVBwVaBsEcQTK7Vohc0+I+kCox9uNB3aSNS9nJQJJgKT0+qqK9ffe/PLO1955hcvFK/eMTwUPj0U6B1J0BaxoHbawcqFVPF0aTa+ZT4pn7xHsYinU7wb99G1kgg7P9gsMKdyIISgL1xAcUxlHxpNBCKx3//Df1GzoingxzeGmgsmk3EMGqubqmcFuWzJUsSTn/Mi3rv6uAxBo7wp8vdp9A81z71myLMjzfDI7/3+7912221wNdvZgHlbseIAc7CpplkNnYP8cpCabCC2yhO7qHSlYYaEL5DUz0e/QT0R5rFTgj666xQ5m/mAPUdmZIUw4yqo9KBn1xbOtJoi+fKr6xEDy+p/MVsNnR1hQUsoHJd3WpzGUsCc9JmN2pb4YN4fKo4DhbRhMFxn4QZV+ZcKZsQNwV25kYxECPn9PewSMjwEPuOJBJuCOa+1ofTSPCyLK3sRnFaioLU7usLF4Uh5URH0gEl4ZcGZqTRHh4wrseMKa0xYtDIJgxAhzpULPQOFsQIOd9/x8Ud+/uKeHz77nG/jut6If5QtrTSepWlRtMsYXW4b6LIipSnsNwkAj4rtrUOVu/Ii19QTkpCnxaAE3wguiMRF7csSiPSxh1ucoQk2xvbHU6MaHUPTsmcOpQJYIqkxtwl55gqakP+iPDh1Cz5R8zjq4FzuMQJ4ZNsZdpthsiqPzEpQjwD3CDMT0asBlgezkSKOK/3SviCTFkzdzgMoaufwTYfDzEt/0hcb8ZWRIfv9kDWFahbyPLJeTnLDY2BZ/S9GEzsexIuXSnd2dSaHhv0RuFoDltnc5Q/2bPPsqyn/4rnE+4/4YHNKdqmMsKkw2cLDN6j6RyyBPCQ2clPmEv/AmQkr3tOdYdIExyPGM5ldbx7c9eoujlQAb0KH4VzdHruZEplL/tJB74qhCgBsTmBeMF6TTiV9g0NPfPozbY0rrynpmwNm586dL774IgtWJ6MQ34AdTn3n7XfQGCXFRdu23fvK6Enf2ydQsyxaEz3STO5IuRwSlC//nTrnJvdzCBJ6sl+54dEV69pbiS14N/KlybegDewPHzn5wZFTbIERDBX0Dw5duNCzZ8+eSOxtnlGq5MPWxGh9NC/jZWjabCkuw1xBXgEL+SPgHLHm5cJLlLsz3FH+3NPFb21rY1MvDAJ2rsVgYYfbaCQmU0CzLviuDvr4z+tj52U621tXO4c0YT7gG/Zlenzx3sBYSmVoQiYnkIldPMzONueFx1OBUIrja2vtHBTc6AVI46vHzB49eBjOFg8hWA7ZrBzDK0+CJze8lJ6Atex078lML6Z7zEKQgy1bzkfy77L6X4Rmh5SkvQL+0ZHhd95+6/jRI3intUwZJx+9GHacoBBkVI6+pylTNE0kQjpdWVl1/7ZtgRKWB6uNyMSj+GnSXnevqSUiG+bGZUKfnm0TwZEc5sbYDPOzXysHJyDXE6EQ2ylfSCQ++9Wv3nPPPTo4kTjG1Fe11vLtq72sWQEIiPDrcvVkWir13Pf/ARcOQKqiV9uAcwAAZ64ryPZzmzZtklN6ImxESPrGmBlQWlyWYWtUf6ausmzHXbf/9T8+X1VVymI728/SkbSoGizgtJIw5idNJj1kwR6lyWlc8MBNVHFk4lkYLxcj196wwsMZF3SJ6RH7g+lA9I0DH/gDJU0t7RyOXVaZWLV6I9wE2eBK9weiHDxoOZO5QaDq8csP2eLy383rnnZUU2psT0VwA5bUr89423vwEjdAR0fH0aNH16xezfF3fMMW5GUylYSLCcyphMmpnX4O5ksgvhQ6ykLCqFCQlmtLgWEtAM45aiTgq6uI/tHd6+LtoaaqGu3URDCY7c4uoldwpH+WjfwrSxGEKApiaWZIrhEr0AhDIKt0igcbRBOPCAaNnuAvEWAOUhMR9mB9J9AlmI2brAk025Fp0UwA0qmPGnaxfOh3yRODIYYkFdIMzxABZXnpHRqXotrXVZ7L6n9xmgvCYmYPB0Zt27b9wW3bGQ6VSBDZiSq5F01znTHAAvJ56jwVyDrNADd9BekYI1bxknGqu86Y0zX/UcgxdKhGbFuK+1OOUyZwYengLMWdmsqku/sGkpwgEgr3cp7Y0DAHc549ex7LAJS61FetniY+ET3MSbR+J8KZE/D8eGvYY5xtx6UY0E0M/ar1JMEu0/ZLXxNAhoRyVESBwF5bW8s+05cg02KqEbBhJUVTaWbb+3zMXyuOdJ+/2NszUlRVkE6moEjmCEozja8utwrnV4ea57+T6EcNOJS4b04o81LxlBuz1rUlHLkz3T+YSodu2nDzTbds0hED2oAowH6xUiqS6Jzxk8tKpTLIbdJe9y5kLYvs8zz+Gt+5dOCKtoZDCaAT1S+1Yyd38x7eRNnv3bu349QpuQRUI8BjkyJg5YcNpBs1BCTMz/Dg2mUGuChUlbQJJSqRqB5I5GYbMKD+/YFU2t/eWvSnX7un4+Raf9/JBGORApJPWXtF2ZgWnKGwhX/KoguoGWBiHIQAm5AxNUXZC11xxpeSbOMBjwgk1cfUv2ZLaM9dKuvqSENjp5KEBZOY19wQk52McZGSEGxTCqOBypqUjKbYPUcIKGd6FyBNW0BqRIbWIQrtBecCjQ3NyDr/yIZl9b84TS+ugrgZ7OfACZ+fVcjwHbqcTq2oE0KULXyZAEVK7sqQz3B2sB0aBIlLxrihbpdebHQFwySwF7F0cnamjPQoU7ekFXyjjONydHIser6ra++BA0Px0XQkmvQHhoeGjx45yglenOGKzMtKmCuIiIlFATPNinChfakF0o0+B+M1dKZbW1uD4VAKyCXvsq0qGXdVA8VLPHo4BxSekJVOJk6ETD4Z2aHppE2uh6ZDRcHMpvUrW+trzp46/vyzzz/52Qc4T4XM2KZdkt2QQG3zAg/2m4Lwnfonbi6BwxP5+PzRWGIofuFMbyKF2ZGJJ329vRdPd54tKCljyQKD/SgQ9ovHlw4liK08tCor6VMF4dxuuBgM2Yf5/aWJXUKnmagsm94DCasPIQNXVjwRx5DiJW/spY+z7MCt1JpgcWDkrs4IwA7QRoYcnTduxOQAz4NVuZhviXkD6D/gcQAJXyx6UO5UPa0NyJO+7njm0NsH9j7/s4p/8S/XtbbjA2D2aSgs5edYzKV2eeYVsni3VgBwxkfiu17ZxUmADz74IMo+EY+zCz/vORd437595eXlOJ9i4FD2PoyksRun4DE5DTy2l7INvsxJQA7AL44zedjd1cWOTxXlFdgHmBcqk6UgoRCloOwpBfZE+MqCza6icl4BczZoVmYqiZSeCt2Lh4lrPKdl9b8IDSQrXnN5uWYQSSJDbFhY0kxRx/Fm6DuenbrELDeKLuncKKp4Xp5GxLRx/EzJp850Md4iXvMLXhx2MX0JuoxRcQ+yIzJaHU8zk6Y4AC0zlEpe6OvrHRzcdPvtweIitjW/2fpNYlodqKgpVFclSEypZdQu6tybf9K0qq+3p+fwBx+sam+nUkzcJELCiMHUA2hzegq5f/WCk6mmO7gloEiNvi6BSi5T7fSf9ifTiZR/LLmiJPS/fO2zpbGof6i74+ih//6TH318xydqqmuNOogt040goleAG6ynK6FsL7yLfdWKNBfQjbwRx+gZ1GICBqN79u554cVdtStWssSATlphUWnn2TOd585DNegQnRQvnMJi0v1WG1coWVhuLu8luKJUXK6gjqZ3uoo34PCDDz742te+tmrVKt6jhKAN9BDxsVhwSWiKggLJDXbVGvxwXC5VBHnYMTZ3z2HDxXGIo3pWQ2gM2we6UrdCS/wxOsmQHX1leZn3XB6Go6f7/+7513pOHImMFr66c080E2htboZrgIogxAGDAS84HNq9JhN8ixXInFkQmERHjx31HfPdvvl2nZfLf66+4JkzZ775zW/+8R//MeeecCQgXSZVCa7Wubqs42DQVLVW950aWveJr4zy0JuiLgyt9vf1PffLX3KC2uOPP87+6FY52wzUuDJi1gDaXZ4AsEywadQAoCpbrWkyilRzTCbRxcLBdZDPsvpfhEYyIpL5DW1JPECMpqJ4hMhyTEa0mUJWjGHkQuHkwcmBbuM/2b7K5TIZzJT5NfaN2gERNRLfwp+sckhnogUFCDVUADJCYwHhUFV9w7pNmwrLSjEI4GSt7ZbUEx4maZUrVj8rXM5DaQKdXcaotpRoOBI5ceLkmc5OQWLGgcnwyZPqJW6WQNrOsvoO4TlC0g0/kGq1ys9EWtQW0DMVVWMYfl95sf++O9sLQ/5oquFYle9v/+ZbNXUrHnroERwDUL0aRvXOzyN7rw/Ze++vUKcf8lelZAFg3Jf1/dEYKnHT5rsefvQTyVQ6kWSEJUwOkAg9ObbNowdp+aEqgZ9sKCAXBHjuYdFvHAKd5Yfup6/PG3ic8O1vf9vNSpFv2bQ96kyNPQ7eZCxkwXMAXwZsVzRJZPsqfzd1hjyjMiyVt872Od+T+NZLH/jOHP4PX320rqH4hRd/xZmi69euCWo5IiaEjAavPOewyQKxFH+Zv7x161aOQTlw8MCdd95J6ajhRDJx4sQJjkCrq6ujUiyQGOjvP9XR0dvbC2LLKyoaGxtLS0sdYuGyrgsXTp85w7ofVlKUlZbV1tXiY2MfBVwIjCxgdTE0wNkoNTU10WDw3HkFIpOcTdPb2tqwMMDN+a4LHCuMv4ET1Tlc7eabb8ZEE05onemaZSkwco3luaz+F6FBoB/3g9chO7iMf7xBY6n/hIAzhrsMf3uAyFtFEikYnR+DjJNf0P7NLoNFqNCSZyEsmWREkGHxs5EfdWNJ15tvv8WWrqMsSY9FT57u7OzqCpWWFZQUOqufOOr6eyaW159acljzCgBsiQs5d+imaNo5omf9uvWVVZU0GBFlE1hfEN3JPZrAdfldy6nO10BwCsnqIriA0zwa45AJZqNkagElBpjqFwz2DQweOXkCxVsVTJ879eHq1WvWrFlLJgQlz+3+k5eN3bqqj7/N8Ype8VGUANLIIdTb3ffh0ZOjo2O79x4cSYULSqUeWImOogWp8AUI5QZnkQ6cJSix03xqlGxxl5aYX/r87x3eSG8Yo/G1yTddfM6Pvwl1wjZJdF9DWtZPDxV4UGZEnr7R+ZL7TYp4SRX0gvx0NChX6hzBVFIiXUGKyM6CP1jq81X5hv0l5WW3br7Flx55eddLiKT1a9cxcAD2shH1lxp5aMt/u3j3rHpob28HFe+//z6TdunMMP+xq6vr0KFDt2/eXF9fDwLRyi+99BJLOcpKS2nWs2fPEvOhBx/S+emBwPFjx55/4QXMBVQ+i1QxsB555JE77riDaLgQUPNv7N1L5h/72MfqV6zgqHRcAhgEGArIT4yPu7ZuvWPLFkZh3nn77Weefba5uZmEGAE4abAk5EqEtESEi1fn6yqnZfW/CM1lXCROdgICmqa7jsKGUcldgsDJudmxmrr6JLSVxBJwPBrzLwKg88rCSViBsXiBvKxOGcQkQojq+iPh/r7+Hz/99Md2PJaOxRI+X11LS21bW+/QUM/FAXVdJK2AwhN0iwrOHCtGc9qwBeIDQTbQP/iFJ56gS5HLxZGBw5drQRPZue9X7SZLqCJNqU4LGlsa76HqFfRKt4imYezCrwmMgbgvcLw79MSf/qdIWdHWWOoLH9vyxGceb25qISOGweW4tRYSsVq25jmgySYoG7BmclacYe1PBGCgQRn65k/k4KHDO1/d0756Q0v7hmQmeqbzvKaAqQxAZDc7F4gL8VAMaSk4+9r7ah+9+3n+8ZrP1cSrDtkq8E5NafP7iIZCYtR59+49zPCnl8knIdZqZdF166XMPnt/3foIrrpBhfNTdfJiTawIX0CRrbQE1fHR5M9+9vSKFXUgAcSM+Ud9uMZ8gVF/3dvH0GfMg0PVB6Kxgq13bfWNJV7ZuRMnTUtLi87YlThxRqlKoxZZQsgrfJFuQQj4wQHw1ltvdZzqaGioB4Bz584NDQ01t7TQxR+6OMTq02efffbhhx/evHkz8Y8dPfbyzpcZItixY8fIyOiPf/ITuviPPfZYc1MzByUzpxJbgdm11KW1tbWzs/Ouu+9GqaP7L1y48NTPf97T0/Poo4/yZnRk5JVdu374ox/hutqyZQsEhKV+/vw5DIWW5hYsNmrtkX0+1hep4tdLNsvqf1Fayil+P+LgvXfe6ThxkikokJ0NZ5vKgtZmyWQaN1A/sramFg9ViZxgkoASDUg673fdE6xkG2N76s5pnn8yzTT/IJNxK6prdnzm06yVTjK9j4ozmVniCWkvKcqFUQHXYKZgFqXt5pkJE5fpXtCDoQtiMhSl4LWLGX8oUGTOPDNfimRO2HElOFC5oSCp2EsA1Vw05kwxtJFiOVmaJeSpYNQXqS+sa1rdktnxmU80NdVQQehe0RiXlXoicHG//BqY7uI13iw6rihIJvZzwj0xpSuhajbB5coOvpE7ttzz6GOfwd/P9HBZKGSuqW1g0rYBdLk6FwwJp9Bcl5aeD8ms7s2wEMMJLa6CefiBPW0UO8TBHICFrf/jH/8YvYUtSO6T/ChZiri0XGl9DCspfg3fc8MbinSFG8HnFUp612SgEqRga/6bv/g3f/In/zN+M5ooHYhnghhh/nhgtLsnxuAZiNW6jLFUOBDcfOsdQd9BNnjYvn376lWr7QQi4noNdilki/UGOKkQipbJsK+99tp7773X0NgwNDx05MMP4RrkGwWdO3+Ofv8jDz/88UcfJSY4bGpq6unt2fvG3u0PPHDs+DFcBRyTyAxBrCuag3GBgwcP4tWvKC+vrKwcHBykH8/YP/Tzxr433nnnHQ5Jv/vuu9UWGV9NbS0q/8XfvIgHAlHDJINPffnLt99+u2xVIrCeRV4lYf0jG5bV/2I0PWyLILMt6EtLyxoaGjiAXO5QY2D41uTI7ApSRuJMxArzijEgjDjJQ4zPOkDdSSbmgvc997xINzmeyN0sUsYuG2GG/5otz5UpOTBigpFe3HHSCumkdYvoS3kzgNXlk6LIpI1jheylAWzWtUSgID5oJhqXgGva2gjo1UCuyzqViM1rulmXtTgRDU4JvrxA14oZ1JfaKUBJjQqi0aJoJKHq+YIF0HdZXypSWh2ta6jR2kxUOc1k1KixLrjAu/DXVZO30qDSNuCExdkEAEDs2vE0nCYFdQAAQABJREFUGLoXLvQODMaZ3h8IRU6eujCSSB148x0cCnIH0LdnPSFT5Kz3r7wVLE9dQbIRkb3NXnJFZ1/M8a/4K6u00fQQIF59ri4b++YvLilm3Br2ZBY+oPEJMlAcKgrXg02DNB8UBzox7Ub2rOb6Kx5a337yBORiEVHZ5ocswes9xtCdW7d86pOf0DZHaPlAwofxHAjGA5XR/X2+vb/BAgAMgEslEkWFJbfffgcmy3PPPZd5xLdu3TrEiA4ZzlYzrxQgyEHtAcAfB7OKnQBhXrqpboUKEvj9WlzauPLEyRPwCzbTe++/j/e+qbmJeQDob/z5Z8+d+81vfsNXCiLJ8ePH9+8/AD4Z3Sf56vbVjst4U1xUdP9997MqCv+BDkeBgEhA0EhLmt4XLn21haYRZ2ijtrY2RgQwAsgcykcyYzABGMMQakrDgHWupqrAR+DdsvpfhEaGmc2cZtJSdOPGDYyUorQdYZJ7lnm8u5nLIyPomKFlrtAwg2Xcw5IS0NoeR2TORDno1lEtN0RDXxLUTTYhQpSAZMr8AvAKZONcZLuWLNqjxIEsekp2Bs38svdSOSmjUUyXuf6wQQKcqc4+Ek0dSjQAyorlASaVFNFLrbvx+9zLK3kDwIgdmS+GKdVHwtH9DEsYK7Jy6MRSFU9/XEkIJ5dl8k4gOX1sn/fv38eCBQSii+yUmSxXvy8+lrxt020bVzFmnE6MDL7x3rCvwF8fTMTCBVCkNmehX+6nF69684+XRnU5DNBoNKCIU7WHioIR1nZhCLASjTSBaLR/YOCffvFcQUEZO/dj8Y7E0WWBPfvehJJRT665SWfOf51o582kGK+YB/b4i8WgClgJVEH6aBduwJhMHBsjwU6l543i37r1rlXtq+g/upj5cGilGj48kYWHVK8i8I2oBOyqbmQslFAQ1cPd4dWBGEY8oM5YI1c1aza+ihsFlZkdABf2pbXrDbICnomB75QvPuRjvAyxoF4Ew9ujnJBx2623YsvsfGUnWdBfJgcCmRuJqhBrLUCWBOE1LSYbRVabGXnEpbEtSQ6kmW4YJZFlL8JgJH7LnVtwPxw7ehTQUfkrGxspl3qTAwPzjMdjawIes57p5TfU1//Wk0/iWnP4LywsAP9Ao3bx+dD9vEedGyHL+UTgDQHFD9mQLy8lN8SeJNJ/V1mKU6FYoXrmnyF1pmrc4N+W1f+iNbCYxtYCwc3YsbAKxCq17YjNOOHyhRlVsmCGOYPMd5Mla4FH8aOCSRXvVsyLPzwTSNsxuNA7PE+3zLZLnT2vTgBLQsEFMajBn32xWH+FqlxelOeKdG91ReKblnBxxgHKpbl2b3LAZuuUe3G1YYYeRS6ELGHQCUMQS9Nm3zgYUU+JVHLXa692dp5d37Y2NRp/ff/+gweTvoJIEr8MGoIEqB+Uu3JT5xyd5tJaY9q9fL86iY9+PXHSY0n2bXG+m2AkZs7/8NDI2LETp5/44gOlZdWoKi32DgRs3AdrQtKbgkQPjomy6jRb0FL9pTgqACSuAPgPMFQvqxZD1ziZBwY5tNeQOT0UeZ9VCVKTD7oKc1bmAYtDQUcmFWCTo5Afy8d0rmqba6CJeefll/1gjAKKXeZKWlka/N17WsfW+6tqihnvx2xJqL2wtaLMvQ8G9zPWHo5FW5qa8QdYFcjWKpbN0/6SoV4Kbqs5RUwVbUKa3IOiuloYihBiuOjx/7++ezfd97a2tubmFrCKTLN9zSONDQ3btm9nRJ8ceM9EgdzUfSA89NZbt956K/BgIiQSyd0vv1xVWYXzABrMKX7umVWAn2ZoeFigAoGP7SJ6OzvPFBUVY38QQSuqmP2IoxHxrBb1TKgc2B/Bm2X1v8iNDsHDbJihWLae4IAaxWdGkpctDdHjpg3b1HGpc1mqMlPHhQK32XyQvNA07oBUMqENQdQtkKk7UZ5nY8/xL1JKgC95kPCiGPebVJr7NOnl8uP8MCCyyLYnxMlIKjvVTJkVfalznedo/fjI8Ms7X+qJB3Zs+/TPXnu7L1QQ58w9pxrULcYMoFc4TpDjuYnkmcHKNDSMAHR/hP4pzIEEZj4h/nLO78n4wjV1K1c2txWXVoXC0WRyDGJWf5hc2DZAKsg6aBSRs13GC1iqO0dyxkPUToP6dGRVGIPrcdnlzC23J9MfQsVlgxdJ7KS+qcY0QgHOA/OpylpFwjoRO2xPNZ99AC9kx96LcgXQQc6MjTY1FP725zaXhG6uCXLuGFNqECdsicO6WnWOb7nllu6env/2/e9/7Z/9c1bKWUmzqsDsYSKmcnSUZtKQcgsLCiG2AwcOMGqPLi8tK4UOxzJjK1asYFz/lVdeYZyeqX+cjHzo3UO7du3auHEjqOLQBD797Gc/4x4DArfB/v37mee/49FHaRTcBlgJLArAsqEuNbU1bW1tMm7CYewD7LO333575yuv/OHXvsboA/ckYWUBgRsWH7Lwb06VuiEjL6Ng0ZoVeYHsYuYeJqp2nbItJhCysskdS+RE7/RlkgkjVQzpITuxZrFYSQ47SRLmAqxlXROXr6SrRii1cw6kr7SJuApdFBNApZNRjqPlYMh1jHIQze/GVclMGy8DakR5qlc25H/Nvlv+uwAMqLOuFpQeIptpiESKJZVm+vQLLzzT1dXzpd/5w9MjRb5XdqZqq89Vt2juCerLXENSk2o2ZQXR5pGpcieO0X8QjysWwMhg4plnnzt5ugsvOoZAV0/v3n1vDgyz1KNAU2UZrgYyDvJhVIHsGcOSNSA3shW1gFrPJSnKBisEA4jdY2BAAKDPetvmzZo1Bt9ZDR1HwAx0rQEPvTJ1CUKvc+N7yWTPMF6Xih87cjjkT45c7GOS3v59e2/ZuNo2SuIrwV2nzjLvrRCe5jwsLRxAkjOdLVlWUlRUG2PD5KJUPDiM04Werrw1bM4YLSzs7e3vutDV2trGfE/yUdOZdMrLc3FuyZZCw+GItvZNJktKiteuWfsXf/EXTM1bv26dijYvPeKKhXxg9ac//amOcYqEOzpOb77ttnvvuYcuO8Lz05/+NOr/O9/5TltbG7P6WSX4W7/1W2vXrcOkYGb0M888w/ZBtMsnHvvE7Xfc/vjnP//jn/z4W9/6VllZGfMASP47v/M7TDykKZlz8POf//zrX/+6jAAErG3LTfNJuMELQsIscb44+LlGcllW/4vWENAQYirClj3RYIJZTpATatqbt+9KmQ2F+bWTKJLPxh0RnZYNfz0zwgMX8WxdLkicHokJSDoqWlgrocnXacT67GtLDuqIBSV/gWKpxgEmAZTV/a7WE3XJpKjLj/PFgNEGuBVxTUMqEBcTMQ8dequlpQ4ZWl1XHhjM/PzZ76KGm6viQe1nmAqGmYwtL681ltSayVD9VcOpFP2VUo8wQq1JAgODg+++/+GnPvNkPJFiTgQ7Pnz68789MhonIdHJCr2LvkRXGd2JrpHOCydmwJhDEGqkGuFBUIRyYtcaepkoErQOHM0nuIwMMVX4iuFCmCZ/YcDw4G64Bz/455jXduFsZ6iQPe99YxvWczzgGs/5rwiGS0t5uQvD89pVkKETv495FbETJ/t++vrhwc7DT2zfuGXDLZrhno4DMLvrMMT+6quvrWxquve++8rKylVIDqjLFTPH72oxUMfZ3EKXafoNGzeg4+lz161YAWLJEGTih2dvgPvvv5/5fac6TpHkk5+sYcoes/rR0PTUV7W1feUrX7lw/jw7/+A54BMHVDItgJjM4/uzP/uzgf4B2oJNf5CE9Q0Nv/1bkNMoWwKQP5HxLmDDAQF7CTDzkVkFRGOTQQDAjuM90SRaP6phWf0vqOUnsQ+PyQT9dY22IR858U98MMfgUiFVoFSxjjGSRGM2KEfkrspK/Or559958xBzfzDvhzhdw7aykugl/tyLzpbgiQVgcBNlEfrWAdPUmxwcrqPnqueuueQLuSEr2NGVYtnmClxIrstpxzHgaBK1CoFNRydCejBY19jw2CcfrW1oyCR9paWZe+/QMfIFmRTd1ow/wbjTmPrJNi3Lsqe95IIeL4o7P51+8+TzEXWeWVHfsOGWWziQhYEA6IwxcHQos75wqsuk0PKZMKwDBUB7pPfsYNmF5Dwx7wkFLdoD+EG7cAU/6HWUEJ7k4aEhahofpautT2CP8tAc5t3Q30uLN+rltSqe/QE/MTXDdd26VdvvvyeTGvZnknhSYlF67HOtHfFD6UyxbfeH8R/kuKGO077/+OMTvn3P393aeAce9PRo0M90jeC5s93PPv/cirr6e++9l2Vz1Eut7zH6pbAv9A05Ix80+8PNxfP78dWzQg+UYS3RppQuHcxUj1SSUf/169evbNI4lDr9WvTrndoHphk1QJGvZduiYIBMvG2qrWlYQEigsUhIhuSGxqdEkpAQAwJPqiDxZdgWkEwokdZEqBKuFDUtFJNLmn5Z/c8NvcbS0sqQD1vUIv9SrImC/JiCGwx0d/e98MLz+/bvk8kJlXOQJXKE7otNY3ZkOmN5CB7ZDZBpW1sbji9GtOiAqyfCcl2t2GVutQwCDvAY86djmbE7V7Xdtn4DyhlZFb5raxl2MRY3ckTiUumcTDGwZyx5/CPiSdKKgU1/2l9WXMIeq9jq5/t7sTaYYEgvg8nBCeYv0RHSnuVMPNbkZWbm0Kkhm1mURRSkpywUFWupnDEhnYB0VYaqgSS+mFfsfS0EtbNVEZClIbxHVWUWjXst1GAcBmhj+j4r80kzq9tb7r33zrraalScP8zW/4GB4Qykzvg8O/9jGaL+NYCACWB0Bt1AmtZUWV3oeQQSLFlVwUh1f5hTeun7MVCFSWk0oENvuLHtk8kMWsaAFpaJIwKZ0PgTHsYrs0R3VMdN5hWp0ubGhiJdfkAmGlbJE9reomH+E9lNoqevr6mUo8x5wAkSDfu6RwcDYyNVJcUVZYU+GTqowwTeDk20J1vrklr+QoIXGP1QBIrUS0E1hgeb/jNjKEK8ITfFCEAwFvBVhX1rVyYjtsItwQZAkb7+vqd+/lRDYyNL/zlJHPGiXKx2xnzZUhbtrzBiCMOjIS4WnkwSUgKlc++0tXgby8kG45mKyGABkoQfEpMU6GqZXywDZcI/S6l9GcYRXFa8IeeUJqIShBn7owEjTTiRcaZzhKXmhS0ZE5QoGESiWXiU6CMdltX/3JrfiR/pJAxvyEpsB6FL8EFUpSUlDz744N333+vNqtUYK75BP6KNqBZ9puKMsx3XyPEoj5YEIT/EEGykfSqwBfhx1BWGcCnHy4YjbVXVvJfUEZGrHIFiY4yCb+78baykIjEpyouLC8LR7nT6TA8HiWmtdyoO97Jzi4BSxU1hSxWK4VXwbIJFoxx+Jh2yacCre4sRwCcBMdsss1lcob8GeX59Z1nzKwTeQotBbK5d284IvS29xMzznTmX/rff+JtYYWzbLTVPfmp7QQSlr8MZbFmmWs2UoZrMWtBJWMAAL/zMIBCKME2t36/VV/ZJRKMPBBLqoifvTe6vvlyVkAWEwrkVk5nWzMJiIHuQe+8Ux8XMRkJPFRbEurvP/d3ffkezg1KJ5Gj/6rYVctvjLPSnOR8Swwfd5eWkkrycvTy0+tc8cJo2qMGRX/3qV9/+9rfRc/I/ABqmuj8TD9e901ugJEl2ApCpEItFOSxp56s76Vs/9NDHKiqq+GhKkRKEeYJuFj9Y1patZCBnFBEQU3pQ4MZJK7pJyBVBJUcLR3sG6LWj5oHKbfVDtHHosqRib5TKu8ndjreFXrmKedWztPn3XuqP8J9l9T/nxodH9aPbg76F82x6E1TFPeZrHc4o8aS2sOAbJqe6/nrgv/7MHIwbiQhH4s63eX/GnKh/sivkNLyh4dHBQYzc4dH48MBAUWERTAWHWMeLOIrNL48dZi5w6q+oYdtgNM0pGuUlJWe7QxzXebjjVMn6jUzPQRRJL7NYGSMdGaKy6YPIl0i5AIEmWA7XMwZoxrHCWFRD37LsRI5DF31//4O9vtaVkXTPlz77EISNhoe2mbguvWWkjQbzSM+jP0fw48Qo8lD3ix80osj6ZrF0mRDRpb2OsTiuVjlvN5ipKC996KHthTG2OByLRdLlpcWZ4UH6uqhCRgNUebA8joGJFdd7YZu/ILu8vIwp7nqS8mbIHzSqM4z6L36n/6+P78eJzn6ZKNxzXef273+DqYv33Xc/uh+5YcLFesayD2YociIA83oyytH6CNw9ZCDdTx1sVEWtrpEBL7iKM10amNH9+DWgL25swfO8yl5ONAsMLKv/WSApLwrsBxfCskxJMhEG/yCncNtJIxIYmjIOk9BkRY8+iUmlmKfl7Qn5o0wZD0vg1sPhhxeBkQCG9RgHhYvCvsB3/sv/d/b4cbn32eYimWx/8EGllkj1JIf3Jy/Pud9K5CtXBurSmaaamjPnOgd8/vdPHK+sqGitWxFmqTJdPzz/OtAow2xD4KR8/nnOybkXeV2kUEs7/BqG8IS71r0ugJ8TkBpmgqpQ8jiKw9qir5/Kt9Q2NVVVNVakNOs/TTcUDaNFKE6JGM1cthTYwH7W41NKcRRlSf9ladgeL5vTlY9Ae4MJfrCz/eSuB1HTBCllcUQaj1kyHg37m1fWFERRbMloUB5qlv1hPRFHhxmCAd4oW0dkE/kYyZLttROf/jGb3suxPSEQxf/uhaiPqZTxVDATHOju+/Uvn6+oKH3gge1V1Szzw/QSqgma0kuJMhzUAosbHOjKlxLk7uBciCQwI9lcQdgBqHmB4c26V8tLSGq9VAhfplz1kpl6vbiwLeeWj4Fl9Z+Pjdndo2slwFAE0v32IAea7nmHamTRv4QbbK2BLD5o/Gt2XGaR2cMnRHpYFC7QoD9mBGyKwPX5vvZ7v7/j448kR0dijMmzQgmjQJJBXOJ4Sw8LCA5McZ2MGTr0wUbW1FZU9LLGNh7f9/Y7OHtXsVgcwMSg2mqUqTrqxFB/yuZqpS8QjAXUYGmTGpK9yokClra0q5U71UK1SyCr+wUx4+mP+XyF/s7E4MBIBGNX4/1SHeb7AkwI1xp/Nu0+AWmzSXC10DBFuYCb/5sixvgrCQUpWBRfIjHc39cVCflYccYbrYPA268bOAzj2TZCxpYSalz+49nozvKRx0WLEuVwsWC4s0Zwj+z7z4QjX3Kkvrp6sG/wpV//prys7JFHP15eUekSCB4rgxvJDcvAfVrEq2tf5Y/FoRENTfJXwbaYgkeHFm7o32MB8FUOAgMJXyZvMBS0mxnBJCkxl8NSYGBZ/S8Uq0brmLiyB4xefUl2MLfdQqBgOlAwAfyKJLUe1UzFOXlAJlC/W8TPzELEAdyCqwFvfDIZZwAtFgqzDyYb/fCGqYB00Ijg2JqycjczlTTNt/y0AMFcnHgyURiN3bHptq7Biz09vRf6+/ccOsRBHSvKK1ZUVcUKgCXA3ufqBQKDSRPrv0xTwPLr6wQD1imEqERYECRLWDDvmHoF8UViUel+LYpTL1I6TIHPBHdvt9NcMJlgBfOcEVkGlGkhN51mmjTX0Guqie51jCLQvXpPAyHKDy6CZ9tamv70T75uo4JsxcNEPyxnbCvWRDDpEY7RPExhRcrS0OJdJ+crPrdCpbuFebWBoZ570gYKQr47QqnyitJ9r+/7/I7N9267I1ZRqaayZrqsCJpc3gKeNaiv+QrsaxRk/0F5McfSePXp0vT393NYH8vzOPSPo/w4LxsLgMhM1Mcg0Lo+1cV6ElQrL1jV856XbxeGgY+y+jeG8fQmWJxIaNOjVfNHTWoh+ZiNinsLTQm5um3B6bJHgmFOsYMn1YXH38VHBAWeYuPA6TO2L/KHqdMPuzI3RuzNNDuUvIb4OBlNrrQAij81xiODAuYxM/b33NJOBQusyxQ01ed8FFDJ+FgiEmOHbV95pPC+LXe/8+Hhkx2nOIF36PjxDzPHisLh4uKi1avab1m1OjWmqTqyUyxb1Xuq/Kd558FMqiXwRE5T5gJeOywhnOQEsnx0o3saGGuPq7Qn2DDtaXiZG0IWANwiJQV23Na0IiKbiuKBkp87lalmlzocTmgpumea2W7VNdNgfiU7BCotFDP+ML/MljoVOMAOh1z5gR1+pqVoZgPfrjQ7P96zQiJDd5+ToTgxMRoKNNRVRzRDhi46NdW6Rk2hhbPBnqMkZZbNKQ8VutXkYorTrTrEFl9tJErjSCbcgmSj7Nati/6Xb3z1rb0H+068de+991RWlCXlpZO3BhmijGRoWe7AAMPqpVdYtmqKZveK7ahA3RsPytkiGQFiClyVNbeFhjKxBo4fP/HCr15gCz/W+3HiFOf6cJ6vtgIsLX3ppZd+8IMf/Pmf/zlr+nEDaM0R1oONMFIqglFznG3HKoPZoDfjh7IIDj2KgPAkaI6kuk8OYmpF8B7cq4/89aOs/nON70iCq6OQ3Pupb4gklkBDMzdveBhfP3LQOalgP51awnxczpXigR+UiDCAm+xh6hzH3woAegxy7+H5Z9GqMS3GBJP6eZkcGmIAjdNSKQ/fu2Qy3TCAQeRA/Vn4Yd3xLOd453BBIqQEkxfYlzw05meb1qYVDb5wcGBoqK+3B5cAnZWB+OhgfLSouGRNQxNTmNlxQAN22eLGocm+me4vMd3PRZh9wukyXNL3gCdwTfJyI1kjKWQGGpKIhrDaWHOYdFVcidjrLXhEpG6jxoC0sZwvfrE+VBHGAOVZv6znf7xuQs+NGqxuphfVyhZo+WzjeiiBN43ZOfhjdHggPTZUXBj1jcUDDJNJ8TNheEzmPOjDv5dkzn9eBnyVBgfz2czyUMkrV6RUM0HP+q8TEWVByC4hcUGBv7bAd+tt9cU3V9bWVjDCoKWZSmCBtqRn4vby8l5Av7ojYu5Hzkpn+p4/9puz+pfWFzZgER1foll+gQDnS72++3X6/U888QTbKLGDL5v6Pf3009VV1UVrC9nXjwVNoyOjuAHYypcUqH+2NXPchELHSSD2sgCj4SpwgwtS9hRjM5B4g9YX1dq+jWb0KIHVUjfZDHT/EQ/L6n9uBAANYVuSJhwI9Hd1f/s//Wdt8Is9oL33YT+GsCQdeQM7hlDORNUaAZKIIGcuDElAQjIhiRJYbDEiuXDcX8Y30NPz0LZtOACQu3T8WWhvumfmXBfyFRbioMwoy79OnTl94N23u7ouAEvEtmyNFYRKikvqV6yA7cJMUUzEsQngWMerCyn1Wk6rtgUF7M1se9TIr6MesjrESB/tusSETXVTZJVJ9LhWvJarNAVsoj6rJZatFvdLr0T8j95S11RTumZFTUTdW9a2SLYrtfUjp8jmI/mKs3wYlfvw8Punjh/mtD3W9MUv9q9pb0E3SQaImyUuwA2D/sbb6G+oRT14kdZlgjiemFkuQzwooV5ZwpGRzPGuHv/wcH2l9tW3QATyt0CDacK/7i0fg8h9WoKr6qPhT23I4yBEN3OeL1v6a1f/dKattZX9et97793CosLXXn/94MGDKPsf/uiHzBP83d/93braOpwEnBV05MgRnAQYBGzyw37AzS0tRGAfxl/+8pdsBchuhuwS+PDHHq6uqX7vvfdefe01zAjwg61w9913c3AA67EBQFS6HCZiYFn9T8THLJ7wsbEOuqa09MnPfjZjCk/SUQP2dPAzCEWUM0oC3RziGZKD2WFEswBmzl7K3OIRjXTOmeUUKuwDE3MiJivx8A8wmqi9gVE75hXIyoKZs5/bV9spnI5DOpFJXxi8uGvP6706RXSspqKysbq6try8qqwsWsBmZQyA6IA44ITDHSROEs2tvOskNo5XcKJWRdOzlbrtSYKUw1/D4erJkeH40GD/hfPyUjJ6cnFIzS7RzF+7uz6q6RrQ5CWj0mbXrqz1/+d//6ec0lMSYMc+aSzsW+mQrFRVDW/ghr98w2EDMuknGYZz0olVLfXbtm2trakYY8MfzuTVuT78HWOvBNP9cDPBuNy78gj60M1c1QGYmV6yFAXW8T5aUp9OUnr/g+4//3//+/kPd3/jT7/y2IMPYp4xxjBuHVxCg/q0lEGOCQQXAmtMTk3UNqf8HT16lFMT29rasJhb21rb21fBViPDI+hyhhZbW1uJwwyAzrOdv3j6ac4oam9vZ4f/7u4uEqLyP/GJT7StWsU2/j/5yU+2bt3KsVUkYR4S5/o89dRTjClwtiF7Bhw+fPgXv/gF4wv33XdfUWHhEld0KZG4ZHkvq/+5oZbeHGZkNBJKpBKVxcWIQChbNjyjoWgFdsVBJcgbIKdwGIefcbKG28aZfKYSLYEimCQVxcLnWBOa8suZXWH6Cxp30BsbT5spr4V9wxbBT8hW4X0jwwcPv9s7fBFHHNtvblq7rrmmlkUH6thyoKjriMi6lu4HYsdml8iZhUFzbaRWpdhyMRTWES/S56x3kG+TKmtaEw2VHnvzjb2nP/wwwUEMqP+BgVg0SiKHDUW7NipyWSic5iea7EtTSRoBgNbxXYdxb1Fl5gPS3Fqxbo1OzaRKrpcKXhYDM0QQN08MYINO9ejoRYYD04lRtvItivqrywuLYrjqEA+wRwjbXa4jjz88rOUhjD6E9VBB4myCh2sTSGDdhtfJPp4qeq2rwnd8dJhjbSnZx3Ihs8mdnp+ihaZ4NZvyZ4zj6iAjRmUzNwG3WMiHTYxef/CBB376s5/98If/sG7tujVr17ITcHl5OROY16xd0/Ze2+nTp++66672VauSyRRH/3145MiXvvSl1e3tCCIkHhr97//+79/Yt6999WrKwJjYuGED1kCsoAD3AM4D8mdYobm5mUKxDP7pn/6JTG666SZ2PuDNjDB/FD8uq/85t7p1eCBFlu8m6X+Ls7U4T3yI558JUVAZfBdE/SM9NYTuCA9mcFwxbYmIFeLy2f0X35DG/KuYEZr7r/V16o0x8Qr2wJHHHAGsDkpfCtJGanFox4lzZ06e60z50qXFRbdtvKmpuhaFxhweQHVuYc1hxgiQmQ+0493BpQBpWtxdqQ9UKp6Iszsp4454Pvj19/UJA3j7kyl2bIj4/C119bxnBLJ4bbiivBwioUlp/KxQvFKwzr8coNUsRipLE4ss/YELfZl/+NGvCoO+m1sLP/XI3fRhyV4Gn5H+/Iu6flKKvsWh3m8i4JloLPTB4fcyyeHU6MXTHadKSwqxjf1pVvaLn9OJeCAS08C/G/tnHNBRg/sjszkXXAng/jIM5FjNDApJFg5QwsWfRuoUlfqqa5hwj2nGyE2AvZnln7xyQYaxsCRhgMWoP/KTscZP859Xr1nz5JNP7tm9u+P06f0HDtBNf/zxx9HQkTDHpck9gEcN85oL5/vRlUf3F5eUYDrgzGe3g8bGRjQ9XX+EH6mampuLiotJONDfj2+AMQXKYkoBcpKjfQpibLbYzTksSGmtTloOEzHwkVb/WQ4z3Sk1PavAEH4ikYYW5eQPa70K23YgCG1UWL19jHi6RjCiTZmC4CVKjc0vw89KOjGKuBp7wttbRQAyIRYRojFm2NtF9sbyZgX8ZSORpcODWFbiLn26u+tiIp5Kjt208ZaVVdVhHJhanoReQP+LyWEtJjtiC+if6j8rRE6sqNIomYlXPslqMl8ClTOcXhbwKxQBrNCRoROsbRfw9iaShdFoYSQyHI+j+AuC4dUbVq9vX02vGY8NK5+03llzPoSWSVW+QhDPqxg1gU+TWIKc7GBDx/0XM//H3/x8a2tT6IGVjzGxmkkBWL00v9anQPGq31QVtJzscxaQS2Op5acKl8acKtZSvZsCKkjeGeh846euLT12cXc6lYyPjgz19XUVhn0rG6ubmxpjbI9JwFFkM3l9nGVAXMYGdAivfXKQuwUUuuelKzSHNF5IjbqI2a/eo8OOR1XqJIgdxZYMSA2PUoQi8FkMxNtsJtm/2Tzn8ldGbC4jKpNl14l5eCWAKcrVqL9m8BGF+DY/JkSPv621rX+g/8TxE8wEpI+Oqx9djs5G/ePjVJ8qGOTQXuLT79dQmgX6XHxCBjJDkDz5SrZ8VWfMqG/fvn2nTp6ENFlCSExeY16QIR8dutyVVA5IHnNvJlbCe3LRXK29ek0Z7/p8+ZFW/9Zk4g/XdtDBrBoYHqDHY+akTHuxJz42soGPZUTAiPxspQ3ERf6mxyziJCKZZJOLyEiZDQ4YGFq5aMah9CuShPJ41nAAxrV4zM0ayiZb8F8PDzbhC4nVPzI6kkiWxQrXNjYV8TKVsAkPms/IP0GDekDi2GIbkDEzOznoVKWJ2CYZzK/KWPost1rXU2+XLlza5pNLsxjAYLIPyAxO2Tw0tN9/9tSpt/bvHx4c7Dp9erC7O9bWpnNwNRCkfjGwX1Pmy+zxCIVDb7SSKkC/jboEyjqT0YsJG3wKRM28dZYNGEPZTCJnK8owYE3NnR6mAYBP49/0MP40TYoFvZ4BkvF8ncqUjvcCN9mfSQ3oFQUDjYbDbH6V2L7tnps3rg2kh5n2zwFgSqS0mqyjwUDsZs35tz7oeJ68serq6uqdE0heqe6z9+BFtrwFjGiSYFwnwaQHyI7DhTg8TIIHoaRRGhZv5iVVrHkG0cE4ROKGvMcJeYI4yQR5P5wa5isdd1b8l5WVsbSPU/gIsNE3vvENdgKAlej0Dw8Pm+6XhY1NwExAOvr4AND0BHwCTOtjoh85UlkWCJCndkT1aaIf0aqqqjjWCEeCRGUgcO78+UQ8wYiAZGcecBPqkPd+yltw68Wf3DJTRr+eXi6r/7m1FgQARUN5KegL+c6jeAs96GfvO/bCddkpmqxuxxl8xi7PJz+vUJMQ+QCIYfKfc3yG7BArqywEMYwt6g9xiJhZvZ4MyEvpcskldzcTss6LnH+bS4JvA0u7t79/KB6H8SqKigsZwaPgFFN4wkxs06avmgGWZoGDRCDbmgNMfl7zugcA4c6EimYWzCuTOSa6tJDJ9XAxBI41towvjnHKZOj3H3jjjZ5zZxnoqSgsalvZVFVcGqXhIQ+2coVSTA1cWsAcIbzC0R1BsRebHMeIb8SEMBIrOEWfLMBxv5kCjQqYU0tGjgafUDBmMc4DVA/bE7E0dRPk524xJkfLj2D3E3PVK964l7m03FwabXJOant+1uGHF1HkIEDzIlOJztMnz57piIS2stA/NRqnzdE3/lBEJ/rQQwU9YwnhiWEgstDECYwlU51eZyEHyeRCp3smARmYdieKEy+8Y7xh1BdN+IqZdswDVhtWqNczni6rWb8HaDMo8hLMjDUEpJubTArm/rHSAe3+zW9+k8evf/3rRUVF7ALE1DzU9v/P3nsHWZbd93335dTvde6e7kndk2d3wobZBYidBbBYJIIgkgTLJMECSRdJk3IVWLYl2ZZtSVWS/rBMVdmmyrasKklVKBdlqUgQTGBYLrAAdhdYbMbu7ISd2Yk9qadzv/yeP9/fue/16zTTE3pmuuee6bnvhhN/+fxO4pxfzE166uh+3ly+cpmvw8PDr7766ksvvXTwwEG0O534N996E0ti165dNLUpKjEguO/p7mbzgLfeeotMtm/fDpviPGAVALuV7tu/T/ilrvOlq2vHAlJoaZx/i+AFmMIQeZhE0v26CIH6vx4afTSLQIxIRHFGBjC3uaHQ3+qFSytLLxANSmSAC/Y337VoTklcakurvBRz6SBJal9UlLsxd4KKYGavOmR0LSSS5QbApWadZl76eSqa8m8WQC5+RtaG5v3SxbsSG+WS0Uyenn8pGYv3tXdoBxhOFGVwDt2GQSMBg4RxCyGNtVSw7KHrZO5/shpSbfV9GpX1E6oBfg60Si95EiDVJgd/bhakavmqLwg8NC/pfHxZES7TRg4GIQdWlUJjXJ4kVq3kOWRihyVEgqraLiVJQDFbO+MAoltcLH7i8NOffvbZ0swMW7jRDRGGdKa47dksGaWaWGrlsVYCJKuVpdJYfpU14FMp98ZxzsrjKuACJkYIRIGAztH4rbXPwLswKbkTqIiPN3HV4uA+Ln6/9JtmLUnWSGkc4z/SDGFZn0RGpjmx4KRJxdBc4Wz68ZAH2hz7Hsu3isJ/8yc/6uvK9XS2sTgHLaWawix8Yp06QQKAf3QW+MDRPLiyNWZggW+iPQrUhZdLAkPflgwksIyUUPCJerPZ2uWp8ji2GyapMEiNdb25fBcX1gI7ySKKhWtgE26d1e+zpKqj2vj/wJ9YAEue81AqdPd/4Rd+gRn73/zmN5mxPzszc2HkAjPzWdGHtt6wYQOb/zz33HMYBF/+0pf27Nnz9OHD3//+98+cOZ1Kpa9cucLC49279xzYf8BVjyPIqQQNY3pNOpPZ9/C+U6dO/cEf/AGL/RhEOHLkyNWrV7/0xS+yoIA6+ICylI2HRptaRJZ7JWAZ24IbjZ2Q2F61ZuLqsKavgfpfFn2gG5Qj/SAdiF3EDX9JHBGkGMQB9IGkn0TufEFkoiqkLfQSk1yucZ907J1RVIPmlPO80vXBOlAq2r5QCDcy8/VLj5tsvZht26ESXAaWKfWUZILPpZsZclYKV39HvuTJOi1yVXMsybyyGw8Uo6IVUXRfKBYYaUP+ZeIJOv/ILdUDQ4QRcNyd7NpNiZIAfiDzxu31fikfwaHRO5aVk4kWzvuBvARuVQNNqrLkRDegk6OKtzDXBEpsQlSVAwV4KwCD8iCtwGFBGt06YEBJyfkDkUouV4py1QdmNYbZUVGfmV9ZLCGhkDL05Jm7hCeyXCkaXNWdqZUrp959Jx1PRMvsa8J2eFY5ynJK0zIh10aVrd5r4UKFTephXAJ6aSz2p8Wo9UqlXKWUYBN7QzgOEDUtxBwUsYM10y630kajzLmEPOoN1GxIJFuAy580XDOAI4DdfFzyxvBKJgqGZCUCeZY/yXkgCkQsRndU4IrmCeaGLlmyB6pFHMzel8sHuq1fvDjy/ol0rQJ3zE6MXvzY4Scfe/ThBIP97gR6A4xhnoSQGSuB8MbTAleLub1r/DiqpdjXGq2q3jCo0nOR7Il9hCPe5g25/+5LT4Wndjw8PGwmBqNyZS3RNCNtLsVN3qnq2oQHfa91LtRT1A2BSJiIaxQcMmgm3yyCjx2HI0MUUZmdRwf9NOeWRSLtuRyT/+m1489HGtBr/9znPnf27NlSSQeax+Lxjz/zTP+GDefOncM4GB4e3r9v30MPP9zX38ecG9YLfPRjH9u0ebPDKxXkcBJWAbCkEEOB6pDbM88844qjJhKejaD+E42wlnDV4IyzYhsURQPYlgl5qkiwgASrGrX2mLnR5CV/A/W/JFj8l2JH6VORsTN1oX7nb4fqoSZ8AIoiBy/E4fMjkfXWCAfSoZ+o1JIz86QVMRp84xdnbEIcaSNyFcs1KRZjgid1wSjVl1M8iij5IHeiurx+nvQ/pVlhfxEs1cL8llkgAWd5+wUu8aN6i5GV1L9v0Lyri3JT3fhTe/m5hQBA4XYsdDwKKE4EgSwXsRe9JrVRsBR8EcGwrd7QHN0oioLF1Y2aaL92TxqSaAcezbcHPo1sKZEGMQVIQ5HaktlBIpRQsdgLjDVWpianJicncN4WZvL4DGkaP7wq5vNkqmOV0QNs6qIV3F4pP8ucIqq7ZdNWfLz0+6mIOomqt+qiqjSra6/WykUNofLq6UKLbrmaoeP4ifc7kjPTGQFfyGdquRG92i4KN+pcspV+lkt+s5cCGpEawcHQPfHa/+L/iB0VDKcuzs1dhSUXDGviV7GsjzH3TYTHDk6cRgMlsdGWje+xfx0D0JiF77zz2vjYBdR9Iux1dWaHNg8m00lN+GV+H04h0YDlJsAIUvZExu6lX3jjx4ENYlkefo2oi35pAPNzzHQQg4S2DCR+5YsPp7yHE1L7Nbx1IkjR/qKkN/mCDBBmklly+AEcnfMpiSRTPsKjyUn5ughqv9QtfwsDep39/h599FGLKFJi7p5DaTKRZLXeY489Rhq+MrTPsP2HnvzQoccPjY+PYQcwkE8d4EOsUlwFX/jCFzDKMAWIbEk8PArOqcA0AkwKvrKRAPERCBKaPuHMVUmNcs1qEhl1ttFVvF9Ml5B/VQ3EEFT75lKui7tA/TfRKAJqDUbBMGSY8yrAO0pF8oCrJtyZqNANhiH3plugQUiTKHrU8HyxSH+RS8l0XLVQLIpJtGmPExBL6U5KdRVBpzOnJRrFUmaEDKbiyghZKpFEEYpzoM5YTDrfKqcX/LH3HNxpEVQPPhp1qw8Hz8Krqpoqf/3QqEIzlkshkJCrq6J7tRBqzRTXvxGMGB3ncG9paMkRRAj/qKgaQmI1By0t0wm+VU/DWiIeVtYmKXUnC51KgSfaqNbpK8wvDwAvBGrlyVgJFoct0PSrDDQ0sWhmenpygs3F0PeTE5OzM9P5mTz79yjnWjXLnsZt2e6uTtZ28o99x2Jx5ncAQo/9l1jdFw1FmPmv/iAmhaxFBxXVYW0HwzPN1FFsgqOXSXif/qWfb29P7t3WIe8/Sk2KjRiGDBsgAbKmT13TAYX74xHACH32wb00BLqIDmjLQs7SKgtCI5Jh3E/d8iMje15QouY7/5vr8etBdOWCffJfCbu0D1VnnyvVUiLOTPJCpaJpD6FQMRIq79u7Y//+hyCFSL2SSsZ72GJPE/vnzFO/vipEFOwX4/+0PlJo6+P8iDd+IrkonFLgJwYHxwuVE6NT8crs1lx8Q0c3mKKOYgDHGDfOcOkY7PRA/m1t2UuXLo1PTLZl0nKJ6URypgMxmiH97eSOQdJl4prW8qKRNyLQyREYHlb1K8eZJokEupyuC4jmJSyMeNMqp3q9q7tnenoGYSiZJtEny4P+A14BBAiNpIm0leC6E5lEQgxuJwpSLMt0KatRfgtOJBRFivhrlB4BgjzXSy1SoFuC/KHcqcnpWJwpPY7sbgdfzSrcFzeB+l8GDSBa2lznmlRL2P6mQ1hGS0AYcgKvTemqcvoO+1lAPdXq1Mz06NjYbLEwjQ6ZnUbZM0YOSxBBcSwzuIVn2BFqRZQtEGKiP1cdszZqeelHepxQo0gettAxa2w6lGxLp7MZNspMt2ez7dk2uIKExMZfjQQiGj0QEbtkmJJqNFqqFU94iwtsmabzGpZ1fxQs+aJ+HboYMcaz+3JbPEDdgIOmM0oyRbSuUIUwkkwp4n0KUc+fHgbtEFPbPEopWOkQX5yqKmqc+J9KGffbO9wJJg2IbVof5saQAg+sUGAsY3xs/PKlS2w/Ts++nJ9h63CsKCIw03hje0fbwCC7hLKYmEXD5Ik3AsNJpoTKMIUhAKjrQ1aof9VbN1RFsKWqqgq/9rNGL7QT6NMG0SpNqnoDHaH/6be+FA1VBjJFr1SoMgNALKBNKCQyaSdYkaZ17RaMWv546f6IBy1Jvhtk/PikIy+Ce9t621DeJDeysG+NMhYwEN/MjWtxIDF9Nj72X+hZ+VFhHz/Cp3K294h6qoED37KH0jhW05QTCzzZx5mJr8VKoVya8qqzw5t37hraEmKbvxBLfOkiikGsMIoiuaugX6yV2bhf+Ds/JhaVNgBWHe1vYewFz1Z55aDY6od4J89c+70/+e7shRO/86WPDx7uNY/MHSBFIAc8hoeG33zt1R/9+JVDhw61ceoo6+tgKG0MJTFHJWBiSQgZemI9aVaeBI4my1oMMTo5wrZiXoJ1rmxxAjOadWC6RJ/apWMAtYQPEVcqssG6pt3wD3XuWg3bqu1mfMB/7n0iniASpwcSExMBg8AnL9VFQRiifEso4cKtA6UqrxrqtCHcJ5XqbKH4o1demZyc2f/4LveJ6NYm5bPWQ6D+52GwFa8YgbA0VKgutJY4QyBM9NEDI2Bc8QaPTU5dunL58rVRZshDefF0KplOt+WyHYODLFdNMR0lnZa6D0UwHrFtoUU2o0BzSLSIaFsLVE3U5xX9UXANTYX7S+4D/AfofjYQL+CY5j8D0rMXJ8dnL4xgaZB7Vzbb19PTz9gXh/DaIL0ol+36jVXQ+TzIboFFVxacRLGaIJb1dIeDsRDNRydLDtS9OAwnCQJ7R2A8JLEsA6wlRjQRBPK/2Si+3B2qixPR3NBE2J6ApJEoETfrpFGrtPakA/C1UvnKpYsXL4xMjI6OjV7Lz8yCiWQ8nm1r6+zcmEkm0qkU+4KBHSpgzE1nvsbG/eSjM1n0kt2clSXoAWnqSaAYiIOcM3mBpSIKUQwn8dytrmsxAExTtqhl+v+YlJFsJvTIrgw7PGszq0qBueywAlI7xlGU7AEkLM41XECRfEUjLhkMZvpiENOvzLZ5wdDQ0Brzvqzgwc/WqMxl7VfI0rp73aoQhzVnj/v1lkWHLoNz8bdNT40lEvEXX3x9emq8XimNX7tcKRUyHKzrlcw3BXGazSFebv1zdVAB9reCWt9KFIDOfhOUzUSMejnkjU+Fvv36Ne+N13/lkz+D/oQmYQFkjavNrZRgaciHYa/+Df0P7dt35J13Ll669MShx4a2bmVTS0SL/plnkQJhQXzm4seK44gmHACFH4iDPi6Xnc+A9X50zdXXJhMltMX6RAX+mF/iN8+jl093B2EIycmOr9DV8Y0zTYUK454pCdBOAOCF1aEbAjxTdgQFPSwRiM9bCtWV6LpBfkQjsWgxX/zgzJkf/+QnmBEHHjnY29NLzWB8Kt2gmSUyXFuvAvU/hy+RgAWRkYl5GbaQZSgipQ8jMQoQDucr5UtXr4xcuUxfnyXx7OXd1p7bdeAAU1FQI/FkMpvL0T1H2UvxS5EjPx1ZqXuBZBEvqbugp0aZfsmK4UpvfBA/af0MuwhJvZFWNunMLFvLF2ZmC/nZqYmJscuXLly9evr8eXR/V0cHZsDmDRvQcJQL09IJUsJmUSsjX2OY5bimUbnb+CVr43QMLNtDCTO/UCjnCxfPn0u1t2dy7VrmwFQjVhvgJwCMAiFBmNFPYwAS+Sd4qh8q44aP9ClQRtqDBVV/9erM1PTs5NRVVgAXCtlUuqu9fXNvb1euvSPXTnefOYJICEEYdca2fcpZegx3DfYTGUq08KzSZVIIeFxtsqJ1LLSFi5KrUnPayq+rvVyLF0AKwfCfQPOY+nZ5tP6jN96MhKo7etOPPrRDQIE7zNIijiHFEOO3VuBapuFEc398XxTH5dF8zWPzft6t8qaCS3j7wdKctHfY8uW7lesK9WNILSr/Zn2Eah5QYVJFNJs982h+qdTd2bljeEu9WoxsH+xsz27e2M/2OoAAtasEysWRALeNG71f7aAKy5ti2FIzQm2e1+0lujDcpP7VHtHtLRsADvwIEigCYbh561Y6Ne++884LP/jhe0ePbRwcxAhA4uHghEMBKwwC5Fx1REQ+26qaVge9QDejX+nQWxe/rtFVwZzOlcxO+Ang0//nj2zJkwxx3tG/sgYKrDIC5HkCUToeHVSZ3S9jnEeMBvS0Spc5IflA3ZE2rchw7XJWOyXqUTFU3cmJ8RMnT7FnwKUrV1OZ9BOPPdbZ3UVRpOczrXBpW3Nbo/eB+l8CccKuyQcoEZcanVH0AJRRKObPXrjwwflzxVqV/SR7Nm/qZHpJdzdXhoij8RiOMNKSFG8ycZgIIE5QVmIH9IwrrIUVRcrNAO84aSSetS/iXek9VhhDdvJEW+RQoi2dzKRQd3T96Z2V8vlxTsa4Ojo+Onrl0qWLJ46/d+LEpv6+oU2bc+k03IM9TobI62ZZ9/ZGMsD40xgKEOE+L2eSyb3bt73ygx+GEnG8JQQmOrSlMlhU8RRrD22LXa5RTlvE+2KcSptoP8eqFArM8SnM5vOzM6j52dkZ3lTKJSQBEiiTSA4PDHZ3dXWAp1QKUcIeveJ4uf21hYHEiBjffITOvWCw1TsNDS4WZ6b05bL2/ciSfahEH3/3Frp3oHToFdKi3dZ7lAIZGav/8n/7fyY29P7205sefmgvm9lr6SNUjWkMACWKbZ5Ua+EGUp+UW94bRzh90HhratwkOOgycKtsAM87EQvBLo349mvcYnwy91oIEH+p8qSwRDYQplyVIZ/RBK5jTNbSaryjIf48E73gnmE/fFGheqmcZHeNUnn3tm1Pfeywlx+Xcx4+4vTeOqvOyFpIt2xdLZV0rjqreadquiY6n6EBuoozIBJnaM1Ne7HyETtUaQGgblwz5W1AsagGPFsg0TcwiHV+/tzZc2fPXHz77XeOHmVlXXdXN3Pxuru7xKAqzF8MIsQKI4YKq6/Djix0NgG0LzQEHMPJgBGSMjtA462SnoYpS4wzrsx+PvhESYutTwp0v/IhlcUAHQ759LskIhzdyP1BFShOJfvBPolyyYShrWoV7wIbCl26pMWFjN4WwHsqvXP37k1btiQSSbyn1Ios1lkI1P8cQudow5Q9NMXqtjwmZzTGRmdnLpx7/e23w7H41h07Ng1t7ejG455FJznpBiUxacVki68DjPjIUopfbMQ/cdD1wnwKVWT+m8lJHn5istVLrArTS3RA+BBNpXo3buzftImlaNMTk8ySvTxy4cR7771z/NiBPXv3DA9jtsvQNloXs12vFnfjm+pg0/IllNUBpx8Z6sxmPvaRD0+xdyon5xU5U6lULYyPXhllYkABy59Z9xIRNp9fvW2pJoldC3A74whMkmQQIR7VdLyubC6dSeXashlbQsScC0VmCjdjIhTtBIKMM6Csbge5SYMpN0Ody9a+qhA38mBZmGRRKmZ3Gm6FEaVyIsawxrO9tFzW4sXIVuZQLVzlcB/2dEJURLqK/cPh9jbMSaf0aJlu1FRgBBwEKp/g56CCdrWJAibxDRgCq90QXfdggX9NGW05OktXOVtUl7MS2aMu5MtbJbZ3Sm4qwWrAxew2auji6lHdUmkmmwxHDnieSI3oZ9FHfnaWLS5KhVIhrymhxsZMDs0XilNnzpzYtXu7V5rxqkXrC1C2ClZtCDSCCjTr23xvH+2iGKsShCa1C4hRYQEC6wTDFmLWbv/o4Bqzaika0BigbrEWSgtbkDGLH2qcBJbYsXPH1qGt7LRPx4N99Y8dP/bWW29Svnb06+/b0NfX0dnRnmtn9jI1k2cO7iW9/hMMJTZehgMJ7nMfKAT84IaDxVDgSiBBZ7XXmmqm+5mdqLaQhWQIb7BTCWQrE1xTDliJqvOoGuXol5wYdVV22LVmNDCMOslOnYTR0ZGRC0z7JVomm8vm2vvYkbCvP9veztEeABdPH8IFQnF1d+SoTNd+CNS/UWIDkeIfyMgoCRYqYXCq+1098v6J53/44rOf+vT2PXt6+vvZmVp0xKE/aCPMQpKL2jT9lLRQCVYtk8KgRp/ezdsv7lxxcKRGdFLJ8JRdK+1E/uqtmIQzJSa2tJd6j5rPdne393RvGR7asXf30XePfPev/mp8YvyJAweTGsXwuwkrrsXqRXRtgI/lcFPLBDSP7kMvX+B8gKkZdWXm+zDbCoOf5tNszACZAA7aJCQmD5qIx24rqP+YplfYHAJNy2daEHGx3EEDbgADpgHW3UuEECiL7gLviaVhbqDcwBQlKhj4hQl0CdsVGPCJTFKEFNUR/N3hhxZdKRo3a/NXTbM2QF2a/Eco8a6jFxMABVio1NI2e1VxiKLvSEX7da/clZSWVt2yUjEU1VRKCw48is8dP+CQiEIWsPcdKxbHfbac5VxpBiAuRGkKjhAHBsR8Vhz30vzEqEMSrCulp46/RwZiLMyuc1eY9jlynoOaWO4xNnZtNj+L9wgdhZ+ZaPQvGRJKp9JUGX5JpTnUOtb72N6hrZu8yqxt3me1Vu0AEb53rtZ0Bya/+c2KOpg0H1fjhiJ8SFIpncXMeDlnUtArACbCi7PQDJ4rK99B3TXRpRC1WwY+WbDhJ7ZFNNrdw0hj7xD2On632Vk27BsbGzt5+vQbb71FQgzvtrZMR0dnF0Nt2VxnB3uHMmNZk2yALeg03tWwpoSmKW8hk//idJn7GgGEKJzoRIoK0aqHdfNlJYRwBYpycOOAL3n0IAxMAFxT/CohDoRarcCo4uULYJwasvEwSp8TB5hRhYKnkp1dnVxKFOQAAEAASURBVA8PDbXRYUhnEqk0wxLmt9VuydQMR5DIjYx8COhhfYRA/QuPhlbdGLr17Fw9yAPo6oOLI8c/+OBTn/+5A48fSmbaOObPUYKogXhGYUpM8CmEDCQRXI+AWHVPO+eIE28UjPLnRZLSczW07owy07M4hOIhcZiDe2Qhd9wwI1Yr6uq1zo2Dj+Sy7R3t3/3OX+D03rdrF1NaJCiVm8uVClk2yuquBt+Gt8YAQFotHqYK1Yrb05hH8S7w18zetIFTr6y9rvamfwVoH6pkQhAKcMUw3sGyghpeG5szISRZwLTwbylNBYIl/kjBvbJyY6ku8twV0KJplEQOSnuvDNn7Gfc0gsZe3Ri7cxmugTsJPqqJ+rczf2WdhUobaoVsMqv+EyaRYKEOppSwQRXwOfXgN08Acy+QoT6G7RNEqIl1oAV7TgiUsSfTSlTMNwS/UANsqYSjVQpzfnkRAf8cruWRpSZmdQsPBEhIlq5m7VbyJfbInJ0eYx+Ya+NjLO2cmZ3FpEzHZTpkU8ktg8PpNNPXYhiL2AoUTxVIbkPOWIS1eAzrBxoMxeORenkaDlJdBRZDue6bPGTv9ehu+OLiuKsPkjv4o2JUlpPh0HnFC8XYh2BjuXZ+5CIzZlg1QxUAnFWkoURvVANy5A9sEbgxROjKvV38VrkxDjJXzFiMbXtzXV199Tp2gOYkzXIGVhEVy+PoxOSV0TGSycKibx7GxiJEmXvLD4MFTM5lRrTQYG+QumABU4yPsJhY2MpW+QQQrpdY9UyGJpRR79yXKuV8iel6rLMu4dThWE4mA7JqQLMF9b2qnoNhjbYw82dg8+ZoKklZ7C7MJoPadViCSJSE1ufq+N0KFAYFE6NlDJD5FVKl1mgI1P9CxDlKE6GIGmoIhvMXRjZt2brv4CNRlqXK/hTPOX5oqpXWXCwHx3KiGsV0EkFUdL2gmPMofcnIfuHux49hdOneIDnJBG8Va3JiySTDV6XJ6Q/efW/X8Da0qdXNcfKSmd+dlwsBYTW31sNjyHYJcXUEtaJKfAhceK17VAQXRTUESd67JvGWODxJwaOPLIJZFcB0XqvE2kTmv/Jzd3bjP7v7xVergJN9StjMVJVxDy6/xSnX3htrj2QlhCU84L5lzr/HqbXQMw5zljyAFikX1lTKAWv4aQIF6JODy4Q8NIGOqQTS8ArgTLtHViollD2CH3plQNd9MLXKa6XVf+KCU72wNbemCeR3MDsNsa7+t2qoU2VxvWGSyGdUrE5OjJ0/f+7ypYtM/2RyGBs20KVnyt62oUEGgxIxj1Wd9PE5pTesc/lwFmBskBv5GseKqlz9IUF28qEm3MjssBo2vlJDF003jWDpiNd4XtVflBGgo0ixNtXs64p+7VO7iod+ua+vS6yietAkWU5LVPVmqrZkexyzkg3L97lSCsocsIa6ungEG2CWnjfrl1DFUtflirsvFQtjk5NSy1pBAs7U0yY+wZETj+6TilgATKoiEtPZmxr+tyC7TdstywHAe+wMHRKAdm9jiFY3+HV4ITuD/n4qiXFRYmohvQsrF1eDER2E4IuURnt9dDY532TtzQDuPo4bqP+lkeNwDyHyeXJ6OpeSRxDSZkwaylLnRETiU8ZSWTSI5yZ5TiL3xsHna8fQaDxzAoj5mdEk6hVvhDGHk9FYPNNG3WcLHAAqAWrzuW6yTjeuz83GMAlrtWhYSaqwCVbJDLKj+wZ8XUssdyVRB9D3XkgDOKngdp5VZHo/JicabEw+tkepPrka8iNRoYcGnEm4smA1VWT3f1G6RS9Wlu19GgsgSWEA7VoJiIW9WBzamp5hymS1VMLhamCTyAZP/vDAXFOEOXsyFpGX1zzSzKGjo86i6hgLuooc6yrlwEgyaJV3gD67RLnLhvR2K+TZxFWpeb6Z2Ucm0mlM/5Lip3KxKIrl0sWRc+fOXjh37szpD+js9ff3DG3etG/vY3AA4p+1nepjoiHEIBoskCFTLdVLaoCyg56wJzQ7lm8sbKQumlzmnlQrBpXYnkLNIRDHhQYlNZ7naEtvFn+di3cH7mhIvcjiVgY6XGFbNsa+9pWDkdre3gzAZsqwZAEqFW7R9NaWet+B0l0WMry0cF/z9mUUYnyDJXCqtksCRWPpNtYjaA8J88to5j+IxyBwep3kmtBn+t6pfNwvkJ/69rZ/F59aaivM8VWFQjtqn3w2RODHeW/sqxmNciDKGMDFoOlDjIlYzhgjVCActzFcIUmWozANDYi2VWATwU2Y+ZVo+dBSqzV5G6h/Maj+HOqlOoRl9wPD4Nxi5diR90/u2rdvcGiYtX9QiGSQhIgIAbJfjHkJT5OQRklNHbc44vw3SxGWT3NzEYnk4rlaqzLqilGiSlUfGJFA/SLaKKM0du3y37zwQmF0DL8b+r9J3nP53fU7NYBxOoO5MZrVwIe6k8N6kPxwMwPULBhSL53oVQJe8Y/22r2xrmAuxCgg8AxBNjVYMOKFhIQDncpW8pUGwOsg7JJz9fMhC5dLI9+V5njfx3NttAUA8vt7ach8dqZy/mL+Krq86sWYzGWCV7AhIN0NIwsaRjZ842oI5yPTxN54/bWO9k4WyqYSCRYO8BKtbPhkZZd4S1iVTFcdEODkgPsW3PGOVTBS25UyXgcm6Y1dGx25eP7KlcusfmVDDPrzgwN9n/nU03193UnnS8aHnEgISzgYRBcoS3QGORsVIv9oF3qLET1aSYnCKAwkvYFTwo+pFYASBYZ21UrJFRTb3bVcW1+2Rm6Jctu3lIF9gmaPhJn+C1uo9vKvR71cLhQPJ2I1FKpEVN1z6+WIIxq+7ZLnZaDGCyUE5vCpCPDJhii8hBnR9sybA+pUg3t9YlDdtuBlHx9c/iIcw3dcGLG62YWXVlWyX7bKSqAy1EKZHmJwJVZasz+Utfhe5FOcncGkUH2EXM3pJo6ZGkZVkJrOdyAudyQmH188kDtWsLWSVy7MCSH/xZr9CdS/UAeGRWiGdHEM99CDhhErmhmSSPV0dT///Hf3Pzq5a+9D8YRcSRJORl4uPiTWSgPSW5aNkYwUkfJsjbHM/bxcLI5IcX4QaxjpI7qoghiEizkqrOKiXkQDe1VeYNuKF77PrLhEKsUM5lyCXsLiEubnflee/DYJ6K3lqW5U0P9nnOeiCMhqtZS2H4zDAYB9cunEyXyXJ9fMAbs35HIn7SFJYMklU3ww8mJeHRr5t/y671xFJnP4aIByLvncXUvqNXlLSxDTdHTVUQZ2Va+3O/SX3/yn6UxyQ9t0jF5wucQqGIgOaSoZLBkJQJaEgIM5+qrKCrG9e/ecfP+Ylgvanpga+U3iiWXUN57WltZwF05a7AFcDJrpjVBGyvOL/5gTGFjYmZ+dZEI+G26WS3nUTTIZ6+rI7d65pb09l9FMPUZzmZhoaNVAD+ttZyXNFejoG4Wh7AlUGqWO4hR7ssaB5Xy0ANogtfzl2NUcIOXSaXI9mfldf2XVyFPfWwLvpS0sLAmNxsfb+G0pG8ufCZVYSKBKjT56bPzffutHl0+/8d/82mcOP/4IrzREorbeTGVE5kbolHSjdKqMdYGsC05skYEogkmy4I63JinxrlMNTT/m5A0ioaqlgFG5FMTkG5IxgkNcxcAtw6PATQPmOG4eyEy1Y/qgsRWEQKMWfEiqgoKKIGOKYNon93iarDW8J1teEFdSXHpfhckmIDZXoElCXgqmrgKW0uXLu/URAvXfgtwW3IqgzXFU5TSXWOwjTx1m/s+PXvnJK6+9dujQ43s5tMomr0ISUKh08PzAs1EPhKQ7BUU1Cpofc+GTUs7lZvksjOIY0iJZhuIckalUH+IQv1q1cursmR+8+EP2qj6wZ8/2wU2vvfADXGCLMrpnL1wTBaI5kPhQlEIhOHVvEHNAILLPkVZrOJX3ikocS2pcLMZ2pptjdPUNVIx4nS/KxJVo4LOcWqrgnhddSeEA7dtx9kSZLXlYmrm2LMpi7b2QpmR+FW2iUwk3ZLKhxw52JsL1FKsA2cFCHmXJVYQm0EWMa3SfO/+PBi8Ah74yk+7ZZz5aFIXSga9wmiKLr6am2SR79trE1Qt57WrJR2ZssWccAHZqhBuKwUxIpZO5LFO1kl0dXZl0qqsjm2aJZwJrnL1dsXLZoZERaG26oVq4QMXEHlYZ6/mJYKiqi0C/XxaAhLzPniIX+4qfT74GKIeZD1F5CIhoqtRxmrVUyVw586/kvuT7+bFu9UmgdGmxTurpZjZU8OpY6N++NFZ7481f+twTxJFxFjbPSjPSCm4cx1gRonI1xthmrtz5mUj7UqUGQ2jEhKJBn8lG7EjTqAII4DRUoIlFPQCJVTeKjC0YYfxCzgOxrPSv5XkdKKpOkr2yJJ3O1nh/VNOGGjUhCnJCjK/SVJ4MDF8EqMIWca4MnvmuBssosdAQGDwYQNzbdXK9j1TCvYKoaU3HrRCD+gv2AO/Xq+VqPJoox8O1tsSBPfu37dn72ltvPvf83/z5X3xn185djxw4sHXrVrovEI0brNJIpggI+rfBMEQPRKOrW1pmeVv+kGODp/Q8F4zZID4xHGSLZJIQEgUTYBnjRVEnOcjoZYtc9D1sjhOwWDx38eIbb//0+PHj7IHDvtyPfOaz7R1ZlrnAWDG6UWXtVK/MXXPnSr2f7tDeVh1dJQsI4lcBw32wr5IdTQgKVESSHDHWVYduPrPSIdBH5IV+LKOGELAX1734tSBvP43LS7VpqdF1s1hjH2kx/S8sYEDKimdmlHvFinf1WikZCeUi5e5cks1PkdiykTXkqz6bYalquyOz9BzAyHVgKATmBrEI2RRiphsMHhGvJ1evZ/mG+CY4ILkbnyv1qgFjfkG0WIPsXZjDDPO15d536Pcz4ocIrmL2ylGI+6pcsQOIQi/TnAENEvFTaT9/86lruMEsBK5+XVxV/QeXX+PKS0djc8U0Pt3J3wZMoUmnn2koCAuz4K/Wybm/3Xn2sTQcWK+aopes7dJVMn6S2HGfXcrrpG/izs/OdaZ5MCUqviWnBn65dzkLTI33ujdpqVKaWHURuC4TiGy1sguVwBCYH7NRMV4rDrTAm8bL+VF5snIXfG1YAYsir4sXgfpvoNERDkRiN05wocWZrgL3M2UOLU5Hg3Mqd+zcwTb/Z8+cefnll3/08susGmHla19fH7sAsYBEPRFT/4wzuXtXANYnN47yuapbsxRDOp+bnE8tQQJMFVKvA7eYxqiY34ytYacAcFQdO1VdHBmZnZwoVirZjs6nDz/NDlycpY0zFaFo+2+RMauYZKlYNq61LWXc5VtjWGtUsyauiQuBYhFvrnJLAvbmslgUu1UiLfq4Ll8g9xDeXFG12u70/Lna3/8n/0dbLvPJRzf8F7/4+VRcBGw9KUlIkAdRWqcahJoUnoc598Cnpq41oJHMsGW9R/8NmS0LUBnNLsBDTcppvFvid/msmpFbDI3mO18KtDzfzO0KCr2Z7JaLSzEGAkfvPjTUbw4zxsceOVoLwAxG8Ggd4OWyud77BSBulHi9JOvj24KGr49GLW5FoP4Xw8S9kfSjF4+uJUijM3MuFErq0N1ER0f78PAQ+1zo7LjLl5nNdObMGcYiiYRrkjlN2AFd2uuinYRkx5wTiTnLRCaFzT418bWQzPRsNgLWBj0iK1w9Ixxo9sXDV8rmlBMW6OIze5Yi2EmDHW13bRvu7OlhZwKWMTN4aqnYkd52udLAK3lofZQZEmR2z4La2CJz75KwvGfNXbsFM57MALhkPmqe82yfe+FseNfWof5r7MCOK0nv1e1Xh5x7o6uF9HyDxi9W4Yvf3CCLB/wzYspBAPkiDLDZj1dOeAWwImPMTVtTtzcIAQQWQSBQ/4tAYi9QvLAMi1lx/qOtEUrqazNFRYykGc/MWGJmMbtaDg8NM7kG1c40+zNnTo9cpB8+wsZSTkkzhYlDslk0KLOgvb0tm2UqIRmis52rYEHx6Hv2pZLWr1Y5MpiePRtVMYlP+5JOTbGVPXtU9PT0sLMmLoe9e/Zu2ryJfOgT4d3WNiVYGyj8eogduCgFM0O+AvOq8UArqL4cAIE4WAD34HEhBLBYcccS8Khy7mF0Cj/5xo6NvamODe3MplO3kqWkWKV4AeTOUnoZrkG4pxAQd5c4jMCzaZm+0wppZp6aeT7Fe1rNoPD7AgKB+l8GDSbO6NmgqYlBv1ldZ+0jwdpZFpPpBAi8bEhHm8GiGXdsLrFt27YdO3bAgTahtY4/gAWm9NHR4tLfk5Ncr87MKJVtj8XNwuLrdSwFzAuKZjY0AwoDAwNsQco/DAhtV5Fk2NXNLdAsP+5l9qvvpSQwucuRGQl8YtcNBDSlKElj1H9hicFzAIGFEHCdRUa8UOnq1jOoXmX+SEfyUnl6Yiap2QDq9GtGXmPIVlstBeGuQwAMGdx10ex/Zj96hRlv7CpnW8TUE6AfY0ONsvgbke96LYMC708IBOp/Obyom4zSNL3PuZOscorj7mTnCG2mYX1obUxnwXz76gPhZ1d/iCUDth0VqjpdqzEGj7anGKfsEZoEqWQE6KLC+cQ7OFUzVMnInKuStabdeUkqqkQkJvFpJT/xWZutIQZtnaVJStgGLo4JbreGimwZJmBIYFGBwYsAAktCwOhZp/ox3q6RJ9FccSrZ3cdWkgwwY1lqfaUIjz8RrOXirktmGLxcHQj4UgSRUqmF4x2p2FeHN46nH2cxpOb917wyxy15taimwwbYWR0UrNlcA/W/LOrQuKhpFj1xg3RDYfOglaJR2QRystt+k6hdp93JSErarWNhY1R7VO64EDDDmWVsn3iBuWDuUpvJL7292AxQumZQBYhD5iylRcdTOp78loQyLFh9gLWiiYqqEZYB2TpnrA7IlClj7VCmgRRogja4WRYC9OY5M060wmnrrByB4KaL6RLnJWouLLSmdQGiO+3Yh9nJbUBYy0JztT7QBWE7I1bSyw6jf7JjZ/Qf/+OnY9Wnu+IFMFbxEBQVuingxscObwM8rRY61li+gfpfFmFOfaJHUb5uBFR8ozXQ7LSlNWbcGB+po+5UK0lQz3wytwHmeMV53c1AQBfDeQpaqbfiQBoMe1kVNv+Agph2wDQ+RhbMGQDbm9nBZn9YBnQFNDLAuV9KR6hoMw1FlLx2fB8w/4qB/wBHFK3Kta/FVNLrSIpovNrjFRIcoCe48E4qBeKyJd7mLQhI6y5TjKZdMq5vdr4dN8oOBYm2UC7s5digQc5Avhmm7nLFguLWAgQC9X8DLKFBLYapWt05h6c0a0PWKUojmpz2pna1Ilojow2fv2VyKxcZFjbOKlbWgyYiqBpmEDRzpAKue09Pnz/FwxLQRpz+WSnyEMhVG4QAAjeEgGxHI296jZCVXE25TOjXPvPIho7coZ29CWkU9nKRYSBCQ/Vb7BvmG0S4wxAA7iZkfEvM8yamSkc+OB+bndo30Ltxw4CpflYALppjdIfrEWS3JiEQqP8Vo012gLo7cwHR54wD30RwXxoxXHy9s4RzyW7yrjUfSVyXoeXKxYpWAX6x/i/vG/VQAtkNjRh6DkIAgetBQLQjEpLfiFttfbGpJ/SP/v7XGQLI6ABANsHnXVREJdtXnBGEewEB4I8Ml1yid8DUnuPvX/udf/ZHH/z0u9/6X//uwIYBJhBhqFnFAgzdC/zc32UG6v8G+DF1K+HmbubFNtU7740eWiM275s3i6Kv6EUzefNmQUHOLHB5mY3SGnFFRQSRAgi0QkAkjyNJ813oO4Yj5TI9y0KMUf94LZVNQF827m+ry4ljk0ta0wf3dwUCoAkDzZz/XDicoZ79IDLshd/RWmSkO2faMv1Ppj9/QQggMA8CgfqfB47gIYBAAAFnwlq/Xjv7M5cEi/LieP1f/5s/7krFHtvV/qXPfTSCqrHNm8z9rLhBuBcQ0JbgptkZpdGi3zougHjSy+YqzC9mabJm/UVrOrcpCAEEFkIgUP8LIbKS56W7/StJuUpxAst+lQD7AGer834Y9ud8H+tbTuXr//e3vvfYtq1tiY2sMGMzYBaY2jfTPzY9hbeBGXA3Scbv1MsEszEYsFDjPKa6NzOLbwanv43d+J/MqjPX4N2sYlDWfQyBYC7YrSHnfpNygf6/NTwGqZaGgBzJWp5qKsPUv+Kl+y7VUjOci6s5ATE8A2gbcxLoY0CCgsK9CkKVW4jECo2Ql9bWTDYLmHnCOhJPSwSCEEBgPgSC3v98eARPAQQCCGis2GaTYANoCqlml2n+WDR2PhrNR8Klej2lSQGmUxRX6/5tgDnQMXeZegR3IQf3vuyvSD1U9BIFLyV3P4eUsOWP9f0D5/9dxsvaKC7o/a82nhCOkqT8sVRP+wHYRr88YpvbWnxVQIsEdcIwr50gtUd7r1cKMLf4OwgBBO4CBFAXOvAXb76C0SX6v1zuj4QTbCEBLUKXRpKs/2OPCXMCQLoNar0LVQyK8CFgmGCcX7MxvJg3k61c9GqTCWYByDDjH3s0SQoFAAsgsAACQe9/AUDu+KOW4aP4OS1ABwF4dfbtZwk+5weJHSVA2SE4MjM7y/toRMf0IV0Zc2VxfyKaKBQ4uksR5b5zC3zveAWDDAMIzIcA+oQ/zFNsADNMufE4AcgrFdtq5YQOlUOdEEPbycm6bTiWRalBuNsQEHboXGh/37C3Y6jnd3/zy7HCRx/d3mXo0BwAhIrObQ4sgLuNmvu9vED9rzaGODQoMj4xznl9aH0EpVP/nNrHMYClYhFBi1nA6QDlcplDArlSISdPecmRP4lEgmdYtylkV7vGQf4POARQG+rf808mQFl+KecB+OD0mZ62mZk26RH+pFVQO+4bloLuHnDQ3fXm4/N3W4ii3vH8h/o6Q5/7cF/K60t6tTK7NbMZmIZuArzcdcyshQID9b/qWML7dvTo0d///d8fHh5Gi2MEoNE5rre/v39o69CGgQ3RUJQeP0f0fv+FF85fOK+9AmHliE4WGBwceGjvQ9u2bU8kExwjGLDxqmMrKMBBAL2vwX25neRVrnu5pPeLv/nVTFv8sT1ZbXmtrqUNAuDSQgexDEA6JlAz94SAzLdfl56/MlV+48K1eGnyod7McP+A0KiBRaEyCAEEFkAgUP8LAHLnH+m1j46Ovvnmm9u3b6fTTwFYACdPnnzppZcGBwd/9rOf3b17D5qeaGfOnj127NjThw8TBxPh2tjYK6/85MiR9z772c8+9uijd75mQY4BBJaHgLxNLO9TR5+xKG+gM/T3fv3nY6Fqd3y2XpytRrFaMQM0tkwM1L68BWYULJ9l8OWOQwCYyxhrbvJ58tzYv/pPz0+efvt//tpnt/UPur0/bfbRHS86yHDNQyBQ/6uOQnr20WgUV/+TTz65e/dudD8zAMvlyrHjx/7wD//wj7797a9/vRNnANJ2Zmamq6vrZz/3Obr+NmMg/P777//qr/7q0NDQgQMHmCKw6nUNCgggYBBQR176nE3+GJ1iel8kkwztHgzFmcDqtdeqRTNiGRyochQ2B01qVosUUdD7v8sEZDP+NM1fE4tKIW9qJvL9d2e814/NfvVTVXPIUKHALrvLWFkrxQXqf7Uxxb6pCrMzmtzX2dFJb4m+Ph0q/PmjV69+74UXXn755a98+ct5E6gYCu25XDyRIA52w4YNGz796U/jPBgfH+/u7oaNgxBA4C5AQP5ideoVoEPGnc5drn37L56DeA9saf/EU4diOP45iJKBKk7DlH9AO8yZD+Au1C4oogUCNkpjUzBsRUYk40W7vbY+kMFaDZMYbtVfIDxagBbcGgRg4iCsKgSQjGI89kjjWsMYqHJaL7+aA/jU4cMMB7zxxhvFUomv8XicqX8lPAN2anA+nx8fG+MNij+XzQXsu6p4CjKfBwEdIA/hSqtLiYS8q1Pef/8v/tM//f9efe7lI9VQjGVl0XAkijGLfcDaFk0QMEKfl0vwsIoQ8CWLHC4NH78kTNSLxD3ch4gazcXgk1P/q1iTIOs1CoGg97/aiFP/iTJcLwq9bgtwtMSfnlMum83lclevXnV9fXz+qPzvfe972AGVcnk2n3/33XeZH/AzH/4ZTf0jH8tqtWsc5P/AQ0Cj/tZzpHMfrrDALxbRvLL0hqmuwUomXQl7KcFIBOn8BOqCujf2E1zuEgR8NKHgZajZE/MwhYsINhk7AHNiM4g0GeT6IXepYkExawECgfpfdSwZ63ms4qPfH6HDFItygx2g96FQLKa1/lQC5kTrF4vFP/mTP2GwoCR/QD0eT3z6U5/q7evFW7DqFQ0KCCAwBwEmk6E5UP908rV7fAkCbMuh5dnhp1ipZRrahtdGmgF9zsHu7tyh7F13wA3xc0XT63w/RMfMDHv+xJApmhMor0yg++8OUtZWKYH6X218afwUdU7PHhZE91fKFbz/jKfGYzGUPZ+IgOIv5PM8tre3/8av/0Y8EWd64NTU9OtvvP76G290dHZ+7GMfk5UQyNjVRleQv0EAQmM7Crb6CTGfT9NQvLqm+Rc21QuZeDZCp5I9AJ3yYVc5OprNDSwDAN4dCIAAYUdXrcCss18IszIjqUhkWyx+sl5LxmJIHH1SkJAJLAADRXCZg0Cg/udgsXp3CEd4Dw8/gdHSeDRO9x9lzyNz+nAM5Gdn2RmQCmAlbN6ymVV/zA8YGPQ6OjpGRkaef/75jRs3btu2zfg9MAFWD1FBzj4EHJFJxajzKNUfx8GcL+mhUvUqzF31ohEdCMCOv3RCMQcU0/cEBGC8axDA1a/TGDiPwa0A7O+OfP1zO6qHf6F/Q68MA2FEyDErwL2wt8ElgIARTQCG1YVAlAlSodCFCxfk52fmn82XxghAx3//+99npz/0eiQqO4xZfhgK+APwEMhUr3vJVJLdgU6fPo2VgP2OFeF6XKtb4yD3Bx0CEB9Bl2oNr3+NMasE6n9qqp7vqhaKiUjUKJFjAczhDDW72A863O52++shjvIraKf/ehx0gaItm8J/54u7EvVdXTH2CasyH1MWGzJFWzgwH1BWWhACCDgIBL3/1aYEtLbm+3d1djKbj1n9cCKBsf933nmHYf5UMvnMM8+wK8DU5CTviexGBLADSHn2zNnjx493dnayGhCDgDerXd0g/wACQAClEeawOCzOqPz+qIys5+3u6emIxFN84RRZTpU11ULXUn5ljpyTxYoCCsJdgYD8LihzBmgqtuoCyKuXzxLNMkcx1Iulei2VSIMTpA8uAC3RZHJAoPzvCnLWSiGB+l9lTBm/obSnpqf/+rnn3njzTdb7oeBZys+Ef/T6Zz/zmaGhIafXYc6LFy9961vfYvU/owP4CS5evDg5Ocmuf8OB53+VERVkvwACtXpFNqim+kVqFa+3J/Tv/tXvZDLJ7uRMjHF/1qbGkvL62xoWGQAEnhfkEjyuDgQ05CKFz7BM2sb+sdI0T+Pd98b/+b/5zpl3X/jf/+HXPvXRjwgdUvoafFydigS5rmEIBOp/lZFn3XVG9/fv348Dn8B4P48o/scff/wTz3yiq7uLY/3cQv+BgQEm/L939L1YNGaegDqbAH7hC1944tAhDALeBBy8ythak9kbid3Zmku5aC+/msb4CfQfk5nQnp1p5EWyno6GyjiRK1Akk1VYGIAbwNzK6mKuQm3ubNvWV24APGGWgGwAbIHp2ehz52Pe6fzkVEFY5LWwoq7/+mp40Jo7AIFA/d8BIF4/C7b5OXz48FNPPbU4GtMCGBHQogDPS6XTX//6150boDUmZjurAHgf6P5WsAT3c+IcytDAEEr4DgZUex3lrj4lKiTqoU1OnbmajIR70t6m/nY2/PFCUVwDrEj1p5VRoTtagzvYmPWXlXCuP+QCtpnc+7Sx5sUrSPRc3evPFhiiIYJRCTgMMLP+aOD2WxSo/9uH4fVzkFCk744WX6zaeaPRfFgTLrY9ABbnpSgSxX7ExRGCNw8sBEy2NyS7qOhOQsJ69Azoc5ZfGEVy6UL9N3/nf8t2tX/+Qxv+6//yF+n0U5jO+dPsP0wPX9HcyRoEeV0XAoZwvDNOs4N7ob+u4YCEV8UroxOZbLKfXl83p+DjAwqBQP3fBcRr8p8GR6XBlwruNbF0pO+ywXH5sp+DDwEE7iQEpFzo1sto5dwfLUjxjpwqdiWzE+xHFY3UqhV32p/sWlH2MrR9J6sU5LUkBMCU8+07B2HUq8S8gjZtCkucyImjEIz9GxiCSysEAvXfCo3VvF9O988rM5Ch88ARPNwaBJr6GN18azmgLiKhCIP7qHnGAND/k/QlN7QlM166I6WD/uRwDtcqbGTpjyuHdBOEewYB/DSUja3G1H/Qp30aECeGf3MdYgDcMjHcs0YFBa8qBAL1v6rgDTIPILAWIYCe0B89SOezwvlfQ1Rk45dr+en8rOtm4tOS7ncd/0C13DM8o+SdqmdqcDSCV+bKiHfhbJ1NRMBhPcSxv/z6RzNolOaeVTQo+H6DwIOn/sUSi7GgV6180bhv/C5OEbwJIHAfQkDj8HcoaEw/Itc+0/vIlL/8dKo7G0sksArsDa8cO6FhHKcE/HJHgL9SMBq2fd0PRmqh6EB36hufPZx/onNwsE+O/3qoEtZ5jEKjwh2pXpDJOoHAOlX/DSp38qmJKx4dr0ha8YBMq2u3EovO89wIJm/gnHkWQTMXdYuWmMfX8v2u38L6jSbf9bKDAu8xBIR8I2FRNNu8QLmiZU0mvZ2aSftrV1+PmafRUCRKnjPFdLHkVcu8YjaA9phnbwrW/UciFKolADolqBGsEo2H4PeGEBC4zZxygykAcg6Wyydm09+Sp9MY8fzT8fe2bQ9/4xt7E97ebLWCrNPIf4gtRLX7nwWTeyvJePkigy/rBgIPznAdwjBUEYM0wkL+kvBcFAJGWQSS4MX9CAFRL/+ljNHKd4BsyYzJY8oQLUJAveQS5YFwPhOqc5qcSjOj07anVJQWzW9fVZ0g3DIEVo5C4ExkJLkvzDXyzzAAE/+l6/nU/LvlygQJ1ycE1mnvfxGyEFJsuV/IF1JpO6lcPHF7naNFRQQvAgjcEwi4iV3qjrMKz2bruZ0kbqMypvuVHi5h2xj5zLo6Qn/v1z7fnUk/tDkbl5uson2BNTkgCPcQAmh4DDMhge4N+v/qaOnH7x4Nz44/sW3TrqFhhvzZmsksw3tYyaDo+xQC61b9IxPhB/a71rnk6hKFE4nk1PRUR8pX/02EKCYPgRhrQiS4WSMQQNdD2NC5ddEheE57r83m86lkCm3gWOCWmiJmsGN8nduYQ+VqA+3h3/7lTyEvbI/ZIgPN2AAhPA34B2z44ZYKChLdJgTAVMyykK8F7Bx/f/xX/8m3vVf/7D/8u3+4a3iIBZtRHQ6gZYA2lulcBbdZaJB8nUBg3ar/FvyIMRCRbLVbKBSRmC2fgtsAAmsVAjZRRYdAQt0cweOsWLaYnJ2ZgdQh+NtrGOoCowIbAN6pMcw/U6yPXJpg6+n+TH2wlwOApPc9VgCG2JKS7iWzBB+ckcTbA+2dSy3kyOePTANX9HK8SLzT6zvgbT4biic8jmrSO30OQgCBxRBY9xxrm5EhC7WnXtR1khZDIXgTQGDNQUCjV76O92/UC/fqHBuRzuioN8KtNkr5oFDIQIoF/5kXujTu/e7v/eG//+Zffe+Hr1XxJ8vtL8tD/9yqssCDdqvgvo10NpXPXJea8+F5FZkAMbYQrzBZ05DDsUCGqdsoJEi6TiGwTnv/sool+7hIJPIQjcSSiZnpKe7xhOEC4N2cI8BiW1xi+/NlNOSpp7nAE9KQfDGatJBm7st9ckcFrT+wqGomp6lksz28QDjosbUVll5tad7IPNTYiKZ0+3/8KI0fhfK4a81E6YNwRyEgBMzP0MEciU933xGvdD9vvVChVGpPpTTlGyTZEJiZBSL4+Xnc4ImT5DlUVtMI6to9Pl+o/8e//smBHUN9nZVKDY0fj+BsFvLlIJAxoLJukGfweQUQME4zBrthZIvqLo1OPghho6bpaQ4VxyUkzW+CbA4zc3cLsiel++OXZNwHYZ1DYJ32/o3EGwIRnV1nD7N0W2ZicpKtMZBSaH+5LhvBouvSyhqt942Ic7/X/zoX727dUZ9Gleba1Vp44yvvXARdW176cZtvkADNQNSWTPXBoOi/I2bL12ai4GYVIQAOkNAyxCBuI3ThKxwqV6sz+XxbLovUF9Ys3EI9SMuwv3kTpNuFYPLv2DAaTs/Ww2j/cCgqC9jKuFH+RGoGJWg+BDctEDCUCsouAPMVAspAKuOvcSJonEUaafoo9Wod61AuTw3+NzK+3m8zkqtG8/F6aYJvaxcC67T330SIkbFmSEUj7Z2do2PX1KFnPoxX45hSmxarqI7MkWbNdLyTieA7P/3XfG6N0RL5Ht9KEKsVVkGEtYlrGnX92hLBNXy52i8RwRKgWOQOdvBaWVnLFRG8XwkElkAEySTuMWvZ7CVUJYad61quVKZnZnu6ejjyBYVAj5+gEXzG5u1gyZUUJ9WveBGsZts3vh4Nq0vJAYDnWT4TDZfq9TSuM7zNMjr8meeW82KKa9bdfeJxcZyVVWp9xwIwjn/VTFjLuW9u2GZi4pppJGEaYCjvxWa9OBsysAlwmKPG7JuLYxGXvRCTvya+lo0XfFg3EFjn6l+akMCkpFAok8tFE+nxyalEZweiktPKw2xVQi+G43QrVQlPcSCRrc/DxVLVwqFY3YshPxGjchuQo+K5uG7etQxsSVimYWv4rRFclLknq0rj8c78WvusvvTVWONA9WTfSC1EqqiHei1SrSVoqueVLa5EtdXL9egkvRsBDYE9ZN5+FAfND7GfC81nlRd6gFhAQDPN1KGU2Cc2YFUq19DA89uA5F36dXP7Rba1SDRarnv5en0sn69HIx3tHVHMAYdo8/9jBKy8Vg6f0A9Zu6PioQaNe5XLG7xagjXloiIogFfa7ceGH0Q5jsTc5vM8+FyiyWfORCBjorjsV16dBySmkyvqnAh0YI2F++UVtl3cKAMw5MW9mY2VkWuhWWZ/2JIAcFSVbLgRAYirCWJ9n8uFLF/OrbAaD240H3rgwYHRLO/7HxzrXP1DzBCxyb5QMt22ddu2i1eu5jKZdCwm1WW9IkVRLFH/nMjiiT1PeImwQ/2zdbZXZz8Nrl61ipq33c7R+PVKraKpT5qBrVFSJ2cbRLDKBIAsJeDMqFar5Qo7s/FExRDbZRkktWQsGqlUEnQQOLqFdUGxmFfhC+xtjW4IHFdLBwZgYTQsKjYdX6f5JCFnPeobAsrZAEqHE0V5EQS7INw9CCDPzShl2n8Vaw9bbaZYujo5sWVoKA6iHaqMQm6hToZVsgCteMFEDLgZvGIxU0f9h9kK2FQDTgfGAaJNzIv8YRuzS4yh0D2QhzSTTx++7ncUcwv1WsdJgCJ/Bnh3417coMXEB8hm1dfqxZD30O6+/+cf/VayMrGrE16VB1PcSyxk1I0sgAYPuzxdZW5QfPB5KQgAQKC3BgJsuW6D9cjnWsde5bt277k2MVFWb1g9V7bFgikkQ52PMyxR5/7gFgYI1AGigx/m1GxiaakzqRLxuB6Np/gBz+SjoQS+khVON/kV1Cdu/VsVcqBO1IDisAFQAKqjmlNBH9A1p1Fs12rvoUZpC9aHIQcwVBqBuwV/TYKAhKVBAAi5WnvVIyE+WXHj7p24MrOgkWXwuyoQcCIZSe/+hB28TeBDK+5ClQozvjXpL18s7d9/0Nzy0J9h/earQ66QgY75E8mX50TZ6Nh0oVAqlqVHsCBlHDNBgGjGR2j9OWqyUqXs3V9rJXgThKUgILDKpvO/VXRYz410NpHplbAFEywvx0EuHTowHNm3syvXk67IGwie8AKQ87JB/C3Pn0w0yQ18fnOTopdNFXxYBxBY571/SUfJKPVWWfnX3d9HbyVfKuWSKXr+UYidXrFkmdhDrgL98p/YEl308Su2w/ns1LRXqUSjUWbS8DnKohoCmt70LlKSeyVqaFYTva7XJClJVtaTajD2soRjpS77deEHU88qVPXGWqEeuOdDoXgsiuHCqaxUiX5/cXY2FhGi5QKIOJWhmqiFLYF2qSFkxdUqgvAosXO4gIHNIMlAoxlQVK+COIo2J1jIrOWJ70G4wxAAvM3QvAfN2o+/XivXapMFxn0jXf39UDwxRfn8NKM2E6/0RugVRaCQ6l5HOvRf/d2vZlKRJ3emGA4zZEMlYeaXOeqWprJiIY/GjZUEnYkDXD0UuXG/0no8EPHUTXeAwUZX90Ts1TTG50CgSAZODb3YdxcJZOvE35Fr+R+dPB8rTjy6qWv3liHLEjORHoqDv7s2slMZ7t7HDrFAqmN57lVQEOZDoFVsArXWR0Xk1doB2rpV/9L30mGm+H3S99j5r3dgYHR8vC/XYZ/gH9e7FdKQcug4eA/0mc6u06lC1ff39Lx/7Ojwjp257m6sB/rQuA9Qs/S65Hin/12p0skmwDY8GbWoR6wd000IczXKcDxm35e66PNNkQ6eVs3w8iqs/iKt+uXs8OWkB95amf3havX1V15NJhLUUAaAXxNpepLwR3T+7N50vvXpeMbvQe7TszOlcgl/b1dXVywarVUqAIhynNiwtCrZCne/4oeGTPHfBD+3DwEfyq0ZCc6iXvmnQpFKvXp1/FpnXy8Uq1hC0q0HWbfQBQQG70DRdW+gK/SNX3kmTv8yXKyVZplu4OH1558dCii70AxLR1ALCcCvitELGTf48dbrtw5TovIBOQIJENJ9EGgBviSKWNrkyBwYmz4CbHEtvyQGZhhgP33+2v/1H58fPf76//JbX929Zdj1PcwwW4IchGLhRJ/cxZWl0T0KVLFBWAICDpRcm3/NSMYSho/mq/v4xlmO93EFb6NqIvqGoPEJPRod3r5tfHJyanYmFmd9jB1Ybp4uTfJXv1d/4jxElNxguAfqw1u2VoqlP/7Wt0YvXWL2E7FicXMciDOlJXG/VkIef+puuxzIBlWsPEUhyq2FVlru3Sf/alFu3GCX3BWEtrehDLUUicEnpHFMIwEejovJa9f++Ft/dO7M6e3DQ1Q7wqCtZd+80jr3B6+bnDGjgEbD/7SoUp6enqlosKTW0d5OKgmlQCrcGEV3J4bIBpdMtarRq8mp6XyxOLR9m8o2BDdI8VYqA/bFCOrIQyK6RfF350KdbaFMKo4bDI8/s0iKNp5EZMxK0aEKxsZO5WfzHAZI7W6l7CANEKDjEI6WyxUJErG1C4aTxoO9lTQC5g7XJbZnKCZeORM+eWS0VA0jf6qasHwjLJj4cQ5/pABcv0JB1KhI8LtWIbBue/8NhJg+kyiTSoeTuvv6sp0dpy+c79i5k5lyUnuK6qttmcB+Csky+AbneVsq9ZEnn3z1rbee/86fD27ZMrRrV667K4KH3c45JQHClyzofmlYXdkhMi1Xy8HNAyCWWdoqbLlAGlXAVbURiZdWKZ5VVzVCn2BZFcHCXrkdeMcMAHpiNg2wWJgt5GdPHDt65uSp6mz+0898YqC7h7mO1QqjtiZLXD6upcpNeZkDQblzgylTqlfPXbg8MTZGce3ZbCKeoAFs7IpF5Hz/ls6vjZ+F/yr4uWMQAOUN7BvehXbhXfgX9SL5Q6iIQql87uLFvoGB3r4+IyEhVB9vtSKy8yjEcjHD0js7UvvX3/wPTIH9md29f/vnnk0wCGSDX6J1N+xlziNStbVlJyamKqVKlJMBnUmgfFqo7VZrta7TASNwylXIZZiOgfxisRSx+bzWcPvEXeNXJOAjWyhCdgjd4bQXbfcyncKK4nLBL2DmvAkOy8q/WHnN7ChRGRRLpbZ4UkM6QZgPAWSnAdWE75wonh/JnlostiW+3j+v1rn6N5ljUtLXlvVELrt9757n/+zPtg4M9KQzzJgXUjWACi+IV8QjoFbuNz2iWbn2dnQ8e/jwyMVLR04cf+2N1zcNbd22c+fW4eFUJs2860gkRiZK7UtADX4qK4K59GSc2+frI54uFBEJqooFuJt8lROVMXZ2bgyZGURVJdX/YzFCpaxFQuVSeeTcuWPvHT114kR7W2b3rl3bN29h/3cGhyvFspkJlq/xvWXR8NiSoToK6P4wXf9ipTKVzx85enRybDydSGzdvIUen/zA8miIB/z6WWZOwre+sdfB5Q5AQHgXPehKcJC3N7rQ4eYgS8hmfHpy5OqVzx1+Cp8WH0RImJtGRreMF0e0MkiNGSYL3u/9++92PbyrLV7/CrMNOGoGw4OqydQlUliuL2OcTCY3M52n5xqN4WDTWpkgrAgCQjOwhKvFldywf7M5WqSVfZHAVydlFMNwqxcy3U0EAeyIx7gMfj6EGpzJtEx42o0pKJf5gWQqUBgiuQaRQqEi6zvaFI1792l+mgf3SUzVAhOgJnRB4ky1NjG95kCzztW/051gBSRVdPofK6TCnT3dO/bsPnby/dxDDyWjUfrNMIrwCKdYh8m4SqjUSr4aqBU74irYuqG/v7trslB4+8iR7/7pn7G92sDgwEP79m3ZOtzd3ZtIxisV/LBK7VMJyh+xyMRs+Ffqn8fWQCxj7MY7izJvgw4ZEXIEir1hTaXXzAS1x5SxJvpVZgsT4+NnT59+9513zp36IBmLbx8e/sJnPptJxKORcCIcidNq2kgWJLWrqmhPlpdea8oA0wgi7OjihWKRaxNjb/70nfGJcVyB3RsGhrZuTTJWUq3RF6mVilTbkTv14c9lYlkGlzsMAcFWfWuz0hA/SHSjGckdJBFTU+v1YrV67P33d+zdm+vsRHOQxL7eTk3IQyv4xA21cAXqYNIroqJzy7W2nkIszgBY0vAuy9o0DaMEmKGiilC4LZPN56/BVLCB/hx9iC/c3e1UbF2nxVdfKrJ1CMN3QkA9NDExiT2HBUCzxbPS54539WOyAyA7LhR87Q8KUdRwlVm6Nf40PZMXCADr3HPbGnxJpe/CIOOdxUIBMtNSonCEXaT0XtSnTIPQgADQAFx4W0OlQjE/NXUnDtlq5H0Xf9e7+m+hWvWSEUB1L57NDe3a/TdHj1+emNzQ2clbZvKzgN84gSgmxFDbUvwSYDL6lFQTa2OxeDISP/zIY0/u2z89O3v5ypXL7586c+Q43JJMp3IdHdmO9q6enlSmLZZIwkGYG/zBqlorDb3AX/jhEJrwkzKfF3iE55i9h+VOPAQodSAGHn43MF+p8q9SKZVnZmaujY7OTE2OXb3CxP5apcZyxC29fY/v3tueyaQSyRRSQ3XWWkT+KBK/PZ1CZ+JIJFsVuKh3wDUcLleq09PTozPTl0ZHL4xcuDY2Xi4WN3T37Nq+vb0tq0Fe7SSmJlB3pbZgTdDK7qaAMCPKfQyuN4aAo4EmPBck0Fc29atWYyzlR+RURJ3q1rFvlVwxOsnq/MWRQrV28NFHo5rOIopXbqIxu11IZXxbSRDFQbBijpB2vGBbIS+ZkBaJhErQJRNDISLFQQORoaKSBkrr7et/96enJianM7kMyweZQkLF9V1VMptgJeU/gHFqtQhYBoJlEJvw4qmJyZlkKu3UtgkN61y4XorQy3+C+BHAAl9+Iqz3yee90VHYXwYZCFIczeHU71IBLKt3EPIYzoyFw/mZWcYQWfBTroE4JF6Mr05kLZX6AXoHtwkOXAEo+6qZwzUZT1yaOAvE1IW04PPDWgDMulX/oGop+KPNQV2ovbdvz8FHTp89m860tcW1BRDnZPGBTrAWMjlz1zGOs7JlUsv2RuKhR9OxZCiWLMdTg9n28pbhQrk8OT0zMTWJyhy5dPmDn75T0jK8MMwcjsdSbW2JFH3yeDKVwkgkJJiHH0VWx9HxrZXUJMJavVQsouNRvflCgbPbC1ppXSwXSzNMwi8UyyXyprohkrN5UXcm0zMwmMvmkokk1nqMcQi71qsVpoS5zAUI/qu3yK+ezPyQksCuwSsg/2w0Oj46+sbbb4+MjeLfp1Dm+Q8MDu7ZtmPLwCBUws5BllIzAyTDeaOunfKUAjC5pJxdkcH1ZiAgwDZA5wDo3uiliRvohL0cCCCd7hh4FfAxKyOxSxOTl8bH9z/6KGSGlNYAjsaxLJlle6sXctCfNrNC18uC5a+4ySuko1kbB7KMcT5pQywZClI3oovw0PC2l196bmJqZtCpJN65bmuzVbdap/WfDryqm66OBqr8ytWx/g0DcY7unQviWuPn5ivBHP8d+gfUp+ORR9uzp/v7kDIaz0SIyVhsRl50Q2a2nQkfmMzUmc2NX7vGOmFclRUjtKbiVx78dwS6KJt1/wLMAArmWXGsBp00G/LSohtGXS+OjPT1dCPdAQJxZIWJQddAWLfqfwHsHTJ80q3VY4n4Qwf2v3j16onTpw7u3YtsZQAnahPjUW9uDN6wKHLXjYlTfpVPvVYtl9C1SYzlUBRayKbS3e3t1foASNeCezbdq9aZfTcxNTU5PTU5NZWfnJgoFGdmZ3Gs5fPsO1BiZLRcLrl9eOZXteYbB4kEhkI6pYABnk6n+7PZ7MBALpdLpdLs3wflxcxuV/8eNoeHbXkv4qPKrCvzdbicrc6qupqvB7VGV/cG4SGPcQgLA5ujWixi+GcSieGtW3dt297b0YkTUisbw+zuhmeiMTZhkh7YkCP0bk/KMwh3FgJAWLYpXY2KvFNYfijZWCQO6cyWS+Fo7MjJEz0DG3bs3QMS5FhyXROh2Qkgw/dN10mplIXIHqWCG9mLU/ZskV0yME1rbDFJcXQwYRa5pmraodaFUKhnYGMu137t2hi+KluX2lK8CdGW5+C2BQJAW0MmbPfL7pwh+hPsUL7z4UfwIyJS1JEX3/oINQ7mCew4lkSSqy+xoSf2q196qPbJjoGN/YZB3lmflZ9lVJK595EB4VQyNTQ09Nff/W6hWNCpwV4oGo0gq8iCr2bq+8W2VPrBuQWcDIJFy5A1IKvV6MNhYDFV4tixY1/54s8jroGFcETnbI1A5UFR/010yAGOScxWKdnswUOPv/jd7/706NH9u3bBHJpIhQjFXU+MGuuWZNyRUGi3AAMYRzEMgCtfZgCPxNb8QfkPhHd8A+QRD9VQ3Z2plMc6bCla3Gsat1VuRLX/UsINf5E+KJpZjiYyoTBeSPTbwINqIg+cqmTr95QFG/3idDIfLFIAKS1TX1dcfc4GddlyNU3f5F1n2QAIESryhr9KNR6JdGSz7I3Y19fb29Pbjp0RT2h2t02YUGvxKBgE1AZLZK1R7jwHYTUgoE413TNb3wGQET3QkhARw/KMvvrWm/FM+sBjj0bpeUg3gGfNxAdNDte3gRcIQ1alV8PrD8FHpf7Hrs2MpQtTETaREFnWmXiANQK1cU/Z+i9aqNe3b991+uRP9+7Z2dWZIbXeE1yddBeEpSAgXMNuzOStMX3v3SPv8pvLdbioYMEg6KPUsbDFZ7lfVKv/LWwciP5c77a4t61DtjpvJe4IynYZNuU4NJISh25GZ2dnuVweGxtjCJPy6KU4GUgEJJKptdugKVfFtXxl6NVNiQAsBHyxjMNOTEz09fXjGBCcxXr8Auw1AKgHQv0LGwShg/6TZkTzBrXdPjBw6KmnXnr++ZNnzm7ftIm3OP8ZWMUNYKwiRCLPeO8o1vIBwUpu6hkzgNmB0rjEiiMSbRSNDdjgJ7rLsLN5RBVfffOmUWhZkGQBheiIHnif/ClPMwZUZdxMPttL0Bovc5C3WRvEZ4UQhWOpuMw0/qT6qL6qjKVUe+1ZqfVF39yvtUhSh7x7O7u6Hj/EqCMvcQPG6YJwXGiF6X6ASsuByRDLhr6eMnDp/RsycJVsvA1+7xAEBGcjKtBqej1cheJqLM0onzhzhrWmTzz5RLajQ+BnPJ4TnmIxzR1p9sVvpxpu47koVKYpsO0R79NPHmrr7hjqj0AYOuzBiICxZtGeKArCgFIwh2uPHHz84vlTpz840962ixEpKTXRoiUhoiW8naqtx7QGF80vEgfnp2Zff/2GKNE3AAAyUElEQVTN3Q8f6ujsco0Vj0sY+cH4DViz7wiTQGBA0CCU5Aul0cmZWK0USSdSmQ5xeh37AP4mznWDdU+yuezWrVtff/2Njz/7LB0NtJ2beEhnV/VDhJkZct2M1udHE5X4udSPQ/EDCYADTN988839+/fTWWJsDsvA1/1rBAY3ook10owbVlN6T4TrayloWS6zSLh3y6Ynn/rI5Wuj50cuYPaCV9AMItWh0dk5Lp24TrpPUo7NtZlQG+IMVK6VEFuig3bGzuFBBDT2Ovtv1+jAR9kMHXVeK1cxB9RPqvDJ/2NWjbvH49Dyx2lC9N3YsDdWrTPGG6vUomhfvPrVOmO/ETzwDFvoiBVm8lfZfTAKT+KBqEOFOqCAPxQ1HTN8Ungn/CCGVbOXCSZP+GxbICejcUYa4jibqWmpTNFMT9BoAtuPEwAI0JF56+wKshRglsk5eH0nIGCGmsgSQENVUCUux2js3IUL7F71kaef7h8ctM43/UWWZVhnz8zE2y0bVoGi5EqQv4y5fz29oX/5z772L/7HL379K59MhMoMPvCVzxQEYRhVcOcTQ6ajY2ho+L33jjLgJa2vSGaguuvtVm59pxdP/fSn7yBQdu/ewxAg4DMI2qWl6fYejLd5dXw/rGCSMH/7natf/8b/++hHf/3VH79lc455Z7r/OmxqfQbT7SF6/48++ujJkyevXbtm/n4lM6YHybC/TP8HNiABZQTI2yVZTxgdHb18+cozzzyTSnPCos3JXVPQeVDUv1NSKC7ImTYbL4BJIXPD0NDW3bvev3Dh3NWrHGSuNU6oTAlcR/pSdZJaZjpIKvJPDKlD1jVeEJE4NtUorajFINpzj/nOOAj4ykdm0jBubk56lTj3h2Rt/eMDH+W9Zw4XfThm2/GnzXbozkXkk8BqKJUxTxD1BCiNrxquYBgW0jSKZNSCfBgMsHpbpdUOIi4O0un2VrsfEpiPwIBCIhpjmZ8Nb9BwoxAmgOEMwEjQ5DLXkyBh829xzsGbm4GA4cYRmIiNPyMDeyMMYq2WWeDHnxeaKJbe/eDUmStXDj75oS5cVnK8QwTmr1I+EtP83i5u4ICoJrKI9K1OzHbdMBBl478si2UpI6YjsyE1GSWQMa4HlckFUxi/c233wwem8pVzI6OFIla0VU+uN6hShGl/qm0DTO5N69V9vd12NPK/J79UHvZxf64hrho00/hecGi+MSirHx+9dm36R6+8/jOHn+7bMCBeBr76p5E9H2LmwRR5iFj8UX/K4a5cyxzx+r1472yx7M/T0aQd4+JGYfN+yVK7lkkUcMsGJpsGBx87ePDE0aPlQpHhbRvidP1d+iASfb4l58vRFo/EvHzXwAPtdbhxVwOuJH3r3/xmiD6JDEzoFQH6kyeOD2/dPLR1S6vJTT5rJTwQzn+n5Ay7rXgxNDF9KRrZ8dgj4Vz27Z/85Fp+dtuWLamoJtYhwrR2VgKLmJJrsCw/oneNgjFR0IxB2x9LUtJxKVHFIvSHXMeJBYQ802VGbUphXy80CEds3giiOO71n1xleXJr+61AiYY+i4GCdgYBaWF7F91d/czcg2XTvMiYVdCJwPxgSHDVFHO9VK3VZHoBlKhWYGPI0UDgYX5+RGmptKI86GEeRNRV0PL9OaBALZqqrVg2l18EhioVEOXU4ROINm0JQjEFme4XDk0U8u+der9Ur33o2U9u2LhRapWgTCxoxrhC49k93cIV3EIDGJ4MZ2pPGdz/16brb79zIhUJb+qI7xzewEbzIsWaxhyQfZSoDWaoL5GhpVgs1d77xOFP/ul3/vTZjz+176HtcYaSSkUNBLAOUHTrpguImfRn5De/osCKvAxisl3nk9v8qPfTU7OqtAp0UH/+nMXD1f5ojnx12EkyqdV24hItFK150emZ0vdfeqNv4/Dwzr1hVnJi2vFfEoHcDAgGDUHHBwlOGisUiROKVnAAZjyvO1nAc28Q5JsoqUkkSwLL6E618LyOtswzh5/61rf/6CKbhe/apUKwPqsluR1ZEeBojAx5bX0DuiTQiCVdSxfINdIqZ1V31wwDg0wAebeAOYKbb5LmCoaJei0WCZ84doIV/z/7mU/LRdoSHBhbXty/tw+E+l8a/C1YCrNVzq6dTLN/5/XX333/xPDGTT25dkwAWA7kw5/gHtXn2A/LQGQhH4BYQ4Shvpp6xdy2spl9bjCG6MmviK9z/adb/HFlL5eYoojQKHC5WCt6f0cyWVFJ6yvSPLiJPkCJEYOjAyeyLRJDNZCEnDaKACGZuAYakJzt1oCAZ33/2LXR98+fbetsf/jgwd7+PsTxqgIMakY1aTKr6uBdvVj/z377Xw70dn316U3/5B/8hgwNtI3RPBFF9iJ/1YiKYdDgknr44YNTExOvvvpmOp3cvXNrJJapVYrMi1W7RJ00HkuaO7mwlHIhYzRAqMj6vqYClUbHo9qBjLVRTbAb2TqM0mm80BoGEND7mAKxUrH64ks/npye/bmf/3JbezvulVZ5sqD5fDKAGTCFA/uu2X4pr4J6wtRiQNK8MpJdKw1k09/bt//hfa++/jq7mg4MbsTNo7K0/hMvDrJQEo+iNbXJAmS60tzvm3jCCrUGIc0gcOqVs7agUgMbb/1IvOAAFLytzIs6/cHJt99886kPf3hww0AzgzV3s7oSZM2AA1qIRAaHt+Vy2Vd++OLx0x/k+/r7Oroy8TiCDK87q/TdAidoBt0vUSfKb1iPWASIbIKTZdZsuN54fY6+mmTUvFkz8AkqevMQEOLnC2+zFx1duOwUxaKZyEHZSqaSBmUfxQUjsUP0SISzfM6dPnXu0sXBoa2PffhDsVRKo7Bma0JL8wu5+YouncJsWX2SrYtFwshysdIR6toey6VZ/gw7IA1hBIKJS5ObcEBNa6Pxa6AzotHERz/+yfzUzA9ffIXdLoa2btTWm9WqppprYgHdUjnRpPx4JJDfegoAhkMRwTCtM3wJzQYzYR29jDblihkn0QGWKy+9/MqJ9z/4wpf+Vnf/gPArXSTH+zISQ3mZASHY2T8gin8l6hXwXJIYOwPfDagUolYO2kQs8ujBgyMjI3/5F9/5+S98sYPTPiMxlitrLQFzn7DvGM1UszT8YzryJsyLlVdjlWOaVm+BiuNECtVAKnO1mNln0x94QzsZ8UK8M47Lt4sjF/76L//yox956tDjj8dtP65VrupqZR+of0EWZIvVapW2zs7DH3/mxJH3zrx/kj18+jq72O0/EY9pYwCJQeLgg7OOviXiDYzLa77zlpt5XGbcyUsFi+puW0jOvbjzV5qj2gbhnkOgFdlSqVKmRg2qGYrTHo1sNJ1YuzCV2Dq6iriJYZJOzcxeunrl6uREyQvteeQgPiq2rHAkZ5lI+65OEzWHBamHtiZ/BOEU1N2bLIVnQsl01StzKiSGCSP+VgF1b/lPx0iqhvkvnA0tjU77ah/7xLN/81z5z7/z3FMfOsRSwFgswfkTfFFC4jiLmcxXqyGrA55lc21BB4sibIaxEE6YG6kxdz5+ATrnAkMMO2B0dPylH716+syFz3/hy1u27WCnDcFRi/XEybpaFnY154Hd+dRj9/4FTDD/2Asl0MuNzxJvLfVqjb74noik68xlP/PJTzFz84Xnn3/kscc2bNwUi8fU7beMapwKiMMiio9Bp42vRdxJHvNvQaDlpuwBuKxYOE2KP8oeaJyqor3UwpHzZ8688dpr+/c+9LGPfjSTSjpXSANBC7K73x8fePUPuqF3m7QpFMKLmfTeJw5tHRo6dfzEpQsXLl250t3RwaZO7Zk2UUO1os6KhQZHGTPrjTjM6Mc+z7/oWyPB/C+r8qTignAfQGARPYAZaM6mCokezJMqb7jGHekPys0aQ+54k7OzI5cvX52YSOeyW3buHNqxI5ltIx1EiGPAzdJYtfZRMbQOhWkVqlVM28d7qei0V2bXKvX4sFC0EFxrAvnnbF+qrVUpdOa1CZUmj9ZqlWSq/TOf+fyPX/7BD1788fnzF/fv27NpoNdjJ7tySXlzPg2lsb+sL4pbTeZVa9/qZkx7CMKy7BvrFKiNvFAvnGegRwBUcf7PTM2ePXvhtbd+ynbKX/07v9TPlA5i0KdkRF224mKAWF5kYALH5aurYB4NY1qdPOadOl4pFeScZzGSk2vEEC1eT09ZBKu7nJxeV1fH3/5bX/nhSy+9++672KA7d+/O5tpJb/t/aCoywlDG2/yRb5d+LVwdSubVFGAbYgzq0gY0Vuwm+g6FpqZnjh89Onbl6iMHDjz5xKFMKkXrSTBvTs+8/O73hwde/TsEiRdtWYvNdMbLk+7pfri7a9PIRQ7ROX/m7IUrV9hLv40ddjs6u7NZjF9cnkYqsJ3YEKlsbOo4fwms64PY7+6FZaty96rwQJckZIsmFuLB1KX5+aUQ5Fenn2HRwqVabWJqenRifHJmmnNXI/H45h07hnfuaOvuQhRp4z9oTR5JJ8UX5nzHwc3uGPTyZXKQNf9npmI9bAyVhNhF9HqrgJSU3JSuojvr3GT+1zCHTbKVfaLtZ55+trOz58g7b//VX79wcN+uzVsGu7vaw8k0p1B7dCWXHvtXIRbItVGYe7E2ruhfwcXoQB15cwBwo0P5+DZ1bWLk4pV33z1G13/77r0HHzvU2TeAtjHsas1lS/NdgxvgaAJDbhe5Z1QEe3N43pbBtt/9xtdKk09s385uEMw7rrFXFzaaEEYFrhuaEagypVfL1Wwm88zHPt7f3//j1159+cUXt2wd4pAzthiPx3D8YKnKjOVHRsCaRNACcKgZCHbfJGc1FEugY6yorI+PjZ0/d5Zj1Zgf9vRTTz20dw/nvZs8F0jNYrgBbBeUdJ88qjNxn1TlnldDbhyhH5sZXhK7qEp17+q5c2dPfTAxeo0t+Jmf05NOZeIJZnsmWdLHoj7+sxTbPLfXAeaapI57jpI1XoGlWcvoik/snksoVThkkU2VqlOFwkS+OE2fGNGSSnb39mzasqVDE4sgK3nSkc7cOH+xSWr1K1cvUEPkIB1VDQBEY98/XXv2F//B4NaBX366/3/4zf88J8WGnWxTEOTyF8Pov00IUMP5j77z75QZOn52cvLVn/zw6JHXsplYf1/3hr7eXDbdlmWHmhgOVoYb1Jx5rOIelMvaCdZyNQPgyQEvoGgfTq9UqhTZ/DtfnJkpjY1NnDt3fmxyuq0t9+STH966bU8oqhObBFLrW0gEuRnHcwDhTg8tcobNuFgQSkLO9C4Xw4lpz5uueSnPy1UraRYC1LxytEYnz7ZptIxc7W4ETQ37GHIRcsTlOOkf/+Qnp06dYs/R/7+9M4+R5Lrv+6ujr+m59z64u1ySu1yKXC53KYmyacaSaCmOhZiJFYQIDASOEQf5QwYCBYaCHPpDTiAkQWIENgIjTiInUUTFdgLFEcQYliIrtiQ61gFZJCXKvERS3It7ztHd1V2Vz/f3uqt7ZnaWs/Lu7A7n1fRUV73j937v+6rr+97vXbt27mJ5gPHxcdYj11IT2DB4++mJ7CuK3sr1rX5onM1yHdWKk/b6YXYylmhvLfDMXjp16mS31b7z4B3vePDB7VtmiMWKaKqGW2Dl3ZPFcnG3+n1o/Q9LyD8LKn778BRYoRZb9+7Zundvvtg6f/bs2TOnL549c2lxke2e6J/TL0QWPUXwEYfiwlVAYAUCPC79w1rwesB4btTKwJpabcxO75uZ2bZjx/TWLcyd67/qIQF1DdgwcXvR8rTxeoUjllHlQPR1+ban2qzXPhmYeaa2uDuZn0gc73trdPo8qIagJKG4/vsUZeXlHU0brqkiRGOTUz/27vcfPXrse9999vTpk9/41vdxZf8KRgriD/1j2rDwG/rULxe+/AEWXFNkWpdRjQwt6kGdYOeOXfcdP7D3tv315gQQWpkCm2ZQ6q0iCEGDm1LSQOLIt/kJXg1Ys6DsCValG8nCGO40Z5TeSKQ1XdrGP+pqoht8x9Zt73/00ZOnTr3wwvMnT5568fnn/YBEdgS2kQZIH1Kg0f/VdF5T8jc8kJ+NsyQZ4KZ4NOrFyoOqj62iltx5YP89h+7evWsXU12sY4vCkcFYZemf8yViNsxNaP33i0ov1PKwNyt3pZN+hf6myNtZ69LlS2za02IjPhpvWVdtN9UEMJPKcBCOgMBqCPAQyahrB4zPDn5sBcnrtVKvjzeak9iVtPSC3qV8eGcTlCdTEfTCkQPP2I1/xJSs6cj7gdRYWjJ+Yb748h8/PVlNb99SO3p4X+IyFzEIkZ4BwrL0LApL08HbkFirq0ltoad1sc6fP3f+jXOLi/NZr40thB/RILpHaOOeyTulpqF/Kkb+uaO1maTs5MVnfHJiy5atzYkpFa3yrEqP4DMAcQAhFX5/ZYgShz6qBBs4kQRb8tBAZy3QXtslz56c+/yfPJPOvfGee/a/7fBhkuwmKhzfvaRYSnEQe/VvaaJ3XlmgyoxuXcRmZqx2d+HChcWFRduAnHEbFqwUS7ihhquncZN9KBjBvuSwXFOLVW08TcfGGlNTU1vYuKIxpvIUcvobPXxON+hzG+h/tCgHT+0I/fsfi0p8+EDrWV/+FCwRE24CAteMgN4jeo1qXJjRv17U+tiDV75Pret/2SvomtNaSwRVZ/tt8SIr8ksM5zee0b5mohyWsq7StS+7hFa35AfhfyucOfjFLH1NmuvwZPx29SDDwBv7qgRkWTYoUitoFbYqhYaXTtwP4OF79MDXQg2eCntA4GWrMjLoIkr+51Mn/+qH/5374898+omP/rUP/BSitBK4Njkb1Bp9KY1KvdI1uvGS82fv77OBi7p3NtOhjBsa+jVyvIVyH4z/VqKDk34aVrplEfO4+0InyKD0VS8vfwL6CZfPhEKUwQdCw3dA4AoIlI+YvVD8U6Rgwyu7EyvokbIHjmv/kdcNPnjLw+ssPiDeiJOLi8XzL7zO8he7JuM79+/ACa1Y0ZIGlFUSuBtVjetrOHwNhwhvtVq12Ub8K8QaiBDqEBZZj434OTOdeOjRvxoJusLPc7NhzjuckApMRSCtTrv9D7i515P6GCs2UTWjL4FKBJU0W8Z7haA1O3j9LBcWh8qqqqbUEoYvwzULuxUCAs5KzAeKmY8KblB4eJTv/EGgDf8d6H9YhP3f0NLXWFnV9Y/BILTd+VO/g67/JF3tJzuIHL4DAryv+29SuoT9ADpY1HO8nf2DVL6ffGhuS5cbiaESp9fXNPQ9x+70heLjv/Lp27ZMPXJ8x+37flIjELW/Ger43429THW3QsEVDtJclMTRt776fJvLW+xE5oeMSd58a6G0OusVMqjyjOI0er0aIsgdqUxoxiixenQERCnzKvM0YanmiGkElIjEjSa1msi1uZePJrpbya3TU7k27a4hFM/sCIKjET1kyp1lkBz78SyEAcu1lM6otFv2OtD/sGh8uVJfp8TLx6Kkf1z1njMrUP8HO3j2R0X0vYZO4SogcFUE6Pgt2WAkYP8VY2+f8o2zru8dzf224c1UUJxrddwXnvru3YdYu6/CIu91FquRuZ+Zskz7gsWl2uB/JBurXS7NcvlzW/mTWk3AhnC3fC3Jk0wqDJbTNAhVfUBM1SuFE6mWQa2g7bQkn0MXo2CrOrD8ksRg/2eEKG8oqgCFuzynnUYLdiHXu4wExGP2LC2Rt/qND7wyyrCkrLQRLhnXInn1NG+Cz7IMlrnzF30QDN/+6SboeAOTDPS/BNzhz2uJc/+m7zt4RpY9OleKEdwCAqsiMHiOhi/9VYOu97sHXodatBwvz7zGrqEZ/9v2XKiMt+LEzAI2RgF33v/yVxBdXiUPK7yuCYEVsTeIgyf3EWXphR/SpU0y5x6WHgniL/uornBXUAttpdSHXG598GvOzU7SXwPpy7CkNgv72/ipACuF/ZAuSJbWw5z8kHJuqWjkqHwmbynFbpAygf7fBNhlT4OeeI6VP9U3ERO8AwLLEViLoWjZ44eI/hO4XNh1vkc3a1rGWI+5ZG1XmpSY+09Wq5007dDo5+3PeD+1KrWozDD5kcuh4ypXJQJlNtcnd6uoc52dyZTeFsqbYCql4yhs/THM8BXeKaVlehiqlGIvIas0UEIqI+tPwdy/4NJ5F3cYlkHfTGyDCrDijMS7PpdXVOn6iL6pUkbz5R/LUZebqtr1TzzQ/xJMy5IuL5Z4lzeDH2/pEC4CAteMwBqeojd5Dq85yTVF8ETE7jxwimzUUD0Tx2CQrLO71264XgWugdFYFShi72mykSdsEbAm2UsDDRAYZcelITbinSpK6N0vuysV4SDfo7m7Quv8TZrWvpxkqaGMgF8dldVo4bbsB/OV9jgrAJMMvq6reX9vImtUk6tdXy85V0vjlvF7y2c20P8t86wFRQICtxQC6jDmYE6/vuhEdnNztXwG7k+tw1qdzJoXgAMNUFqq14lhlNrGPTwn92sANz4bJCT7jHg+d+3I3Xtk+3/+5x+q99oHmmavofi00IQGrr3lyezGo/1WSyHQ/1utREN+AgJ/TgSM9VlFFtqn3d+B4AfWaoap0UhNNW6PNqfqB5q7JiO37QBIuj7un1OBjRx9nQFQ475f79IYUjdWi5iVWS1qtbyTRdhpqJNp4v9GhjTofqMQCPR/o5ANcgMCGxoBjRcnA/zzXbjZ8eijv/jBRtUdO1BjfXlrcFIViNiNgHoA/f9mIwg0sx5lXqJsywXyDsdBVTCK4JUzC7//zIvp4vmH79jxwJ13+WEGavcH08x6lMwGS2NzDXTcYIUT1A0I3CQEYHRWsaaVH0Vd9vzr5ZULsct6rha7Wt5Leq1qmuYaTM4uPax8znLXZQuz5KabpPqmSZYyEutz0txL2WKyOP3cN0/+vf/wmZee/eonP/yzf/3972X0HyM4RP6hWDbNg7H2jIbW/9qxCiEDApsFAdmMOSD2qNffySJ3vXab3XkrSVGvprQ0eywJyFpytjKGOChYmNf/6fA2F6XLWgwRSzF3es2Xzo6719mmodqziQG4h7f8+pfMhkgxPBgbopiCkgGBdUXALPlKkZljWJjZSP6lH3R/+V/9Wxqa77l/99/+2Z9paO/BHpvWa+FfGQEYfG5G6HVVc1MnpvoWlTStIaRR/xgCVGpR3aVN15hQ1Y071eIoIOsECBaATf28XCHz5c/8Cn7BKSAQENisCNiIPvhDs/+0ptxiL/7Mk9/+6unKyYWiSBntnyRav4YR5xoZEI6bgMDQnq85Ghp+ib1GFbaKtmFgcUGWAdTwTNZuwgQwDH0TVA1J3pIIBPq/JYslKBUQuJkIGJ/TntciaDE7ukMdOa+KbXecqk5fdnG71E1b/WICsCpC4JcSlnW9oLC08g9d/BSRbRZIsz9PizxlPQY+BYMzNDRgXZUKiW0EBAL9b4RSCjoGBNYdARGGlvdJaeVDHfQruxps0kkTRgLS7Z8zn1w8A/dbH/O6KxgS9AjIBKMxgFYJqBQ9N7/oXnmNNX/KvSRo+nOEGkB4YpYhEPr+lwESbgMCAQF1KEP5vj3P4n6M78eo7KLuXpc1Epn9ratfnMNHtQR1AITm/7o/OX3IrQwYhuncZC15eMfM6fvf1qzXqRdoSQaUssKhBrDu+oUEb2kEAv3f0sUTlAsI3FQE6ErGdiz6qNDSn1/I3Gw3y3KmAOKeqg5A14BI5nrvKHNTc72BEqfmxbhMCJ43udZl3rU9/fkPHi0Wt9+2fwK2t2mBmpnpsxRqABuoaNdB1UD/6wBySCIgsLEQUDvRlpRh2b8uRmNa/zX6l0+fOtVM5865Gh0AGAPw0pBz2pxWQQhty/UtZChdw/qijjX7/cyLaMf26N1bd9SiHeOamEnfP6VCAWroX+D+9S2fDZBaoP8NUEhBxYDAOiNg3ckwPM16tfNJfbrmfv7xvzI+M3n8EEPN2A+I9X9pW2qpeQIHalnPAqLWxcFyi9B/yrdqa5y1LcPlueKFMxcrvfkDM9XdM9sULO/E7M0YLP8GWjiNIhDGg4yiEa4DAgGBPgLdLqv+8elB/71e5WLhLi8WY41oPCoqru3yLKnU2QnQdgPUvoDWGFVjMxw3GgHon0/Xxl2kqgtoAAaDMLuJ++xXTj32kU+4L//Wp377Yx/8yz+J3b/X61I8DNi40VoF+RsOgdD633BFFhQOCNx4BOj0F6UweIyuf2b3dWJXbTTUhLRtgNM0jugVYCVAbfaDeZlv1gFS7zOOshbIfqAhgXZAURHNU2YPVPwYQuMvCyV/vDWxQJFshOFgAwHcFZMTAxE1dJ3PUDicZ+IVhG1v6JxAOC58cPLSOHM9KlzTGc23r5wkS5I2L/ZOpvlAuMTQuU6+1Lm+Qjju1vUuL3I9EG4TIZV2X6IW3hkRrtCDI7P+ea+5YlgS3pMc8eEwyUTymvdnWmg+hgfZoPFZph+g6Xbd5e4+EVfHcAK5ROsyjiToZYdzQMCe6QBDQCAgEBBYioD4AvqAz2CZBToAzp0rvvTVP01r9f27mw8cvn2clWQLSLfbi5hZnkJJEeMBmWyuPYA0T8B2oLEV541XXZxFyZwrmkVR1QI1NiZNU9HEs/y3xILqZYAIkUzyfOA3+DXGwGCzD1jXFj4UDRPWJrOrOmBqtqOkbcLZjVAL4BFmILwXRQuSpnHxbF3Imf2JSJJec4LE9GNoZ4M0I84y4RKD+LgVxVlRNLV1nt/rcCA8Up1mwbT1wtHN+uBj9YggnN53kXZihhTBYpyN0jmomubJogKqriUtuJYz+STrqtMsmnDEes3BBy+EayWGFMM/d0LSH1xEXSTVu24ibatapiSt7qLilG7hCAiMIMCDFY6AQEAgILAcgUGTEaasFq5y4Uz+c7/wK27X9N98dN+vfuyX4CdxEU1LfTPD3A8vF2+zGDBMbiQGzSNWLK4JaMWY+EiUrS3ozQPO01/hGmI1LiWNMJ4IaTRjYuCWlewICbOyAQHjDUWWonmEsPoAX6qLSB3jZS1CPCI8KZSuqNEkKxiqQP9SA/fEWtHyZWWjvnCM5YrhaxBRhS2NTCAJedliVqWGqn3hBJCGclNMLxxszF0pIqJP8xIucWiOmKpJwkuImXRLQ4KgfC9tKLyfvuJzCDFywRUJgBn6xKp58KFqJkARqsxq5J/FCKeAwAgCgf5HwAiXAYGAQIkALXk6/2Ekow7W93ft+ra7ju3YO6HWeFcNXLXbxcXGfBVC9EQ1tsqsfPVHZJEaZJZrcppnuDINLoz5aNOL2fjAkgOm0rdIrb+cHSmJ0djIBlcjWnxsaDuNY6tQrCI8wqIgHaSFFy4Rdo92tlaeGt/9VvWAKdFH2QMAVtBJrd/BZAxPllwpXJKVB8nTgZwYzZFiwjFC0GRXduSJj1TgVB1orqjy6h8IJyyaG8dbcHkrBX0pR33bBxd2Z+LARYgqKOVHZOwMkL9qFj5lix5OAQEhEOg/PAcBgYDAMgTgGJgVssS0D6MnsM8cr4qDe/OolacTvYhJ/zQsrRVrHf7MBOjTnUiaHuuyvakObNUUHHvPIkctUihMf57u1GePeKQbZZWKiHpRgMYsH6QXJEgtY0DghEMC3IylgYjypN9Bvl64ZzubE69mtA5ja7syXofvYcdSOKyNcJQRgUq2KYYYJJMZjXKQyvr33jYmgLR93cI8zQ9f43vVJhicr7QKZBoXK6qJlJmBKyoH9okknHRNd1Ij9YxYcR+WvnByZ1oZBl6RJcmK7+1AKvUiwEEHcb/k9b36KoavgAAIBPoPj0FAICCwDAHjCrgjZ+S/2Ewd4xyN+htx3Ga5X/xx7/WiRN3PfCC83JvIRZ+0f61/3cgPlrOms+wIZhvgDjJSNHGSZ0nC61AQu8DH6F/uECTx1AgWN6vOofa1HCXfLjCkqy2sMMajJlyBZAa3t5yX7IWMCGdkA8yuiKa2Hxkg4bTJTaSp3N9Lz2fU9DM9qSsoA/0PCakDwrhWqaIPNQokE4AUwYsL01zaKqql4kNaZpUbrzn+WAt8eM4KbmmZNN/NYW5SUvD0xSl2q+e+8Yx7+ele9gHKQHWcfnSTEU4BgREEAv2PgBEuAwIBgT4CvrteTXpIC26k8e7eOONun0zS1Hib1nY3yhn3DrUl6iuX2Z+A0BoNYohI5Ce3iH57mNK30yFC8RrOkJ3nOgssBtO/TqJnXepQGBE+bWG1Y5Fp3fySIHuDfBCOwYE7XSthi6xvyZE8/sW9Rq7INHdjaItDSHGor7LISqGciPztz+wB8l0pXKLsw4U/FM6UlyL9CEqOW8/Fqh8g3BCVPQA/7cunbCozim+HdOJGX8PDIyZHoll1wlegyIqy6Iosc3fvm3ziX/+j1sJLR++uauyA8u3lLJU1lBquNi8Cgf43b9mHnAcEroJApOX84EL4Ka+krg6PXDznOjvzbBoShlLgfBrcMi0z2J+gBCcMtFzYekDqtRZLidm4pAudvn/oGBJLXHfYLLWlg00gQhRW9Cb7AgGNOem9JrpoWLRnQuQnEiUCTj0s6xoGTxSkaxYC/robGM+x8NNuJrgUZ7AgJnTVC4xDYySb2YC+DPoCqAdIA+SQHceAB9PYrOoyCKQ25l6iyBYpCgf/kcKoRET9jwrHBTHo4CsZRJSaBGatBMCKWZpPWJGizy93hKn4QQnEQh8OCSaMDoSTBzpmlLSZX/DMWIkhzaPbtzf27qy73uGxOIupnOGjfhrNk1DwcAQERhAI9D8CRrgMCAQEhAA0A1loTd8iYiodNBJn1AAO1g6ki+P1ejdyF0Xp6s6HgpkYUBWZFZnNz+uIsbwUdajLekDloeiqUkCHOTxk1gBuePtAyWI/S5KQHCJqFhuyC66ht0pEGGbmFXmipQPkr/Ba5A6rBF69ItP4/QLhag9LgiRDjamEy8iOgUKd4fA4HfEdoliKKED2qEBgQGBoPhsZex2kga6JrvEKdMIbwWo4hGo6asvzkXBBZLEIQOLYINgOwSuAL5ozOoHbVYWjjglnkp/0WCrcdxLgjnA0R0kL0KdxNKRGggtrLuRRLU1rvdS1C3exXVTzXlyN61QcqIr1NNvClgRUvcMMBpZMOG16BKhU8vSGIyAQEAgIlAgYqcHmYrZazrY+zr3WSZ9/9dLc5d63n35aNMz0vjhj41+YZ6poH5htPvLgvc3Zmf/zze99/XuvyQAANTPHH07sLGyfih995KGt05Ovv5793peeusSiwZ7Ai7haJHFn4R3373no2JHXzsz/yde+8+rZc91qrZOnXdnGs2bROrh9+j3vPNEbq/7el7/1ndcuiHlhMfUx9Ir23L7tjZ9498NjtcpLLy587g/+qNeodtUKhxLjGmveZJff+67Ddx868NLL57/2jWdPz81nlVpWQP+QcqfhFg/v2fpjbz++kKS/+8WvvHa+wwoAam0XRQ1ibV2887aZH3/4oWpaee67F578wz9KJie0yo9a0wiPk875v/SeB/bv2/3cn536+jefu9DpZEkVzdUt4tpjrnXfwb3vPH70XNb77Sf/4FJWiamQwPfUltguoXX+vkO7f+QdJ5Io/fafnvni178WNcc0VJAKVxFX8rjSPffTf/FHt22befrp73/7mRcv9roSrhGQvaRoN6LFE/fccf+9R85e7PzO5//vfDeuuoSaR7soFjvdZP7kT73ryI8+cEzTCjNWJuolrNMUmv/lAx4uDIHQ+g8PQkAgILAMAbjVWqwM+uvRWo4w0O+ouB0HJ79/vnjy87O//m/+vbvzAJ0BrtF0rYqbe+Vn/sLd995zuD3r/tP/e+2/P/Fl58Zsgh5zBTtu7o23HWodPXG8Me3emEs+9PHfF3/PTqrTm0ZxJ3FnvvvPPvq+Y8eOvD5X+x9/+IP/+mu/4Y4cc9Vtjq5s1r2pz/2tR+87cfzofFT9F08+842vvOrySr+B38rc2Zfe974dDz38CFPkTp2v/YO//2l34KCbJnWEpy5L3CtPfepTH9p36MDLlyv/5QuvPPnE77i77pXw9ryLF12z9eGffsex49Gp2P3dT37VvUIshGOgKFyr41791s/9wkPH3/Uj44l79czEP/nFT7ijD7pxTOtQMBaMinvuc/d+4V9u3ee+dzb+9d997qkvfNHtO+xq26k3uHjeTWa//Dd+/J4H4pd70S/96v92bqdUUos+d+2u+7MvfeRjj9934sF64l78wcw//vAn3T33u3pFNheE5zX3nd868fDxxvaZZ0/H//RTX3/x6Wfc9oOmOcLPz84sfPzvTN171L2WVT7ya59zyU6XVVzWdvXUVVP3tf925D/+w3c+cIyhh3RpKDtU5QL9L3vMN/1toP9N/wgEAAICyxEQ/9E53cW4rBnqnGjH04hMaJLvqF1+4F13zTcbRVqpVmp5uzrdyQ/vnK7HRd25I9O1w3du67qa9QbktV6vnjXu3t2uISTXDPqHDm85WxtLazZhP48qvTjet3/7zDgq1JJs72x830+8PZvckrkJm/e2uC1u3rF1vIblu+dO7GjO37EFRsOYTVdAgx3tFtxde8bTIouLpJq4PUd3N/btiBEO1zEggFWC9hxqVtRDMZZmt2+N3/beY93mlm40EUfj1WJxZ7W1b6ZRL7oTefKBfbPP1SBJTAv0BPTGmMmw99Du2Ykkx5qQ1NIsuX//wSPbYpKh9Z/HKQsQ7LzP56NZyQ7tql5+5N6sPt2LJ5OoXi/m99SzPZP1ep5P5dGJu3ZeLmate1/Cm1QAdt67pVlPciz3Sb2yMHl03847tjgMBLJbSPN45/FarKUSJqrZg7dPNiYPZ5WpIp6Iomojr+6f6M4265gCpqLi7Yd3nXfTSQ78eRL3KkW298hjB/bs1KJJsvtjbghHQOAKCATj/xVACU4Bgc2NgFqo7BcL8zPzL2HPGO7iKCtq3Ty5cL5YWCw6UGAlYyMZ9pOL8my8ns9MO1dvvHE5v3i53zhnyECaMJeuW03bM7ONWjXttKJTpxlIoDoFB7ULWtLVNB9rtpvj4wz4u3RuYb7VjSsNElLvfdSFzCbqbqZJe7h56nxnbkFj3YiddXtVbTvcrlc7M7PjlTRtLRSnTnWSSsUG6tlqA0VRSbOJ8azZnOhl7vwbc7S6o5Rqg41JVPu9M9VwU80kq9RfP9tqdapesV7WrWEtL1pjjd7MTDNJ0oXLxakz7Uq1KuF+sABd+0lrcrJoNJqdTnH+7OUuXR70lTAKAs3JtctQe7xZaSfV104udPN6P9fSnP6FhfGmm5oeS6P08qXi7Dlp3k/dW1yShemppNFotBbyC+fmVFOKqoym1GJCjHWIuqg9Nd4AxpdOL3RyxvlrjAa1nqTiqsnizHhUq9HZkDAGgB4HGzwYOv439896Re4D/a+AJDgEBDY7AtAyXd/YqWljYw1n9BtVARzTvKhCbrIia9g6LWVZsnsQOldJu5V1o7SeRrI3c1CJkLNdK1TeSeKG8T6xrXuBOoSG4pNSF5lMJYA3sazjQjTC+MBiryJb7HbjtA7BmjzVMJBsN6jaQdE4knASxZHBCqjrhbM3AUyexOrUZ61C3Jl64KWYfKYCdFvdbloZ845I4EOzG/kgkGsMBAP0ajhyEMXG3+lCc/bQnAWINbnRIRzIgMLL4UxWenm31evWKiw8rMMLQbj5Fr2CgZLMq6x4dwJ46JQKlQBmSEg4mptwBfURJUeOjMpAtwpGGa0ejI0fGHHX0WthtWD6xmD6A159H+8fzgGBQP/hGQgIBARWIgAzaVF65sWptdmF4mlI1mQQ0Kw8nFj0hwFuSZSzJD5NanhJDWN8qR1ASawNBHfCu3neZbtZWAxzAlyVJuwLJD6FhjkIq44GS9+Gt0OLqTE3hnv8sA6oxStS0/Q8aDjKbR1bhNPS1YQCnBhvr/H1GBsQLkJUWITT3+CF6z2H6qqNIBylIVWs+/yJUZFr0+gQJLURTUIiYsb8007vC8cGQE1BnSKmruYI9tlcwgmp5REZ9Mh8CNVp5KitECScyg0JSnOcQcnG+BOFpKlZoSQTGJYLlxY6iIGOYEKmQE9OXJhYrXWgegJzBzS9Twv9Wa2CACwjmPeoNgC8iozUhZIihyMgMEAg9P0PkAjfAYGAQImAX00fkhEFQ2xYy5mMl2jEvmaSYZrvieAYzAY/YuLXyIC4JjbL2PuPOfTWbQ1Dw8GwE9RDM5S2PRP3IC3iwelGZdZQp/qABCWmkCJM0aZd0vYlcSgS43aBBb/oRAW7C9AFwAG9i/psbCJfVFGMXI0wjT0llbUJ1aiGBL1wLVqoygP6UMUwqpa4vNsmozHzCeBQZdMzNwJ4SRIT4YxUhNapy9iCBxoBSHR8VdcwWtc3V9ZKZ2aEMS82E1fpZi3ZM9jtUBP8VFnAXEFANCdlP8/RhAMn6TKsgIqW5U5JyKhgh9Q2XFTDsmtNM8xkFwETUxuRpGNCCGF/VMg81F5IOAcE+gjwFPWfrABJQCAgEBAYQYA3Ax+4jSalWpVqSssbCvKtTO7ERvYhKOzINQfWcfjGX1sMc1168r64+QBl4NJ9GJwQfNDADq9P6bssurmLI+3Qt4/ddxiKMYfSz4Rz54UPopeRhkLwKn1Hkx4GtRQVRpUCO0w4d4S/Ig2XWiwT7uV7GaUXjqq96FBp6EokL1fSMS+5jyrpb0sXRQ1HQAAEAv2HxyAgEBBYDQHxyoBLdK32rh0ryATfkmb8hQVXYB92NICJWPNplZhlKlcXRLBlx1B378d5QP+ELLUtg+HPx9+WjstkXuHWCx9I9HfXJLwU4IWvmrTRP1UeMlFGKQOPpnsFJYPTZkYgGP83c+mHvAcEro5AySIE0/Xo/dKY+JSe5QXcU14vDX7td0sFIXmNxLY03tJ08RtRsQy5Ujhepe9SEavfeeED/zL62oWXUQYyVvlW94ChYYhYPWCYq7UKWUV2cH4rIxDo/61cuiFvAYGbigDcU9KPvyhvr0GvUSmDaD+8tIGE/veVFFomnFsj1mUx13C7BuFrkLKmIErK6gEW+koJr0lMCLSZEAjG/81U2iGvAYGAQEAgIBAQMASszytgERAICAQEAgIBgYDAZkLgetL/WiYRrCXMZsI/5DUgEBAICAQEAgI3AYHrTP+we6vVmpubIytsE871wvw8jlzj2Fps3YQshiQDAgGBgEBAICAQEFiKwHXu+19cWPhfn/3syy+//Nhjj01NTj3x6SeyLHv88cd73e4nfvM3Dx069Oijj87OzrJgB3UCW9VjqTrhLiAQEAgIBAQCAgGBG4/A/weAVTCnJfqnIAAAAABJRU5ErkJggg=="}}, "cell_type": "markdown", "metadata": {}, "source": ["## \u4e8c\u3001\u6587\u6863\u5206\u5272\u91cd\u8981\u6027\n", "\u6570\u636e\u52a0\u8f7d\u5b8c\u6bd5\u540e\u8fdb\u884c\u5206\u5272\uff0c\u5206\u5272\u5b8c\u6bd5\u540e\u653e\u5165\u5411\u91cf\u6570\u636e\u5e93\uff0c\u8fdb\u884c\u5411\u91cf\u5316\n", "\n", "\n", "\n", "\u5982\u679c\u76f4\u63a5\u6309\u7167\u5355\u4e2a\u5b57\u7b26\u8fdb\u884c\u5206\u5272\uff0c\u4f1a\u4e22\u5931\u6587\u672c\u7684\u8bed\u4e49\u4fe1\u606f\uff0c\u4ece\u800c\u5bfc\u81f4\u65e0\u6cd5\u6b63\u786e\u7684\u56de\u7b54\u95ee\u9898\u3002\u56e0\u6b64\uff0c\u9700\u8981\u5c3d\u91cf\u4fdd\u6301\u8bed\u4e49\u7684\u5b8c\u6574\u6027\uff0c\u5206\u5272\u51fa\u5177\u6709\u8bed\u4e49\u7684\u5757\u3002"]}, {"attachments": {"image-2.png": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAqwAAAJdCAIAAAB4brLbAAAMPmlDQ1BJQ0MgUHJvZmlsZQAASImVVwdYU8kWnluSkEBogVCkhN4EkV6khNBiEJAq2AhJgFBCDAQFO7qo4NpFBGzoqoiiawFkrYjdRbH3BRUVZV0s2FB5kwK67CvfO983d/575sx/zpw7M3cGAI0TXLE4G9UEIEeUL4kJC2JMSEpmkJ4BBGBAGxCBHpeXJ2ZGR0cAKIP13+X9TWgN5ZqjjOuf7f9VtPiCPB4ASDTEqfw8Xg7EBwHAq3liST4ARJneYnq+WIZhAToSGCDEi2U4XYGrZThVgffJbeJiWBC3AqCixuVK0gFQvwL1jAJeOuRQ74XYWcQXigDQYEDsn5OTy4c4BWJbaCOGWMbvlfoDT/rfOFOHOLnc9CGsGItcVIKFeeJsbuH/mY7/LTnZ0kEf1rCoZUjCY2Rjhnm7nZXLkWE1iHtEqZFREGtD/FHIl9tDjFIypOHxCnvUiJfHgjkDdIid+dxgDsRGEIeKsiMjlPrUNGEoG2I4Q9AZwnx2HMT6EC8W5IXEKm02S3JjlL7QhjQJi6nUn+NK5H5lvh5Ks+KZSv43GQK2kh9TL8qIS4SYArFlgTAhEmJ1iJ3ysmI5SpsxRRmsyEEbiTRGFr8lxDECUViQgh8rSJOExijtS3PyBseLbc4QsiOVeH9+Rly4Ij9YK48rjx+OBbsiEDHjB3kEeRMiBsfCFwSHKMaOPReI4mOVPB/F+UExir44RZwdrbTHzQXZYTK9OcRueQWxyr54Qj6ckAp+PE2cHx2niBMvyuSOjVbEg68AEYAFggEDSGFJBbkgEwjbehp74JuiJRRwgQSkAwFwVGoGeyTKW0TwGQuKwJ8QCUDeUL8geasAFED91yGt4ukI0uStBfIeWeApxDmAA7Lhu1TeSzTkLQE8gRrhP7xzYeHBeLNhkbX/e/2g9ruGCTURSo100CNDY9CSGEIMJoYTQ4l2uCHuj/viEfAZCIsL7oV7D47juz3hKaGd8Ihwg9BBuDNVWCwZFuU40AH5Q5W5SP0xF7g15HTHg3A/yA6ZcTpuCBxxN+iHiQdAz+5Qy1LGLcsKYxj330bww9dQ2pGdyShZjxxIth3eU91e3X2IRZbrH/OjiDV1KN+soZbh/lk/ZJ8Pa85wS2wxdgA7i53EzmNHsEbAwI5jTdgl7KgMD82uJ/LZNegtRh5PFuQR/sPf4JeVZTLPuc652/mLoi1fMEO2RwNWrrhQIkzPyGcw4R9BwGCLeE4jGS7OLq4AyP4viu3rLV3+30DoF77rFpgB4Fc4MDBw5LuOA/fWA0fh8r/7XWfTBbeJCwCcW8eTSgoUOlz2IMBdQgOuNANgAiyALRyPC/AAviAQhICxIArEgSQwBUafAee5BEwHs8B8UALKwAqwFlSCTWAr2An2gP2gERwBJ8EZcBFcATfAPTh7usBL0Aveg34EQUgIFaEhBogpYoU4IC6IF+KPhCARSAyShKQg6YgIkSKzkAVIGbIKqUS2ILXIr8hh5CRyHmlH7iCdSDfyBvmMYqgaqoMao9boKNQLZaIcNA6djKaj09AidCG6DK1Aa9DdaAN6Er2I3kA70JdoHwYwVYyOmWGOmBfGwqKwZCwNk2BzsFKsHKvB6rFm+J2vYR1YD/YJJ+I0nIE7whkcjsfjPHwaPgdfilfiO/EGvBW/hnfivfg3ApVgRHAg+BDYhAmEdMJ0QgmhnLCdcIhwGq6lLsJ7IpFIJ9oQPeFaTCJmEmcSlxI3EPcSTxDbiY+JfSQSyYDkQPIjRZG4pHxSCWk9aTfpOOkqqYv0UUVVxVTFRSVUJVlFpFKsUq6yS+WYylWVZyr9ZE2yFdmHHEXmkwvJy8nbyM3ky+Qucj9Fi2JD8aPEUTIp8ykVlHrKacp9yltVVVVzVW/V8apC1XmqFar7VM+pdqp+UtNWs1djqU1Sk6otU9uhdkLtjtpbKpVqTQ2kJlPzqcuotdRT1IfUj+o0dSd1tjpffa56lXqD+lX1VxpkDSsNpsYUjSKNco0DGpc1ejTJmtaaLE2u5hzNKs3Dmrc0+7RoWqO1orRytJZq7dI6r/Vcm6RtrR2izddeqL1V+5T2YxpGs6CxaDzaAto22mlalw5Rx0aHrZOpU6azR6dNp1dXW9dNN0F3hm6V7lHdDjpGt6az6dn05fT99Jv0z3rGekw9gd4SvXq9q3of9EfoB+oL9Ev19+rf0P9swDAIMcgyWGnQaPDAEDe0NxxvON1wo+Fpw54ROiN8R/BGlI7YP+KuEWpkbxRjNNNoq9Eloz5jE+MwY7HxeuNTxj0mdJNAk0yTNSbHTLpNaab+pkLTNabHTV8wdBlMRjajgtHK6DUzMgs3k5ptMWsz6ze3MY83Lzbfa/7AgmLhZZFmscaixaLX0tRynOUsyzrLu1ZkKy+rDKt1VmetPljbWCdaL7JutH5uo2/DtimyqbO5b0u1DbCdZltje92OaOdll2W3we6KPWrvbp9hX2V/2QF18HAQOmxwaB9JGOk9UjSyZuQtRzVHpmOBY51jpxPdKcKp2KnR6dUoy1HJo1aOOjvqm7O7c7bzNud7o7VHjx1dPLp59BsXexeeS5XLdVeqa6jrXNcm19duDm4Ct41ut91p7uPcF7m3uH/18PSQeNR7dHtaeqZ4Vnve8tLxivZa6nXOm+Ad5D3X+4j3Jx8Pn3yf/T5/+Tr6Zvnu8n0+xmaMYMy2MY/9zP24flv8OvwZ/in+m/07AswCuAE1AY8CLQL5gdsDnzHtmJnM3cxXQc5BkqBDQR9YPqzZrBPBWHBYcGlwW4h2SHxIZcjDUPPQ9NC60N4w97CZYSfCCeGc8JXht9jGbB67lt071nPs7LGtHDVOLKeS8yjCPkIS0TwOHTd23Opx9yOtIkWRjVEgih21OupBtE30tOjfxhPHR4+vGv80ZnTMrJizsbTYqbG7Yt/HBcUtj7sXbxsvjW9J0EiYlFCb8CExOHFVYseEURNmT7iYZJgkTGpKJiUnJG9P7psYMnHtxK5J7pNKJt2cbDN5xuTzUwynZE85OlVjKnfqgRRCSmLKrpQv3ChuDbcvlZ1andrLY/HW8V7yA/lr+N0CP8EqwbM0v7RVac/T/dJXp3dnBGSUZ/QIWcJK4evM8MxNmR+yorJ2ZA1kJ2bvzVHJSck5LNIWZYlac01yZ+S2ix3EJeKOaT7T1k7rlXAk2/OQvMl5Tfk68CB/SWor/UnaWeBfUFXwcXrC9AMztGaIZlwqtC9cUvisKLTol5n4TN7Mlllms+bP6pzNnL1lDjIndU7LXIu5C+d2zQubt3M+ZX7W/N+LnYtXFb9bkLigeaHxwnkLH/8U9lNdiXqJpOTWIt9Fmxbji4WL25a4Llm/5Fspv/RCmXNZedmXpbylF34e/XPFzwPL0pa1LfdYvnEFcYVoxc2VASt3rtJaVbTq8epxqxvWMNaUrnm3dura8+Vu5ZvWUdZJ13VURFQ0rbdcv2L9l8qMyhtVQVV7q42ql1R/2MDfcHVj4Mb6TcabyjZ93izcfHtL2JaGGuua8q3ErQVbn25L2Hb2F69farcbbi/b/nWHaEfHzpidrbWetbW7jHYtr0PrpHXduyftvrIneE9TvWP9lr30vWX7wD7pvhe/pvx6cz9nf8sBrwP1B60OVh+iHSptQBoKG3obMxo7mpKa2g+PPdzS7Nt86Den33YcMTtSdVT36PJjlGMLjw0cLzred0J8oudk+snHLVNb7p2acOp66/jWttOc0+fOhJ45dZZ59vg5v3NHzvucP3zB60LjRY+LDZfcLx363f33Q20ebQ2XPS83XfG+0tw+pv3Y1YCrJ68FXztznX394o3IG+0342/evjXpVsdt/u3nd7LvvL5bcLf/3rz7hPulDzQflD80eljzh90fezs8Oo52BndeehT76N5j3uOXT/KefOla+JT6tPyZ6bPa5y7Pj3SHdl95MfFF10vxy/6ekj+1/qx+Zfvq4F+Bf13qndDb9VryeuDN0rcGb3e8c3vX0hfd9/B9zvv+D6UfDT7u/OT16eznxM/P+qd/IX2p+Gr3tfkb59v9gZyBATFXwpUfBTBY0LQ0AN7sAICaBAANniEoExX3P7kgijurHIH/hBV3RLl4AFAPK9kxnnUCgH2wWM+D3LCWHeHjAgHq6jpUBu9q8nulTIjwHrA5WIburJ48DwwTxZ3zh7iH10DG6gaG1/8C3C58iXTvVm8AAAA4ZVhJZk1NACoAAAAIAAGHaQAEAAAAAQAAABoAAAAAAAKgAgAEAAAAAQAAAqygAwAEAAAAAQAAAl0AAAAA6YQNhgAAQABJREFUeAHsnQdgVEUTxy8JIQm995KAIL0JCkrXT4qCBewdxPLZUZoFFMWu6GfFXhEbNkSQIgjSFZQOEkLvnVASkvt+++Zu83KpyMF5MCte9u2bnZ39776d2dl9+yK8R7yeCI/550nnfxO8/ghxueWVdG45SRGRHm+EJ83rWb5q6qefFYsr3LT3tZ4KpT2RDlmE4WUIHKZOkv+HNMvb3Ied1+HpRHxUwsWfhb8OP9d1QNSdV6idDF44O8yPeA+Mmzzjx3FlSpcqHV81Ym/y6mUrqteuXe3iCzwJVTwFCmTwl4JMHbOErDJkTcmSSRMUAUVAEVAETmIEdu7cOWrUqF27dnm93sKFC9evX79t27axsbFhVOUIb7pVejaSs/yoVaPjI4zmRp2vWT9v7PhCMTH1Lu3mKVXMp019qjQ7JUkaGfknN81lPgrNjpNjOuQsp++OYwSkpXt270tdsHjer9M2rdsQGxtT/4xm1Tu09VSu6CnoWABu/kakPNn65c8HoZIoAoqAIqAInMQIpKene9PTIyKZG3sjo6LCrqZuI8ARPj9aUGhQljgDUo54Dh32FIn1KVTMIT8GEeIS8F9Kupn8O8F4Ck6AMsWrgURGznTPgUOeg4eM/REX6ylayBMV6aHZHDFEFJ+EXPiFNOkESyOX+qsIKAKKgCKgCDAXTjfO7Qxl58yTMy7DAaIIl9Z25EX/Beg8qxH96T5lyR/5ZzDw/3N4gIokuBHIyCXlONz8LN2E/ygu3AOyGu7O8gN3+Uvz0GCYJixnYAEgvSHwiWCrkmU1IoCpXioCioAioAgoAicJAgUy1UNUKb9WOdu4VZLclLvuX4eLpc3E03/hY+nn7PvrykOU4L/vz5bdX6F038nsdMi44zdHIsx+BZwPYgHIfVOSY7b5yUnIkMqfaP7mRyY3vcYVAUVAEVAEFIFwQCCzEWAlFt3sVrYoQvelQykufaIBWpLLgBTL+IRHRBDUv1NyZIBc5lLqmnEjSzVPuMxaoCKgCCgCioAicCIQyLIccCIK1TIUAUVAEVAEFAFFIPQI6Ap46NtAJVAEFAFFQBFQBEKCgBoBIYFdC1UEFAFFQBFQBEKPgBoBoW8DlUARUAQUAUVAEQgJAmoEhAR2LVQRUAQUAUVAEQg9AmoEhL4NVAJFQBFQBBQBRSAkCKgREBLYtVBFQBFQBBQBRSD0CKgREPo2UAkUAUVAEVAEFIGQIKBGQEhg10IVAUVAEVAEFIHQI6BGQOjbQCVQBBQBRUARUARCgoAaASGBXQtVBBQBRUARUARCj4AaAaFvA5VAEVAEFAFFQBEICQJqBIQEdi1UEVAEFAFFQBEIPQJqBIS+DVQCRUARUAQUAUUgJAioERAS2LVQRUARUAQUAUUg9AioERD6NlAJFAFFQBFQBBSBkCCgRkBIYNdCFQFFQBFQBBSB0COgRkDo20AlUAQUAUVAEVAEQoKAGgEhgV0LVQQUAUVAEVAEQo+AGgGhbwOVQBFQBBQBRUARCAkCagSEBHYtVBFQBBQBRUARCD0CagSEvg1UAkVAEVAEFAFFICQIqBEQEti1UEVAEVAEFAFFIPQIqBEQ+jZQCRQBRUARUAQUgZAgoEZASGDXQhUBRUARUAQUgdAjoEZA6NtAJVAEFAFFQBFQBEKCgBoBIYFdC1UEFAFFQBFQBEKPgBoBoW8DlUARUAQUAUVAEQgJAmoEhAR2LVQRUAQUAUVAEQg9AmoEhL4NVAJFQBFQBBQBRSAkCKgREBLYtVBFQBFQBBQBRSD0CKgREPo2UAkUAUVAEVAEFIGQIKBGQEhg10IVAUVAEVAEFIHQI6BGQOjbQCVQBBQBRUARUARCgoAaASGBXQtVBBQBRUARUARCj4AaAaFvA5VAEVAEFAFFQBEICQJqBIQEdi1UEVAEFAFFQBEIPQJqBIS+DVQCRUARUAQUAUUgJAioERAS2LVQRUARUAQUAUUg9AioERD6NlAJFAFFQBFQBBSBkCCgRkBIYNdCFQFFQBFQBBSB0COgRkDo20AlUAQUAUVAEVAEQoKAGgEhgV0LVQQUAUVAEVAEQo+AGgGhbwOVQBFQBBQBRUARCAkCagSEBHYtVBFQBBQBRUARCD0CagSEvg1UAkVAEVAEFAFFICQIqBEQEti1UEVAEVAEFAFFIPQIqBEQ+jZQCRQBRUARUAQUgZAgoEZASGDXQhUBRUARUAQUgdAjoEZA6NtAJVAEjgWB9LQ0rxNgku4Ero6F4YnO6/W4BbZxG0Ee4u7LEy2hlqcInLwIFDh5q6Y1UwROfgRQjRGRkWlH0nbs3LF169YFCxYsW7asWbNml1xySWRkGJj43vT0AwcOpDm2S1xcXMGCBY8cOVKggBmXIiIiNm/ePGXKlJ07d3bu1Dk+IZ6Uk79FtYaKwIlFQI2AE4u3lqYIBBuBv//+e+yPP745YkTiqlUpqaloyh49enTu1KlwkSLBLir4/DZu3Pjsc89tWL8hqkBU27Zte/fuHVOwIFXAKti1c+dll102c+ZMDJ0qVap8+MEH7Tt0CL4EylEROLURUCPg1G7/HGo/Y8YMpl9mlpmPuZeQVa9evWHDhjnw0+TjhcC2bduGDh361VdfHTp0SKb+okHTw2RFYMeOHaNHj96wfj0LGPgArr7qKowAwKIuU6ZOnfHbjHRvOpcbNmwYN358ViOAvmeQNR010pOdm8BH4PgVHMJ8dWnDU4MicGogoEbAqdHOR1lLJmTLly8nkx1Dc2EghsKFF144+uuvC0RH50Kpt4KOwC+//PL111+npKSIBYBHvVy5cjVr1owOm4ZwVDe2Jl1NeltERFpaWlRU1MGDB41e9xqDgDuYCLgHpJrACA1dDucHSwlFihSZOGFCmbJls8JL52RlZPHixXAgzuJCpUqVspJpiiJwyiKgRsAp2/R5V1zG5DzphMwM02lpagTkCVcwCbye77//Hh8A4LOOft555z377LMnjT+ma9euLVq0+PPPP9H3FStWaNOmjZibAiDWwNq1a/9etYrEmJgYzKCcgF23du3KlSslb8rhwzmRaboicGoioEbAqdnuedQaRZKcnMzEyz3s4rllckYKs8yyZcvaORkpKKFSpUrxS5BLKcCdPZciyZWamhrNdjAyOAsQaUeORDm7w7LNJaVkeyu3RDzHzoQTGkphSxoJMss0Kc5/uWX3+0UoHTIyWnxE5tzz5n5XeIoMxAkGCAdYMhLJNjuT44ULFyIJarJ06dJ9+/Zt0KABlCJYTrmyZSWJlEtEfgWZXJgIGfTZQidVkN9cSsx6C25SdInixd9555158+bBpGLFiueee64VhraDCG8BKSKGWQ5wBd6Y4Da3DBSRkXStI0dIiaRTCT20lpsrny8KjeVswSSFOLK56S03EomnpqRGRUWaCkCdmdKdyxDDy+uFzPRKf/vaQrOFNICDXioCQUFAjYCgwHiyMXlrxFtoZXet9ifv79Chw7p16xi76tSpM+qzz9zeVwYvZqKxsbGSxY5lbg65xBk92RYOZ8ZRyZt/C8CMwuTKdcD1Fe1zPPvUBn4LSmQSSYm5yGZvUZBQWnqrJu0tS3y0Eak1NWH0lzgcYJstZ1+i11MgusDevXulLIwwXgogOwZBgKLKjzDCU6omvzZXVhlIyR1zm8XHyig6w8+mW+bZRKD0GsMCLOrVq1e/Xj0aiiYSpe5j6DQZXZRL021YHUhPc7OCmEuMJPhAkHrkCJeU7kXxOu0YUEd3XuK8bQG2QoOpYe9mBRYaGGYQREWauvrrK+myWGNNFmFLj01PTY2Kjk5Lxd411owQG4G9GC756pO2XI0oAv8YATUC/jF0J3PG4iWKUz07MBGP2RvDdEoGXDwBZTABXEuwMrDyu2/v3sMpKTIsFoqLY4O6m0lWyPbt23f48GGjtyIiy5Yry/QImgPJB7A5iGAZMB30KXiv5+Chg3gj8H4fwW0QXTA2Lpa7Zg+8fwDNyj8gheGYDY+GA56GyChUTYGoApRrzRdLLzWyl0SoCNKSnVlmcvIB8pYpU6ZQoUIsSGfVDe6M+Ymjdbbv2I6jBTQoOqag+a9kiRJxhQplCyB+GsHNvF+XZvRfobhCRLZs3QJ9XGxckaJH92oAuZL3JyMDyKSmpKA1y5UtF1coLtvaQbx37z6ag4pHF4guUbKE1JHusWfPnr176AOHUbcxsfwXU7JUKSyt/ICQlWb//v1UU9RnyZIlIQAcJKQUOiHFESeRX4yh7du3m9sOl1IlS6FHSURC2sunyL2eLVs2W/1KIpZT1qaHARXk3QSwpavQn6FkswVQQO+wz/Rj7BXHwNi3dx/6m6ah55cqVRoimnXzls0IlZiYmJCQULVqVTiLjPwiGy3OnscCbIA4dIgaUQpYlShR4th7VCYR9UIRyBkBNQJyxuYUvsO4xn9MyMyvExiVzJUzhDF+ETLgYd7mV8Mj3nrr119/5RYDdKNGjZ544gnf+JtBnRHbv2/fSy8Nnzfvd7ixJ/zpZ56pUaMG8e++/+6zzz6DJwPi40Mfr1O3zpYtW9gBN23atD/++GPXrl3JyftjY+OwQk4//XT8Ex07dqxcubKVIaMAV+zwocOTJ0+aNn363LlzsSR2796NykSvwIQJdKtWrdq3a1fCUTM2E5JYnggwZsyYOXPm4J1m4EY5FS1alLy1a9du165d9+7duTT0gptlkVMEpWHANQEVNXPmrJkzZ7AZftOmTag31B7csDAAsGXLlqyF8+YFklh50Hmff/75jz/+CMhIAhPKTVqTdPPNN5PCJRPovvfdV6FiRVNAPsLuXbu//+H72YRZs9HfyFC4cGHZYMhre5deckmx4sUpHU4WkGFPDpOFdpToq6+8ih2wbOnSSZMMwitXrNy7by/2FrWASfPmzYEIZ37B6GiZoOdDIh/J448/vnLFCqzAosWKDn9xOO1FP5w3d94zzz5DhEbhlyqzeNSvXz/4490hZ/HixZ966ik63m233QbBho0boSEC5o8+9pjTIU1fLlas2L333ot4UpgxQPErpKUvWryInvb777/z7iU2HwhjjJYqWbLmaafRSVq3blOnzumZKuI8KbTa4CGD2aZAWaeddtpjjz22bu26sT+NnTx58urVq7EMSLnxhhsRllIoEXzGjh1Lb5w1axYHPGCvgCSNzsuQ9MYel/aoHl/dtrgPDv2jCBwPBOhnGhSBPBFgEsyec+mBZzQ7g/E3myzp3pEjR9peio5kJGVMzIbSSZo9a5bwRLUwbq5OXC3E/fv3t0y+/PJLxmK0rEzCGMohtr+QMZSjqObMnp1TKaSvWbMGDuXLlZdTaMzmA2dRn8GdFAK6qmePHosWLoKYebCbFSL9ueDPNq1boxcpGhUCPQLAgTgpCHbJpZfMnTMXVeTOmEecOWO6mTXyIgYTRJkrw81vdPkAQJ+hEn4ePx6TxSKJFXLPPfdQOkEksflIId64cWPZD5+HDM6S+ZLFS7CiUNhkJLutHRFSmJV27tx56tSpbgFge8YZZwgx81dOKPr000/ZR4JfhCwSEAwCg1JkVPny5a+99lpm6jAJEAlsUXtkgZJt/NhnEJiaOvg0btyIdFghBocgyS3eh6RQxJPK+pByGSh0PN5tWbF8BWQ+fJy7Ihj0EgFbtlW6RcJSZBdC/fr1reuCIuDgYxIRQQXr1q372muvBaCBwPg/atWqJdIi9nvvvQdEzOxFPCR5/fXXRX76CY/PrbfeyjYOqYitgikuIpJSME0++eQT2BICENNLRSC4CDhurOCyVG4nIwL5MgKcijMUMmgyzjLAMZMjLduBjMQPP/yQ2Y+Ms3fffTcaUSjdRsArr7xSrVo1YcgvQz+aO2NwdwwCxlDGfWbG7gFdGgGGc+fMYZO5jLOibMiORqdoRls0CbfgiRgYIuPGjWOMJpcEmCxbuoyJNUVKXgRgZCfg6BZdQnYiF1988eZNm8kl5eb5C+XSpUtbt24tCkaYgBqSoIEoxaZzC3X19ttvH0k1gsEZI4ApLMKjGkUGfqkUGakFShcVsnTJktxlEFaJiYlnn302hcKBgsgNW5AhCGcSCe07tIeSLARZVrdGAKI+9NBDmGK2jYwkjnUlPC2fM1u0WLRokeHgCv/ACOCVyNi4OLGWLHORU34x6VasWIEdQC2oGgGTAUokpIIILL9Mu+kzyCIigep9991Hx4CJIEkEYupCjdz8id9xxx34sWw94OA2ArAL6Us2F6LC56233oIMBwBeKHo7OCOGSIWEiCqFkiJl0bhie9lSNKIIHA8EdDkg4OnWy2NCgD560003DR48GH1MwMHMpIeJYFamuE+ZPvJLFkZtZvMMi8ShtOMg8UeHPLpzlzm2iBXZ5mie5s1LlSoJwcaNm/Cj8v4YvnEGd87MoVzcBjjPMzh4PaQPeXQIPnxx1KO8zzrrLHQkCoAxl+Pq0MTwgYxcuBywP959913KERlQDK++9urq1auZhiODmfRfcknNmjWKFi2GC5fZ9oQJE3AXQ4z18P4H7w8cOBA++QlGsMGDKRrFgGzsb0BtIDxvsSMYd5csXjxj5kzc0XDDP4/WR/irrryS2ToqzXjXHUU7fPhw1q2hISPn65FIHLOpQoW81wIA/6OPPvrrr79EC6J1MGXwzRDZsX378hUrfvrpJ4qmdjNnzBwxYsSTw4ZlcoNLPb3eV199FW82ZBUqVMCsqVXrtOLFSwAdanjmjBlr1q6FkLvzFyzAJc6EGPABkxRhcLS/zMUfuP9+tClrIrQg2wMxnK699hom1qhVuOHVIE6ENQJZOlnPYUTsAomKuvrqq3nRgKIJGHKnOc4t4vTVN954g4rIfliYswTDShNI0uimLiuWs1ZCD+EW/Q2PFytB//3vf3EUULeAKtBqBhDHuEQSmoYeztIVDc0/eqP0fAqlz7dp07ply1asdBw+dGjFypWsEXBYMvjAgdW0d995p4qzkyCgCL1UBIKGAL1NgyKQJwL59ASgTnhpjaGTgZU+yoDL8SwBzKFhIRwNKg52KBlt8RVDJtpowIAB0r9lcGXsxmOMn5Yh2FgWOMbTmK4fQU0++OCD4seGnqEZx3VSUpLhL9PNdC9zO9GLsMIWeeaZZ2TV1oiU7oUVWgS/a+XKlURg+GBMsCNMmOBSZlVeZmyoRlwX6ANhjgAM1vBHZ1M02Rs3auQrN6DC2V0iOZM/qSYT/UGDBmHQoGB8tOlemOP3ZqVAaPg9/fTav/32m5sZxaFQRXLW3UVmN0EucYjZktapUyepHWbN//73P+wJyULt8Mw/+uijwEvtCLwSAiyWoXgCyCuuFOp/5plnsv6N9WDFQI2xQaRnzx40AULChBZ/4YUXYAKNsDpaT4AVAAnx20vdUaWrE1ebjuEP7iIw+4QMDPEQCJnlI5Gff/4ZqJ2K0paR3bp1Y1uAu74YTLiUrrvuOqosZABCZ5OCKNbtCaAgSsQ7xbEN7GWh0J3+ZQ72tN5///3CBPfAjTfeuGnjRuoi/hVKpNHZ4CKNjukw4eefA0TVS0UguAjockBw8TxpueXHCJARGEr0qIxiDHaoNzPGZQnXX3+9TIygZMbDfTs6WyOAW3BgKsbIyOhpeVAQxHL58ccfowOkOLTpt998w7vacgu/q2wpNwVFRDz88MNShPl1skMpKYz4aFOY4MJlCGaDGxwohRkwM2MZspnjsrcAn7x77Z+hHwIpHV8Fi8pWyFwiFCrFIRWagAkrOsag50gltYOGgrBRRDlRBJTMpDMMBUdC4cPdf2AELF+2HD1qahcR0bRJ00ULF0rRVvL9+/afc845MAdAQGaCa2+1aN4CjU5eqTs+DIwGslsCG8G8u+iiiyAT93jdOnXtLSLHyQhwSyJGAFCjvLEjuSVBxCAO0hhz1nuP2We7kFtU4ijsCy64QFhR9yFDhlgmAUYA+ptNrNz1l5bxlzOdaEowZw0FZ4Y0uvDhl/allaUIjCdcDvaWRhSB44FApoMv5HnWX0XgnyHAyEVAF7Zv3x59DBNGPlZwD3H+a+aAwmA51rx6EMHOvuIYDQzEMu/PTGhOh+3Tp4+MvLxwZZ4BZwM8AzqUxDk7tmfPnoyqXGJ/TJg4kUIdqnQ8z7xKgEiU0qxps4cfetgR0NlX6GTnXXD44AFGweMoZszFXkHVsWcbDjDkPT3hTEaUGTrACOC8qGbk9Hp4E48tb3ywh8Cseu064/rOI3g9zz//PAgYwTwe9tMxNUQDOXL63noXKPC9o0uwkJiOQ0m98M+zDOHmLzVyp+Q/TvVxY0APIrv37MZnTvVtdipaqHAh6gW8PXr26NKly8YNG+1dtgaI5xwB8PewAESLs7WeXIK/pcSGu+/e++T1DRTn0mVL0Xz+dyMs1XGP0NCU7rReprKQH8uA1XepDu6iJ598Ev8G1fD9I4+E9HReuLjh+uvpJyRQzffff59cREzbuQIFXXHFFTVq1CBNGshNQGuaLJGRoJ20evUB/9NhCklPp7+1atny8ssvB3aMJ/YjkOzirVFFINgImJ6nQRHIC4H8eAIsD84Uwl0sXRWnN4O+vSWRF198UQZH5kNsk7YzYNEfbk8AsyW81pIewEQ8qCRiZ6BpKA6eTG1ZxiaRLOgtKYVbo0aNCszuukYAVvcZnRmC2QiGl4Jditznnb0LL7yARPgw9LNs8dnIkbKPgbsYKJRCcHHKLWrp2YuH0hDZhr/4Yu4ccCbLXBbVgqJl1cCWQUZ8zvChgkfrCYDJrp278G/zoj8csEKYAb/77rusdwh/K63F2ZZLhH0VtKwgw14EwdxNEFAp7DyKgB5RL774Ikt5Ij0BVJPXGm3RNsLODLoZghFYUTJfM3LeTaAKphY0r/NPLsEH34y0HYbF6tWrhY/bE4D/idO0jO/K3zUMH3/438svY3vBATQwFDDypLNxX4rwFeqn17+KwHFFQDcGyrOvv8FEoHKlSviHcYeinfCsshKPnmDUkzIYRidOnGguHLcB6wVEnKtMh68JMTvgcvzii4+fp0njxozL4qxmho32YqKZcjhF3mMUPpxi5H59URLNr/PKPs/YqlWrZKbIaC3vbeMAL1e2LK/P/fzzBMZl/LSs77Kr6+133mHSz2quKGDzfDoTuwyeOcRYbMYnwYICRhKTO3EI9+lzi5Ei541yNWvUQONyRAFEmGIsEHB+QA4lwN4PSk4UrnSOhALe7777jr2NzGjRhWwSxA7AeMIMElUHPqhBI3nmgMDiNkAR8hKjVaKWyja3pFx55ZUffPABidAnJa2xZHlFjqI6ebEy9wOkkixYMGZ3p//Mn0mTJ9MTcuJGraWfwIoImx/j4+OF2DLHVqvKthizZ9DHxt7i+tzzzmPXIe4HWCUmJvIGDfsEO3U6/5prrjVnPjrBl03/KALHHwE1Ao4/xqdeCQx/d915F9utmTRHeNLnz5/PgQFoMoOE1zN9+nSUDeMxioSXAnAmMxHP6ZzgJk2amEw560juVq5ShbmXjLNsrXIK8W7avEn27ZOXlD63GF2bU2BOxojMLwYEszfEJkBMRf773zvWrl3HLnq2uWEKwJ8NBOx34704lDHK8sILLixXvpx47KmdHfezKctRCes3rMeeEGlZOilcxLyTlkvAjY1SQXdSOjNIlEe2xFJNTJr82AGCJzJcddVVzGV58R1FSN2xz8yRQbNnsyWQjW/XXHMNJwUBr2zhDGgFueSX9xqyFcmd2KplKzwHmBrgDJLuW7nEBSWKyIUmn7cChHfnAlJzl5N6vR52CBLkrpTupqQjisFKIlmoDkanj9g56JcWJr1QoTheCsgmu0Nat06dYcOG0X9AXoxLXlHBBn3jjTdZjMACw2vCawulnU0qmUrXC0XgOCAQaOAfhyKU5amIQI2aNWQ7GAMrwyInAAoKKFfOCJJX8pg+svaJmz0nC4As6D+G2twR5IhdZtVCc/DAQZQZ469zNrDZIUicwF2JZPsrWRiRuYu8KGni5CWgd3kN78MPPuC0ODQ9jAyNo5YwZVjOP/ucs9nZJ4fzMGnOXVTuom5xBggZK7550iMPEEFGoaDHCoWUbjNyaUWyiXlGyIUDA87oe3wknc4/XwwpKg4aBGr0yCOPtG/fgdUZzDg2ZKC/s7Kl6OLFfOcJZr1rUzjyD+GFAwjY9Nwj+TFocufgvouoBHeKxHfv3iURg4krAEVg8HvsLZNDh8zqib0U05YzrXEjZVsWlFiW7LQYPXo0FiQWMK9XcHY1nRzMWYngVUzcM9dcey3vCoJ4BmeNKQLHBwH1BBwfXE9trgyLjIC8ND9mzI8HDx7ADsCRznSHN7y3bd/207hxaFlomEGe0axZ7lCh8yC2O7ezJWZmecg5b4DpMhNrXuGCObsEeH0ceuK4bRMSErLNG5DIQAwxr4Az95W8QtCpc+fGTZqsSUr6evRoZoq8JnDo4CG+Sgc9awfvvfcep+a9NHx4y1atAhi6L5GES/bzy9I4l8nOu4iI7SbLGpc1Y9LJwtuSWQnkVrbpuSSK2wJTAH8MTZO0OunHsT+OHz+es/lwCYA5t2gv1BJGwNChQ88797wAblKjrdsy7VUMoJFLVkCoNU3JZQnnyxTZkmWbKKVke0sScyNwbFBLkK1iLlfOnGNBt+EuhqndZpF7ifCEvkYN37sh2XLOloNkrFe37ksvvcRqAnsSPx81ilMZcFyJNYG3iVYQE5NTieyrpNly00RF4BgRUCPgGAHU7DkiwLtzLVo0x/nPqIe38/d589A027dtQ18aBeP1spetenx8jvmdGygk9DETslw0JSp5505ns73XY14XNONxBPNaTtcR5szm2aCA7z33srhrh3LEM8Re83oCZgEKjDVytrif1bIljlxUGgsEvEm4YsXKtCNmDsea/b333Tdz5kzLIWtZcovJX8EY4wCgCMwXFHzRIkVzWUSAOVNnECAL09iGDRrmUkTWQnNPYQJqahcVxcaLihUqtm7TmgMMOKKA2nGkLuCjtoEUIwB/AJZcxtq/88EIqkDIaYXCXTRLDNaRUIT65jNkM2/PJicy5AQgNgBAZ5PHlSR2FQsVtHLv3r357oBYaS6S7KO+bpkH+4y8yEnbyS/+ADokZ0uwD4BvQPMaC3tXP/rwowV//nn4sDn9iR0tvEXCchiOgQwWGlMEgo1AHlOQYBen/E4VBBjpGON4UQqHM6vs7Gj7ZcoUNMorr77KLBPFhh3Ai38oePe79VnRQdEyW8reAvAPvrNnz1q/fgPDK954VLXsv4N/fHy86EumVl988QVxX8iiMUjHkkBRoct5P5DNd4zvVAE5mZ+xqZAzYmVVAvXAVL5p06asEUyfNv3FF1/ge4pQIjl5ORY3axUCUqhLzZq+RXSgQOUgtnDIROnUDjH+XLCALQiiDfkiX5my5ri9TJRHfyE4mNrt289pCnv27kUS2NJAtBoeGnarzZgxgzOb2cIGenjymZjyYoItCpklkMIRRrIr094NiMCcs56kEfn17Q4JIDq2S7pZQCexKFmwEDhbo4JjoOTtEgiwULHwsspij6nAblswfz5LWjT3wr/+AkNjZxDy0SjADuGB5GSsOgLA8tqiJGKz3n777XxJauyPY3gJBcsMYbDGOHKRSFZ5NEURCBYCagQEC0nlk4EAE3HzLyKCd9t4CYpRkjjzyCVLljC/ZHRm6EQTcBANETZkmfE6hzEUHcx72+gYGWkzyiDGRi5nJz9TKNQMYyUamg8F8QFcbnLr0ksvNVRO4Di8tWvMF94ycfBfsIGA42J69erFaQG33HLLuJ9+QqMQ5s6by1sAV19zDf84lYgUmMEE5gQOCbilzy3s5PKz8fwyebKN5xJhw51IxS/WCQslRALoDSKsQKelj/5mNCfTOV4ADx9BkANxA4j/2SUT/V69e93ghBEj3qREcYmLMNhn3OGYZOqMJLQUOyJtQUCB3qWVSUEd8roHNPZuQIS77AwlEc7shMTFHUBwLJfoS9ginrtxRTDYGhAdwUxzciZEdqvseEGYcMMEDpx3yQsgAfLAoYCzOAINH3G4/oYbrr3uOs6HeIjjp46YDSimIKd2ARmzvby5Tx/ezGT331133bU3y/aI9h063HbrrWyFkbyLlywR6zNbVpqoCBw7AmoEHDuGyiEQAdQJM0UGR07CwQ5gmGYYZYLFp12ZSJGOtubNQAZl2ZtmhtEsWhCmpJOXE3I4aYB9aQHFyOCO+5qP8KIDuMscnfMJUE5GH3i9V15xBafZw4TA4M73Z4VMHAEkCgcycm7Bt99+yxv5vLLFpsU6deuKpk/ev5/zA/iIMLu0OF2YDQqSLhkZ+zltj7UGKxjWgY3nErnu2usQTGBBwb/88st4GrLSI+H4n8e//rp5yQKZWRvmZCTqmJXyH6RQBdCY/MsvnNoEwp9+OtK8JOm8x2+5UTWWVKRS0GNp2VvgYBb4HWULYpzGiPsEGho0wFzjXELMOPl2M9zqN6ifyyuOln/+I5SJmmSZKZMZ5b/w/zVHLYEnZ05k5cwbrZwWhQsEYnb7Z/sBCJM9MnLB/AV8BwjjiRUQQteuXVlKcTNEGPdltnHW++lRfGzim2++4VDtrDTRLq+Gg6ixXPPDOSsrTVEE8kRAjYA8IVKCo0aA0RYFTzZ88kyUZYUVlcMHf9EcKD82B8jhqeh59+hGRnLZFBkBGZexGFAk7FdHl7B5nRGZ7XhMLrt1u5BT20S1wxY3ACfekMvwwdSIjmY7m1FjztyddW4+w4NTG+8CasNRV2Y9m/e1ICOLkLFIwWE+cCOlVOnScpA7PJkH47pPXJUIGbdI2bd/PxqUMV0AQmVyOkJ+wIqJjeGFAujFDMLH8N877mDXAocSUjs4YyqhO6k1r9dTZYqDEvuG8wngD01+SsmFRiBigT8hPh4y5vq4+qkd6s3MOx0vBChNmsQ78z7fBtKef/75lif4kGIuHdkSV63CtYNLJmnNmoPOhnnOaeAzDSi57hd1x1XAhgAKxY6hUuS1fP5xBCYNGjSAJ81BeO/99zGn8Bgh9oFk840DQDPSObgRkU745ptvcl4QVgsI79u7T76VgJXDmyx88AIFDqvExET6Jx+jwmKgu0oRu3buBI077ryDDiNTc46lwtVkyjjKgLcfnlhUrAg8/8ILuEnYZCo86MmsKGFuUhHkp46NGjUsGF0wwK46ygKVXBHIDQHdGJgbOnrvGBFgsMMIYI0Z/W1ZMW72uukm0QRiK9hbWSNs1GfUZmRnlZrTZjiXJj4+nrGS02fnzZ3H5inGSgIZKQWXfjHnhF1MAOONSE/nPXi8uxgKjOYwQQcwlLMMwV4wjAM0AYsUrHZz1+hjr5czW2QiSAoeBUrnCDm2Cxg9k57OwjZ7uTFfOM03NSVlVWIifgJ5Z4+NCC1bntXUOdUgay2yptxw/Q3oXebfR47AKYVxf+LECa1anc3qCeVygi9H96CN0J3UjqIRGDOIOnIZMF/PyjzPFABEKcITbz9bLhCA5uDgRXZFiLOBcvHcoJ9Q5FBCzzYI91o+WKELEQafT5WqlTlKgbbo1asXipk1CzbYo8aoIEvswC7ywId1EN5ECBDPab2AtLwvkZmNpbxo51gtXr7txGYOdjBgmjCn571H2gguTpt24i70XHIyEt0JkKGhA7D0w0ZLTFVqN+yJJ3rffDPKHjKMIW5hC6Lp2TGAJ4aVLOwhtu9xl67C7k5285UqWQobiJT8B+RhFYDdshgiNCuA33zzzVhXiBQTU3DLlq0/jf1p2fJl3AJbSuF8BV5CgT+X+S9FKRWBo0CATqlBEcgTgaM6NtjNjTGaM/zRMQydEtBk6G/egUa1MNi5g2Tke762B4948027O5rspDNtlbvCk8GRgH5iiiZOAhgaPvw4f1HS6B6T0QkQE2fHO/Ng1K2wcnhEtG/fjrEeqdzy8+o2egvpURUQo8lQHgQmtWyqF26ksyEReyIgr5tP1jhaloMUySv1sqwkIiJxF4OGPeSzZs6EueHPxw+dWbWponNssKGJiMChLUhmLSjHFL5VuGkznw8GB2oHE2oHqvyKSHCWUKliJXzX7i2cAM4hwBBz6jCLKQkJCX5aIwwcRH5+YcUl/GkFdroFCMOxwb6jCT0eLBK8PlIvqkl15AQ9OLNvDsXszstMGiMJqwsZIJBfSqE4dvkJsbhVsELat28v0iIJxEgFPX0Am8DyBFXMIPwBtiJE4CYBeslLIqzYYgJbjAObnQeEjwVL3saNG2M82Vs2Ig2EAwCLFitEiGFLXyKQYougk1MiXhN5O5SM0pktK40oAsFCwFjKGhSBPBFgh3x8fLwMWygApn1mYMpfwHWPUx1Nw+ALB97C2rPbvPOWNQg/txHAuMycidm5ebPOz4FxWVgxULJGzm6+bMdcn3SMn2lpcEBRobylCvYXViQy2+MTBmuSfDN+EcxWjknk3XffzbyZMVr0hygGiTN2s8jtVic2Y54RCmIxAsFi/J8VRjDYSkClUTt0J8521D9HDAUwJDsEBg1PBO6Nf6YnqB1rE8yhxSSCmwWH+hI44Y6DEFB4olNFBqb73IIY8wgPNu8QshSCXUWiCC8VoYFgWyMh4Zmnn7Yn5AsHhCeCr4CiJQufzOFLxL46OkYAE3RuwYrtkGyflCxCwHHUyMM+03r16gEUBRlhHFWNH2LpkiWQQS8B8fjSMVofAhgKJYaF2abq9GIhI8uM337D5mNTpIBgynaCfGGBdIytH374AXpriok8eJXwGwkx2wyx8Eg3RpsrmFyO4YujhVMlOCpAFL/F3MgWYcxNejs9FjKyuBhoVBEIPgK6HOB7yPVP7ggwvrIdmtfx2fnEAQDO2Xl2hMw9qwcty+jJLJAxjm3PrIkWK16MvpxHNuc2gyCqhZkTS/XsX2OGx8I5mobBFH8vTgX8BO3atjWbt1kGlo1qAXxNaiS+dLYloqpx/uMbYDEYrVayZAkOikEH4wOXj+oaJo7WcfNgUOaNbQ43ZFsAiwvbt29LdY78Q70x7rP5scelPSpWqig1yprdzSogjmiy8M9OMRQVphUTXALwsnOwVq1a1I4VEHgathna2ceG7DiTmVlyfdppNannPwjUDnAuv+wy1v/xqGOxgS18SOfkYGDp3q07BpA5GelImlGhLnwMXM4yCnNfVka++/bb6b/9lpS0eseOnbQRs1v0MRqx24XdEmokiJFhJRQ+7LrAymHtAEXIpoc4/1ehWc2BsmePHlSfUug/dAM6A1pcOPAJRCL0CvDHUoQDathZPcFtUArbiFr4ZI2IQLwxP3By1RjWAqwtgjz0ZDdoFMRxTyyCoOZpaxZlzB4U540SmoOjfGvVrk1XKV6sGPYFFbd1ISNWAmtPnK1EYpXK5qBlIla7C6X0T6Qi/Y4777z4kkuwQtgLspHNB6msCh2Oji5Ir8bx0/WCCzCADLwutG1xGlEEgohApm1ZQeSrrE4yBBj1mKJSKUalox2bJvz8c5euXRmUUQwotqlTppYsVdKO5m6gZMgb0L//s889J+l8WwWfOQpJLlF4jMuMoQzNJUuU5DBaO0oaqbI1Apyc3BUO6H60LNNfInGxcbzmB3NmkTKmw1YYZmIbEcE2Nz4rDAdyoSZlaxgZUXKoOuHM79EiY6UiLzxZcoY/sjFnxTmB8YQYIhJVS0s3xxbZsmwEJgQw4ZdEK7klyCVCFujx80cXjKaBKB0bS1jxG1A7Nx9e+mBjJrIBHefbYCugtZm9o4ZRxrjKYQs+2HzUJQ+pkNpvvog80Etd+COOEd9lltqRbhS/0+7GO0QXdX6pC1jZXCIAl9ykJ1OgOADEkshanHnxLzKCiojFAEGRwoVLlCwpHLgMCLYgI4Ar5ERvSPy13r1rN99xhhLBcGQUK1bUXVAAQxdvjSoCwUFAPQHBwfGk5+Ke9xztwPToY48xKAMRAx3rvhx3Y8binGc5RpX5A/u8rAVAGkqF4L+Z6W/uUtm7ZvXVpbaFBcJIBM2Xialf64gFwC3kYQ07gMZe2lJsSu4RNz0TU74fk5XeipStBQA9TISP/GblkEuKZOFtBRAAZ4Jdq86Uy6+xbCL0BC7pGBKHFZYUtWAWTrCUeUdcetNWwRfx61SbHsCNdGT2JbqEFKwCcsklApsCaWdfm5vcPkp/cfLiH3YYwcfc+RPA0N462nST0V/rEiVL8M+ykkhODAPI9FIROHYE1Ag4dgyVQ44IoB7wn/OGmFDgI+WgGBng/lXD3L9KmBzRPJ438kDAr7EyRHBp0IzE0MayCpm7PEdLnzs3vasIhCcCgfOe8KyFSv3vRYAT8Tj2DvmY0XKKcMUKFfKUVaaYeZIpQWgREAdAaGXQ0hUBReAYEVAj4BgB1Ow5IoCS4B103q5mqRgi3AD33HPPv3ACmWMF9EbOCEib5nxf7ygCikB4IKBGQHi0U9hJKbN5dj5zFq8Iz5tXHNJuV7jDrkYqsCKgCCgCJx8CagScfG36b6kRm/B51Yr91QjEFnHe5mJPH/vJ/y3yqRyKgCKgCJzyCKgRcMp3geMGAKe/2ZPn4+PjOc0GNwAbyHMpUPwHbm+BeftLw78QAef7AryVJ1adNNy/UEwVSRFQBHJHQN8OyB0fvfuPEHBW/vmcDO++c8YLSp3j5DjUBVWR+y508965c8YcuaRgDoIjUXLlnvcfCaqZ/iEChYuY03vIzFYPc1Zfllcr/yFfzaYIKAInFgE9LOjE4n3KlMbJJ3xkj8+lYw+g1zlkrbD/sPTcMIA6wsPZgpyhxrvbvMnNQXjFcjgYIDc+eu84I7Dq71Wc2ySnR/DNPY5PUBPtOEOu7BWB44KAGgHHBVZlGkQExBOgOiaIkAaXlawFaAMFF1XlpgicGATUCDgxOGspioAioAgoAorAvw6B3HZp/euEVYEUAUVAEVAEFAFFIHgIqBEQPCyVkyKgCCgCioAiEFYIqBEQVs2lwioCioAioAgoAsFDQI2A4GGpnBQBRUARUAQUgbBCQI2AsGouFVYRUAQUAUVAEQgeAmoEBA9L5aQIKAKKgCKgCIQVAmoEhFVzqbCKgCKgCCgCikDwEFAjIHhYKidFQBFQBBQBRSCsEFAjIKyaS4VVBBQBRUARUASCh4AaAcHDUjkpAoqAIqAIKAJhhYAaAWHVXCqsIqAIKAKKgCIQPATUCAgelspJEVAEFAFFQBEIKwTUCAir5lJhFQFFQBFQBBSB4CGgRkDwsFROioAioAgoAopAWCGgRkBYNZcKqwgoAoqAIqAIBA8BNQKCh6VyUgQUAUVAEVAEwgoBNQLCqrlUWEVAEVAEFAFFIHgIqBEQPCyVkyKgCCgCioAiEFYIqBEQVs2lwioCioAioAgoAsFDQI2A4GGpnBQBRUARUAQUgbBCQI2AsGouFVYRUAQUAUVAEQgeAmoEBA9L5aQIKAKKgCKgCIQVAmoEhFVzqbCKgCKgCCgCikDwEFAjIHhYKidFQBFQBBQBRSCsEFAjIKyaS4VVBBQBRUARUASCh4AaAcHDUjkpAoqAIqAIKAJhhYAaAWHVXCqsIqAIKAKKgCIQPATUCAgelspJEVAEFAFFQBEIKwTUCAir5lJhFQFFQBFQBBSB4CGgRkDwsFROioAioAgoAopAWCGgRkBYNZcKqwgoAoqAIqAIBA8BNQKCh6VyUgQUAUVAEVAEwgoBNQLCqrlUWEVAEVAEFAFFIHgIqBEQPCyVkyKgCCgCioAiEFYIqBEQVs2lwioCioAioAgoAsFDQI2A4GGpnBQBRUARUAQUgbBCQI2AsGouFVYRUAQUAUVAEQgeAmoEBA9L5aQIKAKKgCKgCIQVAmoEhFVzqbCKgCKgCCgCikDwEFAjIHhYKidFQBFQBBQBRSCsEFAjIKyaS4VVBBQBRUARUASCh4AaAcHDUjkpAoqAIqAIKAJhhYAaAWHVXCqsIqAIKAKKgCIQPATUCAgelspJEVAEFAFFQBEIKwTUCAir5lJhFQFFQBFQBBSB4CGgRkDwsFROioAioAgoAopAWCGgRkBYNZcKqwgoAoqAIqAIBA8BNQKCh6VyUgQUAUVAEVAEwgoBNQLCqrlUWEVAEVAEFAFFIHgIqBEQPCyVkyKgCCgCioAiEFYIqBEQVs2lwioCioAioAgoAsFDQI2A4GGpnBQBRUARUAQUgbBCQI2AsGouFVYRUAQUAUVAEQgeAmoEBA9L5aQIKAKKgCKgCIQVAmoEhFVzqbCKgCKgCCgCikDwEFAjIHhYKidFQBFQBBQBRSCsEFAjIKyaS4VVBBQBRUARUASCh4AaAcHDUjkpAoqAIqAIKAJhhYAaAWHVXCqsIqAIKAKKgCIQPATUCAgelspJEVAEFAFFQBEIKwTUCAir5lJhFQFFQBFQBBSB4CGgRkDwsFROioAioAgoAopAWCGgRkBYNZcKqwgoAoqAIqAIBA8BNQKCh6VyUgQUAUVAEVAEwgoBNQLCqrlUWEVAEVAEFAFFIHgIqBEQPCyVkyKgCCgCioAiEFYIqBEQVs2lwioCioAioAgoAsFDQI2A4GGpnBQBRUARUAQUgbBCQI2AsGouFVYRUAQUAUVAEQgeAmoEBA9L5aQIKAKKgCKgCIQVAmoEhFVzqbCKgCKgCCgCikDwEFAjIHhYKidFQBFQBBQBRSCsEAhjI8Dr9f57oDbCBEucYPH596BzDJKkp6f7GtoFy7+q6Y+hcppVEVAEFIEQIxCWRsD06dMvueSSO++889+gDNLT0mjDB/o90P2i7t98880xtic6zxNxjDxOnuwLFy684oor+vTps2bNGmChuW2Lu+MnT4W1JoqAIqAInFgEwtII2LBhw08//TRmzJgTi1X2pUVGRXFj6pSp48aNW758WfZE+UhdtnRp9+7d69atO2XKlHyQn/wkqHkwGe+EdevWYR5t3LixZcuWZ5999uHDhyMIai6d/L1Aa6gIKALHF4ECx5f9ceKe7UKA8ccbl7E3Pd1oiEiffWPnjkZrcNfrNcojwoNSifTTiCef7NAIgdfLjNwEXxYnklNtyBIVGelM4I9yFo+85HAc3Ulr1syePXv79u2zZs1q3749ZeFjwMIQf3hUVJRURERKS0sjJas80CxatAg+RYoUufLKKy0BTJza+KpjUKBkJwgNCcLZoOfAIhFb0GeffbZv374unbtUrVbVss1PxHKG2CnWNJBYTnJJuURsoo+n1zSSA4wvAUmo2rx586Kjo/fv3x8TE0PGxFWJEydNrFixIogVLVoUNtK4n3z88eGUFNxFpUqVskLa4iRFLolLxYlIimHiBJtRI4qAIqAInKwIhKURgG4IGNBN8+AuTjdaA/0WIRrZaTT3EE9c1GGkJ9LQ+YN7PV/oMSLkZtqRI1EFDEqmRKMeIo3azhpcVoJoEcliS5dLq2B8ytVxcQszfADXXXcdivbiiy+WFDQlpRNPc+wVYWU4mPplIwR69Eha2rRff33woYcqVaqII91XulPRI0eORJKP/9DxZIeRo+2kLCjFKoLWsRQcI4mincUODI7Bgwdv27atfPnylatUJkuG/ST5c/7FlBEAhSQlJaVgwYISRwAjBmUbOyAzC3/9rJDo/qZNmt54443IULJkSaGeMnXK3Xff3apVy3r16mEEwEfSH37kkd27d7do3txHaUoy9QIf+Ih9Y4idVFuEZOfSEFgby4dIZvH0ShFQBBSBkwKBsDQCskHe60lJTWF8P3jwYAFHZ/u0nUOadsT859M9Xs++/fuIx8XFCR+rA1JTU0lBE8Bh186dhQoX3rt3b+HChWNJioyEDI2VeiTl0KFDqMZCcYUioyIpEUXCfaM5/HoMPXcgOTkmNhY+hsDhKWXxK65slD25ChUqFFOwoEz3q1erPnToUJQrKZDBDT7Q4GNAWlQ44qHBowtGG23m13aWLREzg09Lg4wi2E534MABBIAhMpARxRZVIGrXzl3R0QWKFC0KQ4qIBivHIKBGIobUhV+4pUJ0BL1pArVm/p28Pxm2lF+4SBF30TnFjWERFUUWshOnvgUdQKCXRjGyOY4HWJtqpqYWLVYMwUQMN1uylytf7rXXXiOCUcIv+CCS85ss1TFsQSAlJTnZpBw4eBAo4AYOBCLgAAHZSY+KjNqzd0/p0qXT0wxDUOUW6YhEAEaKgCFSGe+CBkVAEVAETkYETgYjAIU67ddpv834bdHChdt37MATft6553bq1LlR40bSZN//8D1b9vrc3AdDYdq0afjb8RKf0axZj549q1WtanSnE9h9xgL01KlTmUQy9JctW1Z8zm3btr3qyqtQBHv37fvll18mTpz4999/k6NVq1bnnXceS9QRXjONZsaIJNylLHa0Va1a9fzzz+/erVsJZ9rKhHhVYiKlz5w58++VK5nc165dm+xt2rSpXLkyOn/jpg2vv/F6UtKahx9+uE6dOmgmNj2wz+DWW245eOgQEcRmXtuhQ/uLLrrYZMkS9uzZM2jQoMWLF6P/tm7d+uCDDxKpWbPmfffdh07dn5yMbDNmzPjrr7/Quy1atPjPf/7DEjtGxq7du1955RVW3Lt27dqlc+e4QoXgjZxfffUVurBRo0YLFixA3ZLr408+njV7Vmxs7NVXXdWkadMsImQkiCInF2IDyMqVK4GIeuGi79ixI0p32vRpH3/8saxZ/Pjjj4sXLSpZqhRlsTECMtQwmGSwc2IYEw88cH+xYsWfeOKJLVu2vP/++9QIVuwRefLJJzGeGjVujJBLly5Fl6ccPvy///2vTJky9IebbrqpVq1a6PINWzZMnzZtwsSJiYmJtC/elwsuuKBx48YYQhgrJJKF2vXo0eOjjz76448/IABG8gZIopeKgCKgCJwkCDBYh11gfRolXa1aNSRHtTz99NOy9ItDuEKFCugP7jZr2mz9+vVStV69eqEbOnfuXKVKFSIyLyRyzTXXoEuEJml1Urt27XAPEIoVK0brojjhgx1wyy23mHlhWtptt92GGia7mdEyQYyIQNP/+eefyNCkSRNmi6eddhpax/YMyB577DFc+hSBU+Giiy6COaoI/iVKlIAMsZ98chjeC2hYyD/99NOR6vPPPzf1SkvD9V0gKsoR26fyUdioKOTZuXOniO3+XbRwEdlt6chJHMEwBVDwd911V/HixcmO8kMwKNFtqGHu7tixo1OnTmjT5s2bY76QAnQYBKRgo4AeuWAlFacK1PHDDz80dk/OgbtM61GlYA5QtAu5aJozzjiDufuR1CMPPPAAPDGkKlWqRIRbiEQR55577vLly8kOAkCBCgdkjCem6WyYoIlZDsCvgIauUaMGGQlkpDmIdOjQAbjsWgncAJCif5s+HUlXrFiBdpe6047FihbjbrNmzXjZJDXFzPu//+47HAOU2LRp0+gCRh7y/vzzzznXUu8oAoqAIhDeCBi3c9gFtxGA8Ndeey164oUXXti0adPOHTtQPAzl6NqHHnrIDO5pabfeeisDOkG0Mmq7W7duaDiU8ayZMxn9YdK/f38IEhISJvz8M1NqZsZoPlTF5EmTmM6igT799FM0DasDLEJv3rwZZYlSR8swiyU76tPRRx7m6G+99da8ufMwKaCvW7fOnNmzIdiyeQs07Tu0nztnDkoXmwP9ShbmvkuXLEXOrEYA81dEggblzUyXKT6uBRQqpgNxeAYEpr+LFy3u168fCgxzBAmp6bq1ayF76aWXkBw+r77yCisdyA9oqMD4+HgUKgRsuEO5Ulbfvn1R0iNGjICYgmCC6kXjYrWA3muvvrp0yZIVy1cAETswcg84VHCiIHDv3r2pMlnefvttdD+5MHowSgSxUiVLPf/886sTE4cMHkyjEJ599lloaJcAI2Db1q0YAUiFSwCzjFcGBg4cAJMGDeqPHTuWyuISoA8gIQYHlN9++y1Arfp7ldTxkUcewT6gmmN+GEOlcE7IFP/SSy/FhYNI33//PS2OAFh+NO7P4zYlWBIAAEAASURBVMfTDdavW5d7NfWuIqAIKALhi0D4GwHpXkZw9DRtgNpgionuueqqqxjuL7/sMkm8+eabUUXlypX77rvv0HAkkqV69erMPkeOHMnElxQ25aFxmfVyCR88BGeddRY6nqk8KUxqmR2i1HEeoM+gxyxAFU2YMEFWu88880yMhvr166NNMTsgwAeO3kV3fvLJJ1yiMhHMRJy8ZE9MTEQAdO2cOXOQit+sngBEYus7ykksFciYm1KXr7/+Wli5f+HJJXoLsRs0aCBZSGFpgGk9uXAtCD23UJk4CbADoJfEwY88gvJDCzIzZpLNjB97Ap7CFnOB6o8ePVqI8/OLuwJAjLRffS3uECsSPO+++y5cNpUrVWKlw0p12WWXodRZDiAF4myNADwZuFUky8svvww91hWzfMwCKxUoYeGxPESKTcflAODi/DCU6V6MGywbzAUYUhzdg/YCvQsvvBALw3LTiCKgCCgCJysCYb8ngN166Fqah4nm6tWrN23cyAo6Op4lXiKkoyREjTHzZnBHJ5FYuFAh3NRsAli7di1ufPQE02huodeFAMd70aJFoEQNE9CjTDGJoDiLO4sFxFGTLOrDHzICWuTyyy/H3U0KoX379qgcppVobnMdYSb0/E1KSnI8FjvZq4jKQTbsFfwW5icgODxxceO3kDswrFEjAQMFJgG0XEp+xICV/ArNju3b2YVAIlocFcgt0tHQpmizoL5eyPref//UX3/F8c6qPAAiP14BucWv1MJ62m16thHQkOKAi/0T/fr3S1qThKOePfxSOrnwv6SmpjRu0kQ8IsLnrjvvxL7BzMqWrSTCGT0tcVpBIsaBwOY+w9ZU32kQL7UjRYhxfoAbrn58RR988IHkornpPLt24RzZyS0ywpDI9ddfn+2uC8mlv4qAIqAInDQIhLkR4H/F7MUXXhj1+edbt25JcRZ30VhWPdBUqAR+mfDZZsOTzVgPDevxRlVERFSvXo1L9s0xM+blOta8f5/3BxriwgsuIBeaDJ4oURQ5zIymIdVRNlKQGAEm7t/NBiWXVudBzoY1/N5sPKRQnAuoHCLodfhkv/3cMQuQEyZSCkyKFjX7Fdj9zm9gcOilsvYWl7v37GHrH7qQZRSCVZPYPdzdtcv4JxAGfDibjz2AaESsE0CoUL5COucl+AM0/mgef4WSSfZtt97KAj8++QcHDWKVhK2ITz31VGxMLC9WCAto3BCdVqsWphXvIuZRgHPb1NRp2dyJDZnHw2oLvxg3TwwbhvNGstAKxhKKjMTskC0mEHPJikMOTZJ7UXpXEVAEFIEwQyDMjQC0kteDx57A2261Tz89Pj4eZfb7778zy6cpzFAe4YmLM/va3DqMsR7XNylE0AQoyISEGvwyWWTRmv0BaCYumRGyZg8ZrgJ0A8HRoMZzgEEAT3MygU+dmRknGh29xAJ/wRjzXhnB0DtdgrUA9hX++uuvKPXGjRqVLVcOYvzP/Bo6JziEmX64C1tu2lRkEK1mU7JGILA0RAwTx9BhLs5iudA7tcH+iWKboaRQF6qfmmqsE+wD5scBFoApOmthuaa0btOGZZFnnnmGbfz4ad544w3eTfjhhx9oI6kUsuF0ER6kHDp4iPrydmWuXH03TR0dZMgoITCXIy5kSA4B+p4lIV5PkEtSxHlQtkwZWoS8kl64cCFu0Y5qBwTiqdeKgCJw0iEQ5kaAx4Oj/osvvkBz3HjjjU89/TRbAmkjXorjXS/bWCg2G5eIaGjRlAz9TATZ34c1gIZALbGywMIzmwDYASAu5erVqqHOcQaweAwHDAjyoiqY0bIDAFUEE3QMO9pJxAKwxZEoioq9AgR0MLsQeIORRCwJfM78WuKsEYen8W9nvSUCSLpURFLMskR6Oo5um4XNCiyQb9q8GSOAzYZwgxIyqRq1loyLFi968cUX2f5w4YUXTJ78CwobRz17HaR0eEKWu7S2RImQEXBYdjHb69avxwuCM4C9CLz6KG8GYkixmQPsbMYZM2cAPtsgbEruEWAXAoOzE0CKcrnEjklLN4lCI8s01AILL7569chIczAAQeouEXPt8Rw86PMTyCUEBJjwKykCiMT1VxFQBBSBsEYgY/wN02qwIZxJNmM0nmS8uNQC1z0bvqx6sPVyr2f7tKozuEOA4sGYQMOhLNkrjjNgwIABuAGEIQRVq1VjrxkEHCSwZetWUtAE7CeAcsnSpagHLgnG9eAKpKB1nHQPLnGc/0WKFMYCQO2R/uWXXyI5EVcOV9Q1x3WlZkRFJ3GS7uOPP84puYdY13DYOocUReP3RjyoKR3DqEbNmsTZZ7d7l69EkYHSsZ8kI2cM8CYhWxDeeutttigCLJzF344ux2+PubBy5YrDhw4TyZAj5xhwJa5eTRGcC4Qp0LtXL+AlkZOUEJ73+JmIz/htBuaaqPB9e/dhLsCP0rNyFRgD0mWJh7azmy454AgaLDmEBHNLj2GBGwD3xjvvvAMovoZyDnqyNEQEVcqyxRE5eOAgOxDfeP11+olNd+fSuCKgCCgCYYpA2HsCEuLjWUVmjs6WN+PUjYjgTbPZc+aIuz5Tq/g0v5PmxJnZif5m3zhvi/31558ff/SRURJOQO3xEjkqit1tuKyZQ2MZTJo0iR3s11x9NevWn44cyQY93nSvX6+eWRfIEkTVYBdQCofzoPPWrVvfq3fve++9FwvgueeeQ/nhVJB8on4CeGSbKAqKX+4OHz78vffe44XAWrVrc/IPGhf9FxNTEHWFO6R58zNY9eZVSV6+nzx58pQpU6686kpcJqxxLPzrr08+/ZQXAZYsWUL1eSsPAoyegQMHoixZXmGyzivy/3vllXvuuQefAU6LVatWvfPOu3FxhXCHdO7U6ayWLQOktZcIhnhoXETq2LEjL1ViQsGKeT/tUsk5HMmYJ+YIo/28uUfRvFHJqxas3OO3uP322y2rgAhZSJFfzlPiKCQYYgRwwhKvhGDEUBYpeFxY2hgyZAimzJ7duy+/4greU+AWZHg7sJxYmomPj+cgo3fffZf2wfMhDYE9JMzd5Y76fBR7JNkgck7r1uyWcN/SuCKgCCgCYY1AWBoBDNMM1gSg55U2BnfOC2LbHS/C4bPGk5+QkGC2/Tsru2waQPuakT1jvu5vMmdfIRfMGtFSaNDSZcpwSBw6DHWF/uC1PfaysYaNpr+/b1/eQ/v2m285So/9gzDESsA+qFe3LhzwPJsinN3pIhhx2PPLl2y4Vef00/koAB8/ZMshAVWN2YH2wnyBBgkpHRc9RZOdX2Ell8RtKFDAfEmIA4DhaeidIpjNS+lE0Ka8Mscmf17nYz0e4wPNh+JHQXLUAep2ws8TJBfyM0GPi41FKX704UdYJLzdgN2DAKwCdOnShRMDWRTgDQgwwXBZtmzZmqQ1qEO2NfAOYS5GANIiJMLwUj4yYPEgHoGm6dWr1/n/OZ+vCXB58MCBKlWrQoxphQVABCvkhhtuoApSX5g4+UxzmxS/BWCsK5q1QBTtQgOx4QB7hdC+fXte9aRe6HhqTXvdf//9tGynzp3JffXVV9NJWPch0KaGSYQH1d65cydKgcA0gb9EU5w/4MKBgNUeauU0qpHKf1P/KgKKgCIQxgiEpRGAoho2bFgZZ/kf/cCxMyhUczDOunU4Buo3aFCsaNG58+bhVZbBmtG/RkJC8xYt3GM3G+I48Rd9QyLLByg8FC+zc86RRRPgNp8x47chjz4KT7bvoWzQQJxHdFH3i5ZwuM/SpUyXcQCcfc45cm4dr9RDib50KwdME9zy55xzDh2Ew4Off+75bhde+NfChahbXpZreVbLv1f9zeuC7EuHID4+vv+AAbysdkazM9Du1Iv1CF73N0W7wu23/7ddu/Y47RESkTgLuWqVqszs0dPoMOoCFKy+z5o1c8WKlcyq0YskolzZnYe+TExMZLkEE4fZP9NoIOKwXnzpt//3drJzGBEOdkqndihR5vEYKzha0MHAwlE/WEXsn6CI1ue0dgkVGKVExONdSnNu0rx5wAUF7gqq06Z1G5S3Ed4YSR7AuenGG9ktyMIBCHCUMucLIS0rCOy34KgGliTQ0+SFHuNj2BNPcKoxOx3Z1CA2ASsIqH+KwObA64DkMOcoJCI0K1XjVGDYkp2tAByaxHIPmMu5AlWrVsGHgiUnS0XAiAsEPhxUAL0EuPXs2RMzkdI5WwK7wfynQRFQBBSBkwIBM1iHXUWQGY2FDjFvmjF1c6aJDNMElJbMGkWPoo2oHcToXXbICyUpcJDA6E/9ma2icXEI40NGB4gOW524+rLLL0M/oeA5sE9ykZO3ypi+U5B8fUeUAvylLN+c1cGUcs3HaZxZOwTcgob308jCd4CEHjllkxryID80QuZUkJu87G5SHH7mBzJuGUb+RITBAU46bLkp6VSY1XGouEUuLlGZ8HFAMjsBpZo+H4lMgtONg8EWZIR3Xm1gLcAnqrMxkIrwEaCoKL48ZGkDI0YY/34IxMUXAgWASXFyF9ONrwFhn2FbcMvUIrpggWi/VUqrOPyRHHpkML/svgQiRx5hIr/0BLYBQi+VpSxK5xb7D5CWZiUjl6Y6DgjEKY5LQCAY6R2Lyvwl1QHHJLqCZBfYIXG3iItKo4qAIqAIhBkC/jE3rMRmKEed+ER21DzxjAHduZHxKVhnf3jAqA0HgnDgD+/0s2eN82Twh/NGADNd5rvsBmC9nPlfR2fa7csSEYGVgdLyle7/kyGPP4W/FGrLtQTMzl0kHisn/N1sJSN72AMCZJaV3BLNJ9VBx0kimjLGQoQk/ngASpa5KS7D0jDJRnS/nSFkFEFZqGGc+Ry7C1zZ7oQwxBHG8GJhnp0EiIsvQThYPkQcbYtuNao9G6n8FoaVXCpov0rsr69DF+GJifVtrbAFibTuS4sbt+xWDB+B7QxR/hMMbE4nQhabPQCWzIR6pQgoAopAOCEQlkZAEAFGCTG+8zYgngA+OsABvRw4z6Iyy8DoCawBtsWd6xwLGMRCw5qVqOEvvvj84YcfsafuZK0RwHLckD2bz03ALblEgaNQ1bvuBkfjioAioAicSATCcjkg6AChluSdOjYW4P/HAmARmv3k1apWq1W7ligtbIWglxuODEEDKPgq0qhRoziYOdsqyKSZYwk4pzlbApjwIgCvLLKLgp0K1o2fLbEmKgKKgCKgCBwnBNQIOE7AKltFQBFQBBQBReDfjkDmdeB/u7QqnyKgCCgCioAioAgEDQE1AoIGpTJSBBQBRUARUATCCwE1AsKrvVRaRUARUAQUAUUgaAioERA0KJWRIqAIKAKKgCIQXgioERBe7aXSKgKKgCLgIHC8j3k73vy1Gf8dCIS/EcBp7v73zoGUE/GON7CcaMtBN1IKB9Id7+JOBf6c98dRfdSUk4j4pUE57I9fcLZQHw8cpFDKgvlxLShP4aV0d0/OM8vxJqBvIxW/JuKc25iteCRmm368xcudPy177IIJB/PrdE7GFqKUCyyGv/RYkHHKIl3uSroVL+j9iuZAEjotEhjZXKOfLTSfkZxGS8OUSplzvc1ho1IjIqbi/uKIuy9zKdFmMdwcDu4UX0ZnGCc9m1u5sM5ySzgIk2NklYX3SZsQ9q8Img7Ke+vOMbFygu8JaCtzal6u5+aeABlOviLkLELqxXAjhxzzGNOyx6OmHAXBycFFChc5YkZUM7hzNGSeBUG2c+dOTBa+zhx45mCemXMlWLNmzcKFC6tWNZ+BOE5VzrX87G46H0tyC5PP5mCg5zuTnClZrmy5osWKujlkV0ww046kHtm+YzsNxEkVfBzr2FkvW7oscXUi35JISEjgaCwqBWe+u+HmTH2po7uaRtWRGBm5beu2g4cO8i0MDiR1ZwmLuG1uqQsyk8IXyHhwWrVsVbxEcamFu+J51svHCusi82O9c8eO+fMXcGx5mzZt7NGceXLLloCvkSEhX2YpWapktgSaGIBA2HsCsIsZl3k4zdzRMV0Dahi0S8dW5fGG4Q9jxox4a8TUqVPlMmhFhDMjBoh/Jj4ZR389ms8Vzvv9dzgkJyfz8adffvnlQHLyUY0v+S9908ZNfGWYsyB379m9ccMGPgxx5513zp8/P3cOUsFXX32VwyWzJRYCfiWSO7eAu5xSNWjQIM6sPE5VDihOLkVO8+tvOonzyzM1YeKETRs3+nq40/nJJVkCuEGMbjh86DB3CWR58MEHOYF79DejuQwgPn6XmHMjPxvZu3dvPvbN58EcWY619Km/TuVLWnyTk5pzvBWVopmoIMzpn3z6ki9RyTHSpGAlQMNpY6RwsCYpjw19jK9P8dVK4sGqOKywF+HpHnyEf6ZS/E1my7V3LfG+vXupAp9LtR3ARmBOV+RocEa5PXv3MsySC3OZw9T5LtratWu4a0KAMreFZYnAirJ8KGS2AKDl62vPv/C8+UTLP8XJVoovij315JOrk1ZnEUETskcgXI8Nlgfgt99+GzduHF/9oXKY2x07duSUOukNpn/+s0AvJKv8ejx8fvfXX39dv34dqfHx8ddfdx2f0KWTcbIgx+LyHULfEOAY/tkWiDwiDBEC9Mx0ORKfuFtIc8kXgDyZEhEjIAUySnGIkcgEW6gZffnKMN8b8Ke5i+DuyM8+41vG5otEEZE81UjCLxwKFyk8aMCg6vHVba0tT19ZOFqcCsqvTWRlhPIZ8YyYTmCYAK6PP/5YPuXMhwr79OlzxhlnUIoVRqoAuQjP79DHhy5buvSOO+/gE8aof1QIVt3rr7/Ox5epkyAs/PmVpidRGPIrEXcRhtgFnTCBjGTIJk6ayOcE+TghlgcKjI8QotT5zDGnR5uMOQcaaM/u3XwAOpfzkkUMaWLhZMSjSZxGMTJw6f8og0gOmf+mAyM//hbkFjQiP5ytaDYjTeD+7JPQ80sWO6OCWOiFA7e4NKgijPCEsVOorwivZ9asWQz3AwYMqFipEsQwpKvwiQeJB4jBN6afHDZs1OeflypYCg5wpggi7oMgTRX4sEVGDSwPU0EufEU7yaS4LzNIHTTkEgIfmR+uWbNn06DMuQcPHly9Gp3ZXzvJ4O8Ptjh3KTbRRyuPs5HLIGmEcapz4MABs3jktOCKlSv5XGePSy/lG5UiLXoOAfgoaMOGDQ1Dryc1NYWuwl2CQcDf7lIKv7Zc02HkyXXkFALJ5eQ2wAkxEY4250Hu3KmzfO/Dpksu36/TpnQP8tkvbsgtGJqI1ztn7twnnxzW74H+fOPDlyvzH6yfr7/+evAjj/CRUhFDrAEnt9NGPk6mi0p/QxgoIbPdT4j5AjsGNN9ExeWWAYW/7YSG0cN2ZuEg3MxdaRFifhwoBT5cimAZlA4cGaX7293JajA0952+IRkl/VT+DUsjQBoSbYHlSD8gSIdg5NqzZw/fijVqzv/JnKNuXenWHm/y/mQGQVSRcKAI9OvEiRPG/PAj/kY8Tm5NYIf1gOIQ1Tf8u4Y5iE26a0wnl1xCnOmWyewI5Of77TffPPrYYzy0TAXcHMhlLIDMtbYEPEI8bowdo0ePBi6+VMSiIimMStAwbt55x53QsOjHQC9FGYYOsNDYJ1AktwTMk/r27YvfdcyYMRCTPmnixEsuvZRJIf7Q2JiYXyZPlm8xw0Rkg8wwzFx9kATQgwcPpaak7tq1a/Xq1dRl3dq1MBw0cOCPY8d26tTpkUceKVGiBCnvvP32q6+9WqtWbb7sHB8fT4pUUzhzCXOT6AwOUhAlkmIDHzhmKMc04XOICfHxLVq04HvHU36Zgqg45C1ZNhGY8q2DLEFKlF9uEqG2PlMPWFBXjkki+QRD0akZDWRyGYlFYKEUSEkU6IS/zSI0dtA01Y+IBHZTWT6w6YDsK9Fh68PFgYu70EtxQkNro76tSbF40SJcMvRz7poSvR5ksBWULL5bHg9NtmXrVnqPQ2nAf+3V13bt3sVnqS3yNsLdgIpwieT8ijxyaYsIiMhnOd0cwJZmIQU7Epk5qZrPXpunJnNDGTLniZO8sJXi5FcuqaYA6Huc/RygIWDx00n4VJW0IHMPTFVpI3lAGHyYVVesWFHovRHe1157ncTSpUrB340Al9ZMFEFNiVKcS3TYksstsMmYnr5x40Zq6nxD1XR0ARQyypVmhUwupXtYDvQ6HngW9/lcJyXyVfGdO3eZzukEyAiUTzDSej18jNvYPezUkZ5pyJyHi8cgM5jQCxRGBmenlEgiZPxu27oVuMSOzIDCj7AIYHkSkf6GWSCfVRPMLTeGX0zMDD4I5Tz18IFGyIysJDrPlcjGJVkIgoMlk9JP2d+wNAJorYkTJz7zzDN0EeK0pbQu8bfeGkEbY56b3ux003/WtCiJ9957jxkt2ZnOslIVFxf7xx/zGe/oQOap8AfMf/orX8xzF8foSY9Ht5V0Ag8Od+mILEXTp4kzmyRCLqQVYhQny2wsNrv5UBbLq7t37WKeWrhIESq1cNEinIEUir7kSeShMvRmzpG6fds2uJUpW9Yqch4V2DIW72Yo2rPnoosuQhzGjjmz5+C0RADcmzEFC8YVKlS0SFFEJCOQMrqZGpUuIx/2xcvKNwIQHj6URWAAgoCAqsCPvWnTpuT9+2NiYxmg+w8YQK0TEhJ69ugRGxeHqGXKlJYnnVyFnM8JgkzK4cMVKlSwXwj0Y2lUbNu2bXHAAtQVV15JoUzvmGhi9IADc3dT6JIlixYt3r8/maGwapWqPi1oRjIvkiAeWIGDDKlUh8CXG/ft3YdaKl++/JbNWxYsWMAIct111xlVnZ7erGlT6BNXJzJZgWGA8rCyZY1Qo4V//YULqmBMDOMpjQX/BvXrr1mzFm579+xBkoaNGoE5ebEwVixfUaduHXKtX78eECBu3LgxX7BEZstc4rQmDFm22LtvL6YPX7IAAUbnrdu24n8mI42yOimJXExDmfUuXLQQ/uiMsmXLNW/RnJaVJ4KuRaHkot+WL1e+9um1yQtS6KrEVauqVquWcjhl7bq1YEvHa9SwYclSpQ4eOJC0Zs3yFStox5UrVyI839Nq0KDBgeQDS5YugQ9f2aDKLJNXQIy0NJpjgbOSMn/B/BLFi5coWbJGjRqYcexyaNKkCQggJGQ0Iu1FcYUKFypZokT9Bg0Qklu7d+/GDdOkceP1GzZQBQSmRFwywJLtI7xt+zYQQGA+5I20VF+W25cvW7Z8+XK6B2IzGYA5TGhWwRNWlIV3irx0LfZz8OjVq1ePzk822oJPhSHetm3b9u/fT89s3ry5uDEkI3kJVPyP+X8AIF8VAZk/Fyyg82zYuJHimHWUK1+eZ4rGBaIZM2YgAKBRo/Xr1uMYKFuuLDIvWbyYxxM8EQMXFA9U7Vq1q1StgtjoKgwpqkB26cOlTLeJKFO2DE2DGASqw4M2f8EC5DSPxsxZPC90DKxwbPrEVYmbNm8CT9jSBAR2SMybN3d/cjIo4Z+gCkwUFi9fyuBDFjjwlVSKpi5z5syhvnQAp6JmSAUH0mlHIpAdOniIJfaaNWoIwY6dOyh985bNPFk1EhIYIQVqLIa//vxrz949tIIgTFunpKT++def4IxxMHvWrALR0dSILNJLfQ3kK9j8IYXKJiYm0oVYsChStCgQnF6nDmUJFXfhj4HCmMbTTVehsuXKlcPS5xY08itmFv2KioBJs2bNaAJBmOeL8a1ho4a4JUQA4Xxq/oalEcBzMn78OEYW6S62ZxDByMU+wGbn2TiWFl2+bPnIkSPp0/TXN15/vU3btswaGUSWLltWsVJFnhyKZuzo378/TwgPACMOTmy0FAPxmyNG8FBBTE+la5577rk33ngjvXDu3Lk4xPiuLr61H374gcHuow8/+va7b8ePH89ggV5kAEVy1qrpmvRjPmeMH4K+TkHsRWL1gQmrrC/yZF5/w/V0/TvuuIOZB147lpOTVq/GXmY4u/nmm+nxDAfDhw9HPZxz9jnIs3nTpjvvumvEiBHAcu+99zJgIdKLL76IGMjPiMAscNKkiV999dXfq1ZhDZx++umslPPLlxU//XQkBgGX55xzzrvvvDP2p5/i4+OhAWpwAKXeN99cvXp1jAyGJyRn0Lmvb1/qThUQFTfET2PHICGfC2LsY4gEGbQIy7fI6W4meG7ZvBlI4Yl5MWvmTB5aGC5evBhYGMjIhfeeQnds3/HYY48hxptvvgmHiRMmfPX11wwc3AKWyy+7vEPHDqQPGTI4KWlNu7Ztx40fzxBAey1atAiRGOhRwBATunXvfjf7A3bvJjv74M2InL+AzfHMs88yNiEheRmPaIsePXrQoIxfKBva+j/nnff440/Aj1WS5597rtXZZzMEo29YUcZIat++PY70rF4rvr6I2waRUBjoFfDEMMIUwKgaNmwYpVAXSucRwI2Brv3uu+92YFqlptKmV1555V133UW9KBSfx9ixY+HDEI9FiPZiMwTeDvoDrmwYcguD4PDhQ4UKFeZLTo8//jhd8amnngJwusRnn3321VdfVqpUGacLIrHwz6NHoQWiCpx9ztkDBwyIji44aNDA7dt3UBaCgQMLOg899BCFso5G98MIwAz97vvvsKexXDET6WwlSpa46qqrrrj8CtahsHUeeOCBDh06LF26FAL0VsGYgizq337bbUVdm+kQhhqheN5+523sCQZxyuJxw2TkEUDfvPveeyBME7A+yDI2ZgpOL9uM5KUjsZhN16K9IOP3tltvZcGeDk97gSGKec/uPYcOHwJD3Al0FcHQMkEB0wrMB1gNpNexFokYUhwN3aBhA2xruhaPOXUhBRoa8csvv3z55ZcxAjasX09vQWY6OfsNsc9Rdy2aN8dupsdu2rwZkKdPny6FQoPm43G+9dZbcYMhA/Xld+Xff9OCDAi0wsBBA0nh0+c33HAD4wkI07Wwb3i46CHsiuBxmzZ9+qjPRnW9oGu/B/oVLVoEEMjOU0kbMb7xiNErkPDbb78pUaIkUEjpdB0sM8YKKkIKq+z80leHPjaUEjEHuUU/4SHlsmbNGkOGPIrFs+rvVR98+AHg0/NBmC7H4iyDBnFwo1C8fYOHDKEiXbp0ue+++4wRgJ8Me53g1M5EnJpSHfoPzxS9hey0b6dO5997732IYUzhrVvBiu0X1NSkREQwLAwcOJDBCuY8v/QWIpj4FDp4yGDMI0Y8HiLGLjgf8S9VtDQLu09ZX5qUfir+AlbYhaVLll599dU8ja1bt2YUCAgsB/w+7/djrBR+7OIlStCf4GY85/5A9yKIyUwnNgvwjulKnB1DPJkTJ0zEDU6/pPtyi18M1W8cJzyf3WPWAs+YmFgIGN8ZkjDJhYP88gw/+uijlEYpPPyMBcKE37POPDMhIYE5B3ECnJlhoBV4UM2s2pWOPkZzYIWgs0nnaaQ4srBWaqRPT7/7bqMk2LyNSvbXzMsYWrFiBcQjGP4REdgTDGpoAiaj8EFnMzNAYPLe0qcP6sfI4VSfX0x7nv+qVasABVVjeGW+y4SVyQcAPj50KLkYeak7rAhU7dyOHWGIPDy9cLj99tuhByXsEmQYOnToWWedZQrwGF80vxh2uC7IS1x+EQz5MYxkomNIPR7MNdTblF9+oWjsLSiRh1+YMApcftllSMKwi54TnBGAQZNEBizGNQtIQAQyUvr2vQ/YWYoijtro3r07+uPuu++mIu+/9x4dg8C4vH7dOlQmgyCmBg4G8qJEGSjRkYxfmEqUfskll/AuwDfffEO3wdJCQ7O2Atvfpk+HDwDSuChdFGq7du3oh9zCAGJVFVhQ4bQvOrthgwYwYYzDf/PJxx+fc/bZNDqGDiX+PH5848aNMECxSGjoL774glEP2ZghoSBpPua7dLak1Uk0HOMyFVm6ZAlzcdQVlgQFoVfISztiMmLhoTmwGJgBE8fqpUapKSncRYs3bNjg999/X7VqlUxSqSMVZ582Mv+54E90/JktzuQSMZg3Iz+SCIZ8jpIZOUU/++yz6BXWlZo2acITjUjktYHqUPRNN90EvNgoaEECeo6MGNaQMU0HDQp9dMgQBn2IbV6JDB/+InmfefppIN26ZSubQjCpYfvE44/TLlSWb1oiHmvtlE7tpv36KxlZ44cn9itxdA+IATVx7BWg4xa9FF8LKGGWfT5qFO1LLwIHjBv6Et5KaLB6yUKLs05Be1177bW0LF4BOjMi0W3Qc3QD4mhozDJaFvzJiA23f98+8iInrcYPOhtDgRUPiCmCOS6zYSLt27dnMKTdyT5zxgxs6549e9An0ce0LG09dcoUVGa/fg/QW9igBx+6KH0DgQEQgZOSkuiHlCXF0Q3WrlmDwFgSdCT0MS2LiXbBBV3xddF16dUAwswHhsw6yAXb9u3b0Y6AgyVEp2VKg4EFW/oPNMjMI7NyxcpdO3dKdai4qVp6OlMdhruOHTvCh07I2E4nYeShRXBZARQNLWuOEGBAwIqHhQru2rmLZ4EWBDEqRR2RjXLxl+7csbNLl85U8IP330cGiiadPiOdB4sH0xluGnwaRUbPcPk1ry3jBvDrhgCxaVRS5DfgVv4v9+3fjyeKUujKom8MT0cNGCZoDEfNn/ef81BdqBAoJ0+axJ3yFcrjAcYs5ZLhG5XJU/r5F18gEFnICGWJEsWZL7LrjekCfZQ5B48o4zJKl7kFNrgM04z41II+/eGHH9J369arxyPXoWNH+GBMYFwP6N8f5cekiqeOZwZrAAud+TdDEpTWuIYJYxxkDG1G+MzBAsXgtXnzFkYTBlCe5FKlSzPE8IB16dwFEHhQ0bWMGkxAUcY9evZkkR5lADhMbhi82D/Bg3rDDTdiBPAoUh0e1Af69Utak4T6pdYUxMhSv369fv36McCR8sf8+QxbBhZ/wHQyLef1cpcJKyKhGrkJjDzzTP0ZShjsyIL6BxOGYMyULz7/HP2BJQGMLOIww16TlMQcKC3tCOLBjdGhTZvW111/XbXq1XEPkh07A3uLW1IyUw0iDL4Mmn5Z8vHXLDh6aYsXX3gBw+uaa68tVrw41Qcl9tOhjMENAuZbdp0VJS0zV6wT5rvYJWy8Qh4rCaWOeOst+knbNm1oSuRhkAUu2gJPj8gEGoyD/KKVWcoBf/obc256FBUEZAZ05tzDX3qpYMEYFLCZ+6YeoQ9gqNFJ1q5dx+BLYFfEwAED2RBKJ+zapQsZxS1coWJFwAE6OjYdjOamKb/95lvQRqQGDRvS7nRUfDYFCkSzKFCKd7G8HlZSMK3wnNkGBQrqNW78uO3bt/Uf0J8hHthRSGzlQUGiHlh6gJiCMHH63teXgrp27XrmWWehUFFm7gaAjK6CLqE/0NOY6OMtp9dh/n755RfYjjjPChWKY28B7rSEGgl4ztyQ0nv37t3H81u2XDnSS5cpzSYY8UJxiZy9e/XC6qJTnf+f/2AE0IF/czS3WwYoCVI7FgWoKZes959W6zRQQoDyFSrQlWECDkDN053Rsx2rmu7C1GLEm29SCx7ne+6+G25M7uFD+9IZ6DnMGej5GEncwlCWRUAjhtNJEJVGiY42Zj1djoJofSxIpry0PqggeXx8PMp748ZNqD3WO7CNaM0Xhw/HaTF58i/cooLMJSpXMfY64EPP7AJutCmSSJW5ValyZbhRi4oVK0Egzwh36eT3972fAcd0uYsuJp2moYPR0yZNnMTTTSfBWsKbwlQELQ7sFIF/hVagajVq1uCRoRiqQJWlOPcvHYMOgPGB7xMwE2rUwC2EGNhtAMjThIVRvXo13F3Vq1UTrxLCYFcxc6M6sKIWa9auffChB7ds3spT1vOyy0iny2EpIi1rUggAXN26dXOXe8rGw3I5wBkBSuJTpbVty9Hw5pGLiKC3FStejB5mbx1VhJ5Kj8EA5wlEFZlptL9jOexhbBQ5cXQqsyvpXsyZdu02K+/YpFjE9Eg0CvqpZMkSTJXM+wsijyNwr169UOEMzbB69513/1r417p167E6mLBSCx6b5AMHMHspgsds0MBBrPIyQvFEMYaig5lRxcXGoREZeTdt2sgKt6EsV3bcTz/t3bePQQG2DJdMHEgnoEJQjbVr1fLJIKmuX55SFMOihYtIY3T75JNPmC0hHpdUBDBxxeP5pxZYGyQyUrdr265gwWgmEFjTiE11cBFzC21E64AGTg62MrDDnDkEcywz0jvmAgYNEKF+eMJ5JmX5gIwZwd9wsMWr/+6773IrPj4eIwAlAT6MZTgtABbPBJNZFmXZ5AxzwGG5lBkT4wVY4fnEkoOe7OjRUaM+R2FwiYTgQyehZeUueRnKSQRbzIWRn45kUZNLekL9evXatWuf4y4BdLvZgYo/yCwPMW6imJlGIwCFwp/moxcxQMNBymIAZUSWyqI5EAME5FJ+Gf4wwuD267Rp7P9ABvgz1SOyalWi0NA0yEwcnrQXYzdFIwsKg0sqDpP9yfuZqJEL/yerRZIR65AsdEipHRLie+dWbEwsozOCASaXMLf86RvS/6kCsy6Ge/onvQ6yAwcPHk45TNHmqTObrfwbZfwPJWVREJPiQnGFsH7Igjw8lgzZxf/P3l0AalVkDwB/j1YaBBVEHyFIqCgorImxdic2Yq6xrrlrF9jdgWKsutYaC4LdAQK2gFIqEoqBqCD1/r+58333fe8RivpHkHvR++abe+bMmTMzp2bunTp1gqUCILHSiOYQlQ2aIXQWL5ONEn8q5UIGB46Zwl/U0sDPoiJ6VxzYdJjy1VdYjQhffcjBJ1VHAuRoDrTm1C0330KLSHft0oUaRl4MDjMdYpN1p8gEv7yCFRLRuiviriEhx0bC/CxDU2hdsrIW63U3nAJYcpmPaMYuZpvth/AwBPWAzlK1YDWHn93ffe/u+o7+lqlT4IyEwRYTsVJpGFzsnhEjhqtBJMZCiRyQpir9bRaghwFHEfbt27dXr140/SE9D1EpeJ5GTICPFNpmIRF/wmPgGRKakAJEMPm1agUh4ydzSt8FC0b3JWWNZzEP3DO7daI79FFgQq35AVuoMPwfOJbgkY6XIskm0zlsaPBRZCGbVWdgQ0uuImmFFRrJ1ATTwLxu1aql1QEbWbbaams4mc7cIfNow402POqoo+KMY7RhOMfMwCN/mCmq0JZ8zcvu36XSCGi0QiNOM5+m4hgyoIqLaTva4ld3qdlldbxV4pQbr8Z3iioOW5MjzkajsJZNAEVF1A9Iw9f2me+rfn/ggQcMGTLUDDT04xSSQBgYd2U7tO8Q5bhPZJx2+ulkE3MBjHmrLo0CycRxb9qkKVNXKWLaf2QfpRLoyVs43lOKmAcOGGglApIgPYvCPkGqCQbY7DzCExWHgskGupAovIqLBemiYBIl48QrCA/MHEr3TTbehJ8tZBcLCTDaIy1dtWoVzVFFbi4VFzFBuO+77brb448/dtHFF9ND4quxIDC2Cx8I8rXWXMsdtXbPSaS0qCsIoSQnpPPtxa5YhSxPwyP6V4uKiykG6gEGtZDvnkaHBv3SYACTsI0bNYpoCY6IIUGSqzlqcfxXqlfvXnQhPiK4Z8+em2y6aaBjQVey5TM81IiE2vA3ueSpPVYqLU86/Ewg4Qyau7hIpSEzf2G4n9i41VZbEVsx27ICwjqu01EbFUFYHrzIWAz9lPBKJi7Fp3grwbihNZllsQG8QCS1a99u0qSJaglcjBdqPMhvo5OnbBg7eBWaFYi0TEOAMiCA5QZhvjRUrvyvsr8JklIb02ycxGH4PFMRYDlBRSWWlkydFIolN00AkLYo5CfaJa7UaAsOotdlhGOUp8wsRoBEKJVcMZH+lBf42aChRWtr+dYaLISfcPzxf91qKzCB+IR+FCLPYJMz05p9+UumK+YplaM5hUloSn9JBJgCHeN51Hz+JukwEDATTowSIFlvvfVvvfVW0kBffzF5MoKFr9MmlCUS7W+cuBSHa/qP0/GBf08fpwSYa+usGyJ/ND0NiqsYLm3mqjHSFpuT3rU9kp0iQVqsIs2pkPA0EJY0geq1DeKVl1/mDgGL/SgR+ivpF0PKj5DM9VJZf6VoTd4QjUtWS8PjpCDhV7VasB6Y9Z5quD7yyKuP0thXmQ2S7AkVJI4kmVxyxo4da9hwJ+BnK3CcDGORBrYs45gcE4VNq15mE0ulEWCTmqVNi4vBw85fcbgIH+27336GSD771/w1sI0bXhojXajNYn+cXUabURiHVIo3jMXEEQyzpajI5qN+/fqbk7ZZibJygoX3U2DjmOTyLwK//sYbpr20nTtd1lv/v488kiraOMptU6KNFOfi/DRjRhobNPQjTu2Fkwlv2UycXBo26DdPVtfQ5uIrJDMvpaIgkddh9nXLZTJTe/ykQB5JkcczZOgQoYWITRX3P3A/dWKaFSAKU11IUCyE4mF2HH3MMaKC3ffZB4wpFyHN1++nfV+rdq0xY8fIwTcyvRBJSEehnM+lzCRpegop5qENJWRLYEKyD2i55WoA0+TwVkiClpbCfO5mLKIiXAkSSBu9xTB3rlAH+wwezZFpkVJCr0FNQ3Bf1AJn4l/mJVbENb97oCeg+aVXrJTt4q1IpmTSnFxZNp+BhzZeiw4NuYFuJfKO4M9VErFhLEeZlOzcqVPHeZeBEtkKU2HVhelYSWhTqDnsurj++uvbtl3D8hAXSpjHuxUpIQDSdGECn8l04WseqqmEmdgLQG/6KWCum5Ky8y9eiIo2NZz040cjRxbvtFN8hEtCU3qKkZcfFYWFyqWFZzayiWjjjTiIAlRs0wEDB2y08caFraal6GRLSzLr1wvvdJS7km6IOVGLp8qsHNii/8AEuk2IBU9WX72VRZYtttjCAKbZchXND2c6Llu0bPn+Bx+s13m9Tp07zQuovSwerLb8wUcX0jtg//0NjAhpFhUWWUh1hWDzpjXBHhG7+Tp37nTGmWd2XLvj0GFDDznkEBOvIk7MzQ+/efHoJjsijRxeUAomAOCFbdKJImfJ6Ws5pA3VL/3TrFl+KrKKN2iSC6RtOgaty7YM20SsmeGAuJElJLFAuw0IXgQfduih3jGZl4xlKifxDpe2FhtwJMIlF19i3UiCeUsh0dNs4Qt6X1BSUvJbGmRWUH7GIqViRIl4c20fTnaRXHPttfvvv5+YqgEXq4jSj7ZAkkxj2wtX0kIRlqzM5DiO5YB3d1HnEV46LP/PnSuQcMVlV2y73XYxjAxSZseOa0uwZLnmL7zwQp8+fc7v1YukiK4PGWrj8Wuvv9Zk5SbEPYymgbA/25aMNqw1ISj/vJKrMA8j2UGmJboLJUKj7AkOH+0oWsv1XGfddRvUb4C3MFvEZYtQS6pA1YsvvGjXm1I+uwuBUhYF7FcSzDy4R4/b+/ZFsJ/PPPusKQoD2asUVlB7x/79WL6OYJ2ftJQwrETKT2AR0h1+dz0LgFx+8aWXyC8Ey6EMrL3Q1vb8s8lij5MaIp8cX18MpW/UG0yfpF9CVCBxR/Ahmh28Ivoprevrb75BgyFkPwEZtKqX55o1I5GtHYIpfwXZG2mL+TEdmJkQjNqEqeGhdLwipHLMVt+1BctawiId2q1bt/A00fEBRWmpYax/7caKpgmV+e4771gBiUhi38V0uOcc2SQjIcLoik9hVp1XOZKQbFAzIsbwBG7nTIpUj8QSOSToxz2hBEXs6Bbgtc0Kuy688KIN/rKB4n6GdiXg7nHcxsUUdcmOHQqEGjNmNEo4WqNgBmCJh/5mazKHEyQ5ZMCUNWbcYzqpIXdjTOhWYp1JEVXX4DcH02pWlxQBH68APT+jQhhZVE9Nlmx881Ei+JD5T2Z539IwRsynn3xqMcIAsxEjgUlieHG+xwZHcoqL6FHzy9f0cMasUakJ56LLdYHGYkL4DUs0FkLxQhQBUXwESsxszJgxLML11+/yl65dNdBLj5ivS2OF6Z0yQ56SX06ZYsXN2LZlWCV3/zu8f4EJBAwrjUdukCuF85aTGPeXXHyxttN8LIaITS8THcDCxP/665BZnkDbePWUC0DSs4hJAlqxfP4uV3v1iyZfdtnlgu2zZs+ycu95KMAPyW9PnjBxgkHFO9fB+dJlfxHvx+qtW9PiOpr54idlb6ab3ayialWrtWnTunHjRiJSTz/9FMIACAkPHzFcEZux1BUvWyssYhpjBryPpHmhWqUWNyX4V3wYhqOE5pdVv6ymlspIgG7WXyXNS47/xz/s84rChX9J9datU7fCOF7UnjVgA/KSEm8QmUvmDzVsHdo4tlTPzTXn49R2D6olqS+SZLy3bNFScfPZEPzppxljxozzKA7uSIkJbBpLyycfDUQSZO/ue5uKDI6Y737ooYfdemsfs/qCiy5q1KePgGeLFi1s47JgqYg56Ut8xJ/dy/ZJiVWIcSG1Xt161rOV8jbaln/9a5xnQY6Un9vlSEqA6GO2sz1E9qnZZFCndm16kWBiLyPeRPJ2b9zMbIMh1WLV394ls85r34x0Jr9JJfjxwosvPvf88+wJVVAehIJNZC1btQocSGY4X8H01mW4R1iYpRrraWRpZJR7jsLSIjBsC8t4tqCLatq51qplSwBMEzZ+nTq1R4wYudNOO1t/Ce7pgQdS5GY7QexVCO8IaBzM0ZIIFRWVqlFYm0SzdqMWmZYkdAEwSx5sLAPAIof8ClcElql2V0y4R4UXgaWBwRqBYS8EVogatnPKWq8+YgLqQTGtABTLJ/eDexxsgXPAwIGffvYZqY1XVoiBRF7lABVI+jSpKo7BkKNeDfFaBC2iQ8Vg2Ge4x4XCE6uqVpXsZQlAieIsqDY0JGQmWocpKdKmszCfqsAZkLbl2xlOX4pXhXYlYxgq1iG91Kt3b7sc8N/Ox8iTQGBxMVPY+OF4a7ItC8iwLV8R4W4xK2gCwzA8DJCQNkEC8nIsCY/wCiokGfBmgWnI1yT6TQSlYkPQn/BcL5TrQV1sWwyyxdwNdZxXi32sHESk0qM2AeCSjSY2XtApVovVpdIQQEpISdLiEbnVFtWxEUWVWMO2yng584rLr4jv9Js+xqoZalYGqsJoiNSV9XMkODyIj0qLBB6sWD3xRP+nn3pa6Fu70GljqZmFpbnyyR9uTwyuwE+SbLbZZttvt123zbo9/+zzjGxdMGP6dKuEeuTc885j91jdM1V323VXq/deJjRrbA64o+8dZq7PM6BftFIHaaBXOsmWwrroXduerrvuWtbA6q1aCe8FbuimPFBsgBwF4+qVN0Xt2hs1anQIaibAenm5GjWwyzQ0+IEZTkceeaRxBU3ad3H4yeGBMPffHDxYR5eUlFgqNWAaNVpBWWOk6SqrHHbY4QL7tjo+9fTT6h0xcsT4z8b37NnTqDDsWWBwuogL3ovdlzY5eURikJbEFEr0NZNF69IVt3yDlsW/5abKUscA35EQ4UmW0zpLsP6iCPvtDSFNtt56mycHDhRDoxj4bcaQWWoNiTLm+gAwUY1yo81oluaSCsvTPXQhsUL+2mzvRR3AcQXBUxd4wO6I5PP16NGDZKEbaFxLgFCRY8BIfxsMjV2rAJwY8wek96rZDTYJChia8KaNOUDiCNIikojnG5n2nF1xTqhgVlf1augsY4mqAXgKZ8g1jxNivFBw9llnAycEbbUThKA51mizBgPIPKS3bLHxqoJN5gqRHaS5GcWpqlq9mjTVS9/b7qe9nMJgxZeWmplCr8hIKiomzrz8Y38ZCU6mXH3VVVwfj7QCDQoSGtqOMHeU6E38ZAeY2LnwYGnp/gccIAKk7TT3LK+VV6tG2wETUDG3yQvWgAbqJgTgvJ6CXy1BeBUXez0dcgZK9DPkP/nUU4hXnSEEG7BCdgXK85dHwCCBUx5H1j3QmWCWLy0nrgQHPIlKw+iIQCkf9mF/kMvopGmuufpqgxY6ZbUo4vFVlj639rH7UkeAtK2P7iS/omkFEj/LSOSSJuwN1eWvuN2PXrFGa02B5QSPjy40b9785ptvsdwAEDw+p6WgjaUlXF5jM/IZH6+99qrQiD3zTAcBHosCnO9LL7nUeIAi4mnfrr0PaRh4PDbEYC82aizk7mSxNwbpKitKwleGOsxenbetR0U2ukOif7UoFokYpCM96d3wEMh1YeAT/fs/9dSTIlXCgTQlGKgUNO8wv4IF4KlPDhi6DCAGPWvATKFcRcUD8qRP26zRBrcfeeRRhvhee+2pmTHkBi3awEjEWnRxyCkq6rZpN4aCQfj88y8YMABMB1viPXr++eeZbiCRpCEYIjNpV7ltaJrsUlDI7j/332fzhObcc+89lhS9yArzY48+ajArW3iZzmYZ+WAIiRYY9sJp551z7u577M4NsHwpAqeuk08+xSzwkqHuNkl9pEg922y9NXbRf9dedy2ce+29N+FJvBhj8AAorEj60EMO1U1Dhw5jlRqoVauEsFyUG7mRE74aHmwjE832Q5PO9mTei3CpLcDekYEEpCmtXlYXX1yEAHCsK60xxix1H3jhN+P24J49vRzIhEUbMXjDDTfGGQ3Arn7BJEi8gRU2VE373msyhx92OEqQ4qZG4RD3kpISjxSxrdhOLGNY+A1ym0kJ28svuywlAMyye+HU0nsF2ZG/ogwNW5l+jytig0nCR0IICG+vCkzFfDqM4y5CHqvyHryfYd06kePyx44Zy9sQrUKhz8JEOj0VCgMZS8mU407dels6vhBM3cIDQD48bmSr+CSJEEspYqqINPgWAkHjZ7x4Hmi06YluU2/MlAATCxbePY0EF2bGNDxe7H79tdfgASYTEmJXk+NPOVQ+sPjT3YRHP9UeMVConACy3uSMOe7eLjPfODHeLGcekVYyUwwYCFhj5bgCl5KN/cGjTQggtd8aNkzZ8DspaIFAFSkzZSpOaeEVUyCBCjeZYNKekqMuyt6E95amugCceOKJBAd5QdykBeebwPlQIBljCaXhFiFjIg6/+Ei+RAIexqQwLFl2dvKpBgYcLqVl07oi5ljQUzzXC5gvPwccdkGFKy1SmI6ZkYaIJOboQSaUcZgrlYTB51MwIC5rDjwMX5/6kUiehDf1HSkUxudcQjY3F9KnrFiNClUkOGJ++AVnQjbuMaXj8M7lB+hwpfVKx9EbipSfy+FnxMz++/qbwq5PcOTwFKJK8yMBMKAwLltEMHc+JaPEqrm0fikc2GnxSAmA2JvxZ3zqRWKNCgMjzzqERQM9UpsiiYkUrOxn0ihGkggKVADgxwTmDoPbW68VMPiZgMxRixlRiJCAmjRxEo8lIEmuciMq34+epLVLky3Ykgq3wupQomkqCiOwoHhEW5aTnxGABepxWAKeQrZEtL7XGTsuli2sK8LHnLS4qtPx4FGgPEd7GB6kpY8BpM1Jh0egNrkitkIA7bHio2DMLHsUQZfJ+1K5HJCabGR3ms6ZlgU56aNfkUgtRAkxw6g2UjxM+2jdxxy+z/L5jTZyWKMlzUviI3dxgJiGKrqk8WckXib144qZ0f+QTpsmpu2KT93Bs7u5dK40U4LbUYFImWz2aLYXQkqHRuWpqvAInrXWDiH69JoXCachfQqVCKQrzeGxsbjTn6YVmDjZNIpP4AWB+FS+hDsG1qxVNhTLuBSeh1bwsWKReFeEJ+QqzISc1+KqkFmhperygQERnddee418obrEb5HHTVmnYxnZhUjSNM5LJ0QFstP8kBnbkgy/9JGECwdCrDtZKQhwxcULCkKmnQ4GTmOMG11YSwjb5OrPZUfIQpgQWk+u9BEGCiCXwYTYT9nESfNTeDkhXVzM+UufShQSY5DHR2l1FuxzwAlj0vyIFjrc84ZkirBidfkH6YitQGQhQtsn8+Dl/hbiLP8gci5Em1zxURiZyQq3nwpKF/ZLIapYdYBJ+qUQs2Bk4U9p463CkCsEqIAh/kSJGLV3W66+5hqbUVBDlQrRC/u1ThZiCjFIBzrmN4pslPOdkkJgYPFnSOTTKUB8KsKU5lRIaLhuLmRLGTZk5EdaxAybLi58MyvOl0KcjVdsnMOQli14nMLHhHuFqtPmKKR20jIVmAEBdG/cAABAAElEQVRNHHiAyre07Ke4ReXKzVZtltZZ9ijNWvYSZZJ32Wt71uLFxwGS13wTJV58VS64ph2238GeBrEEr7DzgXhCAqc+Q2S1ZcGFfuuTqtWqMW7K7Jvfii8r/1s5EBRAsgVSp4Qlm5y6/K1of0V5lFjgt0Ri1SYazT7ys/U221iAEzz7FQizIhkHfjkHyu1Z++XFMsiMA7+cA+SaJbpp30+z1yn183558d8dMsrZFG3w0fklibv+/+cZqCV1mNKqs8QfywEjAQH/f52+qK0TmmKbsphtx0nDQouKJIPPOLBIHMiMgEViVwaccSDjQMaBjAMZB/48HJjP0uCfp3FZSzIOZBzIOJBxIONAxoEFcyAzAhbMm+xJxoGMAxkHMg5kHPhTcyAzAv7U3Zs1LuNAxoGMAxkHMg4smAOZEbBg3mRPMg5kHMg4kHEg48CfmgOZEfCn7t6scRkHMg5kHMg4kHFgwRzIjIAF82ahT7xc5AszroVCVXzorXQfgFvUUhWx/Ibfydt6s8PratmVcSDjQMaBjAPLPAcyI+BXDgHf3/Ii78++y0vputI67rnnnvPOPW/MmDFpzmJOeCXaJ/Pia/Hlqi6jsVx29iPjQMaBjAMZB/7EHMiMgF/TuRz6Sy69xGc+fb96kco7UGDgkwMdCbhIpSJwNCZSkyJNLBKq9959z1k7PkofPo1TcFX4WfAkS2YcyDiQcSDjwJ+WA5kRsLCudRCFK6d986du+MkIcOSuo1F9bCz3tMDdDznlNGw4R0s17vGaf5VJEQCFT6ORgQaZc+eEozPSr5tJpNgkwhJDQdGIJ94jwrgG4dhN524JY8jMPVWqfEH58YoFpQMB2lSetjIMES67ZxzIOJBxIOPA0saBzAhYWI+J9jvEwsFi9F8SQk/O/SwudroaO0BJmtgVEykiOcEKSDQrze1ErPgoHsQHYdSmvqQbtXtOueZPvwDsGD2P5MdjWsKRtaWOvsgdOOtgN49cod6iYp8aZQKEhYmCj59HgHBUV3KgFkgA0r6T75CyUCy5AmHFRU7m8peVEFGlj0IVyRmpkQnoBxYxO4wLhSADhuzKOJBxIONAxoGlkwPZAUIL7Dea3nkeDsCWcMT17rvtvtHGG82YPn3AEwNeefUVxR577NGhQ4Y4qHunnXbyre8KiD4e9fF//vMfp4HRms6722effVq1bElr0rU+D+4IO6d6U8wbb7TRLrvu6tgxj6hV52cPeuONL6dMcaiJg0QdHO7QHaev3nZ7H5GILTbf4v4H7odz55133nabbV948YUBAwZMnjzZUVobb7yx87ydAYgMVXwxefIdd94xduw4ir9J06a77bpri5Yt77rrLqflwnPJJZdQ5m3btdt+++3h/2TcuIcefthOBcfsOgK8R48e8ejufv37O5t4++22/3D4h2+88YYD+py/xxS4/fbbHR+sIsfK7bHHHh06dKjQ9uxnxoGMAxkHMg4sFRzIjID5dxPFf8IJJ9DxDn9znoct/S88//wNN9641pprUsPOrVfslVdedRzOaquttummm1YwAt4a9tY///VP6rl27doU87Bhw1588cXrr78+utF0sISy0L7yyiuqoEodcX3BBRc88cQT8l0iDYMGDfppxoxDDzusuFLxoEGDHa3NKPn666+ZDt26devVu9cjjzwCEnn8e9rdybPdu3dH2MiRI52J991336ndabBDhg59/fXXe53fq0+fPjx3VT/26KMc+b9Om7btttuOHTv2uH/8Y9y4cSuuuCJUQ4cNQ8P999/vbFPNfOaZZ4YPH+6pSqtUqYzgI4880vG7jRs3qlKl6pAhQxRHduH5ofNnaJabcSDjQMaBjANLIAeiWsruKQe40dI06FVXXXXLLbdIfDd16gUX9F5zzTWPOeYYT6f/OF1+u3Zt6WAPaeu0bExw3I8//nhngdP6nloOoOlFBQTbedL8Znho1lkzZz744IPrr7/+jjvuAK1Sffv27dWr15jRoy1ACAkwOA477DA7Dzzq2bOngrvsvPPAAQPefeedH3744Z5/33PxxRfTwco++uijG2644RZbbCHt0RFHHtGxY0eoWAxIevfddwcOHAgnowRhbdu2tTNx6tSp0II//fTT11prLS0CKRQBlbIMIE8vvfRSlYox3HTTTQhW1//+97+Oa699yCGHaLiyH4386K1hw+LKRQUmZD8zDmQcyDiQcWDJ50AWCahomMVNcw69Pe644/Sfx+6bddv8kUcepTsp8uo1qovVV65cRQyfqx3KgypYHKf1+eXt2rU76MCD4vnxG2ywQYj2zw77+yoVV9pll13atGkjR35JSUl4YzAJDIjDW923+UCN22277TVXX83n/uH7H5x2r6Ajxk8/44x11llHQde+++1L+1qt96hzp04C+PSxzQTc99Efj7J+IRhQr149qNbswIBZUwLBSZShquWD6tWqW/BHKl+/fv36DRs2FC3QkAb16wP79NNPp3z5pdAC5JttttkBBxywXI0a9hGIMWjrl19++dJLL22++eatWlngKLcXAXx2ZRzIOJBxIOPA0sKBzAiYp6eKg9aPuVO+nPLwfx/mAdPTPGMWgA1xRdWqeZrCBMgCC8AvGlQAoH379lWrVaWtIzB4Uf0ILOquPJ1qPZ62tsoedh0ml4L9n3iC7/75+PHfTZtWrXp1W/uUdUm3ad1aWD7iBM7pf+6557x2aIWeehbBYARw93+cPt1q/QorrAAmBZZwKc6Dl2ABuE+YMEGNLmED9kGkYcb0GUj6dupUJgIjo1mzZswCj9BA8YtwDB069MwzzxQp2WabbcQqNCEWzO4ZBzIOZBzIOLB0cSAzAir2F1+c5pz67be33X67NXi+fuPGjQUGwCW6M9yp0orFCn7TpgBYDAV5809Sq+kD+tvqwLXXXqvGRo0aRSc+fZqDzO/Gp56t3F999dU0+sorr8xlF3Kwq4CVEWMDiIyJFENMFNYorV3uXbp0OfKII5kmuVcaiorsJGiy8sp2HcKTWjiSmnZH374PPvTQ888/P2rUKOsXn3/+OYNALKFCRdnPjAMZBzIOZBxY8jmQGQHz9FGi9YYNe8vX/XbccUdb7UTaecz77rsvjTsP9HwyaGWu88gRI6hqvn4KUaZNZZXp1txzK/133nlH8+bNTzzxRCvxIva77rqr8ENaPCaiUrZT79xzzxVsOOKII9Zdd12uvE8ACdGzKRgQap84YcLEiRNRUqF44U/qn/K21mDLYaPGjexwTJ965JqvrcMC8hqC1xM++OAD+wm8PTFxwsTMCEhZlyUyDmQcyDiwFHFgYR7tUtSM35HUoGVLS8d9Mk5IvGvXrrbRlc4ttbGOp04vqsg9uukhAj937sgRIyn7+CiSwV1WcMTIkTYGxk1zTz311Pnnn/9VsrEfTBr8V5dLWdfUsAVxmtg7v5wFwNH3KiA1HJ+6V07CDxIw8L9FGlZdddX1Oq8nBsCAiC8cemS3gXf5bOO/9dZb7f6TM3jQ4Msvv/zbb75FWAxpyPHT0j78DB3rHTfeeCOEkE+eNPnCCy/497//LZ0zevLGixwrHTfffLOXERg3TBDEMzisetx15512C77y8itgXGGTRHZlHMg4kHEg48ASz4EsEjC/Liou7tSpE0183nnn2Q/vtX6r7/SlqLs7zfeXrl2tEXjjzqt09erW7d2799odO6aIxOHtpPv444/FErxBUK1qVS8crtKsGXUbdaS9gVH3u0sxKyS8ZOglvaeffvrAAw+0k//zz8fHXYc2KoZK7SdIzAWQKlpjjTUYIk8++WR8X3/06NHwMDhAqu6oo44aOXKEbxoC0Aq7C2H2yYF69evZIahFRx99VM1atVgb3u7zAQPfP2bliPADjnbDX//6V28nojZQ6FNF+T0QwG677bY777yzpKSEIYItIiVskWOPPdZPxsd666/HPvD1IRSnDMkSGQcyDmQcyDiwZHKg8jnnnLNkUvYHUkX52S1PK1PnvGH7/I8++mivwjcvKRF7j4rWR3U4wfTfFltuuV7nzjXs9ctfFKc4vA10dszB40tBPiRwzNHHtG3XlrPftEmT9bt0EYQHBrkAg4/5bLLJJqyKlVdauUpVlkYVkfmDe/TYaqutatWs2alT51q1ak79duqqq60mwMCbVw+Hvk3rNiwDFNoDuP/++6uifv16G2+8if2DjRs1tqW/5vLL161Xj2mxySab/u1vf7OooUb0uCz/r7lmh6222pouZ0z4KpGXAhqvuCKqvB8o1N+zZ89aNWv9+OMPderW7dy5syYoq142hP2Ggv+IXH31VswaNgQ++MmAsE8QQmBY5J5dGQcyDmQcyDiwhHMg9+n7JZzKP4a80qLpM6b7iB6neb5azYI91Vi46j8vnWFRv7SoWvVqUYlGgOhhz5uWM3vW7BkzpjMpqNV5sRXmMCC4/vAvv9xy8evChWgjpH3+3lzwtaLC2j2yhwDZFaqI2GpUrx6xFdZVIR1tF5AOJEwfwWlhAqPmJSOFyRIZBzIOZBzIOLBEcSAzApao7siIyTiQcSDjQMaBjAOLjwNZ2Hbx8TqrKeNAxoGMAxkHMg4sURzIjIAlqjsyYjIOZBzIOJBxIOPA4uNAZgQsPl5nNWUcyDiQcSDjQMaBJYoDmRGwRHVHRkzGgYwDGQcyDmQcWHwcyIyAxcfrrKaMAxkHMg5kHMg4sERxIDMClqjuyIjJOJBxIONAxoGMA4uPA5kRsPh4ndWUcSDjQMaBjAMZB5YoDvzZjIBwBuBScvmoziJTuuglFrmKxVDA2QK/ou2LgbBFr8J3k9JChY0qzE8BfnsiHOeQfCRKXa7wKar8F50XDXn5gQTVohVfKHRC2u+JcKG1/czD2LRf2sAlhep5GvV7EGbwzMuHNCcOLT/THESEdL7qmA6PY2Y+fx5as4yljANLvRGQG5RLD9tTgsNc+rmrECYUTGfkzxVcop+HYxDypxIt0YT+DHE6pFDZF3ZWYf7PYFmUx0YM1jlC+sUXX3TWw3nnnevwql/DzIT9YUT9gkG4KAQG2PGfffbJuHG+h72oBX93+LR1v4RFgJ15UWGGxX6M6jNg+/kp+7s3okjtvwvSUaNHO+DDuWixUeGemOMplyRiOt5Vim8RRNoXRdmfcly+Qxr+y64/BQeWeiMgNygTo9XYTQ/o+y29k86BCkhC/m+WAmEKJdSGTxEnM6xCLfP9GZoWpuSfZOb9XnJtvrz6JZnz7+JF7Fzd4dPLKSodSrAGu2Du3AqfZP4lJP0SGDU+++yzjq0aPHgwI6B//yf69euXEvBLMKQwZPpVV13ltKpPxn0iswKSCj/TUr8kcd755x/cs+ewocN+CfCiwiwSYWHC5KdbOnNTDGkCDdIgw5Q0wwpmpZM2t91mmyOOPFIigKVYFpXuRYd3btkRRxzuEJA999przlz/5iw6jnIlnPN5yimnOHJM11/Qu/d22203ZOgQTc6xKFH5Ma2YYZxo/blyXIa0s8u3/Otf33rrrXJIsx9LPwfKvv2+dLUlTuCvvvrKmHa+LeJXadq02aqrOvXntzcEcoPeJHT+HmxO62nZsqUv8EuTApTxD9//MPKjkb7zb3q0atWyfoMGP1Np8OByIDDz5Bzf55Ahx/cRP5T7fIuDdG6vueeMn/fffz+nVxJUUWZFJqAhV7yglvkiDBIsnFkYmpDSkxNrxUViy++8/Y4GOiXImUARw4jhw7+dOtXBQq1bty7EmRJQVnvh4wWnP/roo80339zzj0aOXL5mzQUD5p7EivxAidOWJUJrw+mLQeP64UQlpxfGI5IrMiSHo+IfBZGdawK1nTwPKrx07oTPJ8RjmgE4Zql58+baHsunlKTo5IweNXrv7ntPmDDhX//6l6MU+95++5NPPbXttts6V8lJCiDnLZUW/xUJfXTHHXegLZxyufzy/ZPL2VFGyCJ1BKowYdSoUe+++66zKiI3CunJYYsjqsK4Sn5GHipSDjJBIQbgIAlVFCLMpYMWLT/8CoAWxKsF5RcUzScT2iJ8JIAmO/XUU/Hn9NNPD0AJUfNFGFskxOIMbkdpR4wffvjh5MmTZ86apUWFHJ4vhjwRv7nTS4sIn7323gtC54U6uixV1WkVuUTS3oqZye+UwjThzE/Hk3pIkrz+xhsTJ04cPny448Hk3H777Q4X/e9//4t0awaq8/Siiy92ChrTIeArLX1r2DDy0JHl66yzTsgpvArYHrJjL6dyqRAySy95HFgqjQDD2jV27Ngbb7yRdkzmZxjZa6zR9sgjj3TOPT4bx7+F2477++c///nMM89A4gy9a6+91kF/EaGqr7r6KjkkslrOPeecY445tkynFsr9/GTICb6kPB3Gq5gyZYoDAIPwzVMJbSplSGhqzh0ZZNC0adPM3pyeizOM/guBhMSAKKglyriAtgBbSrZEgfIPoio+kik9fvz4rbfZWs5TTz213nrrxUd/P+64QYMGcUceffTRmFN4n7eW+DTmR/xpo+Kj77//npaVnj5jRqERUAEViVzYg56edPJJgwYNDvnUf2nQ4uQ7PCuvtNLNt9yy8cYbR/zxXoitMB2fRnH/6quvDhs2rFmzZs5Ndt6jR4PeeOOcc8994403EKl3nJd4zDHHnHbaaYGrui3P7bSvYXbQInH59VdfKYKk3hdcIBiuc/facy/Dg0Z59513Wq2+uoMZAatCja+88grDggseiVnQPcKX68rSIrQZ9kxSBz8yMtZaay2K3BTYaKONFoRnQfmMJ3wItSTCOnZTGHjJxJFfLicZYymqOIrKYJKmFQ6tFLIskfBQx6nCuVNpWQBpukIiEiMzx/kAmhu0oa686RuHSizreXgQ6MlNAa146aWX2EwpgATMTsnyF8rYzIB7rjhikcH5/nvv5YBLS+nIo485uk6dugYDmAAWOaNswreIRH4ZngRtBIu0JeXmcyukPD7O1VtU+r9+//t+2rTddt/9lJNPqVmrpvz4qAKW0C2B7HKyLkAm3IlF5i0ox2nj5nu3bt2kccMQGjly5MyZM7k6pckC02fjx3NRVmzcWI3o1Ly/HXUU08REK2tU0qehm5Jzw2EC7I4VrphIcypQnv1ccjiwVBoB2Ef2nXXWWeRvHGrus2fPMZT5zaQ2WzVKkF/HaCPYypkqvv32WxjcBWC7dOni5D2Kx1S5/vrrY5DA07HjxkV5hIZYHRgWSW4O5PJyhASYGHXMZeTz88I3/o6zusLczj1KZpc0Iv0PYRB85adcWdV5QUlWRJjco1y1+T9BwxWxM6ZOnQqAzZF/UCTWMu27777++us0J1ToShoScfoViJnnKpcZhFXQ3OUyC4pUyC+0ACJUtWrhLES6GZ00rr7gqXsUTjLMMxkA8lyF2LApZkac0hL695577rnzzjtp0w4dOjACWGaXXX75c88950zk9ddfn2X5wQcfUOGpyNMdyqoxaIv8lWtB0qcgu3fvLkq/6y67GBKI5LU/8sgjNPTOO+2kUgCPP/74pZdeKgh0wAEHFBIJj6cRa8QZ5HgM2xQoG44pwtRCWBtmRySXGMmGG2yANTlifu2fwCVdmRxlWalyiBIHHVNcbNuBSmvXrl2B4ABQWhqdy9gX89YMIJaKSESYKlfJ0RkfRfYKHuhZdolM1/Qfpwv1LFejRuQJGnKYi4uYgMYnYtK65CjiZ1K0lN0cTLrQ62FYGsA84JTymKhUpQrMJjJDrW6duqGZYSBVRiQDzg8JAwywwbD//gfou1wcLhnqM3+aKYheaprjOaDYQYmmREQYJ3Pn/pAcqqmWalWrBZ7O74IWJGsY9xJ6/ZqLD5CILVWtVk34bfmay8d2aWbEUdbYuXNnzPipxnI1MFQmMuIjP6z2a5oG1tFrSbHcoyStXoYvMHUpNe2HH4g4AH66R9mFjYozlQwzGDRqm623sSaBLWVNSVD/OD1EkkITXIHv4Tk82vL9tO9r1641XzlWhiRL/dEcWCqNABL8P/fdFy2AlIHGnLQ5f99997Vp08bsTR8tWiIIhKARCYI4uE2np59+2qzgDZghN914I4UhoUYzJM4uEp/4YIUQ01y0DTfcUByv5vI1TYWxViw++UR8QiRNSG2XXXcNkzR/kVCjPv5YyL1Vq1ZCDrLhEaSFh36y7iAHGbEW5xp//vmEESOGv/f++2t26NC2bbsVV1yxeo3qkyZNYsjXr19/rTXXAk9nw0BQtmvXbvnllv9p5k+wffPNN+t07PjdtGljx4xp36EDsc6t1KgtttiiSZMmaI5VxOrc0yvhR/qr6Ntvvv3k00+UbdigQadOnRuv2DiGKMgRvoW1asSIz/O9VlttNeIG8d9N/W7s2DGDBg9ee621iIwyXEkKtZ+P//yNQW/UrVu3a9eumExVIAYzNb9FyxY8Od1622231atb1+akI4484u6778aum266CbzVUic14/OUr77iqbw5eHDjxo07de7cuFFj8lFwf8SIkXXr1dV2MCj86OOPKQlN1ol61iiyzKm7kUrrowjlAwYMIOx4Qh9//DH6dd+nn3xa0rykcqVKTwwYQFexCFdv1SqVbqg1GEi/Hj16bLnllhpu+A0dOjTsw5o5U4e+/c47jRo10tdQka3UmJCA9pastlqVKlWnfjf1008+eeXVV3WZGIziusPwGz5iuF7TUkELBXfaaSdhAOp/xx13pLYQrPk6feRHH4lX16A8fsM1bOjQc887z2AwkjXfFKMnehx0kCjL008/NWvWbFSdc/bZ6667LoW73/77abJAMStKSFnbt9pqK5Gz1F1OCcE9I1NPDR40aNbs2cLyhx56qLiIVog/25Sw/fbbi528/MorGH7YYYdZ2jjzzDONXq0zii6//HKhGkhUYa3qhhtv8EgaM/myW2+9tb64+993C+Dvv//+VppsmFB185LmVmc6r9e5f79+d911l5whQ4bsuceeVapWUYVppbHXXHut0aJH0IxyS1QsYP4DauG3mkMjYu/f/va37bbfrvXqrXud36tR40YGDCOPBBg/XjSrtPGKKx5++OHabpbR5SeddBJ68FCEMmjxqlWhPeOMM2KcKeVJMDmKi0y9Bx544D//+Y+xrYEYe+QRR66zTkfz67LLLzPmyRbsfeS/j9RvUN+yYKElYfL26dPnwQcfdFa46W/MnHzyyU1WXlkPDv/ww4N69CADP/7oI1aAwXP5ZZc3W7VZhS0Fl112md0k8FvTvPCiC8kH7cVDbN9m662/+fZbnW4kkHtmR82ay/fpc9sFF/Z++uln8LOkpOTee+/Fc1RdeOGFegSpRA0aOq69Nmn12aefXXfdtc8kfaFbTRZD3Yzbc889GzZsWMaHLLVkcGCpNALIVv43MZSY4MHyNItcEiYwQU9Wcu9+JYehKS2qWqUKhKowgik22w4I4l122cXEeOTRR9RCxxPl6gr1lhbdfNNNF19yyZQvvwwTvLiYXrQwISzBxbEk+dCDD1ldGzV6lCKUUFzBhdwcvuGGG3r16gXMmuU555xDBimoLlKYcW3OwGZ+qlFZs44fSXspK7Np0ybHHvv3k048yZw/8cQTwZPIhKYZfvHFF5t4nF0Sir7ZYYcd6Fq6E+ZbbrmF4zj+88/HiWEkix2XXHLJXnvuCWfkGC1FOMa0eiXSR4QpOkko0lCmsDYpqeo6tescffTRlgyIp8g3ZFx55ZW77babzjrhhBNI/J9mzFABYRExxzvayOuXX34ZQjkRIXjE4zZJSmQLqhMldPM6HdfhoWo4gubMmR0NF5IdJdYsTjzpJNjgQQAl8Y9//MMiPR2GvVQOFnXu1IkBMXDgkwyy5s2bW08HieEkPvOLwqDj0aBPaUHiW7DdBYagp12EB9g3lLEcYr13795/O/JvaVsCi4qLd999d/LUnXCHFv2k6ttvv20U7brrrog0kPhK5D7BLfOB++83Xk4+5eT/9ev3Y+KwwoylRs7n4z8nlHUoXWg8axd7RfxJL6eVSoBPTI1ZuBHzUYLCkI79mYxnKqQsP8KVv+toSxv33nNP01VW2XqrrSjUp558ihlkHO6zz75a/eabb55w4on0VqMVgjUzccJEW1twsmPHjoynJ58cCJ/BWYhVjdp7/PHHQ0LxI/Xtd98xOBU/+OCDjXljEkJTaZeddx4ydCgFYzHe3Nlv330/+PBD2kW0zygyX4ToT/nnKYbBPvt0ZzYxsEwWk1FQBHKmEhuRwsN5XBry5pAzzjz9vvv+o0YjATdYV23btUWbnxpl6yKcbClz6rlnnzNZTDTFLS0h2ABjYWPeqquuqvt+/P6HmTN/EseaM3v2/x5//MqrrkLhHnvuwQ1gChsGDM2De/bUWIP/vffeM0cMWp075M03raxRfuwVBkGuU4KMmmN3i11Bzzzz9Nprd7SDhBJ96qkn//mvf1500UVYyodBJKuagYIqkwIZKWPhMa/NYlUYRZigUrxq2qQpAj4eNQpJJsvue+wxetSoocOGHX/C8ddccw0TIcUggfmAGdBsCHaktsgM+35KSw0Aq0T16zdg+LJl9Y4hZ3jMnDkrFQtEBNP2oIMOQuoee+xhfBKSpJO5hjlsNRaAjYdx25PZzazfe++9k0FZSEWWXiI4sFQaAcZ9UDaJus1rrjJu8uoo14WLvDLoBaeMexe3cq0113xj0CBOCVfs9ddf/+CDDykVSt1sNyHD/Cwu4sqYSD0OPrht27b/ffi/gwcPItHoS2SY4STIW2+/RRIRK8RQjDGIKtuda2WBJNpggw34VYBPP+30l158sXqNGrwQuwF4ojIDfFExw/+8887TuPU6r9epc/BWaXGzjppvK+pQsya2gDnuuOMIBaX435Qif8785OUQiN26daNQNcqydL169Wk44pvOI3mt+ucCeUVFrBbAkTGmd0xASCphAufAmjR/ztx+4oknzHwOGXlESZAI22yzDUl9xx19P/tsPJXACOBtoApz1lwrRClIt5TlEeGzzzzL3eeivfLKy/369Ydwyy223HiTsMavsS+88AIBHeRU3tNFCSGVdH5gvi5gFfXq3ZuKtQxE9Q4cOJDOvu6663bacUeuOa/Fyg5vjzZ6+eVXiOMzTj+dEYk5xHft2nXWXLMDSbdKs2ad11uPVz127DhSmxyn4zffYnPsCj04d64GooSj/+bgN2kdtkuIqS7gQiJIfYQ2xK+3Xmd7Ssj0AQOegJ9MtEaw7rrr1Kpdm7Hy0EMP2fx13vXXs0v4Z9SeIdela1ctpeFYFepVlnjVHWI/8mNnudsJyzRBYUqIp65IdpqpU9L0fBOKYKkQND1UUlJiVBDu7rz/bbfbjnV7+hlnGEi0r7Aw4KpVq+hctqMm0EDcdysp+Exppfh1DU+R4cKssfwhH6l6wZCgrT2Fh4lDaZllPE5jAJ033nBjixbNR40a3fOQnpx1gat1O3W66uqrI8933203vU9VAzauBBIgcfFB/3Xqqas2azZx0iQIjXP9u7lRXVxsCFFvKGRAWmX49ptvuPUiWM1WWYX7jsOG9JjRoy3/H3/CCSYUo+rUU08DyRpQPDZHggq897771HXlFVe0bdfOsDCKmOwMONvmWb1RVZukdDPFKWbAOdZ9KNdrZWypVOn11143B1dbrQSp1LMWmTsXXXgRaWBvKV4Jg02cMMEA22+//dimKk0pmTN7DrNSXdSqua+j2ZoMBfhl+om3PQ/uWaduHXqaaU5KMFZkpgSkCesgqzRdRRPwk/QgfBjZpioAbUcDKXTiCSfKYWqbamUFE7Er3sleJ9AYc6w6LSVnwJiJTBlixDgfPXr0IT171q1Xz8RskIUBUg4uSYkyA3NJoupnaKldqxadR2jNawEoafpZSPsZFL/gcZx1VapUZlObWiat6URUUV10JDciCNpEQ3C5bK/lLd16yy10sFAB7fTF5C9MfvUQI1DVqlVb8JMQ59yY0gqagQSZ6Wf+E0PebmAN9Osf3vgi2h577LGXX3rZNIPB3J41a6ZdigDImhtvupGwINrMfDlirSs3aUJwg+Sj8x2ZDtIsD7qQAUEpUhKsFtpIvqta9ep97+grKBp0f3HxuHFjBd6DyEuesiHgiZdZHfiApiQ+/9prrwIR1qO6OLv8dXvihgx508InHUnWnH/++WKq++23PzCN5fIqoixZf9eddxJeURkk9RQhVRF0klAJwvshJLmGvTUsroCqmvRkbfDX1+7YMZaKd4+wJYppnSL4qZa99tqL9y+CSvoQ5dwg7JJjSMDw97//ne3IZNm7e3eRWxLWEGrfvt31113Pj8RMEhOXdClvUlRjq623ohHTSmliK/pPPvnkBRf0ZkkI5/7vf4+nxAQuJVfgVBiXpVxeERdEEoj9+z1xxOFH6LXddgvKjxvKPujd+wJ6/b577wXPXiTThY4ZWJz+fv3767KIsXnz5ogxTuwl5MAho0zlF4fYiUyLtSmdanQJTf2la1fGmQAGnfTaq6+lRl4KWZgI3KxUqUaN6qu3Wl3rVCo6YsC0btOGCiDo5QDAVaUAMBdoTRaA5ojuMCjpSGqjECf9ymgAy5hgE/ft25ehIBMkcyFC6l8GUKxRmu/YslVL/dpmjTb67scffvziyy+pWyNHqMOC2p133cXEpF/NIKMLWyLnAbOwbRBBNmLQrAr9wHZENg4DC6+UVKpEFa3fZX3wfixXYzlzDT+/+vprhIn/ucAw65kjwcDMd6tMy/wkAOuwZatWalcXi4capoMNhgS22MDDc+Y+PB7VqF7deBbjKWQLYj799BNMYKSKEyDDMLYcwBR+++23Zif2nOoswchHhopSMuCxdwF+BAgi4qcJvvJKK6vXI5gNdd1dr349GPQa78LwiL1WSEOapt25NC4VWVYLQyuRqtHmVm/Yc1C5EssDPWkp/aUu0gn9VatUZaGqFBPwUL2ekpAoEWkwPtHvMtTT4lliieLAUhkJWKFRI8IilSOBoYZkULfhIkoMSonfyOgEJQVcmbBTnalORnNrzBOCoEWLFuauKkJFxUXTvptmkYzS/fKLL77/4QdTNGROm2ZjDnXvat16dV5pSpUEE4EFbcKESL5YbnFxIrZKq1Stmnvpq6h4xx12YHyohCihmVTHp0nWZUvZQaiChK1NQMeoLPVPLhCOphzp8MH7H5A1dCRpQvsGOpIZvtJKK4pqwCZuwbagdQLByexHmMA1ERm59+CDD3z22Xi8df0QAjBhRV9L4ztU5AsRNnFi8ET5AaKUhDUjCZdiXaS/NU44udod1lxTJiPJqkSCL/AnGhl0sLJcDTkejf98PDNJQkFhZEaSdKRcAqnSHknHS3snTZ4szYcW+fREuBIAs6xK5SqbbrIJ/iBPJu0b9TqpBA8YYosEjAjpS/HevnfcIcLBjxSHoLo49DADoOoiW5hc2Ivz33wdjLz5XsEKcCVNwJxQHcNvzhwiEnyszh8RYyvlchgB7Cf52uJnZIt2gt/qr3+NtiAkZD1RW1Zjadh+GHGmmUm1RRQV91TV2ujO8WV0LsQOUCphSKWwSy7ZUkfpQm7kwOyOSyqCirMIFlo/XZ4awy5pFmFKhoRBC6ciH300kvrUXj2qCygn2ABAYpTGItIamKDMeSa0ErXtEj/Qd+hhNQpxR3jKHiow2BlzIqnSEpEwCGNHQBIwJ1sI1Wixw6SwNCZOU8hPwHF0RYTl7qWlInNmykorrqixBh+OuVgwGsjeZepJhNrVk9/Ew1RKqg0OeiQJgGX4r7/5Rg6zJfYI1utZitPQ9tmG5i2aw6DtkQC1+JUS4+chPQ8xy9i1bFmGmoUzyyKiKQiANoWUpoPB416aOd8EAE0DGfiZ1BUISCu1Ipn0TFo29poWKSITw/WO2v2UEOUygwSB8IQ4MphZ+fLT4lliieLAUmkE1KpZyyK3oJOBm5taYcCG4ejnDtvvwAj4rVxOJ0BREXufg8gIiC61qSWAVoifLvQCGwe0Vu1aXrLnkYwZM6ZwNkbCyiZVIkEoElKMohK43nmnnW07Cjo1ER8RktoITUoWEU3uKGJStHH6eWreQmUPBNlE+3rZl+xmmBMTNB/kZLGKhKOhjZiVIn0I+yAlk2kcqklmP8WjdZtvtnmSU8SsGR/2QAXGgozzvKSkBE/8lAkD3/rrb74+9NBDhg8foe2UpVqiMiMseDYgY71p7RF5aFIiNyHkAXsKUisEnCOAu5BPzA/3oMaC8FWvn6lcJENlkkSQEMrSChI69LciM376iaaPCA0YNlO6LwGekI8XebY3adrUB1U45SITupv6sWQQy0Ib9GRyxSqI+Pgo3iM9ASy5Ch9Jy0sJjo9QGXdWo7x9e3s8wycugPkZ4kxpv4SmhqL8VMxBEoA8hrCNnPLAjpiTu5eW6pQQt08Uv4EUMZSDWcAPkGVVLwCmMJuPqDeiVhD1LSwbpyHl9Pe/H9e8efOo8FCqt9gBBmchnoWk+e4GuaFlTYfrGSE1mRXOJxYoWkjZ+ChwUMVkxNxSVrVVLcaxxXjOOi9ZLO1nMZiAJpHRPu377w1aHaGlxo9xDnPUtYVtXwhCzjcLXikzNEdepUrUMKPTz4YrNEz7N3ZqoLzg8nP11qvbxyNiZznP6ydeQjFN7OLMjec8sJ/cDPC/UAGjH3C853Es4C+gdHyWB1FXh/YdBLos/FkwNQasiWy37ba/CG15VNmvxcOBpdIIMJnXX2/900877dJkk1HkFEUgpmX1kRtdYdr8Clam0w4q41gwIJq0UBFnqkjXtgGYirwKYToB55NOPNEO/KdWXz1O6bRqYK505pifZouIsRivyXzU0UdZGC4pKQFAY8HGcYchbl5TUJycoIGNRwWeyv/mm2+tmMphoMBG63MmeKfK0lPeSRs+YoTwrE1PZBa1V79e/eDj5R2FoB7KCxc5caIqjsPxIvViwqPlVJBUIeDJn1apSz6vTmBgxPCRDeo3eHLgk02aNrEbwC5lBevXq0dMS/C9Ro4YaXOW3WQRobvvBLiIQsQrEmqnkStVim5iCpYmgm+U0BwoDFeOSlQpIorgJWYudXBkEyNBJmY+/PDDFL9wp+rwx1Jl2F2fXDjjBcjoJ2GmLuZU1a1TRxdTOZ5qPsUbgUcMH2EN2Bo8ZzRGLGzMjI9y94S20IRyuUVowFuSndETn/AFNRb3mIx6gQaljY4++hjphKmVqlerPmbsmEI04DWT7hQSj/mAZVJCa6+9VqGUl0/LoiF2ceBqsrs+VS0pWvnSANwr0JzC/GyCBeB7tDGI1a5t24gzlqIpsYsDjUhRlpgZVPEvrixyTOuE90T+sT3OArXkKkL7ArRRBcojPPuYfmJ5u7NOdC9FVc4IwI75IVScEcDeAh8wJ7PFXwsT+kUztSlHUvmKQ2YSWUmzdbE1HcyxCGjjRXw65cspwgmq8ArMfAlIi8enBAKH24qPMd+9+96YQ1wUdrFRJ/JhkY79BFgti3qhPBA/v2shyLze+exzz5rX3A9VJxMoLLMsCNX80Gd5i5UDS6URYBqISXbbbLOSkuYW0U0eOd622mbbbWPo+DeyMIzX/OgnoE3XTTfZ9Morr5JWETeRdjGT1RLvRrzp56ltgzY9XX/DDSZkQAI6EQ3S4WcQtQR0zi2jY7p162YPLVueSLJ/TUyPfuWpPProYzw8Ph/dGWshHMSE+aZiDAcffLDgvyJkogA19wiMxb+SkhJbtChIBIOxQdeyPUoQSVJ40Sikc3udAm1pG5EZZJq4Q0JnbBScrqBuEy3iCe+/fbt2CEMq4v2k2d955116HXl6ZNr30+68607M8YoUz0lxriEFL5xAg3bfpzvMjKekkkCApQ3Lt1wxW/dVpO9inPaKy6/o0rVLrB0w6tz9LLzjdvwp33aBli1aCnjYmSGaIlCMD4Kld991t9cj+UlgDjv8cEJfyF1ImRfF3W/SZGUY6AOb//Wg/Vz2BNg+xqjCKJsVPNVG6z6KuyZ/MdnahAUURpjmswB23HEnazQodwUeRuWB1CQCz/qhG2SCt37kzauzzzmnefPmwsVfTvkSW7r+petZZ54lQmN7x6WXXublTwzhH/t5xRVX4EZsYNodRDl6Xn75JSNEh8Lsq4tMqPbtO+B5JDLe0yJ+RiSF6iFmKu6RO+LlRNpjOvkZ8pXS0gAPY37AewBYjNca/0EHHlhjueUs5YwcMYJjvUbbtkq5AtqAIHxr1geXbrzhBivEnHjWgE9uGLdGCBhXBVIVUZ0rPlVvSMyd6xWYU087Vccx8vDB1DAI9RobFwz40Mww2ULZECRgm4SOKLJV0HTQy7S1OFmX9bvER2w+Q0j3+YAuSBeViY1CQQDuvusudrP9ubaahtYmeG0gMAAsZtnbKFpmm+F9/7mPfSnoYmEuIEgupCA50JG0ImFt7meaudFGGz/62GM2WlrX32LzLfDq8itCcEJ4P7QkoT+wL+GCn7FgvNPu3g+0u4XBitTnn3+ucuUq5ICOUEI+m4YlIUw14IknmIzGjJ22JnjE5x4JC4mELgsK5q+qmMsGre07zUuaYzJu2NJhXcy20M0331xdgYC89RNISxbUIlXxjuMYr190kPGwQsOGLG/zjnTykwlboS2FZbP0H8WBpdIISEeSxTPbvozG3BAsUBi/iaGJNrSwqCLGLFQbbbxRu7ZrmBCiAta35JOPLo+IGHpi3333Jdesr7uIfheJY0eMmROt4AhMmJA1ttIoCDNsFI/lSULKVmfhax62rekUlSCneUjZ87EIYm30wtjYsWPJPjPThQbxALtzo6vNWzLTKD8V8S9FUAXGGzdq9Olnn3GevKCPzrh6EomP4tU895O3625bEBiiodCttOMPJDAEUK5ew/MOsVoIGkVc9JZSZMSWW27x3HPPo197yUTuUewCIQ0K9bXXXqML4RFT4bVYi1WpLe/kqYilnQReeVIFwWpfWNVqgR4NiXd4PJKOCGMiMLZqbvQ2b978tNNPo8Xfe+99uy8BuAhxdokXsdRFrtFGJL61kvfefY/Nsf9+++2xx5733nsfYshivOKcsUj4eawc1ekdevqM089IzUpxDvkh5FO5sjiBlhJqX37xJao0GT0q1UB/lNXL1WpU22Lzzb0b6W06S1dkMQAOcbv27UVoyFYdRw8h2NID89H4gQoMoRzNyjh43HMNr1QJt2vWrEX7/qXrX0SefN2Ibyozbk+JYL/wrqJYnYR2RfUZRmky+D2Sll/BhwOsLoNEvpFJF4Ix/TbfYgtd6alLQTTHy7tqZqixfeIJJ9iOqr2YJhIjFhKB3VOCpaGNP+NTSAJAcfGGG23ow0i0lL20hpYZYYrZvJJMjbDcHsZzwaYHFCZ0FXnhjQp88aUXmRHLLb9cvTPrsZ90B2r1ODCTThAuaUVYilp3nXWfefrpq6+5Ri0MdFMs8CS5TBA7T1kwXu3rmbwT6JHtpdKUaLS2UZI2J58ILSxsptG86mqr2hzDZhVCY0Ipa5KaKVY5lQrEJAM+1/w8oviXmWsiG8mGFoJZY+xIlgRgpeSwCw8/4ogERyn6SZiVm6zsJ4B4wWOiJYwNSp2c2XijjZgLXlUw8A4++OBWh7ZiWJsOgwcN9h6Qid/1L3+BQUGmDvpyeMr3nUyjiPWPwpKSEuKIRWLLBTvJIDf7NJktWL412a8/ngNlRusfT8uiU2AOh5GXnzbSac6iI8uVMNYhcdHE302duupqq5H4nhnKtrmZJOYVWW/einj7HIenVIixblGAOqd327ZtRzZ9O/VbEp8+8C2gzydMYA6nS9G8ENiIbyKSXf/RyI+++PKLenXrJc5H9TFjxtCXgqhifaqb/MUXs2bO2mDDsM9cMFNB/p9MDqvXe3wGJGogZLO+PZVQF9VlT7IVATJCRbSgqW751rZkZy0Qf1qhnd6nspcQAAdXQcrYnfeTqvAPP/hw0uRJfDg7+wKffYbh8/CBAY1FDMUmnxdibn/uO6PvvmuXvlcBwds0Rxd46Y6gpFbV4lKpt5mnTPnSiklctcFn3ADwwfvve3naor7XHb06ZU8yZiK+ZYsW9k8FnyMvXrURATSlbUc6InYbhsMz/rPx773/HtFDLyLM923Qz+1mlOAtGJ/6t+vQ2yUEnNWN4R8Of+fdd1ghdGq79iHIwczCfM2HXLfiMEuCoBfMEH31ZgdPnfphZsGvRwwDTPMRJxvx1OLjfXazaz6yEeyp2IaQLIGrOKp0typYRXSJqI+PO7F41MsKVK9RBIYA1R2ks7qmTftO8+XoFy21y9KLc2IepCqeUxvaddmll9n3V07NRKYs+A6bndv4pRO9DkC9GS1CERqrTz2FDZ9xzPCOTCbEMcrQatig4S677vL111+de+55jVZYwZZMM2SllVemCGOFemeGeEyzZraqyNFkZW2CNdh8YMrY0yK6So6y9vcYw8CYBWPHjcVSYyDiGTtmDAbS4r5CgV4fRIIHByZPntSocWMGND4bXeywKV9NoUT1SyyIP0xwFVlEMMCmfhsWzowl3/aJc5nlh0hldbHqtBSwr0sxI9Ro6hmrgc5mzdwFOTjZFCF45Om4SRMnYcWs2bPQoAozC7usXIwf//mMn2ZgILDYHQYYU7XZKs28jl/YQYHDRcVGptCIaVu7Vu0GDQP9qY4kahAsBwGxUeldWb1mzJhi3//w/UorrrTSyjkwr60KeHg9x/TXCmbrivYxeqeU019cTM0TRxqiQxVXNVKFN7RaEAJvcanRCo10hxapBQ8NS59HlCOgorOYFySJvotk479pGAlL6PnaLPBpBMaEPdRWuHS9S0OsepB18nEsbUiWWFI4oLOzK+PAUsSBYKAlft7ioVldW2yxhenqdUorFypdnLXP20YvLLClbG0TimDK3HbbbYEdi4shKvLNHA4rf5r1s9jqnZcPWU4hB5ggflpNEL4SRPwD+8X45EVYAGKjMBq8MGKF1EC97NJLbb4ppDlLLyEcWCqXA5YUAyqj44/gQKFHtRjqVx0XUEWxXvN2MVS6kCpsSbEc06Z1G56orQa5j8CgqiA2u5Div/GR5ouz83T5unF5eDF3x2+k/89aPKyGhLWb8E6+HvkDO8UOCetrd9x55/0P+OxHPYETul+mT0sJIfxZ+b9Ut2vpXg5YqlmfEb+0cED0XijV4oL1HSsFf5iEFbdN3ukQErefQOheVFa4GD0UwOKhSkUu30ycOWvm2mut7bN0S0sn/unp1C9WMK1TtG/X3i7gP7C9ViKssHi31uuU1o+sGa3eunVcLVo8o/QPbPvSWHVmBCyNvZbRvNg5wP8v28G22GvPKsw4sNRxIG+zLnWEL2sEZ0bAstbjWXszDmQcyDiQcSDjQI4D877QkrEm40DGgYwDGQcyDmQcWCY4kBkBy0Q3Z43MOJBxIONAxoGMA/NyIDMC5uVJlpNxIONAxoGMAxkHlgkOZEbAMtHNWSOXaQ78wW81LtO8zxqfcWAJ50BmBPwBHeRzYE5c8S0tX5rzYs9CKPD9so8/+th3xxYCs3gehTfDku/k+A5JYY2+KTZm9Jj5PioEW1A6wRpuAJzu4xt5XntbEPD/a75PnjluIB4m9P9a0f8jcvux81fh52J8ml6lcnwBMK3dN4/Ch+QW8fJF2PARyeRU6wpFvRim+3Rihfzf96fPCPqcn8/Y/b5oM2wZB5ZZDmRGwOLuerrfd+x7HHywb8Q6oW7hL876Ou8/jv/H8Sccv7ipTL7ErFKaw4fK+/Xr51sfPgZ+zjnn+Gqeb5X7wLi31SlsOQf37KEVyQdkFnk4KeiKhoXjjnwJx3fmo02wOJvsm7UOPevRo4cvwi7Oen/nupKXGH0P2PkIjrrZfLPNnJsQq/BtXWcj6TinPDz55JNnnXmWLzrf/e9/x2P6fjkZb7/11gEHHuCrcPMWkbnffvs5SH7eR79jzn777++szlGjR/2OODNUGQeWZQ5kXwxccO8v/NXwwqeF6QJ8lBkNF1WaRHzip2NU+GSsgQLYsmQsFX8rJVrghILwcwG1pCVzBcu/nluh9hQ44Cv4wkxhOveoKFBOtTvUzultvkS22Wbd1l9vPcfGMF8EM36c/qNPnfsaudZUwFZYyy9Jx0/yqUst2JLyat6yFeiMADIlYqk0nSZSJKGsl/2TfgjpfI8A8FV4P+NnTVP4X52IyCtUAdu8ORWrKN93FZ/mfy8Ej1b4iNA33/ow/9fOUPDBFl9rUe6ss89yhME663Rs3ryFs5KdiKixujKePLQQhMoWPnWwXszJ01LubzTmwOdyMTl/4kM5uORHRFuIfF6YmFMIY5DINIMWBCy/EH4hYNmjjAMZB3AgMwIWPAzm93GYEEQtCicIh8jr3KAjQ/kEkl4P+YnilCcR7yQj0ewKkDhO4yUnkeQkZsHROHJyCCNocveV1lhWjTkNJh/ucJpXgSZLBW94lr8Kkvms8BepjhFLcyIlfqZEBsyVijWQtPWxPBrFIby+GO/Dn74Dyqd0xIjjSRyXomwaZA7h5dDQ0FK+taNTIoW+Nu9zpjJTgiX8AJzSoJSQg7tHDjoSqo4fGQ2QBYRF+IjHPSbSzBSbfOn4NHLVPVRWUGNaNiQqVdKKSHmKZN5ERJtaEoUAhdgCWPnWFUJKa6AzACtk+hmKFfZpAlGYg8NRrRZmggo9aOAlnzf2yKlCp556quY47kURJ/c4pdBX5c8/7zwn/QQzq1IlRyE40bEcDapPvkgYKClke/5TwbEijwLgPFegIRlangdOJotHjtxhxaou2nkAQvF5+BNyFtDLoQjUpUWRY3GwhYx5GAUyXvGRZuaGUJ5p4WnSRn9/tq8jquyeceBPz4HMCKjYxSQIbZQ4uLPdPbYwT+j4XmxUclSaKKuzucgR7hSlHoUvMRdP+Uw/kBlEG1GVSBxpR3U5mTfKWRIqijPyMYAlV7QAgjAtLXVOoCoiDC81Vp3S6qOtwGpUD25ZVLeJixvVXHGuVIIZkVQO7zAiVxdUUSLPnT2XYKXg69SuTUmXE4sBLlgAP82YIf6vLmeCEakSPli72667RmWPM8BSqmSGYuEs0RnL1wxHCUv78j7+YFq4z5njALTwyVu6Yc4cCMsVTxD5/jmqSmeXTvvuu9q165SjKqjP2T9On664E+o8KnyKNiEKJwTG7oAsfapSQXJHMlZOxjuqEM3EURGbBlXOstMjof4ysyShpvzNwECwo5ZhS7WaetOKMFMt2lXYrYU4AKsOnT73O69tBNKaupPZYmelBXWxKn6aGYwk0Rf9EtVbBPBTBAXOyBOZzmrbZpttZKpu1uzZTsxTa4sWLRzhJ0e+iI5LLSn/JXBAh+odGNIWhSqS4ecwmPgoafh82AQD5LEskswFpKrAmldAEq/SMJsgj8dVxyIQypHWBAfcuaTl4HYEM1RMNNSmh+xBpopwfnDlShKBq7NnO+sv5VvsTfnwTE/mL+ZEhttPoIha8AGeWFeOvOxPxoFljwOZEVCxz6OEcr7nGaef7rTZli1bPPjgQ/S302NPPvlkR8o+8MADRBJX+NBDDt13v30JGudlPf/C87fd1mfy5C88EoB1WrnzZ0mZd95555hjjnGw5mOPPSYeSzpbkSVBmRe0hbKOcL3m2msdDW4R95ijj3Ya9/333++UccqJ2VFSUkJoEliRSsoMAbfddptNWLNmznSgqkV018yZP11y6aWWYx3Vtcmmm8JPUx5++OEO8bTQTnaryIHFB/c8mP+nFWijA5w36iR1kpeodQ4NeI2KFdGjhCNZeeBBB9kxR0zvs88+OGNR2fHwDAJn3V7Q+wL+HswpB9lGjyYXXai4g0ot3zpSrGqVKl99/fUtt9wycMCAGYlkd4quE8+cvZuWjQk1jh495oQTTvC5ftFsZ7meeOKJKiXc4RwwYIDD19Gj0nZt2x5z7LHO56VTx44diyc4A4x2dOgfImlZGJyodt211zoFFT0OUXUmvaf6hVodNHjQxRdfU4AqpgAAQABJREFUrKP9dMh91HAV6Ik/6TNVW/N2BC08DnjFDZskwlG5pUW77LKL3nT2vI5zHqvO2nbbbY895tgVGlU8NdUmyiuvvPK1116Dlj5zqgo6mUi2fSilU/rcequTmrXOGX0nnXjiaiUleG7sxYZbgnFAjFODjzrqKAcxw4CYN15/ve8ddxhmVCbrc4fttz/k0EOR0atXL/f+/fs7tN7dKoG7EWh8nnfuuc8+95yBIaKz8047UbGCPXfcccegQYM8NRgikmiL2Ih3w403ojlaxp06rauPqPt5GYVUzHcg8mGHHfb+e+9RvQaASeRkev2iFXr/zrvunDRpsrIGtoPqbVDAfCfYGhuvvPKKoahFzsg+9V//at2mDUpwHtmOoQMDibMb1B6rNian/zj9tdde7XPbbfoF04xeY3j77bfHTDNIA3fddVe7CJ9/7rk12ra1pGX5w86PgKq4Uu06tQ895JCddt452hnzNifLyTiwjHAgMwLm39GcBlJs6LBhY8aM2X///QkO52Sffc7Z3Iju3bsrQ9ldd/11NFzbdm2HDh1CuNOLu+22u71yNOsNN9xA5bAbeCRE2zXXXEO6bbnllk7g5pdzrTggxB8ZR4JDRc/ZlVardu0rr7zi7rv/LZz71y23ZBA8/fTTECoVPct77733xhtvdJL9YYceKoeG85PqpddJVXJwwMABG1OZlSs7wMNedxKTbKWTCOh+/fuxJ0pWW41toV7Sk4u/5557EqYDBw68++67GSi2+6XsiDJ9m623fvKpp0hS6pbV0rJFC/kMFO0KIY0Cx5nBgZjHH3+8W7duXbt0cXYIa4nk7XV+r9atV+/3v/8xg3baaSdNc9z7W2+9RZfPawTQ6K+/9po9axQJ9YwwYW0aAidhuPmWW7qsv76zyXWK7rjpppvat2tXs1Yt4t4x6nalNVl55c8nTHDELSOJEXDfvfdSYNi1+x571Khe/bnnn6f1KXttGTJ0yAUXXKBr9tprr2arrPL+Bx9QNmIQafPThI7DHDQIrR95xBFCJkLrV111FRV7yimneIqZhodOZ2Ct0LAh/aqljrf/xz/+kSKJCYr5/fff33HHHTu07zBx0kR99N3UqXXq1KVf0eyy4MLCsAnDRaX985//rLn88nZlXn311UYXa49D3/+JJ5zLrl7dOmL48LPOPltfaHvDBg3GffLJkKFD99xrL9VRurqJVhbznzABVyYYRWyL6tWq1atf31OVuhgH48aNdgI99b/3XntZLLAX9bHHH9d9tnzqqUsvu8wQ0jTnwQvsP/jQQyCTSEqFxhUJNum+V1991dmGhx9xBGtA+sSTTtI7Vo7w8Oabb+7YseOee+6FKmYNbuASlf/ggw9oryocWj/srbcYHHpW7abDSy++aO5Q6n9nLVWp4ng6DU8rfv2N13v17t20adOjjz7ahHrp5Zcv6N2b5YcbzGXjJ1TdsMEOO+5opE35cooexytzp3adOiNHjBg9Zoy+y4yAlJ9ZYtnkQGYEzKffCRoboHgePDziftVVVyX4+KZjx4ylJvnryca+Obf16fPkUwPXaLtGl65db7n5ZgEArpjoK/VAqFGxVBeVCRtFzo9stkozilMImiRiB8BJW3BtOeWnn346x8shYPfeex88qli/SxfeKtXuVQLaHZU0H/+Gqj7h+OPXWntt7rWCZ5111sMPP8yJJOsp6Q8++PCLL75o3KgRr5R2V1CCtqD+B73xBnm3zrrrRpJWXHEl4Qob/nlFzIJrr72WwVFoBKiRsO6+zz6jRo9mBBx4wAErrNBI9HU+/EqyRBqee/bZOnXq8C/jggjty9N96+232rRpTTlh5oEHHkjjcj0ZHxGmAja0bbDhhoIEmol4XaDJ9913X/v27elOeqJBg4Y1a9WkvGk1lgTLw+KwN9OsORzSs6eGzJw1a9p30+rVr8fte/SxxzThyCOPpPUpiVarr37mmWdQDOuuuy4bQgcJ0hxwwAF0zM7Tp3/19VcOx6tAj5/CDEGXNGiAXRguh5I79bRTaX0REToMzTivFhF4inDlJk2oNybFvEbA0KFDjSVtxxnq/NupU3U6pRUV20UXXUTR6qPtt9t+t913o/Bs62veogUO6EpKUVm1g9m7e3eKmeF4+RVXGFoq2mvPvWosV8OIEi9ptEKjj0d9HHuZoSnoYrz169e/bds1+L5hZ19+20qI6RcX8bONWOw94sgjUaJRTAT0H3P0MW8OeZNpYkCeffbZOABc8CmaPtIVLjar4jvuuMNhhx2u+6xBMMXeefvtT8aNQySLUO9QwF26dDWKmMgG9t133bX25Zfvu+9+u+yy6woNV9CEnXfZBQHU8yeffmr63N63L2LsRxH5YJfz8tlJab0sM1qcvWhgsK032njjnj17PvPMM2IzRg5ikGEsrdlhTTUyE9k0uv6gHj08gs0ruoZrii1LZBxYNjmQGQEL7HeSgthq3rw5gUKXCJ4PGzaMs8Ij8Z+f5Omnn34GTFiYguEG/fDjj7wrqoIkSoW7Ckil1q1bU7fRcybTgXF3GAH0wWmnnsrto/NEZZVad911WBWEeNWqVbh3VBRJBwnP3jL56p06cZSjiO/Qvj0yOJQK7rvvvoQ11Ugj1ttgA0ECXpdIwLBhQ70eNnHihAkTJ/IyO3ToEBusRhZG1SpV2SW8TNKQ/ijkhXaphZ5IbkWiC8wX6WiRFELG9FRe7XffWXju27cvjoHkiSrEdqEdWrZsyS+0OiCsQnvVq1svoq2ABzwMGuIpBUYNUIr8bMTUb8CfbIBvFqfd12jThhHw5ZQpjRo1ph3ZT966dGE+80JZsXctov+oXpAwMB1mzpz1/vvv0SthY3ylSnRSaF5x8fI1azaoXz8JdJc5mpE2mJkamNm5Uyc5gLGrXdt2H3/00bvvvssIkKmPMJOVI62l/E74Y/HCO59V4Fp0BJ1rtFmjbr26aIgAyy+/HNsi/CwtbdS4EV2lB/X7jOlhT4bdIQ8+8IDxpnZtNyypba6tF/aaNmkCmPqER6t18byb9pCn+aEDk1dSpXNUFRfjj8EDJz0tkBM7V41ghho5X36JaUJfRosctTdt0nS5GstJFLYrpgGgv2nTVaIB5+RlsQfrFJ+NH48AeHTl4DcHMwfBYymT5YMPP0Sz1tlN4BWYH3/4ccb06bgEmCsPwGDGYQxXxKSDOa0azboGYSIHOiLmM3Y1JNLPILN8YDxouOLMDsBGgvgKi7ZJk6aNGq1g8PuX4owNye4ZB5YpDmRGwHy6O0a5CUQikpAKUrU4rOKTcSRRLOAnyyCKD9JKiNiCq1AqxUPHgFGWQI/AXsoCGeSNHWmJHg2u+aBBYBgZgpMRzKYwaOvUqRvRKsy3IsJUxXER3uRsiXJH4ABTqZLgNuE7adJEJojlBhFXXjv5SIyKDSCYChz45EBtYV5wiKtXqz57TlhVlcMZDUbJ3LAwARsMEXMZfqm8uAfgKgRI0wjQsi9sU5g1y0I17UubeopyNUYJLtRMOmMRL5kotxx+2KGHzXvquSJR2cS6qA1MRjna3F966SVCnNLSOgEPLdDA5ZZfrvveewOgDARUaEG7K5ga30+bBoB9Nm7cWM2IaGkUOfqLgYJ1YhLaHvazhRc9KocOjWZa2raioq+mTFGWYRH6MulQtIXth5Uqf/XVlAhYyBnxdq1wFeDIJS+84AIrGnxr4Ws6kmlobwGcLgRgGmUZGW6Pghah06pBMggrU6VqCZTOnSt+U1JS8sMP3ws7MV+0SFey0nBDEZWBDF0ioeFFAbP0HKNnzlzvA1lISgmma+fMma0gg4O5plJMUDs7zDHwxjNINlZsjqeKQjjfdROEAYZKXe4aBZWEfNyWqXXjxn0iP/C8tFRIQyBEy+3YEPa3EMCyMX2Mc9paXRx3CBs2bBCrC/hhyV+eagZU4CN50lQ+4qN/r6waPQrsnTOXtS1OYIHpxRdffM4ugTVCXGTTbt0QmUeZ/c04sCxyIDMCFtjrhEh8RupF3UCaxEt+lHfuZNN///tfmwDEhPfp3r1ly1aCsZdffnmQXHkM5RKJw0RZnnH6GTfceIPdfHxfrgkhvnyy1Yu+JxmDNE2EtSq4cNJEmzv9p3ZCHwAwQty9YcMVCDtK5dZbb6UjKX7GxIYbbkiJ3nzTzQKhK67YGJ0C0amOg5bEDg1MUiExv8vDJDvX8PzPcqCezZk7h/Alhf/StavPucih26omnjG3ValVmjU75eRTPv98/PARI+xsEOKWLxpfDlFimsSykWOsIiqQkpN580039evfn5NtL5sdcwMHDnj44f/Kx5OO66yz6mqrffrJJ/TrvffdxxISu7YmYh/ACo0anXvueQjgUuOJhDiOiIVSVKNAiHcRpa1yYLtEyp+UMCYa3jJBlA0AyWV7I37Wq1c/BStMoApwYY60zA5rrnneeecJBjCGBOH79OlDEbZo3oIyA0AbJVo2aGi60E+uv1aovY1w0b9OrcZEoM8SQwSrpdHD4OM9GzyxOvmx4kJrBkK1B4CKRBXhbY0ay1GW3H3EgIwXWB00+M03kRaNWu1FCUsCZuZErK7w7mmFGpglclQdh67AgNUrYTQ8R6d8PSJ8ZLOepaiuXbvaa7nySitdcOGFIl6s1WjgioaoDrDGGuppjbrYAOPfH3fccSxjtaPcUwmUSyiTNlcQq3JRZUs/3bp1E1iyGPTQQw/edPPNho0QXcSpioghrSJLZBxYFjiQGQEL6+VCoRDT4U5a5AtJik7bAcAvsSeOZ+PJDz8mkQDuVwqXwAe5nC9NVDVv0fycs8+2hYrFIKIr9G1blnw+n31cgqKQ04K0ftgHnsSZiU4izLqAfddcLS4U740obN68uRrsSrN2LsBAMay62qpccHKz1eqtqEZSnrAjMYnyPO25v2kbC5pVAUSLK+YU/lYQ2bZxuewps3edtoTWnga2AEhksFpEvy3Vt+/QgZ939lln2SJXiCRNozDEP4qKOLWiwXZilpSsFgT3008zCCh4xhaEbB2VRl2iLirBxRrADfH2jz76iEqjRCdPmoRF9m/SQ1SsWpSiyRgTgsmvvPqKWAX61Tn5yy8CwDwt5bIrMnbs2FEff9y6dRst8tFcSzBY2qply5TsX5JQESIFFTqu3bGkpMRLEALX9htiFwKiBQCGYSfmgUuqEMAXLR86JITQ6TaUcNnlY4XXCgwS3rNNG3a/KxgucfXkXUfJX0ISU0MDsUJE3bbB6BbHyAGuJjTUMLwtNhkExtUnn37C4FsY5kQTA8iNq4Qow7VmzeWFiPSjnaFqCZQmhuykyZM01lLIFZdfYdRYpzfacYABkQyo2kqZYkxMOK3+pO0yDLw8Iu5lC4gEe0LbhXaCrbAAdc7OA+licOCbVsOMDKxCdWpILax12bOMA386DmRGwPy6lERIZBlBlgqdKNTiz8J8wpFoFoq1c3ClFVf0ihelDowwquh4JY5JlM1KEIUlzZvb1WVHmBfh7AAXzCSR7ajiI3JZRLzv+8995BSxCJvlfO+hMTWuv/46ryHA4G1DymnDjTbc4C8baAaVuNOOO57fq5ctT7vvtnsguLSId2UHFgVj51ekir6JbSlsedrMwkzpmO8e7Jf8lWt+yA0XneQJ4W6xX2Dj+BNO8GqWLyJ88OEHXtvj7hPxN95wg0VfCc43M4Ww3mTjTZSCNhoKETc6OYU0NPU2fPiHtlYwHQ455FBVkfL0nyBHwwYNh48YbqMlYG0Rahb/qFe3rlfR/Bw6ZAjITut2atWylU1kt99225VXXLHX3nvbLjd23FgxGzy0P3HDDTbgjl966aX0jSZ4RfOdt9/BUp9Iyrcy95d9tvXWWz3++P+8aLCrHWcJ25kgVKadaBikeORSLBDTKKmA5/tp39tOyNRjkaijf/9+7JLohvppQ4UxYP8/BWwjvabZ7CkOj7eWDGwfOfbvf/dOndCO3QZ27XnRUXDbXsXTTzvt+uuvp8nEPGg1w6PX+efHGEwgLBo1iUHgZ2EnIi829aCDDvJGBg5Q+XZaeClGzJzqvf3229dac012rXV9HBY/12pvEka2V2jdfH9GO0Qtq7fSFzvee8+9nH5jQ0WsKG89iF3hhi2uhvo7776DdQL1DDimkt0bGgVY0MgLAnvvtbeVEZ+UVntKuRcC7Zfs1buXBIvBDgZbOEtKSmTm6ElmcUwbdXaYbr3VVk2SPQdqYRNb9fjo44+9OMoU8+ZIutaWK579yTiwDHAgMwLm6eSwcE9Nhkgm+UUwhQ19+WVOPz0iW0n54MoUF4sJ289s9fTcc8718jGpzW0iQJVkSQSPOLkKq5Hxf+zdB4AWxfUA8DuqCNJ7vVNRQEVUsBfAXhBLbNhQ04yxJKKi/mMvKUaxx15iQzT23lsUsSPYQFRAKSJFikq5/292vm/vu+NAIIiiu+h3s7Mzb968efPazO6AE/WEV6XFh+1ztqDgcwK2YXNk77/vfoKey0jW2/Y8Z07YQM5oIPQJUPL6lVeGAkglEKOHH3a4aGeCWDFXOLq89lGHFouLbFlnXngqUC8jFosmTk4JKJVcVGCostDF2/ZcExFtNJETSiUSNmYCq11aqs4qqzz8yCM2tfFT/aMpW7ZoyYKhO/XonnvusduRt+ddwT323CMBAouwpOJXyNaCutfrr7vuOqYPZ5cHSUDThXxQPUJVrx7Uru0TC/VsgPBqpdb1xdMbb7qp2r//7RZMGwJ69e6FwHHnv/cj1AqeYllZ165dQxClWrVtt9vOFnSU9Aoin1LYwJuHACoTsCq45Bx77HGNGjX21N5GTyLZdRacyAPKpPo16WsuNF0ApshWjIYNG7BdaLVQccECtghbh5pmy/gihb1yxpeSgypLpd8B/SAGAlqxfug/VkIcI/aWDaHGctve2044+uhbbr319DPOwHjAMrOsXwifSMdhCrglgZlo4kQSBboZk2Q/BO1+5llnQYwxYQggY9MG25Fd27lLFzac11btGVS9detWVg3YGTkGKOxenosiV5c/0VAwraodccQRbFlvslgRiL2g/hkHKNB7223tkLWNXz4VjqVfeP55rKrigf362dP67LPP2fBhH8aOO+1kycx3tMSA9MsrA7aaUu32+iGaplXfcost9S7O3IhGHBprQ5hKTw2fBQ7xlcP69/euyptvvoXy3g0RuCpHO0tlFPjFUKCCE/OL6fX3d5RAITIIGs5BFPHTpk8joIVkyTJPBattPeNyUX68N54cpWLjNEFZv0EDt8Q6ceMREbOqm+QLelEEg6w6UUsQAy5tEZROpeBpeuHNSZPDrjchUBV9ol8B6ViXqPp65tdhsfy775o0bbpavdVq1Q6b0qkEolZzgLsDPO2kHXla4dKRjCQ/C4bjRWhaD46BWeoWwhAorBWrM1Vmeqf8m290KupRoKx9qAhbKOkdsqQuFFStX3w5eTLFbB8AWiGCYvL53ALpHE3RjmQpOuTnWgmmVbEC9ktGonnNAamBDRsCbACsXh0EvRb5sKrQomULkK3T+9KfjxOrpe5EX6EpLqJU6M4YnKChrSzo2pdTpqhL4lOQAGpLL7795ltvNNj35zt6BpEGElRo1LARcyclXZpQGNkt1cdx0S6y0y6IibwMEashgh8QEHO258BA8DILexdaTDZs6hpbp3mLFpxXJJ01c9bvj/w9Q5CRMWf2bHX12iMdTFvXd8VwoLa8aGovpF5gHgU0N+Prr40Isuu7QVEx4GBAi4p0zW+gz9dfI6w9hJHmeAxfKRwJpQwCUo0+DSSigA3AN8QJfN83nP7V1KnW8rGQ1xBQCdow9LTwmjVz5uzZc7zAGZfkPZoxfYYPSxsv5RnWhiNF1f4ANNeKYr6XNXnyl2PHfiYTnzNN7HIwUhEBNPEupd1/4RMXdev6QBBA8SmSgumTBi7hfXtCG9RvAAFDyWzSOvhuI5IKIxFSjB833o7URg0bYmk0xPyOwdQvywSRpIWdytIZBX72FMiMgCqGmKCP6jlK+Vgi1VhuCZSoSAoz1XLrik8rwS3MTNOqKJZrK6lY2FYolqgZMGOjfmM6Fotw/Mb8NJEWjokg2igrX3kLlcO/wittRWYh8FgmwgxlkqtyxQKc00exiViF5GeapI8k0uYqtwXDJHYtP1c3aTStWwlUHKMUYNopdV2pNE9ryYwtxkQcLNXT5kJDCFmROCEzf6kYk6rE1lOY8gvT+Rq5v+mjAAEayQa38JugRIEdeeSRFsuffOJJBk3EIZQsGI4UQpVPlRQuEncJ3CKIlYcsv7xiDpfcn0L4SBSokOexmMiXyxEklpdZdbEC4IUtVmgl7Xt+IAoqVUimtQpBKRGHDAIhP5kXaYFcZn5cFPaIbSo/Rh0qNJDcxLophJSdFi6Z5WQU+HlTIFsOqGJ8owqJ8q6yzkyK5x7lHdkIIlU88WkluIWZabpSlTQ/1o23KQKVniqTK5BHo7BAms4lQInvAlRCKwWyCO1XqYnC2ot5VI5bRQugPH/h5kI/cxq4SsiVjIlKpEsRUzdWjzlprTQzJtLqKUqh/KItgArFErutUk4KP8CpeKWPQiIZrIhVzKd+uLzloftYID+mEVIKIWJYfptvKI1exFFOC6SJfMHc38L8lESeFeaHonmCVMqvdJsDmvwpfFQ5XVXXCuvGdForTcT8dMhifiBlAZViurBMlWsWaXM5IHkIacW0QJbIKPALoUAwq38hXc26mVHgJ0gBE9BWUAH/sEkwiRP8BJHMUMookFHg50qBzAj4uY5s1q+ViQJi1zFwXWiUF3q6K1NnMlwzCmQUWHkokBkBK89YZZhmFMgokFEgo0BGgeVKgQqbtpYr5AxYRoGMAhkFMgpkFMgo8JOmQGYE/KSHJ0Muo0BGgYwCGQUyCvxwFMiMgB+Othnk5UoBG1jTPaxpYrm2kAHLKJBRIKPAL40CmRHwSxvxlbW/4SsCyRtrYetc/tW1lbUzGd4ZBTIKZBT4aVAgMwKWZRwKt3AvS/2lqbMi24KX5lZwi0tIDN/D8Uq9wjbS5zDM4gFLSLus2NJT4IedBSuYdVdwc0tP7azGj0iB6uWHbfyIWCxl09RAWsNrVKZr+pvmL3MCtPj5MImYjol4E5RkArrK17dUjIWrfLoMKOVbC1UDzOSzeulX8JYBYKUq4MPZ5Yu28SutWomfWlvCLoSP5y/0RaBKrfzvt++8/bbjFn3O1od7fV9vi823cCDh0sYD4tCETxfPmeN9PNcS9vF78fdRYcdHOb/HwQTfW/inWQBxUmr4vK4DhLCET2Sv4K/o+BS0LwR/NWWKDyf4/nFEKUVsGUg31DEbQ4f64LGPSY8bN27SxEkOEfBtpjizKkGulMnuHDturO9w++xxnB3LgMDCVeLnHQsJvnCZJcxZDBATM8jJRDwSG7Gn+uJcBh+u9oll/J+2UokOaX5MaIWIEH1TbFEtOtnLQVO+aR2+ern0F7AqgW+MHn/sMR/h9k3rpQeT1VgWCqyUkQDsSzbhGJdPf/twuksicNL/bPOCGaeHhFYcgxOvkHaUjnbzH4yrQO+kXZ+AvWvIEMfdvvzyy+VPI0pLi5iumHmOb89fAWDymTQYlQP/31Kxjz6oHuSFk5N8bH9BOOtdfgXAFZF39ICT7hx65CBXVo8D2RwO5Is3qleotZxuoPfwIw/75Luv3xtin7g/6+yzDPdSg09k2THHHvu73/3WQcaV+xjBVezpEjYxc9ZMx+udffbZqBeqABL/W8L6iym29PggEYrhQIdaVQE4BRgTBt0xyhMnOs8X90b8H3n44YMOPMjRQY7qCRDSKlWAW8qsSqAq3prFjhl0/pNTH50cyFaLvL/INtLqaaJiUaS47fbbzzrrrHeHD/dh5qOOOurAgw589rnnwiwuLsa3qJQbsqQiuyceCx45mbL8zW9+4xgqxKkIuKq7ReCwcFGnNjgs0fEN5Y+WuG55lSTlKA3ndlbKjLc66Bzq4cOHP/3UU9JBNhYVOaLiokGDzjvvvPg5xUDeJTOlFfzkk0+Ra1Hzzvmc6Oyk6XJkquxUlZnq5HyropEjRpx19tlGoRzO8ks5udsJmcsP3s8E0rJYbT961zF0ZGtni1E/dBKUHD/au3dvh+b97+jxQpzwS9kE1VhwaXTjjTd29KrTU8LkSRVl4qCTlaTYPy64gPB1Zpozy9OqisYiYdIt+ooTNXbN74wZX7MnqCun0aSV5BNbzGTHy8bMtFZaZqkSs2fNdq6d6U1K0rLOdjvssMOiRxvprF/+FfS2iK8mgGRGXXbppfAZePLAl//7MrKce865S9X0kmCujPElFEpXL91iiy0ohs6dO7/44os8b0cULlVzCiNdPATIKTixbq6PyU0On/Jx/X7wMSqjojHy61InECy5iiuQrQI0JZGuQlalm4TsisVDLCs9XMwtlByq6zRqpy92WrtTOFMg31BEL3Bjgif0kgMzi5347GxAY+pwQo9q1a7tcEZweMAaqjT6Sfe+D/lF4BdBaQJKKTKxrKExnZ0FXFpaesKAAS1atnT21CLA5LJTxBJSJaGyihW0wnZ3nJJnEpgn/ZYwfU9vOXaoe/fuHsV6zmc699xzGXMOY5TjjCgSIBDE0VBBT4VhTYkZq6S/KFnlSMXOxuqx7oQvJmjl4kEXr7veujHfb+H8CuyzWNZIG334oYduv+MOp05XGajAkzfccIM+OjMzVoEhHJzYxLEh5aJ7E/lhUf0KuCWDde+994xMYl0OeUoRSBPaMoKRRDLTXscC4TbpYjpkacVKCY6Wa1FwKhVe2ltyg5XZu1fv3KFrS1v/Z1p+pTQCMCWGe+aZZ8yllPPwjdCfSOZee+4Vz71dtiEDh+zj5sZZgbmFAufOm+fWkWsUklNWnWo6f8F8/Boje7GhgNX8EFd3fffdt4GPsX5evsQykbkj5EL0tGJCyvEolvErNOpkuVdffVXa5akZ7I8uOwg1GgHyF4bmJNmatWpWyE/ECrNGrZtuusmp9lz5KPuuuvoqx+kSlAIMID/22GP8QipEOifUyKPQlfKG9BpufAJH3jmr7f333ic9RQKSuV/Wv39/gUF+pMN2Yx+lHcLrSNxTTz016pWYHzslHVF1q1F0SNsKOFSrxgwSBjjt9NNJB+fCbbnllrTFgw89KFGhjxHoon/jWKhSpTej7YBP8lSj2gKpEEO9JkID0ZLDpj0LIZkC/ZqiHWtpSIf8++bbb9PIdopdwDzRXXgGu6Z1aR0UmDd3bo0aNclN9SMaykcEJFyhfEXFoVgkl04YQfH8Vq1apmcKpO2qmIys2gFAwGHBArFcYQBd89Rv3759GVgMzUqqhX+cdHmhhuPAJywKtxRhiXibaz3PRSn+SUZgbNfc7+aOHjVq3ry555xzDjtPDjzDg4RK4W/+XCgJN4UzS05oKGHyUCW5woAmtdzplEMCnRxN/zVq3FgOOn/wwQfy40DHKt/M+Yb9FNsFU8xcle++/Xa11eorEJuIbfl1KemqRKUIPLJxBBt/UwzFaXgLzldM8wHJpSNpl8ACiAhM+eor5myOnpErEvqDFuizYIFZidvB19MkMzn7KhE1hTMxhRDRiMBjlTQ9avRo0z30Is9pgUuToyblxGKxeuwO6sAhlvfU3EmBx8z0Nib8KmYQDc3CBACzHMlQLgyHK60b+4hFQ6NF1jTnmc8ShcsTjhJ1umboV8IqAasCCCmoX1pipTQCDBLf5W9/+5uBT/ghjFocziuvvEJi7732Mu+XbYBjrT/+8SiqvEaN6tdddz2l3rFjR4eXm9gcZaf34jMLEiYzK9tao7NXw5Rb6IKbQ1H9Bp8G3GSWRhFAwoZwQnKp51xgsp+1IRzPw/Y0HLRat95+++23wQbdBOkfeeQRq2WWyuSoRBdGDpaGHqFff7X6lslzE69a8bSp0xw4y7MHnMnvoodoblEKso/NAQ2Lo/TTX//6V7cbbrhhnz59gOJht2/fDhxTcc63sx0+qy7Xn8gIx7wm4sNs9Q/xHT/Pd3Smu8jqnnvuiQgg0PejR4+mV8R1Lb4aITnCkm3btLHWy8Mz11FDdZBJQwQUxYGnvoAPgq7BnGEBMbQV7FELhrHMzjvvfMUVV3wy5hN1q3RKFFvCi3wU6fXRfm2hoVprdezYpm3bkSNHRunpcN51110XtaH67vB3HTjbqlUrNPxy8uSaNWutseYauq8jMFcX2n6DCEuOTtZlGkV3INmpUycHBCupoXfeeWfDDTb4eMwYVHXqrkcNGzZUWCQGuUpLV+/cpXNwhoKgKopDNt3Z03PnNmvaTHOOwZUvrjtq1CihkREspM8/BxliXbp0wVQeacL4fv7FFxaAa6+ySrdu3Qyfpg09nUHfU28bbbSR5phxVC+LQeawYcMMUJMmTTESMw5WaB41gQOX3//gAwJU1xzC27lLFywKDe1+8P4HTmQuKSkZ+9nYLyZ8gQgw2WjDDY2lAumFo8Kgz18AbWH2sC2jWjVL9eusuy4lylTCeB+NGqX6lC+nMPIcxFxaWhqqB1slkBdhP/zgg08/+0zXmONa7LjmmtB78803Id91/fU/+vBDXZbj0OG11l5bl4mAiEAcGiXV7bZ+t2+//eYDhT//3DR78YUXjUKr1q30DjNoxd4OFR00vMbqa9iMQg50Xb8rVBmjhqN9u3Z4g/bVUKuWrdZZdx1NoIMq8j/++GMywSgY9CaNm8ybP69t27bmcrTLmXHvvf/es889i520gv2QUUfMRH4DrhOmgobpwAxq0by5odIo2124AkxcoWLsr5CkUdYchJHOI8h0KOkQ++sXnNdee80cQV70RA1mkOFzoQZmM0nxfNMmTddaey1I6oJanJxRH41yaDXcWrdqvVH3jVQHBIe4dBmTNG7UuE2b1qaJAU2bk4hEjnBgNfyd4VO+mhLkzCqrOCR67bXWDkEp5ZJdRzqr9fjUWOtvsKUC0wOTTKQEIIJrUQbeRhY8/OEHH3455UtDxhFSK4o4UOGmGCPVOsvwd4ejpC4YhXXXWadBw4YkyeuvvY7mBNsrQwO5mjdrVrr66oX4/2LTK6URgBUoReOacFT48X/kHPqSfSAUT3xj92UYV+xLFQ0adHGsO3jwnSaeKXfRRRfRo1hNPhEmVGDDEYWNHVdfffX+/fv36NEjRSPWvfnf/xavE1ylaKlAk/nmm2+GHgY1pbt2Xe+44/6Es8eMGTNw4EDzkFB7/Y03SElz5oD999+9b99jjz0WKD3lRo8fN65Jk8ZXXnllZHe9I9Bvu+22J598krKhqNZff32rGKSVAMlbb70lGnz00UeXlpRe8I9/vDpsGE1A6j333HM6aPqJ3jNo+uy2m71CQG299VYnnniiGfXZp5+tWnfVadOmX3HlFYBst912xBC5A2Get1rwDNqJYBZirV6dQ0P2RZmiL//4xz/i6swTTzyhsEYJIwWMzhtvvmlP3wYbbijwwKO+Y/Adjz/+OI2FqjA/5JBDTGnK5i+nnWbm77brrjfceKMmrLXbeUBpKRbJSzk1a96MUU/r/I9GAFPp+OOPJ2HHjRv71VdTUUaMhB98/XXX0awklB797ne/23fffWn9f174T/jIoSBpHch06NDh1FNO2ah7dxXdujAcSwjYy6+43ECDQLQZPuFlQ4l0dPZJJ57Us1dPtNUFnLb55ptT7cLg3CwQaFD04YgTphMnTLjk0ktJcGkl/cofcPzxjRs3kYkh2UOiX5MmTybvGBkIvv9++91w4w2WnJH97bfePvWj/0M3XOf28ssvf+ONN6CEn9Fwp512PPGEk4zsoEEXjRs3HgSRUgygCYNufRdXIz6UPh79sb6rCwHjqAyK6U6H9u11fPCddzz77HOs5Pfffz+uoLESDu3f/9BDDmEqqx4uVl+1atiVlhWIwuGRLPUb1N+9z+6H9e/Pojrn3HPMC+L/9DNOZzn17t0bQ+LqCMDvsFeHXTToIpMFArA1wRUwMa+59trh77zTs1cvwd5IQ9MHp+26665pXQMH8wv/+c+p06aJ9huFO4cMwagmzhlnnqEX/Q444OVXXtEFxYTBTGq6WeDq3PPOmzN79nnnn999o41QA7mslEVrADVoL5sG9tlnH/BZdaeffjo1A2domC9mItUrDLb11ltLUG/Tp4fWWfOUkJU+E5luO+mkk7SlUVEHJFISw3Tp0vkvfzkNqLvuukvI83e//e1vfvNb3REX/L//+z8Mg/c0x2iTGSZUtWp79O1rvws+ib2mO8kBI6JHOgLDP//5z4bJU9wLCCNAc24JLgXggIxXXHnlm2+8MVfkc/48TLL//vv9/vdHQgB6cV7Dn6/S78ADdTxtK7boVyt+eT6D77wTSxPUclxBoB1wACHGehOM0SkX4YkOiE+d9+vXb9999hWlh21gl+TCBtq9/bbbt9xqS4TCumeeeSbiA8JrIlcPP/xwYGNhBpa4lxE0eQ2ljhsgrLLbbrvZC2IQDfRXUwKDRXJhcpRH7Vj9F/2L6CvdZaYdeOCBdFLPbbYxwSpdv/rVr958480osP73rlEzeJ1TG6cTBxkv0gqRe6JNgMtpKbbtRx9+tM4668jEdtxfdaXlMKLZDUIXqVAD07XHHnsIqZGMvCIAyWuZkR3JdJoV/jpCahP3pldpaWnar3lz5wFoosbycDCjuONmjtnuliBjIoweNZpH4tE111wDSYXTJshZuo2bIpM7PmDAAFLYnNQcc2HHHXeEPKz8Ro/K3DNtSKi33nzTvNWE3Vt8EZoezMMOO8ymG/go5pGKEj179uTpgg+BBEzxlltsoYkzzzwDejRBXHFQ3WYOnvHn48fzV5T0SC1lZDIRqJxEQ+TG8w9/+IPRp+oWN75BYVW+EGfbbbflQD+T1AWcow//2269dexnn5Gq0hT2Kaec8vn4z+/5z3/omF69emkaGQ0WE2Hvvfd+4/XXKY/TTjvNLRsCY0z9aiojhukZR+eiCy9kYJGSiEMf2HLBpb7gggtgY+dzbJEVK3zCduzatesmm2xy/fXXa+XiQYOUhKGSqKQJsk8TnEve2NVXXaVFqkgrYIKjFcPq6ZA771QRk2iRVXfnnXd6hGhUpgs0BiuwFoNYHs8+8wwLAKiX//tfbGnDPMW/ww47kPUYePKkSRJIZIrRtZgB8yPLP/7+d32hwAaedFK3ZERwoOpEqi6A8OCDD2IbpgYTAdHQVrvxgjDKC94YZSoHEagfTjYO1Pd777lHMRTGtzrFf2Ua0h/eucgDCFsdTzjhBJ166823dNBcY7JIwIEmUIuCYVNSb3cOHgz5SEPVEWGdLl2YpNJGUDzvvy+9pHXxDwNNhVBFUDWClBwT1my1VwAZJ06YaAgst+vLKy+/Yr0Meuutuy6WfjQJyymMhmYcZlCSsjcEd9x+O1C6YCxg+87b7yBg2gtpg3X2WWcZVutuhsatTK4CkjKb5NDrt956K15CdhVZnODQWGCiP4q5mALwoeb3P2B/oD4ePVpFnUobkkAxGzzJRl1AW4bXnNlzbLszBMiFaMJCnHUWjF6wzFSxL0TvsBZWtBBpTDfdZFPxBhwOPqqyj9mCiIOLjKkrbdHoGHc6mEDjlqCz8qIsxuiFF14AirGrOYRiq5m8OmgfkqeY0CPlxQ49tc9RjyI+LIBNNt5Yo8QUsSNT+GrQoEFIhEsJN8RJEYgJm4coBZaKYUWfrTW81VbwgarW9RozBHJ9PEZ0rVLdX+xtFUFswvcnfuEVF1UheL4wqmxYwoseWvjR0uZgC9yT1nLLoaGzcao2uBqk7YDjB7D6yREiO4ZwNU1W8v4JMgY76c9rMa/IR0KKZymeTGfQrKZB2NybVMPlNKh19H332Yc1oDzFEFrMdyRYyLk4WcBowsQJogI8PMrmvZEj8TdFa4IJnpuQ7HpS4O9///vBhxwsKGeakfJ2ftFqALJOuAK0Pr+WFKCtSfOLL77YNBbh4MhG2sXWd9l55+MHDOChklYkrJIcBQiAE/FJfwlB6pP54pUKmptO5auxGzhPescL0SJnhTwaMuQucBjpZj7rHiiSgpIAFOTYLiuEPRdlqJcDGQSh28nFSaWdQMhn5P6yIYRG4/X6G69b4q1UoNKtdo0vwbfPPvu2bNkKiQxBrVo1aRTxYesj5JGBwE4WAlgqxuWqf/1LMAM+iMkSIo75Pd9+920K2dB7KQ1/Ug9sPnjSc1w3RqEy0ccxytttux2CaEjJNdZYg6TW9E4779y+Q3tjqiQZ/dprwwzNLrvsAk84CDmoYnzdYn6Y9z+Uy90fGnvtvbdHmPDrGTM0yqRTBsWMGg7UBOlJR/76iF9rhWLo0WNj3dEEW01EmgvFvVN4zY5rYgl1IeAXR0Gb+6u6pgDEyVzD5i1aUAZvvvUm9JQE6k9/+hPtAoIhU4ba4Gh6FC+gNOQVj3HjxvLRt9t+exiu17WrbeqiPk8/88zUr75q3aZ1tEch3KZ1a3hazY2sBYguGAjNhS1dZUUsS3Z2WJKwE6CsDJ5IiobA9urdm51Bo4vE5NsPfQlpRVlXCxbUWaWOELFasfsIaAXEpGjcqJGSzZuFlQjRJkROIQARGzp54MAdd9qpRfMW+++/v4oUMxNfMZ4Jf9eqRL3V6nXu1MmgY11ga9aomTQbfrSoSpOmTZVv2aKFWJ2gtMyLL7lE13bYcUcM9t13c6lPCAAIMg2tpyTJ7bffbjbhDQuCJpcgHCqtUnsVFnq7du0RzbhrIkUYQMOESfRCQwBGw1oBIYpLL73UKpidiYArwB7FYDjNqwSccgWkcRRZahxXrbMqCHBzGWKyxegglCttLk1Y16B0IWxvx2abb2ZMdceKIdH3wIMPkAP4cNrUqWY9WQTnTTbdVByUVcGFMMqQcanONLzuuuss65BIcRuHl3u1oheagCH6I07aLvdMGm8/8+yzhJuxIM367L47OyNO4TZt25gZZk7bdu10wXJPIblSOL/AxEq5HEDN4EJuR5UD1qB+g8ZNwhrzcr8wjUnFRqZ+WrVujXeZtK533x3+6GOPEal22uNgZRgKJpU5YyZQZmaLp/wbKHHHn3j8cWVigHTc+PENG4ZVXlKYq3HcsceOGDnytddfZ3qLBMTV0HJmLZjkVCmA5K8g80MPP6w5aSKVJiBoqKjf//73Ys7EHFodfNBBZgXfjoKkt1gtNDTpo9b5551P/BExnBKNkuaEvikaqSdEf9XVVxN5Lv2F7UwbkZKlvXKs8oSmGk8YcALf1HY2bhb1b62XmLaErwhTAAQ65p577omhRZnPPPsM1eIiI4a+OpQKjMC4OzwSheMEJtEYFvl2ilZZpTZRHqd9milx7333ibKGnLKiJk2bECJkX2GBSulIXrok7PgrLi4tKSFi9IukU9IAUc88MMONti50g1IEYkyZCAZ61uzZdE8KmdfCa0dYBuLdd98tn+DDqwRcWkZ566N6AIJfghIFtCvRollzxhADzpKN5XuNGhq7UFFSSQ4Q6R9h4jRMaBAD2LIyLizjkhJQRaZLu36jpFYY/DFAf/IJsThu/Diu+YxkTxld6x8lV4hhiiq+lSY0KcWYactIhw7t3377HexHzoLsgr92NUGDEtD8sBhqTuF4xH2vXTtsUIgoyaEG8Aw+n/PNN6vWrauDekKxxD6mdSWwscL4WRBIo4Bw0LG0pqNuIxMAVFLrsJWmvbbtvW0hEI/lawXxUUbdQKZ0L3pS30/sSKyY03IYpTgka9aqZV8OCMymtm3a0mH4U089RX8T572R79mRYOMCd9m80zv87y2M6B6E5pMNBMpjYAhg1KnTpk6eNFmB++67T3ALcGkENBx+aXemnhUxOtIjdjbjEjUCejkr3O6LnLESkYyYx47oi1sA40yMjwTJAY/bFJinJlfsAnwE1XHIqFEfmY+EiT0cIQJaFLaLal11Ca0AHrqQP/86go2/WJftgh8497GYfHtE5IgTqIIyxppbErqfzI4e3bvXX201nGYs5KglFnXPtGnG9KQTT7Tmopb83fr0McGtbWEDdh5+MH1SywbPGFpzVkmxGasGpqHLsOkdyEjBePZUSo+SIc0Nr8xf8rWyGgEdO66JaSJzxPHDOtjTHKNszM8fYlDxPa4h0LEUZWCSa7RRw0ZkseZCWHhaiJLJZNjKwaBJlcBqdElESYQgJshoBaiyeEty42msbDtfVCoKkCCLuvjQGlIGQI26zB6bdWVq1Jo6h4yhwB3hN5sw5gC048SjopKuBAwJ9zNOP8M7jQIP/AOT32tFIVCRzHZqiUY0u4TvYKLil8kyZIqVubRwGjIRjbnz59aoXoM3rIycgGRREblJvkhwakXFYULLEkzxaYQG4ahuLTDDXBWbD+rVzK0Qf/HFBJhbb4iF019O0vbbbR9viWkUSB9VncjjDrcg3qJ+nR/eBInlWWbSUdgpg5hRysSncI7dLMR8nm0pyTY9Xr5VHourtVeprSLlVAGHJKqkF5p1GRoNuXKKar5w7zz0okXESwKrkI+J8DUiaXPK52Amr66E+sk9gJJgRh0gj2slfm4nwayZM+n8OUmMJE4fJUPp8BtEZNpBXYOE0IJHdeuWh2FgSJdDyeKueJhiAZ8C8zT2pdBES0DN5zSHD/UkCz2hId1ZsIBvT0Yr8O0338hJ0K/iR0eswWGJwYMH29fy/HPPW0EfdNFFTZs1o3VU1FW/sEJzWk0raF4JkFaUiZ2VdiW0DxlKupVwMbncSoTqeYzirbtI23irp2qp6faPR/3x2OOOtWvhpptvEhyy4/KUk0/mBoQC6ZVUK6zrqRUNONn1KZSC2y3H4zrzR5etPgTaJmvqdDaMtGhfXoQHTgSF4dKBTptCW//BlsUQ8QyYJFXARJ9oOqgYrJTQiyI2BwkwfPg7M2Z8LR9hU1LEXvgFUBOx3YUbjY9E4ELHg7GVM9wltBjsieSlp0KjGRAEIrhmJNtOQTaIEAaKFKXFJTQKZ+LRPhivNfFkSL8hQ4ZwKnr37q1AvLAuXtIFG2XQPzBDAlxCu/gh9iJM52g65yv+wv+ulEYAfjrk4EOGDXuN1xsFGS4xwJiJ8Xhgv36kwA80rviMO4irsFSUPrNmzyLdNGeyBcM/uay64fgxY8ZYArAoxVlvnTiXzGE6O74sQHYAJYY5YsRIlSCfFzi5RJxpEeDCv0HDee+gTp0LL7wwnZNml9VQsvuJJ59kAcRaPK0XX3pJ9JUyNpcURq5IMdqXHF+tfn2Wk+UMU4iqoOm5oQqYmQq4tCI4icAoT1qNHTe2atyS2GxsVC1lDIQWdc1sBDA+QqiIg8AjZQ9mhEzbaTqWUT40ESx2GqguHQYgxys+5UyALOodb9Nfo+9Kb783kbBMKBUTfoPkh24+J01AJnkalg9iWneYg1BK+xWqJfsYDCvhZXEB3bCK8voYn5b/JjomjnjS06TV5HGkGKOBw6Q6MYdttAKB2JYCCqa3KUzQAqjkKnyKmPgwrvhajeq45pqXXnaZMImCsS8SyseKWowJj8jKNvaBlpV9+eUUQxPCJdWCSaR3MGnWvDkOiS3GymnrAWCEkvzKJ9bt9rCIa7IAGFSUH+8CTPlKuMWL+N5iCLUKqxVAkBSw8dYPJrGm+9e//822R1tH7YQNgr6sjO70qxX4cwRNzxLxgApYBHAwSa0cHUHJSNhcU0nzoUwy3DIL8QmZBYTKVYk9LSsiB4RYBKhZKk2bNLFk4CMNaZnCBDyBQk+/XO2mzZqysYzbBt28uBDCJLFA0rpkmYlsObxd+3amAAdXwGDPPffQk/AsGi5u0m8/5BlAHtULWhjQhHOiqAQWcWQyKz0NrSRUkrbt47nnn7egY4lwzTXWOOPMM+3zYF0pE0vGX7dJnTBU5TkhN1zoKQg3/vPxM2fNwv+R84lKyIvcGCyhUEEabkCczrBi35A8ZCbDEUCDaJTFIOn4M88662ZOXdu2KopSWJbqvlF3ovVfV/1LhMz+mEIjgPERNhLefjuP5QwfvejUia3wx6OOInBUD9MqIVdAOj++EhHtX/JvTi6vdCTgAZx//vnbb78dloqmrph2z549rTKWJJOflFn+nUqcHvMc4wp5kaoCgD4RyDLVlv07MDEHXJiVLWJmWjq95uqrcbzFQlNCgj6zgmCnT6dOnak3U7UQz5Qp00Th08K03ViUhKCu+PNmm24KIEVed9VVuRF2tgvFg0APoY+5ccstt9hqTihE55UgfvCBB0TVROb7H3aYufT0U08/9+yzw4cPV4t+XavjWpxJb0jLsaKhp+xrrVsaXHXVsEs/6qGITyVU463Q9GOPPmrzF2ropvJCmqKd3DgohdXcJHbCCGAG6QvRCbcIsPw3maGUxMRJE2PwwCPSk/FHR7b+Xke/HFDVqYhqJfwVLc8pkBEkCCtqxLsjiFQy1NZCK6mdO3fyJmd5+aIixpnQC6Fmj5iwCpZQ0at6CJIiISdNqxuqFzQUbouKVi9dXSiYuo3LT3Js7PJRJo3GAnLSRAotJuQDwZEifK0i22EnBiCiI5buHchp06db+klxCGXDi6bE9GwIR9M2fSr2TlhT3q8Ne01BYtreK9aPIC1Qhc1VwqHybXGRtWEahYw2BTRqZdfaDUry8OrWq2zPVapOWdIcX0yYgEm6rLPO9ttuR7vghNq14vd8FrB0gWL+2txuRxhz3MJ5OZCE3rFTCW0C6fC5YTKDKBWgZEVDBHdh1xjMK4dQQO0IofARPWqpGwIlJR1oILpcdYsvLOzCYjGNJSSMrPJextO13r23nTRp8lNPP01TojCUaK+4icS0tfWS6LCs/pe//AWeQ+4aYrkBDmZWNKA//+Lzr2d+TbUXtuWprQ+6rC94gGGUPvXImKbGkHzFmHcWIqleuwTWXmttr1HwBIJRlV/GUmv27PD9NEwyc9ZMCLhSmGnaAFmzgKcdfORMbN1cUNESISBxXFilXH/t4rcbb7rR067rrUdAyXEBYsXH8iWC2AnhxSgN2QUl+uvpavVX22/f/SxQpq3HBCJYy4AzR2uDDTbUc+KLoecpqiI7MqqOVQgTkCtV/8XerpSRgDhaJSUlxxxzrM/IGHuWKWua1yJYapiDXVzOn8s+uEE6JtFgIFIu9xlRe1WIJDvphKRINBOMCWKuKoPpFcbEfzjqKCtYLPebbr55jz329E65DcM2HtusR/WavVOmfFmnzqpsfBLEFX4STAPXJrMrnxFyTZ7QoYBOrmPeORQ/BPD8v/7VV8O0SKxwGQH0cg5GN0lsjf7g/fdt62OL/PuWW8gRhoJJQigc8etfs5lssKLg7Z2OSxt0g4a8WGiNADbaMkV10+QRkCfBfShJKFgZuEDP1I0BQ38jYn4tjlJUWvS1/wMP7Mf6IRQoIRSDD3sf0YgDvyK66EMekZgEolVPPjSwEXLodtJxe6wsBNpwR79CnjZSnrTiWMQyS/4LPcCVj6R26wq0zV9ILGSBxDJyJRPvwbC6tfx/8ikDu3RZR39ff/01g9inz+42gkWtpgrI7Btblqz+XH/DDa8Oe7VFi5bGRRxFl1moucHLjWQF3a9uxCS0WxbWtnEaQ41zg3q0mtFBw169elEGcQhiiypG9CUi+9HQdp9RJLaIEsc4s1XLlkS87RoMC/u9o0USqiNEcRFTDBv888IL8Y8BYuaCExeqWGBH/eEPF1500XnnnyefflKX1mRPtG/fQYsu3YBBTMdfXahwn+RutulmW2+zjeVe+05Yk4imd8bUe6piY2yCUCu5CkHFND5EPXqOClEMQRS02z8MXghOLLj2mmtefvm/JpSdB8La0IvsEQgFtwQbzJPCpxJsfMOltrJSCRh7h+23p3jMI1SywVZF6lD5MBzJJV0JsQgt5JeVseztV/c+G0tCQywMnNCrV8+jjz4moFhQl8nrKauan43gyKshZtZdQ+7CJz6MMWPm196GNy+u+tdVot8ffzy6b4qdoMUAAEAASURBVN89evfqBbLgGYNeQ2EHbuMmRvPVoUNZ/AobxMMOO4zLmyJpKxzbesyYMSSA+eUdPGRPuxMok+y4DCNt/iYfXaVEvfJDGkQmSQsrycmx489eIuUxoWhBmCkJEE/TDtq6KRjJUrz3nnvtGsGKjCrQCIGePXuaMjvusKOdNPpumMgopoa+G9YddtgxwtEF2BoIq3t8Le7KtdddR3QQRHYVEC9qsQbwjwmiSnohJprrCyNAT0VQOGkRMUMocIhcem06iBd2Wnvt3x95ZLIbJgXwC01UcENXOhpg/bU7rc1Z6d6juw+YsAB0IYx6EEqVZ+xS9y75MBxezJmQya4TPMSRZaTbhsqWpO0oVNPvpRdfIj3NbYFNvMj35Xhdf911phNef+CB++FmQYvYIs5MCdw5duy4Tp07rV5aqjy+10qcluaJC/40YsRZGgcLvUIm7YUYvoUAb6xBg+wAkH9mxy/HglJXzIZEb8sce9xx9CWjWPjX8rw3GkgrACl1LdqqzRE3qyFprhIZ5o83DxWI89+0cYlzwnDvfX51/J+Pt6IsrYOw1TtAiDxdgHOs4v0cVchrAIOCKCryylwMn1CHIKtFtHkhSl2Tma6i4JkjNgeBEKnRJNl/5xZucWelFxO069Ymc/PcZiLVU2osSSJKOkBcMcipC0GQuRI8/Q05VEUq2hLFDLh8T43Ieut1JeC4fWB4u9obBB7BSj8DmORitXgNWjxg6NBXWWl2YvIOmVa6w9dR3pUWjrfqyfHM8/AoaOegV+6+6278JtQkHsCtIUaPO/a4WLIQSA7DBHkCFDF33XUXWL34wgucXQN02mmnMyO8iuItQRx4/J//bATBsW4Mq8MPP5x1CD6lqI/yAadZA8LVqnlXLSpg4pgaQHavSBDQyBjRVkbJpOvhx63fwmXX+NRWeZ8fsK9NTIjNwV+HJ43bbYMNdF6VyPYaD1AqXnXqrHJgvwMxLXPQxQqJTEX7ohxM1uu63rBhr9llgle9VGlTi0wd0feYyMErDp/dlDaVbDJgaYlO0VVmLhxoDhMEl8pUBom8KqJ6UBX5fuXgJEawnkZaqcsyU/3yy6/gIZxx+um2xZmPDzzwoM6mVWJCBEWIjklHF4KA4c07m2c332LzN15/48GHHhr6ylAz6IrLr6C/7flt2rSZHkFY4UMPPdRWPtxl4piJO++085odO7KkSQASBqqFbdnV76UJCm/YsFdNsaZNw6vCLjY93oglxU70PXafyUiiss6FBmFlU56B08E4fD6lwK7yrmlsC5w4ahEOmuZ4uriIdaU7G260Ie1u8YJZJk75zwv+iZMV9kWjSy+5xBwhBrGBZR0LpkSZLkdQuumS1iM2R8e11uItMMtOOfkUhLKLiCjDPCwAvBSrxF/2B0OntLSUO8F0RmEGE5wjNPKzV89eLDD4qE5GI1cwt7PLAGfXYihAc8z8eqZvmpo2BKbbXOEFZV6wfunFF1myHoWnicaK0cVEtIaCAshiYjRiKJHUFUvDghQD6ZzkATmfIueORCBqCeDbkBXq5y9xRfuwyltP2nKriiixN9ddJGOEAJTX/FRRWxkohZjwt9/G6jYimQZmoEZjAZEMKHmnmXqIMOnv+GYakx+esCXRAE8vdXVEdTkQiHG/iKwcVcxtrXBD3crXOiteoxIhJ+SVgcB2sYsHDd2mJQO0hFbBQ5k/n8nPWLHCIipI9u2xR18WWCB7OhYB2Pdf4IOmXGwo10SCjJzCK8KKBIz5IivsrbjhGZ29Cx7hpDgolht0XUt6J0dJdEPV8DS2q1T+iq3k73IFqPCAZISQxxY9WWkBTjLihaAikDQn10HFkg9aCJmkrWBCBLR4lCuc0iHB3Ehhg4hMWsVtrlNJlnFxpTQMhfMYpnRIgUcgud+k1/FRrEVVR2YrzAzNJRybq1XwJz6CjHfEvVoSgCQXZPr3789J9Sq/8TIlI8BYFVauWDLmp+l4q9cGSEX5sYpfpkY6lejItIqE0SksGatowiIXX9Y6tPkeMzGtF9wxDLavVCXeKmCTZkAvoWHEE3xTz0xXRk6KUuFtIakV8AhBUh4rrBKf6h2i6UhsQnkQwm9yxTKSaOvX9PS5MOIihSMRMFkQNjAChUkKEUuLFUKLmXKwnJkSEQ5NJFea0FlsAGYOYPkI5KBGmLnyyVNpc8EnPWIXCpkzphUA1piiiS4DlA5ZrkpZGdERhW0kSK6xX/CflXg5YMUYcAxhX9DTloTfuIM6NF1cJGbuKrQleXC8mUIPlT/EtTK9QvUEAvfC3pbgeQYfJgc2WOL5JiTsJ485oaHkAqdOxR2tER8AuAjeXM8XDH+tBaYxAwjDJ6KEzz3l/IoNpOWZyXxEV8RHGZDDlZTwF8JeyDG7ZOSz7Q8PXwQKOUVWUmuvUpwPUSSLCPwJnplHuW4WhV2TPJjYRPoLsgBs7jYPPEE2fjgsZHH1GjZoYCVF6NgL5ez6SZMmW9cQZky7sIQJCEecQ/lA/AT/+BtWkCqD4esXZqkbXQoOlv88khP9iEC02NkAOBAwPuVOuVIgufyKLcXMMDQJ6YJ3Ip0go704HLYduFI4EXj4LQAV4eT4040Vbq9PJHwVK+JMuygC8PwVq4Q7286r1/AF2QJ4SXagf45R3edCUwmAXN18T8uBJmRJyBsg5K5InaSDIae4OG4KicjkepGsd3kYiZyrmP+Tb64ovjIesjWZEt1tcYg9xPcY034hYPmoBqLmmorV3XBnfW03TuFIao+EB0KB5BKZySfDX7gVgMg9QfMO7TtgZt+9sW5igYNFzwLmfNvgVlpaWghBOqLHqZWOFIhNyzf6Yak7IJTbBBrLFGKuU4UAPSKFCnPK00mXkSVHtIRi4WkyarHR8JuSpSwEY+xALIeQpCLC5IZEEBRVXbGMJxK57iTkbdCwQXwUWolDlrSupM4WsoHn4UqRLAAV8uOMSL6YHuZCQbHw1JUvAKyQQ2guudyGv0iRp1sUHZA0mn5jsV/ybwUx90smxKL6njJ31QXKJ1DyvNJtwscepPyXAxL5M8elIa+KVgqe5mot9KeKWrFMIRoFcHKzMT8JK8NLSsYyhCMNYobECK2SlURzedOFbSmXb66wQHlD8Wnhb0GV8mJ5ggDigoY1CzPfojLPx2qFWGIovLAgKASx6DSYHgbE06sgmeblnpOSSdQXKaJGJ6AjhAAkgiogafqoHM4SpAprVZGuEr1Fg81BKKiVwoyJ9DbtQiExIuCFgeQaLACbolAIMGRWVWbhzEU2kcJdTCI2Ucy+rMnWqcSfVdSrhFJ6W4mBq6iZy6rcx3xJ/OD7FldeceX5fz3fdpyoV+h4y9iiR9H+zpet/LdqmBVRimUqsGshmLQjhZl5zqyQV7FkDuwSsO73IFChjXCT61TFXiw8+mm9XPl4XxWSacnyRMVi5flJqgLA+Gyh8rlOFXS/EpBfzm1uveeX0+Gsp0tIAaE8sV/r92Hx78e7BCEt4GvfpI3RiGi/VzHPf2AkhRMh8WO1/gN3biUGjysww4rnh4VJBhPBakvRYgm88++3SxYGkeVkFFjhFMiMgBVO8pWnwbCKkY+h/bhY866ilI8opbcrBqvYXPTwKrk3KwaBrJXFUGAFM0PVmCRBqRSTNFF14Sw3o8BPiQKZEfBTGo0Ml4wCGQUyCmQUyCiwAilQYY/JCmw3ayqjQEaBjAIZBTIKZBT4kSmQGQE/8gBkzWcUyCiQUSCjQEaBH4sCmRHwY1E+azejQEaBjAIZBTIK/MgUyIyAH3kAsuYzCmQUyCiQUSCjwI9FgcwIWCLKx53hiy/q+1PTp4UP8y2+WPY0o0BGgYwCGQUyCvxEKJAZAYscCIo/XrFEYbrKOj7setrpp8Xv9ldZIMvMKJBRIKNARoGMAj8pCmRGwCKHw6dyLr54kCMuFlWCWeBR/JXwnRAngnz44QeLKr/4/BTO4otlTzMKZBTIKJBRIKPA8qJAZgQskpLjxo594oknnau2hOrZJ8R9Za9GcuDYIoGmDxb+ZHX+K9ZL1NzC1VPIWSKjQEaBjAIZBTIKLBkFMiNgkXSaOm2aY+5y3/7Ma+iFSzu6N6e2k89T2xlQWKaSRndr04Df5MiufMV8OMFnR53O52QzEJSJV4Qm03Fb+Tx/cyeBFraVpTMKZBTIKJBRIKPAUlHgx/ws/FIhuoILO5HaZUXAWbfnn39e3br1fvvb3zqnhDK+5557XnvtNeeNOlStpKTDEUf8Op7wVnhEBXXulMyLLrpI+d13333zzTen+50N/+qwV53F6Si8HXfc0TGjTrhy2titt96y1VZbU+yPPPLw9OkzWrVqtf/++zuZNNofzgh2KolatWrWXH2NNeIB4T+Rr/mu4EHJmssokFEgo0BGgeVLgcwIqIKe9PG99947bNgwbv2nn3ziRJA6deoccsgh8i+55JIhdw5xpI3DwZwo89RTT7333vtnnXVW0yZNCgHZHzBo0CDmQp8+fTbccEOnff/pT3965ZVXnMfTpEkTiRdffPGcc87p2bOno6+fffa5559/QRUwndbpzNy33377+uuua9qs2bvvvnvaaafZctimdetvv/v2tddfh8zFF1/sqGwnhBa2mKUzCmQUyCiQUSCjwNJSIFsOqIJilP1ll1524gknOD12tz59nn766QcffNCp9sOHD3/ggQfW7LjmzTfdTIsPueuurbbaiqf+yCOPUMnpigGn/+qrr3788cedJj7wpIFO4bvrrruUdwDubbfddvvtt1977bUdOnQ479xz58+brwmX6P/xxx//5JNPMj7ApOnpezaBOAErgf3x4EMPPfzwIxdccMFxxx0H48wCqGLYsqyMAhkFMgpkFFhKCmRGQBUEE4evUbMG79/JdVR4XYsB9eqJwPP7rdkLyHfq3Em1Nm3aDBw4UJlXX311xvQZQZcXFYnbX3jhhXT59ttvP2DAgAYNG8hUEZyWLVu+//77CtPx4gFTvvpq5HsjY/PNmje3BNCgQYNWrVv37ds3LhMUleXOzxUPGPrKK/YR9OrVq7S0VBVmSqyY/WYUyCiQUSCjQEaBZaZAFlJeCtKNGjVqlVVWiWo4VCsrat++ff369YXry4rK5i8IWwJ583YSdOrU6eCDDxY8sDlgypQpLIP58+c98nC4WANWGewVoNTHjBmzWr16NDqtL1/C1bRp0xrVa8yePbuouKj7Rt015w2Fo485hg0B5r777qvMUiCdFc0okFEgo0BGgYwCi6BAZgQsgjD57Khx4y99L3vevHm5h8lWQLdhV//s2X6FENZbbz3qnNq2BCASINJi/2CtmrUaN2p84kknrV5aKqJQtiB5L6C4uGPHjj4tIJYAYPwFgXFA/bMwXGt3Wvv6668fPHjw0KFDP/roo7PPPnv06NEnnXRSKMYUKCsrLq4WCmdXRoGMAhkFMgpkFFh6CmTLAYujGcUc1b8EHc/v/2bOnM8++yytM27cOK8RtmvXrkaytK9Y506d7BPcYIMN7k4u2nrVVVdt0bLFzFmzLCWs3anT2muv3alzZ/9JeBp1P4ASaTqFL9G4ceMjjzzy8ssvp/vFIbytINLAjCgONbLhKyRVls4okFEgo0BGgaWjQKZFFkmvWrVri9LzvG30+3z8eG73FptvLvOqq64aO3Ys42DChAlnnHFG9WrVN91009XqrRbNhe/mzm3RosUf/vAH7wFeeuml3jPk01vm94LAnXfe+cEH4XuCM6ZPlz733HN9X6hKxQ8UN1/Jd95+J36ykCUBoBy7BW1WeOzxxw86+KA7Bt9hlWGRHcgeZBTIKJBRIKNARoHFUiBbDlgkeSzG2/onsL/lllv6QsAtt9yyXteu++237+233+HVf0F+y/Y+EWgz/w477FB7ldoUt2gBbQ2it/yPOOIILwHy4EtKShTo23f3xx9/4oADDrAlcNasWd99+12r1q0mTpoY9H1ZWQzv5wyC4rDvzyVy8NDDD1lW8E4gC+CTTz5RzBsH7AC2xTvvvA2HHbbfvnHFtxMX2Z/sQUaBjAIZBTIKZBSoSIHqfNmKOdldjgL26tuj16hRo7Zt29K1PXr08JqAOD993KxZM+7+uuuuu/NOO9myR6/T2WFnwJw5Pbr3KF29FAjRfksEDerX97p/+3bttt5qm/bt2jdp2gRY2wa333477wQCYoegwl06d95wo42iESDHPgNfF1hnnXUA0VaDBvXtM3Db74ADdu/Tp1r16qyBatWq9+7dGw7CFdmYZRTIKJBRIKNARoFloEBuzXsZav78q4SIfJkvAonwW4yPGjpx0cOOPIq6Zo0a9DHdb2de4Sf8woJ9svsv/CY7+eUI7tPbKs755puwf6BGTV8ODjnJFYulSwPltzkcFvhSUO1atcMWgnyVWTNnrlKnDghprZ//iGQ9zCiQUSCjQEaB5UqBzAhYruTMgGUUyCiQUSCjQEaBlYcC2cbAlWesMkwzCmQUyCiQUSCjwHKlQGYELFdyZsAyCmQUyCiQUSCjwMpDgeztgJVnrDJMMwr8fCkQdr/YW1NFB70tk+RW9ayK4llWRoGMAktDgSwSsDTUyspmFMgo8GNRIJoCP1brWbsZBX6mFMg2Bv5MBzbrVkaBnxkFsnjAz2xAs+78NCiQRQJ+GuOQYZFRIKNAngJekfXmLaU/39+iIidt5J78BFcEwvvCefTy+Gd/MwqsRBTIIgEr0WBlqGYU+KVQgGL9bt5cX8VwulZxWVENX8QKqjacrv2TIgELIPtQx09qRDJklpYCWSRgaSmWlc8okFHgB6AAHZ9sDvSX+//1zFm33nbHsNff+HTsWCdlzJs7Lzz8KVkATg77cvLk+MXPH4AcGciMAiuIAiv32wG5L+sFVyFnjy8Xw3z+vPnVqlf+Eh8xVKPmMpLLEQO++5t+HxB8Aq96jWWEtlSsMX/+/PS7woVxS+5LuOXH5D9BuFRgl7ywVuY7fLm4OKDxwze35IhVKhm/81gpM97C32Cl1OOaFu5ij2SkuoxviF7nFdVSOYixdaCqrLUY3KpEOGY6+KpWzZrp+GLg5LyqgF/iVJf53mXa4qJ6l6fA/Oo1coVjFeH6+Cjl6kqYBIBLP9zFRQu+K6r2TbWix14f9Z+n32r25uh1O7YfcvuN1Yrn7bzTzkVFyzJlHnv00XdHjNh+++27du2a9rcStstw+9BDDz311FOHHHKIs0WWofryrWI4fGvcqSJLCDYOd8pss2bO+scF//BZ9P32289ZqUsI5H8vBo1pU6c6TW3855/j1ZMGDvQx1f8dbAZhqSiwckcCMLHP9Q8fPnzkyJE+o7tcZjiJT1aSX5GOZhdh6pcQXHLKxjmWljc5o6zMz70i8jd9urhEEKQ5TBZXbNHPqF4HGOoCl2XB/AXpf7rp8kXkRVddDk+YIJdddtn63bqVlJQ4WXHa9On/Y3eWA06LAEFZIhSaGGtIppdjooJ2L1DPxiSFofCJJ564xppr6t3EiRPLH6QlliyhdQ3FQUkRSKumijzNWZKE70ynFY2+Eycwg77IdBn6yNhApZ0N6YLepa0MfXXoZptttt566z377LMsoNdee+2EE0649dZbecPqQjgtGaH52HZQMHl7qPDp4tKBfAscizlpVtkLb42evmDVolWarL/hpsXVql926aDpM74qKloWdn3pv/+97bbbRo8atbiml/6ZI8VfG/ba5MmTl77q8q+B2lTpUUcdtYSgn3ryyb/97W8UcCz/zvB3/vOf/9xzzz0jRoxYQgjLpRgOPH7AgMuvuIJF9eJLL2UWwHKh6tICWRbLemnb+IHKT5069dZbbnn8iSewMrnmgN3evXodfsQRTv35X1qMPp9JRdKdddZZL7/88pdffgl49+7dL7v00q7rr/89wAmyhVYtCUq1vvj8cwYvRu/Wrdv3AEnkchCjS3MVKqpYj3j+29//duWV/6KMIw4pPFa/wwl32mmnNGf5JiIyjzzyCBp+9dVXjmF866236AwHMlXZ0MLIV1ksZlYqXOm2csWKI1JlYfT54x//SBIxAipVb9mi5RNPPuGMKI/SmEqKhgS5+emnn77zzjtzZs9Z/JDlmi7ApxAZ50+O+XjMcX86zsGV1HK0RMAHUxipQ4cOzz7zjFOjFuauSgiX33Kr588fO3bc1GlTHX7h2CqPWAMj3n333PPOe/XVV52FXa9evXXXXeeyyy53ElV5xYVS5tpHH33k11GWZduUnXnmmeZdp7XXNik6d+6MAjNmzHDYFSqpCuGPRo9WuEXz5q1bt6lVO7inehqhFpKosPvhKYSLqjMoxn0x+YPRo91ut13P7ht32WDDbq88/8TzL764yy59lsx2jk3lftkoxpcBrDnpSoNYoeiS3US00x4tWaVlLFWZRFWBUcb1/PPPG6OqnlfMC37FgudfeEFhzkF4VhZOO9t8i80daFJaWgpU4RhVrBzGcTFPKxX+3tsXX3hhzJgxGiWL2rZpE3BZrvC/F4GsAAqsrEbAF198cdW//vXsc8+Z1tHhEBJ4+JGHJ02e/MejjiopKV0KWVkVIxBqfJ3nnnvOcb1miNthw4Y98OCD6+RP7csxa16gl/Nuorg5QXKojdS2tSJwxZVXXnfddauvvrooIqGcNltet2AOgJAWWHzC4kIuSkHOCvLnCRLmqkjJ7DlOLib6Gd1wkMmg4QhqFMXcEotaSl3GxBMM8jpUX+iKwANuVTwMpYH1q24oWa3axx9/PGP6dDps0KBBDmOsX79+WqaQODKj76hiOSZy8xewrvA0j1W8zT/Pteu2sAAcIjTopuUV0GUU4HZTC8E5Lq6GMhxxl4R4AHIBxU6C+azZM6NlIK0Kb9qt6ggQwznyw21xkVEAXNQ9DEcyFil6IZEEdXJohIFKKJgWKyuaO2/u1Knspa+mTZvm6exZsxQCmZ6eN29+w4YNaTE2QES+AuTkpjCfyoOQ3oF27nnnPvzwww685rgHMpWV/eW00554/PEaNWuuscYa2nr5laGDBw/m5ScPA5FjQmHNx7GWA752PHWxJxg9outmB4r9+te/ZhycdtppRx55pDJalxCcc5r2ySefbBEtoU+O0/AHUMgOYuCVcAVSlM0vqlajyLoRK+z9UWOnzZzVoG6dHt3XhcGee+79ygtPv/rqm7167VivztKFi2FuvBIbIOAv4Te0nuTri+GT49IRv2lEXQG3CuBMA40r0nheKL3oCxfF88TTEQEKHDXwj0Sgarx1ONl335mPHikcHiUTR8ORx9ANc6qeAxVxShae2NMYI0RtkpPHNcrqinBUSltUUWWhwDqr1onwE2IXjx8/3qPYCYzZuHHjQRcOkmCsx8z0F4aEmLppTkTGr0z01Jb+pOtlhSVz8JPugxPmWr7vqIq4xLWOWKkpKSkJfXGlMyJWzn5/eAqslEYAziO2nnv+eYnAVXky4R+q+rbbb/vzn48v1LL550v6Fx+zT1966SUVzj333D322AOnDhkyxOIfPo5QaFbLEIyDzTbdbLX6q5kSHn399dekKm1nDr/99tuzZ83eYostbC8wT6ZMmTJu3Di+F4QnT5rUsFGjMPmTWT19+nRRB0cGOywY2nGOTZw0Ue9atmw597u5Tz71pIW6zp06k6dJjVAPSq+//joRVr4kWVxspr3/3ntfTJiw2aab1m/QQEeO/MMfDjvsMCb/VVddRROT2uLzm26yaY0a1Zs0baq8ILbYCQmiv5tvvnmrVq0gD1XuHeDd1u8mh3QASpcV07vgTY4YAe2NN94Ywh7NC9Hm6qY03RBqdevmxGTlhUyFnYmYPffYs1HjRnGk9Ev1999/H+bNmzePJCWnUW/O7Nlt27XjChNS2267LVJPnjS5pLREZ4VkaOVNNt4kEuGxxx7jdzpwOQpxOCgMcxVHvDui41oduc5ReKEnsqM2AffKK680atio2wYhEjNu/Ph3331XZALZYXv22Wefesopznj861//evddd61at+6LL74IOPRWq1cPzoB//vnnb7/1Fgw36NatGpvAfotqQZ24eJrRdCCOhY5atGwB28gqUOJ1dWjfvqS0NDFHgvKTSVU0qN9g6pTJb771FhwcUc3c/Pe//23E+e5H//HoYa8NW3ONNR586CFdiHSOBh+qfvDBBxzxdvnlW0Hp6dOmN2/RnJkFma9nzLDyYliN0cSJE7TFGkME1MafQvrOwPy///u/Aw7op1P33Pufbt02gCrMddBwa0vYZsIXX/Tu3RsdPIp6JemmTs8/5uhjdtttN0djYwZTgEWOi0aNGgUNbIyptCgHkqj2zZw5gGjIGOEQs0YT+ptYGGHIpk6dhsi1a6/6+tDh9t2st8n6Iz8c8+38BZ26rN0QCxcVbbzxJjVr1DF7ZkyfVa9OjqqRtkvyq91wJUWRTmjqT3/60/33349XjftBBx0EmWuuvvrVYcOU2XSzzVgwTC6dNVOYMn867rjBd95JsICB337zm9/AP4512rpe6DWh9PTTTyMIptp777133XVXCnjEyJGXX345VldFqAnYnXfe2dL7jTfc8PQzz6i45pprnnLKKTHUhNs++2zspZddipjoDDHNsdXQZ+jQoddff/0OO+ygoXvvvddkgcbvfvc7c23c2LFXX3PN2LFjv/v2O4tT8OzTp8/WW29tRlsjGD16tOHDWmecfkbdenXJpfvuu8/sgwlSEAhklPJHH3M0hjzm6KNLV18d2p+NHXvTTTcZLGhjpF/96lfQhhLgl1xyyaRJk3bbdbdbb7/1008+NbPWW3fdASecsGqdVVkceUqntCn673//e/PNN2M/8xHDEEfrr7++mNbV11z9+OOPkxKCUs5Vh4lz7XFFec0stWIogBVWustMPvzww7femnuzFV6vdB1wwAHvvffe/9gpMsLMcZEXJCkpDKAZ65dPcNutt5Knnpqc5IjoaLDEv5r629/+ltogVjbYYAOPqAFqksw1edq1a+foYTPETFBGHJ7ENG9///vfk7kKu0pLSx5/7DE28sgRI2l9unOvvfYy1XECUAcffHB0UqdPm0YwmbHCd0DRdi+9+BJH/4knnigtLQWHLJOPRBMnTKSe4QwBS4DgwFZ4I/QlySfKlURGUg9uxx57LCkGeU5P7dohVkGc8fDINVVOOukkhUm3TTfdVN+lya9HH33UIxdrCXBVQq2Gjd54/XVPU+cJVpxCsQe2VNu2Ie7nIj569epFHiEvUUVOcW4A1zXl//KXv3ARJBhh5KDmpI31RRddRJREBS8czV7ROgj0HLsBMePVs2dPmswjohklCTJCGRA9RXnE0QoceFr0liFGotCNsjIjopjyqO2WSvaI9QCgXqvCmICPjqQ0lE/KY0tDYKTcohX9x7bbZpttVImSUcidVAXNEMhZd511oKS8jsHw1FNPJd/jOj0lGivythFNvg6qyHhCseitogaPnB2D92gLrSAd5UElM+b0jjJr06ZNHKno4fXr14/ADRxYvTrtwjCNqw6RvekPMDfZZJNddtlFE9ItWrS4c/BgrdNeBhfO9BCa7LPPPoislQsvvDDYssnlqVoeYcKY41fr+++/vy7ACucojLZKCjy88PwLQNHEOLxZs+YHHty/eu0G1Ru2Gze3bJ+T/7Vuv9POvvXZKYzdBWU4eK+99tlll77Dhy/1vEa1gQMHdl1vPR3RTc0ZBZgjI62msz169DhhwACkMxbUIYJjeIihNjupc6dOqGEsMCEGsHRy6qmneKSACbVBtw0spUsLd9kUApQ+iotQ1fTcLbfcggde/u9/t9l6a8Yru3yXXXa2tQKr9O/fn/gyu61gMixgQqkTL6+8/DKUzMcDDzyQHFOSemaZaZG+lA8O5KEKq4022minHXecNHESa1V3tIiq8l2athIXxONWW4FgXnTp0mXPPfcUF2RAyGE69OjeQz5QQqqahph8/ImrcdHuu+8OIDFlQOGvvLFmEKAhkajjLtNTFcTBfgMThkeKwgvYO+64wyTVKa0rLMGyfP655wXMWNswNByI36fPbgyjSNhCCFl6BVAg+JQr3cXVI1kCi1d19e3bl9meW1Ndpr7h3Q8//JBsIq1WqVMHQJas14EijwqrMlrJbvNn2217SxC4t992G03Z/7D+lAohS5lFRUWSkrxcwx22356yIRbBNGdoGrr85JMHkpvsiUMPPdSUU5HSffPNN03FVHx7Kg0OOX7jjTd+M+cb9rJarnXW6WIqEqzkEfXDzlDGnDSBZZK/SiKA7pDj559/vtapQP4B2RQJs91222lULV1o164tPX300UfrEfli0hIcqohGvDZsmEnLWgdTjsIlJSUQkCbIuAUCJ5SEHOPC0idJCSZoUKWqaAIoDoTVEMD1BQWQjtuqaY8IMi5XsGDEu4uK6tVbjVKEcAwGyFGSoyxBhVA/gASjKolSUmYEE71OAmpL04wwT7VCMlKQtHVUYCgv4ZEoAiDGCKr9+h1ADJGzKcPEmLbmDDfSMQLYGeskpIAV8gaLpHp1KN17zz3IyJACeYvNN7/99tt1AQ7EHItELeIYwspzpFh1UMIzXKIHH3xQMbX0F58YdLdKvvDCC3FobB+hchSgIagxwpdohiQxqtdaSXRtSWxLKJ7PalAiJ1heRR9sg4sIcSMOMmwt3p9yyskGK1ISHE9vuOEGzBmZ4c9//rMR1CjKMC9Ukca0Bjc1AowgDPGGsSC7VUd28N0iDuLTuEYNJnI0javpDNYGvQjbtdZai6xnHUqzj6d8+SVuh2pCilqNmrRp0KbThLKyHY4dtPZBZ9700sdTF5TNLiub/d28o485tlfv7V9/I1h1hZcxQpx4YVG0KnwqnTMCunblE7uNRgAOwW/CS2JjZhBdi0nYfJjW2BEsOApk+h5z0u7BdJs3TxXsTQeL6xiOvxcYAZxmPTWpw+bQsjLGPVNAya+mfMVA79lzG7SyCKhFK/fd1l/ff1dffbUm4GMGCSzR8Ux2aYYIVE1YLdqpR8JdcMEFTENrOoBA74EHHhDpYSYOGDAAeqwQ3X/rzTc90qJYHXsC/rC99NJL2YgYG8KsEyNF+3o0beo0Y7TvvvuyvJm/2tKdrbbcEnOyMkEjB2huWh9NPGKawApDMoX1zjopopEGn4z5BGKYmbjA6h+PHu1p4cWY0C7DxYwzj0AjPJlKAhjSMCFXcTjz1zyNbRVWz9IrhgIrZezFVqOogTiAZE2lKzyjn2L4r9KzJbhFd6LZdjDKgLI3B0QFuMiH9u8fw5vkoGlGUlxpjf/a69nIHJ1rr7suhU288iFMYP6HeS7+hr8vvPAiVZThXdEWJ55wgvQ111wbp9wVV1xhJkSX9O67705B0U+EBaHADjDfyOJx48c9/NDD5k/Hjh1v+bedkbdccfnlLAyPKAmKXOwRNBLBGpv5Se5IWIvTL2BV9BsXs+MtBEhkAcl777mPQuWjiBbC8F//+hebQxkS/MspUyRcgJD4qAElroOc994bOWniRN68hmhWeoVCGnzHHTBn6RMrWqRUuON777XXoEEXif4RGVdfddWNN97E9dQ0afXoY48GleiqVsz2uvjiQTDnHnmqCWT5+9//jp7UDHpSMIYA8akc+BBbfolCkprNccrJJ7M2zjnnHMDIdJo44J1cELZLfPAdg3mlBB/g5OCgiy7WWRVThvEoXyP8FUfW3IcffUSl8ZmoPQsHzZo3Z/OJErMSlIHAxEmTmFwCs+Ty6aefrhckL6XuqepXX3U1wkJebIDaYw0gCwR23W1XlCFzA6dxBF95JTc0SfQaWJcAKZpbcyVSn3zySQANjevQQ/vrIymPLa2+oyoIwiTQ0wWhDorcEBCy8nEL+TtgwAnCzjiN3gWZ4WgoIfbeyJGUHmiwMojUnvFFcyYapcKZ02ilKxYG/Nprr43mMnGPYah8ugeTK89g+vfNNw84/njBMNFsZgoGu/KKK4QTQKb/vLkXGRK00g4drr/mmrsGD8amM/F6cbXWbVpVLyvCASzD1m1bzflG9pxCNEwr/E+jxGvACQNmfP21ArpWWKxSWk/NWcRhKvFxPY3rSqYt25SZYsUEZPnCfxBjvmBm41LSoYMeefrSiy96WtiGtSqjycQ02VEVPfE8/fr2O2/HNXhtMUlRgMHRuk2b1erXp1NVEf1iEgkz4skRI0dQ7cbaxVawWGCyEGV2z/kNcbDq1Q0cfOqsuirTfNveveUYfaKudhJNhC1G0jT0rBbZ64obIVDSoUQrMidMnKAMZAJfJdaetOZwuRUi4pQhpZjW27VvZ/J6hP026t6dpWt/CZZWBht7nY8x16GkAwR69expatDi7MtCykszzVnDthxuv912QBl0DhVrySyIsww0xbCcSx8RuRACTLJrBVAgmPAr3dW0SZPooAQJvdBlKgpHRyG70MPvzyAxMaK5RFb26N594Mkn01JEofAaMcHnJuhBsdBF4UlgdOVNjxR0+3bt6HiTZ4MNN3z9jTfM5G+/+aZ09VKulTKmDQEEFKucEyaH4KYnyD3yBdq2mkdQSsYYGvj8V9FmfobJNv7z8ZBk11vb9sg8Nz85H2b1J598yuk02bibJj8fDpDqBS83Kp/imSZoU+EK/qWnHFZqddDFg95/L+h1coqVwOhJC5M+5513nls2jaDCrFmzbTjYasutUAz+HCBGAHW4ZseOuhmUa1GRGU68ItEXX4R1QV6IVV5YcS8UgLnlG34h/AkYXtph/fujHjrLUV1dUl4ChppQiyhRcnCXLhTq11/PgCQLQAFi97TTTz/7nHNQSV+IGJpGfrwOPeQQQwamptkTiE/M7bTTjmeecVZsKF+w4t/iYroZEezoNKAlJSVNGje+5pprSG0jYnC1AwEaWjVS/pBDDoEhqlPPkW5oIgA/Z07QK/YcQJLQlEYWPKbjgMNHPntLPoB+F75QiTs1b34IySijPHGsp0YfKJypO2Hci4qwBDYgdpHXI8jEIZAD1d/+5re0mqC35RLajr0F1DPPPAOmi7m5R9++jAZCWYiCZEdbHFIJH3DkYGm7FoypW1PSiDPR0AcdkNRMXDfZb4gPsbe22AcsAI+ktQUBalUv5Bx00IF77LHznLIirFatqIzRaoOiuJD/bDFdYBtZsAcqzHfUwDzpELdt15ZmBnZxo1lReTdt1izaPVBVK+lywygBYn9lMhFimur1vgP9N2HixJytljzglxsCtah/Dn0s7BfNyY1oD6WZEpS0UTMW0lpELnURxOyGDLZkxukFNYltzN7YHS0mpqB6YRA5Jzb9oLxXo6MYjMXiL8j24riYXzS6QeT0e2S3qSbMKvBdESv5THBp91L6Ar3WrVobytCQbbDF1QQG7Fb5fPx4kz3WtBIJFNay4cOmKDGPOI4Rpl9gcaNxp/WDOVVtgQYgbB5B6b2R7/XYuIdpnqKRVswSK5gCK6URYMaSsxRAOl0T1icAOA3VLIO1bh0i+ctGSnMMWPYu7tx+hx169ep9w403/OMf/6CbSWGWfny3nqI1AUwSbhC5SSWnzXkZCXO7JRb9RhFphsTyfkMTc+fy6T0FgiCAq2AuyWs2clNSUBIemUIER5ir1aqJOrikO67ZUcAQLGVo62hA0C6ag7mQL+ljvqlSaXIWAo9p3kCd5G0FJYlpjqwm9Ite1xBsYZjWMvODFEjmv/LylbHhSPCQauSXMPMpQk7zrrvtFrusAKnz1ZQpbl2ghc19IFSrHh4VFUWVQE2ApTkNVEtoCPmIgEal0Tw2Z3udknrq6XffhU0PxJZHyvh11atXV/SbFIvGUy4z6Y40XcUDFgEWwHj00cfeeONN35OhrtLqykTEJKzSW/GViNo0YJJ0QQ5U4aF1WNapWxc1oMH7t3uDqUQ/hTLVayAjjmrYcBW6uXnzZi1btCBJPQqkSD6Nol2X7hCs8l1p6/HWL3IxEWy8CtyS7MrGXSYC19BYB3Fcrbr+YgP4GFBqWC27RkCGGNJBUgK5kZw/KqggNiAezuZDh+GJtaSuWphKZ7UCYOhdnqopMhJaVICIV1gB6BmrMHYwoawSl86wKgkCfabp2EeQUYNiUJ23CgIklWnZMi6WFX07156S1b6YOfmLz8dX67CmEfUuxccfj6lXt94qFfeu0z2sKFdEDBAJYOPtkvyGjZYJqtALiCauv15IJ6CMEfsjrDgYHL0A3IM4L9AzNhG2zySOrL1BWEsZRPBIv/jKvIVKKOmyQYxlFEMNlHEZNchQt+KI8gMlE9wAD6jNDy85BgSSmpgQ8vKDUEgwib+eKuRXcCLG87EHbmSOhJ094OqaAmUBQ9VdEkSLXxcKGDwoubSr41BVRruQsTbKIAi0SqpASeNJNUyi10EsRNEXMhPh5ncuuqmmiTBrA5PgxvoNwmJTBJWUzX5+NAqslEYAPuPSMTMF6qMrFuZGYmbuvNNOfffYgxjCjjhuGegKFM4enrhxop3koFCYaDO3D4/T9zHaJvpqty0xpAmThMpcuK3I4n7NM2DNK/PXbOEgktE23psPntpOaEXNHI4zsqSkZMyYMeXQkl5EkQEI6c79Mp+HvzscUPk8IRWjwdG0aRNi3VqGfP4uVDVh9pIX5QAXnZo4YYK1AOj17t379NNOM+e33Gqrsvy+98J6ZJBGcyIgeSCWYM3Sxn7BbV7yTTffvFufPtBQjNRDgZatWtWuXYtY4ZQIn3CwBCf5oGpT1UCxjqSV9z+Ro7Mut4BIeBShhdYKXJlEBBYTcyBQirxkaEgTOpaNmEEGLlRJr7KyenXr2rjHV7ZBj+DW66uuvloAQ1uhybRkkvAqndco6IBx48axjeRZg48KXhcsxMvROzaHIRAusvQ75M47RWJz3nNxEcdOB3VKD1ert1rLVi35Z6FWIn8l4uVWSDZ/V/kvpsQYymAYm7pLS0sTVItJamndveTSS6wHiSjw5FirD9x/P5TmJ7asp8Z03rz5tWrVHDVqtEjSxj16cOCEZDiv3HGN1Ug0Mfiqi9ms33V97iOzQyt2LVTGJkHeo6Av48t1xcVffjmFRYt6Bgyry2cSBfVZo0bjRo3oEjmWHuywC/qsrKzOKnVWX2N1VjXLxqN58+cWFXMWq9WqSct6n23+Z599UmvzNQGsXq3o008/wfbRslG4ygs+VeYvJpNqintBQpkcj8X9v7ESgCFOHrupU2/BdsECG0T8xvLKUWlMsXfefhvFBGPkpLpQ9yOgwl/QVDcr00wDpCQ6e2Rq8AdatW4duxMaStgSj0ngfMItJIO69S9MkIgJDpGOPKWwNUEwrbiZDuSAfbv4NhBIN8OcCkXxklbcyIw1PWncpIl5ZNbYOhCjIMrYL6yAW1LFXAAnKZ8QPMzXBC5iAi+ZXAo0b97CKPtY06+TjTvwRUMjjmnNiNhivnj290ejQM4A/NHaX9aGsZEo6zlnn0MZM8xJB3tVzj3nnKOPOYawwF6mxLLCDi6apV9rnC4bnY477jgrmmZCaWmpGcXYN1cZ2nf/524zVqyYIrEkv5jm4MPMpyTMdiFxEW9ruiWlJRYg1bK8DRodc9/991MeaXizEkAIuBo1brz22muZaTYK2abE57a5j1fHy0ST0aM/hvnYsZ+9O+Jd0Qu2iyrgkBaVoFV5S2rEmcl4p7mtCgf3omJVYiJO+hQCct111122AYobI1FwHxeUiUnobDrPocFO6ty5ixxY0cHQ48MxAoSsrXpoWlvxgm/AObmSRNpULuFJTEX4wjZR8XN3brnlFiYUNSZ+M/CkgZVQDdCqVbvm2muPOOIItoiFUshT8wY0bS6K1LRJio25QBYTi7aJ2KVlQ5YVIgVE8km9xEoJ+x7sZDTENN+ll102Pfl4jq6RevJ52x+NGmUb1Flnn8VCChI834V8Q0GOLurSTRds6XgJAElS3bzp5pvO/+v5n332KePDVhKU/+c//4kTRIYuu/xylqIcIX1VDM0B/Q645NJLb7zpRjvPd9hxR7vYMNt9990PE2h7qTK0kRgBDKlDDj3k4IMPEug2iIcddliViMUuqKIJaeYjWe9bGnoCoCr25x5zzDEXDRpkJxxM2Ou2ppsv9k/YnHHKqacYdOStADxht/bt2tJUH3zwPtOVNfHllGmTJ07S9xYtWlYovJxudCHxUctZPQQVEw4UzLA9IsRgFix4+qmnbMrzMs4miZUZ1HP+Iih8hcPmCeFJW3dtTRBlYQ3Tl/kii/sbbSYDJ6BoWwDhgJMRR4SGFn/q6adVhiTFneAVQEX5lrBfUMIEIHxUsbHApmaF+UjGBUxBPgYK6zyMl/+D1g/qHB+afX4nf/lleJRczDN/99t3X4txXuGLfdRr0kbHbWA0X/JIBIs51tJcTBT+yuzQof16XdfzopDlTrcuLgpWZH0SVgvPzcLqWXqFUWCljARE6phgG3XfyH94S06YwQlPJjZyMDlJ9mWjI9bnWXL7eHVegSMHgbLH+/TTzwBQsG7kiBGjRo+mD1xyeDm2vErAwAxR3lz1L04St/CStrZNNfK0rMKywQ/sd+Cpp5x60sCTaBcbpmJhk1nwmR1TKGIsA8enZqDZu99++3/44Udq0aaKUT9qUVTm6vDh79KCBBCaQOaYY4/RdAwDqAvDgFvBFXBLrpjH/xCN9BbZK0OH7rLrrpxz24xICkWIoFg29DIRSXmAxUQPi4GvwBaBD8eoVetWxKJi/Aa/sVH5Z5xxxocffjBu3HhIyjdGIivMLPLFmjplnMMmMVkiYn6h4TfCiZmIKxH1R4gfFBf7sLxXqh584EHRV/sBFTZkllc8knYFCZR4VNIkLNLZkScNecq13wH90qcR59hQ/BXkoAksZIocuHQHwe3zokcVCOglX6Exapdfdtlhhx/OBGGhXnP1NRxf4g9KNk8EJNgNPXrQK0ICEXJETzpStXB0pCM1QrVEAbA+YWIjngHyiYjoxlkX80kAKziGwDZsm8mZm9S8WIVVf9tNrC7ZUxkVsIZyW9teesmqjb6DXVpaKm4cm8YzVmoUxkui31bB+/bdvaSkhMGUIBlWr+AccMtzTmT+8HUK4Z+bbkJzrzB48w2SFrltFWQdMgVYqzZg0pGRaNrlC0KAYgPKLTKGWWLghFXWKK3x1EsjR336/rivVm/d+M4hQ4SzrB00bBh21SzdlRC6sIomAvIJG/sN3rQrYbnIV+5i+cgSNLFNEmJ+zHfGDfMxFgAkrw6Lum/UXb8wlacNGtS3RIV6IjFiA2nhFAc54YJAIiWgYCKAZoLYeM90eOTRR32QkW9DVpjdNg/GkYJPCiRNJJCK2yQzl7DynhHBSJ54U4Dm/s2vfy2OZWgYYWkVQ9y7d2/egnUr1f0yB+Mo1KxVk/zcZ999fd7AwpZ9P9jJfCG48F7n5B2ZIE9i5CChU0qEFH5MACj4x+FhQpkXthTg4mnTpjN0tBilR44OlWpmtyuWAsuoJlcsklW0Flg/fxWm5RFRfpfZAlAX+9qJZsLb28WgNgHWWGONHXfc0XYqbVnOJJX4XsJrJrkIPIe+b989zD2hTitwcWlASVUE41u1ai3CZmpZVgA8vKE3fz5b2De89v7V3k2bNfUGzieffkqI04ga2mSTTbm2xx17LJ+y5zbbgMNRNbfZGcwIksK8ghs3yzYFMsKk8mYRp3PInUPuf+B+Gkh8Qr5IuLeJiQ3zzUS1l5j5Ykrb+helm18yy5u7HddcU3m4Ae49MWiIJ+sON0JkUje7dO4curPDTj4fENy+xMX3ljBJp/tt27ShR7mnxCX9QaPTTKQMwb3D9jtYGVUFcM3x17meZNPHH39MF1IY3qzbOuljs6bNbEonbnQ5yiORc3rdigzlpzrzgpwFtnOnzkR2req1rPvY2KWbcKO5fQ3p7h3u5nMzj4x+SUkJg8Yjo8adghhQsePEGYCwJVtLS0t699427FGKHFVWtPeee/0/e+cBYFVxPfx7X3+7b/uyFdgC7NKli3QVwdgFFSN2jRrLZ/JPNMWo0agpRmOiiTUmKsaOXUBApBel94XdZSts7+/tq/f7zZ23l8eCBVGj5F3x7dyZM2fOnJk758yZMzOpKam4awEjdQfoYcR85+23d+zciWCDP2wfv2jWLDGbwcR9xRUI2vz8PJoAkh5qasJ/ipGXw5HQb2gdzAaIZEkShiv4w5oO2zGYoqFrgiEvN5djLpuam6kdFBJDc6BAwEZqIWjWJSSRyHWcVRmgsfxDFZTwKso95xw6G77uOKUS+ac//RHjPDZq6IeHDod9w4aNVBDxDBj9mY7NjDM+Lq5vv350RaxoFCoeVaH3MkYjNsA/csSIGTNn0hNoX3jImsKoUaOJh4F0xV5dmxvRZaETdxAwUwXQcCA8JmXW1CAeJYAeSPdgo/yWrVvLy8pY3EYDoDnQpQiAGTkxfvwEikcRwO9jYG6v3Myc8sp9Ly9ac9XZJy9ZugwbOPqNTuLR/VDr6dOmw3MIJieOMhgLaQUhgjUtITGBXkf/xOGAVJar6NV8IHRaxhe6HJRffvllEMY3BZ9pTciGIQCPHzceR3y+EWQ53Q85Sn+DsUDSMeiWNB9NwDdCU9L64Q7GPHvWLD72xKREXQfQqBeavZxF5OXlsbcFRZMOwyQEaiEbgxNkFPTrx9cKpOgPel+lUgxT/QuFFwL8YVURdYEjnuh7aKh8y6hN5RUV6PH0AfoYp6sxdsnsbDFNTkqurKxgn8u4k06iTW+4/nqcG+iQdDbKxbrJSCU9AbHBcKbFKH2eQ8XpRSx1pesLcBIb+PmUoAc8AEQ+9C4UFA5ioolhAqjYpANzJAxLoj++8cdoSwZzIvNGw98OB8JLQd9OYd+vUujffKsY91haRo+mm0obg6wFqYgxPlSuaZFHcsqZGQMHfT0Mo6+8yWkf8FKiII0IxsbG8N3KT4gsRDIbQEIzvghIXfrwi7eXQMWZ6roBmSQ+M355wIZnPqMPIynDEDA8rLZiloQw8EAzwILsrlGDVDHz6fpQBZKugmSkhOQXehh3GEdkrcklqBDe+7o9oMvOLxlCvMBDLfQ1YFkLyKMk4mEL5kcIQZCFWQDrPJ3sfGfqTLmiajp2fghLSiTZgh4wK0ItE0Xw6DZYWAqkhAcAThLmIR02ojwBj4glXtIGMGTIgVjg1D2SaDsikcdYIGR2iYEpmpiZyWskYRHQegVJpT+QC4Yz/ZV4IE4uaZOqAwpu80AAvzIj2LDPw084I+NFQfQNvV4SRlZHVpOwiJR4sN90NS65ZBiyaSAAYhFdOM138RC2CBD9AUb2JZoMnQmekATlkkhvp6gI0z7ZSQRmRUH/w1qLsHn+hReEbNN1EZDpiXStEBYpuoSM4Zcmlb0OAGQAHwOcRP7JGjFfdHvcwMivQyKBKhzUsTm74lySPIBhBWqB8BLFuUxTfKrSHFQe/c+y9xcuyu+ZNmVg9vP/+MuooYP//uij8FBsEfhqjy5yxfxb9DbxGFWTr5Js0cG6+vNv7rwTiwhSecqUKchyGp2mgdsSkrbgv3CurrYmO47DRMrayQYFjk4SDuudXBbPJwEkZIhfGl1+mHpz4zgMlxh5JH5JYWSJ4ZhD/9DLOXmTOYNEBU5GA5hm9HxZZ0kJ5VIpGtTAIRlilMgrGATCiA8EYEmzDBh5w4HIvhqZpp+KTYTR6EaiKBQOyLobsdHAt8iB76sl4NthESOaFISyuMieypfAAMrDh8dHRVfmS2OMI55H9GyGeN177iCpepJL91GXAGG0+oZdvoSwGNHd/XTY8IAFsCxC/sokypJuiSDRhyOBjBIhSdIMmCFOMLqKXF2ilCA4+TUIMF7lMIe4MlIRMoDJLF2iUYygRB1SQb0WEo/47VIUoFk1i+IgGJVFoNUUBEOMKgSSxGyUJUb5rodI6k/VGCllnIgQZ/4HOU+dGCGE+K9r+BD4zcJriTkoqVRE/goCdBc2fiEDcUVLEUUdARA4D30oEXspcbLAF+ZzAABAAElEQVQWMlGO0Sh8PMQTCX6KY5iUGAzpwquMCWPQi5YkyXh+RbtAto5H4uc3HC+1NErQqy1oOIxCypWWG3LJ6uuUQGNYRJGFR+aF5wSE+KcIvVF4FSdt6AKGMI8EFvRQrp6XmbFUbngLV0S3vkg6jV8CPGCAAPa+y1cZQ1fBoG3EiCrrrGBjm4yU5RKGKrk6QhimsLoTY1KmTxi1fu3yhBib3+NOjI+/++67qIiB7WgDlCWZIzUAo2jwSMKMXgT7qbhQW3UtEJoBIDMaAGHZl2TpMEsyh9eDAd2qD34iARbIJduFyhd+umIO+oUAj6ylnYQaJ/itoE5ZDqqm4guHCEEkpUZ2CdFeOlo9AH3sBpE0C1J1YgzagCNGgut5xDqmDISZo3+2MkYA65+bRCgjKTpcuqDhoJorUgVhul7LV3n4o7JNhqqJwiPpgbEiUo8/PFM05tvhQFQJ+Ew+y84a2WWPCCq+266ezVAoYYxchwciAQ4pIuJLEF97xBMJZiA0ygLQiJSZjOwy0O3LlzBGlm7II1+PCCkixWcbpvCz8AioiBoRPjiII8q7sncDE8gjH0O0dkWCR0poiTwSTyRDAA/XXafBoISAMfB1oTzkrwFJ7CFh2SL6CCrjZXHw9pD8ES+HZI9gBSCRtMkc3WO6hupIJAKyK17Cy7zyF8hI4G5h49UIGLmMADtB8BHLzc1lRcBQbozUbhll/GelHg58RIINJBHw+oqAqgzLi/l/l50/aOCAjFj1wumTMzLSOTdAst/I9eUD4I/sHrI4+RsZLxDqnTPE2QSKwkoZFjuc9sVqTETTy3IjaJYRB3+NJKPWkaXIPmP0HAncbbZ9EFe4sPAnY2AOA3T1h27kGeVGwkeGyR75KuENkozSI2FkFhkTroLRHUWaGBMMcgwMRuBw5CLTZ38+RsZo4JvmgJgufNNlRPFHORDlwPeCAywTmLHL68sr3QTAt0G/Pp3lJ8DEt0ueMB8Wdh/9lbHqUG3qmyJKjophFbSr9G+qsCjeKAf+qxyIKgH/VfZHC49y4LvEAZZaDhpsvn3CupQASpbmcyH6OQHsM60t3yCJ6AHSSP5fUIa+wWpFUUc50J0DUSWgO0ei71EORDkQ5UCUA1EO/I9w4L+hY/+PsDZazSgHohyIciDKgSgHvtsciCoB3+32iVIX5UCUA1EORDkQ5cA3xoGoEvC1sZZFRJ6vDd1xgUgwRBNHBXzttdGZLX5YuOX5avgleRIJGMTr9+H5vtD5feBllMYoB/7XORD1Cfj6ewByKbr15SBbDcHa5e99MOkYQrr8Dp+sQPhYvLeOMfsxVOKos36PSD3qukUzRDkQ5cB/gwNRS8DXx3VN4Ry3PUV7OANYiKiIh9duMRGJx3OwqbGJq4za2tsidxR/LRXeydG5+/eLMxCP4aFRuBmB84M5EBc03/E24pijfaWlXLJwDDWOZo1yIMqBKAcO4UBUCTiEHcf0oiqcHH7jTTdyoDcTU24J4vBw7p1ramyUaNmEHQwEkDTibE9deoljaN1uXgHgcFkuguNU85/+9Kccrfq1CCSQ8FAWx9ZyROix1E5m50BiiRNrB4FuCJFSHE/LbzheUxYuWshNB9zD1A3yC18pjnNt+T3c1C/LvfyKK/7whz+49bt9xX7uo330k9cQ+9zqe9FFF3EJJGiPxZxwePkglAdLH55kxNABxAHAX+7hPP+f33YbFyh8E8srX46EKFSUA1EOHG8ciCoBX3+LysO/GLKRiNww1NbeztnoPq/vyaee/OMf/yjOpRcHepoYypE9d951V0NjA0RwPxsXAiHzuLKIe+HCAqm7nD06aiWSkpISrh7hWp2jy3woNJWqq63jGkAuPiaFChwuMsv2lXHREXfWHZr1q7xxrh83u3AzoXH2WSQWQ/84nIZIsC8MG3i+EPIrAEDbhx9+yO15n5P3L395GJWRLvGNUvI5BESTohyIcuB/nAPRY4OPrgMwWH+h4JHz17POPJMrv7hGjENYOYAFk/iWLVs4PRSpxiRa/DGZuAmwtLSUKa8gQlVnzpjJ9YCc28qvlApfZY4bUSGBRNOwyXPDGzoHGgaFRqR/XjBMQNcJbdSai03BEz4AFe3ksOl3cUkxVw7W19d/Hl49TbpNHM5Mw50CHmJW+cEPfvD5qA63E3SDP7yIIwDoUV/YrN0yfuErd8DQuHDscEiDqh07dqKcUQsLFyJ/7nN4TQ0kn5Pvy8B8TvZoUpQDUQ4c9xz4siLhuGfEZ1UQsYQtPZyK5NNvoOGV4ZWnsrKSX/Ea4aCOoMfMm5mVde65506YMAG5i4UcGcwdowQQb0hPAn6fHwEgs4OBRYGevXpyKSeLCAhaZoeiUEB1Y8Bn2fMpCKFrIOlGCYKNKXtVdZUU/1DSTZZgr8ZEAS3G4jrkBfwBCQZa1i+I4RfMFMRVv8g24sUVK4ctB2D2gGwuMZM0Sy0BMCwi/EIqxQkKu3LKv5TF/byU0hUNiFJSXOLzekmCsWFWiOhDnsjz2AXkoUUQA0slTn4JUwS3F0oU+mpAlz6nX2wTjgeU2ukKk4wh3NggTDV6SvhHJvFLKfzSuNSORRwJJlO9Xh9GHeJhL9lkpPFLDPzEF0HeZsT1byTBZ4mQVFpc5gI5AfgdqaYQYbBFZpGYYRfcpqbhV5FRcAbMcIAsaISQRBYiIzstWaQySnHi0ZeoDGqjgSgHohw4XjnwBfOP47XaX1gvBu6PFi9+4sknmdoyTCcnJ1133fXnn3feihUr73/gfq7rJpJrRnEr4w51JPfVV1/NdVsSrd8f4Cq/FStW3HbbbdxBwvWsr776KsDcEV5z4MCsWRdxH8mQIYMbGhqLiooY2Vnl5UY7LjLPzcm57/77uVn8oYceAhXXkzMVJuntt99mgOZOtksuoaBrMJUjzjdt3PS3R/+2efNmILkjjpvCKZTrwG+55RbjjhzI+9WvfrV79y4G/Z/85CfQzPXkP/vZz1iOmDv3jVdefRU5BPDgwYO5jHzE8BHz58/780MPcZv4E48/kZSchCR46eWXnn766fPOOw/kGLebm5tXrV7NDfFQ9fDDD3N1vawy+LkwfsmSJfDthTlzPvjgA+6Ue/7556kdAoVlDljx6aefIti4dPznP/85VSN+48aN//nPf9atW4fcAv/pp58OkdDDigMLAYjNp556CtbBYWiW98HL4uSvEGa4VmhKa2vLvPnz//3vfyN0WbbgzvILLrhg5syZ3BOPnKPQeR988O/nnmOBhoxJSbTXJTNmzCDVEOwQQxLEU4X7778fIn937+9QYv7yl7+sWbMGAcmtfZh2bvjxj7lC3ji/nlo3NzUtW7bsX3rRgGH74ULeH5x+ektr60033VRaWkq9IIYr6aadNg0HEYN+mu+B3z8AZ5DFM2bORKGhF804f8bePXueeeaZVatWdXS0c9MfzXrzTTdxfTsYJJFggKs8DfX1f3rwwfXr19N2uDWgYr722mt4ohDPHXTDhg279dZb+/fvzwVXsAK20MFeeuklUrkagPDtt92WlJxM6WvXrqUpi4uLCXO582z94SJmWBfd5GK0VzQQ5cDxyoGoEnDklmXK+/gTTyCcGEkRS1v1B8nhDwjft3feeScrKwtxHhMTi5RCTPbu3duwXUuTu/D4Cwbl7KpXr14I2j179qSkpk6ffjom9oyMTCQWIzjSdPLkSXFx8QMGDAAzD9M1hnjIIsCY3rdv38suuwxUhJ966unMjMzzZ8xobmr+9R2/RmhdOnt2ds+eyNFFixbl5+ejc3D/i1ElpD7CAClYU1NLEmIvOysb8pCyb7311lj9QXQtWLDgl7/85ZNPPnni2LHAIwj/858Xr7v+eipN1ZCIVLykpKS8rAyViKWKU045BaGF5mEUhDhE3qBtYAzo168fMl46RlARIFFiTjrpJNwFduzYAXJKv/fee2HgM888DWF4DoIHnQlngtSUlKuvuaawsLC6uhoBya32/QsLuXwW4WqUZQQkn+HSm2+99dhjj9EEyF3KpTrIUVSEa66+Btk5d+5cUmkCnAwQbMuWL3/yiSeZgrMYj6gDG0TKqT9OgjgbIraR1r1690K47ty585xzzi4oKMRmgw5BrsjrcSFgw4YNj/z1r3369DnzjDMam5rg6j/+/vdePXvm5/dBfsu5/qmnnGK12YYMGWJQTomJSYmDBg3EkkTLIpKJodaVVZUQAJemT59Ou1dVVcGT3957z32/uw8dSNYXJEhrbCd/e/RRmHnxxRdPnToVrQ5dE3Vk2rRpFES56GFoTv/4xz/ycnNhxa6dO+nSU6ZMQU1c8tFHOKPQjrig0qIPPvggCgSaaGJCws5du8rLy6imzWqV1wgZNEcDUQ5EOXBcciCqBBy5WZnyIoTOO/c8Bllu9j7zzDOFlVt/GK+RScwRmTGjH7Dkf9dddzHrNZQAAACUVwzLLFj4c3NzGZcBRvYwiAPD7+uvvy4MCRdfkpWdxTi+aPEiRIIc6yWSvLzc22+/HXHCK0P5Cy+8sHLVqvPOP3/L1i2IJWTzjTfdxA33/fr2xSSAjCeG7BI/RSOnr732WsZ0ZBWTRcQzeNA8Xn75ZWTMjT/+cV5+PjHJSUkP/P73TBOpyM033bxy5UqEGUnPPfccqOAAZPfu1QvaFi1ejDaD2cNusyNfZe34RdLPOP98SNq8eQsawPXXXSfN3xBDEpyh1pCHJzzKBEIOKYXM/s1v7gQAZqKsoBMwH/1w4YfXX38D3Ma0jiwfN27cRRdexA2lkidGcTIA5Ta7va6+Dj0M2fzXv/4VJCSdPv30Sy+d/e6774AnMSHx1VdeQTMAOVWAKlSoSy65BDUOsQ1DJCqUmE2bNgGDXkXLIkfRLWAaCtAFF1wIGK/oZ9gDgDfYS3jkqFH//Oc/8fyA1eRFNiNiKyoqhwwdeuWVVzK9RpvBhgSvuE89MiP94aKLZq1evQY1EebQu6gkMpvWISPaDM0KwpTkZOpFXQoLCuE/zERpoydgI5k/fz4VRHhTd8T/ooULR4wcSXNjnqE6qDJkBIYYuBfrcqHTAE8Yfejee+9BvfjJrbdiq4BmNAMKhUtSByUvtgSQwGHJn+hvlANRDhyvHDg4jh+vNfxq9WJgZar07nvv3n333Uhcxt+Y2Fg5JjKUc6U94yZzbgbKvLw8ZA+G/SMWBLCMR84REHktiAMzqORcmUhxeSsx4cu4AQlnIZCSnML8nnSExKiRIxmdG/T1aQQqGZFMPARY1QcDBFMAr5FjN4O+fAWAh1dkMLmQPfPmz3viiSeYl69Zu4aMsgrMgO+88876hgYqjuli8uTJWOnRdUBKXpBDld1m63bXHEWIZB1ABPWyxFmBOnkoHEh6qpCQkID1AWaChwc9AJqRakxSCcCZTnZRhvRUqUgJQ0IYrcwS+YuMpCLYORC0qAv6ve9CAUpOSZ4wcSI2htaW1vaO9sqqKuwQlCUpTE1NZeqMFoKfo4Ft46ZNv/jFL0DFQgy2dwwGEANC9uWzOoCVgoUVmE+1yGI0EGEaAjMA/KEslgZGjBhB7Tq9wvMAYFgBsNWGIcAGT3g1SiSsN4eIEZD6bpFdu3Y6HI7zzz8fDUDGX3DhhSys7NmzF5wwgip73B5WXl577dWJEyfed999sBRUqA7slkQ5QLmhQTHqbN++HR8MrE0UTS7Q5ufl8wtwQb9+WZlZAFNEWno6tiiqia756SefYL5yxcZSd8iWrWkQHA1EORDlwHHJgagl4MjNyroys7FXXnkFMzsPc3GWSqdMnsIYKh5FZaBkuMeHzmFnaHVIYSxxifTDHkZVMbDKJCwBOoBApP8v3rpkvwyEAXRXPgQhQgJJAgYhMBSV6fjUqacu/fhjimbmhx0bAvS1ZzHdBNkRaSAerUUKPwBKS/cx0FML1BGEaO+cHKziiJ8zzjiDiaZ0hpg1axY0R+JEeGAoRkxShiD78x9VhTB4RXFIQUp32O1iiqkInMV79y7HyWLlyob6hra2Vqwv6Ao4HgIvsZKLisvS+eUtsjTIJgY5J2bMKSkSQOePglpGuXhEsnzDk56WFpkXwwbAnDVkYGPSzyQYqY9hhkgK5RcRCx82bdxITyAJ2YxRBO2QIoyMuDquXr0aMwxiGMaiK+BxJ+WrQevBomkZIxYUYWVPIIMe2FJXV49FgSYgTJRodKsV8wOLLCARj6Li3kdx8KWgIGzGIBotilxUgZm9jkkj46mnTmWJQa50AIPeBlpaHLRM9CmRFmQRClsChp81q9fgh1FQUMCqDe4LqLmUdQi1Rp2jgSgHohw4jjgQVQKO3Jhs2Tr7rLOQ/azaLly4kDVUVgeYUIqBWJ/DkY1hlMfn92Fvj4+LMxBFjvNGJJBiZFdVZJIYiHXJaoyyvLKBT4p/pIjIpQs84OSoTQT+4VJm64Oz2rdvv3XrPmEfHSv3jPXX/ehHQ4cMlcWBLTIg5GJXDPFp+pybtf9f/uIXIMSKgMCAOJQZ5DQALBawSMwUE6GCt92999wbEyuW/yUSKQIhUQuGutkDZKFUk8qGS9QDQgnQ0yiOybtMRbD9+o47MGxgG8A+Dw8xXwMlMGuasD3w6GRLVETqOA7+oL5gaWBmj7Ggva1NaBv6lJpaIIwpKyM9o0eaMDDgpkc26ggSUhsa6sGJ3mDgOvvss5no4wDxpz/96W9/+xuqFUSgaf32t7/FnRMHRhZinn322VEjRw0fMdzIRU0xqmNNwZ8O57v8vLyiPXtYTQiTqvcT2AWYrEKYJ135qRzNy5voDfoOBVQQIcUjGAjx7CdhuQEA8LCsQFms2qCgzJnzYv/+A0499VQwoPRQ0KmnnnLJDy8BKQyBWcBTEToQeWWrEYAtFEsSRPLKg3Iz9sSx6HysRrGwgm0oNzcXFwQ2UIj+CaIjduiuWkT/RjkQ5cD3mgPR5YAjNB/jI+KN0Y8lYfb44e+N+McvDIVAjofIG8ZHhloGWUZt1sLz+/Q5AqKuKIZaguQCMxJXDL26TPV0dorNdvoDQHcp1yURw2gYkMXQHYb617/+hd/cXx5+eM6cOfjZTZw0CbMzGoYBIHPxCnpZOgUgAwoKCv1+H6b+xsYmV1xcUmJijJO1jlgg2Q6AVsHSOD5iLAcwL8QSvuDDBYJgvQrAyG1+yN+u9YswdfKPkDH6Q6li25ueS0Toc2tgJHkImPWffrp1y5Yf/ehHyLOTTz75hKEnMAk2cAn8ur8eMULY669GqhGAFwjFxKSkpcuWiUbRzQasdGAaAVtCYgLKBEYdHOBRaAQNuihduHAR02tcOgw8aBKzLroIh0f2AsBMaoGuAAHEDx8+/Oqrr8aXnsWCisoKSb/MiKq0dOlSFI4XX3yRNfVJkyZLpwQyAgAkzYFVQGY52MpdLUJjQrOA1NGRC4ZD54cLF0r8nDG1ePFiTo7q26cvUlziQS0YMXw4e0Doe2z9YBGHeJYwKGj37iKvzwdDWEGgggSAoU3BTHOAM0zYYR0tMytz1OhRd9xxB/28vb2DesFwaBM9R/Z4SVD0N8qBKAeOOw5ELQFHblLOeHn2n/9kaRk9AK94JD2Lyn3y+7D8zJi7v7r6D3/8AyMmQzaHvjFpjtz9dThGBmJgcnNzOaYej24WpAcPGjQAGT5wICcIEYMMNrbbybFeIpGj9uEIicG9a9XKVewuAzOmYHwUWCRm/b5HaqoY5LvGbjDk5eUhQtAVWOCHYHzRZ868AC/FB//84IUXXoi8Q/DPmzcPxzFqxIoyWS697LLTpk5FX7n9tttZE8FRrm+fPljCmapCMPsUWpqbp59+OpNpMVnsKgsayIt5HNoQjbgiHqS/S3eBcipIPIIK2wMyjHk28/i333kHHQuhSzIwAwcMhGb8ENlPAbfPOvtsY+JOXskiAJCIuP6dddZZc16Ywz4OudGA7QCVlRXUkQk0AJzWgIcjUpNUMlJTJvdEsi4udRSKA4z9cvjQYe/BIRGZit8AZgCMAaNHjUJaowlRd3ZAHKyRoqBhwCKkLysaWB1KSkuwCgAgYWhT+gwAuPvRuKxB4B9KWTwCQFMy0tPl1P8F9lKaTGPGjGFvITZ5VvTBTMfDZQ+7Ajw548wzaGJQyezknzxpctll+x577O+//8Pv7/ntPaiqNCsaG2YMAvBww8YN8+bN/w1yfdy4cC7jD1zQH8jAHRKfVnpOz+xsvAr27t2LlwOcQRGc+8bcWRfPomOjSRhZo4EoB6IcOM44EFUCjtCgYhTngLympgceeIChnDNuOPkHKSLMA/rjcDqZMr45dy4TLyQf4hOxASI8+PgVhn1svF1e+uTQncMtSGis69gVcPn+zZ139h8wAEssDuSYwRnfcRFHVCABgSc7BICBgDFtQ+bpM0wRxxo2cKPHjMYTjRkbUzcWBRAYqBfgFxARD5Z/yENys9GftX8kPdvxWb947/332bsPHma9ROfl5gHA2jbyD+M2xU+ZPHn2pbOxhLObH8NAYUEBYowDD+66806mvOMnTEA+Qa2hBUwYP/69QYPQErZt3VbYv5DTBaiFzjCx/CwpQtxSL16gCvmKIxuiixknIpB5MKsDVB4AsiOZ2C6PlMKvcMyJJxpKgMQjWkhH7nDaL551MUx4/7332BRHKkWcf94M1rZpO2BYyAc/GzE4n4By0TzYQ3HF5SIVYAAEQn12DgFsleRIAxQmmhUJzRQfC7merl15xRV4BgjgrichPh6Jywr9Pffcw7Qbf0n0HppYpiM7YTX9hP2KmCVIkkpAuERFSUhMnHbaac89//xfHnkEdzxOIDjzrLOoAvA0JUv39AVUB8Qwy1J0A2oRZiZ1tFouuWR2dfV+lvNffHHOT37yU9oULQ0dgh0BdBUe7CtZ2dlwg7CoZ1cTECZGvrIIgoWDfo7lAAsKVcbskZefR4/ydHpaW1ulCaGrxtG/UQ5EOXC8cSA8qTreqnVs9RGCTVVZpWbevKdoT3bPbCQQoyRYsTOzIsvQzPoxM1Sc9XBrj42JZVAmFT9BcjEzZjqF0zuzYaQ7M3VJTqfH09zcUr2/Ojc3F2zM7Titr6W1ZX/1/qysTI4KwMDOsIssIQwSJDo78VyuWOQxJCHnSMXazpwVSY90wZUdOcrpduBf8vESCEMn4JwfY2puyIyO9o7yinJKhFrEFfFYqhn9mWsSwDAOkcgDwNwesRGOsKQZClvbWhEjSCx4Qhbc93gQh+CRgkT+Ag9aqo+TGnxgMR48MIEsCCeKlgh5ZUGB4hBysJet8FQzv08+HBOHKXLeDsYAXTaDCqc/ao3C4Yp1dfM/QF3AbyMuPo7S0UJwnkeGwXBWTFgFoEXsjnCJorI+P9sEOFwBKzdFxyfEG/RwqxNJkCrmu7oFBTCWaIghI9Ri+8G7H6NCrCuWCbqshfELwTQKaytwAzZSC2hA5AOJKoMFCOT43lMpupDBVSM7HOChCBw1klNSyCV5CItwM0TJ4CAKqJUchngMMOSlA8gYjBBwCT6wAkAnIRdcKK+oQMbDNGokVlg0pam5iVxQKLQB/VzCtrZ2dmGwUMKaDWtStHtZeVlSYlJaehqNBeVUCiMNXg7yQCFiDJqjgSgHohw4njgQVQK6tyajMEKFSZiRIAdc+cpMC1nLCPvKyy8z7BIp4PWVZmaUkTFGdhmQYAcjRQHhGf/ByENDZAG7xClSdBElZmaqyoSVWTvr0GedeRauAMgqJq/E/L9bbrns8ssjCQ4jwQFNn/EaJRj0GAEjKTIgUsmpimmolAQS3vgFOLK4yLxkoUxBtT4HjQQzsAEvwESa+M94JAClEBOZ0QCQAbgBf8SvPm+WwJHIw2B6Gxl5JQ8BQygeLEKyV0LqrSPLPQhg5O8KgIe5uUQCmCEpCZPXyChfuzId9tcoSydAJksKQUIJ/PKEs+kwkZHdkHd7jSzMoEd2JJLAA83hLDoZhFHOZEMchI/EEg1HORDlwPHFgehywBHak/HQGHYZCnnCr7pjHZN75pFIHZkT2SUBDCFm5DVQCwB9ZD2ISmQTcUZMZICMIOERMpBHiocuiUoE4p+5Gqv1WIOZszL7xLh9xeWXXzRrFngAIK/IGA4YpMm4g4V2ARyMl6FDs4s4I8agU0bK4mQu+WsAyCxd4isSJFLcC+N/uIKymjqgFKhGoYdk7noRMoxWENIL8nQuybx6ZGQZBkkiXbCHxIMO8+KdJ5JQwTDxHs5IEUYf0GHlD/qHmFmLtQ7xGDCEwwAE9OIiMnUPGp1NBAwidISASiF9MI9wDj2oFkht4GBqRDMRadAjASSFIiyp08mWSToHw1U2SDiYZGQJR0X/RDkQ5cDxw4GoJeDo2hLRe2D/fg6qy83J7T5cHh2mY4XGXAwlWJK5qhhHPKzNLFJIK7chhI61jGj+KAeiHIhyIMqB45oDUSXg6JqX2RUZhJQV08+jy/u1Qx8kRp/2MfXTZ8Q6eV97YVGEUQ5EORDlQJQDxx0Hov4+R9ekuplW3DfzX9cAoFsSY6gC7EqI2gCOrjmPA2iUUaGX6n/C4a5aifjoE+VAlANRDnweB6KWgM/jTjQtyoHvNAcOinkZ6rJNda36C+K74r7TFYkSF+VAlAP/JQ5EHQP/S4yPFhvlwLFzwBDw+BR2ewz9gMBhid1go69RDkQ58D/LgehywP9s00crfpxywBD/36X6yUWr7xJFUVrCi0iCEd/JPhNtoW+HA1El4Nvhc7SUKAe+AQ4wdst//OVIQWMo74r8Boo8epQ6VXiroAdEVYGjZ983mENsfRU7SXnEgWP8+QYLi6L+rnIgqgR8HS1jfDty8DV+vw7cXycOg86vE+kRcUkWHDHpOxAZyQc9LMntFs24KIbG/8YTSckXl89RTqrS0BYsr2n1qUp7SNlb5W7zHh2OLy7lK0Poh2HI3FHH1a/MxW8oo2gRfVcRGkC0db4hJn/H0UZ9Aro3kDF2EpD/WFGVAQkqzofRH2OlVQSAMN7D6YfGAmA8YUg9yogPY5GIInGFE/iDTArq5RDmn9DgZHZxqhA6vYjV//BX38QoQNg3yA//6w/JehBUeh6RKNPCr5pi1t/Fj44wnFG+EMPTPQ2iZCxYSaNQSaZUMXV0AoDMABBJDAH56BTqMxLiVUXcgUtyuOSDxQlgSbPIL+OJQv7p8QY64mRewCxdvNDjZDRFiPy8SBziGgNRoHxEnJ4kYiJZLSL5XwLqOzGNPOGs+h89b5h+Igw6EdIkiZiufxKZTr6eRoIYi3UgHZAXva0O5hOJTPe7ThQSr13V9/iVR56a29iy/+af3PLmOyu2b916y7WzTxyYABO+/MM9mR63m4Oludvpy+f6fEhEC/djVVVWnnveeRxI/PnA306qnO9+eYEXKR05mpqDronJy8vjUoZvk2B3h5sLHbw+L6dBcyLI4SdYHxUxnDHKBZUcWc2VFmTkxBEOHOMgVC6PMPCIY6k+47hoOECbckIJ151wHLWR5asHxKfKf+LT+vJN8/nFRTbc50P+j6ce1SjxXeQVR99zMz2fB6e40+o8x0gl4oTRP6hofkXxKYq3659bUToUhV+mWNz/qsOIXyF+5Nh9hJJBE5Yqh1AlIvUeb/yKDwBMIKZAcsnUkIjUa0QamaBnc0nbivVVB5pCFB1GLtKAJy///Jr+j4BOo168buuTBPAuH4ppCyoNnVprQOmk1JCyr65j7qIN7y7c5EPSACRBdQR6mCK6Mht/ZaqgSxYHJgKyIhBzMLMeDmoCUuKBfABkJTgJGabKjMKmzT9RochSupCGgUgTJAoYYjx607QpSrv+r1X/hRSQsJdTJ4KiA7zpYZEvqMBAErl3QSBC3tKGiFRNExTqfCcsCiAeIEF6QGnzaM0erTOgIxKJhzwgoj7yH3UrKqt/f8GmxUu2BUJKfZu2YVfDum317pCoNhnlr14N8hHBadCSJ1QoiF4A4fwDnH86teHyJJAoWvR1QS5NOW95zZqdnb7YLLdVKWpKKGlP2lLWFkYkO+chlB7hhYsJuDmJS6HmvvnmEZKPIerRRx+99Sc/4WyrY8DxtWUN+P3ccon8+5IYOSac+zYN4OXLl3MV54knnsh9XewT1sebr2HMMfAfMcAQx20d3Pl5yqmnjB49+sYbb0QAHxHyy0fW1dbef//94kotVWX8vOGGG7gym+su5fjJpancpdnQ2Mh90jIGmLfefBM1URYBARxPzk0lTz7xhDji+pgf+bn7AwFuFONOtWPBJwn+5JNPFi1adCx4/nfyfkvK7DfBUDrfipUruTONU/M4XZW7W7jSbfr06cdYllmMyIzHKsPrsnX1q9cX+0JcyW4OKHanVRs7vN+E4XEx3MqmT2lhn1mMx/pjBOQrEJpkr0AYhgn/IaYLWqaIKZ2Zf5piw9Ig4iJyCOnC/6pSWas98tQCv9d9+slDf3jOMEvXpFDHSllCpevCGy4pjKgrNqBPO3ftC81fuqWqvqPVHYx3qcOH9Jo6KXfh6pJ3561NizNNnSowS4NBeC4riInQFwW2CPoUrurhlX/irltEU9d5xzo9uhwVqSozc/5IPNSSKoXDQc3JDJ0oVJhwMZHo9UrpeUUZ4ulK5W9bq/b8m+sOtPp8JjWkxYQUi6KGrIrHqXqG5qWfMXWQfg8u1g1sDCIbbJJTb0GmoIAfYQnVCzEHaYKgwmnAHZpqIw4JrCoeVVmzpePjNdsaGttNIS0zOe4Hp44eVGDiNqEwtTpRBl0wjVxvLtz96bodyYmOweMGfbCiesHiZdTv5utmDClw0b3cbi0uRnWaLWCg8LYOLTZW2JgQ+BbxV+glXBal6iwVINRfsJ1Io4lV0TEUZU916O3FGxVH8qjhg5NpzUH9du8s2r27Iji9J6ioxJd5uHgJScONTdz/9GXgjwqGcVnM7wSTj/WRQ7zo+F8JWUtr66OPPcqFUlyxKK9TkrRFkhUZw0UhHMjN/Z8SmHGGo5o5OJzpOHdvSmIi8369YUmJ2WQqKRG3VCcmJrzx+uvcDJmVxXWjX4P1ntu5qBEXUEE2l34xj6J21PRf//oX9pt//P0fXBMqa4Rs5mbLRx55BCMERVusVm7DokE5m6TT6z38ZqwvyQejFrJvQIy8xrNPnz5fEsPhYKDCzkErNzU2cSHq19LrDi/leIqRUur7VyM6K930vvvuYwYD9bKluRiXY325KFZ+sV+xVrr048ftV5avL1n2aW3A7A1yRZvmtAZ9q9bv3n/uiAtOL3RKSaKP4AzQYkTif32YFuVGjlBy7NOTxI9Iwqarj/QCVGSiDvwjIId1ckQiAMbPrNCs7C71HGjhohpVccQzz0N+CEElKDFJiQoGUYSOh3gieQRIl3BtDyhvLih54+0lyCCf6vSDTHFv21Pcf9Dlm4oaWoOpOalxbT7FpktO8EsRJZFAdBh7N+K6bPh6afIE/Ih+1cUovXZCwFE7nRxwiwciPT7ljXdWf7pxU27vXv/vhrNkZlGRiIJkXXR1SEg2wdSQkIjt7cqKNZsbggktakJQE3Noi+qxK21OpdXrcZ/5g0HMuXVJH8YluouCsA8zRzaDHilkKpg/2dr48mtvW1zW3/z8UpdVafcrby0qn/PesvaQg/HfpqklFU0xrtiCgsECkcB2yCOLoXV2VWlNWmpur15tmlJU3V7RHHQ6/CFHDCaKN97asXb16n752VfOnp6SIHKs2Fj13nvzevRIueiCM/JzHERJ5hs9CxijH0En/+ASpbg1ZfWWtka36oqPHTW0l8usnDTU/sYb6oGaBnHV1OH0HULswRcuTuThOzrcym2M1BJavIoGOJg3MkQqr91GXiJRaLqBdYOJTO0WjsRJLvHahSwySeY6JEZMMA8Rlu6Ojr179jJhMIYI4CUlwvqtX55kEEZMeXk5Yo/SJNgpJ5/MXdsxTmdiUlL4WxBdRnTobgUZaI9AVbfqHfraLSPjm9li2bRxIyran//8Z3QXBPChOQ6+dct7MKGL/sgYI5zaI/WNN97Yt28fV2nLyM2bN7E6YDCZSCbW3FcJMRTBKxdtv/bqa1XVVTILPQf5bSA8SAawkS0FqyPADAYaGRHexXv3opqItoiENCAOCxwsKyLJ5/UW7y1mxcRoyojEaLA7ByIG6+5J3913Gh5r1cMPPyyHLYNQ4rFo8Trj/PP5coz4owuITi4MsrVNWkVdoF1Nys3ShpzQv7ZFXbF2W7Pm/HDtrjNPL+RDpHszCnPlutercG9tYryKZiBHXY+mdHRqAbfi82vcuIvS7PMpwYDGPM8Zo9os4vahlnYNBYYr71HEWdP1+DSbQ21p9/s7vUnchetQ/QGluZkbhJUYp5IQp1JWTh/n2AmjGH9Gj8+tbNLiLUqKS7Wrwp7f4VX8nVp8jBpjFYZvYe13Y7tG07ckuVSXTagJfr/yzrKmVxZsC1kzHFbLsP59EhJj6+qaa/ZX+PzKnvIWj+JK6dmnPag1Vot5amqiQI6AFIOgotS3aG6PwiXD3Fvb4RGDQVwsUwExqeU2vTiXqaExYDaHkpNsMKfDr3Cvr6r6E+JtXh8BhU+Smkr+MPFtael0Oh1JidyfrJTWhD7Z699THxOMs1W3aSncD6xLQdYFBAf8SoxDMMpqhhhzh4/KajGxqrdV83kUq10ZN354XTB9Y5Vlz74DDqXzpGG9U10hl6Vz1An5HSElxqSE/EpTE7cnB1NSLNxpDPYWj+YN0Gpqgk3x+hW3R4NpFrswRSzaUL2z1hLT6djfpqUlqnvKQ3MXba7zxffqnTRq2OBYs62urDgrJxu2sIZC3blMiht622nNgAKrnVaBH0Vqb53iNcVm9O1ncqojTuqnxKo5uY7ULFNdh7ZgXVt9U2q8L/OAW9NcamentnRz865aV6c9qTVga/RocU4x84dXnk6lpVWDoUkJqkMfZjuCSqtHs1rVgFdrdCstPu3TnTVN7a3TRw7IThfGiaxE0dwtLc0sJOh9+Ut1f65ikvKVb4rvaMuWLZWVlUzIWC3mbmLuX8YGzqL+qlWrqquqHE4novHEMSfK+5qXLl2KTEUekKuiooLBt3fv3ieddJKhT4BQCgkCAGzZvLm5pYXU5KSkiRMn2mx2JCjXIGO/HT5seEVlBQYJ6Bk27ASmvIif3bt3Me3Ozc0dOXIk12WBCjwIrZ07d+o3Spszs7LGnjjW4RSXQbMyCJHjxo3btWtXZUWlz+9jOjt27Fh+S0tK1qxdi02b7KwI0GsHDxnCpRsIjF27d2HijnW5qMWQIUO4grmivHz1mjUd+rNw0SKAhw4d6nTGbN68GUZhGxBfRUhram7esGFDDXdeB4PpaWmDBg/mIg/wIy+ZpcDMwYMHw5aysjIoHzSI9MGSLZHyCeRUH7ADNTWsm+CWAQMpDtUDDMuXLVu0eDHXRpP00ZIltMIJJ5wgJuJQgPqhw+zds2fHzp3wjTuvueZ71MhRHe4ObhvnFWwsXsAualpYWDh40CCY2a1PbN2ypaS01AkHnY5t27YVFe1hDWLt2rUgxEuAIjZt2oQDAW0B2TgB0LhbtmxmFRajSF5eHooRbId1OEzQbag77gW0rHFhN9Mzrtvm0nB8CLjAOsYZYzKbqCDZQQ5O7BB79+75aMlHrAjs2LFj3vz5sGvgwIG0GvM6GpS8VosF3WvUyJFczN3c1PTx0qXgPx3TrxgtFNQ7uEQubvSW/ZC8Cz/8kE8AnkNPtypHXw0OfFVJaSD4bwT4GFACpBNA5LcELXwzixYtpI/yJXxF0vQJNF2nth5BFbCbbcPye8w+I9VvVkt3OZrbQm4v6rDoeMWVoY+Wb9xX2eALmm0W04iBfc+c2DMxVgjvzaWhj1ZuaWjscLtbU1IcZ545Or1H7IsvfcLV7SefPHzIoMTaOu31N5Zy+/vUk4cOH5b9wutb99d1ZmT1rKgqdbfVnXvWdGTnkqVbag40BYNqjN03dcrIcaNT5i8pLqtyu2Iyt+0MrVyxMcnZPuOsSTnZppoGbf6HGyrKm0/on3bBOUPaETNLinbtazzQ3GC3x/RMSz99yoC+vUx1zdo7H2+s96rJsepF502eMMoea1fb3BkH6go725A3fq85vqrZ+vA/d/maauNjbDPOOHH0ICF5PEHl7Y+qduzchxJgUp39+vWpqNhpszded+0ZxaX++fPXYabo1St79+6tFqvv9v87r3gfrbC1vqGD1uGmpcbG+kCgYfKUESOHxKM9LFlav2t3KaOnw2EfOLBvWnrGgo+LttfENGo53ibrIy9uvPicYT3TTWUVoWXLdxyoae70+GOdtiEDs2eekdvaob27YMfOkupeeX2bqqu8rTUzzz75kh+ObsUC/06gvGRfit131Yy8tHglxqZidmj3KfNWNu3ZVdrY2BQI+DMzU047ZWTvLPXlt9eXVx7ok59/6cyBlTWh1+eu6gyEcvoNLq/1fbqto0XNd/kDj83ZPPqEHJMpvtVjsanOsQP7z5yW6LCqmm8In407qCxf4/5kQ1GPtDRuc967dy+LxL3S7BedNyojWd1bFWrFTGrrzMuLa/dqq9bsa2xuHViQXVIaeuuD8nK33WtO31wZePSlHWNG9t+6o2JPmb/BnK21Op5/e+v4Ub2nTUqqrNdWrq7cV1bNDIyK9Mzuce7pQ9NS1LcXlm7bU+NKyPT7Osv31zvjepRWtWoh36RxA6TxHz3A5bQySvrRaFDi6MpikPyyD03G8/zzz2MTZhSmXshBZPxVV10VDAZee+11XuUo/8c//hGrG5/h7373OyQrQy3aAMKMGMb6O++889JLLwWVLFjOX5EiAK9cuZLBmgkfSbNnz/7Zz36GpGKUJzxp0iREO7NeiuArBv+DDz6IgGGOCM5f/epX1113HUnLli377W9/i7RAivDJU8pNN9108803M8XfvWvXZZddxrIga/9trW1ujxt5ya2bwP/t0UdfffVVlrcZQH74wx8yof/H448j27ByozFADCoFIu3uu+++4oorEPxkQQIBAEI0D+qLfoC9GnpYgkR6lZWXQ9LChQuR0GRHukMz5skRw0dAEknI/jFjxkAJANS3X79+WPUnTJggeXLwV1Uf+P3vX3rpJQgDCTzs27fvNddcw/I/GX/y05+yHAAwhKFgDRs27MknnxQXmOkPBUE8i/qSGzAHJtx/332Fhf0hNc7lQnBCgMfTCQEnnDD0zw8+OGHiRJnX+H38iSdefPHFZ55+Gv2AWkM2nZnsAKC40OLbt2+HKkwRkDd27Invv//BI3/96/vvv//3v/89NyfnhRdegHiYA50sJ0EzAhim4XYA36gySwmwncbCsxKtIjY2xmq1odzEJyRI7dDt7gDhM888Q4n8Pvfcczm9ez/19NN0flZkGO3JS09i6eGss8566KGHKOXee+/FTvPySy+dcuqp1Pquu+/+5z//ee211xKm99KFaKZLZs8mI+0r/R+N+kYDkRz4XioB9XV1DBlShYysjAyTWFdb95WVAIzeTPIwtza3aB4v/DFlpqTFmNQ1W4JtDXVWizUvO8vn1XbVaP9+ceGeypqOkNmruVjM37V3baxNOWNqry3FoYefeaemPeQJ+lnPYyW/15CCAlvMvPXVJsUzZlo8DoZbKkOrilpwTRvqsfD69vKyNm9MaMtuq8XNNG5ruXfNuk8bGpqgQ9WCdrU1K6dm6MiUxau31LQ50+JdDnvSml1tPZw1Y8Z3ZmfH7KvVFq6u6PQoqZnZNR3ak898uHlXjTvk8oqrdj3bi/e1e1uvnj128Se1RbXtHr//tPGDJo+xJzhUBIYzTk10qR8saQ6oNp9iXrutNEZTrIGgRQm0tH846J7TmTW8Oq/y2XfWs2zMqj+uc6t3b1KV1p6ZbT6zsrXMvXxbi88XdGyrM5s6UlJji+u1v76wrqy8zmZihhfzyd7SQMif6GrrP8aG795jc3at31AWEEuPpoC/pbyluFeObdXelgZzEqpUR2NN0Fc3cdKwjmDo4SeXtrS6O31BVXUqQfenO/cmp2ekp9pWbqguqW1dWbTRpXrjlGbcNbAlWE3K3r2lTkswNc6cHKO4LKrNpHSGlGdf2rl4zZ5AwOeMiccYs626akdZ9b2/PKeqWVm5vXZ7VXDQiP4LF+5YsWF/amqSkhhYsrGyyuOIccSEfDXrdxTFJ5l7ZhUEMHaGbDu3FNUMTxmYr5ocwpCDBPtkW83HmxqDar3FIq6TgIrd+6occY4rLxyydXc7/RNrSkI8k3JlxerNoaBv+pRh+w9oG3dW1mnJqKuexvam1gP5Bf2Xba7yWRKxbgQ9wbYde/MLsivbtMdf2bFpR3Ew6LdYnEjfdSV7WjwdN1w97qNPD2wsbtAsnU61M6iZsrPSOjrVOId9UL6Y30EYv2axwUOYndBWj1IHCM8sERjIP2Z1jMj5+fm33HILw70UbFdcfsUdv7mDa6wZqUePGk2bMGtEcmNARpAwWUdUIGkef/zx8ePHk5evEjnNgyAn8r333vu///u/O39zJ3N05AT4BwwYcOUVV+CDhrhl8oqoO+ecc/idO3cuk9FLLrkEMYC9mhgQX3311QgADH5AImV/+tOfIpzQFRAzuLYhIZiRI7TIe/31199xxx0rli//f7feiuzHYQg8/CLgKRHJhEBNT0u//Re3M9997LHHpk+b/vIrL6O7/OH3v4ewCy64gIX/H/3oRwX9+r32+uvIKoaUjRs3orhDp5yBoL68++67F198MQIJcfunBx/829/+dvnll2/ehLVAgTCGKabgqFNYJpCp8AeSUJW6jVpcCP6HP/yBafqHH34Ix95++22AgWSuDA/ReKAKzNSRVywB6EyRqw9wFcJoIPhQU1PzwgvPT5w0iaIRxsTTIu+/917//v2vu+H6N15/A71n9Jgx3QigOuLx+y+dNYsiUMWoOzzp3atXXFx8p7fz7LPPRor/6U9/GnviidhLyA73aHd0AjoYvYVGwVpALS6YOfPfzz2HnH7ozw+hOKLtPfDAA7ACCY35ZMWKFTNnzmSyDivQAAwyCKM8YbcA+Ne//jUw6J2YQ9CE4AZtcc8996A9oEFCFdrGT269lfbFsfHmW27BToDR5dlnn0VzuuH667F8YAlmNwqWCThvNpkzMjOMgqKBwznwvVQCgsEQ3U6Mc13reZEVI5IFziMmRYJ9Vhi0PP6Q0tyqtXktbYptzc6mFRsri/Y1WsxxvXtYLz59DOPs6x+Ubt3rtTodN94ws9OrPPfSare3pb7NW9Oq/eHp5dWtttR017mnDsWqu3P71r55mVt3hzAO25SOnN4q8qOK3QyaC9HldCVv2xNq01JbTSaX01+Ql5yb3bOxzVvRZLVojkvOnzRljG3Hrv3ZPTP21oUafSZ/EPOmJTffdMCDA5yl3WfHN357sa/O47DZ3IPHFcxd2bG8xO232k459aQTR6T/44l1bU0d1e3eBkV5b2OVx+LMiNFuvrgwya6K3XgIDCwfqrKlqr3D5EKE9EowjRoxbv2W0v376+rdLNYru8pDb68sr/elDsg1nzRq6N7dtbuKDoQC9n59s5jjllY3u0NmqzXQo4ejf16fXn0LXpnftHO/J8ZunXJSP4slbeUnuyqblSSrIzHJNm9FcPn6vWazY9gJPceOGoDdF22gf//kms6Y5btKchzu686daHdqGWnqH/+xfl9jGxP3ay4+qdOt/ev51Wa/s6Ss3WFLamk3h1SXagkMGdg7J1EZVJggzKIhpbKmsT3kT8vOTGDhgAmwikuH+6M1uzxBx7SpA844re9zr9SuW7+qtqnB5lQLBg77eGtziTf2r6/s2191wBRjnzKl/4hhqV5b3OMfb+5tM51x0oCcjIH9+ybS1svS4/ZUhEpqbb97ZNHUST1nTR8gFyxKqmraTJZgyHNCn955uTmr1u1ua20vq/XVtGm7i8otIUuPBJfLrm7f6Vc11awGhw40Y7MZWJDWsjOU4dJOGTswIzV04mjz/oo+H26rjrN2nDamT0Fe31Ejk19bFFi8uSY+Lu7C80b3SHa+9MamPdh52v2NDVpNhzNoTzar/hPykzN65Hp8sR9X1Y8ekB+LT6ned8UGFj+LG4oT1wJhLhaGAOQiwy6Ga2kVGDxoMOKNcZwOgGgX/SDiEaqjPq9lfolYJczYunr1mszMDKQRoypTK+QW88X29rZ0JZ0PERvvko+W5PdBEzEjEd+cO5e5IxM1qQQwG2N+htc3uZjQ//jHP25pbaFcJMWUKVMwD8yaNUvQoaqM/rfeeqsMIPhZhsCcgMzgF/qZ7AYDwd27dyMsc3JymN9TL5YxkD3nnnsueFgyx0SMwEb8PPKXR1ituGjWrBfmzEGOMjUEG4IcSqg4Rg5ZYzYvMFYgzHidcf4MlBvUC+Q8shZgUFltNsoCAKqEZ4PuNgETli5bClqqg8BGXJEdVQkaEEivvvYqNQItJT5w//3QRuq111wD2VhWZLmRv8h7hCVazqhRo4iH+I0bNzz++BMQg1Ed8zvEEE9Z8BMOG3kpgrD0jIbJyHEE4T2/vZcBsKmxkVRWbTCJYwyA+Gf/+eyqlavY4MCSuYFBBuR0HBiqmZ2VDR7oIVBQWAgACi46HDCsdyBZ5Wo9GoAsXWIA4Oc//9nVV11tNptoLHQjqEIFgYfoTORCjYBCqoM6Ql7paUFeiYSikfHYD2gdfjGZUBwNgdJAg5555pnEo2ecccYZbNZApUOPRPdCncICAdsb6rE1BtAJ8vv0AVXvHAx4JixAlCurJomM/h6RA99LJSA5OYn1LTqZPsJ1H8Li4uP49o5Y2y8ZiRmA/WD7KhpYfFT97btK2vGxCiI+E7XLZ40dkGMqrQ+tLqptVpOz4qy79zTvK2v1e9riHP7ktPTl67217pDTafrB5OHTx7vsVjU0eSKf7bvzikwhf++0JBuDclCprWny+joTk2OSE80bt7mDmtlp9U4Z22/2zLREu7p4iXe5GvJq5k+3FicnFY4bk2W3KAvWBb1B3Avs6WlxvXuqdoczZHLVNgXa/eaVn2z0a77BhZnxyeq6t/ZVt2NvS/AGEhd+1N7Z4bOp3r65fWIdanWNOxCwZWS7WAVgLd8shnoxU2RRfF81a83mtAT7xTNGDR9mKq2Or6zZb3Xa2bq3abe/vtkda1LPnjZlwlhz44k5/3dHiWIK5OVn4spQWevxKJZEV2j2JacO728+0KT9+53dPl/HpNF9Zs/MxZJRvT+tqqEsMd4ZG6PMX7LeHwrm9Yy59NyBOZkm06hsCGjRlLeX+B1ae68U01knO1hoX7ouUFvTYlIT4ly9t23zVFU0+9ze+JjOvoVJ9c1Ke6fX52+bOmnEVef3yYpRrThAaGx0DnW6vXazN7d3EvVC92p3a/MXb/Zosaozoa0z9t3F3uKKarPNXJDfG1+Kfj1NCbGuqhbHppLGWC141vg+0yZlJ8erafHWbJM/2eKdPCJpYJ5JbNXQlJsuHfvWvD2f7mzo8Nvf+WinOei7+NwTMGZX1daYWSYYlHrtFf0Rrpu3xbc3mzWzzRtUSiurWZHPzEjFn2P77kqYndUjJQkTQrqakhzj0Goy4junTUjO6Wliq+IJBT2Wrd8aozZNnzCxX18T/gofrdrUqbpS7K79+wN7dtR6m9vTrdbcnjnl1SFvwG9SPcP6Z115UWF6ivrKO8IDJCUVSSxIRZ9jB2Obx2d3xgpRrntgMs62t7Vjs2VIFWCKcuGFFyJBxZKtECJf/DD5Y+3G8KdjxsbDKqzX52PM1SWRkpKaIlawVZUfdrLtLipi9DdQE8lUEmMAkoCi9Vx4NliAwd5AvAFJgBF/QP8ByCE88zPS00FLLgTDurXrPJ0elp3JhaEYqwCQjPL8MtfEFk1NkVg8CBLWaEDFdGDUqJHs9AMJhUphL+K75g/EIJM2btiwdds2xAwTfSbQmJ1jYmOJj6RKhCMUJnQgyEBsI3clGF77rIl8/PHHmam/FQAAQABJREFUrMELtUZXpBDAMpUA2szh+99aW1rRlnC1YyVCQvI7btx4lAAWWSgCBwUjvlsAlQSTwHnnnksFWQ055ZRTmMezFIKKYzRsUnIyFYGB5MUEguKCSO+Gh1chjGVDHkkvhHVHztIVCxtj8NNhv0AwlJKcjL6CsoLixY5KxmrsE5SLTWLpxx9jGsHSAD1SmehCIP4KGroewuxUpGPQ0FhBZBLaCW4H9Ap0QQZ5bAasdKAqodVhFqJXy9xHoLULbfTv4Rz4XioBOIagEe/YsR0fpsOr1Ce/D11QTIK+0kM2PKo6/Vrl/spQoK1fRuK0qcMWLN2zr6bVbOlMilfjrMrWPaG6oD1gVWpb3R8tXc8glBobnHHO5BFDXc+9VuRXtJ4pjoLesSlWTNUKYzFUHqgosWr+3IxMJl/NDVplZY0/6LHbLakpallZdTDg7Z1lnjSmR4pd5WM9aajt42W2fXWB7aV1xWXFJcW9rvjhsNo6vMjMsbGOxERnnEtNjItxt3bUt6ofLu+sqqm3WQNnnXmi169V1XYo1h6egO+DD9fEKFpWonXE8MLTJuXj8+b3BGxmR2K8OA+E4Q0ZIZu/vkHDU8+khfr1Thk+yMR0p7mtEWnCoNbh1vaV1Zi1UGZccNRgE2aDHUUhX9DjijH17ZOBO2FVXYc3ZBo0IG9woRnForg01OkJxDu0yeMKQN7YrLU11uHClJkSx4ja6sZG7e2Xk9g3wyT2H3A4AK6UQUR4qSPUXtC7F4czCD/Bot1BDitQzNu3Fxfv3uFUrbnJrpkzJ/UrML82t6oz4HeYPedM7ZMWo1KEWCpUlbLyIA55VpMnOyNWYFaViv0a5hZ3wOwLdi5ds0vVAk6bOmpo/jXnDXQqSmqcmuBwWJutJtUSZ7dfdNbAtDixOFJTfiBR9WfG2BMdijWoMJdmD9+Yfqa87IK3lgTnLt7c2BnaVV5b1ag11VOXkN3Ued5pJ/RKVqtqkcDs5AxabNYaUjs8ASQ+WpVT3befsxhMfXJzYDj+gy1N9Yq3Kc4W7JUh/Phw4G88UBeveJKd/oH5Yh/D5m2h+pYOfyi2vK619aPqmEBnuss2ZdLo805PW/5Ju6ejCZ/HcaNyszNoKaXT16yYfHhcMq7DMn737ddYQslMSxVO/DBH/0TQjG+//XYWwuU3gZ2ZkVSXi7omKGMP+zWGfgZ0wlKQAMWsixhhb9O9CA0wufCPVEZp4BfBL1EyggPDHn1imAtiXWA0F9g0bfbsS5FMyIlIPQDkOI6JIsSykYV/JpOfgZ7yWFTGak38tGnTWJw2mUQywBg2sBI7HQ45U4dCWTTJDodTKAq6EkAgXEthL4RDyv4DB66+6qqdu3YhbpFkwgPDYsFPDeahTEjZY1SQvEYYBwKqAFVhhPofBDZkC9d68Yhag0fKYAKUjtqkJx38aW1je6uPjMxcqZfEn5SYCDCaDUrJ5ygBYpDTFKwdNrsdkwZLLUyUMYy/OOdFyDDKkA0HqTGxMRQhu4SR2i2AuUPERMhjqfpIVhjA3V5RKGWrwXm/P0BZFMoyFnoPngG0Dg4fmIvgDG3NEg8uiAYqI2DgFEzQ8AjGTTDQt28f8koYNDy7gwEwUXIJlQtNkTAMZBUgFGRPAV665sPVC6OIaOBwDnwvlQC6Fwt769atY24hP1Q+GDoQvYEeduUVV8rPSVo1D6/z58cwZiK2WzuVmvoDNrN/SN+s6ePNHW29Kz7cdqDZ8+nW2vzU9JqatqDfmxqj3PDDk3q41B6JSlqyajPj9q801lWFQh12RwLnaPExiUNmfGKPQH1dUyjkys3LsdnVnRu8xZUHQmogLS3G4lAbm+sdiicz0ZmRoMYK+aX0SlF/c9uI1+e3f7hid3Obee2npbPOOaG+1qto1gRXTE427l5Kj2TX7tbOXWXe6qqigKZOGFFQ0EutbtDq2/yMbbPOGDmoj9o7zdQjTohJm01Fs7Gj3oQ8DfW+Zn9/VBlGI5aNg37lwIGQt70lztQ5sHcCc2tE1v7KBpui9c/Pj2HnQosn6HPHJqk4X+Nm/867K2zW2CSXPcOlNni0hsY2q+Y9dVwBdnPUl/aGZnPQi9c9/+Ic6tKiYIvYt+DOTurpbdb8rBxoOLq7MFwHO7QYCz6PiieguWsb4pTA4Lw+THkclNhYa7MF8jMd06YMz0pVM1PVHsmq3aTUdmp7sAqEzMP6ZBamqaxMinFOrI4qpWVVVpM53mFKjLH49B0Bbp+CB6dd9U6fMHjUCak909SMFBUTCCpCc4e26GPMpZ0JZmco6EWQuls0Z6qK4Giq2e/wtfTNyEpg24JFYV+Dj+5gZQ+COn6seeE6S1lLoN0n8K7dXme2xqW4rL0zzBzUtHt3qLmxDqYmJ7hKKkKKLcFmCqb3SOto0/ZVt+Itnt4jEXHhb9OaappjLPbe2cnUlAMWmLhX7is3hcxpSWkOs3A1aGn0WDRzst17/uljC3qqhZlqr2QTuxg8IZJqLd62xHjf8Hx7rO68ogX9NlVz2i1YFOi3uLOs2FDmV8zZ2ZlyMKc/8R+CBHts955/pOmdhJHDsRxqCfN9iU+sS+dGTOqfGwJVlZFCzHSJDWReUVER3yCPxCY/Uky1iAogZ18y22YPy06GbwQGwk4Ip4iH4nijFJpXVECXCjI9Ly+PLDw33ngTMQgG9AWgKEUIMH0cAF5k0TEQjyyRr8Kej+KIOyEKtdnM1J9ZKeIchzKsyvFx8bfdfhtCVOg3SnhHgyic5SZ9qx6ZJR6QsHWCsPRhxPUHhBTElJeymKIAEH44oUJqHqJkdFz9T1ciZGMwRzriEogjG154pFBW6b59BBjNEiKO8DMyGQG9FVS4im2ch0k2bgr46915152/u/deSqIJqLzcKsUaB/sgmECjMxkYugWoEc1HW4ivivxiNBRV5hFshMMqm1k68RjolpE6ooyRSjyF8gqeAAesqCqOHbAakwmLGphzLrv0MvjDOk6si9FONDG/gNGpKEKg1VuQqKysbFBBC24WskSAgeFgA37BjwMBexloCPxXWJRhMQgHDokNSPnwCjAECMzR50gc+MzecCTg71AcnwcLgRi+0DQZDrArsl6FNey+3/2OBTwIDX94R08yQxEDcXVdsMPLITGdI4f2xj7fL8thNYXcflNtS4DJKzBBxgnFwUYAVwJbtpT1m5vqakOYphPsDlPQVFXnX73Fv3JL8MW3Nm/a01yL/FNig2rivlrz+x8HXnl3dVOnSTPZCgf0r9kf8rq9OJalJzkyk4UZoKVRW762ub5OmzQmtld6ho3xKKh0uJWGJo7CC8bGMs3iw1TSUjGFW9cVlTW4TXEux9gxAxJsWGIZurSQGmRci2cTnVfbtqtzZ1EzYpKvoFd2fFANldZ5/v3GvgXrg/PXeR+fs/mfL65qZN7qxacg2CsrkQ6xcxcToA48efPznGL1ULV4FWe9P3b5ptBTL5dXN2vs+EtLTXKalJJizW4KpMQp+T31Hel4o5utwUCoqdO6aW9o7tLAax9tO+BVVLslpUeqHVFqsQdMCZt2tyxZH1y6ofX1D3bur9fKKzWLPc5kcdbUtW/b6Wvp0OxOV1tQRffAcpAIe9u09RtbOK0PS0N1Q4vJahlc2Cem69QhDOAdLAc0HvAE25MTnOnYUvSDCTnwJ8gOR2tcmzvERkS8JouKAnv2hjqDyopNoQUr17d5W0YPSurhstgttjffWdbu0Wrq2ChoN9tTWjrta7eHyuq1V+dXPftm8YfrghuKQovXBBtaOmJtlrT0Hs5YZcOemna/taFNXfqpb9n64Eerity+zrhY07ChWVW17ppWtz3WlZTkKi4LefydJtYpcntAv4ddo17Fp1rbOi1rNrSxG7DDrzW5Pe2KPWBLWbkxWF2rWdlqooqT2hCsWZnsxlQ+2dyyrQR/A1TJDnZZJsVYM5NUFAgGNv2IIX9HezvtS69g3+O6beWaKdCnD8stR9/7D80hRnQxRIef8Byx61X+lZFMozm5C5oR6uz0Y2kcI3lWZqaEQegyyuM6xxotnt4ff7zEh3qlafTSefPm4VSIGEPWHIr4yG+ICjYW5uXl4S+GDZzimPaxoPDG3DdK95Xy1SOoEA+H0K1jCmNXhchsbGhEziF0WSBnVREH/rvuvJN1/ebmJoz8kMpDJqHIo7cF/I1NjTW1tWRB0hlkDR82HIsja/yvv/46ZgYMEti6cVJjbjplyhS9OKPMcIAqG9nDAT3l1FNPhRUcyIMdAuLZdPD6a69BA1sBP2ccA5tEyO67Hdu3k5GhD5dGbDyCLbrPD9KR7XlIbyBxlgSSlRqhsXU9EkPXm/jLcEoVWlvbWBOBHmnVIBL87LYgHpyAibK75HdXdlEZybquGPGX3RO0GnVhRZ91ir3Fe0tKS+x2G7IZhSks8nXzEusIZGefJGXRLoX9C1EX0GzwHkVpQDdCVcKvYvuO7egxsHrOnDk0Aal4mQCAHsCuRVk0dYRyuEcW1nci6YmGu3Hge2kJkHVgIGAZTC4o0h0ZYrJ79kTZJMyAYui/3Sr8ha98pvTlnUXFqinktGhDCmItfiUnTY21hvwBa2Vtc7Mn+4ShCbbFwdoW/zOvrE+J85qC7cHWihsvPadvRkZuVpZ1S0tjh/3leRvize0Bb9mlyRm9e+EM6PCEnAvWVWirdltNJpuNRXZPTs+U5kats93ttNqyUuM56YWvs7jE/e85C2KTM3ym+LKqhhjNM2X8aMbMpmbc7zuTk7A3CzN4bs/4FZtLOFbDE/SOHNZ3SCETVyXGrmalOItrWz9e9Wl1SRKWjNaGklFDsocMmYZE+MG0kSWvrHD7bW8vLXWsrVQDbmewY0xBhqul3aL61VB7r0wzE8q9xRU2C9NNNSWVGaSalpbkN9v3tlv/9tJaYQFXnKZQS3oPFxPZvUXFNrW9d0YCE3pmdpwz2D/fhQTzmBNfXbzd5HfXBZhFaxlOJS8/hqMOnHYlaI7/tNhdXf+pw1ffN8M5dmJ/DP+dmso6+sIVG/Zu9l3/o+k98/JCW937mwPvLd66Zo1J66xWfTW//L/LfXa1sbXZblEL+vZmEiE3caCx1bVqNc37OYUhNSk9NQGTjJCFGT1UFj5q25vWby+vqyvX3E22kK+gX5Y3OGLOO0sbvZ35+ek/uqzHyy+Zt2w6sHl7WU3DJBY7vAEzZ/etL2naVVl81YUnr9hWs6+qzrG+TrU4OhDmns60BMvkk4bTSSpb/D6Ts9On/eudTXarra2jzaJ2njltXK9s9Z1FNehheF4wpq1aW4OWkpJkxoRJx6Jr0TuZmKzZvHf//l1ZPc9B0PjNitvq2F7Z1PbKgotnjO9fEOeyB+o7tQ8WfrJ5vRrscAfa9884Z+SI2MLaunabyZqb3SPeIfRF6p6c5EBjQEQFtYHsT9i6K1jR0JmV6srtnXxQXn1hp/8sAGQhU+sQJIeng4cDMr4TiTH/pptuxGMLSYk/F4P7zBkz+nUdPkMkMGnp6TjH/fJXv7riyisRkwzTJcXFJaWlt/385zjGd9MwhDw50oOJmM1v2IdxF8cnAK97Jnm4CiIz7rvvPgQ5+3ekCVBKo4MySZfrCEjGjQ0bNmKgxo7Iajq2Zdzaf/HLXzLp5AyADes3IJxkyX379cN/rWjPHjzd0HKQNEw6peQDIDcvF/c0hiD21GGER7fAD44Va5ZdWPw2wID8rLoY9WNGy1Z7XNlRKZje8IsWNWTwEMo9SL8O3f2VSE2BDKo/evSohIREtl/CfDZMirUiZhTNLZdfcQVaDpVCOYtzxV15pTCUGkUTiMQpBk9VZRciGgNGBRr3tKlTOfWZrY/UjqOLX5jzAnL36aefjsQgw5F4IlPZtcFZ1A/9+c8cLwF+jFJ5ubm33X47/pKRE3Tm96dOnUoq+whwqoDhrCPATNQaWhZ3SzjDaA8ZbBaQW0XQnJ566qmJEyaiXKJCAfPmm2+ya4AKYnKAh6w7YOyh4c45+2yURbH+deyqcWTdjovwMU8W/ktckB0OjRVfUwxNqLf9BwyQPrQy6asdFsTgLiwBmtLUUGsLNfVOtSRzOKZZycg0JcW0JNmbLf4DePYN62u69uyBPWMaVH9dXU11R0tNblbSuJEZzBPOPz93zMh0m1IX8tZ0emrGDSucNCytR5x67tQhsZYam1KdHt969sl98hNbc2I6RuaZPO3tPl9NrK2uMCeFTxMCXElOc4y19EBtZXVRYmzzrPOGXHpBT29HQPHsc2o1wwdksFCNMW54jj1NKcsyl4zq2Xrt+TmZDhVnyEGp6i3nDR8Y54s3B2ob6mpqK5Pi7CePP5EZDe7F5441/+ySCTmuVkuoOeQ9YNEa+/dLPvOsEztaq5O0yoKkUN8eJrtZOVC2I87U1jc7PtaiOC3KtImJhRm+VFNTbOjAaaN79unRlu6q751tMlvV+v1FsSFkuZ1ZKUoAnWlIvuni6QMSAvut7tKshOYZY9PzYw6kOyr79jT17qHeePEJlO4I7O9o3sfK6cRJQ5OS1YH9TCPzLQmm1s7OOjXGn5qqnjEl9eyRaTHB2raWiuoDe5ua9hf0y+UcpJqqQJxaF2+t7d/XwvlIMIsSGeramn2mzrZMe0deqjWNw5cwSFqUzAT1p5cWFqZ6Tf7aqury+qZa7CkjhvVdsHBJS1NRdnzr9bNGZbrUscNxrmiwWrxVNS2ZWaYxQzkAqcrqr4hTa4b3N02fMjAh1t/eWtXWUu7QKiYPjX3olxPHDTTXV2mt7TiP+tJ74NfhCXaW94xv/PmlY2f/IN3Bub+BmnRbXV5Sa06K6m2sSDQ19kxSOdaJ3VSYTEYPSXeqB8xKS3KCg0UZl1WdMqZPD1OzQ2t2WDp793AVZpt+PGtiXoJXc9fsr6psa6nskWIbN7rQ7dNa3OVWS92Qwkw6AAznt2+ay6oFysorOFOy1a+8vXC1qgQG5iTjvnroqdJf8KEytWLEt9lwqBdH9yDSENIWccBj+OGV6WDXmwIA8AhWBDwjOwbtyZOnMMtHD2Aa99u77/71HXcgj4HX8YjlA+BvvvkWnPz5bOe+8cZ//vOfvcXFONBdedVVzNhQNRAJRhH4AfAhA0lBIGFqS/GgcsbEQCLu9GL3l9nMDgL8whCB7F9gZwFF0CHwA2AebJCqFy1MEUyI8b/D8p+VlQkZuN3h/c5eBgCQJSBEzNx1150YzBGZwCclJiGEeqSmLl68uKKiAmdD8EMqZICcXGghC+YvwHefxXgqzoyTHfx4q5FKdiChUPBHJ4Uw2bsJYEkkM3jwnHzKybi7M7vFNIKOsnbdWsycEoAi5AQdtDKGX8JCpKkKlz5Q1pw5L7KHEO9IzjNgzi2GslCIDZxMwfHVhzza6LHHHoVLxJORWsBbasEDJmiDQl1NFQcSMKjic4exnTV4ykIM48yBVyO2fXYrwEngeSQx4KHRmamDikh+iZf458+bx5aQkSNGcMwRNHDqw0ljT9qydStcoiYSUiKhIlmZWZwDgfmBLDh/wCs2i1Ii5y/Nn7+ABoIk6OcUBEQ+JgG2I/5/9u4D0K6ieBj4K+m9QyAhCZGEkoQSepcqHUH8pEpH6aioKKgURUClIwoIiFIFUcqfIh3pBBJCD+mkkN77e99vz9573nn33RQgUYLnEO7bszs7Ozu7OzM7u2eXQaC5nQWEb1iEA3w57dq2pfits7AJvMKDoFBWhnuFQvM/OlK9Zsg5ksyuLJbPXhLWg5tWhxPlzAtMuWbXVsydH2Is7TIU5teG62Q+mRK6u3PibDRz9HuYStJJNRVT7f+aWevgIDsGmvPT+lrf3HFy7dwFtWt1CXvOTTbEW+cGP8/udivlTcPxfNC5CnbG/NpJ08y6LfxXtuX1J9ecj7vQkn6t776iGY8qNwDN93V5k0qH4vlHMqHcP5fcjJ9Sa8+/j+WceUcjwgyDUeBMAkvLdq75iKxd60ofsDmHLhwm6Mz9ygqfMCIgVIE/lauZAz9BqOiPp9QounXrQKLR61w8xwnYyT9vkfPsQt3ZRuYezqfBGUsGDl1u39F3cbYR1LZoXMnJQWDAOnN+raMYTS27dqqyBI4w2yYcL+ggI98crd2lCiTJphZTZgVIYbxt0zzUAmGc5wS8tYC2jZNbG2g8bZEcUGgHQLuEFRRXWK9JFgVmLa6YiBhnPjet5CRwnGJtVYVrdqkJH1zQac4SwEOUU8ZOJPT6yYxaJxo5LZFbxeKpzyA/mVoLm/N9tQU+Y9E/np59ye1vtm29+Lhv7bB+t0CEA4Lat6i04yG0oHZZXNusSaVle2Jn+oLAIpW1iUG98N8iyOLFoYgOLaxdVPCFaG5EapFOdlgnS/sacfL02vnY2LoynPnYODkk2A6FJbWtYdbZkm75zsiaX/7hyenTxp7/w6Nsw/zDn/82v6LpWcfssuPGbWywqNPhKzy0g0DIiMus1sniACbJL31pGY7eevedd1w/aK97e96qwqaB0Fv8F1RLnfIKaMzPOA+I6Yi/RApFzCLptrKFohCbrMhx9i5auNCJgSkGJSWNEHRkjIyBlAaRtPXECRPX6bFOrCl946iATh07+lq9gCfBb++gUpxj48wvGpSOrCPGNtCQGh5ZeJ7xAQwAr2m8sCrEmJgUKK9fqTQLTkEyZeoUX2FE/RqR+60rd+mhqebFU6d+JZ66X1npE00KkpN8tC8558xhRSGvDmHSLimyWATjIGU4Tyq3/JprrEnFRvopfiW0bdc2mmVp3rIBWcRDy2HDgKCbuUxipM8EfANJMZvuA/BEDIUsFZXTZ4SjojBBQsqr6dMcfzVVQzdrau9nmTJD9qTVpMaw5QxbNOLqcCRGfFpcGRT/q1EFU+5/tfpl6m26plsSxI5uNSzd6mN/OF1IR7ZrHuYXPq+n20xPAKxJiOntTteh6cUHqyrAt21TWdE6qECqkUbyw5xu08nX7IUuD1FkPT3U0s4uu/YgScjRw1s2r1y7BWkf3hUH0m9QYPpwUgolR7K6x6gCScAo8gBTa74j0KVpZWefRyS5Arx6JB8EAqSHOBLad1ZiMougudUX8cpOCgIDq6+rAlZ5UcXx0Kii05o+lwyR8CrdL0ZRbK2TnU5Vvi8MY6+CSdG4puIr7cONeIAQgwvi7ZaAVh1Vds01ERWAxQStSQE3qejUJXA9UBvSVKuiZevKbq3DLocAFkR4oLy1FX8wGiWxRcBiDm1nw8GSRskyeUKicrUX3jIdOnYObJdLAaGymNA0tIJ/rB9KfUmz8BpKUfGqila2BLYvNLSEtk0r1+warhUIE+ukjdhsn4wZ3rxmTtdmS3p3rNxgjSq1DkmwJPXCLhcYMCzURcZm6FZc4rewI1IRbbugJ0QiHmEq25p8DtvRQx9ApEr4pFO5gY1JDxTJYNIH8EIHi9SCW6NtZY+1HLc3ZtzU+aPHzrb5a7evbrRp39b4A6bwJIQVX8r/LcjQqJ8SxQYu+tVJ/6D/GiIJLK2LRbOpeucunQMqT/IHQFhNSFzTseAoiIl4E8qw267axLHgpA1JgU8he2jwBHeET/OGQNKW9AT9ZO7uNUxtk4fqMvsOhSY0CCTgAW0hkIDZZcYCCGAKYlNyUPfqFdAmr9AlPbGgrakrnwuKDM7kMNoSbAl9Eb9fawryhgdPqkLpHvGx3EJNIkCGYzHCL4ACfJXVty4xPsERSBKIMbG4GC75BdOhY0dfAyZ01WWJYBwq8gYuheombA0yIbGxAguEC02Q2gG8Ftz+oehiK+N2lzW6pMTAnKSqZrDGIlox0YwovNbUWKDBbY4Wiy/t27ebNWu271TZTIwDMJ5sReJrZCZUHsmxTRkfbUnVjP0Um6kOQ+RSkEKB86ql4YIFUIgvdIlscXk4ciBqopwbGQ4kqovAJb4Njyi+yFN6pfAkY5o0Lw5NUEF0hT+JqoiQUQCETp7cSygJkkKWIjZFBMWfwASRnSQT8RFZVCpSA/4kS0GYxTB4OcKwLqDV9SOdYgx3TyA+4kpsFDGSokKN9YnZE9iQFJ+IJORLkHtFSUJaSE8DcYtxzBV0ZkKMX2sisVfFkkNCwtKQBGGSPwzuYnHhL/sjeQ0/MZ4OSwIm7v76Jx92BZywJSopwSRDSFUi+GBAeILYCn9DRpFJrlBijEoaInkJpp7oyBBghfRMXjFSYfUvAoQSeDtmT2hTOXHtNu3W7VzZkgWWUBvyAU5KFAxPseKFpEhS0nwBMkEbO1iwBtSCFyRmTCAj5aJEqkiAx8CEjoTGANS2beXuO6y36w69B2zQon+v5m0rBu69+0YOJAj9KtC6ok8QpgnXolSNvzFzWQsgBUCJhfaw59wqdCKjCxiK8jqdXEZsaUZoyWtVSAzXkFjIKCq8JP8VI0MMvhVtFOE4Lw9ZUowhMiwHeDJxdeGAsvgUykqqXIBPw0XKI2yhUsXIFEm2iCLWQHYBWyFz8qdYbPksIUPyX1rBmKlIT8S07N+G1cErZlbSdhIDBSUNEV8LNk2CXUxokZKnSHyMzlYhhCPmOP7rsx081vkqlSvFPS/2cccWt/+DTcDPn0UVgOvX12uMSds0lpVSlzUIYlkxKeaq+62PNs2eB1IO5PZRyopMwEAoymixcRSkYyGOksJrOmQS+BQmg6t+MIVP8NJqMYvoVPrHz3gLwyuR5EtFm4zglJ46sGJ8ijMQkcIVXgrg9aJDUgEw0gZDBPA3yRCVeAArFpcUFiLqouqXFdOKv0V0RXjvCe+K6eX/hsISyJAcSPMSFEjyFCkpWBjF6DrSA1QBKCDxf3wSJCEl/ksjBVKcaf0LBFjySFz6k2bXtm1uu2gyd09yypJijqjib9o1Er9AUPop8gifZgzxopLkLKosfBoGasZqNcRtVbLQ+v5qr2APCSerM4WqZvJkCVtZ4WSKGST+ykKY41kJHDAudRBdYwXaJc6eAaeBSEDJ62emitvGDgzHvdtryS2hp4b/QrcN/+XPf5cDuRHQgP9R+tY3Ako6agKSTLaDZgz9WAwRn0hBLyKLWFL0qTyOKeITZ0PUsuJSCZqgCtkS1DF/GNBJKEDVaeNQrgQRwSYvlJnkNPqDACgiqSsFmqhAA/ow6GO+MGWNJYTYkC0ACiTYk4iILyQ2IDalPaYWax9JCJZ4UpbEutK9JIwqpoScWQLCe/IENQc/uISiUHm6L1ydnD5p8SBSHODqtH0Kyr8euCWH7VrSQ/EFyNAcAUGCIayQRFSlSBLOKJ2jHrLgtgk4Qs5kih4yJZihDd7XBH1IDVBBKCfEJi9JtiSzUagFY3khNkLHUII6BhPYEAzo/O9fwGafQcCbaH2vomLrBaj6mELeVfAEV7lyV0DZrILCc5RL5QAV7vlc7RL70FJLWKEEFgAaTM3TtQbZEBZ/Pxd5K1R+DrQcDuRGwLIYFPrpUsVoMbE4TorqMuYopnorBDMxAWt4ilnrAmm8QCrzk8gy2YvAQa3FcPoboeNraVqIzZa8dKiYUvgti3KpVCWZ0ixZEspG1iup/ktahEDEEwIpFsCfBnsWGy6ErGn2JK2AuI6laY4MWeL8QwQLp5ChDk9MgTYEMpkEszFJ2I8n1KYEMolfzk8hV7SHsvlj+LMhXU6ZeXLOgZXFARKTCZ2761cWPz8rntwI+Kycy/PlHMg5kHMg50DOgdWcA4lzcjWvQ05+zoGcAzkHcg6sLA5EX/3Kwpbj+YJzIDcCPnUDrdwR0hBbw5hPRWLM7jcGPlXelQ4ciLASmJwns9KRr14IvyDNkWXa5yHp8+TN0lASjmhXEfKSslbFa/huzapP8fm0RRTyJUg+bd6lwRt9ISlZeIqMLfxmRyW/fLHQmCqHDzgjzgJVcbdMjMp/v0QcyI2AT9eYcUSl4+TTZS4HHZfEUoTwf55FsuxwTXGWK/Y/FGdl3Qdg/4N7f7LMj+FszH+I+0sphri3V0vi5+lpIW+iV5ZSyOeK/jyEfa6CV1LmLP2fqvVlDM9K3WIJX6hW8oOYSE+IyJZioBZfEwoCdLiWKXkKGOJL/vul40C1g6+/dJVaVRVyOqn7Oh2G2n2d7iu3DN/RutvD0RbOLfk8mH2Hc83VVxvnDtoM+3G/AJtuBg8Z7Fo2J4G7UebzVG11yZuI2VpHwTtodmzyjPv4Y3fNOTLF89+thf7Ayvxk4kTHqrsLzjm4Jq2frZO4+OeBB/7ZrVt3JwSsxEohxgUN//7385MnT3Yl2GpnPqJfB3BM76OPPOJEc2fu6gavvfra4sWLXIC+XEY9+8yzd9x5h+NvHdSzXOAVBAjtW1tx9913PfjQQ84h1ujDhw8fNGgQOh3AQ/cLuEtpyJAhI4aPmDV7lnOciA7n+Thz0G2QTgkEFo5z/qxdZQXpzMH+axyIMiv/bcgBl2U5ltwVWORmfFxeTCr94Ac/8NoQPsYUYUsBnFXuAo+yuWRxSNZmm272ztvvlAUoG2kyF8tKU72+MegNY/6MM85wlHcdQCktDuhNbgtNc5YN1ITTVbMprlxzYZqr1rOR2bASvZpmoiTGC1/+u98hybUlBcgGxBQga2pcfFKAafAn1iWNdoiY885icWnk0gJOTr3zzju149IAysaHyXKmIimMC2zS2qWR2YBUfOvZs6fD7Nxx7pfYpQ9cBuPA8wi5bAxZbJ8hDHkWf3xVnYhq0cJF5//iF2zNXXbZZQUZWEdDpu2OPPIIH3w/9+xzdakrEKJa7rj9dkfxa76yj9712KOPspZcqusc3DqYpcADWHYtVN99PDfecMPoUaMBq34dTqFwDODSURdBIw+XVlBJP/HqfHsj+oP3P2D7ut3HObt77bVXbAI3DJlIIKlsuWeddRZ1e/HFFxfaa/mkFUlc5l9lua0HV++55x6AhxxyiFLiKf1e2QRuZneoMPXvth4H9HrOPfdch/2J2WOPPd5/7/3YXpEP8bdhgeKXIRwawteLSWqKdWym66+/3knN9VLzl1XJgXw5YKnml9syLr30UjeUhPsu47MCq2IUXnyyeEma8847zy0jmjIbnw1blQufzHyaZxnY6r5wC6uBpWgd3YXI5RTl/JniBSEgTRxdHeZxs+rSMjoxLpCU1D/CpD5Gr+QaGbG0T+FkimfAlUXO9soSHMJONig6MMtmSSM//OBDV6poxzRmRQIoLyk05oqn0i4bA2lo/uS09n3325dYJ3MdBX/HHXe48f35556XN1uXZaP6DKmQZ/HH1zjhg01ncEK+SHbACjJQLjXyu3hJcSB8BrKSLGaWv77kEtfDLK0XOZvW2bfunkFevKcnFqXvCEQySgtPxtQyxoJbZH7z298OHzE8Ufjxg8oijmS9qviy1L+Rh0tjV9l+EnHp0qwBZAcPX+IkePihh5yd52KebBs1LLgwYp01UVyqbwizojEJLvxJWcR5A63r1vwalc7xZSVz1D3+2ONoa9O2zfhx49yEhHKX9Liol+NT07O8C30p+dOwdNGaLxtvspF9LRtGQAAjjRx0UVXFPCIqp0+fURY4j1wVHHC8WP6UcsBo0aFdPsG7bh5JGMXxE+3yCB0EinvP6nd6/djUgj1LHWaTXGXhMitaobSkT/UelHmd8xaFaCBZ0CGcxVTymk0KRGcuNYn1aggf7Z54i0ma3fgEH7OkkdmAukPliTCFQEJbiBFfUROug2scrnTLZhQmYjgQgteRNCg6HgU8RINciAmok4xU2oL5Cxo3cSdzsGLBxPgSnPHVjSzOLXfTTNnU0FhFCwMeMCkqr+b00YcvHJ9QIige1mUWCo/DdL/5jUO+ttdeIM3/Tjjh+EcffezOu+7cbvvt0iKAhebLLNBm0cbGWoZtFGuUzSLGq0qldp5Osji5Ey/iwcaTv3uyCZ8zZWP25f5CGChJdhKUdInl5k0BIpETxo93VU8cU2lSGqAMDJxNNt6Y/d2iefOWjpYrPpwytbWLNRRKYqMXU8Jitgm3nlOtaXA26X4ph7HCRTUupkM/yKxdCwOqPCUIU8xpIOVh2eojW3GSoArFZ/q2ru4eQlcCmmfH1EFvvKEzoypFXjYQkawIbWWzp5FJy4VenaX8mquvMdF3e5MuoYcPfestJIkcuPlAkAp9+ZVXLMdcduml7hIUQ6L5jVsEYi28xid9DYGKygULF6hy5GdMWrjAyK1OtxcU8yV/ayvYgsBcXxjekzGlexiqS2qC4yrLyXoZ85eVyoHcCCjPTndWPvnkk7Nmzho9erQ7T40WDj2gsWs+9eRTH3z4gfUC/t7ddtstXoZmIL322mtuU6Pv2druFN9pxx2NP4ttLs4i6E2D3HcJ1Y477ihLScF6POQx0kh46sknp06bRhnTJa4D79+vHxEWjIyaGqk88+5hMzsPqVts0X/AAHmzsiyaICjkwCcIttt+ex7p55599s3Bg93exsZ33/b222/flNLNCE1Ihgwe/NrrrxuHwog86KCDaEGVinelu5Pj7rvuatK0qdq5w7ukCjhgyQPH0EbHbLjBhjvsuEOsF1JfeOEF4mbS5Ek9evTcc88902tSWVpyTZwwYd78+XZFcFOv1bUrqkaNGv3Qww8dduihL7z4IjmOpd/5zneIe7UYOWqU/RkE67bbbLPZwIEqjlpmxIiRIzUc+aVQt4vuvvvudlpwPquyUqzIUBX77L23+2DQ4+Z1Zg0HtUq5blWjxPa99tpr3adOlr3+2mszZs50FZub2Z5+5hmzN3g4SDfYYAPXqwMoqX7JK6pCk5lAL15sibdfv/6PPfY4+ikAEpnmeHvo24PeGIRa9+6401YHC1KPrlu8BJd0P7bLwgULunXvrqW0BWotauy00079dIZE03j9aNiwnXfeWXZX2quUfmK9H39cro3Jqm+ep0O2bNFi3d69xfDhjxs/TsYNN9zQKe5WKMwI1TEiRC1GQaWH8Gl7ff/991966SVECrvbxpHvbdu0DfO24vPXv/xFw331q19dd911IdE//fK7cCmrUXZtWwd46umn8XDkyJHGlFofcOCBysIf/NccXMFbbbUVVFwFsfmiUYgGI0hnxnMX++61995t27QxVHDy7aFDXx80aOLECS1bturbp8/WW2/TqnUrQ0x/QAY73pDUeXDmkUcf/XjcOAOWf1sqs+Chhx6aMGH8/PkL3C+MXRYg1CnlQ6F+tRUjRo54+umn8VA/WbdXL3fed2jf4R///Eej6kZ05BNPPqHDIwwzd9111+bNXD0emBCzC3O2I16f0TRuxbUYjxiNsmD+/FatW++7777ZEtXIaxxHI0eMmDlrVvdu3dRXG7355puWI+2T2P+AA8AY1Dgw+M3BL738Uu91191jzz2LDZLIqOQuPl3IphTbEbp3X0c/TwGGvDUEW3QqQoAP4NXXXsMQe3c+HPah9pLlkUceAfzBhx+SV0rcaqutuQdGJBVxtaDea6WA3NNJgBlfGuib3/ymUfzee+9hI9eXNkUw0acP63K2KIFv2aKleINaA2204YY6gwYiwfpt1C9axmEvxaOP4t59991nHU27bLP11i1atMz2t7QWeWClcUDz508JBwxFS2itWrUmx6lAykanJ6HIKXwnPek/C72W+gxOF6KTmzDYYimektDpjVL6jJQh9L///e9TYKxdqAwbAFbmdPS0UGHx1Oo774Q9AdSbUQRMLqUogog0VqkNhI0aOYrIlhpRcTMq1Fi12AlP3BNw1llnwqNo9j7Jtd9++5qJErs9e/aUsVevXp06diKyjTcI4wOer96F3/SfYalQtVPxc845R9Ivf/lLA9JMy/hHlfB1112XVkHAM2P6DNeQS0KSjMrFtJtuvNGeR2wkBVghtIjxjz+uFQklLl6MBtoXTg/+KNpF4KwcgpImQMOPfvQjglsu7kpq4MwzzySnFAEJDUG2kqeqgDlE5NZbb834UEdZ/GqaAw88UEBzAMYxJI0YMYICuPqqq3BANREmC5x/uP76SBKBvt1229EKsrRu3ebev9176623YppKyUI2EfdMDcBlH6xwNS3McFre9gpMdY4++ts6jw0l+GxjAbewFgemn8CMM/oJSPCsDRITQ1CuOGTvs88+s2fN0spYZEUmLfekk04Cw7gRs99++5Hpu9FDzZtrJowif90BLztuwA+VBgKpWwqffvrpHw37aNttt6Vu9e2IU+k33XQTqi644HwxlB8MrVu11qyQiNc6ejt7K90TgAZUXXjhhVSX7B6dTb+lIGN/jpi1EQrj0ACPAPyZOmUqlaxjMBcg18o//elP4Vmjyxq0I8tDXppMswZGrbOOLHjlUtqYxKbUTDigEdmUiER8LC7+8mZDHguFASuMa8ynmAW8xt6iOw3cbCDDSK5QgeL+Ca+6CqsUJORdu3ZVr3PP/SkQ+h7mPffYQ+nww4A/V1xxBeRyGb+y2BNgKd12BAz88Y9/rH/2799fp4pDAD3qFemEMAbs5rHveMCAAXqFGmlK3YB+BWA4KEKHHzliZIRnTp144gmYyWyN2QvYkr0sRx11FGqRBw++Kc5oinsCrI6puOt9Lf8zLpVigIgBw/Ij3xCpr3pVug7w7jvvEizGaWw1fNAKthEoDiX8HDCcdtppgI10TSne4pdhIqZ37946GO5ZaLDl0xDeeaeddFQNBwm+GW6Glb5NsvXq1ROqWDR69AF9KVYq/111HAhmY/5kOUCdENMMZ4PEYDAC6SQPmGgE6Og/+9nPzJVtkCZbjXZ2q1Tjh/J45plnCBEyUSdev29f8eQIBWOY2RwHz7iPxxGIcaNNLNdAgoRKYEcr+oc/+qEiyH1eU3el2yXklUiNqT/5yU8IEaKT0qVsqFivm222mck6bAUj4MwzFUFPG4Skhq2/0DL8qdibb75ZktpddtllPBPivUapJ2zLEoPjH//4Byfhn/70J1Uwes0svZpTqizD3HyUGmBhROL9UgmqgBskDgFBmMIJjKbHsUhhIj3PVa5JBrmAG/96/F/EvU1AFDMBQaKZJ5F9JN2/n/83tMgARnLtvffed91554svvDBl8mTaEWfGjhmjUtQPkUFSAGYDEV5eKT988/z2t78llKdNnaoIgtJ6vCmOmQfaaFl1IXreeftteTk5UE6mCyCJDPKQU3ilLrLATPyRa/J6vfzy39GaqhwfGLKPyGgEYB3BPXvWbKrOMqcmxs+hbw0FrI+pKQDL1V7HjB5t+qsdI+fVkWTEPRIQPX+57bZf/epXcN56yy16AqWSFocDuuif//xnMdGRgAPsNmi1l06o4j//2c+QjSF/vvXWIYOHgHzgn/+kt0455RThn//8Z8o6+wc/EEa54gh9agOv7MtjQmEFg0A8ArxCSNFCmBoBboXRuCzRuI8PEqYnK4RNAwxaj9Zh8M2YPl1DK+7www7ThTySVFYRHTt0pCZ5rTgJ6FHqhxeHpmcQ73/A/rD95je/0c1oka997Wu68U033QjhySefjKW33XabYaJd9DQWXiiv+CDGiGMi6Jb33XuvbjNtavCuHXnEEfaYUNU4DObKK680UpjIbDUDU0wRQe3FF/8KwSxRDDSQb7nlFvYfMKMJ2fTcS17nzVcvnGFAm/vKy0xPjQA35jVt2gwG3OAdMVT1JU1p3T2aMllRgGmaGP9v+OMfjUq+k/XW+4pRgOf4zxwxHFRTEYg0m9dLqVitkxIck5ityGNMWFhRLgGldlwv3HgAXOOr2wSWLllCjlkbAsxFgduqKZIpJgaSCeMnGHTqa9uyrmWPlIFvqAZjpXFjXREwawCwEXTaaaeymA0i7plNN92UgjfxUBy+8Zypta8koGL6gDemeJh8OKOfe9UW3IcGtf2zBoKPaxSNXfBnq5aHVwUHciOgDFcNP8+NN96o3x9//PEpBJVmQLJ80xh9l0gCaUwGXVjsskYCq98wMGYk2REtI282ASRvVsrEVyLDsKGcYGCbU0gGZJQOZCLBl44oKtN45n9LaZBKANFYYqIRcOyxx1LhdAzVQgqIJyZod6KWZUD4ql0guEhtigp59H2Ml4W1TjhSfoCZ8BSnAUwYxexpLgEACiUXokKKScA8NLFBbqjLKB5+dgxJx3FCFwYiEhsiIjHJI57oTq9+Zdxxxx2iwRGZ5jc+SOXKNpnAN5KF2qMqTFZoEdsFIp8jGSQR/jACvCrLr1mL5qBCiGw89ykU0aMJqBPkwGPmxIUb4JcswQcMJ8IIYnNrkZEAgbKPVDWlxlQEx6gfPNRJaLtQr+SjhisTntBzlnUQ4MEN5SLsqaeeYgbRqfFTkbqyamppcTCUSlouI0DHIKzVSzdQIsUfsiTtq4LNm7dgFTEQA6trCpu3H3zgQbnIcXh447t07kKXUEgAFIoPhx122MwZM83/hHv27IE8c/r33n2POWhT4QknHE+sp0YAVtMiBDcVDgOlS+KruBl8Vr1JQtW111yjLbgTFC0CgLUM3cbcNGoykQLKVR1mLs1Eu3DC6/CaiWOf40eMne3UldGnIqw9vvrIk4Az++D24sWsPQ36+GOPhc62ZAlrkl8HhVFhA2cp6gB4e80118CQRUJ5EwK6pdIjhTDIoqexP958481YmiybbrKphmZgYbX5gCoET0BtLWeY1tfnI6QRpC+ZkcOTFFWvOI3VuHETVpRhEpuM+YgwNQVPzuAzU4yy9Mq6Zcz92qcE9WstiTmCPNNrhXr1+/Wvfx2ffe4kfNFFF+HbFZdfLsxIPeaYY6DFw+jGwCVGpxGqu0Ya2E+YoE8yUge/+aZWYAwRRNoOctmtjOhsTDEIPcpVZUIMpL6n7cgQI0LXnTN7Ng6wGuMUX1n27aqFZaDYS3VpY5MNGlFFFsVw/ruKOJDvCaBo6j2B0RVhadDYEzQMJAuI8Qi0atnSVtmqaiv0tQP697eOleQobFB6+qmnLblZpDTrpZzoA+NHRkgSBOGb3bJPhLHk5tl007AmTUbaa1PdqJG5rynpeHOH5OHy9TVPioSX1WqcWQ5xHCN9o2wA+7r3J+ec07NHj0BtZSWXBqeCSYD1Wn6Fbx5yyKabbWaMGe0pKrIAzfSQAWmKwOQnXsi+SBtIgZIsMS9ZIAshGBdcw9794u79yDqbD0h/wOpl7gIVw9/6AkEobH5sadP36+avUGFaStKWW2yFgYQFtiEPASQgbpiLA1blefPmonDIkMEKin7UNG8MyOIJYduPk9ViJppCaSkzrUgeFaihlQuhCvI8M6FidoUe/e1vX3LppUQz2W0KeMD+B2y44QbhFsKw6F/HvQif/qrv3vvs3aRR47/89a9WQyl4C+pqB+Err74q47vvviMyEFBRYfVXQJ9htFGxLJv1N1hfDGwF4pNtU2Ioz7SImAog1gujeE3SVEanzknycrFw+7NCgr+hUbXdW+oIEUi+q/4D+tO1Dz344JFHHfWL838hSX+zsm4tnOUH5vjjjk838xP0n3wyKS1CQHWoKMaENaMDDzjACgKhT6YrsWQpF7MaJXts45gyfCpCh6qkA/bfbz94Yn2zyCmDmclitpWdQnxtLaosw2ssxoe+yn4y0+XAoB03HzgwNEnSKAXu6WOZXXiKc3oDDN262aXRL+K0RMdhhoDBgwcDyBLAqW4lDg8ZQIwbPLQQEHsy+JatWqbAAzYe8PY7bxs+4vEwjdd+XulXMWkFQ7WLMqEO0ua7MMRsKa37MoJ9BuGkSZ9IwgTuSa4IY00/pImZMocedlgWg7IM2+HDhzM1eq/bW1Ksj+KUHgkohDPZsEhkdvsePCEyEVofDR+uyUweWCQyQcJGMWTwAXJgfIkcmRoXmDFBwc+bOxfAEUcc3qhRY+ng7YFgSMWOymiwRBKIqaxct/e6LAbpSkSDysadT5E6MRky8+Aq4UBuBJRh69J6nv64tCRYKBXfBBt+hqv9QbPnzG7Yf0N2seXsAEnSzG/ooSZNmhohAA0Mo4LZLjBnzlwO1ZDatCnLIKWbyQ94VlDYBdFjeXT6jOmTJ01+5913d9t992R0VZlkmNkbxhYsuDTos1tuviVIaloMPQmtli0tWhOFSjGVySrjQE8yIMPQbfCIjOIvpoSvGCJGsA3gQ02ThwVgbs2zwjEouxkwdQ5DEITFx44kQWhEkqS333GHeQz/uWNY2rRpLVdok4qKuXOD3cDCKOar97egFYpUYWm7tu2U27NnzwiHfo5Wggxd2NWsefMCqoT4H/7oRwM23li5VI65u2mNSXm//v0ra5dlBBBth3zjEDpDY5m0WUTgsVe0ualfTbzvvvtxBqQECFBFPBAIiAYoYmJqASb7sgJhvihrNBf98qKHH3qYmufJ4Em2JqX0NLfOY++n/vD8v/+9zbbbmurx024+MOwJx3CU0KyszJQOnFyvT59mTetOPSLi2ZSbbLLxU089/dfbb9e7pk+bZuKLn2kpSwtge2yaZQNYv/96sjChGySduXL9vuujfO+99uZ/VkGNouty5NjUErp0gyflpBLttUSzCXcWKmxQT7bRZCOFccMC1gUXXOD7Xj5qc1xOi+j0wkZ6Egyc/qcROTYieX6zeAJA5kmJycRlgglwzAIycl4cU561dKpVnFNPjUv7qmxQWzsoQgUkdDDPGZ3aSJWqq4LJWL8XxZIS/PWoylBQCIbSq0L5qgOeDcQBEyIThAbImmusCUUk1UQfpFHPuAwAieOT91H76syMA7/kD84LhBlU/SciqR+Xv/2HOFCnS/5DBX7hiwn9OGrpRO1le2fZQRMBmL2cqByVls2OOPxwKtk0xawoVjebMYqJhmwwPMiQXj170r7RV0bDRGlNK/P0WkXeYIMNOcCZ5KaMyopIaFASjbMOTIzZcacd+eh44E39rUHG9UvTRCqHB48XlD/AHPG555/beputKxabHxvrlVbgogVw+umnHXXkt1noXIhkesQZR74wsRKqjDn1J8FWXk3NuTHMTgrA2WpHLImYKCCsqGBkMEpM6+njY44+pl//fuQ4X7F9CkXwgoiJeuvdoW9zYg8Y0F+u/fbdb8SI4fvtvz9ilMNjTNzwRTML4kQtxZAGcB4McHsMTews6NLKYmKL4EC0W8CLKeRK5B3W0YUH7L+/7yYUzRR48aWXGAGBKmWnGjItKQlE8adRTFW50//97xfsy+NOYNJpLKsgmtLEPVWWmIY2GzXQ75gB5iDBmlSugBekV80U34X1Gbk89UsOdlGMtFX7jtvvYGldccXl1133e0vR+IzsbBZmgSUbxgffD+XBW9Cnbx8I1+7WDYWmlayELH7lZrPDtuYaa+y++x4q+Ktf/XLhwkX8vbHLZXMVsmirpJqScI6dgUtZsJJw2LbWogWnUTBEQNKFNcGVAiy2pq7+2E6PGRG26dDQ/Nj/uP8fvB0FPElxiggTcRQEDLU2+LHP+JN4XFgSIKmoyQ4mSjaCeC2pILe2bRkzZsy84sorrBfwCvAM4TxDmSUayTAkbIJp2qypzxpjTIGA7B9VT/oK/KKREwP1QJIo6WnSmLFjwFpUUimRB37967+7/HJGgFFsoBnRaf8p4KmsYEzrY7Nnz3HqT6hy/P62flcJFCzvSVvZ0AaLjb4uwTpkCONAw7Zr1Dh4T8HrwzqwZREZ4QnCzeirrJq/YD6+eUoKlysUl3z9FMRvwqISmPx1FXFgWSNwFRX5RUdrpCYP8U3ckC90Fd0WBG450uN44AZgBxiTxx13nBH4wfvvk7yhWycPYSpM7lDe1snKoSmY25JMZazChk/7whr2EpaE8BprdOnZsycrgdvTDsFC6pIlL7/0khW7NddcgxYMaJMCkW1OSSyqAn8mK8GUxVTGdJAZztV86Le+xZA3UA3LlBgKgK7iIz333PPW67Mepy6Xe5oaql9ZafWUhsYNVk6Q4sUHz0x5wdhSxIIRTVfdcOMNrw96vQhS/FtkL/GERUqEllGy2cDNSA2uTuOfvChC1/v7+L8e58g94ogj2TfNmjd7+5134nYB5e60886sIu59fqVyfOEAAEAASURBVGmEqYvZIS4R1UGgJt9csA/iTgvGDT6YFuOkAmR/8okn/3Tzn9CTLVou7EQe1r3/3ns8mbZHmZXSGT43948svuw3l2n3elQWXyIq2Qllut8a6lVXXWWqLZ1JwdSzZMOeUApIMp0mHv7RcK3D2mMKcDbYcSZp0Ouv+wwP8WSrBv2bDW5jx6JZXvUtllbmL7XEwLIKawn26KOPofCCdRWXFTIc1l2ZjNpaH2Z2WDaKuPBTL3riX0/wh+OnEm3jogKt3WQLC1yqrMIW1fzggw/ZYd/57ncBhDlogyc4sYq2mjMDpDdUJNlMdrGgAWF3JDRglTb605/+hAaMxTTGHHg6EtlWo2BLLQAAYSZbWakiDurQVXQwhg6EfOwTP/nEaj0TB/2m1L5SYeqpRVKdwrCFmV2LAwsXLeJ2YqriFT4EK7i2RqRluEi/ZtV1jVBtJyZGZitirATdVlFBZ2MmOWCLonEkBq50KAXkNTU+rlNNmvLdd955+OH/Y2+wVmN30m0Qqcs9/9xzFv71lhCfGYmB/ooKnw2rqY8jjBfF3X3PPbp66MwFmoKWXa6eTRgYcpA5vXr1Ij34wPRD8nD48OG4Z59pAV/mj/GNCfwTVit0P7VQktLtFpr4ycSI028mRwgGsoORVsnIECAWgtSdEPiTP6uaA7knYKkc7r7OOmxtGpRqNzhv/+vt0ayuy5B0Zb3cmI87cWgLQ47YfePNN0eMGJGOMyuvRgVBY8nc8KYMLA/X4UlCUXBwHXPxmfqfffbZceu48cB6sDWJMw2MnUpG4wUXXEiFcA9+8MH7xJnZM18uNEagX051Op6qY3DwTLAGnFvn0BJy0GKtJIaFNW/OuuyqtngTr7feGmovJIHIRazclEip4GW0YKzKJ3/3u5aQUxvCuFUj3gV13Guvr1F448aNJylM3LPbFyI2wPGhNsgLcpwSIsetdDIgSNg41QMDXpVjdbwinuFCWTKSKC2aEqs7d+5ErxBS5/l469xzMcphZzT0W0OH4g+J2b17WOC3D0A7QvKX2/6yw/Y7WMY2cVQXk3Krn4MHD6EjfbZgw5dC04ZjAtA0VnmIp0033QwTONjJeqsDOgPbRR3pHm7SlFENAxrFzPjwww83T9Uc9qlpSu3LyWwWzmkPLSlJsgtoSvvkOX3V5e/330/rs8aoHIcOdV2zK+80p7RNc/Q6HU9QNiwujfn+D74/5M3BzpBI1PMH5tMKlYql2dVfMWizYMFC4gaIawE44Du9E44//nvf/z6S7CfVJYZ9+OHUadP4QjbYcIO0FJB6EbeKzzQgoWLpDEZnSRERnpJEjM19FtfF8N7HVhZOAylmgR49e9jZ4GtGHYlSwQ27AXQSRtWGG21oM5qwbglntAZOO/XUkJ1SjFom+cUunPfRhCZGp9k8j5cqX3jRRff87W9MBGvVXC8/+uEP7SmRm+WdWhI61b9feIFDxdZCbUSz4iELkrJmU9jMz0LSXWwu1UttPtWFgt3Z4EGICuLVLrvsovro+f3vf6/PsyNVKlXO8mEd5f2Ngw/2WacmNih23XUXr0rR5fT/3Xfb7c477hj78cf77ruPimvM0AQZFDivm22/ww6agykcmcbtgQCPIgqehqVZAQkMhJFm8MTCJb++5Lsnf5cry/eoNkXZJWAjIf5ftvFlsa4RcwhXVmyx+eZYwQ3pwwGTCuwixAhGeKwpsMtin8lmDLWoCRXkRmJpnXDiiSQD/vhwg+SUGoHz31XBgZy5S+UqRzoZzRlI0OiOfH26r7M7bCOKS2Vy2iyts5roEy6EoyFKEQ4eMsQYICAkxe7LvCXZKQ9ylphYp3t3wyBbMBFjhNABIk2p77rzrjjjN3goMMfveyCXuvVWWxGdO+64gymX76TbtGnrUx9fvcdUh+iZL9IQ8Bv89orzo9owb8T+8qJfqgXV/sQTTwhY2vTBbjL2CjM2Jw9QSz16rAOAGEKAXUiocs6MclWBfsUTRowB36lz50i/gjwYorJWnWmCRYsWv/76IGYT1fjDs892IgqSOnTsGOH90s3Q2rdo3knEs5BMfZgXXu3wUkT0cNI6Mob5ayJVzXis2ZM7pImJF2VAHH/jkEO6dFmD7MC6E086CcE4Sd+/+957dIOPMsRvvsXmxxx9NPImTw4fszVp2sQ+A5pAA0HOnjB/JeVZZs7hUTWFMv5IrkgwxUCktm3bzlTPzI/RgOFEFX8AfwlzB1Vp1WIAEhW0/zE2imkXMghQbUHZ8FWoC1Pv99ddp9uQ8mgg6Xy0edKJYWu0zsP+QxKtw4xjNFxzzbWmgBZobL7bYYftqXOTSBbM/z38cLdua2sa5dIHwk0yS93XXXvdVltvzYbwGYXewnz0bR7IyNh27cJyUpyv68Bow7qfnXdetMAk8XV8++ijqV56Hbd996Xns4eOPfZYzOnQoaM6Nm3aJPZwZOOMvExPDNQiMDR8tthyS4rBRNxAsHMNJVit3MYUYfGhfsQ4FCiOMp/z8cYbO8YCA0hxLFp2KnDfGhiemtug80qzUrEBTaL7QyA5qYn5a8cig4kR7IwaZxFinaZ0BtekSZ8MGTJYS7l2y84PyIPySxbCY/arrr5aWzP1HK6Ah6yHo448SpL6YpqWMrje/+ADBDtfjxtMjehgVQuVSoaz1sGotu3aGSYy6vDWgLCdWyI99CmW5VfGDTbc0MDRcwYPfpNhocPff/8/HG+VGlWGklLgPOqob6fMTzEgTEGM1NhwyFOQkaLhnDplbQWkbt+9ezcDU1hlVcSrtkstiQgQgSNmB2BzA+iuNq6a4egAphbUPIMiyd4dSRESzXYIagvfK/VYpwdXigYixMSQbIQS4wbx6AylJ02F//o/2SWGoW//oyqMG/exHmVzVUSb/646DpRZl1p1ha1mmIOXLhy5o1ubLpQhPp1wJGkku+9tZs6aaSQH6Z9Y7oVcCSQxRHNQdaHrZ+RUGczJZNSMxABu3SacWdQQBlVoa9WylVlLHFENYRrG8EOiAYUhS336IzAio4CmdbLZ1U4W+pgRYENQOlXKwgRrwC1w8+dbC1AEIRhjyhaUzWhaz9RQYirpQmo58kSbjakFTWOPcQkbFechrEleggwxXsPEp7KS6cA1yggI3osi81WHVlZ0ELKRyUspFB773SQGIovNgVcaqMDMbH1WOIyrPq+nMvlLShQnPTF58hR8JmSz+MRPmDCxbbu2qM7GNwyHuoctk3PVkdkX9r6lkrfIgYa5ysZgHTwUdlr3FEwp+MyNwYQy3eRfid6UFCAbiCRxwrMRsx0sxsOTBc6GwSMAw9k6JWCzZs7U39Zae23x8clmjGHZbaplsqe2XYzXfLqrFmyYJcZEwpSLh0FRNS6ceM3a4CJivOKJWhvUMGNOgE/yNGRUWgRiHEXavEXz0uX8FCIJQOvgIMteaTTEZMKVV11pvmFSQQ2nSWUDfBL2OiC7bOpnizT05s6Z26Fjh6ZNmlqdXEY1g/SsqMU3BX2qMaKazFwitLmvD4pj7bNRm+daEQ7kRsCyuKQ7EivLgsikpcDEdOy7aQyousiYuhRlE/FlM4a85cgoG5khZ3nBpRGQxJdFHiKT3b9hHrQ8thSAM5cdLIugRF6siG0UkUAusAwaCgAZYwv/I9mBsAzxJa9liIy0RXsiKbReliR12cSUwZmJqoctE98wCDIYNGH2VsYoLAuvpiHXMnnVMGPDmEhkRBVTUx7GJOcY8thb7eLE4jNriKE0JulmpZFLf08JSMvNwsbUbEz58KcsFJK0XOFs0Sa1jADH9fDqpcNhacAlxLD8ormQRVgCs7TXSZ9M8t2pjUqO985615YGv3LjVRDCSPaK8HxFYMpQ+OmbqQySPGqFObBC0mSFsX3ZAGmO2O9XpGIgI7BM4IWNFr/GfMheFMcCJqCM6BXBGWFWRFjEolcEJ8hwKkiYaJc+ob5JfKQcZPoAFYlsGihEltv2JToeQSgQMJQrorTIzPun5kmZGtRt7A9MK35brxDTr1ipEJ95sq/IzqQUgmktImT0iMQ08FLFx6SGeVckZsXzhmL4q+N0cwVQ1yQ72ADGIsrWbgXQBJCIIf6WZIGWn8Dac/yAzWpLCUC912T7Nx7qQPXil/cSWF0cUA1hESZ1Gd0tyR1255c8yx3gKQ9jxlBK8nDD2AviDL7YH2I8YImI8USwsr8sgIJMKJtcjCzQnHkVfGvoWzz8VmQszRRTyv+NRaxIQeXzN4iNdVS1INHMZBpys36WAJ+wK9IQf+uDLOUtGbZpWiw3fc0DK50DuSdgpbM0R5hzIOdAzoGcAzkHVg8O5J6A1aOdcipzDuQcyDmQcyDnwErnQG4ErHSW5ghzDuQcyDmQcyDnwOrBgdwIWD3aKacy50DOgZwDOQdyDqx0DuRGwEpnaY4w50DOgZwDOQdyDqweHMiNgNWjnXIqcw7kHMg5kHMg58BK50BuBHxKliafCBW+WinzQdmnxPYlBQ+fECXfEGJUgVfFmpa8FqOX+jfC1+X6QvH8C0XMUlmYJ+QcyDmQc2CpHMiNgKWypnxCZcXsWbOcqReuHlnGh8nlM/+vxPoS2pPWlgr3MAucd5ZGrnhAXkcxOlUQz5f3cfKKY/28kE6pGzd+nLPkkPd5cf2n8jsgzy3MKP9PFZiXk3Mg58AXnQN1kvqLTukXgz4S/66773b7yO233x6Owlht5P9/gX1O6nWQnMPSTzrpJFcSu3rkiCOPcI798knJcBXDnU/y0MMPuZo5XsG3/OyrHoJB4wIYx+C7gXc1MgJcs3v4EUfccsvNq55DeQk5B3IOrB4cyI2AFWunoloi8UeOGOEesOHDh4sLZ2KVmwg6n98RdaWo3YbusMBFpZeMuTfMRQBl8ZRiSN4dGebiVHflUUUKSmGWhSGhH7zyU/iygVCfZNYO2IUork8tezhg2bzZSNld3BKvWXPznruOXCji6qMbb7ghC1YobsmSbCm46kzDyMDoUXCBjauP/GbzftpwrFcs0W9JdjEK1RYl8Sri0dzuNXEZT5r67nvvIsk9BWIizjQpDWhWedPXCMml4bYed/Jm41d1OHawkaNGonnYsI+WUVxDziwDOE/KOZBzYHXnQH6V8Aq1ILW4aNHicOlng8c8lYQtSYoXiJXA0m3h2Fc6o3i5QARwa04Tl7uUe+gkd8CXIKeKiPJwV5sn4x+n4OOdPTCFlOyTvCVO+nJmH4VYBI8Z468b693VS41VZy7dyWJdRth1L24Qdz/YjTfe6EJCbnP3r4M/8OsHZnMVimtQ/XiTUFRIYFAeIbN5P20YhmUgkeT2s4Y4oxUyc8ZMNyt+76zvNQQQoxU0bsNuUNJwLDYN5FI1zecm+LKoVklkbUWkZBnVVy7zVC3Kdt1VQlWONOdAzoEvAAfKqYQvAFlfKBII93nz5xOj6SQpK0xdCOYCsTQJ5cIUp0vAspHi5YrKzBw3uAoWLwEQYVxl5nrytNYx0itd6LD47CIuzC7mAu9JEBa1d1IuO4ATvo684nQ3zqpVZM7sQimKoJgLi/QJjrTQSAa15w7loLkTS6MkNSVVIE2KAZUXcD2uC8eoOo9XN42ecfoZ3NHHHXd8Cl9AUlthsR9tKc7IKK/Bb5KYDjhcV6kUTqBYwWzc0sKKgE6tSwDQM3/efHzDJeH4lMCM/XisVtCwhfj6jgSmmqvVXOMrb13GxPGDCWmM21oxh/NAN0h1bWyaFCYNFAnJIEzTPm2gMly9iJn1yCtBUhvuDgbA7PtUXC1Bk7/mHMg5sHpxIDcCyrRX6sJ16birx7fYYgt3ih944IEvv/wy8W1qLo/LLl3oufnmm2+9zdZHHHHEsGHDIiI6xhWfX/3qV7fffnu5fvGLX9DWELpkxTXhbvW2Or7Pvvtusskmf/nrX8Q/+eST+++//9ZbbbX1NttwOLuoNyVo0qRJ55xzzvY7bL/tttvuvPPOFqEpDNfeX3/99bSmjAcddNDRxxxDcNOUL730kuxKhOrggw/mvqZv4vx+m222ccHr5Zdf7o7XnXbeyf2nLgV37/vmAwf279//kEMOefWVV0vUg/WOE048gRFAYynF8/hjjymFZaMKELpjXgV5+2dMnxG1fkr2osWLb/vzn88996d03iuvvHLccceFtfNnnvnjDX/cY889/nzrrdwbsjAOLrroIt4CJOGwCgpbLonM96vuKr7ZZpsdcMABps4lFCouaLXEE8814oJ5V9luvPHGu+2266233hqJSZD8+Oijj7YRQfNttNFGW2611SmnnBI2dRa19WOPPor//Qf0d5H5WWedSVmyNrIGB93v2tYLL7wQznN+8hPA55zz40mTJ1fUhEnz+PHj7HjYYsst1eLEk05MVT5j63vfP2unnXfGJY4Q7hDcQ8+vL7nEssiCBQvvu+8+azqIMf+OVYaf++SXF12kDV95+ZVI4fx58445+miF6m8xZuLEiRBqBTHMmhdeeGHffffdeMAAPUq7Dxo0CFhEiKWnn376Aw888LWvfW277ba76aabIlv8sniAjRo5yu4WffXVV1+dNn2aG9+BbbHlFrrcpZdeGs2vNEseyDmQc+DLyQGyIH8acoAYveuuu9Zcc03XhVEeNISLzCmkDz/88Cc/+YmuYGrL100dguEkAEPZu1Wdcm3apMlXvvKVrbbcypX2Lra/8sor4Z84YeLAgQN79+7drVu39u3b9+jR484776ScOrqau30H+Nfv29d8d7311qMJwNNGtBrMsuy+++59+vSRy25Egl6JCHCJWd++fVkhFOezzzwb0RLoHgC9evXidobH3Ne15QMGDHAtvZvF+/fvZ3ud2+W97rjjDoDXXnttNFP2tW7xSybxclm8h5AurK6q+krv3rAxPkaNGkXfuOcbScq1HiHMPhj38ThZ5I0z6UULF11zzTVgEOkGdzVifGCmHQa4cdlllyGJ/kYVHuLquuuuS3njMwPr4YcegsomdopQ3RVNLSFeQYihpaSWPG8PHQqgSZOmoZm23Mr97tj43e9+V3NQddSnUiBXTWDxDnv1jdbGH//wBwR067Y2DjNE3AqvjaZMnqyIlBXMMq2sKVUHT1DLKGFjHXPMMWJkwYctt9xSuYhUU4qZ8bTpJpsolKkkSUDbPfJ//7do4UJ53a3OelCu5mMigI81ity74IILwKM/vo4dOzbS/MQTT0Qw3UkF2SUovPuuuwBrSsRrEZAKsgEz0o+BqNJz/K67bi+bNH/5y19iMstDXh1st912k519wxGiXYTXX3/9PffcEyc7derEJosl5r85B3IOfIk5UNjT9CWu4WerGtFPB7sd9dprr43TJjPvv//975QHI4BCItwtEpPUL774Is1h1vvII49wpZqmk6f0JZeA+TfFsPfee5u9UQw0PbVBT4B8/bXXaakPPviAXHYNKyLfefudbbfdBgAhTk1SBnDutddezA4i2544QtlEHDHnn38+NXDqqadMmzpt5owZVIuNZvSr4kACMNtGuT19wnEfIl111llnmfC99957Jnno570wIVbQW2+9NfjNwVHlpLwyC3zowYdolw033JBDQkGSsAIeapXbQ0EffvChcmmOW2+5Jc0oIAmX8AqRiYnwsezI+MlPzqH8fve734FhKFRXVVOHv/j5z+GnkGimhFd7SY2bB6l/tKEQ9zg5GlU3KjEC0IzOE088AVU2ITIdFP30U08zWZg7Dz74IKvkwAMPYG0cddRRlie0DhZR5wwCFhLmM4Z69uz5UGJ5TJ0y5Wc/O091fpOYKVmGIO+MM87ANJ4hYPgmlYNBdVhFr7/+uuowrZgIWoFLxkoKzcrCQDmT7je/+U2Tpk35KkLFFy3iPlFTBJvKz5g+vVBQWEKpFcZ25t2WW2ypUDG8Tdjo4bDxymJgRmhc5qA+xgxVU9pdQ+tv1113HTuA+TVi+AhNgJhmTZtygei6gwcPZqGmRsDIESO1Izw/+MEP0CCJOUjxsznYZzo/MuJ6ViArf3IO5Bz48nIgXw6gdksfze3DdHKTHvKFmxkVCFKSPKUJhKlnLtPddt3VvIp7wHxOPDXTomXLE084gWA1OwTz/775/9ZYowvBOm/uPK9gTNR4hvfYY49NNt2EcuIwYFLITvKasQ0cuDmwoPVra+2oJ6OpaipNRggPP+wwMp0+aNG8uZjq6kaUX6vWra3ZP/3002aWpDYDgoPBTgJJlBxpHhb0Kys32nAjDmSTRfNyqlcV+I1vu+02k2XTvgEbD1ARGihlhFJatWppbVg8vdK2XduFCxbGyShNTM1gUe+v9LbwAfIf//wn7ZvmVZy9D5gWp/vtO3Ro06Z1dSM1C7tQJfrlxud36N6t29cPOoipgS3m4irzycRJUp959llADIh+/fqpi4ksk6sybKms96DN8+CDD6mUFYemTZpCzi3PWUK/+h4BGVwb+Hzot77FmuEQoEFxksrUKDj8ycSJHTt0GD9+PJ36zwceWLhwEbL/9cQT+K8kdYzl4YB4r1pEmKFgowZ2MQJ0CR3AarpZtSJUmYWEdXT8CSeeqGqunEePGsYvC7ALKuxCqjZq3aZNZEi6MXP77bdjmowaPYptoUSEWbLh6reKZEVJm7777rt0v+KodudV8FJ86//9PzgZFr6iRAxz89nnnlUFBkenzp114J132gkS7a5czWAx6Owfns0SPfTQb1lzQYOKsBjgZ7tYLUL2nl/bUzfLNwfU63D5S86BLyMH8q8DyrfqiJEjrO/27duHWCdh64CiDqutNTGl0MQToBzO5PW8xI1P8Yz7+OOrr7lmyJAhY8Y4mGVGq1atTY+pDTBQrdurF7nvkVcMzf33++575NFHfTk2evQo8Uqkw0wiaS+TS1I7lk4d0koASraKvf322ybBSj/zzDMjZNOmzWbPntWzZ0/xsiilY6eOVCwd4OHHNnfkFTjl5FO46A899NCf//znbAgKNWYv/CqpqlJef8XMnTfXp4m0II3rNQKv0aWLulMqESabPdXYwQhJMAfKkycFEx/xiKZZGQoLFi6gitTdRn30R0ipaZaSAC3I0GErtGvbNgWmMlVz/ITxFuYDYf4vEqAUXKWJ+StUp7pRo6Fvv33qqacCYRlEDS2gsUJ7FXVgQJI+wgiqrFCEOFliSnNKuFkzKfPnz0Mum0cH4LxhSjI4NASXRoQEw4CQHdp6mBMLiUpmbrIUhwwZjFS9wtIAJvPf3H///fLyEOy66640OoNA6RQ20xM2VhVF7hVyZo1u49E5GVix+koXwzKIxhxT4/LLr5AFTt4Rjg0bOHx3yjS0XYM3i3kRCc5/cw7kHPgScyA3Aso0Lg0RdFJ1tWVlXusSCEIzG5OKcrE82ybKdn6ZbpoX7rrrbmZy4OtlkLnWrrIa+u/xxx+3uMsZyw1grkaUjxs3HjhbweOVyM6WVVVd0NNReUQtRZoD3mOP3X/603Npi4A+Wdpv264dPRqXAwAoTi6V8vvoo4+yPJ5+9pkX/v0Cg4DetW0wegiyxWXDstNJFIxVDNhiknqhlvLLQgqnPCmJX8YrNQsV/EneCgFPhBeztIzqS8+FZfXwJUVgDmCOcahYQlFD18uc2DTUPHgGDW7YnXfmGWd4hUcuRHTu0oU5ElCl0/P6xQOO1NYjLNKd5LLh7oc/+qGZeq9evayy20Zwzz33RO9CxFQvY33kko484ghdaMiQt95//wOv1o+QaiuAFRb9itVoqyCVr+56iCeU7BvFanQF08RbrIuAJmtcNFPScuwrpPv1ATtVoWU3gPz6gQeyOO+9915LMJwQ1qF4leyKTXPlgZwDOQe+lBzIjYDSZiVGzbl5wD2my7R1dUXBDghKIj5pIHklQz2Czo8z+dt884GXXHKpTWFErX0DdbkKmYMzPM6AfTtgImuTvAVasvjss89++aWXQbVp3drmPqcSmUfutONOvM0io4pK5tVV1BuHQYxBp7wffjhsne7d11yza4B0IEEy7S4WGHTDnLlzuJ+jXmvdqtW3jz76sMMPh9/+cNsazC8hAR8rEjPGcLQe6BUq7bXXXjNf5ItmZ5hfUhiJv6RvWlBdIGFIFltAXpdcLxQqkhCMTgqvbdt2lBwPxze+8Q1wdDzXSEM2SmK48GFYHR8/btxaXbtCIpJppVyL5U2bhQWCupKC9g6PGNg4DNhYLLC11l7b3kw2RGyUOvhiiDkSk1CVIiwBThAnyCsr777nbjbWId/8Jmc7I0ARlh5ULZYbsWrBFFWxnECdsjbfYovevdfVKPYT6AZf3fmraKOhfZwS1wJ22HFHlbCTVC1GjxplUydDkB1gIYB7Q0uxFZDqgbC+8RGKYJ6eduqpepfNEFaIrBewJ6qqqu0ttOyiQ15yySW2dtrlYDtLJDKiSunMAzkHcg58aThQ3wP8panW56gI4U4Q04hWZ98a8pbZkldC8IorruBI56kOkjqzBK4oMRQLjcITYKLcrVt3293JYpvgRowYESffWYrIayqcruYopvO23mpr/tg3Bg0yd2RzQMYKsRHMgr2v3YYN+5AWfO/d91DyyquvSmVb0Cic8Ga0I0eOErZ8bsffyT5+mxNO15dEfNvPr9DoLUB/mK8nCtFugBNPOmnypEko5Ej3KT7joHGjxkkl6sjs0rmzXM4koPgtSFvbppLNLE8++WS7H8Ap0T4DLhOk1iwpaDhZIooSbHV4lxKK8IgUoJmQbfbMo652mOB8Pa1QNqsNd3ZNXnDhhQAw6q4777TazQKI2zBTeuSNrBDgyRCPRTY34DmFF6f+rAdf0/ktKUgLWoYX+cijj5iIWzVHJFYU61oPHBm88Swk6yb9NtoIk3lZaFZANusxnmSU3c4PfenNN97IZkaVsmTZe+99qHNKfc899mjfoX2rli3tZmBM6E42lAR/T2Xlnl/7GnX+8iuv+PZPxa0H2RioadhqahG3UATLo2i4JgWFFRmBPn37WoHSkS6++GLVkf3Gm2584sknEcamhB+Y7SzOwLArRSfBE6hi3izBeTjnQM6B1Z0DuSegTAsSdl3W6HLqqaeNGjWaPz/O5vnMfQXglwrxZLPRrYQ+8U0o+/ZPFlPkIJfnzfNKsALO7GsLbmYTQVKVsOZ03W///Tp17DRh4gTbwkEq3UPX+mqAe3azgQPN85RLeVBsnoGbbUbB2AzIzyyLje6nnXba+++/Z623b5++TZo0njxlCjluVrdg/oLUSW6iG5Gb/3Es05Q23LFCRNqv3nWtrgpNvA3BphHZd/317Yt8+OGHd9nF/sdKGxh9EO+LAwQjoEPHjuapwJgmwChRNlDW3IGEORVRAVvagxceRcffuPxxwvEncFazPGyZhJOdZD9/+gl+FhUeYhSHDW6s2bWrWqOKTWOZH1XQUqhZeBWz2B/tCfz0XcN3Tz6ZrWYtHLXyUoFMKLsUs7ng2XWXXczF+Wx8/WE7Z9S7wa7IPKEmSa0VjUu//e1v1cKnBHpC165rqogtCAj21Yklf1+HotmGfMSrYMAUuB5boIK5ye7RSU497TSRMvq4g7GCSIv3LAm9jeH4pz/9SU2t36NfKXYeUNiMPxyIdUR5avrAg7xQRlKKToWMk0480XZCm0n/dNNN73/wgeqz6rgWbDA8/fQz7E9kMtp84JwGPEmzRyT5b86BnANfAg7kRkCZRiR8xdp+dcMfb3jm2WdszqL1e/bsucsuu1i833WXXcnzbbfZNpWJu/reumVLfnt617TPooATZnr26OEMGXg+eP99shUGSnTGjOk0YyySQPcdoM35JoUkL++0D8ef+Ne/IIGZ9HY6kNmqXeUUCae3+J133lne/gMG2HlgAsfrYNEBZlTdeONN9LqNcoo2be3bp88uu+7KH+4zOVu+YfaVWizX9B28L93JervGEODTcEhCdYpKAqTXC84/X4kMBTrYgkXbNm0uuvBC03Qzb7NSs21u5/33269ZshGh4N8uqkWaMtaOfRCsHvzcZZdmzZo6/0cYA1EFA2MrlsWg4TwP6rCiol37dgwpZxXgPIc/4nuss455qsMDpGYfPARAMTOATJ0xCspNN93M3joMVIXDDjuM2cRmKuSqrDzpOydZXMA3AFttvTVt7XRkM2z2h+pgMssjW4QwPF9Zbz3KlUPeKzJoUBsqsc4euhQ4luXrvvU3WJ8O5kHRQJwNPuLnd5mW3N0HleyX/+53bw0dKmyxAOcDhqRTiInYUOJzPhaDnSKxIkq0fg8hxgKLkai1/MRasiAiY8+ePanqddZZRxhn7PeM30NGnH7tBggtuMUWsSDmyOVXXDHsww/1mT/88Y+MTmG1RfPuu+2GsS2at2Ag8i7wQ8geC02x5YGcAzkHvgQcCNLkS1CNVVSFKPV8HWceb065gkLQXjy73H3OZwK3XMIIeqfCgTQxLQts4YB+kkqsR4DYZMG3XBG2s6W56HsS3IwQcKpO0tSSgNnkgoULud/lMq0sSU1fKTMEFEyEYqy8jhMuiSwmrpy/sY6KLtgWK4BVRRxCZNmCC2IFWyrFisNWNOy9CPtAC4o4TSwE4MRbDpWyVwyUQifLQ9D6agA9JalQYazfaG5KXW57lWDIvgZsjqBeGcf+cx3BzHb0Cy2q9E+nIGRjskXn4ZwDOQdWdw7kRsByWpAojBAEYhSLy8mQJBOd4D0rAkynLk1vZUuMlNTDGVy9QVJnSwlZ6LF6cdn0QrgMtjJQiXcaB0JVloexXPb/UFw5Pqz8opNvOiIfVpAbS2MyC4AvJLTU5+ZqSRGfHWdZHiaROPn56Vz5zZFjzDmQc2BlcCA3AlaMiyyByvDdGtm93AwFubwCmhiqOiGeFFEWOZNCPE9AVsRnw2VzrUhkXekrAp2BiYZLJmIlB4MVBSXl82nU5ErhycqqyXJ5u1KoXSlIQpWjrZux9FYa5pXF0BxPzoGcA6uAA7kRsAqYmqPMOZBzIOdAzoGcA6sDB0pXK1cHmnMacw7kHMg5kHMg50DOgZXAgeXvXFsJhaymKAqbAcJCwP/k08BB/D/JhbzSOQdyDuQc+BJzIPcElGtc6i+1ALLhcrBf3riUBV/eKuY1yzmQcyDnwP82B3IjoEH7l+i+/003QGBCUvP/XRuoQcfII3IO5BzIOfCl40BuBJRr0qziD58IltgF5bJ8meJijX1p6F98wqdihX8roaJfBHZ+EWioz8r4NUH9uPytPgf+262Wt1H99sjfvgwcyI2A0las8SWgC3d8NhG1XnJzbCnQl/49StvKCgcSObJ/sXPv/Us4klRd8meVx8nX9pCQpytZpBYpKkFb8hqbTlWy8b54LNOkRYRlkhpEZbE1SFyhiEBQ8VCKz8zdFSqpLFDCkVhupKSOmCJ8w5hiSvgbc8WY8vzMQq9guH5HcyV3mXxJMy2btjK5igRHsrPElwXGmSzk8uHLY1lVsehZVahzvF92DuSfCJa2cBhO4e61iiBvwrXxFY2rKv6nbCXixH1ACxdVzJ6LFc6Pq5wzZ1HTJo3atKrEB4cAJ0/CplLmfaZ35RU9Dp8pf5DOMjpRIBWFJacLiC+JAV8SSW8FQorHEsRACcyyyYsnNn4eDKE4lwI3OABq2eWulFRF48inPZghW3TAkDyRaSkfsjCfIbxctBHgMxcXqUVYGlgakfEEMKnK+pyFLq2IzxO/XPo/D/I875eYA6v91wG6fnqWzmcWBCUNTJjNnld794MvvjtsjCN1Tzh09z7rtG2opwpSk1CI0g9EUCMpsnovhdhCXMwgrgDt4Nd4xVAykoPJkQjkFFUIlKKL76WY6kHGxPgbS6ojNcWdYhATkitZPwsrKv7+yOAHHnqo+zprbrvDtnff/fc2LTpefNGJLZoEiuuqmCJZ4YAKDhk8+Nrrrnvt1dfatG3jEgRn6bvUZ6kIAkVLTZQAoTv67rrrLncduRRAjOt33X3nsoN4ErN7AVwRFK9Kiogc1uuSAhciH3jAgS1attBtdKFjjz3WEfppSWBcsue+g3323deVksvtWi4Lvvnmm93rmEI6ktmdQ9/61rcG9B/QpGm9G6fSUtKAA5KV7poodyhoacf+u9nBZQo9e/ZMYVZpANnulY6XMaYFOZ8KE1zxcPDBB7sTId61mKbGQNJjCy3k+kRXHrRt2+bCCy+CMDTrMtuuBFXZV3iefuopdxwIaFNXKwmkkEq/9tpr//Wvf7lcw6UYroRIk1YkgOGnnHKKDnPOj3/cpm3b9BTnhnn1EL3ruOOO++Y3v3nYoYehQdENwf4rMShxd9S4jz/u06fvf8WC/K/UOi90ZXFg6cJ3ZZWwavCEeVu4TH20K/4IX9epkcIjho8Q+TkLNBfjA59fW/HWxNbPDG/6wsjK6Yta8ofXewy14CGvXRS0d6KlvItMbrtNjoUv+C2RY3WBF1OgxvXBptiBwiR3Eopo3U5c6/D6GufJhxsB4hOugfU4vH1xxeKaCrcMiw/TVY9fktCvuPgviSxEJIVD5HVRbcXCGv78kNlr1qcfcoSoJCEE/B9unlWJ4eNrnnlj0rQlHTfebve1Nuxb3WXDMXM7P/zC2LmVwT5IavkZxbs7fm659dYXX3xxvT7ruf/G1UpRpoeaFqhJSEp+xCypWRIO9o/uejXKwIQMtbXu4nOR4E033uQaBTf6uF+HQHTd309/+lO3HEGzcMECFxG5Cs/tO1DF2/ZcFXjppZce/I2DWCSQoME1Tq7hocXpY48bBVkPl1x6KeQuWwJTR1a50MwZMxTh5uWY3S+dgTa2xfkXnK/WMi0NiXhXO9JwrgIChhhFDxs2LJ7kr+4xY4EJ9UtfGs4ItezUephqK2bMmIkJ7qByLCb7yZWMrodw3zEd7A7JBx58INxQoEU8SSBmx9IUT3K39cgxY8aGey6A1gbKOUj8ltAT6lJszVDBYh1TVGlA3o/HjRsxfDjaHnzwwSwqmGk+TMN510fFay3TjGUDygrFeZIepau4EduFWIsWLU4PA02LSAZMOCcUKjXSdXQbxpnMYurAMiVBHuEzceWDJdlLXsvmARPB0iqEQE3N1KlTzzzjjKuuvlrDyBhgIm+LfTbmKoszj8w5sFp6AuJQ+OC996686iqiIU6/CCx3r516yqkDNx/4edqVSzRRhkyBFgsqWldWLKppsBrgSFuCYXFF1RIWAwERdWttRTXRV2NKX71gcUVldVC4jaoDwOJFFe5kqapuFG4QDOOzsjaZ+85dFObdZok1NU2IGkcSByMhOAVCDUx4liyBrBaqQFJtyM2QCMsTSUHher4gbBN7AFrJCXrX5QbBbDdD8isAZSK3OPMj7mA5sBJgA4SAJKuKh+tz5H19yMTR46e269Bh6y26Vbes7P2V9UaMGfnyoBGb9lu7V+cENik2hkKpK/wQuyNHjHB74SWXXOK3VctwbWAUUn4ZQu4+rmcWoKka1aEy4b/Mo/bvvf8eX8KkSZOOOPKIffbep32H9u47GjN27HXXXffkk0+6yPGUU09Nc/zsvPNat2lDPTMXXOv3p5tvfv311++86y43BLZs0RKYu5V/cs5POnTsIEy8mibedtttbtFlZboRMVKVYisJUCz0hJt8Xesck2hHN0r/4frrzVN33GGHPfbcM/TbRB2mqILyS+5UfPvtt92VLD7CIDLI96S+Ij1wBs1afIKqcaFwVRUwE27/RZioFULfiZdVJsWtyEVWRcQVvXr1Yj+FW60Thk+eNHnYR8MuveTSv/zlL26+btaoWaosY5Z4hRWyIwEFPEHJikGIXlugTdPwq6HQO8pjFr/ZeqVklAZClmAbvT307f4D+qMNEgW8OXgwH48ZfEBbzBN5mJIUqEhZF9IMpSVugUKiusTZf2S1mFBMZaU7uyQIQAlGvMBiPE8MmtALk/rG11ijxo0aByM+gY+ExPgY9huxhazBrA83YyFFh9dSitBbcFJMWW6Il90TsiQMFI4YxTBAh48Y4R5z7PUaikhWlEKltEJSo4ghJSYP5BxIObBaGgEGAPv9Rz/6UbxjPvZ7MzyTp5+e+9Nf/PznW2+zTVrDTxswhoz48FvZeHFFk0RLluIAsLC2YlFlxbhJtf9+8a0l82qbN2vZZc01+q/XqlP7IDlmzqsdNW7OjHkLOnRob6479O3J48aOWnvNzltusk77NoZyQLiAs2H4wlEjxruwddONO5Ezo8cunjNn0oCNurZtUzn47YXz5s1r265x36+0oKrnzasdNnKGu/uaN6veYL0Owdqoqpg4sfbVVz+cOo3yaNytW9cdtl2jWfA6F4ThjLm1bw6dOnz4KB7mjTZoO3LUnAXz5nVu37x3r3B7vSpMm1E7aMjkKZMmybt+n3bt21YyL8T7939PvL5gSe0GG/SxDwDGLQeu/88nxn00evZ7H87p2Tmo7bBdMuFSoTBRy33CXHPGkCFDZs6aRf2bNBNnQdlUVMyaOXPIW29RhNy5nk6dOoU2ra1lLkyZOrX3uus+9/zz7tJ1i3E9EVlZccMNN0wYP3677bc/6qijqPAgGSsqunXvbhZrBn/7HXccceSRKV2UPadxlIbJbxUHOL1iNaFXr15iXOjcp28f3u80C9EMxh27aUz5AH5SerW1nOe8ESnMgAEDnn/++VdeeeWdd991ATSHv/t50RDpBDZy9OipU6a2bdfWZI54HzfuYxdP9+79FZTARsdg19C3hvJX77DjDtQGwR+bl0JylzSO4ZWrigHEQqmT94cNk10tLLi8+947/fr132yzzaKqTglbRsAqRvdu3TVQ0sa1PXv27Ne/34MPPKCB+DYQzzfggTMiQaTJMS8LHqpXeCoq5i9Y8Nqrr06dNs1VyGGBIzGqxo0fL9ChfQdLMAIA2Tr4z4RZa62uzVuEyKU92GsFxxj/271/YwSY/2IEDUoOKBrbmzZtQm0nzRo05ScTJ77w4ousQxODXcId1s1gdr3n2I/HurSTLfjoI4+4crrrWl3RnxaqS48N12RPcSF1+w4d9CIUcjMw5jCZd8RMA3LwSS0rMIQd6dfl3TontoPXIafPmKFFeLkQzBsyZuyYKZOnbLX1VrGgGTNn8j248Tlp9Fr3dHNZuX/cWNh84MAOHTsG6dNgXMVyXeusSyDMrdAdO3Sg9VnVH3z4oYIMrkGDBqkvDlu4Af/WkCGYoF222WYbl0qn1cwDOQeyHFgtjQDD3n3zxl6QOJXBjo5VEqY4777nng023LB169b1FEa20ksPR8VmSu3fkoqqRZVVjSqrwqCv/1CTs+bbNDDyoSdfnTG/pqq2iUXfxTWDN+3V9YTDtu7do2rUJ7XX3vb0u+MW9OrZfcmSBaPHjm3dqt38OSMGPDfih6ft1L515cRJtTff/dJLQ8csXNJyiRtl76xet0fv9z4c2qh65q++f2ifRhXX/vmlT6ZM2XC9zqcdv90aHStnzK3569//PXLM2N69uvzw1AObt6q879GJ993/Ym1t8wUL5iUOgWF3PNzqe9/do2+vMAccOqzm+j8/PeqTeUiteHr0ur16TJr48dxZk3fYoscxR+5sr98Lr8y882/PfjLNZxCVjas/7Nyx8Z67bPDVHXs2a1o55N2acVNrKpo02mKL/i4qVv2N169q0q7NxFkzXx8yZvetNuAv8DQQU/V51OCNVn/4/x6+6qqriC3S+fTTT99zzz0tez/26GNXXHmF2UzLVq1Mvunyk046ad999+VCv/qaazh7efjJevhOPfXU448/Pm1WyptMbNGyJeBUc5N9usF66613/vnnr9GlC0E8ccKElBa6JM3eqXMn8dxINL1cnqw+kCSmebPm1CcJG5a3l/EkvACfIk9haVOKwaMiF1988c477/zrX/866niLFGeccQbLwEIAbwHlct99fx8+fIR1ClR5OOHpSIoHhW3btPnNb367xZZbUH5kvV0O77//fquWLefNn6/Qww877Ljjj6elTIut31O9aB47ZuziJYvpvG23207RKAmT3HROnJLYMKA6wcoLHR+eKZMnT5s+XSnGlKGnBbnlH37o4R49ewCwNGAHw/DhH91//z8iJt77b3zjG9FAnzVr1l577aWtqclrrrmG6r3sN7+hleOYfeXll0/6znessp999tmKQ11DWmKMJMYEh7/lP9Y/BoqfNn3ayy+/vOmmm44ZM5pjRPNB8u6771522WVvvvlGy5atsH0BE6FVq/POO09nM+fm5NBt9MAZ06c3btLkxz/+sS4BDFcx/N6//e263//eFhAYOnfp8tJLL/3sZz+joRU3d86czbfYAn4PVsBw99133/DHPzJ3mCC4RMv+4Ac/2G677Z586ilNrA+fcMIJOo/FlJ/9/OdzZs/+6+23M3CRrX11hltuvuXiX1/MGsAZTamCCIAKM+1WKdh6KTsYxKNGQcsvpUsjQCsceOCBRx99tHUQXd3AYRFioy0O4lmu3//e99girB/jSBEG2o477mgw+28ZfE4LzAP/OxxYLY2Ajz/+mABdWiNZ1BwzesxG/eomZEuDbBifSL+g3pLJepCCia+9FJBmffuDmc++NHRebaM2ndv0WLv7+MnzRk2c9dbwac+//vE6PboTKvMq282qXvLOuEkd2zddb+MBw0dPn1Pd4tXhsx7+99T9d+v44NOjn3vrk2m1nbp3bdt1jTVHjZk4aMSEmqq2jauqF1cFH8Ocyo6zK2rnVbTlnFdcbUXV/Nr2cyvmzKtttXBJxZhRNff/67k5FY07dmzXe831Jk1ZNG7ilNEz5t/9wPM/PG3HObNrr7/tXx9MWFLTqHq93j0aNaoeOXryrNlNmlR3mV3TbE5NxYRPam/7+ysTZ1Y1b9t8jTXWnvjJ5GFTps94ZFCLDp23GdjqxUGjFlY3adGs1pSV6ov/1u7W4aP3Zg4bOXbJkmgELFMpljIsvBM9RKTAH//4R8Lx+9//vtnSc88+d8GFFxCyxxx7LM2tZe+8804iuEePHr169SLsyGhS20Sf2N1nn32C/NIqibIg/kSSm7169koLjAJOZJCkyY6/NIniCYvUlUHZy8u/TaDbu9elc3AhCAOI2WMWMBbCiVezwBUxeWT3pMXRl0T2G2+8IVJ1vvrVr9LclDp/FQ8BMFO6SZ9M2mzgZuo1fPhwimGPPfZgEFAniJk9axb1T5SbtnIn8EZcdfVV9ChVcfGvfjVh4kRbDuk/DpX77rvPNgsWwPHHn4A5VBqbafvttz/88MPV9IEHHuCK+MtfbjvjjDOztUvpLAkwSpAdzRTbKUxb6UJjChO0GnOkhBWFdYcMFlqTO+Q73/mOtrNb89FHHzU9/e53vrPffvs9/vjjDAiWUGTUrX/+s/k9p0KcqWdwlAbB6w9Kxz2MYliAIAS0EdV70003hqoFo6Xir3/9KxV48EEHb7LppqpvVYjdcO+992677bbKAqCP8SoddthhGLVur3XBqNes2bPu+ds9t956Kz195plnrr/++tSzRSUzDYq2b58+wz766JZbbokWACQvvPACYHsJzzz2WFrZXgFrRlqnU8eOe++115VXXvnW0LeYQRw/I0aOpIZZKC+/9BLkCsXP3r17t2zVEjY+FXVXBfbciy+9hDnXX3/9Zptuyh+QbSxG2NVXXy3jod/6lp00LL/777/fZliGHVZgNVIx2b7FjTfe+PXXXj/3vJ9ihnhMY2H8+dZb9T1dwoCyy8a0KXAqf3IOJBxYLY2AuXNMCeaGDp1MVkqakvA16rJDqARg2a9FC4Csi4vsBfCi6im8du7Umlh8d8y4rXbYuF/fqo9G1/zimqFNK2rGTJ5NhTMCFlY0n1+1eK12Sw7++k5bbFL15tCaa255a86CJkM++qRf//Zv0Lo1rVt3XuvgA9fr07Nq8uSul13/1sy5i6oaVSkVhnnVzWdVNp9f2ZSzMgg3qw8VLedXtppX06SmqqJJ04rttt9u6vSFA/p1692rauSomlvvbTF+0sRxU6bMXVj78pBpoyfPm1vRevP1u3z7W+s3bVbxz0d7PfTEK3NrF8+vaWIZ4u+PTxg7s2lt4xbfPGDL9fpUfTRyvTvuHTpx7vgXB388oF+fD0aOnVdb27qpPQx2IwQjwG+n9o1HWoCYPCUse4Yn0cMxuGK/GoucogCI6ebNm5mZkekXXnghRX7kkUcee+yxBD2JDJn93sTo5Zdf7tUSqIm+qaQwgGyzmmVSM3y0a629VlkSpGbjiUhqQOS8ufNmz5lNfdKyZKiPFIhmkJSKRYS4SLxwwcIZM2fQAVzA7JUsnoZhVUOe6lCfdHME0Anjhn/zctqdaqcF//nPf0YjgC5nH8ybP4+qphs4hyGhe3wrIRBqWlVlVnfwQQfxcm+/3faDBr0OG/362muv2Qfztb32OvHEE03NlRvneQ89/PDe++zTvIXdfI15s/GTPjBGAJgjvvHGm9BmudewFjGGmWJbpTAasMWUdM7cOdttu+3pp58he0BSv+kb+kgw0PaLvuuvDwnVe9hhh9LEhx56aJ/kYdDMmT2HCvx47MfvvPMOFw5TBuRyyWPlbLLJJo888shTTz65+267W+n+x/33a9C+ffsmYqBgw5mU8zQce9xxND2CrZQ/9dRT9LHmxi5thD+U7q677mpMTZk6BbV6oD5JAcvCN8AYRQ8+IA8YPtPTuy1ZojPcc8891dVB7DzxxBOsQ9PrPXbf3YBg4SmLdcv9vv4GG9ga8s7b76gmv73GksRvz2kv46uvvsqo3XvvveMKDib71oDjRP31E7aFVh41enTHTsFNlT4WXCRZcTjzzLMYuFpgh+132H///XDjoIMO0j0UbaUmeDsqK21kmTBhog9kjjnmGLXTozjDBg8ZwuBQKEpStHkg5wAOrJZGAKntSbbplpFrBomPlD5z60blFvV/dUWNf2KM84LuS/AaRut2rTrswDWGT+7y0tuL/nCzlf0FduDMr2g8b0nYgmc2z89eXbtovQ5V+w6sbtqoYnGPqhaNq+ct8NFU5ZzFFWNnU+pLuracvlO/6paNKtZuXLHN+r2eef29RsmefvsN51YvmFe1wL7+xjUV1comequqbSJaBHN1Rc+1qo46oOvIiTWvv11z7Y3vvT9+7oRZNS0bN6uprGncpHLi9CUz5y9q0mjubhuvvVGXyvkLK7bbqPqll5uMnmHbYiN7Dwd/MHlWbdMlCxdPmVQxaVrNvMW1lU1aLpzdfPLkeXPmVoyfPGmxb+jaNq1uFOS9wtkB3Tq0HLR4AeInzWYfVKb9hkqzs51NVpbh9NP+++1neTUr4i1+RxuCSjPfkpGap4+pZzKxf79+FkfNZYkzuWx/I/ukNsRPwpJxCxYstLhgNhazp2CyRwxpDCHIsx08EpWVTRo3Jqmp/K22Ciu1SVylnWs6FcUpxq8JIrlsDSKomZqwgy8mpQjTgMZB+f9n7z7grCqux4G/3YVdehNBFHUXRFRQMbZYwd419hQTezS/xIKK+UeNLZbE2DUaY4st1oglNqyxYEeUIqKydJCO9Pr+37nz3t23CyIg+pOf78Ln7dy5M2fOnDlzzpkzzSsD1KA5xsONiuKQ4OCNMUZmjABbBvbdZ98xY8fYIsHFbb5WNT01HJZoa3k37NQpznOv2cYyAup8odkuk9D82F2SCS8qDUo/3vbHFKTaVQ+r5qKHadu2a1GuKqVc0ysqgjhfhXzELf2lKela3qPJk6dQYNTkL37x815nnU1tw5DtEsGm6evVr1cWKBYaK0aqFAsgJjMUXnvtdWhTOx0gxSP98eCP73/g/t/85jcvvPA8M476pL1krAM2hR8DzBHwd91ll6uuuopjfMLECRZDvPLf//Kp4LFAPvtqrI3PZi+68ML58xdMnjyJ14GvxdQJCCwDFBDQTI0bN7FiVNgUXlmyDJW+96DPwQcfzFDRcL7iTORlt0UvhYxH/+pog+/FYcFjiXkoPiRmVlh2lzDG4YcddvPNN+sO0u+91168L58M/QRXugrUAABAAElEQVTRmHoMXyqc0wKjMjVCy264oSI8Enfo2EEA/mu1a6cdUTj5UvOD9+RlU3puuvmmpK7B6ER5SIb0oZ0DAUMdsxkc6CtSR54kDy+86CJfPTGvQA30YugHT4FUmK9OlCA19MBPhgxZqlXLnCcBsfvK8XoijHWXnP4j2FgB5EcQIflH5BeTsnf3/vDlfh8vqN9QSa3abDRm+oKFJaULdUWJw8o7S/cWVpQtbFAWTC0r+UtLjOFLFy+04S0zf2Gmon55RRm1lynXJStK6peX8lUrNSmxRKHzbUFMdh0afJu2Xkh7B2VTQUZNn5W99+ERr7zXb+aC+fXrlTRp0blVSePZcxVdKuP0mTYuNCARGjQI7auIigpZobdo4eL5CxdJMJ8oa1Be+sxL/7H9cEG2dO7iJo0y8+YvrMdiCEiUljZo2DBsPZAv+b9Wq5YNy+tZDzmbyZChVAidQGF+bJOjRkV52tT6axxGGNHQS52KJpqJMMKXqpBNwARzOUFYUUEZ+xrFVhwz1YKbvIgn5uhdE+GkqnDa6MAactExwZOff8zFEojS8HW3WXPN5s1bxI3vUTJKZRrYfvFWrQIyDRo2oD7ZmrAKjLRsZtJqyVSxNWunnXJaLFCtKe+GyZK0GAMg/Uot0WG0iF311gTkN0TEJMlvIqNpbhZAaAyvmiHoieDqjz6wuIyOulKuFoKn4ezceXM1uhgEZCEVQFyBIE/1pZdc2qxZUyvYH3nkES7u//znqc0225w6xAmhuNqPEq1XDXF6TvJQcim1UA/NaVOWnzB+sPnCAohDDj7ESkOZ2H9qWhvkUt4iQOPjLbfcklq1Uo+eoxS7bb45kzEUniAGZ1Py995zz9Chn5qnQHDWUDQgot6TjP2HppFbYkkQIzQs08PJbDL+GN57rSNxNFAEIMDLEs0pNcV12le9YtESWO7KVOVywNMbdu6sRawGULpx/6mnnArVT4cOZZR4ZOzapSv8YQig0gHRQXgYsFpo5tqPTxMnTBAHlKkQmMurxEaNGjdrFrZFhOyJghcwr+HxCvPUZ+PVE5KFec668MUXnx8yBVZLI4AQ50DjeqUn6jSeHnLQgQeaKotMX+fr8rwGmZqoPT9m4o3DeajTBcRRlNh8/+6H415/t3putnGXrpvsvltVk8Ylp18y0HxzkISxmOyiMuPyehlLugNAipU5UVJav6ykvDRTUVoyxa71+eWTZ2YbNCuZuyg7+osJfK+Gk9wAUOD4Vjo5YWpAjPP7LH3iI65fWm7A0/etWS/1HT2npOkO23feefv2E7/M/us/E2aMnymLsho2br5wcUm9euUjx02bl20q+8Rp2TkL5vpYr36wCZo3qpg+c6aTf448ZN/mTcvKK0q+nJVtXD/DVGjV3I7BBovnZG2qByrWBUYL5i62l7pZRf3mTespg5WTWAgZo+STTzrJJGWo5BIPPd16jdZqHcVone+0hYcU4xIIAVaOqRCNOn8+HVZeP4z+yUaPNH7rZF9v3XWtrB48aBDBar6TCE4bnbi87rprJ0yYaOiW5iLcrfkCiu70q1IBqyA/c49CN+nSJa4xNPwKaIf9XME/EQiRtGMKrVYg0X9iLMzevNvm8VMKAfQ0MYetobxpcpoMl7JRGCKJTK+BLz3EqAePZfDB354H4G/0aVNCYMZNdxLTMV4ryitQSXY4r7Soz2FbUsKSOOTggydM+OLWW28zHW58b+CbVqQwwC5JcuUY32va3AK8F+yAaK8buHfqtMGAAQN7P9b7k0+GLANmIXzhCNAvF7dRNUeRzREU7WY5lHJFoyRXAd180sknsbfszJk9Z84xxxwTSJqHCBNVi4SKcXwJ5513HguA8wDD9Dz99CZm6pJNHCwDaSJN0DzMjwTyLmrcqBFDM/oMYgJ1xLcg09mMD1apOX5WCxtFNU0rmMdxlolZCe4lsz98EFpWE6eYgCwvPIMpUPBgJEsEMOEee+zOeJIIPyhacbiXSWEGIU0ODY9XmLPnIt0skvDYp1pZVSVLmrgYKFIABeoK1tWFKHy5lo+1aN489Jy8FYz7z+7Viz7Ql1a6IrqIPhhERtDm9RZnGg8fl/2werH/H1UvHjB88cDhi8dMyQ6uHjdzweJ5i7Pbbl21+UZlo0dlDZPLs/PLsvPtRiqx6X/x/PqGzNngOafahcsWmyDIli1a3K5ZyfqtGpQuXvTZqBlP9Bk3elr2n4+MG/DZ+IXZcsqVz8CQuzwzv0FJZtS4acPGL540O/vO4JnjJ02ul1lUf/F8wD8a8MnMRZm5i0s6b7hOp6pSMePHj8su/LJeKWdDpvMGDeoFu6Lsif8OffOjRZ+OXNz72YFTZ9Pc5eWl9RuWZrpVtW64YM6C6bPGj5rYpcoxKNlH/93vtn88/emgUSXzM+3bmGKnJgm7GirOnMVEKW3WtFHTZkGeBkGUPJa8/fJXvzJvutTHMremzZoSO9LWwEqyeuUAMAIjp0y1Bl3rUIVM5pOhQ3m22RaJOgu5yLslLQDxpLmV8PPmzye+jfu1GXHpv0+meAcOHGQJQqEXQRGUBFA5jSKdpxCvGBOjsVCCdrAAkmRy0S6eoGLrPPkKFlYzMGE+Pk2+ycabMDL4hPu+8YbVc2u3WzsgzKJKals4qxKoW4BchFxaWkajwIENQfTbKEgtUV3WujMpzAVEOH7z9ltaci5AdaVUqvVNYfFogSQ2zvRXNGjQs+cZlNbw4dX333+/L+wkVghSDP54MDrQQ9Dgf4ZS6DLJYxIheKR5nDIZ++UobLZanNCRt2vXTZkFWnz06DGWucV4AKnYACR5coDyf1QnqVHgG3ND2KZ3795aHFhWVKqJ4WPBAS0r0soMEz1m9znSgQFV0wtELe410jOWwJjovGFnS+coVLPsAwcNkrjTBmGj5m233aaOMRn7IOZS03XXW88CQ7sHo5sBSc3KS8bVAR9cp3E5/y1IxOG6gBX7GMnaCC3luAWefBSGhiyFKj+FH0v0CzLrv6qySvb33nu/sqqq80Y6R2fmptmlU0871UoF5gRjAgGBUjqzAyVffPEFtQBw6pSpanHllVdqlIS6aUOlhRQDP2gKrJaegNhiLH2nz1ol5HAY/Z8536NHj6qqqtiRVrpVdRH/ycOSjAn8hfMWlvztrqcbLJ5WlglzdbqZ1eV77L5Tq7XWKqkYV5Kp/9Dj7772WsWwUdPqlzQtzS6eO2umETRFbjFBvewiw2U6BEC/zg3KZuctWrBwjaYl22+1wdDhY6cvqnjyxY+e7PNew7JGC0paBxd7Ynooe6MObcZNnj5l1rzrbnt2zWZNJnwxfX62WRmPwNxZZgfatV+n7JNh87L1ez/Vr9+79fsPnbZ4Yb0KhS1eOGNWduMNS7ffZtO+/ceP/TJ7xS2vLpo/PVPeckFJA5MECxY4vzDzk73bfPLJ8LFTZr72Rv9BAz+dM2fBtNn1m5QuXLNlg+aNSzp1rHpj6LSZs+ZEZRe0pCMNBg0lOVu1DIstVqEU2WvPvUhGSnGNNVpRkJbm3XLLLdSkHVb0c/J8ZUv6+pODDuIQAsHWrx133GHrrbchDUGjDEwYGdItNXPUAbIv9etXRdLQl1xyCR+DrV8WW9VJFmF9LUx6mkPbKgr+fHslWrRsEZApLWlQUUHK2/CGgU2giCT7FVGIokjT3tSb5e42C5iBtlmczrNdFqm469ENenUQK3ydNnXaKaee0m6ttU7+zW8YE4WfkrKCB0KJwe7BiMGiCg6fCy644MQTT2BqKI73ngNGAlvUAj4LFvz9llvMRESffARIG1ls4dAkCW78241UkVwUbSgiOfr37rvvpiCp8D322EOkgvw68sE8uiV7cetEBAVCzBVf46+1nJbiw4E2jQliPOC0PgbgGYItgWDRvrIgACWPZNHmKIQmnAJRum14V1515W233kbdsn7ibkwVZ9mwNal80KS3rdFeRBsI1ZSat+hBm1ZWVnbfeWdqWNvBxJiEucP/xCZQR74BWfgYYq1rmjY/holYAV7Y6ExJTkFLX3t0726mwyZAhi+w6oXsHAzsKq+Ms+rqaitOunXbguWtR7Bm1lqrne0P/T7oZ1sBNOwUrVPx4muRAiiwuhoBoauUlJAjhafBiEn7c0ywom1M5EQNZyRVv2RWRYnZtUbzs07Ua5EsDDDNny3Nzispb/ijLdv1Gzq9/ydjJk6eNXv6tMr1OmXKmn829IMxo8YtnLc9j3l5Cd/AXNJUlw6CNZgFs8tKZpSVNC2vn9lp23pzM92fenX0xGmTOb43qeo0bW5Zv8EfBx9CmDjIHLxv26kz570/oHrGXLbEwo023mLi1HljRg9uUF5Rrzyzy85tPxm96KPqkeMnfDll7JzKjp3WyWQ/HzVs9qzpo0bN6rRRk6OO7FS/cdVbH46YPXPS2u1aVXXc5O1Bw2xWDiv+M5m125Ye/4utH3328/7DPp8wcbaRROtmzXfaqkP3ndoajW+7ZZObe8+dMXPOmHGLN2yZ6AMr58dNQhnLLWSPJELtFSXvkulpU+uxjaJuuOHGxo0bzZkz16kANgRaVc7FnQjcJTPlYkJzZzJWaHOuPh6eJ8xeGwNRA06N/OVRv9x0080KM7Pr4pNGrmgVDGqZKfRuCqEmkFBj2QDxJMVgR5y15QbudoKF9PRcSUn3Hj2MbhkB1dXDNt9sM/GRyAn7hELEeCgYw9Pz/3j+327624MPPsDcMbI3x8ENY/m94bI0NSgtEWJtOCaZozhOH9T6rryAS7BIon6ifkoTLGxeOPLIn5oRsKjCSNdSx3ffe8/yRusnLFGkXSorK4d9/nkuWyZTVVVF49rND77mOProo5l6gAFOc1euX7nrrrtaFtC9e3c7+APCSbdFWy5r89mFPZfuhEadSlkIaVekZHHLqEBaEZgwklDSuQjW3Mm4yy49Pv54iFUjppwkw1F+v4pGlvpbrdnnuedkV9mePXv67f1o78cfe5xBhFdNycvLFOBsYAvazucoSTNZCNehY0drSLt07Qo+jJh6DCNnBHGVwdD6VoMWRoAplZA+eQoxjzG5XzTJP4Y3SBea+KSTAGHd0uioKl71bS2h/vFStCwtADzxhBMsumQTw42hhmF4MthVVp+kxdWhZ76o4t8fKAVqtOYPlABLVNuoxH+iYurc7JyFIUwl65Q1/TKTaVRewmPvvKDxk7NTpmedErhGy3DcHschZd+iSYnZbTv6bTtrbAK+Ycjq1J5psw3vMuW0amnmufdmTplb3qplvcr2Jc4OUsyNDyz877vvN6s38YZz99uovbUImdnzM5MmL54xI7NOW4v4wjS81QAMiMYNw9rD6XOyEydnJ0/JtmllXtAivYxBPmdAo4Yl46dm+7w+qlGztddeq3S9dlbCZz4dk73iHx9MnjHnkB83/Z+fb9aiQYAAwxlzM+MnZp0/2HbNkiaNShpZMmVtUSZz2iX9Px0x/Cc7bnDm0V1Vv+/ARWde9WzrRvN+96u99tq2cYVpjsRSWYJ4Xx9BeFlFSK7bYx1Tk01cymQ0/brxRhsZ2Rgl0xbindAyf/4CB+qRg8sAbTw6c9asMfzLY8ZYz8iM4NelA2IufmkbAkl/kVH8LVUIcqtKr/SvKgs+tlxTaeahDNbr4EPtcRUYaKYivk6C9NVwzcZIzurrrr02zpRHfCCAAs2bNefDsCsPoZo2aZqsXg/8YxCvbQBHGekN/gymrUU33jUSZVvUS/ZyyIWYzCD7zsN8RLIw3l41Uy3G4kaoXMrOqPnLn//ibMQUpRigWuhgagMR6pCIqaEtUMChBYDPmT3baYCGnqxwc+coRtPQeUoHIbaduiAIlW8vjyzS+AoCE/L8C85/4fnnL73sMvZEsCiTruV0yF5nn20sbh983dLnzkMQ0+2qCVU6eOaMsAaCH8UvmNOnTRdo0qSxw4BhYlWpgbv0G3Ts2KJlOElaJIND63w5/ctA2GZNISmLsLyIHNsdKGcrxfOXVAcaRtuOseJrZGiK8dUUCb3rE7AzZ84aO26sxYA0Pdw8EWwOq+nTwXciNUzE2A7qgYNksYIOyuTq16ZmByTwAMX70qRpE60QY9LfgNvcucir0TWHqrVec01MLgEzavac2QguQVVVlbqI1MvGjR07ctSoddu3N3kRzudO6JwCLAaKFIgUqMtqRbroKVHrr9EgjIMoSzF1uo8ETvhv2KikZUVJdp1wZQCJEtKELhkeHoPGTUJ28VF9NSrNNEiu4rW2fuqs7EcDhrw5YIRrirftVtVjxy4jx2Q/GjyovGxeqyYL1l6jBBi5mpRn2rQrzbYLAOsgAHJFw5K27Usy7cOngE/yX0oIj5+bff7pp2dnWlU0KD/8kP0ZKM++MW7O7Okt6i9eu0XrZuUlFo6bUyDKmldk1mFAUOph/jo84DiMbfdtO40ZM6rfh4NmzO/qZoF3+n/myNoN1mu+4XoNLW7IjxWTDCv4QxlQxoWZCEQxHnItDniDqlDlkhKCO0j9r3uI/gghjsPqJKf/iO86kUu+Gk4tGVkYQ6AbgNqZZmRcGB/DxHGUyEt+SmNMylKfzkeik2zvDov/Cx4IpDhE53nBx5zCS2PoISseaCYxyBWVijDyGjWmyQRonfJWYYmlhxa+7fbbDJcdlxtjCn+p6jp506/UWNRkMYaVto7/63A/5ViTf8InKlBDRHxMiqfZY8DCzy++GM9G4Qixft40PKMkDPStp83oEQMc+id7Wpc0e4XJEndv5B8KMqr/GBH4J7EG4qvqIksdyqRcxCLJgwl/kct9E2kMUKrmfxqTaPbG7da2SiY8yB4DfhlwoLFQI7uKKcQ8YFWbz+UtzC49iyqFFgPLYFQAMRgIzrYKifMSIZReEhCLxxtI5kFYLORBZmhJjsKpqyaWVfwtUiBSoJYYKhIlpYB+Q38TcfRrTsGn3wRClwquSurfE1b05qVhTarg5a15i4TWYWnfBo1KunTp1nfg1JmLGvd5f3qffm+5N6e0XlnL8vm/OnRnbgYlpullWeowmF8zKOOkZ+cKSjo690PlWqVbbNbtlQGTp8xtcvW/3nIBYaa0fkV2UdWaZdtt0dF6Q9gmx9AHvwWjAe6psQJj37fv2vCNt1pUD//ipbfHd+7UdtCnnzWqv2D7LTZZp3UpfVJQrZoKfpMQQUYcB8AJ6BWWVioeVGEEUkspfhOs6uSluY16Tcr6rfNpOV8vvPBCg9SxY8buuuuulmpDmLxezrx1ksW87JIIYTlBzZkzu6qqykk1fAx1AK7oqxI9cf1gnbxQ8kkjBn5MKhheS0rGjR/nIGTeGgNWO+nNc0dXf1wTgLy/PvHXlZWVMXEdmCvxCo5cqwraUhGItYufQnGqudS+utTMKxgZKpI/jKGw3BjO/SY0l1LNWfUBIYHYHCvLaSuIZjH56keB4nTAUtosCI/kCRLay5KCOkkRBjB5MzskXzJZAqTWj35pojSTmTgvO2h49oW3Pv985JhZs+c2qGhQ1b5Nj607/3jjsia26qWuhVxBIVfhkxZVg2GQuCGZ/+4O/mJm9vUPZ/33/Y/HTfmSE7ZV82Ybr99qj+06dF6ntJH9RXkDJYBNUMrr31AI9GZnM4+98sXTzz/bvn3Lrbba7on/9GnRqk2vX+++dqOShklBkqU4hDzf7AkC7hsLqVUCZFn1cFTO/HmFA+JlJV7at7PPPtvxANa3/+bk3yx1LL60TMuM034r0gxIxJP8tR6LZRZZ8HG5S49NY+c9CnBo77/ffj/7+c8NsnOwEji86zRoYgsWFLF6BZebIN96tfKYfOud4luvSbGAb50CRSPgm5BYV/MkunfpsjgmKCiCoqZ2nQqcXEI4y2+47TNIcm52iwdsABD2P7gYYk9Ofo3XCx9FBkDhSUpP/tpqlgy/woIGlxzaRDzLBTlOUaP1TS6UBT+/gP9xi3/IHXLkCwrv4ZF99uLMXLsjlJr4QyzfNsJpzOtoxuNbMAJiuT+E35wDPFo8sX1/ANWmitSSnRd0UoGH4AdQ9WIVixT4vlMgep2/71j+b+FHdPmf08dLQaJGES/lo61PIXfNI3UY71L52XBKoEkEy+voWV59mlik44GdSxC0cgCc1/tLu8YwpsiDjnlkCviGrJmsU//B17rxgF+R3PhWGyo/WfIdayalY3ASGySUH54ke3BFqDUk2QAhqjSg6okHGIdQ8VkJCoSZncTKkxe5I61XAs5qmKVmSBrMzoRVf0jVXw1brIjyD4UCRU/A17R0kNVRPdZJuBwiLDraC/MF8Zc8QEYlH1RwHlSYFY9lhZi01BCXvsTs6fA/yZr76E+ElEAu4WDIlxYypcCT4vLw4sAsfM8V6Y9vIITfZA1g+OhJTAVfg8lSfIoUWAkKRIaMvyuRvZilSIEiBb4FChSNgOUgKrFV5/luFeGS5eetgoBHgktM8t2iVYcmxdciBYoUKFKgSIHVjQJFI2B1a7EivkUKFClQpECRAkUKrCIKhPnu1f2Jy45CLSyyS04EW91r9O3ib5YiWai1PKXYhBYSczQkvoa4m2v5sy9PEXXSONsnHutmubjSw1fNGtGok3Q5XlchqjWgUs9MGlgOTL6lJDkSLSf0iHDCALE6NZVaTgjfy2RpLZYMwDdGBhbCTgVNJh6zpVlWZc2UkhS0yoAn0GC71OZWylLjCyu7/LVbXpxXRIzULT2pTmiRRBAtb4l1oXzlex2wqxz+Vxa8en5Y/Y2AMKce/BmhpU25f2v7dFfP9l0a1qiULkNY2vfCOFu2QmLzDMlUQ468kdqF6VZd+JX/vuK4VgLiD+ec83yfPsGqC4sZ654d+7UFBn5ITpf72pTLmSASzUb/AQMHOHY38tty5v32kqX30CxXEdaSUBj+JcQJWxWcfPed281KhEDEgfpKw8tVhSUSgaYWTlR0zn88GzhYjQWVig0XfiMnF0BwkJR4zOYUwngWb8HHbxBM+0simr4BoHzW2Pt0hKXJN1XwRHrmM2TcmzBw0ECVSmOWMxCbow40edNmcn+jUwsXLFyg0OWEWScZ+0GrjRw5ctCgQfasLol8nfQr9ArPiFgKdqXxXKFyV9/Eq70RQKLNn+dC89z9Y8X2/lpeDKOGOML+2qSZjI7qqjQn1EpLsArY7e2s08QuWI78K5jEEa3usO//wQdEzqCBA/95110OmFtBGCG5Ojrrfr99933sscdWIvtXZSFfXMh2/PHHk4PfE05zdIGDCOmwr8K5MF43iWf1BF0SLkVc6OJd5xZcf911K20KLKktCktcMoz3HCzoPuVjjz1W0YcnN/F8E2KCBod33n3n2GOOcTmhk4jcALTV1ltfp1J5sriXcuYM94DUaEqc7A6I2BHoIUdBO8jZeftLIvxNYubOmetKp+VsnWUU5CSl0MqJZbNUgs+eNVuCQghq5BauZV8oVZg+DcP2i/Hj0SSNiYG0jTTcJclNWnpZnTTL+QoUDnRBw0kn/Zo8WWqNlhPUkskink6D1sSxxVct/CVLXN1jVtctgoH/SkqcEO5O1YT7s07T3Lxbt3hYacqvK9c8gM+dN++dt9/+fNgwwtFFLy59UZxzT197/TVKsbKyco/ddzfSdJsZwbrVllttscUWRhW4zeVdbiupYb6EAQFs1LjxZptuOmjwYMeDux3HJTGyE4VuGZe42+abOzZVIJjWRJVbQ8rKiDAHlbszzfXkdSoCakwrXmJdyq+MaWSanphLRw/I5c4998fMnTunbZu2O+y4Y6cNOkE7AEkBQqvAvv/5z3/uhrTjjjuOTBn88ceuS3FEuZvWwk13i2tO6IvFAZKWJUbRCUYF4JKCfErx5OGMCEQc0MdVcocddqiR6r777Ufj9n3zzXhPTCxieX8NDadNGzFyJOkfIceMsdxCmsSKF8bElOJDxoSqKhVfo+mDJWJMWotclqQhYjj+RrCxgQrja8K1qR3jI0o5CMqKp9znA7n4vPzVOm4icPWi84x9qoMSVKOOhLnh15CPh/Q6u5d7bjCVKsyfP2/atKmKc8I8T4vsoZpJxRNAIUt4zXFlGDHXqfiSdIvo1fkFlgXpmGQBEBzITwEYtR9y8MHu3Vmz9Zqx3OhnyuGgJkm5KShlQbGGYOFzjS0ql0+A07uaXsVHj8p1QxB69TrrkEMOdZ+vTBL6dQGgA/97ndXLkV8U3pTJUyg/Jq/GSho+1Dp3HmIt/k3QSegiFCuVYhgCIXPyJE6X55/v8/Qzz7hLyTHGcPMhQTMkiMiHSiVPjE/Rk6CQ2iNGjPjjH/948UUXuReD5yTcLBAJkcfk+Ree11meePzxyC1JuwEZBtx+gQXNU+dKgpDCV8gkAkSNwev3fr+/XvnXM888c7vttpMx4FrwxPTh15N3S8QesWTigny1grFHJASxlTnZhpxvF0imcEIgqWbshkCkn2qBS18iTVzTMGfOLf+4xWUcl15ySYpkmqoYqEOB1dIICJybybgPzRXgLABmslphqbZt2vzPb3/r3s9C6VCnwsv1WlJCIvz1yitffvllOn6XXXa5+aabKquq3NJxxx23P/zwI+4w3W3X3b6c8aWuIsHvTvndRhtv5PhuHHzjjTe6YC1gmNyZpnsA5Zq+NVq3/uUvf+k2UkMxd3y514uocg8pIe7EeLeL+iSxXuoId1lkB83lIu5tc3c4h4d4yMf+EAVKeNUbS0tjJ8xVLekJHw8efPU11zi9nNp2mjpN4Kw6t/NxEroNlY8fBFeOwtbNIvGWGqCiiMrJvgQcJGd8OcOv7scH+FyfPm49cZW7K+AYQC5V69Zt8+OOOz6eee5MeEMx1Tn1lFPWXmedWkjmpUnsxgHtJCZGh6qGAWI9t+KqZvfuPSQgg9y188ADD+y1116x7rkKrsifXHGJetZS4IQY0JMYkKIaCVTNS7QIPodeooAjZfg/UoMpSq6YEvuhcKiAGduFC4Wl96h+XQlagLkEofQ8WbyC4zhCeiX6x6GKDeDsgD+Q/dOKCpEl6h6N7nE/PdtOyggqrVcsClhphAXcMPTxkI9HjBhuLgM/iGSYarsePXZxE2CNrMw1SbI9dHGtc3Bjg6Y4hyKSWoTAVzyxmn4pJ78e2TEhXjrqqKNOPfXU9ATGQN7EL5l03tgstYDG0hfj3sRsrfUt/wK4y4Fc8oQ/Y6XEzJs775NPhrq+RyoEBAcaBg8u2tGtnIjRrGnTk04+abfdd9MrAx1SZnCMR2J7+RVfU3HYhb219tBmaVdgaz4hSELAMOniuqb33/9iwhcaUfvFNH7FBzoE9vCT88WKieFIIjAjT8ZcxrUur5o3bz4yKjGmiXUJajKbZeyyzgNLJY+eHKHlTMCgr8MTvzJ6ItkBj/DFB6iZheRP/w/7A8VQy4HK95T4WvgLDa8ggBxRSpFPk8U04TWpsr/Q9lvTNVAhmZOKKQNnRqbKmwUhq/RhGivcQhnsG6ehRCJLmQebJEtaxQlpc+e5sDFYPEmytI7SFJ8lKbBaGgHYRh8++/dnE5J4V29K+kX2iwkT6DwmMxEQ+uhKPWGtUCY7Z/Yc5kW8F87o+dXXXjNuIKZp0CiasSwxTcJyP/LFEf3KEyOZgbteYaDDIMWIlZWV4l3NssYaaxAHgLjSF+86KZ0bAFs7jl6Xk5HBMGni5KnTwnV2XvWWcKMM8V2/nrCCVIhKwNMEROgYyQOTnDhIbkoNHL+Yd/Tde+65R2I37TZs0FAKN/YOGDCA4HMLKhHAJuAqlJcFAKxAyJhAVqnQ2ZLIADz0vtDbqyorDz/sMAbBYYcaqWf57Z977rnq6uoDDzgoXp332quv3nvvvY7Wp7bbtl0rkXKhFUAmd/yGbgmUkLKcwjtvXnlFUJ9KVOW58+ayKriIXXWvyu5f32ijzi+//ApKuigPnJV44OlRojkjFXFmLfqLYbGxkMaPGy+SgF6j9RoVoe5BqChFE0MVwaXUNMLMuGbNwi1EAZqTlRfmplpxC4C8O9q1YcNG8X6apH4lHELxOhwJ5s2dq/kxCQZwvRvIjRo25OZBZ8CpF0RADXAU7VO8WsYnD4I76h983ChNUxcJJtJNXtUZVl2tOGlc4VOvrMyVS9DDeIrQvujmFhkx8HRxwPDhw+vXL4cMOwDB3cvjqvs1WrUqT665kwwoGQPCyenCzMEGDQOSPokMFklFAxwBOn9S27ZtfQrKTGsWPEiEpAgrC5ylwf8Iri5Sws29w1q8cv31VRa9mVY+4UMZAyj3YS5YAAFF4H8VRzrgNdSMmTNVxyeRs2bPxswV5RWRgTWMvMiouPXWXW/N1q1DpcIxyfOHfjpUevdMulVPSXIJwE1idICb0l2GxJUSVeOChQsRAeRQhXnzZ8ycwcbVidK7/iAPh2lTp6q7T7JHhkH/HCkStlEd9hlSKGv+gvlli8swgIrw6ovQ1krUCoGGSQtqDlczwyfSEnDNim7hPsDx46TBdVpcepHSiIkUmzptmqUqqkMQISYL1X1LPkmjIpobrQBHEMDlUk0IhMs8S0sxiVsrw+2U9crUQnuxzxTBZorGYsPkosKIUvoLSEQAX6GSsjhgoAeyJza0BFDSlMoKkhDQevWQS6ERtxSagI+SecB1S5KYuYZcc2bXr1efiPBIoA+GLIFBcvy2YP6CUL05czlt8H88iFot3BpqLgB/RvaL2UPe4rM0CqyWRsDs2bMe7f1o4JiEGRNuD9IZz/l1mziLnviInLq0Wi8rTmfwWacFTXfS4cG9+eabXbtSeOg6tlMWFsfTUQrgUlluvOEG2fVsTte//e1vdPl9993ndlSfXJ8qpYeEvOOOO57r85wO4xp4A3TYultFGhYMZzvl8fzzz7smjnwNEj+ToWvdIz548CAobdKli6vNKysrKfVXX/1veXkF5wfH/nvvvfvW229jfTLCoJwgF1CQTm66wUhC92ABiHH7LOVBBeoeZIFr6V0Uu/0OO/BhMA7ckmd+1AwIVAspxZlh1kOV4d+nTx9GEoQNQf796L/XX2+9ddq3//Cjj6L6YRxQgW52B8Gw76OPeG0+9MngbOuttu7StYumeebpp4ePGNFlky5GHtIcccQRsTgWQLihJ5vRqysrqzKZV15/7bWDDzmkBhnCLRnM17RvElOIaq1wwh877bxTx44dKZ4333qLaNh6m61/eVRwzJiRISgJwZ8eeeTPf/ELcoSrRqPAhzRE83nz5rZo0VJdxASbLBG+qRh6v9/7N910kxki3AhD3ov/+c3/dNqwk2TuCdxtt91oMtXHKgzTo3/1q+tvuOGDfh+QXKppbQEPkCaeN3/+22+/DQ53tDbCSLvuuuuvf/1rzINo3E4O2x8zduybffuiPAxh4jJ7JVpBKQsW5ZFShEvlTzjhBLS+5957x44Z8+WMGVTmwQcf/Lvf/k6XueKvf+3bt68mu/Of/3zo4Yfx2N133405eXTcQO9mevTUTCIlo+TwRrdu3Y488sidd9qZCn7qP/+57PLLmXfEqxrBkw4zW8S/VYvaCX0mTZ7EHHz66aepMV9x4KGHBm88mBdddNGbb76p19x0883wdBVyr7PO6rjBBnqZXiMxBrvmmmueeeYZNfLg51NPOXXHnXZ86umndQ23D1jngfOp5/brtkfD/fbdj55ILMugdailO/95p1qo1KGHHHL9Dde/+OJL9Dp8eJUUhw00ulJYnMaL9OKZZ5xpDZ0sp5xyiqZ3V+SVV155wAEH4HBmOpgYktMO/tDDLXfddZc00YZm3FdWVboveJdddjnwgAPL6kVFVWLVyD/+8Q+MIbv7kWU0BcPzgcIwwVeq5pOOduIJJ3TuvJHIf913309/9rPTTz9dYsAFUO+3v/0tUsCTSiYc0G2TjTc+9bTTWC1qSlhJ2fP006uHDwfw57/4OZgw6Xl6WFqrjmYnyUNwNK5rBs/5wzldN+2K/00cPPjQQ5oSg+EE7YiSeMlCCn4+Ca659loNhAMJsdAqhU9+6C+OWYnauDcWwehEqB132CEao6SWpTnoDCDM8byCzCRiy9h5QwMn3dP6DF5JDKPX4O1XX3311ltvVTW5CDFOI3yok6Zd3riBBCPKXn/9dYYRIICjsw74wP33//vRR/Vi2eXSvsiuQxXWoBgupEAtKV/44fscHjtuXPB9JdwT2aLw10qTUSNHRXm9ErXQeXAegPooHyzZTWZ98EF/3KyfBJ7NlxvD0hOIspDdhcWJj0a9TxEmCU62ykU0vPTSS4aYpPbZvXoVoqpMCZROo6QWgKnck39zsp4muyKYDnvuuedDDz5kKuGCCy7Uf3Q8c5xUAiPADLpBxmuvvQaIADcDY0JPDi6ETIb0pGzOOOMMotCjLNON0pg/I48SnTcPwpZWSKZHSaDE+Ev0X3jhhWCSgy+88IJXKUkBU54ktcmFJ598UmIJ/vKXv5As9IqRkK8sEpVVHWMRMIn4TTfd9IILL+TOIcvGjB5jMEfcGJXCmYAANo7IAYG229zlraFtEowoiZQlPzCoSVIrJEFyFzv7xiiQFiGgn3rqqRHDhxswUxXMII37aO/enTbcsEePHnSqGEJZ6yCUgcztd9xhwhV66hghR/TYLtTSpIkTSRkU0BySaTjTPWpBSTOG2AEogFxaPLgo69c7vefpxm20LxGGDmaLLYS87LLLUFVxNCv07r3n3oYNG5x+ek8Vh0zvxx5jk2km8u7e++578j9Pdtlkk+49emhrYHlKIMbPRMNhuWuvuw5V6QmY3H///QpSCslLDhLKoaF/vO1WP9rSQNMQjp4wkMJXyDhi+Ah+I1YLhd21Sxca4o4777Tg4Oqrrtps883pUZRR3NZbbYXTDKY1N0kNrOIKCa5pzNNpdIXuuccehqGPP/74tddea+hMy5LyqPfUf55iyEKMTdO8RYvQQfLOp5eSSSWajNmNbahhNhOYUKUIrU3BQtxaAb077qA56DZwEn5IRsbJJAziS29gvf32O8yYMROqDBocrrgWzVvEynI10fTCHTfo2O+Dfmgbu6expew4ZIcddtCt2IJUPvyVq5WpVb3JJJ1Oh8Ja/L1331OpyspKKhkagSEzmaqqKiserh4+nN2jIppmnbXXHj1qlB6k9ZkaW3TrxgiWnbo1xtCCep/pMF2PacggICW0L8cYDoSYXK5ebNO2LUWrXyhIccpSo7332eeJJx7X76IlZ91AdKuoxb///W+48U2y2smx+x+4/48b/FFNNRy6MeDcbf3Qww/p7FttueV6661PsAwZMgTpdIQNO3Xikaoj1tKGhgAD4i9X/EUvVkGjC6zFzEKxc/7wh4N+8hPy09qC9997/8ADD9h6623wlT514QUX/uGcP2CwCAf+xvdMBHQw97f77rsfc8wxBMK111xjXH/euedCwA4CBJA+EjZmNNzTp/ho0W2TjTd56+23Hn/sMWRUdyvDdKW/33ILQiEI/NkHKdrFwJIUWC2NAMynmakKD/FRp1ZY3zg+7Y11vi7PK6VuGBrWBZWWElUsSsqM6gryK68UdfQ0/FUwJfAU6ijYYkpyRLwiDDg23mSTr8yefNAhz+p1FnYnVowtouT1e9111x573HHWGDKfDeWpiv4ffsjbRq4pQhX0eRrUKxlNhfAW0FIG7sQZ3WDISIqRJnyxehd6Sk/iwJAwYisQ3F6NyKGaYigMH1YL8cTW5l1wo/o2227j2nLeDnu0DHQQjeYjYRcuWHjfffcaxzDhCWvjqksvvVRFevd+lA6jUZQLH5fB667U88QJE2BuaCU+Fhr9pV9+OV1LpDgI+Ao4Ew1tIUjOyliYoE44QjMepYSin2OQvQcDB1k+bYgfRhXDhlFaGjrNSKhdccUVCBgUpJXMl11m+KheOUmUkISOZwcAYowoJQqjCTKKjGoJ2Y3S3EavaLSiTphHB+x/gDklFGZFmRjCrdaOsVyNYw468CCD2h133HHUyJF9+7555JE/1XZKxITmuZCI1hk5auSzzz43cNCgPffaC0PCXIlGmayoiLxpGgRHExTWUmedeZYERvAkbBz7br3lVocdfrjEEhTSjTKgpfY/4IAzevYMBE+mYP9yxRW01O23306my0JFXXrZZYBjmMlTphiUG7RRaSndBCztxJOUrrEsEwfxO1R1YPo8TsrvsQcbgpfimaef6dq1q4xqFyyA/KSy7G/07cv06dG9BxtCPLSxaGxBv4wDepT5Mmdu8FezA1gJqJ32x0JMmEQ7bL+9ZsXMTLrDDzs8uvRxzoMPPqhR+FSkD0o7sa2Tv+Fn4cIFO+64+58u/lP98voc4+xsPY6DhFsFk0OY7jlg//1Lg+VfdvbZvbgew1LffE9RKcCZZf+49VZ+eGyzcbLq4obrr6fa1YvVqJSdEi4iBDAMlQw444mcYdUZy7IbmI+kBIVKg9K1u+2+u26FOFrHDwhKZATwQGDOwYM/PuTgQ1QQ0WBoqIAn7f7QZOggo36NAzlpQAZfgjitwLwjE156+WW23b777IN/2F6Y8KtGzwoFn/LWl7HWQQcdFPEUv/566592+mls1h132qn/B/3feP0NjMeWxbq+skUUgZKkFsaGP+px3rJTzV0abkWCw9PcDcEYTLTSUt1KbaNDNFbZLwLwq/EQoI/6du/R3fotvc+YhNTiubnr7rv9hvZF5NjAshWfpVFgtTQCWrZoQduRmxhryUrpFXgudpIlv35tDJgeM/9g41FMhnGJM+rKqIjcjAnYpcsDSjetw4LUs+5HleJdv8sCkijgWTNnseL1OoKeDtAlvFLnr73++tm//z0xauKAfmVlA6UjiQldbvFii5JQifj26hMFTHBTdQx2I8LzzjtPh6HnZsz4kiUugT7PkFc7Koeo4nggCwrRSytMdnBW63UGDR06drjh+hvWW29d8pBi+7D/hwwLwAnxKVOn/OfJp9SXGOrapesGHTv+q6qK7h0y5BOzmApSfXKBn5nxLplBnuIQJxQajKdMnI80rVvYmkhB5FG9sov3mHnhQixEtTCcGmGa0pQ2sIRjp04bDhgwcNtttgGEiCTyGFKEb5qx/TrrSObVVwOXK/96pQkOQygsEXggWZqkvvDkRCVDpRSvIVhjHlh5RX+S2CfTEKSe0TNrKfBDNsvI4HflsWfNgIAZNMpVV18V4Yz/4gv+VUNAlaVxqRPxZoIk69p106eeelq8IuCGbigpIEF8WFGsZANHDa0FGzdpPHbsGJ/kDcRKFr1ij6BIClZpgcMnRB8YAhK4XM1K23SzzbiRqChU0tMUxLxARkBg1XnDDYEleevIWWSRwFiZBSCB8BY/2oJSZK9w4InHKhAGjQGkuSEWk8GKt8GUExPhmmuv4aI3JuaAwSQSxIfpAG0HR2BCSuKf/7wTE+qtqgNgPlXNX3VRhFaTS410ATzg1UQzHGLRiCmvB6qSAVWvXn1tF9dDIDsNDaJm8ku1yGj6jHUoH/ugQYOGrFgFwT+KhQgtcDJ9mQnL2cDU0BMnTVKiIfvll18mL2hjx41VJt8PJW3yAunYVSxFRL7wggtiXwBWD8VOur9HAFi5oB3xV5ywUqJvQALxIkXQ91pKQWwyghE/TJ0yVVvopGBqO8hIr0aaRjvC0wNaKGUJM1GMR9Eg82vCVh9h/UdjQvzO3XfGfqwu7Gd0Lhn3SZQ/vrLnuFJ89UQjAKNec/XV3Esa/dxzzglgFy3ioZRF7zjjzDMZRrjIAzdDO3UBJ+BQVmbpgDpOnTJFJ9IWmGTCF19YJytBfNBKytBV64jgUIniU0OB1dIIMDmNLQytMKv2TmqDHwJ3elLHck0tVygUlkXrQoF9yD58ucfue3AkGvFQe8SxTkJ4LRfIgFTAKk0swkMpsmAoDGMaripPnN5Lk+UCSb4hnwzRMdSUOjeCV7QHDsSZZMxw9UUKYQXxQFpEJpzI8bC2PJSXSHyDwttuvfWFF1/k2zRNqB8ywPkDiHV1lEUdCT4B/lK/NJnpEIH0CSQpkLNw8In4CC6TZO13EB/ZIIyC8CoJSnHipLBV11ht9z12l3f27Dl+QQ6ETbYGGSuTsLEdCT5f9edciSUls+fMASR25hQNpaybjOnFCCvOICz9ujwBxcmlLJmtV5IFkp7CvHG5E/jiVccAC8FlCfiQ6UliCiAu7gOQ1ASFN5KSI+AkQ3bpPVFkC8hF8yhFuQFCEuMzQUyMoiRNDJIEbAVSu2WrVkG6J49mQmefApUSyMKhZfOrw5QY29Fwn1TluzJ8FMlwifompI8lQinBP0p8CPikdgbWaqv1A85JJKyEAdFk0igrEkTYoxYxUOd3cqLqqJzCeNpCPYJZGUrLLREvTCAMOq8UtwqCcCDhTxqRejAvHoyn5KHvYwAmKFZevyI1VWu1X0yU/KJqQDtpymjYqQhzx5MQMJA1kjEkTygDVcRCDdVnOoTf5BEwtOUBuu9f/7J/WBxqw5DeigVKAJQn9+pPUl9/negAVQmoyYULqVjBjJ26hxxysNqFPGVlDH37a9h6VFqXrl1jg2Ij+EidjEwCfOUCGH9DQckhQhJIlqAZmNZrjAkJkkfdxfjkzciBNKuurnYyh+WWUZjk0n3dH0CsAQTHKEJarg5huJE5XjEqbiGj2AEaKBI8BelVWSZcYowmsJpBW8ilMfVGwPUgrgUTGVxKyFtVVWXVlBmHOnKABfPsM8+8+957CgJTZ8SuuZ6VQA+NGNrzq/giReqHHlgtjQCNffjhh9PKBbwb2hoDWel72GGHRTW2km3LbtSFAEu6L5jrV66///77cwYylvkDfNU5I2/5+rWlSIkNY0q/HuqWSWtmEZdzS5526qlxQWwOVCg7gI1FJBo2OCTY0bpHFAcSGLFJw5iAVcTHJ7vqTzzx1xGOQiOE+Kq/6UWGVnwJvJcEq6GAIQjnQRwrEB9RiJBW4OvAZeE64toVLHiLSEZ8YhExJqlr2B8VlaVyeWshH9MohTMwDETmBPdDwDAv1CxTB83McYhPxBw1Jnurli0jYhGC3zXbtOEMFNDnFVpYzVyaQMACXFP6i8wLhVyu/CsJmsIvDEhGjxJqYeqknjqVggAfadZeu53R8/HHHx9XM8RcKiiREW00AUTW4JGWFdkm6u9Mia2t2vG0006DQ5SksVIkZqRAzJdWM9A5QohFJuGoMKh/EwfkMoe/tjaIN0cb28WvJyaL+QAUE8IlJaSwdQwCEyZOSID7WGK2Av1lab1Ga79MtyStnhYzLV28sl3Qp6BvBn4OFkbYYdEs7VYBxBJPrCOhTx2iibUadBX+5ImRNodtnrE5S0ysrNW2LVIDXtiyacrCEiLwwpgQDpXIqcxYn5QmKcBCaDwB4CAFIx5NzDozxEVGlqgpIskTM4oUsOmDAxOe2sViT+kTScOADtYMJAyLb7nlFhYn+YavLNjk7op50RuEyEg1RQTsl/KkCYIEKPiexnP4X3/99cYzRCW3H68+WVSQ8OuDMFd3lgoDkaUONWYN1lUpFkCzZk2xLpr4quMUgotfGzZsFCMlsyDaSgjC/N777jVLgj7wZGlxlRmo8M/dd++9SLHxRhtv2Dl4nuJjo/INN9zAr2luxcLStdq1w+fMgvz34t8VoECwKFe7B8913rAz7zF/gD4T+UZHIov/eP75DPM4jPtG9SoQc5jSiNnwHUAyMfTGpD/qYJhemIFPYMWnQPblx1th3jo8oU8m4pw6+fWJJ3IhEiWW43700YAgwnJPckJLlHf27S5cyE+oCDLUiN/EhJU1uo3pCcpbdpOISgQw6iFjlFdfexUkxpDCoGcLwKRJk7kKzj33XJMIcT2wnkmfQYZ7gCTVV4VfeeUVK9dMPUrs1XAWVrGmedwI/1iVEAE4QcAAJw11V1kk1gozZ85il0yaPBkCHI/iRVq+/keTBOeea+2b1ebEevAWeAqklKEPCE5fCKPqhALBJb5gwQadOhXQJ2RSbhjYJUQDP0TVfmCpiXKfwqnDNWmACmImDmpD+flPSWQKxrITRXvVBFaDA8ezyhSTL5SepNtww87axeyMN+JMjWTxKF04gRd+IkxVk7GGfAkz+GowW9WhAzuDh8ZCNhl5qi19t2JLRhMimlKhKZDQIkgd3wMpgvKTngdF0U89/RQr6nj8esIJWAIw6SMOfmPNg4GS7FvzyQNSpA+GFDbLa6Fg2PyyeDEbwqA88XXDPfjwA6h82cK5uuVJGJHimPGFr5gmEwPOgI8GWOXANxC51Ffl1s4UswZVhzmZp63XWMMUEj43H8Hyzn3OZAxb4e9VfW3uAMpyTq9aNfqWhFO8Yq44ggw9d/FiO8hD4oSeYoBKO2xAKXkiTSKcPKh8nTMZikefYkk778hyziOPOIJlEzPmE6tzjkihxZW6OCzUV5bFgcBaEiSGpsczjJjoZVGoybiPBw82Qrjs0kt5C2g+c2cRGXBk1MpegRIufJQbO4g1nlpWd859zbdPYWL8jtPAsT7Gghg+DGVJkCIPlK+AeJYsK4JCOZ9MzSjMMiDtFTZoZDJvv/UWgbDGGq2bN2tmIkAyYye92CcphQkKp56QVxGOXyxh3N+hquruu+/in0AZuRwCzSu5UefOZ5155tbbbINEFgZFUsSM06ZPx6hoddWVV1q/SVjBX4K0FgLgSOwXzLS4YmBJCqyWngDV0Ms232xzy16wnc0ChEfbtdZiPNI6vqassGSFvzYm6bdEYxhbEMcxPfll3ZaJcOyOpWKXU0zkS54rS1VjoebzDjv0MKKZpJU3QAvI1gxARcpFtRMiLH0CznLZJ594okmydiZCBkpn5hzLLMrEw0/oIasCqefKykqT0+bsLVDQf5577lmJLVNSd33JwJFZrXNSqBQtFcUPz9lozptMcSoq37v4KFyMyA1KqPDYeWy2MV73lXg1LjThCqUE2aC91JpQiNQQJtm4JYiz4dXVJ598svT6JNzgzySyyNxG7Vf++9999t7bQiqPvTqqrLLDhg077rjjCHfCN1F4Yb42gmVmgfPxx0OYU+u0b2+GnkwkK7ffbruYoPA3Uruw2xd+jWFpYrLYUrGxxNC0UZ+ZZdE20Q6oA0qDtm3bpl27tRk0PLSGGrvtths9r+5BrCS6c68990K022+73ey7lV9WM3kFx9r1ddZeR+1C1RJtR0jn5GmiTSI9pfQguHGPFRjMQSYaoWxEyAsqO7vNV2X5RViYawMIeKgWdfRmaygld8s/brH9UhpH3yjBkkOSnfDFmdZ8RCLItf76lSDYOaIKmunEE06EgHBUcVQC/Ck5NMdC1L8ho4N02G3KwhU5eZrX3hwesAm87fGTjye1OW/ZRoabBLSM1gkaLx5x5JFYUYkh46Iwi5+q7QAheWBFtbNWyfc2a675Qf/+aGvc7KOMfm3kw3tODjDfwe3BpyVloEzSlJHgknnN1XrRIo4oBKRgkGfSpImWWzIsMAAq3XnHHebp7Q6VPsfeobOGgiJbipcr4Xcmb2gCDcRCUiNtRP1rJkYSi/yIww9PvTixy4OCpR2eYVkia1uyvffep0+f5995+x3H7pruUZCZshHDh994499GjByB2pwoqK2II4YOvfnvfzcDyOI3pEY3+Nxz793bfvpjHceMSXDb5GmuvViocLOmhABUEPoDDvNQk/wjgRjEN+OOxyysQQTChDNy9uxZgVxJCyrdfLzhhPWbsvPKSAYGgBhAGKGwHFD41qyNbRTIa70t4WP6RpjocFYYgUzscORAFTtR4/oRQbrPvvu2b79ORCpCg7zpfx4s20fxm1XfxB2SGvbgYWs+zLIBmOO0mDObZUKNHDHC8WVmT958683PP/uMDa29fDfphgiEpBIZJRaHdrV0VAXzFIswir+RAqulERCaM3ksMzngwAO9YtAYmQZWuoFBwEmO6AJBgLnuVw+0Oky3v+uuu4kL2s5X7M4VYbjjTD0sDgFCgswKIqCkxMhQVyEj9BadT3phQ0ndAOsbTlrzwjS+4447rIYlgQ4hxQAAQABJREFUfPfae29F04K+RgEkSwzQ91TIY48/TumKBJYjzsq1Z559dsyYsZbQs064Rh588IHXX3+DeDrld7/TbUgK8pQO48Omp3v06EEOftCvn46g23Cj2XbsCBRdSymKJrB4AohsSFpV6+B9BTVu3MSvR88PEqRePbX2SwuBSQSQ10wKCh6VdH6jGVRCEwhLf8KJJ3IJmNxVQfEK0mRhmVs2a1uBuujJoAl4QNbzOSRMEzICDEMHDBy45Y9+FHz++jb65ts9pve7ZEz8hD8MoAPl84aaeK+eXF4VTuSIVwGNEls59zWT6dChw5NP/odWBqGqqrJnzzOccBA9TNJLLOW6661L3zOtrLF4OBlwED3HHnusUWxC0jD+M9NJUwZFG+eVg3UYJu8xg1/AgWJOXXD++U6otOYj4qN0fuaWLVo69iRQO1FRGAMjoZJA1LxGfd04vrbYgiAmte3vOvyIwwd/PNhuq1d40SsqdunRQ/ZYa7+0KR1v8Saz7Ec/2oImxgkpiXA175rNY5TWI2am69VzWBN7zpAOVhBWLt4Q9kSDIADniqgtWxXEZYVFqQSNDj4ViFB777V3gnk4LI8BIG8wcwueqF2oEwvIHYpAprMJ2KlW9QcrI1HPNPoDDz6olwG1xRbdTj0l7JinvjSJbpbgE6iqgHT5hXqpOMcy5wRS77PPvnrH4Ycf1rv3Y45twI177bknaPIGYzHZbBKyJwMAAet1PNBkCpj5NoUnRucCiv9m5IiRVsDpAowwDSFZpKcKah3+dp90CvCPP/54cxyXX3b57XfcTjU++8yzymLHS+NsH3LAWgonMXTs0EGhrlSw3ZdkQECSh4nJyn/xhRd1cI401aFZZY96G6rUrS7GjHBiwU9/9lObCWGiRukSioiYX9zoFIGeZ/Q0WsA2DAiiAM640VePA8GYJixFz6677qrukI+fEustWACR/3VeDW1hP4ZRR7yk21580cU9dukhAYAa/bbbbiMlJFAESUXT77LLLtFaAkensNFDfa0NIsT+dPHFTB9nCYjRrdSLxcMoMVgyZUYORDT8rrlmG3RjJJGN4GiLXxx1FJUfEmQzRi+2L5lbuTTxqTChAj6lYTyWs3RSQMVAoNjq/BCyWjcwUvLEwDesED8XCCxlx1GRQfpAClAMHcldKSbGS+A1TRORienFT5k8GYbxNWJIaliJE9PHxMwHFnQKUCR7QqQYXoeYd+GCoEKsFX/l5VfIsk+GDJFM95g5Yyb3mt+IkjQTvphg9A9JYbloaOmNv71KD1vjM2qAZRAGPknVDAgMjHACH4aj3CQAIX4FBw5G5BETch9ZrL8FLa5R8vpeMmhIUYUYqUe4MMBjMjHoRqwQBD6leQXUNKIqHB/G+7bbbEt2KMsWfHupDUryH1fsr3JVEHyBsKMsWWMIhNgUkJqGmCRlbHev1cOqjS+VLrvRsPYSGeubZoyvsnDAitTKNl+xGMTExor1AsGrxBGTuNo/JoifNIrSxcQW9FtdXa2ZRHqkATx+AhBNxMRPfn2K2UXKxWyNmPilmeyuFvDALbYOcBGorZjqpRQAISx7yqXBhE1KtBIecTyKgEDERBZNJpM0sYIWycdPoaSlPZiHazeUkhhJGiJmDxM9ST9aMhN+Bhxj09lKVHpC1QU0nAGlXTBQshZMg6YkAiTSOYUml2Tpq4BehidBNiMADY918ggFjsQeRPCA6aQ6XwOtEiKHpIvDlJ9XS+HYx3RwaJs8I9HfwTS5//6QMnlixphAgXJpAq9KCTRHikWLRKpFTA9VRddBOCRO8EnRGDN6NLKkdEvjAREGQavBM8JMu2R89QsBPTG+ao7h1cPZ2V4DYyS8EcJ5viI0YC6LTzHep/igZEQVJtL4Kpn0mEq48BHvEaNrEH0xe6h+wvN+fVLNwiyxymIUAb0vpwdJGNsr/M23CLAQU1lMgsfS+JA4PosDi+qVadXyH4p/61Ig59Au2kM/WAroRYSaSQGjQFMe/7t0ILm4BA2AXnrxpQMPOrB9+3Wu/OtVJkS+S6yGDRtmqZctyKZXvstyi2UtgwKkvJnsCy+8kPvK1NIyUn7TT7W9Gim0uH9n3Nhx55x7jnkEvGGEasBK+Vm9SP8ZWHN4pOmLARSgbTgAiqT4nlNgtZwO+J7TdPVCjyCLHdVCpf91zE2+cAYaV3EyO87M9vomTcNh+N+lNImuUb7N/3VqFBFIKUCTYNTo4f92meGrdFYSb3r+6KOPNmPihJ9GjRqadjDcdLqikyqKFkDaWGmgaAGkpPg+B4qegO9z63wXuPEi8kzy7FVWVaUzvt9FwV9RBm9hkPJhkVKY+I7zkd+u3K+NCU8jB2N6i893WXRtRIpvNRTQCrZLOIHYohlT0d+9duGKYIVACCZhUu/LLy18sXBYr7FawpqS+LUG42KoSIHVhAJFI2A1aagimkUKFClQpECRAkUKrGoKFH2eq5qiRXhFChQpUKRAkQJFCqwmFCgaAatJQxXRLFKgSIEiBYoUKFJgVVOgaASsaooW4RUpUKRAkQJFChQpsJpQoGgErCYNVUSzSIEiBYoUKFKgSIFVTYGiEbCqKVqEV6RAkQJFChQpUKTAakKBohHwXTSUXWehGDveki1G4c//rce+Kc+qrZPjwSLMBPZXAvc1nhdWt/SvzJEk/LqvEWwhzIiGspxxJt6r3ZVLTSZNYcZlhJ2PBsIyEnyTTwFhqEDm2yrhm2C32ucN5E2etLm9pbWKkemnXLxza5M0hSl9SsD4FgLxBL2QPhvud65JXwM7B6z4p0iBVUKBModwrRJARSDLoEBuD7ELLBIR8N3vcl4Gbt/8k0PTnEXv1BTnpayq3dK0V/8PP4RbugM7JZriPv/sc6+2jKMnQek0YmZWuFIlf5uAQ2Srh1c7RdXJrEs+IMAT5OrqagfH2nfuSelAtbucxu0pjRo2KoxXoufjwR8ff8LxDp93U4ud4s5DdcJ/OD8//0gDApTcKBGvjs1/Wcrf9Dh0uZby+RtH3XPvvc7KhWp6MnwEiW4wDMchNGoUD8n/xkV9TwG4IMdh2OO/+KIOG3jHBoywpskdgCuBfeCGkhJX3YDjCpxAYedb5M+YQmE3cTjGu1HjHIXFSO+sA9diTZ4yBbviPRc94LEmjZv4FKyA5MD/EM5m3Rpw9tlnu5VjrbXWEpPez7QSqBazFCmwDAoUTwxcBnFWwafY80PvLgl2vdtxXFiy1VZb5fr0tyL5VwHaKwTC3SHOUHMxues63A+0Qnm/KrET3V0uvvnmm7tTpEXt01jdouRWkuOOO85VPbKPHjX6tNNOc3eOq27CMX+JNnXvDpRclI7+RHOdUurVr3f88Sc4kdCVdC+//NKFF17Uo0ePmEZ6Fx+Az0S47tpr3WdaKHwN7K659honljvCSEo3mjMXXPvmTpQgpvOPE/hdgdpxgw1c9Nwofz1S/mOtvwC6XqVlixbb77BDrQ+r4gVKbibULq4+qqPpncjkggYH8DmF90dbbrkqSvuewnAnU7y9hllZC8WkvbDNueecE++zqfV1OV5i18YD7gN0dVCtg7ayGYagu21wwrnnnLvTzjuRAJqDoXzLP/7uYioS4Jw//OFPl/zJzd2/+c1vXCzu8EF3hLrI46dH/pRNKbHTCd3x4e4PB2i6IwdGhTy2HAgWkxQpsFwUKBoByyJTUCH5p04PjCIg/uaT5P4WRubCiYIYM2YM7aJLuxBMUp+iaKiT/Zu+JgZHHSA1KIUyQ6XS6nA/phoiQSmMZkIgwRDi6eAmF1Og7WJMHIID4kYyMU5Zj8f9havcXMPq+sGC679iFsqvzthUfK0nuY/RxWhXXnXVeeedFyHHBHSw62dYCfHVRSJObnepCVTTqrsd0b1qrtOVRl1edAf8+PEktdvGEqRKXVVHEbqkfOrUadG9b1AIpWefe85FSmSuaxRcH1wLpUyGjH733Xe6d+/BE4CAjo3jbLjkkkuqkicS2a/aTXcL1IwZNdmz7qBbBL201pJ5FO3KBte4bbf99l7hFhB2DW5+QFkDIakIyC5TYcSoqlD4mow+qRx2CZQAUa/02reo+WKL1wHlciDFuba1MD4NKygiw8UScQZZODSc5qx9+1/MJYGAX4+U+EEgBzAJQc+TFpEGfBQffyOE9FP6qtbCys0lRoeEh4MxXRJu+0xgLwE8m3E9XSBaVoLSfu+/P2jwYDxAbasUKoUreuvVQ71CLZtiUsNPobAapNxwkTKkxJ6IZ03tSsIhxzNnzsCZ8+aHK6y8oonbj+6//wGWpVubmzVrznPmk4t9QdBNjBDuuOMOl4sCzpXlWkIXWbkc0r3bzZo209w18GtwKYaKFPimFCgaAUuhYBR8+qdvsYcTGYkoyd2HEWWWT/q23xAoMQYNoIT9SuwREfUfuUzKuMWMUCD342vIlZf1EisUWMnEp71d2Celx/tLhNMsoTDFmaJesIDAjVmkBydAcLlqJhsHrJKlXwVyTogku5/UAogRUf3E9PE3nzAMbgCEfKy10UqAW1JiRO7+8iaNGzds1IhuzsnHRG7GLDXCNIEV8mQy6ABaEkxLqAnMnxfm3V1y55Ze0pDQlDj/OVA4fVQ2CSflCSV/3c26//77uw1ZdSQYlzx0bXQe1KGhNpNPyvfef/+KK66gb0484YSdd9opLSIGwEnGlKXbbL11OvWgRbTp+eef7zB5XpBUnQSAtRUeTgAhLAJITIHAY4liYEkA4lP81dZLWgBa3zXV0AazrD5mWEh1ZRfhnxI3srl5OjZiZI9IKAAlDhVbqSeSCE6KxJpgKN7VvxnmB3Jl3UgL/zJ3JqbtEusbCsXMugCLwS3VUMTk8VttTMDxxEr5IpfrbMXEWqQ5YsAtvgyQkkVMnyw0wAz8LW0mdD1Z0K02+PAmictwo58GHM6hgYMGGYVz3kStH7MIx94nDXxgHn0Dsuc6S9K1xUsgSYOKisWLgnBYqjEUYSa/SfLkR73cz+mqIeQK3pcf/Ug0npk8aXKz5s2ilOA2YF5EyhMmauRmL9dv/vvf//7Vr36VoFAAuxgsUmAVUaBoBNQlpO5KuhC7LpF1j+2okSNd4OrOcreqG1nqigsWLjTL2O+DDwxJOY1NuG6zzTYm9rwaubLr119//bfefHPipEkOFdfb+bRJGVOwr7/xhuGXIWmf5/qUV5TvtNNO4qdNnfrue++ZuSTITP65LLxxk8bi+QmHDRvm7lQH+1NhHInAUmO8jsQHpKmT995738y3QXCLFi0MbeN15sRT/w/7y2u4TFe53aRL167kNcnMXFAjF3QqSxbjDCPaQg1Nh7lE3Byni8/jhSiGs2+++Sa0DznkEFJJHV999VVzyZQ94FtuuWWnTp2qq6ulWW+99Qy+VdnsALRdWjpo8CBCzbhnm623qepQFQlN9/PS86KD2a5du/XWXa+hufdGjcx95sRfki6K16qqDsh15513VlVV7ZB3mOeUft12W8p7UD/5J+iLRDFH6sVWTpo6B48zlvfeRcknnHii29yjXM7nDn/V3U3Hat1jl12CegnaMIsBxHz04Ue33377aaeeig0SmV9LYuMlVzW61nna9Knl5RVsGgyjssOqq99++20E0frmOKjbTTfbDFn69++PMtgjosrZ8MrLL2+z7bYy4ooBH3102OGHmzDmKza1pF00NFXhHkjzTRCQEbkKMV+ucGI8SYk3rHVwUZ4bh+ldmPCZU13Qs/LDp027bjps2OejRo9WfV/33mvvoICTGg+vruYsGTtuHDbQZaCnmh2qqkyBAygxDonI4GpV2DaplBhfP/zwQ6SAv5vjd91tt6B9SzJ08yA9Z9AgV+jiWH2tWdOmFQ0adOjQga3pK5TwMzuM81xfC/xc8EQCpi0O4dg6ArlUSa2xPR4eNHCQO7zFM+b23GPPYHEl/MPqrR5W/eFHH1LS6KCTYkXrUQrK+cqggtDTZxdjXn31VbJza3Xfubuq+QR5HLXTjjua8Or7xhtDkivCn3/+efVydRa5oXOp8gsvvHDMMcfEWnxlScUPRQqsLAWKRkBdygUxURouB7v55puffvppIoC48cqLSNBL/cQTT1gNZEUYQWAY17RJk+OOP54sNnjl7qMdASBTSBaJSaVevXqZl+Xooyndv04N0wdsBTrYOOlPl1xCbiqFgJDlkUcevujCiyurKmnKe+65hyRVEOEIrOL22GOPiy++OMqyG2680XQyfUzgKpGutYyIdjFuoIYtB4P2ggXzmzZt9utf/xp6tNrD//rXP/955+zZc4haMKmKW265JcxlJhOWsFXNhx56iGYyYRGNAOVCw0QGCMq97777qGQB+Cta7c4991w67PLLLzfyJuJVhH+bvUIhyUWQGgV27NDRVPq6667LyUnREnNKZ+hQeNCGJ2H358v/zDBKGyMO7Lbb7scNGjQ0c3/TTTdt0LFjm7Zt1TRNs5yBmCUR6BAv8OUkNgFhDBO2jlmAwYMGHXvccUZd0ZVdp6wRw0fw5ai4VWCJhgqY0EzIfvHFFz322GOczDwiItNSIob33HvPQw89OH78F5pYlanGSy+5ZNttf/ziCy/88667pKH/GG2qTENo7muuvma33Xejy2P2T4YMufbaa88480x2EhPtLhfXfvmlZmJgVVUG28i0NE+yljImZppY06A5VtQOSKyaMGKnrq6//noMPHfOHCpSffHnBRdcAJlnn32md+/HQJ48adK06dPpKoQa+sknPc84w1dWyFm9etHuGBIjiWE0MwKOP/54lNLuuBe2kaoWzV1z9dVnnx0u5IVw7FD4Xy0YVePGj//ZT39m1oNxg+HRBMfOnDEDD8OHvj+7Vy8q/8prrqEgWQCtW7fG8O3WbnfJny4x3VZo10Ya+g02RV73B7ZMmklLIVrfvn1vvPFGxhaFrVLw79PnuTPPPIsClkx3uOqqq3zVQFEasKtdeM0aiMBzDFYwoxHj01+10E3gaY6JRQURj1xaU4fCTvrLZZdfzsgQf9lllyGay6wtNGA24RbsMW/uvAbfg0s+0xoVA/+XKFAzVPq/VKtvUpcgF0pLDa+JdVOGfd/oS2n9+c9/5pEmI0jkv//979QbVcdEIL/arrUWFTWJql4wn+z77LPPlM4aMJm3ww7bs+5feulFGpGOsQKofnn5XnvtJdfDDz9McklmkEc4Ege8hb/4xS8++mjAbbffRhRRk6BRtFa9cTDITlk+/thjnw79lPh4+eWXWSTwtMiAbXHP3fdwErAqDNRYGwTZ/f+6H9q3/uNWw0SlGC2RsERt48ZNZHzu2edo1qOOOooQB82TUkxeki599UmMR4yqGbCiDzujz3PPWXLF384DUZhGMi4KEpNG5DN4+OFHjF8/+/wzdolPo0aPIvVYNg/cf/+TTzxhshN6iGyLSnRop+XGQHn9ckTr3r270aDFAdEHW4htnfTLfs2rgFwqcIh1eo6T1kQs42yvvfc++ldHM7aWWsSUKZO5UgjlwlKk3GTjjS+66GJ6hfhWcV9RU9OkKodCXXPNNlpKK/fs2ZMyuJSgLys96pe/tHYMU+22225I+uijj/bo3iPoIf+S4WMsiAOcLyrEhFmezNx581xdLwvNdNnll82aOWv8+HGYCpM8/ngwRIZ8PEQg6LwVeYKxlrABu3bOnNmUHK8DrtMu2BXbAwYvPMlRdNrpp2tcSwuZNf+6/36r3HGFmZTPPvv02GOPoZjxiWY1fGe+HHLwwXiPOyRyUURK+oWLXBdpyqxEb1IK3/hLL75ETVL5rNux48ZKaWGjngiy3vG3m25iH+gR6LzFj370/AsvYCoa1BwNu5yRMXXK1HPOOSfA//qqhxSxvjjQglaG7Jlnnska0KmZF88//wJjSxqYIwX75ve//72vEDOb8OabfW/5+99ZtBIs+0Eu3Y2ZqFJ47NBDDo2FxlzaNDRrJsMfhgn51dijKvXkk09CxqfoZ4KDha4otuyyil+LFFg5ChSNgLp0i71Ul9P3jAmGfjpUCiqWqibZ+775JiFu5Lp2u7VJfC5innM6/qMBA2JGWXT7jTpvtGbr1qedehrpNmrUaIM2+sbAqF5ZWeNGjZoTZs2a6eQPPvRQo8aNDY/oCaKwR48eNH3w5E+fThwAeFjyELUQMMSBwMBBA5kIDz7wgILYJXEKoOMGHa2Np5/Ia0Mi86CmkLmLbX+CNuC8jmpE3sk14YsvLDLiUKU5QC6sfxQ0yl2qxIkOCVnGjB49ffqXBqbHHHtsUN4F0inkzWRgdeoppxjlb9BpAwiYZSdGFcQWUS+KqvWaa6op+8DAzijc71cJbgM1M7jGXmya2++43Ugx4rZUDAvrsjzhKIJpNW1d38ATzUvDFDg6x9YsBDJ7zhzmURwdpvHQMH9squjIn/4UM9DxsaZSplRh4mCJzTbdFK0YNMwmTUMjEvG4AvXE8yhwvdDCcZAa4eemMHIvwV1jvA43/h7zylp5g44bdNqw0x133Hn+H//Idmm/7roH7H8A5Tpx4iSWRIrkcgXyitNQ9bHej3HyK07b0eWoNPTTTwFhAyGLkf1+++7XoKLBPnvvowUx/5BPgolA5bds2WrzzbsZtatO9513lhi/BR9MgZWZzstEXV1WVspTdd+99227zTYmwo484kjDX4qf0wVMTWOUvGGnTuCYY1KcSNxieoslhBQMXyyBnsblfHUjRgwf+knosMt4VDS4PZKHWfPG62/A3Mj7Jz/5iYZQOgUsYL5PT7Q4f9zYsWiy3377aaw2bdpg7Pr1w9coGZZRkE9a2eZEGGItaLMJluRb+Jj8Qs/Ideu2b496ysL5OKRVy5byMn2WXVDxa5ECK02B4nTAUkhH6lHSXOJco4YIlJawRTokO4ue1CM1/nDOH7zSiF51dYqWaAaLbtPbSRm6ga1AeNENcQwUFGQiA4hFfxkTnMO88Xzy+j89RPQQEywGityAEDQWQ9RGRDzPgfGgLGSxPc6KJvUi9qDFZCYagDLb+s477whIA2FpDO8AJ8gINY7Hrl27dOu2BdFGqEkWgYTfxPSpeS0IKcKsv8GKodL/+8MfCF/P4YcfDv9UpEpuYCclNZBbWpXNGvdLoHa+yk60DRg4gFOBAoOkzfTRjikoqlYQHZR7wgknXH7ZZVQpV7CaxsrWSrdSL1D1HH7YYepyxV//ys7Q7r3OOmupwKSMJE1LF4iRWvlnP/uZ2Wu6wYgfWQhunyIcyTTrwAEDLALATkwxcObMnqN1mEdIZqVbrhUkTZojMgwI6YgVrKC9ssFKsNJNXsDZKn5lmjJtGq814+zzYcOAYq4ZeQcLY8Uf2TXWkCGDeOzpHqwOBjXmFwuBmeh1aJY2a9aU4QJJ3OUrQ42R1/+DD2hrud59711WIAaLJIJ9YaXg7FGpSCVetIEfDJTdRAPS6VMcHmAyQSyn4KTZc6+9+r3fb8yY0XqBNpo8ZTJbFsCXXnoJF+mwEGNGl5XVs0qG6ZmjJxDLfPhj3n7nbYnZxOoV05qhwGZTpk6ZOGGi0uvVr8/eDbNmydOhY8dopsSetUzwGR3hqKN+iUq2kJjB4bc4+Cc/AVCuWPGQPWchBW6JNNGoZEtYhpnEBLrlJ+xC+uJTpMAqpUDRCFgKOXVFgka/5Ui3Ot28wFP/eYqQNaQLY8ds9qijftG5cxiURAFHaBJ8ERCBInsMB0mZyHTJRArr6CCEQKJuSS6DG/qDANLtGzdqbEMR0VlVVRU1SAoKwJhLTLQqvNoIl+BTs0qZL79Jk8b8/AZGEljGzAtLElVWVhqBcWnSuFTpM888++KLL/FOX3/ddQ2SfX2xoKBjEtygF59YkfiLJjzAEEYW7tlX//tfsxImUwvTBE1V+wGQFIuGAml4es/T+bHNu1NjdBW62a9fO0ettygxe3TvbqaDc/jBBx+0bgtuhZSplWFFXuAmuQH01tts8/9+H/6Z41BNcxDi6xRBBYqMSjEWkpAouHM9CH7JpZf+9MgjH3nkEfv+WXJpdqvezKlTUZqYLlFr6UMVFFFaYl0I4giLEa9BEwVQpr0it4R4HBV/w5+gWkKRWKKsjHq+/bbbHu3d2+AZScvL866dJRoiZlnGL8TUkTnLPU754Wr8w+6MBkfMGJFUtRxWCZVCTbNZA2hLGm+7/XYTUkxAFXHSg7EsAwioUCmGUWGl8lXu/0H/q6+5mnmkLuhjGSzDMaJ/+mmnnd6zJ7P14j/9SWPpL7f8/RZIcsXzZrG2jzn6aDs549xHIGNJCQ6PzfpVNQ1UTh7ISKk3+eUHEheRFNAf2SGK4KbidfDELPFXRdROgsLIpYZB5joydwMg540pj84bbmj5Jzw9S2YJVIVfsjUgmE0LFs2aPVv3sVxGicuu15LQijFFCiwPBYpGQF0qRTHnl7I5o2dPoo0dYB2AqUd+aSMbEoFo4MOXM+3J0hu+14WVvEeA6acUPu89aR4NCGMLg8LCHUeSiUkFluwhRpyF/c2bN2nahKwcOWokZwBFIh4m/NgdOnQcNGhwh6oOP97ux7KY3o8jyyBySkpIWG7PAw880ArzP//lLxYTWONdVVWVSnnSLYz2whbnmdLLnqLtVdEgsDCMdA3LTEgbLLIG1CIOSSWWLAj6sN4qyDivHsIr1CVB0oJHlbVti3XCAujRo0dFsi4hLahOIMyPly4mh4899tiwKOGZZ1gDQKXJwBcuiEi/fH0g5o0Ydtui229/+1sGitUSXNB77blntD9SKCyYiopyZE9jBILQTqqm1niDHWAd6F13341WNIoEHNonnXSSmSCz3fvsvbc5BSvdzN8XAknDMEF/rUCjo6IA336Eo5AE20T7phkymWSW5A7L7I8++mj+KtsujjjiiILvSw9GAuKmms/JrIRXi134kzSxmajKyso//eliyxUifdVRAmh48hByDeGPog2OOXuYifxh22+3PZJKT/95rVMpii3qwNGW11z5VxlPPPHE3XffHaGOOeYYW0IUI+8nQ4dyM+y7z77O3eMD2HXXXTWNok0cNG/egjdlzTZtwgpKzRCxSowMCbzJvuwndo1NNtnYssqp06bqiZFp2SJMPcUxMix9tZfHkr3gWUlOR7AIw1cdgbcgwo+k+KqyggVRVmbS0JyFRTkWUVq+0GWTLpwQhVkiHVNQEX8OD5ThBUzLKsxSDBcpsEooUIsRVwnE/wNA9EDjg9defc0ybNWh70lDQoWM2Khz5+YtWjz11NOW7FK6vtJMlnTRmrHitQRrkJhhbO1JZFRQhySIMcT0aWFx9fY7bG9nmlVUYThSVjpt6jRLnIgkKoRcC4OCJZVb4pS26c4Aiy+UmABz6pQpFhPZmhU36d11913GVfCRm7OUJ8NGRK8U8OhRo6G92eab25hELkuRWgBKM+Ag+GD54osvqhHFY6xPjYFERELynbffNotBrG+19Va8pmmlompQBColNkAyeE0oEtPEX3X6oF8/v3Z5MQUMl608t5cylX1JjpqfIBnz0+QgnHnGGdv++McwEY1EHhmj4EaNMWPH2HU9aRJ4k8woxwF3GFdF5BKtAEh4zz9eAYmR6LDvPvucfPLJsGLzffjRR/lUub9mJWy1oA8iMSPO9RLFEMMagjI+9phjEFbjopJfChXdxJtytkSDP2Dc2MSMSBAxUFYHNqUBn/11kGFqwGTEyJF84+b1aQ5L8GAQi4jYS5biBr5PTFWnF6gyf5VPaTUFYsY0fWHAckNzE9oXT06YOAHdvAKopscdeyyet+rl88+HyZJTUYWZC8JK8bAp1ZS+Z91SWqPHjOYYiK2gUsbTNg58PuxzzipgzViBiT7YDE2sk+AP4y3Ht3BhhgLP/sGxWhYPgAky/4T+wipCaubjzFmzmObRYqC5ze5bXclqjI6BAgSTYL7l839z33v02AXyz/fpg+AcGHPnzOVtmjlzhupjUYN49oeO9vGQj1FBKQ8/8jAqsUU8QISaJ0yFzjGQlhtjUvozqqzCMVSwd2PEyBFaVC08sTXxDPtPXpY9+AoSZgDpbpxMDZOtpynkYqBIgVVIgaInoC4x9WQjHprY0mj93Lw+QUz6OPuzZatWzlhl1FuUZMUvmUVek93z5s/v2KGjV7DIoEKIUSMSdiJ1ZtLQomuDWqLhr1dcceLxJ1rtb02AAa7BPYE4fPgI0m2rLbeM43saIoUmC5EaBc0Jx59APRsFVldX853CkCg04vzJQQdZzMUgUATkpfeJ9LQ9jww2HUCYhr3UJZk3+75ppaGBVIQfRRVJZDejfQ0Wq3/Q/wObHmkIyAf3QFkZ/4ENjbzlVVVVxJONT6CxkARg5SHOcpZLOCWmTEYyDnyfcrXIZrfaemvTEKYkkhwlvAg8Lg7biSsD0pQyQikMgpkTCRAQWq2xBvcvnTFs2DCoRghRDKOq9WViYokGT6eccgrcxCRYBVABZnIiTQ6ZBDH1Sgs1M2IYTSVrEZNB9kYa8OVKSTa80Y5Kf/mVV9BZSWl9I7YQhpVN/MavaIj4CuUNFmnobyMAUFaYMyMiMjDXBOYOqLrjjjuO4rEtjbmgQY2qTzv9NOSVOPr5I864AZAauy2TMZmtdK5mK1eQhZtESpjwT4QsNewTAdT8SgK4cT9DRCyw4NibrnR2rf0LzEGrHMYkKzrTbMhl/aRXlOSeYZAhQiSRYbpmffXV/6oOAwg0jAcrO2u4KOzfo2UdpaARQ6UmT9b0MjokQqd4/733LcKHUr/kEgpFO9IYfL4Brqbejz7qk6kOlGzatMmhhx6G1VHMWgG8hFZw1nc4aRS60447tV2rbYpwGogIg4MkkqXxCGipoymM3/3ud1VVVeCgITcDhwT6W5fHxYIfeAG1Pt2MyFxxIn0FM+EB1A5EANtvhMwQCeFQntMAyYQs1wJXEyKwjQC0HTTkXZzLoluxqhlS0qAb94ZtQcwm/Zr5yDpJIaeYFwNFCqwSCtR0hlUC7v8GEOKQ9OERpQ8MWaz3pvgvvfQytSObqNI/nncev+W4cWPJi7XXWYcOM5QxbG+31lpt2ubUqsT6LcFBxkUjgOuej5XOmzZtKt1AqG208UZEpOE7l8PYseOshrId/+xeZ9sy0KrVGrQ4JRTlOI0S1wo0CasOM+JtC7Q1//+3dx8AWhVX38B3QUGlSFEsgO6qMRQVBewkIrZYSTSvJnYwGhV7L6+vfiYmUcSusaLYe4ktURQLSSzRKF2kg70jRVHZ7zd3nufus7uAqGvI4lzx2Xvnzpw585+Zc86cmTtj2GrKmaAxADW5zkyxV/kB++9PWBPlxKI1TWf8b9AQ9A2xQjvyYYwaOUqIDwp8pyBtXmtkGQZ8uUdgvf3W22QlkcT/b0jk3ndZ7nFC+CLO8WsRnFdoKhQpForcqFzRPIYRvNUAX35lbaMQEtNbX0PwBPgS8u677r72mmvhtsEG65N05tGxUSrm3DOqDChzr2nk0+S9GQ02jeyEoE/fyA4PGItX1EzV2r2qSmVZdE22Vhc1K7PwioqKAHJ2yZRmwh5TgLhnByhCKVe2AfDhJucKs08KZQ/1WPzCQkwXmmaRrDTElRzR12DcUP+k/957703lSMUOEBnzPigQ57333vUZoXAq2ZSE79CUggVmZdz/O+ssLUfty5F2jKs9IsN+2Xw77vgzhgKL0C4UPp+T1vJyuMGH6oUhKPL48YY27djRWoiObiJoBtwcVHI/5uhjaCPKGMOdOndWR1RsNBS0ZPdaICLRAhCimoDGB3DsMcdgctD5g3z+avXGbw46CHq40t6wrVAajKUBBvo6C2tSyxS+ZsWads7Xa2Qnpo7GGsAz5tmg7s0pmKAxOj9/4ECDaW6Lxx5/zEeJoLv4oovhqYq0RiPm7j260+VaWnTRlRYZNZfscBuRLH1L31vsoizsCQaKTwQVAYxBtWf7HLCxVKvOznoRfvc991DSVLipKnaDaSAzR+iX0tQR1JTvh1W9eQRa3FvlsgpHTwxbhz07XBvu0KG9lT1ewdA8XRAF2QYMxh5aCFPSKz4STaWUeLpPCNQnAlnvSD/VCETTPvRw15df0qNMAR3SU3zlRmy/RjO8+jEwpg8pvvD1c40rzOpmJ8bGUNJWKtFymiiQv4QjcVxKLeMg5BWu4PkOPnnJxYnMuPHoEybhIsTAEC8bQ1MhhjXuvRVTmhhubMHfKCDEyy9jkiJZYZLQKwjGfIXEt24E8hvbWS/PUUFKqSmvgvitpp3lJZp5X986Gr2J77KroDWGRp80jcc8fswOw+FfMdxN5AflWBbRZOS3UPAaBALDBYIZMuJElgKR4hVpVsfMcAuBWXWHWGgUyXhSTb729p1INLxyUpK4QvQ8U6QsXovXV1/RkRpSXr+l7UEqlhzRD41YrkiENpJdzKKabMZPnq+0LhnZ3U91awwevY3xY+bVabPIpT9ixsgxplcxsnw5PDiuQ0hGTd3lb2sRZC2BiNHA7+IjDiWNiPEVGa+rXK+ExKKVFipwUoT3i3nzNGMdLQRmbMglfrJvKyRZxEyZ477BYZ3buCnGjJGVPeRbvGpxWAwOf73KrxjuEQjxHs+xy8THWr/YwwkoYh+PqWoBmCdBNt7Hm/wxjyChy2P+yo1LvzMlIZzNscUWm5voCV2+pCfmFNJNQqBeEEjTAbUtqmh0+403zPlaMYxvhPg17F7Aqzq+FWOm0mhc667SEPeGNUYJtQKNQqrt/+zOuC3Giby5Ryo/58bXdzkFgz8DlPhYSJUNJoSHYXrdK8yjForspSQGRqWxwruMgoLHYb23McdaA03lrVXkmFA042OT1sQ6O8CwjDnCqWAQb8OD0rzchyQ1Rz8h+8hACZ5xFB5rZAEUYlBYVVCNTGnknGaeNpbFLkKFkOoKCAGqiVvYEj9WlO4X+RFe90Zg9TLPbElm7m/IXtXodwaLLuHxitSM5osB1fRVkqu0OB5lZN+FPHJewJyr/FWtmzxmHh6TKGac2xKuEfotwJLhX4tsaF3lZTwExsqjR4+2XU9FRQVFOWHCBHM0vkoNH86Eygx0SgsVMi3CaySdN2PBFKME/B9As0qG7m/ffnVbU1iIymD62c928BiSZxd+8qaehxTe1flTi3nvheSB2mSdFNUBGmr1QyYBPNbFMMbJacab/DGnkCfMX8Wb2O+0LsZT06bL7bbrrhp5HidPnm4SAvWFQJjHqi9aiU5CYBEIRK05ePBga6QNdzyyYCxB4PJlVZCJMcIiKCzZV5E9o/nJkyebSM5nAZYsV0s8d7DgwS9XlgkUXn0QqU0zShZw7Lf//t5+Ux0WoM5OwDJBYBmdxYBcU9YirLHmmmZPbJMQ5siKBsQSR+D7YAACRv+vT5hgTpCBGACpaRN/H5kmmj9MBJIR8MOs9yVW6ky6zX/n3eC7NtyMo5yGJeD4bKPJAsSGxfn3Xesq11TC22+91bx5i5VWagud7wJR9AegwO/CauQqiyP1HwLmdbV+3ZDvuzYT/R8IAskI+IFUdCpmQiAhkBBICCQEaiNQPVda+016TggkBBICCYGEQEJgqUYgGQFLdfWmwiUEEgIJgYRAQmDhCCQjYOHYpDcJgYRAQiAhkBBYqhFIRsBSXb2pcAmBhEBCICGQEFg4AskIWDg26U1CICGQEEgIJASWagSWBiPAxzPhu+Hsn0246rG+UC4Qr0ei/2WkQgnDeUWLy1aI36D2logMhzK6wpFMi13Ur4Mknq1gI7mvi/ifeP/NylUVTmCKyOTMFYCqP3xyyl9zk1VI4D+/+ZoEX/Parn/2ELStUIynpG5C6Yo3seylVPKQyEaInF2lcb7jPXoo1IuAUpCc4VpcxVwEihCzs/2lk8lsb1or5tc8FntKjoN9C2ol8QrO9j9dfOlRi0J4zJqiHTMXdgrrApIsXlChy2dZ5LAsXtIfVqzGZ511VsMucXaIaNg5xGkdZeFgrnorTkbZR8nILsWfJitaKN3ibL0SpHSQCSF+tp3LYqX6DvVBkI0eNdqRay1btLSN3YhXX33r7bftuP6NNupBxHlIjzz6qL3YVm4XdtYL/NfHNW7cuN/9/ncode3atT7ofScacXcdJBardBkAYuaR7fBzyy233HDDDVByhMF3YuUbJp772VwHXd52223Dnhq25hprtm7TOufqG1IqRH/44Ycvv/wyOxhWVlbakvLCCy+0qfKPO3WKzaZAvO72O8UQR2UOuuACOzE7OiHfo/PbcVIrlazrRUDl+OQ3eUYxJHbSmJ29kC+97FJHldruOo/29Tdhk8dCNwnSwX91RKt9IW2gCaiNum9Ua9vQr6dfjEGk2PLZYRPfmMMihYX9zfkPzBfLsrDIP+Tw+lOZSwjFOXPn2Ex07JgxzP/6qulSs5EKqRfjfQnBE7ItLU5dNpTOBi/CbcpW921pyIcffuDoNpvlOWGIRBgxcoQTiWz/F5OXxqyXe2y//NJL222/HeF19z3hhKFeP/nJVltt5YDHb0TfIUNPPPGEQ2ic2iJhfTUSpD6Z+YmjkG1qW4ufRQNeK3K9PZaXDX/2WQc+1SVYlx8hEydMVI8RE0mU4qGHHho6dOijjz5al8ICQ+qSXWC0PFD80iTxXv+6/vrrbQvo6Eu7DYI0j784NxnJ2q4dBx/8618vOeFCXT/6yKOPP/7YXxy0/UaoJoEnnnjia+PGxTSRhzPPPPORhx/hGBFBkvsfeMDJPQ8/8ohh7uLwsDhxZOQohPPOPXdu0T8RU0X+IxuLQ0ccmzEffvjhobcuxGfjOGanNqjKKLvEJCDtvbj4ucSYRtK2LnbaoS0y5bsAT8D8KieITpo8+btISIA7OWLcuLGO16qLwOLzvLC0HEKXXXbZ4MHXQcNVN1oKaZhGAA/SV185Y/WSSy5x4JsW/9tDD3X8HVGi36rp79R0opt0/vy//+PvDvG0+6kBRLNmzTfffHNdQovJlWXWqL5Nw2JB62DoxBNlYivUkVxeOV3GWXCOH6yoqHBygRtHydk91PjMVaoC6xazbogs0Hd6jU37X/n3vx00J47d+vjfHGBIoztUzeDPgXJnn312XjpHpOTFjOz5nTN3rkNN4uXRwWvwd02aNImLwJnFzz33nJ6sFB5ddnlzqiwxEQ9cCUHFqy6fxTfhL3AkwblTB1WofeKcRUtYON6NqeccZ7wtmkIptfwcwiACMldGBLoQJ2O12nOYhaoGkVkPrpiRCOEmS15KPCeSi8iIW4RdkpAqE6Axi/iIci0iwuUYYme/gdWFXJE+xmKOkc8Ylzh2Fm3OScyxFpmQMCP+3PPPGSW/9957kSUnSmjhDnQOm/KWXAGCDI2SsHCLiBopDYxFLg3J72MWIUJRb0nuUpbJkydTV84IUK2OHMRALbKxLQVksis+Sosr9IX5X5EXWFhvN9t8s+7dezi2avXsuAEugWHDhs389NPSETmVbwtLlPGDVO/evR305zykeCRBpBwyKvZ93QcqoXSxPWRNCEsew2/JJZWYKCD75JNPvDpihDYV48RfEWowj1ROLesIIZPsyqlOnTJFLQtjsOSBpTfjxo5Vs/opJOsO0OWbE5S1hIFDfDo0K/zzlB2npCDl5UMff5wBMXvObNFqHQhSmmN+H7havCuvr5gkq8aQNvIWJGSGTDyZPfIZCWOvgFjNrGpl7TE2JALkmWeeGTNmrBqvdejG4nG69MeqcZBJQymurufsmcuvuEJn0CZUtio3HtWZCbV4Lvi3Losxrr71wfvvOwrF0MQRn506dTJfRcMZKtFDbILYwkKTKi+jrsSv6yurxUChUVaVkSCxZ/I06gmIZCqhKh42KlUsCxeZaDZMJZgUsHmz5sss60TSxqUzZ8LpaoevxFQSQgNBai92AOHxsCIOUvu6E7XXXHMN6Sac4/ecc86Ri6NfmjZtMnXqNFLYmfexdPISJ8ijBcuZ8JJidvSqY+JaNG/hlDjJL7jgAlaFSomC7ImhQ48+5hi7vRJJy5RXtzR8hvRZSXM+Y16he6vdsioMTJ04NQo7+DtLRvxDDjlEfzasB0vd85Yykov1k0tGyLN2VPG8L75wSDQBSFEt13S5UG4yqGr+Mo2XAWmoKRel9eWXooXjhSIyxYLkztIoYZ01B2r3xE6Wbj7KoaSZAmjapGmGbJm8rCewMzwGok4KuVRVqTxpo39FdeA2vo1lE+Imtg3h4QTnzJIX3xl9pCclgy+nCuVtknBnwDkOOJDKiCuCDfnlhVQQx40amW0ZcPgA8hXnITCToX4xGaMFJrMG720smpYPIg1MeZUClwVYxCheMS13bFazVQCMzV44pQLb2bNma9KOFe7SuXPUapF4kUBoDFlyGH4pL9WQ+dQbkfGh+zRqpAuoPuxpqshWt6hsWL9Nnz4sgGWXWVanQPnDjz7CrYSRMSHaUlzVAZzG5Y292mabbbbYfPMVVmgGw0Awc4Mj6x68+FdScUNfK3rI2dZNl1uuqrxG7ooglTgh7VfzHYIslRwDh3ESM4sAfMkd0Fxd8Kqy2IRQwE+ozqzH4Ectf/jRh2RIgWymqgPBkmvGG2/gM2QajkLO2mr2VlWq5SCvGgXjQISo1917j2ConSw85Flerm9MnjJFKiWt5q0ko1q3MY6RN4g+/+xzTaIgRmrGi3ZGk6ZNNMsg9LKaqFEA8ZU4Qz7EqQqldhjzx598rLUjW5Ne9ZM2piXoIBGc+MKwwYRIQKNm26hO9oO/qxbNDQmKqipHeg8fPhzPharNWpLGyoFMG5100kmaQq2+sZgFzCiVaf1Ul3vH2zjFHOWrrrrKIeJapylMw2jnoZFN/3zun8huuummepeWF5nRRQ2IOeXsje+AnJhvfCWtk9a0S1qNj+HTWbNENtLNW7b2Kq+jjzpq//33x/99993HV6l3XXbZpVtQ3lVlq6y6SiSlY8iF7Ntwww1lIbJ1au9/8D5SgbdMLjCVCO7mLZrzgjrfxaCfkSQhGcH7ig3HlvNS6rTUOeWKjrd0CZaIhjGjR7/z7ruMhngEe8w3FsfvkUccsdNOOynjaqutNuvTWe9kJxTzxJKqFAlB+fY771iOJNVHH37UjBXTrHk0KZg1rCtw9ezRY4VmzSJB5sis2bPEeePNN14f//rWfbaeMmXK+PHjHd0GdpFF227b7QzOFGHIDTc4YjWUuab4y3lb9A3vkROBldQ0pJhOuttnn32uv+EGphKRxylyxIAjOnfprDq5T7g6VAH70smHaoe6Ouywwzp37qz2M8kcslJG15zZcy686EKnDGseJqT33XdflHEInAsvuqBNm7bcOc7EmzNndqdOnU895VS533TTTYSmluBkwriwAOzq5fzzz0dHduDt16/f1tnoXG1ipqKigiXKw0l3gmXvvfd2tO7MTz655tprWUjYcC6zRtWjR4+99tpryuQp199w/eTJk7GEFNBYVEbDFkkwaiHAFc+07dC+/YAjjrjyqiv1KVM8alzpaKabb7llmHHzzJmKs91222mT6CuR5AoiX6s0nn/hBX2Ns+qYo4/ROGshLzJIH3vssQcf/Iv2QBl37drl6KOPUdFffjXv2Weeue3221U9Dk886SRKrn+//j9aZ52ciOwYK7qeMwkVllfMFMbaa6/NhOU/4MqyjuGf//jH3M8+22KLLRxUrSnG+sgpvPivfw0cONAs0kEHHXTddddx5uEWVnfedZfIWlc8FdokiCGvZv/rX/+aB0sSIBxz9NEUsO6veSjFAw88oJG2bbsSY1R2QXdWlWnJQ24corNTY+v++MfrrLOODth9o+7dNuwWeYDk8889/9e//VVB9IszzjhDn+3bty/6NL2VEAqidhi1ArkeOTjPHzRozJgxfzjnD126BttXO+Sl00M1vCeffFKbFMhLD5z1unb95f/8T7TbBJIAt9x6i3ZFYmixStSmdevfHHxw5GTihAlXXX01j51K2XXXXffdZ99gKYb2+alJvX/885/YaLdKu7677oaPSZMmqTWrXgSasF+lXbuu662nSUdSC/wlVW6//XadSLsCDseSaQumZx751VdeuW7wYCICmPpCvwP79ejZQydSEH1ZtNi63Nx66y0W8ej4++2334wPZljVgR+VZcSilrVhyNcan1x77bV6qE5Bmm211U8PPfSwFZZf4S8P/sVkkEC1HJXCYYce2nGNNXKW0g0EGqQRwNQdOXJk1mKCIlAM9na0JbUNDXfixImhoXzbC01aUxfVnkhenZZ0IHHkyEJ1aLqua7igpxGadDbxeuWfr+yzTR9N87TTT/NWqsiYgTKBTohr9/feey8RoBPqLTzwvzv77PMGDpwxffq+++1HqDFjTUZq9Lo0WU8YYd89lUn8OSuW7AslLStnERvEXz/4+g8+DCt+iQ/TnIcfdtifzj0Xk2TczTffvNtuuxFkomFZt0FQTJ2T4NYt8UCVIksDYcYsA9Wy7bbbiszJr88za2gmEoc6QR+pfffZR0ld6MTr0MMOUyLS8MYhN5q510sRNLWsaAIlNF9u6CajVVdbFf2bbrxJn6f2Tj75ZHoFelCVnXPhkCXgCPRddtmFciKFjzzyyD59+sSh7fbbbw89h8gtt/xya6+9Fv/eY48/fsKJJxYZITyMTb/6WnelUQ74DPC1ECUyqmAtsY0uuugiQpxio/6hQawD6pzf/97htsaIxDHdqTGIr4BPP/2UJH/6458q16rMGVDXmtzpp5/uFxECbtq0aSanpNpjjz1YfuPGvUYiKyY1pixjxtwLFuYgmtK64b6iVhlbGvaJJ5zw/gcfUCdqXCpK/f/OOGPb7bbTQjBDNGuWQCZnoa2ylEIzM/Ni0kcWKGgz3PtqBKqfzZ27yqqrCn/pX/869NBDGX/vv/c+Axe2AklkbVVlqSkgjH9tPIlJGM+eM+fIo44kOhF34faCQYNkccGgC5ZfYXkZyQV9NUjnQYknX9k1vGywXmNAzGK79rrrNEvdBLAPPfTwU089fekll3Ttuh4TM/L86cyZQECKGosj74gtqOk/lBkZSj1mzGgr0awiFG41g2lA9UU3GC9qitRVdHdFjRIoVJV9/NFH1CcHlSelZlniYfLkSYbBjA+NEB04qC8FB5pALEnCPg6cfPml1jJo0CCjaqtKGzdeZvSoUXSbJSbOxX7hhRcGHDFAh1JTmnRwUw0dagpPQXIjQJMb//p4mlu941bX08vAzuY9+pijheNNXTMR+OEUZLe+fc2JPPnEEyQJPJXOSEDb2HHHHZnb4is7ChqGAX3r1q2CLZKVVEbcWsoYJwLUJpY0sPDW+pVPPunXv78GpoL0IB5Br0yhqv2zzjzzpZdfpl+brbDC9GnTzzzrLAN0NcsPJxWI3pgxQ6Z8FZHUAn+1gXPPPZcFwEyXC0NWd7YQgUQiXoz+//bY384777zQMtutAh+jtZEjRxx33PG77LwzgipX59IXNIA77rjdwkw1TiIRUESiCmJ8e2vYQ4CcduqpYfBQ9KbIC2UNm6TCNlaHDLlRTTHl2XyjRo1W41q7vqPsn33+uewUSnYLLMgPMVB7anCXfusEenYiR1/dizX94gsvajffrlzRb0ko6MyxdZLj1117bex7Wo+xl3DtSS/SXfVSrZOAI5EJiE6dfuxe82XXiyCa8RMZSkAgqOVREr169dJVKDydECkjEl0IZQJuuaZNCRQmbWT+8ssvJz1ZIXoXxlx6BdUuU0pa8i232EIEwsswhXzRVQgFXJn+X6NjR7mfeuqp7Gg9nJEkptzhxoPKMhATP4SdOM+ZS+YDrKoyEIylloV+qLvqn7glPQ3XDF+8VTQxwaLgQggdY2s8IEggGtEeeOCBui7FLwTzPL077LCDBU1XXnklsmTEL3+5R5+tt3bWnPjEN0m0x+57sG/kJT7csGT8jT1F8IFT5G32rFlG8BjgR6lVuSLEOMLzmxiH3KEtnGp/1513CoFht24bqCADJmAClrWBZyKYyIOhE9w33UWD6CEAADPRSURBVGQT8h0dGpes77vbbqw9Gl0bMKDkern77rBQkZT0FrycnxdecEHPnj2xTfJyTxu5ktr9+/cncLlGmHQ9uncnFt1bxKoBmEwR2awT9IxR0LzjjjuMyZSaRqfM8IZVYtS6SMNfetqwXtuWS2iN77wrI/4AUGgPn3z8sTam7vAjnFicOyf4q+jap596Wto4vaWY/GQ4R1z1YcN4UUyPAnkjNlh/AyqWKvrzFVdoRQjKiOqi79m+8rpxyBBcsTxkpGH/68UXpWW3aYpQffGFF9ApxV9CI0Kmp6UhtCDbmryWll2FZ5F9/aEJAYqYpoC1zNLko0aOggagsOQfOc45JALVgohmxhZBFobcHptsskkc1l9+2WWq26hUTPXrXtHkBRmVJaHWjm0F1zZEAMs1V18NfFUsGnUiDvPUPeJKzQsCN0kob+aatyoIDqwBmVLVahzz+LSYAA9eSZtfCqV0GrxOwcJAR/zrBw/mT2LsMj7EVLlcPqSZWmMEH3vsMXw5cH7un8+pJs0+Fg2AWguW+Nhwi07IJXTccCkv4oxGvqJrr7lGeT1qtKSlWrjsskvljr5mg0/caidKfddddzEyaEqF/fOf/ywt2xEy0mp7eq6+IKNahZKdZq92SC2cDH18KCgUgaDAhkyPOupIrZoXB1n58iIokdalOSEFdl5SgUrk0pYUUxWL0Lt371heEo+xhVWfsGFPMdU+yYx+VtzwEyaDMifN1Vdfze5BnO9KElCrLBkNe/JJfe2oo44iY5VIfKlKKeSkfrA3DdIaoie43ykDSshvrYuq83aBr2rFXOBjHIhQ2IZNtJFmdN+995508snat8GKJJEyHs488/+IBn45ikorv/POO9t36DBo0AUPPfgQuaD1c19rbVJpwUxv8hTBvzzwgJY9ePBgnUdnY7rq88xbLgESX//Qw/XDwFvubi5hlDTnukSQGqMMBl9/PU5oGh2VIaxjK74cD+zXb9r06RT8scccq4PpbMpF+xIQ5B1L/9Df/tZ4HWGDHnL513vvPfC88zzG0ikRxXPH7Xdceukl7nGoc3qFeAkvhVsQGSqxDBRWFnffdZdhtGEBEWm9AjXP5XvFFVesVbmWD7f0Q2Ll4osv4ZmkNhTEK7rf9CHnZKNGjflgSaX999ufPmYEQAwFvVYXNdZnasg1GmSlnJBmRB5R6/raqieFKisryS8mDqiNVMgOUxsMFPW+dZ8+s2bP/mzuZ5GOQu24004UlUYFYTqATmXQRDkSefh01qcjR41ChNnEgPOpm+Ejywm2ygsf0Zo1b858bNG8uQ/Poj+za5curVq35hsgDQHAtDUyjkqO/cQhQZwBAR0Ng1A21DMHzznEdbTSSm3Bsv9++6kRYtGkLW6jyaVQKyy/vHBN6/ABA3661U/VYMsVVyQKpR09OnwiIY7LjQUK/Cu6UyyI3yAiq6qeevpp7cp0hoxQrlhzTQ5kIZzGERa/RPxG3bs3WbYJDOkzqI5//XUUGHM5NUaGqmFmadVqE8L6Ec4nTpw4fcaMLLuwks4r3GJPy8RAnlyTgIzx33333885IZcwQM/md6HK8qDglXSNjmtQG1QR0ALNPH3xJtIEiyJAyfy94it4Rn4Z+AgxuPRWCrqnmC6svSBjjNR5/kTT/Lb66U9VPbMVTCpFIKMfk9KqVhnpAhGiaiLZwBpXwrUiWWvtEMa55m20qke/9tq4li1b0NAGEtw8ZkygpNOd/buzAXjAAQcAEEELVlBwGZf7hY8cswn0UGj0EccSbQo4aHuMzGDvkEN+qy3BGTVxiCyUNUvzHSoXNfxsvtnmbsgTHVPNBoIZVlZUuPIS1b15dviz+gVLkRtMqkwWnYYgz4RpMrYvJ5MWqEUFQo0a6W6avW6iw5qyVAjdx0ccl156Kc+TqZDOnTorEhCURfsHkRpXEYYxsURFHsLIAf+yNtRRX6Z+9GIii5WpIcYaF87PEe6XCat8imnT34BAg5wOMEOpn2RNodjfQ08Il+alE67YqnY/zF5+gx/N15iM+WxAYLTBWo/zx/RTbIKceDvvvAuhr8PoV4xZck2XZsvT8U8//TTHgG5GoMQF+QYx+qpGvOFGG2GWEvJq0qTJ2rRXxogI0hlYZFBrrIHXallazTlRyNbWYfhmfTKHFDXjtcEQgrrWBuuv/8KLL5KbRABPOx8mmUVOQYbIo13MXIpPfBvx8MxzNiodoWYmcr311489hJuBql5//fXIHOv+rJ3m2zeeQ6QuU3ggXNQIsiJQcpFdRNjdQshueE6aNOmjjz72yiQokapbyhRvwlFw41WXLp3PzhYn8h/qxvq/uuawsGTJah/8d+zQAQPQVmoCImZkYLfPvvtyVITHqrKDDzmYy6GmpIgRq38JDkv85BtlKvbUnSTC5YgbS+QiVwLJQSkjQdPnpKRhtxiKFil+/tlnQStUVRm6hRA1nWki4szfqBQL/FApVWWqhjqniFCQV5RTJDI66kLmRCFq8YIM3lAVGQLokOBZLlU0ASmvMSyzTGNmgIRxLBt4zVYsQIkAfWrYMGtctBBi+vPPw9ci+RX5pPUzn3IIltKgFhuKSeexHS3Js/CdcJcRaR7MrMyhaoLGTTn1UBbWFeJWdWckcvLm5sZ6xdeFTwURV6vQVDAml5BdhmEsaUyWo+qRNGfssiR0Robmz/v2Pezww3W3GLPQTQKVsrZt26Jv8OeplEKMGX9DWebPVwq/LtE++zyYetp8NdZelFghsTtoHgorvspaMVtwI5wCZhryz1PVlZWVb735po5PD9F/pZnGexYDwvJCiekARjYrg8uKHKUTRwS/6teXC26grcg++NT4N910M7pTfwmkGIJZT+E6x3NQn8FsK5l/yZ71lxA5u2KHlbW2La4wxlZkIzYktWb7DQ45gk4zNmKWu1cKKLJhScio2NQjzbq/el/zZs1Wy7yn8a26U9HEo0kK+hjURFzAMOMWHIQnoTrh9dfbbNoGJrNnz7IASzEtuejUOUzmGuL33a0vxoxqTKT6ZooZzWmUNwCFit/+wATbYpJ72gD5QCIpat66xHQva2QLSNYtww81pEEaAa1bte7du3ccHhVaZ5CtoSe4+vTpY2z33SuUHjIbza40TOeP0pop6WlTp+aUw+ro+fN1J5kKdM9jbhkOC4AdQhYQcwSK8WtsoxpfXLjk0WWRlIVUZBxz2Awf7yW7Qd/j2Iz9Ns+o9MacmQ4jRwWnwPyhYslWLkrDaDFXbtcu9jRZFMCxGmDu3CDOMrqRW7+Y5P3jkLCkgKGNWwNcksIrbFBdiLtZtklYoC45ggRo6FpF/nSq2K/km9+Uclt6b5RDBYlGK+jGCKqmDh3a+4JLtMhVdfzyMAiQF1lJDGEgRrC6G1exrvPI/A2ADQXM2GDx1KaWRy25UbySp+yWjCiWTWFrvw2SmuqnEKvwRqqzUbJShyqm5OB53XXXxVQBoWxYZkVVFOsRnyy8LuHwmZbKQgf+K6/cjt8oGBnZVx4Sktquuv6PnJCkgbFwBTEX8iov51Q497xzJ0+aXFlZSZ3LgnDM4izyJ5P4KMDQr4vhR9a6wZvfgG0Rpfym2CJqU152Wev5Le8Pl4TxS5aohqMsdh/TLJACSHnaTGAZ4o8aPeqWW28dM3YsH1uBjZgyG7tHAIN6qFqsXfli14glKpIp/EXcVRKYsZYXufhCC9lrz73iEkvuDcVh0Juh0LyLUWr8zWmSGPiUdZOmTQkW/oMYL8BaXrZmRYVHPYUYEUcuBgnTpk5ba+21hIcYriJ30YYrBIYXYsQ/Jb+S1A3M3pMk1iFefMklJivZvnS/X3YA7bvA9l9CtOZtVZjU1wJ11dIX3AnRttau8/CIvF6s6iMIuIOewcYhv/2t1VFWKXJ78PEQPkC79pprH/3rozwKbBTrWNkT1pDqDjlB1jMRLZVGXllZAU89BeUasOSx000dBKrrps6r/+KA8rLtt9uOVjY1q7fkjGpJTOadd9pJq9J6vksjsOx57tzP7ISlIfI1cfUzMBFcNmjHMLluLGgdu+W7wuNYfM011uAs5dyThGY1kjZ2odqjeDIAMuTlLcAtPmdMn/HWW28ajvfacksLCak60kTH41nl8MzlRSxaXhCGP6WsX2nlHAbWTAWDgGRoFBYl8DGSlWRH0NzLLmtQSJeYjQ5SKRuCwCqyiqzZ7k023pg7WnZWJ5ACyis84FZWjp/p06eZ8eeONvJThMrKSmxExqL6zMWEcFdMGxle4K+RgaEbCmS6eU1cGV0Zshg8oR8poFK4KS+P9r4xE3WoOGgaUnCuuKGDS6UAeWHobCgQ87UwYoEMlAaSREDLQgLzsVxRfwosytjwPvLjRnkl4O1n2EEDyHHISF9w0iqdysWtGgzJiuPRXMnFLJCLb0OuRaNMiCf06TwjGE4XgFgaEsVl/BWHXItpcwpoBjqBZjCChZcqr4svvmjM6DEWf+y0406rrb6aUVdYTVZkoJRUTjDclJeDFxtMXsM706sxCZsbJ5SE5hfzzaAJ+2mGRAsZKUoeRnsTJ2qosRLfevMtfaeyslJh+a4i8fC7IMaE8ppYXeGiA8455xxrCzR+Vm9eEJYZ3TNyxAhcaQkZEoUKLGCetepYxuy3unpBijHR8pgl0Wrc5tnF6vDoGjbsSS4TvFk0oMtpyausEtb9fC01jZ/GYqVpMCo6z0kbkBwsJunvvvuujXtuvHr79ga4V1115f+deaZ6kanIEfM8VWhIhWZVCKuFZY3XJYIRn889/zyP4D777P2LX+yOpbffejtbwxiM9Zz+om9iTGLEAhHLG93E+EZESme9hZ5iF0jMG6aXklKVAlkeql7BidYD9j8AMhddeKEFOucPHGh2FRqckZbC8HFOnDDxpJNPsobRcKK0+9v6iSKg+/k1KysqONgsMPp8XrVeKM003ddFoM5gqG6U/74Q3Z466d+/v/VB5plIJY3JOiardSxlMv1JJMXe8q159xHRL3b/hcZnSZHFAZY+IVVRUWG1nc5BcLCXLTczEXX88ccZQ9NYP//FL2hZxq9eQYlyYZmnx5g+YOWVZS/0gUE/FWi4sN1221oBSwv22WYbXjJJ6Gw9Af8yypnXB1weQ0/Ts8vLVlt99Th0MHZnmlCKw/8+nK+M+heTWYCZLbfcwggDHd8mMUTcmA1FwSsr4S0RYOlbONOjZ0/fPh1x5BG+X7A8u3nzgCEJo9eRs8cdf7yVBFSIVIa55hF5PiCPWmCmeMV7nFEbwlhmTAqOO8IRXEIIAsuLWEX2GOcAFIJzi+CEP/3MMxYx+AZBwdFxGQq75EJFr7tukCbKbr2PGxfV+LYZlvnzORBEjoF+NQac50tE6eP8VbyRxE2Wg/F78MqGK9Au5/b3SgRXpMn5H14WL3rC14NMPfCOGDnSXgjsOfNE4X2kWFXVcsWWvbfais/EkgumgJhq3BcZBBnTRAMQEolHcRzTRXere+XKiM3nPbJQQxzDX+aXQBYYMI19NZ6YKuRbcoUyaB5lVWRoqxVbecNM0ThNpkyZMpXeXfdH67IAGH9kPY9riJxdeo1A9aWuo20qWHIZ4fZXe+2lMVvyQqxLYkLXSi4h5o9VELICtUtmWaQWO1yskkgn8mgKSaFMOZm9ClM8H3ww8PyBmp/60uz1U10gGgcyLSlW4dY8FENWWbxVuphp8GrMn09b3HD99V4hwvC1rxTDoteWvaSMLEU2YIvPSE5yKkc9Uz8aMx3Ml0NzC1dMPdf3hBpFNFWjyaVVyFqRNcicPfHF8ct1p6JZOXqZpS0XXHjhHXfegQ4O8siFm/Kyli1aaEUEBNMK5nvtuSeob775ZqoRk+rCokvSRnyMGdq2aNHyyKOOYi7r73//xz+GDh2KW3C1WnFFRXty2DC6EAPS1rIJWFcqZ+qUqSKMzTbJQTMWJzKDcxfYyZwZ06ejsO66P9ZblfSRRx/R35VYNxFZ3enIVuZqJ9iOyat/y8u0eal4xSjpFi1bWndpSSz2MHbU0Ud7Re6RjSuvtLIPjphxGnN0M1jHx6wUuPJKK0VmQG3xp/WqPlDk/PCtEyR9pazHmYJS3ZWVFVqgdqtDVfNQVmYFD2cA85R4YQGYnZkydYoIsQHoF02bNFG/4kyeNMlv3tNLifyQ72uMLRoKELo9VjmIjbpcKjU0ahoyDIfqdL9vVSoroTQ4Hz75eh59UoC//awzzyIPIj0NkQDivJKjdnngAQcwgXUYs/76MLVK9LRu00Y71tOMVHRvK8xJH79WleuB9jJDStvlMzD4Q4dYpEFL+dWLzNhxpkVBSTvKiz7Wpq0MoPJjeU2IUudMIgJFlzvxxJPW/dGPSHC9jtYXn6lEcZJBNhw0UY0nmgyf5ollJxefIO6xx+4GNGQNhmVHgqDghh1D9Cud5PpTQJo+ppMK/ufALzFErPNG6Py0BWRkakROfrF7qCVeEEu3rD3cc6+9SBNf6LmQYl4osprTyZUFqgJDFZaXderUmTjDxgsvvrD2OmG0ZITk61ARrJAPuS7epXQkoF9KXtrgY88EBAVG/JFiyAhXxdED4KNzkYVE8pqBe7IJhyQI6e/zS6uWinMBocmJb1rH2kDomc1RBWS6svTu3dtby5eJ+1JmESSYpBIYS+0Xay6GJ5XMpEMn5Pjpp9asaSHBCMimjbVG2jQaEJGmEDfGRht06/a3xx6zEASqsjZCpUt8aUa+E+KoNWvWXBaxaKQ2r5U1oRSYAbQV44jARI1jxodq/37lFe3fLKxaILgl18bMtYkWRvD8YU2aRNWCIN7EiZRDPyxe4Dru2GMvvewyy+DtDRDUle2fe/ViicbIZpkgDPz4WExX+Mv4vvnmm8y1a72KIKaljoBVCgibydZ4MKy9UVf9DjwQ8urUW4wpBc2NgdCYMpxlQU906NCefUb7aq7hK4P119fvNFrOMLjpU3qctAx9xUQHQQgLiTxhVaeOFbr+BhuYv4mrYXzVOXXaNOKCX5p1DrTSsmCp99Zb33brrTvtvDOGDR7223c/gwH5HnTQQfKNBHUZPeiee+9l3Pfv399yekQsDrCC2HfwnOS6YbcNN3zwoYdY1fLVEQyaJS9FD7zcivfdf9+DDz0ojoSIgCvnR1mUSI66ti+sbJlAN2sqc+fOsahUVeI2FHn+/Pil8bHHHeuRcLDaNycSbmx9Ni/4DCQh94wZSAwfCnHeWFcrWO2YURWRlSx8xozp99x9t2UQQvCjsPvsvbcxmykJaKukWGsAIS5UPavIVJqy0OtsNQtgNUJiJC61ia1MwVddZRW5W0Wry6CDMlMvM8UCj6uvtnqXrl3ZoJouoHwvo9bCi3QVEWiQRkBkXvVrmn41WQ2uWKL6+fub3xxMLxrNv/32W61atdZetSGdUI4ykCknng9v6FFb8WzSc+M9fvlLr6x3vezSS4c+8YShmFXfPPZ8a4bIHdq3t4bLeI6SYOSioDNbTh+smaqqHX+2Ix+GUhjLZjKruggs5d+fc46WjYEQmmkmCXUDnwxF85YFwEDxraB2b9wgL6NJ7nI9lrWhq/uSp+fGGzOo9RMjSw46S4INXHQMLl8ybu211vZZM00TFUDoV6uuGr/eUSiCRsejeAiU/v36b7HFlrLDywEHHqg7VVZWWqJB2lorTp3Q99jAACGIGk0vU7YR/tdZex1DUj4AIMjXEJkhslZlpTXeBt+y0JPNoKPseyQLESwyIvr5VIy0dG/4jB//OkEQZSgmAyCLcYkHMTaKnVWi4WJjHLVD/Ws25lCIKl8KgNHYVsiG3Tb0CYAF55F2lGVGn++/997yK6xg0sd6TMKI9K+orOS5kVZM68UsrYAVIf7BB++3bLmiz/w322zzVq1bAURTsZ+PaHSgbeWoZ8arxRwhpKqKkv7tIYestfbahl+MQl4coLHPJFHRwu2qpGFoafw3qOUWABCoE7zRi2oK7CedeOLrEyYgorwqmuh8ffz4wGpFhdY7/rXXGKaxXNZmUtu8LCh37RJ8tswC6pCaRIqqsyTWghgtnB2GoNrRPulFdrA2YD47mmJ4gCqHFsobbciTFHVuzCT0FIXt0LGj+bV333uP1lGtsrYUX8m9tjsNj1p0IxXSlPwx66chaS1mELRwhwDRcBBzYRKqKsKoWstUOipTMM7hQA9BGNr66ZFHHqGmcCKJtSOnnXa6CWb6RhLtXHFoWSqH8tCYma3vtmlzxIABcAjcl5X5uoxSYf5GviAZNyxilEioido0ok3bNkajnCq6lf0Y9E0Ov5JyBDubOWXUa7WwSlEKOhYdLiW9WBEUxMBjyy17rdBsBVCz5DhRIgVVaffS6dOmKZoiKKYP5dn3Sm0lbzSJSvPSPdWdBXci0388KLoP+xVoWYFCXF/uMJhUB3i5r1DjmWMVWepIQGljwbDITFtENEVjDx8OlObiXjs86qgj11yzAjh6Zb9+/TRp+luflVyz3Habbe0RFtvMZptu+qc/nvv8C8/zBjGpVmq7Uvce3Y1VcGX4rip5IHQP2WkMttzQBRTQVkgap6nJjz7+WGvs0rnLJptsHAR+to9k5MdKZ1+cPv/8c4rQpnWb7j16KJdvbayJFsG6K19CAU0zVo9pp6BalRgeQ39qsJcW833xnhFmz2pYWmfIKAtxYzykLxExTASrVLytxQPZqhsE5zlP75e8AIWRhLQuwoL+o5vdi+CXGa4ijOR8elCLVIyASIycv42Pstay4zxCjClrXS6PJhcXzsV3iUmvGOi4F8crfKLAyMiTkD76GNHJgMCnCDFyjIC4yCEkQyMnVXirdLNnSxXjiOYKmc6cGRjLMhUTIDbRY44Qu+7ztPiJj1m6+VLxr2CGMuOEEI3CAxR7QsKY6hv9BgawXfIvZhR+MzaqH4shVm7L3Ui0UPASbutmHZMrAhmalytGi6/yJB7zezfxbf4bX6Fg4Btjlv6WJiy9D3GyopVCLQIirtKY+b0kpbUpPGYUKzdGE6I4il+gX504QzJ/9FQEpySsxq3WUlq/1e9ijVQ/17zLWq+eGDsU3nBiBM97YV1LKUqSFfgPdzWI5OFuXCAqbfOi4k1gTBPjhPuMiMdwk+UbX8WSWkVLZVLVrMMQd/58MzhMZ8sgYnON1Ep/cRvAzGq/QDZLKFD2kXgeP48QiQfoimwIUadCIqk8SbyJdBQwIlagU8J/Hs1NfCuyfhqyCEHVVemtwIW1nxg5/Na8gljISUX0SiLgKoCf8VMdXLO+CuHFQDzkuFUnqXknTihCcdas5ssgc0L9ZgDWepUeG7AngD7IDVv39Xxl48zwUe5yJWt9uRsya1q7oZzsQGd876ZW1oxiVww0zsjfRm7DGKjk0rg5XQUYYRgBlLwp3ErFVV0rvECqZImsCALzfGN8Q4d4Ez20xnyunJS3RgP5oxvlQsSvV4ZK7JJapTM44FjPk4iU37uRtnTBTnxVK1OBaBoflCaMaau5zQZtePPJvg/EuVVYJBzyVDKuDBqMM0ivkF8Yqi3uVTdyteM6o1MaAQjoEoICY17YyyPkN6V5x0C/RnWl4e5rxV/0Y0wLJYO8eJ9TrkW29DGnWasN5ERKI+dk4VkaXiBSAqqQusUJSUriFKiVNIxSmvl93lpyVguv6pDKk4SbUEnleTe0hsN8BpmugkLtlIVp6ZyZaso1aebh8aYWRDLBW97H8siRbP5Yq7V0+nEnY27rfsxh67xYYgT45ag3pK5RhOKDOs3BrCa7EITzCAGD7IpkIhuLrlYx85rN6VTznxGK4fFX5Dx+gLu4ACLLNnwrFLNewG9NnGOEvKIDqQhiScpqP1bpqwXRyd+X4lZCqcatOKXCrca7TOaIUCswPUYEaoiABMrXIJB1D8vc6ANuQ0vro6r4mlSLfG3czHtZWVnplxFAsIU5giV06fN8bvYjWmPNNXnzlhAXhWxh6yvhqVOnGPfzoJL41L+eHDdUDijV8xRQjeJGOchDy4ub73xQI0Z6WBII6HoaxsY9e/o1p0Nf5ariP8yOvYasqHj4oYfGvfYafyHtbn7EhKALb1G5/odZStklBL4FAtmy82+R7oedhH+M4RzkUX3obG5wGo65TXbAdYmLj1A6Zcs/Cl8SdV0Qo/Cw2LME5CUgXjMelgQGKc+FIlDdU/4Lakf/5YgmEDioIsdLoJUuFKr0IiHwNQgkI+BrAEqvEwIJgYRAQiAhsLQisMQ8z0sroKlcCYGEQEIgIZAQaCgIJCOgodRU4jMhkBBICCQEEgL1jEAyAuoZ0EQuIZAQSAgkBBICDQWBZAQ0lJpKfCYEEgIJgYRAQqCeEUhGQD0DughyVrl/r1+1LSLr7/uV/QS/vyystXZ9f/QT5YRAQiAh8INFIO0T8B+senvgVIWjcf6DWf4nsnIegVNe7Clr39BF7SvyDXnx2ZUt4extbE9DmxbYR8EODd+QRoqeEEgIJAQSAotCIBkBi0Knft855sRxPnbkPcDpKUtuR6D6LRRqTwwd6kAwX0vbJT7s31Ifl53X/vjHPzo4xIYFztpx4rCT6Jyp6pgyG4PXRw6JRkIgIZAQSAiUJSNgAY2A89mOPcEF7V9xY9qwh0++M0mpc7rWhpcSRad/5sEOKbJLmB3FnSIYyGakAvVs++HAQUwl3zrGgTgh6+wqvc9Dsp2MG8V900SI4ZFzExD2LY6BOZFChEL6AreFt3kBa0QqPNjRyIZ9YVIjligLRnz77Xf4+JNPHKZQ6xiYBecbGSyCJk6+5Zt9YPPiOxzWkeq2Ybc/YMeOHR0lPuypYc5WiRu+Rk5q8RgZExholnAYo3mbE49oF4pcQiUmzCmUvEm3CYGEQEJg6UQgGQG165UmMAxtTBnTEo0aOevCZUt84XRP1B+Gpwa+LrtVOwSbos01SlTtFNGcuXMLG+lnWt9R2e+//74zfOUXlY0j49xQqw7bcHKOUzVQoxxD7vb8z/RxfGUzMlvnOhhNfMmr88oeHaftzMCo4eIrfIr52Zy5jshrGrc1ZEZkZk2MgBreZISavCLZwFjJ2Vwe80sECcUvxMzOL3GuQrQwnITWtWuX5s1b2BXcAR75zuGSzJ41OxwjllkPBWrZcc9z58z1asVWK8q9sKd3br5k8VgAZhYcYbzLzruwb5zUt/XWvT+fNy9ONxSSZEg6I9FjOOM4O0wyFjAaBJ/OmqWYcVN0CCunOCKoOCUVXh05lL3IoNCi1VUMS38TAgmBhMDSiUAyAmrXKwVAUdBbjnW/8KKLHBBCWzgp4JSTT+nUuZO3TqO6/777rr/+ehuGO1t26623PuSQQxxn/u4775551pn84Q4dtqm4Q1od07nLzjsffMghtLvzyx999FEjZkfFOw1PiMMDHdA5etSoK6+6yonDcnG+cDycFE9m2cU3y+6Yc8fn0L6OTXN4muN3o0p2Xt+VV17pTB2HmLVdaSXn6xg0GyjP+3zekBuHOH6XzeEEWOfk7r/f/k6hdT4Khh0o7LRfOtipvgcffLAzwoPBUbycN+o8dRw6N8+0heDp06afN/A8B7nefvvtiDv6zymfY8eOnTfv8zZt2joEFv1nnn76tNNPdxAtiOh0NG3yT7ffMGSIkxGc1nr8ccdT4dF/gIJzk53cijh8bLS+Utu2bdq2dZRw6XoCet3RSh999KEjx6IWd1ZvZJO1tPMuu0gIebXgnFmMOb1NcdSOM8qcMQNbxQSRuQPhwEGcRcWes8gACMBp2rTJOuv86MQTThz+9+EOOMb2CSecIAtVz9yBv1Phkf3NQb9ZUrvTx/Km34RAQiAh8P0h0Njh5d8f9YZIOajYsjKDyJNPPvm118ZtssmmDlmnBemt3XffnWaiYGgIR9o4Q4xqGT58uJPFnflNm957372v/PvfDz30kMPpKT/H3706YkQ49nu99R5++OEpU6bEg0acj2dzflpn7JgxJ59yitPEJe/YscOUKVNvuOEGZ3JXVlbKbtiwYTQWmyOcLlhV5dxxS/B+/vOf03noDBgwwKPzyhBnUohPbTMRzh90/oMPPujkbOxRpdbWYX7TTTfF6llnnvns8OEOSt9wow2p55deemnHn+1IFwanQzb2lZe0rJ8999xTEVSfQfM999zDoOnfv78kTASZ8tI7ix0UL7/8shvnxD/yyCNOamf9KNf5gwY5Un386+O58dlG06ZNe/Svj27QrRvzyCHKDKZx48Z167YBBUwTY9vZayDiTgBgZCM2m2FPDnv53/+GbYvmLYQb00d7hZfjkksuAaazXKPlBA0qf87s2Y48/+jjj1hOThOvqKiQO55VUGVFxdrrrMORAN6B553HgcGqW3nldoiYo2FPqB1ENtl4k1atWgFNxV199dXvv/f+EUccUWuOoyE26cRzQiAhkBBYGALJE1AbmaCHystnfvLJyJEjt99u+3PPO5dNMOONN6Iz/O/D/043U5DnnnsuBUxHUkgWrP1qr71WWXVVjzM//dSA8mc77LBskyZ33XnnxRdfPGLEiN122+344457+JFHeAicQW4wTZ/R5TQNJfe/p5/et+/POahpxGOPPZbSpZZkZ0hqov2oo47iIXht3Gtn/+5so15Gxmabb37LLbcga0E+UqwN6+fHjBnDZ05DO5h4k002+d3vftdqxRU/+vhjB5tyM1CK3TfqbqL9R+uu+7+n/++aFWuyPGZ9Oos5EuYRSlzx/PmyzkHBg3t60S+VyQdAYZ8/cGCLFi0//OjDN994gxEwZfJklhN9vEzjQnNqt8oqhx9++Pbbb89X/4c//oFLg8fC8v6Ro0YxZSzyP+Xkk53C/OSTT7Iq1l133eOOPS4csZp75MvKpGUrAPauu+6ioensLbfY4le//jXnAU5k5xeqe+y++0orrzx06FDehfsfeOB/9tyT88MR73Q5DJdfbvm/Pfa300477Zlnn91+hx2mTp3KxGEBAIdVpKJHvPqqamIVwZnL57nnn+u4RkeFZV6I3KNnjy6dO8soXQmBhEBCYGlFYGn7XK1e6smMcpMmTZ0J9uK/XuRwptcpWiNLamPCxAmGjNS/YbR5678++ii/NyfzK6++6i3lZMDKs01TrrD88nvt9Ss6hpo3B2/igNZnT9AxBu4ukZ97/nnqyhzB/fffRz8Zsgs3NjWzQPuibJTPMdC4UeP11utKV0kyecoU7PHYo7bbrrtiTJGbN2tmJC1rRoAv6wxe6fu777nH+JjW/OCDD9Dk02663HITXp8w5MYb3nrrLS74isoKs/i869WgsUQyFRu1rPBgEmWXkIzr5Rgcl11++fQZ09u0btNtww29jEkK0bLkXBdsHfFbtGiOMeaBLyNEwDM6bVq3Xm755eFAYQsRXjgtvpBVoCRfbvzrrruOw0MZaeWrr7nm1FNP5atAjZnG5+HUYziL/JNeP1EjzJpxY8cyJhgBbAhoLNtk2R49ejCG3nn7bXX03rvvcWmYROAwkLss8A9eN0yWL+bNY0woHefB34cPlxFjLhQtM4MCT+lKCCQEEgJLHQLJE7DgKrVmjS7xiZqP+gYPHtynz9aHHHxIq1at6WlqjAf7iiuuMO6nw6hqComOiXqF1z2eKCq8WfNlKEIn89Lo5qopm7Bgr/hFwLSpU6ViH9x2221eZco0LNOjts1Ki2aMvsIKQVmWZaYarfbFF/Nk+snMmbNnzUJ55XbtLCmkyK3FM49tjEvZL7vMMk884au9ofz8vAk49JE91YifIwYMsP7g7rvvufPOuyjpww47zJSBtFnuEYcwwi55rHFvWsRkhMUNRufG6F27dj3ppJOYKfnOB0WDIYzUo+MkK8IKFhBE6g5cZ6AMfeIJBo3LyoOZM2eymUJhs/V6FHxeH2CUo2UHrAHZnX/++a+88srLL7206WabWWXJ7QAZRc6WIjZmbUCe5wOAaPKLAMG8hhmHDz780CJNOEybPo2mX6/reuEzhOJuDXCDgFL03HhjpsaM6dMtsGCcbbzxxnKPjOUspZuEQEIgIbCUIVAtc5eygn2n4pSXU7HGoDQBrzt3+sMPPzJ27LibbrrJEn2UD+rff+s+fWIWtDfHPd1mVV2tTKkQ6j8aB9nIk6ajFsMYVMy2bVeit6gfHvuWLVqG5YjZurblll8uzkNLTiPnegitkLq8nD6z9k1kFkCjxtW+HHkZGTdp2tQ6D+sDQvKqshiBmSLpTjvv3KlzZ14E2s7Hiqeccsptt97G3In8YCnaKPQ3kyVkV2Q146SMQ8JCuQ3W3+Cll1+CCZVsrMxIKl03F2MqY1Dn8SFYFY3cRoK/+MXPb7hhCF+C7CwjMOluUgMD3ktSSJH9QSTiKXyP3fewT4CpBOsPvGyybLBv8CNCsAPChff57CdLEAYOHIg9Cxc68Z2suy43QKRvGaYSzZz5ifqS0r3k+bcMffv2tcThxptu4hvgDLD+A9G4CiGykX4TAgmBhMDSh0AyAhZQp3QGhUpD008uvmXL8l984QVuAK5po+p/PvfcPvvuKyVFFfWWJNEIKKixIlXh8YoBeXyPVuxbWzB58mQGxyqrriI7OpsmC6Pv7ELK5VbkcJeR8MslsPrq7WfMeGPkqJHde3QvUG7cmAd7g/XXt7DA8JfTO6aKyYPLvrxMFlSji1f89ttuG3LjjVRmtzbdIgU5ULcsDIPsiZMmdunaRbhRPt8DdYiOCPjvtmE36wp33nnnP/7xD//4xz8ZST5QjBTCb2A0cOo3aFmWRCCSXRlW99//ABfCMcccQ7+aF1i9fXtj8RA5uhFiqvLyhx580NJL6yWD6dC4sfUHvCbBq9GuHeJsIEl8OBBSVZVNmDDBUj5uAWN3iw9MhVDh/BwWBoLisccfl0RMsw/WQAx76ql+/fsrCBdCsFSKV4/u3RlkvsUw0cOE6tK5izjVjBWjpb8JgYRAQmBpQqB6HLk0leq7lIXcl5y+9yGZhXhUFN1JERpxWu6+cc+eVMuLL7546623mn2nSCy/t+L9rTffjJnG5DkDmfYLWtxFqbAtrDc00Bw3dpz7/fffX0YsDJMCPu2b8caMwwcMGDRoUCTiN95IW33DtVDeiA7GEh5oLLrfEPnII480NN+qd2+jYWsVrQYQjsNrr7lmwIDDUTbbbQqDG0A4x4PPH/C26mqrYiPjLvwwL6ITgh4NKwdnzRp0waD4DZ63vu67/PLLw/eBn8/z6d3cuZ9Roitmw+sChaDIg63gMahnv8Fhv4yHQoSqKmXHw6GHHmqC//gTTvBJ5L9feUXxYoT4Z/To0RY8mqf3DaS5D2v0LKgcP368eQ1fGaAvXzMyFDZOPvzwA5MFHi08rKysVEwmC+sKh1C9ccgQBUFcoOqzWOH18a9ffNFFEgKQG4PXRBWIYIEhCqLhsHfv3h06diituwL/6U9CICGQEFi6EKgeCS1d5fr2pSH6qRlq1bz6Aw88QClSfvziRx99tFfUjFHsVVddRdHSqYazvpTjQJ41a3bLFcMsdalOxYQIIfArWwp9tdGGG1qn5os1OqZVqxUHD77eR/ZULGXWp08fEw2Ull8D5blz5khFc+bU3AvhhLC4D1kJLZ63GYAtB4xuKXtDZKNeHwiwBq699lpzGayBOIKXKco+mqd9ffu+0kpt5837wiPfPk0Zyxvxcm+GfvSY0SbUnxo2LNo9Pu2jWWFivhzzFusZo3/22dyZn8zcbvvtt9yy17PDn/UWh/7R4oigVs05m6UIy5tvvWWvhXfefgcFPONh6OOPWxHJILACQyoxDf2BfPhhh/3lwQflxexAkLNEKY4//nhbCMuian7wSbCBTNAoo7ys9j/jjDOgbR0i5ocMGeLTA1lI6GtJFKh8RkD//v3V3R133nnf/fcLlLZv390C01XBTWKFBDPIJki9tuwVSxFhSb8JgYRAQmBpRaAwbltai/ctyhX0WaYzDNmNL998802D3TUrKrimLVXzlsqZNGkS5W2ISRWttuqqJto7tG8/74sv7OrjU/hddt015iuyBXoUrbUFFrSb9X99/Pix48aJs9baa9NqVNTHH308YuQIg1GmBn91hw4dqCLhY0aPeW38az6NY2FEahzvxsQ+yYvz/dzjduznCfe1giGyMa5XPtIzpYBzswzYwzDNh4gIiBhMu+SFbaq9Z4+eLVq2KIUoeuYnTpo0csQIrgI+D2Tnff75G2++ucMOO9CjSo2y5Yc4RLNXr15KByLf13Vo38HcBPX84IN/CZsodOvGYkHcxxFm6JHy4aLjAHzBaCUBLTvvi3mMAN57my5su8025w0cSBNn8yFhLQKzyeI+3yAgbhYgbofQbuWV4xQ+6BhnFgyqC/aNe9/4QU+56HXZWRLI4SFVpx93+viTjxlVvX7yEzXHXpg4YcKo0aOZNREckyOsJXRYLg89/LBPFplofDPsiVJk0n1CICGQEFgqEUhGwAKqNaiEOJy1+myZamVARxocxwRRbVBX8ZG+59P2yDFAQRbi1IwvkJbyG+0MWiqsA8ge6SeOcyTkG0hll/s4Ee5JdqVpYwQxXV7FuW33ke34ls5mecThuVLkDAsvnQuPkcNvpoH9zXSwSXeL5sKOwmhaJ5jj4JGiDdGCVVN9ZkGt3Es5CbSzQvXr14+LxYf7NlKUnk/+kksvMZr/zUEHHXHkkQqovHiLaWMSxQvmUwnOCsIIML43R8BnwNPCMshzD8XMcENHSSWkzgNBpcvgxYxLEbwSLqEk3s38dKZtoGxpYHcHllfkIUZOvwmBhEBCYGlFIE0HLKBmc5WTa74YKbcAPOZx4qugMzK7IbcAQpyixVArflQw0QLwyqO1b+EmaOzw6DdeBsHxJs+u9G1IWKIg3RfThb+1NH1OoVZ4dZJQgoJNk3MeaTqDoDpaNsdR+ug+8FEz97oR6F1rIGyyZK8ePnlr9W1gYNmBmfj+/ftjT4S8vJFm+C3BMA+kvd1LUoqhkBjoN4bnb8OLAG41PvlAH9vumXc8HL6YwEznLmFFZLoSAgmBhMAPAYEawv2HUOBUxiWFAF3bZ+s+bdu0sRmwxfxffDGvXbtVDOjt+WMmHle5Yl40hywAbgMrIeLGxgbxJcp90UkX+pbRYzWGRRLWFiw0UnqREEgIJASWOgSqnc9LXdFSgf6bEMi88Rgy8uaB5/bnqzcrH/0HfAAsAH55fv/FZNrYXeRFux8Wk1SMFmcf6pHgN8o9RU4IJAQSAksEgWQELBHYU6YJgYRAQiAhkBBY8ggs7sBryXOaOEgIJAQSAgmBhEBCoF4RSEZAvcKZiCUEEgIJgYRAQqDhIJCMgIZTV4nThEBCICGQEEgI1CsCyQioVzgTsYRAQiAhkBBICDQcBJIR0HDqKnGaEEgIJAQSAgmBekUgGQH1CmcilhBICCQEEgIJgYaDQDICGk5dJU4TAgmBhEBCICFQrwgkI6Be4UzEEgIJgYRAQiAh0HAQSEZAw6mrxGlCICGQEEgIJATqFYFkBNQrnIlYQiAhkBBICCQEGg4CyQhoOHWVOE0IJAQSAgmBhEC9IpCMgHqFMxFLCCQEEgIJgYRAw0EgGQENp64SpwmBhEBCICGQEKhXBJIRUK9wJmIJgYRAQiAhkBBoOAgkI6Dh1FXiNCGQEEgIJAQSAvWKQDIC6hXORCwhkBBICCQEEgINB4FkBDScukqcJgQSAgmBhEBCoF4RSEZAvcKZiCUEEgIJgYRAQqDhIJCMgIZTV4nThEBCICGQEEgI1CsCyQioVzgTsYRAQiAhkBBICDQcBJIR0HDqKnGaEEgIJAQSAgmBekXg/wNAiUFoc3TuzwAAAABJRU5ErkJggg=="}, "image.png": {"image/png": "iVBORw0KGgoAAAANSUhEUgAAAsAAAAK8CAIAAABurZ4CAAAMPmlDQ1BJQ0MgUHJvZmlsZQAASImVVwdYU8kWnluSkEBogVCkhN4EkV6khNBiEJAq2AhJgFBCDAQFO7qo4NpFBGzoqoiiawFkrYjdRbH3BRUVZV0s2FB5kwK67CvfO983d/575sx/zpw7M3cGAI0TXLE4G9UEIEeUL4kJC2JMSEpmkJ4BBGBAGxCBHpeXJ2ZGR0cAKIP13+X9TWgN5ZqjjOuf7f9VtPiCPB4ASDTEqfw8Xg7EBwHAq3liST4ARJneYnq+WIZhAToSGCDEi2U4XYGrZThVgffJbeJiWBC3AqCixuVK0gFQvwL1jAJeOuRQ74XYWcQXigDQYEDsn5OTy4c4BWJbaCOGWMbvlfoDT/rfOFOHOLnc9CGsGItcVIKFeeJsbuH/mY7/LTnZ0kEf1rCoZUjCY2Rjhnm7nZXLkWE1iHtEqZFREGtD/FHIl9tDjFIypOHxCnvUiJfHgjkDdIid+dxgDsRGEIeKsiMjlPrUNGEoG2I4Q9AZwnx2HMT6EC8W5IXEKm02S3JjlL7QhjQJi6nUn+NK5H5lvh5Ks+KZSv43GQK2kh9TL8qIS4SYArFlgTAhEmJ1iJ3ysmI5SpsxRRmsyEEbiTRGFr8lxDECUViQgh8rSJOExijtS3PyBseLbc4QsiOVeH9+Rly4Ij9YK48rjx+OBbsiEDHjB3kEeRMiBsfCFwSHKMaOPReI4mOVPB/F+UExir44RZwdrbTHzQXZYTK9OcRueQWxyr54Qj6ckAp+PE2cHx2niBMvyuSOjVbEg68AEYAFggEDSGFJBbkgEwjbehp74JuiJRRwgQSkAwFwVGoGeyTKW0TwGQuKwJ8QCUDeUL8geasAFED91yGt4ukI0uStBfIeWeApxDmAA7Lhu1TeSzTkLQE8gRrhP7xzYeHBeLNhkbX/e/2g9ruGCTURSo100CNDY9CSGEIMJoYTQ4l2uCHuj/viEfAZCIsL7oV7D47juz3hKaGd8Ihwg9BBuDNVWCwZFuU40AH5Q5W5SP0xF7g15HTHg3A/yA6ZcTpuCBxxN+iHiQdAz+5Qy1LGLcsKYxj330bww9dQ2pGdyShZjxxIth3eU91e3X2IRZbrH/OjiDV1KN+soZbh/lk/ZJ8Pa85wS2wxdgA7i53EzmNHsEbAwI5jTdgl7KgMD82uJ/LZNegtRh5PFuQR/sPf4JeVZTLPuc652/mLoi1fMEO2RwNWrrhQIkzPyGcw4R9BwGCLeE4jGS7OLq4AyP4viu3rLV3+30DoF77rFpgB4Fc4MDBw5LuOA/fWA0fh8r/7XWfTBbeJCwCcW8eTSgoUOlz2IMBdQgOuNANgAiyALRyPC/AAviAQhICxIArEgSQwBUafAee5BEwHs8B8UALKwAqwFlSCTWAr2An2gP2gERwBJ8EZcBFcATfAPTh7usBL0Aveg34EQUgIFaEhBogpYoU4IC6IF+KPhCARSAyShKQg6YgIkSKzkAVIGbIKqUS2ILXIr8hh5CRyHmlH7iCdSDfyBvmMYqgaqoMao9boKNQLZaIcNA6djKaj09AidCG6DK1Aa9DdaAN6Er2I3kA70JdoHwYwVYyOmWGOmBfGwqKwZCwNk2BzsFKsHKvB6rFm+J2vYR1YD/YJJ+I0nIE7whkcjsfjPHwaPgdfilfiO/EGvBW/hnfivfg3ApVgRHAg+BDYhAmEdMJ0QgmhnLCdcIhwGq6lLsJ7IpFIJ9oQPeFaTCJmEmcSlxI3EPcSTxDbiY+JfSQSyYDkQPIjRZG4pHxSCWk9aTfpOOkqqYv0UUVVxVTFRSVUJVlFpFKsUq6yS+WYylWVZyr9ZE2yFdmHHEXmkwvJy8nbyM3ky+Qucj9Fi2JD8aPEUTIp8ykVlHrKacp9yltVVVVzVW/V8apC1XmqFar7VM+pdqp+UtNWs1djqU1Sk6otU9uhdkLtjtpbKpVqTQ2kJlPzqcuotdRT1IfUj+o0dSd1tjpffa56lXqD+lX1VxpkDSsNpsYUjSKNco0DGpc1ejTJmtaaLE2u5hzNKs3Dmrc0+7RoWqO1orRytJZq7dI6r/Vcm6RtrR2izddeqL1V+5T2YxpGs6CxaDzaAto22mlalw5Rx0aHrZOpU6azR6dNp1dXW9dNN0F3hm6V7lHdDjpGt6az6dn05fT99Jv0z3rGekw9gd4SvXq9q3of9EfoB+oL9Ev19+rf0P9swDAIMcgyWGnQaPDAEDe0NxxvON1wo+Fpw54ROiN8R/BGlI7YP+KuEWpkbxRjNNNoq9Eloz5jE+MwY7HxeuNTxj0mdJNAk0yTNSbHTLpNaab+pkLTNabHTV8wdBlMRjajgtHK6DUzMgs3k5ptMWsz6ze3MY83Lzbfa/7AgmLhZZFmscaixaLX0tRynOUsyzrLu1ZkKy+rDKt1VmetPljbWCdaL7JutH5uo2/DtimyqbO5b0u1DbCdZltje92OaOdll2W3we6KPWrvbp9hX2V/2QF18HAQOmxwaB9JGOk9UjSyZuQtRzVHpmOBY51jpxPdKcKp2KnR6dUoy1HJo1aOOjvqm7O7c7bzNud7o7VHjx1dPLp59BsXexeeS5XLdVeqa6jrXNcm19duDm4Ct41ut91p7uPcF7m3uH/18PSQeNR7dHtaeqZ4Vnve8tLxivZa6nXOm+Ad5D3X+4j3Jx8Pn3yf/T5/+Tr6Zvnu8n0+xmaMYMy2MY/9zP24flv8OvwZ/in+m/07AswCuAE1AY8CLQL5gdsDnzHtmJnM3cxXQc5BkqBDQR9YPqzZrBPBWHBYcGlwW4h2SHxIZcjDUPPQ9NC60N4w97CZYSfCCeGc8JXht9jGbB67lt071nPs7LGtHDVOLKeS8yjCPkIS0TwOHTd23Opx9yOtIkWRjVEgih21OupBtE30tOjfxhPHR4+vGv80ZnTMrJizsbTYqbG7Yt/HBcUtj7sXbxsvjW9J0EiYlFCb8CExOHFVYseEURNmT7iYZJgkTGpKJiUnJG9P7psYMnHtxK5J7pNKJt2cbDN5xuTzUwynZE85OlVjKnfqgRRCSmLKrpQv3ChuDbcvlZ1andrLY/HW8V7yA/lr+N0CP8EqwbM0v7RVac/T/dJXp3dnBGSUZ/QIWcJK4evM8MxNmR+yorJ2ZA1kJ2bvzVHJSck5LNIWZYlac01yZ+S2ix3EJeKOaT7T1k7rlXAk2/OQvMl5Tfk68CB/SWor/UnaWeBfUFXwcXrC9AMztGaIZlwqtC9cUvisKLTol5n4TN7Mlllms+bP6pzNnL1lDjIndU7LXIu5C+d2zQubt3M+ZX7W/N+LnYtXFb9bkLigeaHxwnkLH/8U9lNdiXqJpOTWIt9Fmxbji4WL25a4Llm/5Fspv/RCmXNZedmXpbylF34e/XPFzwPL0pa1LfdYvnEFcYVoxc2VASt3rtJaVbTq8epxqxvWMNaUrnm3dura8+Vu5ZvWUdZJ13VURFQ0rbdcv2L9l8qMyhtVQVV7q42ql1R/2MDfcHVj4Mb6TcabyjZ93izcfHtL2JaGGuua8q3ErQVbn25L2Hb2F69farcbbi/b/nWHaEfHzpidrbWetbW7jHYtr0PrpHXduyftvrIneE9TvWP9lr30vWX7wD7pvhe/pvx6cz9nf8sBrwP1B60OVh+iHSptQBoKG3obMxo7mpKa2g+PPdzS7Nt86Den33YcMTtSdVT36PJjlGMLjw0cLzred0J8oudk+snHLVNb7p2acOp66/jWttOc0+fOhJ45dZZ59vg5v3NHzvucP3zB60LjRY+LDZfcLx363f33Q20ebQ2XPS83XfG+0tw+pv3Y1YCrJ68FXztznX394o3IG+0342/evjXpVsdt/u3nd7LvvL5bcLf/3rz7hPulDzQflD80eljzh90fezs8Oo52BndeehT76N5j3uOXT/KefOla+JT6tPyZ6bPa5y7Pj3SHdl95MfFF10vxy/6ekj+1/qx+Zfvq4F+Bf13qndDb9VryeuDN0rcGb3e8c3vX0hfd9/B9zvv+D6UfDT7u/OT16eznxM/P+qd/IX2p+Gr3tfkb59v9gZyBATFXwpUfBTBY0LQ0AN7sAICaBAANniEoExX3P7kgijurHIH/hBV3RLl4AFAPK9kxnnUCgH2wWM+D3LCWHeHjAgHq6jpUBu9q8nulTIjwHrA5WIburJ48DwwTxZ3zh7iH10DG6gaG1/8C3C58iXTvVm8AAAA4ZVhJZk1NACoAAAAIAAGHaQAEAAAAAQAAABoAAAAAAAKgAgAEAAAAAQAAAsCgAwAEAAAAAQAAArwAAAAAGs3ctgAAQABJREFUeAHsnQVgFcfzx5/EjQSHIAnu2iKlUKBQp6WlRg2oCxX6ryv91d3dlQp1w1qgLVDc3d0tIS7v/9mb9y6XFyEFQkuYK73s7e3Ozn5338zsrJw7PT3dZV0+ny/TuvLy8kJCQkJDQ+XutS6Pdbndbkmsd0VAEVAEFAFFQBE4mhEI2bx5M/XHMuASKwG7gUvsBom0XqrpcDT3E627IqAIKAKKgCJQCIGQsLAwibANCDEduNteB14VyqQPioAioAgoAoqAInB0I1DIgHDaEFgPYkOI+0FtiKO7n2jtFQFFQBFQBBSBQggEGxBiQ9iWBGaEbTrYgUIE9EERUAQUAUVAEVAEjj4EzGJJqbXYB9y5xG6QsNyPPmS0xoqAIqAIKAKKgCJQIgJmvaS8xFAgYN9tu8GOKZGGvlAEFAFFQBFQBBSBowwBs9vCrrLYCjwGGQ12vJ1SA4qAIqAIKAKKgCJwNCMQwmyFs/5BtkLQozOlhhUBRUARUAQUAUXgqEUgpKiJUDTmqEVHK64IKAKKgCKgCCgCxSLg5gDKYl9opCKgCCgCioAioAgoAiUhUGj+oqREGq8IKAKKgCKgCCgCioATATUgnGhoWBFQBBQBRUARUATKhIAaEGWCSRMpAoqAIqAIKAKKgBMBNSCcaGhYEVAEFAFFQBFQBMqEgBoQZYJJEykCioAioAgoAoqAEwE1IJxoaFgRUAQUAUVAEVAEyoSAGhBlgkkTKQKKgCKgCCgCioATATUgnGhoWBFQBBQBRUARUATKhIAaEGWCSRMpAoqAIqAIKAKKgBMBNSCcaGhYEVAEFAFFQBFQBMqEgBoQZYJJEykCioAioAgoAoqAEwE1IJxoaFgRUAQUAUVAEVAEyoSAGhBlgkkTKQKKgCKgCCgCioATATUgnGhoWBFQBBQBRUARUATKhIAaEGWCSRMpAoqAIqAIKAKKgBMBNSCcaGhYEVAEFAFFQBFQBMqEgBoQZYJJEykCioAioAgoAoqAEwE1IJxoaFgRUAQUAUVAEVAEyoSAGhBlgkkTKQKKgCKgCCgCioATATUgnGhoWBFQBBQBRUARUATKhIAaEGWCSRMpAoqAIqAIKAKKgBMBNSCcaGhYEVAEFAFFQBFQBMqEgBoQZYJJEykCFQ8Bn8/nrBSP+fn5/O+MPErCVFxqajAphIrLRskOHCWYaDUVgf0i4NZfxX4x0gSKQMVDwNKUvozMzLzcXGrnDQmJioqqeNUsS42ysrIyMzN9+b6Q0JCYmBgA8Xi9GFLc09PSZs2ePX369GOPPbZTp05hYWHg5na7y0JW0ygCFR6BkApfQ62gIqAIBCNgDbJzcnMff/zxJUuW8LZBgwYP3H9/dEwMY3GP5+hyTD7//PMzZsyg1l6v95VXXklISDAmgseTnp7+wIMPvvzyyzk5ORgWDw0ffsuwYWo9BPclfT6KEVAPxFHc+P+Zqhu3udu9a9eu8ePH5+Xllc4XErxu3bpdu3Y1rmYdCpYOVqlvMzIyOnTosHTpUlK1atXq559/BthScxz6lzS92+NZv3792LFjN23cuGv3btq3Vq1ajRs3bt++fb169SiyvAf9Xbp0mTp1KgVR9Nw5c1q1bi1WwpLFi887//wFCxZItZOSklatWiWvhCsxtmDPmFxm6qMY54Tx9FipqabksimYeL0UgSMZAfVAHMmtV1F4F9n6+uuvDx8+vCwGxCmnnIK2o/ZutSAOrg+g3vwa7uDoHEhunys/Py8lNfWGG2744Ycf9u3bZxrUmh0QlipVqnTxxRc/9eRTEZER+AYOpIh/nkfWP2AZwAmOh9ycHJur7OxsIsXiIXLUqFH33HNPWloavA294YbrrrsOD0bRAsnywfvvP/fcc8wWEX766afPOuusosk0RhE4EhE4unyVR2ILHQ08Gw+Ez7Vf00GgsFQeOfLVejii+0ZmVuZnI0a0aNFixIgRYj3Y7YuiJbx3794333yz4zEdv/7667zc/filDjEU1kKHRo0b9z3ppOjoaEyEuLhKgwcPpu+JsUtx+1JTcUgsX7582bJlO3buzLf6ZbFs7N6zZ/kKc5F49+7dxaY5VJHy6+B+qAgqHUWgFATUA1EKOPrqMCGA8PW4C4m86tWrR0REOIoveMtGATztZixoeY1F2ThS+pfNO+OxNogtdoDozwj5UmdDjOYIDI6N4VIksXiznWxI2DJ0zMiaR7LJEn8nb84sJRFxphHdkJ+Xx7JHJ1dCnzIkgbMIiTEJLDac1IqGbZpBr0xFrEsS+O/WBERQyrI8wv+vv/xy3333btu2Df+/x+1h+0ftWrVYhJFqXSkpKUKHGZb//e9/derUYaJBZgps8MXi9MBVYHbALhr2sDGByI4pe8Cg5PFQ38iIyHvuvpvJsuysrNjYuJNPPtm8chlL13BioRFiFYGFQeOabmH1U2crQwdeQkNDWadJDgJBnABFsT3TqkE+tfN3Hik6l3Yvxs8hNMlC89smDpHiL8H8KiVXED/6qAiUHYED+YGVnbqmVATKgoDRIJZ8tBM/8MADFw28KDc3F71iR0oAgYuaIZyfx/S5UZhIWCPTjUkhUr2IekeSBqiwxj5Yr+BLR9Dm5rMInwX54eHhtiIX4W5EeR5r8v1MBhkuvIV5qiABwxjrEN0oGKtI3lqebfRHiDfEJhJgx4WfXJQKHnIW+fvjrTKCMJFXcIIyoCyqDD5wS7wzpYTtapLMMl6IttRbMdjYvJQYAB4qSL0MFaul/HdLc5eYrdgXlq22ddu2Z559du3adSRhfWLVKlXuf+CBk046STBkmP7QQw99//33MIvngWWe11xzzZw5cwy9AP+5Obn0GoixFBQALb4C7yxAsnNoaD8HJSlp/+vi/pgKul01ata84IILjLkQuIxBAA5s0wiM8okBZBwqfjYsFumZ5KKB6DTSUhCAJrlIL8SE52KtB0lcdOKmaEyAL7/hSBnECIyGiMdDx8MWhxOvZfSYSOs/O6MGFIEDRiDwCztgAppRESgHBBLiEypVikP82WJaCjEyNyD+cvNz9+7ZSwKjI93uatWqkSYoPTFomtRUhrPuDRs31KhRo1rVqpLMpgM9pP327dsRsox+8Zzj/4BOjeo1omOiSUzKlNQUZru5KleuXKVKFdJLQbxC8aempOxLS4uKjEqobBbwI6n3puzdsX076k10PBxWqVw5PiEBas4LImgdlhDuwbPtdsdERzNTXicxMa5SJXYVmroWviwV7tq6dasoofCwMDEgoINeYj3Bnj17WBrJW+JDvN6k5GSnZUNNDuxCae7dswtwMMSysrPgGbKxsbEJ8fG00T+jafGAM3/atGmSMTEx8b333mOgL/WlKvgb3nv3veH1hr/22msoamymhQsXjhk9+sQ+fcJCw6QWqPGUvfuMXvR6Zd+EAcHnY+sE3ostW7awKxXjDOSTk5NZTlF2JiHiT0xls7LoDzzS4lWrVeUV7Gfn5FAEBUkyIukY/kdjzRq1TSfhLYjxlh5iK/69e/Zs3LhRMoIhFytG5THoDvMb1q+nLPLSGcLCw4Cdnik+j6DE8kjTp8Ct240lSkeVSLoEIKSnpUdFRdZOTCzaqYolpZGKQFkQUAOiLChpmsONAFIYpeX2FfbuWpLd+CR8+Jg9ixYteuGFF3bu3MlINDQ07Oabb+7WrZufUUsJiKz8auRXTKKz0z8iMpL1a6zLIw2vLGXgRkOsW7du0qRJE8aPX7hoEdqCERvT3lWrVj3mmGN69+7dtUuXhITK33zzza+//oq6QjRfe+21xKMmoAORb7/99osvviCAzr7l5ptbtGw5btw4Es+aNYuRdE5Odnx8QlxcHNRwwp915plR0dGmaLebgqb+PXXa9GksIaQWKCF0Q2RkZOvWrfv27Xtc165NmzY1jBoDpsAwYsD66aefTpw4EQQYWbLtEF21evXqP4j64w/m43ft2rlvXxpVwFpq27Ztnz59jj/++Pj4eNKX2oowZRSnKVB8LDwyes7NnTlr1l9//TVt6tSVq1ahEWGbmqLJWL7QuXNnoKhfr15Jw+hiS6SgObNnAyZvqTIUOGXBlGtdEoiJiWbb5JgxY1atWoX+480vv/56yqmnivXAI5jTKGhZDAXW3sIMsyF//vknG3kWLliwbft2dDyNVb1atTZt25544okYKDLzJaWU8U4pX375JQyjxZ966ilaJDMr6/7776fPbNq0ic4DtwD7yy+/LF68GJrCPAbQa6++lpGZwfpQlPratWtJSTLefvzJJ2PHjROAodmjR/dbbhlmMyNNgC1LLf7++2+6EOqfihBPC9avX5+mbNOmzXHHHYf1ZueyA9hbZCQxqL711lvcR48ezWLP+fPnY6GefMopb7zxhp1YA4rAIUCA3qaXIvDvIsCIGQZQA/ZADR2J2iC+lIttn7iXRYLzS0A9I6alIviUGbRx7dixo2HDhgzduLAJUPbEMyJEe+GZYO3ejz/+iPZCOtu/JRH0PMIMg+NBgwYxDX/55ZdLArQcxwZIKdxh74477iAluZDXKBsMFDQ3xfEIb1zyFmWGpj///PPXrjHqhNq98frrjRo1spd6kNLmAfXfo3t3DJGCGgWAoNB+/fpZhM0NNYN2FxOB7MIGAV5JuGbNmmeffTZODptnO8Cg2dgo1sU2TvScvAI9U1peHubCww8/7GTSFGHxSaXgHDXWpnUbGgs4bbL7DUCbPQtSLrDQ7rRFUC6pLnttnn32mUceeYQ7NplEcifxnXfeCQ+ADB1gp4IDzhkgXigqziuhb8IeDwYcxiVmYtGCIIUZJIkBbe7cuQWl5PtuvPFG+xVdhVe4ELAFISvxpuEDYYnhjgmYmZFJ38PzQT8ggWkqCzfu8Gb1x1AC/fv3z8nOcdYdBnr16kVX4a2dBf8HYew2MMdjAXq4WJy5CMPbmWeeaXNL57n00kttw5Hs5513nklmNW5QXn1UBA4MATOy0UsR+HcREJXgNCA++eST0g0I3nLhBmcAiq9eLsQ9Q1Lqwu47DAW077nnniuCmJH9lVdeKdU0MtT6hwMDT68oe5HyJEalcbeVAW87duiAGWGLZnLZcMG5GBAIaCgwRhRqkhjG0HBOaiTDhli9ajUnOFEQydAMKCHixeAghvRwy9tmzZphuzjLIgzn+CeEPnfGlJgItg5DXTGvASawAU276IYNGsyeNRt3gh8BSweXaEBQq7w8hs5XXXUVnBgmLQ6hBldQxt8DcRNvrQqkOKqDZ8JmtbSAZdjdfvvtUgVoDbvlFpoyKAsMYJQYU6+IbSEp77rrLvjhgpMXnn8eM9EGgUgBAY1LJI9SFkCJOyGorFIMiJtuuknyUgoGBBkxqvABgAPI2PRpO1S7XRCOH1Iy04TNSqR0A7F1wMpMPFn/iKF/OnEb+dVXmA7wbNi2OLfQNjfJDjMQ5MKIwQViV4QW43IaEGx19newgH2DtU16ktm5NKAIHCQCOoUh8kHv/0UEjJbC24stwJDaZpBYJiBY9ZiXxzlILNFnxaWM6VEPjLYZwFm+eNdPP/3EEBblRPp27do988wzmBeEmVNHhDNxwPCaWQYjrd0eBostW7aEIEKfohg+Tpk8Ze68uegwfPibNm9GggspKNi82AFEPG/xbPMW/0H37t2bN2+OMkA9MD2B7tm8eTMJEN+Eif/qq69QkORq0qQJDMvcNsPKmTNncnAyyhvKK1euZF4GR71ocX+5lqlhl3vvvfdCn0cG3yhCPAoQh+cNGzbgmZBTJtE3zD7cfMvNWBtwBQ+GlMGo+AuZAm8A+95775GYRFDgZKcTTjiBUvA6ZGSkr1q5avyECUznk4B6vfTSS5g7Z/brh9YzRItBKFCW9QqHhzyT969Jk5h66NGjh0zWSDzmmCHE3IG16YD2RQ3jV/ESbVGgCpgvlA63jzz6KO1F8krx8e1p6XbtsAtJgArnhChWX1IKj8CLQYBXiSkAKeUA7mhl3FHMMjBnwQQBjEGZU65PPPFEwQqm69Spy8YH3B64CiiaNp08eTJTVMBIMrqZlEu/wxYhO7YS9Z0+bdr9D9zPnAV9m8eo6JgTT+wNqngRMCY2b9mCt4m60KOgM2/evCFDhnz80ceszJDZtKC64IEghpRVWLTDItUqVXr37h2URh8VgYNF4CANEM2uCBw8AqIGnB6I999/X8agvCJg7lyW2wCJbIJMQWRnc2dEiNGAoEQQo13OOecc9ATxq1autCUm6uS3334jI6ySF/3KIj7c/mgg+f0wNmUxAZFIZ5JxEVi8aBE2B6odQY/1IEUQLtYDQbxclMVwnOkAuLWRYY6ctQgksH+uEMTOQAegXYy/JHDhcpBVGpISaizgCLw0fyHLbgWbDgFItWvbFg//5k2bhBTqHxc6uvOKK65gsIv6IRlj32HDhmGaAI5A6vRA4HXH+gEciqD6zErAHgyDKnlxwMyeNQvcbE5Qh6io008/3YyO8UiEhbHIgNl6IW4nKymAox6VBmXyMo5nyA7UMtlvGLA9JVZbE2M1vmkXAlzE3H333TI7ABEuWic5OZlzI1avXm17ocCBRiQlFpixPCxXyqmnnrpmzRonY//IA2Fn/PzzzzERDE2357777sOSEN7kblgNdFTmvNhpYrh0ud599x1TDfvKxQw2lcKQpevarh2MDJZf7Nyxwy6OluUkCc6hwsBlOw+OIExejtmmUewGdXogKIsWHzx4MM3EipNNGzfZqNo0NaAIHCQCOoVxkABq9kOAgKgEpwHx4YcfQtcpkQsVY3bS+VUdApThHevj0KOoOyT1xx9/jOZgtI0ARa+gCHGSo/CcWUaOHInOIwt2AUNqzlEWce8sEclOoZ9+8ilaHAe1aFPuJRkQ6FreorNhCT0txQnbyO6ff/qZ4Tv8WHrEJRqXUayzXiLiyW4PUkmMXimUprABQaHt27XHaUEaKdFZLmYQ7hk0tNgB9erVRb9CX9KUZEDAPKqIunDBAHaYPU9PRrkEHFQaw30qJRMbGGHA6OS2pPC+1H2sRRUouFMQW3OZALrllltYBwoDMInKDJRm/bWUrsRAFrMADKVeUKhdu/Znn31mv3WWSz5e0YIYKxREr0A3C/+S7IANCHslY1EDwuacNi3dgKCvUtlFCxdi5Qjg9JPvvvvOXwWrqxtqAWBZKUknN1ZbaGjPXj1XrVpFSinOaUDw9rbbbvMbxAGDzAmLhhWBg0egYEhk/5g1oAj86whcf/31iFG0Ag5n7lysHZOLNQfpGemITHq/6Gw+msBICzVGFEoRr/6UKVOefPJJwlSEOYILBw5EOouy4Y5s/eCDD4yKQrC6XORlRhn3OFMb0JS6C2XCZ5/df8A556BBjXC39ykUAUiIMyRliT4vUVfOJMzD4zbo2bOnRMIqpssll1wCb85kEBEGnn32WZQTaXiLhoBVZzJnODo65rrrr+vYsSORwgN3lI2kwXSgdnjsIQu1zZu3cLgC1ZeUTjoSFmc4rgt7LSHD+nfeecfMI5iTpwNncljIk6Vhw4ask4Ag42geWfnPJoWCZEULCMSwP/amG2/Cn495RxxZ0vbtw23DkJrFsMzpYPdMmjR59apV1MVfr4A7RGg4q0DTsJjg/PPOJ9KOR3NLSt6yVvHCCy/kFQXRK37//XcMiAAv/+pfi2Hm6B5+5BEcJ7AHtyxWwE1ieoJ1Qomfv4C37LTTTjvm2GPEAFowf4HtcQmqBp6zIYMHi+34j/bIBNHRR0WgFATUgCgFHH31ryGAw4CpfeawWTrAlITzYusEih+ZaBQVc+QeL1Lysssuk1E7kUz/84hghXt02+233cYUta1XJICClLrhSGfcJrsw0OvGSghoYkkQafmBmXc3xQWEuLxy3kWgs6GD2RAKNUQKLwRAfx/frRv6UkrBJkAT2FwJKTwYxOAUQYMyyhQlx85Slss5y3KGGzduJIrTGelUGFgAUOMtCokqsEzEmTI4bO0XBUDm+OUVeWvWqGH4NMczcm6XCQmfkgAzCAyhzMWSC2aUBMNgykWemzZrymAan3yH9h3MFIPX+GaoMosAWBvLqP3iSy4ePGTI8y+8wA4LOcqaCpAmCDRicOabpayFj2h0HhcGfXbw4kkiMezhsIFPwv+RixU5VBn7FX5oJnxOfueKE/NA3+OYkB7dewAXWPEbARz6W1FMWIXDUdwQLPrqP1JrZaMCIKCLKCtAI1bMKiD40ElFxR8xopuRoWaUZh7cbDVk1M5AE8VALsaygELCM04/nV0PJHPSYcGdKEjENJ+xRtRKYsHRmVJiju3UiaE2rnVnMnll30WgszYQa8Yf6V9fEUjidrXv0AHeeGasie+B0wKCGAtkhAU3e0ExnojB1IDbpKQk/9vCf5hfqBS/n1OSsFRYlsG8AFkxxQoTCH6CJabeJTFswOpXI0eKdiepAbzwhZNc3lI1NBkLPxn7Fk5S/BOKnIWZDZIb9D+r/4yZMz766CO2WVJlgYglBbDKIk3WiLDclWkpJjichguc2MywnAVPVfHFBGKbN2uGBwskycX94D+uUbSfBIoq/NdS/DarRfAziVn8QU2Nw8G6sH159NO3c8o7cwBrHot1WGPq8xmvGOHAm0J/ceTQvQtF6YMicKgRUAPiUCOq9A4FAsMfHN7jhB7IUORnkKSuUb16eEQ4alUG+nZpLONn4ztedDQQLgri0fpvvvWWcyQqiZG56EVcAkhYlqQVqHybVuEABSUnJ6EaxSVQ+KX/iVfwiUYs9q1EslARz4poBMbEMFBsYlNll5vZEKm+2YNSrNqxMtvbGYolJZHoTtsrgAMffOzHormYrGHLicTDwCcff8yCSlHqRAa1hVO7QROtz+EcRWkWjZGMUOP48Fq1a51e47Texk3i/u3339g7wwwU6xxhlWRcuItYWMqyANkgU0DN6hskYA6LSAJB7BWkdLnq1K1bp04ipEiGE4tdos63BxYuBcZiCWJS8q/otX7dOuNUC5y7yjIaKgKfpDTpA74HghJpU+BRtp9YVrQdbQL2CR+FYvVBETikCBQvwg5pEUpMEfjHCCQnJ4njvSw5jVTlW1keD/P9rL6UpQ9kRK/Yy9ycdDh5GgGNUkSd22NrZ4KiYQS0rUSLviUGglziJC82AZFYDLBKMu4F1oNjSG+PQVEZ9ioKIlmmXxJN5xFYJaXh7EteiY8E3VlSMoln8wBpYJJHqkzAWXEDdQkXJhSVwjKTOpaQyh8t9O00zLnI902YTjqz35nbd2z/7ttvX3v9dRaZ4uFAubKDkYWQ9qkMdkYJlAUEJo+YeoE3LgydEqsRRLrkx2JNgaLJpaYUyivzv8MasBOzBYMEYp7KlhlJ789SMuYkAxxmdvDN2NRMLp9Pdog4IzWsCBxyBNSAOOSQKsHDioCIWpQckve9994zusEcG2Eu9lageGSGQmLkXsU66UG0I/qJwH6Hknzqwkmh2HCQUiyaxtYK9qugGPvRScpElqxCWK9AAmd6m7gE0C6sIiEsxNGjbDsMSuN8ZIsgSwrEaMDmYNCPESb4oPvQwc7EdhjiXBgQLHe1Iw8gABFysX520ODBPU44gaOg2X+LUUIkZzLz6DT4SCoV5ysnRZVoodJ95uPgzMsIfdmeUyjBATxYm26c+SBebENIoaS03vo7pzNjzcDnMEiAwyypbl0AF1LcJeBMTxiahqzPh6eBpb+yt8fE6KUIHEYE1IA4jGBrUeWAgIhXxC5L699++22GcfY4fl9qKnsFF8yfHzQ+Q+aKRkThMdnMlsK4SmZDf7EXQhltylI1CipXAS0V8RfhGKeaoOMxiMkFCxaYGKNLg974H6k7Hw1hxgfVS0WioiLBx3i8S7iYU5CjLeGHyR2Ok7r66quLqTi6qihXaNDCQ+ESCjGLJW07z5y5GMglIJCL2SWaic0y7LHkIxdwzmpafEtOl5LNFZsR9lOu27V5y2bx9kPcrNkMlFgSh/uNt1klpUHTaPPiDQgn1sWqeFbDME1mPBA+H9Ybn66AQ7t2pXPiZKOMWUonqG8VgbIjUPx4ouz5NaUi8F9AgEOQ7rj9DmtlQyjr6fg8I1yxt5Bzme686y7Up5PJyIhI0iB5Edls9BgzZnSxkteOZPZdjph0Ejm0YVsN2AEnfZsTZ6SEJ0yYwB4N84Exe1TqSERGXDIcRUVNuXjTunUbAqUQhAFWQbIHhMV6KGyOs2SJn4OkP8isCim5tm/bzsICljry5aflK1bwuhTi9lv2X9ww9Hr+3XjTjXwxy473Uw/8wf9h2LZ0M9/LxtVvTQMEXltlwQNrJpZx5re1s9eQCprx8Rl7xT6XkwQobOdGlQJy/zBk+3I4SCs7p1AfK4mS04Nip8FQY1EtFcEOZGMFbSoeIDsBAUGVNDToiuUrQHvmjBlYTrRR0cTOjBpWBMoPATUgyg9bpXyYEECGopDmzZ9HeezE5IsYTz7xhCyNRHNwZtTECRN4hQiWC/cwXwqwEnuZ7x/59deyOD9Y8ZDC5eJ4RxwbBMhrRZTjDfXwT6mz3+STTz4RJz/ZgyjwyJnHHBQtC05x3eOSoQzBoWhZUsfmzZqbHSLWjkegg0LRlPYajqeefopzKtnMeekllzz44INwEsRDUF55+/ffU95++x3+segV+0z4D0rJI5MOGA0sy4AxhuYsMbHdS7wVbvGmsPWG06z5orYQD/ZGuF185JrPTMjWkojwcLallGXZRFF+gmJgRnwn8I/LhNKFpSLJTIQgJst7gxKQkWMqsC0IUB3OuTKfdy98UZB56XKxR4OTP1hVetmgQddedy0nUNn+m8I59EkRKHcE1IAod4i1gHJCwBbWuPHZKSBKqHPnTpxsfcmll3LKspSL84C9GAzsjHS2RDCeif5nnSUqBKuAc6ZZoAe1ohP8HAj9wYcfsr0QUodhnBfQiIZxYVWqUJJZQRrGo6+99ipDcPLaF7kIc0ezPvTQQ2xA5REbgm9es7uP6R5bGwn9Qnefr3mL5p06dyI9VV6/YcM111xTKIH1IGiMHz+eWQYsDDw9K1auHDBgQLEjbGd2ydi+fQebWzwQnCXqrK+dnlWTtvdI/CJ2MjvA/AFhvjDCChg5PKqgpcDA8l7cc++94377TchyNhnnhhVktwv7hwFpFLQ6+ZgcwTLAWi1K1sRYbSH1xeNVbDmDLrsMtxmJsZawqMaMHRuUzLZuOQiVdSEATrOSxV50Qq0pAgpyBWXXR0WgPBBQA6I8UFWaB4sAwhiDgAv9EXQRKcJUDt7B/XD77bfJkQnomEGDBnMmBGqMz1ARgA8EKzsD+XiVzVNoSChHMrDLA1KZmRlQuHXYrZyouGDhAlkPjzLAJ8FU9O133P7oo4/ipRDRbFM45AHoBznnUQP+Ukp2fIhOWrduPUcPoT7xbMs2UeoFINg91JFvZPAIqbCw8IEDLwwLDTNllXKxjs/rvXzwEJkGgg2WULBFFjOLYbGcCwn+rEvAtcPJ03v37BViLFbgsCYSlEKbVzJcPrt//3p16/IIMwypOTyUk5TED0QkdhsKkrOh+N6EZMGfxOZGwvYldZc7kayR5HDrB4cPx5q0PsmBNs/bsXPH9BnT2djBueY8Sl4OeTyYj2nZDNSoWROnCFMhXNhAHN+JkQob9BZcHX41bvkk2EFKGjFrRowYsXDhQja7puxNYQEvFyl5VbVatYsuugijjUfMPnrvU089xc5hDERKJDI9PWPe3HmsR3n//feFB/bpALisCCZGjEIbFptPDSgC5YeALqIsP2yV8oEjgJxlXIsOZVgVRAUR2a1bN477RfugFZ544olpU6cRiQDt0b07Z0lhWPCvY4eOuIU56BARzMXRyJw00KRpU0PN7WJyfdgtw5i8X7d2nVlA4HYhlxnYdencuUHDhgh0ZDcqgbWTJEd7JSUlyUFSQcwYYramL/quhJhi1zBaQ2VTC1Nh53K8Uuk3adIYu4HTG5mb4MuNaHGGpOgwtD7rEsQegh5A9ex5wgUXXBgRGVEKwzAmhky344/nLHDz8a309KzsbI5u5GPoHOjJ1yNjY2IyMjJnzZ71xx9/oC8hDs+NGzfiywuEi3pxiCx61apdGw+8tA784IHAewF9qoBelPOjaB0sOYgzO8AJHzLrZJMiFxePND3Hb/BVDtQ2neGTTz4+/vjunDpFXmlE56Cfdhw6dGjRLY5CyhAv3N0gbr+yA8JD3Tp1WUmziQOgfD4KGjJkCODg1sJWIJ4PvUoycnFGKlNCmESkxHrA2qOa2Gf0K74kwqntrKUg17XXXDt79mz2DdH9sEWYD2Iuo0uXznzbkyWf69avZ5kw1aRe0ASTcwcMYC4GfKQgvSsC/wIC9Gm9FIF/FwEkJgw4P6YlYtHM+hZ3nXHGGZJl1KhRKAOEL0M39g4sWbwEOkhYBnb4Lli+0LJlC0St/K4Q3JyShJdbKkuAxQGIckqQBEFFSSRSnmGfPfyFsRdffNEJFwNfGCAvd0bMzldBYVmNKKXw9QqUOjsRqIjzIguPvGKgLIxxfuKUyZNtUrxyfo0Tu8d2yAtlW6PIxyp5JB5XBAN9m4gEcL2w00GqKV/jJN4wY62yxPHz1ptvciAmFGS1IH/BWS4TGVBdIM9JkRgTWZlZQUWU8ojbHytQiMChHaC9pMmIYd0A9gQNt27tWgOX47rnnnvsXHxB4/TTT/MzaaFg82aTpZooeL5L6aDhD2K4kIyLrHwv224OWgdrQ15xxwcTlJfZBFnZQNMLjNzpTBxAIkQkPb0O64oFKBCxk5ERJJlukzR8OQwzd/68+ZiAUqKklGSkJMAl9Alw5AlmFjaTkyV+FzZ9/E/OVxpWBMoDgYIObfc8DSgChxkBBDed21ko8pdHY1YUd4lPnpEln3/E34vARaRif3D0JLmQ5pakduPd/fCDj7AAhDLT5C+/8hJjZHnkMODjux0/evRohrYycJR4CpQANGvVqol3nS9No8YkEsYQ9BKWu6WwDP+iM5yvgsIQFBUiWQwf1vy9PPJkija7I402lcQEuHiGenZWMev8Gd2O/Gokx3XHxRpDyk/EKhj0UDw4JG699VZmcBh8FwyvKccyUyjLSmsmeiRsmLGORISBK668ki9p8YGPyKhIkpEG5OVCx8MYPnysGRagnHfeeUDk9rghKwRLv1NTNmTiZ4I+Rgx5YZ6LeJmxonSKYJjOCoxXX3mFMT2vuIqShQ3Ojfj88y+Yb8LcYYUHNbCrQwBS0Ln88sv5Dkjbdu2KUoCsAdmCnbuUQoCU9ivzNvDKpnDzTTfz1RU+BUIfs78tDouklDRk5+IjHcxHsCgHPuUEUtoFgmIWSErY5rFlq5YYi1TZXtmANSyAk4wsAIWHjHUtzz/3PJUCMftMbmpqM2YCFlaUXihSHxSBQ4qATmEcUjiV2AEhYMS9y8VAED98sBwsjiCLAYlmyNumTWv0ImNTBsF8U8r+nBKyGNGJ8G3Ttg0nGaxatQopjJJITDSfn/CTtIQ8vmVWUOIcZsRGMmutpVkuwBxH8+bN+53Rr137dmTp06cP1AhgnHTo0MHJVNeuXdn3gdqDfiPLgnG+dYbDw8KY22bUGBLibdy4Ca9Qt2hrZxpcEtgLFMSwm2+UozPQE/Xq1SNZaJh8o8uZ3IUfpX5Sfc7fHDdu3MSJE/GTM7JH9aJaOPObKRu83Bx3jd4iGzZDwfZFSLvdLOaX5SN16iSyddMmzSvCsHHKyaf06tnr+x++Z40Cy1GZHAEH6LMhgs+IMKbHUxLN2NrS/aQ3FLj5FahNLzgAffQ66VHAPU84gTWD+PZZA8HFupdKleJpUGoNcVwjAFvK1AhEYAnmmTU4s18/P6lt22CJjoFJkdwguXev3j179qRXEAMyQdzwJU/G/XQ8EtSoXsO8pSIg4Hax+IPSyQW3ScnJsE1xAo5J5na9/dZbAwcOnDFjBj0HW1aIiLljJ5PAJx9/8udffzIZRB2tEswEnBzCbUgFLpxxGAeYO5i2fJyM1RLUDso4oiDLKp+z+5/Nd8gEPTLBj80SHgj6s1Bikoj4AFX9qwiUCwLBI79yKUSJKgKlIiCSzha4pab1v7SFJupKTkEwaqbwhTRHRqMHMCwgzmNQGmcMmnhvSkpqSiojTXQMMyMxnABNtsBo0pm4cDkFT5RXoKELoguFCjgvFG00gegtu0Q7pR0gB2FcJnJ2Ao+sHsCCEUOE0vfspRIpeGAwOHCroNqpAiZLVCSBQuWJKqVSxFq1LPzaSuusMuWyooK5IYnEhqhSuXJeXj4HTznpGlYpqRhizlQmTEruFC2gwSQzIHyoHX2Jt58TMykCMiQyQ38rpaQ3mV0uPEN8Icxw7nJ99PHHaHEo4iagaFaEoHF5Qx0xv7AtaHcsSGNA5OYy1hcKQXfxnYj3hVcWYX8SXhleLY4h5XyF4UhvIYZlN+ZNkU7oJAV0zrxC3Y4RQEhjmzigTV3AhzXFODloUBJTCztLgCmDuDE9A1/TkEJNWwR6r5Sld0Xg0CJQ/G/p0Jah1BSB0hE4ADFXkIVPHpdwvjLylMsu2hmWSGcMeoVRNZedPijgTBz0yn7cr/VAygLO7WxWwMQXFvd2SjtQOId5Eq5Eb1F6sVVAHxfNKFqq9Eo538JDUXCYkgmiXAqrJaUU0PCRcMUnxDuTGRVoIWYsicLjafuRmRr4pFzLHjG5UbRcTjqE0bvcS7IeeGXr/qJV4BUMFHth5Ui8E6tiU4o6L0rcTiyvbOuBeCYs8MTYCYoN2ATlV2A/ktgZLjavRioCB4mAGhAHCaBmVwQOKwJHlVZwVtYZBnEeg2IOazP888KOLG7/ef00x9GIQPAA4mjEQOusCCgCRyACthPiCORdWVYEKgICakBUhFbUOigCioAioAgoAocZATUgDjPgWpwioAgoAoqAIlAREFADoiK0otZBEVAEFAFFQBE4zAioAXGYAdfiFIGDQoCJf84AsEnI2nvZgmhHHg0BtjtSTf8yiMCO0KOh4lpHReC/g0CBJPrv8KScKAKKQLEIoC+52O7IEZCSgN3/xPD1j6I7KoulUGEiORcBEDAjMKfCIyIAQbc5VJjG1YocKQjoQVJHSkspn4qAHwFOhOS4SXngUE4OuCRsH2NwlMDEQeYbNmzg/Aeq3qBhAw6eCvGGlOUAq6MEH62mInAYEFAD4jCArEUoAuWMgDmpsZyL+G+TxxVhZnOObhD+202k3FVABNSAqICNqlVSBBQBRUARUATKGwFdRFneCCt9RUARUAQUAUWgAiKgBkQFbFStkiKgCCgCioAiUN4IqAFR3ggrfUVAEVAEFAFFoAIioAZEBWxUrZIioAgoAoqAIlDeCKgBUd4IK31FQBFQBBQBRaACIqAGRAVsVK2SIqAIKAKKgCJQ3gioAVHeCCt9RUARUAQUAUWgAiKgBkQFbFStkiKgCCgCioAiUN4IqAFR3ggrfUVAEVAEFAFFoAIioAZEBWxUrZIioAgoAoqAIlDeCKgBUd4IK31FQBFQBBQBRaACIqAGRAVsVK2SIqAIKAKKgCJQ3gioAVHeCCt9RUARUAQUAUWgAiKgBkQFbFStkiKgCCgCioAiUN4IqAFR3ggrfUVAEVAEFAFFoAIioAZEBWxUrZIioAgoAoqAIlDeCKgBUd4IK31FQBFQBBQBRaACIqAGRAVsVK2SIqAIKAKKgCJQ3gioAVHeCCt9RUARUAQUAUWgAiKgBkQFbFStkiKgCCgCioAiUN4IqAFR3ggrfUVAEVAEFAFFoAIioAZEBWxUrZIioAgoAoqAIlDeCKgBUd4IK31FQBFQBBQBRaACIqAGRAVsVK2SIqAIKAKKgCJQ3gioAVHeCCt9RUARUAQUAUWgAiKgBkQFbFStkiKgCCgCioAiUN4IqAFR3ggrfUVAEVAEFAFFoAIioAZEBWxUrZIioAgoAoqAIlDeCKgBUd4IK31FQBFQBBQBRaACIqAGRAVsVK2SIqAIKAKKgCJQ3gioAVHeCCt9RUARUAQUAUWgAiKgBkQFbFStkiKgCCgCioAiUN4IqAFR3ggrfUVAEVAEDiEC+S4X/1w+l49/wXStiCKxwan0WRE4JAioAXFIYFQiioAioAgcTgT8RkIhW0Gth8PZAlqWy6UGhPYCRUARUASOIAQQ2m7jgDD/u/mDO0IeTB3cgccjqELK6hGLgBoQ/qbzceVbjkHLL8hTUe/g4W9lw8YhuQ6ajI3PIWFHiAC4YH4Iae6HlIWDoMo9325xRHBhqIup70FjWBJvQUX7wTEcFBRpPRU8lkTqsMX/1/gpe8UFVZpeqiCPNub7pWNyBbqNhIWCFW0ECJfESNi+Fxtpvy17gE6A3YClINZDrsuV53LlEOkm3vQYZLqK9bLjqSkPBgHtaX703FweD6Lhp59+6tmr5+cjRpgf6b99DRt2yxlnnLF1y9YDYwSZtWnTptWrV2dlZx0YBb+Kzc/34+NQaQdGkFyALNIWwF1u96ESrPvl58EHHzzl1JNnzZpFXSh0+/bta9esycrM4pG8ebl5wZy43aJmDM/m8quH/Rb0TxMYfvLzFy1c+PXXX8+fNy8zM5PCDOBud2pqaq9eve64445du3b9U7LllN6CwpgysHcwRUAHjScdLIiOiTTK8BAYTNKCwaR8Lg99z+Xatm3bqFGj+MnzG8nOzvZXrdRiTa2tjkFjnXjiiSO//ho6ZNyxY8faNWtpL6kL5XI562V4cFAOZsmZtExhN9SxGz7/dsyNdw5/8vnX1m/ZRqcxhgSlOAoqEzFNpAgcEAJqQPhhk98zmg2NO3HixOUrlh8Qnoc40/TpM6ZOnZqVdYDqf93adSed1LdVq9aff/75gXGGnN2wYcM99947dOjQA6NQNBd2w7Sp06699trHH3/8IJVQUeKlxMyZO2fy5Cl79+4lze5du666+qqGjRo98cTjPObl5V1+xeUPP/zw1q1+Ww3GuIYMGQKTKG/CqI1SiB/Yq+ys7MWLF59//vlVq1Vr1br1BRdc0LZdu+rVq/fr12/06NFYEjQ9vRGjh4Dh4T9w8Ut5+eWXBw8ePGvmzIPRgiNGjKhcpXJISIgBuvBFpMfrSUxMPMjqwh49H1b//PNPJ6m09DSMhmOPPbZ+vXqnnXbaWWed1ahRo2rVqvXu3fuHH34opOed2awwNGEWk4HfxYTx41esWC68X3PNNY2bNH7mmWdIRcwff/xB5/nll19sAvyURo0eddlll44dO9aOPICAcTRYFkK2y/XHrBVfjZ28fEda/TYdKteonufLt2YwDoCqZlEEDgSBkAPJVFHz4BMMXHl5Zgzkd0L4jIIx0tsaufryjaHvDdkPdLm5uchBMiI4UD78x4iEvN4QL/iJGCKNhxJJUIJuIBmX5DXaw2LAYsYNcV75MzKSs8bHxHi9Xjs+Ni62c+cuSUlJdevWJTcZeWtKZ2xk1ZSwXHaWQIT5SyR3hlZIVfTuK6+8UhKfkriUt4ac41q2fBn6o3Pnznfdeadx/FiXDAodqUoOWgMsBL1dovAvdzsbgBeiacPlcoVHRLRv1z4jPaNFy5akB5aPP/64ffv255xzTo0aNaCTn4fTxfXRRx917doVBZ8QH2/8JcVdQaUUcGI1OjmKJhAyFDHy65H33HMPVkurVq26dOmSmFh72bLlM2fO/OXnn9euXfvZZ5/VqVNHEkOWAA0XxEbRGDqV12JVUlp1yfN4vYKVMMOdR4mRziBs+2N48Pls6AgbHkw/dFs91oN2/P7771G37dq3lyzStUgpj8JzKXdS1qtXr3///hhnUtCkSZPoae3btatTty7NAZ24uDgpunSazro4S5S88+bN++STT9q1a9ujRw/eyu8Rq+L2228n3PW441q0aB4XV2nlypULFy78+++/v/rqK3x+9s+EEYWEhTJl+YuAJ364Xq8RFNYv5ZhjjklLS6tfvx7lcq1bt44eVadO4imnnEIFc3JyQkNCly5d+tlnIxo2bITrQmpNSqmdMCZhfxHWHzuBHWlcMy431sPODN/3YybsSEm96Lz+p53YJZRubOYu+GnbaTWgCJQvAvvRguVb+H+Juuh4cf3xo/W48a77+UM3MwWwe/dudDbaJc+Vh8K3eRcJno+h4PWmpqTy80bw8VYUPAERCiTbsnlzVlZ2nbp1QkNDJRJ5FBIWJhJQCO7Yvj0hIUGsE7zrCC/DjHWlpKSk7dtXq3ZtUor0scUNQ9X09LSMjIzaiYm2xCFQuXLlp556CuEVExMDA+QijN4KjwhHE5ALkcfAi3hISUWEDbkTmYc2sqQ5As75ijD08fqGh4enpqTk5uXBNpEkIz25kLyUFRUVZeeCPooI4LhTOkEokAzzgYIAUGSzVM3O5QxI1UhJcSge2kLeAiC55K3EAMXOnTurVq0KezZKVuF+etHR0TfffPP1119fOaGyswgYgxps5eUznDOKk+xE2mpbypIsVBYfeK1atXiEK5KCbUio+U0RMANZ6z+pEWjQJaBmCBIODZ07b+7TTz+NoXDllVfed+99tWrXCgsLwwfO3AqGC+NUYYB6gRnZQVvcJ9TLtKZlC1qFmr5HMjAhWc2aNW32CFA6cGE2SjsKM3LnLbn2pqRAOT4+nj7PuJ9LmKSmXNKN9+3bZ9R5fj4uEypIPEkpy+LNlEYuHoUs4G/csKFR48bSe6FGAn/HyANV01iwhPnYokULkwtFHOI977zzJk+efNHFF180cCCMyEVBEDEFWBdzBFWrVaXtAhHmb24OlrrX7UhG9wMWr8cL/JQLA3QuGsjUz+sFcEwKfs5MaQ267LIqVavy69i7Z8/2HTu+/PLLlL17KRqyVE14JgyTmzdvrlHd9LdQ2lcACtwFhKE33DB48ODIyMic7BzSkJfEdCU6TygOFfqny4RJHBERwVsu6Q8ks1LmZ2Zkbtm6BXOfxAY069diAqCXa/2s8k1dMrOzvBGRe3Nds5asW7hqbdNmjfuf1h1E6HYW3x4WQ3BZNxPQSxEoRwTo0HoZBFBllsh48803gXv4g8PNs893/fXX1amTGBsby68dGYrIQ+jv3bNX3iLuGSOefvrpDz30UJMmTZBECOKOHTvOnj1bCJIMAffWm2/iI42MjIII8r1Tp05t27bFLy1E8E4zXoEIPluEIx7sHj26//jjj7zt1q0bRgDebKRtpUqVsDyqVKny6aefSkbuixYtIk1MTCxCB2UJfUbM33zzDcIIsohyBnmUxdAKgUX6Cy+8sF27dqNHjTruuOMgSC4Ggh+8//6ePXtsmkGBNm3aIBbDQkMbNGjQtGnT5s2bjxkzBmpkeeuttxo2bEitkWvg8Oijj6anpSH0ceSCBoxt2bJFqCGCX3n5ZSJ79uzJ+FW805Ctz5CtXr3WrVvPnz9fxGtQ6fYjZFEM+EI6dOgADnDOwBFYvvjiC9JQ0+7du3fp3OWuu+6ivvDDBatTpkyxKZx55pm04O+//05B8HPvvfdSOk7mSX9NOuGEE4AOslgDRFJNlDpc0RMQ97WtC//EuLHjoAawTJwDoNhM9A0qtX79emiiiadNmwZQwx98kBHtRRddRIfBuwB7RWv32GOPQr9Zs6ZYclTN5tPYUvn56Gyo7dm9h4pQNToYXNE9UIGtWracM2eOnQVnQJvWraOijFolMVW4+OKL6RhCcPq06cDS7bjjGIsPu+UWWp+LHsXMSMcOHekDECQXjYj3Zfny5YbVnBzaF4apJghjYkIZq+Xkk0+GyKWXXip2IR2VdmzcqBF2GGVhjDIdQ6PLjwWCAwcOFILQwvRBNfbpc+LECRNwuvAboedMnjSJsoTPU089lSbAy0WtieQOzrxKT0/fuHHj2WefTT+BVfoMHRL+ScDb3r1706nob0KE+66du/AYNWvW7J133sZGFK3Pj4hmTU5O7tOnz4wZM2gR9CvzGvAsMAI4eeU3QoDfLD8ZskBh0KBB1B0EqDU/H5gxXTEv76WXXoLhRx55hPQYDTQQ7f7888/D2J133imuI3oIzj/o0FtuvPFGhANVAM969eqSgA4JyAC+bOkyqs9bemB4eAS9cfKkyfAGZX5r+DZO7N0bkXLDDTfQBzp17jLmj8mbcn1XPPJa10G3ffLX4p2Y8n4BRg69FIHDh4B6IJAMJVwMGXz5q1eviYiI5HdbtWo1ZNncuXP/97//RYSH3zB0KGIXIYf/efz48QgjhCle6A3r1y9YsICxCGuskpOSaMl33n33gQceINC7d080PVOn+KiRIwzciUQSkR3hggZC82Fb7Nq5c8HCha+99hrOTzhDvqCHEPS8Rdwg10RUHdPxGMaCDDoZSzVt2gQhhWxl8Dp9+vT/+7//w15B/6HSiME9y3Dc+FR8LoY4yPSBF12EIYIgpkYI/Ucfe6xps2YwXywQKCSyoJqQv1SZMSryFMuJFQOvvvoqCvKkk06iIrigH3v8cd7eedddTCqj6RlQos6fffbZSnGVUFdPPPkkI2zQi46KxnmAbQHDSH+g4BJXAXSMK4iryACK+B9/+unSyy6LjIjs27cvPKxatWrJkiUvvvjiueeeC2M4AxDuixYvgmES4A9HhTPD/dtvv6H7nVXD+OARBhiMkgtmUE5wiIZAycEVohw8aVnUMMWJkRQeFhYRGUFGfAMs4ABbFCoagjR//fUXU+BvvvEG7nfaa82aNZ+NGPHyK6+gadCmaBQuDBGbB+K5WJCBtnjggQeBBf55y+gcnBl54v7CVgCNnNwcXmGUYDHAG+qc/rNs+fLbbvu/ESM+F8WGpsnOyenU6VjUJImXLVvGSBqjBLO1cuUqe1P2rt+wnuIwJcEEvR4VFUl/oDjiwR8NBwMrVqzAZl25YsXv48dDh7evvvIKvOGswiRFsUEWiFCQWMDYYdCvXq0a9aVPirKkw6M4YQBdSO8Clm+//ZbuRzx1B3NWF2F0Dho8GDYqxcXBMyaCcyoQfUxPoKGJtN0OG9ZvuGHoDfQlfhpoXPJi1oD/Bx98wKwES3Po7ffddx+/PuwGEHv2uWcxCnv16jVgwLlbt26LiY3Zum0r/NB7Ic4PGeb5NQHyu+++Exl5I1Ym7S74wyQtRd0BhEE/Xod3330X5kEJs5UmoEb0Lgxlp2eLQr1eD92JpuEHBSmYoUQe42JjmzRtStOy2gZLGehAgNIbNmiQk5tLv4IlFjldddVVdF3sBjIiBxAIVHnkV181aNgQgtBZnZPD+hh/88VUysr17cn0LVy2JLF23ZYNk2LM5IW1odP61VieCyqhlyJQ/gjQ+/UyCJTggWAAxy8clcCIEIHCmBvxyqhRBiuoH4ROtarVHnvsUeQLjoRJf/2FPEUDfffdd9BE0bZq1ZIsyHSyMw2BzmPAigAa//vvEMHZi8BFQGNzLFywEGsAfc/6gJdefBGhf1zXrsgyRnhTJk9ejS2zek3PE05Aor3zzjsIbhKgCbBd0JQIFxQJ1GS143PPPUedkIZIfzTizz//bKqYn49gRX5hr+AGgBrWA9OxqDEIGhCKu5DXCF+GmyhsNC6CkqJRoo0aNkT4zp83n9Ei+VhQhnTGcBEaDPQZt1Pxl196adrUqRgr6Nr33nuPwSUyEfZQkAzLEI4QRGjaJcMkl/1oB4hkQShAMXu9bes2iMD/mNGjIcUr1DZFQxN1whATgoyVsWP4AV1yySXSWLYHAr3FuHPIkCG8pUGZGKJeyH0oYG2AP6oO845Gp3HRWyCMfOeR5kNxIuhpYhYoYOrBHnkx9WhxWo1HEkMWTq684opRv/4KzkAhDNh14REGGAeTiz5jx9sBA4EFAs0KD4D/xBNPoJLXrV2LFgdJHDeoSRk9Q+HvKVNAA3cFChvPFlYdqmix5YSgdMwjaoe5gy6fMH4Cph7JMI9glTZlPSnuAZa1UguS4dGhjSZMmABvmCx0jE0bN+3etRtUmQ778MMPYQmzjA4M8uAMXHTyJYuXsCaR5vTq2dYAAEAASURBVMY9BnGag/l+dB69VxxmpKEimAh4U774/HNqgdVF77WrTOl0bOxmLDODj+WGgQ7GNz2WO/2fSH4gGGqYZddddx0QQfb+++6HmcaNG1Odt99+mzBDdrocb2GVZDQHZisocYmnDROcsrClcFSw4uHqq69+8skn+f3SsWlfCoUr/FJ0tnZt29L/qcvqVasAHOcB9haPJMBZIh4ICoIxCqJobAse6dJPPfkk5fJjZNoFzqkpsgJDBxCoC5DSbWAe8AcNGsSAhHWp5KJopAQeGth78oknIIUYkam68887D/MF3KZMm7NuT86HUxa0ufDau98ZiS80XZw4gR8NfwNBG10NKALlgoB6IPiZl3gB+THHHsNr9AeCFQnOz57IHTt24p3wZ/P5GjVudMH5FybWSUSCILjRQ9gciFGG0atXrV68eAlC6pSTT2FJI3kZdqBdGHmQnx/6ihUrkfiMdxGdZMdPgODGF4puQCwxZ4uYYxcfCSgOgdL/7LMnTJyICCNMDEOcrl26MJib+vffkyZPhk/mAlADeEFIYLwODE2spZfCLQxQyq233opukBi8suiYFSXsOkGXMOQiC/YTWQwpIy7z8XOsXLWKMWur1q2ETucuXdAN6Bs2nVavXg1L5dFHHrnu+usfefRR9B9q5qabbsKnzeAyMiSEOsIelk1tFhA42BNSxd4pmkkGRLwx2rweJGztxNr16tfra/k/yELVwAqoMVYQ/eh49Bwc0mosloyOKTRxLkVAEzaioqPrRUcj2aFZpXJlrCWZxo6JjeUtSqJOYiLGEFnwbFtbOSZfeOEFxv1QuTIJeIctMm7cOJQxrSaU8fOjEqDPZfwKXI6BIWWhJtGF6FeGv5LFf3cko0bSzXA+sUQAxqg++zXoHviEtm/bxqQ+LDGurVunbnZO9q+//oqaxzLIyszEJsjOZpefuaADGt9+8w3gUyLtRyH0QNoFk4i+insc5gGWSCZ9wHDkyJHoWiYOrrjiCvoA6Zn4aNmyJdlhHp6xTfF/QFaKmDd/HiyRhu5EDHyiaDEp2OyATXbB+RcYJnw+OH/u2edY0sh0kTAm2XklAYOXhKw7bgBaEA16yy230FtAkp5zRr9+Dw4fTk1ZkEGL3//A/TNnzaQUTHBUMi3CytwOHTtCCTcANg0BTBAg4vcIQRI8cP8DRL7xxhvY5Bj01IjS0Ot0GFY+8vO0WejStSsNTRZ+qtVr1MAcx7W2dcsWfBKSy05pB6AMw1wEIMXSFgI0N/zjd4EUGWvUrIEVSwylY4s3b9Hi0ksupYtiiFBBBhjYtbiCbr31//Bxkpcu/eGHH+ENghQ9bJ/LtW7TtpDwSJyjvmzLcRXiYQMGFzcngDZXGlAEygMBNSBKQ5XhCMMaHLM4ePnlo0dZmcUoQVzHklNkMZKeVQLE8AtHWqF1RCb+8OMPCAVGsVgP8lbECgkke4YZ8GQwEiK7LZLIi6wnAYVyR0lIgARYJ/h5kSlmXVts3JatW19//XXW3KG2Q8NCxWGO+iQBIh59QHFSkNyNAMplBVvBikgkHWSNhHSszDeJqZjbhaBHf5ALhoUUSivE7cFAgUnmVmxpC01YIhlrA5nUgMDgIUNkLoaBIM6GYbcMM1QpyZJxMGkgspZPYieRHW5NuSVcsHf1VVeh6hj641BhkA3NU04+GcOFyQVDylqMCTiYTWbRWYgXdQV7DCk3b9mcnJxcLGEKpYKM2ODcMMC0VHY2IaoJq8RACvtM8jJnNHXq32D79dffjB49BiRJACyoYTQrfguz8MQ6WIJHZnOgRkaWCIpQh0nBkEjCqArGxOg89FzQKxKYlGZzjdGsvBX8qRpaB4tBJpWIp/Og+59+5mlWQoBhTHQMFd+J38Isq5RlqWaFI7ZRpGWpUCmqxiI9HCosHWBQy+AYNUzfxqlDjUzKiAi8WYCAhYFJJMoe/KmUqD0IwBVhm22m0mh93C3wZiDF/M3PJwG1gD6PWdbUAI0OhmxfIDuXjYY8BmIMaNJrI6Mi8VFhytB8lE52yEJtX2oqbhjqjk4lkukM1DyWIq9YGondY5rPQpulFIIeq2IhCzhQoLPfd++9mNGsMGAzKqYwP3BsXHwMeCNQ3navpi6YKQYwj5tuhgmFQcMUUvcePaidzXZQwCCZlyc9nBkZCsTHQJqIyEgjQ7xeEvCWGH794EbPSW6QLE1MFWAY4nt27ybspfNYHUCsB17xm2GeLz0rOzwyKj4hgTWdUWaFpl6KwL+AgBoQpYHOzCtz2/gSBg688LjjuiHoGeLjTEYm2tkQgvyojYCxpKodj9QgvG+fOVgGoY/W8esAj0cki6QkLykRK0h8O68IVkPWutCJ6BDeMnZE+jCGIgE00ZlsSHvhhRcwAu648/ZWrVhJF8UqDY4uEJoUSi7hUIgThoJdEAG4IrFRNghcqwqUK0XbWcjFRTLRHPggMK2oBVPRTGSgYCwKpiJkadumLdlJzx3HieQCOuwbiqYIdINdEOkljGVmijMWhegO8+S8KJrTEbj/8OOPU6ZMppq44pk1wLHBSjejYy05a+wTtxkBoypAlWj4DAsNCyJqC1xKgwHcQWBllKvbjaKSipCXC7siPMzQEcbS0zPgivUi5517LqWQ2DDJO7eblRboGKP6ROsTLRXAErCyCwWJowjAwZPEiD8pKcnKwuoH/xIQw4mxZvwZycII2JTjMa0A+IRzc3N4nZ6R/uhjj6LVenTvfvY554AzfeCFF54fP36CGB9SnEx2GAasdqGy999/P5sRcBLcOmxY/aQkVgbwyPibSuFhogi6memWliamUOk2xBhmrIseaNcI24U4Bsp0CRLTqcjIW2OF1Khh2t3KZappgSNcFXu3ePQjBzOwmhCfcMedd1AvKGJYEwNBzPQ4yyinXBpInCLE4xQhhpRCnNoQgCWYAVXCMMadNCj1M/v14x9p1q1fh92ARYVjY+mSpR06dpDspgoh5hdHx6VFDBFrYyc8QFPSOO+SAAuMZGBicMCQ9JlW4y93MprS8/PZmsEdMKgjHeD222+jG2JfcTfAeTyxMcYWNHjJRWKpFDyYIt37MjLYkUGPycp1hYUETp8s6NlOvjSsCJQLAmpAlAYr0gSL4fjjj3/2mWdZeUVSlkQwOjEGBD/mwG9VfuBCiN8+lx3Tpk1b4hk3cxeBwivkCDJa0iPFuFihxsY/5IVEyh06/kcCdlhIG/EXsXv3LsZ8DFbwkQwZMgQ1icphmIZWI1VBdgdR4h1P/qBF0hrsImeJszyuZu+ZZWqY+uD7zctD9sEqiRF7yfj5c3KYXL/yqquCOKd6ZODtrJmzHnvsMVTavn1pzJIwP/1/t94qRSJMIUhZFvFANU3RfpaK/QM/eNdZeI9/fl9aGssn0Xks5GT62aqCuTlpYGTARmJiHYbFyGWhSYmiFElsSreKREyje2xohAtjVdFSxiQxlEkLz7IeE+3Fys3KVaqINhLKRh9YIZuOxNNAaDgT5oXDJmAnAiNg1qJiGEVHRVGKlcSUSnFwjunDRbk8CjI2PBY/ZtwJcUwQnBk4Zoy7Hi2Vl4ddJdYqybiEDaO5TYWNHl2xfIX0yWHDhjFel2alt+N+oAgG6PgeyMhsCATJDjhCxLSahQOPaD6LvDFzsT/IyyPrAaEguUiD4YLKp8SCDmwaXYgF3y3uHF3deo+ngTpecvEl+PDo2HBCMuqImWPb3LffcTtzaixQYDTPut2GDRuyGURamcSGDYttAcKypVzM+NiVQmWT5bLLLmNVB2VlZhn7LOiiRmRk+TNmU8sWLcyAwXAaqIkNciAbpfO2oFyrD4kxgIsrNi4O9LCuKBo/IuHLLr2MKTMANDQ5eCbfDBV4FHpE2pBSpCfflRATF+LzZrG5Jz9gOviT+rtZgBH9qwiUIwJ+X2I5lnCEkBbxXcAsP1Of2QHBbxixhTjmVcrelLVr12Skp6NX+EWTxfzajUAMyJFAfiMIrDDGB+4BJmgZLrNIiiUUuElZ9GD9yk0KprRRw/gw3//gfRybxKA5WMfAnDpERD/Zks5kCJTF3Ad6FFMGIYULGg45Xw9/L5MLxEhGkgurJqN1+bUUpAOyyQ5ISjjEtXvttdf8OmqUZEFMs/gAwQr/8EaAslB+TJewGA3TB4FLPK541n+xVjTHmnDZvGnzkMuHwAnGzVNPPUmABfyjRo8WmkZRud279+xhOSR5qbhhI6DpJE3QnQQsW8PRjHatWasWUzkDBgxAZTILAGMmq6XvAcGofJ8Pyw/Nimhu0bwFLggUMCWKWDd4WocoEyMZEfboYPz2rEMkL0NSpo2IxPoBZOjDv4nxeNj8wg487CFWokh7oczMSoK//2a+xhRhNRBECMtlaYJ8mubGm24cPHgwNh9vQYA1niz9w3mOB2XDxo0M+lG06WnphNnBgVWBf4K+RxXMIFbaC4qWRrf+Gl8OzQGHFEGts7KyaQUc7Ch+Y0BYCJLR5LVqagJWd2VjAr59eEDxUykc6cxogCRvaWwKZYaIMCYFSx0lF/MIzBGwuJJ4sCLNypUr+YGADJwnW8tsF8yf//rrr6UEjnOGmRkzzeoESoVhMvqLt6rAo/OSBMQI2/KKUlgRSb965NFH6OqoXgw6rARWDfODkjTvv/8+6zRZqfPRhx+yAoNCsQOkyUgQGxsDOPRquhkQ0WTTpk/v1bsXWSDLI1qcCnIOBCte4YHZSVnvIsSZ/0q3hAA1nTlrFiYpb+PjE+isMrlg2LZQNb84HqyLvGCLWbZq1SrDs1nka3Zn8FPC8oAZESywRAdm8oK+wVIh1qCQhrz79qVSQVa0wJgQNPcAMIhsJj9qxlaKxIBIy07L9HmChoFOBKUaelcEygeBoK5XPoUcEVRFTBo15DcLkBFsK8DfMGXylFuGDWOt3PIVK/hVI0kRu6ZOgZ83ssOcOyQiPjBcM7LS5UKuXXHFFaynYxMdogdRspldDIEjd5AJrMZiJQH+ZJQx4xuWyyFHGEHi3+7VsxfSGdEhw1CLXsENDcEMKC5oFsE9cP/9jMCQtpgmaE0EE2FJynpAGDMq07oYuPGIkmNml1lVEw5Ic3JR0Lbt21n4jfxt2bIVR1OQCZ9wmzatEZ0sF2epPHL88ssvxzDCE8C8O1qcqqFokZXwj+BjJdqOnTvuuvsuFAw7IM4dMAA+0U9MtTDabtWyVf2k+pxgmJiYyAqyoTcOFQ3BUBjFjIwVPovewYEjOtgIcNqppzZr3pwEaCasBNn8BvPEoMgxU2CDSrF4hatZ06YMT42It6Zg+CtQ0Li0BVkgi7mBFsEkYvvcCy++MGv2LJr45JNO7npcV5oDfY8fhcUWW7dto6Z4IDjYm70eV1xx5dln92eVPgcQURHKYql/8+bNUfDQtDsDRdBS3GGVUw5Rb2wIZLUpZkHLFi3Z2Q8mTOFj9vXo3oO1dcBIC2JBskdDdA/Z8SlBEyKQNQxbc0misWKioymUdmfynmMcYZJdA6goY6IFZh+MCeL1onrJK14uBtxJSckrV64aPnw4G4PBDf4XLFiIMUQRXPRJLF0cJBg3rN/kV8AmBSizsYItsvwu4I1eCg9AhyeG0q+79tr/PfzwY489Pnv2HHDDGsP+oC70AfZbCtRQNm1R5IIxq1jLwLCtJZeLUphhYcEHrqYFCxec1LcvY/YlS5fS57G9cDPAFS1OZZ94/PE+ffs2btKEQjG+OaH86aef4VeQnNyA2Q3WhMo6D2wdVktgtNGC/MToezQoKyrmzpvHBgf6P94sln/aDI4dO45dP8lJSes3bPj5p58wODhLg3WRWJOkkd8OGzKNuUbftaZsTF63G3cIFjZTS/yuERegQYA+z+nd3//wAw4efjJ0WvZlwMnNN92EI43fS9euXbBLqAKNwjRZ3z59BRarrZEWBiVsyUiXu0e7Zp+Hhq9aunLrrqwa0QU7hG3ONaAIHA4EpIPq3fjlrWlLpkL5uXI+DMIURcLPm/EWkoXGYLjQq1evpKQkhBGiDZcmPgkEB/LRzEEELqMy4+PZjyCobt606blnn0XdIrXRu8899yyigQQM5iiUUlhO/7Z1IhPeUS7kHeM/jqvCekA74n5n816Adj5jXzhBqMkgZt7ceawlhGHRixxQwxgX9pCDiCcuhCwEEf3CTM+ePSG42toRJzHshKQKt992G4kpcfasWaw9jI2JZRhHAsrlbhaKWzobiYwuQdmgk3CDsx0UOYgKQYLDFd5mlA2vmEsmBtG8fv16RC2soqI4pwg+cZiTgIKwBhjtUTQ0EbUITWwdKU4YC7rzCmcGzEsWZliio2OYR0Dj8opRKVIeOY65Q/UpCD5hBmMCBgAZow0GmE2fOGEilKksQNGsTPuTgBgsJHQSFOCcGYpPPzGndWFSUHFiuPAkoQ+IRBnAPImpsnQMArSCaVBr+x+l023sulBZ4uEEC5K2YLsNj0TSfyCFqqCVaXdIMWaFAWDhvCOWN/IW3CCOzmOQSi65UOHAznoFQyQvD4NP9keADHxyVgQdEoIoV3opbYempO+REpbMZUrOpSNho8CquExYvkDfwNUByHg1KAhg7777bniGJm0EqnRL6UgYQ/DA0VUwTEG0AlThFj2NQUxK0sM2K0I6HduJQ594uy/VLLCFT7bX8hioivlrcZRHlWmyd999V2LsBHQedlRSI+nh8Atl+YFwWho8wx662fhvLFQ5MwOeaUH5AfIT5lgt+IQlate5U2eMY2xZ1jXDD6TQ7jQKtaAIDGIABx9IyTZO+hvKnpRc2ASsf8JvAUuAyQ+EJpN9m6THFkQ+YM1I7ZgIue2228hFGhaOAjVZOGeWNSJSERoLU5JIqAERpgwywayhsYxagKJ9IUvjwkDHDh0I+y/GKnm+jHzfzf/7sM+l9385cUmKOTRVL0XgX0Cg0FCJvnvUXogxhj+IJ8SHDCIRBOYxPx/XLgMppBvSyu97YPk0qwhx7Ft+YEATuUYDkh7pTAC5JhQQ4ggvJAVKi0h8AAzo9+zdy75Q7Anykh5BQzLULV5i9HdycjISDRFjOQw4HdnasGC1DZEUDTUWaskcMAzjKGZQhWXDNjNSUbqV1twIQx8BKjEoWtgW3wNEEKksJuAtUo5H2CAZfBIvxMmOtkH1IAXnzZ+P8GXDCDvimLuFrMmVm8fZTatWrmzcuEmDhg2gYMZJLrNrAFIgwF3AkUfCwhJ36jJj+ow9e/cgzQHW8BPwlJA46BKWYGbDho3TZ0xHSzHMxcEjIKO9WrduxQpHRvloemsw15VVduLwl0ahOIth/6w86lSYlAYiDYoTTwn+fyaVaAXjcGe5e3o6BwWyyA4VywiS2plKsdYkLIyzyf+eOhXrh1dodKpmVwFwKI4Y7lIRC0mzN4RHwryCDu8Q/cbE8eUzYYEZShHMuSRULjgX3PS0ULNDBxeCLLCjFLLQiJACEO54QZhroCJ4pJjcsQulRrylIEpETQrmcocI6Tm2hLxJ9ZNwt4h3SjiEAsnoWuTEEKHdaSOAhZpcdBKAorti7qAISSkdBrKcfLB02VJW5LRr3w6bktrafYm8lEIRNodCTZqAEnkMeiUJuOMnAG3qi/sKnUoyeJDEtCMooX2pqcHTAp/fGrlITwzmy+Ili2ky9DQ/AfPKdD/P7DmzmXZhDSlV4BeXti9NkCcjp2Se0LPnjUOHMpaYPWdOlcpV+H3R7jQEbyHFT93wai10oN9SsvBDDI8k45FygYIwG1ypI50WfLBRkCc0BwMJHhEsEOTCtwfU9DeYpILE+Mlm50hbW6lMc7ryPTle1x9zdzz+4mvVa1Z+5bGhcXydx/RWvRSBw4qAGhDlDjfuVnQDBx7gW0CI4BbGD8/sANvQGSqJNC93Jg60gMPDHrCACXM3okKKZRZjC+8FgrvYt2gFtDhmxNcjv+52fDeEeLHJCiIt46Dg8UgJHaFsF4b38HSqwmX+4yd0PF4lToJi/lG65f471T8u5EAz+FxZbtfmTN+jr30zde78S0/vfcXZPeJCXNayFwZCdP79/gAOtGjNpwg4EDDDRL3KCQHkDsMUJtFZ4oB/knEPgxLUJP5kHJ7GerDcHv8hwVQEiMPDG6M3YME5TKAIC/4Ijl0SOV5sAsZqgMlIlKE8PJNyP5zvz8AotpT/VuQRa0zsp2n+AyjTf+hRXJZHw/SlUvre4ebXanf8DfER7nNO7rVm3fqfR42rERN+zkmdo82BI9Kzj9jOcbjR1PIOCgE1IA4KvtIzI3eYTWWGmxMYWWfHZCfTqJxRyCE20TEcYG92u1UARVY6CGV5yxwKyyYQ1qWolhAv51cZtIo1DpD1eLa516pZiwTFpikLJ0dYGlUT5dNg9EPm1PBAMLXh7HKmX9k6unyKLhNV1gK7XczQdGpR+ZL+p86YOnXbjh0796RFVo02h4eUvp2pTAVoIkWgTAj8lyzrMjGsiRQBRcDSEWp7Hp0dAauRy+3CWcf6FzkklXUZjAW580/7xdHZL/6VWqsB8a/AroUqAv8UAb/e8DsdAlrkn1LR9Ec+AqxRtirBhl6WVAaMSbM6V6IDAf2rCJQ3AjqFUd4IK/0DQ8CvKA8sc0XIVchE4OGoB6QiNOohqoPZ50SPMHN6uBz8PcX/B4sCH4S6IQ4R1EqmVATUA1EqPEfFS7/gMXUtEEWEjBiSCN4cXoFEschBccf6ebI1aOD5sAhKu/7SEwwe7DW0lrj7//4DYGxi1inoPBmEbdClhIK7pC5CXrJZLWUttz/MLVPAn4YUAUXgaEdAPRBHew+w6u/XSg4sjG4jtgQt5khYTkE5CryABSnG8GmpVOGrnMr2kzXVD+jvQHmU7jeqOMqgzMUbtrF3mLE2sJrpaiuvISpGQAmULEND3hlmLKuKRzLL0LOEbBqtCCgCisDhQEANiMOB8pFQhlFy/GeUmqWkRWP9O5wbvR1QsQElau1Ps3VoufNFSbJCDT4I80lHo7atpWqYAsTwy2HWmZj9XaTlU6duKGQHiJDFv+HOfHE7UNnChMCAnHKRF2akXGKEE76cxkdaCeulCCgCisC/goCXw/D/lYK10P8MArYOcovK5CQa8/XlwBQCQTvFYeI5UB7qMdflzva5+SIIRWNDWDaOZUuUoHcPCYdo7ux81+wV24c+8PzURStrNW837NHXvhs1sWqNurVrVLrj4Zd/nzynWdOW8dGhZTAgjMcCAwLr4bl3vn7j428iKlVvWLcq9TF5/TUNVNjBPVHyj2X2fB3y1c/GPPXmx+t3Z6W5Yu577OVJs5Y0b94kNjrcXjrnyKpBRUARUAQOBwJlEICHgw0t499FAFXlY5i7ZPWm4U+++su4SQx2C132WLhQbLk/wNLEmUvuf/r1ET9OQI/6uTLaFq1s/pTfhe2S541cn5K1I8u3z+3akJa/YW9Gms+LjVWlToPpi1ct27AVm6Bsl5/Vhk2ar9u+d8bClftyTF1skEtCl3jL+DBb9VLyvBv2Zu7Iyk93R2xKzdmampuVH2pTKBsbmkoRUAQUgUOJgBoQhxLNIFqiAILudpqgeB6dl7wlxk7mfOsM2wmKUpBkdgInNTtSNBlDZLTUlj0Zk+euWLFhh0SaNPJZDcudbmeRgJOHgw87ifvZRoW7XMs27/5rwaoF67fDHo+iMu3Edo0OnoFgCm5XXOXoTHeINzKKzyeHxlRyhUd6wsJhoHO3E1wRsT+M+wOWir1s9myg+Jnxr2un5vEJ1eYvXblxa0oAYWMJBaWXRxLY8YRDo2LyQsPgITw2jo95uMIiwyLCzedb9FIEFAFF4F9CQNdAHDLgbWGOzuUfH0rKMR54V1q6b9PmLQmVKlWrEsWUt9fniw5xZ6ETPGZSfPv29D27d9dvmBjmcUVZX8TJycwIDQtPd3syMn0xke7MHNfqNZsqxcVXrxrl9bhCIeszh97zedDULNf2nSm79qZGxsTWrhUXYzUm8XCSkuFzh7rDQ1x5Fie5ea5Ir9Fh8IMa3rkrfcuOnXwlun6dGlGhli/dMiDS3SFp3phUT+wu0ntc3jxXhDWZIbl2ZWSv27S5du1a1SLD+EYRH4505eVzPGSG+Ry2m29UkIyijU0qkyDgYB13QwRjcMMdry1bROb3IeILCWWygJkJ4MrIcq3fvC06LJxpAohEeU3yPFdYvo+soRnQz3Vx0l44qOa53JbvPtcqwtAHE0sVA5HtmzBLDyhTbCCWHfIfFInle0v8oVAfFSz+J0DGqvFuGiU6LCQqxJUQHbE31c0nkiirXq3oJg2SZy5avn67r3E1wwgfQ/R6+Cy4Kz/PBQNZ/HO59uzLT929NykxgXkODg3ky1dVI9zdurX7dvTvc9dsqJnYItY6TDAnz6AEArSLNUPj2pPqW7NubYOk+nFRtKEBgSs6OhLKMZHhNSq5Q3zZfLcrOkpO5rRe600RUAQUgcOOQPHS87CzccQXaBSTXQlLH2TnuSYvWffpFyNXrV6HavO43NGREcd17jho4Dno0l2ZvlETpnz+01hfWirfJ8xyeY9t0+rawRfXrxYaGhY5c9GyV0f8xJeIu3U55o9JU3bt3sOnkxs3aDrgrNM6tEmMcBvL4+5HXl26fGV2ri/fG56akVWtWpUTux075MKTw9FeWa4PRnw9Ycr0Pn16hUdFjf9z8u6dO9q3anbrDVd+9eOY734enZ2bhxWC6goPCe/a6ZiLLhhQt5rny1///OKX8Sne8J/+nDZ+7OiEsPzKUWGvv/horts1c8HaDz7+dMm6NXzmmY8WNq1X96pLL27ZpLbX7cFAeffL7yf+Oan/qWdm5fsmT560Y/OG4zt1vOGay0NDXCN/HP/519/VrVfn6YduxxQRVz5AScDr8VKRfI9rxYbUD0d8OWfhooycbPzy0aEhrZo1GnrdNTPnLvjsmx9zPeGTZsy5YMjskKx99atXGnr1FdNnzvpl7O9duveok9zg9wnjt23e2DSpzl03XlUtPso0g10AxYBVNt/P5IuQJow6NhuX+XCiB4UtpoUvvOCTmXYTmgC5Y8Lc8RGhsaHuxIQY325vXCQK3VUt1t2mWcO5i1Z898voYYNOwT4J8XBmORZD1n0P/m93Snqrzl2nzpm/dXdKqM8dGx553eVXntStIdWnpn179Rjz15Rfx/9xwnHGgDDMul1Zea6Pvvntl3HjO3XpvGXzFj4lmpOXiyF1fOf2V106ICbC2CiV46I8uVnxUaFVYrDVsqLD3ZF+y68Qz/qgCCgCisBhQ0ANiPKCeuWaLa9+8PWGnXtadji+dp36GftSVy5fOmnhur6Zrtwo11fjpn/5w9hKNep069UmLDR83tIVfy1Z4Bn56w2D+1WOdu8NTViX4dmRkrtt/NT6DRrXaxu/bt3qqStW7/zim8cbD60aaQbSu3NDE+q3qFqrTnSlKulZWQsXzv/q19/5XvDAs7qFRriYZd+e7hs5YVZqemZsTHR8Qq0sV0R6rm97uiekSnKj5AbRcfGZ2bmLFy0ZNX1BRnjElYP7RdaqW71Rk7lzVleuVLV9m7aRvqwaCbEMpucsSX3xnW+27shs1/m0qjVrbNyyZen8JS++/eMt1w9smhSXm+/anhe+KTfsw7ETU9NyK0VHx9domBkSk2F0tWtHbtjm3HC8B1ghjLBDDONiPBjlKa6B3Wm+R17+YPnWncmN2ndu1iB7X/qGFcunLlh0+uYdsTXqVKnbYOnqNYkJVdo0SArLy0isHJuQWDtt1vwd2e6fpi9Om7I4KjKyWpX67sj4fE8EWtxeVAhxGFi4dO1vEyZhPzC655tIuCAw5dDluV4PJkVsdHTfHt0Tq8SHmveFegKM4lO5oN/JDRJrVPK6+nRqu6dhzVqVY4jEx9OxReOff588a+7cbXv61qrkxfdAdrxK2zM9GzIiVv41t1bdese2S96xdeeGlSteeuudejX/r3WTquStnhDRulmz6TNmrVy7Jy45HqsGp0Z2rmtDTuSK3NhVk5dUiY1u2K4738JesnDBD3/NS27a9JQerUnWsmHShWee2q5pw0qhrvPOOKlK1epsDLUcIoXY1gdFQBFQBA4bAmpAHHqojeryuVatXsMYND425v+uHlA12p2RzXTDCVs2rq8cybSFb+yYsVViY+679fIaCW58BlvTWr/43O55MyftOf34qtGV8/O9XldIlDf0hsGXtGzZKDTKtWZr6tsfjFy2esXYv2b073ksWW4fehVTBpHRLk+Ym1mAiZPqjPj8y59H/z7wTD5m7WJuIMsTERPuPf/cAe1aNg/zMWYNwel93lknnnZq77hKHka1WTm+pSvaPPL40+tXb9y9Nb1r6yRvftisGcu6tGg09KIT8AREhLqZKxn3x2/bdm0ZeMH5ffp0iIx2b9zl++aHP8aMm/DtqIk3Xt2PSYSUvPC9vojoyNhrzunbvmkjJmjCvfl8GBC1V79uzcaNGyTWrCpT/lgPKGbHZeyJJSs3Ltu8o0bt2pddfEHb5FAWc6btPXHxwkU1a1WPjvO0b9dm5do1jZLq3nDlaeHMOLjdEeEunzfUFxYeE+45/+xTjm3Tgrkb/lWKwZNQ4AiS8Pxlq7//YyaWBC/MZI4p3jzlu/lwV16lyLCOLdvWjo+35iEK+CKvzAQN6teZANdJ7RM9rkTC/MMSatqwSu1aNVYuWzxp/pJ+3VsyPeE1VcEO8YR5vf1OO7Fnj27xcaEp+1zvvD9i1ryFf02f1arJSR6fCyOiS+tWM2bP/3nM7y2uOYefH8yAYV5uTqgvp1PrNhecdXr1BE+IxzV+eoN3Pvxw/LRZJ/dojeXRskZIs3N6khgL6fL+vWCJaRHbWrJ41JsioAgoAocVATUgygVuNJA3hEl5767dqbNmr+rUtkF4qKtOTW+TWkmsvJs6Z93O3Wl9+3R1ZflS97h257vyva6G9eutXTRny8aNDZMqM6BF34V5Xb2OaxwRYhzdcUlxHdt3WL9+/eKVa87ufSzKMCrShVGybPn2xSvWbN22Y+OW7Rm57ghfHprMfLTSHZrrDsNh3v/EtrRxpAtiZuIjIc4dnu1eunz7vIVLtu3aszd1H3MrLJTw5eay5iA2xBeVnxnnzUuItJQh6y1crrnz5kVEhHU/rkPNaLPPs35l95n9e4yeNG3h6vUZPhf1cnmjsnI955w94LQudf6fve8AkKM40+3uyWknz+a8Wq20WuWIMgrkIGwwJjoc+IzP9rPv3fnZfhd8d36X7LPPGXACTAYRhCQQICShrFXanHOOs7uTZ7r7fVU1MxsQIM4rQNClVk91ddVff/01O99ff/1VlUJ9HaA6gGkIYcPywmXLCwk79CLwHQ8Eb9mj1e6IqTQDI6MNDY2Zjnk2Hee08dvWl6IuBJ0G/hWyViOYdTwgE22BLiJi6oRTrVm++HPXLAa4GimUogpSbyKIogyFYu36je65EBfZb4HwBM8HWis+VHLUphcK050wSMwM1IcDlEEQckMJ0kr6yKqArDauWV5Ref5sTfO2NaXwNUEeeFzgctrtK8rmFaZppQhnd3HZGWnHqut9USgJRMkw8Nz8gjy703Ws/FzfZ3Zk2Xl0DCZT4GyhjoWWlRYXZ6qge+Grk5eVoTGYukfG0WtoINrOApgFKUItkaJ8KhJQJKBI4CORgKJAzLLYAe0szC2eM7+k7WhFzb89/ITbZijK8qxYULJs0bLUDNW52vaAbNj7xpEjB47IEswHnKTWc2JYqzIF/DF4J8QEeONFsHcA3AgAGOgkG6zfJgyz+cERr6DivOPy/qOVr7z2unciIKl1Jr0pGuMiUbha8Cr4aRJ0gRahMnEyTg0HENLRN9EG9r1Vu+vVt3r6+mW11mixavVGCT55xN0zilJqLqyWg1opZJCoTyK19of9EYfDYdERGMOGBODHbuZTrCmDvmF/VNapebUkmWXeEIuxMTGtnWST4M0AP0HqRwkekE7dFvEGF9EvBOoFmJttXLF0cfm5iof/9MzzuyzFaa7lC+YvW7p4Xg5ZpghDBlwYYKsHcuMiZElhDObVOjkClsjon6bj1dSggt4hcVYjn+cmjhEMdAHj8J1EoJQ5My8T31KoKheaw4BiAcosMxQ6HJRM5l04TH2QqYNtV8x9+jlHXWN7b8+YNdsKzkTSUsyTSCpBQqtVOg4KFhwvw7wckmUI30y1j8IsU0nJ3JPHjh87ce7z1y1h9GF+0Mvw/4hYNERo0Fewx4RarYlxUJVIreCElkaUqEC4lKBIQJGAIoGPVgKKAjHL8gfIADiBMLkZ1m/c85mVlaXHzlW0dfWeqGwur25ZVdf1wF/uEPQGrUazbeMVyxcX8rEIbBVQIDS8aOBjxZluYI+G+NvF1HwUuMsgE4giydGYGLNaycT56fPNv39ul14vXLl9w6KyBUZDSmdX/2PPvBTxB31Ud4iqMMkfxYIFNnJl60H6h8VHnn42FJW3b7liSdkCg8Gk1ad875//GUsSUCcgCmsp4CMQlWOonikiRCmBeULmAhLRP4C70CGA6qJKBc9EaC1IEUXgJnCZwCq+TwzOQZGYYSjUIQ9aQYGbGkeIyCkWU0iEBvDtL1xXXlV2/Mz5hta2isa2uobWYyfKv/e//9Lj5AWyukHCB/JCGiDF4BNGCBBEIrsQp0oCrWRKl546XfP8vqPYjYrqDbiTNRgksyxruKhe9P/FXfDkyDIQYu8SqEUn4QBKiqJGdIddy23dtO6ZXa/XtnQV5sAzgTWQj0qixJPtIpANNQkaMrlBFmgQDgn4Y63N+gWlJ944UF1dG9y82GLkaYDmIeu1ArQWFEQ1EBCpjKoLrGySvySvyUjylRJRJKBIQJHAhyYBRYGYfVETrMNPv8jlu/nsLfO2XjnPH+PON4Z//OuHz9S1Do7LBUX53F4AWWzt0kwCKnRaHUhPVhVitA2klGMCUBurAylqwoiNRYydfb2AUmuKCSaK6ppGbyi6esH8HbdstMDiDeTWZBh1woRPBMCDApkVIUQIbgJ+cGEge+rsubFAcOmKFbfdtt2pJwsvkSjGwsBXmXgYYrCvgj0ESy2gK0D5AHzBBJJis/d6J3wRQgSUcQWj8njAn+tymc18MAqg46FCkNJx5KN4iXl9EKdLVZkawVpKUJQE5CWBEJS5dAt/1ZrczWtywXxrl/Tbh59sb21489Dbn92xQatVQ1LhWAQFUAn8DXlilSEqCzZyZvwQWnTGhGZhVAlx5BsZHW3r6CCCIMmAb/hTEg4Azxj0W4RoVIpi/giCflcVgnKKG4rRJpBn1AuZb7ty7fOvvrX/WPm1m0pBn02OYFkMjDp4ZPnhaoE+IItpaQpqgTQ2Lc15yunq6uptb/eWzbNDd0MeotmQTogXJBJCt+A5EZK1I4HkU4IiAUUCigQ+UgkoCsQlET+MEGfPVfSOR+aUlZrtBruGKy3QZrrtLS0tfQOBwnyH2ax/c/9bK5cUlxZjhSAfjnJdw762usp1SxZYrBYtJhRkOSyr20aiKTZNMCxX1XYdKT+r1am2blwDc7tRQ6bwZVEMBGS1gZ8Yl+uqaqMTEzpMQFB40/MhLaZBYIWgYAP0ApyP+cfhPBiMhIZ9xCkgGuKqa1siMozksMpDLeHUWDGo1bd0DWAFB9ZfCBKn0fF5c0ubDh/fs/uw+9Z1YHVwTH76pcMhn79wWRkxt8BhE6YIDPEFDapARQgYO+MCyL12ovbl1w+mexx/e/9tJsrYVHFLCIJQUVlf2zmwZMlyt9vggFnAwedmeZoa6we8Y6Cg12lkQe4bGeoZkV2Yi4hE9HAH5cJaLiiQmZepgT1RzKXmCLy74dq1W65dy7hiWZEJOaABAMihtGH9JTxSLyYk6iIgz+J2C7904bzyMxWNfWJJGrE0kAvqlApTD6QK3LEJNzQDSIMpEKwi+LVcuXnjcy/uqa9vmDdnFVwmQVEUhBg8Vzhi6UFAQdoIogImqmallbsiAUUCigQ+FhJQFIjZ7wb83OOnv7uv/8FnX80sKPSkZ2p05t6R8baW5pzU1AyXMd3JX7N9y+7du//zxz9fvmyhw2H3+ULeob6R3o7ivCKb1YKdDyKcLsybfvTLx+wuTzgaq29uGfMFr9u6aW6OHdso5RXk6Q8cqamq+++fPWq32Ue9o10d3dFQ1KQilgSGZAS3BGLDYGCJnl6zbOnOVw9W1jb87LePuG127/Boc1O7KKuhimAlAADVarZkp2f19Q3/8sHHnUYdZuH/6r4d127fig0njhw5NNjXmpOb0Ts8dPhMRZ7Ls2nVYugEEVhNuIhRDhv4KGwJDOtQI/ASV2//YE1T8xgUnIRuMU3cdMDdOzjy+ydfzHj7TG5eocXm7BsYqqqucViM61euhiRLCrKtek1rS9vPf/dYpsOqioVvvfVWHpoOHA/VxNYzCa7x2uMJpBeoM4GF4jqrF4nJ/IRJaEgXcKGcxuOMB1TCAsQFf4WVi7Ckombny3u+c/8NSBdkUQu7SAzbTBAFBTLX8BIWlmg4shkWqxqvoORdv33F7jcOnDxfceX2lWodjz0dqDOHCMUOG0YhjxqlpJhOllAQj0pQJKBIQJHAx00C+HVSwmxKAEZnrGnAzH1efkFmXkFNY0dlYw9c6aKiOH9O4R237ChKhe8gd9sNi7Jc9ueee/bkqQpereEFlVmnXlyy0Op0AaJiQH6sLOQ1Q0PjNXUdEVFMSTHfcvX2z1y/AtgDv/316+Z3j177zHO7qs/XaPRGg0m/oKy0vbEZRggC1QB1nVangx8EjAIUjSieFWRYP7/jxsdf2ltb31gVky1Gy7ZtV7/xxptk4SVFtQyH6aartj32xFMV56ukiD/D4wqLOxYWab5yz+cfevih8xXnzlSWa3XqLKf9y1+4ddFcBzw0seWiWQ7YVBEzF8IuS8BIoF0cygl8AggJBDLsTKbHJU4mTvg5xSXzyxZX1TU1dQ9LKi0XixZkpH357s8tLHbAR7IwU/VXX773oUceP3H2vFHgM2z266+PWYwmDR/D8gXUFVcI8AHRQ2VIBhoFiuNKhimvSdoHVB7imhkKgg6qhtBK8nPcbs/Boye+8LnrjVq0V9ar4DcaI91Ea7UIklUQzYKMzFCwwCD4gQ3JauIXLV548vCB1p5AUQG2mVSZVYJWjkAzQkFIzMhFUdDCS1SxSDST0lRuigQUCSgS+DhIALOs+FVXwp8rAQiRyZFEMPbniFV/ArtNR+T2Hhx8FPV4HFlOHqsbcK6zSiPGOOJnR6YVJuSewSCv1We4+BQ9j+EyAOZYddt/PPg4Hw4/+KMfDA9jq2gpJ9uspb4OcK6MkRUSJFuvF3aOsZhK60412FLgG0AWShCbAzGAE+JI0XEYExMMZSYB+FL0T8itvYPwf8zNdtv1PNZhwgHQQBERWyGFBOIm2d4yodNy2WkWLFLAFwQjfdy7BsTevu6MDLfHAbwj7UVBGO5HwrJBy6eQvR0JrJLKaHVoIAgSnw6KtSQzYpQ9kkSicownZ3DAycMncu09geFxX5bbDQsNYBjmAdj2QRMZvBLX1z2uFaWCVKvNQFoaQPlozIhFnpQUI5eMkkhSWWA1Jh+nZErycqGXU/IlosifLAJ5gu0xifvhQ6+9ffjQfXfecuc1y8AMmstaSpd28iGZg/sGdrBgPiXgChTwHRjhuFdOdv3xdw8tK1vwvW/eBhsQlC2mxqnRV3IsymmhnKH5WPkJghfJYYJT5VORgCIBRQKXXAL4KVbCLEgg+ftOIoA9zKyriIHeqOc9BcBWEvCoBU5ocJRDVBBU0AJgijCY+XSLETghYmNpOmxFnEArDpgQZJyG4DCSVYjMrE1rUcE9AgN3KAoZNt5jtaEawA9eJcEbnnqAN5oZd/ZJ3iKGKrIsfKrFgwxIQfczRCRvAXL4oJ4BKQVwzSRvUQRLMJAMN8CCVFWeJweaBGMGOUkpHusRiLMf1CboGfHKaEEMuDGeZgE5KW36glVJOCMbOCELXsGR0JZthHcH8rNEsvs3VUQwIgdj6dkpSAeUgiu0HWsdRXY0RbyG6R+JeuOpMx6n5734p6lkwDP4MQrc+mULTx09VFNd61u/FLuIYust9oroXDwPvYGwjZJJ1QP1QVcQuPw0e2ZaakXFucGRW9MdRBS4iJRQENYnSofmJXJQgiIBRQKKBD5uEsCvsRJmRwJTf+XVwFg6rJ9JGhABCFTRxZWsQLIYfYW3xFRAfBIAJzK2fEAPJX0LKDWeGd7ZqgEW1yaJIAeNJ4jhmXDCAt4AgIFOzLqeTIyXph8AcGSYCnY4CwpviKMfAmLx3MlPTj9ZAyMZzwgovXCYko6ieLoQgQsXZaloO0pp2HKXZMYpZJNpJPJu6e/1ZhqBqQ9JYohAyJDk+kXpTVvWp6RYpEhUZYCfayI7NCBaBWROAi3JZAurDLp1fqbp6q2bW1ua/BNencOOckwaCQ2K7DzBiip3RQKKBBQJfAwloExhfOw6BRb7hq6RF988ipMnH7jremK+Bux85FAyVadgMvvIWfqouw4igbkIExk4lgxTKViFgj8nzbvqTdPYxRkiUDAwo0SkiF3DqePkpEQ/Dj0+jV/lQZGAIgFFAjMloCgQMyXykT8Dk6BDwBEBg1RYKjAwncSVj5A5RYG4kPBhLoJgyPHicBeFXYROS10o44y0uIKAvkaM2Sw+Fr08g03lUZGAIgFFAu8uAUWBeHfZfERvgCiAJXggwqANHULBlY+oH96/WvQUwmQHxbWC9y9IcrDCybyTVJJJSkSRgCIBRQIfawkoCsTHsXuYDgFM+aDOAbPVmBnoBrKXFuDeWd/FtOTS8nQxHIBvwjrcTPHxwTprRpM/+rZcTHuVPIoEFAkoEpiUAIa4SvgwJZDEjXdDDGQgyzc+GBq9fwuIZz+j/P55P1iOZIsI/Q9WlOWeSuCDlU+WpIsjWdmLYAHFWK5khBZlIopzQN004/FkNReq4SLqi5OZ/oFyyepnVDA9o/KkSECRgCKBj6cEFAXiw+wXutgRFZJdiukHbgw8GJyQB7oik+oQJMssBUo3TutiEO9i8lDGsTESa0CS0fcrOiM7K/d+hUiudxYkKcnUBAmawDaUiiclsyTqSiYgQvLQD9zIHmBEcyNHbFAVjjRuRgsxuzTFKyVeAz7iMVbFRd6TZZKRiyyoZFMkoEhAkcDHQALKFMaH3Alx8IKawPzvGHbgTi/gFVEvZosn5qPHqgRR4CKraFboU8QllACzlGPCOr1mhfzFESFtY/VOz5/QaxiTpOGJXCyFFWNplHnCejLQ0iQBGaZ2E8vAxJjMrEQUCSgSUCTw6ZSAYoH4kPs9jlOApbDMDY7FcBZDikmFbYUS49okeP25jDHwwyLDfi+pxW5SGaZs9PTnUqfgig2syApGgdfSVYh/Ps0PTIFIi8eeGZh+wE4VxHJAlQLcoDzhCsbIAZ7Ym8GgiS92YFVA/kwzwOmjkQjZAgsbUeOPIaEcEPWOXdhME0edodv0Wg77bbAVEx+YT6WAIgFFAooEPnESUBSID7dLgWw0xHiusWvsb374k6Jsz9fvvzffjZ0V4YkXVy9miycgaNdo7Cv/54cFGanf+sq9c9OwLfK0ofb/uCK0A9e5mqbjpysKc9I3rllhwRmZH3rAlIM3KB84/HYg4Nu2fm2q0wrzDRiD2tQ55DtT1dDU0TcwMp5qsy4uKVi7bC6OwWQZsFB2yOurqm5o6hrs6hvW6/UL5hauWbowLYWcck428sI25CH5VEVDS1dfR+8Ar9KU5Ho2rlyY5TSzzbugXsyWMD90sSkVKhJQJKBIYBYk8BH86M8C15cviSkaQlVd44gvrNYZbHYT0AgBJzeTMfSshvNV9d6AqDebrVY9humzqKJAO9m3/9Abh09cv3Xj+ivWXDygJpSoyXZOkcpk4ozYO0tBS+gZE3/56PMnz5RrucjqlavscGHAxt4c19wf+slDj9W3doiCVqU1TvgCe4+e+tLEjbdsW4yNuaActA9F/vjUS6fPVgZxGqneHAiIb5yoaO/3fumzG80qcshWv1/+w1O7Dhw/4wuHjZYUvz/69olIU1vXN790m00/y5NBM1qqPCoSUCSgSOCykICiQMxaNzGEm4GFSMTF9INkBuQB+ja39UQ4jSsjR6UmkIYUYBvOqphGAWXwHC+JLHhgOgaSyOkToJwkyyJoD+tUvMJVWVPPCaqstFSrgSenQdJEUEnUkix9ATngHbvYOxZHQWbGx+PGTVfmzi0rm1skaAhsg/+p+RmjrCKWjjtjGBHGA5u4weP7BpqHuTeiFjLF0OuN/vihxw9WtfG8oSgtQ2NMgV0H2UbC3Df/7v+NhmNbr7zyrru2oczvnji2f/+bT+w9sPXKxdAPMPPy4J+eebv8XFHBnO/87f1WM//481VPPfvsofKqTasXz8+14hSrR3bue/mtIzhL/R+++53CAkN7l/R3//gf+46dvf2zN5r0mM1ICvB9GVcyKBJQJKBI4JMpAUWBmJ1+BW4B0gCKDAsJasokBVjl9Yntvf3Do2NDwyNuR5rLZs7L8chavmswJKtNFlfW8Vpvb3uzFI3kpdo2LsgxGk2MJxRobm7JyMlKc7mJ5Z0PwIRwuqLZoOILC/O1Rq03rK1q7tCZdTq1fqB3sH9wFId8FhUVLMq1GXUClJKAyPUNDOJsr7xUF87xwvmWAZwO2tEuhgJ2s7GgII9wTXw2Cb9TAskq8ypM/wOS27uGB4eGRocG/FHe5vTgjO+52Q4TjgRDBZHI/NysnAz7yJjY1tKiwzGTshDmNJKEI7wlnGptt5mKizJIThXXPxpt6ezoHxwYHhu1e5x52ZnF2VnkgCxqF4G2AdGxi3HC2EJKJBoWcPonD0ULx1SKnKCB6tTSNfrg0y9XNHbaU7OG+3szM3JNZg1sEj6J+93LJ3sD0WWL59923dZ0FTm3s6QgY/8BfiKmHvLJvJU/V9V96lxlUUHBD757v8tATrG6dn3pnpd2hgPhgA8eEVxF/dj+kxUWq/lvvnZXaT7cJzi1R0hPT21t93cOenM9aeBwsqOnCE6JKhJQJKBI4NMjAUWBmM2+ZjgMvQEB8xHYjrqmc/zJnS/V1jeNj0+oVCpeUtnMhnvuus2dM7dl2OcXNK++XT422Bf2jYmybNOruq9ee8dnt+EIR+DTi28eeemll+644/M7rtsKo3qUs3QMDv/Tz/+Yn+X56v33ZZtTavv8//7g08Brt83R1tIeisREQW2xmL55z471a+bDXtHYH+yf8OmN+pyC/CjPRUTuj8+8dPToMbtJf+9tOwoKoDkwM8EMIUBZEVA8JnCP7Tr69tFT3T29shgWeRUAPMNl/f63HyjKdpXXdPzswd/nZGf/1V89cOrUmWeffTYcliKyJoSzJ3EKpYrXiMHlC+Z856//AsdvVzV5d+3dd7bifCAUlng+LErpLvs37793VWk2Jh3QWIgOQA6XRrIbA9V1RInTarhgKGQw6HGgFzXS4PBwcgx6RVPnH596obV7+Jprbjrb2jvc11tYWAhHSLhMdg2GT52t1BmMmzeuz3SRtRcw6thtNtAXJTEQFEWr+rfPvBwTNBvXr8PJ4OQcc5lLt/ImjToSDsFdEqaUU7X1w97xqzauXjgnFVUiQIlw2OwtrXwgiAO6SWD6DY0qN0UCigQUCXwaJaAoELPT64ATQDHuFP4ITeDc+baJv//Pnw76AptWX3HNti0Ws+HQ/rdff+O1iErb4w0P+f2haNjnD1x37Q15WRlvHjlRXn5q77HKq67bajMSE/2J2nbZ7LY4s0SeUIM6crK+eyCiybO4BbtrVOZq2gd7x6MSF1KpLTs++3mDybT79Tc6erqPnK1cuHo+LAuN/aO9E0GDwZRVYBsMyj/9799V1jekp6Z95av3z88xg+y7nfcowlihUh0+2fjoi68bjCnX3XrX6pWlaNSe3btPHz8gRi3ZAABAAElEQVSU4nb6Oe5sU9twWCq0Oe12ft6ixV/LyuLVZkFv8oa4EydPHnrrTaOK33LDzTEVV9cd++HPH4bScPWNn1m1Yok/JD/+9It1VeeffvGNpaVfhN7w3Iv73z58GKdzh8Nh4qgBMcpSOBzSajQ49Rzw/7UHHsj0WKGTwSJytqH3N398smtg5DM3fmbz1iUvfvek2WRyu91YYxKUueb2zsFRLwouXpCLLzczbEQjKMebDFqrRdXSFT7b1JWf7szPycJRI7AukAMsoL7FIvqUFOgsmL9468RJrUZ7zbbtZKqC6jewfUjRmJoXLCbi7qpoD7PzZ6NQUSSgSOByloCiQMxa703uNEBt8uMh+bHndo8FYls3bPjq7dc4CO5wZXds3LysyJOb8ebxZnVgcGtx3ne+/UWXicwiZKdvrqk4HQwFTQayEKB1VK5vHbKnONPTclAQmAqVoqGxLSYJnjSP3UzyVJ8tN3KRHTdddcdN6w2Y2gfI+Zf86ekGs0bWwN5AfAmHhqLy6gXFjf3S479/pKqyelFZ2b13fL4oF9kJCr5b4AUyA3L6/LlgOLZu1ZzbbliAkToY+OsvXT9+0xablh8Pyi29/QPBUFpePnLmpGpyUtMxXxOKAX1bD725y5li/sZ995fNc01I3ENPPDEYjWzYsPHKrUsMet7J81dsWN3UXDfgnRgPyxotP6FOGZUNZHZCi3Ui2JuEKBCSRorxsiBIgmAaiak9lNcTlT2/fuSxsUDwjrvuvX7TvPYBecLnS7WaXS4XLAdwEYViEYhKS0rnwLrAfDLA3sjQmIw5GT6q1/HV1fV+iUt3u/LS7chArB0C19Q5GoyFnNZMrcncH5A7+obmpGXZDGoLVtui4RIHz4nB/n78tWR6XBCdEhQJKBJQJKBIQFEgZuk7wOzaGMtiwErvVbX1dY3NTovp9huuTjXBik+DyM0rypyQudbmRg0vXrN1fTq0B5zlqOKkkKiSok6HHSZ9GBuqO8bGOT7d5TY7DUBuoOB4lOseGJVUurRMolJMxLj29mZbiv7KdSvUMhlJkymAiTFBjLkcTlTnjcjdnb1hlNQa/vvhJwY7u665+podV1+Z41FD+UAGcn4D0XoQZuoSQHGk6vQGWaU6X9f09Eun5hbl5LqtBR59ptNAXA0C8sDQiEGvm19ShKpBDbWHItzuV488+eIrDqv1zttvLS5KA/SeO93W0jYQimjGxqJ7d5/UaXWYJujuHeDEmFaFdhMXhKu2LNu8YVkYWA1WaN1xcRJJovWS26lBO85Vtj/86FOizH/hzru2rC1CpfUNPTFJtDusaWlqKBDw8Gjr6sa0zOKFC5lAyESMxA0MDEQjkdzsLLOa6+/t8ZgNWW57agrR22CaQMGKpvqImjPZrXa7UFkzrJbU2WkZFgPxbJXQOwLX1y8HfP5Ut9OkIy1lho2ZUiPsK0GRgCIBRQKfFgngR1gJsywBTMYD7QYGh0QxNjcvf44HaxTiRm+NitgSAhOx9vZWnhNXLJujkTh4PACQhno7pUhoTlGhP8ap1Vxte2uAl905meYUHoANrBociQ15/SKvyczMBZGOXn93f0/Z/HlmnRobJWGmX8RIuq7WpNOlp6ejX0MBbmRgWMWpj52pVEXDGxcvufWWbdlm3ghqVOEgo2+4I17IDQL0cW3auPFAdWdn/9CTL+5zmPQZZvWmVYuuvXqj0cD7/D7vyKjHZi3KdgChTQIXiIn7D558efdutVp9z513rFqagwkCpA90DY57Qxqj9cihE+16iRdUIVmQ+JhKjKRBvdIRw4kY5kYGR2WqeQk8/gnAdkEQYIdQa7hwOJjmTAXMP/PSC519vVabq/z4ifry8jCvrWrtkUSpr7/3d4+8eMe1m8we2+DwMMQ+p7CA6TRoxbhPHh4agoQXLigNStzoyJBZkAsyU9mCFygtuM40NERUvCs91WLgG2obdLIqJyPdbORD2CYL+gJ0l6pmURaLivLQdqI3UCMTiCOuqBGz/PejkFMkoEjgMpGAokDMUkeRoTwuBAHDbuxENDQ0FopE4LoP6AIGAWYwlIYqAEya8Pm7u5rycrKcWg5wDtdEoOOpk6cEXlqyZDk2ZIL/4FB3n06Uc91pgGFkwDaLPb3dQ94hq8O8oMQBBeVkbU1QkPMKC5x6tQZ2eJ4bnpDbOtqsVrvb7QAfoj/S3dGJAbxBqwdLp85U9t9wVZYZGgvhh+IeXpJdkWZAIJoBaghzciyP/NtX95xoO3zibEVFTeNYoOeV1/NL5pXOS+0d6PeNjS0oyHOoeDgfwKay99i53zz3PC9o7//CFzevINoDjAaxKOcfH7ZqItdvX333LStsIgeXiAkYaeB+QS0NaDhmEF7as2fPvjfQ6mSAXoM4dAlJFA167T//4O8z08xjgYjJZAmF5bN1HSAQkbX+aAznioTDgfr6WtWN22Mi5/cHIIxCj4DZB61IBN7XP1xXX2OzmjZvmBuMyH6fT4iIRo2RdRimXRp7pN7hqMFgXrywGIL1+cYESbQYocDAHZQYIUZD8hOv7/NFA4sXz4cKGEFJamfCXRRlPZRCSRQE1snJFigRRQKKBBQJfMIloCgQs9jBwDyMTKkiARATMY0vjU34gJGQMtARQ/1hX0hj0jd29GFlY2nxPIATScd8RJRraqq3mfXAOTA0MSGPjQxyUszpsuMtkAyrExs7sG8EV1KcA5BD4tFz53iDwZmRDvsGlkuAVENbV0TiM52pLk86uOjrGwpHoouK53ztK7cdPVy955Vd//7TX/7r3351fjrG3lw4JmIGgQdExwWAEsmASRXOC08BtaDTcdtX5a1blTcUuPk/f/xIS1NDR783O9/T2Nbji0YWr1yu0ZC5ld0Hzv1u58sGR+rdd9yxemEmdCYSBLLuI8SLASnYPdAZ41eI0I0wMyIQIY16Qy5syUT1qvkFubENV2BbSTCEFCpCMsGCgBQoEOkOE4wZ//evvz065pMFg4w281xz59ijTz/t9Xu/dt+9+en2nCxj9zgWn2Jn66gvyMX0RCxw2Dx45IgvMLZl6zb4fUgSL/Ekz3gggHki8IkNxY+cON07OFSU6V5aTNQ1MRqMSpHxiXEYRGCxQK+dqepv6ejOy0mdk5tBDBs8WR/b0D4UDIfcNkthqhXOlQn1MSFOyrxyUySgSECRwCdYAooCMVudm0AO2N55DuNUeDNo1ZrT5ypPV69eXpqKBYLHTp47WnH+c3ffc+hMtcwbSgrnw/wA5QAD7+5+/8joUG5BkclITOaRaCgiBiWVXFFXs2JBpnfEt++tI/tPV/gj0RUrF4NjH8e1dHSlOOz2VHdYIAoKqq9t7RRVBpsrw2IljgXna5uwcPHazWvnu/n0LaW9zXXHqxuefO7lb3zpsx74ZKhVPOYvSOXUIEDEkNAh4JUhca8fOt7e3X/d1VdnZhlEkeseEifCISwTtXky4DfQ1NEvGPVzFpcNcdzu18uffHGPZLDf8tnbyhZkQEUYl7gUtAtqDc6YAIdq4VR97cHKnvULM4C0ra1D1efODXZ1/M3Xv8R8MK5avWDL6gUomBBikhWSgjkOFYwBmBBxqmNOG06+QE7YSCa8vE7y2Y3q1csyUR2BdoFzuxx13b0v7Dn41ds3jUflXa+/fezkicx017VXbUQpmAkMFmOMExs7O4eCK+BoefBE61uH3tKp5c/feG2GlrCTne4SVWJNffPoxDrsGFVRM/Tczl0pOuOG5UvnZJA9IUCntdf7k0efGx0ZvvbKdbk3bVQRBQJ6HQIiuJSgSECRgCKBT74EFAVidvoYwAMoxmFVgCAACB6XL12SfaS2pbvnu//2C4teG4FLAi8bPObNodixqkqLUePJcAFzUApz8McrGyKCrnj+AodDjUSr1WC1O6OqvteOnTl29DAficYiZEmCQYitLs4DprY3tmkD49guqsDtwvoIBKBaR2drMOyzOizIgOF1fWO1w6zJz7DBpqG28Pfeccv5f/7x28eO4kyH22/cCD/KSe8Hgtv4z4MbuB0A9X1BqaK2+ciZ6j2Hz+pNpiDqFzlYLK7fumXxfAvUi/7uOo9RPSdN29g6uPfVl7GjlBSRHvvVbx8VwaZo4iVniukHf/99l5tfvWzFsVM1DS1t//XTX/9KLap4XTQiWwyquVlkIgZzBDA1QGJkVmUK9iZ0GZIIETENCXEoE8gdwqQPPCfGu3GVlC60U/VCL3MePb96wbKaxp433jp2/OBJWEAk0W+16u69+YZ8KFWoSOA2rl5Xcb7l6PGKM+caY5gBkaMWo+5b9965vjTLjL6QuM/t2PDqwbcrGuvv/dY/afX6WCQMf8/N66648+Z1kCwUCLDQ3N7d0j2oVUnZOdkwmkSjMRV0RiUoElAkoEjg0yQBRYGYtd5OYh4QBdbv3HTjt++/54W9+zoHBkRR1KsFt9O2YuPyuR7NgsKcHIfdZYPvI1E1AJ8mvXblotKyolwsn5BjnEXD3X7j1VGZ7x8dt3CRDJdzXnFJU0OtFPXlWYmJwihKywvy07KzMyxqmDEAadAY0u2mVWVzl5YQ/0GEPFfKvPzsHJsemAejyNwM4YG7bj51+GB/X5/XG1FbteQQS1q7migQNJDjOgU4cJiNwtXbNgt6Y/fQaCAUdWs0Vot51bKl2zYXozoY8BfkZ1msLsTtevX83HRRhOcH9rrEHbyIekHOyUhNc5CFlAUu/vsP3LvzldfbOtuiYiAWE0wG29w5eZtXL0SVEBUmNHCOJl0SEudi0v5AE4ibRkK4GvgbyDymM8ZxxqYQXVE2d+3mdWgvZmV0Mod9La9dN3dkfKy1tSs44dcb1Cl64cZtG5aXZoA+OgX6weaVhVL4rrdPnh0d90PyuenOrevXLC9zE42Kahho1Nfv++Ke1/YPjvoktdZtNa9fsfj6DcVsqQt4gdw6egf9YbGwMH31kgKkqOD1qgRFAooEFAl8yiSANfeJ3+ZPWctnt7kQImwAgHbACQz+mELAjD4e4EgwFJDDEc5ihJZAlyRSvAdWYWMIrejXqUxANQz64QAIdzzAGB8NwhbvlXUjUXk8zKWoOauJmNbxCkdfwKEShnpgPFLgEgEItCBGT9OIRCVs2UjOp47GtFocsk12m8b+z3gPVGeZiVNhnz/gHcIEBsA7RlQLqu9QccDhABqAQaspzs8ESzCNwH/Q7+e0Ws5uIdoAcJINtFFvkjiajIBacLEI8iAD1QzIS0gmKJJtIgORcexWabPZ4CgKUmgRHBCJYYC6PtDS9MYITT5Pi8k82CYCQaNgwwBxxKFAYLUroB1OmphVwYLSsXHZaOFcOt4okreAfzQU23Fisyk4QwyKHPaGgCTTrDzsCuAE1OCtEiYy4SFe7Gg9in2vtRw28EBPgTjkBQMG2tPpk//tN0/CRvFPX//CtuW5WEQDqWnwjrHNxDGNZeVBkYAiAUUCn0AJKCOn2elUoAbTHkAOUIKAYT0ABWNlg5lACv7jAkpRICMPBGVVZP5BS90gtCoCuiQr2aaBNwscdoNO18cBO04BQ3WSg+Iz20WRPuEGajBy4CUmBTRanFpNSJETJBK4DqKoemRc+tMzL2CCPxbDSB4KCeUVygTRIzG4h98Cn2pWP/Sjv8M3A2VT9TynJxHGGyIIuONio+54cxK10PfxDDQXSUBZYDbUI6suhbOQtyiVIEgZZcWSdyq65BMirF5ECJeJqRdQwMUYQAReEZA82MYSFAB/hosUQjosNriTQDQVjs34OFWcw0G0EKbroF+Qh5hqqGoCXQFKh0NHMiCKV2SNBa0LOb0Toe6uzsI0x5oludBLQBN7aJLXSS7JgxIUCSgSUCTwCZeAokDMWgcn4SM5nGbY854VEOCZmY14QBIgvHDfJKuhwJYkjmRWLzH4J8PUOE206IXtV25auHi5JGMXJyz/JABMwZfc6f4LXJpFw4iAOfqWIigt/kFvjD64oPh74dLv4PEC2Rgb7AXyswuJ08hSQkhhKsIMKoQCNIzpQpuRB2/fgxnGA+7Y9Nqgkm6+fosJFiNKcwYd5VGRgCIBRQKfBgkoUxifhl6ebCNs/uQCDF5o5M/yAYPJQk8aGGoSwGaxRDr5fA+wnZrtYuKXlPjFMHAReWB7wIWASZCRcdFuUWEDDBgtJkNSWJNJSkyRgCIBRQKfWAkoCsQntmsv2DCGgkA6oD+xflBQnAHfeDVtZD+rqsIFubosEpNSggYGMUJEuOKTHJdFAxQmFQkoElAkMKsSUBSIWRXn+xNj2P3++S5RjiQKEvMBeyDuD/FYEhBn0bhwiRrykZGlm36idqJ+kc4k/z8yZpSKFQkoElAk8NFJ4MLz7B8dP5+GmoHXU+YPktjNIhDApcSjSbxL1huvELVegoqTjfqgHXsJePmgLMzMn2gLs9xQpYuuDSXLdonwpkh0ZlHlWZGAIgFFAp88CSgKxIfZpxRvUCFBR0A5cfYncfpJE2aZGSxYiNeGj2n4xt4kq0M2kpMFGpuae2o8kekiPyepXmSByWx/Rq2TRC42RjsDNSbbPoXxhGqQoBXPFs9BPyZvzCxBsyYaEM+feEyQUT4VCSgSUCRweUtAUSA+9P6jRgCgySS6x0ewTKmYRX4IrL0DtmjN0ypBNgqANJHGknlYabyYzDCt6CV7YBzgzob7H071idaiNhKdYiai7ZzCBF7TJ3KDPwQ+EqYdSoNphIQEycgcJigJ5aZIQJGAIoFPjgQUH4gPuS8pwFBgYf6MqJ7AD0FKwA4DJgI5UwPLMDXlIuMgN7UW4vR3kSU/0mxgmzkqggvwDB3ifyyBD9QO1IuLhWQEj1NrZwJkb1l+SJhlIHxOLUZLYp8rZMCrSU0IeRiVeFXKhyIBRQKKBC5LCSgWiA+52+JKAnDFG+JeeeOwPcW4cukCpxn7PAEs8ZaMe2fgC3mcgUzv5HpGGZqBbAEpcc/sOZpiMlyxfGGaBVsvziT+TkofeQoRToTb9eoBl8O5buk8q3Fyr+1LyhvgH+JH7YSBgDw0OjE67tPrtFkep8NMdudg0kNXYB0stq1Etr7h4NDImNVsyky1YFuIuKJAOxlvse/nkDfW1TdkMRmy0qxGDd1pNK4mXtKmKMQVCSgSUCRwySWgKBCXXMTTKmB6AM6T5Lnatt7f73ytJM8zb8E8G8F1uoEUcmNu40LawDQ673x4x7gWCbgaurwPP7+3JD+ztKw01YJtoy8PBaKiZeCRnXsXlc5bVlZiBc8fFt9A/f7RyB+e2NnY0e0NhX2RqE6ldpoN12xae8vVq9hunsiDLbGPnG1/7uXdg96xYFTE7p+L5xV/8XM3ZTp02FoKAepF23Dkwd892tU/NBaI6nWa3AzPV79wW6HHrPmf9O47+1tJUSSgSECRwEcsAWZY/YiZ+PRUTybH2cVxNbWNE2Epxe50OHDSAgmw28czvFMiyYLvHmEaw9Q7CJ6prA3HsG0zaiGnZ6GiqRlYfEZt78zwIacAoU9UNfpkwZaWZrKQ7TIRLikPjD42w0Yth0+eefPY2e6xcFhl0lo9I1FddY/vZ0+8cuRMO+QJzcDPcXuP1v/Lbx4/294fUBu0zrT+iPDKiaoXD54YiZIDRHwSd6Zl7Kvf/7dj9Z2jktaSkdUXVb1V3fZff9g5Ts0SrEW0WcpNkYAiAUUCl6sEFAvE7PQcgzeAOwskAns4nf9mVvGoyPn8EbNRi2OfobXFeK6tZ1QUdKk5RTB0+/yyFBPtJrVteofIosSTcxZAC3YJ4Bc0AI2AODn1QopwKiQhFqMKiC8QkmTBatHqCRM4FhPnQqkamlph0MhJdRtxjgZVIPAORUCUMEk0CnzSKHkkAQ+sPsRxrBSMJUB0TIUMj0xYzGarnhdwtDdz2aDNJnAI+wnNRssS4qCLCxEEFAefY74YTm6zmjR6gVPJEnbLxjbQwGNYFzBFgQzIT0jRzJXNnTgTJDU1ladnVIUoQ8GgHA5HNDqtCcdbIVBTDamLRlhLcIxWMByzGNU4W4RMCyEXJUpkxrihibQq8gbJEBRtDWgSsio59pkbtpctW5WVY8ZOk+VV/od+/+jQyFBtY+u6pbnQDypaRv7w7M4oz999+23bNpdKGu6F12t//8TTB6qqrrp6vVHDdw7LP3v4j2M+//XXXXXrjs0pev6titGf/Prh4zVNQz4ZZ6Ogk2kD4qwoH4oEFAkoErgcJTAdry7HFnxseE7iZZIjjGhDItfYMXTw6ImO7p5QKGI2WHMzU7dvWScY9J2DAUljDHGGnz/yZk9bC47HzHSYHvjstvQ0D6NQdb5q3+v71qxdu2bpMnIulhAVZf5XDz9qM+qvvnqr25PaNex7bs+bGpMOp3afPH7CO+aVVYb8/MLbtq1Mc5pjnDQSFAZGvSqVkJ+Zjt2pozFuYNT/6mt7g+Pegqz0m2+8joIwapsBZ9B5AK5k3gCxruHgngOHajvaR7wTFqN5+dyiz27fpNKqZBW384W3O9r7Nm9evnhxPlQBBJwsOjQqPf3002aL4fY7b8bXS5a4Nw5XVdTV9g0PIoNNr73l6i3L52bhmNBQJLznwKnayqYv3HZ7U1/XufqaibC/OCe3bPna9oERrUaXnZ4OxQKY/fLe401NLX5fIBwO81q1zWlfvWrlsoV5ODUMTB4/ef5U+bnlK1a0tHa2d/aExajdbNiwavmq0hKjASeMEsaS8wZEJ4sfEE7ah16LiDGtIKh4opSpZH77xjUqvYrpQ6h98Ryjw2buGR6CcoY2ImXvoSN9Y+NXb7/uM9tL0UAfx23cWPLzp+XecMCvIhtdv326urWrtzA349ZrN2fpibqQl2pLSbH0BgO9w75Ms4UwpARFAooEFAlc5hJQFIhZ60CMbxkOA5MQMHAHtByqbP/RLx8KBMI4sVqjUomRDr78jGg0FSxY3Tw8MSqr/rhzr04WNZwYjMZMai7gC3/3W19KoWdRvH6q6s3y6pzS5aIOJ0pyQc5U2dLz0rGa+YXZKwUrzo1s9vIvH66MSGFBfFuORmNSJCJrDlW0pFgMN123TuRUdb0jPWMTBrMxqyDfB78/mfu7H/28u7u7OCfrc7ffCeWAngkKHJ0R0A6iPQAvB8bl7//Hr5q7+2QpojWmBAN9zQ2d7a3df/ete4C9w2Njb5844cq0lC7OR6sx4ofB4Gc/f6iisuLmHTeCaDAi/+nJN/a99RavUePMykAoFAoHW7r6/uUb95fke/xR4dXjFbX1rS19Dzd3tUpcVMXHrNdcbW3riPl9qVbzvKJUHDbhDcp739jfPzQSiuD4cRwErvGHao+er/mHr39t6Xw37DfHz9TvP3bmtaPHVDJsGdoIz0nRcFfvkN2eNiffzg47ZeodGhaMCfAEkXH+KLLBeoEkWcsODyPN5jkzTspKmEOQ0toVGhkb16jUubk5eAxw3MHDx7RazfbNa3FqFyPr1vJqWacSdaDZH5aPnTkD6X3mpptSrXG/Fr2B0+l00GWiUaJoEdMHaClBkYAiAUUCl7MEFAVidnqPYA+lBGhgF4Bi39GmHz30W4Ml5Qu33Lpx7SKMhs+VN7/x5htz5hYNjY2HguMOtbR++bINa1ZluI1vnWx84cUXG7sHI7Ic4fiAxJ2u69DZMt1puWwKAEhZ0djhl7Q6m8tgM2BcXl3fHAhFnU7LirKFq5ct1Rk1O3ftO1NR09zWiRkHWOxbBr0DgYjH7bGmaU/XDf7mNw+N+QOr1m26765bHJbk/gQzoYzxj6F2/7j8te/8YCQY3bhx42ev3eLwGF7bX/ncc8+eqq45UdO7qDi9YF5peP/R7rFxLJqwaqHicPsOnK9vqkMD123c4A/Lz+3cv+fNN5cuX37PvZ/JsvMtA/K//PiXbX09lU2d+fme3tFgQ++IX6UfjoTXbdpcmJfFRYJF+Xn1rZ1yOJDmSLfBfoCTvQz8ui1b83Ozs7LgEsE3dUR/8otf9Pb1tDZ3LpvvDohceU1LTGMqmz9vw4o1uVl59e3df3r8iebO/o6B4dxcO+ZRntm5/4Vdr8RkQRIl2GNwajmb2BAxecFLVpP2h9/729wsYvjBbAiZ1YB2xqZdAvKbBw4NDQ/NLchduSwPHXHoVOd4ILRgfonLRJaYQr9BR3dDO4tJZr0ZXib9E1xrT5/eYFxWlguNChkgyWCQC4XDkiS6XHaiaM4U+ex8CRUqigQUCSgS+DAloCgQsydtYA8FBngfYCDeNeB7fs9bnKC/5brrbtmyyAwk4birVxeWFbj0DusL+85oo96rVi994Mtb9GriKyAum7NnFxmaGqnRu2tA7hoMpTrdbncmqGKkC/RqaesRJcHhtBuo6b6ptkonh7982+c3rCjByZBkuqGkqPrMOZtej2E3FI62/tHBqLy0aO5rxzp373wWcxA7brjumi3r7BbC6HugGDAvInEvvbq/2ycuWzT/i7dfl23hQxy3dtWC1/fv9Y4M9I+NqNTpmYV547yqoW8gIMlGmW/tmThw+ECUC63btDov23iuaXTX66850tw3f+4Wp52HxpPl4Vdfse7RnS+OhCS/zLX2jfb7IvPmFt932/WLi51mNFPChAJ3pLxSLUXn5udCLBAI2n7N9SsnRuTh4dGm1oDXH1Wp1Cq1zmy2wczTOyGDSE5u0X333Vtgw0wPV1BkPXgor7mlJSrLyAAi+YVFG6/cHuG1sGBIMjQnmfiREOJwYIg5zRpLSgrpHgrtME/gExKYCHN/eGLXgSOnszNSH/jy7Tot6YLDpyt4raG4qDA1sbBTlLlTR6vUkuyGn6qWr+3zjviD68rmmdS8gbp3oOFjY2Ne76jZZLaYid6mWCCYtJW7IgFFApe1BBQFYpa6j+ARQSQMLtn4sqGxEaPkbLdtx5ZFNg0ZrZIsIpeVah2Ocq0tLUD8rds2WWDaFzlBxcnhiEqKZaQTdQF+/uWNHV5OyvW4LB41wAwoOB7BrgMTssaUlVsEUoEY19HZmuqyzivOVeNcabqCoL+3X8WpMtJyoK54Q3J3W5cgqwZGJh587BkzH/0///t/Ly9xpajJXAMywKeSoDNhd5ougWQ893rF0zVNIq/auGplmolXRziDlkuz8hhnD4R7MRsCrlJcvMpi7PaOesMynCsPHjtf3zaQU1SyfvMVaMLzu/f7JU1wxP/df/mPFL1BDkexoGIkGDAKksGsBbRX1ddpZWnLqsXrip1oIL6LWB45Oi73DAzrtNolS5ciEWpQTUfksWef7+lsicXkiKSC/hCR1fqULEduOiYU9h8/L3LS4tKS1BQVGoUqgOhWjRa+niadSiNwMZFbvjBnXklOCK6atHcgK9pXZP4C+fU8Z6ImB1SHNxJPtIf2kdhPHnr0VG1zWpr7m/fdvTBLD9fUCZGrr2/R60052UTCJsoe1m2eP3PWouHmFmWCclNdLS+Jc+cUGTREyAggO9TfL0WiZUsWmNFIaBDT5E0zKTdFAooEFAlcbhJQFIhZ6jFAAh3UMnAAAo14xzGWnZOfa6XaA6pBFjj9YeQ94Qt1tLfoNPL8IodO5oBAwJiWhjoxEpxXMs8X5TQarr2vF4CXnpsN2MbAF6DeNxQZGpsQeT4zOxdm8+r2of4J79KyMpMeJgyioKDSutpqk0GT6nGgrlCIGxseEyShvKImRS0sX1Q2p8AJAIN/BRwcUCMJFzKmoy6Q6vVODEwEIpK4amkRVnBg6QRmVXzjciwiadRau80GHESTUuy2rv4uuHjUtAdeO3iEV2u/9a1vChjXw/7RM6gyWVxOu82g1cmyFgN/TkjX8FEukp5qBxvl1VUaNV+UlQGgpStHuECEG/ZHmvsGZZ0uM98MJ5Ljp/t+8qsH/dFoVporvyjX7kodGI0cPXNe0GrScg1QLyrrm+HP4HZaoQSoZQ7eDPAV7RnoU2nVmK0guoLANTb117V1hThdhCgMMD+E0UZEcNfI0RQtt3HlArsJ9gIC7ljxUd069NunXqqob87Py73vntsWFVjAHnKHgrLP5+fVKp0OFh/SKVj/MhGS62orzEZrjseFRvX39EI1TEt1M+0BQgpJ6JcGHc8tLMrHI7Q9BCI9+pUAg0pQJKBIQJHA5SgBRYGYrV5jqxZAjRyPLca4keHxYDhis6ZQCCNggwvW7IjMjY1PDA93z5s3D5YAaA9qkQsJ3Onyco1aKCmZj+mJcJjr6+uXZSnV44adACgI0Onr7x/3++0ua2EucYDYX3l+QIqlFxRglSC8AqEJ9Az4u7pbXBkZLrcR+OT3B/t6+4wa3ZVrr+hobj11+vy+/Ky7r1+EV0BZTPZj1QGzP8SViSmSAKtjodhYOMqreb2WeAKCPozvLc2DQ8MjHqczNysDpfDtKcjObegeqG337d+zeywUuue2G7KsPMwPgSg3OhHQmI133nXr5hKHHc0H1grEkRPNAbgOx7jm/r6CnFybxYp1oSQInFnHDQWDHcHA3LnFqLVtVH76lQOBqHDLjTuu27rUbsPUELdzX/vp0ycLs9KhjU1IXH1rj9FsdHvsYBIBikt53UDXxBh8Hq1ODxoCA0NFVd2zu16dkLDqVSMKsDFAfkSfA9Jr5ahNxy+Yk2E1ZSLzaIh7/Xjl06/s7/f6N2/cfOv1m/M9aih5gH/MEMlElZPVKo3OYJygMocmd/L0WU4O5WcWzMvJhZ7h9/nwDbCmYEImHnqHZCwSSbVZNy8uRQbUCxsJ5InqIFLoE4oOkRCV8qlIQJHA5SQBRYGYrd5iKEAm0BHDmgODXo+BfntnN8AKsEe882Df7h5ypLtOwelP1M4vXIB0MgpWA625tvZmt91mtxK/QWyZMO4dxEYPBqMepn6gFPD49PmKYHhi3ZpFKIUqqsvPpQiqLKcDY2Ee3oAcV9vQGuM1dleGO9UDNG1t7ohGw5vXr7znzlVnzxY89sijT7/0Sn66beuyXFj1MXegw/QG5k7iAQTigagKZPKeDOCjorq6adQyzx4UuMFx+Y0j5eFwbOPatZ4UHlgIPJ1XmPfa0dO/f+y5ocGBDfNKNqxcAopYnhDFZg+SFAmE+nsGpGKHBNgGTRhmgvLA0Mi8HOfp883BsOxJTXPasTVGPEC5aaip0UTCK0oLkHm4d9Tb36bTiDfetNSuIXpMKMp1NjcJkdCy+cUY7jc2jgfHwxmZaQ5POlw4Iau2Afnxl1+NSsKqpcsKsoxQ0VBq66YrShcuCMsazFlQOwjqgXpGtn/QyDFobJlpHrSlxxv5w4tv7jtyWlLpP/+Zm67fPN+p56HrQNOCXkLKqOGlEYrGsMs1JogcoNY5KO89ckZS6crmlWQ5eQjWAdVBktu6+sZK7KCJgr9+7GlfMLhu7epstwChofuGAvJLu/dh3egVS+aXFGRh6YiiQyS+AsqnIgFFApeNBBQFYta6io4qCbYT3wKeczrsBp3+XFXDC6+d27J+UcAv7tq9+0jFmb/53t8fr6zlVLriorkAWoxr4ZzY3D085vdl5ObpdKRHAFjwgtSq1AcOvV3gsowPDj71zHNtQ16dxbBqWRlyjItcYHg4zWbNSnVDTUGFgLeapkZOo3WmpmPZAlCzrrFRkCPrVyxM0/LbVnna65a9efDwMztfKsq6f06qXkOADOUor+QGCKOEaBQmCrfN4rGm9Az7Xjt4NCvzWq9X3vXqwSNnz6a5nbffvBbgDTYArnnpqVibODI45LCkXH3lRpuRIC6CWcUVZHoq29p2v/pmqsGyamFGKMAdPXNmz769ixcvmHf3zQ11DUaVJsNhN0EzYPhJcbSjvtYkRlaUFMGtURWc0EghMRLY+2r56kVL21vbXn1tX0f3KHB81ZKFsLt0trTxEj8+EaxtGhJCzo7u3jcOvFXb1JbqsF2zeZkaBhY4l8icx65x2J2steANEQS0n12wB2Cbr6DIPfHiqy/tL5+Q1Dtu2JqenlFTPyjEwmouBiVj6cI5Ki1nNvHpTnvP8Gh1de2y+fmhiPzoky+crW3KTfNctXEdzsIA5bnZ6eWnpP0HDq1ZVQKnzZd37yuvrEzzODatWQ5HWjQUPXWyuumxl/ZCxSzIySgpzCL8xL89lDPlpkhAkYAigctBAooCMTu9BAzAcJOehkVgCWHNimXlreOHTp35+aMvPPTkLjESMho0BYvmiEbhfGtLus2c4rTAtEAmNTgONglZZy4uLXO7eBj5HXb9guL5DW2DtQ2d3//hf2nUGpsjVaUTxXCwJC8DRRqbW2PBcYszxemyYtgtqchIt3d4ICBG7GkuMIPHutZGl1mbbdVj3yI83r1jU0dbZ2v9uZ0vv/yVu2+z6ym3ANFJ6KIwTl0D4Hs4J11909b1vc/s3X/07OFTVWIsqtVrFi0rvf2m7dBOcEFxMcJLw2XPshtHvGPXblu7blkaFAu8giigRvz11+/+yR+eP1XT9q8PPSHIMElEBI3kNmsLc/Mgos76WocgzvVYHLASAFRp5fg6DrQ2Zpl1GVgHyXElmTmFmZnDNXXPPrPzqWdeEgTBYbVjeUhGqiczFWsyueaWZlGUAsHgL371K33Yz+t0drdr89pV99++Pd3MQz8j32+62QVBbqYgJR5pL5Fqob5gsyeYFKobO2IyrxKEF3fv3vtKTC2LKk6CAqEXxP/6l38ozjGD7b+8+67fPvpU+dHTp4+fwyIOnV69duWK+++6Jd3Cg2G0Y/vapTU1VZVN7fd94wdwX1HxUm522t2fvXlRsR11oa/RF6caOnyCITevMK+omGgPVGlj/Ch3RQKKBBQJXC4SUI7znp2eSigQFAfp9s/Aib4Juaq5v62nDwjnsJrdTpsn253u0r9V3oBDl5aV5GHjajgEYO/Clt4g9ncqyMvJdWvhEoFtmNtHZOwD0d43ZNLLGenpdofTPz7CRf2lc/NNJvXoRLiist7isBfnZzmxhyUmCOBFUVELx4U5JaWZKWTX5mNVbVpeg6UBJh2ZBAE/7b2hro52q0FXVpxrwSqFuP0hrvFAEHEwo2iOIr4Yd755rKm1c2J8wmUxO1Pt+UWZaSk8cd2g2Ay8HJO4itpubNxUWpTvYSsbMUmAaRdqWekbk6vqu7u6+gPBCatVn5kJA7+xICvTaeCrqlp9IamsIMvjgNaB2pjlgjt0vAaTJ2ULig3YeEng6jonjlZV9Xkn9CptbmaW2+kMeIMuu3HhXFvvmPz//vu3h2sH7rnj5lSrLjbYa7bZs3JyCrIsbgN2diIUMfuA/bNZH+ODxsiWk1RdiXc9EiEc+FUeP9c0EeVFIhj8xwQF3C1hmpGxufUVy0t01FkBW21WNw41tfVM+MMpVhN8L3Ly09LMPNoAJ0yiIshcU3/gXGNHc8+ww5bicVgyU63zconTKMQFBWIgJP/gx0/UN9bdcfO199+8Bks5oOVM5Wd2vpEKFUUCigQUCVxiCSgKxOwIGCAEeCDIAzCMSlg+KOKZKgeAUrxl89yIAGDgOIkdh+CXpxWDGpUBnvzIE4uSNRrEuT8S5NTqaEwzEcPO1ATtGNLDCZGPyWYtWWQIOqxGlNVTwIYXRDQW1em0gGItPfOCACBdlYAWwiSAC7xhuqSyumuorwc+jaCAvbEpmCKKtzKG+KIkWfSqq9avYFUgP9qB7RngSIi9qzH6x4ngRHugdgtwQltJONRSL0NOioEMqUytDkh01yaJ+Awy0WCsjyjYgG0AgcRBAhs/kg9QJSEW4yJRGQCu1cDGAasFQXcsx8BiVygEeqxSpaJDM0+2DP/7Q48390/85kffy3XwWHlCzgSBgUHiDNj4m8I58VUEFRLwQSpELL679ZRU1goUJ24RNJ1kmxqRseUUbBgStpGAiSIYI3M+OjpnAf0PdaE39aQmIpcQT91I6VIXKIhQHZjvJFaBwt3jZHvwP3/xh/GR/l/96B8L7TwUCNhslKBIQJGAIoHLTgLKFMbsdBnAJgkDGkwAADEpFGHHpiQgIZHEKS4x3OZVBEnh7kBG33EARQRwA2cGzq4lCJoMZGAM1YMOWJPpZFhMasMoltdhlp6+RZ3ASOSBJQCB3kjVgMnBcemNwydqmzoiRHeAGoDCZHkBu8OxEIxlWFTbqQKBsgA/EuARSZlHdfFA9Q6wDeKMGYbXHF04KVOnBj2xgxC5sAysIPIzfvBIIvgCEtBONp7Drt1qMqnAspN6wTZmB6C+IA0UoRhhEgcqSq831Dvsxfg+38njyG+QIP6kIEt7Ag1hFZMICeTNVE4mUylZPDJ+WfrMO5WnCutdKA2ynQPjn/UJ45fkIftE4SWmjcy0XjCMlaPgGelwksA90N0sjQ1tXbUk304cURmbcR5n1qo8KxJQJKBI4OMrAUWBuIR9w1DhYrBhep74Ez6mp0+y+s70ZAqJUMyclkKLAsycZuHOHdd6/REZCzQZ0pJXBFihRrDht01PcJqmxLE/SYomx2/JxGSEvoiD9NTEd4tPEnonsCdSUJboAxSAEcdFjACwBkCHiIYyXbZ1a5ZjEA/tAV9lliFOlpaajCdipOS7hPd4lSwxqdrQ6pLpyQjjgQkQiSzC7mgImMxJddxw5RVXbdkInlk62noxVSerUCKKBBQJKBL4OEhAmcL4OPTCpeKBoTADJ8RxYQSMGQEM3xFPghyrniEfiWNaZMY7kh3X+4ZJGu+bdVqGi6CdtKZQL08y59Ef5UZ8stPM2zVkjoDaHaZR/bg8oHXMyEOFCCdZ7JeFHS8gY1ysd9j948KwwociAUUCigQuQgKKAnERQrpsszBcZuCEOHvEHWpEErpmNA5vkX+m/jAj06V4ZMwxyu8Fp+AdDUEOcjYHawhUB3ZdCr7+fJpJsTNSSfmTLmDi/vPrUCgoElAkoEjgQ5eAMoXxoYscFSZhIxn5ELlg+sEUBQJMIMRBmz3E2ZnyZlr61ALxrLP38V7aA9wUyfQMy4IpgCSD76XxzGD9vei/Xyv+DFLJahn/hOEENXwm374fB8p7RQKKBBQJfFwkoCgQl7wnGEx8tAgBHtjF2HgHM+8CYdPzsYawO6Q2RQW55DJkFUB7YLUzvticxSTrk7Ep/EwtQJIvmGlK/veIMlLvkYG9StSQzD5diiQTSUm+ZqXe5Z4g9i6vL03yDNbeyf+lqXYaVcbDJa062cxLWsu0VikPigQ+WRJQFIhL2J/4hSILC9kBEGyjg8nfKrykD4nPd/CBF+zdZBmWB6kIk6nsmSRhywMso8BR1VhhQQ6sZgsQwAIWPSIXVpZiVSEWlCJMITJJaSrZSao0O5wHCQW6kwESAN5QINi4H/GZJEkREsh8Q4LVhBsA8uICMVysananWRM3ScKpYagRixqwyJPQoPoK1kuSJ6xAhRsla+D7zwKQ4qw6FoGr6AVqTNT87p8XLJRsRKIceCMc0pW6kD8W32KVDXIhEHGxGH2M32j+6aoR4RZ9CGkTIdDGEpq0tApnlEejag3WdpDX5EYJIRsphq6BwynZM0sSsE852ZQcGYjccE0ywMrEOSAfeEtupFpyMgku1ndYNItkHNhBpfaOYvGi09IpKfKCptLyiCZ9WGg9JIFWQfLQLFOXwKAtODcVrOO7SuudSjKuRMbpszdT6qfECEkE+p2Jt40mTN7ADhqI1dQQIZ3/IuVoWSIrBJCkPMZJT9aA1zyRTyIPyUkDLR2P09LxuPKhSOATKwFFgbhUXYufE+yaEMGh1Y2DoUhg+fzcySMPyG8gLoTEj8+FuYi/vZislAD5BQRNskkB3bABleCHEj92gz65qb1HlMQrynIY3lPSyM90jHdlI1E14TgkcqMBqb530OcPqmQpx2UpyHLD3TJBBVlm0sEzxSFwwXibmoNlThTBJ6uMtkQQeFEWCGRi2wXyhlSCR2wpMeYLqQXBbtJOpUXqTlCiBBK3CyRegM9E7imfFyg45W0ySkGGsU5LELzHpl4TEe50TYfZqCnOS1dTTuP0IMgpzYyTmXzH2oRnHluDjAcioahoNxvYhhPVTT3j/kBJTqrLZiECpbWyorgTOMSB48FYJBa1GfUGLIedHkjOd1adyIO3RJOhR5kPTojNfV6fP4BzyTMcKcV5jkQ5fLIKE8Uu8BnPw4pMZ3NK7sQ3jyAxtITEKhs8oSD8TEcDUCFkpym5UnhavQnikwTjtSYSpuUmX17KCG0ky4IdvSqah8Z9YwtKCrHJF1rONCRGGXkYhZkVJV4n6c/MkGBA+VQk8GmQgOof//EfPw3t/PDbiF8WDEOHo9w//PT3h8vLt25ej20AEOhPZfyXnI6xaRpuKEB/lhI/SXggFx4TKaQ4HtgL+sCyJO5I4oXB0YkTZ6t9gYDbacf4FbhC9lyq6/uvhx+pbGy6Zstq/CSzkVniN5VVG6eX/KC8kCcWwQ9993Dg148999jeg68dOXXoeLlOrVpSVkzOImfWiXgDkuVo2elPrGaahhu7khVOS8DWVVhqevjk2ZGxcU+qC/s7MCF0D47+5g+PnTlfsWbVsvj4MoFRyUFhXF5J1hEB3sYDi1ChkvrBeqLe6REm9ql3VjJBZ/KTagSEO5qB3AB955sG/v6nD/cODCxeWGYzkNE1eYFc+Ig3ZZIC1X0mOxov0Ja+8dCTO195/dBRp92R6rFDOfjRrx/b9ebhuYW5GRnu0fGJY+UVE4Gwx2UHcQR82XpGg0++8Mq+tw877PYMjxOISN/gW0aUK8IAC5OxRAo+KaKjlsEJ6VePPvv47gN7D508evI8rBmLS4uhwVBJxe9TiiE6lRwRGMtJ87BHmoeJmpVMcIMvZ1jk3j5ROTzqd7vsRFVkbR8L/+K3j547X7Fh1dKE6ECVFqN8xhuWoEaqYXzQt4x8ki36BcFrKnf6DrIKcNz//ekj+4+fWLJkqTuF7G9C3iR4R5ymkD8fBFqI1sFqJMSmNZvmQa5kiJdIPisRRQKfSAnQP9lPZMs+Bo3Cr8/QhNzUM2RzpeEHCfZSDE9hI8avk4QL2y7AWoDfbPb7B4bxFpshYidsclRkPDkqxmBXjvcT/eHEKwzEQQYwQyzUGPKSPRTxjxxTfa656z8ffvyF1w/F6C8m8qDejn5v31gwu3AO0yfYjAb7KZ76s/dOmaHqqChiuIYlDz/749OvnzynN+o+f8tN9962Y92KJdh+kYx82Y83+U0lkyikERJtAT4x/4C3Em6wDJOqwHAsRlpEmksD7O24SC7oOtgIk+5cGRX41pHIv//+uadeO+KXyEwQ3oKNyvq2o2dq2ruHkR8zMrgQYW8Z84wuidM6iBghTFIFkiBFckVxdhYikCByv8tFOE4WoJEL5KQ8i+QwVJj9BdYqjGRB/WxNnS8qmkwmawox8lE2CFMUjMjmX+Rk8GQNlBOIADwiJ+5gqmdo7K1T546dr9EYU5DiDcrnGzskfYo2xYlzR2s6vT/+/bPPv3qI9S/y43vUPTJ+qPz8ifO1hhQ7IQWpyjwaDrzEgSlkUoDWDxkTRqYHUMC3AhL+6R+efvVklUqvu3XHtV+84+b1qxYZqAUFfJG+oWTpncRpB8ZvqC0myTGIlyoBeEsxn84PxLue9DK7wDayoSG9Qflff/vkH1/e58MXAwVxsJnM1TS0nig/3907iMzIiS8RKkOnEZNegnhypoE0koqVUMYe6tjXlX5bknXRniR9jT5lOUFtyC/XdA5YHKk6g4klggaKkEbRCx2BgCaTby0qxVeNxSDGxBQG0lE7vicQDPY4x95s5HtO/65pIeWmSOATLgFlCuMSdjB+c06frQa8FRcV4YBv/GwBywVqFcBJ1gA1g0aFYy/I718i4GcLQIwbzu8OhSM4bttowH6R9CcN6fjlopCJ39lAQNaoeWyNjCl2QUV+TpEY5rny+s5RUVewYDmUCfIbD+yPcbXNLTFetXrVaqI6xDjoJGYdryGOEhLd9XEKB7RI8gYbBnZ2xC97XW/w0LlaT3b+d779l/keck4Vtm8Co2zqmv7mEiLY8BkfsopMnSMClsjvMdiWuWBEFlS8Sc0JavKtIwBK8pK3yBIRuZgoYxNP0kaKLscw9xMWPDlzAH7Igxt+qeeXLfpf3/wWTvAiaXTfSWQWBS4UIY3FtAbwSk38I5Cb+BCgGLFe0N0wfTjuguP1Ok6tJQ4EQDNkJDlpNvox5UZyTHm8UB7GJ04MGRgaC4eC8/LSkAuJIRyH0d4pq7RpGZkqFTmmCwN4g444oNCm0DvcCligtQCTwD+ixJhPGctM9zxw3/2RSKQo34VeO9fU65f4TE+a1eVGd5yp7xyOaDKLF6KXYQRCQZTKzPTc9xd/EYmE8rNdoA0nCNI+nuyeHkzIB6LnBSivtO1xDsgHGACpup7AwTPVVk/mN7/+5dIcLTYAJbuiUsaIpQm6Eb6aZHaJUMGXmciXyYl8oi7ejy82z0PnYIYu1kg0DTXiLb69oYikx0HytJehDRw+3TQaVaflFeNAOJBl03zzS+f+r298M91tY8TJ1xhiUZFWQJ016VVoBWkIqZOSpVoX/cMh33ZRlI04DIW+JRJI5KQJ5BFXRXU78D4jNdVmIjyiapaOSCCM7y+PY3FBAduWIx0MYCYN6gurIhiBwsCbtGQjNjQK3YG/1oaOPpc9xWnD3ytRlonolaBI4JMuAfZX9klv5UfUvv/P3nkAxlVce3+LtCuteu+9W91yB1ew6dh0Qu8EkpAAL4W8ACGPkPdSSCAJodfQu2m2wYAN7l22JVm9915Xu9rd7zd3pLUsGz9D+F4AzyDW986dOXPmP3PPOXOmXJTr7p27zEZDanwM8pQw7NDt2lNW39jQ3NbJ4CYiNGhOQV5WaqxksLqmad++/QHBYR7evmUVVa2tbX5+frnTMuYUZvuZtLGppgw2b9lb19RS19Lu7+sdGRrMp568PQ3z5s7Ve5he/nDjpn3VgzrvstrWV97p4jvUM2YUBQYH1jbWm0xGb5PH2+9t7Gptso85EmLCF584O0oTn0eXdUjPLbsrXvx014DeK8LTa/tnGyvNupl50/q7uhrraqalp+RkJUtx2dY9uHnbdqvVevbZp6IJmlp7Nm3eGhEVozd6VNfWt3V2e5hMmYlxJ8+fafZEZAtjA42yr7S2qr6+vatr1G7z9/NPS05JSE79bPueD9ZtHTOam9ra31j5ucU5kpeZmpaZtGvnzlGbbfq0ZCHTtWH3DiZm6hqa2jpsDkd8eOjs/JzUhGj4wT7o6BtZ/9kmT0+viOjoypqa5vY21ENSbPSZJy1AnROEEtKUulBRh4bDFQBppiTjC+Cbdx/YtK98z779MZHh99x+jdSa3QOu1s5e9JNDZ3zjgy3NdbUYeCkJscsWzcNZjr5Cm65e/REFTi8qCg8L4gKzo7yqbndxcXJM3MyiApRlS11DW1X5zIICdqvi/tl5oHrI6QwODzGadS+/v/uTrfto5YqmrpdXbjQ7rUW5WakpUc21ja3V5bOLCjDvBgdtn2/aPDpqS01NK6uurmlutY65kqKjTl2yIIjPqB/W5FanbmNx9ctrNw26PAKMxj1bN9Tt1hflTHNYrTUVZWnJ8dNzM2EbO6O7Z3Dnjh2Dg4NnnXUGCy1a2vs/37gxJCzc0+RNO7R3dGLBpSQmLF00my+SCISld6RzoHhfSVtnV09fv8XHl4/DZWblVNY0rf54i83p0drW8cbKjRaXLTMlISs7aevmrdZRZ0FmksBKA6d4f215dU1LR8eI3R4THlaUO43PoGtTgrruPuvnGzZjkUTHJVTV1LU0t9DKcbExp528gNO66IcEjABprEprALT37iv20DkSI0IDtBO94LKxtWvHntLWrp6u3n5fH9+0pPi5Mwr4PD3Zm9u6Nm/d7uPnHxYRua+0rKW9Q280Zaclnzi7yN9b2MotvUP3PPBEZGjQzPzMufmZGUnRtJoKCoHvPALKgPjamlgIKUGMf5F6ekaNDLD2HygL9g2ICvRH2HVbXa+8v+n9Dz8aGuozmb1wkVfE7gAAQABJREFU5I8Mj27aUfofN1+bGBeIKt1T1fLIqyvFMJwvUQ0OmfzCekecITvK7o1KyY7zYmle16jr0aff2LWj2DlqN9htVoPZptPz3a5wX4+cOQtr69ufeu3dUZO/0eBc+9n6DQ6rwTkWn1U4ZtHVdfYO2BwP/uPRvo4W/A7DOk8vD32X3XjlioXGUXuglzRvDkKhVUTc4j5hMv51puJLWvRePtWtrV2r6/30jsCQyE2bd+3bveXKi89OnZYshmI63fb67udXbTCNDZ22/FSGs6t21z735novL4un0cWKPIeThYEevsZdNg/L6Quy+XA2I+O3Vq5b8/GnHT29YmBrNGAcREbHLlp2xptrNjf3Wh0evp9t3bdzy1Zv59BN11walpr06CtrQn2986fP8fARzvnVH2178723O7p6XQaz0+npb3Rt277/x9+/gu994lnZV9n61JufDLuMFh/z0NAQZhMMmA37WvpHb7x4KSKeauIwR52gfiYHcccgEgtDW6IvH4l21VwjpMdfvWFbxTsfflzV1DowYvX38T41P18mQOFVt490WHXDLv07H37iGB2y2u1Gs4/n9vKOEde1y+fj4m8bdj308qrg0NDwlNyQMPGxDBj4dNOuF95adem5ZxXMKqCgt9Zu/mzTluTUjAQKdepqa5uob3hkVFW747k3V486TCazed2GrVvsNm/XcHBoTHRi1PtrN6LL87LzcbWU1DS+8PYnnb29/sFBXf1DfP3Lpfc0GUpaOvv/45rlYtA9EWCbvx6r64PPt2/cWcbkRXNb0+srq1kBqvcNqq9v+eyTD66mlbMzcXUwl1DS2Pv4mx/ZRvoXrziDHv7R3ppn3lrv4YmrwmUdHmIWY9BoCrCU9est5y7JpWNBfEfN0ONPPtfcUGMTs0eGEafB5OU1c07fvtr22tZug8Fn2+6yiv2lRqftvIvOi8pNeuillSF+Qdm5hRGBRoynDz8veebF16zWYdvoKPMyHp7en+2s/MH1F+fEB4P2zrrOx9/7vH9w1MfiNTjQz3fnbQY+KlfSSCtfshRbis4pTA34wBbBBNcMsm3FO8KCzAnRrBQRNsr2A50vvPpqQ3XNCD3eaKJ9PfTbLuixnrd8LhXbXd388MsfeHrj1jD0Dw2OjhmcevO6baWWgPCZOQnMYZl9LUUz53yy7tP91TVvrl2bk5p83lmn56ZEyfeKiQ16o8Bc40HwoTmNDu10IloFhcC3CwFlQHw97YVk4E8TC0JIYECgZkrr+OazLTEmICQwECH11oebX373o/Do6J/84o6EeM+qavsDDzxc0dRcWt8cFRc4YHWV1rf3OD19vXwyM9KXLVxoNfr/9ZnXGtubNhaXZSYUDOh0Dz23cu3GbQmRcStOWXbS7NTydtfTr75dXnHANzTAEuCREhB99TXXPvzMy4W5qVdefJEZl7NBHxpm+HxLed/QCPrG38/vgnPOtvgFvrzq08ryst3ldStGXJEWbUPgJBgmyzXWtVn8vM4+5/zPyx+zeJuvvvyi1JjQAJNeb3e9uWpD36gzLiWVqsmxaX3XYHP/6PycdGQ0f+v3lPfpLXxkdNa0tIXzF+D4ffaN91oaqjfvq1i6IJt5h1fe3fraW+8HBQdffd2NM2ZkjFh1b7zxTnVTa05hlj4o+r4HH56WlHzThT+ICvAwuayxYd5lNb09Q2O56XEmLz3K7N3PSv752tvWseELL7l00cI5fX2uB+7/W3FV3bqtO1csX8oexuKqxl6H55inV3xM9MWLFgaHhL307kc79uz6aMe+qy9eilLBKX3JNT8YcRrtYvXGJAiE6WDQO8fmzSy4/eZrcUpTQTzVDNNRtMWltS+/sbK8tomvfkVGRqxYvnz5qQV4NNxWWG1zZ9eg1WQyxSdEn7xovsni9/ZHn+3au/ettRsvWz6fT62V1LW2Djsig6P8wsLpJ/gD0FiCoG+wJTSKj3aib/ZWNpj9QyNiYim3p881MDhsMXmmJ8UnJ3hcdPH3/vnCWzkZCRefuyLER3woNTxYfO6soq7J4hcUExNKvfC3tPeN2lye0cHhpy5fGJ+UvgpL7fMN23aXjDqXM38yuZVpQbNFf+ppZ+6r7R6y9l964UXZKSlGs37Yqft0R+mw3hSfls4SCpa8YOa2D4y20QoZWaxgYLJmc2ndkNHPZDAVZqcvOnGezeF88t0P21satu0tP21JLqVUdrj+++9P9PT0zswrPP+c5THRlvVba95f+3FCWkbijMW/f/DvObHRP/7e8ogALxrBO8iwt2a0e9QVHRfKbBNFfL675W/PvjLidJ139orF82f39Vr/8MAj++rbV2/aFhN/ir9Od6C1p9thHjV4JsUlXHji3KjwsBdXr9u8Y/v6XfuvvGQpjQIPKG9RX22eAhuiuXdsYGQkIMQ3NiYG/Pku/B8f+2dbZ+fFZy5fvuKE3iHX6+9sfO+9D9Zt2T17fk5MsF9NS9eQ02C0OwtysmfPm2M0+z/69Ktd7a0791UU5SbyZTWmA2+88qTTT1/y2tvvFpfsXr+ndMOu0tkFuZdddEFEsHegWXw1bYrRdkhvUzcKgW8nAsqA+HrbTRoSYsCDYNpRUjHiMoRFRQWHeJY0OF56f11QSOgtN1+TGC2ESV6K55zpBevXtbP2jU9Ctw/qyhvabTqP66+5cX5RHClYKJ6fm/3pRw3CIa/T7Slu21+8Pzww6ObrrspPYwCuS0nSp6dF79u/MzW1kBQWD11rbQXe/unpidlxDNGF65u/Hbv2+HgYVpx+yrXnzoAO2qK1f05NeQlfo7LbbA6zWRugHYaDthoDsnzi0tbbY3HZg03meRlhkf5MPOhKSju7OjtCAoMyEqPpQ9AcHtXV1zeMjo4WFU1HajPxX9/Q4GMxX3nRecsXJqFf8Ums353Q2FzvNJoHnHiMHa+8syo4OPS6qy+fkRspjpX00f3s+rNLG6xRofodO+pDDCN5iREzMkyBHuhmC4Ds37nNODYcHxEUYNaziGT9h2uN9rGbrrpi2aIC1EO0r37pKUsee+bZ3dW1ZxrZSOmqaO0Y89AvW3LC1eef4M/nxnW62jnTt5UU2zzEuFasANXpMgvn9TnNI3xmk8eTg8vp4bSFpaXZmdLW1E9VU++GXWVrNhfXNrX6+PpOn3vC3LyME4sy+BiH1FLgAEmasrur02Gzzp839+ZLFwd7C+Xh63tGZUVFa097j10XbtKVVNVw3EJ4WKh/gDA0MRHq2gdaenr1Js+k1BRUNWtvW7u6UhKTIMgfMwO9vX0hPl65ScG+QN3V7GEbyE2KLkwxUCjs0eGau1xMH8THxrLqApqtHd1MEs2fM/vmG89jRQLBY+Gs7Vs2s1yGDFPqylOS2Id6DNZ+f719QWFqrJ/4Ijmeg/bWNpPRY1pqHB9Jx6xhDq6uoYHlO3Nnzabo0VFXVWMba3AuPm/F8iUpLBillXdWpn/YUMNKBMiyNPL5F15pb2875aTFN192cgBLdnS6i+cnLyhM6nPoPthQFmjrzY7OnJHq7at9vX1Yr1u1awdujPCYaHOAvtOue+HdNQMOx3XXXXnS3FSqGRjsfdqKMx556tnShnrKanboqps7+kdGT1u48IZLTgzxEo3aPHji1uJ9Y+K77qJn8jdeX+09wgYqLa202fUWv5CAMF96wlOvf1je0nXmaaeuOOcEUvr56C8+f96GdZ/YR0asg057kG5/SbnZZLjqygsXLyqSL+OBE2e988obo6MOL4xLjvrgZTHqsHl+cPVZTW2LP91cXHygYeOB2vW/+v307MyTZ01bND07gl1YgjsVFALfHQQQAip8DQhokgHhIySVtsxRLK3aX1WnZ5AaHsKqwRfffKt9aFRndj7z4luenmI5Fkc6tbf1uhwOi9nEfEfPkKOusSU5KnpBURytgqwksr+vC32QnJrA0jCm//u7uy+64ILsRB8W/bN8stumq6uvGhsbKSzMEYKM0V75AU4NSI0NZ5EhekXsXzDo9pYeiPT3ml+YiTsX/pCYIwO9rtHh2IiQIIuZiWpSCr4nwkRdtH/xWrt0TY1NttGRpPD4JH+hDu0U3d3RP9Q3Kyfd4qljkSfr6QaHXXV1jV5eXjNm5KI6qmu7WaAeGWCZk5vIt63HRbl1xDBmi4+JYhT+2sr3h+zOZTNmzMyNZD0m9ZXwTYvzIntdabm305YY7uOH9cDaOrF2T1dSUurpqQuPCMHm2bS1urSmuqAg76QTxOifAOApaWlDDoPVaaCOrb2utr5BdOXJ84pCx/cR6BwjVpd9LCU+QSpdlMFN11/CMNd+qE4VNaeJXLoA7/EvlkJ81bqNb3z4eZ/LlJORdtE5Z6Un+oVrxgHWg2Bem/Ig2bDVVVNT47SNLJs/J9Ckp2qU5WdGLVnGbF6YQniSqpvaWLERFx2OviMv3pqq5o6uwRFvi39sbADugS0l9XaXISkpydcXLnTt7e39AwMZcaGRFj2J9+/f7WnkHI4gxt+UKLFdt2374OhQSmqyWAZoddW1duqNnqctXRykWQ+kGbNax5yOyMhoStSaVkNt0g+lOOy2xFgcI2KRLJSt/YP93T25qSnUkZ2OTPdYna6KmmqDwTB7RgF02pqtNqs12Mc0NzcpRNh5ohVdg71mhy0tPo5SKqsGt+3YkxgVsWz+LFYromiFIWLUhfvqYb695oCPy5oVHwFQ0Kfd2dVZU1Hp5WEKiwjF1thXNVZcXZufkzt/diqtzB8tW5SbiiXAtA7puwZcbW0dZtfYqfOLQBO2qanLNmJwOmIjw6V1Bf7u+nJBo7fgc7DpE8Iivc362jbX6vXrmBcpq6q578EOGpLFSZ4eHhyn4eGJF8bbOaarbWiKigiblZfDV+OhQBG2kUEO3EpMiuMp64K19aTiGYtC4iJ9Lz133qn9rn3l7Q89/tTmPaUVJXvD/K8LzR83B6Hg5mcS/OpSIfDtQ0AZEF9XmzGLLTUgloHYddY/5Gpq6/QweiTFxVJGaUW50+AxOjJcU3VAm4cltYfOZQoPsMSGhyLUaurqBgYGTl0wE2WJ8wCfOb7WjrYmVkrGxgQyM9vV1cm0/+ITZwV4iqcU1ts30tbWZjZ7JidHI0w7B10NLW2RUbGRYSFCUCKs2dbf6eJMiLi4sFBvg9D92lizYv9ei6chOiwY7cKOS4aWh0k06X8QFBCOrZ2dRtY/piYJT6xmu7AgkdXurNAU0hkzxSG+MFlT38BaQhOzCzpdY0Pj0PBQelRgYrAeuQ97LZ2Owe5Os86RlZrIbXVNDU7+2Khx60FKeSpF6MKZUVUX7GtJig1jiRqA8NveK/D09vUJi4pEt1XXt9g9PbKL8hkWS8NowKUbGLQaPb3Do4Tq6uoZ6OwZwLGQl8jGCyGyB226lvo645j9xBlFMobImqqGfodxjP0oWtHuH86q8jQ4Y8JD/MJMgM/Sx4ioaLPFR2917i/d/+rYyNWXXBiR6g8FpwYI2bkmDI3oujs7Ayxe05ItvtqAm8qOjDgGB/qiIqJo6PYumqnDx+LLxArKHYMAkFu7B5niyUyNYSMJnqdPt+wymrwiwsNRSLh2GjDgbLaCnBxRC6euqa3FPzA4MjyMwbTJ4BjViW0yG7bvpEUSk+L9vfWiiNZONiimJwXTXihs5hqq6urgJDcvF1tnypoP2IYCq1wHh0eyMtKl/QpXzQ2NLHOdlpFB6xBJh2SqpaG1JTgk2M8i/C49HW0O60hkeEBiuIFWIPR1ufrbWrycY/mZ6dSutaXdPqaLDgmMD8OI0gxBpkFcNJpu1Kbr7Wr3NXug6cVJWTBn1PUPunq6evzNXkkx4dDfsW/voM2WlZmJAwrXCwTZGFIxMIr3KDRYLF8YGBzt7ugItnhkJ1pggAR9I67m+hqXfWRWYZ67IrJpBH96HTNlnZ397InJioulPx84UOrUOznUpKWlpbuZLZhOvcNucNrpqFEhAQEWz9bWseGRkdysFJPDEchuWJpYp9tXvMfbYoqKDsWOpxUIElJAw/6jM+wrrn7pjbetw8P4J4KCYTaUVDxVQSHwXUJAGRBfa2simzVZhbBobu4YGRxhx1lWajzL8hEl0UERd/3gmoJUZODBwA0iqR+NW1Me4GXIz0pGKSEZkUHN/a7+ro6UuBhIjthdnd1diN6QECG4Ebb4b9vahzp7BlOTU3C6QmTPgfphl4dvUHhQWBDL6LxQvYza9+93OcYSIsOjg3EWiNA74ELu+3gYU7Uxohhoj+u+g1zJKx5QUEefo669c0hvyMjOYQyKrO8e1RVXVHFUQ1pWJhqRynLYIkqRJXIpKcn4QtiTWVtXN2a3ZyTHSyEOMF3tnQM93ejUvNTAnm7XUG+nxcMcGehHERQkDQjKpSIVtS1OvcnHzzM6NhbzhQSEkuqWAYfBEhIaEhOB0j1Q22r18PSPjMSJzy08IMHXr9vK8rbk2ETbmK6PdaPd/fNyMiUDlDFqdTXUVuHSOCE/lkjqjUb87/sf7HWYRvUmPA5aOfIHHesw6cYWzS78xQ8u5LRNRP9ZSwoKi/LfW1+8fc/eivr6n957f0Fq9BkLZ2enJMRHBaISSQOrtEhna2tSYrw3vhmtang4ymur7WO23PQ0lFxDRw8LKwN8A7IzhdlHGmETtPfpDKa50wuBwmZzlVbW+Fp8oiIi0P19Q6765hbYnT5zNul3lbb0WMcCw4JCIoNw5HjrjFSfznCgqs7f3z8kOIBqdPUMt3f15qRlBqInNauR/b07DlSw+C8jK/1wa5E6dw+56tq6We2ZlTedUvgjlJaV8ls0vYhf+CSypqGht7937sy5JvYw4Jqqq9WNDKbFpTPPxbGV7NMdttp6uzrCA/0zkoPJ1dDQoNcbQ/x9IvxEv6VxnXojx7NCqr6lpxMXkdmSkBrLclqsNHa7HqhtY58GUzt58RFYDGVle7yNjshAf5xY/EFhEKti/admx1hOahp9BiRt/b2Z8ZHMDxiZWdHrzd76+poq1iXMLszEtAUisU2CIOcvsGm6HOyC8hizz8nOwGzsaK4xuKzLTlh449WnShMEK4SmxNyhU+HweO/TDU6XIz01LTLYwgJYKt6KldPdGxYeHBYeQLXHXAY6Eqb58BhWWsvOvRXrNu2pbmwPDgrIz8k6acHchYWJIdo8oexhkOWPa2VPaA2jfr7FCCAWVPj6EBAOb7E7AH3Y2tY+MDAYHeIfG6y3Wl1mo354ZLizo3ksVThjETekstnZFDcUFOTj4amrOlDja/KJDQ9DqHHOFBK2ZE+JwTqSnpDg56V3WJGN7L93bdnZOKcwlhFYXadr3cZdI1ZnVtY0SFFwWU0d5x+bvb18LHpcwUQir6tra1ijFx6Em1nILERwS3Pv6IgjJDA0JSHxi5pf88drFJy6tj5rc9eAl4cxOdEP3QNjNp2rroPliWbvACFhGSX3jLrWbN7K5H1CUiL6jFOPWrs6OfWBPaiUSCAXOwJ6+/pSkxLRRWzS17MoDWXDMlONeZQBI7nKyvr09PjOzo4+62CYb0BQoJg2piLCEmpsY3VhSnSkXyB6AW3riYO5qbFlJDsa+uiIz0tG9pTuj4sKS0yJY86ooamRxRuFecKAgDiAj45h1TXjVAgxCXVIXQDtxisuGtWZbELLSPEuuCWwoM/ocsRFhopxM7esBdHrEgP0152Vf+aCvJ37a7ft3F28Z9ffn6qJjYkuzJ02Z3puXmo4jFVUVo+OjGRnZEKcqhGqu10frPogyNu89MS5qKjeri776LCnUe/hqR9xiqkB7KXi0gP2sbGCnCyKK2+24osKDQuMDA+GJ5qyobnBz8cUF8uhIbrW1na9gS2TXt4BAgcqTprWTteYwxARHhsWFo0mrqtp5ACkrMw0as0gmzbi4kBtU2hQYGigt9SngjMtMz/Q6R50VTW1Gz2M6WlC8RNDaGxs4sI/0Js2hUj/mO6dT3aP2J3JqUm0NZNW9c19nP2Vl5vHdhUMBfpbS3tbe09PZnIiGyChTB9wGPX9w6N9dmF6YoqRhmPALCbdQFevY3jUZDT5++txurCzFybbOjpHbKOhUTQS83xM/XjR8Rqa6oZ1ibwX+LZ2lg+s27QtJCQwNTkJ+qwsGbaO5Obm0kOEDYMHYtjVWFcVFeQXZNGLI1JIxN+Ee5BL66i1u7vVx98SHmVmHsTT04JHpKu3e2jI5esteMYaoG80dY/6+Jl5MUtK9nl5mSPDQ8VBmZw4otOxPpS1PrEREUH+WOm0j5kNvev3VG7dXby3tKy1vTsiJOyiM5dMz5mWkxnBYdw0AW+B4IRXUq9rG3Ru2bHHqHMunpXr58WCZKJ5pj0WXVUFhcC3BoEv0iDfmgp8wxhFGLD3QejCtrb20ZGhwuzpiA92DUSGBO1v6Fr53rsB/hfMyI5hldzGjds2bNwwKzvt/HPOdNp1na2diXHxvl5eXHO+E8OajevW+RkMSTFRyCDrmD4sPLy0su6vjzyxNivFbPHbsrNy0MbORH1mejpqCbk8zDZFl7Onv7e+1RkZqG9raQ6Jj6mrq/E3m+I50UjTowzo25rb7Axhw4MjOOoazwCzvuPzFeNYuoWZuNDregZHO7oHMtJTzNoyNzHFbmMxnaF7ePTN1dtPnTW9urz8rdUfl7V1cWpFVFQEaqC1s6+9s53VGDmZYrUBdMjV0NzCos3snGkU4+evj4yIOFBR9+6qtckpackxhprG4fffe7uqsvyPf7i7f4DFG66Orp7K6qHMGEtFbXNaRkx9Rxff+MhITaLLMmDltIh127d+tOrjRQWFMeGGdZtqH3/t/TH2TcyanRDvPWxzVVdXGp0jRQXTJAOokOr6Bmy4GQXZDDGlnAaT0xfPROtg30wJQqprySRu0tqgaDRBQoA+al7S/MLEzsEVr76z5uMNm8rq1jS2d6T/8GJy7S0pc4w5ujq7cDsxLt9f3v7oyy/gZj/z5KXpMV4UjYHJcoKhodFPPq9KSkrauXPX6g9XNfdbgyxeceGs9NA11NaY9K7wQN+4KE9MkPZujk7oScnMZpANn6NDNo5h6uvvq2oY9Qg39da2Jk6L2r93D0P4qNDImDB2GuoqyipYI5AQJ5Y7yFBdP9o/OJSdOo2jEUQfnYinaag+f0Mjdo43SI2NFGpSazIeof85KOmtDzafefKc1tr6VeziKK0ze5rj42PI0tzpqm1sx7bKyxEHNkCTLA3NTVa7LTYuWt4mxsdyPCPncr6xesu5Z87utLrWrt2+9uOPr/vehZiPY1abTWcoqR5JifWqq2rIy4nv6u7iY2GJyYmyz8zImlayb++27dsWz5+TGmnevKfl4adeGxy1n3zi7LR4qqIrLyuB/fy8XMkALNc14Pnry8/JxBMmLD9RG5gVteIfyHZ1tg8Pdufl5uLwQKlPy8rVr1y9b/++9z9Yf83yhXaHq7K+c+3a1U0tLdded31QUEBVdXVQaFh4WLA4wUMzCksqyjwN+ujQUD9PCDK/pesfsD/9/EvNPQN+QcGXXn7ZgqL8uCA9E5G8+wRaQRgmWuDtWLNp97MvvR7o7TkrP8uPBa6cPksYT0E6d+PIHOpXIfDNRUAZEF9X2yAAhMxEAPA3Mupsaao3u+yF2WIkyoP/uOWHd/7+r2W1Lb/47f1eZkY2niNsJPP3PykgiFMYduyocNqHkhOiA3w9GJw5HAbXqKupttYXJ3+QHxT8vPULTpxf3djVPTi2Y3ed2dsSFBXbVlEZFxYcHYBzQRSRkpRkNlv2lZX/9I47PXUjixfOWrLkZPtAH2ykJSeSAAGIp72/u0ln606OyyYGPc1pTtoY6Mg48KihpppVaXnZWWRnZT0xZpOOc4sat/S/+NrKd954w9fsZfDwxi8RHu4X5mdBaNoG+rqbGhPTpgVqq+IhbbXrqqurzB7OJScUsa4QiC67YMWDjz5bUdfwk1/c6W32sI0MWbxMhYXiaMXwmNSwwB11Dc13/fp3PjpbTlbaDd+/rqe50WtsqDAzgcoicU9ZlL916/aKqoYf/8dvvNnvZx318vGdNz37wrPnMCuE46K5qiw2yDsiEB+2KA7Vu2P3LqOeLztkgSeR8k/qlsNfA7IQJGgiv7jBmtLON6Sl2TnprQ/y1t12zSnnnrXs3ffeNYtyBGPlNfVeXr4bNm1bv327mYkQu9XX33f+jOkXnrXIT1sdEhURzmmFY66xvz72CG4UaFu8WcznKJqW5gm8+E6qKy06e0ZCdLDQT7o9O3dw5EfetHSqAOdJ0QlBPv4NtXX/+Z93cu7F/OmFP552SXtjfaRZlxXtHyRcNrqq8r1hAebE6DDp/iHXnm2bzc7RrKRYVkgIVUWiiSC6LK1cfUA33JebPg8eRU20urAotal391urPnjn/fd8DWO+vr6e9qGEuGCO4kB52wf7h7qbpiVHsg8FeuhB7ObyA5XeHvrFJ86BdVxfi+cmf76raEfx7qdee/3JV181Gj04gdXb2ys8ObGno8cz0L+zp/fnv73XrBvKTYxLT7ytvbXRNTaKJ4YWQQFfsDRv28bPDtTW3X3Pf/uZvAd6BgwGj9nT8y67aBmtzMIO5qRiQn2jwjDVxLtHVbZs2eGpd+ZPS7MwqUE1RE1lhcRTGqiqssxsdBTkpBPLw7zM0GUnztmydftHH6xZ8+b7vJgcKupp0qelJDFDsb+0FquX1caxkcGCmhZaG+q8XPaEiFCYFDMkYr2tR1xM4pKl6fMXzAz3EQuNWSIq30pR6kTA/YAv59Nt+3psurlziyw+VIIgwBtPJrhVQSHwrUHgcMn5rWH9G8ioplmEPOBE5qLczLDw6OmZCVKIp0V5/vrW72/etqe7t4/zAT08Pfx8fZOSEk7IjUfQBPgaLjhnWe60PH+LGIOK7zDrdGeftsxg9sqIE5PByJ0Z02MtwddVNbTo7Va2+/e7vBvqHp6emREdyFhLKMjFMxK9nJdXllfp7MNens4Z07N9TR6nLZo/ZtfFRvhrQhRngz49JebiFacUFEwHQDulyemKQ9GUapU4KGfEhFx19slzizJ9GVGhXfS6QE/9lWcvjQ327+zq8PEyxUVFJyUkVx6ojoj0Tw41w21isN9V550VnZSOmoECIhT3Ndo9PTUpPZq1ASKmKCvyZ7fcsH1XcVdXj9lk8jIZo6PCsrMzqXheZtjl55xaW9cw0N/vZzbm5Yhx80lzp8/OS85JCEI6488we+lvv/57GzbvaO8ZpFahwYEJseHzZqXhtSYA6QWnLAkO9mXJhWQA6T8tNcHPz6coS/gwpPKgLC25QHtcgovcUuvIq8m346nEcgfNJQ5NSKWF6W+96iwaiGtSLFs4z2jw5sCj1r7OsaGBkAD/hPi4BfOmYReKzX46XXpK0NUXn7e/vGJwcBiVHBMbExYaWnWgPDc9GWYgUpSX4RvgOzM7E/RYyzItOfby88+eMyufLQAkYLfBmO28sqoqnW3Yy6ifUSCWCuYmxcWc4ZOXlwq2+KJOXzLb5G2JEWskRCBBanTIlcuXzcnPAD15OKN4gCmBhwGzSMcWRL/rLzhjekG+ySHmpKgaGF553ulhQULHe3oY48MCc7IyivfsiQxnYawvCjI+yHzBaSdGJ0TBJ5MHLCaF1KyCnKSE6IxYJp/GifzgiuWfbUuqbWzsHxxkRoIPfSUnJ0cF6SP8gq+85Ny65pau3i5Mq8KUBH+Tfl5BdlxEyLREFm+I7PSl2264ms+Dtfb0eRnMWE44rpYsymK+gw5Phzxj8YlBwWztFFNrdCr+MlISL/Y5nbNKgUKrPnGihto/AoqM5FjvUxfPK8oWL6bWlLdet+LT9OSGxmbriA2nnsXiFRYeNC0rnZMpQn1NV1ywgnM2md0QzU9w6ubPKpyekzsrOwMmDTpPXD7Rgfo7b7sMAxOeIUs8BYn0lOoO2mRcz4iLzVk+Pr5FhQXUQgQIT07mTq8uFALfeATE14++8Ux+axhE74ImYgvpxjWBa2QKgRj+mJ+223V2bdeX2aRnU6KUIdqXCjAbJkYtWnZIybZBJbB2rKnPZQkYP3Kgtd911++fGW7vuOGic885KUXqCWZnocCx/KxmM3mKz2Rwyx+CjF8CS8i1DQ3i7AGOJiw50Gzlw9weRoeTtRMiiE94iYCX3eVhcMZGhqbGhxJFXcjiwYSxlg43LBn4YrXNzrGZeo7ZRlxSBGngxANFItayixUA1I54sss/EnDrngwe0nTVELqXlDictWpQnGBY2wvLMQOyImKKXaQSQUwQia8lGSllxC7Oe2DfB14c5nEgQDJqoX0FgrQoSFb8sxHhIA+k4eSl8eAm6o6ZeDJensYNP9q/4pc/WYpMyC1oQF8mIFJe0GS9rK3Q6TCXUOOUg7IW9dMWkYAMnIOJyVMAwh9A8ZS8RMpAXhkDKYkeup+UckHDENTY/cFSEm2VA48EE+IwCxczYKQnnsS0C0RRbBDhObeCBy0IlgRhkZhH/MlcWvx40UT2OXVM8HMwA6choRfh000ZbmUu1o/IhYqMsImhXBHgkG6gGTRANMC3XeyiNakybMAwdFheKpZWDLs4BCJIa0GQkWyIDZ+i9XRjRrEbmU+zcs4UZij2K+0+ocxFOdSIlGzVIdDrKItfESmyknAceJ6SRP6JpNo1v3R5aLLsl90izF/whgZgmGhPIUJ9JXREcQ3n9FaIiCaTLketAHjmBAvSk8CTJMIsI/khgYJYPbp6e/UvH3imICPxjpuvStM2KIlEUBR+If6goYJC4FuDAB1eha8JAQSKpucQBYxQkQRCGCATtADQCB0SGDkUySwEoJBSUsQLuwLVzgqz8UghTyb+SMPtlq0lf/rHUwERsYFhUYax0crKir4R+9LZc5eeKKwHpDbp/TQ5xF4Lg7ZYgYyyCElNY4T1YVLS6vp6nY888mx3v3WMY7MdSP5DAvVgAcEZi+f86KoVsC04h1VK0qjI8Xcgs7dobpkPja6Je5GSr3WJeWGjB4dmI+vF6jbxR1ZJR5qsKC6+MwBZ1gUgfycHEksufagIHGvJSKNVBK3AWghu8JgbvDyN/p7i1HCktXAlQ0noC1hB/8LKiDjfx8WZnOIOsgTt0v2PFgVhGkSrmrzXEmn3oqFggYjxCy3peCpSUBJaStZLJJNEtG9GmFhtwInIsu7E81gLkg30KHtfgYr1nsRAQWaVpEgo3syJXFrFRBoCifljyI31IK/RteOZ4UYPCoJhEgvrQiMKV1h+EJTs8VgDXCQjCLZlcdotP7JYTQG6jAa9jWJEVRx8NYLKykJlRoH0BFliRELZypKoFkO5rIfklDOYkAlESrJpC0jpeaF43egwHPzETADnf2psieqj17WPc7IsIwjzhbUj2n4HUYYIGpua6TBRmtb4mhtA7+KkU/oJBQpKMshkGnmRWaAlHohVz+KcMuwjgYQARyMtbug9IoFIJrPISGE9iHuZYaKaYC5AE1QPPVdES0dX4kF5yT6z0zY/LyMh2I3G5D4laKqgEPi2IHDw7fq2cPxN5lOIHy1wIa41ETMepcWISXAtESJJ+3c8uXaY08GYSY/Gc/f09oaE8WkMa1tllcXgiosMPzMr9ayTl4lPAU0YLsy3e+g5gnlcSruJTMg6SElNKgR9qJ/hpmsvwwXg8DAx7JsSWMhmdNmTo8RWe/4ghS7SCIof/kdWiipAmgd81kJMbWjOcBGjJURy8+/4pfhX+xOPIcS1XKwny5Ui282DyIQRRhniSoNRM8i0G35kBSlYLOHgDAtSyaiJBERonIlo8cSdQNIbJzuRWvxL8mML4xQmEnMr/0TEJCI0CuxjaUkwJiARKbCpNOtGTOvIQCxc8usmMLkUWTX5S3qZiV9i+NVSYjaNc0GB2iPxSWkRiJbtNp5yPG6C2ng53I5fHcoGjYyVItxS7ADiQyJG2kROgMjkgl/RmBOZJVnuxg0pUZoI46bn5E4vaAr+ycJ3wMWUnejH4zFkkSTH7GN8rxbfg3B90WNEkoMoyWTjfVqUI55qmIg6Q0xLPoH9RALtX54KO5Zk/C8pCO+NFkMNRcXkU81AlM4EWOVP8qw9H08hr5Gkovoip1b4eIrJ/2Dd6cN8zEuLspbOzscNRvfQwvg/h5CbnE9dKwS+qQioKYxvastM4gsF3zbiqukc7rWyf8IZaPaI9PNKDWMQK8QZf1IBc/FFAbHmlolSXMkYfvFe8Dc5yJRSVo6LS6LcUm5y0iNey/w8msgiIybujphHRX4tCHxtSH+pBv9aWP8OEZGG0pH7O4eEWh3OIG/NeBAWhwoKgW8xAsqA+BY0HgoeL72ci0Wyo9QRToxipXaXgurLSnzS8yfDFFEnHxEp/yYSTkk1kVn9+81C4Mt2hG8W998Jbo7WBDyzuVziOyxMnIhVTyooBL7FCKgpjG9B4zFQEcc5s0JN81WLwYu28mvyAOaY1TsSTATSa1k0WuNx8gnxB53S8skxEx+noP759yGg2urfh/14yUdvAiYyxOKMiRUY/3ZuFQMKga+OgPJAfHXs/j05hUpnbndCs0/McEtz4BhYIqPMK9Nq7lY3kfH8SEBNCI6vthM3RxeKx1Dul0wymccvyvp/zdMX8aHiFQLHjoB8Af8Nr9Sxs6hSKgSOEQHlgThGoP69ySYWfEkuhOLkf00SyWu3UPrf2JR6WWQiiJsjOlG159qP5uQ4JJOWU/0oBBQCXwqBya+ofKHIPv4ifilCKrFC4JuDgDIgDraFfK2nvNzfuFf8IEMHr8bNiYNVOfrVREb+nep70DKK+AkKXEwkn4hS/yoEFAIKAYWAQgBXuNyVf9xDgaLUtquJMxmEytT2DTL+PuII/bhHSwGgEFAIKAQUAsc7AsoDcbAHsB181O54dfX68vrWiMioy89d5D7c8GAidaUQUAgoBBQCCgGFgDz7ROHgRsDDwxidkLS5uOyJ1z/4cEMZmydVUAgoBBQCCgGFgELgcAQm7wQ8/OnxFcMsBk6IwpzEc846w+Bpefnt96ubh/huk5jaUEEhoBBQCCgEFAIKgUkIKANiEhjaJWe8LFs8MyUxvqm9d8P2/XwOUa0inIqRulcIKAQUAgqB4x4BZUAc7AJytwGIBFn0N19/pW1M99nWPR39riknPR/MoK4UAgoBhYBCQCFwvCKgDIjxltc2XojP4fCBCdZOZscYMlOTa5uau/v4ELH42IS2sxF3hJrPOF7fFVVvhYBCQCGgEJiEgDIgJoGhXXL6IsYEZsT0mUVDdseussqDVoMwHpQBMRUxda8QUAgoBBQCxyECyoCY2ujSFYHLIS4hzqbTV7W08xUrFRQCCgGFgEJAIaAQmIyAMiAmoyGu9S62Yoi5DG8fi8HL3Dk4xBTGQbfDwaupGdW9QkAhoBBQCCgEjh8ElAExta2l9aD5Ifgopd4lvpt3aBBnd06NOzSFulMIKAQUAgoBhcB3HAF1EuURGhirCgPCbh8btdl8fXzHjSyixgPWw8GbiUj1r0JAIaAQUAgoBI4jBI57A8LtSjjUJMBo6Ghv1zucIb4WFlROfBHDnch9cRz1FVVVhYBCQCGgEFAIuBFQUxhuKA5eiNMndbqtm7dYjPo5+dMwsibZC1xOujuYSV0pBBQCCgGFgELgOELguPdAHNbWbOLEK9HU5SorK40PD44P9lMYHQaSilAIKAQUAgqB4x0B5YEY7wEupwjcsOdiUKd74LnX+2z2mTMLQgI91IrJ4/0tUfVXCCgEFAIKgcMQUKPrcUj0WuDG6tKt3VK+cc/+iNDgmfnZ3kb3AojDwFMRCgGFgEJAIaAQOF4RUB4Id8uLlQ1MXpRVt77x7iqHw3nKgrmFaSEsn3SwJkIFhYBCQCGgEFAIKAQmIXDceyDcCyJdOmYxxpyukpISX7PxnMUzz182x88gTpQyGN2JJiGnLhUCCgGFgEJAIXAcI6B3iWORVBhHACxYAMEyCEwGs06HeSUMCO1PYaQQUAgoBBQCCgGFgBsBZUCMQyENKRZC2NnDqW3EwHrAjMCkUAaEu7uoC4WAQkAhoBBQCEgElAFxsCdgQ2BAYDFgNzg1v4yew6wPPldXCgGFgEJAIaAQUAiMI6AMiMO7ArYDCyKwIzAepA+CNMqQOBwoFaMQUAgoBBQCxy8CuOdVmIKAZjfoxZkQ2gwGF5o7YkoqdasQUAgoBBQCCoHjGAFlQByh8cV6CJfbNyP9ECIZ8eKRdnGEbIdHaYaHyPIFFshRHh1O7FhjvqCsY82u0ikEFAIKAYWAQuAYEFAGxJFAEhrfoNcDDtaD/BXWAyskjpT6C+Mg4xgbE7kOy8eWUQgSDn/0heSO+kCQ0oLTJX0nR02tHioEFAIKAYWAQuBfQ0AZEFPxGxkZaW1ra2lp6evtm/JscHCwubm5qalpeHh4yqMvuh0cGhoaHHQ6HDIBan6gf2D5iuV33nVXR0eHwfD14D8wMPDLO+646KKLKOXLWjlfxLmKVwgoBBQCCgGFwFEQ+HoU2FEK+NY9+vTTT88888zTTjvtvt/dZ7Va4d89uH/wwQdOOeUUHr3//vtHqZf8pga5uPjpT3/6wIMPdnR0yvQi0uWsqqxqbGx0cMKl5ocQj77SvINkjN8x+1hDY2NtbS3X0oDggvCFZGVxX6nQo1RcPVIIKAQUAgqB4wcBZUBMbWs0PKod3b9jx47iPcVuHVxbU/P22ytRzzxieuOQbGjqCYXN04M+AJduw4YNu3fvHhzieCphJZBNPuWXazS4vJ2i6t263zHmcDMgIqcEWapmNEiCkprMwsTJEchqFDBiCFOeTqGtbhUCCgGFgEJAIXAUBJQBMRUcg0EYB5EREZ2dHRs2brCPcS6lsA+efe45ZjcCAgJQ0vaxMXc2Ho05xpjdqKiocDjGpIkgNTt62mg0Ck+DSxglPJ2ci0UQRLW3t3d3d4+NjaHR3U9FieJkbWdfX29rW+vo6CgJKBc67jTYFja7va6urqO9w2a3eXh4aPtOtecchCWIjw0ODHZ2dlKKzCjNC64JwoA4iovCXYy6UAgoBBQCCgGFwJEQOO6/hXEYKOhVFO28E07Ytm3bqlWrVqxYkZiYWFlRuWPH9uDg4EWLFr3++muenp4yH3bD+vXrH3nkkbq6WlSyyWQ+4YQTrrvuupycnH379v3ud78jsrq6+vLLLzebzV5eXrf+5Cdz580jb19/35NPPPHxJ5/09PSQJioq6vbbbz/55JPR/HqDAZPi5ZdffuGFF/r7+1Hz/v7+rG84//zzo6OjNa3vYh3GCy++uHLlShJgW0REhI+O2qAjuWpra3vrrbdee+21zo4OfCkUnZSU9KMf/ejEE06AOLW7885fbdq0eeGCBcyw+Pj6HoaBilAIKAQUAgoBhcD/goAyII4MEJ4DdPb999+Pkv7hD3+IK6KxsemWW27RNPrBhYrPP//8k08+GRcXd/31N0REROzeveuDD1bhVCAyRLM29u/fb7FYZsyYERkZ4elpiomNleXVVNc0NzVPmzYNi6S8vHzPnj0PPvhgZmYmpLADnnvuuRdfeCEgMBDLA32PHfPsM8+wUvInP/mJj8Wno6vzHw8//Pbbb8XExC5btszX17eysmLbtu2SMv6GV1555cUXX4Sfs88+m9LLysq2bt2Kg2T+/PkyTW9vH0x2dXdPdqUcGQgVqxBQCCgEFAIKgSMhoAyIqaigsAlo8Xnz5uFseOmll84999x1n34aFhZ2zjnnPPPMM+4Me4v3MspHf997770Z6ekM7pctXTYyYv3oo4/Wrl2LO+GGG2546KGH8FtcddVVaWlp+C1MJhN2ABSg9vOf/3xGUZHJbO7r67v66qt7e3pwWmBAMOnwxhtv4Bh4+umncTmwkBMvyPe+9z1MGRjA5iDZmjVr/Pz8n3jiicDAQLjF5XDXXXfxHVEoYxns3buXXSQ//Y//OPOss3A4DAwMdnR2sLbDzTmWCp6PjIwM04Qrxf1IXSgEFAIKAYWAQuBYEFBrII6MksnkmZCQsGDBQvQ3unnPnuLLL7uMBRDu1BzwUHagjP2cMTExTCKUV1Qw0G9uaQ4JCfYweuzauZNfuXCB1QleZi9MB4I7O7mys7MhiIeA+YvY2FjsDyZEMFywD/r7+7A/QkJC2P9JrtDQUGwIVmAcOHCA9RD4EvjFOomMjOSpj48PdLjw9vZmOwbzHUFBQZD9dN26/fv21dTWsnSTWZi09DT3btKbbrrpqaeeYqrF4uPjZkldKAQUAgoBhYBC4NgRUB6IL8QKlXzySSe9++6727dtS0pOZhoCo8Gd2mA0osUxL9isceWVVxKP7meBAoFJhBGrlZWVUOAWD4GHp4fx0CMfOAFCPJqIZHkE1IwGUhmY0YBScnIyGXEayFWZ6enpzKo0NDR4eni0t7XBSX5ePjFi7aS2lYPSCRTE3+JFi9j6gReEZRxYJ7m5uUxewL/bAMIXQnDXRV0oBBQCCgGFgELgyyKgDIijIZablzdz5kymJJjOSExKOjgHoGWy2cS6xSVLllx//fXsidCWJ7J3EqvAgKpGtWMBiEWRWozbVjhKeXJfJelxXWBeSB3PBYFISFPcmGadUIrFx+J0OCl0ClfQX7BwYXp6xjvvvrNx48YqLbDSkxkT7CE2Xhg9jKQR9FRQCCgEFAIKAYXAV0VAGRBHQw5T4NZbb83Pz2f/Ak4CphjcqVHAWAn8spggJztb2g3yqdT34yk1PS1MAKdLbzwmnZ2SkkK59fX1eDLwMUg6TF6wtTMxMRGvBlMbRJaWlOCWGLXZcDpwSwnjJep0zGUkJMT/4OYf3PKjH3EUJus2nnryqXfeeWfhwoXUgmS2URvbUzFQhJWDMTHhCHFTUBcKAYWAQkAhoBA4OgJqDcRh+GinI4hjlrRhOssYL7vsssTEJG5ZWOBOjZMA/c0EQVlp6WOPP87GSx6hxVH8b7755tYtW2VKPz+/rq4uph54iNqWR1u6iUy+EEaGFlgmGR8f/8EHH+zatQsDhbj9+/a//dZbwSEhyUnJOCEol3UPTz39dGlpKbdt7e3r161ramokJcdHwAkM7Nq9u7evF8sAnlksyXzK5KKfevopNnT8UzvZYmCSVTSZH3WtEFAIKAQUAgqBoyCgPBBTwcFwQA/LgP4efzzxrzs1uxumZWVdeumlv//979l1yUoIljSyyZOPZXCkNIcuzJo9i8SLFi16++23//rXv7KHgvMY2FfJERFuIlMu5MnWbOtgtwVnS9xzzz0stIST4uJitlxefNFFKSnJdru9sLCQbRQbPv/8jjvuYKkEWzBqamrEEgrcFXodezrYG9La2oohEhYaNjA4UFlZibNhwYIFJBD1cjrZpsHGToybc+12P1+/KWyoW4WAQkAhoBBQCPyvCCgDYipETB9gN6DsD1oPU5OIe0b7pORwJ/T03XffvW3bVs6/RjvziFUR8+bOlZl++ctf4n7AvGApgpfZPGfOHBnP7xfRp2i2fbK/g+Mc+OgGWp+5DPaA/OiWW5ibICNuDxY03FxXB83qqioILV26FD8HZgRPsWNOPPHEV197lQUQ+CeYpMBQYMsGm1EhRaF6+Suu9CPDI2wEdbOkLhQCCgGFgEJAIXCMCBxyOvIx5lHJJAKYC+hgflHw/X19jU1NnPIUFR01eaZDpuxhXqGnB3+Af4A/McLToD3ABJEJ5K+0P+Q1lLlgayhGADMXXt5i7cLkQOK62lrr6CjzHXJlg8wif0mJSYE7hEeJiYl4ICRx99PJpNS1QkAhoBBQCCgEviwCyoD4soh9lfTjlgH/iMWULuHkgAzK3D1F4qYqLYuJGRM2d5CEODE9cVgYJ0u8Rlajp+UUlo1BbACdEiB0eOSUNOpWIaAQUAgoBBQCx4DAISPgY0ivkhwBAdYl4CfgoCee4V04PIVU7dJ6GNfgh5sOMhuPJ+l4tlyyEJL9ogdtBS0ZtzJGUiYNFoacfBExODY0IrhGYEymFPkmUZalqV+FgEJAIaAQUAh8NQSUB+Kr4fZVc4l9EsLJwKEO/7o6xzLAWviqrKh8CgGFgEJAIaAQ+OoIKAPiq2OncioEFAIKAYWAQuC4RUBNYRy3Ta8qrhBQCCgEFAIKga+OgDIgvjp2KqdCQCGgEFAIKASOWwSUAXHcNr2quEJAIaAQUAgoBL46AsqA+OrYqZwKAYWAQkAhoBA4bhFQBsR3oenFXs3J2zXlYRLfhZodUgd2pXJAJ6d0U18edHR0DAwMiP2s2gGghyQ95htO2nA6HFCQNA/uev36MBxn7+sgKKqqBdjmXz7IcswV/cYlhH82JEnYj505kUuce+ICgWPP9X+fEvbY3T2lXMn8lEhu3ZU6/NGXinHTPwKqWvfjwHvx6F/uihQ0pu1d/1LsqcTfPQSMv/71r797tTreaiRPg3DX+ru5t1M7O5yPit39618nxCeUlJZwnndoaCgfLz3iKVtuNI5+gQnS2tLCKaLSHEEl86Ey5KNeO+vr6HmP/enXsmuX4mjZpqamd999t7e3JyEx8V+p+LEz//8pJZhgQbAL+Ut1VxLTOr29vXV1dS3NzXyN1t/f/0tR+P9Unclk0dOcJY+xGxcbNzIyXFFRAashIaHypJbJKd3XVOFfqQWY8K3gmpqaxsbGkeFhTq+f2je07d4wQPjXN5ALXiUpdwXUxXGJgPoWxre+2ZEda1av3lNcnJaWtnz58n9FDH2jsdCLD40+/+ILyGWhePR6JOarr7566qmnCn3/lc7D2LBhw8p3VlaUV7S0tDAyCwoMjI2LW7Z06elnnMEnzb4uNOANzj///HO+rIa2+xfJ7tu3709/+tPcuXP4Ohojya9W8X+Rh68l+/DI8GeffRYVGZmXn/+lCPb29Pz2vvu2bNmCnj7jjDPuuuuuL5X9/yAxX779wx/+sOyUZbNnza6rr7/9tts4yZ7P4xUUFByxdBrROmL9+OOP8wvyY2Jijpjm6JF0sKeefHLlO+8MDw0tXLzol3f8MiQkZDyL6CU6jJg9e/acs+Icl/4rvixuBtavX48vcOGCBXxVxx2pLo5PBJQB8b+3O/qJRG5JzS1BGPJawFHJlya+iAop5TnTDAjE9aQgCaK3xNiAG00FkkZeTEp45EvppdTy6Z986qm33npr/vz5K45kQMhyD5LVBIpwY2qDEsmhYGGiRlPKm5pd87hCDac/WWDDDQUxVESQOlSdSwoynmung4xiAMNwX46TiOT2IKkJ3iQn4/EuHSPvjrb2xKSk5KQki49PeHg4H09HnPEtsSk8H/2W4ggvvfTS448/zsdLoQN0/PJ59N27dyNnh0dG+J4ZREgmanpYB5CR4494ypVeL/g89ARxUYxWtfq6erQ+31YVBoRWO0QwdSeLLIXqCwoOB7hwMYV/iMhI0oOe5vk/WCiJeepOI65JJrNQuibleepOJi60/7iYHD+lXDdBwRW8aQTh052F7IKC1g3kNcWSQF7L38mJBUEdKIk68pS2+8c//sGH3zAgeEQQeSc1PTFuluBBVER7+sKLL3z00UdnnnnmlVde6e8n3A+TU04ufQq18SJ0Yt6EXAQSE8mvvJ6cV9CcQGlyvJvmFybQUguy2n98zc7oIcSsMEm1GMriKWEyVnw19/4/3/+rX/0KA4JHh/MDhclQu1mSkXxf9+VXXomOjgZSTIeAgAB3AioBwbVr1z777LMrVqyAMtMrBqPoZsQDhVs0TS6UR1Agxo2V5IrfP//5z3yxDwOCzCKN1poyPbeipegkOvGtwYM8qKvvKALKgDhCw7pfHvcz+bLJ28mvGTFHtB5463hESgLvEqdMi1ud/pVXX/ndfff5+fs/9NBD8rve8jWT6kRm4fdYAhlRwPxC1jpq5bhrxj0U6c4ra4Gw8PA8pJWlYIMxd0pNfB4ihckrpScX1GWKLJB5ERzykUisUSOGa/etm/7ksrjmfG75CNkqL6644ood22Mk6xcAAEAASURBVHdcdvmlP/vZz0WkJvJIKUlROhdUBAMCVmfMmBEREcmij1mzZr333nsvv/zyySefPLkId7lHudi/f/8///nPzs7Oc88559bbbnMLXNh4/oXnl5+9XOZ18zBmH4MxAZ3WrPAzngBetckOYiSffOyEXASZkgse4SxhjEgVREMbRPWl5SSzSFKCwhcP6WgGKZQFelrTiQaaJKZliZIx/Mt63SGtJmS9YEog65b42j3suR8JBSfSaMF9Ibkyav0G+pCSFGQy2eXoCYTxBoXRcRoiyTgdDB5tzgJqpCSyo72jp6cbL8Ik3sYzyiLcDEBE8iDY0+k3bdqMjuTrssxeSQDdKYGXayIneBv/cB2RMkj+JZIiDRQPVeSH2HCTajFOUObQvoVHRtmI7keHXEz0kNTUVExVWBKf0pUvlWbBHGRSy4ZfDUB4o6nClEdusu6GI4bqACMGK5Fc1NbWQuGXd9yRlZXFI3cWLkSVXS66+uDggOwzgm0tCbcEnnIhmldLLInLeHnNL4Fk/M/X+5hECw4O5k70solqjtMRb7eHbAWZS/1+txE4RLV8t6t6jLUT74lOh8Rva2tDr4SGhPCK8mIPDQ1x29/fzycuExMT5QcwScnrhBMiKjLK7GWeXERnR2dnVyfJ+Po2sgOyBCYpS8vKfH18+cZ3Zkam+NSF9rYzHGDyklJiY2Kn6PvJNCdfIzUG+vv7+vvJMjmeawqCLBqrt6c3IjLC19NXyJpJA4XhoWGc9kyUhoWHEQ//1M7P11cOlaAAXZPZxPfHZd1Rn97eXnxXo6mx0UyNIqMQQEODQw2NDSHBIaFhoZMZoHRqx29sbCzEueApVeNbIRZvbzQBRWNRRURGSj55tG3btgMHDjD4xwYCKwQc/EO/ta2Vi7i4OKw0RCTeAr50yvfT4Q1xN3PmTEai5eXlVDMoOGgyD0e/ZhDPd9IZAWN53HX33W5kKGt60fSiGUUQB7E1a9bACW6D4uJiZtwxXIqKitBtJaWlOIT7ensxBFOSkzOzskwmEyKY5RS7du5qa28DTDwNpIdzsOVj7us/WwfBTZs31TfUBwUFIeWpJjjs2b27s6uLUmjEGTNnHP4dVyqCSqOOdBtWaURERNAtJaSyjpCl52APsSyAa/woJ8yb522xUBeR1+mkuxbvKaYrUgrZ586d6+3ltX9/SXlF+cKFC9HEQi25dFu2bmlvbycGzisrKyG4bNkypniIpNtPnz6dOm7fvp3SaQsmy4BCaCNND/HN2ANlZT0A4ufH8pTcvFw+SU/pJfv3V1ZVLV68eOeOnVQcZhISEshIMpw9W7dtHRoc5vX58KOPsDwWzF9gs43u2r2bzkM3CAkOLiwsZEZJVpNfas0HZmGMTgjPOIq4ZSjM9+h37twJSyRgfoe8zGtQL5DftHFjW3s7tjVVSE9PT01JFW+c0UiLUO68efN2bN/e2tYWHRVVNGMGpszWLVuoBU2DcU83Eyr1EF0seCHj3uJipiQcY2PRMTF4UNyiwM2quJjQ4nR7cKPrSquU282bNwMj7NETcnNzY6KjYXvT5s2s5i0u3kNWXx+f7JwcUDpIkA7pcgqcDxygd5lNpuCQEPiHVWqHEw40+BhOfUND/8AAX/3Nzsl2D2wAhHakTcF/zYdrgBonR1ZmJhyyHpm+zbeCcS/Rc2bPnu1jsVTX1OzatSssLIxbby9veKALEYOpMi17Gi46Xtienp4PP/rQw2jMzMwMj4jA/wF9AIRncOaVOci5uvpOI6AMiPHmdQ+D0LtPPPHE6tWrkcjInTlz5tx9992PPvoo0+14TXkVUTyXXXbZ7bffvmXz5ocfeQRdwivKO3nOOedceumliOmtW7c+8fjj+0tKiOcWofnjW348f8F8JkGffvppXuP+gf577rnnySefZPTMLTPBlIhtASskPmfFivMvuIBrHknd5u6BUuNyixjC27lz546BgcHMjIy21jbkgjT8eb0RWDBcXV2NSkMQMFD72U9/lpCYQMahwcHn/vnPt99+G6nBLAA6+De/+Q2MrVy5kirg5CTNiy+8wJwI7tBf/vKXGRkZN998MyqKFYswT2Wp0WmnnnrKKaf+6f4/Ic6A6KILL7z2uusQWKi6VatWP/fP52qqqzEUMLO+973vnX766dTihz/8IRW8/vrrARZxA5HsadP+8Mc/tre13fOb3yChGJcjWM8777xFixbdcccdL7zwwvPPP4+AY7F3Smoqc7rd3V02uy0oMAjGBCB6HcMgPz9fzLQDB8rmzJ0rIo8tMHLasnkLcv+mm25yIyw1rvyFON6Chx76O/AC0aeffopwvPzyy7Eunnzqyddff4NOgqwEXhTVz37604WLFrW0tjz88MMsdMDEhIjVOlJYOP2//uu/AgMC7r33v/iau8nTkxkTxD0a9K4778Qe+v3//A/6FV1Lw9GyJ5100n/+539KfqDgbv2Nmzbh3K6uqkZbYHh5mjzRPUwEwCRcoVQefPBB+dl34smIwr7ttttod0AG6j/+8Y9oa6ixOBR4gPfOO+/8+JOPn3nmmdSUFPinaOJfe+018EcfYEeyvIAJl3Xr1tGTGdfCISBgfKxatQrDenTUGh0dQ7fBFmE+nT7MCFvaGQxzIyLCr7nmWlzlVOTTdesee+wxnOe7d++yWkchBWh0p4svupgOD1YwTF9F+eHex0Z5/fXXafURq9VsNg0Pj8AMTMomlT0fLUV1urq7icRXTwVZAYOhRiSo0kvrautwzrPUAEj/8pc/f/bZ51xQd1Jizn7/xu8vOWkJtziuCBgoJSUlGNPYo1hLvO8gQHreoKSkJFaX5+XlydLlLxnRo3/729/AU2sCJ10IG/Q399wjjLDDAm1BgCyvFS8O65PIRR94/fXXRkdtoEpXodYA8te//rX8wAGKfvHFl954401KZ2HHZAMClmgyisboFC+a8D3ol5x0EqsrMPqJp+6YxX++/34PT08a6xe/+AUdQHLU1dn529/+loUjTqeLVgOKCy64AJnAS/qXBx7AdoFJpB+dgAb9+c9+ToK///3vmCP33vvbObNnM51H+9LKV15xRVd3F6xiwVRVVSHBqMLPfvYzr4oKegtmHwxTBcZLdGOaA7KHQaIivnMI8Gaq4EaAN/zee++VxrtbtWAx3HjjjZ6av513wmz2woBgUMjogSEj7xu/6G/SP/fcc2iIKVPyvEj5+fm8dbfe+hNJmcT0I3YQoB0ZPcTHx5MGOkSSAL2IsYIYc3M1+QLZwe0dd/wC4cWgkCwoBlQLby+6gUcbN27EpIAZWZakiSJn0EBexK7MRbx8xDDu+9//PrVD38uCsBt4hIjBMUAMchxScCsBkawGBwV7enjCM48YAiKGSPnmG2+gkMhLBUmGfIHmJ598wiPG3ETCpzZYR/fxXP+Tn/wEXUX1oQwpEvDL8JEsiCFSEk8W6CO2mHFgyHXJJZcgKyFIKD9Qzi1S760335Qx/FJHpJj7VsRwf1gMdiE6AztAZpmcXl6TBdOHsRRrFR9/7LGNGzag8tEfFIeGZghLV8EtAZElS5aQhUEwcpl2gSbCFFMyOTkZtnnU3dWFBKcP0DTtbe39fX2j1lGIz5o5CyMJIwA76ac//WlBfj5mnGxfNw90GwxTJmtQpWLDSGvrtddcg1V3003fp16oc+gwUnzggQfIgvrEdGD0fOutt3IL5bPPPhstyFNSkh21/eabb1LE/fffDz/wTDJu8TCREUzo1UzBwFVOTjYLANH9mKEQgSalvPPOO4ykf/e739Elzj//fLoouh+nBT4PujGIUXfi0amys1EKrJ5wwgl0jMGBQYxCdDZ6FDsDQxa1Sr3obPRA7A+yg+1FF13EEJ9rRsbkkji4f2GV94seQhGfrf8MYLGkmdgiIxyCP2YQfiMqzhpGyiIGGxdqRGJn8GJCitu7776roCAfK4enGCU0YtH06XNmz5FeDaAAtFtuuUWC4y6dCzxetD7aVL65S5YsJiU20OQ0XGM0AC82NxA1NzVfddVVcEg89opsL3oO5hTdCaMcbrEkMOKRJ5hQVArn1hSCwH7KKadgbdAEZKRRMLUxFMglOwyDHF4xbDLcVCSenJ36lpWWIbLozBgTNAQUyHXPPb8mBnEHk0Ric4DhY48+Sl5sR+C6+uqrhVG1aRPMX3jhhUBNb8SIxDeDPOE1pKUwaDCAMBeoi91mJ4ahCz1tMgPq+juMwBEMZ6FYjtfAm8w4krcL0YaHACsbeYFWY1iC3uZixsyZ119/3VlnnYU0RPRg5iObkPsISnKh+G2jo7zYDLVfefllFLAU5aTkFb3yiiuXn302GhelSAKGp0x4vvbqq4y/GXMwzOXl5ILXGw1qt4+hIWTPm9wa6F2k/Jo1HyJ3YmKikb9IZFQvYgLZSmA1ZU1tLdqXcQC+BOQOqg5NgM4jC5oMsnD49FNP/fnP9y9bthRmJtPnmmSUgvJmlMOt5AFvyg033HDNNddImwmH6mWXX4bao2ikDONylMfbK1dynZWZ9dn69eBDSqQMwggKJAMfyCLTb7v99uSUZMjjeqG+jIr4pSAGjqzPQh4xnkbhARSOHGTub++9F+1FLchCE+DzkAz7+fvBPJGDQ0Myhl/pVcdOgqwMf/v73xFz7gRc2Gx2pCHswQ+88Tv5qbyGLBfYQKzUo9Zz581jCMvEBzIUSY2R19jQQI1wSqH/sJ/y8/IYqP32t/fBEj5klC55qT5pgoKDsfYgiJc4JDQExw+jScZwMbExWGn4YBhf0t98/fw+/PDDyZyQZdOmTRgu8+bNRWsyTMcNcO5552Ey0j50HtqUp8h69C4ZY2NjUHuUgp+Zvkcvkk+xZugP1Je60FuoMolFxScVJiNFBIs6RN31t99+GyYpszA0GXVBSTAexcW99OSltBdDavvYGOyJFp82Dc8ZINN1WcaLfcDkBQRpLMr90Y9+xPvibfHGU4XnnGT0UlACEzotO18IvEdck52CmKGgrVFmYOhmEGoEWgqa8jcgMCAwKAhnPtzyCL/UXXfeRe2wLTCz8J0QiZcOjzomEotk0bgUjcLWOrQgDBopySnUBaVOXTAvMtIzmFY4+aSTwIo5F+wq2TcgRTvyP9KA9x1tirWLYVRQUEg876Obz8MvyEp2EZxOejXvEbY+LwsmSE52NjzwajBnQRBdhRAc7O8/aQmk1lLsXqZSLBWivwERaPN2kx6TFJ1NofQNcKB7YOhPdl3wiGSBQYEATggICPTx9cEZBgOrPlhFYmDBEMC9h4VBYxXv3dvT3YPRTH/bvWvXiy++eN/vfscbB5I8NXmauKYJ4BbACcxxSD8ru0h4NYjhZeEplaXGh6OhYr5jCKgpjIMNSo9nRMILyQWjB1Zp8e6hNXljUecIONQGYzhEG2IF8UEM7ySKn0EvLxWEUBjNLS2827ztvNuIV7Qgj3i1unu6WW2OnmCrFaKTgRrjHvZckYg3n4lnlAcXSBO7zYbBQfpwnJBSyk/ScPAGhxREceeeex46kpUQSHM5moQxbAUENKIfT7WQKZGRzBogL5CetTW1ZEQOoKQvu/xyGLv88ivgkGT4eSGIbYHhAA/EQIpAJCUSMETQ7rg9mcSBPSQyfkv889grgMYcCtIfvUVe/wD/VatXkz8gwH+gf4CnmGXQQbUzhEK1QxytI4fUJLvs0sv+53/+hwTI+huuv4GlJEh5gGUUy0wKSwQY7jC9wpCU5oBn0CMxgVkPHK3wRkPIGLF2wSXMFMBkmllGItRAAwrjaXDzmDwBHB7IKOvofuSe9kYCEolcZogJJpSCXQWMRII28hRmgA7rgRh4E5PKLJ0ZGKBBGU+juaFMQ2AcADjZUYrcUneSVVVW8ouilS4KrvFJ0EmgNoUfNDFMpqWlS9cOdAiCiF6Hu4ZygQBXBysGIAIeuHMwIGpqamhuPGcMCkF1cl5ZL9m6cp6edtGWEk6Ie5dOwgI1yS22EZyDGC8CULBuhheBMfTI8EhXVydpKI4+DwN0l96+PpBh/m7mrFmURSCxANDpYv1BYlISj6gCMTzigveKXFxQEfQWngzGxAWFhViTuHYoFEBEevkKaFtPZEHEaJHiKYH2ZeJfmI96XV8vS4P6/f38GNOTWKzs0esZN9NzMPWIkQErgcTwX1hQKCjExjCXwUQAHYbFOtSOKTP6syA5XpZ4QWCbAT3/0T8BmYx4UyZIHuFfYBX8aSYIc0b4RdiueeevfkUd8VLwWkl9D1kKAXmZWFRDe2XEr14PaIBPem5hmGRc09D0NNjAtMV5J15bbTKCDBAhl+SGeBqSa7oigVaAAj2N1RKAC9oymcwCbqzIhpmrr7oaw4itofB/4403YFqRiwYVpWhB1gjEMO5ZmHLnXXeCMLXD/IqJFauy3AxI+ur3O4mAMiDGm5V3hiuphrGyEV7c8g6wSguXoEyEAJIiidu2tlZeIZzVzL+SF8cD6oSXHAGETxUvKLl40dA6kjL6Q7yi2ptMvFydxISlXE6FXBOizaUbc4yfLai96h5kkUW7f2EJUtBEPPDGInYRsmgI4iHLr1Ry8MktuXA/Ioygg6zZsmUzWgfdzFCSjDwlI9SQRwg5IRqMRkZdkmF3ifICzYQi9A8IoI6kR3gxWCIlmMAJ1aQIiobaLpZm7NjBIwJ54QlkhGTUiWEiQ1hgFWMUTaQy8mPSWjIDKdKQiwErrloWamCE0SIYbY89+hhskwz6WCpUGcpDw0NW6ygXQhPIILZEiFqDv7RauKYsmKc4wJGpQAZ9w0w2WjA4KEg088QjGJCye5x5g4HhmswFZ9QCK4DBGUv2IEKALE/x9rM6Hc8/LgpMNOIlhzIjv7QMvyQmUBZaEzBxIDNilnUXz3Q6zh2SWbQ7Edfe0UG7UHeZkSgyAindDFWGr5iyaBE6kkwA26BNJKwCFKs9yCtpUi5lkQwMbVjEYxMNDWuTeplAQKAxjgN5hQLWAqmwA9y1RsfBNNRoLyY1iJfJKEXMWNFYY4zgZc20FfuQ0nqdTEkpMEMAf0FIp2Pi//XXXnv2uedofV4ifFd/+ctfiNf40WiLttGQ1MAUUdJfomV3J6M3Un0fX18ZQ8PJTgiS7neZrKJoLRAPWcmb2NYAk1p/0HiTSYTpQDx697777sNdjwcLnKVFSAceT3Skf9yl0F54FzDreTdxVWLW48xYv37db+9lW5afm3loyOvxGI1HjF1u4ZMS6QCiHbVXj07OYh0anapQEP9ICTOFEZ6ShryY14K+Jiggglfp7LPOojw6A2R5hPOMPxoIO4MYFkCIa6OHWLYsGdMKEmVpFg9c4boIDQl98aUXGUp9uGYNrsdnn3kmMirKbYtPYUbdfpcQUAbEeGvynvBW4APkHpmIpMCzykuCgg+YOOqOF5gYKf4sFrEkDR3AJAWvH9KE7Bnp6ahVphXwQOTn5a84ZwUeWnYJCvXJu63JLN5H6LPIjuyQQtPwixV/7bXXcsELyS++TTliFkJkXMqN8yn+0QQfrzVDTO4Q0wxeSUmAMkwSWV1VJVLqdOhyZCLsRUZEIhsQNqRhaXpySgqRzJiiQYXs0OvRN0IoGPQIR0SRyCwUlRijwzx3/CI2uOUaJkUCKVO0chnXoKv+H3vnAWBHVfbvufdu301PNsmmN9ILkAohCUWRjqJ0hYhK+QQV+Gx8+tkVVJC/SvGTJh0RpCMdEmoIkEYgPdn0ZJNssv2W+T9nzr2zd+9uyqSx2f0N4e6UU97zzJnzvuc958xwlRmF5593nm2kCEZziYK3KdRH8fZMgl7K8CGiHTplH/IMMz/yyCPMKcGGQM0zRILPhqJRUiyhpAFRWWl0pHF1NHD5kjZz45E8mZ0nqhXbnqGYBGBw5Gc/+xl9rE6d6leRoJYxDTt27AQcG9j/ZWlDhw7t8/Lzcfwyd88SsPIThm4lhs6woUMZ1pkwfvynixbh6OY8+aZKafZtahg01Blw4RJH/ftZ+Ds2JMJ0LS5G3eOr4BLpcPvo78LW1MNQCN8Dd5PKZvUKYdAK1nJldUxtb2PUgguj0F/aQ8pgtCZXY21q8vXuiBHcM3o4k6q3LNZAPyUrA6e549wpZs/Qh6Yn7QtvdxhZJ3dSsYjSf9NDcp6kWL1I3Se1Sy+77NzzzmM1xP/785/xpSE8pqqpdan6lh7X3zf6M4nWnEMfU0CULkMG+JDsA8RhTbWZmEkAMkXnsuMVzjNusCBSHXd/B8ImOW/jcYM5vQVWdpx+xhnnnntu/379rr/hBpz8SWCpkOl/jWBkZzJ0wUUK1FVcbhecf8Gbb72J+3D27A9mvjnzpJNOSo/l71s4mAgMdb05cyaNkn26CYDBiv8Di7yoTfKNZwT2I2bupEpnzWtClnQvsZblCcwLwTLGtwdhSu4VmcfKvJtuzhw8pnRsmIyCwxX3iRfAdAkIBRp2qL3snnraqbw1a9XKlX/44x/xIT3w4IO0ijapTEl03LII7Mp2blkl3V1pvKdvzOgxdFjRoNdeey09YCYKoNdZ2YW28DebEN54nkNGE2ihcCf269uXJwrPaWnpKqvOp0ydgu+dwDxIhGSjEWRhJA0lIxcvvPiimSkZj9NX4xJmCpYHHQK6tqSD4V8vbn0jljzXrj1DB+1IlpnkzID/4x//wKOOykcnIeSIkSMI9+5776F96eIw7kCzhcYtKenOGAq50DowD464d9111/TpF2/atJkRaGTAf8B8fibcPffcczR5NjXjYfbkJ2XTDHrF4YzVr+zgOiV92jUu2Y4+7RoruzCJKItp72wb6nV9bAGIxcY+6XlJmpECsjNN1eOPv/bqqyyRYAIKTmwmdvXr18+OHRQWMPAfYt9qU6KjEuiBkQKeGJty+i8tvv3n5ZZUezYAZxj2JhYDDT/56U9fe+1VZOauMTTDSyC+853vME+evponXX2rDIFxY8dRIqaq4LTn3qG2WebADBhCcgtgcvXV10yaOJH3K+M4sdqHcqIAKCCZMtmFKHAGDp4tRnyYpoChA0AuMYFuhZesXwp6geMnTCBfEkc2UsC9wRAJiXCS0uH5QHnPnz/PuK/M3I467h1GIUqXYXKGAagnrAyc/cFslARmBKsWad/RIlRyUsNfAkMG499621hplJiT1FeSQiQKmMTlKW8ytJfsLTNwvFEnLKrHHnsMa8wGZnyHvjXj4kZAIyNvf/IeLfvj7duUwYXligcescu3l/N00LPnkPOsqQGRqVRe+AzrASERz2Znfr0wVjXak8Vdigf07495RFeYZxlJVq5YwagW+WE4EtwIn14hU2kls0ulj8j2jL1OptxWVpZOv/hiTDeWaXM7qLfGQmi8eX10Thtu3nVYYCIz47K6php7jgJSt0nTMMfo8V4+jcHEIXfQnrS/VAPmt2K/Pv30U7wSm8A8wnT0icsjRkWymSOqp9btUYNfvEHek+iUri4Fi3m0I8ayZ6YItRdvFBEpDpWHioRJyrDj3ffcw7wuLGxma61Zu5YBR1vIHFqwSKS6uoa2buPGTdQr1gPzSFLDhw0fDl5MN8QGOy3MfffeS8VuIIoOWhYBeSCS95NWhXrfs1dPegOoMTyoNLWoKyYHWWc4zyebf/eZG0EPafOmTUyDQgHTYqKE2KdXgfOATiGP3PPPP7d+vVm1T8q2gevLKxQLCniGUd40Afh+mVmG6w9NxkIP1DzpsK7s8isup8nwMvQGvP1cvZadJ58pCGTB0ONll19Oa0ITTBb80jRfMv0SJqjTBrHGAT2BVLQdzLcYOWoUzgZsGtZoYVjYNwFTQNaUHnH4EfSqiYLvxOpFWj1y55emxwgfDpM4DQddFQJwyXZh2aEpJABtIEoLhzzJ0voAB9VFI0L6TBcYPWaMN95tp1IaXUYipmGlxxwmzTgdHSb9oSOx2xhzYbXFb379G+YbkjuNF2qGgfzBQwbT3eFesOANi435XOg8tD7w6YelEWp614job67bu1cvhjmYx8ryCjAyTo/esu4N+sGDeUVHapCeiBTTRp+Gx+D113E2wJaBZ0oHXviPHDGib5++tLw33nQjy1OZxAoE751AxjqgsNYNw6wR3CrkhY3yg+9/n/WrLBZgEgnlYiyMjbkp06dP98Vkh4jjxo3HjcSyYQhz08nUioRa6t27F6j/dvvtWFog4hIM0SvUQ3xpVGl2WEjJ0ACvM0IMiNHQTz76aHQDiodqgAok92XLliE89xYbwtxfTz2j+xHdGA3MVPDeGcots3eNLMDF/jRvQwkBs6/3bQ6yIKlBAwfi4jIedehhQnmv3aQ4kOTXPgu8MYJax32n1JxnlewNN9zA3URUHhAqEkIyDchGsfwtGXI3O6ln0f7FLrdX+WUWzjnnnjv7gw/Qgu/Pnk1dxdDHhsC3QU2jLKSAIHSgbXHYN6X2VD6lJi/C8Gs2z7OREjtEGTEZb7zpJjxDvDwe2iTCPfazrt/xYhORlNllsie/3Mcb//hHZstif2AqYUFSWOYNEIxfbg1OLAZuCHntNdcOHDTQTw13Jm0FXRqWQ/PyidqamvlepWWFDqWjBlrhmbThR0nfYTQHH8bMmTOpt1gqtB4wZ2ottZQ6SQ0ka2oy5gu5UD9ZpUKC3BGaslOZTfnRR88+8yzGCrM4mQxBM8I0Z6brcpuYM/sKRrCbGD5sOPcdi4SKQTvAS7F4Vx7VlfrDGEe6MNpvSQTkgUjeTVoKmhV0Fa0Y3nKeIi6gS7520deYiE5zzK8x9lPNFnqOp50ZdqhnrGz6FvRoOUkX//c33MBES0yB0tLV7Bx33HEsSmTyMwni+ua55XGl1eaXxgV3KJ1+9ARtN88bTtfuJd1pTWjaaEdsA5de4TiD7/F3v/0dTSH2ATKPGjkKSWh5USGo1VNOPYV14TgzaKZ5wmk4cCfyMJt5EuEwXQpefkBgGkp+sSfwTH7u85+jsaBlIUeaCeYwoh0pLC0CnlLaSjbOcBUTh7LQ/CE8UpE7l0iZpGg4UGas8sBLTPuLIqGJJBZefUICB4ZQRathc9gEiYVhRefol7/4JQYT79ciQYLhHB4wcADRmZFKFIRk5Bh5MCyQgVYY2tvKt6H/SJl56ZxMR7TbfTiQKUtRaDrPPucc5CcvVCl3H/ORk7zTiTS5lWykZtNHm3LXmO9JI85Jpnos/Hgh0mIy0iudMuWY448/Hs/Egw89hLr61S9/Sd2AEmnSxKMLTz/9NBp6VDWmFSc/z6TUG2+ED112ml2IoYMzrAdygSo5coMw4LAwuJu//tWv0TqmfjL8H4lcfPHFGCJkwTsMSBwn0N133X3KySfn5ecxuAA6LA+u0nWm0UcMTBZ0A5NgWLtL9SZNpGVx0A9/8APKQmeX+ox4CMm9gBMy0PclOzs+Rf1EJBQ/AUiHWsScAN7Sgfy8XglPCcT+96c/tdPoWFwAW+oxUWxNpo5xxpomYw4fw2wSHgEmo1CvqPNnfelL3AhuK2XhwaGk3CngW/5IwkamZI08zIS1ZxCYgnTo0NF/NkkfByGLe1mfQgGRity/+73vsR6EpEjRioHvhBQoJvN2SRBKNkHucpfOnSmIkdmrWZ4IZm7Etddcg2uHYTVmaVAhsczI2EzrabgRnmIiFbGByRRX8kLy8ePGnXb66Sx5YP0RZisDoOhvngUsNlJj1jYRuU3sMwpjk0Q8dmg9qHX/9V//RfNDcRYtXkyLcdutt1GHuYrkNAVgsaMSDWUxR8iAZUBgBkFoE3juOHnMZDMPGi8INRBzjRuBOYLDFU/Y9u07eNML1jIEunQpZqUGM0wxX7g7TIZgFRUS0ufhpo8YOZKl1LhUeWrwHQKWZZy0D5QdAjA0pfOsxsZS6UwLINDAtdsCyrOPReBxtY0Frl1UIO07owW0qSSLQcAlHkV+ObQh2dm8aTPGOw881jrPG40XjRwvw8G6pxmiu0DTz5NmzQVz1UzANBuJ84Dh36bVpme/ctVKPIFE4SuLJM5zbj0fXrPoTTQjprfR0BfkF2D14zNAldIEIBK5kDgttQ1Dk7Rs2XIsAL4bgcymGTKmDzPhTVmIxfOPKUDDzVXO0HklR6QaOmQoCp5FAdnZZk4lDz+J81JI2mtC0sqQEcYW7QhZkBoOcN75w1XTeGEdeLMg6e3xth9aGcpI4qSAJGRBM0eCUOKQdJCKWByy0fsnFjLSqtpMaWFhTntN447yZp4gLR3NKKn97re/ZRog75siOuYOTRUnySjoZjMilnnNjutyO2wKNjUKC1I/DOVFPGRGY5koLNZPuHR22Sc8G0Iy2kW5SMfMLfU6sqTADnFJnyhUA/QTUcwJJiRGjJEHQ4al/HtnZeAXSkS3OZq2OycHgJwEV7pghERUABKAfG10KzwpIzMZ4WfiqrUR/fQZ1MAOIwoYzX2BoSczlgdhyJeSeQKYtTlUUSqqjesJb+6+nxR3io9AEgzNwUkfWsY+cLBrSQcmNi5GFSVC+Xn1k4gJhngwWXx17meRseNnQUkpIJU2IwCHzMPA2UXFo55zSBQ2E4xazQTnmtpcqrF3+8w1O9xAwb35ksmJI+ayieFvFIG3KYDMlpTzfln8MGYHr0bCuNm4SgGRkEfGPuwccjepBpTag2yGOcgfYaHB7bA1pEFqnlTkRDCaBaoKYXgRi5WNYnIvSIp0MmLZQ6qfraO0MNQBgpECSSEbsZhVw9OEMLZiG9k9q8UHQkjOmNbAm4zCEcypzFClqkCScnHXiM7aWlMil7k4YZoFpjmbTkLqXjcpm04e0gRkQAS4ffaRsxF4lnjA9n2jZaFP5KdjHzZ8iXTs6DXSpthL/kOIDHSkGPjgeTb+1fqofhpN7VhZ9zBwkwl4LS+5N3XRnEPCnV2lwbINpQ3Gb3pIhNppoibh5EYitN10oJ95+ukf/uhHdIVxzvOKgku/dSlq2OeTCn4A/nrmUZMZUZwmz/tCZATIOPSDZe7sPEc/5K6TalKpGPWAuE0167tOzc90tzu7TWe3AXabxV4EsJma39SDw741JvYitT2JsifF3JMwe5LXfg/TbAXb7yVVgntNoAmzfa/Tal0Rm2yAgyMIYQY02rDlmc3EmKW9QlampfM2uh2MvLIbLP8mMrHpBfvddaY7u9q4JcoIuSfS0ZkGC4P6TDtlSgf9abw1hx02mM4RCwKCFWPvQvtqp1H0jOI0up55s3YbPpnCznP0s9h1Uk12Seky+tEzdnadWkbgXRzuNp3dBthF4nt9yWaanrXZb8qQ2ussMiKm55VxyT/ckzB+4IO502wFO5gQlNeuCdRrpl2H01UIpCtCX6MfCDI8uoxW4pQmcfsYk53NkV+GHng5wS7UwIEQyeZ+IFLewzTpTONOx/0LEOtrxXMLBA7Z9jARBRMBERABEdhfBGRA7C+SSkcEREAEREAEWhGBnTozWxEDFVUEREAEREAERCAgARkQAYEpuAiIgAiIgAiIAAuXBEEEREAEREAEREAEghKQARGUmMKLgAiIgAiIgAjIA3HA6sBnvmzhgJVs/yfsvyWCN0KI2/7nqxRFQARE4AAQkAdiv0G1ms//Zcfu72UGe/Jypb1MuhlFAxEvMeSjO7zBl1fsvfraq3xpot6eCC6pR92w83fs/q5T4osnW7ds5eMdNjACGBm8W+CnY87swcZL+rZu2WKT2oPgzT2IeWHanhW8uZdE8omACOxvApGf/exn+zvN1pUeCqbJ9xDwDp8mz+8JHZsmDTcp7Cz9PUmn+YfhPT7P/+d5vt1sX4X7+9/fsHz5Cj6L4L8nOGgR0Nx85IzvFr7yyqt8IpJXefI67d3eiDdmvMGXSHnJBC/Sxo7hGwFLly7l81329dL2fU67TcSKynvN+TgFXwfgawVBhW+G4Sk7XqE9LHszlF8iiYAIHDgCehPlvrLlW5p8rYo3zL/+2ms7Kioefvjh5cuXf/c73+3areu+JP3kE0/84pe/5FM0fDGSLwO11BacjwLw7VNAtWvXlm+p033nPZt8S4lPYOxFkfnGx+9+9zs+3Gw/XIINxyun+DQaX780n0Pc+RsY0fpvvvkmmSIJn0rim5lYMHz5jC8ybC/ffuttt/J9IF6bvSci8d2QN9+cyeem9uXuN4u4rvOrX/3y6MmTpxxzDF9raBYiSQgREIHmREAGxO7vBr5rNAcbzgBCc8grEf1ofAJq7ty55mtA3ociv//97/N5JL5OxJf6+IoPnnkC8yVPPjxDCn6sXe8QcumyZXxFFz1kPonrfUrH6r/GiViprHj8Gml5f6Xf4iPyTrJN+jm8Qpl989ZLT080FZ7eOco4PXcb3cjmubgz3prM5zzQyqjtvv368eEfP6L98A+xsBUgM2fuHApIynzEG5Pr6KMno/7ffvttvorZlq+D+qXYNa/UNyMw5p577jk+WXnuuefyEdEPP/qI1LgdXjc6+YkgX07LjaGOZNocexsfMh0zZgyfRrPfP1u+YjmfGeQzHATjOr9+WZoUiqv2c9X+VfiQqf31TyZ3UneHlP2+vs2FAH5G5mqq8rAPOvsuTpuIn7Lnsgoz5GDLiPeFYDauTZNEzKFfIfhSt/d5JNKxwWyCZszCC/n0M88MHDTI3gU/BTNPRT4JS0q/ItC6CciAaOL+27bSv2DbbtvUcomRCf9S+g7B6LbypQa88fxyic8983FtPq932623nvC5z6W30ekR/X0bwOZuf/1Lu1ClVvHQqFs5k9L6qg4l4akfm6BRHinx08OzTwGNamBLJeXnzk7jb0X6Gfk7BPP377///j/84Q+o4b///e982Nqk6olhP+Fo962/AbcBwcaNHcfJ8887//XXX+dDpmh9+wXFdBl2uk+JEN11n3/+uUg48p2rrppMp9lx6D2fesqp+QX5fAjRj2uzxrajREbTp33JjDDIz/cD+SQxO9g9BOarg1XV1ezYq+yw2WKaNFPaFC1OmnyyFPOBD2+aS6mNwEShsJxAtTeI7qlwzkd5Lbf3im6uUpLk7U6ZFzY7P2K69WAy9b6nigCkU1tTYz6U6m2+mWvS9D646hU5ZCwITyRzt1OVGWuDYCYp7r5nt/GtV75YZrBSL6xh6QWOxaJE4+uXXLGCkbg2ERCBVkhABkSjm+469J75EibK4MixR+JaoJUs31Yej8c6dOxIqzp79uzhw4b37tM7IybftMVuuPWWWxhEnzBxIh8FXr1mNb1w3OCYFGhE46VIqYSMuP4h6c+aNWvE8BFNts58IOPdd9/F037YYYdZtWEiGgsixJdzP/zwQ5Tx0UcdzbfFkZlSYOt07NTJKK1EYnNZGVMFe/Qo4TOeePjJiK9OFxYU4D7hI9SjR4/G+kEbzZkzh972MZ4C9qViZ/68+evWr8MU6Frc1Zog+CRIBDVPIstXrGDoYdy4cfaL2KDAr4AAaPY1a9YMGjQIlwwiIQAuBz4azmhFr969+NgHsdCs48eNKywqJJdBhw3CW8MYEF8bZyddgF3vW00WjfL15ngcS8jTbZzka+Y2IgQunj79hBNOYErEv/71L8Tj09jnnnPOSSefnJEy5brqqisHDhx0xRVXMKOTj39yQ99///0f//jHlOKaq68pKCyoj2LssdBDDz2EqwNTg5Es0IEdAfwwOFQefPBBSo1GB8VXv/pVfq2E/PLZ9pv/383YTMDnQ+1f+tKXjjv22Jv/9Cd8V9+45Btjx40lHYT/7e9+BysGy0aMGHHvvfdSCU888UQ+t7Zo0SLMrysuv6JDxw433HAD3Mhl6tSpF198sf20N8X59+OPv/jSS1QeauCUKVMu+trX+Eo3WfM50xXLl59y6qmUccnSpUSkAuNCY+fJJ5+cMWMGO089/fScuXOpG+ecfQ7R/3TzTYsWLcbawDd2wQUXTJ482S+mdkRABFobARkQyTtuG3S6cddfzzD69egMLjAFgdYfVT11ypTy7duvu+66X/ziFxU7dqCmzjzzzP/72986d+ni1xg+Kj373dkoAMyFO+64A4Pj21deRbJo6wsuvJCdW2655Vvf+pbROA03mzWz//hW9fXXX19VVdWmqE2Pnj04n+t1nVGEfJzzu9/9Lm06+pEOaKdOnZDyy2edlZWdjYa4/777fvq//7t50yYEowN95513cvKcc86hlX/+uedGjR79+htvoFFWrlz5v95G0//vf//7tNNOwwJgyB9V2q9fP1wFl19+ORMP0WRDBg++9bbbpk2bhqQz3pjx7Su/jYbDsKBTTgH/8pe/oFGYfovAOPxLSkqeeeYZYpHdrbfeypyD7139PXays7LWrV9/8sknc56MkAQdjDbyypXLvAQO165dy+HgIUMsEkpaXNwFpcjwDaounZNx1Ifovid25oxBy44dO5b5E9dee+2ll15KvgiJ9UYiGDTxRBylS8oMTHjWhrtq1arr/ud/6qLRM844w/r8bXbgnTNnLnYZ3/987733PpozBwmRk6so1Lq6WlwaXgomOFLdfPPN3G4sJ8hjL/79//5eW1dHSK5y6x/95z9vvOkmJEH70qF//vnnqVE3/vHG4cOHVdfWIsN///d/84tRCFvM1mXLllHrsBU8w26rycPbFi9ePG/ePAxEXALkMnPGDFw12CvcuzfeeIPqWlpail4nEQyFhQsXUsm+deml3LKbbroJbxCmCbcJs4lbtmDBgl/96ld4I8jrlZdfee3115GWpKi3ZEriVK233nyTslM6JpMSC5GmTZ36y1/9Euu2d+/elIUsSJlSM+00JaP+ioAItC4CMiCS9xslwR7N4vXX30Cze9ZZZ9HC0tRykkuxeIzu8g9+8INu3brR1NKk/uc//7nzrrvQVU3WF1QF6qRP7970I1E2fD+T7iDNLkn5uieVcfIvnV18/lgPtPWYLDTcBK6rw11sPCJf++pXF3z8McoPH8DKlStWrlyFQYCqY2YfkxCvufZaLIa+/fqhqDA16FbiLCE61gb+BlJg32Zjd/hFN6D1KSOqi5mMFPzYY4+rqammgCgSZmDcc/fdGAdopssuvwzLA93cvXu3V199jd42Zfn7//0fFgPp0zUnERTM5s34OMqY+YGFgRFg9SW50D9G5dA7R4/OX7AAVwfLEzBHKBQaGhWLYISx4vHbqVNn1DkyIKTXvU9egRsKkqIwQoA1ACITwHOq20JhWGAKkPKbM2f++c9/pps+ccKE49iOPx4JI47pcxMLu+qsL30JdP+491664P/85z+PO/Y446VvuCE56DCS8BZgDDEn4+qrryaWHdfww0Ib3wNVApWM7yERT9xyy1//fscdACY7tP4j//wnOh5TCa8AxHB+INtdd9914403kgizNbEVMLmu/PaVxV2Lcb2UriplwiZ3E5kJgB/L3kE/R7uDjYKBRfXr2LEjivyRhx/BFfSnP/1pxMgR3FbMXOwebgdWBZYiJ6//3fXcBcwgJMEI+GD2BxMmTiAp7KFx48dhm3ILXnn55Rt+//t58+biLPnVr3/9+GOP8YspxoQSaMybOw/xcAvdd9993FyMHkyNISnLL0M8HYqACLQGAppcnbzLKC200ccLFqD7afHPPvtsBsLpuqH7GXeIxeK0/jTBt99+Oz11TuIweOmll7Ak/FqSrs/ofJ9w/PHWvEAT/PCHP8RJgM8503rwIzvOP/7xD3wbmB1oaLLAOYy6sh3Zu+++m447ahsfNengIMFhwCWUH1KhkFDDOJ9RJDTuxJ04aVKeN28RjYsxRCZN5ltQWPjTn/6EKKzywBTAZYK2uOeeezhEYXzy6adoiL/+9a+oDdz+KKe//vWW8847j3yZqLhx0yaIEYzDCy+8EG39jW98g4ywe9D9F188/YtnngkQioMyu+uuu5AQ7zoke/XqiQODXK778Y/p/YMR2ezyBwuja9diUrbnk3MyvAsv/Oc/V19z9ZVXXXXlVVeiy61tZ6OQAhv72F4/+tGPfvPb355++umcee755//3Zz8DCHJiMXEG3XzKKadgXbVp2xY3DDeaMiJYekZ+muxwCzAO2KGYWG8MYSAb+zaMMREWLSKFo48+GuuB9JkZcPIppxALjwfk0bJrVq/hKtYD1YCxHlZ2jBw1kqEHnCKAwm7Dpvn2t7+N9UCaffv2PfroowgZiYSxrjiTtGu8MRFbRps1sY466ii4keaRRxzRrn27nr16jh8/DiHP+tJZuHyw5zB5MW4g369vP24ino+lS5ZQc7AXFy1eZNNhSgq2EVhw1Rx/wglEpKqvXr2a8TusBHIBEaXmF6koF3FZH7SlrKxXz54TJ070UdjU9CsCItCqCMgDUX+7UTNHHjmWJpiWHaWICv/Nb35DG2rHHGi+zz//fBQAOzTc6AY6aqzZq4+ftofLnMkHtMv2HB304SNGWKWeFsrbRfF5WoKxA/rQk46ahLKhI8tcBwYXUFFs+N7JFPMFnVHSo8exxx47ePBgOpdML1j06aK1a9agHXlpAZ1tWnlcCDT9Ril6HXQjf2qhhM2abj2X2B8xfPi5556HcYCGwx+OCsFcQEEy/v3O22/jLUf3cB7LggEIRu6RtGzLFigxmsMQAzskgi319elfnzhpIvkyRkPCW8q29B/Qv7hrV7rR9NeZroG0qJyBAwfQI3/yyadwQlxzzTUXXXQRbgmyM3oxrf8fQad5yz1Myb3lAHbMonT1aoAgklXhX2Mg3zMakMEUh3/eIU51OKDOCcmrHejxP/300yBFDIKlq3+8NXTft28vL9tS5idlEfGLaiQwO0a+1OZftTskCAqsNNwznLFgOUlw4rKDbcHclNGjRllWnEUTd+/W/cMPPsTxgPFHFcLoQRLMBUajTERPJ2OlmFKTBK6R+hU/9fmTIJSMhLhVcnPZwdCxvopIliFo7Q8qFSGfeOIJILBD+txNLFHg2LRSJTPmFxUANwb1ykhLYbwi+FmOGj2KJwK3BF6KP//lLxg6//M/P+nUsaORU5sIiECrJCADInnb0VUMsZf0KMEXfecddyxesuS1117DJU7fmmWBaBN0IQ0r2iKbbmaW4YYCoLFOrzY0xxxaFZJ+nn2i2/Y94zyHNhZtOum3bdOW6EynwBRgh+YehVJZWUEwLJscz62NvsEssN6FbeXbmMBPEiXdS/Lz8jBcbI+ZuAhJdCJazUGHmDRN7kbGZKZmL3nCnPGumDModFJghyEMo05MXzyCdjPjMn36IAlMXn7pJROUzSZo/3hR7Wl+UWzWgmln5kz8HL2IRUIH99prrmGInbF2ArBt2LihfYf2NpYdvECZmeipvj77eDi+Pn06UtYvkkRAvyze+lWSMoVwzZoRNswURpoAizHEBZu+/0u58HPgKjBUTVJJABnDGZwFhaXhx03uuC53gUtwNvmSg+vk5uRa44Nf23FnUieC2SjcBaIQHp/Bpo2bmONCgagbRoC0jfAkS/FtTeOKST9ta3CQdt7Kaa+SEeYUKfz4Rz9iHgz11qwQiSeov106d0lPwRfPz8hml15qvGE/+clPJk2axB3ELnn55Vc2bNjIlB3s2rT8tSsCItCKCKj3kLzZpiMVMv3OSy655O577mFmHH1rxulxgKOKaMBp+ul2o3I2bd5Ez5JoVpGnVxajpTxNkKGuSIHlhekhM/ZpqVE2nGRMnZYd5zPeBTQZ7ThxO3fqjLbD57F9+w7CLFu2jG4iV+n007GmQ4lC4iSTEAhPRNwP6Hj0B9LiykZnEBdzh2DYPl7WDadieMqJuFaLWbVhfr0xCHrieLZvv/1v9/7jHw8+8CATBhnHGThwIMSIwpZRFnPoJcQlnBDby8s5gTDjx4+//bbbGKk59dRTUaEM/yMSGo6MMCn4tZYKnXJ27KwI44FI26w9wWiEGXEg27SciU52TC2EDOcpKfGYUIJqBCC+HzQwZ0yh+PWSXfTpp7wvsk2boh49epKg1fppuSUDm4herPRLdh95sKiIiDHkX926bSvlsodWfzPJ0a8PAGGWBq/H4N7l5ecVFhYxCsYUE0rvp2CFpL6xcseWkTMUxGNt7hF8dt3vt1eJwnQTUw1qanCGscJlQP/+hw0+jH3W6ViDiTBs2D5sCGD+2B1fGm8neSNcl2Usv/j5z39/ww14lahUlKVhQB2JgAi0IgIyIBrcbDzeDF4wkI+CpBNM28oAMF03AqGTmJ72xS9+cfr06fif6VgzBkwYOonGPvDWxTG1LRqLGgXgtcJoFy6xNJ+5C5d845KXX3rZ6oYGWXpajVYbNzsqYv68eWececZXv/ZVpiZYrUYHmndIEAVT4OprvscEAmZUzJs7Fy8FjnqWY+A/pwv78ssvX/FfV7DMj3TQzfQLER4ldMXll59/wflMBqRnTy6VVVXIEI2atw4gM91T9AZlJH3OEIUdX0h8G8zvowPNCDrDE+bdVnM+YqYFs/HRkWgmQrKhz/hlnimIUJDGPR5ycIaTeEVFJR5vnAeMazD54J+PPjp61GjUKkYPcAiDoUB83gJJ7tZgQieRcvLVEWnCWGi4H9gIbA/trxWC+QT//f3vMz3iqaee4jwy//a3v2XMvl+/fgMGDuQMEbmzrC8gDXTz/Q88wAseGLTC7WQSxT2S8hPYEplCxWKcJzz2GeXCMuNFWOlZYwdgXWEi2PEm3vzB3bHicetR1bhqsDuZ14JRCBwcWuvXrT/xC1/ArmJZxKSJE8ni17/+NRNQSZmxqp///OfLli5lRgsysGQD8wIzCKONKudJYtwhcOaX1EyhIhFb/exJznOS/dy8PMLDnOEzojMiRkZMOqFuUEkwWSwQfqnD1TXmIyBsVAngGh9PKMTwBCmzboWIc+fNY0HNHXfeyWAWGfTo2RPxqHUF+QUQZjYJU0+wtm0i+hUBEWglBDSEUX+jaXxpBJ999lkmrtM+0nrihMCeoMtLG4pWQNHaOQHEQS2dfNJJDKLTWNsNnYZVka7bmMB/+JjD586bi3ZBi7CCf9qx02ij67P09myUb37zmygM9MRTTz3Nadp9fgnMxusKeEM2yzTeeYeJEW+THRkdP23q9777XRpxXlfwwezZvDnh0UcfRTGTGpKzDhNL4tVXX2UZCIqf1PCXoAKZc0cAKycKnqSwHPBOp4sNB3SPySU75+vTv87wOWsjmU/68EMPYyUgD5MwcKgQBglJhOzqas0KT3bgVsRgfDjMvApMBKb9M4+PrJlKySpEBhRYBQBMArOIAJ5M40f7kv66tWs7de4887WZ2Eks4kC5IlK6VB4qhE3+Tf9jwkUi2EwM0pMUK0HIBUlIv2/fvpdddhn+GJYzEAot/uvf/AabBm2NvcMNuvyyyyiRVcbYUyRr3Buey4QgaFM68dxrnPaUGs/Bffff37NHT18M7u9xxx2H3XnllVdClUzJEZWP74e8GO5h0QdzSP9088233X67l2ecanDxxRdDiVy+/OWvsDKF1Zt4ZRAS7xF5sc8EEWaqQgYLIC8vF8aoeePYMKIZdw6/1uxjB8MLS5HNWg84nKgGiUQcS5D7/o1LLmEVCfM0qauIRzBWUmCXIJvFS7IkxSXuGmewGuPxGJjHT5jA/BgqFbYp548/7riXXnn5tttuQ0KMBuavMPvyiCOPeH/WLNxm3GieHVtpjYjaREAEWgEBGRDJm0zjiyOX5p52H23BLwoJnYGe87tWLFBkyhu9Ny59/vOfZ30gkVnrSKcTjYj6weDgVQo1tTXME+QSJ2+59RaaYHrDdFVPOflkdFXjSmXb/aFDhtLQozbwDKPYyNqqXvZR0Q888ADp0FLTFUYBYB98+StfoZeJmp82bdoDDzz47HPPLF68BM1B1qedehqdZmZE0t+lz03W+Cpo4onLyxkRgILQOcbLgg8AS4CTTBdA/1nZ0IiMp5ALXfPsnOzbb7v92eeeXbjw49LS1agx5DErDsKh448/Hr1LkUmfREiKdxChnzp36oTqOmbyMXSs8e0z/4CMsCHwB2BIMUJRUtJ96NBhX/nyl5l8YNwknItMAABAAElEQVTpbdpg2cyYOZNXa9z/wP1oxzFjDmceqFGWTZkLjQHaMyhgvOtvvf02neaNGzYyQIBsTHola2MKmC2EJNy4DRvWw7xHj57Tpk6jM81Vq9TtXEguoeCxYABC/x6DgIUf7773LjYB7gTUcLpUuXm5V111FfWBSkL6PXv2wnJiPaR9QQgWFdNoGGbCrNmwfn3bdu1QscdOO7Z7SXersNlh7S4amlsDzOIuXY4cOxZhuI94rbD/GNwBL3UsWlc3b/58Fmugy7GTeFG3eQGDyyssWb7blymu+KLgQCHdkMsaIoQnOw7PPuecnr16UXN4TQjTLSnXuLFj+/brh+PHvlaLxcYmovcWc14NcsQRhxMeDwQ2FpMeWLtBwTEaqJCTjjpqwfz5W7ZuRbyePXpgQGB5jBw1CiO7Q/v2PUpKdnZrdF4ERKBFEkhOyG+RZdu7QtGw8k0sFCGKjVaY9rp01SoWRjLvgfb0Rz/8EfPq7SVjc3i+dHq3eI6ZUIlWQBuRL/1y2m52SI1xDRQkbS4aAh+16Uc23EjnsEGDaNOJQhgWc3p63by3gM5l+jxN4lZWVLD8kq6wGXLwV/e5Dq9GYAEqXUgWKFrlRCYIw0m0PgXhJMKgEW0sLmHNJIX0vOLYTzYvWwQu2as2NZN1ZSUT/IvaFNnzSIe0JMJGykZab8PcseXjCN1DGARAlXKSrjkbh7b3jPUDGYZXZsyYgdWCAcGrukBHbx7lZHNpiGpPj0gWqWymyO+hCqGYMQdxTmDyMC7DdBCEJpgfwE8dyc28Bw+vFQNR2cDoh0nueFYO4akDnLE+DJOgGUcw0xVtMM5Qo5CH7OwZotgbwSE7MCd9LE57NfnrOlXVVZxMR2Fk86IQix1S5qovsD1pw9hg/Nq8amtqsfOQIT2wvZRuq9lbSTrIw62MRWOw4KYkU/bqM4dsybi8hzsapfL4hSVHbSIgAq2BgDwQmXeZvjv6O/0sytHq1Dasg0B1m5nz9YaXaUbpe3oROG+VFkfJ5jUUwnRg4wzuXzr6tPjpidt9vAh0N4lCu9y+Qwd7ktRCkfqMOIkCy6EH3HAjFifQIlZse2h/UVemK58SBj+/H9WXkzPkQ77+pfR9e5Vf1BibH8aer1eoRla8EhZDMhRnsBXSo3BozyAeG6HzcvNYHMv0BXweFAEvgh2JsB1iE6Zhmump7WLfArcB/BSQFjUPE9S8BWF/vSH/BomZKL5x5l0xsdLo1Yf2Skx4azrY81bfY6n5wTiTLhLnrVS+bDDPwG7ihswEBT8Rf8ePxRmblzlj66Rn0KQHMMl4kuAssSnYwPX7JoR3ZON6lRnytkQZZgFV3S+In0t6XbLJ6lcERKA1EKhXG62htHtXRvrc+ITxUY85/HC/0WywY4bNjUZsMn3bH6XlZXCBF1zSE20cLPkigTSV0zhMk2d8MdKvNnkyPUCg/T1JbU/CZGRKFD62jWXGpy95nTNvr8IAYmFntC5qjZ6M8Ht9aGXj7uCfZwyisMCsdmmw1Sv6hqeD3470+HvBJD36zvZ3kewuLu0stQbn0zjsa1IN0tWBCIhAyyTQoIPbMou4P0qFnsNPax3vwdLzbAui0CJjSeDSz/BA0Ghjd+Tn5Wd09YLlcgiGRqPDxFhdngvHloBxd/wD6ZMM9lfJbHb7KzWlIwIiIAIiIANCdUAEREAEREAERCAwAb0HIjAyRRABERABERABEZABoTogAiIgAiIgAiIQmIAMiMDIFEEEREAEREAEREAGhOqACIiACIiACIhAYAIyIAIjUwQREAEREAEREAEZEKoDIiACIiACIiACgQnIgAiMTBFEQAREQAREQARkQKgOiIAIiIAIiIAIBCYgAyIwMkUQAREQAREQARGQAaE6IAIiIAIiIAIiEJiADIjAyBRBBERABERABERABoTqgAiIgAiIgAiIQGACMiACI1MEERABERABERABGRCqAyIgAiIgAiIgAoEJyIAIjEwRREAEREAEREAEZECoDoiACIiACIiACAQmIAMiMDJFEAEREAEREAERkAGhOiACIiACIiACIhCYgAyIwMgUQQREQAREQAREQAaE6oAIiIAIiIAIiEBgAjIgAiNTBBEQAREQAREQARkQqgMiIAIiIAIiIAKBCciACIxMEURABERABERABGRAqA6IgAiIgAiIgAgEJiADIjAyRRABERABERABEZABoTogAiIgAiIgAiIQmIAMiMDIFEEEREAEREAEREAGhOqACIiACIiACIhAYAIyIAIjUwQREAEREAEREAEZEKoDIiACIiACIiACgQnIgAiMTBFEQAREQAREQARkQKgOiIAIiIAIiIAIBCYgAyIwMkUQAREQAREQARGQAaE6IAIiIAIiIAIiEJiADIjAyBRBBERABERABERABoTqgAiIgAiIgAiIQGACMiACI1MEERABERABERABGRCqAyIgAiIgAiIgAoEJyIAIjEwRREAEREAEREAEZECoDoiACIiACIiACAQmIAMiMDJFEAEREAEREAERkAGhOiACIiACIiACIhCYgAyIwMgUQQREQAREQAREQAaE6oAIiIAIiIAIiEBgAjIgAiNTBBEQAREQAREQARkQqgMiIAIiIAIiIAKBCciACIxMEURABERABERABGRAqA6IgAiIgAiIgAgEJiADIjAyRRABERABERABEZABoTogAiIgAiIgAiIQmIAMiMDIFEEEREAEREAEREAGhOqACIiACIiACIhAYAIyIAIjUwQREAEREAEREAEZEKoDIiACIiACIiACgQnIgAiMTBFEQAREQAREQARkQKgOiIAIiIAIiIAIBCYgAyIwMkUQAREQAREQARGQAaE6IAIiIAIiIAIiEJiADIjAyBRBBERABERABERABoTqgAiIgAiIgAiIQGACMiACI1MEERABERABERABGRCqAyIgAiIgAiIgAoEJyIAIjEwRREAEREAEREAEZECoDoiACIiACIiACAQmIAMiMDJFEAEREAEREAERkAGhOiACIiACIiACIhCYgAyIwMgUQQREQAREQAREQAaE6oAIiIAIiIAIiEBgAjIgAiNTBBEQAREQAREQARkQqgMiIAIiIAIiIAKBCciACIxMEURABERABERABGRAqA6IgAiIgAiIgAgEJiADIjAyRRABERABERABEZABoTogAiIgAiIgAiIQmIAMiMDIFEEEREAEREAEREAGhOqACIiACIiACIhAYAIyIAIjUwQREAEREAEREAEZEKoDIiACIiACIiACgQnIgAiMTBFEQAREQAREQARkQKgOiIAIiIAIiIAIBCYgAyIwMkUQAREQAREQARGQAaE6IAIiIAIiIAIiEJiADIjAyBRBBERABERABERABoTqgAiIgAiIgAiIQGACMiACI1MEERABERABERABGRCqAyIgAiIgAiIgAoEJyIAIjEwRREAEREAEREAEZECoDoiACIiACIiACAQmIAMiMDJFEAEREAEREAERkAGhOiACIiACIiACIhCYgAyIwMgUQQREQAREQAREQAaE6oAIiIAIiIAIiEBgAjIgAiNTBBEQAREQAREQARkQqgMiIAIiIAIiIAKBCciACIxMEURABERABERABGRAqA6IgAiIgAiIgAgEJiADIjAyRRABERABERABEZABoTogAiIgAiIgAiIQmIAMiMDIFEEEREAEREAEREAGhOqACIiACIiACIhAYAIyIAIjUwQREAEREAEREAEZEKoDIiACIiACIiACgQnIgAiMTBFEQAREQAREQARkQKgOiIAIiIAIiIAIBCYgAyIwMkUQAREQAREQARGQAaE6IAIiIAIiIAIiEJiADIjAyBRBBERABERABERABoTqgAiIgAiIgAiIQGACMiACI1MEERABERABERABGRCqAyIgAiIgAiIgAoEJyIAIjEwRREAEREAEREAEZECoDoiACIiACIiACAQmIAMiMDJFEAEREAEREAERkAGhOiACIiACIiACIhCYgAyIwMgUQQREQAREQAREQAaE6oAIiIAIiIAIiEBgAjIgAiNTBBEQAREQAREQARkQqgMiIAIiIAIiIAKBCciACIxMEURABERABERABGRAqA6IgAiIgAiIgAgEJiADIjAyRRABERABERABEZABoTogAiIgAiIgAiIQmIAMiMDIFEEEREAEREAEREAGhOqACIiACIiACIhAYAIyIAIjUwQREAEREAEREAEZEKoDIiACIiACIiACgQnIgAiMTBFEQAREQAREQARkQKgOiIAIiIAIiIAIBCYgAyIwMkUQAREQAREQARGQAaE6IAIiIAIiIAIiEJiADIjAyBRBBERABERABERABoTqgAiIgAiIgAiIQGACMiACI1MEERABERABERABGRCqAyIgAiIgAiIgAoEJyIAIjEwRREAEREAEREAEZECoDoiACIiACIiACAQmIAMiMDJFEAEREAEREAERkAGhOiACIiACIiACIhCYgAyIwMgUQQREQAREQAREQAaE6oAIiIAIiIAIiEBgAjIgAiNTBBEQAREQAREQARkQqgMiIAIiIAIiIAKBCciACIxMEURABERABERABGRAqA6IgAiIgAiIgAgEJiADIjAyRRABERABERABEZABoTogAiIgAiIgAiIQmIAMiMDIFEEEREAEREAEREAGhOqACIiACIiACIhAYAIyIAIjUwQREAEREAEREAEZEKoDIiACIiACIiACgQnIgAiMTBFEQAREQAREQARkQKgOiIAIiIAIiIAIBCaQFTiGIhxEAq7jxPmfzf76WYcyT/hXtCMCIiAC+5FAyHHC/O+64RB/tIlAPQEZEPUsDsKeNQMaPIUNLAMOvIvmcTW7sYRTur5867YdGZ4i1wnz7yAIrCxEQARaEYFQwjQ9bqoVwmpw3OIuHbt1KqArk5MVaqIFa0V0VNRMAjIgMokc0GNrOngPqN31DIb6hzLlWPDO8MPTvHZLfOmqHU44O10w1+FJTqWQfkH7IiACIrCvBPy2JREK1QzNKerUqSA3Esa0kA9iX9G2rPgyIA7u/cQo8IwE+4B61n7S6dBAjpBxLxA27jjRcFFdpC4uA6IBIB2IgAgcOALWu0kL5GY52+vcHOwGl9bKtysOXM5K+ZAiIAPi4N6upIvBOAoTrpMIOVW1zrbt7vbtFWWbN1fXVEWj0YQbi4RiY0cNLi7ugCux1s2qDedFnYw7RQp6mg/uvVNuItDSCRgng9n8toVWKitBd0a+h5Z+6/eufBlqae8SUawABHzfQ9R15i+ue/aVWavWl1VVVVZWlMUTNbFoTdiN5iRqulw5vQsGhOeH8J7nBjMevKfcf8gD5K6gIiACIrAzAnRsvNbGti30X5hrZfZtQ8SxGp2doWud52VAfAb33T6EsZBz3e/+npVfVFzcddjIgSNHDOxanFXcJRyJu22zQ0VpBoP39OrJ/QzulLIUgVZMIOQy1YrWJ63taXjUitmo6B4BGRAHtyLw/GHOs7zCcWodZ4vb4fghnX9w5eeYIYnBwHPKv4gbioSciDcBwhfOi+cfaUcEREAEDgQBz+Ngmxuz5ML+S2ZE62SP0yyKAyGD0jxkCMiA+MxuFY9iwolkObFcx/ENCKRhvlL981m/95nJqYxFQARaEQFWbqa1QK2o4CpqcAIyIIIz25cY1oZPSyHiuFgP3AYzZMGT6/kn7HXvyO7qVwREQAREQASaF4G0kfbmJVhLlcbOSfJLlzQojKPB2gvJPQ5kP/iUtCMCIiACItDsCMiAOMi3JMMySNoLyRe8JWXhpDmf2mRJpEjorwiIgAiIQLMhoCGMg3wrkpaBbxT4O43kqLchdh4mIxKzM9n2OHhGbB2KgAi0OgJ+56W+wWl1DFTgvSUgA2Jvye1lvPqn1Op5N2ReKpXucagP4dkCxijg3+6tAjcrHArzeqpENMynb+JxIpGytSn2UlhFEwERaBEEMBPSGxZbJj6OxTzueCg7wXsmzdzJsJnCbXa0icAeEZABsUeY9nsg84wmH+jGz3WD3Ai5Jw80qUTc+PatG9atXhqPR8MulgMtASu5G6SmAxEQgVZIwDMgMhoSlntlde3Rp2NxzzrzXlveGcV/GWFaISoVOQABGRABYDXvoHxs191WtvaNV5+pq6lk33dNNm+xJZ0IiMDBIJAx3830LsK5U479QnFxt0QoEnOxHRLemygPhjDKo2UQkAHRMu4jpQjRCgwcOnrYiJGRiIMBwfvr9b2MFnN3VRAR2BcCOCIb+yITidD2qlh1grHPLGM+mAzkgdgXzK0urgyIFnLLee5jCTced2qY9mAGLsw/vsXbVLvRQoqsYoiACOw5AYYoGm4cuzE3izkQtBbJORJMitAoRkNMOtoFARkQu4BzaF0KJbAccD2Ec/iep/fxXZqCRo3GoVUmSSsCIrA/CDTZkzCTrZ1wwmXWtXFPYEOEzEe7tYnAnhKQAbGnpJp/ONOhwOHAWCbDF0mHZchrGZq/7JJQBETgQBLwvoqVkYE1FnBV2vNmB0MieZQRVoci0AQBGRBNQDmkT3kOyLT+hpqDQ/p2SngROGAE7GCF53xINRMavzhgtFtkwhkzc1tkGVUoERABERABERCB/UxABsR+BqrkREAEREAERKA1EJAB0RrussooAiIgAiIgAvuZgAyI/QxUyYmACIiACIhAayCwB5Mo7fQau8wnicQcsNkrTO+1x7wZ1Z7fj782i4RZoUjiZp2il0vqlasmQ/7fXb4pEU0SKeFsHOYhM20okpqInEzID5QKnPybfLkjlwmYHtZEOBDFz8h/l4dm6YXLKizWYPAmKVMsK+cuI+miCIhAayVAExaN8zUMlnHy7nveBZFs01orD5U7MIE9MCAapNlAJ6F942btcCiSsiG8sEab+vrV29/1jw1vwzSowVyw13hLMxd4ryJvVzS63kwVTi1BSinyXedB9FQ2qb8mQvJDVpSCZJLemPTrTSTKZRuigahNBDy4p5AG+ROJWFYklOANc6zmNHI2LyEPLhLlJgIisCsCNN1ZWZGYaSxss6bmYle4dK0xgT0wIOorFXvmwFehlTWJdRs38emmIf16Ji/QRzd1kYCebk7LMBk57Yy3a+2A9LMmJW9L6r+K6ti6jZtrY7HDBvTMMjaE94Jm099m20mq3rUGP8bQQXKTXXoG1bFQXTSeFQ4X5nqnPdkbRPQi+Ke9QDYBSmp2jGlTn2Rm1IN57LlnElWVO0BEWa2UB1MA5SUCInCoEKBFTESywtkFoUiu15jq4zmHyq1rRnLugQGRJq3Lx1ZwdoWMHkanfrBk9V/+dkdBfs6t11+Xx9cgUVlcM7++wk2L3PRuAzVn4lk/GnueZo47zvuLVt925z341/52088KjJ/AKErvYtMpNj5rUkVmz1nCvpcLoUJRx3npvXmzP5o7oE/Pr5wylSJkWXEaiZ+S0uvXe/GNTwQtTZqN8/tszriRkLti+SfPPvNYXXUFNoReQvnZ3AflKgKHAgHTdGXnTTnupDHjJpuBDL9JbdT6HQqlkYyfDYHdGxDp1SmO+WAtBAbPHGfF5h0ry6NHDxtZ4zjZ3nAGlixOAqNZmypOUyeT+hdNbJQxQxSeK54EEnEXlYilsqKsetm2ujEjh8Y9w8XWdBuN393qbxI0/XH+GLmMlW2NCQ621bgzP/pkxjsfnZhXFEN+LzWTZsNEzRHR2Lxrnh2SDIy95HtCvBCf2Y8RMhHt06vkogvOCSfqwomEFewzE0gZi4AINGMCtGMJJyu/fdewS8tHA0mDQXNr2rhmLLVEa14EdmNAoDfrUtoTIzUeD9FHp36hOPmE/OLlpbVxd+zYCVTAGm9gIcfTWl6QBuU0UVLp+Bc4Y0YUvM14LkiTbzi4Tl4WnoAwEyu4Whl1lq1aE407E8aPR1arFK02T0XdVX23WZAOEsbi5jc3Yp6bsGep5OeFTj758yNGjxo+sD8Smscoab74aZsdMsVs4hIBMJuYMJGIOnnZRmD/UWPHytYg5kE88JqD7Kzcdu1yiyLMiTLNgKV+EIVQViIgAocOAdq0ukSoLk57nsW+baH9Nu3QKYck/cwINDYgqEj1g2H0y6sdZ9W6HctXlZZt215ZUd2mTdvuXbsOHdwjkhVavKy0oKBDu44lz8/4dMvGtZW1sYG9u08aM6x7UbjWdcqr3U8+WVSxfduUo8a3yTHO/5jrlK6v/mTJoq4lnYYONNMm1m+tnT3347adisNZuZs2rt+8YUOOm9O/R+cp44fmZnsGRJVbunxpYTgxceQgdDgplFXEP5i3oDZaN6BPj6H9uluronGlR9nzD/mr6px5n6zesGnTpi1bom6opHPHviXFg/qX5Oc4m3e4q1ZvzMsr6NE1e+W6qhXLVtTUkSmftHTccFZOyInEo326dRkxpDu2QtR1lpRuWVy6du36ssrKiuLOHUYOHXxYn06FYYc1D55z5LM0IbhtfM7bDYWZksKHva1t42HxWobPrIIpYxEQgeZLwMwfD3sNmJERX23jprT5Ci/JPnMCGQaEHUhIGhB03KsTzivvL3ro8afWbSqrQa86kVhdvGP7dt+/5jsl3XLXbtzqhrJvv+eBtSs/pZNeGclvG4pN31FxyUkTqxLO8i1Vdz/5wuY1K48Yd2RRToSVmNV1zhuzFj7w+D/POv+U3gN7om9fm/XB7Q8+FmnbJZRTuLVsQ5usrOza7G6Foazs0OTxQ6jLFdXRTevXdmtf2KtDKJJwVqzect+/nnxv/qKSXj0vvejsWq/fb6t8UuhU/Ud4Bla21riPPf36i2/MKttS5kSyttUkOuY5g3t1ufKyr/fp2W7Zus1/u/vBIQP7Th77tfc/mvPY489vr82uDsWqsVTCuYVOIreu8uIzvjBwUHeKPmPWgn8+88Li1ZtC2UXRRLy6dsfA7t2vu+pbo3sVeotQyPCzNCCwYbCuvDkoOZ95rZIAIiAChwYBGkyvi+E1nFgStGPaRGBPCWQYEDaaGU+gHlXFnRkfLrrxb/9gncK0oyed86XTCvKcx5969Z1ZsyI5kY8Wr9taU+lGsnMqIxdccE6PHj0ee+GNBR+8O//jhWsnjGjXsWh7ZXXp2nU9uxbnF2YZ7UpPPdtZvGwp++OOPBJly78PP5zLAuRY5Y7Deve++KzTcsKRhx9+evXapTM//HDC+CFI80npmg1V0UmjxpXFnFWLN9137z0r16zv3af3lZd/s3/XbFSlNZ6TZkNq7gWH9t+sD+c98tRTTl6Hq7/7vSNGdy2rcZ9/4oVVixcmQlk1rrNwyZqqmh0jRg4go8mTjzz88DF1obzaiMNki1tuf2Tt0kW9SoqPPmoS3pTX31349wce3lZZ861vXXbspP6byt2bbntw4ZyPnnv2xdGXnunlhiDaREAEREAERKC1EMgwIKwHC4s0hPO/vM59/MWZFVH37NPPvPC0Ce29nu2l5x137LSjsttkPfr8nFCWc8oJx3z9vKlF3uSADdvGYUAwohYLZRF9/ebyytq6AYMPw1DAaCDRrVXu8lWrcnJyunXK52Rt1NmwaUtRdvYXzzrjpBPHssKCGQbzPhnxwppFO6JRhk6IMm/Jynh2YcnA4XNXJR6+/9H1peumTp40/cKzOhcyR4JP2Ru7xAtoTAjPkk7eOY5jde7CTxfVJtwzTjll3NiuiN8jO3TJhSdWV34eDwde/o+XrMzKCQ8bPpA0OrXJ6dDGCLC5zn3oXzPXrVjUv3unb331/N49s9dVuM/OeGdrLHz+RdOnHt2f6aKd2oe+9MWzbl6ydMuWbamaYgTQJgIiIAIiIAKthECGAUGpk5oYp/3cJRve/2Tl8JGjzzp5fNuQUxQ3dkBd2OnfPa/ccT5dUlqYlzN2xKASb7YB+j5Rx6BBqLBdh+yCXPY+XLAoFg5PnHw0xgSKmXTLdtSs27xp8JBB6GAyXrpyY01NvF1e3lEjBnf1nAcVzJqsroyGnO69+zB5s7LOeX/uIie74ONlpY+/8HJ25fZzzjr77JMmFOU4WAOk4FkPyGwsHk9wc9esJucUA3rFXbtlZ+e89PIrie3lwwb1792/V68uoQ6FIcQrjzkfL13Rpm1hcXEnohAeM6I65jz62BuvvPRS/+KOl3/tnNGHtWde5/wlm2YvWVERSywtXX3LHYsLEnXRUF5ZtRuLRXNyPavKZKtNBERABERABFoRgUwDwuvEm/ELtrkLFsbjifEjBrcJh/K9VT702lmPwPsS1m11N61ZP6h3pz6dOuZ6KzXwByz6eH52OFTcuZhVAMxG/OTTZYVFbfr07WLdD6T83pwPa+OxIYOH8EoGto3r1ldV1vTo1W1ASRv0MHZGxTa3unxrXig8uN9Azuyodrdu2Mbsy9mz34sm3GmjBp9+8oROOWbYwuh7/vc0PzMHSY05EIhnN65gAOFmmDhhwjsffPru3MUvvPLam2+9nZebM3XikeeeNS2c5Wzb4W7bsfXwYQNyswwEcifWvfc88+o77/bq1uXnP7qyZ1GIhSeUFzdGTW0iPz/rvffeyUpEsxNujLkgoayC/OyhQwclszQZIpc2ERABERABEWgVBJowIKwWjiacVaWreTdUtzYFRREnB+2KkjavgTSKdtnStUVZkZIO7YuLcrkU817TtHF1aX4k0r24CwsoqmvcrWVbBwwqide6kTwzwREnxDvzloRz8nv17pXnvZhhzbpNvOqhZ0lPFn9iAmCIbN9SvnHVyrY5OYP7lGDFLFm0gbWcWY7bpXMxL6NcuWLFnAWlbUb1yo8YI8ZaD9bhYGROWQ8I6I/EdOuY/T9Xf/2tWUsWLV60ZNmKpavWPPn0cz1Luh9zzOB331vAi597duuCPwPxKuPOow8/9/rrrzOZ49LpF/UoMkMkCIZhsXrF8tys8E9+cM24gYQ1+QDBGCiO09bzW6SoGESf3YYB5d2bNBBNCJOca9rEFZ0SARFosQRMA17fRKYV01zwNtP/8g9SJ/VXBHZFINOAsGGpSdloxVgU/V23tSzbHRSKMKTAPP/szdtcpyg0d8GccLS6T3HnTkWm2qGVVq/aXrl1S7u8nIG9e6F6P16wLpKItc1v0yYrhGWAGl6xxZ1XWt22bce27dpxuKPSXbJ6Q9zJGTFyNJniZkDtl2/Z7NTUDCzpWdzWLPtcsGBuXd32CROOufDCLzz/4sJnn3rowX8/0anvNwZ3yCPN5ObpzdSBJwpPAeuaQ876devbtu/QMT/3rCmDnCmDSre6//2rmzauX7NtezkukPfffS8/O2fQQEZgnC3V7sOPvPDmjDd79+5+8VcvHDWgHTYCBcN+MmaEW5MXiZatXtF24Ih8z3rA3GGqR8WO6ux2+dnGWuG5a/LhrJfrgO+Z/D0nTLKlQHwDNTNfzn3WkmaKpGMREIEDT8D4adMefpoG22zRUNi380VcM3+8UZNx4CVTDocsgaYNCFuHDhs0YNb8xc/OeLfvYf1HH1a8fvOOl159df6i0i9+5Yz1G9bxJuhevXpGqJWMboTopi8LRWt69e7dvwcvguK90aHaSMEna8reXrBtQHHbt95/77X352/aXj50eL/OxW3RvmXb46vWbQhHEoOH9sU2Yb5Cnet8umrFtprqaSNHsACEbd6nizg5dlj/Hm1CF5w+dPO6Me/PnX3nvY/85qqv2QGDBjZzUi+aoQxsEdK8719vZGVlHX/CsYcN7MCrqOYuXra9tianIL9Xvz6Vde6nSxfltWnfoUMJa0HveuiVt9+Z07FDyQUXTe/TO39bhctsDN5D0SYvUpTt9O436LVP1j76xH+K27Y/enTPmlp3eema5198oUNRwYVf/mK3Ir6iYd7i/RlvpjHg6ed/62RoynpARINMmwiIQKsj4LXTTZfaNBymEVbj0DQfnd0ZgSYMCGs9YBic/oUpM9/7YOmaNdf97g/ZkXhNbW08HunTe1BNtG7L1rL8vEjvPj1sjePNjOtWrch2Yr26dmbJJnMkD+vfLT8vf+3Gzb+98ea8eJ2biwcj0iG3oHO7wg5FoZyIs6OisrKqom/P4i4dk151bIWlpatYWTFq9HDGStZvjG+v2FZYmNunS7u2ESc/Ejrj5BOWrVw856OPH3/q9a+dNhUJcQ8YhemZ0r7hzA5DDDg55i9ayesfXn1rViQ7kkjEq2prw/kFxx8z8chhXWfNW11dub17jx5dOnZ6860VL7wyIxTKrqvZ8uP/+XlOqCY7VJcVivXr2f2H11yd37XdMVOPefvTFRgcf7rl1j/VVEbjWCPx/MLc00/8XG5hrh3TaQZPnnn6aQh4x6aHgh+701A0H9POaoTOi4AItDgCXuNAW9Vgs40Bv143kL/JprhBIB2IwM4J7NSAoMJ1LQr98MpvvDjz3Y1by6JujOWX3bt0GzVkePv2uYePGc70hQH92psq6H0PoqS40+TxR06YOL4gx0wOKOkY+s7Xz3/13berK7YX5mT3HToYxVa+YcPE0YOxBsJxp2Ob/ElHjhnUp2eoltmOZj0Fgyb9+vVt16nbmGEdMUFQ5JPGDucFU0P7di1gzafjjBnY9qKzTlu0fC0fiiqvcdvkmWkK5IWoiGGqf2rfKvUr/uviDz6YV7pmfTQWys7J69Sx/bDh/caO7EPiHQsiZ544rXf/wV07hNYW5J72+eOqqqOReLwgksjJioZZYVpd2b1zxy6d25Fs/26R71xx/qsz3964dmNVRbWTndO+XX7fko6Tx49tBp6H+nvLZ8bCbizixLLCEfbMS8H4Y6hoEwERaNUEjGO2IQDTbCb4DEYk5tJYmMumMdcmAkEI2C/B18dIpHVb6cQzEMDvljpeSenm5YbaeHMCGD6wyzKZiMCcgEIzYGE+jcFrK5k+SS3MZSzNi7uh0q2udnE5uPkhph8S2Oh776sZMW/mYXbcyePjFN76SWZLVnl2AG93yAubkDtiDks6Sd98JDNs0qwlbthZsrKifHu540Y9jz3jJ2yMmSQoDKY0vx3aFvXq05WUdzA7stJlKWZuroP8DPIhc4GXFK+btN4LykIxeaUr774oyjKjERQB04TAdrJnXchAwIKpijrROheR8nNDJI4hQmr8Q9SUAWP2druRPutIke0L0x89+cjC6759EmQab2TK4tg3Po4vWVsRc+G3q41prHzmY9XSBW+/8WIiirBkggHROEoTpxoH0hkREIGWRKCxAUFLSXN+xIRjhoyaEE2Y7yzTBNqul+eSMC0pbUiuu21k/05j++fRADHfi1NsakRaUt3Yl7J4uq8+ATQONcRUDyoPShQdWRRycCpUOyH0N2MDvAEKdevtOnGWM5oEiBXCfxCh8+vpXbQ432bhzdPd80NZxPcMDhOl1mXwIivi1PAOqXCO8VWQh7dRO1n3wYIOtCBWABMwedNTmyzSMO41krA75lNervPH31+/bhuzFDyzOcRXrKn5psON8Pg5WDpx5PDBl33zEjNkQhGwApAn4tRFnTbZxojhq1oc8jBgOlBaOumYBe0xL7LN4g6KaREY0RLGnshGWPRzwuFdVNGIecUWAYw+d00iNnevECajJjfC+5vd55d/3kPrX9nXnXi8Lj8vu7AgNxFLhM3Dzwa2jG2nQmaE06EIiECLIcBjn2wS6ovEN/dyaDHiMfpluIVp5NQ41NPR3p4QyDAgTJ88WYlCpmNt9TtmhA1H75+r6E68Amy8iRLtzl9jynqa3gSz1ZDo3lemzHXPEOE3lJtMPC/PLgv1rvGDtUFSWA9ecuYsL2pwXJtpKhBOBhefWzgc/vpXz6vNQgTPgDAZGmXMxkxMPk2bG3G7tS3s1MZYD2ZL2SghBkq8kNZqYd9ewe4oTAlGcAprCRhZvT1GWJDEWAz8ep/xtNmlSsqDacLZWF6o5I/xahiLLGngcBYJzS8Om5BTy0fwIkzAbCJiMn7AP0yS6lLS/6wLB/Fii5BpLfx/6Qk1FjP9qvZFQARaIAHTziSbrWTpaJzibjZDt97bbsK0ri2w2CrSASaQoaMzc7PaJkPnpDRy04HTz/oR/R3/aoMz3kHSuPBDNFKsjHWYIQrHPWbcsLhvatSHN91tUkI8/hkXSNolu5ueKfv8sw9Nxnkb2H+e7FU/jN3xrzZO2c/WlogHFadF6ca6WCKb92oj5Mo11Ru21/Iyrmo3K2ZfquXH2dsdcuFrnFHXjdKd4OsdBga/GWLubeqKJwIicIgT8FswWw76GzQajPqaNsKs3jKHXrtxiJdT4h9EArsxIJqUJKMiNhnmgJwkY+p4KMTKh0bWtMnQakseBQLusT/Ojtqky0vsBkUk2QbHXtjGZ9KTSO1jHYQXLVl950NPrd9WV+sU1MZZjVJQEc0vj+ZFw/k9e/efMrV3KvA+/zXfK+UF24z+4I7EfJL1sM9IlYAItFgC2AysmTMD0LSq1gNh9uSKaLF3fP8XbG8MiP0vxR6naAZLGGVgnkSjKOlqPn2/QcBG0bwEd2MMEKlRvCZMigYZmQMTj/+zC9pnFXaKV2+Ph3LCboEbzY+EeTl4XjTKq7Q2btrEWEyPRnH34kQo4TkzImb0h80WyutU7EViiiICItCyCTC2Sk/MNhSuHVzloHFT17IpqHT7RGBvDYiMarYbFbxPIjYZuckMvZPWfm7yeqOUbISGpxvH5MzeFdcm1auk6PvfOZtJD2bOputsLnOratx1Ze7i1fF7n5jxycfznRP2iwFBMcgwXVgv/wzRGxZWRyIgAq2WQNJ6SJZfLUWrrQh7X/C9MiCaZU2z2toTzcpnTzRE0+gcQTNK0yiISaHJkw2TbuKI55OBBOIWeQtHmZXAQccunAgN7+UcNSby2JPVvLGhiZh7ecqKya8tU0bJ9jJRRRMBEWiRBFINhP1r2g3bgrTIwqpQB4LAXhkQzbiWWZu6oWW9K24U5YCVxiTM/xgI/AN06nE18nDGvHwiWut93HRXEga5lp5DkHgKKwIi0MoImMaCdRjJ9s+3ITKnl7UyKipuMAJ7ZUAEy+Lghz5gJkHgoiRtCOKly8TDigHBGY04BiaqCCIgAvuHAAOq9XbD/klSqbQyAi3SgGhl9zCzuLZRyDyrYxEQARHwCTAfPdVS2N6N/5s67QfVjgjshIAMiJ2AOQRPZ0UiMb7AHvFWqhyC8ktkERCBg0YAMwETIs43AFjzbr6dY+wGtR0HjX/LyEgGRMu4j5QCf2QsHEpE+C6Z91ZvU7CM12W0mLKqICIgAvtGwBgQ5i25LP+207vxQJjjfUtVsVsXARkQLeZ+8+jHysvLVq5cEY3VeUu8aQvslz1aTBlVEBEQgf1FIBSK5Pbs0b9r116JBLMp7btr8UrYsYz9lYvSackEZEC0kLvLQ8/rtbZsKH3hmUdqq3Z4H9Pi5TDqT7SQ+6tiiMC+EWjsjeR1tfknn3xm7+7da103buwGmQ77xrj1xZYB0XLuOS6IYUOHjv3Fz7PNR7tsf6LllE4lEQER2AcCmfYBb9mPu5HqulBtLObyXUQ2+R72gW/rjCoDooXcd76GU5fghfaRWG08lOCTovge5H5oITdXxRCBfSaQaUCQYMIJJ5wszAi+ccwkSt56x6cx9jkjJdCKCMiAaCk3mw6F6UbQq/CbAPbkk2wp91flEIF9JZDRGpg+BvMgzMiFaSkY4yCAPJf7SrlVxZcB0WJuNyuwaALC9vPg3uwH71s5siFazB1WQURgfxJww07yG5xec5FhXuzPnJRWSyUgA6JF3Vn6EJ7/wfyoPWhRt1aFEYH9TMD0N0iStZt2trXfdOznfJRcyyUgA6KF3dv0eVB6K0wLu7kqjgjsJQHPOMiM6w9xNnk1M7SORaARARkQjZAcyifSvA5mN+3wUC6VZBcBEdhnAru0EtRU7DPfVpmAcWFpEwEREAEREAEREIFABGRABMLVrAOzEItNL6Nt1jdJwolAsyEQMpsnjRwQzeamHFqCaAjj0Lpfu5eWedUhs35TTcLuWSmECLQSAoxfNDGEweRJb9V3KH3qVCshomLuDwIyIPYHxeaRhu1N8GU9zX1oHjdEUohAcyHQtAHBNCm+vWe8lk1YF81FdMnRjAnIgGi+Nwcfgnm3C+962enTne5m4G1yTiIeq6qs4CO9MiKa732VZCJw0AkYAyK9tfAE4J0xBQVFWTm5MXPZeC5NS0MPxAblwEaxp70odsFn6sJBL4YybGYEZEA0sxvSUBxjQ+z0Yc2Yv8JD7y7+dMGzzz9TV13pzYQwT79tARqmqiMREIHWTsCs4QxHjj32+AlHHUM7gfFg3itlPsmX1uR4BgUBk6d8k6K1w1P5kwRkQLSYqhCKJxL9+g04/+xzs0Ku94a5kH1NTIspoQoiAiKw/whgQGS1ad8xYfyVtjeyu+7G7q7vP9mU0qFBQAZE875PpgeAA5E/Zi9tM9Of0g7ZdRnOzMnJ79mrH9/ytk7HDB9Fw/A6EgERaNUEeBNlNO7GEny9N8HcKRoNM3wBEtu2GHPBa3kY3WjVnFT4nRKQAbFTNM3kgnEmxBPhSKNHuNE6C2M1hCLRGII3CtxMCiMxREAEmhcBM+vati7eLOyEaTuSbQvWA64JMweLrojalOZ135qHNDIgmsd92IkUPL7Wz2BdCmmheJztFf+c6St4XQgucNXMvDSPfUYoP7h2REAEWjUB61hg7mSSgveXH79tYZ+Gx2wmhGdBeHsyJlp1vUkvvAyIdBrNa988sAmnpqqufGtFIhxvJJz3QDc46z/d5hIH6jc0wKMDERCBFAHaB+8zWkl7wbYdXrNB62HbFs4l8kIVsdqiZG8l1eR4g6qpg3rTov6MMTm8o/pTqXx3/zclSiM7xVxIpPpEqcYtlZOXrh91F7mki+SHTz/p5VJfYi55AzsZQXaWg5+kFchfD2fPW2stOSSUPGXKmdrNSJXTJtvkn4yLNoMk6NSBDbqHstqkSd8Lv+eR6gWRAVHPotnt4UnAeRjPjcTzQ4mchuLtzc1umIKOREAEWi+B9BYkbd/u2l+UUTwcipgJEta3aZQVuy6zJlDkYSfsRzTztlnBkdzMuCtzsriaUvOpK7v9S57+5u/bmRmenquJJj6at3DL9orRg/v36tbFE4cIRk8T3I/hp5G+Y6/6UiZS4TPKTJT1WyrnLVhIkY49ZmyWk8gyiZtQ/G8TsVHSEzcXjHng/2PXy8pEsCdNfC8dc8huwgA0w0UudpHZSaZqDmxiJqrN2UujQX5+svWyrFu/acGiJfk5kcmTxpuwJuvMjTGqsD2fJMaBt+yfVThWgPr0MuM2PiaOtuZPwFSnhv+av8ySUARE4FAksHsF4o1phJl9yQskoq5T5zi1zL4KOVF2HA5DsVDYV88WQVO6bM/ghNCuJkPUbdQJr9paffcTL/7+zofW76gjIzM9w9O8Nn30mf1ny+A3mjYne5ieqw1GXP8fYte4zqzFa//fA0/e89SLFId8ycUGSI/bxL6fSlITW93PL7aBnUxCJGMReLNKktYDZzwzwshiE7Ca3LgF0iXOOCS0NTlS5+E/6+Nlf773iSdefos7YvinLqVrD85Z6exfD5eXoReYKETc800eiD1n9dmGNPddmwiIgAgcSAJ71M6EQ+G46/zgut+UbihPOBGjdeKxwvx2nTp1C0WyBwwY0KVL+2nHDOtUhIqr90vshdhWn3neDqPYal1n+cYdy7dUlzs5JQN7xrw+e1LdptQiOaYrew6NKk3l7V9ND8M+5+0/AmMGrSirWFsVnzLqMPrmsbgTiWSqVQI32tIz4aJxMPCHqampCyaS578xWKy/IekFSDNQbMpEQRL+mQQ82Wwx/ZLgSPDETlo27Fe5zrJNOzbWZU3tP4SZ9D4Wk0ZqIykjE2J40b1dY4YQnX/+5qXsH+1qRwbErug0m2u2CjUbcSSICIhAayVgNR8aaNDIIwp61UVD2YxWMGgRqyuormZdaPi1+ZXVNesef+Xtv/7mG+2zk5rM6CirG3fLzcywcBk7QQvWxJy6OrcwP5Rj44acDeW1GyujA4YMi4Wd7VEnWlXXJj8nN9ukbQYaTFwH44bX8qLbbCTS4QznCWD+hBw7oYxdwpfviGVnR4ryvcUmnAo7VXXO0tVr8T1MnDjeJBsx6RCFdLJTipniGMWevtnETXETjOBghYCoNupUVUfz87Jzc5xcL3OMIZs7xoHR5YiKPAmXYSLOkywnTRKekDgSKqsSvIwYArmMGMW9QaOwU03qDI+ETImIRVLItqHCXVhaVunkjDpiPGdskfEP1da60agbiYSKCk0ZIUn6FJQ0rCSkVBdDTjcvN1SQ4xl8HqX0wu1sXwbEzsjovAiIgAiIQGMCZkAB9Tj9/C9Uu2b8nMNE3InXudXVRplt3OK+8Nr7r7+9Ai3IMEe2tTgaJ9PkGZwZIafODc1euHrW/CXrN5dV19QUFRYM6dv72GOOyM0LrVizsSIa6jtw+L1PzVu/cnlNRXmX9m2Onzx+/PASskZnv/T24o8XfnLk6GFTjhyAakS2pRsrX3pjZvn28iumn43GXVq647lXZpT06eeGQ0uWLNu8qSwnO2vYgJ5fPuWYwiwTvqI6vrq0tCASGjuiF7oWRbtiU9W/n3uxLh6fdOSoiaMGmvloGdaDAZIsTzzEUItTumnHCzPeW7W+bPuO6qLCwjHDh3xu0vB2eaHKqPOfNz9ctnzFCVOPGdW/c3YIuyFUF3Jmz185Y/a8ko5tTjxuSrvCUHmNO+O9OQuWrirbUh52Ij26djn5uMkDS/KRB1vh3UVr35z10dhxYzu2L3z/w/mbt5Vn52VNmDxt8fqy3ML8Pv07IkB1zHn43y+u21ZRUVEdi8WzsrK6dy8+lgL0aW8MFMf5dE35Uy+80aPvoGgsvnTZsu3l5UX5+WNHDDrl2FGFe3zLZEA0WYsP5snGNXHvc/ee5VRFNsnsz8T3XizFFAERaBYE0hsHKxBNhPEOsPG7J+2FF4whfa87nvKEM18wlBeil83Vnh1D8+dlJ0IRrAf6s6ab66Vrc7FZpP96mZsfgvOvJuE88uwb9z3+XEUsjKkSTSTC4fBrb83qPWhon5KC5avXOeGc5196I1FXF4/GuJQTSSxbu6HPty/uUZxbEXNeenf+O++9061Xb9Oh99T/J6s3/euVN3Pzcr7p9ddffv/jB1+c6WbPYtwgTurmPVrOmx9+mJ2X/aUTJxKloi6xft36HsVd2mUb4Rev2v7rP9y8qXz7iOFDS3r3taXwZU7b8cqE9eM4Hy1a9/u//t+arTtq3Kx4KIfZlK/N/qQu7p5+wkiozV5U+srrM9t26jasf2d44YHYVOU+8PTLsz9ZfuqxEyKFoS0x5+Y7/vn27A9rEqGs7Pzq6lgktPjNd2f/+foftC8I4Rp5auYHL858770l67aVramsjkXdRO++PQeOm7Z2W/nIgX2yc4yRMW/pugef+U+lm+ut1g3H43wsaeHb782+98bvY1cR4D9vL3jklfecvPmxRIxxGqR3E6F35swpKMr7wrjD8LV45UkrX1O7MiCaonIQz6V9Kst/vvwdX449uZW44xJ428KJmHFUJas5j/kexfVz0o4IiECLJMDrJjPKZZzwboTVE6jJuFlGYdqKjM4nDUnyX+qC/WvGC3DveynaAHasnjzo/rqJRJ1bsGJNorogRMjCIvOZDVKP0JsOh/JyHWTJZt9kR2yTLzKg1aoSzlOvfnjrv17IL2zz5RNPOGnKuMKC0AtvfDTr/dk5BXlVde6S5SvyIpGRfXpNGn/44MEDFi9b/5c771yzcVvt9orc4tzFZfGNZeU52fnDBw9BtnjcSUScdZu3ba6oOfqIMah2cnx/UWlNVnb7dvlHjx5x9IQjQ5Gs2x95ZvnijxetW49uZluwYm1lbd0xw4ZTkJnzN9x3/8Obd0SnTjzq4nPP7NU+RLJNtqoYIlygFPNXbf/jHQ+t2h6bOnXqGaef0raN89QLi+9/9Mk7nnp16vEjc10nv6hdJDt71epSNz6J2RWVjvPiuws/XLamsEPHM848pTrhXHfDAx9/unDiuHHfuPCLHduHPlhY9be7H1y7dsUr73x82nHDt8WdOYuX1TlZm7duG9Sn1+ABAwqK2nTo0qN0+WonWjeyf3/uKAUJ5UamTJk4YvS4AQN6FxU4Cz+tvfue+7aVlS5aWTa4V6d42Plw0frKSFbXzkUTRg+edPjYivKq+x59dvO6le/M/fi4cYdxS7AhdrvJgNgtogMbwD60qTx4lprcdnY+PbAbCbtlm9YtW/xxLFoZcqnJbE1W9fRY2hcBEWgNBGwbgo/f30KhcFa//kO7de/rhlA69P65mnY9FZBL6dFSp+uDEocw9tcuEezYqbub2/1Xt7zUtU1OTjjRpXN7r1cTZ7Vnbk6kU7v84nahk48fnufZEH6CtFlry93HX3mrLpx15UVfPWFcryLv2leOHzP5yJFFbcKLl2yrqqoYMeiwH13x5fZtWWDq9Ckpuec+zBKzrhT7AJ26ecvW3JycPj1ysRVyIk55rbN2+cq8UHjS4Ueg7RjpX1+6tlNBwUVnn3XipAG53qKD/5SUlC77FEcHFky147w+e15NTn6vIaMff2PFE088nqipuvCsM04+9ogOGEPW2PElTtvBJ0MvvjbuzHjng9INZeMmjLv0olPbZzk1jjP5qEGPv9huxdZ1Wyvd3kWhkm7FWeHwlq3/v73zAI/ruO79LrDoHQRAEpW9iqQoUaIKJVGdqlSzKMtFsqzI8otfku9z7C9x8vI5730vcdqLHcd2nDi2JKvYKlShJFoS1SWKkkixiF0kSIIAGwCCKETH7vvde3YHF3cX4KISWJxL8O7M3DNnzvxn7syZM+XWd7AgIt5TWdv18htvwfiPv3nfhCzvW+/v3XfocFFh0ao7b5uUbS0EWTA3tXh6WeXRA7WNjeSxvilQV1dXmp9zx80rrrt8VpLPUuMI/7ufvpLhi7tw0Vyr0Q94pk0pePCBu042BaprmveXN58+7Y/3xTPTlJ6U4wsAVKDiUFVJdu79d9916eLJ6AoJntwtOxe+VV1zqiXYeTgy16tTFYheoRmpB/Jik5q8gPImul5jQ9OXUPEsHPJ0tbQ0+DsabFtdRFZ9cdBnioAiEHsI0JpIg2I5Qm0Jtk9vXLLH384hDyz6Y5ch/0IP+42B3REH2TPvkJOb7/dl7attPlzbkOz1+w7Uef0dHCiBaYLDdRM9LZecW7Li6vnO5IiFDePzLyr2VFVfdMG5l9vaQzKCsJnB31WYFc/uyh279+BfOHd6SZaVjza/xwfLttMT8koS0zMYdlfXnWo63bRoznRUB9u84fG3BWqOHMlOTFy2eEqqx1Ne0eBta5+Uk7pk9rRszvBGpcB+33iaZYQTCybCE6vDpr0HO5Iy137w6b5dewrS4v74vvuuPa84wxdkCI1TbIOUBLa0BT7auDXOl3j/vbdm+qwBHH1zZponLz+n4lRFl9/D+onigglJ8b7TzW0nmwNoDE8882LlkWM3rrju4nNyW9s9m7duPd3a6qlp+8XPf57ob/F7vZ2+5N01TV3erswsS6HasmUPppUF00tWXDozy2dtoyVppo+qyvdPzs3JzUy0DNABz+e7jj7/6traxoaWlvamps6WNi87ZUpzcssmxbEY80hVi7ezc2Jq5pLpk2BqKxCe5KS01q74+ORMGX2arPXhUAWiD3BG5JEcFMurRy2wJhYHfjHHlptfdM11Rb44ah0GNYvjwNlpTEVAEYgtBJzNAf11Z4Cp8TgWEqBM0Oew4sBqNZxE/c8+nJjUP7B/T6DlyE2XLLrusjmMd9mAsGBmHIYCeNPG0W0zr8GdP+fFo507dwe6Apedt4hejViE0CgmM+NhD9Y37Njd0dk+e1qRWAIYMW3YeiDQ1VVQMDEpJ6Gm3bP70KHTHS0XX2Ido8SeT7rVMnJIMgAAPnhJREFUxua2g+XlWRNyxNpRvn9f2+nGvNKs4hwv+gRs66s7m0+dTEuIP/+c+aRYXhNgp6g3MfWDbbvS4zqXzV64ZHFxSkh7QNdCINEVnJLjJuOg19LuOV5dW1ZSWpzhtbQfW4auVk9b06mSCZkFmVbg3OL89ITEmlPNB2o7tlecfuO9DWVlU6697CJ0i6r6roM1tSe9nQV5+U3trbaBxNvZ1ZmfmZY7KWfm1BJY7ti52++NKynIyeMxGLJSlYUaVR3V1cfmzpmTlp7M7tb1G3f+6skX6poaMrPTSopLzy+ZcepU21vvvltYXNTRYe1K3V3+RVvH6Un5xSWZ3hQb55NA0Xiqxd+eXZBLRqK8VIGIEqjhIqOrR92zNL7Qe2u9M+4a6vZHksZ6N5nza+2ylsPgtuNYLYNeioAiMO4RMA1BsDFBgbC2X6IvWNOo9IsWQtE0NOFIEkvOPMDBH61ZwNuV6G389lfn5iR7EwPWRgxLabAbOdKRP5tPd4KoHdjhj1RVJQQCBVkZjIDQD4QhLobIzA7sOnh4El1rdiaNpFyfb9/t9SUWFBUlJHmbmgMHKiqIMmvWNJLAIMF2x53l5R2ewLxz5tEpNnZ5Dh8/EvB5pk0tRZ+giST3J+tP1dScyEhOLJuYDtuDe8uZCMhM9S2Yv2jj1s07d+35YMPMOy6dYa3eYLWI9clSODlyEJJEfo/W1LS0d2RkpKMhWQ07Z23Few4drGutq50zJT8Be0mcJzfDm5GWVlPTtP3A4Q8++MCXlMrOi2lF1k7Vxpa2uqaWlOTkf/37P8myESM7pMcdzQPxLIiOHo2Li588MV86b1KBYPPWbQGvv2xqaVqGt74l8MTqV2pb21betvKGay9Kt/WMZ17YnBIfN2/enM4ET3uX59DRqg5/Z2nJJOGJ7nLkhL+isjwjxTt1yqTo1YLoKXvipL5BI0B1oei7PD5OEKNa2F4riCIJfnqTWhMMNw+tkF4uGgI+rGfZJTFq+K1P5PBKwsLm0kscDVYEFIHxgQBtiDQj3Q2CdSKANaZmyEEfREtBw+MacXSPZcLbIMOIETCWf7lghJsDC+ICTfRcjPIxA8AaYvoq/iw+1n8CSBeX/FmrLEk+OSGeCYujlUe8c/KgsIg8nsrq5vTM1L2Hm1raOwtysnMyLJbScR48fDwhOTUnd4K1JNPrOXbsREpySlqatVUB5aChNbDuow3t8d7Z58wj6ZrmQEX1iVZ/G/oEnCHp8nqrG07VN9WfM3NqLnsuOjz7d+5KDrRef+HSe++54tW3yn7/+yeef+nVi+Y9XDQhkR6edO2Nq91ZsdjYl4iawnrROO/hI0c4oxMo27ye5rbAmjUvJHW233HFstQ4C2gUo/z8/PLalpfXvVVTXX3+3HlXXjw/1S4DX0KSz5fAYRoH9jYsnZWJ1mXLae2MhVVBjvdA5enWlubklOTSkiIeoVdxB/At23exQGNi0SRErKomm02FM8puuvlirAtcza2BrVs+I38lJYWsyWhsDhytren0dE2dVmZpOYT4PW+9/8Gp2qPnz5t6wYLJZDPKSxWIKIEaGjKpDfLGUDkWzC5cv2X3g9/7/ZJz5zNpV5CfPWFCVkKgtTg/c0YR5jTr5eKtiGdjMYqv+wovZQ4wEeuFvPZijKSu66UIKALjHAFrWBHqj0JQWCHWZR9fJA7bH7xZDRUnI9jjkJBZVFode+xOv9XYxvL+6q74xBargWKyImHH7gM79x4+XlNj7bNgNMNBldYhzhZHi52TvWWVCApAMB58s6dP/eDz/Y+tfrWkpPT8udlVJ9qefm41pzX8+Xe+s3Pzlgx/+6yC/GIWL9i6SGV1oKa+PjclYX7pRBb+oVZkJaYfaq5/dPXbt9x45eadW9asWdtwsiU7a0JufgGqzJ6GVtZkZKQlL5pnHfCAeZZljOWHyhm7X3ThEjrjlgTP9gP70tOSz5lWXJjk/fp1U4+Vn/v+hvV/85P/+Je//ZN0ryfdyo211sydFbhhzPF6szOTM9NSj544+fiLH3/l9qUVx/3//MtHjhypPGfOlPPmz2ReBtAY2M2ZP++tHfuqjx9jNcR3vnFXQbrXbu49Bcne0uy048erf/Gfv0p46BsLZ+Ucrwuw5/PVdW/eedttt15z7hdHqk+1NOfm5ZVMyQZx6RVau9g5Up6UkpidnQz/5q4WzpY4frTuwKGOnCzf+vVbX3x5bWtrW1nx5LziHLr8gyeaDtXWxqck7zhUVTS9pKGx4/W1b2z6eGOa3/P9e+8t8XpQO6LUDKIkswDTa6gQoNSpgtTX//PdZS+tLfl8x55N27ajCLa2NXd2tid5OuLbG7778FcuXDwdAwUzguxWthdIOtPv+SY6n3S7bRqpYt2B6lIEFIHxiUB3b917/l0NC7sgOSXBHRFtgWHr9/7qn+iK4pIyu+J92FAtHSDgS03L9vmSCifl3nrt+SmsZAwZGXjck7X4QmF2Z4jZ/6ZrL/ts76Htew/+9f/9x0RvZ4e/PT0lefH8eRPzMivL96UFOqYW5CXYcyKnA54Tx441nKopys+fMTk1lQMnvJ75M6YdrK55fd26N99+zZ/kL5pY7K2nE83MzshA4Pq6Uydrq+dOm5qRaM+ncMhEe2Dvnl2eztalixchwsGq+saGUxmJKTNKCpgyYJrj3ttvPHascm/5vseeWvvgPTew+1HyEZLbyrZcaA/05xhHbrv5+t+veeOJZ1984cWXOru6OpLSFs2Z8Y17bi/KCS5MA00sAfHezuS4uFUrb5ySH0eHzSQCEhblxN1+/VW19WsOV1X91f/+e46PDAT4rog3b2L+vPnWmtOjx462tTTNmzgb6w4yiBiHDtbQR6Sn+komTaBHn5yXWjopv7zi6N/89V+x8SI+PjUrK6e9uTl/QibLObnq6hpO1jXGeROefmb1s08/RXeUlZo5s3Tq1+5YOXOil44JtS/K9XjIpz1MsAaMwI/9mljpUPDY/VhFTDnVNgYOHA+0efzN7R0tzW0+akxrw5LZxUX5iUyhvbmhfVd5dVecaKj9ldHUsf5GVHpFQBGIJQRM2xN9prA9dCV4Ty6eP/niBTmJ9hJIiYylk5V6b398oKbF60tNZwMkh0x42Uju8WSlp6cmxxdP9GanWKsU6c8I5E+6urC0pfcJPqQvauJrF7WBT3dVHDlxoq21OS0ztawgZ1ZhwfTCzI8+2VHb1Hb+7NlTS9JIiaH2oeNtH2/fMzEr6/IlZWzHYINHRU3gjU+3H6up9sUHCqcWFhcWVZVXTshJP/+cUobe+2u6Nn++dUph8QWzLf2AKKyKeGfj5yfbOlZccV6m11Nxqmvjtp3MiSw/b3panIfTo+sDns17Tu6rqCzITl+2ZFoG9gc7L67s4BVzCq360dbAx9uP7NpX2d7akJ2TWVBctHhWUUmGNw8LS8D6Ulc7bK0Dr75oC3gvWTh9ur2M0dpHiwmEVZ9+z57Klp37Dh+tPdXYynqI+OJJeWWF+XOnT6AP2LGvpqKqqqio6KIZeXhJFBwO1rR8uHVXWqLnkqXnpSR6mvyeLw7Uf7JxS3XtsazMtKKiaZMnFx04UD59evG5s/JRIZ56aetvn11z5VXXTC3KPnnicGJifGnRlFlTpkyfFGctDRFrUFhRRQxQBSIiLMMdSGWxZhlQRflD8eSPmid6PnWCtw41kErJIuH9lf7quoB1ptuALldFHxAPjaQIKAJjHIEoGwJaJbsnM7mN97YXT0wu4yNZhoPtkCYLw4M0YtxFUeDOBQktGE2ZeK271ebZz3rceobaegk9ImzbUQjgEBfkI6Zyvu/ASJ0pAFInJgSsdaAfxSZhtadxVsRG2lI+f8V3ImyNR/p17vzRxnLhgAkMiUIIS9C4IxqBJC1sRXiJQiDJbd514mTdSVZQEgtiBt5QmgvjQ1Fe5twZpQl8/Nvmwx4QGu04TvazJURI1CnLcmMLj9j8kS56TLptULGeYW72xKGZkQsLBBJjn6rXg+rGBTG/MBcURXuQEB4RBTcCc+GGjOgdndaGC3DgEdyJiAMzyI9+svrTz7b/04/+en4ROzotYpNfaGBi6G1+fd2kXPqi0GdDioCpdWj31ukt2L0oLdEY5JkUM4FcFC3nhKQnMpcYJoXhFPbEGRAdlTOGuhUBRWCcIkAzI/2T5N9qpAI+jmSymh+aEp5ZHbVFQgitFnf88idxeSYUePnDA5Per57P7M0axIKz9dWH0AURPiEVnnhIRUjoSq0tZ3YIHSEjbE5noheEXv5E28AtvR2xcFj54BhOL7si4vDa3LrkS1LSSUMPJVoFrOjsn/rtb2qa+MyWlSaPWD1iLwwNisjC9aULZpYVr8pLR5mxYqUw8cOUjv2cOPyxrBI/cVFuILCY2D03MgfpLMGtcC4CWVaJX7zcOe+BySSiCDdLDouYSRUmHVBUgh0/wpMdssyKkIDF2n2dbg8crzw4IT2RqROeJ5IRe+ctScCTO19lD9gIuWNG8gukkZ5o2DAgIIuR7TohtclSDGyXXTFDKdqlGFQ2UTKY1Ah0SIUJUUT1K2yiIlUiRUARiHUEpKWJPpesCrQmK+iS7CYr1LlZLZa1LNLa1giz4DMHW+u51XxJvxhUOcLJHDGMEyohNI5Q82hrIjZniGFvj7wsYtmwbgfyRQ42aVq9KdMTwcvqHem7ZTEG9PbWD/hweWWjqD8+YE3BkFPbkIGBI3hZnbE9xoP8gfu/0uJNavdxFDUdbsAKd2hGhBRmJGWlWT02/4NZDqbCRDQWhXhMHZZdxM4gd2nQLQDlkoWmoa9xEgYBT4MWAjsDmCVgRSDbQUWZYPknZBbYbMm1CsWSHU+ntd2Uy4LH+sVjlwjR/R2dqQmdM+dOSYv3JGDxsAwW6DP2ZcWmuDGCkIiBIfgw4o9OYUSEZfgC7ZIMsu9224XdI1FKj8Km6h056q+vZxOG1LceNC5PvPXiEIWFl6b0o6oELj7qVQQUgRhFoEeDgMda+kdTY9vPzUDYkXeako78vNTJ+RYZfZTdUtFz9uDjoO92djdC3WHRulxxu7128tIXCi8rC6FAkZ91Zd2BNpG1pT0ksD2GN2JAGIyMWmD/BfvgbuY2Bb04/Sp3/syjkNP6hZHYKkiqWwEJUgi4QSGkHSdVIzVxXZc8IrBbPpteYhEIE4uppRNYCoTkzioUOyb5DXHowVuit3cGTpw4mZSUnJ+LCgF67NiwOg7rssjpdiCEa4+49uMIN7VARABlOIOcpdLt7naFKlZPGRy6bs8HTp8f1cE6CwJNNFR/grXUSaVuRUARGHcI2LZzZzNjIWBvHJCeSO4QmKZDIOpuShyQufk4HnU7oyLqJu/hcsXt9oZcoV+7lzMe2yc9tLP766nudFPbSRqvpTqIxwQZmQjBrmCZF0KXCyaCg2P28Mii0IQiyi9UEQhDNM5Hxu2KIrIy/2IIrNi2x2QkxK/Hr8/nnVI4oTvIaA/BoCB+3QR9ulSB6BOeMfWQOTI+bpvAiSo0A+iReikCioAi0DsCGB6sI+esXXvWKN221kMd3jn2zuIsPenRaw6FDH0w5FFohD4UKQ0pjz7EHtJ0emWmCkSv0Iy1B4H4+LjGhobyA+WdnUxinfWqNdbwU3kVgVhGgAYhvE3wT5kyZUJeHp+awAShjUav5W/mBITCAjIczF5jx/ADVSBip3B9vvh9+/f94he/aGpqip1caU4UAUVgCBDAxODu8xJ88V/5yr033XhTwM8GSQwPEMjfEKQXQyxApqdVxoLKDWYM5bcfWdFFlP0Aa2RIpapSPR2LKNvZcBRF6tYXcWRVVBTESqIIKALjBwFW2Ln7PJSGLr69xyZxpj2DXaRbgeDco7BFlGGaSIyjaC+vdObRArJ/awWcsWPJrRaIWCpNtGKOPbXXQMRStjQvioAiMHgEwgbNtkKBYiG6gxm5DD6lGOOgczu9FqgqEL1CMwYfWNt3uqxdx3opAoqAIhA1Apby4LZPRB15PBAqOJFLWe0wkXHRUEVAEVAEFAFFQBHoAwFVIPoARx8pAoqAIqAIKAKKQGQEVIGIjIuGKgKKgCKgCCgCikAfCKgC0Qc4+kgRUAQUAUVAEVAEIiOgCkRkXMZyqK73Gculp7IrAoqAIjBGEFAFYowUVHRiclZMcDt3dPRKpQgoAoqAIqAIDAwB3cY5MNxGYyw5ac7+IpvRItQaMRpLSmVSBBQBRSAGEFAFIgYKsTsL1qfZ+Ey9mCHCDp7rplOXIqAIKALBD3kDRPBL0AqJItAvBFSB6Bdco5rYOmjO6+/sbAnwiXfrWBidnxrV5aXCKQJnFQGrveD7vfFx8fzax1ESopci0A8EVIHoB1ijmzTgi4/bum3r40880tpymnYhYH0q3sxljG7ZVTpFQBEYWQSY8UzwJa9cefvll1+hx9eOLPaxk5oqELFTlv5AV1lpyd1furuzsz2UKxQI1SFCYOivIqAIdCPgjY9PKSud6vf7Q40EbYUaIboBUtcZEej+Gufhw4e3bt168ODBuro6q0rpdbYRsDr/gKehMdDW1uUJnHE+wlpDySxGfHxc2Edz+s6Jahh946NPFYGYRMBraQ4BT7C1724GeugQfF0nLS0hI9VGoMeTmMREM9U/BIIWiJdffnnTpk39i6rUowsBWxcMeDoD1njC+mdd3a3C6BJWpVEEFIGzj0BwWMIXvUNtheoIZ79UxpAElgLx+OOP79+/fwwJraL2gkCcGCEsM6S9JsomUx2iF7Q0WBEY1wjQTBh1gVbCuMc1KJr5fiHgw/ag2kO/IBvNxKgN3ZpDsEnQdmE0l5jKpgicNQRsO6W0D3LXnd9nrSzGaMI+nbkYoyUXSWzL2KD6QiRkNEwRUATcCNhthVoo3bCoP3oEdBdG9FiNdkqH6mAaBUfYaBdf5VMEFAFFQBEYSwioAjGWSqtvWR1ag+oNfUOlTxWB8YmAaSR6y742Hb0ho+EREDjj5sAIcTRodCIQevX1e1qjs3xUKkVg9CNwRg1j9GdBJRw5BFSBGDmsRyAlW4ewmgD9LOcIoK1JKAJjDQFaCPMXUfbQMCTiQw1UBHoioFMYPfEYyz7WVFttg/1JDLsZ4KbjibFcoiq7IjCMCHj9AT68FzxLkFPohjEpZR2jCKgCETMFK9qDJy6eFkHPgYiZYtWMKAJDg0CYgoDyYB1ea59HaTUZdjJhVEOTuHKJTQRUgYidcqU1aGisr6g43NXVGcqVWiBCSOivIjBeEUApiKgXeON8kwsL8/Ly/P7Q0bUWRBFpxyt2mu8+EVAFok94xtZDr7ezo6u+vr6zsyM0nhhbGVBpFQFFYOgRkK/yhi2uRn/wTcibELAvewpDVYehBz+2OaoCETPliykykDsh74rLL/NaR1rrpQgoAopAEIGIDQJ2h66uQJff76XJCBorIxIqjIpAZARUgYiMy1gMZQwR8Afa/SyM4kBrnbwYi2WoMisCw4KArRdwc+oH1sH3+B1rH5xPh0UMZRpjCKgCEUsFan/R22oPLB1CL0VAEVAEuhFwf+nCbiSsYYchcegSJkwdikDvCKgC0Ts2Y/GJtAA9Woru5mEsZkhlVgQUgaFAIOKQQlZHBFsNO5WIZEORvvKIRQRUgYilUu3x8tMq2P4egbGUW82LIqAIDAYBW3Gw2gdbj9CGYjBYjtO4qkDEbMFrexCzRasZUwT6j0C4KdJuIiQYp3H0n7XGGK8IqAIxXkte860IKALjCwHXmMKlUbieji9oNLcDQ0C/hTEw3DSWIqAIKAKKgCIwrhFQBSJ2it86mZaT7UO2yNjJmOZEEVAEhgMBa+2DtXWrx+7O4UhIecYoAjqFETsFK6fR6gbO2ClRzYkiMGQIhDcMsu7BnrlwzWYMWaLKKMYRUAUidgqYw6OwQMTZRojgiqjYyZzmxI1AvC8+Pz+3o73j5Ml6PTfMjY76o0HAUiqsg6wxQdh6RDRxlEYR6EZAFYhuLMa6C+2ho6O9sbExEPCP9byo/H0jcPVVl95+24qEhATI/vUnv9q9e1/f9OFPExMSbrnlWsJffOn1zs5OlzecPmJIcdHkpUsX19bWvfPuRxEJNHCUIdBDT6DFSE1NS05OsqY9g0aIHgSjTHgVZ9QhoArEqCuSgQoUiIuLq6ur3bJlS0cHH9OyLm0MBIcYu59/3qLbVl7PwHHTpi01NSeffOJ3psSjz2lmZsa//PP/gv6HP/y75uYWlzecT0pKyv3330P4f/7nY11dXUKQunzZ8isu2vb5jn/4h/8XHmUwITNmTL322uXHj1evXv3yYPiEx7388ovnz5+zefPnGzZsDH86vkK8cfPnz5s6dZq/iyGHtBaWNWJ8gaC5HQQCqkAMArzRFdVLK5CfP3HF9TdaX8axv4Uh58yNLjFVmkEjcO01y5KTk3ft+uKFF9fBbMWKFQNgmZoCj2Qi3njjjW1t7S5vOMOM9LRvP/wA4ceO1XV2BhWI+fNmwmTSxEm33HJLeJTBhCxYMOeeVbdWVFR1dAxxf7by1msvvHDxe+9tyM+fPBgJYyKul4bCb6mDQwxyTICjmTgzAqpAnBmjsUJhz2TG+QN+rx/NwbJIBq2SYyUDKmdPBOLirC+s9gyzfGnp6dyPHav2RzdVFR8f12UNMXtchjFMrL9QOuLtQWp7IhKw6oaHRDWS9CazYRhRGPPUOOz6a/kMZ/NIHFHyccXCG5Q5ALbhD8dbCPoDC6esvXghwFWTGG91YFD5VQViUPCNqsh8FsdWGaxRRUgwbQ5CSIyd35LSyectnj9jeml2dtbBQ5X79h1av/6zjo5OcjBjRumqu2/OyEjDfeWVlyxZsuhUfcPPfvZ4xMwlpyRdc9Ulc+dOz8nJQoGoOHzk3Xc/3rv3oBDz0VZx0IPw5/K6GH7pSzecf945EvhXP/gOwjz51EsHDlQG61nAk5qaetNNV06bVoJdg4TWrfvw0KEjTiaSqZkzyrJzslgzsXHj9g/Xb7It506qoPvPv/vNvLxcPKWlRT/4yz/G8aN//GWXbfZg6ejFFy2Gz9SpJYiBiWLta++dOF4rMe+++8aZM6Zs3brr5VfelhCw+h/f/orP53v0t6uhf/CBuwW9K65Yet5551RWHn30seeFclzeKUBKn6xrQzEuy3/QmdZzIAYN4ahhQDsgf6HmQBuFUVM2UQtCR/tH31xFH5mRkV5dXUt3eMOKK758z81x8darytxBfX2DYYa7oaHJeJ0OtIc/+9P7ly1bkpWdWVFxpKWlZfq00vu+fsfs2VOdZFG6m5qa0VSEGAfpdoaWQRCYkOD76ldWLlgwm6/JJyUlIvP99905aVKeYV5UPFEylZSUdOTI8bwJOTfduPwb99/JIj5D43Scqm80XtLiT3Ri6O++64abb7py5swpx0/UdHV1zp0740/+533TZ5QK/Ztvrk9JSb7kkvMKJk6QkOuuW4b+tPeLA5WHj6GCwMrJ+fTpFuMd3w5LidBLEegvAvHLly/vbxylH0kE2to9XV283pGb2oiS2KT9oI/IRANHHoHMzPSHH7o3JSXpjXUfPvbb5zds2LLxs+1zZk8rKytOTkrau/fAqVONn3y6LSsro6ho4ltvf/TU717etm13RDmXLj13/vyZhyuP/uQnj3z88dYPPtyUlpZSWlrIWoctW3YRhV5/+RVLcbzzzscsinR5XTyxgmzduvvyyy4g/Ef/8MsNH29tqLcUl4KCCQsXzkHXQUf5xX88+d77n+7eWz5jehkZQdfZ+8VBaBjxf+uhL5Op51b/4emnX/300238zZ0zraSksKGhsarqODSu67PPdpyorkUjOVRR9fOfP0GWRYG4+upLUA5QQX7yb49++OFn73+wsaW1be6c6WWlhZ9u/Nzv97e0tLKPGQEm5GZv3rKzsLDgtpXXNje3AibmBxywSs9IKy6e9M67Hz/51Jqdu/q9e8Ulagx5e2sxAomJ8UnWdp9+NUIxBIxmpXcE1ALROzZj7QkNgPyNNcFV3iACjKTp5uk1UQ7EYn+qruG51a/xeNGiuf2C6cMPN/3t3/7br3/9LAskiUgHjGEfR3Hx0K8cpOde/fzr9NDwZ6C/1dZpUHFEYKZd0CHozpm2ED2gsfH0S2ve5Onic+cJTZT3xedaIDzx5EvGckA2gYv5DnQjYYJmwM6UWbOmYmu55ear2Jq09g/vGPooExo3ZKbN6E17GDdIaEYHhICugRgQbBpJERgGBErs3n3fF4eYCzDsDx6sam/vSE9Pzc7JRJ8w4Wd00KMzoTBlSlFeXk5ubjaWDKIkJyeeMWJ/CaprToqaIhH37z905fKLMJOIV1QWZFi6dJHhzFwG7vz84ESDCe/DkZqaLAsjZswo489QykKKgoLc/fsrCETxeuHFNx785qp77rklJTnpwIHDmzbtMMTqUAQUgSFEQBWIIQRTWSkCg0Jg8qR84p+sO+Xkwqi99mTd5EkFkybmRa9AoDqsXHnNwgVzfL544ca43Ml2CN2dtu3BMHTt+CicXMCj0pJC/gyNONCKkNOpfLgInN7JNh9Cbr/tOme4uHNysk3gvn0VmCXKSosIefOt9WL2ME/VoQgoAkOFgCoQQ4Wk8lEEBotATW0dmws408nFiO0YhJysq3eF9+FdteqmeXNnoDSw2aHi8NHa2lNpqSnf+/M/6iPKMD1CbDK1/qPPPvlka3gS7aFDz8IfuUJM9n/8k9+4HuF1TlKUlk5GWUFvYNHlskuXoE+E02uIIqAIDB4BVSAGj6FyUASGBoHDh49esGQhSwKd7PILcjHFt7a2VVdHa0JgryNbIWDym0eeQ3UQbkWFwUUJTuYDcPe2daI3VocrjrAFNMHnO3asxtBYn2zxWkefmZCIDmdadSfr2QyC0aK5pVWWcEoU9qc4+eDFREFEdnJetHTRnDnTFy6cvW3bHhd/J2fXI/UqAopAlAjoIsoogRpzZEyi698YQ6C8vILNC9LnSfHF++LuutM6aJItGAHr5CPJkdTGXnPH2YLt7dbayZycTIkSF++9bNmSUCU2EV18XF5DZjlaW1s7Oq1lkhOt/ZnmUYhldwiPzGWR7SdTXV3nLp43c2aZiXjl8qX/+4d/dsftTEYYVj0cp5tb4MJmCp+PNir4iN2YBAII2ZHA9PSUv/j+Q3/5F9+aPJnZH4ts2aXnM9lRVXXsw/Ub17z8FvRs+0xOYeVHkMnpptMETixg+UUwZLw6gEEvRWBQCKgFYlDwja7IoZXU9jf2Qp7RJaJK0xcCWAuefuaVe1bdfO+Xb12+fCkmh5kzp7Lx8sjR48+/8Hr3oDlYtgT0Wsq795Qz7r9n1S27du9jkcGsmVMwS0jaEsvEtbjYl3mKL1xKNJtDBytnzJjyzQfuPnGi5plnXjW2DYidUYKxOdfMdtXU1D3zzCucf3XffXdijTh2vIbOfkpZMXs3tmzd6YzoTLTikLV0NC0t9bvffRAOv/71Mzx96aV1Bfm5s2ZO/f73HiovP8wkBedAgM8X+w5yLiescnKzrrn6UsJfXLMO9QCta/uOvefMn3XD9VewslL479t/6OqrL0VL+9M/vf+LvQfX/uFdZ7rjzm2+ojXucq4ZHgIEVIEYAhBHDwur0Y6zj4xQ09LoKZX+SLJj595nnnt16QXnclZB4eSJ9Q2Nm/eUv/b6u+0d7faw2+IlnS53ExKewktr3mAH48IFs5kT4enBg5XsZvz2w1/FLbE4c1pi4bX+enrDGRLy7Oq1q750c1lZEesT2dxRd6peYrkkCQZ6usWjF4977tULlyxisyXrIVAdKquOrVmzjntvWeBE9t88+sxdd9wwYQLrI7NycjPr6xs7Ojseeey5G1Ys51AsDutEJA5+eO/9T9a9+aHwWXnLNYmJCRs3fY4FQkJeXfs2WzovvHDRlm07OayCKByU+eKaN6675jLWpSYlJr72xnsRMzsuAgMcYR4IdPntGhVBaxwXIGgmB4GA94c//OEgomvUYUTAMrAGPA2Ngba2Lk/gzBoB88rHjh3dunULQ7dIY8hhFFVZDzkCbHRkl2NlpdXnDfiiN51SVsI2y7qeOzsGzJCICMa5DhxHTdfTXz7IU1xcWFV1NMqdF/DPyswgGY6ccqU1aVIBm12Pn6h2hUfvZVMoiyqYmok+SoxRomLOnz9/6pSpXWwb7qUwA56utLSEjFQ766pjxFgNGHR2VIEYNITDxmAACsTppsbjJ46HvrbM1w70jR+24lHGisAYR4D2Ib8gPyszyz52JHJboQrEGC/k4RVfpzCGF9+R5I5lODUtfebMjGBLwE9ANYiRLAFNSxEYSwigN7Aw1+/Xz3mPpVIbVbKqAjGqimNQwjCRiVW5s8M+0RrzhdcyS0YeVgwqHY2sCCgCYx4Ba8qCJoPJTi+ra3udwtAGZMyX9HBmQBWI4UR3KHj34wW21AWbXKYz7e81i3MoBFEeioAiEFsIoDZEs5BFGpF+tESxhZLmpncEzrw0r/e4+mQYEdCOfxjBVdaKgCKgCCgCg0ZAFYhBQ6gMFAFFQBFQBBSB8YeAKhDjr8w1x4qAIqAIKAKKwKARUAVi0BAqA0VAEVAEFAFFYPwhoArEKC1zXbE0SgtGxVIExhcCuhxrfJV3v3KruzD6BdeIEosO4fX4PQE+YqQlNaLga2KKgCIAAuwNt75cppciEAkB7ZYioTJqwnhzfT5Poo/tmToOGDWlooIoAuMIAb5pYh8tM46yrFmNFgFVIKJF6uzQeT2pqfGpKcHvKJ4dGTRVRUARGMcIBMcu/KgpYhxXg4hZVwUiIiyjLFDf21FWICqOIjB+EAg2P9oKjZ8ijzqnuogyaqiUUBFQBBQBRUARUARCCKgCEUJCfxUBRUARUAQUAUUgagRUgYgaKiVUBBQBRUARUAQUgRACqkCEkNBfRUARUAQUAUVAEYgaAVUgooZKCRUBRUARUAQUAUUghIAqECEk9FcRUAQUAUVAEVAEokZAFYiooVJCRUARUAQUAUVAEQghoApECAn9VQQUAUVAEVAEFIGoEVAFImqolFARUAQUAUVAEVAEQgioAhFCQn8VAUVAEVAEFAFFIGoEVIGIGiolVAQUAUVAEVAEFIEQAqpAhJDQX0VAEVAEFAFFQBGIGgFVIKKGSgkVAUVAEVAEFAFFIISAKhAhJPRXEVAEFAFFQBFQBKJGQBWIqKFSQkVAEVAEFAFFQBEIIaAKRAgJ/VUEFAFFQBFQBBSBqBFQBSJqqJRQEVAEFAFFQBFQBEIIqAIRQkJ/FQFFQBFQBBQBRSBqBFSBiBoqJVQEFAFFQBFQBBSBEAKqQISQ0F9FQBFQBBQBRUARiBoBVSCihkoJFQFFQBFQBBQBRSCEgCoQIST0tz8I+Hy+/pCfHdoxIeTZgWagqQ4e0sFzGKjsMRgv3r4GljEtiIHhprGcCMQvX77c6Ve3IhCOQH5+/pIlSyZMmHD06FGeTpky5atf/WppaenOnTvDiUdJiAhZUlIyGCEvvvjiadOmNTY2trS0jJJ8hYuRnJy8cOHCRYsWLViwoLCwMD09vba2NhAIGEq6imXLlpWVlR0+fNgZbgiidIDGHXfc4fV6Kysro4ziIjtbNYfaO2PGjKamptFcji6swr2mHMGfckxNTf3GN76xePHiXbt2dXR0hNP3EUJBfO1rXxvk29EHf300ThDwDaZBGScYaTazs7Npgo8fP75p0ybQwEtblpubS1/i9/sJoXWeNGlSVVXVgQMHDFyoHbNnz6bV3rJliwkcMYcIidJjhBxA0nTJ9Me013TJA4g+AlHoCW699daEhARnWhdddNGbb765f/9+CWSYSvHh/uCDDwbzvgNmXFwc9wEzCa85TrGHzz137lxqI+VYU1MzfKkMN2dTjh999FFnZ2dKSkpaWhqJokmcPn0aR8Q3LjEx8cILL+Tp+vXr5W3FTUHAbZBvB3z0GucIjAFD9DgvodGQfVeHsXXr1lOnTtGnmvZo6tSpDII//fRTpwKBhrF06dIjR46cFQUiXMgBI+nK/oD5DHnEiRMn3nLLLWgPJ06cAHnsQxkZGSg9BQUFhD/99NOAP4SJvv7665hzBmx+QJIhLJQB5GvUluMA8kIUlKEnnngC/bi6ulo4RHzjqB68hhCgdpiEzm5BGDHUMdYRUAVirJdgP+SnrTljGxqRhljOiOgNTkUBCYTA6BMikwT2IR9pSdw+aHiUlJTU1tbmpIkopJMAd7iQLoJomEgWnHl3MXF6GdJ1dXU5QyK6+06376dOhllZWbfffjvdw969e19++WUjJH3DjTfeiO3n+uuv/81vfiNRzFPxnjGViHmhFIxVwylJlDwhG5JCCU/ahPSRLylKQxm9A6OLq2K74vaRqItSvNHQ90bjKsdjx445k+gtj65YRBlkQfQmnlOYcHeUsaIkC+evISOPgCoQI4/5SKdIZ3DppZcyBc4ABcvBoUOHdu/ebZqeL33pS4SvWbMGqyaG7pycHBnObty4ETOpU1bTDLEs4Nprr8UC8eyzz+bl5d15551iSsVSOn/+fGY6XnjhBWZnYUX0yZMnf+tb38Lxq1/9yvSvdG/Tp09nFQX9HwOpjz/+uLy83KR19913E/ell17CsAFDRtU//vGPafIkIxjteRqeERNdHMS97rrrREhCRGYWAbz33nuXXXYZs7/MwjBkf//9989o1qZFczF3ehGGFQZkk8mO1tbWgwcPbtiw4eTJk0ITfbpgMmfOHARrb2+nn3733XfvvfdezNQYEurq6pwpihuTD7ZrRp9r1641RcMj3MxfMKmEYJgiKE1nXGoCIlHiRETV2LFjh/Mp2FKIlClKG1Zx6glFY7Q34p5zzjnEIoPEEi9uAGSMy/ILKEH47bffNlGczHE7aw5eKaM+CuWCCy4477zzKCYqg2FFcTB/DzJkc9++fYTTx7MUgBpeVFTElFlFRQWSM6FmoohDyjFKnlQ2lpUACDx5EaSquGayKALqJ3CRXxKl1L744gtXok5vH/QCJi8daFx99dVMRpAR1PTPPvusvr7eycS4KaP7778f769//WvWQDzwwAO8wnidbxzv6bx58yTKww8/TEZeeeUVbEgDfjv6W0tJWkqHl724uDhi6QygIkmO9H7WEVAF4qwXwfAKwNv75S9/mY5E2jgaHVpk2pRHH31U5k1Zgkf3zyQxzSX9H4E0QFx0P3/4wx+cPZMRFJ5EoS0gBJ2ANYaiQODFLWxxwEGi4MZhWNGMXnPNNYTQy7KojbRuu+22Dz/8kL5K6BEShsiDnLSM0hudMSMS19zpAIyQBIrM6CKsGKDFJ10yTjNKS/273/2uoaHBRAx3GMnDH7HyY9WqVaQFdHQh5AUlgIbyqaeeklxHme6sWbMwG9DDoT2QZfKOcoD8dJMwD0+XEFQE7pgfXHoegQjz2GOPEVHKyERHc6KjpUMiISRnBoRHRoegYsiSaiSnpyQvKJTQrF69WjQ/ZtMRibswFC8EdACEQAO8FFlmZuZzzz1nlEWTOg5nzcErZdRHodCDIjPFRGGRKWGF5JQgKKEKE0JesLVQgXGjFZE66KHooN0aHUJKUO5R8kT7hCdqKxoYqiGqDwoKUNDBixhXXnklYJJNdHGKgBIk72RcpBIa571vegGT2sj6FVRb9GMWKMAfDebJJ5+MqJCRcYqDJHBwpw6LAoHbvHG8jLhBWAKRkwu3IG+qx/DV0mhKZwAViSzoNRoQ0EWUo6EUhlEGOjNaJdqRRx55RJpgeoVLLrnk3HPPZUmdSZhO/Y033ti+fTstJkMujAp0hGbVpCGTJphGwbTIKAFMxKIQwIE1EAzohfiZZ55hsHLzzTczDU9vajjQCtOS0iDSvosVhORY20+7yQDOzObCnxaZcSeBiER0RjCoQa6M0HW5MmISMg6nzKTFLD4aA+0+Y32UCfoGEkJyQ+9yEN3k1/UI7/nnn09bzDARgwFyYlC55557kJO8C0+J23e6aForVqyAkmVun3zyCbLReWCGQXswOLuShpgpDJ7SvQmNi8CYQCRccgH4//Vf/0WPQi/LMJdOkS6KQoeGHhokIWOEumfPHkKgYYALSmTHrKWQtJwpMgR/6623MEsgEm76XTLrjOIUTNAgxMkB0wUGA2eh0C9KoVAfyCDcsFeJnMTlEXc0J5QtHFRm6iqZosphqqE40IRQO9BKH3/8cXpiaLhIUVKPhie1EZ4kjULQ3NxMdNGuqOe//e1v0V3QcVlrQombhSbkgiLDvIEC4cydnbg1DXdGemKhgnz++efvvPMOWQN/pqhQlVCPXnzxReEjuZDsmBDxRnzjsLdROR966CHyznsq2oNEdEYXZM5YS5EEyuhrKUlEXzrofJiUTEXCdkLb1VtFcmZB3WcRAT0H4iyCPxJJ0wmRDANuM4hhJ8XPfvYzoz3QJHFhet22bZt01Yzb5CmjHyMiNPKUENzcjdeESLiJIuFOMkJo/Rnu0ESaORSSo40jUIbUhhvmXKQy0RmRw9+VkX//9383GXGmK+5wmWlA161bJ4NjhpJ0QtDIQDw8upEkPF+GmMUHgCnaA4F0LS6eErfvdOmk6fYwLDMdILJhAKBXlrgGAZMoDoqVphyHUbmcT11u4cMdOWVsymgVzAlhLoOkoUe5/O///u9f/vKXoj0QAg0iQUMjLgwNH+MlhOJjkSwO5KTzE8XFRBFKcxcOzhwRQpZRXp2FAr0pFAwk0MycOVOYkGvchLB3UULQ1XDAQSZ64IPqRi/OuBaFSWgkXbkTckaeaA+QMa8n2gNu4CKnDPExzOBFU6TGkhFju0LH+ulPf0ovblKBzFxnpJdYlA7lLooRnF999VXCyQVpwUpouIc7TEI8csIbHisipTA8Yy3FNNKvWkpa0ZcOnJ0VidJEqt4qksmFOs4uAqpAnF38hz11JonpG+gnvv71rzO9zTiJxkgaa0mb5oYX1RhmJRCv8+3FzWVkdXkl3ElgQsID6RgIZMzNgEwuTBcy1DZTHsLfaBjCzWTkvvvui5gRI17E1IUn3Rt9vKFk0oFwsQObQKdDYnF3BrrcwIv8tPJkhCkA7tDTewmZcOg7XVpJyARzw1xkI1wUBRMuDnIhnEVBdD0N9wqxE1JJjsrgzD4GHgwbDPcZcMsQkIgmL7DF62SOFzOVM0R0Duw6zkDjFjFcXrQlZ6GIYEYqFBqqKzoWg3giUn9gTucKGV6yj8D0fK6JAzEDmO5H0jXC980TYwyKAsQkShWlQKWiypsi0wQY/0kC9FiNccUVV2DLQTzna2XyKI5o6EkRLYS8mLhoh2jMaHi8vxIoGTEEfXt7IyNcInJ3sh3yWhpl6Yg82HuMwDikGvRWkZyU6j6LCOgUxlkEfySSpmnGKE3HRveMOZEkaXwxQmAQNk0V7QiWXtOaQCNe2kTZYm6aG6FxeaGXEGlhTa7CyWhwaQoJx/JvyMRBoNjkDTeaYwINWTQZMcSGichgvGTZyVMENjTO6OI+IwGoMheArVW6eWSmqxCGkpC4+05XMu4qAsa+ZJkxnwtVEYxBKooLBcT8lKsLD8+FyaBTDAOv4Y/ewJQQsycmCWSgBTcEwsfldfIkorA1NC5hhIORRxxGEiEWr6EBT9alsgyCTprpJ4TkEVMekEGPhR8vVVq8JjkZv8pTAoVblDyBFEpiUbKGoTgIZ2ZBnmLKYr6GomcaiIvCwvyOoQIlzBVLvH3Ti2yuOkBEQtCZqGYoE0JDoDhc3vBwSTeczFCKw3hdRSmFaKIPoJb2q3QAkLREZu6Sem8VyZCp4+wioArE2cV/JFJn1RgXozHmOBkoc6FP0DHIegVpIEyzKALxlHBmPWgNhcDcITBuHEIvIfJIQpzhhoxWXibg0WnE1u0kNu1Xb9xMRrCjML3iyoiTFW5h4mRlQpyUEQNdBMLNGShueve77rqLsTKDUfo2NiPQ3GP9Zuxuohj+OJwcTDiBQEE/ZPQnIaMIGHpKLFdcIWCIRm9K78LEgZMzbrQZZGAkzYoKsToYDsYBmbghxgGfm266iUBmstgRg0istaSDZFbeUELGZbymcZdAwuWRk0YCzd2KH7oMsQQYGme4BKIuUNzMXDD1YOYviMVT5MRBEZAL5DFMpAKb/jiUpvV7Rp4mFssdDEPjQG8TJpCxAAKDBGXHuk5s9ajFvGLOFT8mFo6+6UVC12tILLLGI8pCEpU74RG9Es4jeYpXLuN1Oiwi+4Im5LR+Q5GsXxOOewC1tF+lI8lZqdpXxNoVeqi/owUBncIYLSUxfHIw7qcrwkK4efNmNljKrj/6OcJJVNoIY+wVMWgQCZdBj4QImRGyb6+QmSbAxMLBRDJxae7pbs3FeBE3LaxQCnPuzoi4TUaYKw3PiIsY7xmFFAnDEzKs+iYANCw0NO7PP/88nRxZQAeSrsvJ0yUGzF1s2SIIDatEpUQkdeznEtHJygiGA5WFR3TwDM2d4bgZrxMOB1pwvCY5Fyvhz1No0MYoFHLBQBkFQjpRVu8LjfAXt5OJ82lvNBJu7q4oLi9kRloThaUwdNv00+SILpaabFZ+oI9ifqB6YzYw9DjQh+BspmzCU+mDJwUqZiSmD0wVxQGY3HkkCQGXbJfAmAdobHuh9EmXYbdTEuPum14kJK6zDqBTUsFgK/k1yEAMW5fXhJgUxWHIXOEuTFxew03SwjuAWtqv0jEJGTnDRTKP1DFKEIiTQtJ7rCLABO23v/1tVo+bDDKljRvrgtNWjD5heiwGPZiyoZFpSBPROKi7uOUugWKowNBqaHDQ/nKnxadNNOEytQ9/09HylM0anBVBn2fIcDj5440yI04OTne4zCYJV0JnjGUImEfAzfo4LgkEOpDE7Wy18bqScAnDugGwQh1hfwp9BoCgAVx++eXC0xVXArnTBaIR0i1hJyBRpjMIxIubENxY1CllCeTOFZGVBAqljICFmMG0dMPiNfeITMxTcfRGI+G9PZW4ZAGHkwbjNitg0BKuuuoqHrF8UijlLssdeGSqGRoV9gBiySND3F+evDUiDBzoyDnahLMWxCyPIYRjFTioQ6xEEPBaUehcUu1NouKIkp7SZ32PRJGSxY0aJMY5I4xkxOWFMuIbR8lKRZXZQ2HuugtDJz4QuLwDq6VSBEwG9at0jHguGUy4OkYJAnoOBFU0li9aXjbXsfeB0SQtETPcdAw0c1iqJdtURLzoCitXrmQ2neaGoR7NIu0FBnAnDZTitZpJ+zLAoRbQ8GFnpkmlyeBQBx6xIgxuGNJZv4mNAZsBgVihGSyyMI3TKSBA80BxwQ7MdDs9ojAUkUjB8Mdxxow4iXELkz5kNjSuhJx8JJs0f0z6OMMZWrHennEhI3U6XfbvMb1CFw4CtPXE6le6DHnZzQH+qFBcKHbgj3KAW9QCZ9JON7sqgJfCZcKCRBmLo8GgzUADXFIKuCUXOIxUwoRwE4j8aHVYntjBS7nQ2WCTIJvOiRWBVGJJRNwuni4aScjcRZK+ObhoJC7mFhQjoAZezCSGIQ7OraL+sDniwQcfpB5Cg94DE/YEGkNFRKnOyBObEBtZZVkoKh1Qw1944sAoAjhUeNw8EgMSsBsThVPIM9KLhNjnWL5KgWLq4D2FLdw4jkVYCTK4BXOXl/CIbxyIwRbx2NeKEYXzyGVChOjCh4jCirskJHcRydAMrJYOuHQkdZdITvHUPRoQ0DUQo6EUhlEGNAN2o7HHmvZIJiboZjgVn92GJlXeVSYFMFHSeNF10TISi86JpsdJAxmXhIjbeGmh2H7GIk0UFOy6srWS6Nj26dto37E3cNEhEZ09nAyVGCbS3TKKor+k2SU5tA1ncrgNf9ySEZQhmXLmERlh36PZdmjiGodLSJdXyCIGGg44IKAdd4bgNo0vp1nccMMNAMsyOihRj2jEMQBIRIkVMQlXILn7/e9/z5oGionxIt05hnEUCMicrIShufP0tddeYxcD5Qu89GcIhq6G5gcsEhdiGaoKHxMoXmFFIJoQp25QWKwv4UIGlshQmmxAMJSQcbm8JtCwctJIoPMu9EIjrFwcIgbSi9OVoh6Jw8kQSwOSo/2g8bATmOpEbaQgzD5PIQ6Xqg+eVEX0XQ4YRbuVjYiEsK+Y+iZ8qMAcKkWhQyAQEcLaZM5IMFlzCnlGegEBDR7FEYWVt4OMoHbwqtJzCytXObq80PT2xqE0cNAIOhYVlUvmCiVFI63La0CTcPEOoJZGUzomCSMMyUUMFDH0PnoQ8P7gBz8YPdKoJMOHAM0NHTkjfvoGZypYAugnGAGz1h3tQbr5ASv+WHrh79Q8SIthNHenfiACEM5GL/SAfiXXW0acmRphN+ZrBr409DSXQ5U0nSXDXzLLQcXmNII+mKPlACYqmgv8PqJEfEQFoFzoY+jAIhKM5kBKga56CEuBzMpCkIh2BYECArCKpoz6oGfGCrMcejzKN4UOTxgOuCgjvnFo9lRU8HH204MszX7V0uEonUHKr9EHiYBaIAYJ4JiJTqshS+pcEstgWvR9GiwZnbhooveioIQTY9IIDySE8N4eRaSXwN4y0keU4X6EbmSs5QNIi76f05dR71iLZ7ptzA+wgm1ESMNToWPgCg/vbwgqCFd/Y40SejNYH0J5UHD75nZGAlf0iPTyApqXcZAZifhaoVcNRrUafC0dZKZcMKp3NCCgCsRoKIWzKQMtl2m2zqYc4zht9DZs70xAYAri6G5aeQzjGJwpF0zxFNA4xma8ZH30v4ZaS8dLXexPPlWB6A9asUjrHPrEYv7GQJ6Y9GGxCDPurIFgGYpIjOGBVQjoE2MgAyrioBEY/a+h1FLWmqDsai0ddIHHCAPv97///RjJimZjQAhgmWSHFTZPxrsDYqCRhgwBpqixQ3BnIinKmYshS1sZnVUEKHTWKNiTDEO2jGaYMqS1dJiAHYts1QIxFkttKGUekonzoRRoHPNiLYXriwDjGIzxlXWKnmtM5Bk5tZaOiZIaASFVgRgBkDUJRUARUAQUAUUg1hBQBSLWSlTzowgoAoqAIqAIjAACPjYfc+TtCKSkSSgCioAioAgoAopAzCDg44xejq7j+OGYyZJmRBFQBBQBRUARUASGGwEvh+aSBucQh38UeLjTVv6KgCKgCCgCioAiMEYR8PIZAhGdLy3xlRpOO+e8MD27ZowWp4qtCCgCioAioAiMDAJe50eVRiZJTUURUAQUAUVAEVAExjoCPnP2/ljPicqvCCgCioAioAgoAiOGgE/PHxwxrDUhRUARUAQUAUUgZhBQC0TMFKVmRBFQBBQBRUARGDkEVIEYOaw1JUVAEVAEFAFFIGYQUAUiZopSM6IIKAKKgCKgCIwcAqpAjBzWmpIioAgoAoqAIhAzCKgCETNFqRlRBBQBRUARUARGDgFVIEYOa01JEVAEFAFFQBGIGQT+P/Ejf/UoWCNNAAAAAElFTkSuQmCC"}}, "cell_type": "markdown", "metadata": {}, "source": ["## \u4e09\u3001\u6587\u6863\u5206\u5272\u65b9\u5f0f\n", "Langchain\u4e2d\u6587\u672c\u5206\u5272\u5668\u90fd\u6839\u636echunk_size(\u5757\u5927\u5c0f)\u548cchunk_overlap(\u5757\u4e0e\u5757\u4e4b\u95f4\u7684\u91cd\u53e0\u5927\u5c0f)\u8fdb\u884c\u5206\u5272\u3002\n", "\n", "\n", "\n", "* chunk_size\u6307\u6bcf\u4e2a\u5757\u5305\u542b\u7684\u5b57\u7b26\u6216Token\uff08\u5982\u5355\u8bcd\u3001\u53e5\u5b50\u7b49\uff09\u7684\u6570\u91cf\n", "\n", "* chunk_overlap\u6307\u4e24\u4e2a\u5757\u4e4b\u95f4\u5171\u4eab\u7684\u5b57\u7b26\u6570\u91cf\uff0c\u7528\u4e8e\u4fdd\u6301\u4e0a\u4e0b\u6587\u7684\u8fde\u8d2f\u6027\uff0c\u907f\u514d\u5206\u5272\u4e22\u5931\u4e0a\u4e0b\u6587\u4fe1\u606f\n", "\n", "\n", "\n", "Langchain\u63d0\u4f9b\u591a\u79cd\u6587\u6863\u5206\u5272\u65b9\u5f0f\uff0c\u533a\u522b\u5728\u600e\u4e48\u786e\u5b9a\u5757\u4e0e\u5757\u4e4b\u95f4\u7684\u8fb9\u754c\u3001\u5757\u7531\u54ea\u4e9b\u5b57\u7b26/token\u7ec4\u6210\u3001\u4ee5\u53ca\u5982\u4f55\u6d4b\u91cf\u5757\u5927\u5c0f"]}, {"attachments": {}, "cell_type": "markdown", "metadata": {}, "source": ["### 3.1 \u57fa\u4e8e\u5b57\u7b26\u7684\u5206\u5272\u65b9\u5f0f\n", "\u600e\u4e48\u5206\u5272\u5757\u53d6\u51b3\u4e8e\u6211\u4eec\u7684\u4efb\u52a1\u7c7b\u578b\uff0c\u5f53\u60a8\u62c6\u5206\u4ee3\u7801\u65f6\uff0c\u8fd9\u4e00\u70b9\u975e\u5e38\u660e\u663e\u3002\u6240\u4ee5\u6211\u4eec\u6709\u4e00\u4e2a\u8bed\u8a00\u6587\u672c\u5206\u5272\u5668\uff0c\u5b83\u6709\u4e00\u5806\u4e0d\u540c\u7684\u5206\u9694\u7b26\uff0c\u7528\u4e8e\u5404\u79cdPython\u3001Ruby\u3001C \u7b49\u4e0d\u540c\u8bed\u8a00\u7684\u7248\u672c\u3002\u5728\u62c6\u5206\u8fd9\u4e9b\u6587\u6863\u65f6\uff0c\u8003\u8651\u8fd9\u4e9b\u4e0d\u540c\u7684\u8bed\u8a00\u7684\u5dee\u5f02\u6027\u3002"]}, {"cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [], "source": ["\n", "''' \n", "* RecursiveCharacterTextSplitter \u9012\u5f52\u5b57\u7b26\u6587\u672c\u5206\u5272\n", "* CharacterTextSplitter \u5b57\u7b26\u5206\u5272\n", "RecursiveCharacterTextSplitter \u5c06\u6309\u4e0d\u540c\u7684\u5b57\u7b26\u9012\u5f52\u5730\u5206\u5272(\u6309\u7167\u8fd9\u4e2a\u4f18\u5148\u7ea7[\"\\n\\n\", \"\\n\", \" \", \"\"])\uff0c\u8fd9\u6837\u5c31\u80fd\u5c3d\u91cf\u628a\u6240\u6709\u548c\u8bed\u4e49\u76f8\u5173\u7684\u5185\u5bb9\u5c3d\u53ef\u80fd\u957f\u65f6\u95f4\u5730\u4fdd\u7559\u5728\u540c\u4e00\u4f4d\u7f6e\n", "RecursiveCharacterTextSplitter\u9700\u8981\u5173\u6ce8\u7684\u662f4\u4e2a\u53c2\u6570\uff1a\n", "\n", "* separators - \u5206\u9694\u7b26\u5b57\u7b26\u4e32\u6570\u7ec4\n", "* chunk_size - \u6bcf\u4e2a\u6587\u6863\u7684\u5b57\u7b26\u6570\u91cf\u9650\u5236\n", "* chunk_overlap - \u4e24\u4efd\u6587\u6863\u91cd\u53e0\u533a\u57df\u7684\u957f\u5ea6\n", "* length_function - \u957f\u5ea6\u8ba1\u7b97\u51fd\u6570\n", "CharacterTextSplitter \u5b57\u7b26\u5206\u5272\n", "\u5206\u9694\u7b26\u7684\u53c2\u6570\u662f\u5355\u4e2a\u7684\u5b57\u7b26\u4e32\u3002\u8fd9\u5c31\u4f1a\u4f7f\u5f97RecursiveCharacterTextSplitter\u6bd4CharacterTextSplitter\u5bf9\u6587\u6863\u5207\u5272\u5f97\u66f4\u52a0\u788e\u7247\u5316\n", "'''\n", "#\u5bfc\u5165\u6587\u672c\u5206\u5272\u5668\n", "from langchain.text_splitter import RecursiveCharacterTextSplitter, CharacterTextSplitter\n"]}, {"cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [], "source": ["chunk_size = 26 #\u8bbe\u7f6e\u5757\u5927\u5c0f\n", "chunk_overlap = 4 #\u8bbe\u7f6e\u5757\u91cd\u53e0\u5927\u5c0f\n"]}, {"cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [], "source": ["#\u521d\u59cb\u5316\u6587\u672c\u5206\u5272\u5668\n", "r_splitter = RecursiveCharacterTextSplitter(\n", " chunk_size=chunk_size,\n", " chunk_overlap=chunk_overlap\n", ")\n", "c_splitter = CharacterTextSplitter(\n", " chunk_size=chunk_size,\n", " chunk_overlap=chunk_overlap\n", ")\n"]}, {"cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [{"data": {"text/plain": ["['abcdefghijklmnopqrstuvwxyz', 'wxyzabcdefg']"]}, "execution_count": 15, "metadata": {}, "output_type": "execute_result"}], "source": ["#\u4f7f\u7528\u9012\u5f52\u5b57\u7b26\u6587\u672c\u5206\u5272\u5668\n", "text2 = \"abcdefghijklmnopqrstuvwxyzabcdefg\"\n", "r_splitter.split_text(text2)\n"]}, {"cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [{"data": {"text/plain": ["['a b c d e f g h i j k l m', 'l m n o p q r s t u v w x', 'w x y z']"]}, "execution_count": 18, "metadata": {}, "output_type": "execute_result"}], "source": ["text3 = \"a b c d e f g h i j k l m n o p q r s t u v w x y z\"#\u6d4b\u8bd5\u6587\u672c\n", "r_splitter.split_text(text3)\n"]}, {"attachments": {}, "cell_type": "markdown", "metadata": {}, "source": ["\u7b2c\u4e8c\u5757\u662f\u4ece'wxyz'\u5f00\u59cb\u7684\uff0c\u521a\u597d\u662f\u6211\u4eec\u8bbe\u5b9a\u7684\u5757\u91cd\u53e0\u5927\u5c0f"]}, {"cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [{"data": {"text/plain": ["['a b c d e f g h i j k l m n o p q r s t u v w x y z']"]}, "execution_count": 19, "metadata": {}, "output_type": "execute_result"}], "source": ["#\u5b57\u7b26\u6587\u672c\u5206\u5272\u5668\n", "c_splitter.split_text(text3)\n"]}, {"attachments": {}, "cell_type": "markdown", "metadata": {}, "source": ["\u53ef\u4ee5\u770b\u5230\u5b57\u7b26\u5206\u5272\u5668\u6ca1\u6709\u5206\u5272\u8fd9\u4e2a\u6587\u672c\uff0c\u56e0\u4e3a\u5b57\u7b26\u6587\u672c\u5206\u5272\u5668\u9ed8\u8ba4\u4ee5\u6362\u884c\u7b26\u4e3a\u5206\u9694\u7b26\uff0c\u56e0\u6b64\u9700\u8981\u8bbe\u7f6e\u7a7a\u683c\u4e3a\u5206\u9694\u7b26\u3002"]}, {"cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [{"data": {"text/plain": ["['a b c d e f g h i j k l m', 'l m n o p q r s t u v w x', 'w x y z']"]}, "execution_count": 21, "metadata": {}, "output_type": "execute_result"}], "source": ["# \u8bbe\u7f6e\u7a7a\u683c\u5206\u9694\u7b26\n", "c_splitter = CharacterTextSplitter(\n", " chunk_size=chunk_size,\n", " chunk_overlap=chunk_overlap,\n", " separator=' '\n", ")\n", "c_splitter.split_text(text3)\n"]}, {"cell_type": "code", "execution_count": 37, "metadata": {}, "outputs": [], "source": ["# \u9012\u5f52\u5206\u5272\u957f\u6bb5\u843d\n", "some_text1 = \"\"\"When writing documents, writers will use document structure to group content. \\\n", "This can convey to the reader, which idea's are related. For example, closely related ideas \\\n", "are in sentances. Similar ideas are in paragraphs. Paragraphs form a document. \\n\\n \\\n", "Paragraphs are often delimited with a carriage return or two carriage returns. \\\n", "Carriage returns are the \"backslash n\" you see embedded in this string. \\\n", "Sentences have a period at the end, but also, have a space.\\\n", "and words are separated by space.\"\"\"\n"]}, {"cell_type": "code", "execution_count": 38, "metadata": {}, "outputs": [{"data": {"text/plain": ["496"]}, "execution_count": 38, "metadata": {}, "output_type": "execute_result"}], "source": ["len(some_text1)\n"]}, {"cell_type": "code", "execution_count": 39, "metadata": {}, "outputs": [], "source": ["# \u4e2d\u6587\u7248\n", "some_text2 = \"\"\"\u5728\u7f16\u5199\u6587\u6863\u65f6\uff0c\u4f5c\u8005\u5c06\u4f7f\u7528\u6587\u6863\u7ed3\u6784\u5bf9\u5185\u5bb9\u8fdb\u884c\u5206\u7ec4\u3002 \\\n", " \u8fd9\u53ef\u4ee5\u5411\u8bfb\u8005\u4f20\u8fbe\u54ea\u4e9b\u60f3\u6cd5\u662f\u76f8\u5173\u7684\u3002 \u4f8b\u5982\uff0c\u5bc6\u5207\u76f8\u5173\u7684\u60f3\u6cd5\\\n", " \u662f\u5728\u53e5\u5b50\u4e2d\u3002 \u7c7b\u4f3c\u7684\u60f3\u6cd5\u5728\u6bb5\u843d\u4e2d\u3002 \u6bb5\u843d\u6784\u6210\u6587\u6863\u3002 \\n\\n\\\n", " \u6bb5\u843d\u901a\u5e38\u7528\u4e00\u4e2a\u6216\u4e24\u4e2a\u56de\u8f66\u7b26\u5206\u9694\u3002 \\\n", " \u56de\u8f66\u7b26\u662f\u60a8\u5728\u8be5\u5b57\u7b26\u4e32\u4e2d\u770b\u5230\u7684\u5d4c\u5165\u7684\u201c\u53cd\u659c\u6760 n\u201d\u3002 \\\n", " \u53e5\u5b50\u672b\u5c3e\u6709\u4e00\u4e2a\u53e5\u53f7\uff0c\u4f46\u4e5f\u6709\u4e00\u4e2a\u7a7a\u683c\u3002\\\n", " \u5e76\u4e14\u5355\u8bcd\u4e4b\u95f4\u7528\u7a7a\u683c\u5206\u9694\"\"\"\n"]}, {"cell_type": "code", "execution_count": 40, "metadata": {}, "outputs": [{"data": {"text/plain": ["177"]}, "execution_count": 40, "metadata": {}, "output_type": "execute_result"}], "source": ["len(some_text2)\n"]}, {"cell_type": "code", "execution_count": 42, "metadata": {}, "outputs": [], "source": ["''' \n", "\u4f9d\u6b21\u4f20\u5165\u5206\u9694\u7b26\u5217\u8868\uff0c\u5206\u522b\u662f\u53cc\u6362\u884c\u7b26\u3001\u5355\u6362\u884c\u7b26\u3001\u7a7a\u683c\u3001\u7a7a\u5b57\u7b26\uff0c\n", "\u56e0\u6b64\u5728\u5206\u5272\u6587\u672c\u65f6\uff0c\u9996\u5148\u4f1a\u91c7\u7528\u53cc\u5206\u6362\u884c\u7b26\u8fdb\u884c\u5206\u5272\uff0c\u540c\u65f6\u4f9d\u6b21\u4f7f\u7528\u5176\u4ed6\u5206\u9694\u7b26\u8fdb\u884c\u5206\u5272\n", "'''\n", "\n", "c_splitter = CharacterTextSplitter(\n", " chunk_size=450,\n", " chunk_overlap=0,\n", " separator=' '\n", ")\n", "r_splitter = RecursiveCharacterTextSplitter(\n", " chunk_size=450,\n", " chunk_overlap=0,\n", " separators=[\"\\n\\n\", \"\\n\", \" \", \"\"]\n", ")\n"]}, {"cell_type": "code", "execution_count": 43, "metadata": {}, "outputs": [{"data": {"text/plain": ["[\"When writing documents, writers will use document structure to group content. This can convey to the reader, which idea's are related. For example, closely related ideas are in sentances. Similar ideas are in paragraphs. Paragraphs form a document.\",\n", " 'Paragraphs are often delimited with a carriage return or two carriage returns. Carriage returns are the \"backslash n\" you see embedded in this string. Sentences have a period at the end, but also, have a space.and words are separated by space.']"]}, "execution_count": 43, "metadata": {}, "output_type": "execute_result"}], "source": ["#\u5206\u5272\u7ed3\u679c\n", "r_splitter.split_text(some_text1)\n"]}, {"cell_type": "code", "execution_count": 44, "metadata": {}, "outputs": [{"data": {"text/plain": ["['\u5728\u7f16\u5199\u6587\u6863\u65f6\uff0c\u4f5c\u8005\u5c06\u4f7f\u7528\u6587\u6863\u7ed3\u6784\u5bf9\u5185\u5bb9\u8fdb\u884c\u5206\u7ec4\u3002 \u8fd9\u53ef\u4ee5\u5411\u8bfb\u8005\u4f20\u8fbe\u54ea\u4e9b\u60f3\u6cd5\u662f\u76f8\u5173\u7684\u3002 \u4f8b\u5982\uff0c\u5bc6\u5207\u76f8\u5173\u7684\u60f3\u6cd5 \u662f\u5728\u53e5\u5b50\u4e2d\u3002 \u7c7b\u4f3c\u7684\u60f3\u6cd5\u5728\u6bb5\u843d\u4e2d\u3002 \u6bb5\u843d\u6784\u6210\u6587\u6863\u3002 \\n\\n \u6bb5\u843d\u901a\u5e38\u7528\u4e00\u4e2a\u6216\u4e24\u4e2a\u56de\u8f66\u7b26\u5206\u9694\u3002 \u56de\u8f66\u7b26\u662f\u60a8\u5728\u8be5\u5b57\u7b26\u4e32\u4e2d\u770b\u5230\u7684\u5d4c\u5165\u7684\u201c\u53cd\u659c\u6760 n\u201d\u3002 \u53e5\u5b50\u672b\u5c3e\u6709\u4e00\u4e2a\u53e5\u53f7\uff0c\u4f46\u4e5f\u6709\u4e00\u4e2a\u7a7a\u683c\u3002 \u5e76\u4e14\u5355\u8bcd\u4e4b\u95f4\u7528\u7a7a\u683c\u5206\u9694']"]}, "execution_count": 44, "metadata": {}, "output_type": "execute_result"}], "source": ["r_splitter.split_text(some_text2)\n"]}, {"cell_type": "code", "execution_count": 45, "metadata": {}, "outputs": [{"data": {"text/plain": ["[\"When writing documents, writers will use document structure to group content. This can convey to the reader, which idea's are related.\",\n", " 'For example, closely related ideas are in sentances. Similar ideas are in paragraphs. Paragraphs form a document.',\n", " 'Paragraphs are often delimited with a carriage return or two carriage returns.',\n", " 'Carriage returns are the \"backslash n\" you see embedded in this string.',\n", " 'Sentences have a period at the end, but also, have a space.and words are separated by space.']"]}, "execution_count": 45, "metadata": {}, "output_type": "execute_result"}], "source": ["#\u5982\u679c\u9700\u8981\u6309\u7167\u53e5\u5b50\u8fdb\u884c\u5206\u9694\uff0c\u5219\u8fd8\u8981\u7528\u6b63\u5219\u8868\u8fbe\u5f0f\u6dfb\u52a0\u4e00\u4e2a\u53e5\u53f7\u5206\u9694\u7b26\n", "r_splitter = RecursiveCharacterTextSplitter(\n", " chunk_size=150,\n", " chunk_overlap=0,\n", " separators=[\"\\n\\n\", \"\\n\", \"(?<=\\. )\", \" \", \"\"]\n", ")\n", "r_splitter.split_text(some_text1)\n"]}, {"cell_type": "code", "execution_count": 47, "metadata": {}, "outputs": [{"data": {"text/plain": ["['\u5728\u7f16\u5199\u6587\u6863\u65f6\uff0c\u4f5c\u8005\u5c06\u4f7f\u7528\u6587\u6863\u7ed3\u6784\u5bf9\u5185\u5bb9\u8fdb\u884c\u5206\u7ec4\u3002 \u8fd9\u53ef\u4ee5\u5411\u8bfb\u8005\u4f20\u8fbe\u54ea\u4e9b\u60f3\u6cd5\u662f\u76f8\u5173\u7684\u3002 \u4f8b\u5982\uff0c\u5bc6\u5207\u76f8\u5173\u7684\u60f3\u6cd5 \u662f\u5728\u53e5\u5b50\u4e2d\u3002 \u7c7b\u4f3c\u7684\u60f3\u6cd5\u5728\u6bb5\u843d\u4e2d\u3002 \u6bb5\u843d\u6784\u6210\u6587\u6863\u3002',\n", " '\u6bb5\u843d\u901a\u5e38\u7528\u4e00\u4e2a\u6216\u4e24\u4e2a\u56de\u8f66\u7b26\u5206\u9694\u3002 \u56de\u8f66\u7b26\u662f\u60a8\u5728\u8be5\u5b57\u7b26\u4e32\u4e2d\u770b\u5230\u7684\u5d4c\u5165\u7684\u201c\u53cd\u659c\u6760 n\u201d\u3002 \u53e5\u5b50\u672b\u5c3e\u6709\u4e00\u4e2a\u53e5\u53f7\uff0c\u4f46\u4e5f\u6709\u4e00\u4e2a\u7a7a\u683c\u3002 \u5e76\u4e14\u5355\u8bcd\u4e4b\u95f4\u7528\u7a7a\u683c\u5206\u9694']"]}, "execution_count": 47, "metadata": {}, "output_type": "execute_result"}], "source": ["r_splitter = RecursiveCharacterTextSplitter(\n", " chunk_size=150,\n", " chunk_overlap=0,\n", " separators=[\"\\n\\n\", \"\\n\", \"(?<=\\. )\", \" \", \"\"]\n", ")\n", "r_splitter.split_text(some_text2)\n"]}, {"attachments": {}, "cell_type": "markdown", "metadata": {}, "source": ["\u8fd9\u5c31\u662f\u9012\u5f52\u5b57\u7b26\u6587\u672c\u5206\u5272\u5668\u540d\u5b57\u4e2d\u201c\u9012\u5f52\u201d\u7684\u542b\u4e49\uff0c\u603b\u7684\u6765\u8bf4\uff0c\u6211\u4eec\u66f4\u5efa\u8bae\u5728\u901a\u7528\u6587\u672c\u4e2d\u4f7f\u7528\u9012\u5f52\u5b57\u7b26\u6587\u672c\u5206\u5272\u5668\n"]}, {"attachments": {}, "cell_type": "markdown", "metadata": {}, "source": ["### 3.2 \u57fa\u4e8etoken\u7684\u5206\u5272\n", "\u5f88\u591aLLM\u7684\u4e0a\u4e0b\u6587\u7a97\u53e3\u957f\u5ea6\u9650\u5236\u662f\u6309\u7167Token\u6765\u8ba1\u6570\u7684\u3002\u56e0\u6b64\uff0c\u4ee5LLM\u7684\u89c6\u89d2\uff0c\u6309\u7167Token\u5bf9\u6587\u672c\u8fdb\u884c\u5206\u9694\uff0c\u901a\u5e38\u53ef\u4ee5\u5f97\u5230\u66f4\u597d\u7684\u7ed3\u679c\u3002\n", "\u901a\u8fc7\u4e00\u4e2a\u5b9e\u4f8b\u7406\u89e3\u57fa\u4e8e\u5b57\u7b26\u5206\u5272\u548c\u57fa\u4e8eToken\u5206\u5272\u7684\u533a\u522b"]}, {"cell_type": "code", "execution_count": 50, "metadata": {}, "outputs": [{"data": {"text/plain": ["['foo', ' bar', ' b', 'az', 'zy', 'foo']"]}, "execution_count": 50, "metadata": {}, "output_type": "execute_result"}], "source": ["# \u4f7f\u7528token\u5206\u5272\u5668\u8fdb\u884c\u5206\u5272\uff0c\n", "# \u5c06\u5757\u5927\u5c0f\u8bbe\u4e3a1\uff0c\u5757\u91cd\u53e0\u5927\u5c0f\u8bbe\u4e3a0\uff0c\u76f8\u5f53\u4e8e\u5c06\u4efb\u610f\u5b57\u7b26\u4e32\u5206\u5272\u6210\u4e86\u5355\u4e2aToken\u7ec4\u6210\u7684\u5217\n", "from langchain.text_splitter import TokenTextSplitter\n", "text_splitter = TokenTextSplitter(chunk_size=1, chunk_overlap=0)\n", "text1 = \"foo bar bazzyfoo\"\n", "text_splitter.split_text(text1)\n"]}, {"cell_type": "code", "execution_count": 55, "metadata": {}, "outputs": [{"data": {"text/plain": ["['test', ' base', 'ces', 'e']"]}, "execution_count": 55, "metadata": {}, "output_type": "execute_result"}], "source": ["text1 = \"test basecese\"\n", "text_splitter.split_text(text1)\n"]}, {"attachments": {}, "cell_type": "markdown", "metadata": {}, "source": ["\u53ef\u4ee5\u770b\u51fatoken\u957f\u5ea6\u548c\u5b57\u7b26\u957f\u5ea6\u4e0d\u4e00\u6837\uff0ctoken\u901a\u5e38\u4e3a4\u4e2a\u5b57\u7b26"]}, {"attachments": {}, "cell_type": "markdown", "metadata": {}, "source": ["### 3.3 \u5206\u5272Markdown\u6587\u6863\n", "\u5206\u5757\u7684\u76ee\u7684\u662f\u628a\u5177\u6709\u4e0a\u4e0b\u6587\u7684\u6587\u672c\u653e\u5728\u4e00\u8d77\uff0c\u6211\u4eec\u53ef\u4ee5\u901a\u8fc7\u4f7f\u7528\u6307\u5b9a\u5206\u9694\u7b26\u6765\u8fdb\u884c\u5206\u9694\uff0c\u4f46\u6709\u4e9b\u7c7b\u578b\u7684\u6587\u6863\uff08\u4f8b\u5982 Markdown\uff09\u672c\u8eab\u5c31\u5177\u6709\u53ef\u7528\u4e8e\u5206\u5272\u7684\u7ed3\u6784\uff08\u5982\u6807\u9898\uff09\u3002\n", "\n", "Markdown\u6807\u9898\u6587\u672c\u5206\u5272\u5668\u4f1a\u6839\u636e\u6807\u9898\u6216\u5b50\u6807\u9898\u6765\u5206\u5272\u4e00\u4e2aMarkdown\u6587\u6863\uff0c\u5e76\u5c06\u6807\u9898\u4f5c\u4e3a\u5143\u6570\u636e\u6dfb\u52a0\u5230\u6bcf\u4e2a\u5757\u4e2d\n"]}, {"cell_type": "code", "execution_count": 58, "metadata": {}, "outputs": [], "source": ["# \u5b9a\u4e49\u4e00\u4e2aMarkdown\u6587\u6863\n", "\n", "from langchain.document_loaders import NotionDirectoryLoader#Notion\u52a0\u8f7d\u5668\n", "from langchain.text_splitter import MarkdownHeaderTextSplitter#markdown\u5206\u5272\u5668\n", "\n", "markdown_document = \"\"\"# Title\\n\\n \\\n", "## Chapter 1\\n\\n \\\n", "Hi this is Jim\\n\\n Hi this is Joe\\n\\n \\\n", "### Section \\n\\n \\\n", "Hi this is Lance \\n\\n \n", "## Chapter 2\\n\\n \\\n", "Hi this is Molly\"\"\"\n"]}, {"cell_type": "code", "execution_count": 65, "metadata": {}, "outputs": [], "source": ["markdown_document = \"\"\"# Title\\n\\n \\\n", "## \u7b2c\u4e00\u7ae0\\n\\n \\\n", "\u674e\u767d\u4e58\u821f\u5c06\u6b32\u884c\\n\\n \u5ffd\u7136\u5cb8\u4e0a\u8e0f\u6b4c\u58f0\\n\\n \\\n", "### Section \\n\\n \\\n", "\u6843\u82b1\u6f6d\u6c34\u6df1\u5343\u5c3a \\n\\n \n", "## \u7b2c\u4e8c\u7ae0\\n\\n \\\n", "\u4e0d\u53ca\u6c6a\u4f26\u9001\u6211\u60c5\"\"\"\n"]}, {"cell_type": "code", "execution_count": 59, "metadata": {}, "outputs": [], "source": ["# \u5b9a\u4e49\u60f3\u8981\u5206\u5272\u7684\u6807\u9898\u5217\u8868\u548c\u540d\u79f0\n", "headers_to_split_on = [\n", " (\"#\", \"Header 1\"),\n", " (\"##\", \"Header 2\"),\n", " (\"###\", \"Header 3\"),\n", "]\n"]}, {"cell_type": "code", "execution_count": 60, "metadata": {}, "outputs": [{"data": {"text/plain": ["Document(page_content='Hi this is Lance', metadata={'Header 1': 'Title', 'Header 2': 'Chapter 1', 'Header 3': 'Section'})"]}, "execution_count": 60, "metadata": {}, "output_type": "execute_result"}], "source": ["# \u521d\u59cb\u5316Markdown\u6807\u9898\u6587\u672c\u5206\u5272\u5668\uff0c\u5206\u5272Markdown\u6587\u6863\n", "markdown_splitter = MarkdownHeaderTextSplitter(\n", " headers_to_split_on=headers_to_split_on\n", ")\n", "md_header_splits = markdown_splitter.split_text(markdown_document)\n", "\n", "md_header_splits[0]\n", "# Document(page_content='Hi this is Jim \\nHi this is Joe', metadata={'Header 1': 'Title', 'Header 2': 'Chapter 1'})\n", "\n", "md_header_splits[1]\n", "# Document(page_content='Hi this is Lance', metadata={'Header 1': 'Title', 'Header 2': 'Chapter 1', 'Header 3': 'Section'})\n"]}, {"cell_type": "code", "execution_count": 68, "metadata": {}, "outputs": [{"data": {"text/plain": ["Document(page_content='\u674e\u767d\u4e58\u821f\u5c06\u6b32\u884c \\n\u5ffd\u7136\u5cb8\u4e0a\u8e0f\u6b4c\u58f0 \\n### Section \\n\u6843\u82b1\u6f6d\u6c34\u6df1\u5343\u5c3a', metadata={'Header 1': 'Title', 'Header 2': '\u7b2c\u4e00\u7ae0'})"]}, "execution_count": 68, "metadata": {}, "output_type": "execute_result"}], "source": ["markdown_splitter = MarkdownHeaderTextSplitter(\n", " headers_to_split_on=headers_to_split_on\n", ")#\u5206\u5272\u6587\u6863\n", "md_header_splits = markdown_splitter.split_text(markdown_document)\n", "#\u7b2c\u4e00\u4e2a\u5757\n", "md_header_splits[0]\n", "# Document(page_content='Hi this is Jim \\nHi this is Joe', metadata={'Header 1': 'Title', 'Header 2': 'Chapter 1'})\n", "\n", "\n"]}, {"cell_type": "code", "execution_count": 71, "metadata": {}, "outputs": [{"data": {"text/plain": ["Document(page_content='\u4e0d\u53ca\u6c6a\u4f26\u9001\u6211\u60c5', metadata={'Header 1': 'Title', 'Header 2': '\u7b2c\u4e8c\u7ae0'})"]}, "execution_count": 71, "metadata": {}, "output_type": "execute_result"}], "source": ["#\u7b2c\u4e8c\u4e2a\u5757\n", "md_header_splits[1]\n"]}, {"attachments": {}, "cell_type": "markdown", "metadata": {}, "source": ["\u53ef\u4ee5\u770b\u5230\uff0c\u6bcf\u4e2a\u5757\u90fd\u5305\u542b\u4e86\u9875\u9762\u5185\u5bb9\u548c\u5143\u6570\u636e\uff0c\u5143\u6570\u636e\u4e2d\u8bb0\u5f55\u4e86\u8be5\u5757\u6240\u5c5e\u7684\u6807\u9898\u548c\u5b50\u6807\u9898\u3002\n", "\n", "\u6211\u4eec\u5df2\u7ecf\u4e86\u89e3\u4e86\u5982\u4f55\u5c06\u957f\u6587\u6863\u5206\u5272\u4e3a\u8bed\u4e49\u76f8\u5173\u7684\u5757\uff0c\u5e76\u4e14\u5305\u542b\u6b63\u786e\u7684\u5143\u6570\u636e\u3002\u4e0b\u4e00\u6b65\u5219\u662f\u5c06\u8fd9\u4e9b\u5206\u5757\u540e\u7684\u6570\u636e\u79fb\u52a8\u5230\u5411\u91cf\u5b58\u50a8\u4e2d\uff0c\u4ee5\u4fbf\u8fdb\u884c\u68c0\u7d22\u6216\u751f\u6210"]}, {"cell_type": "code", "execution_count": 72, "metadata": {}, "outputs": [], "source": ["#\u52a0\u8f7d\u6570\u636e\u5e93\u7684\u5185\u5bb9\n", "loader = NotionDirectoryLoader(\"docs/Notion_DB\")\n", "docs = loader.load()\n", "txt = ' '.join([d.page_content for d in docs])#\u62fc\u63a5\u6587\u6863\n"]}, {"cell_type": "code", "execution_count": 73, "metadata": {}, "outputs": [], "source": ["headers_to_split_on = [\n", " (\"#\", \"Header 1\"),\n", " (\"##\", \"Header 2\"),\n", "]\n", "#\u52a0\u8f7d\u6587\u6863\u5206\u5272\u5668\n", "markdown_splitter = MarkdownHeaderTextSplitter(\n", " headers_to_split_on=headers_to_split_on\n", ")\n"]}, {"cell_type": "code", "execution_count": 74, "metadata": {}, "outputs": [], "source": ["md_header_splits = markdown_splitter.split_text(txt)#\u5206\u5272\u6587\u672c\u5185\u5bb9\n"]}, {"cell_type": "code", "execution_count": 75, "metadata": {}, "outputs": [{"data": {"text/plain": ["Document(page_content=\"Saying goodbye to Blendle (from a colleague) and to a colleague (from Blendle) is a very normal and natural thing. When done right, it can even be a beautiful thing. \\nWe advise you to read the backdrop below first, but feel free to jump in right away with the 'Here's what you can do'-section :). General note: you do not have to do this alone, so please ask for advice and help! \\n- **Backdrop** \\nSaying goodbye to Blendle (from a colleague) and to a colleague (from Blendle) is a very normal and natural thing. When done right, it can even be a beautiful thing. \\nSaying goodbye to people is also an important part of keeping your team on the right track. Firing can even be a part of your [Personnel Planning](https://www.notion.so/Hiring-451bbcfe8d9b49438c0633326bb7af0a?pvs=21). The most common situation will be when you think someone is no longer a good match with Blendle for whatever reason. This doesn't happen overnight, so try to spot situations where this is happening. \\nTo make things clear: HR and Rick and Alex will help you with this, but we want this to be on your agenda. HR will take care of the process and paper- and legal work. Rick and Alex will help with the tough conversations. **The most important work happens months before that and that's where you come in.** \\nWhy? You actually work with your people and see how they are really doing. You have 1on1's, off-sites, projects and feedback sessions together. All the information flows to you as a lead :).\", metadata={'Header 1': 'Firing'})"]}, "execution_count": 75, "metadata": {}, "output_type": "execute_result"}], "source": ["md_header_splits[0]#\u5206\u5272\u7ed3\u679c\n"]}], "metadata": {"kernelspec": {"display_name": "chatGPT", "language": "python", "name": "python3"}, "language_info": {"codemirror_mode": {"name": "ipython", "version": 3}, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.16"}, "orig_nbformat": 4, "vscode": {"interpreter": {"hash": "4d8dc73ac51fd938ce7dec941fbf542c26232b3529b0c2a6ebc607bfa3d5aa69"}}}, "nbformat": 4, "nbformat_minor": 2}
\ No newline at end of file
diff --git "a/content/\345\277\205\344\277\256\345\233\233-LangChain Chat with Your Data/4.\345\220\221\351\207\217\346\225\260\346\215\256\345\272\223\344\270\216\350\257\215\345\220\221\351\207\217 Vectorstores and Embeddings.ipynb" "b/content/\345\277\205\344\277\256\345\233\233-LangChain Chat with Your Data/4.\345\220\221\351\207\217\346\225\260\346\215\256\345\272\223\344\270\216\350\257\215\345\220\221\351\207\217 Vectorstores and Embeddings.ipynb"
index 50957a82..dcae806e 100644
--- "a/content/\345\277\205\344\277\256\345\233\233-LangChain Chat with Your Data/4.\345\220\221\351\207\217\346\225\260\346\215\256\345\272\223\344\270\216\350\257\215\345\220\221\351\207\217 Vectorstores and Embeddings.ipynb"
+++ "b/content/\345\277\205\344\277\256\345\233\233-LangChain Chat with Your Data/4.\345\220\221\351\207\217\346\225\260\346\215\256\345\272\223\344\270\216\350\257\215\345\220\221\351\207\217 Vectorstores and Embeddings.ipynb"
@@ -1 +1 @@
-{"cells":[{"cell_type":"markdown","id":"0d647f70","metadata":{},"source":["# 第四章 向量数据库与词向量(Vectorstores and Embeddings)\n","\n"," - [一、环境配置](#一、环境配置)\n"," - [二、读取文档](#二、读取文档)\n"," - [三、Embeddings](#三、Embeddings)\n"," - [四、Vectorstores](#四、Vectorstores)\n"," - [4.1 初始化Chroma](#4.1-初始化Chroma)\n"," - [4.2 相似性搜索(Similarity Search)](#4.2-相似性搜索(Similarity-Search))\n"," - [五、失败的情况(Failure modes)](#五、失败的情况(Failure-modes))\n"]},{"cell_type":"markdown","id":"ea9da9ec","metadata":{},"source":["回顾一下检索增强生成(RAG)的整体工作流程:"]},{"attachments":{"overview.jpeg":{"image/jpeg":"/9j/4AAQSkZJRgABAQAASABIAAD/4QBkRXhpZgAATU0AKgAAAAgABAEGAAMAAAABAAIAAAESAAMAAAABAAEAAAEoAAMAAAABAAIAAIdpAAQAAAABAAAAPgAAAAAAAqACAAQAAAABAAAJpKADAAQAAAABAAACwwAAAAD/4QkhaHR0cDovL25zLmFkb2JlLmNvbS94YXAvMS4wLwA8P3hwYWNrZXQgYmVnaW49Iu+7vyIgaWQ9Ilc1TTBNcENlaGlIenJlU3pOVGN6a2M5ZCI/PiA8eDp4bXBtZXRhIHhtbG5zOng9ImFkb2JlOm5zOm1ldGEvIiB4OnhtcHRrPSJYTVAgQ29yZSA2LjAuMCI+IDxyZGY6UkRGIHhtbG5zOnJkZj0iaHR0cDovL3d3dy53My5vcmcvMTk5OS8wMi8yMi1yZGYtc3ludGF4LW5zIyI+IDxyZGY6RGVzY3JpcHRpb24gcmRmOmFib3V0PSIiLz4gPC9yZGY6UkRGPiA8L3g6eG1wbWV0YT4gICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICA8P3hwYWNrZXQgZW5kPSJ3Ij8+AP/tADhQaG90b3Nob3AgMy4wADhCSU0EBAAAAAAAADhCSU0EJQAAAAAAENQdjNmPALIE6YAJmOz4Qn7/4g/QSUNDX1BST0ZJTEUAAQEAAA/AYXBwbAIQAABtbnRyUkdCIFhZWiAH5wACAAwAAAASABhhY3NwQVBQTAAAAABBUFBMAAAAAAAAAAAAAAAAAAAAAAAA9tYAAQAAAADTLWFwcGwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABFkZXNjAAABUAAAAGJkc2NtAAABtAAABJxjcHJ0AAAGUAAAACN3dHB0AAAGdAAAABRyWFlaAAAGiAAAABRnWFlaAAAGnAAAABRiWFlaAAAGsAAAABRyVFJDAAAGxAAACAxhYXJnAAAO0AAAACB2Y2d0AAAO8AAAADBuZGluAAAPIAAAAD5tbW9kAAAPYAAAACh2Y2dwAAAPiAAAADhiVFJDAAAGxAAACAxnVFJDAAAGxAAACAxhYWJnAAAO0AAAACBhYWdnAAAO0AAAACBkZXNjAAAAAAAAAAhEaXNwbGF5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbWx1YwAAAAAAAAAmAAAADGhySFIAAAAUAAAB2GtvS1IAAAAMAAAB7G5iTk8AAAASAAAB+GlkAAAAAAASAAACCmh1SFUAAAAUAAACHGNzQ1oAAAAWAAACMGRhREsAAAAcAAACRm5sTkwAAAAWAAACYmZpRkkAAAAQAAACeGl0SVQAAAAYAAACiGVzRVMAAAAWAAACoHJvUk8AAAASAAACtmZyQ0EAAAAWAAACyGFyAAAAAAAUAAAC3nVrVUEAAAAcAAAC8mhlSUwAAAAWAAADDnpoVFcAAAAKAAADJHZpVk4AAAAOAAADLnNrU0sAAAAWAAADPHpoQ04AAAAKAAADJHJ1UlUAAAAkAAADUmVuR0IAAAAUAAADdmZyRlIAAAAWAAADim1zAAAAAAASAAADoGhpSU4AAAASAAADsnRoVEgAAAAMAAADxGNhRVMAAAAYAAAD0GVuQVUAAAAUAAADdmVzWEwAAAASAAACtmRlREUAAAAQAAAD6GVuVVMAAAASAAAD+HB0QlIAAAAYAAAECnBsUEwAAAASAAAEImVsR1IAAAAiAAAENHN2U0UAAAAQAAAEVnRyVFIAAAAUAAAEZnB0UFQAAAAWAAAEemphSlAAAAAMAAAEkABMAEMARAAgAHUAIABiAG8AagBpzuy37AAgAEwAQwBEAEYAYQByAGcAZQAtAEwAQwBEAEwAQwBEACAAVwBhAHIAbgBhAFMAegDtAG4AZQBzACAATABDAEQAQgBhAHIAZQB2AG4A/QAgAEwAQwBEAEwAQwBEAC0AZgBhAHIAdgBlAHMAawDmAHIAbQBLAGwAZQB1AHIAZQBuAC0ATABDAEQAVgDkAHIAaQAtAEwAQwBEAEwAQwBEACAAYQAgAGMAbwBsAG8AcgBpAEwAQwBEACAAYQAgAGMAbwBsAG8AcgBMAEMARAAgAGMAbwBsAG8AcgBBAEMATAAgAGMAbwB1AGwAZQB1AHIgDwBMAEMARAAgBkUGRAZIBkYGKQQaBD4EOwRMBD4EQAQ+BDIEOAQ5ACAATABDAEQgDwBMAEMARAAgBeYF0QXiBdUF4AXZX2mCcgBMAEMARABMAEMARAAgAE0A4AB1AEYAYQByAGUAYgBuAP0AIABMAEMARAQmBDIENQRCBD0EPgQ5ACAEFgQaAC0ENAQ4BEEEPwQ7BDUEOQBDAG8AbABvAHUAcgAgAEwAQwBEAEwAQwBEACAAYwBvAHUAbABlAHUAcgBXAGEAcgBuAGEAIABMAEMARAkwCQIJFwlACSgAIABMAEMARABMAEMARAAgDioONQBMAEMARAAgAGUAbgAgAGMAbwBsAG8AcgBGAGEAcgBiAC0ATABDAEQAQwBvAGwAbwByACAATABDAEQATABDAEQAIABDAG8AbABvAHIAaQBkAG8ASwBvAGwAbwByACAATABDAEQDiAOzA8cDwQPJA7wDtwAgA78DuAPMA70DtwAgAEwAQwBEAEYA5AByAGcALQBMAEMARABSAGUAbgBrAGwAaQAgAEwAQwBEAEwAQwBEACAAYQAgAGMAbwByAGUAczCrMOkw/ABMAEMARHRleHQAAAAAQ29weXJpZ2h0IEFwcGxlIEluYy4sIDIwMjMAAFhZWiAAAAAAAADzUQABAAAAARbMWFlaIAAAAAAAAIPfAAA9v////7tYWVogAAAAAAAASr8AALE3AAAKuVhZWiAAAAAAAAAoOAAAEQsAAMi5Y3VydgAAAAAAAAQAAAAABQAKAA8AFAAZAB4AIwAoAC0AMgA2ADsAQABFAEoATwBUAFkAXgBjAGgAbQByAHcAfACBAIYAiwCQAJUAmgCfAKMAqACtALIAtwC8AMEAxgDLANAA1QDbAOAA5QDrAPAA9gD7AQEBBwENARMBGQEfASUBKwEyATgBPgFFAUwBUgFZAWABZwFuAXUBfAGDAYsBkgGaAaEBqQGxAbkBwQHJAdEB2QHhAekB8gH6AgMCDAIUAh0CJgIvAjgCQQJLAlQCXQJnAnECegKEAo4CmAKiAqwCtgLBAssC1QLgAusC9QMAAwsDFgMhAy0DOANDA08DWgNmA3IDfgOKA5YDogOuA7oDxwPTA+AD7AP5BAYEEwQgBC0EOwRIBFUEYwRxBH4EjASaBKgEtgTEBNME4QTwBP4FDQUcBSsFOgVJBVgFZwV3BYYFlgWmBbUFxQXVBeUF9gYGBhYGJwY3BkgGWQZqBnsGjAadBq8GwAbRBuMG9QcHBxkHKwc9B08HYQd0B4YHmQesB78H0gflB/gICwgfCDIIRghaCG4IggiWCKoIvgjSCOcI+wkQCSUJOglPCWQJeQmPCaQJugnPCeUJ+woRCicKPQpUCmoKgQqYCq4KxQrcCvMLCwsiCzkLUQtpC4ALmAuwC8gL4Qv5DBIMKgxDDFwMdQyODKcMwAzZDPMNDQ0mDUANWg10DY4NqQ3DDd4N+A4TDi4OSQ5kDn8Omw62DtIO7g8JDyUPQQ9eD3oPlg+zD88P7BAJECYQQxBhEH4QmxC5ENcQ9RETETERTxFtEYwRqhHJEegSBxImEkUSZBKEEqMSwxLjEwMTIxNDE2MTgxOkE8UT5RQGFCcUSRRqFIsUrRTOFPAVEhU0FVYVeBWbFb0V4BYDFiYWSRZsFo8WshbWFvoXHRdBF2UXiReuF9IX9xgbGEAYZRiKGK8Y1Rj6GSAZRRlrGZEZtxndGgQaKhpRGncanhrFGuwbFBs7G2MbihuyG9ocAhwqHFIcexyjHMwc9R0eHUcdcB2ZHcMd7B4WHkAeah6UHr4e6R8THz4faR+UH78f6iAVIEEgbCCYIMQg8CEcIUghdSGhIc4h+yInIlUigiKvIt0jCiM4I2YjlCPCI/AkHyRNJHwkqyTaJQklOCVoJZclxyX3JicmVyaHJrcm6CcYJ0kneierJ9woDSg/KHEooijUKQYpOClrKZ0p0CoCKjUqaCqbKs8rAis2K2krnSvRLAUsOSxuLKIs1y0MLUEtdi2rLeEuFi5MLoIuty7uLyQvWi+RL8cv/jA1MGwwpDDbMRIxSjGCMbox8jIqMmMymzLUMw0zRjN/M7gz8TQrNGU0njTYNRM1TTWHNcI1/TY3NnI2rjbpNyQ3YDecN9c4FDhQOIw4yDkFOUI5fzm8Ofk6Njp0OrI67zstO2s7qjvoPCc8ZTykPOM9Ij1hPaE94D4gPmA+oD7gPyE/YT+iP+JAI0BkQKZA50EpQWpBrEHuQjBCckK1QvdDOkN9Q8BEA0RHRIpEzkUSRVVFmkXeRiJGZ0arRvBHNUd7R8BIBUhLSJFI10kdSWNJqUnwSjdKfUrESwxLU0uaS+JMKkxyTLpNAk1KTZNN3E4lTm5Ot08AT0lPk0/dUCdQcVC7UQZRUFGbUeZSMVJ8UsdTE1NfU6pT9lRCVI9U21UoVXVVwlYPVlxWqVb3V0RXklfgWC9YfVjLWRpZaVm4WgdaVlqmWvVbRVuVW+VcNVyGXNZdJ114XcleGl5sXr1fD19hX7NgBWBXYKpg/GFPYaJh9WJJYpxi8GNDY5dj62RAZJRk6WU9ZZJl52Y9ZpJm6Gc9Z5Nn6Wg/aJZo7GlDaZpp8WpIap9q92tPa6dr/2xXbK9tCG1gbbluEm5rbsRvHm94b9FwK3CGcOBxOnGVcfByS3KmcwFzXXO4dBR0cHTMdSh1hXXhdj52m3b4d1Z3s3gReG54zHkqeYl553pGeqV7BHtje8J8IXyBfOF9QX2hfgF+Yn7CfyN/hH/lgEeAqIEKgWuBzYIwgpKC9INXg7qEHYSAhOOFR4Wrhg6GcobXhzuHn4gEiGmIzokziZmJ/opkisqLMIuWi/yMY4zKjTGNmI3/jmaOzo82j56QBpBukNaRP5GokhGSepLjk02TtpQglIqU9JVflcmWNJaflwqXdZfgmEyYuJkkmZCZ/JpomtWbQpuvnByciZz3nWSd0p5Anq6fHZ+Ln/qgaaDYoUehtqImopajBqN2o+akVqTHpTilqaYapoum/adup+CoUqjEqTepqaocqo+rAqt1q+msXKzQrUStuK4trqGvFq+LsACwdbDqsWCx1rJLssKzOLOutCW0nLUTtYq2AbZ5tvC3aLfguFm40blKucK6O7q1uy67p7whvJu9Fb2Pvgq+hL7/v3q/9cBwwOzBZ8Hjwl/C28NYw9TEUcTOxUvFyMZGxsPHQce/yD3IvMk6ybnKOMq3yzbLtsw1zLXNNc21zjbOts83z7jQOdC60TzRvtI/0sHTRNPG1EnUy9VO1dHWVdbY11zX4Nhk2OjZbNnx2nba+9uA3AXcit0Q3ZbeHN6i3ynfr+A24L3hROHM4lPi2+Nj4+vkc+T85YTmDeaW5x/nqegy6LzpRunQ6lvq5etw6/vshu0R7ZzuKO6070DvzPBY8OXxcvH/8ozzGfOn9DT0wvVQ9d72bfb794r4Gfio+Tj5x/pX+uf7d/wH/Jj9Kf26/kv+3P9t//9wYXJhAAAAAAADAAAAAmZmAADypwAADVkAABPQAAAKW3ZjZ3QAAAAAAAAAAQABAAAAAAAAAAEAAAABAAAAAAAAAAEAAAABAAAAAAAAAAEAAG5kaW4AAAAAAAAANgAArhQAAFHsAABD1wAAsKQAACZmAAAPXAAAUA0AAFQ5AAIzMwACMzMAAjMzAAAAAAAAAABtbW9kAAAAAAAABhAAAKBO/WJtYgAAAAAAAAAAAAAAAAAAAAAAAAAAdmNncAAAAAAAAwAAAAJmZgADAAAAAmZmAAMAAAACZmYAAAACMzM0AAAAAAIzMzQAAAAAAjMzNAD/wAARCALDCaQDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9sAQwABAQEBAQECAQECAwICAgMEAwMDAwQGBAQEBAQGBwYGBgYGBgcHBwcHBwcHCAgICAgICQkJCQkLCwsLCwsLCwsL/9sAQwECAgIDAwMFAwMFCwgGCAsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsL/90ABACb/9oADAMBAAIRAxEAPwD+/iiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/9D+/iiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK/no/4Kz/8HEv7Pf8AwSO/aL0X9nH4s+AfEXinUdb8OW/iSO70iS2SBILm6urURsJpEbeGtWY4GMMO+aAP6F6K/jB8P/8AB7P+wTd6nFB4n+FHj2xtGYB5rcafcOoPfY13FnH+9X9Qv7E/7dH7Mf8AwUL+B9r+0H+yp4kj8ReH55mtZwUaG6sruMBnt7mBwHilUMpwRhlZXUsjKxAPrmiiigAooooAKKKKACiiigAooooAKKKKACiiigAoor4a8V/8FIP2OvCn7ZvhL/gn6/jC21H4teLzd+ToOn/6TLZR2dlNfu96yZS23QwnYkhEjllKoUJYAH3LRRX5V/8ABV3/AIK1/A3/AIJFfCnwx8XPjt4d13xHY+KdWbSLaHQUt3ljmWF5izi4mgXbtQjgk57UAfqpRXhP7L/x+8L/ALVf7OXgb9pfwTZ3Wn6P490Ox16ytr4ILmGC/hWZElEbOgdVYBtrMM9Ca92oAKKKKACiiigAoor5l/bM/ae8M/sXfsteOf2qvGWm3Wr6X4F0uXVbmysii3E8cWMrGXIXcc9yBQB9NUV+Pn7Cv/BY34P/ALeH7AHj/wD4KC+BfCesaJoHw/fWkutLv3ga8nOi2Ud9J5ZjdoxvSQKu5h8w5wKs/wDBIj/gsJ8If+CwHw98YfET4ReE9Y8KW/g3UbfTriLWHhd5nuIjKGTyXcYAGDnBzQB+vVFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFfFn7ev/BQD9mX/gm18Abv9oz9qXWX0zRYpks7S2tY/PvtRvJAzJbWsOV3ysqs3LKiqpZ2VQSP5ZdS/wCD3X9kSLxX9j0f4K+MJ9D/AOfua8sorvr/AM+6tInT/pvQB/bbRXwf/wAE9f8AgpD+yt/wU6+B5+O37K+sy31ja3H2PUtPvovs2o6bd7Q/k3MOWAJVgVdGeJ+drtg4+8KACiivxs/4K/f8Fnfg3/wR48O+BfEfxe8I6z4sj8d3N/bWqaO8CNA1gsLMZPOdOGEwxjPQ5oA/ZOivyE/4KM/8FhfhD/wTf/Yp8B/tt/EXwnrHiDRfHuo6Xp1rp+mvCt1A+qWFxfo0hldUIRLdkbBJ3EY4r6i+F37fPwA8Z/sM+GP+CgXxH1SD4feA/EWg2niB59fuIoBZw3ihkjlcMUMhLBFVCS7kKoJIFAH2zRXzV+yF+1p8F/25f2fNE/ag/Z5vZ9S8G+I5tQi027uYHtXnXTryexkkEUgDqjy27sm8KxQgsqkkDy/4D/8ABR/9jr9qH9o/xd+y1+zz4wtvGPibwHYpe67Lpf7/AE+18yXyRD9qH7qSYMDuWIuEwQxDDbQB9y0V+Gf7Rn/Bdf4G/s3/APBULwf/AMEtPEfgrXdQ8UeMrrRrW31m2e3FhC2tNtjLqziXCE/NhT7V+5lABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRX8sH7eH/B2r/wT6/Y6+LuvfAj4f6Fr3xT8Q+G55LO+udHNvbaQl3CxWSBbuWQvI0bAqzRwPHn7rtzQB/U/RX8t3/BPr/g7C/YG/bb+MekfADx1oetfCvxL4iuIrLSZNXaK60y6vJjtS3+1QkGKR2IVDLEqMSBuDEA/wBCX7TP7VH7PH7G3wnvfjj+094u0/wZ4XsCI3vdQk2+ZKwLLDDGoaSaZgrFYoleRsHCnBoA9/orxr9nf47+Av2oPgX4T/aI+FjTyeG/GmmW+r6Y91H5MzWt0oeMumSVJUg4JyO/Ney0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFZGv6vD4f0G9164QyR2NvJcMq9WESliBnucV/F5/xG4fsV/wDRHPG3/f6x/wDj1AH9rVFfx7/Cr/g9H/4JueMPFFpoHxK8D+OfCFndSLG+pPbWl9bW4Y4LyrBcmfYByfLikb0U1/Wz8P8Ax94K+KvgbR/iZ8N9Ut9b8P8AiCzh1DTdQtHEkFza3KCSKWNhwVdSCD6GgDr6KKQkAZPAFAC0V8N/s2/8FHv2O/2wPjf45+Af7MvjC28aat8OYLSbXbvTP32nQvevKiRR3Q/dzuDCxfyi6LwC27Kj7koAKK+Q/wBvT9sHwh+wL+yP40/a98eaTea5pHgq2gubmxsCi3Myz3EVuAhkKpkNKCckcA15Z/wS/wD+Ci3w8/4KkfssW37Vnww0DUfDWlXOp3mmCy1RomuBJZlQzExMy7W3cc5oA/Q+iiigAooooAKKKKACivw0/b7/AOC6/wADf+Cfv7ePw4/YH8feCtd13XviTa6PdWep6e9utpbrrOoz6dGJBI6uSjwM7bVPykY54r9y6ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAor+cj/gpl/wc4fsA/wDBOT4k3nwIhh1L4n+PdMdotS03w60ItdNmQ4aG7u5XCLMOQYoklZCCJAhwD8U/s0/8HnH/AAT/APiv4107wZ8evBHif4ZRajOITqzmHVdNtQ3R7hoTHcKnqY7eTGeeMkAH9htFcv4I8b+DfiV4P0z4g/DzVbTXNC1q2ivdP1CwmW4trq3mUNHLFIhKujKQVZSQRXUUAFFFfDX7WH/BR/8AY6/Yr8YeEPhn8evGFtY+LvHupWOmaD4ftv8ASdTvJb+4W2ikECfNHAJCQ08uyMbSAxb5SAfctFFFABRRRQAUUV8Nfttf8FH/ANjr/gnr4a07Xf2ovGFtot5rcog0jSIv9I1TUZWYJi3tky7KGYBpW2xISN7rkUAfctFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH/0f7+KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr/N6/4Otra2vf+C8P7PlneRrLDL4R8KI6OAysreIdTBBB4II4INf6Qtf5un/B19qFhpH/AAXa/Z/1XVZ47W1tfB/hWWaaVgkccaeIdULMzHAVVAJJJwBQB/eD8b/+CeX7Dv7Rfw81L4X/ABe+FPhfVdJ1SFoZAdLt45o9wwHhmRFkikXqskbKynoa/hG/4Nl/GPjf9hr/AILn/GX/AIJq2Wrz6h4TvLnxLoMsUpAWa/8ACl1ILa8wMAOYI51O0AEScj5Vx/bv8WP+CtH/AATL+CvgXUPiH46+PHgZbDTomleOy1y0v7uXb/DDbW0sk8znskaMx9K/ie/4NgvCPi79tn/gtz8cv+Ck50eW18MQv4j1jz5R8sGp+Kr5pILYEZBcWzXBbBO0KP7woA/Vv/gqN/wcT/tPeHf243/4Jh/8Eivh9afEL4mWV22m6nqV7C94i6hGu+e2tYEkhQfZVDfabieTyoyrgqAhevmnwl/wcRf8FYf+Cb37Snhb4If8F0PhBp+ieF/FYHla7o8SR3MEXmKklyklpc3VleR2+4GaCLZMgYHOSqP8Bf8ABFz4kfD/APYe/wCDmX45eDP2xNRt/D2q+IbnxdoOm6jq8iwRHU77VIL23cyyEIn2y2jfymJG8yoo5cA/aH/B6T+0l+z/AOPPhj8Hf2ZvA+sWHiD4g22vXOsS2unypdXFlYNbmALKIyxQ3MroY0PL+USBwKAP6T/+Cvn/AAWB+D3/AASv/Y+sf2j2tofGeseL5Y7TwhpVvchItSllj877QZlD4tYosSO6g7tyICC4I/l58Wf8Fqv+Dn74V/s76b/wUh+Jfwa8J23wUv47S+2mwVYxYXjosMzQrqL6lDFP5iiOaQbcMrY2spb55/4Oe/gB8c/hj/wTJ/YJtviJDdk+B/CTeGtf82MqLXWJNM0rZFKf+ehFpcKA3J8pj13V/X7c/wDBWX9gP4M/8EtPDv7aniPxNpeq+CofDGnSQaRYXFtNf3VwIok/s+G2llTddRyHy3iYqYypLlQpIAPjz4+/8FzvFfiH/ggTqn/BWv8AZX0O10nxXZtplpNouvxPd29nfS6pbWN3E3lvA0seyUyQSBl3IyMyg7kH3d/wQ+/be+MX/BRT/gm74K/ay+PUGmW3ifxDdavDdR6RA9vaBbG+nto9kckkrAlI13Zc5OTx0r8dP+CwX7enwh/4Khf8G03xg/ag/Zz0jXdP8NnU9Es0j120jtbljZa3pwldUilnRo0Z9hdXI3I4/hr1f/g10/aS+BfgT/ghXofiDx14r0vSLD4d6j4h/wCEinurlI105WvJrxTPk5TdDKrrkfMDxmgDlv8Aggp/wW1/bB/4KXftrfGL9nz9oax8N2uheA9PnutNfRrKa2uGeO/W2HmvJczKw2HnCr83PtXwRpP/AAco/wDBUPxH/wAFIPjT+wL8FfhR4f8AiZ4i03xD4j8L/D/TbKCWyZbnStReJLrU55LwI1vFZwyvKFMAZ8HzI1zXyp/wZteI7Xxh/wAFG/2gvFtjkQ6p4bkvI9wwds+pxuMjscGtv/ghFZW11/wdR/tOzzoGe2v/AIjyRkj7rHX40yP+AsR9DQB6ja/8HN3/AAVW/wCCe37Xeu/sv/8ABWD4P6TrOpCzM1lpfhdVt78XV5GHsBBPHcXVvcWsrERvhWmTcTlnjMLa37Sv/Bfv/gvx/wAE2/i34H+JH/BRP4K+E9B+HXj+ZpbbQ7NQ9ytnbMhuIo7qG/naG9WKVDi5UqSf9WMMF8V/4Lk6dZaj/wAHWn7MunXsayQ3Wq/DWOVCMh1fXWUg/UcV9kf8HvsaH9mj4FSkDcPE2qAHvg2qZ/kKAP3d/wCCq3/Bab4Nf8E3f2FfD37W+naf/wAJTq3xFhtv+EM0SWX7M1613ALkTTkB2SCCJlaUqCdzJGCC4Yfzo6z/AMFpv+DmH9nb4D6P/wAFGf2j/gf4Tuvgfq5srue2it/ss8Gn3rKIZNqX017aifeqxy3MUqqzIWT5lDfHH/B0H4L8c3f/AATi/YD+ItvHLL4asPBH9nXEgU+VDfXel6TLCGbpuljglKA9omx3r6v+Pv7GH7Quqf8ABNCy+Pn7Tn/BTZ2+AHjXSNPtjHL4Wa+t7iC88tY7VYLW8eeSSJsLJHGheLy2LBdjYAP6Fv2mP+Cvqaj/AMEM9d/4Ky/sZx2ct6ujWV/Y2Wsxm5jtLx9Qgsrq1uUikjLPA7SodrgFlDDKkZ/Cf9mX/gut/wAF9v8AgpN+zBFqP/BPz4GeH9a8S+F/tieMvFNykdrpxumkeS1tNLt7u/jV5ktfLabe87F3x5ca7Gk0/EP7O3wn/Zp/4NIfjV4M+BPxYtvjP4Q1K+/tPTPEdppU+jxMkurafHLAILiSRyY5opNzZHzErjKmv0Y/4NBLC1s/+COemXFugV7rxdrsspAxucNEmT6/KoH0FAHC/wDBAT/gvf8AtBf8FOLz4l/s1ftHeFdN0r4teA9Hl1iwl0yGW1gv4YpBbSx3FtNI5hnhuJIVbEgVxIRtjKEt/HN4J+NH/BXK1/4OA5/jH4a+HWkT/tYm/wBQd/CbLH/Z4uH0SWKdcfbQmF08vKP9L+8OpPyV+yf/AAbLxR2//BxP+1NbwjaiaL41VVHQAeJtPArH8C+INB8G/wDB7hfa14tvYNMs01zVkae6kWGJWn8JTpGCzkAF3dVXnliAOTQB/f7+zprXxc8Sfs+eBPEX7QGnQ6P48v8Aw9pdz4ksLcAQ2ury20bXkKYeQbY5y6riRxgfebqf5DP+D2//AJMo+D3/AGO83/pBNX9pGlarpmu6Zba3olzFeWV5Ek9vcQOJIpYpAGR0dSVZWBBBBIIORX8W/wDwe3/8mUfB7/sd5v8A0gmoA/ov/wCCNv8Ayic/Zv8A+yceG/8A0hir9AvGvjPwt8OfBur/ABC8c30WmaJoNlcajqF5McRW9rao0ssrnsqIpY+wr8Vf+CSn7dP7Engr/gl9+z74Q8ZfGPwPpGraZ8P/AA/a3lle+IbC3ubeeKyiV45Y3nV0dWBDKwBB4Nejf8FK/ij8Lf2z/wDgmH+0T8Lf2Q/HegeOvEh8Caqxs/DeqW2pXBXyHbyylvJIR56o0a5A3E4HNAH83w/4OEf+Cz//AAU++PXinwV/wRR+DWnXHgvwkwd9Q1eGKS7khZiInuri8urayt2uAjNHbLulwGw77SR93/8ABJL/AIOIfjh8bf2xrz/gmb/wVL8A2nwy+MUc8tpp1zaRyWdtc3cSCUWc9vPJMY5pY8yQTRytDcAqEUFkL/I3/Blz+1B+zj4e/ZP+J37NviDXtN0fx/H4uk8Qm1vJ47ee80qeytYI3i3kGRYJbeXzAufL8xS2N4z8E/t2eOvB37dH/B2j8IB+xpfReID4U17wlDq+raORcwPJoFx9s1CYSJlHW3tlMMjZK5iK84oA/oI/4LLf8FcP+Cj/AOz/APtUeEv2Df8AgmV8GLnxV4v8TRwGTxJrGm3EmltcXILpbWcrPb2paOJfMuJ5ZjFECVIBRmH5Tah/wX0/4La/8Eyv2w/AvwM/4K+fD/wzL4a8aPbSvLpiQrdR2E0/kPcWtxZXMtuzwNkvBLHuYADKB1evYf8Agph/wVk/4KDftDf8Fo7H/gjD+w58QdO+B2lR3UGlX3iq7to5rq7u5tPGoSYeaNmiABEFtHBseabGZdsihP50P+Dgn9kTW/2NP2qfhl8OPix+0Z4h/aE+IF7ZNf6/eeIJ2ZtKje4RbeKKF7i6a3WQLI/lmX7oUhQCCQD+5f8A4L+f8FwrP/gkD8JfD2jfDTRbLxR8U/HZuDo1lqDv9isrW12iS8ukiKySLvdY44leMyNuO8CMg/zuftz/APBQj/g4J0T/AIJmfEC8/wCCmXwM0mL4VfFfQX0u31rS/Ks9S0K51IqbRru2jup3jhc4jKXEMcgd1DSB8Rvmf8Hgmnap8OP+Cl/7OH7Qnja0mufBMOi20LL5ZaJ5dJ1V7m8jB6F2huIcrnpiv6F/+Dg39s79k+9/4Ih/EfxJYeMdG12x+Juj2ll4VFpdxzHVLi5nhkja3VWJfylBncgfIqHODxQB+Z3/AAbE+Ob/AOGH/BvP8dviVpVpaX914d1rxnqcNrqEXn2k8lpolnKsc8eRviYqA6ZG5SRmvqf/AINuv+Ck3xT/AG3v2T/jf8VPGngrwR4Nv/Bl7GtpB4O0b+yLac/Y5Jg1xGJZPMYMoAORheK+I/8Ag3T/AOVaH9pX/r48e/8AqP2tcV/wZ0/8mB/tPf8AYQi/9N0tAHGfsC/8HKX/AAWc/b90fxL8B/2avgz4Y8ffF8yQXlldwwvp2haRo6ZS5mvDcX6+ZK0jxrCvnRAcnEh+Svq//glj/wAHAf8AwUF1j/gp1/w6t/4KseCNI0TxZqFzPpsF3psH2S5sNSjt2u4o51jmnt7iC4iCiGWHaPnR9zo2R8k/8GMtjayX/wC09qToDPDH4MiR8chJDrBYZ9yi5+lee/tZRRxf8Hqng94xgya14YZiO5/sKEfyAFAH7Z/8F5/+C/HxH/4J4/Fjwl+xN+xR4VsvGvxo8YR205W9jluoLFL6XybSBLaBo3nu7pwfLTzFCDaSr+YBX5tftQ/8Fx/+Dgr/AIJmfs3z6l/wUE+CfhrTNb8UtaxeD/FNqsV1YRXqyrJc2epwWd/Igd7QStBsaFg6H5ZV3mP42/4K6+MNN/Y7/wCDsX4f/tO/tG77PwJcXvhLWYL2dC0MGnRWyWEs4xyVt7mGWV8ZYbTgHjP6ef8AB2z+3x+xx44/4Jr6V8A/hz450Dxn4r8XeItN1HT7XRb+DUGt7KzWSSS7cwO4jjYERIWOXMh2ghWKgH9DH/BHb9rv4p/t4/8ABNz4Y/tZ/GuHT7fxR4wtr+a+j0uF4LRWtr+5tk8uOSSVlHlwrnLn5sn2r9MK/Cv/AINo/wDlB/8AAb/rx1j/ANO99X7qUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAfxlf8AB5j+x/8AH749fssfDH4/fCHTbzXND+Fuoas3iOyslaV4bbVI7YR3rRqCTHbtbMjuM+WJtxG3cw+M/wBiP/g51/4JYeJv2QtE/Ya/bi+CEvhDw7DocOgX66NY2+qaBcRxxCF5mg/dXMLSY34SOd1Y58wsNx/ab/gvr/wW7/aH/wCCPPiz4cR+A/hlpfjDwt46gu/N1TULmeMw3djInm24WIBctDKjxln5O75SFNZ3xs/Z0/4NmP8Ago58ApP2nfHR+HGk6drOn/bpvEWmalbeHNWtHkTcTdC3lhb7VGeGiuo5DuG1kbpQB2H/AAb7/wDBOj/gm/8AsseC/E/7TP8AwTZ+MOvfFLw18Q4LbT9QbUbi1a3im09nkjD28dna3EFxGJmBSfDBJM7OQa/ILxP/AMHMP/BR3w//AMFQPjP+wT8M/hfonxK1DTNf1/wn8PdH020mgu5tTsr/AMq3m1Cdrra1tDaRzy3GxYslQS8SbnX4b/4M+dW8S+Hv+CqHxj+HPwO1XUNX+Ep8M6lLJPcK0UdwtrqNvHpdzLHgKly8Ty7VwCFeTjAOOS/YD/aA+DX7O3/B238WvEvxv1K00XTNa8dePNEtdRvpFit7a+vbqcQb5GIVPNKmBSTjdIAcZzQB+hM//Bw1/wAFh/8Agmv+174Z+F//AAWq+E2h6L4J8ZuJhPokSiWztGdY5J7O5tru8t7lbXdumt3LTEFfnTcu6l/we66tpev/AAZ/Zs13RLiO7sr2/wDEM9vPCweOWKSCwZHVhwVZSCCOCDXOf8Hr/wAcvg14w0D4GfAHwnqllrPjey1DVNWntLOVZ7i0sriKCKPzFQkp9pkGYweX8okdK8e/4OvvBviz4c/8E7P2Hvh7498wa7oOhT6dqPnDbJ9rtdM0uKbcOzb1bI9aAP2f/wCC2P7cPjz9gP8A4IvfAL4xfDzwn4S8Y3upah4W0Z7LxlpQ1ewjim0K8nMscJkj2zBoFVXzwjOMfNX5R/8ABd/9pf8Abe+Nn/BCP4BeNPC/gjQLT4T+P/DGkax46u9KtVtINJ1LzrV9PgsoftG6KGSQuuwRSgAAFl619Ff8HTf/ACgD/Zx/7Gjwh/6jmp1U/wCCikbv/wAGb3wxZRkJ4b8Ck+w+0W4/maAPEv8Aggp+0J/wXX8K/wDBLjUPDX7NXwn0LXPh74d8K6pd/C7ULlIjNq2uy+JEF3BOW1CIlESbUiu6OAfuV+c8B/xf/wCDdD4sf8FOPh3+2r4sk/YM8C6Z4tn1mbTrfx4t+qMNO0lr8edLDvu7fDKS+MGU8fdPf+3f/g1m8c+CtR/4IofBbwRYavZTa1ZL4ne4sEnRrqJRr98xZ4gd6jbNEckYxIv94Z/m1/4M8PGvg3wR+3Z+0PaeMtWs9JkudGiWJbydIDIU1EqwXeRkhnUHHdh60Afqv+3l/wAFQvir8Hf+Diz4WfsO6L4A+H+p6D4i1LwnBNrup6ELnxFANSkCuYL7zVMbR/8ALI7DsPrW5/wXH/4OAv2mv+CVf/BTP4a/s8+DdD0bWvhnq3h7RvEPiGF7KSfWporjU723uorOUXMUSu1vbKId8bASHJyOB+W//BU3/lb++Bn/AGGPAf8A6OFVP+DlWwtdU/4OPf2XdMvkEkFzpPgaKRGGQyP4l1AEEe4NAHuf7bP/AAXH/wCDj/8AYjt/Dn7WX7QvwJ8KeA/hN4n1BbbTtIu0F7Miyhpore9mhvjcwXbQIxDPFCpYN+5BBQf086r/AMFd/gL4a/4JKWf/AAVq8U2U1p4ZvPDNvrKaOJQbl9RuGEC6ckhUBnN4fIEu0LgGQgKDj80/+DwGGOT/AII73ryDJj8Y6Gyn0OZh/ImvyC/aP+H3jrx5/wAGW3wxvfBcUtxF4dms9W1OOEbibGPWLuJ2I67Y3ljdiPuhcngEgA9S/ZR/4LSf8HKn7bml6v8Atl/sx/AHwr4m+DukXk8R0dQLee7gtm3SxWk017HdXNykfyebDC0ZlyBCzfu6+sv+CHH/AAcEftQf8FU/+CmXxC/Z58baDouhfDbTvD+s+INBt47OWLWYI7fULOC2iu5jcSRO6w3DCXZEoaQZGBxXq3/BuR/wUl/YU8Df8EXPBHhn4h/Efw54O1H4XQ6tbeI7HVb+G0uLctfXN0swikcSSJPHKrKyK26Qsi5ZSK/Bv/g1h+I3hf4w/wDBfb47fFvwRbtaaL4p8M+LtX0+B12NFa32u6fNEhXJwVRwCM8YoA/0l6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAM7WLGXVNIutMguHtJLiF4lni+/GXUgOueMrnI96/ydv+CdX7W3ir/g27/4KB/EPwR+3B8FT4q1i4RNNa9JWHUbSKCV2F7pks6GOe3vAQSQyeYFQ+Yu1lP+qj8ZvEnjjwb8IPFfi/4ZaSmv+JNK0e+vNK0yR2jS9vYIXeCBmUMyiWQKhYKSM5APSv5IP+Cbn/BcH9iH/gtle+MP2cf+CqXw/wDh54W1jS3il8Oad4jEU1veQuGW4WKfUAPLu4XVTtjKOytlQdjEAHzd46P/AAbtf8HI/wC034R8SxeO/E/we+LMlsdPXSIraz0O+1p93mRb53t720nuYjuWPZOZmUhcMFUDif8Ag9F8Wftk2Pgr4cfCm60K3uvgFbzaVfDxNKI/7Ql8YrHq0LWzlZlOw2IExAtgu88P/BX5O/8AByz+yP8A8Emf2PfiZ4A1P/gmjr9nYeMNRlu5/EGgaBq7apZaekPltbXAkMsz2k7yFgIvNwVUMqIBl/2m/wCDnjVfip4l/wCDe79l3xN8blm/4TK91vwdP4g+0AiYapN4bv2uvMBAIfzt+4Edc0Afe/8Awbp/tN/t3+EP+Cft54u/4KFeGdJ8DfAr4b+A9G1DwP4ihVRJe6LaW9xJc3FzsurhyY7eKF+YYiSxwpPA/N3Rf+DgH/guN/wVF+MPiix/4I1/BTTP+EE8JSgvc6tFDLdvGxPl/arq8u7azSWZVLLbQ5kUEgO+N1fojcWkvx6/4NLU+GPwU1O31bxHZ/BXTp57KwnSa5WOwjSW4jaNCWDMlvNHtIyzAqBu4r5r/wCDNL9qT9m7TP2E/G37OepeINM0Xx1pXi681y8sbu4jt57rT7q1tY47lA7AyIhheN9ufL2qWxvXIB9M/wDBHL/g4a+K37UX7VOp/wDBN/8A4KTeBbX4ZfGuxkuobJ7VJbS1vbm0Xe9nJbXEkrw3PlBpY3WVop1B2hDsD/I3/BTb/g5F/bk/YZ/4LCeMP2IPhp4J0Lxt4T0qLT7PRdLisbh9ZvtV1nRYJ7OPzY7jDr/aNzHuRId7wgovzkNX53/G3xr4S/bn/wCDv7wL4p/Y3vI9f0/w54g8Pvqus6Tie1nj8PW6PqMvmplWiWOM2pkztYqApOVz1H7SmhWHiP8A4PZ9F0/UY1ljj8ReGLoBugktfDVrMh+qugI9xQB+6f7Cf/BRL/gs/wCBv2afj/8AtK/8FTvg3cJ/wgNpYXHhLw14f0SeLVdXu7zfuhi8qS5DW0RaBZJNkjxBnZ2PlstflLYf8FXP+Dqn44fATxJ+3d8LfhH4Y8O/C7w9Hf30lrPYwxTmz0zebllt728F9MIRG+9kRd7KwjBI2j+ov/gtZ/wUJ8S/8Exf+Ce3i79qbwFpMGteJreaz0rRre8Dm0W91CURrLPswxjiTfJtyvmMoTcu7I/ky8DfB/8Ab/8A+CkP/BK7xL/wVA/b2/bi1fw34AutG1y7/wCEQ8NLHptrIbBpoUs7xraS2g3zSxBFtzbzM6unzFmxQB/Rb/wQ2/4LUp/wU6/Yq8YftA/tAaXp3gnXvhhdSweJ5bJpBphtY7cXQvYxK0kkSeWJA8bPIVMZO4hgB+G/w7/4L9/8Fvf+CpH7SfivSv8Agj18IPDtx4A8EyLK/wDb6oZZbeQusBvbq4vLWFJLnYzR28GJEAI3uqM9fKP/AAbSfD/xr8V/+COX7efwx+Gcctx4j8Q+H7rTtOt4BmWa5udHvo4olHrKx2Dvk8V9A/8ABmn+2j+y18Ivgd8Xf2evi54t0bwj4qm16DxBb/2zeRWIvbBrVYGETzMqubd4izqDlRKD0zgA9Z+CH/Byh/wUM+Kn/BWf4W/sCfE34aaJ8N11DVrDw3420a/tZp9QttUG8XT2lwLrYIJAEkg3RvhWxulXEjffX/BZ7/gvZ8bv2VP2qfDf/BNX/gnB4JsviH8c/EX2T7T9uDz22nvfjfBaiCOSEvcPEVnZ5JUihhZWYMGOz+cj4k/tMfBP9rT/AIO+fBHxe/Z81G31vw0fGXh/TItVtGDwX82m2UVtNNE4JDx+ZGyJIvyuiBlyCDXDft9fDr4vaR/wda+IdCl+K8nwJ1rxVrVu+hePZrVbiOyh1DRVgtSqvJErJKf9B3+YAjMSfukUAftT4B/4L0f8FXf+Cdn7WXgb9nb/AILqfDLQtC8KfEN0isfFGitHGbMPKkb3DyW9zc2k0NsXX7REBFNGjCTLAqr/ANsisrqHQgqRkEcgiv8AOf8A+CsP/BNq3t/Hngb4F/8ABV//AIKTR32tyRXOoeHrDV/Bt1em3ScxxySM1nduLcTFVCmYoJNh252nH+hP8LvD1/4S+GXh3wpqt7/aV1pml2dpNd+WYftEkMSo0nlsSU3kFtpJK5wSaAO7ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA4n4l/8AJOfEH/YNu/8A0U1f5bX/AAa/ftu/8E6/2LPiP8XtY/4KE6zpej2Gv6bpMOitqej3GrrJNBLcNMEW3trkxkK6ZLBc9s4r/Ul+Jf8AyTnxB/2Dbv8A9FNX+Y3/AMGov/BPH9jX/goR8Qvjd4U/bD8D23jSy0HSNHk05Z7i5tmtnupblZWje2liYFgi854xxQB7p/wclf8ABR3/AIIu/tp/s2+Evh1+wRYad4k+Jlt4ihuf7a0jw5PoxtNOWGZJbeSa4tbaWcTyPEUhRXTKbyVKqG/pf/YP+Ndz/wAEX/8Ag3T+H/xZ/bdtru31TwX4fuLxtGlPl38s+r389xp2nBX5Sby7iGJlYZhCsWAEbAfyQ/tVfAf4mf8ABrZ/wVl0H4z/AA18N2Pj34ReJpPtmhPr9jBeTyaekiG6so7uSMva6haEr5dxCVLKYncMrPHX9Dn/AAdDfErRv20v+CCfhX9qH9mW+fWvBF94m0DxJcXUK5xpk8N1bATAZ8to7ueGORTykoKHBBoA+KfBf/BaX/g5n/aM+Butf8FFv2efgh4R/wCFJ6R9tuYbOS38+SexsmYTSKr38N9d+QEZZJbeNEZlfanysq/s58Gf+Cxfx/8A+ClH/BHnxf8AtY/8E2/A9lefHnw9dWekXHg3UZUuYIbw3Vt9qYM81pvgexklnhdnQ7lK/MyEH8Bf+Cbv7LX7Y3xI/wCCSWkftNeA/wDgobL8MvhR4Y0W9TWvDy6El1F4dS0aT7RaS4vFdmYZdF8sPMsilFbeuf1k/wCDWj9kn9mf9nX4V/GbxN+yf+0BafHjQPFk+jxTva+HrzQDpd3Yx3Z2Ol5I7u0yXCkjapQIM53CgD+WD/g15+KX/BSX4d/tS61pX7B3gnTfFvhjXdS8M2vxFub9UaTTNEN3IDPDvurch/Ka4PyrMcoPl7H9/wD/AIKbf8HIv7cn7DP/AAWE8YfsQfDTwToXjbwnpUWn2ei6XFY3D6zfarrOiwT2cfmx3GHX+0bmPciQ73hBRfnIavhX/gyU8c+C/CXxe+P2m+KtXstMuNQ0vw4trHdzpC0xFxdoQgcgsd8iLgZ5dR1Ip37SmhWHiP8A4PZ9F0/UY1ljj8ReGLoBugktfDVrMh+qugI9xQB+lWmf8FCf+C3fhL/gmZ+1L+0X/wAFL/hX4W0WfwNa6FL4V0fXtAY2l/Jf3ka3CyxfaWjnt4I3j2jJcSn5nyhFfeP/AARw/wCCo2ieK/8Agi/r/wDwUJ/ag0bw14F0jwjfa5NqFp4R00aZY+TYlNixW3mODcTswjUbv3kjKO9fQ3/ByL/yhK+Pf/YK07/052dfyr/s3+C/HPjv/gy5+LOl+Aopbi4tPEk2o3UMK7mexsNXsLi5bjosUMbSuf7iHPFAH1F8K/8Agth/wcc/8FGNP8VftQ/8E5fgb4aT4TeFryeGCzvUS5urvyEDtB5k95bSXk6oQzCzijAJCDL4Dfrl/wAE4P8Agtl8Wv8Agq9/wTy+K3jP9n/w9pfhn9pD4Z6bJ5nh26WS7067v/JeW1kij8yOYQXbxSQbGkLwSD5mcbWb+dL/AIIQ/sq/tqftFf8ABPKbx5+zT+3dL8E/Dfgy/wBRXXPCaaTFOmine0xuJpXvIT5dxGfNEjIFzuUElGx+nX/BsB+yl+yv8Nf2kPi18f8A9mX9qC1+Pk+vaPHb+ILKHwvfeH5rS5urvz47mVruQg7zHMqqqDdkkHCmgD7w/wCDcb/gtR8Uv+Cs/wANviNoP7Slro+m/EPwHqVtIYNGgktIJtJv4yIn8qaaZzJHPDMshDYAaMYBPPg3w3/4LbftlftVf8HAGr/8E2P2W7Dw1L8IPBWoXEPiHV7mynuNRW20WJV1FlmS5WNN98fskLeUwBZGOckV+B/7W3xH8Wf8G4n/AAX0+J/xk+Hunv8A8IV8VfCuuavpFpGn7mRtahlnt4tv3FS21y3VSOSlsOB8wB/X/wD4M3v2MNV8I/s2ePv+Ch3xMjkuPEfxb1STTtMu7nLSvpemysbiYOeT9pvjIJM5ybZT3oA9V/4KIf8ABXf/AILE+Jv+Cg9//wAE8/8AglH8EjJNoqSef4l8UabLFFftbqDcT2013JbWcdnEziNZHMhmcDyz8yq3zz+xV/wXt/4Kl/Bf/gqR4Z/4Jg/8FcfAugWup+Lb2z0yG+0iNYbq1uNTQGylD2881pc28rlUYIFdCxJbKGM+Pa3/AMFKP+Cmv/BY7/gr38Qf+Cb37Jnxmtf2b/AXgmfWrWO7trNJtV1CLQroWksqO4juHuZmYyrBFNbpHCrbizIWb8gPiV8ANL/Zh/4OXvgL8FpfjPrPx01vSfG3gr+3vE+vXJurv+1Jb+N3ti7SzFREhjGwyuUZipOQQAD9Dv8Ag5W/5WPv2Vf+wR4G/wDUn1Gv9ESv87v/AIOVv+Vj79lX/sEeBv8A1J9Rr/REoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK+Cf8AgqT+0f4k/ZF/4J2fGX9o7wVIIdd8LeFb+40qUgERahJGYraQhgQwSZ0YqRzjHevvaviv/go9+zhrH7Xn7BPxf/Zo8NJFJrHjLwpqen6WJ22Rf2i8LG03sfuqLgRkt2HNAH8VP/BoF/wTr+CP7S1v8TP+Chn7TGi2/jrXtL8QDQtF/tuIXsUF6YUu728ZZt6y3D/aYQruC0fzMDufI/pE/wCC8f8AwS9/Zj/bD/4J4/EzxHe+EdMsvHfgXw5qHiHw5rllaRxX8NzpUDXP2fzECs0NysXkOjllAYOF3opH8wf/AAaf/wDBTj4IfsLa/wDE/wD4J4/tp6vB8N73VdfOp6Zd69J9itYtWgjFnfWV1JLtjt5QIIthlZVZldCQ+xW/oZ/4Lxf8Fnv2MP2bv+CfnxG+G3gH4gaF4u+InxD8P33hzRNH0PUIr+eI6rCbeS7mNu0ggjgilaVGlKiVlCLnJwAfm5/waF/tm/EfxR/wTh+M/wAFdb1H+0T8Frj+0dCjucv9ms9Vt7i4WDggmL7TbTuBnIMjAHGAPt//AINqf+CyP7WP/BW+x+Mtx+1HZeHrNvAL+H103+wLOa0DDVBfmbzfNuJ92Ps0e3G3HOc5GPij/g03/Y1+JHwq/wCCXPxm/aB8U6W1nJ8ZfOTQ42BE11p+k2txBFNtxkJJcTzrH3YLuHyspPx5/wAGPnxK8EaD4m/aP+HOu6ra2esana+GNSs7WaVUlntrA6mtzIikgssJnh3kcLvGetAH6wfFj/gtr+2D4I/4OOdL/wCCUWj2PhtvhleahpVrJcS2UzatsvdGiv5MTi5EeRM5C/ueE45PNfyq/wDBd34m/wDBRHWf+C7/AIf134teDNO07xr4d1qytPhbZQqgi1fQrPX7xtDnuMXTgvcy5WTc8BwOUj619p+IvjT8Ofj7/wAHnuj/ABB+E+rW2u6EvirTdMivrRxLBLNpmgx2lwEdcqwS4ikTcCQduQSK9I/4OV9R0/w9/wAHHf7MOva7PHZ2NrpPge4mnmYJHHFF4kvy7szYCqoBJJOABQB+xn7e3/BWL/gq3/wT/wD+CLvgD9r34+eDfDPhj476143/AOEf1vRru1a406CxlGoyQMkdveviR4raBs/aGHzNkAnA+HtM/wCC2f8AwcR/tmfsw6Z+1R+wL8ANIPgHw5pNudf1y7t45rnWNWsoh/ajafZS36SvZrOJI40t4p5vkIMnmbo0+sv+DyDxJ4d8V/8ABJHwrq/he/ttStD8TtLj861lWaPfHYaorruQkZVgQwzkEYNfZ3/Bvt+2v+ycf+CJvw48QXXjDRdCtfhfolxYeK0u7uOBtLns5pWkkuFZsoJlInQkfOHGOcgAHVf8EC/+C3Ol/wDBYD4L69a+P9Hs/C/xR8CNbrrmn2DubO7t7oN5V7arKWkSNnR0eJnkMTBcuQ618df8G7n/AAW0/bB/4KofH/4ufDH9pWx8N2mneB9PtrrTm0OymtZWea5kibzWluJgw2qMYC81+QH/AAZ3aRqnjz/gor+0f8evBFpNa+CJNHlt0QRlYUl1PUxcWkZPQOkMEuFznBNcp/wZx+NfDHgT/goP8e/hb4vv4NN1vVtFH2S0uJBHLO+n37CdIwxBZkEgJUZOATjANAH7U/t+f8Ftf2wf2Zf+C7/wm/4Js/Dux8Ny/D7xvqHhO11Ca9sppdSVNbu/IuPKmW5SNSE+5mJsHrnpX8xX/B034+/be8Q/8FRtFsfjr4WsdJ0bQJHt/htNAFDappQuVZZZ8XEmWM+V+ZYTj+HvX0z/AMFKPjf8NPjj/wAHbvwXvfhbrNrrtl4c8Y+AdDubmykWaAXltexPNGJFyrGNpdj4J2uGU8givVP+DyieDTv+CgH7OeqX7iG3i0NmeRzhVVNSBYkngADk0Af2Wf8ABK74l/8ABQz4r/sut4q/4KbeDdO8C/Er+2LuEabpiosH9nIsZgkwlzdjczFwf3vb7o7/AKR1z3hvxb4U8ZWT6n4Q1O01W2jkMTy2cyTosgAYqWQkBsMDjrgg966GgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD//0v7+KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr8Iv+CoP/AAb1fsX/APBWb4+aP+0V+0X4n8a6Lrei+H7fw5BB4bvbG2tWtbe5ubpXdbqwunMpe6cEhwu0KNoIJP7u0UAfyQeG/wDgzB/4JRaHqsWo6n4p+JeswxsGa1vNX09YpAOzG30uGTB/2XB96/pN/ZR/ZC/Zu/Yf+Dll8BP2WPCdn4Q8LWLtMLW13O807gB5p5pGeWeZgqgySuzkKBnAAH0lRQB+Kv8AwU4/4IH/ALAf/BVHX4PiN8btN1Hw545t4Eth4l8Nzx2t9NDH9yO5WWKaCdUHCs8fmKvyq4HFfMf7An/BrZ/wTV/YR+LOmfHjGu/ErxXokqXOmS+KpreWysbqJg0dxDa28EKmVCAUaZpdjYZQrAEf0jUUAfPP7U/7KnwC/bU+COsfs7/tL+HLfxP4T1xVFxaTlkZJIzujlikQrJFLG3KSIwYHvgkV/MTpP/Blx/wTHsPH8fiO+8a/EK+0OORZf7IlvrFVkwcmN547FJPLPT5dsgH8eea/r8ooA+YtP/Yx/Zd0v9lMfsQWHgrTo/hUNHbQf+Ed2E2xsXBDKSSZC7ElzMWMplPmF9/zV/PF8M/+DOz/AIJV+APjHD8S9Z1Pxp4o0W0uI7qHw1quoWx092RtxjnaC0inli6AL5qnGQzNmv6uqKAPxw/4J5/8EPf2Qv8Agmb+0V4//aU/Z11XxLLqnxDimt7zTdTnsm0yzhmuhdbLOG2srZokRgERWkcLGMdeaq/sk/8ABDb9k39jT9vvx9/wUY+GHiHxbf8Ajf4iya3LqVjql3Zy6VEdevFvrjyIobKGZQsqAR753wnDbj81fszRQB+M37U3/BDb9k39rr/goR4C/wCCk/xI8Q+LbLx18O7nQ7rTbHTbuzi0mV/D92b23E8UtlLOweQ4l2XCEpwpU816P/wVP/4JC/s2f8FdfAvhT4f/ALSWt+JtEsvB1/PqFk/hq5tbaWSW4jEbCU3VpdqVAHAVVOe56V+qVFAHxP8AE3/gnv8Asu/HD9jHS/2DfjfoP/CX+AdI0Ww0W2XUWBvEXTYFt7e5SaJYzFdIq5EsQTkkABSVr+eLSP8Agy//AOCZGnePofEF/wCNPiFqHh+CUTf2JPqFkqOf4kaeKySXy2AAOzbJgffzzX9etFAHwV8e/wDgm9+zN8df2CNR/wCCblvZXPgr4Y32m2mlRW3hpora4tLazniuEELzxXCbmkiBkeSORn3MSSx3VN/wTk/4J6fBf/gmJ+zRa/sr/ATU9b1fw9aahd6klxr88FxemW8YM4L21vbR7QR8o8sEdya+76KAPxl/Ya/4Ia/sm/sAfto+P/26fg54h8W6l4u+I1tqlrqVprN3ZzadEmr30OoTGCOCyglUrLAqpvmcBCQQxww+b/8AgpL/AMGzf7CH/BS79pOf9qr4ha34o8H+KdVitodabw/cWywagLSNYY5GS5tp9kwiRI96EKVQZQtlj/RVRQB4x+zn8DPCf7MXwB8F/s5eAbm8vNC8CaJY6Bp02oSLLdNaadCsEPmuiRqz7EAJVFHoBXxL/wAFSv8Agkz+zn/wVw+F3hr4S/tH614k0TTfC2qtq9pJ4aubW2nedoWhKyNdWt2pTa5OFVTnHOOK/UGigD+QL/iCp/4JZf8AQ/fFX/wa6R/8pq/Vn/glf/wQr/ZI/wCCRHjDxd42/Zt8ReL9bu/GlnbWN6niW7srmOOO0dpEMQtbG0IYlzu3FhjoBX7SUUAfzB/tof8ABpr/AMEx/wBrb4q6h8ZPDEviD4XarrFw11qFr4Ynt102eaQ5kkW1uYJhCzHJxCyRgknZX6Ef8Eyv+CI/7CP/AASki1DWP2cdHvdT8V6tEba88T+IJo7zVXtiVY26PHFDFDCWUMyxRJvIG8ttXH66UUAfgD/wU9/4Nx/2E/8AgqF8Yo/2ivH97r3gjx28ENtfap4cmgQajHbKEiNzFcQzK0scYCJKhRtgVWLBVA+YPFH/AAaA/wDBKHxR8LNG+Hr33jmy1bTb25vrzxPb6ratrOqPchQUunnsprfy49uY1hgiIJYksWJP9TtFAHwJ+2h/wTX/AGY/+Cgn7MFp+yx+1fZ3vijTdOjgaz1l5ki1m2vYIvKF7HPHGEW4YEmT915T7iGjK/LX4q/Ar/g0G/4Jb/B6y8VJ4j1Dxb40vPEWk6ho9pdaxdWbNpCX8TQ/arSOOzWI3kSMTFNMkqI+HWMMAR/VLRQB+U37F3/BH79mn9hb9hzxx+wF8JNc8Taj4O8fPq76heavc2s2pxHWrOOyn8mSG0ghXbHGDHvhfD5J3DgZf/BNf/gjR+zB/wAEtPhD47+Cv7P2veKdY0r4hTLPqMviG6tLi4iZYGg/cNbWdqqjaxPzo/PtxX620UAfkD/wSk/4Iqfss/8ABHz/AIT3/hmjX/FWuf8ACxP7L/tL/hJrqzufK/sj7V5PkfZbO027vtcm/fvzhcbcHOH8RP8Aghr+yb8TP+Cn+mf8FZNe8Q+LYfiLpVzYXUOnW93ZrorPp9qtnGGhaya4IMagti5BLcggcV+zVFAH8YX/AAc1/thfsD+FPjF4P/ZP/wCCkX7Puv8Airw9d6amt+HPH3hzUo7O/tWlkeG8gg8yEKxi2I00DSujB4nZAdhr+dT/AIKSx/8ABu98AP8Agnze/Cf/AIJfeItR+JPxS8b6tpj3Gt61b3T39hpdmzTSKZLi0s4YBI4RGjhjEkhxv+VRj/T8+PH7Nn7Pv7Ufgs/Dr9o/wVovjnQ94lWy1uyivYkkHR0EqtscdmXDD1r5I+D/APwR6/4JdfATxta/Ej4TfAjwdpOvWM4ubS+/s2Oee2mXo8LTBzEw/hMe0jtigDz3/ghX8CPHn7NX/BJH4G/CD4nWMml67ZaAb27s5htlt21S4mvhHIvVXRZwHU8qwIIBGK/WWiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD5c/bC/Yw/Zs/b0+CV9+z3+1R4Zh8UeGL2RLhYZHeGa3uYgRHPBNGyyRSoGYBkYZBKnKsyn+X3V/+DKH/gnXdeJBfaP8TPiJZ6WW3NaPcadLKAT0Wb7CoAA4G6Nj6k1/ZLRQB8Af8E9P+CZH7IH/AATB+FV18Kv2TvDz6bHqkqT6rql7KbrU9SmjBVGuJyFyEBISNFSJMsVQFmJ/gR/ZN/Yx/Z9/b6/4OYf2of2Z/wBpjRjrPhjWdY+ILkRyGG4trmLUSYri3lXmOaJjlTgqeVZWUsp/07a+YPA/7E/7IPwz+NeqftJfDz4ZeGdE+IGtyXUuoeI7LTLeDU7p71t9w0tyiCRzK/zSEsdx5NAH4afsUf8ABqR/wTR/Yy+PmnftDfa/E3xD1Xw/dLeaLZ+J7m1ksbO4iYNDM0VtbW/nTRMMqZGMYOD5e4Aj9A/+Cqn/AARu/Zj/AOCvmg+C/Dv7Smu+KNDg8C3F7c2DeGbq0tnke/WJZBMbqzuwwAhXbtCYyc54x+s9FAH5W/t9f8Ehv2bP+Ci/7IHgr9ir42634m0vwt4Ev9N1GwutDubWDUJJdLsp7CITSXFpcRMrRXDs4WJCXCkFRlT6Hrv/AATE/Zk8X/8ABOO0/wCCXXjlNT1v4bWXh+z8PRy3Vwg1PytPKPbXHnRRRxi4ikiSQMIghZeUK5U/ofRQB+Af/BLD/g3b/ZJ/4JN/HvV/2jfgl4x8X+Idf1XSLnQTFrVxZm0WwuZoZyClvaQu0ge3jO/eF4+5XzX8RP8Ag0p/4Jx+OP2sbr9qfRfEnjXww15rJ8QPoelXlmtjFfGYT/uGms5ZY4TJlvL3tjOEZVAA/qQooA/GX4+/8ENf2Tf2i/8Ago/4U/4Kg+NvEPi218f+D7nSLqz0+xu7NNHkfRm3QCWKSyknIY/6zbcKT220v7bX/BDb9k39vP8Abd8Aft7fF/xD4t03xh8OINJt9Ns9Hu7OHTZV0a+m1CEzxz2U8zFpZmWTZMmUAA2nLH9maKAPgv8A4KP/APBO74K/8FQP2a5v2Wvj7qmt6R4fn1K01Rrjw/PBb3nnWZYoA9zb3Mew7juHl5PYivmP4teBvhn/AMEa/wDgjpq/gL4ZeBdU+Nngf4WaJJDc+HtXnge91LSLy7JvjcPHaGB0hhuJZZF+zhTDGQcctX7IVHNDFcRNBOodHBVlYZBB6gjuDQB/mOfsiyf8Gjvxe8Q3/wC0d8c4PGHwovdHv2uF+Hut3d3qukXMabZVaB7KzlmliZiYvIkuVbCnKbSGP1d/waXeArr40f8ABVz9o/8Abj+G/h99G+Gsmn6xp+np5KwRW8uv6vBfWtqiodgMNrbMGSPKxgr0BXP9fHjX/gil/wAEmfiH4ul8deK/2fPBM2pzzNcSyRaXHbpLK3LM8cOyNyx5O5Tk8nmvvf4SfBr4R/APwJZ/C/4H+GNL8IeHNPB+zaZo1pFZWkRblisUKqoLHljjJPJ5oA9KooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK/m6/b1/wCDWr/gmf8At0/FjVPjuy6/8N/FeuTS3epzeFrmGOzv7uZtzzzWtzBcIJGJJYwGEOxLMCxJr+kWigD+X79i/wD4NMP+CZP7JnxQ0z4xeLp/EPxS1jRZ0urK28Szwf2XFPEQySG1t4IvNKsM7ZnkjPGUNftF/wAFCv8Agn3+z5/wUy/Zq1D9l39pKG9/sS7uYb+2vNNmWC+sb233CO4gd0kQOqu6EPG6lXYFTmvt+igD8TP+CS//AAQq/Zl/4JBaz4v8T/A3xV4o8S6h42trez1D+3ZrVrdYrR3eLy47e2hIYb2DMzvnPAFfD37XH/Bo3/wTA/aa+KN58V/BNx4j+Ftzqk7XF7p3hme3Glu7nLtFb3NvN5BY5wsTrEueIwOK/qUooA/KT/gmd/wRi/Ya/wCCUmj6j/wzNot3eeI9Zj+z6h4m12ZLvV7i33BxB5kccMUUO5VYxwxRhmVS+4qCOA8V/wDBDb9k3xh/wVMt/wDgrnqfiHxanxItrm0ul02K7sxoZez09NNQGE2RucGFAzf6TkyZIwvy1+zVFAHz1+1X+yz8EP21PgH4i/Zo/aK0Zdd8JeJ4FhvLYsY3Vo2EkUsUi4aOWKRVdHHIYDqMg/zofAb/AIM+/wDgmH8IPiRB4z8ba34z+IWjWV0Lq38Oa5f26aY7gYU3K2ltbyTFe2HRSPldWUkH+rSigD8V/wDgnT/wRw+AX/BGbw38T/E/7H2reMfF8/i+xiuZNA8RahZy2811pazvbJA9vYQPE8hmaIuxkGCCVJUV/Fppvxc/4Nn/APgoZ+1R4k8f/tp+BvGf7LXiV7iS81Ozsr5pdG1DUFYrcQyQ29hLLay7gXcLHbqzhskOcN/p51+fXx//AOCUX/BNv9qTxlcfEX4+fBTwn4j8QXhDXOpzadHHeXDA5BlmiCSSH3diccdKAP4FP2JPCP7M37X/APwc3/D++/4JfeHDafBT4a/YLy3nhtZLaJNP0HT1jmvJFmAm/wBIvSEEkw82WSVXcbmOP7kP+Cmv/BF79hv/AIKvaXpUn7TGkXtj4j0NDBYeJdAmjtNXhtiWY25kkimjlh3sXCSxuEYkptLNu+1v2df2Rf2XP2RfDtz4U/Zg+H2geArC+dZbqPQ7CGzNw6DCtM0ahpWA4BcsQK+iqAP5kP2JP+DUf/gm3+xz8bNM+Pus3viP4m63oFwl3pVv4nnt30+1nhOYpTb29vF5skeAV81mjDAMEBAx/TfRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAZeuaRba/ot5oV4zLDewSW7lCAwWRSpIyCM4PGQa/Hj/glZ/wQ0/ZM/4JC+JvGXir9mzxD4u1u48b2tnaXy+JruzuUjSyeR0MItbK0KkmVt24uCAMAd/2booA+D/+Ci3/AATm/Zv/AOCoP7Olx+zV+0xb3i6WbyDUbLUdKkjh1LT7uAnEttLNFNGrMjPE4aN1aN2GM4I8d/YX/wCCQv7NP7Cf7KPiX9iPQ9Y8Q/Ej4ZeKJ55rjRPHMtlqMEK3ahbiGEW9nahYpiA7IwYCTLrtZmJ/VKigD+RPx7/wZj/8ExvFHjmXxF4S8X+P/DOjXM7TS6NaahZzwIpJKxwyXFnJMqqCVBleZsfxZ5r+kD9jH9in9nD9gD4D6d+zj+y34fj8P+GtPke4ddxluLu6lx5lxczNl5Zn2qCzHhVVFCoqqPqyigD+W4/8GlH/AATj079ri2/as8F+JPGvh37FrsXiO10DT7yzFhbXsE63CJE0tnJMtuHX/VlywHAcDAH3v4r/AOCG37JvjD/gqZb/APBXPU/EPi1PiRbXNpdLpsV3ZjQy9np6aagMJsjc4MKBm/0nJkyRhflr9mqKAPlf9tr9kP4bft5/st+Lv2SPi/fanpvhvxpbw217c6PLFDfRpBPHcKYnninjBLxKDuib5Se/I8g/4J//APBNT9nv/gnT+ydJ+xn8KZ9U8UeDbi6v7m4XxS9tezXA1IATxSiG2t4XiZRt2GLkEgk1+g9FAH8m3x1/4M5/+CYPxX+Il947+H+veM/h7aancvPcaNo15ay6fGjncY7dbm1lliUNyA0sirwFUACv3Y/4J8f8E2/2UP8AgmN8F2+CX7Kehvp9neTC61PUb2T7TqWp3KjaJbmfau4qvCIipGmTsRdxz940UAfkT/wVT/4Irfsi/wDBXuz8HJ+0rfeIdEvfA73h0+/8M3Nra3LxXwj82GZrm1ulePdEjKAoKtnBwzA/oR+zX+z58OP2UPgB4O/Zr+EMElv4a8EaTbaPp4mKtM8VsgTzJWVUVpZCC8rBV3OzHAzXt1FAH80/7cX/AAazf8E9v21v2ltS/apXWvFfw68SeILw6hrUfhi6tora8u3OZblUuLaYw3Ep+Z3RtjOS5TczMa1h/wAGo3/BMPwl47+GfxO+EWoeNvA/iD4XzWd7Z3+j6natNqF/Y3Qu4ru9N3ZXO+YSAD9z5MYQBQgAGP6YaKAPxm/bg/4Ibfsm/t9ftr/D/wDbw+MXiHxbpvi/4cW2lWum2ejXdnDpsqaPfzahCZ457KeZi0s7LJsmQFAAApyx/ZmiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/DD/AIKKf8G7n/BNj/gpR45f4tfFPQ9R8IeNLgH7Zr3hKeKwur4no10ksE8EzjH+taLzSOC5AUD4d/Zu/wCDPn/gll8EPG9h48+Il94s+Jkmnz+emm69eW8elybTlBLBa20MkgBwWVpij4wylSVP9WNFAGN4c8OeHvB+gWXhTwlYW+l6VpsEdrZ2dnEsFvbwRKFSOONAFREUAKqgAAYFfzA/tD/8Gin/AAS8+Pvx+1H442GoeLfBNtrd5LfX/h/w9d2kOmGWX5nFus1pNJbozksyK5QA7YxGoAH9S9FAH4C/Cv8A4Ntv+Cc3wJ/bI8BftpfBL/hI/Cur/DmC1h0vQ7C6tBo0jW0DwebcLJZvdzSyh2kmkN1ueQ5zjivS/wDgrH/wQh/Y/wD+Cu+r+G/G/wAbtQ1zwx4r8LWr2Fpq+gzQpJLZO5k+zzx3EMyOiOzuhUIyszfMQSK/a+igD+D/AP4OLv2BvhH/AME0v+CAHw//AGTfghqmsax4e0f4qWd3Fca7NDPdmS9s9UlkBaCGCMLvJKgRjGeSetdD+xf/AMGwX/BO/wD4KGf8E+PgH+0t4lvvEngTxTrfhHTpdbfw1c26W2pSDIaaSK6t7gJOygAvGVU43MjMSx/s0+PH7N37P/7UngyH4dftI+C9F8d6Db3aX8Wn67ZRX9sl1GrokojmVlDqsjqGxkBiO5rt/h18OPAPwh8D6X8MvhZo1l4d8O6JAtrp+m6dCtva2sCfdjiiQBUUdgABQB8tfsD/APBPf9l//gmt8B7f9nv9lfRH0zSBMbu9u7qTz7/UbxlVGuLqbC75CqgAKqogAVFVRivxs/bI/wCDUX/gmn+2F+0Xqn7SFzf+KvAmoeIr1r/WdO8NXVpDYXVxJzLLHHPaTtDJK/zyFG2FixCAnNf02UUAfzteG/8Ag2F/4Jn/AA//AGifhF+0j8Kf+En8J6n8GzpMumWGm3lp9i1G60m8kvludRM1nLc3E80sm2Z1nj/dqiII1Va+qv8AgrD/AMEWP2T/APgr54b8M2Xx+u9Y0DXfBrXP9k61oU0UVwkV3s82GVJopo5YmaNGAKh1YfI6hnDfr3RQB+dX/BML/gmh8E/+CU37ONx+zP8AAfWdc13R7zWLjXZrnX5oJrj7VdRQwuqfZ4IEWLEClV2kgliWOeP0VoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//T/v4ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/U/v4ooooAKKKKACiiigAoor57/aL/AGqfgL+yj4N/4Tf46+IrfRLV9y28LZkubl1GdkMKAu547DA/iIHNAH0JXmfxR+M/wl+CWgN4p+L3iTTfDenqDibUblIAxHZA5Bc/7Kgk+lfyg/th/wDBf/4t/EX7V4N/ZP04+DdIfdH/AGveBJtUlXkZRfmit8j/AK6OOoYGvw98j49/tMeNZL9xrfjnX7lv3kzma/uDuOfmc7yB9SAKBpNuyP6/vi9/wcBfsV+AL6fSfh/Z6340miYqJ7K3W1tGI44kuHSTHoREQe1fnj8SP+DkP4sX7PH8IvhtpOlKDhJNXu5r8kepSEWuPpuP1r4A+FP/AASE/af8dwJqHjd7DwjbOM7LyXz7nn/pnDuUcdmdT7V9y+B/+CJnwrsAknxF8Z6pqjDBZNPhislz6Zk+0HH5H6VlKvBdTupZZiZ6qFvXQ8C1j/g4D/b11PP2KPwzp2f+ffTnbH/f2eSvPZv+C53/AAUZlkMieKtPjB/hXSbTA/OMn9a/T/TP+CR/7G1hj7Vp2p3uP+e1+4z/AN+wldtF/wAEuf2GY4wj+CTIR/E2p3+T+VwB+lZ/WoHSskxHdfe/8j8hf+H5f/BRz/obrH/wU2f/AMao/wCH5f8AwUc/6G6x/wDBTZ//ABqv1+/4defsLf8AQjf+VPUP/kmj/h15+wt/0I3/AJU9Q/8Akmj61Dsyv7Dr/wA0fvf+R+QP/D8v/go5/wBDdY/+Cmz/APjVH/D8v/go5/0N1j/4KbP/AONV+v3/AA68/YW/6Eb/AMqeof8AyTR/w68/YW/6Eb/yp6h/8k0fWodmH9h1/wCaP3v/ACPyB/4fl/8ABRz/AKG6x/8ABTZ//GqP+H5f/BRz/obrH/wU2f8A8ar9fv8Ah15+wt/0I3/lT1D/AOSaP+HXn7C3/Qjf+VPUP/kmj61Dsw/sOv8AzR+9/wCR+QP/AA/L/wCCjn/Q3WP/AIKbP/41R/w/L/4KOf8AQ3WP/gps/wD41X6/f8OvP2Fv+hG/8qeof/JNH/Drz9hb/oRv/KnqH/yTR9ah2Yf2HX/mj97/AMj8gf8Ah+X/AMFHP+husf8AwU2f/wAao/4fl/8ABRz/AKG6x/8ABTZ//Gq/X7/h15+wt/0I3/lT1D/5Jo/4defsLf8AQjf+VPUP/kmj61Dsw/sOv/NH73/kfkD/AMPy/wDgo5/0N1j/AOCmz/8AjVH/AA/L/wCCjn/Q3WP/AIKbP/41X6/f8OvP2Fv+hG/8qeof/JNH/Drz9hb/AKEb/wAqeof/ACTR9ah2Yf2HX/mj97/yPyB/4fl/8FHP+husf/BTZ/8Axqj/AIfl/wDBRz/obrH/AMFNn/8AGq/X7/h15+wt/wBCN/5U9Q/+SaP+HXn7C3/Qjf8AlT1D/wCSaPrUOzD+w6/80fvf+R+QP/D8v/go5/0N1j/4KbP/AONUf8Py/wDgo5/0N1j/AOCmz/8AjVfr9/w68/YW/wChG/8AKnqH/wAk0f8ADrz9hb/oRv8Ayp6h/wDJNH1qHZh/Ydf+aP3v/I/IH/h+X/wUc/6G6x/8FNn/APGqP+H5f/BRz/obrH/wU2f/AMar9fv+HXn7C3/Qjf8AlT1D/wCSaP8Ah15+wt/0I3/lT1D/AOSaPrUOzD+w6/8ANH73/kfkD/w/L/4KOf8AQ3WP/gps/wD41R/w/L/4KOf9DdY/+Cmz/wDjVfr9/wAOvP2Fv+hG/wDKnqH/AMk0f8OvP2Fv+hG/8qeof/JNH1qHZh/Ydf8Amj97/wAj8gf+H5f/AAUc/wChusf/AAU2f/xqj/h+X/wUc/6G6x/8FNn/APGq/X7/AIdefsLf9CN/5U9Q/wDkmj/h15+wt/0I3/lT1D/5Jo+tQ7MP7Dr/AM0fvf8AkfkD/wAPy/8Ago5/0N1j/wCCmz/+NUf8Py/+Cjn/AEN1j/4KbP8A+NV+v3/Drz9hb/oRv/KnqH/yTR/w68/YW/6Eb/yp6h/8k0fWodmH9h1/5o/e/wDI/IH/AIfl/wDBRz/obrH/AMFNn/8AGqP+H5f/AAUc/wChusf/AAU2f/xqv1+/4defsLf9CN/5U9Q/+SaP+HXn7C3/AEI3/lT1D/5Jo+tQ7MP7Dr/zR+9/5H5A/wDD8v8A4KOf9DdY/wDgps//AI1R/wAPy/8Ago5/0N1j/wCCmz/+NV+v3/Drz9hb/oRv/KnqH/yTR/w68/YW/wChG/8AKnqH/wAk0fWodmH9h1/5o/e/8j8gf+H5f/BRz/obrH/wU2f/AMao/wCH5f8AwUc/6G6x/wDBTZ//ABqv1+/4defsLf8AQjf+VPUP/kmj/h15+wt/0I3/AJU9Q/8Akmj61Dsw/sOv/NH73/kfkD/w/L/4KOf9DdY/+Cmz/wDjVH/D8v8A4KOf9DdY/wDgps//AI1X6/f8OvP2Fv8AoRv/ACp6h/8AJNH/AA68/YW/6Eb/AMqeof8AyTR9ah2Yf2HX/mj97/yPyB/4fl/8FHP+husf/BTZ/wDxqj/h+X/wUc/6G6x/8FNn/wDGq/X7/h15+wt/0I3/AJU9Q/8Akmj/AIdefsLf9CN/5U9Q/wDkmj61Dsw/sOv/ADR+9/5H5A/8Py/+Cjn/AEN1j/4KbP8A+NUf8Py/+Cjn/Q3WP/gps/8A41X6/f8ADrz9hb/oRv8Ayp6h/wDJNH/Drz9hb/oRv/KnqH/yTR9ah2Yf2HX/AJo/e/8AI/IH/h+X/wAFHP8AobrH/wAFNn/8ao/4fl/8FHP+husf/BTZ/wDxqv1+/wCHXn7C3/Qjf+VPUP8A5Jo/4defsLf9CN/5U9Q/+SaPrUOzD+w6/wDNH73/AJH5A/8AD8v/AIKOf9DdY/8Agps//jVH/D8v/go5/wBDdY/+Cmz/APjVfr9/w68/YW/6Eb/yp6h/8k0f8OvP2Fv+hG/8qeof/JNH1qHZh/Ydf+aP3v8AyPyB/wCH5f8AwUc/6G6x/wDBTZ//ABqj/h+X/wAFHP8AobrH/wAFNn/8ar9fv+HXn7C3/Qjf+VPUP/kmj/h15+wt/wBCN/5U9Q/+SaPrUOzD+w6/80fvf+R+TWlf8F3/APgodpzbrvXNJvx6T6XCB/5CEdeueG/+DiD9tPS7mP8A4SDw/wCE9Utwf3im0uoZGH+yyXW0H3KH6V96al/wSr/Yivl22vhWezPrDqN2T/5ElevLvEX/AARw/ZT1W2dNGvNd0uU8q0V1HIoPuskTZH4g+9NYmBLyTELZr7/+Ad78NP8Ag5F+Ht4I4PjD8NNQ04ggPNo97HeA+4jmW3x9PMP1r9UvgF/wVY/YY/aJaGw8K+N7bR9UmO0afro/s6fdjOFMpETn2jkav5v/AB3/AMER/EcAkuPhn46t7rglINTtGgOewMsTSZ+vlivzZ+MX7C/7UfwP8258Y+FLqewj632nj7ZbY9S0WSg/3wtaRqwlszirYDEUtZwdvv8AyP8AR1hmhuYUuLdxJHIAyspyGB5BBHUGpK/zlP2aP29/2rP2TNUiuvg/4suodPjwH0m8Y3WnSKM8GByVXr96PY3oa/p9/Y+/4L1fs/8AxmltPBv7Rdp/wr7X5iIxeFjNpEznPPmn54M8f6wFBnmStDkP3uoqtZXtnqNnFqGnSpPbzoskUsbBkdGGVZWGQQQcgjgirNABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUVWvb2z02zm1HUZkt7e3RpJZZGCIiIMszMcAAAZJPAFfx5/8FO/+C0Piv4xajqPwK/ZOv5tH8HxM9tfa3CTFd6pj5WELDDRWx7EYkkHXapKkA/dL9rz/grn+yN+yPey+FdS1KTxZ4niJSTSdEKTNAwxxcSlhFEefu7i/wDs1+InxU/4ONvj/rN80fwa8C6HoNnkgNqsk2ozkdjmNrZFPqCrY6ZPWvyO/ZY/YZ/aM/bB1nyPhRozf2XHKI7rWLzMNhAe4MhBLsByUjDPzyMc1/QX8Gf+CBHwF8N20V58bvFGqeJ73b88FiF0+0DHt0klbHYh0z3HYcOJzKhQdpy17LVm1OhOeqWh+YGsf8F3f+CiGp3HnWWvaVp6/wDPO30uBl/8iiRv1rI/4fl/8FHP+husf/BTZ/8Axqv6CdN/4I2f8E77GHyrrwNNeN/fm1bUA3/kO4QfpWj/AMOev+Cc3/RO/wDyr6n/APJdcP8ArBh/5Zfcv8zb6lU7o/nl/wCH5f8AwUc/6G6x/wDBTZ//ABqj/h+X/wAFHP8AobrH/wAFNn/8ar+hr/hz1/wTm/6J3/5V9T/+S6P+HPX/AATm/wCid/8AlX1P/wCS6P8AWDD/AMsvuX+YfUqndH88v/D8v/go5/0N1j/4KbP/AONUf8Py/wDgo5/0N1j/AOCmz/8AjVf0Nf8ADnr/AIJzf9E7/wDKvqf/AMl0f8Oev+Cc3/RO/wDyr6n/APJdH+sGH/ll9y/zD6lU7o/nl/4fl/8ABRz/AKG6x/8ABTZ//GqP+H5f/BRz/obrH/wU2f8A8ar+hr/hz1/wTm/6J3/5V9T/APkuj/hz1/wTm/6J3/5V9T/+S6P9YMP/ACy+5f5h9Sqd0fzy/wDD8v8A4KOf9DdY/wDgps//AI1R/wAPy/8Ago5/0N1j/wCCmz/+NV/Q1/w56/4Jzf8ARO//ACr6n/8AJdH/AA56/wCCc3/RO/8Ayr6n/wDJdH+sGH/ll9y/zD6lU7o/nl/4fl/8FHP+husf/BTZ/wDxqj/h+X/wUc/6G6x/8FNn/wDGq/oa/wCHPX/BOb/onf8A5V9T/wDkuj/hz1/wTm/6J3/5V9T/APkuj/WDD/yy+5f5h9Sqd0fzy/8AD8v/AIKOf9DdY/8Agps//jVH/D8v/go5/wBDdY/+Cmz/APjVf0Nf8Oev+Cc3/RO//Kvqf/yXR/w56/4Jzf8ARO//ACr6n/8AJdH+sGH/AJZfcv8AMPqVTuj+eX/h+X/wUc/6G6x/8FNn/wDGqP8Ah+X/AMFHP+husf8AwU2f/wAar+hr/hz1/wAE5v8Aonf/AJV9T/8Akuj/AIc9f8E5v+id/wDlX1P/AOS6P9YMP/LL7l/mH1Kp3R/PL/w/L/4KOf8AQ3WP/gps/wD41R/w/L/4KOf9DdY/+Cmz/wDjVf0Nf8Oev+Cc3/RO/wDyr6n/APJdH/Dnr/gnN/0Tv/yr6n/8l0f6wYf+WX3L/MPqVTuj+fzR/wDgu7/wUQ0y486917StQX/nncaXAq/+QhG3619S/Cv/AIONvj/o18sfxl8C6Hr1nkAtpUk2nTgdzmRrlGPoAq56ZHWv1N1L/gjZ/wAE776HyrXwNNZt/fh1bUC3/kS4cfpXyZ8Zv+CBHwF8SW0t58EfFGqeGL3b8kF8F1C0LDt0jlXPcl3x2HY3DPcNJ2d16r/K4ng6iP0h/ZD/AOCuf7I37XF7F4V03UpPCfieUhI9J1spC07HPFvKGMUp4+7uD/7NfqHX+ch+1P8AsM/tGfsfaz5HxX0Zv7LklMdrrFnmawnPYCQAFGI5CSBX44GOa/Vr/gmJ/wAFofFfwd1HTvgV+1jfzax4PlZLax1uYmW70vPyqJmOWlth3JzJGOm5QFHrU6kZxUoO6OWUWnZn9itFVrK9s9Ss4dR06ZLi3uEWSKWNg6OjjKsrDIIIOQRwRVmrEFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFcd8QfiD4J+FPgvUfiL8R9Ut9G0PSITPd3l0+yKJBxye5JIVVGWZiAASQK/j3/AG/v+C4nxW+ONzqHww/Zekn8IeD2LwPqS5j1S/jPBIYHNvG3OFT94QfmYcqAD+jX9qX/AIKefsefslfadK8f+Jo9T8QW+VOiaPi8vQ4z8sgUiOE5GP3roa/D34rf8HIXju88y1+CPw2sdPGMJc63dyXZPuYYBAB9PNavwR+Cf7N3xy/aW8Rtpfws0S51ZzJ/pN4/yW0JbkmWd8KDznGSx7A1+yPwh/4IfKRFf/HfxieQC9locfQ9x9onU/T/AFP41cYSexnOrGO7PFdX/wCC93/BQTUs/Y77QtPz/wA++mKcf9/Wkrkv+H5f/BRz/obrH/wU2f8A8ar9aNF/4JDfsU6Vj7dpGo6lj/n51CVc/wDfkx12n/Dq/wDYN/6ET/yqaj/8k1fsZf1/wxl9agfjH/w/L/4KOf8AQ3WP/gps/wD41R/w/L/4KOf9DdY/+Cmz/wDjVfs5/wAOr/2Df+hE/wDKpqP/AMk0f8Or/wBg3/oRP/KpqP8A8k0exl/X/DB9ah2Z+Mf/AA/L/wCCjn/Q3WP/AIKbP/41R/w/L/4KOf8AQ3WP/gps/wD41X7Of8Or/wBg3/oRP/KpqP8A8k0f8Or/ANg3/oRP/KpqP/yTR7GX9f8ADB9ah2Z+Mf8Aw/L/AOCjn/Q3WP8A4KbP/wCNUf8AD8v/AIKOf9DdY/8Agps//jVfs5/w6v8A2Df+hE/8qmo//JNH/Dq/9g3/AKET/wAqmo//ACTR7GX9f8MH1qHZn4x/8Py/+Cjn/Q3WP/gps/8A41R/w/L/AOCjn/Q3WP8A4KbP/wCNV+zn/Dq/9g3/AKET/wAqmo//ACTR/wAOr/2Df+hE/wDKpqP/AMk0exl/X/DB9ah2Z+Mf/D8v/go5/wBDdY/+Cmz/APjVH/D8v/go5/0N1j/4KbP/AONV+zn/AA6v/YN/6ET/AMqmo/8AyTR/w6v/AGDf+hE/8qmo/wDyTR7GX9f8MH1qHZn4x/8AD8v/AIKOf9DdY/8Agps//jVH/D8v/go5/wBDdY/+Cmz/APjVfs5/w6v/AGDf+hE/8qmo/wDyTR/w6v8A2Df+hE/8qmo//JNHsZf1/wAMH1qHZn4x/wDD8v8A4KOf9DdY/wDgps//AI1R/wAPy/8Ago5/0N1j/wCCmz/+NV+zn/Dq/wDYN/6ET/yqaj/8k0f8Or/2Df8AoRP/ACqaj/8AJNHsZf1/wwfWodmfjH/w/L/4KOf9DdY/+Cmz/wDjVH/D8v8A4KOf9DdY/wDgps//AI1X7Of8Or/2Df8AoRP/ACqaj/8AJNH/AA6v/YN/6ET/AMqmo/8AyTR7GX9f8MH1qHZn4x/8Py/+Cjn/AEN1j/4KbP8A+NUf8Py/+Cjn/Q3WP/gps/8A41X7Of8ADq/9g3/oRP8Ayqaj/wDJNH/Dq/8AYN/6ET/yqaj/APJNHsZf1/wwfWodmfjH/wAPy/8Ago5/0N1j/wCCmz/+NUf8Py/+Cjn/AEN1j/4KbP8A+NV+zn/Dq/8AYN/6ET/yqaj/APJNH/Dq/wDYN/6ET/yqaj/8k0exl/X/AAwfWodmfjH/AMPy/wDgo5/0N1j/AOCmz/8AjVH/AA/L/wCCjn/Q3WP/AIKbP/41X7Of8Or/ANg3/oRP/KpqP/yTR/w6v/YN/wChE/8AKpqP/wAk0exl/X/DB9ah2Z+OFj/wXV/4KK2k3mT+JdNuV/uS6VbAf+OIp/WvavAf/Bw3+2RoGoK/jnQvDfiCz43xi3mtJv8AgMiSlR+MbV+i+of8EpP2FbyHyrfwdLaN/fi1O9Lf+PzuP0rw7x1/wRZ/Zl17T3XwRqutaBefwOZUu4R/vRuisfwkWj2MhrFQPqD9nz/g4P8A2ZfiNqEOhfHHQr/wBcS7VF2H/tKxDHg7njRJUGe/lEAdSMV+4nw7+Jvw7+LnheDxt8LtcsfEGk3H+ru9PnS4iJwDtLISAwBGVOCO4r+FT4+/8Ekv2lvg9YTeIfBvkeNtLhBZjpqst4qjOSbZsk/SN5D7V8l/s5/tV/tDfscePm8VfBvWrjRbxH8u9sZQWtbgIeY7i3bCtjGMkB1/hINZOLW5tGalqmf6TFFflP8A8E5f+Cp/ws/bp0k+ENYji8NfEGyjMlxpDPmO6jUZaa0ZuXUdWQ/OnfK/Mf1YpFBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRXx7+2P+3F8Cf2IvAH/CZfFy+L310rDTdItSrXt9IvaNCRtQEjfI2FX1JIBAPsB3SNDJIQqqMkngACvzO/aX/wCCuP7Ev7Mks+jaz4l/4SfXIcg6Z4eC3sqsB0kl3LBGeeQ0gYf3eK/lC/bd/wCCr/7S37Zt1ceHJrs+FPBZc+VoemyMokTt9qmGGnPsQsY7JnmvnH4FfsRftJftDCK+8BeHpYdLl5Gp3/8AotpjjlXYZkHP/LNXNVGLk7RQH7mfFX/g5F8RTeZa/BD4aW1tgfu7rXLxp8n3gt1ix+E5r4717/g4B/b31fd/Z6+GtKz0+y6c7Y+nnzS/rXrXw2/4IneF7ZY7n4u+NLm7fgvb6TAsCj282bzC318ta+sdM/4JPfsXWCqLrQ769x1M2oTjP18tk/SumOBqvfQfKz8sW/4Ll/8ABRskkeLbEew0mz/+NUn/AA/L/wCCjn/Q3WP/AIKbP/41X67j/gl9+wwBj/hB8/8AcT1D/wCSaX/h1/8AsMf9CN/5U9Q/+Sav6hU7r8R8rPyH/wCH5f8AwUc/6G6x/wDBTZ//ABqj/h+X/wAFHP8AobrH/wAFNn/8ar9eP+HX/wCwx/0I3/lT1D/5Jo/4df8A7DH/AEI3/lT1D/5Jo+oVO6/EOVn5D/8AD8v/AIKOf9DdY/8Agps//jVH/D8v/go5/wBDdY/+Cmz/APjVfrx/w6//AGGP+hG/8qeof/JNH/Dr/wDYY/6Eb/yp6h/8k0fUKndfiHKz8h/+H5f/AAUc/wChusf/AAU2f/xqj/h+X/wUc/6G6x/8FNn/APGq/Xj/AIdf/sMf9CN/5U9Q/wDkmj/h1/8AsMf9CN/5U9Q/+SaPqFTuvxDlZ+Q//D8v/go5/wBDdY/+Cmz/APjVH/D8v/go5/0N1j/4KbP/AONV+vH/AA6//YY/6Eb/AMqeof8AyTR/w6//AGGP+hG/8qeof/JNH1Cp3X4hys/If/h+X/wUc/6G6x/8FNn/APGqP+H5f/BRz/obrH/wU2f/AMar9eP+HX/7DH/Qjf8AlT1D/wCSaP8Ah1/+wx/0I3/lT1D/AOSaPqFTuvxDlZ+Q/wDw/L/4KOf9DdY/+Cmz/wDjVH/D8v8A4KOf9DdY/wDgps//AI1X68f8Ov8A9hj/AKEb/wAqeof/ACTR/wAOv/2GP+hG/wDKnqH/AMk0fUKndfiHKz8h/wDh+X/wUc/6G6x/8FNn/wDGqP8Ah+X/AMFHP+husf8AwU2f/wAar9eP+HX/AOwx/wBCN/5U9Q/+SaP+HX/7DH/Qjf8AlT1D/wCSaPqFTuvxDlZ+Q/8Aw/L/AOCjn/Q3WP8A4KbP/wCNUf8AD8v/AIKOf9DdY/8Agps//jVfrx/w6/8A2GP+hG/8qeof/JNH/Dr/APYY/wChG/8AKnqH/wAk0fUKndfiHKz8h/8Ah+X/AMFHP+husf8AwU2f/wAao/4fl/8ABRz/AKG6x/8ABTZ//Gq/Xj/h1/8AsMf9CN/5U9Q/+SaP+HX/AOwx/wBCN/5U9Q/+SaPqFTuvxDlZ+Q//AA/L/wCCjn/Q3WP/AIKbP/41R/w/L/4KOf8AQ3WP/gps/wD41X68f8Ov/wBhj/oRv/KnqH/yTR/w6/8A2GP+hG/8qeof/JNH1Cp3X4hys/If/h+X/wAFHP8AobrH/wAFNn/8ao/4fl/8FHP+husf/BTZ/wDxqv14/wCHX/7DH/Qjf+VPUP8A5Jo/4df/ALDH/Qjf+VPUP/kmj6hU7r8Q5WfkP/w/L/4KOf8AQ3WP/gps/wD41R/w/L/4KOf9DdY/+Cmz/wDjVfrx/wAOv/2GP+hG/wDKnqH/AMk0f8Ov/wBhj/oRv/KnqH/yTR9Qqd1+IcrPyH/4fl/8FHP+husf/BTZ/wDxqlX/AILl/wDBRsEE+LbE+x0mz/8AjVfrv/w6/wD2GP8AoRv/ACp6h/8AJNIf+CX37DBGP+EHx/3E9Q/+SaPqFTuvxDlZ+Zmg/wDBwD+3vpG3+0F8Narjr9q051z9fImi/SvsT4Vf8HIviKHy7X43/DS2ucj95daHeNBg+0FwsufxnFej6n/wSe/Yuv1ZbXQ76yz0MOoTkj6eYz/rmvkn4mf8ETvD1wkl18HvGc9s/JS21eFZlPsZodhH/fpqiWCqrbUXKz97v2aP+CuP7Ev7TcsGjaN4l/4RjXJsAaZ4hC2UrMR0jl3NBIeOAshY/wB3mv0xR0kQSRkMrDII5BBr/N4+Of7F37R37PJlu/iH4dm/syM4/tKz/wBJsyOxMifcz6SBT7V9M/sRf8FX/wBpb9jK6t/DkN2fFfgsOPN0PUpGYRp3+yzHLQH2AaM90zzXNKLi7NCP78KK+Pf2OP24vgT+274A/wCEy+Ed8UvrVVGpaRdFVvbGRu0iAnchIOyRcq3qCCB9hVIBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRX5S/t1/8Fcf2d/2LpZvBVnnxl42XcraPYSqqWjAZH2ubDCLJx8gDydyoHNfyj/taf8ABVH9rv8Aa5kuNI8Ua6fD/hqYkLomjFra2KdhM4PmTcdfMYrnkKKAP7Mfj1/wUh/Yr/ZvWa2+JPj3Tm1GEc6dpzG/vN391o7feYyf+mhQe9fkn8Sf+DkH4QaY0sPwk+G+r6yRkJLqt3Dp6/722Jbokd8ZBPtX82fwO/ZA/aI/aIuEPwy8N3NxZMcNqFwPs9mv/baTCtj0Tc3tX6XfD/8A4Ii/EnUBHP8AE/xpp+lqeXi06CS8f6bpDAAffDAe9OxrChUnrFHeeLf+Dir9rzVLt/8AhDvCnhXSbY/dWaG6uph9X+0Rqf8Av2K8V1j/AILy/wDBQrUyTZavo2nZ/wCffS4m/wDRvmV93eHf+CLv7L+mwJ/b+seINTnA+c/aIIYyfZVg3Af8DNet6R/wSe/Yk00AXnhy71DH/PxqNyuf+/UkdHKzdYGp5H5K/wDD8v8A4KOf9DdY/wDgps//AI1R/wAPy/8Ago5/0N1j/wCCmz/+NV+xX/Drf9hP/oRv/KnqH/yTR/w63/YT/wChG/8AKnqH/wAk0+VlfUKndfifjr/w/L/4KOf9DdY/+Cmz/wDjVH/D8v8A4KOf9DdY/wDgps//AI1X7Ff8Ot/2E/8AoRv/ACp6h/8AJNH/AA63/YT/AOhG/wDKnqH/AMk0crD6hU7r8T8df+H5f/BRz/obrH/wU2f/AMao/wCH5f8AwUc/6G6x/wDBTZ//ABqv2K/4db/sJ/8AQjf+VPUP/kmj/h1v+wn/ANCN/wCVPUP/AJJo5WH1Cp3X4n46/wDD8v8A4KOf9DdY/wDgps//AI1R/wAPy/8Ago5/0N1j/wCCmz/+NV+xX/Drf9hP/oRv/KnqH/yTR/w63/YT/wChG/8AKnqH/wAk0crD6hU7r8T8df8Ah+X/AMFHP+husf8AwU2f/wAao/4fl/8ABRz/AKG6x/8ABTZ//Gq/Yr/h1v8AsJ/9CN/5U9Q/+SaP+HW/7Cf/AEI3/lT1D/5Jo5WH1Cp3X4n46/8AD8v/AIKOf9DdY/8Agps//jVH/D8v/go5/wBDdY/+Cmz/APjVfsV/w63/AGE/+hG/8qeof/JNH/Drf9hP/oRv/KnqH/yTRysPqFTuvxPx1/4fl/8ABRz/AKG6x/8ABTZ//GqP+H5f/BRz/obrH/wU2f8A8ar9iv8Ah1v+wn/0I3/lT1D/AOSaP+HW/wCwn/0I3/lT1D/5Jo5WH1Cp3X4n46/8Py/+Cjn/AEN1j/4KbP8A+NUf8Py/+Cjn/Q3WP/gps/8A41X7Ff8ADrf9hP8A6Eb/AMqeof8AyTR/w63/AGE/+hG/8qeof/JNHKw+oVO6/E/HX/h+X/wUc/6G6x/8FNn/APGqP+H5f/BRz/obrH/wU2f/AMar9iv+HW/7Cf8A0I3/AJU9Q/8Akmj/AIdb/sJ/9CN/5U9Q/wDkmjlYfUKndfifjr/w/L/4KOf9DdY/+Cmz/wDjVH/D8v8A4KOf9DdY/wDgps//AI1X7Ff8Ot/2E/8AoRv/ACp6h/8AJNH/AA63/YT/AOhG/wDKnqH/AMk0crD6hU7r8T8df+H5f/BRz/obrH/wU2f/AMao/wCH5f8AwUc/6G6x/wDBTZ//ABqv2K/4db/sJ/8AQjf+VPUP/kmj/h1v+wn/ANCN/wCVPUP/AJJo5WH1Cp3X4n46/wDD8v8A4KOf9DdY/wDgps//AI1R/wAPy/8Ago5/0N1j/wCCmz/+NV+xX/Drf9hP/oRv/KnqH/yTR/w63/YT/wChG/8AKnqH/wAk0crD6hU7r8T8df8Ah+X/AMFHP+husf8AwU2f/wAao/4fl/8ABRz/AKG6x/8ABTZ//Gq/Yr/h1v8AsJ/9CN/5U9Q/+SaP+HW/7Cf/AEI3/lT1D/5Jo5WH1Cp3X4n46/8AD8v/AIKOf9DdY/8Agps//jVH/D8v/go5/wBDdY/+Cmz/APjVfsV/w63/AGE/+hG/8qeof/JNH/Drf9hP/oRv/KnqH/yTRysPqFTuvxPx1/4fl/8ABRz/AKG6x/8ABTZ//GqP+H5f/BRz/obrH/wU2f8A8ar9iv8Ah1v+wn/0I3/lT1D/AOSaP+HW/wCwn/0I3/lT1D/5Jo5WH1Cp3X4n46/8Py/+Cjn/AEN1j/4KbP8A+NUf8Py/+Cjn/Q3WP/gps/8A41X7Ff8ADrf9hP8A6Eb/AMqeof8AyTR/w63/AGE/+hG/8qeof/JNHKw+oVO6/E/HX/h+X/wUc/6G6x/8FNn/APGqP+H5f/BRz/obrH/wU2f/AMar9iv+HW/7Cf8A0I3/AJU9Q/8Akmj/AIdb/sJ/9CN/5U9Q/wDkmjlYfUKndfifjr/w/L/4KOf9DdY/+Cmz/wDjVH/D8v8A4KOf9DdY/wDgps//AI1X7Ff8Ot/2E/8AoRv/ACp6h/8AJNH/AA63/YT/AOhG/wDKnqH/AMk0crD6hU7r8T8df+H5f/BRz/obrH/wU2f/AMao/wCH5f8AwUc/6G6x/wDBTZ//ABqv2K/4db/sJ/8AQjf+VPUP/kmj/h1v+wn/ANCN/wCVPUP/AJJo5WH1Cp3X4n46/wDD8v8A4KOf9DdY/wDgps//AI1Sr/wXM/4KNhgT4tsSB2Ok2fP/AJCr9if+HW/7Cf8A0I3/AJU9Q/8Akmkb/glt+wmVIHgbBPcanqHH/kzRysPqFTuvxPy00X/gv3+33pePtz+HNSx/z86aVz/35ljr6P8Ah5/wcgfG7TnVfiv8OtE1hM/M2lXM+nNj6TfawT+WfavoPWP+CRX7GWp5+xabqenZ/wCfe/kbH/f0SV4f41/4IlfBPUbdj8P/ABdrOkzkHBvUhvowf91Et2x/wM0uVkvA1UffPwe/4ODP2O/HeoRaT8TNL1vwVJKVBuZ4lvbNSeOXgJl49fJxiv2H+Evx6+C3x40UeIfg14p0zxLabdzNYXKTNH2xIgO9D7OAa/ik+I//AARm/aS8LQy3vgPVNJ8TRRglYlka0uWx2CSjy8n/AK61+cmr+H/jl+zT48hfVINX8F+IbNt8Eo8yznXaQd0cilcjpypIPrSsc86U4fEj/TQor+Ov9kL/AIL/APxl+G32Xwh+1Rpv/Ca6OmE/tS1CwapEvqw+WKfA9fLY9S5Nf1Mfs6/tPfA/9qzwHH8RPgbr0Gs2PyrcRqdtxaysN3lzxH543HoRg4ypI5oMz3yiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/1f7+KKKKACiiigAoor+Yj/grt/wV/wBS8I6lqn7Kn7KGpiLUId1rr/iK0ky9u/IktbR1+7Kv3ZZgcxnKrhwSoB9Qf8FJv+Czngz9ljUrz4LfAGK18T+O4VeK8uXbfYaVJ02vtP76dT1iBCoeHOcpX8kPjDxv+0J+2L8Xv7a8VXepeNPFusOEQYMr47JGigLHGvooVFHPArd/Zn/ZZ+K/7V/jr/hGvAduRawuralqk4P2e0Ryfmdv4nbB2Rj5nIPQBmH9YH7NX7Jvwf8A2WvC66J8O7BW1CaNUvtUnAa7umXk7m/hXPIRcKPc81jVrKGnU9LA5bPEe89I9/8AI/Ln9mj/AII4aPZRW3in9pvUDd3Bw50XT32xL/szTj5m9xHtHo5Fftb4F+Hvgb4Y+HofCfw90m10bToB8kFpGI0z6nHVj3Y5J7muxorgnUlLdn1OHwlKirU4/PqFFFFQdIUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB8TftEf8E//ANnH9o1JtS17SRo+uSAkappgEE5bsZFxsl5671LY4DCv58P2sv8AgnN8aP2Yo5fFFqP+Em8LJuZtSs4yrW6g4H2iLkx5/vAsn+0DxX9dFRTwQXUD21yiyRyKVdGGVZTwQQeCCK2p15R9Dz8VltGsm7Wl3R/K5+wf/wAFXP2gv2Kb238LSTN4q8CmRfO0S9kOYE7m0lOTC3fbgxk9VzyP7VP2V/2sfgx+2J8L4Pil8GdSF1bkiO8tJMLdWU+MmKePJKt6HlWHKkjmv5j/ANuj/glloviSxvfix+zJZLZ6rHunu9Ci4huR1ZrYdEk7+WPlb+HB4b8b/wBmL9qX44/sVfF6P4j/AAovH0/ULV/s+oafdK32a7iRvnt7mLKkjII6h0blSrDNd9Oopq6PlcVhKmHlyzXo+5/pKUV8g/sT/tnfC/8Abh+C1p8WPh6fsd5Hi31fSZZA8+nXgGWjYgDejfeilCqJE5IVgyL9fVZyhRRRQAUUUUAFFFFABRRRQAUUUUAFFFebfGT4l6N8GfhL4m+LfiAgWXhrS7rUpQTjcttG0m0e7Y2gdSSAKAP5o/8AgvH/AMFA/EVrrr/sS/CXUTa2i28c3im4t2AeUzDdHZFgchNhWSYcFtyqfl3A/mX/AMEyv+CcWsftn+MpPGfj0T6f8PNEl2XlxEdkt9cAAi2hYg4wCDK4+6pAGGYEfBBm+Iv7Tvx2V7+ZtR8U+OtaVWkfJ8y71CYD3IXc/QdFHHSv79/2d/gh4U/Zw+C3h74LeDUAs9CtFhMm0K08x+aWZsfxSSFnPua8jN8e6FNRh8UvwR1YWjzyu9kd34D8BeDfhf4P0/wB8PtNg0jRtKhEFraWy7I40X07kk5LMcsxJJJJJrrqKK+Lbbd2esFFFFIAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDkfHngLwb8UPB+oeAPiDpsGr6NqsJgurS5XfHIjevcEHBVhhlIBBBANfxif8ABTX/AIJxax+xh4yj8Z+AhPqHw81uXZZ3Ep3y2NwQSbaZgBnIBMTn7ygg5ZST/bTXi37RHwQ8KftH/BbxD8FvGSA2eu2jQiTaGaCYfNFMuf4o5Arj3Fehl2Olhqif2Xuv19TCvRVSPmfhn/wQc/4KB+IrrXU/Yl+LWom6tGt5JvC1xcMC8RhG6SyDE5KbA0kI5K7WUfLtA/qlr/MvE3xF/Zi+OzPYTNp3inwLrTKsiZHl3enzEexK7k6Hqp561/pD/Bv4l6N8ZvhL4Z+Lfh8g2XiXS7XUogDnatzGsm0+652kdQQQa+7TTV0eMek0UUUwCiiigAooooAKKKKACiiigArJ1/XtF8LaHeeJvEd1HY6fp0Elzc3EzBI4oYlLO7MeAqqCSfStav5m/wDgv3+3DdeFtAtP2K/h9cNHd6zDFqHiKaNirLabiYLbIx/rWXzJB/cCjoxoA/Jr/gqr/wAFJNc/bh+Jq+FPA09xZfDbw5M40y0YlPt04ypvZ04yxGVhVuY4yejO+eo/YD/4Jf618cYbD4yfHeOXTfB0wE9lYqdl1qS/wse8UDdQ3DyLyuFZXrxb/gmp+xun7UXxabxD4yh3eD/C7xz36MDi7mbJjtgfRsbpOchBjgsCP67Le3t7S3S0tEWKKJQiIgCqqqMAADgADoK3pU76s5a9bl92O5h+FPCPhfwJoFt4V8Gafb6XptmgjhtrWNYokUcYCqAP8a6Kiiuk4QooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK+Af20P8Agn98Lv2sdAm1a1ji0PxlBGfsmqxIAJWHIjugozJGegb76ZyMjKn7+opNJqzKjJxd0fwseNfBPxq/ZJ+My6Rrf2nw34r8O3Ed1a3NtJtZWU7op4JV+8pxlWHuDgggf21/8Euv+CkXhv8Abq+GjaH4o8vT/iJ4egT+17NcKl1GMKLyAf8APN2IDp/yzc4+6VJ+Pf8AgoJ+xlpH7WXwqaXRY47fxjoSPNpV0Rgyjq1tIRzskx8p/gfBHBYH+Xj9l39oLx5+x7+0Rofxj8NJJHfaBdmO9s3ynn25Oy4t5Bx95cjn7rAHqBXJUhys9GlV515n+k7RXC/DD4j+FPjB8OtE+KfgW4+1aP4gsob+0k6ExTqGAYAnDDOGGeCCK7qszUKKKKACiiigAooooAKKKKACiivI/jx8bPAn7Onwi1340fEm6FrpGg2rXEp/ikfpHEg7vI5CIO7EUAfL3/BQ39vXwF+wh8GpPFupmHUPFeqq8GgaQzc3M4AzJIFIYQRZBkYYzkICGYV/CF8T/il8cf2vvjRL4z8c3V34o8WeIJ1iijjUu3JOyGCJeEjXOFRQAOvXJrq/2l/2i/i9+2/+0Bd/E3xpvu9V1mdLTTdOgyyW0BciC1gXrhS2PVmJY8k1/Rl+wL+wvoH7LXg9PFXi2KK88c6rEDd3GA4s425+zwnsB/y0Yffb/ZArehQdSVug0rnz9+xx/wAEpfBvw9tLP4gftHQx634hBEselbhJY2h7CTGRO475zGD0Dfer9kYIILWBLW1RY4o1CoijCqo4AAHAAHQVLRXs06UYK0UWFFFFaAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAQXVrbX1tJZXsazQzKUkjcBlZWGCCDwQRwQa/Fv9sj/AIJQeFfGNld/ED9mWCPSdbB8yTRiwSzufXyS3EL9wM+Weny9a/auis6lKM1aSCx/EX8Lfip8b/2RPjND418B3V34Y8V6BO0MsciFGGDiSCeJuHRsYdGBB+oBr+7/AP4J5ft6+Av27/g1H4t0ww6f4r0pUg1/SFbm2nIOJIwxLGCXBMbHOMFCSymvyU/4KC/sOaL+074Jk8ZeDLeO28c6PEWtZVAX7dEoz9nlPGT/AM8mP3W44VjX86f7L37SfxW/Ys+PVh8VvApe21HSpjbahYTZRLq33AT20y9QG246ZRgGHIFeNXoOnKz2Iasf6SlFeWfBH4xeCf2gPhNoPxl+Hdx9p0fxDaJdwN/Eu7ho3HZ43BRx2YEV6nWAgooooAKKKKACiiigAooooAKKKKACiiigAooqvd3drp9rLf30qQwQI0kkkjBURFGSzE8AAcknpQBFqWpado2nXGsaxcR2lpaRvNPPM4jjijjBZndmICqoBJJIAHJr+TD/AIKTf8FwfEfjC/1H4I/sY3z6bokZa3vPE8eUubsjhls88xRdvNwJG6rtHLeB/wDBXL/gqrrn7Tvim9/Z9+A2pPa/DTTJPLu7iAlW1y4jPLuw5+yoR+6j6OR5j7v3ax/In7DH/BPnxt+1VrEPjHxUs2jeBLeUia+xtlvChw0VtuBB5BVpCCqHI+ZhtoLhBzfLE+a/gT+zT8cf2p/FsmmfDbTZdQcyFrzUblittCz/ADFppiD8x64G527A1/R3+zF/wSz+AfwQsoNa+IdtF408Rja7T3sebSFxg4igOVIB/ik3Meo29K/QP4cfDbwP8I/Btl4A+HWnRaXpNgm2KCEYHPVmJ5ZmPLMxJJ5JruatI9ajhIw1lqyG3t7e0gS1tUWKKJQiIg2qqjgAAcAAdBU1FFM6wooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK4/wAcfD3wL8S9Ck8M/ELSLTWtPlBDQXkKzJz3AYHB9CMEdq7CigGr7n4Hfta/8EfLS5W58cfsrSiCQBpJNAupCVY5zi2mc/L7JIcejjpX46/Dj4o/tEfsY/F8eIPBN5qHg7xRpEuyeF1Me8KeY54XG2WNv7rqynqOxr+3uvjj9sH9i/4bftc+Df7O11V03xDZIf7O1eNA0sJPOyQceZET1QkY6qQalxOGvglLWGjPa/8Agmh/wVn+H37aGlwfDP4nNbeHPiXAnNmCUttUVBkyWhYk7wBl4CSwHzKWUNt/Yyv80n4zfBL4x/sofFIeFvG8M2k6vp8q3Nhf2rsscojbMdxbTDaSAQCCMOjDDBWBA/rj/wCCQf8AwVLj/au0BPgD8dbxU+JGkws9tdOAi6zaRDlxjAFzGP8AWoAN6/vFzhwknlNNOzP3TooooEFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH/9b+/iiiigAoor5D/bk/a08LfsXfs6618atfVLm9iAtdJsnJH2zUJgfKjyMkKMF3PZFbHOKAPyu/4LQf8FO779n3SZ/2VvgVdtB4z1i1DatqULbX0u0nHypEw5FxKvIYEGNCGHzMpX+YL9kb9lfxp+1j8UovBHh4m00y1Cz6rqJXclrbk/k0j4Kxp/Eck4VWI4KGL4sftXfHVjJJJrXi7xpqTSSSSt9+edizMxOdqIMk9kReOBX9gX7Mf7Ongv8AZi+E9h8NvCMSmVFEuoXeMSXd2wG+Rj1xxhB/CoArGtV5FpuenluB+sTvL4Vv5+R3Hwh+D/w++BXgOz+HHwz09NP0yzGcLzJLIQA0srdXkbA3MfYDAAA9Noorzm76s+wjFJWS0CiiikMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKK5/xZp+s6t4V1PSvDl5/Z2oXVpNFa3W3d5EzoQkm3vsYhsd8V+ZFz4b/AOCrvwjiOs6X4j8OfEu2t4zmxubdbSdwNn3TGlvl/vYLSnPcEkCrjG/Uxq1nD7La8v6ufqvRXxN+zN+274F+Put3Pwy8R6fc+D/Huljbe6FqWEkaRQS/2cnDSKoGSCquBzt2/NX2zUyi07MqnVjUjzQd0FFFFI0CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK/J7/gon/wT40n4+6HcfFz4RWcdr45skLzwxgImrRKPuP2FwoH7uTjcPkfI2Mn6w0VUJuLujGvQhWg4TWh/Gb+x7+118X/ANhf44Q/EbwM0iiOQWus6RcbkivbZW+eGVTyrqclHxujf1G5T/oF/s+fHj4fftMfB/Q/jX8MboXOk63AJVBI8yGQcSQyAE7ZI3BVh6jjIwa/ks/4K5/sfwQxj9qT4d2QT5lh8QQwpgEscR3RA7k4SQ45O1j/ABGuU/4Imft9yfs3fGUfAD4kXrL4K8b3KRwtIwEdhqj4SOXJ+6k3EcnYHYx4U16dOakro+KxWGlQqOnL/hz+2WiiirOYKKKKACiiigAooooAKKKKACvyW/4Le+LLjwx/wTm8ZWtrKYpNXutMsAVOCVa7ikdfoyRsD6gkV+tNfh1/wcEyOn7B1sqEgP4o04NjuPKuD/MCgD+eT/gjP8P9P8d/t6+GrrU4vPh8P2l7qu09PMiiMcbH/dkkVh/tAV/bhX8gn/BASOOT9sjxGzqCU8G3pUnsfttiMj8CRX9fdfG59JvE27JHq4NfuwooorxTrCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/iH/AOCyPgjTPBf7fPiuXSYvIi1q3sdSZR082aBVkYf7zozH/aJr+n//AIIheLLjxP8A8E5vBtrdSmWTSLrU7AljkhVu5ZEX6KkigegAFfzsf8F3kVf23LYqMFvDVgT7nzbgV+5X/BvtI7/sHXSuSQninUAuew8q3P8AM1+g4CTeGpt9keJXX7yR+41FFFdZkFFFFABRRRQAUUUUAFFFFAFLUtRsdI06fVtTlWG2tY3mlkbhURAWZj7ADNf5sf7U/wAcNc/af/aQ8W/GrUg7y+I9SkltouSyWwPl28QHJ+SJUT8K/u8/4KcfEfUvhT+wP8UfGGkNsuToz2CODgodSdLPcD6qJsj3Ffw9fsD/AA9034o/theAvCOsJ5lqdR+2SoRkOthG91tI/ut5WD7Gmld2E3ZNn9XP7HP7Puk/s0fs/aF8NrOMC+8oXepy4w0t9OAZSeT93hF/2VFfUNFFdyVtDyW7u7CiiimIKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr+VP/AIK//s96Z8Jvj/a/Ezw1D5On+OYpbqVFXCJfQFRPg/7YZJCP7zNX9Vlfkz/wWU+H9l4o/ZNTxkyf6V4Z1a2uEcDnyrkm3dfoWdD9VFZ1VeJtQlaaPaP+Den9o3UfiB+z/wCI/wBnvxBMZZ/Al5HcWBYkn7BqJdtgyTxHMkh46CQCv6Fq/iY/4N+viHd+FP25LjwarZtvFHh+9tWQnjzLZo7lG+oWNx9GNf2z1xnpBRRRQAUUUUAFFFFABRRRQAV/I1/wcMftTapr/wAUdB/ZN8N3jppegW0eraxChwst9cg+Qj4PPlQ/OARj97nqBX9bOoahZaTYT6pqUiw29tG0ssjcKiIMsT7ADNf5qHx9+KHiH9pL9ojxP8UrsvcXvizWJriFCMEJNJthjA9ETYgHoKAP1O/4JA/ssR+JPEFz+054wgD2ekyPZ6NG+CHusfvZsEdI1bah/vEnqtf0S147+z98I9K+BPwZ8O/CjSApXR7NIpXUY8y4b5ppOg+/IWb8a9ir3qFL2cFEtIKKKK2GFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV/N1/wV2/ZYi8C+Nbf9o7wfBs03xJMLfVEXOIr/aSsmOgEyqc/wC2pPVq/pFrwb9p34NWXx++BHiT4V3Kr52pWjG0dhny7qL54W9sSKM4xxkVjiKXPBrqJo/Pf/g3j/aqvtL8aeIv2RfFF4zWOqQtrOhxyEkR3MOBcxJ6eZHiTA4zGx6k1/WTX+aF+zn8Wdc/Z2/aE8J/F3Tne2ufDOrQXMox8xiR9s8ZHo8ZdGHoTX+lta3Nve20d5aOJIplDo6nIZWGQQfQivBIJ6KKKACiiigAooooAKKKKACiiigAooooAK/lV/4Lqf8ABRfUpNVuf2JfgzqDQ20SD/hK7u3fBldsMtiGU5CgYM4/iJCHgOD+1X/BSz9saD9ir9lzVviPpTxN4m1JhpmgwyYYNezA/vCuQSkKBpD2JAU/er+Eb4MfCvx9+1R8c7HwNp00l1qviG8ee9vZcuUViZJ7iU8k4BLEn7zEDqRQNJt2R9Tf8E+P2F9U/as8aHxR4xSS28D6LKv22VSUa8lHItomHIyOZHHKqeCGYEf1o6No+k+HdItPD+g20VlY2MKW9tbwKEiiiiUKiIowFVVAAAGABXH/AAp+F/g/4MfD3S/hn4DtVtNM0mBYYlA+ZyPvO5/id2yzHuSa9Cq0j3KFBU426hRRRTNwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA+cP2o/2ZfAX7VPwtuvh340QQ3ChpdOv0UGWzucYV19VPSRMgOvGQcMP5A/Gng34zfsi/G7+yNRkn8P+KvDN0lxaXdq5U7kO6KeCTjcjYypx04YA5A/uLr84/wDgpP8Asjw/tKfBmXxD4WtQ/i7wwj3NgUUeZcwgZltiep3D5kGfvgDjcaTRx4vD865o7o/Sz/gmL+3Xpn7cv7P0HiPWZIYfGegFLLxBaxjYPOx8lwi9o5wCwxwrBl7V+kFf51H7An7X3in9ib9pHSfilp7yNpErix12yBIFxYSMPMG3u8ePMj44ZcdCc/6IWha3pPibRLPxJoFwl3YahBHc208ZyksMqhkdT6MpBFQeOatFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH/9f+/iiiigAr+Jj/AILrfte/8L2/aYX4H+FLrzfDnw632r7DlJtUkx9objr5WBCPRlfHWv64v2sfjdZ/s4fs2eNfjddkBvD2lT3FuCAQ90w2W6HPHzzMi/jX+eT8Cfhrrn7R/wAftC+H1zPJLc+JNRzeXJ+aQRkmW4lJ7sEDtz3pN21KhFykordn7q/8Egv2YLXwh8Pp/wBo7xVaj+1vEG+30vzF5hsUOGdcjIMzg8/3FGOGNftNWN4c8P6P4S8P2Phbw9AtrYadBHbW8KcKkUShVUfQACtmvLnPmk2fd4agqNONNdAoooqDcKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD4e/bM/ZMi+O/h2Dx38MxBo/xK8OSR3ejawg8qVmgbcIJJB1Q/wAG7IRuRwWB6j9ij9o2X9pb4I23ivXEMHiHSp20zW4Gh8jZfQqpYhCzEKysp7c5GBggfXNflp+yJav8PP25/j38JtPVBp1xcWGuIiE7Y5bxPOcKD03faOew2gAAVqvei0+hxTj7OvGcdpaP1tdP8D9S6KKKyO0KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAxvEfh3Q/F2gXvhbxNax3unajC9vcwSjKSRSAqykehBr+Lf9q34Eap+zT8etb+GExc21rN9o06c9ZbOX5oXznqB8rf7Smv7Ya/Hb/gsP8AAK18a/Biz+OWlQk6n4SlWG5ZRkvY3LhTnn/lnKVYccBmrow8+WVu55Ob4X2lHnW8dfl1/wAz9pP+CVX7XSfte/sk6L4k1u5E3ifw6Bo+tgn52uIFGyY/9d49rk9N+4DpX6S1/Eb/AMEFf2hJPhR+2V/wqvVLnytK+INjJY7GJ2fbrYGa3b0yQJIxkdZK/tyr0D5EKKKKACiiigAooooAKKKKACvw3/4OC/8Akw+0/wCxp0//ANE3NfuRX4b/APBwX/yYfaf9jTp//om5oA/F/wD4IBf8nj+Jf+xMvP8A0usa/r4r+Qf/AIIBf8nj+Jf+xMvP/S6xr+vivi88/wB6foj1sH/DCiiivHOoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD+OH/gu/8A8nt2n/Ys2H/o24r9xf8Ag3z/AOTELz/satQ/9E21fh1/wXf/AOT27T/sWbD/ANG3FfuL/wAG+f8AyYhef9jVqH/om2r7/Lv91p+h4tf+JI/cmiiiu0xCiiigAooooAKKKKACiiigD8mv+C3uoS2f/BNvxzbx9Lq40iJvoL+3f+aiv5av+CRWnRX37bGi3MnWz0/UJk+phaP+Tmv6hf8AguV/yjj8Xf8AX9pP/pZFX8xf/BHz/k8+x/7BN/8A+gCrh8SIq/Az+tGiiiu08oKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK+I/8Ago9pEGt/sSfEGzuPupYxXA/3reeKVf1QV9uV8df8FA/+TMPiJ/2CX/8AQ1qZbMun8SP55v8AgjZq8+jf8FJPhpNDyJ5tRt2Hqs1hcr+hIP4V/ftX+fl/wSG/5SOfC/8A6/rv/wBI7iv9A2uE9UKKKKACiiigAooooAKKKKAPiL/gpL4+1D4afsIfFPxZpT+VcDQbizjfoVa+xbbh7jzcj3r+Fn9hvwVa/EH9rfwF4bvQGh/tWO7dTyGWyDXBU+x8vBr+yb/gtrq8ulf8E2vHsMOc3s2k25I7A6hbufzC4/Gv5N/+CWNkl3+274Tmf/l2h1GQfX7HMv8A7NWlFXqRXmho/rdooor6AsKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP4vf22/Adp8Nv2sfHfhPTwFt01SS6iUcBEvALhVHsokCj6V/el+wP44vfiN+xV8LfGGpP5l1c+GtPSd+peWCJYnY+5ZCT71/El/wVOsktP23fFkyf8vMOnSH6/Y4V/wDZa/ry/wCCOWry63/wTa+GN7NnKW+oW/Ppb6hcxD9EFfP1lacl5shn6Z0UUVmIKKKKACiiigAooooAKKKKACiivBf2o/jVp/7On7O/jH43algjw5pc91Ep6SXG3bAnP9+VkX8aAP43v+C3P7W0/wC0R+1td/DbQbgv4a+HBl0i3VWykl/kfbJcAkZ8xRED/djB7mvu/wD4JB/s42Hw7+Cb/HHWrbGt+MCwgd+senRNhFA7eY6lz6jZ6V/Or8NfBvib4/8Axq0nwZ57T6n4q1RI5rh+W33EmZZW+gLOfpX9w/hXwzo3gvwxp3g/w7EILDSraK0tox0WKFQij8ABVRO/AU7yc30N+iiiqPVCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP5Rf+CrX7Nll8Efj6vjnwrbfZ9C8aJJeqqLiOK9Rv9IRcAAA7lkA/2yBwK/f7/ggf+1pN8Yf2db39nnxVOZNZ+HbItozH5pdKuSxiHT/li4aPrwhQV5//AMFK/gTH8cP2VtbNlGG1Xwwp1qybHzf6MpMyD/fh34HdgtfiB/wR2/aC/wCFAft2+FJdQn8jSfFpbw7fbn2Ji+IEBbPHy3CxEk9BnkVDR4uLp8lTTZn99dFFFI5QooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD/9D+/iiiigD+dn/g4q+Ndz4V/Z/8H/A3TZQj+LtUkvbpQfmNtpiqQpHo0syNz3TjvX5V/wDBFn4SR638SvE3xm1BA0ehWiafak/897wlnYe6xpt+j1uf8HBHxS/4TP8AbatPh9bSZg8HaDaWzpnpc3ha6c/jHJF+VfZ3/BH7wR/wjP7JQ8TSR4k8R6vd3Yc9Wjh22wH0DRP+JNY4iVoM9PKKXPiVfpqfqhRRRXmn2IUUUUAFFFFABRRRQAUUUUAFFFFAHNf8Jn4P/wCEk/4Q3+1rP+19u/7D56faduN2fKzvxt5zjpzS+JPGPhHwbbx3ni/VbPSopm2RveTpArNjOAXIBOOcCv5L/wDnbi/7lz/3X62f+Duj/k1b4U/9jXcf+kb1sqXvRjfdHBLGtUqlTl+FtetrH9V3iTx/4E8GtCvi/W7DSjcgtCLy5jg8wLjJXewzjIzj1qjofxS+GXie9XTfDfiPS9QuX+7FbXkUrn6KjE1/HZ/wc1aD4I8VftHfsleGPiZdJY+G9Slu7XVrmSYW6Q2M11pyTu0rfLGFjLEueFxk9K+Tf+Clv7Cf/BC/4A/so658Uv2OPjPb6h8S9Kms5NDsdJ8TWutvcymeNXV4rfc6KsReQSh02MoOT91nGimlrv5GdXHzhOaUVaPd2e19ND++/VNY0jQ7X7drV1DZw5C+ZO6xrk9BliBmrdvcQXcCXVq6yxSqHR0O5WVuQQRwQR0Nfxbf8FI/iD8avip/wbNfCTx/+0K11N4s1LUtHe6nvSzXFzCr3aWtxIzfMzz2yxSljksXySc5P9Sf/BPr/kwn4If9iB4a/wDTdBUSp2V/M6aWJ9pU5LdE/vPryivzC/4KL/8ABUH4d/8ABPu48G+Bj4V1j4g+P/iHdPaeHfDOhqPtF00bIjM7kNsBaRUQKju7HAXAZl8N/ZD/AOCxV98df2pYf2Nf2jPgr4q+DPjvULJr/TodW/0u0uIUV25mEUJj3iN/LYoY2ZGTeHwpShK17FvE0lP2blqftfRRRUG4UUUUAFFFFABRRRQAUUUUAFFFFABX5ifAv/lJ38cP+wVon/pLbV+ndfmJ8C/+Unfxw/7BWif+kttWlPaXocuJ+Kl/i/8AbZH6d0UUVmdQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVw3xO8B6R8Ufh3rnw514A2muWM9lJkZ2iZCu4e6k5HuK7mihCaTVmfwy+G9c8Y/s7/G2z8QWBNvr3gnWklXaSNtzp82SMjnG5MH2r/Sw8C+LdO8feCdH8d6P/wAemtWNvfwc5/d3MayLz34YV/nsf8FHPBB8CftmeNrJF2xahdR6lGcYDfbY0lc/9/GYfUV/Zr/wST+Jf/C0v+Cevw11eaXzLjTNPfR5QTkp/Zsr2yA/9so0I9iK9eLukz4CtT5Kkodm0fo5RRRTMwooooAKKKKACiiigAr8N/8Ag4L/AOTD7T/sadP/APRNzX7kV+G//BwX/wAmH2n/AGNOn/8Aom5oA/F//ggF/wAnj+Jf+xMvP/S6xr+viv5B/wDggF/yeP4l/wCxMvP/AEusa/r4r4vPP96foj1sH/DCiiivHOoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD+OH/gu/wD8nt2n/Ys2H/o24r9xf+DfP/kxC8/7GrUP/RNtX4df8F3/APk9u0/7Fmw/9G3FfuL/AMG+f/JiF5/2NWof+ibavv8ALv8AdafoeLX/AIkj9yaKKK7TEKKKKACiiigAooooAKKKKAPyK/4Llf8AKOPxd/1/aT/6WRV/MX/wR8/5PPsf+wTf/wDoAr+nT/guV/yjj8Xf9f2k/wDpZFX8xf8AwR8/5PPsf+wTf/8AoAq4fEiKvwM/rRooortPKCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvjr/goH/yZh8RP+wS//oa19i18df8ABQP/AJMw+In/AGCX/wDQ1pS2ZcPiR/Of/wAEhv8AlI58L/8Ar+u//SO4r/QNr/Py/wCCQ3/KRz4X/wDX9d/+kdxX+gbXAeqFFFFABRRRQAUUUUAFFFFAH5Ff8Fyv+Ucfi7/r+0n/ANLIq/ld/wCCU3/J63hz/r11H/0mkr+qL/guV/yjj8Xf9f2k/wDpZFX8rv8AwSm/5PW8Of8AXrqP/pNJWtD+JH1Q1uf1n0UUV75YUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAfyYf8FWf+T1vEf/AF66d/6TR1/WX/wRV/5RmfDT/uM/+nW8r+TT/gqz/wAnreI/+vXTv/SaOv6y/wDgir/yjM+Gn/cZ/wDTreV4Ff8AiS9SHufqZRRRWQgooooAKKKKACiiigAooooAK/DX/g4F+Iy+Ev2G7bwZE+JvFfiGytGQd4bZZLpj9A8UY+pFfuVX8sX/AAco+JbjzvhF4PikIi261eSp2Lf6IkZP0G8D60Afl1/wSA+HP/CZftax+KriMNB4W0y6vtzDKiaUC3QfXErMP93Nf1ZV+Cf/AAQ40KKPRfiL4mdAXln021V8cgRrO7AH33rn6Cv3sq1se1g42pLzCiiimdQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBT1HT7PVtPn0rUYxLb3MbRSoejI4IYH6g1/Cr468O618Gfi/q3heJ2hv8Awtq89ukncSWcxVWH4qCDX921fx2f8FMdHi0T9uDx3awIESWazuOBgEz2kEjH8WY596mRwY+PuqR/oB/Cbx5ZfFT4V+Gvidpu37P4j0qz1OLacjZdwrKMfg1egV+cn/BI/wASXvir/gnP8LtTv5DK8Wn3FmCeyWd3PboP+ArGB+Ffo3UnlBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//0f7+KKKKAP8APv8A+Cu2sf25/wAFG/ije5zsv7W3/wDAezgi/wDZK/oP/YB0saP+xt8PrQDG/S1n/wC/7vJ+u6v5qf8AgpFdTXn7enxbmnOWHia/QfSOQqP0Ar+pH9ke2itP2VvhtFCMA+GNJf8AF7WNj+prlxXwo93Il+9m/L9T6GooorhPpwooooAKKKKACiiigAooooAKKKKAP4v/APgoJ8UNO/4Jz/8ABxZ4M/bc+O1heRfDvxPoccLanbQtMsYNhJp0pAUEu1u4jkkjUF/LYEAkgHxT/gux+3l+zv8A8FWtU+C/7Hv7BeqXHjzXrzxC0sk0Flc20Mct3GsEMf8ApMUTMcO7yMF2Rqh3Ec4/tg+K/wAGPhD8ePCb+A/jb4W0nxdokjiU2Os2cV7b+YoIDiOZWUOoJwwGRng15n8Ff2Mf2R/2cNUfXvgJ8MvDHg/UZUaJ73SdKt7W6aNzkoZkQSFSQPlLY9q3jVSs2tUeXUwNSXPTjJcknd6a+dj+Xv8A4OTvBnhvxh+2h+x98PPFNsL3R9V1afTru3clRLbT32mxSISpBAZCQSCDzwa8f/4K+/8ABKXwV/wTJ8U+E/8Ago/+wn4L0298J+GLyKPxN4U1u3/tvTYDIwWK58u985vJlZvKkO4NDIY3iKkkp/Y78Rf2fPgJ8YPEOi+Lfi14I0DxTqvhuTztIvdX0y3vriwk3K++2kmjd4W3ojZjKncqnqBXoHinwr4X8c+G7/wb420211jR9Vgktb2xvoUuLa5glBV45YpAyOjKSGVgQQcEUKs1ZFVMvU5VJPd2afVWR/J//wAFv/2sfhj+27/wQl8MftJfCdwum+IPEmjtLaFg0tjdxrOk9rJjHzwyArnADDDD5WBr6w/Y5/4Lt/8ABKX4Xfsi/Cv4Z+O/ixHYa54d8IaHpmo2x0fVZDDd2llDFNHvjs2RtrqRlWKnGQSOa/ZS3/Yp/Y1tPhxcfBy1+EngyLwhdXq6lPoaaDYrpsl6qhBcPbCHyWmCgKJCu4AYziuC/wCHan/BOb/ogPw3/wDCV0z/AOR6XPC3K0yvYV1U9pGSu0k7p9D8Df8AgtV8Vf8Aglx+114R+BXjv4s+IPGHh6HxW00/gn4k+HtO/wCJZaRyTJHOL5Lp4J9kTxpKVSMTIAGQ4Lg/HX7Dn7WH7Xf7NH/BTb4Z/sZ/CH9o+L9qX4deL5ETUGQy332CzYP5jmWVp3ge2jXztsVy8YUbXA4Ff2Q6t+zR+znr3wnt/gLrXgHw7deB7RQtv4el0u2bS4QpJHl2pj8lMFiRtQYJJHNYnwR/ZF/ZZ/ZquLq8/Z9+HXhzwXcXy+Xcz6NplvZzTIDkK8kaK7KDyFJIHamqqUeWxM8FUlVVTmSel2rp6dN7P5n0RRRRWB6QUUUUAFFFFABRRRQAUUUUAFFFFABX5ifAv/lJ38cP+wVon/pLbV+ndfmJ8C/+Unfxw/7BWif+kttWlPaXocuJ+Kl/i/8AbZH6d0UUVmdQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAfzB/wDBZ7SRZftR6PqSLhb3w3bMT6ulxcqf0C1++f8Awb56x/af7CF5ZZz/AGd4q1C3+m6G2l/9qV+JP/BbW2iX4ueC7wD55NHmQn2SYkf+hGv1t/4NyruZ/wBlDxrYsf3cfiySQD3eztgf/QRXp0fgR8TmStiZ+p/QlRRRWpwhRRRQAUUUUAFFFFABX4b/APBwX/yYfaf9jTp//om5r9yK/Df/AIOC/wDkw+0/7GnT/wD0Tc0Afi//AMEAv+Tx/Ev/AGJl5/6XWNf18V/IP/wQC/5PH8S/9iZef+l1jX9fFfF55/vT9Eetg/4YUUUV451BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAfxw/8ABd//AJPbtP8AsWbD/wBG3FfuL/wb5/8AJiF5/wBjVqH/AKJtq/Dr/gu//wAnt2n/AGLNh/6NuK/cX/g3z/5MQvP+xq1D/wBE21ff5d/utP0PFr/xJH7k0UUV2mIUUUUAFFFFABRRRQAUUUUAfkV/wXK/5Rx+Lv8Ar+0n/wBLIq/mL/4I+f8AJ59j/wBgm/8A/QBX9On/AAXK/wCUcfi7/r+0n/0sir+Yv/gj5/yefY/9gm//APQBVw+JEVfgZ/WjRRRXaeUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFfHX/AAUD/wCTMPiJ/wBgl/8A0Na+xa+Ov+Cgf/JmHxE/7BL/APoa0pbMuHxI/nP/AOCQ3/KRz4X/APX9d/8ApHcV/oG1/n5f8Ehv+Ujnwv8A+v67/wDSO4r/AEDa4D1QooooAKKKKACiiigAooooA/Ir/guV/wAo4/F3/X9pP/pZFX8rv/BKb/k9bw5/166j/wCk0lf1Rf8ABcr/AJRx+Lv+v7Sf/SyKv5Xf+CU3/J63hz/r11H/ANJpK1ofxI+qGtz+s+iiivfLCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD+TD/gqz/yet4j/AOvXTv8A0mjr+sv/AIIq/wDKMz4af9xn/wBOt5X8mn/BVn/k9bxH/wBeunf+k0df1l/8EVf+UZnw0/7jP/p1vK8Gv/El6kPc/UyiiisRBRRRQAUUUUAFFFFABRRRQAV/IH/wcfaq837QXw80M/dt/D004+s1y6n/ANFiv6/K/jr/AODjj/k6LwN/2Kw/9K7igD03/giZpaQ/s7+KNaH3rjxG8B+kNtbsP/RlfsvX4/8A/BFL/k1jX/8Asa7r/wBI7Ov2Aq0e7hv4UQooopm4UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV/Jb/wAFbbBbP9tPWbhet3YafKfqIVT/ANkr+tKv5P8A/gr1/wAnlXv/AGCrD/0E0pHHjv4fzP6jP+CIV+13/wAE2vAtu3S1uNXiH0OoXD/+zV+slfkV/wAENf8AlHH4R/6/tW/9LJa/XWoPHCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/S/v4ooooA/wA5/wD4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/7FXRv/SSKv5Xf+CjH/J+Hxc/7GnUv/RzV/VF+yh/ya18Nf8AsVdG/wDSSKuXFbI97Ifjn6Hv1FFFcJ9MFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFfmJ8C/+Unfxw/7BWif+kttX6d1+YnwL/wCUnfxw/wCwVon/AKS21aU9pehy4n4qX+L/ANtkfp3RRRWZ1BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/OR/wW3/5Kl4I/wCwVcf+jhX6t/8ABuP/AMmu+Of+xpP/AKSW9flJ/wAFt/8AkqXgj/sFXH/o4V+rf/BuP/ya745/7Gk/+klvXp0PgR8Vmf8AvU/66I/ocooorU4AooooAKKKKACiiigAr8N/+Dgv/kw+0/7GnT//AETc1+5Ffhv/AMHBf/Jh9p/2NOn/APom5oA/F/8A4IBf8nj+Jf8AsTLz/wBLrGv6+K/kH/4IBf8AJ4/iX/sTLz/0usa/r4r4vPP96foj1sH/AAwooorxzqCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/jh/wCC7/8Aye3af9izYf8Ao24r9xf+DfP/AJMQvP8AsatQ/wDRNtX4df8ABd//AJPbtP8AsWbD/wBG3FfuL/wb5/8AJiF5/wBjVqH/AKJtq+/y7/dafoeLX/iSP3JooortMQooooAKKKKACiiigAooooA/Ir/guV/yjj8Xf9f2k/8ApZFX8xf/AAR8/wCTz7H/ALBN/wD+gCv6dP8AguV/yjj8Xf8AX9pP/pZFX8xf/BHz/k8+x/7BN/8A+gCrh8SIq/Az+tGiiiu08oKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK+Ov8AgoH/AMmYfET/ALBL/wDoa19i18df8FA/+TMPiJ/2CX/9DWlLZlw+JH85/wDwSG/5SOfC/wD6/rv/ANI7iv8AQNr/AD8v+CQ3/KRz4X/9f13/AOkdxX+gbXAeqFFFFABRRRQAUUUUAFFFFAH5Ff8ABcr/AJRx+Lv+v7Sf/SyKv5Xf+CU3/J63hz/r11H/ANJpK/qi/wCC5X/KOPxd/wBf2k/+lkVfyu/8Epv+T1vDn/XrqP8A6TSVrQ/iR9UNbn9Z9FFFe+WFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH8mH/BVn/k9bxH/166d/6TR1/WX/AMEVf+UZnw0/7jP/AKdbyv5NP+CrP/J63iP/AK9dO/8ASaOv6y/+CKv/ACjM+Gn/AHGf/TreV4Nf+JL1Ie5+plFFFYiCiiigAooooAKKKKACiiigAr+Or/g43/5Oj8DD/qVR/wCldxX9itfx1f8ABxv/AMnR+Bv+xVH/AKV3FAHsv/BFL/k1jX/+xruv/SOzr9gK/H//AIIpf8msa/8A9jXdf+kdnX7AVoj3sN/CiFFFFBsFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFfyf/APBXr/k8q9/7BVh/6Ca/rAr+T/8A4K9f8nlXv/YKsP8A0E0nsceO/h/M/p7/AOCGv/KOPwj/ANf2rf8ApZLX661+RX/BDX/lHH4R/wCv7Vv/AEslr9dag8cKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//9P+/iiiigD/ADn/APgox/yfh8XP+xp1L/0c1f1Rfsof8mtfDX/sVdG/9JIq/ld/4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/wCxV0b/ANJIq5cVsj3sh+Ofoe/UUUVwn0wUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV+YnwL/5Sd/HD/sFaJ/6S21fp3X5ifAv/AJSd/HD/ALBWif8ApLbVpT2l6HLifipf4v8A22R+ndFFFZnUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH85H/Bbf/kqXgj/ALBVx/6OFfq3/wAG4/8Aya745/7Gk/8ApJb1+Un/AAW3/wCSpeCP+wVcf+jhX6t/8G4//Jrvjn/saT/6SW9enQ+BHxWZ/wC9T/rof0OUUUVqcAUUUUAFFFFABRRRQAV+G/8AwcF/8mH2n/Y06f8A+ibmv3Ir8N/+Dgv/AJMPtP8AsadP/wDRNzQB+L//AAQC/wCTx/Ev/YmXn/pdY1/XxX8g/wDwQC/5PH8S/wDYmXn/AKXWNf18V8Xnn+9P0R62D/hhRRRXjnUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/HD/wXf/5PbtP+xZsP/RtxX7i/8G+f/JiF5/2NWof+ibavw6/4Lv8A/J7dp/2LNh/6NuK/cX/g3z/5MQvP+xq1D/0TbV9/l3+60/Q8Wv8AxJH7k0UUV2mIUUUUAFFFFABRRRQAUUUUAfkV/wAFyv8AlHH4u/6/tJ/9LIq/mL/4I+f8nn2P/YJv/wD0AV/Tp/wXK/5Rx+Lv+v7Sf/SyKv5i/wDgj5/yefY/9gm//wDQBVw+JEVfgZ/WjRRRXaeUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFfHX/BQP/kzD4if9gl//AENa+xa+Ov8AgoH/AMmYfET/ALBL/wDoa0pbMuHxI/nP/wCCQ3/KRz4X/wDX9d/+kdxX+gbX+fl/wSG/5SOfC/8A6/rv/wBI7iv9A2uA9UKKKKACiiigAooooAKKKKAPyK/4Llf8o4/F3/X9pP8A6WRV/K7/AMEpv+T1vDn/AF66j/6TSV/VF/wXK/5Rx+Lv+v7Sf/SyKv5Xf+CU3/J63hz/AK9dR/8ASaStaH8SPqhrc/rPooor3ywooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/kw/4Ks/8nreI/8Ar107/wBJo6/rL/4Iq/8AKMz4af8AcZ/9Ot5X8mn/AAVZ/wCT1vEf/Xrp3/pNHX9Zf/BFX/lGZ8NP+4z/AOnW8rwa/wDEl6kPc/UyiiisRBRRRQAUUUUAFFFFABRRRQAV/HV/wcb/APJ0fgb/ALFUf+ldxX9itfx1f8HG/wDydH4G/wCxVH/pXcUDPZf+CKX/ACaxr/8A2Nd1/wCkdnX7AV+P/wDwRS/5NY1//sa7r/0js6/YCtEe7hv4UQooooNgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr+T/AP4K9f8AJ5V7/wBgqw/9BNf1gV/J/wD8Fev+Tyr3/sFWH/oJpPY48d/D+Z/T3/wQ1/5Rx+Ef+v7Vv/SyWv11r8iv+CGv/KOPwj/1/at/6WS1+utQeOFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/1P7+KKKKAP8AOf8A+CjH/J+Hxc/7GnUv/RzV/VF+yh/ya18Nf+xV0b/0kir+V3/gox/yfh8XP+xp1L/0c1f1Rfsof8mtfDX/ALFXRv8A0kirlxWyPeyH45+h79RRRXCfTBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABX5ifAv/lJ38cP+wVon/pLbV+ndfmJ8C/8AlJ38cP8AsFaJ/wCkttWlPaXocuJ+Kl/i/wDbZH6d0UUVmdQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAfzkf8Ft/+SpeCP8AsFXH/o4V+rf/AAbj/wDJrvjn/saT/wCklvX5Sf8ABbf/AJKl4I/7BVx/6OFfq3/wbj/8mu+Of+xpP/pJb16dD4EfFZn/AL1P+uh/Q5RRRWpwBRRRQAUUUUAFFFFABX4b/wDBwX/yYfaf9jTp/wD6Jua/civw3/4OC/8Akw+0/wCxp0//ANE3NAH4v/8ABAL/AJPH8S/9iZef+l1jX9fFfyD/APBAL/k8fxL/ANiZef8ApdY1/XxXxeef70/RHrYP+GFFFFeOdQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH8cP/Bd//k9u0/7Fmw/9G3FfuL/wb5/8mIXn/Y1ah/6Jtq/Dr/gu/wD8nt2n/Ys2H/o24r9xf+DfP/kxC8/7GrUP/RNtX3+Xf7rT9Dxa/wDEkfuTRRRXaYhRRRQAUUUUAFFFFABRRRQB+RX/AAXK/wCUcfi7/r+0n/0sir+Yv/gj5/yefY/9gm//APQBX9On/Bcr/lHH4u/6/tJ/9LIq/mL/AOCPn/J59j/2Cb//ANAFXD4kRV+Bn9aNFFFdp5QUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV8df8FA/+TMPiJ/2CX/8AQ1r7Fr46/wCCgf8AyZh8RP8AsEv/AOhrSlsy4fEj+c//AIJDf8pHPhf/ANf13/6R3Ff6Btf5+X/BIb/lI58L/wDr+u//AEjuK/0Da4D1QooooAKKKKACiiigAooooA/Ir/guV/yjj8Xf9f2k/wDpZFX8rv8AwSm/5PW8Of8AXrqP/pNJX9UX/Bcr/lHH4u/6/tJ/9LIq/ld/4JTf8nreHP8Ar11H/wBJpK1ofxI+qGtz+s+iiivfLCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD+TD/gqz/yet4j/wCvXTv/AEmjr+sv/gir/wAozPhp/wBxn/063lfyaf8ABVn/AJPW8R/9eunf+k0df1l/8EVf+UZnw0/7jP8A6dbyvBr/AMSXqQ9z9TKKKKxEFFFFABRRRQAUUUUAFFFFABX8dX/Bxv8A8nR+Bv8AsVR/6V3Ff2K1/HV/wcb/APJ0fgb/ALFUf+ldxQM9l/4Ipf8AJrGv/wDY13X/AKR2dfsBX4//APBFL/k1jX/+xruv/SOzr9gK0R7uG/hRCiiig2CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACv5P8A/gr1/wAnlXv/AGCrD/0E1/WBX8n/APwV6/5PKvf+wVYf+gmk9jjx38P5n9Pf/BDX/lHH4R/6/tW/9LJa/XWvyK/4Ia/8o4/CP/X9q3/pZLX661B44UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//V/v4ooooA/wA5/wD4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/7FXRv/SSKv5Xf+CjH/J+Hxc/7GnUv/RzV/VF+yh/ya18Nf8AsVdG/wDSSKuXFbI97Ifjn6Hv1FFFcJ9MFFFFABRRRQAUUUUAFFFFABRRRQAUV4L+0L+0j8L/ANmHwjaeNvirPPDZX14tjELeIzSGVkeT7oIO0KhyexwO9fH3/D3X9jj/AJ/dV/8AABv/AIqrVOTV0jCpiqMHyzmkz9O6K/MT/h7r+xx/z+6r/wCADf8AxVH/AA91/Y4/5/dV/wDABv8A4qn7KfYj69h/+fi+8/TuivzE/wCHuv7HH/P7qv8A4AN/8VR/w91/Y4/5/dV/8AG/+Ko9lPsH17D/APPxfefp3RX5if8AD3X9jj/n91X/AMAG/wDiqP8Ah7r+xx/z+6r/AOADf/FUeyn2D69h/wDn4vvP07or8xP+Huv7HH/P7qv/AIAN/wDFUf8AD3X9jj/n91X/AMAG/wDiqPZT7B9ew/8Az8X3n6d0V+Yn/D3X9jj/AJ/dV/8AABv/AIqj/h7r+xx/z+6r/wCADf8AxVHsp9g+vYf/AJ+L7z9O6K/MT/h7r+xx/wA/uq/+ADf/ABVd/wDC7/gpd+yp8XPHmm/DnwxqV7FqWrSi3tRc2bxxvK33U3DIBY8DOBnvQ6U+w1jaDdlNfefflFFFZnSFFFFABRRRQAV+YnwL/wCUnfxw/wCwVon/AKS21fp3X5ifAv8A5Sd/HD/sFaJ/6S21aU9pehy4n4qX+L/22R+ndFFFZnUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH85H/Bbf/kqXgj/sFXH/AKOFfq3/AMG4/wDya745/wCxpP8A6SW9flJ/wW3/AOSpeCP+wVcf+jhX6t/8G4//ACa745/7Gk/+klvXp0PgR8Vmf+9T/rof0OUUUVqcAUUUUAFFFFABRRRQAV+G/wDwcF/8mH2n/Y06f/6Jua/civw3/wCDgv8A5MPtP+xp0/8A9E3NAH4v/wDBAL/k8fxL/wBiZef+l1jX9fFfyD/8EAv+Tx/Ev/YmXn/pdY1/XxXxeef70/RHrYP+GFFFFeOdQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH8cP/AAXf/wCT27T/ALFmw/8ARtxX7i/8G+f/ACYhef8AY1ah/wCibavw6/4Lv/8AJ7dp/wBizYf+jbiv3F/4N8/+TELz/satQ/8ARNtX3+Xf7rT9Dxa/8SR+5NFFFdpiFFFFABRRRQAUUUUAFFFFAH5Ff8Fyv+Ucfi7/AK/tJ/8ASyKv5i/+CPn/ACefY/8AYJv/AP0AV/Tp/wAFyv8AlHH4u/6/tJ/9LIq/mL/4I+f8nn2P/YJv/wD0AVcPiRFX4Gf1o0UUV2nlBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXx1/wAFA/8AkzD4if8AYJf/ANDWvsWvjr/goH/yZh8RP+wS/wD6GtKWzLh8SP5z/wDgkN/ykc+F/wD1/Xf/AKR3Ff6Btf5+X/BIbj/go58L/wDr+u//AEjnr/QNrgPVCiiigAooooAKKKKACiiigD8iv+C5X/KOPxd/1/aT/wClkVfyu/8ABKb/AJPW8Of9euo/+k0lf1Rf8Fyv+Ucfi7/r+0n/ANLIq/ld/wCCU3/J63hz/r11H/0mkrWh/Ej6oa3P6z6KKK98sKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP5MP8Agqz/AMnreI/+vXTv/SaOv6y/+CKv/KMz4af9xn/063lfyaf8FWf+T1vEf/Xrp3/pNHX9Zf8AwRV/5RmfDT/uM/8Ap1vK8Gv/ABJepD3P1MooorEQUUUUAFFFFABRRRQAUUUUAFfx1f8ABxv/AMnR+Bv+xVH/AKV3Ff2K1/HV/wAHG/8AydH4G/7FUf8ApXcUDPZf+CKX/JrGv/8AY13X/pHZ1+wFfj//AMEUv+TWNf8A+xruv/SOzr9gK0R7uG/hRCiiig2CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACv5P/APgr1/yeVe/9gqw/9BNf1gV/J/8A8Fev+Tyr3/sFWH/oJpPY48d/D+Z/T3/wQ1/5Rx+Ef+v7Vv8A0slr9da/Ir/ghr/yjj8I/wDX9q3/AKWS1+utQeOFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/9b+/iiiigD/ADn/APgox/yfh8XP+xp1L/0c1f1Rfsof8mtfDX/sVdG/9JIq/ld/4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/wCxV0b/ANJIq5cVsj3sh+Ofoe/UUUVwn0wUUUUAFFFFABRRRQAUUUUAFFFfhh+wb+xEv7cfw+8WfGH4kfEfxZpmo23iq/03y9PvQInRI4J95Dq53FpmBwQMAcVtSpc99Tgx2PWGUbxvc9//AOCpH/IF+FH/AGPFh/6C9f0EV+Iuqf8ABDz4R64sS638TPGd4LdxLEJ7qGTY46Mu6I4I9RzXQf8ADmjwb/0V7x9/4ME/+N13U4ckbHyuNxKr1XUSsfs1RX4y/wDDmjwb/wBFe8ff+DBP/jdH/Dmjwb/0V7x9/wCDBP8A43WhyH7NUV+Mv/Dmjwb/ANFe8ff+DBP/AI3R/wAOaPBv/RXvH3/gwT/43QB+zVFfjL/w5o8G/wDRXvH3/gwT/wCN0f8ADmjwb/0V7x9/4ME/+N0Afs1RX4y/8OaPBv8A0V7x9/4ME/8AjdH/AA5o8G/9Fe8ff+DBP/jdAH7NUV+Mv/Dmjwb/ANFe8ff+DBP/AI3XK+O/+CRPhPwl4I1nxXbfFrx5NJpljcXaxtqCBWaGNnAJEfQ4xQB+4lfiR/wVJ/5O1/Za/wCxg1L/ANG6dX0T/wAEiPFnifxl+wd4T1XxbqFxqd2lxqMInupGllMaXcu1S7EsQo4XJOAABwAK+dv+CpP/ACdr+y1/2MGpf+jdOpS2Zth/4sPVfmff9FFFeQffBRRRQAUUUUAFfmJ8C/8AlJ38cP8AsFaJ/wCkttX6d1+YnwL/AOUnfxw/7BWif+kttWlPaXocuJ+Kl/i/9tkfp3RRRWZ1BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/OR/wW3/5Kl4I/7BVx/wCjhX6t/wDBuP8A8mu+Of8AsaT/AOklvX5Sf8Ft/wDkqXgj/sFXH/o4V+rf/BuP/wAmu+Of+xpP/pJb16dD4EfFZn/vU/66H9DlFFFanAFFFFABRRRQAUUUUAFfhv8A8HBf/Jh9p/2NOn/+ibmv3Ir8N/8Ag4L/AOTD7T/sadP/APRNzQB+L/8AwQC/5PH8S/8AYmXn/pdY1/XxX8g//BAL/k8fxL/2Jl5/6XWNf18V8Xnn+9P0R62D/hhRRRXjnUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/HD/wAF3/8Ak9u0/wCxZsP/AEbcV+4v/Bvn/wAmIXn/AGNWof8Aom2r8Ov+C7//ACe3af8AYs2H/o24r9xf+DfP/kxC8/7GrUP/AETbV9/l3+60/Q8Wv/EkfuTRRRXaYhRRRQAUUUUAFFFFABRRRQB+RP8AwXL/AOUcfi7/AK/tJ/8ASyKv5jP+CPn/ACefY/8AYJv/AP0AV/Tn/wAFy/8AlHH4u/6/tJ/9LIq/mM/4I+f8nn2P/YJv/wD0AVcPiRFX4Gf1o0UUV2nlBRRRQAUUUUAFFFFABRRRQAUUVn3+r6VpWz+07qK28zO3zXVN2OuMkZxmgDQorx3Vf2iP2f8AQvM/tvx14es/Kxv8/U7aPbuxjO6QYzkYz615rqn7c37H2kZ+1fEfQX2vsPkXaT8jP/PMtkcdenvyKV0VyvsfVlFfGV1/wUN/Yss4GuJviHphVcZCeZI3PHCqhJ/AVj/8PKP2H/8AooFp/wCA91/8Zo5l3H7OXZn3LRXwV/w88/YW+3/2b/wnsXmf3vsN75fTP+s+z7P168da0P8Ah5R+w/8A9FAtP/Ae6/8AjNLmXcPZz7M+5aK+Ov8Ah4J+xh/0UTSf++2/+Jrd0f8Abh/ZA11gtl8SNAQklf8ASL2O3GQM9ZSnHv0J460+Zdxckux9UUV5Tpfx3+B2uRfaNF8Z6FeR4Vt0Go28gw3IOVc8Ht616VY6jp+pxGfTZ47iMHaWiYOAfTIJ55piaa3LlFFFAgooooAKKKKACiiigAooooAK+Ov+Cgf/ACZh8RP+wS//AKGtfYtfHX/BQP8A5Mw+In/YJf8A9DWlLZlw+JH853/BIf8A5SOfC7/r+uv/AEjnr/QOr/Px/wCCQ/8Aykc+F3/X9df+kc9f6B1cB6oUUUUAFFFFABRRRQAUUUUAfkV/wXK/5Rx+Lv8Ar+0n/wBLIq/ld/4JTf8AJ63hz/r11H/0mkr+qL/guV/yjj8Xf9f2k/8ApZFX8rv/AASm/wCT1vDn/XrqP/pNJWtD+JH1Q1uf1n0UUV75YUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAfyYf8ABVn/AJPW8R/9eunf+k0df1l/8EVf+UZnw0/7jP8A6dbyv5NP+CrP/J63iP8A69dO/wDSaOv6y/8Agir/AMozPhp/3Gf/AE63leDX/iS9SHufqZRRRWIgooooAKKKKACiiigAooooAK/jq/4ON/8Ak6PwN/2Ko/8ASu4r+xWv46v+Djf/AJOj8Df9iqP/AEruKBnsv/BFL/k1jX/+xruv/SOzr9gK/H//AIIpf8msa/8A9jXdf+kdnX7AVoj3cN/CiFFFFBsFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFfyf/APBXr/k8q9/7BVh/6Ca/rAr+T/8A4K9f8nlXv/YKsP8A0E0nsceO/h/M/p7/AOCGv/KOPwj/ANf2rf8ApZLX661+RX/BDX/lHH4R/wCv7Vv/AEslr9dag8cKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//9f+/iiiigD/ADn/APgox/yfh8XP+xp1L/0c1f1Rfsof8mtfDX/sVdG/9JIq/ld/4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/wCxV0b/ANJIq5cVsj3sh+Ofoe/UUUVwn0wUUUUAFFFFABRRRQAV8UfHb9vX4J/s+fEL/hWHi+11e/1cWyXbx6Zai5CRScKWO9cZ9MfzGftevgn4Af8AKYnxj/2Thf8A0rsq2owUpWZ5+ZYmdClzw3uef/8AD1r9nr/oAeLP/BWP/jtfM/8AwTU/b/8AhJ+yX8GvEngL4paF4lkvtV8T3msQGx07zo/s88FtGoYtIhDbomyMEYxzX9Q1Fd0KUYbHy+KxtTEW9pbQ/Ir/AIfR/ss/9C94y/8ABSv/AMfo/wCH0f7LP/QveMv/AAUr/wDH6/XWitDjPyK/4fR/ss/9C94y/wDBSv8A8fo/4fR/ss/9C94y/wDBSv8A8fr9daKAPyK/4fR/ss/9C94y/wDBSv8A8fo/4fR/ss/9C94y/wDBSv8A8fr9daKAPyK/4fR/ss/9C94y/wDBSv8A8fo/4fR/ss/9C94y/wDBSv8A8fr9daKAPyK/4fR/ss/9C94y/wDBSv8A8fo/4fR/ss/9C94y/wDBSv8A8fr9daKAPjL9lT9ur4L/ALYOq6/onwwttWsrvw2ltJdxarai2bbdb9hUK75xsOc46jGecfQXxo/5I74s/wCwNf8A/oh6/Nb9j/8A5SYftMf9wH/0nNfpT8aP+SO+LP8AsDX/AP6IegD8+/8AgjJ/yYB4W/6/NU/9K5a8X/4Kk/8AJ2v7LX/Ywal/6N06vaP+CMn/ACYB4W/6/NU/9K5a8X/4Kk/8na/stf8AYwal/wCjdOpS2Zth/wCLD1X5n3/RRRXkH3wUUUUAFFFFABX5ifAv/lJ38cP+wVon/pLbV+ndfmJ8C/8AlJ38cP8AsFaJ/wCkttWlPaXocuJ+Kl/i/wDbZH6d0UUVmdQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAfzkf8Ft/+SpeCP8AsFXH/o4V+rf/AAbj/wDJrvjn/saT/wCklvX5Sf8ABbf/AJKl4I/7BVx/6OFfq3/wbj/8mu+Of+xpP/pJb16dD4EfFZn/AL1P+uh/Q5RRRWpwBRRRQAUUUUAFFFFABX4b/wDBwX/yYfaf9jTp/wD6Jua/civw3/4OC/8Akw+0/wCxp0//ANE3NAH4v/8ABAL/AJPH8S/9iZef+l1jX9fFfyD/APBAL/k8fxL/ANiZef8ApdY1/XxXxeef70/RHrYP+GFFFFeOdQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH8cP/Bd//k9u0/7Fmw/9G3FfuL/wb5/8mIXn/Y1ah/6Jtq/Dr/gu/wD8nt2n/Ys2H/o24r9xf+DfP/kxC8/7GrUP/RNtX3+Xf7rT9Dxa/wDEkfuTRRRXaYhRRRQAUUUUAFFFFABRRRQB+RP/AAXL/wCUcfi7/r+0n/0sir+Yz/gj5/yefY/9gm//APQBX9Of/Bcv/lHH4u/6/tJ/9LIq/mM/4I+f8nn2P/YJv/8A0AVcPiRFX4Gf1o0UUV2nlBRRXjPxn/aE+DX7Pmgf8JH8XdftdHhYExRSNuuJyO0UK5kc/wC6pA74oGlfRHs1RzTRW8TTzsEjQFmZjgADqST0Ar8vtB/aF/bs/a8vRB+xp8PI/DPhW5iJi8WeMUeCGVGyFlt413BhkcbFuR/eC169on/BIzxN8WbiLXP25Pi3rvjx98U7aNpjDTdJSVfvLsGdynpvijt2rGVZLY6I4aT30On+If7fX7H3wwZ4fE3jzTZZkBPk2DNfvnCkDFssmCdwxkgdfQ4+brb/AIKef8LHlNt+zL8JfGHj9g7Is0Vqbe1cqrMcSILgj7vRkU9eOAD+rfwh/YF/Y5+BsMQ+Hvw80eK5iaN1vLu3F7dh49uGE9x5kinKhsKwG7nGea+uYIIbaFLa2RY441CoqjCqo4AAHQAVm60uhusNBbn4Q6XN/wAFgvi4yyeGfh94V+HVjOu5JtevDczqMKvKwO7Kclmw1uDhcHtv24f2Ev8Agp946s2t/iT+0BpugiTapj0HSlk2qQN5WXZaSZBHHPPqucV+5FFQ5yfU0VKC2R+K0P8AwR1vPFTz/wDC6fjx498RRTgI0dtdCzQxgfdKym5U/Nz0A68ZOa6fRP8Aghv+wdp0ss+s2Ot608pZi17qbg5bHOYBFk8Hrnqc9sfsFRUtlpW2PzW0f/gkF/wTs0WHyofh1FOxVQz3GoX8zMV7/NckAnvtAB9Oler6f/wTn/YW0yEwW3wr8OspbdmWzWZs/V9xxx0zivtKikM+Y/8Ahif9jP8A6JH4L/8ABBY//Ga2NP8A2SP2U9IhNtpXwx8J2sbNuKxaLZopY8ZwsQGeBX0JRQB4V/wy7+zN/wBE68Mf+Ci1/wDjVZmpfshfsm6zs/tf4X+Erry87PO0SzfbnGcbojjOBmvoiigD5en/AGIf2MbiF7eT4SeDQrqVJXQrJWweOCIQQfcHIritS/4JxfsKars+0/Cvw+vl5x5NqIeuOvl7c9OM5xX2tRQB+Zmu/wDBHj/gnZrqHd8PltJNoUSWupX8RABz90XGwk9CSpOPwryLWP8AghZ+wtqAZtHj8QaPLvLxy2epZeI842+dHKPlOCCQTkDJPOf2QooA/FSX/gkB4s8Ky+Z8Gf2gvHOgBCWjjvJvt0WfmI3xo9ujgFhwRg8+vGJJ+xN/wVR8DLJB8PfjnofiSGOXMUev6YIC6EgkvIkNzIp4wFDsMHqK/caiqUn0ZLhF7o/BO58U/wDBXD4SW8X/AAnvwm0Px7bRvte48PX4gmZckco7u2W67lg2gdQDXLv/AMFSvCfgaUWn7RXw18ZfD2VtoVtR05vKLMpYLl/KfJwduIzkAniv6FKq31jZanZTabqUKXFvcI0UsUqh0dHGGVlOQQQcEHgiqVWSM3h4Pofkz8Of23v2TPivLHbeCfHmlyzyhmSC6kNlMwXOcR3IickBScYzt+bpzX1RWZ8YP+Ccf7E/xvhnPjT4eaVBd3Ctm90yL+zrneejl7Yxl2B5HmbgcYII4r4g1X/glP8AGX4KM2pfsOfGXVfD0MZkkj0DxGBqGmFmGAoYKRGoHy7jbyvjB3ZXJ0VfujGWF/lZ95UV+V2u/tg/tY/sl3dnYft4fDKSHQpUjjPirw032qyErHA81NzKjMSAVMkbZVjHGykAff8A8Jfjb8J/jr4bHi34R69aa7Y8B2t3/eRM3IWWJsSRMRztkVWxzitozT2OedOUd0epUUUVRmFfHX/BQP8A5Mw+In/YJf8A9DWvsWvjr/goH/yZh8RP+wS//oa0pbMuHxI/nO/4JD/8pHPhd/1/XX/pHPX+gdX+fj/wSH/5SOfC7/r+uv8A0jnr/QOrgPVCiiigAooooAKKKKACiiigD8iv+C5X/KOPxd/1/aT/AOlkVfyu/wDBKb/k9bw5/wBeuo/+k0lf1Rf8Fyv+Ucfi7/r+0n/0sir+V3/glN/yet4c/wCvXUf/AEmkrWh/Ej6oa3P6z6KKK98sKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP5MP+CrP/J63iP/AK9dO/8ASaOv6y/+CKv/ACjM+Gn/AHGf/TreV/Jp/wAFWf8Ak9bxH/166d/6TR1/WX/wRV/5RmfDT/uM/wDp1vK8Gv8AxJepD3P1MooorEQUUUUAFFFFABRRRQAUUUUAFfx1f8HG/wDydH4G/wCxVH/pXcV/YrX8dX/Bxv8A8nR+Bv8AsVR/6V3FAz2X/gil/wAmsa//ANjXdf8ApHZ1+wFfj/8A8EUv+TWNf/7Gu6/9I7Ov2ArRHu4b+FEKKKKDYKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK/k/wD+CvX/ACeVe/8AYKsP/QTX9YFfyf8A/BXr/k8q9/7BVh/6CaT2OPHfw/mf09/8ENf+UcfhH/r+1b/0slr9da/In/ghp/yjj8I/9f2rf+lktfrtUHjhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH/9D+/iiiigD/ADn/APgox/yfh8XP+xp1L/0c1f1Rfsof8mtfDX/sVdG/9JIq/ld/4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/wCxV0b/ANJIq5cVsj3sh+Ofoe/UUUVwn0wUUUUAFFFFABRRRQAV8E/AD/lMT4x/7Jwv/pXZV97V8E/AD/lMT4x/7Jwv/pXZV04X4zyM7/3deq/U/a6iiiu8+SPwc/4Kcf8ABeb4Rf8ABMr9pbw/+y94v+HPiXxvrviPQLfXrVtCMLApc3NzbLEI3YO0ga1ZvlBGGHvXzN8Ef+Dqb9inx78atG+CXxx8C+M/hPda9NFb2+oeIbWFbKJ522RmcrL5scbN8vmeUyL1YqoJH5bf8F+/jvJ+zF/wcOfs6/H6Hw7f+LW8K+DNIvho+lruvLzZqesDy4hhssc8cHpXjn/BST4w/ti/8HE3j/4Wfs7/AAI/Zm8TfD+x8PanNcXfijxLbSpHbRXgSOQyzmCOKGCNV8xkDvJKwUIu5QGAP6RP+CnH/Bef4Rf8Eyv2mPD/AOy74u+HPiXxvrviPQLfX7VtCMLAx3NzdWyxCN2DtIGtWY7QRhh7186/Af8A4Onf2HviH8X9N+Dfx88IeL/g5dauypbah4mtIxYB3bagmeNzLErNwJDEY15LsoGa+Ff+CmOlRaF/wdI/se6JBI8qWfhPQYFeQ7nYR6hrKgse5OOT61+i3/B1R8JPhz45/wCCRviv4i+KbCCbXPBOq6Ne6Ldso86GW7vobOZUbrteCd9y52kqpIyoIAPv7/gqt/wVL+GP/BKP4K+HvjZ8T/DWp+KbLxFrS6JDb6U8SSJI0Es4djMyqV2wkcHOSK/IOH/g6p8DXESzwfsyfFN0cBlZbOMgg9CDnkGvyj/4LUeOvFXxI/4Nwv2OPGHjV5pdTuLvRYppbhi8swt9IvIUldiSWMiIHLE5O7J5r9WfgV/wVu/4LR3Vt4N8HXf7D2qQ6HIunWT6obu42paEIhuMeRjAT58ZxQB/UL8KfHkXxT+F3hv4nQ2M+mJ4j0qz1RbO6G2e3F5CsoikHZ03bWHqDXfV/HR/wcR/t/8A7T37PP7a/wAJv2c5fiN4l+B/wN8R6K+o6v4w8Kaf9r1Ke/EtxG8SPvicrbhLffHFKrKs5kZZMRpX0j/wQ0+LHxc8b/HXxbpvhL9sXRv2lvhI2nLPYabrYurfxrYT/u/381vdxLMkKsXibMskb5Rx5bEqQD+oaiiigD8i/wBj/wD5SYftMf8AcB/9JzX6U/Gj/kjviz/sDX//AKIevzW/Y/8A+UmH7TH/AHAf/Sc1+lPxo/5I74s/7A1//wCiHoA/Pv8A4Iyf8mAeFv8Ar81T/wBK5a8X/wCCpP8Aydr+y1/2MGpf+jdOr2j/AIIyf8mAeFv+vzVP/SuWvF/+CpP/ACdr+y1/2MGpf+jdOpS2Zth/4sPVfmff9FFFeQffBRRRQAUUUUAFfmJ8C/8AlJ38cP8AsFaJ/wCkttX6d1+YnwL/AOUnfxw/7BWif+kttWlPaXocuJ+Kl/i/9tkfp3RRRWZ1BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/OR/wW3/5Kl4I/7BVx/wCjhX6t/wDBuP8A8mu+Of8AsaT/AOklvX5Sf8Ft/wDkqXgj/sFXH/o4V+rf/BuP/wAmu+Of+xpP/pJb16dD4EfFZn/vU/66H9DlFFFanAFFFFABRRRQAUUUUAFfhv8A8HBf/Jh9p/2NOn/+ibmv3Ir8N/8Ag4L/AOTD7T/sadP/APRNzQB+L/8AwQC/5PH8S/8AYmXn/pdY1/XxX8g//BAL/k8fxL/2Jl5/6XWNf18V8Xnn+9P0R62D/hhRRRXjnUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/HD/wAF3/8Ak9u0/wCxZsP/AEbcV+4v/Bvn/wAmIXn/AGNWof8Aom2r8Ov+C7//ACe3af8AYs2H/o24r9xf+DfP/kxC8/7GrUP/AETbV9/l3+60/Q8Wv/EkfuTRRRXaYhRRRQAUUUUAFFFFABRRRQB+RP8AwXL/AOUcfi7/AK/tJ/8ASyKv5jP+CPn/ACefY/8AYJv/AP0AV/Tn/wAFy/8AlHH4u/6/tJ/9LIq/mM/4I+f8nn2P/YJv/wD0AVcPiRFX4Gf1o0UUV2nlHyv+1t+0nH+zd8PrXUNF0/8AtrxR4ivI9J8P6ZnatzfznCb24wi5y3IzwoILZF79lj/gmf4a0HWI/wBoT9sRo/iF8UtS/f3DX4W407TWJ3JDbQMPLzD0VyMKf9WFHJ+JP2vviX4Y+HP/AAUd/Z6174jXRg0DTpbl2YnCQS3bCFZWORhQ4iLnOAq5weh/o9rkrSblY9DDwSjzdWFFFFZHQFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBVvrGy1Oym03UoUuLe4RopYpVDo6OMMrKcggg4IPBFfjD+1V/wTp1j4VXM37Sn/BOaBfCfjCxPn6l4dtCV0zWrdCGMS2+7y43GPljjCI2Tt2vhq/aiqt9fWWmWU2palMlvb26NLLLKwRERBlmZjgAADJJ4AoTsJq+jPy7/Zb/AGhNB/ab+DenfFHR4hZ3MjPa6jY7972V7DgSwvwDkZDLkAlGU4Ga+hq/If8A4Jf+N9H8d/Ev4/a94PldvD2o+MZtS01H7Q3ktyyt1PLRrHnk9OtfrxXdB3imeZVjyyaQV8df8FA/+TMPiJ/2CX/9DWvsWvjr/goH/wAmYfET/sEv/wChrTlsxQ+JH853/BIf/lI58Lv+v66/9I56/wBA6v8APx/4JD/8pHPhd/1/XX/pHPX+gdXAeqFFFFABRRRQAUUUUAFFFFAH5Ff8Fyv+Ucfi7/r+0n/0sir+V3/glN/yet4c/wCvXUf/AEmkr+qL/guV/wAo4/F3/X9pP/pZFX8rv/BKb/k9bw5/166j/wCk0la0P4kfVDW5/WfRRRXvlhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/Jh/wVZ/5PW8R/wDXrp3/AKTR1/WX/wAEVf8AlGZ8NP8AuM/+nW8r+TT/AIKs/wDJ63iP/r107/0mjr+sv/gir/yjM+Gn/cZ/9Ot5Xg1/4kvUh7n6mUUUViIKKKKACiiigAooooAKKKKACv46v+Djf/k6PwN/2Ko/9K7iv7Fa/jq/4ON/+To/A3/Yqj/0ruKBnsv/AARS/wCTWNf/AOxruv8A0js6/YCvx/8A+CKX/JrGv/8AY13X/pHZ1+wFaI93DfwohRRRQbBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABX8n//AAV6/wCTyr3/ALBVh/6Ca/rAr+T/AP4K9f8AJ5V7/wBgqw/9BNJ7HHjv4fzP6ev+CGn/ACjj8I/9f2rf+lktfrtX5E/8ENP+UcfhH/r+1b/0slr9dqg8cKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//R/v4ooooA/wA5/wD4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/7FXRv/SSKv5Xf+CjH/J+Hxc/7GnUv/RzV/VF+yh/ya18Nf8AsVdG/wDSSKuXFbI97Ifjn6Hv1FFFcJ9MFFFFABRRRQAUUUUAFfBPwA/5TE+Mf+ycL/6V2Vfe1fBPwA/5TE+Mf+ycL/6V2VdOF+M8jO/93Xqv1P2uooorvPkj+Yz9vz/gnn+2D8bP+C/n7Ov7bPwx8If2n8MfAmiaXZ65rP8AaFlD9lmt77U5pF+zy3CXMm2O4ibMcTg7sAkhgP6c6KKAP5C/+C0n7C//AAVJ8ef8Fd/hJ/wUA/YA+GFj48g+HHhTTreN9S1SwtLQ6lbX+pStDLDcX1ncMoiuY23IQp3YDZBA8v8A2hv2OP8Ag4i/4LJWvh79nn9vHw/4M+BfwqtNTh1LV/7Duo7m4u/IyF+SG+1FpXUOxijaSGHdhnyyrX9olFAH8wH/AAcC/wDBLj49ftJf8E8vhD+yT/wT68EjXovh1rlikGm/2haWX2bSrHTri0jJlvp4FcgtGpwxck5I6mv6SfhppGo+H/hz4f0HV4/Ju7HTbS3njyG2yRRKrDKkg4IIyCR6V21FAH8/3/BWr4a/8FZr74veGfHP7J3hnwr8dPgwLcJ4l+FfiSz0sfarhRInmi4vowzRlXV1CTB0kTlJEYqPzc/4JY/8Ek/2q7L/AIKtW/8AwUh+Jfwa0P8AZg8FaBp15BZeCtG1OPUGv7m8tZLUsywSPHFGBMZHBEI3xoEh5Zx/ZJRQAUUUUAfkX+x//wApMP2mP+4D/wCk5r9KfjR/yR3xZ/2Br/8A9EPX5rfsf/8AKTD9pj/uA/8ApOa/Sn40f8kd8Wf9ga//APRD0Afn3/wRk/5MA8Lf9fmqf+lcteL/APBUn/k7X9lr/sYNS/8ARunV7R/wRk/5MA8Lf9fmqf8ApXLXi/8AwVJ/5O1/Za/7GDUv/RunUpbM2w/8WHqvzPv+iiivIPvgooooAKKKKACvzE+Bf/KTv44f9grRP/SW2r9O6/MT4F/8pO/jh/2CtE/9JbatKe0vQ5cT8VL/ABf+2yP07ooorM6gooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/nI/wCC2/8AyVLwR/2Crj/0cK/Vv/g3H/5Nd8c/9jSf/SS3r8pP+C2//JUvBH/YKuP/AEcK/Vv/AINx/wDk13xz/wBjSf8A0kt69Oh8CPisz/3qf9dD+hyiiitTgCiiigAooooAKKKKACvw3/4OC/8Akw+0/wCxp0//ANE3NfuRX4b/APBwX/yYfaf9jTp//om5oA/F/wD4IBf8nj+Jf+xMvP8A0usa/r4r+Qf/AIIBf8nj+Jf+xMvP/S6xr+vivi88/wB6foj1sH/DCiiivHOoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD+OH/gu/8A8nt2n/Ys2H/o24r9xf8Ag3z/AOTELz/satQ/9E21fh1/wXf/AOT27T/sWbD/ANG3FfuL/wAG+f8AyYhef9jVqH/om2r7/Lv91p+h4tf+JI/cmiiiu0xCiiigAooooAKKKKACiiigD8if+C5f/KOPxd/1/aT/AOlkVfzGf8EfP+Tz7H/sE3//AKAK/pz/AOC5f/KOPxd/1/aT/wClkVfzGf8ABHz/AJPPsf8AsE3/AP6AKuHxIir8DP60aKKK7Tyj8df20PgZ4N/aV/4KCfCD4IePzMmla9oeuRySW77JY3itriWKRDyMpKiOAQVbGGBBIr2nwd+1n+0V/wAEzrWx+DH7aOi6h458BWmyHS/HukI0pggY7I4LuOQAb1P96USBRhRNwaZ8S/8AlLT8Av8AsE6//wCkV1X7V3tlZ6lZzadqMKXFvcI0csUih0dHGGVlOQQQcEHgiuOr8TPTofAjN+E3xv8AhF8dvDx8VfB7xHYeIrBW2vJZTCQxtllw6/eQkqcbgMgZGRzXqdfkH8Tf+CUXwE1bxHc/En9nrUdT+Efi98NBf+G5mitkcHJ3WoZV8s/LmOJ4VJUdPm3cCvif/gsR+zIz2t3Z6D8dvD1usYSdCunasI1BByAYgW4Ab5bhmyp3Z34zNT9uqK/GzT/+Cznwo8G6i3hn9qL4f+Lfhlq0T+XKLyz+1WgcBCVSVdkj/eLKRBtaMBgfmC19ofDX/goH+xT8W/LTwR8TNCkmm2eXb3lyLC4cvnAWG6EMjH5TkBcjjOMjIB9h0VVsb6y1Oyh1LTZkuLe4RZYpYmDo6OMqysMggg5BHBFWqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoqhqeqaZolhLqus3MVpawLukmmcRxovqzMQAPqa+M/il/wAFH/2Hvg9Cz+L/AIk6PNKFz5GmSnU5snoCloJipPbdgYOScc0AfbdFfjNff8Fh9B+Is0ujfsg/Crxd8Sr5GdTcJaG0sEX51SRpR5rqrMv/AC0jj47hgVrGuNO/4LAftPu0fiDV9B+A3hydpI2h09RqesmFxlSXDOgYdN0c1s4P8NAH6cfHv9p74D/sx+Gv+Ep+N/iW00KBlJhhkbfc3BHaGBA0sh9dqkDvgV+Rvjf4j/tOf8FW7X/hXfwf0zUPhd8ErrB1TxDqcZj1HXLck/ubSMHaYX/iwxQgHe/WF/of4M/8Eq/2Y/h3qFt4z+J0N38S/FsTCSTV/Es73W5/a3ZjDtB5USCRgf4q/SiGGG2hS3t0WOONQqqowqqOAAB0AoA/Av8A4JufDzwz8JfjV8f/AIY+DI3i0rQPElvY2iyOZHEUH2hV3MeScDk+tfrTX5nfsT/8nV/tM/8AY4L/AOhXNfpjXbS+FHm4j+Iwr46/4KB/8mYfET/sEv8A+hrX2LXx1/wUD/5Mw+In/YJf/wBDWqlsyIfEj+c7/gkP/wApHPhd/wBf11/6Rz1/oHV/n4/8Eh/+Ujnwu/6/rr/0jnr/AEDq4D1QooooAKKKKACiiigAooooA/Ir/guV/wAo4/F3/X9pP/pZFX8rv/BKb/k9bw5/166j/wCk0lf1Rf8ABcr/AJRx+Lv+v7Sf/SyKv5Xf+CU3/J63hz/r11H/ANJpK1ofxI+qGtz+s+iiivfLCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD+TD/gqz/yet4j/AOvXTv8A0mjr+sv/AIIq/wDKMz4af9xn/wBOt5X8mn/BVn/k9bxH/wBeunf+k0df1l/8EVf+UZnw0/7jP/p1vK8Gv/El6kPc/UyiiisRBRRRQAUUUUAFFFFABRRRQAV/HV/wcb/8nR+Bv+xVH/pXcV/YrX8dX/Bxv/ydH4G/7FUf+ldxQM9l/wCCKX/JrGv/APY13X/pHZ1+wFfj/wD8EUv+TWNf/wCxruv/AEjs6/YCtEe7hv4UQooooNgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr+T//AIK9f8nlXv8A2CrD/wBBNf1gV/J//wAFev8Ak8q9/wCwVYf+gmk9jjx38P5n9PX/AAQ0/wCUcfhH/r+1b/0slr9dq/In/ghp/wAo4/CP/X9q3/pZLX67VB44UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/9L+/iiiigD/ADn/APgox/yfh8XP+xp1L/0c1f1Rfsof8mtfDX/sVdG/9JIq/ld/4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/wCxV0b/ANJIq5cVsj3sh+Ofoe/UUUVwn0wUUUUAFFFFABRRRQAV8E/AD/lMT4x/7Jwv/pXZV97V8E/AD/lMT4x/7Jwv/pXZV04X4zyM7/3deq/U/a6vDf2ifjLffAT4XXXxI07w1qXi6W2mhiGmaRGZbyXzXCkxoAxbZnc3ooJ7V7lRXefJH49/8PW/GX/RvPxF/wDBc/8A8bo/4et+Mv8Ao3n4i/8Aguf/AON1+wlFAH49/wDD1vxl/wBG8/EX/wAFz/8Axuj/AIet+Mv+jefiL/4Ln/8AjdfsJRQB+Pf/AA9b8Zf9G8/EX/wXP/8AG6P+HrfjL/o3n4i/+C5//jdfsJRQB+Pf/D1vxl/0bz8Rf/Bc/wD8bo/4et+Mv+jefiL/AOC5/wD43X7CUUAc34M8QTeLPB+leKbmzl0+TU7OC7a1mGJYGmQOY3yB8yZ2ngciukoooA/Iv9j/AP5SYftMf9wH/wBJzX6U/Gj/AJI74s/7A1//AOiHr81v2P8A/lJh+0x/3Af/AEnNfpT8aP8Akjviz/sDX/8A6IegD8+/+CMn/JgHhb/r81T/ANK5a8X/AOCpP/J2v7LX/Ywal/6N06vaP+CMn/JgHhb/AK/NU/8ASuWvF/8AgqT/AMna/stf9jBqX/o3TqUtmbYf+LD1X5n3/RRRXkH3wUUUUAFFFFABX5ifAv8A5Sd/HD/sFaJ/6S21fp3X5ifAv/lJ38cP+wVon/pLbVpT2l6HLifipf4v/bZH6d0UUVmdQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAfzkf8ABbf/AJKl4I/7BVx/6OFfq3/wbj/8mu+Of+xpP/pJb1+Un/Bbf/kqXgj/ALBVx/6OFfq3/wAG4/8Aya745/7Gk/8ApJb16dD4EfFZn/vU/wCuh/Q5RRRWpwBRRRQAUUUUAFFFFABX4b/8HBf/ACYfaf8AY06f/wCibmv3Ir8N/wDg4L/5MPtP+xp0/wD9E3NAH4v/APBAL/k8fxL/ANiZef8ApdY1/XxX8g//AAQC/wCTx/Ev/YmXn/pdY1/XxXxeef70/RHrYP8AhhRRRXjnUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/HD/AMF3/wDk9u0/7Fmw/wDRtxX7i/8ABvn/AMmIXn/Y1ah/6Jtq/Dr/AILv/wDJ7dp/2LNh/wCjbiv3F/4N8/8AkxC8/wCxq1D/ANE21ff5d/utP0PFr/xJH7k0UUV2mIUUUUAFFFFABRRRQAUUUUAfkT/wXL/5Rx+Lv+v7Sf8A0sir+Yz/AII+f8nn2P8A2Cb/AP8AQBX9Of8AwXL/AOUcfi7/AK/tJ/8ASyKv5jP+CPn/ACefY/8AYJv/AP0AVcPiRFX4Gf1o0UUV2nlH5t/Ev/lLT8Av+wTr/wD6RXVftpX4l/Ev/lLT8Av+wTr/AP6RXVftpXHV+Jnp0PgQUUUVmalHUtM03WrCXS9Yt4ru1nXbJDMgkjdfRlYEEfUV8d/Ej/gnX+xH8V7qS+8Y/DbSPPmO6SWwR9NkdtxYszWbQlmYsSzEkt3JwK+0qKAPx7l/4I8+APBUpvP2bfid42+HMzbiyadqLGEsyhS2E8mTJwN2ZTkADitJf2S/+CnXgG88/wCGP7Sh1eEpjytf0iOT7h+VCX+1E5HDSLtY+lfrlRQB+QX/AAlP/BcP4dbkl034f+PlhRWJjZ7d5emVQs9kofg8soXJPXgC+/7bX/BUPwxckeL/ANmiO9jDoMadrMTHBGT80ZuByP4sYU9cniv1uooA/Jo/8FRv2kNDQt47/Zb8b2YRZC7WHmX8amM93W1jG3HO48emRzRD/wAFpPh1pkcq+OPhD8RtKmgRXkRdKikCcbm3GSeEgAYIJHI54r9ZaKAPyc03/guR+yzfb/tXhHx1Z7cY87SoTuznp5d0/TvnHWlH/Bdf9iWDUv7M1a28T6e4++bjTUGzjIyFmZueMfL39Oa/WKigD8sf+H5v7BP/AEEda/8ABa//AMVWNp//AAXZ/Yw1WY2+l6Z4suZFXcVi02N2CjjOBcHjmv1nooA/JzUv+C5H7LNjs+y+EfHV5uznydKhG3GOvmXSde2M9Knm/wCCyXhPUvN/4Qr4L/EnU/KTJ3aSiYc5wG8uaXAOOvXrxxX6uUUAfk1P/wAFPf2pdScDwb+yr40uFaVYwdRkk088gZJDWb4AJxnO3HORjFZs37aH/BVjxLbRL4L/AGbrWwml3YbUtXi2/Ke6tJbFeAcZbnIx6H9d6KAPyPXUv+C3HxGSRi/w++H8ckuQCJbqeONSBgcXkbFhzzjOP4eBUB/Y1/4KR+PWt7j4q/tN3lgVBeSLQNMjtR5mNoAeFrYFcc5Kdf4cnNfrvRQB+RNj/wAEdPgn4lvIda/aE8beMfiRqCKPMbV9TbyWba2SAAZlG92cDzjgnGT82763+G/7AX7GHwnaObwV8N9FSaFt0c95B9vnRsAZWW6Mrg4UdG9T1Jz9f0UAVrOys9Ptls9PiSCFM7UjUKoycnAGB1Oas0UUAFFFFAH4ffsT/wDJ1f7TP/Y4L/6Fc1+mNfmd+xP/AMnV/tM/9jgv/oVzX6Y120vhR5uI/iMK+Ov+Cgf/ACZh8RP+wS//AKGtfYtfHX/BQP8A5Mw+In/YJf8A9DWqlsyIfEj+c7/gkP8A8pHPhd/1/XX/AKRz1/oHV/n4/wDBIf8A5SOfC7/r+uv/AEjnr/QOrgPVCiiigAooooAKKKKACiiigD8iv+C5X/KOPxd/1/aT/wClkVfyu/8ABKb/AJPW8Of9euo/+k0lf1Rf8Fyv+Ucfi7/r+0n/ANLIq/ld/wCCU3/J63hz/r11H/0mkrWh/Ej6oa3P6z6KKK98sKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP5MP8Agqz/AMnreI/+vXTv/SaOv6y/+CKv/KMz4af9xn/063lfyaf8FWf+T1vEf/Xrp3/pNHX9Zf8AwRV/5RmfDT/uM/8Ap1vK8Gv/ABJepD3P1MooorEQUUUUAFFFFABRRRQAUUUUAFfx1f8ABxv/AMnR+Bv+xVH/AKV3Ff2K1/HV/wAHG/8AydH4G/7FUf8ApXcUDPZf+CKX/JrGv/8AY13X/pHZ1+wFfj//AMEUv+TWNf8A+xruv/SOzr9gK0R7uG/hRCiiql9f2OmWkl/qU0dvBENzySsERR6knAA+tDdtWbpNuy3LdFeVf8L2+CH/AEOWh/8Agxt//jlH/C9vgh/0OWh/+DG3/wDjlYfWqH/Pxfejv/snHf8APif/AIDL/I9Voryr/he3wQ/6HLQ//Bjb/wDxyj/he3wQ/wChy0P/AMGNv/8AHKPrVD/n4vvQf2Tjv+fE/wDwGX+R6rRXlX/C9vgh/wBDlof/AIMbf/45R/wvb4If9Dlof/gxt/8A45R9aof8/F96D+ycd/z4n/4DL/I9Voryr/he3wQ/6HLQ/wDwY2//AMco/wCF7fBD/octD/8ABjb/APxyj61Q/wCfi+9B/ZOO/wCfE/8AwGX+R6rRXlX/AAvb4If9Dlof/gxt/wD45R/wvb4If9Dlof8A4Mbf/wCOUfWqH/Pxfeg/snHf8+J/+Ay/yPVaK8q/4Xt8EP8AoctD/wDBjb//AByj/he3wQ/6HLQ//Bjb/wDxyj61Q/5+L70H9k47/nxP/wABl/keq0V5dF8cfgrPKsMPjDRHdyFVV1CAkk9ABvr1GrhVhP4JJ+hz18JXoW9tTcb7XTX5hRRRWhzhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRXP+K/FfhvwN4bvfF/i+9i07TNOiae5uZ22xxxr1JP8h1J4HNAHQUV+VHhf4s/tl/t/6hNbfsq2Q+Hnw5jnltn8X6inm3N15ZPzW0Lbe67GC7tpPLqQVHtVl/wRg+E/iuP+0v2ifiD4t8e6s0iSyTz3gghJVQpCxsJnUHBH+tOEwoxjJXMcNTHQi7RVz7tor4du/wDgi98CvDxk1D4HeN/GPgXUCrbJbDUQYwxAwWXYkjAMqsQJRnGMjgjwbVfif+2D/wAE99Vs9O/a+aPx78NrqZbO38W6dGTd2jsQE+1pwxG3JIYMzH7sjkbSuYKeOjJ2krH6h+IPEOgeE9GuPEfim+t9M060TzJ7q7lWGGJP7zu5CqPckV+dF/8A8FGx421658OfsqfDbxF8UntJGgkvLCJoLBZVfaQZ/LlCqVw4ZlAIZR344nwT4Zu/+Csfxk1q11S/vLL4E+BbuOFFst0DeINQUBiHkYZWNFIYgDcqOmNruHX94/BPgfwf8N/DFn4L8B6bb6TpVhEkNvbWyBI0RAFHA6nAGSck9zQ5GVfGu/LT+8/Fa4/aX/4KFaFp3/CR+If2bL+XT4lV5UstTSe72NgfJDHHJKzDOSoQn1xyR6V8Bv8AgoB8C/jl4sk+G0v23wn4rikMP9j67ELW4eQE5RPmKlwBkoSH54Bwa/Ymviz9tH9jb4P/ALVXw8upPGEdvo3iTSrdpdJ8TAeXcabJDl1ZpFZC0KkktG7bRksNrgMFzGMMbUT11NPxB4h0Dwno1x4j8U31vpmnWieZPdXcqwwxJ/ed3IVR7kivzd8S/wDBTHw74i8T3Xgv9lLwJr/xbv7FVNzJpMEqWke5wgJkEUsgX73zmIRkgYYgkjwf9jL4SftC/wDBTPw5pWv/ALVmrs/wo8Ky/ZktrQSWkviS8t/+WksgKuY0yFeRdmWG1AJPMdf6Ivh38M/h78I/CsHgj4YaLZ6BpNtzHa2MKwx7jgFiFA3O2Pmdssx5JJpuRrVxzelM/FaX9qj/AIKBaMtrqXiD9mrVJbO4cqVs77zpwB1JRInZfUb1Absec16L8If+CiXwG+IWuj4e/EBrn4e+MYn8m40XxFG1nJHMMfIJXCx5JICq+yRuyV+zlfOf7Sn7KnwU/av8CT+BPjBpKXIdCttfwqiX9k+QQ9vMVYocjkEFG6MrAkUuYyhjaieruYdFfml8FfHXxW/ZO+Ptp+wx+0jqn/CQW+p2xufBniLbtNxaR+YBbXJbpKojwBlmDELuYNGa/S2rPVpVVUjzRCiiig0CiiigAr+T/wD4K9f8nlXv/YKsP/QTX9YFfyf/APBXr/k8q9/7BVh/6CaT2OPHfw/mf09f8ENP+UcfhH/r+1b/ANLJa/XavyJ/4Iaf8o4/CP8A1/at/wClktfrtUHjhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//T/v4ooooA/wA5/wD4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/7FXRv/SSKv5Xf+CjH/J+Hxc/7GnUv/RzV/VF+yh/ya18Nf8AsVdG/wDSSKuXFbI97Ifjn6Hv1FFFcJ9MFFFFABRRRQAUUUUAFfBPwA/5TE+Mf+ycL/6V2Vfe1fBPwA/5TE+Mf+ycL/6V2VdOF+M8jO/93Xqv1P2uoorxD9of4Z+P/i58LbzwR8MfGNz4D1m4lheHWbSEzyQrG4Z1EYkiyHUFT84xnPOK7z5I9vor8e/+HfH7cn/R12u/+Cg//J1H/Dvj9uT/AKOu13/wUH/5OoA/YSivx7/4d8ftyf8AR12u/wDgoP8A8nUf8O+P25P+jrtd/wDBQf8A5OoA/YSivx7/AOHfH7cn/R12u/8AgoP/AMnUf8O+P25P+jrtd/8ABQf/AJOoA/YSivx7/wCHfH7cn/R12u/+Cg//ACdR/wAO+P25P+jrtd/8FB/+TqAP2Eorm/Bmi6l4a8H6V4d1i/k1W70+zgtp72UESXMkSBWlYFmO5yCxyxOT1PWukoA/Iv8AY/8A+UmH7TH/AHAf/Sc1+lPxo/5I74s/7A1//wCiHr81v2P/APlJh+0x/wBwH/0nNfpT8aP+SO+LP+wNf/8Aoh6APz7/AOCMn/JgHhb/AK/NU/8ASuWvF/8AgqT/AMna/stf9jBqX/o3Tq9o/wCCMn/JgHhb/r81T/0rlrxf/gqT/wAna/stf9jBqX/o3TqUtmbYf+LD1X5n3/RRRXkH3wUUUUAFFFFABX5ifAv/AJSd/HD/ALBWif8ApLbV+ndfmJ8C/wDlJ38cP+wVon/pLbVpT2l6HLifipf4v/bZH6d0UUVmdQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAfzkf8Ft/+SpeCP+wVcf8Ao4V+rf8Awbj/APJrvjn/ALGk/wDpJb1+Un/Bbf8A5Kl4I/7BVx/6OFfq3/wbj/8AJrvjn/saT/6SW9enQ+BHxWZ/71P+uh/Q5RRRWpwBRRRQAUUUUAFFFFABX4b/APBwX/yYfaf9jTp//om5r9yK/Df/AIOC/wDkw+0/7GnT/wD0Tc0Afi//AMEAv+Tx/Ev/AGJl5/6XWNf18V/IP/wQC/5PH8S/9iZef+l1jX9fFfF55/vT9Eetg/4YUUUV451BRRRQAUUV4v8AHj9of4N/sy+CE+I3xy1tNB0eS5jsknaKWcvPKGZUWOFJJGJVGbhTgKSeBVRi5NRirsTaSuzofip8X/hh8D/CT+O/i3rlp4f0hJUg+03kgRTLIflRe7McE4UE4BPQEj5i/wCHlv7CH/RT9G/77f8A+Ir8ev8AgrR/wUA/ZH/aZ/Zbt/hz8EPFv9t6ymuWl41v9gvbbEEUcys2+4giTguvG7PPAr6S/wCGr/8AghT/ANAvwb/4Rk3/AMrq9/A5KqtPmrXi77bfmcVbF8srRs0fef8Aw8t/YQ/6Kfo3/fb/APxFH/Dy39hD/op+jf8Afb//ABFfBn/DV/8AwQp/6Bfg3/wjJv8A5XUf8NX/APBCn/oF+Df/AAjJv/ldXZ/q9R/nf4GX16fZH3n/AMPLf2EP+in6N/32/wD8RR/w8t/YQ/6Kfo3/AH2//wARXwZ/w1f/AMEKf+gX4N/8Iyb/AOV1H/DV/wDwQp/6Bfg3/wAIyb/5XUf6vUf53+AfXp9kfef/AA8t/YQ/6Kfo3/fb/wDxFH/Dy39hD/op+jf99v8A/EV8Gf8ADV//AAQp/wCgX4N/8Iyb/wCV1H/DV/8AwQp/6Bfg3/wjJv8A5XUf6vUf53+AfXp9kfef/Dy39hD/AKKfo3/fb/8AxFH/AA8t/YQ/6Kfo3/fb/wDxFfBn/DV//BCn/oF+Df8AwjJv/ldR/wANX/8ABCn/AKBfg3/wjJv/AJXUf6vUf53+AfXp9kfef/Dy39hD/op+jf8Afb//ABFH/Dy39hD/AKKfo3/fb/8AxFfBn/DV/wDwQp/6Bfg3/wAIyb/5XUf8NX/8EKf+gX4N/wDCMm/+V1H+r1H+d/gH16fZH3n/AMPLf2EP+in6N/32/wD8RR/w8t/YQ/6Kfo3/AH2//wARXwZ/w1f/AMEKf+gX4N/8Iyb/AOV1fa3wa+Dv/BOv9oPwJb/Ev4PfD7wVrWiXLvHHcp4etYvnjOGUpLbo6kHqGUGj/V6j/O/wD69Psj6i+D/x++DPx/0q51z4M+I7LxHa2TrHcSWb7xE7ZwrcAqSBnB5xz0Ir1+vxo/4Je+H9B8KftFftNeGvC1jb6bptj4tghtrS1iWGCGJDdBUSNAFVQOAAABX7L187jsOqFeVKLul/kd9GbnBSYUUUVyGh/HD/AMF3/wDk9u0/7Fmw/wDRtxX7i/8ABvn/AMmIXn/Y1ah/6Jtq/Dr/AILv/wDJ7dp/2LNh/wCjbiv3F/4N8/8AkxC8/wCxq1D/ANE21ff5d/utP0PFr/xJH7k0UUV2mIUUUUAFFFFABRRRQAUUUUAfkT/wXL/5Rx+Lv+v7Sf8A0sir+Yz/AII+f8nn2P8A2Cb/AP8AQBX9Of8AwXL/AOUcfi7/AK/tJ/8ASyKv5jP+CPn/ACefY/8AYJv/AP0AVcPiRFX4Gf1o0UUV2nlH5t/Ev/lLT8Av+wTr/wD6RXVftpX4l/Ev/lLT8Av+wTr/AP6RXVftpXHV+Jnp0PgQUUUVmahRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH4ffsT/wDJ1f7TP/Y4L/6Fc1+mNfmd+xP/AMnV/tM/9jgv/oVzX6Y120vhR5uI/iMK+Ov+Cgf/ACZh8RP+wS//AKGtfYtfHX/BQP8A5Mw+In/YJf8A9DWqlsyIfEj+c7/gkP8A8pHPhd/1/XX/AKRz1/oHV/n4/wDBIf8A5SOfC7/r+uv/AEjnr/QOrgPVCiiigAooooAKKKKACiiigD8iv+C5X/KOPxd/1/aT/wClkVfyu/8ABKb/AJPW8Of9euo/+k0lf1Rf8Fyv+Ucfi7/r+0n/ANLIq/ld/wCCU3/J63hz/r11H/0mkrWh/Ej6oa3P6z6KKK98sKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPLvjhreq+Gvgt4v8R6FM1tfafomoXNvMuN0csUDsjDORkMAa/jD/4Jk23/AAW//wCCm/wL1j47fD39qN/DVpo+vTaC9rqNqksjywW9vcGQGOArtIuAMHnINf2UftGf8m9+O/8AsXdU/wDSaSv4Df8Agk9/wTx/bZ/al/4J+ePfjZ+xx8efE/gDVtB8R31nb+D9Lvruw0/Vrq3srOcu01vdRLHPKsoiDPC4/doGYLyvJXb54pX67OwmfuD/AMEwf28/2+/AX/BTbxj/AMEqf2/PEun/ABA1HTLGS80/XbKBEeKVLeG8RS8UUAaKW2lLHzo/MSUBd2OK/aj9oj/gpz+wR+yh48i+F/7QPxP0fw74hkVHbT3MlxPCsgyhmWBJPJDDkGXbkEHoRX88/wDwbIj9kzxL4v8AH/iDxHaa3/w01pyyw+JbjxPem7uZbN5gs0lorJG8f75US6WXzJkfaDIVfbX5k/8ABLPwv+0L+0d8Vv2gviG3wC8G/HvxTqerhfET+N9Tgtp9KN5JdM4gSeNivmurhpU2svlKo245iFaSjFLW9/OwXP7NP24P2iY7f/gmr8Tf2l/2aPFMFwbfwfqOraFrulSx3EXmRws0csTjejbWHfOCMEZ4r5//AOCOP7VPiz4n/wDBKDwV+1B+1j4wS5viutz6xr+ryxW0aw2mpXUKvK+EjVUiRVyccAd6/Ev9iv4K/Gr9n7/gh5+1j8OPiJrOhax4dbSdU1DQP7A16z1+3t1ubNhcRma0kkVOY422nAJZmAyWr88P2kPGnjvw/wD8Gxn7PPhbw9LNBouv+NdYh1YxkhZVgvtUmghkx1UyJ5gB/iiU9RTdZp87X2dvmB/aj8Av+CpH/BPz9qH4h/8ACp/gV8VNG17xG2/yrBWkt5bjyxlvIE6RifA5/dF+AT0Br2bwr+2F+zR42/aD1r9lPwx4vs7n4ieHYGutR0LEiXUMKiMliHRVYYmjYbWOVYEcc1/GB+1n+xp+1V4h+H/wX174ZfBn4V/AHWPC11aXvhfxRYeLtMs7vVhDGs0eWl8g3Um/ZcByXcEsf4zX6Hf8FhtH1L9hD/gpT+z3/wAFadFtzY6Rqd5B4V8b+XygRkaMs5HDu9lJMq54BtUPXmrVeVm2trfcwP6NPEH7X37Nfhb9ojSf2TNd8XWcPxH123+12OggSPdSw7ZH34RCqgJDIx3MMKuTxg181/Gv/gr/AP8ABNb9nj4jXfwl+Lnxb0jTfEOnSmC7s4UuL020w4aOZ7WGVI3U8MjsGU8ECvxm/wCCL1l/w2p+3/8AtD/8FgfH4xoUV9P4a8JzXAwkNnCib5Bn7rQ2MdsjEcEzSd818JeB7n4f/tV/BH4++Ov+CbX7LPgfS/hoo1Zde8efErU59Sv2aO1aeaS1ikM1zazLE4nQRysiSurFg3AHXly3XW9vQD+xzxJ+19+zL4S/Z3/4a01vxrpi/DYwwTjxDFL59kY7mZbeMhog5OZnWMjGVY4IBBx83+Mv+Cvf/BNL4f6xoegeL/jFoFndeIrO01CyUySOPs19Gs0EkzJGy24kjdXHnmM7WBPBr+TT4LXl5df8GnHxdguZC6W3jG2jiUnIRDq+kOQPQbmY/U19KfGr9iP9lrwh/wAGxNh8YdG8EaPH4zfQdB8Qt4g+yRnVDe3+o2yyk3RHmlTFM8QQtsCYAAwKn6xNq8Utrhc/Wr/guB/wV0u/+CevwG0KP9nq90bU/iF40lifT0uw1zHBpMscxbUIlQiOUCRERAz7cuGKsowf1k/ZZ/aQ+FH7VfwX0r4ufB3xFb+J9MnUW019aqyobuFV85MMqYKsecDHpX8T3/BU3wt4X1r/AIN+P2Tvi1qml2k/iiGbSNFTV3hQ3q6clhfsLYTkeYId0aN5e7buUHGQK/t0/Zr+FHws+DXwX0Hwh8H/AA5pnhfSHtYbo2ekWkVnbmeeNTJJ5cKqu9zyzYyT1q6U5SqO+1kB7rRRRXSMKKKKAP5MP+CrP/J63iP/AK9dO/8ASaOv6y/+CKv/ACjM+Gn/AHGf/TreV/Jp/wAFWf8Ak9bxH/166d/6TR1/WX/wRV/5RmfDT/uM/wDp1vK8Gv8AxJepD3P1MooorEQUUUUAFFFFABRRRQAUUUUAFfx1f8HG/wDydH4G/wCxVH/pXcV/YrX8dX/Bxv8A8nR+Bv8AsVR/6V3FAz2X/gil/wAmsa//ANjXdf8ApHZ1+wFfj/8A8EUv+TWNf/7Gu6/9I7Ov2ArRHu4b+FEK+Of+CgP/ACZ743/69oP/AEoir7Gr45/4KA/8me+N/wDr2g/9KIq87OP9wxH+Cf8A6Sz6vgz/AJKDLv8Ar/S/9ORNv9m7/gnr+xv41/Z28A+MvFHga1u9T1bw5pV7dztcXAMs89tG8jkLKACzEnAAHPFe0/8ADs/9hr/on1p/4E3X/wAer2T9kX/k1D4Yf9ilov8A6RxV8pa5/wAFmf8Agld4Z1288MeIPjv4Rs9Q0+eS1uYJb5VeKaJijowxwVYEH3FceDynAuhTboQvyr7Me3ocee8a8QwzLFQhmVdJVJpJValklJ6L3j0n/h2f+w1/0T60/wDAm6/+PUf8Oz/2Gv8Aon1p/wCBN1/8er274A/tU/s1/tVaBdeKP2bPHmheOrCxdYrqXRL6G8+zu4JVZRGxaNmAJAcAkDIr3yuj+yMB/wBA8P8AwGP+R5f+vHEf/Qzr/wDg6p/8kfCv/Ds/9hr/AKJ9af8AgTdf/HqP+HZ/7DX/AET60/8AAm6/+PV91UUf2RgP+geH/gMf8g/144j/AOhnX/8AB1T/AOSPhX/h2f8AsNf9E+tP/Am6/wDj1H/Ds/8AYa/6J9af+BN1/wDHq+6qKP7IwH/QPD/wGP8AkH+vHEf/AEM6/wD4Oqf/ACR8K/8ADs/9hr/on1p/4E3X/wAeo/4dn/sNf9E+tP8AwJuv/j1fdVFH9kYD/oHh/wCAx/yD/XjiP/oZ1/8AwdU/+SPhX/h2f+w1/wBE+tP/AAJuv/j1H/Ds/wDYa/6J9af+BN1/8er7luLiC0ge6unWKKNS7u5wqqOSSTwAB1NZ2ga/oXivQrLxR4XvYNS0zUoI7q0u7WRZoLiCZQ8ckciEq6OpDKykhgQQcUf2RgP+geH/AIDH/IP9eOI/+hnX/wDB1T/5I/Cf/gpp+xj+zH8Df2Wbzx18KvCVvo+rLqNnALmOWaRhHIx3ACSRhzjrjNfpV4Y/5FrT/wDr2i/9AFfOn/BYz/kyy+/7C1h/6Ea+i/DH/Itaf/17Rf8AoArhy7D0qOZ4iFGCiuSnokkt59j7fNMzxmP4Sy6vjq0qs/b4hc05OTso0NLybdvI3KKKK+jPgwooooAKKKKACiiigAooooAKKKKACiiigAooooAK/Ov4yf8ABQnwxofjIfBr9mvQLv4p+OJgwW00f95a25VijGaWMOf3Z5YKu0D7zp1rkPjh8Vvif+1d8eZP2GP2YrqfS4LQ/wDFaeJYVBFjaEbZIIiSMuSwU7WDF/lGFEhH6yfs0fst/B39kv4dx/Df4O6e1tbFhJdXU7CS7vJgMebPIAu5vQKqovRVUcVLZ5+JxnK+WB+YGkfsuf8ABVv4021tqfxR+JOifDK2mYTHT9Ethd3UG4tlJGHynYCAqrdSKwOWO5QT0l1/wTG/aphskl0j9pzxH9tiw2Z7NnhdlHTb9s4BbHUtgcYNftFRSuzz3Vm9XJn4V698P/8AgrL+zZHc61a3eifGrQoCrtAsP2PVPKyxfykjEeW6cZnbkBVODj5x8H/EuT/gqD+1n4d+BHjOwuPCPgrwlbPq3iDw9qc/kXepXsBA+z7F2yMqMV4wpWMSMdrFBX9MVfA37XH7Afw//aV1S3+KPhTUJ/BPxL0kI2m+JtN3LMrRkbROqMnmqFyoO4OoPBK5UlynXqOPK3ofdemaZpuiabb6No1vFaWdpEkMEEKCOKKKMBVRFUAKqgAAAAAcCr1YfhnTtW0jw9ZaXr2ovq19bwolxeyRpC08gHzOUjCou487VGB0rcpGIV85fteeBfGfxO/Zj8cfDz4eWFtqet61pM9nZ292yJE0kw25JkVkDKDuXcANwHzL94fRtFAHyv8AsUfs/wAf7MX7MHhH4PTxomo2FmJtTKENu1C5JluPnAG8LIxRGPOxVHQCvqiiigAryL49fB3R/wBoD4Pa/wDBrxBf3mmWPiG2NrPc6e6x3CIWDEKWVlw2NrgghkJHevXaKAPNfg58KvCvwO+Fmg/CPwVH5emeH7OKzhyAGfYPmkbHV5Gy7nuxJr0qiigAooooA/Mb/grd8Dh8XP2O9b8VaOhXXvAZXxDp86OyPEtqQbkhl5/1G9hx95V6dR1v7PnxZ0j44/Bbw38UdHuI7gatYQy3HlkER3O0CeM46NHIGUj1HHFfcHj7w2/jLwLrXhCN1jbVbC5swzjcqmeNkyR3AzyK/CTwJ/wRx+Jnwb+GGmeMvg946/sD4t6OZXlmtJpX0fVEEzSRRzpIgdfkKo3ytGdvKEktTTsdOGxHsm7rRn6v0V8S/sxftSeIPH/iTVfgH+0DpaeE/il4aYpe6bnEV5CACLm2JyGRgc4VmG0hgSp4+2qs9mE1Nc0dgooooKCv5P8A/gr1/wAnlXv/AGCrD/0E1/WBX8n/APwV6/5PKvf+wVYf+gmk9jjx38P5n9PX/BDT/lHH4R/6/tW/9LJa/XavyJ/4Iaf8o4/CP/X9q3/pZLX67VB44UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//U/v4ooooA/wA5/wD4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/7FXRv/SSKv5Xf+CjH/J+Hxc/7GnUv/RzV/VF+yh/ya18Nf8AsVdG/wDSSKuXFbI97Ifjn6Hv1FFFcJ9MFFFFABRRRQAUUUUAFfBPwA/5TE+Mf+ycL/6V2Vfe1fBPwA/5TE+Mf+ycL/6V2VdOF+M8jO/93Xqv1P2uoorzT4ufGH4bfAjwPc/En4s6omjaJaPHHNdSI8io0zBEBEau3LEDp3rvPkj0uivz3/4erf8ABP7/AKKRaf8AgLef/GKP+Hq3/BP7/opFp/4C3n/xigD9CKK/Pf8A4erf8E/v+ikWn/gLef8Axij/AIerf8E/v+ikWn/gLef/ABigD9CKK/Pf/h6t/wAE/v8AopFp/wCAt5/8Yo/4erf8E/v+ikWn/gLef/GKAP0Ior89/wDh6t/wT+/6KRaf+At5/wDGKP8Ah6t/wT+/6KRaf+At5/8AGKAP0IorG8OeINI8W+HrDxV4fm+0WGp28V3bS7WTfDModG2sAwypBwQCO4rZoA/Iv9j/AP5SYftMf9wH/wBJzX6U/Gj/AJI74s/7A1//AOiHr81v2P8A/lJh+0x/3Af/AEnNfpT8aP8Akjviz/sDX/8A6IegD8+/+CMn/JgHhb/r81T/ANK5a8X/AOCpP/J2v7LX/Ywal/6N06vaP+CMn/JgHhb/AK/NU/8ASuWvF/8AgqT/AMna/stf9jBqX/o3TqUtmbYf+LD1X5n3/RRRXkH3wUUUUAFFFFABX5ifAv8A5Sd/HD/sFaJ/6S21fp3X5ifAv/lJ38cP+wVon/pLbVpT2l6HLifipf4v/bZH6d0UUVmdQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAfzkf8ABbf/AJKl4I/7BVx/6OFfq3/wbj/8mu+Of+xpP/pJb1+Un/Bbf/kqXgj/ALBVx/6OFfq3/wAG4/8Aya745/7Gk/8ApJb16dD4EfFZn/vU/wCuh/Q5RRRWpwBRRRQAUV+KPw0/4LBeEn/bq8b/ALIXx4s7Pw3Y6frUuk+HtXR2EckkDeWY7xnYqrSuCY3UKgyEYZ+c/tdQAUUUUAFfhv8A8HBf/Jh9p/2NOn/+ibmv3Ir8N/8Ag4L/AOTD7T/sadP/APRNzQB+L/8AwQC/5PH8S/8AYmXn/pdY1/XxX8g//BAL/k8fxL/2Jl5/6XWNf18V8Xnn+9P0R62D/hhRRRXjnUFFFFAHy9+0x+2R+z7+yJZ6RefHbWX0v+3nmSxSK2muXl+zhDKcRI2AnmICTjlhjPOPw1/4KT/8FF/2Rf2l/hn4G8I/DLXJtQm0jxrpmr3yT2FxEi2NvFcJKx8yMBsGRRtGSQeAa+wP+CmcMNz+2j+yfb3CLJHJ4k1FWVhlWUy6cCCD1Br9bv8AhDPB/wD0CbP/AL8J/wDE19VlGXUnThiW3za+m7R52JryUnT6H5Ff8PM/+CT39yy/8JyT/wCMUf8ADzP/AIJPf3LL/wAJyT/4xX66/wDCGeD/APoE2f8A34T/AOJo/wCEM8H/APQJs/8Avwn/AMTX0RwH5Ff8PM/+CT39yy/8JyT/AOMUf8PM/wDgk9/csv8AwnJP/jFfrr/whng//oE2f/fhP/iaP+EM8H/9Amz/AO/Cf/E0AfkV/wAPM/8Agk9/csv/AAnJP/jFH/DzP/gk9/csv/Cck/8AjFfrr/whng//AKBNn/34T/4mj/hDPB//AECbP/vwn/xNAH5Ff8PM/wDgk9/csv8AwnJP/jFH/DzP/gk9/csv/Cck/wDjFfrr/wAIZ4P/AOgTZ/8AfhP/AImj/hDPB/8A0CbP/vwn/wATQB+RX/DzP/gk9/csv/Cck/8AjFH/AA8z/wCCT39yy/8ACck/+MV+uv8Awhng/wD6BNn/AN+E/wDiaP8AhDPB/wD0CbP/AL8J/wDE0AfkV/w8z/4JPf3LL/wnJP8A4xR/w8z/AOCT39yy/wDCck/+MV+uv/CGeD/+gTZ/9+E/+JrmvGfgzwf/AMIfq3/Eps/+POf/AJYJ/cP+zQB5N8EJf2V/2ifhpp/xb+FGgaRf6HqbTLBK+mRwvugkaJwyPGGUhkPUDIwRwRXxb/wRG/5MUsP+wzqP/oa103/BGT/kwDwt/wBfmqf+lctcz/wRG/5MUsP+wzqP/oa0AXf+Cbv/ACdL+1J/2OUX/oV1X7AV+P8A/wAE3f8Ak6X9qT/scov/AEK6r9gK+Fzf/e6ny/JHs4X+EgooorzTc/jh/wCC7/8Aye3af9izYf8Ao24r9xf+DfP/AJMQvP8AsatQ/wDRNtX4df8ABd//AJPbtP8AsWbD/wBG3FfuL/wb5/8AJiF5/wBjVqH/AKJtq+/y7/dafoeLX/iSP3JooortMQooooAKKK/ErxV/wWJ8MfCT9v7xJ+yp8cNIg0Xwdps9rYW3iNJHbyLu4hSUG7B+VYXLFQy48vblsruZAD9taKignguoEurV1kikUMjqcqynkEEcEEdDUtABRRRQB+RP/Bcv/lHH4u/6/tJ/9LIq/mM/4I+f8nn2P/YJv/8A0AV/Tn/wXL/5Rx+Lv+v7Sf8A0sir+Yz/AII+f8nn2P8A2Cb/AP8AQBVw+JEVfgZ/WjRRRXaeUfm38S/+UtPwC/7BOv8A/pFdV+2lfiX8S/8AlLT8Av8AsE6//wCkV1X7aVx1fiZ6dD4EFFFFZmoUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB+H37E/wDydX+0z/2OC/8AoVzX6Y1+Z37E/wDydX+0z/2OC/8AoVzX6Y120vhR5uI/iMK+Ov8AgoH/AMmYfET/ALBL/wDoa19i18df8FA/+TMPiJ/2CX/9DWqlsyIfEj+c7/gkP/ykc+F3/X9df+kc9f6B1f5+P/BIf/lI58Lv+v66/wDSOev9A6uA9UKKKKACiiigAor8dP2Uf+Ctngr41ftO+MP2Xfi5p8HhTVrLX77S/DVyJGa21FbOQxeQ7vgLdEjeoGFkDBAA4USfsXQAUUUUAfkV/wAFyv8AlHH4u/6/tJ/9LIq/ld/4JTf8nreHP+vXUf8A0mkr+qL/AILlf8o4/F3/AF/aT/6WRV/K7/wSm/5PW8Of9euo/wDpNJWtD+JH1Q1uf1n0UUV75YUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcz418K6f478Hat4I1d5I7TWbKexmeEgSLHcIY2KlgwDAMcEgjPUGvjH/gnj/wTv8Agr/wTS+DWq/A74FapreraTq+tTa7NNr08E9wtxNBBbsqtb29sgjCW6EAoW3FvmIwB96UUuVXv1A/Km+/4JAfs0Q/t+w/8FHfAeteJfCHjozrcX1no1zaxaTqDshjn+0wS2krsLlDifZKm5v3g2yZevD/ANpf/ggX+yL+0B8Z/EHx68H+JfGHwu17xf5g8QL4Q1FLO11Pz2LTtNFJDL80xOZArCNm+ZkLEk/uNXI+MfiB4D+Hem/2z8QdbsNCs+nn6hcx2sXH+1Iyj9ah0oNWaA+Ffht/wS2/ZU+D37EHiT9gb4Y2t/o3g/xdZXlpq19DOj6rdSX0YiluXnkjeMzFAqqTFsUKAECjFZ/g3/glJ+yZ4a/YGtf+CcPiS11DxV8PbP7U8MmrzxtqMc1zcy3YmWe3igVJYpZW8tljHyjawYFt36FeGvFXhfxnpMev+D9StdWsJchLmzmSeFsdcOhKn8DW9T9nHt5AfgR8Hv8Ag3U/Yx+GfxQ8NfELxt4q8bfEXT/BUiyeH9B8UanFdaXY7CrqBFHbxEorqCIwVjbADq4r9S/21P2OPhB+3n+zzrH7NXxv+2RaJrElvP8AadOeOK9tprWVZUkgeWOVFfKlSTGwKMy45r6srktN8feBNa0+81bR9asLu004M13NDcxyRwBQWJkZWITABJ3EYApKnBJpLcDwL9jr9jn4OfsP/s4aP+y98HUubjw7o/2kmXU2jmu7p7uV5ZXuHjjiR2Yvt4jUBAFAwK/Kbw5/wbhfsPeFvHWs3+j+JfHVv4H166F5f+BbfWzb6DcspJWOZYo0nkiTPyBpi69N5HFfvXoXiHQPFGnLrHhm+t9RtHJVZ7WVZoyVOCAyEg4PB5rYodKDSTWwH43eCP8AgiH+y74D/YJ8Z/8ABOjTfFPjC48B+N9Wg1m6uLi7sm1K2ngltZttvKtisSxs1pHuV4ZDy2CCcj6S8b/8E4vgh49/4J9Q/wDBNzWNV1yPwNBpOn6Ot9DPbrq3kabNFPExla3aDeWhUOfIwQTgA4I+/wCimqcV08gPyz+MP/BIj9l742/sEeF/+CenjO91x/Cfgv7LJo+prcQjVYJ7RZESUuIPIZik0iOPIClWOADgj6J/Ya/Yx8FfsHfAmH4C+AvEWu+J7GK8lvTe+IbiO5u98yopRWjjiVYlCDYm0leeTX2HRQoRTulqAUUUVYBRRRQB/Jh/wVZ/5PW8R/8AXrp3/pNHX9Zf/BFX/lGZ8NP+4z/6dbyv5NP+CrP/ACet4j/69dO/9Jo6/rL/AOCKv/KMz4af9xn/ANOt5Xg1/wCJL1Ie5+plFFFYiCiiigAooooAKKKKACiiigAr+Or/AION/wDk6PwN/wBiqP8A0ruK/sVr+Or/AION/wDk6PwN/wBiqP8A0ruKAPZf+CKX/JrGv/8AY13X/pHZ1+wFfj//AMEUv+TWNf8A+xruv/SOzr9gK0R72G/hRCvjn/goD/yZ743/AOvaD/0oir7Gr45/4KA/8me+N/8Ar2g/9KIq87OP9wxH+Cf/AKSz6vgz/koMu/6/0v8A05E+6P2Rf+TUPhh/2KWi/wDpHFX+el/wSdi/4JCSftQ/tTH/AIKtnw5sHieL/hGP7fM4P/H3qf23yfIOf+fffn/ZxX+hb+yL/wAmofDD/sUtF/8ASOKv4mP+Deb9h/8AZJ/bL/aq/bCH7UvgHSfHP/CN+J9POmDVYfNFqbu81jztnIx5nkx7vXaK0wX+70/8K/I+O4h/5GmL/wCvk/8A0pmF/wAETLD4LN/wcT+P7n/gl+1//wAM+waHei6Zhcm1Nq1vDhc3GZNn9pjNt53zmNTjjNfbng3/AIOHv+CmP7RXxc+JX7Pv7HH7OOmePPFPw/128jnlhuZVtYtHsp5LctKHmizczMo8tVcYw2Ek6L/Vt8Af2Xf2cf2VvDE3gz9m3wNongfTLpxLcQaLZRWgnkXIDymNQ0jAEgM5JA4ziv5U/wDg1qs4P+GtP25r8qDL/wAJjpsYbHIX7ZrZIH1OM/QV0njn3P8Aty/8Fpv2ifh1+1FoP/BOP9gH4W2XxX+Pz6dDe+Jbaa5aLRtGkeBJzEZGeDzMI4dpHmhSNWjBLSOUTof+Cef/AAWi+MnxZ/bI1D/gm1/wUY+F0fwg+NMVq97pcdnci503VI44vPZIm3y4fyleWNkmljdUcblddrflT8c/Fvir/giR/wAF9/H/APwUD/aH8J6vrXwV+NejT6fD4i0m3+1nT5bj7DLIsi5G14ri02eWzKXgcOm4qUFr9mvxj4j/AOC1v/Bf7wb/AMFFvgB4W1jQ/gr8F9CGlt4g1S3Np/aVxAl4Ujj2llMrz33Me8lbePc+0sqEA+ifhd/wXi/4KR/tR/HL40/st/sdfs96P408Y/DbXb20tryXUvsWlwaZY3FxbGW8a4mi8y5mdIxDDE6bv3jZ2occb+zp/wAHDn/BRj9uP4Na1pf7Gf7M1rr/AMTvAKzXPjKW81EQ6HZ2w3eQtukk0NxLdTmOUfZ/M3L5RKmTJ2Vf+DZtEP8AwUC/b4kIG4eNLUA98HUtbz/Ks7/g09iiH/DWz7RlvF9qp+g+3YH6mgD7i+AP/BerV/2h/wDgjf8AE3/go74a8FWmn+M/hdLLYaloVxM8mny3aG3ZHikXbJ5MkVwpwcMrqy/MAGb42s/+C+v/AAVg+Jv7IFr+3n8CP2XdMv8A4V+HrRpvE+sX2olWne1LLeyafbLOLgWtuw2tOY5wNrsQoVwn5F/8Ewv+VZj9sv8A7DS/+idOr2b9lv8A4Le/Bv8AZr/4IRD9hf4peC/Elv8AEfWfCmvaH4VjXTydN1u11ya7jhvYpyQrRwvO8cygMzPEwXLMQoB9jf8ABc//AIKO/Eb9tb/gh/4N/aG/ZW8PSQ/Db4i3Jt/G15LerDe6DdWd1BFFYlFkja4S4nE0blY2Vo1VyFDDP7df8EFfiD+1h47/AOCcvw9tf2nvAtn4LstE8O6Bp/g+a0u47o6x4eh0y1FrfyiOaUxSTLy0biNl7oK/nT+Kf7DH7QP7On/BpXqPgD4g6De23iefW7XxlqOkvG5utPsbjUIsebERujKQBJZlIzFlt+NrY/oj/wCCCX7bfwV/a9/4J4eAPCPwl+3i9+E3hrw94P10XsAhX+0bDTYI5PJIZvMiJQ7X4z6CgD1v/gsZ/wAmWX3/AGFrD/0I19F+GP8AkWtP/wCvaL/0AV86f8FjP+TLL7/sLWH/AKEa+i/DH/Itaf8A9e0X/oArxsL/AMjXEf4Kf5zP1Kp/yRuXf9f8T/6TQNyiiivdPkQooooAKKKKACiiigAooooAKKKKACiiigAr5f8A2yPj4n7Nf7O3iH4oWxQ6nFELXTEfB33tydkR2nhhGSZWXuiNX1BX5k/to2cXxU/as/Z8/Z3vSk2m6j4hk1vUbWYjypo9NCuqsNrE7o/PTHAO7Ge6pmNefJTckfen/BPP9lS1/ZV/Z40/Q9Zh3eL/ABBt1XxHdyHfPLezDd5bOckrADsAzt3bn6uxP3VRRUHghRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH5Gf8FVv2cLrWvAlj+2H8JY4bDx78LZF1Y3exi11ptrmSSGQRglwhw43/KE8xSQHJHu/wQ+Lfh747fCfQvi54VUpZa5bCdY2YM0TglJI2K8Fo3VkOO4r7zvbKz1Kzm07UYUuLe4Ro5YpFDo6OMMrKcggg4IPBFfg/wD8ExmufB2h/E79n2aZpYfh/wCMtR061R8Fo7feVC5BOcyRyNk55JwSOlRO7A1GpuPc/UGiiiqPWCv5P/8Agr1/yeVe/wDYKsP/AEE1/WBX8n//AAV6/wCTyr3/ALBVh/6CaT2OPHfw/mf09f8ABDT/AJRx+Ef+v7Vv/SyWv12r8if+CGn/ACjj8I/9f2rf+lktfrtUHjhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH/1f7+KKKKAP8AOf8A+CjH/J+Hxc/7GnUv/RzV/VF+yh/ya18Nf+xV0b/0kir+V3/gox/yfh8XP+xp1L/0c1f1Rfsof8mtfDX/ALFXRv8A0kirlxWyPeyH45+h79RRRXCfTBRRRQAUUUUAFFFFABXwT8AP+UxPjH/snC/+ldlX3tXwT8AP+UxPjH/snC/+ldlXThfjPIzv/d16r9T9rq5vxZ4O8IePNFk8NeOdKs9a06Uqz2t/AlzAxQ5UlJAykgjIyODXSUV3nyR4F/wyl+y5/wBE18K/+Ce0/wDjVH/DKX7Ln/RNfCv/AIJ7T/41XvtFAHgX/DKX7Ln/AETXwr/4J7T/AONUf8Mpfsuf9E18K/8AgntP/jVe+0UAeBf8Mpfsuf8ARNfCv/gntP8A41R/wyl+y5/0TXwr/wCCe0/+NV77RQB4F/wyl+y5/wBE18K/+Ce0/wDjVH/DKX7Ln/RNfCv/AIJ7T/41XvtFAFLTtO0/R9Pg0jSII7W0tY1hhhhUJHHGgCqqqoAVVAAAAwB0q7RRQB+Rf7H/APykw/aY/wC4D/6Tmv0p+NH/ACR3xZ/2Br//ANEPX5rfsf8A/KTD9pj/ALgP/pOa/Sn40f8AJHfFn/YGv/8A0Q9AH59/8EZP+TAPC3/X5qn/AKVy14v/AMFSf+Ttf2Wv+xg1L/0bp1bH/BIv44fBbwV+wx4Z8PeMvF+iaRqEV3qTPbXuoQW8yh7qQqSjurDIORkcivL/APgot8Tvht8Rv2tf2Y/+Fe+IdM177H4gv/tH9nXcV15XmS2Gzf5TNt3bWxnGcHHSlLZm2H/iw9V+Z+m9FFFeQffBRRRQAUUUUAFfl58JLqDRP+CqXxX0e6bEut+HdMvYNw25W2itomC9m5Oc5HQ8HBI/UOvys/bisNc+Afx08E/t0eHrP7ZYaGn9ieIoxlVFjdMyJK7KWb5Xm+XbETuCgkjArSlu13RyYzSManSLTfpqn+Z+qdFYHhXxV4c8ceHLLxf4QvYtR0zUYlntrmBt0ckbdCD/ADHUHg81v1mdSd9UFFFFAwooooAKKKKACiivye/a+/4LUfsG/sNfGWb4DftBa3qdj4jt7SC9eK102a6j8m5BKHegK5IHI7U1FvREVKsKa5puy8z9YaK/J/8AZY/4Lbf8E3f2wfiHbfCX4S+P1g8S3xCWWn6xazaa925OBHA86LFJISfliVzI3ZTg1+sFDi1ugp1YTV4NNeQUUUUiwooooAKKKKACiiigAooooAKKK8f0r9oD4Ka78Zr79njQvE1hfeNtL0/+1L7R7eUS3Npab0jDzqmRFuaRdquVZgcgEAmgTaW57BRRRQMKKKKAP5yP+C2//JUvBH/YKuP/AEcK/Vv/AINx/wDk13xz/wBjSf8A0kt6/KT/AILb/wDJUvBH/YKuP/Rwr9W/+Dcf/k13xz/2NJ/9JLevTofAj4rM/wDep/10P6HKK/Fr/guTea7F+zh8PtJ0LVb3Rzq3xD0mwnn0+drebyZ7W9DAMv4HBBGQCQcV5h/w5/8AhT/0VX4m/wDg8h/+RK1OA/fSivwL/wCHP/wp/wCiq/E3/wAHkP8A8iUf8Of/AIU/9FV+Jv8A4PIf/kSgD5l+Cf7M3ws/av8A2nP2x/hT8VrPzrabxTZSWt1HgXNlciXUgk0LkHa655HKspKsCpIr6e/Y/wD2v/in+xv8U7H9gv8Ab0vvOtpsReC/GkpItr+2BCxwTyMTtdchQWYsjEI5KlHb6h/ZM/Yi+Fv7HcniW98Aarret33iyW2l1C81y6S6nf7IJBGA0cUQwPNckkFjnk4AA9F/aZ/Zm+Fn7V/wsvPhT8VrPzrab95a3UeBc2VyAQk0LkHa655HKspKsCpIoA/QqivwP/Y//a/+Kf7G/wAU7H9gv9vS+862mxF4L8aSki2v7YELHBPIxO11yFBZiyMQjkqUdv3woAK/Df8A4OC/+TD7T/sadP8A/RNzX7kV+G//AAcF/wDJh9p/2NOn/wDom5oA/F//AIIBf8nj+Jf+xMvP/S6xr+viv5B/+CAX/J4/iX/sTLz/ANLrGv6+K+Lzz/en6I9bB/wwooorxzqCiiigD8Wf+Clv/J6/7Jn/AGMuof8Ao3Tq/Y6vxx/4KW/8nr/smf8AYy6h/wCjdOr9jq+5yf8A3OHz/Nnj4r+K/wCugUUV8t/tdftpfsy/sJfCaX41/tT+K7bwroKyrbwvKrzT3Vw/SK3giV5ZpMAkqiHaoLNhQSPTOc+pKK/A74Bf8HLX/BJn9oL4pWXwk0Xxrf8Ah7UdUuVtLG417TZbKyuJnIVF8/50i3k4BmMYzwSCQD++NABRRXwn8U/+Cjn7Lvwc/bU8F/sA+OdSvYfiT4/09NT0e0js5JLaS3ka5QF51GxDm0m4JzwPUUAfdlFfCfw2/wCCjn7LnxX/AG2fGH/BPrwbqV7N8S/AuntqerWklnJHbR26/ZslJyNjn/S4uAc8n0NfQPw9/aO+BPxZ+JXi74P/AAx8V6dr/iTwF9jHiGxsJhO+mvfmYQRzsmUSVvs8uY929AuWADLkA9rooooAK5rxn/yJ+rf9ec//AKAa6Wua8Z/8ifq3/XnP/wCgGgD81f8AgjJ/yYB4W/6/NU/9K5a5n/giN/yYpYf9hnUf/Q1rpv8AgjJ/yYB4W/6/NU/9K5a5n/giN/yYpYf9hnUf/Q1oAu/8E3f+Tpf2pP8Ascov/Qrqv2Ar8f8A/gm7/wAnS/tSf9jlF/6FdV+wFfC5v/vdT5fkj2cL/CQUUUV5pufxw/8ABd//AJPbtP8AsWbD/wBG3FfuL/wb5/8AJiF5/wBjVqH/AKJtq/Dr/gu//wAnt2n/AGLNh/6NuK/cX/g3z/5MQvP+xq1D/wBE21ff5d/utP0PFr/xJH7k0UV+Lf8AwXk8ZeL/AAT+w1Ff+DNVvNInuPEmnwSyWU727yRGOd9jFCpK7kVtp4yoPUCu0xP2kor8C/8Ahz/8Kf8AoqvxN/8AB5D/APIlH/Dn/wCFP/RVfib/AODyH/5EoA/fSv5zPB3wW+HH7QX/AAUF/ay+FXxV05NS0fUhoCujcPG4tjtkjbqkiHlWHIPtkHv/APhz/wDCn/oqvxN/8HkP/wAiV9MfspfsLfDD9kXX/EvirwZrniDxDqXilLSO8udfu47qULZ7wgVo4YTyHwd+7hVAwM5APjT9nf8AaJ+J3/BLf4naf+yR+1vqEur/AAk1eUw+DvGMwONPGfltLtv4Y1yBz/qeo/cn91/RFBPBdQJdWrrJFIoZHU5VlPIII4II6Gvij40/Bb4cftBfDjUfhV8VdOTUtH1JNro3DxuPuyRt1SRDyrDkH2yD+Wn7O/7RPxO/4Jb/ABO0/wDZI/a31CXV/hJq8ph8HeMZgcaeM/LaXbfwxrkDn/U9R+5P7oA/onoqKCeC6gS6tXWSKRQyOpyrKeQQRwQR0NS0AfkT/wAFy/8AlHH4u/6/tJ/9LIq/mM/4I+f8nn2P/YJv/wD0AV/Tn/wXL/5Rx+Lv+v7Sf/SyKv5jP+CPn/J59j/2Cb//ANAFXD4kRV+Bn9aNFFFdp5R+bfxL/wCUtPwC/wCwTr//AKRXVftpX4l/Ev8A5S0/AL/sE6//AOkV1X7aVx1fiZ6dD4EFFFFZmoUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB+H37E//J1f7TP/AGOC/wDoVzX6Y1+Z37E//J1f7TP/AGOC/wDoVzX6Y120vhR5uI/iMK+Ov+Cgf/JmHxE/7BL/APoa19i18df8FA/+TMPiJ/2CX/8AQ1qpbMiHxI/nO/4JD/8AKRz4Xf8AX9df+kc9f6B1f5+P/BIf/lI58Lv+v66/9I56/wBA6uA9UKK/B3/gtM3iXxD48/Z4+EmneINW0LS/GPi86bqJ0m7a1kaOeS1h3jGVLxrK/ll1YKWPBBIOb/w5/wDhT/0VX4m/+DyH/wCRKAP30or8C/8Ahz/8Kf8AoqvxN/8AB5D/APIlH/Dn/wCFP/RVfib/AODyH/5EoA+c/wBlD9lz4Z/tY+Av2gvh38RIWjlj+KGtT6dqMHF1p90Cu2aFuoIONy9GHB7Efev7G37ZPxM+GfxMt/2FP267hY/GkahPC/ihyRa+JbUfKgLtwLsDA55kPyt+9wZfYf2U/wBkr4c/sheDdU8HfDy/1XVRrWoyape3msXC3F1NcSqqksyRxLjC5+7kkkkmtL9qP9lz4Z/tY/DOb4d/ESFo5Y28/TtRg4utPuh92aFuoIONy9GHB7EAH6MUV+On7G37ZPxM+GfxMt/2FP267hY/GkahPC/ihyRa+JbUfKgLtwLsDA55kPyt+9wZf2LoA/Ir/guV/wAo4/F3/X9pP/pZFX8rv/BKb/k9bw5/166j/wCk0lf1Rf8ABcr/AJRx+Lv+v7Sf/SyKv5Xf+CU3/J63hz/r11H/ANJpK1ofxI+qGtz+s+iiivfLCiiui8P+Gb/xI8qWLxoYgCfMJHX0wD6VMpKKu9gOdor0j/hV2v8A/Pa3/wC+m/8AiaP+FXa//wA9rf8A76b/AOJrP6zS/mC6PN6K9I/4Vdr/APz2t/8Avpv/AImj/hV2v/8APa3/AO+m/wDiaPrNL+YLo83or0j/AIVdr/8Az2t/++m/+Jo/4Vdr/wDz2t/++m/+Jo+s0v5gujzeivSP+FXa/wD89rf/AL6b/wCJo/4Vdr//AD2t/wDvpv8A4mj6zS/mC6PN6K9Qg+FmqN/x9XMSf7uW/mBWonwpiA+e+JPtHj/2apeLpL7Qro8bor2b/hVNv/z+t/3wP/iqP+FU2/8Az+t/3wP/AIql9cpd/wAwujmPB3hS18QQNczsf3MoDLnAZCOfoR1FY3ibwzd+HLvy5Pnhf/Vyevsfevc/DHhlPDUEsCTGbzWDZK7cY/E1tajp1pqto9jfJvjfqPT3HvXI8a1UbWsRcx8mUV03ibwzd+HLvy5Pnhf/AFcnr7H3rma9KMlJXWxQUUUVQBRRRQAV/n0/ta+If2ZvFX/Bar4raH/wWvuvFVr4P0+WS38HrYNObG304yA2jMsKtOLeSDLk2y8zl9+Tmv8AQWr+SXx1/wAFO/2aviD+2J8Tf2Iv+C5Hw08J6JpnhW6eHwjrEukXNz5lv5jkSNPuuJovtcBhlhkgESgb1c5Kgc2JSaSb69dvmJnd/wDBHv8AYl+Hnwc/bM8Q/Hf/AIJ0fHnRfGXwB1W1MOpeExeSXOqwSSwAwtcRFEEciXKExSSKkhgLJyc5+h/E/wDwcD+CdO/aF+Jf7KngL4N+LvGvj7wLrVzo2n6ToC/bZdWNnLLHcXH7uMm3giEalmYO37xQFIDEfiP+wto/7OcX/Bfzwpc/8Eel1e6+FNtps3/CUSMbs6dHFJBcC5Aa5xMbYP8AZ/J+0E5ugNmVCGvQf2B/2zP2cf2OP+C6f7VOr/tJ6rD4a03xPrmvadZ63dRsbeC5TU2m8iSRQfLEyIxDNhS0YBOSKwhUsko6ateXyA/ot/4Jrf8ABWv4Tf8ABRTUvFHw4Tw3qnw9+Ivgpv8Aic+F9ax9pijD+WzxttRmEcn7uVXjjeNyoZfmBP8APf8A8EQ7vwTYf8E8P25r74lWd1qHhyG31iTVbWxlWC6nsl029M8cMrK6pI8e5UcqwViCQQMV7p/wTA8V6H+2D/wcGfHv9s/9nZZJvhlb6ENPbVEiaKC6uJIrG2QAMFb/AEiS0nuFyASqZYAnB+Xf+CQX/KLT/goD/wBgjxD/AOmi+p87k4t/3vmB2nxB/bUsP2cv+DfjRr3/AIJ6eF/GvhHRvFus6jYR6414Lu68PiLUY/Pe5vIII1jF5ueCBh5bBnAVi1ff37Df/BXvwt+zl/wSK0T43ftP+BPFXh+y8DWWjeHdMmvIWMviy7uLcsk9i8yxI8ThHkaQuwChjljhT+Y3g+xvL7/g0a8SizjaUxa0srhRkhF8R2+48dgOSew5r6X8T/tJ/wDBOD4z/wDBADwH4A/aAfxF4t0TwVp/h3SdZfwVbpLqXh3XFt5Fgkk+1NFCinZJCWYvG3mBeC6GlGUk73+yB97eDP8AgvF4s0f4o+C/Bf7V/wCzd43+FOheP7hLbRtcu83kTtIVAaWL7PCyqoYNJtLuiHdtIr+hqv8AOt1/9on40/8ABNw+APFP/BOf9r5vjjo/iK+trW18A3MU9zcwRSg7IZrCSS5SLcQISImgn3suxf4l/wBETS57y60y3utRg+zXEkSNLDu3eW5ALLkcHB4z3row9RyupPX5foCL1FFFdAwooooAKKKKAP5MP+CrP/J63iP/AK9dO/8ASaOv6y/+CKv/ACjM+Gn/AHGf/TreV/Jp/wAFWf8Ak9bxH/166d/6TR1/WX/wRV/5RmfDT/uM/wDp1vK8Gv8AxJepD3P1MooorEQUUUUAFFFfyYf8E1f+Cnvxz+CGkaTJ+2ddX+t/DLxxqVzBp3iy8ka5k03Ug5MsU8hJbyWJ37W5QEsmVDhQD+s+iqtjfWOqWMOp6ZMlxbXCLLFLEwdJEcZVlYZBBByCDgirVABRRRQAV/HV/wAHG/8AydH4G/7FUf8ApXcV/YrX8dX/AAcb/wDJ0fgb/sVR/wCldxQB7L/wRS/5NY1//sa7r/0js6/YCvx//wCCKX/JrGv/APY13X/pHZ1+wFaI97DfwohXxz/wUB/5M98b/wDXtB/6URV9jV8c/wDBQH/kz3xv/wBe0H/pRFXnZx/uGI/wT/8ASWfV8Gf8lBl3/X+l/wCnIn3R+yL/AMmofDD/ALFLRf8A0jir6Gr55/ZF/wCTUPhh/wBilov/AKRxV9DVpgv93p/4V+R8dxD/AMjTF/8AXyf/AKUwor5v8V/tgfsweBfEV54R8ZeOtI0vVLCQxXFrc3CxyxOOzK2COOR6jkcVz/8Aw3Z+x1/0UnQP/AxP8amWYYVNp1Y3/wAS/wAzSnwxnFSKnDBVXFq6apzaaezTtsfVc8EF1A9tcoskcilXRhlWU8EEHgg0ltbW9nbpaWkaxRRqFREAVVUdAAOABXyr/wAN2fsdf9FJ0D/wMT/Gj/huz9jr/opOgf8AgYn+NL+0cJ/z+j/4Ev8AMv8A1Uzv/oBrf+C5/wCR9YUV8n/8N2fsdf8ARSdA/wDAxP8AGj/huz9jr/opOgf+Bif40f2jhP8An9H/AMCX+Yf6qZ3/ANANb/wXP/I4v/gpX+y74x/bU/YW+JH7LXw+1Cy0vWfGemLZWt3qBcWsTiaOTMhjR3xhCPlUnNYP/BMb9kDxP+xN+wl8NP2W/ihdadrWveBbS5hlvbAO9uZJ7meYNCZUSQfJKFJKqevavUv+G7P2Ov8AopOgf+Bif40f8N2fsdf9FJ0D/wADE/xo/tHCf8/o/wDgS/zD/VTO/wDoBrf+C5/5H1eQGBVhkHqKqWGn2GlWiWGlwR20EedscShEGeeAAAOa8l+Gf7RHwO+M2pXGj/CrxTp3iC5tIhNPHYzCUxxkhQWx0BJwM9a9mrop1YVI81OSa7p3PJxeDxGFqOjiacoTXSScX9z1Pyw/4LGf8mWX3/YWsP8A0I19F+GP+Ra0/wD69ov/AEAV86f8FjP+TLL7/sLWH/oRr6L8Mf8AItaf/wBe0X/oArysL/yNcR/gp/nM/San/JG5d/1/xP8A6TQNyiiux03wRq2qWUd/byRBJASAxIPBx2U17p8fOcYq8mcdRXf/APCuNc/56wf99N/8TR/wrjXP+esH/fTf/E0XRn9ZpfzHAUV3/wDwrjXP+esH/fTf/E0f8K41z/nrB/303/xNF0H1ml/McBV/S7eO71O2tZvuSyojY9GIBrsP+Fca5/z1g/76b/4mrum+AdYs9Rt7yWSErFIjkBmzhSDx8tK6JliadnaRyniHw9daBdbH+eF/uP6+x9656vpy/sLXUrVrO8Xej9R6e4968E8Q+HrrQLrY/wA8L/cf19j70JmeGxSmuWW5z1FFFM7Aoori/iL8QfCXwp8D6n8RfHd2LHSNIga4uZiC21RwAFGSzMSFVRySQBQDdtWdpX5aeIvGHg/xH/wV2+CF54e12z1GOHSdYgljtrhJRDI1neFd21jtaTcAAQCcDr25DwJ8K/2q/wDgqXNB428c6hcfDT4ITvJHDp1lK0ep6vAB99iUaN0ZuNzjylwNkchBc/T8n/BJP4X/AAw+LPwu+Jf7MQi0CXwdrTX+tTajcTXU2oWjFP3aqQyh1UMiFTGqhiSHbmpbPKxOLU04RWnc/YOiiipOAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK/B7/gn1dr4t+K37QPxSsnNxY6348vY7WcFTHJFBJI6bSmQcRzJkgkEEHJ6n9DP2/v2nbL9lX9mvWvG1u7nX9URtJ0GKHBlbUbpGETgHORFgytwchcdSK/Nj/glP4m0vw58J9Y/Zo17TJ9D8a+BtQn/ALatLlVR5GupXKSrjBYKqiNic4wpztZacTrwVvaq5+qlFFFWeyFfyf8A/BXr/k8q9/7BVh/6Ca/rAr+T/wD4K9f8nlXv/YKsP/QTSexx47+H8z+nr/ghp/yjj8I/9f2rf+lktfrtX5E/8ENP+UcfhH/r+1b/ANLJa/XaoPHCiiigAoor4B/4KleMfFfgH9gP4leK/BGo3Ok6nbafCsN3aSNDNGJbmGN9jqQykozLkEHBoA+/qK/DL/gnJ/wUK+ID3/h/9kv9uIHTfGupadaXvhfXrhv3HiGyuYw8KtL0N1g7Q3WVgVbEwIf9zaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/9b+/iiiigD/ADn/APgox/yfh8XP+xp1L/0c1f1Rfsof8mtfDX/sVdG/9JIq/ld/4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/wCxV0b/ANJIq5cVsj3sh+Ofoe/UUUVwn0wUUUUAFFFFABRRRQAV8E/AD/lMT4x/7Jwv/pXZV97V8E/AD/lMT4x/7Jwv/pXZV04X4zyM7/3deq/U/a6vEf2h9Y+PWh/C281H9mrStO1nxcskItbXVXKWrRlx5pciSI5CZK4cc4617dRXefJH49/8LQ/4LX/9E38Af+BMv/yfR/wtD/gtf/0TfwB/4Ey//J9fsJRQB+Pf/C0P+C1//RN/AH/gTL/8n0f8LQ/4LX/9E38Af+BMv/yfX7CUUAfj3/wtD/gtf/0TfwB/4Ey//J9H/C0P+C1//RN/AH/gTL/8n1+wlFAH49/8LQ/4LX/9E38Af+BMv/yfR/wtD/gtf/0TfwB/4Ey//J9fsJRQBzPgu68UX3g7Sb3xvbR2etTWUD6hbwnMcV0yAyohDPlVfIHzNwOp6101FFAH5F/sf/8AKTD9pj/uA/8ApOa/Sn40f8kd8Wf9ga//APRD1+AlxbftZXP/AAUe+PQ/ZW8UaV4ZuBLpP9otqlsLgTJ9mXywmYpcFTuz0zkV7f4g8H/8FbfE2gX3hvVfip4VNrqFvLbTBdNVWMcqlWwfsvBwetQ6kU7NnVSwVepHnhC6PmP/AIJ3/sZfsyfGP9lfRPHvxL8Jwarq91cXqS3Mk06MyxTuijCSKvCgDpX6E+CP2GP2Tvhz4os/Gng3wVZ2eqafIs1tOZJpTFIpyGUSSMoYEcHGRWh+xv8AATWv2aPgBpHwj8RX8GpXtjJcyyzWyssWZ5Wkwu7DEAMBkgZ9K+oq8+pUbk7PQ+twuFpxpQ5oLmSXRbhRRRWR2hRRRQAUUUUAFYfibw1oPjLw9e+E/FNrHfabqUD21zbyjKSRSAqykehBrcryz40fGHwR8BvhtqfxQ+IF0LbT9Ojzjq80rcJFGOpd2wB6dTgAkNXvoTNpRblsfmJqHwu/aF/4JwHU/GvwNuI/Gnwn8z7VfaBqEvl32nh2AZraTox6YIBLZw0TMPMrv/B//BYD9knxBbeZ4iOraDKASUubTzhnJAAaBpOcYPIArkPh3+z78Wf29JbP45/tfXU2k+EbgeZo3g3T5HgiktH2uklzIrCQl9qt2dsBh5a4Sv0U8H/s3/ADwDpf9j+EPBmjWUBJZgtnEzOSScs7KWYjOBuJwOBxW8nH7Wr8jzKNOte9B8sOiev3LovK569p9/barYQanZEtDcxrLGWUoSrjIyrAMDg9CAR3q5RRXOeqFFFFABRRRQAV/Hf8f/C3hjxr/wAHYXw68M+MtOtdW0258OSedaXsKTwSbNC1F13RuCrYYBhkcEA9RX9iFfxn/wDBRez/AGvP2d/+C+Ogft2/B34EeMvizoPhfQIYVj0PTL1rW5kutOurJkF5BaXMatEZw7Dax42nGcjahu/Q8/Mfhg3spJv0PWf+DmH9jL9nv4afsmeHv2tPg14Z03wV458LeJrC3j1LQ7aPT5ZoLhZCFfyFTc8cqRyROfmTBAOCa+ov20/+CxPxS/Z9/Y1/Z6tfglocfib44/tC6Fos2i293GPs8E9/Ba+ZLLGpj3SSTXKxwxgqhYszHam1/wA/v2rLv/gqp/wXavPBv7M2rfs/6v8AAH4Y2Gswatr2p+I3lEzCINFvX7TbWbuY45ZDHBHExeQqWZVGR9rf8FlP+Cb/AMdru3+AX7Uv7CWjjxDr/wCzfLZR23hxzvuLyx06W2ltfKA2+Y0TQYkjBDOjkpyu1tFb3Yz3OWTm3Vq0E0ml037tLyR4X8Uf2/P+Cx//AASb8Z+BfiD/AMFL7nwn8R/hZ401BdO1C58OQeVd6TK48xlVkt7UNKkau6IUlSUIyh1OGH1n/wAFFv8AgpV+1jL+2v4E/wCCZv8AwTci0WPx74t09dXv/Eetp51nY2skck6hFw6/LBE00jtHJlWRUQsePzk/bU8V/t8/8F5Lv4ffsiaF+z74o+DPhHRNdi1nxRr/AIqglhhtpoo3t2EJmhtxL5Mc8pWNcySsy5WNVLV9Af8ABQ/9mL9qH9iP/gp78Ov+CpP7K3w51H4p+E9L0SHQNd0HRkebUIUhtZLHIjiWSUobdkdJFjZVkiIk2gqSWjdXSvr/AMATqVOWXJKTheOut7fat1PvT9gL4pf8FjPCH7Uuufsz/wDBQjwzp3jDwnFZ/adP+IegQJa2Yn2B1iddsHmK4yhC26vHKMHcjBhyX/BED/goF+0l+3N4k+O+m/tBX9nexeAvENtp2kC0tI7UxwSNdhg+z75xCnJ/rUX7A/7X3/BUb9tj9s7U/iF4z+HF58Iv2eNOsCkWmeJtP8nVb278sqhhlkjilO6VvNdgjQoieWGLnJ/LL9hXVv23/wDgkf8AtdfH74Ln9nTxj8TLf4j66t94a1PRIGGnSiGa5MDzXpja3jhkjuUMrlw0DKQ65PyrlupKyvoaqs4unJOTheW9+2nnbtc+uv2Jv+CqP7X3xw+B/wC3F468f6pp8+ofAvTtTuPCbRWMUSwSWtvqskZlVRiYBrSLIbrg+pr488D/APBST/guV8dv+Cb2oft/+BNX8GeH/DXw+N1/ajz2Qk1LxB9nuMyyRwmF7eGGCORItoaOR2ikbdyopf8AgmN+yn+2F8O/2S/+ChHhb42fDvXtJ8UeMtA1GDTIDpd0iaxevZ6yjrpu+MG7VpZUEZh37g6Y+8M/Sn7JH7On7QXhr/g2n8d/AjxF4E8Q2Hji803xGkHh650u5i1WV57p2jCWjRidi64KAIdw5GapqKb0W6OeDrTjG8pL3ZP5p6Hhfj3/AIKjf8FqviX+wTD/AMFUPhbF4I8EfDTQTb2tzorQvfX+rPHcLYXN4PNjIS3N4xVIkmjkREbLPtDv96ftpf8ABcLxN8Ev+CZfwk/aj+GPhq1f4j/G22ii0jTbktNZ2U6xj7XKcFGlWKQqkSFl3F1LcBgfnfQP2cv2g4P+DWGT9nqXwH4hTx8bC5T/AIRk6XcjWNzeJnuAPsXl+fkwnzQNnMfzfd5r5y/a8/4Jf/tQ/tD/APBFn9me/wDAPg+9uPH/AMHLK4l1DwjqNtJbX81pfMDOgt5dkhmRoIj5GA7ozbcttVi0G9e43LERi3FttwT+d9bfLoe/aD/wU0/4KU/sGftLfCvwX/wUQ8VeBfiV4G+LF4NOku/CZjNzoNy7xJ+8aCKFSIjMpIKSeYgfY+5efWP2xv8AgpL/AMFFPB//AAWGh/4J7fslW+garD4i0GBtKt9bi8q2s7ya1eeW8uJ41aZordI3kMS8vgKMk7T8A/BP4H+BP2j/ANpn4feBP2fv+Cfcnw+0e1njl8Z6149i1azj05kdGZrOX7RArNEA5RXRpJmKDZGoZj+gnin4BfHS5/4OdPDfx9g8Fa9J4Ft/C0lvJ4jXTbg6Skx0q5j2NebPID72CbS+dxA6mhqN9ujHGVVxSUnbmS63t11aRU/Y/wD2/wD/AIKT/C//AIKsz/8ABMT9vXVPDni668RaTc6jo2saNai1SF0tJL2IrtjiLRFIpI3SSIuHUEOVBL/lR/wS98Lf8FJW/wCC4XxVsdP8SeE18YafqMcnxNuGjk+yX2kpqNr9uj04fZsrM4x5RZYh6stfrF8VPgF8ddR/4Oc/hr8fdP8ABWvT+BbDwrPb3PiOPTbhtJhmOlalGEkvAnkK5eREClwdzKOpFfNvwitf2pP2F/8Agvx8WvHuo/BbxZ4x8K/GK9h0+y1vR7KeWwtbTUbu0le8knSKSMx2yB/OQsrKV5wDmhNWdktUKUZXjzt2jNq+u1tDjvEf/BXr9uz9pv8Aa9+Kfwe+E/xp+HP7O9h4C1i50fRtJ8ZwIlxq7Ws0sJMl1dQTRJIzR/OqshXeqqjYZz/SP/wTm+In7Z3xM/ZrsNf/AG6/D2j6F42E7osuhXsF7Z39kVVorkG3lmjR2JZXVJGQ7dy4DbV/mL/bV8M33jX9o74gaP8A8FLP2I9U8XXs8wTwx41+EFlfRS36LuVJLydJpIp5HTy8eapkiAKtE2Fx+mv/AAbefso/tV/sufsw+MIv2i9N1PwvpHiXW0vvDXhrWHJvbC2VCJZJYiF8lpyUBQojExFii7hmakY8l0a4SpU9vyybe/fT1TVl5WZ/RfRRRXMewfzkf8Ft/wDkqXgj/sFXH/o4V+rf/BuP/wAmu+Of+xpP/pJb1+Un/Bbf/kqXgj/sFXH/AKOFfq3/AMG4/wDya745/wCxpP8A6SW9enQ+BHxWZ/71P+uh7p/wXF/5IP8ACv8A7Khof/pPe1+kFfm//wAFxf8Akg/wr/7Khof/AKT3tfpBWpwBRRRQAUUUUAfPv7TP7M3ws/av+Fl58KfitZ+dbTfvLW6jwLmyuQCEmhcg7XXPI5VlJVgVJFfFP7Dn7VPxp/Zo+Otj/wAE3P2xpJdbvZ4s+CvE8KNN9vslDbIpwNzqVWNgHbJjKlXJXa5+gf2w/wBsPTP2btN07wR4I05vFnxL8WN9m8OeHLbLyzyudommCnKQIc5OQXIKqQA7p1/7Cv7CupfBPUr/APaO/aOv18WfGbxYu/U9TfDxadE4GLOzGAERBhWZQAQAq4QAEA/TCvw3/wCDgv8A5MPtP+xp0/8A9E3NfuRX4b/8HBf/ACYfaf8AY06f/wCibmgD8X/+CAX/ACeP4l/7Ey8/9LrGv6+K/kH/AOCAX/J4/iX/ALEy8/8AS6xr+vivi88/3p+iPWwf8MKKKK8c6gooooA/Fn/gpb/yev8Asmf9jLqH/o3Tq/Y6vxx/4KW/8nr/ALJn/Yy6h/6N06v2Or7nJ/8Ac4fP82ePiv4r/roFfy5/8HMn7AX7V/7V/g74QfH/APZY8PJ4/ufhBq17faj4QljFwNQhumtZFkFsSv2lUNqY5YFJkdJfkHDV/UZX86n/AAXQ+G//AAVT8NeKvhh+2N/wTW1jX9bt/AF2H8T+AtLu5lh1aCGVZ45Hs4nT7YjAPBPEgaUo6FFO1ivpnOfzyfF7/gph/wAEw/257vwl+zF/wV0/Zs1z9n7WvD17EseteGIUsmtFKtEyXMMtrDdw2eW3NEqXDKyKR0Nft9/wW/8A+CnH7Q//AATJ8L/sv2/7F99beJtC8YzT2tzHcpFfS63YWCaeLZY7oq217hJmHnIpyXDAHAr8uv8Agop+1X/wUU/4Lh/BjQv2L/h/+xR4n8D6rNrNpcXviXxPBcC20qSL76xXNxZWqW4bP712fcYwUEbFgRS/4OMPgj8Sf2a/2f8A9gD9nfw3qUeteL/A8cmg2l65IhuNR0+HR4I3BfBEZlQbd2CExmgD62/ar/4KP/8ABcv/AIJPfEP4fftH/wDBQb/hBvFXwg8darHp2qaF4Wt2EuiPIpmaBLh445WuFhWRoy0txFIYnUlcq5T/AIKB6hZav/wda/sk6tpsgmt7rwNZSxSL0ZHm18qR7EHNeCf8FK/G/wDwUm/4Lm3Pw0/4J5Wf7Mviz4QrofiSDV/GHiDX4ZG0i0uIIZbUyW92Y44JreOOeeRCsjPcfKI1PVvs/wDbM/ZW+OMn/ByT+yt8Ufh34D8Ral8OvB3gex0u98Q2mmXM+k2LW8mtKI7i8SMwROFkiJV3Bw68fMMgG58H/wBrP9pX4lf8F4f2qP2Q/hTY+D9K1Lw/8PtSufC+ry6JbQXo1cw6ULRr6/iha5nt1muMyI28FVX5TtUV+WH/AAbOeGv+CgU3/BQz493fhXxB4Yi8M6Z4qtl+LEMyP9p1G4aTWFtzpZFuQqrdCdn3tD8hXg9B+p37FP7Ov7QPhT/g58/aN+P3ijwL4h03wJrnhGW203xJdaZcw6ReTH+xcRwXjxiCV/3Unyo5PyNx8px8rf8ABH2y/a9/4J9f8FX/ANon9n74gfAzxffaT8avGQms/GMGn3DaHp9nZXGqTQ3ks6xGKWCdbyMAiVCrAq2GyAAeJ+CP+C2P/BS39uj4pfES5+Cvx2+FnwAl8Nalc2fh7wF4vhht7/VFhz5cbXl/C8Jmcjy22zR/vQf3caYav6/v2AvHv7XnxI/Ze8P+J/25PDOleFviLIrrfQaJeRXthcRcGG4iaGWZF8xCNyCVwGBIO0gV/Fx+1x4GuPid8TviPoP/AAU4/wCCffiHUPiZeXsx8P8Ai/4JWOoQ2WplwQJZ5VkuILiWRgZTM8UkuGCyQqwOf6BP+Dan9lD9rz9kT/gni/gb9r2G80i+1XX7rVNE0G/kL3OlaZLDCqxupJ8gyTJLL5H8G/LAOzqAD+hCua8Z/wDIn6t/15z/APoBrpa5rxn/AMifq3/XnP8A+gGgD81f+CMn/JgHhb/r81T/ANK5a5n/AIIjf8mKWH/YZ1H/ANDWum/4Iyf8mAeFv+vzVP8A0rlrmf8AgiN/yYpYf9hnUf8A0NaALv8AwTd/5Ol/ak/7HKL/ANCuq/YCvx//AOCbv/J0v7Un/Y5Rf+hXVfsBXwub/wC91Pl+SPZwv8JBRRRXmm5/HD/wXf8A+T27T/sWbD/0bcV+4v8Awb5/8mIXn/Y1ah/6Jtq/Dr/gu/8A8nt2n/Ys2H/o24r9xf8Ag3z/AOTELz/satQ/9E21ff5d/utP0PFr/wASR+5Nfhv/AMHBf/Jh9p/2NOn/APom5r9yK/Df/g4L/wCTD7T/ALGnT/8A0Tc12mJ+oFFFFABRRRQAV5X8afgt8OP2gvhxqPwq+KunJqWj6km10bh43H3ZI26pIh5VhyD7ZB9Ur4l/bV/bV8G/sieDLZEtm1/xrr7fZvD/AIftsvcXlw5CKSqZYRhiASBlm+VcseAD5M/ZG+OXxd/4J7/tHaD/AME8f2gr2TxT4K8UyCPwHroYPdWqu2xLW4TO4RBsIP8Anm2NuYjiL+hWvx6/YD/YD8ZeGfGc37aX7aU66/8AGDX18yCCTD2+gW7jCwQKMqJgp2sy8RrlEJy7v+wtAH5E/wDBcv8A5Rx+Lv8Ar+0n/wBLIq/mM/4I+f8AJ59j/wBgm/8A/QBX9Of/AAXL/wCUcfi7/r+0n/0sir+Yz/gj5/yefY/9gm//APQBVw+JEVfgZ/WjRRRXaeUfm38S/wDlLT8Av+wTr/8A6RXVftpX4l/Ev/lLT8Av+wTr/wD6RXVftpXHV+Jnp0PgQUUUVmahRRRQAV/Jr/wSu/bn/a6+H/8AwWf+Ov8AwS7/AG1/HN/4vhgW4vPBc+qLEsqwWbfaYFQxohJudOuFmfO4AwcHrn+sqv4sf+DjXwzrP7Cf/BRL9m3/AILDeAbZ1t9O1SDQfEvkDHmizZpVQkdXu7CS7gJ/uRAUAfTn/BY39t79rfXv+CqP7PP/AATC/Ye8b33g3UfEjJf+LbvS1ieUWV7LkhvMSTabWztbi4IAGRIpPav2S+Pn/BXf/gmp+y58U2+CHx1+MOhaD4phKpcaezy3ElqzDIW5aCOVIGxziZkOCD3Ffzff8EY28Q/t7f8ABTL9rH/gsfaWr6naaIl54f8AAYmQ4kdotlvsBHyyR2FtAjjH/L0eCTX5A/8ABHb4V/HT9pD9m/44eO9P/Z68BfHa68RapdR+J/FfjfXLaw1TS/PgE7yRNcxs0GXaS4N0rKTIvJ/d0Af6Vuk/Eb4f694Dh+Keia5p934YuLP+0YtXhuY3sXs9u/zxOGMZi2fNv3bcc5xX5yeCv+C23/BKP4ifFe3+Cfg/44+HLvxDd3C2lvGZJYrWedztVI7uSNbV2duECyncSAMkjP8AIb468I/tefsmf8GvXjr4O+L/ABFpOsadJ8QrWytr3wxrlrrVnD4d1D7PPLbi4spJUVXvtxeMsCVnOflbB/YAf8E/f+CFb/8ABHb4FfEP9rHStA8IeFbjR/Dt6/i6xVbPVL3Vr+1DTRz3tvG9zL50plM0TEqmz+ARDaAem/8ABXT/AILtxfsQ/tyfB39j/wCG2s6JZWN74k0eT4mapexST3Oi6LNc2kkkapjy08+yleRpQJGVPuBXww/cnxl+3B+yT8PP2cNO/a68d+PtJ0j4b6xbwXVhrt3KYre6jul3QiFWAkkeRQSsaoXIBwvBr+PT/gtZ8HP2YfEf/BUf9gHUfA+iaVr/AIZ+ImqeG7fUb+4gS7bxHpQv9Mtrc380ql71WsyEzcFy0bYPBNdn/wAFbPhx8LvGn/Ben9k39hX41WNron7PlholgdL8OQKLLRWuZZ71FhWKPZEomlt7W1ZFA/d4UY3cgH9Sn7KP/BTj9gj9uDWrrwx+yz8T9H8WatZxmeXTojJbXvlKcGRbe5SKZkU/edUKjIyRkZk+M3/BTL9gz9nf4ka78Ifjd8T9H8M+JPDWmrq+pWN80kckFnIEKSE7CrF/MQIikuzMFVSTiv5Tv+C8XwG+AX7Dv/BRD9kH4mfsC+GtI8A/E7VfEJgn0rwvbRadHd2yXNnDbGW2t1VFExmnt2bZ++QsjbgmBF+05+zN8I/2s/8Ag7e034T/AB10eDxD4WXw9a6leaZdLvt7prLRnlhSVejRiYIzKeGC7SCCRQB/UrrX/BV7/gnV4c/Z00X9rLX/AItaJZeAPEc01tpWpztIjXs1u2yaOC3MYuJHibiRViJT+LFdH+yX/wAFMP2Ef26dSvdC/ZS+Jek+LtS06H7RcWEXm216kGQpl+zXMcUxjDMoLhCoJAJyRX87f/Ba3/gmJpt58WfgB/wwDrnw28P+K/htHcweHvhN4murG3h1RL26e6DWNheMYZzJN5okjdVVtuVcMmK8A/4J6/tPWvwj/wCCvfg34Tf8FFP2R9B+D/x78X2b2ejeK/CZlsbWRJIp4ld7CK4nspVuAkkL3ULsd4AYEDKAH25+zr/wcVfD341/8FgvFX7M/iTxZ4f0b4IWWjvpnhPUYYpnn17xHc3enxwbpmUsp2yXKRxqkacEuWIUj91f2tv+Cjv7D/7CkunWn7WHxI0rwdd6shmtLOcyXF5LECVMi21uks3l7gV8woEyCM5Ffyh/8E7v2W/2Z73/AIOh/wBo74W6h8PvDcvhvwh4cn1bQdJk0u2ay0y/gutEaK5tYDH5cEyGSQrJGqspdiDyaf8A8ErvhD8F/wBuP/guv+15rf7fujad458XeEtUvrTw5ofiWFL+1h0+31Ca1LRWtwGR1tYEto4iUIVZdw5YNQB/Yh+zf+1b+zh+1/4C/wCFnfsy+M9L8aaGspgkudNmEhhlHPlzRnEkT452yKrEEHGCDXxZff8ABcD/AIJP6d4as/F158cPD6WF/qcukQPmcs13CsbyKUERdVRZYy0jKI13AFs1/Pn/AME9/Cngv9mH/g6Q+Mf7N37GEcen/DG+8OyTa9o+nN/xLrK4itbWdlRFyi+RfStGijHk+c8S4AK186/8Gqf7AP7J/wC0z4T+Mnxo/aI8E6Z4z1TRfEen6fpJ1WETrY+SHuWkhB4WR3Me5+uEAHBYEA/sB/aq/wCCmf7Bn7Eerad4e/ak+J2keEtT1WJZ7awnMk940LHaJGgt0llSMnIDuqqcHng4+kfgj8d/g1+0n8OLH4u/ATxNp/i3wzqW77PqOmTrPCzIcMpKn5XU8MjAMp4IBr/Pz/Z70v8AaK/aJ/4LiftY+IrT4HeEf2gvF+k61rNiui+PNQgt7fTtKtr9rKKSCK6jkSXy4I4LdWC/JGwx9+v2m/4NvP2b/wBoH9mj4xftDaJ4ubwrpvgbxFq0eo2Phvwx4msvEEWg6jHPcRy2rrayPJCUiKQkyKrN5ADDctAH9X9FFFABRRRQB+H37E//ACdX+0z/ANjgv/oVzX6Y1+Z37E//ACdX+0z/ANjgv/oVzX6Y120vhR5uI/iMK+Ov+Cgf/JmHxE/7BL/+hrX2LXx1/wAFA/8AkzD4if8AYJf/ANDWqlsyIfEj+c7/AIJD/wDKRz4Xf9f11/6Rz1/oHV/n4/8ABIf/AJSOfC7/AK/rr/0jnr/QOrgPVPwm/wCCwH/Jxn7J3/ZQIf8A0qsK/VGvyu/4LAf8nGfsnf8AZQIf/Sqwr9UaACiiigAooooA+b/2o/2XPhn+1j8M5vh38RIWjljbz9O1GDi60+6H3ZoW6gg43L0YcHsR4n+wj+2B8UtF+MF5/wAE9/2v50vviFoFqbnRtfgbzI9c01F3K03JZLlYxuJYZdQS3zjdJz/7bv7bt98E77Tv2f8A9n/Tj4t+MHi0iDSdJgAlFqJQcXFwMgAAAsqsQCAWYiME17l/wT7/AOCfdj+yvY3/AMXfi5fjxb8XvFoM2u67MTKYjKQzW1szAERggbmwDIQOAoRFAPPP+C5X/KOPxd/1/aT/AOlkVfyu/wDBKb/k9bw5/wBeuo/+k0lf1Rf8Fyv+Ucfi7/r+0n/0sir+V3/glN/yet4c/wCvXUf/AEmkrWh/Ej6oa3P6z6KKK98sK9a+FX/Hxe/7qfzNeS1618Kv+Pi9/wB1P5mufF/wpf11E9j2aiiivDICiiigAooooAKKKKACiiigAooooAKKKKAKWo6daaraPY3yb436j09x7181eI9Ebw/qj2BkEg+8pB5wemR2Ne0eMfGMWgxGysyHu3HA6hAe59/QV8/TTS3ErTzsXdzlmJySTXqYGE0uZ7FRIqKKK9AoKKKKACvA/jd+yt+zP+0pDbQ/tB/D/wAPeNfsSsls+tadBeyQK3JETyozR577CM175Xxp8ZP2z/DXwl+Kg+D9h4X1zxTrAskvpI9HtxOURyRgrkMcAAkgFRuAznIHHjsdh8JT9riZqMb217vp1PWybIsdm1d4bL6TnNJyaVlaK3bbaSSuup7f8IfgB8Cv2ftGm8PfAnwZofgyxuSrTQaHp8FhHKyAhWcQIgdhk8tk8n1r8Gf2IP8Aglv8TfDf/BQf9qf4oftc+AtH1n4ZfFfU7q60eHUms9TgvEfUZLmNpLUmQoQjKw8xAVPTBFfqD/w3dq3/AER7x7/4Km/xo/4bu1b/AKI949/8FTf415EuJMqdv323lL/5E+j/AOIa8R/9Av8A5PT/APkz61+E3wX+EPwG8IR+APgj4X0rwjocTtKtho9pFZW/mNgM5SJVUu2BuYgscck1y/g/9l79mj4e+FvEHgbwD8O/DGh6J4tSSPXNP0/SLW2tdTSZGjkW7ijjVJw6OyMJAwKsQeCa+cv+G7tW/wCiPePf/BU3+NH/AA3dq3/RHvHv/gqb/Gr/ANZ8q/5/f+Sy/wAh/wDENeI/+gX/AMnp/wDyZ9S+G/gB8CPB3wwn+CPhDwToOleDLpJo5tAs9Nt4NLkS5JMqtaoiwsJCSXBTDZ5zXMfDL9kv9lz4L+ENW8AfCX4deG/Dmia/xqljp2l29vb3wwQBcIkYWYAMQA+4AHA44rwH/hu7Vv8Aoj3j3/wVN/jR/wAN3at/0R7x7/4Km/xpf6z5V/z+/wDJZf5B/wAQ14j/AOgX/wAnp/8AyZ6f8Mf2DP2JPgr4yX4ifCL4R+EPDWvREtFqGm6NaW1zCWGD5UiRhowR1CEA19ZV+f3/AA3dq3/RHvHv/gqb/Gum+GX7bvh74gfFrS/g3rXg7xH4X1XWYppbT+17UW6uIEeRuC27G1GwQpGRitKPEeWTnGlCsryaS0au3olstzLEeHfENGjUxFTCvkhFyk1KDtGKvJ2Um7JK702PtuiiivdPigooooAKKKKAP5MP+CrP/J63iP8A69dO/wDSaOv6y/8Agir/AMozPhp/3Gf/AE63lfyaf8FWf+T1vEf/AF66d/6TR1/WX/wRV/5RmfDT/uM/+nW8rwa/8SXqQ9z9TK+bv2gf2vf2bf2WP7MX4/eLLXw2+s+b9iSZZJXlEO3eQsSOwC7gCSAMnFfSNfgF/wAFD/D+geKv+Cqn7Ovh/wAUWNvqVhdadqizW11Es0MihJjhkcFWGQDyOtYiPtv/AIe8f8E4/wDoqFj/AOAt5/8AGKP+HvH/AATj/wCioWP/AIC3n/xiuq/4Zk/Zt/6J74a/8FNr/wDGqP8AhmT9m3/onvhr/wAFNr/8aoA5X/h7x/wTj/6KhY/+At5/8Yr83v8Agk/8Jvh98cf+Caj/AAu+KOmxaromq6pqUU8Ev++pV0Yco6HDI6kMrAEHNfqX/wAMyfs2/wDRPfDX/gptf/jVeqeHfDHhrwhpUeheE9PttLsYvuW9pEkES/REAUfgKAPxw+B3xx+J3/BJj4nWP7Nf7Sl9ca98D9euDF4V8VSgu+kO5J+zXOBwg6kDgDMkY270T+imxvrHVLGHU9MmS4trhFliliYOkiOMqysMggg5BBwRXx38WfhN8Pvjj8PtS+F3xR02LVdE1WLyp4JfzV0Yco6HDI6kMrAEHNfk18Dvjj8Tv+CTHxOsf2a/2lL64174H69cGLwr4qlBd9IdyT9mucDhB1IHAGZIxt3ogB/RnRVWxvrHVLGHU9MmS4trhFliliYOkiOMqysMggg5BBwRVqgAr+Or/g43/wCTo/A3/Yqj/wBK7iv7Fa/jq/4ON/8Ak6PwN/2Ko/8ASu4oA9l/4Ipf8msa/wD9jXdf+kdnX7AV+P8A/wAEUv8Ak1jX/wDsa7r/ANI7Ov2ArRHvYb+FEK+Of+CgP/Jnvjf/AK9oP/SiKvsavjn/AIKA/wDJnvjf/r2g/wDSiKvOzj/cMR/gn/6Sz6vgz/koMu/6/wBL/wBORPuj9kX/AJNQ+GH/AGKWi/8ApHFX0NXzz+yL/wAmofDD/sUtF/8ASOKvoatMF/u9P/CvyPjuIf8AkaYv/r5P/wBKZ85eKv2Qv2YfHPiK78XeMvAuj6pql/IZbi6ubZZZZXPdmYEnjgeg4HFc/wD8ML/sd/8ARNvD/wD4BR/4V9W0VMsvwrbbpRv/AIV/kXT4mzinFQhjaqitElUmkktklc+Uv+GF/wBjv/om3h//AMAo/wDCj/hhf9jv/om3h/8A8Ao/8K+raKX9nYT/AJ8x/wDAV/kX/rTnX/QdV/8ABk//AJI+Uv8Ahhf9jv8A6Jt4f/8AAKP/AAo/4YX/AGO/+ibeH/8AwCj/AMK+raKP7Own/PmP/gK/yD/WnOv+g6r/AODJ/wDyR8pf8ML/ALHf/RNvD/8A4BR/4Uf8ML/sd/8ARNvD/wD4BR/4V9W0Uf2dhP8AnzH/AMBX+Qf6051/0HVf/Bk//kjxv4afs8/A/wCDepXGsfCrwtp3h+5u4hDPJYwrCZIwQwVtuMgEZGeleyUUV0U6UKceWnFJdkrHlYvGYjFVHWxNSU5vrJuT+93Z+WH/AAWM/wCTLL7/ALC1h/6Ea+i/DH/Itaf/ANe0X/oAr50/4LGf8mWX3/YWsP8A0I19F+GP+Ra0/wD69ov/AEAV5WF/5GuI/wAFP85n6TU/5I3Lv+v+J/8ASaBuV9B+D/8AkW7X/dP/AKEa+fK+g/B//It2v+6f/QjXuSPg8f8AAvU6WiiioPJCiiigAooooAKp39ha6latZ3i70fqPT3HvVyqOo6jaaVaNe3jbUX8yfQe9A43uuXc8G8Q+HrrQLrY/zwv9x/X2PvXPVu6/r93r13503yxrwiDoo/x9TWFWh9BT5uVc+4V+Uf7VemXn7V/7a3w5/Ybdpv8AhFYYj4k8T/Z2ZfMhh3lIZCpBUERhAwPDTqRyor9XK/OX9ja1utU/4KxfHHX9SG2Wx0LT7OJSpyIpEtGG0k5AIiDEDhic0mc+Nk1Tsup+1+i6NpXhzR7Tw/oVulpY2EMdvbwRjakcUShURR2CqAAPStOiioPGCiiigAooooAKKKKAPxE/4OFf2ovj1+x7/wAEz/EXxv8A2bfEU3hbxVZ6xpFtDqEEUUzpFcXASRdsySJ8ynHK59K+6/8AgnH8TPHPxo/YA+Cvxd+J2oPq3iPxP4J0LVNTvZFVGuLu6s4pJZCqBUBd2JIVQBngCvyX/wCDqr/lDz4r/wCw/oX/AKVLX6W/8Ek/+UXH7O//AGTnw1/6QQ0Afj9/wc3ft3ftZ/sOeBvgrqv7KnjO48H3HibXr+01N7eC3nNxDDHAUU+fFKAAWb7uDzX9Rlfxd/8AB49/yTb9nj/sZ9T/APRVtX9olAH8L3/Byx/wUZ/4KHfsr/8ABQrwx8Gf2P8A4iar4W0a5+HMPiC60+wSBkaaC61Rrmc+ZG5yLe1GecYTpX6M/wDBQD/grb4+8Hf8G+Hgr9tj4Q682kfET4m2Hh/SbDULcIzwazKQ2pbFZWUlBa3aD5eDg44xXxx/wVY+GPh742f8HPHwA+DXi5d+leLfhbdaNerjObe/i8RwScHr8rmvwV/Yd1v4pftQ/G39mL/gi78RLKX7L8I/i1r+pazAfmiks7WSK7nhweQYjb6kCSMYnHfIoA/qH/4Nfv2zP2z/ANrPRvjtpH7ZvjLUPFur+CtX0nT7Zb9Ylazd1vFuEHlIg5eJc5z93iv6sq/j2/4NVf8AkqX7Y/8A2PVp/wCjtSr+wmgAooooAKKKKACiiigD8y9S/Y++J3xx/bVm+OP7Td5bXvgnwQ8L+CNFs5n8kz8SG5uoyP8AWIwGefnZVB/dqA3z3+2Ro8P7O3/BQ/4ZftF6UiW2l/EmNvCuvMJWQSXShUtpXQDk4MShjuTbDghDhz+3Ffjp/wAFvLGeD9knR/HGn7FvPDPirTtQgZgD8wSaPHQ5BLqSMjOOvGCFQlyyUj7joqOGaK4iWeBg6OAyspyCD0IPcGpK0Pogr+T/AP4K9f8AJ5V7/wBgqw/9BNf1gV/J/wD8Fev+Tyr3/sFWH/oJpPY48d/D+Z/T1/wQ0/5Rx+Ef+v7Vv/SyWv12r8if+CGn/KOPwj/1/at/6WS1+u1QeOfEvxb/AOCjn7E3wK8e33wv+KvxAsdJ17Tdn2q0MU8zRGRQ6hjFE6glWBxnIzzXm/8Aw94/4Jx/9FQsf/AW8/8AjFfnT8Ifhx8PPiJ/wV4/aLt/iBoOna7Ha22mtCuoWsV0sbNDACVEittJwM461+oH/DMn7Nv/AET3w1/4KbX/AONUAcr/AMPeP+Ccf/RULH/wFvP/AIxXw3/wUo/4KUfsQfGn9iDx/wDC/wCF/j+11fXtXtbaKzs4ra6VpWW6hcgF4VUYVSeSOlfod/wzJ+zb/wBE98Nf+Cm1/wDjVSw/s1fs520yXFv4A8NxyRsGVl0q1DKw5BBEfBFAHyxrH7Jnwz/a9/Yh8AeAvHqNa31r4b0q40nVrcf6Vp119kixJGeCVJAEkZIDgdmCssf7Ev7bXxM8AfEyL9gz9vOVbXx7aqqeHPEbsfsviS1+7H+8bANwQMKTgykFXAmBD/ojDDDbQpb26LHHGoVVUYVVHAAA6AV8xftZ/smfDP8Aa9+Gb+AvHqNa31qxuNJ1a3H+laddcYkjPBKkgCSMkBwOzBWUA/Sqivxh/Yl/ba+JngD4mRfsGft5yra+PbVVTw54jdj9l8SWv3Y/3jYBuCBhScGUgq4EwIf9nqACiiigAor5yv8A9rf9nSx+Melfs/w+KrK98YaxLJDDplm32mWNoY3lfzjGGWHCoTiQqT2Br6NrOnWp1L+zknZ2dnez7PzOvFYDE4ZQeJpShzrmjzJrmjdrmV91dNXWmjCivir/AIKBftF61+zL+zNq/jfwWw/4SnUpYNH0BCiyFtRvW2oQjAqxjQPIFYEHZggg1wH/AAT1/aH+KfxV0Txr8IP2iLuG7+Inw31ybTNUlhiSFbi3kLNbzqkaooVwrqpCjKqGPLGuOWZUY4tYN352r+XXS/dpN27I9ulwnjqmSzz6PL7GMuVq75/spzStbkUpxi3f4pJW3t+ilFZ9xq2lWl/BpV1dRRXV1uMELuFkk2DLbVJy20cnAOBWJonjzwN4m1K40bw5rNjqF5af6+C2uY5ZYv8AfVWJXqOoruc4p2bPnlQqOLkouy1vbptf7zq6Kxdf8R+HvCmmPrXim/ttNs4yA891KsMSk9Ms5AH51Bovi3wp4l0k6/4d1O0v7BQSbm2mSWEADJ+dSV4HPWjnjflvqJUajh7RRfLe17aX7X7nQ0VR03VNN1myTUtIuIru2lzslhcOjYJBwykg4II+tRaTrWja/afb9Cu4b2DJXzIJFkTI6jKkjIp3QnCSvdbb+Rp0VnabrGkayksuj3UN2sMjRSGF1kCSL1VtpOGGRkHkVgab8Q/AGs67J4X0jXNPu9Thz5lpDcxvOmOuY1YsOncUueOmu5SoVHzWi9N9Hp69jsKKz73VtK02WCDUbqK3e6fy4VkcIZHP8Kgkbj7DmqOheKvDHihZ38M6la6iLWQwzG1mSYRyL1VthO1h3B5p8yva+ovZT5efldu/Q3qK8b+N/wAfvhR+zl4VtfHHxk1QaNpF3exaet00byIk0ysyb/LViqnYcsRgd8Dmu68GeOfBfxG8PQeLPh/q1nrel3IzFd2M6XEL/R0JXI7jORUKtTc3SUlzLW19behvLAYmOHji5UpKlJtKVnytrdKVrXXVXudVRRRWhyBRRRQB/9f+/iiiigD/ADn/APgox/yfh8XP+xp1L/0c1f1Rfsof8mtfDX/sVdG/9JIq/ld/4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/wCxV0b/ANJIq5cVsj3sh+Ofoe/UUUVwn0wUUUUAFFFFABRRRQAV+Yfg74vfC74Lf8Fa/Fnin4ta/Y+HNNuPAEdrHc6hMsETzvc2jhAzEAsVRiB6A+lfp5XgvxK/Zd/Z6+MOvL4p+JnhHTtX1JYxF9pmi/elF6BmUgsB2znHataNRQldnDmGFliKXJF2d7nvH/DfX7FH/RU/DX/gxi/+Ko/4b6/Yo/6Kn4a/8GMX/wAVXyJ/wwL+xx/0T7Sv++G/+Ko/4YF/Y4/6J9pX/fDf/FV1fWo9jxf7CrfzL8f8j67/AOG+v2KP+ip+Gv8AwYxf/FUf8N9fsUf9FT8Nf+DGL/4qvkT/AIYF/Y4/6J9pX/fDf/FUf8MC/scf9E+0r/vhv/iqPrUewf2FW/mX4/5H13/w31+xR/0VPw1/4MYv/iqP+G+v2KP+ip+Gv/BjF/8AFV8if8MC/scf9E+0r/vhv/iqP+GBf2OP+ifaV/3w3/xVH1qPYP7CrfzL8f8AI+u/+G+v2KP+ip+Gv/BjF/8AFUf8N9fsUf8ARU/DX/gxi/8Aiq+RP+GBf2OP+ifaV/3w3/xVH/DAv7HH/RPtK/74b/4qj61HsH9hVv5l+P8AkfXf/DfX7FH/AEVPw1/4MYv/AIqj/hvr9ij/AKKn4a/8GMX/AMVXyJ/wwL+xx/0T7Sv++G/+Ko/4YF/Y4/6J9pX/AHw3/wAVR9aj2D+wq38y/H/I+u/+G+v2KP8Aoqfhr/wYxf8AxVH/AA31+xR/0VPw1/4MYv8A4qvkT/hgX9jj/on2lf8AfDf/ABVH/DAv7HH/AET7Sv8Avhv/AIqj61HsH9hVv5l+P+R8/wD7Lfjjwf8AEn/goD+0D428A6lb6vpF/wD2M1teWriSGVUhKEqw4IDKRx3Ffp7XkHws+APwY+CP2w/Cfw5ZaE2obPtLWseHkEedoZjkkDJwM45Nev1yVZqUro93BYd0aMacnqr/AJhRRRWZ1hRRRQAUUUUAFFFFABX5KftGWaftL/8ABQLwL+zlfF7nw14Ksm8S6xbKo2PPn92JMt8ynMKY25AlYdGJH611+YHwUja8/wCCo/xmvJ3Jaz0PSLeIcABJbe1c54yTuHH1+laU9LvyOTFrmUIPZyV/ld/ofp/RRRWZ1hRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/OR/wW3/5Kl4I/wCwVcf+jhX6t/8ABuP/AMmu+Of+xpP/AKSW9flJ/wAFt/8AkqXgj/sFXH/o4V+rf/BuP/ya745/7Gk/+klvXp0PgR8Vmf8AvU/66H3D/wAFWv2a/jX+0z8CPC2h/ASxtdT13wx4v07xCbS7uFtlmhtYbiMqrvhd26ZSQSvyhsHOAfmT/hM/+C13/RHvBn/g1X/5Mr91qK1OA/Cn/hM/+C13/RHvBn/g1X/5Mo/4TP8A4LXf9Ee8Gf8Ag1X/AOTK/daigD8WP2Dv2u/jV+0R43+J/wAKvj54a07w54i+G1/aWNwmmzNLEz3BuFdTl5ASjW5wyuQwboMZPpH7Yf7Yemfs3abp3gjwRpzeLPiX4sb7N4c8OW2Xlnlc7RNMFOUgQ5ycguQVUgB3T8ifAP7WH/DNP7Zf7UmheDdFn8U/EDxn4wtbDwvocCM32q6SW/3vIVxiKLehfBDHIAwNzp+0v7Cv7CupfBPUr/8AaO/aOv18WfGbxYu/U9TfDxadE4GLOzGAERBhWZQAQAq4QAEAP2Ff2FdS+CepX/7R37R1+viz4zeLF36nqb4eLTonAxZ2YwAiIMKzKACAFXCAA/phRRQAV+G//BwX/wAmH2n/AGNOn/8Aom5r9yK/Df8A4OC/+TD7T/sadP8A/RNzQB+L/wDwQC/5PH8S/wDYmXn/AKXWNf18V/IP/wAEAv8Ak8fxL/2Jl5/6XWNf18V8Xnn+9P0R62D/AIYUUUV451BRRRQB+LP/AAUt/wCT1/2TP+xl1D/0bp1fsdX44/8ABS3/AJPX/ZM/7GXUP/RunV+x1fc5P/ucPn+bPHxX8V/10CiiivTOcK/If/gqJ/wSd0T/AIKY+N/g34z1fxvP4Qb4Q6zcavFFDYLei/M8lpJ5bFpovKA+ygZAbO7pxz+vFFABRRRQAUUUUAFFFFABXNeM/wDkT9W/685//QDXS1zXjP8A5E/Vv+vOf/0A0Afmr/wRk/5MA8Lf9fmqf+lctfml/wAE0PhF/wAFF/HX7Ndjq37OfxR0bwX4PGoXka2dxp8N5cmZWy8hMtrJ95iAAJQAozjOc9F/wTi/Z1/br+JP7LGg+Jfgz8aovBPhWSW+S200aXFdSRSpcyCQlmUFg7bmyWJGduMAV+2n7Df7K3/DG37P1j8E5Na/4SCaC5uLuW8EH2ZS9w24qse+QgKABktk9cDOB4mZZrGnFxoy99Pt952YfDOTvNaHmX7B/wCyB8UP2Y9Q+IHjL4x+Lbbxb4h8f6nDqN3PaWv2VA8Qk3MQNq5dpD8qoqqAMZzgfoXRRXydatOrN1JvVnpQgorlWwUUUVkUfxw/8F3/APk9u0/7Fmw/9G3FfuL/AMG+f/JiF5/2NWof+ibavw6/4Lv/APJ7dp/2LNh/6NuK/cX/AIN8/wDkxC8/7GrUP/RNtX3+Xf7rT9Dxa/8AEkfuTX5kf8Fa/wBlf4q/te/slSfDL4MwwXWu2msWWpR208qwCdIg8bqruQikCXf8xAIUgckA/pvRXaYn4U/8Jn/wWu/6I94M/wDBqv8A8mUf8Jn/AMFrv+iPeDP/AAar/wDJlfutRQB+FP8Awmf/AAWu/wCiPeDP/Bqv/wAmV1v7F/7VX7Q3xf8AjT8SPgP+0l4a0nw7r3gFNOMkelSvKu69V3KszSSK2FCEFSMcg57ftTX8qnj39sLw/wDsh/8ABQf9pbVhp0+veKfEVxoNh4d0a3Rne9vTbAAHYCQqllyBlmJCqCTQB+pP7av7avg39kTwZbIls2v+Ndfb7N4f8P22XuLy4chFJVMsIwxAJAyzfKuWPHOfsB/sB+MvDPjOb9tL9tKddf8AjBr6+ZBBJh7fQLdxhYIFGVEwU7WZeI1yiE5d3P2A/wBgPxl4Z8ZzftpftpTrr/xg19fMggkw9voFu4wsECjKiYKdrMvEa5RCcu7/ALC0AFFFFAH5E/8ABcv/AJRx+Lv+v7Sf/SyKv5jP+CPn/J59j/2Cb/8A9AFf05/8Fy/+Ucfi7/r+0n/0sir+Yz/gj5/yefY/9gm//wDQBVw+JEVfgZ/WjRRRXaeUfm38S/8AlLT8Av8AsE6//wCkV1X7aV+JfxL/AOUtPwC/7BOv/wDpFdV+2lcdX4menQ+BBRRRWZqFFFFABXxf+33+wh8Ef+Cj37Nmp/svfH19QttD1G6tL1LzSZIob+1uLOQSJJA80U8asy7o23RNmN2AwSCPtCigD4h/4J8fsAfAv/gmp+zla/sy/s+yald6NBf3WpTXusSxTX91dXbAs8zwQwRkqipEu2JcIig5IJP5cftAf8G0X7Dvxk+Knin4n/DzxZ46+FUfjt2bxJovg/VYrTSdRWQlpA1vLbzYDuxYpuMQJO2MA1/RLRQB8IfC7/gmn+xn8Jf2Lbj/AIJ/eHPB8Nx8ML+1mttQ067keSW+a4IaWeecFZDOzgOJVKtGyr5ewIoH47eD/wDg1B/4J1+HfG+m6n4k8U+PvE/hHRrxr2z8I6pq0LaSsjtudWEVtHL5bcZCSI7AfM7c5/p4ooA/JT/gpT/wRq/ZZ/4Kb6J4Gsvidfa14P1H4ctKNC1DwvNDaS28E3lboNskMsflr5MZj2qrRsvykAsDV+PP/BE79in9pr9kfwN+yJ8cI9a161+HNqlroXiea7jHiS3CjDE3awhH8wY8xGiMbFVYpuVSP11ooA/DD9iL/g34/Yn/AGK/jtB+062q+Kfib4805dml6r4zv4746cApRWgSKGFfMCNtDyeYU6x7DX1K3/BLL9n1/wDgpUv/AAVNOseIf+Fgrpf9kjT/ALRbf2N5P2U2m7yvs32jf5Zzn7RjdzjHFfpVRQB+Xn/BRn/gkX+yb/wUzXw/rvxrGraB4t8Jn/iTeJ/Dd0tlqtom8SeWHeOWN0Eg3qHjJRslCpZifD/2Lf8AghH+yv8AshftCQ/taeIfFXjH4t/Eqyt2ttP1zxzqa6jJYI6sjG3VYo8MUdlDSNJtDHZtya/bOigD8Nf2iP8AggT+yV+0J+3an/BQM+KfGPhDxhPc2N5qVt4fv4LeyvptOEQjaRZLaV1DiGMTIrhZNucKxLHof28/+CD37Fn7eXxfj/aM1m68Q/Dv4jLCIZfEPg28j0+5ugg2K1wHilWR1T5PMAWQphSxVVA/amigD80f+Cc3/BJz9kT/AIJg+HNY0/8AZ4sb++1zxIytrHiLXbhbzVb0ISyI8iJFGkalidsUaBjy+5gDUn/BNX/gll+z7/wSy8E+KvAX7PuseIdYs/F+qJq14/iG4triVJkj8sLEba2tgEx2YMc96/SqigD8R/22P+CDP7I37ZPx7m/ap0zxB4t+FXxGvrcW2oa34I1FdOk1BNojzcK8UoLeWoQtGYywA378Cvq//gnZ/wAEyf2XP+CYvwu1D4a/s32d7LPrtwl3rOtatMtzqepTxgqjTyKkabYwzbEjREUsxxuZif0JooAKKKKACiiigD8Pv2J/+Tq/2mf+xwX/ANCua/TGvzO/Yn/5Or/aZ/7HBf8A0K5r9Ma7aXwo83EfxGFfHX/BQP8A5Mw+In/YJf8A9DWvsWvjr/goH/yZh8RP+wS//oa1UtmRD4kfznf8Eh/+Ujnwu/6/rr/0jnr/AEDq/wA/H/gkP/ykc+F3/X9df+kc9f6B1cB6p+RH/BVH9mL9o3466z8IPiT+zVpVnresfDjxEdYezvbhLaJ9jQyx7md0yu+AKwU7sNxjFeQf8Jn/AMFrv+iPeDP/AAar/wDJlfutRQB+FP8Awmf/AAWu/wCiPeDP/Bqv/wAmUf8ACZ/8Frv+iPeDP/Bqv/yZX7rUUAfj/wDsCftSfFH9p3wn4yk+MOjafomu+D/EdzoM8Omu7QlrZE3cuz5IcsNwbBGMAdTzf7bv7bt98E77Tv2f/wBn/Tj4t+MHi0iDSdJgAlFqJQcXFwMgAAAsqsQCAWYiME1+UvwU/bK8Q/AfU/jH8DvgVo0vif4s+OPidrUWg6bHGXSJWYKbmXOFKoQxAJA+Us5VFY1+5n/BPv8A4J92P7K9jf8Axd+Ll+PFvxe8Wgza7rsxMpiMpDNbWzMARGCBubAMhA4ChEUAP+Cff/BPux/ZXsb/AOLvxcvx4t+L3i0GbXddmJlMRlIZra2ZgCIwQNzYBkIHAUIi/plRRQB+RX/Bcr/lHH4u/wCv7Sf/AEsir+V3/glN/wAnreHP+vXUf/SaSv6ov+C5X/KOPxd/1/aT/wClkVfyu/8ABKb/AJPW8Of9euo/+k0la0P4kfVDW5/WfRRRXvlhW/oXiTUPDryPYBCZQA28Z6VgUUpRUlZgehf8LM8Rf3Yf++T/AI0f8LM8Rf3Yf++T/jXntFZfV6f8qCyPQv8AhZniL+7D/wB8n/Gj/hZniL+7D/3yf8a89oo+r0/5UFkehf8ACzPEX92H/vk/417Vos95daVBdX+PNlQO23p83I/SvliCPzp0h/vsB+dfXQAAwOAK4cbCEVFRViZC013SNDJIQqqMkngACnV5/wDEfUpLLQRbQnDXL7D/ALoGT/QVxU4c8lFdSTmNY+J10LoxaLGnlLkbpASW9xgjArI/4WZ4i/uw/wDfJ/xrz2ivaWGppW5S7I9C/wCFmeIv7sP/AHyf8aP+FmeIv7sP/fJ/xrz2in9Xp/yodkfRPgjxFf8AiG0nmvwgaNwo2DHBH1pnjHxjFoMRsrMh7txwOoQHuff0FeUaF4suPD2lz2tiv7+ZwQzDIUAenr+lcrNNLcStPOxd3OWYnJJNcywadRya93sK2oTTS3ErTzsXdzlmJySTUVFFd4wooooAKKKKAPyM/a9/4KBfCzUPhNrXg/4H+J7u38UrcwxRTW0M0BCxTKZdspUAAqpGQeQcdDXzboniT9mqx8Wr8UYP2lPFVl4mms1tZb1NEuDciI4YxGUPllBA/L0r9JP+CQHgXwR4n/Z+8XX/AIk0ax1GdPGd/GslzbxyuEFtaEKC6k4yScdMk1+r3/CovhR/0K+k/wDgFD/8RX5M8Hjs4UMdXqR1StG00lZvXSotdd/Q/ovGcWZFwfXxHD2Cw1b93OXNU56DlPmjC6fPh5+4uXSK6t3b0t/ON/wvj4X/APR2/jj/AMFN3/8AHKP+F8fC/wD6O38cf+Cm7/8Ajlf0c/8ACovhR/0K+k/+AUP/AMRR/wAKi+FH/Qr6T/4BQ/8AxFV/q3iv+fsf/Kv/AMtPL/4itlH/AECVf/LP/wCYj+cb/hfHwv8A+jt/HH/gpu//AI5R/wAL4+F//R2/jj/wU3f/AMcr+jn/AIVF8KP+hX0n/wAAof8A4ij/AIVF8KP+hX0n/wAAof8A4ij/AFbxX/P2P/lX/wCWh/xFbKP+gSr/AOWf/wAxH843/C+Phf8A9Hb+OP8AwU3f/wAco/4Xx8L/APo7fxx/4Kbv/wCOV/Rz/wAKi+FH/Qr6T/4BQ/8AxFH/AAqL4Uf9CvpP/gFD/wDEUf6t4r/n7H/yr/8ALQ/4itlH/QJV/wDLP/5iP53/AIgeKfHth+zPrv7SnwI/aS8VeLU8O31pZz2lzBNZ7ZbiRFG8Sucja24YVlPQnIIH1V+0bd3F/wD8FLfgjfXbb5ZvCt3I7YAyzQXpJwOOtfCviSGK3/ZA/aYggUJGnxCt1VVGAALzgADoBX3D+0D/AMpIfgZ/2KVz/wCk97Xl5dNupSv1nQdryav7aabXM21dJdT7rOKEKft0rNxpZhFS5KcZcrwVCajJ04U4vlc5WfL1P0Cooor9rP5OCiiigAooooA/kw/4Ks/8nreI/wDr107/ANJo6/rL/wCCKv8AyjM+Gn/cZ/8ATreV/Jp/wVZ/5PW8R/8AXrp3/pNHX9Zf/BFX/lGZ8NP+4z/6dbyvBr/xJepD3P1Mr8Gf28P+Utn7N3/Xhqn/AKBNX7zV+DP7eH/KWz9m7/rw1T/0CasRH6vUUUUAFFFFABXmHxm+Gfwy+L/wy1j4f/GKyt77w5fW7fbFuSESNEG7zA+QY2jxvWQEFCMgjFejXt7Z6bZzajqMyW9vbo0kssjBEREGWZmOAAAMkngCvxF8YeMPir/wVy+Kt7+zx+zze3Hh/wCB/h+4WPxV4qjUq+qupB+y2uRhgw5AIxgiSQbdiOAdr/wRg+KnxUb4jePv2cvA+o3Hjn4IeDpJF0DxReoYXgmLpts4iciVWVmfAwFCBwEWREP9C1eY/Bv4N/Df4A/DfS/hL8JdLi0fQtHiEVvbxD8Wd2PzPI7ZZ3YlmYkkk16dQAV/HV/wcb/8nR+Bv+xVH/pXcV/YrX8dX/Bxv/ydH4G/7FUf+ldxQB7L/wAEUv8Ak1jX/wDsa7r/ANI7Ov2Ar8f/APgil/yaxr//AGNd1/6R2dfsBWiPew38KIV8c/8ABQH/AJM98b/9e0H/AKURV9jV8c/8FAf+TPfG/wD17Qf+lEVednH+4Yj/AAT/APSWfV8Gf8lBl3/X+l/6cifdH7Iv/JqHww/7FLRf/SOKvoavnn9kX/k1D4Yf9ilov/pHFX0NWmC/3en/AIV+R8dxD/yNMX/18n/6Uz85Piv8c/8AgoN4a+Iur6F8Lvg9Y+IvD9tOVsdRfUobdriLAO4xvMGUg5HIGcZxg157/wANIf8ABUT/AKILp/8A4OLf/wCP1+rtFcM8srSk5LFVFfouSy8tYNnv4fi7A06UKcsmw0mkk5P293Zbu1dK73dklfZJH5Rf8NIf8FRP+iC6f/4OLf8A+P0f8NIf8FRP+iC6f/4OLf8A+P1+rtFT/ZVb/oMqf+U//kDb/XPAf9CPC/8Alx/80H5Rf8NIf8FRP+iC6f8A+Di3/wDj9H/DSH/BUT/ogun/APg4t/8A4/X6u0Uf2VW/6DKn/lP/AOQD/XPAf9CPC/8Alx/80H5Rf8NIf8FRP+iC6f8A+Di3/wDj9H/DSH/BUT/ogun/APg4t/8A4/X6u0Uf2VW/6DKn/lP/AOQD/XPAf9CPC/8Alx/80Hxr+zR8Uf2vPH3iTUbP9ov4d2vgnTre2D2s0F5HdtPMWAK/JK+0Bcnkc+vHP2VRRXpYajKlBQlNzfd2v+CS/A+UzXH08ZiXXpYeFGLt7kOblVu3PKctd3eT8rLQ/LD/AILGf8mWX3/YWsP/AEI19F+GP+Ra0/8A69ov/QBXzp/wWM/5Msvv+wtYf+hGvovwx/yLWn/9e0X/AKAK83C/8jXEf4Kf5zP0Cp/yRuXf9f8AE/8ApNA3K63T/Gmr6ZZx2NsI9kYwMgk88+tclRXunx84RkrSVzuv+Fha9/di/wC+T/jR/wALC17+7F/3yf8AGuFoosjP6vT/AJUd1/wsLXv7sX/fJ/xo/wCFha9/di/75P8AjXC0UWQfV6f8qO6/4WFr392L/vk/41e0zx1rV5qVvaSiLbLKiHCnOGIHrXm9XtMuI7PUre7lztilRzjrhSDSshSw9OztE+jNR1G00q0a9vG2ov5k+g968C1/X7vXrvzpvljXhEHRR/j6mjX9fu9eu/Om+WNeEQdFH+PqawqEjPDYZU1zS3CiiimdYV+Xt/4i0z9mP/grJ4f+I3ie9h07w98WNAl0e4uZ8xRJeWojCB3b5CS0VugYEFfMwQB8x/UKvlv9r79mDwz+1f8ABy8+HWrNHaalGRcaXqDJua1uU78EEo65Rxz8pyBuCkJmGJpe0g0tz9TKK/Gf9kP/AIKOyeHdaP7LP7dssXhLx9oKx20OrXkmyy1eMfKkplbCJI6gHcWCSHJBVvkH7JwzQ3MKXFu6yRyKGVlOVZTyCCOoNQeG007MlooooEFFFFABRRRQB8Vf8FAP2EfhF/wUe/Zt1D9lz436jrGleH9Su7S9luNDmhgvBJZyCRAr3EFxGFJHzZjJI6EV+DCf8Gev/BNqNBHH8QvioqqMADVtLAA/8FNf1eUUAfgz8av+DeH9i/47/sd/Cr9iXxl4q8cQ+FvhBPqU+j3lrfWK6lO2qStNL9qkeweJwrMQnlxR4GM5PNfFf/EHx/wTd/6KJ8Vf/Bvpf/ypr+rqigD8p9T/AOCQH7Nerftl/CH9uO613xP/AMJb8FvC9n4T0S1F1a/2fcWVlHdRJJdobQyvMRdyFmjmiUkLhRgg43wN/wCCLX7If7P3/BQzxZ/wUr8EXevy+OvF0mpTz2F3cWz6TbXGrMGuZreJLVJ1kch+XncYkfjkY/XGigD83P8Agn//AMEuvgB/wTh1/wCJfiL4Iax4g1Wf4qatHrGrLrlxbTpDPG07BbcW9tblUzcPkOZDwOeuf0joooAKKKKAPIvjb8d/hV+zp4I/4WN8YtWTRtHFzBaee6NJmW4baoCoGY45ZsA4VSTwDXeeFPFnhjx34cs/GHgvULfVdK1GITW13ayCWGWNujKykgj+tHivwn4Y8d+HLzwf400+31XStRiMNzaXUYlhljbqrKwII/rX4i+Pfh38Qv8Agk98SY/jZ8Hbq51P4Ca1fxJ4l8PzyNN/YbXcqx/abUHJwCyquMs+BHIWyjqAfu3RWH4Y8S6F4z8Naf4w8LXSXumatbRXlpcR8pNBOgeN19mUgj2NblABX47/APBbCS51j9mHw38M9LZvt/izxdpunQIAMMWSZuSxAADBf4hz7ZI/Yivwx+P2tyftVf8ABTnwx8MdPgW48MfA23bVdSmDfI2q3ipJEoKkgtG6wkKeQY5QaEXThzSUe5+k1FFFaH0IV/J//wAFev8Ak8q9/wCwVYf+gmv6wK/k/wD+CvX/ACeVe/8AYKsP/QTSexx47+H8z+nr/ghp/wAo4/CP/X9q3/pZLX67V+RP/BDT/lHH4R/6/tW/9LJa/XaoPHP5+v2cP+Uv37SX/Xppf/oqCv19r8gv2cP+Uv37SX/Xppf/AKKgr9faACiiigAooryv40/Gn4cfs+/DjUfir8VdRTTdH01Nzu3LyOfuxxr1eRzwqjkn2yQAfLv/AAUc+Gv7Nnjv9mzVNY/aRvhoVroQNzpmswgG9sr0j939mGQZGkICmEECQDqpUOvZf8Eg/jn+0p8fP2RrHxZ+0jYOLi2nNrpOrz5W41axjVds8qEckNlPNz+927iM5Z/gD9n79n74q/8ABWT4q2X7U/7U9lPonwZ0Sdn8K+FXYr/aW0486bGN0bY+d/8Alp9xMICT/SDY2NjpdjDpmmQpb21uixRRRKESNEGFVVGAAAMAAYAoAtV/O3+1v4m/aeT4667p37bN94u8OfAz7ZOum3HgSCNrWWy8xhEdSnjZ50DRhfMR1OWzsUDBr+iSmuiyKUcBlYYIPIINedmeXvF01BVHGzv5PyktLryuj6rhLiaOS4mdeWGjV5la7spw/vUpNSUJ/wB5xlp0Phn9ifwZ+wZpHg8at+xhFoVxD5YW4u7NhPqOG7XDyk3Kk9dkm3HYCvuivkmD9hv9mXSvjfpX7RHhHw3D4e8VaVJK/n6UTaRXImjaNxPAmInyHLFtocsAS1fV91LJBbSTwxNO6KWWNCAzkDhQWIXJ6DJA9TV4ClUpUvZ1IRjbbk2a72tp6a+pzcSYvDYzGfWcNXq1edXk61nNSu9HNSamrWalaO9uVW1/n+/b6/am+CMP/BRL4bfDj41awdP8HfC5T4g1LZBLcmXV5kElpEY4Uc/uwIpMkY2u4PUV55pn7c/7NkH/AAVN8N/GT4E6+17oPxJ0+Lw74mSS1ntBHeBhHaznz0QHJWFSwztVXJI3V+jv/BOr9nn4vfDVviL8cf2jtMXS/HnxH1+W9uLUTxXX2exiz9niEkLyJgF3wA33QgPIr0T/AIKNfsy6r+1V+yxrXgDwjAJvE1hJFquhgusR+22pOFDuVVTJG0kYZmVQWBJAFfMTwOPqUZ42LSm5e0UXF83u6Rjfm0vFWty9WvM/XaHEXDmFx9Dh+rGUqMaP1WdaNaHsf3vvVKvJ7J3UasuZSVXVQi9lY+Mf+Ck/gBvip+25+zl8OWv7rTrfWX161u5rKUwTtZvHCLmJZFwy+dDviJHO1jXn/wC3r+yz8FP2OZvhL+0F+zHoy+D9esPGumaTK1jLKEubS5WVnSVWZt+fK2kn7yuwbPGPoTVfgz+1T8U/jd+zD8ZviF4YNpe+C7PVE8Xsby0f7LdTQJCrgJM3mCd0LgRb9oYBsGvYP+ClPwJ+Kvx/+Fngrw58JNK/ta90nxpperXcfnwweXZ2yTiSTMzxq20uvyqSxzwDzVYnA+2p4zEKi+dyi4Xi+bSENuqad07dVZ7EZVxF9RxWRZW8dFYeFOrCso1F7N3rYhNTs+VpxcXHm05ZKS+K7+TP+CkHhPWNJ/ao8F/Gz40eAdW+J3wd0jRZrabS9KU3AsdUeRy1zNbhgHBjMaguUQ4ALZUBr/7CsX7AXj39oPVfHX7IniW40D+1dGez1nwDcRPbwXHzEtP5UpKsyAhSIWZUGegdgfqH9pa0/bj+G3x60r44/s52w8f+En05rDVfBk17FYFZt24XUEso27iAoPVhggAhzt8b+HXwM+Pnx/8A22/C/wC2B8V/h/a/CrT/AAbYXUEVsL6G91PV5ruOSIGdrYBUjiEh4f5u3Ib5XUw8o49zhTcm5ptSg9tE5RqLSyX2ZX7W2IwuZ06nDSo18VGnCOHnFOnXjZyTlKNKphJ3k5ylZe1pqNrqfM7NnzZ8Evi9d/sg/sUftFfA2/uGj1L4R6rqFhpBY/MLbXCV06QDr80ztJ9DVb9hPxvrH7Avwp+O/wAEfiLLm/8Ah5p1l4ttUl4E0upWCFo0/wBkTrFH/vP65r2L9r39hX4z/FX9uPw94++H1is3w98VSaLL42Yzwx5bRJyybo3dZH3whEXYj4I54pv/AAUM/YU+Nn7QP7T3hXxb8KLUt4W8U2FpoHjiVLiGHy9Ps7+K7DlJHV5GIA2+UrN+6AOAeeOWGxtF+0pU23R9yCt8UZcyv6JOnd9OVnu0c24fx8fquMxNOMceliK7bX7upS9k3F9pSccTyxdnL2sOrV/lz4maj44/ZO/4Ja/DL4eaTe32ma98XdahuNev7JXbUPI1XdczeWEIYzmLyYSvVgGXqa5r4sWv/BPcfBK50L9n74aeOPDHjfRrU3Hh/XbbRr2G+XUYF3RNLcBtzB3ADkg7QSVAIGP2g/bq/ZS1X9pz4J2Phf4c38Wh+KfCmpWut+HbmQYgivLPIRH2qxCFWIGFO1gpwQMH5j8YfGH/AIKofErwK3wh8OfB+08FeJdQhFrd+K31y2lsbQNw9xBDHulDEZKjLtGcHDGrxmWypVJUpRbhyRjD9257JppNP3ZN63dr6O+mmORcWU8bhqWMo1IwrPEValZPExw696ScZSjKLdamoe4ox5mrOPJ76v8AIn7ZPiP4j/tHfs5fssXfi2S70HxT4s8S2em3syIbW5hup/8ARJJVVgDGxOXXjjIxxiv2Y/Zy/Y3/AGdv2Thqh+BOgf2M+tJbJeu1xNcvN9lDhDmZ3K/fYkLgEnOK+T/2nf2Yvjp4wH7OdhoUk/jO6+H/AIv0nU/EerXE0FvI0Ns8bT3JSR0LZIYiOPewGAAe/wCp1ezlmAti6tavC80oJSa1+BKVn57Oz8j4Li3iXnyXB5fl1dRoSlXc6cJPls67lTU46NpKzgpxTS1SV2c94r0rwprfhy803xxbWl3pEkTfaor5EktmiHJ8xZAUKjqd3Ffzl/HeL9kHwP8AEW5h/wCCaet+J7b4pSkn+z/h2raho8jg8G8jc/ZvJB6iJyidWSv3h/aD/Z1+Gf7T3giD4cfFyG4u9Eivob6S2gne3E7QBgqSNGQ5j+bJCspyBzxXX/DH4RfC74L+G08IfCfQLHw9pqY/cWMKwhiP4nIGXb1ZiWPc10Zll9TFzULRjFfa1c1/h25fW79DzOE+J8LklCVbnq1KknrRTUaEl09rfn9on/JyR2Xv9vLf2Rb79pXUfgVpN1+1pa2ln41Jk+1R2nl48vd+7L+UzRiQr94IduegFfS9FFerQpezpxp8zdla71b835nxmYYtYrE1cSqcYc8m+WCtGN3e0Vd2S2SvsFFFFanGf//Q/v4ooooA/wA5/wD4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/7FXRv/SSKv5Xf+CjH/J+Hxc/7GnUv/RzV/VF+yh/ya18Nf8AsVdG/wDSSKuXFbI97Ifjn6Hv1FFFcJ9MFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFfmJ8C/+Unfxw/7BWif+kttX6d1+YnwL/wCUnfxw/wCwVon/AKS21aU9pehy4n4qX+L/ANtkfp3RRRWZ1BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/OR/wW3/5Kl4I/wCwVcf+jhX6t/8ABuP/AMmu+Of+xpP/AKSW9flJ/wAFt/8AkqXgj/sFXH/o4V+rf/BuP/ya745/7Gk/+klvXp0PgR8Vmf8AvU/66H9DlFFFanAFFFFAHx18IP2Ff2fvgt8ffGX7TPhmxnu/GHjW6luri8vnWb7J55zLHagIvlpI3LZLOem7bha+xaKKACiiigAr8N/+Dgv/AJMPtP8AsadP/wDRNzX7kV+G/wDwcF/8mH2n/Y06f/6JuaAPxf8A+CAX/J4/iX/sTLz/ANLrGv6+K/kH/wCCAX/J4/iX/sTLz/0usa/r4r4vPP8Aen6I9bB/wwooorxzqCiiigD8Wf8Agpb/AMnr/smf9jLqH/o3Tq/Y6vxz/wCCq2g/FDTfjX+z/wDHTwN4N1nxjpngPWb++1WLRbV7qaKIvZSDKoDt3LDJtZsJlcFhkV0Phf8A4LR/sa396NL+Ig1/wRdBN0kesaZIdrAkFcWpnc8ggEqPfByB9vk0k8JBJ66/mzyMUn7Rv+tj9a6K+LfDf/BRb9hvxUqvpnxP0KIMwUfbLj7Gckkci4EeBxyTwByeCK9dh/ai/ZnuYUuLf4i+GJI5FDKy6vaFWU8ggiXkGvVOY91orxTUv2lf2c9GaVNY8f8Ahu0aBd0gm1W1jKLjOW3SDAxzz2rwbx9/wUq/YW+HMMsutfErSLxo1B2aVI2pli3QL9kWUE+vOB3IoA+5KK/Hq9/4K3WHxFkXSP2RPhT4s+JF9IjFZhbGzsUIKqS0oEzALuO4siDO1d3zZDIfCH/BYD9pVdvirWNA+B2iTeU3l6eg1DVNokOQSHkUHb8zbZYs4RMDMmOeti6NL+JNL+uxpGlOXwo/VXxx8R/h58MdI/4SD4la9p3h6w3BftOp3UVpDuJAA3ysq5JIHXqa/N74j/8ABYf9kHwnqknhj4dzap8QNZMW6C10CzaVZJCpbaJJPLBCgZdkD7QehIKhngL/AII3fs02mrQ+MPj5quvfFLxAG3zXeu30nlO+8v8A6uNg5XcSSsksgYk5yCRX6W/Df4S/C/4PaDH4Y+Ffh/T/AA9YRosfk2FukAYJkjcVALnLMSzEkliSckmvIrcQUo6U4t/gv6+R0wwUn8TsflW/7XH/AAU0+KM003wQ/Z4Gh2PlL5U/iy+W3l3NuIZ4He1kwQMGNclTglgGFWbX4f8A/BaT4heZca3408D+AYZnLBLC0a9ni29FVZoZ4yjerSlhX7G0V5tTPsRL4UkdEcFTW5+Nf/Dvz9vvW9Oz4i/ap1a1uZ/mmjs9IwiNnOEdbuFsfRV44xip5v8Agl/+0Bq8z/8ACTftP+PbiF4jGY7eeW2BB/vAXTKRgkHK5PrgYr9jaK5nm+Lf2/wX+Rf1Wl2Pmz9kn9mvQP2SfgZpfwN8Nalcata6ZLcyi6uVVJHa5laU/KvAA3YHXpmvpOiivPnOU5OUnqzdJJWQUUUVIwooooA/jh/4Lv8A/J7dp/2LNh/6NuK/cX/g3z/5MQvP+xq1D/0TbV+HX/Bd/wD5PbtP+xZsP/RtxX7i/wDBvn/yYhef9jVqH/om2r7/AC7/AHWn6Hi1/wCJI/cmiiiu0xCiiigAr4v8OfsD/s6eHP2s9c/bRGnz33jXW0iVWvJFltrJ0iWFpbaPYCkkiKAzMzEDITYGYH7QooAKKKKACiiigD8if+C5f/KOPxd/1/aT/wClkVfzGf8ABHz/AJPPsf8AsE3/AP6AK/pz/wCC5f8Ayjj8Xf8AX9pP/pZFX8xn/BHz/k8+x/7BN/8A+gCrh8SIq/Az+tGiiiu08o/Nv4l/8pafgF/2Cdf/APSK6r9tK/Ev4l/8pafgF/2Cdf8A/SK6r9tK46vxM9Oh8CCiiiszUKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/D79if/AJOr/aZ/7HBf/Qrmv0xr8zv2J/8Ak6v9pn/scF/9Cua/TGu2l8KPNxH8RhXx1/wUD/5Mw+In/YJf/wBDWvsWvjr/AIKB/wDJmHxE/wCwS/8A6GtVLZkQ+JH853/BIf8A5SOfC7/r+uv/AEjnr/QOr/Px/wCCQ/8Aykc+F3/X9df+kc9f6B1cB6oUUUUAFFFFAHxV+zr+wH+zv+zH8VPGXxr8AWdzd+JvG1/c3tzfajIk8lrHdyGZ7a1KonlwbznB3SNgb3bauPtWiigAooooA/Ir/guV/wAo4/F3/X9pP/pZFX8rv/BKb/k9bw5/166j/wCk0lf1Rf8ABcr/AJRx+Lv+v7Sf/SyKv5Xf+CU3/J63hz/r11H/ANJpK1ofxI+qGtz+s+iiivfLCiiigAooooAKKKKANLRv+Qxaf9do/wD0IV9XV8o6N/yGLT/rtH/6EK+rq8zMN4kyCvJfir/x72X+8/8AIV61XkvxV/497L/ef+Qrnwn8WP8AXQS3PGaKKK9ssKKKKACiiigAooooAKKKKACiiigD5I/4Iyf8m5+MP+x21D/0ls6/XevyI/4Iyf8AJufjD/sdtQ/9JbOv13r4Hh3/AJFtD0/Vn3vip/yVmY/4/wD21BRRRXtH58FFFFABRRRQB/LB4q/5NF/aa/7KHB/6W19u/tA/8pIfgZ/2KVz/AOk97XxF4q/5NF/aa/7KHB/6W19u/tA/8pIfgZ/2KVz/AOk97X5tlv8AEpf46H/p+of13nm+I/694/8A9V+FP0Cooor9tP5ICiiigAooooA/kw/4Ks/8nreI/wDr107/ANJo6/rL/wCCKv8AyjM+Gn/cZ/8ATreV/Jp/wVZ/5PW8R/8AXrp3/pNHX9Zf/BFX/lGZ8NP+4z/6dbyvBr/xJepD3P1Mr84/20/+CdPh/wDbC+IXhb4sW/jjXvA3iLwnBNbWd5orrG4jmJLEMNsiPyRuV8FSRiv0corER+J//Dov4rf9HQ/E3/wZTf8Ax6j/AIdF/Fb/AKOh+Jv/AIMpv/j1fthRQB+J/wDw6L+K3/R0PxN/8GU3/wAerl/+CRXxO8Y+O/2Jbfx18WfEN5rN3Fqeo+dqGr3b3EiwwkH5pZmYhEGepwBX7sV/FV/wTt+GX7Sv7cnwVsP2PPBMs/hP4U6RqE974w8QRDEt4Z3DrYwE8MxQAleVGd8mQERwD9CvGHjD4q/8Fcvire/s8fs83tx4f+B/h+4WPxV4qjUq+qupB+y2uRhgw5AIxgiSQbdiP+/vwb+Dfw3+APw30v4S/CXS4tH0LR4hFb28Q/Fndj8zyO2Wd2JZmJJJNHwb+Dfw3+APw30v4S/CXS4tH0LR4hFb28Q/Fndj8zyO2Wd2JZmJJJNenUAFFFFABX8dX/Bxv/ydH4G/7FUf+ldxX9itfx1f8HG//J0fgb/sVR/6V3FAHsv/AARS/wCTWNf/AOxruv8A0js6/YCvx/8A+CKX/JrGv/8AY13X/pHZ1+wFaI97DfwohXxz/wAFAf8Akz3xv/17Qf8ApRFX2NXxz/wUB/5M98b/APXtB/6URV52cf7hiP8ABP8A9JZ9XwZ/yUGXf9f6X/pyJ90fsi/8mofDD/sUtF/9I4q+hq+ef2Rf+TUPhh/2KWi/+kcVfQ1aYL/d6f8AhX5Hx3EP/I0xf/Xyf/pTCivzm+LP/BM34P8Axg+I2rfEzXPFfi7T7vWJvPlt9P1CKG2RsAERobdiAcZOWPJNed/8OhPgV/0PHjr/AMGsP/yLXDPFY9Sajhk10fPa/wD5Ke/h8m4ZnShKtm04zaV19Xbs7aq/tFez0vZXP1dor8ov+HQnwK/6Hjx1/wCDWH/5Fo/4dCfAr/oePHX/AINYf/kWp+uZj/0Cr/wYv/kTb+w+Ff8AocT/APCaX/y0/V2ivyi/4dCfAr/oePHX/g1h/wDkWj/h0J8Cv+h48df+DWH/AORaPrmY/wDQKv8AwYv/AJEP7D4V/wChxP8A8Jpf/LT9XaK/KL/h0J8Cv+h48df+DWH/AORaP+HQnwK/6Hjx1/4NYf8A5Fo+uZj/ANAq/wDBi/8AkQ/sPhX/AKHE/wDwml/8tP1dor42/Zo/Yk+HP7LniPUfE/g3XvEGs3GpWwtXXWruO5SNAwfKBIYypJAzyQRX2TXpYadWdNSrQ5Zdr3/GyPk81w+Do4h08BXdWnpaThyN6a+7eVrbb6n5Yf8ABYz/AJMsvv8AsLWH/oRr6L8Mf8i1p/8A17Rf+gCvnT/gsZ/yZZff9haw/wDQjX0X4Y/5FrT/APr2i/8AQBXm4X/ka4j/AAU/zmfoNT/kjcu/6/4n/wBJoG5RRRXunyIUUUUAFFFFABRRRQAUUUUAFFFFABXP+LPFGjeCPCup+NPEcvkadpFpNe3UmM7IbdDI7Y74VSa6Cvkf9vO6ns/2OfiJNbNtY6PMhOM/LIQrDn1BIoJk7Js+V/2GP2SvAv7d2i+N/wBsD9q3Rv7Zi8eXc1j4ftJZpF+wabZyFN0LRspRxInlhhgjy37SMD7nbf8ABHfRfB7C1+Dnxl8eeFbBZfOS1gvxtRgFClfKEGCu0AEgnAAzxk/dP7Cuh6b4e/Yw+FdhpMaxRSeFdKuWVQFBlurdJpDgADLO7EnqScnJya+rKzPnm23dlHTLWax023sriZriSGJEaVvvOygAsck8nr1NXqKKBBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVzXjLwb4V+IXhW/8ABHjewh1TSNUha3urW4XfHLG/UEH9D1B5HNdLRQB+RX/BMTxF4g+Fvir4l/sI+Mr2a+n+GGph9HnuFl8ybSbwl4iS7FV2qUYIqogEnybxkj9da/CT47fGT4a/shf8Fe7f4pfEvVF0jQfFfgAR6hdPA8oR1ndUUCJWkYk2cX3VZucYx03/ABd/wVJ+K/x+uz4I/wCCe3w+vNcmdQs/iXXovs2m2m7rtXcAzAZI8yRTuUgRSDqDUW3ZH2D+3n+2hpn7LvgaPwp4JU6v8TPFKm28N6PBH58zTSHYs8kYOREjdM/6xxtAIDlfBf2IP2aNV/Zw+FlzH45uV1Hxj4nvH1XXrwHeXuZeQm88sEycnoXZiODWP+zB+xw3wl8RXfxp+NeuTeO/ibqoK3Ot3jPJ9njYBfKtxISVUKNu7Cnb8qhU+WvuWrSPWwuG5PeluFFFFM7Qr+T/AP4K9f8AJ5V7/wBgqw/9BNf1gV/J/wD8Fev+Tyr3/sFWH/oJpPY48d/D+Z/T1/wQ0/5Rx+Ef+v7Vv/SyWv12r8if+CGn/KOPwj/1/at/6WS1+u1QeOfkP8cf+CTdl8UP2ivE/wC0f8PPiz4s+HuqeLRb/b4NCn8hWNvEkQ+dGRyrbA+1iQGJxgYA4f8A4dF/Fb/o6H4m/wDgym/+PV+2FFAH4n/8Oi/it/0dD8Tf/BlN/wDHq+Wf21/2Cfjj+y5+y94t+Pfhz9pL4japeeHIIJo7W51S4WKXzJ44iGKzhhw5II7+tf0rV+bv/BXj/lHH8Uf+vG1/9LIKAMjRv2gvBvwg/Y+8M/HX45az9ntY/Dum3V3dTHfNc3E1sjbUHWSWVycKOST6ZI/O39n79n74q/8ABWT4q2X7U/7U9lPonwZ0Sdn8K+FXYr/aW0486bGN0bY+d/8Alp9xMICT59+xH+yb8Yf+CkI8GfGj9ri3fS/hD4IsLSy8NeGgWVNVe0iSI3EucExOUyzkAyfcTCAk/wBQVjY2Ol2MOmaZClvbW6LFFFEoRI0QYVVUYAAAwABgCgAsbGx0uxh0zTIUt7a3RYooolCJGiDCqqjAAAGAAMAVaoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD/9H+/iiiigD/ADn/APgox/yfh8XP+xp1L/0c1f1Rfsof8mtfDX/sVdG/9JIq/ld/4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/wCxV0b/ANJIq5cVsj3sh+Ofoe/UUUVwn0wUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV+YnwL/5Sd/HD/sFaJ/6S21fp3X5ifAv/AJSd/HD/ALBWif8ApLbVpT2l6HLifipf4v8A22R+ndFFFZnUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH85H/Bbf/kqXgj/ALBVx/6OFfq3/wAG5H/Jrvjk/wDU0n/0kt6/KT/gtv8A8lS8Ef8AYKuP/Rwr9XP+Dcj/AJNc8c/9jUf/AEkt69Oh8CPisz/3qf8AXQ/obooorU4AooooAKKKKACiiigAr8N/+Dgv/kxCz/7GnT//AETc1+5Ffht/wcGf8mIWf/Y1af8A+ibmgD8YP+CAX/J4/iX/ALEy8/8AS6xr+viv5B/+CAX/ACeP4l/7Ey8/9LrGv6+K+Lzz/en6I9bB/wAMKKKK8c6gooooAK57xJ4R8J+MrBtK8X6XaaraupVobyFJ4yrYyCrgjBwM8dq6GimnbVAfI3in9gb9irxkk6638LvDYa4UiR7bT4rSQ5JJO+BY2DEnlgQ3vXkGof8ABJX/AIJ56lCILn4b26qG3Ziv76Js890uFOOemcV+jFFbRxVaO02vmyHTg90j84tO/wCCSH/BPHS9/wBm+HELb8Z87UL+bp6eZctjr2xmvd/A37D/AOx/8Nrv+0fBvw18PWt0GLLO9hFPMhKlTsklDugKkghSAQea+pqKJYqtL4pt/NgqcFskRQQQ20KW1sixxxqFVVGFVRwAAOgFS0UVgWFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAfxw/8ABd//AJPbtP8AsWbD/wBG3FfuL/wb5/8AJiF5/wBjVqH/AKJtq/Dr/gu//wAnt2n/AGLNh/6NuK/cX/g3z/5MQvP+xq1D/wBE21ff5d/utP0PFr/xJH7k0UUV2mIUUUUAFFFFABRRRQAUUUUAfkT/AMFy/wDlHH4u/wCv7Sf/AEsir+Yz/gj5/wAnn2P/AGCb/wD9AFf05/8ABcv/AJRx+Lv+v7Sf/SyKv5jP+CPn/J59j/2Cb/8A9AFXD4kRV+Bn9aNFFFdp5R+bfxL/AOUtPwC/7BOv/wDpFdV+2lfiX8S/+UtPwC/7BOv/APpFdV+2lcdX4menQ+BBRRRWZqFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAfh9+xP/wAnV/tM/wDY4L/6Fc1+mNfmd+xP/wAnV/tM/wDY4L/6Fc1+mNdtL4UebiP4jCvjr/goH/yZh8RP+wS//oa19i18df8ABQP/AJMw+In/AGCX/wDQ1qpbMiHxI/nO/wCCQ/8Aykc+F3/X9df+kc9f6B1f5+P/AASH/wCUjnwu/wCv66/9I56/0Dq4D1QooooAKKKKACiiigAooooA/Ir/AILlf8o4/F3/AF/aT/6WRV/K7/wSm/5PW8Of9euo/wDpNJX9UX/Bcr/lHH4u/wCv7Sf/AEsir+V3/glN/wAnreHP+vXUf/SaStaH8SPqhrc/rPooor3ywooooAKKKKACiiigDS0b/kMWn/XaP/0IV9XV8o6N/wAhi0/67R/+hCvq6vMzDeJMgryX4q/8e9l/vP8AyFetV5L8Vf8Aj3sv95/5CufCfxY/10EtzxmiiivbLCiiigAooooAKKKKACiiigAooooA+SP+CMn/ACbn4w/7HbUP/SWzr9d6/Ij/AIIyf8m5+MP+x21D/wBJbOv13r4Hh3/kW0PT9Wfe+Kn/ACVmY/4//bUFFFRzTQ28LXFwwSNAWZmOAAOSST0Ar2j8+SJKK+OvjD+33+yR8DpZNP8AGnjOym1CMsjWWmk39wrp1R1gDiJvaUpXx/qf/BTj4qfElC/7K3wc1nX7GSNjFqusMLK2ZxkfKq7kkUHB/wBerEcYBOR5lbOMHTn7Pn5p/wAsU5S+6N2fY5dwBn2MpLExwrhRf/Lyq40qfynUcYv5Nn7C0V+Ll146/wCCsPxCV5kvvB/gOMuwVIomupgpBA++t1GcHB5I5PTHy1mv8Gf+CgWuypP4i+P01qxLs4stMiUAt6BGhBHTggBe3u1jMVP+Fg6j9VGP/pUk/wADt/1JwlL/AHvOcLDyjKrVf/lOlKP3SPzA8a/Fiyh8BfHT9nHTtG1bUte8WeOXu7KSztxNbhbS7LOrkN5m8gfKFjb3Ir9T/gz+wz8Ofhr8QtH+NU2ueItZ1/T7VkiGr3aTpF58bI4wIUfgSOApbAJJxnmvQP2W/wBmqX9nHRtdh1TxDN4m1PxFqDaheXssIg3SMP7m+Q7iSxZi5yT0Hf6lrPh3hRUVHE5hFOorcsWl7lpSktU2m7u9+h9hx54m/WHUy3IJuOHlzc803++5qVOnL3ZRjKEbQtbrdt72Ciiivuj8VCiiigAooooA/kw/4Ks/8nreI/8Ar107/wBJo6/rL/4Iq/8AKMz4af8AcZ/9Ot5X8mn/AAVZ/wCT1vEf/Xrp3/pNHX9Zf/BFX/lGZ8NP+4z/AOnW8rwa/wDEl6kPc/UyiiisRBRRRQAVi6B4b8O+FdPGkeF7C2020DFhDaxLDGGbqdqADJ7nFbVFABRRRQAUUUUAFfx1f8HG/wDydH4G/wCxVH/pXcV/YrX8dX/Bxv8A8nR+Bv8AsVR/6V3FAHsv/BFL/k1jX/8Asa7r/wBI7Ov2Ar8f/wDgil/yaxr/AP2Nd1/6R2dfsBWiPew38KIV8c/8FAf+TPfG/wD17Qf+lEVfY1fHP/BQH/kz3xv/ANe0H/pRFXnZx/uGI/wT/wDSWfV8Gf8AJQZd/wBf6X/pyJ90fsi/8mofDD/sUtF/9I4q+hq+ef2Rf+TUPhh/2KWi/wDpHFX0NWmC/wB3p/4V+R8dxD/yNMX/ANfJ/wDpTCivzm+LP/BTr4DfBz4jat8MfE2ieJbm/wBGm8iaWzsY5YGbAOUczKSOfQc153/w+G/Zp/6F3xd/4LY//kiuGefZfCThKsk1oz38P4b8T16UK9HL6jhJJppaNNXT36o/V2ivyi/4fDfs0/8AQu+Lv/BbH/8AJFH/AA+G/Zp/6F3xd/4LY/8A5Iqf9Yct/wCf8Tb/AIhfxX/0Lqn3L/M/V2ivyi/4fDfs0/8AQu+Lv/BbH/8AJFH/AA+G/Zp/6F3xd/4LY/8A5Io/1hy3/n/EP+IX8V/9C6p9y/zP1dor8ov+Hw37NP8A0Lvi7/wWx/8AyRR/w+G/Zp/6F3xd/wCC2P8A+SKP9Yct/wCf8Q/4hfxX/wBC6p9y/wAz9XaK+Nv2aP24fhR+1T4j1Hwx8PtM1qwuNMthdStqlqlujIzBMIVlck5PPGMV9k16WGxNLEU1Voy5o90fJ5rlGMyzEPCY+k6dVWbi99Vdfej8sP8AgsZ/yZZff9haw/8AQjX0X4Y/5FrT/wDr2i/9AFfOn/BYz/kyy+/7C1h/6Ea+i/DH/Itaf/17Rf8AoArzcL/yNcR/gp/nM/Qan/JG5d/1/wAT/wCk0Dcooor3T5EKKKKACiiigAooooAKKKKACiiigArxf9ov4ZyfGT4FeLPhhbyPHPrOmT28DJtyJtuY/vELjeFyCRkZ5HUe0UUCaurM8T/4JX/GFPiz+xf4V0++Bi1bwfEfDd/buU8yF9OxHEGVcMuYRGcOobOc7vvH9FK/nz+IDeNP+CbP7QeqftV/DfSZtX+Fni8LH4p0PTwsf2C5AAjuo1Py/M5Zs/Ku52QlQyEftp8GPjl8Kf2hPA9t8RPhBrVvrWl3IB3wtiSJj1SWM4eNx3VwD+HNZs8CrTcJOLPWKKKKDMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiuH+JfxH8G/CHwDq/xO+IV6mnaLods93dzv/CiDoo6s7HCogyzsQqgkgUAfi38ZPC3hP46/8FepfD3jSwh1rTfBHgeJza30CzWyXMswdTsdWRm23QYEjORwflFfpZaWlrp9rFYWMSQwQIscccahURFGAqgcAAcADpX5r/8ABOjwlrfjGw8X/tlePTI+u/FPU57qETZDQabBI6QoB2BIO3HHlrHjiv0wq1se1hIctNX6hRRRTOoKKKKACv5P/wDgr1/yeVe/9gqw/wDQTX9YFfyf/wDBXr/k8q9/7BVh/wCgmk9jjx38P5n9PX/BDT/lHH4R/wCv7Vv/AEslr9dq/In/AIIaf8o4/CP/AF/at/6WS1+u1QeOFFFFABWVrmhaJ4m0i48P+JLODULC8QxT21zGssMqN1V0YFWB7ggitWigCrY2NjpdjDpmmQpb21uixRRRKESNEGFVVGAAAMAAYAq1RRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/9L+/iiiigD/ADn/APgox/yfh8XP+xp1L/0c1f1Rfsof8mtfDX/sVdG/9JIq/ld/4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/wCxV0b/ANJIq5cVsj3sh+Ofoe/UUUVwn0wUUUUAFFFFABRXEePfiX8PfhZow8Q/EjW7LQ7JnEazX06woznoqliMn2FfBmr/APBSzwT4o1dvC37MPgzxF8VNWAfCaTZypbgowU7pDGzhcEMXERUAjJ54uMJS2RhWxNKl/EkkfpVRX5/aV4O/4LD/ABiUmw8P+EfhfZSP8smpTm7u1Te3aM3CEhVA5iUNuyMfwdTZ/wDBKb9pT4kFbv8AaO/aF1u6SXDT2Hh+3FhCGKMCFcOEI3MR/wAe4yo6An5dlhZdTzamd0F8Kb/D+vuPrzXvE/hvwrZtqPifULbTbdQWMt1KsKADGSWcgYGRmvn3xL+2p+yZ4S3jWPiHoRaPO5ba8S6cEZyCsBc5GDxjP5itXwz/AMEQP2EdIPm+J7DW/E8xZC02p6pKHYIAME232cYbHPGfQivp7wh/wTc/YR8EOz6N8LNAnLNuP2+2/tAZxjgXRlAGOw4zz1rRYVdWcc8+n9mC+/8A4Y/OrV/+Cof7EOksY18Ym7cEArb2F4/BGc7jCFI+jE5/HHBT/wDBXH9kxr5dP0Qa5qsrlgotNPJJC85Ad0YgjJ6ZwOcV+6Gj/s//AAG8OzfafD/gjQLGTcrbrfTbeJtycqcrGDkdvSvTtP0vTNIhNtpVtFaxs24rEgRSx4zgAc4Aq1hYGDzvEPZL7n/mfzup/wAFXPgtc6h/Zuk+CfHF9I33PI0uJt+Bk4U3IbjnPHb0qW//AOCn3hWPZ/Znws8fzZzu83Skjx6YxM+f0r+iyin9WgQ85xPdfcfzp2H/AAU+8Kyb/wC0/hZ4/hxjb5WlJJn1zmZMfrUd3/wVY+D2m3aWWseBPHdk74P7/SoUwpON2PtOccHoD0r+jCij6tAFnOJ7r7j+dNv+Ctv7KlnMbbXYNf0yTaGVbrT9rMpyMgLI3GR3xXeaR/wVD/Yh1ZhG3jE2jkkBbiwvE4AzncISoH1YHP4Z/ea9sbLUbZrPUIUnhfG6ORQynByMg5HUZrzHV/gL8DPEG7+3vBehX25zKftGnW8uXOfmO5DzyeevNJ4WBazvELdL7v8Agn5i+Gf22P2SvF0og0b4haGHYKVW5ultS2/oAJ9mW/2RyPSvfvD/AIx8IeLIvP8ACuq2epoRu3Wk6TDHHOUJ45H5ivR/FP8AwTt/YZ8YY/tb4VeG4dqNH/oNjHY8N1/49hFk+jdR2NfKniv/AIIf/sE69LJP4e0rWPDbsqiNtN1SVjC6/wAaG6+0fN/vZHoKh4VdGbwz6f2oL77f5n0RRXxfqX/BJv44/DrN1+zJ+0B4j0tY5PMjsPECDUbdvmUjJDJGpADFv9HYScKQBkng9R8Af8Fj/grBLc6hpnhL4rWUEXmObCT7LeMq7/uqwtF3/dZlWOTIwqfMTWbwsuh1087ov401+P8AX3H6GUV+Zg/4KUaP8PNbTw3+1Z8O/E3wvupMCOW/tJJ7VyHKMUkEcbyIMEq8cbBgGx0Ab7s+Gnxf+F3xk0Z/EHws16y120ify5Xs5RIYn5+V1HzITjIDAZHI4waxlTlHdHpUcVRq/wAOSf8AXY9HoooqDoCiiigAooooAK/MT4F/8pO/jh/2CtE/9Jbav07r8xPgX/yk7+OH/YK0T/0ltq0p7S9DlxPxUv8AF/7bI/TuiiiszqCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD+cj/AILb/wDJUvBH/YKuP/Rwr9XP+Dcj/k1zxz/2NR/9JLevyj/4Lb/8lS8Ef9gq4/8ARwr9XP8Ag3I/5Nc8c/8AY1H/ANJLevTofAj4rM/96n/XQ/obooorU4AooooAKKKKACiiigAr8Nv+Dgz/AJMQs/8AsatP/wDRNzX7k1+G3/BwZ/yYhZ/9jVp//om5oGj8YP8AggF/yeP4l/7Ey8/9LrGv6+K/kH/4IBf8nj+Jf+xMvP8A0usa/r4r4vPP96foj1cH/DCiiivHOoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD+OH/gu//wAnt2n/AGLNh/6NuK/cX/g3z/5MQvP+xq1D/wBE21fh1/wXf/5PbtP+xZsP/RtxX7i/8G+f/JiF5/2NWof+ibavv8u/3Wn6Hi1/4kj9yaKKK7TEKKKKACiiigAooooAKKKKAPyJ/wCC5f8Ayjj8Xf8AX9pP/pZFX8xn/BHz/k8+x/7BN/8A+gCv6c/+C5f/ACjj8Xf9f2k/+lkVfzGf8EfP+Tz7H/sE3/8A6AKuHxIir8DP60aKKK7Tyj82/iX/AMpafgF/2Cdf/wDSK6r9tK/Ev4l/8pafgF/2Cdf/APSK6r9tK46vxM9Oh8CCiiiszUKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/D79if/k6v9pn/ALHBf/Qrmv0xr8zv2J/+Tq/2mf8AscF/9Cua/TGu2l8KPNxH8RhXx1/wUD/5Mw+In/YJf/0Na+xa+Ov+Cgf/ACZh8RP+wS//AKGtVLZkQ+JH853/AASH/wCUjnwu/wCv66/9I56/0Dq/z8f+CQ//ACkc+F3/AF/XX/pHPX+gdXAeqFFFFABRRRQAUUUUAFFFFAH5Ff8ABcr/AJRx+Lv+v7Sf/SyKv5Xf+CU3/J63hz/r11H/ANJpK/qi/wCC5X/KOPxd/wBf2k/+lkVfyu/8Epv+T1vDn/XrqP8A6TSVrQ/iR9UNbn9Z9FFFe+WFFFFABRRRQAUUUUAaWjf8hi0/67R/+hCvq6vlHRv+Qxaf9do//QhX1dXmZhvEmQV5L8Vf+Pey/wB5/wCQr1qvJfir/wAe9l/vP/IVz4T+LH+uglueM0UUV7ZYUUUUAFFFFABRRRQAUUUUAFFFFAH56t/wT50XwprM/iD4HfEDxT4IuLiZ5zHY3hMAdwAcKojc5IG7c7ZHHTGNaz+En/BRDwiRb+Efj0b2LG3dqWlwyvjC/wDPUXBzx1znv3NfelFfPS4Wy696cHB/3Jzj+EZJfgfdrxIz2aUcXOnXVrfvqNGq/wDwKcJS/E+D5/BH/BTjUyLfUvjfYxQiQENBpFsj7ccn5bdD3Py7sHAOfTmr39hPxr8So0T9o34ueJ/F8C5b7IkxtrZWcMGxGzTL/FgEBeBjocD9FaKlcK5e3+9Up+Upzkvucrfeil4kZzTX+xqjQfelh6FOX/gUaakvk0fO3w2/ZM/Z0+Evly+CfCdjFcR5IubhTdXGTjJEkxdh0HAIA7AZr6Joor3MPhaOHhyUIKMeySS/A+QzDNMZj6vt8dXlVn3nJyf3tthRRRW5whRRRQAUUUUAFFFFABRRRQB/Jh/wVZ/5PW8R/wDXrp3/AKTR1/WX/wAEVf8AlGZ8NP8AuM/+nW8r+TT/AIKs/wDJ63iP/r107/0mjr+sv/gir/yjM+Gn/cZ/9Ot5Xg1/4kvUh7n6mUUUViIKKKKACiiigAooooAKKKKACv46v+Djf/k6PwN/2Ko/9K7iv7Fa/jq/4ON/+To/A3/Yqj/0ruKAPZf+CKX/ACaxr/8A2Nd1/wCkdnX7AV+P/wDwRS/5NY1//sa7r/0js6/YCtEe9hv4UQr45/4KA/8AJnvjf/r2g/8ASiKvsavjn/goD/yZ743/AOvaD/0oirzs4/3DEf4J/wDpLPq+DP8AkoMu/wCv9L/05E+6P2Rf+TUPhh/2KWi/+kcVfQ1fPP7Iv/JqHww/7FLRf/SOKvoatMF/u9P/AAr8j47iH/kaYv8A6+T/APSmFFFFdJ44UUUUAFFFFABRRRQAUUUUAflh/wAFjP8Akyy+/wCwtYf+hGvovwx/yLWn/wDXtF/6AK+dP+Cxn/Jll9/2FrD/ANCNfRfhj/kWtP8A+vaL/wBAFeNhf+RriP8ABT/OZ+pVP+SNy7/r/if/AEmgblFFFe6fIhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAFe7tLXULWWwvokmgnRo5I5FDI6MMFWB4II4IPWvzS8ef8EwfhfJ4t/4WL+zz4i1b4W68rebHJo8hNqswPDiHcjAYLDYkqLg9MZB/TWiixE6cZq0kfiD+0v8Jf8AgpH8FPg9qfjrRvjjrfivTtKXff29tu0+8TT4wWknWYSSOGQKC2CWCljk4IP7M/sAaD4B0X9lfw1d/DDxZq3jPRNUR72G/wBYmE06ySHbPCvyIUSOZZBsYMytuBY1u3dpa6hay2F9Ek0E6NHJHIoZHRhgqwPBBHBB61+VT3HxE/4JZfEe6+I3gO3udf8AgT4jvPN1rRovnm0G4mIHn246CPoByFYARuQwjkqWjzsVhVFc0Fof0C0V5P8ABj45fCn9oTwPbfET4Qa1b61pdyAd8LYkiY9UljOHjcd1cA/hzXrFSeeFFFFABRX5e+N/2mvjB8CP+CjOg/B34s38U3wz+JenCDw0/wBnjiNpq8bKGieYKHkZ3IjC8gCeHoQ5b9QqACiiigAooooAK/H/APbU+Kupx/8ABQr9nv4NWniObQNP8281fU1W4+yw3KAgwRysXVJA72zoEPUvgAsVFfrve3tnptnNqOozJb29ujSSyyMEREQZZmY4AAAySeAK/mx8EfCT4d/8FNf2ivi1+0J8TLO6u/Bolg8PeF5kuHiZEs1AeaEAcbsLLhsqDMwKnnAkaU6bnLlif0r0V+Bulfsrft+fA6yj0j9mz47yz6TaOBaab4jtVnSKEBsR+Y6XPyjgfJGgwcgAqM9DLpv/AAWZ11bW0ufiV4N0OOJyJrizshPO6jjJSaxaM5xuABTrzjpTszR4WqtOU/Zn4ifEz4e/CPwrP43+J+tWegaTbcSXV9MsMe45IUFiNztj5UXLMeACa/BLxv4++IH/AAVz8b2Ph/RdOu/C/wACPDN/LLd3by7LnX7iI4jAXaCgUdFGRHuZmYybFT0Xw9/wTftPHHiq0+Iv7ZPjjVvitrFpGqw215I8GnwdCVWMOWKhgDgNGjnJdCWOP0g8P+HtA8J6Nb+HPC1jb6Zp1onlwWtpEsMMSf3URAFUewApqJ00ME73qfcWNJ0rTdB0q20PRoUtrOyiSCCGMYSOOMBVVR2AAAFaFFFUemFFFFABRRRQAV/J/wD8Fev+Tyr3/sFWH/oJr+sCv5P/APgr1/yeVe/9gqw/9BNKRx47+H8z+nr/AIIaf8o4/CP/AF/at/6WS1+u1fkT/wAENP8AlHH4R/6/tW/9LJa/XaoPHCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/T/v4ooooA/wA5/wD4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/7FXRv/SSKv5Xf+CjH/J+Hxc/7GnUv/RzV/VF+yh/ya18Nf8AsVdG/wDSSKuXFbI97Ifjn6Hv1FFFcJ9MFFFFABXwT8Zf2hfjJ48+Ksv7K/7E+lQ6542t4hLrGq3RA07RImxgysQVaUg/d5wcAK7ZVfvavgn/AIIPeLfh94z+F/xJ8UxyRnx1rPieW/1oO++4a1mQPbHJ5aMSPcYY/NvL56iujD01JtvoeRm+LnRhGNPRy6+h7x8If+CSPwmF6nxC/bB1a6+L/jNnWU3GpSSw6fbYwfKhtUk2NGDkESZRhyI06V+pnhbwh4S8DaOnh3wTpdpo+nxszJa2MCW8Ks5yxCRhVBJ5PHJroqK9A+Tbbd29QooooEFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGZrOiaN4j02TRvENpDf2c2PMguI1ljfaQwyrAg4IBGRwRmvyo+NX/AASM+CGua5cfE/8AZgvbr4TeNPmkhudEkeKxd9j4ja2B2RxO5TzFiCqVTGzJJP61UUDTad0fz6fC/wDaS+Onwb+N9h+yF+3BpkEHifUFP9j+JbA40/VwfugDy4wrk5XIVfmwpjQ4Lfo3XyB/wXf1LwRpX7Hun3WsNHH4iHiCzOhSqdtzFMgZ5WjIBYKIlO4gqN2zJztB+p/D11PfaBY31026Wa3id2xjLMoJOBx1rgxFNRaaPq8nxc60ZRqO7VtTYooormPYCiiigAr8xPgX/wApO/jh/wBgrRP/AEltq/TuvzE+Bf8Ayk7+OH/YK0T/ANJbatKe0vQ5cT8VL/F/7bI/TuiiiszqCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD+cj/gtv/yVLwR/2Crj/wBHCv1c/wCDcj/k1zxz/wBjUf8A0kt6/KP/AILb/wDJUvBH/YKuP/Rwr9XP+Dcj/k1zxz/2NR/9JLevTofAj4rM/wDep/10P6G6KKK1OAKKKKACiiigAooooAK/Db/g4M/5MQs/+xq0/wD9E3NfuTX4bf8ABwZ/yYhZ/wDY1af/AOibmgaPxg/4IBf8nj+Jf+xMvP8A0usa/r4r+Qf/AIIBf8nj+Jf+xMvP/S6xr+vivi88/wB6foj1cH/DCiiivHOoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD+OH/gu/8A8nt2n/Ys2H/o24r9xf8Ag3z/AOTELz/satQ/9E21fh1/wXf/AOT27T/sWbD/ANG3FfuL/wAG+f8AyYhef9jVqH/om2r7/Lv91p+h4tf+JI/cmiiiu0xCiiigAooooAKKKKACiiigD8if+C5f/KOPxd/1/aT/AOlkVfzGf8EfP+Tz7H/sE3//AKAK/pz/AOC5f/KOPxd/1/aT/wClkVfzGf8ABHz/AJPPsf8AsE3/AP6AKuHxIir8DP60aKKK7Tyj82/iX/ylp+AX/YJ1/wD9Irqv20r8S/iX/wApafgF/wBgnX//AEiuq/bSuOr8TPTofAgooorM1CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPw+/Yn/AOTq/wBpn/scF/8AQrmv0xr8zv2J/wDk6v8AaZ/7HBf/AEK5r9Ma7aXwo83EfxGFfHX/AAUD/wCTMPiJ/wBgl/8A0Na+xa+Ov+Cgf/JmHxE/7BL/APoa1UtmRD4kfznf8Eh/+Ujnwu/6/rr/ANI56/0Dq/z8f+CQ/wDykc+F3/X9df8ApHPX+gdXAeqFFFFABRRRQAUUUUAFFFFAH5Ff8Fyv+Ucfi7/r+0n/ANLIq/ld/wCCU3/J63hz/r11H/0mkr+qL/guV/yjj8Xf9f2k/wDpZFX8rv8AwSm/5PW8Of8AXrqP/pNJWtD+JH1Q1uf1n0UUV75YUUUUAFFFFABRRRQBpaN/yGLT/rtH/wChCvq6vlHRv+Qxaf8AXaP/ANCFfV1eZmG8SZBXkvxV/wCPey/3n/kK9aryX4q/8e9l/vP/ACFc+E/ix/roJbnjNFFFe2WFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH8mH/BVn/k9bxH/166d/6TR1/WX/AMEVf+UZnw0/7jP/AKdbyv5NP+CrP/J63iP/AK9dO/8ASaOv6y/+CKv/ACjM+Gn/AHGf/TreV4Nf+JL1Ie5+plFFFYiCiiigAooooAKKKKACiiigAr+Or/g43/5Oj8Df9iqP/Su4r+xWv46v+Djf/k6PwN/2Ko/9K7igD2X/AIIpf8msa/8A9jXdf+kdnX7AV+P/APwRS/5NY1//ALGu6/8ASOzr9gK0R72G/hRCvNfjD8LtB+NPw01f4XeJpZoLLWIRFJJbkCRNrB1ZSwI4ZQeQQa9KoqKtONSEqc1eLVmvJnbhcTVw9aGIoS5ZwalFrdNO6fyZ+dGkfsL/ABQ8P6Ta6DoPx38dWNjYwpb21tb380UUMUQCoiIsoVVVQAqgAADArR/4Yv8AjN/0cD4//wDBnP8A/Hq/QaivIXD+ASsoP/wKX/yR9bLxBz2TcpVotv8A6dUv/kD8+f8Ahi/4zf8ARwPj/wD8Gc//AMeo/wCGL/jN/wBHA+P/APwZz/8Ax6v0Gop/2Bgf5H/4FP8A+SF/r/nn/P2P/gqj/wDIH58/8MX/ABm/6OB8f/8Agzn/APj1H/DF/wAZv+jgfH//AIM5/wD49X6DUUf2Bgf5H/4FP/5IP9f88/5+x/8ABVH/AOQPz5/4Yv8AjN/0cD4//wDBnP8A/HqP+GL/AIzf9HA+P/8AwZz/APx6v0Goo/sDA/yP/wACn/8AJB/r/nn/AD9j/wCCqP8A8gfnz/wxf8Zv+jgfH/8A4M5//j1H/DF/xm/6OB8f/wDgzn/+PV+g1FH9gYH+R/8AgU//AJIP9f8APP8An7H/AMFUf/kD8+f+GL/jN/0cD4//APBnP/8AHqP+GL/jN/0cD4//APBnP/8AHq/Qaij+wMD/ACP/AMCn/wDJB/r/AJ5/z9j/AOCqP/yB+Z/jH/gnp4v+Iuit4a+IPxo8Y67pzOsjWuoXb3UBdPusUkkZcjscZFfpNYWcWn2MNhCSUgRY1LdcKMDPSrVFdeDy3DYWUpUI2crX1b2vbdvuzys44mzLNKdOljqvNGDbilGMUnK13aKW/Kt+wUUUV3HghRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVHNDFcRNBOodHBVlYZBB6gjuDUlFAH5v8AxI/YBk0bxdefFz9jrxbffCvxVdkSTw2Dsul3jKdwWWBeApbkjDx9/LJrUsf2p/8AgqX8HHubD4j/AAu0f4lWNnjZqWh3q2Ms6IoLHyiXcswUnC26jccKCMCv0MopWOWpg6cnfY+Df+HqHxxkkisrb9mnxsbkl1lDpKkSlem2U2u1gR3OB6ZzXMa5+1D/AMFTfjsJrH4OfDzSPhZp0pKJqHiGcXV4mVXDBCpAIJLHdauvIXkq2f0Zoo5UZrAQ6tn4+eJP+CVd5498M6p41+KHxF1nxL8VLqNZbPXLmZ0t7W4iO+NET55BGG+XIb5VwY0QjB+8P2DP24LX4oWbfs2/HyT+wvi14OC6bqFreygNqjQKF+1QMcCRpAN7hc53b1yhBH0nXyb+07+x98Nf2mdOtb3U3l0HxPpcqT6br+nAJe20sZynzjBdAQCF3AgjKlTzQ0FfBxa/d6NH6tUV+E+h/tIf8FFf2OFt/DXxi8Lj41eEbfcset6MJP7YVOq+egDltoHJaP6zE16va/8ABbT9kO2LWXjjTfE/hrUYuJbPUNNAlRwSrD5JX6FSOcH2zkCDzJwlF2kj9gaK/HHUP+C1P7P2t3Mei/BDwh4s8d6pJg/Z9PsAoUE45y7SZ9AsZB9RXjniNf8AgpJ+29dTWXju/T4GeAJHZG03TpPO1i7izgrJMpV8H5kY7oEIIJhkHJLDhSnN2ijT/bY/ak8V/tgeObn9gr9kCdLqyuf3XjHxLGC9vZ2yvtkgRvlVumHKtiTPlqfvkfeXwm+Fvg/4KfDnSPhZ4BgNvpOjQeTArHc7Eks7ucAF5HZncgAFieB0rm/gV+z78Kf2cfBMfgT4T6WlhajDTzMd9xdSgcyTSHl2PPoqjhQqgAe0VaVj18Nh1TV3uFFFFM6QooooAKKKKACiiigAooooAK/k/wD+CvX/ACeVe/8AYKsP/QTX9YFfyf8A/BXr/k8q9/7BVh/6CaUjjx38P5n9PX/BDT/lHH4R/wCv7Vv/AEslr9dq/In/AIIaf8o4/CP/AF/at/6WS1+u1QeOFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf//U/v4ooooA/wA5/wD4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/7FXRv/SSKv5Xf+CjH/J+Hxc/7GnUv/RzV/VF+yh/ya18Nf8AsVdG/wDSSKuXFbI97Ifjn6Hv1FFFcJ9MFFFFABX8+/8AwTm/Y1+J3jn9nq3/AGs/2V/FL+F/ib4e1m+tFhnLNYataxrbyC2nG7CKSWzlWRuAwUgOv9BFfDv/AAQp/wCTKLv/ALGW/wD/AEVb12YT7R87n/8Ay7+f6HafDP8A4K0P8P8AxVb/AAf/AOChngu8+FHih/lj1JY3uNFuyMAvG6mRkTcQoZGniHJaVelfq18Nfi78LfjJoEfij4U+IdP8RWEiJJ52n3CThQ+QNwQkocqwKsAQVIIBBFY3izwX4O8e6O/h3x1pNnrWnyZ32t/AlzC2VKnKSBlOVYg8dCR0Nfmt8QP+CRv7NWqaz/wmfwOvNZ+FniFfK2Xvhu9khUeUwP8Aq2JxnCn92yfOit13buw+dP2Gor8QLT4B/wDBXT4F2pg+FHxm0j4i6fbquy18U2ZiuJMKgz5uJ5S3ylcNchSCXJ3txtJ+3H/wUn+FM+z47fs5tr1qnyvd+ELz7SWw+3zI7dDdyENkEI5RgPmOADgA/aWivxotP+C2/wCzno0MSfFzwZ418F3DExv/AGjpa+SJVzuVXEu9iMYOY1OT06ke+eFv+Ctn/BPTxdlLD4kWtrIiK7rfWl3aYz23TQIrEdwrN+VAH6N0V8vaF+25+xx4lcRaN8VPCcsjMVEZ1e1SQkDJwjSBiMdwMdfQ167pHxf+E3iDb/YPijSL7cglH2e9hlyhxhhtc8cjnpzQB6JRVWyvrLUbZbzT5knhfO2SNgynBwcEZHUYq1QAUUVVvb6y062a81CZIIUxukkYKoycDJOB1OKALVFcBrHxY+Fnh2H7T4g8S6VYx7WbdcXkMS7U5Y5ZxwB19K8n139tD9kHw0hbXPil4Tt2Chth1i0MhUnAIQSliM+g7H0oA+l6K/PPxp/wVb/4J+eBHeHVfiTYXciqCF06G4vwxIJADW8UiZOMcsAD1Ir55vv+C3f7LeoXLad8L/DXjDxlctMIIF0zSwVmbGTt8yVX4HbZu6cY5AB+yVFfijN+3/8A8FCfi1bCH9nf9m+80rzMFL7xbdfZotrltreTILQkYXJ2zHqAOqlqZ+D3/BYj4yFk+I3xa0D4d6fcZWS38PWIuZ41aNVyrsiSA5LHi5GG5BxtwAfsT44+IfgP4ZaBP4p+Ims2Wh6bbIZJbm+nSCNVXAJ3OQOpA+pA6kV+UXxW/wCCufhTX/EbfCf9hjwtffF3xdIuBLbRPFpdtnjfLKQrMqnqcJH/ANNRVDwb/wAEff2eP7dHjL4/654h+KetOrGafX7+QxySOiKX2oRJkbfl3TNgEA52g1+nfgvwN4M+HHhy28H/AA/0q00XSrRdsNpZQrBCg9lQAZPc9SetAH81n7d37Knxyk/ZS8W/tdftr6//AG38RZprG10zS7RwNM0Oznuog0cKKNpkK/KxBIwSWaRyXr9pfCf/ACKumf8AXpD/AOgCvCP+Czf/ACYB4p/6/NL/APSuKvd/Cf8AyKumf9ekP/oArkxfQ+hyHep8v1OgoooriPowooooAK/MT4F/8pO/jh/2CtE/9Jbav07r8xPgX/yk7+OH/YK0T/0ltq0p7S9DlxPxUv8AF/7bI/TuiiiszqCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD+cj/AILb/wDJUvBH/YKuP/Rwr9XP+Dcj/k1zxz/2NR/9JLevyj/4Lb/8lS8Ef9gq4/8ARwr9XP8Ag3I/5Nc8c/8AY1H/ANJLevTofAj4rM/96n/XQ/obooorU4AooooAKKKKACiiigAr8Nv+Dgz/AJMQs/8AsatP/wDRNzX7k1+G3/BwZ/yYhZ/9jVp//om5oGj8YP8AggF/yeP4l/7Ey8/9LrGv6+K/kH/4IBf8nj+Jf+xMvP8A0usa/r4r4vPP96foj1cH/DCiiivHOoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD+OH/gu//wAnt2n/AGLNh/6NuK/cX/g3z/5MQvP+xq1D/wBE21fh1/wXf/5PbtP+xZsP/RtxX7i/8G+f/JiF5/2NWof+ibavv8u/3Wn6Hi1/4kj9yaKKK7TEKKKKACiiigAooooAKKKKAPyJ/wCC5f8Ayjj8Xf8AX9pP/pZFX8xn/BHz/k8+x/7BN/8A+gCv6c/+C5f/ACjj8Xf9f2k/+lkVfzGf8EfP+Tz7H/sE3/8A6AKuHxIir8DP60aKKK7Tyj8uv2qNfg+D3/BQH9n/AOO/ig/Z/Dyz3+hXN5JgQW81/E8CGRyyhVxOWLNgKqM3OCK/dWvgX9oL4CeAf2lPhdf/AAp+IsLvZXeJIpojtmt7hM+XNGeQGQnoQQQSCCCRXw78Nv2t/jr/AME9ILP4M/tlabeeLfA1omzTPHWnJJKYYQpEVtdRlTl9w2qWkDAYx5ijcOWrB3ud+HqJx5ep+7lFeafC34yfCz42eHV8WfCfXrPX9PbP720kD7cMyfMv3lyyMBuAzg44r0usTpCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKrXt7Z6bZzajqMyW9vbo0kssjBEREGWZmOAAAMkngCvFPjr+0v8DP2avDn/AAk/xq8R2miQspMMMjb7m4I7QwJmSQ+u1SB3IFfjz8QfjX+0J/wVGtm+HXwV0+9+Hnwbnk8vVtevlCahq0QzmGCMNjyn4DBWIP8AG+MxM0m3ZClJRV2dL/wTi1P/AIWL40+N/wAfNMhkXRvGHjO5k0yZwFE1vA0jKwGSc7ZV3MCVLZAPBr9Ra89+FPwu8F/Bb4eaV8Lvh7a/Y9H0eLyreMsWb5mLuzE9Wd2Z2PdiTXoVdsVZWPLqS5pNhXx1/wAFA/8AkzD4if8AYJf/ANDWvsWvjr/goH/yZh8RP+wS/wD6GtOWzCHxI/nO/wCCQ/8Aykc+F3/X9df+kc9f6B1f5+P/AASH/wCUjnwu/wCv66/9I56/0Dq4D1QooooAKKKKACiiigAooooA/Ir/AILlf8o4/F3/AF/aT/6WRV/K7/wSm/5PW8Of9euo/wDpNJX9UX/Bcr/lHH4u/wCv7Sf/AEsir+V3/glN/wAnreHP+vXUf/SaStaH8SPqhrc/rPooor3ywooooAKKKKACiiigDS0b/kMWn/XaP/0IV9XV8o6N/wAhi0/67R/+hCvq6vMzDeJMgryX4q/8e9l/vP8AyFetV5L8Vf8Aj3sv95/5CufCfxY/10EtzxmiiivbLCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD+TD/gqz/yet4j/wCvXTv/AEmjr+sv/gir/wAozPhp/wBxn/063lfyaf8ABVn/AJPW8R/9eunf+k0df1l/8EVf+UZnw0/7jP8A6dbyvBr/AMSXqQ9z9TKKKKxEFFFFABRRRQAUUUUAFFFFABX8dX/Bxv8A8nR+Bv8AsVR/6V3Ff2K1/HV/wcb/APJ0fgb/ALFUf+ldxQB7L/wRS/5NY1//ALGu6/8ASOzr9gK/H/8A4Ipf8msa/wD9jXdf+kdnX7AVoj3sN/CiFFFFBsFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABVO907T9TiEGpQR3CA7gsihwD64PfmrlFAEcMMVvEsEChEQBVVRgADoAOwFSUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFfyf/APBXr/k8q9/7BVh/6Ca/rAr+T/8A4K9f8nlXv/YKsP8A0E0pHHjv4fzP6ev+CGn/ACjj8I/9f2rf+lktfrtX5E/8ENP+UcfhH/r+1b/0slr9dqg8cKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//V/v4ooooA/wA5/wD4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/7FXRv/SSKv5Xf+CjH/J+Hxc/7GnUv/RzV/VF+yh/ya18Nf8AsVdG/wDSSKuXFbI97Ifjn6Hv1FFFcJ9MFFFFABXw7/wQp/5Mou/+xlv/AP0Vb19xV8O/8EKf+TKLv/sZb/8A9FW9dmE+0fO5/wD8u/n+h+zVFFFdh86FFFFAEU0MNzC9vcIskcilWVhlWU8EEHqDXg3iz9lL9mLx2qr4x+HnhvUWRdqPPpdu0iLnOFfy9ygnrgjNe/UUAfC2rf8ABM39g/Wt32z4Z6Sm5zIfI8235OenlSLgc/d6e3FeO65/wRo/4J+6shWw8J3emEqBm21S8Ygg5z++llGT0PbHQZ5r9S6KAPyK/wCHI37Cn/PhrP8A4MX/APiazbX/AIIg/sc6deSX2jah4psXkyP9H1JEwpOdoPkFscDqT05r9h6KAPx01D/gh7+x3q8wudV1TxVdSKu0NLqMbsFHOMm3PGSa1v8AhyN+wp/z4az/AODF/wD4mv11ooA/LTQ/+CNH/BP3SUC3/hO71MhSM3OqXikknOf3MsQyOg7Y6jPNeu6R/wAEyP2DNEm8+y+Gmlu25WxcNNcLlenEsjjHqMYPfNfd1FAHgPhD9lP9mLwBNHdeCvh54b0yeJgyz2+l26TBhnB8wR78jJxzwOBxXutnZWen2y2enxJBCmdqRqFUZOTgDA6nNWaKACiiigAooooA/LD/AILN/wDJgHin/r80v/0rir3fwn/yKumf9ekP/oArwj/gs3/yYB4p/wCvzS//AErir3fwn/yKumf9ekP/AKAK5MX0Poch3qfL9ToKKKK4j6MKKKKACvzE+Bf/ACk7+OH/AGCtE/8ASW2r9O6/MT4F/wDKTv44f9grRP8A0ltq0p7S9DlxPxUv8X/tsj9O6KKKzOoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP5yP+C2//JUvBH/YKuP/AEcK/Vz/AINyP+TXPHP/AGNR/wDSS3r8o/8Agtv/AMlS8Ef9gq4/9HCv1c/4NyP+TXPHP/Y1H/0kt69Oh8CPisz/AN6n/XQ/obooorU4AooooAKKKKACiiigAr8Nv+Dgz/kxCz/7GrT/AP0Tc1+5Nfht/wAHBn/JiFn/ANjVp/8A6JuaBo/GD/ggF/yeP4l/7Ey8/wDS6xr+viv5B/8AggF/yeP4l/7Ey8/9LrGv6+K+Lzz/AHp+iPVwf8MKKKK8c6gooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP44f+C7/wDye3af9izYf+jbiv3F/wCDfP8A5MQvP+xq1D/0TbV+HX/Bd/8A5PbtP+xZsP8A0bcV+4v/AAb5/wDJiF5/2NWof+ibavv8u/3Wn6Hi1/4kj9yaKKK7TEKKKKACiiigAooooAKKKKAPyJ/4Ll/8o4/F3/X9pP8A6WRV/MZ/wR8/5PPsf+wTf/8AoAr+nP8A4Ll/8o4/F3/X9pP/AKWRV/MZ/wAEfP8Ak8+x/wCwTf8A/oAq4fEiKvwM/rRooortPKCq93aWmoWkthfxJPBOjRyRyKGR0YYKsDwQRwQetWKKAPzn8cf8E2fhP/wmJ+Kf7Our6l8J/Fa5Md54fkKW2T1DW25V8tuN0UbRowGCOTXP6f8AEf8A4K2/s5R/ZtWstC+NWiwJEBKhFjqaqoII48oMRjBJSZ2yrZzvx+nFFZypRZtGvOPU+CvD3/BZT4M6Ffx+HP2mPBvib4Y6sXVHS/s3uLcZCbyroqyuE3ZJEHKbWGS22vs/4Z/t4/sc/F5kg8CfEbRZ55FDJb3VwLK4cEMflhuRFISApLALlRycAitbVdI0nXbCTStctYry1lxvhnQSRttIIyrAg4IBGR1FfJ/j/wDYD/Y6+JKyHxB4A0u3kkGDLp0Z0985J3ZtjFlsk5JzngHIAFZOh2ZusUuqP1LhmhuYUuLd1kjkUMrKcqynkEEdQalr8H/+HWHg/wAFSm7/AGePiR4x+H0rbiy6fqDeUWZQpbCeU+TgbsyHIAHFadr+z5/wU48BTeb8P/2hl1hQqKU1vTEcMq44PmC6IJ5ywIY+vPEOlI1WIg+p+5tFfidH8Uv+CyXgJ50u9G8B+N4wA4MDy20jcfcjLyWqjnk71x6GrkH7e3/BRDw/cCHxf+zeb753B/s/V0Awox95UuB15z0YdPWp5Jdi1Ui+p+0tFfjLbf8ABVH44afbM/jT9mnxtZSKnmH7Gkt5EFBOSZPssQGAAeR+mCbQ/wCCz3wq0izZ/HHwt+IOlXEW3zU/syFkTcBjLSXER5J4yoyMHvilZlJo/ZCivx9s/wDgtf8Ass3Nss83hrxnbs2cxyaVGWGD32XLLz14NRad/wAFx/2Hr3f9pbX7PbjHnaeDuznp5cr9PfHWkM/YeivyK/4fc/sKf8/+s/8Aguf/AOKrHm/4Lk/sUC++w2MHiS8LFVRodPTDlscKGmVs5OPu9aAP2Nor8fbz/gtf+yzbWzTw+GvGdwy4xHHpUYY5PbfcqvHXk1QH/BZn4a63biXwD8KPiDq7lHYD+zIlX5eBzHPNxngnHHvTswP2Ror8X3/4Kn/H7U4pJ/CH7M3jG7jARomu2ltA4bvk2j8dcbd3bOM024/bl/4KR+IYSPB37OsNjJMz+UdR1mIqqjOA4Y2/PA5JXd2HIp8r7EucerP2ior8TLnx3/wWU+IKokMfgPwJG8mCyCW5mjRSTk7jdxsWHHAHTovJrnz+zP8A8FI/HvlzfFH9o240xkfcY9C09YQQMDG6E2nUZ6qQDzg5JpqnLsQ60F1P3KvL2z0+2a81CVIIUxueRgqjJwMk4HU4r5A+If8AwUJ/Yo+FzeV4t+JWi+Zt3GOxmOoyKMZ+ZLQTMpI6AgE8Y6ivzus/+CVPwr8TXMWsftAeNPFfxE1BPvvqmouIm+90HzSjDOzf648/U5+nfA37Df7Inw5QL4Y+HujblziS8g+3SjICnD3JlccD17n1ObVGXUzeKj0PJtf/AOCxfgvxfNNo37KPw58T/Em+iLI00VsbWyU7GZcuBLLklfutEmVzg5GK5XUNT/4Kw/tJM0WsaronwQ8PTGRGh09RqOrmFx8pL7nUMOm6OW3cH+Gv0ntLS0sLdbWxiSGJM7UjUKoycnAGB1qxWiorqZSxUnsj8/vhn/wTh+A/hfXY/iB8WJL/AOJfi35Gl1bxNcPeFnXPIhdihHTAk8wrgYbrX37DDFbxLBAoSNAFVVGAAOgAHQCpKK1SS2OeUnLVsKKKKZIV8df8FA/+TMPiJ/2CX/8AQ1r7Fr46/wCCgf8AyZh8RP8AsEv/AOhrSlsy4fEj+c7/AIJD/wDKRz4Xf9f11/6Rz1/oHV/n4/8ABIf/AJSOfC7/AK/rr/0jnr/QOrgPVCiiigAooooAKKKKACiiigD8iv8AguV/yjj8Xf8AX9pP/pZFX8rv/BKb/k9bw5/166j/AOk0lf1Rf8Fyv+Ucfi7/AK/tJ/8ASyKv5Xf+CU3/ACet4c/69dR/9JpK1ofxI+qGtz+s+iiivfLCiiigAooooAKKKKANLRv+Qxaf9do//QhX1dXyjo3/ACGLT/rtH/6EK+rq8zMN4kyCvJfir/x72X+8/wDIV61XkvxV/wCPey/3n/kK58J/Fj/XQS3PGaKKK9ssKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP5MP+CrP/J63iP/AK9dO/8ASaOv6y/+CKv/ACjM+Gn/AHGf/TreV/Jp/wAFWf8Ak9bxH/166d/6TR1/WX/wRV/5RmfDT/uM/wDp1vK8Gv8AxJepD3P1MooorEQUUUUAFFFFABRRRQAUUUUAFfx1f8HG/wDydH4G/wCxVH/pXcV/YrX8dX/Bxv8A8nR+Bv8AsVR/6V3FAHsv/BFL/k1jX/8Asa7r/wBI7Ov2Ar8f/wDgil/yaxr/AP2Nd1/6R2dfsBWiPew38KIUUUUGwUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV/J/wD8Fev+Tyr3/sFWH/oJr+sCv5P/APgr1/yeVe/9gqw/9BNKRx47+H8z+nr/AIIaf8o4/CP/AF/at/6WS1+u1fkT/wAENP8AlHH4R/6/tW/9LJa/XaoPHCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/W/v4ooooA/wA5/wD4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/7FXRv/SSKv5Xf+CjH/J+Hxc/7GnUv/RzV/VF+yh/ya18Nf8AsVdG/wDSSKuXFbI97Ifjn6Hv1FFFcJ9MFFFFABXw7/wQp/5Mou/+xlv/AP0Vb19xV8O/8EKf+TKLv/sZb/8A9FW9dmE+0fO5/wD8u/n+h+zVFFFdh86FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAflh/wWb/5MA8U/wDX5pf/AKVxV7v4T/5FXTP+vSH/ANAFeEf8Fm/+TAPFP/X5pf8A6VxV7v4T/wCRV0z/AK9If/QBXJi+h9DkO9T5fqdBRRRXEfRhRRRQAV+YnwL/AOUnfxw/7BWif+kttX6d1+YnwL/5Sd/HD/sFaJ/6S21aU9pehy4n4qX+L/22R+ndFFFZnUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH85H/AAW3/wCSpeCP+wVcf+jhX6uf8G5H/Jrnjn/saj/6SW9flH/wW3/5Kl4I/wCwVcf+jhX6uf8ABuR/ya545/7Go/8ApJb16dD4EfFZn/vU/wCuh/Q3RRRWpwBRRRQAUUUUAFFFFABX4bf8HBn/ACYhZ/8AY1af/wCibmv3Jr8Nv+Dgz/kxCz/7GrT/AP0Tc0DR+MH/AAQC/wCTx/Ev/YmXn/pdY1/XxX8g/wDwQC/5PH8S/wDYmXn/AKXWNf18V8Xnn+9P0R6uD/hhRRRXjnUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/HD/wXf/5PbtP+xZsP/RtxX7i/8G+f/JiF5/2NWof+ibavw6/4Lv8A/J7dp/2LNh/6NuK/cX/g3z/5MQvP+xq1D/0TbV9/l3+60/Q8Wv8AxJH7k0UUV2mIUUUUAFFFFABRRRQAUUUUAfkT/wAFy/8AlHH4u/6/tJ/9LIq/mM/4I+f8nn2P/YJv/wD0AV/Tn/wXL/5Rx+Lv+v7Sf/SyKv5jP+CPn/J59j/2Cb//ANAFXD4kRV+Bn9aNFFFdp5QUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUARiGJZWnCgSMApbHJC5wCfQZOPqakoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvjr/goH/yZh8RP+wS//oa19i18df8ABQP/AJMw+In/AGCX/wDQ1pS2ZcPiR/Od/wAEh/8AlI58Lv8Ar+uv/SOev9A6v8/H/gkP/wApHPhd/wBf11/6Rz1/oHVwHqhRRRQAUUUUAFFFFABRRRQB+RX/AAXK/wCUcfi7/r+0n/0sir+V3/glN/yet4c/69dR/wDSaSv6ov8AguV/yjj8Xf8AX9pP/pZFX8rv/BKb/k9bw5/166j/AOk0la0P4kfVDW5/WfRRRXvlhRRRQAUUUUAFFFFAGlo3/IYtP+u0f/oQr6ur5R0b/kMWn/XaP/0IV9XV5mYbxJkFeS/FX/j3sv8Aef8AkK9aryX4q/8AHvZf7z/yFc+E/ix/roJbnjNFFFe2WFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH8mH/BVn/k9bxH/wBeunf+k0df1l/8EVf+UZnw0/7jP/p1vK/k0/4Ks/8AJ63iP/r107/0mjr+sv8A4Iq/8ozPhp/3Gf8A063leDX/AIkvUh7n6mUUUViIKKKKACiiigAooooAKKKKACv46v8Ag43/AOTo/A3/AGKo/wDSu4r+xWv46v8Ag43/AOTo/A3/AGKo/wDSu4oA9l/4Ipf8msa//wBjXdf+kdnX7AV+P/8AwRS/5NY1/wD7Gu6/9I7Ov2ArRHvYb+FEKKKKDYKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK/k/8A+CvX/J5V7/2CrD/0E1/WBX8n/wDwV6/5PKvf+wVYf+gmlI48d/D+Z/T1/wAENP8AlHH4R/6/tW/9LJa/XavyJ/4Iaf8AKOPwj/1/at/6WS1+u1QeOFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/X/v4ooooA/wA5/wD4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/7FXRv/SSKv5Xf+CjH/J+Hxc/7GnUv/RzV/VF+yh/ya18Nf8AsVdG/wDSSKuXFbI97Ifjn6Hv1FFFcJ9MFFFFABXw7/wQp/5Mou/+xlv/AP0Vb19xV8O/8EKf+TKLv/sZb/8A9FW9dmE+0fO5/wD8u/n+h+zVFFFdh86FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAflh/wWb/5MA8U/wDX5pf/AKVxV7v4T/5FXTP+vSH/ANAFeEf8Fm/+TAPFP/X5pf8A6VxV7v4T/wCRV0z/AK9If/QBXJi+h9DkO9T5fqdBRRRXEfRhRRRQAV+YnwL/AOUnfxw/7BWif+kttX6d1+YnwL/5Sd/HD/sFaJ/6S21aU9pehy4n4qX+L/22R+ndFFFZnUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH85H/AAW3/wCSpeCP+wVcf+jhX6uf8G5H/Jrnjn/saj/6SW9flH/wW3/5Kl4I/wCwVcf+jhX6uf8ABuR/ya545/7Go/8ApJb16dD4EfFZn/vU/wCuh/Q3RRRWpwBRRRQAUUUUAFFFFABX4bf8HBn/ACYhZ/8AY1af/wCibmv3Jr8Nv+Dgz/kxCz/7GrT/AP0Tc0DR+MH/AAQC/wCTx/Ev/YmXn/pdY1/XxX8g/wDwQC/5PH8S/wDYmXn/AKXWNf18V8Xnn+9P0R6uD/hhRRRXjnUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/HD/wXf/5PbtP+xZsP/RtxX7i/8G+f/JiF5/2NWof+ibavw6/4Lv8A/J7dp/2LNh/6NuK/cX/g3z/5MQvP+xq1D/0TbV9/l3+60/Q8Wv8AxJH7k0UUV2mIUUUUAFFFFABRRRQAUUUUAfkT/wAFy/8AlHH4u/6/tJ/9LIq/mM/4I+f8nn2P/YJv/wD0AV/Tn/wXL/5Rx+Lv+v7Sf/SyKv5jP+CPn/J59j/2Cb//ANAFXD4kRV+Bn9aNFFFdp5QUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV8df8FA/+TMPiJ/2CX/8AQ1r7Fr46/wCCgf8AyZh8RP8AsEv/AOhrSlsy4fEj+c7/AIJD/wDKRz4Xf9f11/6Rz1/oHV/n4/8ABIf/AJSOfC7/AK/rr/0jnr/QOrgPVCiiigAooooAKKKKACiiigD8iv8AguV/yjj8Xf8AX9pP/pZFX8rv/BKb/k9bw5/166j/AOk0lf1Rf8Fyv+Ucfi7/AK/tJ/8ASyKv5Xf+CU3/ACet4c/69dR/9JpK1ofxI+qGtz+s+iiivfLCiiigAooooAKKKKANLRv+Qxaf9do//QhX1dXyjo3/ACGLT/rtH/6EK+rq8zMN4kyCvJfir/x72X+8/wDIV61XkvxV/wCPey/3n/kK58J/Fj/XQS3PGaKKK9ssKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP5MP+CrP/J63iP/AK9dO/8ASaOv6y/+CKv/ACjM+Gn/AHGf/TreV/Jp/wAFWf8Ak9bxH/166d/6TR1/WX/wRV/5RmfDT/uM/wDp1vK8Gv8AxJepD3P1MooorEQUUUUAFFFFABRRRQAUUUUAFfx1/wDBxx/ydF4G/wCxWH/pXcV/YpX8df8Awccf8nReBv8AsVh/6V3FAHsn/BFL/k1jX/8Asa7r/wBI7Ov2Ar8f/wDgil/yaxr/AP2Nd1/6R2dfsBWiPew38KIUUUUGwUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV/J/wD8Fev+Tyr3/sFWH/oJr+sCv5P/APgr1/yeVe/9gqw/9BNKRx47+H8z+nr/AIIaf8o4/CP/AF/at/6WS1+u1fkT/wAENP8AlHH4R/6/tW/9LJa/XaoPHCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/Q/v4ooooA/wA5/wD4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/7FXRv/SSKv5Xf+CjH/J+Hxc/7GnUv/RzV/VF+yh/ya18Nf8AsVdG/wDSSKuXFbI97Ifjn6Hv1FFFcJ9MFFFFABXw7/wQp/5Mou/+xlv/AP0Vb19xV8O/8EKf+TKLv/sZb/8A9FW9dmE+0fO5/wD8u/n+h+zVFFFdh86Fcj4q+IHgPwL5H/Cba3YaP9q3eT9uuY7fzNmN23zGXdt3DOOmR6111fxLf8HeXhTSfHnxl/Y68D6+HNhrOteI7G5EbbXMNxPokb7T2O1jg9qAP7MvDXxM+G/jO6ax8H+INN1aZBuaOzu4p2AHchGJxXb1/FH/AMFJf+DbP9mn9jv9lLxX+2f+wH4q8W+C/iD8KbGXxLbSvqm9JLewHm3GyRI0nhmSFXaN0kALDawIbK/pT+yp/wAFwfBXhL/gh94P/wCCj/7Xgub/AFi13+HNQttLRXutU1m0nktkKBikaPcRxC5lJKogL4zhVIB/RnRX8u/gb/g5Un0P4s/D/wAGftl/s2+Nfgr4Z+J1wlvoHiPVnMsE3mmNVkMUlrbHy1MsZkMbSMiOrbSCK/Nf/gr3/wAFQ/2qfh//AMFxPhZ8N/D3gnxzeeD/AIaXVtc23g3TxMq+MbsNOwvrOFIv9JXDCFDtlVHgfbg7qAP7sKK/Bb9sf/guhon7MHin4ZfAjwD8GfF3xH+MvxL8PWviJPBGmRtDd6bDcxGQw3TmKRxPHsk3xrASixs8nljbu7P/AIJnf8FqvBX/AAUA+OPjH9k/4gfDfXvhB8WPBNq1/feHNcbzSbWOSOKRlk8uFg8bTRbkeJSVdWQsN20A/ZDw5418G+MftA8I6vZar9kcRz/Y7hJ/KY5wH2Mdp4PB9K6av86n/ghp/wAFGfEv7FWrftHeCPhH8G/F/wAbvGviDxUupRaN4XtndLawsmuklnuZ1jmMYLyIkaiJy5JHHGf65v8AgnP/AMFkv2Yv+Ch/wB8Y/GrQoL3wXe/DZJJPF2i6uA1zpcUaSS+dmPPmQskUmGCq26NlKAgZAP1wor+TPWf+DpG+n8Far+0T8O/2V/H2ufBLR777HceOJJRbWy/vFi3FBbyQqd7Ku03Qw7KrEMcV+m37UP8AwW+/ZR/Zz/Yn+Hv7aWj2GseMbX4ttDB4P0HToQmo39zKpLROrErF5LDy5SN5DkKgckZAP2Wor+ev9nz/AILv+J/Ff7VfhH9kv9sL9nHxt8Dta8fkJ4fvNTzfWtw7EKvmkQQNGpZlRmVZBG7qJNi5Yeo/8FC/+C3nw8/Yu/aE0n9jf4N/DjxF8bvjBqlsl6/hrwyvzWkEil08+RY5nEjIPM2LE22LDuVUqWAP3Dor8pP+CZX/AAVr+DP/AAUqg8WeEdG8O6x8PviJ4BnWDxH4R8QxeVfWe9mRXXhS6BkKPlEeNxh0UMhb9W6ACiiigD8sP+Czf/JgHin/AK/NL/8ASuKvd/Cf/Iq6Z/16Q/8AoArwj/gs3/yYB4p/6/NL/wDSuKvd/Cf/ACKumf8AXpD/AOgCuTF9D6HId6ny/U6CiiiuI+jCiiigAr8xPgX/AMpO/jh/2CtE/wDSW2r9O6/MT4F/8pO/jh/2CtE/9JbatKe0vQ5cT8VL/F/7bI/TuiiiszqCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD+cj/gtv/wAlS8Ef9gq4/wDRwr9XP+Dcj/k1zxz/ANjUf/SS3r8o/wDgtv8A8lS8Ef8AYKuP/Rwr9XP+Dcj/AJNc8c/9jUf/AEkt69Oh8CPisz/3qf8AXQ/obooorU4AooooAKKKKACiiigAr8Nv+Dgz/kxCz/7GrT//AETc1+5Nfht/wcGf8mIWf/Y1af8A+ibmgaPxg/4IBf8AJ4/iX/sTLz/0usa/r4r+Qf8A4IBf8nj+Jf8AsTLz/wBLrGv6+K+Lzz/en6I9XB/wwooorxzqCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/jh/4Lv8A/J7dp/2LNh/6NuK/cb/g30/5MQu/+xp1D/0TbV+HP/Bd/wD5PbtP+xZsP/RtxX7jf8G+n/Jh93/2NOof+ibavv8ALv8AdafoeLX/AIkj9yKKKK7TEKKKKACiiigAooooAKKKKAPyJ/4Ll/8AKOPxd/1/aT/6WRV/MZ/wR8/5PPsf+wTf/wDoAr+nP/guX/yjj8Xf9f2k/wDpZFX8xn/BHz/k8+x/7BN//wCgCrh8SIq/Az+tGiiiu08oKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK+Ov+Cgf/JmHxE/7BL/+hrX2LXx1/wAFA/8AkzD4if8AYJf/ANDWlLZlw+JH853/AASH/wCUjnwu/wCv66/9I56/0Dq/z8f+CQ//ACkc+F3/AF/XX/pHPX+gdXAeqFFFFABRRRQAUUUUAFFFFAH5Ff8ABcr/AJRx+Lv+v7Sf/SyKv5Xf+CU3/J63hz/r11H/ANJpK/qi/wCC5X/KOPxd/wBf2k/+lkVfyu/8Epv+T1vDn/XrqP8A6TSVrQ/iR9UNbn9Z9FFFe+WFFFFABRRRQAUVy3i3xx4K8AaWdc8d6xY6JZL1uL+4jtohj/bkZV/WrPhnxZ4V8aaUmu+DtTtNWsZPuXFlMk8TfR0LKfzoA7DSXSPVbaSQhVWVCSeAACK+mP8AhIdA/wCf63/7+r/jXyvRXPXwyqtNsTVz6o/4SHQP+f63/wC/q/415h8S9S06/gtBYzxzFWfPluGxnHXBryais6WDjCSkmFgooorsGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH8mH/BVn/k9bxH/wBeunf+k0df1l/8EVf+UZnw0/7jP/p1vK/k0/4Ks/8AJ63iP/r107/0mjr+sv8A4Iq/8ozPhp/3Gf8A063leBX/AIkvVkPc/UyiiishBRRRQAUUUUAFFFFABRRRQAV/HX/wccf8nReBv+xWH/pXcV/YpX8df/Bxx/ydF4G/7FYf+ldxQB7J/wAEUv8Ak1jX/wDsa7r/ANI7Ov2Ar8f/APgil/yaxr//AGNd1/6R2dfsBWiPew38KIUUUUGwUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV/J//wAFev8Ak8q9/wCwVYf+gmv6wK/k/wD+CvX/ACeVe/8AYKsP/QTSkceO/h/M/p6/4Iaf8o4/CP8A1/at/wClktfrtX5E/wDBDT/lHH4R/wCv7Vv/AEslr9dqg8cKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//9H+/iiiigD/ADn/APgox/yfh8XP+xp1L/0c1f1Rfsof8mtfDX/sVdG/9JIq/ld/4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/wCxV0b/ANJIq5cVsj3sh+Ofoe/UUUVwn0wUUUUAFfDv/BCn/kyi7/7GW/8A/RVvX3FXw7/wQp/5Mou/+xlv/wD0Vb12YT7R87n/APy7+f6H7NUUUV2HzoV/E/8A8Hc3iTRfBvxw/Y18X+JJ/s2naVrviG8uptrP5cEFxobu21QWOFBOACT2Ga/tgrwj42fstfsyftLf2Z/w0b8OfC/j/wDsXzv7P/4STSLTVfsn2nZ5vk/aopPL8zy49+zG7Yuc7RgA/mJ/4Kxf8HE//BOb4q/sI/ET9n39kfxbdfEXx18R9HuPC9jYWek6harGuqr9nllkku7aEHbE77Ej3u8m1cAEsPnH4h/Er9sP/ggf/wAG7Pwu0XwDpMGmfEnxxr0g1i7vLRbtNDGsrc3iq8MoaM3SwxwwFZUeNX8wEEhc/wBa/wAMf2G/2Kfgl4hh8XfBn4P+CPCOrW7For3RfD9hYXCMRglZIIUcHBI4PSvbPiP8Mvhx8YvBd98OPi1oGneJ/D2poI7zTNVto7y0nUHIEkMqsjAEAjIOCM9aAP8AMr/4Kw+PPhh4gu/gR4gf9rjWv2mfFtzqsOpa3ukSHw/oUMnkMPJtIkCW08rbwylxIEiw6JgV+2P/AAW0+KHgP9n3/g4l/ZO+PHxj1FNB8IaPoNo97qlwrGCFY77UA5YqGOE81C2AcBgTxX9SOnf8E6f2ANK+HH/Cn7T4IeAz4VN6mpNpMnh6wls3vY0eNLhonhZGmWOR0WVgXCsVBwSK9D+Nn7I37LH7SelaTof7Qfw58NeNbPQW3abDrel298lpkKCIRKjeWrBVDKuAwABBAoA/lR/4KK/8FY/i18S/+Cnngr9i7wN8crP9nX4Ia34YsfEcfxBFhDJPqsGq2RvIJIbm7AFvFJlYI3DQ7XDly52x18ff8EONd+F9/wD8HGnxSu/hZ8SNc+K+g3Xgy/gsfF3ia4NzqOsywnTFmlMrJGXjEkcqwYXAgRACQM1/af8AFH9hn9i/43aN4e8OfF/4TeEPE2n+EreOz0S21LRrS4i061hAVILdHjIihVVUCJAEwAMYFdXoP7KX7LvhX4h6b8XfC/w28Lab4s0eyXTbDWrXR7SHUbWySMwrbw3KRCWOFYyYxGrBQhK4xxQB/DL/AMG5v/BQ79kT9h/4x/tI+Gv2rfEEHghfF2vJdaXrN9DJ9kujpct359r5yIwEqC4jkRDywc45wD6b/wAEfPjT4w0T4sf8FEP+CtP7Pvhm41PwQseuar4atJYWih1K8FxdalCrIMOPLi2POqHcizYHJFf2G6l/wT8/YQ1fwTqPw2v/AIL+Bm8P6vff2ne6evh+xS2uL7aVFy8awhWnCsQJT84BIzX0D8PPhd8M/hF4JtPhp8KfD2meGfDmno0drpelWkVnZQo5JYJDEqxqCSScLySSetAH+bf8a/2z9Y/bU/4JY+Mv2gP2vP2wdVuviBrk1zbab8GvDMUGlWvmJdjYL6CCPdcW3lA3JdwFwADK0oIr7j+Idx/wT+13/g3S/ZT0T9uez8aQabd3GoxaF4q8GWsF2dE1KO9uUkF358qJ5UiliYgGdxC2zDoK/sl8J/8ABPP9gvwJrOueIfBvwW8D6Ze+Jba5stVmt9Aska7tbxSlxBLiH5op1JEsZ+SQE7gc16hpX7L/AOzToXwfl/Z60P4eeGbLwDOJBJ4at9JtYtHfzXMj5s1jEB3uSzfJy3J5oA/gV+FH7Vv7WX/BPL9tP4K/BP8AYo/a7j/aw8G/EHWrXT7jw1+/vntbOSaFDFJHPJdfZGaORmRoLhGQxs0kYTIbr/2s/Dnir9nj/g5O+JPiP4yfGfUf2ddP+IelLdaD48jsobqCW2ktbRVgZrgeXHFut5IGkyCskYUnaxJ/t++CH7B/7FH7NPiWXxp+z78JvCPgzWZleNtQ0fR7W0u/Lf7yCaONZAh7oGC+1eg/HL9mj9nb9pvQIPC37RfgXQPHWn2rM9vBr2nQagsDuAGaLzkfy2IAyyYPHWgD+Vj/AIIR+B/2aviB/wAFRfjN+0v8FfjL4y+Mnim00WbRfEmv6r4dttN0XURcXFr5U0F1b3D73Y2YMYaCMyIjv05b+xavKvg58Cvgp+zx4OT4e/AXwjo/gvQo5GlGn6JZQ2Ft5jY3OY4VRS7YGWIJPc16rQAUUUUAflh/wWb/AOTAPFP/AF+aX/6VxV7v4T/5FXTP+vSH/wBAFeEf8Fm/+TAPFP8A1+aX/wClcVe7+E/+RV0z/r0h/wDQBXJi+h9DkO9T5fqdBRRRXEfRhRRRQAV+YnwL/wCUnfxw/wCwVon/AKS21fp3X5ifAv8A5Sd/HD/sFaJ/6S21aU9pehy4n4qX+L/22R+ndFFFZnUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH85H/Bbf/kqXgj/sFXH/AKOFfq5/wbkf8mueOf8Asaj/AOklvX5R/wDBbf8A5Kl4I/7BVx/6OFfq5/wbkf8AJrnjn/saj/6SW9enQ+BHxWZ/71P+uh/Q3RRRWpwBRRRQAUUUUAFFFFABX4bf8HBn/JiFn/2NWn/+ibmv3Jr8N/8Ag4L/AOTD7T/sadP/APRNzQB+L/8AwQC/5PH8S/8AYmXn/pdY1/XxX8g//BAL/k8fxL/2Jl5/6XWNf18V8Xnn+9P0R62D/hhRRRXjnUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/HD/wAF3/8Ak9u0/wCxZsP/AEbcV+43/Bvp/wAmH3f/AGNOof8Aom2r8Of+C7//ACe3af8AYs2H/o24r9xv+DfT/kw+7/7GnUP/AETbV9/l3+60/Q8Wv/EkfuRRRRXaYhRRRQAUUUUAFFFFABRRRQB+RP8AwXL/AOUcfi7/AK/tJ/8ASyKv5jP+CPn/ACefY/8AYJv/AP0AV/Tn/wAFy/8AlHH4u/6/tJ/9LIq/mM/4I+f8nn2P/YJv/wD0AVcPiRFX4Gf1o0UUV2nlBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXx1/wAFA/8AkzD4if8AYJf/ANDWvsWvjr/goH/yZh8RP+wS/wD6GtKWzLh8SP5zv+CQ/wDykc+F3/X9df8ApHPX+gdX+fj/AMEh/wDlI58Lv+v66/8ASOev9A6uA9UKKKKACiiigAooooAKKKKAPyK/4Llf8o4/F3/X9pP/AKWRV/K7/wAEpv8Ak9bw5/166j/6TSV/VF/wXK/5Rx+Lv+v7Sf8A0sir+V3/AIJTf8nreHP+vXUf/SaStaH8SPqhrc/rPooor3ywooooAK5vxl4p0zwN4Q1XxrrR22ej2c99OfSK3QyN+imukrkPiF4N074i+Adc+H2r8Wmu6fc6dPxn93dRtG3HfhjQwP4oP+CcX7Gd3/wcAfE/4ift5f8ABQHxDq974X0rWpNG8P8AhvT7xore1JRLh7dHIJjt4IpYVAiCvK7F3bIO9n7YfwC1H/g3U/bI+F37SP7IniTVn+Ffjy+ex8ReG9QujLG6Wpj86N2CqrhoZme3d1aSGRGOSpwYP+CUP7dVh/wRij+NH/BPL9tO3/4RXxLZapd654Zvr+G4/sq/vzbrbqkksUUkkdtc/Z4HhuFjZChcsVIUN8d/tm/8FK9S/wCC4fxT+AX7KmtaJpnw/ksNflh16/uNTQ6XNLctFGZoJpPLKxrDHIURtzu8gRCzYLeW3BU1/P8Aje5J/Y38Yf8Agp34O+EH/BST4e/8E4r3wreX2q/EHSU1WDW47lFtrdH+2YRoipZj/obchh98elL8eP8Agpz4Q+BX/BRb4a/8E8NS8KXmoar8SNNi1KDWYrhEt7VZZLuPa8RUsxH2QnIYfeHpX4ef8FVfH3g/9l//AIOEf2bf2kvi/crongaDwxBZyam6MbeFkm1OF8lQfli+1Qs+M7VYE8V5T8c/2q/gv+15/wAHJH7PPjz9n/V18Q+G9E02DQ/7VgRhaXN3AdSuJfs8jACVEFwiFlyu8EA10us02r63S+Q7n7G/tdf8Fu/CfwL/AGl7/wDZC/Zt+FXib45+PdAg+067Z+G0Jj09Aquylo4p3d0VxvAjCKzKhfeSq+6fs0f8FbvgN+1R+xz8RP2rvh7pWo2t78LNO1G78R+F9QCwajaT6fbSXPkk/Mu2URMI5OmQwZVZWUfyoeAdK1/9nH/gsT+0n4M+Nvx81D9mu/8AEWraprVhr5sYJ4dWsru+e7gjMlwNqCSGVZE2naWRk+8qrX2N/wAE+vAfwA1H9lT9ub9oT4BePfFnj3/hIfCHiG11zUvEGhQaRa3moC0v5/tFs8FxKJC/mNIylI2RZULKpYLUxrTcvv006fiFz7z/AGf/APg4mtP2qfFnhDwd+z78AvFviKbX7sWGp3UcyrY6RdSySLDHNc+SYjuiQTOSUCo2BvYEV+h3/BNP/gqL8MP+Cj/wr8X/ABE0fQ7rwTeeB9TbT9W0zVJ0klgQRCRZ3ZQoVGIlXDAEGJs18Qf8GwGi6dpf/BLPTr+yiWOXUvE2sXFwyjBkkV0iBb1ISNR9AK/CT/gpj478ef8ABIf9uH9pfwR8N7WWLwz+074Oe50zyfkjt7vUp9lzLkcBoS2oCNV5UTRngc0e1nGEakndMLn9YH/BMv8A4KXaB/wU08J+MviN4C8G3/hvw34X1ZdItL++nSX+0ZQhkkKIqqY9kbQsQST+9A7Gv06r84v+CSv7Jo/Yu/4J+/Dn4KajbfZtc/s5dV1wEYf+09S/0idH9TCXEAP92MV+jtdVPm5VzbjCiiirAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD+TD/AIKs/wDJ63iP/r107/0mjr+sv/gir/yjM+Gn/cZ/9Ot5X8mn/BVn/k9bxH/166d/6TR1/WX/AMEVf+UZnw0/7jP/AKdbyvAr/wASXqyHufqZRRRWQgooooAKKKKACiiigAooooAK/jr/AODjj/k6LwN/2Kw/9K7iv7FK/jr/AODjj/k6LwN/2Kw/9K7igD2T/gil/wAmsa//ANjXdf8ApHZ1+wFfj/8A8EUv+TWNf/7Gu6/9I7Ov2ArRHvYb+FEKKKKDYKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK/k/wD+CvX/ACeVe/8AYKsP/QTX9YFfyf8A/BXr/k8q9/7BVh/6CaUjjx38P5n9PX/BDT/lHH4R/wCv7Vv/AEslr9dq/In/AIIaf8o4/CP/AF/at/6WS1+u1QeOFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf//S/v4ooooA/wA5/wD4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/7FXRv/SSKv5Xf+CjH/J+Hxc/7GnUv/RzV/VF+yh/ya18Nf8AsVdG/wDSSKuXFbI97Ifjn6Hv1FFFcJ9MFFFFABXw7/wQp/5Mou/+xlv/AP0Vb19xV8O/8EKf+TKLv/sZb/8A9FW9dmE+0fO5/wD8u/n+h+zVFFFdh86FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAflh/wWb/5MA8U/wDX5pf/AKVxV7v4T/5FXTP+vSH/ANAFeEf8Fm/+TAPFP/X5pf8A6VxV7v4T/wCRV0z/AK9If/QBXJi+h9DkO9T5fqdBRRRXEfRhRRRQAV+YnwL/AOUnfxw/7BWif+kttX6d1+YnwL/5Sd/HD/sFaJ/6S21aU9pehy4n4qX+L/22R+ndFFFZnUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH85H/AAW3/wCSpeCP+wVcf+jhX6uf8G5H/Jrnjn/saj/6SW9flH/wW3/5Kl4I/wCwVcf+jhX6uf8ABuR/ya545/7Go/8ApJb16dD4EfFZn/vU/wCuh/Q3RRRWpwBRRRQAUUUUAFFFFABX4b/8HBf/ACYfaf8AY06f/wCibmv3Ir8N/wDg4L/5MPtP+xp0/wD9E3NAH4v/APBAL/k8fxL/ANiZef8ApdY1/XxX8g//AAQC/wCTx/Ev/YmXn/pdY1/XxXxeef70/RHrYP8AhhRRRXjnUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/HD/AMF3/wDk9u0/7Fmw/wDRtxX7jf8ABvp/yYfd/wDY06h/6Jtq/Dn/AILv/wDJ7dp/2LNh/wCjbiv3G/4N9P8Akw+7/wCxp1D/ANE21ff5d/utP0PFr/xJH7kUUUV2mIUUUUAFFFFABRRRQAUUUUAfkT/wXL/5Rx+Lv+v7Sf8A0sir+Yz/AII+f8nn2P8A2Cb/AP8AQBX9Of8AwXL/AOUcfi7/AK/tJ/8ASyKv5jP+CPn/ACefY/8AYJv/AP0AVcPiRFX4Gf1o0UUV2nlBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXx1/wUD/AOTMPiJ/2CX/APQ1r7Fr46/4KB/8mYfET/sEv/6GtKWzLh8SP5zv+CQ//KRz4Xf9f11/6Rz1/oHV/n4/8Eh/+Ujnwu/6/rr/ANI56/0Dq4D1QooooAKKKKACiiigAooooA/Ir/guV/yjj8Xf9f2k/wDpZFX8rv8AwSm/5PW8Of8AXrqP/pNJX9UX/Bcr/lHH4u/6/tJ/9LIq/ld/4JTf8nreHP8Ar11H/wBJpK1ofxI+qGtz+s+iiivfLCiiigAooooA8Q+M37M/7On7RllBp/x98CeH/GkVqrLbjW9OgvjAHxu8ppkYxk4GShB4r5B+Of8AwR8/4Ju/H/4Z2/wq8T/CbQNG0+xk820n8PWkej3du5wGKzWixsQwA3q+5WwCQSAR+ltFS4Re6A8K+I/7MH7OHxi8B6b8L/i14E0HxP4d0ZI49P0/VdPhvLe1WJQieSsqMIyqAKCuDjjpVfS/2Uf2W9E1zw54m0X4a+FbPUvB0Jt9Bu4dHtI59LhZnYpZyLEGt1LSOSsRUZZj1Jr32inyrsB4J8bP2V/2Z/2k47VP2gvh/wCHvGpsQVtX1rTYL2SAE5IjeVGZASOQpGe9dd4e+Cnwc8JfDJ/gr4W8J6Pp3g6W1lspNCtrGGLTXtp1KyxNbKgiMcisQ6lSGBIOcmvTaKLLcDz74Y/CX4VfBPwpH4D+DXhnSfCOhwyPKmnaLZQ2Foskhy7CGBEQMx5YgZJ61/LNrv7B3/BUn/gp3/wUB+G/xe/4KNeAfD/w7+GnwpuftENlp99b3h1IRypO0YWK5upG+0yRRLIZDEiQghQXzu/raoqJ0lKyewBRRRWgBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH8mH/BVn/k9bxH/166d/6TR1/WX/AMEVf+UZnw0/7jP/AKdbyv5NP+CrP/J63iP/AK9dO/8ASaOv6y/+CKv/ACjM+Gn/AHGf/TreV4Ff+JL1ZD3P1MooorIQUUUUAFFFFABRRRQAUUUUAFfx1/8ABxx/ydF4G/7FYf8ApXcV/YpX8df/AAccf8nReBv+xWH/AKV3FAHsn/BFL/k1jX/+xruv/SOzr9gK/H//AIIpf8msa/8A9jXdf+kdnX7AVoj3sN/CiFFFFBsFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFfyf/APBXr/k8q9/7BVh/6Ca/rAr+T/8A4K9f8nlXv/YKsP8A0E0pHHjv4fzP6ev+CGn/ACjj8I/9f2rf+lktfrtX5E/8ENP+UcfhH/r+1b/0slr9dqg8cKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//T/v4ooooA/wA7T/gphpkmkft9/Fm1k6v4iu5vwnIkH6NX9Pf7HeoJqf7KPw3uU6L4b0yL8YYEjP6rX87H/BZHQZvD/wDwUh+JUMkZRLmbT7pCRgMJ7G3ckevzEj6g1+73/BObXYPEP7FngO8hff5NnNat6hreeSIg/wDfP5Vy4r4Ue5kUv3sl5fqfbNFFFcJ9QFFFFABXw7/wQp/5Mou/+xlv/wD0Vb19xV8O/wDBCn/kyi7/AOxlv/8A0Vb12YT7R87n/wDy7+f6H7NUUUV2HzoUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB+WH/BZv8A5MA8U/8AX5pf/pXFXu/hP/kVdM/69If/AEAV4R/wWb/5MA8U/wDX5pf/AKVxV7v4T/5FXTP+vSH/ANAFcmL6H0OQ71Pl+p0FFFFcR9GFFFFABX5ifAv/AJSd/HD/ALBWif8ApLbV+ndfmJ8C/wDlJ38cP+wVon/pLbVpT2l6HLifipf4v/bZH6d0UUVmdQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAfzbf8FstQST41eD9KH3odEeU/SWdwP/QDX7B/8G52mSQfsheMNXb7tx4vniA/65WVoc/+P/pX4Z/8Fj9dg1b9rO006F9x0vw/Z27gfwu0s82P++ZFNf0Qf8EBdCl0j9gSPUJEKjVPEWpXSkjG4KIocj15iI/CvUor3EfEZi74mb8z9sqKKK0OIKKKKACiiigAooooAK/Df/g4L/5MPtP+xp0//wBE3NfuRX4b/wDBwX/yYfaf9jTp/wD6JuaAPxf/AOCAX/J4/iX/ALEy8/8AS6xr+viv5B/+CAX/ACeP4l/7Ey8/9LrGv6+K+Lzz/en6I9bB/wAMKKKK8c6gooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP44f8Agu//AMnt2n/Ys2H/AKNuK/cb/g30/wCTD7v/ALGnUP8A0TbV+HP/AAXf/wCT27T/ALFmw/8ARtxX7jf8G+n/ACYfd/8AY06h/wCibavv8u/3Wn6Hi1/4kj9yKKKK7TEKKKKACiiigAooooAKKKKAPyJ/4Ll/8o4/F3/X9pP/AKWRV/MZ/wAEfP8Ak8+x/wCwTf8A/oAr+nP/AILl/wDKOPxd/wBf2k/+lkVfzGf8EfP+Tz7H/sE3/wD6AKuHxIir8DP60aKKK7TygooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr46/wCCgf8AyZh8RP8AsEv/AOhrX2LXx1/wUD/5Mw+In/YJf/0NaUtmXD4kfznf8Eh/+Ujnwu/6/rr/ANI56/0Dq/z8f+CQ/wDykc+F3/X9df8ApHPX+gdXAeqFFFFABRRRQAUUUUAFFFFAH5Ff8Fyv+Ucfi7/r+0n/ANLIq/ld/wCCU3/J63hz/r11H/0mkr+qL/guV/yjj8Xf9f2k/wDpZFX8rv8AwSm/5PW8Of8AXrqP/pNJWtD+JH1Q1uf1n1HLLFBE087BEQFmZjgADqSewFeBftM/Er4l/Cf4U3PjD4UeHG8T6tHKiC1VXk8uNgS0pSP53C4GVUg85yAK+A/hDoHhT9syVbj48fFWTxBc53SeENPLaTbwsvVHibZNOF6bwAR/eNXjs6VHExwVKHNVkrpNqMfve/pFSfdH3OR8GTxmXTznFVvZ4WD5ZOMZVZ33+COkfKVSdOL6Nn6ueGfF3hfxpp7av4R1G31O0SV4TPayLLH5kZwyhlJBKng4PBrM+InxA8LfCzwTqPxA8aXItdM0uEzTP1OOgVR3ZmIVR3YgVL4F8A+DPhn4ag8H+AdNh0rTLbJjggXCgtySe5YnqxJJ7mvgX/gp5cTS/CTwp4dnkMWnar4osre9YHgxbJW2n2yN31Wtczx1bB5dUxMknUjHZXtzbetr/gc3DWSYTN+IaGW05SVCpO13bn5Fq9Fdczina11fuXPDXxr/AG5PjlYL43+DvhLQPDnhq5/eWLeI5JmurqLqr7YSNquORlcejEYJ9A+EH7U/jG4+KK/AH9o/w9H4V8WzxGawmtpPMsNRRQSfJYklTgHClmzggkMNtfa1ra21jax2VlGsMMKhI0QbVVVGAABwABwBX5tf8FGYk03/AIVd4v0YY1+x8W2sdkV++UkBZwD6F448ivKx9LFZdh/rv1mU5Ra5lK3LJNpNJJLlet42fk7n1GR4rK+IMw/sX+zqdGnUU1SnDn9pTkouUHKTk/aJ2tPmWzbjytI/SyivgjxNrmtx/wDBR/w74ejvJ10+TwZJM1sJGELSfaJxuKZ2lsADOM8Un7W+ua3pXx0+CNlpd5PbQ3viCWO4jikZFlQeT8rgEBhyeDmvRqZ1GFGtW5PgqKG+93FX/wDJvwPnqHBtSri8JhPbJOvQlWTtsoxqS5d9X+7tfz20PviivyS/aH+NXhTxx+1HffBD4qeNZ/BngjwvZwy3SWczQTanezosgRpI1LCNUkGV9VPcgrzPgb4x/C74M/tDeDvDP7Pvjq48TeE/F1z/AGZqOj3dxJciynkKrBNC8q7lDMwDDvg5zkbeCpxVh415U7LkU+RvnXNe/LdQ3cU9G733aTWp7tDwux1TBQrpy9rOl7aK9lN0+Tlc0nW+FTlBXUbON2ouSk7H7J0V+MXxU8VfD/Uf2o/Fvhb9svXtc0LS4jAPC8VtLPBpxtyDul3Qg5kJ25YjaG3BjwAPr39n/wCFh1T4deJ/B3/CwpPGvgrVpguj3NteGS+s4jkvE10hzuGVwBjbg8DdgdGEz54nETo0qa0cl8a5k43+KO8VK2j13TaOHNeBIZdgaWMxOJa5o05fwpezlGpZtU6t+Wc4J+9F8iupJSbR6t8Dfjy/x9+HmteOfCumNaNZX95YWkE7hmla2VdrPjAXex5AY4H8Vd58G9W+KWufDjTtU+NOl22jeJZfO+2Wdo4khj2yuI9rCSUHdGFY/OeSenSvzS/4J/8Aw10fSvgf4t+J9neX41CObWNPWM3Tm3EaKjB/Kzt8zIHz9ax/Cfxz+JPgz/gnh4FfwlfyS+K/GGrTaHa3ty5klia4vLkeZltxJVUCLn7uQR0xXl4DP6kaFHE4293SnNpNWdpQS0sveblZa2Wt73uvps84CoVMdjMvyfl5Y4qlSTmpKUOanWk/e5muRKDlO8XJtJq1mn+ydFfm741/Ypk8DfDu+8b/AA58a+I4/HOlWr3qanPfvIt3PCpcpLE2VKOQQBzjPO4ZB8e+P/x88e/Er9in4afF7wvdNpuv6l4jsopGgYojXMAuYmDKMZjeSPdsORggc16WIz+eGjU+tUOWUY86SkpXSaT1srNNq6tbXRs+dwHAVHMqlD+y8ap0p1VRlKUHBwm4ylFuN3eElGVndP3XeK0v+wdFfk9+0z+zTqXwY+Duo/Hvwf448Ry+NNA8m7lvri9Z47ktKiyKYsbFT5iVQfKANpBFfpf8OfEdz4x+HuheLrxVSbVdOtbx1X7oaeNXIHsCa7sFmNSriJ4avS5JpKS1Uk02102aa1X3NnhZzw7h8NgKOZYHFe2pTnKm/ccHGcFGT0bd4tSTjLR73imXNY8Z+EfD+s6f4d17U7WyvtW8z7FBPKsb3Bi27xGGI3Fd65Ayea6avIfjB8CPhP8AHfRYtE+KejxanHbbzbyktHNAXxuMciEMudq5AODgZBxX5deNviV4n/ZT8SweEP2dviU/xDdpREvhG/hfVbiMZwVjubcEoVHSMlMejVz5lnE8BJ1MRBOi7Wakub0cXa+u3K2/7p6HDnCVDPqUaGX1pLFpNyjOD9m1d2aqQ5uTS1/aRjFO757bftHRXJeAtb13xJ4J0nxB4o05tH1K9tIZ7qxdtzW8rqC0ZOBkqTjoK62vchNTiprZ6nxVejKlUlSnvFtOzTV1po1dP1WjCiiiqMgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP5MP+CrP/J63iP/AK9dO/8ASaOv6y/+CKv/ACjM+Gn/AHGf/TreV/Jp/wAFWf8Ak9bxH/166d/6TR1/WX/wRV/5RmfDT/uM/wDp1vK8Cv8AxJerIe5+plFFFZCCiiigAooooAKKKKACiiigAr+Ov/g44/5Oi8Df9isP/Su4r+xSv5FP+DkPRfI+Nnw28Q4/4+tDu7fP/XCcN/7VoA7v/gil/wAmsa//ANjXdf8ApHZ1+wFfiv8A8ER9Y8/4GeL9Az/x7a6LjH/Xe3jX/wBpV+1FWj3cN/CiFFFFM3CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACv5P8A/gr1/wAnlXv/AGCrD/0E1/WBX8kP/BWPUvt37bXiK1zn7FaadD9M20cn/s9KRx47+H8z+pj/AIIaf8o4/CP/AF/at/6WS1+u1flL/wAES9O+w/8ABNb4fzEYN1Lq8x/8GNyo/RRX6tVB44UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//1P7+KKKKAP45/wDg4t+F6+Hf2mfBvxWto9kXibQWtJDjhrjTZjuOfXy54h9AK9a/4Ix+Nv7c/Zx1rwXO+6XQtakKL/dguo0df/H1kr7u/wCC/fwIn+Jn7HVp8VdKjaS88AanHdybRk/Yr3EE3vw5hYnsFNfgX/wR3+Lo8EftG3vw1v5Qlp4xsGjRScA3dlmWL/yGZlHqWFY143gz0cqq8mJjfrp9/wDwT+oSiiivNPswooooAK+Hf+CFP/JlF3/2Mt//AOirevuKvhb/AIIm32neFvgX4y+A+rTeT4n8JeKrxdQsZMLNHHIkSJJtBPyM0bqCCeVPbBPZhOp89n60pv1/Q/aGiiiuw+cCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPyw/4LN/8mAeKf+vzS/8A0rir3fwn/wAirpn/AF6Q/wDoAr5h/wCC2HivTNK/Yrn8FO3man4o1jT7Kwtky000kcgnbYiglsCPB6DLAZyQD9VaHZS6Zotnps5Be3gjjYr0JRQDj24rjxfQ+hyHep8v1NSiiiuM+jCiiigAr8xPgX/yk7+OH/YK0T/0ltq/TuvzE+Bf/KTv44f9grRP/SW2rSntL0OXE/FS/wAX/tsj9O6KKKzOoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK8m+O/wATrP4M/BvxL8Ur3BGiafNcxqejzBcRJ/wOQqv400r6ClJRTk9kfyQ/t5eNv+Fgftf+PteV96Q6pJYIe22wC2wx7Hys+/Wv7kf+CaHw2Pwn/YM+FvhF4vJlfQ4dRlTuJdSJu3B9w0xBr+Cj4CfCrxJ+0x+0J4a+E9nI8t/4u1eK3mn6sqzPmaY/7ibnP0r/AEqNC0XTvDeh2fh3SE8q0sII7aBP7scShVH4ACvWirJI/P6s3Ocpvq7mrRRRTICiiigAooooAKKKKACvw3/4OC/+TD7T/sadP/8ARNzX7kV+G/8AwcF/8mH2n/Y06f8A+ibmgD8X/wDggF/yeP4l/wCxMvP/AEusa/r4r+Qf/ggF/wAnj+Jf+xMvP/S6xr+vivi88/3p+iPWwf8ADCiiivHOoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD+OH/AILv/wDJ7dp/2LNh/wCjbiv3G/4N9P8Akw+7/wCxp1D/ANE21fhz/wAF3/8Ak9u0/wCxZsP/AEbcV+43/Bvp/wAmH3f/AGNOof8Aom2r7/Lv91p+h4tf+JI/ciiiiu0xCiiigAooooAKKKKACiiigD8if+C5f/KOPxd/1/aT/wClkVfzGf8ABHz/AJPPsf8AsE3/AP6AK/pz/wCC5f8Ayjj8Xf8AX9pP/pZFX8xn/BHz/k8+x/7BN/8A+gCrh8SIq/A/Q/rRooortPKCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvjr/AIKB/wDJmHxE/wCwS/8A6GtfYtfHX/BQP/kzD4if9gl//Q1pS2ZcPiR/Od/wSH/5SOfC7/r+uv8A0jnr/QOr/Px/4JD/APKRz4Xf9f11/wCkc9f6B1cB6wUUUUCCiiigAooooAKKKKAPyK/4Llf8o4/F3/X9pP8A6WRV/K7/AMEpv+T1vDn/AF66j/6TSV/VF/wXK/5Rx+Lv+v7Sf/SyKv5Xf+CU3/J63hz/AK9dR/8ASaStaH8SPqhrc/rPr58+L/7LfwP+OGbrx1ocR1EYMepWv+j3qMPukSpgtt7B9yj0r6Dor2MThaOIg6VeClF9Gro9HL8zxeArrE4KtKnUW0otxf3r8jy/4P8Aw5v/AIVeCovBd9r1/wCIxbSyGG71J/MuRExysbP/ABbBwDgcdhXJftM/AvTv2ifg/qXw2u5ha3Mu24sbkjIhuouY2OOdp5Vsc7WOOa99orOeBozwzwko3ptcttdrW33OijneNpZjHNqdS1eM1NSSS95O97JJb7q1n2Pywuf2l/2jfAfw3ufhV8XPBXiW08VQW32S18R6BYrqtvO6gKk+GdE3tjLLuPJztXO0fPVp8Q/i54u+L/w+8f8A7c2k3/h7wvoLtJpkyWEkUM+ph18qS7RWZoWOFONoGUwFCljX7qVFPBBcxGC5RZEbqrDIP4Gvnq/DeIq8vNjJSjG1oySafK01zpNc1rb6N9Wz7/A+IuAwyqOllNOE6nNzThJqceeLjJ0XJT9ndPZ88V9lR3Pzs/aS074hfC39qXwp+1B4f8N3/ijQ7XSJdF1K30qPzruBS8siyLGDkgmTr90bSCRkGvM/iR4h+L37QXx6+FPjzSPAmt6N4U0DXAPM1G1aO7dpSjPNJEu/yYEVFCu7AMWPpx+slFdWIyB1JVEqzVOc1NxsviTi997PlTt3620PNy/j1Yanh5TwUJ16VKdGNRykv3clNfCny8yU5JS7dL+8fml8VvBHiv4I/tR6j+0JZ+D7jxx4U8WWUFtqttYW63V5ZXNuqosqQnl1KIMkYHzNkjAzu+CPHfj34y/GTRG+F3w+fwl4M0tmn1TUde0uO2uLlhgxpbJ94EEffBOMknBUBv0Qoq1kfLVk6dVxpuXO4pK927tKW6i3q15tJpMwlxv7TCwhiMJGdeFL2UZuUrcqjyRbp35XOEdIy20TcW1c/Onx78WPiJ4I+I/iLwX+0b8P7vxv4KvZxLod3pOlpfxxQtnMdwhz84yFycEkEgFSMVP2MPhTrGg/Fvxz8V9C8M3vgbwdrq28Om6Lfr5M7PEBvmaDJMQzu2qT/GQOAK/SGinHI/8AaYYirVcuSTlG6XMrpqzlu4q7svS97BV43tltbAYbCxputCMKjUpcjUXF8ypX5Izk4LmlrvKyi5M/K/8AZJPj74ceFvGv7OPjHwfrdpem41e/ttS+ys2nzxyKqoqTDhncglQAQR3zxXJ+Ff2cvin4x/4J9eC/DukafNpfjTwlqk2tWVjqERtpGlhvLgiN1l2lN6Sb1zgEheQDmv18ornp8M0lTVGpUcoqEoLZNRk4tarrHlVn9534jxLxLxM8XhsPGFSdalWlq5JzpwqQas/szVR3V9Oj1Pze8Z/tXfE34gfD+7+HHgn4XeKbPxprFs9kyXtkYbC0eddjStcsQCi5JQlVDY5xXCfGr9nPxf8ADr9kz4Y/B3wvZ3Ov3uheJ7C5vTYQST7d5uJZpMKpYRK8mNzAADGcZxX6uUVpVyB11N4qs5SceROyVldN6LdtpXfkrJHPhOPI4GdBZZg40qUKntZR5pS55qMoRvJ6qMYylypa+823J2t8v/to+H9e8U/sv+MPD/hiyuNSv7q0RYba1jaaaRhKhwqICzHAJ4FerfBiwvtL+D3hPTNThktrm20awililUo8bpAgZWU4IYEYIIyDXpVFeqsFFYuWLvq4qNvRt3/E+VlnM5ZVDKuVcsakql+t5RjG3p7t/mfPnx3/AGf7P4+nStK8Q6/qmmaJZeeb3T9Nm8hdQ8zZsWZhnKJtb5cc7uoxXZ/DD4K/Cr4M6X/ZHwx0K10iJgA7wpmaTH/PSVsyP/wJjXqFFVHAYdV3ifZr2j+1u9rWTey8lZddyJ59mEsDDLXXl9XjdqCdo3bbu0rczu9HK7S0WiSCiiius8kKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/kw/4Ks/8nreI/wDr107/ANJo6/rL/wCCKv8AyjM+Gn/cZ/8ATreV/Jp/wVZ/5PW8R/8AXrp3/pNHX9Zf/BFX/lGZ8NP+4z/6dbyvAr/xJerIe5+plFFFZCCiiigAooooAKKKKACiiigAr+Yb/g5N8FXdz4W+FHxFhX9xZXWq6bMcfx3SW8sQz9IJK/p5r8df+C6vwxn+IX/BP3Wdas4PPn8J6pYawuBllQObaRh7KlwxPsCe1AH4l/8ABDnxZaRal8Q/A0z4nni0+/hX1SIzRyH8C8f51/QdX8if/BLD4jD4fftleH7ad9lv4igudIlOf+ey+ZGPfM0cYr+uyrWx7OClelbsFFFFM6wooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr+M3/AIKHeKbLxj+2j8QNXsH8yOLUFsif9uxhjtnH4NERX9h3jLxPYeCfB+q+M9V4tdIs572bnH7u3QyNz9FNfwy6VYeJfjT8V7bS4czax4s1ZIlwMl7m/mAHHU5d6mR5+YS92MT+/L/glp4Iv/h9/wAE+fhX4f1NdssujLqGMYwuoyPdrkeu2YZr78rn/CXhrTfBnhXTPB+jLss9KtIbOBemI4ECKPyAroKk8sKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//1f7+KKKKAPOPjD8M9C+M3wp8R/CXxMoaw8Sabc6dNkZ2rcRlNw91J3D0Ir/ODlg+JH7KX7QLWt/EbHxP4F1grJG44E9nJgjB6o+PoynPQ1/ph1/Jr/wcHfseDQPFWkftj+C7XFrrBj0rxB5a8LdRr/o07YH/AC0jUxMT3RO7UDTad0fqB8Hfil4c+NXwx0T4p+E33WOtWqXCrnJjY8PG3+1G4KN7ivSq/nI/4JEftY23g7xJN+zP42n2WOuTG40aRj8sd4w+eEnsJQAV/wBsY6tX9G9eXVhySsfcYLEqvSU+vX1CiiiszrCvgz47/szfFLTvib/w1B+x3rsXhX4hCHyNQgnAaw1m3GP3dwpVlD7VAVipyQvKMA6/edFVCbi7oxr0IVoclRaHx78Pf+Cr3hrwpr0Xw4/bc8L33ws8Ru+yOeSN7nS7jLON0U0YfMagRq0gLJuY5IVSR+pfgz4g+AviPpQ134e63p+vWJxi4065juouenzxMy8/Wvkvxp4E8E/EfQZPC3xA0iz1vTZSGa2voUniLL0ba4IDDsRyO1fAPiT/AIJf/BO28Sjxx8Cdb174Z6yC37/Qb2RFw5DMAGJdBkZASRVH93gY7IYpfaPnq+R1E70ndee/9fcfvDRX4VWOkf8ABWf4LykeCPiH4f8AiTp4kDLB4htDbz45zzGA2055BuMjA245z1dh/wAFFP22PhvHJF8ff2fby+WBFMl74XuvtMZOOWEKi4O0kE8y5QcNk81uqkHszzKmCrw+KDP2qor8gdK/4LX/ALJAZbbx7pfijwncllUx6npo7gFmXyZZCVXI6gMR0Xmvofwl/wAFQv2B/Gjsmj/ErToSrbT9viuLAZxng3UUWR7jjPHWrOU+96K+fdB/a0/ZY8UbR4d+JPhe9Z9mEh1e1Z8yfdBUSbgT6EZzXrGh+OvBHiZgnhvWbHUGLFQLa4jlJYDJHyseQOT7UAdVRRRQAUUUUAFFc1rHjTwd4e8z+39Ws7HyceZ9onSLbuxjO5hjORjPrXlerftUfsw6Bu/t34j+F7La5jPn6xaR4cZ+U7pRzweOvFAHvNFfCXi3/gpv+wZ4LVX1j4l6XMGXcPsAmvzjOORaxy4Psecc9K+b9a/4LY/sgQyzWngix8TeKZkVNg03TcK7vwq/vpI2Bz1yv0yeKAP19or8U7j/AIKR/thfFC5ksv2eP2f9RggziPUPFFx9ijIDDJMTLCCAAR8k7HPrjB5S/t/+Cunxns3i8W+OfDfw1sbtDHLb6HbGe6QEMfldxIynJVd0dyCAMg5zuh1IrdnVTwVefwwZ+2Xi7xp4O+H+hTeKfHmrWeiaZb4828v50toEz03SSFVGfc1+W3xR/wCCtHw3n8R3Hwu/ZF8Oaj8WfFY+VG09TFpUROQXkuWBJVTg5VPLYceavWvCtC/4JkfC3XNbXxf+0f4m1/4oauu8B9YvJEt1DOX+REfzByTlTMUJJ+UdK++PA/w4+H/wy0j+wfh1oljoVkTuaGwt0t0ZsY3MEA3N6k5JrCeKivhPSoZJUlrVdl+P+R8VfBn9mv40+OPi/aftW/toa3FrHjG0heLStFtFX+ztIR+nl9QZACeRnBOS7thh+hFFFck5uTuz6HD4eFGHJTWgUUUVBuFFFFABX5UfsCXLfFT9oL42ftJ2KA6PrWrQ6Xps6oNs8VkGBZW3NkFPKLY+Uk5HTAsftIftOa7+0Dq95+yL+xxIdV16/LWmva7GHWx0i0JZZf34xmQ4xuTcMEqhaQ4X70+BXwb8L/AH4UaN8JfB+Ws9Ih2GVwA80rEtJK2P4nclj6ZwOBWtuWLvuzi5lWrRcfhjfXz2t8tbnrdFFFZHaFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFfhf/wWU/aNt9M8M6Z+zR4flDXOpNHqWrY5KQRNmCM89XcbyCMgIvY1+wvxh+K3hL4IfDbV/ij43nEGn6RA0rDOGkfokaeryMQqj1NfxleOvFvxG/ar+PVz4gNu994h8YakkVtaRZY75mEcMCZ7KNqL7DmunDU7y5n0PGzjFezpeyjvL8j9wP8Ag3j/AGbbvxZ8bPEX7Tmt2rf2b4UtG0zTpWxtbUL0DzCvfMdvkN/11Ff2AV8tfsXfsz6B+yL+zb4Z+BuibJJtMtxJqFwg/wCPi/m+e4l55wXJC56IFHavqWu8+UCiiigAooooAKKKKACiiigAr8N/+Dgv/kw+0/7GnT//AETc1+5Ffhv/AMHBf/Jh9p/2NOn/APom5oA/F/8A4IBf8nj+Jf8AsTLz/wBLrGv6+K/kH/4IBf8AJ4/iX/sTLz/0usa/r4r4vPP96foj1sH/AAwooorxzqCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/jh/wCC7/8Aye3af9izYf8Ao24r9xv+DfT/AJMPu/8AsadQ/wDRNtX4c/8ABd//AJPbtP8AsWbD/wBG3FfuN/wb6f8AJh93/wBjTqH/AKJtq+/y7/dafoeLX/iSP3IooortMQooooAKKKKACiiigAooooA/In/guX/yjj8Xf9f2k/8ApZFX8xn/AAR8/wCTz7H/ALBN/wD+gCv6kP8AgtlpR1P/AIJseP5kGWs5NJnA+mo2yn8gxNfynf8ABJbWRpf7cHhuzY4/tC01G3/K2kl/9p1UPiRFX4H6H9eVFFFdx5QUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV8df8FA/+TMPiJ/2CX/8AQ1r7Fr4O/wCCmniFfDf7D/ju6z89zBa2ij1NxcxRn8lYn8KmWzLp/Ej+fr/gkP8A8pHPhd/1/XX/AKRz1/oHV/A7/wAEWvDzeIP+Ckfw9JGY7H+07t8dvLsLjb/4+Vr++KuE9UKKKKACiiigAooooAKKKKAPy2/4LQ6F/bv/AATa+IqouZLQaZdJ7eVqFsWP/fG6v5GP+CXmo/YP23/BqE4W4XUIT+NlOR+oFf3GftufCq5+N37IvxF+F1gC13qug3i2qj+K5iQywj6GRFB9q/z+f2TPHw+GH7S3gjxtK2yG01e2WdvSCdvKlP8A37dq0pO04vzBH9sVFFFfQGgUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAfyL/APBUPUft/wC2/wCMkBytuunwj8LKAn9Sa/sR/wCCRWhf8I7/AME5fhdp+NvmWFzdY/6+rueb9d9fw0/tSfEYfFn9onxn8QYmDwajqtwbdhzm3jby4f8AyGq1/oYfsl/DOf4Nfsv/AA++Ft4CLnQvD+n2lxnj/SEhXzeO37zdx2r5+q7zk13M2fQtFFFZgFFFFABRRRQAUUUUAFFFFABXC/E/4feH/iz8ONe+F/iqMS6b4h0+4065UgN+7uYzGxAPcA5Hoa7qigD/ADJvFnh3xt+zt8bNQ8MXha08QeCtZkgL4KlbmwmIDAem5Aw9RX9q/wAEvihpPxq+Enh74q6LgQa5ZRXJQf8ALORhiRPqjhlPuK/Hv/g4H/ZH/wCEA+Luk/tW+EbXZpfjECx1by1wsep26fI5wMDz4V/Fo2J5Ncj/AMEcv2p7G1juv2WPF8yxNJJLf6HI7Y3s3zT249+DKvr8/tVRZ24Kryz5X1P6BKKKKo9cKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooqpqF/ZaVYT6pqcqQW1tG0sssh2qiIMsxJ4AAGSaAPym/wCCvPx5Hw0/Z5j+F2jz7NU8azG3YKRuWxgw8x9cOSkfuGb0r87P+CHHwEb4yftz6V4s1CEyaZ4DtZtcmPG37QuIrZfqJZBIMf8APM18f/t1/tMyftSfH7UPGunll0PT1/s/SY2yD9liYnzCMnDSsS59AQD0r+tL/giT+yJ/wzh+yfb/ABE8T2nk+J/iIY9Vud64kisQD9khOQCPkYykHoZMdqhs8PE1eeo2tj9laKKKRzhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH/1v7+KKKKACvNfjF8JfA/x3+F+ufB/wCJFr9s0TxBavaXUQO1trchkb+F0YB0b+FgD2r0qigD/Nw/at/Zv+In7F37ROrfB/xS7x3mjXC3OnX0RK/aLVjut7iMjoSBzj7rgr1Wv6S/2AP20dG/ap+HK6Pr0iQeM9ChRdSt8gfaEGFFzGO6ucbwPuOcdCuf0M/4Kdf8E8vDf7dnwhxoghsfHvh+OSTQ7+T5Vkzy1rMw58qQjg8+W/zDjcG/hw0TWvjH+yj8a/tcKXPhvxd4VvGingmUq8ckZ2vFIvRkcZDDlWU8ZBzWVWkprzO7AY2WHqX+y90f3D0V8g/shftjfDn9rXwQuq6A62PiCyjX+1NJdsyQOeC6f34WP3XH0YBuK+vq82UWnZn2dOpGpFTg7phRRRSLCiiigAooooAp6hp+n6tZyadqsEdzbzDbJFKodGHoVOQR9a8R8Vfssfs1+NmaXxR4D0G7lcbTM1hCs2ACAPMVQ+ADxzxXvVFNNrYmUIy+JXPibV/+Ccv7FOtqVvPANmgIC/6PPcW/AOf+WUqc+/UjjpXmOqf8Emv2LtQl8y00W+sRljtg1CcjB6D94znA7c59c1+k9FUqk+5g8HQe9Nfcj8tZ/wDgkD+ySbuO80+TXbJo8FfIvl4ZTkMC0TEH6HtVi9/4JOfAC6iEcHifxhbEHO6PU4ySPT54GGPwzX6hUU/bT7k/UMP/AM+0fl7Zf8EnPgBaxGOfxP4wuSTndJqcYIHp8kCjH4Zqu3/BIX9lG51D+0dVufEF9Ifveffq27jAyREG44xz29K/Uqij20+4vqGH/wCfaPzb0z/gk7+xXYY+1aFe3uH3fvtQuBkcfL+7ZOP15616Ppf/AATh/Yn0fy/sngK1fy848+4uZ+uevmTNnrxnOO3Svt2il7SfctYOgtqa+5HgPhr9lP8AZm8H7G8O+ANAt5I8bZf7PheUYxj94yF+wPXrz1r3Ky07T9MiMGmwR26E7isahAT64HfirlFS23ubxhGPwqwUUUUigooooAKKKKACiiigDn/Fmn6zq3hXU9K8OXn9nahdWk0Vrdbd3kTOhCSbe+xiGx3xX5sH/gnx8V/iQ0Vt+0t8aNe8UaWsjSPplhGNPgkDhgyuQ7hlYED7gKqWVSN2R+o9FVGbWxjVoQqW59fm7fd1PIfgx8B/hV+z94W/4RD4U6TFpls+xp3XmW4kjQIHlc8sxA57ZJOBk169RRSbvqzSMVFcsVZBRRRSKCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKinnhtoXubl1jjjUs7McKqjkkk9ABTpZYoImmmYIiAszMcAAdSTX86H/AAUi/wCCjdj8Q7O8/Z+/Z+vvM0RyYtZ1eE4F6B1t7du8Gf8AWSD/AFv3VPl5MmlOm5uyOXF4uFCHPP5LueM/8FMv23rD9onxVB8LfhhcvJ4Q0GZnedThNQuxlfMA7xxjIjJ+9kt0Ir9Ov+CCf7ApkkP7bnxUsflXzLbwrbzpwTyk16M+nMURx13t/dNfmN/wS4/4Js+Jv26fiQ3iPxWk2n/Djw7Oo1a+XKNdTABxZ27d5GUgyMP9UhBPzMgb+7jwr4W8O+B/DVh4N8IWcWnaVpdvHa2lrAu2OGGJQqIo7AAAV6UIqKsj4uvXlWm6k92b9FFFUYhRRRQAUUUUAFFFFABRRRQAV+If/BwFYXN5+wSlxAuVtfEunSyH0UpOmf8AvpgK/byvzP8A+CwPw11T4n/8E8PiJpmiRebd6VbW+sKPSPTp455z+ECyGgD+br/ggZqFrZftna5bXDYe78I3sUQ9XF3ZyY/75Qmv7Ba/hQ/4JUfFix+EP7dfgbV9WcR2Wr3EujTMxwAdQjaKI56ACYxk57Z+tf3X18dn0GsQpd0ergn+7sFFFFeIdYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH8bH/Bdi7guf24I4Yjlrfw5p8b+zF52/kwr92/8Ag39sLmz/AGCXuJ1wt14l1GWM+qhIEz/30pFfzM/8FVfipp/xb/bt8dazo7K9npVxFo8TKcgnT41hlOehBmWTGO2PrX9eX/BH74a6p8MP+CeHw70zW4vKu9VtrjWGHrHqM8k8B/GBozX6DgYOOHpxfZHiVnecmfphRRRXWZBRRRQAUUUUAFFFFABRRRQB8o/t0fCB/jz+x/8AEX4VWyl7rU9EuWtFH8V3bDz4B9DLGgPtX8Af7J3xTi+Cn7SPgz4m3bBLXTNTi+1M3AW2mzFMfwidiK/0qq/zt/8AgpJ+zm37Lv7ZXjT4Z2cJh0qW7Op6V6Gxvv3sar7RktF9UNNO2omrqx/ZerK6h0OQeQR3pa/PX/gmp+03D+0b+zpY2+sTB/EXhVY9M1JT95wi4hm6D/WIOf8AbVq/Qqu5O6ueVKLi7MKKKKZIUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABX4xf8Fr/idD4d+AOgfC+3cC68S6qJ3XPJtrFdzcf9dZIufY1+zhIAyeAK/jq/4KS/tMw/tJftG3tx4fmEvh7w0raXpjL92URsTLMOB/rHzt/2AtZVZWib4eF537H6A/8ABu78K28UftWeJ/ipcKTb+FNBaJCO1zqMqoh/79RzDH+Ff2W1+MP/AAQy/Zmb4F/sbW/xE1qIx6z8RphrEoPVLJAUtE6DgpulHX/W1+z1ch6IUUUUAFFFFABRRRQAUUUUAFf5zX/BQD4AX/7MP7YPjf4VshitINRe901gMBrG8/fwEY/uo4Q4/iUiv9GWv5vf+DgL9jPVviD4H0r9rvwJbCa78Jwf2frsca5kbT3fdFNwORBIzB89FfPRTQB6h+xX8ch+0L+zf4c+IF3KJdSWH7FqXqLy2wkhP+/xJ9GFfVVfymf8Eyf2tk/Z7+Ln/CC+M7oQ+E/FTpDcM/3LW7+7FNnOFU/ckP8AdIY/dr+rJWV1Docg8gjvXuYarzwT6lpi0UUV0DCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK+N/wBvX46r8AP2ZfEHimzl8rVdRj/svTecN9pugV3D3jTfJ/wGvsSaaK3iaedgkaAszMcAAdSSegFfyZf8FIv2s/8AhpP4xtoPhO58zwn4YZ7awMbHZczE4luPQ7iNqH+4AR941z4mt7OD7sTZ53/wTz/Z61H9p39sHwT8L7eMtZfb01DUmwCEsbIiabOcfeC+WP8AaYV/ou1/O5/wQE/Y21P4XfC3VP2rPHNv5Oo+N4UtdHjYfPHpcbbmkPGR9okAIH9yNW6NX9EdeGQFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAfOX7WX7Nvg39rX4BeIPgV42/dwavBm3uVAL2t3Ed8My+6OBkfxLlehr/PL8eeCfiz+yV8ebzwfr4k0bxZ4M1EDfG33ZYSGjkRv4kcYdT0ZSPWv9MGvwy/4LH/APBNC+/ay8IxfHf4K2qv4+8N2zRzWaKA2rWSZbywRyZ4uTFn74JTrtwAZf7HX7VXhL9rH4TW/jLRytvrFkEg1exz81vckdQOpjkwWjbuMjqCB9Y1/ED+zt+0F8R/2VfixbfEDwazxz2zmC/sJSUjuoM/vIJR26cHGUYAjkV/Yt8BPj78Nf2kPh1Z/En4ZXwubWcBZ4G4ntJ8AvDMmTtdM+6sMMpZSrG0z2sNiFUVnue0UUUUzqCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr8Lv+Cs/7aml6N4buP2XPhnfCXU7/A1+aLlYLfqLbcD/AKyQ4MgHRPlP3iB9M/8ABQz9vfRf2ZfCc/w++HtzDdePdTi2xIMONNikH/HxKOm/BzFG3U4ZgVGG/m5/Z7+AXxc/a/8AjdYfCr4cwyanrmtzNNc3U5ZkhjLZmubiTkhFzlmOSzEAZZgDLZ5+MxNl7OO/U+xf+CU/7BWo/ts/H2KXxPBIngTws8d5rdwF+Wcg5itFJ43TEHdjlYwx67c/3x29vb2lulpaIsUUShERAFVVUYAAHAAHQV8y/sffsp/Dz9jX4GaV8FPh4plS1Bmvr1wBLe3kgHmzPjpkgBVydiBVycZP1BUnlhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//9f+/iiiigAooooAK/I3/gpf/wAEqvh9+3DosvxB8GPD4f8AiVY2/l22oMCLe/SMfJBdhQTgfdSZQXQYBDqAo/XKigD/ADUdX0f9oP8AYs+OD6ZrEF74O8Z+HpfmRuGAb0IyksUi9wWjdT3Ff0Q/sb/8FOfht8fIrPwJ8Umh8NeL2UIN7bbK9ccZidj8jt/zzc9eFLV+237Z/wCwP8AP24/CMeifFixaDV7GN003WrPCXtoW5wGwRJHu5MTgqeo2n5q/iw/bg/4JrftD/sOa49x4ztP7a8JyuqWniGxRjaOX6JKDloJf9l+Cfus3Ws6lJTWp2YTHVMO/d27H9c1Ffyf/ALN3/BUn9oH4Gw2vhrxa6+MfD9uFjW3vnK3UUa4GIrgAtwBgCQOB0GK/c/4Gf8FHv2W/jfbwWseup4c1aXAaw1gi2bf6JKT5T89MPuP90dK4Z0JRPqMNmdCtpez7M+8aKjhmhuYUuLdxJHIAyspyGB5BBHUGpKxPQCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK4P4gfFL4cfCnRzr/xJ1yy0O0HSS8mWLd7KGILH2UE0CbSV2d5XB/En4neAfhB4SufHPxK1WDSNLtcb552wCx6Ko6sx7KoJPYV+RP7RP8AwWQ8AeGBP4e/Z20w+Ib0ZUalfK0Fkp5GUj4ll7dfLHua/Dv4ufHb45/tSeM7e++IOo3Wu38riGysoE/doXPCQwRjAJJxwCzcZJrpp4aT1lojycVnFKmmqfvP8P69D7i/bi/4KY+KP2hbW5+GHwmSfQvB7syXEjHbd6inTEmP9XEf+eYJLfxHHyhP+Cbn/BLP4lft1a+vi7xDJN4c+HNhPsvdWCDzrtkPzQWYYFWfs0rApFnJDsNh/Qj/AIJ+f8EHte8UNY/Fj9tZJNL07Ilg8LxPsupx1H2uRTmJT3iQ+Yf4ih4P9VXhDwf4W+H/AIXsPBPgjT4NK0jS4Ut7SztUEcMMSDCqqjAAFdsYKKsj5ivXnWnz1HdnNfCH4RfDn4D/AA50r4TfCfS4tG0DRYfJtbWHJCgkszMxJZ3diWd2JZmJYkk16RRRVGIUUUUAFFFFABRRRQAUUUUAFFFFABWR4g0LS/FGg33hnXIhPZajby2txG3R4plKOp+qkiteigD/ADYP2nPgR42/ZA/aP1/4P61JLDfeGr/dZXi5QzQZEltcIcD7yFWyOjZHUV/av+wF+1joP7Xv7OmjePo7qJ/ENlElnrtqhAeC9jGGYp1CTY8xD0wcZypx4J/wWR/4Jsaj+1v4Ig+N/wAHLYSePvC1q0TWiKN2qWCkv5Knr50ZLNFn72SnUrj+Tj9lD9qj4qfsXfGaD4k+Bcl4ibXVNLuCyRXlvn54ZR1VgRlGxlHAOCMqfNzPAfWado/Etv8AI6MPW9nLXY/0GqK+W/2Vf2wfgr+1/wCAIPGvwr1JDchM3ulTOq31lIMblljBJ25PyyDKN2OcgfUlfEThKEnGas0eummroKKKKgYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV8T/t+/tY6D+yF+zprPj6S6iTxDexPZ6FauQXnvZBhWCdSkOfMc9MDGcsM9p+1V+2D8Ff2QPAE/jX4qakguSmbLSoXVr69kOdqxRkg7cj5pDhF7nOAf4if2r/ANqj4qfto/Gaf4k+Osh5SLXS9LtyzxWdvn5IYh1ZiTl2xl3JOAMKPXyvLZV5qc17i/HyObEV1BWW5lfsx/Ajxt+1/wDtH6B8H9FklmvvEt/uvbxsuYYMmS5uHOD91AzZPVsDqa/0iPD+haX4X0Gx8M6HEILLTreK1t416JFCoRFH0UAV+Kf/AARu/wCCbGo/skeCJ/jf8Y7YR+PvFNqsS2jqN2l2DEP5LHr50hCtLj7uAnUNn9w6+1PICiiigAooooAKKKKACiiigAooooAK/Ev/AILXfsIt+098Cx8aPh7Zmfxt4DgklSOMEyXum/fmgAAJZ4+ZYh1zuUcvX7aUUAf5uP7Iv7UfjD9k34uWvxE8OhrqwlAt9UsN21bu1Jyy+gdfvRtjhvUEg/2dfC/4l+DfjF4A0v4mfD+8W+0jWIBPbyr1xyGVh/C6MCjqeVYEHkV+S3/BX/8A4JFazpms6j+1d+yjpP2nTbnfdeItAtF/e20v3mu7WMD54n5M0S/NG3zqGRmEX4q/sgftsfFT9kLxU134Yf8AtHw9fSBtQ0edyIZjgDzEPPlzAAAOByAAwYAAa06nLo9jnrUefVbn9p9FfKH7Nf7aPwF/al0tJPh3qyxasEDz6RdkRXsRxk/JnEij+/GWX1Ir6vrqTvqjgaadmFFFFMQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUVla5ruieGNIuNf8AEl5Dp9jaIZJri5kWKKNR3Z2IAHuTX4R/tr/8FdNGtNNuvhr+ylObm8mVorjxAyFY4QeCLVWwWf8A6aMNo6qCcETKSitS4U3J2R3f/BU79vmP4a6Rd/s2fCG7P/CRahFs1i9hb/jxt5V/1KkciaRTknjYh4+ZgV/KL/gml+xjqf7a37TWl+Bb2GT/AIRbSCuo+ILhMqEs424iDYIDzt+7Xvgsw+6a8j/Zb/ZT+On7b/xgXwB8L7aS+vLiT7RqmqXTMbezikb557mU5PJyQOXkbhQTX97X7HP7H/wq/Yq+Ddn8JfhjD5r8TalqUqgXGoXZGGlkxnA7IgJCLgDJyTxzk5O56VOmoKyPp/S9L07RNMttF0eBLa0s4kgghjUKkccYCqqgcAKAAB2FXqKKksKKKKACiiigAooooAKKKKACszW9F0nxHo134e163S7sb+GS3uIJRuSWKVSrow7hlJBHoa06KAP4Bv8Agp5/wT48S/sMfGaQaLDNdeAfEMsk2hX7Zbyx1a0lb/nrEOhP+sTDDncF+vf+CaX/AAUNtYLWz/Z1+PepbNmyDQtVuW+Xb0W1mc9McCJm4x8hIwuf61v2gPgD8MP2m/hTqvwa+L2njUNG1WPa2CFmglX7k0L4OyWM8q2D6EFSQf4Vf+Cg/wDwTY+L/wCwj41aW/WTXfA+oSY0zXoo8ISc4huFGfKnA7fdkHKH7yrrSqypy5kNM/rIor+ZH9jv/gqn41+DtrZ/Dr45RzeIvDcAWGC8U7r+0jHABLHEyKOikhgBwSMLX9D/AMLPjR8LPjZ4fj8TfC3XLTWbV1DN5EgMkWe0kZ+eNvZwDXs0q8Ki03KTPT6KKK2GFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFeS/Fz46/CX4FeHpPEvxU1210iBULIkrgzzY7RRDLyMcdFU1/Ot+2N/wVH8d/HC2vPh38HY5vDfheUtHLcFsX97GeMOVOIkYdUUkkcFsZWsa2IhTWu4mz6E/wCCmP8AwUIsNVsbv9nP4D6iJopd0Ou6nbnKMo4NrC46g/8ALVl4I+QEguK+Tv8AgmD/AME+fEv7cvxnjOtQzWvgHw9LHNrt8oKiQZ3LaRN/z1lHUj/VpljztDY//BPj/gmx8X/27vGqy2CyaF4H0+TGp69LHlARjMNupx5s5Hb7sY5c/dVv7qv2f/gD8MP2ZPhTpXwa+EOnjT9G0qPauSGmnlb780z4G+WQ8s2B6ABQAPGq1XUlzMls9V0fSNM8P6Ta6DokCWtlZQpb28MQ2pHFGoVFUDoFAAA9K0aKKyEFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH87n/BWT/gj1/wAL4vr/APaZ/Zcto7fxi6tNrOhriOLVmHJngPAS7I/1in5Z+G+WTcZf5fvgH+0H8YP2Rvig/iXwZJJZXdvIbbU9Mu1ZYp1iYhoZ4jghlOQDw6NnBHNf6UlfjV/wUd/4JB/DL9ss3XxT+GssPhX4ibAXutmLPUiowBdKoyHwABMuWAwGDADAOMmndHj/AOyn+238G/2rdAibwxdrp3iGNN13oty4FxGR94x9PNj7h16D7wU8V9i1/D18Yvgj8ef2RPim3g74mabe+FvEOmyeZbzIxQOFPE1vOhw6Hs6N7HByK/Un9mL/AILG+KfCdlB4S/aU0+XXrePaiavZBVu1QYH72M7UlI67gVb1DHmqUj1KOOT0qaM/o8orwT4L/tP/AAH/AGgrJbn4UeJbTU5tgd7Td5V3GCM/NC+2QY9cFeOCa97qjuUk1dBRRRQMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKazKil3ICgZJPAAr4N+Pf8AwUh/Zc+Axm0y71oeItYiBH2DR8XLBh2eUERJz1BfcP7poJlOMVeTPvGSRIkaWVgqqCSScAAdzX4yftz/APBUvwv8NtOuvhl+zdfQav4lk3w3Gqx4ltbDHB8snKzTenWNT13H5a/K79rL/gpF8bf2mGuPDOmSN4X8KSZQ6bZyEvcJnj7RLgGT/dAVPUE81f8A2E/+CY37QP7cesxaroFudA8FxSlLvxBeRnyfk+8lunBnkHTCkKp+8y1LkedXxt/dp/efN3wJ+APx7/bT+MyeBvhtaXHiDxBq0xuL69uXZo4Edv3lzdztu2oCcsxyzH5VDOQp/uq/YB/YB+F/7BnwuPhfwyy6r4l1QJJrWtvGElupF6IgySkEeTsTJ5JYksTXp/7In7HnwZ/Yt+FkPww+ENkV3lZdQ1GcBry/uAMeZM4A6chEGFQcAckn6oqTzgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP//Q/v4ooooAKKKKACiiigArP1bSdK17TZ9G1y2ivbO5QxzQToJI5EPVWVgQQfQitCigD8LP2t/+CD/7M3xtFz4o+BEh+HXiCTL+TbJ5ulSv6Nb5Biz6wsqjrsNfzo/tE/8ABI39uX9nP7RqOreEpPEujwZP9o+Hib+LaD95olAnQY5JeIAetf6ANFAH+aZ8NP2l/wBon4EySab8OvFWpaKkbbXtN++FWU8gwShowQeD8ue1fb/gf/gsR+1X4bKxeKodH8RR/wATXFqYJT9GgeNAfqhr+0b4u/sgfsufHmV7v4v+AdD126k4a7uLOMXX/f8AULKPwevzc+J3/BAz9g3xy8lz4Qh1zwfKxLKum35miBPqt4tw2PYMtRKnF7o6KeLrU9ITaPxRsv8Agt94yjx/aPw+spfXy7+SP+cT10if8FyHCgSfDAFu5GtYH5fYzX3XrH/Btx8Ip8/8I/8AE7WLb0+0WMM+P++Xirzyb/g2mgaUm3+NDKnYN4d3H8xqA/lUewp9joWa4r+f8F/kfLX/AA/J/wCqX/8Alb/+4qP+H5P/AFS//wArf/3FX1B/xDS/9Vq/8tz/AO+NH/ENL/1Wr/y3P/vjR9Xp9h/2tiv5/wAF/kfL/wDw/J/6pf8A+Vv/AO4qP+H5P/VL/wDyt/8A3FX1B/xDS/8AVav/AC3P/vjR/wAQ0v8A1Wr/AMtz/wC+NH1en2D+1sV/P+C/yPl//h+T/wBUv/8AK3/9xUf8Pyf+qX/+Vv8A+4q+oP8AiGl/6rV/5bn/AN8aP+IaX/qtX/luf/fGj6vT7B/a2K/n/Bf5Hy//AMPyf+qX/wDlb/8AuKj/AIfk/wDVL/8Ayt//AHFX1B/xDS/9Vq/8tz/740f8Q0v/AFWr/wAtz/740fV6fYP7WxX8/wCC/wAj5f8A+H5P/VL/APyt/wD3FR/w/J/6pf8A+Vv/AO4q+oP+IaX/AKrV/wCW5/8AfGj/AIhpf+q1f+W5/wDfGj6vT7B/a2K/n/Bf5Hy//wAPyf8Aql//AJW//uKj/h+T/wBUv/8AK3/9xV9Qf8Q0v/Vav/Lc/wDvjR/xDS/9Vq/8tz/740fV6fYP7WxX8/4L/I+X/wDh+T/1S/8A8rf/ANxUf8Pyf+qX/wDlb/8AuKvqD/iGl/6rV/5bn/3xo/4hpf8AqtX/AJbn/wB8aPq9PsH9rYr+f8F/kfL/APw/J/6pf/5W/wD7io/4fk/9Uv8A/K3/APcVfUH/ABDS/wDVav8Ay3P/AL40f8Q0v/Vav/Lc/wDvjR9Xp9g/tbFfz/gv8j5f/wCH5P8A1S//AMrf/wBxUf8AD8n/AKpf/wCVv/7ir6g/4hpf+q1f+W5/98aP+IaX/qtX/luf/fGj6vT7B/a2K/n/AAX+R8v/APD8n/ql/wD5W/8A7io/4fk/9Uv/APK3/wDcVfUH/ENL/wBVq/8ALc/++NH/ABDS/wDVav8Ay3P/AL40fV6fYP7WxX8/4L/I+X/+H5P/AFS//wArf/3FR/w/J/6pf/5W/wD7ir6g/wCIaX/qtX/luf8A3xo/4hpf+q1f+W5/98aPq9PsH9rYr+f8F/kfL/8Aw/J/6pf/AOVv/wC4qP8Ah+T/ANUv/wDK3/8AcVfUH/ENL/1Wr/y3P/vjR/xDS/8AVav/AC3P/vjR9Xp9g/tbFfz/AIL/ACPl/wD4fk/9Uv8A/K3/APcVH/D8n/ql/wD5W/8A7ir6g/4hpf8AqtX/AJbn/wB8aP8AiGl/6rV/5bn/AN8aPq9PsH9rYr+f8F/kfL//AA/J/wCqX/8Alb/+4qP+H5P/AFS//wArf/3FX1B/xDS/9Vq/8tz/AO+NH/ENL/1Wr/y3P/vjR9Xp9g/tbFfz/gv8j5f/AOH5P/VL/wDyt/8A3FR/w/J/6pf/AOVv/wC4q+oP+IaX/qtX/luf/fGj/iGl/wCq1f8Aluf/AHxo+r0+wf2tiv5/wX+R8v8A/D8n/ql//lb/APuKj/h+T/1S/wD8rf8A9xV9Qf8AENL/ANVq/wDLc/8AvjR/xDS/9Vq/8tz/AO+NH1en2D+1sV/P+C/yPl//AIfk/wDVL/8Ayt//AHFR/wAPyf8Aql//AJW//uKvqD/iGl/6rV/5bn/3xo/4hpf+q1f+W5/98aPq9PsH9rYr+f8ABf5Hy/8A8Pyf+qX/APlb/wDuKj/h+T/1S/8A8rf/ANxV9Qf8Q0v/AFWr/wAtz/740f8AENL/ANVq/wDLc/8AvjR9Xp9g/tbFfz/gv8j5f/4fk/8AVL//ACt//cVH/D8n/ql//lb/APuKvqD/AIhpf+q1f+W5/wDfGj/iGl/6rV/5bn/3xo+r0+wf2tiv5/wX+R8v/wDD8n/ql/8A5W//ALio/wCH5P8A1S//AMrf/wBxV9Qf8Q0v/Vav/Lc/++NH/ENL/wBVq/8ALc/++NH1en2D+1sV/P8Agv8AI+X/APh+T/1S/wD8rf8A9xUf8Pyf+qX/APlb/wDuKvqD/iGl/wCq1f8Aluf/AHxo/wCIaX/qtX/luf8A3xo+r0+wf2tiv5/wX+R8o3n/AAXF1Jx/oHw0ijP/AE01cv8AytVrhtc/4La/Fy4tXTw34L0i0mP3XuZprhR9VUxE/mK/QDSv+Dazw9C2db+MFxcD0g0NYT/49eSV6z4d/wCDcb9my0uI5PFXjzxJfxqculstrbbh6ZaKXFP2EOwnmmKf2/wX+R/P943/AOCo37Z3jRXgh8Sx6LA/WPTbWKLH0kZXlH4PXzT4T8AftF/tVeNnh8I6ZrnjvXZz+8eNJr2UZ5zJId2xepyxAFf3A/C7/gjn/wAE9PhascsHgKLXrpMZuNbuJb7dj1idvI/KIV+ivhHwT4M+H+ix+G/AWkWWiadFylrYW6W0C/RI1VR+Aq1FLZHJUr1Knxyb9T+QL9mb/g30/aI8f3dtrf7SWrWvgfSGCu9nbOt9qbAjO3CEwR9vmMjkf3K/pX/Zd/4J/wD7Kv7INig+DnhiGPVAu2TWL3F1qMnXOZnHyA55WIIh/u19m0VRkFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV+Ev/BUH/gjz4a/amF18bv2d4bbRPiHkyXtscQ2msZ6lzwsdxnkS9H6SckOv7tUUAf5onivwT+0P+yL8UI7LxRZax4E8Vaa4khc77WdcYIeKRSA6nj5kYqfU1+knwZ/4Lkfth/DmGPTfiAumeN7RF27r6H7PdcdMS2+xT7l42J9c81/aJ8W/gf8ACD48+Gj4P+M3hvT/ABLp2Syw38Cy+Wxx80bEbo24+8hB96/H34uf8G/H7F/jvUn1b4eX+ueC2ckm2tLhbu1GfRblXlH/AH9xjtWFbDUqqtUimXCpKPws/PPTf+DiLVoodur/AAlhnk/vQ62Yl/JrOT+daP8AxET/APVHv/Lg/wDvfXp+sf8ABtXoU9xu0D4wz20X9240JZ2/76W9iH6Vkf8AENL/ANVq/wDLc/8AvjXH/Y+D/wCff4v/ADNfrVXv+Rw//ERP/wBUe/8ALg/+99H/ABET/wDVHv8Ay4P/AL313H/ENL/1Wr/y3P8A740f8Q0v/Vav/Lc/++NH9j4P/n3+L/zD61V7/kcP/wARE/8A1R7/AMuD/wC99H/ERP8A9Ue/8uD/AO99dx/xDS/9Vq/8tz/740f8Q0v/AFWr/wAtz/740f2Pg/8An3+L/wAw+tVe/wCRw/8AxET/APVHv/Lg/wDvfR/xET/9Ue/8uD/7313H/ENL/wBVq/8ALc/++NH/ABDS/wDVav8Ay3P/AL40f2Pg/wDn3+L/AMw+tVe/5HD/APERP/1R7/y4P/vfR/xET/8AVHv/AC4P/vfXcf8AENL/ANVq/wDLc/8AvjR/xDS/9Vq/8tz/AO+NH9j4P/n3+L/zD61V7/kcP/xET/8AVHv/AC4P/vfR/wARE/8A1R7/AMuD/wC99dx/xDS/9Vq/8tz/AO+NH/ENL/1Wr/y3P/vjR/Y+D/59/i/8w+tVe/5HD/8AERP/ANUe/wDLg/8AvfR/xET/APVHv/Lg/wDvfXcf8Q0v/Vav/Lc/++NH/ENL/wBVq/8ALc/++NH9j4P/AJ9/i/8AMPrVXv8AkcP/AMRE/wD1R7/y4P8A730f8RE//VHv/Lg/+99dx/xDS/8AVav/AC3P/vjR/wAQ0v8A1Wr/AMtz/wC+NH9j4P8A59/i/wDMPrVXv+Rw/wDxET/9Ue/8uD/730f8RE//AFR7/wAuD/7313H/ABDS/wDVav8Ay3P/AL40f8Q0v/Vav/Lc/wDvjR/Y+D/59/i/8w+tVe/5Hm2pf8HEWrSw7dI+EsMEn96bWzKv5LZx/wA6+SfjN/wXI/bD+I0Mmm/D9dM8EWjrt3WMP2i6565luN6j2KRqR655r9FtH/4Nq9CguN2v/GGe5i/u2+hLA3/fTXso/Svqz4R/8G/H7F/gTUk1b4h3+ueNGQgi2u7hbS1OPVbZUlP/AH9xjtVwyvCwd1TXzu/zuJ4mo95H8jPhTwT+0P8AtdfFCSy8L2WseO/FWpOZJnG+6nbOSXlkYkIo5+Z2Cj1Ff1w/8Evv+CPPhr9lkWvxu/aIhttb+IeRJZWwxNaaPjoUPKyXGeTL0TpHyC7fsP8ACT4H/CD4DeGh4P8Agz4b0/w1p2QzQ2ECxeYwz80jAbpG5+85J969TrvSSVkYBRRRTAKKKKACiiigAooooAKKKKACiiigAooooAK/n7/b/wD+CGngD496vqfxf/Zlu4PCfiq9Z7m60uZcaXeykZJTYM28jtySAyEnJVSS1f0CUUAf5qfxi/Z7/aM/ZL8bppXxW0DU/CeqW0pNrdENHHIyE/Pb3CHY444aNzX0j8LP+Cp/7ZPwyaOC68Qx+JrRCP3GtQi4J+sqmOc/jIa/vy8aeBvBfxH8O3HhD4gaTZ63pV2u2a0voEuIHHTlHBU9fSvyr+K//BDf/gn58TDJcaPoF/4QuZAcy6JfOi59RFcCeIfRUApqTWxMop7o/CTRf+C5nxEgx/wkXgDTrr1+zXktv/6Ektdp/wAP2/8Aqln/AJXP/uKvtDxH/wAG3Hwmut3/AAiXxP1ex/u/bLCG6x9dkkGa87/4hpf+q1f+W5/98av2su5n7Cn2PnP/AIft/wDVLP8Ayuf/AHFR/wAP2/8Aqln/AJXP/uKvoz/iGl/6rV/5bn/3xo/4hpf+q1f+W5/98aPaz7h9Xp9j5z/4ft/9Us/8rn/3FR/w/b/6pZ/5XP8A7ir6M/4hpf8AqtX/AJbn/wB8aP8AiGl/6rV/5bn/AN8aPaz7h9Xp9j5z/wCH7f8A1Sz/AMrn/wBxUf8AD9v/AKpZ/wCVz/7ir6M/4hpf+q1f+W5/98aP+IaX/qtX/luf/fGj2s+4fV6fY+c/+H7f/VLP/K5/9xUf8P2/+qWf+Vz/AO4q+jP+IaX/AKrV/wCW5/8AfGj/AIhpf+q1f+W5/wDfGj2s+4fV6fY+c/8Ah+3/ANUs/wDK5/8AcVH/AA/b/wCqWf8Alc/+4q+jP+IaX/qtX/luf/fGj/iGl/6rV/5bn/3xo9rPuH1en2PnP/h+3/1Sz/yuf/cVH/D9v/qln/lc/wDuKvoz/iGl/wCq1f8Aluf/AHxo/wCIaX/qtX/luf8A3xo9rPuH1en2PnP/AIft/wDVLP8Ayuf/AHFR/wAP2/8Aqln/AJXP/uKvoz/iGl/6rV/5bn/3xo/4hpf+q1f+W5/98aPaz7h9Xp9j5z/4ft/9Us/8rn/3FR/w/b/6pZ/5XP8A7ir6M/4hpf8AqtX/AJbn/wB8aP8AiGl/6rV/5bn/AN8aPaz7h9Xp9j5z/wCH7f8A1Sz/AMrn/wBxUf8AD9v/AKpZ/wCVz/7ir6M/4hpf+q1f+W5/98aP+IaX/qtX/luf/fGj2s+4fV6fY+c/+H7f/VLP/K5/9xUf8P2/+qWf+Vz/AO4q+jP+IaX/AKrV/wCW5/8AfGj/AIhpf+q1f+W5/wDfGj2s+4fV6fY+c/8Ah+3/ANUs/wDK5/8AcVH/AA/b/wCqWf8Alc/+4q+jP+IaX/qtX/luf/fGj/iGl/6rV/5bn/3xo9rPuH1en2PmXUP+C62pyQ7dK+GMUMn96XWDKv5C0T+deIeOP+C1n7SOvWL2XgzRNF0Fn/5b+XJdTL/u+Y4j/NDX6OaX/wAG1Wjw3G7W/jFNcRf3YNBWFv8Avpr2QfpX0P4A/wCDdv8AZI8P3iXvjzxN4k8QhMfuFlgs4W9d2yJpPykFHtJdxqhBdD+Uj4q/tJftC/tDXUVl8UPE2o68HlBhsy22DzGOBsgiCxhieBhM+lfo7+xf/wAEUv2nP2lrq28UfFK2l+HnhJirtcajCRf3KHBxBattYZU8SS7V7jd0r+uD4B/sH/si/sxzrqHwX8C6dpV+qhRfyK13ecek9w0ki57hWAPpX1xWbdzRJLY+bv2Wf2UPgx+x58MIfhV8FtONpaBzNdXMxEl3eTnrLPJgbmxwAAFUcKAK+kaKKBhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXJeOvAfgv4neEb/wF8Q9LttZ0bU4jDdWd3GJYZUPYq3HB5B6ggEYIBrraKAP5PP26/wDggV4h0W4uviN+xJIdSsmJkl8M3swW4hGMn7LPIQJF9I5GDjszniv58Nb8O/HP9mf4gfY9etNY8EeJLBjgSrLY3K7T1U/KSpI6glT7iv8ATSrzL4qfBj4S/HDw4fCXxg8N6d4l04nIg1C3SdUbj5kLAlG4HKkH3oA/hG+H/wDwVh/bA8ErFb6vqVj4kgiwNup2i7ivu8Bhcn3Yk+ua+odM/wCC3XjWJV/tn4f2M57+TfSQ5+m6KTH61+6fxV/4ISfsBfEZpbnw7pWq+DriTJ3aPfsU3f8AXO6FwgHqFC+2K+Pte/4NuPhLcbv+EY+J+r2fp9qsIbnH12PDmt44mqtpDuz4VH/BcU45+GHP/Ya/+4qX/h+N/wBUv/8AK1/9xV9St/wbSruO3404HbPhzP8A7kaT/iGl/wCq1f8Aluf/AHxqvrlb+b8v8guz5b/4fjf9Uv8A/K1/9xUf8Pxv+qX/APla/wDuKvqT/iGl/wCq1f8Aluf/AHxo/wCIaX/qtX/luf8A3xo+uVv5vy/yC7Plv/h+N/1S/wD8rX/3FR/w/G/6pf8A+Vr/AO4q+pP+IaX/AKrV/wCW5/8AfGj/AIhpf+q1f+W5/wDfGj65W/m/L/ILs+W/+H43/VL/APytf/cVH/D8b/ql/wD5Wv8A7ir6k/4hpf8AqtX/AJbn/wB8aP8AiGl/6rV/5bn/AN8aPrlb+b8v8guz5b/4fjf9Uv8A/K1/9xUf8Pxv+qX/APla/wDuKvqT/iGl/wCq1f8Aluf/AHxo/wCIaX/qtX/luf8A3xo+uVv5vy/yC7Plv/h+N/1S/wD8rX/3FR/w/G/6pf8A+Vr/AO4q+pP+IaX/AKrV/wCW5/8AfGj/AIhpf+q1f+W5/wDfGj65W/m/L/ILs+W/+H43/VL/APytf/cVH/D8b/ql/wD5Wv8A7ir6k/4hpf8AqtX/AJbn/wB8aP8AiGl/6rV/5bn/AN8aPrlb+b8v8guz5b/4fjf9Uv8A/K1/9xUf8Pxv+qX/APla/wDuKvqT/iGl/wCq1f8Aluf/AHxo/wCIaX/qtX/luf8A3xo+uVv5vy/yC7Plv/h+N/1S/wD8rX/3FR/w/G/6pf8A+Vr/AO4q+pP+IaX/AKrV/wCW5/8AfGj/AIhpf+q1f+W5/wDfGj65W/m/L/ILs+W/+H43/VL/APytf/cVH/D8b/ql/wD5Wv8A7ir6k/4hpf8AqtX/AJbn/wB8aP8AiGl/6rV/5bn/AN8aPrlb+b8v8guz5b/4fjf9Uv8A/K1/9xUf8Pxv+qX/APla/wDuKvqT/iGl/wCq1f8Aluf/AHxo/wCIaX/qtX/luf8A3xo+uVv5vy/yC7Plv/h+N/1S/wD8rX/3FR/w/G/6pf8A+Vr/AO4q+pP+IaX/AKrV/wCW5/8AfGj/AIhpf+q1f+W5/wDfGj65W/m/L/ILs+W/+H43/VL/APytf/cVH/D8b/ql/wD5Wv8A7ir6k/4hpf8AqtX/AJbn/wB8aP8AiGl/6rV/5bn/AN8aPrlb+b8v8guz5b/4fjf9Uv8A/K1/9xUh/wCC4pxx8MOf+w1/9xV9S/8AENL/ANVq/wDLc/8AvjSr/wAG0q7hu+NOR3x4cx/7kaPrlb+b8v8AILs+MdT/AOC3XjWVW/sb4f2MB7edfSTY+u2KPP6V8s/EP/gq7+2B45SW20rVLLw3byggppdqoYL7STGVwfdWB9MV+3Gg/wDBtx8Jbfb/AMJP8T9XvPX7LYQ22fpvebFfYPwq/wCCEn7AXw5aK58RaVqvjG4jwd2sX7BN3/XO1FuhHoGDe+amWJqveQXZ/F14f8L/ABt/aQ8e/YPDdlq/jXxHfsNwiSW+uXyerH5mCgnkkgDucV/Qp+wp/wAECvEOtXFr8Rv225DptkpEkXhmymDXEwxkfap4yRGvrHGxc92Q8V/Tt8K/gx8Jfgf4cHhL4P8AhvTvDWnA5MGn26QK7c/M5UAu3J5Yk+9em1gI5LwL4D8F/DHwjYeAvh5pdto2jaZEIbWztIxFDEg7BV45PJPUkknJJNdbRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB4d8e/wBm34H/ALT3g0+A/jr4ctPEOnqWaHz1Ilt3YbS8MqkSRPj+JGB9a/mq/a0/4N5/FmjyXHiv9jzXRq9sSXGhazIsVyoP8MN18sb+gEojwOrk1/WNRQB/mj/FT4A/tFfsx+JIoPit4Z1jwhfxPmCeeJ4VZh3hnX5H78o5r1j4df8ABQr9sP4ZeXFovje9vreMBfI1PbfoVHQZnDuB/usDX+iRr/h3w/4r0mbQPFNjb6lY3A2y211Es0Mg9GRwVI+or86viR/wSB/4J4/EwSS3/wAOrXSbhySJtHmmsNpPpHDIsX4GMigqM5R+Fn8zfh//AILZfHuytY4fEnhbQr+RRhpIvPty3uQZHAPrjj2r0nTv+C5OvxAf2t8N7ef18nVGi/8AQrd6/Tvxb/wbofspapdvc+D/ABh4n0lH5EUz210in/Z/cxtj6sT714trH/Btd4SnJ/4R/wCLl3bDt9o0ZJ//AEG6ip3ZssVVX2j5F/4fof8AVLf/ACt//cVH/D9D/qlv/lb/APuKvpj/AIhpf+q1f+W5/wDfGj/iGl/6rV/5bn/3xoux/XK3835f5HzP/wAP0P8Aqlv/AJW//uKj/h+h/wBUt/8AK3/9xV9Mf8Q0v/Vav/Lc/wDvjR/xDS/9Vq/8tz/740XYfXK3835f5HzP/wAP0P8Aqlv/AJW//uKj/h+h/wBUt/8AK3/9xV9Mf8Q0v/Vav/Lc/wDvjR/xDS/9Vq/8tz/740XYfXK3835f5HzP/wAP0P8Aqlv/AJW//uKj/h+h/wBUt/8AK3/9xV9Mf8Q0v/Vav/Lc/wDvjR/xDS/9Vq/8tz/740XYfXK3835f5HzP/wAP0P8Aqlv/AJW//uKj/h+h/wBUt/8AK3/9xV9Mf8Q0v/Vav/Lc/wDvjR/xDS/9Vq/8tz/740XYfXK3835f5HzP/wAP0P8Aqlv/AJW//uKj/h+h/wBUt/8AK3/9xV9Mf8Q0v/Vav/Lc/wDvjR/xDS/9Vq/8tz/740XYfXK3835f5HzP/wAP0P8Aqlv/AJW//uKj/h+h/wBUt/8AK3/9xV9Mf8Q0v/Vav/Lc/wDvjR/xDS/9Vq/8tz/740XYfXK3835f5HzP/wAP0P8Aqlv/AJW//uKj/h+h/wBUt/8AK3/9xV9Mf8Q0v/Vav/Lc/wDvjR/xDS/9Vq/8tz/740XYfXK3835f5HzP/wAP0P8Aqlv/AJW//uKj/h+h/wBUt/8AK3/9xV9Mf8Q0v/Vav/Lc/wDvjR/xDS/9Vq/8tz/740XYfXK3835f5HzP/wAP0P8Aqlv/AJW//uKj/h+h/wBUt/8AK3/9xV9Mf8Q0v/Vav/Lc/wDvjR/xDS/9Vq/8tz/740XYfXK3835f5HzP/wAP0P8Aqlv/AJW//uKj/h+h/wBUt/8AK3/9xV9Mf8Q0v/Vav/Lc/wDvjR/xDS/9Vq/8tz/740XYfXK3835f5HzP/wAP0P8Aqlv/AJW//uKj/h+h/wBUt/8AK3/9xV9Mf8Q0v/Vav/Lc/wDvjR/xDS/9Vq/8tz/740XYfXK3835f5HzP/wAP0P8Aqlv/AJW//uKj/h+h/wBUt/8AK3/9xV9Mf8Q0v/Vav/Lc/wDvjR/xDS/9Vq/8tz/740XYfXK3835f5HzP/wAP0P8Aqlv/AJW//uKj/h+h/wBUt/8AK3/9xV9Mf8Q0v/Vav/Lc/wDvjR/xDS/9Vq/8tz/740XYfXK3835f5HzP/wAP0P8Aqlv/AJW//uKj/h+h/wBUt/8AK3/9xV9Mf8Q0v/Vav/Lc/wDvjR/xDS/9Vq/8tz/740XYfXK3835f5HzP/wAP0P8Aqlv/AJW//uKj/h+h/wBUt/8AK3/9xV9Mf8Q0v/Vav/Lc/wDvjR/xDS/9Vq/8tz/740XYfXK3835f5HzP/wAP0P8Aqlv/AJW//uKj/h+h/wBUt/8AK3/9xV9Mf8Q0v/Vav/Lc/wDvjR/xDS/9Vq/8tz/740XYfXK3835f5HzP/wAP0P8Aqlv/AJW//uKj/h+h/wBUt/8AK3/9xV9Mf8Q0v/Vav/Lc/wDvjR/xDS/9Vq/8tz/740XYfXK3835f5HzP/wAP0P8Aqlv/AJW//uKj/h+h/wBUt/8AK3/9xV9Mf8Q0v/Vav/Lc/wDvjR/xDS/9Vq/8tz/740XYfXK3835f5HzP/wAP0P8Aqlv/AJW//uKkP/Bc84O34XYPb/id/wD3FX0z/wAQ0v8A1Wr/AMtz/wC+NKv/AAbSruG/405HfHhzH/uRouw+uVv5vy/yPjvUv+C4njmXP9j/AA/sYPTzr6SX/wBBjjrxjxz/AMFlv2pPEdsbTwlY6L4dyP8AXQW73E2frO7x/wDkOv1n0b/g21+GEGP+Eh+KWqXXr9n06KDP/fUstfQ/w/8A+DfL9iHwtItx4wv/ABH4ncHLR3N5HbwkemLeKOQf9/KLsl4qq/tH8kfxI/ar/aP+LqSW/wAQ/Gmq6jbygh7b7Q0VsQ3XMMWyP/x2vXf2fP8AgnL+2X+01Jb3Hwx8D340ydgP7U1BfsNiF6lhLNtDgDtGHPoK/uI+EX/BPP8AYo+BV9Fqvwz+G+jWd7AMR3VxEb24T3WW5aV1PHUEGvsukYuTerZ/P7+yH/wQJ+A/wp+zeLP2m77/AIT7W0w/9nxboNJibngrxLPjg5cop6GM1+92iaHovhrSLfQPDlnBp9hZxiKC2to1ihiReioigKqjsAAK1KKBBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//R/v4ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/S/v4ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/T/v4ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/Z"}},"cell_type":"markdown","id":"125247c2","metadata":{},"source":[""]},{"cell_type":"markdown","id":"88e5ba0b","metadata":{},"source":["## 一、环境配置"]},{"cell_type":"markdown","id":"f3d033b6","metadata":{},"source":["在当前文件夹下新建`.env`文件,内容为`OPENAI_API_KEY = \"sk-...\"`\n","\n","由于本章节需要使用`PyPDFLoader`、`Chroma`,故需要安装依赖包`pypdf`、`chromadb`"]},{"cell_type":"code","execution_count":1,"id":"7f8d2266-4a35-4904-ae9d-c89790c5ae61","metadata":{"height":166,"tags":[]},"outputs":[],"source":["import os\n","import openai\n","import sys\n","sys.path.append('../..')\n","\n","from dotenv import load_dotenv, find_dotenv\n","_ = load_dotenv(find_dotenv()) # 读取本地.env文件\n","\n","openai.api_key = os.environ['OPENAI_API_KEY']"]},{"cell_type":"markdown","id":"460a54b0","metadata":{},"source":["前两节课我们讨论了`Document Loading`(文档加载)和`Splitting`(分割)。\n","\n","下面我们将使用前两节课的知识对文档进行加载分割。"]},{"cell_type":"markdown","id":"18e077a0","metadata":{},"source":["## 二、读取文档"]},{"cell_type":"markdown","id":"0c1e123e","metadata":{},"source":["下面文档的课程链接 https://see.stanford.edu/Course/CS229 ,可在该网站上下载对应的课程讲义"]},{"cell_type":"code","execution_count":2,"id":"2437469e","metadata":{"height":249,"tags":[]},"outputs":[],"source":["from langchain.document_loaders import PyPDFLoader\n","\n","# 加载 PDF\n","loaders = [\n"," # 故意添加重复文档,使数据混乱\n"," PyPDFLoader(\"docs/cs229_lectures/MachineLearning-Lecture01.pdf\"),\n"," PyPDFLoader(\"docs/cs229_lectures/MachineLearning-Lecture01.pdf\"),\n"," PyPDFLoader(\"docs/cs229_lectures/MachineLearning-Lecture02.pdf\"),\n"," PyPDFLoader(\"docs/cs229_lectures/MachineLearning-Lecture03.pdf\")\n","]\n","docs = []\n","for loader in loaders:\n"," docs.extend(loader.load())"]},{"cell_type":"markdown","id":"d1ed78d9","metadata":{},"source":["下面文档是datawhale官方开源的matplotlib教程链接 https://datawhalechina.github.io/fantastic-matplotlib/index.html ,可在该网站上下载对应的教程"]},{"cell_type":"code","execution_count":3,"id":"11de2150","metadata":{},"outputs":[],"source":["from langchain.document_loaders import PyPDFLoader\n","\n","# 加载 PDF\n","loaders_chinese = [\n"," # 故意添加重复文档,使数据混乱\n"," PyPDFLoader(\"docs/matplotlib/第一回:Matplotlib初相识.pdf\"),\n"," PyPDFLoader(\"docs/matplotlib/第一回:Matplotlib初相识.pdf\"),\n"," PyPDFLoader(\"docs/matplotlib/第二回:艺术画笔见乾坤.pdf\"),\n"," PyPDFLoader(\"docs/matplotlib/第三回:布局格式定方圆.pdf\")\n","]\n","docs_chinese = []\n","for loader in loaders_chinese:\n"," docs_chinese.extend(loader.load())"]},{"cell_type":"markdown","id":"4b497f5c","metadata":{},"source":["在文档加载后,我们可以使用`RecursiveCharacterTextSplitter`(递归字符文本拆分器)来创建块。"]},{"cell_type":"code","execution_count":4,"id":"eb44bf0d","metadata":{"height":115,"tags":[]},"outputs":[],"source":["# 分割文本\n","from langchain.text_splitter import RecursiveCharacterTextSplitter\n","text_splitter = RecursiveCharacterTextSplitter(\n"," chunk_size = 1500, # 每个文本块的大小。这意味着每次切分文本时,会尽量使每个块包含 1500 个字符。\n"," chunk_overlap = 150 # 每个文本块之间的重叠部分。\n",")"]},{"cell_type":"code","execution_count":5,"id":"b71e46cc","metadata":{"height":30,"tags":[]},"outputs":[],"source":["splits = text_splitter.split_documents(docs)"]},{"cell_type":"code","execution_count":6,"id":"e061f22d","metadata":{"height":30,"tags":[]},"outputs":[{"data":{"text/plain":["209"]},"execution_count":6,"metadata":{},"output_type":"execute_result"}],"source":["len(splits)"]},{"cell_type":"code","execution_count":7,"id":"99840d4c","metadata":{},"outputs":[],"source":["splits_chinese = text_splitter.split_documents(docs_chinese)"]},{"cell_type":"code","execution_count":8,"id":"d6b60ceb","metadata":{},"outputs":[{"data":{"text/plain":["27"]},"execution_count":8,"metadata":{},"output_type":"execute_result"}],"source":["len(splits_chinese)"]},{"cell_type":"markdown","id":"848e26fd","metadata":{},"source":["## 三、Embeddings\n","\n","什么是`Embeddings`?\n","\n","在机器学习和自然语言处理(NLP)中,`Embeddings`(嵌入)是一种将类别数据,如单词、句子或者整个文档,转化为实数向量的技术。这些实数向量可以被计算机更好地理解和处理。嵌入背后的主要想法是,相似或相关的对象在嵌入空间中的距离应该很近。\n","\n","举个例子,我们可以使用词嵌入(word embeddings)来表示文本数据。在词嵌入中,每个单词被转换为一个向量,这个向量捕获了这个单词的语义信息。例如,\"king\" 和 \"queen\" 这两个单词在嵌入空间中的位置将会非常接近,因为它们的含义相似。而 \"apple\" 和 \"orange\" 也会很接近,因为它们都是水果。而 \"king\" 和 \"apple\" 这两个单词在嵌入空间中的距离就会比较远,因为它们的含义不同。\n","\n","让我们取出我们的切分部分并对它们进行`Embedding`处理。"]},{"cell_type":"code","execution_count":9,"id":"d9dca7a8","metadata":{"height":47,"tags":[]},"outputs":[{"name":"stderr","output_type":"stream","text":["/Users/lta/anaconda3/envs/chat_data/lib/python3.11/site-packages/langchain_core/_api/deprecation.py:119: LangChainDeprecationWarning: The class `OpenAIEmbeddings` was deprecated in LangChain 0.0.9 and will be removed in 0.3.0. An updated version of the class exists in the langchain-openai package and should be used instead. To use it run `pip install -U langchain-openai` and import as `from langchain_openai import OpenAIEmbeddings`.\n"," warn_deprecated(\n"]}],"source":["from langchain.embeddings.openai import OpenAIEmbeddings\n","embedding = OpenAIEmbeddings(model='text-embedding-3-small')"]},{"cell_type":"markdown","id":"6ca11792","metadata":{},"source":["在使用真实文档数据的例子之前,让我们用几个测试案例的句子来试试,以便了解`embedding`。\n","\n","下面有几个示例句子,其中前两个非常相似,第三个与之无关。然后我们可以使用`embedding`类为每个句子创建一个`embedding`。"]},{"cell_type":"code","execution_count":10,"id":"abae34b5","metadata":{},"outputs":[],"source":["sentence1 = \"i like dogs\"\n","sentence2 = \"i like canines\"\n","sentence3 = \"the weather is ugly outside\""]},{"cell_type":"code","execution_count":11,"id":"d1745b19","metadata":{},"outputs":[],"source":["embedding1 = embedding.embed_query(sentence1)\n","embedding2 = embedding.embed_query(sentence2)\n","embedding3 = embedding.embed_query(sentence3)"]},{"cell_type":"code","execution_count":12,"id":"c4099521","metadata":{"height":64,"tags":[]},"outputs":[],"source":["sentence1_chinese = \"我喜欢狗\"\n","sentence2_chinese = \"我喜欢犬科动物\"\n","sentence3_chinese = \"外面的天气很糟糕\""]},{"cell_type":"code","execution_count":13,"id":"d553549a","metadata":{"height":64,"tags":[]},"outputs":[],"source":["embedding1_chinese = embedding.embed_query(sentence1_chinese)\n","embedding2_chinese = embedding.embed_query(sentence2_chinese)\n","embedding3_chinese = embedding.embed_query(sentence3_chinese)"]},{"cell_type":"markdown","id":"6b2805d4","metadata":{},"source":["然后我们可以使用`numpy`来比较它们,看看哪些最相似。\n","\n","我们期望前两个句子应该非常相似。\n","\n","然后,第一和第二个与第三个相比应该相差很大。\n","\n","我们将使用点积来比较两个嵌入。\n","\n","如果你不知道什么是点积,没关系。你只需要知道的重要一点是,分数越高句子越相似。"]},{"cell_type":"code","execution_count":14,"id":"0cbe9a9e","metadata":{"height":30,"tags":[]},"outputs":[],"source":["import numpy as np"]},{"cell_type":"code","execution_count":15,"id":"536db32e","metadata":{},"outputs":[{"data":{"text/plain":["0.8338763861124505"]},"execution_count":15,"metadata":{},"output_type":"execute_result"}],"source":["np.dot(embedding1, embedding2)"]},{"cell_type":"code","execution_count":16,"id":"29844c64","metadata":{},"outputs":[{"data":{"text/plain":["0.21898928790384764"]},"execution_count":16,"metadata":{},"output_type":"execute_result"}],"source":["np.dot(embedding1, embedding3)"]},{"cell_type":"code","execution_count":17,"id":"c1e17a9e","metadata":{},"outputs":[{"data":{"text/plain":["0.1850211777650424"]},"execution_count":17,"metadata":{},"output_type":"execute_result"}],"source":["np.dot(embedding2, embedding3)"]},{"cell_type":"markdown","id":"bdf08401","metadata":{},"source":["我们可以看到前两个`embedding`的分数相当高,为0.96。\n","\n","如果我们将第一个`embedding`与第三个`embedding`进行比较,我们可以看到它明显较低,约为0.77。\n","\n","如果我们将第二个`embedding`和第三个`embedding`进行比较,我们可以看到它的分数大约为0.75。"]},{"cell_type":"code","execution_count":18,"id":"49fc0f8f","metadata":{"height":30,"tags":[]},"outputs":[{"data":{"text/plain":["0.7232575326539132"]},"execution_count":18,"metadata":{},"output_type":"execute_result"}],"source":["np.dot(embedding1_chinese, embedding2_chinese)"]},{"cell_type":"code","execution_count":19,"id":"32a1fac7","metadata":{"height":30,"tags":[]},"outputs":[{"data":{"text/plain":["0.18710999861622954"]},"execution_count":19,"metadata":{},"output_type":"execute_result"}],"source":["np.dot(embedding1_chinese, embedding3_chinese)"]},{"cell_type":"code","execution_count":20,"id":"9dd18328","metadata":{"height":30,"tags":[]},"outputs":[{"data":{"text/plain":["0.13899606496112304"]},"execution_count":20,"metadata":{},"output_type":"execute_result"}],"source":["np.dot(embedding2_chinese, embedding3_chinese)"]},{"cell_type":"markdown","id":"9a17a527","metadata":{},"source":["我们可以看到前两个`embedding`的分数相当高,为0.94。\n","\n","如果我们将第一个`embedding`与第三个`embedding`进行比较,我们可以看到它明显较低,约为0.79。\n","\n","如果我们将第二个`embedding`和第三个`embedding`进行比较,我们可以看到它的分数大约为0.78。"]},{"cell_type":"markdown","id":"4fc7b24f","metadata":{},"source":["## 四、Vectorstores"]},{"cell_type":"markdown","id":"54776973","metadata":{},"source":["### 4.1 初始化Chroma"]},{"cell_type":"markdown","id":"20916c7c","metadata":{},"source":["Langchain集成了超过30个不同的向量存储库。我们选择Chroma是因为它轻量级且数据存储在内存中,这使得它非常容易启动和开始使用。"]},{"cell_type":"code","execution_count":21,"id":"201e6afa","metadata":{"height":30,"tags":[]},"outputs":[],"source":["from langchain.vectorstores import Chroma"]},{"cell_type":"code","execution_count":22,"id":"93960ac5","metadata":{"height":30,"tags":[]},"outputs":[],"source":["persist_directory = 'docs/chroma/cs229_lectures/'"]},{"cell_type":"code","execution_count":23,"id":"a195e72a","metadata":{"height":30,"tags":[]},"outputs":[],"source":["!rm -rf './docs/chroma/cs229_lectures' # 删除旧的数据库文件(如果文件夹中有文件的话),window电脑请手动删除"]},{"cell_type":"code","execution_count":24,"id":"690efd0a","metadata":{"height":98,"tags":[]},"outputs":[],"source":["vectordb = Chroma.from_documents(\n"," documents=splits,\n"," embedding=embedding,\n"," persist_directory=persist_directory # 允许我们将persist_directory目录保存到磁盘上\n",")"]},{"cell_type":"code","execution_count":25,"id":"f777480c","metadata":{"height":30,"tags":[]},"outputs":[{"name":"stdout","output_type":"stream","text":["209\n"]}],"source":["print(vectordb._collection.count())"]},{"cell_type":"code","execution_count":26,"id":"d720e2b7","metadata":{},"outputs":[],"source":["persist_directory_chinese = 'docs/chroma/matplotlib/'"]},{"cell_type":"code","execution_count":27,"id":"570a2768","metadata":{},"outputs":[],"source":["!rm -rf './docs/chroma/matplotlib' # 删除旧的数据库文件(如果文件夹中有文件的话)"]},{"cell_type":"code","execution_count":28,"id":"1e03438d","metadata":{},"outputs":[],"source":["vectordb_chinese = Chroma.from_documents(\n"," documents=splits_chinese,\n"," embedding=embedding,\n"," persist_directory=persist_directory_chinese # 允许我们将persist_directory目录保存到磁盘上\n",")"]},{"cell_type":"code","execution_count":29,"id":"cf87aba0","metadata":{},"outputs":[{"name":"stdout","output_type":"stream","text":["27\n"]}],"source":["print(vectordb_chinese._collection.count())"]},{"cell_type":"markdown","id":"9f78f412","metadata":{},"source":["我们可以看到英文版的长度也是209、中文版的长度也是30,这与我们之前的切分数量是一样的。现在让我们开始使用它。"]},{"cell_type":"markdown","id":"efca7589","metadata":{},"source":["### 4.2 相似性搜索(Similarity Search)"]},{"cell_type":"code","execution_count":30,"id":"3e20837d","metadata":{"height":30,"tags":[]},"outputs":[],"source":["question = \"is there an email i can ask for help\" # \"有我可以寻求帮助的电子邮件吗\""]},{"cell_type":"code","execution_count":31,"id":"f9bde572","metadata":{"height":30,"tags":[]},"outputs":[],"source":["docs = vectordb.similarity_search(question,k=3)"]},{"cell_type":"code","execution_count":32,"id":"41388af1","metadata":{"height":30,"tags":[]},"outputs":[{"data":{"text/plain":["3"]},"execution_count":32,"metadata":{},"output_type":"execute_result"}],"source":["len(docs)"]},{"cell_type":"code","execution_count":33,"id":"183434f6","metadata":{"height":30,"tags":[]},"outputs":[{"data":{"text/plain":["\"So all right, online resources. The class has a home page, so it's in on the handouts. I \\nwon't write on the chalkboard — http:// cs229.stanford.edu. And so when there are \\nhomework assignments or things like that, we usually won't sort of — in the mission of \\nsaving trees, we will usually not give out many handouts in class. So homework \\nassignments, homework solutions will be posted online at the course home page. \\nAs far as this class, I've also written, a nd I guess I've also revised every year a set of \\nfairly detailed lecture notes that cover the te chnical content of this class. And so if you \\nvisit the course homepage, you'll also find the detailed lecture notes that go over in detail \\nall the math and equations and so on that I'll be doing in class. \\nThere's also a newsgroup, su.class.cs229, also written on the handout. This is a \\nnewsgroup that's sort of a forum for people in the class to get to know each other and \\nhave whatever discussions you want to ha ve amongst yourselves. So the class newsgroup \\nwill not be monitored by the TAs and me. But this is a place for you to form study groups \\nor find project partners or discuss homework problems and so on, and it's not monitored \\nby the TAs and me. So feel free to ta lk trash about this class there. \\nIf you want to contact the teaching staff, pl ease use the email address written down here, \\ncs229-qa@cs.stanford.edu. This goes to an acc ount that's read by all the TAs and me. So\""]},"execution_count":33,"metadata":{},"output_type":"execute_result"}],"source":["docs[0].page_content"]},{"cell_type":"markdown","id":"1edb21d8","metadata":{},"source":["如果我们查看第一个文档的内容,我们可以看到它实际上是关于一个电子邮件地址,cs229-qa@cs.stanford.edu。\n","\n","这是我们可以向其发送问题的电子邮件,所有的助教都会阅读这些邮件。"]},{"cell_type":"code","execution_count":34,"id":"53bcc061","metadata":{},"outputs":[],"source":["question_chinese = \"Matplotlib是什么?\" "]},{"cell_type":"code","execution_count":35,"id":"2d2dc834","metadata":{},"outputs":[],"source":["docs_chinese = vectordb_chinese.similarity_search(question_chinese,k=3)"]},{"cell_type":"code","execution_count":36,"id":"eebe77e7","metadata":{},"outputs":[{"data":{"text/plain":["3"]},"execution_count":36,"metadata":{},"output_type":"execute_result"}],"source":["len(docs_chinese)"]},{"cell_type":"code","execution_count":37,"id":"860af154","metadata":{},"outputs":[{"data":{"text/plain":["'第⼀回:Matplotlib 初相识\\n⼀、认识matplotlib\\nMatplotlib 是⼀个 Python 2D 绘图库,能够以多种硬拷⻉格式和跨平台的交互式环境⽣成出版物质量的图形,⽤来绘制各种静态,动态,\\n交互式的图表。\\nMatplotlib 可⽤于 Python 脚本, Python 和 IPython Shell 、 Jupyter notebook , Web 应⽤程序服务器和各种图形⽤户界⾯⼯具包等。\\nMatplotlib 是 Python 数据可视化库中的泰⽃,它已经成为 python 中公认的数据可视化⼯具,我们所熟知的 pandas 和 seaborn 的绘图接⼝\\n其实也是基于 matplotlib 所作的⾼级封装。\\n为了对matplotlib 有更好的理解,让我们从⼀些最基本的概念开始认识它,再逐渐过渡到⼀些⾼级技巧中。\\n⼆、⼀个最简单的绘图例⼦\\nMatplotlib 的图像是画在 figure (如 windows , jupyter 窗体)上的,每⼀个 figure ⼜包含了⼀个或多个 axes (⼀个可以指定坐标系的⼦区\\n域)。最简单的创建 figure 以及 axes 的⽅式是通过 pyplot.subplots命令,创建 axes 以后,可以使⽤ Axes.plot绘制最简易的折线图。\\nimport matplotlib.pyplot as plt\\nimport matplotlib as mpl\\nimport numpy as np\\nfig, ax = plt.subplots() # 创建⼀个包含⼀个 axes 的 figure\\nax.plot([1, 2, 3, 4], [1, 4, 2, 3]); # 绘制图像\\nTrick: 在jupyter notebook 中使⽤ matplotlib 时会发现,代码运⾏后⾃动打印出类似 \\n这样⼀段话,这是因为 matplotlib 的绘图代码默认打印出最后⼀个对象。如果不想显示这句话,有以下三种⽅法,在本章节的代码示例\\n中你能找到这三种⽅法的使⽤。\\n\\x00. 在代码块最后加⼀个分号 ;\\n\\x00. 在代码块最后加⼀句 plt.show()\\n\\x00. 在绘图时将绘图对象显式赋值给⼀个变量,如将 plt.plot([1, 2, 3, 4]) 改成 line =plt.plot([1, 2, 3, 4])\\n和MATLAB 命令类似,你还可以通过⼀种更简单的⽅式绘制图像, matplotlib.pyplot⽅法能够直接在当前 axes 上绘制图像,如果⽤户\\n未指定axes , matplotlib 会帮你⾃动创建⼀个。所以上⾯的例⼦也可以简化为以下这⼀⾏代码。\\nline =plt.plot([1, 2, 3, 4], [1, 4, 2, 3]) \\n三、Figure 的组成\\n现在我们来深⼊看⼀下 figure 的组成。通过⼀张 figure 解剖图,我们可以看到⼀个完整的 matplotlib 图像通常会包括以下四个层级,这些\\n层级也被称为容器( container ),下⼀节会详细介绍。在 matplotlib 的世界中,我们将通过各种命令⽅法来操纵图像中的每⼀个部分,\\n从⽽达到数据可视化的最终效果,⼀副完整的图像实际上是各类⼦元素的集合。\\nFigure:顶层级,⽤来容纳所有绘图元素'"]},"execution_count":37,"metadata":{},"output_type":"execute_result"}],"source":["docs_chinese[0].page_content"]},{"cell_type":"markdown","id":"60a720a6","metadata":{},"source":["如果我们查看第一个文档的内容,我们可以看到它实际上是关于Matplotlib的介绍"]},{"cell_type":"markdown","id":"fba57a1d","metadata":{},"source":["在此之后,我们要确保通过运行vectordb.persist来持久化向量数据库,以便我们在未来的课程中使用。\n","\n","让我们保存它,以便以后使用!"]},{"cell_type":"code","execution_count":38,"id":"ea657123","metadata":{"height":30,"tags":[]},"outputs":[{"name":"stderr","output_type":"stream","text":["/Users/lta/anaconda3/envs/chat_data/lib/python3.11/site-packages/langchain_core/_api/deprecation.py:119: LangChainDeprecationWarning: Since Chroma 0.4.x the manual persistence method is no longer supported as docs are automatically persisted.\n"," warn_deprecated(\n"]}],"source":["vectordb.persist()"]},{"cell_type":"code","execution_count":39,"id":"9065f5b1","metadata":{},"outputs":[],"source":["vectordb_chinese.persist()"]},{"cell_type":"markdown","id":"cefe9f6a","metadata":{},"source":["## 五、失败的情况(Failure modes)"]},{"cell_type":"markdown","id":"089da0ca","metadata":{},"source":["这看起来很好,基本的相似性搜索很容易就能让你完成80%的工作。\n","\n","但是,可能会出现一些相似性搜索失败的情况。\n","\n","这里有一些可能出现的边缘情况——我们将在下一堂课中修复它们。"]},{"cell_type":"code","execution_count":40,"id":"df0f29f9","metadata":{"height":30,"tags":[]},"outputs":[],"source":["question = \"what did they say about matlab?\" # \"他们对 matlab 有何评价?\""]},{"cell_type":"code","execution_count":41,"id":"02be97df","metadata":{"height":30,"tags":[]},"outputs":[],"source":["docs = vectordb.similarity_search(question,k=5)"]},{"cell_type":"code","execution_count":42,"id":"34359d7a","metadata":{},"outputs":[],"source":["question_chinese = \"Matplotlib是什么?\""]},{"cell_type":"code","execution_count":43,"id":"c0546006","metadata":{},"outputs":[],"source":["docs_chinese = vectordb_chinese.similarity_search(question_chinese,k=5)"]},{"cell_type":"markdown","id":"2a9f579e","metadata":{},"source":["请注意,我们得到了重复的块(因为索引中有重复的 `MachineLearning-Lecture01.pdf`、`第一回:Matplotlib初相识.pdf`)。\n","\n","语义搜索获取所有相似的文档,但不强制多样性。\n","\n","`docs[0]` 和 `docs[1]` 是完全相同的,以及`docs_chinese[0]` 和 `docs_chinese[1]` 是完全相同的。"]},{"cell_type":"code","execution_count":44,"id":"d39f6954","metadata":{"height":30,"tags":[]},"outputs":[{"data":{"text/plain":["Document(page_content='those homeworks will be done in either MATLA B or in Octave, which is sort of — I \\nknow some people call it a free ve rsion of MATLAB, which it sort of is, sort of isn\\'t. \\nSo I guess for those of you that haven\\'t s een MATLAB before, and I know most of you \\nhave, MATLAB is I guess part of the programming language that makes it very easy to write codes using matrices, to write code for numerical routines, to move data around, to \\nplot data. And it\\'s sort of an extremely easy to learn tool to use for implementing a lot of \\nlearning algorithms. \\nAnd in case some of you want to work on your own home computer or something if you \\ndon\\'t have a MATLAB license, for the purposes of this class, there\\'s also — [inaudible] \\nwrite that down [inaudible] MATLAB — there\\' s also a software package called Octave \\nthat you can download for free off the Internet. And it has somewhat fewer features than MATLAB, but it\\'s free, and for the purposes of this class, it will work for just about \\neverything. \\nSo actually I, well, so yeah, just a side comment for those of you that haven\\'t seen \\nMATLAB before I guess, once a colleague of mine at a different university, not at \\nStanford, actually teaches another machine l earning course. He\\'s taught it for many years. \\nSo one day, he was in his office, and an old student of his from, lik e, ten years ago came \\ninto his office and he said, \"Oh, professo r, professor, thank you so much for your', metadata={'page': 8, 'source': 'docs/cs229_lectures/MachineLearning-Lecture01.pdf'})"]},"execution_count":44,"metadata":{},"output_type":"execute_result"}],"source":["docs[0]"]},{"cell_type":"code","execution_count":45,"id":"e04e3d1b","metadata":{"height":30,"tags":[]},"outputs":[{"data":{"text/plain":["Document(page_content='those homeworks will be done in either MATLA B or in Octave, which is sort of — I \\nknow some people call it a free ve rsion of MATLAB, which it sort of is, sort of isn\\'t. \\nSo I guess for those of you that haven\\'t s een MATLAB before, and I know most of you \\nhave, MATLAB is I guess part of the programming language that makes it very easy to write codes using matrices, to write code for numerical routines, to move data around, to \\nplot data. And it\\'s sort of an extremely easy to learn tool to use for implementing a lot of \\nlearning algorithms. \\nAnd in case some of you want to work on your own home computer or something if you \\ndon\\'t have a MATLAB license, for the purposes of this class, there\\'s also — [inaudible] \\nwrite that down [inaudible] MATLAB — there\\' s also a software package called Octave \\nthat you can download for free off the Internet. And it has somewhat fewer features than MATLAB, but it\\'s free, and for the purposes of this class, it will work for just about \\neverything. \\nSo actually I, well, so yeah, just a side comment for those of you that haven\\'t seen \\nMATLAB before I guess, once a colleague of mine at a different university, not at \\nStanford, actually teaches another machine l earning course. He\\'s taught it for many years. \\nSo one day, he was in his office, and an old student of his from, lik e, ten years ago came \\ninto his office and he said, \"Oh, professo r, professor, thank you so much for your', metadata={'page': 8, 'source': 'docs/cs229_lectures/MachineLearning-Lecture01.pdf'})"]},"execution_count":45,"metadata":{},"output_type":"execute_result"}],"source":["docs[1]"]},{"cell_type":"code","execution_count":46,"id":"092fd2f5","metadata":{},"outputs":[{"data":{"text/plain":["Document(page_content='第⼀回:Matplotlib 初相识\\n⼀、认识matplotlib\\nMatplotlib 是⼀个 Python 2D 绘图库,能够以多种硬拷⻉格式和跨平台的交互式环境⽣成出版物质量的图形,⽤来绘制各种静态,动态,\\n交互式的图表。\\nMatplotlib 可⽤于 Python 脚本, Python 和 IPython Shell 、 Jupyter notebook , Web 应⽤程序服务器和各种图形⽤户界⾯⼯具包等。\\nMatplotlib 是 Python 数据可视化库中的泰⽃,它已经成为 python 中公认的数据可视化⼯具,我们所熟知的 pandas 和 seaborn 的绘图接⼝\\n其实也是基于 matplotlib 所作的⾼级封装。\\n为了对matplotlib 有更好的理解,让我们从⼀些最基本的概念开始认识它,再逐渐过渡到⼀些⾼级技巧中。\\n⼆、⼀个最简单的绘图例⼦\\nMatplotlib 的图像是画在 figure (如 windows , jupyter 窗体)上的,每⼀个 figure ⼜包含了⼀个或多个 axes (⼀个可以指定坐标系的⼦区\\n域)。最简单的创建 figure 以及 axes 的⽅式是通过 pyplot.subplots命令,创建 axes 以后,可以使⽤ Axes.plot绘制最简易的折线图。\\nimport matplotlib.pyplot as plt\\nimport matplotlib as mpl\\nimport numpy as np\\nfig, ax = plt.subplots() # 创建⼀个包含⼀个 axes 的 figure\\nax.plot([1, 2, 3, 4], [1, 4, 2, 3]); # 绘制图像\\nTrick: 在jupyter notebook 中使⽤ matplotlib 时会发现,代码运⾏后⾃动打印出类似 \\n这样⼀段话,这是因为 matplotlib 的绘图代码默认打印出最后⼀个对象。如果不想显示这句话,有以下三种⽅法,在本章节的代码示例\\n中你能找到这三种⽅法的使⽤。\\n\\x00. 在代码块最后加⼀个分号 ;\\n\\x00. 在代码块最后加⼀句 plt.show()\\n\\x00. 在绘图时将绘图对象显式赋值给⼀个变量,如将 plt.plot([1, 2, 3, 4]) 改成 line =plt.plot([1, 2, 3, 4])\\n和MATLAB 命令类似,你还可以通过⼀种更简单的⽅式绘制图像, matplotlib.pyplot⽅法能够直接在当前 axes 上绘制图像,如果⽤户\\n未指定axes , matplotlib 会帮你⾃动创建⼀个。所以上⾯的例⼦也可以简化为以下这⼀⾏代码。\\nline =plt.plot([1, 2, 3, 4], [1, 4, 2, 3]) \\n三、Figure 的组成\\n现在我们来深⼊看⼀下 figure 的组成。通过⼀张 figure 解剖图,我们可以看到⼀个完整的 matplotlib 图像通常会包括以下四个层级,这些\\n层级也被称为容器( container ),下⼀节会详细介绍。在 matplotlib 的世界中,我们将通过各种命令⽅法来操纵图像中的每⼀个部分,\\n从⽽达到数据可视化的最终效果,⼀副完整的图像实际上是各类⼦元素的集合。\\nFigure:顶层级,⽤来容纳所有绘图元素', metadata={'page': 0, 'source': 'docs/matplotlib/第一回:Matplotlib初相识.pdf'})"]},"execution_count":46,"metadata":{},"output_type":"execute_result"}],"source":["docs_chinese[0]"]},{"cell_type":"code","execution_count":47,"id":"270f0a10","metadata":{},"outputs":[{"data":{"text/plain":["Document(page_content='第⼀回:Matplotlib 初相识\\n⼀、认识matplotlib\\nMatplotlib 是⼀个 Python 2D 绘图库,能够以多种硬拷⻉格式和跨平台的交互式环境⽣成出版物质量的图形,⽤来绘制各种静态,动态,\\n交互式的图表。\\nMatplotlib 可⽤于 Python 脚本, Python 和 IPython Shell 、 Jupyter notebook , Web 应⽤程序服务器和各种图形⽤户界⾯⼯具包等。\\nMatplotlib 是 Python 数据可视化库中的泰⽃,它已经成为 python 中公认的数据可视化⼯具,我们所熟知的 pandas 和 seaborn 的绘图接⼝\\n其实也是基于 matplotlib 所作的⾼级封装。\\n为了对matplotlib 有更好的理解,让我们从⼀些最基本的概念开始认识它,再逐渐过渡到⼀些⾼级技巧中。\\n⼆、⼀个最简单的绘图例⼦\\nMatplotlib 的图像是画在 figure (如 windows , jupyter 窗体)上的,每⼀个 figure ⼜包含了⼀个或多个 axes (⼀个可以指定坐标系的⼦区\\n域)。最简单的创建 figure 以及 axes 的⽅式是通过 pyplot.subplots命令,创建 axes 以后,可以使⽤ Axes.plot绘制最简易的折线图。\\nimport matplotlib.pyplot as plt\\nimport matplotlib as mpl\\nimport numpy as np\\nfig, ax = plt.subplots() # 创建⼀个包含⼀个 axes 的 figure\\nax.plot([1, 2, 3, 4], [1, 4, 2, 3]); # 绘制图像\\nTrick: 在jupyter notebook 中使⽤ matplotlib 时会发现,代码运⾏后⾃动打印出类似 \\n这样⼀段话,这是因为 matplotlib 的绘图代码默认打印出最后⼀个对象。如果不想显示这句话,有以下三种⽅法,在本章节的代码示例\\n中你能找到这三种⽅法的使⽤。\\n\\x00. 在代码块最后加⼀个分号 ;\\n\\x00. 在代码块最后加⼀句 plt.show()\\n\\x00. 在绘图时将绘图对象显式赋值给⼀个变量,如将 plt.plot([1, 2, 3, 4]) 改成 line =plt.plot([1, 2, 3, 4])\\n和MATLAB 命令类似,你还可以通过⼀种更简单的⽅式绘制图像, matplotlib.pyplot⽅法能够直接在当前 axes 上绘制图像,如果⽤户\\n未指定axes , matplotlib 会帮你⾃动创建⼀个。所以上⾯的例⼦也可以简化为以下这⼀⾏代码。\\nline =plt.plot([1, 2, 3, 4], [1, 4, 2, 3]) \\n三、Figure 的组成\\n现在我们来深⼊看⼀下 figure 的组成。通过⼀张 figure 解剖图,我们可以看到⼀个完整的 matplotlib 图像通常会包括以下四个层级,这些\\n层级也被称为容器( container ),下⼀节会详细介绍。在 matplotlib 的世界中,我们将通过各种命令⽅法来操纵图像中的每⼀个部分,\\n从⽽达到数据可视化的最终效果,⼀副完整的图像实际上是各类⼦元素的集合。\\nFigure:顶层级,⽤来容纳所有绘图元素', metadata={'page': 0, 'source': 'docs/matplotlib/第一回:Matplotlib初相识.pdf'})"]},"execution_count":47,"metadata":{},"output_type":"execute_result"}],"source":["docs_chinese[1]"]},{"cell_type":"markdown","id":"3a3a915d","metadata":{},"source":["我们可以看到一种新的失败的情况。\n","\n","下面的问题询问了关于第三讲的问题,但也包括了来自其他讲的结果。"]},{"cell_type":"code","execution_count":48,"id":"b19135e5","metadata":{"height":45,"tags":[]},"outputs":[],"source":["question = \"what did they say about regression in the third lecture?\" # \"他们在第三讲中是怎么谈论回归的?\""]},{"cell_type":"code","execution_count":49,"id":"d434942c","metadata":{"height":30,"tags":[]},"outputs":[],"source":["docs = vectordb.similarity_search(question,k=5)"]},{"cell_type":"code","execution_count":50,"id":"c2c5df59","metadata":{"height":47,"tags":[]},"outputs":[{"name":"stdout","output_type":"stream","text":["{'page': 0, 'source': 'docs/cs229_lectures/MachineLearning-Lecture03.pdf'}\n","{'page': 14, 'source': 'docs/cs229_lectures/MachineLearning-Lecture03.pdf'}\n","{'page': 6, 'source': 'docs/cs229_lectures/MachineLearning-Lecture03.pdf'}\n","{'page': 0, 'source': 'docs/cs229_lectures/MachineLearning-Lecture02.pdf'}\n","{'page': 2, 'source': 'docs/cs229_lectures/MachineLearning-Lecture03.pdf'}\n"]}],"source":["for doc in docs:\n"," print(doc.metadata)"]},{"cell_type":"code","execution_count":51,"id":"8e6cb50c","metadata":{"height":30,"tags":[]},"outputs":[{"name":"stdout","output_type":"stream","text":["regression problem like this. What I want to do today is talk about a class of algorithms \n","called non-parametric learning algorithms that will help to alleviate the need somewhat \n","for you to choose features very carefully. Okay ? And this leads us in to our discussion of \n","locally weighted regression. And just to de fine the term, linear regression, as we’ve \n","defined it so far, is an example of a parame tric learning algorithm. Parametric learning \n","algorithm is one that’s defined as an algorithm that has a fixed number of parameters that \n","fit to the data. Okay? So in linear regression we have a fix set of parameters theta, right? \n","That must fit to the data. In contrast, what I’m gonna talk about now is our first non-\n","parametric learning algorithm. The formal defi nition, which is not very intuitive, so I’ve \n","replaced it with a second, say, more intuitive. The, sort of, formal definition of the non-\n","parametric learning algorithm is that it’s an algorithm where the number of parameters \n","goes with M, with the size of the training se t. And usually it’s de fined as a number of \n","parameters grows linearly with the size of the training set. Th is is the formal definition. A \n","slightly less formal definition is that th e amount of stuff that your learning algorithm \n","needs to keep around will grow linearly with th e training sets or, in another way of saying \n","it, is that this is an algorithm that we’ll n eed to keep around an entire training set, even\n"]}],"source":["print(docs[4].page_content)"]},{"cell_type":"code","execution_count":52,"id":"e0a7e9c8","metadata":{},"outputs":[],"source":["question_chinese = \"他们在第二讲中对Figure说了些什么?\" "]},{"cell_type":"code","execution_count":53,"id":"62c0bfc6","metadata":{},"outputs":[],"source":["docs_chinese = vectordb_chinese.similarity_search(question_chinese,k=5)"]},{"cell_type":"code","execution_count":54,"id":"26bd586d","metadata":{},"outputs":[{"name":"stdout","output_type":"stream","text":["{'page': 9, 'source': 'docs/matplotlib/第二回:艺术画笔见乾坤.pdf'}\n","{'page': 0, 'source': 'docs/matplotlib/第一回:Matplotlib初相识.pdf'}\n","{'page': 0, 'source': 'docs/matplotlib/第一回:Matplotlib初相识.pdf'}\n","{'page': 0, 'source': 'docs/matplotlib/第三回:布局格式定方圆.pdf'}\n","{'page': 0, 'source': 'docs/matplotlib/第二回:艺术画笔见乾坤.pdf'}\n"]}],"source":["for doc_chinese in docs_chinese:\n"," print(doc_chinese.metadata)"]},{"cell_type":"code","execution_count":55,"id":"71b6bbf3","metadata":{},"outputs":[{"name":"stdout","output_type":"stream","text":["第⼀回:Matplotlib 初相识\n","⼀、认识matplotlib\n","Matplotlib 是⼀个 Python 2D 绘图库,能够以多种硬拷⻉格式和跨平台的交互式环境⽣成出版物质量的图形,⽤来绘制各种静态,动态,\n","交互式的图表。\n","Matplotlib 可⽤于 Python 脚本, Python 和 IPython Shell 、 Jupyter notebook , Web 应⽤程序服务器和各种图形⽤户界⾯⼯具包等。\n","Matplotlib 是 Python 数据可视化库中的泰⽃,它已经成为 python 中公认的数据可视化⼯具,我们所熟知的 pandas 和 seaborn 的绘图接⼝\n","其实也是基于 matplotlib 所作的⾼级封装。\n","为了对matplotlib 有更好的理解,让我们从⼀些最基本的概念开始认识它,再逐渐过渡到⼀些⾼级技巧中。\n","⼆、⼀个最简单的绘图例⼦\n","Matplotlib 的图像是画在 figure (如 windows , jupyter 窗体)上的,每⼀个 figure ⼜包含了⼀个或多个 axes (⼀个可以指定坐标系的⼦区\n","域)。最简单的创建 figure 以及 axes 的⽅式是通过 pyplot.subplots命令,创建 axes 以后,可以使⽤ Axes.plot绘制最简易的折线图。\n","import matplotlib.pyplot as plt\n","import matplotlib as mpl\n","import numpy as np\n","fig, ax = plt.subplots() # 创建⼀个包含⼀个 axes 的 figure\n","ax.plot([1, 2, 3, 4], [1, 4, 2, 3]); # 绘制图像\n","Trick: 在jupyter notebook 中使⽤ matplotlib 时会发现,代码运⾏后⾃动打印出类似 \n","这样⼀段话,这是因为 matplotlib 的绘图代码默认打印出最后⼀个对象。如果不想显示这句话,有以下三种⽅法,在本章节的代码示例\n","中你能找到这三种⽅法的使⽤。\n","\u0000. 在代码块最后加⼀个分号 ;\n","\u0000. 在代码块最后加⼀句 plt.show()\n","\u0000. 在绘图时将绘图对象显式赋值给⼀个变量,如将 plt.plot([1, 2, 3, 4]) 改成 line =plt.plot([1, 2, 3, 4])\n","和MATLAB 命令类似,你还可以通过⼀种更简单的⽅式绘制图像, matplotlib.pyplot⽅法能够直接在当前 axes 上绘制图像,如果⽤户\n","未指定axes , matplotlib 会帮你⾃动创建⼀个。所以上⾯的例⼦也可以简化为以下这⼀⾏代码。\n","line =plt.plot([1, 2, 3, 4], [1, 4, 2, 3]) \n","三、Figure 的组成\n","现在我们来深⼊看⼀下 figure 的组成。通过⼀张 figure 解剖图,我们可以看到⼀个完整的 matplotlib 图像通常会包括以下四个层级,这些\n","层级也被称为容器( container ),下⼀节会详细介绍。在 matplotlib 的世界中,我们将通过各种命令⽅法来操纵图像中的每⼀个部分,\n","从⽽达到数据可视化的最终效果,⼀副完整的图像实际上是各类⼦元素的集合。\n","Figure:顶层级,⽤来容纳所有绘图元素\n"]}],"source":["print(docs_chinese[2].page_content)"]},{"cell_type":"markdown","id":"c3dbca56","metadata":{},"source":["在下一讲中讨论的方法可以用来解决这两个问题!"]}],"metadata":{"kernelspec":{"display_name":"auto-gpt","language":"python","name":"python3"},"language_info":{"codemirror_mode":{"name":"ipython","version":3},"file_extension":".py","mimetype":"text/x-python","name":"python","nbconvert_exporter":"python","pygments_lexer":"ipython3","version":"3.1.-1"}},"nbformat":4,"nbformat_minor":5}
+{"cells": [{"cell_type": "markdown", "id": "0d647f70", "metadata": {}, "source": ["# \u7b2c\u56db\u7ae0 \u5411\u91cf\u6570\u636e\u5e93\u4e0e\u8bcd\u5411\u91cf(Vectorstores and Embeddings)\n", "\n", " - [\u4e00\u3001\u73af\u5883\u914d\u7f6e](#\u4e00\u3001\u73af\u5883\u914d\u7f6e)\n", " - [\u4e8c\u3001\u8bfb\u53d6\u6587\u6863](#\u4e8c\u3001\u8bfb\u53d6\u6587\u6863)\n", " - [\u4e09\u3001Embeddings](#\u4e09\u3001Embeddings)\n", " - [\u56db\u3001Vectorstores](#\u56db\u3001Vectorstores)\n", " - [4.1 \u521d\u59cb\u5316Chroma](#4.1-\u521d\u59cb\u5316Chroma)\n", " - [4.2 \u76f8\u4f3c\u6027\u641c\u7d22(Similarity Search)](#4.2-\u76f8\u4f3c\u6027\u641c\u7d22(Similarity-Search))\n", " - [\u4e94\u3001\u5931\u8d25\u7684\u60c5\u51b5(Failure modes)](#\u4e94\u3001\u5931\u8d25\u7684\u60c5\u51b5(Failure-modes))\n"]}, {"cell_type": "markdown", "id": "ea9da9ec", "metadata": {}, "source": ["\u56de\u987e\u4e00\u4e0b\u68c0\u7d22\u589e\u5f3a\u751f\u6210\uff08RAG\uff09\u7684\u6574\u4f53\u5de5\u4f5c\u6d41\u7a0b\uff1a"]}, {"attachments": {"overview.jpeg": {"image/jpeg": "/9j/4AAQSkZJRgABAQAASABIAAD/4QBkRXhpZgAATU0AKgAAAAgABAEGAAMAAAABAAIAAAESAAMAAAABAAEAAAEoAAMAAAABAAIAAIdpAAQAAAABAAAAPgAAAAAAAqACAAQAAAABAAAJpKADAAQAAAABAAACwwAAAAD/4QkhaHR0cDovL25zLmFkb2JlLmNvbS94YXAvMS4wLwA8P3hwYWNrZXQgYmVnaW49Iu+7vyIgaWQ9Ilc1TTBNcENlaGlIenJlU3pOVGN6a2M5ZCI/PiA8eDp4bXBtZXRhIHhtbG5zOng9ImFkb2JlOm5zOm1ldGEvIiB4OnhtcHRrPSJYTVAgQ29yZSA2LjAuMCI+IDxyZGY6UkRGIHhtbG5zOnJkZj0iaHR0cDovL3d3dy53My5vcmcvMTk5OS8wMi8yMi1yZGYtc3ludGF4LW5zIyI+IDxyZGY6RGVzY3JpcHRpb24gcmRmOmFib3V0PSIiLz4gPC9yZGY6UkRGPiA8L3g6eG1wbWV0YT4gICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICA8P3hwYWNrZXQgZW5kPSJ3Ij8+AP/tADhQaG90b3Nob3AgMy4wADhCSU0EBAAAAAAAADhCSU0EJQAAAAAAENQdjNmPALIE6YAJmOz4Qn7/4g/QSUNDX1BST0ZJTEUAAQEAAA/AYXBwbAIQAABtbnRyUkdCIFhZWiAH5wACAAwAAAASABhhY3NwQVBQTAAAAABBUFBMAAAAAAAAAAAAAAAAAAAAAAAA9tYAAQAAAADTLWFwcGwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABFkZXNjAAABUAAAAGJkc2NtAAABtAAABJxjcHJ0AAAGUAAAACN3dHB0AAAGdAAAABRyWFlaAAAGiAAAABRnWFlaAAAGnAAAABRiWFlaAAAGsAAAABRyVFJDAAAGxAAACAxhYXJnAAAO0AAAACB2Y2d0AAAO8AAAADBuZGluAAAPIAAAAD5tbW9kAAAPYAAAACh2Y2dwAAAPiAAAADhiVFJDAAAGxAAACAxnVFJDAAAGxAAACAxhYWJnAAAO0AAAACBhYWdnAAAO0AAAACBkZXNjAAAAAAAAAAhEaXNwbGF5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbWx1YwAAAAAAAAAmAAAADGhySFIAAAAUAAAB2GtvS1IAAAAMAAAB7G5iTk8AAAASAAAB+GlkAAAAAAASAAACCmh1SFUAAAAUAAACHGNzQ1oAAAAWAAACMGRhREsAAAAcAAACRm5sTkwAAAAWAAACYmZpRkkAAAAQAAACeGl0SVQAAAAYAAACiGVzRVMAAAAWAAACoHJvUk8AAAASAAACtmZyQ0EAAAAWAAACyGFyAAAAAAAUAAAC3nVrVUEAAAAcAAAC8mhlSUwAAAAWAAADDnpoVFcAAAAKAAADJHZpVk4AAAAOAAADLnNrU0sAAAAWAAADPHpoQ04AAAAKAAADJHJ1UlUAAAAkAAADUmVuR0IAAAAUAAADdmZyRlIAAAAWAAADim1zAAAAAAASAAADoGhpSU4AAAASAAADsnRoVEgAAAAMAAADxGNhRVMAAAAYAAAD0GVuQVUAAAAUAAADdmVzWEwAAAASAAACtmRlREUAAAAQAAAD6GVuVVMAAAASAAAD+HB0QlIAAAAYAAAECnBsUEwAAAASAAAEImVsR1IAAAAiAAAENHN2U0UAAAAQAAAEVnRyVFIAAAAUAAAEZnB0UFQAAAAWAAAEemphSlAAAAAMAAAEkABMAEMARAAgAHUAIABiAG8AagBpzuy37AAgAEwAQwBEAEYAYQByAGcAZQAtAEwAQwBEAEwAQwBEACAAVwBhAHIAbgBhAFMAegDtAG4AZQBzACAATABDAEQAQgBhAHIAZQB2AG4A/QAgAEwAQwBEAEwAQwBEAC0AZgBhAHIAdgBlAHMAawDmAHIAbQBLAGwAZQB1AHIAZQBuAC0ATABDAEQAVgDkAHIAaQAtAEwAQwBEAEwAQwBEACAAYQAgAGMAbwBsAG8AcgBpAEwAQwBEACAAYQAgAGMAbwBsAG8AcgBMAEMARAAgAGMAbwBsAG8AcgBBAEMATAAgAGMAbwB1AGwAZQB1AHIgDwBMAEMARAAgBkUGRAZIBkYGKQQaBD4EOwRMBD4EQAQ+BDIEOAQ5ACAATABDAEQgDwBMAEMARAAgBeYF0QXiBdUF4AXZX2mCcgBMAEMARABMAEMARAAgAE0A4AB1AEYAYQByAGUAYgBuAP0AIABMAEMARAQmBDIENQRCBD0EPgQ5ACAEFgQaAC0ENAQ4BEEEPwQ7BDUEOQBDAG8AbABvAHUAcgAgAEwAQwBEAEwAQwBEACAAYwBvAHUAbABlAHUAcgBXAGEAcgBuAGEAIABMAEMARAkwCQIJFwlACSgAIABMAEMARABMAEMARAAgDioONQBMAEMARAAgAGUAbgAgAGMAbwBsAG8AcgBGAGEAcgBiAC0ATABDAEQAQwBvAGwAbwByACAATABDAEQATABDAEQAIABDAG8AbABvAHIAaQBkAG8ASwBvAGwAbwByACAATABDAEQDiAOzA8cDwQPJA7wDtwAgA78DuAPMA70DtwAgAEwAQwBEAEYA5AByAGcALQBMAEMARABSAGUAbgBrAGwAaQAgAEwAQwBEAEwAQwBEACAAYQAgAGMAbwByAGUAczCrMOkw/ABMAEMARHRleHQAAAAAQ29weXJpZ2h0IEFwcGxlIEluYy4sIDIwMjMAAFhZWiAAAAAAAADzUQABAAAAARbMWFlaIAAAAAAAAIPfAAA9v////7tYWVogAAAAAAAASr8AALE3AAAKuVhZWiAAAAAAAAAoOAAAEQsAAMi5Y3VydgAAAAAAAAQAAAAABQAKAA8AFAAZAB4AIwAoAC0AMgA2ADsAQABFAEoATwBUAFkAXgBjAGgAbQByAHcAfACBAIYAiwCQAJUAmgCfAKMAqACtALIAtwC8AMEAxgDLANAA1QDbAOAA5QDrAPAA9gD7AQEBBwENARMBGQEfASUBKwEyATgBPgFFAUwBUgFZAWABZwFuAXUBfAGDAYsBkgGaAaEBqQGxAbkBwQHJAdEB2QHhAekB8gH6AgMCDAIUAh0CJgIvAjgCQQJLAlQCXQJnAnECegKEAo4CmAKiAqwCtgLBAssC1QLgAusC9QMAAwsDFgMhAy0DOANDA08DWgNmA3IDfgOKA5YDogOuA7oDxwPTA+AD7AP5BAYEEwQgBC0EOwRIBFUEYwRxBH4EjASaBKgEtgTEBNME4QTwBP4FDQUcBSsFOgVJBVgFZwV3BYYFlgWmBbUFxQXVBeUF9gYGBhYGJwY3BkgGWQZqBnsGjAadBq8GwAbRBuMG9QcHBxkHKwc9B08HYQd0B4YHmQesB78H0gflB/gICwgfCDIIRghaCG4IggiWCKoIvgjSCOcI+wkQCSUJOglPCWQJeQmPCaQJugnPCeUJ+woRCicKPQpUCmoKgQqYCq4KxQrcCvMLCwsiCzkLUQtpC4ALmAuwC8gL4Qv5DBIMKgxDDFwMdQyODKcMwAzZDPMNDQ0mDUANWg10DY4NqQ3DDd4N+A4TDi4OSQ5kDn8Omw62DtIO7g8JDyUPQQ9eD3oPlg+zD88P7BAJECYQQxBhEH4QmxC5ENcQ9RETETERTxFtEYwRqhHJEegSBxImEkUSZBKEEqMSwxLjEwMTIxNDE2MTgxOkE8UT5RQGFCcUSRRqFIsUrRTOFPAVEhU0FVYVeBWbFb0V4BYDFiYWSRZsFo8WshbWFvoXHRdBF2UXiReuF9IX9xgbGEAYZRiKGK8Y1Rj6GSAZRRlrGZEZtxndGgQaKhpRGncanhrFGuwbFBs7G2MbihuyG9ocAhwqHFIcexyjHMwc9R0eHUcdcB2ZHcMd7B4WHkAeah6UHr4e6R8THz4faR+UH78f6iAVIEEgbCCYIMQg8CEcIUghdSGhIc4h+yInIlUigiKvIt0jCiM4I2YjlCPCI/AkHyRNJHwkqyTaJQklOCVoJZclxyX3JicmVyaHJrcm6CcYJ0kneierJ9woDSg/KHEooijUKQYpOClrKZ0p0CoCKjUqaCqbKs8rAis2K2krnSvRLAUsOSxuLKIs1y0MLUEtdi2rLeEuFi5MLoIuty7uLyQvWi+RL8cv/jA1MGwwpDDbMRIxSjGCMbox8jIqMmMymzLUMw0zRjN/M7gz8TQrNGU0njTYNRM1TTWHNcI1/TY3NnI2rjbpNyQ3YDecN9c4FDhQOIw4yDkFOUI5fzm8Ofk6Njp0OrI67zstO2s7qjvoPCc8ZTykPOM9Ij1hPaE94D4gPmA+oD7gPyE/YT+iP+JAI0BkQKZA50EpQWpBrEHuQjBCckK1QvdDOkN9Q8BEA0RHRIpEzkUSRVVFmkXeRiJGZ0arRvBHNUd7R8BIBUhLSJFI10kdSWNJqUnwSjdKfUrESwxLU0uaS+JMKkxyTLpNAk1KTZNN3E4lTm5Ot08AT0lPk0/dUCdQcVC7UQZRUFGbUeZSMVJ8UsdTE1NfU6pT9lRCVI9U21UoVXVVwlYPVlxWqVb3V0RXklfgWC9YfVjLWRpZaVm4WgdaVlqmWvVbRVuVW+VcNVyGXNZdJ114XcleGl5sXr1fD19hX7NgBWBXYKpg/GFPYaJh9WJJYpxi8GNDY5dj62RAZJRk6WU9ZZJl52Y9ZpJm6Gc9Z5Nn6Wg/aJZo7GlDaZpp8WpIap9q92tPa6dr/2xXbK9tCG1gbbluEm5rbsRvHm94b9FwK3CGcOBxOnGVcfByS3KmcwFzXXO4dBR0cHTMdSh1hXXhdj52m3b4d1Z3s3gReG54zHkqeYl553pGeqV7BHtje8J8IXyBfOF9QX2hfgF+Yn7CfyN/hH/lgEeAqIEKgWuBzYIwgpKC9INXg7qEHYSAhOOFR4Wrhg6GcobXhzuHn4gEiGmIzokziZmJ/opkisqLMIuWi/yMY4zKjTGNmI3/jmaOzo82j56QBpBukNaRP5GokhGSepLjk02TtpQglIqU9JVflcmWNJaflwqXdZfgmEyYuJkkmZCZ/JpomtWbQpuvnByciZz3nWSd0p5Anq6fHZ+Ln/qgaaDYoUehtqImopajBqN2o+akVqTHpTilqaYapoum/adup+CoUqjEqTepqaocqo+rAqt1q+msXKzQrUStuK4trqGvFq+LsACwdbDqsWCx1rJLssKzOLOutCW0nLUTtYq2AbZ5tvC3aLfguFm40blKucK6O7q1uy67p7whvJu9Fb2Pvgq+hL7/v3q/9cBwwOzBZ8Hjwl/C28NYw9TEUcTOxUvFyMZGxsPHQce/yD3IvMk6ybnKOMq3yzbLtsw1zLXNNc21zjbOts83z7jQOdC60TzRvtI/0sHTRNPG1EnUy9VO1dHWVdbY11zX4Nhk2OjZbNnx2nba+9uA3AXcit0Q3ZbeHN6i3ynfr+A24L3hROHM4lPi2+Nj4+vkc+T85YTmDeaW5x/nqegy6LzpRunQ6lvq5etw6/vshu0R7ZzuKO6070DvzPBY8OXxcvH/8ozzGfOn9DT0wvVQ9d72bfb794r4Gfio+Tj5x/pX+uf7d/wH/Jj9Kf26/kv+3P9t//9wYXJhAAAAAAADAAAAAmZmAADypwAADVkAABPQAAAKW3ZjZ3QAAAAAAAAAAQABAAAAAAAAAAEAAAABAAAAAAAAAAEAAAABAAAAAAAAAAEAAG5kaW4AAAAAAAAANgAArhQAAFHsAABD1wAAsKQAACZmAAAPXAAAUA0AAFQ5AAIzMwACMzMAAjMzAAAAAAAAAABtbW9kAAAAAAAABhAAAKBO/WJtYgAAAAAAAAAAAAAAAAAAAAAAAAAAdmNncAAAAAAAAwAAAAJmZgADAAAAAmZmAAMAAAACZmYAAAACMzM0AAAAAAIzMzQAAAAAAjMzNAD/wAARCALDCaQDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9sAQwABAQEBAQECAQECAwICAgMEAwMDAwQGBAQEBAQGBwYGBgYGBgcHBwcHBwcHCAgICAgICQkJCQkLCwsLCwsLCwsL/9sAQwECAgIDAwMFAwMFCwgGCAsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsL/90ABACb/9oADAMBAAIRAxEAPwD+/iiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/9D+/iiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK/no/4Kz/8HEv7Pf8AwSO/aL0X9nH4s+AfEXinUdb8OW/iSO70iS2SBILm6urURsJpEbeGtWY4GMMO+aAP6F6K/jB8P/8AB7P+wTd6nFB4n+FHj2xtGYB5rcafcOoPfY13FnH+9X9Qv7E/7dH7Mf8AwUL+B9r+0H+yp4kj8ReH55mtZwUaG6sruMBnt7mBwHilUMpwRhlZXUsjKxAPrmiiigAooooAKKKKACiiigAooooAKKKKACiiigAoor4a8V/8FIP2OvCn7ZvhL/gn6/jC21H4teLzd+ToOn/6TLZR2dlNfu96yZS23QwnYkhEjllKoUJYAH3LRRX5V/8ABV3/AIK1/A3/AIJFfCnwx8XPjt4d13xHY+KdWbSLaHQUt3ljmWF5izi4mgXbtQjgk57UAfqpRXhP7L/x+8L/ALVf7OXgb9pfwTZ3Wn6P490Ox16ytr4ILmGC/hWZElEbOgdVYBtrMM9Ca92oAKKKKACiiigAoor5l/bM/ae8M/sXfsteOf2qvGWm3Wr6X4F0uXVbmysii3E8cWMrGXIXcc9yBQB9NUV+Pn7Cv/BY34P/ALeH7AHj/wD4KC+BfCesaJoHw/fWkutLv3ga8nOi2Ud9J5ZjdoxvSQKu5h8w5wKs/wDBIj/gsJ8If+CwHw98YfET4ReE9Y8KW/g3UbfTriLWHhd5nuIjKGTyXcYAGDnBzQB+vVFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFfFn7ev/BQD9mX/gm18Abv9oz9qXWX0zRYpks7S2tY/PvtRvJAzJbWsOV3ysqs3LKiqpZ2VQSP5ZdS/wCD3X9kSLxX9j0f4K+MJ9D/AOfua8sorvr/AM+6tInT/pvQB/bbRXwf/wAE9f8AgpD+yt/wU6+B5+O37K+sy31ja3H2PUtPvovs2o6bd7Q/k3MOWAJVgVdGeJ+drtg4+8KACiivxs/4K/f8Fnfg3/wR48O+BfEfxe8I6z4sj8d3N/bWqaO8CNA1gsLMZPOdOGEwxjPQ5oA/ZOivyE/4KM/8FhfhD/wTf/Yp8B/tt/EXwnrHiDRfHuo6Xp1rp+mvCt1A+qWFxfo0hldUIRLdkbBJ3EY4r6i+F37fPwA8Z/sM+GP+CgXxH1SD4feA/EWg2niB59fuIoBZw3ihkjlcMUMhLBFVCS7kKoJIFAH2zRXzV+yF+1p8F/25f2fNE/ag/Z5vZ9S8G+I5tQi027uYHtXnXTryexkkEUgDqjy27sm8KxQgsqkkDy/4D/8ABR/9jr9qH9o/xd+y1+zz4wtvGPibwHYpe67Lpf7/AE+18yXyRD9qH7qSYMDuWIuEwQxDDbQB9y0V+Gf7Rn/Bdf4G/s3/APBULwf/AMEtPEfgrXdQ8UeMrrRrW31m2e3FhC2tNtjLqziXCE/NhT7V+5lABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRX8sH7eH/B2r/wT6/Y6+LuvfAj4f6Fr3xT8Q+G55LO+udHNvbaQl3CxWSBbuWQvI0bAqzRwPHn7rtzQB/U/RX8t3/BPr/g7C/YG/bb+MekfADx1oetfCvxL4iuIrLSZNXaK60y6vJjtS3+1QkGKR2IVDLEqMSBuDEA/wBCX7TP7VH7PH7G3wnvfjj+094u0/wZ4XsCI3vdQk2+ZKwLLDDGoaSaZgrFYoleRsHCnBoA9/orxr9nf47+Av2oPgX4T/aI+FjTyeG/GmmW+r6Y91H5MzWt0oeMumSVJUg4JyO/Ney0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFZGv6vD4f0G9164QyR2NvJcMq9WESliBnucV/F5/xG4fsV/wDRHPG3/f6x/wDj1AH9rVFfx7/Cr/g9H/4JueMPFFpoHxK8D+OfCFndSLG+pPbWl9bW4Y4LyrBcmfYByfLikb0U1/Wz8P8Ax94K+KvgbR/iZ8N9Ut9b8P8AiCzh1DTdQtHEkFza3KCSKWNhwVdSCD6GgDr6KKQkAZPAFAC0V8N/s2/8FHv2O/2wPjf45+Af7MvjC28aat8OYLSbXbvTP32nQvevKiRR3Q/dzuDCxfyi6LwC27Kj7koAKK+Q/wBvT9sHwh+wL+yP40/a98eaTea5pHgq2gubmxsCi3Myz3EVuAhkKpkNKCckcA15Z/wS/wD+Ci3w8/4KkfssW37Vnww0DUfDWlXOp3mmCy1RomuBJZlQzExMy7W3cc5oA/Q+iiigAooooAKKKKACivw0/b7/AOC6/wADf+Cfv7ePw4/YH8feCtd13XviTa6PdWep6e9utpbrrOoz6dGJBI6uSjwM7bVPykY54r9y6ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAor+cj/gpl/wc4fsA/wDBOT4k3nwIhh1L4n+PdMdotS03w60ItdNmQ4aG7u5XCLMOQYoklZCCJAhwD8U/s0/8HnH/AAT/APiv4107wZ8evBHif4ZRajOITqzmHVdNtQ3R7hoTHcKnqY7eTGeeMkAH9htFcv4I8b+DfiV4P0z4g/DzVbTXNC1q2ivdP1CwmW4trq3mUNHLFIhKujKQVZSQRXUUAFFFfDX7WH/BR/8AY6/Yr8YeEPhn8evGFtY+LvHupWOmaD4ftv8ASdTvJb+4W2ikECfNHAJCQ08uyMbSAxb5SAfctFFFABRRRQAUUV8Nfttf8FH/ANjr/gnr4a07Xf2ovGFtot5rcog0jSIv9I1TUZWYJi3tky7KGYBpW2xISN7rkUAfctFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH/0f7+KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr/N6/4Otra2vf+C8P7PlneRrLDL4R8KI6OAysreIdTBBB4II4INf6Qtf5un/B19qFhpH/AAXa/Z/1XVZ47W1tfB/hWWaaVgkccaeIdULMzHAVVAJJJwBQB/eD8b/+CeX7Dv7Rfw81L4X/ABe+FPhfVdJ1SFoZAdLt45o9wwHhmRFkikXqskbKynoa/hG/4Nl/GPjf9hr/AILn/GX/AIJq2Wrz6h4TvLnxLoMsUpAWa/8ACl1ILa8wMAOYI51O0AEScj5Vx/bv8WP+CtH/AATL+CvgXUPiH46+PHgZbDTomleOy1y0v7uXb/DDbW0sk8znskaMx9K/ie/4NgvCPi79tn/gtz8cv+Ck50eW18MQv4j1jz5R8sGp+Kr5pILYEZBcWzXBbBO0KP7woA/Vv/gqN/wcT/tPeHf243/4Jh/8Eivh9afEL4mWV22m6nqV7C94i6hGu+e2tYEkhQfZVDfabieTyoyrgqAhevmnwl/wcRf8FYf+Cb37Snhb4If8F0PhBp+ieF/FYHla7o8SR3MEXmKklyklpc3VleR2+4GaCLZMgYHOSqP8Bf8ABFz4kfD/APYe/wCDmX45eDP2xNRt/D2q+IbnxdoOm6jq8iwRHU77VIL23cyyEIn2y2jfymJG8yoo5cA/aH/B6T+0l+z/AOPPhj8Hf2ZvA+sWHiD4g22vXOsS2unypdXFlYNbmALKIyxQ3MroY0PL+USBwKAP6T/+Cvn/AAWB+D3/AASv/Y+sf2j2tofGeseL5Y7TwhpVvchItSllj877QZlD4tYosSO6g7tyICC4I/l58Wf8Fqv+Dn74V/s76b/wUh+Jfwa8J23wUv47S+2mwVYxYXjosMzQrqL6lDFP5iiOaQbcMrY2spb55/4Oe/gB8c/hj/wTJ/YJtviJDdk+B/CTeGtf82MqLXWJNM0rZFKf+ehFpcKA3J8pj13V/X7c/wDBWX9gP4M/8EtPDv7aniPxNpeq+CofDGnSQaRYXFtNf3VwIok/s+G2llTddRyHy3iYqYypLlQpIAPjz4+/8FzvFfiH/ggTqn/BWv8AZX0O10nxXZtplpNouvxPd29nfS6pbWN3E3lvA0seyUyQSBl3IyMyg7kH3d/wQ+/be+MX/BRT/gm74K/ay+PUGmW3ifxDdavDdR6RA9vaBbG+nto9kckkrAlI13Zc5OTx0r8dP+CwX7enwh/4Khf8G03xg/ag/Zz0jXdP8NnU9Es0j120jtbljZa3pwldUilnRo0Z9hdXI3I4/hr1f/g10/aS+BfgT/ghXofiDx14r0vSLD4d6j4h/wCEinurlI105WvJrxTPk5TdDKrrkfMDxmgDlv8Aggp/wW1/bB/4KXftrfGL9nz9oax8N2uheA9PnutNfRrKa2uGeO/W2HmvJczKw2HnCr83PtXwRpP/AAco/wDBUPxH/wAFIPjT+wL8FfhR4f8AiZ4i03xD4j8L/D/TbKCWyZbnStReJLrU55LwI1vFZwyvKFMAZ8HzI1zXyp/wZteI7Xxh/wAFG/2gvFtjkQ6p4bkvI9wwds+pxuMjscGtv/ghFZW11/wdR/tOzzoGe2v/AIjyRkj7rHX40yP+AsR9DQB6ja/8HN3/AAVW/wCCe37Xeu/sv/8ABWD4P6TrOpCzM1lpfhdVt78XV5GHsBBPHcXVvcWsrERvhWmTcTlnjMLa37Sv/Bfv/gvx/wAE2/i34H+JH/BRP4K+E9B+HXj+ZpbbQ7NQ9ytnbMhuIo7qG/naG9WKVDi5UqSf9WMMF8V/4Lk6dZaj/wAHWn7MunXsayQ3Wq/DWOVCMh1fXWUg/UcV9kf8HvsaH9mj4FSkDcPE2qAHvg2qZ/kKAP3d/wCCq3/Bab4Nf8E3f2FfD37W+naf/wAJTq3xFhtv+EM0SWX7M1613ALkTTkB2SCCJlaUqCdzJGCC4Yfzo6z/AMFpv+DmH9nb4D6P/wAFGf2j/gf4Tuvgfq5srue2it/ss8Gn3rKIZNqX017aifeqxy3MUqqzIWT5lDfHH/B0H4L8c3f/AATi/YD+ItvHLL4asPBH9nXEgU+VDfXel6TLCGbpuljglKA9omx3r6v+Pv7GH7Quqf8ABNCy+Pn7Tn/BTZ2+AHjXSNPtjHL4Wa+t7iC88tY7VYLW8eeSSJsLJHGheLy2LBdjYAP6Fv2mP+Cvqaj/AMEM9d/4Ky/sZx2ct6ujWV/Y2Wsxm5jtLx9Qgsrq1uUikjLPA7SodrgFlDDKkZ/Cf9mX/gut/wAF9v8AgpN+zBFqP/BPz4GeH9a8S+F/tieMvFNykdrpxumkeS1tNLt7u/jV5ktfLabe87F3x5ca7Gk0/EP7O3wn/Zp/4NIfjV4M+BPxYtvjP4Q1K+/tPTPEdppU+jxMkurafHLAILiSRyY5opNzZHzErjKmv0Y/4NBLC1s/+COemXFugV7rxdrsspAxucNEmT6/KoH0FAHC/wDBAT/gvf8AtBf8FOLz4l/s1ftHeFdN0r4teA9Hl1iwl0yGW1gv4YpBbSx3FtNI5hnhuJIVbEgVxIRtjKEt/HN4J+NH/BXK1/4OA5/jH4a+HWkT/tYm/wBQd/CbLH/Z4uH0SWKdcfbQmF08vKP9L+8OpPyV+yf/AAbLxR2//BxP+1NbwjaiaL41VVHQAeJtPArH8C+INB8G/wDB7hfa14tvYNMs01zVkae6kWGJWn8JTpGCzkAF3dVXnliAOTQB/f7+zprXxc8Sfs+eBPEX7QGnQ6P48v8Aw9pdz4ksLcAQ2ury20bXkKYeQbY5y6riRxgfebqf5DP+D2//AJMo+D3/AGO83/pBNX9pGlarpmu6Zba3olzFeWV5Ek9vcQOJIpYpAGR0dSVZWBBBBIIORX8W/wDwe3/8mUfB7/sd5v8A0gmoA/ov/wCCNv8Ayic/Zv8A+yceG/8A0hir9AvGvjPwt8OfBur/ABC8c30WmaJoNlcajqF5McRW9rao0ssrnsqIpY+wr8Vf+CSn7dP7Engr/gl9+z74Q8ZfGPwPpGraZ8P/AA/a3lle+IbC3ubeeKyiV45Y3nV0dWBDKwBB4Nejf8FK/ij8Lf2z/wDgmH+0T8Lf2Q/HegeOvEh8Caqxs/DeqW2pXBXyHbyylvJIR56o0a5A3E4HNAH83w/4OEf+Cz//AAU++PXinwV/wRR+DWnXHgvwkwd9Q1eGKS7khZiInuri8urayt2uAjNHbLulwGw77SR93/8ABJL/AIOIfjh8bf2xrz/gmb/wVL8A2nwy+MUc8tpp1zaRyWdtc3cSCUWc9vPJMY5pY8yQTRytDcAqEUFkL/I3/Blz+1B+zj4e/ZP+J37NviDXtN0fx/H4uk8Qm1vJ47ee80qeytYI3i3kGRYJbeXzAufL8xS2N4z8E/t2eOvB37dH/B2j8IB+xpfReID4U17wlDq+raORcwPJoFx9s1CYSJlHW3tlMMjZK5iK84oA/oI/4LLf8FcP+Cj/AOz/APtUeEv2Df8AgmV8GLnxV4v8TRwGTxJrGm3EmltcXILpbWcrPb2paOJfMuJ5ZjFECVIBRmH5Tah/wX0/4La/8Eyv2w/AvwM/4K+fD/wzL4a8aPbSvLpiQrdR2E0/kPcWtxZXMtuzwNkvBLHuYADKB1evYf8Agph/wVk/4KDftDf8Fo7H/gjD+w58QdO+B2lR3UGlX3iq7to5rq7u5tPGoSYeaNmiABEFtHBseabGZdsihP50P+Dgn9kTW/2NP2qfhl8OPix+0Z4h/aE+IF7ZNf6/eeIJ2ZtKje4RbeKKF7i6a3WQLI/lmX7oUhQCCQD+5f8A4L+f8FwrP/gkD8JfD2jfDTRbLxR8U/HZuDo1lqDv9isrW12iS8ukiKySLvdY44leMyNuO8CMg/zuftz/APBQj/g4J0T/AIJmfEC8/wCCmXwM0mL4VfFfQX0u31rS/Ks9S0K51IqbRru2jup3jhc4jKXEMcgd1DSB8Rvmf8Hgmnap8OP+Cl/7OH7Qnja0mufBMOi20LL5ZaJ5dJ1V7m8jB6F2huIcrnpiv6F/+Dg39s79k+9/4Ih/EfxJYeMdG12x+Juj2ll4VFpdxzHVLi5nhkja3VWJfylBncgfIqHODxQB+Z3/AAbE+Ob/AOGH/BvP8dviVpVpaX914d1rxnqcNrqEXn2k8lpolnKsc8eRviYqA6ZG5SRmvqf/AINuv+Ck3xT/AG3v2T/jf8VPGngrwR4Nv/Bl7GtpB4O0b+yLac/Y5Jg1xGJZPMYMoAORheK+I/8Ag3T/AOVaH9pX/r48e/8AqP2tcV/wZ0/8mB/tPf8AYQi/9N0tAHGfsC/8HKX/AAWc/b90fxL8B/2avgz4Y8ffF8yQXlldwwvp2haRo6ZS5mvDcX6+ZK0jxrCvnRAcnEh+Svq//glj/wAHAf8AwUF1j/gp1/w6t/4KseCNI0TxZqFzPpsF3psH2S5sNSjt2u4o51jmnt7iC4iCiGWHaPnR9zo2R8k/8GMtjayX/wC09qToDPDH4MiR8chJDrBYZ9yi5+lee/tZRRxf8Hqng94xgya14YZiO5/sKEfyAFAH7Z/8F5/+C/HxH/4J4/Fjwl+xN+xR4VsvGvxo8YR205W9jluoLFL6XybSBLaBo3nu7pwfLTzFCDaSr+YBX5tftQ/8Fx/+Dgr/AIJmfs3z6l/wUE+CfhrTNb8UtaxeD/FNqsV1YRXqyrJc2epwWd/Igd7QStBsaFg6H5ZV3mP42/4K6+MNN/Y7/wCDsX4f/tO/tG77PwJcXvhLWYL2dC0MGnRWyWEs4xyVt7mGWV8ZYbTgHjP6ef8AB2z+3x+xx44/4Jr6V8A/hz450Dxn4r8XeItN1HT7XRb+DUGt7KzWSSS7cwO4jjYERIWOXMh2ghWKgH9DH/BHb9rv4p/t4/8ABNz4Y/tZ/GuHT7fxR4wtr+a+j0uF4LRWtr+5tk8uOSSVlHlwrnLn5sn2r9MK/Cv/AINo/wDlB/8AAb/rx1j/ANO99X7qUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAfxlf8AB5j+x/8AH749fssfDH4/fCHTbzXND+Fuoas3iOyslaV4bbVI7YR3rRqCTHbtbMjuM+WJtxG3cw+M/wBiP/g51/4JYeJv2QtE/Ya/bi+CEvhDw7DocOgX66NY2+qaBcRxxCF5mg/dXMLSY34SOd1Y58wsNx/ab/gvr/wW7/aH/wCCPPiz4cR+A/hlpfjDwt46gu/N1TULmeMw3djInm24WIBctDKjxln5O75SFNZ3xs/Z0/4NmP8Ago58ApP2nfHR+HGk6drOn/bpvEWmalbeHNWtHkTcTdC3lhb7VGeGiuo5DuG1kbpQB2H/AAb7/wDBOj/gm/8AsseC/E/7TP8AwTZ+MOvfFLw18Q4LbT9QbUbi1a3im09nkjD28dna3EFxGJmBSfDBJM7OQa/ILxP/AMHMP/BR3w//AMFQPjP+wT8M/hfonxK1DTNf1/wn8PdH020mgu5tTsr/AMq3m1Cdrra1tDaRzy3GxYslQS8SbnX4b/4M+dW8S+Hv+CqHxj+HPwO1XUNX+Ep8M6lLJPcK0UdwtrqNvHpdzLHgKly8Ty7VwCFeTjAOOS/YD/aA+DX7O3/B238WvEvxv1K00XTNa8dePNEtdRvpFit7a+vbqcQb5GIVPNKmBSTjdIAcZzQB+hM//Bw1/wAFh/8Agmv+174Z+F//AAWq+E2h6L4J8ZuJhPokSiWztGdY5J7O5tru8t7lbXdumt3LTEFfnTcu6l/we66tpev/AAZ/Zs13RLiO7sr2/wDEM9vPCweOWKSCwZHVhwVZSCCOCDXOf8Hr/wAcvg14w0D4GfAHwnqllrPjey1DVNWntLOVZ7i0sriKCKPzFQkp9pkGYweX8okdK8e/4OvvBviz4c/8E7P2Hvh7498wa7oOhT6dqPnDbJ9rtdM0uKbcOzb1bI9aAP2f/wCC2P7cPjz9gP8A4IvfAL4xfDzwn4S8Y3upah4W0Z7LxlpQ1ewjim0K8nMscJkj2zBoFVXzwjOMfNX5R/8ABd/9pf8Abe+Nn/BCP4BeNPC/gjQLT4T+P/DGkax46u9KtVtINJ1LzrV9PgsoftG6KGSQuuwRSgAAFl619Ff8HTf/ACgD/Zx/7Gjwh/6jmp1U/wCCikbv/wAGb3wxZRkJ4b8Ck+w+0W4/maAPEv8Aggp+0J/wXX8K/wDBLjUPDX7NXwn0LXPh74d8K6pd/C7ULlIjNq2uy+JEF3BOW1CIlESbUiu6OAfuV+c8B/xf/wCDdD4sf8FOPh3+2r4sk/YM8C6Z4tn1mbTrfx4t+qMNO0lr8edLDvu7fDKS+MGU8fdPf+3f/g1m8c+CtR/4IofBbwRYavZTa1ZL4ne4sEnRrqJRr98xZ4gd6jbNEckYxIv94Z/m1/4M8PGvg3wR+3Z+0PaeMtWs9JkudGiWJbydIDIU1EqwXeRkhnUHHdh60Afqv+3l/wAFQvir8Hf+Diz4WfsO6L4A+H+p6D4i1LwnBNrup6ELnxFANSkCuYL7zVMbR/8ALI7DsPrW5/wXH/4OAv2mv+CVf/BTP4a/s8+DdD0bWvhnq3h7RvEPiGF7KSfWporjU723uorOUXMUSu1vbKId8bASHJyOB+W//BU3/lb++Bn/AGGPAf8A6OFVP+DlWwtdU/4OPf2XdMvkEkFzpPgaKRGGQyP4l1AEEe4NAHuf7bP/AAXH/wCDj/8AYjt/Dn7WX7QvwJ8KeA/hN4n1BbbTtIu0F7Miyhpore9mhvjcwXbQIxDPFCpYN+5BBQf086r/AMFd/gL4a/4JKWf/AAVq8U2U1p4ZvPDNvrKaOJQbl9RuGEC6ckhUBnN4fIEu0LgGQgKDj80/+DwGGOT/AII73ryDJj8Y6Gyn0OZh/ImvyC/aP+H3jrx5/wAGW3wxvfBcUtxF4dms9W1OOEbibGPWLuJ2I67Y3ljdiPuhcngEgA9S/ZR/4LSf8HKn7bml6v8Atl/sx/AHwr4m+DukXk8R0dQLee7gtm3SxWk017HdXNykfyebDC0ZlyBCzfu6+sv+CHH/AAcEftQf8FU/+CmXxC/Z58baDouhfDbTvD+s+INBt47OWLWYI7fULOC2iu5jcSRO6w3DCXZEoaQZGBxXq3/BuR/wUl/YU8Df8EXPBHhn4h/Efw54O1H4XQ6tbeI7HVb+G0uLctfXN0swikcSSJPHKrKyK26Qsi5ZSK/Bv/g1h+I3hf4w/wDBfb47fFvwRbtaaL4p8M+LtX0+B12NFa32u6fNEhXJwVRwCM8YoA/0l6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAM7WLGXVNIutMguHtJLiF4lni+/GXUgOueMrnI96/ydv+CdX7W3ir/g27/4KB/EPwR+3B8FT4q1i4RNNa9JWHUbSKCV2F7pks6GOe3vAQSQyeYFQ+Yu1lP+qj8ZvEnjjwb8IPFfi/4ZaSmv+JNK0e+vNK0yR2jS9vYIXeCBmUMyiWQKhYKSM5APSv5IP+Cbn/BcH9iH/gtle+MP2cf+CqXw/wDh54W1jS3il8Oad4jEU1veQuGW4WKfUAPLu4XVTtjKOytlQdjEAHzd46P/AAbtf8HI/wC034R8SxeO/E/we+LMlsdPXSIraz0O+1p93mRb53t720nuYjuWPZOZmUhcMFUDif8Ag9F8Wftk2Pgr4cfCm60K3uvgFbzaVfDxNKI/7Ql8YrHq0LWzlZlOw2IExAtgu88P/BX5O/8AByz+yP8A8Emf2PfiZ4A1P/gmjr9nYeMNRlu5/EGgaBq7apZaekPltbXAkMsz2k7yFgIvNwVUMqIBl/2m/wCDnjVfip4l/wCDe79l3xN8blm/4TK91vwdP4g+0AiYapN4bv2uvMBAIfzt+4Edc0Afe/8Awbp/tN/t3+EP+Cft54u/4KFeGdJ8DfAr4b+A9G1DwP4ihVRJe6LaW9xJc3FzsurhyY7eKF+YYiSxwpPA/N3Rf+DgH/guN/wVF+MPiix/4I1/BTTP+EE8JSgvc6tFDLdvGxPl/arq8u7azSWZVLLbQ5kUEgO+N1fojcWkvx6/4NLU+GPwU1O31bxHZ/BXTp57KwnSa5WOwjSW4jaNCWDMlvNHtIyzAqBu4r5r/wCDNL9qT9m7TP2E/G37OepeINM0Xx1pXi681y8sbu4jt57rT7q1tY47lA7AyIhheN9ufL2qWxvXIB9M/wDBHL/g4a+K37UX7VOp/wDBN/8A4KTeBbX4ZfGuxkuobJ7VJbS1vbm0Xe9nJbXEkrw3PlBpY3WVop1B2hDsD/I3/BTb/g5F/bk/YZ/4LCeMP2IPhp4J0Lxt4T0qLT7PRdLisbh9ZvtV1nRYJ7OPzY7jDr/aNzHuRId7wgovzkNX53/G3xr4S/bn/wCDv7wL4p/Y3vI9f0/w54g8Pvqus6Tie1nj8PW6PqMvmplWiWOM2pkztYqApOVz1H7SmhWHiP8A4PZ9F0/UY1ljj8ReGLoBugktfDVrMh+qugI9xQB+6f7Cf/BRL/gs/wCBv2afj/8AtK/8FTvg3cJ/wgNpYXHhLw14f0SeLVdXu7zfuhi8qS5DW0RaBZJNkjxBnZ2PlstflLYf8FXP+Dqn44fATxJ+3d8LfhH4Y8O/C7w9Hf30lrPYwxTmz0zebllt728F9MIRG+9kRd7KwjBI2j+ov/gtZ/wUJ8S/8Exf+Ce3i79qbwFpMGteJreaz0rRre8Dm0W91CURrLPswxjiTfJtyvmMoTcu7I/ky8DfB/8Ab/8A+CkP/BK7xL/wVA/b2/bi1fw34AutG1y7/wCEQ8NLHptrIbBpoUs7xraS2g3zSxBFtzbzM6unzFmxQB/Rb/wQ2/4LUp/wU6/Yq8YftA/tAaXp3gnXvhhdSweJ5bJpBphtY7cXQvYxK0kkSeWJA8bPIVMZO4hgB+G/w7/4L9/8Fvf+CpH7SfivSv8Agj18IPDtx4A8EyLK/wDb6oZZbeQusBvbq4vLWFJLnYzR28GJEAI3uqM9fKP/AAbSfD/xr8V/+COX7efwx+Gcctx4j8Q+H7rTtOt4BmWa5udHvo4olHrKx2Dvk8V9A/8ABmn+2j+y18Ivgd8Xf2evi54t0bwj4qm16DxBb/2zeRWIvbBrVYGETzMqubd4izqDlRKD0zgA9Z+CH/Byh/wUM+Kn/BWf4W/sCfE34aaJ8N11DVrDw3420a/tZp9QttUG8XT2lwLrYIJAEkg3RvhWxulXEjffX/BZ7/gvZ8bv2VP2qfDf/BNX/gnB4JsviH8c/EX2T7T9uDz22nvfjfBaiCOSEvcPEVnZ5JUihhZWYMGOz+cj4k/tMfBP9rT/AIO+fBHxe/Z81G31vw0fGXh/TItVtGDwX82m2UVtNNE4JDx+ZGyJIvyuiBlyCDXDft9fDr4vaR/wda+IdCl+K8nwJ1rxVrVu+hePZrVbiOyh1DRVgtSqvJErJKf9B3+YAjMSfukUAftT4B/4L0f8FXf+Cdn7WXgb9nb/AILqfDLQtC8KfEN0isfFGitHGbMPKkb3DyW9zc2k0NsXX7REBFNGjCTLAqr/ANsisrqHQgqRkEcgiv8AOf8A+CsP/BNq3t/Hngb4F/8ABV//AIKTR32tyRXOoeHrDV/Bt1em3ScxxySM1nduLcTFVCmYoJNh252nH+hP8LvD1/4S+GXh3wpqt7/aV1pml2dpNd+WYftEkMSo0nlsSU3kFtpJK5wSaAO7ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA4n4l/8AJOfEH/YNu/8A0U1f5bX/AAa/ftu/8E6/2LPiP8XtY/4KE6zpej2Gv6bpMOitqej3GrrJNBLcNMEW3trkxkK6ZLBc9s4r/Ul+Jf8AyTnxB/2Dbv8A9FNX+Y3/AMGov/BPH9jX/goR8Qvjd4U/bD8D23jSy0HSNHk05Z7i5tmtnupblZWje2liYFgi854xxQB7p/wclf8ABR3/AIIu/tp/s2+Evh1+wRYad4k+Jlt4ihuf7a0jw5PoxtNOWGZJbeSa4tbaWcTyPEUhRXTKbyVKqG/pf/YP+Ndz/wAEX/8Ag3T+H/xZ/bdtru31TwX4fuLxtGlPl38s+r389xp2nBX5Sby7iGJlYZhCsWAEbAfyQ/tVfAf4mf8ABrZ/wVl0H4z/AA18N2Pj34ReJpPtmhPr9jBeTyaekiG6so7uSMva6haEr5dxCVLKYncMrPHX9Dn/AAdDfErRv20v+CCfhX9qH9mW+fWvBF94m0DxJcXUK5xpk8N1bATAZ8to7ueGORTykoKHBBoA+KfBf/BaX/g5n/aM+Butf8FFv2efgh4R/wCFJ6R9tuYbOS38+SexsmYTSKr38N9d+QEZZJbeNEZlfanysq/s58Gf+Cxfx/8A+ClH/BHnxf8AtY/8E2/A9lefHnw9dWekXHg3UZUuYIbw3Vt9qYM81pvgexklnhdnQ7lK/MyEH8Bf+Cbv7LX7Y3xI/wCCSWkftNeA/wDgobL8MvhR4Y0W9TWvDy6El1F4dS0aT7RaS4vFdmYZdF8sPMsilFbeuf1k/wCDWj9kn9mf9nX4V/GbxN+yf+0BafHjQPFk+jxTva+HrzQDpd3Yx3Z2Ol5I7u0yXCkjapQIM53CgD+WD/g15+KX/BSX4d/tS61pX7B3gnTfFvhjXdS8M2vxFub9UaTTNEN3IDPDvurch/Ka4PyrMcoPl7H9/wD/AIKbf8HIv7cn7DP/AAWE8YfsQfDTwToXjbwnpUWn2ei6XFY3D6zfarrOiwT2cfmx3GHX+0bmPciQ73hBRfnIavhX/gyU8c+C/CXxe+P2m+KtXstMuNQ0vw4trHdzpC0xFxdoQgcgsd8iLgZ5dR1Ip37SmhWHiP8A4PZ9F0/UY1ljj8ReGLoBugktfDVrMh+qugI9xQB+lWmf8FCf+C3fhL/gmZ+1L+0X/wAFL/hX4W0WfwNa6FL4V0fXtAY2l/Jf3ka3CyxfaWjnt4I3j2jJcSn5nyhFfeP/AARw/wCCo2ieK/8Agi/r/wDwUJ/ag0bw14F0jwjfa5NqFp4R00aZY+TYlNixW3mODcTswjUbv3kjKO9fQ3/ByL/yhK+Pf/YK07/052dfyr/s3+C/HPjv/gy5+LOl+Aopbi4tPEk2o3UMK7mexsNXsLi5bjosUMbSuf7iHPFAH1F8K/8Agth/wcc/8FGNP8VftQ/8E5fgb4aT4TeFryeGCzvUS5urvyEDtB5k95bSXk6oQzCzijAJCDL4Dfrl/wAE4P8Agtl8Wv8Agq9/wTy+K3jP9n/w9pfhn9pD4Z6bJ5nh26WS7067v/JeW1kij8yOYQXbxSQbGkLwSD5mcbWb+dL/AIIQ/sq/tqftFf8ABPKbx5+zT+3dL8E/Dfgy/wBRXXPCaaTFOmine0xuJpXvIT5dxGfNEjIFzuUElGx+nX/BsB+yl+yv8Nf2kPi18f8A9mX9qC1+Pk+vaPHb+ILKHwvfeH5rS5urvz47mVruQg7zHMqqqDdkkHCmgD7w/wCDcb/gtR8Uv+Cs/wANviNoP7Slro+m/EPwHqVtIYNGgktIJtJv4yIn8qaaZzJHPDMshDYAaMYBPPg3w3/4LbftlftVf8HAGr/8E2P2W7Dw1L8IPBWoXEPiHV7mynuNRW20WJV1FlmS5WNN98fskLeUwBZGOckV+B/7W3xH8Wf8G4n/AAX0+J/xk+Hunv8A8IV8VfCuuavpFpGn7mRtahlnt4tv3FS21y3VSOSlsOB8wB/X/wD4M3v2MNV8I/s2ePv+Ch3xMjkuPEfxb1STTtMu7nLSvpemysbiYOeT9pvjIJM5ybZT3oA9V/4KIf8ABXf/AILE+Jv+Cg9//wAE8/8AglH8EjJNoqSef4l8UabLFFftbqDcT2013JbWcdnEziNZHMhmcDyz8yq3zz+xV/wXt/4Kl/Bf/gqR4Z/4Jg/8FcfAugWup+Lb2z0yG+0iNYbq1uNTQGylD2881pc28rlUYIFdCxJbKGM+Pa3/AMFKP+Cmv/BY7/gr38Qf+Cb37Jnxmtf2b/AXgmfWrWO7trNJtV1CLQroWksqO4juHuZmYyrBFNbpHCrbizIWb8gPiV8ANL/Zh/4OXvgL8FpfjPrPx01vSfG3gr+3vE+vXJurv+1Jb+N3ti7SzFREhjGwyuUZipOQQAD9Dv8Ag5W/5WPv2Vf+wR4G/wDUn1Gv9ESv87v/AIOVv+Vj79lX/sEeBv8A1J9Rr/REoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK+Cf8AgqT+0f4k/ZF/4J2fGX9o7wVIIdd8LeFb+40qUgERahJGYraQhgQwSZ0YqRzjHevvaviv/go9+zhrH7Xn7BPxf/Zo8NJFJrHjLwpqen6WJ22Rf2i8LG03sfuqLgRkt2HNAH8VP/BoF/wTr+CP7S1v8TP+Chn7TGi2/jrXtL8QDQtF/tuIXsUF6YUu728ZZt6y3D/aYQruC0fzMDufI/pE/wCC8f8AwS9/Zj/bD/4J4/EzxHe+EdMsvHfgXw5qHiHw5rllaRxX8NzpUDXP2fzECs0NysXkOjllAYOF3opH8wf/AAaf/wDBTj4IfsLa/wDE/wD4J4/tp6vB8N73VdfOp6Zd69J9itYtWgjFnfWV1JLtjt5QIIthlZVZldCQ+xW/oZ/4Lxf8Fnv2MP2bv+CfnxG+G3gH4gaF4u+InxD8P33hzRNH0PUIr+eI6rCbeS7mNu0ggjgilaVGlKiVlCLnJwAfm5/waF/tm/EfxR/wTh+M/wAFdb1H+0T8Frj+0dCjucv9ms9Vt7i4WDggmL7TbTuBnIMjAHGAPt//AINqf+CyP7WP/BW+x+Mtx+1HZeHrNvAL+H103+wLOa0DDVBfmbzfNuJ92Ps0e3G3HOc5GPij/g03/Y1+JHwq/wCCXPxm/aB8U6W1nJ8ZfOTQ42BE11p+k2txBFNtxkJJcTzrH3YLuHyspPx5/wAGPnxK8EaD4m/aP+HOu6ra2esana+GNSs7WaVUlntrA6mtzIikgssJnh3kcLvGetAH6wfFj/gtr+2D4I/4OOdL/wCCUWj2PhtvhleahpVrJcS2UzatsvdGiv5MTi5EeRM5C/ueE45PNfyq/wDBd34m/wDBRHWf+C7/AIf134teDNO07xr4d1qytPhbZQqgi1fQrPX7xtDnuMXTgvcy5WTc8BwOUj619p+IvjT8Ofj7/wAHnuj/ABB+E+rW2u6EvirTdMivrRxLBLNpmgx2lwEdcqwS4ikTcCQduQSK9I/4OV9R0/w9/wAHHf7MOva7PHZ2NrpPge4mnmYJHHFF4kvy7szYCqoBJJOABQB+xn7e3/BWL/gq3/wT/wD+CLvgD9r34+eDfDPhj476143/AOEf1vRru1a406CxlGoyQMkdveviR4raBs/aGHzNkAnA+HtM/wCC2f8AwcR/tmfsw6Z+1R+wL8ANIPgHw5pNudf1y7t45rnWNWsoh/ajafZS36SvZrOJI40t4p5vkIMnmbo0+sv+DyDxJ4d8V/8ABJHwrq/he/ttStD8TtLj861lWaPfHYaorruQkZVgQwzkEYNfZ3/Bvt+2v+ycf+CJvw48QXXjDRdCtfhfolxYeK0u7uOBtLns5pWkkuFZsoJlInQkfOHGOcgAHVf8EC/+C3Ol/wDBYD4L69a+P9Hs/C/xR8CNbrrmn2DubO7t7oN5V7arKWkSNnR0eJnkMTBcuQ618df8G7n/AAW0/bB/4KofH/4ufDH9pWx8N2mneB9PtrrTm0OymtZWea5kibzWluJgw2qMYC81+QH/AAZ3aRqnjz/gor+0f8evBFpNa+CJNHlt0QRlYUl1PUxcWkZPQOkMEuFznBNcp/wZx+NfDHgT/goP8e/hb4vv4NN1vVtFH2S0uJBHLO+n37CdIwxBZkEgJUZOATjANAH7U/t+f8Ftf2wf2Zf+C7/wm/4Js/Dux8Ny/D7xvqHhO11Ca9sppdSVNbu/IuPKmW5SNSE+5mJsHrnpX8xX/B034+/be8Q/8FRtFsfjr4WsdJ0bQJHt/htNAFDappQuVZZZ8XEmWM+V+ZYTj+HvX0z/AMFKPjf8NPjj/wAHbvwXvfhbrNrrtl4c8Y+AdDubmykWaAXltexPNGJFyrGNpdj4J2uGU8givVP+DyieDTv+CgH7OeqX7iG3i0NmeRzhVVNSBYkngADk0Af2Wf8ABK74l/8ABQz4r/sut4q/4KbeDdO8C/Er+2LuEabpiosH9nIsZgkwlzdjczFwf3vb7o7/AKR1z3hvxb4U8ZWT6n4Q1O01W2jkMTy2cyTosgAYqWQkBsMDjrgg966GgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD//0v7+KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr8Iv+CoP/AAb1fsX/APBWb4+aP+0V+0X4n8a6Lrei+H7fw5BB4bvbG2tWtbe5ubpXdbqwunMpe6cEhwu0KNoIJP7u0UAfyQeG/wDgzB/4JRaHqsWo6n4p+JeswxsGa1vNX09YpAOzG30uGTB/2XB96/pN/ZR/ZC/Zu/Yf+Dll8BP2WPCdn4Q8LWLtMLW13O807gB5p5pGeWeZgqgySuzkKBnAAH0lRQB+Kv8AwU4/4IH/ALAf/BVHX4PiN8btN1Hw545t4Eth4l8Nzx2t9NDH9yO5WWKaCdUHCs8fmKvyq4HFfMf7An/BrZ/wTV/YR+LOmfHjGu/ErxXokqXOmS+KpreWysbqJg0dxDa28EKmVCAUaZpdjYZQrAEf0jUUAfPP7U/7KnwC/bU+COsfs7/tL+HLfxP4T1xVFxaTlkZJIzujlikQrJFLG3KSIwYHvgkV/MTpP/Blx/wTHsPH8fiO+8a/EK+0OORZf7IlvrFVkwcmN547FJPLPT5dsgH8eea/r8ooA+YtP/Yx/Zd0v9lMfsQWHgrTo/hUNHbQf+Ed2E2xsXBDKSSZC7ElzMWMplPmF9/zV/PF8M/+DOz/AIJV+APjHD8S9Z1Pxp4o0W0uI7qHw1quoWx092RtxjnaC0inli6AL5qnGQzNmv6uqKAPxw/4J5/8EPf2Qv8Agmb+0V4//aU/Z11XxLLqnxDimt7zTdTnsm0yzhmuhdbLOG2srZokRgERWkcLGMdeaq/sk/8ABDb9k39jT9vvx9/wUY+GHiHxbf8Ajf4iya3LqVjql3Zy6VEdevFvrjyIobKGZQsqAR753wnDbj81fszRQB+M37U3/BDb9k39rr/goR4C/wCCk/xI8Q+LbLx18O7nQ7rTbHTbuzi0mV/D92b23E8UtlLOweQ4l2XCEpwpU816P/wVP/4JC/s2f8FdfAvhT4f/ALSWt+JtEsvB1/PqFk/hq5tbaWSW4jEbCU3VpdqVAHAVVOe56V+qVFAHxP8AE3/gnv8Asu/HD9jHS/2DfjfoP/CX+AdI0Ww0W2XUWBvEXTYFt7e5SaJYzFdIq5EsQTkkABSVr+eLSP8Agy//AOCZGnePofEF/wCNPiFqHh+CUTf2JPqFkqOf4kaeKySXy2AAOzbJgffzzX9etFAHwV8e/wDgm9+zN8df2CNR/wCCblvZXPgr4Y32m2mlRW3hpora4tLazniuEELzxXCbmkiBkeSORn3MSSx3VN/wTk/4J6fBf/gmJ+zRa/sr/ATU9b1fw9aahd6klxr88FxemW8YM4L21vbR7QR8o8sEdya+76KAPxl/Ya/4Ia/sm/sAfto+P/26fg54h8W6l4u+I1tqlrqVprN3ZzadEmr30OoTGCOCyglUrLAqpvmcBCQQxww+b/8AgpL/AMGzf7CH/BS79pOf9qr4ha34o8H+KdVitodabw/cWywagLSNYY5GS5tp9kwiRI96EKVQZQtlj/RVRQB4x+zn8DPCf7MXwB8F/s5eAbm8vNC8CaJY6Bp02oSLLdNaadCsEPmuiRqz7EAJVFHoBXxL/wAFSv8Agkz+zn/wVw+F3hr4S/tH614k0TTfC2qtq9pJ4aubW2nedoWhKyNdWt2pTa5OFVTnHOOK/UGigD+QL/iCp/4JZf8AQ/fFX/wa6R/8pq/Vn/glf/wQr/ZI/wCCRHjDxd42/Zt8ReL9bu/GlnbWN6niW7srmOOO0dpEMQtbG0IYlzu3FhjoBX7SUUAfzB/tof8ABpr/AMEx/wBrb4q6h8ZPDEviD4XarrFw11qFr4Ynt102eaQ5kkW1uYJhCzHJxCyRgknZX6Ef8Eyv+CI/7CP/AASki1DWP2cdHvdT8V6tEba88T+IJo7zVXtiVY26PHFDFDCWUMyxRJvIG8ttXH66UUAfgD/wU9/4Nx/2E/8AgqF8Yo/2ivH97r3gjx28ENtfap4cmgQajHbKEiNzFcQzK0scYCJKhRtgVWLBVA+YPFH/AAaA/wDBKHxR8LNG+Hr33jmy1bTb25vrzxPb6ratrOqPchQUunnsprfy49uY1hgiIJYksWJP9TtFAHwJ+2h/wTX/AGY/+Cgn7MFp+yx+1fZ3vijTdOjgaz1l5ki1m2vYIvKF7HPHGEW4YEmT915T7iGjK/LX4q/Ar/g0G/4Jb/B6y8VJ4j1Dxb40vPEWk6ho9pdaxdWbNpCX8TQ/arSOOzWI3kSMTFNMkqI+HWMMAR/VLRQB+U37F3/BH79mn9hb9hzxx+wF8JNc8Taj4O8fPq76heavc2s2pxHWrOOyn8mSG0ghXbHGDHvhfD5J3DgZf/BNf/gjR+zB/wAEtPhD47+Cv7P2veKdY0r4hTLPqMviG6tLi4iZYGg/cNbWdqqjaxPzo/PtxX620UAfkD/wSk/4Iqfss/8ABHz/AIT3/hmjX/FWuf8ACxP7L/tL/hJrqzufK/sj7V5PkfZbO027vtcm/fvzhcbcHOH8RP8Aghr+yb8TP+Cn+mf8FZNe8Q+LYfiLpVzYXUOnW93ZrorPp9qtnGGhaya4IMagti5BLcggcV+zVFAH8YX/AAc1/thfsD+FPjF4P/ZP/wCCkX7Puv8Airw9d6amt+HPH3hzUo7O/tWlkeG8gg8yEKxi2I00DSujB4nZAdhr+dT/AIKSx/8ABu98AP8Agnze/Cf/AIJfeItR+JPxS8b6tpj3Gt61b3T39hpdmzTSKZLi0s4YBI4RGjhjEkhxv+VRj/T8+PH7Nn7Pv7Ufgs/Dr9o/wVovjnQ94lWy1uyivYkkHR0EqtscdmXDD1r5I+D/APwR6/4JdfATxta/Ej4TfAjwdpOvWM4ubS+/s2Oee2mXo8LTBzEw/hMe0jtigDz3/ghX8CPHn7NX/BJH4G/CD4nWMml67ZaAb27s5htlt21S4mvhHIvVXRZwHU8qwIIBGK/WWiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD5c/bC/Yw/Zs/b0+CV9+z3+1R4Zh8UeGL2RLhYZHeGa3uYgRHPBNGyyRSoGYBkYZBKnKsyn+X3V/+DKH/gnXdeJBfaP8TPiJZ6WW3NaPcadLKAT0Wb7CoAA4G6Nj6k1/ZLRQB8Af8E9P+CZH7IH/AATB+FV18Kv2TvDz6bHqkqT6rql7KbrU9SmjBVGuJyFyEBISNFSJMsVQFmJ/gR/ZN/Yx/Z9/b6/4OYf2of2Z/wBpjRjrPhjWdY+ILkRyGG4trmLUSYri3lXmOaJjlTgqeVZWUsp/07a+YPA/7E/7IPwz+NeqftJfDz4ZeGdE+IGtyXUuoeI7LTLeDU7p71t9w0tyiCRzK/zSEsdx5NAH4afsUf8ABqR/wTR/Yy+PmnftDfa/E3xD1Xw/dLeaLZ+J7m1ksbO4iYNDM0VtbW/nTRMMqZGMYOD5e4Aj9A/+Cqn/AARu/Zj/AOCvmg+C/Dv7Smu+KNDg8C3F7c2DeGbq0tnke/WJZBMbqzuwwAhXbtCYyc54x+s9FAH5W/t9f8Ehv2bP+Ci/7IHgr9ir42634m0vwt4Ev9N1GwutDubWDUJJdLsp7CITSXFpcRMrRXDs4WJCXCkFRlT6Hrv/AATE/Zk8X/8ABOO0/wCCXXjlNT1v4bWXh+z8PRy3Vwg1PytPKPbXHnRRRxi4ikiSQMIghZeUK5U/ofRQB+Af/BLD/g3b/ZJ/4JN/HvV/2jfgl4x8X+Idf1XSLnQTFrVxZm0WwuZoZyClvaQu0ge3jO/eF4+5XzX8RP8Ag0p/4Jx+OP2sbr9qfRfEnjXww15rJ8QPoelXlmtjFfGYT/uGms5ZY4TJlvL3tjOEZVAA/qQooA/GX4+/8ENf2Tf2i/8Ago/4U/4Kg+NvEPi218f+D7nSLqz0+xu7NNHkfRm3QCWKSyknIY/6zbcKT220v7bX/BDb9k39vP8Abd8Aft7fF/xD4t03xh8OINJt9Ns9Hu7OHTZV0a+m1CEzxz2U8zFpZmWTZMmUAA2nLH9maKAPgv8A4KP/APBO74K/8FQP2a5v2Wvj7qmt6R4fn1K01Rrjw/PBb3nnWZYoA9zb3Mew7juHl5PYivmP4teBvhn/AMEa/wDgjpq/gL4ZeBdU+Nngf4WaJJDc+HtXnge91LSLy7JvjcPHaGB0hhuJZZF+zhTDGQcctX7IVHNDFcRNBOodHBVlYZBB6gjuDQB/mOfsiyf8Gjvxe8Q3/wC0d8c4PGHwovdHv2uF+Hut3d3qukXMabZVaB7KzlmliZiYvIkuVbCnKbSGP1d/waXeArr40f8ABVz9o/8Abj+G/h99G+Gsmn6xp+np5KwRW8uv6vBfWtqiodgMNrbMGSPKxgr0BXP9fHjX/gil/wAEmfiH4ul8deK/2fPBM2pzzNcSyRaXHbpLK3LM8cOyNyx5O5Tk8nmvvf4SfBr4R/APwJZ/C/4H+GNL8IeHNPB+zaZo1pFZWkRblisUKqoLHljjJPJ5oA9KooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK/m6/b1/wCDWr/gmf8At0/FjVPjuy6/8N/FeuTS3epzeFrmGOzv7uZtzzzWtzBcIJGJJYwGEOxLMCxJr+kWigD+X79i/wD4NMP+CZP7JnxQ0z4xeLp/EPxS1jRZ0urK28Szwf2XFPEQySG1t4IvNKsM7ZnkjPGUNftF/wAFCv8Agn3+z5/wUy/Zq1D9l39pKG9/sS7uYb+2vNNmWC+sb233CO4gd0kQOqu6EPG6lXYFTmvt+igD8TP+CS//AAQq/Zl/4JBaz4v8T/A3xV4o8S6h42trez1D+3ZrVrdYrR3eLy47e2hIYb2DMzvnPAFfD37XH/Bo3/wTA/aa+KN58V/BNx4j+Ftzqk7XF7p3hme3Glu7nLtFb3NvN5BY5wsTrEueIwOK/qUooA/KT/gmd/wRi/Ya/wCCUmj6j/wzNot3eeI9Zj+z6h4m12ZLvV7i33BxB5kccMUUO5VYxwxRhmVS+4qCOA8V/wDBDb9k3xh/wVMt/wDgrnqfiHxanxItrm0ul02K7sxoZez09NNQGE2RucGFAzf6TkyZIwvy1+zVFAHz1+1X+yz8EP21PgH4i/Zo/aK0Zdd8JeJ4FhvLYsY3Vo2EkUsUi4aOWKRVdHHIYDqMg/zofAb/AIM+/wDgmH8IPiRB4z8ba34z+IWjWV0Lq38Oa5f26aY7gYU3K2ltbyTFe2HRSPldWUkH+rSigD8V/wDgnT/wRw+AX/BGbw38T/E/7H2reMfF8/i+xiuZNA8RahZy2811pazvbJA9vYQPE8hmaIuxkGCCVJUV/Fppvxc/4Nn/APgoZ+1R4k8f/tp+BvGf7LXiV7iS81Ozsr5pdG1DUFYrcQyQ29hLLay7gXcLHbqzhskOcN/p51+fXx//AOCUX/BNv9qTxlcfEX4+fBTwn4j8QXhDXOpzadHHeXDA5BlmiCSSH3diccdKAP4FP2JPCP7M37X/APwc3/D++/4JfeHDafBT4a/YLy3nhtZLaJNP0HT1jmvJFmAm/wBIvSEEkw82WSVXcbmOP7kP+Cmv/BF79hv/AIKvaXpUn7TGkXtj4j0NDBYeJdAmjtNXhtiWY25kkimjlh3sXCSxuEYkptLNu+1v2df2Rf2XP2RfDtz4U/Zg+H2geArC+dZbqPQ7CGzNw6DCtM0ahpWA4BcsQK+iqAP5kP2JP+DUf/gm3+xz8bNM+Pus3viP4m63oFwl3pVv4nnt30+1nhOYpTb29vF5skeAV81mjDAMEBAx/TfRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAZeuaRba/ot5oV4zLDewSW7lCAwWRSpIyCM4PGQa/Hj/glZ/wQ0/ZM/4JC+JvGXir9mzxD4u1u48b2tnaXy+JruzuUjSyeR0MItbK0KkmVt24uCAMAd/2booA+D/+Ci3/AATm/Zv/AOCoP7Olx+zV+0xb3i6WbyDUbLUdKkjh1LT7uAnEttLNFNGrMjPE4aN1aN2GM4I8d/YX/wCCQv7NP7Cf7KPiX9iPQ9Y8Q/Ej4ZeKJ55rjRPHMtlqMEK3ahbiGEW9nahYpiA7IwYCTLrtZmJ/VKigD+RPx7/wZj/8ExvFHjmXxF4S8X+P/DOjXM7TS6NaahZzwIpJKxwyXFnJMqqCVBleZsfxZ5r+kD9jH9in9nD9gD4D6d+zj+y34fj8P+GtPke4ddxluLu6lx5lxczNl5Zn2qCzHhVVFCoqqPqyigD+W4/8GlH/AATj079ri2/as8F+JPGvh37FrsXiO10DT7yzFhbXsE63CJE0tnJMtuHX/VlywHAcDAH3v4r/AOCG37JvjD/gqZb/APBXPU/EPi1PiRbXNpdLpsV3ZjQy9np6aagMJsjc4MKBm/0nJkyRhflr9mqKAPlf9tr9kP4bft5/st+Lv2SPi/fanpvhvxpbw217c6PLFDfRpBPHcKYnninjBLxKDuib5Se/I8g/4J//APBNT9nv/gnT+ydJ+xn8KZ9U8UeDbi6v7m4XxS9tezXA1IATxSiG2t4XiZRt2GLkEgk1+g9FAH8m3x1/4M5/+CYPxX+Il947+H+veM/h7aancvPcaNo15ay6fGjncY7dbm1lliUNyA0sirwFUACv3Y/4J8f8E2/2UP8AgmN8F2+CX7Kehvp9neTC61PUb2T7TqWp3KjaJbmfau4qvCIipGmTsRdxz940UAfkT/wVT/4Irfsi/wDBXuz8HJ+0rfeIdEvfA73h0+/8M3Nra3LxXwj82GZrm1ulePdEjKAoKtnBwzA/oR+zX+z58OP2UPgB4O/Zr+EMElv4a8EaTbaPp4mKtM8VsgTzJWVUVpZCC8rBV3OzHAzXt1FAH80/7cX/AAazf8E9v21v2ltS/apXWvFfw68SeILw6hrUfhi6tora8u3OZblUuLaYw3Ep+Z3RtjOS5TczMa1h/wAGo3/BMPwl47+GfxO+EWoeNvA/iD4XzWd7Z3+j6natNqF/Y3Qu4ru9N3ZXO+YSAD9z5MYQBQgAGP6YaKAPxm/bg/4Ibfsm/t9ftr/D/wDbw+MXiHxbpvi/4cW2lWum2ejXdnDpsqaPfzahCZ457KeZi0s7LJsmQFAAApyx/ZmiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/DD/AIKKf8G7n/BNj/gpR45f4tfFPQ9R8IeNLgH7Zr3hKeKwur4no10ksE8EzjH+taLzSOC5AUD4d/Zu/wCDPn/gll8EPG9h48+Il94s+Jkmnz+emm69eW8elybTlBLBa20MkgBwWVpij4wylSVP9WNFAGN4c8OeHvB+gWXhTwlYW+l6VpsEdrZ2dnEsFvbwRKFSOONAFREUAKqgAAYFfzA/tD/8Gin/AAS8+Pvx+1H442GoeLfBNtrd5LfX/h/w9d2kOmGWX5nFus1pNJbozksyK5QA7YxGoAH9S9FAH4C/Cv8A4Ntv+Cc3wJ/bI8BftpfBL/hI/Cur/DmC1h0vQ7C6tBo0jW0DwebcLJZvdzSyh2kmkN1ueQ5zjivS/wDgrH/wQh/Y/wD+Cu+r+G/G/wAbtQ1zwx4r8LWr2Fpq+gzQpJLZO5k+zzx3EMyOiOzuhUIyszfMQSK/a+igD+D/AP4OLv2BvhH/AME0v+CAHw//AGTfghqmsax4e0f4qWd3Fca7NDPdmS9s9UlkBaCGCMLvJKgRjGeSetdD+xf/AMGwX/BO/wD4KGf8E+PgH+0t4lvvEngTxTrfhHTpdbfw1c26W2pSDIaaSK6t7gJOygAvGVU43MjMSx/s0+PH7N37P/7UngyH4dftI+C9F8d6Db3aX8Wn67ZRX9sl1GrokojmVlDqsjqGxkBiO5rt/h18OPAPwh8D6X8MvhZo1l4d8O6JAtrp+m6dCtva2sCfdjiiQBUUdgABQB8tfsD/APBPf9l//gmt8B7f9nv9lfRH0zSBMbu9u7qTz7/UbxlVGuLqbC75CqgAKqogAVFVRivxs/bI/wCDUX/gmn+2F+0Xqn7SFzf+KvAmoeIr1r/WdO8NXVpDYXVxJzLLHHPaTtDJK/zyFG2FixCAnNf02UUAfzteG/8Ag2F/4Jn/AA//AGifhF+0j8Kf+En8J6n8GzpMumWGm3lp9i1G60m8kvludRM1nLc3E80sm2Z1nj/dqiII1Va+qv8AgrD/AMEWP2T/APgr54b8M2Xx+u9Y0DXfBrXP9k61oU0UVwkV3s82GVJopo5YmaNGAKh1YfI6hnDfr3RQB+dX/BML/gmh8E/+CU37ONx+zP8AAfWdc13R7zWLjXZrnX5oJrj7VdRQwuqfZ4IEWLEClV2kgliWOeP0VoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//T/v4ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/U/v4ooooAKKKKACiiigAoor57/aL/AGqfgL+yj4N/4Tf46+IrfRLV9y28LZkubl1GdkMKAu547DA/iIHNAH0JXmfxR+M/wl+CWgN4p+L3iTTfDenqDibUblIAxHZA5Bc/7Kgk+lfyg/th/wDBf/4t/EX7V4N/ZP04+DdIfdH/AGveBJtUlXkZRfmit8j/AK6OOoYGvw98j49/tMeNZL9xrfjnX7lv3kzma/uDuOfmc7yB9SAKBpNuyP6/vi9/wcBfsV+AL6fSfh/Z6340miYqJ7K3W1tGI44kuHSTHoREQe1fnj8SP+DkP4sX7PH8IvhtpOlKDhJNXu5r8kepSEWuPpuP1r4A+FP/AASE/af8dwJqHjd7DwjbOM7LyXz7nn/pnDuUcdmdT7V9y+B/+CJnwrsAknxF8Z6pqjDBZNPhislz6Zk+0HH5H6VlKvBdTupZZiZ6qFvXQ8C1j/g4D/b11PP2KPwzp2f+ffTnbH/f2eSvPZv+C53/AAUZlkMieKtPjB/hXSbTA/OMn9a/T/TP+CR/7G1hj7Vp2p3uP+e1+4z/AN+wldtF/wAEuf2GY4wj+CTIR/E2p3+T+VwB+lZ/WoHSskxHdfe/8j8hf+H5f/BRz/obrH/wU2f/AMao/wCH5f8AwUc/6G6x/wDBTZ//ABqv1+/4defsLf8AQjf+VPUP/kmj/h15+wt/0I3/AJU9Q/8Akmj61Dsyv7Dr/wA0fvf+R+QP/D8v/go5/wBDdY/+Cmz/APjVH/D8v/go5/0N1j/4KbP/AONV+v3/AA68/YW/6Eb/AMqeof8AyTR/w68/YW/6Eb/yp6h/8k0fWodmH9h1/wCaP3v/ACPyB/4fl/8ABRz/AKG6x/8ABTZ//GqP+H5f/BRz/obrH/wU2f8A8ar9fv8Ah15+wt/0I3/lT1D/AOSaP+HXn7C3/Qjf+VPUP/kmj61Dsw/sOv8AzR+9/wCR+QP/AA/L/wCCjn/Q3WP/AIKbP/41R/w/L/4KOf8AQ3WP/gps/wD41X6/f8OvP2Fv+hG/8qeof/JNH/Drz9hb/oRv/KnqH/yTR9ah2Yf2HX/mj97/AMj8gf8Ah+X/AMFHP+husf8AwU2f/wAao/4fl/8ABRz/AKG6x/8ABTZ//Gq/X7/h15+wt/0I3/lT1D/5Jo/4defsLf8AQjf+VPUP/kmj61Dsw/sOv/NH73/kfkD/AMPy/wDgo5/0N1j/AOCmz/8AjVH/AA/L/wCCjn/Q3WP/AIKbP/41X6/f8OvP2Fv+hG/8qeof/JNH/Drz9hb/AKEb/wAqeof/ACTR9ah2Yf2HX/mj97/yPyB/4fl/8FHP+husf/BTZ/8Axqj/AIfl/wDBRz/obrH/AMFNn/8AGq/X7/h15+wt/wBCN/5U9Q/+SaP+HXn7C3/Qjf8AlT1D/wCSaPrUOzD+w6/80fvf+R+QP/D8v/go5/0N1j/4KbP/AONUf8Py/wDgo5/0N1j/AOCmz/8AjVfr9/w68/YW/wChG/8AKnqH/wAk0f8ADrz9hb/oRv8Ayp6h/wDJNH1qHZh/Ydf+aP3v/I/IH/h+X/wUc/6G6x/8FNn/APGqP+H5f/BRz/obrH/wU2f/AMar9fv+HXn7C3/Qjf8AlT1D/wCSaP8Ah15+wt/0I3/lT1D/AOSaPrUOzD+w6/8ANH73/kfkD/w/L/4KOf8AQ3WP/gps/wD41R/w/L/4KOf9DdY/+Cmz/wDjVfr9/wAOvP2Fv+hG/wDKnqH/AMk0f8OvP2Fv+hG/8qeof/JNH1qHZh/Ydf8Amj97/wAj8gf+H5f/AAUc/wChusf/AAU2f/xqj/h+X/wUc/6G6x/8FNn/APGq/X7/AIdefsLf9CN/5U9Q/wDkmj/h15+wt/0I3/lT1D/5Jo+tQ7MP7Dr/AM0fvf8AkfkD/wAPy/8Ago5/0N1j/wCCmz/+NUf8Py/+Cjn/AEN1j/4KbP8A+NV+v3/Drz9hb/oRv/KnqH/yTR/w68/YW/6Eb/yp6h/8k0fWodmH9h1/5o/e/wDI/IH/AIfl/wDBRz/obrH/AMFNn/8AGqP+H5f/AAUc/wChusf/AAU2f/xqv1+/4defsLf9CN/5U9Q/+SaP+HXn7C3/AEI3/lT1D/5Jo+tQ7MP7Dr/zR+9/5H5A/wDD8v8A4KOf9DdY/wDgps//AI1R/wAPy/8Ago5/0N1j/wCCmz/+NV+v3/Drz9hb/oRv/KnqH/yTR/w68/YW/wChG/8AKnqH/wAk0fWodmH9h1/5o/e/8j8gf+H5f/BRz/obrH/wU2f/AMao/wCH5f8AwUc/6G6x/wDBTZ//ABqv1+/4defsLf8AQjf+VPUP/kmj/h15+wt/0I3/AJU9Q/8Akmj61Dsw/sOv/NH73/kfkD/w/L/4KOf9DdY/+Cmz/wDjVH/D8v8A4KOf9DdY/wDgps//AI1X6/f8OvP2Fv8AoRv/ACp6h/8AJNH/AA68/YW/6Eb/AMqeof8AyTR9ah2Yf2HX/mj97/yPyB/4fl/8FHP+husf/BTZ/wDxqj/h+X/wUc/6G6x/8FNn/wDGq/X7/h15+wt/0I3/AJU9Q/8Akmj/AIdefsLf9CN/5U9Q/wDkmj61Dsw/sOv/ADR+9/5H5A/8Py/+Cjn/AEN1j/4KbP8A+NUf8Py/+Cjn/Q3WP/gps/8A41X6/f8ADrz9hb/oRv8Ayp6h/wDJNH/Drz9hb/oRv/KnqH/yTR9ah2Yf2HX/AJo/e/8AI/IH/h+X/wAFHP8AobrH/wAFNn/8ao/4fl/8FHP+husf/BTZ/wDxqv1+/wCHXn7C3/Qjf+VPUP8A5Jo/4defsLf9CN/5U9Q/+SaPrUOzD+w6/wDNH73/AJH5A/8AD8v/AIKOf9DdY/8Agps//jVH/D8v/go5/wBDdY/+Cmz/APjVfr9/w68/YW/6Eb/yp6h/8k0f8OvP2Fv+hG/8qeof/JNH1qHZh/Ydf+aP3v8AyPyB/wCH5f8AwUc/6G6x/wDBTZ//ABqj/h+X/wAFHP8AobrH/wAFNn/8ar9fv+HXn7C3/Qjf+VPUP/kmj/h15+wt/wBCN/5U9Q/+SaPrUOzD+w6/80fvf+R+TWlf8F3/APgodpzbrvXNJvx6T6XCB/5CEdeueG/+DiD9tPS7mP8A4SDw/wCE9Utwf3im0uoZGH+yyXW0H3KH6V96al/wSr/Yivl22vhWezPrDqN2T/5ElevLvEX/AARw/ZT1W2dNGvNd0uU8q0V1HIoPuskTZH4g+9NYmBLyTELZr7/+Ad78NP8Ag5F+Ht4I4PjD8NNQ04ggPNo97HeA+4jmW3x9PMP1r9UvgF/wVY/YY/aJaGw8K+N7bR9UmO0afro/s6fdjOFMpETn2jkav5v/AB3/AMER/EcAkuPhn46t7rglINTtGgOewMsTSZ+vlivzZ+MX7C/7UfwP8258Y+FLqewj632nj7ZbY9S0WSg/3wtaRqwlszirYDEUtZwdvv8AyP8AR1hmhuYUuLdxJHIAyspyGB5BBHUGpK/zlP2aP29/2rP2TNUiuvg/4suodPjwH0m8Y3WnSKM8GByVXr96PY3oa/p9/Y+/4L1fs/8AxmltPBv7Rdp/wr7X5iIxeFjNpEznPPmn54M8f6wFBnmStDkP3uoqtZXtnqNnFqGnSpPbzoskUsbBkdGGVZWGQQQcgjgirNABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUVWvb2z02zm1HUZkt7e3RpJZZGCIiIMszMcAAAZJPAFfx5/8FO/+C0Piv4xajqPwK/ZOv5tH8HxM9tfa3CTFd6pj5WELDDRWx7EYkkHXapKkA/dL9rz/grn+yN+yPey+FdS1KTxZ4niJSTSdEKTNAwxxcSlhFEefu7i/wDs1+InxU/4ONvj/rN80fwa8C6HoNnkgNqsk2ozkdjmNrZFPqCrY6ZPWvyO/ZY/YZ/aM/bB1nyPhRozf2XHKI7rWLzMNhAe4MhBLsByUjDPzyMc1/QX8Gf+CBHwF8N20V58bvFGqeJ73b88FiF0+0DHt0klbHYh0z3HYcOJzKhQdpy17LVm1OhOeqWh+YGsf8F3f+CiGp3HnWWvaVp6/wDPO30uBl/8iiRv1rI/4fl/8FHP+husf/BTZ/8Axqv6CdN/4I2f8E77GHyrrwNNeN/fm1bUA3/kO4QfpWj/AMOev+Cc3/RO/wDyr6n/APJdcP8ArBh/5Zfcv8zb6lU7o/nl/wCH5f8AwUc/6G6x/wDBTZ//ABqj/h+X/wAFHP8AobrH/wAFNn/8ar+hr/hz1/wTm/6J3/5V9T/+S6P+HPX/AATm/wCid/8AlX1P/wCS6P8AWDD/AMsvuX+YfUqndH88v/D8v/go5/0N1j/4KbP/AONUf8Py/wDgo5/0N1j/AOCmz/8AjVf0Nf8ADnr/AIJzf9E7/wDKvqf/AMl0f8Oev+Cc3/RO/wDyr6n/APJdH+sGH/ll9y/zD6lU7o/nl/4fl/8ABRz/AKG6x/8ABTZ//GqP+H5f/BRz/obrH/wU2f8A8ar+hr/hz1/wTm/6J3/5V9T/APkuj/hz1/wTm/6J3/5V9T/+S6P9YMP/ACy+5f5h9Sqd0fzy/wDD8v8A4KOf9DdY/wDgps//AI1R/wAPy/8Ago5/0N1j/wCCmz/+NV/Q1/w56/4Jzf8ARO//ACr6n/8AJdH/AA56/wCCc3/RO/8Ayr6n/wDJdH+sGH/ll9y/zD6lU7o/nl/4fl/8FHP+husf/BTZ/wDxqj/h+X/wUc/6G6x/8FNn/wDGq/oa/wCHPX/BOb/onf8A5V9T/wDkuj/hz1/wTm/6J3/5V9T/APkuj/WDD/yy+5f5h9Sqd0fzy/8AD8v/AIKOf9DdY/8Agps//jVH/D8v/go5/wBDdY/+Cmz/APjVf0Nf8Oev+Cc3/RO//Kvqf/yXR/w56/4Jzf8ARO//ACr6n/8AJdH+sGH/AJZfcv8AMPqVTuj+eX/h+X/wUc/6G6x/8FNn/wDGqP8Ah+X/AMFHP+husf8AwU2f/wAar+hr/hz1/wAE5v8Aonf/AJV9T/8Akuj/AIc9f8E5v+id/wDlX1P/AOS6P9YMP/LL7l/mH1Kp3R/PL/w/L/4KOf8AQ3WP/gps/wD41R/w/L/4KOf9DdY/+Cmz/wDjVf0Nf8Oev+Cc3/RO/wDyr6n/APJdH/Dnr/gnN/0Tv/yr6n/8l0f6wYf+WX3L/MPqVTuj+fzR/wDgu7/wUQ0y486917StQX/nncaXAq/+QhG3619S/Cv/AIONvj/o18sfxl8C6Hr1nkAtpUk2nTgdzmRrlGPoAq56ZHWv1N1L/gjZ/wAE776HyrXwNNZt/fh1bUC3/kS4cfpXyZ8Zv+CBHwF8SW0t58EfFGqeGL3b8kF8F1C0LDt0jlXPcl3x2HY3DPcNJ2d16r/K4ng6iP0h/ZD/AOCuf7I37XF7F4V03UpPCfieUhI9J1spC07HPFvKGMUp4+7uD/7NfqHX+ch+1P8AsM/tGfsfaz5HxX0Zv7LklMdrrFnmawnPYCQAFGI5CSBX44GOa/Vr/gmJ/wAFofFfwd1HTvgV+1jfzax4PlZLax1uYmW70vPyqJmOWlth3JzJGOm5QFHrU6kZxUoO6OWUWnZn9itFVrK9s9Ss4dR06ZLi3uEWSKWNg6OjjKsrDIIIOQRwRVmrEFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFcd8QfiD4J+FPgvUfiL8R9Ut9G0PSITPd3l0+yKJBxye5JIVVGWZiAASQK/j3/AG/v+C4nxW+ONzqHww/Zekn8IeD2LwPqS5j1S/jPBIYHNvG3OFT94QfmYcqAD+jX9qX/AIKefsefslfadK8f+Jo9T8QW+VOiaPi8vQ4z8sgUiOE5GP3roa/D34rf8HIXju88y1+CPw2sdPGMJc63dyXZPuYYBAB9PNavwR+Cf7N3xy/aW8Rtpfws0S51ZzJ/pN4/yW0JbkmWd8KDznGSx7A1+yPwh/4IfKRFf/HfxieQC9locfQ9x9onU/T/AFP41cYSexnOrGO7PFdX/wCC93/BQTUs/Y77QtPz/wA++mKcf9/Wkrkv+H5f/BRz/obrH/wU2f8A8ar9aNF/4JDfsU6Vj7dpGo6lj/n51CVc/wDfkx12n/Dq/wDYN/6ET/yqaj/8k1fsZf1/wxl9agfjH/w/L/4KOf8AQ3WP/gps/wD41R/w/L/4KOf9DdY/+Cmz/wDjVfs5/wAOr/2Df+hE/wDKpqP/AMk0f8Or/wBg3/oRP/KpqP8A8k0exl/X/DB9ah2Z+Mf/AA/L/wCCjn/Q3WP/AIKbP/41R/w/L/4KOf8AQ3WP/gps/wD41X7Of8Or/wBg3/oRP/KpqP8A8k0f8Or/ANg3/oRP/KpqP/yTR7GX9f8ADB9ah2Z+Mf8Aw/L/AOCjn/Q3WP8A4KbP/wCNUf8AD8v/AIKOf9DdY/8Agps//jVfs5/w6v8A2Df+hE/8qmo//JNH/Dq/9g3/AKET/wAqmo//ACTR7GX9f8MH1qHZn4x/8Py/+Cjn/Q3WP/gps/8A41R/w/L/AOCjn/Q3WP8A4KbP/wCNV+zn/Dq/9g3/AKET/wAqmo//ACTR/wAOr/2Df+hE/wDKpqP/AMk0exl/X/DB9ah2Z+Mf/D8v/go5/wBDdY/+Cmz/APjVH/D8v/go5/0N1j/4KbP/AONV+zn/AA6v/YN/6ET/AMqmo/8AyTR/w6v/AGDf+hE/8qmo/wDyTR7GX9f8MH1qHZn4x/8AD8v/AIKOf9DdY/8Agps//jVH/D8v/go5/wBDdY/+Cmz/APjVfs5/w6v/AGDf+hE/8qmo/wDyTR/w6v8A2Df+hE/8qmo//JNHsZf1/wAMH1qHZn4x/wDD8v8A4KOf9DdY/wDgps//AI1R/wAPy/8Ago5/0N1j/wCCmz/+NV+zn/Dq/wDYN/6ET/yqaj/8k0f8Or/2Df8AoRP/ACqaj/8AJNHsZf1/wwfWodmfjH/w/L/4KOf9DdY/+Cmz/wDjVH/D8v8A4KOf9DdY/wDgps//AI1X7Of8Or/2Df8AoRP/ACqaj/8AJNH/AA6v/YN/6ET/AMqmo/8AyTR7GX9f8MH1qHZn4x/8Py/+Cjn/AEN1j/4KbP8A+NUf8Py/+Cjn/Q3WP/gps/8A41X7Of8ADq/9g3/oRP8Ayqaj/wDJNH/Dq/8AYN/6ET/yqaj/APJNHsZf1/wwfWodmfjH/wAPy/8Ago5/0N1j/wCCmz/+NUf8Py/+Cjn/AEN1j/4KbP8A+NV+zn/Dq/8AYN/6ET/yqaj/APJNH/Dq/wDYN/6ET/yqaj/8k0exl/X/AAwfWodmfjH/AMPy/wDgo5/0N1j/AOCmz/8AjVH/AA/L/wCCjn/Q3WP/AIKbP/41X7Of8Or/ANg3/oRP/KpqP/yTR/w6v/YN/wChE/8AKpqP/wAk0exl/X/DB9ah2Z+OFj/wXV/4KK2k3mT+JdNuV/uS6VbAf+OIp/WvavAf/Bw3+2RoGoK/jnQvDfiCz43xi3mtJv8AgMiSlR+MbV+i+of8EpP2FbyHyrfwdLaN/fi1O9Lf+PzuP0rw7x1/wRZ/Zl17T3XwRqutaBefwOZUu4R/vRuisfwkWj2MhrFQPqD9nz/g4P8A2ZfiNqEOhfHHQr/wBcS7VF2H/tKxDHg7njRJUGe/lEAdSMV+4nw7+Jvw7+LnheDxt8LtcsfEGk3H+ru9PnS4iJwDtLISAwBGVOCO4r+FT4+/8Ekv2lvg9YTeIfBvkeNtLhBZjpqst4qjOSbZsk/SN5D7V8l/s5/tV/tDfscePm8VfBvWrjRbxH8u9sZQWtbgIeY7i3bCtjGMkB1/hINZOLW5tGalqmf6TFFflP8A8E5f+Cp/ws/bp0k+ENYji8NfEGyjMlxpDPmO6jUZaa0ZuXUdWQ/OnfK/Mf1YpFBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRXx7+2P+3F8Cf2IvAH/CZfFy+L310rDTdItSrXt9IvaNCRtQEjfI2FX1JIBAPsB3SNDJIQqqMkngACvzO/aX/wCCuP7Ev7Mks+jaz4l/4SfXIcg6Z4eC3sqsB0kl3LBGeeQ0gYf3eK/lC/bd/wCCr/7S37Zt1ceHJrs+FPBZc+VoemyMokTt9qmGGnPsQsY7JnmvnH4FfsRftJftDCK+8BeHpYdLl5Gp3/8AotpjjlXYZkHP/LNXNVGLk7RQH7mfFX/g5F8RTeZa/BD4aW1tgfu7rXLxp8n3gt1ix+E5r4717/g4B/b31fd/Z6+GtKz0+y6c7Y+nnzS/rXrXw2/4IneF7ZY7n4u+NLm7fgvb6TAsCj282bzC318ta+sdM/4JPfsXWCqLrQ769x1M2oTjP18tk/SumOBqvfQfKz8sW/4Ll/8ABRskkeLbEew0mz/+NUn/AA/L/wCCjn/Q3WP/AIKbP/41X67j/gl9+wwBj/hB8/8AcT1D/wCSaX/h1/8AsMf9CN/5U9Q/+Sav6hU7r8R8rPyH/wCH5f8AwUc/6G6x/wDBTZ//ABqj/h+X/wAFHP8AobrH/wAFNn/8ar9eP+HX/wCwx/0I3/lT1D/5Jo/4df8A7DH/AEI3/lT1D/5Jo+oVO6/EOVn5D/8AD8v/AIKOf9DdY/8Agps//jVH/D8v/go5/wBDdY/+Cmz/APjVfrx/w6//AGGP+hG/8qeof/JNH/Dr/wDYY/6Eb/yp6h/8k0fUKndfiHKz8h/+H5f/AAUc/wChusf/AAU2f/xqj/h+X/wUc/6G6x/8FNn/APGq/Xj/AIdf/sMf9CN/5U9Q/wDkmj/h1/8AsMf9CN/5U9Q/+SaPqFTuvxDlZ+Q//D8v/go5/wBDdY/+Cmz/APjVH/D8v/go5/0N1j/4KbP/AONV+vH/AA6//YY/6Eb/AMqeof8AyTR/w6//AGGP+hG/8qeof/JNH1Cp3X4hys/If/h+X/wUc/6G6x/8FNn/APGqP+H5f/BRz/obrH/wU2f/AMar9eP+HX/7DH/Qjf8AlT1D/wCSaP8Ah1/+wx/0I3/lT1D/AOSaPqFTuvxDlZ+Q/wDw/L/4KOf9DdY/+Cmz/wDjVH/D8v8A4KOf9DdY/wDgps//AI1X68f8Ov8A9hj/AKEb/wAqeof/ACTR/wAOv/2GP+hG/wDKnqH/AMk0fUKndfiHKz8h/wDh+X/wUc/6G6x/8FNn/wDGqP8Ah+X/AMFHP+husf8AwU2f/wAar9eP+HX/AOwx/wBCN/5U9Q/+SaP+HX/7DH/Qjf8AlT1D/wCSaPqFTuvxDlZ+Q/8Aw/L/AOCjn/Q3WP8A4KbP/wCNUf8AD8v/AIKOf9DdY/8Agps//jVfrx/w6/8A2GP+hG/8qeof/JNH/Dr/APYY/wChG/8AKnqH/wAk0fUKndfiHKz8h/8Ah+X/AMFHP+husf8AwU2f/wAao/4fl/8ABRz/AKG6x/8ABTZ//Gq/Xj/h1/8AsMf9CN/5U9Q/+SaP+HX/AOwx/wBCN/5U9Q/+SaPqFTuvxDlZ+Q//AA/L/wCCjn/Q3WP/AIKbP/41R/w/L/4KOf8AQ3WP/gps/wD41X68f8Ov/wBhj/oRv/KnqH/yTR/w6/8A2GP+hG/8qeof/JNH1Cp3X4hys/If/h+X/wAFHP8AobrH/wAFNn/8ao/4fl/8FHP+husf/BTZ/wDxqv14/wCHX/7DH/Qjf+VPUP8A5Jo/4df/ALDH/Qjf+VPUP/kmj6hU7r8Q5WfkP/w/L/4KOf8AQ3WP/gps/wD41R/w/L/4KOf9DdY/+Cmz/wDjVfrx/wAOv/2GP+hG/wDKnqH/AMk0f8Ov/wBhj/oRv/KnqH/yTR9Qqd1+IcrPyH/4fl/8FHP+husf/BTZ/wDxqlX/AILl/wDBRsEE+LbE+x0mz/8AjVfrv/w6/wD2GP8AoRv/ACp6h/8AJNIf+CX37DBGP+EHx/3E9Q/+SaPqFTuvxDlZ+Zmg/wDBwD+3vpG3+0F8Narjr9q051z9fImi/SvsT4Vf8HIviKHy7X43/DS2ucj95daHeNBg+0FwsufxnFej6n/wSe/Yuv1ZbXQ76yz0MOoTkj6eYz/rmvkn4mf8ETvD1wkl18HvGc9s/JS21eFZlPsZodhH/fpqiWCqrbUXKz97v2aP+CuP7Ev7TcsGjaN4l/4RjXJsAaZ4hC2UrMR0jl3NBIeOAshY/wB3mv0xR0kQSRkMrDII5BBr/N4+Of7F37R37PJlu/iH4dm/syM4/tKz/wBJsyOxMifcz6SBT7V9M/sRf8FX/wBpb9jK6t/DkN2fFfgsOPN0PUpGYRp3+yzHLQH2AaM90zzXNKLi7NCP78KK+Pf2OP24vgT+274A/wCEy+Ed8UvrVVGpaRdFVvbGRu0iAnchIOyRcq3qCCB9hVIBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRX5S/t1/8Fcf2d/2LpZvBVnnxl42XcraPYSqqWjAZH2ubDCLJx8gDydyoHNfyj/taf8ABVH9rv8Aa5kuNI8Ua6fD/hqYkLomjFra2KdhM4PmTcdfMYrnkKKAP7Mfj1/wUh/Yr/ZvWa2+JPj3Tm1GEc6dpzG/vN391o7feYyf+mhQe9fkn8Sf+DkH4QaY0sPwk+G+r6yRkJLqt3Dp6/722Jbokd8ZBPtX82fwO/ZA/aI/aIuEPwy8N3NxZMcNqFwPs9mv/baTCtj0Tc3tX6XfD/8A4Ii/EnUBHP8AE/xpp+lqeXi06CS8f6bpDAAffDAe9OxrChUnrFHeeLf+Dir9rzVLt/8AhDvCnhXSbY/dWaG6uph9X+0Rqf8Av2K8V1j/AILy/wDBQrUyTZavo2nZ/wCffS4m/wDRvmV93eHf+CLv7L+mwJ/b+seINTnA+c/aIIYyfZVg3Af8DNet6R/wSe/Yk00AXnhy71DH/PxqNyuf+/UkdHKzdYGp5H5K/wDD8v8A4KOf9DdY/wDgps//AI1R/wAPy/8Ago5/0N1j/wCCmz/+NV+xX/Drf9hP/oRv/KnqH/yTR/w63/YT/wChG/8AKnqH/wAk0+VlfUKndfifjr/w/L/4KOf9DdY/+Cmz/wDjVH/D8v8A4KOf9DdY/wDgps//AI1X7Ff8Ot/2E/8AoRv/ACp6h/8AJNH/AA63/YT/AOhG/wDKnqH/AMk0crD6hU7r8T8df+H5f/BRz/obrH/wU2f/AMao/wCH5f8AwUc/6G6x/wDBTZ//ABqv2K/4db/sJ/8AQjf+VPUP/kmj/h1v+wn/ANCN/wCVPUP/AJJo5WH1Cp3X4n46/wDD8v8A4KOf9DdY/wDgps//AI1R/wAPy/8Ago5/0N1j/wCCmz/+NV+xX/Drf9hP/oRv/KnqH/yTR/w63/YT/wChG/8AKnqH/wAk0crD6hU7r8T8df8Ah+X/AMFHP+husf8AwU2f/wAao/4fl/8ABRz/AKG6x/8ABTZ//Gq/Yr/h1v8AsJ/9CN/5U9Q/+SaP+HW/7Cf/AEI3/lT1D/5Jo5WH1Cp3X4n46/8AD8v/AIKOf9DdY/8Agps//jVH/D8v/go5/wBDdY/+Cmz/APjVfsV/w63/AGE/+hG/8qeof/JNH/Drf9hP/oRv/KnqH/yTRysPqFTuvxPx1/4fl/8ABRz/AKG6x/8ABTZ//GqP+H5f/BRz/obrH/wU2f8A8ar9iv8Ah1v+wn/0I3/lT1D/AOSaP+HW/wCwn/0I3/lT1D/5Jo5WH1Cp3X4n46/8Py/+Cjn/AEN1j/4KbP8A+NUf8Py/+Cjn/Q3WP/gps/8A41X7Ff8ADrf9hP8A6Eb/AMqeof8AyTR/w63/AGE/+hG/8qeof/JNHKw+oVO6/E/HX/h+X/wUc/6G6x/8FNn/APGqP+H5f/BRz/obrH/wU2f/AMar9iv+HW/7Cf8A0I3/AJU9Q/8Akmj/AIdb/sJ/9CN/5U9Q/wDkmjlYfUKndfifjr/w/L/4KOf9DdY/+Cmz/wDjVH/D8v8A4KOf9DdY/wDgps//AI1X7Ff8Ot/2E/8AoRv/ACp6h/8AJNH/AA63/YT/AOhG/wDKnqH/AMk0crD6hU7r8T8df+H5f/BRz/obrH/wU2f/AMao/wCH5f8AwUc/6G6x/wDBTZ//ABqv2K/4db/sJ/8AQjf+VPUP/kmj/h1v+wn/ANCN/wCVPUP/AJJo5WH1Cp3X4n46/wDD8v8A4KOf9DdY/wDgps//AI1R/wAPy/8Ago5/0N1j/wCCmz/+NV+xX/Drf9hP/oRv/KnqH/yTR/w63/YT/wChG/8AKnqH/wAk0crD6hU7r8T8df8Ah+X/AMFHP+husf8AwU2f/wAao/4fl/8ABRz/AKG6x/8ABTZ//Gq/Yr/h1v8AsJ/9CN/5U9Q/+SaP+HW/7Cf/AEI3/lT1D/5Jo5WH1Cp3X4n46/8AD8v/AIKOf9DdY/8Agps//jVH/D8v/go5/wBDdY/+Cmz/APjVfsV/w63/AGE/+hG/8qeof/JNH/Drf9hP/oRv/KnqH/yTRysPqFTuvxPx1/4fl/8ABRz/AKG6x/8ABTZ//GqP+H5f/BRz/obrH/wU2f8A8ar9iv8Ah1v+wn/0I3/lT1D/AOSaP+HW/wCwn/0I3/lT1D/5Jo5WH1Cp3X4n46/8Py/+Cjn/AEN1j/4KbP8A+NUf8Py/+Cjn/Q3WP/gps/8A41X7Ff8ADrf9hP8A6Eb/AMqeof8AyTR/w63/AGE/+hG/8qeof/JNHKw+oVO6/E/HX/h+X/wUc/6G6x/8FNn/APGqP+H5f/BRz/obrH/wU2f/AMar9iv+HW/7Cf8A0I3/AJU9Q/8Akmj/AIdb/sJ/9CN/5U9Q/wDkmjlYfUKndfifjr/w/L/4KOf9DdY/+Cmz/wDjVH/D8v8A4KOf9DdY/wDgps//AI1X7Ff8Ot/2E/8AoRv/ACp6h/8AJNH/AA63/YT/AOhG/wDKnqH/AMk0crD6hU7r8T8df+H5f/BRz/obrH/wU2f/AMao/wCH5f8AwUc/6G6x/wDBTZ//ABqv2K/4db/sJ/8AQjf+VPUP/kmj/h1v+wn/ANCN/wCVPUP/AJJo5WH1Cp3X4n46/wDD8v8A4KOf9DdY/wDgps//AI1Sr/wXM/4KNhgT4tsSB2Ok2fP/AJCr9if+HW/7Cf8A0I3/AJU9Q/8Akmkb/glt+wmVIHgbBPcanqHH/kzRysPqFTuvxPy00X/gv3+33pePtz+HNSx/z86aVz/35ljr6P8Ah5/wcgfG7TnVfiv8OtE1hM/M2lXM+nNj6TfawT+WfavoPWP+CRX7GWp5+xabqenZ/wCfe/kbH/f0SV4f41/4IlfBPUbdj8P/ABdrOkzkHBvUhvowf91Et2x/wM0uVkvA1UffPwe/4ODP2O/HeoRaT8TNL1vwVJKVBuZ4lvbNSeOXgJl49fJxiv2H+Evx6+C3x40UeIfg14p0zxLabdzNYXKTNH2xIgO9D7OAa/ik+I//AARm/aS8LQy3vgPVNJ8TRRglYlka0uWx2CSjy8n/AK61+cmr+H/jl+zT48hfVINX8F+IbNt8Eo8yznXaQd0cilcjpypIPrSsc86U4fEj/TQor+Ov9kL/AIL/APxl+G32Xwh+1Rpv/Ca6OmE/tS1CwapEvqw+WKfA9fLY9S5Nf1Mfs6/tPfA/9qzwHH8RPgbr0Gs2PyrcRqdtxaysN3lzxH543HoRg4ypI5oMz3yiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/1f7+KKKKACiiigAoor+Yj/grt/wV/wBS8I6lqn7Kn7KGpiLUId1rr/iK0ky9u/IktbR1+7Kv3ZZgcxnKrhwSoB9Qf8FJv+Czngz9ljUrz4LfAGK18T+O4VeK8uXbfYaVJ02vtP76dT1iBCoeHOcpX8kPjDxv+0J+2L8Xv7a8VXepeNPFusOEQYMr47JGigLHGvooVFHPArd/Zn/ZZ+K/7V/jr/hGvAduRawuralqk4P2e0Ryfmdv4nbB2Rj5nIPQBmH9YH7NX7Jvwf8A2WvC66J8O7BW1CaNUvtUnAa7umXk7m/hXPIRcKPc81jVrKGnU9LA5bPEe89I9/8AI/Ln9mj/AII4aPZRW3in9pvUDd3Bw50XT32xL/szTj5m9xHtHo5Fftb4F+Hvgb4Y+HofCfw90m10bToB8kFpGI0z6nHVj3Y5J7muxorgnUlLdn1OHwlKirU4/PqFFFFQdIUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB8TftEf8E//ANnH9o1JtS17SRo+uSAkappgEE5bsZFxsl5671LY4DCv58P2sv8AgnN8aP2Yo5fFFqP+Em8LJuZtSs4yrW6g4H2iLkx5/vAsn+0DxX9dFRTwQXUD21yiyRyKVdGGVZTwQQeCCK2p15R9Dz8VltGsm7Wl3R/K5+wf/wAFXP2gv2Kb238LSTN4q8CmRfO0S9kOYE7m0lOTC3fbgxk9VzyP7VP2V/2sfgx+2J8L4Pil8GdSF1bkiO8tJMLdWU+MmKePJKt6HlWHKkjmv5j/ANuj/glloviSxvfix+zJZLZ6rHunu9Ci4huR1ZrYdEk7+WPlb+HB4b8b/wBmL9qX44/sVfF6P4j/AAovH0/ULV/s+oafdK32a7iRvnt7mLKkjII6h0blSrDNd9Oopq6PlcVhKmHlyzXo+5/pKUV8g/sT/tnfC/8Abh+C1p8WPh6fsd5Hi31fSZZA8+nXgGWjYgDejfeilCqJE5IVgyL9fVZyhRRRQAUUUUAFFFFABRRRQAUUUUAFFFebfGT4l6N8GfhL4m+LfiAgWXhrS7rUpQTjcttG0m0e7Y2gdSSAKAP5o/8AgvH/AMFA/EVrrr/sS/CXUTa2i28c3im4t2AeUzDdHZFgchNhWSYcFtyqfl3A/mX/AMEyv+CcWsftn+MpPGfj0T6f8PNEl2XlxEdkt9cAAi2hYg4wCDK4+6pAGGYEfBBm+Iv7Tvx2V7+ZtR8U+OtaVWkfJ8y71CYD3IXc/QdFHHSv79/2d/gh4U/Zw+C3h74LeDUAs9CtFhMm0K08x+aWZsfxSSFnPua8jN8e6FNRh8UvwR1YWjzyu9kd34D8BeDfhf4P0/wB8PtNg0jRtKhEFraWy7I40X07kk5LMcsxJJJJJrrqKK+Lbbd2esFFFFIAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDkfHngLwb8UPB+oeAPiDpsGr6NqsJgurS5XfHIjevcEHBVhhlIBBBANfxif8ABTX/AIJxax+xh4yj8Z+AhPqHw81uXZZ3Ep3y2NwQSbaZgBnIBMTn7ygg5ZST/bTXi37RHwQ8KftH/BbxD8FvGSA2eu2jQiTaGaCYfNFMuf4o5Arj3Fehl2Olhqif2Xuv19TCvRVSPmfhn/wQc/4KB+IrrXU/Yl+LWom6tGt5JvC1xcMC8RhG6SyDE5KbA0kI5K7WUfLtA/qlr/MvE3xF/Zi+OzPYTNp3inwLrTKsiZHl3enzEexK7k6Hqp561/pD/Bv4l6N8ZvhL4Z+Lfh8g2XiXS7XUogDnatzGsm0+652kdQQQa+7TTV0eMek0UUUwCiiigAooooAKKKKACiiigArJ1/XtF8LaHeeJvEd1HY6fp0Elzc3EzBI4oYlLO7MeAqqCSfStav5m/wDgv3+3DdeFtAtP2K/h9cNHd6zDFqHiKaNirLabiYLbIx/rWXzJB/cCjoxoA/Jr/gqr/wAFJNc/bh+Jq+FPA09xZfDbw5M40y0YlPt04ypvZ04yxGVhVuY4yejO+eo/YD/4Jf618cYbD4yfHeOXTfB0wE9lYqdl1qS/wse8UDdQ3DyLyuFZXrxb/gmp+xun7UXxabxD4yh3eD/C7xz36MDi7mbJjtgfRsbpOchBjgsCP67Le3t7S3S0tEWKKJQiIgCqqqMAADgADoK3pU76s5a9bl92O5h+FPCPhfwJoFt4V8Gafb6XptmgjhtrWNYokUcYCqAP8a6Kiiuk4QooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK+Af20P8Agn98Lv2sdAm1a1ji0PxlBGfsmqxIAJWHIjugozJGegb76ZyMjKn7+opNJqzKjJxd0fwseNfBPxq/ZJ+My6Rrf2nw34r8O3Ed1a3NtJtZWU7op4JV+8pxlWHuDgggf21/8Euv+CkXhv8Abq+GjaH4o8vT/iJ4egT+17NcKl1GMKLyAf8APN2IDp/yzc4+6VJ+Pf8AgoJ+xlpH7WXwqaXRY47fxjoSPNpV0Rgyjq1tIRzskx8p/gfBHBYH+Xj9l39oLx5+x7+0Rofxj8NJJHfaBdmO9s3ynn25Oy4t5Bx95cjn7rAHqBXJUhys9GlV515n+k7RXC/DD4j+FPjB8OtE+KfgW4+1aP4gsob+0k6ExTqGAYAnDDOGGeCCK7qszUKKKKACiiigAooooAKKKKACiivI/jx8bPAn7Onwi1340fEm6FrpGg2rXEp/ikfpHEg7vI5CIO7EUAfL3/BQ39vXwF+wh8GpPFupmHUPFeqq8GgaQzc3M4AzJIFIYQRZBkYYzkICGYV/CF8T/il8cf2vvjRL4z8c3V34o8WeIJ1iijjUu3JOyGCJeEjXOFRQAOvXJrq/2l/2i/i9+2/+0Bd/E3xpvu9V1mdLTTdOgyyW0BciC1gXrhS2PVmJY8k1/Rl+wL+wvoH7LXg9PFXi2KK88c6rEDd3GA4s425+zwnsB/y0Yffb/ZArehQdSVug0rnz9+xx/wAEpfBvw9tLP4gftHQx634hBEselbhJY2h7CTGRO475zGD0Dfer9kYIILWBLW1RY4o1CoijCqo4AAHAAHQVLRXs06UYK0UWFFFFaAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAQXVrbX1tJZXsazQzKUkjcBlZWGCCDwQRwQa/Fv9sj/AIJQeFfGNld/ED9mWCPSdbB8yTRiwSzufXyS3EL9wM+Weny9a/auis6lKM1aSCx/EX8Lfip8b/2RPjND418B3V34Y8V6BO0MsciFGGDiSCeJuHRsYdGBB+oBr+7/AP4J5ft6+Av27/g1H4t0ww6f4r0pUg1/SFbm2nIOJIwxLGCXBMbHOMFCSymvyU/4KC/sOaL+074Jk8ZeDLeO28c6PEWtZVAX7dEoz9nlPGT/AM8mP3W44VjX86f7L37SfxW/Ys+PVh8VvApe21HSpjbahYTZRLq33AT20y9QG246ZRgGHIFeNXoOnKz2Iasf6SlFeWfBH4xeCf2gPhNoPxl+Hdx9p0fxDaJdwN/Eu7ho3HZ43BRx2YEV6nWAgooooAKKKKACiiigAooooAKKKKACiiigAooqvd3drp9rLf30qQwQI0kkkjBURFGSzE8AAcknpQBFqWpado2nXGsaxcR2lpaRvNPPM4jjijjBZndmICqoBJJIAHJr+TD/AIKTf8FwfEfjC/1H4I/sY3z6bokZa3vPE8eUubsjhls88xRdvNwJG6rtHLeB/wDBXL/gqrrn7Tvim9/Z9+A2pPa/DTTJPLu7iAlW1y4jPLuw5+yoR+6j6OR5j7v3ax/In7DH/BPnxt+1VrEPjHxUs2jeBLeUia+xtlvChw0VtuBB5BVpCCqHI+ZhtoLhBzfLE+a/gT+zT8cf2p/FsmmfDbTZdQcyFrzUblittCz/ADFppiD8x64G527A1/R3+zF/wSz+AfwQsoNa+IdtF408Rja7T3sebSFxg4igOVIB/ik3Meo29K/QP4cfDbwP8I/Btl4A+HWnRaXpNgm2KCEYHPVmJ5ZmPLMxJJ5JruatI9ajhIw1lqyG3t7e0gS1tUWKKJQiIg2qqjgAAcAAdBU1FFM6wooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK4/wAcfD3wL8S9Ck8M/ELSLTWtPlBDQXkKzJz3AYHB9CMEdq7CigGr7n4Hfta/8EfLS5W58cfsrSiCQBpJNAupCVY5zi2mc/L7JIcejjpX46/Dj4o/tEfsY/F8eIPBN5qHg7xRpEuyeF1Me8KeY54XG2WNv7rqynqOxr+3uvjj9sH9i/4bftc+Df7O11V03xDZIf7O1eNA0sJPOyQceZET1QkY6qQalxOGvglLWGjPa/8Agmh/wVn+H37aGlwfDP4nNbeHPiXAnNmCUttUVBkyWhYk7wBl4CSwHzKWUNt/Yyv80n4zfBL4x/sofFIeFvG8M2k6vp8q3Nhf2rsscojbMdxbTDaSAQCCMOjDDBWBA/rj/wCCQf8AwVLj/au0BPgD8dbxU+JGkws9tdOAi6zaRDlxjAFzGP8AWoAN6/vFzhwknlNNOzP3TooooEFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH/9b+/iiiigAoor5D/bk/a08LfsXfs6618atfVLm9iAtdJsnJH2zUJgfKjyMkKMF3PZFbHOKAPyu/4LQf8FO779n3SZ/2VvgVdtB4z1i1DatqULbX0u0nHypEw5FxKvIYEGNCGHzMpX+YL9kb9lfxp+1j8UovBHh4m00y1Cz6rqJXclrbk/k0j4Kxp/Eck4VWI4KGL4sftXfHVjJJJrXi7xpqTSSSSt9+edizMxOdqIMk9kReOBX9gX7Mf7Ongv8AZi+E9h8NvCMSmVFEuoXeMSXd2wG+Rj1xxhB/CoArGtV5FpuenluB+sTvL4Vv5+R3Hwh+D/w++BXgOz+HHwz09NP0yzGcLzJLIQA0srdXkbA3MfYDAAA9Noorzm76s+wjFJWS0CiiikMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKK5/xZp+s6t4V1PSvDl5/Z2oXVpNFa3W3d5EzoQkm3vsYhsd8V+ZFz4b/AOCrvwjiOs6X4j8OfEu2t4zmxubdbSdwNn3TGlvl/vYLSnPcEkCrjG/Uxq1nD7La8v6ufqvRXxN+zN+274F+Put3Pwy8R6fc+D/Huljbe6FqWEkaRQS/2cnDSKoGSCquBzt2/NX2zUyi07MqnVjUjzQd0FFFFI0CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK/J7/gon/wT40n4+6HcfFz4RWcdr45skLzwxgImrRKPuP2FwoH7uTjcPkfI2Mn6w0VUJuLujGvQhWg4TWh/Gb+x7+118X/ANhf44Q/EbwM0iiOQWus6RcbkivbZW+eGVTyrqclHxujf1G5T/oF/s+fHj4fftMfB/Q/jX8MboXOk63AJVBI8yGQcSQyAE7ZI3BVh6jjIwa/ks/4K5/sfwQxj9qT4d2QT5lh8QQwpgEscR3RA7k4SQ45O1j/ABGuU/4Imft9yfs3fGUfAD4kXrL4K8b3KRwtIwEdhqj4SOXJ+6k3EcnYHYx4U16dOakro+KxWGlQqOnL/hz+2WiiirOYKKKKACiiigAooooAKKKKACvyW/4Le+LLjwx/wTm8ZWtrKYpNXutMsAVOCVa7ikdfoyRsD6gkV+tNfh1/wcEyOn7B1sqEgP4o04NjuPKuD/MCgD+eT/gjP8P9P8d/t6+GrrU4vPh8P2l7qu09PMiiMcbH/dkkVh/tAV/bhX8gn/BASOOT9sjxGzqCU8G3pUnsfttiMj8CRX9fdfG59JvE27JHq4NfuwooorxTrCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/iH/AOCyPgjTPBf7fPiuXSYvIi1q3sdSZR082aBVkYf7zozH/aJr+n//AIIheLLjxP8A8E5vBtrdSmWTSLrU7AljkhVu5ZEX6KkigegAFfzsf8F3kVf23LYqMFvDVgT7nzbgV+5X/BvtI7/sHXSuSQninUAuew8q3P8AM1+g4CTeGpt9keJXX7yR+41FFFdZkFFFFABRRRQAUUUUAFFFFAFLUtRsdI06fVtTlWG2tY3mlkbhURAWZj7ADNf5sf7U/wAcNc/af/aQ8W/GrUg7y+I9SkltouSyWwPl28QHJ+SJUT8K/u8/4KcfEfUvhT+wP8UfGGkNsuToz2CODgodSdLPcD6qJsj3Ffw9fsD/AA9034o/theAvCOsJ5lqdR+2SoRkOthG91tI/ut5WD7Gmld2E3ZNn9XP7HP7Puk/s0fs/aF8NrOMC+8oXepy4w0t9OAZSeT93hF/2VFfUNFFdyVtDyW7u7CiiimIKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr+VP/AIK//s96Z8Jvj/a/Ezw1D5On+OYpbqVFXCJfQFRPg/7YZJCP7zNX9Vlfkz/wWU+H9l4o/ZNTxkyf6V4Z1a2uEcDnyrkm3dfoWdD9VFZ1VeJtQlaaPaP+Den9o3UfiB+z/wCI/wBnvxBMZZ/Al5HcWBYkn7BqJdtgyTxHMkh46CQCv6Fq/iY/4N+viHd+FP25LjwarZtvFHh+9tWQnjzLZo7lG+oWNx9GNf2z1xnpBRRRQAUUUUAFFFFABRRRQAV/I1/wcMftTapr/wAUdB/ZN8N3jppegW0eraxChwst9cg+Qj4PPlQ/OARj97nqBX9bOoahZaTYT6pqUiw29tG0ssjcKiIMsT7ADNf5qHx9+KHiH9pL9ojxP8UrsvcXvizWJriFCMEJNJthjA9ETYgHoKAP1O/4JA/ssR+JPEFz+054wgD2ekyPZ6NG+CHusfvZsEdI1bah/vEnqtf0S147+z98I9K+BPwZ8O/CjSApXR7NIpXUY8y4b5ppOg+/IWb8a9ir3qFL2cFEtIKKKK2GFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV/N1/wV2/ZYi8C+Nbf9o7wfBs03xJMLfVEXOIr/aSsmOgEyqc/wC2pPVq/pFrwb9p34NWXx++BHiT4V3Kr52pWjG0dhny7qL54W9sSKM4xxkVjiKXPBrqJo/Pf/g3j/aqvtL8aeIv2RfFF4zWOqQtrOhxyEkR3MOBcxJ6eZHiTA4zGx6k1/WTX+aF+zn8Wdc/Z2/aE8J/F3Tne2ufDOrQXMox8xiR9s8ZHo8ZdGHoTX+lta3Nve20d5aOJIplDo6nIZWGQQfQivBIJ6KKKACiiigAooooAKKKKACiiigAooooAK/lV/4Lqf8ABRfUpNVuf2JfgzqDQ20SD/hK7u3fBldsMtiGU5CgYM4/iJCHgOD+1X/BSz9saD9ir9lzVviPpTxN4m1JhpmgwyYYNezA/vCuQSkKBpD2JAU/er+Eb4MfCvx9+1R8c7HwNp00l1qviG8ee9vZcuUViZJ7iU8k4BLEn7zEDqRQNJt2R9Tf8E+P2F9U/as8aHxR4xSS28D6LKv22VSUa8lHItomHIyOZHHKqeCGYEf1o6No+k+HdItPD+g20VlY2MKW9tbwKEiiiiUKiIowFVVAAAGABXH/AAp+F/g/4MfD3S/hn4DtVtNM0mBYYlA+ZyPvO5/id2yzHuSa9Cq0j3KFBU426hRRRTNwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA+cP2o/2ZfAX7VPwtuvh340QQ3ChpdOv0UGWzucYV19VPSRMgOvGQcMP5A/Gng34zfsi/G7+yNRkn8P+KvDN0lxaXdq5U7kO6KeCTjcjYypx04YA5A/uLr84/wDgpP8Asjw/tKfBmXxD4WtQ/i7wwj3NgUUeZcwgZltiep3D5kGfvgDjcaTRx4vD865o7o/Sz/gmL+3Xpn7cv7P0HiPWZIYfGegFLLxBaxjYPOx8lwi9o5wCwxwrBl7V+kFf51H7An7X3in9ib9pHSfilp7yNpErix12yBIFxYSMPMG3u8ePMj44ZcdCc/6IWha3pPibRLPxJoFwl3YahBHc208ZyksMqhkdT6MpBFQeOatFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH/9f+/iiiigAr+Jj/AILrfte/8L2/aYX4H+FLrzfDnw632r7DlJtUkx9objr5WBCPRlfHWv64v2sfjdZ/s4fs2eNfjddkBvD2lT3FuCAQ90w2W6HPHzzMi/jX+eT8Cfhrrn7R/wAftC+H1zPJLc+JNRzeXJ+aQRkmW4lJ7sEDtz3pN21KhFykordn7q/8Egv2YLXwh8Pp/wBo7xVaj+1vEG+30vzF5hsUOGdcjIMzg8/3FGOGNftNWN4c8P6P4S8P2Phbw9AtrYadBHbW8KcKkUShVUfQACtmvLnPmk2fd4agqNONNdAoooqDcKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD4e/bM/ZMi+O/h2Dx38MxBo/xK8OSR3ejawg8qVmgbcIJJB1Q/wAG7IRuRwWB6j9ij9o2X9pb4I23ivXEMHiHSp20zW4Gh8jZfQqpYhCzEKysp7c5GBggfXNflp+yJav8PP25/j38JtPVBp1xcWGuIiE7Y5bxPOcKD03faOew2gAAVqvei0+hxTj7OvGcdpaP1tdP8D9S6KKKyO0KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAxvEfh3Q/F2gXvhbxNax3unajC9vcwSjKSRSAqykehBr+Lf9q34Eap+zT8etb+GExc21rN9o06c9ZbOX5oXznqB8rf7Smv7Ya/Hb/gsP8AAK18a/Biz+OWlQk6n4SlWG5ZRkvY3LhTnn/lnKVYccBmrow8+WVu55Ob4X2lHnW8dfl1/wAz9pP+CVX7XSfte/sk6L4k1u5E3ifw6Bo+tgn52uIFGyY/9d49rk9N+4DpX6S1/Eb/AMEFf2hJPhR+2V/wqvVLnytK+INjJY7GJ2fbrYGa3b0yQJIxkdZK/tyr0D5EKKKKACiiigAooooAKKKKACvw3/4OC/8Akw+0/wCxp0//ANE3NfuRX4b/APBwX/yYfaf9jTp//om5oA/F/wD4IBf8nj+Jf+xMvP8A0usa/r4r+Qf/AIIBf8nj+Jf+xMvP/S6xr+vivi88/wB6foj1sH/DCiiivHOoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD+OH/gu/8A8nt2n/Ys2H/o24r9xf8Ag3z/AOTELz/satQ/9E21fh1/wXf/AOT27T/sWbD/ANG3FfuL/wAG+f8AyYhef9jVqH/om2r7/Lv91p+h4tf+JI/cmiiiu0xCiiigAooooAKKKKACiiigD8mv+C3uoS2f/BNvxzbx9Lq40iJvoL+3f+aiv5av+CRWnRX37bGi3MnWz0/UJk+phaP+Tmv6hf8AguV/yjj8Xf8AX9pP/pZFX8xf/BHz/k8+x/7BN/8A+gCrh8SIq/Az+tGiiiu08oKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK+I/8Ago9pEGt/sSfEGzuPupYxXA/3reeKVf1QV9uV8df8FA/+TMPiJ/2CX/8AQ1qZbMun8SP55v8AgjZq8+jf8FJPhpNDyJ5tRt2Hqs1hcr+hIP4V/ftX+fl/wSG/5SOfC/8A6/rv/wBI7iv9A2uE9UKKKKACiiigAooooAKKKKAPiL/gpL4+1D4afsIfFPxZpT+VcDQbizjfoVa+xbbh7jzcj3r+Fn9hvwVa/EH9rfwF4bvQGh/tWO7dTyGWyDXBU+x8vBr+yb/gtrq8ulf8E2vHsMOc3s2k25I7A6hbufzC4/Gv5N/+CWNkl3+274Tmf/l2h1GQfX7HMv8A7NWlFXqRXmho/rdooor6AsKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP4vf22/Adp8Nv2sfHfhPTwFt01SS6iUcBEvALhVHsokCj6V/el+wP44vfiN+xV8LfGGpP5l1c+GtPSd+peWCJYnY+5ZCT71/El/wVOsktP23fFkyf8vMOnSH6/Y4V/wDZa/ry/wCCOWry63/wTa+GN7NnKW+oW/Ppb6hcxD9EFfP1lacl5shn6Z0UUVmIKKKKACiiigAooooAKKKKACiivBf2o/jVp/7On7O/jH43algjw5pc91Ep6SXG3bAnP9+VkX8aAP43v+C3P7W0/wC0R+1td/DbQbgv4a+HBl0i3VWykl/kfbJcAkZ8xRED/djB7mvu/wD4JB/s42Hw7+Cb/HHWrbGt+MCwgd+senRNhFA7eY6lz6jZ6V/Or8NfBvib4/8Axq0nwZ57T6n4q1RI5rh+W33EmZZW+gLOfpX9w/hXwzo3gvwxp3g/w7EILDSraK0tox0WKFQij8ABVRO/AU7yc30N+iiiqPVCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP5Rf+CrX7Nll8Efj6vjnwrbfZ9C8aJJeqqLiOK9Rv9IRcAAA7lkA/2yBwK/f7/ggf+1pN8Yf2db39nnxVOZNZ+HbItozH5pdKuSxiHT/li4aPrwhQV5//AMFK/gTH8cP2VtbNlGG1Xwwp1qybHzf6MpMyD/fh34HdgtfiB/wR2/aC/wCFAft2+FJdQn8jSfFpbw7fbn2Ji+IEBbPHy3CxEk9BnkVDR4uLp8lTTZn99dFFFI5QooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD/9D+/iiiigD+dn/g4q+Ndz4V/Z/8H/A3TZQj+LtUkvbpQfmNtpiqQpHo0syNz3TjvX5V/wDBFn4SR638SvE3xm1BA0ehWiafak/897wlnYe6xpt+j1uf8HBHxS/4TP8AbatPh9bSZg8HaDaWzpnpc3ha6c/jHJF+VfZ3/BH7wR/wjP7JQ8TSR4k8R6vd3Yc9Wjh22wH0DRP+JNY4iVoM9PKKXPiVfpqfqhRRRXmn2IUUUUAFFFFABRRRQAUUUUAFFFFAHNf8Jn4P/wCEk/4Q3+1rP+19u/7D56faduN2fKzvxt5zjpzS+JPGPhHwbbx3ni/VbPSopm2RveTpArNjOAXIBOOcCv5L/wDnbi/7lz/3X62f+Duj/k1b4U/9jXcf+kb1sqXvRjfdHBLGtUqlTl+FtetrH9V3iTx/4E8GtCvi/W7DSjcgtCLy5jg8wLjJXewzjIzj1qjofxS+GXie9XTfDfiPS9QuX+7FbXkUrn6KjE1/HZ/wc1aD4I8VftHfsleGPiZdJY+G9Slu7XVrmSYW6Q2M11pyTu0rfLGFjLEueFxk9K+Tf+Clv7Cf/BC/4A/so658Uv2OPjPb6h8S9Kms5NDsdJ8TWutvcymeNXV4rfc6KsReQSh02MoOT91nGimlrv5GdXHzhOaUVaPd2e19ND++/VNY0jQ7X7drV1DZw5C+ZO6xrk9BliBmrdvcQXcCXVq6yxSqHR0O5WVuQQRwQR0Nfxbf8FI/iD8avip/wbNfCTx/+0K11N4s1LUtHe6nvSzXFzCr3aWtxIzfMzz2yxSljksXySc5P9Sf/BPr/kwn4If9iB4a/wDTdBUSp2V/M6aWJ9pU5LdE/vPryivzC/4KL/8ABUH4d/8ABPu48G+Bj4V1j4g+P/iHdPaeHfDOhqPtF00bIjM7kNsBaRUQKju7HAXAZl8N/ZD/AOCxV98df2pYf2Nf2jPgr4q+DPjvULJr/TodW/0u0uIUV25mEUJj3iN/LYoY2ZGTeHwpShK17FvE0lP2blqftfRRRUG4UUUUAFFFFABRRRQAUUUUAFFFFABX5ifAv/lJ38cP+wVon/pLbV+ndfmJ8C/+Unfxw/7BWif+kttWlPaXocuJ+Kl/i/8AbZH6d0UUVmdQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVw3xO8B6R8Ufh3rnw514A2muWM9lJkZ2iZCu4e6k5HuK7mihCaTVmfwy+G9c8Y/s7/G2z8QWBNvr3gnWklXaSNtzp82SMjnG5MH2r/Sw8C+LdO8feCdH8d6P/wAemtWNvfwc5/d3MayLz34YV/nsf8FHPBB8CftmeNrJF2xahdR6lGcYDfbY0lc/9/GYfUV/Zr/wST+Jf/C0v+Cevw11eaXzLjTNPfR5QTkp/Zsr2yA/9so0I9iK9eLukz4CtT5Kkodm0fo5RRRTMwooooAKKKKACiiigAr8N/8Ag4L/AOTD7T/sadP/APRNzX7kV+G//BwX/wAmH2n/AGNOn/8Aom5oA/F//ggF/wAnj+Jf+xMvP/S6xr+viv5B/wDggF/yeP4l/wCxMvP/AEusa/r4r4vPP96foj1sH/DCiiivHOoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD+OH/gu/wD8nt2n/Ys2H/o24r9xf+DfP/kxC8/7GrUP/RNtX4df8F3/APk9u0/7Fmw/9G3FfuL/AMG+f/JiF5/2NWof+ibavv8ALv8AdafoeLX/AIkj9yaKKK7TEKKKKACiiigAooooAKKKKAPyK/4Llf8AKOPxd/1/aT/6WRV/MX/wR8/5PPsf+wTf/wDoAr+nT/guV/yjj8Xf9f2k/wDpZFX8xf8AwR8/5PPsf+wTf/8AoAq4fEiKvwM/rRooortPKCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvjr/goH/yZh8RP+wS//oa19i18df8ABQP/AJMw+In/AGCX/wDQ1pS2ZcPiR/Of/wAEhv8AlI58L/8Ar+u//SO4r/QNr/Py/wCCQ3/KRz4X/wDX9d/+kdxX+gbXAeqFFFFABRRRQAUUUUAFFFFAH5Ff8Fyv+Ucfi7/r+0n/ANLIq/ld/wCCU3/J63hz/r11H/0mkr+qL/guV/yjj8Xf9f2k/wDpZFX8rv8AwSm/5PW8Of8AXrqP/pNJWtD+JH1Q1uf1n0UUV75YUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAfyYf8FWf+T1vEf/AF66d/6TR1/WX/wRV/5RmfDT/uM/+nW8r+TT/gqz/wAnreI/+vXTv/SaOv6y/wDgir/yjM+Gn/cZ/wDTreV4Ff8AiS9SHufqZRRRWQgooooAKKKKACiiigAooooAK/DX/g4F+Iy+Ev2G7bwZE+JvFfiGytGQd4bZZLpj9A8UY+pFfuVX8sX/AAco+JbjzvhF4PikIi261eSp2Lf6IkZP0G8D60Afl1/wSA+HP/CZftax+KriMNB4W0y6vtzDKiaUC3QfXErMP93Nf1ZV+Cf/AAQ40KKPRfiL4mdAXln021V8cgRrO7AH33rn6Cv3sq1se1g42pLzCiiimdQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBT1HT7PVtPn0rUYxLb3MbRSoejI4IYH6g1/Cr468O618Gfi/q3heJ2hv8Awtq89ukncSWcxVWH4qCDX921fx2f8FMdHi0T9uDx3awIESWazuOBgEz2kEjH8WY596mRwY+PuqR/oB/Cbx5ZfFT4V+Gvidpu37P4j0qz1OLacjZdwrKMfg1egV+cn/BI/wASXvir/gnP8LtTv5DK8Wn3FmCeyWd3PboP+ArGB+Ffo3UnlBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//0f7+KKKKAP8APv8A+Cu2sf25/wAFG/ije5zsv7W3/wDAezgi/wDZK/oP/YB0saP+xt8PrQDG/S1n/wC/7vJ+u6v5qf8AgpFdTXn7enxbmnOWHia/QfSOQqP0Ar+pH9ke2itP2VvhtFCMA+GNJf8AF7WNj+prlxXwo93Il+9m/L9T6GooorhPpwooooAKKKKACiiigAooooAKKKKAP4v/APgoJ8UNO/4Jz/8ABxZ4M/bc+O1heRfDvxPoccLanbQtMsYNhJp0pAUEu1u4jkkjUF/LYEAkgHxT/gux+3l+zv8A8FWtU+C/7Hv7BeqXHjzXrzxC0sk0Flc20Mct3GsEMf8ApMUTMcO7yMF2Rqh3Ec4/tg+K/wAGPhD8ePCb+A/jb4W0nxdokjiU2Os2cV7b+YoIDiOZWUOoJwwGRng15n8Ff2Mf2R/2cNUfXvgJ8MvDHg/UZUaJ73SdKt7W6aNzkoZkQSFSQPlLY9q3jVSs2tUeXUwNSXPTjJcknd6a+dj+Xv8A4OTvBnhvxh+2h+x98PPFNsL3R9V1afTru3clRLbT32mxSISpBAZCQSCDzwa8f/4K+/8ABKXwV/wTJ8U+E/8Ago/+wn4L0298J+GLyKPxN4U1u3/tvTYDIwWK58u985vJlZvKkO4NDIY3iKkkp/Y78Rf2fPgJ8YPEOi+Lfi14I0DxTqvhuTztIvdX0y3vriwk3K++2kmjd4W3ojZjKncqnqBXoHinwr4X8c+G7/wb420211jR9Vgktb2xvoUuLa5glBV45YpAyOjKSGVgQQcEUKs1ZFVMvU5VJPd2afVWR/J//wAFv/2sfhj+27/wQl8MftJfCdwum+IPEmjtLaFg0tjdxrOk9rJjHzwyArnADDDD5WBr6w/Y5/4Lt/8ABKX4Xfsi/Cv4Z+O/ixHYa54d8IaHpmo2x0fVZDDd2llDFNHvjs2RtrqRlWKnGQSOa/ZS3/Yp/Y1tPhxcfBy1+EngyLwhdXq6lPoaaDYrpsl6qhBcPbCHyWmCgKJCu4AYziuC/wCHan/BOb/ogPw3/wDCV0z/AOR6XPC3K0yvYV1U9pGSu0k7p9D8Df8AgtV8Vf8Aglx+114R+BXjv4s+IPGHh6HxW00/gn4k+HtO/wCJZaRyTJHOL5Lp4J9kTxpKVSMTIAGQ4Lg/HX7Dn7WH7Xf7NH/BTb4Z/sZ/CH9o+L9qX4deL5ETUGQy332CzYP5jmWVp3ge2jXztsVy8YUbXA4Ff2Q6t+zR+znr3wnt/gLrXgHw7deB7RQtv4el0u2bS4QpJHl2pj8lMFiRtQYJJHNYnwR/ZF/ZZ/ZquLq8/Z9+HXhzwXcXy+Xcz6NplvZzTIDkK8kaK7KDyFJIHamqqUeWxM8FUlVVTmSel2rp6dN7P5n0RRRRWB6QUUUUAFFFFABRRRQAUUUUAFFFFABX5ifAv/lJ38cP+wVon/pLbV+ndfmJ8C/+Unfxw/7BWif+kttWlPaXocuJ+Kl/i/8AbZH6d0UUVmdQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAfzB/wDBZ7SRZftR6PqSLhb3w3bMT6ulxcqf0C1++f8Awb56x/af7CF5ZZz/AGd4q1C3+m6G2l/9qV+JP/BbW2iX4ueC7wD55NHmQn2SYkf+hGv1t/4NyruZ/wBlDxrYsf3cfiySQD3eztgf/QRXp0fgR8TmStiZ+p/QlRRRWpwhRRRQAUUUUAFFFFABX4b/APBwX/yYfaf9jTp//om5r9yK/Df/AIOC/wDkw+0/7GnT/wD0Tc0Afi//AMEAv+Tx/Ev/AGJl5/6XWNf18V/IP/wQC/5PH8S/9iZef+l1jX9fFfF55/vT9Eetg/4YUUUV451BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAfxw/8ABd//AJPbtP8AsWbD/wBG3FfuL/wb5/8AJiF5/wBjVqH/AKJtq/Dr/gu//wAnt2n/AGLNh/6NuK/cX/g3z/5MQvP+xq1D/wBE21ff5d/utP0PFr/xJH7k0UUV2mIUUUUAFFFFABRRRQAUUUUAfkV/wXK/5Rx+Lv8Ar+0n/wBLIq/mL/4I+f8AJ59j/wBgm/8A/QBX9On/AAXK/wCUcfi7/r+0n/0sir+Yv/gj5/yefY/9gm//APQBVw+JEVfgZ/WjRRRXaeUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFfHX/AAUD/wCTMPiJ/wBgl/8A0Na+xa+Ov+Cgf/JmHxE/7BL/APoa0pbMuHxI/nP/AOCQ3/KRz4X/APX9d/8ApHcV/oG1/n5f8Ehv+Ujnwv8A+v67/wDSO4r/AEDa4D1QooooAKKKKACiiigAooooA/Ir/guV/wAo4/F3/X9pP/pZFX8rv/BKb/k9bw5/166j/wCk0lf1Rf8ABcr/AJRx+Lv+v7Sf/SyKv5Xf+CU3/J63hz/r11H/ANJpK1ofxI+qGtz+s+iiivfLCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD+TD/gqz/yet4j/AOvXTv8A0mjr+sv/AIIq/wDKMz4af9xn/wBOt5X8mn/BVn/k9bxH/wBeunf+k0df1l/8EVf+UZnw0/7jP/p1vK8Gv/El6kPc/UyiiisRBRRRQAUUUUAFFFFABRRRQAV/IH/wcfaq837QXw80M/dt/D004+s1y6n/ANFiv6/K/jr/AODjj/k6LwN/2Kw/9K7igD03/giZpaQ/s7+KNaH3rjxG8B+kNtbsP/RlfsvX4/8A/BFL/k1jX/8Asa7r/wBI7Ov2Aq0e7hv4UQooopm4UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV/Jb/wAFbbBbP9tPWbhet3YafKfqIVT/ANkr+tKv5P8A/gr1/wAnlXv/AGCrD/0E0pHHjv4fzP6jP+CIV+13/wAE2vAtu3S1uNXiH0OoXD/+zV+slfkV/wAENf8AlHH4R/6/tW/9LJa/XWoPHCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/S/v4ooooA/wA5/wD4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/7FXRv/SSKv5Xf+CjH/J+Hxc/7GnUv/RzV/VF+yh/ya18Nf8AsVdG/wDSSKuXFbI97Ifjn6Hv1FFFcJ9MFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFfmJ8C/+Unfxw/7BWif+kttX6d1+YnwL/wCUnfxw/wCwVon/AKS21aU9pehy4n4qX+L/ANtkfp3RRRWZ1BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/OR/wW3/5Kl4I/wCwVcf+jhX6t/8ABuP/AMmu+Of+xpP/AKSW9flJ/wAFt/8AkqXgj/sFXH/o4V+rf/BuP/ya745/7Gk/+klvXp0PgR8Vmf8AvU/66I/ocooorU4AooooAKKKKACiiigAr8N/+Dgv/kw+0/7GnT//AETc1+5Ffhv/AMHBf/Jh9p/2NOn/APom5oA/F/8A4IBf8nj+Jf8AsTLz/wBLrGv6+K/kH/4IBf8AJ4/iX/sTLz/0usa/r4r4vPP96foj1sH/AAwooorxzqCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/jh/wCC7/8Aye3af9izYf8Ao24r9xf+DfP/AJMQvP8AsatQ/wDRNtX4df8ABd//AJPbtP8AsWbD/wBG3FfuL/wb5/8AJiF5/wBjVqH/AKJtq+/y7/dafoeLX/iSP3JooortMQooooAKKKKACiiigAooooA/Ir/guV/yjj8Xf9f2k/8ApZFX8xf/AAR8/wCTz7H/ALBN/wD+gCv6dP8AguV/yjj8Xf8AX9pP/pZFX8xf/BHz/k8+x/7BN/8A+gCrh8SIq/Az+tGiiiu08oKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK+Ov8AgoH/AMmYfET/ALBL/wDoa19i18df8FA/+TMPiJ/2CX/9DWlLZlw+JH85/wDwSG/5SOfC/wD6/rv/ANI7iv8AQNr/AD8v+CQ3/KRz4X/9f13/AOkdxX+gbXAeqFFFFABRRRQAUUUUAFFFFAH5Ff8ABcr/AJRx+Lv+v7Sf/SyKv5Xf+CU3/J63hz/r11H/ANJpK/qi/wCC5X/KOPxd/wBf2k/+lkVfyu/8Epv+T1vDn/XrqP8A6TSVrQ/iR9UNbn9Z9FFFe+WFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH8mH/BVn/k9bxH/166d/6TR1/WX/AMEVf+UZnw0/7jP/AKdbyv5NP+CrP/J63iP/AK9dO/8ASaOv6y/+CKv/ACjM+Gn/AHGf/TreV4Nf+JL1Ie5+plFFFYiCiiigAooooAKKKKACiiigAr+Or/g43/5Oj8DD/qVR/wCldxX9itfx1f8ABxv/AMnR+Bv+xVH/AKV3FAHsv/BFL/k1jX/+xruv/SOzr9gK/H//AIIpf8msa/8A9jXdf+kdnX7AVoj3sN/CiFFFFBsFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFfyf/APBXr/k8q9/7BVh/6Ca/rAr+T/8A4K9f8nlXv/YKsP8A0E0nsceO/h/M/p7/AOCGv/KOPwj/ANf2rf8ApZLX661+RX/BDX/lHH4R/wCv7Vv/AEslr9dag8cKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//9P+/iiiigD/ADn/APgox/yfh8XP+xp1L/0c1f1Rfsof8mtfDX/sVdG/9JIq/ld/4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/wCxV0b/ANJIq5cVsj3sh+Ofoe/UUUVwn0wUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV+YnwL/5Sd/HD/sFaJ/6S21fp3X5ifAv/AJSd/HD/ALBWif8ApLbVpT2l6HLifipf4v8A22R+ndFFFZnUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH85H/Bbf/kqXgj/ALBVx/6OFfq3/wAG4/8Aya745/7Gk/8ApJb1+Un/AAW3/wCSpeCP+wVcf+jhX6t/8G4//Jrvjn/saT/6SW9enQ+BHxWZ/wC9T/rof0OUUUVqcAUUUUAFFFFABRRRQAV+G/8AwcF/8mH2n/Y06f8A+ibmv3Ir8N/+Dgv/AJMPtP8AsadP/wDRNzQB+L//AAQC/wCTx/Ev/YmXn/pdY1/XxX8g/wDwQC/5PH8S/wDYmXn/AKXWNf18V8Xnn+9P0R62D/hhRRRXjnUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/HD/wXf/5PbtP+xZsP/RtxX7i/8G+f/JiF5/2NWof+ibavw6/4Lv8A/J7dp/2LNh/6NuK/cX/g3z/5MQvP+xq1D/0TbV9/l3+60/Q8Wv8AxJH7k0UUV2mIUUUUAFFFFABRRRQAUUUUAfkV/wAFyv8AlHH4u/6/tJ/9LIq/mL/4I+f8nn2P/YJv/wD0AV/Tp/wXK/5Rx+Lv+v7Sf/SyKv5i/wDgj5/yefY/9gm//wDQBVw+JEVfgZ/WjRRRXaeUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFfHX/BQP/kzD4if9gl//AENa+xa+Ov8AgoH/AMmYfET/ALBL/wDoa0pbMuHxI/nP/wCCQ3/KRz4X/wDX9d/+kdxX+gbX+fl/wSG/5SOfC/8A6/rv/wBI7iv9A2uA9UKKKKACiiigAooooAKKKKAPyK/4Llf8o4/F3/X9pP8A6WRV/K7/AMEpv+T1vDn/AF66j/6TSV/VF/wXK/5Rx+Lv+v7Sf/SyKv5Xf+CU3/J63hz/AK9dR/8ASaStaH8SPqhrc/rPooor3ywooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/kw/4Ks/8nreI/8Ar107/wBJo6/rL/4Iq/8AKMz4af8AcZ/9Ot5X8mn/AAVZ/wCT1vEf/Xrp3/pNHX9Zf/BFX/lGZ8NP+4z/AOnW8rwa/wDEl6kPc/UyiiisRBRRRQAUUUUAFFFFABRRRQAV/HV/wcb/APJ0fgb/ALFUf+ldxX9itfx1f8HG/wDydH4G/wCxVH/pXcUDPZf+CKX/ACaxr/8A2Nd1/wCkdnX7AV+P/wDwRS/5NY1//sa7r/0js6/YCtEe7hv4UQooooNgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr+T/AP4K9f8AJ5V7/wBgqw/9BNf1gV/J/wD8Fev+Tyr3/sFWH/oJpPY48d/D+Z/T3/wQ1/5Rx+Ef+v7Vv/SyWv11r8iv+CGv/KOPwj/1/at/6WS1+utQeOFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/1P7+KKKKAP8AOf8A+CjH/J+Hxc/7GnUv/RzV/VF+yh/ya18Nf+xV0b/0kir+V3/gox/yfh8XP+xp1L/0c1f1Rfsof8mtfDX/ALFXRv8A0kirlxWyPeyH45+h79RRRXCfTBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABX5ifAv/lJ38cP+wVon/pLbV+ndfmJ8C/8AlJ38cP8AsFaJ/wCkttWlPaXocuJ+Kl/i/wDbZH6d0UUVmdQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAfzkf8Ft/+SpeCP8AsFXH/o4V+rf/AAbj/wDJrvjn/saT/wCklvX5Sf8ABbf/AJKl4I/7BVx/6OFfq3/wbj/8mu+Of+xpP/pJb16dD4EfFZn/AL1P+uh/Q5RRRWpwBRRRQAUUUUAFFFFABX4b/wDBwX/yYfaf9jTp/wD6Jua/civw3/4OC/8Akw+0/wCxp0//ANE3NAH4v/8ABAL/AJPH8S/9iZef+l1jX9fFfyD/APBAL/k8fxL/ANiZef8ApdY1/XxXxeef70/RHrYP+GFFFFeOdQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH8cP/Bd//k9u0/7Fmw/9G3FfuL/wb5/8mIXn/Y1ah/6Jtq/Dr/gu/wD8nt2n/Ys2H/o24r9xf+DfP/kxC8/7GrUP/RNtX3+Xf7rT9Dxa/wDEkfuTRRRXaYhRRRQAUUUUAFFFFABRRRQB+RX/AAXK/wCUcfi7/r+0n/0sir+Yv/gj5/yefY/9gm//APQBX9On/Bcr/lHH4u/6/tJ/9LIq/mL/AOCPn/J59j/2Cb//ANAFXD4kRV+Bn9aNFFFdp5QUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV8df8FA/+TMPiJ/2CX/8AQ1r7Fr46/wCCgf8AyZh8RP8AsEv/AOhrSlsy4fEj+c//AIJDf8pHPhf/ANf13/6R3Ff6Btf5+X/BIb/lI58L/wDr+u//AEjuK/0Da4D1QooooAKKKKACiiigAooooA/Ir/guV/yjj8Xf9f2k/wDpZFX8rv8AwSm/5PW8Of8AXrqP/pNJX9UX/Bcr/lHH4u/6/tJ/9LIq/ld/4JTf8nreHP8Ar11H/wBJpK1ofxI+qGtz+s+iiivfLCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD+TD/gqz/yet4j/wCvXTv/AEmjr+sv/gir/wAozPhp/wBxn/063lfyaf8ABVn/AJPW8R/9eunf+k0df1l/8EVf+UZnw0/7jP8A6dbyvBr/AMSXqQ9z9TKKKKxEFFFFABRRRQAUUUUAFFFFABX8dX/Bxv8A8nR+Bv8AsVR/6V3Ff2K1/HV/wcb/APJ0fgb/ALFUf+ldxQM9l/4Ipf8AJrGv/wDY13X/AKR2dfsBX4//APBFL/k1jX/+xruv/SOzr9gK0R7uG/hRCiiig2CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACv5P8A/gr1/wAnlXv/AGCrD/0E1/WBX8n/APwV6/5PKvf+wVYf+gmk9jjx38P5n9Pf/BDX/lHH4R/6/tW/9LJa/XWvyK/4Ia/8o4/CP/X9q3/pZLX661B44UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//V/v4ooooA/wA5/wD4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/7FXRv/SSKv5Xf+CjH/J+Hxc/7GnUv/RzV/VF+yh/ya18Nf8AsVdG/wDSSKuXFbI97Ifjn6Hv1FFFcJ9MFFFFABRRRQAUUUUAFFFFABRRRQAUV4L+0L+0j8L/ANmHwjaeNvirPPDZX14tjELeIzSGVkeT7oIO0KhyexwO9fH3/D3X9jj/AJ/dV/8AABv/AIqrVOTV0jCpiqMHyzmkz9O6K/MT/h7r+xx/z+6r/wCADf8AxVH/AA91/Y4/5/dV/wDABv8A4qn7KfYj69h/+fi+8/TuivzE/wCHuv7HH/P7qv8A4AN/8VR/w91/Y4/5/dV/8AG/+Ko9lPsH17D/APPxfefp3RX5if8AD3X9jj/n91X/AMAG/wDiqP8Ah7r+xx/z+6r/AOADf/FUeyn2D69h/wDn4vvP07or8xP+Huv7HH/P7qv/AIAN/wDFUf8AD3X9jj/n91X/AMAG/wDiqPZT7B9ew/8Az8X3n6d0V+Yn/D3X9jj/AJ/dV/8AABv/AIqj/h7r+xx/z+6r/wCADf8AxVHsp9g+vYf/AJ+L7z9O6K/MT/h7r+xx/wA/uq/+ADf/ABVd/wDC7/gpd+yp8XPHmm/DnwxqV7FqWrSi3tRc2bxxvK33U3DIBY8DOBnvQ6U+w1jaDdlNfefflFFFZnSFFFFABRRRQAV+YnwL/wCUnfxw/wCwVon/AKS21fp3X5ifAv8A5Sd/HD/sFaJ/6S21aU9pehy4n4qX+L/22R+ndFFFZnUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH85H/Bbf/kqXgj/sFXH/AKOFfq3/AMG4/wDya745/wCxpP8A6SW9flJ/wW3/AOSpeCP+wVcf+jhX6t/8G4//ACa745/7Gk/+klvXp0PgR8Vmf+9T/rof0OUUUVqcAUUUUAFFFFABRRRQAV+G/wDwcF/8mH2n/Y06f/6Jua/civw3/wCDgv8A5MPtP+xp0/8A9E3NAH4v/wDBAL/k8fxL/wBiZef+l1jX9fFfyD/8EAv+Tx/Ev/YmXn/pdY1/XxXxeef70/RHrYP+GFFFFeOdQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH8cP/AAXf/wCT27T/ALFmw/8ARtxX7i/8G+f/ACYhef8AY1ah/wCibavw6/4Lv/8AJ7dp/wBizYf+jbiv3F/4N8/+TELz/satQ/8ARNtX3+Xf7rT9Dxa/8SR+5NFFFdpiFFFFABRRRQAUUUUAFFFFAH5Ff8Fyv+Ucfi7/AK/tJ/8ASyKv5i/+CPn/ACefY/8AYJv/AP0AV/Tp/wAFyv8AlHH4u/6/tJ/9LIq/mL/4I+f8nn2P/YJv/wD0AVcPiRFX4Gf1o0UUV2nlBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXx1/wAFA/8AkzD4if8AYJf/ANDWvsWvjr/goH/yZh8RP+wS/wD6GtKWzLh8SP5z/wDgkN/ykc+F/wD1/Xf/AKR3Ff6Btf5+X/BIbj/go58L/wDr+u//AEjnr/QNrgPVCiiigAooooAKKKKACiiigD8iv+C5X/KOPxd/1/aT/wClkVfyu/8ABKb/AJPW8Of9euo/+k0lf1Rf8Fyv+Ucfi7/r+0n/ANLIq/ld/wCCU3/J63hz/r11H/0mkrWh/Ej6oa3P6z6KKK98sKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP5MP8Agqz/AMnreI/+vXTv/SaOv6y/+CKv/KMz4af9xn/063lfyaf8FWf+T1vEf/Xrp3/pNHX9Zf8AwRV/5RmfDT/uM/8Ap1vK8Gv/ABJepD3P1MooorEQUUUUAFFFFABRRRQAUUUUAFfx1f8ABxv/AMnR+Bv+xVH/AKV3Ff2K1/HV/wAHG/8AydH4G/7FUf8ApXcUDPZf+CKX/JrGv/8AY13X/pHZ1+wFfj//AMEUv+TWNf8A+xruv/SOzr9gK0R7uG/hRCiiig2CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACv5P/APgr1/yeVe/9gqw/9BNf1gV/J/8A8Fev+Tyr3/sFWH/oJpPY48d/D+Z/T3/wQ1/5Rx+Ef+v7Vv8A0slr9da/Ir/ghr/yjj8I/wDX9q3/AKWS1+utQeOFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/9b+/iiiigD/ADn/APgox/yfh8XP+xp1L/0c1f1Rfsof8mtfDX/sVdG/9JIq/ld/4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/wCxV0b/ANJIq5cVsj3sh+Ofoe/UUUVwn0wUUUUAFFFFABRRRQAUUUUAFFFfhh+wb+xEv7cfw+8WfGH4kfEfxZpmo23iq/03y9PvQInRI4J95Dq53FpmBwQMAcVtSpc99Tgx2PWGUbxvc9//AOCpH/IF+FH/AGPFh/6C9f0EV+Iuqf8ABDz4R64sS638TPGd4LdxLEJ7qGTY46Mu6I4I9RzXQf8ADmjwb/0V7x9/4ME/+N13U4ckbHyuNxKr1XUSsfs1RX4y/wDDmjwb/wBFe8ff+DBP/jdH/Dmjwb/0V7x9/wCDBP8A43WhyH7NUV+Mv/Dmjwb/ANFe8ff+DBP/AI3R/wAOaPBv/RXvH3/gwT/43QB+zVFfjL/w5o8G/wDRXvH3/gwT/wCN0f8ADmjwb/0V7x9/4ME/+N0Afs1RX4y/8OaPBv8A0V7x9/4ME/8AjdH/AA5o8G/9Fe8ff+DBP/jdAH7NUV+Mv/Dmjwb/ANFe8ff+DBP/AI3XK+O/+CRPhPwl4I1nxXbfFrx5NJpljcXaxtqCBWaGNnAJEfQ4xQB+4lfiR/wVJ/5O1/Za/wCxg1L/ANG6dX0T/wAEiPFnifxl+wd4T1XxbqFxqd2lxqMInupGllMaXcu1S7EsQo4XJOAABwAK+dv+CpP/ACdr+y1/2MGpf+jdOpS2Zth/4sPVfmff9FFFeQffBRRRQAUUUUAFfmJ8C/8AlJ38cP8AsFaJ/wCkttX6d1+YnwL/AOUnfxw/7BWif+kttWlPaXocuJ+Kl/i/9tkfp3RRRWZ1BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/OR/wW3/5Kl4I/7BVx/wCjhX6t/wDBuP8A8mu+Of8AsaT/AOklvX5Sf8Ft/wDkqXgj/sFXH/o4V+rf/BuP/wAmu+Of+xpP/pJb16dD4EfFZn/vU/66H9DlFFFanAFFFFABRRRQAUUUUAFfhv8A8HBf/Jh9p/2NOn/+ibmv3Ir8N/8Ag4L/AOTD7T/sadP/APRNzQB+L/8AwQC/5PH8S/8AYmXn/pdY1/XxX8g//BAL/k8fxL/2Jl5/6XWNf18V8Xnn+9P0R62D/hhRRRXjnUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/HD/wAF3/8Ak9u0/wCxZsP/AEbcV+4v/Bvn/wAmIXn/AGNWof8Aom2r8Ov+C7//ACe3af8AYs2H/o24r9xf+DfP/kxC8/7GrUP/AETbV9/l3+60/Q8Wv/EkfuTRRRXaYhRRRQAUUUUAFFFFABRRRQB+RP8AwXL/AOUcfi7/AK/tJ/8ASyKv5jP+CPn/ACefY/8AYJv/AP0AV/Tn/wAFy/8AlHH4u/6/tJ/9LIq/mM/4I+f8nn2P/YJv/wD0AVcPiRFX4Gf1o0UUV2nlBRRRQAUUUUAFFFFABRRRQAUUVn3+r6VpWz+07qK28zO3zXVN2OuMkZxmgDQorx3Vf2iP2f8AQvM/tvx14es/Kxv8/U7aPbuxjO6QYzkYz615rqn7c37H2kZ+1fEfQX2vsPkXaT8jP/PMtkcdenvyKV0VyvsfVlFfGV1/wUN/Yss4GuJviHphVcZCeZI3PHCqhJ/AVj/8PKP2H/8AooFp/wCA91/8Zo5l3H7OXZn3LRXwV/w88/YW+3/2b/wnsXmf3vsN75fTP+s+z7P168da0P8Ah5R+w/8A9FAtP/Ae6/8AjNLmXcPZz7M+5aK+Ov8Ah4J+xh/0UTSf++2/+Jrd0f8Abh/ZA11gtl8SNAQklf8ASL2O3GQM9ZSnHv0J460+Zdxckux9UUV5Tpfx3+B2uRfaNF8Z6FeR4Vt0Go28gw3IOVc8Ht616VY6jp+pxGfTZ47iMHaWiYOAfTIJ55piaa3LlFFFAgooooAKKKKACiiigAooooAK+Ov+Cgf/ACZh8RP+wS//AKGtfYtfHX/BQP8A5Mw+In/YJf8A9DWlLZlw+JH853/BIf8A5SOfC7/r+uv/AEjnr/QOr/Px/wCCQ/8Aykc+F3/X9df+kc9f6B1cB6oUUUUAFFFFABRRRQAUUUUAfkV/wXK/5Rx+Lv8Ar+0n/wBLIq/ld/4JTf8AJ63hz/r11H/0mkr+qL/guV/yjj8Xf9f2k/8ApZFX8rv/AASm/wCT1vDn/XrqP/pNJWtD+JH1Q1uf1n0UUV75YUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAfyYf8ABVn/AJPW8R/9eunf+k0df1l/8EVf+UZnw0/7jP8A6dbyv5NP+CrP/J63iP8A69dO/wDSaOv6y/8Agir/AMozPhp/3Gf/AE63leDX/iS9SHufqZRRRWIgooooAKKKKACiiigAooooAK/jq/4ON/8Ak6PwN/2Ko/8ASu4r+xWv46v+Djf/AJOj8Df9iqP/AEruKBnsv/BFL/k1jX/+xruv/SOzr9gK/H//AIIpf8msa/8A9jXdf+kdnX7AVoj3cN/CiFFFFBsFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFfyf/APBXr/k8q9/7BVh/6Ca/rAr+T/8A4K9f8nlXv/YKsP8A0E0nsceO/h/M/p7/AOCGv/KOPwj/ANf2rf8ApZLX661+RX/BDX/lHH4R/wCv7Vv/AEslr9dag8cKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//9f+/iiiigD/ADn/APgox/yfh8XP+xp1L/0c1f1Rfsof8mtfDX/sVdG/9JIq/ld/4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/wCxV0b/ANJIq5cVsj3sh+Ofoe/UUUVwn0wUUUUAFFFFABRRRQAV8UfHb9vX4J/s+fEL/hWHi+11e/1cWyXbx6Zai5CRScKWO9cZ9MfzGftevgn4Af8AKYnxj/2Thf8A0rsq2owUpWZ5+ZYmdClzw3uef/8AD1r9nr/oAeLP/BWP/jtfM/8AwTU/b/8AhJ+yX8GvEngL4paF4lkvtV8T3msQGx07zo/s88FtGoYtIhDbomyMEYxzX9Q1Fd0KUYbHy+KxtTEW9pbQ/Ir/AIfR/ss/9C94y/8ABSv/AMfo/wCH0f7LP/QveMv/AAUr/wDH6/XWitDjPyK/4fR/ss/9C94y/wDBSv8A8fo/4fR/ss/9C94y/wDBSv8A8fr9daKAPyK/4fR/ss/9C94y/wDBSv8A8fo/4fR/ss/9C94y/wDBSv8A8fr9daKAPyK/4fR/ss/9C94y/wDBSv8A8fo/4fR/ss/9C94y/wDBSv8A8fr9daKAPyK/4fR/ss/9C94y/wDBSv8A8fo/4fR/ss/9C94y/wDBSv8A8fr9daKAPjL9lT9ur4L/ALYOq6/onwwttWsrvw2ltJdxarai2bbdb9hUK75xsOc46jGecfQXxo/5I74s/wCwNf8A/oh6/Nb9j/8A5SYftMf9wH/0nNfpT8aP+SO+LP8AsDX/AP6IegD8+/8AgjJ/yYB4W/6/NU/9K5a8X/4Kk/8AJ2v7LX/Ywal/6N06vaP+CMn/ACYB4W/6/NU/9K5a8X/4Kk/8na/stf8AYwal/wCjdOpS2Zth/wCLD1X5n3/RRRXkH3wUUUUAFFFFABX5ifAv/lJ38cP+wVon/pLbV+ndfmJ8C/8AlJ38cP8AsFaJ/wCkttWlPaXocuJ+Kl/i/wDbZH6d0UUVmdQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAfzkf8Ft/+SpeCP8AsFXH/o4V+rf/AAbj/wDJrvjn/saT/wCklvX5Sf8ABbf/AJKl4I/7BVx/6OFfq3/wbj/8mu+Of+xpP/pJb16dD4EfFZn/AL1P+uh/Q5RRRWpwBRRRQAUUUUAFFFFABX4b/wDBwX/yYfaf9jTp/wD6Jua/civw3/4OC/8Akw+0/wCxp0//ANE3NAH4v/8ABAL/AJPH8S/9iZef+l1jX9fFfyD/APBAL/k8fxL/ANiZef8ApdY1/XxXxeef70/RHrYP+GFFFFeOdQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH8cP/Bd//k9u0/7Fmw/9G3FfuL/wb5/8mIXn/Y1ah/6Jtq/Dr/gu/wD8nt2n/Ys2H/o24r9xf+DfP/kxC8/7GrUP/RNtX3+Xf7rT9Dxa/wDEkfuTRRRXaYhRRRQAUUUUAFFFFABRRRQB+RP/AAXL/wCUcfi7/r+0n/0sir+Yz/gj5/yefY/9gm//APQBX9Of/Bcv/lHH4u/6/tJ/9LIq/mM/4I+f8nn2P/YJv/8A0AVcPiRFX4Gf1o0UUV2nlBRRXjPxn/aE+DX7Pmgf8JH8XdftdHhYExRSNuuJyO0UK5kc/wC6pA74oGlfRHs1RzTRW8TTzsEjQFmZjgADqST0Ar8vtB/aF/bs/a8vRB+xp8PI/DPhW5iJi8WeMUeCGVGyFlt413BhkcbFuR/eC169on/BIzxN8WbiLXP25Pi3rvjx98U7aNpjDTdJSVfvLsGdynpvijt2rGVZLY6I4aT30On+If7fX7H3wwZ4fE3jzTZZkBPk2DNfvnCkDFssmCdwxkgdfQ4+brb/AIKef8LHlNt+zL8JfGHj9g7Is0Vqbe1cqrMcSILgj7vRkU9eOAD+rfwh/YF/Y5+BsMQ+Hvw80eK5iaN1vLu3F7dh49uGE9x5kinKhsKwG7nGea+uYIIbaFLa2RY441CoqjCqo4AAHQAVm60uhusNBbn4Q6XN/wAFgvi4yyeGfh94V+HVjOu5JtevDczqMKvKwO7Kclmw1uDhcHtv24f2Ev8Agp946s2t/iT+0BpugiTapj0HSlk2qQN5WXZaSZBHHPPqucV+5FFQ5yfU0VKC2R+K0P8AwR1vPFTz/wDC6fjx498RRTgI0dtdCzQxgfdKym5U/Nz0A68ZOa6fRP8Aghv+wdp0ss+s2Ot608pZi17qbg5bHOYBFk8Hrnqc9sfsFRUtlpW2PzW0f/gkF/wTs0WHyofh1FOxVQz3GoX8zMV7/NckAnvtAB9Oler6f/wTn/YW0yEwW3wr8OspbdmWzWZs/V9xxx0zivtKikM+Y/8Ahif9jP8A6JH4L/8ABBY//Ga2NP8A2SP2U9IhNtpXwx8J2sbNuKxaLZopY8ZwsQGeBX0JRQB4V/wy7+zN/wBE68Mf+Ci1/wDjVZmpfshfsm6zs/tf4X+Erry87PO0SzfbnGcbojjOBmvoiigD5en/AGIf2MbiF7eT4SeDQrqVJXQrJWweOCIQQfcHIritS/4JxfsKars+0/Cvw+vl5x5NqIeuOvl7c9OM5xX2tRQB+Zmu/wDBHj/gnZrqHd8PltJNoUSWupX8RABz90XGwk9CSpOPwryLWP8AghZ+wtqAZtHj8QaPLvLxy2epZeI842+dHKPlOCCQTkDJPOf2QooA/FSX/gkB4s8Ky+Z8Gf2gvHOgBCWjjvJvt0WfmI3xo9ujgFhwRg8+vGJJ+xN/wVR8DLJB8PfjnofiSGOXMUev6YIC6EgkvIkNzIp4wFDsMHqK/caiqUn0ZLhF7o/BO58U/wDBXD4SW8X/AAnvwm0Px7bRvte48PX4gmZckco7u2W67lg2gdQDXLv/AMFSvCfgaUWn7RXw18ZfD2VtoVtR05vKLMpYLl/KfJwduIzkAniv6FKq31jZanZTabqUKXFvcI0UsUqh0dHGGVlOQQQcEHgiqVWSM3h4Pofkz8Of23v2TPivLHbeCfHmlyzyhmSC6kNlMwXOcR3IickBScYzt+bpzX1RWZ8YP+Ccf7E/xvhnPjT4eaVBd3Ctm90yL+zrneejl7Yxl2B5HmbgcYII4r4g1X/glP8AGX4KM2pfsOfGXVfD0MZkkj0DxGBqGmFmGAoYKRGoHy7jbyvjB3ZXJ0VfujGWF/lZ95UV+V2u/tg/tY/sl3dnYft4fDKSHQpUjjPirw032qyErHA81NzKjMSAVMkbZVjHGykAff8A8Jfjb8J/jr4bHi34R69aa7Y8B2t3/eRM3IWWJsSRMRztkVWxzitozT2OedOUd0epUUUVRmFfHX/BQP8A5Mw+In/YJf8A9DWvsWvjr/goH/yZh8RP+wS//oa0pbMuHxI/nO/4JD/8pHPhd/1/XX/pHPX+gdX+fj/wSH/5SOfC7/r+uv8A0jnr/QOrgPVCiiigAooooAKKKKACiiigD8iv+C5X/KOPxd/1/aT/AOlkVfyu/wDBKb/k9bw5/wBeuo/+k0lf1Rf8Fyv+Ucfi7/r+0n/0sir+V3/glN/yet4c/wCvXUf/AEmkrWh/Ej6oa3P6z6KKK98sKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP5MP+CrP/J63iP/AK9dO/8ASaOv6y/+CKv/ACjM+Gn/AHGf/TreV/Jp/wAFWf8Ak9bxH/166d/6TR1/WX/wRV/5RmfDT/uM/wDp1vK8Gv8AxJepD3P1MooorEQUUUUAFFFFABRRRQAUUUUAFfx1f8HG/wDydH4G/wCxVH/pXcV/YrX8dX/Bxv8A8nR+Bv8AsVR/6V3FAz2X/gil/wAmsa//ANjXdf8ApHZ1+wFfj/8A8EUv+TWNf/7Gu6/9I7Ov2ArRHu4b+FEKKKKDYKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK/k/wD+CvX/ACeVe/8AYKsP/QTX9YFfyf8A/BXr/k8q9/7BVh/6CaT2OPHfw/mf09/8ENf+UcfhH/r+1b/0slr9da/In/ghp/yjj8I/9f2rf+lktfrtUHjhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH/9D+/iiiigD/ADn/APgox/yfh8XP+xp1L/0c1f1Rfsof8mtfDX/sVdG/9JIq/ld/4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/wCxV0b/ANJIq5cVsj3sh+Ofoe/UUUVwn0wUUUUAFFFFABRRRQAV8E/AD/lMT4x/7Jwv/pXZV97V8E/AD/lMT4x/7Jwv/pXZV04X4zyM7/3deq/U/a6iiiu8+SPwc/4Kcf8ABeb4Rf8ABMr9pbw/+y94v+HPiXxvrviPQLfXrVtCMLApc3NzbLEI3YO0ga1ZvlBGGHvXzN8Ef+Dqb9inx78atG+CXxx8C+M/hPda9NFb2+oeIbWFbKJ522RmcrL5scbN8vmeUyL1YqoJH5bf8F+/jvJ+zF/wcOfs6/H6Hw7f+LW8K+DNIvho+lruvLzZqesDy4hhssc8cHpXjn/BST4w/ti/8HE3j/4Wfs7/AAI/Zm8TfD+x8PanNcXfijxLbSpHbRXgSOQyzmCOKGCNV8xkDvJKwUIu5QGAP6RP+CnH/Bef4Rf8Eyv2mPD/AOy74u+HPiXxvrviPQLfX7VtCMLAx3NzdWyxCN2DtIGtWY7QRhh7186/Af8A4Onf2HviH8X9N+Dfx88IeL/g5dauypbah4mtIxYB3bagmeNzLErNwJDEY15LsoGa+Ff+CmOlRaF/wdI/se6JBI8qWfhPQYFeQ7nYR6hrKgse5OOT61+i3/B1R8JPhz45/wCCRviv4i+KbCCbXPBOq6Ne6Ldso86GW7vobOZUbrteCd9y52kqpIyoIAPv7/gqt/wVL+GP/BKP4K+HvjZ8T/DWp+KbLxFrS6JDb6U8SSJI0Es4djMyqV2wkcHOSK/IOH/g6p8DXESzwfsyfFN0cBlZbOMgg9CDnkGvyj/4LUeOvFXxI/4Nwv2OPGHjV5pdTuLvRYppbhi8swt9IvIUldiSWMiIHLE5O7J5r9WfgV/wVu/4LR3Vt4N8HXf7D2qQ6HIunWT6obu42paEIhuMeRjAT58ZxQB/UL8KfHkXxT+F3hv4nQ2M+mJ4j0qz1RbO6G2e3F5CsoikHZ03bWHqDXfV/HR/wcR/t/8A7T37PP7a/wAJv2c5fiN4l+B/wN8R6K+o6v4w8Kaf9r1Ke/EtxG8SPvicrbhLffHFKrKs5kZZMRpX0j/wQ0+LHxc8b/HXxbpvhL9sXRv2lvhI2nLPYabrYurfxrYT/u/381vdxLMkKsXibMskb5Rx5bEqQD+oaiiigD8i/wBj/wD5SYftMf8AcB/9JzX6U/Gj/kjviz/sDX//AKIevzW/Y/8A+UmH7TH/AHAf/Sc1+lPxo/5I74s/7A1//wCiHoA/Pv8A4Iyf8mAeFv8Ar81T/wBK5a8X/wCCpP8Aydr+y1/2MGpf+jdOr2j/AIIyf8mAeFv+vzVP/SuWvF/+CpP/ACdr+y1/2MGpf+jdOpS2Zth/4sPVfmff9FFFeQffBRRRQAUUUUAFfmJ8C/8AlJ38cP8AsFaJ/wCkttX6d1+YnwL/AOUnfxw/7BWif+kttWlPaXocuJ+Kl/i/9tkfp3RRRWZ1BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/OR/wW3/5Kl4I/7BVx/wCjhX6t/wDBuP8A8mu+Of8AsaT/AOklvX5Sf8Ft/wDkqXgj/sFXH/o4V+rf/BuP/wAmu+Of+xpP/pJb16dD4EfFZn/vU/66H9DlFFFanAFFFFABRRRQAUUUUAFfhv8A8HBf/Jh9p/2NOn/+ibmv3Ir8N/8Ag4L/AOTD7T/sadP/APRNzQB+L/8AwQC/5PH8S/8AYmXn/pdY1/XxX8g//BAL/k8fxL/2Jl5/6XWNf18V8Xnn+9P0R62D/hhRRRXjnUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/HD/wAF3/8Ak9u0/wCxZsP/AEbcV+4v/Bvn/wAmIXn/AGNWof8Aom2r8Ov+C7//ACe3af8AYs2H/o24r9xf+DfP/kxC8/7GrUP/AETbV9/l3+60/Q8Wv/EkfuTRRRXaYhRRRQAUUUUAFFFFABRRRQB+RP8AwXL/AOUcfi7/AK/tJ/8ASyKv5jP+CPn/ACefY/8AYJv/AP0AV/Tn/wAFy/8AlHH4u/6/tJ/9LIq/mM/4I+f8nn2P/YJv/wD0AVcPiRFX4Gf1o0UUV2nlHyv+1t+0nH+zd8PrXUNF0/8AtrxR4ivI9J8P6ZnatzfznCb24wi5y3IzwoILZF79lj/gmf4a0HWI/wBoT9sRo/iF8UtS/f3DX4W407TWJ3JDbQMPLzD0VyMKf9WFHJ+JP2vviX4Y+HP/AAUd/Z6174jXRg0DTpbl2YnCQS3bCFZWORhQ4iLnOAq5weh/o9rkrSblY9DDwSjzdWFFFFZHQFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBVvrGy1Oym03UoUuLe4RopYpVDo6OMMrKcggg4IPBFfjD+1V/wTp1j4VXM37Sn/BOaBfCfjCxPn6l4dtCV0zWrdCGMS2+7y43GPljjCI2Tt2vhq/aiqt9fWWmWU2palMlvb26NLLLKwRERBlmZjgAADJJ4AoTsJq+jPy7/Zb/AGhNB/ab+DenfFHR4hZ3MjPa6jY7972V7DgSwvwDkZDLkAlGU4Ga+hq/If8A4Jf+N9H8d/Ev4/a94PldvD2o+MZtS01H7Q3ktyyt1PLRrHnk9OtfrxXdB3imeZVjyyaQV8df8FA/+TMPiJ/2CX/9DWvsWvjr/goH/wAmYfET/sEv/wChrTlsxQ+JH853/BIf/lI58Lv+v66/9I56/wBA6v8APx/4JD/8pHPhd/1/XX/pHPX+gdXAeqFFFFABRRRQAUUUUAFFFFAH5Ff8Fyv+Ucfi7/r+0n/0sir+V3/glN/yet4c/wCvXUf/AEmkr+qL/guV/wAo4/F3/X9pP/pZFX8rv/BKb/k9bw5/166j/wCk0la0P4kfVDW5/WfRRRXvlhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/Jh/wVZ/5PW8R/wDXrp3/AKTR1/WX/wAEVf8AlGZ8NP8AuM/+nW8r+TT/AIKs/wDJ63iP/r107/0mjr+sv/gir/yjM+Gn/cZ/9Ot5Xg1/4kvUh7n6mUUUViIKKKKACiiigAooooAKKKKACv46v+Djf/k6PwN/2Ko/9K7iv7Fa/jq/4ON/+To/A3/Yqj/0ruKBnsv/AARS/wCTWNf/AOxruv8A0js6/YCvx/8A+CKX/JrGv/8AY13X/pHZ1+wFaI93DfwohRRRQbBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABX8n//AAV6/wCTyr3/ALBVh/6Ca/rAr+T/AP4K9f8AJ5V7/wBgqw/9BNJ7HHjv4fzP6ev+CGn/ACjj8I/9f2rf+lktfrtX5E/8ENP+UcfhH/r+1b/0slr9dqg8cKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//R/v4ooooA/wA5/wD4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/7FXRv/SSKv5Xf+CjH/J+Hxc/7GnUv/RzV/VF+yh/ya18Nf8AsVdG/wDSSKuXFbI97Ifjn6Hv1FFFcJ9MFFFFABRRRQAUUUUAFfBPwA/5TE+Mf+ycL/6V2Vfe1fBPwA/5TE+Mf+ycL/6V2VdOF+M8jO/93Xqv1P2uooorvPkj+Yz9vz/gnn+2D8bP+C/n7Ov7bPwx8If2n8MfAmiaXZ65rP8AaFlD9lmt77U5pF+zy3CXMm2O4ibMcTg7sAkhgP6c6KKAP5C/+C0n7C//AAVJ8ef8Fd/hJ/wUA/YA+GFj48g+HHhTTreN9S1SwtLQ6lbX+pStDLDcX1ncMoiuY23IQp3YDZBA8v8A2hv2OP8Ag4i/4LJWvh79nn9vHw/4M+BfwqtNTh1LV/7Duo7m4u/IyF+SG+1FpXUOxijaSGHdhnyyrX9olFAH8wH/AAcC/wDBLj49ftJf8E8vhD+yT/wT68EjXovh1rlikGm/2haWX2bSrHTri0jJlvp4FcgtGpwxck5I6mv6SfhppGo+H/hz4f0HV4/Ju7HTbS3njyG2yRRKrDKkg4IIyCR6V21FAH8/3/BWr4a/8FZr74veGfHP7J3hnwr8dPgwLcJ4l+FfiSz0sfarhRInmi4vowzRlXV1CTB0kTlJEYqPzc/4JY/8Ek/2q7L/AIKtW/8AwUh+Jfwa0P8AZg8FaBp15BZeCtG1OPUGv7m8tZLUsywSPHFGBMZHBEI3xoEh5Zx/ZJRQAUUUUAfkX+x//wApMP2mP+4D/wCk5r9KfjR/yR3xZ/2Br/8A9EPX5rfsf/8AKTD9pj/uA/8ApOa/Sn40f8kd8Wf9ga//APRD0Afn3/wRk/5MA8Lf9fmqf+lcteL/APBUn/k7X9lr/sYNS/8ARunV7R/wRk/5MA8Lf9fmqf8ApXLXi/8AwVJ/5O1/Za/7GDUv/RunUpbM2w/8WHqvzPv+iiivIPvgooooAKKKKACvzE+Bf/KTv44f9grRP/SW2r9O6/MT4F/8pO/jh/2CtE/9JbatKe0vQ5cT8VL/ABf+2yP07ooorM6gooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/nI/wCC2/8AyVLwR/2Crj/0cK/Vv/g3H/5Nd8c/9jSf/SS3r8pP+C2//JUvBH/YKuP/AEcK/Vv/AINx/wDk13xz/wBjSf8A0kt69Oh8CPisz/3qf9dD+hyiiitTgCiiigAooooAKKKKACvw3/4OC/8Akw+0/wCxp0//ANE3NfuRX4b/APBwX/yYfaf9jTp//om5oA/F/wD4IBf8nj+Jf+xMvP8A0usa/r4r+Qf/AIIBf8nj+Jf+xMvP/S6xr+vivi88/wB6foj1sH/DCiiivHOoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD+OH/gu/8A8nt2n/Ys2H/o24r9xf8Ag3z/AOTELz/satQ/9E21fh1/wXf/AOT27T/sWbD/ANG3FfuL/wAG+f8AyYhef9jVqH/om2r7/Lv91p+h4tf+JI/cmiiiu0xCiiigAooooAKKKKACiiigD8if+C5f/KOPxd/1/aT/AOlkVfzGf8EfP+Tz7H/sE3//AKAK/pz/AOC5f/KOPxd/1/aT/wClkVfzGf8ABHz/AJPPsf8AsE3/AP6AKuHxIir8DP60aKKK7Tyj8df20PgZ4N/aV/4KCfCD4IePzMmla9oeuRySW77JY3itriWKRDyMpKiOAQVbGGBBIr2nwd+1n+0V/wAEzrWx+DH7aOi6h458BWmyHS/HukI0pggY7I4LuOQAb1P96USBRhRNwaZ8S/8AlLT8Av8AsE6//wCkV1X7V3tlZ6lZzadqMKXFvcI0csUih0dHGGVlOQQQcEHgiuOr8TPTofAjN+E3xv8AhF8dvDx8VfB7xHYeIrBW2vJZTCQxtllw6/eQkqcbgMgZGRzXqdfkH8Tf+CUXwE1bxHc/En9nrUdT+Efi98NBf+G5mitkcHJ3WoZV8s/LmOJ4VJUdPm3cCvif/gsR+zIz2t3Z6D8dvD1usYSdCunasI1BByAYgW4Ab5bhmyp3Z34zNT9uqK/GzT/+Cznwo8G6i3hn9qL4f+Lfhlq0T+XKLyz+1WgcBCVSVdkj/eLKRBtaMBgfmC19ofDX/goH+xT8W/LTwR8TNCkmm2eXb3lyLC4cvnAWG6EMjH5TkBcjjOMjIB9h0VVsb6y1Oyh1LTZkuLe4RZYpYmDo6OMqysMggg5BHBFWqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoqhqeqaZolhLqus3MVpawLukmmcRxovqzMQAPqa+M/il/wAFH/2Hvg9Cz+L/AIk6PNKFz5GmSnU5snoCloJipPbdgYOScc0AfbdFfjNff8Fh9B+Is0ujfsg/Crxd8Sr5GdTcJaG0sEX51SRpR5rqrMv/AC0jj47hgVrGuNO/4LAftPu0fiDV9B+A3hydpI2h09RqesmFxlSXDOgYdN0c1s4P8NAH6cfHv9p74D/sx+Gv+Ep+N/iW00KBlJhhkbfc3BHaGBA0sh9dqkDvgV+Rvjf4j/tOf8FW7X/hXfwf0zUPhd8ErrB1TxDqcZj1HXLck/ubSMHaYX/iwxQgHe/WF/of4M/8Eq/2Y/h3qFt4z+J0N38S/FsTCSTV/Es73W5/a3ZjDtB5USCRgf4q/SiGGG2hS3t0WOONQqqowqqOAAB0AoA/Av8A4JufDzwz8JfjV8f/AIY+DI3i0rQPElvY2iyOZHEUH2hV3MeScDk+tfrTX5nfsT/8nV/tM/8AY4L/AOhXNfpjXbS+FHm4j+Iwr46/4KB/8mYfET/sEv8A+hrX2LXx1/wUD/5Mw+In/YJf/wBDWqlsyIfEj+c7/gkP/wApHPhd/wBf11/6Rz1/oHV/n4/8Eh/+Ujnwu/6/rr/0jnr/AEDq4D1QooooAKKKKACiiigAooooA/Ir/guV/wAo4/F3/X9pP/pZFX8rv/BKb/k9bw5/166j/wCk0lf1Rf8ABcr/AJRx+Lv+v7Sf/SyKv5Xf+CU3/J63hz/r11H/ANJpK1ofxI+qGtz+s+iiivfLCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD+TD/gqz/yet4j/AOvXTv8A0mjr+sv/AIIq/wDKMz4af9xn/wBOt5X8mn/BVn/k9bxH/wBeunf+k0df1l/8EVf+UZnw0/7jP/p1vK8Gv/El6kPc/UyiiisRBRRRQAUUUUAFFFFABRRRQAV/HV/wcb/8nR+Bv+xVH/pXcV/YrX8dX/Bxv/ydH4G/7FUf+ldxQM9l/wCCKX/JrGv/APY13X/pHZ1+wFfj/wD8EUv+TWNf/wCxruv/AEjs6/YCtEe7hv4UQooooNgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr+T//AIK9f8nlXv8A2CrD/wBBNf1gV/J//wAFev8Ak8q9/wCwVYf+gmk9jjx38P5n9PX/AAQ0/wCUcfhH/r+1b/0slr9dq/In/ghp/wAo4/CP/X9q3/pZLX67VB44UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/9L+/iiiigD/ADn/APgox/yfh8XP+xp1L/0c1f1Rfsof8mtfDX/sVdG/9JIq/ld/4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/wCxV0b/ANJIq5cVsj3sh+Ofoe/UUUVwn0wUUUUAFFFFABRRRQAV8E/AD/lMT4x/7Jwv/pXZV97V8E/AD/lMT4x/7Jwv/pXZV04X4zyM7/3deq/U/a6vDf2ifjLffAT4XXXxI07w1qXi6W2mhiGmaRGZbyXzXCkxoAxbZnc3ooJ7V7lRXefJH49/8PW/GX/RvPxF/wDBc/8A8bo/4et+Mv8Ao3n4i/8Aguf/AON1+wlFAH49/wDD1vxl/wBG8/EX/wAFz/8Axuj/AIet+Mv+jefiL/4Ln/8AjdfsJRQB+Pf/AA9b8Zf9G8/EX/wXP/8AG6P+HrfjL/o3n4i/+C5//jdfsJRQB+Pf/D1vxl/0bz8Rf/Bc/wD8bo/4et+Mv+jefiL/AOC5/wD43X7CUUAc34M8QTeLPB+leKbmzl0+TU7OC7a1mGJYGmQOY3yB8yZ2ngciukoooA/Iv9j/AP5SYftMf9wH/wBJzX6U/Gj/AJI74s/7A1//AOiHr81v2P8A/lJh+0x/3Af/AEnNfpT8aP8Akjviz/sDX/8A6IegD8+/+CMn/JgHhb/r81T/ANK5a8X/AOCpP/J2v7LX/Ywal/6N06vaP+CMn/JgHhb/AK/NU/8ASuWvF/8AgqT/AMna/stf9jBqX/o3TqUtmbYf+LD1X5n3/RRRXkH3wUUUUAFFFFABX5ifAv8A5Sd/HD/sFaJ/6S21fp3X5ifAv/lJ38cP+wVon/pLbVpT2l6HLifipf4v/bZH6d0UUVmdQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAfzkf8ABbf/AJKl4I/7BVx/6OFfq3/wbj/8mu+Of+xpP/pJb1+Un/Bbf/kqXgj/ALBVx/6OFfq3/wAG4/8Aya745/7Gk/8ApJb16dD4EfFZn/vU/wCuh/Q5RRRWpwBRRRQAUUUUAFFFFABX4b/8HBf/ACYfaf8AY06f/wCibmv3Ir8N/wDg4L/5MPtP+xp0/wD9E3NAH4v/APBAL/k8fxL/ANiZef8ApdY1/XxX8g//AAQC/wCTx/Ev/YmXn/pdY1/XxXxeef70/RHrYP8AhhRRRXjnUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/HD/AMF3/wDk9u0/7Fmw/wDRtxX7i/8ABvn/AMmIXn/Y1ah/6Jtq/Dr/AILv/wDJ7dp/2LNh/wCjbiv3F/4N8/8AkxC8/wCxq1D/ANE21ff5d/utP0PFr/xJH7k0UUV2mIUUUUAFFFFABRRRQAUUUUAfkT/wXL/5Rx+Lv+v7Sf8A0sir+Yz/AII+f8nn2P8A2Cb/AP8AQBX9Of8AwXL/AOUcfi7/AK/tJ/8ASyKv5jP+CPn/ACefY/8AYJv/AP0AVcPiRFX4Gf1o0UUV2nlH5t/Ev/lLT8Av+wTr/wD6RXVftpX4l/Ev/lLT8Av+wTr/AP6RXVftpXHV+Jnp0PgQUUUVmalHUtM03WrCXS9Yt4ru1nXbJDMgkjdfRlYEEfUV8d/Ej/gnX+xH8V7qS+8Y/DbSPPmO6SWwR9NkdtxYszWbQlmYsSzEkt3JwK+0qKAPx7l/4I8+APBUpvP2bfid42+HMzbiyadqLGEsyhS2E8mTJwN2ZTkADitJf2S/+CnXgG88/wCGP7Sh1eEpjytf0iOT7h+VCX+1E5HDSLtY+lfrlRQB+QX/AAlP/BcP4dbkl034f+PlhRWJjZ7d5emVQs9kofg8soXJPXgC+/7bX/BUPwxckeL/ANmiO9jDoMadrMTHBGT80ZuByP4sYU9cniv1uooA/Jo/8FRv2kNDQt47/Zb8b2YRZC7WHmX8amM93W1jG3HO48emRzRD/wAFpPh1pkcq+OPhD8RtKmgRXkRdKikCcbm3GSeEgAYIJHI54r9ZaKAPyc03/guR+yzfb/tXhHx1Z7cY87SoTuznp5d0/TvnHWlH/Bdf9iWDUv7M1a28T6e4++bjTUGzjIyFmZueMfL39Oa/WKigD8sf+H5v7BP/AEEda/8ABa//AMVWNp//AAXZ/Yw1WY2+l6Z4suZFXcVi02N2CjjOBcHjmv1nooA/JzUv+C5H7LNjs+y+EfHV5uznydKhG3GOvmXSde2M9Knm/wCCyXhPUvN/4Qr4L/EnU/KTJ3aSiYc5wG8uaXAOOvXrxxX6uUUAfk1P/wAFPf2pdScDwb+yr40uFaVYwdRkk088gZJDWb4AJxnO3HORjFZs37aH/BVjxLbRL4L/AGbrWwml3YbUtXi2/Ke6tJbFeAcZbnIx6H9d6KAPyPXUv+C3HxGSRi/w++H8ckuQCJbqeONSBgcXkbFhzzjOP4eBUB/Y1/4KR+PWt7j4q/tN3lgVBeSLQNMjtR5mNoAeFrYFcc5Kdf4cnNfrvRQB+RNj/wAEdPgn4lvIda/aE8beMfiRqCKPMbV9TbyWba2SAAZlG92cDzjgnGT82763+G/7AX7GHwnaObwV8N9FSaFt0c95B9vnRsAZWW6Mrg4UdG9T1Jz9f0UAVrOys9Ptls9PiSCFM7UjUKoycnAGB1Oas0UUAFFFFAH4ffsT/wDJ1f7TP/Y4L/6Fc1+mNfmd+xP/AMnV/tM/9jgv/oVzX6Y120vhR5uI/iMK+Ov+Cgf/ACZh8RP+wS//AKGtfYtfHX/BQP8A5Mw+In/YJf8A9DWqlsyIfEj+c7/gkP8A8pHPhd/1/XX/AKRz1/oHV/n4/wDBIf8A5SOfC7/r+uv/AEjnr/QOrgPVCiiigAooooAKKKKACiiigD8iv+C5X/KOPxd/1/aT/wClkVfyu/8ABKb/AJPW8Of9euo/+k0lf1Rf8Fyv+Ucfi7/r+0n/ANLIq/ld/wCCU3/J63hz/r11H/0mkrWh/Ej6oa3P6z6KKK98sKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP5MP8Agqz/AMnreI/+vXTv/SaOv6y/+CKv/KMz4af9xn/063lfyaf8FWf+T1vEf/Xrp3/pNHX9Zf8AwRV/5RmfDT/uM/8Ap1vK8Gv/ABJepD3P1MooorEQUUUUAFFFFABRRRQAUUUUAFfx1f8ABxv/AMnR+Bv+xVH/AKV3Ff2K1/HV/wAHG/8AydH4G/7FUf8ApXcUDPZf+CKX/JrGv/8AY13X/pHZ1+wFfj//AMEUv+TWNf8A+xruv/SOzr9gK0R7uG/hRCiiql9f2OmWkl/qU0dvBENzySsERR6knAA+tDdtWbpNuy3LdFeVf8L2+CH/AEOWh/8Agxt//jlH/C9vgh/0OWh/+DG3/wDjlYfWqH/Pxfejv/snHf8APif/AIDL/I9Voryr/he3wQ/6HLQ//Bjb/wDxyj/he3wQ/wChy0P/AMGNv/8AHKPrVD/n4vvQf2Tjv+fE/wDwGX+R6rRXlX/C9vgh/wBDlof/AIMbf/45R/wvb4If9Dlof/gxt/8A45R9aof8/F96D+ycd/z4n/4DL/I9Voryr/he3wQ/6HLQ/wDwY2//AMco/wCF7fBD/octD/8ABjb/APxyj61Q/wCfi+9B/ZOO/wCfE/8AwGX+R6rRXlX/AAvb4If9Dlof/gxt/wD45R/wvb4If9Dlof8A4Mbf/wCOUfWqH/Pxfeg/snHf8+J/+Ay/yPVaK8q/4Xt8EP8AoctD/wDBjb//AByj/he3wQ/6HLQ//Bjb/wDxyj61Q/5+L70H9k47/nxP/wABl/keq0V5dF8cfgrPKsMPjDRHdyFVV1CAkk9ABvr1GrhVhP4JJ+hz18JXoW9tTcb7XTX5hRRRWhzhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRXP+K/FfhvwN4bvfF/i+9i07TNOiae5uZ22xxxr1JP8h1J4HNAHQUV+VHhf4s/tl/t/6hNbfsq2Q+Hnw5jnltn8X6inm3N15ZPzW0Lbe67GC7tpPLqQVHtVl/wRg+E/iuP+0v2ifiD4t8e6s0iSyTz3gghJVQpCxsJnUHBH+tOEwoxjJXMcNTHQi7RVz7tor4du/wDgi98CvDxk1D4HeN/GPgXUCrbJbDUQYwxAwWXYkjAMqsQJRnGMjgjwbVfif+2D/wAE99Vs9O/a+aPx78NrqZbO38W6dGTd2jsQE+1pwxG3JIYMzH7sjkbSuYKeOjJ2krH6h+IPEOgeE9GuPEfim+t9M060TzJ7q7lWGGJP7zu5CqPckV+dF/8A8FGx421658OfsqfDbxF8UntJGgkvLCJoLBZVfaQZ/LlCqVw4ZlAIZR344nwT4Zu/+Csfxk1q11S/vLL4E+BbuOFFst0DeINQUBiHkYZWNFIYgDcqOmNruHX94/BPgfwf8N/DFn4L8B6bb6TpVhEkNvbWyBI0RAFHA6nAGSck9zQ5GVfGu/LT+8/Fa4/aX/4KFaFp3/CR+If2bL+XT4lV5UstTSe72NgfJDHHJKzDOSoQn1xyR6V8Bv8AgoB8C/jl4sk+G0v23wn4rikMP9j67ELW4eQE5RPmKlwBkoSH54Bwa/Ymviz9tH9jb4P/ALVXw8upPGEdvo3iTSrdpdJ8TAeXcabJDl1ZpFZC0KkktG7bRksNrgMFzGMMbUT11NPxB4h0Dwno1x4j8U31vpmnWieZPdXcqwwxJ/ed3IVR7kivzd8S/wDBTHw74i8T3Xgv9lLwJr/xbv7FVNzJpMEqWke5wgJkEUsgX73zmIRkgYYgkjwf9jL4SftC/wDBTPw5pWv/ALVmrs/wo8Ky/ZktrQSWkviS8t/+WksgKuY0yFeRdmWG1AJPMdf6Ivh38M/h78I/CsHgj4YaLZ6BpNtzHa2MKwx7jgFiFA3O2Pmdssx5JJpuRrVxzelM/FaX9qj/AIKBaMtrqXiD9mrVJbO4cqVs77zpwB1JRInZfUb1Absec16L8If+CiXwG+IWuj4e/EBrn4e+MYn8m40XxFG1nJHMMfIJXCx5JICq+yRuyV+zlfOf7Sn7KnwU/av8CT+BPjBpKXIdCttfwqiX9k+QQ9vMVYocjkEFG6MrAkUuYyhjaieruYdFfml8FfHXxW/ZO+Ptp+wx+0jqn/CQW+p2xufBniLbtNxaR+YBbXJbpKojwBlmDELuYNGa/S2rPVpVVUjzRCiiig0CiiigAr+T/wD4K9f8nlXv/YKsP/QTX9YFfyf/APBXr/k8q9/7BVh/6CaT2OPHfw/mf09f8ENP+UcfhH/r+1b/ANLJa/XavyJ/4Iaf8o4/CP8A1/at/wClktfrtUHjhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//T/v4ooooA/wA5/wD4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/7FXRv/SSKv5Xf+CjH/J+Hxc/7GnUv/RzV/VF+yh/ya18Nf8AsVdG/wDSSKuXFbI97Ifjn6Hv1FFFcJ9MFFFFABRRRQAUUUUAFfBPwA/5TE+Mf+ycL/6V2Vfe1fBPwA/5TE+Mf+ycL/6V2VdOF+M8jO/93Xqv1P2uoorxD9of4Z+P/i58LbzwR8MfGNz4D1m4lheHWbSEzyQrG4Z1EYkiyHUFT84xnPOK7z5I9vor8e/+HfH7cn/R12u/+Cg//J1H/Dvj9uT/AKOu13/wUH/5OoA/YSivx7/4d8ftyf8AR12u/wDgoP8A8nUf8O+P25P+jrtd/wDBQf8A5OoA/YSivx7/AOHfH7cn/R12u/8AgoP/AMnUf8O+P25P+jrtd/8ABQf/AJOoA/YSivx7/wCHfH7cn/R12u/+Cg//ACdR/wAO+P25P+jrtd/8FB/+TqAP2Eorm/Bmi6l4a8H6V4d1i/k1W70+zgtp72UESXMkSBWlYFmO5yCxyxOT1PWukoA/Iv8AY/8A+UmH7TH/AHAf/Sc1+lPxo/5I74s/7A1//wCiHr81v2P/APlJh+0x/wBwH/0nNfpT8aP+SO+LP+wNf/8Aoh6APz7/AOCMn/JgHhb/AK/NU/8ASuWvF/8AgqT/AMna/stf9jBqX/o3Tq9o/wCCMn/JgHhb/r81T/0rlrxf/gqT/wAna/stf9jBqX/o3TqUtmbYf+LD1X5n3/RRRXkH3wUUUUAFFFFABX5ifAv/AJSd/HD/ALBWif8ApLbV+ndfmJ8C/wDlJ38cP+wVon/pLbVpT2l6HLifipf4v/bZH6d0UUVmdQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAfzkf8Ft/+SpeCP+wVcf8Ao4V+rf8Awbj/APJrvjn/ALGk/wDpJb1+Un/Bbf8A5Kl4I/7BVx/6OFfq3/wbj/8AJrvjn/saT/6SW9enQ+BHxWZ/71P+uh/Q5RRRWpwBRRRQAUUUUAFFFFABX4b/APBwX/yYfaf9jTp//om5r9yK/Df/AIOC/wDkw+0/7GnT/wD0Tc0Afi//AMEAv+Tx/Ev/AGJl5/6XWNf18V/IP/wQC/5PH8S/9iZef+l1jX9fFfF55/vT9Eetg/4YUUUV451BRRRQAUUV4v8AHj9of4N/sy+CE+I3xy1tNB0eS5jsknaKWcvPKGZUWOFJJGJVGbhTgKSeBVRi5NRirsTaSuzofip8X/hh8D/CT+O/i3rlp4f0hJUg+03kgRTLIflRe7McE4UE4BPQEj5i/wCHlv7CH/RT9G/77f8A+Ir8ev8AgrR/wUA/ZH/aZ/Zbt/hz8EPFv9t6ymuWl41v9gvbbEEUcys2+4giTguvG7PPAr6S/wCGr/8AghT/ANAvwb/4Rk3/AMrq9/A5KqtPmrXi77bfmcVbF8srRs0fef8Aw8t/YQ/6Kfo3/fb/APxFH/Dy39hD/op+jf8Afb//ABFfBn/DV/8AwQp/6Bfg3/wjJv8A5XUf8NX/APBCn/oF+Df/AAjJv/ldXZ/q9R/nf4GX16fZH3n/AMPLf2EP+in6N/32/wD8RR/w8t/YQ/6Kfo3/AH2//wARXwZ/w1f/AMEKf+gX4N/8Iyb/AOV1H/DV/wDwQp/6Bfg3/wAIyb/5XUf6vUf53+AfXp9kfef/AA8t/YQ/6Kfo3/fb/wDxFH/Dy39hD/op+jf99v8A/EV8Gf8ADV//AAQp/wCgX4N/8Iyb/wCV1H/DV/8AwQp/6Bfg3/wjJv8A5XUf6vUf53+AfXp9kfef/Dy39hD/AKKfo3/fb/8AxFH/AA8t/YQ/6Kfo3/fb/wDxFfBn/DV//BCn/oF+Df8AwjJv/ldR/wANX/8ABCn/AKBfg3/wjJv/AJXUf6vUf53+AfXp9kfef/Dy39hD/op+jf8Afb//ABFH/Dy39hD/AKKfo3/fb/8AxFfBn/DV/wDwQp/6Bfg3/wAIyb/5XUf8NX/8EKf+gX4N/wDCMm/+V1H+r1H+d/gH16fZH3n/AMPLf2EP+in6N/32/wD8RR/w8t/YQ/6Kfo3/AH2//wARXwZ/w1f/AMEKf+gX4N/8Iyb/AOV1fa3wa+Dv/BOv9oPwJb/Ev4PfD7wVrWiXLvHHcp4etYvnjOGUpLbo6kHqGUGj/V6j/O/wD69Psj6i+D/x++DPx/0q51z4M+I7LxHa2TrHcSWb7xE7ZwrcAqSBnB5xz0Ir1+vxo/4Je+H9B8KftFftNeGvC1jb6bptj4tghtrS1iWGCGJDdBUSNAFVQOAAABX7L187jsOqFeVKLul/kd9GbnBSYUUUVyGh/HD/AMF3/wDk9u0/7Fmw/wDRtxX7i/8ABvn/AMmIXn/Y1ah/6Jtq/Dr/AILv/wDJ7dp/2LNh/wCjbiv3F/4N8/8AkxC8/wCxq1D/ANE21ff5d/utP0PFr/xJH7k0UUV2mIUUUUAFFFFABRRRQAUUUUAfkT/wXL/5Rx+Lv+v7Sf8A0sir+Yz/AII+f8nn2P8A2Cb/AP8AQBX9Of8AwXL/AOUcfi7/AK/tJ/8ASyKv5jP+CPn/ACefY/8AYJv/AP0AVcPiRFX4Gf1o0UUV2nlH5t/Ev/lLT8Av+wTr/wD6RXVftpX4l/Ev/lLT8Av+wTr/AP6RXVftpXHV+Jnp0PgQUUUVmahRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH4ffsT/wDJ1f7TP/Y4L/6Fc1+mNfmd+xP/AMnV/tM/9jgv/oVzX6Y120vhR5uI/iMK+Ov+Cgf/ACZh8RP+wS//AKGtfYtfHX/BQP8A5Mw+In/YJf8A9DWqlsyIfEj+c7/gkP8A8pHPhd/1/XX/AKRz1/oHV/n4/wDBIf8A5SOfC7/r+uv/AEjnr/QOrgPVCiiigAooooAKKKKACiiigD8iv+C5X/KOPxd/1/aT/wClkVfyu/8ABKb/AJPW8Of9euo/+k0lf1Rf8Fyv+Ucfi7/r+0n/ANLIq/ld/wCCU3/J63hz/r11H/0mkrWh/Ej6oa3P6z6KKK98sKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPLvjhreq+Gvgt4v8R6FM1tfafomoXNvMuN0csUDsjDORkMAa/jD/4Jk23/AAW//wCCm/wL1j47fD39qN/DVpo+vTaC9rqNqksjywW9vcGQGOArtIuAMHnINf2UftGf8m9+O/8AsXdU/wDSaSv4Df8Agk9/wTx/bZ/al/4J+ePfjZ+xx8efE/gDVtB8R31nb+D9Lvruw0/Vrq3srOcu01vdRLHPKsoiDPC4/doGYLyvJXb54pX67OwmfuD/AMEwf28/2+/AX/BTbxj/AMEqf2/PEun/ABA1HTLGS80/XbKBEeKVLeG8RS8UUAaKW2lLHzo/MSUBd2OK/aj9oj/gpz+wR+yh48i+F/7QPxP0fw74hkVHbT3MlxPCsgyhmWBJPJDDkGXbkEHoRX88/wDwbIj9kzxL4v8AH/iDxHaa3/w01pyyw+JbjxPem7uZbN5gs0lorJG8f75US6WXzJkfaDIVfbX5k/8ABLPwv+0L+0d8Vv2gviG3wC8G/HvxTqerhfET+N9Tgtp9KN5JdM4gSeNivmurhpU2svlKo245iFaSjFLW9/OwXP7NP24P2iY7f/gmr8Tf2l/2aPFMFwbfwfqOraFrulSx3EXmRws0csTjejbWHfOCMEZ4r5//AOCOP7VPiz4n/wDBKDwV+1B+1j4wS5viutz6xr+ryxW0aw2mpXUKvK+EjVUiRVyccAd6/Ev9iv4K/Gr9n7/gh5+1j8OPiJrOhax4dbSdU1DQP7A16z1+3t1ubNhcRma0kkVOY422nAJZmAyWr88P2kPGnjvw/wD8Gxn7PPhbw9LNBouv+NdYh1YxkhZVgvtUmghkx1UyJ5gB/iiU9RTdZp87X2dvmB/aj8Av+CpH/BPz9qH4h/8ACp/gV8VNG17xG2/yrBWkt5bjyxlvIE6RifA5/dF+AT0Br2bwr+2F+zR42/aD1r9lPwx4vs7n4ieHYGutR0LEiXUMKiMliHRVYYmjYbWOVYEcc1/GB+1n+xp+1V4h+H/wX174ZfBn4V/AHWPC11aXvhfxRYeLtMs7vVhDGs0eWl8g3Um/ZcByXcEsf4zX6Hf8FhtH1L9hD/gpT+z3/wAFadFtzY6Rqd5B4V8b+XygRkaMs5HDu9lJMq54BtUPXmrVeVm2trfcwP6NPEH7X37Nfhb9ojSf2TNd8XWcPxH123+12OggSPdSw7ZH34RCqgJDIx3MMKuTxg181/Gv/gr/AP8ABNb9nj4jXfwl+Lnxb0jTfEOnSmC7s4UuL020w4aOZ7WGVI3U8MjsGU8ECvxm/wCCL1l/w2p+3/8AtD/8FgfH4xoUV9P4a8JzXAwkNnCib5Bn7rQ2MdsjEcEzSd818JeB7n4f/tV/BH4++Ov+CbX7LPgfS/hoo1Zde8efErU59Sv2aO1aeaS1ikM1zazLE4nQRysiSurFg3AHXly3XW9vQD+xzxJ+19+zL4S/Z3/4a01vxrpi/DYwwTjxDFL59kY7mZbeMhog5OZnWMjGVY4IBBx83+Mv+Cvf/BNL4f6xoegeL/jFoFndeIrO01CyUySOPs19Gs0EkzJGy24kjdXHnmM7WBPBr+TT4LXl5df8GnHxdguZC6W3jG2jiUnIRDq+kOQPQbmY/U19KfGr9iP9lrwh/wAGxNh8YdG8EaPH4zfQdB8Qt4g+yRnVDe3+o2yyk3RHmlTFM8QQtsCYAAwKn6xNq8Utrhc/Wr/guB/wV0u/+CevwG0KP9nq90bU/iF40lifT0uw1zHBpMscxbUIlQiOUCRERAz7cuGKsowf1k/ZZ/aQ+FH7VfwX0r4ufB3xFb+J9MnUW019aqyobuFV85MMqYKsecDHpX8T3/BU3wt4X1r/AIN+P2Tvi1qml2k/iiGbSNFTV3hQ3q6clhfsLYTkeYId0aN5e7buUHGQK/t0/Zr+FHws+DXwX0Hwh8H/AA5pnhfSHtYbo2ekWkVnbmeeNTJJ5cKqu9zyzYyT1q6U5SqO+1kB7rRRRXSMKKKKAP5MP+CrP/J63iP/AK9dO/8ASaOv6y/+CKv/ACjM+Gn/AHGf/TreV/Jp/wAFWf8Ak9bxH/166d/6TR1/WX/wRV/5RmfDT/uM/wDp1vK8Gv8AxJepD3P1MooorEQUUUUAFFFFABRRRQAUUUUAFfx1f8HG/wDydH4G/wCxVH/pXcV/YrX8dX/Bxv8A8nR+Bv8AsVR/6V3FAz2X/gil/wAmsa//ANjXdf8ApHZ1+wFfj/8A8EUv+TWNf/7Gu6/9I7Ov2ArRHu4b+FEK+Of+CgP/ACZ743/69oP/AEoir7Gr45/4KA/8me+N/wDr2g/9KIq87OP9wxH+Cf8A6Sz6vgz/AJKDLv8Ar/S/9ORNv9m7/gnr+xv41/Z28A+MvFHga1u9T1bw5pV7dztcXAMs89tG8jkLKACzEnAAHPFe0/8ADs/9hr/on1p/4E3X/wAer2T9kX/k1D4Yf9ilov8A6RxV8pa5/wAFmf8Agld4Z1288MeIPjv4Rs9Q0+eS1uYJb5VeKaJijowxwVYEH3FceDynAuhTboQvyr7Me3ocee8a8QwzLFQhmVdJVJpJValklJ6L3j0n/h2f+w1/0T60/wDAm6/+PUf8Oz/2Gv8Aon1p/wCBN1/8er274A/tU/s1/tVaBdeKP2bPHmheOrCxdYrqXRL6G8+zu4JVZRGxaNmAJAcAkDIr3yuj+yMB/wBA8P8AwGP+R5f+vHEf/Qzr/wDg6p/8kfCv/Ds/9hr/AKJ9af8AgTdf/HqP+HZ/7DX/AET60/8AAm6/+PV91UUf2RgP+geH/gMf8g/144j/AOhnX/8AB1T/AOSPhX/h2f8AsNf9E+tP/Am6/wDj1H/Ds/8AYa/6J9af+BN1/wDHq+6qKP7IwH/QPD/wGP8AkH+vHEf/AEM6/wD4Oqf/ACR8K/8ADs/9hr/on1p/4E3X/wAeo/4dn/sNf9E+tP8AwJuv/j1fdVFH9kYD/oHh/wCAx/yD/XjiP/oZ1/8AwdU/+SPhX/h2f+w1/wBE+tP/AAJuv/j1H/Ds/wDYa/6J9af+BN1/8er7luLiC0ge6unWKKNS7u5wqqOSSTwAB1NZ2ga/oXivQrLxR4XvYNS0zUoI7q0u7WRZoLiCZQ8ckciEq6OpDKykhgQQcUf2RgP+geH/AIDH/IP9eOI/+hnX/wDB1T/5I/Cf/gpp+xj+zH8Df2Wbzx18KvCVvo+rLqNnALmOWaRhHIx3ACSRhzjrjNfpV4Y/5FrT/wDr2i/9AFfOn/BYz/kyy+/7C1h/6Ea+i/DH/Itaf/17Rf8AoArhy7D0qOZ4iFGCiuSnokkt59j7fNMzxmP4Sy6vjq0qs/b4hc05OTso0NLybdvI3KKKK+jPgwooooAKKKKACiiigAooooAKKKKACiiigAooooAK/Ov4yf8ABQnwxofjIfBr9mvQLv4p+OJgwW00f95a25VijGaWMOf3Z5YKu0D7zp1rkPjh8Vvif+1d8eZP2GP2YrqfS4LQ/wDFaeJYVBFjaEbZIIiSMuSwU7WDF/lGFEhH6yfs0fst/B39kv4dx/Df4O6e1tbFhJdXU7CS7vJgMebPIAu5vQKqovRVUcVLZ5+JxnK+WB+YGkfsuf8ABVv4021tqfxR+JOifDK2mYTHT9Ethd3UG4tlJGHynYCAqrdSKwOWO5QT0l1/wTG/aphskl0j9pzxH9tiw2Z7NnhdlHTb9s4BbHUtgcYNftFRSuzz3Vm9XJn4V698P/8AgrL+zZHc61a3eifGrQoCrtAsP2PVPKyxfykjEeW6cZnbkBVODj5x8H/EuT/gqD+1n4d+BHjOwuPCPgrwlbPq3iDw9qc/kXepXsBA+z7F2yMqMV4wpWMSMdrFBX9MVfA37XH7Afw//aV1S3+KPhTUJ/BPxL0kI2m+JtN3LMrRkbROqMnmqFyoO4OoPBK5UlynXqOPK3ofdemaZpuiabb6No1vFaWdpEkMEEKCOKKKMBVRFUAKqgAAAAAcCr1YfhnTtW0jw9ZaXr2ovq19bwolxeyRpC08gHzOUjCou487VGB0rcpGIV85fteeBfGfxO/Zj8cfDz4eWFtqet61pM9nZ292yJE0kw25JkVkDKDuXcANwHzL94fRtFAHyv8AsUfs/wAf7MX7MHhH4PTxomo2FmJtTKENu1C5JluPnAG8LIxRGPOxVHQCvqiiigAryL49fB3R/wBoD4Pa/wDBrxBf3mmWPiG2NrPc6e6x3CIWDEKWVlw2NrgghkJHevXaKAPNfg58KvCvwO+Fmg/CPwVH5emeH7OKzhyAGfYPmkbHV5Gy7nuxJr0qiigAooooA/Mb/grd8Dh8XP2O9b8VaOhXXvAZXxDp86OyPEtqQbkhl5/1G9hx95V6dR1v7PnxZ0j44/Bbw38UdHuI7gatYQy3HlkER3O0CeM46NHIGUj1HHFfcHj7w2/jLwLrXhCN1jbVbC5swzjcqmeNkyR3AzyK/CTwJ/wRx+Jnwb+GGmeMvg946/sD4t6OZXlmtJpX0fVEEzSRRzpIgdfkKo3ytGdvKEktTTsdOGxHsm7rRn6v0V8S/sxftSeIPH/iTVfgH+0DpaeE/il4aYpe6bnEV5CACLm2JyGRgc4VmG0hgSp4+2qs9mE1Nc0dgooooKCv5P8A/gr1/wAnlXv/AGCrD/0E1/WBX8n/APwV6/5PKvf+wVYf+gmk9jjx38P5n9PX/BDT/lHH4R/6/tW/9LJa/XavyJ/4Iaf8o4/CP/X9q3/pZLX67VB44UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//U/v4ooooA/wA5/wD4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/7FXRv/SSKv5Xf+CjH/J+Hxc/7GnUv/RzV/VF+yh/ya18Nf8AsVdG/wDSSKuXFbI97Ifjn6Hv1FFFcJ9MFFFFABRRRQAUUUUAFfBPwA/5TE+Mf+ycL/6V2Vfe1fBPwA/5TE+Mf+ycL/6V2VdOF+M8jO/93Xqv1P2uoorzT4ufGH4bfAjwPc/En4s6omjaJaPHHNdSI8io0zBEBEau3LEDp3rvPkj0uivz3/4erf8ABP7/AKKRaf8AgLef/GKP+Hq3/BP7/opFp/4C3n/xigD9CKK/Pf8A4erf8E/v+ikWn/gLef8Axij/AIerf8E/v+ikWn/gLef/ABigD9CKK/Pf/h6t/wAE/v8AopFp/wCAt5/8Yo/4erf8E/v+ikWn/gLef/GKAP0Ior89/wDh6t/wT+/6KRaf+At5/wDGKP8Ah6t/wT+/6KRaf+At5/8AGKAP0IorG8OeINI8W+HrDxV4fm+0WGp28V3bS7WTfDModG2sAwypBwQCO4rZoA/Iv9j/AP5SYftMf9wH/wBJzX6U/Gj/AJI74s/7A1//AOiHr81v2P8A/lJh+0x/3Af/AEnNfpT8aP8Akjviz/sDX/8A6IegD8+/+CMn/JgHhb/r81T/ANK5a8X/AOCpP/J2v7LX/Ywal/6N06vaP+CMn/JgHhb/AK/NU/8ASuWvF/8AgqT/AMna/stf9jBqX/o3TqUtmbYf+LD1X5n3/RRRXkH3wUUUUAFFFFABX5ifAv8A5Sd/HD/sFaJ/6S21fp3X5ifAv/lJ38cP+wVon/pLbVpT2l6HLifipf4v/bZH6d0UUVmdQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAfzkf8ABbf/AJKl4I/7BVx/6OFfq3/wbj/8mu+Of+xpP/pJb1+Un/Bbf/kqXgj/ALBVx/6OFfq3/wAG4/8Aya745/7Gk/8ApJb16dD4EfFZn/vU/wCuh/Q5RRRWpwBRRRQAUV+KPw0/4LBeEn/bq8b/ALIXx4s7Pw3Y6frUuk+HtXR2EckkDeWY7xnYqrSuCY3UKgyEYZ+c/tdQAUUUUAFfhv8A8HBf/Jh9p/2NOn/+ibmv3Ir8N/8Ag4L/AOTD7T/sadP/APRNzQB+L/8AwQC/5PH8S/8AYmXn/pdY1/XxX8g//BAL/k8fxL/2Jl5/6XWNf18V8Xnn+9P0R62D/hhRRRXjnUFFFFAHy9+0x+2R+z7+yJZ6RefHbWX0v+3nmSxSK2muXl+zhDKcRI2AnmICTjlhjPOPw1/4KT/8FF/2Rf2l/hn4G8I/DLXJtQm0jxrpmr3yT2FxEi2NvFcJKx8yMBsGRRtGSQeAa+wP+CmcMNz+2j+yfb3CLJHJ4k1FWVhlWUy6cCCD1Br9bv8AhDPB/wD0CbP/AL8J/wDE19VlGXUnThiW3za+m7R52JryUnT6H5Ff8PM/+CT39yy/8JyT/wCMUf8ADzP/AIJPf3LL/wAJyT/4xX66/wDCGeD/APoE2f8A34T/AOJo/wCEM8H/APQJs/8Avwn/AMTX0RwH5Ff8PM/+CT39yy/8JyT/AOMUf8PM/wDgk9/csv8AwnJP/jFfrr/whng//oE2f/fhP/iaP+EM8H/9Amz/AO/Cf/E0AfkV/wAPM/8Agk9/csv/AAnJP/jFH/DzP/gk9/csv/Cck/8AjFfrr/whng//AKBNn/34T/4mj/hDPB//AECbP/vwn/xNAH5Ff8PM/wDgk9/csv8AwnJP/jFH/DzP/gk9/csv/Cck/wDjFfrr/wAIZ4P/AOgTZ/8AfhP/AImj/hDPB/8A0CbP/vwn/wATQB+RX/DzP/gk9/csv/Cck/8AjFH/AA8z/wCCT39yy/8ACck/+MV+uv8Awhng/wD6BNn/AN+E/wDiaP8AhDPB/wD0CbP/AL8J/wDE0AfkV/w8z/4JPf3LL/wnJP8A4xR/w8z/AOCT39yy/wDCck/+MV+uv/CGeD/+gTZ/9+E/+JrmvGfgzwf/AMIfq3/Eps/+POf/AJYJ/cP+zQB5N8EJf2V/2ifhpp/xb+FGgaRf6HqbTLBK+mRwvugkaJwyPGGUhkPUDIwRwRXxb/wRG/5MUsP+wzqP/oa103/BGT/kwDwt/wBfmqf+lctcz/wRG/5MUsP+wzqP/oa0AXf+Cbv/ACdL+1J/2OUX/oV1X7AV+P8A/wAE3f8Ak6X9qT/scov/AEK6r9gK+Fzf/e6ny/JHs4X+EgooorzTc/jh/wCC7/8Aye3af9izYf8Ao24r9xf+DfP/AJMQvP8AsatQ/wDRNtX4df8ABd//AJPbtP8AsWbD/wBG3FfuL/wb5/8AJiF5/wBjVqH/AKJtq+/y7/dafoeLX/iSP3JooortMQooooAKKK/ErxV/wWJ8MfCT9v7xJ+yp8cNIg0Xwdps9rYW3iNJHbyLu4hSUG7B+VYXLFQy48vblsruZAD9taKignguoEurV1kikUMjqcqynkEEcEEdDUtABRRRQB+RP/Bcv/lHH4u/6/tJ/9LIq/mM/4I+f8nn2P/YJv/8A0AV/Tn/wXL/5Rx+Lv+v7Sf8A0sir+Yz/AII+f8nn2P8A2Cb/AP8AQBVw+JEVfgZ/WjRRRXaeUfm38S/+UtPwC/7BOv8A/pFdV+2lfiX8S/8AlLT8Av8AsE6//wCkV1X7aVx1fiZ6dD4EFFFFZmoUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB+H37E/wDydX+0z/2OC/8AoVzX6Y1+Z37E/wDydX+0z/2OC/8AoVzX6Y120vhR5uI/iMK+Ov8AgoH/AMmYfET/ALBL/wDoa19i18df8FA/+TMPiJ/2CX/9DWqlsyIfEj+c7/gkP/ykc+F3/X9df+kc9f6B1f5+P/BIf/lI58Lv+v66/wDSOev9A6uA9UKKKKACiiigAor8dP2Uf+Ctngr41ftO+MP2Xfi5p8HhTVrLX77S/DVyJGa21FbOQxeQ7vgLdEjeoGFkDBAA4USfsXQAUUUUAfkV/wAFyv8AlHH4u/6/tJ/9LIq/ld/4JTf8nreHP+vXUf8A0mkr+qL/AILlf8o4/F3/AF/aT/6WRV/K7/wSm/5PW8Of9euo/wDpNJWtD+JH1Q1uf1n0UUV75YUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcz418K6f478Hat4I1d5I7TWbKexmeEgSLHcIY2KlgwDAMcEgjPUGvjH/gnj/wTv8Agr/wTS+DWq/A74FapreraTq+tTa7NNr08E9wtxNBBbsqtb29sgjCW6EAoW3FvmIwB96UUuVXv1A/Km+/4JAfs0Q/t+w/8FHfAeteJfCHjozrcX1no1zaxaTqDshjn+0wS2krsLlDifZKm5v3g2yZevD/ANpf/ggX+yL+0B8Z/EHx68H+JfGHwu17xf5g8QL4Q1FLO11Pz2LTtNFJDL80xOZArCNm+ZkLEk/uNXI+MfiB4D+Hem/2z8QdbsNCs+nn6hcx2sXH+1Iyj9ah0oNWaA+Ffht/wS2/ZU+D37EHiT9gb4Y2t/o3g/xdZXlpq19DOj6rdSX0YiluXnkjeMzFAqqTFsUKAECjFZ/g3/glJ+yZ4a/YGtf+CcPiS11DxV8PbP7U8MmrzxtqMc1zcy3YmWe3igVJYpZW8tljHyjawYFt36FeGvFXhfxnpMev+D9StdWsJchLmzmSeFsdcOhKn8DW9T9nHt5AfgR8Hv8Ag3U/Yx+GfxQ8NfELxt4q8bfEXT/BUiyeH9B8UanFdaXY7CrqBFHbxEorqCIwVjbADq4r9S/21P2OPhB+3n+zzrH7NXxv+2RaJrElvP8AadOeOK9tprWVZUkgeWOVFfKlSTGwKMy45r6srktN8feBNa0+81bR9asLu004M13NDcxyRwBQWJkZWITABJ3EYApKnBJpLcDwL9jr9jn4OfsP/s4aP+y98HUubjw7o/2kmXU2jmu7p7uV5ZXuHjjiR2Yvt4jUBAFAwK/Kbw5/wbhfsPeFvHWs3+j+JfHVv4H166F5f+BbfWzb6DcspJWOZYo0nkiTPyBpi69N5HFfvXoXiHQPFGnLrHhm+t9RtHJVZ7WVZoyVOCAyEg4PB5rYodKDSTWwH43eCP8AgiH+y74D/YJ8Z/8ABOjTfFPjC48B+N9Wg1m6uLi7sm1K2ngltZttvKtisSxs1pHuV4ZDy2CCcj6S8b/8E4vgh49/4J9Q/wDBNzWNV1yPwNBpOn6Ot9DPbrq3kabNFPExla3aDeWhUOfIwQTgA4I+/wCimqcV08gPyz+MP/BIj9l742/sEeF/+CenjO91x/Cfgv7LJo+prcQjVYJ7RZESUuIPIZik0iOPIClWOADgj6J/Ya/Yx8FfsHfAmH4C+AvEWu+J7GK8lvTe+IbiO5u98yopRWjjiVYlCDYm0leeTX2HRQoRTulqAUUUVYBRRRQB/Jh/wVZ/5PW8R/8AXrp3/pNHX9Zf/BFX/lGZ8NP+4z/6dbyv5NP+CrP/ACet4j/69dO/9Jo6/rL/AOCKv/KMz4af9xn/ANOt5Xg1/wCJL1Ie5+plFFFYiCiiigAooooAKKKKACiiigAr+Or/AION/wDk6PwN/wBiqP8A0ruK/sVr+Or/AION/wDk6PwN/wBiqP8A0ruKAPZf+CKX/JrGv/8AY13X/pHZ1+wFfj//AMEUv+TWNf8A+xruv/SOzr9gK0R72G/hRCvjn/goD/yZ743/AOvaD/0oir7Gr45/4KA/8me+N/8Ar2g/9KIq87OP9wxH+Cf/AKSz6vgz/koMu/6/0v8A05E+6P2Rf+TUPhh/2KWi/wDpHFX+el/wSdi/4JCSftQ/tTH/AIKtnw5sHieL/hGP7fM4P/H3qf23yfIOf+fffn/ZxX+hb+yL/wAmofDD/sUtF/8ASOKv4mP+Deb9h/8AZJ/bL/aq/bCH7UvgHSfHP/CN+J9POmDVYfNFqbu81jztnIx5nkx7vXaK0wX+70/8K/I+O4h/5GmL/wCvk/8A0pmF/wAETLD4LN/wcT+P7n/gl+1//wAM+waHei6Zhcm1Nq1vDhc3GZNn9pjNt53zmNTjjNfbng3/AIOHv+CmP7RXxc+JX7Pv7HH7OOmePPFPw/128jnlhuZVtYtHsp5LctKHmizczMo8tVcYw2Ek6L/Vt8Af2Xf2cf2VvDE3gz9m3wNongfTLpxLcQaLZRWgnkXIDymNQ0jAEgM5JA4ziv5U/wDg1qs4P+GtP25r8qDL/wAJjpsYbHIX7ZrZIH1OM/QV0njn3P8Aty/8Fpv2ifh1+1FoP/BOP9gH4W2XxX+Pz6dDe+Jbaa5aLRtGkeBJzEZGeDzMI4dpHmhSNWjBLSOUTof+Cef/AAWi+MnxZ/bI1D/gm1/wUY+F0fwg+NMVq97pcdnci503VI44vPZIm3y4fyleWNkmljdUcblddrflT8c/Fvir/giR/wAF9/H/APwUD/aH8J6vrXwV+NejT6fD4i0m3+1nT5bj7DLIsi5G14ri02eWzKXgcOm4qUFr9mvxj4j/AOC1v/Bf7wb/AMFFvgB4W1jQ/gr8F9CGlt4g1S3Np/aVxAl4Ujj2llMrz33Me8lbePc+0sqEA+ifhd/wXi/4KR/tR/HL40/st/sdfs96P408Y/DbXb20tryXUvsWlwaZY3FxbGW8a4mi8y5mdIxDDE6bv3jZ2occb+zp/wAHDn/BRj9uP4Na1pf7Gf7M1rr/AMTvAKzXPjKW81EQ6HZ2w3eQtukk0NxLdTmOUfZ/M3L5RKmTJ2Vf+DZtEP8AwUC/b4kIG4eNLUA98HUtbz/Ks7/g09iiH/DWz7RlvF9qp+g+3YH6mgD7i+AP/BerV/2h/wDgjf8AE3/go74a8FWmn+M/hdLLYaloVxM8mny3aG3ZHikXbJ5MkVwpwcMrqy/MAGb42s/+C+v/AAVg+Jv7IFr+3n8CP2XdMv8A4V+HrRpvE+sX2olWne1LLeyafbLOLgWtuw2tOY5wNrsQoVwn5F/8Ewv+VZj9sv8A7DS/+idOr2b9lv8A4Le/Bv8AZr/4IRD9hf4peC/Elv8AEfWfCmvaH4VjXTydN1u11ya7jhvYpyQrRwvO8cygMzPEwXLMQoB9jf8ABc//AIKO/Eb9tb/gh/4N/aG/ZW8PSQ/Db4i3Jt/G15LerDe6DdWd1BFFYlFkja4S4nE0blY2Vo1VyFDDP7df8EFfiD+1h47/AOCcvw9tf2nvAtn4LstE8O6Bp/g+a0u47o6x4eh0y1FrfyiOaUxSTLy0biNl7oK/nT+Kf7DH7QP7On/BpXqPgD4g6De23iefW7XxlqOkvG5utPsbjUIsebERujKQBJZlIzFlt+NrY/oj/wCCCX7bfwV/a9/4J4eAPCPwl+3i9+E3hrw94P10XsAhX+0bDTYI5PJIZvMiJQ7X4z6CgD1v/gsZ/wAmWX3/AGFrD/0I19F+GP8AkWtP/wCvaL/0AV86f8FjP+TLL7/sLWH/AKEa+i/DH/Itaf8A9e0X/oArxsL/AMjXEf4Kf5zP1Kp/yRuXf9f8T/6TQNyiiivdPkQooooAKKKKACiiigAooooAKKKKACiiigAr5f8A2yPj4n7Nf7O3iH4oWxQ6nFELXTEfB33tydkR2nhhGSZWXuiNX1BX5k/to2cXxU/as/Z8/Z3vSk2m6j4hk1vUbWYjypo9NCuqsNrE7o/PTHAO7Ge6pmNefJTckfen/BPP9lS1/ZV/Z40/Q9Zh3eL/ABBt1XxHdyHfPLezDd5bOckrADsAzt3bn6uxP3VRRUHghRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH5Gf8FVv2cLrWvAlj+2H8JY4bDx78LZF1Y3exi11ptrmSSGQRglwhw43/KE8xSQHJHu/wQ+Lfh747fCfQvi54VUpZa5bCdY2YM0TglJI2K8Fo3VkOO4r7zvbKz1Kzm07UYUuLe4Ro5YpFDo6OMMrKcggg4IPBFfg/wD8ExmufB2h/E79n2aZpYfh/wCMtR061R8Fo7feVC5BOcyRyNk55JwSOlRO7A1GpuPc/UGiiiqPWCv5P/8Agr1/yeVe/wDYKsP/AEE1/WBX8n//AAV6/wCTyr3/ALBVh/6CaT2OPHfw/mf09f8ABDT/AJRx+Ef+v7Vv/SyWv12r8if+CGn/ACjj8I/9f2rf+lktfrtUHjhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH/1f7+KKKKAP8AOf8A+CjH/J+Hxc/7GnUv/RzV/VF+yh/ya18Nf+xV0b/0kir+V3/gox/yfh8XP+xp1L/0c1f1Rfsof8mtfDX/ALFXRv8A0kirlxWyPeyH45+h79RRRXCfTBRRRQAUUUUAFFFFABXwT8AP+UxPjH/snC/+ldlX3tXwT8AP+UxPjH/snC/+ldlXThfjPIzv/d16r9T9rq5vxZ4O8IePNFk8NeOdKs9a06Uqz2t/AlzAxQ5UlJAykgjIyODXSUV3nyR4F/wyl+y5/wBE18K/+Ce0/wDjVH/DKX7Ln/RNfCv/AIJ7T/41XvtFAHgX/DKX7Ln/AETXwr/4J7T/AONUf8Mpfsuf9E18K/8AgntP/jVe+0UAeBf8Mpfsuf8ARNfCv/gntP8A41R/wyl+y5/0TXwr/wCCe0/+NV77RQB4F/wyl+y5/wBE18K/+Ce0/wDjVH/DKX7Ln/RNfCv/AIJ7T/41XvtFAFLTtO0/R9Pg0jSII7W0tY1hhhhUJHHGgCqqqoAVVAAAAwB0q7RRQB+Rf7H/APykw/aY/wC4D/6Tmv0p+NH/ACR3xZ/2Br//ANEPX5rfsf8A/KTD9pj/ALgP/pOa/Sn40f8AJHfFn/YGv/8A0Q9AH59/8EZP+TAPC3/X5qn/AKVy14v/AMFSf+Ttf2Wv+xg1L/0bp1bH/BIv44fBbwV+wx4Z8PeMvF+iaRqEV3qTPbXuoQW8yh7qQqSjurDIORkcivL/APgot8Tvht8Rv2tf2Y/+Fe+IdM177H4gv/tH9nXcV15XmS2Gzf5TNt3bWxnGcHHSlLZm2H/iw9V+Z+m9FFFeQffBRRRQAUUUUAFfl58JLqDRP+CqXxX0e6bEut+HdMvYNw25W2itomC9m5Oc5HQ8HBI/UOvys/bisNc+Afx08E/t0eHrP7ZYaGn9ieIoxlVFjdMyJK7KWb5Xm+XbETuCgkjArSlu13RyYzSManSLTfpqn+Z+qdFYHhXxV4c8ceHLLxf4QvYtR0zUYlntrmBt0ckbdCD/ADHUHg81v1mdSd9UFFFFAwooooAKKKKACiivye/a+/4LUfsG/sNfGWb4DftBa3qdj4jt7SC9eK102a6j8m5BKHegK5IHI7U1FvREVKsKa5puy8z9YaK/J/8AZY/4Lbf8E3f2wfiHbfCX4S+P1g8S3xCWWn6xazaa925OBHA86LFJISfliVzI3ZTg1+sFDi1ugp1YTV4NNeQUUUUiwooooAKKKKACiiigAooooAKKK8f0r9oD4Ka78Zr79njQvE1hfeNtL0/+1L7R7eUS3Npab0jDzqmRFuaRdquVZgcgEAmgTaW57BRRRQMKKKKAP5yP+C2//JUvBH/YKuP/AEcK/Vv/AINx/wDk13xz/wBjSf8A0kt6/KT/AILb/wDJUvBH/YKuP/Rwr9W/+Dcf/k13xz/2NJ/9JLevTofAj4rM/wDep/10P6HKK/Fr/guTea7F+zh8PtJ0LVb3Rzq3xD0mwnn0+drebyZ7W9DAMv4HBBGQCQcV5h/w5/8AhT/0VX4m/wDg8h/+RK1OA/fSivwL/wCHP/wp/wCiq/E3/wAHkP8A8iUf8Of/AIU/9FV+Jv8A4PIf/kSgD5l+Cf7M3ws/av8A2nP2x/hT8VrPzrabxTZSWt1HgXNlciXUgk0LkHa655HKspKsCpIr6e/Y/wD2v/in+xv8U7H9gv8Ab0vvOtpsReC/GkpItr+2BCxwTyMTtdchQWYsjEI5KlHb6h/ZM/Yi+Fv7HcniW98Aarret33iyW2l1C81y6S6nf7IJBGA0cUQwPNckkFjnk4AA9F/aZ/Zm+Fn7V/wsvPhT8VrPzrab95a3UeBc2VyAQk0LkHa655HKspKsCpIoA/QqivwP/Y//a/+Kf7G/wAU7H9gv9vS+862mxF4L8aSki2v7YELHBPIxO11yFBZiyMQjkqUdv3woAK/Df8A4OC/+TD7T/sadP8A/RNzX7kV+G//AAcF/wDJh9p/2NOn/wDom5oA/F//AIIBf8nj+Jf+xMvP/S6xr+viv5B/+CAX/J4/iX/sTLz/ANLrGv6+K+Lzz/en6I9bB/wwooorxzqCiiigD8Wf+Clv/J6/7Jn/AGMuof8Ao3Tq/Y6vxx/4KW/8nr/smf8AYy6h/wCjdOr9jq+5yf8A3OHz/Nnj4r+K/wCugUUV8t/tdftpfsy/sJfCaX41/tT+K7bwroKyrbwvKrzT3Vw/SK3giV5ZpMAkqiHaoLNhQSPTOc+pKK/A74Bf8HLX/BJn9oL4pWXwk0Xxrf8Ah7UdUuVtLG417TZbKyuJnIVF8/50i3k4BmMYzwSCQD++NABRRXwn8U/+Cjn7Lvwc/bU8F/sA+OdSvYfiT4/09NT0e0js5JLaS3ka5QF51GxDm0m4JzwPUUAfdlFfCfw2/wCCjn7LnxX/AG2fGH/BPrwbqV7N8S/AuntqerWklnJHbR26/ZslJyNjn/S4uAc8n0NfQPw9/aO+BPxZ+JXi74P/AAx8V6dr/iTwF9jHiGxsJhO+mvfmYQRzsmUSVvs8uY929AuWADLkA9rooooAK5rxn/yJ+rf9ec//AKAa6Wua8Z/8ifq3/XnP/wCgGgD81f8AgjJ/yYB4W/6/NU/9K5a5n/giN/yYpYf9hnUf/Q1rpv8AgjJ/yYB4W/6/NU/9K5a5n/giN/yYpYf9hnUf/Q1oAu/8E3f+Tpf2pP8Ascov/Qrqv2Ar8f8A/gm7/wAnS/tSf9jlF/6FdV+wFfC5v/vdT5fkj2cL/CQUUUV5pufxw/8ABd//AJPbtP8AsWbD/wBG3FfuL/wb5/8AJiF5/wBjVqH/AKJtq/Dr/gu//wAnt2n/AGLNh/6NuK/cX/g3z/5MQvP+xq1D/wBE21ff5d/utP0PFr/xJH7k0UV+Lf8AwXk8ZeL/AAT+w1Ff+DNVvNInuPEmnwSyWU727yRGOd9jFCpK7kVtp4yoPUCu0xP2kor8C/8Ahz/8Kf8AoqvxN/8AB5D/APIlH/Dn/wCFP/RVfib/AODyH/5EoA/fSv5zPB3wW+HH7QX/AAUF/ay+FXxV05NS0fUhoCujcPG4tjtkjbqkiHlWHIPtkHv/APhz/wDCn/oqvxN/8HkP/wAiV9MfspfsLfDD9kXX/EvirwZrniDxDqXilLSO8udfu47qULZ7wgVo4YTyHwd+7hVAwM5APjT9nf8AaJ+J3/BLf4naf+yR+1vqEur/AAk1eUw+DvGMwONPGfltLtv4Y1yBz/qeo/cn91/RFBPBdQJdWrrJFIoZHU5VlPIII4II6Gvij40/Bb4cftBfDjUfhV8VdOTUtH1JNro3DxuPuyRt1SRDyrDkH2yD+Wn7O/7RPxO/4Jb/ABO0/wDZI/a31CXV/hJq8ph8HeMZgcaeM/LaXbfwxrkDn/U9R+5P7oA/onoqKCeC6gS6tXWSKRQyOpyrKeQQRwQR0NS0AfkT/wAFy/8AlHH4u/6/tJ/9LIq/mM/4I+f8nn2P/YJv/wD0AV/Tn/wXL/5Rx+Lv+v7Sf/SyKv5jP+CPn/J59j/2Cb//ANAFXD4kRV+Bn9aNFFFdp5R+bfxL/wCUtPwC/wCwTr//AKRXVftpX4l/Ev8A5S0/AL/sE6//AOkV1X7aVx1fiZ6dD4EFFFFZmoUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB+H37E//J1f7TP/AGOC/wDoVzX6Y1+Z37E//J1f7TP/AGOC/wDoVzX6Y120vhR5uI/iMK+Ov+Cgf/JmHxE/7BL/APoa19i18df8FA/+TMPiJ/2CX/8AQ1qpbMiHxI/nO/4JD/8AKRz4Xf8AX9df+kc9f6B1f5+P/BIf/lI58Lv+v66/9I56/wBA6uA9UKK/B3/gtM3iXxD48/Z4+EmneINW0LS/GPi86bqJ0m7a1kaOeS1h3jGVLxrK/ll1YKWPBBIOb/w5/wDhT/0VX4m/+DyH/wCRKAP30or8C/8Ahz/8Kf8AoqvxN/8AB5D/APIlH/Dn/wCFP/RVfib/AODyH/5EoA+c/wBlD9lz4Z/tY+Av2gvh38RIWjlj+KGtT6dqMHF1p90Cu2aFuoIONy9GHB7Efev7G37ZPxM+GfxMt/2FP267hY/GkahPC/ihyRa+JbUfKgLtwLsDA55kPyt+9wZfYf2U/wBkr4c/sheDdU8HfDy/1XVRrWoyape3msXC3F1NcSqqksyRxLjC5+7kkkkmtL9qP9lz4Z/tY/DOb4d/ESFo5Y28/TtRg4utPuh92aFuoIONy9GHB7EAH6MUV+On7G37ZPxM+GfxMt/2FP267hY/GkahPC/ihyRa+JbUfKgLtwLsDA55kPyt+9wZf2LoA/Ir/guV/wAo4/F3/X9pP/pZFX8rv/BKb/k9bw5/166j/wCk0lf1Rf8ABcr/AJRx+Lv+v7Sf/SyKv5Xf+CU3/J63hz/r11H/ANJpK1ofxI+qGtz+s+iiivfLCiiui8P+Gb/xI8qWLxoYgCfMJHX0wD6VMpKKu9gOdor0j/hV2v8A/Pa3/wC+m/8AiaP+FXa//wA9rf8A76b/AOJrP6zS/mC6PN6K9I/4Vdr/APz2t/8Avpv/AImj/hV2v/8APa3/AO+m/wDiaPrNL+YLo83or0j/AIVdr/8Az2t/++m/+Jo/4Vdr/wDz2t/++m/+Jo+s0v5gujzeivSP+FXa/wD89rf/AL6b/wCJo/4Vdr//AD2t/wDvpv8A4mj6zS/mC6PN6K9Qg+FmqN/x9XMSf7uW/mBWonwpiA+e+JPtHj/2apeLpL7Qro8bor2b/hVNv/z+t/3wP/iqP+FU2/8Az+t/3wP/AIql9cpd/wAwujmPB3hS18QQNczsf3MoDLnAZCOfoR1FY3ibwzd+HLvy5Pnhf/Vyevsfevc/DHhlPDUEsCTGbzWDZK7cY/E1tajp1pqto9jfJvjfqPT3HvXI8a1UbWsRcx8mUV03ibwzd+HLvy5Pnhf/AFcnr7H3rma9KMlJXWxQUUUVQBRRRQAV/n0/ta+If2ZvFX/Bar4raH/wWvuvFVr4P0+WS38HrYNObG304yA2jMsKtOLeSDLk2y8zl9+Tmv8AQWr+SXx1/wAFO/2aviD+2J8Tf2Iv+C5Hw08J6JpnhW6eHwjrEukXNz5lv5jkSNPuuJovtcBhlhkgESgb1c5Kgc2JSaSb69dvmJnd/wDBHv8AYl+Hnwc/bM8Q/Hf/AIJ0fHnRfGXwB1W1MOpeExeSXOqwSSwAwtcRFEEciXKExSSKkhgLJyc5+h/E/wDwcD+CdO/aF+Jf7KngL4N+LvGvj7wLrVzo2n6ToC/bZdWNnLLHcXH7uMm3giEalmYO37xQFIDEfiP+wto/7OcX/Bfzwpc/8Eel1e6+FNtps3/CUSMbs6dHFJBcC5Aa5xMbYP8AZ/J+0E5ugNmVCGvQf2B/2zP2cf2OP+C6f7VOr/tJ6rD4a03xPrmvadZ63dRsbeC5TU2m8iSRQfLEyIxDNhS0YBOSKwhUsko6ateXyA/ot/4Jrf8ABWv4Tf8ABRTUvFHw4Tw3qnw9+Ivgpv8Aic+F9ax9pijD+WzxttRmEcn7uVXjjeNyoZfmBP8APf8A8EQ7vwTYf8E8P25r74lWd1qHhyG31iTVbWxlWC6nsl029M8cMrK6pI8e5UcqwViCQQMV7p/wTA8V6H+2D/wcGfHv9s/9nZZJvhlb6ENPbVEiaKC6uJIrG2QAMFb/AEiS0nuFyASqZYAnB+Xf+CQX/KLT/goD/wBgjxD/AOmi+p87k4t/3vmB2nxB/bUsP2cv+DfjRr3/AIJ6eF/GvhHRvFus6jYR6414Lu68PiLUY/Pe5vIII1jF5ueCBh5bBnAVi1ff37Df/BXvwt+zl/wSK0T43ftP+BPFXh+y8DWWjeHdMmvIWMviy7uLcsk9i8yxI8ThHkaQuwChjljhT+Y3g+xvL7/g0a8SizjaUxa0srhRkhF8R2+48dgOSew5r6X8T/tJ/wDBOD4z/wDBADwH4A/aAfxF4t0TwVp/h3SdZfwVbpLqXh3XFt5Fgkk+1NFCinZJCWYvG3mBeC6GlGUk73+yB97eDP8AgvF4s0f4o+C/Bf7V/wCzd43+FOheP7hLbRtcu83kTtIVAaWL7PCyqoYNJtLuiHdtIr+hqv8AOt1/9on40/8ABNw+APFP/BOf9r5vjjo/iK+trW18A3MU9zcwRSg7IZrCSS5SLcQISImgn3suxf4l/wBETS57y60y3utRg+zXEkSNLDu3eW5ALLkcHB4z3row9RyupPX5foCL1FFFdAwooooAKKKKAP5MP+CrP/J63iP/AK9dO/8ASaOv6y/+CKv/ACjM+Gn/AHGf/TreV/Jp/wAFWf8Ak9bxH/166d/6TR1/WX/wRV/5RmfDT/uM/wDp1vK8Gv8AxJepD3P1MooorEQUUUUAFFFfyYf8E1f+Cnvxz+CGkaTJ+2ddX+t/DLxxqVzBp3iy8ka5k03Ug5MsU8hJbyWJ37W5QEsmVDhQD+s+iqtjfWOqWMOp6ZMlxbXCLLFLEwdJEcZVlYZBBByCDgirVABRRRQAV/HV/wAHG/8AydH4G/7FUf8ApXcV/YrX8dX/AAcb/wDJ0fgb/sVR/wCldxQB7L/wRS/5NY1//sa7r/0js6/YCvx//wCCKX/JrGv/APY13X/pHZ1+wFaI97DfwohXxz/wUB/5M98b/wDXtB/6URV9jV8c/wDBQH/kz3xv/wBe0H/pRFXnZx/uGI/wT/8ASWfV8Gf8lBl3/X+l/wCnIn3R+yL/AMmofDD/ALFLRf8A0jir6Gr55/ZF/wCTUPhh/wBilov/AKRxV9DVpgv93p/4V+R8dxD/AMjTF/8AXyf/AKUwor5v8V/tgfsweBfEV54R8ZeOtI0vVLCQxXFrc3CxyxOOzK2COOR6jkcVz/8Aw3Z+x1/0UnQP/AxP8amWYYVNp1Y3/wAS/wAzSnwxnFSKnDBVXFq6apzaaezTtsfVc8EF1A9tcoskcilXRhlWU8EEHgg0ltbW9nbpaWkaxRRqFREAVVUdAAOABXyr/wAN2fsdf9FJ0D/wMT/Gj/huz9jr/opOgf8AgYn+NL+0cJ/z+j/4Ev8AMv8A1Uzv/oBrf+C5/wCR9YUV8n/8N2fsdf8ARSdA/wDAxP8AGj/huz9jr/opOgf+Bif40f2jhP8An9H/AMCX+Yf6qZ3/ANANb/wXP/I4v/gpX+y74x/bU/YW+JH7LXw+1Cy0vWfGemLZWt3qBcWsTiaOTMhjR3xhCPlUnNYP/BMb9kDxP+xN+wl8NP2W/ihdadrWveBbS5hlvbAO9uZJ7meYNCZUSQfJKFJKqevavUv+G7P2Ov8AopOgf+Bif40f8N2fsdf9FJ0D/wADE/xo/tHCf8/o/wDgS/zD/VTO/wDoBrf+C5/5H1eQGBVhkHqKqWGn2GlWiWGlwR20EedscShEGeeAAAOa8l+Gf7RHwO+M2pXGj/CrxTp3iC5tIhNPHYzCUxxkhQWx0BJwM9a9mrop1YVI81OSa7p3PJxeDxGFqOjiacoTXSScX9z1Pyw/4LGf8mWX3/YWsP8A0I19F+GP+Ra0/wD69ov/AEAV86f8FjP+TLL7/sLWH/oRr6L8Mf8AItaf/wBe0X/oArysL/yNcR/gp/nM/San/JG5d/1/xP8A6TQNyiiux03wRq2qWUd/byRBJASAxIPBx2U17p8fOcYq8mcdRXf/APCuNc/56wf99N/8TR/wrjXP+esH/fTf/E0XRn9ZpfzHAUV3/wDwrjXP+esH/fTf/E0f8K41z/nrB/303/xNF0H1ml/McBV/S7eO71O2tZvuSyojY9GIBrsP+Fca5/z1g/76b/4mrum+AdYs9Rt7yWSErFIjkBmzhSDx8tK6JliadnaRyniHw9daBdbH+eF/uP6+x9656vpy/sLXUrVrO8Xej9R6e4968E8Q+HrrQLrY/wA8L/cf19j70JmeGxSmuWW5z1FFFM7Aoori/iL8QfCXwp8D6n8RfHd2LHSNIga4uZiC21RwAFGSzMSFVRySQBQDdtWdpX5aeIvGHg/xH/wV2+CF54e12z1GOHSdYgljtrhJRDI1neFd21jtaTcAAQCcDr25DwJ8K/2q/wDgqXNB428c6hcfDT4ITvJHDp1lK0ep6vAB99iUaN0ZuNzjylwNkchBc/T8n/BJP4X/AAw+LPwu+Jf7MQi0CXwdrTX+tTajcTXU2oWjFP3aqQyh1UMiFTGqhiSHbmpbPKxOLU04RWnc/YOiiipOAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK/B7/gn1dr4t+K37QPxSsnNxY6348vY7WcFTHJFBJI6bSmQcRzJkgkEEHJ6n9DP2/v2nbL9lX9mvWvG1u7nX9URtJ0GKHBlbUbpGETgHORFgytwchcdSK/Nj/glP4m0vw58J9Y/Zo17TJ9D8a+BtQn/ALatLlVR5GupXKSrjBYKqiNic4wpztZacTrwVvaq5+qlFFFWeyFfyf8A/BXr/k8q9/7BVh/6Ca/rAr+T/wD4K9f8nlXv/YKsP/QTSexx47+H8z+nr/ghp/yjj8I/9f2rf+lktfrtX5E/8ENP+UcfhH/r+1b/ANLJa/XaoPHCiiigAoor4B/4KleMfFfgH9gP4leK/BGo3Ok6nbafCsN3aSNDNGJbmGN9jqQykozLkEHBoA+/qK/DL/gnJ/wUK+ID3/h/9kv9uIHTfGupadaXvhfXrhv3HiGyuYw8KtL0N1g7Q3WVgVbEwIf9zaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/9b+/iiiigD/ADn/APgox/yfh8XP+xp1L/0c1f1Rfsof8mtfDX/sVdG/9JIq/ld/4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/wCxV0b/ANJIq5cVsj3sh+Ofoe/UUUVwn0wUUUUAFFFFABRRRQAV8E/AD/lMT4x/7Jwv/pXZV97V8E/AD/lMT4x/7Jwv/pXZV04X4zyM7/3deq/U/a6vEf2h9Y+PWh/C281H9mrStO1nxcskItbXVXKWrRlx5pciSI5CZK4cc4617dRXefJH49/8LQ/4LX/9E38Af+BMv/yfR/wtD/gtf/0TfwB/4Ey//J9fsJRQB+Pf/C0P+C1//RN/AH/gTL/8n0f8LQ/4LX/9E38Af+BMv/yfX7CUUAfj3/wtD/gtf/0TfwB/4Ey//J9H/C0P+C1//RN/AH/gTL/8n1+wlFAH49/8LQ/4LX/9E38Af+BMv/yfR/wtD/gtf/0TfwB/4Ey//J9fsJRQBzPgu68UX3g7Sb3xvbR2etTWUD6hbwnMcV0yAyohDPlVfIHzNwOp6101FFAH5F/sf/8AKTD9pj/uA/8ApOa/Sn40f8kd8Wf9ga//APRD1+AlxbftZXP/AAUe+PQ/ZW8UaV4ZuBLpP9otqlsLgTJ9mXywmYpcFTuz0zkV7f4g8H/8FbfE2gX3hvVfip4VNrqFvLbTBdNVWMcqlWwfsvBwetQ6kU7NnVSwVepHnhC6PmP/AIJ3/sZfsyfGP9lfRPHvxL8Jwarq91cXqS3Mk06MyxTuijCSKvCgDpX6E+CP2GP2Tvhz4os/Gng3wVZ2eqafIs1tOZJpTFIpyGUSSMoYEcHGRWh+xv8AATWv2aPgBpHwj8RX8GpXtjJcyyzWyssWZ5Wkwu7DEAMBkgZ9K+oq8+pUbk7PQ+twuFpxpQ5oLmSXRbhRRRWR2hRRRQAUUUUAFYfibw1oPjLw9e+E/FNrHfabqUD21zbyjKSRSAqykehBrcryz40fGHwR8BvhtqfxQ+IF0LbT9Ojzjq80rcJFGOpd2wB6dTgAkNXvoTNpRblsfmJqHwu/aF/4JwHU/GvwNuI/Gnwn8z7VfaBqEvl32nh2AZraTox6YIBLZw0TMPMrv/B//BYD9knxBbeZ4iOraDKASUubTzhnJAAaBpOcYPIArkPh3+z78Wf29JbP45/tfXU2k+EbgeZo3g3T5HgiktH2uklzIrCQl9qt2dsBh5a4Sv0U8H/s3/ADwDpf9j+EPBmjWUBJZgtnEzOSScs7KWYjOBuJwOBxW8nH7Wr8jzKNOte9B8sOiev3LovK569p9/barYQanZEtDcxrLGWUoSrjIyrAMDg9CAR3q5RRXOeqFFFFABRRRQAV/Hf8f/C3hjxr/wAHYXw68M+MtOtdW0258OSedaXsKTwSbNC1F13RuCrYYBhkcEA9RX9iFfxn/wDBRez/AGvP2d/+C+Ogft2/B34EeMvizoPhfQIYVj0PTL1rW5kutOurJkF5BaXMatEZw7Dax42nGcjahu/Q8/Mfhg3spJv0PWf+DmH9jL9nv4afsmeHv2tPg14Z03wV458LeJrC3j1LQ7aPT5ZoLhZCFfyFTc8cqRyROfmTBAOCa+ov20/+CxPxS/Z9/Y1/Z6tfglocfib44/tC6Fos2i293GPs8E9/Ba+ZLLGpj3SSTXKxwxgqhYszHam1/wA/v2rLv/gqp/wXavPBv7M2rfs/6v8AAH4Y2Gswatr2p+I3lEzCINFvX7TbWbuY45ZDHBHExeQqWZVGR9rf8FlP+Cb/AMdru3+AX7Uv7CWjjxDr/wCzfLZR23hxzvuLyx06W2ltfKA2+Y0TQYkjBDOjkpyu1tFb3Yz3OWTm3Vq0E0ml037tLyR4X8Uf2/P+Cx//AASb8Z+BfiD/AMFL7nwn8R/hZ401BdO1C58OQeVd6TK48xlVkt7UNKkau6IUlSUIyh1OGH1n/wAFFv8AgpV+1jL+2v4E/wCCZv8AwTci0WPx74t09dXv/Eetp51nY2skck6hFw6/LBE00jtHJlWRUQsePzk/bU8V/t8/8F5Lv4ffsiaF+z74o+DPhHRNdi1nxRr/AIqglhhtpoo3t2EJmhtxL5Mc8pWNcySsy5WNVLV9Af8ABQ/9mL9qH9iP/gp78Ov+CpP7K3w51H4p+E9L0SHQNd0HRkebUIUhtZLHIjiWSUobdkdJFjZVkiIk2gqSWjdXSvr/AMATqVOWXJKTheOut7fat1PvT9gL4pf8FjPCH7Uuufsz/wDBQjwzp3jDwnFZ/adP+IegQJa2Yn2B1iddsHmK4yhC26vHKMHcjBhyX/BED/goF+0l+3N4k+O+m/tBX9nexeAvENtp2kC0tI7UxwSNdhg+z75xCnJ/rUX7A/7X3/BUb9tj9s7U/iF4z+HF58Iv2eNOsCkWmeJtP8nVb278sqhhlkjilO6VvNdgjQoieWGLnJ/LL9hXVv23/wDgkf8AtdfH74Ln9nTxj8TLf4j66t94a1PRIGGnSiGa5MDzXpja3jhkjuUMrlw0DKQ65PyrlupKyvoaqs4unJOTheW9+2nnbtc+uv2Jv+CqP7X3xw+B/wC3F468f6pp8+ofAvTtTuPCbRWMUSwSWtvqskZlVRiYBrSLIbrg+pr488D/APBST/guV8dv+Cb2oft/+BNX8GeH/DXw+N1/ajz2Qk1LxB9nuMyyRwmF7eGGCORItoaOR2ikbdyopf8AgmN+yn+2F8O/2S/+ChHhb42fDvXtJ8UeMtA1GDTIDpd0iaxevZ6yjrpu+MG7VpZUEZh37g6Y+8M/Sn7JH7On7QXhr/g2n8d/AjxF4E8Q2Hji803xGkHh650u5i1WV57p2jCWjRidi64KAIdw5GapqKb0W6OeDrTjG8pL3ZP5p6Hhfj3/AIKjf8FqviX+wTD/AMFUPhbF4I8EfDTQTb2tzorQvfX+rPHcLYXN4PNjIS3N4xVIkmjkREbLPtDv96ftpf8ABcLxN8Ev+CZfwk/aj+GPhq1f4j/G22ii0jTbktNZ2U6xj7XKcFGlWKQqkSFl3F1LcBgfnfQP2cv2g4P+DWGT9nqXwH4hTx8bC5T/AIRk6XcjWNzeJnuAPsXl+fkwnzQNnMfzfd5r5y/a8/4Jf/tQ/tD/APBFn9me/wDAPg+9uPH/AMHLK4l1DwjqNtJbX81pfMDOgt5dkhmRoIj5GA7ozbcttVi0G9e43LERi3FttwT+d9bfLoe/aD/wU0/4KU/sGftLfCvwX/wUQ8VeBfiV4G+LF4NOku/CZjNzoNy7xJ+8aCKFSIjMpIKSeYgfY+5efWP2xv8AgpL/AMFFPB//AAWGh/4J7fslW+garD4i0GBtKt9bi8q2s7ya1eeW8uJ41aZordI3kMS8vgKMk7T8A/BP4H+BP2j/ANpn4feBP2fv+Cfcnw+0e1njl8Z6149i1azj05kdGZrOX7RArNEA5RXRpJmKDZGoZj+gnin4BfHS5/4OdPDfx9g8Fa9J4Ft/C0lvJ4jXTbg6Skx0q5j2NebPID72CbS+dxA6mhqN9ujHGVVxSUnbmS63t11aRU/Y/wD2/wD/AIKT/C//AIKsz/8ABMT9vXVPDni668RaTc6jo2saNai1SF0tJL2IrtjiLRFIpI3SSIuHUEOVBL/lR/wS98Lf8FJW/wCC4XxVsdP8SeE18YafqMcnxNuGjk+yX2kpqNr9uj04fZsrM4x5RZYh6stfrF8VPgF8ddR/4Oc/hr8fdP8ABWvT+BbDwrPb3PiOPTbhtJhmOlalGEkvAnkK5eREClwdzKOpFfNvwitf2pP2F/8Agvx8WvHuo/BbxZ4x8K/GK9h0+y1vR7KeWwtbTUbu0le8knSKSMx2yB/OQsrKV5wDmhNWdktUKUZXjzt2jNq+u1tDjvEf/BXr9uz9pv8Aa9+Kfwe+E/xp+HP7O9h4C1i50fRtJ8ZwIlxq7Ws0sJMl1dQTRJIzR/OqshXeqqjYZz/SP/wTm+In7Z3xM/ZrsNf/AG6/D2j6F42E7osuhXsF7Z39kVVorkG3lmjR2JZXVJGQ7dy4DbV/mL/bV8M33jX9o74gaP8A8FLP2I9U8XXs8wTwx41+EFlfRS36LuVJLydJpIp5HTy8eapkiAKtE2Fx+mv/AAbefso/tV/sufsw+MIv2i9N1PwvpHiXW0vvDXhrWHJvbC2VCJZJYiF8lpyUBQojExFii7hmakY8l0a4SpU9vyybe/fT1TVl5WZ/RfRRRXMewfzkf8Ft/wDkqXgj/sFXH/o4V+rf/BuP/wAmu+Of+xpP/pJb1+Un/Bbf/kqXgj/sFXH/AKOFfq3/AMG4/wDya745/wCxpP8A6SW9enQ+BHxWZ/71P+uh7p/wXF/5IP8ACv8A7Khof/pPe1+kFfm//wAFxf8Akg/wr/7Khof/AKT3tfpBWpwBRRRQAUUUUAfPv7TP7M3ws/av+Fl58KfitZ+dbTfvLW6jwLmyuQCEmhcg7XXPI5VlJVgVJFfFP7Dn7VPxp/Zo+Otj/wAE3P2xpJdbvZ4s+CvE8KNN9vslDbIpwNzqVWNgHbJjKlXJXa5+gf2w/wBsPTP2btN07wR4I05vFnxL8WN9m8OeHLbLyzyudommCnKQIc5OQXIKqQA7p1/7Cv7CupfBPUr/APaO/aOv18WfGbxYu/U9TfDxadE4GLOzGAERBhWZQAQAq4QAEA/TCvw3/wCDgv8A5MPtP+xp0/8A9E3NfuRX4b/8HBf/ACYfaf8AY06f/wCibmgD8X/+CAX/ACeP4l/7Ey8/9LrGv6+K/kH/AOCAX/J4/iX/ALEy8/8AS6xr+vivi88/3p+iPWwf8MKKKK8c6gooooA/Fn/gpb/yev8Asmf9jLqH/o3Tq/Y6vxx/4KW/8nr/ALJn/Yy6h/6N06v2Or7nJ/8Ac4fP82ePiv4r/roFfy5/8HMn7AX7V/7V/g74QfH/APZY8PJ4/ufhBq17faj4QljFwNQhumtZFkFsSv2lUNqY5YFJkdJfkHDV/UZX86n/AAXQ+G//AAVT8NeKvhh+2N/wTW1jX9bt/AF2H8T+AtLu5lh1aCGVZ45Hs4nT7YjAPBPEgaUo6FFO1ivpnOfzyfF7/gph/wAEw/257vwl+zF/wV0/Zs1z9n7WvD17EseteGIUsmtFKtEyXMMtrDdw2eW3NEqXDKyKR0Nft9/wW/8A+CnH7Q//AATJ8L/sv2/7F99beJtC8YzT2tzHcpFfS63YWCaeLZY7oq217hJmHnIpyXDAHAr8uv8Agop+1X/wUU/4Lh/BjQv2L/h/+xR4n8D6rNrNpcXviXxPBcC20qSL76xXNxZWqW4bP712fcYwUEbFgRS/4OMPgj8Sf2a/2f8A9gD9nfw3qUeteL/A8cmg2l65IhuNR0+HR4I3BfBEZlQbd2CExmgD62/ar/4KP/8ABcv/AIJPfEP4fftH/wDBQb/hBvFXwg8darHp2qaF4Wt2EuiPIpmaBLh445WuFhWRoy0txFIYnUlcq5T/AIKB6hZav/wda/sk6tpsgmt7rwNZSxSL0ZHm18qR7EHNeCf8FK/G/wDwUm/4Lm3Pw0/4J5Wf7Mviz4QrofiSDV/GHiDX4ZG0i0uIIZbUyW92Y44JreOOeeRCsjPcfKI1PVvs/wDbM/ZW+OMn/ByT+yt8Ufh34D8Ral8OvB3gex0u98Q2mmXM+k2LW8mtKI7i8SMwROFkiJV3Bw68fMMgG58H/wBrP9pX4lf8F4f2qP2Q/hTY+D9K1Lw/8PtSufC+ry6JbQXo1cw6ULRr6/iha5nt1muMyI28FVX5TtUV+WH/AAbOeGv+CgU3/BQz493fhXxB4Yi8M6Z4qtl+LEMyP9p1G4aTWFtzpZFuQqrdCdn3tD8hXg9B+p37FP7Ov7QPhT/g58/aN+P3ijwL4h03wJrnhGW203xJdaZcw6ReTH+xcRwXjxiCV/3Unyo5PyNx8px8rf8ABH2y/a9/4J9f8FX/ANon9n74gfAzxffaT8avGQms/GMGn3DaHp9nZXGqTQ3ks6xGKWCdbyMAiVCrAq2GyAAeJ+CP+C2P/BS39uj4pfES5+Cvx2+FnwAl8Nalc2fh7wF4vhht7/VFhz5cbXl/C8Jmcjy22zR/vQf3caYav6/v2AvHv7XnxI/Ze8P+J/25PDOleFviLIrrfQaJeRXthcRcGG4iaGWZF8xCNyCVwGBIO0gV/Fx+1x4GuPid8TviPoP/AAU4/wCCffiHUPiZeXsx8P8Ai/4JWOoQ2WplwQJZ5VkuILiWRgZTM8UkuGCyQqwOf6BP+Dan9lD9rz9kT/gni/gb9r2G80i+1XX7rVNE0G/kL3OlaZLDCqxupJ8gyTJLL5H8G/LAOzqAD+hCua8Z/wDIn6t/15z/APoBrpa5rxn/AMifq3/XnP8A+gGgD81f+CMn/JgHhb/r81T/ANK5a5n/AIIjf8mKWH/YZ1H/ANDWum/4Iyf8mAeFv+vzVP8A0rlrmf8AgiN/yYpYf9hnUf8A0NaALv8AwTd/5Ol/ak/7HKL/ANCuq/YCvx//AOCbv/J0v7Un/Y5Rf+hXVfsBXwub/wC91Pl+SPZwv8JBRRRXmm5/HD/wXf8A+T27T/sWbD/0bcV+4v8Awb5/8mIXn/Y1ah/6Jtq/Dr/gu/8A8nt2n/Ys2H/o24r9xf8Ag3z/AOTELz/satQ/9E21ff5d/utP0PFr/wASR+5Nfhv/AMHBf/Jh9p/2NOn/APom5r9yK/Df/g4L/wCTD7T/ALGnT/8A0Tc12mJ+oFFFFABRRRQAV5X8afgt8OP2gvhxqPwq+KunJqWj6km10bh43H3ZI26pIh5VhyD7ZB9Ur4l/bV/bV8G/sieDLZEtm1/xrr7fZvD/AIftsvcXlw5CKSqZYRhiASBlm+VcseAD5M/ZG+OXxd/4J7/tHaD/AME8f2gr2TxT4K8UyCPwHroYPdWqu2xLW4TO4RBsIP8Anm2NuYjiL+hWvx6/YD/YD8ZeGfGc37aX7aU66/8AGDX18yCCTD2+gW7jCwQKMqJgp2sy8RrlEJy7v+wtAH5E/wDBcv8A5Rx+Lv8Ar+0n/wBLIq/mM/4I+f8AJ59j/wBgm/8A/QBX9Of/AAXL/wCUcfi7/r+0n/0sir+Yz/gj5/yefY/9gm//APQBVw+JEVfgZ/WjRRRXaeUfm38S/wDlLT8Av+wTr/8A6RXVftpX4l/Ev/lLT8Av+wTr/wD6RXVftpXHV+Jnp0PgQUUUVmahRRRQAV/Jr/wSu/bn/a6+H/8AwWf+Ov8AwS7/AG1/HN/4vhgW4vPBc+qLEsqwWbfaYFQxohJudOuFmfO4AwcHrn+sqv4sf+DjXwzrP7Cf/BRL9m3/AILDeAbZ1t9O1SDQfEvkDHmizZpVQkdXu7CS7gJ/uRAUAfTn/BY39t79rfXv+CqP7PP/AATC/Ye8b33g3UfEjJf+LbvS1ieUWV7LkhvMSTabWztbi4IAGRIpPav2S+Pn/BXf/gmp+y58U2+CHx1+MOhaD4phKpcaezy3ElqzDIW5aCOVIGxziZkOCD3Ffzff8EY28Q/t7f8ABTL9rH/gsfaWr6naaIl54f8AAYmQ4kdotlvsBHyyR2FtAjjH/L0eCTX5A/8ABHb4V/HT9pD9m/44eO9P/Z68BfHa68RapdR+J/FfjfXLaw1TS/PgE7yRNcxs0GXaS4N0rKTIvJ/d0Af6Vuk/Eb4f694Dh+Keia5p934YuLP+0YtXhuY3sXs9u/zxOGMZi2fNv3bcc5xX5yeCv+C23/BKP4ifFe3+Cfg/44+HLvxDd3C2lvGZJYrWedztVI7uSNbV2duECyncSAMkjP8AIb468I/tefsmf8GvXjr4O+L/ABFpOsadJ8QrWytr3wxrlrrVnD4d1D7PPLbi4spJUVXvtxeMsCVnOflbB/YAf8E/f+CFb/8ABHb4FfEP9rHStA8IeFbjR/Dt6/i6xVbPVL3Vr+1DTRz3tvG9zL50plM0TEqmz+ARDaAem/8ABXT/AILtxfsQ/tyfB39j/wCG2s6JZWN74k0eT4mapexST3Oi6LNc2kkkapjy08+yleRpQJGVPuBXww/cnxl+3B+yT8PP2cNO/a68d+PtJ0j4b6xbwXVhrt3KYre6jul3QiFWAkkeRQSsaoXIBwvBr+PT/gtZ8HP2YfEf/BUf9gHUfA+iaVr/AIZ+ImqeG7fUb+4gS7bxHpQv9Mtrc380ql71WsyEzcFy0bYPBNdn/wAFbPhx8LvGn/Ben9k39hX41WNron7PlholgdL8OQKLLRWuZZ71FhWKPZEomlt7W1ZFA/d4UY3cgH9Sn7KP/BTj9gj9uDWrrwx+yz8T9H8WatZxmeXTojJbXvlKcGRbe5SKZkU/edUKjIyRkZk+M3/BTL9gz9nf4ka78Ifjd8T9H8M+JPDWmrq+pWN80kckFnIEKSE7CrF/MQIikuzMFVSTiv5Tv+C8XwG+AX7Dv/BRD9kH4mfsC+GtI8A/E7VfEJgn0rwvbRadHd2yXNnDbGW2t1VFExmnt2bZ++QsjbgmBF+05+zN8I/2s/8Ag7e034T/AB10eDxD4WXw9a6leaZdLvt7prLRnlhSVejRiYIzKeGC7SCCRQB/UrrX/BV7/gnV4c/Z00X9rLX/AItaJZeAPEc01tpWpztIjXs1u2yaOC3MYuJHibiRViJT+LFdH+yX/wAFMP2Ef26dSvdC/ZS+Jek+LtS06H7RcWEXm216kGQpl+zXMcUxjDMoLhCoJAJyRX87f/Ba3/gmJpt58WfgB/wwDrnw28P+K/htHcweHvhN4murG3h1RL26e6DWNheMYZzJN5okjdVVtuVcMmK8A/4J6/tPWvwj/wCCvfg34Tf8FFP2R9B+D/x78X2b2ejeK/CZlsbWRJIp4ld7CK4nspVuAkkL3ULsd4AYEDKAH25+zr/wcVfD341/8FgvFX7M/iTxZ4f0b4IWWjvpnhPUYYpnn17xHc3enxwbpmUsp2yXKRxqkacEuWIUj91f2tv+Cjv7D/7CkunWn7WHxI0rwdd6shmtLOcyXF5LECVMi21uks3l7gV8woEyCM5Ffyh/8E7v2W/2Z73/AIOh/wBo74W6h8PvDcvhvwh4cn1bQdJk0u2ay0y/gutEaK5tYDH5cEyGSQrJGqspdiDyaf8A8ErvhD8F/wBuP/guv+15rf7fujad458XeEtUvrTw5ofiWFL+1h0+31Ca1LRWtwGR1tYEto4iUIVZdw5YNQB/Yh+zf+1b+zh+1/4C/wCFnfsy+M9L8aaGspgkudNmEhhlHPlzRnEkT452yKrEEHGCDXxZff8ABcD/AIJP6d4as/F158cPD6WF/qcukQPmcs13CsbyKUERdVRZYy0jKI13AFs1/Pn/AME9/Cngv9mH/g6Q+Mf7N37GEcen/DG+8OyTa9o+nN/xLrK4itbWdlRFyi+RfStGijHk+c8S4AK186/8Gqf7AP7J/wC0z4T+Mnxo/aI8E6Z4z1TRfEen6fpJ1WETrY+SHuWkhB4WR3Me5+uEAHBYEA/sB/aq/wCCmf7Bn7Eerad4e/ak+J2keEtT1WJZ7awnMk940LHaJGgt0llSMnIDuqqcHng4+kfgj8d/g1+0n8OLH4u/ATxNp/i3wzqW77PqOmTrPCzIcMpKn5XU8MjAMp4IBr/Pz/Z70v8AaK/aJ/4LiftY+IrT4HeEf2gvF+k61rNiui+PNQgt7fTtKtr9rKKSCK6jkSXy4I4LdWC/JGwx9+v2m/4NvP2b/wBoH9mj4xftDaJ4ubwrpvgbxFq0eo2Phvwx4msvEEWg6jHPcRy2rrayPJCUiKQkyKrN5ADDctAH9X9FFFABRRRQB+H37E//ACdX+0z/ANjgv/oVzX6Y1+Z37E//ACdX+0z/ANjgv/oVzX6Y120vhR5uI/iMK+Ov+Cgf/JmHxE/7BL/+hrX2LXx1/wAFA/8AkzD4if8AYJf/ANDWqlsyIfEj+c7/AIJD/wDKRz4Xf9f11/6Rz1/oHV/n4/8ABIf/AJSOfC7/AK/rr/0jnr/QOrgPVPwm/wCCwH/Jxn7J3/ZQIf8A0qsK/VGvyu/4LAf8nGfsnf8AZQIf/Sqwr9UaACiiigAooooA+b/2o/2XPhn+1j8M5vh38RIWjljbz9O1GDi60+6H3ZoW6gg43L0YcHsR4n+wj+2B8UtF+MF5/wAE9/2v50vviFoFqbnRtfgbzI9c01F3K03JZLlYxuJYZdQS3zjdJz/7bv7bt98E77Tv2f8A9n/Tj4t+MHi0iDSdJgAlFqJQcXFwMgAAAsqsQCAWYiME17l/wT7/AOCfdj+yvY3/AMXfi5fjxb8XvFoM2u67MTKYjKQzW1szAERggbmwDIQOAoRFAPPP+C5X/KOPxd/1/aT/AOlkVfyu/wDBKb/k9bw5/wBeuo/+k0lf1Rf8Fyv+Ucfi7/r+0n/0sir+V3/glN/yet4c/wCvXUf/AEmkrWh/Ej6oa3P6z6KKK98sK9a+FX/Hxe/7qfzNeS1618Kv+Pi9/wB1P5mufF/wpf11E9j2aiiivDICiiigAooooAKKKKACiiigAooooAKKKKAKWo6daaraPY3yb436j09x7181eI9Ebw/qj2BkEg+8pB5wemR2Ne0eMfGMWgxGysyHu3HA6hAe59/QV8/TTS3ErTzsXdzlmJySTXqYGE0uZ7FRIqKKK9AoKKKKACvA/jd+yt+zP+0pDbQ/tB/D/wAPeNfsSsls+tadBeyQK3JETyozR577CM175Xxp8ZP2z/DXwl+Kg+D9h4X1zxTrAskvpI9HtxOURyRgrkMcAAkgFRuAznIHHjsdh8JT9riZqMb217vp1PWybIsdm1d4bL6TnNJyaVlaK3bbaSSuup7f8IfgB8Cv2ftGm8PfAnwZofgyxuSrTQaHp8FhHKyAhWcQIgdhk8tk8n1r8Gf2IP8Aglv8TfDf/BQf9qf4oftc+AtH1n4ZfFfU7q60eHUms9TgvEfUZLmNpLUmQoQjKw8xAVPTBFfqD/w3dq3/AER7x7/4Km/xo/4bu1b/AKI949/8FTf415EuJMqdv323lL/5E+j/AOIa8R/9Av8A5PT/APkz61+E3wX+EPwG8IR+APgj4X0rwjocTtKtho9pFZW/mNgM5SJVUu2BuYgscck1y/g/9l79mj4e+FvEHgbwD8O/DGh6J4tSSPXNP0/SLW2tdTSZGjkW7ijjVJw6OyMJAwKsQeCa+cv+G7tW/wCiPePf/BU3+NH/AA3dq3/RHvHv/gqb/Gr/ANZ8q/5/f+Sy/wAh/wDENeI/+gX/AMnp/wDyZ9S+G/gB8CPB3wwn+CPhDwToOleDLpJo5tAs9Nt4NLkS5JMqtaoiwsJCSXBTDZ5zXMfDL9kv9lz4L+ENW8AfCX4deG/Dmia/xqljp2l29vb3wwQBcIkYWYAMQA+4AHA44rwH/hu7Vv8Aoj3j3/wVN/jR/wAN3at/0R7x7/4Km/xpf6z5V/z+/wDJZf5B/wAQ14j/AOgX/wAnp/8AyZ6f8Mf2DP2JPgr4yX4ifCL4R+EPDWvREtFqGm6NaW1zCWGD5UiRhowR1CEA19ZV+f3/AA3dq3/RHvHv/gqb/Gum+GX7bvh74gfFrS/g3rXg7xH4X1XWYppbT+17UW6uIEeRuC27G1GwQpGRitKPEeWTnGlCsryaS0au3olstzLEeHfENGjUxFTCvkhFyk1KDtGKvJ2Um7JK702PtuiiivdPigooooAKKKKAP5MP+CrP/J63iP8A69dO/wDSaOv6y/8Agir/AMozPhp/3Gf/AE63lfyaf8FWf+T1vEf/AF66d/6TR1/WX/wRV/5RmfDT/uM/+nW8rwa/8SXqQ9z9TK+bv2gf2vf2bf2WP7MX4/eLLXw2+s+b9iSZZJXlEO3eQsSOwC7gCSAMnFfSNfgF/wAFD/D+geKv+Cqn7Ovh/wAUWNvqVhdadqizW11Es0MihJjhkcFWGQDyOtYiPtv/AIe8f8E4/wDoqFj/AOAt5/8AGKP+HvH/AATj/wCioWP/AIC3n/xiuq/4Zk/Zt/6J74a/8FNr/wDGqP8AhmT9m3/onvhr/wAFNr/8aoA5X/h7x/wTj/6KhY/+At5/8Yr83v8Agk/8Jvh98cf+Caj/AAu+KOmxaromq6pqUU8Ev++pV0Yco6HDI6kMrAEHNfqX/wAMyfs2/wDRPfDX/gptf/jVeqeHfDHhrwhpUeheE9PttLsYvuW9pEkES/REAUfgKAPxw+B3xx+J3/BJj4nWP7Nf7Sl9ca98D9euDF4V8VSgu+kO5J+zXOBwg6kDgDMkY270T+imxvrHVLGHU9MmS4trhFliliYOkiOMqysMggg5BBwRXx38WfhN8Pvjj8PtS+F3xR02LVdE1WLyp4JfzV0Yco6HDI6kMrAEHNfk18Dvjj8Tv+CTHxOsf2a/2lL64174H69cGLwr4qlBd9IdyT9mucDhB1IHAGZIxt3ogB/RnRVWxvrHVLGHU9MmS4trhFliliYOkiOMqysMggg5BBwRVqgAr+Or/g43/wCTo/A3/Yqj/wBK7iv7Fa/jq/4ON/8Ak6PwN/2Ko/8ASu4oA9l/4Ipf8msa/wD9jXdf+kdnX7AV+P8A/wAEUv8Ak1jX/wDsa7r/ANI7Ov2ArRHvYb+FEK+Of+CgP/Jnvjf/AK9oP/SiKvsavjn/AIKA/wDJnvjf/r2g/wDSiKvOzj/cMR/gn/6Sz6vgz/koMu/6/wBL/wBORPuj9kX/AJNQ+GH/AGKWi/8ApHFX0NXzz+yL/wAmofDD/sUtF/8ASOKvoatMF/u9P/CvyPjuIf8AkaYv/r5P/wBKZ85eKv2Qv2YfHPiK78XeMvAuj6pql/IZbi6ubZZZZXPdmYEnjgeg4HFc/wD8ML/sd/8ARNvD/wD4BR/4V9W0VMsvwrbbpRv/AIV/kXT4mzinFQhjaqitElUmkktklc+Uv+GF/wBjv/om3h//AMAo/wDCj/hhf9jv/om3h/8A8Ao/8K+raKX9nYT/AJ8x/wDAV/kX/rTnX/QdV/8ABk//AJI+Uv8Ahhf9jv8A6Jt4f/8AAKP/AAo/4YX/AGO/+ibeH/8AwCj/AMK+raKP7Own/PmP/gK/yD/WnOv+g6r/AODJ/wDyR8pf8ML/ALHf/RNvD/8A4BR/4Uf8ML/sd/8ARNvD/wD4BR/4V9W0Uf2dhP8AnzH/AMBX+Qf6051/0HVf/Bk//kjxv4afs8/A/wCDepXGsfCrwtp3h+5u4hDPJYwrCZIwQwVtuMgEZGeleyUUV0U6UKceWnFJdkrHlYvGYjFVHWxNSU5vrJuT+93Z+WH/AAWM/wCTLL7/ALC1h/6Ea+i/DH/Itaf/ANe0X/oAr50/4LGf8mWX3/YWsP8A0I19F+GP+Ra0/wD69ov/AEAV5WF/5GuI/wAFP85n6TU/5I3Lv+v+J/8ASaBuV9B+D/8AkW7X/dP/AKEa+fK+g/B//It2v+6f/QjXuSPg8f8AAvU6WiiioPJCiiigAooooAKp39ha6latZ3i70fqPT3HvVyqOo6jaaVaNe3jbUX8yfQe9A43uuXc8G8Q+HrrQLrY/zwv9x/X2PvXPVu6/r93r13503yxrwiDoo/x9TWFWh9BT5uVc+4V+Uf7VemXn7V/7a3w5/Ybdpv8AhFYYj4k8T/Z2ZfMhh3lIZCpBUERhAwPDTqRyor9XK/OX9ja1utU/4KxfHHX9SG2Wx0LT7OJSpyIpEtGG0k5AIiDEDhic0mc+Nk1Tsup+1+i6NpXhzR7Tw/oVulpY2EMdvbwRjakcUShURR2CqAAPStOiioPGCiiigAooooAKKKKAPxE/4OFf2ovj1+x7/wAEz/EXxv8A2bfEU3hbxVZ6xpFtDqEEUUzpFcXASRdsySJ8ynHK59K+6/8AgnH8TPHPxo/YA+Cvxd+J2oPq3iPxP4J0LVNTvZFVGuLu6s4pJZCqBUBd2JIVQBngCvyX/wCDqr/lDz4r/wCw/oX/AKVLX6W/8Ek/+UXH7O//AGTnw1/6QQ0Afj9/wc3ft3ftZ/sOeBvgrqv7KnjO48H3HibXr+01N7eC3nNxDDHAUU+fFKAAWb7uDzX9Rlfxd/8AB49/yTb9nj/sZ9T/APRVtX9olAH8L3/Byx/wUZ/4KHfsr/8ABQrwx8Gf2P8A4iar4W0a5+HMPiC60+wSBkaaC61Rrmc+ZG5yLe1GecYTpX6M/wDBQD/grb4+8Hf8G+Hgr9tj4Q682kfET4m2Hh/SbDULcIzwazKQ2pbFZWUlBa3aD5eDg44xXxx/wVY+GPh742f8HPHwA+DXi5d+leLfhbdaNerjObe/i8RwScHr8rmvwV/Yd1v4pftQ/G39mL/gi78RLKX7L8I/i1r+pazAfmiks7WSK7nhweQYjb6kCSMYnHfIoA/qH/4Nfv2zP2z/ANrPRvjtpH7ZvjLUPFur+CtX0nT7Zb9Ylazd1vFuEHlIg5eJc5z93iv6sq/j2/4NVf8AkqX7Y/8A2PVp/wCjtSr+wmgAooooAKKKKACiiigD8y9S/Y++J3xx/bVm+OP7Td5bXvgnwQ8L+CNFs5n8kz8SG5uoyP8AWIwGefnZVB/dqA3z3+2Ro8P7O3/BQ/4ZftF6UiW2l/EmNvCuvMJWQSXShUtpXQDk4MShjuTbDghDhz+3Ffjp/wAFvLGeD9knR/HGn7FvPDPirTtQgZgD8wSaPHQ5BLqSMjOOvGCFQlyyUj7joqOGaK4iWeBg6OAyspyCD0IPcGpK0Pogr+T/AP4K9f8AJ5V7/wBgqw/9BNf1gV/J/wD8Fev+Tyr3/sFWH/oJpPY48d/D+Z/T1/wQ0/5Rx+Ef+v7Vv/SyWv12r8if+CGn/KOPwj/1/at/6WS1+u1QeOfEvxb/AOCjn7E3wK8e33wv+KvxAsdJ17Tdn2q0MU8zRGRQ6hjFE6glWBxnIzzXm/8Aw94/4Jx/9FQsf/AW8/8AjFfnT8Ifhx8PPiJ/wV4/aLt/iBoOna7Ha22mtCuoWsV0sbNDACVEittJwM461+oH/DMn7Nv/AET3w1/4KbX/AONUAcr/AMPeP+Ccf/RULH/wFvP/AIxXw3/wUo/4KUfsQfGn9iDx/wDC/wCF/j+11fXtXtbaKzs4ra6VpWW6hcgF4VUYVSeSOlfod/wzJ+zb/wBE98Nf+Cm1/wDjVSw/s1fs520yXFv4A8NxyRsGVl0q1DKw5BBEfBFAHyxrH7Jnwz/a9/Yh8AeAvHqNa31r4b0q40nVrcf6Vp119kixJGeCVJAEkZIDgdmCssf7Ev7bXxM8AfEyL9gz9vOVbXx7aqqeHPEbsfsviS1+7H+8bANwQMKTgykFXAmBD/ojDDDbQpb26LHHGoVVUYVVHAAA6AV8xftZ/smfDP8Aa9+Gb+AvHqNa31qxuNJ1a3H+laddcYkjPBKkgCSMkBwOzBWUA/Sqivxh/Yl/ba+JngD4mRfsGft5yra+PbVVTw54jdj9l8SWv3Y/3jYBuCBhScGUgq4EwIf9nqACiiigAor5yv8A9rf9nSx+Melfs/w+KrK98YaxLJDDplm32mWNoY3lfzjGGWHCoTiQqT2Br6NrOnWp1L+zknZ2dnez7PzOvFYDE4ZQeJpShzrmjzJrmjdrmV91dNXWmjCivir/AIKBftF61+zL+zNq/jfwWw/4SnUpYNH0BCiyFtRvW2oQjAqxjQPIFYEHZggg1wH/AAT1/aH+KfxV0Txr8IP2iLuG7+Inw31ybTNUlhiSFbi3kLNbzqkaooVwrqpCjKqGPLGuOWZUY4tYN352r+XXS/dpN27I9ulwnjqmSzz6PL7GMuVq75/spzStbkUpxi3f4pJW3t+ilFZ9xq2lWl/BpV1dRRXV1uMELuFkk2DLbVJy20cnAOBWJonjzwN4m1K40bw5rNjqF5af6+C2uY5ZYv8AfVWJXqOoruc4p2bPnlQqOLkouy1vbptf7zq6Kxdf8R+HvCmmPrXim/ttNs4yA891KsMSk9Ms5AH51Bovi3wp4l0k6/4d1O0v7BQSbm2mSWEADJ+dSV4HPWjnjflvqJUajh7RRfLe17aX7X7nQ0VR03VNN1myTUtIuIru2lzslhcOjYJBwykg4II+tRaTrWja/afb9Cu4b2DJXzIJFkTI6jKkjIp3QnCSvdbb+Rp0VnabrGkayksuj3UN2sMjRSGF1kCSL1VtpOGGRkHkVgab8Q/AGs67J4X0jXNPu9Thz5lpDcxvOmOuY1YsOncUueOmu5SoVHzWi9N9Hp69jsKKz73VtK02WCDUbqK3e6fy4VkcIZHP8Kgkbj7DmqOheKvDHihZ38M6la6iLWQwzG1mSYRyL1VthO1h3B5p8yva+ovZT5efldu/Q3qK8b+N/wAfvhR+zl4VtfHHxk1QaNpF3exaet00byIk0ysyb/LViqnYcsRgd8Dmu68GeOfBfxG8PQeLPh/q1nrel3IzFd2M6XEL/R0JXI7jORUKtTc3SUlzLW19behvLAYmOHji5UpKlJtKVnytrdKVrXXVXudVRRRWhyBRRRQB/9f+/iiiigD/ADn/APgox/yfh8XP+xp1L/0c1f1Rfsof8mtfDX/sVdG/9JIq/ld/4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/wCxV0b/ANJIq5cVsj3sh+Ofoe/UUUVwn0wUUUUAFFFFABRRRQAV+Yfg74vfC74Lf8Fa/Fnin4ta/Y+HNNuPAEdrHc6hMsETzvc2jhAzEAsVRiB6A+lfp5XgvxK/Zd/Z6+MOvL4p+JnhHTtX1JYxF9pmi/elF6BmUgsB2znHataNRQldnDmGFliKXJF2d7nvH/DfX7FH/RU/DX/gxi/+Ko/4b6/Yo/6Kn4a/8GMX/wAVXyJ/wwL+xx/0T7Sv++G/+Ko/4YF/Y4/6J9pX/fDf/FV1fWo9jxf7CrfzL8f8j67/AOG+v2KP+ip+Gv8AwYxf/FUf8N9fsUf9FT8Nf+DGL/4qvkT/AIYF/Y4/6J9pX/fDf/FUf8MC/scf9E+0r/vhv/iqPrUewf2FW/mX4/5H13/w31+xR/0VPw1/4MYv/iqP+G+v2KP+ip+Gv/BjF/8AFV8if8MC/scf9E+0r/vhv/iqP+GBf2OP+ifaV/3w3/xVH1qPYP7CrfzL8f8AI+u/+G+v2KP+ip+Gv/BjF/8AFUf8N9fsUf8ARU/DX/gxi/8Aiq+RP+GBf2OP+ifaV/3w3/xVH/DAv7HH/RPtK/74b/4qj61HsH9hVv5l+P8AkfXf/DfX7FH/AEVPw1/4MYv/AIqj/hvr9ij/AKKn4a/8GMX/AMVXyJ/wwL+xx/0T7Sv++G/+Ko/4YF/Y4/6J9pX/AHw3/wAVR9aj2D+wq38y/H/I+u/+G+v2KP8Aoqfhr/wYxf8AxVH/AA31+xR/0VPw1/4MYv8A4qvkT/hgX9jj/on2lf8AfDf/ABVH/DAv7HH/AET7Sv8Avhv/AIqj61HsH9hVv5l+P+R8/wD7Lfjjwf8AEn/goD+0D428A6lb6vpF/wD2M1teWriSGVUhKEqw4IDKRx3Ffp7XkHws+APwY+CP2w/Cfw5ZaE2obPtLWseHkEedoZjkkDJwM45Nev1yVZqUro93BYd0aMacnqr/AJhRRRWZ1hRRRQAUUUUAFFFFABX5KftGWaftL/8ABQLwL+zlfF7nw14Ksm8S6xbKo2PPn92JMt8ynMKY25AlYdGJH611+YHwUja8/wCCo/xmvJ3Jaz0PSLeIcABJbe1c54yTuHH1+laU9LvyOTFrmUIPZyV/ld/ofp/RRRWZ1hRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/OR/wW3/5Kl4I/wCwVcf+jhX6t/8ABuP/AMmu+Of+xpP/AKSW9flJ/wAFt/8AkqXgj/sFXH/o4V+rf/BuP/ya745/7Gk/+klvXp0PgR8Vmf8AvU/66H3D/wAFWv2a/jX+0z8CPC2h/ASxtdT13wx4v07xCbS7uFtlmhtYbiMqrvhd26ZSQSvyhsHOAfmT/hM/+C13/RHvBn/g1X/5Mr91qK1OA/Cn/hM/+C13/RHvBn/g1X/5Mo/4TP8A4LXf9Ee8Gf8Ag1X/AOTK/daigD8WP2Dv2u/jV+0R43+J/wAKvj54a07w54i+G1/aWNwmmzNLEz3BuFdTl5ASjW5wyuQwboMZPpH7Yf7Yemfs3abp3gjwRpzeLPiX4sb7N4c8OW2Xlnlc7RNMFOUgQ5ycguQVUgB3T8ifAP7WH/DNP7Zf7UmheDdFn8U/EDxn4wtbDwvocCM32q6SW/3vIVxiKLehfBDHIAwNzp+0v7Cv7CupfBPUr/8AaO/aOv18WfGbxYu/U9TfDxadE4GLOzGAERBhWZQAQAq4QAEAP2Ff2FdS+CepX/7R37R1+viz4zeLF36nqb4eLTonAxZ2YwAiIMKzKACAFXCAA/phRRQAV+G//BwX/wAmH2n/AGNOn/8Aom5r9yK/Df8A4OC/+TD7T/sadP8A/RNzQB+L/wDwQC/5PH8S/wDYmXn/AKXWNf18V/IP/wAEAv8Ak8fxL/2Jl5/6XWNf18V8Xnn+9P0R62D/AIYUUUV451BRRRQB+LP/AAUt/wCT1/2TP+xl1D/0bp1fsdX44/8ABS3/AJPX/ZM/7GXUP/RunV+x1fc5P/ucPn+bPHxX8V/10CiiivTOcK/If/gqJ/wSd0T/AIKY+N/g34z1fxvP4Qb4Q6zcavFFDYLei/M8lpJ5bFpovKA+ygZAbO7pxz+vFFABRRRQAUUUUAFFFFABXNeM/wDkT9W/685//QDXS1zXjP8A5E/Vv+vOf/0A0Afmr/wRk/5MA8Lf9fmqf+lctfml/wAE0PhF/wAFF/HX7Ndjq37OfxR0bwX4PGoXka2dxp8N5cmZWy8hMtrJ95iAAJQAozjOc9F/wTi/Z1/br+JP7LGg+Jfgz8aovBPhWSW+S200aXFdSRSpcyCQlmUFg7bmyWJGduMAV+2n7Df7K3/DG37P1j8E5Na/4SCaC5uLuW8EH2ZS9w24qse+QgKABktk9cDOB4mZZrGnFxoy99Pt952YfDOTvNaHmX7B/wCyB8UP2Y9Q+IHjL4x+Lbbxb4h8f6nDqN3PaWv2VA8Qk3MQNq5dpD8qoqqAMZzgfoXRRXydatOrN1JvVnpQgorlWwUUUVkUfxw/8F3/APk9u0/7Fmw/9G3FfuL/AMG+f/JiF5/2NWof+ibavw6/4Lv/APJ7dp/2LNh/6NuK/cX/AIN8/wDkxC8/7GrUP/RNtX3+Xf7rT9Dxa/8AEkfuTX5kf8Fa/wBlf4q/te/slSfDL4MwwXWu2msWWpR208qwCdIg8bqruQikCXf8xAIUgckA/pvRXaYn4U/8Jn/wWu/6I94M/wDBqv8A8mUf8Jn/AMFrv+iPeDP/AAar/wDJlfutRQB+FP8Awmf/AAWu/wCiPeDP/Bqv/wAmV1v7F/7VX7Q3xf8AjT8SPgP+0l4a0nw7r3gFNOMkelSvKu69V3KszSSK2FCEFSMcg57ftTX8qnj39sLw/wDsh/8ABQf9pbVhp0+veKfEVxoNh4d0a3Rne9vTbAAHYCQqllyBlmJCqCTQB+pP7av7avg39kTwZbIls2v+Ndfb7N4f8P22XuLy4chFJVMsIwxAJAyzfKuWPHOfsB/sB+MvDPjOb9tL9tKddf8AjBr6+ZBBJh7fQLdxhYIFGVEwU7WZeI1yiE5d3P2A/wBgPxl4Z8ZzftpftpTrr/xg19fMggkw9voFu4wsECjKiYKdrMvEa5RCcu7/ALC0AFFFFAH5E/8ABcv/AJRx+Lv+v7Sf/SyKv5jP+CPn/J59j/2Cb/8A9AFf05/8Fy/+Ucfi7/r+0n/0sir+Yz/gj5/yefY/9gm//wDQBVw+JEVfgZ/WjRRRXaeUfm38S/8AlLT8Av8AsE6//wCkV1X7aV+JfxL/AOUtPwC/7BOv/wDpFdV+2lcdX4menQ+BBRRRWZqFFFFABXxf+33+wh8Ef+Cj37Nmp/svfH19QttD1G6tL1LzSZIob+1uLOQSJJA80U8asy7o23RNmN2AwSCPtCigD4h/4J8fsAfAv/gmp+zla/sy/s+yald6NBf3WpTXusSxTX91dXbAs8zwQwRkqipEu2JcIig5IJP5cftAf8G0X7Dvxk+Knin4n/DzxZ46+FUfjt2bxJovg/VYrTSdRWQlpA1vLbzYDuxYpuMQJO2MA1/RLRQB8IfC7/gmn+xn8Jf2Lbj/AIJ/eHPB8Nx8ML+1mttQ067keSW+a4IaWeecFZDOzgOJVKtGyr5ewIoH47eD/wDg1B/4J1+HfG+m6n4k8U+PvE/hHRrxr2z8I6pq0LaSsjtudWEVtHL5bcZCSI7AfM7c5/p4ooA/JT/gpT/wRq/ZZ/4Kb6J4Gsvidfa14P1H4ctKNC1DwvNDaS28E3lboNskMsflr5MZj2qrRsvykAsDV+PP/BE79in9pr9kfwN+yJ8cI9a161+HNqlroXiea7jHiS3CjDE3awhH8wY8xGiMbFVYpuVSP11ooA/DD9iL/g34/Yn/AGK/jtB+062q+Kfib4805dml6r4zv4746cApRWgSKGFfMCNtDyeYU6x7DX1K3/BLL9n1/wDgpUv/AAVNOseIf+Fgrpf9kjT/ALRbf2N5P2U2m7yvs32jf5Zzn7RjdzjHFfpVRQB+Xn/BRn/gkX+yb/wUzXw/rvxrGraB4t8Jn/iTeJ/Dd0tlqtom8SeWHeOWN0Eg3qHjJRslCpZifD/2Lf8AghH+yv8AshftCQ/taeIfFXjH4t/Eqyt2ttP1zxzqa6jJYI6sjG3VYo8MUdlDSNJtDHZtya/bOigD8Nf2iP8AggT+yV+0J+3an/BQM+KfGPhDxhPc2N5qVt4fv4LeyvptOEQjaRZLaV1DiGMTIrhZNucKxLHof28/+CD37Fn7eXxfj/aM1m68Q/Dv4jLCIZfEPg28j0+5ugg2K1wHilWR1T5PMAWQphSxVVA/amigD80f+Cc3/BJz9kT/AIJg+HNY0/8AZ4sb++1zxIytrHiLXbhbzVb0ISyI8iJFGkalidsUaBjy+5gDUn/BNX/gll+z7/wSy8E+KvAX7PuseIdYs/F+qJq14/iG4triVJkj8sLEba2tgEx2YMc96/SqigD8R/22P+CDP7I37ZPx7m/ap0zxB4t+FXxGvrcW2oa34I1FdOk1BNojzcK8UoLeWoQtGYywA378Cvq//gnZ/wAEyf2XP+CYvwu1D4a/s32d7LPrtwl3rOtatMtzqepTxgqjTyKkabYwzbEjREUsxxuZif0JooAKKKKACiiigD8Pv2J/+Tq/2mf+xwX/ANCua/TGvzO/Yn/5Or/aZ/7HBf8A0K5r9Ma7aXwo83EfxGFfHX/BQP8A5Mw+In/YJf8A9DWvsWvjr/goH/yZh8RP+wS//oa1UtmRD4kfznf8Eh/+Ujnwu/6/rr/0jnr/AEDq/wA/H/gkP/ykc+F3/X9df+kc9f6B1cB6p+RH/BVH9mL9o3466z8IPiT+zVpVnresfDjxEdYezvbhLaJ9jQyx7md0yu+AKwU7sNxjFeQf8Jn/AMFrv+iPeDP/AAar/wDJlfutRQB+FP8Awmf/AAWu/wCiPeDP/Bqv/wAmUf8ACZ/8Frv+iPeDP/Bqv/yZX7rUUAfj/wDsCftSfFH9p3wn4yk+MOjafomu+D/EdzoM8Omu7QlrZE3cuz5IcsNwbBGMAdTzf7bv7bt98E77Tv2f/wBn/Tj4t+MHi0iDSdJgAlFqJQcXFwMgAAAsqsQCAWYiME1+UvwU/bK8Q/AfU/jH8DvgVo0vif4s+OPidrUWg6bHGXSJWYKbmXOFKoQxAJA+Us5VFY1+5n/BPv8A4J92P7K9jf8Axd+Ll+PFvxe8Wgza7rsxMpiMpDNbWzMARGCBubAMhA4ChEUAP+Cff/BPux/ZXsb/AOLvxcvx4t+L3i0GbXddmJlMRlIZra2ZgCIwQNzYBkIHAUIi/plRRQB+RX/Bcr/lHH4u/wCv7Sf/AEsir+V3/glN/wAnreHP+vXUf/SaSv6ov+C5X/KOPxd/1/aT/wClkVfyu/8ABKb/AJPW8Of9euo/+k0la0P4kfVDW5/WfRRRXvlhW/oXiTUPDryPYBCZQA28Z6VgUUpRUlZgehf8LM8Rf3Yf++T/AI0f8LM8Rf3Yf++T/jXntFZfV6f8qCyPQv8AhZniL+7D/wB8n/Gj/hZniL+7D/3yf8a89oo+r0/5UFkehf8ACzPEX92H/vk/417Vos95daVBdX+PNlQO23p83I/SvliCPzp0h/vsB+dfXQAAwOAK4cbCEVFRViZC013SNDJIQqqMkngACnV5/wDEfUpLLQRbQnDXL7D/ALoGT/QVxU4c8lFdSTmNY+J10LoxaLGnlLkbpASW9xgjArI/4WZ4i/uw/wDfJ/xrz2ivaWGppW5S7I9C/wCFmeIv7sP/AHyf8aP+FmeIv7sP/fJ/xrz2in9Xp/yodkfRPgjxFf8AiG0nmvwgaNwo2DHBH1pnjHxjFoMRsrMh7txwOoQHuff0FeUaF4suPD2lz2tiv7+ZwQzDIUAenr+lcrNNLcStPOxd3OWYnJJNcywadRya93sK2oTTS3ErTzsXdzlmJySTUVFFd4wooooAKKKKAPyM/a9/4KBfCzUPhNrXg/4H+J7u38UrcwxRTW0M0BCxTKZdspUAAqpGQeQcdDXzboniT9mqx8Wr8UYP2lPFVl4mms1tZb1NEuDciI4YxGUPllBA/L0r9JP+CQHgXwR4n/Z+8XX/AIk0ax1GdPGd/GslzbxyuEFtaEKC6k4yScdMk1+r3/CovhR/0K+k/wDgFD/8RX5M8Hjs4UMdXqR1StG00lZvXSotdd/Q/ovGcWZFwfXxHD2Cw1b93OXNU56DlPmjC6fPh5+4uXSK6t3b0t/ON/wvj4X/APR2/jj/AMFN3/8AHKP+F8fC/wD6O38cf+Cm7/8Ajlf0c/8ACovhR/0K+k/+AUP/AMRR/wAKi+FH/Qr6T/4BQ/8AxFV/q3iv+fsf/Kv/AMtPL/4itlH/AECVf/LP/wCYj+cb/hfHwv8A+jt/HH/gpu//AI5R/wAL4+F//R2/jj/wU3f/AMcr+jn/AIVF8KP+hX0n/wAAof8A4ij/AIVF8KP+hX0n/wAAof8A4ij/AFbxX/P2P/lX/wCWh/xFbKP+gSr/AOWf/wAxH843/C+Phf8A9Hb+OP8AwU3f/wAco/4Xx8L/APo7fxx/4Kbv/wCOV/Rz/wAKi+FH/Qr6T/4BQ/8AxFH/AAqL4Uf9CvpP/gFD/wDEUf6t4r/n7H/yr/8ALQ/4itlH/QJV/wDLP/5iP53/AIgeKfHth+zPrv7SnwI/aS8VeLU8O31pZz2lzBNZ7ZbiRFG8Sucja24YVlPQnIIH1V+0bd3F/wD8FLfgjfXbb5ZvCt3I7YAyzQXpJwOOtfCviSGK3/ZA/aYggUJGnxCt1VVGAALzgADoBX3D+0D/AMpIfgZ/2KVz/wCk97Xl5dNupSv1nQdryav7aabXM21dJdT7rOKEKft0rNxpZhFS5KcZcrwVCajJ04U4vlc5WfL1P0Cooor9rP5OCiiigAooooA/kw/4Ks/8nreI/wDr107/ANJo6/rL/wCCKv8AyjM+Gn/cZ/8ATreV/Jp/wVZ/5PW8R/8AXrp3/pNHX9Zf/BFX/lGZ8NP+4z/6dbyvBr/xJepD3P1Mr8Gf28P+Utn7N3/Xhqn/AKBNX7zV+DP7eH/KWz9m7/rw1T/0CasRH6vUUUUAFFFFABXmHxm+Gfwy+L/wy1j4f/GKyt77w5fW7fbFuSESNEG7zA+QY2jxvWQEFCMgjFejXt7Z6bZzajqMyW9vbo0kssjBEREGWZmOAAAMkngCvxF8YeMPir/wVy+Kt7+zx+zze3Hh/wCB/h+4WPxV4qjUq+qupB+y2uRhgw5AIxgiSQbdiOAdr/wRg+KnxUb4jePv2cvA+o3Hjn4IeDpJF0DxReoYXgmLpts4iciVWVmfAwFCBwEWREP9C1eY/Bv4N/Df4A/DfS/hL8JdLi0fQtHiEVvbxD8Wd2PzPI7ZZ3YlmYkkk16dQAV/HV/wcb/8nR+Bv+xVH/pXcV/YrX8dX/Bxv/ydH4G/7FUf+ldxQB7L/wAEUv8Ak1jX/wDsa7r/ANI7Ov2Ar8f/APgil/yaxr//AGNd1/6R2dfsBWiPew38KIV8c/8ABQH/AJM98b/9e0H/AKURV9jV8c/8FAf+TPfG/wD17Qf+lEVednH+4Yj/AAT/APSWfV8Gf8lBl3/X+l/6cifdH7Iv/JqHww/7FLRf/SOKvoavnn9kX/k1D4Yf9ilov/pHFX0NWmC/3en/AIV+R8dxD/yNMX/18n/6Uz85Piv8c/8AgoN4a+Iur6F8Lvg9Y+IvD9tOVsdRfUobdriLAO4xvMGUg5HIGcZxg157/wANIf8ABUT/AKILp/8A4OLf/wCP1+rtFcM8srSk5LFVFfouSy8tYNnv4fi7A06UKcsmw0mkk5P293Zbu1dK73dklfZJH5Rf8NIf8FRP+iC6f/4OLf8A+P0f8NIf8FRP+iC6f/4OLf8A+P1+rtFT/ZVb/oMqf+U//kDb/XPAf9CPC/8Alx/80H5Rf8NIf8FRP+iC6f8A+Di3/wDj9H/DSH/BUT/ogun/APg4t/8A4/X6u0Uf2VW/6DKn/lP/AOQD/XPAf9CPC/8Alx/80H5Rf8NIf8FRP+iC6f8A+Di3/wDj9H/DSH/BUT/ogun/APg4t/8A4/X6u0Uf2VW/6DKn/lP/AOQD/XPAf9CPC/8Alx/80Hxr+zR8Uf2vPH3iTUbP9ov4d2vgnTre2D2s0F5HdtPMWAK/JK+0Bcnkc+vHP2VRRXpYajKlBQlNzfd2v+CS/A+UzXH08ZiXXpYeFGLt7kOblVu3PKctd3eT8rLQ/LD/AILGf8mWX3/YWsP/AEI19F+GP+Ra0/8A69ov/QBXzp/wWM/5Msvv+wtYf+hGvovwx/yLWn/9e0X/AKAK83C/8jXEf4Kf5zP0Cp/yRuXf9f8AE/8ApNA3K63T/Gmr6ZZx2NsI9kYwMgk88+tclRXunx84RkrSVzuv+Fha9/di/wC+T/jR/wALC17+7F/3yf8AGuFoosjP6vT/AJUd1/wsLXv7sX/fJ/xo/wCFha9/di/75P8AjXC0UWQfV6f8qO6/4WFr392L/vk/41e0zx1rV5qVvaSiLbLKiHCnOGIHrXm9XtMuI7PUre7lztilRzjrhSDSshSw9OztE+jNR1G00q0a9vG2ov5k+g968C1/X7vXrvzpvljXhEHRR/j6mjX9fu9eu/Om+WNeEQdFH+PqawqEjPDYZU1zS3CiiimdYV+Xt/4i0z9mP/grJ4f+I3ie9h07w98WNAl0e4uZ8xRJeWojCB3b5CS0VugYEFfMwQB8x/UKvlv9r79mDwz+1f8ABy8+HWrNHaalGRcaXqDJua1uU78EEo65Rxz8pyBuCkJmGJpe0g0tz9TKK/Gf9kP/AIKOyeHdaP7LP7dssXhLx9oKx20OrXkmyy1eMfKkplbCJI6gHcWCSHJBVvkH7JwzQ3MKXFu6yRyKGVlOVZTyCCOoNQeG007MlooooEFFFFABRRRQB8Vf8FAP2EfhF/wUe/Zt1D9lz436jrGleH9Su7S9luNDmhgvBJZyCRAr3EFxGFJHzZjJI6EV+DCf8Gev/BNqNBHH8QvioqqMADVtLAA/8FNf1eUUAfgz8av+DeH9i/47/sd/Cr9iXxl4q8cQ+FvhBPqU+j3lrfWK6lO2qStNL9qkeweJwrMQnlxR4GM5PNfFf/EHx/wTd/6KJ8Vf/Bvpf/ypr+rqigD8p9T/AOCQH7Nerftl/CH9uO613xP/AMJb8FvC9n4T0S1F1a/2fcWVlHdRJJdobQyvMRdyFmjmiUkLhRgg43wN/wCCLX7If7P3/BQzxZ/wUr8EXevy+OvF0mpTz2F3cWz6TbXGrMGuZreJLVJ1kch+XncYkfjkY/XGigD83P8Agn//AMEuvgB/wTh1/wCJfiL4Iax4g1Wf4qatHrGrLrlxbTpDPG07BbcW9tblUzcPkOZDwOeuf0joooAKKKKAPIvjb8d/hV+zp4I/4WN8YtWTRtHFzBaee6NJmW4baoCoGY45ZsA4VSTwDXeeFPFnhjx34cs/GHgvULfVdK1GITW13ayCWGWNujKykgj+tHivwn4Y8d+HLzwf400+31XStRiMNzaXUYlhljbqrKwII/rX4i+Pfh38Qv8Agk98SY/jZ8Hbq51P4Ca1fxJ4l8PzyNN/YbXcqx/abUHJwCyquMs+BHIWyjqAfu3RWH4Y8S6F4z8Naf4w8LXSXumatbRXlpcR8pNBOgeN19mUgj2NblABX47/APBbCS51j9mHw38M9LZvt/izxdpunQIAMMWSZuSxAADBf4hz7ZI/Yivwx+P2tyftVf8ABTnwx8MdPgW48MfA23bVdSmDfI2q3ipJEoKkgtG6wkKeQY5QaEXThzSUe5+k1FFFaH0IV/J//wAFev8Ak8q9/wCwVYf+gmv6wK/k/wD+CvX/ACeVe/8AYKsP/QTSexx47+H8z+nr/ghp/wAo4/CP/X9q3/pZLX67V+RP/BDT/lHH4R/6/tW/9LJa/XaoPHP5+v2cP+Uv37SX/Xppf/oqCv19r8gv2cP+Uv37SX/Xppf/AKKgr9faACiiigAooryv40/Gn4cfs+/DjUfir8VdRTTdH01Nzu3LyOfuxxr1eRzwqjkn2yQAfLv/AAUc+Gv7Nnjv9mzVNY/aRvhoVroQNzpmswgG9sr0j939mGQZGkICmEECQDqpUOvZf8Eg/jn+0p8fP2RrHxZ+0jYOLi2nNrpOrz5W41axjVds8qEckNlPNz+927iM5Z/gD9n79n74q/8ABWT4q2X7U/7U9lPonwZ0Sdn8K+FXYr/aW0486bGN0bY+d/8Alp9xMICT/SDY2NjpdjDpmmQpb21uixRRRKESNEGFVVGAAAMAAYAoAtV/O3+1v4m/aeT4667p37bN94u8OfAz7ZOum3HgSCNrWWy8xhEdSnjZ50DRhfMR1OWzsUDBr+iSmuiyKUcBlYYIPIINedmeXvF01BVHGzv5PyktLryuj6rhLiaOS4mdeWGjV5la7spw/vUpNSUJ/wB5xlp0Phn9ifwZ+wZpHg8at+xhFoVxD5YW4u7NhPqOG7XDyk3Kk9dkm3HYCvuivkmD9hv9mXSvjfpX7RHhHw3D4e8VaVJK/n6UTaRXImjaNxPAmInyHLFtocsAS1fV91LJBbSTwxNO6KWWNCAzkDhQWIXJ6DJA9TV4ClUpUvZ1IRjbbk2a72tp6a+pzcSYvDYzGfWcNXq1edXk61nNSu9HNSamrWalaO9uVW1/n+/b6/am+CMP/BRL4bfDj41awdP8HfC5T4g1LZBLcmXV5kElpEY4Uc/uwIpMkY2u4PUV55pn7c/7NkH/AAVN8N/GT4E6+17oPxJ0+Lw74mSS1ntBHeBhHaznz0QHJWFSwztVXJI3V+jv/BOr9nn4vfDVviL8cf2jtMXS/HnxH1+W9uLUTxXX2exiz9niEkLyJgF3wA33QgPIr0T/AIKNfsy6r+1V+yxrXgDwjAJvE1hJFquhgusR+22pOFDuVVTJG0kYZmVQWBJAFfMTwOPqUZ42LSm5e0UXF83u6Rjfm0vFWty9WvM/XaHEXDmFx9Dh+rGUqMaP1WdaNaHsf3vvVKvJ7J3UasuZSVXVQi9lY+Mf+Ck/gBvip+25+zl8OWv7rTrfWX161u5rKUwTtZvHCLmJZFwy+dDviJHO1jXn/wC3r+yz8FP2OZvhL+0F+zHoy+D9esPGumaTK1jLKEubS5WVnSVWZt+fK2kn7yuwbPGPoTVfgz+1T8U/jd+zD8ZviF4YNpe+C7PVE8Xsby0f7LdTQJCrgJM3mCd0LgRb9oYBsGvYP+ClPwJ+Kvx/+Fngrw58JNK/ta90nxpperXcfnwweXZ2yTiSTMzxq20uvyqSxzwDzVYnA+2p4zEKi+dyi4Xi+bSENuqad07dVZ7EZVxF9RxWRZW8dFYeFOrCso1F7N3rYhNTs+VpxcXHm05ZKS+K7+TP+CkHhPWNJ/ao8F/Gz40eAdW+J3wd0jRZrabS9KU3AsdUeRy1zNbhgHBjMaguUQ4ALZUBr/7CsX7AXj39oPVfHX7IniW40D+1dGez1nwDcRPbwXHzEtP5UpKsyAhSIWZUGegdgfqH9pa0/bj+G3x60r44/s52w8f+En05rDVfBk17FYFZt24XUEso27iAoPVhggAhzt8b+HXwM+Pnx/8A22/C/wC2B8V/h/a/CrT/AAbYXUEVsL6G91PV5ruOSIGdrYBUjiEh4f5u3Ib5XUw8o49zhTcm5ptSg9tE5RqLSyX2ZX7W2IwuZ06nDSo18VGnCOHnFOnXjZyTlKNKphJ3k5ylZe1pqNrqfM7NnzZ8Evi9d/sg/sUftFfA2/uGj1L4R6rqFhpBY/MLbXCV06QDr80ztJ9DVb9hPxvrH7Avwp+O/wAEfiLLm/8Ah5p1l4ttUl4E0upWCFo0/wBkTrFH/vP65r2L9r39hX4z/FX9uPw94++H1is3w98VSaLL42Yzwx5bRJyybo3dZH3whEXYj4I54pv/AAUM/YU+Nn7QP7T3hXxb8KLUt4W8U2FpoHjiVLiGHy9Ps7+K7DlJHV5GIA2+UrN+6AOAeeOWGxtF+0pU23R9yCt8UZcyv6JOnd9OVnu0c24fx8fquMxNOMceliK7bX7upS9k3F9pSccTyxdnL2sOrV/lz4maj44/ZO/4Ja/DL4eaTe32ma98XdahuNev7JXbUPI1XdczeWEIYzmLyYSvVgGXqa5r4sWv/BPcfBK50L9n74aeOPDHjfRrU3Hh/XbbRr2G+XUYF3RNLcBtzB3ADkg7QSVAIGP2g/bq/ZS1X9pz4J2Phf4c38Wh+KfCmpWut+HbmQYgivLPIRH2qxCFWIGFO1gpwQMH5j8YfGH/AIKofErwK3wh8OfB+08FeJdQhFrd+K31y2lsbQNw9xBDHulDEZKjLtGcHDGrxmWypVJUpRbhyRjD9257JppNP3ZN63dr6O+mmORcWU8bhqWMo1IwrPEValZPExw696ScZSjKLdamoe4ox5mrOPJ76v8AIn7ZPiP4j/tHfs5fssXfi2S70HxT4s8S2em3syIbW5hup/8ARJJVVgDGxOXXjjIxxiv2Y/Zy/Y3/AGdv2Thqh+BOgf2M+tJbJeu1xNcvN9lDhDmZ3K/fYkLgEnOK+T/2nf2Yvjp4wH7OdhoUk/jO6+H/AIv0nU/EerXE0FvI0Ns8bT3JSR0LZIYiOPewGAAe/wCp1ezlmAti6tavC80oJSa1+BKVn57Oz8j4Li3iXnyXB5fl1dRoSlXc6cJPls67lTU46NpKzgpxTS1SV2c94r0rwprfhy803xxbWl3pEkTfaor5EktmiHJ8xZAUKjqd3Ffzl/HeL9kHwP8AEW5h/wCCaet+J7b4pSkn+z/h2raho8jg8G8jc/ZvJB6iJyidWSv3h/aD/Z1+Gf7T3giD4cfFyG4u9Eivob6S2gne3E7QBgqSNGQ5j+bJCspyBzxXX/DH4RfC74L+G08IfCfQLHw9pqY/cWMKwhiP4nIGXb1ZiWPc10Zll9TFzULRjFfa1c1/h25fW79DzOE+J8LklCVbnq1KknrRTUaEl09rfn9on/JyR2Xv9vLf2Rb79pXUfgVpN1+1pa2ln41Jk+1R2nl48vd+7L+UzRiQr94IduegFfS9FFerQpezpxp8zdla71b835nxmYYtYrE1cSqcYc8m+WCtGN3e0Vd2S2SvsFFFFanGf//Q/v4ooooA/wA5/wD4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/7FXRv/SSKv5Xf+CjH/J+Hxc/7GnUv/RzV/VF+yh/ya18Nf8AsVdG/wDSSKuXFbI97Ifjn6Hv1FFFcJ9MFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFfmJ8C/+Unfxw/7BWif+kttX6d1+YnwL/wCUnfxw/wCwVon/AKS21aU9pehy4n4qX+L/ANtkfp3RRRWZ1BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/OR/wW3/5Kl4I/wCwVcf+jhX6t/8ABuP/AMmu+Of+xpP/AKSW9flJ/wAFt/8AkqXgj/sFXH/o4V+rf/BuP/ya745/7Gk/+klvXp0PgR8Vmf8AvU/66H9DlFFFanAFFFFAHx18IP2Ff2fvgt8ffGX7TPhmxnu/GHjW6luri8vnWb7J55zLHagIvlpI3LZLOem7bha+xaKKACiiigAr8N/+Dgv/AJMPtP8AsadP/wDRNzX7kV+G/wDwcF/8mH2n/Y06f/6JuaAPxf8A+CAX/J4/iX/sTLz/ANLrGv6+K/kH/wCCAX/J4/iX/sTLz/0usa/r4r4vPP8Aen6I9bB/wwooorxzqCiiigD8Wf8Agpb/AMnr/smf9jLqH/o3Tq/Y6vxz/wCCq2g/FDTfjX+z/wDHTwN4N1nxjpngPWb++1WLRbV7qaKIvZSDKoDt3LDJtZsJlcFhkV0Phf8A4LR/sa396NL+Ig1/wRdBN0kesaZIdrAkFcWpnc8ggEqPfByB9vk0k8JBJ66/mzyMUn7Rv+tj9a6K+LfDf/BRb9hvxUqvpnxP0KIMwUfbLj7Gckkci4EeBxyTwByeCK9dh/ai/ZnuYUuLf4i+GJI5FDKy6vaFWU8ggiXkGvVOY91orxTUv2lf2c9GaVNY8f8Ahu0aBd0gm1W1jKLjOW3SDAxzz2rwbx9/wUq/YW+HMMsutfErSLxo1B2aVI2pli3QL9kWUE+vOB3IoA+5KK/Hq9/4K3WHxFkXSP2RPhT4s+JF9IjFZhbGzsUIKqS0oEzALuO4siDO1d3zZDIfCH/BYD9pVdvirWNA+B2iTeU3l6eg1DVNokOQSHkUHb8zbZYs4RMDMmOeti6NL+JNL+uxpGlOXwo/VXxx8R/h58MdI/4SD4la9p3h6w3BftOp3UVpDuJAA3ysq5JIHXqa/N74j/8ABYf9kHwnqknhj4dzap8QNZMW6C10CzaVZJCpbaJJPLBCgZdkD7QehIKhngL/AII3fs02mrQ+MPj5quvfFLxAG3zXeu30nlO+8v8A6uNg5XcSSsksgYk5yCRX6W/Df4S/C/4PaDH4Y+Ffh/T/AA9YRosfk2FukAYJkjcVALnLMSzEkliSckmvIrcQUo6U4t/gv6+R0wwUn8TsflW/7XH/AAU0+KM003wQ/Z4Gh2PlL5U/iy+W3l3NuIZ4He1kwQMGNclTglgGFWbX4f8A/BaT4heZca3408D+AYZnLBLC0a9ni29FVZoZ4yjerSlhX7G0V5tTPsRL4UkdEcFTW5+Nf/Dvz9vvW9Oz4i/ap1a1uZ/mmjs9IwiNnOEdbuFsfRV44xip5v8Agl/+0Bq8z/8ACTftP+PbiF4jGY7eeW2BB/vAXTKRgkHK5PrgYr9jaK5nm+Lf2/wX+Rf1Wl2Pmz9kn9mvQP2SfgZpfwN8Nalcata6ZLcyi6uVVJHa5laU/KvAA3YHXpmvpOiivPnOU5OUnqzdJJWQUUUVIwooooA/jh/4Lv8A/J7dp/2LNh/6NuK/cX/g3z/5MQvP+xq1D/0TbV+HX/Bd/wD5PbtP+xZsP/RtxX7i/wDBvn/yYhef9jVqH/om2r7/AC7/AHWn6Hi1/wCJI/cmiiiu0xCiiigAr4v8OfsD/s6eHP2s9c/bRGnz33jXW0iVWvJFltrJ0iWFpbaPYCkkiKAzMzEDITYGYH7QooAKKKKACiiigD8if+C5f/KOPxd/1/aT/wClkVfzGf8ABHz/AJPPsf8AsE3/AP6AK/pz/wCC5f8Ayjj8Xf8AX9pP/pZFX8xn/BHz/k8+x/7BN/8A+gCrh8SIq/Az+tGiiiu08o/Nv4l/8pafgF/2Cdf/APSK6r9tK/Ev4l/8pafgF/2Cdf8A/SK6r9tK46vxM9Oh8CCiiiszUKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/D79if/AJOr/aZ/7HBf/Qrmv0xr8zv2J/8Ak6v9pn/scF/9Cua/TGu2l8KPNxH8RhXx1/wUD/5Mw+In/YJf/wBDWvsWvjr/AIKB/wDJmHxE/wCwS/8A6GtVLZkQ+JH853/BIf8A5SOfC7/r+uv/AEjnr/QOr/Px/wCCQ/8Aykc+F3/X9df+kc9f6B1cB6oUUUUAFFFFAHxV+zr+wH+zv+zH8VPGXxr8AWdzd+JvG1/c3tzfajIk8lrHdyGZ7a1KonlwbznB3SNgb3bauPtWiigAooooA/Ir/guV/wAo4/F3/X9pP/pZFX8rv/BKb/k9bw5/166j/wCk0lf1Rf8ABcr/AJRx+Lv+v7Sf/SyKv5Xf+CU3/J63hz/r11H/ANJpK1ofxI+qGtz+s+iiivfLCiiigAooooAKKKKANLRv+Qxaf9do/wD0IV9XV8o6N/yGLT/rtH/6EK+rq8zMN4kyCvJfir/x72X+8/8AIV61XkvxV/497L/ef+Qrnwn8WP8AXQS3PGaKKK9ssKKKKACiiigAooooAKKKKACiiigD5I/4Iyf8m5+MP+x21D/0ls6/XevyI/4Iyf8AJufjD/sdtQ/9JbOv13r4Hh3/AJFtD0/Vn3vip/yVmY/4/wD21BRRRXtH58FFFFABRRRQB/LB4q/5NF/aa/7KHB/6W19u/tA/8pIfgZ/2KVz/AOk97XxF4q/5NF/aa/7KHB/6W19u/tA/8pIfgZ/2KVz/AOk97X5tlv8AEpf46H/p+of13nm+I/694/8A9V+FP0Cooor9tP5ICiiigAooooA/kw/4Ks/8nreI/wDr107/ANJo6/rL/wCCKv8AyjM+Gn/cZ/8ATreV/Jp/wVZ/5PW8R/8AXrp3/pNHX9Zf/BFX/lGZ8NP+4z/6dbyvBr/xJepD3P1Mr84/20/+CdPh/wDbC+IXhb4sW/jjXvA3iLwnBNbWd5orrG4jmJLEMNsiPyRuV8FSRiv0corER+J//Dov4rf9HQ/E3/wZTf8Ax6j/AIdF/Fb/AKOh+Jv/AIMpv/j1fthRQB+J/wDw6L+K3/R0PxN/8GU3/wAerl/+CRXxO8Y+O/2Jbfx18WfEN5rN3Fqeo+dqGr3b3EiwwkH5pZmYhEGepwBX7sV/FV/wTt+GX7Sv7cnwVsP2PPBMs/hP4U6RqE974w8QRDEt4Z3DrYwE8MxQAleVGd8mQERwD9CvGHjD4q/8Fcvire/s8fs83tx4f+B/h+4WPxV4qjUq+qupB+y2uRhgw5AIxgiSQbdiP+/vwb+Dfw3+APw30v4S/CXS4tH0LR4hFb28Q/Fndj8zyO2Wd2JZmJJJNHwb+Dfw3+APw30v4S/CXS4tH0LR4hFb28Q/Fndj8zyO2Wd2JZmJJJNenUAFFFFABX8dX/Bxv/ydH4G/7FUf+ldxX9itfx1f8HG//J0fgb/sVR/6V3FAHsv/AARS/wCTWNf/AOxruv8A0js6/YCvx/8A+CKX/JrGv/8AY13X/pHZ1+wFaI97DfwohXxz/wAFAf8Akz3xv/17Qf8ApRFX2NXxz/wUB/5M98b/APXtB/6URV52cf7hiP8ABP8A9JZ9XwZ/yUGXf9f6X/pyJ90fsi/8mofDD/sUtF/9I4q+hq+ef2Rf+TUPhh/2KWi/+kcVfQ1aYL/d6f8AhX5Hx3EP/I0xf/Xyf/pTCivzm+LP/BM34P8Axg+I2rfEzXPFfi7T7vWJvPlt9P1CKG2RsAERobdiAcZOWPJNed/8OhPgV/0PHjr/AMGsP/yLXDPFY9Sajhk10fPa/wD5Ke/h8m4ZnShKtm04zaV19Xbs7aq/tFez0vZXP1dor8ov+HQnwK/6Hjx1/wCDWH/5Fo/4dCfAr/oePHX/AINYf/kWp+uZj/0Cr/wYv/kTb+w+Ff8AocT/APCaX/y0/V2ivyi/4dCfAr/oePHX/g1h/wDkWj/h0J8Cv+h48df+DWH/AORaPrmY/wDQKv8AwYv/AJEP7D4V/wChxP8A8Jpf/LT9XaK/KL/h0J8Cv+h48df+DWH/AORaP+HQnwK/6Hjx1/4NYf8A5Fo+uZj/ANAq/wDBi/8AkQ/sPhX/AKHE/wDwml/8tP1dor42/Zo/Yk+HP7LniPUfE/g3XvEGs3GpWwtXXWruO5SNAwfKBIYypJAzyQRX2TXpYadWdNSrQ5Zdr3/GyPk81w+Do4h08BXdWnpaThyN6a+7eVrbb6n5Yf8ABYz/AJMsvv8AsLWH/oRr6L8Mf8i1p/8A17Rf+gCvnT/gsZ/yZZff9haw/wDQjX0X4Y/5FrT/APr2i/8AQBXm4X/ka4j/AAU/zmfoNT/kjcu/6/4n/wBJoG5RRRXunyIUUUUAFFFFABRRRQAUUUUAFFFFABXP+LPFGjeCPCup+NPEcvkadpFpNe3UmM7IbdDI7Y74VSa6Cvkf9vO6ns/2OfiJNbNtY6PMhOM/LIQrDn1BIoJk7Js+V/2GP2SvAv7d2i+N/wBsD9q3Rv7Zi8eXc1j4ftJZpF+wabZyFN0LRspRxInlhhgjy37SMD7nbf8ABHfRfB7C1+Dnxl8eeFbBZfOS1gvxtRgFClfKEGCu0AEgnAAzxk/dP7Cuh6b4e/Yw+FdhpMaxRSeFdKuWVQFBlurdJpDgADLO7EnqScnJya+rKzPnm23dlHTLWax023sriZriSGJEaVvvOygAsck8nr1NXqKKBBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVzXjLwb4V+IXhW/8ABHjewh1TSNUha3urW4XfHLG/UEH9D1B5HNdLRQB+RX/BMTxF4g+Fvir4l/sI+Mr2a+n+GGph9HnuFl8ybSbwl4iS7FV2qUYIqogEnybxkj9da/CT47fGT4a/shf8Fe7f4pfEvVF0jQfFfgAR6hdPA8oR1ndUUCJWkYk2cX3VZucYx03/ABd/wVJ+K/x+uz4I/wCCe3w+vNcmdQs/iXXovs2m2m7rtXcAzAZI8yRTuUgRSDqDUW3ZH2D+3n+2hpn7LvgaPwp4JU6v8TPFKm28N6PBH58zTSHYs8kYOREjdM/6xxtAIDlfBf2IP2aNV/Zw+FlzH45uV1Hxj4nvH1XXrwHeXuZeQm88sEycnoXZiODWP+zB+xw3wl8RXfxp+NeuTeO/ibqoK3Ot3jPJ9njYBfKtxISVUKNu7Cnb8qhU+WvuWrSPWwuG5PeluFFFFM7Qr+T/AP4K9f8AJ5V7/wBgqw/9BNf1gV/J/wD8Fev+Tyr3/sFWH/oJpPY48d/D+Z/T1/wQ0/5Rx+Ef+v7Vv/SyWv12r8if+CGn/KOPwj/1/at/6WS1+u1QeOfkP8cf+CTdl8UP2ivE/wC0f8PPiz4s+HuqeLRb/b4NCn8hWNvEkQ+dGRyrbA+1iQGJxgYA4f8A4dF/Fb/o6H4m/wDgym/+PV+2FFAH4n/8Oi/it/0dD8Tf/BlN/wDHq+Wf21/2Cfjj+y5+y94t+Pfhz9pL4japeeHIIJo7W51S4WKXzJ44iGKzhhw5II7+tf0rV+bv/BXj/lHH8Uf+vG1/9LIKAMjRv2gvBvwg/Y+8M/HX45az9ntY/Dum3V3dTHfNc3E1sjbUHWSWVycKOST6ZI/O39n79n74q/8ABWT4q2X7U/7U9lPonwZ0Sdn8K+FXYr/aW0486bGN0bY+d/8Alp9xMICT59+xH+yb8Yf+CkI8GfGj9ri3fS/hD4IsLSy8NeGgWVNVe0iSI3EucExOUyzkAyfcTCAk/wBQVjY2Ol2MOmaZClvbW6LFFFEoRI0QYVVUYAAAwABgCgAsbGx0uxh0zTIUt7a3RYooolCJGiDCqqjAAAGAAMAVaoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD/9H+/iiiigD/ADn/APgox/yfh8XP+xp1L/0c1f1Rfsof8mtfDX/sVdG/9JIq/ld/4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/wCxV0b/ANJIq5cVsj3sh+Ofoe/UUUVwn0wUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV+YnwL/5Sd/HD/sFaJ/6S21fp3X5ifAv/AJSd/HD/ALBWif8ApLbVpT2l6HLifipf4v8A22R+ndFFFZnUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH85H/Bbf/kqXgj/ALBVx/6OFfq3/wAG5H/Jrvjk/wDU0n/0kt6/KT/gtv8A8lS8Ef8AYKuP/Rwr9XP+Dcj/AJNc8c/9jUf/AEkt69Oh8CPisz/3qf8AXQ/obooorU4AooooAKKKKACiiigAr8N/+Dgv/kxCz/7GnT//AETc1+5Ffht/wcGf8mIWf/Y1af8A+ibmgD8YP+CAX/J4/iX/ALEy8/8AS6xr+viv5B/+CAX/ACeP4l/7Ey8/9LrGv6+K+Lzz/en6I9bB/wAMKKKK8c6gooooAK57xJ4R8J+MrBtK8X6XaaraupVobyFJ4yrYyCrgjBwM8dq6GimnbVAfI3in9gb9irxkk6638LvDYa4UiR7bT4rSQ5JJO+BY2DEnlgQ3vXkGof8ABJX/AIJ56lCILn4b26qG3Ziv76Js890uFOOemcV+jFFbRxVaO02vmyHTg90j84tO/wCCSH/BPHS9/wBm+HELb8Z87UL+bp6eZctjr2xmvd/A37D/AOx/8Nrv+0fBvw18PWt0GLLO9hFPMhKlTsklDugKkghSAQea+pqKJYqtL4pt/NgqcFskRQQQ20KW1sixxxqFVVGFVRwAAOgFS0UVgWFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAfxw/8ABd//AJPbtP8AsWbD/wBG3FfuL/wb5/8AJiF5/wBjVqH/AKJtq/Dr/gu//wAnt2n/AGLNh/6NuK/cX/g3z/5MQvP+xq1D/wBE21ff5d/utP0PFr/xJH7k0UUV2mIUUUUAFFFFABRRRQAUUUUAfkT/AMFy/wDlHH4u/wCv7Sf/AEsir+Yz/gj5/wAnn2P/AGCb/wD9AFf05/8ABcv/AJRx+Lv+v7Sf/SyKv5jP+CPn/J59j/2Cb/8A9AFXD4kRV+Bn9aNFFFdp5R+bfxL/AOUtPwC/7BOv/wDpFdV+2lfiX8S/+UtPwC/7BOv/APpFdV+2lcdX4menQ+BBRRRWZqFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAfh9+xP/wAnV/tM/wDY4L/6Fc1+mNfmd+xP/wAnV/tM/wDY4L/6Fc1+mNdtL4UebiP4jCvjr/goH/yZh8RP+wS//oa19i18df8ABQP/AJMw+In/AGCX/wDQ1qpbMiHxI/nO/wCCQ/8Aykc+F3/X9df+kc9f6B1f5+P/AASH/wCUjnwu/wCv66/9I56/0Dq4D1QooooAKKKKACiiigAooooA/Ir/AILlf8o4/F3/AF/aT/6WRV/K7/wSm/5PW8Of9euo/wDpNJX9UX/Bcr/lHH4u/wCv7Sf/AEsir+V3/glN/wAnreHP+vXUf/SaStaH8SPqhrc/rPooor3ywooooAKKKKACiiigDS0b/kMWn/XaP/0IV9XV8o6N/wAhi0/67R/+hCvq6vMzDeJMgryX4q/8e9l/vP8AyFetV5L8Vf8Aj3sv95/5CufCfxY/10EtzxmiiivbLCiiigAooooAKKKKACiiigAooooA+SP+CMn/ACbn4w/7HbUP/SWzr9d6/Ij/AIIyf8m5+MP+x21D/wBJbOv13r4Hh3/kW0PT9Wfe+Kn/ACVmY/4//bUFFFRzTQ28LXFwwSNAWZmOAAOSST0Ar2j8+SJKK+OvjD+33+yR8DpZNP8AGnjOym1CMsjWWmk39wrp1R1gDiJvaUpXx/qf/BTj4qfElC/7K3wc1nX7GSNjFqusMLK2ZxkfKq7kkUHB/wBerEcYBOR5lbOMHTn7Pn5p/wAsU5S+6N2fY5dwBn2MpLExwrhRf/Lyq40qfynUcYv5Nn7C0V+Ll146/wCCsPxCV5kvvB/gOMuwVIomupgpBA++t1GcHB5I5PTHy1mv8Gf+CgWuypP4i+P01qxLs4stMiUAt6BGhBHTggBe3u1jMVP+Fg6j9VGP/pUk/wADt/1JwlL/AHvOcLDyjKrVf/lOlKP3SPzA8a/Fiyh8BfHT9nHTtG1bUte8WeOXu7KSztxNbhbS7LOrkN5m8gfKFjb3Ir9T/gz+wz8Ofhr8QtH+NU2ueItZ1/T7VkiGr3aTpF58bI4wIUfgSOApbAJJxnmvQP2W/wBmqX9nHRtdh1TxDN4m1PxFqDaheXssIg3SMP7m+Q7iSxZi5yT0Hf6lrPh3hRUVHE5hFOorcsWl7lpSktU2m7u9+h9hx54m/WHUy3IJuOHlzc803++5qVOnL3ZRjKEbQtbrdt72Ciiivuj8VCiiigAooooA/kw/4Ks/8nreI/8Ar107/wBJo6/rL/4Iq/8AKMz4af8AcZ/9Ot5X8mn/AAVZ/wCT1vEf/Xrp3/pNHX9Zf/BFX/lGZ8NP+4z/AOnW8rwa/wDEl6kPc/UyiiisRBRRRQAVi6B4b8O+FdPGkeF7C2020DFhDaxLDGGbqdqADJ7nFbVFABRRRQAUUUUAFfx1f8HG/wDydH4G/wCxVH/pXcV/YrX8dX/Bxv8A8nR+Bv8AsVR/6V3FAHsv/BFL/k1jX/8Asa7r/wBI7Ov2Ar8f/wDgil/yaxr/AP2Nd1/6R2dfsBWiPew38KIV8c/8FAf+TPfG/wD17Qf+lEVfY1fHP/BQH/kz3xv/ANe0H/pRFXnZx/uGI/wT/wDSWfV8Gf8AJQZd/wBf6X/pyJ90fsi/8mofDD/sUtF/9I4q+hq+ef2Rf+TUPhh/2KWi/wDpHFX0NWmC/wB3p/4V+R8dxD/yNMX/ANfJ/wDpTCivzm+LP/BTr4DfBz4jat8MfE2ieJbm/wBGm8iaWzsY5YGbAOUczKSOfQc153/w+G/Zp/6F3xd/4LY//kiuGefZfCThKsk1oz38P4b8T16UK9HL6jhJJppaNNXT36o/V2ivyi/4fDfs0/8AQu+Lv/BbH/8AJFH/AA+G/Zp/6F3xd/4LY/8A5Iqf9Yct/wCf8Tb/AIhfxX/0Lqn3L/M/V2ivyi/4fDfs0/8AQu+Lv/BbH/8AJFH/AA+G/Zp/6F3xd/4LY/8A5Io/1hy3/n/EP+IX8V/9C6p9y/zP1dor8ov+Hw37NP8A0Lvi7/wWx/8AyRR/w+G/Zp/6F3xd/wCC2P8A+SKP9Yct/wCf8Q/4hfxX/wBC6p9y/wAz9XaK+Nv2aP24fhR+1T4j1Hwx8PtM1qwuNMthdStqlqlujIzBMIVlck5PPGMV9k16WGxNLEU1Voy5o90fJ5rlGMyzEPCY+k6dVWbi99Vdfej8sP8AgsZ/yZZff9haw/8AQjX0X4Y/5FrT/wDr2i/9AFfOn/BYz/kyy+/7C1h/6Ea+i/DH/Itaf/17Rf8AoArzcL/yNcR/gp/nM/Qan/JG5d/1/wAT/wCk0Dcooor3T5EKKKKACiiigAooooAKKKKACiiigArxf9ov4ZyfGT4FeLPhhbyPHPrOmT28DJtyJtuY/vELjeFyCRkZ5HUe0UUCaurM8T/4JX/GFPiz+xf4V0++Bi1bwfEfDd/buU8yF9OxHEGVcMuYRGcOobOc7vvH9FK/nz+IDeNP+CbP7QeqftV/DfSZtX+Fni8LH4p0PTwsf2C5AAjuo1Py/M5Zs/Ku52QlQyEftp8GPjl8Kf2hPA9t8RPhBrVvrWl3IB3wtiSJj1SWM4eNx3VwD+HNZs8CrTcJOLPWKKKKDMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiuH+JfxH8G/CHwDq/xO+IV6mnaLods93dzv/CiDoo6s7HCogyzsQqgkgUAfi38ZPC3hP46/8FepfD3jSwh1rTfBHgeJza30CzWyXMswdTsdWRm23QYEjORwflFfpZaWlrp9rFYWMSQwQIscccahURFGAqgcAAcADpX5r/8ABOjwlrfjGw8X/tlePTI+u/FPU57qETZDQabBI6QoB2BIO3HHlrHjiv0wq1se1hIctNX6hRRRTOoKKKKACv5P/wDgr1/yeVe/9gqw/wDQTX9YFfyf/wDBXr/k8q9/7BVh/wCgmk9jjx38P5n9PX/BDT/lHH4R/wCv7Vv/AEslr9dq/In/AIIaf8o4/CP/AF/at/6WS1+u1QeOFFFFABWVrmhaJ4m0i48P+JLODULC8QxT21zGssMqN1V0YFWB7ggitWigCrY2NjpdjDpmmQpb21uixRRRKESNEGFVVGAAAMAAYAq1RRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/9L+/iiiigD/ADn/APgox/yfh8XP+xp1L/0c1f1Rfsof8mtfDX/sVdG/9JIq/ld/4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/wCxV0b/ANJIq5cVsj3sh+Ofoe/UUUVwn0wUUUUAFFFFABRXEePfiX8PfhZow8Q/EjW7LQ7JnEazX06woznoqliMn2FfBmr/APBSzwT4o1dvC37MPgzxF8VNWAfCaTZypbgowU7pDGzhcEMXERUAjJ54uMJS2RhWxNKl/EkkfpVRX5/aV4O/4LD/ABiUmw8P+EfhfZSP8smpTm7u1Te3aM3CEhVA5iUNuyMfwdTZ/wDBKb9pT4kFbv8AaO/aF1u6SXDT2Hh+3FhCGKMCFcOEI3MR/wAe4yo6An5dlhZdTzamd0F8Kb/D+vuPrzXvE/hvwrZtqPifULbTbdQWMt1KsKADGSWcgYGRmvn3xL+2p+yZ4S3jWPiHoRaPO5ba8S6cEZyCsBc5GDxjP5itXwz/AMEQP2EdIPm+J7DW/E8xZC02p6pKHYIAME232cYbHPGfQivp7wh/wTc/YR8EOz6N8LNAnLNuP2+2/tAZxjgXRlAGOw4zz1rRYVdWcc8+n9mC+/8A4Y/OrV/+Cof7EOksY18Ym7cEArb2F4/BGc7jCFI+jE5/HHBT/wDBXH9kxr5dP0Qa5qsrlgotNPJJC85Ad0YgjJ6ZwOcV+6Gj/s//AAG8OzfafD/gjQLGTcrbrfTbeJtycqcrGDkdvSvTtP0vTNIhNtpVtFaxs24rEgRSx4zgAc4Aq1hYGDzvEPZL7n/mfzup/wAFXPgtc6h/Zuk+CfHF9I33PI0uJt+Bk4U3IbjnPHb0qW//AOCn3hWPZ/Znws8fzZzu83Skjx6YxM+f0r+iyin9WgQ85xPdfcfzp2H/AAU+8Kyb/wC0/hZ4/hxjb5WlJJn1zmZMfrUd3/wVY+D2m3aWWseBPHdk74P7/SoUwpON2PtOccHoD0r+jCij6tAFnOJ7r7j+dNv+Ctv7KlnMbbXYNf0yTaGVbrT9rMpyMgLI3GR3xXeaR/wVD/Yh1ZhG3jE2jkkBbiwvE4AzncISoH1YHP4Z/ea9sbLUbZrPUIUnhfG6ORQynByMg5HUZrzHV/gL8DPEG7+3vBehX25zKftGnW8uXOfmO5DzyeevNJ4WBazvELdL7v8Agn5i+Gf22P2SvF0og0b4haGHYKVW5ultS2/oAJ9mW/2RyPSvfvD/AIx8IeLIvP8ACuq2epoRu3Wk6TDHHOUJ45H5ivR/FP8AwTt/YZ8YY/tb4VeG4dqNH/oNjHY8N1/49hFk+jdR2NfKniv/AIIf/sE69LJP4e0rWPDbsqiNtN1SVjC6/wAaG6+0fN/vZHoKh4VdGbwz6f2oL77f5n0RRXxfqX/BJv44/DrN1+zJ+0B4j0tY5PMjsPECDUbdvmUjJDJGpADFv9HYScKQBkng9R8Af8Fj/grBLc6hpnhL4rWUEXmObCT7LeMq7/uqwtF3/dZlWOTIwqfMTWbwsuh1087ov401+P8AX3H6GUV+Zg/4KUaP8PNbTw3+1Z8O/E3wvupMCOW/tJJ7VyHKMUkEcbyIMEq8cbBgGx0Ab7s+Gnxf+F3xk0Z/EHws16y120ify5Xs5RIYn5+V1HzITjIDAZHI4waxlTlHdHpUcVRq/wAOSf8AXY9HoooqDoCiiigAooooAK/MT4F/8pO/jh/2CtE/9Jbav07r8xPgX/yk7+OH/YK0T/0ltq0p7S9DlxPxUv8AF/7bI/TuiiiszqCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD+cj/AILb/wDJUvBH/YKuP/Rwr9XP+Dcj/k1zxz/2NR/9JLevyj/4Lb/8lS8Ef9gq4/8ARwr9XP8Ag3I/5Nc8c/8AY1H/ANJLevTofAj4rM/96n/XQ/obooorU4AooooAKKKKACiiigAr8Nv+Dgz/AJMQs/8AsatP/wDRNzX7k1+G3/BwZ/yYhZ/9jVp//om5oGj8YP8AggF/yeP4l/7Ey8/9LrGv6+K/kH/4IBf8nj+Jf+xMvP8A0usa/r4r4vPP96foj1cH/DCiiivHOoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD+OH/gu//wAnt2n/AGLNh/6NuK/cX/g3z/5MQvP+xq1D/wBE21fh1/wXf/5PbtP+xZsP/RtxX7i/8G+f/JiF5/2NWof+ibavv8u/3Wn6Hi1/4kj9yaKKK7TEKKKKACiiigAooooAKKKKAPyJ/wCC5f8Ayjj8Xf8AX9pP/pZFX8xn/BHz/k8+x/7BN/8A+gCv6c/+C5f/ACjj8Xf9f2k/+lkVfzGf8EfP+Tz7H/sE3/8A6AKuHxIir8DP60aKKK7Tyj82/iX/AMpafgF/2Cdf/wDSK6r9tK/Ev4l/8pafgF/2Cdf/APSK6r9tK46vxM9Oh8CCiiiszUKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/D79if/k6v9pn/ALHBf/Qrmv0xr8zv2J/+Tq/2mf8AscF/9Cua/TGu2l8KPNxH8RhXx1/wUD/5Mw+In/YJf/0Na+xa+Ov+Cgf/ACZh8RP+wS//AKGtVLZkQ+JH853/AASH/wCUjnwu/wCv66/9I56/0Dq/z8f+CQ//ACkc+F3/AF/XX/pHPX+gdXAeqFFFFABRRRQAUUUUAFFFFAH5Ff8ABcr/AJRx+Lv+v7Sf/SyKv5Xf+CU3/J63hz/r11H/ANJpK/qi/wCC5X/KOPxd/wBf2k/+lkVfyu/8Epv+T1vDn/XrqP8A6TSVrQ/iR9UNbn9Z9FFFe+WFFFFABRRRQAUUUUAaWjf8hi0/67R/+hCvq6vlHRv+Qxaf9do//QhX1dXmZhvEmQV5L8Vf+Pey/wB5/wCQr1qvJfir/wAe9l/vP/IVz4T+LH+uglueM0UUV7ZYUUUUAFFFFABRRRQAUUUUAFFFFAH56t/wT50XwprM/iD4HfEDxT4IuLiZ5zHY3hMAdwAcKojc5IG7c7ZHHTGNaz+En/BRDwiRb+Efj0b2LG3dqWlwyvjC/wDPUXBzx1znv3NfelFfPS4Wy696cHB/3Jzj+EZJfgfdrxIz2aUcXOnXVrfvqNGq/wDwKcJS/E+D5/BH/BTjUyLfUvjfYxQiQENBpFsj7ccn5bdD3Py7sHAOfTmr39hPxr8So0T9o34ueJ/F8C5b7IkxtrZWcMGxGzTL/FgEBeBjocD9FaKlcK5e3+9Up+Upzkvucrfeil4kZzTX+xqjQfelh6FOX/gUaakvk0fO3w2/ZM/Z0+Evly+CfCdjFcR5IubhTdXGTjJEkxdh0HAIA7AZr6Joor3MPhaOHhyUIKMeySS/A+QzDNMZj6vt8dXlVn3nJyf3tthRRRW5whRRRQAUUUUAFFFFABRRRQB/Jh/wVZ/5PW8R/wDXrp3/AKTR1/WX/wAEVf8AlGZ8NP8AuM/+nW8r+TT/AIKs/wDJ63iP/r107/0mjr+sv/gir/yjM+Gn/cZ/9Ot5Xg1/4kvUh7n6mUUUViIKKKKACiiigAooooAKKKKACv46v+Djf/k6PwN/2Ko/9K7iv7Fa/jq/4ON/+To/A3/Yqj/0ruKAPZf+CKX/ACaxr/8A2Nd1/wCkdnX7AV+P/wDwRS/5NY1//sa7r/0js6/YCtEe9hv4UQr45/4KA/8AJnvjf/r2g/8ASiKvsavjn/goD/yZ743/AOvaD/0oirzs4/3DEf4J/wDpLPq+DP8AkoMu/wCv9L/05E+6P2Rf+TUPhh/2KWi/+kcVfQ1fPP7Iv/JqHww/7FLRf/SOKvoatMF/u9P/AAr8j47iH/kaYv8A6+T/APSmFFFFdJ44UUUUAFFFFABRRRQAUUUUAflh/wAFjP8Akyy+/wCwtYf+hGvovwx/yLWn/wDXtF/6AK+dP+Cxn/Jll9/2FrD/ANCNfRfhj/kWtP8A+vaL/wBAFeNhf+RriP8ABT/OZ+pVP+SNy7/r/if/AEmgblFFFe6fIhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAFe7tLXULWWwvokmgnRo5I5FDI6MMFWB4II4IPWvzS8ef8EwfhfJ4t/4WL+zz4i1b4W68rebHJo8hNqswPDiHcjAYLDYkqLg9MZB/TWiixE6cZq0kfiD+0v8Jf8AgpH8FPg9qfjrRvjjrfivTtKXff29tu0+8TT4wWknWYSSOGQKC2CWCljk4IP7M/sAaD4B0X9lfw1d/DDxZq3jPRNUR72G/wBYmE06ySHbPCvyIUSOZZBsYMytuBY1u3dpa6hay2F9Ek0E6NHJHIoZHRhgqwPBBHBB61+VT3HxE/4JZfEe6+I3gO3udf8AgT4jvPN1rRovnm0G4mIHn246CPoByFYARuQwjkqWjzsVhVFc0Fof0C0V5P8ABj45fCn9oTwPbfET4Qa1b61pdyAd8LYkiY9UljOHjcd1cA/hzXrFSeeFFFFABRX5e+N/2mvjB8CP+CjOg/B34s38U3wz+JenCDw0/wBnjiNpq8bKGieYKHkZ3IjC8gCeHoQ5b9QqACiiigAooooAK/H/APbU+Kupx/8ABQr9nv4NWniObQNP8281fU1W4+yw3KAgwRysXVJA72zoEPUvgAsVFfrve3tnptnNqOozJb29ujSSyyMEREQZZmY4AAAySeAK/mx8EfCT4d/8FNf2ivi1+0J8TLO6u/Bolg8PeF5kuHiZEs1AeaEAcbsLLhsqDMwKnnAkaU6bnLlif0r0V+Bulfsrft+fA6yj0j9mz47yz6TaOBaab4jtVnSKEBsR+Y6XPyjgfJGgwcgAqM9DLpv/AAWZ11bW0ufiV4N0OOJyJrizshPO6jjJSaxaM5xuABTrzjpTszR4WqtOU/Zn4ifEz4e/CPwrP43+J+tWegaTbcSXV9MsMe45IUFiNztj5UXLMeACa/BLxv4++IH/AAVz8b2Ph/RdOu/C/wACPDN/LLd3by7LnX7iI4jAXaCgUdFGRHuZmYybFT0Xw9/wTftPHHiq0+Iv7ZPjjVvitrFpGqw215I8GnwdCVWMOWKhgDgNGjnJdCWOP0g8P+HtA8J6Nb+HPC1jb6Zp1onlwWtpEsMMSf3URAFUewApqJ00ME73qfcWNJ0rTdB0q20PRoUtrOyiSCCGMYSOOMBVVR2AAAFaFFFUemFFFFABRRRQAV/J/wD8Fev+Tyr3/sFWH/oJr+sCv5P/APgr1/yeVe/9gqw/9BNKRx47+H8z+nr/AIIaf8o4/CP/AF/at/6WS1+u1fkT/wAENP8AlHH4R/6/tW/9LJa/XaoPHCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/T/v4ooooA/wA5/wD4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/7FXRv/SSKv5Xf+CjH/J+Hxc/7GnUv/RzV/VF+yh/ya18Nf8AsVdG/wDSSKuXFbI97Ifjn6Hv1FFFcJ9MFFFFABXwT8Zf2hfjJ48+Ksv7K/7E+lQ6542t4hLrGq3RA07RImxgysQVaUg/d5wcAK7ZVfvavgn/AIIPeLfh94z+F/xJ8UxyRnx1rPieW/1oO++4a1mQPbHJ5aMSPcYY/NvL56iujD01JtvoeRm+LnRhGNPRy6+h7x8If+CSPwmF6nxC/bB1a6+L/jNnWU3GpSSw6fbYwfKhtUk2NGDkESZRhyI06V+pnhbwh4S8DaOnh3wTpdpo+nxszJa2MCW8Ks5yxCRhVBJ5PHJroqK9A+Tbbd29QooooEFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGZrOiaN4j02TRvENpDf2c2PMguI1ljfaQwyrAg4IBGRwRmvyo+NX/AASM+CGua5cfE/8AZgvbr4TeNPmkhudEkeKxd9j4ja2B2RxO5TzFiCqVTGzJJP61UUDTad0fz6fC/wDaS+Onwb+N9h+yF+3BpkEHifUFP9j+JbA40/VwfugDy4wrk5XIVfmwpjQ4Lfo3XyB/wXf1LwRpX7Hun3WsNHH4iHiCzOhSqdtzFMgZ5WjIBYKIlO4gqN2zJztB+p/D11PfaBY31026Wa3id2xjLMoJOBx1rgxFNRaaPq8nxc60ZRqO7VtTYooormPYCiiigAr8xPgX/wApO/jh/wBgrRP/AEltq/TuvzE+Bf8Ayk7+OH/YK0T/ANJbatKe0vQ5cT8VL/F/7bI/TuiiiszqCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD+cj/gtv/yVLwR/2Crj/wBHCv1c/wCDcj/k1zxz/wBjUf8A0kt6/KP/AILb/wDJUvBH/YKuP/Rwr9XP+Dcj/k1zxz/2NR/9JLevTofAj4rM/wDep/10P6G6KKK1OAKKKKACiiigAooooAK/Db/g4M/5MQs/+xq0/wD9E3NfuTX4bf8ABwZ/yYhZ/wDY1af/AOibmgaPxg/4IBf8nj+Jf+xMvP8A0usa/r4r+Qf/AIIBf8nj+Jf+xMvP/S6xr+vivi88/wB6foj1cH/DCiiivHOoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD+OH/gu/8A8nt2n/Ys2H/o24r9xf8Ag3z/AOTELz/satQ/9E21fh1/wXf/AOT27T/sWbD/ANG3FfuL/wAG+f8AyYhef9jVqH/om2r7/Lv91p+h4tf+JI/cmiiiu0xCiiigAooooAKKKKACiiigD8if+C5f/KOPxd/1/aT/AOlkVfzGf8EfP+Tz7H/sE3//AKAK/pz/AOC5f/KOPxd/1/aT/wClkVfzGf8ABHz/AJPPsf8AsE3/AP6AKuHxIir8DP60aKKK7Tyj82/iX/ylp+AX/YJ1/wD9Irqv20r8S/iX/wApafgF/wBgnX//AEiuq/bSuOr8TPTofAgooorM1CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPw+/Yn/AOTq/wBpn/scF/8AQrmv0xr8zv2J/wDk6v8AaZ/7HBf/AEK5r9Ma7aXwo83EfxGFfHX/AAUD/wCTMPiJ/wBgl/8A0Na+xa+Ov+Cgf/JmHxE/7BL/APoa1UtmRD4kfznf8Eh/+Ujnwu/6/rr/ANI56/0Dq/z8f+CQ/wDykc+F3/X9df8ApHPX+gdXAeqFFFFABRRRQAUUUUAFFFFAH5Ff8Fyv+Ucfi7/r+0n/ANLIq/ld/wCCU3/J63hz/r11H/0mkr+qL/guV/yjj8Xf9f2k/wDpZFX8rv8AwSm/5PW8Of8AXrqP/pNJWtD+JH1Q1uf1n0UUV75YUUUUAFFFFABRRRQBpaN/yGLT/rtH/wChCvq6vlHRv+Qxaf8AXaP/ANCFfV1eZmG8SZBXkvxV/wCPey/3n/kK9aryX4q/8e9l/vP/ACFc+E/ix/roJbnjNFFFe2WFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH8mH/BVn/k9bxH/166d/6TR1/WX/AMEVf+UZnw0/7jP/AKdbyv5NP+CrP/J63iP/AK9dO/8ASaOv6y/+CKv/ACjM+Gn/AHGf/TreV4Nf+JL1Ie5+plFFFYiCiiigAooooAKKKKACiiigAr+Or/g43/5Oj8Df9iqP/Su4r+xWv46v+Djf/k6PwN/2Ko/9K7igD2X/AIIpf8msa/8A9jXdf+kdnX7AV+P/APwRS/5NY1//ALGu6/8ASOzr9gK0R72G/hRCvNfjD8LtB+NPw01f4XeJpZoLLWIRFJJbkCRNrB1ZSwI4ZQeQQa9KoqKtONSEqc1eLVmvJnbhcTVw9aGIoS5ZwalFrdNO6fyZ+dGkfsL/ABQ8P6Ta6DoPx38dWNjYwpb21tb380UUMUQCoiIsoVVVQAqgAADArR/4Yv8AjN/0cD4//wDBnP8A/Hq/QaivIXD+ASsoP/wKX/yR9bLxBz2TcpVotv8A6dUv/kD8+f8Ahi/4zf8ARwPj/wD8Gc//AMeo/wCGL/jN/wBHA+P/APwZz/8Ax6v0Gop/2Bgf5H/4FP8A+SF/r/nn/P2P/gqj/wDIH58/8MX/ABm/6OB8f/8Agzn/APj1H/DF/wAZv+jgfH//AIM5/wD49X6DUUf2Bgf5H/4FP/5IP9f88/5+x/8ABVH/AOQPz5/4Yv8AjN/0cD4//wDBnP8A/HqP+GL/AIzf9HA+P/8AwZz/APx6v0Goo/sDA/yP/wACn/8AJB/r/nn/AD9j/wCCqP8A8gfnz/wxf8Zv+jgfH/8A4M5//j1H/DF/xm/6OB8f/wDgzn/+PV+g1FH9gYH+R/8AgU//AJIP9f8APP8An7H/AMFUf/kD8+f+GL/jN/0cD4//APBnP/8AHqP+GL/jN/0cD4//APBnP/8AHq/Qaij+wMD/ACP/AMCn/wDJB/r/AJ5/z9j/AOCqP/yB+Z/jH/gnp4v+Iuit4a+IPxo8Y67pzOsjWuoXb3UBdPusUkkZcjscZFfpNYWcWn2MNhCSUgRY1LdcKMDPSrVFdeDy3DYWUpUI2crX1b2vbdvuzys44mzLNKdOljqvNGDbilGMUnK13aKW/Kt+wUUUV3HghRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVHNDFcRNBOodHBVlYZBB6gjuDUlFAH5v8AxI/YBk0bxdefFz9jrxbffCvxVdkSTw2Dsul3jKdwWWBeApbkjDx9/LJrUsf2p/8AgqX8HHubD4j/AAu0f4lWNnjZqWh3q2Ms6IoLHyiXcswUnC26jccKCMCv0MopWOWpg6cnfY+Df+HqHxxkkisrb9mnxsbkl1lDpKkSlem2U2u1gR3OB6ZzXMa5+1D/AMFTfjsJrH4OfDzSPhZp0pKJqHiGcXV4mVXDBCpAIJLHdauvIXkq2f0Zoo5UZrAQ6tn4+eJP+CVd5498M6p41+KHxF1nxL8VLqNZbPXLmZ0t7W4iO+NET55BGG+XIb5VwY0QjB+8P2DP24LX4oWbfs2/HyT+wvi14OC6bqFreygNqjQKF+1QMcCRpAN7hc53b1yhBH0nXyb+07+x98Nf2mdOtb3U3l0HxPpcqT6br+nAJe20sZynzjBdAQCF3AgjKlTzQ0FfBxa/d6NH6tUV+E+h/tIf8FFf2OFt/DXxi8Lj41eEbfcset6MJP7YVOq+egDltoHJaP6zE16va/8ABbT9kO2LWXjjTfE/hrUYuJbPUNNAlRwSrD5JX6FSOcH2zkCDzJwlF2kj9gaK/HHUP+C1P7P2t3Mei/BDwh4s8d6pJg/Z9PsAoUE45y7SZ9AsZB9RXjniNf8AgpJ+29dTWXju/T4GeAJHZG03TpPO1i7izgrJMpV8H5kY7oEIIJhkHJLDhSnN2ijT/bY/ak8V/tgeObn9gr9kCdLqyuf3XjHxLGC9vZ2yvtkgRvlVumHKtiTPlqfvkfeXwm+Fvg/4KfDnSPhZ4BgNvpOjQeTArHc7Eks7ucAF5HZncgAFieB0rm/gV+z78Kf2cfBMfgT4T6WlhajDTzMd9xdSgcyTSHl2PPoqjhQqgAe0VaVj18Nh1TV3uFFFFM6QooooAKKKKACiiigAooooAK/k/wD+CvX/ACeVe/8AYKsP/QTX9YFfyf8A/BXr/k8q9/7BVh/6CaUjjx38P5n9PX/BDT/lHH4R/wCv7Vv/AEslr9dq/In/AIIaf8o4/CP/AF/at/6WS1+u1QeOFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf//U/v4ooooA/wA5/wD4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/7FXRv/SSKv5Xf+CjH/J+Hxc/7GnUv/RzV/VF+yh/ya18Nf8AsVdG/wDSSKuXFbI97Ifjn6Hv1FFFcJ9MFFFFABX8+/8AwTm/Y1+J3jn9nq3/AGs/2V/FL+F/ib4e1m+tFhnLNYataxrbyC2nG7CKSWzlWRuAwUgOv9BFfDv/AAQp/wCTKLv/ALGW/wD/AEVb12YT7R87n/8Ay7+f6HafDP8A4K0P8P8AxVb/AAf/AOChngu8+FHih/lj1JY3uNFuyMAvG6mRkTcQoZGniHJaVelfq18Nfi78LfjJoEfij4U+IdP8RWEiJJ52n3CThQ+QNwQkocqwKsAQVIIBBFY3izwX4O8e6O/h3x1pNnrWnyZ32t/AlzC2VKnKSBlOVYg8dCR0Nfmt8QP+CRv7NWqaz/wmfwOvNZ+FniFfK2Xvhu9khUeUwP8Aq2JxnCn92yfOit13buw+dP2Gor8QLT4B/wDBXT4F2pg+FHxm0j4i6fbquy18U2ZiuJMKgz5uJ5S3ylcNchSCXJ3txtJ+3H/wUn+FM+z47fs5tr1qnyvd+ELz7SWw+3zI7dDdyENkEI5RgPmOADgA/aWivxotP+C2/wCzno0MSfFzwZ418F3DExv/AGjpa+SJVzuVXEu9iMYOY1OT06ke+eFv+Ctn/BPTxdlLD4kWtrIiK7rfWl3aYz23TQIrEdwrN+VAH6N0V8vaF+25+xx4lcRaN8VPCcsjMVEZ1e1SQkDJwjSBiMdwMdfQ167pHxf+E3iDb/YPijSL7cglH2e9hlyhxhhtc8cjnpzQB6JRVWyvrLUbZbzT5knhfO2SNgynBwcEZHUYq1QAUUVVvb6y062a81CZIIUxukkYKoycDJOB1OKALVFcBrHxY+Fnh2H7T4g8S6VYx7WbdcXkMS7U5Y5ZxwB19K8n139tD9kHw0hbXPil4Tt2Chth1i0MhUnAIQSliM+g7H0oA+l6K/PPxp/wVb/4J+eBHeHVfiTYXciqCF06G4vwxIJADW8UiZOMcsAD1Ir55vv+C3f7LeoXLad8L/DXjDxlctMIIF0zSwVmbGTt8yVX4HbZu6cY5AB+yVFfijN+3/8A8FCfi1bCH9nf9m+80rzMFL7xbdfZotrltreTILQkYXJ2zHqAOqlqZ+D3/BYj4yFk+I3xa0D4d6fcZWS38PWIuZ41aNVyrsiSA5LHi5GG5BxtwAfsT44+IfgP4ZaBP4p+Ims2Wh6bbIZJbm+nSCNVXAJ3OQOpA+pA6kV+UXxW/wCCufhTX/EbfCf9hjwtffF3xdIuBLbRPFpdtnjfLKQrMqnqcJH/ANNRVDwb/wAEff2eP7dHjL4/654h+KetOrGafX7+QxySOiKX2oRJkbfl3TNgEA52g1+nfgvwN4M+HHhy28H/AA/0q00XSrRdsNpZQrBCg9lQAZPc9SetAH81n7d37Knxyk/ZS8W/tdftr6//AG38RZprG10zS7RwNM0Oznuog0cKKNpkK/KxBIwSWaRyXr9pfCf/ACKumf8AXpD/AOgCvCP+Czf/ACYB4p/6/NL/APSuKvd/Cf8AyKumf9ekP/oArkxfQ+hyHep8v1OgoooriPowooooAK/MT4F/8pO/jh/2CtE/9Jbav07r8xPgX/yk7+OH/YK0T/0ltq0p7S9DlxPxUv8AF/7bI/TuiiiszqCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD+cj/AILb/wDJUvBH/YKuP/Rwr9XP+Dcj/k1zxz/2NR/9JLevyj/4Lb/8lS8Ef9gq4/8ARwr9XP8Ag3I/5Nc8c/8AY1H/ANJLevTofAj4rM/96n/XQ/obooorU4AooooAKKKKACiiigAr8Nv+Dgz/AJMQs/8AsatP/wDRNzX7k1+G3/BwZ/yYhZ/9jVp//om5oGj8YP8AggF/yeP4l/7Ey8/9LrGv6+K/kH/4IBf8nj+Jf+xMvP8A0usa/r4r4vPP96foj1cH/DCiiivHOoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD+OH/gu//wAnt2n/AGLNh/6NuK/cX/g3z/5MQvP+xq1D/wBE21fh1/wXf/5PbtP+xZsP/RtxX7i/8G+f/JiF5/2NWof+ibavv8u/3Wn6Hi1/4kj9yaKKK7TEKKKKACiiigAooooAKKKKAPyJ/wCC5f8Ayjj8Xf8AX9pP/pZFX8xn/BHz/k8+x/7BN/8A+gCv6c/+C5f/ACjj8Xf9f2k/+lkVfzGf8EfP+Tz7H/sE3/8A6AKuHxIir8DP60aKKK7Tyj8uv2qNfg+D3/BQH9n/AOO/ig/Z/Dyz3+hXN5JgQW81/E8CGRyyhVxOWLNgKqM3OCK/dWvgX9oL4CeAf2lPhdf/AAp+IsLvZXeJIpojtmt7hM+XNGeQGQnoQQQSCCCRXw78Nv2t/jr/AME9ILP4M/tlabeeLfA1omzTPHWnJJKYYQpEVtdRlTl9w2qWkDAYx5ijcOWrB3ud+HqJx5ep+7lFeafC34yfCz42eHV8WfCfXrPX9PbP720kD7cMyfMv3lyyMBuAzg44r0usTpCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKrXt7Z6bZzajqMyW9vbo0kssjBEREGWZmOAAAMkngCvFPjr+0v8DP2avDn/AAk/xq8R2miQspMMMjb7m4I7QwJmSQ+u1SB3IFfjz8QfjX+0J/wVGtm+HXwV0+9+Hnwbnk8vVtevlCahq0QzmGCMNjyn4DBWIP8AG+MxM0m3ZClJRV2dL/wTi1P/AIWL40+N/wAfNMhkXRvGHjO5k0yZwFE1vA0jKwGSc7ZV3MCVLZAPBr9Ra89+FPwu8F/Bb4eaV8Lvh7a/Y9H0eLyreMsWb5mLuzE9Wd2Z2PdiTXoVdsVZWPLqS5pNhXx1/wAFA/8AkzD4if8AYJf/ANDWvsWvjr/goH/yZh8RP+wS/wD6GtOWzCHxI/nO/wCCQ/8Aykc+F3/X9df+kc9f6B1f5+P/AASH/wCUjnwu/wCv66/9I56/0Dq4D1QooooAKKKKACiiigAooooA/Ir/AILlf8o4/F3/AF/aT/6WRV/K7/wSm/5PW8Of9euo/wDpNJX9UX/Bcr/lHH4u/wCv7Sf/AEsir+V3/glN/wAnreHP+vXUf/SaStaH8SPqhrc/rPooor3ywooooAKKKKACiiigDS0b/kMWn/XaP/0IV9XV8o6N/wAhi0/67R/+hCvq6vMzDeJMgryX4q/8e9l/vP8AyFetV5L8Vf8Aj3sv95/5CufCfxY/10EtzxmiiivbLCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD+TD/gqz/yet4j/wCvXTv/AEmjr+sv/gir/wAozPhp/wBxn/063lfyaf8ABVn/AJPW8R/9eunf+k0df1l/8EVf+UZnw0/7jP8A6dbyvBr/AMSXqQ9z9TKKKKxEFFFFABRRRQAUUUUAFFFFABX8dX/Bxv8A8nR+Bv8AsVR/6V3Ff2K1/HV/wcb/APJ0fgb/ALFUf+ldxQB7L/wRS/5NY1//ALGu6/8ASOzr9gK/H/8A4Ipf8msa/wD9jXdf+kdnX7AVoj3sN/CiFFFFBsFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABVO907T9TiEGpQR3CA7gsihwD64PfmrlFAEcMMVvEsEChEQBVVRgADoAOwFSUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFfyf/APBXr/k8q9/7BVh/6Ca/rAr+T/8A4K9f8nlXv/YKsP8A0E0pHHjv4fzP6ev+CGn/ACjj8I/9f2rf+lktfrtX5E/8ENP+UcfhH/r+1b/0slr9dqg8cKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//V/v4ooooA/wA5/wD4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/7FXRv/SSKv5Xf+CjH/J+Hxc/7GnUv/RzV/VF+yh/ya18Nf8AsVdG/wDSSKuXFbI97Ifjn6Hv1FFFcJ9MFFFFABXw7/wQp/5Mou/+xlv/AP0Vb19xV8O/8EKf+TKLv/sZb/8A9FW9dmE+0fO5/wD8u/n+h+zVFFFdh86FFFFAEU0MNzC9vcIskcilWVhlWU8EEHqDXg3iz9lL9mLx2qr4x+HnhvUWRdqPPpdu0iLnOFfy9ygnrgjNe/UUAfC2rf8ABM39g/Wt32z4Z6Sm5zIfI8235OenlSLgc/d6e3FeO65/wRo/4J+6shWw8J3emEqBm21S8Ygg5z++llGT0PbHQZ5r9S6KAPyK/wCHI37Cn/PhrP8A4MX/APiazbX/AIIg/sc6deSX2jah4psXkyP9H1JEwpOdoPkFscDqT05r9h6KAPx01D/gh7+x3q8wudV1TxVdSKu0NLqMbsFHOMm3PGSa1v8AhyN+wp/z4az/AODF/wD4mv11ooA/LTQ/+CNH/BP3SUC3/hO71MhSM3OqXikknOf3MsQyOg7Y6jPNeu6R/wAEyP2DNEm8+y+Gmlu25WxcNNcLlenEsjjHqMYPfNfd1FAHgPhD9lP9mLwBNHdeCvh54b0yeJgyz2+l26TBhnB8wR78jJxzwOBxXutnZWen2y2enxJBCmdqRqFUZOTgDA6nNWaKACiiigAooooA/LD/AILN/wDJgHin/r80v/0rir3fwn/yKumf9ekP/oArwj/gs3/yYB4p/wCvzS//AErir3fwn/yKumf9ekP/AKAK5MX0Poch3qfL9ToKKKK4j6MKKKKACvzE+Bf/ACk7+OH/AGCtE/8ASW2r9O6/MT4F/wDKTv44f9grRP8A0ltq0p7S9DlxPxUv8X/tsj9O6KKKzOoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP5yP+C2//JUvBH/YKuP/AEcK/Vz/AINyP+TXPHP/AGNR/wDSS3r8o/8Agtv/AMlS8Ef9gq4/9HCv1c/4NyP+TXPHP/Y1H/0kt69Oh8CPisz/AN6n/XQ/obooorU4AooooAKKKKACiiigAr8Nv+Dgz/kxCz/7GrT/AP0Tc1+5Nfht/wAHBn/JiFn/ANjVp/8A6JuaBo/GD/ggF/yeP4l/7Ey8/wDS6xr+viv5B/8AggF/yeP4l/7Ey8/9LrGv6+K+Lzz/AHp+iPVwf8MKKKK8c6gooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP44f+C7/wDye3af9izYf+jbiv3F/wCDfP8A5MQvP+xq1D/0TbV+HX/Bd/8A5PbtP+xZsP8A0bcV+4v/AAb5/wDJiF5/2NWof+ibavv8u/3Wn6Hi1/4kj9yaKKK7TEKKKKACiiigAooooAKKKKAPyJ/4Ll/8o4/F3/X9pP8A6WRV/MZ/wR8/5PPsf+wTf/8AoAr+nP8A4Ll/8o4/F3/X9pP/AKWRV/MZ/wAEfP8Ak8+x/wCwTf8A/oAq4fEiKvwM/rRooortPKCq93aWmoWkthfxJPBOjRyRyKGR0YYKsDwQRwQetWKKAPzn8cf8E2fhP/wmJ+Kf7Our6l8J/Fa5Md54fkKW2T1DW25V8tuN0UbRowGCOTXP6f8AEf8A4K2/s5R/ZtWstC+NWiwJEBKhFjqaqoII48oMRjBJSZ2yrZzvx+nFFZypRZtGvOPU+CvD3/BZT4M6Ffx+HP2mPBvib4Y6sXVHS/s3uLcZCbyroqyuE3ZJEHKbWGS22vs/4Z/t4/sc/F5kg8CfEbRZ55FDJb3VwLK4cEMflhuRFISApLALlRycAitbVdI0nXbCTStctYry1lxvhnQSRttIIyrAg4IBGR1FfJ/j/wDYD/Y6+JKyHxB4A0u3kkGDLp0Z0985J3ZtjFlsk5JzngHIAFZOh2ZusUuqP1LhmhuYUuLd1kjkUMrKcqynkEEdQalr8H/+HWHg/wAFSm7/AGePiR4x+H0rbiy6fqDeUWZQpbCeU+TgbsyHIAHFadr+z5/wU48BTeb8P/2hl1hQqKU1vTEcMq44PmC6IJ5ywIY+vPEOlI1WIg+p+5tFfidH8Uv+CyXgJ50u9G8B+N4wA4MDy20jcfcjLyWqjnk71x6GrkH7e3/BRDw/cCHxf+zeb753B/s/V0Awox95UuB15z0YdPWp5Jdi1Ui+p+0tFfjLbf8ABVH44afbM/jT9mnxtZSKnmH7Gkt5EFBOSZPssQGAAeR+mCbQ/wCCz3wq0izZ/HHwt+IOlXEW3zU/syFkTcBjLSXER5J4yoyMHvilZlJo/ZCivx9s/wDgtf8Ass3Nss83hrxnbs2cxyaVGWGD32XLLz14NRad/wAFx/2Hr3f9pbX7PbjHnaeDuznp5cr9PfHWkM/YeivyK/4fc/sKf8/+s/8Aguf/AOKrHm/4Lk/sUC++w2MHiS8LFVRodPTDlscKGmVs5OPu9aAP2Nor8fbz/gtf+yzbWzTw+GvGdwy4xHHpUYY5PbfcqvHXk1QH/BZn4a63biXwD8KPiDq7lHYD+zIlX5eBzHPNxngnHHvTswP2Ror8X3/4Kn/H7U4pJ/CH7M3jG7jARomu2ltA4bvk2j8dcbd3bOM024/bl/4KR+IYSPB37OsNjJMz+UdR1mIqqjOA4Y2/PA5JXd2HIp8r7EucerP2ior8TLnx3/wWU+IKokMfgPwJG8mCyCW5mjRSTk7jdxsWHHAHTovJrnz+zP8A8FI/HvlzfFH9o240xkfcY9C09YQQMDG6E2nUZ6qQDzg5JpqnLsQ60F1P3KvL2z0+2a81CVIIUxueRgqjJwMk4HU4r5A+If8AwUJ/Yo+FzeV4t+JWi+Zt3GOxmOoyKMZ+ZLQTMpI6AgE8Y6ivzus/+CVPwr8TXMWsftAeNPFfxE1BPvvqmouIm+90HzSjDOzf648/U5+nfA37Df7Inw5QL4Y+HujblziS8g+3SjICnD3JlccD17n1ObVGXUzeKj0PJtf/AOCxfgvxfNNo37KPw58T/Em+iLI00VsbWyU7GZcuBLLklfutEmVzg5GK5XUNT/4Kw/tJM0WsaronwQ8PTGRGh09RqOrmFx8pL7nUMOm6OW3cH+Gv0ntLS0sLdbWxiSGJM7UjUKoycnAGB1qxWiorqZSxUnsj8/vhn/wTh+A/hfXY/iB8WJL/AOJfi35Gl1bxNcPeFnXPIhdihHTAk8wrgYbrX37DDFbxLBAoSNAFVVGAAOgAHQCpKK1SS2OeUnLVsKKKKZIV8df8FA/+TMPiJ/2CX/8AQ1r7Fr46/wCCgf8AyZh8RP8AsEv/AOhrSlsy4fEj+c7/AIJD/wDKRz4Xf9f11/6Rz1/oHV/n4/8ABIf/AJSOfC7/AK/rr/0jnr/QOrgPVCiiigAooooAKKKKACiiigD8iv8AguV/yjj8Xf8AX9pP/pZFX8rv/BKb/k9bw5/166j/AOk0lf1Rf8Fyv+Ucfi7/AK/tJ/8ASyKv5Xf+CU3/ACet4c/69dR/9JpK1ofxI+qGtz+s+iiivfLCiiigAooooAKKKKANLRv+Qxaf9do//QhX1dXyjo3/ACGLT/rtH/6EK+rq8zMN4kyCvJfir/x72X+8/wDIV61XkvxV/wCPey/3n/kK58J/Fj/XQS3PGaKKK9ssKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP5MP+CrP/J63iP/AK9dO/8ASaOv6y/+CKv/ACjM+Gn/AHGf/TreV/Jp/wAFWf8Ak9bxH/166d/6TR1/WX/wRV/5RmfDT/uM/wDp1vK8Gv8AxJepD3P1MooorEQUUUUAFFFFABRRRQAUUUUAFfx1f8HG/wDydH4G/wCxVH/pXcV/YrX8dX/Bxv8A8nR+Bv8AsVR/6V3FAHsv/BFL/k1jX/8Asa7r/wBI7Ov2Ar8f/wDgil/yaxr/AP2Nd1/6R2dfsBWiPew38KIUUUUGwUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV/J/wD8Fev+Tyr3/sFWH/oJr+sCv5P/APgr1/yeVe/9gqw/9BNKRx47+H8z+nr/AIIaf8o4/CP/AF/at/6WS1+u1fkT/wAENP8AlHH4R/6/tW/9LJa/XaoPHCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/W/v4ooooA/wA5/wD4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/7FXRv/SSKv5Xf+CjH/J+Hxc/7GnUv/RzV/VF+yh/ya18Nf8AsVdG/wDSSKuXFbI97Ifjn6Hv1FFFcJ9MFFFFABXw7/wQp/5Mou/+xlv/AP0Vb19xV8O/8EKf+TKLv/sZb/8A9FW9dmE+0fO5/wD8u/n+h+zVFFFdh86FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAflh/wWb/5MA8U/wDX5pf/AKVxV7v4T/5FXTP+vSH/ANAFeEf8Fm/+TAPFP/X5pf8A6VxV7v4T/wCRV0z/AK9If/QBXJi+h9DkO9T5fqdBRRRXEfRhRRRQAV+YnwL/AOUnfxw/7BWif+kttX6d1+YnwL/5Sd/HD/sFaJ/6S21aU9pehy4n4qX+L/22R+ndFFFZnUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH85H/AAW3/wCSpeCP+wVcf+jhX6uf8G5H/Jrnjn/saj/6SW9flH/wW3/5Kl4I/wCwVcf+jhX6uf8ABuR/ya545/7Go/8ApJb16dD4EfFZn/vU/wCuh/Q3RRRWpwBRRRQAUUUUAFFFFABX4bf8HBn/ACYhZ/8AY1af/wCibmv3Jr8Nv+Dgz/kxCz/7GrT/AP0Tc0DR+MH/AAQC/wCTx/Ev/YmXn/pdY1/XxX8g/wDwQC/5PH8S/wDYmXn/AKXWNf18V8Xnn+9P0R6uD/hhRRRXjnUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/HD/wXf/5PbtP+xZsP/RtxX7i/8G+f/JiF5/2NWof+ibavw6/4Lv8A/J7dp/2LNh/6NuK/cX/g3z/5MQvP+xq1D/0TbV9/l3+60/Q8Wv8AxJH7k0UUV2mIUUUUAFFFFABRRRQAUUUUAfkT/wAFy/8AlHH4u/6/tJ/9LIq/mM/4I+f8nn2P/YJv/wD0AV/Tn/wXL/5Rx+Lv+v7Sf/SyKv5jP+CPn/J59j/2Cb//ANAFXD4kRV+Bn9aNFFFdp5QUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUARiGJZWnCgSMApbHJC5wCfQZOPqakoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvjr/goH/yZh8RP+wS//oa19i18df8ABQP/AJMw+In/AGCX/wDQ1pS2ZcPiR/Od/wAEh/8AlI58Lv8Ar+uv/SOev9A6v8/H/gkP/wApHPhd/wBf11/6Rz1/oHVwHqhRRRQAUUUUAFFFFABRRRQB+RX/AAXK/wCUcfi7/r+0n/0sir+V3/glN/yet4c/69dR/wDSaSv6ov8AguV/yjj8Xf8AX9pP/pZFX8rv/BKb/k9bw5/166j/AOk0la0P4kfVDW5/WfRRRXvlhRRRQAUUUUAFFFFAGlo3/IYtP+u0f/oQr6ur5R0b/kMWn/XaP/0IV9XV5mYbxJkFeS/FX/j3sv8Aef8AkK9aryX4q/8AHvZf7z/yFc+E/ix/roJbnjNFFFe2WFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH8mH/BVn/k9bxH/wBeunf+k0df1l/8EVf+UZnw0/7jP/p1vK/k0/4Ks/8AJ63iP/r107/0mjr+sv8A4Iq/8ozPhp/3Gf8A063leDX/AIkvUh7n6mUUUViIKKKKACiiigAooooAKKKKACv46v8Ag43/AOTo/A3/AGKo/wDSu4r+xWv46v8Ag43/AOTo/A3/AGKo/wDSu4oA9l/4Ipf8msa//wBjXdf+kdnX7AV+P/8AwRS/5NY1/wD7Gu6/9I7Ov2ArRHvYb+FEKKKKDYKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK/k/8A+CvX/J5V7/2CrD/0E1/WBX8n/wDwV6/5PKvf+wVYf+gmlI48d/D+Z/T1/wAENP8AlHH4R/6/tW/9LJa/XavyJ/4Iaf8AKOPwj/1/at/6WS1+u1QeOFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/X/v4ooooA/wA5/wD4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/7FXRv/SSKv5Xf+CjH/J+Hxc/7GnUv/RzV/VF+yh/ya18Nf8AsVdG/wDSSKuXFbI97Ifjn6Hv1FFFcJ9MFFFFABXw7/wQp/5Mou/+xlv/AP0Vb19xV8O/8EKf+TKLv/sZb/8A9FW9dmE+0fO5/wD8u/n+h+zVFFFdh86FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAflh/wWb/5MA8U/wDX5pf/AKVxV7v4T/5FXTP+vSH/ANAFeEf8Fm/+TAPFP/X5pf8A6VxV7v4T/wCRV0z/AK9If/QBXJi+h9DkO9T5fqdBRRRXEfRhRRRQAV+YnwL/AOUnfxw/7BWif+kttX6d1+YnwL/5Sd/HD/sFaJ/6S21aU9pehy4n4qX+L/22R+ndFFFZnUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH85H/AAW3/wCSpeCP+wVcf+jhX6uf8G5H/Jrnjn/saj/6SW9flH/wW3/5Kl4I/wCwVcf+jhX6uf8ABuR/ya545/7Go/8ApJb16dD4EfFZn/vU/wCuh/Q3RRRWpwBRRRQAUUUUAFFFFABX4bf8HBn/ACYhZ/8AY1af/wCibmv3Jr8Nv+Dgz/kxCz/7GrT/AP0Tc0DR+MH/AAQC/wCTx/Ev/YmXn/pdY1/XxX8g/wDwQC/5PH8S/wDYmXn/AKXWNf18V8Xnn+9P0R6uD/hhRRRXjnUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/HD/wXf/5PbtP+xZsP/RtxX7i/8G+f/JiF5/2NWof+ibavw6/4Lv8A/J7dp/2LNh/6NuK/cX/g3z/5MQvP+xq1D/0TbV9/l3+60/Q8Wv8AxJH7k0UUV2mIUUUUAFFFFABRRRQAUUUUAfkT/wAFy/8AlHH4u/6/tJ/9LIq/mM/4I+f8nn2P/YJv/wD0AV/Tn/wXL/5Rx+Lv+v7Sf/SyKv5jP+CPn/J59j/2Cb//ANAFXD4kRV+Bn9aNFFFdp5QUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV8df8FA/+TMPiJ/2CX/8AQ1r7Fr46/wCCgf8AyZh8RP8AsEv/AOhrSlsy4fEj+c7/AIJD/wDKRz4Xf9f11/6Rz1/oHV/n4/8ABIf/AJSOfC7/AK/rr/0jnr/QOrgPVCiiigAooooAKKKKACiiigD8iv8AguV/yjj8Xf8AX9pP/pZFX8rv/BKb/k9bw5/166j/AOk0lf1Rf8Fyv+Ucfi7/AK/tJ/8ASyKv5Xf+CU3/ACet4c/69dR/9JpK1ofxI+qGtz+s+iiivfLCiiigAooooAKKKKANLRv+Qxaf9do//QhX1dXyjo3/ACGLT/rtH/6EK+rq8zMN4kyCvJfir/x72X+8/wDIV61XkvxV/wCPey/3n/kK58J/Fj/XQS3PGaKKK9ssKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP5MP+CrP/J63iP/AK9dO/8ASaOv6y/+CKv/ACjM+Gn/AHGf/TreV/Jp/wAFWf8Ak9bxH/166d/6TR1/WX/wRV/5RmfDT/uM/wDp1vK8Gv8AxJepD3P1MooorEQUUUUAFFFFABRRRQAUUUUAFfx1/wDBxx/ydF4G/wCxWH/pXcV/YpX8df8Awccf8nReBv8AsVh/6V3FAHsn/BFL/k1jX/8Asa7r/wBI7Ov2Ar8f/wDgil/yaxr/AP2Nd1/6R2dfsBWiPew38KIUUUUGwUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV/J/wD8Fev+Tyr3/sFWH/oJr+sCv5P/APgr1/yeVe/9gqw/9BNKRx47+H8z+nr/AIIaf8o4/CP/AF/at/6WS1+u1fkT/wAENP8AlHH4R/6/tW/9LJa/XaoPHCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/Q/v4ooooA/wA5/wD4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/7FXRv/SSKv5Xf+CjH/J+Hxc/7GnUv/RzV/VF+yh/ya18Nf8AsVdG/wDSSKuXFbI97Ifjn6Hv1FFFcJ9MFFFFABXw7/wQp/5Mou/+xlv/AP0Vb19xV8O/8EKf+TKLv/sZb/8A9FW9dmE+0fO5/wD8u/n+h+zVFFFdh86Fcj4q+IHgPwL5H/Cba3YaP9q3eT9uuY7fzNmN23zGXdt3DOOmR6111fxLf8HeXhTSfHnxl/Y68D6+HNhrOteI7G5EbbXMNxPokb7T2O1jg9qAP7MvDXxM+G/jO6ax8H+INN1aZBuaOzu4p2AHchGJxXb1/FH/AMFJf+DbP9mn9jv9lLxX+2f+wH4q8W+C/iD8KbGXxLbSvqm9JLewHm3GyRI0nhmSFXaN0kALDawIbK/pT+yp/wAFwfBXhL/gh94P/wCCj/7Xgub/AFi13+HNQttLRXutU1m0nktkKBikaPcRxC5lJKogL4zhVIB/RnRX8u/gb/g5Un0P4s/D/wAGftl/s2+Nfgr4Z+J1wlvoHiPVnMsE3mmNVkMUlrbHy1MsZkMbSMiOrbSCK/Nf/gr3/wAFQ/2qfh//AMFxPhZ8N/D3gnxzeeD/AIaXVtc23g3TxMq+MbsNOwvrOFIv9JXDCFDtlVHgfbg7qAP7sKK/Bb9sf/guhon7MHin4ZfAjwD8GfF3xH+MvxL8PWviJPBGmRtDd6bDcxGQw3TmKRxPHsk3xrASixs8nljbu7P/AIJnf8FqvBX/AAUA+OPjH9k/4gfDfXvhB8WPBNq1/feHNcbzSbWOSOKRlk8uFg8bTRbkeJSVdWQsN20A/ZDw5418G+MftA8I6vZar9kcRz/Y7hJ/KY5wH2Mdp4PB9K6av86n/ghp/wAFGfEv7FWrftHeCPhH8G/F/wAbvGviDxUupRaN4XtndLawsmuklnuZ1jmMYLyIkaiJy5JHHGf65v8AgnP/AMFkv2Yv+Ch/wB8Y/GrQoL3wXe/DZJJPF2i6uA1zpcUaSS+dmPPmQskUmGCq26NlKAgZAP1wor+TPWf+DpG+n8Far+0T8O/2V/H2ufBLR777HceOJJRbWy/vFi3FBbyQqd7Ku03Qw7KrEMcV+m37UP8AwW+/ZR/Zz/Yn+Hv7aWj2GseMbX4ttDB4P0HToQmo39zKpLROrErF5LDy5SN5DkKgckZAP2Wor+ev9nz/AILv+J/Ff7VfhH9kv9sL9nHxt8Dta8fkJ4fvNTzfWtw7EKvmkQQNGpZlRmVZBG7qJNi5Yeo/8FC/+C3nw8/Yu/aE0n9jf4N/DjxF8bvjBqlsl6/hrwyvzWkEil08+RY5nEjIPM2LE22LDuVUqWAP3Dor8pP+CZX/AAVr+DP/AAUqg8WeEdG8O6x8PviJ4BnWDxH4R8QxeVfWe9mRXXhS6BkKPlEeNxh0UMhb9W6ACiiigD8sP+Czf/JgHin/AK/NL/8ASuKvd/Cf/Iq6Z/16Q/8AoArwj/gs3/yYB4p/6/NL/wDSuKvd/Cf/ACKumf8AXpD/AOgCuTF9D6HId6ny/U6CiiiuI+jCiiigAr8xPgX/AMpO/jh/2CtE/wDSW2r9O6/MT4F/8pO/jh/2CtE/9JbatKe0vQ5cT8VL/F/7bI/TuiiiszqCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD+cj/gtv/wAlS8Ef9gq4/wDRwr9XP+Dcj/k1zxz/ANjUf/SS3r8o/wDgtv8A8lS8Ef8AYKuP/Rwr9XP+Dcj/AJNc8c/9jUf/AEkt69Oh8CPisz/3qf8AXQ/obooorU4AooooAKKKKACiiigAr8Nv+Dgz/kxCz/7GrT//AETc1+5Nfht/wcGf8mIWf/Y1af8A+ibmgaPxg/4IBf8AJ4/iX/sTLz/0usa/r4r+Qf8A4IBf8nj+Jf8AsTLz/wBLrGv6+K+Lzz/en6I9XB/wwooorxzqCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/jh/4Lv8A/J7dp/2LNh/6NuK/cb/g30/5MQu/+xp1D/0TbV+HP/Bd/wD5PbtP+xZsP/RtxX7jf8G+n/Jh93/2NOof+ibavv8ALv8AdafoeLX/AIkj9yKKKK7TEKKKKACiiigAooooAKKKKAPyJ/4Ll/8AKOPxd/1/aT/6WRV/MZ/wR8/5PPsf+wTf/wDoAr+nP/guX/yjj8Xf9f2k/wDpZFX8xn/BHz/k8+x/7BN//wCgCrh8SIq/Az+tGiiiu08oKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK+Ov+Cgf/JmHxE/7BL/+hrX2LXx1/wAFA/8AkzD4if8AYJf/ANDWlLZlw+JH853/AASH/wCUjnwu/wCv66/9I56/0Dq/z8f+CQ//ACkc+F3/AF/XX/pHPX+gdXAeqFFFFABRRRQAUUUUAFFFFAH5Ff8ABcr/AJRx+Lv+v7Sf/SyKv5Xf+CU3/J63hz/r11H/ANJpK/qi/wCC5X/KOPxd/wBf2k/+lkVfyu/8Epv+T1vDn/XrqP8A6TSVrQ/iR9UNbn9Z9FFFe+WFFFFABRRRQAUVy3i3xx4K8AaWdc8d6xY6JZL1uL+4jtohj/bkZV/WrPhnxZ4V8aaUmu+DtTtNWsZPuXFlMk8TfR0LKfzoA7DSXSPVbaSQhVWVCSeAACK+mP8AhIdA/wCf63/7+r/jXyvRXPXwyqtNsTVz6o/4SHQP+f63/wC/q/415h8S9S06/gtBYzxzFWfPluGxnHXBryais6WDjCSkmFgooorsGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH8mH/BVn/k9bxH/wBeunf+k0df1l/8EVf+UZnw0/7jP/p1vK/k0/4Ks/8AJ63iP/r107/0mjr+sv8A4Iq/8ozPhp/3Gf8A063leBX/AIkvVkPc/UyiiishBRRRQAUUUUAFFFFABRRRQAV/HX/wccf8nReBv+xWH/pXcV/YpX8df/Bxx/ydF4G/7FYf+ldxQB7J/wAEUv8Ak1jX/wDsa7r/ANI7Ov2Ar8f/APgil/yaxr//AGNd1/6R2dfsBWiPew38KIUUUUGwUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV/J//wAFev8Ak8q9/wCwVYf+gmv6wK/k/wD+CvX/ACeVe/8AYKsP/QTSkceO/h/M/p6/4Iaf8o4/CP8A1/at/wClktfrtX5E/wDBDT/lHH4R/wCv7Vv/AEslr9dqg8cKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//9H+/iiiigD/ADn/APgox/yfh8XP+xp1L/0c1f1Rfsof8mtfDX/sVdG/9JIq/ld/4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/wCxV0b/ANJIq5cVsj3sh+Ofoe/UUUVwn0wUUUUAFfDv/BCn/kyi7/7GW/8A/RVvX3FXw7/wQp/5Mou/+xlv/wD0Vb12YT7R87n/APy7+f6H7NUUUV2HzoV/E/8A8Hc3iTRfBvxw/Y18X+JJ/s2naVrviG8uptrP5cEFxobu21QWOFBOACT2Ga/tgrwj42fstfsyftLf2Z/w0b8OfC/j/wDsXzv7P/4STSLTVfsn2nZ5vk/aopPL8zy49+zG7Yuc7RgA/mJ/4Kxf8HE//BOb4q/sI/ET9n39kfxbdfEXx18R9HuPC9jYWek6harGuqr9nllkku7aEHbE77Ej3u8m1cAEsPnH4h/Er9sP/ggf/wAG7Pwu0XwDpMGmfEnxxr0g1i7vLRbtNDGsrc3iq8MoaM3SwxwwFZUeNX8wEEhc/wBa/wAMf2G/2Kfgl4hh8XfBn4P+CPCOrW7For3RfD9hYXCMRglZIIUcHBI4PSvbPiP8Mvhx8YvBd98OPi1oGneJ/D2poI7zTNVto7y0nUHIEkMqsjAEAjIOCM9aAP8AMr/4Kw+PPhh4gu/gR4gf9rjWv2mfFtzqsOpa3ukSHw/oUMnkMPJtIkCW08rbwylxIEiw6JgV+2P/AAW0+KHgP9n3/g4l/ZO+PHxj1FNB8IaPoNo97qlwrGCFY77UA5YqGOE81C2AcBgTxX9SOnf8E6f2ANK+HH/Cn7T4IeAz4VN6mpNpMnh6wls3vY0eNLhonhZGmWOR0WVgXCsVBwSK9D+Nn7I37LH7SelaTof7Qfw58NeNbPQW3abDrel298lpkKCIRKjeWrBVDKuAwABBAoA/lR/4KK/8FY/i18S/+Cnngr9i7wN8crP9nX4Ia34YsfEcfxBFhDJPqsGq2RvIJIbm7AFvFJlYI3DQ7XDly52x18ff8EONd+F9/wD8HGnxSu/hZ8SNc+K+g3Xgy/gsfF3ia4NzqOsywnTFmlMrJGXjEkcqwYXAgRACQM1/af8AFH9hn9i/43aN4e8OfF/4TeEPE2n+EreOz0S21LRrS4i061hAVILdHjIihVVUCJAEwAMYFdXoP7KX7LvhX4h6b8XfC/w28Lab4s0eyXTbDWrXR7SHUbWySMwrbw3KRCWOFYyYxGrBQhK4xxQB/DL/AMG5v/BQ79kT9h/4x/tI+Gv2rfEEHghfF2vJdaXrN9DJ9kujpct359r5yIwEqC4jkRDywc45wD6b/wAEfPjT4w0T4sf8FEP+CtP7Pvhm41PwQseuar4atJYWih1K8FxdalCrIMOPLi2POqHcizYHJFf2G6l/wT8/YQ1fwTqPw2v/AIL+Bm8P6vff2ne6evh+xS2uL7aVFy8awhWnCsQJT84BIzX0D8PPhd8M/hF4JtPhp8KfD2meGfDmno0drpelWkVnZQo5JYJDEqxqCSScLySSetAH+bf8a/2z9Y/bU/4JY+Mv2gP2vP2wdVuviBrk1zbab8GvDMUGlWvmJdjYL6CCPdcW3lA3JdwFwADK0oIr7j+Idx/wT+13/g3S/ZT0T9uez8aQabd3GoxaF4q8GWsF2dE1KO9uUkF358qJ5UiliYgGdxC2zDoK/sl8J/8ABPP9gvwJrOueIfBvwW8D6Ze+Jba5stVmt9Aska7tbxSlxBLiH5op1JEsZ+SQE7gc16hpX7L/AOzToXwfl/Z60P4eeGbLwDOJBJ4at9JtYtHfzXMj5s1jEB3uSzfJy3J5oA/gV+FH7Vv7WX/BPL9tP4K/BP8AYo/a7j/aw8G/EHWrXT7jw1+/vntbOSaFDFJHPJdfZGaORmRoLhGQxs0kYTIbr/2s/Dnir9nj/g5O+JPiP4yfGfUf2ddP+IelLdaD48jsobqCW2ktbRVgZrgeXHFut5IGkyCskYUnaxJ/t++CH7B/7FH7NPiWXxp+z78JvCPgzWZleNtQ0fR7W0u/Lf7yCaONZAh7oGC+1eg/HL9mj9nb9pvQIPC37RfgXQPHWn2rM9vBr2nQagsDuAGaLzkfy2IAyyYPHWgD+Vj/AIIR+B/2aviB/wAFRfjN+0v8FfjL4y+Mnim00WbRfEmv6r4dttN0XURcXFr5U0F1b3D73Y2YMYaCMyIjv05b+xavKvg58Cvgp+zx4OT4e/AXwjo/gvQo5GlGn6JZQ2Ft5jY3OY4VRS7YGWIJPc16rQAUUUUAflh/wWb/AOTAPFP/AF+aX/6VxV7v4T/5FXTP+vSH/wBAFeEf8Fm/+TAPFP8A1+aX/wClcVe7+E/+RV0z/r0h/wDQBXJi+h9DkO9T5fqdBRRRXEfRhRRRQAV+YnwL/wCUnfxw/wCwVon/AKS21fp3X5ifAv8A5Sd/HD/sFaJ/6S21aU9pehy4n4qX+L/22R+ndFFFZnUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH85H/Bbf/kqXgj/sFXH/AKOFfq5/wbkf8mueOf8Asaj/AOklvX5R/wDBbf8A5Kl4I/7BVx/6OFfq5/wbkf8AJrnjn/saj/6SW9enQ+BHxWZ/71P+uh/Q3RRRWpwBRRRQAUUUUAFFFFABX4bf8HBn/JiFn/2NWn/+ibmv3Jr8N/8Ag4L/AOTD7T/sadP/APRNzQB+L/8AwQC/5PH8S/8AYmXn/pdY1/XxX8g//BAL/k8fxL/2Jl5/6XWNf18V8Xnn+9P0R62D/hhRRRXjnUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/HD/wAF3/8Ak9u0/wCxZsP/AEbcV+43/Bvp/wAmH3f/AGNOof8Aom2r8Of+C7//ACe3af8AYs2H/o24r9xv+DfT/kw+7/7GnUP/AETbV9/l3+60/Q8Wv/EkfuRRRRXaYhRRRQAUUUUAFFFFABRRRQB+RP8AwXL/AOUcfi7/AK/tJ/8ASyKv5jP+CPn/ACefY/8AYJv/AP0AV/Tn/wAFy/8AlHH4u/6/tJ/9LIq/mM/4I+f8nn2P/YJv/wD0AVcPiRFX4Gf1o0UUV2nlBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXx1/wAFA/8AkzD4if8AYJf/ANDWvsWvjr/goH/yZh8RP+wS/wD6GtKWzLh8SP5zv+CQ/wDykc+F3/X9df8ApHPX+gdX+fj/AMEh/wDlI58Lv+v66/8ASOev9A6uA9UKKKKACiiigAooooAKKKKAPyK/4Llf8o4/F3/X9pP/AKWRV/K7/wAEpv8Ak9bw5/166j/6TSV/VF/wXK/5Rx+Lv+v7Sf8A0sir+V3/AIJTf8nreHP+vXUf/SaStaH8SPqhrc/rPooor3ywooooAK5vxl4p0zwN4Q1XxrrR22ej2c99OfSK3QyN+imukrkPiF4N074i+Adc+H2r8Wmu6fc6dPxn93dRtG3HfhjQwP4oP+CcX7Gd3/wcAfE/4ift5f8ABQHxDq974X0rWpNG8P8AhvT7xore1JRLh7dHIJjt4IpYVAiCvK7F3bIO9n7YfwC1H/g3U/bI+F37SP7IniTVn+Ffjy+ex8ReG9QujLG6Wpj86N2CqrhoZme3d1aSGRGOSpwYP+CUP7dVh/wRij+NH/BPL9tO3/4RXxLZapd654Zvr+G4/sq/vzbrbqkksUUkkdtc/Z4HhuFjZChcsVIUN8d/tm/8FK9S/wCC4fxT+AX7KmtaJpnw/ksNflh16/uNTQ6XNLctFGZoJpPLKxrDHIURtzu8gRCzYLeW3BU1/P8Aje5J/Y38Yf8Agp34O+EH/BST4e/8E4r3wreX2q/EHSU1WDW47lFtrdH+2YRoipZj/obchh98elL8eP8Agpz4Q+BX/BRb4a/8E8NS8KXmoar8SNNi1KDWYrhEt7VZZLuPa8RUsxH2QnIYfeHpX4ef8FVfH3g/9l//AIOEf2bf2kvi/crongaDwxBZyam6MbeFkm1OF8lQfli+1Qs+M7VYE8V5T8c/2q/gv+15/wAHJH7PPjz9n/V18Q+G9E02DQ/7VgRhaXN3AdSuJfs8jACVEFwiFlyu8EA10us02r63S+Q7n7G/tdf8Fu/CfwL/AGl7/wDZC/Zt+FXib45+PdAg+067Z+G0Jj09Aquylo4p3d0VxvAjCKzKhfeSq+6fs0f8FbvgN+1R+xz8RP2rvh7pWo2t78LNO1G78R+F9QCwajaT6fbSXPkk/Mu2URMI5OmQwZVZWUfyoeAdK1/9nH/gsT+0n4M+Nvx81D9mu/8AEWraprVhr5sYJ4dWsru+e7gjMlwNqCSGVZE2naWRk+8qrX2N/wAE+vAfwA1H9lT9ub9oT4BePfFnj3/hIfCHiG11zUvEGhQaRa3moC0v5/tFs8FxKJC/mNIylI2RZULKpYLUxrTcvv006fiFz7z/AGf/APg4mtP2qfFnhDwd+z78AvFviKbX7sWGp3UcyrY6RdSySLDHNc+SYjuiQTOSUCo2BvYEV+h3/BNP/gqL8MP+Cj/wr8X/ABE0fQ7rwTeeB9TbT9W0zVJ0klgQRCRZ3ZQoVGIlXDAEGJs18Qf8GwGi6dpf/BLPTr+yiWOXUvE2sXFwyjBkkV0iBb1ISNR9AK/CT/gpj478ef8ABIf9uH9pfwR8N7WWLwz+074Oe50zyfkjt7vUp9lzLkcBoS2oCNV5UTRngc0e1nGEakndMLn9YH/BMv8A4KXaB/wU08J+MviN4C8G3/hvw34X1ZdItL++nSX+0ZQhkkKIqqY9kbQsQST+9A7Gv06r84v+CSv7Jo/Yu/4J+/Dn4KajbfZtc/s5dV1wEYf+09S/0idH9TCXEAP92MV+jtdVPm5VzbjCiiirAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD+TD/AIKs/wDJ63iP/r107/0mjr+sv/gir/yjM+Gn/cZ/9Ot5X8mn/BVn/k9bxH/166d/6TR1/WX/AMEVf+UZnw0/7jP/AKdbyvAr/wASXqyHufqZRRRWQgooooAKKKKACiiigAooooAK/jr/AODjj/k6LwN/2Kw/9K7iv7FK/jr/AODjj/k6LwN/2Kw/9K7igD2T/gil/wAmsa//ANjXdf8ApHZ1+wFfj/8A8EUv+TWNf/7Gu6/9I7Ov2ArRHvYb+FEKKKKDYKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK/k/wD+CvX/ACeVe/8AYKsP/QTX9YFfyf8A/BXr/k8q9/7BVh/6CaUjjx38P5n9PX/BDT/lHH4R/wCv7Vv/AEslr9dq/In/AIIaf8o4/CP/AF/at/6WS1+u1QeOFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf//S/v4ooooA/wA5/wD4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/7FXRv/SSKv5Xf+CjH/J+Hxc/7GnUv/RzV/VF+yh/ya18Nf8AsVdG/wDSSKuXFbI97Ifjn6Hv1FFFcJ9MFFFFABXw7/wQp/5Mou/+xlv/AP0Vb19xV8O/8EKf+TKLv/sZb/8A9FW9dmE+0fO5/wD8u/n+h+zVFFFdh86FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAflh/wWb/5MA8U/wDX5pf/AKVxV7v4T/5FXTP+vSH/ANAFeEf8Fm/+TAPFP/X5pf8A6VxV7v4T/wCRV0z/AK9If/QBXJi+h9DkO9T5fqdBRRRXEfRhRRRQAV+YnwL/AOUnfxw/7BWif+kttX6d1+YnwL/5Sd/HD/sFaJ/6S21aU9pehy4n4qX+L/22R+ndFFFZnUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH85H/AAW3/wCSpeCP+wVcf+jhX6uf8G5H/Jrnjn/saj/6SW9flH/wW3/5Kl4I/wCwVcf+jhX6uf8ABuR/ya545/7Go/8ApJb16dD4EfFZn/vU/wCuh/Q3RRRWpwBRRRQAUUUUAFFFFABX4b/8HBf/ACYfaf8AY06f/wCibmv3Ir8N/wDg4L/5MPtP+xp0/wD9E3NAH4v/APBAL/k8fxL/ANiZef8ApdY1/XxX8g//AAQC/wCTx/Ev/YmXn/pdY1/XxXxeef70/RHrYP8AhhRRRXjnUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/HD/AMF3/wDk9u0/7Fmw/wDRtxX7jf8ABvp/yYfd/wDY06h/6Jtq/Dn/AILv/wDJ7dp/2LNh/wCjbiv3G/4N9P8Akw+7/wCxp1D/ANE21ff5d/utP0PFr/xJH7kUUUV2mIUUUUAFFFFABRRRQAUUUUAfkT/wXL/5Rx+Lv+v7Sf8A0sir+Yz/AII+f8nn2P8A2Cb/AP8AQBX9Of8AwXL/AOUcfi7/AK/tJ/8ASyKv5jP+CPn/ACefY/8AYJv/AP0AVcPiRFX4Gf1o0UUV2nlBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXx1/wUD/AOTMPiJ/2CX/APQ1r7Fr46/4KB/8mYfET/sEv/6GtKWzLh8SP5zv+CQ//KRz4Xf9f11/6Rz1/oHV/n4/8Eh/+Ujnwu/6/rr/ANI56/0Dq4D1QooooAKKKKACiiigAooooA/Ir/guV/yjj8Xf9f2k/wDpZFX8rv8AwSm/5PW8Of8AXrqP/pNJX9UX/Bcr/lHH4u/6/tJ/9LIq/ld/4JTf8nreHP8Ar11H/wBJpK1ofxI+qGtz+s+iiivfLCiiigAooooA8Q+M37M/7On7RllBp/x98CeH/GkVqrLbjW9OgvjAHxu8ppkYxk4GShB4r5B+Of8AwR8/4Ju/H/4Z2/wq8T/CbQNG0+xk820n8PWkej3du5wGKzWixsQwA3q+5WwCQSAR+ltFS4Re6A8K+I/7MH7OHxi8B6b8L/i14E0HxP4d0ZI49P0/VdPhvLe1WJQieSsqMIyqAKCuDjjpVfS/2Uf2W9E1zw54m0X4a+FbPUvB0Jt9Bu4dHtI59LhZnYpZyLEGt1LSOSsRUZZj1Jr32inyrsB4J8bP2V/2Z/2k47VP2gvh/wCHvGpsQVtX1rTYL2SAE5IjeVGZASOQpGe9dd4e+Cnwc8JfDJ/gr4W8J6Pp3g6W1lspNCtrGGLTXtp1KyxNbKgiMcisQ6lSGBIOcmvTaKLLcDz74Y/CX4VfBPwpH4D+DXhnSfCOhwyPKmnaLZQ2Foskhy7CGBEQMx5YgZJ61/LNrv7B3/BUn/gp3/wUB+G/xe/4KNeAfD/w7+GnwpuftENlp99b3h1IRypO0YWK5upG+0yRRLIZDEiQghQXzu/raoqJ0lKyewBRRRWgBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH8mH/BVn/k9bxH/166d/6TR1/WX/AMEVf+UZnw0/7jP/AKdbyv5NP+CrP/J63iP/AK9dO/8ASaOv6y/+CKv/ACjM+Gn/AHGf/TreV4Ff+JL1ZD3P1MooorIQUUUUAFFFFABRRRQAUUUUAFfx1/8ABxx/ydF4G/7FYf8ApXcV/YpX8df/AAccf8nReBv+xWH/AKV3FAHsn/BFL/k1jX/+xruv/SOzr9gK/H//AIIpf8msa/8A9jXdf+kdnX7AVoj3sN/CiFFFFBsFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFfyf/APBXr/k8q9/7BVh/6Ca/rAr+T/8A4K9f8nlXv/YKsP8A0E0pHHjv4fzP6ev+CGn/ACjj8I/9f2rf+lktfrtX5E/8ENP+UcfhH/r+1b/0slr9dqg8cKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//T/v4ooooA/wA7T/gphpkmkft9/Fm1k6v4iu5vwnIkH6NX9Pf7HeoJqf7KPw3uU6L4b0yL8YYEjP6rX87H/BZHQZvD/wDwUh+JUMkZRLmbT7pCRgMJ7G3ckevzEj6g1+73/BObXYPEP7FngO8hff5NnNat6hreeSIg/wDfP5Vy4r4Ue5kUv3sl5fqfbNFFFcJ9QFFFFABXw7/wQp/5Mou/+xlv/wD0Vb19xV8O/wDBCn/kyi7/AOxlv/8A0Vb12YT7R87n/wDy7+f6H7NUUUV2HzoUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB+WH/BZv8A5MA8U/8AX5pf/pXFXu/hP/kVdM/69If/AEAV4R/wWb/5MA8U/wDX5pf/AKVxV7v4T/5FXTP+vSH/ANAFcmL6H0OQ71Pl+p0FFFFcR9GFFFFABX5ifAv/AJSd/HD/ALBWif8ApLbV+ndfmJ8C/wDlJ38cP+wVon/pLbVpT2l6HLifipf4v/bZH6d0UUVmdQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAfzbf8FstQST41eD9KH3odEeU/SWdwP/QDX7B/8G52mSQfsheMNXb7tx4vniA/65WVoc/+P/pX4Z/8Fj9dg1b9rO006F9x0vw/Z27gfwu0s82P++ZFNf0Qf8EBdCl0j9gSPUJEKjVPEWpXSkjG4KIocj15iI/CvUor3EfEZi74mb8z9sqKKK0OIKKKKACiiigAooooAK/Df/g4L/5MPtP+xp0//wBE3NfuRX4b/wDBwX/yYfaf9jTp/wD6JuaAPxf/AOCAX/J4/iX/ALEy8/8AS6xr+viv5B/+CAX/ACeP4l/7Ey8/9LrGv6+K+Lzz/en6I9bB/wAMKKKK8c6gooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP44f8Agu//AMnt2n/Ys2H/AKNuK/cb/g30/wCTD7v/ALGnUP8A0TbV+HP/AAXf/wCT27T/ALFmw/8ARtxX7jf8G+n/ACYfd/8AY06h/wCibavv8u/3Wn6Hi1/4kj9yKKKK7TEKKKKACiiigAooooAKKKKAPyJ/4Ll/8o4/F3/X9pP/AKWRV/MZ/wAEfP8Ak8+x/wCwTf8A/oAr+nP/AILl/wDKOPxd/wBf2k/+lkVfzGf8EfP+Tz7H/sE3/wD6AKuHxIir8DP60aKKK7TygooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr46/wCCgf8AyZh8RP8AsEv/AOhrX2LXx1/wUD/5Mw+In/YJf/0NaUtmXD4kfznf8Eh/+Ujnwu/6/rr/ANI56/0Dq/z8f+CQ/wDykc+F3/X9df8ApHPX+gdXAeqFFFFABRRRQAUUUUAFFFFAH5Ff8Fyv+Ucfi7/r+0n/ANLIq/ld/wCCU3/J63hz/r11H/0mkr+qL/guV/yjj8Xf9f2k/wDpZFX8rv8AwSm/5PW8Of8AXrqP/pNJWtD+JH1Q1uf1n1HLLFBE087BEQFmZjgADqSewFeBftM/Er4l/Cf4U3PjD4UeHG8T6tHKiC1VXk8uNgS0pSP53C4GVUg85yAK+A/hDoHhT9syVbj48fFWTxBc53SeENPLaTbwsvVHibZNOF6bwAR/eNXjs6VHExwVKHNVkrpNqMfve/pFSfdH3OR8GTxmXTznFVvZ4WD5ZOMZVZ33+COkfKVSdOL6Nn6ueGfF3hfxpp7av4R1G31O0SV4TPayLLH5kZwyhlJBKng4PBrM+InxA8LfCzwTqPxA8aXItdM0uEzTP1OOgVR3ZmIVR3YgVL4F8A+DPhn4ag8H+AdNh0rTLbJjggXCgtySe5YnqxJJ7mvgX/gp5cTS/CTwp4dnkMWnar4osre9YHgxbJW2n2yN31Wtczx1bB5dUxMknUjHZXtzbetr/gc3DWSYTN+IaGW05SVCpO13bn5Fq9Fdczina11fuXPDXxr/AG5PjlYL43+DvhLQPDnhq5/eWLeI5JmurqLqr7YSNquORlcejEYJ9A+EH7U/jG4+KK/AH9o/w9H4V8WzxGawmtpPMsNRRQSfJYklTgHClmzggkMNtfa1ra21jax2VlGsMMKhI0QbVVVGAABwABwBX5tf8FGYk03/AIVd4v0YY1+x8W2sdkV++UkBZwD6F448ivKx9LFZdh/rv1mU5Ra5lK3LJNpNJJLlet42fk7n1GR4rK+IMw/sX+zqdGnUU1SnDn9pTkouUHKTk/aJ2tPmWzbjytI/SyivgjxNrmtx/wDBR/w74ejvJ10+TwZJM1sJGELSfaJxuKZ2lsADOM8Un7W+ua3pXx0+CNlpd5PbQ3viCWO4jikZFlQeT8rgEBhyeDmvRqZ1GFGtW5PgqKG+93FX/wDJvwPnqHBtSri8JhPbJOvQlWTtsoxqS5d9X+7tfz20PviivyS/aH+NXhTxx+1HffBD4qeNZ/BngjwvZwy3SWczQTanezosgRpI1LCNUkGV9VPcgrzPgb4x/C74M/tDeDvDP7Pvjq48TeE/F1z/AGZqOj3dxJciynkKrBNC8q7lDMwDDvg5zkbeCpxVh415U7LkU+RvnXNe/LdQ3cU9G733aTWp7tDwux1TBQrpy9rOl7aK9lN0+Tlc0nW+FTlBXUbON2ouSk7H7J0V+MXxU8VfD/Uf2o/Fvhb9svXtc0LS4jAPC8VtLPBpxtyDul3Qg5kJ25YjaG3BjwAPr39n/wCFh1T4deJ/B3/CwpPGvgrVpguj3NteGS+s4jkvE10hzuGVwBjbg8DdgdGEz54nETo0qa0cl8a5k43+KO8VK2j13TaOHNeBIZdgaWMxOJa5o05fwpezlGpZtU6t+Wc4J+9F8iupJSbR6t8Dfjy/x9+HmteOfCumNaNZX95YWkE7hmla2VdrPjAXex5AY4H8Vd58G9W+KWufDjTtU+NOl22jeJZfO+2Wdo4khj2yuI9rCSUHdGFY/OeSenSvzS/4J/8Aw10fSvgf4t+J9neX41CObWNPWM3Tm3EaKjB/Kzt8zIHz9ax/Cfxz+JPgz/gnh4FfwlfyS+K/GGrTaHa3ty5klia4vLkeZltxJVUCLn7uQR0xXl4DP6kaFHE4293SnNpNWdpQS0sveblZa2Wt73uvps84CoVMdjMvyfl5Y4qlSTmpKUOanWk/e5muRKDlO8XJtJq1mn+ydFfm741/Ypk8DfDu+8b/AA58a+I4/HOlWr3qanPfvIt3PCpcpLE2VKOQQBzjPO4ZB8e+P/x88e/Er9in4afF7wvdNpuv6l4jsopGgYojXMAuYmDKMZjeSPdsORggc16WIz+eGjU+tUOWUY86SkpXSaT1srNNq6tbXRs+dwHAVHMqlD+y8ap0p1VRlKUHBwm4ylFuN3eElGVndP3XeK0v+wdFfk9+0z+zTqXwY+Duo/Hvwf448Ry+NNA8m7lvri9Z47ktKiyKYsbFT5iVQfKANpBFfpf8OfEdz4x+HuheLrxVSbVdOtbx1X7oaeNXIHsCa7sFmNSriJ4avS5JpKS1Uk02102aa1X3NnhZzw7h8NgKOZYHFe2pTnKm/ccHGcFGT0bd4tSTjLR73imXNY8Z+EfD+s6f4d17U7WyvtW8z7FBPKsb3Bi27xGGI3Fd65Ayea6avIfjB8CPhP8AHfRYtE+KejxanHbbzbyktHNAXxuMciEMudq5AODgZBxX5deNviV4n/ZT8SweEP2dviU/xDdpREvhG/hfVbiMZwVjubcEoVHSMlMejVz5lnE8BJ1MRBOi7Wakub0cXa+u3K2/7p6HDnCVDPqUaGX1pLFpNyjOD9m1d2aqQ5uTS1/aRjFO757bftHRXJeAtb13xJ4J0nxB4o05tH1K9tIZ7qxdtzW8rqC0ZOBkqTjoK62vchNTiprZ6nxVejKlUlSnvFtOzTV1po1dP1WjCiiiqMgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP5MP+CrP/J63iP/AK9dO/8ASaOv6y/+CKv/ACjM+Gn/AHGf/TreV/Jp/wAFWf8Ak9bxH/166d/6TR1/WX/wRV/5RmfDT/uM/wDp1vK8Cv8AxJerIe5+plFFFZCCiiigAooooAKKKKACiiigAr+Ov/g44/5Oi8Df9isP/Su4r+xSv5FP+DkPRfI+Nnw28Q4/4+tDu7fP/XCcN/7VoA7v/gil/wAmsa//ANjXdf8ApHZ1+wFfiv8A8ER9Y8/4GeL9Az/x7a6LjH/Xe3jX/wBpV+1FWj3cN/CiFFFFM3CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACv5P8A/gr1/wAnlXv/AGCrD/0E1/WBX8kP/BWPUvt37bXiK1zn7FaadD9M20cn/s9KRx47+H8z+pj/AIIaf8o4/CP/AF/at/6WS1+u1flL/wAES9O+w/8ABNb4fzEYN1Lq8x/8GNyo/RRX6tVB44UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//1P7+KKKKAP45/wDg4t+F6+Hf2mfBvxWto9kXibQWtJDjhrjTZjuOfXy54h9AK9a/4Ix+Nv7c/Zx1rwXO+6XQtakKL/dguo0df/H1kr7u/wCC/fwIn+Jn7HVp8VdKjaS88AanHdybRk/Yr3EE3vw5hYnsFNfgX/wR3+Lo8EftG3vw1v5Qlp4xsGjRScA3dlmWL/yGZlHqWFY143gz0cqq8mJjfrp9/wDwT+oSiiivNPswooooAK+Hf+CFP/JlF3/2Mt//AOirevuKvhb/AIIm32neFvgX4y+A+rTeT4n8JeKrxdQsZMLNHHIkSJJtBPyM0bqCCeVPbBPZhOp89n60pv1/Q/aGiiiuw+cCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPyw/4LN/8mAeKf+vzS/8A0rir3fwn/wAirpn/AF6Q/wDoAr5h/wCC2HivTNK/Yrn8FO3man4o1jT7Kwtky000kcgnbYiglsCPB6DLAZyQD9VaHZS6Zotnps5Be3gjjYr0JRQDj24rjxfQ+hyHep8v1NSiiiuM+jCiiigAr8xPgX/yk7+OH/YK0T/0ltq/TuvzE+Bf/KTv44f9grRP/SW2rSntL0OXE/FS/wAX/tsj9O6KKKzOoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK8m+O/wATrP4M/BvxL8Ur3BGiafNcxqejzBcRJ/wOQqv400r6ClJRTk9kfyQ/t5eNv+Fgftf+PteV96Q6pJYIe22wC2wx7Hys+/Wv7kf+CaHw2Pwn/YM+FvhF4vJlfQ4dRlTuJdSJu3B9w0xBr+Cj4CfCrxJ+0x+0J4a+E9nI8t/4u1eK3mn6sqzPmaY/7ibnP0r/AEqNC0XTvDeh2fh3SE8q0sII7aBP7scShVH4ACvWirJI/P6s3Ocpvq7mrRRRTICiiigAooooAKKKKACvw3/4OC/+TD7T/sadP/8ARNzX7kV+G/8AwcF/8mH2n/Y06f8A+ibmgD8X/wDggF/yeP4l/wCxMvP/AEusa/r4r+Qf/ggF/wAnj+Jf+xMvP/S6xr+vivi88/3p+iPWwf8ADCiiivHOoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD+OH/AILv/wDJ7dp/2LNh/wCjbiv3G/4N9P8Akw+7/wCxp1D/ANE21fhz/wAF3/8Ak9u0/wCxZsP/AEbcV+43/Bvp/wAmH3f/AGNOof8Aom2r7/Lv91p+h4tf+JI/ciiiiu0xCiiigAooooAKKKKACiiigD8if+C5f/KOPxd/1/aT/wClkVfzGf8ABHz/AJPPsf8AsE3/AP6AK/pz/wCC5f8Ayjj8Xf8AX9pP/pZFX8xn/BHz/k8+x/7BN/8A+gCrh8SIq/A/Q/rRooortPKCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvjr/AIKB/wDJmHxE/wCwS/8A6GtfYtfHX/BQP/kzD4if9gl//Q1pS2ZcPiR/Od/wSH/5SOfC7/r+uv8A0jnr/QOr/Px/4JD/APKRz4Xf9f11/wCkc9f6B1cB6wUUUUCCiiigAooooAKKKKAPyK/4Llf8o4/F3/X9pP8A6WRV/K7/AMEpv+T1vDn/AF66j/6TSV/VF/wXK/5Rx+Lv+v7Sf/SyKv5Xf+CU3/J63hz/AK9dR/8ASaStaH8SPqhrc/rPr58+L/7LfwP+OGbrx1ocR1EYMepWv+j3qMPukSpgtt7B9yj0r6Dor2MThaOIg6VeClF9Gro9HL8zxeArrE4KtKnUW0otxf3r8jy/4P8Aw5v/AIVeCovBd9r1/wCIxbSyGG71J/MuRExysbP/ABbBwDgcdhXJftM/AvTv2ifg/qXw2u5ha3Mu24sbkjIhuouY2OOdp5Vsc7WOOa99orOeBozwzwko3ptcttdrW33OijneNpZjHNqdS1eM1NSSS95O97JJb7q1n2Pywuf2l/2jfAfw3ufhV8XPBXiW08VQW32S18R6BYrqtvO6gKk+GdE3tjLLuPJztXO0fPVp8Q/i54u+L/w+8f8A7c2k3/h7wvoLtJpkyWEkUM+ph18qS7RWZoWOFONoGUwFCljX7qVFPBBcxGC5RZEbqrDIP4Gvnq/DeIq8vNjJSjG1oySafK01zpNc1rb6N9Wz7/A+IuAwyqOllNOE6nNzThJqceeLjJ0XJT9ndPZ88V9lR3Pzs/aS074hfC39qXwp+1B4f8N3/ijQ7XSJdF1K30qPzruBS8siyLGDkgmTr90bSCRkGvM/iR4h+L37QXx6+FPjzSPAmt6N4U0DXAPM1G1aO7dpSjPNJEu/yYEVFCu7AMWPpx+slFdWIyB1JVEqzVOc1NxsviTi997PlTt3620PNy/j1Yanh5TwUJ16VKdGNRykv3clNfCny8yU5JS7dL+8fml8VvBHiv4I/tR6j+0JZ+D7jxx4U8WWUFtqttYW63V5ZXNuqosqQnl1KIMkYHzNkjAzu+CPHfj34y/GTRG+F3w+fwl4M0tmn1TUde0uO2uLlhgxpbJ94EEffBOMknBUBv0Qoq1kfLVk6dVxpuXO4pK927tKW6i3q15tJpMwlxv7TCwhiMJGdeFL2UZuUrcqjyRbp35XOEdIy20TcW1c/Onx78WPiJ4I+I/iLwX+0b8P7vxv4KvZxLod3pOlpfxxQtnMdwhz84yFycEkEgFSMVP2MPhTrGg/Fvxz8V9C8M3vgbwdrq28Om6Lfr5M7PEBvmaDJMQzu2qT/GQOAK/SGinHI/8AaYYirVcuSTlG6XMrpqzlu4q7svS97BV43tltbAYbCxputCMKjUpcjUXF8ypX5Izk4LmlrvKyi5M/K/8AZJPj74ceFvGv7OPjHwfrdpem41e/ttS+ys2nzxyKqoqTDhncglQAQR3zxXJ+Ff2cvin4x/4J9eC/DukafNpfjTwlqk2tWVjqERtpGlhvLgiN1l2lN6Sb1zgEheQDmv18ornp8M0lTVGpUcoqEoLZNRk4tarrHlVn9534jxLxLxM8XhsPGFSdalWlq5JzpwqQas/szVR3V9Oj1Pze8Z/tXfE34gfD+7+HHgn4XeKbPxprFs9kyXtkYbC0eddjStcsQCi5JQlVDY5xXCfGr9nPxf8ADr9kz4Y/B3wvZ3Ov3uheJ7C5vTYQST7d5uJZpMKpYRK8mNzAADGcZxX6uUVpVyB11N4qs5SceROyVldN6LdtpXfkrJHPhOPI4GdBZZg40qUKntZR5pS55qMoRvJ6qMYylypa+823J2t8v/to+H9e8U/sv+MPD/hiyuNSv7q0RYba1jaaaRhKhwqICzHAJ4FerfBiwvtL+D3hPTNThktrm20awililUo8bpAgZWU4IYEYIIyDXpVFeqsFFYuWLvq4qNvRt3/E+VlnM5ZVDKuVcsakql+t5RjG3p7t/mfPnx3/AGf7P4+nStK8Q6/qmmaJZeeb3T9Nm8hdQ8zZsWZhnKJtb5cc7uoxXZ/DD4K/Cr4M6X/ZHwx0K10iJgA7wpmaTH/PSVsyP/wJjXqFFVHAYdV3ifZr2j+1u9rWTey8lZddyJ59mEsDDLXXl9XjdqCdo3bbu0rczu9HK7S0WiSCiiius8kKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/kw/4Ks/8nreI/wDr107/ANJo6/rL/wCCKv8AyjM+Gn/cZ/8ATreV/Jp/wVZ/5PW8R/8AXrp3/pNHX9Zf/BFX/lGZ8NP+4z/6dbyvAr/xJerIe5+plFFFZCCiiigAooooAKKKKACiiigAr+Yb/g5N8FXdz4W+FHxFhX9xZXWq6bMcfx3SW8sQz9IJK/p5r8df+C6vwxn+IX/BP3Wdas4PPn8J6pYawuBllQObaRh7KlwxPsCe1AH4l/8ABDnxZaRal8Q/A0z4nni0+/hX1SIzRyH8C8f51/QdX8if/BLD4jD4fftleH7ad9lv4igudIlOf+ey+ZGPfM0cYr+uyrWx7OClelbsFFFFM6wooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr+M3/AIKHeKbLxj+2j8QNXsH8yOLUFsif9uxhjtnH4NERX9h3jLxPYeCfB+q+M9V4tdIs572bnH7u3QyNz9FNfwy6VYeJfjT8V7bS4czax4s1ZIlwMl7m/mAHHU5d6mR5+YS92MT+/L/glp4Iv/h9/wAE+fhX4f1NdssujLqGMYwuoyPdrkeu2YZr78rn/CXhrTfBnhXTPB+jLss9KtIbOBemI4ECKPyAroKk8sKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//1f7+KKKKAPOPjD8M9C+M3wp8R/CXxMoaw8Sabc6dNkZ2rcRlNw91J3D0Ir/ODlg+JH7KX7QLWt/EbHxP4F1grJG44E9nJgjB6o+PoynPQ1/ph1/Jr/wcHfseDQPFWkftj+C7XFrrBj0rxB5a8LdRr/o07YH/AC0jUxMT3RO7UDTad0fqB8Hfil4c+NXwx0T4p+E33WOtWqXCrnJjY8PG3+1G4KN7ivSq/nI/4JEftY23g7xJN+zP42n2WOuTG40aRj8sd4w+eEnsJQAV/wBsY6tX9G9eXVhySsfcYLEqvSU+vX1CiiiszrCvgz47/szfFLTvib/w1B+x3rsXhX4hCHyNQgnAaw1m3GP3dwpVlD7VAVipyQvKMA6/edFVCbi7oxr0IVoclRaHx78Pf+Cr3hrwpr0Xw4/bc8L33ws8Ru+yOeSN7nS7jLON0U0YfMagRq0gLJuY5IVSR+pfgz4g+AviPpQ134e63p+vWJxi4065juouenzxMy8/Wvkvxp4E8E/EfQZPC3xA0iz1vTZSGa2voUniLL0ba4IDDsRyO1fAPiT/AIJf/BO28Sjxx8Cdb174Z6yC37/Qb2RFw5DMAGJdBkZASRVH93gY7IYpfaPnq+R1E70ndee/9fcfvDRX4VWOkf8ABWf4LykeCPiH4f8AiTp4kDLB4htDbz45zzGA2055BuMjA245z1dh/wAFFP22PhvHJF8ff2fby+WBFMl74XuvtMZOOWEKi4O0kE8y5QcNk81uqkHszzKmCrw+KDP2qor8gdK/4LX/ALJAZbbx7pfijwncllUx6npo7gFmXyZZCVXI6gMR0Xmvofwl/wAFQv2B/Gjsmj/ErToSrbT9viuLAZxng3UUWR7jjPHWrOU+96K+fdB/a0/ZY8UbR4d+JPhe9Z9mEh1e1Z8yfdBUSbgT6EZzXrGh+OvBHiZgnhvWbHUGLFQLa4jlJYDJHyseQOT7UAdVRRRQAUUUUAFFc1rHjTwd4e8z+39Ws7HyceZ9onSLbuxjO5hjORjPrXlerftUfsw6Bu/t34j+F7La5jPn6xaR4cZ+U7pRzweOvFAHvNFfCXi3/gpv+wZ4LVX1j4l6XMGXcPsAmvzjOORaxy4Psecc9K+b9a/4LY/sgQyzWngix8TeKZkVNg03TcK7vwq/vpI2Bz1yv0yeKAP19or8U7j/AIKR/thfFC5ksv2eP2f9RggziPUPFFx9ijIDDJMTLCCAAR8k7HPrjB5S/t/+Cunxns3i8W+OfDfw1sbtDHLb6HbGe6QEMfldxIynJVd0dyCAMg5zuh1IrdnVTwVefwwZ+2Xi7xp4O+H+hTeKfHmrWeiaZb4828v50toEz03SSFVGfc1+W3xR/wCCtHw3n8R3Hwu/ZF8Oaj8WfFY+VG09TFpUROQXkuWBJVTg5VPLYceavWvCtC/4JkfC3XNbXxf+0f4m1/4oauu8B9YvJEt1DOX+REfzByTlTMUJJ+UdK++PA/w4+H/wy0j+wfh1oljoVkTuaGwt0t0ZsY3MEA3N6k5JrCeKivhPSoZJUlrVdl+P+R8VfBn9mv40+OPi/aftW/toa3FrHjG0heLStFtFX+ztIR+nl9QZACeRnBOS7thh+hFFFck5uTuz6HD4eFGHJTWgUUUVBuFFFFABX5UfsCXLfFT9oL42ftJ2KA6PrWrQ6Xps6oNs8VkGBZW3NkFPKLY+Uk5HTAsftIftOa7+0Dq95+yL+xxIdV16/LWmva7GHWx0i0JZZf34xmQ4xuTcMEqhaQ4X70+BXwb8L/AH4UaN8JfB+Ws9Ih2GVwA80rEtJK2P4nclj6ZwOBWtuWLvuzi5lWrRcfhjfXz2t8tbnrdFFFZHaFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFfhf/wWU/aNt9M8M6Z+zR4flDXOpNHqWrY5KQRNmCM89XcbyCMgIvY1+wvxh+K3hL4IfDbV/ij43nEGn6RA0rDOGkfokaeryMQqj1NfxleOvFvxG/ar+PVz4gNu994h8YakkVtaRZY75mEcMCZ7KNqL7DmunDU7y5n0PGzjFezpeyjvL8j9wP8Ag3j/AGbbvxZ8bPEX7Tmt2rf2b4UtG0zTpWxtbUL0DzCvfMdvkN/11Ff2AV8tfsXfsz6B+yL+zb4Z+BuibJJtMtxJqFwg/wCPi/m+e4l55wXJC56IFHavqWu8+UCiiigAooooAKKKKACiiigAr8N/+Dgv/kw+0/7GnT//AETc1+5Ffhv/AMHBf/Jh9p/2NOn/APom5oA/F/8A4IBf8nj+Jf8AsTLz/wBLrGv6+K/kH/4IBf8AJ4/iX/sTLz/0usa/r4r4vPP96foj1sH/AAwooorxzqCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/jh/wCC7/8Aye3af9izYf8Ao24r9xv+DfT/AJMPu/8AsadQ/wDRNtX4c/8ABd//AJPbtP8AsWbD/wBG3FfuN/wb6f8AJh93/wBjTqH/AKJtq+/y7/dafoeLX/iSP3IooortMQooooAKKKKACiiigAooooA/In/guX/yjj8Xf9f2k/8ApZFX8xn/AAR8/wCTz7H/ALBN/wD+gCv6kP8AgtlpR1P/AIJseP5kGWs5NJnA+mo2yn8gxNfynf8ABJbWRpf7cHhuzY4/tC01G3/K2kl/9p1UPiRFX4H6H9eVFFFdx5QUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV8df8FA/+TMPiJ/2CX/8AQ1r7Fr4O/wCCmniFfDf7D/ju6z89zBa2ij1NxcxRn8lYn8KmWzLp/Ej+fr/gkP8A8pHPhd/1/XX/AKRz1/oHV/A7/wAEWvDzeIP+Ckfw9JGY7H+07t8dvLsLjb/4+Vr++KuE9UKKKKACiiigAooooAKKKKAPy2/4LQ6F/bv/AATa+IqouZLQaZdJ7eVqFsWP/fG6v5GP+CXmo/YP23/BqE4W4XUIT+NlOR+oFf3GftufCq5+N37IvxF+F1gC13qug3i2qj+K5iQywj6GRFB9q/z+f2TPHw+GH7S3gjxtK2yG01e2WdvSCdvKlP8A37dq0pO04vzBH9sVFFFfQGgUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAfyL/APBUPUft/wC2/wCMkBytuunwj8LKAn9Sa/sR/wCCRWhf8I7/AME5fhdp+NvmWFzdY/6+rueb9d9fw0/tSfEYfFn9onxn8QYmDwajqtwbdhzm3jby4f8AyGq1/oYfsl/DOf4Nfsv/AA++Ft4CLnQvD+n2lxnj/SEhXzeO37zdx2r5+q7zk13M2fQtFFFZgFFFFABRRRQAUUUUAFFFFABXC/E/4feH/iz8ONe+F/iqMS6b4h0+4065UgN+7uYzGxAPcA5Hoa7qigD/ADJvFnh3xt+zt8bNQ8MXha08QeCtZkgL4KlbmwmIDAem5Aw9RX9q/wAEvihpPxq+Enh74q6LgQa5ZRXJQf8ALORhiRPqjhlPuK/Hv/g4H/ZH/wCEA+Luk/tW+EbXZpfjECx1by1wsep26fI5wMDz4V/Fo2J5Ncj/AMEcv2p7G1juv2WPF8yxNJJLf6HI7Y3s3zT249+DKvr8/tVRZ24Kryz5X1P6BKKKKo9cKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooqpqF/ZaVYT6pqcqQW1tG0sssh2qiIMsxJ4AAGSaAPym/wCCvPx5Hw0/Z5j+F2jz7NU8azG3YKRuWxgw8x9cOSkfuGb0r87P+CHHwEb4yftz6V4s1CEyaZ4DtZtcmPG37QuIrZfqJZBIMf8APM18f/t1/tMyftSfH7UPGunll0PT1/s/SY2yD9liYnzCMnDSsS59AQD0r+tL/giT+yJ/wzh+yfb/ABE8T2nk+J/iIY9Vud64kisQD9khOQCPkYykHoZMdqhs8PE1eeo2tj9laKKKRzhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH/1v7+KKKKACvNfjF8JfA/x3+F+ufB/wCJFr9s0TxBavaXUQO1trchkb+F0YB0b+FgD2r0qigD/Nw/at/Zv+In7F37ROrfB/xS7x3mjXC3OnX0RK/aLVjut7iMjoSBzj7rgr1Wv6S/2AP20dG/ap+HK6Pr0iQeM9ChRdSt8gfaEGFFzGO6ucbwPuOcdCuf0M/4Kdf8E8vDf7dnwhxoghsfHvh+OSTQ7+T5Vkzy1rMw58qQjg8+W/zDjcG/hw0TWvjH+yj8a/tcKXPhvxd4VvGingmUq8ckZ2vFIvRkcZDDlWU8ZBzWVWkprzO7AY2WHqX+y90f3D0V8g/shftjfDn9rXwQuq6A62PiCyjX+1NJdsyQOeC6f34WP3XH0YBuK+vq82UWnZn2dOpGpFTg7phRRRSLCiiigAooooAp6hp+n6tZyadqsEdzbzDbJFKodGHoVOQR9a8R8Vfssfs1+NmaXxR4D0G7lcbTM1hCs2ACAPMVQ+ADxzxXvVFNNrYmUIy+JXPibV/+Ccv7FOtqVvPANmgIC/6PPcW/AOf+WUqc+/UjjpXmOqf8Emv2LtQl8y00W+sRljtg1CcjB6D94znA7c59c1+k9FUqk+5g8HQe9Nfcj8tZ/wDgkD+ySbuO80+TXbJo8FfIvl4ZTkMC0TEH6HtVi9/4JOfAC6iEcHifxhbEHO6PU4ySPT54GGPwzX6hUU/bT7k/UMP/AM+0fl7Zf8EnPgBaxGOfxP4wuSTndJqcYIHp8kCjH4Zqu3/BIX9lG51D+0dVufEF9Ifveffq27jAyREG44xz29K/Uqij20+4vqGH/wCfaPzb0z/gk7+xXYY+1aFe3uH3fvtQuBkcfL+7ZOP15616Ppf/AATh/Yn0fy/sngK1fy848+4uZ+uevmTNnrxnOO3Svt2il7SfctYOgtqa+5HgPhr9lP8AZm8H7G8O+ANAt5I8bZf7PheUYxj94yF+wPXrz1r3Ky07T9MiMGmwR26E7isahAT64HfirlFS23ubxhGPwqwUUUUigooooAKKKKACiiigDn/Fmn6zq3hXU9K8OXn9nahdWk0Vrdbd3kTOhCSbe+xiGx3xX5sH/gnx8V/iQ0Vt+0t8aNe8UaWsjSPplhGNPgkDhgyuQ7hlYED7gKqWVSN2R+o9FVGbWxjVoQqW59fm7fd1PIfgx8B/hV+z94W/4RD4U6TFpls+xp3XmW4kjQIHlc8sxA57ZJOBk169RRSbvqzSMVFcsVZBRRRSKCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKinnhtoXubl1jjjUs7McKqjkkk9ABTpZYoImmmYIiAszMcAAdSTX86H/AAUi/wCCjdj8Q7O8/Z+/Z+vvM0RyYtZ1eE4F6B1t7du8Gf8AWSD/AFv3VPl5MmlOm5uyOXF4uFCHPP5LueM/8FMv23rD9onxVB8LfhhcvJ4Q0GZnedThNQuxlfMA7xxjIjJ+9kt0Ir9Ov+CCf7ApkkP7bnxUsflXzLbwrbzpwTyk16M+nMURx13t/dNfmN/wS4/4Js+Jv26fiQ3iPxWk2n/Djw7Oo1a+XKNdTABxZ27d5GUgyMP9UhBPzMgb+7jwr4W8O+B/DVh4N8IWcWnaVpdvHa2lrAu2OGGJQqIo7AAAV6UIqKsj4uvXlWm6k92b9FFFUYhRRRQAUUUUAFFFFABRRRQAV+If/BwFYXN5+wSlxAuVtfEunSyH0UpOmf8AvpgK/byvzP8A+CwPw11T4n/8E8PiJpmiRebd6VbW+sKPSPTp455z+ECyGgD+br/ggZqFrZftna5bXDYe78I3sUQ9XF3ZyY/75Qmv7Ba/hQ/4JUfFix+EP7dfgbV9WcR2Wr3EujTMxwAdQjaKI56ACYxk57Z+tf3X18dn0GsQpd0ergn+7sFFFFeIdYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH8bH/Bdi7guf24I4Yjlrfw5p8b+zF52/kwr92/8Ag39sLmz/AGCXuJ1wt14l1GWM+qhIEz/30pFfzM/8FVfipp/xb/bt8dazo7K9npVxFo8TKcgnT41hlOehBmWTGO2PrX9eX/BH74a6p8MP+CeHw70zW4vKu9VtrjWGHrHqM8k8B/GBozX6DgYOOHpxfZHiVnecmfphRRRXWZBRRRQAUUUUAFFFFABRRRQB8o/t0fCB/jz+x/8AEX4VWyl7rU9EuWtFH8V3bDz4B9DLGgPtX8Af7J3xTi+Cn7SPgz4m3bBLXTNTi+1M3AW2mzFMfwidiK/0qq/zt/8AgpJ+zm37Lv7ZXjT4Z2cJh0qW7Op6V6Gxvv3sar7RktF9UNNO2omrqx/ZerK6h0OQeQR3pa/PX/gmp+03D+0b+zpY2+sTB/EXhVY9M1JT95wi4hm6D/WIOf8AbVq/Qqu5O6ueVKLi7MKKKKZIUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABX4xf8Fr/idD4d+AOgfC+3cC68S6qJ3XPJtrFdzcf9dZIufY1+zhIAyeAK/jq/4KS/tMw/tJftG3tx4fmEvh7w0raXpjL92URsTLMOB/rHzt/2AtZVZWib4eF537H6A/8ABu78K28UftWeJ/ipcKTb+FNBaJCO1zqMqoh/79RzDH+Ff2W1+MP/AAQy/Zmb4F/sbW/xE1qIx6z8RphrEoPVLJAUtE6DgpulHX/W1+z1ch6IUUUUAFFFFABRRRQAUUUUAFf5zX/BQD4AX/7MP7YPjf4VshitINRe901gMBrG8/fwEY/uo4Q4/iUiv9GWv5vf+DgL9jPVviD4H0r9rvwJbCa78Jwf2frsca5kbT3fdFNwORBIzB89FfPRTQB6h+xX8ch+0L+zf4c+IF3KJdSWH7FqXqLy2wkhP+/xJ9GFfVVfymf8Eyf2tk/Z7+Ln/CC+M7oQ+E/FTpDcM/3LW7+7FNnOFU/ckP8AdIY/dr+rJWV1Docg8gjvXuYarzwT6lpi0UUV0DCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK+N/wBvX46r8AP2ZfEHimzl8rVdRj/svTecN9pugV3D3jTfJ/wGvsSaaK3iaedgkaAszMcAAdSSegFfyZf8FIv2s/8AhpP4xtoPhO58zwn4YZ7awMbHZczE4luPQ7iNqH+4AR941z4mt7OD7sTZ53/wTz/Z61H9p39sHwT8L7eMtZfb01DUmwCEsbIiabOcfeC+WP8AaYV/ou1/O5/wQE/Y21P4XfC3VP2rPHNv5Oo+N4UtdHjYfPHpcbbmkPGR9okAIH9yNW6NX9EdeGQFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAfOX7WX7Nvg39rX4BeIPgV42/dwavBm3uVAL2t3Ed8My+6OBkfxLlehr/PL8eeCfiz+yV8ebzwfr4k0bxZ4M1EDfG33ZYSGjkRv4kcYdT0ZSPWv9MGvwy/4LH/APBNC+/ay8IxfHf4K2qv4+8N2zRzWaKA2rWSZbywRyZ4uTFn74JTrtwAZf7HX7VXhL9rH4TW/jLRytvrFkEg1exz81vckdQOpjkwWjbuMjqCB9Y1/ED+zt+0F8R/2VfixbfEDwazxz2zmC/sJSUjuoM/vIJR26cHGUYAjkV/Yt8BPj78Nf2kPh1Z/En4ZXwubWcBZ4G4ntJ8AvDMmTtdM+6sMMpZSrG0z2sNiFUVnue0UUUUzqCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr8Lv+Cs/7aml6N4buP2XPhnfCXU7/A1+aLlYLfqLbcD/AKyQ4MgHRPlP3iB9M/8ABQz9vfRf2ZfCc/w++HtzDdePdTi2xIMONNikH/HxKOm/BzFG3U4ZgVGG/m5/Z7+AXxc/a/8AjdYfCr4cwyanrmtzNNc3U5ZkhjLZmubiTkhFzlmOSzEAZZgDLZ5+MxNl7OO/U+xf+CU/7BWo/ts/H2KXxPBIngTws8d5rdwF+Wcg5itFJ43TEHdjlYwx67c/3x29vb2lulpaIsUUShERAFVVUYAAHAAHQV8y/sffsp/Dz9jX4GaV8FPh4plS1Bmvr1wBLe3kgHmzPjpkgBVydiBVycZP1BUnlhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//9f+/iiiigAooooAK/I3/gpf/wAEqvh9+3DosvxB8GPD4f8AiVY2/l22oMCLe/SMfJBdhQTgfdSZQXQYBDqAo/XKigD/ADUdX0f9oP8AYs+OD6ZrEF74O8Z+HpfmRuGAb0IyksUi9wWjdT3Ff0Q/sb/8FOfht8fIrPwJ8Umh8NeL2UIN7bbK9ccZidj8jt/zzc9eFLV+237Z/wCwP8AP24/CMeifFixaDV7GN003WrPCXtoW5wGwRJHu5MTgqeo2n5q/iw/bg/4JrftD/sOa49x4ztP7a8JyuqWniGxRjaOX6JKDloJf9l+Cfus3Ws6lJTWp2YTHVMO/d27H9c1Ffyf/ALN3/BUn9oH4Gw2vhrxa6+MfD9uFjW3vnK3UUa4GIrgAtwBgCQOB0GK/c/4Gf8FHv2W/jfbwWseup4c1aXAaw1gi2bf6JKT5T89MPuP90dK4Z0JRPqMNmdCtpez7M+8aKjhmhuYUuLdxJHIAyspyGB5BBHUGpKxPQCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK4P4gfFL4cfCnRzr/xJ1yy0O0HSS8mWLd7KGILH2UE0CbSV2d5XB/En4neAfhB4SufHPxK1WDSNLtcb552wCx6Ko6sx7KoJPYV+RP7RP8AwWQ8AeGBP4e/Z20w+Ib0ZUalfK0Fkp5GUj4ll7dfLHua/Dv4ufHb45/tSeM7e++IOo3Wu38riGysoE/doXPCQwRjAJJxwCzcZJrpp4aT1lojycVnFKmmqfvP8P69D7i/bi/4KY+KP2hbW5+GHwmSfQvB7syXEjHbd6inTEmP9XEf+eYJLfxHHyhP+Cbn/BLP4lft1a+vi7xDJN4c+HNhPsvdWCDzrtkPzQWYYFWfs0rApFnJDsNh/Qj/AIJ+f8EHte8UNY/Fj9tZJNL07Ilg8LxPsupx1H2uRTmJT3iQ+Yf4ih4P9VXhDwf4W+H/AIXsPBPgjT4NK0jS4Ut7SztUEcMMSDCqqjAAFdsYKKsj5ivXnWnz1HdnNfCH4RfDn4D/AA50r4TfCfS4tG0DRYfJtbWHJCgkszMxJZ3diWd2JZmJYkk16RRRVGIUUUUAFFFFABRRRQAUUUUAFFFFABWR4g0LS/FGg33hnXIhPZajby2txG3R4plKOp+qkiteigD/ADYP2nPgR42/ZA/aP1/4P61JLDfeGr/dZXi5QzQZEltcIcD7yFWyOjZHUV/av+wF+1joP7Xv7OmjePo7qJ/ENlElnrtqhAeC9jGGYp1CTY8xD0wcZypx4J/wWR/4Jsaj+1v4Ig+N/wAHLYSePvC1q0TWiKN2qWCkv5Knr50ZLNFn72SnUrj+Tj9lD9qj4qfsXfGaD4k+Bcl4ibXVNLuCyRXlvn54ZR1VgRlGxlHAOCMqfNzPAfWado/Etv8AI6MPW9nLXY/0GqK+W/2Vf2wfgr+1/wCAIPGvwr1JDchM3ulTOq31lIMblljBJ25PyyDKN2OcgfUlfEThKEnGas0eummroKKKKgYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV8T/t+/tY6D+yF+zprPj6S6iTxDexPZ6FauQXnvZBhWCdSkOfMc9MDGcsM9p+1V+2D8Ff2QPAE/jX4qakguSmbLSoXVr69kOdqxRkg7cj5pDhF7nOAf4if2r/ANqj4qfto/Gaf4k+Osh5SLXS9LtyzxWdvn5IYh1ZiTl2xl3JOAMKPXyvLZV5qc17i/HyObEV1BWW5lfsx/Ajxt+1/wDtH6B8H9FklmvvEt/uvbxsuYYMmS5uHOD91AzZPVsDqa/0iPD+haX4X0Gx8M6HEILLTreK1t416JFCoRFH0UAV+Kf/AARu/wCCbGo/skeCJ/jf8Y7YR+PvFNqsS2jqN2l2DEP5LHr50hCtLj7uAnUNn9w6+1PICiiigAooooAKKKKACiiigAooooAK/Ev/AILXfsIt+098Cx8aPh7Zmfxt4DgklSOMEyXum/fmgAAJZ4+ZYh1zuUcvX7aUUAf5uP7Iv7UfjD9k34uWvxE8OhrqwlAt9UsN21bu1Jyy+gdfvRtjhvUEg/2dfC/4l+DfjF4A0v4mfD+8W+0jWIBPbyr1xyGVh/C6MCjqeVYEHkV+S3/BX/8A4JFazpms6j+1d+yjpP2nTbnfdeItAtF/e20v3mu7WMD54n5M0S/NG3zqGRmEX4q/sgftsfFT9kLxU134Yf8AtHw9fSBtQ0edyIZjgDzEPPlzAAAOByAAwYAAa06nLo9jnrUefVbn9p9FfKH7Nf7aPwF/al0tJPh3qyxasEDz6RdkRXsRxk/JnEij+/GWX1Ir6vrqTvqjgaadmFFFFMQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUVla5ruieGNIuNf8AEl5Dp9jaIZJri5kWKKNR3Z2IAHuTX4R/tr/8FdNGtNNuvhr+ylObm8mVorjxAyFY4QeCLVWwWf8A6aMNo6qCcETKSitS4U3J2R3f/BU79vmP4a6Rd/s2fCG7P/CRahFs1i9hb/jxt5V/1KkciaRTknjYh4+ZgV/KL/gml+xjqf7a37TWl+Bb2GT/AIRbSCuo+ILhMqEs424iDYIDzt+7Xvgsw+6a8j/Zb/ZT+On7b/xgXwB8L7aS+vLiT7RqmqXTMbezikb557mU5PJyQOXkbhQTX97X7HP7H/wq/Yq+Ddn8JfhjD5r8TalqUqgXGoXZGGlkxnA7IgJCLgDJyTxzk5O56VOmoKyPp/S9L07RNMttF0eBLa0s4kgghjUKkccYCqqgcAKAAB2FXqKKksKKKKACiiigAooooAKKKKACszW9F0nxHo134e163S7sb+GS3uIJRuSWKVSrow7hlJBHoa06KAP4Bv8Agp5/wT48S/sMfGaQaLDNdeAfEMsk2hX7Zbyx1a0lb/nrEOhP+sTDDncF+vf+CaX/AAUNtYLWz/Z1+PepbNmyDQtVuW+Xb0W1mc9McCJm4x8hIwuf61v2gPgD8MP2m/hTqvwa+L2njUNG1WPa2CFmglX7k0L4OyWM8q2D6EFSQf4Vf+Cg/wDwTY+L/wCwj41aW/WTXfA+oSY0zXoo8ISc4huFGfKnA7fdkHKH7yrrSqypy5kNM/rIor+ZH9jv/gqn41+DtrZ/Dr45RzeIvDcAWGC8U7r+0jHABLHEyKOikhgBwSMLX9D/AMLPjR8LPjZ4fj8TfC3XLTWbV1DN5EgMkWe0kZ+eNvZwDXs0q8Ki03KTPT6KKK2GFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFeS/Fz46/CX4FeHpPEvxU1210iBULIkrgzzY7RRDLyMcdFU1/Ot+2N/wVH8d/HC2vPh38HY5vDfheUtHLcFsX97GeMOVOIkYdUUkkcFsZWsa2IhTWu4mz6E/wCCmP8AwUIsNVsbv9nP4D6iJopd0Ou6nbnKMo4NrC46g/8ALVl4I+QEguK+Tv8AgmD/AME+fEv7cvxnjOtQzWvgHw9LHNrt8oKiQZ3LaRN/z1lHUj/VpljztDY//BPj/gmx8X/27vGqy2CyaF4H0+TGp69LHlARjMNupx5s5Hb7sY5c/dVv7qv2f/gD8MP2ZPhTpXwa+EOnjT9G0qPauSGmnlb780z4G+WQ8s2B6ABQAPGq1XUlzMls9V0fSNM8P6Ta6DokCWtlZQpb28MQ2pHFGoVFUDoFAAA9K0aKKyEFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH87n/BWT/gj1/wAL4vr/APaZ/Zcto7fxi6tNrOhriOLVmHJngPAS7I/1in5Z+G+WTcZf5fvgH+0H8YP2Rvig/iXwZJJZXdvIbbU9Mu1ZYp1iYhoZ4jghlOQDw6NnBHNf6UlfjV/wUd/4JB/DL9ss3XxT+GssPhX4ibAXutmLPUiowBdKoyHwABMuWAwGDADAOMmndHj/AOyn+238G/2rdAibwxdrp3iGNN13oty4FxGR94x9PNj7h16D7wU8V9i1/D18Yvgj8ef2RPim3g74mabe+FvEOmyeZbzIxQOFPE1vOhw6Hs6N7HByK/Un9mL/AILG+KfCdlB4S/aU0+XXrePaiavZBVu1QYH72M7UlI67gVb1DHmqUj1KOOT0qaM/o8orwT4L/tP/AAH/AGgrJbn4UeJbTU5tgd7Td5V3GCM/NC+2QY9cFeOCa97qjuUk1dBRRRQMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKazKil3ICgZJPAAr4N+Pf8AwUh/Zc+Axm0y71oeItYiBH2DR8XLBh2eUERJz1BfcP7poJlOMVeTPvGSRIkaWVgqqCSScAAdzX4yftz/APBUvwv8NtOuvhl+zdfQav4lk3w3Gqx4ltbDHB8snKzTenWNT13H5a/K79rL/gpF8bf2mGuPDOmSN4X8KSZQ6bZyEvcJnj7RLgGT/dAVPUE81f8A2E/+CY37QP7cesxaroFudA8FxSlLvxBeRnyfk+8lunBnkHTCkKp+8y1LkedXxt/dp/efN3wJ+APx7/bT+MyeBvhtaXHiDxBq0xuL69uXZo4Edv3lzdztu2oCcsxyzH5VDOQp/uq/YB/YB+F/7BnwuPhfwyy6r4l1QJJrWtvGElupF6IgySkEeTsTJ5JYksTXp/7In7HnwZ/Yt+FkPww+ENkV3lZdQ1GcBry/uAMeZM4A6chEGFQcAckn6oqTzgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP//Q/v4ooooAKKKKACiiigArP1bSdK17TZ9G1y2ivbO5QxzQToJI5EPVWVgQQfQitCigD8LP2t/+CD/7M3xtFz4o+BEh+HXiCTL+TbJ5ulSv6Nb5Biz6wsqjrsNfzo/tE/8ABI39uX9nP7RqOreEpPEujwZP9o+Hib+LaD95olAnQY5JeIAetf6ANFAH+aZ8NP2l/wBon4EySab8OvFWpaKkbbXtN++FWU8gwShowQeD8ue1fb/gf/gsR+1X4bKxeKodH8RR/wATXFqYJT9GgeNAfqhr+0b4u/sgfsufHmV7v4v+AdD126k4a7uLOMXX/f8AULKPwevzc+J3/BAz9g3xy8lz4Qh1zwfKxLKum35miBPqt4tw2PYMtRKnF7o6KeLrU9ITaPxRsv8Agt94yjx/aPw+spfXy7+SP+cT10if8FyHCgSfDAFu5GtYH5fYzX3XrH/Btx8Ip8/8I/8AE7WLb0+0WMM+P++Xirzyb/g2mgaUm3+NDKnYN4d3H8xqA/lUewp9joWa4r+f8F/kfLX/AA/J/wCqX/8Alb/+4qP+H5P/AFS//wArf/3FX1B/xDS/9Vq/8tz/AO+NH/ENL/1Wr/y3P/vjR9Xp9h/2tiv5/wAF/kfL/wDw/J/6pf8A+Vv/AO4qP+H5P/VL/wDyt/8A3FX1B/xDS/8AVav/AC3P/vjR/wAQ0v8A1Wr/AMtz/wC+NH1en2D+1sV/P+C/yPl//h+T/wBUv/8AK3/9xUf8Pyf+qX/+Vv8A+4q+oP8AiGl/6rV/5bn/AN8aP+IaX/qtX/luf/fGj6vT7B/a2K/n/Bf5Hy//AMPyf+qX/wDlb/8AuKj/AIfk/wDVL/8Ayt//AHFX1B/xDS/9Vq/8tz/740f8Q0v/AFWr/wAtz/740fV6fYP7WxX8/wCC/wAj5f8A+H5P/VL/APyt/wD3FR/w/J/6pf8A+Vv/AO4q+oP+IaX/AKrV/wCW5/8AfGj/AIhpf+q1f+W5/wDfGj6vT7B/a2K/n/Bf5Hy//wAPyf8Aql//AJW//uKj/h+T/wBUv/8AK3/9xV9Qf8Q0v/Vav/Lc/wDvjR/xDS/9Vq/8tz/740fV6fYP7WxX8/4L/I+X/wDh+T/1S/8A8rf/ANxUf8Pyf+qX/wDlb/8AuKvqD/iGl/6rV/5bn/3xo/4hpf8AqtX/AJbn/wB8aPq9PsH9rYr+f8F/kfL/APw/J/6pf/5W/wD7io/4fk/9Uv8A/K3/APcVfUH/ABDS/wDVav8Ay3P/AL40f8Q0v/Vav/Lc/wDvjR9Xp9g/tbFfz/gv8j5f/wCH5P8A1S//AMrf/wBxUf8AD8n/AKpf/wCVv/7ir6g/4hpf+q1f+W5/98aP+IaX/qtX/luf/fGj6vT7B/a2K/n/AAX+R8v/APD8n/ql/wD5W/8A7io/4fk/9Uv/APK3/wDcVfUH/ENL/wBVq/8ALc/++NH/ABDS/wDVav8Ay3P/AL40fV6fYP7WxX8/4L/I+X/+H5P/AFS//wArf/3FR/w/J/6pf/5W/wD7ir6g/wCIaX/qtX/luf8A3xo/4hpf+q1f+W5/98aPq9PsH9rYr+f8F/kfL/8Aw/J/6pf/AOVv/wC4qP8Ah+T/ANUv/wDK3/8AcVfUH/ENL/1Wr/y3P/vjR/xDS/8AVav/AC3P/vjR9Xp9g/tbFfz/AIL/ACPl/wD4fk/9Uv8A/K3/APcVH/D8n/ql/wD5W/8A7ir6g/4hpf8AqtX/AJbn/wB8aP8AiGl/6rV/5bn/AN8aPq9PsH9rYr+f8F/kfL//AA/J/wCqX/8Alb/+4qP+H5P/AFS//wArf/3FX1B/xDS/9Vq/8tz/AO+NH/ENL/1Wr/y3P/vjR9Xp9g/tbFfz/gv8j5f/AOH5P/VL/wDyt/8A3FR/w/J/6pf/AOVv/wC4q+oP+IaX/qtX/luf/fGj/iGl/wCq1f8Aluf/AHxo+r0+wf2tiv5/wX+R8v8A/D8n/ql//lb/APuKj/h+T/1S/wD8rf8A9xV9Qf8AENL/ANVq/wDLc/8AvjR/xDS/9Vq/8tz/AO+NH1en2D+1sV/P+C/yPl//AIfk/wDVL/8Ayt//AHFR/wAPyf8Aql//AJW//uKvqD/iGl/6rV/5bn/3xo/4hpf+q1f+W5/98aPq9PsH9rYr+f8ABf5Hy/8A8Pyf+qX/APlb/wDuKj/h+T/1S/8A8rf/ANxV9Qf8Q0v/AFWr/wAtz/740f8AENL/ANVq/wDLc/8AvjR9Xp9g/tbFfz/gv8j5f/4fk/8AVL//ACt//cVH/D8n/ql//lb/APuKvqD/AIhpf+q1f+W5/wDfGj/iGl/6rV/5bn/3xo+r0+wf2tiv5/wX+R8v/wDD8n/ql/8A5W//ALio/wCH5P8A1S//AMrf/wBxV9Qf8Q0v/Vav/Lc/++NH/ENL/wBVq/8ALc/++NH1en2D+1sV/P8Agv8AI+X/APh+T/1S/wD8rf8A9xUf8Pyf+qX/APlb/wDuKvqD/iGl/wCq1f8Aluf/AHxo/wCIaX/qtX/luf8A3xo+r0+wf2tiv5/wX+R8o3n/AAXF1Jx/oHw0ijP/AE01cv8AytVrhtc/4La/Fy4tXTw34L0i0mP3XuZprhR9VUxE/mK/QDSv+Dazw9C2db+MFxcD0g0NYT/49eSV6z4d/wCDcb9my0uI5PFXjzxJfxqculstrbbh6ZaKXFP2EOwnmmKf2/wX+R/P943/AOCo37Z3jRXgh8Sx6LA/WPTbWKLH0kZXlH4PXzT4T8AftF/tVeNnh8I6ZrnjvXZz+8eNJr2UZ5zJId2xepyxAFf3A/C7/gjn/wAE9PhascsHgKLXrpMZuNbuJb7dj1idvI/KIV+ivhHwT4M+H+ix+G/AWkWWiadFylrYW6W0C/RI1VR+Aq1FLZHJUr1Knxyb9T+QL9mb/g30/aI8f3dtrf7SWrWvgfSGCu9nbOt9qbAjO3CEwR9vmMjkf3K/pX/Zd/4J/wD7Kv7INig+DnhiGPVAu2TWL3F1qMnXOZnHyA55WIIh/u19m0VRkFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV+Ev/BUH/gjz4a/amF18bv2d4bbRPiHkyXtscQ2msZ6lzwsdxnkS9H6SckOv7tUUAf5onivwT+0P+yL8UI7LxRZax4E8Vaa4khc77WdcYIeKRSA6nj5kYqfU1+knwZ/4Lkfth/DmGPTfiAumeN7RF27r6H7PdcdMS2+xT7l42J9c81/aJ8W/gf8ACD48+Gj4P+M3hvT/ABLp2Syw38Cy+Wxx80bEbo24+8hB96/H34uf8G/H7F/jvUn1b4eX+ueC2ckm2tLhbu1GfRblXlH/AH9xjtWFbDUqqtUimXCpKPws/PPTf+DiLVoodur/AAlhnk/vQ62Yl/JrOT+daP8AxET/APVHv/Lg/wDvfXp+sf8ABtXoU9xu0D4wz20X9240JZ2/76W9iH6Vkf8AENL/ANVq/wDLc/8AvjXH/Y+D/wCff4v/ADNfrVXv+Rw//ERP/wBUe/8ALg/+99H/ABET/wDVHv8Ay4P/AL313H/ENL/1Wr/y3P8A740f8Q0v/Vav/Lc/++NH9j4P/n3+L/zD61V7/kcP/wARE/8A1R7/AMuD/wC99H/ERP8A9Ue/8uD/AO99dx/xDS/9Vq/8tz/740f8Q0v/AFWr/wAtz/740f2Pg/8An3+L/wAw+tVe/wCRw/8AxET/APVHv/Lg/wDvfR/xET/9Ue/8uD/7313H/ENL/wBVq/8ALc/++NH/ABDS/wDVav8Ay3P/AL40f2Pg/wDn3+L/AMw+tVe/5HD/APERP/1R7/y4P/vfR/xET/8AVHv/AC4P/vfXcf8AENL/ANVq/wDLc/8AvjR/xDS/9Vq/8tz/AO+NH9j4P/n3+L/zD61V7/kcP/xET/8AVHv/AC4P/vfR/wARE/8A1R7/AMuD/wC99dx/xDS/9Vq/8tz/AO+NH/ENL/1Wr/y3P/vjR/Y+D/59/i/8w+tVe/5HD/8AERP/ANUe/wDLg/8AvfR/xET/APVHv/Lg/wDvfXcf8Q0v/Vav/Lc/++NH/ENL/wBVq/8ALc/++NH9j4P/AJ9/i/8AMPrVXv8AkcP/AMRE/wD1R7/y4P8A730f8RE//VHv/Lg/+99dx/xDS/8AVav/AC3P/vjR/wAQ0v8A1Wr/AMtz/wC+NH9j4P8A59/i/wDMPrVXv+Rw/wDxET/9Ue/8uD/730f8RE//AFR7/wAuD/7313H/ABDS/wDVav8Ay3P/AL40f8Q0v/Vav/Lc/wDvjR/Y+D/59/i/8w+tVe/5Hm2pf8HEWrSw7dI+EsMEn96bWzKv5LZx/wA6+SfjN/wXI/bD+I0Mmm/D9dM8EWjrt3WMP2i6565luN6j2KRqR655r9FtH/4Nq9CguN2v/GGe5i/u2+hLA3/fTXso/Svqz4R/8G/H7F/gTUk1b4h3+ueNGQgi2u7hbS1OPVbZUlP/AH9xjtVwyvCwd1TXzu/zuJ4mo95H8jPhTwT+0P8AtdfFCSy8L2WseO/FWpOZJnG+6nbOSXlkYkIo5+Z2Cj1Ff1w/8Evv+CPPhr9lkWvxu/aIhttb+IeRJZWwxNaaPjoUPKyXGeTL0TpHyC7fsP8ACT4H/CD4DeGh4P8Agz4b0/w1p2QzQ2ECxeYwz80jAbpG5+85J969TrvSSVkYBRRRTAKKKKACiiigAooooAKKKKACiiigAooooAK/n7/b/wD+CGngD496vqfxf/Zlu4PCfiq9Z7m60uZcaXeykZJTYM28jtySAyEnJVSS1f0CUUAf5qfxi/Z7/aM/ZL8bppXxW0DU/CeqW0pNrdENHHIyE/Pb3CHY444aNzX0j8LP+Cp/7ZPwyaOC68Qx+JrRCP3GtQi4J+sqmOc/jIa/vy8aeBvBfxH8O3HhD4gaTZ63pV2u2a0voEuIHHTlHBU9fSvyr+K//BDf/gn58TDJcaPoF/4QuZAcy6JfOi59RFcCeIfRUApqTWxMop7o/CTRf+C5nxEgx/wkXgDTrr1+zXktv/6Ektdp/wAP2/8Aqln/AJXP/uKvtDxH/wAG3Hwmut3/AAiXxP1ex/u/bLCG6x9dkkGa87/4hpf+q1f+W5/98av2su5n7Cn2PnP/AIft/wDVLP8Ayuf/AHFR/wAP2/8Aqln/AJXP/uKvoz/iGl/6rV/5bn/3xo/4hpf+q1f+W5/98aPaz7h9Xp9j5z/4ft/9Us/8rn/3FR/w/b/6pZ/5XP8A7ir6M/4hpf8AqtX/AJbn/wB8aP8AiGl/6rV/5bn/AN8aPaz7h9Xp9j5z/wCH7f8A1Sz/AMrn/wBxUf8AD9v/AKpZ/wCVz/7ir6M/4hpf+q1f+W5/98aP+IaX/qtX/luf/fGj2s+4fV6fY+c/+H7f/VLP/K5/9xUf8P2/+qWf+Vz/AO4q+jP+IaX/AKrV/wCW5/8AfGj/AIhpf+q1f+W5/wDfGj2s+4fV6fY+c/8Ah+3/ANUs/wDK5/8AcVH/AA/b/wCqWf8Alc/+4q+jP+IaX/qtX/luf/fGj/iGl/6rV/5bn/3xo9rPuH1en2PnP/h+3/1Sz/yuf/cVH/D9v/qln/lc/wDuKvoz/iGl/wCq1f8Aluf/AHxo/wCIaX/qtX/luf8A3xo9rPuH1en2PnP/AIft/wDVLP8Ayuf/AHFR/wAP2/8Aqln/AJXP/uKvoz/iGl/6rV/5bn/3xo/4hpf+q1f+W5/98aPaz7h9Xp9j5z/4ft/9Us/8rn/3FR/w/b/6pZ/5XP8A7ir6M/4hpf8AqtX/AJbn/wB8aP8AiGl/6rV/5bn/AN8aPaz7h9Xp9j5z/wCH7f8A1Sz/AMrn/wBxUf8AD9v/AKpZ/wCVz/7ir6M/4hpf+q1f+W5/98aP+IaX/qtX/luf/fGj2s+4fV6fY+c/+H7f/VLP/K5/9xUf8P2/+qWf+Vz/AO4q+jP+IaX/AKrV/wCW5/8AfGj/AIhpf+q1f+W5/wDfGj2s+4fV6fY+c/8Ah+3/ANUs/wDK5/8AcVH/AA/b/wCqWf8Alc/+4q+jP+IaX/qtX/luf/fGj/iGl/6rV/5bn/3xo9rPuH1en2PmXUP+C62pyQ7dK+GMUMn96XWDKv5C0T+deIeOP+C1n7SOvWL2XgzRNF0Fn/5b+XJdTL/u+Y4j/NDX6OaX/wAG1Wjw3G7W/jFNcRf3YNBWFv8Avpr2QfpX0P4A/wCDdv8AZI8P3iXvjzxN4k8QhMfuFlgs4W9d2yJpPykFHtJdxqhBdD+Uj4q/tJftC/tDXUVl8UPE2o68HlBhsy22DzGOBsgiCxhieBhM+lfo7+xf/wAEUv2nP2lrq28UfFK2l+HnhJirtcajCRf3KHBxBattYZU8SS7V7jd0r+uD4B/sH/si/sxzrqHwX8C6dpV+qhRfyK13ecek9w0ki57hWAPpX1xWbdzRJLY+bv2Wf2UPgx+x58MIfhV8FtONpaBzNdXMxEl3eTnrLPJgbmxwAAFUcKAK+kaKKBhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXJeOvAfgv4neEb/wF8Q9LttZ0bU4jDdWd3GJYZUPYq3HB5B6ggEYIBrraKAP5PP26/wDggV4h0W4uviN+xJIdSsmJkl8M3swW4hGMn7LPIQJF9I5GDjszniv58Nb8O/HP9mf4gfY9etNY8EeJLBjgSrLY3K7T1U/KSpI6glT7iv8ATSrzL4qfBj4S/HDw4fCXxg8N6d4l04nIg1C3SdUbj5kLAlG4HKkH3oA/hG+H/wDwVh/bA8ErFb6vqVj4kgiwNup2i7ivu8Bhcn3Yk+ua+odM/wCC3XjWJV/tn4f2M57+TfSQ5+m6KTH61+6fxV/4ISfsBfEZpbnw7pWq+DriTJ3aPfsU3f8AXO6FwgHqFC+2K+Pte/4NuPhLcbv+EY+J+r2fp9qsIbnH12PDmt44mqtpDuz4VH/BcU45+GHP/Ya/+4qX/h+N/wBUv/8AK1/9xV9St/wbSruO3404HbPhzP8A7kaT/iGl/wCq1f8Aluf/AHxqvrlb+b8v8guz5b/4fjf9Uv8A/K1/9xUf8Pxv+qX/APla/wDuKvqT/iGl/wCq1f8Aluf/AHxo/wCIaX/qtX/luf8A3xo+uVv5vy/yC7Plv/h+N/1S/wD8rX/3FR/w/G/6pf8A+Vr/AO4q+pP+IaX/AKrV/wCW5/8AfGj/AIhpf+q1f+W5/wDfGj65W/m/L/ILs+W/+H43/VL/APytf/cVH/D8b/ql/wD5Wv8A7ir6k/4hpf8AqtX/AJbn/wB8aP8AiGl/6rV/5bn/AN8aPrlb+b8v8guz5b/4fjf9Uv8A/K1/9xUf8Pxv+qX/APla/wDuKvqT/iGl/wCq1f8Aluf/AHxo/wCIaX/qtX/luf8A3xo+uVv5vy/yC7Plv/h+N/1S/wD8rX/3FR/w/G/6pf8A+Vr/AO4q+pP+IaX/AKrV/wCW5/8AfGj/AIhpf+q1f+W5/wDfGj65W/m/L/ILs+W/+H43/VL/APytf/cVH/D8b/ql/wD5Wv8A7ir6k/4hpf8AqtX/AJbn/wB8aP8AiGl/6rV/5bn/AN8aPrlb+b8v8guz5b/4fjf9Uv8A/K1/9xUf8Pxv+qX/APla/wDuKvqT/iGl/wCq1f8Aluf/AHxo/wCIaX/qtX/luf8A3xo+uVv5vy/yC7Plv/h+N/1S/wD8rX/3FR/w/G/6pf8A+Vr/AO4q+pP+IaX/AKrV/wCW5/8AfGj/AIhpf+q1f+W5/wDfGj65W/m/L/ILs+W/+H43/VL/APytf/cVH/D8b/ql/wD5Wv8A7ir6k/4hpf8AqtX/AJbn/wB8aP8AiGl/6rV/5bn/AN8aPrlb+b8v8guz5b/4fjf9Uv8A/K1/9xUf8Pxv+qX/APla/wDuKvqT/iGl/wCq1f8Aluf/AHxo/wCIaX/qtX/luf8A3xo+uVv5vy/yC7Plv/h+N/1S/wD8rX/3FR/w/G/6pf8A+Vr/AO4q+pP+IaX/AKrV/wCW5/8AfGj/AIhpf+q1f+W5/wDfGj65W/m/L/ILs+W/+H43/VL/APytf/cVH/D8b/ql/wD5Wv8A7ir6k/4hpf8AqtX/AJbn/wB8aP8AiGl/6rV/5bn/AN8aPrlb+b8v8guz5b/4fjf9Uv8A/K1/9xUh/wCC4pxx8MOf+w1/9xV9S/8AENL/ANVq/wDLc/8AvjSr/wAG0q7hu+NOR3x4cx/7kaPrlb+b8v8AILs+MdT/AOC3XjWVW/sb4f2MB7edfSTY+u2KPP6V8s/EP/gq7+2B45SW20rVLLw3byggppdqoYL7STGVwfdWB9MV+3Gg/wDBtx8Jbfb/AMJP8T9XvPX7LYQ22fpvebFfYPwq/wCCEn7AXw5aK58RaVqvjG4jwd2sX7BN3/XO1FuhHoGDe+amWJqveQXZ/F14f8L/ABt/aQ8e/YPDdlq/jXxHfsNwiSW+uXyerH5mCgnkkgDucV/Qp+wp/wAECvEOtXFr8Rv225DptkpEkXhmymDXEwxkfap4yRGvrHGxc92Q8V/Tt8K/gx8Jfgf4cHhL4P8AhvTvDWnA5MGn26QK7c/M5UAu3J5Yk+9em1gI5LwL4D8F/DHwjYeAvh5pdto2jaZEIbWztIxFDEg7BV45PJPUkknJJNdbRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB4d8e/wBm34H/ALT3g0+A/jr4ctPEOnqWaHz1Ilt3YbS8MqkSRPj+JGB9a/mq/a0/4N5/FmjyXHiv9jzXRq9sSXGhazIsVyoP8MN18sb+gEojwOrk1/WNRQB/mj/FT4A/tFfsx+JIoPit4Z1jwhfxPmCeeJ4VZh3hnX5H78o5r1j4df8ABQr9sP4ZeXFovje9vreMBfI1PbfoVHQZnDuB/usDX+iRr/h3w/4r0mbQPFNjb6lY3A2y211Es0Mg9GRwVI+or86viR/wSB/4J4/EwSS3/wAOrXSbhySJtHmmsNpPpHDIsX4GMigqM5R+Fn8zfh//AILZfHuytY4fEnhbQr+RRhpIvPty3uQZHAPrjj2r0nTv+C5OvxAf2t8N7ef18nVGi/8AQrd6/Tvxb/wbofspapdvc+D/ABh4n0lH5EUz210in/Z/cxtj6sT714trH/Btd4SnJ/4R/wCLl3bDt9o0ZJ//AEG6ip3ZssVVX2j5F/4fof8AVLf/ACt//cVH/D9D/qlv/lb/APuKvpj/AIhpf+q1f+W5/wDfGj/iGl/6rV/5bn/3xoux/XK3835f5HzP/wAP0P8Aqlv/AJW//uKj/h+h/wBUt/8AK3/9xV9Mf8Q0v/Vav/Lc/wDvjR/xDS/9Vq/8tz/740XYfXK3835f5HzP/wAP0P8Aqlv/AJW//uKj/h+h/wBUt/8AK3/9xV9Mf8Q0v/Vav/Lc/wDvjR/xDS/9Vq/8tz/740XYfXK3835f5HzP/wAP0P8Aqlv/AJW//uKj/h+h/wBUt/8AK3/9xV9Mf8Q0v/Vav/Lc/wDvjR/xDS/9Vq/8tz/740XYfXK3835f5HzP/wAP0P8Aqlv/AJW//uKj/h+h/wBUt/8AK3/9xV9Mf8Q0v/Vav/Lc/wDvjR/xDS/9Vq/8tz/740XYfXK3835f5HzP/wAP0P8Aqlv/AJW//uKj/h+h/wBUt/8AK3/9xV9Mf8Q0v/Vav/Lc/wDvjR/xDS/9Vq/8tz/740XYfXK3835f5HzP/wAP0P8Aqlv/AJW//uKj/h+h/wBUt/8AK3/9xV9Mf8Q0v/Vav/Lc/wDvjR/xDS/9Vq/8tz/740XYfXK3835f5HzP/wAP0P8Aqlv/AJW//uKj/h+h/wBUt/8AK3/9xV9Mf8Q0v/Vav/Lc/wDvjR/xDS/9Vq/8tz/740XYfXK3835f5HzP/wAP0P8Aqlv/AJW//uKj/h+h/wBUt/8AK3/9xV9Mf8Q0v/Vav/Lc/wDvjR/xDS/9Vq/8tz/740XYfXK3835f5HzP/wAP0P8Aqlv/AJW//uKj/h+h/wBUt/8AK3/9xV9Mf8Q0v/Vav/Lc/wDvjR/xDS/9Vq/8tz/740XYfXK3835f5HzP/wAP0P8Aqlv/AJW//uKj/h+h/wBUt/8AK3/9xV9Mf8Q0v/Vav/Lc/wDvjR/xDS/9Vq/8tz/740XYfXK3835f5HzP/wAP0P8Aqlv/AJW//uKj/h+h/wBUt/8AK3/9xV9Mf8Q0v/Vav/Lc/wDvjR/xDS/9Vq/8tz/740XYfXK3835f5HzP/wAP0P8Aqlv/AJW//uKj/h+h/wBUt/8AK3/9xV9Mf8Q0v/Vav/Lc/wDvjR/xDS/9Vq/8tz/740XYfXK3835f5HzP/wAP0P8Aqlv/AJW//uKj/h+h/wBUt/8AK3/9xV9Mf8Q0v/Vav/Lc/wDvjR/xDS/9Vq/8tz/740XYfXK3835f5HzP/wAP0P8Aqlv/AJW//uKj/h+h/wBUt/8AK3/9xV9Mf8Q0v/Vav/Lc/wDvjR/xDS/9Vq/8tz/740XYfXK3835f5HzP/wAP0P8Aqlv/AJW//uKj/h+h/wBUt/8AK3/9xV9Mf8Q0v/Vav/Lc/wDvjR/xDS/9Vq/8tz/740XYfXK3835f5HzP/wAP0P8Aqlv/AJW//uKj/h+h/wBUt/8AK3/9xV9Mf8Q0v/Vav/Lc/wDvjR/xDS/9Vq/8tz/740XYfXK3835f5HzP/wAP0P8Aqlv/AJW//uKj/h+h/wBUt/8AK3/9xV9Mf8Q0v/Vav/Lc/wDvjR/xDS/9Vq/8tz/740XYfXK3835f5HzP/wAP0P8Aqlv/AJW//uKj/h+h/wBUt/8AK3/9xV9Mf8Q0v/Vav/Lc/wDvjR/xDS/9Vq/8tz/740XYfXK3835f5HzP/wAP0P8Aqlv/AJW//uKkP/Bc84O34XYPb/id/wD3FX0z/wAQ0v8A1Wr/AMtz/wC+NKv/AAbSruG/405HfHhzH/uRouw+uVv5vy/yPjvUv+C4njmXP9j/AA/sYPTzr6SX/wBBjjrxjxz/AMFlv2pPEdsbTwlY6L4dyP8AXQW73E2frO7x/wDkOv1n0b/g21+GEGP+Eh+KWqXXr9n06KDP/fUstfQ/w/8A+DfL9iHwtItx4wv/ABH4ncHLR3N5HbwkemLeKOQf9/KLsl4qq/tH8kfxI/ar/aP+LqSW/wAQ/Gmq6jbygh7b7Q0VsQ3XMMWyP/x2vXf2fP8AgnL+2X+01Jb3Hwx8D340ydgP7U1BfsNiF6lhLNtDgDtGHPoK/uI+EX/BPP8AYo+BV9Fqvwz+G+jWd7AMR3VxEb24T3WW5aV1PHUEGvsukYuTerZ/P7+yH/wQJ+A/wp+zeLP2m77/AIT7W0w/9nxboNJibngrxLPjg5cop6GM1+92iaHovhrSLfQPDlnBp9hZxiKC2to1ihiReioigKqjsAAK1KKBBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//R/v4ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/S/v4ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/T/v4ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/Z"}}, "cell_type": "markdown", "id": "125247c2", "metadata": {}, "source": [""]}, {"cell_type": "markdown", "id": "88e5ba0b", "metadata": {}, "source": ["## \u4e00\u3001\u73af\u5883\u914d\u7f6e"]}, {"cell_type": "markdown", "id": "f3d033b6", "metadata": {}, "source": ["\u5728\u5f53\u524d\u6587\u4ef6\u5939\u4e0b\u65b0\u5efa`.env`\u6587\u4ef6\uff0c\u5185\u5bb9\u4e3a`OPENAI_API_KEY = \"sk-...\"`\n", "\n", "\u7531\u4e8e\u672c\u7ae0\u8282\u9700\u8981\u4f7f\u7528`PyPDFLoader`\u3001`Chroma`\uff0c\u6545\u9700\u8981\u5b89\u88c5\u4f9d\u8d56\u5305`pypdf`\u3001`chromadb`"]}, {"cell_type": "code", "execution_count": 3, "id": "8ed9c2eb", "metadata": {}, "outputs": [], "source": ["!pip install -Uq pypdf\n", "!pip install -Uq chromadb"]}, {"cell_type": "code", "execution_count": 5, "id": "7f8d2266-4a35-4904-ae9d-c89790c5ae61", "metadata": {"height": 166, "tags": []}, "outputs": [], "source": ["import os\n", "import openai\n", "import sys\n", "sys.path.append('../..')\n", "\n", "from dotenv import load_dotenv, find_dotenv\n", "_ = load_dotenv(find_dotenv()) # \u8bfb\u53d6\u672c\u5730.env\u6587\u4ef6\n", "\n", "openai.api_key = os.environ['OPENAI_API_KEY']"]}, {"cell_type": "markdown", "id": "460a54b0", "metadata": {}, "source": ["\u524d\u4e24\u8282\u8bfe\u6211\u4eec\u8ba8\u8bba\u4e86`Document Loading`\uff08\u6587\u6863\u52a0\u8f7d\uff09\u548c`Splitting`\uff08\u5206\u5272\uff09\u3002\n", "\n", "\u4e0b\u9762\u6211\u4eec\u5c06\u4f7f\u7528\u524d\u4e24\u8282\u8bfe\u7684\u77e5\u8bc6\u5bf9\u6587\u6863\u8fdb\u884c\u52a0\u8f7d\u5206\u5272\u3002"]}, {"cell_type": "markdown", "id": "18e077a0", "metadata": {}, "source": ["## \u4e8c\u3001\u8bfb\u53d6\u6587\u6863"]}, {"cell_type": "markdown", "id": "0c1e123e", "metadata": {}, "source": ["\u4e0b\u9762\u6587\u6863\u7684\u8bfe\u7a0b\u94fe\u63a5 https://see.stanford.edu/Course/CS229 \uff0c\u53ef\u5728\u8be5\u7f51\u7ad9\u4e0a\u4e0b\u8f7d\u5bf9\u5e94\u7684\u8bfe\u7a0b\u8bb2\u4e49"]}, {"cell_type": "code", "execution_count": 6, "id": "2437469e", "metadata": {"height": 249, "tags": []}, "outputs": [], "source": ["from langchain.document_loaders import PyPDFLoader\n", "\n", "# \u52a0\u8f7d PDF\n", "loaders = [\n", " # \u6545\u610f\u6dfb\u52a0\u91cd\u590d\u6587\u6863\uff0c\u4f7f\u6570\u636e\u6df7\u4e71\n", " PyPDFLoader(\"docs/cs229_lectures/MachineLearning-Lecture01.pdf\"),\n", " PyPDFLoader(\"docs/cs229_lectures/MachineLearning-Lecture01.pdf\"),\n", " PyPDFLoader(\"docs/cs229_lectures/MachineLearning-Lecture02.pdf\"),\n", " PyPDFLoader(\"docs/cs229_lectures/MachineLearning-Lecture03.pdf\")\n", "]\n", "docs = []\n", "for loader in loaders:\n", " docs.extend(loader.load())"]}, {"cell_type": "markdown", "id": "d1ed78d9", "metadata": {}, "source": ["\u4e0b\u9762\u6587\u6863\u662fdatawhale\u5b98\u65b9\u5f00\u6e90\u7684matplotlib\u6559\u7a0b\u94fe\u63a5 https://datawhalechina.github.io/fantastic-matplotlib/index.html \uff0c\u53ef\u5728\u8be5\u7f51\u7ad9\u4e0a\u4e0b\u8f7d\u5bf9\u5e94\u7684\u6559\u7a0b"]}, {"cell_type": "code", "execution_count": 60, "id": "11de2150", "metadata": {}, "outputs": [], "source": ["from langchain.document_loaders import PyPDFLoader\n", "\n", "# \u52a0\u8f7d PDF\n", "loaders_chinese = [\n", " # \u6545\u610f\u6dfb\u52a0\u91cd\u590d\u6587\u6863\uff0c\u4f7f\u6570\u636e\u6df7\u4e71\n", " PyPDFLoader(\"docs/matplotlib/\u7b2c\u4e00\u56de\uff1aMatplotlib\u521d\u76f8\u8bc6.pdf\"),\n", " PyPDFLoader(\"docs/matplotlib/\u7b2c\u4e00\u56de\uff1aMatplotlib\u521d\u76f8\u8bc6.pdf\"),\n", " PyPDFLoader(\"docs/matplotlib/\u7b2c\u4e8c\u56de\uff1a\u827a\u672f\u753b\u7b14\u89c1\u4e7e\u5764.pdf\"),\n", " PyPDFLoader(\"docs/matplotlib/\u7b2c\u4e09\u56de\uff1a\u5e03\u5c40\u683c\u5f0f\u5b9a\u65b9\u5706.pdf\")\n", "]\n", "docs_chinese = []\n", "for loader in loaders_chinese:\n", " docs_chinese.extend(loader.load())"]}, {"cell_type": "markdown", "id": "4b497f5c", "metadata": {}, "source": ["\u5728\u6587\u6863\u52a0\u8f7d\u540e\uff0c\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528`RecursiveCharacterTextSplitter`(\u9012\u5f52\u5b57\u7b26\u6587\u672c\u62c6\u5206\u5668)\u6765\u521b\u5efa\u5757\u3002"]}, {"cell_type": "code", "execution_count": 61, "id": "eb44bf0d", "metadata": {"height": 115, "tags": []}, "outputs": [], "source": ["# \u5206\u5272\u6587\u672c\n", "from langchain.text_splitter import RecursiveCharacterTextSplitter\n", "text_splitter = RecursiveCharacterTextSplitter(\n", " chunk_size = 1500, # \u6bcf\u4e2a\u6587\u672c\u5757\u7684\u5927\u5c0f\u3002\u8fd9\u610f\u5473\u7740\u6bcf\u6b21\u5207\u5206\u6587\u672c\u65f6\uff0c\u4f1a\u5c3d\u91cf\u4f7f\u6bcf\u4e2a\u5757\u5305\u542b 1500 \u4e2a\u5b57\u7b26\u3002\n", " chunk_overlap = 150 # \u6bcf\u4e2a\u6587\u672c\u5757\u4e4b\u95f4\u7684\u91cd\u53e0\u90e8\u5206\u3002\n", ")"]}, {"cell_type": "code", "execution_count": 62, "id": "b71e46cc", "metadata": {"height": 30, "tags": []}, "outputs": [], "source": ["splits = text_splitter.split_documents(docs)"]}, {"cell_type": "code", "execution_count": 63, "id": "e061f22d", "metadata": {"height": 30, "tags": []}, "outputs": [{"data": {"text/plain": ["209"]}, "execution_count": 63, "metadata": {}, "output_type": "execute_result"}], "source": ["len(splits)"]}, {"cell_type": "code", "execution_count": 64, "id": "99840d4c", "metadata": {}, "outputs": [], "source": ["splits_chinese = text_splitter.split_documents(docs_chinese)"]}, {"cell_type": "code", "execution_count": 65, "id": "d6b60ceb", "metadata": {}, "outputs": [{"data": {"text/plain": ["27"]}, "execution_count": 65, "metadata": {}, "output_type": "execute_result"}], "source": ["len(splits_chinese)"]}, {"cell_type": "markdown", "id": "848e26fd", "metadata": {}, "source": ["## \u4e09\u3001Embeddings\n", "\n", "\u4ec0\u4e48\u662f`Embeddings`\uff1f\n", "\n", "\u5728\u673a\u5668\u5b66\u4e60\u548c\u81ea\u7136\u8bed\u8a00\u5904\u7406\uff08NLP\uff09\u4e2d\uff0c`Embeddings`\uff08\u5d4c\u5165\uff09\u662f\u4e00\u79cd\u5c06\u7c7b\u522b\u6570\u636e\uff0c\u5982\u5355\u8bcd\u3001\u53e5\u5b50\u6216\u8005\u6574\u4e2a\u6587\u6863\uff0c\u8f6c\u5316\u4e3a\u5b9e\u6570\u5411\u91cf\u7684\u6280\u672f\u3002\u8fd9\u4e9b\u5b9e\u6570\u5411\u91cf\u53ef\u4ee5\u88ab\u8ba1\u7b97\u673a\u66f4\u597d\u5730\u7406\u89e3\u548c\u5904\u7406\u3002\u5d4c\u5165\u80cc\u540e\u7684\u4e3b\u8981\u60f3\u6cd5\u662f\uff0c\u76f8\u4f3c\u6216\u76f8\u5173\u7684\u5bf9\u8c61\u5728\u5d4c\u5165\u7a7a\u95f4\u4e2d\u7684\u8ddd\u79bb\u5e94\u8be5\u5f88\u8fd1\u3002\n", "\n", "\u4e3e\u4e2a\u4f8b\u5b50\uff0c\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528\u8bcd\u5d4c\u5165\uff08word embeddings\uff09\u6765\u8868\u793a\u6587\u672c\u6570\u636e\u3002\u5728\u8bcd\u5d4c\u5165\u4e2d\uff0c\u6bcf\u4e2a\u5355\u8bcd\u88ab\u8f6c\u6362\u4e3a\u4e00\u4e2a\u5411\u91cf\uff0c\u8fd9\u4e2a\u5411\u91cf\u6355\u83b7\u4e86\u8fd9\u4e2a\u5355\u8bcd\u7684\u8bed\u4e49\u4fe1\u606f\u3002\u4f8b\u5982\uff0c\"king\" \u548c \"queen\" \u8fd9\u4e24\u4e2a\u5355\u8bcd\u5728\u5d4c\u5165\u7a7a\u95f4\u4e2d\u7684\u4f4d\u7f6e\u5c06\u4f1a\u975e\u5e38\u63a5\u8fd1\uff0c\u56e0\u4e3a\u5b83\u4eec\u7684\u542b\u4e49\u76f8\u4f3c\u3002\u800c \"apple\" \u548c \"orange\" \u4e5f\u4f1a\u5f88\u63a5\u8fd1\uff0c\u56e0\u4e3a\u5b83\u4eec\u90fd\u662f\u6c34\u679c\u3002\u800c \"king\" \u548c \"apple\" \u8fd9\u4e24\u4e2a\u5355\u8bcd\u5728\u5d4c\u5165\u7a7a\u95f4\u4e2d\u7684\u8ddd\u79bb\u5c31\u4f1a\u6bd4\u8f83\u8fdc\uff0c\u56e0\u4e3a\u5b83\u4eec\u7684\u542b\u4e49\u4e0d\u540c\u3002\n", "\n", "\u8ba9\u6211\u4eec\u53d6\u51fa\u6211\u4eec\u7684\u5207\u5206\u90e8\u5206\u5e76\u5bf9\u5b83\u4eec\u8fdb\u884c`Embedding`\u5904\u7406\u3002"]}, {"cell_type": "code", "execution_count": 13, "id": "d9dca7a8", "metadata": {"height": 47, "tags": []}, "outputs": [], "source": ["from langchain.embeddings.openai import OpenAIEmbeddings\n", "embedding = OpenAIEmbeddings()"]}, {"cell_type": "markdown", "id": "6ca11792", "metadata": {}, "source": ["\u5728\u4f7f\u7528\u771f\u5b9e\u6587\u6863\u6570\u636e\u7684\u4f8b\u5b50\u4e4b\u524d\uff0c\u8ba9\u6211\u4eec\u7528\u51e0\u4e2a\u6d4b\u8bd5\u6848\u4f8b\u7684\u53e5\u5b50\u6765\u8bd5\u8bd5\uff0c\u4ee5\u4fbf\u4e86\u89e3`embedding`\u3002\n", "\n", "\u4e0b\u9762\u6709\u51e0\u4e2a\u793a\u4f8b\u53e5\u5b50\uff0c\u5176\u4e2d\u524d\u4e24\u4e2a\u975e\u5e38\u76f8\u4f3c\uff0c\u7b2c\u4e09\u4e2a\u4e0e\u4e4b\u65e0\u5173\u3002\u7136\u540e\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528`embedding`\u7c7b\u4e3a\u6bcf\u4e2a\u53e5\u5b50\u521b\u5efa\u4e00\u4e2a`embedding`\u3002"]}, {"cell_type": "code", "execution_count": 14, "id": "abae34b5", "metadata": {}, "outputs": [], "source": ["sentence1 = \"i like dogs\"\n", "sentence2 = \"i like canines\"\n", "sentence3 = \"the weather is ugly outside\""]}, {"cell_type": "code", "execution_count": 15, "id": "d1745b19", "metadata": {}, "outputs": [], "source": ["embedding1 = embedding.embed_query(sentence1)\n", "embedding2 = embedding.embed_query(sentence2)\n", "embedding3 = embedding.embed_query(sentence3)"]}, {"cell_type": "code", "execution_count": 16, "id": "c4099521", "metadata": {"height": 64, "tags": []}, "outputs": [], "source": ["sentence1_chinese = \"\u6211\u559c\u6b22\u72d7\"\n", "sentence2_chinese = \"\u6211\u559c\u6b22\u72ac\u79d1\u52a8\u7269\"\n", "sentence3_chinese = \"\u5916\u9762\u7684\u5929\u6c14\u5f88\u7cdf\u7cd5\""]}, {"cell_type": "code", "execution_count": 17, "id": "d553549a", "metadata": {"height": 64, "tags": []}, "outputs": [], "source": ["embedding1_chinese = embedding.embed_query(sentence1_chinese)\n", "embedding2_chinese = embedding.embed_query(sentence2_chinese)\n", "embedding3_chinese = embedding.embed_query(sentence3_chinese)"]}, {"cell_type": "markdown", "id": "6b2805d4", "metadata": {}, "source": ["\u7136\u540e\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528`numpy`\u6765\u6bd4\u8f83\u5b83\u4eec\uff0c\u770b\u770b\u54ea\u4e9b\u6700\u76f8\u4f3c\u3002\n", "\n", "\u6211\u4eec\u671f\u671b\u524d\u4e24\u4e2a\u53e5\u5b50\u5e94\u8be5\u975e\u5e38\u76f8\u4f3c\u3002\n", "\n", "\u7136\u540e\uff0c\u7b2c\u4e00\u548c\u7b2c\u4e8c\u4e2a\u4e0e\u7b2c\u4e09\u4e2a\u76f8\u6bd4\u5e94\u8be5\u76f8\u5dee\u5f88\u5927\u3002\n", "\n", "\u6211\u4eec\u5c06\u4f7f\u7528\u70b9\u79ef\u6765\u6bd4\u8f83\u4e24\u4e2a\u5d4c\u5165\u3002\n", "\n", "\u5982\u679c\u4f60\u4e0d\u77e5\u9053\u4ec0\u4e48\u662f\u70b9\u79ef\uff0c\u6ca1\u5173\u7cfb\u3002\u4f60\u53ea\u9700\u8981\u77e5\u9053\u7684\u91cd\u8981\u4e00\u70b9\u662f\uff0c\u5206\u6570\u8d8a\u9ad8\u53e5\u5b50\u8d8a\u76f8\u4f3c\u3002"]}, {"cell_type": "code", "execution_count": 18, "id": "0cbe9a9e", "metadata": {"height": 30, "tags": []}, "outputs": [], "source": ["import numpy as np"]}, {"cell_type": "code", "execution_count": 19, "id": "536db32e", "metadata": {}, "outputs": [{"data": {"text/plain": ["0.9631853877103518"]}, "execution_count": 19, "metadata": {}, "output_type": "execute_result"}], "source": ["np.dot(embedding1, embedding2)"]}, {"cell_type": "code", "execution_count": 20, "id": "29844c64", "metadata": {}, "outputs": [{"data": {"text/plain": ["0.7709997651294672"]}, "execution_count": 20, "metadata": {}, "output_type": "execute_result"}], "source": ["np.dot(embedding1, embedding3)"]}, {"cell_type": "code", "execution_count": 21, "id": "c1e17a9e", "metadata": {}, "outputs": [{"data": {"text/plain": ["0.7596334120325523"]}, "execution_count": 21, "metadata": {}, "output_type": "execute_result"}], "source": ["np.dot(embedding2, embedding3)"]}, {"cell_type": "markdown", "id": "bdf08401", "metadata": {}, "source": ["\u6211\u4eec\u53ef\u4ee5\u770b\u5230\u524d\u4e24\u4e2a`embedding`\u7684\u5206\u6570\u76f8\u5f53\u9ad8\uff0c\u4e3a0.96\u3002\n", "\n", "\u5982\u679c\u6211\u4eec\u5c06\u7b2c\u4e00\u4e2a`embedding`\u4e0e\u7b2c\u4e09\u4e2a`embedding`\u8fdb\u884c\u6bd4\u8f83\uff0c\u6211\u4eec\u53ef\u4ee5\u770b\u5230\u5b83\u660e\u663e\u8f83\u4f4e\uff0c\u7ea6\u4e3a0.77\u3002\n", "\n", "\u5982\u679c\u6211\u4eec\u5c06\u7b2c\u4e8c\u4e2a`embedding`\u548c\u7b2c\u4e09\u4e2a`embedding`\u8fdb\u884c\u6bd4\u8f83\uff0c\u6211\u4eec\u53ef\u4ee5\u770b\u5230\u5b83\u7684\u5206\u6570\u5927\u7ea6\u4e3a0.75\u3002"]}, {"cell_type": "code", "execution_count": 12, "id": "49fc0f8f", "metadata": {"height": 30, "tags": []}, "outputs": [{"data": {"text/plain": ["0.94406149366893"]}, "execution_count": 12, "metadata": {}, "output_type": "execute_result"}], "source": ["np.dot(embedding1_chinese, embedding2_chinese)"]}, {"cell_type": "code", "execution_count": 13, "id": "32a1fac7", "metadata": {"height": 30, "tags": []}, "outputs": [{"data": {"text/plain": ["0.792186975021313"]}, "execution_count": 13, "metadata": {}, "output_type": "execute_result"}], "source": ["np.dot(embedding1_chinese, embedding3_chinese)"]}, {"cell_type": "code", "execution_count": 14, "id": "9dd18328", "metadata": {"height": 30, "tags": []}, "outputs": [{"data": {"text/plain": ["0.7804109942586283"]}, "execution_count": 14, "metadata": {}, "output_type": "execute_result"}], "source": ["np.dot(embedding2_chinese, embedding3_chinese)"]}, {"cell_type": "markdown", "id": "9a17a527", "metadata": {}, "source": ["\u6211\u4eec\u53ef\u4ee5\u770b\u5230\u524d\u4e24\u4e2a`embedding`\u7684\u5206\u6570\u76f8\u5f53\u9ad8\uff0c\u4e3a0.94\u3002\n", "\n", "\u5982\u679c\u6211\u4eec\u5c06\u7b2c\u4e00\u4e2a`embedding`\u4e0e\u7b2c\u4e09\u4e2a`embedding`\u8fdb\u884c\u6bd4\u8f83\uff0c\u6211\u4eec\u53ef\u4ee5\u770b\u5230\u5b83\u660e\u663e\u8f83\u4f4e\uff0c\u7ea6\u4e3a0.79\u3002\n", "\n", "\u5982\u679c\u6211\u4eec\u5c06\u7b2c\u4e8c\u4e2a`embedding`\u548c\u7b2c\u4e09\u4e2a`embedding`\u8fdb\u884c\u6bd4\u8f83\uff0c\u6211\u4eec\u53ef\u4ee5\u770b\u5230\u5b83\u7684\u5206\u6570\u5927\u7ea6\u4e3a0.78\u3002"]}, {"cell_type": "markdown", "id": "4fc7b24f", "metadata": {}, "source": ["## \u56db\u3001Vectorstores"]}, {"cell_type": "markdown", "id": "54776973", "metadata": {}, "source": ["### 4.1 \u521d\u59cb\u5316Chroma"]}, {"cell_type": "markdown", "id": "20916c7c", "metadata": {}, "source": ["Langchain\u96c6\u6210\u4e86\u8d85\u8fc730\u4e2a\u4e0d\u540c\u7684\u5411\u91cf\u5b58\u50a8\u5e93\u3002\u6211\u4eec\u9009\u62e9Chroma\u662f\u56e0\u4e3a\u5b83\u8f7b\u91cf\u7ea7\u4e14\u6570\u636e\u5b58\u50a8\u5728\u5185\u5b58\u4e2d\uff0c\u8fd9\u4f7f\u5f97\u5b83\u975e\u5e38\u5bb9\u6613\u542f\u52a8\u548c\u5f00\u59cb\u4f7f\u7528\u3002"]}, {"cell_type": "code", "execution_count": 24, "id": "201e6afa", "metadata": {"height": 30, "tags": []}, "outputs": [], "source": ["from langchain.vectorstores import Chroma"]}, {"cell_type": "code", "execution_count": 28, "id": "93960ac5", "metadata": {"height": 30, "tags": []}, "outputs": [], "source": ["persist_directory = 'docs/chroma/cs229_lectures/'"]}, {"cell_type": "code", "execution_count": null, "id": "a195e72a", "metadata": {"height": 30, "tags": []}, "outputs": [], "source": ["!rm -rf './docs/chroma/cs229_lectures' # \u5220\u9664\u65e7\u7684\u6570\u636e\u5e93\u6587\u4ef6\uff08\u5982\u679c\u6587\u4ef6\u5939\u4e2d\u6709\u6587\u4ef6\u7684\u8bdd\uff09\uff0cwindow\u7535\u8111\u8bf7\u624b\u52a8\u5220\u9664"]}, {"cell_type": "code", "execution_count": 29, "id": "690efd0a", "metadata": {"height": 98, "tags": []}, "outputs": [], "source": ["vectordb = Chroma.from_documents(\n", " documents=splits,\n", " embedding=embedding,\n", " persist_directory=persist_directory # \u5141\u8bb8\u6211\u4eec\u5c06persist_directory\u76ee\u5f55\u4fdd\u5b58\u5230\u78c1\u76d8\u4e0a\n", ")"]}, {"cell_type": "code", "execution_count": 30, "id": "f777480c", "metadata": {"height": 30, "tags": []}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["209\n"]}], "source": ["print(vectordb._collection.count())"]}, {"cell_type": "code", "execution_count": 66, "id": "d720e2b7", "metadata": {}, "outputs": [], "source": ["persist_directory_chinese = 'docs/chroma/matplotlib/'"]}, {"cell_type": "code", "execution_count": null, "id": "570a2768", "metadata": {}, "outputs": [], "source": ["!rm -rf './docs/chroma/matplotlib' # \u5220\u9664\u65e7\u7684\u6570\u636e\u5e93\u6587\u4ef6\uff08\u5982\u679c\u6587\u4ef6\u5939\u4e2d\u6709\u6587\u4ef6\u7684\u8bdd\uff09"]}, {"cell_type": "code", "execution_count": 67, "id": "1e03438d", "metadata": {}, "outputs": [], "source": ["vectordb_chinese = Chroma.from_documents(\n", " documents=splits_chinese,\n", " embedding=embedding,\n", " persist_directory=persist_directory_chinese # \u5141\u8bb8\u6211\u4eec\u5c06persist_directory\u76ee\u5f55\u4fdd\u5b58\u5230\u78c1\u76d8\u4e0a\n", ")"]}, {"cell_type": "code", "execution_count": 68, "id": "cf87aba0", "metadata": {}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["27\n"]}], "source": ["print(vectordb_chinese._collection.count())"]}, {"cell_type": "markdown", "id": "9f78f412", "metadata": {}, "source": ["\u6211\u4eec\u53ef\u4ee5\u770b\u5230\u82f1\u6587\u7248\u7684\u957f\u5ea6\u4e5f\u662f209\u3001\u4e2d\u6587\u7248\u7684\u957f\u5ea6\u4e5f\u662f30\uff0c\u8fd9\u4e0e\u6211\u4eec\u4e4b\u524d\u7684\u5207\u5206\u6570\u91cf\u662f\u4e00\u6837\u7684\u3002\u73b0\u5728\u8ba9\u6211\u4eec\u5f00\u59cb\u4f7f\u7528\u5b83\u3002"]}, {"cell_type": "markdown", "id": "efca7589", "metadata": {}, "source": ["### 4.2 \u76f8\u4f3c\u6027\u641c\u7d22(Similarity Search)"]}, {"cell_type": "code", "execution_count": 31, "id": "3e20837d", "metadata": {"height": 30, "tags": []}, "outputs": [], "source": ["question = \"is there an email i can ask for help\" # \"\u6709\u6211\u53ef\u4ee5\u5bfb\u6c42\u5e2e\u52a9\u7684\u7535\u5b50\u90ae\u4ef6\u5417\""]}, {"cell_type": "code", "execution_count": 32, "id": "f9bde572", "metadata": {"height": 30, "tags": []}, "outputs": [], "source": ["docs = vectordb.similarity_search(question,k=3)"]}, {"cell_type": "code", "execution_count": 33, "id": "41388af1", "metadata": {"height": 30, "tags": []}, "outputs": [{"data": {"text/plain": ["3"]}, "execution_count": 33, "metadata": {}, "output_type": "execute_result"}], "source": ["len(docs)"]}, {"cell_type": "code", "execution_count": 34, "id": "183434f6", "metadata": {"height": 30, "tags": []}, "outputs": [{"data": {"text/plain": ["\"cs229-qa@cs.stanford.edu. This goes to an acc ount that's read by all the TAs and me. So \\nrather than sending us email individually, if you send email to this account, it will \\nactually let us get back to you maximally quickly with answers to your questions. \\nIf you're asking questions about homework probl ems, please say in the subject line which \\nassignment and which question the email refers to, since that will also help us to route \\nyour question to the appropriate TA or to me appropriately and get the response back to \\nyou quickly. \\nLet's see. Skipping ahead \u2014 let's see \u2014 for homework, one midterm, one open and term \\nproject. Notice on the honor code. So one thi ng that I think will help you to succeed and \\ndo well in this class and even help you to enjoy this cla ss more is if you form a study \\ngroup. \\nSo start looking around where you' re sitting now or at the end of class today, mingle a \\nlittle bit and get to know your classmates. I strongly encourage you to form study groups \\nand sort of have a group of people to study with and have a group of your fellow students \\nto talk over these concepts with. You can also post on the class news group if you want to \\nuse that to try to form a study group. \\nBut some of the problems sets in this cla ss are reasonably difficult. People that have \\ntaken the class before may tell you they were very difficult. And just I bet it would be \\nmore fun for you, and you'd probably have a be tter learning experience if you form a\""]}, "execution_count": 34, "metadata": {}, "output_type": "execute_result"}], "source": ["docs[0].page_content"]}, {"cell_type": "markdown", "id": "1edb21d8", "metadata": {}, "source": ["\u5982\u679c\u6211\u4eec\u67e5\u770b\u7b2c\u4e00\u4e2a\u6587\u6863\u7684\u5185\u5bb9\uff0c\u6211\u4eec\u53ef\u4ee5\u770b\u5230\u5b83\u5b9e\u9645\u4e0a\u662f\u5173\u4e8e\u4e00\u4e2a\u7535\u5b50\u90ae\u4ef6\u5730\u5740\uff0ccs229-qa@cs.stanford.edu\u3002\n", "\n", "\u8fd9\u662f\u6211\u4eec\u53ef\u4ee5\u5411\u5176\u53d1\u9001\u95ee\u9898\u7684\u7535\u5b50\u90ae\u4ef6\uff0c\u6240\u6709\u7684\u52a9\u6559\u90fd\u4f1a\u9605\u8bfb\u8fd9\u4e9b\u90ae\u4ef6\u3002"]}, {"cell_type": "code", "execution_count": 69, "id": "53bcc061", "metadata": {}, "outputs": [], "source": ["question_chinese = \"Matplotlib\u662f\u4ec0\u4e48\uff1f\" "]}, {"cell_type": "code", "execution_count": 70, "id": "2d2dc834", "metadata": {}, "outputs": [], "source": ["docs_chinese = vectordb_chinese.similarity_search(question_chinese,k=3)"]}, {"cell_type": "code", "execution_count": 71, "id": "eebe77e7", "metadata": {}, "outputs": [{"data": {"text/plain": ["3"]}, "execution_count": 71, "metadata": {}, "output_type": "execute_result"}], "source": ["len(docs_chinese)"]}, {"cell_type": "code", "execution_count": 72, "id": "860af154", "metadata": {}, "outputs": [{"data": {"text/plain": ["'\u7b2c\u2f00\u56de\uff1aMatplotlib \u521d\u76f8\u8bc6\\n\u2f00\u3001\u8ba4\u8bc6matplotlib\\nMatplotlib \u662f\u2f00\u4e2a Python 2D \u7ed8\u56fe\u5e93\uff0c\u80fd\u591f\u4ee5\u591a\u79cd\u786c\u62f7\u2ec9\u683c\u5f0f\u548c\u8de8\u5e73\u53f0\u7684\u4ea4\u4e92\u5f0f\u73af\u5883\u2f63\u6210\u51fa\u7248\u7269\u8d28\u91cf\u7684\u56fe\u5f62\uff0c\u2f64\u6765\u7ed8\u5236\u5404\u79cd\u9759\u6001\uff0c\u52a8\u6001\uff0c\\n\u4ea4\u4e92\u5f0f\u7684\u56fe\u8868\u3002\\nMatplotlib \u53ef\u2f64\u4e8e Python \u811a\u672c\uff0c Python \u548c IPython Shell \u3001 Jupyter notebook \uff0c Web \u5e94\u2f64\u7a0b\u5e8f\u670d\u52a1\u5668\u548c\u5404\u79cd\u56fe\u5f62\u2f64\u6237\u754c\u2faf\u2f2f\u5177\u5305\u7b49\u3002\\nMatplotlib \u662f Python \u6570\u636e\u53ef\u89c6\u5316\u5e93\u4e2d\u7684\u6cf0\u2f43\uff0c\u5b83\u5df2\u7ecf\u6210\u4e3a python \u4e2d\u516c\u8ba4\u7684\u6570\u636e\u53ef\u89c6\u5316\u2f2f\u5177\uff0c\u6211\u4eec\u6240\u719f\u77e5\u7684 pandas \u548c seaborn \u7684\u7ed8\u56fe\u63a5\u2f1d\\n\u5176\u5b9e\u4e5f\u662f\u57fa\u4e8e matplotlib \u6240\u4f5c\u7684\u2fbc\u7ea7\u5c01\u88c5\u3002\\n\u4e3a\u4e86\u5bf9matplotlib \u6709\u66f4\u597d\u7684\u7406\u89e3\uff0c\u8ba9\u6211\u4eec\u4ece\u2f00\u4e9b\u6700\u57fa\u672c\u7684\u6982\u5ff5\u5f00\u59cb\u8ba4\u8bc6\u5b83\uff0c\u518d\u9010\u6e10\u8fc7\u6e21\u5230\u2f00\u4e9b\u2fbc\u7ea7\u6280\u5de7\u4e2d\u3002\\n\u2f06\u3001\u2f00\u4e2a\u6700\u7b80\u5355\u7684\u7ed8\u56fe\u4f8b\u2f26\\nMatplotlib \u7684\u56fe\u50cf\u662f\u753b\u5728 figure \uff08\u5982 windows \uff0c jupyter \u7a97\u4f53\uff09\u4e0a\u7684\uff0c\u6bcf\u2f00\u4e2a figure \u2f1c\u5305\u542b\u4e86\u2f00\u4e2a\u6216\u591a\u4e2a axes \uff08\u2f00\u4e2a\u53ef\u4ee5\u6307\u5b9a\u5750\u6807\u7cfb\u7684\u2f26\u533a\\n\u57df\uff09\u3002\u6700\u7b80\u5355\u7684\u521b\u5efa figure \u4ee5\u53ca axes \u7684\u2f45\u5f0f\u662f\u901a\u8fc7 pyplot.subplots\u547d\u4ee4\uff0c\u521b\u5efa axes \u4ee5\u540e\uff0c\u53ef\u4ee5\u4f7f\u2f64 Axes.plot\u7ed8\u5236\u6700\u7b80\u6613\u7684\u6298\u7ebf\u56fe\u3002\\nimport matplotlib.pyplot as plt\\nimport matplotlib as mpl\\nimport numpy as np\\nfig, ax = plt.subplots() # \u521b\u5efa\u2f00\u4e2a\u5305\u542b\u2f00\u4e2a axes \u7684 figure\\nax.plot([1, 2, 3, 4], [1, 4, 2, 3]); # \u7ed8\u5236\u56fe\u50cf\\nTrick\uff1a \u5728jupyter notebook \u4e2d\u4f7f\u2f64 matplotlib \u65f6\u4f1a\u53d1\u73b0\uff0c\u4ee3\u7801\u8fd0\u2f8f\u540e\u2f83\u52a8\u6253\u5370\u51fa\u7c7b\u4f3c \\n\u8fd9\u6837\u2f00\u6bb5\u8bdd\uff0c\u8fd9\u662f\u56e0\u4e3a matplotlib \u7684\u7ed8\u56fe\u4ee3\u7801\u9ed8\u8ba4\u6253\u5370\u51fa\u6700\u540e\u2f00\u4e2a\u5bf9\u8c61\u3002\u5982\u679c\u4e0d\u60f3\u663e\u793a\u8fd9\u53e5\u8bdd\uff0c\u6709\u4ee5\u4e0b\u4e09\u79cd\u2f45\u6cd5\uff0c\u5728\u672c\u7ae0\u8282\u7684\u4ee3\u7801\u793a\u4f8b\\n\u4e2d\u4f60\u80fd\u627e\u5230\u8fd9\u4e09\u79cd\u2f45\u6cd5\u7684\u4f7f\u2f64\u3002\\n\\x00. \u5728\u4ee3\u7801\u5757\u6700\u540e\u52a0\u2f00\u4e2a\u5206\u53f7 ;\\n\\x00. \u5728\u4ee3\u7801\u5757\u6700\u540e\u52a0\u2f00\u53e5 plt.show()\\n\\x00. \u5728\u7ed8\u56fe\u65f6\u5c06\u7ed8\u56fe\u5bf9\u8c61\u663e\u5f0f\u8d4b\u503c\u7ed9\u2f00\u4e2a\u53d8\u91cf\uff0c\u5982\u5c06 plt.plot([1, 2, 3, 4]) \u6539\u6210 line =plt.plot([1, 2, 3, 4])\\n\u548cMATLAB \u547d\u4ee4\u7c7b\u4f3c\uff0c\u4f60\u8fd8\u53ef\u4ee5\u901a\u8fc7\u2f00\u79cd\u66f4\u7b80\u5355\u7684\u2f45\u5f0f\u7ed8\u5236\u56fe\u50cf\uff0c matplotlib.pyplot\u2f45\u6cd5\u80fd\u591f\u76f4\u63a5\u5728\u5f53\u524d axes \u4e0a\u7ed8\u5236\u56fe\u50cf\uff0c\u5982\u679c\u2f64\u6237\\n\u672a\u6307\u5b9aaxes \uff0c matplotlib \u4f1a\u5e2e\u4f60\u2f83\u52a8\u521b\u5efa\u2f00\u4e2a\u3002\u6240\u4ee5\u4e0a\u2faf\u7684\u4f8b\u2f26\u4e5f\u53ef\u4ee5\u7b80\u5316\u4e3a\u4ee5\u4e0b\u8fd9\u2f00\u2f8f\u4ee3\u7801\u3002\\nline =plt.plot([1, 2, 3, 4], [1, 4, 2, 3]) \\n\u4e09\u3001Figure \u7684\u7ec4\u6210\\n\u73b0\u5728\u6211\u4eec\u6765\u6df1\u2f0a\u770b\u2f00\u4e0b figure \u7684\u7ec4\u6210\u3002\u901a\u8fc7\u2f00\u5f20 figure \u89e3\u5256\u56fe\uff0c\u6211\u4eec\u53ef\u4ee5\u770b\u5230\u2f00\u4e2a\u5b8c\u6574\u7684 matplotlib \u56fe\u50cf\u901a\u5e38\u4f1a\u5305\u62ec\u4ee5\u4e0b\u56db\u4e2a\u5c42\u7ea7\uff0c\u8fd9\u4e9b\\n\u5c42\u7ea7\u4e5f\u88ab\u79f0\u4e3a\u5bb9\u5668\uff08 container \uff09\uff0c\u4e0b\u2f00\u8282\u4f1a\u8be6\u7ec6\u4ecb\u7ecd\u3002\u5728 matplotlib \u7684\u4e16\u754c\u4e2d\uff0c\u6211\u4eec\u5c06\u901a\u8fc7\u5404\u79cd\u547d\u4ee4\u2f45\u6cd5\u6765\u64cd\u7eb5\u56fe\u50cf\u4e2d\u7684\u6bcf\u2f00\u4e2a\u90e8\u5206\uff0c\\n\u4ece\u2f7d\u8fbe\u5230\u6570\u636e\u53ef\u89c6\u5316\u7684\u6700\u7ec8\u6548\u679c\uff0c\u2f00\u526f\u5b8c\u6574\u7684\u56fe\u50cf\u5b9e\u9645\u4e0a\u662f\u5404\u7c7b\u2f26\u5143\u7d20\u7684\u96c6\u5408\u3002\\nFigure\uff1a\u9876\u5c42\u7ea7\uff0c\u2f64\u6765\u5bb9\u7eb3\u6240\u6709\u7ed8\u56fe\u5143\u7d20'"]}, "execution_count": 72, "metadata": {}, "output_type": "execute_result"}], "source": ["docs_chinese[0].page_content"]}, {"cell_type": "markdown", "id": "60a720a6", "metadata": {}, "source": ["\u5982\u679c\u6211\u4eec\u67e5\u770b\u7b2c\u4e00\u4e2a\u6587\u6863\u7684\u5185\u5bb9\uff0c\u6211\u4eec\u53ef\u4ee5\u770b\u5230\u5b83\u5b9e\u9645\u4e0a\u662f\u5173\u4e8eMatplotlib\u7684\u4ecb\u7ecd"]}, {"cell_type": "markdown", "id": "fba57a1d", "metadata": {}, "source": ["\u5728\u6b64\u4e4b\u540e\uff0c\u6211\u4eec\u8981\u786e\u4fdd\u901a\u8fc7\u8fd0\u884cvectordb.persist\u6765\u6301\u4e45\u5316\u5411\u91cf\u6570\u636e\u5e93\uff0c\u4ee5\u4fbf\u6211\u4eec\u5728\u672a\u6765\u7684\u8bfe\u7a0b\u4e2d\u4f7f\u7528\u3002\n", "\n", "\u8ba9\u6211\u4eec\u4fdd\u5b58\u5b83\uff0c\u4ee5\u4fbf\u4ee5\u540e\u4f7f\u7528\uff01"]}, {"cell_type": "code", "execution_count": 44, "id": "ea657123", "metadata": {"height": 30, "tags": []}, "outputs": [], "source": ["vectordb.persist()"]}, {"cell_type": "code", "execution_count": 73, "id": "9065f5b1", "metadata": {}, "outputs": [], "source": ["vectordb_chinese.persist()"]}, {"cell_type": "markdown", "id": "cefe9f6a", "metadata": {}, "source": ["## \u4e94\u3001\u5931\u8d25\u7684\u60c5\u51b5(Failure modes)"]}, {"cell_type": "markdown", "id": "089da0ca", "metadata": {}, "source": ["\u8fd9\u770b\u8d77\u6765\u5f88\u597d\uff0c\u57fa\u672c\u7684\u76f8\u4f3c\u6027\u641c\u7d22\u5f88\u5bb9\u6613\u5c31\u80fd\u8ba9\u4f60\u5b8c\u621080%\u7684\u5de5\u4f5c\u3002\n", "\n", "\u4f46\u662f\uff0c\u53ef\u80fd\u4f1a\u51fa\u73b0\u4e00\u4e9b\u76f8\u4f3c\u6027\u641c\u7d22\u5931\u8d25\u7684\u60c5\u51b5\u3002\n", "\n", "\u8fd9\u91cc\u6709\u4e00\u4e9b\u53ef\u80fd\u51fa\u73b0\u7684\u8fb9\u7f18\u60c5\u51b5\u2014\u2014\u6211\u4eec\u5c06\u5728\u4e0b\u4e00\u5802\u8bfe\u4e2d\u4fee\u590d\u5b83\u4eec\u3002"]}, {"cell_type": "code", "execution_count": 36, "id": "df0f29f9", "metadata": {"height": 30, "tags": []}, "outputs": [], "source": ["question = \"what did they say about matlab?\" # \"\u4ed6\u4eec\u5bf9 matlab \u6709\u4f55\u8bc4\u4ef7\uff1f\""]}, {"cell_type": "code", "execution_count": 37, "id": "02be97df", "metadata": {"height": 30, "tags": []}, "outputs": [], "source": ["docs = vectordb.similarity_search(question,k=5)"]}, {"cell_type": "code", "execution_count": 51, "id": "34359d7a", "metadata": {}, "outputs": [], "source": ["question_chinese = \"Matplotlib\u662f\u4ec0\u4e48\uff1f\""]}, {"cell_type": "code", "execution_count": 52, "id": "c0546006", "metadata": {}, "outputs": [], "source": ["docs_chinese = vectordb_chinese.similarity_search(question_chinese,k=5)"]}, {"cell_type": "markdown", "id": "2a9f579e", "metadata": {}, "source": ["\u8bf7\u6ce8\u610f\uff0c\u6211\u4eec\u5f97\u5230\u4e86\u91cd\u590d\u7684\u5757\uff08\u56e0\u4e3a\u7d22\u5f15\u4e2d\u6709\u91cd\u590d\u7684 `MachineLearning-Lecture01.pdf`\u3001`\u7b2c\u4e00\u56de\uff1aMatplotlib\u521d\u76f8\u8bc6.pdf`\uff09\u3002\n", "\n", "\u8bed\u4e49\u641c\u7d22\u83b7\u53d6\u6240\u6709\u76f8\u4f3c\u7684\u6587\u6863\uff0c\u4f46\u4e0d\u5f3a\u5236\u591a\u6837\u6027\u3002\n", "\n", "`docs[0]` \u548c `docs[1]` \u662f\u5b8c\u5168\u76f8\u540c\u7684\uff0c\u4ee5\u53ca`docs_chinese[0]` \u548c `docs_chinese[1]` \u662f\u5b8c\u5168\u76f8\u540c\u7684\u3002"]}, {"cell_type": "code", "execution_count": 38, "id": "d39f6954", "metadata": {"height": 30, "tags": []}, "outputs": [{"data": {"text/plain": ["Document(page_content='those homeworks will be done in either MATLA B or in Octave, which is sort of \u2014 I \\nknow some people call it a free ve rsion of MATLAB, which it sort of is, sort of isn\\'t. \\nSo I guess for those of you that haven\\'t s een MATLAB before, and I know most of you \\nhave, MATLAB is I guess part of the programming language that makes it very easy to write codes using matrices, to write code for numerical routines, to move data around, to \\nplot data. And it\\'s sort of an extremely easy to learn tool to use for implementing a lot of \\nlearning algorithms. \\nAnd in case some of you want to work on your own home computer or something if you \\ndon\\'t have a MATLAB license, for the purposes of this class, there\\'s also \u2014 [inaudible] \\nwrite that down [inaudible] MATLAB \u2014 there\\' s also a software package called Octave \\nthat you can download for free off the Internet. And it has somewhat fewer features than MATLAB, but it\\'s free, and for the purposes of this class, it will work for just about \\neverything. \\nSo actually I, well, so yeah, just a side comment for those of you that haven\\'t seen \\nMATLAB before I guess, once a colleague of mine at a different university, not at \\nStanford, actually teaches another machine l earning course. He\\'s taught it for many years. \\nSo one day, he was in his office, and an old student of his from, lik e, ten years ago came \\ninto his office and he said, \"Oh, professo r, professor, thank you so much for your', metadata={'source': 'docs/cs229_lectures/MachineLearning-Lecture01.pdf', 'page': 8})"]}, "execution_count": 38, "metadata": {}, "output_type": "execute_result"}], "source": ["docs[0]"]}, {"cell_type": "code", "execution_count": 39, "id": "e04e3d1b", "metadata": {"height": 30, "tags": []}, "outputs": [{"data": {"text/plain": ["Document(page_content='those homeworks will be done in either MATLA B or in Octave, which is sort of \u2014 I \\nknow some people call it a free ve rsion of MATLAB, which it sort of is, sort of isn\\'t. \\nSo I guess for those of you that haven\\'t s een MATLAB before, and I know most of you \\nhave, MATLAB is I guess part of the programming language that makes it very easy to write codes using matrices, to write code for numerical routines, to move data around, to \\nplot data. And it\\'s sort of an extremely easy to learn tool to use for implementing a lot of \\nlearning algorithms. \\nAnd in case some of you want to work on your own home computer or something if you \\ndon\\'t have a MATLAB license, for the purposes of this class, there\\'s also \u2014 [inaudible] \\nwrite that down [inaudible] MATLAB \u2014 there\\' s also a software package called Octave \\nthat you can download for free off the Internet. And it has somewhat fewer features than MATLAB, but it\\'s free, and for the purposes of this class, it will work for just about \\neverything. \\nSo actually I, well, so yeah, just a side comment for those of you that haven\\'t seen \\nMATLAB before I guess, once a colleague of mine at a different university, not at \\nStanford, actually teaches another machine l earning course. He\\'s taught it for many years. \\nSo one day, he was in his office, and an old student of his from, lik e, ten years ago came \\ninto his office and he said, \"Oh, professo r, professor, thank you so much for your', metadata={'source': 'docs/cs229_lectures/MachineLearning-Lecture01.pdf', 'page': 8})"]}, "execution_count": 39, "metadata": {}, "output_type": "execute_result"}], "source": ["docs[1]"]}, {"cell_type": "code", "execution_count": 53, "id": "092fd2f5", "metadata": {}, "outputs": [{"data": {"text/plain": ["Document(page_content='\u7b2c\u2f00\u56de\uff1aMatplotlib \u521d\u76f8\u8bc6\\n\u2f00\u3001\u8ba4\u8bc6matplotlib\\nMatplotlib \u662f\u2f00\u4e2a Python 2D \u7ed8\u56fe\u5e93\uff0c\u80fd\u591f\u4ee5\u591a\u79cd\u786c\u62f7\u2ec9\u683c\u5f0f\u548c\u8de8\u5e73\u53f0\u7684\u4ea4\u4e92\u5f0f\u73af\u5883\u2f63\u6210\u51fa\u7248\u7269\u8d28\u91cf\u7684\u56fe\u5f62\uff0c\u2f64\u6765\u7ed8\u5236\u5404\u79cd\u9759\u6001\uff0c\u52a8\u6001\uff0c\\n\u4ea4\u4e92\u5f0f\u7684\u56fe\u8868\u3002\\nMatplotlib \u53ef\u2f64\u4e8e Python \u811a\u672c\uff0c Python \u548c IPython Shell \u3001 Jupyter notebook \uff0c Web \u5e94\u2f64\u7a0b\u5e8f\u670d\u52a1\u5668\u548c\u5404\u79cd\u56fe\u5f62\u2f64\u6237\u754c\u2faf\u2f2f\u5177\u5305\u7b49\u3002\\nMatplotlib \u662f Python \u6570\u636e\u53ef\u89c6\u5316\u5e93\u4e2d\u7684\u6cf0\u2f43\uff0c\u5b83\u5df2\u7ecf\u6210\u4e3a python \u4e2d\u516c\u8ba4\u7684\u6570\u636e\u53ef\u89c6\u5316\u2f2f\u5177\uff0c\u6211\u4eec\u6240\u719f\u77e5\u7684 pandas \u548c seaborn \u7684\u7ed8\u56fe\u63a5\u2f1d\\n\u5176\u5b9e\u4e5f\u662f\u57fa\u4e8e matplotlib \u6240\u4f5c\u7684\u2fbc\u7ea7\u5c01\u88c5\u3002\\n\u4e3a\u4e86\u5bf9matplotlib \u6709\u66f4\u597d\u7684\u7406\u89e3\uff0c\u8ba9\u6211\u4eec\u4ece\u2f00\u4e9b\u6700\u57fa\u672c\u7684\u6982\u5ff5\u5f00\u59cb\u8ba4\u8bc6\u5b83\uff0c\u518d\u9010\u6e10\u8fc7\u6e21\u5230\u2f00\u4e9b\u2fbc\u7ea7\u6280\u5de7\u4e2d\u3002\\n\u2f06\u3001\u2f00\u4e2a\u6700\u7b80\u5355\u7684\u7ed8\u56fe\u4f8b\u2f26\\nMatplotlib \u7684\u56fe\u50cf\u662f\u753b\u5728 figure \uff08\u5982 windows \uff0c jupyter \u7a97\u4f53\uff09\u4e0a\u7684\uff0c\u6bcf\u2f00\u4e2a figure \u2f1c\u5305\u542b\u4e86\u2f00\u4e2a\u6216\u591a\u4e2a axes \uff08\u2f00\u4e2a\u53ef\u4ee5\u6307\u5b9a\u5750\u6807\u7cfb\u7684\u2f26\u533a\\n\u57df\uff09\u3002\u6700\u7b80\u5355\u7684\u521b\u5efa figure \u4ee5\u53ca axes \u7684\u2f45\u5f0f\u662f\u901a\u8fc7 pyplot.subplots\u547d\u4ee4\uff0c\u521b\u5efa axes \u4ee5\u540e\uff0c\u53ef\u4ee5\u4f7f\u2f64 Axes.plot\u7ed8\u5236\u6700\u7b80\u6613\u7684\u6298\u7ebf\u56fe\u3002\\nimport matplotlib.pyplot as plt\\nimport matplotlib as mpl\\nimport numpy as np\\nfig, ax = plt.subplots() # \u521b\u5efa\u2f00\u4e2a\u5305\u542b\u2f00\u4e2a axes \u7684 figure\\nax.plot([1, 2, 3, 4], [1, 4, 2, 3]); # \u7ed8\u5236\u56fe\u50cf\\nTrick\uff1a \u5728jupyter notebook \u4e2d\u4f7f\u2f64 matplotlib \u65f6\u4f1a\u53d1\u73b0\uff0c\u4ee3\u7801\u8fd0\u2f8f\u540e\u2f83\u52a8\u6253\u5370\u51fa\u7c7b\u4f3c \\n\u8fd9\u6837\u2f00\u6bb5\u8bdd\uff0c\u8fd9\u662f\u56e0\u4e3a matplotlib \u7684\u7ed8\u56fe\u4ee3\u7801\u9ed8\u8ba4\u6253\u5370\u51fa\u6700\u540e\u2f00\u4e2a\u5bf9\u8c61\u3002\u5982\u679c\u4e0d\u60f3\u663e\u793a\u8fd9\u53e5\u8bdd\uff0c\u6709\u4ee5\u4e0b\u4e09\u79cd\u2f45\u6cd5\uff0c\u5728\u672c\u7ae0\u8282\u7684\u4ee3\u7801\u793a\u4f8b\\n\u4e2d\u4f60\u80fd\u627e\u5230\u8fd9\u4e09\u79cd\u2f45\u6cd5\u7684\u4f7f\u2f64\u3002\\n\\x00. \u5728\u4ee3\u7801\u5757\u6700\u540e\u52a0\u2f00\u4e2a\u5206\u53f7 ;\\n\\x00. \u5728\u4ee3\u7801\u5757\u6700\u540e\u52a0\u2f00\u53e5 plt.show()\\n\\x00. \u5728\u7ed8\u56fe\u65f6\u5c06\u7ed8\u56fe\u5bf9\u8c61\u663e\u5f0f\u8d4b\u503c\u7ed9\u2f00\u4e2a\u53d8\u91cf\uff0c\u5982\u5c06 plt.plot([1, 2, 3, 4]) \u6539\u6210 line =plt.plot([1, 2, 3, 4])\\n\u548cMATLAB \u547d\u4ee4\u7c7b\u4f3c\uff0c\u4f60\u8fd8\u53ef\u4ee5\u901a\u8fc7\u2f00\u79cd\u66f4\u7b80\u5355\u7684\u2f45\u5f0f\u7ed8\u5236\u56fe\u50cf\uff0c matplotlib.pyplot\u2f45\u6cd5\u80fd\u591f\u76f4\u63a5\u5728\u5f53\u524d axes \u4e0a\u7ed8\u5236\u56fe\u50cf\uff0c\u5982\u679c\u2f64\u6237\\n\u672a\u6307\u5b9aaxes \uff0c matplotlib \u4f1a\u5e2e\u4f60\u2f83\u52a8\u521b\u5efa\u2f00\u4e2a\u3002\u6240\u4ee5\u4e0a\u2faf\u7684\u4f8b\u2f26\u4e5f\u53ef\u4ee5\u7b80\u5316\u4e3a\u4ee5\u4e0b\u8fd9\u2f00\u2f8f\u4ee3\u7801\u3002\\nline =plt.plot([1, 2, 3, 4], [1, 4, 2, 3]) \\n\u4e09\u3001Figure \u7684\u7ec4\u6210\\n\u73b0\u5728\u6211\u4eec\u6765\u6df1\u2f0a\u770b\u2f00\u4e0b figure \u7684\u7ec4\u6210\u3002\u901a\u8fc7\u2f00\u5f20 figure \u89e3\u5256\u56fe\uff0c\u6211\u4eec\u53ef\u4ee5\u770b\u5230\u2f00\u4e2a\u5b8c\u6574\u7684 matplotlib \u56fe\u50cf\u901a\u5e38\u4f1a\u5305\u62ec\u4ee5\u4e0b\u56db\u4e2a\u5c42\u7ea7\uff0c\u8fd9\u4e9b\\n\u5c42\u7ea7\u4e5f\u88ab\u79f0\u4e3a\u5bb9\u5668\uff08 container \uff09\uff0c\u4e0b\u2f00\u8282\u4f1a\u8be6\u7ec6\u4ecb\u7ecd\u3002\u5728 matplotlib \u7684\u4e16\u754c\u4e2d\uff0c\u6211\u4eec\u5c06\u901a\u8fc7\u5404\u79cd\u547d\u4ee4\u2f45\u6cd5\u6765\u64cd\u7eb5\u56fe\u50cf\u4e2d\u7684\u6bcf\u2f00\u4e2a\u90e8\u5206\uff0c\\n\u4ece\u2f7d\u8fbe\u5230\u6570\u636e\u53ef\u89c6\u5316\u7684\u6700\u7ec8\u6548\u679c\uff0c\u2f00\u526f\u5b8c\u6574\u7684\u56fe\u50cf\u5b9e\u9645\u4e0a\u662f\u5404\u7c7b\u2f26\u5143\u7d20\u7684\u96c6\u5408\u3002\\nFigure\uff1a\u9876\u5c42\u7ea7\uff0c\u2f64\u6765\u5bb9\u7eb3\u6240\u6709\u7ed8\u56fe\u5143\u7d20\\uf03a Contents \\n\u2f00\u3001\u8ba4\u8bc6matplotlib\\n\u2f06\u3001\u2f00\u4e2a\u6700\u7b80\u5355\u7684\u7ed8\u56fe\u4f8b\u2f26\\n\u4e09\u3001Figure \u7684\u7ec4\u6210', metadata={'source': 'docs/matplotlib/\u7b2c\u4e00\u56de\uff1aMatplotlib\u521d\u76f8\u8bc6.pdf', 'page': 0})"]}, "execution_count": 53, "metadata": {}, "output_type": "execute_result"}], "source": ["docs_chinese[0]"]}, {"cell_type": "code", "execution_count": 54, "id": "270f0a10", "metadata": {}, "outputs": [{"data": {"text/plain": ["Document(page_content='\u7b2c\u2f00\u56de\uff1aMatplotlib \u521d\u76f8\u8bc6\\n\u2f00\u3001\u8ba4\u8bc6matplotlib\\nMatplotlib \u662f\u2f00\u4e2a Python 2D \u7ed8\u56fe\u5e93\uff0c\u80fd\u591f\u4ee5\u591a\u79cd\u786c\u62f7\u2ec9\u683c\u5f0f\u548c\u8de8\u5e73\u53f0\u7684\u4ea4\u4e92\u5f0f\u73af\u5883\u2f63\u6210\u51fa\u7248\u7269\u8d28\u91cf\u7684\u56fe\u5f62\uff0c\u2f64\u6765\u7ed8\u5236\u5404\u79cd\u9759\u6001\uff0c\u52a8\u6001\uff0c\\n\u4ea4\u4e92\u5f0f\u7684\u56fe\u8868\u3002\\nMatplotlib \u53ef\u2f64\u4e8e Python \u811a\u672c\uff0c Python \u548c IPython Shell \u3001 Jupyter notebook \uff0c Web \u5e94\u2f64\u7a0b\u5e8f\u670d\u52a1\u5668\u548c\u5404\u79cd\u56fe\u5f62\u2f64\u6237\u754c\u2faf\u2f2f\u5177\u5305\u7b49\u3002\\nMatplotlib \u662f Python \u6570\u636e\u53ef\u89c6\u5316\u5e93\u4e2d\u7684\u6cf0\u2f43\uff0c\u5b83\u5df2\u7ecf\u6210\u4e3a python \u4e2d\u516c\u8ba4\u7684\u6570\u636e\u53ef\u89c6\u5316\u2f2f\u5177\uff0c\u6211\u4eec\u6240\u719f\u77e5\u7684 pandas \u548c seaborn \u7684\u7ed8\u56fe\u63a5\u2f1d\\n\u5176\u5b9e\u4e5f\u662f\u57fa\u4e8e matplotlib \u6240\u4f5c\u7684\u2fbc\u7ea7\u5c01\u88c5\u3002\\n\u4e3a\u4e86\u5bf9matplotlib \u6709\u66f4\u597d\u7684\u7406\u89e3\uff0c\u8ba9\u6211\u4eec\u4ece\u2f00\u4e9b\u6700\u57fa\u672c\u7684\u6982\u5ff5\u5f00\u59cb\u8ba4\u8bc6\u5b83\uff0c\u518d\u9010\u6e10\u8fc7\u6e21\u5230\u2f00\u4e9b\u2fbc\u7ea7\u6280\u5de7\u4e2d\u3002\\n\u2f06\u3001\u2f00\u4e2a\u6700\u7b80\u5355\u7684\u7ed8\u56fe\u4f8b\u2f26\\nMatplotlib \u7684\u56fe\u50cf\u662f\u753b\u5728 figure \uff08\u5982 windows \uff0c jupyter \u7a97\u4f53\uff09\u4e0a\u7684\uff0c\u6bcf\u2f00\u4e2a figure \u2f1c\u5305\u542b\u4e86\u2f00\u4e2a\u6216\u591a\u4e2a axes \uff08\u2f00\u4e2a\u53ef\u4ee5\u6307\u5b9a\u5750\u6807\u7cfb\u7684\u2f26\u533a\\n\u57df\uff09\u3002\u6700\u7b80\u5355\u7684\u521b\u5efa figure \u4ee5\u53ca axes \u7684\u2f45\u5f0f\u662f\u901a\u8fc7 pyplot.subplots\u547d\u4ee4\uff0c\u521b\u5efa axes \u4ee5\u540e\uff0c\u53ef\u4ee5\u4f7f\u2f64 Axes.plot\u7ed8\u5236\u6700\u7b80\u6613\u7684\u6298\u7ebf\u56fe\u3002\\nimport matplotlib.pyplot as plt\\nimport matplotlib as mpl\\nimport numpy as np\\nfig, ax = plt.subplots() # \u521b\u5efa\u2f00\u4e2a\u5305\u542b\u2f00\u4e2a axes \u7684 figure\\nax.plot([1, 2, 3, 4], [1, 4, 2, 3]); # \u7ed8\u5236\u56fe\u50cf\\nTrick\uff1a \u5728jupyter notebook \u4e2d\u4f7f\u2f64 matplotlib \u65f6\u4f1a\u53d1\u73b0\uff0c\u4ee3\u7801\u8fd0\u2f8f\u540e\u2f83\u52a8\u6253\u5370\u51fa\u7c7b\u4f3c \\n\u8fd9\u6837\u2f00\u6bb5\u8bdd\uff0c\u8fd9\u662f\u56e0\u4e3a matplotlib \u7684\u7ed8\u56fe\u4ee3\u7801\u9ed8\u8ba4\u6253\u5370\u51fa\u6700\u540e\u2f00\u4e2a\u5bf9\u8c61\u3002\u5982\u679c\u4e0d\u60f3\u663e\u793a\u8fd9\u53e5\u8bdd\uff0c\u6709\u4ee5\u4e0b\u4e09\u79cd\u2f45\u6cd5\uff0c\u5728\u672c\u7ae0\u8282\u7684\u4ee3\u7801\u793a\u4f8b\\n\u4e2d\u4f60\u80fd\u627e\u5230\u8fd9\u4e09\u79cd\u2f45\u6cd5\u7684\u4f7f\u2f64\u3002\\n\\x00. \u5728\u4ee3\u7801\u5757\u6700\u540e\u52a0\u2f00\u4e2a\u5206\u53f7 ;\\n\\x00. \u5728\u4ee3\u7801\u5757\u6700\u540e\u52a0\u2f00\u53e5 plt.show()\\n\\x00. \u5728\u7ed8\u56fe\u65f6\u5c06\u7ed8\u56fe\u5bf9\u8c61\u663e\u5f0f\u8d4b\u503c\u7ed9\u2f00\u4e2a\u53d8\u91cf\uff0c\u5982\u5c06 plt.plot([1, 2, 3, 4]) \u6539\u6210 line =plt.plot([1, 2, 3, 4])\\n\u548cMATLAB \u547d\u4ee4\u7c7b\u4f3c\uff0c\u4f60\u8fd8\u53ef\u4ee5\u901a\u8fc7\u2f00\u79cd\u66f4\u7b80\u5355\u7684\u2f45\u5f0f\u7ed8\u5236\u56fe\u50cf\uff0c matplotlib.pyplot\u2f45\u6cd5\u80fd\u591f\u76f4\u63a5\u5728\u5f53\u524d axes \u4e0a\u7ed8\u5236\u56fe\u50cf\uff0c\u5982\u679c\u2f64\u6237\\n\u672a\u6307\u5b9aaxes \uff0c matplotlib \u4f1a\u5e2e\u4f60\u2f83\u52a8\u521b\u5efa\u2f00\u4e2a\u3002\u6240\u4ee5\u4e0a\u2faf\u7684\u4f8b\u2f26\u4e5f\u53ef\u4ee5\u7b80\u5316\u4e3a\u4ee5\u4e0b\u8fd9\u2f00\u2f8f\u4ee3\u7801\u3002\\nline =plt.plot([1, 2, 3, 4], [1, 4, 2, 3]) \\n\u4e09\u3001Figure \u7684\u7ec4\u6210\\n\u73b0\u5728\u6211\u4eec\u6765\u6df1\u2f0a\u770b\u2f00\u4e0b figure \u7684\u7ec4\u6210\u3002\u901a\u8fc7\u2f00\u5f20 figure \u89e3\u5256\u56fe\uff0c\u6211\u4eec\u53ef\u4ee5\u770b\u5230\u2f00\u4e2a\u5b8c\u6574\u7684 matplotlib \u56fe\u50cf\u901a\u5e38\u4f1a\u5305\u62ec\u4ee5\u4e0b\u56db\u4e2a\u5c42\u7ea7\uff0c\u8fd9\u4e9b\\n\u5c42\u7ea7\u4e5f\u88ab\u79f0\u4e3a\u5bb9\u5668\uff08 container \uff09\uff0c\u4e0b\u2f00\u8282\u4f1a\u8be6\u7ec6\u4ecb\u7ecd\u3002\u5728 matplotlib \u7684\u4e16\u754c\u4e2d\uff0c\u6211\u4eec\u5c06\u901a\u8fc7\u5404\u79cd\u547d\u4ee4\u2f45\u6cd5\u6765\u64cd\u7eb5\u56fe\u50cf\u4e2d\u7684\u6bcf\u2f00\u4e2a\u90e8\u5206\uff0c\\n\u4ece\u2f7d\u8fbe\u5230\u6570\u636e\u53ef\u89c6\u5316\u7684\u6700\u7ec8\u6548\u679c\uff0c\u2f00\u526f\u5b8c\u6574\u7684\u56fe\u50cf\u5b9e\u9645\u4e0a\u662f\u5404\u7c7b\u2f26\u5143\u7d20\u7684\u96c6\u5408\u3002\\nFigure\uff1a\u9876\u5c42\u7ea7\uff0c\u2f64\u6765\u5bb9\u7eb3\u6240\u6709\u7ed8\u56fe\u5143\u7d20\\uf03a Contents \\n\u2f00\u3001\u8ba4\u8bc6matplotlib\\n\u2f06\u3001\u2f00\u4e2a\u6700\u7b80\u5355\u7684\u7ed8\u56fe\u4f8b\u2f26\\n\u4e09\u3001Figure \u7684\u7ec4\u6210', metadata={'source': 'docs/matplotlib/\u7b2c\u4e00\u56de\uff1aMatplotlib\u521d\u76f8\u8bc6.pdf', 'page': 0})"]}, "execution_count": 54, "metadata": {}, "output_type": "execute_result"}], "source": ["docs_chinese[1]"]}, {"cell_type": "markdown", "id": "3a3a915d", "metadata": {}, "source": ["\u6211\u4eec\u53ef\u4ee5\u770b\u5230\u4e00\u79cd\u65b0\u7684\u5931\u8d25\u7684\u60c5\u51b5\u3002\n", "\n", "\u4e0b\u9762\u7684\u95ee\u9898\u8be2\u95ee\u4e86\u5173\u4e8e\u7b2c\u4e09\u8bb2\u7684\u95ee\u9898\uff0c\u4f46\u4e5f\u5305\u62ec\u4e86\u6765\u81ea\u5176\u4ed6\u8bb2\u7684\u7ed3\u679c\u3002"]}, {"cell_type": "code", "execution_count": 40, "id": "b19135e5", "metadata": {"height": 45, "tags": []}, "outputs": [], "source": ["question = \"what did they say about regression in the third lecture?\" # \"\u4ed6\u4eec\u5728\u7b2c\u4e09\u8bb2\u4e2d\u662f\u600e\u4e48\u8c08\u8bba\u56de\u5f52\u7684\uff1f\""]}, {"cell_type": "code", "execution_count": 41, "id": "d434942c", "metadata": {"height": 30, "tags": []}, "outputs": [], "source": ["docs = vectordb.similarity_search(question,k=5)"]}, {"cell_type": "code", "execution_count": 42, "id": "c2c5df59", "metadata": {"height": 47, "tags": []}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["{'source': 'docs/cs229_lectures/MachineLearning-Lecture03.pdf', 'page': 0}\n", "{'source': 'docs/cs229_lectures/MachineLearning-Lecture02.pdf', 'page': 2}\n", "{'source': 'docs/cs229_lectures/MachineLearning-Lecture03.pdf', 'page': 14}\n", "{'source': 'docs/cs229_lectures/MachineLearning-Lecture03.pdf', 'page': 4}\n", "{'source': 'docs/cs229_lectures/MachineLearning-Lecture02.pdf', 'page': 0}\n"]}], "source": ["for doc in docs:\n", " print(doc.metadata)"]}, {"cell_type": "code", "execution_count": 43, "id": "8e6cb50c", "metadata": {"height": 30, "tags": []}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["really makes a difference between a good so lution and amazing solution. And to give \n", "everyone to just how we do points assignments, or what is it that causes a solution to get \n", "full marks, or just how to write amazing so lutions. Becoming a grad er is usually a good \n", "way to do that. \n", "Graders are paid positions and you also get free food, and it's usually fun for us to sort of \n", "hang out for an evening and grade all the a ssignments. Okay, so I will send email. So \n", "don't email me yet if you want to be a grader. I'll send email to the entire class later with \n", "the administrative details and to solicit app lications. So you can email us back then, to \n", "apply, if you'd be interested in being a grader. \n", "Okay, any questions about that? All right, okay, so let's get started with today's material. \n", "So welcome back to the second lecture. What I want to do today is talk about linear \n", "regression, gradient descent, and the norma l equations. And I should also say, lecture \n", "notes have been posted online and so if some of the math I go over today, I go over rather \n", "quickly, if you want to see every equation wr itten out and work through the details more \n", "slowly yourself, go to the course homepage and download detailed lecture notes that \n", "pretty much describe all the mathematical, te chnical contents I'm going to go over today. \n", "Today, I'm also going to delve into a fair amount \u2013 some amount of linear algebra, and so\n"]}], "source": ["print(docs[4].page_content)"]}, {"cell_type": "code", "execution_count": 74, "id": "e0a7e9c8", "metadata": {}, "outputs": [], "source": ["question_chinese = \"\u4ed6\u4eec\u5728\u7b2c\u4e8c\u8bb2\u4e2d\u5bf9Figure\u8bf4\u4e86\u4e9b\u4ec0\u4e48\uff1f\" "]}, {"cell_type": "code", "execution_count": 75, "id": "62c0bfc6", "metadata": {}, "outputs": [], "source": ["docs_chinese = vectordb_chinese.similarity_search(question_chinese,k=5)"]}, {"cell_type": "code", "execution_count": 76, "id": "26bd586d", "metadata": {}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["{'source': 'docs/matplotlib/\u7b2c\u4e00\u56de\uff1aMatplotlib\u521d\u76f8\u8bc6.pdf', 'page': 0}\n", "{'source': 'docs/matplotlib/\u7b2c\u4e00\u56de\uff1aMatplotlib\u521d\u76f8\u8bc6.pdf', 'page': 0}\n", "{'source': 'docs/matplotlib/\u7b2c\u4e8c\u56de\uff1a\u827a\u672f\u753b\u7b14\u89c1\u4e7e\u5764.pdf', 'page': 9}\n", "{'source': 'docs/matplotlib/\u7b2c\u4e8c\u56de\uff1a\u827a\u672f\u753b\u7b14\u89c1\u4e7e\u5764.pdf', 'page': 10}\n", "{'source': 'docs/matplotlib/\u7b2c\u4e00\u56de\uff1aMatplotlib\u521d\u76f8\u8bc6.pdf', 'page': 1}\n"]}], "source": ["for doc_chinese in docs_chinese:\n", " print(doc_chinese.metadata)"]}, {"cell_type": "code", "execution_count": 77, "id": "71b6bbf3", "metadata": {}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["\u4e09\u3001\u5bf9\u8c61\u5bb9\u5668 - Object container\n", "\u5bb9\u5668\u4f1a\u5305\u542b\u2f00\u4e9b primitives\uff0c\u5e76\u4e14\u5bb9\u5668\u8fd8\u6709\u5b83\u2f83\u8eab\u7684\u5c5e\u6027\u3002\n", "\u2f50\u5982Axes Artist\uff0c\u5b83\u662f\u2f00\u79cd\u5bb9\u5668\uff0c\u5b83\u5305\u542b\u4e86\u5f88\u591a primitives\uff0c\u2f50\u5982Line2D\uff0cText\uff1b\u540c\u65f6\uff0c\u5b83\u4e5f\u6709\u2f83\u8eab\u7684\u5c5e\u6027\uff0c\u2f50\u5982 xscal\uff0c\u2f64\u6765\u63a7\u5236\n", "X\u8f74\u662flinear\u8fd8\u662flog\u7684\u3002\n", "1. Figure\u5bb9\u5668\n", "matplotlib.figure.Figure\u662fArtist\u6700\u9876\u5c42\u7684 container\u5bf9\u8c61\u5bb9\u5668\uff0c\u5b83\u5305\u542b\u4e86\u56fe\u8868\u4e2d\u7684\u6240\u6709\u5143\u7d20\u3002\u2f00\u5f20\u56fe\u8868\u7684\u80cc\u666f\u5c31\u662f\u5728\n", "Figure.patch\u7684\u2f00\u4e2a\u77e9\u5f62 Rectangle\u3002\n", "\u5f53\u6211\u4eec\u5411\u56fe\u8868\u6dfb\u52a0 Figure.add_subplot()\u6216\u8005Figure.add_axes()\u5143\u7d20\u65f6\uff0c\u8fd9\u4e9b\u90fd\u4f1a\u88ab\u6dfb\u52a0\u5230 Figure.axes\u5217\u8868\u4e2d\u3002\n", "fig = plt.figure()\n", "ax1 = fig.add_subplot(211) # \u4f5c\u2f00\u5e452*1 \u7684\u56fe\uff0c\u9009\u62e9\u7b2c 1 \u4e2a\u2f26\u56fe\n", "ax2 = fig.add_axes([0.1, 0.1, 0.7, 0.3]) # \u4f4d\u7f6e\u53c2\u6570\uff0c\u56db\u4e2a\u6570\u5206\u522b\u4ee3\u8868\u4e86\n", "(left,bottom,width,height)\n", "print(ax1) \n", "print(fig.axes) # fig.axes \u4e2d\u5305\u542b\u4e86 subplot \u548c axes \u4e24\u4e2a\u5b9e\u4f8b , \u521a\u521a\u6dfb\u52a0\u7684\n", "AxesSubplot(0.125,0.536818;0.775x0.343182)\n", "[, ]\n", "\u7531\u4e8eFigure\u7ef4\u6301\u4e86current axes\uff0c\u56e0\u6b64\u4f60\u4e0d\u5e94\u8be5\u2f3f\u52a8\u7684\u4ece Figure.axes\u5217\u8868\u4e2d\u6dfb\u52a0\u5220\u9664\u5143\u7d20\uff0c\u2f7d\u662f\u8981\u901a\u8fc7 Figure.add_subplot()\u3001\n", "Figure.add_axes()\u6765\u6dfb\u52a0\u5143\u7d20\uff0c\u901a\u8fc7 Figure.delaxes()\u6765\u5220\u9664\u5143\u7d20\u3002\u4f46\u662f\u4f60\u53ef\u4ee5\u8fed\u4ee3\u6216\u8005\u8bbf\u95ee Figure.axes\u4e2d\u7684Axes\uff0c\u7136\u540e\u4fee\u6539\u8fd9\u4e2a\n", "Axes\u7684\u5c5e\u6027\u3002\n", "\u2f50\u5982\u4e0b\u2faf\u7684\u904d\u5386 axes \u2fa5\u7684\u5185\u5bb9\uff0c\u5e76\u4e14\u6dfb\u52a0\u2f79\u683c\u7ebf\uff1a\n", "fig = plt.figure()\n", "ax1 = fig.add_subplot(211)\n", "for ax in fig.axes:\n", " ax.grid(True)\n", "Figure\u4e5f\u6709\u5b83\u2f83\u2f30\u7684 text\u3001line \u3001 patch \u3001 image\u3002\u4f60\u53ef\u4ee5\u76f4\u63a5\u901a\u8fc7 add primitive\u8bed\u53e5\u76f4\u63a5\u6dfb\u52a0\u3002\u4f46\u662f\u6ce8\u610f Figure\u9ed8\u8ba4\u7684\u5750\u6807\u7cfb\u662f\u4ee5\u50cf\n", "\u7d20\u4e3a\u5355\u4f4d\uff0c\u4f60\u53ef\u80fd\u9700\u8981\u8f6c\u6362\u6210 figure \u5750\u6807\u7cfb\uff1a (0,0) \u8868\u793a\u5de6\u4e0b\u70b9\uff0c (1,1) \u8868\u793a\u53f3\u4e0a\u70b9\u3002\n", "Figure\u5bb9\u5668\u7684\u5e38\u2ec5\u5c5e\u6027\uff1a\n", "Figure.patch\u5c5e\u6027\uff1aFigure \u7684\u80cc\u666f\u77e9\u5f62\n", "Figure.axes\u5c5e\u6027\uff1a\u2f00\u4e2a Axes \u5b9e\u4f8b\u7684\u5217\u8868\uff08\u5305\u62ec Subplot)\n", "Figure.images\u5c5e\u6027\uff1a\u2f00\u4e2a FigureImages patch \u5217\u8868\n", "Figure.lines\u5c5e\u6027\uff1a\u2f00\u4e2a Line2D \u5b9e\u4f8b\u7684\u5217\u8868\uff08\u5f88\u5c11\u4f7f\u2f64\uff09\n", "Figure.legends\u5c5e\u6027\uff1a\u2f00\u4e2a Figure Legend \u5b9e\u4f8b\u5217\u8868\uff08\u4e0d\u540c\u4e8e Axes.legends)\n", "Figure.texts\u5c5e\u6027\uff1a\u2f00\u4e2a Figure Text \u5b9e\u4f8b\u5217\u8868\n"]}], "source": ["print(docs_chinese[2].page_content)"]}, {"cell_type": "markdown", "id": "c3dbca56", "metadata": {}, "source": ["\u5728\u4e0b\u4e00\u8bb2\u4e2d\u8ba8\u8bba\u7684\u65b9\u6cd5\u53ef\u4ee5\u7528\u6765\u89e3\u51b3\u8fd9\u4e24\u4e2a\u95ee\u9898\uff01"]}], "metadata": {"kernelspec": {"display_name": "auto-gpt", "language": "python", "name": "python3"}, "language_info": {"codemirror_mode": {"name": "ipython", "version": 3}, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.16"}}, "nbformat": 4, "nbformat_minor": 5}
\ No newline at end of file
diff --git "a/content/\345\277\205\344\277\256\345\233\233-LangChain Chat with Your Data/5.\346\243\200\347\264\242 retrieval.ipynb" "b/content/\345\277\205\344\277\256\345\233\233-LangChain Chat with Your Data/5.\346\243\200\347\264\242 retrieval.ipynb"
index 5aec2981..62200110 100644
--- "a/content/\345\277\205\344\277\256\345\233\233-LangChain Chat with Your Data/5.\346\243\200\347\264\242 retrieval.ipynb"
+++ "b/content/\345\277\205\344\277\256\345\233\233-LangChain Chat with Your Data/5.\346\243\200\347\264\242 retrieval.ipynb"
@@ -1 +1 @@
-{"cells":[{"attachments":{},"cell_type":"markdown","id":"0689733d","metadata":{},"source":["# 第五章 检索(Retrieval)\n","\n"," - [一、向量数据库检索](#一、向量数据库检索)\n"," - [1.1 相似性搜索](#1.1-相似性搜索)\n"," - [1.2 解决多样性:最大边际相关性(MMR)](#1.2-解决多样性:最大边际相关性(MMR))\n"," - [1.3 解决特殊性:使用元数据](#1.3-解决特殊性:使用元数据)\n"," - [1.4 解决特殊性:在元数据中使用自查询检索器](#1.4-解决特殊性:在元数据中使用自查询检索器)\n"," - [1.5 其他技巧:压缩](#1.5-其他技巧:压缩)\n"," - [二、结合各种技术](#二、结合各种技术)\n"," - [三、其他类型的检索](#三、其他类型的检索)\n"]},{"attachments":{},"cell_type":"markdown","id":"d12fbd74","metadata":{},"source":["\n","检索是我们的检索增强生成(RAG)流程的核心。\n","\n","让我们获得前面课程存储的向量数据库(`VectorDB`)。"]},{"attachments":{},"cell_type":"markdown","id":"ed2569c6","metadata":{},"source":["## 一、向量数据库检索"]},{"attachments":{},"cell_type":"markdown","id":"651a10db","metadata":{},"source":["在当前文件夹下新建`.env`文件,内容为`OPENAI_API_KEY = \"sk-...\"`\n","\n","本章节需要使用`lark`包,运行以下命令安装"]},{"cell_type":"code","execution_count":1,"id":"51b15e5c-9b92-4d40-a149-b56335d330d9","metadata":{"tags":[]},"outputs":[],"source":["import os\n","import openai\n","import sys\n","sys.path.append('../..')\n","\n","from dotenv import load_dotenv, find_dotenv\n","_ = load_dotenv(find_dotenv()) # read local .env file\n","\n","openai.api_key = os.environ['OPENAI_API_KEY']\n"]},{"attachments":{},"cell_type":"markdown","id":"c2d552e1","metadata":{},"source":["### 1.1 相似性搜索"]},{"cell_type":"code","execution_count":2,"id":"fe368042","metadata":{"tags":[]},"outputs":[],"source":["from langchain.vectorstores import Chroma\n","from langchain.embeddings.openai import OpenAIEmbeddings\n","persist_directory = 'docs/chroma/cs229_lectures/'\n","persist_directory_chinese = 'docs/chroma/matplotlib/'"]},{"attachments":{},"cell_type":"markdown","id":"5ba63e21","metadata":{},"source":["将上节课所保存的向量数据库(`VectorDB`)加载进来"]},{"cell_type":"code","execution_count":3,"id":"a0189dc5","metadata":{"tags":[]},"outputs":[{"name":"stderr","output_type":"stream","text":["/Users/lta/anaconda3/envs/chat_data/lib/python3.11/site-packages/langchain_core/_api/deprecation.py:119: LangChainDeprecationWarning: The class `OpenAIEmbeddings` was deprecated in LangChain 0.0.9 and will be removed in 0.3.0. An updated version of the class exists in the langchain-openai package and should be used instead. To use it run `pip install -U langchain-openai` and import as `from langchain_openai import OpenAIEmbeddings`.\n"," warn_deprecated(\n"]}],"source":["embedding = OpenAIEmbeddings(model='text-embedding-3-small')"]},{"cell_type":"code","execution_count":4,"id":"2be10170","metadata":{},"outputs":[],"source":["vectordb = Chroma(\n"," persist_directory=persist_directory,\n"," embedding_function=embedding\n",")"]},{"cell_type":"code","execution_count":5,"id":"3659e0f7","metadata":{"tags":[]},"outputs":[{"name":"stdout","output_type":"stream","text":["209\n"]}],"source":["print(vectordb._collection.count())"]},{"cell_type":"code","execution_count":6,"id":"a01ab000","metadata":{},"outputs":[],"source":["vectordb_chinese = Chroma(\n"," persist_directory=persist_directory_chinese,\n"," embedding_function=embedding\n",")"]},{"cell_type":"code","execution_count":7,"id":"a6998a03","metadata":{},"outputs":[{"name":"stdout","output_type":"stream","text":["27\n"]}],"source":["print(vectordb_chinese._collection.count())"]},{"attachments":{},"cell_type":"markdown","id":"9ae4fdd8","metadata":{},"source":["让我们现在来看看最大边际相关性的例子。因此,我们将从下面示例中加载有关蘑菇的信息。\n","\n","让我们现在运行它与MMR。让我们传入k等于2。我们仍然希望返回两个文档,但让我们设置获取k等于3,其中我们最初获取所有三个文档。我们现在可以看到,我们检索的文档中返回了有毒的信息。"]},{"cell_type":"code","execution_count":8,"id":"a807c758","metadata":{"tags":[]},"outputs":[],"source":["texts = [\n"," \"\"\"The Amanita phalloides has a large and imposing epigeous (aboveground) fruiting body (basidiocarp).\"\"\",\n"," \"\"\"A mushroom with a large fruiting body is the Amanita phalloides. Some varieties are all-white.\"\"\",\n"," \"\"\"A. phalloides, a.k.a Death Cap, is one of the most poisonous of all known mushrooms.\"\"\",\n","]"]},{"cell_type":"code","execution_count":9,"id":"b110cceb","metadata":{},"outputs":[],"source":["texts_chinese = [\n"," \"\"\"毒鹅膏菌(Amanita phalloides)具有大型且引人注目的地上(epigeous)子实体(basidiocarp)\"\"\",\n"," \"\"\"一种具有大型子实体的蘑菇是毒鹅膏菌(Amanita phalloides)。某些品种全白。\"\"\",\n"," \"\"\"A. phalloides,又名死亡帽,是已知所有蘑菇中最有毒的一种。\"\"\",\n","]"]},{"attachments":{},"cell_type":"markdown","id":"84cd5f1c","metadata":{},"source":["对于这个例子,我们将创建一个小数据库,我们可以作为一个示例来使用。"]},{"cell_type":"code","execution_count":10,"id":"715d54f3","metadata":{"tags":[]},"outputs":[],"source":["smalldb = Chroma.from_texts(texts, embedding=embedding)"]},{"cell_type":"code","execution_count":11,"id":"305e1714","metadata":{},"outputs":[],"source":["smalldb_chinese = Chroma.from_texts(texts_chinese, embedding=embedding)"]},{"attachments":{},"cell_type":"markdown","id":"239a8d95","metadata":{},"source":["下面是我们对于这个示例所提出的问题"]},{"cell_type":"code","execution_count":12,"id":"9a37b5a5","metadata":{"tags":[]},"outputs":[],"source":["question = \"Tell me about all-white mushrooms with large fruiting bodies\""]},{"cell_type":"code","execution_count":13,"id":"92312e57","metadata":{},"outputs":[],"source":["question_chinese = \"告诉我关于具有大型子实体的全白色蘑菇的信息\""]},{"attachments":{},"cell_type":"markdown","id":"d3224a6d","metadata":{},"source":["现在,我们可以运行一个相似性搜索,设置k=2,只返回两个最相关的文档。\n","\n","我们可以看到,没有提到它是有毒的事实。"]},{"cell_type":"code","execution_count":14,"id":"24e3b025","metadata":{"tags":[]},"outputs":[{"data":{"text/plain":["[Document(page_content='A mushroom with a large fruiting body is the Amanita phalloides. Some varieties are all-white.'),\n"," Document(page_content='The Amanita phalloides has a large and imposing epigeous (aboveground) fruiting body (basidiocarp).')]"]},"execution_count":14,"metadata":{},"output_type":"execute_result"}],"source":["smalldb.similarity_search(question, k=2)"]},{"cell_type":"code","execution_count":15,"id":"d4c5a47d","metadata":{},"outputs":[{"data":{"text/plain":["[Document(page_content='一种具有大型子实体的蘑菇是毒鹅膏菌(Amanita phalloides)。某些品种全白。'),\n"," Document(page_content='A mushroom with a large fruiting body is the Amanita phalloides. Some varieties are all-white.')]"]},"execution_count":15,"metadata":{},"output_type":"execute_result"}],"source":["smalldb_chinese.similarity_search(question_chinese, k=2)"]},{"attachments":{},"cell_type":"markdown","id":"bbb0ea94","metadata":{},"source":["现在,让我们运行最大边际相关性(MMR)。\n","\n","设置k=2,因为我们仍然希望返回两个文档。设置fetch_k=3,fetch_k是我们最初获取的所有文档(3个)。"]},{"cell_type":"code","execution_count":16,"id":"4daa6c0d","metadata":{"tags":[]},"outputs":[{"data":{"text/plain":["[Document(page_content='A mushroom with a large fruiting body is the Amanita phalloides. Some varieties are all-white.'),\n"," Document(page_content='一种具有大型子实体的蘑菇是毒鹅膏菌(Amanita phalloides)。某些品种全白。')]"]},"execution_count":16,"metadata":{},"output_type":"execute_result"}],"source":["smalldb.max_marginal_relevance_search(question,k=2, fetch_k=3)"]},{"cell_type":"code","execution_count":17,"id":"e15521d2","metadata":{},"outputs":[{"data":{"text/plain":["[Document(page_content='A mushroom with a large fruiting body is the Amanita phalloides. Some varieties are all-white.'),\n"," Document(page_content='一种具有大型子实体的蘑菇是毒鹅膏菌(Amanita phalloides)。某些品种全白。')]"]},"execution_count":17,"metadata":{},"output_type":"execute_result"}],"source":["smalldb_chinese.max_marginal_relevance_search(question,k=2, fetch_k=3)"]},{"attachments":{},"cell_type":"markdown","id":"e87c5f91","metadata":{},"source":["我们现在可以看到,我们检索的文档中返回了有毒的信息。"]},{"attachments":{},"cell_type":"markdown","id":"5a29e8c9","metadata":{},"source":["### 1.2 解决多样性:最大边际相关性(MMR)"]},{"attachments":{},"cell_type":"markdown","id":"a2b5c4ae","metadata":{},"source":["\n","我们刚刚通过一个示例引出了一个问题:如何加强搜索结果的多样性。\n"," \n","最大边际相关性(`Maximum marginal relevance`)试图在查询的相关性和结果的多样性之间实现两全其美。"]},{"attachments":{},"cell_type":"markdown","id":"2360545c","metadata":{},"source":["让我们回到上一节课的一个例子,当我们通过问题对向量数据库进行相似性搜索后\n","\n","我们可以看看前两个文档,只看前几个字符,可以看到它们是相同的。"]},{"cell_type":"code","execution_count":18,"id":"9bb2c0a9","metadata":{"tags":[]},"outputs":[],"source":["question = \"what did they say about matlab?\"\n","docs_ss = vectordb.similarity_search(question,k=3)"]},{"cell_type":"code","execution_count":19,"id":"f07f8793","metadata":{"tags":[]},"outputs":[{"data":{"text/plain":["'those homeworks will be done in either MATLA B or in Octave, which is sort of — I \\nknow some people '"]},"execution_count":19,"metadata":{},"output_type":"execute_result"}],"source":["docs_ss[0].page_content[:100]"]},{"cell_type":"code","execution_count":20,"id":"e9f7e165","metadata":{"tags":[]},"outputs":[{"data":{"text/plain":["'those homeworks will be done in either MATLA B or in Octave, which is sort of — I \\nknow some people '"]},"execution_count":20,"metadata":{},"output_type":"execute_result"}],"source":["docs_ss[1].page_content[:100]"]},{"cell_type":"code","execution_count":21,"id":"e8e142eb","metadata":{},"outputs":[],"source":["question_chinese = \"Matplotlib是什么?\"\n","docs_ss_chinese = vectordb_chinese.similarity_search(question_chinese,k=3)"]},{"cell_type":"code","execution_count":22,"id":"cf642f66","metadata":{},"outputs":[{"data":{"text/plain":["'第⼀回:Matplotlib 初相识\\n⼀、认识matplotlib\\nMatplotlib 是⼀个 Python 2D 绘图库,能够以多种硬拷⻉格式和跨平台的交互式环境⽣成出版物质量的图形,⽤来绘制各种'"]},"execution_count":22,"metadata":{},"output_type":"execute_result"}],"source":["docs_ss_chinese[0].page_content[:100]"]},{"cell_type":"code","execution_count":23,"id":"1e9f5cfe","metadata":{},"outputs":[{"data":{"text/plain":["'第⼀回:Matplotlib 初相识\\n⼀、认识matplotlib\\nMatplotlib 是⼀个 Python 2D 绘图库,能够以多种硬拷⻉格式和跨平台的交互式环境⽣成出版物质量的图形,⽤来绘制各种'"]},"execution_count":23,"metadata":{},"output_type":"execute_result"}],"source":["docs_ss_chinese[1].page_content[:100]"]},{"attachments":{},"cell_type":"markdown","id":"4c4ca1b6","metadata":{},"source":["注意:使用`MMR`所得出结果的差异。"]},{"cell_type":"code","execution_count":24,"id":"222234c5","metadata":{"tags":[]},"outputs":[],"source":["docs_mmr = vectordb.max_marginal_relevance_search(question,k=3)"]},{"cell_type":"code","execution_count":25,"id":"408935bc","metadata":{},"outputs":[],"source":["docs_mmr_chinese = vectordb_chinese.max_marginal_relevance_search(question_chinese,k=3)"]},{"attachments":{},"cell_type":"markdown","id":"9076db81","metadata":{},"source":["当我们运行MMR后得到结果时,我们可以看到第一个与之前的相同,因为那是最相似的。"]},{"cell_type":"code","execution_count":26,"id":"93b20226","metadata":{"tags":[]},"outputs":[{"data":{"text/plain":["'those homeworks will be done in either MATLA B or in Octave, which is sort of — I \\nknow some people '"]},"execution_count":26,"metadata":{},"output_type":"execute_result"}],"source":["docs_mmr[0].page_content[:100]"]},{"cell_type":"code","execution_count":27,"id":"d0acfaab","metadata":{},"outputs":[{"data":{"text/plain":["'第⼀回:Matplotlib 初相识\\n⼀、认识matplotlib\\nMatplotlib 是⼀个 Python 2D 绘图库,能够以多种硬拷⻉格式和跨平台的交互式环境⽣成出版物质量的图形,⽤来绘制各种'"]},"execution_count":27,"metadata":{},"output_type":"execute_result"}],"source":["docs_mmr_chinese[0].page_content[:100]"]},{"attachments":{},"cell_type":"markdown","id":"7a93743f","metadata":{},"source":["但是当我们进行到第二个时,我们可以看到它是不同的。\n","\n","它在回应中获得了一些多样性。"]},{"cell_type":"code","execution_count":28,"id":"17d39762","metadata":{"tags":[]},"outputs":[{"data":{"text/plain":["\"mathematical work, he feels like he's disc overing truth and beauty in the universe. And \\nhe says it\""]},"execution_count":28,"metadata":{},"output_type":"execute_result"}],"source":["docs_mmr[1].page_content[:100]"]},{"cell_type":"code","execution_count":29,"id":"93d3206c","metadata":{},"outputs":[{"data":{"text/plain":["'fig, ax = plt.subplots(figsize=(4,3))\\nax.grid(True)\\n使⽤ set_xscale 可以设置坐标轴的规度(指对数坐标等)\\nfig, axs = plt.'"]},"execution_count":29,"metadata":{},"output_type":"execute_result"}],"source":["docs_mmr_chinese[1].page_content[:100]"]},{"attachments":{},"cell_type":"markdown","id":"b2b909bc","metadata":{},"source":["### 1.3 解决特殊性:使用元数据"]},{"attachments":{},"cell_type":"markdown","id":"7b63c5ee","metadata":{},"source":["\n","在上一节课中,我们展示了一个问题,是询问了关于文档中某一讲的问题,但得到的结果中也包括了来自其他讲的结果。\n","\n","为了解决这一问题,很多向量数据库都支持对`metadata`的操作。\n","\n","`metadata`为每个嵌入的块(embedded chunk)提供上下文。"]},{"cell_type":"code","execution_count":30,"id":"3c1a60b2","metadata":{"tags":[]},"outputs":[],"source":["question = \"what did they say about regression in the third lecture?\""]},{"cell_type":"code","execution_count":31,"id":"ba98df3c","metadata":{},"outputs":[],"source":["question_chinese = \"他们在第二讲中对Figure说了些什么?\" "]},{"attachments":{},"cell_type":"markdown","id":"3873525e","metadata":{},"source":["现在,我们以手动的方式来解决这个问题,我们会指定一个元数据过滤器`filter`"]},{"cell_type":"code","execution_count":32,"id":"a8612840","metadata":{"tags":[]},"outputs":[],"source":["docs = vectordb.similarity_search(\n"," question,\n"," k=3,\n"," filter={\"source\":\"docs/cs229_lectures/MachineLearning-Lecture03.pdf\"}\n",")"]},{"cell_type":"code","execution_count":33,"id":"b46c7e76","metadata":{},"outputs":[],"source":["docs_chinese = vectordb_chinese.similarity_search(\n"," question_chinese,\n"," k=3,\n"," filter={\"source\":\"docs/matplotlib/第二回:艺术画笔见乾坤.pdf\"}\n",")"]},{"attachments":{},"cell_type":"markdown","id":"869aee28","metadata":{},"source":["接下来,我们可以看到结果都来自对应的章节"]},{"cell_type":"code","execution_count":34,"id":"97031876","metadata":{"tags":[]},"outputs":[{"name":"stdout","output_type":"stream","text":["{'page': 0, 'source': 'docs/cs229_lectures/MachineLearning-Lecture03.pdf'}\n","{'page': 14, 'source': 'docs/cs229_lectures/MachineLearning-Lecture03.pdf'}\n","{'page': 6, 'source': 'docs/cs229_lectures/MachineLearning-Lecture03.pdf'}\n"]}],"source":["for d in docs:\n"," print(d.metadata)"]},{"cell_type":"code","execution_count":35,"id":"2708f6ae","metadata":{},"outputs":[{"name":"stdout","output_type":"stream","text":["{'page': 9, 'source': 'docs/matplotlib/第二回:艺术画笔见乾坤.pdf'}\n","{'page': 0, 'source': 'docs/matplotlib/第二回:艺术画笔见乾坤.pdf'}\n","{'page': 3, 'source': 'docs/matplotlib/第二回:艺术画笔见乾坤.pdf'}\n"]}],"source":["for d in docs_chinese:\n"," print(d.metadata)\n"," "]},{"attachments":{},"cell_type":"markdown","id":"5e299f8e","metadata":{},"source":["当然,我们不能每次都采用手动的方式来解决这个问题,这会显得不够智能\n","\n","下一小节将要展示通过LLM来解决这个问题"]},{"attachments":{},"cell_type":"markdown","id":"ccc2d784","metadata":{},"source":["### 1.4 解决特殊性:在元数据中使用自查询检索器"]},{"attachments":{},"cell_type":"markdown","id":"82ef44b6","metadata":{},"source":["我们有一个有趣的挑战:我们通常希望从查询本身来推断元数据。\n","\n","为了解决这个问题,我们可以使用SelfQueryRetriever,它使用LLM来提取:\n"," \n","1. 用于向量搜索的查询(`query`)字符串,即:问题\n","2. 要一起传入的元数据过滤器\n","\n","大多数向量数据库支持元数据过滤器,因此不需要任何新的数据库及索引。"]},{"cell_type":"code","execution_count":36,"id":"b1d06084","metadata":{"tags":[]},"outputs":[],"source":["from langchain_community.llms.openai import OpenAI\n","from langchain.retrievers.self_query.base import SelfQueryRetriever\n","from langchain.chains.query_constructor.base import AttributeInfo"]},{"cell_type":"code","execution_count":37,"id":"869c27c0","metadata":{},"outputs":[{"name":"stderr","output_type":"stream","text":["/Users/lta/anaconda3/envs/chat_data/lib/python3.11/site-packages/langchain_core/_api/deprecation.py:119: LangChainDeprecationWarning: The class `OpenAI` was deprecated in LangChain 0.0.10 and will be removed in 0.3.0. An updated version of the class exists in the langchain-openai package and should be used instead. To use it run `pip install -U langchain-openai` and import as `from langchain_openai import OpenAI`.\n"," warn_deprecated(\n"]}],"source":["llm = OpenAI(temperature=0)"]},{"attachments":{},"cell_type":"markdown","id":"acd194c5","metadata":{},"source":["`AttributeInfo`是我们可以指定元数据中的不同字段以及它们对应的位置。\n","\n","在元数据中,我们只有两个字段,`source`和`page`。\n","\n","我们将填写每个属性的名称、描述和类型的描述。\n","\n","这些信息实际上将被传递给LLM,所以需要尽可能详细地描述。"]},{"cell_type":"code","execution_count":38,"id":"0aa5e698","metadata":{"tags":[]},"outputs":[],"source":["metadata_field_info = [\n"," AttributeInfo(\n"," name=\"source\",\n"," description=\"The lecture the chunk is from, should be one of `docs/cs229_lectures/MachineLearning-Lecture01.pdf`, `docs/cs229_lectures/MachineLearning-Lecture02.pdf`, or `docs/cs229_lectures/MachineLearning-Lecture03.pdf`\",\n"," type=\"string\",\n"," ),\n"," AttributeInfo(\n"," name=\"page\",\n"," description=\"The page from the lecture\",\n"," type=\"integer\",\n"," ),\n","]"]},{"cell_type":"code","execution_count":39,"id":"544ad7c1","metadata":{},"outputs":[],"source":["metadata_field_info_chinese = [\n"," AttributeInfo(\n"," name=\"source\",\n"," description=\"讲义来源于 `docs/matplotlib/第一回:Matplotlib初相识.pdf`, `docs/matplotlib/第二回:艺术画笔见乾坤.pdf`, or `docs/matplotlib/第三回:布局格式定方圆.pdf` 的其中之一\",\n"," type=\"string\",\n"," ),\n"," AttributeInfo(\n"," name=\"page\",\n"," description=\"讲义的那一页\",\n"," type=\"integer\",\n"," ),\n","]"]},{"cell_type":"code","execution_count":40,"id":"e7906c15","metadata":{"tags":[]},"outputs":[],"source":["document_content_description = \"Lecture notes\"\n","retriever = SelfQueryRetriever.from_llm(\n"," llm,\n"," vectordb,\n"," document_content_description,\n"," metadata_field_info,\n"," verbose=True\n",")"]},{"cell_type":"code","execution_count":41,"id":"d5b99571","metadata":{},"outputs":[],"source":["document_content_description_chinese = \"课堂讲义\"\n","retriever_chinese = SelfQueryRetriever.from_llm(\n"," llm,\n"," vectordb_chinese,\n"," document_content_description_chinese,\n"," metadata_field_info_chinese,\n"," verbose=True\n",")"]},{"cell_type":"code","execution_count":42,"id":"79d781b9","metadata":{"tags":[]},"outputs":[],"source":["question = \"what did they say about regression in the third lecture?\""]},{"cell_type":"code","execution_count":43,"id":"8d9b7e18","metadata":{},"outputs":[],"source":["question_chinese = \"他们在第二讲中对Figure说了些什么?\" "]},{"cell_type":"code","execution_count":44,"id":"1d4f9f7d","metadata":{"tags":[]},"outputs":[{"name":"stderr","output_type":"stream","text":["/Users/lta/anaconda3/envs/chat_data/lib/python3.11/site-packages/langchain_core/_api/deprecation.py:119: LangChainDeprecationWarning: The method `BaseRetriever.get_relevant_documents` was deprecated in langchain-core 0.1.46 and will be removed in 0.3.0. Use invoke instead.\n"," warn_deprecated(\n"]}],"source":["docs = retriever.get_relevant_documents(question)"]},{"cell_type":"code","execution_count":45,"id":"ea39a97e","metadata":{},"outputs":[],"source":["docs_chinese = retriever_chinese.get_relevant_documents(question_chinese)"]},{"cell_type":"code","execution_count":46,"id":"db04374e","metadata":{"tags":[]},"outputs":[{"name":"stdout","output_type":"stream","text":["{'page': 10, 'source': 'docs/cs229_lectures/MachineLearning-Lecture03.pdf'}\n","{'page': 11, 'source': 'docs/cs229_lectures/MachineLearning-Lecture03.pdf'}\n","{'page': 6, 'source': 'docs/cs229_lectures/MachineLearning-Lecture03.pdf'}\n","{'page': 2, 'source': 'docs/cs229_lectures/MachineLearning-Lecture03.pdf'}\n"]}],"source":["for d in docs:\n"," print(d.metadata)"]},{"cell_type":"code","execution_count":47,"id":"143061f5","metadata":{},"outputs":[],"source":["for d in docs_chinese:\n"," print(d.metadata)"]},{"attachments":{},"cell_type":"markdown","id":"297b8168","metadata":{},"source":["### 1.5 其他技巧:压缩"]},{"attachments":{},"cell_type":"markdown","id":"564144da","metadata":{},"source":["另一种提高检索到的文档质量的方法是压缩。\n","\n","与查询最相关的信息可能隐藏在具有大量不相关文本的文档中。\n","\n","在应用程序中传递完整的文档可能会导致更昂贵的LLM调用和更差的响应。\n","\n","上下文压缩就是为了解决这个问题。"]},{"cell_type":"code","execution_count":48,"id":"a060cf74","metadata":{"tags":[]},"outputs":[],"source":["from langchain.retrievers import ContextualCompressionRetriever\n","from langchain.retrievers.document_compressors import LLMChainExtractor"]},{"cell_type":"code","execution_count":49,"id":"038649c8","metadata":{"tags":[]},"outputs":[],"source":["def pretty_print_docs(docs):\n"," print(f\"\\n{'-' * 100}\\n\".join([f\"Document {i+1}:\\n\\n\" + d.page_content for i, d in enumerate(docs)]))"]},{"cell_type":"code","execution_count":50,"id":"fc686cf2","metadata":{"tags":[]},"outputs":[],"source":["llm = OpenAI(temperature=0)\n","compressor = LLMChainExtractor.from_llm(llm) # 压缩器"]},{"cell_type":"code","execution_count":51,"id":"82794397","metadata":{"tags":[]},"outputs":[],"source":["compression_retriever = ContextualCompressionRetriever(\n"," base_compressor=compressor,\n"," base_retriever=vectordb.as_retriever()\n",")"]},{"cell_type":"code","execution_count":52,"id":"915598f8","metadata":{},"outputs":[],"source":["compression_retriever_chinese = ContextualCompressionRetriever(\n"," base_compressor=compressor,\n"," base_retriever=vectordb_chinese.as_retriever()\n",")"]},{"cell_type":"code","execution_count":53,"id":"cde86848","metadata":{"tags":[]},"outputs":[{"name":"stdout","output_type":"stream","text":["Document 1:\n","\n","- \"those homeworks will be done in either MATLA B or in Octave\"\n","- \"I know some people call it a free ve rsion of MATLAB\"\n","- \"MATLAB is I guess part of the programming language that makes it very easy to write codes using matrices, to write code for numerical routines, to move data around, to plot data.\"\n","- \"there's also a software package called Octave that you can download for free off the Internet.\"\n","- \"it has somewhat fewer features than MATLAB, but it's free, and for the purposes of this class, it will work for just about everything.\"\n","- \"once a colleague of mine at a different university, not at Stanford, actually teaches another machine learning course.\"\n","----------------------------------------------------------------------------------------------------\n","Document 2:\n","\n","- \"those homeworks will be done in either MATLA B or in Octave\"\n","- \"I know some people call it a free ve rsion of MATLAB\"\n","- \"MATLAB is I guess part of the programming language that makes it very easy to write codes using matrices, to write code for numerical routines, to move data around, to plot data.\"\n","- \"there's also a software package called Octave that you can download for free off the Internet.\"\n","- \"it has somewhat fewer features than MATLAB, but it's free, and for the purposes of this class, it will work for just about everything.\"\n","- \"once a colleague of mine at a different university, not at Stanford, actually teaches another machine learning course.\"\n","----------------------------------------------------------------------------------------------------\n","Document 3:\n","\n","\"Oh, it was the MATLAB.\"\n","----------------------------------------------------------------------------------------------------\n","Document 4:\n","\n","\"Oh, it was the MATLAB.\"\n"]}],"source":["question = \"what did they say about matlab?\"\n","compressed_docs = compression_retriever.get_relevant_documents(question)\n","pretty_print_docs(compressed_docs)"]},{"cell_type":"code","execution_count":54,"id":"39726b24","metadata":{},"outputs":[{"name":"stdout","output_type":"stream","text":["Document 1:\n","\n","Matplotlib 是⼀个 Python 2D 绘图库,能够以多种硬拷⻉格式和跨平台的交互式环境⽣成出版物质量的图形,⽤来绘制各种静态,动态,交互式的图表。\n","----------------------------------------------------------------------------------------------------\n","Document 2:\n","\n","Matplotlib 是⼀个 Python 2D 绘图库,能够以多种硬拷⻉格式和跨平台的交互式环境⽣成出版物质量的图形,⽤来绘制各种静态,动态,交互式的图表。\n","----------------------------------------------------------------------------------------------------\n","Document 3:\n","\n","Axes:matplotlib 宇宙的核⼼,容纳了⼤量元素⽤来构造⼀幅幅⼦图,⼀个 figure 可以由⼀个或多个⼦图组成\n","Axis:axes的下属层级,⽤于处理所有和坐标轴,⽹格有关的元素\n","Tick:axis的下属层级,⽤来处理所有和刻度有关的元素\n","四、两种绘图接⼝\n","matplotlib 提供了两种最常⽤的绘图接⼝\n","----------------------------------------------------------------------------------------------------\n","Document 4:\n","\n","Axes:matplotlib 宇宙的核⼼,容纳了⼤量元素⽤来构造⼀幅幅⼦图,⼀个 figure 可以由⼀个或多个⼦图组成\n","Axis:axes的下属层级,⽤于处理所有和坐标轴,⽹格有关的元素\n","Tick:axis的下属层级,⽤来处理所有和刻度有关的元素\n","四、两种绘图接⼝\n","matplotlib 提供了两种最常⽤的绘图接⼝\n"]}],"source":["question_chinese = \"Matplotlib是什么?\"\n","compressed_docs_chinese = compression_retriever_chinese.get_relevant_documents(question_chinese)\n","pretty_print_docs(compressed_docs_chinese)"]},{"attachments":{},"cell_type":"markdown","id":"049b2601","metadata":{},"source":["现在当我们提出问题后,查看结果文档\n","\n","我们可以看到两件事。\n","\n","1. 它们比正常文档短很多\n","2. 仍然有一些重复的东西,这是因为在底层我们使用的是语义搜索算法。\n","\n","这就是我们在本课程前面使用MMR解决的问题。\n","\n","这是一个很好的例子,你可以结合各种技术得到最好的可能结果。"]},{"attachments":{},"cell_type":"markdown","id":"82c4fc4d","metadata":{},"source":["## 二、结合各种技术"]},{"attachments":{},"cell_type":"markdown","id":"54432975","metadata":{},"source":["为了做到这一点,我们在从向量数据库创建检索器时,可以将搜索类型设置为MMR。\n","\n","然后我们可以重新运行这个过程,看到我们返回的是一个过滤过的结果集,其中不包含任何重复的信息。"]},{"cell_type":"code","execution_count":55,"id":"161ae1ad","metadata":{"tags":[]},"outputs":[],"source":["compression_retriever = ContextualCompressionRetriever(\n"," base_compressor=compressor,\n"," base_retriever=vectordb.as_retriever(search_type = \"mmr\")\n",")"]},{"cell_type":"code","execution_count":56,"id":"cd6396bb","metadata":{},"outputs":[],"source":["compression_retriever_chinese = ContextualCompressionRetriever(\n"," base_compressor=compressor,\n"," base_retriever=vectordb_chinese.as_retriever(search_type = \"mmr\")\n",")"]},{"cell_type":"code","execution_count":57,"id":"e77ccae1","metadata":{"tags":[]},"outputs":[{"name":"stdout","output_type":"stream","text":["Document 1:\n","\n","- \"those homeworks will be done in either MATLA B or in Octave\"\n","- \"I know some people call it a free ve rsion of MATLAB\"\n","- \"MATLAB is I guess part of the programming language that makes it very easy to write codes using matrices, to write code for numerical routines, to move data around, to plot data.\"\n","- \"there's also a software package called Octave that you can download for free off the Internet.\"\n","- \"it has somewhat fewer features than MATLAB, but it's free, and for the purposes of this class, it will work for just about everything.\"\n","- \"once a colleague of mine at a different university, not at Stanford, actually teaches another machine learning course.\"\n","----------------------------------------------------------------------------------------------------\n","Document 2:\n","\n","\"Oh, it was the MATLAB.\"\n"]}],"source":["question = \"what did they say about matlab?\"\n","compressed_docs = compression_retriever.get_relevant_documents(question)\n","pretty_print_docs(compressed_docs)"]},{"cell_type":"code","execution_count":58,"id":"fe68a14b","metadata":{},"outputs":[{"name":"stdout","output_type":"stream","text":["Document 1:\n","\n","Matplotlib 是⼀个 Python 2D 绘图库,能够以多种硬拷⻉格式和跨平台的交互式环境⽣成出版物质量的图形,⽤来绘制各种静态,动态,交互式的图表。\n","----------------------------------------------------------------------------------------------------\n","Document 2:\n","\n","Matplotlib是什么?\n","fig, ax = plt.subplots(figsize=(4,3))\n","ax.grid(True)\n","使⽤ set_xscale 可以设置坐标轴的规度(指对数坐标等)\n","fig, axs = plt.subplots(1, 2, figsize=(10, 4))\n","for j in range(2):\n"," axs[j].plot(list('abcd'), [10**i for i in range(4)])\n"," if j==0:\n"," axs[j].set_yscale('log')\n"," else:\n"," pass\n","fig.tight_layout()\n","----------------------------------------------------------------------------------------------------\n","Document 3:\n","\n","matplotlib.pyplot.pie(x, explode=None, labels=None, colors=None, autopct=None, pctdistance=0.6, shadow=False,\n","labeldistance=1.1, startangle=0, radius=1, counterclock=True, wedgeprops=None, textprops=None, center=0, 0,\n","frame=False, rotatelabels=False, *, normalize=None, data=None)\n","制作数据x 的饼图,每个楔⼦的⾯积⽤ x/sum(x) 表示。\n","其中最主要的参数是前 4 个:\n","x:楔型的形状,⼀维数组。\n","explode:如果不是等于 None ,则是⼀个 len(x) 数组,它指定⽤于偏移每个楔形块的半径的分数。\n","labels:⽤于指定每个楔型块的标记,取值是列表或为 None 。\n","colors:饼图循环使⽤的颜⾊序列。如果取值为 None ,将使⽤当前\n","----------------------------------------------------------------------------------------------------\n","Document 4:\n","\n","Matplotlib是什么?\n"]}],"source":["question_chinese = \"Matplotlib是什么?\"\n","compressed_docs_chinese = compression_retriever_chinese.get_relevant_documents(question_chinese)\n","pretty_print_docs(compressed_docs_chinese)"]},{"attachments":{},"cell_type":"markdown","id":"6c2b63e1","metadata":{},"source":["## 三、其他类型的检索"]},{"attachments":{},"cell_type":"markdown","id":"3e777a7b","metadata":{},"source":["值得注意的是,vetordb并不是唯一一种检索文档的工具。\n","\n","`LangChain`检索器抽象包括其他检索文档的方式,如:`TF-IDF` 或 `SVM`。"]},{"cell_type":"code","execution_count":59,"id":"83d2e808","metadata":{"tags":[]},"outputs":[],"source":["from langchain.retrievers import SVMRetriever\n","from langchain.retrievers import TFIDFRetriever\n","from langchain.document_loaders import PyPDFLoader\n","from langchain.text_splitter import RecursiveCharacterTextSplitter"]},{"cell_type":"code","execution_count":60,"id":"bcf5b760","metadata":{"tags":[]},"outputs":[],"source":["# 加载PDF\n","loader = PyPDFLoader(\"docs/cs229_lectures/MachineLearning-Lecture01.pdf\")\n","pages = loader.load()\n","all_page_text = [p.page_content for p in pages]\n","joined_page_text = \" \".join(all_page_text)\n","\n","# 分割文本\n","text_splitter = RecursiveCharacterTextSplitter(chunk_size = 1500,chunk_overlap = 150)\n","splits = text_splitter.split_text(joined_page_text)\n"]},{"cell_type":"code","execution_count":61,"id":"1657e768","metadata":{},"outputs":[],"source":["# 加载PDF\n","loader_chinese = PyPDFLoader(\"docs/matplotlib/第一回:Matplotlib初相识.pdf\")\n","pages_chinese = loader_chinese.load()\n","all_page_text_chinese = [p.page_content for p in pages_chinese]\n","joined_page_text_chinese = \" \".join(all_page_text_chinese)\n","\n","# 分割文本\n","text_splitter_chinese = RecursiveCharacterTextSplitter(chunk_size = 1500,chunk_overlap = 150)\n","splits_chinese = text_splitter_chinese.split_text(joined_page_text_chinese)"]},{"cell_type":"code","execution_count":62,"id":"59abbaff","metadata":{},"outputs":[],"source":["# 检索\n","svm_retriever = SVMRetriever.from_texts(splits, embedding)\n","tfidf_retriever = TFIDFRetriever.from_texts(splits)"]},{"cell_type":"code","execution_count":63,"id":"7885389e","metadata":{},"outputs":[{"data":{"text/plain":["Document(page_content=\"or find project partners or discuss homework problems and so on, and it's not monitored \\nby the TAs and me. So feel free to ta lk trash about this class there. \\nIf you want to contact the teaching staff, pl ease use the email address written down here, \\ncs229-qa@cs.stanford.edu. This goes to an acc ount that's read by all the TAs and me. So \\nrather than sending us email individually, if you send email to this account, it will \\nactually let us get back to you maximally quickly with answers to your questions. \\nIf you're asking questions about homework probl ems, please say in the subject line which \\nassignment and which question the email refers to, since that will also help us to route \\nyour question to the appropriate TA or to me appropriately and get the response back to \\nyou quickly. \\nLet's see. Skipping ahead — let's see — for homework, one midterm, one open and term \\nproject. Notice on the honor code. So one thi ng that I think will help you to succeed and \\ndo well in this class and even help you to enjoy this cla ss more is if you form a study \\ngroup. \\nSo start looking around where you' re sitting now or at the end of class today, mingle a \\nlittle bit and get to know your classmates. I strongly encourage you to form study groups \\nand sort of have a group of people to study with and have a group of your fellow students \\nto talk over these concepts with. You can also post on the class news group if you want to \\nuse that to try to form a study group.\")"]},"execution_count":63,"metadata":{},"output_type":"execute_result"}],"source":["question = \"What are major topics for this class?\" # 这门课的主要主题是什么?\n","docs_svm = svm_retriever.get_relevant_documents(question)\n","docs_svm[0]"]},{"cell_type":"code","execution_count":64,"id":"2a1659c0","metadata":{"tags":[]},"outputs":[{"data":{"text/plain":["Document(page_content=\"Saxena and Min Sun here did, wh ich is given an image like this, right? This is actually a \\npicture taken of the Stanford campus. You can apply that sort of cl ustering algorithm and \\ngroup the picture into regions. Let me actually blow that up so that you can see it more \\nclearly. Okay. So in the middle, you see the lines sort of groupi ng the image together, \\ngrouping the image into [inaudible] regions. \\nAnd what Ashutosh and Min did was they then applied the learning algorithm to say can \\nwe take this clustering and us e it to build a 3D model of the world? And so using the \\nclustering, they then had a lear ning algorithm try to learn what the 3D structure of the \\nworld looks like so that they could come up with a 3D model that you can sort of fly \\nthrough, okay? Although many people used to th ink it's not possible to take a single \\nimage and build a 3D model, but using a lear ning algorithm and that sort of clustering \\nalgorithm is the first step. They were able to. \\nI'll just show you one more example. I like this because it's a picture of Stanford with our \\nbeautiful Stanford campus. So again, taking th e same sort of clustering algorithms, taking \\nthe same sort of unsupervised learning algor ithm, you can group the pixels into different \\nregions. And using that as a pre-processing step, they eventually built this sort of 3D model of Stanford campus in a single picture. You can sort of walk into the ceiling, look\")"]},"execution_count":64,"metadata":{},"output_type":"execute_result"}],"source":["question = \"what did they say about matlab?\" # 他们关于Matlab说了些什么?\n","docs_tfidf = tfidf_retriever.get_relevant_documents(question)\n","docs_tfidf[0]"]},{"cell_type":"code","execution_count":65,"id":"5ade9c87","metadata":{},"outputs":[],"source":["# 中文版\n","svm_retriever_chinese = SVMRetriever.from_texts(splits_chinese, embedding)\n","tfidf_retriever_chinese = TFIDFRetriever.from_texts(splits_chinese)"]},{"cell_type":"code","execution_count":66,"id":"cc823bea","metadata":{},"outputs":[{"data":{"text/plain":["Document(page_content='第⼀回:Matplotlib 初相识\\n⼀、认识matplotlib\\nMatplotlib 是⼀个 Python 2D 绘图库,能够以多种硬拷⻉格式和跨平台的交互式环境⽣成出版物质量的图形,⽤来绘制各种静态,动态,\\n交互式的图表。\\nMatplotlib 可⽤于 Python 脚本, Python 和 IPython Shell 、 Jupyter notebook , Web 应⽤程序服务器和各种图形⽤户界⾯⼯具包等。\\nMatplotlib 是 Python 数据可视化库中的泰⽃,它已经成为 python 中公认的数据可视化⼯具,我们所熟知的 pandas 和 seaborn 的绘图接⼝\\n其实也是基于 matplotlib 所作的⾼级封装。\\n为了对matplotlib 有更好的理解,让我们从⼀些最基本的概念开始认识它,再逐渐过渡到⼀些⾼级技巧中。\\n⼆、⼀个最简单的绘图例⼦\\nMatplotlib 的图像是画在 figure (如 windows , jupyter 窗体)上的,每⼀个 figure ⼜包含了⼀个或多个 axes (⼀个可以指定坐标系的⼦区\\n域)。最简单的创建 figure 以及 axes 的⽅式是通过 pyplot.subplots命令,创建 axes 以后,可以使⽤ Axes.plot绘制最简易的折线图。\\nimport matplotlib.pyplot as plt\\nimport matplotlib as mpl\\nimport numpy as np\\nfig, ax = plt.subplots() # 创建⼀个包含⼀个 axes 的 figure\\nax.plot([1, 2, 3, 4], [1, 4, 2, 3]); # 绘制图像\\nTrick: 在jupyter notebook 中使⽤ matplotlib 时会发现,代码运⾏后⾃动打印出类似 \\n这样⼀段话,这是因为 matplotlib 的绘图代码默认打印出最后⼀个对象。如果不想显示这句话,有以下三种⽅法,在本章节的代码示例\\n中你能找到这三种⽅法的使⽤。\\n\\x00. 在代码块最后加⼀个分号 ;\\n\\x00. 在代码块最后加⼀句 plt.show()\\n\\x00. 在绘图时将绘图对象显式赋值给⼀个变量,如将 plt.plot([1, 2, 3, 4]) 改成 line =plt.plot([1, 2, 3, 4])\\n和MATLAB 命令类似,你还可以通过⼀种更简单的⽅式绘制图像, matplotlib.pyplot⽅法能够直接在当前 axes 上绘制图像,如果⽤户\\n未指定axes , matplotlib 会帮你⾃动创建⼀个。所以上⾯的例⼦也可以简化为以下这⼀⾏代码。\\nline =plt.plot([1, 2, 3, 4], [1, 4, 2, 3]) \\n三、Figure 的组成\\n现在我们来深⼊看⼀下 figure 的组成。通过⼀张 figure 解剖图,我们可以看到⼀个完整的 matplotlib 图像通常会包括以下四个层级,这些\\n层级也被称为容器( container ),下⼀节会详细介绍。在 matplotlib 的世界中,我们将通过各种命令⽅法来操纵图像中的每⼀个部分,\\n从⽽达到数据可视化的最终效果,⼀副完整的图像实际上是各类⼦元素的集合。\\nFigure:顶层级,⽤来容纳所有绘图元素')"]},"execution_count":66,"metadata":{},"output_type":"execute_result"}],"source":["question_chinese = \"这门课的主要主题是什么?\" \n","docs_svm_chinese = svm_retriever_chinese.get_relevant_documents(question_chinese)\n","docs_svm_chinese[0]"]},{"cell_type":"code","execution_count":67,"id":"01eb9d43","metadata":{},"outputs":[{"data":{"text/plain":["Document(page_content='fig, ax = plt.subplots() \\n# step4 绘制图像, 这⼀模块的扩展参考第⼆章进⼀步学习\\nax.plot(x, y, label=\\'linear\\') \\n# step5 添加标签,⽂字和图例,这⼀模块的扩展参考第四章进⼀步学习\\nax.set_xlabel(\\'x label\\') \\nax.set_ylabel(\\'y label\\') \\nax.set_title(\"Simple Plot\") \\nax.legend() ;\\n思考题\\n请思考两种绘图模式的优缺点和各⾃适合的使⽤场景\\n在第五节绘图模板中我们是以 OO 模式作为例⼦展示的,请思考并写⼀个 pyplot 绘图模式的简单模板')"]},"execution_count":67,"metadata":{},"output_type":"execute_result"}],"source":["question_chinese = \"Matplotlib是什么?\"\n","docs_tfidf_chinese = tfidf_retriever_chinese.get_relevant_documents(question_chinese)\n","docs_tfidf_chinese[0]"]}],"metadata":{"kernelspec":{"display_name":"Python 3 (ipykernel)","language":"python","name":"python3"},"language_info":{"codemirror_mode":{"name":"ipython","version":3},"file_extension":".py","mimetype":"text/x-python","name":"python","nbconvert_exporter":"python","pygments_lexer":"ipython3","version":"3.11.9"}},"nbformat":4,"nbformat_minor":5}
+{"cells": [{"attachments": {}, "cell_type": "markdown", "id": "0689733d", "metadata": {}, "source": ["# \u7b2c\u4e94\u7ae0 \u68c0\u7d22(Retrieval)", "\n", " - [\u4e00\u3001\u5411\u91cf\u6570\u636e\u5e93\u68c0\u7d22](#\u4e00\u3001\u5411\u91cf\u6570\u636e\u5e93\u68c0\u7d22)\n", " - [1.1 \u76f8\u4f3c\u6027\u641c\u7d22](#1.1-\u76f8\u4f3c\u6027\u641c\u7d22)\n", " - [1.2 \u89e3\u51b3\u591a\u6837\u6027\uff1a\u6700\u5927\u8fb9\u9645\u76f8\u5173\u6027(MMR)](#1.2-\u89e3\u51b3\u591a\u6837\u6027\uff1a\u6700\u5927\u8fb9\u9645\u76f8\u5173\u6027(MMR))\n", " - [1.3 \u89e3\u51b3\u7279\u6b8a\u6027\uff1a\u4f7f\u7528\u5143\u6570\u636e](#1.3-\u89e3\u51b3\u7279\u6b8a\u6027\uff1a\u4f7f\u7528\u5143\u6570\u636e)\n", " - [1.4 \u89e3\u51b3\u7279\u6b8a\u6027\uff1a\u5728\u5143\u6570\u636e\u4e2d\u4f7f\u7528\u81ea\u67e5\u8be2\u68c0\u7d22\u5668](#1.4-\u89e3\u51b3\u7279\u6b8a\u6027\uff1a\u5728\u5143\u6570\u636e\u4e2d\u4f7f\u7528\u81ea\u67e5\u8be2\u68c0\u7d22\u5668)\n", " - [1.5 \u5176\u4ed6\u6280\u5de7\uff1a\u538b\u7f29](#1.5-\u5176\u4ed6\u6280\u5de7\uff1a\u538b\u7f29)\n", " - [\u4e8c\u3001\u7ed3\u5408\u5404\u79cd\u6280\u672f](#\u4e8c\u3001\u7ed3\u5408\u5404\u79cd\u6280\u672f)\n", " - [\u4e09\u3001\u5176\u4ed6\u7c7b\u578b\u7684\u68c0\u7d22](#\u4e09\u3001\u5176\u4ed6\u7c7b\u578b\u7684\u68c0\u7d22)\n"]}, {"attachments": {}, "cell_type": "markdown", "id": "d12fbd74", "metadata": {}, "source": ["\n", "\u68c0\u7d22\u662f\u6211\u4eec\u7684\u68c0\u7d22\u589e\u5f3a\u751f\u6210(RAG)\u6d41\u7a0b\u7684\u6838\u5fc3\u3002\n", "\n", "\u8ba9\u6211\u4eec\u83b7\u5f97\u524d\u9762\u8bfe\u7a0b\u5b58\u50a8\u7684\u5411\u91cf\u6570\u636e\u5e93(`VectorDB`)\u3002"]}, {"attachments": {}, "cell_type": "markdown", "id": "ed2569c6", "metadata": {}, "source": ["## \u4e00\u3001\u5411\u91cf\u6570\u636e\u5e93\u68c0\u7d22"]}, {"attachments": {}, "cell_type": "markdown", "id": "651a10db", "metadata": {}, "source": ["\u5728\u5f53\u524d\u6587\u4ef6\u5939\u4e0b\u65b0\u5efa`.env`\u6587\u4ef6\uff0c\u5185\u5bb9\u4e3a`OPENAI_API_KEY = \"sk-...\"`\n", "\n", "\u672c\u7ae0\u8282\u9700\u8981\u4f7f\u7528`lark`\u5305\uff0c\u8fd0\u884c\u4ee5\u4e0b\u547d\u4ee4\u5b89\u88c5"]}, {"cell_type": "code", "execution_count": 1, "id": "c18f8a7b-62af-403e-9877-18d1c2265b4f", "metadata": {"tags": []}, "outputs": [], "source": ["!pip install -Uq lark"]}, {"cell_type": "code", "execution_count": 3, "id": "51b15e5c-9b92-4d40-a149-b56335d330d9", "metadata": {"tags": []}, "outputs": [], "source": ["import os\n", "import openai\n", "import sys\n", "sys.path.append('../..')\n", "\n", "from dotenv import load_dotenv, find_dotenv\n", "_ = load_dotenv(find_dotenv()) # read local .env file\n", "\n", "openai.api_key = os.environ['OPENAI_API_KEY']\n"]}, {"attachments": {}, "cell_type": "markdown", "id": "c2d552e1", "metadata": {}, "source": ["### 1.1 \u76f8\u4f3c\u6027\u641c\u7d22"]}, {"cell_type": "code", "execution_count": 4, "id": "fe368042", "metadata": {"tags": []}, "outputs": [], "source": ["from langchain.vectorstores import Chroma\n", "from langchain.embeddings.openai import OpenAIEmbeddings\n", "persist_directory = 'docs/chroma/cs229_lectures/'\n", "persist_directory_chinese = 'docs/chroma/matplotlib/'"]}, {"attachments": {}, "cell_type": "markdown", "id": "5ba63e21", "metadata": {}, "source": ["\u5c06\u4e0a\u8282\u8bfe\u6240\u4fdd\u5b58\u7684\u5411\u91cf\u6570\u636e\u5e93(`VectorDB`)\u52a0\u8f7d\u8fdb\u6765"]}, {"cell_type": "code", "execution_count": 5, "id": "a0189dc5", "metadata": {"tags": []}, "outputs": [], "source": ["embedding = OpenAIEmbeddings()"]}, {"cell_type": "code", "execution_count": 6, "id": "2be10170", "metadata": {}, "outputs": [], "source": ["vectordb = Chroma(\n", " persist_directory=persist_directory,\n", " embedding_function=embedding\n", ")"]}, {"cell_type": "code", "execution_count": 7, "id": "3659e0f7", "metadata": {"tags": []}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["209\n"]}], "source": ["print(vectordb._collection.count())"]}, {"cell_type": "code", "execution_count": 8, "id": "a01ab000", "metadata": {}, "outputs": [], "source": ["vectordb_chinese = Chroma(\n", " persist_directory=persist_directory_chinese,\n", " embedding_function=embedding\n", ")"]}, {"cell_type": "code", "execution_count": 9, "id": "a6998a03", "metadata": {}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["27\n"]}], "source": ["print(vectordb_chinese._collection.count())"]}, {"attachments": {}, "cell_type": "markdown", "id": "9ae4fdd8", "metadata": {}, "source": ["\u8ba9\u6211\u4eec\u73b0\u5728\u6765\u770b\u770b\u6700\u5927\u8fb9\u9645\u76f8\u5173\u6027\u7684\u4f8b\u5b50\u3002\u56e0\u6b64\uff0c\u6211\u4eec\u5c06\u4ece\u4e0b\u9762\u793a\u4f8b\u4e2d\u52a0\u8f7d\u6709\u5173\u8611\u83c7\u7684\u4fe1\u606f\u3002\n", "\n", "\u8ba9\u6211\u4eec\u73b0\u5728\u8fd0\u884c\u5b83\u4e0eMMR\u3002\u8ba9\u6211\u4eec\u4f20\u5165k\u7b49\u4e8e2\u3002\u6211\u4eec\u4ecd\u7136\u5e0c\u671b\u8fd4\u56de\u4e24\u4e2a\u6587\u6863\uff0c\u4f46\u8ba9\u6211\u4eec\u8bbe\u7f6e\u83b7\u53d6k\u7b49\u4e8e3\uff0c\u5176\u4e2d\u6211\u4eec\u6700\u521d\u83b7\u53d6\u6240\u6709\u4e09\u4e2a\u6587\u6863\u3002\u6211\u4eec\u73b0\u5728\u53ef\u4ee5\u770b\u5230\uff0c\u6211\u4eec\u68c0\u7d22\u7684\u6587\u6863\u4e2d\u8fd4\u56de\u4e86\u6709\u6bd2\u7684\u4fe1\u606f\u3002"]}, {"cell_type": "code", "execution_count": 10, "id": "a807c758", "metadata": {"tags": []}, "outputs": [], "source": ["texts = [\n", " \"\"\"The Amanita phalloides has a large and imposing epigeous (aboveground) fruiting body (basidiocarp).\"\"\",\n", " \"\"\"A mushroom with a large fruiting body is the Amanita phalloides. Some varieties are all-white.\"\"\",\n", " \"\"\"A. phalloides, a.k.a Death Cap, is one of the most poisonous of all known mushrooms.\"\"\",\n", "]"]}, {"cell_type": "code", "execution_count": 11, "id": "b110cceb", "metadata": {}, "outputs": [], "source": ["texts_chinese = [\n", " \"\"\"\u6bd2\u9e45\u818f\u83cc\uff08Amanita phalloides\uff09\u5177\u6709\u5927\u578b\u4e14\u5f15\u4eba\u6ce8\u76ee\u7684\u5730\u4e0a\uff08epigeous\uff09\u5b50\u5b9e\u4f53\uff08basidiocarp\uff09\"\"\",\n", " \"\"\"\u4e00\u79cd\u5177\u6709\u5927\u578b\u5b50\u5b9e\u4f53\u7684\u8611\u83c7\u662f\u6bd2\u9e45\u818f\u83cc\uff08Amanita phalloides\uff09\u3002\u67d0\u4e9b\u54c1\u79cd\u5168\u767d\u3002\"\"\",\n", " \"\"\"A. phalloides\uff0c\u53c8\u540d\u6b7b\u4ea1\u5e3d\uff0c\u662f\u5df2\u77e5\u6240\u6709\u8611\u83c7\u4e2d\u6700\u6709\u6bd2\u7684\u4e00\u79cd\u3002\"\"\",\n", "]"]}, {"attachments": {}, "cell_type": "markdown", "id": "84cd5f1c", "metadata": {}, "source": ["\u5bf9\u4e8e\u8fd9\u4e2a\u4f8b\u5b50\uff0c\u6211\u4eec\u5c06\u521b\u5efa\u4e00\u4e2a\u5c0f\u6570\u636e\u5e93\uff0c\u6211\u4eec\u53ef\u4ee5\u4f5c\u4e3a\u4e00\u4e2a\u793a\u4f8b\u6765\u4f7f\u7528\u3002"]}, {"cell_type": "code", "execution_count": 12, "id": "715d54f3", "metadata": {"tags": []}, "outputs": [{"name": "stderr", "output_type": "stream", "text": ["100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 1/1 [00:00<00:00, 1.28it/s]\n"]}], "source": ["smalldb = Chroma.from_texts(texts, embedding=embedding)"]}, {"cell_type": "code", "execution_count": 13, "id": "305e1714", "metadata": {}, "outputs": [{"name": "stderr", "output_type": "stream", "text": ["100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 1/1 [00:00<00:00, 2.30it/s]\n"]}], "source": ["smalldb_chinese = Chroma.from_texts(texts_chinese, embedding=embedding)"]}, {"attachments": {}, "cell_type": "markdown", "id": "239a8d95", "metadata": {}, "source": ["\u4e0b\u9762\u662f\u6211\u4eec\u5bf9\u4e8e\u8fd9\u4e2a\u793a\u4f8b\u6240\u63d0\u51fa\u7684\u95ee\u9898"]}, {"cell_type": "code", "execution_count": 14, "id": "9a37b5a5", "metadata": {"tags": []}, "outputs": [], "source": ["question = \"Tell me about all-white mushrooms with large fruiting bodies\""]}, {"cell_type": "code", "execution_count": 15, "id": "92312e57", "metadata": {}, "outputs": [], "source": ["question_chinese = \"\u544a\u8bc9\u6211\u5173\u4e8e\u5177\u6709\u5927\u578b\u5b50\u5b9e\u4f53\u7684\u5168\u767d\u8272\u8611\u83c7\u7684\u4fe1\u606f\""]}, {"attachments": {}, "cell_type": "markdown", "id": "d3224a6d", "metadata": {}, "source": ["\u73b0\u5728\uff0c\u6211\u4eec\u53ef\u4ee5\u8fd0\u884c\u4e00\u4e2a\u76f8\u4f3c\u6027\u641c\u7d22\uff0c\u8bbe\u7f6ek=2\uff0c\u53ea\u8fd4\u56de\u4e24\u4e2a\u6700\u76f8\u5173\u7684\u6587\u6863\u3002\n", "\n", "\u6211\u4eec\u53ef\u4ee5\u770b\u5230\uff0c\u6ca1\u6709\u63d0\u5230\u5b83\u662f\u6709\u6bd2\u7684\u4e8b\u5b9e\u3002"]}, {"cell_type": "code", "execution_count": 16, "id": "24e3b025", "metadata": {"tags": []}, "outputs": [{"data": {"text/plain": ["[Document(page_content='A mushroom with a large fruiting body is the Amanita phalloides. Some varieties are all-white.', metadata={}),\n", " Document(page_content='The Amanita phalloides has a large and imposing epigeous (aboveground) fruiting body (basidiocarp).', metadata={})]"]}, "execution_count": 16, "metadata": {}, "output_type": "execute_result"}], "source": ["smalldb.similarity_search(question, k=2)"]}, {"cell_type": "code", "execution_count": 17, "id": "d4c5a47d", "metadata": {}, "outputs": [{"data": {"text/plain": ["[Document(page_content='\u4e00\u79cd\u5177\u6709\u5927\u578b\u5b50\u5b9e\u4f53\u7684\u8611\u83c7\u662f\u6bd2\u9e45\u818f\u83cc\uff08Amanita phalloides\uff09\u3002\u67d0\u4e9b\u54c1\u79cd\u5168\u767d\u3002', metadata={}),\n", " Document(page_content='\u6bd2\u9e45\u818f\u83cc\uff08Amanita phalloides\uff09\u5177\u6709\u5927\u578b\u4e14\u5f15\u4eba\u6ce8\u76ee\u7684\u5730\u4e0a\uff08epigeous\uff09\u5b50\u5b9e\u4f53\uff08basidiocarp\uff09', metadata={})]"]}, "execution_count": 17, "metadata": {}, "output_type": "execute_result"}], "source": ["smalldb_chinese.similarity_search(question_chinese, k=2)"]}, {"attachments": {}, "cell_type": "markdown", "id": "bbb0ea94", "metadata": {}, "source": ["\u73b0\u5728\uff0c\u8ba9\u6211\u4eec\u8fd0\u884c\u6700\u5927\u8fb9\u9645\u76f8\u5173\u6027(MMR)\u3002\n", "\n", "\u8bbe\u7f6ek=2\uff0c\u56e0\u4e3a\u6211\u4eec\u4ecd\u7136\u5e0c\u671b\u8fd4\u56de\u4e24\u4e2a\u6587\u6863\u3002\u8bbe\u7f6efetch_k=3\uff0cfetch_k\u662f\u6211\u4eec\u6700\u521d\u83b7\u53d6\u7684\u6240\u6709\u6587\u6863(3\u4e2a)\u3002"]}, {"cell_type": "code", "execution_count": 18, "id": "4daa6c0d", "metadata": {"tags": []}, "outputs": [{"data": {"text/plain": ["[Document(page_content='A mushroom with a large fruiting body is the Amanita phalloides. Some varieties are all-white.', metadata={}),\n", " Document(page_content='A. phalloides, a.k.a Death Cap, is one of the most poisonous of all known mushrooms.', metadata={})]"]}, "execution_count": 18, "metadata": {}, "output_type": "execute_result"}], "source": ["smalldb.max_marginal_relevance_search(question,k=2, fetch_k=3)"]}, {"cell_type": "code", "execution_count": 19, "id": "e15521d2", "metadata": {}, "outputs": [{"data": {"text/plain": ["[Document(page_content='\u4e00\u79cd\u5177\u6709\u5927\u578b\u5b50\u5b9e\u4f53\u7684\u8611\u83c7\u662f\u6bd2\u9e45\u818f\u83cc\uff08Amanita phalloides\uff09\u3002\u67d0\u4e9b\u54c1\u79cd\u5168\u767d\u3002', metadata={}),\n", " Document(page_content='A. phalloides\uff0c\u53c8\u540d\u6b7b\u4ea1\u5e3d\uff0c\u662f\u5df2\u77e5\u6240\u6709\u8611\u83c7\u4e2d\u6700\u6709\u6bd2\u7684\u4e00\u79cd\u3002', metadata={})]"]}, "execution_count": 19, "metadata": {}, "output_type": "execute_result"}], "source": ["smalldb_chinese.max_marginal_relevance_search(question,k=2, fetch_k=3)"]}, {"attachments": {}, "cell_type": "markdown", "id": "e87c5f91", "metadata": {}, "source": ["\u6211\u4eec\u73b0\u5728\u53ef\u4ee5\u770b\u5230\uff0c\u6211\u4eec\u68c0\u7d22\u7684\u6587\u6863\u4e2d\u8fd4\u56de\u4e86\u6709\u6bd2\u7684\u4fe1\u606f\u3002"]}, {"attachments": {}, "cell_type": "markdown", "id": "5a29e8c9", "metadata": {}, "source": ["### 1.2 \u89e3\u51b3\u591a\u6837\u6027\uff1a\u6700\u5927\u8fb9\u9645\u76f8\u5173\u6027(MMR)"]}, {"attachments": {}, "cell_type": "markdown", "id": "a2b5c4ae", "metadata": {}, "source": ["\n", "\u6211\u4eec\u521a\u521a\u901a\u8fc7\u4e00\u4e2a\u793a\u4f8b\u5f15\u51fa\u4e86\u4e00\u4e2a\u95ee\u9898\uff1a\u5982\u4f55\u52a0\u5f3a\u641c\u7d22\u7ed3\u679c\u7684\u591a\u6837\u6027\u3002\n", " \n", "\u6700\u5927\u8fb9\u9645\u76f8\u5173\u6027(`Maximum marginal relevance`)\u8bd5\u56fe\u5728\u67e5\u8be2\u7684\u76f8\u5173\u6027\u548c\u7ed3\u679c\u7684\u591a\u6837\u6027\u4e4b\u95f4\u5b9e\u73b0\u4e24\u5168\u5176\u7f8e\u3002"]}, {"attachments": {}, "cell_type": "markdown", "id": "2360545c", "metadata": {}, "source": ["\u8ba9\u6211\u4eec\u56de\u5230\u4e0a\u4e00\u8282\u8bfe\u7684\u4e00\u4e2a\u4f8b\u5b50\uff0c\u5f53\u6211\u4eec\u901a\u8fc7\u95ee\u9898\u5bf9\u5411\u91cf\u6570\u636e\u5e93\u8fdb\u884c\u76f8\u4f3c\u6027\u641c\u7d22\u540e\n", "\n", "\u6211\u4eec\u53ef\u4ee5\u770b\u770b\u524d\u4e24\u4e2a\u6587\u6863\uff0c\u53ea\u770b\u524d\u51e0\u4e2a\u5b57\u7b26\uff0c\u53ef\u4ee5\u770b\u5230\u5b83\u4eec\u662f\u76f8\u540c\u7684\u3002"]}, {"cell_type": "code", "execution_count": 20, "id": "9bb2c0a9", "metadata": {"tags": []}, "outputs": [], "source": ["question = \"what did they say about matlab?\"\n", "docs_ss = vectordb.similarity_search(question,k=3)"]}, {"cell_type": "code", "execution_count": 21, "id": "f07f8793", "metadata": {"tags": []}, "outputs": [{"data": {"text/plain": ["'those homeworks will be done in either MATLA B or in Octave, which is sort of \u2014 I \\nknow some people '"]}, "execution_count": 21, "metadata": {}, "output_type": "execute_result"}], "source": ["docs_ss[0].page_content[:100]"]}, {"cell_type": "code", "execution_count": 22, "id": "e9f7e165", "metadata": {"tags": []}, "outputs": [{"data": {"text/plain": ["'those homeworks will be done in either MATLA B or in Octave, which is sort of \u2014 I \\nknow some people '"]}, "execution_count": 22, "metadata": {}, "output_type": "execute_result"}], "source": ["docs_ss[1].page_content[:100]"]}, {"cell_type": "code", "execution_count": 23, "id": "e8e142eb", "metadata": {}, "outputs": [], "source": ["question_chinese = \"Matplotlib\u662f\u4ec0\u4e48\uff1f\"\n", "docs_ss_chinese = vectordb_chinese.similarity_search(question_chinese,k=3)"]}, {"cell_type": "code", "execution_count": 24, "id": "cf642f66", "metadata": {}, "outputs": [{"data": {"text/plain": ["'\u7b2c\u2f00\u56de\uff1aMatplotlib \u521d\u76f8\u8bc6\\n\u2f00\u3001\u8ba4\u8bc6matplotlib\\nMatplotlib \u662f\u2f00\u4e2a Python 2D \u7ed8\u56fe\u5e93\uff0c\u80fd\u591f\u4ee5\u591a\u79cd\u786c\u62f7\u2ec9\u683c\u5f0f\u548c\u8de8\u5e73\u53f0\u7684\u4ea4\u4e92\u5f0f\u73af\u5883\u2f63\u6210\u51fa\u7248\u7269\u8d28\u91cf\u7684\u56fe\u5f62\uff0c\u2f64\u6765\u7ed8\u5236\u5404\u79cd'"]}, "execution_count": 24, "metadata": {}, "output_type": "execute_result"}], "source": ["docs_ss_chinese[0].page_content[:100]"]}, {"cell_type": "code", "execution_count": 25, "id": "1e9f5cfe", "metadata": {}, "outputs": [{"data": {"text/plain": ["'\u7b2c\u2f00\u56de\uff1aMatplotlib \u521d\u76f8\u8bc6\\n\u2f00\u3001\u8ba4\u8bc6matplotlib\\nMatplotlib \u662f\u2f00\u4e2a Python 2D \u7ed8\u56fe\u5e93\uff0c\u80fd\u591f\u4ee5\u591a\u79cd\u786c\u62f7\u2ec9\u683c\u5f0f\u548c\u8de8\u5e73\u53f0\u7684\u4ea4\u4e92\u5f0f\u73af\u5883\u2f63\u6210\u51fa\u7248\u7269\u8d28\u91cf\u7684\u56fe\u5f62\uff0c\u2f64\u6765\u7ed8\u5236\u5404\u79cd'"]}, "execution_count": 25, "metadata": {}, "output_type": "execute_result"}], "source": ["docs_ss_chinese[1].page_content[:100]"]}, {"attachments": {}, "cell_type": "markdown", "id": "4c4ca1b6", "metadata": {}, "source": ["\u6ce8\u610f\uff1a\u4f7f\u7528`MMR`\u6240\u5f97\u51fa\u7ed3\u679c\u7684\u5dee\u5f02\u3002"]}, {"cell_type": "code", "execution_count": 26, "id": "222234c5", "metadata": {"tags": []}, "outputs": [], "source": ["docs_mmr = vectordb.max_marginal_relevance_search(question,k=3)"]}, {"cell_type": "code", "execution_count": 27, "id": "408935bc", "metadata": {}, "outputs": [], "source": ["docs_mmr_chinese = vectordb_chinese.max_marginal_relevance_search(question_chinese,k=3)"]}, {"attachments": {}, "cell_type": "markdown", "id": "9076db81", "metadata": {}, "source": ["\u5f53\u6211\u4eec\u8fd0\u884cMMR\u540e\u5f97\u5230\u7ed3\u679c\u65f6\uff0c\u6211\u4eec\u53ef\u4ee5\u770b\u5230\u7b2c\u4e00\u4e2a\u4e0e\u4e4b\u524d\u7684\u76f8\u540c\uff0c\u56e0\u4e3a\u90a3\u662f\u6700\u76f8\u4f3c\u7684\u3002"]}, {"cell_type": "code", "execution_count": 28, "id": "93b20226", "metadata": {"tags": []}, "outputs": [{"data": {"text/plain": ["'those homeworks will be done in either MATLA B or in Octave, which is sort of \u2014 I \\nknow some people '"]}, "execution_count": 28, "metadata": {}, "output_type": "execute_result"}], "source": ["docs_mmr[0].page_content[:100]"]}, {"cell_type": "code", "execution_count": 29, "id": "d0acfaab", "metadata": {}, "outputs": [{"data": {"text/plain": ["'\u7b2c\u2f00\u56de\uff1aMatplotlib \u521d\u76f8\u8bc6\\n\u2f00\u3001\u8ba4\u8bc6matplotlib\\nMatplotlib \u662f\u2f00\u4e2a Python 2D \u7ed8\u56fe\u5e93\uff0c\u80fd\u591f\u4ee5\u591a\u79cd\u786c\u62f7\u2ec9\u683c\u5f0f\u548c\u8de8\u5e73\u53f0\u7684\u4ea4\u4e92\u5f0f\u73af\u5883\u2f63\u6210\u51fa\u7248\u7269\u8d28\u91cf\u7684\u56fe\u5f62\uff0c\u2f64\u6765\u7ed8\u5236\u5404\u79cd'"]}, "execution_count": 29, "metadata": {}, "output_type": "execute_result"}], "source": ["docs_mmr_chinese[0].page_content[:100]"]}, {"attachments": {}, "cell_type": "markdown", "id": "7a93743f", "metadata": {}, "source": ["\u4f46\u662f\u5f53\u6211\u4eec\u8fdb\u884c\u5230\u7b2c\u4e8c\u4e2a\u65f6\uff0c\u6211\u4eec\u53ef\u4ee5\u770b\u5230\u5b83\u662f\u4e0d\u540c\u7684\u3002\n", "\n", "\u5b83\u5728\u56de\u5e94\u4e2d\u83b7\u5f97\u4e86\u4e00\u4e9b\u591a\u6837\u6027\u3002"]}, {"cell_type": "code", "execution_count": 30, "id": "17d39762", "metadata": {"tags": []}, "outputs": [{"data": {"text/plain": ["'algorithm then? So what\u2019s different? How come I was making all that noise earlier about \\nleast squa'"]}, "execution_count": 30, "metadata": {}, "output_type": "execute_result"}], "source": ["docs_mmr[1].page_content[:100]"]}, {"cell_type": "code", "execution_count": 31, "id": "93d3206c", "metadata": {}, "outputs": [{"data": {"text/plain": ["'By Datawhale \u6570\u636e\u53ef\u89c6\u5316\u5f00\u6e90\u2f29\u7ec4\\n\u00a9 Copyright \u00a9 Copyright 2021.y\u8f74\u5206\u4e3a\u5de6\u53f3\u4e24\u4e2a\uff0c\u56e0\u6b64 tick1 \u5bf9\u5e94\u5de6\u4fa7\u7684\u8f74\uff1b tick2 \u5bf9\u5e94\u53f3\u4fa7\u7684\u8f74\u3002\\nx\u8f74\u5206\u4e3a\u4e0a\u4e0b\u4e24\u4e2a'"]}, "execution_count": 31, "metadata": {}, "output_type": "execute_result"}], "source": ["docs_mmr_chinese[1].page_content[:100]"]}, {"attachments": {}, "cell_type": "markdown", "id": "b2b909bc", "metadata": {}, "source": ["### 1.3 \u89e3\u51b3\u7279\u6b8a\u6027\uff1a\u4f7f\u7528\u5143\u6570\u636e"]}, {"attachments": {}, "cell_type": "markdown", "id": "7b63c5ee", "metadata": {}, "source": ["\n", "\u5728\u4e0a\u4e00\u8282\u8bfe\u4e2d\uff0c\u6211\u4eec\u5c55\u793a\u4e86\u4e00\u4e2a\u95ee\u9898\uff0c\u662f\u8be2\u95ee\u4e86\u5173\u4e8e\u6587\u6863\u4e2d\u67d0\u4e00\u8bb2\u7684\u95ee\u9898\uff0c\u4f46\u5f97\u5230\u7684\u7ed3\u679c\u4e2d\u4e5f\u5305\u62ec\u4e86\u6765\u81ea\u5176\u4ed6\u8bb2\u7684\u7ed3\u679c\u3002\n", "\n", "\u4e3a\u4e86\u89e3\u51b3\u8fd9\u4e00\u95ee\u9898\uff0c\u5f88\u591a\u5411\u91cf\u6570\u636e\u5e93\u90fd\u652f\u6301\u5bf9`metadata`\u7684\u64cd\u4f5c\u3002\n", "\n", "`metadata`\u4e3a\u6bcf\u4e2a\u5d4c\u5165\u7684\u5757(embedded chunk)\u63d0\u4f9b\u4e0a\u4e0b\u6587\u3002"]}, {"cell_type": "code", "execution_count": 32, "id": "3c1a60b2", "metadata": {"tags": []}, "outputs": [], "source": ["question = \"what did they say about regression in the third lecture?\""]}, {"cell_type": "code", "execution_count": 33, "id": "ba98df3c", "metadata": {}, "outputs": [], "source": ["question_chinese = \"\u4ed6\u4eec\u5728\u7b2c\u4e8c\u8bb2\u4e2d\u5bf9Figure\u8bf4\u4e86\u4e9b\u4ec0\u4e48\uff1f\" "]}, {"attachments": {}, "cell_type": "markdown", "id": "3873525e", "metadata": {}, "source": ["\u73b0\u5728\uff0c\u6211\u4eec\u4ee5\u624b\u52a8\u7684\u65b9\u5f0f\u6765\u89e3\u51b3\u8fd9\u4e2a\u95ee\u9898\uff0c\u6211\u4eec\u4f1a\u6307\u5b9a\u4e00\u4e2a\u5143\u6570\u636e\u8fc7\u6ee4\u5668`filter`"]}, {"cell_type": "code", "execution_count": 34, "id": "a8612840", "metadata": {"tags": []}, "outputs": [], "source": ["docs = vectordb.similarity_search(\n", " question,\n", " k=3,\n", " filter={\"source\":\"docs/cs229_lectures/MachineLearning-Lecture03.pdf\"}\n", ")"]}, {"cell_type": "code", "execution_count": 35, "id": "b46c7e76", "metadata": {}, "outputs": [], "source": ["docs_chinese = vectordb_chinese.similarity_search(\n", " question_chinese,\n", " k=3,\n", " filter={\"source\":\"docs/matplotlib/\u7b2c\u4e8c\u56de\uff1a\u827a\u672f\u753b\u7b14\u89c1\u4e7e\u5764.pdf\"}\n", ")"]}, {"attachments": {}, "cell_type": "markdown", "id": "869aee28", "metadata": {}, "source": ["\u63a5\u4e0b\u6765\uff0c\u6211\u4eec\u53ef\u4ee5\u770b\u5230\u7ed3\u679c\u90fd\u6765\u81ea\u5bf9\u5e94\u7684\u7ae0\u8282"]}, {"cell_type": "code", "execution_count": 36, "id": "97031876", "metadata": {"tags": []}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["{'source': 'docs/cs229_lectures/MachineLearning-Lecture03.pdf', 'page': 0}\n", "{'source': 'docs/cs229_lectures/MachineLearning-Lecture03.pdf', 'page': 14}\n", "{'source': 'docs/cs229_lectures/MachineLearning-Lecture03.pdf', 'page': 4}\n"]}], "source": ["for d in docs:\n", " print(d.metadata)"]}, {"cell_type": "code", "execution_count": 35, "id": "2708f6ae", "metadata": {}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["{'source': 'docs/matplotlib/\u7b2c\u4e8c\u56de\uff1a\u827a\u672f\u753b\u7b14\u89c1\u4e7e\u5764.pdf', 'page': 9}\n", "{'source': 'docs/matplotlib/\u7b2c\u4e8c\u56de\uff1a\u827a\u672f\u753b\u7b14\u89c1\u4e7e\u5764.pdf', 'page': 10}\n", "{'source': 'docs/matplotlib/\u7b2c\u4e8c\u56de\uff1a\u827a\u672f\u753b\u7b14\u89c1\u4e7e\u5764.pdf', 'page': 0}\n"]}], "source": ["for d in docs_chinese:\n", " print(d.metadata)\n", " "]}, {"attachments": {}, "cell_type": "markdown", "id": "5e299f8e", "metadata": {}, "source": ["\u5f53\u7136\uff0c\u6211\u4eec\u4e0d\u80fd\u6bcf\u6b21\u90fd\u91c7\u7528\u624b\u52a8\u7684\u65b9\u5f0f\u6765\u89e3\u51b3\u8fd9\u4e2a\u95ee\u9898\uff0c\u8fd9\u4f1a\u663e\u5f97\u4e0d\u591f\u667a\u80fd\n", "\n", "\u4e0b\u4e00\u5c0f\u8282\u5c06\u8981\u5c55\u793a\u901a\u8fc7LLM\u6765\u89e3\u51b3\u8fd9\u4e2a\u95ee\u9898"]}, {"attachments": {}, "cell_type": "markdown", "id": "ccc2d784", "metadata": {}, "source": ["### 1.4 \u89e3\u51b3\u7279\u6b8a\u6027\uff1a\u5728\u5143\u6570\u636e\u4e2d\u4f7f\u7528\u81ea\u67e5\u8be2\u68c0\u7d22\u5668"]}, {"attachments": {}, "cell_type": "markdown", "id": "82ef44b6", "metadata": {}, "source": ["\u6211\u4eec\u6709\u4e00\u4e2a\u6709\u8da3\u7684\u6311\u6218\uff1a\u6211\u4eec\u901a\u5e38\u5e0c\u671b\u4ece\u67e5\u8be2\u672c\u8eab\u6765\u63a8\u65ad\u5143\u6570\u636e\u3002\n", "\n", "\u4e3a\u4e86\u89e3\u51b3\u8fd9\u4e2a\u95ee\u9898\uff0c\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528SelfQueryRetriever\uff0c\u5b83\u4f7f\u7528LLM\u6765\u63d0\u53d6\uff1a\n", " \n", "1. \u7528\u4e8e\u5411\u91cf\u641c\u7d22\u7684\u67e5\u8be2(`query`)\u5b57\u7b26\u4e32\uff0c\u5373\uff1a\u95ee\u9898\n", "2. \u8981\u4e00\u8d77\u4f20\u5165\u7684\u5143\u6570\u636e\u8fc7\u6ee4\u5668\n", "\n", "\u5927\u591a\u6570\u5411\u91cf\u6570\u636e\u5e93\u652f\u6301\u5143\u6570\u636e\u8fc7\u6ee4\u5668\uff0c\u56e0\u6b64\u4e0d\u9700\u8981\u4efb\u4f55\u65b0\u7684\u6570\u636e\u5e93\u53ca\u7d22\u5f15\u3002"]}, {"cell_type": "code", "execution_count": 38, "id": "b1d06084", "metadata": {"tags": []}, "outputs": [], "source": ["from langchain.llms import OpenAI\n", "from langchain.retrievers.self_query.base import SelfQueryRetriever\n", "from langchain.chains.query_constructor.base import AttributeInfo"]}, {"cell_type": "code", "execution_count": 39, "id": "869c27c0", "metadata": {}, "outputs": [], "source": ["llm = OpenAI(temperature=0)"]}, {"attachments": {}, "cell_type": "markdown", "id": "acd194c5", "metadata": {}, "source": ["`AttributeInfo`\u662f\u6211\u4eec\u53ef\u4ee5\u6307\u5b9a\u5143\u6570\u636e\u4e2d\u7684\u4e0d\u540c\u5b57\u6bb5\u4ee5\u53ca\u5b83\u4eec\u5bf9\u5e94\u7684\u4f4d\u7f6e\u3002\n", "\n", "\u5728\u5143\u6570\u636e\u4e2d\uff0c\u6211\u4eec\u53ea\u6709\u4e24\u4e2a\u5b57\u6bb5\uff0c`source`\u548c`page`\u3002\n", "\n", "\u6211\u4eec\u5c06\u586b\u5199\u6bcf\u4e2a\u5c5e\u6027\u7684\u540d\u79f0\u3001\u63cf\u8ff0\u548c\u7c7b\u578b\u7684\u63cf\u8ff0\u3002\n", "\n", "\u8fd9\u4e9b\u4fe1\u606f\u5b9e\u9645\u4e0a\u5c06\u88ab\u4f20\u9012\u7ed9LLM\uff0c\u6240\u4ee5\u9700\u8981\u5c3d\u53ef\u80fd\u8be6\u7ec6\u5730\u63cf\u8ff0\u3002"]}, {"cell_type": "code", "execution_count": 40, "id": "0aa5e698", "metadata": {"tags": []}, "outputs": [], "source": ["metadata_field_info = [\n", " AttributeInfo(\n", " name=\"source\",\n", " description=\"The lecture the chunk is from, should be one of `docs/cs229_lectures/MachineLearning-Lecture01.pdf`, `docs/cs229_lectures/MachineLearning-Lecture02.pdf`, or `docs/cs229_lectures/MachineLearning-Lecture03.pdf`\",\n", " type=\"string\",\n", " ),\n", " AttributeInfo(\n", " name=\"page\",\n", " description=\"The page from the lecture\",\n", " type=\"integer\",\n", " ),\n", "]"]}, {"cell_type": "code", "execution_count": 41, "id": "544ad7c1", "metadata": {}, "outputs": [], "source": ["metadata_field_info_chinese = [\n", " AttributeInfo(\n", " name=\"source\",\n", " description=\"\u8bb2\u4e49\u6765\u6e90\u4e8e `docs/matplotlib/\u7b2c\u4e00\u56de\uff1aMatplotlib\u521d\u76f8\u8bc6.pdf`, `docs/matplotlib/\u7b2c\u4e8c\u56de\uff1a\u827a\u672f\u753b\u7b14\u89c1\u4e7e\u5764.pdf`, or `docs/matplotlib/\u7b2c\u4e09\u56de\uff1a\u5e03\u5c40\u683c\u5f0f\u5b9a\u65b9\u5706.pdf` \u7684\u5176\u4e2d\u4e4b\u4e00\",\n", " type=\"string\",\n", " ),\n", " AttributeInfo(\n", " name=\"page\",\n", " description=\"\u8bb2\u4e49\u7684\u90a3\u4e00\u9875\",\n", " type=\"integer\",\n", " ),\n", "]"]}, {"cell_type": "code", "execution_count": 42, "id": "e7906c15", "metadata": {"tags": []}, "outputs": [], "source": ["document_content_description = \"Lecture notes\"\n", "retriever = SelfQueryRetriever.from_llm(\n", " llm,\n", " vectordb,\n", " document_content_description,\n", " metadata_field_info,\n", " verbose=True\n", ")"]}, {"cell_type": "code", "execution_count": 43, "id": "d5b99571", "metadata": {}, "outputs": [], "source": ["document_content_description_chinese = \"\u8bfe\u5802\u8bb2\u4e49\"\n", "retriever_chinese = SelfQueryRetriever.from_llm(\n", " llm,\n", " vectordb_chinese,\n", " document_content_description_chinese,\n", " metadata_field_info_chinese,\n", " verbose=True\n", ")"]}, {"cell_type": "code", "execution_count": 44, "id": "79d781b9", "metadata": {"tags": []}, "outputs": [], "source": ["question = \"what did they say about regression in the third lecture?\""]}, {"cell_type": "code", "execution_count": 45, "id": "8d9b7e18", "metadata": {}, "outputs": [], "source": ["question_chinese = \"\u4ed6\u4eec\u5728\u7b2c\u4e8c\u8bb2\u4e2d\u5bf9Figure\u8bf4\u4e86\u4e9b\u4ec0\u4e48\uff1f\" "]}, {"attachments": {}, "cell_type": "markdown", "id": "c51778b0-1fcd-40a4-bd6b-0f13fec8acb1", "metadata": {}, "source": ["\u5f53\u4f60\u7b2c\u4e00\u6b21\u6267\u884c\u4e0b\u4e00\u884c\u65f6\uff0c\u4f60\u4f1a\u6536\u5230\u5173\u4e8epredict_and_parse\u5df2\u88ab\u5f03\u7528\u7684**\u8b66\u544a**\u3002 \u8fd9\u53ef\u4ee5\u5b89\u5168\u5730\u5ffd\u7565\u3002"]}, {"cell_type": "code", "execution_count": 46, "id": "1d4f9f7d", "metadata": {"tags": []}, "outputs": [{"name": "stderr", "output_type": "stream", "text": ["/root/autodl-tmp/env/gpt/lib/python3.10/site-packages/langchain/chains/llm.py:275: UserWarning: The predict_and_parse method is deprecated, instead pass an output parser directly to LLMChain.\n", " warnings.warn(\n"]}, {"name": "stdout", "output_type": "stream", "text": ["query='regression' filter=Comparison(comparator=, attribute='source', value='docs/cs229_lectures/MachineLearning-Lecture03.pdf') limit=None\n"]}], "source": ["docs = retriever.get_relevant_documents(question)"]}, {"cell_type": "code", "execution_count": 47, "id": "ea39a97e", "metadata": {}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["query='Figure' filter=Comparison(comparator=, attribute='source', value='docs/matplotlib/\u7b2c\u4e8c\u8bb2\uff1a\u827a\u672f\u753b\u89e3\u7834.pdf') limit=None\n"]}], "source": ["docs_chinese = retriever_chinese.get_relevant_documents(question_chinese)"]}, {"cell_type": "code", "execution_count": 48, "id": "db04374e", "metadata": {"tags": []}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["{'source': 'docs/cs229_lectures/MachineLearning-Lecture03.pdf', 'page': 14}\n", "{'source': 'docs/cs229_lectures/MachineLearning-Lecture03.pdf', 'page': 0}\n", "{'source': 'docs/cs229_lectures/MachineLearning-Lecture03.pdf', 'page': 10}\n", "{'source': 'docs/cs229_lectures/MachineLearning-Lecture03.pdf', 'page': 10}\n"]}], "source": ["for d in docs:\n", " print(d.metadata)"]}, {"cell_type": "code", "execution_count": 49, "id": "143061f5", "metadata": {}, "outputs": [], "source": ["for d in docs_chinese:\n", " print(d.metadata)"]}, {"attachments": {}, "cell_type": "markdown", "id": "297b8168", "metadata": {}, "source": ["### 1.5 \u5176\u4ed6\u6280\u5de7\uff1a\u538b\u7f29"]}, {"attachments": {}, "cell_type": "markdown", "id": "564144da", "metadata": {}, "source": ["\u53e6\u4e00\u79cd\u63d0\u9ad8\u68c0\u7d22\u5230\u7684\u6587\u6863\u8d28\u91cf\u7684\u65b9\u6cd5\u662f\u538b\u7f29\u3002\n", "\n", "\u4e0e\u67e5\u8be2\u6700\u76f8\u5173\u7684\u4fe1\u606f\u53ef\u80fd\u9690\u85cf\u5728\u5177\u6709\u5927\u91cf\u4e0d\u76f8\u5173\u6587\u672c\u7684\u6587\u6863\u4e2d\u3002\n", "\n", "\u5728\u5e94\u7528\u7a0b\u5e8f\u4e2d\u4f20\u9012\u5b8c\u6574\u7684\u6587\u6863\u53ef\u80fd\u4f1a\u5bfc\u81f4\u66f4\u6602\u8d35\u7684LLM\u8c03\u7528\u548c\u66f4\u5dee\u7684\u54cd\u5e94\u3002\n", "\n", "\u4e0a\u4e0b\u6587\u538b\u7f29\u5c31\u662f\u4e3a\u4e86\u89e3\u51b3\u8fd9\u4e2a\u95ee\u9898\u3002"]}, {"cell_type": "code", "execution_count": 50, "id": "a060cf74", "metadata": {"tags": []}, "outputs": [], "source": ["from langchain.retrievers import ContextualCompressionRetriever\n", "from langchain.retrievers.document_compressors import LLMChainExtractor"]}, {"cell_type": "code", "execution_count": 51, "id": "038649c8", "metadata": {"tags": []}, "outputs": [], "source": ["def pretty_print_docs(docs):\n", " print(f\"\\n{'-' * 100}\\n\".join([f\"Document {i+1}:\\n\\n\" + d.page_content for i, d in enumerate(docs)]))"]}, {"cell_type": "code", "execution_count": 52, "id": "fc686cf2", "metadata": {"tags": []}, "outputs": [], "source": ["llm = OpenAI(temperature=0)\n", "compressor = LLMChainExtractor.from_llm(llm) # \u538b\u7f29\u5668"]}, {"cell_type": "code", "execution_count": 53, "id": "82794397", "metadata": {"tags": []}, "outputs": [], "source": ["compression_retriever = ContextualCompressionRetriever(\n", " base_compressor=compressor,\n", " base_retriever=vectordb.as_retriever()\n", ")"]}, {"cell_type": "code", "execution_count": 54, "id": "915598f8", "metadata": {}, "outputs": [], "source": ["compression_retriever_chinese = ContextualCompressionRetriever(\n", " base_compressor=compressor,\n", " base_retriever=vectordb_chinese.as_retriever()\n", ")"]}, {"cell_type": "code", "execution_count": 55, "id": "cde86848", "metadata": {"tags": []}, "outputs": [{"name": "stderr", "output_type": "stream", "text": ["/root/autodl-tmp/env/gpt/lib/python3.10/site-packages/langchain/chains/llm.py:275: UserWarning: The predict_and_parse method is deprecated, instead pass an output parser directly to LLMChain.\n", " warnings.warn(\n"]}, {"name": "stdout", "output_type": "stream", "text": ["Document 1:\n", "\n", "\"MATLAB is I guess part of the programming language that makes it very easy to write codes using matrices, to write code for numerical routines, to move data around, to plot data. And it's sort of an extremely easy to learn tool to use for implementing a lot of learning algorithms.\"\n", "----------------------------------------------------------------------------------------------------\n", "Document 2:\n", "\n", "\"MATLAB is I guess part of the programming language that makes it very easy to write codes using matrices, to write code for numerical routines, to move data around, to plot data. And it's sort of an extremely easy to learn tool to use for implementing a lot of learning algorithms.\"\n", "----------------------------------------------------------------------------------------------------\n", "Document 3:\n", "\n", "\"And the student said, \"Oh, it was the MATLAB.\" So for those of you that don't know MATLAB yet, I hope you do learn it. It's not hard, and we'll actually have a short MATLAB tutorial in one of the discussion sections for those of you that don't know it.\"\n", "----------------------------------------------------------------------------------------------------\n", "Document 4:\n", "\n", "\"And the student said, \"Oh, it was the MATLAB.\" So for those of you that don't know MATLAB yet, I hope you do learn it. It's not hard, and we'll actually have a short MATLAB tutorial in one of the discussion sections for those of you that don't know it.\"\n"]}], "source": ["question = \"what did they say about matlab?\"\n", "compressed_docs = compression_retriever.get_relevant_documents(question)\n", "pretty_print_docs(compressed_docs)"]}, {"cell_type": "code", "execution_count": 56, "id": "39726b24", "metadata": {}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["Document 1:\n", "\n", "Matplotlib \u662f\u2f00\u4e2a Python 2D \u7ed8\u56fe\u5e93\uff0c\u80fd\u591f\u4ee5\u591a\u79cd\u786c\u62f7\u2ec9\u683c\u5f0f\u548c\u8de8\u5e73\u53f0\u7684\u4ea4\u4e92\u5f0f\u73af\u5883\u2f63\u6210\u51fa\u7248\u7269\u8d28\u91cf\u7684\u56fe\u5f62\uff0c\u2f64\u6765\u7ed8\u5236\u5404\u79cd\u9759\u6001\uff0c\u52a8\u6001\uff0c\u4ea4\u4e92\u5f0f\u7684\u56fe\u8868\u3002\n", "----------------------------------------------------------------------------------------------------\n", "Document 2:\n", "\n", "Matplotlib \u662f\u2f00\u4e2a Python 2D \u7ed8\u56fe\u5e93\uff0c\u80fd\u591f\u4ee5\u591a\u79cd\u786c\u62f7\u2ec9\u683c\u5f0f\u548c\u8de8\u5e73\u53f0\u7684\u4ea4\u4e92\u5f0f\u73af\u5883\u2f63\u6210\u51fa\u7248\u7269\u8d28\u91cf\u7684\u56fe\u5f62\uff0c\u2f64\u6765\u7ed8\u5236\u5404\u79cd\u9759\u6001\uff0c\u52a8\u6001\uff0c\u4ea4\u4e92\u5f0f\u7684\u56fe\u8868\u3002\n"]}], "source": ["question_chinese = \"Matplotlib\u662f\u4ec0\u4e48\uff1f\"\n", "compressed_docs_chinese = compression_retriever_chinese.get_relevant_documents(question_chinese)\n", "pretty_print_docs(compressed_docs_chinese)"]}, {"attachments": {}, "cell_type": "markdown", "id": "049b2601", "metadata": {}, "source": ["\u73b0\u5728\u5f53\u6211\u4eec\u63d0\u51fa\u95ee\u9898\u540e\uff0c\u67e5\u770b\u7ed3\u679c\u6587\u6863\n", "\n", "\u6211\u4eec\u53ef\u4ee5\u770b\u5230\u4e24\u4ef6\u4e8b\u3002\n", "\n", "1. \u5b83\u4eec\u6bd4\u6b63\u5e38\u6587\u6863\u77ed\u5f88\u591a\n", "2. \u4ecd\u7136\u6709\u4e00\u4e9b\u91cd\u590d\u7684\u4e1c\u897f\uff0c\u8fd9\u662f\u56e0\u4e3a\u5728\u5e95\u5c42\u6211\u4eec\u4f7f\u7528\u7684\u662f\u8bed\u4e49\u641c\u7d22\u7b97\u6cd5\u3002\n", "\n", "\u8fd9\u5c31\u662f\u6211\u4eec\u5728\u672c\u8bfe\u7a0b\u524d\u9762\u4f7f\u7528MMR\u89e3\u51b3\u7684\u95ee\u9898\u3002\n", "\n", "\u8fd9\u662f\u4e00\u4e2a\u5f88\u597d\u7684\u4f8b\u5b50\uff0c\u4f60\u53ef\u4ee5\u7ed3\u5408\u5404\u79cd\u6280\u672f\u5f97\u5230\u6700\u597d\u7684\u53ef\u80fd\u7ed3\u679c\u3002"]}, {"attachments": {}, "cell_type": "markdown", "id": "82c4fc4d", "metadata": {}, "source": ["## \u4e8c\u3001\u7ed3\u5408\u5404\u79cd\u6280\u672f"]}, {"attachments": {}, "cell_type": "markdown", "id": "54432975", "metadata": {}, "source": ["\u4e3a\u4e86\u505a\u5230\u8fd9\u4e00\u70b9\uff0c\u6211\u4eec\u5728\u4ece\u5411\u91cf\u6570\u636e\u5e93\u521b\u5efa\u68c0\u7d22\u5668\u65f6\uff0c\u53ef\u4ee5\u5c06\u641c\u7d22\u7c7b\u578b\u8bbe\u7f6e\u4e3aMMR\u3002\n", "\n", "\u7136\u540e\u6211\u4eec\u53ef\u4ee5\u91cd\u65b0\u8fd0\u884c\u8fd9\u4e2a\u8fc7\u7a0b\uff0c\u770b\u5230\u6211\u4eec\u8fd4\u56de\u7684\u662f\u4e00\u4e2a\u8fc7\u6ee4\u8fc7\u7684\u7ed3\u679c\u96c6\uff0c\u5176\u4e2d\u4e0d\u5305\u542b\u4efb\u4f55\u91cd\u590d\u7684\u4fe1\u606f\u3002"]}, {"cell_type": "code", "execution_count": 57, "id": "161ae1ad", "metadata": {"tags": []}, "outputs": [], "source": ["compression_retriever = ContextualCompressionRetriever(\n", " base_compressor=compressor,\n", " base_retriever=vectordb.as_retriever(search_type = \"mmr\")\n", ")"]}, {"cell_type": "code", "execution_count": 58, "id": "cd6396bb", "metadata": {}, "outputs": [], "source": ["compression_retriever_chinese = ContextualCompressionRetriever(\n", " base_compressor=compressor,\n", " base_retriever=vectordb_chinese.as_retriever(search_type = \"mmr\")\n", ")"]}, {"cell_type": "code", "execution_count": 59, "id": "e77ccae1", "metadata": {"tags": []}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["Document 1:\n", "\n", "\"MATLAB is I guess part of the programming language that makes it very easy to write codes using matrices, to write code for numerical routines, to move data around, to plot data. And it's sort of an extremely easy to learn tool to use for implementing a lot of learning algorithms.\"\n", "----------------------------------------------------------------------------------------------------\n", "Document 2:\n", "\n", "\"And the student said, \"Oh, it was the MATLAB.\" So for those of you that don't know MATLAB yet, I hope you do learn it. It's not hard, and we'll actually have a short MATLAB tutorial in one of the discussion sections for those of you that don't know it.\"\n"]}], "source": ["question = \"what did they say about matlab?\"\n", "compressed_docs = compression_retriever.get_relevant_documents(question)\n", "pretty_print_docs(compressed_docs)"]}, {"cell_type": "code", "execution_count": 60, "id": "fe68a14b", "metadata": {}, "outputs": [{"name": "stderr", "output_type": "stream", "text": ["Retrying langchain.llms.openai.completion_with_retry.._completion_with_retry in 4.0 seconds as it raised APIError: Request failed due to server shutdown {\n", " \"error\": {\n", " \"message\": \"Request failed due to server shutdown\",\n", " \"type\": \"server_error\",\n", " \"param\": null,\n", " \"code\": null\n", " }\n", "}\n", " 500 {'error': {'message': 'Request failed due to server shutdown', 'type': 'server_error', 'param': None, 'code': None}} {'Date': 'Sun, 16 Jul 2023 05:28:06 GMT', 'Content-Type': 'application/json', 'Content-Length': '141', 'Connection': 'keep-alive', 'access-control-allow-origin': '*', 'openai-model': 'text-davinci-003', 'openai-organization': 'user-xnghkpntwvm31crtmex7n2j0', 'openai-processing-ms': '1159', 'openai-version': '2020-10-01', 'strict-transport-security': 'max-age=15724800; includeSubDomains', 'x-ratelimit-limit-requests': '3000', 'x-ratelimit-limit-tokens': '250000', 'x-ratelimit-remaining-requests': '2999', 'x-ratelimit-remaining-tokens': '249744', 'x-ratelimit-reset-requests': '20ms', 'x-ratelimit-reset-tokens': '61ms', 'x-request-id': '22b2986140ddb5bcc689423e056b7daf', 'CF-Cache-Status': 'DYNAMIC', 'Server': 'cloudflare', 'CF-RAY': '7e77d6f7590b1ec8-NRT', 'alt-svc': 'h3=\":443\"; ma=86400'}.\n"]}, {"name": "stdout", "output_type": "stream", "text": ["Document 1:\n", "\n", "Matplotlib \u662f\u2f00\u4e2a Python 2D \u7ed8\u56fe\u5e93\uff0c\u80fd\u591f\u4ee5\u591a\u79cd\u786c\u62f7\u2ec9\u683c\u5f0f\u548c\u8de8\u5e73\u53f0\u7684\u4ea4\u4e92\u5f0f\u73af\u5883\u2f63\u6210\u51fa\u7248\u7269\u8d28\u91cf\u7684\u56fe\u5f62\uff0c\u2f64\u6765\u7ed8\u5236\u5404\u79cd\u9759\u6001\uff0c\u52a8\u6001\uff0c\u4ea4\u4e92\u5f0f\u7684\u56fe\u8868\u3002\n"]}], "source": ["question_chinese = \"Matplotlib\u662f\u4ec0\u4e48\uff1f\"\n", "compressed_docs_chinese = compression_retriever_chinese.get_relevant_documents(question_chinese)\n", "pretty_print_docs(compressed_docs_chinese)"]}, {"attachments": {}, "cell_type": "markdown", "id": "6c2b63e1", "metadata": {}, "source": ["## \u4e09\u3001\u5176\u4ed6\u7c7b\u578b\u7684\u68c0\u7d22"]}, {"attachments": {}, "cell_type": "markdown", "id": "3e777a7b", "metadata": {}, "source": ["\u503c\u5f97\u6ce8\u610f\u7684\u662f\uff0cvetordb\u5e76\u4e0d\u662f\u552f\u4e00\u4e00\u79cd\u68c0\u7d22\u6587\u6863\u7684\u5de5\u5177\u3002\n", "\n", "`LangChain`\u68c0\u7d22\u5668\u62bd\u8c61\u5305\u62ec\u5176\u4ed6\u68c0\u7d22\u6587\u6863\u7684\u65b9\u5f0f\uff0c\u5982\uff1a`TF-IDF` \u6216 `SVM`\u3002"]}, {"cell_type": "code", "execution_count": 61, "id": "83d2e808", "metadata": {"tags": []}, "outputs": [], "source": ["from langchain.retrievers import SVMRetriever\n", "from langchain.retrievers import TFIDFRetriever\n", "from langchain.document_loaders import PyPDFLoader\n", "from langchain.text_splitter import RecursiveCharacterTextSplitter"]}, {"cell_type": "code", "execution_count": 62, "id": "bcf5b760", "metadata": {"tags": []}, "outputs": [], "source": ["# \u52a0\u8f7dPDF\n", "loader = PyPDFLoader(\"docs/cs229_lectures/MachineLearning-Lecture01.pdf\")\n", "pages = loader.load()\n", "all_page_text = [p.page_content for p in pages]\n", "joined_page_text = \" \".join(all_page_text)\n", "\n", "# \u5206\u5272\u6587\u672c\n", "text_splitter = RecursiveCharacterTextSplitter(chunk_size = 1500,chunk_overlap = 150)\n", "splits = text_splitter.split_text(joined_page_text)\n"]}, {"cell_type": "code", "execution_count": 77, "id": "1657e768", "metadata": {}, "outputs": [], "source": ["# \u52a0\u8f7dPDF\n", "loader_chinese = PyPDFLoader(\"docs/matplotlib/\u7b2c\u4e00\u56de\uff1aMatplotlib\u521d\u76f8\u8bc6.pdf\")\n", "pages_chinese = loader_chinese.load()\n", "all_page_text_chinese = [p.page_content for p in pages_chinese]\n", "joined_page_text_chinese = \" \".join(all_page_text_chinese)\n", "\n", "# \u5206\u5272\u6587\u672c\n", "text_splitter_chinese = RecursiveCharacterTextSplitter(chunk_size = 1500,chunk_overlap = 150)\n", "splits_chinese = text_splitter_chinese.split_text(joined_page_text_chinese)"]}, {"cell_type": "code", "execution_count": 64, "id": "59abbaff", "metadata": {}, "outputs": [], "source": ["# \u68c0\u7d22\n", "svm_retriever = SVMRetriever.from_texts(splits, embedding)\n", "tfidf_retriever = TFIDFRetriever.from_texts(splits)"]}, {"cell_type": "code", "execution_count": 66, "id": "7885389e", "metadata": {}, "outputs": [{"data": {"text/plain": ["Document(page_content=\"let me just check what questions you have righ t now. So if there are no questions, I'll just \\nclose with two reminders, which are after class today or as you start to talk with other \\npeople in this class, I just encourage you again to start to form project partners, to try to \\nfind project partners to do your project with. And also, this is a good time to start forming \\nstudy groups, so either talk to your friends or post in the newsgroup, but we just \\nencourage you to try to star t to do both of those today, okay? Form study groups, and try \\nto find two other project partners. \\nSo thank you. I'm looking forward to teaching this class, and I'll see you in a couple of \\ndays. [End of Audio] \\nDuration: 69 minutes\", metadata={})"]}, "execution_count": 66, "metadata": {}, "output_type": "execute_result"}], "source": ["question = \"What are major topics for this class?\" # \u8fd9\u95e8\u8bfe\u7684\u4e3b\u8981\u4e3b\u9898\u662f\u4ec0\u4e48\uff1f\n", "docs_svm = svm_retriever.get_relevant_documents(question)\n", "docs_svm[0]"]}, {"cell_type": "code", "execution_count": 67, "id": "2a1659c0", "metadata": {"tags": []}, "outputs": [{"data": {"text/plain": ["Document(page_content=\"Saxena and Min Sun here did, wh ich is given an image like this, right? This is actually a \\npicture taken of the Stanford campus. You can apply that sort of cl ustering algorithm and \\ngroup the picture into regions. Let me actually blow that up so that you can see it more \\nclearly. Okay. So in the middle, you see the lines sort of groupi ng the image together, \\ngrouping the image into [inaudible] regions. \\nAnd what Ashutosh and Min did was they then applied the learning algorithm to say can \\nwe take this clustering and us e it to build a 3D model of the world? And so using the \\nclustering, they then had a lear ning algorithm try to learn what the 3D structure of the \\nworld looks like so that they could come up with a 3D model that you can sort of fly \\nthrough, okay? Although many people used to th ink it's not possible to take a single \\nimage and build a 3D model, but using a lear ning algorithm and that sort of clustering \\nalgorithm is the first step. They were able to. \\nI'll just show you one more example. I like this because it's a picture of Stanford with our \\nbeautiful Stanford campus. So again, taking th e same sort of clustering algorithms, taking \\nthe same sort of unsupervised learning algor ithm, you can group the pixels into different \\nregions. And using that as a pre-processing step, they eventually built this sort of 3D model of Stanford campus in a single picture. You can sort of walk into the ceiling, look\", metadata={})"]}, "execution_count": 67, "metadata": {}, "output_type": "execute_result"}], "source": ["question = \"what did they say about matlab?\" # \u4ed6\u4eec\u5173\u4e8eMatlab\u8bf4\u4e86\u4e9b\u4ec0\u4e48\uff1f\n", "docs_tfidf = tfidf_retriever.get_relevant_documents(question)\n", "docs_tfidf[0]"]}, {"cell_type": "code", "execution_count": 78, "id": "5ade9c87", "metadata": {}, "outputs": [], "source": ["# \u4e2d\u6587\u7248\n", "svm_retriever_chinese = SVMRetriever.from_texts(splits_chinese, embedding)\n", "tfidf_retriever_chinese = TFIDFRetriever.from_texts(splits_chinese)"]}, {"cell_type": "code", "execution_count": 79, "id": "cc823bea", "metadata": {}, "outputs": [{"data": {"text/plain": ["Document(page_content='fig, ax = plt.subplots() \\n# step4 \u7ed8\u5236\u56fe\u50cf\uff0c \u8fd9\u2f00\u6a21\u5757\u7684\u6269\u5c55\u53c2\u8003\u7b2c\u2f06\u7ae0\u8fdb\u2f00\u6b65\u5b66\u4e60\\nax.plot(x, y, label=\\'linear\\') \\n# step5 \u6dfb\u52a0\u6807\u7b7e\uff0c\u2f42\u5b57\u548c\u56fe\u4f8b\uff0c\u8fd9\u2f00\u6a21\u5757\u7684\u6269\u5c55\u53c2\u8003\u7b2c\u56db\u7ae0\u8fdb\u2f00\u6b65\u5b66\u4e60\\nax.set_xlabel(\\'x label\\') \\nax.set_ylabel(\\'y label\\') \\nax.set_title(\"Simple Plot\") \\nax.legend() ;\\n\u601d\u8003\u9898\\n\u8bf7\u601d\u8003\u4e24\u79cd\u7ed8\u56fe\u6a21\u5f0f\u7684\u4f18\u7f3a\u70b9\u548c\u5404\u2f83\u9002\u5408\u7684\u4f7f\u2f64\u573a\u666f\\n\u5728\u7b2c\u4e94\u8282\u7ed8\u56fe\u6a21\u677f\u4e2d\u6211\u4eec\u662f\u4ee5 OO \u6a21\u5f0f\u4f5c\u4e3a\u4f8b\u2f26\u5c55\u793a\u7684\uff0c\u8bf7\u601d\u8003\u5e76\u5199\u2f00\u4e2a pyplot \u7ed8\u56fe\u6a21\u5f0f\u7684\u7b80\u5355\u6a21\u677f', metadata={})"]}, "execution_count": 79, "metadata": {}, "output_type": "execute_result"}], "source": ["question_chinese = \"\u8fd9\u95e8\u8bfe\u7684\u4e3b\u8981\u4e3b\u9898\u662f\u4ec0\u4e48\uff1f\" \n", "docs_svm_chinese = svm_retriever_chinese.get_relevant_documents(question_chinese)\n", "docs_svm_chinese[0]"]}, {"cell_type": "code", "execution_count": 80, "id": "01eb9d43", "metadata": {}, "outputs": [{"data": {"text/plain": ["Document(page_content='fig, ax = plt.subplots() \\n# step4 \u7ed8\u5236\u56fe\u50cf\uff0c \u8fd9\u2f00\u6a21\u5757\u7684\u6269\u5c55\u53c2\u8003\u7b2c\u2f06\u7ae0\u8fdb\u2f00\u6b65\u5b66\u4e60\\nax.plot(x, y, label=\\'linear\\') \\n# step5 \u6dfb\u52a0\u6807\u7b7e\uff0c\u2f42\u5b57\u548c\u56fe\u4f8b\uff0c\u8fd9\u2f00\u6a21\u5757\u7684\u6269\u5c55\u53c2\u8003\u7b2c\u56db\u7ae0\u8fdb\u2f00\u6b65\u5b66\u4e60\\nax.set_xlabel(\\'x label\\') \\nax.set_ylabel(\\'y label\\') \\nax.set_title(\"Simple Plot\") \\nax.legend() ;\\n\u601d\u8003\u9898\\n\u8bf7\u601d\u8003\u4e24\u79cd\u7ed8\u56fe\u6a21\u5f0f\u7684\u4f18\u7f3a\u70b9\u548c\u5404\u2f83\u9002\u5408\u7684\u4f7f\u2f64\u573a\u666f\\n\u5728\u7b2c\u4e94\u8282\u7ed8\u56fe\u6a21\u677f\u4e2d\u6211\u4eec\u662f\u4ee5 OO \u6a21\u5f0f\u4f5c\u4e3a\u4f8b\u2f26\u5c55\u793a\u7684\uff0c\u8bf7\u601d\u8003\u5e76\u5199\u2f00\u4e2a pyplot \u7ed8\u56fe\u6a21\u5f0f\u7684\u7b80\u5355\u6a21\u677f', metadata={})"]}, "execution_count": 80, "metadata": {}, "output_type": "execute_result"}], "source": ["question_chinese = \"Matplotlib\u662f\u4ec0\u4e48\uff1f\"\n", "docs_tfidf_chinese = tfidf_retriever_chinese.get_relevant_documents(question_chinese)\n", "docs_tfidf_chinese[0]"]}], "metadata": {"kernelspec": {"display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3"}, "language_info": {"codemirror_mode": {"name": "ipython", "version": 3}, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.11"}}, "nbformat": 4, "nbformat_minor": 5}
\ No newline at end of file
diff --git "a/content/\345\277\205\344\277\256\345\233\233-LangChain Chat with Your Data/6.\351\227\256\347\255\224 Question Answering.ipynb" "b/content/\345\277\205\344\277\256\345\233\233-LangChain Chat with Your Data/6.\351\227\256\347\255\224 Question Answering.ipynb"
index a7b8da7e..92b6812c 100644
--- "a/content/\345\277\205\344\277\256\345\233\233-LangChain Chat with Your Data/6.\351\227\256\347\255\224 Question Answering.ipynb"
+++ "b/content/\345\277\205\344\277\256\345\233\233-LangChain Chat with Your Data/6.\351\227\256\347\255\224 Question Answering.ipynb"
@@ -1 +1 @@
-{"cells":[{"cell_type":"markdown","metadata":{},"source":["# 第六章 问答\n","\n"," - [一、引言](#一、引言)\n"," - [二、环境配置](#二、环境配置)\n"," - [三、加载向量数据库](#三、加载向量数据库)\n"," - [四、构造检索式问答连](#四、构造检索式问答连)\n"," - [五、深入探究检索式问答链](#五、深入探究检索式问答链)\n"," - [5.1 基于模板的检索式问答链](#5.1-基于模板的检索式问答链)\n"," - [5.2 基于 MapReduce 的检索式问答链](#5.2-基于-MapReduce-的检索式问答链)\n"," - [5.3 基于 Refine 的检索式问答链](#5.3-基于-Refine-的检索式问答链)\n"," - [六、实验:状态记录](#六、实验:状态记录)\n"]},{"cell_type":"markdown","metadata":{},"source":["## 一、引言\n","\n","\n","在上一章,我们已经讨论了如何检索与给定问题相关的文档。下一步是获取这些文档,拿到原始问题,将它们一起传递给语言模型,并要求它回答这个问题。在本课程中,我们将详细介绍这一过程,以及完成这项任务的几种不同方法。"]},{"cell_type":"markdown","metadata":{},"source":["我们已经完成了整个存储和获取,获取了相关的切分文档之后,现在我们需要将它们传递给语言模型,以获得答案。这个过程的一般流程如下:首先问题被提出,然后我们查找相关的文档,接着将这些切分文档和系统提示一起传递给语言模型,并获得答案。\n","\n","默认情况下,我们将所有的文档切片都传递到同一个上下文窗口中,即同一次语言模型调用中。然而,有一些不同的方法可以解决这个问题,它们都有优缺点。大部分优点来自于有时可能会有很多文档,但你简单地无法将它们全部传递到同一个上下文窗口中。MapReduce、Refine 和 MapRerank 是三种方法,用于解决这个短上下文窗口的问题。我们将在该课程中进行简要介绍。"]},{"cell_type":"markdown","metadata":{},"source":["## 二、环境配置"]},{"cell_type":"markdown","metadata":{},"source":["配置环境方法同前,此处不再赘述"]},{"cell_type":"code","execution_count":1,"metadata":{},"outputs":[],"source":["import os\n","import openai\n","import sys\n","sys.path.append('../..')\n","\n","from dotenv import load_dotenv, find_dotenv\n","\n","_ = load_dotenv(find_dotenv()) # read local .env file\n","\n","openai.api_key = os.environ['OPENAI_API_KEY']\n"]},{"cell_type":"markdown","metadata":{},"source":["在2023年9月2日之后,GPT-3.5 API 会进行更新,因此此处需要进行一个时间判断"]},{"cell_type":"code","execution_count":2,"metadata":{},"outputs":[{"name":"stdout","output_type":"stream","text":["gpt-3.5-turbo\n"]}],"source":["import datetime\n","current_date = datetime.datetime.now().date()\n","if current_date < datetime.date(2023, 9, 2):\n"," llm_name = \"gpt-3.5-turbo-0301\"\n","else:\n"," llm_name = \"gpt-3.5-turbo\"\n","print(llm_name)"]},{"cell_type":"markdown","metadata":{},"source":["## 三、加载向量数据库"]},{"cell_type":"code","execution_count":3,"metadata":{},"outputs":[],"source":["# 加载在之前已经进行持久化的向量数据库\n","from langchain.vectorstores import Chroma\n","from langchain.embeddings.openai import OpenAIEmbeddings\n","persist_directory = 'docs/chroma/cs229_lectures/'\n","embedding = OpenAIEmbeddings(model='text-embedding-3-small')\n","vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding)"]},{"cell_type":"code","execution_count":4,"metadata":{},"outputs":[{"name":"stdout","output_type":"stream","text":["209\n"]}],"source":["# 可以看见包含了我们之前进行分割的209个文档\n","print(vectordb._collection.count())"]},{"cell_type":"markdown","metadata":{},"source":["我们可以测试一下对于一个提问进行向量检索。如下代码会在向量数据库中根据相似性进行检索,返回给你 k 个文档。"]},{"cell_type":"code","execution_count":5,"metadata":{},"outputs":[{"data":{"text/plain":["3"]},"execution_count":5,"metadata":{},"output_type":"execute_result"}],"source":["question = \"What are major topics for this class?\"\n","docs = vectordb.similarity_search(question,k=3)\n","len(docs)"]},{"cell_type":"code","execution_count":6,"metadata":{},"outputs":[{"data":{"text/plain":["3"]},"execution_count":6,"metadata":{},"output_type":"execute_result"}],"source":["question = \"这节课的主要话题是什么\"\n","docs = vectordb.similarity_search(question,k=3)\n","len(docs)"]},{"cell_type":"markdown","metadata":{},"source":["## 四、构造检索式问答连"]},{"cell_type":"markdown","metadata":{},"source":["基于 LangChain,我们可以构造一个使用 GPT3.5 进行问答的检索式问答链,这是一种通过检索步骤进行问答的方法。我们可以通过传入一个语言模型和一个向量数据库来创建它作为检索器。然后,我们可以用问题作为查询调用它,得到一个答案。"]},{"cell_type":"code","execution_count":7,"metadata":{},"outputs":[],"source":["# 使用 ChatGPT3.5,温度设置为0\n","from langchain_community.chat_models import ChatOpenAI\n","llm = ChatOpenAI(model_name=llm_name, temperature=0)"]},{"cell_type":"code","execution_count":8,"metadata":{},"outputs":[],"source":["# 导入检索式问答链\n","from langchain.chains.retrieval_qa.base import RetrievalQA"]},{"cell_type":"code","execution_count":9,"metadata":{},"outputs":[],"source":["# 声明一个检索式问答链\n","qa_chain = RetrievalQA.from_chain_type(\n"," llm,\n"," retriever=vectordb.as_retriever()\n",")"]},{"cell_type":"code","execution_count":10,"metadata":{},"outputs":[],"source":["# 可以以该方式进行检索问答\n","question = \"What are major topics for this class?\"\n","result = qa_chain({\"query\": question})"]},{"cell_type":"code","execution_count":11,"metadata":{},"outputs":[{"data":{"text/plain":["'The major topics for this class seem to include machine learning, statistics, and algebra. Additionally, there will be discussions on extensions of the material covered in the main lectures.'"]},"execution_count":11,"metadata":{},"output_type":"execute_result"}],"source":["result[\"result\"]"]},{"cell_type":"code","execution_count":12,"metadata":{},"outputs":[],"source":["# 可以以该方式进行检索问答\n","question = \"这节课的主要话题是什么\"\n","result = qa_chain({\"query\": question})"]},{"cell_type":"code","execution_count":13,"metadata":{},"outputs":[{"name":"stdout","output_type":"stream","text":["这节课的主要话题是机器学习。\n"]}],"source":["print(result[\"result\"])"]},{"cell_type":"markdown","metadata":{},"source":["## 五、深入探究检索式问答链"]},{"cell_type":"markdown","metadata":{},"source":["通过上述代码,我们可以实现一个简单的检索式问答链。接下来,让我们深入其中的细节,看看在这个检索式问答链中,LangChain 都做了些什么。\n"]},{"cell_type":"markdown","metadata":{},"source":["### 5.1 基于模板的检索式问答链"]},{"cell_type":"markdown","metadata":{},"source":["\n","我们首先定义了一个提示模板。它包含一些关于如何使用下面的上下文片段的说明,然后有一个上下文变量的占位符。"]},{"cell_type":"code","execution_count":14,"metadata":{},"outputs":[],"source":["from langchain.prompts import PromptTemplate\n","\n","# Build prompt\n","template = \"\"\"Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer. Use three sentences maximum. Keep the answer as concise as possible. Always say \"thanks for asking!\" at the end of the answer. \n","{context}\n","Question: {question}\n","Helpful Answer:\"\"\"\n","QA_CHAIN_PROMPT = PromptTemplate.from_template(template)\n"]},{"cell_type":"code","execution_count":15,"metadata":{},"outputs":[],"source":["# 中文版\n","from langchain.prompts import PromptTemplate\n","\n","# Build prompt\n","template = \"\"\"使用以下上下文片段来回答最后的问题。如果你不知道答案,只需说不知道,不要试图编造答案。答案最多使用三个句子。尽量简明扼要地回答。在回答的最后一定要说\"感谢您的提问!\"\n","{context}\n","问题:{question}\n","有用的回答:\"\"\"\n","QA_CHAIN_PROMPT = PromptTemplate.from_template(template)\n"]},{"cell_type":"code","execution_count":16,"metadata":{},"outputs":[],"source":["# Run chain\n","qa_chain = RetrievalQA.from_chain_type(\n"," llm,\n"," retriever=vectordb.as_retriever(),\n"," return_source_documents=True,\n"," chain_type_kwargs={\"prompt\": QA_CHAIN_PROMPT}\n",")"]},{"cell_type":"code","execution_count":17,"metadata":{},"outputs":[],"source":["question = \"Is probability a class topic?\""]},{"cell_type":"code","execution_count":18,"metadata":{},"outputs":[],"source":["result = qa_chain({\"query\": question})"]},{"cell_type":"code","execution_count":19,"metadata":{},"outputs":[{"data":{"text/plain":["'Yes, probability is a class topic as the instructor assumes familiarity with basic probability and statistics. They will also use a probabilistic interpretation to derive the next learning algorithm. However, the class will not be very programming intensive. If you have not seen probability or statistics for a while, they will go over it in the discussion sections.感谢您的提问!'"]},"execution_count":19,"metadata":{},"output_type":"execute_result"}],"source":["result[\"result\"]"]},{"cell_type":"code","execution_count":20,"metadata":{},"outputs":[],"source":["# 中文版\n","question = \"机器学习是其中一节的话题吗\""]},{"cell_type":"code","execution_count":21,"metadata":{},"outputs":[],"source":["result = qa_chain({\"query\": question})"]},{"cell_type":"code","execution_count":22,"metadata":{},"outputs":[{"data":{"text/plain":["'是的,机器学习是这门课程的一个主题。感谢您的提问!'"]},"execution_count":22,"metadata":{},"output_type":"execute_result"}],"source":["result[\"result\"]"]},{"cell_type":"code","execution_count":23,"metadata":{},"outputs":[{"data":{"text/plain":["Document(page_content=\"a machine learning class, right? If you go to a carpentry school, they can give you the \\ntools of carpentry. They'll give you a hamme r, a bunch of nails, a screwdriver or \\nwhatever. But a master carpenter will be able to use those tools far better than most of us \\nin this room. I know a carpen ter can do things with a hammer and nail that I couldn't \\npossibly. And it's actually a littl e bit like that in machine learning, too. One thing that's \\nsadly not taught in many courses on machine l earning is how to take the tools of machine \\nlearning and really, really apply them well. \\nSo in the same way, so the tools of machin e learning are I wanna say quite a bit more \\nadvanced than the tools of carpentry. Maybe a carpenter will disagree . But a large part of \\nthis class will be just givi ng you the raw tools of machine learning, just the algorithms \\nand so on. But what I plan to do throughout this entire quarter, not just in the segment of \\nlearning theory, but actually as a theme r unning through everything I do this quarter, will \\nbe to try to convey to you the skills to real ly take the learning al gorithm ideas and really \\nto get them to work on a problem. \\nIt's sort of hard for me to stand here and say how big a deal that is, but when I walk \\naround companies in Silicon Valley, it's co mpletely not uncommon for me to see \\nsomeone using some machine learning algorith m and then explain to me what they've\", metadata={'page': 14, 'source': 'docs/cs229_lectures/MachineLearning-Lecture01.pdf'})"]},"execution_count":23,"metadata":{},"output_type":"execute_result"}],"source":["result[\"source_documents\"][0]"]},{"cell_type":"markdown","metadata":{},"source":["这种方法非常好,因为它只涉及对语言模型的一次调用。然而,它也有局限性,即如果文档太多,可能无法将它们全部适配到上下文窗口中。我们可以使用另一种技术来对文档进行问答,即MapReduce技术。"]},{"cell_type":"markdown","metadata":{},"source":["### 5.2 基于 MapReduce 的检索式问答链"]},{"cell_type":"markdown","metadata":{},"source":["在 MapReduce 技术中,首先将每个独立的文档单独发送到语言模型以获取原始答案。然后,这些答案通过最终对语言模型的一次调用组合成最终的答案。虽然这样涉及了更多对语言模型的调用,但它的优势在于可以处理任意数量的文档。\n"]},{"cell_type":"code","execution_count":24,"metadata":{},"outputs":[],"source":["qa_chain_mr = RetrievalQA.from_chain_type(\n"," llm,\n"," retriever=vectordb.as_retriever(),\n"," chain_type=\"map_reduce\"\n",")"]},{"cell_type":"code","execution_count":25,"metadata":{},"outputs":[],"source":["question = \"Is probability a class topic?\"\n","result = qa_chain_mr({\"query\": question})"]},{"cell_type":"code","execution_count":26,"metadata":{},"outputs":[{"data":{"text/plain":["'Yes, probability is a class topic mentioned in the text. The instructor assumes familiarity with basic probability and statistics, stating that most undergraduate statistics classes, like Stat 116 taught at Stanford, will be more than enough. The text also mentions going over some prerequisites, including probability, in the discussion sections as a refresher course.'"]},"execution_count":26,"metadata":{},"output_type":"execute_result"}],"source":["result[\"result\"]"]},{"cell_type":"code","execution_count":27,"metadata":{},"outputs":[{"data":{"text/plain":["'不,这段文本没有提到概率论是其中一节的话题。'"]},"execution_count":27,"metadata":{},"output_type":"execute_result"}],"source":["qa_chain_mr = RetrievalQA.from_chain_type(\n"," llm,\n"," retriever=vectordb.as_retriever(),\n"," chain_type=\"map_reduce\"\n",")\n","# 中文版\n","question = \"概率论是其中一节的话题吗\"\n","result = qa_chain_mr({\"query\": question})\n","result[\"result\"]"]},{"cell_type":"markdown","metadata":{},"source":["当我们将之前的问题通过这个链进行运行时,我们可以看到这种方法的两个问题。第一,速度要慢得多。第二,结果实际上更差。根据给定文档的这一部分,对这个问题并没有明确的答案。这可能是因为它是基于每个文档单独回答的。因此,如果信息分布在两个文档之间,它并没有在同一上下文中获取到所有的信息。"]},{"cell_type":"code","execution_count":28,"metadata":{},"outputs":[],"source":["#import os\n","#os.environ[\"LANGCHAIN_TRACING_V2\"] = \"true\"\n","#os.environ[\"LANGCHAIN_ENDPOINT\"] = \"https://api.langchain.plus\"\n","#os.environ[\"LANGCHAIN_API_KEY\"] = \"...\" # replace dots with your api key"]},{"cell_type":"markdown","metadata":{},"source":["我们可导入上述环境变量,然后探寻 MapReduce 文档链的细节。例如,上述演示中,我们实际上涉及了四个单独的对语言模型的调用。在运行完每个文档后,它们会在最终链式中组合在一起,即Stuffed Documents链,将所有这些回答合并到最终的调用中。"]},{"cell_type":"markdown","metadata":{},"source":["### 5.3 基于 Refine 的检索式问答链"]},{"cell_type":"markdown","metadata":{},"source":["我们可以类似地设置链式类型为Refine。这是一种新的链式类型。Refine 文档链类似于 MapReduce 链,对于每一个文档,会调用一次 LLM,但有所改进的是,我们每次发送给 LLM 的最终提示是一个序列,这个序列会将先前的响应与新数据结合在一起,并请求得到改进后的响应。因此,这是一种类似于 RNN 的概念,我们增强了上下文,从而解决信息分布在不同文档的问题。"]},{"cell_type":"code","execution_count":29,"metadata":{},"outputs":[{"data":{"text/plain":["'Based on the additional context provided, it seems that probability may indeed be a class topic within the broader subject of machine learning. The discussion sections will be used to go over extensions for the material taught in the main lectures, and probability could be one of the topics covered in these extensions. Therefore, probability could potentially be a class topic within the context of machine learning.'"]},"execution_count":29,"metadata":{},"output_type":"execute_result"}],"source":["qa_chain_mr = RetrievalQA.from_chain_type(\n"," llm,\n"," retriever=vectordb.as_retriever(),\n"," chain_type=\"refine\"\n",")\n","question = \"Is probability a class topic?\"\n","result = qa_chain_mr({\"query\": question})\n","result[\"result\"]"]},{"cell_type":"code","execution_count":30,"metadata":{},"outputs":[{"data":{"text/plain":["'根据提供的更多上下文,这节课虽然主要内容是机器学习,但在讨论环节中可能会涉及统计学或代数等主题作为复习。概率论可能会在讨论环节中作为复习或扩展内容的一部分,因为课程假设学生对基本概率和统计学有一定了解。在讨论环节中,可能会涉及概率论的基本概念,如随机变量、期望、方差等。因此,概率论可能会在课程中作为复习或扩展内容的一部分。在讨论环节中,还可能会涉及基本的线性代数知识,如矩阵、向量、矩阵乘法、矩阵求逆等。因此,概率论和线性代数可能会在课程中作为复习或扩展内容的一部分。'"]},"execution_count":30,"metadata":{},"output_type":"execute_result"}],"source":["qa_chain_mr = RetrievalQA.from_chain_type(\n"," llm,\n"," retriever=vectordb.as_retriever(),\n"," chain_type=\"refine\"\n",")\n","question = \"概率论是其中一节的话题吗\"\n","result = qa_chain_mr({\"query\": question})\n","result[\"result\"]"]},{"cell_type":"markdown","metadata":{},"source":["你会注意到,这个结果比MapReduce链的结果要好。这是因为使用Refined Chain允许你逐个地组合信息,实际上比MapReduce链鼓励更多的信息传递。"]},{"cell_type":"markdown","metadata":{},"source":["## 六、实验:状态记录"]},{"cell_type":"markdown","metadata":{},"source":["让我们在这里做一个实验。\n","\n","我们将创建一个QA链,使用默认的stuff。让我们问一个问题,概率论是课程的主题吗?它会回答,概率论应该是先决条件。我们将追问,为什么需要这些先决条件?然后我们得到了一个答案。这门课的先决条件是假定具有计算机科学和基本计算机技能和原理的基本知识。这与之前问有关概率的问题毫不相关。"]},{"cell_type":"code","execution_count":31,"metadata":{},"outputs":[],"source":["qa_chain = RetrievalQA.from_chain_type(\n"," llm,\n"," retriever=vectordb.as_retriever()\n",")"]},{"cell_type":"code","execution_count":32,"metadata":{},"outputs":[{"data":{"text/plain":["'Yes, probability is a class topic mentioned in the context provided. The instructor assumes familiarity with basic probability and statistics for the class.'"]},"execution_count":32,"metadata":{},"output_type":"execute_result"}],"source":["question = \"Is probability a class topic?\"\n","result = qa_chain({\"query\": question})\n","result[\"result\"]"]},{"cell_type":"code","execution_count":33,"metadata":{},"outputs":[{"data":{"text/plain":["'The prerequisites mentioned in the context are needed because the course assumes familiarity with basic concepts in probability and statistics, as well as basic linear algebra. Understanding these foundational concepts is crucial for grasping the more advanced topics covered in the machine learning course. Additionally, knowledge of computer science principles and skills like big-O notation is necessary for implementing and understanding algorithms in machine learning.'"]},"execution_count":33,"metadata":{},"output_type":"execute_result"}],"source":["question = \"why are those prerequesites needed?\"\n","result = qa_chain({\"query\": question})\n","result[\"result\"]"]},{"cell_type":"code","execution_count":34,"metadata":{},"outputs":[{"data":{"text/plain":["'是的,概率论是这门课程的一个内容。老师在课程介绍中提到了对基本概率和统计知识的熟悉是必要的,因此会涉及概率论的内容。'"]},"execution_count":34,"metadata":{},"output_type":"execute_result"}],"source":["question = \"概率论是这节课的一个内容吗\"\n","result = qa_chain({\"query\": question})\n","result[\"result\"]"]},{"cell_type":"code","execution_count":35,"metadata":{},"outputs":[{"data":{"text/plain":["'这些知识对于理解和应用机器学习算法至关重要,因为机器学习在科学和工业的许多领域都有着巨大的影响。掌握这些知识可以帮助你解决感兴趣的问题,并为未来的研究和工作做好准备。'"]},"execution_count":35,"metadata":{},"output_type":"execute_result"}],"source":["question = \"为什么需要具备这些知识\"\n","result = qa_chain({\"query\": question})\n","result[\"result\"]"]},{"cell_type":"markdown","metadata":{},"source":["基本上,我们使用的链式(chain)没有任何状态的概念。它不记得之前的问题或之前的答案。为了实现这一点,我们需要引入内存,这是我们将在下一节中讨论的内容。"]}],"metadata":{"kernelspec":{"display_name":"gpt","language":"python","name":"python3"},"language_info":{"codemirror_mode":{"name":"ipython","version":3},"file_extension":".py","mimetype":"text/x-python","name":"python","nbconvert_exporter":"python","pygments_lexer":"ipython3","version":"3.11.9"},"orig_nbformat":4},"nbformat":4,"nbformat_minor":2}
+{"cells": [{"cell_type": "markdown", "metadata": {}, "source": ["# \u7b2c\u516d\u7ae0 \u95ee\u7b54\n", "\n", " - [\u4e00\u3001\u5f15\u8a00](#\u4e00\u3001\u5f15\u8a00)\n", " - [\u4e8c\u3001\u73af\u5883\u914d\u7f6e](#\u4e8c\u3001\u73af\u5883\u914d\u7f6e)\n", " - [\u4e09\u3001\u52a0\u8f7d\u5411\u91cf\u6570\u636e\u5e93](#\u4e09\u3001\u52a0\u8f7d\u5411\u91cf\u6570\u636e\u5e93)\n", " - [\u56db\u3001\u6784\u9020\u68c0\u7d22\u5f0f\u95ee\u7b54\u8fde](#\u56db\u3001\u6784\u9020\u68c0\u7d22\u5f0f\u95ee\u7b54\u8fde)\n", " - [\u4e94\u3001\u6df1\u5165\u63a2\u7a76\u68c0\u7d22\u5f0f\u95ee\u7b54\u94fe](#\u4e94\u3001\u6df1\u5165\u63a2\u7a76\u68c0\u7d22\u5f0f\u95ee\u7b54\u94fe)\n", " - [5.1 \u57fa\u4e8e\u6a21\u677f\u7684\u68c0\u7d22\u5f0f\u95ee\u7b54\u94fe](#5.1-\u57fa\u4e8e\u6a21\u677f\u7684\u68c0\u7d22\u5f0f\u95ee\u7b54\u94fe)\n", " - [5.2 \u57fa\u4e8e MapReduce \u7684\u68c0\u7d22\u5f0f\u95ee\u7b54\u94fe](#5.2-\u57fa\u4e8e-MapReduce-\u7684\u68c0\u7d22\u5f0f\u95ee\u7b54\u94fe)\n", " - [5.3 \u57fa\u4e8e Refine \u7684\u68c0\u7d22\u5f0f\u95ee\u7b54\u94fe](#5.3-\u57fa\u4e8e-Refine-\u7684\u68c0\u7d22\u5f0f\u95ee\u7b54\u94fe)\n", " - [\u516d\u3001\u5b9e\u9a8c\uff1a\u72b6\u6001\u8bb0\u5f55](#\u516d\u3001\u5b9e\u9a8c\uff1a\u72b6\u6001\u8bb0\u5f55)\n"]}, {"cell_type": "markdown", "metadata": {}, "source": ["## \u4e00\u3001\u5f15\u8a00\n", "\n", "\n", "\u5728\u4e0a\u4e00\u7ae0\uff0c\u6211\u4eec\u5df2\u7ecf\u8ba8\u8bba\u4e86\u5982\u4f55\u68c0\u7d22\u4e0e\u7ed9\u5b9a\u95ee\u9898\u76f8\u5173\u7684\u6587\u6863\u3002\u4e0b\u4e00\u6b65\u662f\u83b7\u53d6\u8fd9\u4e9b\u6587\u6863\uff0c\u62ff\u5230\u539f\u59cb\u95ee\u9898\uff0c\u5c06\u5b83\u4eec\u4e00\u8d77\u4f20\u9012\u7ed9\u8bed\u8a00\u6a21\u578b\uff0c\u5e76\u8981\u6c42\u5b83\u56de\u7b54\u8fd9\u4e2a\u95ee\u9898\u3002\u5728\u672c\u8bfe\u7a0b\u4e2d\uff0c\u6211\u4eec\u5c06\u8be6\u7ec6\u4ecb\u7ecd\u8fd9\u4e00\u8fc7\u7a0b\uff0c\u4ee5\u53ca\u5b8c\u6210\u8fd9\u9879\u4efb\u52a1\u7684\u51e0\u79cd\u4e0d\u540c\u65b9\u6cd5\u3002"]}, {"cell_type": "markdown", "metadata": {}, "source": ["\u6211\u4eec\u5df2\u7ecf\u5b8c\u6210\u4e86\u6574\u4e2a\u5b58\u50a8\u548c\u83b7\u53d6\uff0c\u83b7\u53d6\u4e86\u76f8\u5173\u7684\u5207\u5206\u6587\u6863\u4e4b\u540e\uff0c\u73b0\u5728\u6211\u4eec\u9700\u8981\u5c06\u5b83\u4eec\u4f20\u9012\u7ed9\u8bed\u8a00\u6a21\u578b\uff0c\u4ee5\u83b7\u5f97\u7b54\u6848\u3002\u8fd9\u4e2a\u8fc7\u7a0b\u7684\u4e00\u822c\u6d41\u7a0b\u5982\u4e0b\uff1a\u9996\u5148\u95ee\u9898\u88ab\u63d0\u51fa\uff0c\u7136\u540e\u6211\u4eec\u67e5\u627e\u76f8\u5173\u7684\u6587\u6863\uff0c\u63a5\u7740\u5c06\u8fd9\u4e9b\u5207\u5206\u6587\u6863\u548c\u7cfb\u7edf\u63d0\u793a\u4e00\u8d77\u4f20\u9012\u7ed9\u8bed\u8a00\u6a21\u578b\uff0c\u5e76\u83b7\u5f97\u7b54\u6848\u3002\n", "\n", "\u9ed8\u8ba4\u60c5\u51b5\u4e0b\uff0c\u6211\u4eec\u5c06\u6240\u6709\u7684\u6587\u6863\u5207\u7247\u90fd\u4f20\u9012\u5230\u540c\u4e00\u4e2a\u4e0a\u4e0b\u6587\u7a97\u53e3\u4e2d\uff0c\u5373\u540c\u4e00\u6b21\u8bed\u8a00\u6a21\u578b\u8c03\u7528\u4e2d\u3002\u7136\u800c\uff0c\u6709\u4e00\u4e9b\u4e0d\u540c\u7684\u65b9\u6cd5\u53ef\u4ee5\u89e3\u51b3\u8fd9\u4e2a\u95ee\u9898\uff0c\u5b83\u4eec\u90fd\u6709\u4f18\u7f3a\u70b9\u3002\u5927\u90e8\u5206\u4f18\u70b9\u6765\u81ea\u4e8e\u6709\u65f6\u53ef\u80fd\u4f1a\u6709\u5f88\u591a\u6587\u6863\uff0c\u4f46\u4f60\u7b80\u5355\u5730\u65e0\u6cd5\u5c06\u5b83\u4eec\u5168\u90e8\u4f20\u9012\u5230\u540c\u4e00\u4e2a\u4e0a\u4e0b\u6587\u7a97\u53e3\u4e2d\u3002MapReduce\u3001Refine \u548c MapRerank \u662f\u4e09\u79cd\u65b9\u6cd5\uff0c\u7528\u4e8e\u89e3\u51b3\u8fd9\u4e2a\u77ed\u4e0a\u4e0b\u6587\u7a97\u53e3\u7684\u95ee\u9898\u3002\u6211\u4eec\u5c06\u5728\u8be5\u8bfe\u7a0b\u4e2d\u8fdb\u884c\u7b80\u8981\u4ecb\u7ecd\u3002"]}, {"cell_type": "markdown", "metadata": {}, "source": ["## \u4e8c\u3001\u73af\u5883\u914d\u7f6e"]}, {"cell_type": "markdown", "metadata": {}, "source": ["\u914d\u7f6e\u73af\u5883\u65b9\u6cd5\u540c\u524d\uff0c\u6b64\u5904\u4e0d\u518d\u8d58\u8ff0"]}, {"cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": ["import os\n", "import openai\n", "import sys\n", "sys.path.append('../..')\n", "\n", "from dotenv import load_dotenv, find_dotenv\n", "\n", "_ = load_dotenv(find_dotenv()) # read local .env file\n", "\n", "openai.api_key = os.environ['OPENAI_API_KEY']\n"]}, {"cell_type": "markdown", "metadata": {}, "source": ["\u57282023\u5e749\u67082\u65e5\u4e4b\u540e\uff0cGPT-3.5 API \u4f1a\u8fdb\u884c\u66f4\u65b0\uff0c\u56e0\u6b64\u6b64\u5904\u9700\u8981\u8fdb\u884c\u4e00\u4e2a\u65f6\u95f4\u5224\u65ad"]}, {"cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["gpt-3.5-turbo-0301\n"]}], "source": ["import datetime\n", "current_date = datetime.datetime.now().date()\n", "if current_date < datetime.date(2023, 9, 2):\n", " llm_name = \"gpt-3.5-turbo-0301\"\n", "else:\n", " llm_name = \"gpt-3.5-turbo\"\n", "print(llm_name)"]}, {"cell_type": "markdown", "metadata": {}, "source": ["## \u4e09\u3001\u52a0\u8f7d\u5411\u91cf\u6570\u636e\u5e93"]}, {"cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": ["# \u52a0\u8f7d\u5728\u4e4b\u524d\u5df2\u7ecf\u8fdb\u884c\u6301\u4e45\u5316\u7684\u5411\u91cf\u6570\u636e\u5e93\n", "from langchain.vectorstores import Chroma\n", "from langchain.embeddings.openai import OpenAIEmbeddings\n", "persist_directory = 'docs/chroma/cs229_lectures/'\n", "embedding = OpenAIEmbeddings()\n", "vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding)"]}, {"cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["209\n"]}], "source": ["# \u53ef\u4ee5\u770b\u89c1\u5305\u542b\u4e86\u6211\u4eec\u4e4b\u524d\u8fdb\u884c\u5206\u5272\u7684209\u4e2a\u6587\u6863\n", "print(vectordb._collection.count())"]}, {"cell_type": "markdown", "metadata": {}, "source": ["\u6211\u4eec\u53ef\u4ee5\u6d4b\u8bd5\u4e00\u4e0b\u5bf9\u4e8e\u4e00\u4e2a\u63d0\u95ee\u8fdb\u884c\u5411\u91cf\u68c0\u7d22\u3002\u5982\u4e0b\u4ee3\u7801\u4f1a\u5728\u5411\u91cf\u6570\u636e\u5e93\u4e2d\u6839\u636e\u76f8\u4f3c\u6027\u8fdb\u884c\u68c0\u7d22\uff0c\u8fd4\u56de\u7ed9\u4f60 k \u4e2a\u6587\u6863\u3002"]}, {"cell_type": "code", "execution_count": 34, "metadata": {}, "outputs": [{"data": {"text/plain": ["3"]}, "execution_count": 34, "metadata": {}, "output_type": "execute_result"}], "source": ["question = \"What are major topics for this class?\"\n", "docs = vectordb.similarity_search(question,k=3)\n", "len(docs)"]}, {"cell_type": "code", "execution_count": 35, "metadata": {}, "outputs": [{"data": {"text/plain": ["3"]}, "execution_count": 35, "metadata": {}, "output_type": "execute_result"}], "source": ["question = \"\u8fd9\u8282\u8bfe\u7684\u4e3b\u8981\u8bdd\u9898\u662f\u4ec0\u4e48\"\n", "docs = vectordb.similarity_search(question,k=3)\n", "len(docs)"]}, {"cell_type": "markdown", "metadata": {}, "source": ["## \u56db\u3001\u6784\u9020\u68c0\u7d22\u5f0f\u95ee\u7b54\u8fde"]}, {"cell_type": "markdown", "metadata": {}, "source": ["\u57fa\u4e8e LangChain\uff0c\u6211\u4eec\u53ef\u4ee5\u6784\u9020\u4e00\u4e2a\u4f7f\u7528 GPT3.5 \u8fdb\u884c\u95ee\u7b54\u7684\u68c0\u7d22\u5f0f\u95ee\u7b54\u94fe\uff0c\u8fd9\u662f\u4e00\u79cd\u901a\u8fc7\u68c0\u7d22\u6b65\u9aa4\u8fdb\u884c\u95ee\u7b54\u7684\u65b9\u6cd5\u3002\u6211\u4eec\u53ef\u4ee5\u901a\u8fc7\u4f20\u5165\u4e00\u4e2a\u8bed\u8a00\u6a21\u578b\u548c\u4e00\u4e2a\u5411\u91cf\u6570\u636e\u5e93\u6765\u521b\u5efa\u5b83\u4f5c\u4e3a\u68c0\u7d22\u5668\u3002\u7136\u540e\uff0c\u6211\u4eec\u53ef\u4ee5\u7528\u95ee\u9898\u4f5c\u4e3a\u67e5\u8be2\u8c03\u7528\u5b83\uff0c\u5f97\u5230\u4e00\u4e2a\u7b54\u6848\u3002"]}, {"cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": ["# \u4f7f\u7528 ChatGPT3.5\uff0c\u6e29\u5ea6\u8bbe\u7f6e\u4e3a0\n", "from langchain.chat_models import ChatOpenAI\n", "llm = ChatOpenAI(model_name=llm_name, temperature=0)"]}, {"cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": ["# \u5bfc\u5165\u68c0\u7d22\u5f0f\u95ee\u7b54\u94fe\n", "from langchain.chains import RetrievalQA"]}, {"cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": ["# \u58f0\u660e\u4e00\u4e2a\u68c0\u7d22\u5f0f\u95ee\u7b54\u94fe\n", "qa_chain = RetrievalQA.from_chain_type(\n", " llm,\n", " retriever=vectordb.as_retriever()\n", ")"]}, {"cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [], "source": ["# \u53ef\u4ee5\u4ee5\u8be5\u65b9\u5f0f\u8fdb\u884c\u68c0\u7d22\u95ee\u7b54\n", "question = \"What are major topics for this class?\"\n", "result = qa_chain({\"query\": question})"]}, {"cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [{"data": {"text/plain": ["'The major topic for this class is machine learning. Additionally, there may be some discussion on statistics and algebra as a refresher, and later in the quarter, there may be some discussion on extensions for the material covered in the main lectures.'"]}, "execution_count": 13, "metadata": {}, "output_type": "execute_result"}], "source": ["result[\"result\"]"]}, {"cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [], "source": ["# \u53ef\u4ee5\u4ee5\u8be5\u65b9\u5f0f\u8fdb\u884c\u68c0\u7d22\u95ee\u7b54\n", "question = \"\u8fd9\u8282\u8bfe\u7684\u4e3b\u8981\u8bdd\u9898\u662f\u4ec0\u4e48\"\n", "result = qa_chain({\"query\": question})"]}, {"cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [{"name": "stdout", "output_type": "stream", "text": ["\u4ece\u8fd9\u4e9b\u4e0a\u4e0b\u6587\u6765\u770b\uff0c\u8fd9\u8282\u8bfe\u7684\u4e3b\u8981\u8bdd\u9898\u5305\u62ec\u8bfe\u7a0b\u4fe1\u606f\u3001\u5728\u7ebf\u8d44\u6e90\u548c\u7ebf\u6027\u4ee3\u6570\u3002\n"]}], "source": ["print(result[\"result\"])"]}, {"cell_type": "markdown", "metadata": {}, "source": ["## \u4e94\u3001\u6df1\u5165\u63a2\u7a76\u68c0\u7d22\u5f0f\u95ee\u7b54\u94fe"]}, {"cell_type": "markdown", "metadata": {}, "source": ["\u901a\u8fc7\u4e0a\u8ff0\u4ee3\u7801\uff0c\u6211\u4eec\u53ef\u4ee5\u5b9e\u73b0\u4e00\u4e2a\u7b80\u5355\u7684\u68c0\u7d22\u5f0f\u95ee\u7b54\u94fe\u3002\u63a5\u4e0b\u6765\uff0c\u8ba9\u6211\u4eec\u6df1\u5165\u5176\u4e2d\u7684\u7ec6\u8282\uff0c\u770b\u770b\u5728\u8fd9\u4e2a\u68c0\u7d22\u5f0f\u95ee\u7b54\u94fe\u4e2d\uff0cLangChain \u90fd\u505a\u4e86\u4e9b\u4ec0\u4e48\u3002\n"]}, {"cell_type": "markdown", "metadata": {}, "source": ["### 5.1 \u57fa\u4e8e\u6a21\u677f\u7684\u68c0\u7d22\u5f0f\u95ee\u7b54\u94fe"]}, {"cell_type": "markdown", "metadata": {}, "source": ["\n", "\u6211\u4eec\u9996\u5148\u5b9a\u4e49\u4e86\u4e00\u4e2a\u63d0\u793a\u6a21\u677f\u3002\u5b83\u5305\u542b\u4e00\u4e9b\u5173\u4e8e\u5982\u4f55\u4f7f\u7528\u4e0b\u9762\u7684\u4e0a\u4e0b\u6587\u7247\u6bb5\u7684\u8bf4\u660e\uff0c\u7136\u540e\u6709\u4e00\u4e2a\u4e0a\u4e0b\u6587\u53d8\u91cf\u7684\u5360\u4f4d\u7b26\u3002"]}, {"cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [], "source": ["from langchain.prompts import PromptTemplate\n", "\n", "# Build prompt\n", "template = \"\"\"Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer. Use three sentences maximum. Keep the answer as concise as possible. Always say \"thanks for asking!\" at the end of the answer. \n", "{context}\n", "Question: {question}\n", "Helpful Answer:\"\"\"\n", "QA_CHAIN_PROMPT = PromptTemplate.from_template(template)\n"]}, {"cell_type": "code", "execution_count": 36, "metadata": {}, "outputs": [], "source": ["# \u4e2d\u6587\u7248\n", "from langchain.prompts import PromptTemplate\n", "\n", "# Build prompt\n", "template = \"\"\"\u4f7f\u7528\u4ee5\u4e0b\u4e0a\u4e0b\u6587\u7247\u6bb5\u6765\u56de\u7b54\u6700\u540e\u7684\u95ee\u9898\u3002\u5982\u679c\u4f60\u4e0d\u77e5\u9053\u7b54\u6848\uff0c\u53ea\u9700\u8bf4\u4e0d\u77e5\u9053\uff0c\u4e0d\u8981\u8bd5\u56fe\u7f16\u9020\u7b54\u6848\u3002\u7b54\u6848\u6700\u591a\u4f7f\u7528\u4e09\u4e2a\u53e5\u5b50\u3002\u5c3d\u91cf\u7b80\u660e\u627c\u8981\u5730\u56de\u7b54\u3002\u5728\u56de\u7b54\u7684\u6700\u540e\u4e00\u5b9a\u8981\u8bf4\"\u611f\u8c22\u60a8\u7684\u63d0\u95ee\uff01\"\n", "{context}\n", "\u95ee\u9898\uff1a{question}\n", "\u6709\u7528\u7684\u56de\u7b54\uff1a\"\"\"\n", "QA_CHAIN_PROMPT = PromptTemplate.from_template(template)\n"]}, {"cell_type": "code", "execution_count": 37, "metadata": {}, "outputs": [], "source": ["# Run chain\n", "qa_chain = RetrievalQA.from_chain_type(\n", " llm,\n", " retriever=vectordb.as_retriever(),\n", " return_source_documents=True,\n", " chain_type_kwargs={\"prompt\": QA_CHAIN_PROMPT}\n", ")"]}, {"cell_type": "code", "execution_count": 38, "metadata": {}, "outputs": [], "source": ["question = \"Is probability a class topic?\""]}, {"cell_type": "code", "execution_count": 39, "metadata": {}, "outputs": [], "source": ["result = qa_chain({\"query\": question})"]}, {"cell_type": "code", "execution_count": 40, "metadata": {}, "outputs": [{"data": {"text/plain": ["'Yes, probability is a class topic and the instructor assumes familiarity with basic probability and statistics.'"]}, "execution_count": 40, "metadata": {}, "output_type": "execute_result"}], "source": ["result[\"result\"]"]}, {"cell_type": "code", "execution_count": 47, "metadata": {}, "outputs": [], "source": ["# \u4e2d\u6587\u7248\n", "question = \"\u673a\u5668\u5b66\u4e60\u662f\u5176\u4e2d\u4e00\u8282\u7684\u8bdd\u9898\u5417\""]}, {"cell_type": "code", "execution_count": 48, "metadata": {}, "outputs": [], "source": ["result = qa_chain({\"query\": question})"]}, {"cell_type": "code", "execution_count": 49, "metadata": {}, "outputs": [{"data": {"text/plain": ["'\u662f\u7684\uff0c\u673a\u5668\u5b66\u4e60\u662f\u5176\u4e2d\u4e00\u8282\u7684\u8bdd\u9898\u3002\u611f\u8c22\u60a8\u7684\u63d0\u95ee\uff01'"]}, "execution_count": 49, "metadata": {}, "output_type": "execute_result"}], "source": ["result[\"result\"]"]}, {"cell_type": "code", "execution_count": 50, "metadata": {}, "outputs": [{"data": {"text/plain": ["Document(page_content=\"So in this class, we've tried to convey to you a broad set of principl es and tools that will \\nbe useful for doing many, many things. And ev ery time I teach this class, I can actually \\nvery confidently say that af ter December, no matter what yo u're going to do after this \\nDecember when you've sort of completed this class, you'll find the things you learn in \\nthis class very useful, and these things will be useful pretty much no matter what you end \\nup doing later in your life. \\nSo I have more logistics to go over later, but let's say a few more words about machine \\nlearning. I feel that machine learning grew out of early work in AI, early work in artificial \\nintelligence. And over the last \u2014 I wanna say last 15 or last 20 years or so, it's been viewed as a sort of growing new capability for computers. And in particular, it turns out \\nthat there are many programs or there are many applications that you can't program by \\nhand. \\nFor example, if you want to get a computer to read handwritten characters, to read sort of \\nhandwritten digits, that actual ly turns out to be amazingly difficult to write a piece of \\nsoftware to take this input, an image of some thing that I wrote and to figure out just what \\nit is, to translate my cursive handwriting into \u2014 to extract the characters I wrote out in \\nlonghand. And other things: One thing that my students and I do is autonomous flight. It \\nturns out to be extremely difficult to sit dow n and write a program to fly a helicopter.\", metadata={'source': 'docs/cs229_lectures/MachineLearning-Lecture01.pdf', 'page': 2})"]}, "execution_count": 50, "metadata": {}, "output_type": "execute_result"}], "source": ["result[\"source_documents\"][0]"]}, {"cell_type": "markdown", "metadata": {}, "source": ["\u8fd9\u79cd\u65b9\u6cd5\u975e\u5e38\u597d\uff0c\u56e0\u4e3a\u5b83\u53ea\u6d89\u53ca\u5bf9\u8bed\u8a00\u6a21\u578b\u7684\u4e00\u6b21\u8c03\u7528\u3002\u7136\u800c\uff0c\u5b83\u4e5f\u6709\u5c40\u9650\u6027\uff0c\u5373\u5982\u679c\u6587\u6863\u592a\u591a\uff0c\u53ef\u80fd\u65e0\u6cd5\u5c06\u5b83\u4eec\u5168\u90e8\u9002\u914d\u5230\u4e0a\u4e0b\u6587\u7a97\u53e3\u4e2d\u3002\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528\u53e6\u4e00\u79cd\u6280\u672f\u6765\u5bf9\u6587\u6863\u8fdb\u884c\u95ee\u7b54\uff0c\u5373MapReduce\u6280\u672f\u3002"]}, {"cell_type": "markdown", "metadata": {}, "source": ["### 5.2 \u57fa\u4e8e MapReduce \u7684\u68c0\u7d22\u5f0f\u95ee\u7b54\u94fe"]}, {"cell_type": "markdown", "metadata": {}, "source": ["\u5728 MapReduce \u6280\u672f\u4e2d\uff0c\u9996\u5148\u5c06\u6bcf\u4e2a\u72ec\u7acb\u7684\u6587\u6863\u5355\u72ec\u53d1\u9001\u5230\u8bed\u8a00\u6a21\u578b\u4ee5\u83b7\u53d6\u539f\u59cb\u7b54\u6848\u3002\u7136\u540e\uff0c\u8fd9\u4e9b\u7b54\u6848\u901a\u8fc7\u6700\u7ec8\u5bf9\u8bed\u8a00\u6a21\u578b\u7684\u4e00\u6b21\u8c03\u7528\u7ec4\u5408\u6210\u6700\u7ec8\u7684\u7b54\u6848\u3002\u867d\u7136\u8fd9\u6837\u6d89\u53ca\u4e86\u66f4\u591a\u5bf9\u8bed\u8a00\u6a21\u578b\u7684\u8c03\u7528\uff0c\u4f46\u5b83\u7684\u4f18\u52bf\u5728\u4e8e\u53ef\u4ee5\u5904\u7406\u4efb\u610f\u6570\u91cf\u7684\u6587\u6863\u3002\n"]}, {"cell_type": "code", "execution_count": 51, "metadata": {}, "outputs": [], "source": ["qa_chain_mr = RetrievalQA.from_chain_type(\n", " llm,\n", " retriever=vectordb.as_retriever(),\n", " chain_type=\"map_reduce\"\n", ")"]}, {"cell_type": "code", "execution_count": 52, "metadata": {}, "outputs": [], "source": ["question = \"Is probability a class topic?\"\n", "result = qa_chain_mr({\"query\": question})"]}, {"cell_type": "code", "execution_count": 53, "metadata": {}, "outputs": [{"data": {"text/plain": ["'It is not clear from the given portion of the document whether probability is a class topic or not. The text only mentions that familiarity with basic probability and statistics is assumed as a prerequisite for the class.'"]}, "execution_count": 53, "metadata": {}, "output_type": "execute_result"}], "source": ["result[\"result\"]"]}, {"cell_type": "code", "execution_count": 55, "metadata": {}, "outputs": [{"data": {"text/plain": ["'\u6839\u636e\u7ed9\u51fa\u7684\u6587\u4ef6\u90e8\u5206\uff0c\u6ca1\u6709\u63d0\u5230\u6982\u7387\u8bba\u3002'"]}, "execution_count": 55, "metadata": {}, "output_type": "execute_result"}], "source": ["qa_chain_mr = RetrievalQA.from_chain_type(\n", " llm,\n", " retriever=vectordb.as_retriever(),\n", " chain_type=\"map_reduce\"\n", ")\n", "# \u4e2d\u6587\u7248\n", "question = \"\u6982\u7387\u8bba\u662f\u5176\u4e2d\u4e00\u8282\u7684\u8bdd\u9898\u5417\"\n", "result = qa_chain_mr({\"query\": question})\n", "result[\"result\"]"]}, {"cell_type": "markdown", "metadata": {}, "source": ["\u5f53\u6211\u4eec\u5c06\u4e4b\u524d\u7684\u95ee\u9898\u901a\u8fc7\u8fd9\u4e2a\u94fe\u8fdb\u884c\u8fd0\u884c\u65f6\uff0c\u6211\u4eec\u53ef\u4ee5\u770b\u5230\u8fd9\u79cd\u65b9\u6cd5\u7684\u4e24\u4e2a\u95ee\u9898\u3002\u7b2c\u4e00\uff0c\u901f\u5ea6\u8981\u6162\u5f97\u591a\u3002\u7b2c\u4e8c\uff0c\u7ed3\u679c\u5b9e\u9645\u4e0a\u66f4\u5dee\u3002\u6839\u636e\u7ed9\u5b9a\u6587\u6863\u7684\u8fd9\u4e00\u90e8\u5206\uff0c\u5bf9\u8fd9\u4e2a\u95ee\u9898\u5e76\u6ca1\u6709\u660e\u786e\u7684\u7b54\u6848\u3002\u8fd9\u53ef\u80fd\u662f\u56e0\u4e3a\u5b83\u662f\u57fa\u4e8e\u6bcf\u4e2a\u6587\u6863\u5355\u72ec\u56de\u7b54\u7684\u3002\u56e0\u6b64\uff0c\u5982\u679c\u4fe1\u606f\u5206\u5e03\u5728\u4e24\u4e2a\u6587\u6863\u4e4b\u95f4\uff0c\u5b83\u5e76\u6ca1\u6709\u5728\u540c\u4e00\u4e0a\u4e0b\u6587\u4e2d\u83b7\u53d6\u5230\u6240\u6709\u7684\u4fe1\u606f\u3002"]}, {"cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": ["#import os\n", "#os.environ[\"LANGCHAIN_TRACING_V2\"] = \"true\"\n", "#os.environ[\"LANGCHAIN_ENDPOINT\"] = \"https://api.langchain.plus\"\n", "#os.environ[\"LANGCHAIN_API_KEY\"] = \"...\" # replace dots with your api key"]}, {"cell_type": "markdown", "metadata": {}, "source": ["\u6211\u4eec\u53ef\u5bfc\u5165\u4e0a\u8ff0\u73af\u5883\u53d8\u91cf\uff0c\u7136\u540e\u63a2\u5bfb MapReduce \u6587\u6863\u94fe\u7684\u7ec6\u8282\u3002\u4f8b\u5982\uff0c\u4e0a\u8ff0\u6f14\u793a\u4e2d\uff0c\u6211\u4eec\u5b9e\u9645\u4e0a\u6d89\u53ca\u4e86\u56db\u4e2a\u5355\u72ec\u7684\u5bf9\u8bed\u8a00\u6a21\u578b\u7684\u8c03\u7528\u3002\u5728\u8fd0\u884c\u5b8c\u6bcf\u4e2a\u6587\u6863\u540e\uff0c\u5b83\u4eec\u4f1a\u5728\u6700\u7ec8\u94fe\u5f0f\u4e2d\u7ec4\u5408\u5728\u4e00\u8d77\uff0c\u5373Stuffed Documents\u94fe\uff0c\u5c06\u6240\u6709\u8fd9\u4e9b\u56de\u7b54\u5408\u5e76\u5230\u6700\u7ec8\u7684\u8c03\u7528\u4e2d\u3002"]}, {"cell_type": "markdown", "metadata": {}, "source": ["### 5.3 \u57fa\u4e8e Refine \u7684\u68c0\u7d22\u5f0f\u95ee\u7b54\u94fe"]}, {"cell_type": "markdown", "metadata": {}, "source": ["\u6211\u4eec\u53ef\u4ee5\u7c7b\u4f3c\u5730\u8bbe\u7f6e\u94fe\u5f0f\u7c7b\u578b\u4e3aRefine\u3002\u8fd9\u662f\u4e00\u79cd\u65b0\u7684\u94fe\u5f0f\u7c7b\u578b\u3002Refine \u6587\u6863\u94fe\u7c7b\u4f3c\u4e8e MapReduce \u94fe\uff0c\u5bf9\u4e8e\u6bcf\u4e00\u4e2a\u6587\u6863\uff0c\u4f1a\u8c03\u7528\u4e00\u6b21 LLM\uff0c\u4f46\u6709\u6240\u6539\u8fdb\u7684\u662f\uff0c\u6211\u4eec\u6bcf\u6b21\u53d1\u9001\u7ed9 LLM \u7684\u6700\u7ec8\u63d0\u793a\u662f\u4e00\u4e2a\u5e8f\u5217\uff0c\u8fd9\u4e2a\u5e8f\u5217\u4f1a\u5c06\u5148\u524d\u7684\u54cd\u5e94\u4e0e\u65b0\u6570\u636e\u7ed3\u5408\u5728\u4e00\u8d77\uff0c\u5e76\u8bf7\u6c42\u5f97\u5230\u6539\u8fdb\u540e\u7684\u54cd\u5e94\u3002\u56e0\u6b64\uff0c\u8fd9\u662f\u4e00\u79cd\u7c7b\u4f3c\u4e8e RNN \u7684\u6982\u5ff5\uff0c\u6211\u4eec\u589e\u5f3a\u4e86\u4e0a\u4e0b\u6587\uff0c\u4ece\u800c\u89e3\u51b3\u4fe1\u606f\u5206\u5e03\u5728\u4e0d\u540c\u6587\u6863\u7684\u95ee\u9898\u3002"]}, {"cell_type": "code", "execution_count": 56, "metadata": {}, "outputs": [{"data": {"text/plain": ["'Based on the additional context provided, probability is assumed to be a prerequisite and not a main topic of the class. The instructor assumes that students are familiar with basic probability and statistics, including random variables, expectation, variance, and basic linear algebra. The class will not be very programming-intensive, but some programming will be done in MATLAB or Octave. The instructor will provide a refresher course on the prerequisites in some of the discussion sections. The class also assumes familiarity with basic linear algebra, including matrices, vectors, matrix multiplication, and matrix inverse. Most undergraduate linear algebra courses, such as Math 51, 103, Math 113, or CS205 at Stanford, are more than enough. The instructor will also review the prerequisites in some of the discussion sections.'"]}, "execution_count": 56, "metadata": {}, "output_type": "execute_result"}], "source": ["qa_chain_mr = RetrievalQA.from_chain_type(\n", " llm,\n", " retriever=vectordb.as_retriever(),\n", " chain_type=\"refine\"\n", ")\n", "question = \"Is probability a class topic?\"\n", "result = qa_chain_mr({\"query\": question})\n", "result[\"result\"]"]}, {"cell_type": "code", "execution_count": 57, "metadata": {}, "outputs": [{"data": {"text/plain": ["'Based on the additional context provided, the instructor mentions that they will cover statistics and algebra in the discussion sections as a refresher, and will also use the discussion sections to go over extensions of the material taught in the main lectures. However, there is no explicit mention of probability theory being covered in the course. Therefore, the original answer still stands.'"]}, "execution_count": 57, "metadata": {}, "output_type": "execute_result"}], "source": ["qa_chain_mr = RetrievalQA.from_chain_type(\n", " llm,\n", " retriever=vectordb.as_retriever(),\n", " chain_type=\"refine\"\n", ")\n", "question = \"\u6982\u7387\u8bba\u662f\u5176\u4e2d\u4e00\u8282\u7684\u8bdd\u9898\u5417\"\n", "result = qa_chain_mr({\"query\": question})\n", "result[\"result\"]"]}, {"cell_type": "markdown", "metadata": {}, "source": ["\u4f60\u4f1a\u6ce8\u610f\u5230\uff0c\u8fd9\u4e2a\u7ed3\u679c\u6bd4MapReduce\u94fe\u7684\u7ed3\u679c\u8981\u597d\u3002\u8fd9\u662f\u56e0\u4e3a\u4f7f\u7528Refined Chain\u5141\u8bb8\u4f60\u9010\u4e2a\u5730\u7ec4\u5408\u4fe1\u606f\uff0c\u5b9e\u9645\u4e0a\u6bd4MapReduce\u94fe\u9f13\u52b1\u66f4\u591a\u7684\u4fe1\u606f\u4f20\u9012\u3002"]}, {"cell_type": "markdown", "metadata": {}, "source": ["## \u516d\u3001\u5b9e\u9a8c\uff1a\u72b6\u6001\u8bb0\u5f55"]}, {"cell_type": "markdown", "metadata": {}, "source": ["\u8ba9\u6211\u4eec\u5728\u8fd9\u91cc\u505a\u4e00\u4e2a\u5b9e\u9a8c\u3002\n", "\n", "\u6211\u4eec\u5c06\u521b\u5efa\u4e00\u4e2aQA\u94fe\uff0c\u4f7f\u7528\u9ed8\u8ba4\u7684stuff\u3002\u8ba9\u6211\u4eec\u95ee\u4e00\u4e2a\u95ee\u9898\uff0c\u6982\u7387\u8bba\u662f\u8bfe\u7a0b\u7684\u4e3b\u9898\u5417\uff1f\u5b83\u4f1a\u56de\u7b54\uff0c\u6982\u7387\u8bba\u5e94\u8be5\u662f\u5148\u51b3\u6761\u4ef6\u3002\u6211\u4eec\u5c06\u8ffd\u95ee\uff0c\u4e3a\u4ec0\u4e48\u9700\u8981\u8fd9\u4e9b\u5148\u51b3\u6761\u4ef6\uff1f\u7136\u540e\u6211\u4eec\u5f97\u5230\u4e86\u4e00\u4e2a\u7b54\u6848\u3002\u8fd9\u95e8\u8bfe\u7684\u5148\u51b3\u6761\u4ef6\u662f\u5047\u5b9a\u5177\u6709\u8ba1\u7b97\u673a\u79d1\u5b66\u548c\u57fa\u672c\u8ba1\u7b97\u673a\u6280\u80fd\u548c\u539f\u7406\u7684\u57fa\u672c\u77e5\u8bc6\u3002\u8fd9\u4e0e\u4e4b\u524d\u95ee\u6709\u5173\u6982\u7387\u7684\u95ee\u9898\u6beb\u4e0d\u76f8\u5173\u3002"]}, {"cell_type": "code", "execution_count": 58, "metadata": {}, "outputs": [], "source": ["qa_chain = RetrievalQA.from_chain_type(\n", " llm,\n", " retriever=vectordb.as_retriever()\n", ")"]}, {"cell_type": "code", "execution_count": 59, "metadata": {}, "outputs": [{"data": {"text/plain": ["'Yes, probability is a topic in this class. The speaker assumes that students have familiarity with basic probability and statistics, and mentions that most undergraduate statistics classes will be more than enough preparation for this class.'"]}, "execution_count": 59, "metadata": {}, "output_type": "execute_result"}], "source": ["question = \"Is probability a class topic?\"\n", "result = qa_chain({\"query\": question})\n", "result[\"result\"]"]}, {"cell_type": "code", "execution_count": 60, "metadata": {}, "outputs": [{"data": {"text/plain": ["'The prerequisites are needed because in this class, the instructor assumes that all students have a basic knowledge of computer science and knowledge of basic computer skills and principles. This includes understanding of big-O notation and other fundamental concepts. Without this basic knowledge, it may be difficult to understand the material covered in the class.'"]}, "execution_count": 60, "metadata": {}, "output_type": "execute_result"}], "source": ["question = \"why are those prerequesites needed?\"\n", "result = qa_chain({\"query\": question})\n", "result[\"result\"]"]}, {"cell_type": "code", "execution_count": 62, "metadata": {}, "outputs": [{"data": {"text/plain": ["'\u662f\u7684\uff0c\u4f5c\u8005\u5728\u6587\u4e2d\u63d0\u5230\u4e86\u8fd9\u95e8\u8bfe\u7a0b\u9700\u8981\u5b66\u751f\u5177\u5907\u57fa\u672c\u7684\u6982\u7387\u8bba\u548c\u7edf\u8ba1\u5b66\u77e5\u8bc6\u3002'"]}, "execution_count": 62, "metadata": {}, "output_type": "execute_result"}], "source": ["question = \"\u6982\u7387\u8bba\u662f\u8fd9\u8282\u8bfe\u7684\u4e00\u4e2a\u5185\u5bb9\u5417\"\n", "result = qa_chain({\"query\": question})\n", "result[\"result\"]"]}, {"cell_type": "code", "execution_count": 63, "metadata": {}, "outputs": [{"data": {"text/plain": ["'\u5728\u8fd9\u6bb5\u4e0a\u4e0b\u6587\u4e2d\uff0c\u4f5c\u8005\u63d0\u5230\u8fd9\u4e9b\u77e5\u8bc6\u662f\u8fd9\u95e8\u8bfe\u7a0b\u7684\u5148\u51b3\u6761\u4ef6\uff0c\u56e0\u4e3a\u8fd9\u95e8\u8bfe\u7a0b\u6d89\u53ca\u5230\u673a\u5668\u5b66\u4e60\u7684\u57fa\u672c\u6982\u5ff5\u548c\u7b97\u6cd5\uff0c\u9700\u8981\u5b66\u751f\u5177\u5907\u8ba1\u7b97\u673a\u79d1\u5b66\u548c\u57fa\u672c\u8ba1\u7b97\u673a\u6280\u80fd\u548c\u539f\u7406\u7684\u57fa\u672c\u77e5\u8bc6\u3002\u5982\u679c\u5b66\u751f\u6ca1\u6709\u8fd9\u4e9b\u57fa\u7840\u77e5\u8bc6\uff0c\u53ef\u80fd\u4f1a\u5f88\u96be\u7406\u89e3\u548c\u5e94\u7528\u673a\u5668\u5b66\u4e60\u7b97\u6cd5\u3002\u56e0\u6b64\uff0c\u5b66\u751f\u9700\u8981\u5177\u5907\u8fd9\u4e9b\u77e5\u8bc6\u624d\u80fd\u66f4\u597d\u5730\u5b66\u4e60\u548c\u5e94\u7528\u673a\u5668\u5b66\u4e60\u3002'"]}, "execution_count": 63, "metadata": {}, "output_type": "execute_result"}], "source": ["question = \"\u4e3a\u4ec0\u4e48\u9700\u8981\u5177\u5907\u8fd9\u4e9b\u77e5\u8bc6\"\n", "result = qa_chain({\"query\": question})\n", "result[\"result\"]"]}, {"cell_type": "markdown", "metadata": {}, "source": ["\u57fa\u672c\u4e0a\uff0c\u6211\u4eec\u4f7f\u7528\u7684\u94fe\u5f0f\uff08chain\uff09\u6ca1\u6709\u4efb\u4f55\u72b6\u6001\u7684\u6982\u5ff5\u3002\u5b83\u4e0d\u8bb0\u5f97\u4e4b\u524d\u7684\u95ee\u9898\u6216\u4e4b\u524d\u7684\u7b54\u6848\u3002\u4e3a\u4e86\u5b9e\u73b0\u8fd9\u4e00\u70b9\uff0c\u6211\u4eec\u9700\u8981\u5f15\u5165\u5185\u5b58\uff0c\u8fd9\u662f\u6211\u4eec\u5c06\u5728\u4e0b\u4e00\u8282\u4e2d\u8ba8\u8bba\u7684\u5185\u5bb9\u3002"]}], "metadata": {"kernelspec": {"display_name": "gpt", "language": "python", "name": "python3"}, "language_info": {"codemirror_mode": {"name": "ipython", "version": 3}, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.11"}, "orig_nbformat": 4}, "nbformat": 4, "nbformat_minor": 2}
\ No newline at end of file
diff --git "a/content/\345\277\205\344\277\256\345\233\233-LangChain Chat with Your Data/7.\350\201\212\345\244\251 Chat.ipynb" "b/content/\345\277\205\344\277\256\345\233\233-LangChain Chat with Your Data/7.\350\201\212\345\244\251 Chat.ipynb"
index ec10d810..82d42aac 100644
--- "a/content/\345\277\205\344\277\256\345\233\233-LangChain Chat with Your Data/7.\350\201\212\345\244\251 Chat.ipynb"
+++ "b/content/\345\277\205\344\277\256\345\233\233-LangChain Chat with Your Data/7.\350\201\212\345\244\251 Chat.ipynb"
@@ -1 +1 @@
-{"cells":[{"cell_type":"markdown","id":"956ff3a4","metadata":{},"source":["# 第七章、聊天 Chat\n","\n"," - [一、环境配置](#一、环境配置)\n"," - [二、记忆(Memory)](#二、记忆(Memory))\n"," - [三、对话检索链(ConversationalRetrievalChain)](#三、对话检索链(ConversationalRetrievalChain))\n"," - [四、创建一个适用于您文档的聊天机器人](#四、创建一个适用于您文档的聊天机器人)\n"," - [五、创建聊天机器人](#五、创建聊天机器人)\n"," - [六、致谢](#六、致谢)\n"]},{"cell_type":"markdown","id":"6f2e2cd9","metadata":{},"source":["回想一下检索增强生成 (retrieval augmented generation,RAG) 的整体工作流程:"]},{"attachments":{"overview.jpeg":{"image/jpeg":"/9j/4AAQSkZJRgABAQAASABIAAD/4QBkRXhpZgAATU0AKgAAAAgABAEGAAMAAAABAAIAAAESAAMAAAABAAEAAAEoAAMAAAABAAIAAIdpAAQAAAABAAAAPgAAAAAAAqACAAQAAAABAAAJpKADAAQAAAABAAACwwAAAAD/4QkhaHR0cDovL25zLmFkb2JlLmNvbS94YXAvMS4wLwA8P3hwYWNrZXQgYmVnaW49Iu+7vyIgaWQ9Ilc1TTBNcENlaGlIenJlU3pOVGN6a2M5ZCI/PiA8eDp4bXBtZXRhIHhtbG5zOng9ImFkb2JlOm5zOm1ldGEvIiB4OnhtcHRrPSJYTVAgQ29yZSA2LjAuMCI+IDxyZGY6UkRGIHhtbG5zOnJkZj0iaHR0cDovL3d3dy53My5vcmcvMTk5OS8wMi8yMi1yZGYtc3ludGF4LW5zIyI+IDxyZGY6RGVzY3JpcHRpb24gcmRmOmFib3V0PSIiLz4gPC9yZGY6UkRGPiA8L3g6eG1wbWV0YT4gICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICA8P3hwYWNrZXQgZW5kPSJ3Ij8+AP/tADhQaG90b3Nob3AgMy4wADhCSU0EBAAAAAAAADhCSU0EJQAAAAAAENQdjNmPALIE6YAJmOz4Qn7/4g/QSUNDX1BST0ZJTEUAAQEAAA/AYXBwbAIQAABtbnRyUkdCIFhZWiAH5wACAAwAAAASABhhY3NwQVBQTAAAAABBUFBMAAAAAAAAAAAAAAAAAAAAAAAA9tYAAQAAAADTLWFwcGwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABFkZXNjAAABUAAAAGJkc2NtAAABtAAABJxjcHJ0AAAGUAAAACN3dHB0AAAGdAAAABRyWFlaAAAGiAAAABRnWFlaAAAGnAAAABRiWFlaAAAGsAAAABRyVFJDAAAGxAAACAxhYXJnAAAO0AAAACB2Y2d0AAAO8AAAADBuZGluAAAPIAAAAD5tbW9kAAAPYAAAACh2Y2dwAAAPiAAAADhiVFJDAAAGxAAACAxnVFJDAAAGxAAACAxhYWJnAAAO0AAAACBhYWdnAAAO0AAAACBkZXNjAAAAAAAAAAhEaXNwbGF5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbWx1YwAAAAAAAAAmAAAADGhySFIAAAAUAAAB2GtvS1IAAAAMAAAB7G5iTk8AAAASAAAB+GlkAAAAAAASAAACCmh1SFUAAAAUAAACHGNzQ1oAAAAWAAACMGRhREsAAAAcAAACRm5sTkwAAAAWAAACYmZpRkkAAAAQAAACeGl0SVQAAAAYAAACiGVzRVMAAAAWAAACoHJvUk8AAAASAAACtmZyQ0EAAAAWAAACyGFyAAAAAAAUAAAC3nVrVUEAAAAcAAAC8mhlSUwAAAAWAAADDnpoVFcAAAAKAAADJHZpVk4AAAAOAAADLnNrU0sAAAAWAAADPHpoQ04AAAAKAAADJHJ1UlUAAAAkAAADUmVuR0IAAAAUAAADdmZyRlIAAAAWAAADim1zAAAAAAASAAADoGhpSU4AAAASAAADsnRoVEgAAAAMAAADxGNhRVMAAAAYAAAD0GVuQVUAAAAUAAADdmVzWEwAAAASAAACtmRlREUAAAAQAAAD6GVuVVMAAAASAAAD+HB0QlIAAAAYAAAECnBsUEwAAAASAAAEImVsR1IAAAAiAAAENHN2U0UAAAAQAAAEVnRyVFIAAAAUAAAEZnB0UFQAAAAWAAAEemphSlAAAAAMAAAEkABMAEMARAAgAHUAIABiAG8AagBpzuy37AAgAEwAQwBEAEYAYQByAGcAZQAtAEwAQwBEAEwAQwBEACAAVwBhAHIAbgBhAFMAegDtAG4AZQBzACAATABDAEQAQgBhAHIAZQB2AG4A/QAgAEwAQwBEAEwAQwBEAC0AZgBhAHIAdgBlAHMAawDmAHIAbQBLAGwAZQB1AHIAZQBuAC0ATABDAEQAVgDkAHIAaQAtAEwAQwBEAEwAQwBEACAAYQAgAGMAbwBsAG8AcgBpAEwAQwBEACAAYQAgAGMAbwBsAG8AcgBMAEMARAAgAGMAbwBsAG8AcgBBAEMATAAgAGMAbwB1AGwAZQB1AHIgDwBMAEMARAAgBkUGRAZIBkYGKQQaBD4EOwRMBD4EQAQ+BDIEOAQ5ACAATABDAEQgDwBMAEMARAAgBeYF0QXiBdUF4AXZX2mCcgBMAEMARABMAEMARAAgAE0A4AB1AEYAYQByAGUAYgBuAP0AIABMAEMARAQmBDIENQRCBD0EPgQ5ACAEFgQaAC0ENAQ4BEEEPwQ7BDUEOQBDAG8AbABvAHUAcgAgAEwAQwBEAEwAQwBEACAAYwBvAHUAbABlAHUAcgBXAGEAcgBuAGEAIABMAEMARAkwCQIJFwlACSgAIABMAEMARABMAEMARAAgDioONQBMAEMARAAgAGUAbgAgAGMAbwBsAG8AcgBGAGEAcgBiAC0ATABDAEQAQwBvAGwAbwByACAATABDAEQATABDAEQAIABDAG8AbABvAHIAaQBkAG8ASwBvAGwAbwByACAATABDAEQDiAOzA8cDwQPJA7wDtwAgA78DuAPMA70DtwAgAEwAQwBEAEYA5AByAGcALQBMAEMARABSAGUAbgBrAGwAaQAgAEwAQwBEAEwAQwBEACAAYQAgAGMAbwByAGUAczCrMOkw/ABMAEMARHRleHQAAAAAQ29weXJpZ2h0IEFwcGxlIEluYy4sIDIwMjMAAFhZWiAAAAAAAADzUQABAAAAARbMWFlaIAAAAAAAAIPfAAA9v////7tYWVogAAAAAAAASr8AALE3AAAKuVhZWiAAAAAAAAAoOAAAEQsAAMi5Y3VydgAAAAAAAAQAAAAABQAKAA8AFAAZAB4AIwAoAC0AMgA2ADsAQABFAEoATwBUAFkAXgBjAGgAbQByAHcAfACBAIYAiwCQAJUAmgCfAKMAqACtALIAtwC8AMEAxgDLANAA1QDbAOAA5QDrAPAA9gD7AQEBBwENARMBGQEfASUBKwEyATgBPgFFAUwBUgFZAWABZwFuAXUBfAGDAYsBkgGaAaEBqQGxAbkBwQHJAdEB2QHhAekB8gH6AgMCDAIUAh0CJgIvAjgCQQJLAlQCXQJnAnECegKEAo4CmAKiAqwCtgLBAssC1QLgAusC9QMAAwsDFgMhAy0DOANDA08DWgNmA3IDfgOKA5YDogOuA7oDxwPTA+AD7AP5BAYEEwQgBC0EOwRIBFUEYwRxBH4EjASaBKgEtgTEBNME4QTwBP4FDQUcBSsFOgVJBVgFZwV3BYYFlgWmBbUFxQXVBeUF9gYGBhYGJwY3BkgGWQZqBnsGjAadBq8GwAbRBuMG9QcHBxkHKwc9B08HYQd0B4YHmQesB78H0gflB/gICwgfCDIIRghaCG4IggiWCKoIvgjSCOcI+wkQCSUJOglPCWQJeQmPCaQJugnPCeUJ+woRCicKPQpUCmoKgQqYCq4KxQrcCvMLCwsiCzkLUQtpC4ALmAuwC8gL4Qv5DBIMKgxDDFwMdQyODKcMwAzZDPMNDQ0mDUANWg10DY4NqQ3DDd4N+A4TDi4OSQ5kDn8Omw62DtIO7g8JDyUPQQ9eD3oPlg+zD88P7BAJECYQQxBhEH4QmxC5ENcQ9RETETERTxFtEYwRqhHJEegSBxImEkUSZBKEEqMSwxLjEwMTIxNDE2MTgxOkE8UT5RQGFCcUSRRqFIsUrRTOFPAVEhU0FVYVeBWbFb0V4BYDFiYWSRZsFo8WshbWFvoXHRdBF2UXiReuF9IX9xgbGEAYZRiKGK8Y1Rj6GSAZRRlrGZEZtxndGgQaKhpRGncanhrFGuwbFBs7G2MbihuyG9ocAhwqHFIcexyjHMwc9R0eHUcdcB2ZHcMd7B4WHkAeah6UHr4e6R8THz4faR+UH78f6iAVIEEgbCCYIMQg8CEcIUghdSGhIc4h+yInIlUigiKvIt0jCiM4I2YjlCPCI/AkHyRNJHwkqyTaJQklOCVoJZclxyX3JicmVyaHJrcm6CcYJ0kneierJ9woDSg/KHEooijUKQYpOClrKZ0p0CoCKjUqaCqbKs8rAis2K2krnSvRLAUsOSxuLKIs1y0MLUEtdi2rLeEuFi5MLoIuty7uLyQvWi+RL8cv/jA1MGwwpDDbMRIxSjGCMbox8jIqMmMymzLUMw0zRjN/M7gz8TQrNGU0njTYNRM1TTWHNcI1/TY3NnI2rjbpNyQ3YDecN9c4FDhQOIw4yDkFOUI5fzm8Ofk6Njp0OrI67zstO2s7qjvoPCc8ZTykPOM9Ij1hPaE94D4gPmA+oD7gPyE/YT+iP+JAI0BkQKZA50EpQWpBrEHuQjBCckK1QvdDOkN9Q8BEA0RHRIpEzkUSRVVFmkXeRiJGZ0arRvBHNUd7R8BIBUhLSJFI10kdSWNJqUnwSjdKfUrESwxLU0uaS+JMKkxyTLpNAk1KTZNN3E4lTm5Ot08AT0lPk0/dUCdQcVC7UQZRUFGbUeZSMVJ8UsdTE1NfU6pT9lRCVI9U21UoVXVVwlYPVlxWqVb3V0RXklfgWC9YfVjLWRpZaVm4WgdaVlqmWvVbRVuVW+VcNVyGXNZdJ114XcleGl5sXr1fD19hX7NgBWBXYKpg/GFPYaJh9WJJYpxi8GNDY5dj62RAZJRk6WU9ZZJl52Y9ZpJm6Gc9Z5Nn6Wg/aJZo7GlDaZpp8WpIap9q92tPa6dr/2xXbK9tCG1gbbluEm5rbsRvHm94b9FwK3CGcOBxOnGVcfByS3KmcwFzXXO4dBR0cHTMdSh1hXXhdj52m3b4d1Z3s3gReG54zHkqeYl553pGeqV7BHtje8J8IXyBfOF9QX2hfgF+Yn7CfyN/hH/lgEeAqIEKgWuBzYIwgpKC9INXg7qEHYSAhOOFR4Wrhg6GcobXhzuHn4gEiGmIzokziZmJ/opkisqLMIuWi/yMY4zKjTGNmI3/jmaOzo82j56QBpBukNaRP5GokhGSepLjk02TtpQglIqU9JVflcmWNJaflwqXdZfgmEyYuJkkmZCZ/JpomtWbQpuvnByciZz3nWSd0p5Anq6fHZ+Ln/qgaaDYoUehtqImopajBqN2o+akVqTHpTilqaYapoum/adup+CoUqjEqTepqaocqo+rAqt1q+msXKzQrUStuK4trqGvFq+LsACwdbDqsWCx1rJLssKzOLOutCW0nLUTtYq2AbZ5tvC3aLfguFm40blKucK6O7q1uy67p7whvJu9Fb2Pvgq+hL7/v3q/9cBwwOzBZ8Hjwl/C28NYw9TEUcTOxUvFyMZGxsPHQce/yD3IvMk6ybnKOMq3yzbLtsw1zLXNNc21zjbOts83z7jQOdC60TzRvtI/0sHTRNPG1EnUy9VO1dHWVdbY11zX4Nhk2OjZbNnx2nba+9uA3AXcit0Q3ZbeHN6i3ynfr+A24L3hROHM4lPi2+Nj4+vkc+T85YTmDeaW5x/nqegy6LzpRunQ6lvq5etw6/vshu0R7ZzuKO6070DvzPBY8OXxcvH/8ozzGfOn9DT0wvVQ9d72bfb794r4Gfio+Tj5x/pX+uf7d/wH/Jj9Kf26/kv+3P9t//9wYXJhAAAAAAADAAAAAmZmAADypwAADVkAABPQAAAKW3ZjZ3QAAAAAAAAAAQABAAAAAAAAAAEAAAABAAAAAAAAAAEAAAABAAAAAAAAAAEAAG5kaW4AAAAAAAAANgAArhQAAFHsAABD1wAAsKQAACZmAAAPXAAAUA0AAFQ5AAIzMwACMzMAAjMzAAAAAAAAAABtbW9kAAAAAAAABhAAAKBO/WJtYgAAAAAAAAAAAAAAAAAAAAAAAAAAdmNncAAAAAAAAwAAAAJmZgADAAAAAmZmAAMAAAACZmYAAAACMzM0AAAAAAIzMzQAAAAAAjMzNAD/wAARCALDCaQDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9sAQwABAQEBAQECAQECAwICAgMEAwMDAwQGBAQEBAQGBwYGBgYGBgcHBwcHBwcHCAgICAgICQkJCQkLCwsLCwsLCwsL/9sAQwECAgIDAwMFAwMFCwgGCAsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsL/90ABACb/9oADAMBAAIRAxEAPwD+/iiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/9D+/iiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK/no/4Kz/8HEv7Pf8AwSO/aL0X9nH4s+AfEXinUdb8OW/iSO70iS2SBILm6urURsJpEbeGtWY4GMMO+aAP6F6K/jB8P/8AB7P+wTd6nFB4n+FHj2xtGYB5rcafcOoPfY13FnH+9X9Qv7E/7dH7Mf8AwUL+B9r+0H+yp4kj8ReH55mtZwUaG6sruMBnt7mBwHilUMpwRhlZXUsjKxAPrmiiigAooooAKKKKACiiigAooooAKKKKACiiigAoor4a8V/8FIP2OvCn7ZvhL/gn6/jC21H4teLzd+ToOn/6TLZR2dlNfu96yZS23QwnYkhEjllKoUJYAH3LRRX5V/8ABV3/AIK1/A3/AIJFfCnwx8XPjt4d13xHY+KdWbSLaHQUt3ljmWF5izi4mgXbtQjgk57UAfqpRXhP7L/x+8L/ALVf7OXgb9pfwTZ3Wn6P490Ox16ytr4ILmGC/hWZElEbOgdVYBtrMM9Ca92oAKKKKACiiigAoor5l/bM/ae8M/sXfsteOf2qvGWm3Wr6X4F0uXVbmysii3E8cWMrGXIXcc9yBQB9NUV+Pn7Cv/BY34P/ALeH7AHj/wD4KC+BfCesaJoHw/fWkutLv3ga8nOi2Ud9J5ZjdoxvSQKu5h8w5wKs/wDBIj/gsJ8If+CwHw98YfET4ReE9Y8KW/g3UbfTriLWHhd5nuIjKGTyXcYAGDnBzQB+vVFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFfFn7ev/BQD9mX/gm18Abv9oz9qXWX0zRYpks7S2tY/PvtRvJAzJbWsOV3ysqs3LKiqpZ2VQSP5ZdS/wCD3X9kSLxX9j0f4K+MJ9D/AOfua8sorvr/AM+6tInT/pvQB/bbRXwf/wAE9f8AgpD+yt/wU6+B5+O37K+sy31ja3H2PUtPvovs2o6bd7Q/k3MOWAJVgVdGeJ+drtg4+8KACiivxs/4K/f8Fnfg3/wR48O+BfEfxe8I6z4sj8d3N/bWqaO8CNA1gsLMZPOdOGEwxjPQ5oA/ZOivyE/4KM/8FhfhD/wTf/Yp8B/tt/EXwnrHiDRfHuo6Xp1rp+mvCt1A+qWFxfo0hldUIRLdkbBJ3EY4r6i+F37fPwA8Z/sM+GP+CgXxH1SD4feA/EWg2niB59fuIoBZw3ihkjlcMUMhLBFVCS7kKoJIFAH2zRXzV+yF+1p8F/25f2fNE/ag/Z5vZ9S8G+I5tQi027uYHtXnXTryexkkEUgDqjy27sm8KxQgsqkkDy/4D/8ABR/9jr9qH9o/xd+y1+zz4wtvGPibwHYpe67Lpf7/AE+18yXyRD9qH7qSYMDuWIuEwQxDDbQB9y0V+Gf7Rn/Bdf4G/s3/APBULwf/AMEtPEfgrXdQ8UeMrrRrW31m2e3FhC2tNtjLqziXCE/NhT7V+5lABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRX8sH7eH/B2r/wT6/Y6+LuvfAj4f6Fr3xT8Q+G55LO+udHNvbaQl3CxWSBbuWQvI0bAqzRwPHn7rtzQB/U/RX8t3/BPr/g7C/YG/bb+MekfADx1oetfCvxL4iuIrLSZNXaK60y6vJjtS3+1QkGKR2IVDLEqMSBuDEA/wBCX7TP7VH7PH7G3wnvfjj+094u0/wZ4XsCI3vdQk2+ZKwLLDDGoaSaZgrFYoleRsHCnBoA9/orxr9nf47+Av2oPgX4T/aI+FjTyeG/GmmW+r6Y91H5MzWt0oeMumSVJUg4JyO/Ney0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFZGv6vD4f0G9164QyR2NvJcMq9WESliBnucV/F5/xG4fsV/wDRHPG3/f6x/wDj1AH9rVFfx7/Cr/g9H/4JueMPFFpoHxK8D+OfCFndSLG+pPbWl9bW4Y4LyrBcmfYByfLikb0U1/Wz8P8Ax94K+KvgbR/iZ8N9Ut9b8P8AiCzh1DTdQtHEkFza3KCSKWNhwVdSCD6GgDr6KKQkAZPAFAC0V8N/s2/8FHv2O/2wPjf45+Af7MvjC28aat8OYLSbXbvTP32nQvevKiRR3Q/dzuDCxfyi6LwC27Kj7koAKK+Q/wBvT9sHwh+wL+yP40/a98eaTea5pHgq2gubmxsCi3Myz3EVuAhkKpkNKCckcA15Z/wS/wD+Ci3w8/4KkfssW37Vnww0DUfDWlXOp3mmCy1RomuBJZlQzExMy7W3cc5oA/Q+iiigAooooAKKKKACivw0/b7/AOC6/wADf+Cfv7ePw4/YH8feCtd13XviTa6PdWep6e9utpbrrOoz6dGJBI6uSjwM7bVPykY54r9y6ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAor+cj/gpl/wc4fsA/wDBOT4k3nwIhh1L4n+PdMdotS03w60ItdNmQ4aG7u5XCLMOQYoklZCCJAhwD8U/s0/8HnH/AAT/APiv4107wZ8evBHif4ZRajOITqzmHVdNtQ3R7hoTHcKnqY7eTGeeMkAH9htFcv4I8b+DfiV4P0z4g/DzVbTXNC1q2ivdP1CwmW4trq3mUNHLFIhKujKQVZSQRXUUAFFFfDX7WH/BR/8AY6/Yr8YeEPhn8evGFtY+LvHupWOmaD4ftv8ASdTvJb+4W2ikECfNHAJCQ08uyMbSAxb5SAfctFFFABRRRQAUUV8Nfttf8FH/ANjr/gnr4a07Xf2ovGFtot5rcog0jSIv9I1TUZWYJi3tky7KGYBpW2xISN7rkUAfctFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH/0f7+KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr/N6/4Otra2vf+C8P7PlneRrLDL4R8KI6OAysreIdTBBB4II4INf6Qtf5un/B19qFhpH/AAXa/Z/1XVZ47W1tfB/hWWaaVgkccaeIdULMzHAVVAJJJwBQB/eD8b/+CeX7Dv7Rfw81L4X/ABe+FPhfVdJ1SFoZAdLt45o9wwHhmRFkikXqskbKynoa/hG/4Nl/GPjf9hr/AILn/GX/AIJq2Wrz6h4TvLnxLoMsUpAWa/8ACl1ILa8wMAOYI51O0AEScj5Vx/bv8WP+CtH/AATL+CvgXUPiH46+PHgZbDTomleOy1y0v7uXb/DDbW0sk8znskaMx9K/ie/4NgvCPi79tn/gtz8cv+Ck50eW18MQv4j1jz5R8sGp+Kr5pILYEZBcWzXBbBO0KP7woA/Vv/gqN/wcT/tPeHf243/4Jh/8Eivh9afEL4mWV22m6nqV7C94i6hGu+e2tYEkhQfZVDfabieTyoyrgqAhevmnwl/wcRf8FYf+Cb37Snhb4If8F0PhBp+ieF/FYHla7o8SR3MEXmKklyklpc3VleR2+4GaCLZMgYHOSqP8Bf8ABFz4kfD/APYe/wCDmX45eDP2xNRt/D2q+IbnxdoOm6jq8iwRHU77VIL23cyyEIn2y2jfymJG8yoo5cA/aH/B6T+0l+z/AOPPhj8Hf2ZvA+sWHiD4g22vXOsS2unypdXFlYNbmALKIyxQ3MroY0PL+USBwKAP6T/+Cvn/AAWB+D3/AASv/Y+sf2j2tofGeseL5Y7TwhpVvchItSllj877QZlD4tYosSO6g7tyICC4I/l58Wf8Fqv+Dn74V/s76b/wUh+Jfwa8J23wUv47S+2mwVYxYXjosMzQrqL6lDFP5iiOaQbcMrY2spb55/4Oe/gB8c/hj/wTJ/YJtviJDdk+B/CTeGtf82MqLXWJNM0rZFKf+ehFpcKA3J8pj13V/X7c/wDBWX9gP4M/8EtPDv7aniPxNpeq+CofDGnSQaRYXFtNf3VwIok/s+G2llTddRyHy3iYqYypLlQpIAPjz4+/8FzvFfiH/ggTqn/BWv8AZX0O10nxXZtplpNouvxPd29nfS6pbWN3E3lvA0seyUyQSBl3IyMyg7kH3d/wQ+/be+MX/BRT/gm74K/ay+PUGmW3ifxDdavDdR6RA9vaBbG+nto9kckkrAlI13Zc5OTx0r8dP+CwX7enwh/4Khf8G03xg/ag/Zz0jXdP8NnU9Es0j120jtbljZa3pwldUilnRo0Z9hdXI3I4/hr1f/g10/aS+BfgT/ghXofiDx14r0vSLD4d6j4h/wCEinurlI105WvJrxTPk5TdDKrrkfMDxmgDlv8Aggp/wW1/bB/4KXftrfGL9nz9oax8N2uheA9PnutNfRrKa2uGeO/W2HmvJczKw2HnCr83PtXwRpP/AAco/wDBUPxH/wAFIPjT+wL8FfhR4f8AiZ4i03xD4j8L/D/TbKCWyZbnStReJLrU55LwI1vFZwyvKFMAZ8HzI1zXyp/wZteI7Xxh/wAFG/2gvFtjkQ6p4bkvI9wwds+pxuMjscGtv/ghFZW11/wdR/tOzzoGe2v/AIjyRkj7rHX40yP+AsR9DQB6ja/8HN3/AAVW/wCCe37Xeu/sv/8ABWD4P6TrOpCzM1lpfhdVt78XV5GHsBBPHcXVvcWsrERvhWmTcTlnjMLa37Sv/Bfv/gvx/wAE2/i34H+JH/BRP4K+E9B+HXj+ZpbbQ7NQ9ytnbMhuIo7qG/naG9WKVDi5UqSf9WMMF8V/4Lk6dZaj/wAHWn7MunXsayQ3Wq/DWOVCMh1fXWUg/UcV9kf8HvsaH9mj4FSkDcPE2qAHvg2qZ/kKAP3d/wCCq3/Bab4Nf8E3f2FfD37W+naf/wAJTq3xFhtv+EM0SWX7M1613ALkTTkB2SCCJlaUqCdzJGCC4Yfzo6z/AMFpv+DmH9nb4D6P/wAFGf2j/gf4Tuvgfq5srue2it/ss8Gn3rKIZNqX017aifeqxy3MUqqzIWT5lDfHH/B0H4L8c3f/AATi/YD+ItvHLL4asPBH9nXEgU+VDfXel6TLCGbpuljglKA9omx3r6v+Pv7GH7Quqf8ABNCy+Pn7Tn/BTZ2+AHjXSNPtjHL4Wa+t7iC88tY7VYLW8eeSSJsLJHGheLy2LBdjYAP6Fv2mP+Cvqaj/AMEM9d/4Ky/sZx2ct6ujWV/Y2Wsxm5jtLx9Qgsrq1uUikjLPA7SodrgFlDDKkZ/Cf9mX/gut/wAF9v8AgpN+zBFqP/BPz4GeH9a8S+F/tieMvFNykdrpxumkeS1tNLt7u/jV5ktfLabe87F3x5ca7Gk0/EP7O3wn/Zp/4NIfjV4M+BPxYtvjP4Q1K+/tPTPEdppU+jxMkurafHLAILiSRyY5opNzZHzErjKmv0Y/4NBLC1s/+COemXFugV7rxdrsspAxucNEmT6/KoH0FAHC/wDBAT/gvf8AtBf8FOLz4l/s1ftHeFdN0r4teA9Hl1iwl0yGW1gv4YpBbSx3FtNI5hnhuJIVbEgVxIRtjKEt/HN4J+NH/BXK1/4OA5/jH4a+HWkT/tYm/wBQd/CbLH/Z4uH0SWKdcfbQmF08vKP9L+8OpPyV+yf/AAbLxR2//BxP+1NbwjaiaL41VVHQAeJtPArH8C+INB8G/wDB7hfa14tvYNMs01zVkae6kWGJWn8JTpGCzkAF3dVXnliAOTQB/f7+zprXxc8Sfs+eBPEX7QGnQ6P48v8Aw9pdz4ksLcAQ2ury20bXkKYeQbY5y6riRxgfebqf5DP+D2//AJMo+D3/AGO83/pBNX9pGlarpmu6Zba3olzFeWV5Ek9vcQOJIpYpAGR0dSVZWBBBBIIORX8W/wDwe3/8mUfB7/sd5v8A0gmoA/ov/wCCNv8Ayic/Zv8A+yceG/8A0hir9AvGvjPwt8OfBur/ABC8c30WmaJoNlcajqF5McRW9rao0ssrnsqIpY+wr8Vf+CSn7dP7Engr/gl9+z74Q8ZfGPwPpGraZ8P/AA/a3lle+IbC3ubeeKyiV45Y3nV0dWBDKwBB4Nejf8FK/ij8Lf2z/wDgmH+0T8Lf2Q/HegeOvEh8Caqxs/DeqW2pXBXyHbyylvJIR56o0a5A3E4HNAH83w/4OEf+Cz//AAU++PXinwV/wRR+DWnXHgvwkwd9Q1eGKS7khZiInuri8urayt2uAjNHbLulwGw77SR93/8ABJL/AIOIfjh8bf2xrz/gmb/wVL8A2nwy+MUc8tpp1zaRyWdtc3cSCUWc9vPJMY5pY8yQTRytDcAqEUFkL/I3/Blz+1B+zj4e/ZP+J37NviDXtN0fx/H4uk8Qm1vJ47ee80qeytYI3i3kGRYJbeXzAufL8xS2N4z8E/t2eOvB37dH/B2j8IB+xpfReID4U17wlDq+raORcwPJoFx9s1CYSJlHW3tlMMjZK5iK84oA/oI/4LLf8FcP+Cj/AOz/APtUeEv2Df8AgmV8GLnxV4v8TRwGTxJrGm3EmltcXILpbWcrPb2paOJfMuJ5ZjFECVIBRmH5Tah/wX0/4La/8Eyv2w/AvwM/4K+fD/wzL4a8aPbSvLpiQrdR2E0/kPcWtxZXMtuzwNkvBLHuYADKB1evYf8Agph/wVk/4KDftDf8Fo7H/gjD+w58QdO+B2lR3UGlX3iq7to5rq7u5tPGoSYeaNmiABEFtHBseabGZdsihP50P+Dgn9kTW/2NP2qfhl8OPix+0Z4h/aE+IF7ZNf6/eeIJ2ZtKje4RbeKKF7i6a3WQLI/lmX7oUhQCCQD+5f8A4L+f8FwrP/gkD8JfD2jfDTRbLxR8U/HZuDo1lqDv9isrW12iS8ukiKySLvdY44leMyNuO8CMg/zuftz/APBQj/g4J0T/AIJmfEC8/wCCmXwM0mL4VfFfQX0u31rS/Ks9S0K51IqbRru2jup3jhc4jKXEMcgd1DSB8Rvmf8Hgmnap8OP+Cl/7OH7Qnja0mufBMOi20LL5ZaJ5dJ1V7m8jB6F2huIcrnpiv6F/+Dg39s79k+9/4Ih/EfxJYeMdG12x+Juj2ll4VFpdxzHVLi5nhkja3VWJfylBncgfIqHODxQB+Z3/AAbE+Ob/AOGH/BvP8dviVpVpaX914d1rxnqcNrqEXn2k8lpolnKsc8eRviYqA6ZG5SRmvqf/AINuv+Ck3xT/AG3v2T/jf8VPGngrwR4Nv/Bl7GtpB4O0b+yLac/Y5Jg1xGJZPMYMoAORheK+I/8Ag3T/AOVaH9pX/r48e/8AqP2tcV/wZ0/8mB/tPf8AYQi/9N0tAHGfsC/8HKX/AAWc/b90fxL8B/2avgz4Y8ffF8yQXlldwwvp2haRo6ZS5mvDcX6+ZK0jxrCvnRAcnEh+Svq//glj/wAHAf8AwUF1j/gp1/w6t/4KseCNI0TxZqFzPpsF3psH2S5sNSjt2u4o51jmnt7iC4iCiGWHaPnR9zo2R8k/8GMtjayX/wC09qToDPDH4MiR8chJDrBYZ9yi5+lee/tZRRxf8Hqng94xgya14YZiO5/sKEfyAFAH7Z/8F5/+C/HxH/4J4/Fjwl+xN+xR4VsvGvxo8YR205W9jluoLFL6XybSBLaBo3nu7pwfLTzFCDaSr+YBX5tftQ/8Fx/+Dgr/AIJmfs3z6l/wUE+CfhrTNb8UtaxeD/FNqsV1YRXqyrJc2epwWd/Igd7QStBsaFg6H5ZV3mP42/4K6+MNN/Y7/wCDsX4f/tO/tG77PwJcXvhLWYL2dC0MGnRWyWEs4xyVt7mGWV8ZYbTgHjP6ef8AB2z+3x+xx44/4Jr6V8A/hz450Dxn4r8XeItN1HT7XRb+DUGt7KzWSSS7cwO4jjYERIWOXMh2ghWKgH9DH/BHb9rv4p/t4/8ABNz4Y/tZ/GuHT7fxR4wtr+a+j0uF4LRWtr+5tk8uOSSVlHlwrnLn5sn2r9MK/Cv/AINo/wDlB/8AAb/rx1j/ANO99X7qUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAfxlf8AB5j+x/8AH749fssfDH4/fCHTbzXND+Fuoas3iOyslaV4bbVI7YR3rRqCTHbtbMjuM+WJtxG3cw+M/wBiP/g51/4JYeJv2QtE/Ya/bi+CEvhDw7DocOgX66NY2+qaBcRxxCF5mg/dXMLSY34SOd1Y58wsNx/ab/gvr/wW7/aH/wCCPPiz4cR+A/hlpfjDwt46gu/N1TULmeMw3djInm24WIBctDKjxln5O75SFNZ3xs/Z0/4NmP8Ago58ApP2nfHR+HGk6drOn/bpvEWmalbeHNWtHkTcTdC3lhb7VGeGiuo5DuG1kbpQB2H/AAb7/wDBOj/gm/8AsseC/E/7TP8AwTZ+MOvfFLw18Q4LbT9QbUbi1a3im09nkjD28dna3EFxGJmBSfDBJM7OQa/ILxP/AMHMP/BR3w//AMFQPjP+wT8M/hfonxK1DTNf1/wn8PdH020mgu5tTsr/AMq3m1Cdrra1tDaRzy3GxYslQS8SbnX4b/4M+dW8S+Hv+CqHxj+HPwO1XUNX+Ep8M6lLJPcK0UdwtrqNvHpdzLHgKly8Ty7VwCFeTjAOOS/YD/aA+DX7O3/B238WvEvxv1K00XTNa8dePNEtdRvpFit7a+vbqcQb5GIVPNKmBSTjdIAcZzQB+hM//Bw1/wAFh/8Agmv+174Z+F//AAWq+E2h6L4J8ZuJhPokSiWztGdY5J7O5tru8t7lbXdumt3LTEFfnTcu6l/we66tpev/AAZ/Zs13RLiO7sr2/wDEM9vPCweOWKSCwZHVhwVZSCCOCDXOf8Hr/wAcvg14w0D4GfAHwnqllrPjey1DVNWntLOVZ7i0sriKCKPzFQkp9pkGYweX8okdK8e/4OvvBviz4c/8E7P2Hvh7498wa7oOhT6dqPnDbJ9rtdM0uKbcOzb1bI9aAP2f/wCC2P7cPjz9gP8A4IvfAL4xfDzwn4S8Y3upah4W0Z7LxlpQ1ewjim0K8nMscJkj2zBoFVXzwjOMfNX5R/8ABd/9pf8Abe+Nn/BCP4BeNPC/gjQLT4T+P/DGkax46u9KtVtINJ1LzrV9PgsoftG6KGSQuuwRSgAAFl619Ff8HTf/ACgD/Zx/7Gjwh/6jmp1U/wCCikbv/wAGb3wxZRkJ4b8Ck+w+0W4/maAPEv8Aggp+0J/wXX8K/wDBLjUPDX7NXwn0LXPh74d8K6pd/C7ULlIjNq2uy+JEF3BOW1CIlESbUiu6OAfuV+c8B/xf/wCDdD4sf8FOPh3+2r4sk/YM8C6Z4tn1mbTrfx4t+qMNO0lr8edLDvu7fDKS+MGU8fdPf+3f/g1m8c+CtR/4IofBbwRYavZTa1ZL4ne4sEnRrqJRr98xZ4gd6jbNEckYxIv94Z/m1/4M8PGvg3wR+3Z+0PaeMtWs9JkudGiWJbydIDIU1EqwXeRkhnUHHdh60Afqv+3l/wAFQvir8Hf+Diz4WfsO6L4A+H+p6D4i1LwnBNrup6ELnxFANSkCuYL7zVMbR/8ALI7DsPrW5/wXH/4OAv2mv+CVf/BTP4a/s8+DdD0bWvhnq3h7RvEPiGF7KSfWporjU723uorOUXMUSu1vbKId8bASHJyOB+W//BU3/lb++Bn/AGGPAf8A6OFVP+DlWwtdU/4OPf2XdMvkEkFzpPgaKRGGQyP4l1AEEe4NAHuf7bP/AAXH/wCDj/8AYjt/Dn7WX7QvwJ8KeA/hN4n1BbbTtIu0F7Miyhpore9mhvjcwXbQIxDPFCpYN+5BBQf086r/AMFd/gL4a/4JKWf/AAVq8U2U1p4ZvPDNvrKaOJQbl9RuGEC6ckhUBnN4fIEu0LgGQgKDj80/+DwGGOT/AII73ryDJj8Y6Gyn0OZh/ImvyC/aP+H3jrx5/wAGW3wxvfBcUtxF4dms9W1OOEbibGPWLuJ2I67Y3ljdiPuhcngEgA9S/ZR/4LSf8HKn7bml6v8Atl/sx/AHwr4m+DukXk8R0dQLee7gtm3SxWk017HdXNykfyebDC0ZlyBCzfu6+sv+CHH/AAcEftQf8FU/+CmXxC/Z58baDouhfDbTvD+s+INBt47OWLWYI7fULOC2iu5jcSRO6w3DCXZEoaQZGBxXq3/BuR/wUl/YU8Df8EXPBHhn4h/Efw54O1H4XQ6tbeI7HVb+G0uLctfXN0swikcSSJPHKrKyK26Qsi5ZSK/Bv/g1h+I3hf4w/wDBfb47fFvwRbtaaL4p8M+LtX0+B12NFa32u6fNEhXJwVRwCM8YoA/0l6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAM7WLGXVNIutMguHtJLiF4lni+/GXUgOueMrnI96/ydv+CdX7W3ir/g27/4KB/EPwR+3B8FT4q1i4RNNa9JWHUbSKCV2F7pks6GOe3vAQSQyeYFQ+Yu1lP+qj8ZvEnjjwb8IPFfi/4ZaSmv+JNK0e+vNK0yR2jS9vYIXeCBmUMyiWQKhYKSM5APSv5IP+Cbn/BcH9iH/gtle+MP2cf+CqXw/wDh54W1jS3il8Oad4jEU1veQuGW4WKfUAPLu4XVTtjKOytlQdjEAHzd46P/AAbtf8HI/wC034R8SxeO/E/we+LMlsdPXSIraz0O+1p93mRb53t720nuYjuWPZOZmUhcMFUDif8Ag9F8Wftk2Pgr4cfCm60K3uvgFbzaVfDxNKI/7Ql8YrHq0LWzlZlOw2IExAtgu88P/BX5O/8AByz+yP8A8Emf2PfiZ4A1P/gmjr9nYeMNRlu5/EGgaBq7apZaekPltbXAkMsz2k7yFgIvNwVUMqIBl/2m/wCDnjVfip4l/wCDe79l3xN8blm/4TK91vwdP4g+0AiYapN4bv2uvMBAIfzt+4Edc0Afe/8Awbp/tN/t3+EP+Cft54u/4KFeGdJ8DfAr4b+A9G1DwP4ihVRJe6LaW9xJc3FzsurhyY7eKF+YYiSxwpPA/N3Rf+DgH/guN/wVF+MPiix/4I1/BTTP+EE8JSgvc6tFDLdvGxPl/arq8u7azSWZVLLbQ5kUEgO+N1fojcWkvx6/4NLU+GPwU1O31bxHZ/BXTp57KwnSa5WOwjSW4jaNCWDMlvNHtIyzAqBu4r5r/wCDNL9qT9m7TP2E/G37OepeINM0Xx1pXi681y8sbu4jt57rT7q1tY47lA7AyIhheN9ufL2qWxvXIB9M/wDBHL/g4a+K37UX7VOp/wDBN/8A4KTeBbX4ZfGuxkuobJ7VJbS1vbm0Xe9nJbXEkrw3PlBpY3WVop1B2hDsD/I3/BTb/g5F/bk/YZ/4LCeMP2IPhp4J0Lxt4T0qLT7PRdLisbh9ZvtV1nRYJ7OPzY7jDr/aNzHuRId7wgovzkNX53/G3xr4S/bn/wCDv7wL4p/Y3vI9f0/w54g8Pvqus6Tie1nj8PW6PqMvmplWiWOM2pkztYqApOVz1H7SmhWHiP8A4PZ9F0/UY1ljj8ReGLoBugktfDVrMh+qugI9xQB+6f7Cf/BRL/gs/wCBv2afj/8AtK/8FTvg3cJ/wgNpYXHhLw14f0SeLVdXu7zfuhi8qS5DW0RaBZJNkjxBnZ2PlstflLYf8FXP+Dqn44fATxJ+3d8LfhH4Y8O/C7w9Hf30lrPYwxTmz0zebllt728F9MIRG+9kRd7KwjBI2j+ov/gtZ/wUJ8S/8Exf+Ce3i79qbwFpMGteJreaz0rRre8Dm0W91CURrLPswxjiTfJtyvmMoTcu7I/ky8DfB/8Ab/8A+CkP/BK7xL/wVA/b2/bi1fw34AutG1y7/wCEQ8NLHptrIbBpoUs7xraS2g3zSxBFtzbzM6unzFmxQB/Rb/wQ2/4LUp/wU6/Yq8YftA/tAaXp3gnXvhhdSweJ5bJpBphtY7cXQvYxK0kkSeWJA8bPIVMZO4hgB+G/w7/4L9/8Fvf+CpH7SfivSv8Agj18IPDtx4A8EyLK/wDb6oZZbeQusBvbq4vLWFJLnYzR28GJEAI3uqM9fKP/AAbSfD/xr8V/+COX7efwx+Gcctx4j8Q+H7rTtOt4BmWa5udHvo4olHrKx2Dvk8V9A/8ABmn+2j+y18Ivgd8Xf2evi54t0bwj4qm16DxBb/2zeRWIvbBrVYGETzMqubd4izqDlRKD0zgA9Z+CH/Byh/wUM+Kn/BWf4W/sCfE34aaJ8N11DVrDw3420a/tZp9QttUG8XT2lwLrYIJAEkg3RvhWxulXEjffX/BZ7/gvZ8bv2VP2qfDf/BNX/gnB4JsviH8c/EX2T7T9uDz22nvfjfBaiCOSEvcPEVnZ5JUihhZWYMGOz+cj4k/tMfBP9rT/AIO+fBHxe/Z81G31vw0fGXh/TItVtGDwX82m2UVtNNE4JDx+ZGyJIvyuiBlyCDXDft9fDr4vaR/wda+IdCl+K8nwJ1rxVrVu+hePZrVbiOyh1DRVgtSqvJErJKf9B3+YAjMSfukUAftT4B/4L0f8FXf+Cdn7WXgb9nb/AILqfDLQtC8KfEN0isfFGitHGbMPKkb3DyW9zc2k0NsXX7REBFNGjCTLAqr/ANsisrqHQgqRkEcgiv8AOf8A+CsP/BNq3t/Hngb4F/8ABV//AIKTR32tyRXOoeHrDV/Bt1em3ScxxySM1nduLcTFVCmYoJNh252nH+hP8LvD1/4S+GXh3wpqt7/aV1pml2dpNd+WYftEkMSo0nlsSU3kFtpJK5wSaAO7ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA4n4l/8AJOfEH/YNu/8A0U1f5bX/AAa/ftu/8E6/2LPiP8XtY/4KE6zpej2Gv6bpMOitqej3GrrJNBLcNMEW3trkxkK6ZLBc9s4r/Ul+Jf8AyTnxB/2Dbv8A9FNX+Y3/AMGov/BPH9jX/goR8Qvjd4U/bD8D23jSy0HSNHk05Z7i5tmtnupblZWje2liYFgi854xxQB7p/wclf8ABR3/AIIu/tp/s2+Evh1+wRYad4k+Jlt4ihuf7a0jw5PoxtNOWGZJbeSa4tbaWcTyPEUhRXTKbyVKqG/pf/YP+Ndz/wAEX/8Ag3T+H/xZ/bdtru31TwX4fuLxtGlPl38s+r389xp2nBX5Sby7iGJlYZhCsWAEbAfyQ/tVfAf4mf8ABrZ/wVl0H4z/AA18N2Pj34ReJpPtmhPr9jBeTyaekiG6so7uSMva6haEr5dxCVLKYncMrPHX9Dn/AAdDfErRv20v+CCfhX9qH9mW+fWvBF94m0DxJcXUK5xpk8N1bATAZ8to7ueGORTykoKHBBoA+KfBf/BaX/g5n/aM+Butf8FFv2efgh4R/wCFJ6R9tuYbOS38+SexsmYTSKr38N9d+QEZZJbeNEZlfanysq/s58Gf+Cxfx/8A+ClH/BHnxf8AtY/8E2/A9lefHnw9dWekXHg3UZUuYIbw3Vt9qYM81pvgexklnhdnQ7lK/MyEH8Bf+Cbv7LX7Y3xI/wCCSWkftNeA/wDgobL8MvhR4Y0W9TWvDy6El1F4dS0aT7RaS4vFdmYZdF8sPMsilFbeuf1k/wCDWj9kn9mf9nX4V/GbxN+yf+0BafHjQPFk+jxTva+HrzQDpd3Yx3Z2Ol5I7u0yXCkjapQIM53CgD+WD/g15+KX/BSX4d/tS61pX7B3gnTfFvhjXdS8M2vxFub9UaTTNEN3IDPDvurch/Ka4PyrMcoPl7H9/wD/AIKbf8HIv7cn7DP/AAWE8YfsQfDTwToXjbwnpUWn2ei6XFY3D6zfarrOiwT2cfmx3GHX+0bmPciQ73hBRfnIavhX/gyU8c+C/CXxe+P2m+KtXstMuNQ0vw4trHdzpC0xFxdoQgcgsd8iLgZ5dR1Ip37SmhWHiP8A4PZ9F0/UY1ljj8ReGLoBugktfDVrMh+qugI9xQB+lWmf8FCf+C3fhL/gmZ+1L+0X/wAFL/hX4W0WfwNa6FL4V0fXtAY2l/Jf3ka3CyxfaWjnt4I3j2jJcSn5nyhFfeP/AARw/wCCo2ieK/8Agi/r/wDwUJ/ag0bw14F0jwjfa5NqFp4R00aZY+TYlNixW3mODcTswjUbv3kjKO9fQ3/ByL/yhK+Pf/YK07/052dfyr/s3+C/HPjv/gy5+LOl+Aopbi4tPEk2o3UMK7mexsNXsLi5bjosUMbSuf7iHPFAH1F8K/8Agth/wcc/8FGNP8VftQ/8E5fgb4aT4TeFryeGCzvUS5urvyEDtB5k95bSXk6oQzCzijAJCDL4Dfrl/wAE4P8Agtl8Wv8Agq9/wTy+K3jP9n/w9pfhn9pD4Z6bJ5nh26WS7067v/JeW1kij8yOYQXbxSQbGkLwSD5mcbWb+dL/AIIQ/sq/tqftFf8ABPKbx5+zT+3dL8E/Dfgy/wBRXXPCaaTFOmine0xuJpXvIT5dxGfNEjIFzuUElGx+nX/BsB+yl+yv8Nf2kPi18f8A9mX9qC1+Pk+vaPHb+ILKHwvfeH5rS5urvz47mVruQg7zHMqqqDdkkHCmgD7w/wCDcb/gtR8Uv+Cs/wANviNoP7Slro+m/EPwHqVtIYNGgktIJtJv4yIn8qaaZzJHPDMshDYAaMYBPPg3w3/4LbftlftVf8HAGr/8E2P2W7Dw1L8IPBWoXEPiHV7mynuNRW20WJV1FlmS5WNN98fskLeUwBZGOckV+B/7W3xH8Wf8G4n/AAX0+J/xk+Hunv8A8IV8VfCuuavpFpGn7mRtahlnt4tv3FS21y3VSOSlsOB8wB/X/wD4M3v2MNV8I/s2ePv+Ch3xMjkuPEfxb1STTtMu7nLSvpemysbiYOeT9pvjIJM5ybZT3oA9V/4KIf8ABXf/AILE+Jv+Cg9//wAE8/8AglH8EjJNoqSef4l8UabLFFftbqDcT2013JbWcdnEziNZHMhmcDyz8yq3zz+xV/wXt/4Kl/Bf/gqR4Z/4Jg/8FcfAugWup+Lb2z0yG+0iNYbq1uNTQGylD2881pc28rlUYIFdCxJbKGM+Pa3/AMFKP+Cmv/BY7/gr38Qf+Cb37Jnxmtf2b/AXgmfWrWO7trNJtV1CLQroWksqO4juHuZmYyrBFNbpHCrbizIWb8gPiV8ANL/Zh/4OXvgL8FpfjPrPx01vSfG3gr+3vE+vXJurv+1Jb+N3ti7SzFREhjGwyuUZipOQQAD9Dv8Ag5W/5WPv2Vf+wR4G/wDUn1Gv9ESv87v/AIOVv+Vj79lX/sEeBv8A1J9Rr/REoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK+Cf8AgqT+0f4k/ZF/4J2fGX9o7wVIIdd8LeFb+40qUgERahJGYraQhgQwSZ0YqRzjHevvaviv/go9+zhrH7Xn7BPxf/Zo8NJFJrHjLwpqen6WJ22Rf2i8LG03sfuqLgRkt2HNAH8VP/BoF/wTr+CP7S1v8TP+Chn7TGi2/jrXtL8QDQtF/tuIXsUF6YUu728ZZt6y3D/aYQruC0fzMDufI/pE/wCC8f8AwS9/Zj/bD/4J4/EzxHe+EdMsvHfgXw5qHiHw5rllaRxX8NzpUDXP2fzECs0NysXkOjllAYOF3opH8wf/AAaf/wDBTj4IfsLa/wDE/wD4J4/tp6vB8N73VdfOp6Zd69J9itYtWgjFnfWV1JLtjt5QIIthlZVZldCQ+xW/oZ/4Lxf8Fnv2MP2bv+CfnxG+G3gH4gaF4u+InxD8P33hzRNH0PUIr+eI6rCbeS7mNu0ggjgilaVGlKiVlCLnJwAfm5/waF/tm/EfxR/wTh+M/wAFdb1H+0T8Frj+0dCjucv9ms9Vt7i4WDggmL7TbTuBnIMjAHGAPt//AINqf+CyP7WP/BW+x+Mtx+1HZeHrNvAL+H103+wLOa0DDVBfmbzfNuJ92Ps0e3G3HOc5GPij/g03/Y1+JHwq/wCCXPxm/aB8U6W1nJ8ZfOTQ42BE11p+k2txBFNtxkJJcTzrH3YLuHyspPx5/wAGPnxK8EaD4m/aP+HOu6ra2esana+GNSs7WaVUlntrA6mtzIikgssJnh3kcLvGetAH6wfFj/gtr+2D4I/4OOdL/wCCUWj2PhtvhleahpVrJcS2UzatsvdGiv5MTi5EeRM5C/ueE45PNfyq/wDBd34m/wDBRHWf+C7/AIf134teDNO07xr4d1qytPhbZQqgi1fQrPX7xtDnuMXTgvcy5WTc8BwOUj619p+IvjT8Ofj7/wAHnuj/ABB+E+rW2u6EvirTdMivrRxLBLNpmgx2lwEdcqwS4ikTcCQduQSK9I/4OV9R0/w9/wAHHf7MOva7PHZ2NrpPge4mnmYJHHFF4kvy7szYCqoBJJOABQB+xn7e3/BWL/gq3/wT/wD+CLvgD9r34+eDfDPhj476143/AOEf1vRru1a406CxlGoyQMkdveviR4raBs/aGHzNkAnA+HtM/wCC2f8AwcR/tmfsw6Z+1R+wL8ANIPgHw5pNudf1y7t45rnWNWsoh/ajafZS36SvZrOJI40t4p5vkIMnmbo0+sv+DyDxJ4d8V/8ABJHwrq/he/ttStD8TtLj861lWaPfHYaorruQkZVgQwzkEYNfZ3/Bvt+2v+ycf+CJvw48QXXjDRdCtfhfolxYeK0u7uOBtLns5pWkkuFZsoJlInQkfOHGOcgAHVf8EC/+C3Ol/wDBYD4L69a+P9Hs/C/xR8CNbrrmn2DubO7t7oN5V7arKWkSNnR0eJnkMTBcuQ618df8G7n/AAW0/bB/4KofH/4ufDH9pWx8N2mneB9PtrrTm0OymtZWea5kibzWluJgw2qMYC81+QH/AAZ3aRqnjz/gor+0f8evBFpNa+CJNHlt0QRlYUl1PUxcWkZPQOkMEuFznBNcp/wZx+NfDHgT/goP8e/hb4vv4NN1vVtFH2S0uJBHLO+n37CdIwxBZkEgJUZOATjANAH7U/t+f8Ftf2wf2Zf+C7/wm/4Js/Dux8Ny/D7xvqHhO11Ca9sppdSVNbu/IuPKmW5SNSE+5mJsHrnpX8xX/B034+/be8Q/8FRtFsfjr4WsdJ0bQJHt/htNAFDappQuVZZZ8XEmWM+V+ZYTj+HvX0z/AMFKPjf8NPjj/wAHbvwXvfhbrNrrtl4c8Y+AdDubmykWaAXltexPNGJFyrGNpdj4J2uGU8givVP+DyieDTv+CgH7OeqX7iG3i0NmeRzhVVNSBYkngADk0Af2Wf8ABK74l/8ABQz4r/sut4q/4KbeDdO8C/Er+2LuEabpiosH9nIsZgkwlzdjczFwf3vb7o7/AKR1z3hvxb4U8ZWT6n4Q1O01W2jkMTy2cyTosgAYqWQkBsMDjrgg966GgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD//0v7+KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr8Iv+CoP/AAb1fsX/APBWb4+aP+0V+0X4n8a6Lrei+H7fw5BB4bvbG2tWtbe5ubpXdbqwunMpe6cEhwu0KNoIJP7u0UAfyQeG/wDgzB/4JRaHqsWo6n4p+JeswxsGa1vNX09YpAOzG30uGTB/2XB96/pN/ZR/ZC/Zu/Yf+Dll8BP2WPCdn4Q8LWLtMLW13O807gB5p5pGeWeZgqgySuzkKBnAAH0lRQB+Kv8AwU4/4IH/ALAf/BVHX4PiN8btN1Hw545t4Eth4l8Nzx2t9NDH9yO5WWKaCdUHCs8fmKvyq4HFfMf7An/BrZ/wTV/YR+LOmfHjGu/ErxXokqXOmS+KpreWysbqJg0dxDa28EKmVCAUaZpdjYZQrAEf0jUUAfPP7U/7KnwC/bU+COsfs7/tL+HLfxP4T1xVFxaTlkZJIzujlikQrJFLG3KSIwYHvgkV/MTpP/Blx/wTHsPH8fiO+8a/EK+0OORZf7IlvrFVkwcmN547FJPLPT5dsgH8eea/r8ooA+YtP/Yx/Zd0v9lMfsQWHgrTo/hUNHbQf+Ed2E2xsXBDKSSZC7ElzMWMplPmF9/zV/PF8M/+DOz/AIJV+APjHD8S9Z1Pxp4o0W0uI7qHw1quoWx092RtxjnaC0inli6AL5qnGQzNmv6uqKAPxw/4J5/8EPf2Qv8Agmb+0V4//aU/Z11XxLLqnxDimt7zTdTnsm0yzhmuhdbLOG2srZokRgERWkcLGMdeaq/sk/8ABDb9k39jT9vvx9/wUY+GHiHxbf8Ajf4iya3LqVjql3Zy6VEdevFvrjyIobKGZQsqAR753wnDbj81fszRQB+M37U3/BDb9k39rr/goR4C/wCCk/xI8Q+LbLx18O7nQ7rTbHTbuzi0mV/D92b23E8UtlLOweQ4l2XCEpwpU816P/wVP/4JC/s2f8FdfAvhT4f/ALSWt+JtEsvB1/PqFk/hq5tbaWSW4jEbCU3VpdqVAHAVVOe56V+qVFAHxP8AE3/gnv8Asu/HD9jHS/2DfjfoP/CX+AdI0Ww0W2XUWBvEXTYFt7e5SaJYzFdIq5EsQTkkABSVr+eLSP8Agy//AOCZGnePofEF/wCNPiFqHh+CUTf2JPqFkqOf4kaeKySXy2AAOzbJgffzzX9etFAHwV8e/wDgm9+zN8df2CNR/wCCblvZXPgr4Y32m2mlRW3hpora4tLazniuEELzxXCbmkiBkeSORn3MSSx3VN/wTk/4J6fBf/gmJ+zRa/sr/ATU9b1fw9aahd6klxr88FxemW8YM4L21vbR7QR8o8sEdya+76KAPxl/Ya/4Ia/sm/sAfto+P/26fg54h8W6l4u+I1tqlrqVprN3ZzadEmr30OoTGCOCyglUrLAqpvmcBCQQxww+b/8AgpL/AMGzf7CH/BS79pOf9qr4ha34o8H+KdVitodabw/cWywagLSNYY5GS5tp9kwiRI96EKVQZQtlj/RVRQB4x+zn8DPCf7MXwB8F/s5eAbm8vNC8CaJY6Bp02oSLLdNaadCsEPmuiRqz7EAJVFHoBXxL/wAFSv8Agkz+zn/wVw+F3hr4S/tH614k0TTfC2qtq9pJ4aubW2nedoWhKyNdWt2pTa5OFVTnHOOK/UGigD+QL/iCp/4JZf8AQ/fFX/wa6R/8pq/Vn/glf/wQr/ZI/wCCRHjDxd42/Zt8ReL9bu/GlnbWN6niW7srmOOO0dpEMQtbG0IYlzu3FhjoBX7SUUAfzB/tof8ABpr/AMEx/wBrb4q6h8ZPDEviD4XarrFw11qFr4Ynt102eaQ5kkW1uYJhCzHJxCyRgknZX6Ef8Eyv+CI/7CP/AASki1DWP2cdHvdT8V6tEba88T+IJo7zVXtiVY26PHFDFDCWUMyxRJvIG8ttXH66UUAfgD/wU9/4Nx/2E/8AgqF8Yo/2ivH97r3gjx28ENtfap4cmgQajHbKEiNzFcQzK0scYCJKhRtgVWLBVA+YPFH/AAaA/wDBKHxR8LNG+Hr33jmy1bTb25vrzxPb6ratrOqPchQUunnsprfy49uY1hgiIJYksWJP9TtFAHwJ+2h/wTX/AGY/+Cgn7MFp+yx+1fZ3vijTdOjgaz1l5ki1m2vYIvKF7HPHGEW4YEmT915T7iGjK/LX4q/Ar/g0G/4Jb/B6y8VJ4j1Dxb40vPEWk6ho9pdaxdWbNpCX8TQ/arSOOzWI3kSMTFNMkqI+HWMMAR/VLRQB+U37F3/BH79mn9hb9hzxx+wF8JNc8Taj4O8fPq76heavc2s2pxHWrOOyn8mSG0ghXbHGDHvhfD5J3DgZf/BNf/gjR+zB/wAEtPhD47+Cv7P2veKdY0r4hTLPqMviG6tLi4iZYGg/cNbWdqqjaxPzo/PtxX620UAfkD/wSk/4Iqfss/8ABHz/AIT3/hmjX/FWuf8ACxP7L/tL/hJrqzufK/sj7V5PkfZbO027vtcm/fvzhcbcHOH8RP8Aghr+yb8TP+Cn+mf8FZNe8Q+LYfiLpVzYXUOnW93ZrorPp9qtnGGhaya4IMagti5BLcggcV+zVFAH8YX/AAc1/thfsD+FPjF4P/ZP/wCCkX7Puv8Airw9d6amt+HPH3hzUo7O/tWlkeG8gg8yEKxi2I00DSujB4nZAdhr+dT/AIKSx/8ABu98AP8Agnze/Cf/AIJfeItR+JPxS8b6tpj3Gt61b3T39hpdmzTSKZLi0s4YBI4RGjhjEkhxv+VRj/T8+PH7Nn7Pv7Ufgs/Dr9o/wVovjnQ94lWy1uyivYkkHR0EqtscdmXDD1r5I+D/APwR6/4JdfATxta/Ej4TfAjwdpOvWM4ubS+/s2Oee2mXo8LTBzEw/hMe0jtigDz3/ghX8CPHn7NX/BJH4G/CD4nWMml67ZaAb27s5htlt21S4mvhHIvVXRZwHU8qwIIBGK/WWiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD5c/bC/Yw/Zs/b0+CV9+z3+1R4Zh8UeGL2RLhYZHeGa3uYgRHPBNGyyRSoGYBkYZBKnKsyn+X3V/+DKH/gnXdeJBfaP8TPiJZ6WW3NaPcadLKAT0Wb7CoAA4G6Nj6k1/ZLRQB8Af8E9P+CZH7IH/AATB+FV18Kv2TvDz6bHqkqT6rql7KbrU9SmjBVGuJyFyEBISNFSJMsVQFmJ/gR/ZN/Yx/Z9/b6/4OYf2of2Z/wBpjRjrPhjWdY+ILkRyGG4trmLUSYri3lXmOaJjlTgqeVZWUsp/07a+YPA/7E/7IPwz+NeqftJfDz4ZeGdE+IGtyXUuoeI7LTLeDU7p71t9w0tyiCRzK/zSEsdx5NAH4afsUf8ABqR/wTR/Yy+PmnftDfa/E3xD1Xw/dLeaLZ+J7m1ksbO4iYNDM0VtbW/nTRMMqZGMYOD5e4Aj9A/+Cqn/AARu/Zj/AOCvmg+C/Dv7Smu+KNDg8C3F7c2DeGbq0tnke/WJZBMbqzuwwAhXbtCYyc54x+s9FAH5W/t9f8Ehv2bP+Ci/7IHgr9ir42634m0vwt4Ev9N1GwutDubWDUJJdLsp7CITSXFpcRMrRXDs4WJCXCkFRlT6Hrv/AATE/Zk8X/8ABOO0/wCCXXjlNT1v4bWXh+z8PRy3Vwg1PytPKPbXHnRRRxi4ikiSQMIghZeUK5U/ofRQB+Af/BLD/g3b/ZJ/4JN/HvV/2jfgl4x8X+Idf1XSLnQTFrVxZm0WwuZoZyClvaQu0ge3jO/eF4+5XzX8RP8Ag0p/4Jx+OP2sbr9qfRfEnjXww15rJ8QPoelXlmtjFfGYT/uGms5ZY4TJlvL3tjOEZVAA/qQooA/GX4+/8ENf2Tf2i/8Ago/4U/4Kg+NvEPi218f+D7nSLqz0+xu7NNHkfRm3QCWKSyknIY/6zbcKT220v7bX/BDb9k39vP8Abd8Aft7fF/xD4t03xh8OINJt9Ns9Hu7OHTZV0a+m1CEzxz2U8zFpZmWTZMmUAA2nLH9maKAPgv8A4KP/APBO74K/8FQP2a5v2Wvj7qmt6R4fn1K01Rrjw/PBb3nnWZYoA9zb3Mew7juHl5PYivmP4teBvhn/AMEa/wDgjpq/gL4ZeBdU+Nngf4WaJJDc+HtXnge91LSLy7JvjcPHaGB0hhuJZZF+zhTDGQcctX7IVHNDFcRNBOodHBVlYZBB6gjuDQB/mOfsiyf8Gjvxe8Q3/wC0d8c4PGHwovdHv2uF+Hut3d3qukXMabZVaB7KzlmliZiYvIkuVbCnKbSGP1d/waXeArr40f8ABVz9o/8Abj+G/h99G+Gsmn6xp+np5KwRW8uv6vBfWtqiodgMNrbMGSPKxgr0BXP9fHjX/gil/wAEmfiH4ul8deK/2fPBM2pzzNcSyRaXHbpLK3LM8cOyNyx5O5Tk8nmvvf4SfBr4R/APwJZ/C/4H+GNL8IeHNPB+zaZo1pFZWkRblisUKqoLHljjJPJ5oA9KooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK/m6/b1/wCDWr/gmf8At0/FjVPjuy6/8N/FeuTS3epzeFrmGOzv7uZtzzzWtzBcIJGJJYwGEOxLMCxJr+kWigD+X79i/wD4NMP+CZP7JnxQ0z4xeLp/EPxS1jRZ0urK28Szwf2XFPEQySG1t4IvNKsM7ZnkjPGUNftF/wAFCv8Agn3+z5/wUy/Zq1D9l39pKG9/sS7uYb+2vNNmWC+sb233CO4gd0kQOqu6EPG6lXYFTmvt+igD8TP+CS//AAQq/Zl/4JBaz4v8T/A3xV4o8S6h42trez1D+3ZrVrdYrR3eLy47e2hIYb2DMzvnPAFfD37XH/Bo3/wTA/aa+KN58V/BNx4j+Ftzqk7XF7p3hme3Glu7nLtFb3NvN5BY5wsTrEueIwOK/qUooA/KT/gmd/wRi/Ya/wCCUmj6j/wzNot3eeI9Zj+z6h4m12ZLvV7i33BxB5kccMUUO5VYxwxRhmVS+4qCOA8V/wDBDb9k3xh/wVMt/wDgrnqfiHxanxItrm0ul02K7sxoZez09NNQGE2RucGFAzf6TkyZIwvy1+zVFAHz1+1X+yz8EP21PgH4i/Zo/aK0Zdd8JeJ4FhvLYsY3Vo2EkUsUi4aOWKRVdHHIYDqMg/zofAb/AIM+/wDgmH8IPiRB4z8ba34z+IWjWV0Lq38Oa5f26aY7gYU3K2ltbyTFe2HRSPldWUkH+rSigD8V/wDgnT/wRw+AX/BGbw38T/E/7H2reMfF8/i+xiuZNA8RahZy2811pazvbJA9vYQPE8hmaIuxkGCCVJUV/Fppvxc/4Nn/APgoZ+1R4k8f/tp+BvGf7LXiV7iS81Ozsr5pdG1DUFYrcQyQ29hLLay7gXcLHbqzhskOcN/p51+fXx//AOCUX/BNv9qTxlcfEX4+fBTwn4j8QXhDXOpzadHHeXDA5BlmiCSSH3diccdKAP4FP2JPCP7M37X/APwc3/D++/4JfeHDafBT4a/YLy3nhtZLaJNP0HT1jmvJFmAm/wBIvSEEkw82WSVXcbmOP7kP+Cmv/BF79hv/AIKvaXpUn7TGkXtj4j0NDBYeJdAmjtNXhtiWY25kkimjlh3sXCSxuEYkptLNu+1v2df2Rf2XP2RfDtz4U/Zg+H2geArC+dZbqPQ7CGzNw6DCtM0ahpWA4BcsQK+iqAP5kP2JP+DUf/gm3+xz8bNM+Pus3viP4m63oFwl3pVv4nnt30+1nhOYpTb29vF5skeAV81mjDAMEBAx/TfRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAZeuaRba/ot5oV4zLDewSW7lCAwWRSpIyCM4PGQa/Hj/glZ/wQ0/ZM/4JC+JvGXir9mzxD4u1u48b2tnaXy+JruzuUjSyeR0MItbK0KkmVt24uCAMAd/2booA+D/+Ci3/AATm/Zv/AOCoP7Olx+zV+0xb3i6WbyDUbLUdKkjh1LT7uAnEttLNFNGrMjPE4aN1aN2GM4I8d/YX/wCCQv7NP7Cf7KPiX9iPQ9Y8Q/Ej4ZeKJ55rjRPHMtlqMEK3ahbiGEW9nahYpiA7IwYCTLrtZmJ/VKigD+RPx7/wZj/8ExvFHjmXxF4S8X+P/DOjXM7TS6NaahZzwIpJKxwyXFnJMqqCVBleZsfxZ5r+kD9jH9in9nD9gD4D6d+zj+y34fj8P+GtPke4ddxluLu6lx5lxczNl5Zn2qCzHhVVFCoqqPqyigD+W4/8GlH/AATj079ri2/as8F+JPGvh37FrsXiO10DT7yzFhbXsE63CJE0tnJMtuHX/VlywHAcDAH3v4r/AOCG37JvjD/gqZb/APBXPU/EPi1PiRbXNpdLpsV3ZjQy9np6aagMJsjc4MKBm/0nJkyRhflr9mqKAPlf9tr9kP4bft5/st+Lv2SPi/fanpvhvxpbw217c6PLFDfRpBPHcKYnninjBLxKDuib5Se/I8g/4J//APBNT9nv/gnT+ydJ+xn8KZ9U8UeDbi6v7m4XxS9tezXA1IATxSiG2t4XiZRt2GLkEgk1+g9FAH8m3x1/4M5/+CYPxX+Il947+H+veM/h7aancvPcaNo15ay6fGjncY7dbm1lliUNyA0sirwFUACv3Y/4J8f8E2/2UP8AgmN8F2+CX7Kehvp9neTC61PUb2T7TqWp3KjaJbmfau4qvCIipGmTsRdxz940UAfkT/wVT/4Irfsi/wDBXuz8HJ+0rfeIdEvfA73h0+/8M3Nra3LxXwj82GZrm1ulePdEjKAoKtnBwzA/oR+zX+z58OP2UPgB4O/Zr+EMElv4a8EaTbaPp4mKtM8VsgTzJWVUVpZCC8rBV3OzHAzXt1FAH80/7cX/AAazf8E9v21v2ltS/apXWvFfw68SeILw6hrUfhi6tora8u3OZblUuLaYw3Ep+Z3RtjOS5TczMa1h/wAGo3/BMPwl47+GfxO+EWoeNvA/iD4XzWd7Z3+j6natNqF/Y3Qu4ru9N3ZXO+YSAD9z5MYQBQgAGP6YaKAPxm/bg/4Ibfsm/t9ftr/D/wDbw+MXiHxbpvi/4cW2lWum2ejXdnDpsqaPfzahCZ457KeZi0s7LJsmQFAAApyx/ZmiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/DD/AIKKf8G7n/BNj/gpR45f4tfFPQ9R8IeNLgH7Zr3hKeKwur4no10ksE8EzjH+taLzSOC5AUD4d/Zu/wCDPn/gll8EPG9h48+Il94s+Jkmnz+emm69eW8elybTlBLBa20MkgBwWVpij4wylSVP9WNFAGN4c8OeHvB+gWXhTwlYW+l6VpsEdrZ2dnEsFvbwRKFSOONAFREUAKqgAAYFfzA/tD/8Gin/AAS8+Pvx+1H442GoeLfBNtrd5LfX/h/w9d2kOmGWX5nFus1pNJbozksyK5QA7YxGoAH9S9FAH4C/Cv8A4Ntv+Cc3wJ/bI8BftpfBL/hI/Cur/DmC1h0vQ7C6tBo0jW0DwebcLJZvdzSyh2kmkN1ueQ5zjivS/wDgrH/wQh/Y/wD+Cu+r+G/G/wAbtQ1zwx4r8LWr2Fpq+gzQpJLZO5k+zzx3EMyOiOzuhUIyszfMQSK/a+igD+D/AP4OLv2BvhH/AME0v+CAHw//AGTfghqmsax4e0f4qWd3Fca7NDPdmS9s9UlkBaCGCMLvJKgRjGeSetdD+xf/AMGwX/BO/wD4KGf8E+PgH+0t4lvvEngTxTrfhHTpdbfw1c26W2pSDIaaSK6t7gJOygAvGVU43MjMSx/s0+PH7N37P/7UngyH4dftI+C9F8d6Db3aX8Wn67ZRX9sl1GrokojmVlDqsjqGxkBiO5rt/h18OPAPwh8D6X8MvhZo1l4d8O6JAtrp+m6dCtva2sCfdjiiQBUUdgABQB8tfsD/APBPf9l//gmt8B7f9nv9lfRH0zSBMbu9u7qTz7/UbxlVGuLqbC75CqgAKqogAVFVRivxs/bI/wCDUX/gmn+2F+0Xqn7SFzf+KvAmoeIr1r/WdO8NXVpDYXVxJzLLHHPaTtDJK/zyFG2FixCAnNf02UUAfzteG/8Ag2F/4Jn/AA//AGifhF+0j8Kf+En8J6n8GzpMumWGm3lp9i1G60m8kvludRM1nLc3E80sm2Z1nj/dqiII1Va+qv8AgrD/AMEWP2T/APgr54b8M2Xx+u9Y0DXfBrXP9k61oU0UVwkV3s82GVJopo5YmaNGAKh1YfI6hnDfr3RQB+dX/BML/gmh8E/+CU37ONx+zP8AAfWdc13R7zWLjXZrnX5oJrj7VdRQwuqfZ4IEWLEClV2kgliWOeP0VoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//T/v4ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/U/v4ooooAKKKKACiiigAoor57/aL/AGqfgL+yj4N/4Tf46+IrfRLV9y28LZkubl1GdkMKAu547DA/iIHNAH0JXmfxR+M/wl+CWgN4p+L3iTTfDenqDibUblIAxHZA5Bc/7Kgk+lfyg/th/wDBf/4t/EX7V4N/ZP04+DdIfdH/AGveBJtUlXkZRfmit8j/AK6OOoYGvw98j49/tMeNZL9xrfjnX7lv3kzma/uDuOfmc7yB9SAKBpNuyP6/vi9/wcBfsV+AL6fSfh/Z6340miYqJ7K3W1tGI44kuHSTHoREQe1fnj8SP+DkP4sX7PH8IvhtpOlKDhJNXu5r8kepSEWuPpuP1r4A+FP/AASE/af8dwJqHjd7DwjbOM7LyXz7nn/pnDuUcdmdT7V9y+B/+CJnwrsAknxF8Z6pqjDBZNPhislz6Zk+0HH5H6VlKvBdTupZZiZ6qFvXQ8C1j/g4D/b11PP2KPwzp2f+ffTnbH/f2eSvPZv+C53/AAUZlkMieKtPjB/hXSbTA/OMn9a/T/TP+CR/7G1hj7Vp2p3uP+e1+4z/AN+wldtF/wAEuf2GY4wj+CTIR/E2p3+T+VwB+lZ/WoHSskxHdfe/8j8hf+H5f/BRz/obrH/wU2f/AMao/wCH5f8AwUc/6G6x/wDBTZ//ABqv1+/4defsLf8AQjf+VPUP/kmj/h15+wt/0I3/AJU9Q/8Akmj61Dsyv7Dr/wA0fvf+R+QP/D8v/go5/wBDdY/+Cmz/APjVH/D8v/go5/0N1j/4KbP/AONV+v3/AA68/YW/6Eb/AMqeof8AyTR/w68/YW/6Eb/yp6h/8k0fWodmH9h1/wCaP3v/ACPyB/4fl/8ABRz/AKG6x/8ABTZ//GqP+H5f/BRz/obrH/wU2f8A8ar9fv8Ah15+wt/0I3/lT1D/AOSaP+HXn7C3/Qjf+VPUP/kmj61Dsw/sOv8AzR+9/wCR+QP/AA/L/wCCjn/Q3WP/AIKbP/41R/w/L/4KOf8AQ3WP/gps/wD41X6/f8OvP2Fv+hG/8qeof/JNH/Drz9hb/oRv/KnqH/yTR9ah2Yf2HX/mj97/AMj8gf8Ah+X/AMFHP+husf8AwU2f/wAao/4fl/8ABRz/AKG6x/8ABTZ//Gq/X7/h15+wt/0I3/lT1D/5Jo/4defsLf8AQjf+VPUP/kmj61Dsw/sOv/NH73/kfkD/AMPy/wDgo5/0N1j/AOCmz/8AjVH/AA/L/wCCjn/Q3WP/AIKbP/41X6/f8OvP2Fv+hG/8qeof/JNH/Drz9hb/AKEb/wAqeof/ACTR9ah2Yf2HX/mj97/yPyB/4fl/8FHP+husf/BTZ/8Axqj/AIfl/wDBRz/obrH/AMFNn/8AGq/X7/h15+wt/wBCN/5U9Q/+SaP+HXn7C3/Qjf8AlT1D/wCSaPrUOzD+w6/80fvf+R+QP/D8v/go5/0N1j/4KbP/AONUf8Py/wDgo5/0N1j/AOCmz/8AjVfr9/w68/YW/wChG/8AKnqH/wAk0f8ADrz9hb/oRv8Ayp6h/wDJNH1qHZh/Ydf+aP3v/I/IH/h+X/wUc/6G6x/8FNn/APGqP+H5f/BRz/obrH/wU2f/AMar9fv+HXn7C3/Qjf8AlT1D/wCSaP8Ah15+wt/0I3/lT1D/AOSaPrUOzD+w6/8ANH73/kfkD/w/L/4KOf8AQ3WP/gps/wD41R/w/L/4KOf9DdY/+Cmz/wDjVfr9/wAOvP2Fv+hG/wDKnqH/AMk0f8OvP2Fv+hG/8qeof/JNH1qHZh/Ydf8Amj97/wAj8gf+H5f/AAUc/wChusf/AAU2f/xqj/h+X/wUc/6G6x/8FNn/APGq/X7/AIdefsLf9CN/5U9Q/wDkmj/h15+wt/0I3/lT1D/5Jo+tQ7MP7Dr/AM0fvf8AkfkD/wAPy/8Ago5/0N1j/wCCmz/+NUf8Py/+Cjn/AEN1j/4KbP8A+NV+v3/Drz9hb/oRv/KnqH/yTR/w68/YW/6Eb/yp6h/8k0fWodmH9h1/5o/e/wDI/IH/AIfl/wDBRz/obrH/AMFNn/8AGqP+H5f/AAUc/wChusf/AAU2f/xqv1+/4defsLf9CN/5U9Q/+SaP+HXn7C3/AEI3/lT1D/5Jo+tQ7MP7Dr/zR+9/5H5A/wDD8v8A4KOf9DdY/wDgps//AI1R/wAPy/8Ago5/0N1j/wCCmz/+NV+v3/Drz9hb/oRv/KnqH/yTR/w68/YW/wChG/8AKnqH/wAk0fWodmH9h1/5o/e/8j8gf+H5f/BRz/obrH/wU2f/AMao/wCH5f8AwUc/6G6x/wDBTZ//ABqv1+/4defsLf8AQjf+VPUP/kmj/h15+wt/0I3/AJU9Q/8Akmj61Dsw/sOv/NH73/kfkD/w/L/4KOf9DdY/+Cmz/wDjVH/D8v8A4KOf9DdY/wDgps//AI1X6/f8OvP2Fv8AoRv/ACp6h/8AJNH/AA68/YW/6Eb/AMqeof8AyTR9ah2Yf2HX/mj97/yPyB/4fl/8FHP+husf/BTZ/wDxqj/h+X/wUc/6G6x/8FNn/wDGq/X7/h15+wt/0I3/AJU9Q/8Akmj/AIdefsLf9CN/5U9Q/wDkmj61Dsw/sOv/ADR+9/5H5A/8Py/+Cjn/AEN1j/4KbP8A+NUf8Py/+Cjn/Q3WP/gps/8A41X6/f8ADrz9hb/oRv8Ayp6h/wDJNH/Drz9hb/oRv/KnqH/yTR9ah2Yf2HX/AJo/e/8AI/IH/h+X/wAFHP8AobrH/wAFNn/8ao/4fl/8FHP+husf/BTZ/wDxqv1+/wCHXn7C3/Qjf+VPUP8A5Jo/4defsLf9CN/5U9Q/+SaPrUOzD+w6/wDNH73/AJH5A/8AD8v/AIKOf9DdY/8Agps//jVH/D8v/go5/wBDdY/+Cmz/APjVfr9/w68/YW/6Eb/yp6h/8k0f8OvP2Fv+hG/8qeof/JNH1qHZh/Ydf+aP3v8AyPyB/wCH5f8AwUc/6G6x/wDBTZ//ABqj/h+X/wAFHP8AobrH/wAFNn/8ar9fv+HXn7C3/Qjf+VPUP/kmj/h15+wt/wBCN/5U9Q/+SaPrUOzD+w6/80fvf+R+TWlf8F3/APgodpzbrvXNJvx6T6XCB/5CEdeueG/+DiD9tPS7mP8A4SDw/wCE9Utwf3im0uoZGH+yyXW0H3KH6V96al/wSr/Yivl22vhWezPrDqN2T/5ElevLvEX/AARw/ZT1W2dNGvNd0uU8q0V1HIoPuskTZH4g+9NYmBLyTELZr7/+Ad78NP8Ag5F+Ht4I4PjD8NNQ04ggPNo97HeA+4jmW3x9PMP1r9UvgF/wVY/YY/aJaGw8K+N7bR9UmO0afro/s6fdjOFMpETn2jkav5v/AB3/AMER/EcAkuPhn46t7rglINTtGgOewMsTSZ+vlivzZ+MX7C/7UfwP8258Y+FLqewj632nj7ZbY9S0WSg/3wtaRqwlszirYDEUtZwdvv8AyP8AR1hmhuYUuLdxJHIAyspyGB5BBHUGpK/zlP2aP29/2rP2TNUiuvg/4suodPjwH0m8Y3WnSKM8GByVXr96PY3oa/p9/Y+/4L1fs/8AxmltPBv7Rdp/wr7X5iIxeFjNpEznPPmn54M8f6wFBnmStDkP3uoqtZXtnqNnFqGnSpPbzoskUsbBkdGGVZWGQQQcgjgirNABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUVWvb2z02zm1HUZkt7e3RpJZZGCIiIMszMcAAAZJPAFfx5/8FO/+C0Piv4xajqPwK/ZOv5tH8HxM9tfa3CTFd6pj5WELDDRWx7EYkkHXapKkA/dL9rz/grn+yN+yPey+FdS1KTxZ4niJSTSdEKTNAwxxcSlhFEefu7i/wDs1+InxU/4ONvj/rN80fwa8C6HoNnkgNqsk2ozkdjmNrZFPqCrY6ZPWvyO/ZY/YZ/aM/bB1nyPhRozf2XHKI7rWLzMNhAe4MhBLsByUjDPzyMc1/QX8Gf+CBHwF8N20V58bvFGqeJ73b88FiF0+0DHt0klbHYh0z3HYcOJzKhQdpy17LVm1OhOeqWh+YGsf8F3f+CiGp3HnWWvaVp6/wDPO30uBl/8iiRv1rI/4fl/8FHP+husf/BTZ/8Axqv6CdN/4I2f8E77GHyrrwNNeN/fm1bUA3/kO4QfpWj/AMOev+Cc3/RO/wDyr6n/APJdcP8ArBh/5Zfcv8zb6lU7o/nl/wCH5f8AwUc/6G6x/wDBTZ//ABqj/h+X/wAFHP8AobrH/wAFNn/8ar+hr/hz1/wTm/6J3/5V9T/+S6P+HPX/AATm/wCid/8AlX1P/wCS6P8AWDD/AMsvuX+YfUqndH88v/D8v/go5/0N1j/4KbP/AONUf8Py/wDgo5/0N1j/AOCmz/8AjVf0Nf8ADnr/AIJzf9E7/wDKvqf/AMl0f8Oev+Cc3/RO/wDyr6n/APJdH+sGH/ll9y/zD6lU7o/nl/4fl/8ABRz/AKG6x/8ABTZ//GqP+H5f/BRz/obrH/wU2f8A8ar+hr/hz1/wTm/6J3/5V9T/APkuj/hz1/wTm/6J3/5V9T/+S6P9YMP/ACy+5f5h9Sqd0fzy/wDD8v8A4KOf9DdY/wDgps//AI1R/wAPy/8Ago5/0N1j/wCCmz/+NV/Q1/w56/4Jzf8ARO//ACr6n/8AJdH/AA56/wCCc3/RO/8Ayr6n/wDJdH+sGH/ll9y/zD6lU7o/nl/4fl/8FHP+husf/BTZ/wDxqj/h+X/wUc/6G6x/8FNn/wDGq/oa/wCHPX/BOb/onf8A5V9T/wDkuj/hz1/wTm/6J3/5V9T/APkuj/WDD/yy+5f5h9Sqd0fzy/8AD8v/AIKOf9DdY/8Agps//jVH/D8v/go5/wBDdY/+Cmz/APjVf0Nf8Oev+Cc3/RO//Kvqf/yXR/w56/4Jzf8ARO//ACr6n/8AJdH+sGH/AJZfcv8AMPqVTuj+eX/h+X/wUc/6G6x/8FNn/wDGqP8Ah+X/AMFHP+husf8AwU2f/wAar+hr/hz1/wAE5v8Aonf/AJV9T/8Akuj/AIc9f8E5v+id/wDlX1P/AOS6P9YMP/LL7l/mH1Kp3R/PL/w/L/4KOf8AQ3WP/gps/wD41R/w/L/4KOf9DdY/+Cmz/wDjVf0Nf8Oev+Cc3/RO/wDyr6n/APJdH/Dnr/gnN/0Tv/yr6n/8l0f6wYf+WX3L/MPqVTuj+fzR/wDgu7/wUQ0y486917StQX/nncaXAq/+QhG3619S/Cv/AIONvj/o18sfxl8C6Hr1nkAtpUk2nTgdzmRrlGPoAq56ZHWv1N1L/gjZ/wAE776HyrXwNNZt/fh1bUC3/kS4cfpXyZ8Zv+CBHwF8SW0t58EfFGqeGL3b8kF8F1C0LDt0jlXPcl3x2HY3DPcNJ2d16r/K4ng6iP0h/ZD/AOCuf7I37XF7F4V03UpPCfieUhI9J1spC07HPFvKGMUp4+7uD/7NfqHX+ch+1P8AsM/tGfsfaz5HxX0Zv7LklMdrrFnmawnPYCQAFGI5CSBX44GOa/Vr/gmJ/wAFofFfwd1HTvgV+1jfzax4PlZLax1uYmW70vPyqJmOWlth3JzJGOm5QFHrU6kZxUoO6OWUWnZn9itFVrK9s9Ss4dR06ZLi3uEWSKWNg6OjjKsrDIIIOQRwRVmrEFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFcd8QfiD4J+FPgvUfiL8R9Ut9G0PSITPd3l0+yKJBxye5JIVVGWZiAASQK/j3/AG/v+C4nxW+ONzqHww/Zekn8IeD2LwPqS5j1S/jPBIYHNvG3OFT94QfmYcqAD+jX9qX/AIKefsefslfadK8f+Jo9T8QW+VOiaPi8vQ4z8sgUiOE5GP3roa/D34rf8HIXju88y1+CPw2sdPGMJc63dyXZPuYYBAB9PNavwR+Cf7N3xy/aW8Rtpfws0S51ZzJ/pN4/yW0JbkmWd8KDznGSx7A1+yPwh/4IfKRFf/HfxieQC9locfQ9x9onU/T/AFP41cYSexnOrGO7PFdX/wCC93/BQTUs/Y77QtPz/wA++mKcf9/Wkrkv+H5f/BRz/obrH/wU2f8A8ar9aNF/4JDfsU6Vj7dpGo6lj/n51CVc/wDfkx12n/Dq/wDYN/6ET/yqaj/8k1fsZf1/wxl9agfjH/w/L/4KOf8AQ3WP/gps/wD41R/w/L/4KOf9DdY/+Cmz/wDjVfs5/wAOr/2Df+hE/wDKpqP/AMk0f8Or/wBg3/oRP/KpqP8A8k0exl/X/DB9ah2Z+Mf/AA/L/wCCjn/Q3WP/AIKbP/41R/w/L/4KOf8AQ3WP/gps/wD41X7Of8Or/wBg3/oRP/KpqP8A8k0f8Or/ANg3/oRP/KpqP/yTR7GX9f8ADB9ah2Z+Mf8Aw/L/AOCjn/Q3WP8A4KbP/wCNUf8AD8v/AIKOf9DdY/8Agps//jVfs5/w6v8A2Df+hE/8qmo//JNH/Dq/9g3/AKET/wAqmo//ACTR7GX9f8MH1qHZn4x/8Py/+Cjn/Q3WP/gps/8A41R/w/L/AOCjn/Q3WP8A4KbP/wCNV+zn/Dq/9g3/AKET/wAqmo//ACTR/wAOr/2Df+hE/wDKpqP/AMk0exl/X/DB9ah2Z+Mf/D8v/go5/wBDdY/+Cmz/APjVH/D8v/go5/0N1j/4KbP/AONV+zn/AA6v/YN/6ET/AMqmo/8AyTR/w6v/AGDf+hE/8qmo/wDyTR7GX9f8MH1qHZn4x/8AD8v/AIKOf9DdY/8Agps//jVH/D8v/go5/wBDdY/+Cmz/APjVfs5/w6v/AGDf+hE/8qmo/wDyTR/w6v8A2Df+hE/8qmo//JNHsZf1/wAMH1qHZn4x/wDD8v8A4KOf9DdY/wDgps//AI1R/wAPy/8Ago5/0N1j/wCCmz/+NV+zn/Dq/wDYN/6ET/yqaj/8k0f8Or/2Df8AoRP/ACqaj/8AJNHsZf1/wwfWodmfjH/w/L/4KOf9DdY/+Cmz/wDjVH/D8v8A4KOf9DdY/wDgps//AI1X7Of8Or/2Df8AoRP/ACqaj/8AJNH/AA6v/YN/6ET/AMqmo/8AyTR7GX9f8MH1qHZn4x/8Py/+Cjn/AEN1j/4KbP8A+NUf8Py/+Cjn/Q3WP/gps/8A41X7Of8ADq/9g3/oRP8Ayqaj/wDJNH/Dq/8AYN/6ET/yqaj/APJNHsZf1/wwfWodmfjH/wAPy/8Ago5/0N1j/wCCmz/+NUf8Py/+Cjn/AEN1j/4KbP8A+NV+zn/Dq/8AYN/6ET/yqaj/APJNH/Dq/wDYN/6ET/yqaj/8k0exl/X/AAwfWodmfjH/AMPy/wDgo5/0N1j/AOCmz/8AjVH/AA/L/wCCjn/Q3WP/AIKbP/41X7Of8Or/ANg3/oRP/KpqP/yTR/w6v/YN/wChE/8AKpqP/wAk0exl/X/DB9ah2Z+OFj/wXV/4KK2k3mT+JdNuV/uS6VbAf+OIp/WvavAf/Bw3+2RoGoK/jnQvDfiCz43xi3mtJv8AgMiSlR+MbV+i+of8EpP2FbyHyrfwdLaN/fi1O9Lf+PzuP0rw7x1/wRZ/Zl17T3XwRqutaBefwOZUu4R/vRuisfwkWj2MhrFQPqD9nz/g4P8A2ZfiNqEOhfHHQr/wBcS7VF2H/tKxDHg7njRJUGe/lEAdSMV+4nw7+Jvw7+LnheDxt8LtcsfEGk3H+ru9PnS4iJwDtLISAwBGVOCO4r+FT4+/8Ekv2lvg9YTeIfBvkeNtLhBZjpqst4qjOSbZsk/SN5D7V8l/s5/tV/tDfscePm8VfBvWrjRbxH8u9sZQWtbgIeY7i3bCtjGMkB1/hINZOLW5tGalqmf6TFFflP8A8E5f+Cp/ws/bp0k+ENYji8NfEGyjMlxpDPmO6jUZaa0ZuXUdWQ/OnfK/Mf1YpFBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRXx7+2P+3F8Cf2IvAH/CZfFy+L310rDTdItSrXt9IvaNCRtQEjfI2FX1JIBAPsB3SNDJIQqqMkngACvzO/aX/wCCuP7Ev7Mks+jaz4l/4SfXIcg6Z4eC3sqsB0kl3LBGeeQ0gYf3eK/lC/bd/wCCr/7S37Zt1ceHJrs+FPBZc+VoemyMokTt9qmGGnPsQsY7JnmvnH4FfsRftJftDCK+8BeHpYdLl5Gp3/8AotpjjlXYZkHP/LNXNVGLk7RQH7mfFX/g5F8RTeZa/BD4aW1tgfu7rXLxp8n3gt1ix+E5r4717/g4B/b31fd/Z6+GtKz0+y6c7Y+nnzS/rXrXw2/4IneF7ZY7n4u+NLm7fgvb6TAsCj282bzC318ta+sdM/4JPfsXWCqLrQ769x1M2oTjP18tk/SumOBqvfQfKz8sW/4Ll/8ABRskkeLbEew0mz/+NUn/AA/L/wCCjn/Q3WP/AIKbP/41X67j/gl9+wwBj/hB8/8AcT1D/wCSaX/h1/8AsMf9CN/5U9Q/+Sav6hU7r8R8rPyH/wCH5f8AwUc/6G6x/wDBTZ//ABqj/h+X/wAFHP8AobrH/wAFNn/8ar9eP+HX/wCwx/0I3/lT1D/5Jo/4df8A7DH/AEI3/lT1D/5Jo+oVO6/EOVn5D/8AD8v/AIKOf9DdY/8Agps//jVH/D8v/go5/wBDdY/+Cmz/APjVfrx/w6//AGGP+hG/8qeof/JNH/Dr/wDYY/6Eb/yp6h/8k0fUKndfiHKz8h/+H5f/AAUc/wChusf/AAU2f/xqj/h+X/wUc/6G6x/8FNn/APGq/Xj/AIdf/sMf9CN/5U9Q/wDkmj/h1/8AsMf9CN/5U9Q/+SaPqFTuvxDlZ+Q//D8v/go5/wBDdY/+Cmz/APjVH/D8v/go5/0N1j/4KbP/AONV+vH/AA6//YY/6Eb/AMqeof8AyTR/w6//AGGP+hG/8qeof/JNH1Cp3X4hys/If/h+X/wUc/6G6x/8FNn/APGqP+H5f/BRz/obrH/wU2f/AMar9eP+HX/7DH/Qjf8AlT1D/wCSaP8Ah1/+wx/0I3/lT1D/AOSaPqFTuvxDlZ+Q/wDw/L/4KOf9DdY/+Cmz/wDjVH/D8v8A4KOf9DdY/wDgps//AI1X68f8Ov8A9hj/AKEb/wAqeof/ACTR/wAOv/2GP+hG/wDKnqH/AMk0fUKndfiHKz8h/wDh+X/wUc/6G6x/8FNn/wDGqP8Ah+X/AMFHP+husf8AwU2f/wAar9eP+HX/AOwx/wBCN/5U9Q/+SaP+HX/7DH/Qjf8AlT1D/wCSaPqFTuvxDlZ+Q/8Aw/L/AOCjn/Q3WP8A4KbP/wCNUf8AD8v/AIKOf9DdY/8Agps//jVfrx/w6/8A2GP+hG/8qeof/JNH/Dr/APYY/wChG/8AKnqH/wAk0fUKndfiHKz8h/8Ah+X/AMFHP+husf8AwU2f/wAao/4fl/8ABRz/AKG6x/8ABTZ//Gq/Xj/h1/8AsMf9CN/5U9Q/+SaP+HX/AOwx/wBCN/5U9Q/+SaPqFTuvxDlZ+Q//AA/L/wCCjn/Q3WP/AIKbP/41R/w/L/4KOf8AQ3WP/gps/wD41X68f8Ov/wBhj/oRv/KnqH/yTR/w6/8A2GP+hG/8qeof/JNH1Cp3X4hys/If/h+X/wAFHP8AobrH/wAFNn/8ao/4fl/8FHP+husf/BTZ/wDxqv14/wCHX/7DH/Qjf+VPUP8A5Jo/4df/ALDH/Qjf+VPUP/kmj6hU7r8Q5WfkP/w/L/4KOf8AQ3WP/gps/wD41R/w/L/4KOf9DdY/+Cmz/wDjVfrx/wAOv/2GP+hG/wDKnqH/AMk0f8Ov/wBhj/oRv/KnqH/yTR9Qqd1+IcrPyH/4fl/8FHP+husf/BTZ/wDxqlX/AILl/wDBRsEE+LbE+x0mz/8AjVfrv/w6/wD2GP8AoRv/ACp6h/8AJNIf+CX37DBGP+EHx/3E9Q/+SaPqFTuvxDlZ+Zmg/wDBwD+3vpG3+0F8Narjr9q051z9fImi/SvsT4Vf8HIviKHy7X43/DS2ucj95daHeNBg+0FwsufxnFej6n/wSe/Yuv1ZbXQ76yz0MOoTkj6eYz/rmvkn4mf8ETvD1wkl18HvGc9s/JS21eFZlPsZodhH/fpqiWCqrbUXKz97v2aP+CuP7Ev7TcsGjaN4l/4RjXJsAaZ4hC2UrMR0jl3NBIeOAshY/wB3mv0xR0kQSRkMrDII5BBr/N4+Of7F37R37PJlu/iH4dm/syM4/tKz/wBJsyOxMifcz6SBT7V9M/sRf8FX/wBpb9jK6t/DkN2fFfgsOPN0PUpGYRp3+yzHLQH2AaM90zzXNKLi7NCP78KK+Pf2OP24vgT+274A/wCEy+Ed8UvrVVGpaRdFVvbGRu0iAnchIOyRcq3qCCB9hVIBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRX5S/t1/8Fcf2d/2LpZvBVnnxl42XcraPYSqqWjAZH2ubDCLJx8gDydyoHNfyj/taf8ABVH9rv8Aa5kuNI8Ua6fD/hqYkLomjFra2KdhM4PmTcdfMYrnkKKAP7Mfj1/wUh/Yr/ZvWa2+JPj3Tm1GEc6dpzG/vN391o7feYyf+mhQe9fkn8Sf+DkH4QaY0sPwk+G+r6yRkJLqt3Dp6/722Jbokd8ZBPtX82fwO/ZA/aI/aIuEPwy8N3NxZMcNqFwPs9mv/baTCtj0Tc3tX6XfD/8A4Ii/EnUBHP8AE/xpp+lqeXi06CS8f6bpDAAffDAe9OxrChUnrFHeeLf+Dir9rzVLt/8AhDvCnhXSbY/dWaG6uph9X+0Rqf8Av2K8V1j/AILy/wDBQrUyTZavo2nZ/wCffS4m/wDRvmV93eHf+CLv7L+mwJ/b+seINTnA+c/aIIYyfZVg3Af8DNet6R/wSe/Yk00AXnhy71DH/PxqNyuf+/UkdHKzdYGp5H5K/wDD8v8A4KOf9DdY/wDgps//AI1R/wAPy/8Ago5/0N1j/wCCmz/+NV+xX/Drf9hP/oRv/KnqH/yTR/w63/YT/wChG/8AKnqH/wAk0+VlfUKndfifjr/w/L/4KOf9DdY/+Cmz/wDjVH/D8v8A4KOf9DdY/wDgps//AI1X7Ff8Ot/2E/8AoRv/ACp6h/8AJNH/AA63/YT/AOhG/wDKnqH/AMk0crD6hU7r8T8df+H5f/BRz/obrH/wU2f/AMao/wCH5f8AwUc/6G6x/wDBTZ//ABqv2K/4db/sJ/8AQjf+VPUP/kmj/h1v+wn/ANCN/wCVPUP/AJJo5WH1Cp3X4n46/wDD8v8A4KOf9DdY/wDgps//AI1R/wAPy/8Ago5/0N1j/wCCmz/+NV+xX/Drf9hP/oRv/KnqH/yTR/w63/YT/wChG/8AKnqH/wAk0crD6hU7r8T8df8Ah+X/AMFHP+husf8AwU2f/wAao/4fl/8ABRz/AKG6x/8ABTZ//Gq/Yr/h1v8AsJ/9CN/5U9Q/+SaP+HW/7Cf/AEI3/lT1D/5Jo5WH1Cp3X4n46/8AD8v/AIKOf9DdY/8Agps//jVH/D8v/go5/wBDdY/+Cmz/APjVfsV/w63/AGE/+hG/8qeof/JNH/Drf9hP/oRv/KnqH/yTRysPqFTuvxPx1/4fl/8ABRz/AKG6x/8ABTZ//GqP+H5f/BRz/obrH/wU2f8A8ar9iv8Ah1v+wn/0I3/lT1D/AOSaP+HW/wCwn/0I3/lT1D/5Jo5WH1Cp3X4n46/8Py/+Cjn/AEN1j/4KbP8A+NUf8Py/+Cjn/Q3WP/gps/8A41X7Ff8ADrf9hP8A6Eb/AMqeof8AyTR/w63/AGE/+hG/8qeof/JNHKw+oVO6/E/HX/h+X/wUc/6G6x/8FNn/APGqP+H5f/BRz/obrH/wU2f/AMar9iv+HW/7Cf8A0I3/AJU9Q/8Akmj/AIdb/sJ/9CN/5U9Q/wDkmjlYfUKndfifjr/w/L/4KOf9DdY/+Cmz/wDjVH/D8v8A4KOf9DdY/wDgps//AI1X7Ff8Ot/2E/8AoRv/ACp6h/8AJNH/AA63/YT/AOhG/wDKnqH/AMk0crD6hU7r8T8df+H5f/BRz/obrH/wU2f/AMao/wCH5f8AwUc/6G6x/wDBTZ//ABqv2K/4db/sJ/8AQjf+VPUP/kmj/h1v+wn/ANCN/wCVPUP/AJJo5WH1Cp3X4n46/wDD8v8A4KOf9DdY/wDgps//AI1R/wAPy/8Ago5/0N1j/wCCmz/+NV+xX/Drf9hP/oRv/KnqH/yTR/w63/YT/wChG/8AKnqH/wAk0crD6hU7r8T8df8Ah+X/AMFHP+husf8AwU2f/wAao/4fl/8ABRz/AKG6x/8ABTZ//Gq/Yr/h1v8AsJ/9CN/5U9Q/+SaP+HW/7Cf/AEI3/lT1D/5Jo5WH1Cp3X4n46/8AD8v/AIKOf9DdY/8Agps//jVH/D8v/go5/wBDdY/+Cmz/APjVfsV/w63/AGE/+hG/8qeof/JNH/Drf9hP/oRv/KnqH/yTRysPqFTuvxPx1/4fl/8ABRz/AKG6x/8ABTZ//GqP+H5f/BRz/obrH/wU2f8A8ar9iv8Ah1v+wn/0I3/lT1D/AOSaP+HW/wCwn/0I3/lT1D/5Jo5WH1Cp3X4n46/8Py/+Cjn/AEN1j/4KbP8A+NUf8Py/+Cjn/Q3WP/gps/8A41X7Ff8ADrf9hP8A6Eb/AMqeof8AyTR/w63/AGE/+hG/8qeof/JNHKw+oVO6/E/HX/h+X/wUc/6G6x/8FNn/APGqP+H5f/BRz/obrH/wU2f/AMar9iv+HW/7Cf8A0I3/AJU9Q/8Akmj/AIdb/sJ/9CN/5U9Q/wDkmjlYfUKndfifjr/w/L/4KOf9DdY/+Cmz/wDjVH/D8v8A4KOf9DdY/wDgps//AI1X7Ff8Ot/2E/8AoRv/ACp6h/8AJNH/AA63/YT/AOhG/wDKnqH/AMk0crD6hU7r8T8df+H5f/BRz/obrH/wU2f/AMao/wCH5f8AwUc/6G6x/wDBTZ//ABqv2K/4db/sJ/8AQjf+VPUP/kmj/h1v+wn/ANCN/wCVPUP/AJJo5WH1Cp3X4n46/wDD8v8A4KOf9DdY/wDgps//AI1Sr/wXM/4KNhgT4tsSB2Ok2fP/AJCr9if+HW/7Cf8A0I3/AJU9Q/8Akmkb/glt+wmVIHgbBPcanqHH/kzRysPqFTuvxPy00X/gv3+33pePtz+HNSx/z86aVz/35ljr6P8Ah5/wcgfG7TnVfiv8OtE1hM/M2lXM+nNj6TfawT+WfavoPWP+CRX7GWp5+xabqenZ/wCfe/kbH/f0SV4f41/4IlfBPUbdj8P/ABdrOkzkHBvUhvowf91Et2x/wM0uVkvA1UffPwe/4ODP2O/HeoRaT8TNL1vwVJKVBuZ4lvbNSeOXgJl49fJxiv2H+Evx6+C3x40UeIfg14p0zxLabdzNYXKTNH2xIgO9D7OAa/ik+I//AARm/aS8LQy3vgPVNJ8TRRglYlka0uWx2CSjy8n/AK61+cmr+H/jl+zT48hfVINX8F+IbNt8Eo8yznXaQd0cilcjpypIPrSsc86U4fEj/TQor+Ov9kL/AIL/APxl+G32Xwh+1Rpv/Ca6OmE/tS1CwapEvqw+WKfA9fLY9S5Nf1Mfs6/tPfA/9qzwHH8RPgbr0Gs2PyrcRqdtxaysN3lzxH543HoRg4ypI5oMz3yiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/1f7+KKKKACiiigAoor+Yj/grt/wV/wBS8I6lqn7Kn7KGpiLUId1rr/iK0ky9u/IktbR1+7Kv3ZZgcxnKrhwSoB9Qf8FJv+Czngz9ljUrz4LfAGK18T+O4VeK8uXbfYaVJ02vtP76dT1iBCoeHOcpX8kPjDxv+0J+2L8Xv7a8VXepeNPFusOEQYMr47JGigLHGvooVFHPArd/Zn/ZZ+K/7V/jr/hGvAduRawuralqk4P2e0Ryfmdv4nbB2Rj5nIPQBmH9YH7NX7Jvwf8A2WvC66J8O7BW1CaNUvtUnAa7umXk7m/hXPIRcKPc81jVrKGnU9LA5bPEe89I9/8AI/Ln9mj/AII4aPZRW3in9pvUDd3Bw50XT32xL/szTj5m9xHtHo5Fftb4F+Hvgb4Y+HofCfw90m10bToB8kFpGI0z6nHVj3Y5J7muxorgnUlLdn1OHwlKirU4/PqFFFFQdIUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB8TftEf8E//ANnH9o1JtS17SRo+uSAkappgEE5bsZFxsl5671LY4DCv58P2sv8AgnN8aP2Yo5fFFqP+Em8LJuZtSs4yrW6g4H2iLkx5/vAsn+0DxX9dFRTwQXUD21yiyRyKVdGGVZTwQQeCCK2p15R9Dz8VltGsm7Wl3R/K5+wf/wAFXP2gv2Kb238LSTN4q8CmRfO0S9kOYE7m0lOTC3fbgxk9VzyP7VP2V/2sfgx+2J8L4Pil8GdSF1bkiO8tJMLdWU+MmKePJKt6HlWHKkjmv5j/ANuj/glloviSxvfix+zJZLZ6rHunu9Ci4huR1ZrYdEk7+WPlb+HB4b8b/wBmL9qX44/sVfF6P4j/AAovH0/ULV/s+oafdK32a7iRvnt7mLKkjII6h0blSrDNd9Oopq6PlcVhKmHlyzXo+5/pKUV8g/sT/tnfC/8Abh+C1p8WPh6fsd5Hi31fSZZA8+nXgGWjYgDejfeilCqJE5IVgyL9fVZyhRRRQAUUUUAFFFFABRRRQAUUUUAFFFebfGT4l6N8GfhL4m+LfiAgWXhrS7rUpQTjcttG0m0e7Y2gdSSAKAP5o/8AgvH/AMFA/EVrrr/sS/CXUTa2i28c3im4t2AeUzDdHZFgchNhWSYcFtyqfl3A/mX/AMEyv+CcWsftn+MpPGfj0T6f8PNEl2XlxEdkt9cAAi2hYg4wCDK4+6pAGGYEfBBm+Iv7Tvx2V7+ZtR8U+OtaVWkfJ8y71CYD3IXc/QdFHHSv79/2d/gh4U/Zw+C3h74LeDUAs9CtFhMm0K08x+aWZsfxSSFnPua8jN8e6FNRh8UvwR1YWjzyu9kd34D8BeDfhf4P0/wB8PtNg0jRtKhEFraWy7I40X07kk5LMcsxJJJJJrrqKK+Lbbd2esFFFFIAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDkfHngLwb8UPB+oeAPiDpsGr6NqsJgurS5XfHIjevcEHBVhhlIBBBANfxif8ABTX/AIJxax+xh4yj8Z+AhPqHw81uXZZ3Ep3y2NwQSbaZgBnIBMTn7ygg5ZST/bTXi37RHwQ8KftH/BbxD8FvGSA2eu2jQiTaGaCYfNFMuf4o5Arj3Fehl2Olhqif2Xuv19TCvRVSPmfhn/wQc/4KB+IrrXU/Yl+LWom6tGt5JvC1xcMC8RhG6SyDE5KbA0kI5K7WUfLtA/qlr/MvE3xF/Zi+OzPYTNp3inwLrTKsiZHl3enzEexK7k6Hqp561/pD/Bv4l6N8ZvhL4Z+Lfh8g2XiXS7XUogDnatzGsm0+652kdQQQa+7TTV0eMek0UUUwCiiigAooooAKKKKACiiigArJ1/XtF8LaHeeJvEd1HY6fp0Elzc3EzBI4oYlLO7MeAqqCSfStav5m/wDgv3+3DdeFtAtP2K/h9cNHd6zDFqHiKaNirLabiYLbIx/rWXzJB/cCjoxoA/Jr/gqr/wAFJNc/bh+Jq+FPA09xZfDbw5M40y0YlPt04ypvZ04yxGVhVuY4yejO+eo/YD/4Jf618cYbD4yfHeOXTfB0wE9lYqdl1qS/wse8UDdQ3DyLyuFZXrxb/gmp+xun7UXxabxD4yh3eD/C7xz36MDi7mbJjtgfRsbpOchBjgsCP67Le3t7S3S0tEWKKJQiIgCqqqMAADgADoK3pU76s5a9bl92O5h+FPCPhfwJoFt4V8Gafb6XptmgjhtrWNYokUcYCqAP8a6Kiiuk4QooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK+Af20P8Agn98Lv2sdAm1a1ji0PxlBGfsmqxIAJWHIjugozJGegb76ZyMjKn7+opNJqzKjJxd0fwseNfBPxq/ZJ+My6Rrf2nw34r8O3Ed1a3NtJtZWU7op4JV+8pxlWHuDgggf21/8Euv+CkXhv8Abq+GjaH4o8vT/iJ4egT+17NcKl1GMKLyAf8APN2IDp/yzc4+6VJ+Pf8AgoJ+xlpH7WXwqaXRY47fxjoSPNpV0Rgyjq1tIRzskx8p/gfBHBYH+Xj9l39oLx5+x7+0Rofxj8NJJHfaBdmO9s3ynn25Oy4t5Bx95cjn7rAHqBXJUhys9GlV515n+k7RXC/DD4j+FPjB8OtE+KfgW4+1aP4gsob+0k6ExTqGAYAnDDOGGeCCK7qszUKKKKACiiigAooooAKKKKACiivI/jx8bPAn7Onwi1340fEm6FrpGg2rXEp/ikfpHEg7vI5CIO7EUAfL3/BQ39vXwF+wh8GpPFupmHUPFeqq8GgaQzc3M4AzJIFIYQRZBkYYzkICGYV/CF8T/il8cf2vvjRL4z8c3V34o8WeIJ1iijjUu3JOyGCJeEjXOFRQAOvXJrq/2l/2i/i9+2/+0Bd/E3xpvu9V1mdLTTdOgyyW0BciC1gXrhS2PVmJY8k1/Rl+wL+wvoH7LXg9PFXi2KK88c6rEDd3GA4s425+zwnsB/y0Yffb/ZArehQdSVug0rnz9+xx/wAEpfBvw9tLP4gftHQx634hBEselbhJY2h7CTGRO475zGD0Dfer9kYIILWBLW1RY4o1CoijCqo4AAHAAHQVLRXs06UYK0UWFFFFaAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAQXVrbX1tJZXsazQzKUkjcBlZWGCCDwQRwQa/Fv9sj/AIJQeFfGNld/ED9mWCPSdbB8yTRiwSzufXyS3EL9wM+Weny9a/auis6lKM1aSCx/EX8Lfip8b/2RPjND418B3V34Y8V6BO0MsciFGGDiSCeJuHRsYdGBB+oBr+7/AP4J5ft6+Av27/g1H4t0ww6f4r0pUg1/SFbm2nIOJIwxLGCXBMbHOMFCSymvyU/4KC/sOaL+074Jk8ZeDLeO28c6PEWtZVAX7dEoz9nlPGT/AM8mP3W44VjX86f7L37SfxW/Ys+PVh8VvApe21HSpjbahYTZRLq33AT20y9QG246ZRgGHIFeNXoOnKz2Iasf6SlFeWfBH4xeCf2gPhNoPxl+Hdx9p0fxDaJdwN/Eu7ho3HZ43BRx2YEV6nWAgooooAKKKKACiiigAooooAKKKKACiiigAooqvd3drp9rLf30qQwQI0kkkjBURFGSzE8AAcknpQBFqWpado2nXGsaxcR2lpaRvNPPM4jjijjBZndmICqoBJJIAHJr+TD/AIKTf8FwfEfjC/1H4I/sY3z6bokZa3vPE8eUubsjhls88xRdvNwJG6rtHLeB/wDBXL/gqrrn7Tvim9/Z9+A2pPa/DTTJPLu7iAlW1y4jPLuw5+yoR+6j6OR5j7v3ax/In7DH/BPnxt+1VrEPjHxUs2jeBLeUia+xtlvChw0VtuBB5BVpCCqHI+ZhtoLhBzfLE+a/gT+zT8cf2p/FsmmfDbTZdQcyFrzUblittCz/ADFppiD8x64G527A1/R3+zF/wSz+AfwQsoNa+IdtF408Rja7T3sebSFxg4igOVIB/ik3Meo29K/QP4cfDbwP8I/Btl4A+HWnRaXpNgm2KCEYHPVmJ5ZmPLMxJJ5JruatI9ajhIw1lqyG3t7e0gS1tUWKKJQiIg2qqjgAAcAAdBU1FFM6wooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK4/wAcfD3wL8S9Ck8M/ELSLTWtPlBDQXkKzJz3AYHB9CMEdq7CigGr7n4Hfta/8EfLS5W58cfsrSiCQBpJNAupCVY5zi2mc/L7JIcejjpX46/Dj4o/tEfsY/F8eIPBN5qHg7xRpEuyeF1Me8KeY54XG2WNv7rqynqOxr+3uvjj9sH9i/4bftc+Df7O11V03xDZIf7O1eNA0sJPOyQceZET1QkY6qQalxOGvglLWGjPa/8Agmh/wVn+H37aGlwfDP4nNbeHPiXAnNmCUttUVBkyWhYk7wBl4CSwHzKWUNt/Yyv80n4zfBL4x/sofFIeFvG8M2k6vp8q3Nhf2rsscojbMdxbTDaSAQCCMOjDDBWBA/rj/wCCQf8AwVLj/au0BPgD8dbxU+JGkws9tdOAi6zaRDlxjAFzGP8AWoAN6/vFzhwknlNNOzP3TooooEFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH/9b+/iiiigAoor5D/bk/a08LfsXfs6618atfVLm9iAtdJsnJH2zUJgfKjyMkKMF3PZFbHOKAPyu/4LQf8FO779n3SZ/2VvgVdtB4z1i1DatqULbX0u0nHypEw5FxKvIYEGNCGHzMpX+YL9kb9lfxp+1j8UovBHh4m00y1Cz6rqJXclrbk/k0j4Kxp/Eck4VWI4KGL4sftXfHVjJJJrXi7xpqTSSSSt9+edizMxOdqIMk9kReOBX9gX7Mf7Ongv8AZi+E9h8NvCMSmVFEuoXeMSXd2wG+Rj1xxhB/CoArGtV5FpuenluB+sTvL4Vv5+R3Hwh+D/w++BXgOz+HHwz09NP0yzGcLzJLIQA0srdXkbA3MfYDAAA9Noorzm76s+wjFJWS0CiiikMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKK5/xZp+s6t4V1PSvDl5/Z2oXVpNFa3W3d5EzoQkm3vsYhsd8V+ZFz4b/AOCrvwjiOs6X4j8OfEu2t4zmxubdbSdwNn3TGlvl/vYLSnPcEkCrjG/Uxq1nD7La8v6ufqvRXxN+zN+274F+Put3Pwy8R6fc+D/Huljbe6FqWEkaRQS/2cnDSKoGSCquBzt2/NX2zUyi07MqnVjUjzQd0FFFFI0CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK/J7/gon/wT40n4+6HcfFz4RWcdr45skLzwxgImrRKPuP2FwoH7uTjcPkfI2Mn6w0VUJuLujGvQhWg4TWh/Gb+x7+118X/ANhf44Q/EbwM0iiOQWus6RcbkivbZW+eGVTyrqclHxujf1G5T/oF/s+fHj4fftMfB/Q/jX8MboXOk63AJVBI8yGQcSQyAE7ZI3BVh6jjIwa/ks/4K5/sfwQxj9qT4d2QT5lh8QQwpgEscR3RA7k4SQ45O1j/ABGuU/4Imft9yfs3fGUfAD4kXrL4K8b3KRwtIwEdhqj4SOXJ+6k3EcnYHYx4U16dOakro+KxWGlQqOnL/hz+2WiiirOYKKKKACiiigAooooAKKKKACvyW/4Le+LLjwx/wTm8ZWtrKYpNXutMsAVOCVa7ikdfoyRsD6gkV+tNfh1/wcEyOn7B1sqEgP4o04NjuPKuD/MCgD+eT/gjP8P9P8d/t6+GrrU4vPh8P2l7qu09PMiiMcbH/dkkVh/tAV/bhX8gn/BASOOT9sjxGzqCU8G3pUnsfttiMj8CRX9fdfG59JvE27JHq4NfuwooorxTrCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/iH/AOCyPgjTPBf7fPiuXSYvIi1q3sdSZR082aBVkYf7zozH/aJr+n//AIIheLLjxP8A8E5vBtrdSmWTSLrU7AljkhVu5ZEX6KkigegAFfzsf8F3kVf23LYqMFvDVgT7nzbgV+5X/BvtI7/sHXSuSQninUAuew8q3P8AM1+g4CTeGpt9keJXX7yR+41FFFdZkFFFFABRRRQAUUUUAFFFFAFLUtRsdI06fVtTlWG2tY3mlkbhURAWZj7ADNf5sf7U/wAcNc/af/aQ8W/GrUg7y+I9SkltouSyWwPl28QHJ+SJUT8K/u8/4KcfEfUvhT+wP8UfGGkNsuToz2CODgodSdLPcD6qJsj3Ffw9fsD/AA9034o/theAvCOsJ5lqdR+2SoRkOthG91tI/ut5WD7Gmld2E3ZNn9XP7HP7Puk/s0fs/aF8NrOMC+8oXepy4w0t9OAZSeT93hF/2VFfUNFFdyVtDyW7u7CiiimIKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr+VP/AIK//s96Z8Jvj/a/Ezw1D5On+OYpbqVFXCJfQFRPg/7YZJCP7zNX9Vlfkz/wWU+H9l4o/ZNTxkyf6V4Z1a2uEcDnyrkm3dfoWdD9VFZ1VeJtQlaaPaP+Den9o3UfiB+z/wCI/wBnvxBMZZ/Al5HcWBYkn7BqJdtgyTxHMkh46CQCv6Fq/iY/4N+viHd+FP25LjwarZtvFHh+9tWQnjzLZo7lG+oWNx9GNf2z1xnpBRRRQAUUUUAFFFFABRRRQAV/I1/wcMftTapr/wAUdB/ZN8N3jppegW0eraxChwst9cg+Qj4PPlQ/OARj97nqBX9bOoahZaTYT6pqUiw29tG0ssjcKiIMsT7ADNf5qHx9+KHiH9pL9ojxP8UrsvcXvizWJriFCMEJNJthjA9ETYgHoKAP1O/4JA/ssR+JPEFz+054wgD2ekyPZ6NG+CHusfvZsEdI1bah/vEnqtf0S147+z98I9K+BPwZ8O/CjSApXR7NIpXUY8y4b5ppOg+/IWb8a9ir3qFL2cFEtIKKKK2GFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV/N1/wV2/ZYi8C+Nbf9o7wfBs03xJMLfVEXOIr/aSsmOgEyqc/wC2pPVq/pFrwb9p34NWXx++BHiT4V3Kr52pWjG0dhny7qL54W9sSKM4xxkVjiKXPBrqJo/Pf/g3j/aqvtL8aeIv2RfFF4zWOqQtrOhxyEkR3MOBcxJ6eZHiTA4zGx6k1/WTX+aF+zn8Wdc/Z2/aE8J/F3Tne2ufDOrQXMox8xiR9s8ZHo8ZdGHoTX+lta3Nve20d5aOJIplDo6nIZWGQQfQivBIJ6KKKACiiigAooooAKKKKACiiigAooooAK/lV/4Lqf8ABRfUpNVuf2JfgzqDQ20SD/hK7u3fBldsMtiGU5CgYM4/iJCHgOD+1X/BSz9saD9ir9lzVviPpTxN4m1JhpmgwyYYNezA/vCuQSkKBpD2JAU/er+Eb4MfCvx9+1R8c7HwNp00l1qviG8ee9vZcuUViZJ7iU8k4BLEn7zEDqRQNJt2R9Tf8E+P2F9U/as8aHxR4xSS28D6LKv22VSUa8lHItomHIyOZHHKqeCGYEf1o6No+k+HdItPD+g20VlY2MKW9tbwKEiiiiUKiIowFVVAAAGABXH/AAp+F/g/4MfD3S/hn4DtVtNM0mBYYlA+ZyPvO5/id2yzHuSa9Cq0j3KFBU426hRRRTNwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA+cP2o/2ZfAX7VPwtuvh340QQ3ChpdOv0UGWzucYV19VPSRMgOvGQcMP5A/Gng34zfsi/G7+yNRkn8P+KvDN0lxaXdq5U7kO6KeCTjcjYypx04YA5A/uLr84/wDgpP8Asjw/tKfBmXxD4WtQ/i7wwj3NgUUeZcwgZltiep3D5kGfvgDjcaTRx4vD865o7o/Sz/gmL+3Xpn7cv7P0HiPWZIYfGegFLLxBaxjYPOx8lwi9o5wCwxwrBl7V+kFf51H7An7X3in9ib9pHSfilp7yNpErix12yBIFxYSMPMG3u8ePMj44ZcdCc/6IWha3pPibRLPxJoFwl3YahBHc208ZyksMqhkdT6MpBFQeOatFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH/9f+/iiiigAr+Jj/AILrfte/8L2/aYX4H+FLrzfDnw632r7DlJtUkx9objr5WBCPRlfHWv64v2sfjdZ/s4fs2eNfjddkBvD2lT3FuCAQ90w2W6HPHzzMi/jX+eT8Cfhrrn7R/wAftC+H1zPJLc+JNRzeXJ+aQRkmW4lJ7sEDtz3pN21KhFykordn7q/8Egv2YLXwh8Pp/wBo7xVaj+1vEG+30vzF5hsUOGdcjIMzg8/3FGOGNftNWN4c8P6P4S8P2Phbw9AtrYadBHbW8KcKkUShVUfQACtmvLnPmk2fd4agqNONNdAoooqDcKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD4e/bM/ZMi+O/h2Dx38MxBo/xK8OSR3ejawg8qVmgbcIJJB1Q/wAG7IRuRwWB6j9ij9o2X9pb4I23ivXEMHiHSp20zW4Gh8jZfQqpYhCzEKysp7c5GBggfXNflp+yJav8PP25/j38JtPVBp1xcWGuIiE7Y5bxPOcKD03faOew2gAAVqvei0+hxTj7OvGcdpaP1tdP8D9S6KKKyO0KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAxvEfh3Q/F2gXvhbxNax3unajC9vcwSjKSRSAqykehBr+Lf9q34Eap+zT8etb+GExc21rN9o06c9ZbOX5oXznqB8rf7Smv7Ya/Hb/gsP8AAK18a/Biz+OWlQk6n4SlWG5ZRkvY3LhTnn/lnKVYccBmrow8+WVu55Ob4X2lHnW8dfl1/wAz9pP+CVX7XSfte/sk6L4k1u5E3ifw6Bo+tgn52uIFGyY/9d49rk9N+4DpX6S1/Eb/AMEFf2hJPhR+2V/wqvVLnytK+INjJY7GJ2fbrYGa3b0yQJIxkdZK/tyr0D5EKKKKACiiigAooooAKKKKACvw3/4OC/8Akw+0/wCxp0//ANE3NfuRX4b/APBwX/yYfaf9jTp//om5oA/F/wD4IBf8nj+Jf+xMvP8A0usa/r4r+Qf/AIIBf8nj+Jf+xMvP/S6xr+vivi88/wB6foj1sH/DCiiivHOoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD+OH/gu/8A8nt2n/Ys2H/o24r9xf8Ag3z/AOTELz/satQ/9E21fh1/wXf/AOT27T/sWbD/ANG3FfuL/wAG+f8AyYhef9jVqH/om2r7/Lv91p+h4tf+JI/cmiiiu0xCiiigAooooAKKKKACiiigD8mv+C3uoS2f/BNvxzbx9Lq40iJvoL+3f+aiv5av+CRWnRX37bGi3MnWz0/UJk+phaP+Tmv6hf8AguV/yjj8Xf8AX9pP/pZFX8xf/BHz/k8+x/7BN/8A+gCrh8SIq/Az+tGiiiu08oKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK+I/8Ago9pEGt/sSfEGzuPupYxXA/3reeKVf1QV9uV8df8FA/+TMPiJ/2CX/8AQ1qZbMun8SP55v8AgjZq8+jf8FJPhpNDyJ5tRt2Hqs1hcr+hIP4V/ftX+fl/wSG/5SOfC/8A6/rv/wBI7iv9A2uE9UKKKKACiiigAooooAKKKKAPiL/gpL4+1D4afsIfFPxZpT+VcDQbizjfoVa+xbbh7jzcj3r+Fn9hvwVa/EH9rfwF4bvQGh/tWO7dTyGWyDXBU+x8vBr+yb/gtrq8ulf8E2vHsMOc3s2k25I7A6hbufzC4/Gv5N/+CWNkl3+274Tmf/l2h1GQfX7HMv8A7NWlFXqRXmho/rdooor6AsKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP4vf22/Adp8Nv2sfHfhPTwFt01SS6iUcBEvALhVHsokCj6V/el+wP44vfiN+xV8LfGGpP5l1c+GtPSd+peWCJYnY+5ZCT71/El/wVOsktP23fFkyf8vMOnSH6/Y4V/wDZa/ry/wCCOWry63/wTa+GN7NnKW+oW/Ppb6hcxD9EFfP1lacl5shn6Z0UUVmIKKKKACiiigAooooAKKKKACiivBf2o/jVp/7On7O/jH43algjw5pc91Ep6SXG3bAnP9+VkX8aAP43v+C3P7W0/wC0R+1td/DbQbgv4a+HBl0i3VWykl/kfbJcAkZ8xRED/djB7mvu/wD4JB/s42Hw7+Cb/HHWrbGt+MCwgd+senRNhFA7eY6lz6jZ6V/Or8NfBvib4/8Axq0nwZ57T6n4q1RI5rh+W33EmZZW+gLOfpX9w/hXwzo3gvwxp3g/w7EILDSraK0tox0WKFQij8ABVRO/AU7yc30N+iiiqPVCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP5Rf+CrX7Nll8Efj6vjnwrbfZ9C8aJJeqqLiOK9Rv9IRcAAA7lkA/2yBwK/f7/ggf+1pN8Yf2db39nnxVOZNZ+HbItozH5pdKuSxiHT/li4aPrwhQV5//AMFK/gTH8cP2VtbNlGG1Xwwp1qybHzf6MpMyD/fh34HdgtfiB/wR2/aC/wCFAft2+FJdQn8jSfFpbw7fbn2Ji+IEBbPHy3CxEk9BnkVDR4uLp8lTTZn99dFFFI5QooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD/9D+/iiiigD+dn/g4q+Ndz4V/Z/8H/A3TZQj+LtUkvbpQfmNtpiqQpHo0syNz3TjvX5V/wDBFn4SR638SvE3xm1BA0ehWiafak/897wlnYe6xpt+j1uf8HBHxS/4TP8AbatPh9bSZg8HaDaWzpnpc3ha6c/jHJF+VfZ3/BH7wR/wjP7JQ8TSR4k8R6vd3Yc9Wjh22wH0DRP+JNY4iVoM9PKKXPiVfpqfqhRRRXmn2IUUUUAFFFFABRRRQAUUUUAFFFFAHNf8Jn4P/wCEk/4Q3+1rP+19u/7D56faduN2fKzvxt5zjpzS+JPGPhHwbbx3ni/VbPSopm2RveTpArNjOAXIBOOcCv5L/wDnbi/7lz/3X62f+Duj/k1b4U/9jXcf+kb1sqXvRjfdHBLGtUqlTl+FtetrH9V3iTx/4E8GtCvi/W7DSjcgtCLy5jg8wLjJXewzjIzj1qjofxS+GXie9XTfDfiPS9QuX+7FbXkUrn6KjE1/HZ/wc1aD4I8VftHfsleGPiZdJY+G9Slu7XVrmSYW6Q2M11pyTu0rfLGFjLEueFxk9K+Tf+Clv7Cf/BC/4A/so658Uv2OPjPb6h8S9Kms5NDsdJ8TWutvcymeNXV4rfc6KsReQSh02MoOT91nGimlrv5GdXHzhOaUVaPd2e19ND++/VNY0jQ7X7drV1DZw5C+ZO6xrk9BliBmrdvcQXcCXVq6yxSqHR0O5WVuQQRwQR0Nfxbf8FI/iD8avip/wbNfCTx/+0K11N4s1LUtHe6nvSzXFzCr3aWtxIzfMzz2yxSljksXySc5P9Sf/BPr/kwn4If9iB4a/wDTdBUSp2V/M6aWJ9pU5LdE/vPryivzC/4KL/8ABUH4d/8ABPu48G+Bj4V1j4g+P/iHdPaeHfDOhqPtF00bIjM7kNsBaRUQKju7HAXAZl8N/ZD/AOCxV98df2pYf2Nf2jPgr4q+DPjvULJr/TodW/0u0uIUV25mEUJj3iN/LYoY2ZGTeHwpShK17FvE0lP2blqftfRRRUG4UUUUAFFFFABRRRQAUUUUAFFFFABX5ifAv/lJ38cP+wVon/pLbV+ndfmJ8C/+Unfxw/7BWif+kttWlPaXocuJ+Kl/i/8AbZH6d0UUVmdQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVw3xO8B6R8Ufh3rnw514A2muWM9lJkZ2iZCu4e6k5HuK7mihCaTVmfwy+G9c8Y/s7/G2z8QWBNvr3gnWklXaSNtzp82SMjnG5MH2r/Sw8C+LdO8feCdH8d6P/wAemtWNvfwc5/d3MayLz34YV/nsf8FHPBB8CftmeNrJF2xahdR6lGcYDfbY0lc/9/GYfUV/Zr/wST+Jf/C0v+Cevw11eaXzLjTNPfR5QTkp/Zsr2yA/9so0I9iK9eLukz4CtT5Kkodm0fo5RRRTMwooooAKKKKACiiigAr8N/8Ag4L/AOTD7T/sadP/APRNzX7kV+G//BwX/wAmH2n/AGNOn/8Aom5oA/F//ggF/wAnj+Jf+xMvP/S6xr+viv5B/wDggF/yeP4l/wCxMvP/AEusa/r4r4vPP96foj1sH/DCiiivHOoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD+OH/gu/wD8nt2n/Ys2H/o24r9xf+DfP/kxC8/7GrUP/RNtX4df8F3/APk9u0/7Fmw/9G3FfuL/AMG+f/JiF5/2NWof+ibavv8ALv8AdafoeLX/AIkj9yaKKK7TEKKKKACiiigAooooAKKKKAPyK/4Llf8AKOPxd/1/aT/6WRV/MX/wR8/5PPsf+wTf/wDoAr+nT/guV/yjj8Xf9f2k/wDpZFX8xf8AwR8/5PPsf+wTf/8AoAq4fEiKvwM/rRooortPKCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvjr/goH/yZh8RP+wS//oa19i18df8ABQP/AJMw+In/AGCX/wDQ1pS2ZcPiR/Of/wAEhv8AlI58L/8Ar+u//SO4r/QNr/Py/wCCQ3/KRz4X/wDX9d/+kdxX+gbXAeqFFFFABRRRQAUUUUAFFFFAH5Ff8Fyv+Ucfi7/r+0n/ANLIq/ld/wCCU3/J63hz/r11H/0mkr+qL/guV/yjj8Xf9f2k/wDpZFX8rv8AwSm/5PW8Of8AXrqP/pNJWtD+JH1Q1uf1n0UUV75YUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAfyYf8FWf+T1vEf/AF66d/6TR1/WX/wRV/5RmfDT/uM/+nW8r+TT/gqz/wAnreI/+vXTv/SaOv6y/wDgir/yjM+Gn/cZ/wDTreV4Ff8AiS9SHufqZRRRWQgooooAKKKKACiiigAooooAK/DX/g4F+Iy+Ev2G7bwZE+JvFfiGytGQd4bZZLpj9A8UY+pFfuVX8sX/AAco+JbjzvhF4PikIi261eSp2Lf6IkZP0G8D60Afl1/wSA+HP/CZftax+KriMNB4W0y6vtzDKiaUC3QfXErMP93Nf1ZV+Cf/AAQ40KKPRfiL4mdAXln021V8cgRrO7AH33rn6Cv3sq1se1g42pLzCiiimdQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBT1HT7PVtPn0rUYxLb3MbRSoejI4IYH6g1/Cr468O618Gfi/q3heJ2hv8Awtq89ukncSWcxVWH4qCDX921fx2f8FMdHi0T9uDx3awIESWazuOBgEz2kEjH8WY596mRwY+PuqR/oB/Cbx5ZfFT4V+Gvidpu37P4j0qz1OLacjZdwrKMfg1egV+cn/BI/wASXvir/gnP8LtTv5DK8Wn3FmCeyWd3PboP+ArGB+Ffo3UnlBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//0f7+KKKKAP8APv8A+Cu2sf25/wAFG/ije5zsv7W3/wDAezgi/wDZK/oP/YB0saP+xt8PrQDG/S1n/wC/7vJ+u6v5qf8AgpFdTXn7enxbmnOWHia/QfSOQqP0Ar+pH9ke2itP2VvhtFCMA+GNJf8AF7WNj+prlxXwo93Il+9m/L9T6GooorhPpwooooAKKKKACiiigAooooAKKKKAP4v/APgoJ8UNO/4Jz/8ABxZ4M/bc+O1heRfDvxPoccLanbQtMsYNhJp0pAUEu1u4jkkjUF/LYEAkgHxT/gux+3l+zv8A8FWtU+C/7Hv7BeqXHjzXrzxC0sk0Flc20Mct3GsEMf8ApMUTMcO7yMF2Rqh3Ec4/tg+K/wAGPhD8ePCb+A/jb4W0nxdokjiU2Os2cV7b+YoIDiOZWUOoJwwGRng15n8Ff2Mf2R/2cNUfXvgJ8MvDHg/UZUaJ73SdKt7W6aNzkoZkQSFSQPlLY9q3jVSs2tUeXUwNSXPTjJcknd6a+dj+Xv8A4OTvBnhvxh+2h+x98PPFNsL3R9V1afTru3clRLbT32mxSISpBAZCQSCDzwa8f/4K+/8ABKXwV/wTJ8U+E/8Ago/+wn4L0298J+GLyKPxN4U1u3/tvTYDIwWK58u985vJlZvKkO4NDIY3iKkkp/Y78Rf2fPgJ8YPEOi+Lfi14I0DxTqvhuTztIvdX0y3vriwk3K++2kmjd4W3ojZjKncqnqBXoHinwr4X8c+G7/wb420211jR9Vgktb2xvoUuLa5glBV45YpAyOjKSGVgQQcEUKs1ZFVMvU5VJPd2afVWR/J//wAFv/2sfhj+27/wQl8MftJfCdwum+IPEmjtLaFg0tjdxrOk9rJjHzwyArnADDDD5WBr6w/Y5/4Lt/8ABKX4Xfsi/Cv4Z+O/ixHYa54d8IaHpmo2x0fVZDDd2llDFNHvjs2RtrqRlWKnGQSOa/ZS3/Yp/Y1tPhxcfBy1+EngyLwhdXq6lPoaaDYrpsl6qhBcPbCHyWmCgKJCu4AYziuC/wCHan/BOb/ogPw3/wDCV0z/AOR6XPC3K0yvYV1U9pGSu0k7p9D8Df8AgtV8Vf8Aglx+114R+BXjv4s+IPGHh6HxW00/gn4k+HtO/wCJZaRyTJHOL5Lp4J9kTxpKVSMTIAGQ4Lg/HX7Dn7WH7Xf7NH/BTb4Z/sZ/CH9o+L9qX4deL5ETUGQy332CzYP5jmWVp3ge2jXztsVy8YUbXA4Ff2Q6t+zR+znr3wnt/gLrXgHw7deB7RQtv4el0u2bS4QpJHl2pj8lMFiRtQYJJHNYnwR/ZF/ZZ/ZquLq8/Z9+HXhzwXcXy+Xcz6NplvZzTIDkK8kaK7KDyFJIHamqqUeWxM8FUlVVTmSel2rp6dN7P5n0RRRRWB6QUUUUAFFFFABRRRQAUUUUAFFFFABX5ifAv/lJ38cP+wVon/pLbV+ndfmJ8C/+Unfxw/7BWif+kttWlPaXocuJ+Kl/i/8AbZH6d0UUVmdQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAfzB/wDBZ7SRZftR6PqSLhb3w3bMT6ulxcqf0C1++f8Awb56x/af7CF5ZZz/AGd4q1C3+m6G2l/9qV+JP/BbW2iX4ueC7wD55NHmQn2SYkf+hGv1t/4NyruZ/wBlDxrYsf3cfiySQD3eztgf/QRXp0fgR8TmStiZ+p/QlRRRWpwhRRRQAUUUUAFFFFABX4b/APBwX/yYfaf9jTp//om5r9yK/Df/AIOC/wDkw+0/7GnT/wD0Tc0Afi//AMEAv+Tx/Ev/AGJl5/6XWNf18V/IP/wQC/5PH8S/9iZef+l1jX9fFfF55/vT9Eetg/4YUUUV451BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAfxw/8ABd//AJPbtP8AsWbD/wBG3FfuL/wb5/8AJiF5/wBjVqH/AKJtq/Dr/gu//wAnt2n/AGLNh/6NuK/cX/g3z/5MQvP+xq1D/wBE21ff5d/utP0PFr/xJH7k0UUV2mIUUUUAFFFFABRRRQAUUUUAfkV/wXK/5Rx+Lv8Ar+0n/wBLIq/mL/4I+f8AJ59j/wBgm/8A/QBX9On/AAXK/wCUcfi7/r+0n/0sir+Yv/gj5/yefY/9gm//APQBVw+JEVfgZ/WjRRRXaeUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFfHX/AAUD/wCTMPiJ/wBgl/8A0Na+xa+Ov+Cgf/JmHxE/7BL/APoa0pbMuHxI/nP/AOCQ3/KRz4X/APX9d/8ApHcV/oG1/n5f8Ehv+Ujnwv8A+v67/wDSO4r/AEDa4D1QooooAKKKKACiiigAooooA/Ir/guV/wAo4/F3/X9pP/pZFX8rv/BKb/k9bw5/166j/wCk0lf1Rf8ABcr/AJRx+Lv+v7Sf/SyKv5Xf+CU3/J63hz/r11H/ANJpK1ofxI+qGtz+s+iiivfLCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD+TD/gqz/yet4j/AOvXTv8A0mjr+sv/AIIq/wDKMz4af9xn/wBOt5X8mn/BVn/k9bxH/wBeunf+k0df1l/8EVf+UZnw0/7jP/p1vK8Gv/El6kPc/UyiiisRBRRRQAUUUUAFFFFABRRRQAV/IH/wcfaq837QXw80M/dt/D004+s1y6n/ANFiv6/K/jr/AODjj/k6LwN/2Kw/9K7igD03/giZpaQ/s7+KNaH3rjxG8B+kNtbsP/RlfsvX4/8A/BFL/k1jX/8Asa7r/wBI7Ov2Aq0e7hv4UQooopm4UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV/Jb/wAFbbBbP9tPWbhet3YafKfqIVT/ANkr+tKv5P8A/gr1/wAnlXv/AGCrD/0E0pHHjv4fzP6jP+CIV+13/wAE2vAtu3S1uNXiH0OoXD/+zV+slfkV/wAENf8AlHH4R/6/tW/9LJa/XWoPHCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/S/v4ooooA/wA5/wD4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/7FXRv/SSKv5Xf+CjH/J+Hxc/7GnUv/RzV/VF+yh/ya18Nf8AsVdG/wDSSKuXFbI97Ifjn6Hv1FFFcJ9MFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFfmJ8C/+Unfxw/7BWif+kttX6d1+YnwL/wCUnfxw/wCwVon/AKS21aU9pehy4n4qX+L/ANtkfp3RRRWZ1BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/OR/wW3/5Kl4I/wCwVcf+jhX6t/8ABuP/AMmu+Of+xpP/AKSW9flJ/wAFt/8AkqXgj/sFXH/o4V+rf/BuP/ya745/7Gk/+klvXp0PgR8Vmf8AvU/66I/ocooorU4AooooAKKKKACiiigAr8N/+Dgv/kw+0/7GnT//AETc1+5Ffhv/AMHBf/Jh9p/2NOn/APom5oA/F/8A4IBf8nj+Jf8AsTLz/wBLrGv6+K/kH/4IBf8AJ4/iX/sTLz/0usa/r4r4vPP96foj1sH/AAwooorxzqCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/jh/wCC7/8Aye3af9izYf8Ao24r9xf+DfP/AJMQvP8AsatQ/wDRNtX4df8ABd//AJPbtP8AsWbD/wBG3FfuL/wb5/8AJiF5/wBjVqH/AKJtq+/y7/dafoeLX/iSP3JooortMQooooAKKKKACiiigAooooA/Ir/guV/yjj8Xf9f2k/8ApZFX8xf/AAR8/wCTz7H/ALBN/wD+gCv6dP8AguV/yjj8Xf8AX9pP/pZFX8xf/BHz/k8+x/7BN/8A+gCrh8SIq/Az+tGiiiu08oKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK+Ov8AgoH/AMmYfET/ALBL/wDoa19i18df8FA/+TMPiJ/2CX/9DWlLZlw+JH85/wDwSG/5SOfC/wD6/rv/ANI7iv8AQNr/AD8v+CQ3/KRz4X/9f13/AOkdxX+gbXAeqFFFFABRRRQAUUUUAFFFFAH5Ff8ABcr/AJRx+Lv+v7Sf/SyKv5Xf+CU3/J63hz/r11H/ANJpK/qi/wCC5X/KOPxd/wBf2k/+lkVfyu/8Epv+T1vDn/XrqP8A6TSVrQ/iR9UNbn9Z9FFFe+WFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH8mH/BVn/k9bxH/166d/6TR1/WX/AMEVf+UZnw0/7jP/AKdbyv5NP+CrP/J63iP/AK9dO/8ASaOv6y/+CKv/ACjM+Gn/AHGf/TreV4Nf+JL1Ie5+plFFFYiCiiigAooooAKKKKACiiigAr+Or/g43/5Oj8DD/qVR/wCldxX9itfx1f8ABxv/AMnR+Bv+xVH/AKV3FAHsv/BFL/k1jX/+xruv/SOzr9gK/H//AIIpf8msa/8A9jXdf+kdnX7AVoj3sN/CiFFFFBsFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFfyf/APBXr/k8q9/7BVh/6Ca/rAr+T/8A4K9f8nlXv/YKsP8A0E0nsceO/h/M/p7/AOCGv/KOPwj/ANf2rf8ApZLX661+RX/BDX/lHH4R/wCv7Vv/AEslr9dag8cKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//9P+/iiiigD/ADn/APgox/yfh8XP+xp1L/0c1f1Rfsof8mtfDX/sVdG/9JIq/ld/4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/wCxV0b/ANJIq5cVsj3sh+Ofoe/UUUVwn0wUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV+YnwL/5Sd/HD/sFaJ/6S21fp3X5ifAv/AJSd/HD/ALBWif8ApLbVpT2l6HLifipf4v8A22R+ndFFFZnUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH85H/Bbf/kqXgj/ALBVx/6OFfq3/wAG4/8Aya745/7Gk/8ApJb1+Un/AAW3/wCSpeCP+wVcf+jhX6t/8G4//Jrvjn/saT/6SW9enQ+BHxWZ/wC9T/rof0OUUUVqcAUUUUAFFFFABRRRQAV+G/8AwcF/8mH2n/Y06f8A+ibmv3Ir8N/+Dgv/AJMPtP8AsadP/wDRNzQB+L//AAQC/wCTx/Ev/YmXn/pdY1/XxX8g/wDwQC/5PH8S/wDYmXn/AKXWNf18V8Xnn+9P0R62D/hhRRRXjnUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/HD/wXf/5PbtP+xZsP/RtxX7i/8G+f/JiF5/2NWof+ibavw6/4Lv8A/J7dp/2LNh/6NuK/cX/g3z/5MQvP+xq1D/0TbV9/l3+60/Q8Wv8AxJH7k0UUV2mIUUUUAFFFFABRRRQAUUUUAfkV/wAFyv8AlHH4u/6/tJ/9LIq/mL/4I+f8nn2P/YJv/wD0AV/Tp/wXK/5Rx+Lv+v7Sf/SyKv5i/wDgj5/yefY/9gm//wDQBVw+JEVfgZ/WjRRRXaeUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFfHX/BQP/kzD4if9gl//AENa+xa+Ov8AgoH/AMmYfET/ALBL/wDoa0pbMuHxI/nP/wCCQ3/KRz4X/wDX9d/+kdxX+gbX+fl/wSG/5SOfC/8A6/rv/wBI7iv9A2uA9UKKKKACiiigAooooAKKKKAPyK/4Llf8o4/F3/X9pP8A6WRV/K7/AMEpv+T1vDn/AF66j/6TSV/VF/wXK/5Rx+Lv+v7Sf/SyKv5Xf+CU3/J63hz/AK9dR/8ASaStaH8SPqhrc/rPooor3ywooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/kw/4Ks/8nreI/8Ar107/wBJo6/rL/4Iq/8AKMz4af8AcZ/9Ot5X8mn/AAVZ/wCT1vEf/Xrp3/pNHX9Zf/BFX/lGZ8NP+4z/AOnW8rwa/wDEl6kPc/UyiiisRBRRRQAUUUUAFFFFABRRRQAV/HV/wcb/APJ0fgb/ALFUf+ldxX9itfx1f8HG/wDydH4G/wCxVH/pXcUDPZf+CKX/ACaxr/8A2Nd1/wCkdnX7AV+P/wDwRS/5NY1//sa7r/0js6/YCtEe7hv4UQooooNgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr+T/AP4K9f8AJ5V7/wBgqw/9BNf1gV/J/wD8Fev+Tyr3/sFWH/oJpPY48d/D+Z/T3/wQ1/5Rx+Ef+v7Vv/SyWv11r8iv+CGv/KOPwj/1/at/6WS1+utQeOFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/1P7+KKKKAP8AOf8A+CjH/J+Hxc/7GnUv/RzV/VF+yh/ya18Nf+xV0b/0kir+V3/gox/yfh8XP+xp1L/0c1f1Rfsof8mtfDX/ALFXRv8A0kirlxWyPeyH45+h79RRRXCfTBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABX5ifAv/lJ38cP+wVon/pLbV+ndfmJ8C/8AlJ38cP8AsFaJ/wCkttWlPaXocuJ+Kl/i/wDbZH6d0UUVmdQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAfzkf8Ft/+SpeCP8AsFXH/o4V+rf/AAbj/wDJrvjn/saT/wCklvX5Sf8ABbf/AJKl4I/7BVx/6OFfq3/wbj/8mu+Of+xpP/pJb16dD4EfFZn/AL1P+uh/Q5RRRWpwBRRRQAUUUUAFFFFABX4b/wDBwX/yYfaf9jTp/wD6Jua/civw3/4OC/8Akw+0/wCxp0//ANE3NAH4v/8ABAL/AJPH8S/9iZef+l1jX9fFfyD/APBAL/k8fxL/ANiZef8ApdY1/XxXxeef70/RHrYP+GFFFFeOdQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH8cP/Bd//k9u0/7Fmw/9G3FfuL/wb5/8mIXn/Y1ah/6Jtq/Dr/gu/wD8nt2n/Ys2H/o24r9xf+DfP/kxC8/7GrUP/RNtX3+Xf7rT9Dxa/wDEkfuTRRRXaYhRRRQAUUUUAFFFFABRRRQB+RX/AAXK/wCUcfi7/r+0n/0sir+Yv/gj5/yefY/9gm//APQBX9On/Bcr/lHH4u/6/tJ/9LIq/mL/AOCPn/J59j/2Cb//ANAFXD4kRV+Bn9aNFFFdp5QUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV8df8FA/+TMPiJ/2CX/8AQ1r7Fr46/wCCgf8AyZh8RP8AsEv/AOhrSlsy4fEj+c//AIJDf8pHPhf/ANf13/6R3Ff6Btf5+X/BIb/lI58L/wDr+u//AEjuK/0Da4D1QooooAKKKKACiiigAooooA/Ir/guV/yjj8Xf9f2k/wDpZFX8rv8AwSm/5PW8Of8AXrqP/pNJX9UX/Bcr/lHH4u/6/tJ/9LIq/ld/4JTf8nreHP8Ar11H/wBJpK1ofxI+qGtz+s+iiivfLCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD+TD/gqz/yet4j/wCvXTv/AEmjr+sv/gir/wAozPhp/wBxn/063lfyaf8ABVn/AJPW8R/9eunf+k0df1l/8EVf+UZnw0/7jP8A6dbyvBr/AMSXqQ9z9TKKKKxEFFFFABRRRQAUUUUAFFFFABX8dX/Bxv8A8nR+Bv8AsVR/6V3Ff2K1/HV/wcb/APJ0fgb/ALFUf+ldxQM9l/4Ipf8AJrGv/wDY13X/AKR2dfsBX4//APBFL/k1jX/+xruv/SOzr9gK0R7uG/hRCiiig2CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACv5P8A/gr1/wAnlXv/AGCrD/0E1/WBX8n/APwV6/5PKvf+wVYf+gmk9jjx38P5n9Pf/BDX/lHH4R/6/tW/9LJa/XWvyK/4Ia/8o4/CP/X9q3/pZLX661B44UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//V/v4ooooA/wA5/wD4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/7FXRv/SSKv5Xf+CjH/J+Hxc/7GnUv/RzV/VF+yh/ya18Nf8AsVdG/wDSSKuXFbI97Ifjn6Hv1FFFcJ9MFFFFABRRRQAUUUUAFFFFABRRRQAUV4L+0L+0j8L/ANmHwjaeNvirPPDZX14tjELeIzSGVkeT7oIO0KhyexwO9fH3/D3X9jj/AJ/dV/8AABv/AIqrVOTV0jCpiqMHyzmkz9O6K/MT/h7r+xx/z+6r/wCADf8AxVH/AA91/Y4/5/dV/wDABv8A4qn7KfYj69h/+fi+8/TuivzE/wCHuv7HH/P7qv8A4AN/8VR/w91/Y4/5/dV/8AG/+Ko9lPsH17D/APPxfefp3RX5if8AD3X9jj/n91X/AMAG/wDiqP8Ah7r+xx/z+6r/AOADf/FUeyn2D69h/wDn4vvP07or8xP+Huv7HH/P7qv/AIAN/wDFUf8AD3X9jj/n91X/AMAG/wDiqPZT7B9ew/8Az8X3n6d0V+Yn/D3X9jj/AJ/dV/8AABv/AIqj/h7r+xx/z+6r/wCADf8AxVHsp9g+vYf/AJ+L7z9O6K/MT/h7r+xx/wA/uq/+ADf/ABVd/wDC7/gpd+yp8XPHmm/DnwxqV7FqWrSi3tRc2bxxvK33U3DIBY8DOBnvQ6U+w1jaDdlNfefflFFFZnSFFFFABRRRQAV+YnwL/wCUnfxw/wCwVon/AKS21fp3X5ifAv8A5Sd/HD/sFaJ/6S21aU9pehy4n4qX+L/22R+ndFFFZnUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH85H/Bbf/kqXgj/sFXH/AKOFfq3/AMG4/wDya745/wCxpP8A6SW9flJ/wW3/AOSpeCP+wVcf+jhX6t/8G4//ACa745/7Gk/+klvXp0PgR8Vmf+9T/rof0OUUUVqcAUUUUAFFFFABRRRQAV+G/wDwcF/8mH2n/Y06f/6Jua/civw3/wCDgv8A5MPtP+xp0/8A9E3NAH4v/wDBAL/k8fxL/wBiZef+l1jX9fFfyD/8EAv+Tx/Ev/YmXn/pdY1/XxXxeef70/RHrYP+GFFFFeOdQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH8cP/AAXf/wCT27T/ALFmw/8ARtxX7i/8G+f/ACYhef8AY1ah/wCibavw6/4Lv/8AJ7dp/wBizYf+jbiv3F/4N8/+TELz/satQ/8ARNtX3+Xf7rT9Dxa/8SR+5NFFFdpiFFFFABRRRQAUUUUAFFFFAH5Ff8Fyv+Ucfi7/AK/tJ/8ASyKv5i/+CPn/ACefY/8AYJv/AP0AV/Tp/wAFyv8AlHH4u/6/tJ/9LIq/mL/4I+f8nn2P/YJv/wD0AVcPiRFX4Gf1o0UUV2nlBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXx1/wAFA/8AkzD4if8AYJf/ANDWvsWvjr/goH/yZh8RP+wS/wD6GtKWzLh8SP5z/wDgkN/ykc+F/wD1/Xf/AKR3Ff6Btf5+X/BIbj/go58L/wDr+u//AEjnr/QNrgPVCiiigAooooAKKKKACiiigD8iv+C5X/KOPxd/1/aT/wClkVfyu/8ABKb/AJPW8Of9euo/+k0lf1Rf8Fyv+Ucfi7/r+0n/ANLIq/ld/wCCU3/J63hz/r11H/0mkrWh/Ej6oa3P6z6KKK98sKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP5MP8Agqz/AMnreI/+vXTv/SaOv6y/+CKv/KMz4af9xn/063lfyaf8FWf+T1vEf/Xrp3/pNHX9Zf8AwRV/5RmfDT/uM/8Ap1vK8Gv/ABJepD3P1MooorEQUUUUAFFFFABRRRQAUUUUAFfx1f8ABxv/AMnR+Bv+xVH/AKV3Ff2K1/HV/wAHG/8AydH4G/7FUf8ApXcUDPZf+CKX/JrGv/8AY13X/pHZ1+wFfj//AMEUv+TWNf8A+xruv/SOzr9gK0R7uG/hRCiiig2CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACv5P/APgr1/yeVe/9gqw/9BNf1gV/J/8A8Fev+Tyr3/sFWH/oJpPY48d/D+Z/T3/wQ1/5Rx+Ef+v7Vv8A0slr9da/Ir/ghr/yjj8I/wDX9q3/AKWS1+utQeOFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/9b+/iiiigD/ADn/APgox/yfh8XP+xp1L/0c1f1Rfsof8mtfDX/sVdG/9JIq/ld/4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/wCxV0b/ANJIq5cVsj3sh+Ofoe/UUUVwn0wUUUUAFFFFABRRRQAUUUUAFFFfhh+wb+xEv7cfw+8WfGH4kfEfxZpmo23iq/03y9PvQInRI4J95Dq53FpmBwQMAcVtSpc99Tgx2PWGUbxvc9//AOCpH/IF+FH/AGPFh/6C9f0EV+Iuqf8ABDz4R64sS638TPGd4LdxLEJ7qGTY46Mu6I4I9RzXQf8ADmjwb/0V7x9/4ME/+N13U4ckbHyuNxKr1XUSsfs1RX4y/wDDmjwb/wBFe8ff+DBP/jdH/Dmjwb/0V7x9/wCDBP8A43WhyH7NUV+Mv/Dmjwb/ANFe8ff+DBP/AI3R/wAOaPBv/RXvH3/gwT/43QB+zVFfjL/w5o8G/wDRXvH3/gwT/wCN0f8ADmjwb/0V7x9/4ME/+N0Afs1RX4y/8OaPBv8A0V7x9/4ME/8AjdH/AA5o8G/9Fe8ff+DBP/jdAH7NUV+Mv/Dmjwb/ANFe8ff+DBP/AI3XK+O/+CRPhPwl4I1nxXbfFrx5NJpljcXaxtqCBWaGNnAJEfQ4xQB+4lfiR/wVJ/5O1/Za/wCxg1L/ANG6dX0T/wAEiPFnifxl+wd4T1XxbqFxqd2lxqMInupGllMaXcu1S7EsQo4XJOAABwAK+dv+CpP/ACdr+y1/2MGpf+jdOpS2Zth/4sPVfmff9FFFeQffBRRRQAUUUUAFfmJ8C/8AlJ38cP8AsFaJ/wCkttX6d1+YnwL/AOUnfxw/7BWif+kttWlPaXocuJ+Kl/i/9tkfp3RRRWZ1BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/OR/wW3/5Kl4I/7BVx/wCjhX6t/wDBuP8A8mu+Of8AsaT/AOklvX5Sf8Ft/wDkqXgj/sFXH/o4V+rf/BuP/wAmu+Of+xpP/pJb16dD4EfFZn/vU/66H9DlFFFanAFFFFABRRRQAUUUUAFfhv8A8HBf/Jh9p/2NOn/+ibmv3Ir8N/8Ag4L/AOTD7T/sadP/APRNzQB+L/8AwQC/5PH8S/8AYmXn/pdY1/XxX8g//BAL/k8fxL/2Jl5/6XWNf18V8Xnn+9P0R62D/hhRRRXjnUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/HD/wAF3/8Ak9u0/wCxZsP/AEbcV+4v/Bvn/wAmIXn/AGNWof8Aom2r8Ov+C7//ACe3af8AYs2H/o24r9xf+DfP/kxC8/7GrUP/AETbV9/l3+60/Q8Wv/EkfuTRRRXaYhRRRQAUUUUAFFFFABRRRQB+RP8AwXL/AOUcfi7/AK/tJ/8ASyKv5jP+CPn/ACefY/8AYJv/AP0AV/Tn/wAFy/8AlHH4u/6/tJ/9LIq/mM/4I+f8nn2P/YJv/wD0AVcPiRFX4Gf1o0UUV2nlBRRRQAUUUUAFFFFABRRRQAUUVn3+r6VpWz+07qK28zO3zXVN2OuMkZxmgDQorx3Vf2iP2f8AQvM/tvx14es/Kxv8/U7aPbuxjO6QYzkYz615rqn7c37H2kZ+1fEfQX2vsPkXaT8jP/PMtkcdenvyKV0VyvsfVlFfGV1/wUN/Yss4GuJviHphVcZCeZI3PHCqhJ/AVj/8PKP2H/8AooFp/wCA91/8Zo5l3H7OXZn3LRXwV/w88/YW+3/2b/wnsXmf3vsN75fTP+s+z7P168da0P8Ah5R+w/8A9FAtP/Ae6/8AjNLmXcPZz7M+5aK+Ov8Ah4J+xh/0UTSf++2/+Jrd0f8Abh/ZA11gtl8SNAQklf8ASL2O3GQM9ZSnHv0J460+Zdxckux9UUV5Tpfx3+B2uRfaNF8Z6FeR4Vt0Go28gw3IOVc8Ht616VY6jp+pxGfTZ47iMHaWiYOAfTIJ55piaa3LlFFFAgooooAKKKKACiiigAooooAK+Ov+Cgf/ACZh8RP+wS//AKGtfYtfHX/BQP8A5Mw+In/YJf8A9DWlLZlw+JH853/BIf8A5SOfC7/r+uv/AEjnr/QOr/Px/wCCQ/8Aykc+F3/X9df+kc9f6B1cB6oUUUUAFFFFABRRRQAUUUUAfkV/wXK/5Rx+Lv8Ar+0n/wBLIq/ld/4JTf8AJ63hz/r11H/0mkr+qL/guV/yjj8Xf9f2k/8ApZFX8rv/AASm/wCT1vDn/XrqP/pNJWtD+JH1Q1uf1n0UUV75YUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAfyYf8ABVn/AJPW8R/9eunf+k0df1l/8EVf+UZnw0/7jP8A6dbyv5NP+CrP/J63iP8A69dO/wDSaOv6y/8Agir/AMozPhp/3Gf/AE63leDX/iS9SHufqZRRRWIgooooAKKKKACiiigAooooAK/jq/4ON/8Ak6PwN/2Ko/8ASu4r+xWv46v+Djf/AJOj8Df9iqP/AEruKBnsv/BFL/k1jX/+xruv/SOzr9gK/H//AIIpf8msa/8A9jXdf+kdnX7AVoj3cN/CiFFFFBsFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFfyf/APBXr/k8q9/7BVh/6Ca/rAr+T/8A4K9f8nlXv/YKsP8A0E0nsceO/h/M/p7/AOCGv/KOPwj/ANf2rf8ApZLX661+RX/BDX/lHH4R/wCv7Vv/AEslr9dag8cKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//9f+/iiiigD/ADn/APgox/yfh8XP+xp1L/0c1f1Rfsof8mtfDX/sVdG/9JIq/ld/4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/wCxV0b/ANJIq5cVsj3sh+Ofoe/UUUVwn0wUUUUAFFFFABRRRQAV8UfHb9vX4J/s+fEL/hWHi+11e/1cWyXbx6Zai5CRScKWO9cZ9MfzGftevgn4Af8AKYnxj/2Thf8A0rsq2owUpWZ5+ZYmdClzw3uef/8AD1r9nr/oAeLP/BWP/jtfM/8AwTU/b/8AhJ+yX8GvEngL4paF4lkvtV8T3msQGx07zo/s88FtGoYtIhDbomyMEYxzX9Q1Fd0KUYbHy+KxtTEW9pbQ/Ir/AIfR/ss/9C94y/8ABSv/AMfo/wCH0f7LP/QveMv/AAUr/wDH6/XWitDjPyK/4fR/ss/9C94y/wDBSv8A8fo/4fR/ss/9C94y/wDBSv8A8fr9daKAPyK/4fR/ss/9C94y/wDBSv8A8fo/4fR/ss/9C94y/wDBSv8A8fr9daKAPyK/4fR/ss/9C94y/wDBSv8A8fo/4fR/ss/9C94y/wDBSv8A8fr9daKAPyK/4fR/ss/9C94y/wDBSv8A8fo/4fR/ss/9C94y/wDBSv8A8fr9daKAPjL9lT9ur4L/ALYOq6/onwwttWsrvw2ltJdxarai2bbdb9hUK75xsOc46jGecfQXxo/5I74s/wCwNf8A/oh6/Nb9j/8A5SYftMf9wH/0nNfpT8aP+SO+LP8AsDX/AP6IegD8+/8AgjJ/yYB4W/6/NU/9K5a8X/4Kk/8AJ2v7LX/Ywal/6N06vaP+CMn/ACYB4W/6/NU/9K5a8X/4Kk/8na/stf8AYwal/wCjdOpS2Zth/wCLD1X5n3/RRRXkH3wUUUUAFFFFABX5ifAv/lJ38cP+wVon/pLbV+ndfmJ8C/8AlJ38cP8AsFaJ/wCkttWlPaXocuJ+Kl/i/wDbZH6d0UUVmdQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAfzkf8Ft/+SpeCP8AsFXH/o4V+rf/AAbj/wDJrvjn/saT/wCklvX5Sf8ABbf/AJKl4I/7BVx/6OFfq3/wbj/8mu+Of+xpP/pJb16dD4EfFZn/AL1P+uh/Q5RRRWpwBRRRQAUUUUAFFFFABX4b/wDBwX/yYfaf9jTp/wD6Jua/civw3/4OC/8Akw+0/wCxp0//ANE3NAH4v/8ABAL/AJPH8S/9iZef+l1jX9fFfyD/APBAL/k8fxL/ANiZef8ApdY1/XxXxeef70/RHrYP+GFFFFeOdQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH8cP/Bd//k9u0/7Fmw/9G3FfuL/wb5/8mIXn/Y1ah/6Jtq/Dr/gu/wD8nt2n/Ys2H/o24r9xf+DfP/kxC8/7GrUP/RNtX3+Xf7rT9Dxa/wDEkfuTRRRXaYhRRRQAUUUUAFFFFABRRRQB+RP/AAXL/wCUcfi7/r+0n/0sir+Yz/gj5/yefY/9gm//APQBX9Of/Bcv/lHH4u/6/tJ/9LIq/mM/4I+f8nn2P/YJv/8A0AVcPiRFX4Gf1o0UUV2nlBRRXjPxn/aE+DX7Pmgf8JH8XdftdHhYExRSNuuJyO0UK5kc/wC6pA74oGlfRHs1RzTRW8TTzsEjQFmZjgADqST0Ar8vtB/aF/bs/a8vRB+xp8PI/DPhW5iJi8WeMUeCGVGyFlt413BhkcbFuR/eC169on/BIzxN8WbiLXP25Pi3rvjx98U7aNpjDTdJSVfvLsGdynpvijt2rGVZLY6I4aT30On+If7fX7H3wwZ4fE3jzTZZkBPk2DNfvnCkDFssmCdwxkgdfQ4+brb/AIKef8LHlNt+zL8JfGHj9g7Is0Vqbe1cqrMcSILgj7vRkU9eOAD+rfwh/YF/Y5+BsMQ+Hvw80eK5iaN1vLu3F7dh49uGE9x5kinKhsKwG7nGea+uYIIbaFLa2RY441CoqjCqo4AAHQAVm60uhusNBbn4Q6XN/wAFgvi4yyeGfh94V+HVjOu5JtevDczqMKvKwO7Kclmw1uDhcHtv24f2Ev8Agp946s2t/iT+0BpugiTapj0HSlk2qQN5WXZaSZBHHPPqucV+5FFQ5yfU0VKC2R+K0P8AwR1vPFTz/wDC6fjx498RRTgI0dtdCzQxgfdKym5U/Nz0A68ZOa6fRP8Aghv+wdp0ss+s2Ot608pZi17qbg5bHOYBFk8Hrnqc9sfsFRUtlpW2PzW0f/gkF/wTs0WHyofh1FOxVQz3GoX8zMV7/NckAnvtAB9Oler6f/wTn/YW0yEwW3wr8OspbdmWzWZs/V9xxx0zivtKikM+Y/8Ahif9jP8A6JH4L/8ABBY//Ga2NP8A2SP2U9IhNtpXwx8J2sbNuKxaLZopY8ZwsQGeBX0JRQB4V/wy7+zN/wBE68Mf+Ci1/wDjVZmpfshfsm6zs/tf4X+Erry87PO0SzfbnGcbojjOBmvoiigD5en/AGIf2MbiF7eT4SeDQrqVJXQrJWweOCIQQfcHIritS/4JxfsKars+0/Cvw+vl5x5NqIeuOvl7c9OM5xX2tRQB+Zmu/wDBHj/gnZrqHd8PltJNoUSWupX8RABz90XGwk9CSpOPwryLWP8AghZ+wtqAZtHj8QaPLvLxy2epZeI842+dHKPlOCCQTkDJPOf2QooA/FSX/gkB4s8Ky+Z8Gf2gvHOgBCWjjvJvt0WfmI3xo9ujgFhwRg8+vGJJ+xN/wVR8DLJB8PfjnofiSGOXMUev6YIC6EgkvIkNzIp4wFDsMHqK/caiqUn0ZLhF7o/BO58U/wDBXD4SW8X/AAnvwm0Px7bRvte48PX4gmZckco7u2W67lg2gdQDXLv/AMFSvCfgaUWn7RXw18ZfD2VtoVtR05vKLMpYLl/KfJwduIzkAniv6FKq31jZanZTabqUKXFvcI0UsUqh0dHGGVlOQQQcEHgiqVWSM3h4Pofkz8Of23v2TPivLHbeCfHmlyzyhmSC6kNlMwXOcR3IickBScYzt+bpzX1RWZ8YP+Ccf7E/xvhnPjT4eaVBd3Ctm90yL+zrneejl7Yxl2B5HmbgcYII4r4g1X/glP8AGX4KM2pfsOfGXVfD0MZkkj0DxGBqGmFmGAoYKRGoHy7jbyvjB3ZXJ0VfujGWF/lZ95UV+V2u/tg/tY/sl3dnYft4fDKSHQpUjjPirw032qyErHA81NzKjMSAVMkbZVjHGykAff8A8Jfjb8J/jr4bHi34R69aa7Y8B2t3/eRM3IWWJsSRMRztkVWxzitozT2OedOUd0epUUUVRmFfHX/BQP8A5Mw+In/YJf8A9DWvsWvjr/goH/yZh8RP+wS//oa0pbMuHxI/nO/4JD/8pHPhd/1/XX/pHPX+gdX+fj/wSH/5SOfC7/r+uv8A0jnr/QOrgPVCiiigAooooAKKKKACiiigD8iv+C5X/KOPxd/1/aT/AOlkVfyu/wDBKb/k9bw5/wBeuo/+k0lf1Rf8Fyv+Ucfi7/r+0n/0sir+V3/glN/yet4c/wCvXUf/AEmkrWh/Ej6oa3P6z6KKK98sKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP5MP+CrP/J63iP/AK9dO/8ASaOv6y/+CKv/ACjM+Gn/AHGf/TreV/Jp/wAFWf8Ak9bxH/166d/6TR1/WX/wRV/5RmfDT/uM/wDp1vK8Gv8AxJepD3P1MooorEQUUUUAFFFFABRRRQAUUUUAFfx1f8HG/wDydH4G/wCxVH/pXcV/YrX8dX/Bxv8A8nR+Bv8AsVR/6V3FAz2X/gil/wAmsa//ANjXdf8ApHZ1+wFfj/8A8EUv+TWNf/7Gu6/9I7Ov2ArRHu4b+FEKKKKDYKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK/k/wD+CvX/ACeVe/8AYKsP/QTX9YFfyf8A/BXr/k8q9/7BVh/6CaT2OPHfw/mf09/8ENf+UcfhH/r+1b/0slr9da/In/ghp/yjj8I/9f2rf+lktfrtUHjhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH/9D+/iiiigD/ADn/APgox/yfh8XP+xp1L/0c1f1Rfsof8mtfDX/sVdG/9JIq/ld/4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/wCxV0b/ANJIq5cVsj3sh+Ofoe/UUUVwn0wUUUUAFFFFABRRRQAV8E/AD/lMT4x/7Jwv/pXZV97V8E/AD/lMT4x/7Jwv/pXZV04X4zyM7/3deq/U/a6iiiu8+SPwc/4Kcf8ABeb4Rf8ABMr9pbw/+y94v+HPiXxvrviPQLfXrVtCMLApc3NzbLEI3YO0ga1ZvlBGGHvXzN8Ef+Dqb9inx78atG+CXxx8C+M/hPda9NFb2+oeIbWFbKJ522RmcrL5scbN8vmeUyL1YqoJH5bf8F+/jvJ+zF/wcOfs6/H6Hw7f+LW8K+DNIvho+lruvLzZqesDy4hhssc8cHpXjn/BST4w/ti/8HE3j/4Wfs7/AAI/Zm8TfD+x8PanNcXfijxLbSpHbRXgSOQyzmCOKGCNV8xkDvJKwUIu5QGAP6RP+CnH/Bef4Rf8Eyv2mPD/AOy74u+HPiXxvrviPQLfX7VtCMLAx3NzdWyxCN2DtIGtWY7QRhh7186/Af8A4Onf2HviH8X9N+Dfx88IeL/g5dauypbah4mtIxYB3bagmeNzLErNwJDEY15LsoGa+Ff+CmOlRaF/wdI/se6JBI8qWfhPQYFeQ7nYR6hrKgse5OOT61+i3/B1R8JPhz45/wCCRviv4i+KbCCbXPBOq6Ne6Ldso86GW7vobOZUbrteCd9y52kqpIyoIAPv7/gqt/wVL+GP/BKP4K+HvjZ8T/DWp+KbLxFrS6JDb6U8SSJI0Es4djMyqV2wkcHOSK/IOH/g6p8DXESzwfsyfFN0cBlZbOMgg9CDnkGvyj/4LUeOvFXxI/4Nwv2OPGHjV5pdTuLvRYppbhi8swt9IvIUldiSWMiIHLE5O7J5r9WfgV/wVu/4LR3Vt4N8HXf7D2qQ6HIunWT6obu42paEIhuMeRjAT58ZxQB/UL8KfHkXxT+F3hv4nQ2M+mJ4j0qz1RbO6G2e3F5CsoikHZ03bWHqDXfV/HR/wcR/t/8A7T37PP7a/wAJv2c5fiN4l+B/wN8R6K+o6v4w8Kaf9r1Ke/EtxG8SPvicrbhLffHFKrKs5kZZMRpX0j/wQ0+LHxc8b/HXxbpvhL9sXRv2lvhI2nLPYabrYurfxrYT/u/381vdxLMkKsXibMskb5Rx5bEqQD+oaiiigD8i/wBj/wD5SYftMf8AcB/9JzX6U/Gj/kjviz/sDX//AKIevzW/Y/8A+UmH7TH/AHAf/Sc1+lPxo/5I74s/7A1//wCiHoA/Pv8A4Iyf8mAeFv8Ar81T/wBK5a8X/wCCpP8Aydr+y1/2MGpf+jdOr2j/AIIyf8mAeFv+vzVP/SuWvF/+CpP/ACdr+y1/2MGpf+jdOpS2Zth/4sPVfmff9FFFeQffBRRRQAUUUUAFfmJ8C/8AlJ38cP8AsFaJ/wCkttX6d1+YnwL/AOUnfxw/7BWif+kttWlPaXocuJ+Kl/i/9tkfp3RRRWZ1BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/OR/wW3/5Kl4I/7BVx/wCjhX6t/wDBuP8A8mu+Of8AsaT/AOklvX5Sf8Ft/wDkqXgj/sFXH/o4V+rf/BuP/wAmu+Of+xpP/pJb16dD4EfFZn/vU/66H9DlFFFanAFFFFABRRRQAUUUUAFfhv8A8HBf/Jh9p/2NOn/+ibmv3Ir8N/8Ag4L/AOTD7T/sadP/APRNzQB+L/8AwQC/5PH8S/8AYmXn/pdY1/XxX8g//BAL/k8fxL/2Jl5/6XWNf18V8Xnn+9P0R62D/hhRRRXjnUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/HD/wAF3/8Ak9u0/wCxZsP/AEbcV+4v/Bvn/wAmIXn/AGNWof8Aom2r8Ov+C7//ACe3af8AYs2H/o24r9xf+DfP/kxC8/7GrUP/AETbV9/l3+60/Q8Wv/EkfuTRRRXaYhRRRQAUUUUAFFFFABRRRQB+RP8AwXL/AOUcfi7/AK/tJ/8ASyKv5jP+CPn/ACefY/8AYJv/AP0AV/Tn/wAFy/8AlHH4u/6/tJ/9LIq/mM/4I+f8nn2P/YJv/wD0AVcPiRFX4Gf1o0UUV2nlHyv+1t+0nH+zd8PrXUNF0/8AtrxR4ivI9J8P6ZnatzfznCb24wi5y3IzwoILZF79lj/gmf4a0HWI/wBoT9sRo/iF8UtS/f3DX4W407TWJ3JDbQMPLzD0VyMKf9WFHJ+JP2vviX4Y+HP/AAUd/Z6174jXRg0DTpbl2YnCQS3bCFZWORhQ4iLnOAq5weh/o9rkrSblY9DDwSjzdWFFFFZHQFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBVvrGy1Oym03UoUuLe4RopYpVDo6OMMrKcggg4IPBFfjD+1V/wTp1j4VXM37Sn/BOaBfCfjCxPn6l4dtCV0zWrdCGMS2+7y43GPljjCI2Tt2vhq/aiqt9fWWmWU2palMlvb26NLLLKwRERBlmZjgAADJJ4AoTsJq+jPy7/Zb/AGhNB/ab+DenfFHR4hZ3MjPa6jY7972V7DgSwvwDkZDLkAlGU4Ga+hq/If8A4Jf+N9H8d/Ev4/a94PldvD2o+MZtS01H7Q3ktyyt1PLRrHnk9OtfrxXdB3imeZVjyyaQV8df8FA/+TMPiJ/2CX/9DWvsWvjr/goH/wAmYfET/sEv/wChrTlsxQ+JH853/BIf/lI58Lv+v66/9I56/wBA6v8APx/4JD/8pHPhd/1/XX/pHPX+gdXAeqFFFFABRRRQAUUUUAFFFFAH5Ff8Fyv+Ucfi7/r+0n/0sir+V3/glN/yet4c/wCvXUf/AEmkr+qL/guV/wAo4/F3/X9pP/pZFX8rv/BKb/k9bw5/166j/wCk0la0P4kfVDW5/WfRRRXvlhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/Jh/wVZ/5PW8R/wDXrp3/AKTR1/WX/wAEVf8AlGZ8NP8AuM/+nW8r+TT/AIKs/wDJ63iP/r107/0mjr+sv/gir/yjM+Gn/cZ/9Ot5Xg1/4kvUh7n6mUUUViIKKKKACiiigAooooAKKKKACv46v+Djf/k6PwN/2Ko/9K7iv7Fa/jq/4ON/+To/A3/Yqj/0ruKBnsv/AARS/wCTWNf/AOxruv8A0js6/YCvx/8A+CKX/JrGv/8AY13X/pHZ1+wFaI93DfwohRRRQbBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABX8n//AAV6/wCTyr3/ALBVh/6Ca/rAr+T/AP4K9f8AJ5V7/wBgqw/9BNJ7HHjv4fzP6ev+CGn/ACjj8I/9f2rf+lktfrtX5E/8ENP+UcfhH/r+1b/0slr9dqg8cKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//R/v4ooooA/wA5/wD4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/7FXRv/SSKv5Xf+CjH/J+Hxc/7GnUv/RzV/VF+yh/ya18Nf8AsVdG/wDSSKuXFbI97Ifjn6Hv1FFFcJ9MFFFFABRRRQAUUUUAFfBPwA/5TE+Mf+ycL/6V2Vfe1fBPwA/5TE+Mf+ycL/6V2VdOF+M8jO/93Xqv1P2uooorvPkj+Yz9vz/gnn+2D8bP+C/n7Ov7bPwx8If2n8MfAmiaXZ65rP8AaFlD9lmt77U5pF+zy3CXMm2O4ibMcTg7sAkhgP6c6KKAP5C/+C0n7C//AAVJ8ef8Fd/hJ/wUA/YA+GFj48g+HHhTTreN9S1SwtLQ6lbX+pStDLDcX1ncMoiuY23IQp3YDZBA8v8A2hv2OP8Ag4i/4LJWvh79nn9vHw/4M+BfwqtNTh1LV/7Duo7m4u/IyF+SG+1FpXUOxijaSGHdhnyyrX9olFAH8wH/AAcC/wDBLj49ftJf8E8vhD+yT/wT68EjXovh1rlikGm/2haWX2bSrHTri0jJlvp4FcgtGpwxck5I6mv6SfhppGo+H/hz4f0HV4/Ju7HTbS3njyG2yRRKrDKkg4IIyCR6V21FAH8/3/BWr4a/8FZr74veGfHP7J3hnwr8dPgwLcJ4l+FfiSz0sfarhRInmi4vowzRlXV1CTB0kTlJEYqPzc/4JY/8Ek/2q7L/AIKtW/8AwUh+Jfwa0P8AZg8FaBp15BZeCtG1OPUGv7m8tZLUsywSPHFGBMZHBEI3xoEh5Zx/ZJRQAUUUUAfkX+x//wApMP2mP+4D/wCk5r9KfjR/yR3xZ/2Br/8A9EPX5rfsf/8AKTD9pj/uA/8ApOa/Sn40f8kd8Wf9ga//APRD0Afn3/wRk/5MA8Lf9fmqf+lcteL/APBUn/k7X9lr/sYNS/8ARunV7R/wRk/5MA8Lf9fmqf8ApXLXi/8AwVJ/5O1/Za/7GDUv/RunUpbM2w/8WHqvzPv+iiivIPvgooooAKKKKACvzE+Bf/KTv44f9grRP/SW2r9O6/MT4F/8pO/jh/2CtE/9JbatKe0vQ5cT8VL/ABf+2yP07ooorM6gooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/nI/wCC2/8AyVLwR/2Crj/0cK/Vv/g3H/5Nd8c/9jSf/SS3r8pP+C2//JUvBH/YKuP/AEcK/Vv/AINx/wDk13xz/wBjSf8A0kt69Oh8CPisz/3qf9dD+hyiiitTgCiiigAooooAKKKKACvw3/4OC/8Akw+0/wCxp0//ANE3NfuRX4b/APBwX/yYfaf9jTp//om5oA/F/wD4IBf8nj+Jf+xMvP8A0usa/r4r+Qf/AIIBf8nj+Jf+xMvP/S6xr+vivi88/wB6foj1sH/DCiiivHOoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD+OH/gu/8A8nt2n/Ys2H/o24r9xf8Ag3z/AOTELz/satQ/9E21fh1/wXf/AOT27T/sWbD/ANG3FfuL/wAG+f8AyYhef9jVqH/om2r7/Lv91p+h4tf+JI/cmiiiu0xCiiigAooooAKKKKACiiigD8if+C5f/KOPxd/1/aT/AOlkVfzGf8EfP+Tz7H/sE3//AKAK/pz/AOC5f/KOPxd/1/aT/wClkVfzGf8ABHz/AJPPsf8AsE3/AP6AKuHxIir8DP60aKKK7Tyj8df20PgZ4N/aV/4KCfCD4IePzMmla9oeuRySW77JY3itriWKRDyMpKiOAQVbGGBBIr2nwd+1n+0V/wAEzrWx+DH7aOi6h458BWmyHS/HukI0pggY7I4LuOQAb1P96USBRhRNwaZ8S/8AlLT8Av8AsE6//wCkV1X7V3tlZ6lZzadqMKXFvcI0csUih0dHGGVlOQQQcEHgiuOr8TPTofAjN+E3xv8AhF8dvDx8VfB7xHYeIrBW2vJZTCQxtllw6/eQkqcbgMgZGRzXqdfkH8Tf+CUXwE1bxHc/En9nrUdT+Efi98NBf+G5mitkcHJ3WoZV8s/LmOJ4VJUdPm3cCvif/gsR+zIz2t3Z6D8dvD1usYSdCunasI1BByAYgW4Ab5bhmyp3Z34zNT9uqK/GzT/+Cznwo8G6i3hn9qL4f+Lfhlq0T+XKLyz+1WgcBCVSVdkj/eLKRBtaMBgfmC19ofDX/goH+xT8W/LTwR8TNCkmm2eXb3lyLC4cvnAWG6EMjH5TkBcjjOMjIB9h0VVsb6y1Oyh1LTZkuLe4RZYpYmDo6OMqysMggg5BHBFWqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoqhqeqaZolhLqus3MVpawLukmmcRxovqzMQAPqa+M/il/wAFH/2Hvg9Cz+L/AIk6PNKFz5GmSnU5snoCloJipPbdgYOScc0AfbdFfjNff8Fh9B+Is0ujfsg/Crxd8Sr5GdTcJaG0sEX51SRpR5rqrMv/AC0jj47hgVrGuNO/4LAftPu0fiDV9B+A3hydpI2h09RqesmFxlSXDOgYdN0c1s4P8NAH6cfHv9p74D/sx+Gv+Ep+N/iW00KBlJhhkbfc3BHaGBA0sh9dqkDvgV+Rvjf4j/tOf8FW7X/hXfwf0zUPhd8ErrB1TxDqcZj1HXLck/ubSMHaYX/iwxQgHe/WF/of4M/8Eq/2Y/h3qFt4z+J0N38S/FsTCSTV/Es73W5/a3ZjDtB5USCRgf4q/SiGGG2hS3t0WOONQqqowqqOAAB0AoA/Av8A4JufDzwz8JfjV8f/AIY+DI3i0rQPElvY2iyOZHEUH2hV3MeScDk+tfrTX5nfsT/8nV/tM/8AY4L/AOhXNfpjXbS+FHm4j+Iwr46/4KB/8mYfET/sEv8A+hrX2LXx1/wUD/5Mw+In/YJf/wBDWqlsyIfEj+c7/gkP/wApHPhd/wBf11/6Rz1/oHV/n4/8Eh/+Ujnwu/6/rr/0jnr/AEDq4D1QooooAKKKKACiiigAooooA/Ir/guV/wAo4/F3/X9pP/pZFX8rv/BKb/k9bw5/166j/wCk0lf1Rf8ABcr/AJRx+Lv+v7Sf/SyKv5Xf+CU3/J63hz/r11H/ANJpK1ofxI+qGtz+s+iiivfLCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD+TD/gqz/yet4j/AOvXTv8A0mjr+sv/AIIq/wDKMz4af9xn/wBOt5X8mn/BVn/k9bxH/wBeunf+k0df1l/8EVf+UZnw0/7jP/p1vK8Gv/El6kPc/UyiiisRBRRRQAUUUUAFFFFABRRRQAV/HV/wcb/8nR+Bv+xVH/pXcV/YrX8dX/Bxv/ydH4G/7FUf+ldxQM9l/wCCKX/JrGv/APY13X/pHZ1+wFfj/wD8EUv+TWNf/wCxruv/AEjs6/YCtEe7hv4UQooooNgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr+T//AIK9f8nlXv8A2CrD/wBBNf1gV/J//wAFev8Ak8q9/wCwVYf+gmk9jjx38P5n9PX/AAQ0/wCUcfhH/r+1b/0slr9dq/In/ghp/wAo4/CP/X9q3/pZLX67VB44UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/9L+/iiiigD/ADn/APgox/yfh8XP+xp1L/0c1f1Rfsof8mtfDX/sVdG/9JIq/ld/4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/wCxV0b/ANJIq5cVsj3sh+Ofoe/UUUVwn0wUUUUAFFFFABRRRQAV8E/AD/lMT4x/7Jwv/pXZV97V8E/AD/lMT4x/7Jwv/pXZV04X4zyM7/3deq/U/a6vDf2ifjLffAT4XXXxI07w1qXi6W2mhiGmaRGZbyXzXCkxoAxbZnc3ooJ7V7lRXefJH49/8PW/GX/RvPxF/wDBc/8A8bo/4et+Mv8Ao3n4i/8Aguf/AON1+wlFAH49/wDD1vxl/wBG8/EX/wAFz/8Axuj/AIet+Mv+jefiL/4Ln/8AjdfsJRQB+Pf/AA9b8Zf9G8/EX/wXP/8AG6P+HrfjL/o3n4i/+C5//jdfsJRQB+Pf/D1vxl/0bz8Rf/Bc/wD8bo/4et+Mv+jefiL/AOC5/wD43X7CUUAc34M8QTeLPB+leKbmzl0+TU7OC7a1mGJYGmQOY3yB8yZ2ngciukoooA/Iv9j/AP5SYftMf9wH/wBJzX6U/Gj/AJI74s/7A1//AOiHr81v2P8A/lJh+0x/3Af/AEnNfpT8aP8Akjviz/sDX/8A6IegD8+/+CMn/JgHhb/r81T/ANK5a8X/AOCpP/J2v7LX/Ywal/6N06vaP+CMn/JgHhb/AK/NU/8ASuWvF/8AgqT/AMna/stf9jBqX/o3TqUtmbYf+LD1X5n3/RRRXkH3wUUUUAFFFFABX5ifAv8A5Sd/HD/sFaJ/6S21fp3X5ifAv/lJ38cP+wVon/pLbVpT2l6HLifipf4v/bZH6d0UUVmdQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAfzkf8ABbf/AJKl4I/7BVx/6OFfq3/wbj/8mu+Of+xpP/pJb1+Un/Bbf/kqXgj/ALBVx/6OFfq3/wAG4/8Aya745/7Gk/8ApJb16dD4EfFZn/vU/wCuh/Q5RRRWpwBRRRQAUUUUAFFFFABX4b/8HBf/ACYfaf8AY06f/wCibmv3Ir8N/wDg4L/5MPtP+xp0/wD9E3NAH4v/APBAL/k8fxL/ANiZef8ApdY1/XxX8g//AAQC/wCTx/Ev/YmXn/pdY1/XxXxeef70/RHrYP8AhhRRRXjnUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/HD/AMF3/wDk9u0/7Fmw/wDRtxX7i/8ABvn/AMmIXn/Y1ah/6Jtq/Dr/AILv/wDJ7dp/2LNh/wCjbiv3F/4N8/8AkxC8/wCxq1D/ANE21ff5d/utP0PFr/xJH7k0UUV2mIUUUUAFFFFABRRRQAUUUUAfkT/wXL/5Rx+Lv+v7Sf8A0sir+Yz/AII+f8nn2P8A2Cb/AP8AQBX9Of8AwXL/AOUcfi7/AK/tJ/8ASyKv5jP+CPn/ACefY/8AYJv/AP0AVcPiRFX4Gf1o0UUV2nlH5t/Ev/lLT8Av+wTr/wD6RXVftpX4l/Ev/lLT8Av+wTr/AP6RXVftpXHV+Jnp0PgQUUUVmalHUtM03WrCXS9Yt4ru1nXbJDMgkjdfRlYEEfUV8d/Ej/gnX+xH8V7qS+8Y/DbSPPmO6SWwR9NkdtxYszWbQlmYsSzEkt3JwK+0qKAPx7l/4I8+APBUpvP2bfid42+HMzbiyadqLGEsyhS2E8mTJwN2ZTkADitJf2S/+CnXgG88/wCGP7Sh1eEpjytf0iOT7h+VCX+1E5HDSLtY+lfrlRQB+QX/AAlP/BcP4dbkl034f+PlhRWJjZ7d5emVQs9kofg8soXJPXgC+/7bX/BUPwxckeL/ANmiO9jDoMadrMTHBGT80ZuByP4sYU9cniv1uooA/Jo/8FRv2kNDQt47/Zb8b2YRZC7WHmX8amM93W1jG3HO48emRzRD/wAFpPh1pkcq+OPhD8RtKmgRXkRdKikCcbm3GSeEgAYIJHI54r9ZaKAPyc03/guR+yzfb/tXhHx1Z7cY87SoTuznp5d0/TvnHWlH/Bdf9iWDUv7M1a28T6e4++bjTUGzjIyFmZueMfL39Oa/WKigD8sf+H5v7BP/AEEda/8ABa//AMVWNp//AAXZ/Yw1WY2+l6Z4suZFXcVi02N2CjjOBcHjmv1nooA/JzUv+C5H7LNjs+y+EfHV5uznydKhG3GOvmXSde2M9Knm/wCCyXhPUvN/4Qr4L/EnU/KTJ3aSiYc5wG8uaXAOOvXrxxX6uUUAfk1P/wAFPf2pdScDwb+yr40uFaVYwdRkk088gZJDWb4AJxnO3HORjFZs37aH/BVjxLbRL4L/AGbrWwml3YbUtXi2/Ke6tJbFeAcZbnIx6H9d6KAPyPXUv+C3HxGSRi/w++H8ckuQCJbqeONSBgcXkbFhzzjOP4eBUB/Y1/4KR+PWt7j4q/tN3lgVBeSLQNMjtR5mNoAeFrYFcc5Kdf4cnNfrvRQB+RNj/wAEdPgn4lvIda/aE8beMfiRqCKPMbV9TbyWba2SAAZlG92cDzjgnGT82763+G/7AX7GHwnaObwV8N9FSaFt0c95B9vnRsAZWW6Mrg4UdG9T1Jz9f0UAVrOys9Ptls9PiSCFM7UjUKoycnAGB1Oas0UUAFFFFAH4ffsT/wDJ1f7TP/Y4L/6Fc1+mNfmd+xP/AMnV/tM/9jgv/oVzX6Y120vhR5uI/iMK+Ov+Cgf/ACZh8RP+wS//AKGtfYtfHX/BQP8A5Mw+In/YJf8A9DWqlsyIfEj+c7/gkP8A8pHPhd/1/XX/AKRz1/oHV/n4/wDBIf8A5SOfC7/r+uv/AEjnr/QOrgPVCiiigAooooAKKKKACiiigD8iv+C5X/KOPxd/1/aT/wClkVfyu/8ABKb/AJPW8Of9euo/+k0lf1Rf8Fyv+Ucfi7/r+0n/ANLIq/ld/wCCU3/J63hz/r11H/0mkrWh/Ej6oa3P6z6KKK98sKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP5MP8Agqz/AMnreI/+vXTv/SaOv6y/+CKv/KMz4af9xn/063lfyaf8FWf+T1vEf/Xrp3/pNHX9Zf8AwRV/5RmfDT/uM/8Ap1vK8Gv/ABJepD3P1MooorEQUUUUAFFFFABRRRQAUUUUAFfx1f8ABxv/AMnR+Bv+xVH/AKV3Ff2K1/HV/wAHG/8AydH4G/7FUf8ApXcUDPZf+CKX/JrGv/8AY13X/pHZ1+wFfj//AMEUv+TWNf8A+xruv/SOzr9gK0R7uG/hRCiiql9f2OmWkl/qU0dvBENzySsERR6knAA+tDdtWbpNuy3LdFeVf8L2+CH/AEOWh/8Agxt//jlH/C9vgh/0OWh/+DG3/wDjlYfWqH/Pxfejv/snHf8APif/AIDL/I9Voryr/he3wQ/6HLQ//Bjb/wDxyj/he3wQ/wChy0P/AMGNv/8AHKPrVD/n4vvQf2Tjv+fE/wDwGX+R6rRXlX/C9vgh/wBDlof/AIMbf/45R/wvb4If9Dlof/gxt/8A45R9aof8/F96D+ycd/z4n/4DL/I9Voryr/he3wQ/6HLQ/wDwY2//AMco/wCF7fBD/octD/8ABjb/APxyj61Q/wCfi+9B/ZOO/wCfE/8AwGX+R6rRXlX/AAvb4If9Dlof/gxt/wD45R/wvb4If9Dlof8A4Mbf/wCOUfWqH/Pxfeg/snHf8+J/+Ay/yPVaK8q/4Xt8EP8AoctD/wDBjb//AByj/he3wQ/6HLQ//Bjb/wDxyj61Q/5+L70H9k47/nxP/wABl/keq0V5dF8cfgrPKsMPjDRHdyFVV1CAkk9ABvr1GrhVhP4JJ+hz18JXoW9tTcb7XTX5hRRRWhzhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRXP+K/FfhvwN4bvfF/i+9i07TNOiae5uZ22xxxr1JP8h1J4HNAHQUV+VHhf4s/tl/t/6hNbfsq2Q+Hnw5jnltn8X6inm3N15ZPzW0Lbe67GC7tpPLqQVHtVl/wRg+E/iuP+0v2ifiD4t8e6s0iSyTz3gghJVQpCxsJnUHBH+tOEwoxjJXMcNTHQi7RVz7tor4du/wDgi98CvDxk1D4HeN/GPgXUCrbJbDUQYwxAwWXYkjAMqsQJRnGMjgjwbVfif+2D/wAE99Vs9O/a+aPx78NrqZbO38W6dGTd2jsQE+1pwxG3JIYMzH7sjkbSuYKeOjJ2krH6h+IPEOgeE9GuPEfim+t9M060TzJ7q7lWGGJP7zu5CqPckV+dF/8A8FGx421658OfsqfDbxF8UntJGgkvLCJoLBZVfaQZ/LlCqVw4ZlAIZR344nwT4Zu/+Csfxk1q11S/vLL4E+BbuOFFst0DeINQUBiHkYZWNFIYgDcqOmNruHX94/BPgfwf8N/DFn4L8B6bb6TpVhEkNvbWyBI0RAFHA6nAGSck9zQ5GVfGu/LT+8/Fa4/aX/4KFaFp3/CR+If2bL+XT4lV5UstTSe72NgfJDHHJKzDOSoQn1xyR6V8Bv8AgoB8C/jl4sk+G0v23wn4rikMP9j67ELW4eQE5RPmKlwBkoSH54Bwa/Ymviz9tH9jb4P/ALVXw8upPGEdvo3iTSrdpdJ8TAeXcabJDl1ZpFZC0KkktG7bRksNrgMFzGMMbUT11NPxB4h0Dwno1x4j8U31vpmnWieZPdXcqwwxJ/ed3IVR7kivzd8S/wDBTHw74i8T3Xgv9lLwJr/xbv7FVNzJpMEqWke5wgJkEUsgX73zmIRkgYYgkjwf9jL4SftC/wDBTPw5pWv/ALVmrs/wo8Ky/ZktrQSWkviS8t/+WksgKuY0yFeRdmWG1AJPMdf6Ivh38M/h78I/CsHgj4YaLZ6BpNtzHa2MKwx7jgFiFA3O2Pmdssx5JJpuRrVxzelM/FaX9qj/AIKBaMtrqXiD9mrVJbO4cqVs77zpwB1JRInZfUb1Absec16L8If+CiXwG+IWuj4e/EBrn4e+MYn8m40XxFG1nJHMMfIJXCx5JICq+yRuyV+zlfOf7Sn7KnwU/av8CT+BPjBpKXIdCttfwqiX9k+QQ9vMVYocjkEFG6MrAkUuYyhjaieruYdFfml8FfHXxW/ZO+Ptp+wx+0jqn/CQW+p2xufBniLbtNxaR+YBbXJbpKojwBlmDELuYNGa/S2rPVpVVUjzRCiiig0CiiigAr+T/wD4K9f8nlXv/YKsP/QTX9YFfyf/APBXr/k8q9/7BVh/6CaT2OPHfw/mf09f8ENP+UcfhH/r+1b/ANLJa/XavyJ/4Iaf8o4/CP8A1/at/wClktfrtUHjhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//T/v4ooooA/wA5/wD4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/7FXRv/SSKv5Xf+CjH/J+Hxc/7GnUv/RzV/VF+yh/ya18Nf8AsVdG/wDSSKuXFbI97Ifjn6Hv1FFFcJ9MFFFFABRRRQAUUUUAFfBPwA/5TE+Mf+ycL/6V2Vfe1fBPwA/5TE+Mf+ycL/6V2VdOF+M8jO/93Xqv1P2uoorxD9of4Z+P/i58LbzwR8MfGNz4D1m4lheHWbSEzyQrG4Z1EYkiyHUFT84xnPOK7z5I9vor8e/+HfH7cn/R12u/+Cg//J1H/Dvj9uT/AKOu13/wUH/5OoA/YSivx7/4d8ftyf8AR12u/wDgoP8A8nUf8O+P25P+jrtd/wDBQf8A5OoA/YSivx7/AOHfH7cn/R12u/8AgoP/AMnUf8O+P25P+jrtd/8ABQf/AJOoA/YSivx7/wCHfH7cn/R12u/+Cg//ACdR/wAO+P25P+jrtd/8FB/+TqAP2Eorm/Bmi6l4a8H6V4d1i/k1W70+zgtp72UESXMkSBWlYFmO5yCxyxOT1PWukoA/Iv8AY/8A+UmH7TH/AHAf/Sc1+lPxo/5I74s/7A1//wCiHr81v2P/APlJh+0x/wBwH/0nNfpT8aP+SO+LP+wNf/8Aoh6APz7/AOCMn/JgHhb/AK/NU/8ASuWvF/8AgqT/AMna/stf9jBqX/o3Tq9o/wCCMn/JgHhb/r81T/0rlrxf/gqT/wAna/stf9jBqX/o3TqUtmbYf+LD1X5n3/RRRXkH3wUUUUAFFFFABX5ifAv/AJSd/HD/ALBWif8ApLbV+ndfmJ8C/wDlJ38cP+wVon/pLbVpT2l6HLifipf4v/bZH6d0UUVmdQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAfzkf8Ft/+SpeCP+wVcf8Ao4V+rf8Awbj/APJrvjn/ALGk/wDpJb1+Un/Bbf8A5Kl4I/7BVx/6OFfq3/wbj/8AJrvjn/saT/6SW9enQ+BHxWZ/71P+uh/Q5RRRWpwBRRRQAUUUUAFFFFABX4b/APBwX/yYfaf9jTp//om5r9yK/Df/AIOC/wDkw+0/7GnT/wD0Tc0Afi//AMEAv+Tx/Ev/AGJl5/6XWNf18V/IP/wQC/5PH8S/9iZef+l1jX9fFfF55/vT9Eetg/4YUUUV451BRRRQAUUV4v8AHj9of4N/sy+CE+I3xy1tNB0eS5jsknaKWcvPKGZUWOFJJGJVGbhTgKSeBVRi5NRirsTaSuzofip8X/hh8D/CT+O/i3rlp4f0hJUg+03kgRTLIflRe7McE4UE4BPQEj5i/wCHlv7CH/RT9G/77f8A+Ir8ev8AgrR/wUA/ZH/aZ/Zbt/hz8EPFv9t6ymuWl41v9gvbbEEUcys2+4giTguvG7PPAr6S/wCGr/8AghT/ANAvwb/4Rk3/AMrq9/A5KqtPmrXi77bfmcVbF8srRs0fef8Aw8t/YQ/6Kfo3/fb/APxFH/Dy39hD/op+jf8Afb//ABFfBn/DV/8AwQp/6Bfg3/wjJv8A5XUf8NX/APBCn/oF+Df/AAjJv/ldXZ/q9R/nf4GX16fZH3n/AMPLf2EP+in6N/32/wD8RR/w8t/YQ/6Kfo3/AH2//wARXwZ/w1f/AMEKf+gX4N/8Iyb/AOV1H/DV/wDwQp/6Bfg3/wAIyb/5XUf6vUf53+AfXp9kfef/AA8t/YQ/6Kfo3/fb/wDxFH/Dy39hD/op+jf99v8A/EV8Gf8ADV//AAQp/wCgX4N/8Iyb/wCV1H/DV/8AwQp/6Bfg3/wjJv8A5XUf6vUf53+AfXp9kfef/Dy39hD/AKKfo3/fb/8AxFH/AA8t/YQ/6Kfo3/fb/wDxFfBn/DV//BCn/oF+Df8AwjJv/ldR/wANX/8ABCn/AKBfg3/wjJv/AJXUf6vUf53+AfXp9kfef/Dy39hD/op+jf8Afb//ABFH/Dy39hD/AKKfo3/fb/8AxFfBn/DV/wDwQp/6Bfg3/wAIyb/5XUf8NX/8EKf+gX4N/wDCMm/+V1H+r1H+d/gH16fZH3n/AMPLf2EP+in6N/32/wD8RR/w8t/YQ/6Kfo3/AH2//wARXwZ/w1f/AMEKf+gX4N/8Iyb/AOV1fa3wa+Dv/BOv9oPwJb/Ev4PfD7wVrWiXLvHHcp4etYvnjOGUpLbo6kHqGUGj/V6j/O/wD69Psj6i+D/x++DPx/0q51z4M+I7LxHa2TrHcSWb7xE7ZwrcAqSBnB5xz0Ir1+vxo/4Je+H9B8KftFftNeGvC1jb6bptj4tghtrS1iWGCGJDdBUSNAFVQOAAABX7L187jsOqFeVKLul/kd9GbnBSYUUUVyGh/HD/AMF3/wDk9u0/7Fmw/wDRtxX7i/8ABvn/AMmIXn/Y1ah/6Jtq/Dr/AILv/wDJ7dp/2LNh/wCjbiv3F/4N8/8AkxC8/wCxq1D/ANE21ff5d/utP0PFr/xJH7k0UUV2mIUUUUAFFFFABRRRQAUUUUAfkT/wXL/5Rx+Lv+v7Sf8A0sir+Yz/AII+f8nn2P8A2Cb/AP8AQBX9Of8AwXL/AOUcfi7/AK/tJ/8ASyKv5jP+CPn/ACefY/8AYJv/AP0AVcPiRFX4Gf1o0UUV2nlH5t/Ev/lLT8Av+wTr/wD6RXVftpX4l/Ev/lLT8Av+wTr/AP6RXVftpXHV+Jnp0PgQUUUVmahRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH4ffsT/wDJ1f7TP/Y4L/6Fc1+mNfmd+xP/AMnV/tM/9jgv/oVzX6Y120vhR5uI/iMK+Ov+Cgf/ACZh8RP+wS//AKGtfYtfHX/BQP8A5Mw+In/YJf8A9DWqlsyIfEj+c7/gkP8A8pHPhd/1/XX/AKRz1/oHV/n4/wDBIf8A5SOfC7/r+uv/AEjnr/QOrgPVCiiigAooooAKKKKACiiigD8iv+C5X/KOPxd/1/aT/wClkVfyu/8ABKb/AJPW8Of9euo/+k0lf1Rf8Fyv+Ucfi7/r+0n/ANLIq/ld/wCCU3/J63hz/r11H/0mkrWh/Ej6oa3P6z6KKK98sKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPLvjhreq+Gvgt4v8R6FM1tfafomoXNvMuN0csUDsjDORkMAa/jD/4Jk23/AAW//wCCm/wL1j47fD39qN/DVpo+vTaC9rqNqksjywW9vcGQGOArtIuAMHnINf2UftGf8m9+O/8AsXdU/wDSaSv4Df8Agk9/wTx/bZ/al/4J+ePfjZ+xx8efE/gDVtB8R31nb+D9Lvruw0/Vrq3srOcu01vdRLHPKsoiDPC4/doGYLyvJXb54pX67OwmfuD/AMEwf28/2+/AX/BTbxj/AMEqf2/PEun/ABA1HTLGS80/XbKBEeKVLeG8RS8UUAaKW2lLHzo/MSUBd2OK/aj9oj/gpz+wR+yh48i+F/7QPxP0fw74hkVHbT3MlxPCsgyhmWBJPJDDkGXbkEHoRX88/wDwbIj9kzxL4v8AH/iDxHaa3/w01pyyw+JbjxPem7uZbN5gs0lorJG8f75US6WXzJkfaDIVfbX5k/8ABLPwv+0L+0d8Vv2gviG3wC8G/HvxTqerhfET+N9Tgtp9KN5JdM4gSeNivmurhpU2svlKo245iFaSjFLW9/OwXP7NP24P2iY7f/gmr8Tf2l/2aPFMFwbfwfqOraFrulSx3EXmRws0csTjejbWHfOCMEZ4r5//AOCOP7VPiz4n/wDBKDwV+1B+1j4wS5viutz6xr+ryxW0aw2mpXUKvK+EjVUiRVyccAd6/Ev9iv4K/Gr9n7/gh5+1j8OPiJrOhax4dbSdU1DQP7A16z1+3t1ubNhcRma0kkVOY422nAJZmAyWr88P2kPGnjvw/wD8Gxn7PPhbw9LNBouv+NdYh1YxkhZVgvtUmghkx1UyJ5gB/iiU9RTdZp87X2dvmB/aj8Av+CpH/BPz9qH4h/8ACp/gV8VNG17xG2/yrBWkt5bjyxlvIE6RifA5/dF+AT0Br2bwr+2F+zR42/aD1r9lPwx4vs7n4ieHYGutR0LEiXUMKiMliHRVYYmjYbWOVYEcc1/GB+1n+xp+1V4h+H/wX174ZfBn4V/AHWPC11aXvhfxRYeLtMs7vVhDGs0eWl8g3Um/ZcByXcEsf4zX6Hf8FhtH1L9hD/gpT+z3/wAFadFtzY6Rqd5B4V8b+XygRkaMs5HDu9lJMq54BtUPXmrVeVm2trfcwP6NPEH7X37Nfhb9ojSf2TNd8XWcPxH123+12OggSPdSw7ZH34RCqgJDIx3MMKuTxg181/Gv/gr/AP8ABNb9nj4jXfwl+Lnxb0jTfEOnSmC7s4UuL020w4aOZ7WGVI3U8MjsGU8ECvxm/wCCL1l/w2p+3/8AtD/8FgfH4xoUV9P4a8JzXAwkNnCib5Bn7rQ2MdsjEcEzSd818JeB7n4f/tV/BH4++Ov+CbX7LPgfS/hoo1Zde8efErU59Sv2aO1aeaS1ikM1zazLE4nQRysiSurFg3AHXly3XW9vQD+xzxJ+19+zL4S/Z3/4a01vxrpi/DYwwTjxDFL59kY7mZbeMhog5OZnWMjGVY4IBBx83+Mv+Cvf/BNL4f6xoegeL/jFoFndeIrO01CyUySOPs19Gs0EkzJGy24kjdXHnmM7WBPBr+TT4LXl5df8GnHxdguZC6W3jG2jiUnIRDq+kOQPQbmY/U19KfGr9iP9lrwh/wAGxNh8YdG8EaPH4zfQdB8Qt4g+yRnVDe3+o2yyk3RHmlTFM8QQtsCYAAwKn6xNq8Utrhc/Wr/guB/wV0u/+CevwG0KP9nq90bU/iF40lifT0uw1zHBpMscxbUIlQiOUCRERAz7cuGKsowf1k/ZZ/aQ+FH7VfwX0r4ufB3xFb+J9MnUW019aqyobuFV85MMqYKsecDHpX8T3/BU3wt4X1r/AIN+P2Tvi1qml2k/iiGbSNFTV3hQ3q6clhfsLYTkeYId0aN5e7buUHGQK/t0/Zr+FHws+DXwX0Hwh8H/AA5pnhfSHtYbo2ekWkVnbmeeNTJJ5cKqu9zyzYyT1q6U5SqO+1kB7rRRRXSMKKKKAP5MP+CrP/J63iP/AK9dO/8ASaOv6y/+CKv/ACjM+Gn/AHGf/TreV/Jp/wAFWf8Ak9bxH/166d/6TR1/WX/wRV/5RmfDT/uM/wDp1vK8Gv8AxJepD3P1MooorEQUUUUAFFFFABRRRQAUUUUAFfx1f8HG/wDydH4G/wCxVH/pXcV/YrX8dX/Bxv8A8nR+Bv8AsVR/6V3FAz2X/gil/wAmsa//ANjXdf8ApHZ1+wFfj/8A8EUv+TWNf/7Gu6/9I7Ov2ArRHu4b+FEK+Of+CgP/ACZ743/69oP/AEoir7Gr45/4KA/8me+N/wDr2g/9KIq87OP9wxH+Cf8A6Sz6vgz/AJKDLv8Ar/S/9ORNv9m7/gnr+xv41/Z28A+MvFHga1u9T1bw5pV7dztcXAMs89tG8jkLKACzEnAAHPFe0/8ADs/9hr/on1p/4E3X/wAer2T9kX/k1D4Yf9ilov8A6RxV8pa5/wAFmf8Agld4Z1288MeIPjv4Rs9Q0+eS1uYJb5VeKaJijowxwVYEH3FceDynAuhTboQvyr7Me3ocee8a8QwzLFQhmVdJVJpJValklJ6L3j0n/h2f+w1/0T60/wDAm6/+PUf8Oz/2Gv8Aon1p/wCBN1/8er274A/tU/s1/tVaBdeKP2bPHmheOrCxdYrqXRL6G8+zu4JVZRGxaNmAJAcAkDIr3yuj+yMB/wBA8P8AwGP+R5f+vHEf/Qzr/wDg6p/8kfCv/Ds/9hr/AKJ9af8AgTdf/HqP+HZ/7DX/AET60/8AAm6/+PV91UUf2RgP+geH/gMf8g/144j/AOhnX/8AB1T/AOSPhX/h2f8AsNf9E+tP/Am6/wDj1H/Ds/8AYa/6J9af+BN1/wDHq+6qKP7IwH/QPD/wGP8AkH+vHEf/AEM6/wD4Oqf/ACR8K/8ADs/9hr/on1p/4E3X/wAeo/4dn/sNf9E+tP8AwJuv/j1fdVFH9kYD/oHh/wCAx/yD/XjiP/oZ1/8AwdU/+SPhX/h2f+w1/wBE+tP/AAJuv/j1H/Ds/wDYa/6J9af+BN1/8er7luLiC0ge6unWKKNS7u5wqqOSSTwAB1NZ2ga/oXivQrLxR4XvYNS0zUoI7q0u7WRZoLiCZQ8ckciEq6OpDKykhgQQcUf2RgP+geH/AIDH/IP9eOI/+hnX/wDB1T/5I/Cf/gpp+xj+zH8Df2Wbzx18KvCVvo+rLqNnALmOWaRhHIx3ACSRhzjrjNfpV4Y/5FrT/wDr2i/9AFfOn/BYz/kyy+/7C1h/6Ea+i/DH/Itaf/17Rf8AoArhy7D0qOZ4iFGCiuSnokkt59j7fNMzxmP4Sy6vjq0qs/b4hc05OTso0NLybdvI3KKKK+jPgwooooAKKKKACiiigAooooAKKKKACiiigAooooAK/Ov4yf8ABQnwxofjIfBr9mvQLv4p+OJgwW00f95a25VijGaWMOf3Z5YKu0D7zp1rkPjh8Vvif+1d8eZP2GP2YrqfS4LQ/wDFaeJYVBFjaEbZIIiSMuSwU7WDF/lGFEhH6yfs0fst/B39kv4dx/Df4O6e1tbFhJdXU7CS7vJgMebPIAu5vQKqovRVUcVLZ5+JxnK+WB+YGkfsuf8ABVv4021tqfxR+JOifDK2mYTHT9Ethd3UG4tlJGHynYCAqrdSKwOWO5QT0l1/wTG/aphskl0j9pzxH9tiw2Z7NnhdlHTb9s4BbHUtgcYNftFRSuzz3Vm9XJn4V698P/8AgrL+zZHc61a3eifGrQoCrtAsP2PVPKyxfykjEeW6cZnbkBVODj5x8H/EuT/gqD+1n4d+BHjOwuPCPgrwlbPq3iDw9qc/kXepXsBA+z7F2yMqMV4wpWMSMdrFBX9MVfA37XH7Afw//aV1S3+KPhTUJ/BPxL0kI2m+JtN3LMrRkbROqMnmqFyoO4OoPBK5UlynXqOPK3ofdemaZpuiabb6No1vFaWdpEkMEEKCOKKKMBVRFUAKqgAAAAAcCr1YfhnTtW0jw9ZaXr2ovq19bwolxeyRpC08gHzOUjCou487VGB0rcpGIV85fteeBfGfxO/Zj8cfDz4eWFtqet61pM9nZ292yJE0kw25JkVkDKDuXcANwHzL94fRtFAHyv8AsUfs/wAf7MX7MHhH4PTxomo2FmJtTKENu1C5JluPnAG8LIxRGPOxVHQCvqiiigAryL49fB3R/wBoD4Pa/wDBrxBf3mmWPiG2NrPc6e6x3CIWDEKWVlw2NrgghkJHevXaKAPNfg58KvCvwO+Fmg/CPwVH5emeH7OKzhyAGfYPmkbHV5Gy7nuxJr0qiigAooooA/Mb/grd8Dh8XP2O9b8VaOhXXvAZXxDp86OyPEtqQbkhl5/1G9hx95V6dR1v7PnxZ0j44/Bbw38UdHuI7gatYQy3HlkER3O0CeM46NHIGUj1HHFfcHj7w2/jLwLrXhCN1jbVbC5swzjcqmeNkyR3AzyK/CTwJ/wRx+Jnwb+GGmeMvg946/sD4t6OZXlmtJpX0fVEEzSRRzpIgdfkKo3ytGdvKEktTTsdOGxHsm7rRn6v0V8S/sxftSeIPH/iTVfgH+0DpaeE/il4aYpe6bnEV5CACLm2JyGRgc4VmG0hgSp4+2qs9mE1Nc0dgooooKCv5P8A/gr1/wAnlXv/AGCrD/0E1/WBX8n/APwV6/5PKvf+wVYf+gmk9jjx38P5n9PX/BDT/lHH4R/6/tW/9LJa/XavyJ/4Iaf8o4/CP/X9q3/pZLX67VB44UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//U/v4ooooA/wA5/wD4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/7FXRv/SSKv5Xf+CjH/J+Hxc/7GnUv/RzV/VF+yh/ya18Nf8AsVdG/wDSSKuXFbI97Ifjn6Hv1FFFcJ9MFFFFABRRRQAUUUUAFfBPwA/5TE+Mf+ycL/6V2Vfe1fBPwA/5TE+Mf+ycL/6V2VdOF+M8jO/93Xqv1P2uoorzT4ufGH4bfAjwPc/En4s6omjaJaPHHNdSI8io0zBEBEau3LEDp3rvPkj0uivz3/4erf8ABP7/AKKRaf8AgLef/GKP+Hq3/BP7/opFp/4C3n/xigD9CKK/Pf8A4erf8E/v+ikWn/gLef8Axij/AIerf8E/v+ikWn/gLef/ABigD9CKK/Pf/h6t/wAE/v8AopFp/wCAt5/8Yo/4erf8E/v+ikWn/gLef/GKAP0Ior89/wDh6t/wT+/6KRaf+At5/wDGKP8Ah6t/wT+/6KRaf+At5/8AGKAP0IorG8OeINI8W+HrDxV4fm+0WGp28V3bS7WTfDModG2sAwypBwQCO4rZoA/Iv9j/AP5SYftMf9wH/wBJzX6U/Gj/AJI74s/7A1//AOiHr81v2P8A/lJh+0x/3Af/AEnNfpT8aP8Akjviz/sDX/8A6IegD8+/+CMn/JgHhb/r81T/ANK5a8X/AOCpP/J2v7LX/Ywal/6N06vaP+CMn/JgHhb/AK/NU/8ASuWvF/8AgqT/AMna/stf9jBqX/o3TqUtmbYf+LD1X5n3/RRRXkH3wUUUUAFFFFABX5ifAv8A5Sd/HD/sFaJ/6S21fp3X5ifAv/lJ38cP+wVon/pLbVpT2l6HLifipf4v/bZH6d0UUVmdQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAfzkf8ABbf/AJKl4I/7BVx/6OFfq3/wbj/8mu+Of+xpP/pJb1+Un/Bbf/kqXgj/ALBVx/6OFfq3/wAG4/8Aya745/7Gk/8ApJb16dD4EfFZn/vU/wCuh/Q5RRRWpwBRRRQAUV+KPw0/4LBeEn/bq8b/ALIXx4s7Pw3Y6frUuk+HtXR2EckkDeWY7xnYqrSuCY3UKgyEYZ+c/tdQAUUUUAFfhv8A8HBf/Jh9p/2NOn/+ibmv3Ir8N/8Ag4L/AOTD7T/sadP/APRNzQB+L/8AwQC/5PH8S/8AYmXn/pdY1/XxX8g//BAL/k8fxL/2Jl5/6XWNf18V8Xnn+9P0R62D/hhRRRXjnUFFFFAHy9+0x+2R+z7+yJZ6RefHbWX0v+3nmSxSK2muXl+zhDKcRI2AnmICTjlhjPOPw1/4KT/8FF/2Rf2l/hn4G8I/DLXJtQm0jxrpmr3yT2FxEi2NvFcJKx8yMBsGRRtGSQeAa+wP+CmcMNz+2j+yfb3CLJHJ4k1FWVhlWUy6cCCD1Br9bv8AhDPB/wD0CbP/AL8J/wDE19VlGXUnThiW3za+m7R52JryUnT6H5Ff8PM/+CT39yy/8JyT/wCMUf8ADzP/AIJPf3LL/wAJyT/4xX66/wDCGeD/APoE2f8A34T/AOJo/wCEM8H/APQJs/8Avwn/AMTX0RwH5Ff8PM/+CT39yy/8JyT/AOMUf8PM/wDgk9/csv8AwnJP/jFfrr/whng//oE2f/fhP/iaP+EM8H/9Amz/AO/Cf/E0AfkV/wAPM/8Agk9/csv/AAnJP/jFH/DzP/gk9/csv/Cck/8AjFfrr/whng//AKBNn/34T/4mj/hDPB//AECbP/vwn/xNAH5Ff8PM/wDgk9/csv8AwnJP/jFH/DzP/gk9/csv/Cck/wDjFfrr/wAIZ4P/AOgTZ/8AfhP/AImj/hDPB/8A0CbP/vwn/wATQB+RX/DzP/gk9/csv/Cck/8AjFH/AA8z/wCCT39yy/8ACck/+MV+uv8Awhng/wD6BNn/AN+E/wDiaP8AhDPB/wD0CbP/AL8J/wDE0AfkV/w8z/4JPf3LL/wnJP8A4xR/w8z/AOCT39yy/wDCck/+MV+uv/CGeD/+gTZ/9+E/+JrmvGfgzwf/AMIfq3/Eps/+POf/AJYJ/cP+zQB5N8EJf2V/2ifhpp/xb+FGgaRf6HqbTLBK+mRwvugkaJwyPGGUhkPUDIwRwRXxb/wRG/5MUsP+wzqP/oa103/BGT/kwDwt/wBfmqf+lctcz/wRG/5MUsP+wzqP/oa0AXf+Cbv/ACdL+1J/2OUX/oV1X7AV+P8A/wAE3f8Ak6X9qT/scov/AEK6r9gK+Fzf/e6ny/JHs4X+EgooorzTc/jh/wCC7/8Aye3af9izYf8Ao24r9xf+DfP/AJMQvP8AsatQ/wDRNtX4df8ABd//AJPbtP8AsWbD/wBG3FfuL/wb5/8AJiF5/wBjVqH/AKJtq+/y7/dafoeLX/iSP3JooortMQooooAKKK/ErxV/wWJ8MfCT9v7xJ+yp8cNIg0Xwdps9rYW3iNJHbyLu4hSUG7B+VYXLFQy48vblsruZAD9taKignguoEurV1kikUMjqcqynkEEcEEdDUtABRRRQB+RP/Bcv/lHH4u/6/tJ/9LIq/mM/4I+f8nn2P/YJv/8A0AV/Tn/wXL/5Rx+Lv+v7Sf8A0sir+Yz/AII+f8nn2P8A2Cb/AP8AQBVw+JEVfgZ/WjRRRXaeUfm38S/+UtPwC/7BOv8A/pFdV+2lfiX8S/8AlLT8Av8AsE6//wCkV1X7aVx1fiZ6dD4EFFFFZmoUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB+H37E/wDydX+0z/2OC/8AoVzX6Y1+Z37E/wDydX+0z/2OC/8AoVzX6Y120vhR5uI/iMK+Ov8AgoH/AMmYfET/ALBL/wDoa19i18df8FA/+TMPiJ/2CX/9DWqlsyIfEj+c7/gkP/ykc+F3/X9df+kc9f6B1f5+P/BIf/lI58Lv+v66/wDSOev9A6uA9UKKKKACiiigAor8dP2Uf+Ctngr41ftO+MP2Xfi5p8HhTVrLX77S/DVyJGa21FbOQxeQ7vgLdEjeoGFkDBAA4USfsXQAUUUUAfkV/wAFyv8AlHH4u/6/tJ/9LIq/ld/4JTf8nreHP+vXUf8A0mkr+qL/AILlf8o4/F3/AF/aT/6WRV/K7/wSm/5PW8Of9euo/wDpNJWtD+JH1Q1uf1n0UUV75YUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcz418K6f478Hat4I1d5I7TWbKexmeEgSLHcIY2KlgwDAMcEgjPUGvjH/gnj/wTv8Agr/wTS+DWq/A74FapreraTq+tTa7NNr08E9wtxNBBbsqtb29sgjCW6EAoW3FvmIwB96UUuVXv1A/Km+/4JAfs0Q/t+w/8FHfAeteJfCHjozrcX1no1zaxaTqDshjn+0wS2krsLlDifZKm5v3g2yZevD/ANpf/ggX+yL+0B8Z/EHx68H+JfGHwu17xf5g8QL4Q1FLO11Pz2LTtNFJDL80xOZArCNm+ZkLEk/uNXI+MfiB4D+Hem/2z8QdbsNCs+nn6hcx2sXH+1Iyj9ah0oNWaA+Ffht/wS2/ZU+D37EHiT9gb4Y2t/o3g/xdZXlpq19DOj6rdSX0YiluXnkjeMzFAqqTFsUKAECjFZ/g3/glJ+yZ4a/YGtf+CcPiS11DxV8PbP7U8MmrzxtqMc1zcy3YmWe3igVJYpZW8tljHyjawYFt36FeGvFXhfxnpMev+D9StdWsJchLmzmSeFsdcOhKn8DW9T9nHt5AfgR8Hv8Ag3U/Yx+GfxQ8NfELxt4q8bfEXT/BUiyeH9B8UanFdaXY7CrqBFHbxEorqCIwVjbADq4r9S/21P2OPhB+3n+zzrH7NXxv+2RaJrElvP8AadOeOK9tprWVZUkgeWOVFfKlSTGwKMy45r6srktN8feBNa0+81bR9asLu004M13NDcxyRwBQWJkZWITABJ3EYApKnBJpLcDwL9jr9jn4OfsP/s4aP+y98HUubjw7o/2kmXU2jmu7p7uV5ZXuHjjiR2Yvt4jUBAFAwK/Kbw5/wbhfsPeFvHWs3+j+JfHVv4H166F5f+BbfWzb6DcspJWOZYo0nkiTPyBpi69N5HFfvXoXiHQPFGnLrHhm+t9RtHJVZ7WVZoyVOCAyEg4PB5rYodKDSTWwH43eCP8AgiH+y74D/YJ8Z/8ABOjTfFPjC48B+N9Wg1m6uLi7sm1K2ngltZttvKtisSxs1pHuV4ZDy2CCcj6S8b/8E4vgh49/4J9Q/wDBNzWNV1yPwNBpOn6Ot9DPbrq3kabNFPExla3aDeWhUOfIwQTgA4I+/wCimqcV08gPyz+MP/BIj9l742/sEeF/+CenjO91x/Cfgv7LJo+prcQjVYJ7RZESUuIPIZik0iOPIClWOADgj6J/Ya/Yx8FfsHfAmH4C+AvEWu+J7GK8lvTe+IbiO5u98yopRWjjiVYlCDYm0leeTX2HRQoRTulqAUUUVYBRRRQB/Jh/wVZ/5PW8R/8AXrp3/pNHX9Zf/BFX/lGZ8NP+4z/6dbyv5NP+CrP/ACet4j/69dO/9Jo6/rL/AOCKv/KMz4af9xn/ANOt5Xg1/wCJL1Ie5+plFFFYiCiiigAooooAKKKKACiiigAr+Or/AION/wDk6PwN/wBiqP8A0ruK/sVr+Or/AION/wDk6PwN/wBiqP8A0ruKAPZf+CKX/JrGv/8AY13X/pHZ1+wFfj//AMEUv+TWNf8A+xruv/SOzr9gK0R72G/hRCvjn/goD/yZ743/AOvaD/0oir7Gr45/4KA/8me+N/8Ar2g/9KIq87OP9wxH+Cf/AKSz6vgz/koMu/6/0v8A05E+6P2Rf+TUPhh/2KWi/wDpHFX+el/wSdi/4JCSftQ/tTH/AIKtnw5sHieL/hGP7fM4P/H3qf23yfIOf+fffn/ZxX+hb+yL/wAmofDD/sUtF/8ASOKv4mP+Deb9h/8AZJ/bL/aq/bCH7UvgHSfHP/CN+J9POmDVYfNFqbu81jztnIx5nkx7vXaK0wX+70/8K/I+O4h/5GmL/wCvk/8A0pmF/wAETLD4LN/wcT+P7n/gl+1//wAM+waHei6Zhcm1Nq1vDhc3GZNn9pjNt53zmNTjjNfbng3/AIOHv+CmP7RXxc+JX7Pv7HH7OOmePPFPw/128jnlhuZVtYtHsp5LctKHmizczMo8tVcYw2Ek6L/Vt8Af2Xf2cf2VvDE3gz9m3wNongfTLpxLcQaLZRWgnkXIDymNQ0jAEgM5JA4ziv5U/wDg1qs4P+GtP25r8qDL/wAJjpsYbHIX7ZrZIH1OM/QV0njn3P8Aty/8Fpv2ifh1+1FoP/BOP9gH4W2XxX+Pz6dDe+Jbaa5aLRtGkeBJzEZGeDzMI4dpHmhSNWjBLSOUTof+Cef/AAWi+MnxZ/bI1D/gm1/wUY+F0fwg+NMVq97pcdnci503VI44vPZIm3y4fyleWNkmljdUcblddrflT8c/Fvir/giR/wAF9/H/APwUD/aH8J6vrXwV+NejT6fD4i0m3+1nT5bj7DLIsi5G14ri02eWzKXgcOm4qUFr9mvxj4j/AOC1v/Bf7wb/AMFFvgB4W1jQ/gr8F9CGlt4g1S3Np/aVxAl4Ujj2llMrz33Me8lbePc+0sqEA+ifhd/wXi/4KR/tR/HL40/st/sdfs96P408Y/DbXb20tryXUvsWlwaZY3FxbGW8a4mi8y5mdIxDDE6bv3jZ2occb+zp/wAHDn/BRj9uP4Na1pf7Gf7M1rr/AMTvAKzXPjKW81EQ6HZ2w3eQtukk0NxLdTmOUfZ/M3L5RKmTJ2Vf+DZtEP8AwUC/b4kIG4eNLUA98HUtbz/Ks7/g09iiH/DWz7RlvF9qp+g+3YH6mgD7i+AP/BerV/2h/wDgjf8AE3/go74a8FWmn+M/hdLLYaloVxM8mny3aG3ZHikXbJ5MkVwpwcMrqy/MAGb42s/+C+v/AAVg+Jv7IFr+3n8CP2XdMv8A4V+HrRpvE+sX2olWne1LLeyafbLOLgWtuw2tOY5wNrsQoVwn5F/8Ewv+VZj9sv8A7DS/+idOr2b9lv8A4Le/Bv8AZr/4IRD9hf4peC/Elv8AEfWfCmvaH4VjXTydN1u11ya7jhvYpyQrRwvO8cygMzPEwXLMQoB9jf8ABc//AIKO/Eb9tb/gh/4N/aG/ZW8PSQ/Db4i3Jt/G15LerDe6DdWd1BFFYlFkja4S4nE0blY2Vo1VyFDDP7df8EFfiD+1h47/AOCcvw9tf2nvAtn4LstE8O6Bp/g+a0u47o6x4eh0y1FrfyiOaUxSTLy0biNl7oK/nT+Kf7DH7QP7On/BpXqPgD4g6De23iefW7XxlqOkvG5utPsbjUIsebERujKQBJZlIzFlt+NrY/oj/wCCCX7bfwV/a9/4J4eAPCPwl+3i9+E3hrw94P10XsAhX+0bDTYI5PJIZvMiJQ7X4z6CgD1v/gsZ/wAmWX3/AGFrD/0I19F+GP8AkWtP/wCvaL/0AV86f8FjP+TLL7/sLWH/AKEa+i/DH/Itaf8A9e0X/oArxsL/AMjXEf4Kf5zP1Kp/yRuXf9f8T/6TQNyiiivdPkQooooAKKKKACiiigAooooAKKKKACiiigAr5f8A2yPj4n7Nf7O3iH4oWxQ6nFELXTEfB33tydkR2nhhGSZWXuiNX1BX5k/to2cXxU/as/Z8/Z3vSk2m6j4hk1vUbWYjypo9NCuqsNrE7o/PTHAO7Ge6pmNefJTckfen/BPP9lS1/ZV/Z40/Q9Zh3eL/ABBt1XxHdyHfPLezDd5bOckrADsAzt3bn6uxP3VRRUHghRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH5Gf8FVv2cLrWvAlj+2H8JY4bDx78LZF1Y3exi11ptrmSSGQRglwhw43/KE8xSQHJHu/wQ+Lfh747fCfQvi54VUpZa5bCdY2YM0TglJI2K8Fo3VkOO4r7zvbKz1Kzm07UYUuLe4Ro5YpFDo6OMMrKcggg4IPBFfg/wD8ExmufB2h/E79n2aZpYfh/wCMtR061R8Fo7feVC5BOcyRyNk55JwSOlRO7A1GpuPc/UGiiiqPWCv5P/8Agr1/yeVe/wDYKsP/AEE1/WBX8n//AAV6/wCTyr3/ALBVh/6CaT2OPHfw/mf09f8ABDT/AJRx+Ef+v7Vv/SyWv12r8if+CGn/ACjj8I/9f2rf+lktfrtUHjhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH/1f7+KKKKAP8AOf8A+CjH/J+Hxc/7GnUv/RzV/VF+yh/ya18Nf+xV0b/0kir+V3/gox/yfh8XP+xp1L/0c1f1Rfsof8mtfDX/ALFXRv8A0kirlxWyPeyH45+h79RRRXCfTBRRRQAUUUUAFFFFABXwT8AP+UxPjH/snC/+ldlX3tXwT8AP+UxPjH/snC/+ldlXThfjPIzv/d16r9T9rq5vxZ4O8IePNFk8NeOdKs9a06Uqz2t/AlzAxQ5UlJAykgjIyODXSUV3nyR4F/wyl+y5/wBE18K/+Ce0/wDjVH/DKX7Ln/RNfCv/AIJ7T/41XvtFAHgX/DKX7Ln/AETXwr/4J7T/AONUf8Mpfsuf9E18K/8AgntP/jVe+0UAeBf8Mpfsuf8ARNfCv/gntP8A41R/wyl+y5/0TXwr/wCCe0/+NV77RQB4F/wyl+y5/wBE18K/+Ce0/wDjVH/DKX7Ln/RNfCv/AIJ7T/41XvtFAFLTtO0/R9Pg0jSII7W0tY1hhhhUJHHGgCqqqoAVVAAAAwB0q7RRQB+Rf7H/APykw/aY/wC4D/6Tmv0p+NH/ACR3xZ/2Br//ANEPX5rfsf8A/KTD9pj/ALgP/pOa/Sn40f8AJHfFn/YGv/8A0Q9AH59/8EZP+TAPC3/X5qn/AKVy14v/AMFSf+Ttf2Wv+xg1L/0bp1bH/BIv44fBbwV+wx4Z8PeMvF+iaRqEV3qTPbXuoQW8yh7qQqSjurDIORkcivL/APgot8Tvht8Rv2tf2Y/+Fe+IdM177H4gv/tH9nXcV15XmS2Gzf5TNt3bWxnGcHHSlLZm2H/iw9V+Z+m9FFFeQffBRRRQAUUUUAFfl58JLqDRP+CqXxX0e6bEut+HdMvYNw25W2itomC9m5Oc5HQ8HBI/UOvys/bisNc+Afx08E/t0eHrP7ZYaGn9ieIoxlVFjdMyJK7KWb5Xm+XbETuCgkjArSlu13RyYzSManSLTfpqn+Z+qdFYHhXxV4c8ceHLLxf4QvYtR0zUYlntrmBt0ckbdCD/ADHUHg81v1mdSd9UFFFFAwooooAKKKKACiivye/a+/4LUfsG/sNfGWb4DftBa3qdj4jt7SC9eK102a6j8m5BKHegK5IHI7U1FvREVKsKa5puy8z9YaK/J/8AZY/4Lbf8E3f2wfiHbfCX4S+P1g8S3xCWWn6xazaa925OBHA86LFJISfliVzI3ZTg1+sFDi1ugp1YTV4NNeQUUUUiwooooAKKKKACiiigAooooAKKK8f0r9oD4Ka78Zr79njQvE1hfeNtL0/+1L7R7eUS3Npab0jDzqmRFuaRdquVZgcgEAmgTaW57BRRRQMKKKKAP5yP+C2//JUvBH/YKuP/AEcK/Vv/AINx/wDk13xz/wBjSf8A0kt6/KT/AILb/wDJUvBH/YKuP/Rwr9W/+Dcf/k13xz/2NJ/9JLevTofAj4rM/wDep/10P6HKK/Fr/guTea7F+zh8PtJ0LVb3Rzq3xD0mwnn0+drebyZ7W9DAMv4HBBGQCQcV5h/w5/8AhT/0VX4m/wDg8h/+RK1OA/fSivwL/wCHP/wp/wCiq/E3/wAHkP8A8iUf8Of/AIU/9FV+Jv8A4PIf/kSgD5l+Cf7M3ws/av8A2nP2x/hT8VrPzrabxTZSWt1HgXNlciXUgk0LkHa655HKspKsCpIr6e/Y/wD2v/in+xv8U7H9gv8Ab0vvOtpsReC/GkpItr+2BCxwTyMTtdchQWYsjEI5KlHb6h/ZM/Yi+Fv7HcniW98Aarret33iyW2l1C81y6S6nf7IJBGA0cUQwPNckkFjnk4AA9F/aZ/Zm+Fn7V/wsvPhT8VrPzrab95a3UeBc2VyAQk0LkHa655HKspKsCpIoA/QqivwP/Y//a/+Kf7G/wAU7H9gv9vS+862mxF4L8aSki2v7YELHBPIxO11yFBZiyMQjkqUdv3woAK/Df8A4OC/+TD7T/sadP8A/RNzX7kV+G//AAcF/wDJh9p/2NOn/wDom5oA/F//AIIBf8nj+Jf+xMvP/S6xr+viv5B/+CAX/J4/iX/sTLz/ANLrGv6+K+Lzz/en6I9bB/wwooorxzqCiiigD8Wf+Clv/J6/7Jn/AGMuof8Ao3Tq/Y6vxx/4KW/8nr/smf8AYy6h/wCjdOr9jq+5yf8A3OHz/Nnj4r+K/wCugUUV8t/tdftpfsy/sJfCaX41/tT+K7bwroKyrbwvKrzT3Vw/SK3giV5ZpMAkqiHaoLNhQSPTOc+pKK/A74Bf8HLX/BJn9oL4pWXwk0Xxrf8Ah7UdUuVtLG417TZbKyuJnIVF8/50i3k4BmMYzwSCQD++NABRRXwn8U/+Cjn7Lvwc/bU8F/sA+OdSvYfiT4/09NT0e0js5JLaS3ka5QF51GxDm0m4JzwPUUAfdlFfCfw2/wCCjn7LnxX/AG2fGH/BPrwbqV7N8S/AuntqerWklnJHbR26/ZslJyNjn/S4uAc8n0NfQPw9/aO+BPxZ+JXi74P/AAx8V6dr/iTwF9jHiGxsJhO+mvfmYQRzsmUSVvs8uY929AuWADLkA9rooooAK5rxn/yJ+rf9ec//AKAa6Wua8Z/8ifq3/XnP/wCgGgD81f8AgjJ/yYB4W/6/NU/9K5a5n/giN/yYpYf9hnUf/Q1rpv8AgjJ/yYB4W/6/NU/9K5a5n/giN/yYpYf9hnUf/Q1oAu/8E3f+Tpf2pP8Ascov/Qrqv2Ar8f8A/gm7/wAnS/tSf9jlF/6FdV+wFfC5v/vdT5fkj2cL/CQUUUV5pufxw/8ABd//AJPbtP8AsWbD/wBG3FfuL/wb5/8AJiF5/wBjVqH/AKJtq/Dr/gu//wAnt2n/AGLNh/6NuK/cX/g3z/5MQvP+xq1D/wBE21ff5d/utP0PFr/xJH7k0UV+Lf8AwXk8ZeL/AAT+w1Ff+DNVvNInuPEmnwSyWU727yRGOd9jFCpK7kVtp4yoPUCu0xP2kor8C/8Ahz/8Kf8AoqvxN/8AB5D/APIlH/Dn/wCFP/RVfib/AODyH/5EoA/fSv5zPB3wW+HH7QX/AAUF/ay+FXxV05NS0fUhoCujcPG4tjtkjbqkiHlWHIPtkHv/APhz/wDCn/oqvxN/8HkP/wAiV9MfspfsLfDD9kXX/EvirwZrniDxDqXilLSO8udfu47qULZ7wgVo4YTyHwd+7hVAwM5APjT9nf8AaJ+J3/BLf4naf+yR+1vqEur/AAk1eUw+DvGMwONPGfltLtv4Y1yBz/qeo/cn91/RFBPBdQJdWrrJFIoZHU5VlPIII4II6Gvij40/Bb4cftBfDjUfhV8VdOTUtH1JNro3DxuPuyRt1SRDyrDkH2yD+Wn7O/7RPxO/4Jb/ABO0/wDZI/a31CXV/hJq8ph8HeMZgcaeM/LaXbfwxrkDn/U9R+5P7oA/onoqKCeC6gS6tXWSKRQyOpyrKeQQRwQR0NS0AfkT/wAFy/8AlHH4u/6/tJ/9LIq/mM/4I+f8nn2P/YJv/wD0AV/Tn/wXL/5Rx+Lv+v7Sf/SyKv5jP+CPn/J59j/2Cb//ANAFXD4kRV+Bn9aNFFFdp5R+bfxL/wCUtPwC/wCwTr//AKRXVftpX4l/Ev8A5S0/AL/sE6//AOkV1X7aVx1fiZ6dD4EFFFFZmoUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB+H37E//J1f7TP/AGOC/wDoVzX6Y1+Z37E//J1f7TP/AGOC/wDoVzX6Y120vhR5uI/iMK+Ov+Cgf/JmHxE/7BL/APoa19i18df8FA/+TMPiJ/2CX/8AQ1qpbMiHxI/nO/4JD/8AKRz4Xf8AX9df+kc9f6B1f5+P/BIf/lI58Lv+v66/9I56/wBA6uA9UKK/B3/gtM3iXxD48/Z4+EmneINW0LS/GPi86bqJ0m7a1kaOeS1h3jGVLxrK/ll1YKWPBBIOb/w5/wDhT/0VX4m/+DyH/wCRKAP30or8C/8Ahz/8Kf8AoqvxN/8AB5D/APIlH/Dn/wCFP/RVfib/AODyH/5EoA+c/wBlD9lz4Z/tY+Av2gvh38RIWjlj+KGtT6dqMHF1p90Cu2aFuoIONy9GHB7Efev7G37ZPxM+GfxMt/2FP267hY/GkahPC/ihyRa+JbUfKgLtwLsDA55kPyt+9wZfYf2U/wBkr4c/sheDdU8HfDy/1XVRrWoyape3msXC3F1NcSqqksyRxLjC5+7kkkkmtL9qP9lz4Z/tY/DOb4d/ESFo5Y28/TtRg4utPuh92aFuoIONy9GHB7EAH6MUV+On7G37ZPxM+GfxMt/2FP267hY/GkahPC/ihyRa+JbUfKgLtwLsDA55kPyt+9wZf2LoA/Ir/guV/wAo4/F3/X9pP/pZFX8rv/BKb/k9bw5/166j/wCk0lf1Rf8ABcr/AJRx+Lv+v7Sf/SyKv5Xf+CU3/J63hz/r11H/ANJpK1ofxI+qGtz+s+iiivfLCiiui8P+Gb/xI8qWLxoYgCfMJHX0wD6VMpKKu9gOdor0j/hV2v8A/Pa3/wC+m/8AiaP+FXa//wA9rf8A76b/AOJrP6zS/mC6PN6K9I/4Vdr/APz2t/8Avpv/AImj/hV2v/8APa3/AO+m/wDiaPrNL+YLo83or0j/AIVdr/8Az2t/++m/+Jo/4Vdr/wDz2t/++m/+Jo+s0v5gujzeivSP+FXa/wD89rf/AL6b/wCJo/4Vdr//AD2t/wDvpv8A4mj6zS/mC6PN6K9Qg+FmqN/x9XMSf7uW/mBWonwpiA+e+JPtHj/2apeLpL7Qro8bor2b/hVNv/z+t/3wP/iqP+FU2/8Az+t/3wP/AIql9cpd/wAwujmPB3hS18QQNczsf3MoDLnAZCOfoR1FY3ibwzd+HLvy5Pnhf/Vyevsfevc/DHhlPDUEsCTGbzWDZK7cY/E1tajp1pqto9jfJvjfqPT3HvXI8a1UbWsRcx8mUV03ibwzd+HLvy5Pnhf/AFcnr7H3rma9KMlJXWxQUUUVQBRRRQAV/n0/ta+If2ZvFX/Bar4raH/wWvuvFVr4P0+WS38HrYNObG304yA2jMsKtOLeSDLk2y8zl9+Tmv8AQWr+SXx1/wAFO/2aviD+2J8Tf2Iv+C5Hw08J6JpnhW6eHwjrEukXNz5lv5jkSNPuuJovtcBhlhkgESgb1c5Kgc2JSaSb69dvmJnd/wDBHv8AYl+Hnwc/bM8Q/Hf/AIJ0fHnRfGXwB1W1MOpeExeSXOqwSSwAwtcRFEEciXKExSSKkhgLJyc5+h/E/wDwcD+CdO/aF+Jf7KngL4N+LvGvj7wLrVzo2n6ToC/bZdWNnLLHcXH7uMm3giEalmYO37xQFIDEfiP+wto/7OcX/Bfzwpc/8Eel1e6+FNtps3/CUSMbs6dHFJBcC5Aa5xMbYP8AZ/J+0E5ugNmVCGvQf2B/2zP2cf2OP+C6f7VOr/tJ6rD4a03xPrmvadZ63dRsbeC5TU2m8iSRQfLEyIxDNhS0YBOSKwhUsko6ateXyA/ot/4Jrf8ABWv4Tf8ABRTUvFHw4Tw3qnw9+Ivgpv8Aic+F9ax9pijD+WzxttRmEcn7uVXjjeNyoZfmBP8APf8A8EQ7vwTYf8E8P25r74lWd1qHhyG31iTVbWxlWC6nsl029M8cMrK6pI8e5UcqwViCQQMV7p/wTA8V6H+2D/wcGfHv9s/9nZZJvhlb6ENPbVEiaKC6uJIrG2QAMFb/AEiS0nuFyASqZYAnB+Xf+CQX/KLT/goD/wBgjxD/AOmi+p87k4t/3vmB2nxB/bUsP2cv+DfjRr3/AIJ6eF/GvhHRvFus6jYR6414Lu68PiLUY/Pe5vIII1jF5ueCBh5bBnAVi1ff37Df/BXvwt+zl/wSK0T43ftP+BPFXh+y8DWWjeHdMmvIWMviy7uLcsk9i8yxI8ThHkaQuwChjljhT+Y3g+xvL7/g0a8SizjaUxa0srhRkhF8R2+48dgOSew5r6X8T/tJ/wDBOD4z/wDBADwH4A/aAfxF4t0TwVp/h3SdZfwVbpLqXh3XFt5Fgkk+1NFCinZJCWYvG3mBeC6GlGUk73+yB97eDP8AgvF4s0f4o+C/Bf7V/wCzd43+FOheP7hLbRtcu83kTtIVAaWL7PCyqoYNJtLuiHdtIr+hqv8AOt1/9on40/8ABNw+APFP/BOf9r5vjjo/iK+trW18A3MU9zcwRSg7IZrCSS5SLcQISImgn3suxf4l/wBETS57y60y3utRg+zXEkSNLDu3eW5ALLkcHB4z3row9RyupPX5foCL1FFFdAwooooAKKKKAP5MP+CrP/J63iP/AK9dO/8ASaOv6y/+CKv/ACjM+Gn/AHGf/TreV/Jp/wAFWf8Ak9bxH/166d/6TR1/WX/wRV/5RmfDT/uM/wDp1vK8Gv8AxJepD3P1MooorEQUUUUAFFFfyYf8E1f+Cnvxz+CGkaTJ+2ddX+t/DLxxqVzBp3iy8ka5k03Ug5MsU8hJbyWJ37W5QEsmVDhQD+s+iqtjfWOqWMOp6ZMlxbXCLLFLEwdJEcZVlYZBBByCDgirVABRRRQAV/HV/wAHG/8AydH4G/7FUf8ApXcV/YrX8dX/AAcb/wDJ0fgb/sVR/wCldxQB7L/wRS/5NY1//sa7r/0js6/YCvx//wCCKX/JrGv/APY13X/pHZ1+wFaI97DfwohXxz/wUB/5M98b/wDXtB/6URV9jV8c/wDBQH/kz3xv/wBe0H/pRFXnZx/uGI/wT/8ASWfV8Gf8lBl3/X+l/wCnIn3R+yL/AMmofDD/ALFLRf8A0jir6Gr55/ZF/wCTUPhh/wBilov/AKRxV9DVpgv93p/4V+R8dxD/AMjTF/8AXyf/AKUwor5v8V/tgfsweBfEV54R8ZeOtI0vVLCQxXFrc3CxyxOOzK2COOR6jkcVz/8Aw3Z+x1/0UnQP/AxP8amWYYVNp1Y3/wAS/wAzSnwxnFSKnDBVXFq6apzaaezTtsfVc8EF1A9tcoskcilXRhlWU8EEHgg0ltbW9nbpaWkaxRRqFREAVVUdAAOABXyr/wAN2fsdf9FJ0D/wMT/Gj/huz9jr/opOgf8AgYn+NL+0cJ/z+j/4Ev8AMv8A1Uzv/oBrf+C5/wCR9YUV8n/8N2fsdf8ARSdA/wDAxP8AGj/huz9jr/opOgf+Bif40f2jhP8An9H/AMCX+Yf6qZ3/ANANb/wXP/I4v/gpX+y74x/bU/YW+JH7LXw+1Cy0vWfGemLZWt3qBcWsTiaOTMhjR3xhCPlUnNYP/BMb9kDxP+xN+wl8NP2W/ihdadrWveBbS5hlvbAO9uZJ7meYNCZUSQfJKFJKqevavUv+G7P2Ov8AopOgf+Bif40f8N2fsdf9FJ0D/wADE/xo/tHCf8/o/wDgS/zD/VTO/wDoBrf+C5/5H1eQGBVhkHqKqWGn2GlWiWGlwR20EedscShEGeeAAAOa8l+Gf7RHwO+M2pXGj/CrxTp3iC5tIhNPHYzCUxxkhQWx0BJwM9a9mrop1YVI81OSa7p3PJxeDxGFqOjiacoTXSScX9z1Pyw/4LGf8mWX3/YWsP8A0I19F+GP+Ra0/wD69ov/AEAV86f8FjP+TLL7/sLWH/oRr6L8Mf8AItaf/wBe0X/oArysL/yNcR/gp/nM/San/JG5d/1/xP8A6TQNyiiux03wRq2qWUd/byRBJASAxIPBx2U17p8fOcYq8mcdRXf/APCuNc/56wf99N/8TR/wrjXP+esH/fTf/E0XRn9ZpfzHAUV3/wDwrjXP+esH/fTf/E0f8K41z/nrB/303/xNF0H1ml/McBV/S7eO71O2tZvuSyojY9GIBrsP+Fca5/z1g/76b/4mrum+AdYs9Rt7yWSErFIjkBmzhSDx8tK6JliadnaRyniHw9daBdbH+eF/uP6+x9656vpy/sLXUrVrO8Xej9R6e4968E8Q+HrrQLrY/wA8L/cf19j70JmeGxSmuWW5z1FFFM7Aoori/iL8QfCXwp8D6n8RfHd2LHSNIga4uZiC21RwAFGSzMSFVRySQBQDdtWdpX5aeIvGHg/xH/wV2+CF54e12z1GOHSdYgljtrhJRDI1neFd21jtaTcAAQCcDr25DwJ8K/2q/wDgqXNB428c6hcfDT4ITvJHDp1lK0ep6vAB99iUaN0ZuNzjylwNkchBc/T8n/BJP4X/AAw+LPwu+Jf7MQi0CXwdrTX+tTajcTXU2oWjFP3aqQyh1UMiFTGqhiSHbmpbPKxOLU04RWnc/YOiiipOAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK/B7/gn1dr4t+K37QPxSsnNxY6348vY7WcFTHJFBJI6bSmQcRzJkgkEEHJ6n9DP2/v2nbL9lX9mvWvG1u7nX9URtJ0GKHBlbUbpGETgHORFgytwchcdSK/Nj/glP4m0vw58J9Y/Zo17TJ9D8a+BtQn/ALatLlVR5GupXKSrjBYKqiNic4wpztZacTrwVvaq5+qlFFFWeyFfyf8A/BXr/k8q9/7BVh/6Ca/rAr+T/wD4K9f8nlXv/YKsP/QTSexx47+H8z+nr/ghp/yjj8I/9f2rf+lktfrtX5E/8ENP+UcfhH/r+1b/ANLJa/XaoPHCiiigAoor4B/4KleMfFfgH9gP4leK/BGo3Ok6nbafCsN3aSNDNGJbmGN9jqQykozLkEHBoA+/qK/DL/gnJ/wUK+ID3/h/9kv9uIHTfGupadaXvhfXrhv3HiGyuYw8KtL0N1g7Q3WVgVbEwIf9zaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/9b+/iiiigD/ADn/APgox/yfh8XP+xp1L/0c1f1Rfsof8mtfDX/sVdG/9JIq/ld/4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/wCxV0b/ANJIq5cVsj3sh+Ofoe/UUUVwn0wUUUUAFFFFABRRRQAV8E/AD/lMT4x/7Jwv/pXZV97V8E/AD/lMT4x/7Jwv/pXZV04X4zyM7/3deq/U/a6vEf2h9Y+PWh/C281H9mrStO1nxcskItbXVXKWrRlx5pciSI5CZK4cc4617dRXefJH49/8LQ/4LX/9E38Af+BMv/yfR/wtD/gtf/0TfwB/4Ey//J9fsJRQB+Pf/C0P+C1//RN/AH/gTL/8n0f8LQ/4LX/9E38Af+BMv/yfX7CUUAfj3/wtD/gtf/0TfwB/4Ey//J9H/C0P+C1//RN/AH/gTL/8n1+wlFAH49/8LQ/4LX/9E38Af+BMv/yfR/wtD/gtf/0TfwB/4Ey//J9fsJRQBzPgu68UX3g7Sb3xvbR2etTWUD6hbwnMcV0yAyohDPlVfIHzNwOp6101FFAH5F/sf/8AKTD9pj/uA/8ApOa/Sn40f8kd8Wf9ga//APRD1+AlxbftZXP/AAUe+PQ/ZW8UaV4ZuBLpP9otqlsLgTJ9mXywmYpcFTuz0zkV7f4g8H/8FbfE2gX3hvVfip4VNrqFvLbTBdNVWMcqlWwfsvBwetQ6kU7NnVSwVepHnhC6PmP/AIJ3/sZfsyfGP9lfRPHvxL8Jwarq91cXqS3Mk06MyxTuijCSKvCgDpX6E+CP2GP2Tvhz4os/Gng3wVZ2eqafIs1tOZJpTFIpyGUSSMoYEcHGRWh+xv8AATWv2aPgBpHwj8RX8GpXtjJcyyzWyssWZ5Wkwu7DEAMBkgZ9K+oq8+pUbk7PQ+twuFpxpQ5oLmSXRbhRRRWR2hRRRQAUUUUAFYfibw1oPjLw9e+E/FNrHfabqUD21zbyjKSRSAqykehBrcryz40fGHwR8BvhtqfxQ+IF0LbT9Ojzjq80rcJFGOpd2wB6dTgAkNXvoTNpRblsfmJqHwu/aF/4JwHU/GvwNuI/Gnwn8z7VfaBqEvl32nh2AZraTox6YIBLZw0TMPMrv/B//BYD9knxBbeZ4iOraDKASUubTzhnJAAaBpOcYPIArkPh3+z78Wf29JbP45/tfXU2k+EbgeZo3g3T5HgiktH2uklzIrCQl9qt2dsBh5a4Sv0U8H/s3/ADwDpf9j+EPBmjWUBJZgtnEzOSScs7KWYjOBuJwOBxW8nH7Wr8jzKNOte9B8sOiev3LovK569p9/barYQanZEtDcxrLGWUoSrjIyrAMDg9CAR3q5RRXOeqFFFFABRRRQAV/Hf8f/C3hjxr/wAHYXw68M+MtOtdW0258OSedaXsKTwSbNC1F13RuCrYYBhkcEA9RX9iFfxn/wDBRez/AGvP2d/+C+Ogft2/B34EeMvizoPhfQIYVj0PTL1rW5kutOurJkF5BaXMatEZw7Dax42nGcjahu/Q8/Mfhg3spJv0PWf+DmH9jL9nv4afsmeHv2tPg14Z03wV458LeJrC3j1LQ7aPT5ZoLhZCFfyFTc8cqRyROfmTBAOCa+ov20/+CxPxS/Z9/Y1/Z6tfglocfib44/tC6Fos2i293GPs8E9/Ba+ZLLGpj3SSTXKxwxgqhYszHam1/wA/v2rLv/gqp/wXavPBv7M2rfs/6v8AAH4Y2Gswatr2p+I3lEzCINFvX7TbWbuY45ZDHBHExeQqWZVGR9rf8FlP+Cb/AMdru3+AX7Uv7CWjjxDr/wCzfLZR23hxzvuLyx06W2ltfKA2+Y0TQYkjBDOjkpyu1tFb3Yz3OWTm3Vq0E0ml037tLyR4X8Uf2/P+Cx//AASb8Z+BfiD/AMFL7nwn8R/hZ401BdO1C58OQeVd6TK48xlVkt7UNKkau6IUlSUIyh1OGH1n/wAFFv8AgpV+1jL+2v4E/wCCZv8AwTci0WPx74t09dXv/Eetp51nY2skck6hFw6/LBE00jtHJlWRUQsePzk/bU8V/t8/8F5Lv4ffsiaF+z74o+DPhHRNdi1nxRr/AIqglhhtpoo3t2EJmhtxL5Mc8pWNcySsy5WNVLV9Af8ABQ/9mL9qH9iP/gp78Ov+CpP7K3w51H4p+E9L0SHQNd0HRkebUIUhtZLHIjiWSUobdkdJFjZVkiIk2gqSWjdXSvr/AMATqVOWXJKTheOut7fat1PvT9gL4pf8FjPCH7Uuufsz/wDBQjwzp3jDwnFZ/adP+IegQJa2Yn2B1iddsHmK4yhC26vHKMHcjBhyX/BED/goF+0l+3N4k+O+m/tBX9nexeAvENtp2kC0tI7UxwSNdhg+z75xCnJ/rUX7A/7X3/BUb9tj9s7U/iF4z+HF58Iv2eNOsCkWmeJtP8nVb278sqhhlkjilO6VvNdgjQoieWGLnJ/LL9hXVv23/wDgkf8AtdfH74Ln9nTxj8TLf4j66t94a1PRIGGnSiGa5MDzXpja3jhkjuUMrlw0DKQ65PyrlupKyvoaqs4unJOTheW9+2nnbtc+uv2Jv+CqP7X3xw+B/wC3F468f6pp8+ofAvTtTuPCbRWMUSwSWtvqskZlVRiYBrSLIbrg+pr488D/APBST/guV8dv+Cb2oft/+BNX8GeH/DXw+N1/ajz2Qk1LxB9nuMyyRwmF7eGGCORItoaOR2ikbdyopf8AgmN+yn+2F8O/2S/+ChHhb42fDvXtJ8UeMtA1GDTIDpd0iaxevZ6yjrpu+MG7VpZUEZh37g6Y+8M/Sn7JH7On7QXhr/g2n8d/AjxF4E8Q2Hji803xGkHh650u5i1WV57p2jCWjRidi64KAIdw5GapqKb0W6OeDrTjG8pL3ZP5p6Hhfj3/AIKjf8FqviX+wTD/AMFUPhbF4I8EfDTQTb2tzorQvfX+rPHcLYXN4PNjIS3N4xVIkmjkREbLPtDv96ftpf8ABcLxN8Ev+CZfwk/aj+GPhq1f4j/G22ii0jTbktNZ2U6xj7XKcFGlWKQqkSFl3F1LcBgfnfQP2cv2g4P+DWGT9nqXwH4hTx8bC5T/AIRk6XcjWNzeJnuAPsXl+fkwnzQNnMfzfd5r5y/a8/4Jf/tQ/tD/APBFn9me/wDAPg+9uPH/AMHLK4l1DwjqNtJbX81pfMDOgt5dkhmRoIj5GA7ozbcttVi0G9e43LERi3FttwT+d9bfLoe/aD/wU0/4KU/sGftLfCvwX/wUQ8VeBfiV4G+LF4NOku/CZjNzoNy7xJ+8aCKFSIjMpIKSeYgfY+5efWP2xv8AgpL/AMFFPB//AAWGh/4J7fslW+garD4i0GBtKt9bi8q2s7ya1eeW8uJ41aZordI3kMS8vgKMk7T8A/BP4H+BP2j/ANpn4feBP2fv+Cfcnw+0e1njl8Z6149i1azj05kdGZrOX7RArNEA5RXRpJmKDZGoZj+gnin4BfHS5/4OdPDfx9g8Fa9J4Ft/C0lvJ4jXTbg6Skx0q5j2NebPID72CbS+dxA6mhqN9ujHGVVxSUnbmS63t11aRU/Y/wD2/wD/AIKT/C//AIKsz/8ABMT9vXVPDni668RaTc6jo2saNai1SF0tJL2IrtjiLRFIpI3SSIuHUEOVBL/lR/wS98Lf8FJW/wCC4XxVsdP8SeE18YafqMcnxNuGjk+yX2kpqNr9uj04fZsrM4x5RZYh6stfrF8VPgF8ddR/4Oc/hr8fdP8ABWvT+BbDwrPb3PiOPTbhtJhmOlalGEkvAnkK5eREClwdzKOpFfNvwitf2pP2F/8Agvx8WvHuo/BbxZ4x8K/GK9h0+y1vR7KeWwtbTUbu0le8knSKSMx2yB/OQsrKV5wDmhNWdktUKUZXjzt2jNq+u1tDjvEf/BXr9uz9pv8Aa9+Kfwe+E/xp+HP7O9h4C1i50fRtJ8ZwIlxq7Ws0sJMl1dQTRJIzR/OqshXeqqjYZz/SP/wTm+In7Z3xM/ZrsNf/AG6/D2j6F42E7osuhXsF7Z39kVVorkG3lmjR2JZXVJGQ7dy4DbV/mL/bV8M33jX9o74gaP8A8FLP2I9U8XXs8wTwx41+EFlfRS36LuVJLydJpIp5HTy8eapkiAKtE2Fx+mv/AAbefso/tV/sufsw+MIv2i9N1PwvpHiXW0vvDXhrWHJvbC2VCJZJYiF8lpyUBQojExFii7hmakY8l0a4SpU9vyybe/fT1TVl5WZ/RfRRRXMewfzkf8Ft/wDkqXgj/sFXH/o4V+rf/BuP/wAmu+Of+xpP/pJb1+Un/Bbf/kqXgj/sFXH/AKOFfq3/AMG4/wDya745/wCxpP8A6SW9enQ+BHxWZ/71P+uh7p/wXF/5IP8ACv8A7Khof/pPe1+kFfm//wAFxf8Akg/wr/7Khof/AKT3tfpBWpwBRRRQAUUUUAfPv7TP7M3ws/av+Fl58KfitZ+dbTfvLW6jwLmyuQCEmhcg7XXPI5VlJVgVJFfFP7Dn7VPxp/Zo+Otj/wAE3P2xpJdbvZ4s+CvE8KNN9vslDbIpwNzqVWNgHbJjKlXJXa5+gf2w/wBsPTP2btN07wR4I05vFnxL8WN9m8OeHLbLyzyudommCnKQIc5OQXIKqQA7p1/7Cv7CupfBPUr/APaO/aOv18WfGbxYu/U9TfDxadE4GLOzGAERBhWZQAQAq4QAEA/TCvw3/wCDgv8A5MPtP+xp0/8A9E3NfuRX4b/8HBf/ACYfaf8AY06f/wCibmgD8X/+CAX/ACeP4l/7Ey8/9LrGv6+K/kH/AOCAX/J4/iX/ALEy8/8AS6xr+vivi88/3p+iPWwf8MKKKK8c6gooooA/Fn/gpb/yev8Asmf9jLqH/o3Tq/Y6vxx/4KW/8nr/ALJn/Yy6h/6N06v2Or7nJ/8Ac4fP82ePiv4r/roFfy5/8HMn7AX7V/7V/g74QfH/APZY8PJ4/ufhBq17faj4QljFwNQhumtZFkFsSv2lUNqY5YFJkdJfkHDV/UZX86n/AAXQ+G//AAVT8NeKvhh+2N/wTW1jX9bt/AF2H8T+AtLu5lh1aCGVZ45Hs4nT7YjAPBPEgaUo6FFO1ivpnOfzyfF7/gph/wAEw/257vwl+zF/wV0/Zs1z9n7WvD17EseteGIUsmtFKtEyXMMtrDdw2eW3NEqXDKyKR0Nft9/wW/8A+CnH7Q//AATJ8L/sv2/7F99beJtC8YzT2tzHcpFfS63YWCaeLZY7oq217hJmHnIpyXDAHAr8uv8Agop+1X/wUU/4Lh/BjQv2L/h/+xR4n8D6rNrNpcXviXxPBcC20qSL76xXNxZWqW4bP712fcYwUEbFgRS/4OMPgj8Sf2a/2f8A9gD9nfw3qUeteL/A8cmg2l65IhuNR0+HR4I3BfBEZlQbd2CExmgD62/ar/4KP/8ABcv/AIJPfEP4fftH/wDBQb/hBvFXwg8darHp2qaF4Wt2EuiPIpmaBLh445WuFhWRoy0txFIYnUlcq5T/AIKB6hZav/wda/sk6tpsgmt7rwNZSxSL0ZHm18qR7EHNeCf8FK/G/wDwUm/4Lm3Pw0/4J5Wf7Mviz4QrofiSDV/GHiDX4ZG0i0uIIZbUyW92Y44JreOOeeRCsjPcfKI1PVvs/wDbM/ZW+OMn/ByT+yt8Ufh34D8Ral8OvB3gex0u98Q2mmXM+k2LW8mtKI7i8SMwROFkiJV3Bw68fMMgG58H/wBrP9pX4lf8F4f2qP2Q/hTY+D9K1Lw/8PtSufC+ry6JbQXo1cw6ULRr6/iha5nt1muMyI28FVX5TtUV+WH/AAbOeGv+CgU3/BQz493fhXxB4Yi8M6Z4qtl+LEMyP9p1G4aTWFtzpZFuQqrdCdn3tD8hXg9B+p37FP7Ov7QPhT/g58/aN+P3ijwL4h03wJrnhGW203xJdaZcw6ReTH+xcRwXjxiCV/3Unyo5PyNx8px8rf8ABH2y/a9/4J9f8FX/ANon9n74gfAzxffaT8avGQms/GMGn3DaHp9nZXGqTQ3ks6xGKWCdbyMAiVCrAq2GyAAeJ+CP+C2P/BS39uj4pfES5+Cvx2+FnwAl8Nalc2fh7wF4vhht7/VFhz5cbXl/C8Jmcjy22zR/vQf3caYav6/v2AvHv7XnxI/Ze8P+J/25PDOleFviLIrrfQaJeRXthcRcGG4iaGWZF8xCNyCVwGBIO0gV/Fx+1x4GuPid8TviPoP/AAU4/wCCffiHUPiZeXsx8P8Ai/4JWOoQ2WplwQJZ5VkuILiWRgZTM8UkuGCyQqwOf6BP+Dan9lD9rz9kT/gni/gb9r2G80i+1XX7rVNE0G/kL3OlaZLDCqxupJ8gyTJLL5H8G/LAOzqAD+hCua8Z/wDIn6t/15z/APoBrpa5rxn/AMifq3/XnP8A+gGgD81f+CMn/JgHhb/r81T/ANK5a5n/AIIjf8mKWH/YZ1H/ANDWum/4Iyf8mAeFv+vzVP8A0rlrmf8AgiN/yYpYf9hnUf8A0NaALv8AwTd/5Ol/ak/7HKL/ANCuq/YCvx//AOCbv/J0v7Un/Y5Rf+hXVfsBXwub/wC91Pl+SPZwv8JBRRRXmm5/HD/wXf8A+T27T/sWbD/0bcV+4v8Awb5/8mIXn/Y1ah/6Jtq/Dr/gu/8A8nt2n/Ys2H/o24r9xf8Ag3z/AOTELz/satQ/9E21ff5d/utP0PFr/wASR+5Nfhv/AMHBf/Jh9p/2NOn/APom5r9yK/Df/g4L/wCTD7T/ALGnT/8A0Tc12mJ+oFFFFABRRRQAV5X8afgt8OP2gvhxqPwq+KunJqWj6km10bh43H3ZI26pIh5VhyD7ZB9Ur4l/bV/bV8G/sieDLZEtm1/xrr7fZvD/AIftsvcXlw5CKSqZYRhiASBlm+VcseAD5M/ZG+OXxd/4J7/tHaD/AME8f2gr2TxT4K8UyCPwHroYPdWqu2xLW4TO4RBsIP8Anm2NuYjiL+hWvx6/YD/YD8ZeGfGc37aX7aU66/8AGDX18yCCTD2+gW7jCwQKMqJgp2sy8RrlEJy7v+wtAH5E/wDBcv8A5Rx+Lv8Ar+0n/wBLIq/mM/4I+f8AJ59j/wBgm/8A/QBX9Of/AAXL/wCUcfi7/r+0n/0sir+Yz/gj5/yefY/9gm//APQBVw+JEVfgZ/WjRRRXaeUfm38S/wDlLT8Av+wTr/8A6RXVftpX4l/Ev/lLT8Av+wTr/wD6RXVftpXHV+Jnp0PgQUUUVmahRRRQAV/Jr/wSu/bn/a6+H/8AwWf+Ov8AwS7/AG1/HN/4vhgW4vPBc+qLEsqwWbfaYFQxohJudOuFmfO4AwcHrn+sqv4sf+DjXwzrP7Cf/BRL9m3/AILDeAbZ1t9O1SDQfEvkDHmizZpVQkdXu7CS7gJ/uRAUAfTn/BY39t79rfXv+CqP7PP/AATC/Ye8b33g3UfEjJf+LbvS1ieUWV7LkhvMSTabWztbi4IAGRIpPav2S+Pn/BXf/gmp+y58U2+CHx1+MOhaD4phKpcaezy3ElqzDIW5aCOVIGxziZkOCD3Ffzff8EY28Q/t7f8ABTL9rH/gsfaWr6naaIl54f8AAYmQ4kdotlvsBHyyR2FtAjjH/L0eCTX5A/8ABHb4V/HT9pD9m/44eO9P/Z68BfHa68RapdR+J/FfjfXLaw1TS/PgE7yRNcxs0GXaS4N0rKTIvJ/d0Af6Vuk/Eb4f694Dh+Keia5p934YuLP+0YtXhuY3sXs9u/zxOGMZi2fNv3bcc5xX5yeCv+C23/BKP4ifFe3+Cfg/44+HLvxDd3C2lvGZJYrWedztVI7uSNbV2duECyncSAMkjP8AIb468I/tefsmf8GvXjr4O+L/ABFpOsadJ8QrWytr3wxrlrrVnD4d1D7PPLbi4spJUVXvtxeMsCVnOflbB/YAf8E/f+CFb/8ABHb4FfEP9rHStA8IeFbjR/Dt6/i6xVbPVL3Vr+1DTRz3tvG9zL50plM0TEqmz+ARDaAem/8ABXT/AILtxfsQ/tyfB39j/wCG2s6JZWN74k0eT4mapexST3Oi6LNc2kkkapjy08+yleRpQJGVPuBXww/cnxl+3B+yT8PP2cNO/a68d+PtJ0j4b6xbwXVhrt3KYre6jul3QiFWAkkeRQSsaoXIBwvBr+PT/gtZ8HP2YfEf/BUf9gHUfA+iaVr/AIZ+ImqeG7fUb+4gS7bxHpQv9Mtrc380ql71WsyEzcFy0bYPBNdn/wAFbPhx8LvGn/Ben9k39hX41WNron7PlholgdL8OQKLLRWuZZ71FhWKPZEomlt7W1ZFA/d4UY3cgH9Sn7KP/BTj9gj9uDWrrwx+yz8T9H8WatZxmeXTojJbXvlKcGRbe5SKZkU/edUKjIyRkZk+M3/BTL9gz9nf4ka78Ifjd8T9H8M+JPDWmrq+pWN80kckFnIEKSE7CrF/MQIikuzMFVSTiv5Tv+C8XwG+AX7Dv/BRD9kH4mfsC+GtI8A/E7VfEJgn0rwvbRadHd2yXNnDbGW2t1VFExmnt2bZ++QsjbgmBF+05+zN8I/2s/8Ag7e034T/AB10eDxD4WXw9a6leaZdLvt7prLRnlhSVejRiYIzKeGC7SCCRQB/UrrX/BV7/gnV4c/Z00X9rLX/AItaJZeAPEc01tpWpztIjXs1u2yaOC3MYuJHibiRViJT+LFdH+yX/wAFMP2Ef26dSvdC/ZS+Jek+LtS06H7RcWEXm216kGQpl+zXMcUxjDMoLhCoJAJyRX87f/Ba3/gmJpt58WfgB/wwDrnw28P+K/htHcweHvhN4murG3h1RL26e6DWNheMYZzJN5okjdVVtuVcMmK8A/4J6/tPWvwj/wCCvfg34Tf8FFP2R9B+D/x78X2b2ejeK/CZlsbWRJIp4ld7CK4nspVuAkkL3ULsd4AYEDKAH25+zr/wcVfD341/8FgvFX7M/iTxZ4f0b4IWWjvpnhPUYYpnn17xHc3enxwbpmUsp2yXKRxqkacEuWIUj91f2tv+Cjv7D/7CkunWn7WHxI0rwdd6shmtLOcyXF5LECVMi21uks3l7gV8woEyCM5Ffyh/8E7v2W/2Z73/AIOh/wBo74W6h8PvDcvhvwh4cn1bQdJk0u2ay0y/gutEaK5tYDH5cEyGSQrJGqspdiDyaf8A8ErvhD8F/wBuP/guv+15rf7fujad458XeEtUvrTw5ofiWFL+1h0+31Ca1LRWtwGR1tYEto4iUIVZdw5YNQB/Yh+zf+1b+zh+1/4C/wCFnfsy+M9L8aaGspgkudNmEhhlHPlzRnEkT452yKrEEHGCDXxZff8ABcD/AIJP6d4as/F158cPD6WF/qcukQPmcs13CsbyKUERdVRZYy0jKI13AFs1/Pn/AME9/Cngv9mH/g6Q+Mf7N37GEcen/DG+8OyTa9o+nN/xLrK4itbWdlRFyi+RfStGijHk+c8S4AK186/8Gqf7AP7J/wC0z4T+Mnxo/aI8E6Z4z1TRfEen6fpJ1WETrY+SHuWkhB4WR3Me5+uEAHBYEA/sB/aq/wCCmf7Bn7Eerad4e/ak+J2keEtT1WJZ7awnMk940LHaJGgt0llSMnIDuqqcHng4+kfgj8d/g1+0n8OLH4u/ATxNp/i3wzqW77PqOmTrPCzIcMpKn5XU8MjAMp4IBr/Pz/Z70v8AaK/aJ/4LiftY+IrT4HeEf2gvF+k61rNiui+PNQgt7fTtKtr9rKKSCK6jkSXy4I4LdWC/JGwx9+v2m/4NvP2b/wBoH9mj4xftDaJ4ubwrpvgbxFq0eo2Phvwx4msvEEWg6jHPcRy2rrayPJCUiKQkyKrN5ADDctAH9X9FFFABRRRQB+H37E//ACdX+0z/ANjgv/oVzX6Y1+Z37E//ACdX+0z/ANjgv/oVzX6Y120vhR5uI/iMK+Ov+Cgf/JmHxE/7BL/+hrX2LXx1/wAFA/8AkzD4if8AYJf/ANDWqlsyIfEj+c7/AIJD/wDKRz4Xf9f11/6Rz1/oHV/n4/8ABIf/AJSOfC7/AK/rr/0jnr/QOrgPVPwm/wCCwH/Jxn7J3/ZQIf8A0qsK/VGvyu/4LAf8nGfsnf8AZQIf/Sqwr9UaACiiigAooooA+b/2o/2XPhn+1j8M5vh38RIWjljbz9O1GDi60+6H3ZoW6gg43L0YcHsR4n+wj+2B8UtF+MF5/wAE9/2v50vviFoFqbnRtfgbzI9c01F3K03JZLlYxuJYZdQS3zjdJz/7bv7bt98E77Tv2f8A9n/Tj4t+MHi0iDSdJgAlFqJQcXFwMgAAAsqsQCAWYiME17l/wT7/AOCfdj+yvY3/AMXfi5fjxb8XvFoM2u67MTKYjKQzW1szAERggbmwDIQOAoRFAPPP+C5X/KOPxd/1/aT/AOlkVfyu/wDBKb/k9bw5/wBeuo/+k0lf1Rf8Fyv+Ucfi7/r+0n/0sir+V3/glN/yet4c/wCvXUf/AEmkrWh/Ej6oa3P6z6KKK98sK9a+FX/Hxe/7qfzNeS1618Kv+Pi9/wB1P5mufF/wpf11E9j2aiiivDICiiigAooooAKKKKACiiigAooooAKKKKAKWo6daaraPY3yb436j09x7181eI9Ebw/qj2BkEg+8pB5wemR2Ne0eMfGMWgxGysyHu3HA6hAe59/QV8/TTS3ErTzsXdzlmJySTXqYGE0uZ7FRIqKKK9AoKKKKACvA/jd+yt+zP+0pDbQ/tB/D/wAPeNfsSsls+tadBeyQK3JETyozR577CM175Xxp8ZP2z/DXwl+Kg+D9h4X1zxTrAskvpI9HtxOURyRgrkMcAAkgFRuAznIHHjsdh8JT9riZqMb217vp1PWybIsdm1d4bL6TnNJyaVlaK3bbaSSuup7f8IfgB8Cv2ftGm8PfAnwZofgyxuSrTQaHp8FhHKyAhWcQIgdhk8tk8n1r8Gf2IP8Aglv8TfDf/BQf9qf4oftc+AtH1n4ZfFfU7q60eHUms9TgvEfUZLmNpLUmQoQjKw8xAVPTBFfqD/w3dq3/AER7x7/4Km/xo/4bu1b/AKI949/8FTf415EuJMqdv323lL/5E+j/AOIa8R/9Av8A5PT/APkz61+E3wX+EPwG8IR+APgj4X0rwjocTtKtho9pFZW/mNgM5SJVUu2BuYgscck1y/g/9l79mj4e+FvEHgbwD8O/DGh6J4tSSPXNP0/SLW2tdTSZGjkW7ijjVJw6OyMJAwKsQeCa+cv+G7tW/wCiPePf/BU3+NH/AA3dq3/RHvHv/gqb/Gr/ANZ8q/5/f+Sy/wAh/wDENeI/+gX/AMnp/wDyZ9S+G/gB8CPB3wwn+CPhDwToOleDLpJo5tAs9Nt4NLkS5JMqtaoiwsJCSXBTDZ5zXMfDL9kv9lz4L+ENW8AfCX4deG/Dmia/xqljp2l29vb3wwQBcIkYWYAMQA+4AHA44rwH/hu7Vv8Aoj3j3/wVN/jR/wAN3at/0R7x7/4Km/xpf6z5V/z+/wDJZf5B/wAQ14j/AOgX/wAnp/8AyZ6f8Mf2DP2JPgr4yX4ifCL4R+EPDWvREtFqGm6NaW1zCWGD5UiRhowR1CEA19ZV+f3/AA3dq3/RHvHv/gqb/Gum+GX7bvh74gfFrS/g3rXg7xH4X1XWYppbT+17UW6uIEeRuC27G1GwQpGRitKPEeWTnGlCsryaS0au3olstzLEeHfENGjUxFTCvkhFyk1KDtGKvJ2Um7JK702PtuiiivdPigooooAKKKKAP5MP+CrP/J63iP8A69dO/wDSaOv6y/8Agir/AMozPhp/3Gf/AE63lfyaf8FWf+T1vEf/AF66d/6TR1/WX/wRV/5RmfDT/uM/+nW8rwa/8SXqQ9z9TK+bv2gf2vf2bf2WP7MX4/eLLXw2+s+b9iSZZJXlEO3eQsSOwC7gCSAMnFfSNfgF/wAFD/D+geKv+Cqn7Ovh/wAUWNvqVhdadqizW11Es0MihJjhkcFWGQDyOtYiPtv/AIe8f8E4/wDoqFj/AOAt5/8AGKP+HvH/AATj/wCioWP/AIC3n/xiuq/4Zk/Zt/6J74a/8FNr/wDGqP8AhmT9m3/onvhr/wAFNr/8aoA5X/h7x/wTj/6KhY/+At5/8Yr83v8Agk/8Jvh98cf+Caj/AAu+KOmxaromq6pqUU8Ev++pV0Yco6HDI6kMrAEHNfqX/wAMyfs2/wDRPfDX/gptf/jVeqeHfDHhrwhpUeheE9PttLsYvuW9pEkES/REAUfgKAPxw+B3xx+J3/BJj4nWP7Nf7Sl9ca98D9euDF4V8VSgu+kO5J+zXOBwg6kDgDMkY270T+imxvrHVLGHU9MmS4trhFliliYOkiOMqysMggg5BBwRXx38WfhN8Pvjj8PtS+F3xR02LVdE1WLyp4JfzV0Yco6HDI6kMrAEHNfk18Dvjj8Tv+CTHxOsf2a/2lL64174H69cGLwr4qlBd9IdyT9mucDhB1IHAGZIxt3ogB/RnRVWxvrHVLGHU9MmS4trhFliliYOkiOMqysMggg5BBwRVqgAr+Or/g43/wCTo/A3/Yqj/wBK7iv7Fa/jq/4ON/8Ak6PwN/2Ko/8ASu4oA9l/4Ipf8msa/wD9jXdf+kdnX7AV+P8A/wAEUv8Ak1jX/wDsa7r/ANI7Ov2ArRHvYb+FEK+Of+CgP/Jnvjf/AK9oP/SiKvsavjn/AIKA/wDJnvjf/r2g/wDSiKvOzj/cMR/gn/6Sz6vgz/koMu/6/wBL/wBORPuj9kX/AJNQ+GH/AGKWi/8ApHFX0NXzz+yL/wAmofDD/sUtF/8ASOKvoatMF/u9P/CvyPjuIf8AkaYv/r5P/wBKZ85eKv2Qv2YfHPiK78XeMvAuj6pql/IZbi6ubZZZZXPdmYEnjgeg4HFc/wD8ML/sd/8ARNvD/wD4BR/4V9W0VMsvwrbbpRv/AIV/kXT4mzinFQhjaqitElUmkktklc+Uv+GF/wBjv/om3h//AMAo/wDCj/hhf9jv/om3h/8A8Ao/8K+raKX9nYT/AJ8x/wDAV/kX/rTnX/QdV/8ABk//AJI+Uv8Ahhf9jv8A6Jt4f/8AAKP/AAo/4YX/AGO/+ibeH/8AwCj/AMK+raKP7Own/PmP/gK/yD/WnOv+g6r/AODJ/wDyR8pf8ML/ALHf/RNvD/8A4BR/4Uf8ML/sd/8ARNvD/wD4BR/4V9W0Uf2dhP8AnzH/AMBX+Qf6051/0HVf/Bk//kjxv4afs8/A/wCDepXGsfCrwtp3h+5u4hDPJYwrCZIwQwVtuMgEZGeleyUUV0U6UKceWnFJdkrHlYvGYjFVHWxNSU5vrJuT+93Z+WH/AAWM/wCTLL7/ALC1h/6Ea+i/DH/Itaf/ANe0X/oAr50/4LGf8mWX3/YWsP8A0I19F+GP+Ra0/wD69ov/AEAV5WF/5GuI/wAFP85n6TU/5I3Lv+v+J/8ASaBuV9B+D/8AkW7X/dP/AKEa+fK+g/B//It2v+6f/QjXuSPg8f8AAvU6WiiioPJCiiigAooooAKp39ha6latZ3i70fqPT3HvVyqOo6jaaVaNe3jbUX8yfQe9A43uuXc8G8Q+HrrQLrY/zwv9x/X2PvXPVu6/r93r13503yxrwiDoo/x9TWFWh9BT5uVc+4V+Uf7VemXn7V/7a3w5/Ybdpv8AhFYYj4k8T/Z2ZfMhh3lIZCpBUERhAwPDTqRyor9XK/OX9ja1utU/4KxfHHX9SG2Wx0LT7OJSpyIpEtGG0k5AIiDEDhic0mc+Nk1Tsup+1+i6NpXhzR7Tw/oVulpY2EMdvbwRjakcUShURR2CqAAPStOiioPGCiiigAooooAKKKKAPxE/4OFf2ovj1+x7/wAEz/EXxv8A2bfEU3hbxVZ6xpFtDqEEUUzpFcXASRdsySJ8ynHK59K+6/8AgnH8TPHPxo/YA+Cvxd+J2oPq3iPxP4J0LVNTvZFVGuLu6s4pJZCqBUBd2JIVQBngCvyX/wCDqr/lDz4r/wCw/oX/AKVLX6W/8Ek/+UXH7O//AGTnw1/6QQ0Afj9/wc3ft3ftZ/sOeBvgrqv7KnjO48H3HibXr+01N7eC3nNxDDHAUU+fFKAAWb7uDzX9Rlfxd/8AB49/yTb9nj/sZ9T/APRVtX9olAH8L3/Byx/wUZ/4KHfsr/8ABQrwx8Gf2P8A4iar4W0a5+HMPiC60+wSBkaaC61Rrmc+ZG5yLe1GecYTpX6M/wDBQD/grb4+8Hf8G+Hgr9tj4Q682kfET4m2Hh/SbDULcIzwazKQ2pbFZWUlBa3aD5eDg44xXxx/wVY+GPh742f8HPHwA+DXi5d+leLfhbdaNerjObe/i8RwScHr8rmvwV/Yd1v4pftQ/G39mL/gi78RLKX7L8I/i1r+pazAfmiks7WSK7nhweQYjb6kCSMYnHfIoA/qH/4Nfv2zP2z/ANrPRvjtpH7ZvjLUPFur+CtX0nT7Zb9Ylazd1vFuEHlIg5eJc5z93iv6sq/j2/4NVf8AkqX7Y/8A2PVp/wCjtSr+wmgAooooAKKKKACiiigD8y9S/Y++J3xx/bVm+OP7Td5bXvgnwQ8L+CNFs5n8kz8SG5uoyP8AWIwGefnZVB/dqA3z3+2Ro8P7O3/BQ/4ZftF6UiW2l/EmNvCuvMJWQSXShUtpXQDk4MShjuTbDghDhz+3Ffjp/wAFvLGeD9knR/HGn7FvPDPirTtQgZgD8wSaPHQ5BLqSMjOOvGCFQlyyUj7joqOGaK4iWeBg6OAyspyCD0IPcGpK0Pogr+T/AP4K9f8AJ5V7/wBgqw/9BNf1gV/J/wD8Fev+Tyr3/sFWH/oJpPY48d/D+Z/T1/wQ0/5Rx+Ef+v7Vv/SyWv12r8if+CGn/KOPwj/1/at/6WS1+u1QeOfEvxb/AOCjn7E3wK8e33wv+KvxAsdJ17Tdn2q0MU8zRGRQ6hjFE6glWBxnIzzXm/8Aw94/4Jx/9FQsf/AW8/8AjFfnT8Ifhx8PPiJ/wV4/aLt/iBoOna7Ha22mtCuoWsV0sbNDACVEittJwM461+oH/DMn7Nv/AET3w1/4KbX/AONUAcr/AMPeP+Ccf/RULH/wFvP/AIxXw3/wUo/4KUfsQfGn9iDx/wDC/wCF/j+11fXtXtbaKzs4ra6VpWW6hcgF4VUYVSeSOlfod/wzJ+zb/wBE98Nf+Cm1/wDjVSw/s1fs520yXFv4A8NxyRsGVl0q1DKw5BBEfBFAHyxrH7Jnwz/a9/Yh8AeAvHqNa31r4b0q40nVrcf6Vp119kixJGeCVJAEkZIDgdmCssf7Ev7bXxM8AfEyL9gz9vOVbXx7aqqeHPEbsfsviS1+7H+8bANwQMKTgykFXAmBD/ojDDDbQpb26LHHGoVVUYVVHAAA6AV8xftZ/smfDP8Aa9+Gb+AvHqNa31qxuNJ1a3H+laddcYkjPBKkgCSMkBwOzBWUA/Sqivxh/Yl/ba+JngD4mRfsGft5yra+PbVVTw54jdj9l8SWv3Y/3jYBuCBhScGUgq4EwIf9nqACiiigAor5yv8A9rf9nSx+Melfs/w+KrK98YaxLJDDplm32mWNoY3lfzjGGWHCoTiQqT2Br6NrOnWp1L+zknZ2dnez7PzOvFYDE4ZQeJpShzrmjzJrmjdrmV91dNXWmjCivir/AIKBftF61+zL+zNq/jfwWw/4SnUpYNH0BCiyFtRvW2oQjAqxjQPIFYEHZggg1wH/AAT1/aH+KfxV0Txr8IP2iLuG7+Inw31ybTNUlhiSFbi3kLNbzqkaooVwrqpCjKqGPLGuOWZUY4tYN352r+XXS/dpN27I9ulwnjqmSzz6PL7GMuVq75/spzStbkUpxi3f4pJW3t+ilFZ9xq2lWl/BpV1dRRXV1uMELuFkk2DLbVJy20cnAOBWJonjzwN4m1K40bw5rNjqF5af6+C2uY5ZYv8AfVWJXqOoruc4p2bPnlQqOLkouy1vbptf7zq6Kxdf8R+HvCmmPrXim/ttNs4yA891KsMSk9Ms5AH51Bovi3wp4l0k6/4d1O0v7BQSbm2mSWEADJ+dSV4HPWjnjflvqJUajh7RRfLe17aX7X7nQ0VR03VNN1myTUtIuIru2lzslhcOjYJBwykg4II+tRaTrWja/afb9Cu4b2DJXzIJFkTI6jKkjIp3QnCSvdbb+Rp0VnabrGkayksuj3UN2sMjRSGF1kCSL1VtpOGGRkHkVgab8Q/AGs67J4X0jXNPu9Thz5lpDcxvOmOuY1YsOncUueOmu5SoVHzWi9N9Hp69jsKKz73VtK02WCDUbqK3e6fy4VkcIZHP8Kgkbj7DmqOheKvDHihZ38M6la6iLWQwzG1mSYRyL1VthO1h3B5p8yva+ovZT5efldu/Q3qK8b+N/wAfvhR+zl4VtfHHxk1QaNpF3exaet00byIk0ysyb/LViqnYcsRgd8Dmu68GeOfBfxG8PQeLPh/q1nrel3IzFd2M6XEL/R0JXI7jORUKtTc3SUlzLW19behvLAYmOHji5UpKlJtKVnytrdKVrXXVXudVRRRWhyBRRRQB/9f+/iiiigD/ADn/APgox/yfh8XP+xp1L/0c1f1Rfsof8mtfDX/sVdG/9JIq/ld/4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/wCxV0b/ANJIq5cVsj3sh+Ofoe/UUUVwn0wUUUUAFFFFABRRRQAV+Yfg74vfC74Lf8Fa/Fnin4ta/Y+HNNuPAEdrHc6hMsETzvc2jhAzEAsVRiB6A+lfp5XgvxK/Zd/Z6+MOvL4p+JnhHTtX1JYxF9pmi/elF6BmUgsB2znHataNRQldnDmGFliKXJF2d7nvH/DfX7FH/RU/DX/gxi/+Ko/4b6/Yo/6Kn4a/8GMX/wAVXyJ/wwL+xx/0T7Sv++G/+Ko/4YF/Y4/6J9pX/fDf/FV1fWo9jxf7CrfzL8f8j67/AOG+v2KP+ip+Gv8AwYxf/FUf8N9fsUf9FT8Nf+DGL/4qvkT/AIYF/Y4/6J9pX/fDf/FUf8MC/scf9E+0r/vhv/iqPrUewf2FW/mX4/5H13/w31+xR/0VPw1/4MYv/iqP+G+v2KP+ip+Gv/BjF/8AFV8if8MC/scf9E+0r/vhv/iqP+GBf2OP+ifaV/3w3/xVH1qPYP7CrfzL8f8AI+u/+G+v2KP+ip+Gv/BjF/8AFUf8N9fsUf8ARU/DX/gxi/8Aiq+RP+GBf2OP+ifaV/3w3/xVH/DAv7HH/RPtK/74b/4qj61HsH9hVv5l+P8AkfXf/DfX7FH/AEVPw1/4MYv/AIqj/hvr9ij/AKKn4a/8GMX/AMVXyJ/wwL+xx/0T7Sv++G/+Ko/4YF/Y4/6J9pX/AHw3/wAVR9aj2D+wq38y/H/I+u/+G+v2KP8Aoqfhr/wYxf8AxVH/AA31+xR/0VPw1/4MYv8A4qvkT/hgX9jj/on2lf8AfDf/ABVH/DAv7HH/AET7Sv8Avhv/AIqj61HsH9hVv5l+P+R8/wD7Lfjjwf8AEn/goD+0D428A6lb6vpF/wD2M1teWriSGVUhKEqw4IDKRx3Ffp7XkHws+APwY+CP2w/Cfw5ZaE2obPtLWseHkEedoZjkkDJwM45Nev1yVZqUro93BYd0aMacnqr/AJhRRRWZ1hRRRQAUUUUAFFFFABX5KftGWaftL/8ABQLwL+zlfF7nw14Ksm8S6xbKo2PPn92JMt8ynMKY25AlYdGJH611+YHwUja8/wCCo/xmvJ3Jaz0PSLeIcABJbe1c54yTuHH1+laU9LvyOTFrmUIPZyV/ld/ofp/RRRWZ1hRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/OR/wW3/5Kl4I/wCwVcf+jhX6t/8ABuP/AMmu+Of+xpP/AKSW9flJ/wAFt/8AkqXgj/sFXH/o4V+rf/BuP/ya745/7Gk/+klvXp0PgR8Vmf8AvU/66H3D/wAFWv2a/jX+0z8CPC2h/ASxtdT13wx4v07xCbS7uFtlmhtYbiMqrvhd26ZSQSvyhsHOAfmT/hM/+C13/RHvBn/g1X/5Mr91qK1OA/Cn/hM/+C13/RHvBn/g1X/5Mo/4TP8A4LXf9Ee8Gf8Ag1X/AOTK/daigD8WP2Dv2u/jV+0R43+J/wAKvj54a07w54i+G1/aWNwmmzNLEz3BuFdTl5ASjW5wyuQwboMZPpH7Yf7Yemfs3abp3gjwRpzeLPiX4sb7N4c8OW2Xlnlc7RNMFOUgQ5ycguQVUgB3T8ifAP7WH/DNP7Zf7UmheDdFn8U/EDxn4wtbDwvocCM32q6SW/3vIVxiKLehfBDHIAwNzp+0v7Cv7CupfBPUr/8AaO/aOv18WfGbxYu/U9TfDxadE4GLOzGAERBhWZQAQAq4QAEAP2Ff2FdS+CepX/7R37R1+viz4zeLF36nqb4eLTonAxZ2YwAiIMKzKACAFXCAA/phRRQAV+G//BwX/wAmH2n/AGNOn/8Aom5r9yK/Df8A4OC/+TD7T/sadP8A/RNzQB+L/wDwQC/5PH8S/wDYmXn/AKXWNf18V/IP/wAEAv8Ak8fxL/2Jl5/6XWNf18V8Xnn+9P0R62D/AIYUUUV451BRRRQB+LP/AAUt/wCT1/2TP+xl1D/0bp1fsdX44/8ABS3/AJPX/ZM/7GXUP/RunV+x1fc5P/ucPn+bPHxX8V/10CiiivTOcK/If/gqJ/wSd0T/AIKY+N/g34z1fxvP4Qb4Q6zcavFFDYLei/M8lpJ5bFpovKA+ygZAbO7pxz+vFFABRRRQAUUUUAFFFFABXNeM/wDkT9W/685//QDXS1zXjP8A5E/Vv+vOf/0A0Afmr/wRk/5MA8Lf9fmqf+lctfml/wAE0PhF/wAFF/HX7Ndjq37OfxR0bwX4PGoXka2dxp8N5cmZWy8hMtrJ95iAAJQAozjOc9F/wTi/Z1/br+JP7LGg+Jfgz8aovBPhWSW+S200aXFdSRSpcyCQlmUFg7bmyWJGduMAV+2n7Df7K3/DG37P1j8E5Na/4SCaC5uLuW8EH2ZS9w24qse+QgKABktk9cDOB4mZZrGnFxoy99Pt952YfDOTvNaHmX7B/wCyB8UP2Y9Q+IHjL4x+Lbbxb4h8f6nDqN3PaWv2VA8Qk3MQNq5dpD8qoqqAMZzgfoXRRXydatOrN1JvVnpQgorlWwUUUVkUfxw/8F3/APk9u0/7Fmw/9G3FfuL/AMG+f/JiF5/2NWof+ibavw6/4Lv/APJ7dp/2LNh/6NuK/cX/AIN8/wDkxC8/7GrUP/RNtX3+Xf7rT9Dxa/8AEkfuTX5kf8Fa/wBlf4q/te/slSfDL4MwwXWu2msWWpR208qwCdIg8bqruQikCXf8xAIUgckA/pvRXaYn4U/8Jn/wWu/6I94M/wDBqv8A8mUf8Jn/AMFrv+iPeDP/AAar/wDJlfutRQB+FP8Awmf/AAWu/wCiPeDP/Bqv/wAmV1v7F/7VX7Q3xf8AjT8SPgP+0l4a0nw7r3gFNOMkelSvKu69V3KszSSK2FCEFSMcg57ftTX8qnj39sLw/wDsh/8ABQf9pbVhp0+veKfEVxoNh4d0a3Rne9vTbAAHYCQqllyBlmJCqCTQB+pP7av7avg39kTwZbIls2v+Ndfb7N4f8P22XuLy4chFJVMsIwxAJAyzfKuWPHOfsB/sB+MvDPjOb9tL9tKddf8AjBr6+ZBBJh7fQLdxhYIFGVEwU7WZeI1yiE5d3P2A/wBgPxl4Z8ZzftpftpTrr/xg19fMggkw9voFu4wsECjKiYKdrMvEa5RCcu7/ALC0AFFFFAH5E/8ABcv/AJRx+Lv+v7Sf/SyKv5jP+CPn/J59j/2Cb/8A9AFf05/8Fy/+Ucfi7/r+0n/0sir+Yz/gj5/yefY/9gm//wDQBVw+JEVfgZ/WjRRRXaeUfm38S/8AlLT8Av8AsE6//wCkV1X7aV+JfxL/AOUtPwC/7BOv/wDpFdV+2lcdX4menQ+BBRRRWZqFFFFABXxf+33+wh8Ef+Cj37Nmp/svfH19QttD1G6tL1LzSZIob+1uLOQSJJA80U8asy7o23RNmN2AwSCPtCigD4h/4J8fsAfAv/gmp+zla/sy/s+yald6NBf3WpTXusSxTX91dXbAs8zwQwRkqipEu2JcIig5IJP5cftAf8G0X7Dvxk+Knin4n/DzxZ46+FUfjt2bxJovg/VYrTSdRWQlpA1vLbzYDuxYpuMQJO2MA1/RLRQB8IfC7/gmn+xn8Jf2Lbj/AIJ/eHPB8Nx8ML+1mttQ067keSW+a4IaWeecFZDOzgOJVKtGyr5ewIoH47eD/wDg1B/4J1+HfG+m6n4k8U+PvE/hHRrxr2z8I6pq0LaSsjtudWEVtHL5bcZCSI7AfM7c5/p4ooA/JT/gpT/wRq/ZZ/4Kb6J4Gsvidfa14P1H4ctKNC1DwvNDaS28E3lboNskMsflr5MZj2qrRsvykAsDV+PP/BE79in9pr9kfwN+yJ8cI9a161+HNqlroXiea7jHiS3CjDE3awhH8wY8xGiMbFVYpuVSP11ooA/DD9iL/g34/Yn/AGK/jtB+062q+Kfib4805dml6r4zv4746cApRWgSKGFfMCNtDyeYU6x7DX1K3/BLL9n1/wDgpUv/AAVNOseIf+Fgrpf9kjT/ALRbf2N5P2U2m7yvs32jf5Zzn7RjdzjHFfpVRQB+Xn/BRn/gkX+yb/wUzXw/rvxrGraB4t8Jn/iTeJ/Dd0tlqtom8SeWHeOWN0Eg3qHjJRslCpZifD/2Lf8AghH+yv8AshftCQ/taeIfFXjH4t/Eqyt2ttP1zxzqa6jJYI6sjG3VYo8MUdlDSNJtDHZtya/bOigD8Nf2iP8AggT+yV+0J+3an/BQM+KfGPhDxhPc2N5qVt4fv4LeyvptOEQjaRZLaV1DiGMTIrhZNucKxLHof28/+CD37Fn7eXxfj/aM1m68Q/Dv4jLCIZfEPg28j0+5ugg2K1wHilWR1T5PMAWQphSxVVA/amigD80f+Cc3/BJz9kT/AIJg+HNY0/8AZ4sb++1zxIytrHiLXbhbzVb0ISyI8iJFGkalidsUaBjy+5gDUn/BNX/gll+z7/wSy8E+KvAX7PuseIdYs/F+qJq14/iG4triVJkj8sLEba2tgEx2YMc96/SqigD8R/22P+CDP7I37ZPx7m/ap0zxB4t+FXxGvrcW2oa34I1FdOk1BNojzcK8UoLeWoQtGYywA378Cvq//gnZ/wAEyf2XP+CYvwu1D4a/s32d7LPrtwl3rOtatMtzqepTxgqjTyKkabYwzbEjREUsxxuZif0JooAKKKKACiiigD8Pv2J/+Tq/2mf+xwX/ANCua/TGvzO/Yn/5Or/aZ/7HBf8A0K5r9Ma7aXwo83EfxGFfHX/BQP8A5Mw+In/YJf8A9DWvsWvjr/goH/yZh8RP+wS//oa1UtmRD4kfznf8Eh/+Ujnwu/6/rr/0jnr/AEDq/wA/H/gkP/ykc+F3/X9df+kc9f6B1cB6p+RH/BVH9mL9o3466z8IPiT+zVpVnresfDjxEdYezvbhLaJ9jQyx7md0yu+AKwU7sNxjFeQf8Jn/AMFrv+iPeDP/AAar/wDJlfutRQB+FP8Awmf/AAWu/wCiPeDP/Bqv/wAmUf8ACZ/8Frv+iPeDP/Bqv/yZX7rUUAfj/wDsCftSfFH9p3wn4yk+MOjafomu+D/EdzoM8Omu7QlrZE3cuz5IcsNwbBGMAdTzf7bv7bt98E77Tv2f/wBn/Tj4t+MHi0iDSdJgAlFqJQcXFwMgAAAsqsQCAWYiME1+UvwU/bK8Q/AfU/jH8DvgVo0vif4s+OPidrUWg6bHGXSJWYKbmXOFKoQxAJA+Us5VFY1+5n/BPv8A4J92P7K9jf8Axd+Ll+PFvxe8Wgza7rsxMpiMpDNbWzMARGCBubAMhA4ChEUAP+Cff/BPux/ZXsb/AOLvxcvx4t+L3i0GbXddmJlMRlIZra2ZgCIwQNzYBkIHAUIi/plRRQB+RX/Bcr/lHH4u/wCv7Sf/AEsir+V3/glN/wAnreHP+vXUf/SaSv6ov+C5X/KOPxd/1/aT/wClkVfyu/8ABKb/AJPW8Of9euo/+k0la0P4kfVDW5/WfRRRXvlhW/oXiTUPDryPYBCZQA28Z6VgUUpRUlZgehf8LM8Rf3Yf++T/AI0f8LM8Rf3Yf++T/jXntFZfV6f8qCyPQv8AhZniL+7D/wB8n/Gj/hZniL+7D/3yf8a89oo+r0/5UFkehf8ACzPEX92H/vk/417Vos95daVBdX+PNlQO23p83I/SvliCPzp0h/vsB+dfXQAAwOAK4cbCEVFRViZC013SNDJIQqqMkngACnV5/wDEfUpLLQRbQnDXL7D/ALoGT/QVxU4c8lFdSTmNY+J10LoxaLGnlLkbpASW9xgjArI/4WZ4i/uw/wDfJ/xrz2ivaWGppW5S7I9C/wCFmeIv7sP/AHyf8aP+FmeIv7sP/fJ/xrz2in9Xp/yodkfRPgjxFf8AiG0nmvwgaNwo2DHBH1pnjHxjFoMRsrMh7txwOoQHuff0FeUaF4suPD2lz2tiv7+ZwQzDIUAenr+lcrNNLcStPOxd3OWYnJJNcywadRya93sK2oTTS3ErTzsXdzlmJySTUVFFd4wooooAKKKKAPyM/a9/4KBfCzUPhNrXg/4H+J7u38UrcwxRTW0M0BCxTKZdspUAAqpGQeQcdDXzboniT9mqx8Wr8UYP2lPFVl4mms1tZb1NEuDciI4YxGUPllBA/L0r9JP+CQHgXwR4n/Z+8XX/AIk0ax1GdPGd/GslzbxyuEFtaEKC6k4yScdMk1+r3/CovhR/0K+k/wDgFD/8RX5M8Hjs4UMdXqR1StG00lZvXSotdd/Q/ovGcWZFwfXxHD2Cw1b93OXNU56DlPmjC6fPh5+4uXSK6t3b0t/ON/wvj4X/APR2/jj/AMFN3/8AHKP+F8fC/wD6O38cf+Cm7/8Ajlf0c/8ACovhR/0K+k/+AUP/AMRR/wAKi+FH/Qr6T/4BQ/8AxFV/q3iv+fsf/Kv/AMtPL/4itlH/AECVf/LP/wCYj+cb/hfHwv8A+jt/HH/gpu//AI5R/wAL4+F//R2/jj/wU3f/AMcr+jn/AIVF8KP+hX0n/wAAof8A4ij/AIVF8KP+hX0n/wAAof8A4ij/AFbxX/P2P/lX/wCWh/xFbKP+gSr/AOWf/wAxH843/C+Phf8A9Hb+OP8AwU3f/wAco/4Xx8L/APo7fxx/4Kbv/wCOV/Rz/wAKi+FH/Qr6T/4BQ/8AxFH/AAqL4Uf9CvpP/gFD/wDEUf6t4r/n7H/yr/8ALQ/4itlH/QJV/wDLP/5iP53/AIgeKfHth+zPrv7SnwI/aS8VeLU8O31pZz2lzBNZ7ZbiRFG8Sucja24YVlPQnIIH1V+0bd3F/wD8FLfgjfXbb5ZvCt3I7YAyzQXpJwOOtfCviSGK3/ZA/aYggUJGnxCt1VVGAALzgADoBX3D+0D/AMpIfgZ/2KVz/wCk97Xl5dNupSv1nQdryav7aabXM21dJdT7rOKEKft0rNxpZhFS5KcZcrwVCajJ04U4vlc5WfL1P0Cooor9rP5OCiiigAooooA/kw/4Ks/8nreI/wDr107/ANJo6/rL/wCCKv8AyjM+Gn/cZ/8ATreV/Jp/wVZ/5PW8R/8AXrp3/pNHX9Zf/BFX/lGZ8NP+4z/6dbyvBr/xJepD3P1Mr8Gf28P+Utn7N3/Xhqn/AKBNX7zV+DP7eH/KWz9m7/rw1T/0CasRH6vUUUUAFFFFABXmHxm+Gfwy+L/wy1j4f/GKyt77w5fW7fbFuSESNEG7zA+QY2jxvWQEFCMgjFejXt7Z6bZzajqMyW9vbo0kssjBEREGWZmOAAAMkngCvxF8YeMPir/wVy+Kt7+zx+zze3Hh/wCB/h+4WPxV4qjUq+qupB+y2uRhgw5AIxgiSQbdiOAdr/wRg+KnxUb4jePv2cvA+o3Hjn4IeDpJF0DxReoYXgmLpts4iciVWVmfAwFCBwEWREP9C1eY/Bv4N/Df4A/DfS/hL8JdLi0fQtHiEVvbxD8Wd2PzPI7ZZ3YlmYkkk16dQAV/HV/wcb/8nR+Bv+xVH/pXcV/YrX8dX/Bxv/ydH4G/7FUf+ldxQB7L/wAEUv8Ak1jX/wDsa7r/ANI7Ov2Ar8f/APgil/yaxr//AGNd1/6R2dfsBWiPew38KIV8c/8ABQH/AJM98b/9e0H/AKURV9jV8c/8FAf+TPfG/wD17Qf+lEVednH+4Yj/AAT/APSWfV8Gf8lBl3/X+l/6cifdH7Iv/JqHww/7FLRf/SOKvoavnn9kX/k1D4Yf9ilov/pHFX0NWmC/3en/AIV+R8dxD/yNMX/18n/6Uz85Piv8c/8AgoN4a+Iur6F8Lvg9Y+IvD9tOVsdRfUobdriLAO4xvMGUg5HIGcZxg157/wANIf8ABUT/AKILp/8A4OLf/wCP1+rtFcM8srSk5LFVFfouSy8tYNnv4fi7A06UKcsmw0mkk5P293Zbu1dK73dklfZJH5Rf8NIf8FRP+iC6f/4OLf8A+P0f8NIf8FRP+iC6f/4OLf8A+P1+rtFT/ZVb/oMqf+U//kDb/XPAf9CPC/8Alx/80H5Rf8NIf8FRP+iC6f8A+Di3/wDj9H/DSH/BUT/ogun/APg4t/8A4/X6u0Uf2VW/6DKn/lP/AOQD/XPAf9CPC/8Alx/80H5Rf8NIf8FRP+iC6f8A+Di3/wDj9H/DSH/BUT/ogun/APg4t/8A4/X6u0Uf2VW/6DKn/lP/AOQD/XPAf9CPC/8Alx/80Hxr+zR8Uf2vPH3iTUbP9ov4d2vgnTre2D2s0F5HdtPMWAK/JK+0Bcnkc+vHP2VRRXpYajKlBQlNzfd2v+CS/A+UzXH08ZiXXpYeFGLt7kOblVu3PKctd3eT8rLQ/LD/AILGf8mWX3/YWsP/AEI19F+GP+Ra0/8A69ov/QBXzp/wWM/5Msvv+wtYf+hGvovwx/yLWn/9e0X/AKAK83C/8jXEf4Kf5zP0Cp/yRuXf9f8AE/8ApNA3K63T/Gmr6ZZx2NsI9kYwMgk88+tclRXunx84RkrSVzuv+Fha9/di/wC+T/jR/wALC17+7F/3yf8AGuFoosjP6vT/AJUd1/wsLXv7sX/fJ/xo/wCFha9/di/75P8AjXC0UWQfV6f8qO6/4WFr392L/vk/41e0zx1rV5qVvaSiLbLKiHCnOGIHrXm9XtMuI7PUre7lztilRzjrhSDSshSw9OztE+jNR1G00q0a9vG2ov5k+g968C1/X7vXrvzpvljXhEHRR/j6mjX9fu9eu/Om+WNeEQdFH+PqawqEjPDYZU1zS3CiiimdYV+Xt/4i0z9mP/grJ4f+I3ie9h07w98WNAl0e4uZ8xRJeWojCB3b5CS0VugYEFfMwQB8x/UKvlv9r79mDwz+1f8ABy8+HWrNHaalGRcaXqDJua1uU78EEo65Rxz8pyBuCkJmGJpe0g0tz9TKK/Gf9kP/AIKOyeHdaP7LP7dssXhLx9oKx20OrXkmyy1eMfKkplbCJI6gHcWCSHJBVvkH7JwzQ3MKXFu6yRyKGVlOVZTyCCOoNQeG007MlooooEFFFFABRRRQB8Vf8FAP2EfhF/wUe/Zt1D9lz436jrGleH9Su7S9luNDmhgvBJZyCRAr3EFxGFJHzZjJI6EV+DCf8Gev/BNqNBHH8QvioqqMADVtLAA/8FNf1eUUAfgz8av+DeH9i/47/sd/Cr9iXxl4q8cQ+FvhBPqU+j3lrfWK6lO2qStNL9qkeweJwrMQnlxR4GM5PNfFf/EHx/wTd/6KJ8Vf/Bvpf/ypr+rqigD8p9T/AOCQH7Nerftl/CH9uO613xP/AMJb8FvC9n4T0S1F1a/2fcWVlHdRJJdobQyvMRdyFmjmiUkLhRgg43wN/wCCLX7If7P3/BQzxZ/wUr8EXevy+OvF0mpTz2F3cWz6TbXGrMGuZreJLVJ1kch+XncYkfjkY/XGigD83P8Agn//AMEuvgB/wTh1/wCJfiL4Iax4g1Wf4qatHrGrLrlxbTpDPG07BbcW9tblUzcPkOZDwOeuf0joooAKKKKAPIvjb8d/hV+zp4I/4WN8YtWTRtHFzBaee6NJmW4baoCoGY45ZsA4VSTwDXeeFPFnhjx34cs/GHgvULfVdK1GITW13ayCWGWNujKykgj+tHivwn4Y8d+HLzwf400+31XStRiMNzaXUYlhljbqrKwII/rX4i+Pfh38Qv8Agk98SY/jZ8Hbq51P4Ca1fxJ4l8PzyNN/YbXcqx/abUHJwCyquMs+BHIWyjqAfu3RWH4Y8S6F4z8Naf4w8LXSXumatbRXlpcR8pNBOgeN19mUgj2NblABX47/APBbCS51j9mHw38M9LZvt/izxdpunQIAMMWSZuSxAADBf4hz7ZI/Yivwx+P2tyftVf8ABTnwx8MdPgW48MfA23bVdSmDfI2q3ipJEoKkgtG6wkKeQY5QaEXThzSUe5+k1FFFaH0IV/J//wAFev8Ak8q9/wCwVYf+gmv6wK/k/wD+CvX/ACeVe/8AYKsP/QTSexx47+H8z+nr/ghp/wAo4/CP/X9q3/pZLX67V+RP/BDT/lHH4R/6/tW/9LJa/XaoPHP5+v2cP+Uv37SX/Xppf/oqCv19r8gv2cP+Uv37SX/Xppf/AKKgr9faACiiigAooryv40/Gn4cfs+/DjUfir8VdRTTdH01Nzu3LyOfuxxr1eRzwqjkn2yQAfLv/AAUc+Gv7Nnjv9mzVNY/aRvhoVroQNzpmswgG9sr0j939mGQZGkICmEECQDqpUOvZf8Eg/jn+0p8fP2RrHxZ+0jYOLi2nNrpOrz5W41axjVds8qEckNlPNz+927iM5Z/gD9n79n74q/8ABWT4q2X7U/7U9lPonwZ0Sdn8K+FXYr/aW0486bGN0bY+d/8Alp9xMICT/SDY2NjpdjDpmmQpb21uixRRRKESNEGFVVGAAAMAAYAoAtV/O3+1v4m/aeT4667p37bN94u8OfAz7ZOum3HgSCNrWWy8xhEdSnjZ50DRhfMR1OWzsUDBr+iSmuiyKUcBlYYIPIINedmeXvF01BVHGzv5PyktLryuj6rhLiaOS4mdeWGjV5la7spw/vUpNSUJ/wB5xlp0Phn9ifwZ+wZpHg8at+xhFoVxD5YW4u7NhPqOG7XDyk3Kk9dkm3HYCvuivkmD9hv9mXSvjfpX7RHhHw3D4e8VaVJK/n6UTaRXImjaNxPAmInyHLFtocsAS1fV91LJBbSTwxNO6KWWNCAzkDhQWIXJ6DJA9TV4ClUpUvZ1IRjbbk2a72tp6a+pzcSYvDYzGfWcNXq1edXk61nNSu9HNSamrWalaO9uVW1/n+/b6/am+CMP/BRL4bfDj41awdP8HfC5T4g1LZBLcmXV5kElpEY4Uc/uwIpMkY2u4PUV55pn7c/7NkH/AAVN8N/GT4E6+17oPxJ0+Lw74mSS1ntBHeBhHaznz0QHJWFSwztVXJI3V+jv/BOr9nn4vfDVviL8cf2jtMXS/HnxH1+W9uLUTxXX2exiz9niEkLyJgF3wA33QgPIr0T/AIKNfsy6r+1V+yxrXgDwjAJvE1hJFquhgusR+22pOFDuVVTJG0kYZmVQWBJAFfMTwOPqUZ42LSm5e0UXF83u6Rjfm0vFWty9WvM/XaHEXDmFx9Dh+rGUqMaP1WdaNaHsf3vvVKvJ7J3UasuZSVXVQi9lY+Mf+Ck/gBvip+25+zl8OWv7rTrfWX161u5rKUwTtZvHCLmJZFwy+dDviJHO1jXn/wC3r+yz8FP2OZvhL+0F+zHoy+D9esPGumaTK1jLKEubS5WVnSVWZt+fK2kn7yuwbPGPoTVfgz+1T8U/jd+zD8ZviF4YNpe+C7PVE8Xsby0f7LdTQJCrgJM3mCd0LgRb9oYBsGvYP+ClPwJ+Kvx/+Fngrw58JNK/ta90nxpperXcfnwweXZ2yTiSTMzxq20uvyqSxzwDzVYnA+2p4zEKi+dyi4Xi+bSENuqad07dVZ7EZVxF9RxWRZW8dFYeFOrCso1F7N3rYhNTs+VpxcXHm05ZKS+K7+TP+CkHhPWNJ/ao8F/Gz40eAdW+J3wd0jRZrabS9KU3AsdUeRy1zNbhgHBjMaguUQ4ALZUBr/7CsX7AXj39oPVfHX7IniW40D+1dGez1nwDcRPbwXHzEtP5UpKsyAhSIWZUGegdgfqH9pa0/bj+G3x60r44/s52w8f+En05rDVfBk17FYFZt24XUEso27iAoPVhggAhzt8b+HXwM+Pnx/8A22/C/wC2B8V/h/a/CrT/AAbYXUEVsL6G91PV5ruOSIGdrYBUjiEh4f5u3Ib5XUw8o49zhTcm5ptSg9tE5RqLSyX2ZX7W2IwuZ06nDSo18VGnCOHnFOnXjZyTlKNKphJ3k5ylZe1pqNrqfM7NnzZ8Evi9d/sg/sUftFfA2/uGj1L4R6rqFhpBY/MLbXCV06QDr80ztJ9DVb9hPxvrH7Avwp+O/wAEfiLLm/8Ah5p1l4ttUl4E0upWCFo0/wBkTrFH/vP65r2L9r39hX4z/FX9uPw94++H1is3w98VSaLL42Yzwx5bRJyybo3dZH3whEXYj4I54pv/AAUM/YU+Nn7QP7T3hXxb8KLUt4W8U2FpoHjiVLiGHy9Ps7+K7DlJHV5GIA2+UrN+6AOAeeOWGxtF+0pU23R9yCt8UZcyv6JOnd9OVnu0c24fx8fquMxNOMceliK7bX7upS9k3F9pSccTyxdnL2sOrV/lz4maj44/ZO/4Ja/DL4eaTe32ma98XdahuNev7JXbUPI1XdczeWEIYzmLyYSvVgGXqa5r4sWv/BPcfBK50L9n74aeOPDHjfRrU3Hh/XbbRr2G+XUYF3RNLcBtzB3ADkg7QSVAIGP2g/bq/ZS1X9pz4J2Phf4c38Wh+KfCmpWut+HbmQYgivLPIRH2qxCFWIGFO1gpwQMH5j8YfGH/AIKofErwK3wh8OfB+08FeJdQhFrd+K31y2lsbQNw9xBDHulDEZKjLtGcHDGrxmWypVJUpRbhyRjD9257JppNP3ZN63dr6O+mmORcWU8bhqWMo1IwrPEValZPExw696ScZSjKLdamoe4ox5mrOPJ76v8AIn7ZPiP4j/tHfs5fssXfi2S70HxT4s8S2em3syIbW5hup/8ARJJVVgDGxOXXjjIxxiv2Y/Zy/Y3/AGdv2Thqh+BOgf2M+tJbJeu1xNcvN9lDhDmZ3K/fYkLgEnOK+T/2nf2Yvjp4wH7OdhoUk/jO6+H/AIv0nU/EerXE0FvI0Ns8bT3JSR0LZIYiOPewGAAe/wCp1ezlmAti6tavC80oJSa1+BKVn57Oz8j4Li3iXnyXB5fl1dRoSlXc6cJPls67lTU46NpKzgpxTS1SV2c94r0rwprfhy803xxbWl3pEkTfaor5EktmiHJ8xZAUKjqd3Ffzl/HeL9kHwP8AEW5h/wCCaet+J7b4pSkn+z/h2raho8jg8G8jc/ZvJB6iJyidWSv3h/aD/Z1+Gf7T3giD4cfFyG4u9Eivob6S2gne3E7QBgqSNGQ5j+bJCspyBzxXX/DH4RfC74L+G08IfCfQLHw9pqY/cWMKwhiP4nIGXb1ZiWPc10Zll9TFzULRjFfa1c1/h25fW79DzOE+J8LklCVbnq1KknrRTUaEl09rfn9on/JyR2Xv9vLf2Rb79pXUfgVpN1+1pa2ln41Jk+1R2nl48vd+7L+UzRiQr94IduegFfS9FFerQpezpxp8zdla71b835nxmYYtYrE1cSqcYc8m+WCtGN3e0Vd2S2SvsFFFFanGf//Q/v4ooooA/wA5/wD4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/7FXRv/SSKv5Xf+CjH/J+Hxc/7GnUv/RzV/VF+yh/ya18Nf8AsVdG/wDSSKuXFbI97Ifjn6Hv1FFFcJ9MFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFfmJ8C/+Unfxw/7BWif+kttX6d1+YnwL/wCUnfxw/wCwVon/AKS21aU9pehy4n4qX+L/ANtkfp3RRRWZ1BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/OR/wW3/5Kl4I/wCwVcf+jhX6t/8ABuP/AMmu+Of+xpP/AKSW9flJ/wAFt/8AkqXgj/sFXH/o4V+rf/BuP/ya745/7Gk/+klvXp0PgR8Vmf8AvU/66H9DlFFFanAFFFFAHx18IP2Ff2fvgt8ffGX7TPhmxnu/GHjW6luri8vnWb7J55zLHagIvlpI3LZLOem7bha+xaKKACiiigAr8N/+Dgv/AJMPtP8AsadP/wDRNzX7kV+G/wDwcF/8mH2n/Y06f/6JuaAPxf8A+CAX/J4/iX/sTLz/ANLrGv6+K/kH/wCCAX/J4/iX/sTLz/0usa/r4r4vPP8Aen6I9bB/wwooorxzqCiiigD8Wf8Agpb/AMnr/smf9jLqH/o3Tq/Y6vxz/wCCq2g/FDTfjX+z/wDHTwN4N1nxjpngPWb++1WLRbV7qaKIvZSDKoDt3LDJtZsJlcFhkV0Phf8A4LR/sa396NL+Ig1/wRdBN0kesaZIdrAkFcWpnc8ggEqPfByB9vk0k8JBJ66/mzyMUn7Rv+tj9a6K+LfDf/BRb9hvxUqvpnxP0KIMwUfbLj7Gckkci4EeBxyTwByeCK9dh/ai/ZnuYUuLf4i+GJI5FDKy6vaFWU8ggiXkGvVOY91orxTUv2lf2c9GaVNY8f8Ahu0aBd0gm1W1jKLjOW3SDAxzz2rwbx9/wUq/YW+HMMsutfErSLxo1B2aVI2pli3QL9kWUE+vOB3IoA+5KK/Hq9/4K3WHxFkXSP2RPhT4s+JF9IjFZhbGzsUIKqS0oEzALuO4siDO1d3zZDIfCH/BYD9pVdvirWNA+B2iTeU3l6eg1DVNokOQSHkUHb8zbZYs4RMDMmOeti6NL+JNL+uxpGlOXwo/VXxx8R/h58MdI/4SD4la9p3h6w3BftOp3UVpDuJAA3ysq5JIHXqa/N74j/8ABYf9kHwnqknhj4dzap8QNZMW6C10CzaVZJCpbaJJPLBCgZdkD7QehIKhngL/AII3fs02mrQ+MPj5quvfFLxAG3zXeu30nlO+8v8A6uNg5XcSSsksgYk5yCRX6W/Df4S/C/4PaDH4Y+Ffh/T/AA9YRosfk2FukAYJkjcVALnLMSzEkliSckmvIrcQUo6U4t/gv6+R0wwUn8TsflW/7XH/AAU0+KM003wQ/Z4Gh2PlL5U/iy+W3l3NuIZ4He1kwQMGNclTglgGFWbX4f8A/BaT4heZca3408D+AYZnLBLC0a9ni29FVZoZ4yjerSlhX7G0V5tTPsRL4UkdEcFTW5+Nf/Dvz9vvW9Oz4i/ap1a1uZ/mmjs9IwiNnOEdbuFsfRV44xip5v8Agl/+0Bq8z/8ACTftP+PbiF4jGY7eeW2BB/vAXTKRgkHK5PrgYr9jaK5nm+Lf2/wX+Rf1Wl2Pmz9kn9mvQP2SfgZpfwN8Nalcata6ZLcyi6uVVJHa5laU/KvAA3YHXpmvpOiivPnOU5OUnqzdJJWQUUUVIwooooA/jh/4Lv8A/J7dp/2LNh/6NuK/cX/g3z/5MQvP+xq1D/0TbV+HX/Bd/wD5PbtP+xZsP/RtxX7i/wDBvn/yYhef9jVqH/om2r7/AC7/AHWn6Hi1/wCJI/cmiiiu0xCiiigAr4v8OfsD/s6eHP2s9c/bRGnz33jXW0iVWvJFltrJ0iWFpbaPYCkkiKAzMzEDITYGYH7QooAKKKKACiiigD8if+C5f/KOPxd/1/aT/wClkVfzGf8ABHz/AJPPsf8AsE3/AP6AK/pz/wCC5f8Ayjj8Xf8AX9pP/pZFX8xn/BHz/k8+x/7BN/8A+gCrh8SIq/Az+tGiiiu08o/Nv4l/8pafgF/2Cdf/APSK6r9tK/Ev4l/8pafgF/2Cdf8A/SK6r9tK46vxM9Oh8CCiiiszUKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/D79if/AJOr/aZ/7HBf/Qrmv0xr8zv2J/8Ak6v9pn/scF/9Cua/TGu2l8KPNxH8RhXx1/wUD/5Mw+In/YJf/wBDWvsWvjr/AIKB/wDJmHxE/wCwS/8A6GtVLZkQ+JH853/BIf8A5SOfC7/r+uv/AEjnr/QOr/Px/wCCQ/8Aykc+F3/X9df+kc9f6B1cB6oUUUUAFFFFAHxV+zr+wH+zv+zH8VPGXxr8AWdzd+JvG1/c3tzfajIk8lrHdyGZ7a1KonlwbznB3SNgb3bauPtWiigAooooA/Ir/guV/wAo4/F3/X9pP/pZFX8rv/BKb/k9bw5/166j/wCk0lf1Rf8ABcr/AJRx+Lv+v7Sf/SyKv5Xf+CU3/J63hz/r11H/ANJpK1ofxI+qGtz+s+iiivfLCiiigAooooAKKKKANLRv+Qxaf9do/wD0IV9XV8o6N/yGLT/rtH/6EK+rq8zMN4kyCvJfir/x72X+8/8AIV61XkvxV/497L/ef+Qrnwn8WP8AXQS3PGaKKK9ssKKKKACiiigAooooAKKKKACiiigD5I/4Iyf8m5+MP+x21D/0ls6/XevyI/4Iyf8AJufjD/sdtQ/9JbOv13r4Hh3/AJFtD0/Vn3vip/yVmY/4/wD21BRRRXtH58FFFFABRRRQB/LB4q/5NF/aa/7KHB/6W19u/tA/8pIfgZ/2KVz/AOk97XxF4q/5NF/aa/7KHB/6W19u/tA/8pIfgZ/2KVz/AOk97X5tlv8AEpf46H/p+of13nm+I/694/8A9V+FP0Cooor9tP5ICiiigAooooA/kw/4Ks/8nreI/wDr107/ANJo6/rL/wCCKv8AyjM+Gn/cZ/8ATreV/Jp/wVZ/5PW8R/8AXrp3/pNHX9Zf/BFX/lGZ8NP+4z/6dbyvBr/xJepD3P1Mr84/20/+CdPh/wDbC+IXhb4sW/jjXvA3iLwnBNbWd5orrG4jmJLEMNsiPyRuV8FSRiv0corER+J//Dov4rf9HQ/E3/wZTf8Ax6j/AIdF/Fb/AKOh+Jv/AIMpv/j1fthRQB+J/wDw6L+K3/R0PxN/8GU3/wAerl/+CRXxO8Y+O/2Jbfx18WfEN5rN3Fqeo+dqGr3b3EiwwkH5pZmYhEGepwBX7sV/FV/wTt+GX7Sv7cnwVsP2PPBMs/hP4U6RqE974w8QRDEt4Z3DrYwE8MxQAleVGd8mQERwD9CvGHjD4q/8Fcvire/s8fs83tx4f+B/h+4WPxV4qjUq+qupB+y2uRhgw5AIxgiSQbdiP+/vwb+Dfw3+APw30v4S/CXS4tH0LR4hFb28Q/Fndj8zyO2Wd2JZmJJJNHwb+Dfw3+APw30v4S/CXS4tH0LR4hFb28Q/Fndj8zyO2Wd2JZmJJJNenUAFFFFABX8dX/Bxv/ydH4G/7FUf+ldxX9itfx1f8HG//J0fgb/sVR/6V3FAHsv/AARS/wCTWNf/AOxruv8A0js6/YCvx/8A+CKX/JrGv/8AY13X/pHZ1+wFaI97DfwohXxz/wAFAf8Akz3xv/17Qf8ApRFX2NXxz/wUB/5M98b/APXtB/6URV52cf7hiP8ABP8A9JZ9XwZ/yUGXf9f6X/pyJ90fsi/8mofDD/sUtF/9I4q+hq+ef2Rf+TUPhh/2KWi/+kcVfQ1aYL/d6f8AhX5Hx3EP/I0xf/Xyf/pTCivzm+LP/BM34P8Axg+I2rfEzXPFfi7T7vWJvPlt9P1CKG2RsAERobdiAcZOWPJNed/8OhPgV/0PHjr/AMGsP/yLXDPFY9Sajhk10fPa/wD5Ke/h8m4ZnShKtm04zaV19Xbs7aq/tFez0vZXP1dor8ov+HQnwK/6Hjx1/wCDWH/5Fo/4dCfAr/oePHX/AINYf/kWp+uZj/0Cr/wYv/kTb+w+Ff8AocT/APCaX/y0/V2ivyi/4dCfAr/oePHX/g1h/wDkWj/h0J8Cv+h48df+DWH/AORaPrmY/wDQKv8AwYv/AJEP7D4V/wChxP8A8Jpf/LT9XaK/KL/h0J8Cv+h48df+DWH/AORaP+HQnwK/6Hjx1/4NYf8A5Fo+uZj/ANAq/wDBi/8AkQ/sPhX/AKHE/wDwml/8tP1dor42/Zo/Yk+HP7LniPUfE/g3XvEGs3GpWwtXXWruO5SNAwfKBIYypJAzyQRX2TXpYadWdNSrQ5Zdr3/GyPk81w+Do4h08BXdWnpaThyN6a+7eVrbb6n5Yf8ABYz/AJMsvv8AsLWH/oRr6L8Mf8i1p/8A17Rf+gCvnT/gsZ/yZZff9haw/wDQjX0X4Y/5FrT/APr2i/8AQBXm4X/ka4j/AAU/zmfoNT/kjcu/6/4n/wBJoG5RRRXunyIUUUUAFFFFABRRRQAUUUUAFFFFABXP+LPFGjeCPCup+NPEcvkadpFpNe3UmM7IbdDI7Y74VSa6Cvkf9vO6ns/2OfiJNbNtY6PMhOM/LIQrDn1BIoJk7Js+V/2GP2SvAv7d2i+N/wBsD9q3Rv7Zi8eXc1j4ftJZpF+wabZyFN0LRspRxInlhhgjy37SMD7nbf8ABHfRfB7C1+Dnxl8eeFbBZfOS1gvxtRgFClfKEGCu0AEgnAAzxk/dP7Cuh6b4e/Yw+FdhpMaxRSeFdKuWVQFBlurdJpDgADLO7EnqScnJya+rKzPnm23dlHTLWax023sriZriSGJEaVvvOygAsck8nr1NXqKKBBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVzXjLwb4V+IXhW/8ABHjewh1TSNUha3urW4XfHLG/UEH9D1B5HNdLRQB+RX/BMTxF4g+Fvir4l/sI+Mr2a+n+GGph9HnuFl8ybSbwl4iS7FV2qUYIqogEnybxkj9da/CT47fGT4a/shf8Fe7f4pfEvVF0jQfFfgAR6hdPA8oR1ndUUCJWkYk2cX3VZucYx03/ABd/wVJ+K/x+uz4I/wCCe3w+vNcmdQs/iXXovs2m2m7rtXcAzAZI8yRTuUgRSDqDUW3ZH2D+3n+2hpn7LvgaPwp4JU6v8TPFKm28N6PBH58zTSHYs8kYOREjdM/6xxtAIDlfBf2IP2aNV/Zw+FlzH45uV1Hxj4nvH1XXrwHeXuZeQm88sEycnoXZiODWP+zB+xw3wl8RXfxp+NeuTeO/ibqoK3Ot3jPJ9njYBfKtxISVUKNu7Cnb8qhU+WvuWrSPWwuG5PeluFFFFM7Qr+T/AP4K9f8AJ5V7/wBgqw/9BNf1gV/J/wD8Fev+Tyr3/sFWH/oJpPY48d/D+Z/T1/wQ0/5Rx+Ef+v7Vv/SyWv12r8if+CGn/KOPwj/1/at/6WS1+u1QeOfkP8cf+CTdl8UP2ivE/wC0f8PPiz4s+HuqeLRb/b4NCn8hWNvEkQ+dGRyrbA+1iQGJxgYA4f8A4dF/Fb/o6H4m/wDgym/+PV+2FFAH4n/8Oi/it/0dD8Tf/BlN/wDHq+Wf21/2Cfjj+y5+y94t+Pfhz9pL4japeeHIIJo7W51S4WKXzJ44iGKzhhw5II7+tf0rV+bv/BXj/lHH8Uf+vG1/9LIKAMjRv2gvBvwg/Y+8M/HX45az9ntY/Dum3V3dTHfNc3E1sjbUHWSWVycKOST6ZI/O39n79n74q/8ABWT4q2X7U/7U9lPonwZ0Sdn8K+FXYr/aW0486bGN0bY+d/8Alp9xMICT59+xH+yb8Yf+CkI8GfGj9ri3fS/hD4IsLSy8NeGgWVNVe0iSI3EucExOUyzkAyfcTCAk/wBQVjY2Ol2MOmaZClvbW6LFFFEoRI0QYVVUYAAAwABgCgAsbGx0uxh0zTIUt7a3RYooolCJGiDCqqjAAAGAAMAVaoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD/9H+/iiiigD/ADn/APgox/yfh8XP+xp1L/0c1f1Rfsof8mtfDX/sVdG/9JIq/ld/4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/wCxV0b/ANJIq5cVsj3sh+Ofoe/UUUVwn0wUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV+YnwL/5Sd/HD/sFaJ/6S21fp3X5ifAv/AJSd/HD/ALBWif8ApLbVpT2l6HLifipf4v8A22R+ndFFFZnUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH85H/Bbf/kqXgj/ALBVx/6OFfq3/wAG5H/Jrvjk/wDU0n/0kt6/KT/gtv8A8lS8Ef8AYKuP/Rwr9XP+Dcj/AJNc8c/9jUf/AEkt69Oh8CPisz/3qf8AXQ/obooorU4AooooAKKKKACiiigAr8N/+Dgv/kxCz/7GnT//AETc1+5Ffht/wcGf8mIWf/Y1af8A+ibmgD8YP+CAX/J4/iX/ALEy8/8AS6xr+viv5B/+CAX/ACeP4l/7Ey8/9LrGv6+K+Lzz/en6I9bB/wAMKKKK8c6gooooAK57xJ4R8J+MrBtK8X6XaaraupVobyFJ4yrYyCrgjBwM8dq6GimnbVAfI3in9gb9irxkk6638LvDYa4UiR7bT4rSQ5JJO+BY2DEnlgQ3vXkGof8ABJX/AIJ56lCILn4b26qG3Ziv76Js890uFOOemcV+jFFbRxVaO02vmyHTg90j84tO/wCCSH/BPHS9/wBm+HELb8Z87UL+bp6eZctjr2xmvd/A37D/AOx/8Nrv+0fBvw18PWt0GLLO9hFPMhKlTsklDugKkghSAQea+pqKJYqtL4pt/NgqcFskRQQQ20KW1sixxxqFVVGFVRwAAOgFS0UVgWFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAfxw/8ABd//AJPbtP8AsWbD/wBG3FfuL/wb5/8AJiF5/wBjVqH/AKJtq/Dr/gu//wAnt2n/AGLNh/6NuK/cX/g3z/5MQvP+xq1D/wBE21ff5d/utP0PFr/xJH7k0UUV2mIUUUUAFFFFABRRRQAUUUUAfkT/AMFy/wDlHH4u/wCv7Sf/AEsir+Yz/gj5/wAnn2P/AGCb/wD9AFf05/8ABcv/AJRx+Lv+v7Sf/SyKv5jP+CPn/J59j/2Cb/8A9AFXD4kRV+Bn9aNFFFdp5R+bfxL/AOUtPwC/7BOv/wDpFdV+2lfiX8S/+UtPwC/7BOv/APpFdV+2lcdX4menQ+BBRRRWZqFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAfh9+xP/wAnV/tM/wDY4L/6Fc1+mNfmd+xP/wAnV/tM/wDY4L/6Fc1+mNdtL4UebiP4jCvjr/goH/yZh8RP+wS//oa19i18df8ABQP/AJMw+In/AGCX/wDQ1qpbMiHxI/nO/wCCQ/8Aykc+F3/X9df+kc9f6B1f5+P/AASH/wCUjnwu/wCv66/9I56/0Dq4D1QooooAKKKKACiiigAooooA/Ir/AILlf8o4/F3/AF/aT/6WRV/K7/wSm/5PW8Of9euo/wDpNJX9UX/Bcr/lHH4u/wCv7Sf/AEsir+V3/glN/wAnreHP+vXUf/SaStaH8SPqhrc/rPooor3ywooooAKKKKACiiigDS0b/kMWn/XaP/0IV9XV8o6N/wAhi0/67R/+hCvq6vMzDeJMgryX4q/8e9l/vP8AyFetV5L8Vf8Aj3sv95/5CufCfxY/10EtzxmiiivbLCiiigAooooAKKKKACiiigAooooA+SP+CMn/ACbn4w/7HbUP/SWzr9d6/Ij/AIIyf8m5+MP+x21D/wBJbOv13r4Hh3/kW0PT9Wfe+Kn/ACVmY/4//bUFFFRzTQ28LXFwwSNAWZmOAAOSST0Ar2j8+SJKK+OvjD+33+yR8DpZNP8AGnjOym1CMsjWWmk39wrp1R1gDiJvaUpXx/qf/BTj4qfElC/7K3wc1nX7GSNjFqusMLK2ZxkfKq7kkUHB/wBerEcYBOR5lbOMHTn7Pn5p/wAsU5S+6N2fY5dwBn2MpLExwrhRf/Lyq40qfynUcYv5Nn7C0V+Ll146/wCCsPxCV5kvvB/gOMuwVIomupgpBA++t1GcHB5I5PTHy1mv8Gf+CgWuypP4i+P01qxLs4stMiUAt6BGhBHTggBe3u1jMVP+Fg6j9VGP/pUk/wADt/1JwlL/AHvOcLDyjKrVf/lOlKP3SPzA8a/Fiyh8BfHT9nHTtG1bUte8WeOXu7KSztxNbhbS7LOrkN5m8gfKFjb3Ir9T/gz+wz8Ofhr8QtH+NU2ueItZ1/T7VkiGr3aTpF58bI4wIUfgSOApbAJJxnmvQP2W/wBmqX9nHRtdh1TxDN4m1PxFqDaheXssIg3SMP7m+Q7iSxZi5yT0Hf6lrPh3hRUVHE5hFOorcsWl7lpSktU2m7u9+h9hx54m/WHUy3IJuOHlzc803++5qVOnL3ZRjKEbQtbrdt72Ciiivuj8VCiiigAooooA/kw/4Ks/8nreI/8Ar107/wBJo6/rL/4Iq/8AKMz4af8AcZ/9Ot5X8mn/AAVZ/wCT1vEf/Xrp3/pNHX9Zf/BFX/lGZ8NP+4z/AOnW8rwa/wDEl6kPc/UyiiisRBRRRQAVi6B4b8O+FdPGkeF7C2020DFhDaxLDGGbqdqADJ7nFbVFABRRRQAUUUUAFfx1f8HG/wDydH4G/wCxVH/pXcV/YrX8dX/Bxv8A8nR+Bv8AsVR/6V3FAHsv/BFL/k1jX/8Asa7r/wBI7Ov2Ar8f/wDgil/yaxr/AP2Nd1/6R2dfsBWiPew38KIV8c/8FAf+TPfG/wD17Qf+lEVfY1fHP/BQH/kz3xv/ANe0H/pRFXnZx/uGI/wT/wDSWfV8Gf8AJQZd/wBf6X/pyJ90fsi/8mofDD/sUtF/9I4q+hq+ef2Rf+TUPhh/2KWi/wDpHFX0NWmC/wB3p/4V+R8dxD/yNMX/ANfJ/wDpTCivzm+LP/BTr4DfBz4jat8MfE2ieJbm/wBGm8iaWzsY5YGbAOUczKSOfQc153/w+G/Zp/6F3xd/4LY//kiuGefZfCThKsk1oz38P4b8T16UK9HL6jhJJppaNNXT36o/V2ivyi/4fDfs0/8AQu+Lv/BbH/8AJFH/AA+G/Zp/6F3xd/4LY/8A5Iqf9Yct/wCf8Tb/AIhfxX/0Lqn3L/M/V2ivyi/4fDfs0/8AQu+Lv/BbH/8AJFH/AA+G/Zp/6F3xd/4LY/8A5Io/1hy3/n/EP+IX8V/9C6p9y/zP1dor8ov+Hw37NP8A0Lvi7/wWx/8AyRR/w+G/Zp/6F3xd/wCC2P8A+SKP9Yct/wCf8Q/4hfxX/wBC6p9y/wAz9XaK+Nv2aP24fhR+1T4j1Hwx8PtM1qwuNMthdStqlqlujIzBMIVlck5PPGMV9k16WGxNLEU1Voy5o90fJ5rlGMyzEPCY+k6dVWbi99Vdfej8sP8AgsZ/yZZff9haw/8AQjX0X4Y/5FrT/wDr2i/9AFfOn/BYz/kyy+/7C1h/6Ea+i/DH/Itaf/17Rf8AoArzcL/yNcR/gp/nM/Qan/JG5d/1/wAT/wCk0Dcooor3T5EKKKKACiiigAooooAKKKKACiiigArxf9ov4ZyfGT4FeLPhhbyPHPrOmT28DJtyJtuY/vELjeFyCRkZ5HUe0UUCaurM8T/4JX/GFPiz+xf4V0++Bi1bwfEfDd/buU8yF9OxHEGVcMuYRGcOobOc7vvH9FK/nz+IDeNP+CbP7QeqftV/DfSZtX+Fni8LH4p0PTwsf2C5AAjuo1Py/M5Zs/Ku52QlQyEftp8GPjl8Kf2hPA9t8RPhBrVvrWl3IB3wtiSJj1SWM4eNx3VwD+HNZs8CrTcJOLPWKKKKDMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiuH+JfxH8G/CHwDq/xO+IV6mnaLods93dzv/CiDoo6s7HCogyzsQqgkgUAfi38ZPC3hP46/8FepfD3jSwh1rTfBHgeJza30CzWyXMswdTsdWRm23QYEjORwflFfpZaWlrp9rFYWMSQwQIscccahURFGAqgcAAcADpX5r/8ABOjwlrfjGw8X/tlePTI+u/FPU57qETZDQabBI6QoB2BIO3HHlrHjiv0wq1se1hIctNX6hRRRTOoKKKKACv5P/wDgr1/yeVe/9gqw/wDQTX9YFfyf/wDBXr/k8q9/7BVh/wCgmk9jjx38P5n9PX/BDT/lHH4R/wCv7Vv/AEslr9dq/In/AIIaf8o4/CP/AF/at/6WS1+u1QeOFFFFABWVrmhaJ4m0i48P+JLODULC8QxT21zGssMqN1V0YFWB7ggitWigCrY2NjpdjDpmmQpb21uixRRRKESNEGFVVGAAAMAAYAq1RRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/9L+/iiiigD/ADn/APgox/yfh8XP+xp1L/0c1f1Rfsof8mtfDX/sVdG/9JIq/ld/4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/wCxV0b/ANJIq5cVsj3sh+Ofoe/UUUVwn0wUUUUAFFFFABRXEePfiX8PfhZow8Q/EjW7LQ7JnEazX06woznoqliMn2FfBmr/APBSzwT4o1dvC37MPgzxF8VNWAfCaTZypbgowU7pDGzhcEMXERUAjJ54uMJS2RhWxNKl/EkkfpVRX5/aV4O/4LD/ABiUmw8P+EfhfZSP8smpTm7u1Te3aM3CEhVA5iUNuyMfwdTZ/wDBKb9pT4kFbv8AaO/aF1u6SXDT2Hh+3FhCGKMCFcOEI3MR/wAe4yo6An5dlhZdTzamd0F8Kb/D+vuPrzXvE/hvwrZtqPifULbTbdQWMt1KsKADGSWcgYGRmvn3xL+2p+yZ4S3jWPiHoRaPO5ba8S6cEZyCsBc5GDxjP5itXwz/AMEQP2EdIPm+J7DW/E8xZC02p6pKHYIAME232cYbHPGfQivp7wh/wTc/YR8EOz6N8LNAnLNuP2+2/tAZxjgXRlAGOw4zz1rRYVdWcc8+n9mC+/8A4Y/OrV/+Cof7EOksY18Ym7cEArb2F4/BGc7jCFI+jE5/HHBT/wDBXH9kxr5dP0Qa5qsrlgotNPJJC85Ad0YgjJ6ZwOcV+6Gj/s//AAG8OzfafD/gjQLGTcrbrfTbeJtycqcrGDkdvSvTtP0vTNIhNtpVtFaxs24rEgRSx4zgAc4Aq1hYGDzvEPZL7n/mfzup/wAFXPgtc6h/Zuk+CfHF9I33PI0uJt+Bk4U3IbjnPHb0qW//AOCn3hWPZ/Znws8fzZzu83Skjx6YxM+f0r+iyin9WgQ85xPdfcfzp2H/AAU+8Kyb/wC0/hZ4/hxjb5WlJJn1zmZMfrUd3/wVY+D2m3aWWseBPHdk74P7/SoUwpON2PtOccHoD0r+jCij6tAFnOJ7r7j+dNv+Ctv7KlnMbbXYNf0yTaGVbrT9rMpyMgLI3GR3xXeaR/wVD/Yh1ZhG3jE2jkkBbiwvE4AzncISoH1YHP4Z/ea9sbLUbZrPUIUnhfG6ORQynByMg5HUZrzHV/gL8DPEG7+3vBehX25zKftGnW8uXOfmO5DzyeevNJ4WBazvELdL7v8Agn5i+Gf22P2SvF0og0b4haGHYKVW5ultS2/oAJ9mW/2RyPSvfvD/AIx8IeLIvP8ACuq2epoRu3Wk6TDHHOUJ45H5ivR/FP8AwTt/YZ8YY/tb4VeG4dqNH/oNjHY8N1/49hFk+jdR2NfKniv/AIIf/sE69LJP4e0rWPDbsqiNtN1SVjC6/wAaG6+0fN/vZHoKh4VdGbwz6f2oL77f5n0RRXxfqX/BJv44/DrN1+zJ+0B4j0tY5PMjsPECDUbdvmUjJDJGpADFv9HYScKQBkng9R8Af8Fj/grBLc6hpnhL4rWUEXmObCT7LeMq7/uqwtF3/dZlWOTIwqfMTWbwsuh1087ov401+P8AX3H6GUV+Zg/4KUaP8PNbTw3+1Z8O/E3wvupMCOW/tJJ7VyHKMUkEcbyIMEq8cbBgGx0Ab7s+Gnxf+F3xk0Z/EHws16y120ify5Xs5RIYn5+V1HzITjIDAZHI4waxlTlHdHpUcVRq/wAOSf8AXY9HoooqDoCiiigAooooAK/MT4F/8pO/jh/2CtE/9Jbav07r8xPgX/yk7+OH/YK0T/0ltq0p7S9DlxPxUv8AF/7bI/TuiiiszqCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD+cj/AILb/wDJUvBH/YKuP/Rwr9XP+Dcj/k1zxz/2NR/9JLevyj/4Lb/8lS8Ef9gq4/8ARwr9XP8Ag3I/5Nc8c/8AY1H/ANJLevTofAj4rM/96n/XQ/obooorU4AooooAKKKKACiiigAr8Nv+Dgz/AJMQs/8AsatP/wDRNzX7k1+G3/BwZ/yYhZ/9jVp//om5oGj8YP8AggF/yeP4l/7Ey8/9LrGv6+K/kH/4IBf8nj+Jf+xMvP8A0usa/r4r4vPP96foj1cH/DCiiivHOoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD+OH/gu//wAnt2n/AGLNh/6NuK/cX/g3z/5MQvP+xq1D/wBE21fh1/wXf/5PbtP+xZsP/RtxX7i/8G+f/JiF5/2NWof+ibavv8u/3Wn6Hi1/4kj9yaKKK7TEKKKKACiiigAooooAKKKKAPyJ/wCC5f8Ayjj8Xf8AX9pP/pZFX8xn/BHz/k8+x/7BN/8A+gCv6c/+C5f/ACjj8Xf9f2k/+lkVfzGf8EfP+Tz7H/sE3/8A6AKuHxIir8DP60aKKK7Tyj82/iX/AMpafgF/2Cdf/wDSK6r9tK/Ev4l/8pafgF/2Cdf/APSK6r9tK46vxM9Oh8CCiiiszUKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/D79if/k6v9pn/ALHBf/Qrmv0xr8zv2J/+Tq/2mf8AscF/9Cua/TGu2l8KPNxH8RhXx1/wUD/5Mw+In/YJf/0Na+xa+Ov+Cgf/ACZh8RP+wS//AKGtVLZkQ+JH853/AASH/wCUjnwu/wCv66/9I56/0Dq/z8f+CQ//ACkc+F3/AF/XX/pHPX+gdXAeqFFFFABRRRQAUUUUAFFFFAH5Ff8ABcr/AJRx+Lv+v7Sf/SyKv5Xf+CU3/J63hz/r11H/ANJpK/qi/wCC5X/KOPxd/wBf2k/+lkVfyu/8Epv+T1vDn/XrqP8A6TSVrQ/iR9UNbn9Z9FFFe+WFFFFABRRRQAUUUUAaWjf8hi0/67R/+hCvq6vlHRv+Qxaf9do//QhX1dXmZhvEmQV5L8Vf+Pey/wB5/wCQr1qvJfir/wAe9l/vP/IVz4T+LH+uglueM0UUV7ZYUUUUAFFFFABRRRQAUUUUAFFFFAH56t/wT50XwprM/iD4HfEDxT4IuLiZ5zHY3hMAdwAcKojc5IG7c7ZHHTGNaz+En/BRDwiRb+Efj0b2LG3dqWlwyvjC/wDPUXBzx1znv3NfelFfPS4Wy696cHB/3Jzj+EZJfgfdrxIz2aUcXOnXVrfvqNGq/wDwKcJS/E+D5/BH/BTjUyLfUvjfYxQiQENBpFsj7ccn5bdD3Py7sHAOfTmr39hPxr8So0T9o34ueJ/F8C5b7IkxtrZWcMGxGzTL/FgEBeBjocD9FaKlcK5e3+9Up+Upzkvucrfeil4kZzTX+xqjQfelh6FOX/gUaakvk0fO3w2/ZM/Z0+Evly+CfCdjFcR5IubhTdXGTjJEkxdh0HAIA7AZr6Joor3MPhaOHhyUIKMeySS/A+QzDNMZj6vt8dXlVn3nJyf3tthRRRW5whRRRQAUUUUAFFFFABRRRQB/Jh/wVZ/5PW8R/wDXrp3/AKTR1/WX/wAEVf8AlGZ8NP8AuM/+nW8r+TT/AIKs/wDJ63iP/r107/0mjr+sv/gir/yjM+Gn/cZ/9Ot5Xg1/4kvUh7n6mUUUViIKKKKACiiigAooooAKKKKACv46v+Djf/k6PwN/2Ko/9K7iv7Fa/jq/4ON/+To/A3/Yqj/0ruKAPZf+CKX/ACaxr/8A2Nd1/wCkdnX7AV+P/wDwRS/5NY1//sa7r/0js6/YCtEe9hv4UQr45/4KA/8AJnvjf/r2g/8ASiKvsavjn/goD/yZ743/AOvaD/0oirzs4/3DEf4J/wDpLPq+DP8AkoMu/wCv9L/05E+6P2Rf+TUPhh/2KWi/+kcVfQ1fPP7Iv/JqHww/7FLRf/SOKvoatMF/u9P/AAr8j47iH/kaYv8A6+T/APSmFFFFdJ44UUUUAFFFFABRRRQAUUUUAflh/wAFjP8Akyy+/wCwtYf+hGvovwx/yLWn/wDXtF/6AK+dP+Cxn/Jll9/2FrD/ANCNfRfhj/kWtP8A+vaL/wBAFeNhf+RriP8ABT/OZ+pVP+SNy7/r/if/AEmgblFFFe6fIhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAFe7tLXULWWwvokmgnRo5I5FDI6MMFWB4II4IPWvzS8ef8EwfhfJ4t/4WL+zz4i1b4W68rebHJo8hNqswPDiHcjAYLDYkqLg9MZB/TWiixE6cZq0kfiD+0v8Jf8AgpH8FPg9qfjrRvjjrfivTtKXff29tu0+8TT4wWknWYSSOGQKC2CWCljk4IP7M/sAaD4B0X9lfw1d/DDxZq3jPRNUR72G/wBYmE06ySHbPCvyIUSOZZBsYMytuBY1u3dpa6hay2F9Ek0E6NHJHIoZHRhgqwPBBHBB61+VT3HxE/4JZfEe6+I3gO3udf8AgT4jvPN1rRovnm0G4mIHn246CPoByFYARuQwjkqWjzsVhVFc0Fof0C0V5P8ABj45fCn9oTwPbfET4Qa1b61pdyAd8LYkiY9UljOHjcd1cA/hzXrFSeeFFFFABRX5e+N/2mvjB8CP+CjOg/B34s38U3wz+JenCDw0/wBnjiNpq8bKGieYKHkZ3IjC8gCeHoQ5b9QqACiiigAooooAK/H/APbU+Kupx/8ABQr9nv4NWniObQNP8281fU1W4+yw3KAgwRysXVJA72zoEPUvgAsVFfrve3tnptnNqOozJb29ujSSyyMEREQZZmY4AAAySeAK/mx8EfCT4d/8FNf2ivi1+0J8TLO6u/Bolg8PeF5kuHiZEs1AeaEAcbsLLhsqDMwKnnAkaU6bnLlif0r0V+Bulfsrft+fA6yj0j9mz47yz6TaOBaab4jtVnSKEBsR+Y6XPyjgfJGgwcgAqM9DLpv/AAWZ11bW0ufiV4N0OOJyJrizshPO6jjJSaxaM5xuABTrzjpTszR4WqtOU/Zn4ifEz4e/CPwrP43+J+tWegaTbcSXV9MsMe45IUFiNztj5UXLMeACa/BLxv4++IH/AAVz8b2Ph/RdOu/C/wACPDN/LLd3by7LnX7iI4jAXaCgUdFGRHuZmYybFT0Xw9/wTftPHHiq0+Iv7ZPjjVvitrFpGqw215I8GnwdCVWMOWKhgDgNGjnJdCWOP0g8P+HtA8J6Nb+HPC1jb6Zp1onlwWtpEsMMSf3URAFUewApqJ00ME73qfcWNJ0rTdB0q20PRoUtrOyiSCCGMYSOOMBVVR2AAAFaFFFUemFFFFABRRRQAV/J/wD8Fev+Tyr3/sFWH/oJr+sCv5P/APgr1/yeVe/9gqw/9BNKRx47+H8z+nr/AIIaf8o4/CP/AF/at/6WS1+u1fkT/wAENP8AlHH4R/6/tW/9LJa/XaoPHCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/T/v4ooooA/wA5/wD4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/7FXRv/SSKv5Xf+CjH/J+Hxc/7GnUv/RzV/VF+yh/ya18Nf8AsVdG/wDSSKuXFbI97Ifjn6Hv1FFFcJ9MFFFFABXwT8Zf2hfjJ48+Ksv7K/7E+lQ6542t4hLrGq3RA07RImxgysQVaUg/d5wcAK7ZVfvavgn/AIIPeLfh94z+F/xJ8UxyRnx1rPieW/1oO++4a1mQPbHJ5aMSPcYY/NvL56iujD01JtvoeRm+LnRhGNPRy6+h7x8If+CSPwmF6nxC/bB1a6+L/jNnWU3GpSSw6fbYwfKhtUk2NGDkESZRhyI06V+pnhbwh4S8DaOnh3wTpdpo+nxszJa2MCW8Ks5yxCRhVBJ5PHJroqK9A+Tbbd29QooooEFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGZrOiaN4j02TRvENpDf2c2PMguI1ljfaQwyrAg4IBGRwRmvyo+NX/AASM+CGua5cfE/8AZgvbr4TeNPmkhudEkeKxd9j4ja2B2RxO5TzFiCqVTGzJJP61UUDTad0fz6fC/wDaS+Onwb+N9h+yF+3BpkEHifUFP9j+JbA40/VwfugDy4wrk5XIVfmwpjQ4Lfo3XyB/wXf1LwRpX7Hun3WsNHH4iHiCzOhSqdtzFMgZ5WjIBYKIlO4gqN2zJztB+p/D11PfaBY31026Wa3id2xjLMoJOBx1rgxFNRaaPq8nxc60ZRqO7VtTYooormPYCiiigAr8xPgX/wApO/jh/wBgrRP/AEltq/TuvzE+Bf8Ayk7+OH/YK0T/ANJbatKe0vQ5cT8VL/F/7bI/TuiiiszqCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD+cj/gtv/yVLwR/2Crj/wBHCv1c/wCDcj/k1zxz/wBjUf8A0kt6/KP/AILb/wDJUvBH/YKuP/Rwr9XP+Dcj/k1zxz/2NR/9JLevTofAj4rM/wDep/10P6G6KKK1OAKKKKACiiigAooooAK/Db/g4M/5MQs/+xq0/wD9E3NfuTX4bf8ABwZ/yYhZ/wDY1af/AOibmgaPxg/4IBf8nj+Jf+xMvP8A0usa/r4r+Qf/AIIBf8nj+Jf+xMvP/S6xr+vivi88/wB6foj1cH/DCiiivHOoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD+OH/gu/8A8nt2n/Ys2H/o24r9xf8Ag3z/AOTELz/satQ/9E21fh1/wXf/AOT27T/sWbD/ANG3FfuL/wAG+f8AyYhef9jVqH/om2r7/Lv91p+h4tf+JI/cmiiiu0xCiiigAooooAKKKKACiiigD8if+C5f/KOPxd/1/aT/AOlkVfzGf8EfP+Tz7H/sE3//AKAK/pz/AOC5f/KOPxd/1/aT/wClkVfzGf8ABHz/AJPPsf8AsE3/AP6AKuHxIir8DP60aKKK7Tyj82/iX/ylp+AX/YJ1/wD9Irqv20r8S/iX/wApafgF/wBgnX//AEiuq/bSuOr8TPTofAgooorM1CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPw+/Yn/AOTq/wBpn/scF/8AQrmv0xr8zv2J/wDk6v8AaZ/7HBf/AEK5r9Ma7aXwo83EfxGFfHX/AAUD/wCTMPiJ/wBgl/8A0Na+xa+Ov+Cgf/JmHxE/7BL/APoa1UtmRD4kfznf8Eh/+Ujnwu/6/rr/ANI56/0Dq/z8f+CQ/wDykc+F3/X9df8ApHPX+gdXAeqFFFFABRRRQAUUUUAFFFFAH5Ff8Fyv+Ucfi7/r+0n/ANLIq/ld/wCCU3/J63hz/r11H/0mkr+qL/guV/yjj8Xf9f2k/wDpZFX8rv8AwSm/5PW8Of8AXrqP/pNJWtD+JH1Q1uf1n0UUV75YUUUUAFFFFABRRRQBpaN/yGLT/rtH/wChCvq6vlHRv+Qxaf8AXaP/ANCFfV1eZmG8SZBXkvxV/wCPey/3n/kK9aryX4q/8e9l/vP/ACFc+E/ix/roJbnjNFFFe2WFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH8mH/BVn/k9bxH/166d/6TR1/WX/AMEVf+UZnw0/7jP/AKdbyv5NP+CrP/J63iP/AK9dO/8ASaOv6y/+CKv/ACjM+Gn/AHGf/TreV4Nf+JL1Ie5+plFFFYiCiiigAooooAKKKKACiiigAr+Or/g43/5Oj8Df9iqP/Su4r+xWv46v+Djf/k6PwN/2Ko/9K7igD2X/AIIpf8msa/8A9jXdf+kdnX7AV+P/APwRS/5NY1//ALGu6/8ASOzr9gK0R72G/hRCvNfjD8LtB+NPw01f4XeJpZoLLWIRFJJbkCRNrB1ZSwI4ZQeQQa9KoqKtONSEqc1eLVmvJnbhcTVw9aGIoS5ZwalFrdNO6fyZ+dGkfsL/ABQ8P6Ta6DoPx38dWNjYwpb21tb380UUMUQCoiIsoVVVQAqgAADArR/4Yv8AjN/0cD4//wDBnP8A/Hq/QaivIXD+ASsoP/wKX/yR9bLxBz2TcpVotv8A6dUv/kD8+f8Ahi/4zf8ARwPj/wD8Gc//AMeo/wCGL/jN/wBHA+P/APwZz/8Ax6v0Gop/2Bgf5H/4FP8A+SF/r/nn/P2P/gqj/wDIH58/8MX/ABm/6OB8f/8Agzn/APj1H/DF/wAZv+jgfH//AIM5/wD49X6DUUf2Bgf5H/4FP/5IP9f88/5+x/8ABVH/AOQPz5/4Yv8AjN/0cD4//wDBnP8A/HqP+GL/AIzf9HA+P/8AwZz/APx6v0Goo/sDA/yP/wACn/8AJB/r/nn/AD9j/wCCqP8A8gfnz/wxf8Zv+jgfH/8A4M5//j1H/DF/xm/6OB8f/wDgzn/+PV+g1FH9gYH+R/8AgU//AJIP9f8APP8An7H/AMFUf/kD8+f+GL/jN/0cD4//APBnP/8AHqP+GL/jN/0cD4//APBnP/8AHq/Qaij+wMD/ACP/AMCn/wDJB/r/AJ5/z9j/AOCqP/yB+Z/jH/gnp4v+Iuit4a+IPxo8Y67pzOsjWuoXb3UBdPusUkkZcjscZFfpNYWcWn2MNhCSUgRY1LdcKMDPSrVFdeDy3DYWUpUI2crX1b2vbdvuzys44mzLNKdOljqvNGDbilGMUnK13aKW/Kt+wUUUV3HghRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVHNDFcRNBOodHBVlYZBB6gjuDUlFAH5v8AxI/YBk0bxdefFz9jrxbffCvxVdkSTw2Dsul3jKdwWWBeApbkjDx9/LJrUsf2p/8AgqX8HHubD4j/AAu0f4lWNnjZqWh3q2Ms6IoLHyiXcswUnC26jccKCMCv0MopWOWpg6cnfY+Df+HqHxxkkisrb9mnxsbkl1lDpKkSlem2U2u1gR3OB6ZzXMa5+1D/AMFTfjsJrH4OfDzSPhZp0pKJqHiGcXV4mVXDBCpAIJLHdauvIXkq2f0Zoo5UZrAQ6tn4+eJP+CVd5498M6p41+KHxF1nxL8VLqNZbPXLmZ0t7W4iO+NET55BGG+XIb5VwY0QjB+8P2DP24LX4oWbfs2/HyT+wvi14OC6bqFreygNqjQKF+1QMcCRpAN7hc53b1yhBH0nXyb+07+x98Nf2mdOtb3U3l0HxPpcqT6br+nAJe20sZynzjBdAQCF3AgjKlTzQ0FfBxa/d6NH6tUV+E+h/tIf8FFf2OFt/DXxi8Lj41eEbfcset6MJP7YVOq+egDltoHJaP6zE16va/8ABbT9kO2LWXjjTfE/hrUYuJbPUNNAlRwSrD5JX6FSOcH2zkCDzJwlF2kj9gaK/HHUP+C1P7P2t3Mei/BDwh4s8d6pJg/Z9PsAoUE45y7SZ9AsZB9RXjniNf8AgpJ+29dTWXju/T4GeAJHZG03TpPO1i7izgrJMpV8H5kY7oEIIJhkHJLDhSnN2ijT/bY/ak8V/tgeObn9gr9kCdLqyuf3XjHxLGC9vZ2yvtkgRvlVumHKtiTPlqfvkfeXwm+Fvg/4KfDnSPhZ4BgNvpOjQeTArHc7Eks7ucAF5HZncgAFieB0rm/gV+z78Kf2cfBMfgT4T6WlhajDTzMd9xdSgcyTSHl2PPoqjhQqgAe0VaVj18Nh1TV3uFFFFM6QooooAKKKKACiiigAooooAK/k/wD+CvX/ACeVe/8AYKsP/QTX9YFfyf8A/BXr/k8q9/7BVh/6CaUjjx38P5n9PX/BDT/lHH4R/wCv7Vv/AEslr9dq/In/AIIaf8o4/CP/AF/at/6WS1+u1QeOFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf//U/v4ooooA/wA5/wD4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/7FXRv/SSKv5Xf+CjH/J+Hxc/7GnUv/RzV/VF+yh/ya18Nf8AsVdG/wDSSKuXFbI97Ifjn6Hv1FFFcJ9MFFFFABX8+/8AwTm/Y1+J3jn9nq3/AGs/2V/FL+F/ib4e1m+tFhnLNYataxrbyC2nG7CKSWzlWRuAwUgOv9BFfDv/AAQp/wCTKLv/ALGW/wD/AEVb12YT7R87n/8Ay7+f6HafDP8A4K0P8P8AxVb/AAf/AOChngu8+FHih/lj1JY3uNFuyMAvG6mRkTcQoZGniHJaVelfq18Nfi78LfjJoEfij4U+IdP8RWEiJJ52n3CThQ+QNwQkocqwKsAQVIIBBFY3izwX4O8e6O/h3x1pNnrWnyZ32t/AlzC2VKnKSBlOVYg8dCR0Nfmt8QP+CRv7NWqaz/wmfwOvNZ+FniFfK2Xvhu9khUeUwP8Aq2JxnCn92yfOit13buw+dP2Gor8QLT4B/wDBXT4F2pg+FHxm0j4i6fbquy18U2ZiuJMKgz5uJ5S3ylcNchSCXJ3txtJ+3H/wUn+FM+z47fs5tr1qnyvd+ELz7SWw+3zI7dDdyENkEI5RgPmOADgA/aWivxotP+C2/wCzno0MSfFzwZ418F3DExv/AGjpa+SJVzuVXEu9iMYOY1OT06ke+eFv+Ctn/BPTxdlLD4kWtrIiK7rfWl3aYz23TQIrEdwrN+VAH6N0V8vaF+25+xx4lcRaN8VPCcsjMVEZ1e1SQkDJwjSBiMdwMdfQ167pHxf+E3iDb/YPijSL7cglH2e9hlyhxhhtc8cjnpzQB6JRVWyvrLUbZbzT5knhfO2SNgynBwcEZHUYq1QAUUVVvb6y062a81CZIIUxukkYKoycDJOB1OKALVFcBrHxY+Fnh2H7T4g8S6VYx7WbdcXkMS7U5Y5ZxwB19K8n139tD9kHw0hbXPil4Tt2Chth1i0MhUnAIQSliM+g7H0oA+l6K/PPxp/wVb/4J+eBHeHVfiTYXciqCF06G4vwxIJADW8UiZOMcsAD1Ir55vv+C3f7LeoXLad8L/DXjDxlctMIIF0zSwVmbGTt8yVX4HbZu6cY5AB+yVFfijN+3/8A8FCfi1bCH9nf9m+80rzMFL7xbdfZotrltreTILQkYXJ2zHqAOqlqZ+D3/BYj4yFk+I3xa0D4d6fcZWS38PWIuZ41aNVyrsiSA5LHi5GG5BxtwAfsT44+IfgP4ZaBP4p+Ims2Wh6bbIZJbm+nSCNVXAJ3OQOpA+pA6kV+UXxW/wCCufhTX/EbfCf9hjwtffF3xdIuBLbRPFpdtnjfLKQrMqnqcJH/ANNRVDwb/wAEff2eP7dHjL4/654h+KetOrGafX7+QxySOiKX2oRJkbfl3TNgEA52g1+nfgvwN4M+HHhy28H/AA/0q00XSrRdsNpZQrBCg9lQAZPc9SetAH81n7d37Knxyk/ZS8W/tdftr6//AG38RZprG10zS7RwNM0Oznuog0cKKNpkK/KxBIwSWaRyXr9pfCf/ACKumf8AXpD/AOgCvCP+Czf/ACYB4p/6/NL/APSuKvd/Cf8AyKumf9ekP/oArkxfQ+hyHep8v1OgoooriPowooooAK/MT4F/8pO/jh/2CtE/9Jbav07r8xPgX/yk7+OH/YK0T/0ltq0p7S9DlxPxUv8AF/7bI/TuiiiszqCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD+cj/AILb/wDJUvBH/YKuP/Rwr9XP+Dcj/k1zxz/2NR/9JLevyj/4Lb/8lS8Ef9gq4/8ARwr9XP8Ag3I/5Nc8c/8AY1H/ANJLevTofAj4rM/96n/XQ/obooorU4AooooAKKKKACiiigAr8Nv+Dgz/AJMQs/8AsatP/wDRNzX7k1+G3/BwZ/yYhZ/9jVp//om5oGj8YP8AggF/yeP4l/7Ey8/9LrGv6+K/kH/4IBf8nj+Jf+xMvP8A0usa/r4r4vPP96foj1cH/DCiiivHOoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD+OH/gu//wAnt2n/AGLNh/6NuK/cX/g3z/5MQvP+xq1D/wBE21fh1/wXf/5PbtP+xZsP/RtxX7i/8G+f/JiF5/2NWof+ibavv8u/3Wn6Hi1/4kj9yaKKK7TEKKKKACiiigAooooAKKKKAPyJ/wCC5f8Ayjj8Xf8AX9pP/pZFX8xn/BHz/k8+x/7BN/8A+gCv6c/+C5f/ACjj8Xf9f2k/+lkVfzGf8EfP+Tz7H/sE3/8A6AKuHxIir8DP60aKKK7Tyj8uv2qNfg+D3/BQH9n/AOO/ig/Z/Dyz3+hXN5JgQW81/E8CGRyyhVxOWLNgKqM3OCK/dWvgX9oL4CeAf2lPhdf/AAp+IsLvZXeJIpojtmt7hM+XNGeQGQnoQQQSCCCRXw78Nv2t/jr/AME9ILP4M/tlabeeLfA1omzTPHWnJJKYYQpEVtdRlTl9w2qWkDAYx5ijcOWrB3ud+HqJx5ep+7lFeafC34yfCz42eHV8WfCfXrPX9PbP720kD7cMyfMv3lyyMBuAzg44r0usTpCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKrXt7Z6bZzajqMyW9vbo0kssjBEREGWZmOAAAMkngCvFPjr+0v8DP2avDn/AAk/xq8R2miQspMMMjb7m4I7QwJmSQ+u1SB3IFfjz8QfjX+0J/wVGtm+HXwV0+9+Hnwbnk8vVtevlCahq0QzmGCMNjyn4DBWIP8AG+MxM0m3ZClJRV2dL/wTi1P/AIWL40+N/wAfNMhkXRvGHjO5k0yZwFE1vA0jKwGSc7ZV3MCVLZAPBr9Ra89+FPwu8F/Bb4eaV8Lvh7a/Y9H0eLyreMsWb5mLuzE9Wd2Z2PdiTXoVdsVZWPLqS5pNhXx1/wAFA/8AkzD4if8AYJf/ANDWvsWvjr/goH/yZh8RP+wS/wD6GtOWzCHxI/nO/wCCQ/8Aykc+F3/X9df+kc9f6B1f5+P/AASH/wCUjnwu/wCv66/9I56/0Dq4D1QooooAKKKKACiiigAooooA/Ir/AILlf8o4/F3/AF/aT/6WRV/K7/wSm/5PW8Of9euo/wDpNJX9UX/Bcr/lHH4u/wCv7Sf/AEsir+V3/glN/wAnreHP+vXUf/SaStaH8SPqhrc/rPooor3ywooooAKKKKACiiigDS0b/kMWn/XaP/0IV9XV8o6N/wAhi0/67R/+hCvq6vMzDeJMgryX4q/8e9l/vP8AyFetV5L8Vf8Aj3sv95/5CufCfxY/10EtzxmiiivbLCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD+TD/gqz/yet4j/wCvXTv/AEmjr+sv/gir/wAozPhp/wBxn/063lfyaf8ABVn/AJPW8R/9eunf+k0df1l/8EVf+UZnw0/7jP8A6dbyvBr/AMSXqQ9z9TKKKKxEFFFFABRRRQAUUUUAFFFFABX8dX/Bxv8A8nR+Bv8AsVR/6V3Ff2K1/HV/wcb/APJ0fgb/ALFUf+ldxQB7L/wRS/5NY1//ALGu6/8ASOzr9gK/H/8A4Ipf8msa/wD9jXdf+kdnX7AVoj3sN/CiFFFFBsFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABVO907T9TiEGpQR3CA7gsihwD64PfmrlFAEcMMVvEsEChEQBVVRgADoAOwFSUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFfyf/APBXr/k8q9/7BVh/6Ca/rAr+T/8A4K9f8nlXv/YKsP8A0E0pHHjv4fzP6ev+CGn/ACjj8I/9f2rf+lktfrtX5E/8ENP+UcfhH/r+1b/0slr9dqg8cKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//V/v4ooooA/wA5/wD4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/7FXRv/SSKv5Xf+CjH/J+Hxc/7GnUv/RzV/VF+yh/ya18Nf8AsVdG/wDSSKuXFbI97Ifjn6Hv1FFFcJ9MFFFFABXw7/wQp/5Mou/+xlv/AP0Vb19xV8O/8EKf+TKLv/sZb/8A9FW9dmE+0fO5/wD8u/n+h+zVFFFdh86FFFFAEU0MNzC9vcIskcilWVhlWU8EEHqDXg3iz9lL9mLx2qr4x+HnhvUWRdqPPpdu0iLnOFfy9ygnrgjNe/UUAfC2rf8ABM39g/Wt32z4Z6Sm5zIfI8235OenlSLgc/d6e3FeO65/wRo/4J+6shWw8J3emEqBm21S8Ygg5z++llGT0PbHQZ5r9S6KAPyK/wCHI37Cn/PhrP8A4MX/APiazbX/AIIg/sc6deSX2jah4psXkyP9H1JEwpOdoPkFscDqT05r9h6KAPx01D/gh7+x3q8wudV1TxVdSKu0NLqMbsFHOMm3PGSa1v8AhyN+wp/z4az/AODF/wD4mv11ooA/LTQ/+CNH/BP3SUC3/hO71MhSM3OqXikknOf3MsQyOg7Y6jPNeu6R/wAEyP2DNEm8+y+Gmlu25WxcNNcLlenEsjjHqMYPfNfd1FAHgPhD9lP9mLwBNHdeCvh54b0yeJgyz2+l26TBhnB8wR78jJxzwOBxXutnZWen2y2enxJBCmdqRqFUZOTgDA6nNWaKACiiigAooooA/LD/AILN/wDJgHin/r80v/0rir3fwn/yKumf9ekP/oArwj/gs3/yYB4p/wCvzS//AErir3fwn/yKumf9ekP/AKAK5MX0Poch3qfL9ToKKKK4j6MKKKKACvzE+Bf/ACk7+OH/AGCtE/8ASW2r9O6/MT4F/wDKTv44f9grRP8A0ltq0p7S9DlxPxUv8X/tsj9O6KKKzOoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP5yP+C2//JUvBH/YKuP/AEcK/Vz/AINyP+TXPHP/AGNR/wDSS3r8o/8Agtv/AMlS8Ef9gq4/9HCv1c/4NyP+TXPHP/Y1H/0kt69Oh8CPisz/AN6n/XQ/obooorU4AooooAKKKKACiiigAr8Nv+Dgz/kxCz/7GrT/AP0Tc1+5Nfht/wAHBn/JiFn/ANjVp/8A6JuaBo/GD/ggF/yeP4l/7Ey8/wDS6xr+viv5B/8AggF/yeP4l/7Ey8/9LrGv6+K+Lzz/AHp+iPVwf8MKKKK8c6gooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP44f+C7/wDye3af9izYf+jbiv3F/wCDfP8A5MQvP+xq1D/0TbV+HX/Bd/8A5PbtP+xZsP8A0bcV+4v/AAb5/wDJiF5/2NWof+ibavv8u/3Wn6Hi1/4kj9yaKKK7TEKKKKACiiigAooooAKKKKAPyJ/4Ll/8o4/F3/X9pP8A6WRV/MZ/wR8/5PPsf+wTf/8AoAr+nP8A4Ll/8o4/F3/X9pP/AKWRV/MZ/wAEfP8Ak8+x/wCwTf8A/oAq4fEiKvwM/rRooortPKCq93aWmoWkthfxJPBOjRyRyKGR0YYKsDwQRwQetWKKAPzn8cf8E2fhP/wmJ+Kf7Our6l8J/Fa5Md54fkKW2T1DW25V8tuN0UbRowGCOTXP6f8AEf8A4K2/s5R/ZtWstC+NWiwJEBKhFjqaqoII48oMRjBJSZ2yrZzvx+nFFZypRZtGvOPU+CvD3/BZT4M6Ffx+HP2mPBvib4Y6sXVHS/s3uLcZCbyroqyuE3ZJEHKbWGS22vs/4Z/t4/sc/F5kg8CfEbRZ55FDJb3VwLK4cEMflhuRFISApLALlRycAitbVdI0nXbCTStctYry1lxvhnQSRttIIyrAg4IBGR1FfJ/j/wDYD/Y6+JKyHxB4A0u3kkGDLp0Z0985J3ZtjFlsk5JzngHIAFZOh2ZusUuqP1LhmhuYUuLd1kjkUMrKcqynkEEdQalr8H/+HWHg/wAFSm7/AGePiR4x+H0rbiy6fqDeUWZQpbCeU+TgbsyHIAHFadr+z5/wU48BTeb8P/2hl1hQqKU1vTEcMq44PmC6IJ5ywIY+vPEOlI1WIg+p+5tFfidH8Uv+CyXgJ50u9G8B+N4wA4MDy20jcfcjLyWqjnk71x6GrkH7e3/BRDw/cCHxf+zeb753B/s/V0Awox95UuB15z0YdPWp5Jdi1Ui+p+0tFfjLbf8ABVH44afbM/jT9mnxtZSKnmH7Gkt5EFBOSZPssQGAAeR+mCbQ/wCCz3wq0izZ/HHwt+IOlXEW3zU/syFkTcBjLSXER5J4yoyMHvilZlJo/ZCivx9s/wDgtf8Ass3Nss83hrxnbs2cxyaVGWGD32XLLz14NRad/wAFx/2Hr3f9pbX7PbjHnaeDuznp5cr9PfHWkM/YeivyK/4fc/sKf8/+s/8Aguf/AOKrHm/4Lk/sUC++w2MHiS8LFVRodPTDlscKGmVs5OPu9aAP2Nor8fbz/gtf+yzbWzTw+GvGdwy4xHHpUYY5PbfcqvHXk1QH/BZn4a63biXwD8KPiDq7lHYD+zIlX5eBzHPNxngnHHvTswP2Ror8X3/4Kn/H7U4pJ/CH7M3jG7jARomu2ltA4bvk2j8dcbd3bOM024/bl/4KR+IYSPB37OsNjJMz+UdR1mIqqjOA4Y2/PA5JXd2HIp8r7EucerP2ior8TLnx3/wWU+IKokMfgPwJG8mCyCW5mjRSTk7jdxsWHHAHTovJrnz+zP8A8FI/HvlzfFH9o240xkfcY9C09YQQMDG6E2nUZ6qQDzg5JpqnLsQ60F1P3KvL2z0+2a81CVIIUxueRgqjJwMk4HU4r5A+If8AwUJ/Yo+FzeV4t+JWi+Zt3GOxmOoyKMZ+ZLQTMpI6AgE8Y6ivzus/+CVPwr8TXMWsftAeNPFfxE1BPvvqmouIm+90HzSjDOzf648/U5+nfA37Df7Inw5QL4Y+HujblziS8g+3SjICnD3JlccD17n1ObVGXUzeKj0PJtf/AOCxfgvxfNNo37KPw58T/Em+iLI00VsbWyU7GZcuBLLklfutEmVzg5GK5XUNT/4Kw/tJM0WsaronwQ8PTGRGh09RqOrmFx8pL7nUMOm6OW3cH+Gv0ntLS0sLdbWxiSGJM7UjUKoycnAGB1qxWiorqZSxUnsj8/vhn/wTh+A/hfXY/iB8WJL/AOJfi35Gl1bxNcPeFnXPIhdihHTAk8wrgYbrX37DDFbxLBAoSNAFVVGAAOgAHQCpKK1SS2OeUnLVsKKKKZIV8df8FA/+TMPiJ/2CX/8AQ1r7Fr46/wCCgf8AyZh8RP8AsEv/AOhrSlsy4fEj+c7/AIJD/wDKRz4Xf9f11/6Rz1/oHV/n4/8ABIf/AJSOfC7/AK/rr/0jnr/QOrgPVCiiigAooooAKKKKACiiigD8iv8AguV/yjj8Xf8AX9pP/pZFX8rv/BKb/k9bw5/166j/AOk0lf1Rf8Fyv+Ucfi7/AK/tJ/8ASyKv5Xf+CU3/ACet4c/69dR/9JpK1ofxI+qGtz+s+iiivfLCiiigAooooAKKKKANLRv+Qxaf9do//QhX1dXyjo3/ACGLT/rtH/6EK+rq8zMN4kyCvJfir/x72X+8/wDIV61XkvxV/wCPey/3n/kK58J/Fj/XQS3PGaKKK9ssKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP5MP+CrP/J63iP/AK9dO/8ASaOv6y/+CKv/ACjM+Gn/AHGf/TreV/Jp/wAFWf8Ak9bxH/166d/6TR1/WX/wRV/5RmfDT/uM/wDp1vK8Gv8AxJepD3P1MooorEQUUUUAFFFFABRRRQAUUUUAFfx1f8HG/wDydH4G/wCxVH/pXcV/YrX8dX/Bxv8A8nR+Bv8AsVR/6V3FAHsv/BFL/k1jX/8Asa7r/wBI7Ov2Ar8f/wDgil/yaxr/AP2Nd1/6R2dfsBWiPew38KIUUUUGwUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV/J/wD8Fev+Tyr3/sFWH/oJr+sCv5P/APgr1/yeVe/9gqw/9BNKRx47+H8z+nr/AIIaf8o4/CP/AF/at/6WS1+u1fkT/wAENP8AlHH4R/6/tW/9LJa/XaoPHCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/W/v4ooooA/wA5/wD4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/7FXRv/SSKv5Xf+CjH/J+Hxc/7GnUv/RzV/VF+yh/ya18Nf8AsVdG/wDSSKuXFbI97Ifjn6Hv1FFFcJ9MFFFFABXw7/wQp/5Mou/+xlv/AP0Vb19xV8O/8EKf+TKLv/sZb/8A9FW9dmE+0fO5/wD8u/n+h+zVFFFdh86FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAflh/wWb/5MA8U/wDX5pf/AKVxV7v4T/5FXTP+vSH/ANAFeEf8Fm/+TAPFP/X5pf8A6VxV7v4T/wCRV0z/AK9If/QBXJi+h9DkO9T5fqdBRRRXEfRhRRRQAV+YnwL/AOUnfxw/7BWif+kttX6d1+YnwL/5Sd/HD/sFaJ/6S21aU9pehy4n4qX+L/22R+ndFFFZnUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH85H/AAW3/wCSpeCP+wVcf+jhX6uf8G5H/Jrnjn/saj/6SW9flH/wW3/5Kl4I/wCwVcf+jhX6uf8ABuR/ya545/7Go/8ApJb16dD4EfFZn/vU/wCuh/Q3RRRWpwBRRRQAUUUUAFFFFABX4bf8HBn/ACYhZ/8AY1af/wCibmv3Jr8Nv+Dgz/kxCz/7GrT/AP0Tc0DR+MH/AAQC/wCTx/Ev/YmXn/pdY1/XxX8g/wDwQC/5PH8S/wDYmXn/AKXWNf18V8Xnn+9P0R6uD/hhRRRXjnUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/HD/wXf/5PbtP+xZsP/RtxX7i/8G+f/JiF5/2NWof+ibavw6/4Lv8A/J7dp/2LNh/6NuK/cX/g3z/5MQvP+xq1D/0TbV9/l3+60/Q8Wv8AxJH7k0UUV2mIUUUUAFFFFABRRRQAUUUUAfkT/wAFy/8AlHH4u/6/tJ/9LIq/mM/4I+f8nn2P/YJv/wD0AV/Tn/wXL/5Rx+Lv+v7Sf/SyKv5jP+CPn/J59j/2Cb//ANAFXD4kRV+Bn9aNFFFdp5QUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUARiGJZWnCgSMApbHJC5wCfQZOPqakoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvjr/goH/yZh8RP+wS//oa19i18df8ABQP/AJMw+In/AGCX/wDQ1pS2ZcPiR/Od/wAEh/8AlI58Lv8Ar+uv/SOev9A6v8/H/gkP/wApHPhd/wBf11/6Rz1/oHVwHqhRRRQAUUUUAFFFFABRRRQB+RX/AAXK/wCUcfi7/r+0n/0sir+V3/glN/yet4c/69dR/wDSaSv6ov8AguV/yjj8Xf8AX9pP/pZFX8rv/BKb/k9bw5/166j/AOk0la0P4kfVDW5/WfRRRXvlhRRRQAUUUUAFFFFAGlo3/IYtP+u0f/oQr6ur5R0b/kMWn/XaP/0IV9XV5mYbxJkFeS/FX/j3sv8Aef8AkK9aryX4q/8AHvZf7z/yFc+E/ix/roJbnjNFFFe2WFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH8mH/BVn/k9bxH/wBeunf+k0df1l/8EVf+UZnw0/7jP/p1vK/k0/4Ks/8AJ63iP/r107/0mjr+sv8A4Iq/8ozPhp/3Gf8A063leDX/AIkvUh7n6mUUUViIKKKKACiiigAooooAKKKKACv46v8Ag43/AOTo/A3/AGKo/wDSu4r+xWv46v8Ag43/AOTo/A3/AGKo/wDSu4oA9l/4Ipf8msa//wBjXdf+kdnX7AV+P/8AwRS/5NY1/wD7Gu6/9I7Ov2ArRHvYb+FEKKKKDYKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK/k/8A+CvX/J5V7/2CrD/0E1/WBX8n/wDwV6/5PKvf+wVYf+gmlI48d/D+Z/T1/wAENP8AlHH4R/6/tW/9LJa/XavyJ/4Iaf8AKOPwj/1/at/6WS1+u1QeOFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/X/v4ooooA/wA5/wD4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/7FXRv/SSKv5Xf+CjH/J+Hxc/7GnUv/RzV/VF+yh/ya18Nf8AsVdG/wDSSKuXFbI97Ifjn6Hv1FFFcJ9MFFFFABXw7/wQp/5Mou/+xlv/AP0Vb19xV8O/8EKf+TKLv/sZb/8A9FW9dmE+0fO5/wD8u/n+h+zVFFFdh86FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAflh/wWb/5MA8U/wDX5pf/AKVxV7v4T/5FXTP+vSH/ANAFeEf8Fm/+TAPFP/X5pf8A6VxV7v4T/wCRV0z/AK9If/QBXJi+h9DkO9T5fqdBRRRXEfRhRRRQAV+YnwL/AOUnfxw/7BWif+kttX6d1+YnwL/5Sd/HD/sFaJ/6S21aU9pehy4n4qX+L/22R+ndFFFZnUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH85H/AAW3/wCSpeCP+wVcf+jhX6uf8G5H/Jrnjn/saj/6SW9flH/wW3/5Kl4I/wCwVcf+jhX6uf8ABuR/ya545/7Go/8ApJb16dD4EfFZn/vU/wCuh/Q3RRRWpwBRRRQAUUUUAFFFFABX4bf8HBn/ACYhZ/8AY1af/wCibmv3Jr8Nv+Dgz/kxCz/7GrT/AP0Tc0DR+MH/AAQC/wCTx/Ev/YmXn/pdY1/XxX8g/wDwQC/5PH8S/wDYmXn/AKXWNf18V8Xnn+9P0R6uD/hhRRRXjnUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/HD/wXf/5PbtP+xZsP/RtxX7i/8G+f/JiF5/2NWof+ibavw6/4Lv8A/J7dp/2LNh/6NuK/cX/g3z/5MQvP+xq1D/0TbV9/l3+60/Q8Wv8AxJH7k0UUV2mIUUUUAFFFFABRRRQAUUUUAfkT/wAFy/8AlHH4u/6/tJ/9LIq/mM/4I+f8nn2P/YJv/wD0AV/Tn/wXL/5Rx+Lv+v7Sf/SyKv5jP+CPn/J59j/2Cb//ANAFXD4kRV+Bn9aNFFFdp5QUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV8df8FA/+TMPiJ/2CX/8AQ1r7Fr46/wCCgf8AyZh8RP8AsEv/AOhrSlsy4fEj+c7/AIJD/wDKRz4Xf9f11/6Rz1/oHV/n4/8ABIf/AJSOfC7/AK/rr/0jnr/QOrgPVCiiigAooooAKKKKACiiigD8iv8AguV/yjj8Xf8AX9pP/pZFX8rv/BKb/k9bw5/166j/AOk0lf1Rf8Fyv+Ucfi7/AK/tJ/8ASyKv5Xf+CU3/ACet4c/69dR/9JpK1ofxI+qGtz+s+iiivfLCiiigAooooAKKKKANLRv+Qxaf9do//QhX1dXyjo3/ACGLT/rtH/6EK+rq8zMN4kyCvJfir/x72X+8/wDIV61XkvxV/wCPey/3n/kK58J/Fj/XQS3PGaKKK9ssKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP5MP+CrP/J63iP/AK9dO/8ASaOv6y/+CKv/ACjM+Gn/AHGf/TreV/Jp/wAFWf8Ak9bxH/166d/6TR1/WX/wRV/5RmfDT/uM/wDp1vK8Gv8AxJepD3P1MooorEQUUUUAFFFFABRRRQAUUUUAFfx1/wDBxx/ydF4G/wCxWH/pXcV/YpX8df8Awccf8nReBv8AsVh/6V3FAHsn/BFL/k1jX/8Asa7r/wBI7Ov2Ar8f/wDgil/yaxr/AP2Nd1/6R2dfsBWiPew38KIUUUUGwUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV/J/wD8Fev+Tyr3/sFWH/oJr+sCv5P/APgr1/yeVe/9gqw/9BNKRx47+H8z+nr/AIIaf8o4/CP/AF/at/6WS1+u1fkT/wAENP8AlHH4R/6/tW/9LJa/XaoPHCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/Q/v4ooooA/wA5/wD4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/7FXRv/SSKv5Xf+CjH/J+Hxc/7GnUv/RzV/VF+yh/ya18Nf8AsVdG/wDSSKuXFbI97Ifjn6Hv1FFFcJ9MFFFFABXw7/wQp/5Mou/+xlv/AP0Vb19xV8O/8EKf+TKLv/sZb/8A9FW9dmE+0fO5/wD8u/n+h+zVFFFdh86Fcj4q+IHgPwL5H/Cba3YaP9q3eT9uuY7fzNmN23zGXdt3DOOmR6111fxLf8HeXhTSfHnxl/Y68D6+HNhrOteI7G5EbbXMNxPokb7T2O1jg9qAP7MvDXxM+G/jO6ax8H+INN1aZBuaOzu4p2AHchGJxXb1/FH/AMFJf+DbP9mn9jv9lLxX+2f+wH4q8W+C/iD8KbGXxLbSvqm9JLewHm3GyRI0nhmSFXaN0kALDawIbK/pT+yp/wAFwfBXhL/gh94P/wCCj/7Xgub/AFi13+HNQttLRXutU1m0nktkKBikaPcRxC5lJKogL4zhVIB/RnRX8u/gb/g5Un0P4s/D/wAGftl/s2+Nfgr4Z+J1wlvoHiPVnMsE3mmNVkMUlrbHy1MsZkMbSMiOrbSCK/Nf/gr3/wAFQ/2qfh//AMFxPhZ8N/D3gnxzeeD/AIaXVtc23g3TxMq+MbsNOwvrOFIv9JXDCFDtlVHgfbg7qAP7sKK/Bb9sf/guhon7MHin4ZfAjwD8GfF3xH+MvxL8PWviJPBGmRtDd6bDcxGQw3TmKRxPHsk3xrASixs8nljbu7P/AIJnf8FqvBX/AAUA+OPjH9k/4gfDfXvhB8WPBNq1/feHNcbzSbWOSOKRlk8uFg8bTRbkeJSVdWQsN20A/ZDw5418G+MftA8I6vZar9kcRz/Y7hJ/KY5wH2Mdp4PB9K6av86n/ghp/wAFGfEv7FWrftHeCPhH8G/F/wAbvGviDxUupRaN4XtndLawsmuklnuZ1jmMYLyIkaiJy5JHHGf65v8AgnP/AMFkv2Yv+Ch/wB8Y/GrQoL3wXe/DZJJPF2i6uA1zpcUaSS+dmPPmQskUmGCq26NlKAgZAP1wor+TPWf+DpG+n8Far+0T8O/2V/H2ufBLR777HceOJJRbWy/vFi3FBbyQqd7Ku03Qw7KrEMcV+m37UP8AwW+/ZR/Zz/Yn+Hv7aWj2GseMbX4ttDB4P0HToQmo39zKpLROrErF5LDy5SN5DkKgckZAP2Wor+ev9nz/AILv+J/Ff7VfhH9kv9sL9nHxt8Dta8fkJ4fvNTzfWtw7EKvmkQQNGpZlRmVZBG7qJNi5Yeo/8FC/+C3nw8/Yu/aE0n9jf4N/DjxF8bvjBqlsl6/hrwyvzWkEil08+RY5nEjIPM2LE22LDuVUqWAP3Dor8pP+CZX/AAVr+DP/AAUqg8WeEdG8O6x8PviJ4BnWDxH4R8QxeVfWe9mRXXhS6BkKPlEeNxh0UMhb9W6ACiiigD8sP+Czf/JgHin/AK/NL/8ASuKvd/Cf/Iq6Z/16Q/8AoArwj/gs3/yYB4p/6/NL/wDSuKvd/Cf/ACKumf8AXpD/AOgCuTF9D6HId6ny/U6CiiiuI+jCiiigAr8xPgX/AMpO/jh/2CtE/wDSW2r9O6/MT4F/8pO/jh/2CtE/9JbatKe0vQ5cT8VL/F/7bI/TuiiiszqCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD+cj/gtv/wAlS8Ef9gq4/wDRwr9XP+Dcj/k1zxz/ANjUf/SS3r8o/wDgtv8A8lS8Ef8AYKuP/Rwr9XP+Dcj/AJNc8c/9jUf/AEkt69Oh8CPisz/3qf8AXQ/obooorU4AooooAKKKKACiiigAr8Nv+Dgz/kxCz/7GrT//AETc1+5Nfht/wcGf8mIWf/Y1af8A+ibmgaPxg/4IBf8AJ4/iX/sTLz/0usa/r4r+Qf8A4IBf8nj+Jf8AsTLz/wBLrGv6+K+Lzz/en6I9XB/wwooorxzqCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/jh/4Lv8A/J7dp/2LNh/6NuK/cb/g30/5MQu/+xp1D/0TbV+HP/Bd/wD5PbtP+xZsP/RtxX7jf8G+n/Jh93/2NOof+ibavv8ALv8AdafoeLX/AIkj9yKKKK7TEKKKKACiiigAooooAKKKKAPyJ/4Ll/8AKOPxd/1/aT/6WRV/MZ/wR8/5PPsf+wTf/wDoAr+nP/guX/yjj8Xf9f2k/wDpZFX8xn/BHz/k8+x/7BN//wCgCrh8SIq/Az+tGiiiu08oKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK+Ov+Cgf/JmHxE/7BL/+hrX2LXx1/wAFA/8AkzD4if8AYJf/ANDWlLZlw+JH853/AASH/wCUjnwu/wCv66/9I56/0Dq/z8f+CQ//ACkc+F3/AF/XX/pHPX+gdXAeqFFFFABRRRQAUUUUAFFFFAH5Ff8ABcr/AJRx+Lv+v7Sf/SyKv5Xf+CU3/J63hz/r11H/ANJpK/qi/wCC5X/KOPxd/wBf2k/+lkVfyu/8Epv+T1vDn/XrqP8A6TSVrQ/iR9UNbn9Z9FFFe+WFFFFABRRRQAUVy3i3xx4K8AaWdc8d6xY6JZL1uL+4jtohj/bkZV/WrPhnxZ4V8aaUmu+DtTtNWsZPuXFlMk8TfR0LKfzoA7DSXSPVbaSQhVWVCSeAACK+mP8AhIdA/wCf63/7+r/jXyvRXPXwyqtNsTVz6o/4SHQP+f63/wC/q/415h8S9S06/gtBYzxzFWfPluGxnHXBryais6WDjCSkmFgooorsGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH8mH/BVn/k9bxH/wBeunf+k0df1l/8EVf+UZnw0/7jP/p1vK/k0/4Ks/8AJ63iP/r107/0mjr+sv8A4Iq/8ozPhp/3Gf8A063leBX/AIkvVkPc/UyiiishBRRRQAUUUUAFFFFABRRRQAV/HX/wccf8nReBv+xWH/pXcV/YpX8df/Bxx/ydF4G/7FYf+ldxQB7J/wAEUv8Ak1jX/wDsa7r/ANI7Ov2Ar8f/APgil/yaxr//AGNd1/6R2dfsBWiPew38KIUUUUGwUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV/J//wAFev8Ak8q9/wCwVYf+gmv6wK/k/wD+CvX/ACeVe/8AYKsP/QTSkceO/h/M/p6/4Iaf8o4/CP8A1/at/wClktfrtX5E/wDBDT/lHH4R/wCv7Vv/AEslr9dqg8cKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//9H+/iiiigD/ADn/APgox/yfh8XP+xp1L/0c1f1Rfsof8mtfDX/sVdG/9JIq/ld/4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/wCxV0b/ANJIq5cVsj3sh+Ofoe/UUUVwn0wUUUUAFfDv/BCn/kyi7/7GW/8A/RVvX3FXw7/wQp/5Mou/+xlv/wD0Vb12YT7R87n/APy7+f6H7NUUUV2HzoV/E/8A8Hc3iTRfBvxw/Y18X+JJ/s2naVrviG8uptrP5cEFxobu21QWOFBOACT2Ga/tgrwj42fstfsyftLf2Z/w0b8OfC/j/wDsXzv7P/4STSLTVfsn2nZ5vk/aopPL8zy49+zG7Yuc7RgA/mJ/4Kxf8HE//BOb4q/sI/ET9n39kfxbdfEXx18R9HuPC9jYWek6harGuqr9nllkku7aEHbE77Ej3u8m1cAEsPnH4h/Er9sP/ggf/wAG7Pwu0XwDpMGmfEnxxr0g1i7vLRbtNDGsrc3iq8MoaM3SwxwwFZUeNX8wEEhc/wBa/wAMf2G/2Kfgl4hh8XfBn4P+CPCOrW7For3RfD9hYXCMRglZIIUcHBI4PSvbPiP8Mvhx8YvBd98OPi1oGneJ/D2poI7zTNVto7y0nUHIEkMqsjAEAjIOCM9aAP8AMr/4Kw+PPhh4gu/gR4gf9rjWv2mfFtzqsOpa3ukSHw/oUMnkMPJtIkCW08rbwylxIEiw6JgV+2P/AAW0+KHgP9n3/g4l/ZO+PHxj1FNB8IaPoNo97qlwrGCFY77UA5YqGOE81C2AcBgTxX9SOnf8E6f2ANK+HH/Cn7T4IeAz4VN6mpNpMnh6wls3vY0eNLhonhZGmWOR0WVgXCsVBwSK9D+Nn7I37LH7SelaTof7Qfw58NeNbPQW3abDrel298lpkKCIRKjeWrBVDKuAwABBAoA/lR/4KK/8FY/i18S/+Cnngr9i7wN8crP9nX4Ia34YsfEcfxBFhDJPqsGq2RvIJIbm7AFvFJlYI3DQ7XDly52x18ff8EONd+F9/wD8HGnxSu/hZ8SNc+K+g3Xgy/gsfF3ia4NzqOsywnTFmlMrJGXjEkcqwYXAgRACQM1/af8AFH9hn9i/43aN4e8OfF/4TeEPE2n+EreOz0S21LRrS4i061hAVILdHjIihVVUCJAEwAMYFdXoP7KX7LvhX4h6b8XfC/w28Lab4s0eyXTbDWrXR7SHUbWySMwrbw3KRCWOFYyYxGrBQhK4xxQB/DL/AMG5v/BQ79kT9h/4x/tI+Gv2rfEEHghfF2vJdaXrN9DJ9kujpct359r5yIwEqC4jkRDywc45wD6b/wAEfPjT4w0T4sf8FEP+CtP7Pvhm41PwQseuar4atJYWih1K8FxdalCrIMOPLi2POqHcizYHJFf2G6l/wT8/YQ1fwTqPw2v/AIL+Bm8P6vff2ne6evh+xS2uL7aVFy8awhWnCsQJT84BIzX0D8PPhd8M/hF4JtPhp8KfD2meGfDmno0drpelWkVnZQo5JYJDEqxqCSScLySSetAH+bf8a/2z9Y/bU/4JY+Mv2gP2vP2wdVuviBrk1zbab8GvDMUGlWvmJdjYL6CCPdcW3lA3JdwFwADK0oIr7j+Idx/wT+13/g3S/ZT0T9uez8aQabd3GoxaF4q8GWsF2dE1KO9uUkF358qJ5UiliYgGdxC2zDoK/sl8J/8ABPP9gvwJrOueIfBvwW8D6Ze+Jba5stVmt9Aska7tbxSlxBLiH5op1JEsZ+SQE7gc16hpX7L/AOzToXwfl/Z60P4eeGbLwDOJBJ4at9JtYtHfzXMj5s1jEB3uSzfJy3J5oA/gV+FH7Vv7WX/BPL9tP4K/BP8AYo/a7j/aw8G/EHWrXT7jw1+/vntbOSaFDFJHPJdfZGaORmRoLhGQxs0kYTIbr/2s/Dnir9nj/g5O+JPiP4yfGfUf2ddP+IelLdaD48jsobqCW2ktbRVgZrgeXHFut5IGkyCskYUnaxJ/t++CH7B/7FH7NPiWXxp+z78JvCPgzWZleNtQ0fR7W0u/Lf7yCaONZAh7oGC+1eg/HL9mj9nb9pvQIPC37RfgXQPHWn2rM9vBr2nQagsDuAGaLzkfy2IAyyYPHWgD+Vj/AIIR+B/2aviB/wAFRfjN+0v8FfjL4y+Mnim00WbRfEmv6r4dttN0XURcXFr5U0F1b3D73Y2YMYaCMyIjv05b+xavKvg58Cvgp+zx4OT4e/AXwjo/gvQo5GlGn6JZQ2Ft5jY3OY4VRS7YGWIJPc16rQAUUUUAflh/wWb/AOTAPFP/AF+aX/6VxV7v4T/5FXTP+vSH/wBAFeEf8Fm/+TAPFP8A1+aX/wClcVe7+E/+RV0z/r0h/wDQBXJi+h9DkO9T5fqdBRRRXEfRhRRRQAV+YnwL/wCUnfxw/wCwVon/AKS21fp3X5ifAv8A5Sd/HD/sFaJ/6S21aU9pehy4n4qX+L/22R+ndFFFZnUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH85H/Bbf/kqXgj/sFXH/AKOFfq5/wbkf8mueOf8Asaj/AOklvX5R/wDBbf8A5Kl4I/7BVx/6OFfq5/wbkf8AJrnjn/saj/6SW9enQ+BHxWZ/71P+uh/Q3RRRWpwBRRRQAUUUUAFFFFABX4bf8HBn/JiFn/2NWn/+ibmv3Jr8N/8Ag4L/AOTD7T/sadP/APRNzQB+L/8AwQC/5PH8S/8AYmXn/pdY1/XxX8g//BAL/k8fxL/2Jl5/6XWNf18V8Xnn+9P0R62D/hhRRRXjnUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/HD/wAF3/8Ak9u0/wCxZsP/AEbcV+43/Bvp/wAmH3f/AGNOof8Aom2r8Of+C7//ACe3af8AYs2H/o24r9xv+DfT/kw+7/7GnUP/AETbV9/l3+60/Q8Wv/EkfuRRRRXaYhRRRQAUUUUAFFFFABRRRQB+RP8AwXL/AOUcfi7/AK/tJ/8ASyKv5jP+CPn/ACefY/8AYJv/AP0AV/Tn/wAFy/8AlHH4u/6/tJ/9LIq/mM/4I+f8nn2P/YJv/wD0AVcPiRFX4Gf1o0UUV2nlBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXx1/wAFA/8AkzD4if8AYJf/ANDWvsWvjr/goH/yZh8RP+wS/wD6GtKWzLh8SP5zv+CQ/wDykc+F3/X9df8ApHPX+gdX+fj/AMEh/wDlI58Lv+v66/8ASOev9A6uA9UKKKKACiiigAooooAKKKKAPyK/4Llf8o4/F3/X9pP/AKWRV/K7/wAEpv8Ak9bw5/166j/6TSV/VF/wXK/5Rx+Lv+v7Sf8A0sir+V3/AIJTf8nreHP+vXUf/SaStaH8SPqhrc/rPooor3ywooooAK5vxl4p0zwN4Q1XxrrR22ej2c99OfSK3QyN+imukrkPiF4N074i+Adc+H2r8Wmu6fc6dPxn93dRtG3HfhjQwP4oP+CcX7Gd3/wcAfE/4ift5f8ABQHxDq974X0rWpNG8P8AhvT7xore1JRLh7dHIJjt4IpYVAiCvK7F3bIO9n7YfwC1H/g3U/bI+F37SP7IniTVn+Ffjy+ex8ReG9QujLG6Wpj86N2CqrhoZme3d1aSGRGOSpwYP+CUP7dVh/wRij+NH/BPL9tO3/4RXxLZapd654Zvr+G4/sq/vzbrbqkksUUkkdtc/Z4HhuFjZChcsVIUN8d/tm/8FK9S/wCC4fxT+AX7KmtaJpnw/ksNflh16/uNTQ6XNLctFGZoJpPLKxrDHIURtzu8gRCzYLeW3BU1/P8Aje5J/Y38Yf8Agp34O+EH/BST4e/8E4r3wreX2q/EHSU1WDW47lFtrdH+2YRoipZj/obchh98elL8eP8Agpz4Q+BX/BRb4a/8E8NS8KXmoar8SNNi1KDWYrhEt7VZZLuPa8RUsxH2QnIYfeHpX4ef8FVfH3g/9l//AIOEf2bf2kvi/crongaDwxBZyam6MbeFkm1OF8lQfli+1Qs+M7VYE8V5T8c/2q/gv+15/wAHJH7PPjz9n/V18Q+G9E02DQ/7VgRhaXN3AdSuJfs8jACVEFwiFlyu8EA10us02r63S+Q7n7G/tdf8Fu/CfwL/AGl7/wDZC/Zt+FXib45+PdAg+067Z+G0Jj09Aquylo4p3d0VxvAjCKzKhfeSq+6fs0f8FbvgN+1R+xz8RP2rvh7pWo2t78LNO1G78R+F9QCwajaT6fbSXPkk/Mu2URMI5OmQwZVZWUfyoeAdK1/9nH/gsT+0n4M+Nvx81D9mu/8AEWraprVhr5sYJ4dWsru+e7gjMlwNqCSGVZE2naWRk+8qrX2N/wAE+vAfwA1H9lT9ub9oT4BePfFnj3/hIfCHiG11zUvEGhQaRa3moC0v5/tFs8FxKJC/mNIylI2RZULKpYLUxrTcvv006fiFz7z/AGf/APg4mtP2qfFnhDwd+z78AvFviKbX7sWGp3UcyrY6RdSySLDHNc+SYjuiQTOSUCo2BvYEV+h3/BNP/gqL8MP+Cj/wr8X/ABE0fQ7rwTeeB9TbT9W0zVJ0klgQRCRZ3ZQoVGIlXDAEGJs18Qf8GwGi6dpf/BLPTr+yiWOXUvE2sXFwyjBkkV0iBb1ISNR9AK/CT/gpj478ef8ABIf9uH9pfwR8N7WWLwz+074Oe50zyfkjt7vUp9lzLkcBoS2oCNV5UTRngc0e1nGEakndMLn9YH/BMv8A4KXaB/wU08J+MviN4C8G3/hvw34X1ZdItL++nSX+0ZQhkkKIqqY9kbQsQST+9A7Gv06r84v+CSv7Jo/Yu/4J+/Dn4KajbfZtc/s5dV1wEYf+09S/0idH9TCXEAP92MV+jtdVPm5VzbjCiiirAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD+TD/AIKs/wDJ63iP/r107/0mjr+sv/gir/yjM+Gn/cZ/9Ot5X8mn/BVn/k9bxH/166d/6TR1/WX/AMEVf+UZnw0/7jP/AKdbyvAr/wASXqyHufqZRRRWQgooooAKKKKACiiigAooooAK/jr/AODjj/k6LwN/2Kw/9K7iv7FK/jr/AODjj/k6LwN/2Kw/9K7igD2T/gil/wAmsa//ANjXdf8ApHZ1+wFfj/8A8EUv+TWNf/7Gu6/9I7Ov2ArRHvYb+FEKKKKDYKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK/k/wD+CvX/ACeVe/8AYKsP/QTX9YFfyf8A/BXr/k8q9/7BVh/6CaUjjx38P5n9PX/BDT/lHH4R/wCv7Vv/AEslr9dq/In/AIIaf8o4/CP/AF/at/6WS1+u1QeOFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf//S/v4ooooA/wA5/wD4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/7FXRv/SSKv5Xf+CjH/J+Hxc/7GnUv/RzV/VF+yh/ya18Nf8AsVdG/wDSSKuXFbI97Ifjn6Hv1FFFcJ9MFFFFABXw7/wQp/5Mou/+xlv/AP0Vb19xV8O/8EKf+TKLv/sZb/8A9FW9dmE+0fO5/wD8u/n+h+zVFFFdh86FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAflh/wWb/5MA8U/wDX5pf/AKVxV7v4T/5FXTP+vSH/ANAFeEf8Fm/+TAPFP/X5pf8A6VxV7v4T/wCRV0z/AK9If/QBXJi+h9DkO9T5fqdBRRRXEfRhRRRQAV+YnwL/AOUnfxw/7BWif+kttX6d1+YnwL/5Sd/HD/sFaJ/6S21aU9pehy4n4qX+L/22R+ndFFFZnUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH85H/AAW3/wCSpeCP+wVcf+jhX6uf8G5H/Jrnjn/saj/6SW9flH/wW3/5Kl4I/wCwVcf+jhX6uf8ABuR/ya545/7Go/8ApJb16dD4EfFZn/vU/wCuh/Q3RRRWpwBRRRQAUUUUAFFFFABX4b/8HBf/ACYfaf8AY06f/wCibmv3Ir8N/wDg4L/5MPtP+xp0/wD9E3NAH4v/APBAL/k8fxL/ANiZef8ApdY1/XxX8g//AAQC/wCTx/Ev/YmXn/pdY1/XxXxeef70/RHrYP8AhhRRRXjnUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/HD/AMF3/wDk9u0/7Fmw/wDRtxX7jf8ABvp/yYfd/wDY06h/6Jtq/Dn/AILv/wDJ7dp/2LNh/wCjbiv3G/4N9P8Akw+7/wCxp1D/ANE21ff5d/utP0PFr/xJH7kUUUV2mIUUUUAFFFFABRRRQAUUUUAfkT/wXL/5Rx+Lv+v7Sf8A0sir+Yz/AII+f8nn2P8A2Cb/AP8AQBX9Of8AwXL/AOUcfi7/AK/tJ/8ASyKv5jP+CPn/ACefY/8AYJv/AP0AVcPiRFX4Gf1o0UUV2nlBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXx1/wUD/AOTMPiJ/2CX/APQ1r7Fr46/4KB/8mYfET/sEv/6GtKWzLh8SP5zv+CQ//KRz4Xf9f11/6Rz1/oHV/n4/8Eh/+Ujnwu/6/rr/ANI56/0Dq4D1QooooAKKKKACiiigAooooA/Ir/guV/yjj8Xf9f2k/wDpZFX8rv8AwSm/5PW8Of8AXrqP/pNJX9UX/Bcr/lHH4u/6/tJ/9LIq/ld/4JTf8nreHP8Ar11H/wBJpK1ofxI+qGtz+s+iiivfLCiiigAooooA8Q+M37M/7On7RllBp/x98CeH/GkVqrLbjW9OgvjAHxu8ppkYxk4GShB4r5B+Of8AwR8/4Ju/H/4Z2/wq8T/CbQNG0+xk820n8PWkej3du5wGKzWixsQwA3q+5WwCQSAR+ltFS4Re6A8K+I/7MH7OHxi8B6b8L/i14E0HxP4d0ZI49P0/VdPhvLe1WJQieSsqMIyqAKCuDjjpVfS/2Uf2W9E1zw54m0X4a+FbPUvB0Jt9Bu4dHtI59LhZnYpZyLEGt1LSOSsRUZZj1Jr32inyrsB4J8bP2V/2Z/2k47VP2gvh/wCHvGpsQVtX1rTYL2SAE5IjeVGZASOQpGe9dd4e+Cnwc8JfDJ/gr4W8J6Pp3g6W1lspNCtrGGLTXtp1KyxNbKgiMcisQ6lSGBIOcmvTaKLLcDz74Y/CX4VfBPwpH4D+DXhnSfCOhwyPKmnaLZQ2Foskhy7CGBEQMx5YgZJ61/LNrv7B3/BUn/gp3/wUB+G/xe/4KNeAfD/w7+GnwpuftENlp99b3h1IRypO0YWK5upG+0yRRLIZDEiQghQXzu/raoqJ0lKyewBRRRWgBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH8mH/BVn/k9bxH/166d/6TR1/WX/AMEVf+UZnw0/7jP/AKdbyv5NP+CrP/J63iP/AK9dO/8ASaOv6y/+CKv/ACjM+Gn/AHGf/TreV4Ff+JL1ZD3P1MooorIQUUUUAFFFFABRRRQAUUUUAFfx1/8ABxx/ydF4G/7FYf8ApXcV/YpX8df/AAccf8nReBv+xWH/AKV3FAHsn/BFL/k1jX/+xruv/SOzr9gK/H//AIIpf8msa/8A9jXdf+kdnX7AVoj3sN/CiFFFFBsFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFfyf/APBXr/k8q9/7BVh/6Ca/rAr+T/8A4K9f8nlXv/YKsP8A0E0pHHjv4fzP6ev+CGn/ACjj8I/9f2rf+lktfrtX5E/8ENP+UcfhH/r+1b/0slr9dqg8cKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//T/v4ooooA/wA7T/gphpkmkft9/Fm1k6v4iu5vwnIkH6NX9Pf7HeoJqf7KPw3uU6L4b0yL8YYEjP6rX87H/BZHQZvD/wDwUh+JUMkZRLmbT7pCRgMJ7G3ckevzEj6g1+73/BObXYPEP7FngO8hff5NnNat6hreeSIg/wDfP5Vy4r4Ue5kUv3sl5fqfbNFFFcJ9QFFFFABXw7/wQp/5Mou/+xlv/wD0Vb19xV8O/wDBCn/kyi7/AOxlv/8A0Vb12YT7R87n/wDy7+f6H7NUUUV2HzoUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB+WH/BZv8A5MA8U/8AX5pf/pXFXu/hP/kVdM/69If/AEAV4R/wWb/5MA8U/wDX5pf/AKVxV7v4T/5FXTP+vSH/ANAFcmL6H0OQ71Pl+p0FFFFcR9GFFFFABX5ifAv/AJSd/HD/ALBWif8ApLbV+ndfmJ8C/wDlJ38cP+wVon/pLbVpT2l6HLifipf4v/bZH6d0UUVmdQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAfzbf8FstQST41eD9KH3odEeU/SWdwP/QDX7B/8G52mSQfsheMNXb7tx4vniA/65WVoc/+P/pX4Z/8Fj9dg1b9rO006F9x0vw/Z27gfwu0s82P++ZFNf0Qf8EBdCl0j9gSPUJEKjVPEWpXSkjG4KIocj15iI/CvUor3EfEZi74mb8z9sqKKK0OIKKKKACiiigAooooAK/Df/g4L/5MPtP+xp0//wBE3NfuRX4b/wDBwX/yYfaf9jTp/wD6JuaAPxf/AOCAX/J4/iX/ALEy8/8AS6xr+viv5B/+CAX/ACeP4l/7Ey8/9LrGv6+K+Lzz/en6I9bB/wAMKKKK8c6gooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP44f8Agu//AMnt2n/Ys2H/AKNuK/cb/g30/wCTD7v/ALGnUP8A0TbV+HP/AAXf/wCT27T/ALFmw/8ARtxX7jf8G+n/ACYfd/8AY06h/wCibavv8u/3Wn6Hi1/4kj9yKKKK7TEKKKKACiiigAooooAKKKKAPyJ/4Ll/8o4/F3/X9pP/AKWRV/MZ/wAEfP8Ak8+x/wCwTf8A/oAr+nP/AILl/wDKOPxd/wBf2k/+lkVfzGf8EfP+Tz7H/sE3/wD6AKuHxIir8DP60aKKK7TygooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr46/wCCgf8AyZh8RP8AsEv/AOhrX2LXx1/wUD/5Mw+In/YJf/0NaUtmXD4kfznf8Eh/+Ujnwu/6/rr/ANI56/0Dq/z8f+CQ/wDykc+F3/X9df8ApHPX+gdXAeqFFFFABRRRQAUUUUAFFFFAH5Ff8Fyv+Ucfi7/r+0n/ANLIq/ld/wCCU3/J63hz/r11H/0mkr+qL/guV/yjj8Xf9f2k/wDpZFX8rv8AwSm/5PW8Of8AXrqP/pNJWtD+JH1Q1uf1n1HLLFBE087BEQFmZjgADqSewFeBftM/Er4l/Cf4U3PjD4UeHG8T6tHKiC1VXk8uNgS0pSP53C4GVUg85yAK+A/hDoHhT9syVbj48fFWTxBc53SeENPLaTbwsvVHibZNOF6bwAR/eNXjs6VHExwVKHNVkrpNqMfve/pFSfdH3OR8GTxmXTznFVvZ4WD5ZOMZVZ33+COkfKVSdOL6Nn6ueGfF3hfxpp7av4R1G31O0SV4TPayLLH5kZwyhlJBKng4PBrM+InxA8LfCzwTqPxA8aXItdM0uEzTP1OOgVR3ZmIVR3YgVL4F8A+DPhn4ag8H+AdNh0rTLbJjggXCgtySe5YnqxJJ7mvgX/gp5cTS/CTwp4dnkMWnar4osre9YHgxbJW2n2yN31Wtczx1bB5dUxMknUjHZXtzbetr/gc3DWSYTN+IaGW05SVCpO13bn5Fq9Fdczina11fuXPDXxr/AG5PjlYL43+DvhLQPDnhq5/eWLeI5JmurqLqr7YSNquORlcejEYJ9A+EH7U/jG4+KK/AH9o/w9H4V8WzxGawmtpPMsNRRQSfJYklTgHClmzggkMNtfa1ra21jax2VlGsMMKhI0QbVVVGAABwABwBX5tf8FGYk03/AIVd4v0YY1+x8W2sdkV++UkBZwD6F448ivKx9LFZdh/rv1mU5Ra5lK3LJNpNJJLlet42fk7n1GR4rK+IMw/sX+zqdGnUU1SnDn9pTkouUHKTk/aJ2tPmWzbjytI/SyivgjxNrmtx/wDBR/w74ejvJ10+TwZJM1sJGELSfaJxuKZ2lsADOM8Un7W+ua3pXx0+CNlpd5PbQ3viCWO4jikZFlQeT8rgEBhyeDmvRqZ1GFGtW5PgqKG+93FX/wDJvwPnqHBtSri8JhPbJOvQlWTtsoxqS5d9X+7tfz20PviivyS/aH+NXhTxx+1HffBD4qeNZ/BngjwvZwy3SWczQTanezosgRpI1LCNUkGV9VPcgrzPgb4x/C74M/tDeDvDP7Pvjq48TeE/F1z/AGZqOj3dxJciynkKrBNC8q7lDMwDDvg5zkbeCpxVh415U7LkU+RvnXNe/LdQ3cU9G733aTWp7tDwux1TBQrpy9rOl7aK9lN0+Tlc0nW+FTlBXUbON2ouSk7H7J0V+MXxU8VfD/Uf2o/Fvhb9svXtc0LS4jAPC8VtLPBpxtyDul3Qg5kJ25YjaG3BjwAPr39n/wCFh1T4deJ/B3/CwpPGvgrVpguj3NteGS+s4jkvE10hzuGVwBjbg8DdgdGEz54nETo0qa0cl8a5k43+KO8VK2j13TaOHNeBIZdgaWMxOJa5o05fwpezlGpZtU6t+Wc4J+9F8iupJSbR6t8Dfjy/x9+HmteOfCumNaNZX95YWkE7hmla2VdrPjAXex5AY4H8Vd58G9W+KWufDjTtU+NOl22jeJZfO+2Wdo4khj2yuI9rCSUHdGFY/OeSenSvzS/4J/8Aw10fSvgf4t+J9neX41CObWNPWM3Tm3EaKjB/Kzt8zIHz9ax/Cfxz+JPgz/gnh4FfwlfyS+K/GGrTaHa3ty5klia4vLkeZltxJVUCLn7uQR0xXl4DP6kaFHE4293SnNpNWdpQS0sveblZa2Wt73uvps84CoVMdjMvyfl5Y4qlSTmpKUOanWk/e5muRKDlO8XJtJq1mn+ydFfm741/Ypk8DfDu+8b/AA58a+I4/HOlWr3qanPfvIt3PCpcpLE2VKOQQBzjPO4ZB8e+P/x88e/Er9in4afF7wvdNpuv6l4jsopGgYojXMAuYmDKMZjeSPdsORggc16WIz+eGjU+tUOWUY86SkpXSaT1srNNq6tbXRs+dwHAVHMqlD+y8ap0p1VRlKUHBwm4ylFuN3eElGVndP3XeK0v+wdFfk9+0z+zTqXwY+Duo/Hvwf448Ry+NNA8m7lvri9Z47ktKiyKYsbFT5iVQfKANpBFfpf8OfEdz4x+HuheLrxVSbVdOtbx1X7oaeNXIHsCa7sFmNSriJ4avS5JpKS1Uk02102aa1X3NnhZzw7h8NgKOZYHFe2pTnKm/ccHGcFGT0bd4tSTjLR73imXNY8Z+EfD+s6f4d17U7WyvtW8z7FBPKsb3Bi27xGGI3Fd65Ayea6avIfjB8CPhP8AHfRYtE+KejxanHbbzbyktHNAXxuMciEMudq5AODgZBxX5deNviV4n/ZT8SweEP2dviU/xDdpREvhG/hfVbiMZwVjubcEoVHSMlMejVz5lnE8BJ1MRBOi7Wakub0cXa+u3K2/7p6HDnCVDPqUaGX1pLFpNyjOD9m1d2aqQ5uTS1/aRjFO757bftHRXJeAtb13xJ4J0nxB4o05tH1K9tIZ7qxdtzW8rqC0ZOBkqTjoK62vchNTiprZ6nxVejKlUlSnvFtOzTV1po1dP1WjCiiiqMgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP5MP+CrP/J63iP/AK9dO/8ASaOv6y/+CKv/ACjM+Gn/AHGf/TreV/Jp/wAFWf8Ak9bxH/166d/6TR1/WX/wRV/5RmfDT/uM/wDp1vK8Cv8AxJerIe5+plFFFZCCiiigAooooAKKKKACiiigAr+Ov/g44/5Oi8Df9isP/Su4r+xSv5FP+DkPRfI+Nnw28Q4/4+tDu7fP/XCcN/7VoA7v/gil/wAmsa//ANjXdf8ApHZ1+wFfiv8A8ER9Y8/4GeL9Az/x7a6LjH/Xe3jX/wBpV+1FWj3cN/CiFFFFM3CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACv5P8A/gr1/wAnlXv/AGCrD/0E1/WBX8kP/BWPUvt37bXiK1zn7FaadD9M20cn/s9KRx47+H8z+pj/AIIaf8o4/CP/AF/at/6WS1+u1flL/wAES9O+w/8ABNb4fzEYN1Lq8x/8GNyo/RRX6tVB44UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//1P7+KKKKAP45/wDg4t+F6+Hf2mfBvxWto9kXibQWtJDjhrjTZjuOfXy54h9AK9a/4Ix+Nv7c/Zx1rwXO+6XQtakKL/dguo0df/H1kr7u/wCC/fwIn+Jn7HVp8VdKjaS88AanHdybRk/Yr3EE3vw5hYnsFNfgX/wR3+Lo8EftG3vw1v5Qlp4xsGjRScA3dlmWL/yGZlHqWFY143gz0cqq8mJjfrp9/wDwT+oSiiivNPswooooAK+Hf+CFP/JlF3/2Mt//AOirevuKvhb/AIIm32neFvgX4y+A+rTeT4n8JeKrxdQsZMLNHHIkSJJtBPyM0bqCCeVPbBPZhOp89n60pv1/Q/aGiiiuw+cCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPyw/4LN/8mAeKf+vzS/8A0rir3fwn/wAirpn/AF6Q/wDoAr5h/wCC2HivTNK/Yrn8FO3man4o1jT7Kwtky000kcgnbYiglsCPB6DLAZyQD9VaHZS6Zotnps5Be3gjjYr0JRQDj24rjxfQ+hyHep8v1NSiiiuM+jCiiigAr8xPgX/yk7+OH/YK0T/0ltq/TuvzE+Bf/KTv44f9grRP/SW2rSntL0OXE/FS/wAX/tsj9O6KKKzOoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK8m+O/wATrP4M/BvxL8Ur3BGiafNcxqejzBcRJ/wOQqv400r6ClJRTk9kfyQ/t5eNv+Fgftf+PteV96Q6pJYIe22wC2wx7Hys+/Wv7kf+CaHw2Pwn/YM+FvhF4vJlfQ4dRlTuJdSJu3B9w0xBr+Cj4CfCrxJ+0x+0J4a+E9nI8t/4u1eK3mn6sqzPmaY/7ibnP0r/AEqNC0XTvDeh2fh3SE8q0sII7aBP7scShVH4ACvWirJI/P6s3Ocpvq7mrRRRTICiiigAooooAKKKKACvw3/4OC/+TD7T/sadP/8ARNzX7kV+G/8AwcF/8mH2n/Y06f8A+ibmgD8X/wDggF/yeP4l/wCxMvP/AEusa/r4r+Qf/ggF/wAnj+Jf+xMvP/S6xr+vivi88/3p+iPWwf8ADCiiivHOoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD+OH/AILv/wDJ7dp/2LNh/wCjbiv3G/4N9P8Akw+7/wCxp1D/ANE21fhz/wAF3/8Ak9u0/wCxZsP/AEbcV+43/Bvp/wAmH3f/AGNOof8Aom2r7/Lv91p+h4tf+JI/ciiiiu0xCiiigAooooAKKKKACiiigD8if+C5f/KOPxd/1/aT/wClkVfzGf8ABHz/AJPPsf8AsE3/AP6AK/pz/wCC5f8Ayjj8Xf8AX9pP/pZFX8xn/BHz/k8+x/7BN/8A+gCrh8SIq/A/Q/rRooortPKCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvjr/AIKB/wDJmHxE/wCwS/8A6GtfYtfHX/BQP/kzD4if9gl//Q1pS2ZcPiR/Od/wSH/5SOfC7/r+uv8A0jnr/QOr/Px/4JD/APKRz4Xf9f11/wCkc9f6B1cB6wUUUUCCiiigAooooAKKKKAPyK/4Llf8o4/F3/X9pP8A6WRV/K7/AMEpv+T1vDn/AF66j/6TSV/VF/wXK/5Rx+Lv+v7Sf/SyKv5Xf+CU3/J63hz/AK9dR/8ASaStaH8SPqhrc/rPr58+L/7LfwP+OGbrx1ocR1EYMepWv+j3qMPukSpgtt7B9yj0r6Dor2MThaOIg6VeClF9Gro9HL8zxeArrE4KtKnUW0otxf3r8jy/4P8Aw5v/AIVeCovBd9r1/wCIxbSyGG71J/MuRExysbP/ABbBwDgcdhXJftM/AvTv2ifg/qXw2u5ha3Mu24sbkjIhuouY2OOdp5Vsc7WOOa99orOeBozwzwko3ptcttdrW33OijneNpZjHNqdS1eM1NSSS95O97JJb7q1n2Pywuf2l/2jfAfw3ufhV8XPBXiW08VQW32S18R6BYrqtvO6gKk+GdE3tjLLuPJztXO0fPVp8Q/i54u+L/w+8f8A7c2k3/h7wvoLtJpkyWEkUM+ph18qS7RWZoWOFONoGUwFCljX7qVFPBBcxGC5RZEbqrDIP4Gvnq/DeIq8vNjJSjG1oySafK01zpNc1rb6N9Wz7/A+IuAwyqOllNOE6nNzThJqceeLjJ0XJT9ndPZ88V9lR3Pzs/aS074hfC39qXwp+1B4f8N3/ijQ7XSJdF1K30qPzruBS8siyLGDkgmTr90bSCRkGvM/iR4h+L37QXx6+FPjzSPAmt6N4U0DXAPM1G1aO7dpSjPNJEu/yYEVFCu7AMWPpx+slFdWIyB1JVEqzVOc1NxsviTi997PlTt3620PNy/j1Yanh5TwUJ16VKdGNRykv3clNfCny8yU5JS7dL+8fml8VvBHiv4I/tR6j+0JZ+D7jxx4U8WWUFtqttYW63V5ZXNuqosqQnl1KIMkYHzNkjAzu+CPHfj34y/GTRG+F3w+fwl4M0tmn1TUde0uO2uLlhgxpbJ94EEffBOMknBUBv0Qoq1kfLVk6dVxpuXO4pK927tKW6i3q15tJpMwlxv7TCwhiMJGdeFL2UZuUrcqjyRbp35XOEdIy20TcW1c/Onx78WPiJ4I+I/iLwX+0b8P7vxv4KvZxLod3pOlpfxxQtnMdwhz84yFycEkEgFSMVP2MPhTrGg/Fvxz8V9C8M3vgbwdrq28Om6Lfr5M7PEBvmaDJMQzu2qT/GQOAK/SGinHI/8AaYYirVcuSTlG6XMrpqzlu4q7svS97BV43tltbAYbCxputCMKjUpcjUXF8ypX5Izk4LmlrvKyi5M/K/8AZJPj74ceFvGv7OPjHwfrdpem41e/ttS+ys2nzxyKqoqTDhncglQAQR3zxXJ+Ff2cvin4x/4J9eC/DukafNpfjTwlqk2tWVjqERtpGlhvLgiN1l2lN6Sb1zgEheQDmv18ornp8M0lTVGpUcoqEoLZNRk4tarrHlVn9534jxLxLxM8XhsPGFSdalWlq5JzpwqQas/szVR3V9Oj1Pze8Z/tXfE34gfD+7+HHgn4XeKbPxprFs9kyXtkYbC0eddjStcsQCi5JQlVDY5xXCfGr9nPxf8ADr9kz4Y/B3wvZ3Ov3uheJ7C5vTYQST7d5uJZpMKpYRK8mNzAADGcZxX6uUVpVyB11N4qs5SceROyVldN6LdtpXfkrJHPhOPI4GdBZZg40qUKntZR5pS55qMoRvJ6qMYylypa+823J2t8v/to+H9e8U/sv+MPD/hiyuNSv7q0RYba1jaaaRhKhwqICzHAJ4FerfBiwvtL+D3hPTNThktrm20awililUo8bpAgZWU4IYEYIIyDXpVFeqsFFYuWLvq4qNvRt3/E+VlnM5ZVDKuVcsakql+t5RjG3p7t/mfPnx3/AGf7P4+nStK8Q6/qmmaJZeeb3T9Nm8hdQ8zZsWZhnKJtb5cc7uoxXZ/DD4K/Cr4M6X/ZHwx0K10iJgA7wpmaTH/PSVsyP/wJjXqFFVHAYdV3ifZr2j+1u9rWTey8lZddyJ59mEsDDLXXl9XjdqCdo3bbu0rczu9HK7S0WiSCiiius8kKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/kw/4Ks/8nreI/wDr107/ANJo6/rL/wCCKv8AyjM+Gn/cZ/8ATreV/Jp/wVZ/5PW8R/8AXrp3/pNHX9Zf/BFX/lGZ8NP+4z/6dbyvAr/xJerIe5+plFFFZCCiiigAooooAKKKKACiiigAr+Yb/g5N8FXdz4W+FHxFhX9xZXWq6bMcfx3SW8sQz9IJK/p5r8df+C6vwxn+IX/BP3Wdas4PPn8J6pYawuBllQObaRh7KlwxPsCe1AH4l/8ABDnxZaRal8Q/A0z4nni0+/hX1SIzRyH8C8f51/QdX8if/BLD4jD4fftleH7ad9lv4igudIlOf+ey+ZGPfM0cYr+uyrWx7OClelbsFFFFM6wooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr+M3/AIKHeKbLxj+2j8QNXsH8yOLUFsif9uxhjtnH4NERX9h3jLxPYeCfB+q+M9V4tdIs572bnH7u3QyNz9FNfwy6VYeJfjT8V7bS4czax4s1ZIlwMl7m/mAHHU5d6mR5+YS92MT+/L/glp4Iv/h9/wAE+fhX4f1NdssujLqGMYwuoyPdrkeu2YZr78rn/CXhrTfBnhXTPB+jLss9KtIbOBemI4ECKPyAroKk8sKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//1f7+KKKKAPOPjD8M9C+M3wp8R/CXxMoaw8Sabc6dNkZ2rcRlNw91J3D0Ir/ODlg+JH7KX7QLWt/EbHxP4F1grJG44E9nJgjB6o+PoynPQ1/ph1/Jr/wcHfseDQPFWkftj+C7XFrrBj0rxB5a8LdRr/o07YH/AC0jUxMT3RO7UDTad0fqB8Hfil4c+NXwx0T4p+E33WOtWqXCrnJjY8PG3+1G4KN7ivSq/nI/4JEftY23g7xJN+zP42n2WOuTG40aRj8sd4w+eEnsJQAV/wBsY6tX9G9eXVhySsfcYLEqvSU+vX1CiiiszrCvgz47/szfFLTvib/w1B+x3rsXhX4hCHyNQgnAaw1m3GP3dwpVlD7VAVipyQvKMA6/edFVCbi7oxr0IVoclRaHx78Pf+Cr3hrwpr0Xw4/bc8L33ws8Ru+yOeSN7nS7jLON0U0YfMagRq0gLJuY5IVSR+pfgz4g+AviPpQ134e63p+vWJxi4065juouenzxMy8/Wvkvxp4E8E/EfQZPC3xA0iz1vTZSGa2voUniLL0ba4IDDsRyO1fAPiT/AIJf/BO28Sjxx8Cdb174Z6yC37/Qb2RFw5DMAGJdBkZASRVH93gY7IYpfaPnq+R1E70ndee/9fcfvDRX4VWOkf8ABWf4LykeCPiH4f8AiTp4kDLB4htDbz45zzGA2055BuMjA245z1dh/wAFFP22PhvHJF8ff2fby+WBFMl74XuvtMZOOWEKi4O0kE8y5QcNk81uqkHszzKmCrw+KDP2qor8gdK/4LX/ALJAZbbx7pfijwncllUx6npo7gFmXyZZCVXI6gMR0Xmvofwl/wAFQv2B/Gjsmj/ErToSrbT9viuLAZxng3UUWR7jjPHWrOU+96K+fdB/a0/ZY8UbR4d+JPhe9Z9mEh1e1Z8yfdBUSbgT6EZzXrGh+OvBHiZgnhvWbHUGLFQLa4jlJYDJHyseQOT7UAdVRRRQAUUUUAFFc1rHjTwd4e8z+39Ws7HyceZ9onSLbuxjO5hjORjPrXlerftUfsw6Bu/t34j+F7La5jPn6xaR4cZ+U7pRzweOvFAHvNFfCXi3/gpv+wZ4LVX1j4l6XMGXcPsAmvzjOORaxy4Psecc9K+b9a/4LY/sgQyzWngix8TeKZkVNg03TcK7vwq/vpI2Bz1yv0yeKAP19or8U7j/AIKR/thfFC5ksv2eP2f9RggziPUPFFx9ijIDDJMTLCCAAR8k7HPrjB5S/t/+Cunxns3i8W+OfDfw1sbtDHLb6HbGe6QEMfldxIynJVd0dyCAMg5zuh1IrdnVTwVefwwZ+2Xi7xp4O+H+hTeKfHmrWeiaZb4828v50toEz03SSFVGfc1+W3xR/wCCtHw3n8R3Hwu/ZF8Oaj8WfFY+VG09TFpUROQXkuWBJVTg5VPLYceavWvCtC/4JkfC3XNbXxf+0f4m1/4oauu8B9YvJEt1DOX+REfzByTlTMUJJ+UdK++PA/w4+H/wy0j+wfh1oljoVkTuaGwt0t0ZsY3MEA3N6k5JrCeKivhPSoZJUlrVdl+P+R8VfBn9mv40+OPi/aftW/toa3FrHjG0heLStFtFX+ztIR+nl9QZACeRnBOS7thh+hFFFck5uTuz6HD4eFGHJTWgUUUVBuFFFFABX5UfsCXLfFT9oL42ftJ2KA6PrWrQ6Xps6oNs8VkGBZW3NkFPKLY+Uk5HTAsftIftOa7+0Dq95+yL+xxIdV16/LWmva7GHWx0i0JZZf34xmQ4xuTcMEqhaQ4X70+BXwb8L/AH4UaN8JfB+Ws9Ih2GVwA80rEtJK2P4nclj6ZwOBWtuWLvuzi5lWrRcfhjfXz2t8tbnrdFFFZHaFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFfhf/wWU/aNt9M8M6Z+zR4flDXOpNHqWrY5KQRNmCM89XcbyCMgIvY1+wvxh+K3hL4IfDbV/ij43nEGn6RA0rDOGkfokaeryMQqj1NfxleOvFvxG/ar+PVz4gNu994h8YakkVtaRZY75mEcMCZ7KNqL7DmunDU7y5n0PGzjFezpeyjvL8j9wP8Ag3j/AGbbvxZ8bPEX7Tmt2rf2b4UtG0zTpWxtbUL0DzCvfMdvkN/11Ff2AV8tfsXfsz6B+yL+zb4Z+BuibJJtMtxJqFwg/wCPi/m+e4l55wXJC56IFHavqWu8+UCiiigAooooAKKKKACiiigAr8N/+Dgv/kw+0/7GnT//AETc1+5Ffhv/AMHBf/Jh9p/2NOn/APom5oA/F/8A4IBf8nj+Jf8AsTLz/wBLrGv6+K/kH/4IBf8AJ4/iX/sTLz/0usa/r4r4vPP96foj1sH/AAwooorxzqCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/jh/wCC7/8Aye3af9izYf8Ao24r9xv+DfT/AJMPu/8AsadQ/wDRNtX4c/8ABd//AJPbtP8AsWbD/wBG3FfuN/wb6f8AJh93/wBjTqH/AKJtq+/y7/dafoeLX/iSP3IooortMQooooAKKKKACiiigAooooA/In/guX/yjj8Xf9f2k/8ApZFX8xn/AAR8/wCTz7H/ALBN/wD+gCv6kP8AgtlpR1P/AIJseP5kGWs5NJnA+mo2yn8gxNfynf8ABJbWRpf7cHhuzY4/tC01G3/K2kl/9p1UPiRFX4H6H9eVFFFdx5QUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV8df8FA/+TMPiJ/2CX/8AQ1r7Fr4O/wCCmniFfDf7D/ju6z89zBa2ij1NxcxRn8lYn8KmWzLp/Ej+fr/gkP8A8pHPhd/1/XX/AKRz1/oHV/A7/wAEWvDzeIP+Ckfw9JGY7H+07t8dvLsLjb/4+Vr++KuE9UKKKKACiiigAooooAKKKKAPy2/4LQ6F/bv/AATa+IqouZLQaZdJ7eVqFsWP/fG6v5GP+CXmo/YP23/BqE4W4XUIT+NlOR+oFf3GftufCq5+N37IvxF+F1gC13qug3i2qj+K5iQywj6GRFB9q/z+f2TPHw+GH7S3gjxtK2yG01e2WdvSCdvKlP8A37dq0pO04vzBH9sVFFFfQGgUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAfyL/APBUPUft/wC2/wCMkBytuunwj8LKAn9Sa/sR/wCCRWhf8I7/AME5fhdp+NvmWFzdY/6+rueb9d9fw0/tSfEYfFn9onxn8QYmDwajqtwbdhzm3jby4f8AyGq1/oYfsl/DOf4Nfsv/AA++Ft4CLnQvD+n2lxnj/SEhXzeO37zdx2r5+q7zk13M2fQtFFFZgFFFFABRRRQAUUUUAFFFFABXC/E/4feH/iz8ONe+F/iqMS6b4h0+4065UgN+7uYzGxAPcA5Hoa7qigD/ADJvFnh3xt+zt8bNQ8MXha08QeCtZkgL4KlbmwmIDAem5Aw9RX9q/wAEvihpPxq+Enh74q6LgQa5ZRXJQf8ALORhiRPqjhlPuK/Hv/g4H/ZH/wCEA+Luk/tW+EbXZpfjECx1by1wsep26fI5wMDz4V/Fo2J5Ncj/AMEcv2p7G1juv2WPF8yxNJJLf6HI7Y3s3zT249+DKvr8/tVRZ24Kryz5X1P6BKKKKo9cKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooqpqF/ZaVYT6pqcqQW1tG0sssh2qiIMsxJ4AAGSaAPym/wCCvPx5Hw0/Z5j+F2jz7NU8azG3YKRuWxgw8x9cOSkfuGb0r87P+CHHwEb4yftz6V4s1CEyaZ4DtZtcmPG37QuIrZfqJZBIMf8APM18f/t1/tMyftSfH7UPGunll0PT1/s/SY2yD9liYnzCMnDSsS59AQD0r+tL/giT+yJ/wzh+yfb/ABE8T2nk+J/iIY9Vud64kisQD9khOQCPkYykHoZMdqhs8PE1eeo2tj9laKKKRzhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH/1v7+KKKKACvNfjF8JfA/x3+F+ufB/wCJFr9s0TxBavaXUQO1trchkb+F0YB0b+FgD2r0qigD/Nw/at/Zv+In7F37ROrfB/xS7x3mjXC3OnX0RK/aLVjut7iMjoSBzj7rgr1Wv6S/2AP20dG/ap+HK6Pr0iQeM9ChRdSt8gfaEGFFzGO6ucbwPuOcdCuf0M/4Kdf8E8vDf7dnwhxoghsfHvh+OSTQ7+T5Vkzy1rMw58qQjg8+W/zDjcG/hw0TWvjH+yj8a/tcKXPhvxd4VvGingmUq8ckZ2vFIvRkcZDDlWU8ZBzWVWkprzO7AY2WHqX+y90f3D0V8g/shftjfDn9rXwQuq6A62PiCyjX+1NJdsyQOeC6f34WP3XH0YBuK+vq82UWnZn2dOpGpFTg7phRRRSLCiiigAooooAp6hp+n6tZyadqsEdzbzDbJFKodGHoVOQR9a8R8Vfssfs1+NmaXxR4D0G7lcbTM1hCs2ACAPMVQ+ADxzxXvVFNNrYmUIy+JXPibV/+Ccv7FOtqVvPANmgIC/6PPcW/AOf+WUqc+/UjjpXmOqf8Emv2LtQl8y00W+sRljtg1CcjB6D94znA7c59c1+k9FUqk+5g8HQe9Nfcj8tZ/wDgkD+ySbuO80+TXbJo8FfIvl4ZTkMC0TEH6HtVi9/4JOfAC6iEcHifxhbEHO6PU4ySPT54GGPwzX6hUU/bT7k/UMP/AM+0fl7Zf8EnPgBaxGOfxP4wuSTndJqcYIHp8kCjH4Zqu3/BIX9lG51D+0dVufEF9Ifveffq27jAyREG44xz29K/Uqij20+4vqGH/wCfaPzb0z/gk7+xXYY+1aFe3uH3fvtQuBkcfL+7ZOP15616Ppf/AATh/Yn0fy/sngK1fy848+4uZ+uevmTNnrxnOO3Svt2il7SfctYOgtqa+5HgPhr9lP8AZm8H7G8O+ANAt5I8bZf7PheUYxj94yF+wPXrz1r3Ky07T9MiMGmwR26E7isahAT64HfirlFS23ubxhGPwqwUUUUigooooAKKKKACiiigDn/Fmn6zq3hXU9K8OXn9nahdWk0Vrdbd3kTOhCSbe+xiGx3xX5sH/gnx8V/iQ0Vt+0t8aNe8UaWsjSPplhGNPgkDhgyuQ7hlYED7gKqWVSN2R+o9FVGbWxjVoQqW59fm7fd1PIfgx8B/hV+z94W/4RD4U6TFpls+xp3XmW4kjQIHlc8sxA57ZJOBk169RRSbvqzSMVFcsVZBRRRSKCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKinnhtoXubl1jjjUs7McKqjkkk9ABTpZYoImmmYIiAszMcAAdSTX86H/AAUi/wCCjdj8Q7O8/Z+/Z+vvM0RyYtZ1eE4F6B1t7du8Gf8AWSD/AFv3VPl5MmlOm5uyOXF4uFCHPP5LueM/8FMv23rD9onxVB8LfhhcvJ4Q0GZnedThNQuxlfMA7xxjIjJ+9kt0Ir9Ov+CCf7ApkkP7bnxUsflXzLbwrbzpwTyk16M+nMURx13t/dNfmN/wS4/4Js+Jv26fiQ3iPxWk2n/Djw7Oo1a+XKNdTABxZ27d5GUgyMP9UhBPzMgb+7jwr4W8O+B/DVh4N8IWcWnaVpdvHa2lrAu2OGGJQqIo7AAAV6UIqKsj4uvXlWm6k92b9FFFUYhRRRQAUUUUAFFFFABRRRQAV+If/BwFYXN5+wSlxAuVtfEunSyH0UpOmf8AvpgK/byvzP8A+CwPw11T4n/8E8PiJpmiRebd6VbW+sKPSPTp455z+ECyGgD+br/ggZqFrZftna5bXDYe78I3sUQ9XF3ZyY/75Qmv7Ba/hQ/4JUfFix+EP7dfgbV9WcR2Wr3EujTMxwAdQjaKI56ACYxk57Z+tf3X18dn0GsQpd0ergn+7sFFFFeIdYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH8bH/Bdi7guf24I4Yjlrfw5p8b+zF52/kwr92/8Ag39sLmz/AGCXuJ1wt14l1GWM+qhIEz/30pFfzM/8FVfipp/xb/bt8dazo7K9npVxFo8TKcgnT41hlOehBmWTGO2PrX9eX/BH74a6p8MP+CeHw70zW4vKu9VtrjWGHrHqM8k8B/GBozX6DgYOOHpxfZHiVnecmfphRRRXWZBRRRQAUUUUAFFFFABRRRQB8o/t0fCB/jz+x/8AEX4VWyl7rU9EuWtFH8V3bDz4B9DLGgPtX8Af7J3xTi+Cn7SPgz4m3bBLXTNTi+1M3AW2mzFMfwidiK/0qq/zt/8AgpJ+zm37Lv7ZXjT4Z2cJh0qW7Op6V6Gxvv3sar7RktF9UNNO2omrqx/ZerK6h0OQeQR3pa/PX/gmp+03D+0b+zpY2+sTB/EXhVY9M1JT95wi4hm6D/WIOf8AbVq/Qqu5O6ueVKLi7MKKKKZIUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABX4xf8Fr/idD4d+AOgfC+3cC68S6qJ3XPJtrFdzcf9dZIufY1+zhIAyeAK/jq/4KS/tMw/tJftG3tx4fmEvh7w0raXpjL92URsTLMOB/rHzt/2AtZVZWib4eF537H6A/8ABu78K28UftWeJ/ipcKTb+FNBaJCO1zqMqoh/79RzDH+Ff2W1+MP/AAQy/Zmb4F/sbW/xE1qIx6z8RphrEoPVLJAUtE6DgpulHX/W1+z1ch6IUUUUAFFFFABRRRQAUUUUAFf5zX/BQD4AX/7MP7YPjf4VshitINRe901gMBrG8/fwEY/uo4Q4/iUiv9GWv5vf+DgL9jPVviD4H0r9rvwJbCa78Jwf2frsca5kbT3fdFNwORBIzB89FfPRTQB6h+xX8ch+0L+zf4c+IF3KJdSWH7FqXqLy2wkhP+/xJ9GFfVVfymf8Eyf2tk/Z7+Ln/CC+M7oQ+E/FTpDcM/3LW7+7FNnOFU/ckP8AdIY/dr+rJWV1Docg8gjvXuYarzwT6lpi0UUV0DCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK+N/wBvX46r8AP2ZfEHimzl8rVdRj/svTecN9pugV3D3jTfJ/wGvsSaaK3iaedgkaAszMcAAdSSegFfyZf8FIv2s/8AhpP4xtoPhO58zwn4YZ7awMbHZczE4luPQ7iNqH+4AR941z4mt7OD7sTZ53/wTz/Z61H9p39sHwT8L7eMtZfb01DUmwCEsbIiabOcfeC+WP8AaYV/ou1/O5/wQE/Y21P4XfC3VP2rPHNv5Oo+N4UtdHjYfPHpcbbmkPGR9okAIH9yNW6NX9EdeGQFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAfOX7WX7Nvg39rX4BeIPgV42/dwavBm3uVAL2t3Ed8My+6OBkfxLlehr/PL8eeCfiz+yV8ebzwfr4k0bxZ4M1EDfG33ZYSGjkRv4kcYdT0ZSPWv9MGvwy/4LH/APBNC+/ay8IxfHf4K2qv4+8N2zRzWaKA2rWSZbywRyZ4uTFn74JTrtwAZf7HX7VXhL9rH4TW/jLRytvrFkEg1exz81vckdQOpjkwWjbuMjqCB9Y1/ED+zt+0F8R/2VfixbfEDwazxz2zmC/sJSUjuoM/vIJR26cHGUYAjkV/Yt8BPj78Nf2kPh1Z/En4ZXwubWcBZ4G4ntJ8AvDMmTtdM+6sMMpZSrG0z2sNiFUVnue0UUUUzqCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr8Lv+Cs/7aml6N4buP2XPhnfCXU7/A1+aLlYLfqLbcD/AKyQ4MgHRPlP3iB9M/8ABQz9vfRf2ZfCc/w++HtzDdePdTi2xIMONNikH/HxKOm/BzFG3U4ZgVGG/m5/Z7+AXxc/a/8AjdYfCr4cwyanrmtzNNc3U5ZkhjLZmubiTkhFzlmOSzEAZZgDLZ5+MxNl7OO/U+xf+CU/7BWo/ts/H2KXxPBIngTws8d5rdwF+Wcg5itFJ43TEHdjlYwx67c/3x29vb2lulpaIsUUShERAFVVUYAAHAAHQV8y/sffsp/Dz9jX4GaV8FPh4plS1Bmvr1wBLe3kgHmzPjpkgBVydiBVycZP1BUnlhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//9f+/iiiigAooooAK/I3/gpf/wAEqvh9+3DosvxB8GPD4f8AiVY2/l22oMCLe/SMfJBdhQTgfdSZQXQYBDqAo/XKigD/ADUdX0f9oP8AYs+OD6ZrEF74O8Z+HpfmRuGAb0IyksUi9wWjdT3Ff0Q/sb/8FOfht8fIrPwJ8Umh8NeL2UIN7bbK9ccZidj8jt/zzc9eFLV+237Z/wCwP8AP24/CMeifFixaDV7GN003WrPCXtoW5wGwRJHu5MTgqeo2n5q/iw/bg/4JrftD/sOa49x4ztP7a8JyuqWniGxRjaOX6JKDloJf9l+Cfus3Ws6lJTWp2YTHVMO/d27H9c1Ffyf/ALN3/BUn9oH4Gw2vhrxa6+MfD9uFjW3vnK3UUa4GIrgAtwBgCQOB0GK/c/4Gf8FHv2W/jfbwWseup4c1aXAaw1gi2bf6JKT5T89MPuP90dK4Z0JRPqMNmdCtpez7M+8aKjhmhuYUuLdxJHIAyspyGB5BBHUGpKxPQCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK4P4gfFL4cfCnRzr/xJ1yy0O0HSS8mWLd7KGILH2UE0CbSV2d5XB/En4neAfhB4SufHPxK1WDSNLtcb552wCx6Ko6sx7KoJPYV+RP7RP8AwWQ8AeGBP4e/Z20w+Ib0ZUalfK0Fkp5GUj4ll7dfLHua/Dv4ufHb45/tSeM7e++IOo3Wu38riGysoE/doXPCQwRjAJJxwCzcZJrpp4aT1lojycVnFKmmqfvP8P69D7i/bi/4KY+KP2hbW5+GHwmSfQvB7syXEjHbd6inTEmP9XEf+eYJLfxHHyhP+Cbn/BLP4lft1a+vi7xDJN4c+HNhPsvdWCDzrtkPzQWYYFWfs0rApFnJDsNh/Qj/AIJ+f8EHte8UNY/Fj9tZJNL07Ilg8LxPsupx1H2uRTmJT3iQ+Yf4ih4P9VXhDwf4W+H/AIXsPBPgjT4NK0jS4Ut7SztUEcMMSDCqqjAAFdsYKKsj5ivXnWnz1HdnNfCH4RfDn4D/AA50r4TfCfS4tG0DRYfJtbWHJCgkszMxJZ3diWd2JZmJYkk16RRRVGIUUUUAFFFFABRRRQAUUUUAFFFFABWR4g0LS/FGg33hnXIhPZajby2txG3R4plKOp+qkiteigD/ADYP2nPgR42/ZA/aP1/4P61JLDfeGr/dZXi5QzQZEltcIcD7yFWyOjZHUV/av+wF+1joP7Xv7OmjePo7qJ/ENlElnrtqhAeC9jGGYp1CTY8xD0wcZypx4J/wWR/4Jsaj+1v4Ig+N/wAHLYSePvC1q0TWiKN2qWCkv5Knr50ZLNFn72SnUrj+Tj9lD9qj4qfsXfGaD4k+Bcl4ibXVNLuCyRXlvn54ZR1VgRlGxlHAOCMqfNzPAfWado/Etv8AI6MPW9nLXY/0GqK+W/2Vf2wfgr+1/wCAIPGvwr1JDchM3ulTOq31lIMblljBJ25PyyDKN2OcgfUlfEThKEnGas0eummroKKKKgYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV8T/t+/tY6D+yF+zprPj6S6iTxDexPZ6FauQXnvZBhWCdSkOfMc9MDGcsM9p+1V+2D8Ff2QPAE/jX4qakguSmbLSoXVr69kOdqxRkg7cj5pDhF7nOAf4if2r/ANqj4qfto/Gaf4k+Osh5SLXS9LtyzxWdvn5IYh1ZiTl2xl3JOAMKPXyvLZV5qc17i/HyObEV1BWW5lfsx/Ajxt+1/wDtH6B8H9FklmvvEt/uvbxsuYYMmS5uHOD91AzZPVsDqa/0iPD+haX4X0Gx8M6HEILLTreK1t416JFCoRFH0UAV+Kf/AARu/wCCbGo/skeCJ/jf8Y7YR+PvFNqsS2jqN2l2DEP5LHr50hCtLj7uAnUNn9w6+1PICiiigAooooAKKKKACiiigAooooAK/Ev/AILXfsIt+098Cx8aPh7Zmfxt4DgklSOMEyXum/fmgAAJZ4+ZYh1zuUcvX7aUUAf5uP7Iv7UfjD9k34uWvxE8OhrqwlAt9UsN21bu1Jyy+gdfvRtjhvUEg/2dfC/4l+DfjF4A0v4mfD+8W+0jWIBPbyr1xyGVh/C6MCjqeVYEHkV+S3/BX/8A4JFazpms6j+1d+yjpP2nTbnfdeItAtF/e20v3mu7WMD54n5M0S/NG3zqGRmEX4q/sgftsfFT9kLxU134Yf8AtHw9fSBtQ0edyIZjgDzEPPlzAAAOByAAwYAAa06nLo9jnrUefVbn9p9FfKH7Nf7aPwF/al0tJPh3qyxasEDz6RdkRXsRxk/JnEij+/GWX1Ir6vrqTvqjgaadmFFFFMQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUVla5ruieGNIuNf8AEl5Dp9jaIZJri5kWKKNR3Z2IAHuTX4R/tr/8FdNGtNNuvhr+ylObm8mVorjxAyFY4QeCLVWwWf8A6aMNo6qCcETKSitS4U3J2R3f/BU79vmP4a6Rd/s2fCG7P/CRahFs1i9hb/jxt5V/1KkciaRTknjYh4+ZgV/KL/gml+xjqf7a37TWl+Bb2GT/AIRbSCuo+ILhMqEs424iDYIDzt+7Xvgsw+6a8j/Zb/ZT+On7b/xgXwB8L7aS+vLiT7RqmqXTMbezikb557mU5PJyQOXkbhQTX97X7HP7H/wq/Yq+Ddn8JfhjD5r8TalqUqgXGoXZGGlkxnA7IgJCLgDJyTxzk5O56VOmoKyPp/S9L07RNMttF0eBLa0s4kgghjUKkccYCqqgcAKAAB2FXqKKksKKKKACiiigAooooAKKKKACszW9F0nxHo134e163S7sb+GS3uIJRuSWKVSrow7hlJBHoa06KAP4Bv8Agp5/wT48S/sMfGaQaLDNdeAfEMsk2hX7Zbyx1a0lb/nrEOhP+sTDDncF+vf+CaX/AAUNtYLWz/Z1+PepbNmyDQtVuW+Xb0W1mc9McCJm4x8hIwuf61v2gPgD8MP2m/hTqvwa+L2njUNG1WPa2CFmglX7k0L4OyWM8q2D6EFSQf4Vf+Cg/wDwTY+L/wCwj41aW/WTXfA+oSY0zXoo8ISc4huFGfKnA7fdkHKH7yrrSqypy5kNM/rIor+ZH9jv/gqn41+DtrZ/Dr45RzeIvDcAWGC8U7r+0jHABLHEyKOikhgBwSMLX9D/AMLPjR8LPjZ4fj8TfC3XLTWbV1DN5EgMkWe0kZ+eNvZwDXs0q8Ki03KTPT6KKK2GFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFeS/Fz46/CX4FeHpPEvxU1210iBULIkrgzzY7RRDLyMcdFU1/Ot+2N/wVH8d/HC2vPh38HY5vDfheUtHLcFsX97GeMOVOIkYdUUkkcFsZWsa2IhTWu4mz6E/wCCmP8AwUIsNVsbv9nP4D6iJopd0Ou6nbnKMo4NrC46g/8ALVl4I+QEguK+Tv8AgmD/AME+fEv7cvxnjOtQzWvgHw9LHNrt8oKiQZ3LaRN/z1lHUj/VpljztDY//BPj/gmx8X/27vGqy2CyaF4H0+TGp69LHlARjMNupx5s5Hb7sY5c/dVv7qv2f/gD8MP2ZPhTpXwa+EOnjT9G0qPauSGmnlb780z4G+WQ8s2B6ABQAPGq1XUlzMls9V0fSNM8P6Ta6DokCWtlZQpb28MQ2pHFGoVFUDoFAAA9K0aKKyEFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH87n/BWT/gj1/wAL4vr/APaZ/Zcto7fxi6tNrOhriOLVmHJngPAS7I/1in5Z+G+WTcZf5fvgH+0H8YP2Rvig/iXwZJJZXdvIbbU9Mu1ZYp1iYhoZ4jghlOQDw6NnBHNf6UlfjV/wUd/4JB/DL9ss3XxT+GssPhX4ibAXutmLPUiowBdKoyHwABMuWAwGDADAOMmndHj/AOyn+238G/2rdAibwxdrp3iGNN13oty4FxGR94x9PNj7h16D7wU8V9i1/D18Yvgj8ef2RPim3g74mabe+FvEOmyeZbzIxQOFPE1vOhw6Hs6N7HByK/Un9mL/AILG+KfCdlB4S/aU0+XXrePaiavZBVu1QYH72M7UlI67gVb1DHmqUj1KOOT0qaM/o8orwT4L/tP/AAH/AGgrJbn4UeJbTU5tgd7Td5V3GCM/NC+2QY9cFeOCa97qjuUk1dBRRRQMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKazKil3ICgZJPAAr4N+Pf8AwUh/Zc+Axm0y71oeItYiBH2DR8XLBh2eUERJz1BfcP7poJlOMVeTPvGSRIkaWVgqqCSScAAdzX4yftz/APBUvwv8NtOuvhl+zdfQav4lk3w3Gqx4ltbDHB8snKzTenWNT13H5a/K79rL/gpF8bf2mGuPDOmSN4X8KSZQ6bZyEvcJnj7RLgGT/dAVPUE81f8A2E/+CY37QP7cesxaroFudA8FxSlLvxBeRnyfk+8lunBnkHTCkKp+8y1LkedXxt/dp/efN3wJ+APx7/bT+MyeBvhtaXHiDxBq0xuL69uXZo4Edv3lzdztu2oCcsxyzH5VDOQp/uq/YB/YB+F/7BnwuPhfwyy6r4l1QJJrWtvGElupF6IgySkEeTsTJ5JYksTXp/7In7HnwZ/Yt+FkPww+ENkV3lZdQ1GcBry/uAMeZM4A6chEGFQcAckn6oqTzgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP//Q/v4ooooAKKKKACiiigArP1bSdK17TZ9G1y2ivbO5QxzQToJI5EPVWVgQQfQitCigD8LP2t/+CD/7M3xtFz4o+BEh+HXiCTL+TbJ5ulSv6Nb5Biz6wsqjrsNfzo/tE/8ABI39uX9nP7RqOreEpPEujwZP9o+Hib+LaD95olAnQY5JeIAetf6ANFAH+aZ8NP2l/wBon4EySab8OvFWpaKkbbXtN++FWU8gwShowQeD8ue1fb/gf/gsR+1X4bKxeKodH8RR/wATXFqYJT9GgeNAfqhr+0b4u/sgfsufHmV7v4v+AdD126k4a7uLOMXX/f8AULKPwevzc+J3/BAz9g3xy8lz4Qh1zwfKxLKum35miBPqt4tw2PYMtRKnF7o6KeLrU9ITaPxRsv8Agt94yjx/aPw+spfXy7+SP+cT10if8FyHCgSfDAFu5GtYH5fYzX3XrH/Btx8Ip8/8I/8AE7WLb0+0WMM+P++Xirzyb/g2mgaUm3+NDKnYN4d3H8xqA/lUewp9joWa4r+f8F/kfLX/AA/J/wCqX/8Alb/+4qP+H5P/AFS//wArf/3FX1B/xDS/9Vq/8tz/AO+NH/ENL/1Wr/y3P/vjR9Xp9h/2tiv5/wAF/kfL/wDw/J/6pf8A+Vv/AO4qP+H5P/VL/wDyt/8A3FX1B/xDS/8AVav/AC3P/vjR/wAQ0v8A1Wr/AMtz/wC+NH1en2D+1sV/P+C/yPl//h+T/wBUv/8AK3/9xUf8Pyf+qX/+Vv8A+4q+oP8AiGl/6rV/5bn/AN8aP+IaX/qtX/luf/fGj6vT7B/a2K/n/Bf5Hy//AMPyf+qX/wDlb/8AuKj/AIfk/wDVL/8Ayt//AHFX1B/xDS/9Vq/8tz/740f8Q0v/AFWr/wAtz/740fV6fYP7WxX8/wCC/wAj5f8A+H5P/VL/APyt/wD3FR/w/J/6pf8A+Vv/AO4q+oP+IaX/AKrV/wCW5/8AfGj/AIhpf+q1f+W5/wDfGj6vT7B/a2K/n/Bf5Hy//wAPyf8Aql//AJW//uKj/h+T/wBUv/8AK3/9xV9Qf8Q0v/Vav/Lc/wDvjR/xDS/9Vq/8tz/740fV6fYP7WxX8/4L/I+X/wDh+T/1S/8A8rf/ANxUf8Pyf+qX/wDlb/8AuKvqD/iGl/6rV/5bn/3xo/4hpf8AqtX/AJbn/wB8aPq9PsH9rYr+f8F/kfL/APw/J/6pf/5W/wD7io/4fk/9Uv8A/K3/APcVfUH/ABDS/wDVav8Ay3P/AL40f8Q0v/Vav/Lc/wDvjR9Xp9g/tbFfz/gv8j5f/wCH5P8A1S//AMrf/wBxUf8AD8n/AKpf/wCVv/7ir6g/4hpf+q1f+W5/98aP+IaX/qtX/luf/fGj6vT7B/a2K/n/AAX+R8v/APD8n/ql/wD5W/8A7io/4fk/9Uv/APK3/wDcVfUH/ENL/wBVq/8ALc/++NH/ABDS/wDVav8Ay3P/AL40fV6fYP7WxX8/4L/I+X/+H5P/AFS//wArf/3FR/w/J/6pf/5W/wD7ir6g/wCIaX/qtX/luf8A3xo/4hpf+q1f+W5/98aPq9PsH9rYr+f8F/kfL/8Aw/J/6pf/AOVv/wC4qP8Ah+T/ANUv/wDK3/8AcVfUH/ENL/1Wr/y3P/vjR/xDS/8AVav/AC3P/vjR9Xp9g/tbFfz/AIL/ACPl/wD4fk/9Uv8A/K3/APcVH/D8n/ql/wD5W/8A7ir6g/4hpf8AqtX/AJbn/wB8aP8AiGl/6rV/5bn/AN8aPq9PsH9rYr+f8F/kfL//AA/J/wCqX/8Alb/+4qP+H5P/AFS//wArf/3FX1B/xDS/9Vq/8tz/AO+NH/ENL/1Wr/y3P/vjR9Xp9g/tbFfz/gv8j5f/AOH5P/VL/wDyt/8A3FR/w/J/6pf/AOVv/wC4q+oP+IaX/qtX/luf/fGj/iGl/wCq1f8Aluf/AHxo+r0+wf2tiv5/wX+R8v8A/D8n/ql//lb/APuKj/h+T/1S/wD8rf8A9xV9Qf8AENL/ANVq/wDLc/8AvjR/xDS/9Vq/8tz/AO+NH1en2D+1sV/P+C/yPl//AIfk/wDVL/8Ayt//AHFR/wAPyf8Aql//AJW//uKvqD/iGl/6rV/5bn/3xo/4hpf+q1f+W5/98aPq9PsH9rYr+f8ABf5Hy/8A8Pyf+qX/APlb/wDuKj/h+T/1S/8A8rf/ANxV9Qf8Q0v/AFWr/wAtz/740f8AENL/ANVq/wDLc/8AvjR9Xp9g/tbFfz/gv8j5f/4fk/8AVL//ACt//cVH/D8n/ql//lb/APuKvqD/AIhpf+q1f+W5/wDfGj/iGl/6rV/5bn/3xo+r0+wf2tiv5/wX+R8v/wDD8n/ql/8A5W//ALio/wCH5P8A1S//AMrf/wBxV9Qf8Q0v/Vav/Lc/++NH/ENL/wBVq/8ALc/++NH1en2D+1sV/P8Agv8AI+X/APh+T/1S/wD8rf8A9xUf8Pyf+qX/APlb/wDuKvqD/iGl/wCq1f8Aluf/AHxo/wCIaX/qtX/luf8A3xo+r0+wf2tiv5/wX+R8o3n/AAXF1Jx/oHw0ijP/AE01cv8AytVrhtc/4La/Fy4tXTw34L0i0mP3XuZprhR9VUxE/mK/QDSv+Dazw9C2db+MFxcD0g0NYT/49eSV6z4d/wCDcb9my0uI5PFXjzxJfxqculstrbbh6ZaKXFP2EOwnmmKf2/wX+R/P943/AOCo37Z3jRXgh8Sx6LA/WPTbWKLH0kZXlH4PXzT4T8AftF/tVeNnh8I6ZrnjvXZz+8eNJr2UZ5zJId2xepyxAFf3A/C7/gjn/wAE9PhascsHgKLXrpMZuNbuJb7dj1idvI/KIV+ivhHwT4M+H+ix+G/AWkWWiadFylrYW6W0C/RI1VR+Aq1FLZHJUr1Knxyb9T+QL9mb/g30/aI8f3dtrf7SWrWvgfSGCu9nbOt9qbAjO3CEwR9vmMjkf3K/pX/Zd/4J/wD7Kv7INig+DnhiGPVAu2TWL3F1qMnXOZnHyA55WIIh/u19m0VRkFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV+Ev/BUH/gjz4a/amF18bv2d4bbRPiHkyXtscQ2msZ6lzwsdxnkS9H6SckOv7tUUAf5onivwT+0P+yL8UI7LxRZax4E8Vaa4khc77WdcYIeKRSA6nj5kYqfU1+knwZ/4Lkfth/DmGPTfiAumeN7RF27r6H7PdcdMS2+xT7l42J9c81/aJ8W/gf8ACD48+Gj4P+M3hvT/ABLp2Syw38Cy+Wxx80bEbo24+8hB96/H34uf8G/H7F/jvUn1b4eX+ueC2ckm2tLhbu1GfRblXlH/AH9xjtWFbDUqqtUimXCpKPws/PPTf+DiLVoodur/AAlhnk/vQ62Yl/JrOT+daP8AxET/APVHv/Lg/wDvfXp+sf8ABtXoU9xu0D4wz20X9240JZ2/76W9iH6Vkf8AENL/ANVq/wDLc/8AvjXH/Y+D/wCff4v/ADNfrVXv+Rw//ERP/wBUe/8ALg/+99H/ABET/wDVHv8Ay4P/AL313H/ENL/1Wr/y3P8A740f8Q0v/Vav/Lc/++NH9j4P/n3+L/zD61V7/kcP/wARE/8A1R7/AMuD/wC99H/ERP8A9Ue/8uD/AO99dx/xDS/9Vq/8tz/740f8Q0v/AFWr/wAtz/740f2Pg/8An3+L/wAw+tVe/wCRw/8AxET/APVHv/Lg/wDvfR/xET/9Ue/8uD/7313H/ENL/wBVq/8ALc/++NH/ABDS/wDVav8Ay3P/AL40f2Pg/wDn3+L/AMw+tVe/5HD/APERP/1R7/y4P/vfR/xET/8AVHv/AC4P/vfXcf8AENL/ANVq/wDLc/8AvjR/xDS/9Vq/8tz/AO+NH9j4P/n3+L/zD61V7/kcP/xET/8AVHv/AC4P/vfR/wARE/8A1R7/AMuD/wC99dx/xDS/9Vq/8tz/AO+NH/ENL/1Wr/y3P/vjR/Y+D/59/i/8w+tVe/5HD/8AERP/ANUe/wDLg/8AvfR/xET/APVHv/Lg/wDvfXcf8Q0v/Vav/Lc/++NH/ENL/wBVq/8ALc/++NH9j4P/AJ9/i/8AMPrVXv8AkcP/AMRE/wD1R7/y4P8A730f8RE//VHv/Lg/+99dx/xDS/8AVav/AC3P/vjR/wAQ0v8A1Wr/AMtz/wC+NH9j4P8A59/i/wDMPrVXv+Rw/wDxET/9Ue/8uD/730f8RE//AFR7/wAuD/7313H/ABDS/wDVav8Ay3P/AL40f8Q0v/Vav/Lc/wDvjR/Y+D/59/i/8w+tVe/5Hm2pf8HEWrSw7dI+EsMEn96bWzKv5LZx/wA6+SfjN/wXI/bD+I0Mmm/D9dM8EWjrt3WMP2i6565luN6j2KRqR655r9FtH/4Nq9CguN2v/GGe5i/u2+hLA3/fTXso/Svqz4R/8G/H7F/gTUk1b4h3+ueNGQgi2u7hbS1OPVbZUlP/AH9xjtVwyvCwd1TXzu/zuJ4mo95H8jPhTwT+0P8AtdfFCSy8L2WseO/FWpOZJnG+6nbOSXlkYkIo5+Z2Cj1Ff1w/8Evv+CPPhr9lkWvxu/aIhttb+IeRJZWwxNaaPjoUPKyXGeTL0TpHyC7fsP8ACT4H/CD4DeGh4P8Agz4b0/w1p2QzQ2ECxeYwz80jAbpG5+85J969TrvSSVkYBRRRTAKKKKACiiigAooooAKKKKACiiigAooooAK/n7/b/wD+CGngD496vqfxf/Zlu4PCfiq9Z7m60uZcaXeykZJTYM28jtySAyEnJVSS1f0CUUAf5qfxi/Z7/aM/ZL8bppXxW0DU/CeqW0pNrdENHHIyE/Pb3CHY444aNzX0j8LP+Cp/7ZPwyaOC68Qx+JrRCP3GtQi4J+sqmOc/jIa/vy8aeBvBfxH8O3HhD4gaTZ63pV2u2a0voEuIHHTlHBU9fSvyr+K//BDf/gn58TDJcaPoF/4QuZAcy6JfOi59RFcCeIfRUApqTWxMop7o/CTRf+C5nxEgx/wkXgDTrr1+zXktv/6Ektdp/wAP2/8Aqln/AJXP/uKvtDxH/wAG3Hwmut3/AAiXxP1ex/u/bLCG6x9dkkGa87/4hpf+q1f+W5/98av2su5n7Cn2PnP/AIft/wDVLP8Ayuf/AHFR/wAP2/8Aqln/AJXP/uKvoz/iGl/6rV/5bn/3xo/4hpf+q1f+W5/98aPaz7h9Xp9j5z/4ft/9Us/8rn/3FR/w/b/6pZ/5XP8A7ir6M/4hpf8AqtX/AJbn/wB8aP8AiGl/6rV/5bn/AN8aPaz7h9Xp9j5z/wCH7f8A1Sz/AMrn/wBxUf8AD9v/AKpZ/wCVz/7ir6M/4hpf+q1f+W5/98aP+IaX/qtX/luf/fGj2s+4fV6fY+c/+H7f/VLP/K5/9xUf8P2/+qWf+Vz/AO4q+jP+IaX/AKrV/wCW5/8AfGj/AIhpf+q1f+W5/wDfGj2s+4fV6fY+c/8Ah+3/ANUs/wDK5/8AcVH/AA/b/wCqWf8Alc/+4q+jP+IaX/qtX/luf/fGj/iGl/6rV/5bn/3xo9rPuH1en2PnP/h+3/1Sz/yuf/cVH/D9v/qln/lc/wDuKvoz/iGl/wCq1f8Aluf/AHxo/wCIaX/qtX/luf8A3xo9rPuH1en2PnP/AIft/wDVLP8Ayuf/AHFR/wAP2/8Aqln/AJXP/uKvoz/iGl/6rV/5bn/3xo/4hpf+q1f+W5/98aPaz7h9Xp9j5z/4ft/9Us/8rn/3FR/w/b/6pZ/5XP8A7ir6M/4hpf8AqtX/AJbn/wB8aP8AiGl/6rV/5bn/AN8aPaz7h9Xp9j5z/wCH7f8A1Sz/AMrn/wBxUf8AD9v/AKpZ/wCVz/7ir6M/4hpf+q1f+W5/98aP+IaX/qtX/luf/fGj2s+4fV6fY+c/+H7f/VLP/K5/9xUf8P2/+qWf+Vz/AO4q+jP+IaX/AKrV/wCW5/8AfGj/AIhpf+q1f+W5/wDfGj2s+4fV6fY+c/8Ah+3/ANUs/wDK5/8AcVH/AA/b/wCqWf8Alc/+4q+jP+IaX/qtX/luf/fGj/iGl/6rV/5bn/3xo9rPuH1en2PmXUP+C62pyQ7dK+GMUMn96XWDKv5C0T+deIeOP+C1n7SOvWL2XgzRNF0Fn/5b+XJdTL/u+Y4j/NDX6OaX/wAG1Wjw3G7W/jFNcRf3YNBWFv8Avpr2QfpX0P4A/wCDdv8AZI8P3iXvjzxN4k8QhMfuFlgs4W9d2yJpPykFHtJdxqhBdD+Uj4q/tJftC/tDXUVl8UPE2o68HlBhsy22DzGOBsgiCxhieBhM+lfo7+xf/wAEUv2nP2lrq28UfFK2l+HnhJirtcajCRf3KHBxBattYZU8SS7V7jd0r+uD4B/sH/si/sxzrqHwX8C6dpV+qhRfyK13ecek9w0ki57hWAPpX1xWbdzRJLY+bv2Wf2UPgx+x58MIfhV8FtONpaBzNdXMxEl3eTnrLPJgbmxwAAFUcKAK+kaKKBhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXJeOvAfgv4neEb/wF8Q9LttZ0bU4jDdWd3GJYZUPYq3HB5B6ggEYIBrraKAP5PP26/wDggV4h0W4uviN+xJIdSsmJkl8M3swW4hGMn7LPIQJF9I5GDjszniv58Nb8O/HP9mf4gfY9etNY8EeJLBjgSrLY3K7T1U/KSpI6glT7iv8ATSrzL4qfBj4S/HDw4fCXxg8N6d4l04nIg1C3SdUbj5kLAlG4HKkH3oA/hG+H/wDwVh/bA8ErFb6vqVj4kgiwNup2i7ivu8Bhcn3Yk+ua+odM/wCC3XjWJV/tn4f2M57+TfSQ5+m6KTH61+6fxV/4ISfsBfEZpbnw7pWq+DriTJ3aPfsU3f8AXO6FwgHqFC+2K+Pte/4NuPhLcbv+EY+J+r2fp9qsIbnH12PDmt44mqtpDuz4VH/BcU45+GHP/Ya/+4qX/h+N/wBUv/8AK1/9xV9St/wbSruO3404HbPhzP8A7kaT/iGl/wCq1f8Aluf/AHxqvrlb+b8v8guz5b/4fjf9Uv8A/K1/9xUf8Pxv+qX/APla/wDuKvqT/iGl/wCq1f8Aluf/AHxo/wCIaX/qtX/luf8A3xo+uVv5vy/yC7Plv/h+N/1S/wD8rX/3FR/w/G/6pf8A+Vr/AO4q+pP+IaX/AKrV/wCW5/8AfGj/AIhpf+q1f+W5/wDfGj65W/m/L/ILs+W/+H43/VL/APytf/cVH/D8b/ql/wD5Wv8A7ir6k/4hpf8AqtX/AJbn/wB8aP8AiGl/6rV/5bn/AN8aPrlb+b8v8guz5b/4fjf9Uv8A/K1/9xUf8Pxv+qX/APla/wDuKvqT/iGl/wCq1f8Aluf/AHxo/wCIaX/qtX/luf8A3xo+uVv5vy/yC7Plv/h+N/1S/wD8rX/3FR/w/G/6pf8A+Vr/AO4q+pP+IaX/AKrV/wCW5/8AfGj/AIhpf+q1f+W5/wDfGj65W/m/L/ILs+W/+H43/VL/APytf/cVH/D8b/ql/wD5Wv8A7ir6k/4hpf8AqtX/AJbn/wB8aP8AiGl/6rV/5bn/AN8aPrlb+b8v8guz5b/4fjf9Uv8A/K1/9xUf8Pxv+qX/APla/wDuKvqT/iGl/wCq1f8Aluf/AHxo/wCIaX/qtX/luf8A3xo+uVv5vy/yC7Plv/h+N/1S/wD8rX/3FR/w/G/6pf8A+Vr/AO4q+pP+IaX/AKrV/wCW5/8AfGj/AIhpf+q1f+W5/wDfGj65W/m/L/ILs+W/+H43/VL/APytf/cVH/D8b/ql/wD5Wv8A7ir6k/4hpf8AqtX/AJbn/wB8aP8AiGl/6rV/5bn/AN8aPrlb+b8v8guz5b/4fjf9Uv8A/K1/9xUf8Pxv+qX/APla/wDuKvqT/iGl/wCq1f8Aluf/AHxo/wCIaX/qtX/luf8A3xo+uVv5vy/yC7Plv/h+N/1S/wD8rX/3FR/w/G/6pf8A+Vr/AO4q+pP+IaX/AKrV/wCW5/8AfGj/AIhpf+q1f+W5/wDfGj65W/m/L/ILs+W/+H43/VL/APytf/cVH/D8b/ql/wD5Wv8A7ir6k/4hpf8AqtX/AJbn/wB8aP8AiGl/6rV/5bn/AN8aPrlb+b8v8guz5b/4fjf9Uv8A/K1/9xUh/wCC4pxx8MOf+w1/9xV9S/8AENL/ANVq/wDLc/8AvjSr/wAG0q7hu+NOR3x4cx/7kaPrlb+b8v8AILs+MdT/AOC3XjWVW/sb4f2MB7edfSTY+u2KPP6V8s/EP/gq7+2B45SW20rVLLw3byggppdqoYL7STGVwfdWB9MV+3Gg/wDBtx8Jbfb/AMJP8T9XvPX7LYQ22fpvebFfYPwq/wCCEn7AXw5aK58RaVqvjG4jwd2sX7BN3/XO1FuhHoGDe+amWJqveQXZ/F14f8L/ABt/aQ8e/YPDdlq/jXxHfsNwiSW+uXyerH5mCgnkkgDucV/Qp+wp/wAECvEOtXFr8Rv225DptkpEkXhmymDXEwxkfap4yRGvrHGxc92Q8V/Tt8K/gx8Jfgf4cHhL4P8AhvTvDWnA5MGn26QK7c/M5UAu3J5Yk+9em1gI5LwL4D8F/DHwjYeAvh5pdto2jaZEIbWztIxFDEg7BV45PJPUkknJJNdbRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB4d8e/wBm34H/ALT3g0+A/jr4ctPEOnqWaHz1Ilt3YbS8MqkSRPj+JGB9a/mq/a0/4N5/FmjyXHiv9jzXRq9sSXGhazIsVyoP8MN18sb+gEojwOrk1/WNRQB/mj/FT4A/tFfsx+JIoPit4Z1jwhfxPmCeeJ4VZh3hnX5H78o5r1j4df8ABQr9sP4ZeXFovje9vreMBfI1PbfoVHQZnDuB/usDX+iRr/h3w/4r0mbQPFNjb6lY3A2y211Es0Mg9GRwVI+or86viR/wSB/4J4/EwSS3/wAOrXSbhySJtHmmsNpPpHDIsX4GMigqM5R+Fn8zfh//AILZfHuytY4fEnhbQr+RRhpIvPty3uQZHAPrjj2r0nTv+C5OvxAf2t8N7ef18nVGi/8AQrd6/Tvxb/wbofspapdvc+D/ABh4n0lH5EUz210in/Z/cxtj6sT714trH/Btd4SnJ/4R/wCLl3bDt9o0ZJ//AEG6ip3ZssVVX2j5F/4fof8AVLf/ACt//cVH/D9D/qlv/lb/APuKvpj/AIhpf+q1f+W5/wDfGj/iGl/6rV/5bn/3xoux/XK3835f5HzP/wAP0P8Aqlv/AJW//uKj/h+h/wBUt/8AK3/9xV9Mf8Q0v/Vav/Lc/wDvjR/xDS/9Vq/8tz/740XYfXK3835f5HzP/wAP0P8Aqlv/AJW//uKj/h+h/wBUt/8AK3/9xV9Mf8Q0v/Vav/Lc/wDvjR/xDS/9Vq/8tz/740XYfXK3835f5HzP/wAP0P8Aqlv/AJW//uKj/h+h/wBUt/8AK3/9xV9Mf8Q0v/Vav/Lc/wDvjR/xDS/9Vq/8tz/740XYfXK3835f5HzP/wAP0P8Aqlv/AJW//uKj/h+h/wBUt/8AK3/9xV9Mf8Q0v/Vav/Lc/wDvjR/xDS/9Vq/8tz/740XYfXK3835f5HzP/wAP0P8Aqlv/AJW//uKj/h+h/wBUt/8AK3/9xV9Mf8Q0v/Vav/Lc/wDvjR/xDS/9Vq/8tz/740XYfXK3835f5HzP/wAP0P8Aqlv/AJW//uKj/h+h/wBUt/8AK3/9xV9Mf8Q0v/Vav/Lc/wDvjR/xDS/9Vq/8tz/740XYfXK3835f5HzP/wAP0P8Aqlv/AJW//uKj/h+h/wBUt/8AK3/9xV9Mf8Q0v/Vav/Lc/wDvjR/xDS/9Vq/8tz/740XYfXK3835f5HzP/wAP0P8Aqlv/AJW//uKj/h+h/wBUt/8AK3/9xV9Mf8Q0v/Vav/Lc/wDvjR/xDS/9Vq/8tz/740XYfXK3835f5HzP/wAP0P8Aqlv/AJW//uKj/h+h/wBUt/8AK3/9xV9Mf8Q0v/Vav/Lc/wDvjR/xDS/9Vq/8tz/740XYfXK3835f5HzP/wAP0P8Aqlv/AJW//uKj/h+h/wBUt/8AK3/9xV9Mf8Q0v/Vav/Lc/wDvjR/xDS/9Vq/8tz/740XYfXK3835f5HzP/wAP0P8Aqlv/AJW//uKj/h+h/wBUt/8AK3/9xV9Mf8Q0v/Vav/Lc/wDvjR/xDS/9Vq/8tz/740XYfXK3835f5HzP/wAP0P8Aqlv/AJW//uKj/h+h/wBUt/8AK3/9xV9Mf8Q0v/Vav/Lc/wDvjR/xDS/9Vq/8tz/740XYfXK3835f5HzP/wAP0P8Aqlv/AJW//uKj/h+h/wBUt/8AK3/9xV9Mf8Q0v/Vav/Lc/wDvjR/xDS/9Vq/8tz/740XYfXK3835f5HzP/wAP0P8Aqlv/AJW//uKj/h+h/wBUt/8AK3/9xV9Mf8Q0v/Vav/Lc/wDvjR/xDS/9Vq/8tz/740XYfXK3835f5HzP/wAP0P8Aqlv/AJW//uKj/h+h/wBUt/8AK3/9xV9Mf8Q0v/Vav/Lc/wDvjR/xDS/9Vq/8tz/740XYfXK3835f5HzP/wAP0P8Aqlv/AJW//uKj/h+h/wBUt/8AK3/9xV9Mf8Q0v/Vav/Lc/wDvjR/xDS/9Vq/8tz/740XYfXK3835f5HzP/wAP0P8Aqlv/AJW//uKj/h+h/wBUt/8AK3/9xV9Mf8Q0v/Vav/Lc/wDvjR/xDS/9Vq/8tz/740XYfXK3835f5HzP/wAP0P8Aqlv/AJW//uKj/h+h/wBUt/8AK3/9xV9Mf8Q0v/Vav/Lc/wDvjR/xDS/9Vq/8tz/740XYfXK3835f5HzP/wAP0P8Aqlv/AJW//uKkP/Bc84O34XYPb/id/wD3FX0z/wAQ0v8A1Wr/AMtz/wC+NKv/AAbSruG/405HfHhzH/uRouw+uVv5vy/yPjvUv+C4njmXP9j/AA/sYPTzr6SX/wBBjjrxjxz/AMFlv2pPEdsbTwlY6L4dyP8AXQW73E2frO7x/wDkOv1n0b/g21+GEGP+Eh+KWqXXr9n06KDP/fUstfQ/w/8A+DfL9iHwtItx4wv/ABH4ncHLR3N5HbwkemLeKOQf9/KLsl4qq/tH8kfxI/ar/aP+LqSW/wAQ/Gmq6jbygh7b7Q0VsQ3XMMWyP/x2vXf2fP8AgnL+2X+01Jb3Hwx8D340ydgP7U1BfsNiF6lhLNtDgDtGHPoK/uI+EX/BPP8AYo+BV9Fqvwz+G+jWd7AMR3VxEb24T3WW5aV1PHUEGvsukYuTerZ/P7+yH/wQJ+A/wp+zeLP2m77/AIT7W0w/9nxboNJibngrxLPjg5cop6GM1+92iaHovhrSLfQPDlnBp9hZxiKC2to1ihiReioigKqjsAAK1KKBBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//R/v4ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/S/v4ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/T/v4ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/Z"}},"cell_type":"markdown","id":"231abd66","metadata":{},"source":[""]},{"cell_type":"markdown","id":"5e6a4d0c","metadata":{},"source":["我们已经接近完成一个功能性的聊天机器人了。我们讨论了`文档加载`、`切分`、`存储`和`检索`。我们展示了如何使用`检索 QA`链在 Q+A 中使用`检索`生成输出。\n","\n","我们的机器人已经可以回答问题了,但还无法处理后续问题,无法进行真正的对话。好消息是,在本章中,我们将解决这个问题。\n","\n","我们现在将创建一个问答聊天机器人。它与之前非常相似,但我们将添加聊天历史的功能。这是您之前进行的任何对话或消息。这将使机器人在尝试回答问题时能够考虑到聊天历史的上下文。所以,如果您继续提问,它会知道您想谈论什么。"]},{"cell_type":"markdown","id":"1f698037","metadata":{},"source":["## 一、环境配置"]},{"cell_type":"code","execution_count":1,"id":"926fc482-dd03-40e1-8083-171aad3e2b26","metadata":{"height":232,"tags":[]},"outputs":[{"data":{"application/javascript":"(function(root) {\n function now() {\n return new Date();\n }\n\n var force = true;\n var py_version = '3.4.1'.replace('rc', '-rc.').replace('.dev', '-dev.');\n var reloading = false;\n var Bokeh = root.Bokeh;\n\n if (typeof (root._bokeh_timeout) === \"undefined\" || force) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks;\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, js_modules, js_exports, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n if (js_modules == null) js_modules = [];\n if (js_exports == null) js_exports = {};\n\n root._bokeh_onload_callbacks.push(callback);\n\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls.length === 0 && js_modules.length === 0 && Object.keys(js_exports).length === 0) {\n run_callbacks();\n return null;\n }\n if (!reloading) {\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n }\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n window._bokeh_on_load = on_load\n\n function on_error() {\n console.error(\"failed to load \" + url);\n }\n\n var skip = [];\n if (window.requirejs) {\n window.requirejs.config({'packages': {}, 'paths': {}, 'shim': {}});\n root._bokeh_is_loading = css_urls.length + 0;\n } else {\n root._bokeh_is_loading = css_urls.length + js_urls.length + js_modules.length + Object.keys(js_exports).length;\n }\n\n var existing_stylesheets = []\n var links = document.getElementsByTagName('link')\n for (var i = 0; i < links.length; i++) {\n var link = links[i]\n if (link.href != null) {\n\texisting_stylesheets.push(link.href)\n }\n }\n for (var i = 0; i < css_urls.length; i++) {\n var url = css_urls[i];\n if (existing_stylesheets.indexOf(url) !== -1) {\n\ton_load()\n\tcontinue;\n }\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error;\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n } var existing_scripts = []\n var scripts = document.getElementsByTagName('script')\n for (var i = 0; i < scripts.length; i++) {\n var script = scripts[i]\n if (script.src != null) {\n\texisting_scripts.push(script.src)\n }\n }\n for (var i = 0; i < js_urls.length; i++) {\n var url = js_urls[i];\n if (skip.indexOf(url) !== -1 || existing_scripts.indexOf(url) !== -1) {\n\tif (!window.requirejs) {\n\t on_load();\n\t}\n\tcontinue;\n }\n var element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error;\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n for (var i = 0; i < js_modules.length; i++) {\n var url = js_modules[i];\n if (skip.indexOf(url) !== -1 || existing_scripts.indexOf(url) !== -1) {\n\tif (!window.requirejs) {\n\t on_load();\n\t}\n\tcontinue;\n }\n var element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error;\n element.async = false;\n element.src = url;\n element.type = \"module\";\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n for (const name in js_exports) {\n var url = js_exports[name];\n if (skip.indexOf(url) >= 0 || root[name] != null) {\n\tif (!window.requirejs) {\n\t on_load();\n\t}\n\tcontinue;\n }\n var element = document.createElement('script');\n element.onerror = on_error;\n element.async = false;\n element.type = \"module\";\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n element.textContent = `\n import ${name} from \"${url}\"\n window.${name} = ${name}\n window._bokeh_on_load()\n `\n document.head.appendChild(element);\n }\n if (!js_urls.length && !js_modules.length) {\n on_load()\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n var js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.4.1.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.4.1.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.4.1.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.4.1.min.js\", \"https://cdn.holoviz.org/panel/1.4.4/dist/panel.min.js\"];\n var js_modules = [];\n var js_exports = {};\n var css_urls = [];\n var inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {} // ensure no trailing comma for IE\n ];\n\n function run_inline_js() {\n if ((root.Bokeh !== undefined) || (force === true)) {\n for (var i = 0; i < inline_js.length; i++) {\n\ttry {\n inline_js[i].call(root, root.Bokeh);\n\t} catch(e) {\n\t if (!reloading) {\n\t throw e;\n\t }\n\t}\n }\n // Cache old bokeh versions\n if (Bokeh != undefined && !reloading) {\n\tvar NewBokeh = root.Bokeh;\n\tif (Bokeh.versions === undefined) {\n\t Bokeh.versions = new Map();\n\t}\n\tif (NewBokeh.version !== Bokeh.version) {\n\t Bokeh.versions.set(NewBokeh.version, NewBokeh)\n\t}\n\troot.Bokeh = Bokeh;\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n }\n root._bokeh_is_initializing = false\n }\n\n function load_or_wait() {\n // Implement a backoff loop that tries to ensure we do not load multiple\n // versions of Bokeh and its dependencies at the same time.\n // In recent versions we use the root._bokeh_is_initializing flag\n // to determine whether there is an ongoing attempt to initialize\n // bokeh, however for backward compatibility we also try to ensure\n // that we do not start loading a newer (Panel>=1.0 and Bokeh>3) version\n // before older versions are fully initialized.\n if (root._bokeh_is_initializing && Date.now() > root._bokeh_timeout) {\n root._bokeh_is_initializing = false;\n root._bokeh_onload_callbacks = undefined;\n console.log(\"Bokeh: BokehJS was loaded multiple times but one version failed to initialize.\");\n load_or_wait();\n } else if (root._bokeh_is_initializing || (typeof root._bokeh_is_initializing === \"undefined\" && root._bokeh_onload_callbacks !== undefined)) {\n setTimeout(load_or_wait, 100);\n } else {\n root._bokeh_is_initializing = true\n root._bokeh_onload_callbacks = []\n var bokeh_loaded = Bokeh != null && (Bokeh.version === py_version || (Bokeh.versions !== undefined && Bokeh.versions.has(py_version)));\n if (!reloading && !bokeh_loaded) {\n\troot.Bokeh = undefined;\n }\n load_libs(css_urls, js_urls, js_modules, js_exports, function() {\n\tconsole.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n\trun_inline_js();\n });\n }\n }\n // Give older versions of the autoload script a head-start to ensure\n // they initialize before we start loading newer version.\n setTimeout(load_or_wait, 100)\n}(window));","application/vnd.holoviews_load.v0+json":""},"metadata":{},"output_type":"display_data"},{"data":{"application/javascript":"\nif ((window.PyViz === undefined) || (window.PyViz instanceof HTMLElement)) {\n window.PyViz = {comms: {}, comm_status:{}, kernels:{}, receivers: {}, plot_index: []}\n}\n\n\n function JupyterCommManager() {\n }\n\n JupyterCommManager.prototype.register_target = function(plot_id, comm_id, msg_handler) {\n if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n comm_manager.register_target(comm_id, function(comm) {\n comm.on_msg(msg_handler);\n });\n } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n window.PyViz.kernels[plot_id].registerCommTarget(comm_id, function(comm) {\n comm.onMsg = msg_handler;\n });\n } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n google.colab.kernel.comms.registerTarget(comm_id, (comm) => {\n var messages = comm.messages[Symbol.asyncIterator]();\n function processIteratorResult(result) {\n var message = result.value;\n console.log(message)\n var content = {data: message.data, comm_id};\n var buffers = []\n for (var buffer of message.buffers || []) {\n buffers.push(new DataView(buffer))\n }\n var metadata = message.metadata || {};\n var msg = {content, buffers, metadata}\n msg_handler(msg);\n return messages.next().then(processIteratorResult);\n }\n return messages.next().then(processIteratorResult);\n })\n }\n }\n\n JupyterCommManager.prototype.get_client_comm = function(plot_id, comm_id, msg_handler) {\n if (comm_id in window.PyViz.comms) {\n return window.PyViz.comms[comm_id];\n } else if (window.comm_manager || ((window.Jupyter !== undefined) && (Jupyter.notebook.kernel != null))) {\n var comm_manager = window.comm_manager || Jupyter.notebook.kernel.comm_manager;\n var comm = comm_manager.new_comm(comm_id, {}, {}, {}, comm_id);\n if (msg_handler) {\n comm.on_msg(msg_handler);\n }\n } else if ((plot_id in window.PyViz.kernels) && (window.PyViz.kernels[plot_id])) {\n var comm = window.PyViz.kernels[plot_id].connectToComm(comm_id);\n comm.open();\n if (msg_handler) {\n comm.onMsg = msg_handler;\n }\n } else if (typeof google != 'undefined' && google.colab.kernel != null) {\n var comm_promise = google.colab.kernel.comms.open(comm_id)\n comm_promise.then((comm) => {\n window.PyViz.comms[comm_id] = comm;\n if (msg_handler) {\n var messages = comm.messages[Symbol.asyncIterator]();\n function processIteratorResult(result) {\n var message = result.value;\n var content = {data: message.data};\n var metadata = message.metadata || {comm_id};\n var msg = {content, metadata}\n msg_handler(msg);\n return messages.next().then(processIteratorResult);\n }\n return messages.next().then(processIteratorResult);\n }\n }) \n var sendClosure = (data, metadata, buffers, disposeOnDone) => {\n return comm_promise.then((comm) => {\n comm.send(data, metadata, buffers, disposeOnDone);\n });\n };\n var comm = {\n send: sendClosure\n };\n }\n window.PyViz.comms[comm_id] = comm;\n return comm;\n }\n window.PyViz.comm_manager = new JupyterCommManager();\n \n\n\nvar JS_MIME_TYPE = 'application/javascript';\nvar HTML_MIME_TYPE = 'text/html';\nvar EXEC_MIME_TYPE = 'application/vnd.holoviews_exec.v0+json';\nvar CLASS_NAME = 'output';\n\n/**\n * Render data to the DOM node\n */\nfunction render(props, node) {\n var div = document.createElement(\"div\");\n var script = document.createElement(\"script\");\n node.appendChild(div);\n node.appendChild(script);\n}\n\n/**\n * Handle when a new output is added\n */\nfunction handle_add_output(event, handle) {\n var output_area = handle.output_area;\n var output = handle.output;\n if ((output.data == undefined) || (!output.data.hasOwnProperty(EXEC_MIME_TYPE))) {\n return\n }\n var id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n var toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n if (id !== undefined) {\n var nchildren = toinsert.length;\n var html_node = toinsert[nchildren-1].children[0];\n html_node.innerHTML = output.data[HTML_MIME_TYPE];\n var scripts = [];\n var nodelist = html_node.querySelectorAll(\"script\");\n for (var i in nodelist) {\n if (nodelist.hasOwnProperty(i)) {\n scripts.push(nodelist[i])\n }\n }\n\n scripts.forEach( function (oldScript) {\n var newScript = document.createElement(\"script\");\n var attrs = [];\n var nodemap = oldScript.attributes;\n for (var j in nodemap) {\n if (nodemap.hasOwnProperty(j)) {\n attrs.push(nodemap[j])\n }\n }\n attrs.forEach(function(attr) { newScript.setAttribute(attr.name, attr.value) });\n newScript.appendChild(document.createTextNode(oldScript.innerHTML));\n oldScript.parentNode.replaceChild(newScript, oldScript);\n });\n if (JS_MIME_TYPE in output.data) {\n toinsert[nchildren-1].children[1].textContent = output.data[JS_MIME_TYPE];\n }\n output_area._hv_plot_id = id;\n if ((window.Bokeh !== undefined) && (id in Bokeh.index)) {\n window.PyViz.plot_index[id] = Bokeh.index[id];\n } else {\n window.PyViz.plot_index[id] = null;\n }\n } else if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n var bk_div = document.createElement(\"div\");\n bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n var script_attrs = bk_div.children[0].attributes;\n for (var i = 0; i < script_attrs.length; i++) {\n toinsert[toinsert.length - 1].childNodes[1].setAttribute(script_attrs[i].name, script_attrs[i].value);\n }\n // store reference to server id on output_area\n output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n }\n}\n\n/**\n * Handle when an output is cleared or removed\n */\nfunction handle_clear_output(event, handle) {\n var id = handle.cell.output_area._hv_plot_id;\n var server_id = handle.cell.output_area._bokeh_server_id;\n if (((id === undefined) || !(id in PyViz.plot_index)) && (server_id !== undefined)) { return; }\n var comm = window.PyViz.comm_manager.get_client_comm(\"hv-extension-comm\", \"hv-extension-comm\", function () {});\n if (server_id !== null) {\n comm.send({event_type: 'server_delete', 'id': server_id});\n return;\n } else if (comm !== null) {\n comm.send({event_type: 'delete', 'id': id});\n }\n delete PyViz.plot_index[id];\n if ((window.Bokeh !== undefined) & (id in window.Bokeh.index)) {\n var doc = window.Bokeh.index[id].model.document\n doc.clear();\n const i = window.Bokeh.documents.indexOf(doc);\n if (i > -1) {\n window.Bokeh.documents.splice(i, 1);\n }\n }\n}\n\n/**\n * Handle kernel restart event\n */\nfunction handle_kernel_cleanup(event, handle) {\n delete PyViz.comms[\"hv-extension-comm\"];\n window.PyViz.plot_index = {}\n}\n\n/**\n * Handle update_display_data messages\n */\nfunction handle_update_output(event, handle) {\n handle_clear_output(event, {cell: {output_area: handle.output_area}})\n handle_add_output(event, handle)\n}\n\nfunction register_renderer(events, OutputArea) {\n function append_mime(data, metadata, element) {\n // create a DOM node to render to\n var toinsert = this.create_output_subarea(\n metadata,\n CLASS_NAME,\n EXEC_MIME_TYPE\n );\n this.keyboard_manager.register_events(toinsert);\n // Render to node\n var props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n render(props, toinsert[0]);\n element.append(toinsert);\n return toinsert\n }\n\n events.on('output_added.OutputArea', handle_add_output);\n events.on('output_updated.OutputArea', handle_update_output);\n events.on('clear_output.CodeCell', handle_clear_output);\n events.on('delete.Cell', handle_clear_output);\n events.on('kernel_ready.Kernel', handle_kernel_cleanup);\n\n OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n safe: true,\n index: 0\n });\n}\n\nif (window.Jupyter !== undefined) {\n try {\n var events = require('base/js/events');\n var OutputArea = require('notebook/js/outputarea').OutputArea;\n if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n register_renderer(events, OutputArea);\n }\n } catch(err) {\n }\n}\n","application/vnd.holoviews_load.v0+json":""},"metadata":{},"output_type":"display_data"},{"data":{"text/html":[""]},"metadata":{},"output_type":"display_data"},{"data":{"application/vnd.holoviews_exec.v0+json":"","text/html":["\n",""]},"metadata":{"application/vnd.holoviews_exec.v0+json":{"id":"fe2d2700-51b2-47ec-874d-c95a52a94823"}},"output_type":"display_data"}],"source":["import os\n","import openai\n","import sys\n","sys.path.append('../..')\n","\n","import panel as pn # GUI\n","pn.extension()\n","\n","from dotenv import load_dotenv, find_dotenv\n","_ = load_dotenv(find_dotenv()) # read local .env file\n","\n","openai.api_key = os.environ['OPENAI_API_KEY']"]},{"cell_type":"markdown","id":"f71bd908","metadata":{"height":30},"source":["以下代码是为了 openai LLM 版本备案,直至其被弃用(于 2023 年 9 月)。LLM 响应通常会有所不同,但在使用不同模型版本时,这种差异可能会更明显。"]},{"cell_type":"code","execution_count":2,"id":"83558969-e5aa-4fbc-933c-9c1534decf0a","metadata":{"height":147,"tags":[]},"outputs":[{"name":"stdout","output_type":"stream","text":["gpt-3.5-turbo\n"]}],"source":["import datetime\n","current_date = datetime.datetime.now().date()\n","if current_date < datetime.date(2023, 9, 2):\n"," llm_name = \"gpt-3.5-turbo-0301\"\n","else:\n"," llm_name = \"gpt-3.5-turbo\"\n","print(llm_name)"]},{"cell_type":"markdown","id":"baddf039","metadata":{},"source":["如果您想在 `Lang Chain plus` 平台上进行实验:\n","\n","- 前往 langchain plus 平台并注册\n","\n","- 从您的帐户设置创建 api 密钥\n","\n","- 在下面的代码中使用此 api 密钥"]},{"cell_type":"code","execution_count":3,"id":"ba19ea7d","metadata":{"height":96,"tags":[]},"outputs":[],"source":["#import os\n","#os.environ[\"LANGCHAIN_TRACING_V2\"] = \"true\"\n","#os.environ[\"LANGCHAIN_ENDPOINT\"] = \"https://api.langchain.plus\"\n","#os.environ[\"LANGCHAIN_API_KEY\"] = \"...\""]},{"cell_type":"code","execution_count":4,"id":"ab80dc86","metadata":{"height":113,"tags":[]},"outputs":[{"name":"stderr","output_type":"stream","text":["/Users/lta/anaconda3/envs/chat_data/lib/python3.11/site-packages/langchain_core/_api/deprecation.py:119: LangChainDeprecationWarning: The class `OpenAIEmbeddings` was deprecated in LangChain 0.0.9 and will be removed in 0.3.0. An updated version of the class exists in the langchain-openai package and should be used instead. To use it run `pip install -U langchain-openai` and import as `from langchain_openai import OpenAIEmbeddings`.\n"," warn_deprecated(\n"]}],"source":["# 加载向量库,其中包含了所有课程材料的 Embedding。\n","from langchain.vectorstores import Chroma\n","from langchain.embeddings.openai import OpenAIEmbeddings\n","persist_directory = 'docs/chroma/'\n","embedding = OpenAIEmbeddings(model='text-embedding-3-small')\n","vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding)"]},{"cell_type":"code","execution_count":5,"id":"b7a409bf","metadata":{"height":79,"tags":[]},"outputs":[{"data":{"text/plain":["0"]},"execution_count":5,"metadata":{},"output_type":"execute_result"}],"source":["# 对向量库进行基本的相似度搜索\n","question = \"What are major topics for this class?\"\n","docs = vectordb.similarity_search(question,k=3)\n","len(docs)"]},{"cell_type":"code","execution_count":6,"id":"d59d01b0","metadata":{"height":79,"tags":[]},"outputs":[{"data":{"text/plain":["0"]},"execution_count":6,"metadata":{},"output_type":"execute_result"}],"source":["question = \"这门课的主要内容是什么?\"\n","docs = vectordb.similarity_search(question,k=3)\n","len(docs)"]},{"cell_type":"code","execution_count":7,"id":"01c58c2b","metadata":{"height":79,"tags":[]},"outputs":[{"name":"stderr","output_type":"stream","text":["/Users/lta/anaconda3/envs/chat_data/lib/python3.11/site-packages/langchain_core/_api/deprecation.py:119: LangChainDeprecationWarning: The class `ChatOpenAI` was deprecated in LangChain 0.0.10 and will be removed in 0.3.0. An updated version of the class exists in the langchain-openai package and should be used instead. To use it run `pip install -U langchain-openai` and import as `from langchain_openai import ChatOpenAI`.\n"," warn_deprecated(\n","/Users/lta/anaconda3/envs/chat_data/lib/python3.11/site-packages/langchain_core/_api/deprecation.py:119: LangChainDeprecationWarning: The method `BaseChatModel.predict` was deprecated in langchain-core 0.1.7 and will be removed in 0.3.0. Use invoke instead.\n"," warn_deprecated(\n"]},{"data":{"text/plain":["'Hello! How can I assist you today?'"]},"execution_count":7,"metadata":{},"output_type":"execute_result"}],"source":["from langchain.chat_models.openai import ChatOpenAI\n","llm = ChatOpenAI(model_name=llm_name, temperature=0)\n","llm.predict(\"Hello world!\")"]},{"cell_type":"code","execution_count":8,"id":"d683c6ed","metadata":{"height":336},"outputs":[{"name":"stderr","output_type":"stream","text":["/Users/lta/anaconda3/envs/chat_data/lib/python3.11/site-packages/langchain_core/_api/deprecation.py:119: LangChainDeprecationWarning: The method `Chain.__call__` was deprecated in langchain 0.1.0 and will be removed in 0.3.0. Use invoke instead.\n"," warn_deprecated(\n"]},{"data":{"text/plain":["'Yes, probability is a class topic in mathematics that deals with the likelihood of events occurring. It is often taught in middle school or high school as part of the curriculum. Thanks for asking!'"]},"execution_count":8,"metadata":{},"output_type":"execute_result"}],"source":["# 初始化一个 prompt 模板,创建一个检索 QA 链,然后传入一个问题并得到一个结果。\n","# 构建 prompt\n","from langchain.prompts import PromptTemplate\n","template = \"\"\"Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer. Use three sentences maximum. Keep the answer as concise as possible. Always say \"thanks for asking!\" at the end of the answer. \n","{context}\n","Question: {question}\n","Helpful Answer:\"\"\"\n","QA_CHAIN_PROMPT = PromptTemplate(input_variables=[\"context\", \"question\"],template=template,)\n","\n","# 运行 chain\n","from langchain.chains.retrieval_qa.base import RetrievalQA\n","question = \"Is probability a class topic?\"\n","qa_chain = RetrievalQA.from_chain_type(llm,\n"," retriever=vectordb.as_retriever(),\n"," return_source_documents=True,\n"," chain_type_kwargs={\"prompt\": QA_CHAIN_PROMPT})\n","\n","\n","result = qa_chain({\"query\": question})\n","result[\"result\"]"]},{"cell_type":"code","execution_count":9,"id":"b8aa6c11","metadata":{"height":351,"tags":[]},"outputs":[{"data":{"text/plain":["'是的,概率是我们这周的课堂主题。\\n谢谢你的提问!'"]},"execution_count":9,"metadata":{},"output_type":"execute_result"}],"source":["# 构建 prompt\n","from langchain.prompts import PromptTemplate\n","template = \"\"\"使用以下上下文来回答最后的问题。如果你不知道答案,就说你不知道,不要试图编造答案。最多使用三句话。尽量使答案简明扼要。总是在回答的最后说“谢谢你的提问!”。\n","{context}\n","问题: {question}\n","有用的回答:\"\"\"\n","QA_CHAIN_PROMPT = PromptTemplate(input_variables=[\"context\", \"question\"],template=template,)\n","\n","# 运行 chain\n","from langchain.chains import RetrievalQA\n","question = \"概率是课堂主题吗?\"\n","qa_chain = RetrievalQA.from_chain_type(llm,\n"," retriever=vectordb.as_retriever(),\n"," return_source_documents=True,\n"," chain_type_kwargs={\"prompt\": QA_CHAIN_PROMPT})\n","\n","\n","result = qa_chain({\"query\": question})\n","result[\"result\"]"]},{"cell_type":"markdown","id":"84f8d2e2","metadata":{},"source":["## 二、记忆(Memory)"]},{"cell_type":"markdown","id":"5263e1ed","metadata":{"height":30},"source":["现在让我们更进一步,添加一些记忆功能。\n","\n","我们将使用 `ConversationBufferMemory`。它保存聊天消息历史记录的列表,这些历史记录将在回答问题时与问题一起传递给聊天机器人,从而将它们添加到上下文中。\n","\n","需要注意的是,我们之前讨论的上下文检索等方法,在这里同样可用。 "]},{"cell_type":"code","execution_count":10,"id":"7e99e754","metadata":{"height":113,"tags":[]},"outputs":[],"source":["from langchain.memory import ConversationBufferMemory\n","memory = ConversationBufferMemory(\n"," memory_key=\"chat_history\", # 与 prompt 的输入变量保持一致。\n"," return_messages=True # 将以消息列表的形式返回聊天记录,而不是单个字符串\n",")"]},{"cell_type":"markdown","id":"244e1b7a","metadata":{},"source":["## 三、对话检索链(ConversationalRetrievalChain)"]},{"cell_type":"markdown","id":"39700b1c","metadata":{"height":30},"source":["在检索 QA 链的基础上,对话检索链添加了新步骤,将历史记录和新问题压缩为一个独立的问题,并在向量库中进行相关文档的查找。此外,当有多个答案时,内存记录下所有答案。我们在运行和观察其效果后,可以在UI中查看具体细节。 \n","\n","对话检索链(ConversationalRetrievalChain)在 QA 检索链的基础上增加了一个新的环节,而不仅仅是 memery。\n","\n","具体来说,它增加了一个步骤,该步骤将历史记录和新问题浓缩为一个独立的问题,并将其传递给向量存储器以查找相关文档。\n","\n","\n","我们将在运行后在用户界面中查看其效果。但现在,让我们来试试。我们可以提出一个问题。这是没有任何历史记录的,看看我们得到的结果。然后我们可以针对答案提出一个后续问题。这和之前一样。所以我们问,概率是一个类主题吗?我们会得到一些答案。"]},{"cell_type":"code","execution_count":11,"id":"23700502","metadata":{"height":147,"tags":[]},"outputs":[],"source":["from langchain.chains.conversational_retrieval.base import ConversationalRetrievalChain\n","retriever=vectordb.as_retriever()\n","qa = ConversationalRetrievalChain.from_llm(\n"," llm,\n"," retriever=retriever,\n"," memory=memory\n",")"]},{"cell_type":"code","execution_count":12,"id":"e25b9fbb","metadata":{"height":62,"tags":[]},"outputs":[{"name":"stdout","output_type":"stream","text":["Yes, probability is a common topic covered in mathematics classes, particularly in courses like statistics, probability theory, and sometimes even in introductory math classes. It is an important concept in understanding uncertainty and making predictions based on data.\n"]}],"source":["question = \"Is probability a class topic?\"\n","result = qa({\"question\": question})\n","print(result['answer'])"]},{"cell_type":"code","execution_count":13,"id":"622478ba","metadata":{"height":69,"scrolled":true,"tags":[]},"outputs":[{"name":"stdout","output_type":"stream","text":["概率通常在高中数学课程中被涵盖,也会在大学的统计学、概率论、数理统计等相关课程中深入讨论。\n"]}],"source":["question = \"概率是一个课堂主题吗?\"\n","result = qa({\"question\": question})\n","print(result['answer'])"]},{"cell_type":"code","execution_count":14,"id":"5b280672","metadata":{"height":62,"tags":[]},"outputs":[{"name":"stdout","output_type":"stream","text":["Prerequisites are needed for studying probability because probability involves complex mathematical concepts and calculations. To understand probability theory effectively, students need a solid foundation in areas such as algebra, calculus, and statistics. Without these prerequisites, it can be challenging to grasp the advanced concepts and applications of probability.\n"]}],"source":["question = \"why are those prerequesites needed?\"\n","result = qa({\"question\": question})\n","print(result['answer'])"]},{"cell_type":"code","execution_count":15,"id":"fcd08a60","metadata":{"height":70,"tags":[]},"outputs":[{"name":"stdout","output_type":"stream","text":["这些先决条件可能包括对基本数学概念的理解,如概率、统计和逻辑等。这些知识可以帮助学习者更好地理解概率的概念和应用。\n"]}],"source":["question = \"为什么需要这些先决条件?\"\n","result = qa({\"question\": question})\n","print(result['answer'])"]},{"cell_type":"markdown","id":"31e0742e-2085-4635-b87d-6596925f1077","metadata":{"tags":[]},"source":["## 四、创建一个适用于您文档的聊天机器人"]},{"cell_type":"code","execution_count":16,"id":"8622a19c-0711-49aa-8d1d-9ddfb6af7032","metadata":{"height":181,"tags":[]},"outputs":[],"source":["from langchain.embeddings.openai import OpenAIEmbeddings\n","from langchain.text_splitter import CharacterTextSplitter, RecursiveCharacterTextSplitter\n","from langchain.vectorstores import DocArrayInMemorySearch\n","from langchain.document_loaders import TextLoader\n","from langchain.chains.retrieval_qa.base import RetrievalQA\n","from langchain.memory import ConversationBufferMemory\n","from langchain.chat_models.openai import ChatOpenAI\n","from langchain.document_loaders import TextLoader\n","from langchain.document_loaders import PyPDFLoader"]},{"cell_type":"markdown","id":"95f69afe","metadata":{},"source":["跟视频拍摄相比,聊天机器人代码已进行了一些更新。图形用户界面的外观也因运行平台而异。"]},{"cell_type":"code","execution_count":17,"id":"69dff120","metadata":{"height":404},"outputs":[],"source":["def load_db(file, chain_type, k):\n"," \"\"\"\n"," 该函数用于加载 PDF 文件,切分文档,生成文档的嵌入向量,创建向量数据库,定义检索器,并创建聊天机器人实例。\n","\n"," 参数:\n"," file (str): 要加载的 PDF 文件路径。\n"," chain_type (str): 链类型,用于指定聊天机器人的类型。\n"," k (int): 在检索过程中,返回最相似的 k 个结果。\n","\n"," 返回:\n"," qa (ConversationalRetrievalChain): 创建的聊天机器人实例。\n"," \"\"\"\n"," # 载入文档\n"," loader = PyPDFLoader(file)\n"," documents = loader.load()\n"," # 切分文档\n"," text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=150)\n"," docs = text_splitter.split_documents(documents)\n"," # 定义 Embeddings\n"," embeddings = OpenAIEmbeddings(model='text-embedding-3-small')\n"," # 根据数据创建向量数据库\n"," db = DocArrayInMemorySearch.from_documents(docs, embeddings)\n"," # 定义检索器\n"," retriever = db.as_retriever(search_type=\"similarity\", search_kwargs={\"k\": k})\n"," # 创建 chatbot 链,Memory 由外部管理\n"," qa = ConversationalRetrievalChain.from_llm(\n"," llm=ChatOpenAI(model_name=llm_name, temperature=0), \n"," chain_type=chain_type, \n"," retriever=retriever, \n"," return_source_documents=True,\n"," return_generated_question=True,\n"," )\n"," return qa \n"]},{"cell_type":"code","execution_count":22,"id":"b525019d-3acd-40ff-9844-141116155d68","metadata":{"height":1320,"tags":[]},"outputs":[],"source":["import panel as pn\n","import param\n","\n","# 用于存储聊天记录、回答、数据库查询和回复\n","class cbfs(param.Parameterized):\n"," chat_history = param.List([])\n"," answer = param.String(\"\")\n"," db_query = param.String(\"\")\n"," db_response = param.List([])\n"," \n"," def __init__(self, **params):\n"," super(cbfs, self).__init__( **params)\n"," self.panels = []\n"," self.loaded_file = \"docs/cs229_lectures/MachineLearning-Lecture01.pdf\"\n"," self.qa = load_db(self.loaded_file,\"stuff\", 4)\n"," \n"," # 将文档加载到聊天机器人中\n"," def call_load_db(self, count):\n"," \"\"\"\n"," count: 数量\n"," \"\"\"\n"," if count == 0 or file_input.value is None: # 初始化或未指定文件 :\n"," return pn.pane.Markdown(f\"Loaded File: {self.loaded_file}\")\n"," else:\n"," file_input.save(\"temp.pdf\") # 本地副本\n"," self.loaded_file = file_input.filename\n"," button_load.button_style=\"outline\"\n"," self.qa = load_db(\"temp.pdf\", \"stuff\", 4)\n"," button_load.button_style=\"solid\"\n"," self.clr_history()\n"," return pn.pane.Markdown(f\"Loaded File: {self.loaded_file}\")\n","\n"," # 处理对话链\n"," def convchain(self, query):\n"," \"\"\"\n"," query: 用户的查询\n"," \"\"\"\n"," if not query:\n"," return pn.WidgetBox(pn.Row('User:', pn.pane.Markdown(\"\", width=600)), scroll=True)\n"," result = self.qa({\"question\": query, \"chat_history\": self.chat_history})\n"," self.chat_history.extend([(query, result[\"answer\"])])\n"," self.db_query = result[\"generated_question\"]\n"," self.db_response = result[\"source_documents\"]\n"," self.answer = result['answer'] \n"," self.panels.extend([\n"," pn.Row('User:', pn.pane.Markdown(query, width=600)),\n"," pn.Row('ChatBot:', pn.pane.Markdown(self.answer, width=600, styles={'background-color': '#F6F6F6'}))\n"," ])\n"," inp.value = '' # 清除时清除装载指示器\n"," return pn.WidgetBox(*self.panels,scroll=True)\n"," \n"," # 获取最后发送到数据库的问题\n"," @param.depends('db_query ', )\n"," def get_lquest(self):\n"," if not self.db_query :\n"," return pn.Column(\n"," pn.Row(pn.pane.Markdown(f\"Last question to DB:\", styles={'background-color': '#F6F6F6'})),\n"," pn.Row(pn.pane.Str(\"no DB accesses so far\"))\n"," )\n"," return pn.Column(\n"," pn.Row(pn.pane.Markdown(f\"DB query:\", styles={'background-color': '#F6F6F6'})),\n"," pn.pane.Str(self.db_query )\n"," )\n"," \n"," # 获取数据库返回的源文件\n"," @param.depends('db_response', )\n"," def get_sources(self):\n"," if not self.db_response:\n"," return \n"," rlist=[pn.Row(pn.pane.Markdown(f\"Result of DB lookup:\", styles={'background-color': '#F6F6F6'}))]\n"," for doc in self.db_response:\n"," rlist.append(pn.Row(pn.pane.Str(doc)))\n"," return pn.WidgetBox(*rlist, width=600, scroll=True)\n","\n"," # 获取当前聊天记录\n"," @param.depends('convchain', 'clr_history') \n"," def get_chats(self):\n"," if not self.chat_history:\n"," return pn.WidgetBox(pn.Row(pn.pane.Str(\"No History Yet\")), width=600, scroll=True)\n"," rlist=[pn.Row(pn.pane.Markdown(f\"Current Chat History variable\", styles={'background-color': '#F6F6F6'}))]\n"," for exchange in self.chat_history:\n"," rlist.append(pn.Row(pn.pane.Str(exchange)))\n"," return pn.WidgetBox(*rlist, width=600, scroll=True)\n"," \n"," # 清除聊天记录\n"," def clr_history(self,count=0):\n"," self.chat_history = []\n"," return \n"]},{"cell_type":"markdown","id":"54958d9d-2a0f-457d-9a2b-97e6c9859684","metadata":{"tags":[]},"source":["## 五、创建聊天机器人"]},{"cell_type":"code","execution_count":23,"id":"73b7f691-6314-4fcc-9e48-0d09d61099fd","metadata":{"height":691,"tags":[]},"outputs":[{"data":{"application/vnd.jupyter.widget-view+json":{"model_id":"7a87f31af0b9437f8785275a532855c2","version_major":2,"version_minor":0},"text/plain":["BokehModel(combine_events=True, render_bundle={'docs_json': {'377d369e-b052-4e1b-a745-ca48584505a1': {'version…"]},"execution_count":23,"metadata":{},"output_type":"execute_result"}],"source":["# 初始化聊天机器人\n","cb = cbfs() \n","\n","# 定义界面的小部件\n","file_input = pn.widgets.FileInput(accept='.pdf') # PDF 文件的文件输入小部件\n","button_load = pn.widgets.Button(name=\"Load DB\", button_type='primary') # 加载数据库的按钮\n","button_clearhistory = pn.widgets.Button(name=\"Clear History\", button_type='warning') # 清除聊天记录的按钮\n","button_clearhistory.on_click(cb.clr_history) # 将清除历史记录功能绑定到按钮上\n","inp = pn.widgets.TextInput( placeholder='Enter text here…') # 用于用户查询的文本输入小部件\n","\n","# 将加载数据库和对话的函数绑定到相应的部件上\n","bound_button_load = pn.bind(cb.call_load_db, button_load.param.clicks)\n","conversation = pn.bind(cb.convchain, inp) \n","\n","jpg_pane = pn.pane.Image( './img/convchain.jpg')\n","\n","# 使用 Panel 定义界面布局\n","tab1 = pn.Column(\n"," pn.Row(inp),\n"," pn.layout.Divider(),\n"," pn.panel(conversation, loading_indicator=True, height=300),\n"," pn.layout.Divider(),\n",")\n","tab2= pn.Column(\n"," pn.panel(cb.get_lquest),\n"," pn.layout.Divider(),\n"," pn.panel(cb.get_sources ),\n",")\n","tab3= pn.Column(\n"," pn.panel(cb.get_chats),\n"," pn.layout.Divider(),\n",")\n","tab4=pn.Column(\n"," pn.Row( file_input, button_load, bound_button_load),\n"," pn.Row( button_clearhistory, pn.pane.Markdown(\"Clears chat history. Can use to start a new topic\" )),\n"," pn.layout.Divider(),\n"," pn.Row(jpg_pane.clone(width=400))\n",")\n","# 将所有选项卡合并为一个仪表盘\n","dashboard = pn.Column(\n"," pn.Row(pn.pane.Markdown('# ChatWithYourData_Bot')),\n"," pn.Tabs(('Conversation', tab1), ('Database', tab2), ('Chat History', tab3),('Configure', tab4))\n",")\n","dashboard"]},{"cell_type":"markdown","id":"d2d2a016","metadata":{"height":30},"source":["请随意复制此代码并对其进行修改以添加您自己的功能。您可以通过更改 `load_db` 函数和 `convchain` 方法中的配置来尝试备用内存和检索器模型。[panel](https://panel.holoviz.org/) 和 [Param](https://param.holoviz.org/) 有许多有用的特性和小部件,可以用来扩展GUI。"]},{"cell_type":"markdown","id":"d0275b31-b5e3-4e15-a77f-1bf30c3e04e4","metadata":{},"source":["## 六、致谢\n","\n","基于 panel 的聊天机器人的灵感来自 Sophia Yang, [github](https://github.com/sophiamyang/tutorials-LangChain)"]}],"metadata":{"kernelspec":{"display_name":"Python 3 (ipykernel)","language":"python","name":"python3"},"language_info":{"codemirror_mode":{"name":"ipython","version":3},"file_extension":".py","mimetype":"text/x-python","name":"python","nbconvert_exporter":"python","pygments_lexer":"ipython3","version":"3.11.9"}},"nbformat":4,"nbformat_minor":5}
+{"cells":[{"cell_type":"markdown","id":"956ff3a4","metadata":{},"source":["# 第七章、聊天 Chat\n","\n"," - [一、环境配置](#一、环境配置)\n"," - [二、记忆(Memory)](#二、记忆(Memory))\n"," - [三、对话检索链(ConversationalRetrievalChain)](#三、对话检索链(ConversationalRetrievalChain))\n"," - [四、创建一个适用于您文档的聊天机器人](#四、创建一个适用于您文档的聊天机器人)\n"," - [五、创建聊天机器人](#五、创建聊天机器人)\n"," - [六、致谢](#六、致谢)\n"]},{"cell_type":"markdown","id":"6f2e2cd9","metadata":{},"source":["回想一下检索增强生成 (retrieval augmented generation,RAG) 的整体工作流程:"]},{"attachments":{"overview.jpeg":{"image/jpeg":"/9j/4AAQSkZJRgABAQAASABIAAD/4QBkRXhpZgAATU0AKgAAAAgABAEGAAMAAAABAAIAAAESAAMAAAABAAEAAAEoAAMAAAABAAIAAIdpAAQAAAABAAAAPgAAAAAAAqACAAQAAAABAAAJpKADAAQAAAABAAACwwAAAAD/4QkhaHR0cDovL25zLmFkb2JlLmNvbS94YXAvMS4wLwA8P3hwYWNrZXQgYmVnaW49Iu+7vyIgaWQ9Ilc1TTBNcENlaGlIenJlU3pOVGN6a2M5ZCI/PiA8eDp4bXBtZXRhIHhtbG5zOng9ImFkb2JlOm5zOm1ldGEvIiB4OnhtcHRrPSJYTVAgQ29yZSA2LjAuMCI+IDxyZGY6UkRGIHhtbG5zOnJkZj0iaHR0cDovL3d3dy53My5vcmcvMTk5OS8wMi8yMi1yZGYtc3ludGF4LW5zIyI+IDxyZGY6RGVzY3JpcHRpb24gcmRmOmFib3V0PSIiLz4gPC9yZGY6UkRGPiA8L3g6eG1wbWV0YT4gICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICA8P3hwYWNrZXQgZW5kPSJ3Ij8+AP/tADhQaG90b3Nob3AgMy4wADhCSU0EBAAAAAAAADhCSU0EJQAAAAAAENQdjNmPALIE6YAJmOz4Qn7/4g/QSUNDX1BST0ZJTEUAAQEAAA/AYXBwbAIQAABtbnRyUkdCIFhZWiAH5wACAAwAAAASABhhY3NwQVBQTAAAAABBUFBMAAAAAAAAAAAAAAAAAAAAAAAA9tYAAQAAAADTLWFwcGwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABFkZXNjAAABUAAAAGJkc2NtAAABtAAABJxjcHJ0AAAGUAAAACN3dHB0AAAGdAAAABRyWFlaAAAGiAAAABRnWFlaAAAGnAAAABRiWFlaAAAGsAAAABRyVFJDAAAGxAAACAxhYXJnAAAO0AAAACB2Y2d0AAAO8AAAADBuZGluAAAPIAAAAD5tbW9kAAAPYAAAACh2Y2dwAAAPiAAAADhiVFJDAAAGxAAACAxnVFJDAAAGxAAACAxhYWJnAAAO0AAAACBhYWdnAAAO0AAAACBkZXNjAAAAAAAAAAhEaXNwbGF5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbWx1YwAAAAAAAAAmAAAADGhySFIAAAAUAAAB2GtvS1IAAAAMAAAB7G5iTk8AAAASAAAB+GlkAAAAAAASAAACCmh1SFUAAAAUAAACHGNzQ1oAAAAWAAACMGRhREsAAAAcAAACRm5sTkwAAAAWAAACYmZpRkkAAAAQAAACeGl0SVQAAAAYAAACiGVzRVMAAAAWAAACoHJvUk8AAAASAAACtmZyQ0EAAAAWAAACyGFyAAAAAAAUAAAC3nVrVUEAAAAcAAAC8mhlSUwAAAAWAAADDnpoVFcAAAAKAAADJHZpVk4AAAAOAAADLnNrU0sAAAAWAAADPHpoQ04AAAAKAAADJHJ1UlUAAAAkAAADUmVuR0IAAAAUAAADdmZyRlIAAAAWAAADim1zAAAAAAASAAADoGhpSU4AAAASAAADsnRoVEgAAAAMAAADxGNhRVMAAAAYAAAD0GVuQVUAAAAUAAADdmVzWEwAAAASAAACtmRlREUAAAAQAAAD6GVuVVMAAAASAAAD+HB0QlIAAAAYAAAECnBsUEwAAAASAAAEImVsR1IAAAAiAAAENHN2U0UAAAAQAAAEVnRyVFIAAAAUAAAEZnB0UFQAAAAWAAAEemphSlAAAAAMAAAEkABMAEMARAAgAHUAIABiAG8AagBpzuy37AAgAEwAQwBEAEYAYQByAGcAZQAtAEwAQwBEAEwAQwBEACAAVwBhAHIAbgBhAFMAegDtAG4AZQBzACAATABDAEQAQgBhAHIAZQB2AG4A/QAgAEwAQwBEAEwAQwBEAC0AZgBhAHIAdgBlAHMAawDmAHIAbQBLAGwAZQB1AHIAZQBuAC0ATABDAEQAVgDkAHIAaQAtAEwAQwBEAEwAQwBEACAAYQAgAGMAbwBsAG8AcgBpAEwAQwBEACAAYQAgAGMAbwBsAG8AcgBMAEMARAAgAGMAbwBsAG8AcgBBAEMATAAgAGMAbwB1AGwAZQB1AHIgDwBMAEMARAAgBkUGRAZIBkYGKQQaBD4EOwRMBD4EQAQ+BDIEOAQ5ACAATABDAEQgDwBMAEMARAAgBeYF0QXiBdUF4AXZX2mCcgBMAEMARABMAEMARAAgAE0A4AB1AEYAYQByAGUAYgBuAP0AIABMAEMARAQmBDIENQRCBD0EPgQ5ACAEFgQaAC0ENAQ4BEEEPwQ7BDUEOQBDAG8AbABvAHUAcgAgAEwAQwBEAEwAQwBEACAAYwBvAHUAbABlAHUAcgBXAGEAcgBuAGEAIABMAEMARAkwCQIJFwlACSgAIABMAEMARABMAEMARAAgDioONQBMAEMARAAgAGUAbgAgAGMAbwBsAG8AcgBGAGEAcgBiAC0ATABDAEQAQwBvAGwAbwByACAATABDAEQATABDAEQAIABDAG8AbABvAHIAaQBkAG8ASwBvAGwAbwByACAATABDAEQDiAOzA8cDwQPJA7wDtwAgA78DuAPMA70DtwAgAEwAQwBEAEYA5AByAGcALQBMAEMARABSAGUAbgBrAGwAaQAgAEwAQwBEAEwAQwBEACAAYQAgAGMAbwByAGUAczCrMOkw/ABMAEMARHRleHQAAAAAQ29weXJpZ2h0IEFwcGxlIEluYy4sIDIwMjMAAFhZWiAAAAAAAADzUQABAAAAARbMWFlaIAAAAAAAAIPfAAA9v////7tYWVogAAAAAAAASr8AALE3AAAKuVhZWiAAAAAAAAAoOAAAEQsAAMi5Y3VydgAAAAAAAAQAAAAABQAKAA8AFAAZAB4AIwAoAC0AMgA2ADsAQABFAEoATwBUAFkAXgBjAGgAbQByAHcAfACBAIYAiwCQAJUAmgCfAKMAqACtALIAtwC8AMEAxgDLANAA1QDbAOAA5QDrAPAA9gD7AQEBBwENARMBGQEfASUBKwEyATgBPgFFAUwBUgFZAWABZwFuAXUBfAGDAYsBkgGaAaEBqQGxAbkBwQHJAdEB2QHhAekB8gH6AgMCDAIUAh0CJgIvAjgCQQJLAlQCXQJnAnECegKEAo4CmAKiAqwCtgLBAssC1QLgAusC9QMAAwsDFgMhAy0DOANDA08DWgNmA3IDfgOKA5YDogOuA7oDxwPTA+AD7AP5BAYEEwQgBC0EOwRIBFUEYwRxBH4EjASaBKgEtgTEBNME4QTwBP4FDQUcBSsFOgVJBVgFZwV3BYYFlgWmBbUFxQXVBeUF9gYGBhYGJwY3BkgGWQZqBnsGjAadBq8GwAbRBuMG9QcHBxkHKwc9B08HYQd0B4YHmQesB78H0gflB/gICwgfCDIIRghaCG4IggiWCKoIvgjSCOcI+wkQCSUJOglPCWQJeQmPCaQJugnPCeUJ+woRCicKPQpUCmoKgQqYCq4KxQrcCvMLCwsiCzkLUQtpC4ALmAuwC8gL4Qv5DBIMKgxDDFwMdQyODKcMwAzZDPMNDQ0mDUANWg10DY4NqQ3DDd4N+A4TDi4OSQ5kDn8Omw62DtIO7g8JDyUPQQ9eD3oPlg+zD88P7BAJECYQQxBhEH4QmxC5ENcQ9RETETERTxFtEYwRqhHJEegSBxImEkUSZBKEEqMSwxLjEwMTIxNDE2MTgxOkE8UT5RQGFCcUSRRqFIsUrRTOFPAVEhU0FVYVeBWbFb0V4BYDFiYWSRZsFo8WshbWFvoXHRdBF2UXiReuF9IX9xgbGEAYZRiKGK8Y1Rj6GSAZRRlrGZEZtxndGgQaKhpRGncanhrFGuwbFBs7G2MbihuyG9ocAhwqHFIcexyjHMwc9R0eHUcdcB2ZHcMd7B4WHkAeah6UHr4e6R8THz4faR+UH78f6iAVIEEgbCCYIMQg8CEcIUghdSGhIc4h+yInIlUigiKvIt0jCiM4I2YjlCPCI/AkHyRNJHwkqyTaJQklOCVoJZclxyX3JicmVyaHJrcm6CcYJ0kneierJ9woDSg/KHEooijUKQYpOClrKZ0p0CoCKjUqaCqbKs8rAis2K2krnSvRLAUsOSxuLKIs1y0MLUEtdi2rLeEuFi5MLoIuty7uLyQvWi+RL8cv/jA1MGwwpDDbMRIxSjGCMbox8jIqMmMymzLUMw0zRjN/M7gz8TQrNGU0njTYNRM1TTWHNcI1/TY3NnI2rjbpNyQ3YDecN9c4FDhQOIw4yDkFOUI5fzm8Ofk6Njp0OrI67zstO2s7qjvoPCc8ZTykPOM9Ij1hPaE94D4gPmA+oD7gPyE/YT+iP+JAI0BkQKZA50EpQWpBrEHuQjBCckK1QvdDOkN9Q8BEA0RHRIpEzkUSRVVFmkXeRiJGZ0arRvBHNUd7R8BIBUhLSJFI10kdSWNJqUnwSjdKfUrESwxLU0uaS+JMKkxyTLpNAk1KTZNN3E4lTm5Ot08AT0lPk0/dUCdQcVC7UQZRUFGbUeZSMVJ8UsdTE1NfU6pT9lRCVI9U21UoVXVVwlYPVlxWqVb3V0RXklfgWC9YfVjLWRpZaVm4WgdaVlqmWvVbRVuVW+VcNVyGXNZdJ114XcleGl5sXr1fD19hX7NgBWBXYKpg/GFPYaJh9WJJYpxi8GNDY5dj62RAZJRk6WU9ZZJl52Y9ZpJm6Gc9Z5Nn6Wg/aJZo7GlDaZpp8WpIap9q92tPa6dr/2xXbK9tCG1gbbluEm5rbsRvHm94b9FwK3CGcOBxOnGVcfByS3KmcwFzXXO4dBR0cHTMdSh1hXXhdj52m3b4d1Z3s3gReG54zHkqeYl553pGeqV7BHtje8J8IXyBfOF9QX2hfgF+Yn7CfyN/hH/lgEeAqIEKgWuBzYIwgpKC9INXg7qEHYSAhOOFR4Wrhg6GcobXhzuHn4gEiGmIzokziZmJ/opkisqLMIuWi/yMY4zKjTGNmI3/jmaOzo82j56QBpBukNaRP5GokhGSepLjk02TtpQglIqU9JVflcmWNJaflwqXdZfgmEyYuJkkmZCZ/JpomtWbQpuvnByciZz3nWSd0p5Anq6fHZ+Ln/qgaaDYoUehtqImopajBqN2o+akVqTHpTilqaYapoum/adup+CoUqjEqTepqaocqo+rAqt1q+msXKzQrUStuK4trqGvFq+LsACwdbDqsWCx1rJLssKzOLOutCW0nLUTtYq2AbZ5tvC3aLfguFm40blKucK6O7q1uy67p7whvJu9Fb2Pvgq+hL7/v3q/9cBwwOzBZ8Hjwl/C28NYw9TEUcTOxUvFyMZGxsPHQce/yD3IvMk6ybnKOMq3yzbLtsw1zLXNNc21zjbOts83z7jQOdC60TzRvtI/0sHTRNPG1EnUy9VO1dHWVdbY11zX4Nhk2OjZbNnx2nba+9uA3AXcit0Q3ZbeHN6i3ynfr+A24L3hROHM4lPi2+Nj4+vkc+T85YTmDeaW5x/nqegy6LzpRunQ6lvq5etw6/vshu0R7ZzuKO6070DvzPBY8OXxcvH/8ozzGfOn9DT0wvVQ9d72bfb794r4Gfio+Tj5x/pX+uf7d/wH/Jj9Kf26/kv+3P9t//9wYXJhAAAAAAADAAAAAmZmAADypwAADVkAABPQAAAKW3ZjZ3QAAAAAAAAAAQABAAAAAAAAAAEAAAABAAAAAAAAAAEAAAABAAAAAAAAAAEAAG5kaW4AAAAAAAAANgAArhQAAFHsAABD1wAAsKQAACZmAAAPXAAAUA0AAFQ5AAIzMwACMzMAAjMzAAAAAAAAAABtbW9kAAAAAAAABhAAAKBO/WJtYgAAAAAAAAAAAAAAAAAAAAAAAAAAdmNncAAAAAAAAwAAAAJmZgADAAAAAmZmAAMAAAACZmYAAAACMzM0AAAAAAIzMzQAAAAAAjMzNAD/wAARCALDCaQDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9sAQwABAQEBAQECAQECAwICAgMEAwMDAwQGBAQEBAQGBwYGBgYGBgcHBwcHBwcHCAgICAgICQkJCQkLCwsLCwsLCwsL/9sAQwECAgIDAwMFAwMFCwgGCAsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsL/90ABACb/9oADAMBAAIRAxEAPwD+/iiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/9D+/iiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK/no/4Kz/8HEv7Pf8AwSO/aL0X9nH4s+AfEXinUdb8OW/iSO70iS2SBILm6urURsJpEbeGtWY4GMMO+aAP6F6K/jB8P/8AB7P+wTd6nFB4n+FHj2xtGYB5rcafcOoPfY13FnH+9X9Qv7E/7dH7Mf8AwUL+B9r+0H+yp4kj8ReH55mtZwUaG6sruMBnt7mBwHilUMpwRhlZXUsjKxAPrmiiigAooooAKKKKACiiigAooooAKKKKACiiigAoor4a8V/8FIP2OvCn7ZvhL/gn6/jC21H4teLzd+ToOn/6TLZR2dlNfu96yZS23QwnYkhEjllKoUJYAH3LRRX5V/8ABV3/AIK1/A3/AIJFfCnwx8XPjt4d13xHY+KdWbSLaHQUt3ljmWF5izi4mgXbtQjgk57UAfqpRXhP7L/x+8L/ALVf7OXgb9pfwTZ3Wn6P490Ox16ytr4ILmGC/hWZElEbOgdVYBtrMM9Ca92oAKKKKACiiigAoor5l/bM/ae8M/sXfsteOf2qvGWm3Wr6X4F0uXVbmysii3E8cWMrGXIXcc9yBQB9NUV+Pn7Cv/BY34P/ALeH7AHj/wD4KC+BfCesaJoHw/fWkutLv3ga8nOi2Ud9J5ZjdoxvSQKu5h8w5wKs/wDBIj/gsJ8If+CwHw98YfET4ReE9Y8KW/g3UbfTriLWHhd5nuIjKGTyXcYAGDnBzQB+vVFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFfFn7ev/BQD9mX/gm18Abv9oz9qXWX0zRYpks7S2tY/PvtRvJAzJbWsOV3ysqs3LKiqpZ2VQSP5ZdS/wCD3X9kSLxX9j0f4K+MJ9D/AOfua8sorvr/AM+6tInT/pvQB/bbRXwf/wAE9f8AgpD+yt/wU6+B5+O37K+sy31ja3H2PUtPvovs2o6bd7Q/k3MOWAJVgVdGeJ+drtg4+8KACiivxs/4K/f8Fnfg3/wR48O+BfEfxe8I6z4sj8d3N/bWqaO8CNA1gsLMZPOdOGEwxjPQ5oA/ZOivyE/4KM/8FhfhD/wTf/Yp8B/tt/EXwnrHiDRfHuo6Xp1rp+mvCt1A+qWFxfo0hldUIRLdkbBJ3EY4r6i+F37fPwA8Z/sM+GP+CgXxH1SD4feA/EWg2niB59fuIoBZw3ihkjlcMUMhLBFVCS7kKoJIFAH2zRXzV+yF+1p8F/25f2fNE/ag/Z5vZ9S8G+I5tQi027uYHtXnXTryexkkEUgDqjy27sm8KxQgsqkkDy/4D/8ABR/9jr9qH9o/xd+y1+zz4wtvGPibwHYpe67Lpf7/AE+18yXyRD9qH7qSYMDuWIuEwQxDDbQB9y0V+Gf7Rn/Bdf4G/s3/APBULwf/AMEtPEfgrXdQ8UeMrrRrW31m2e3FhC2tNtjLqziXCE/NhT7V+5lABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRX8sH7eH/B2r/wT6/Y6+LuvfAj4f6Fr3xT8Q+G55LO+udHNvbaQl3CxWSBbuWQvI0bAqzRwPHn7rtzQB/U/RX8t3/BPr/g7C/YG/bb+MekfADx1oetfCvxL4iuIrLSZNXaK60y6vJjtS3+1QkGKR2IVDLEqMSBuDEA/wBCX7TP7VH7PH7G3wnvfjj+094u0/wZ4XsCI3vdQk2+ZKwLLDDGoaSaZgrFYoleRsHCnBoA9/orxr9nf47+Av2oPgX4T/aI+FjTyeG/GmmW+r6Y91H5MzWt0oeMumSVJUg4JyO/Ney0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFZGv6vD4f0G9164QyR2NvJcMq9WESliBnucV/F5/xG4fsV/wDRHPG3/f6x/wDj1AH9rVFfx7/Cr/g9H/4JueMPFFpoHxK8D+OfCFndSLG+pPbWl9bW4Y4LyrBcmfYByfLikb0U1/Wz8P8Ax94K+KvgbR/iZ8N9Ut9b8P8AiCzh1DTdQtHEkFza3KCSKWNhwVdSCD6GgDr6KKQkAZPAFAC0V8N/s2/8FHv2O/2wPjf45+Af7MvjC28aat8OYLSbXbvTP32nQvevKiRR3Q/dzuDCxfyi6LwC27Kj7koAKK+Q/wBvT9sHwh+wL+yP40/a98eaTea5pHgq2gubmxsCi3Myz3EVuAhkKpkNKCckcA15Z/wS/wD+Ci3w8/4KkfssW37Vnww0DUfDWlXOp3mmCy1RomuBJZlQzExMy7W3cc5oA/Q+iiigAooooAKKKKACivw0/b7/AOC6/wADf+Cfv7ePw4/YH8feCtd13XviTa6PdWep6e9utpbrrOoz6dGJBI6uSjwM7bVPykY54r9y6ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAor+cj/gpl/wc4fsA/wDBOT4k3nwIhh1L4n+PdMdotS03w60ItdNmQ4aG7u5XCLMOQYoklZCCJAhwD8U/s0/8HnH/AAT/APiv4107wZ8evBHif4ZRajOITqzmHVdNtQ3R7hoTHcKnqY7eTGeeMkAH9htFcv4I8b+DfiV4P0z4g/DzVbTXNC1q2ivdP1CwmW4trq3mUNHLFIhKujKQVZSQRXUUAFFFfDX7WH/BR/8AY6/Yr8YeEPhn8evGFtY+LvHupWOmaD4ftv8ASdTvJb+4W2ikECfNHAJCQ08uyMbSAxb5SAfctFFFABRRRQAUUV8Nfttf8FH/ANjr/gnr4a07Xf2ovGFtot5rcog0jSIv9I1TUZWYJi3tky7KGYBpW2xISN7rkUAfctFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH/0f7+KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr/N6/4Otra2vf+C8P7PlneRrLDL4R8KI6OAysreIdTBBB4II4INf6Qtf5un/B19qFhpH/AAXa/Z/1XVZ47W1tfB/hWWaaVgkccaeIdULMzHAVVAJJJwBQB/eD8b/+CeX7Dv7Rfw81L4X/ABe+FPhfVdJ1SFoZAdLt45o9wwHhmRFkikXqskbKynoa/hG/4Nl/GPjf9hr/AILn/GX/AIJq2Wrz6h4TvLnxLoMsUpAWa/8ACl1ILa8wMAOYI51O0AEScj5Vx/bv8WP+CtH/AATL+CvgXUPiH46+PHgZbDTomleOy1y0v7uXb/DDbW0sk8znskaMx9K/ie/4NgvCPi79tn/gtz8cv+Ck50eW18MQv4j1jz5R8sGp+Kr5pILYEZBcWzXBbBO0KP7woA/Vv/gqN/wcT/tPeHf243/4Jh/8Eivh9afEL4mWV22m6nqV7C94i6hGu+e2tYEkhQfZVDfabieTyoyrgqAhevmnwl/wcRf8FYf+Cb37Snhb4If8F0PhBp+ieF/FYHla7o8SR3MEXmKklyklpc3VleR2+4GaCLZMgYHOSqP8Bf8ABFz4kfD/APYe/wCDmX45eDP2xNRt/D2q+IbnxdoOm6jq8iwRHU77VIL23cyyEIn2y2jfymJG8yoo5cA/aH/B6T+0l+z/AOPPhj8Hf2ZvA+sWHiD4g22vXOsS2unypdXFlYNbmALKIyxQ3MroY0PL+USBwKAP6T/+Cvn/AAWB+D3/AASv/Y+sf2j2tofGeseL5Y7TwhpVvchItSllj877QZlD4tYosSO6g7tyICC4I/l58Wf8Fqv+Dn74V/s76b/wUh+Jfwa8J23wUv47S+2mwVYxYXjosMzQrqL6lDFP5iiOaQbcMrY2spb55/4Oe/gB8c/hj/wTJ/YJtviJDdk+B/CTeGtf82MqLXWJNM0rZFKf+ehFpcKA3J8pj13V/X7c/wDBWX9gP4M/8EtPDv7aniPxNpeq+CofDGnSQaRYXFtNf3VwIok/s+G2llTddRyHy3iYqYypLlQpIAPjz4+/8FzvFfiH/ggTqn/BWv8AZX0O10nxXZtplpNouvxPd29nfS6pbWN3E3lvA0seyUyQSBl3IyMyg7kH3d/wQ+/be+MX/BRT/gm74K/ay+PUGmW3ifxDdavDdR6RA9vaBbG+nto9kckkrAlI13Zc5OTx0r8dP+CwX7enwh/4Khf8G03xg/ag/Zz0jXdP8NnU9Es0j120jtbljZa3pwldUilnRo0Z9hdXI3I4/hr1f/g10/aS+BfgT/ghXofiDx14r0vSLD4d6j4h/wCEinurlI105WvJrxTPk5TdDKrrkfMDxmgDlv8Aggp/wW1/bB/4KXftrfGL9nz9oax8N2uheA9PnutNfRrKa2uGeO/W2HmvJczKw2HnCr83PtXwRpP/AAco/wDBUPxH/wAFIPjT+wL8FfhR4f8AiZ4i03xD4j8L/D/TbKCWyZbnStReJLrU55LwI1vFZwyvKFMAZ8HzI1zXyp/wZteI7Xxh/wAFG/2gvFtjkQ6p4bkvI9wwds+pxuMjscGtv/ghFZW11/wdR/tOzzoGe2v/AIjyRkj7rHX40yP+AsR9DQB6ja/8HN3/AAVW/wCCe37Xeu/sv/8ABWD4P6TrOpCzM1lpfhdVt78XV5GHsBBPHcXVvcWsrERvhWmTcTlnjMLa37Sv/Bfv/gvx/wAE2/i34H+JH/BRP4K+E9B+HXj+ZpbbQ7NQ9ytnbMhuIo7qG/naG9WKVDi5UqSf9WMMF8V/4Lk6dZaj/wAHWn7MunXsayQ3Wq/DWOVCMh1fXWUg/UcV9kf8HvsaH9mj4FSkDcPE2qAHvg2qZ/kKAP3d/wCCq3/Bab4Nf8E3f2FfD37W+naf/wAJTq3xFhtv+EM0SWX7M1613ALkTTkB2SCCJlaUqCdzJGCC4Yfzo6z/AMFpv+DmH9nb4D6P/wAFGf2j/gf4Tuvgfq5srue2it/ss8Gn3rKIZNqX017aifeqxy3MUqqzIWT5lDfHH/B0H4L8c3f/AATi/YD+ItvHLL4asPBH9nXEgU+VDfXel6TLCGbpuljglKA9omx3r6v+Pv7GH7Quqf8ABNCy+Pn7Tn/BTZ2+AHjXSNPtjHL4Wa+t7iC88tY7VYLW8eeSSJsLJHGheLy2LBdjYAP6Fv2mP+Cvqaj/AMEM9d/4Ky/sZx2ct6ujWV/Y2Wsxm5jtLx9Qgsrq1uUikjLPA7SodrgFlDDKkZ/Cf9mX/gut/wAF9v8AgpN+zBFqP/BPz4GeH9a8S+F/tieMvFNykdrpxumkeS1tNLt7u/jV5ktfLabe87F3x5ca7Gk0/EP7O3wn/Zp/4NIfjV4M+BPxYtvjP4Q1K+/tPTPEdppU+jxMkurafHLAILiSRyY5opNzZHzErjKmv0Y/4NBLC1s/+COemXFugV7rxdrsspAxucNEmT6/KoH0FAHC/wDBAT/gvf8AtBf8FOLz4l/s1ftHeFdN0r4teA9Hl1iwl0yGW1gv4YpBbSx3FtNI5hnhuJIVbEgVxIRtjKEt/HN4J+NH/BXK1/4OA5/jH4a+HWkT/tYm/wBQd/CbLH/Z4uH0SWKdcfbQmF08vKP9L+8OpPyV+yf/AAbLxR2//BxP+1NbwjaiaL41VVHQAeJtPArH8C+INB8G/wDB7hfa14tvYNMs01zVkae6kWGJWn8JTpGCzkAF3dVXnliAOTQB/f7+zprXxc8Sfs+eBPEX7QGnQ6P48v8Aw9pdz4ksLcAQ2ury20bXkKYeQbY5y6riRxgfebqf5DP+D2//AJMo+D3/AGO83/pBNX9pGlarpmu6Zba3olzFeWV5Ek9vcQOJIpYpAGR0dSVZWBBBBIIORX8W/wDwe3/8mUfB7/sd5v8A0gmoA/ov/wCCNv8Ayic/Zv8A+yceG/8A0hir9AvGvjPwt8OfBur/ABC8c30WmaJoNlcajqF5McRW9rao0ssrnsqIpY+wr8Vf+CSn7dP7Engr/gl9+z74Q8ZfGPwPpGraZ8P/AA/a3lle+IbC3ubeeKyiV45Y3nV0dWBDKwBB4Nejf8FK/ij8Lf2z/wDgmH+0T8Lf2Q/HegeOvEh8Caqxs/DeqW2pXBXyHbyylvJIR56o0a5A3E4HNAH83w/4OEf+Cz//AAU++PXinwV/wRR+DWnXHgvwkwd9Q1eGKS7khZiInuri8urayt2uAjNHbLulwGw77SR93/8ABJL/AIOIfjh8bf2xrz/gmb/wVL8A2nwy+MUc8tpp1zaRyWdtc3cSCUWc9vPJMY5pY8yQTRytDcAqEUFkL/I3/Blz+1B+zj4e/ZP+J37NviDXtN0fx/H4uk8Qm1vJ47ee80qeytYI3i3kGRYJbeXzAufL8xS2N4z8E/t2eOvB37dH/B2j8IB+xpfReID4U17wlDq+raORcwPJoFx9s1CYSJlHW3tlMMjZK5iK84oA/oI/4LLf8FcP+Cj/AOz/APtUeEv2Df8AgmV8GLnxV4v8TRwGTxJrGm3EmltcXILpbWcrPb2paOJfMuJ5ZjFECVIBRmH5Tah/wX0/4La/8Eyv2w/AvwM/4K+fD/wzL4a8aPbSvLpiQrdR2E0/kPcWtxZXMtuzwNkvBLHuYADKB1evYf8Agph/wVk/4KDftDf8Fo7H/gjD+w58QdO+B2lR3UGlX3iq7to5rq7u5tPGoSYeaNmiABEFtHBseabGZdsihP50P+Dgn9kTW/2NP2qfhl8OPix+0Z4h/aE+IF7ZNf6/eeIJ2ZtKje4RbeKKF7i6a3WQLI/lmX7oUhQCCQD+5f8A4L+f8FwrP/gkD8JfD2jfDTRbLxR8U/HZuDo1lqDv9isrW12iS8ukiKySLvdY44leMyNuO8CMg/zuftz/APBQj/g4J0T/AIJmfEC8/wCCmXwM0mL4VfFfQX0u31rS/Ks9S0K51IqbRru2jup3jhc4jKXEMcgd1DSB8Rvmf8Hgmnap8OP+Cl/7OH7Qnja0mufBMOi20LL5ZaJ5dJ1V7m8jB6F2huIcrnpiv6F/+Dg39s79k+9/4Ih/EfxJYeMdG12x+Juj2ll4VFpdxzHVLi5nhkja3VWJfylBncgfIqHODxQB+Z3/AAbE+Ob/AOGH/BvP8dviVpVpaX914d1rxnqcNrqEXn2k8lpolnKsc8eRviYqA6ZG5SRmvqf/AINuv+Ck3xT/AG3v2T/jf8VPGngrwR4Nv/Bl7GtpB4O0b+yLac/Y5Jg1xGJZPMYMoAORheK+I/8Ag3T/AOVaH9pX/r48e/8AqP2tcV/wZ0/8mB/tPf8AYQi/9N0tAHGfsC/8HKX/AAWc/b90fxL8B/2avgz4Y8ffF8yQXlldwwvp2haRo6ZS5mvDcX6+ZK0jxrCvnRAcnEh+Svq//glj/wAHAf8AwUF1j/gp1/w6t/4KseCNI0TxZqFzPpsF3psH2S5sNSjt2u4o51jmnt7iC4iCiGWHaPnR9zo2R8k/8GMtjayX/wC09qToDPDH4MiR8chJDrBYZ9yi5+lee/tZRRxf8Hqng94xgya14YZiO5/sKEfyAFAH7Z/8F5/+C/HxH/4J4/Fjwl+xN+xR4VsvGvxo8YR205W9jluoLFL6XybSBLaBo3nu7pwfLTzFCDaSr+YBX5tftQ/8Fx/+Dgr/AIJmfs3z6l/wUE+CfhrTNb8UtaxeD/FNqsV1YRXqyrJc2epwWd/Igd7QStBsaFg6H5ZV3mP42/4K6+MNN/Y7/wCDsX4f/tO/tG77PwJcXvhLWYL2dC0MGnRWyWEs4xyVt7mGWV8ZYbTgHjP6ef8AB2z+3x+xx44/4Jr6V8A/hz450Dxn4r8XeItN1HT7XRb+DUGt7KzWSSS7cwO4jjYERIWOXMh2ghWKgH9DH/BHb9rv4p/t4/8ABNz4Y/tZ/GuHT7fxR4wtr+a+j0uF4LRWtr+5tk8uOSSVlHlwrnLn5sn2r9MK/Cv/AINo/wDlB/8AAb/rx1j/ANO99X7qUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAfxlf8AB5j+x/8AH749fssfDH4/fCHTbzXND+Fuoas3iOyslaV4bbVI7YR3rRqCTHbtbMjuM+WJtxG3cw+M/wBiP/g51/4JYeJv2QtE/Ya/bi+CEvhDw7DocOgX66NY2+qaBcRxxCF5mg/dXMLSY34SOd1Y58wsNx/ab/gvr/wW7/aH/wCCPPiz4cR+A/hlpfjDwt46gu/N1TULmeMw3djInm24WIBctDKjxln5O75SFNZ3xs/Z0/4NmP8Ago58ApP2nfHR+HGk6drOn/bpvEWmalbeHNWtHkTcTdC3lhb7VGeGiuo5DuG1kbpQB2H/AAb7/wDBOj/gm/8AsseC/E/7TP8AwTZ+MOvfFLw18Q4LbT9QbUbi1a3im09nkjD28dna3EFxGJmBSfDBJM7OQa/ILxP/AMHMP/BR3w//AMFQPjP+wT8M/hfonxK1DTNf1/wn8PdH020mgu5tTsr/AMq3m1Cdrra1tDaRzy3GxYslQS8SbnX4b/4M+dW8S+Hv+CqHxj+HPwO1XUNX+Ep8M6lLJPcK0UdwtrqNvHpdzLHgKly8Ty7VwCFeTjAOOS/YD/aA+DX7O3/B238WvEvxv1K00XTNa8dePNEtdRvpFit7a+vbqcQb5GIVPNKmBSTjdIAcZzQB+hM//Bw1/wAFh/8Agmv+174Z+F//AAWq+E2h6L4J8ZuJhPokSiWztGdY5J7O5tru8t7lbXdumt3LTEFfnTcu6l/we66tpev/AAZ/Zs13RLiO7sr2/wDEM9vPCweOWKSCwZHVhwVZSCCOCDXOf8Hr/wAcvg14w0D4GfAHwnqllrPjey1DVNWntLOVZ7i0sriKCKPzFQkp9pkGYweX8okdK8e/4OvvBviz4c/8E7P2Hvh7498wa7oOhT6dqPnDbJ9rtdM0uKbcOzb1bI9aAP2f/wCC2P7cPjz9gP8A4IvfAL4xfDzwn4S8Y3upah4W0Z7LxlpQ1ewjim0K8nMscJkj2zBoFVXzwjOMfNX5R/8ABd/9pf8Abe+Nn/BCP4BeNPC/gjQLT4T+P/DGkax46u9KtVtINJ1LzrV9PgsoftG6KGSQuuwRSgAAFl619Ff8HTf/ACgD/Zx/7Gjwh/6jmp1U/wCCikbv/wAGb3wxZRkJ4b8Ck+w+0W4/maAPEv8Aggp+0J/wXX8K/wDBLjUPDX7NXwn0LXPh74d8K6pd/C7ULlIjNq2uy+JEF3BOW1CIlESbUiu6OAfuV+c8B/xf/wCDdD4sf8FOPh3+2r4sk/YM8C6Z4tn1mbTrfx4t+qMNO0lr8edLDvu7fDKS+MGU8fdPf+3f/g1m8c+CtR/4IofBbwRYavZTa1ZL4ne4sEnRrqJRr98xZ4gd6jbNEckYxIv94Z/m1/4M8PGvg3wR+3Z+0PaeMtWs9JkudGiWJbydIDIU1EqwXeRkhnUHHdh60Afqv+3l/wAFQvir8Hf+Diz4WfsO6L4A+H+p6D4i1LwnBNrup6ELnxFANSkCuYL7zVMbR/8ALI7DsPrW5/wXH/4OAv2mv+CVf/BTP4a/s8+DdD0bWvhnq3h7RvEPiGF7KSfWporjU723uorOUXMUSu1vbKId8bASHJyOB+W//BU3/lb++Bn/AGGPAf8A6OFVP+DlWwtdU/4OPf2XdMvkEkFzpPgaKRGGQyP4l1AEEe4NAHuf7bP/AAXH/wCDj/8AYjt/Dn7WX7QvwJ8KeA/hN4n1BbbTtIu0F7Miyhpore9mhvjcwXbQIxDPFCpYN+5BBQf086r/AMFd/gL4a/4JKWf/AAVq8U2U1p4ZvPDNvrKaOJQbl9RuGEC6ckhUBnN4fIEu0LgGQgKDj80/+DwGGOT/AII73ryDJj8Y6Gyn0OZh/ImvyC/aP+H3jrx5/wAGW3wxvfBcUtxF4dms9W1OOEbibGPWLuJ2I67Y3ljdiPuhcngEgA9S/ZR/4LSf8HKn7bml6v8Atl/sx/AHwr4m+DukXk8R0dQLee7gtm3SxWk017HdXNykfyebDC0ZlyBCzfu6+sv+CHH/AAcEftQf8FU/+CmXxC/Z58baDouhfDbTvD+s+INBt47OWLWYI7fULOC2iu5jcSRO6w3DCXZEoaQZGBxXq3/BuR/wUl/YU8Df8EXPBHhn4h/Efw54O1H4XQ6tbeI7HVb+G0uLctfXN0swikcSSJPHKrKyK26Qsi5ZSK/Bv/g1h+I3hf4w/wDBfb47fFvwRbtaaL4p8M+LtX0+B12NFa32u6fNEhXJwVRwCM8YoA/0l6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAM7WLGXVNIutMguHtJLiF4lni+/GXUgOueMrnI96/ydv+CdX7W3ir/g27/4KB/EPwR+3B8FT4q1i4RNNa9JWHUbSKCV2F7pks6GOe3vAQSQyeYFQ+Yu1lP+qj8ZvEnjjwb8IPFfi/4ZaSmv+JNK0e+vNK0yR2jS9vYIXeCBmUMyiWQKhYKSM5APSv5IP+Cbn/BcH9iH/gtle+MP2cf+CqXw/wDh54W1jS3il8Oad4jEU1veQuGW4WKfUAPLu4XVTtjKOytlQdjEAHzd46P/AAbtf8HI/wC034R8SxeO/E/we+LMlsdPXSIraz0O+1p93mRb53t720nuYjuWPZOZmUhcMFUDif8Ag9F8Wftk2Pgr4cfCm60K3uvgFbzaVfDxNKI/7Ql8YrHq0LWzlZlOw2IExAtgu88P/BX5O/8AByz+yP8A8Emf2PfiZ4A1P/gmjr9nYeMNRlu5/EGgaBq7apZaekPltbXAkMsz2k7yFgIvNwVUMqIBl/2m/wCDnjVfip4l/wCDe79l3xN8blm/4TK91vwdP4g+0AiYapN4bv2uvMBAIfzt+4Edc0Afe/8Awbp/tN/t3+EP+Cft54u/4KFeGdJ8DfAr4b+A9G1DwP4ihVRJe6LaW9xJc3FzsurhyY7eKF+YYiSxwpPA/N3Rf+DgH/guN/wVF+MPiix/4I1/BTTP+EE8JSgvc6tFDLdvGxPl/arq8u7azSWZVLLbQ5kUEgO+N1fojcWkvx6/4NLU+GPwU1O31bxHZ/BXTp57KwnSa5WOwjSW4jaNCWDMlvNHtIyzAqBu4r5r/wCDNL9qT9m7TP2E/G37OepeINM0Xx1pXi681y8sbu4jt57rT7q1tY47lA7AyIhheN9ufL2qWxvXIB9M/wDBHL/g4a+K37UX7VOp/wDBN/8A4KTeBbX4ZfGuxkuobJ7VJbS1vbm0Xe9nJbXEkrw3PlBpY3WVop1B2hDsD/I3/BTb/g5F/bk/YZ/4LCeMP2IPhp4J0Lxt4T0qLT7PRdLisbh9ZvtV1nRYJ7OPzY7jDr/aNzHuRId7wgovzkNX53/G3xr4S/bn/wCDv7wL4p/Y3vI9f0/w54g8Pvqus6Tie1nj8PW6PqMvmplWiWOM2pkztYqApOVz1H7SmhWHiP8A4PZ9F0/UY1ljj8ReGLoBugktfDVrMh+qugI9xQB+6f7Cf/BRL/gs/wCBv2afj/8AtK/8FTvg3cJ/wgNpYXHhLw14f0SeLVdXu7zfuhi8qS5DW0RaBZJNkjxBnZ2PlstflLYf8FXP+Dqn44fATxJ+3d8LfhH4Y8O/C7w9Hf30lrPYwxTmz0zebllt728F9MIRG+9kRd7KwjBI2j+ov/gtZ/wUJ8S/8Exf+Ce3i79qbwFpMGteJreaz0rRre8Dm0W91CURrLPswxjiTfJtyvmMoTcu7I/ky8DfB/8Ab/8A+CkP/BK7xL/wVA/b2/bi1fw34AutG1y7/wCEQ8NLHptrIbBpoUs7xraS2g3zSxBFtzbzM6unzFmxQB/Rb/wQ2/4LUp/wU6/Yq8YftA/tAaXp3gnXvhhdSweJ5bJpBphtY7cXQvYxK0kkSeWJA8bPIVMZO4hgB+G/w7/4L9/8Fvf+CpH7SfivSv8Agj18IPDtx4A8EyLK/wDb6oZZbeQusBvbq4vLWFJLnYzR28GJEAI3uqM9fKP/AAbSfD/xr8V/+COX7efwx+Gcctx4j8Q+H7rTtOt4BmWa5udHvo4olHrKx2Dvk8V9A/8ABmn+2j+y18Ivgd8Xf2evi54t0bwj4qm16DxBb/2zeRWIvbBrVYGETzMqubd4izqDlRKD0zgA9Z+CH/Byh/wUM+Kn/BWf4W/sCfE34aaJ8N11DVrDw3420a/tZp9QttUG8XT2lwLrYIJAEkg3RvhWxulXEjffX/BZ7/gvZ8bv2VP2qfDf/BNX/gnB4JsviH8c/EX2T7T9uDz22nvfjfBaiCOSEvcPEVnZ5JUihhZWYMGOz+cj4k/tMfBP9rT/AIO+fBHxe/Z81G31vw0fGXh/TItVtGDwX82m2UVtNNE4JDx+ZGyJIvyuiBlyCDXDft9fDr4vaR/wda+IdCl+K8nwJ1rxVrVu+hePZrVbiOyh1DRVgtSqvJErJKf9B3+YAjMSfukUAftT4B/4L0f8FXf+Cdn7WXgb9nb/AILqfDLQtC8KfEN0isfFGitHGbMPKkb3DyW9zc2k0NsXX7REBFNGjCTLAqr/ANsisrqHQgqRkEcgiv8AOf8A+CsP/BNq3t/Hngb4F/8ABV//AIKTR32tyRXOoeHrDV/Bt1em3ScxxySM1nduLcTFVCmYoJNh252nH+hP8LvD1/4S+GXh3wpqt7/aV1pml2dpNd+WYftEkMSo0nlsSU3kFtpJK5wSaAO7ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA4n4l/8AJOfEH/YNu/8A0U1f5bX/AAa/ftu/8E6/2LPiP8XtY/4KE6zpej2Gv6bpMOitqej3GrrJNBLcNMEW3trkxkK6ZLBc9s4r/Ul+Jf8AyTnxB/2Dbv8A9FNX+Y3/AMGov/BPH9jX/goR8Qvjd4U/bD8D23jSy0HSNHk05Z7i5tmtnupblZWje2liYFgi854xxQB7p/wclf8ABR3/AIIu/tp/s2+Evh1+wRYad4k+Jlt4ihuf7a0jw5PoxtNOWGZJbeSa4tbaWcTyPEUhRXTKbyVKqG/pf/YP+Ndz/wAEX/8Ag3T+H/xZ/bdtru31TwX4fuLxtGlPl38s+r389xp2nBX5Sby7iGJlYZhCsWAEbAfyQ/tVfAf4mf8ABrZ/wVl0H4z/AA18N2Pj34ReJpPtmhPr9jBeTyaekiG6so7uSMva6haEr5dxCVLKYncMrPHX9Dn/AAdDfErRv20v+CCfhX9qH9mW+fWvBF94m0DxJcXUK5xpk8N1bATAZ8to7ueGORTykoKHBBoA+KfBf/BaX/g5n/aM+Butf8FFv2efgh4R/wCFJ6R9tuYbOS38+SexsmYTSKr38N9d+QEZZJbeNEZlfanysq/s58Gf+Cxfx/8A+ClH/BHnxf8AtY/8E2/A9lefHnw9dWekXHg3UZUuYIbw3Vt9qYM81pvgexklnhdnQ7lK/MyEH8Bf+Cbv7LX7Y3xI/wCCSWkftNeA/wDgobL8MvhR4Y0W9TWvDy6El1F4dS0aT7RaS4vFdmYZdF8sPMsilFbeuf1k/wCDWj9kn9mf9nX4V/GbxN+yf+0BafHjQPFk+jxTva+HrzQDpd3Yx3Z2Ol5I7u0yXCkjapQIM53CgD+WD/g15+KX/BSX4d/tS61pX7B3gnTfFvhjXdS8M2vxFub9UaTTNEN3IDPDvurch/Ka4PyrMcoPl7H9/wD/AIKbf8HIv7cn7DP/AAWE8YfsQfDTwToXjbwnpUWn2ei6XFY3D6zfarrOiwT2cfmx3GHX+0bmPciQ73hBRfnIavhX/gyU8c+C/CXxe+P2m+KtXstMuNQ0vw4trHdzpC0xFxdoQgcgsd8iLgZ5dR1Ip37SmhWHiP8A4PZ9F0/UY1ljj8ReGLoBugktfDVrMh+qugI9xQB+lWmf8FCf+C3fhL/gmZ+1L+0X/wAFL/hX4W0WfwNa6FL4V0fXtAY2l/Jf3ka3CyxfaWjnt4I3j2jJcSn5nyhFfeP/AARw/wCCo2ieK/8Agi/r/wDwUJ/ag0bw14F0jwjfa5NqFp4R00aZY+TYlNixW3mODcTswjUbv3kjKO9fQ3/ByL/yhK+Pf/YK07/052dfyr/s3+C/HPjv/gy5+LOl+Aopbi4tPEk2o3UMK7mexsNXsLi5bjosUMbSuf7iHPFAH1F8K/8Agth/wcc/8FGNP8VftQ/8E5fgb4aT4TeFryeGCzvUS5urvyEDtB5k95bSXk6oQzCzijAJCDL4Dfrl/wAE4P8Agtl8Wv8Agq9/wTy+K3jP9n/w9pfhn9pD4Z6bJ5nh26WS7067v/JeW1kij8yOYQXbxSQbGkLwSD5mcbWb+dL/AIIQ/sq/tqftFf8ABPKbx5+zT+3dL8E/Dfgy/wBRXXPCaaTFOmine0xuJpXvIT5dxGfNEjIFzuUElGx+nX/BsB+yl+yv8Nf2kPi18f8A9mX9qC1+Pk+vaPHb+ILKHwvfeH5rS5urvz47mVruQg7zHMqqqDdkkHCmgD7w/wCDcb/gtR8Uv+Cs/wANviNoP7Slro+m/EPwHqVtIYNGgktIJtJv4yIn8qaaZzJHPDMshDYAaMYBPPg3w3/4LbftlftVf8HAGr/8E2P2W7Dw1L8IPBWoXEPiHV7mynuNRW20WJV1FlmS5WNN98fskLeUwBZGOckV+B/7W3xH8Wf8G4n/AAX0+J/xk+Hunv8A8IV8VfCuuavpFpGn7mRtahlnt4tv3FS21y3VSOSlsOB8wB/X/wD4M3v2MNV8I/s2ePv+Ch3xMjkuPEfxb1STTtMu7nLSvpemysbiYOeT9pvjIJM5ybZT3oA9V/4KIf8ABXf/AILE+Jv+Cg9//wAE8/8AglH8EjJNoqSef4l8UabLFFftbqDcT2013JbWcdnEziNZHMhmcDyz8yq3zz+xV/wXt/4Kl/Bf/gqR4Z/4Jg/8FcfAugWup+Lb2z0yG+0iNYbq1uNTQGylD2881pc28rlUYIFdCxJbKGM+Pa3/AMFKP+Cmv/BY7/gr38Qf+Cb37Jnxmtf2b/AXgmfWrWO7trNJtV1CLQroWksqO4juHuZmYyrBFNbpHCrbizIWb8gPiV8ANL/Zh/4OXvgL8FpfjPrPx01vSfG3gr+3vE+vXJurv+1Jb+N3ti7SzFREhjGwyuUZipOQQAD9Dv8Ag5W/5WPv2Vf+wR4G/wDUn1Gv9ESv87v/AIOVv+Vj79lX/sEeBv8A1J9Rr/REoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK+Cf8AgqT+0f4k/ZF/4J2fGX9o7wVIIdd8LeFb+40qUgERahJGYraQhgQwSZ0YqRzjHevvaviv/go9+zhrH7Xn7BPxf/Zo8NJFJrHjLwpqen6WJ22Rf2i8LG03sfuqLgRkt2HNAH8VP/BoF/wTr+CP7S1v8TP+Chn7TGi2/jrXtL8QDQtF/tuIXsUF6YUu728ZZt6y3D/aYQruC0fzMDufI/pE/wCC8f8AwS9/Zj/bD/4J4/EzxHe+EdMsvHfgXw5qHiHw5rllaRxX8NzpUDXP2fzECs0NysXkOjllAYOF3opH8wf/AAaf/wDBTj4IfsLa/wDE/wD4J4/tp6vB8N73VdfOp6Zd69J9itYtWgjFnfWV1JLtjt5QIIthlZVZldCQ+xW/oZ/4Lxf8Fnv2MP2bv+CfnxG+G3gH4gaF4u+InxD8P33hzRNH0PUIr+eI6rCbeS7mNu0ggjgilaVGlKiVlCLnJwAfm5/waF/tm/EfxR/wTh+M/wAFdb1H+0T8Frj+0dCjucv9ms9Vt7i4WDggmL7TbTuBnIMjAHGAPt//AINqf+CyP7WP/BW+x+Mtx+1HZeHrNvAL+H103+wLOa0DDVBfmbzfNuJ92Ps0e3G3HOc5GPij/g03/Y1+JHwq/wCCXPxm/aB8U6W1nJ8ZfOTQ42BE11p+k2txBFNtxkJJcTzrH3YLuHyspPx5/wAGPnxK8EaD4m/aP+HOu6ra2esana+GNSs7WaVUlntrA6mtzIikgssJnh3kcLvGetAH6wfFj/gtr+2D4I/4OOdL/wCCUWj2PhtvhleahpVrJcS2UzatsvdGiv5MTi5EeRM5C/ueE45PNfyq/wDBd34m/wDBRHWf+C7/AIf134teDNO07xr4d1qytPhbZQqgi1fQrPX7xtDnuMXTgvcy5WTc8BwOUj619p+IvjT8Ofj7/wAHnuj/ABB+E+rW2u6EvirTdMivrRxLBLNpmgx2lwEdcqwS4ikTcCQduQSK9I/4OV9R0/w9/wAHHf7MOva7PHZ2NrpPge4mnmYJHHFF4kvy7szYCqoBJJOABQB+xn7e3/BWL/gq3/wT/wD+CLvgD9r34+eDfDPhj476143/AOEf1vRru1a406CxlGoyQMkdveviR4raBs/aGHzNkAnA+HtM/wCC2f8AwcR/tmfsw6Z+1R+wL8ANIPgHw5pNudf1y7t45rnWNWsoh/ajafZS36SvZrOJI40t4p5vkIMnmbo0+sv+DyDxJ4d8V/8ABJHwrq/he/ttStD8TtLj861lWaPfHYaorruQkZVgQwzkEYNfZ3/Bvt+2v+ycf+CJvw48QXXjDRdCtfhfolxYeK0u7uOBtLns5pWkkuFZsoJlInQkfOHGOcgAHVf8EC/+C3Ol/wDBYD4L69a+P9Hs/C/xR8CNbrrmn2DubO7t7oN5V7arKWkSNnR0eJnkMTBcuQ618df8G7n/AAW0/bB/4KofH/4ufDH9pWx8N2mneB9PtrrTm0OymtZWea5kibzWluJgw2qMYC81+QH/AAZ3aRqnjz/gor+0f8evBFpNa+CJNHlt0QRlYUl1PUxcWkZPQOkMEuFznBNcp/wZx+NfDHgT/goP8e/hb4vv4NN1vVtFH2S0uJBHLO+n37CdIwxBZkEgJUZOATjANAH7U/t+f8Ftf2wf2Zf+C7/wm/4Js/Dux8Ny/D7xvqHhO11Ca9sppdSVNbu/IuPKmW5SNSE+5mJsHrnpX8xX/B034+/be8Q/8FRtFsfjr4WsdJ0bQJHt/htNAFDappQuVZZZ8XEmWM+V+ZYTj+HvX0z/AMFKPjf8NPjj/wAHbvwXvfhbrNrrtl4c8Y+AdDubmykWaAXltexPNGJFyrGNpdj4J2uGU8givVP+DyieDTv+CgH7OeqX7iG3i0NmeRzhVVNSBYkngADk0Af2Wf8ABK74l/8ABQz4r/sut4q/4KbeDdO8C/Er+2LuEabpiosH9nIsZgkwlzdjczFwf3vb7o7/AKR1z3hvxb4U8ZWT6n4Q1O01W2jkMTy2cyTosgAYqWQkBsMDjrgg966GgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD//0v7+KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr8Iv+CoP/AAb1fsX/APBWb4+aP+0V+0X4n8a6Lrei+H7fw5BB4bvbG2tWtbe5ubpXdbqwunMpe6cEhwu0KNoIJP7u0UAfyQeG/wDgzB/4JRaHqsWo6n4p+JeswxsGa1vNX09YpAOzG30uGTB/2XB96/pN/ZR/ZC/Zu/Yf+Dll8BP2WPCdn4Q8LWLtMLW13O807gB5p5pGeWeZgqgySuzkKBnAAH0lRQB+Kv8AwU4/4IH/ALAf/BVHX4PiN8btN1Hw545t4Eth4l8Nzx2t9NDH9yO5WWKaCdUHCs8fmKvyq4HFfMf7An/BrZ/wTV/YR+LOmfHjGu/ErxXokqXOmS+KpreWysbqJg0dxDa28EKmVCAUaZpdjYZQrAEf0jUUAfPP7U/7KnwC/bU+COsfs7/tL+HLfxP4T1xVFxaTlkZJIzujlikQrJFLG3KSIwYHvgkV/MTpP/Blx/wTHsPH8fiO+8a/EK+0OORZf7IlvrFVkwcmN547FJPLPT5dsgH8eea/r8ooA+YtP/Yx/Zd0v9lMfsQWHgrTo/hUNHbQf+Ed2E2xsXBDKSSZC7ElzMWMplPmF9/zV/PF8M/+DOz/AIJV+APjHD8S9Z1Pxp4o0W0uI7qHw1quoWx092RtxjnaC0inli6AL5qnGQzNmv6uqKAPxw/4J5/8EPf2Qv8Agmb+0V4//aU/Z11XxLLqnxDimt7zTdTnsm0yzhmuhdbLOG2srZokRgERWkcLGMdeaq/sk/8ABDb9k39jT9vvx9/wUY+GHiHxbf8Ajf4iya3LqVjql3Zy6VEdevFvrjyIobKGZQsqAR753wnDbj81fszRQB+M37U3/BDb9k39rr/goR4C/wCCk/xI8Q+LbLx18O7nQ7rTbHTbuzi0mV/D92b23E8UtlLOweQ4l2XCEpwpU816P/wVP/4JC/s2f8FdfAvhT4f/ALSWt+JtEsvB1/PqFk/hq5tbaWSW4jEbCU3VpdqVAHAVVOe56V+qVFAHxP8AE3/gnv8Asu/HD9jHS/2DfjfoP/CX+AdI0Ww0W2XUWBvEXTYFt7e5SaJYzFdIq5EsQTkkABSVr+eLSP8Agy//AOCZGnePofEF/wCNPiFqHh+CUTf2JPqFkqOf4kaeKySXy2AAOzbJgffzzX9etFAHwV8e/wDgm9+zN8df2CNR/wCCblvZXPgr4Y32m2mlRW3hpora4tLazniuEELzxXCbmkiBkeSORn3MSSx3VN/wTk/4J6fBf/gmJ+zRa/sr/ATU9b1fw9aahd6klxr88FxemW8YM4L21vbR7QR8o8sEdya+76KAPxl/Ya/4Ia/sm/sAfto+P/26fg54h8W6l4u+I1tqlrqVprN3ZzadEmr30OoTGCOCyglUrLAqpvmcBCQQxww+b/8AgpL/AMGzf7CH/BS79pOf9qr4ha34o8H+KdVitodabw/cWywagLSNYY5GS5tp9kwiRI96EKVQZQtlj/RVRQB4x+zn8DPCf7MXwB8F/s5eAbm8vNC8CaJY6Bp02oSLLdNaadCsEPmuiRqz7EAJVFHoBXxL/wAFSv8Agkz+zn/wVw+F3hr4S/tH614k0TTfC2qtq9pJ4aubW2nedoWhKyNdWt2pTa5OFVTnHOOK/UGigD+QL/iCp/4JZf8AQ/fFX/wa6R/8pq/Vn/glf/wQr/ZI/wCCRHjDxd42/Zt8ReL9bu/GlnbWN6niW7srmOOO0dpEMQtbG0IYlzu3FhjoBX7SUUAfzB/tof8ABpr/AMEx/wBrb4q6h8ZPDEviD4XarrFw11qFr4Ynt102eaQ5kkW1uYJhCzHJxCyRgknZX6Ef8Eyv+CI/7CP/AASki1DWP2cdHvdT8V6tEba88T+IJo7zVXtiVY26PHFDFDCWUMyxRJvIG8ttXH66UUAfgD/wU9/4Nx/2E/8AgqF8Yo/2ivH97r3gjx28ENtfap4cmgQajHbKEiNzFcQzK0scYCJKhRtgVWLBVA+YPFH/AAaA/wDBKHxR8LNG+Hr33jmy1bTb25vrzxPb6ratrOqPchQUunnsprfy49uY1hgiIJYksWJP9TtFAHwJ+2h/wTX/AGY/+Cgn7MFp+yx+1fZ3vijTdOjgaz1l5ki1m2vYIvKF7HPHGEW4YEmT915T7iGjK/LX4q/Ar/g0G/4Jb/B6y8VJ4j1Dxb40vPEWk6ho9pdaxdWbNpCX8TQ/arSOOzWI3kSMTFNMkqI+HWMMAR/VLRQB+U37F3/BH79mn9hb9hzxx+wF8JNc8Taj4O8fPq76heavc2s2pxHWrOOyn8mSG0ghXbHGDHvhfD5J3DgZf/BNf/gjR+zB/wAEtPhD47+Cv7P2veKdY0r4hTLPqMviG6tLi4iZYGg/cNbWdqqjaxPzo/PtxX620UAfkD/wSk/4Iqfss/8ABHz/AIT3/hmjX/FWuf8ACxP7L/tL/hJrqzufK/sj7V5PkfZbO027vtcm/fvzhcbcHOH8RP8Aghr+yb8TP+Cn+mf8FZNe8Q+LYfiLpVzYXUOnW93ZrorPp9qtnGGhaya4IMagti5BLcggcV+zVFAH8YX/AAc1/thfsD+FPjF4P/ZP/wCCkX7Puv8Airw9d6amt+HPH3hzUo7O/tWlkeG8gg8yEKxi2I00DSujB4nZAdhr+dT/AIKSx/8ABu98AP8Agnze/Cf/AIJfeItR+JPxS8b6tpj3Gt61b3T39hpdmzTSKZLi0s4YBI4RGjhjEkhxv+VRj/T8+PH7Nn7Pv7Ufgs/Dr9o/wVovjnQ94lWy1uyivYkkHR0EqtscdmXDD1r5I+D/APwR6/4JdfATxta/Ej4TfAjwdpOvWM4ubS+/s2Oee2mXo8LTBzEw/hMe0jtigDz3/ghX8CPHn7NX/BJH4G/CD4nWMml67ZaAb27s5htlt21S4mvhHIvVXRZwHU8qwIIBGK/WWiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD5c/bC/Yw/Zs/b0+CV9+z3+1R4Zh8UeGL2RLhYZHeGa3uYgRHPBNGyyRSoGYBkYZBKnKsyn+X3V/+DKH/gnXdeJBfaP8TPiJZ6WW3NaPcadLKAT0Wb7CoAA4G6Nj6k1/ZLRQB8Af8E9P+CZH7IH/AATB+FV18Kv2TvDz6bHqkqT6rql7KbrU9SmjBVGuJyFyEBISNFSJMsVQFmJ/gR/ZN/Yx/Z9/b6/4OYf2of2Z/wBpjRjrPhjWdY+ILkRyGG4trmLUSYri3lXmOaJjlTgqeVZWUsp/07a+YPA/7E/7IPwz+NeqftJfDz4ZeGdE+IGtyXUuoeI7LTLeDU7p71t9w0tyiCRzK/zSEsdx5NAH4afsUf8ABqR/wTR/Yy+PmnftDfa/E3xD1Xw/dLeaLZ+J7m1ksbO4iYNDM0VtbW/nTRMMqZGMYOD5e4Aj9A/+Cqn/AARu/Zj/AOCvmg+C/Dv7Smu+KNDg8C3F7c2DeGbq0tnke/WJZBMbqzuwwAhXbtCYyc54x+s9FAH5W/t9f8Ehv2bP+Ci/7IHgr9ir42634m0vwt4Ev9N1GwutDubWDUJJdLsp7CITSXFpcRMrRXDs4WJCXCkFRlT6Hrv/AATE/Zk8X/8ABOO0/wCCXXjlNT1v4bWXh+z8PRy3Vwg1PytPKPbXHnRRRxi4ikiSQMIghZeUK5U/ofRQB+Af/BLD/g3b/ZJ/4JN/HvV/2jfgl4x8X+Idf1XSLnQTFrVxZm0WwuZoZyClvaQu0ge3jO/eF4+5XzX8RP8Ag0p/4Jx+OP2sbr9qfRfEnjXww15rJ8QPoelXlmtjFfGYT/uGms5ZY4TJlvL3tjOEZVAA/qQooA/GX4+/8ENf2Tf2i/8Ago/4U/4Kg+NvEPi218f+D7nSLqz0+xu7NNHkfRm3QCWKSyknIY/6zbcKT220v7bX/BDb9k39vP8Abd8Aft7fF/xD4t03xh8OINJt9Ns9Hu7OHTZV0a+m1CEzxz2U8zFpZmWTZMmUAA2nLH9maKAPgv8A4KP/APBO74K/8FQP2a5v2Wvj7qmt6R4fn1K01Rrjw/PBb3nnWZYoA9zb3Mew7juHl5PYivmP4teBvhn/AMEa/wDgjpq/gL4ZeBdU+Nngf4WaJJDc+HtXnge91LSLy7JvjcPHaGB0hhuJZZF+zhTDGQcctX7IVHNDFcRNBOodHBVlYZBB6gjuDQB/mOfsiyf8Gjvxe8Q3/wC0d8c4PGHwovdHv2uF+Hut3d3qukXMabZVaB7KzlmliZiYvIkuVbCnKbSGP1d/waXeArr40f8ABVz9o/8Abj+G/h99G+Gsmn6xp+np5KwRW8uv6vBfWtqiodgMNrbMGSPKxgr0BXP9fHjX/gil/wAEmfiH4ul8deK/2fPBM2pzzNcSyRaXHbpLK3LM8cOyNyx5O5Tk8nmvvf4SfBr4R/APwJZ/C/4H+GNL8IeHNPB+zaZo1pFZWkRblisUKqoLHljjJPJ5oA9KooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK/m6/b1/wCDWr/gmf8At0/FjVPjuy6/8N/FeuTS3epzeFrmGOzv7uZtzzzWtzBcIJGJJYwGEOxLMCxJr+kWigD+X79i/wD4NMP+CZP7JnxQ0z4xeLp/EPxS1jRZ0urK28Szwf2XFPEQySG1t4IvNKsM7ZnkjPGUNftF/wAFCv8Agn3+z5/wUy/Zq1D9l39pKG9/sS7uYb+2vNNmWC+sb233CO4gd0kQOqu6EPG6lXYFTmvt+igD8TP+CS//AAQq/Zl/4JBaz4v8T/A3xV4o8S6h42trez1D+3ZrVrdYrR3eLy47e2hIYb2DMzvnPAFfD37XH/Bo3/wTA/aa+KN58V/BNx4j+Ftzqk7XF7p3hme3Glu7nLtFb3NvN5BY5wsTrEueIwOK/qUooA/KT/gmd/wRi/Ya/wCCUmj6j/wzNot3eeI9Zj+z6h4m12ZLvV7i33BxB5kccMUUO5VYxwxRhmVS+4qCOA8V/wDBDb9k3xh/wVMt/wDgrnqfiHxanxItrm0ul02K7sxoZez09NNQGE2RucGFAzf6TkyZIwvy1+zVFAHz1+1X+yz8EP21PgH4i/Zo/aK0Zdd8JeJ4FhvLYsY3Vo2EkUsUi4aOWKRVdHHIYDqMg/zofAb/AIM+/wDgmH8IPiRB4z8ba34z+IWjWV0Lq38Oa5f26aY7gYU3K2ltbyTFe2HRSPldWUkH+rSigD8V/wDgnT/wRw+AX/BGbw38T/E/7H2reMfF8/i+xiuZNA8RahZy2811pazvbJA9vYQPE8hmaIuxkGCCVJUV/Fppvxc/4Nn/APgoZ+1R4k8f/tp+BvGf7LXiV7iS81Ozsr5pdG1DUFYrcQyQ29hLLay7gXcLHbqzhskOcN/p51+fXx//AOCUX/BNv9qTxlcfEX4+fBTwn4j8QXhDXOpzadHHeXDA5BlmiCSSH3diccdKAP4FP2JPCP7M37X/APwc3/D++/4JfeHDafBT4a/YLy3nhtZLaJNP0HT1jmvJFmAm/wBIvSEEkw82WSVXcbmOP7kP+Cmv/BF79hv/AIKvaXpUn7TGkXtj4j0NDBYeJdAmjtNXhtiWY25kkimjlh3sXCSxuEYkptLNu+1v2df2Rf2XP2RfDtz4U/Zg+H2geArC+dZbqPQ7CGzNw6DCtM0ahpWA4BcsQK+iqAP5kP2JP+DUf/gm3+xz8bNM+Pus3viP4m63oFwl3pVv4nnt30+1nhOYpTb29vF5skeAV81mjDAMEBAx/TfRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAZeuaRba/ot5oV4zLDewSW7lCAwWRSpIyCM4PGQa/Hj/glZ/wQ0/ZM/4JC+JvGXir9mzxD4u1u48b2tnaXy+JruzuUjSyeR0MItbK0KkmVt24uCAMAd/2booA+D/+Ci3/AATm/Zv/AOCoP7Olx+zV+0xb3i6WbyDUbLUdKkjh1LT7uAnEttLNFNGrMjPE4aN1aN2GM4I8d/YX/wCCQv7NP7Cf7KPiX9iPQ9Y8Q/Ej4ZeKJ55rjRPHMtlqMEK3ahbiGEW9nahYpiA7IwYCTLrtZmJ/VKigD+RPx7/wZj/8ExvFHjmXxF4S8X+P/DOjXM7TS6NaahZzwIpJKxwyXFnJMqqCVBleZsfxZ5r+kD9jH9in9nD9gD4D6d+zj+y34fj8P+GtPke4ddxluLu6lx5lxczNl5Zn2qCzHhVVFCoqqPqyigD+W4/8GlH/AATj079ri2/as8F+JPGvh37FrsXiO10DT7yzFhbXsE63CJE0tnJMtuHX/VlywHAcDAH3v4r/AOCG37JvjD/gqZb/APBXPU/EPi1PiRbXNpdLpsV3ZjQy9np6aagMJsjc4MKBm/0nJkyRhflr9mqKAPlf9tr9kP4bft5/st+Lv2SPi/fanpvhvxpbw217c6PLFDfRpBPHcKYnninjBLxKDuib5Se/I8g/4J//APBNT9nv/gnT+ydJ+xn8KZ9U8UeDbi6v7m4XxS9tezXA1IATxSiG2t4XiZRt2GLkEgk1+g9FAH8m3x1/4M5/+CYPxX+Il947+H+veM/h7aancvPcaNo15ay6fGjncY7dbm1lliUNyA0sirwFUACv3Y/4J8f8E2/2UP8AgmN8F2+CX7Kehvp9neTC61PUb2T7TqWp3KjaJbmfau4qvCIipGmTsRdxz940UAfkT/wVT/4Irfsi/wDBXuz8HJ+0rfeIdEvfA73h0+/8M3Nra3LxXwj82GZrm1ulePdEjKAoKtnBwzA/oR+zX+z58OP2UPgB4O/Zr+EMElv4a8EaTbaPp4mKtM8VsgTzJWVUVpZCC8rBV3OzHAzXt1FAH80/7cX/AAazf8E9v21v2ltS/apXWvFfw68SeILw6hrUfhi6tora8u3OZblUuLaYw3Ep+Z3RtjOS5TczMa1h/wAGo3/BMPwl47+GfxO+EWoeNvA/iD4XzWd7Z3+j6natNqF/Y3Qu4ru9N3ZXO+YSAD9z5MYQBQgAGP6YaKAPxm/bg/4Ibfsm/t9ftr/D/wDbw+MXiHxbpvi/4cW2lWum2ejXdnDpsqaPfzahCZ457KeZi0s7LJsmQFAAApyx/ZmiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/DD/AIKKf8G7n/BNj/gpR45f4tfFPQ9R8IeNLgH7Zr3hKeKwur4no10ksE8EzjH+taLzSOC5AUD4d/Zu/wCDPn/gll8EPG9h48+Il94s+Jkmnz+emm69eW8elybTlBLBa20MkgBwWVpij4wylSVP9WNFAGN4c8OeHvB+gWXhTwlYW+l6VpsEdrZ2dnEsFvbwRKFSOONAFREUAKqgAAYFfzA/tD/8Gin/AAS8+Pvx+1H442GoeLfBNtrd5LfX/h/w9d2kOmGWX5nFus1pNJbozksyK5QA7YxGoAH9S9FAH4C/Cv8A4Ntv+Cc3wJ/bI8BftpfBL/hI/Cur/DmC1h0vQ7C6tBo0jW0DwebcLJZvdzSyh2kmkN1ueQ5zjivS/wDgrH/wQh/Y/wD+Cu+r+G/G/wAbtQ1zwx4r8LWr2Fpq+gzQpJLZO5k+zzx3EMyOiOzuhUIyszfMQSK/a+igD+D/AP4OLv2BvhH/AME0v+CAHw//AGTfghqmsax4e0f4qWd3Fca7NDPdmS9s9UlkBaCGCMLvJKgRjGeSetdD+xf/AMGwX/BO/wD4KGf8E+PgH+0t4lvvEngTxTrfhHTpdbfw1c26W2pSDIaaSK6t7gJOygAvGVU43MjMSx/s0+PH7N37P/7UngyH4dftI+C9F8d6Db3aX8Wn67ZRX9sl1GrokojmVlDqsjqGxkBiO5rt/h18OPAPwh8D6X8MvhZo1l4d8O6JAtrp+m6dCtva2sCfdjiiQBUUdgABQB8tfsD/APBPf9l//gmt8B7f9nv9lfRH0zSBMbu9u7qTz7/UbxlVGuLqbC75CqgAKqogAVFVRivxs/bI/wCDUX/gmn+2F+0Xqn7SFzf+KvAmoeIr1r/WdO8NXVpDYXVxJzLLHHPaTtDJK/zyFG2FixCAnNf02UUAfzteG/8Ag2F/4Jn/AA//AGifhF+0j8Kf+En8J6n8GzpMumWGm3lp9i1G60m8kvludRM1nLc3E80sm2Z1nj/dqiII1Va+qv8AgrD/AMEWP2T/APgr54b8M2Xx+u9Y0DXfBrXP9k61oU0UVwkV3s82GVJopo5YmaNGAKh1YfI6hnDfr3RQB+dX/BML/gmh8E/+CU37ONx+zP8AAfWdc13R7zWLjXZrnX5oJrj7VdRQwuqfZ4IEWLEClV2kgliWOeP0VoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//T/v4ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/U/v4ooooAKKKKACiiigAoor57/aL/AGqfgL+yj4N/4Tf46+IrfRLV9y28LZkubl1GdkMKAu547DA/iIHNAH0JXmfxR+M/wl+CWgN4p+L3iTTfDenqDibUblIAxHZA5Bc/7Kgk+lfyg/th/wDBf/4t/EX7V4N/ZP04+DdIfdH/AGveBJtUlXkZRfmit8j/AK6OOoYGvw98j49/tMeNZL9xrfjnX7lv3kzma/uDuOfmc7yB9SAKBpNuyP6/vi9/wcBfsV+AL6fSfh/Z6340miYqJ7K3W1tGI44kuHSTHoREQe1fnj8SP+DkP4sX7PH8IvhtpOlKDhJNXu5r8kepSEWuPpuP1r4A+FP/AASE/af8dwJqHjd7DwjbOM7LyXz7nn/pnDuUcdmdT7V9y+B/+CJnwrsAknxF8Z6pqjDBZNPhislz6Zk+0HH5H6VlKvBdTupZZiZ6qFvXQ8C1j/g4D/b11PP2KPwzp2f+ffTnbH/f2eSvPZv+C53/AAUZlkMieKtPjB/hXSbTA/OMn9a/T/TP+CR/7G1hj7Vp2p3uP+e1+4z/AN+wldtF/wAEuf2GY4wj+CTIR/E2p3+T+VwB+lZ/WoHSskxHdfe/8j8hf+H5f/BRz/obrH/wU2f/AMao/wCH5f8AwUc/6G6x/wDBTZ//ABqv1+/4defsLf8AQjf+VPUP/kmj/h15+wt/0I3/AJU9Q/8Akmj61Dsyv7Dr/wA0fvf+R+QP/D8v/go5/wBDdY/+Cmz/APjVH/D8v/go5/0N1j/4KbP/AONV+v3/AA68/YW/6Eb/AMqeof8AyTR/w68/YW/6Eb/yp6h/8k0fWodmH9h1/wCaP3v/ACPyB/4fl/8ABRz/AKG6x/8ABTZ//GqP+H5f/BRz/obrH/wU2f8A8ar9fv8Ah15+wt/0I3/lT1D/AOSaP+HXn7C3/Qjf+VPUP/kmj61Dsw/sOv8AzR+9/wCR+QP/AA/L/wCCjn/Q3WP/AIKbP/41R/w/L/4KOf8AQ3WP/gps/wD41X6/f8OvP2Fv+hG/8qeof/JNH/Drz9hb/oRv/KnqH/yTR9ah2Yf2HX/mj97/AMj8gf8Ah+X/AMFHP+husf8AwU2f/wAao/4fl/8ABRz/AKG6x/8ABTZ//Gq/X7/h15+wt/0I3/lT1D/5Jo/4defsLf8AQjf+VPUP/kmj61Dsw/sOv/NH73/kfkD/AMPy/wDgo5/0N1j/AOCmz/8AjVH/AA/L/wCCjn/Q3WP/AIKbP/41X6/f8OvP2Fv+hG/8qeof/JNH/Drz9hb/AKEb/wAqeof/ACTR9ah2Yf2HX/mj97/yPyB/4fl/8FHP+husf/BTZ/8Axqj/AIfl/wDBRz/obrH/AMFNn/8AGq/X7/h15+wt/wBCN/5U9Q/+SaP+HXn7C3/Qjf8AlT1D/wCSaPrUOzD+w6/80fvf+R+QP/D8v/go5/0N1j/4KbP/AONUf8Py/wDgo5/0N1j/AOCmz/8AjVfr9/w68/YW/wChG/8AKnqH/wAk0f8ADrz9hb/oRv8Ayp6h/wDJNH1qHZh/Ydf+aP3v/I/IH/h+X/wUc/6G6x/8FNn/APGqP+H5f/BRz/obrH/wU2f/AMar9fv+HXn7C3/Qjf8AlT1D/wCSaP8Ah15+wt/0I3/lT1D/AOSaPrUOzD+w6/8ANH73/kfkD/w/L/4KOf8AQ3WP/gps/wD41R/w/L/4KOf9DdY/+Cmz/wDjVfr9/wAOvP2Fv+hG/wDKnqH/AMk0f8OvP2Fv+hG/8qeof/JNH1qHZh/Ydf8Amj97/wAj8gf+H5f/AAUc/wChusf/AAU2f/xqj/h+X/wUc/6G6x/8FNn/APGq/X7/AIdefsLf9CN/5U9Q/wDkmj/h15+wt/0I3/lT1D/5Jo+tQ7MP7Dr/AM0fvf8AkfkD/wAPy/8Ago5/0N1j/wCCmz/+NUf8Py/+Cjn/AEN1j/4KbP8A+NV+v3/Drz9hb/oRv/KnqH/yTR/w68/YW/6Eb/yp6h/8k0fWodmH9h1/5o/e/wDI/IH/AIfl/wDBRz/obrH/AMFNn/8AGqP+H5f/AAUc/wChusf/AAU2f/xqv1+/4defsLf9CN/5U9Q/+SaP+HXn7C3/AEI3/lT1D/5Jo+tQ7MP7Dr/zR+9/5H5A/wDD8v8A4KOf9DdY/wDgps//AI1R/wAPy/8Ago5/0N1j/wCCmz/+NV+v3/Drz9hb/oRv/KnqH/yTR/w68/YW/wChG/8AKnqH/wAk0fWodmH9h1/5o/e/8j8gf+H5f/BRz/obrH/wU2f/AMao/wCH5f8AwUc/6G6x/wDBTZ//ABqv1+/4defsLf8AQjf+VPUP/kmj/h15+wt/0I3/AJU9Q/8Akmj61Dsw/sOv/NH73/kfkD/w/L/4KOf9DdY/+Cmz/wDjVH/D8v8A4KOf9DdY/wDgps//AI1X6/f8OvP2Fv8AoRv/ACp6h/8AJNH/AA68/YW/6Eb/AMqeof8AyTR9ah2Yf2HX/mj97/yPyB/4fl/8FHP+husf/BTZ/wDxqj/h+X/wUc/6G6x/8FNn/wDGq/X7/h15+wt/0I3/AJU9Q/8Akmj/AIdefsLf9CN/5U9Q/wDkmj61Dsw/sOv/ADR+9/5H5A/8Py/+Cjn/AEN1j/4KbP8A+NUf8Py/+Cjn/Q3WP/gps/8A41X6/f8ADrz9hb/oRv8Ayp6h/wDJNH/Drz9hb/oRv/KnqH/yTR9ah2Yf2HX/AJo/e/8AI/IH/h+X/wAFHP8AobrH/wAFNn/8ao/4fl/8FHP+husf/BTZ/wDxqv1+/wCHXn7C3/Qjf+VPUP8A5Jo/4defsLf9CN/5U9Q/+SaPrUOzD+w6/wDNH73/AJH5A/8AD8v/AIKOf9DdY/8Agps//jVH/D8v/go5/wBDdY/+Cmz/APjVfr9/w68/YW/6Eb/yp6h/8k0f8OvP2Fv+hG/8qeof/JNH1qHZh/Ydf+aP3v8AyPyB/wCH5f8AwUc/6G6x/wDBTZ//ABqj/h+X/wAFHP8AobrH/wAFNn/8ar9fv+HXn7C3/Qjf+VPUP/kmj/h15+wt/wBCN/5U9Q/+SaPrUOzD+w6/80fvf+R+TWlf8F3/APgodpzbrvXNJvx6T6XCB/5CEdeueG/+DiD9tPS7mP8A4SDw/wCE9Utwf3im0uoZGH+yyXW0H3KH6V96al/wSr/Yivl22vhWezPrDqN2T/5ElevLvEX/AARw/ZT1W2dNGvNd0uU8q0V1HIoPuskTZH4g+9NYmBLyTELZr7/+Ad78NP8Ag5F+Ht4I4PjD8NNQ04ggPNo97HeA+4jmW3x9PMP1r9UvgF/wVY/YY/aJaGw8K+N7bR9UmO0afro/s6fdjOFMpETn2jkav5v/AB3/AMER/EcAkuPhn46t7rglINTtGgOewMsTSZ+vlivzZ+MX7C/7UfwP8258Y+FLqewj632nj7ZbY9S0WSg/3wtaRqwlszirYDEUtZwdvv8AyP8AR1hmhuYUuLdxJHIAyspyGB5BBHUGpK/zlP2aP29/2rP2TNUiuvg/4suodPjwH0m8Y3WnSKM8GByVXr96PY3oa/p9/Y+/4L1fs/8AxmltPBv7Rdp/wr7X5iIxeFjNpEznPPmn54M8f6wFBnmStDkP3uoqtZXtnqNnFqGnSpPbzoskUsbBkdGGVZWGQQQcgjgirNABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUVWvb2z02zm1HUZkt7e3RpJZZGCIiIMszMcAAAZJPAFfx5/8FO/+C0Piv4xajqPwK/ZOv5tH8HxM9tfa3CTFd6pj5WELDDRWx7EYkkHXapKkA/dL9rz/grn+yN+yPey+FdS1KTxZ4niJSTSdEKTNAwxxcSlhFEefu7i/wDs1+InxU/4ONvj/rN80fwa8C6HoNnkgNqsk2ozkdjmNrZFPqCrY6ZPWvyO/ZY/YZ/aM/bB1nyPhRozf2XHKI7rWLzMNhAe4MhBLsByUjDPzyMc1/QX8Gf+CBHwF8N20V58bvFGqeJ73b88FiF0+0DHt0klbHYh0z3HYcOJzKhQdpy17LVm1OhOeqWh+YGsf8F3f+CiGp3HnWWvaVp6/wDPO30uBl/8iiRv1rI/4fl/8FHP+husf/BTZ/8Axqv6CdN/4I2f8E77GHyrrwNNeN/fm1bUA3/kO4QfpWj/AMOev+Cc3/RO/wDyr6n/APJdcP8ArBh/5Zfcv8zb6lU7o/nl/wCH5f8AwUc/6G6x/wDBTZ//ABqj/h+X/wAFHP8AobrH/wAFNn/8ar+hr/hz1/wTm/6J3/5V9T/+S6P+HPX/AATm/wCid/8AlX1P/wCS6P8AWDD/AMsvuX+YfUqndH88v/D8v/go5/0N1j/4KbP/AONUf8Py/wDgo5/0N1j/AOCmz/8AjVf0Nf8ADnr/AIJzf9E7/wDKvqf/AMl0f8Oev+Cc3/RO/wDyr6n/APJdH+sGH/ll9y/zD6lU7o/nl/4fl/8ABRz/AKG6x/8ABTZ//GqP+H5f/BRz/obrH/wU2f8A8ar+hr/hz1/wTm/6J3/5V9T/APkuj/hz1/wTm/6J3/5V9T/+S6P9YMP/ACy+5f5h9Sqd0fzy/wDD8v8A4KOf9DdY/wDgps//AI1R/wAPy/8Ago5/0N1j/wCCmz/+NV/Q1/w56/4Jzf8ARO//ACr6n/8AJdH/AA56/wCCc3/RO/8Ayr6n/wDJdH+sGH/ll9y/zD6lU7o/nl/4fl/8FHP+husf/BTZ/wDxqj/h+X/wUc/6G6x/8FNn/wDGq/oa/wCHPX/BOb/onf8A5V9T/wDkuj/hz1/wTm/6J3/5V9T/APkuj/WDD/yy+5f5h9Sqd0fzy/8AD8v/AIKOf9DdY/8Agps//jVH/D8v/go5/wBDdY/+Cmz/APjVf0Nf8Oev+Cc3/RO//Kvqf/yXR/w56/4Jzf8ARO//ACr6n/8AJdH+sGH/AJZfcv8AMPqVTuj+eX/h+X/wUc/6G6x/8FNn/wDGqP8Ah+X/AMFHP+husf8AwU2f/wAar+hr/hz1/wAE5v8Aonf/AJV9T/8Akuj/AIc9f8E5v+id/wDlX1P/AOS6P9YMP/LL7l/mH1Kp3R/PL/w/L/4KOf8AQ3WP/gps/wD41R/w/L/4KOf9DdY/+Cmz/wDjVf0Nf8Oev+Cc3/RO/wDyr6n/APJdH/Dnr/gnN/0Tv/yr6n/8l0f6wYf+WX3L/MPqVTuj+fzR/wDgu7/wUQ0y486917StQX/nncaXAq/+QhG3619S/Cv/AIONvj/o18sfxl8C6Hr1nkAtpUk2nTgdzmRrlGPoAq56ZHWv1N1L/gjZ/wAE776HyrXwNNZt/fh1bUC3/kS4cfpXyZ8Zv+CBHwF8SW0t58EfFGqeGL3b8kF8F1C0LDt0jlXPcl3x2HY3DPcNJ2d16r/K4ng6iP0h/ZD/AOCuf7I37XF7F4V03UpPCfieUhI9J1spC07HPFvKGMUp4+7uD/7NfqHX+ch+1P8AsM/tGfsfaz5HxX0Zv7LklMdrrFnmawnPYCQAFGI5CSBX44GOa/Vr/gmJ/wAFofFfwd1HTvgV+1jfzax4PlZLax1uYmW70vPyqJmOWlth3JzJGOm5QFHrU6kZxUoO6OWUWnZn9itFVrK9s9Ss4dR06ZLi3uEWSKWNg6OjjKsrDIIIOQRwRVmrEFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFcd8QfiD4J+FPgvUfiL8R9Ut9G0PSITPd3l0+yKJBxye5JIVVGWZiAASQK/j3/AG/v+C4nxW+ONzqHww/Zekn8IeD2LwPqS5j1S/jPBIYHNvG3OFT94QfmYcqAD+jX9qX/AIKefsefslfadK8f+Jo9T8QW+VOiaPi8vQ4z8sgUiOE5GP3roa/D34rf8HIXju88y1+CPw2sdPGMJc63dyXZPuYYBAB9PNavwR+Cf7N3xy/aW8Rtpfws0S51ZzJ/pN4/yW0JbkmWd8KDznGSx7A1+yPwh/4IfKRFf/HfxieQC9locfQ9x9onU/T/AFP41cYSexnOrGO7PFdX/wCC93/BQTUs/Y77QtPz/wA++mKcf9/Wkrkv+H5f/BRz/obrH/wU2f8A8ar9aNF/4JDfsU6Vj7dpGo6lj/n51CVc/wDfkx12n/Dq/wDYN/6ET/yqaj/8k1fsZf1/wxl9agfjH/w/L/4KOf8AQ3WP/gps/wD41R/w/L/4KOf9DdY/+Cmz/wDjVfs5/wAOr/2Df+hE/wDKpqP/AMk0f8Or/wBg3/oRP/KpqP8A8k0exl/X/DB9ah2Z+Mf/AA/L/wCCjn/Q3WP/AIKbP/41R/w/L/4KOf8AQ3WP/gps/wD41X7Of8Or/wBg3/oRP/KpqP8A8k0f8Or/ANg3/oRP/KpqP/yTR7GX9f8ADB9ah2Z+Mf8Aw/L/AOCjn/Q3WP8A4KbP/wCNUf8AD8v/AIKOf9DdY/8Agps//jVfs5/w6v8A2Df+hE/8qmo//JNH/Dq/9g3/AKET/wAqmo//ACTR7GX9f8MH1qHZn4x/8Py/+Cjn/Q3WP/gps/8A41R/w/L/AOCjn/Q3WP8A4KbP/wCNV+zn/Dq/9g3/AKET/wAqmo//ACTR/wAOr/2Df+hE/wDKpqP/AMk0exl/X/DB9ah2Z+Mf/D8v/go5/wBDdY/+Cmz/APjVH/D8v/go5/0N1j/4KbP/AONV+zn/AA6v/YN/6ET/AMqmo/8AyTR/w6v/AGDf+hE/8qmo/wDyTR7GX9f8MH1qHZn4x/8AD8v/AIKOf9DdY/8Agps//jVH/D8v/go5/wBDdY/+Cmz/APjVfs5/w6v/AGDf+hE/8qmo/wDyTR/w6v8A2Df+hE/8qmo//JNHsZf1/wAMH1qHZn4x/wDD8v8A4KOf9DdY/wDgps//AI1R/wAPy/8Ago5/0N1j/wCCmz/+NV+zn/Dq/wDYN/6ET/yqaj/8k0f8Or/2Df8AoRP/ACqaj/8AJNHsZf1/wwfWodmfjH/w/L/4KOf9DdY/+Cmz/wDjVH/D8v8A4KOf9DdY/wDgps//AI1X7Of8Or/2Df8AoRP/ACqaj/8AJNH/AA6v/YN/6ET/AMqmo/8AyTR7GX9f8MH1qHZn4x/8Py/+Cjn/AEN1j/4KbP8A+NUf8Py/+Cjn/Q3WP/gps/8A41X7Of8ADq/9g3/oRP8Ayqaj/wDJNH/Dq/8AYN/6ET/yqaj/APJNHsZf1/wwfWodmfjH/wAPy/8Ago5/0N1j/wCCmz/+NUf8Py/+Cjn/AEN1j/4KbP8A+NV+zn/Dq/8AYN/6ET/yqaj/APJNH/Dq/wDYN/6ET/yqaj/8k0exl/X/AAwfWodmfjH/AMPy/wDgo5/0N1j/AOCmz/8AjVH/AA/L/wCCjn/Q3WP/AIKbP/41X7Of8Or/ANg3/oRP/KpqP/yTR/w6v/YN/wChE/8AKpqP/wAk0exl/X/DB9ah2Z+OFj/wXV/4KK2k3mT+JdNuV/uS6VbAf+OIp/WvavAf/Bw3+2RoGoK/jnQvDfiCz43xi3mtJv8AgMiSlR+MbV+i+of8EpP2FbyHyrfwdLaN/fi1O9Lf+PzuP0rw7x1/wRZ/Zl17T3XwRqutaBefwOZUu4R/vRuisfwkWj2MhrFQPqD9nz/g4P8A2ZfiNqEOhfHHQr/wBcS7VF2H/tKxDHg7njRJUGe/lEAdSMV+4nw7+Jvw7+LnheDxt8LtcsfEGk3H+ru9PnS4iJwDtLISAwBGVOCO4r+FT4+/8Ekv2lvg9YTeIfBvkeNtLhBZjpqst4qjOSbZsk/SN5D7V8l/s5/tV/tDfscePm8VfBvWrjRbxH8u9sZQWtbgIeY7i3bCtjGMkB1/hINZOLW5tGalqmf6TFFflP8A8E5f+Cp/ws/bp0k+ENYji8NfEGyjMlxpDPmO6jUZaa0ZuXUdWQ/OnfK/Mf1YpFBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRXx7+2P+3F8Cf2IvAH/CZfFy+L310rDTdItSrXt9IvaNCRtQEjfI2FX1JIBAPsB3SNDJIQqqMkngACvzO/aX/wCCuP7Ev7Mks+jaz4l/4SfXIcg6Z4eC3sqsB0kl3LBGeeQ0gYf3eK/lC/bd/wCCr/7S37Zt1ceHJrs+FPBZc+VoemyMokTt9qmGGnPsQsY7JnmvnH4FfsRftJftDCK+8BeHpYdLl5Gp3/8AotpjjlXYZkHP/LNXNVGLk7RQH7mfFX/g5F8RTeZa/BD4aW1tgfu7rXLxp8n3gt1ix+E5r4717/g4B/b31fd/Z6+GtKz0+y6c7Y+nnzS/rXrXw2/4IneF7ZY7n4u+NLm7fgvb6TAsCj282bzC318ta+sdM/4JPfsXWCqLrQ769x1M2oTjP18tk/SumOBqvfQfKz8sW/4Ll/8ABRskkeLbEew0mz/+NUn/AA/L/wCCjn/Q3WP/AIKbP/41X67j/gl9+wwBj/hB8/8AcT1D/wCSaX/h1/8AsMf9CN/5U9Q/+Sav6hU7r8R8rPyH/wCH5f8AwUc/6G6x/wDBTZ//ABqj/h+X/wAFHP8AobrH/wAFNn/8ar9eP+HX/wCwx/0I3/lT1D/5Jo/4df8A7DH/AEI3/lT1D/5Jo+oVO6/EOVn5D/8AD8v/AIKOf9DdY/8Agps//jVH/D8v/go5/wBDdY/+Cmz/APjVfrx/w6//AGGP+hG/8qeof/JNH/Dr/wDYY/6Eb/yp6h/8k0fUKndfiHKz8h/+H5f/AAUc/wChusf/AAU2f/xqj/h+X/wUc/6G6x/8FNn/APGq/Xj/AIdf/sMf9CN/5U9Q/wDkmj/h1/8AsMf9CN/5U9Q/+SaPqFTuvxDlZ+Q//D8v/go5/wBDdY/+Cmz/APjVH/D8v/go5/0N1j/4KbP/AONV+vH/AA6//YY/6Eb/AMqeof8AyTR/w6//AGGP+hG/8qeof/JNH1Cp3X4hys/If/h+X/wUc/6G6x/8FNn/APGqP+H5f/BRz/obrH/wU2f/AMar9eP+HX/7DH/Qjf8AlT1D/wCSaP8Ah1/+wx/0I3/lT1D/AOSaPqFTuvxDlZ+Q/wDw/L/4KOf9DdY/+Cmz/wDjVH/D8v8A4KOf9DdY/wDgps//AI1X68f8Ov8A9hj/AKEb/wAqeof/ACTR/wAOv/2GP+hG/wDKnqH/AMk0fUKndfiHKz8h/wDh+X/wUc/6G6x/8FNn/wDGqP8Ah+X/AMFHP+husf8AwU2f/wAar9eP+HX/AOwx/wBCN/5U9Q/+SaP+HX/7DH/Qjf8AlT1D/wCSaPqFTuvxDlZ+Q/8Aw/L/AOCjn/Q3WP8A4KbP/wCNUf8AD8v/AIKOf9DdY/8Agps//jVfrx/w6/8A2GP+hG/8qeof/JNH/Dr/APYY/wChG/8AKnqH/wAk0fUKndfiHKz8h/8Ah+X/AMFHP+husf8AwU2f/wAao/4fl/8ABRz/AKG6x/8ABTZ//Gq/Xj/h1/8AsMf9CN/5U9Q/+SaP+HX/AOwx/wBCN/5U9Q/+SaPqFTuvxDlZ+Q//AA/L/wCCjn/Q3WP/AIKbP/41R/w/L/4KOf8AQ3WP/gps/wD41X68f8Ov/wBhj/oRv/KnqH/yTR/w6/8A2GP+hG/8qeof/JNH1Cp3X4hys/If/h+X/wAFHP8AobrH/wAFNn/8ao/4fl/8FHP+husf/BTZ/wDxqv14/wCHX/7DH/Qjf+VPUP8A5Jo/4df/ALDH/Qjf+VPUP/kmj6hU7r8Q5WfkP/w/L/4KOf8AQ3WP/gps/wD41R/w/L/4KOf9DdY/+Cmz/wDjVfrx/wAOv/2GP+hG/wDKnqH/AMk0f8Ov/wBhj/oRv/KnqH/yTR9Qqd1+IcrPyH/4fl/8FHP+husf/BTZ/wDxqlX/AILl/wDBRsEE+LbE+x0mz/8AjVfrv/w6/wD2GP8AoRv/ACp6h/8AJNIf+CX37DBGP+EHx/3E9Q/+SaPqFTuvxDlZ+Zmg/wDBwD+3vpG3+0F8Narjr9q051z9fImi/SvsT4Vf8HIviKHy7X43/DS2ucj95daHeNBg+0FwsufxnFej6n/wSe/Yuv1ZbXQ76yz0MOoTkj6eYz/rmvkn4mf8ETvD1wkl18HvGc9s/JS21eFZlPsZodhH/fpqiWCqrbUXKz97v2aP+CuP7Ev7TcsGjaN4l/4RjXJsAaZ4hC2UrMR0jl3NBIeOAshY/wB3mv0xR0kQSRkMrDII5BBr/N4+Of7F37R37PJlu/iH4dm/syM4/tKz/wBJsyOxMifcz6SBT7V9M/sRf8FX/wBpb9jK6t/DkN2fFfgsOPN0PUpGYRp3+yzHLQH2AaM90zzXNKLi7NCP78KK+Pf2OP24vgT+274A/wCEy+Ed8UvrVVGpaRdFVvbGRu0iAnchIOyRcq3qCCB9hVIBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRX5S/t1/8Fcf2d/2LpZvBVnnxl42XcraPYSqqWjAZH2ubDCLJx8gDydyoHNfyj/taf8ABVH9rv8Aa5kuNI8Ua6fD/hqYkLomjFra2KdhM4PmTcdfMYrnkKKAP7Mfj1/wUh/Yr/ZvWa2+JPj3Tm1GEc6dpzG/vN391o7feYyf+mhQe9fkn8Sf+DkH4QaY0sPwk+G+r6yRkJLqt3Dp6/722Jbokd8ZBPtX82fwO/ZA/aI/aIuEPwy8N3NxZMcNqFwPs9mv/baTCtj0Tc3tX6XfD/8A4Ii/EnUBHP8AE/xpp+lqeXi06CS8f6bpDAAffDAe9OxrChUnrFHeeLf+Dir9rzVLt/8AhDvCnhXSbY/dWaG6uph9X+0Rqf8Av2K8V1j/AILy/wDBQrUyTZavo2nZ/wCffS4m/wDRvmV93eHf+CLv7L+mwJ/b+seINTnA+c/aIIYyfZVg3Af8DNet6R/wSe/Yk00AXnhy71DH/PxqNyuf+/UkdHKzdYGp5H5K/wDD8v8A4KOf9DdY/wDgps//AI1R/wAPy/8Ago5/0N1j/wCCmz/+NV+xX/Drf9hP/oRv/KnqH/yTR/w63/YT/wChG/8AKnqH/wAk0+VlfUKndfifjr/w/L/4KOf9DdY/+Cmz/wDjVH/D8v8A4KOf9DdY/wDgps//AI1X7Ff8Ot/2E/8AoRv/ACp6h/8AJNH/AA63/YT/AOhG/wDKnqH/AMk0crD6hU7r8T8df+H5f/BRz/obrH/wU2f/AMao/wCH5f8AwUc/6G6x/wDBTZ//ABqv2K/4db/sJ/8AQjf+VPUP/kmj/h1v+wn/ANCN/wCVPUP/AJJo5WH1Cp3X4n46/wDD8v8A4KOf9DdY/wDgps//AI1R/wAPy/8Ago5/0N1j/wCCmz/+NV+xX/Drf9hP/oRv/KnqH/yTR/w63/YT/wChG/8AKnqH/wAk0crD6hU7r8T8df8Ah+X/AMFHP+husf8AwU2f/wAao/4fl/8ABRz/AKG6x/8ABTZ//Gq/Yr/h1v8AsJ/9CN/5U9Q/+SaP+HW/7Cf/AEI3/lT1D/5Jo5WH1Cp3X4n46/8AD8v/AIKOf9DdY/8Agps//jVH/D8v/go5/wBDdY/+Cmz/APjVfsV/w63/AGE/+hG/8qeof/JNH/Drf9hP/oRv/KnqH/yTRysPqFTuvxPx1/4fl/8ABRz/AKG6x/8ABTZ//GqP+H5f/BRz/obrH/wU2f8A8ar9iv8Ah1v+wn/0I3/lT1D/AOSaP+HW/wCwn/0I3/lT1D/5Jo5WH1Cp3X4n46/8Py/+Cjn/AEN1j/4KbP8A+NUf8Py/+Cjn/Q3WP/gps/8A41X7Ff8ADrf9hP8A6Eb/AMqeof8AyTR/w63/AGE/+hG/8qeof/JNHKw+oVO6/E/HX/h+X/wUc/6G6x/8FNn/APGqP+H5f/BRz/obrH/wU2f/AMar9iv+HW/7Cf8A0I3/AJU9Q/8Akmj/AIdb/sJ/9CN/5U9Q/wDkmjlYfUKndfifjr/w/L/4KOf9DdY/+Cmz/wDjVH/D8v8A4KOf9DdY/wDgps//AI1X7Ff8Ot/2E/8AoRv/ACp6h/8AJNH/AA63/YT/AOhG/wDKnqH/AMk0crD6hU7r8T8df+H5f/BRz/obrH/wU2f/AMao/wCH5f8AwUc/6G6x/wDBTZ//ABqv2K/4db/sJ/8AQjf+VPUP/kmj/h1v+wn/ANCN/wCVPUP/AJJo5WH1Cp3X4n46/wDD8v8A4KOf9DdY/wDgps//AI1R/wAPy/8Ago5/0N1j/wCCmz/+NV+xX/Drf9hP/oRv/KnqH/yTR/w63/YT/wChG/8AKnqH/wAk0crD6hU7r8T8df8Ah+X/AMFHP+husf8AwU2f/wAao/4fl/8ABRz/AKG6x/8ABTZ//Gq/Yr/h1v8AsJ/9CN/5U9Q/+SaP+HW/7Cf/AEI3/lT1D/5Jo5WH1Cp3X4n46/8AD8v/AIKOf9DdY/8Agps//jVH/D8v/go5/wBDdY/+Cmz/APjVfsV/w63/AGE/+hG/8qeof/JNH/Drf9hP/oRv/KnqH/yTRysPqFTuvxPx1/4fl/8ABRz/AKG6x/8ABTZ//GqP+H5f/BRz/obrH/wU2f8A8ar9iv8Ah1v+wn/0I3/lT1D/AOSaP+HW/wCwn/0I3/lT1D/5Jo5WH1Cp3X4n46/8Py/+Cjn/AEN1j/4KbP8A+NUf8Py/+Cjn/Q3WP/gps/8A41X7Ff8ADrf9hP8A6Eb/AMqeof8AyTR/w63/AGE/+hG/8qeof/JNHKw+oVO6/E/HX/h+X/wUc/6G6x/8FNn/APGqP+H5f/BRz/obrH/wU2f/AMar9iv+HW/7Cf8A0I3/AJU9Q/8Akmj/AIdb/sJ/9CN/5U9Q/wDkmjlYfUKndfifjr/w/L/4KOf9DdY/+Cmz/wDjVH/D8v8A4KOf9DdY/wDgps//AI1X7Ff8Ot/2E/8AoRv/ACp6h/8AJNH/AA63/YT/AOhG/wDKnqH/AMk0crD6hU7r8T8df+H5f/BRz/obrH/wU2f/AMao/wCH5f8AwUc/6G6x/wDBTZ//ABqv2K/4db/sJ/8AQjf+VPUP/kmj/h1v+wn/ANCN/wCVPUP/AJJo5WH1Cp3X4n46/wDD8v8A4KOf9DdY/wDgps//AI1Sr/wXM/4KNhgT4tsSB2Ok2fP/AJCr9if+HW/7Cf8A0I3/AJU9Q/8Akmkb/glt+wmVIHgbBPcanqHH/kzRysPqFTuvxPy00X/gv3+33pePtz+HNSx/z86aVz/35ljr6P8Ah5/wcgfG7TnVfiv8OtE1hM/M2lXM+nNj6TfawT+WfavoPWP+CRX7GWp5+xabqenZ/wCfe/kbH/f0SV4f41/4IlfBPUbdj8P/ABdrOkzkHBvUhvowf91Et2x/wM0uVkvA1UffPwe/4ODP2O/HeoRaT8TNL1vwVJKVBuZ4lvbNSeOXgJl49fJxiv2H+Evx6+C3x40UeIfg14p0zxLabdzNYXKTNH2xIgO9D7OAa/ik+I//AARm/aS8LQy3vgPVNJ8TRRglYlka0uWx2CSjy8n/AK61+cmr+H/jl+zT48hfVINX8F+IbNt8Eo8yznXaQd0cilcjpypIPrSsc86U4fEj/TQor+Ov9kL/AIL/APxl+G32Xwh+1Rpv/Ca6OmE/tS1CwapEvqw+WKfA9fLY9S5Nf1Mfs6/tPfA/9qzwHH8RPgbr0Gs2PyrcRqdtxaysN3lzxH543HoRg4ypI5oMz3yiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/1f7+KKKKACiiigAoor+Yj/grt/wV/wBS8I6lqn7Kn7KGpiLUId1rr/iK0ky9u/IktbR1+7Kv3ZZgcxnKrhwSoB9Qf8FJv+Czngz9ljUrz4LfAGK18T+O4VeK8uXbfYaVJ02vtP76dT1iBCoeHOcpX8kPjDxv+0J+2L8Xv7a8VXepeNPFusOEQYMr47JGigLHGvooVFHPArd/Zn/ZZ+K/7V/jr/hGvAduRawuralqk4P2e0Ryfmdv4nbB2Rj5nIPQBmH9YH7NX7Jvwf8A2WvC66J8O7BW1CaNUvtUnAa7umXk7m/hXPIRcKPc81jVrKGnU9LA5bPEe89I9/8AI/Ln9mj/AII4aPZRW3in9pvUDd3Bw50XT32xL/szTj5m9xHtHo5Fftb4F+Hvgb4Y+HofCfw90m10bToB8kFpGI0z6nHVj3Y5J7muxorgnUlLdn1OHwlKirU4/PqFFFFQdIUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB8TftEf8E//ANnH9o1JtS17SRo+uSAkappgEE5bsZFxsl5671LY4DCv58P2sv8AgnN8aP2Yo5fFFqP+Em8LJuZtSs4yrW6g4H2iLkx5/vAsn+0DxX9dFRTwQXUD21yiyRyKVdGGVZTwQQeCCK2p15R9Dz8VltGsm7Wl3R/K5+wf/wAFXP2gv2Kb238LSTN4q8CmRfO0S9kOYE7m0lOTC3fbgxk9VzyP7VP2V/2sfgx+2J8L4Pil8GdSF1bkiO8tJMLdWU+MmKePJKt6HlWHKkjmv5j/ANuj/glloviSxvfix+zJZLZ6rHunu9Ci4huR1ZrYdEk7+WPlb+HB4b8b/wBmL9qX44/sVfF6P4j/AAovH0/ULV/s+oafdK32a7iRvnt7mLKkjII6h0blSrDNd9Oopq6PlcVhKmHlyzXo+5/pKUV8g/sT/tnfC/8Abh+C1p8WPh6fsd5Hi31fSZZA8+nXgGWjYgDejfeilCqJE5IVgyL9fVZyhRRRQAUUUUAFFFFABRRRQAUUUUAFFFebfGT4l6N8GfhL4m+LfiAgWXhrS7rUpQTjcttG0m0e7Y2gdSSAKAP5o/8AgvH/AMFA/EVrrr/sS/CXUTa2i28c3im4t2AeUzDdHZFgchNhWSYcFtyqfl3A/mX/AMEyv+CcWsftn+MpPGfj0T6f8PNEl2XlxEdkt9cAAi2hYg4wCDK4+6pAGGYEfBBm+Iv7Tvx2V7+ZtR8U+OtaVWkfJ8y71CYD3IXc/QdFHHSv79/2d/gh4U/Zw+C3h74LeDUAs9CtFhMm0K08x+aWZsfxSSFnPua8jN8e6FNRh8UvwR1YWjzyu9kd34D8BeDfhf4P0/wB8PtNg0jRtKhEFraWy7I40X07kk5LMcsxJJJJJrrqKK+Lbbd2esFFFFIAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDkfHngLwb8UPB+oeAPiDpsGr6NqsJgurS5XfHIjevcEHBVhhlIBBBANfxif8ABTX/AIJxax+xh4yj8Z+AhPqHw81uXZZ3Ep3y2NwQSbaZgBnIBMTn7ygg5ZST/bTXi37RHwQ8KftH/BbxD8FvGSA2eu2jQiTaGaCYfNFMuf4o5Arj3Fehl2Olhqif2Xuv19TCvRVSPmfhn/wQc/4KB+IrrXU/Yl+LWom6tGt5JvC1xcMC8RhG6SyDE5KbA0kI5K7WUfLtA/qlr/MvE3xF/Zi+OzPYTNp3inwLrTKsiZHl3enzEexK7k6Hqp561/pD/Bv4l6N8ZvhL4Z+Lfh8g2XiXS7XUogDnatzGsm0+652kdQQQa+7TTV0eMek0UUUwCiiigAooooAKKKKACiiigArJ1/XtF8LaHeeJvEd1HY6fp0Elzc3EzBI4oYlLO7MeAqqCSfStav5m/wDgv3+3DdeFtAtP2K/h9cNHd6zDFqHiKaNirLabiYLbIx/rWXzJB/cCjoxoA/Jr/gqr/wAFJNc/bh+Jq+FPA09xZfDbw5M40y0YlPt04ypvZ04yxGVhVuY4yejO+eo/YD/4Jf618cYbD4yfHeOXTfB0wE9lYqdl1qS/wse8UDdQ3DyLyuFZXrxb/gmp+xun7UXxabxD4yh3eD/C7xz36MDi7mbJjtgfRsbpOchBjgsCP67Le3t7S3S0tEWKKJQiIgCqqqMAADgADoK3pU76s5a9bl92O5h+FPCPhfwJoFt4V8Gafb6XptmgjhtrWNYokUcYCqAP8a6Kiiuk4QooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK+Af20P8Agn98Lv2sdAm1a1ji0PxlBGfsmqxIAJWHIjugozJGegb76ZyMjKn7+opNJqzKjJxd0fwseNfBPxq/ZJ+My6Rrf2nw34r8O3Ed1a3NtJtZWU7op4JV+8pxlWHuDgggf21/8Euv+CkXhv8Abq+GjaH4o8vT/iJ4egT+17NcKl1GMKLyAf8APN2IDp/yzc4+6VJ+Pf8AgoJ+xlpH7WXwqaXRY47fxjoSPNpV0Rgyjq1tIRzskx8p/gfBHBYH+Xj9l39oLx5+x7+0Rofxj8NJJHfaBdmO9s3ynn25Oy4t5Bx95cjn7rAHqBXJUhys9GlV515n+k7RXC/DD4j+FPjB8OtE+KfgW4+1aP4gsob+0k6ExTqGAYAnDDOGGeCCK7qszUKKKKACiiigAooooAKKKKACiivI/jx8bPAn7Onwi1340fEm6FrpGg2rXEp/ikfpHEg7vI5CIO7EUAfL3/BQ39vXwF+wh8GpPFupmHUPFeqq8GgaQzc3M4AzJIFIYQRZBkYYzkICGYV/CF8T/il8cf2vvjRL4z8c3V34o8WeIJ1iijjUu3JOyGCJeEjXOFRQAOvXJrq/2l/2i/i9+2/+0Bd/E3xpvu9V1mdLTTdOgyyW0BciC1gXrhS2PVmJY8k1/Rl+wL+wvoH7LXg9PFXi2KK88c6rEDd3GA4s425+zwnsB/y0Yffb/ZArehQdSVug0rnz9+xx/wAEpfBvw9tLP4gftHQx634hBEselbhJY2h7CTGRO475zGD0Dfer9kYIILWBLW1RY4o1CoijCqo4AAHAAHQVLRXs06UYK0UWFFFFaAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAQXVrbX1tJZXsazQzKUkjcBlZWGCCDwQRwQa/Fv9sj/AIJQeFfGNld/ED9mWCPSdbB8yTRiwSzufXyS3EL9wM+Weny9a/auis6lKM1aSCx/EX8Lfip8b/2RPjND418B3V34Y8V6BO0MsciFGGDiSCeJuHRsYdGBB+oBr+7/AP4J5ft6+Av27/g1H4t0ww6f4r0pUg1/SFbm2nIOJIwxLGCXBMbHOMFCSymvyU/4KC/sOaL+074Jk8ZeDLeO28c6PEWtZVAX7dEoz9nlPGT/AM8mP3W44VjX86f7L37SfxW/Ys+PVh8VvApe21HSpjbahYTZRLq33AT20y9QG246ZRgGHIFeNXoOnKz2Iasf6SlFeWfBH4xeCf2gPhNoPxl+Hdx9p0fxDaJdwN/Eu7ho3HZ43BRx2YEV6nWAgooooAKKKKACiiigAooooAKKKKACiiigAooqvd3drp9rLf30qQwQI0kkkjBURFGSzE8AAcknpQBFqWpado2nXGsaxcR2lpaRvNPPM4jjijjBZndmICqoBJJIAHJr+TD/AIKTf8FwfEfjC/1H4I/sY3z6bokZa3vPE8eUubsjhls88xRdvNwJG6rtHLeB/wDBXL/gqrrn7Tvim9/Z9+A2pPa/DTTJPLu7iAlW1y4jPLuw5+yoR+6j6OR5j7v3ax/In7DH/BPnxt+1VrEPjHxUs2jeBLeUia+xtlvChw0VtuBB5BVpCCqHI+ZhtoLhBzfLE+a/gT+zT8cf2p/FsmmfDbTZdQcyFrzUblittCz/ADFppiD8x64G527A1/R3+zF/wSz+AfwQsoNa+IdtF408Rja7T3sebSFxg4igOVIB/ik3Meo29K/QP4cfDbwP8I/Btl4A+HWnRaXpNgm2KCEYHPVmJ5ZmPLMxJJ5JruatI9ajhIw1lqyG3t7e0gS1tUWKKJQiIg2qqjgAAcAAdBU1FFM6wooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK4/wAcfD3wL8S9Ck8M/ELSLTWtPlBDQXkKzJz3AYHB9CMEdq7CigGr7n4Hfta/8EfLS5W58cfsrSiCQBpJNAupCVY5zi2mc/L7JIcejjpX46/Dj4o/tEfsY/F8eIPBN5qHg7xRpEuyeF1Me8KeY54XG2WNv7rqynqOxr+3uvjj9sH9i/4bftc+Df7O11V03xDZIf7O1eNA0sJPOyQceZET1QkY6qQalxOGvglLWGjPa/8Agmh/wVn+H37aGlwfDP4nNbeHPiXAnNmCUttUVBkyWhYk7wBl4CSwHzKWUNt/Yyv80n4zfBL4x/sofFIeFvG8M2k6vp8q3Nhf2rsscojbMdxbTDaSAQCCMOjDDBWBA/rj/wCCQf8AwVLj/au0BPgD8dbxU+JGkws9tdOAi6zaRDlxjAFzGP8AWoAN6/vFzhwknlNNOzP3TooooEFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH/9b+/iiiigAoor5D/bk/a08LfsXfs6618atfVLm9iAtdJsnJH2zUJgfKjyMkKMF3PZFbHOKAPyu/4LQf8FO779n3SZ/2VvgVdtB4z1i1DatqULbX0u0nHypEw5FxKvIYEGNCGHzMpX+YL9kb9lfxp+1j8UovBHh4m00y1Cz6rqJXclrbk/k0j4Kxp/Eck4VWI4KGL4sftXfHVjJJJrXi7xpqTSSSSt9+edizMxOdqIMk9kReOBX9gX7Mf7Ongv8AZi+E9h8NvCMSmVFEuoXeMSXd2wG+Rj1xxhB/CoArGtV5FpuenluB+sTvL4Vv5+R3Hwh+D/w++BXgOz+HHwz09NP0yzGcLzJLIQA0srdXkbA3MfYDAAA9Noorzm76s+wjFJWS0CiiikMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKK5/xZp+s6t4V1PSvDl5/Z2oXVpNFa3W3d5EzoQkm3vsYhsd8V+ZFz4b/AOCrvwjiOs6X4j8OfEu2t4zmxubdbSdwNn3TGlvl/vYLSnPcEkCrjG/Uxq1nD7La8v6ufqvRXxN+zN+274F+Put3Pwy8R6fc+D/Huljbe6FqWEkaRQS/2cnDSKoGSCquBzt2/NX2zUyi07MqnVjUjzQd0FFFFI0CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK/J7/gon/wT40n4+6HcfFz4RWcdr45skLzwxgImrRKPuP2FwoH7uTjcPkfI2Mn6w0VUJuLujGvQhWg4TWh/Gb+x7+118X/ANhf44Q/EbwM0iiOQWus6RcbkivbZW+eGVTyrqclHxujf1G5T/oF/s+fHj4fftMfB/Q/jX8MboXOk63AJVBI8yGQcSQyAE7ZI3BVh6jjIwa/ks/4K5/sfwQxj9qT4d2QT5lh8QQwpgEscR3RA7k4SQ45O1j/ABGuU/4Imft9yfs3fGUfAD4kXrL4K8b3KRwtIwEdhqj4SOXJ+6k3EcnYHYx4U16dOakro+KxWGlQqOnL/hz+2WiiirOYKKKKACiiigAooooAKKKKACvyW/4Le+LLjwx/wTm8ZWtrKYpNXutMsAVOCVa7ikdfoyRsD6gkV+tNfh1/wcEyOn7B1sqEgP4o04NjuPKuD/MCgD+eT/gjP8P9P8d/t6+GrrU4vPh8P2l7qu09PMiiMcbH/dkkVh/tAV/bhX8gn/BASOOT9sjxGzqCU8G3pUnsfttiMj8CRX9fdfG59JvE27JHq4NfuwooorxTrCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/iH/AOCyPgjTPBf7fPiuXSYvIi1q3sdSZR082aBVkYf7zozH/aJr+n//AIIheLLjxP8A8E5vBtrdSmWTSLrU7AljkhVu5ZEX6KkigegAFfzsf8F3kVf23LYqMFvDVgT7nzbgV+5X/BvtI7/sHXSuSQninUAuew8q3P8AM1+g4CTeGpt9keJXX7yR+41FFFdZkFFFFABRRRQAUUUUAFFFFAFLUtRsdI06fVtTlWG2tY3mlkbhURAWZj7ADNf5sf7U/wAcNc/af/aQ8W/GrUg7y+I9SkltouSyWwPl28QHJ+SJUT8K/u8/4KcfEfUvhT+wP8UfGGkNsuToz2CODgodSdLPcD6qJsj3Ffw9fsD/AA9034o/theAvCOsJ5lqdR+2SoRkOthG91tI/ut5WD7Gmld2E3ZNn9XP7HP7Puk/s0fs/aF8NrOMC+8oXepy4w0t9OAZSeT93hF/2VFfUNFFdyVtDyW7u7CiiimIKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr+VP/AIK//s96Z8Jvj/a/Ezw1D5On+OYpbqVFXCJfQFRPg/7YZJCP7zNX9Vlfkz/wWU+H9l4o/ZNTxkyf6V4Z1a2uEcDnyrkm3dfoWdD9VFZ1VeJtQlaaPaP+Den9o3UfiB+z/wCI/wBnvxBMZZ/Al5HcWBYkn7BqJdtgyTxHMkh46CQCv6Fq/iY/4N+viHd+FP25LjwarZtvFHh+9tWQnjzLZo7lG+oWNx9GNf2z1xnpBRRRQAUUUUAFFFFABRRRQAV/I1/wcMftTapr/wAUdB/ZN8N3jppegW0eraxChwst9cg+Qj4PPlQ/OARj97nqBX9bOoahZaTYT6pqUiw29tG0ssjcKiIMsT7ADNf5qHx9+KHiH9pL9ojxP8UrsvcXvizWJriFCMEJNJthjA9ETYgHoKAP1O/4JA/ssR+JPEFz+054wgD2ekyPZ6NG+CHusfvZsEdI1bah/vEnqtf0S147+z98I9K+BPwZ8O/CjSApXR7NIpXUY8y4b5ppOg+/IWb8a9ir3qFL2cFEtIKKKK2GFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV/N1/wV2/ZYi8C+Nbf9o7wfBs03xJMLfVEXOIr/aSsmOgEyqc/wC2pPVq/pFrwb9p34NWXx++BHiT4V3Kr52pWjG0dhny7qL54W9sSKM4xxkVjiKXPBrqJo/Pf/g3j/aqvtL8aeIv2RfFF4zWOqQtrOhxyEkR3MOBcxJ6eZHiTA4zGx6k1/WTX+aF+zn8Wdc/Z2/aE8J/F3Tne2ufDOrQXMox8xiR9s8ZHo8ZdGHoTX+lta3Nve20d5aOJIplDo6nIZWGQQfQivBIJ6KKKACiiigAooooAKKKKACiiigAooooAK/lV/4Lqf8ABRfUpNVuf2JfgzqDQ20SD/hK7u3fBldsMtiGU5CgYM4/iJCHgOD+1X/BSz9saD9ir9lzVviPpTxN4m1JhpmgwyYYNezA/vCuQSkKBpD2JAU/er+Eb4MfCvx9+1R8c7HwNp00l1qviG8ee9vZcuUViZJ7iU8k4BLEn7zEDqRQNJt2R9Tf8E+P2F9U/as8aHxR4xSS28D6LKv22VSUa8lHItomHIyOZHHKqeCGYEf1o6No+k+HdItPD+g20VlY2MKW9tbwKEiiiiUKiIowFVVAAAGABXH/AAp+F/g/4MfD3S/hn4DtVtNM0mBYYlA+ZyPvO5/id2yzHuSa9Cq0j3KFBU426hRRRTNwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA+cP2o/2ZfAX7VPwtuvh340QQ3ChpdOv0UGWzucYV19VPSRMgOvGQcMP5A/Gng34zfsi/G7+yNRkn8P+KvDN0lxaXdq5U7kO6KeCTjcjYypx04YA5A/uLr84/wDgpP8Asjw/tKfBmXxD4WtQ/i7wwj3NgUUeZcwgZltiep3D5kGfvgDjcaTRx4vD865o7o/Sz/gmL+3Xpn7cv7P0HiPWZIYfGegFLLxBaxjYPOx8lwi9o5wCwxwrBl7V+kFf51H7An7X3in9ib9pHSfilp7yNpErix12yBIFxYSMPMG3u8ePMj44ZcdCc/6IWha3pPibRLPxJoFwl3YahBHc208ZyksMqhkdT6MpBFQeOatFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH/9f+/iiiigAr+Jj/AILrfte/8L2/aYX4H+FLrzfDnw632r7DlJtUkx9objr5WBCPRlfHWv64v2sfjdZ/s4fs2eNfjddkBvD2lT3FuCAQ90w2W6HPHzzMi/jX+eT8Cfhrrn7R/wAftC+H1zPJLc+JNRzeXJ+aQRkmW4lJ7sEDtz3pN21KhFykordn7q/8Egv2YLXwh8Pp/wBo7xVaj+1vEG+30vzF5hsUOGdcjIMzg8/3FGOGNftNWN4c8P6P4S8P2Phbw9AtrYadBHbW8KcKkUShVUfQACtmvLnPmk2fd4agqNONNdAoooqDcKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD4e/bM/ZMi+O/h2Dx38MxBo/xK8OSR3ejawg8qVmgbcIJJB1Q/wAG7IRuRwWB6j9ij9o2X9pb4I23ivXEMHiHSp20zW4Gh8jZfQqpYhCzEKysp7c5GBggfXNflp+yJav8PP25/j38JtPVBp1xcWGuIiE7Y5bxPOcKD03faOew2gAAVqvei0+hxTj7OvGcdpaP1tdP8D9S6KKKyO0KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAxvEfh3Q/F2gXvhbxNax3unajC9vcwSjKSRSAqykehBr+Lf9q34Eap+zT8etb+GExc21rN9o06c9ZbOX5oXznqB8rf7Smv7Ya/Hb/gsP8AAK18a/Biz+OWlQk6n4SlWG5ZRkvY3LhTnn/lnKVYccBmrow8+WVu55Ob4X2lHnW8dfl1/wAz9pP+CVX7XSfte/sk6L4k1u5E3ifw6Bo+tgn52uIFGyY/9d49rk9N+4DpX6S1/Eb/AMEFf2hJPhR+2V/wqvVLnytK+INjJY7GJ2fbrYGa3b0yQJIxkdZK/tyr0D5EKKKKACiiigAooooAKKKKACvw3/4OC/8Akw+0/wCxp0//ANE3NfuRX4b/APBwX/yYfaf9jTp//om5oA/F/wD4IBf8nj+Jf+xMvP8A0usa/r4r+Qf/AIIBf8nj+Jf+xMvP/S6xr+vivi88/wB6foj1sH/DCiiivHOoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD+OH/gu/8A8nt2n/Ys2H/o24r9xf8Ag3z/AOTELz/satQ/9E21fh1/wXf/AOT27T/sWbD/ANG3FfuL/wAG+f8AyYhef9jVqH/om2r7/Lv91p+h4tf+JI/cmiiiu0xCiiigAooooAKKKKACiiigD8mv+C3uoS2f/BNvxzbx9Lq40iJvoL+3f+aiv5av+CRWnRX37bGi3MnWz0/UJk+phaP+Tmv6hf8AguV/yjj8Xf8AX9pP/pZFX8xf/BHz/k8+x/7BN/8A+gCrh8SIq/Az+tGiiiu08oKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK+I/8Ago9pEGt/sSfEGzuPupYxXA/3reeKVf1QV9uV8df8FA/+TMPiJ/2CX/8AQ1qZbMun8SP55v8AgjZq8+jf8FJPhpNDyJ5tRt2Hqs1hcr+hIP4V/ftX+fl/wSG/5SOfC/8A6/rv/wBI7iv9A2uE9UKKKKACiiigAooooAKKKKAPiL/gpL4+1D4afsIfFPxZpT+VcDQbizjfoVa+xbbh7jzcj3r+Fn9hvwVa/EH9rfwF4bvQGh/tWO7dTyGWyDXBU+x8vBr+yb/gtrq8ulf8E2vHsMOc3s2k25I7A6hbufzC4/Gv5N/+CWNkl3+274Tmf/l2h1GQfX7HMv8A7NWlFXqRXmho/rdooor6AsKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP4vf22/Adp8Nv2sfHfhPTwFt01SS6iUcBEvALhVHsokCj6V/el+wP44vfiN+xV8LfGGpP5l1c+GtPSd+peWCJYnY+5ZCT71/El/wVOsktP23fFkyf8vMOnSH6/Y4V/wDZa/ry/wCCOWry63/wTa+GN7NnKW+oW/Ppb6hcxD9EFfP1lacl5shn6Z0UUVmIKKKKACiiigAooooAKKKKACiivBf2o/jVp/7On7O/jH43algjw5pc91Ep6SXG3bAnP9+VkX8aAP43v+C3P7W0/wC0R+1td/DbQbgv4a+HBl0i3VWykl/kfbJcAkZ8xRED/djB7mvu/wD4JB/s42Hw7+Cb/HHWrbGt+MCwgd+senRNhFA7eY6lz6jZ6V/Or8NfBvib4/8Axq0nwZ57T6n4q1RI5rh+W33EmZZW+gLOfpX9w/hXwzo3gvwxp3g/w7EILDSraK0tox0WKFQij8ABVRO/AU7yc30N+iiiqPVCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP5Rf+CrX7Nll8Efj6vjnwrbfZ9C8aJJeqqLiOK9Rv9IRcAAA7lkA/2yBwK/f7/ggf+1pN8Yf2db39nnxVOZNZ+HbItozH5pdKuSxiHT/li4aPrwhQV5//AMFK/gTH8cP2VtbNlGG1Xwwp1qybHzf6MpMyD/fh34HdgtfiB/wR2/aC/wCFAft2+FJdQn8jSfFpbw7fbn2Ji+IEBbPHy3CxEk9BnkVDR4uLp8lTTZn99dFFFI5QooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD/9D+/iiiigD+dn/g4q+Ndz4V/Z/8H/A3TZQj+LtUkvbpQfmNtpiqQpHo0syNz3TjvX5V/wDBFn4SR638SvE3xm1BA0ehWiafak/897wlnYe6xpt+j1uf8HBHxS/4TP8AbatPh9bSZg8HaDaWzpnpc3ha6c/jHJF+VfZ3/BH7wR/wjP7JQ8TSR4k8R6vd3Yc9Wjh22wH0DRP+JNY4iVoM9PKKXPiVfpqfqhRRRXmn2IUUUUAFFFFABRRRQAUUUUAFFFFAHNf8Jn4P/wCEk/4Q3+1rP+19u/7D56faduN2fKzvxt5zjpzS+JPGPhHwbbx3ni/VbPSopm2RveTpArNjOAXIBOOcCv5L/wDnbi/7lz/3X62f+Duj/k1b4U/9jXcf+kb1sqXvRjfdHBLGtUqlTl+FtetrH9V3iTx/4E8GtCvi/W7DSjcgtCLy5jg8wLjJXewzjIzj1qjofxS+GXie9XTfDfiPS9QuX+7FbXkUrn6KjE1/HZ/wc1aD4I8VftHfsleGPiZdJY+G9Slu7XVrmSYW6Q2M11pyTu0rfLGFjLEueFxk9K+Tf+Clv7Cf/BC/4A/so658Uv2OPjPb6h8S9Kms5NDsdJ8TWutvcymeNXV4rfc6KsReQSh02MoOT91nGimlrv5GdXHzhOaUVaPd2e19ND++/VNY0jQ7X7drV1DZw5C+ZO6xrk9BliBmrdvcQXcCXVq6yxSqHR0O5WVuQQRwQR0Nfxbf8FI/iD8avip/wbNfCTx/+0K11N4s1LUtHe6nvSzXFzCr3aWtxIzfMzz2yxSljksXySc5P9Sf/BPr/kwn4If9iB4a/wDTdBUSp2V/M6aWJ9pU5LdE/vPryivzC/4KL/8ABUH4d/8ABPu48G+Bj4V1j4g+P/iHdPaeHfDOhqPtF00bIjM7kNsBaRUQKju7HAXAZl8N/ZD/AOCxV98df2pYf2Nf2jPgr4q+DPjvULJr/TodW/0u0uIUV25mEUJj3iN/LYoY2ZGTeHwpShK17FvE0lP2blqftfRRRUG4UUUUAFFFFABRRRQAUUUUAFFFFABX5ifAv/lJ38cP+wVon/pLbV+ndfmJ8C/+Unfxw/7BWif+kttWlPaXocuJ+Kl/i/8AbZH6d0UUVmdQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVw3xO8B6R8Ufh3rnw514A2muWM9lJkZ2iZCu4e6k5HuK7mihCaTVmfwy+G9c8Y/s7/G2z8QWBNvr3gnWklXaSNtzp82SMjnG5MH2r/Sw8C+LdO8feCdH8d6P/wAemtWNvfwc5/d3MayLz34YV/nsf8FHPBB8CftmeNrJF2xahdR6lGcYDfbY0lc/9/GYfUV/Zr/wST+Jf/C0v+Cevw11eaXzLjTNPfR5QTkp/Zsr2yA/9so0I9iK9eLukz4CtT5Kkodm0fo5RRRTMwooooAKKKKACiiigAr8N/8Ag4L/AOTD7T/sadP/APRNzX7kV+G//BwX/wAmH2n/AGNOn/8Aom5oA/F//ggF/wAnj+Jf+xMvP/S6xr+viv5B/wDggF/yeP4l/wCxMvP/AEusa/r4r4vPP96foj1sH/DCiiivHOoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD+OH/gu/wD8nt2n/Ys2H/o24r9xf+DfP/kxC8/7GrUP/RNtX4df8F3/APk9u0/7Fmw/9G3FfuL/AMG+f/JiF5/2NWof+ibavv8ALv8AdafoeLX/AIkj9yaKKK7TEKKKKACiiigAooooAKKKKAPyK/4Llf8AKOPxd/1/aT/6WRV/MX/wR8/5PPsf+wTf/wDoAr+nT/guV/yjj8Xf9f2k/wDpZFX8xf8AwR8/5PPsf+wTf/8AoAq4fEiKvwM/rRooortPKCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvjr/goH/yZh8RP+wS//oa19i18df8ABQP/AJMw+In/AGCX/wDQ1pS2ZcPiR/Of/wAEhv8AlI58L/8Ar+u//SO4r/QNr/Py/wCCQ3/KRz4X/wDX9d/+kdxX+gbXAeqFFFFABRRRQAUUUUAFFFFAH5Ff8Fyv+Ucfi7/r+0n/ANLIq/ld/wCCU3/J63hz/r11H/0mkr+qL/guV/yjj8Xf9f2k/wDpZFX8rv8AwSm/5PW8Of8AXrqP/pNJWtD+JH1Q1uf1n0UUV75YUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAfyYf8FWf+T1vEf/AF66d/6TR1/WX/wRV/5RmfDT/uM/+nW8r+TT/gqz/wAnreI/+vXTv/SaOv6y/wDgir/yjM+Gn/cZ/wDTreV4Ff8AiS9SHufqZRRRWQgooooAKKKKACiiigAooooAK/DX/g4F+Iy+Ev2G7bwZE+JvFfiGytGQd4bZZLpj9A8UY+pFfuVX8sX/AAco+JbjzvhF4PikIi261eSp2Lf6IkZP0G8D60Afl1/wSA+HP/CZftax+KriMNB4W0y6vtzDKiaUC3QfXErMP93Nf1ZV+Cf/AAQ40KKPRfiL4mdAXln021V8cgRrO7AH33rn6Cv3sq1se1g42pLzCiiimdQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBT1HT7PVtPn0rUYxLb3MbRSoejI4IYH6g1/Cr468O618Gfi/q3heJ2hv8Awtq89ukncSWcxVWH4qCDX921fx2f8FMdHi0T9uDx3awIESWazuOBgEz2kEjH8WY596mRwY+PuqR/oB/Cbx5ZfFT4V+Gvidpu37P4j0qz1OLacjZdwrKMfg1egV+cn/BI/wASXvir/gnP8LtTv5DK8Wn3FmCeyWd3PboP+ArGB+Ffo3UnlBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//0f7+KKKKAP8APv8A+Cu2sf25/wAFG/ije5zsv7W3/wDAezgi/wDZK/oP/YB0saP+xt8PrQDG/S1n/wC/7vJ+u6v5qf8AgpFdTXn7enxbmnOWHia/QfSOQqP0Ar+pH9ke2itP2VvhtFCMA+GNJf8AF7WNj+prlxXwo93Il+9m/L9T6GooorhPpwooooAKKKKACiiigAooooAKKKKAP4v/APgoJ8UNO/4Jz/8ABxZ4M/bc+O1heRfDvxPoccLanbQtMsYNhJp0pAUEu1u4jkkjUF/LYEAkgHxT/gux+3l+zv8A8FWtU+C/7Hv7BeqXHjzXrzxC0sk0Flc20Mct3GsEMf8ApMUTMcO7yMF2Rqh3Ec4/tg+K/wAGPhD8ePCb+A/jb4W0nxdokjiU2Os2cV7b+YoIDiOZWUOoJwwGRng15n8Ff2Mf2R/2cNUfXvgJ8MvDHg/UZUaJ73SdKt7W6aNzkoZkQSFSQPlLY9q3jVSs2tUeXUwNSXPTjJcknd6a+dj+Xv8A4OTvBnhvxh+2h+x98PPFNsL3R9V1afTru3clRLbT32mxSISpBAZCQSCDzwa8f/4K+/8ABKXwV/wTJ8U+E/8Ago/+wn4L0298J+GLyKPxN4U1u3/tvTYDIwWK58u985vJlZvKkO4NDIY3iKkkp/Y78Rf2fPgJ8YPEOi+Lfi14I0DxTqvhuTztIvdX0y3vriwk3K++2kmjd4W3ojZjKncqnqBXoHinwr4X8c+G7/wb420211jR9Vgktb2xvoUuLa5glBV45YpAyOjKSGVgQQcEUKs1ZFVMvU5VJPd2afVWR/J//wAFv/2sfhj+27/wQl8MftJfCdwum+IPEmjtLaFg0tjdxrOk9rJjHzwyArnADDDD5WBr6w/Y5/4Lt/8ABKX4Xfsi/Cv4Z+O/ixHYa54d8IaHpmo2x0fVZDDd2llDFNHvjs2RtrqRlWKnGQSOa/ZS3/Yp/Y1tPhxcfBy1+EngyLwhdXq6lPoaaDYrpsl6qhBcPbCHyWmCgKJCu4AYziuC/wCHan/BOb/ogPw3/wDCV0z/AOR6XPC3K0yvYV1U9pGSu0k7p9D8Df8AgtV8Vf8Aglx+114R+BXjv4s+IPGHh6HxW00/gn4k+HtO/wCJZaRyTJHOL5Lp4J9kTxpKVSMTIAGQ4Lg/HX7Dn7WH7Xf7NH/BTb4Z/sZ/CH9o+L9qX4deL5ETUGQy332CzYP5jmWVp3ge2jXztsVy8YUbXA4Ff2Q6t+zR+znr3wnt/gLrXgHw7deB7RQtv4el0u2bS4QpJHl2pj8lMFiRtQYJJHNYnwR/ZF/ZZ/ZquLq8/Z9+HXhzwXcXy+Xcz6NplvZzTIDkK8kaK7KDyFJIHamqqUeWxM8FUlVVTmSel2rp6dN7P5n0RRRRWB6QUUUUAFFFFABRRRQAUUUUAFFFFABX5ifAv/lJ38cP+wVon/pLbV+ndfmJ8C/+Unfxw/7BWif+kttWlPaXocuJ+Kl/i/8AbZH6d0UUVmdQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAfzB/wDBZ7SRZftR6PqSLhb3w3bMT6ulxcqf0C1++f8Awb56x/af7CF5ZZz/AGd4q1C3+m6G2l/9qV+JP/BbW2iX4ueC7wD55NHmQn2SYkf+hGv1t/4NyruZ/wBlDxrYsf3cfiySQD3eztgf/QRXp0fgR8TmStiZ+p/QlRRRWpwhRRRQAUUUUAFFFFABX4b/APBwX/yYfaf9jTp//om5r9yK/Df/AIOC/wDkw+0/7GnT/wD0Tc0Afi//AMEAv+Tx/Ev/AGJl5/6XWNf18V/IP/wQC/5PH8S/9iZef+l1jX9fFfF55/vT9Eetg/4YUUUV451BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAfxw/8ABd//AJPbtP8AsWbD/wBG3FfuL/wb5/8AJiF5/wBjVqH/AKJtq/Dr/gu//wAnt2n/AGLNh/6NuK/cX/g3z/5MQvP+xq1D/wBE21ff5d/utP0PFr/xJH7k0UUV2mIUUUUAFFFFABRRRQAUUUUAfkV/wXK/5Rx+Lv8Ar+0n/wBLIq/mL/4I+f8AJ59j/wBgm/8A/QBX9On/AAXK/wCUcfi7/r+0n/0sir+Yv/gj5/yefY/9gm//APQBVw+JEVfgZ/WjRRRXaeUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFfHX/AAUD/wCTMPiJ/wBgl/8A0Na+xa+Ov+Cgf/JmHxE/7BL/APoa0pbMuHxI/nP/AOCQ3/KRz4X/APX9d/8ApHcV/oG1/n5f8Ehv+Ujnwv8A+v67/wDSO4r/AEDa4D1QooooAKKKKACiiigAooooA/Ir/guV/wAo4/F3/X9pP/pZFX8rv/BKb/k9bw5/166j/wCk0lf1Rf8ABcr/AJRx+Lv+v7Sf/SyKv5Xf+CU3/J63hz/r11H/ANJpK1ofxI+qGtz+s+iiivfLCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD+TD/gqz/yet4j/AOvXTv8A0mjr+sv/AIIq/wDKMz4af9xn/wBOt5X8mn/BVn/k9bxH/wBeunf+k0df1l/8EVf+UZnw0/7jP/p1vK8Gv/El6kPc/UyiiisRBRRRQAUUUUAFFFFABRRRQAV/IH/wcfaq837QXw80M/dt/D004+s1y6n/ANFiv6/K/jr/AODjj/k6LwN/2Kw/9K7igD03/giZpaQ/s7+KNaH3rjxG8B+kNtbsP/RlfsvX4/8A/BFL/k1jX/8Asa7r/wBI7Ov2Aq0e7hv4UQooopm4UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV/Jb/wAFbbBbP9tPWbhet3YafKfqIVT/ANkr+tKv5P8A/gr1/wAnlXv/AGCrD/0E0pHHjv4fzP6jP+CIV+13/wAE2vAtu3S1uNXiH0OoXD/+zV+slfkV/wAENf8AlHH4R/6/tW/9LJa/XWoPHCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/S/v4ooooA/wA5/wD4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/7FXRv/SSKv5Xf+CjH/J+Hxc/7GnUv/RzV/VF+yh/ya18Nf8AsVdG/wDSSKuXFbI97Ifjn6Hv1FFFcJ9MFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFfmJ8C/+Unfxw/7BWif+kttX6d1+YnwL/wCUnfxw/wCwVon/AKS21aU9pehy4n4qX+L/ANtkfp3RRRWZ1BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/OR/wW3/5Kl4I/wCwVcf+jhX6t/8ABuP/AMmu+Of+xpP/AKSW9flJ/wAFt/8AkqXgj/sFXH/o4V+rf/BuP/ya745/7Gk/+klvXp0PgR8Vmf8AvU/66I/ocooorU4AooooAKKKKACiiigAr8N/+Dgv/kw+0/7GnT//AETc1+5Ffhv/AMHBf/Jh9p/2NOn/APom5oA/F/8A4IBf8nj+Jf8AsTLz/wBLrGv6+K/kH/4IBf8AJ4/iX/sTLz/0usa/r4r4vPP96foj1sH/AAwooorxzqCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/jh/wCC7/8Aye3af9izYf8Ao24r9xf+DfP/AJMQvP8AsatQ/wDRNtX4df8ABd//AJPbtP8AsWbD/wBG3FfuL/wb5/8AJiF5/wBjVqH/AKJtq+/y7/dafoeLX/iSP3JooortMQooooAKKKKACiiigAooooA/Ir/guV/yjj8Xf9f2k/8ApZFX8xf/AAR8/wCTz7H/ALBN/wD+gCv6dP8AguV/yjj8Xf8AX9pP/pZFX8xf/BHz/k8+x/7BN/8A+gCrh8SIq/Az+tGiiiu08oKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK+Ov8AgoH/AMmYfET/ALBL/wDoa19i18df8FA/+TMPiJ/2CX/9DWlLZlw+JH85/wDwSG/5SOfC/wD6/rv/ANI7iv8AQNr/AD8v+CQ3/KRz4X/9f13/AOkdxX+gbXAeqFFFFABRRRQAUUUUAFFFFAH5Ff8ABcr/AJRx+Lv+v7Sf/SyKv5Xf+CU3/J63hz/r11H/ANJpK/qi/wCC5X/KOPxd/wBf2k/+lkVfyu/8Epv+T1vDn/XrqP8A6TSVrQ/iR9UNbn9Z9FFFe+WFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH8mH/BVn/k9bxH/166d/6TR1/WX/AMEVf+UZnw0/7jP/AKdbyv5NP+CrP/J63iP/AK9dO/8ASaOv6y/+CKv/ACjM+Gn/AHGf/TreV4Nf+JL1Ie5+plFFFYiCiiigAooooAKKKKACiiigAr+Or/g43/5Oj8DD/qVR/wCldxX9itfx1f8ABxv/AMnR+Bv+xVH/AKV3FAHsv/BFL/k1jX/+xruv/SOzr9gK/H//AIIpf8msa/8A9jXdf+kdnX7AVoj3sN/CiFFFFBsFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFfyf/APBXr/k8q9/7BVh/6Ca/rAr+T/8A4K9f8nlXv/YKsP8A0E0nsceO/h/M/p7/AOCGv/KOPwj/ANf2rf8ApZLX661+RX/BDX/lHH4R/wCv7Vv/AEslr9dag8cKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//9P+/iiiigD/ADn/APgox/yfh8XP+xp1L/0c1f1Rfsof8mtfDX/sVdG/9JIq/ld/4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/wCxV0b/ANJIq5cVsj3sh+Ofoe/UUUVwn0wUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV+YnwL/5Sd/HD/sFaJ/6S21fp3X5ifAv/AJSd/HD/ALBWif8ApLbVpT2l6HLifipf4v8A22R+ndFFFZnUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH85H/Bbf/kqXgj/ALBVx/6OFfq3/wAG4/8Aya745/7Gk/8ApJb1+Un/AAW3/wCSpeCP+wVcf+jhX6t/8G4//Jrvjn/saT/6SW9enQ+BHxWZ/wC9T/rof0OUUUVqcAUUUUAFFFFABRRRQAV+G/8AwcF/8mH2n/Y06f8A+ibmv3Ir8N/+Dgv/AJMPtP8AsadP/wDRNzQB+L//AAQC/wCTx/Ev/YmXn/pdY1/XxX8g/wDwQC/5PH8S/wDYmXn/AKXWNf18V8Xnn+9P0R62D/hhRRRXjnUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/HD/wXf/5PbtP+xZsP/RtxX7i/8G+f/JiF5/2NWof+ibavw6/4Lv8A/J7dp/2LNh/6NuK/cX/g3z/5MQvP+xq1D/0TbV9/l3+60/Q8Wv8AxJH7k0UUV2mIUUUUAFFFFABRRRQAUUUUAfkV/wAFyv8AlHH4u/6/tJ/9LIq/mL/4I+f8nn2P/YJv/wD0AV/Tp/wXK/5Rx+Lv+v7Sf/SyKv5i/wDgj5/yefY/9gm//wDQBVw+JEVfgZ/WjRRRXaeUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFfHX/BQP/kzD4if9gl//AENa+xa+Ov8AgoH/AMmYfET/ALBL/wDoa0pbMuHxI/nP/wCCQ3/KRz4X/wDX9d/+kdxX+gbX+fl/wSG/5SOfC/8A6/rv/wBI7iv9A2uA9UKKKKACiiigAooooAKKKKAPyK/4Llf8o4/F3/X9pP8A6WRV/K7/AMEpv+T1vDn/AF66j/6TSV/VF/wXK/5Rx+Lv+v7Sf/SyKv5Xf+CU3/J63hz/AK9dR/8ASaStaH8SPqhrc/rPooor3ywooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/kw/4Ks/8nreI/8Ar107/wBJo6/rL/4Iq/8AKMz4af8AcZ/9Ot5X8mn/AAVZ/wCT1vEf/Xrp3/pNHX9Zf/BFX/lGZ8NP+4z/AOnW8rwa/wDEl6kPc/UyiiisRBRRRQAUUUUAFFFFABRRRQAV/HV/wcb/APJ0fgb/ALFUf+ldxX9itfx1f8HG/wDydH4G/wCxVH/pXcUDPZf+CKX/ACaxr/8A2Nd1/wCkdnX7AV+P/wDwRS/5NY1//sa7r/0js6/YCtEe7hv4UQooooNgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr+T/AP4K9f8AJ5V7/wBgqw/9BNf1gV/J/wD8Fev+Tyr3/sFWH/oJpPY48d/D+Z/T3/wQ1/5Rx+Ef+v7Vv/SyWv11r8iv+CGv/KOPwj/1/at/6WS1+utQeOFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/1P7+KKKKAP8AOf8A+CjH/J+Hxc/7GnUv/RzV/VF+yh/ya18Nf+xV0b/0kir+V3/gox/yfh8XP+xp1L/0c1f1Rfsof8mtfDX/ALFXRv8A0kirlxWyPeyH45+h79RRRXCfTBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABX5ifAv/lJ38cP+wVon/pLbV+ndfmJ8C/8AlJ38cP8AsFaJ/wCkttWlPaXocuJ+Kl/i/wDbZH6d0UUVmdQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAfzkf8Ft/+SpeCP8AsFXH/o4V+rf/AAbj/wDJrvjn/saT/wCklvX5Sf8ABbf/AJKl4I/7BVx/6OFfq3/wbj/8mu+Of+xpP/pJb16dD4EfFZn/AL1P+uh/Q5RRRWpwBRRRQAUUUUAFFFFABX4b/wDBwX/yYfaf9jTp/wD6Jua/civw3/4OC/8Akw+0/wCxp0//ANE3NAH4v/8ABAL/AJPH8S/9iZef+l1jX9fFfyD/APBAL/k8fxL/ANiZef8ApdY1/XxXxeef70/RHrYP+GFFFFeOdQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH8cP/Bd//k9u0/7Fmw/9G3FfuL/wb5/8mIXn/Y1ah/6Jtq/Dr/gu/wD8nt2n/Ys2H/o24r9xf+DfP/kxC8/7GrUP/RNtX3+Xf7rT9Dxa/wDEkfuTRRRXaYhRRRQAUUUUAFFFFABRRRQB+RX/AAXK/wCUcfi7/r+0n/0sir+Yv/gj5/yefY/9gm//APQBX9On/Bcr/lHH4u/6/tJ/9LIq/mL/AOCPn/J59j/2Cb//ANAFXD4kRV+Bn9aNFFFdp5QUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV8df8FA/+TMPiJ/2CX/8AQ1r7Fr46/wCCgf8AyZh8RP8AsEv/AOhrSlsy4fEj+c//AIJDf8pHPhf/ANf13/6R3Ff6Btf5+X/BIb/lI58L/wDr+u//AEjuK/0Da4D1QooooAKKKKACiiigAooooA/Ir/guV/yjj8Xf9f2k/wDpZFX8rv8AwSm/5PW8Of8AXrqP/pNJX9UX/Bcr/lHH4u/6/tJ/9LIq/ld/4JTf8nreHP8Ar11H/wBJpK1ofxI+qGtz+s+iiivfLCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD+TD/gqz/yet4j/wCvXTv/AEmjr+sv/gir/wAozPhp/wBxn/063lfyaf8ABVn/AJPW8R/9eunf+k0df1l/8EVf+UZnw0/7jP8A6dbyvBr/AMSXqQ9z9TKKKKxEFFFFABRRRQAUUUUAFFFFABX8dX/Bxv8A8nR+Bv8AsVR/6V3Ff2K1/HV/wcb/APJ0fgb/ALFUf+ldxQM9l/4Ipf8AJrGv/wDY13X/AKR2dfsBX4//APBFL/k1jX/+xruv/SOzr9gK0R7uG/hRCiiig2CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACv5P8A/gr1/wAnlXv/AGCrD/0E1/WBX8n/APwV6/5PKvf+wVYf+gmk9jjx38P5n9Pf/BDX/lHH4R/6/tW/9LJa/XWvyK/4Ia/8o4/CP/X9q3/pZLX661B44UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//V/v4ooooA/wA5/wD4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/7FXRv/SSKv5Xf+CjH/J+Hxc/7GnUv/RzV/VF+yh/ya18Nf8AsVdG/wDSSKuXFbI97Ifjn6Hv1FFFcJ9MFFFFABRRRQAUUUUAFFFFABRRRQAUV4L+0L+0j8L/ANmHwjaeNvirPPDZX14tjELeIzSGVkeT7oIO0KhyexwO9fH3/D3X9jj/AJ/dV/8AABv/AIqrVOTV0jCpiqMHyzmkz9O6K/MT/h7r+xx/z+6r/wCADf8AxVH/AA91/Y4/5/dV/wDABv8A4qn7KfYj69h/+fi+8/TuivzE/wCHuv7HH/P7qv8A4AN/8VR/w91/Y4/5/dV/8AG/+Ko9lPsH17D/APPxfefp3RX5if8AD3X9jj/n91X/AMAG/wDiqP8Ah7r+xx/z+6r/AOADf/FUeyn2D69h/wDn4vvP07or8xP+Huv7HH/P7qv/AIAN/wDFUf8AD3X9jj/n91X/AMAG/wDiqPZT7B9ew/8Az8X3n6d0V+Yn/D3X9jj/AJ/dV/8AABv/AIqj/h7r+xx/z+6r/wCADf8AxVHsp9g+vYf/AJ+L7z9O6K/MT/h7r+xx/wA/uq/+ADf/ABVd/wDC7/gpd+yp8XPHmm/DnwxqV7FqWrSi3tRc2bxxvK33U3DIBY8DOBnvQ6U+w1jaDdlNfefflFFFZnSFFFFABRRRQAV+YnwL/wCUnfxw/wCwVon/AKS21fp3X5ifAv8A5Sd/HD/sFaJ/6S21aU9pehy4n4qX+L/22R+ndFFFZnUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH85H/Bbf/kqXgj/sFXH/AKOFfq3/AMG4/wDya745/wCxpP8A6SW9flJ/wW3/AOSpeCP+wVcf+jhX6t/8G4//ACa745/7Gk/+klvXp0PgR8Vmf+9T/rof0OUUUVqcAUUUUAFFFFABRRRQAV+G/wDwcF/8mH2n/Y06f/6Jua/civw3/wCDgv8A5MPtP+xp0/8A9E3NAH4v/wDBAL/k8fxL/wBiZef+l1jX9fFfyD/8EAv+Tx/Ev/YmXn/pdY1/XxXxeef70/RHrYP+GFFFFeOdQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH8cP/AAXf/wCT27T/ALFmw/8ARtxX7i/8G+f/ACYhef8AY1ah/wCibavw6/4Lv/8AJ7dp/wBizYf+jbiv3F/4N8/+TELz/satQ/8ARNtX3+Xf7rT9Dxa/8SR+5NFFFdpiFFFFABRRRQAUUUUAFFFFAH5Ff8Fyv+Ucfi7/AK/tJ/8ASyKv5i/+CPn/ACefY/8AYJv/AP0AV/Tp/wAFyv8AlHH4u/6/tJ/9LIq/mL/4I+f8nn2P/YJv/wD0AVcPiRFX4Gf1o0UUV2nlBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXx1/wAFA/8AkzD4if8AYJf/ANDWvsWvjr/goH/yZh8RP+wS/wD6GtKWzLh8SP5z/wDgkN/ykc+F/wD1/Xf/AKR3Ff6Btf5+X/BIbj/go58L/wDr+u//AEjnr/QNrgPVCiiigAooooAKKKKACiiigD8iv+C5X/KOPxd/1/aT/wClkVfyu/8ABKb/AJPW8Of9euo/+k0lf1Rf8Fyv+Ucfi7/r+0n/ANLIq/ld/wCCU3/J63hz/r11H/0mkrWh/Ej6oa3P6z6KKK98sKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP5MP8Agqz/AMnreI/+vXTv/SaOv6y/+CKv/KMz4af9xn/063lfyaf8FWf+T1vEf/Xrp3/pNHX9Zf8AwRV/5RmfDT/uM/8Ap1vK8Gv/ABJepD3P1MooorEQUUUUAFFFFABRRRQAUUUUAFfx1f8ABxv/AMnR+Bv+xVH/AKV3Ff2K1/HV/wAHG/8AydH4G/7FUf8ApXcUDPZf+CKX/JrGv/8AY13X/pHZ1+wFfj//AMEUv+TWNf8A+xruv/SOzr9gK0R7uG/hRCiiig2CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACv5P/APgr1/yeVe/9gqw/9BNf1gV/J/8A8Fev+Tyr3/sFWH/oJpPY48d/D+Z/T3/wQ1/5Rx+Ef+v7Vv8A0slr9da/Ir/ghr/yjj8I/wDX9q3/AKWS1+utQeOFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/9b+/iiiigD/ADn/APgox/yfh8XP+xp1L/0c1f1Rfsof8mtfDX/sVdG/9JIq/ld/4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/wCxV0b/ANJIq5cVsj3sh+Ofoe/UUUVwn0wUUUUAFFFFABRRRQAUUUUAFFFfhh+wb+xEv7cfw+8WfGH4kfEfxZpmo23iq/03y9PvQInRI4J95Dq53FpmBwQMAcVtSpc99Tgx2PWGUbxvc9//AOCpH/IF+FH/AGPFh/6C9f0EV+Iuqf8ABDz4R64sS638TPGd4LdxLEJ7qGTY46Mu6I4I9RzXQf8ADmjwb/0V7x9/4ME/+N13U4ckbHyuNxKr1XUSsfs1RX4y/wDDmjwb/wBFe8ff+DBP/jdH/Dmjwb/0V7x9/wCDBP8A43WhyH7NUV+Mv/Dmjwb/ANFe8ff+DBP/AI3R/wAOaPBv/RXvH3/gwT/43QB+zVFfjL/w5o8G/wDRXvH3/gwT/wCN0f8ADmjwb/0V7x9/4ME/+N0Afs1RX4y/8OaPBv8A0V7x9/4ME/8AjdH/AA5o8G/9Fe8ff+DBP/jdAH7NUV+Mv/Dmjwb/ANFe8ff+DBP/AI3XK+O/+CRPhPwl4I1nxXbfFrx5NJpljcXaxtqCBWaGNnAJEfQ4xQB+4lfiR/wVJ/5O1/Za/wCxg1L/ANG6dX0T/wAEiPFnifxl+wd4T1XxbqFxqd2lxqMInupGllMaXcu1S7EsQo4XJOAABwAK+dv+CpP/ACdr+y1/2MGpf+jdOpS2Zth/4sPVfmff9FFFeQffBRRRQAUUUUAFfmJ8C/8AlJ38cP8AsFaJ/wCkttX6d1+YnwL/AOUnfxw/7BWif+kttWlPaXocuJ+Kl/i/9tkfp3RRRWZ1BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/OR/wW3/5Kl4I/7BVx/wCjhX6t/wDBuP8A8mu+Of8AsaT/AOklvX5Sf8Ft/wDkqXgj/sFXH/o4V+rf/BuP/wAmu+Of+xpP/pJb16dD4EfFZn/vU/66H9DlFFFanAFFFFABRRRQAUUUUAFfhv8A8HBf/Jh9p/2NOn/+ibmv3Ir8N/8Ag4L/AOTD7T/sadP/APRNzQB+L/8AwQC/5PH8S/8AYmXn/pdY1/XxX8g//BAL/k8fxL/2Jl5/6XWNf18V8Xnn+9P0R62D/hhRRRXjnUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/HD/wAF3/8Ak9u0/wCxZsP/AEbcV+4v/Bvn/wAmIXn/AGNWof8Aom2r8Ov+C7//ACe3af8AYs2H/o24r9xf+DfP/kxC8/7GrUP/AETbV9/l3+60/Q8Wv/EkfuTRRRXaYhRRRQAUUUUAFFFFABRRRQB+RP8AwXL/AOUcfi7/AK/tJ/8ASyKv5jP+CPn/ACefY/8AYJv/AP0AV/Tn/wAFy/8AlHH4u/6/tJ/9LIq/mM/4I+f8nn2P/YJv/wD0AVcPiRFX4Gf1o0UUV2nlBRRRQAUUUUAFFFFABRRRQAUUVn3+r6VpWz+07qK28zO3zXVN2OuMkZxmgDQorx3Vf2iP2f8AQvM/tvx14es/Kxv8/U7aPbuxjO6QYzkYz615rqn7c37H2kZ+1fEfQX2vsPkXaT8jP/PMtkcdenvyKV0VyvsfVlFfGV1/wUN/Yss4GuJviHphVcZCeZI3PHCqhJ/AVj/8PKP2H/8AooFp/wCA91/8Zo5l3H7OXZn3LRXwV/w88/YW+3/2b/wnsXmf3vsN75fTP+s+z7P168da0P8Ah5R+w/8A9FAtP/Ae6/8AjNLmXcPZz7M+5aK+Ov8Ah4J+xh/0UTSf++2/+Jrd0f8Abh/ZA11gtl8SNAQklf8ASL2O3GQM9ZSnHv0J460+Zdxckux9UUV5Tpfx3+B2uRfaNF8Z6FeR4Vt0Go28gw3IOVc8Ht616VY6jp+pxGfTZ47iMHaWiYOAfTIJ55piaa3LlFFFAgooooAKKKKACiiigAooooAK+Ov+Cgf/ACZh8RP+wS//AKGtfYtfHX/BQP8A5Mw+In/YJf8A9DWlLZlw+JH853/BIf8A5SOfC7/r+uv/AEjnr/QOr/Px/wCCQ/8Aykc+F3/X9df+kc9f6B1cB6oUUUUAFFFFABRRRQAUUUUAfkV/wXK/5Rx+Lv8Ar+0n/wBLIq/ld/4JTf8AJ63hz/r11H/0mkr+qL/guV/yjj8Xf9f2k/8ApZFX8rv/AASm/wCT1vDn/XrqP/pNJWtD+JH1Q1uf1n0UUV75YUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAfyYf8ABVn/AJPW8R/9eunf+k0df1l/8EVf+UZnw0/7jP8A6dbyv5NP+CrP/J63iP8A69dO/wDSaOv6y/8Agir/AMozPhp/3Gf/AE63leDX/iS9SHufqZRRRWIgooooAKKKKACiiigAooooAK/jq/4ON/8Ak6PwN/2Ko/8ASu4r+xWv46v+Djf/AJOj8Df9iqP/AEruKBnsv/BFL/k1jX/+xruv/SOzr9gK/H//AIIpf8msa/8A9jXdf+kdnX7AVoj3cN/CiFFFFBsFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFfyf/APBXr/k8q9/7BVh/6Ca/rAr+T/8A4K9f8nlXv/YKsP8A0E0nsceO/h/M/p7/AOCGv/KOPwj/ANf2rf8ApZLX661+RX/BDX/lHH4R/wCv7Vv/AEslr9dag8cKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//9f+/iiiigD/ADn/APgox/yfh8XP+xp1L/0c1f1Rfsof8mtfDX/sVdG/9JIq/ld/4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/wCxV0b/ANJIq5cVsj3sh+Ofoe/UUUVwn0wUUUUAFFFFABRRRQAV8UfHb9vX4J/s+fEL/hWHi+11e/1cWyXbx6Zai5CRScKWO9cZ9MfzGftevgn4Af8AKYnxj/2Thf8A0rsq2owUpWZ5+ZYmdClzw3uef/8AD1r9nr/oAeLP/BWP/jtfM/8AwTU/b/8AhJ+yX8GvEngL4paF4lkvtV8T3msQGx07zo/s88FtGoYtIhDbomyMEYxzX9Q1Fd0KUYbHy+KxtTEW9pbQ/Ir/AIfR/ss/9C94y/8ABSv/AMfo/wCH0f7LP/QveMv/AAUr/wDH6/XWitDjPyK/4fR/ss/9C94y/wDBSv8A8fo/4fR/ss/9C94y/wDBSv8A8fr9daKAPyK/4fR/ss/9C94y/wDBSv8A8fo/4fR/ss/9C94y/wDBSv8A8fr9daKAPyK/4fR/ss/9C94y/wDBSv8A8fo/4fR/ss/9C94y/wDBSv8A8fr9daKAPyK/4fR/ss/9C94y/wDBSv8A8fo/4fR/ss/9C94y/wDBSv8A8fr9daKAPjL9lT9ur4L/ALYOq6/onwwttWsrvw2ltJdxarai2bbdb9hUK75xsOc46jGecfQXxo/5I74s/wCwNf8A/oh6/Nb9j/8A5SYftMf9wH/0nNfpT8aP+SO+LP8AsDX/AP6IegD8+/8AgjJ/yYB4W/6/NU/9K5a8X/4Kk/8AJ2v7LX/Ywal/6N06vaP+CMn/ACYB4W/6/NU/9K5a8X/4Kk/8na/stf8AYwal/wCjdOpS2Zth/wCLD1X5n3/RRRXkH3wUUUUAFFFFABX5ifAv/lJ38cP+wVon/pLbV+ndfmJ8C/8AlJ38cP8AsFaJ/wCkttWlPaXocuJ+Kl/i/wDbZH6d0UUVmdQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAfzkf8Ft/+SpeCP8AsFXH/o4V+rf/AAbj/wDJrvjn/saT/wCklvX5Sf8ABbf/AJKl4I/7BVx/6OFfq3/wbj/8mu+Of+xpP/pJb16dD4EfFZn/AL1P+uh/Q5RRRWpwBRRRQAUUUUAFFFFABX4b/wDBwX/yYfaf9jTp/wD6Jua/civw3/4OC/8Akw+0/wCxp0//ANE3NAH4v/8ABAL/AJPH8S/9iZef+l1jX9fFfyD/APBAL/k8fxL/ANiZef8ApdY1/XxXxeef70/RHrYP+GFFFFeOdQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH8cP/Bd//k9u0/7Fmw/9G3FfuL/wb5/8mIXn/Y1ah/6Jtq/Dr/gu/wD8nt2n/Ys2H/o24r9xf+DfP/kxC8/7GrUP/RNtX3+Xf7rT9Dxa/wDEkfuTRRRXaYhRRRQAUUUUAFFFFABRRRQB+RP/AAXL/wCUcfi7/r+0n/0sir+Yz/gj5/yefY/9gm//APQBX9Of/Bcv/lHH4u/6/tJ/9LIq/mM/4I+f8nn2P/YJv/8A0AVcPiRFX4Gf1o0UUV2nlBRRXjPxn/aE+DX7Pmgf8JH8XdftdHhYExRSNuuJyO0UK5kc/wC6pA74oGlfRHs1RzTRW8TTzsEjQFmZjgADqST0Ar8vtB/aF/bs/a8vRB+xp8PI/DPhW5iJi8WeMUeCGVGyFlt413BhkcbFuR/eC169on/BIzxN8WbiLXP25Pi3rvjx98U7aNpjDTdJSVfvLsGdynpvijt2rGVZLY6I4aT30On+If7fX7H3wwZ4fE3jzTZZkBPk2DNfvnCkDFssmCdwxkgdfQ4+brb/AIKef8LHlNt+zL8JfGHj9g7Is0Vqbe1cqrMcSILgj7vRkU9eOAD+rfwh/YF/Y5+BsMQ+Hvw80eK5iaN1vLu3F7dh49uGE9x5kinKhsKwG7nGea+uYIIbaFLa2RY441CoqjCqo4AAHQAVm60uhusNBbn4Q6XN/wAFgvi4yyeGfh94V+HVjOu5JtevDczqMKvKwO7Kclmw1uDhcHtv24f2Ev8Agp946s2t/iT+0BpugiTapj0HSlk2qQN5WXZaSZBHHPPqucV+5FFQ5yfU0VKC2R+K0P8AwR1vPFTz/wDC6fjx498RRTgI0dtdCzQxgfdKym5U/Nz0A68ZOa6fRP8Aghv+wdp0ss+s2Ot608pZi17qbg5bHOYBFk8Hrnqc9sfsFRUtlpW2PzW0f/gkF/wTs0WHyofh1FOxVQz3GoX8zMV7/NckAnvtAB9Oler6f/wTn/YW0yEwW3wr8OspbdmWzWZs/V9xxx0zivtKikM+Y/8Ahif9jP8A6JH4L/8ABBY//Ga2NP8A2SP2U9IhNtpXwx8J2sbNuKxaLZopY8ZwsQGeBX0JRQB4V/wy7+zN/wBE68Mf+Ci1/wDjVZmpfshfsm6zs/tf4X+Erry87PO0SzfbnGcbojjOBmvoiigD5en/AGIf2MbiF7eT4SeDQrqVJXQrJWweOCIQQfcHIritS/4JxfsKars+0/Cvw+vl5x5NqIeuOvl7c9OM5xX2tRQB+Zmu/wDBHj/gnZrqHd8PltJNoUSWupX8RABz90XGwk9CSpOPwryLWP8AghZ+wtqAZtHj8QaPLvLxy2epZeI842+dHKPlOCCQTkDJPOf2QooA/FSX/gkB4s8Ky+Z8Gf2gvHOgBCWjjvJvt0WfmI3xo9ujgFhwRg8+vGJJ+xN/wVR8DLJB8PfjnofiSGOXMUev6YIC6EgkvIkNzIp4wFDsMHqK/caiqUn0ZLhF7o/BO58U/wDBXD4SW8X/AAnvwm0Px7bRvte48PX4gmZckco7u2W67lg2gdQDXLv/AMFSvCfgaUWn7RXw18ZfD2VtoVtR05vKLMpYLl/KfJwduIzkAniv6FKq31jZanZTabqUKXFvcI0UsUqh0dHGGVlOQQQcEHgiqVWSM3h4Pofkz8Of23v2TPivLHbeCfHmlyzyhmSC6kNlMwXOcR3IickBScYzt+bpzX1RWZ8YP+Ccf7E/xvhnPjT4eaVBd3Ctm90yL+zrneejl7Yxl2B5HmbgcYII4r4g1X/glP8AGX4KM2pfsOfGXVfD0MZkkj0DxGBqGmFmGAoYKRGoHy7jbyvjB3ZXJ0VfujGWF/lZ95UV+V2u/tg/tY/sl3dnYft4fDKSHQpUjjPirw032qyErHA81NzKjMSAVMkbZVjHGykAff8A8Jfjb8J/jr4bHi34R69aa7Y8B2t3/eRM3IWWJsSRMRztkVWxzitozT2OedOUd0epUUUVRmFfHX/BQP8A5Mw+In/YJf8A9DWvsWvjr/goH/yZh8RP+wS//oa0pbMuHxI/nO/4JD/8pHPhd/1/XX/pHPX+gdX+fj/wSH/5SOfC7/r+uv8A0jnr/QOrgPVCiiigAooooAKKKKACiiigD8iv+C5X/KOPxd/1/aT/AOlkVfyu/wDBKb/k9bw5/wBeuo/+k0lf1Rf8Fyv+Ucfi7/r+0n/0sir+V3/glN/yet4c/wCvXUf/AEmkrWh/Ej6oa3P6z6KKK98sKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP5MP+CrP/J63iP/AK9dO/8ASaOv6y/+CKv/ACjM+Gn/AHGf/TreV/Jp/wAFWf8Ak9bxH/166d/6TR1/WX/wRV/5RmfDT/uM/wDp1vK8Gv8AxJepD3P1MooorEQUUUUAFFFFABRRRQAUUUUAFfx1f8HG/wDydH4G/wCxVH/pXcV/YrX8dX/Bxv8A8nR+Bv8AsVR/6V3FAz2X/gil/wAmsa//ANjXdf8ApHZ1+wFfj/8A8EUv+TWNf/7Gu6/9I7Ov2ArRHu4b+FEKKKKDYKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK/k/wD+CvX/ACeVe/8AYKsP/QTX9YFfyf8A/BXr/k8q9/7BVh/6CaT2OPHfw/mf09/8ENf+UcfhH/r+1b/0slr9da/In/ghp/yjj8I/9f2rf+lktfrtUHjhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH/9D+/iiiigD/ADn/APgox/yfh8XP+xp1L/0c1f1Rfsof8mtfDX/sVdG/9JIq/ld/4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/wCxV0b/ANJIq5cVsj3sh+Ofoe/UUUVwn0wUUUUAFFFFABRRRQAV8E/AD/lMT4x/7Jwv/pXZV97V8E/AD/lMT4x/7Jwv/pXZV04X4zyM7/3deq/U/a6iiiu8+SPwc/4Kcf8ABeb4Rf8ABMr9pbw/+y94v+HPiXxvrviPQLfXrVtCMLApc3NzbLEI3YO0ga1ZvlBGGHvXzN8Ef+Dqb9inx78atG+CXxx8C+M/hPda9NFb2+oeIbWFbKJ522RmcrL5scbN8vmeUyL1YqoJH5bf8F+/jvJ+zF/wcOfs6/H6Hw7f+LW8K+DNIvho+lruvLzZqesDy4hhssc8cHpXjn/BST4w/ti/8HE3j/4Wfs7/AAI/Zm8TfD+x8PanNcXfijxLbSpHbRXgSOQyzmCOKGCNV8xkDvJKwUIu5QGAP6RP+CnH/Bef4Rf8Eyv2mPD/AOy74u+HPiXxvrviPQLfX7VtCMLAx3NzdWyxCN2DtIGtWY7QRhh7186/Af8A4Onf2HviH8X9N+Dfx88IeL/g5dauypbah4mtIxYB3bagmeNzLErNwJDEY15LsoGa+Ff+CmOlRaF/wdI/se6JBI8qWfhPQYFeQ7nYR6hrKgse5OOT61+i3/B1R8JPhz45/wCCRviv4i+KbCCbXPBOq6Ne6Ldso86GW7vobOZUbrteCd9y52kqpIyoIAPv7/gqt/wVL+GP/BKP4K+HvjZ8T/DWp+KbLxFrS6JDb6U8SSJI0Es4djMyqV2wkcHOSK/IOH/g6p8DXESzwfsyfFN0cBlZbOMgg9CDnkGvyj/4LUeOvFXxI/4Nwv2OPGHjV5pdTuLvRYppbhi8swt9IvIUldiSWMiIHLE5O7J5r9WfgV/wVu/4LR3Vt4N8HXf7D2qQ6HIunWT6obu42paEIhuMeRjAT58ZxQB/UL8KfHkXxT+F3hv4nQ2M+mJ4j0qz1RbO6G2e3F5CsoikHZ03bWHqDXfV/HR/wcR/t/8A7T37PP7a/wAJv2c5fiN4l+B/wN8R6K+o6v4w8Kaf9r1Ke/EtxG8SPvicrbhLffHFKrKs5kZZMRpX0j/wQ0+LHxc8b/HXxbpvhL9sXRv2lvhI2nLPYabrYurfxrYT/u/381vdxLMkKsXibMskb5Rx5bEqQD+oaiiigD8i/wBj/wD5SYftMf8AcB/9JzX6U/Gj/kjviz/sDX//AKIevzW/Y/8A+UmH7TH/AHAf/Sc1+lPxo/5I74s/7A1//wCiHoA/Pv8A4Iyf8mAeFv8Ar81T/wBK5a8X/wCCpP8Aydr+y1/2MGpf+jdOr2j/AIIyf8mAeFv+vzVP/SuWvF/+CpP/ACdr+y1/2MGpf+jdOpS2Zth/4sPVfmff9FFFeQffBRRRQAUUUUAFfmJ8C/8AlJ38cP8AsFaJ/wCkttX6d1+YnwL/AOUnfxw/7BWif+kttWlPaXocuJ+Kl/i/9tkfp3RRRWZ1BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/OR/wW3/5Kl4I/7BVx/wCjhX6t/wDBuP8A8mu+Of8AsaT/AOklvX5Sf8Ft/wDkqXgj/sFXH/o4V+rf/BuP/wAmu+Of+xpP/pJb16dD4EfFZn/vU/66H9DlFFFanAFFFFABRRRQAUUUUAFfhv8A8HBf/Jh9p/2NOn/+ibmv3Ir8N/8Ag4L/AOTD7T/sadP/APRNzQB+L/8AwQC/5PH8S/8AYmXn/pdY1/XxX8g//BAL/k8fxL/2Jl5/6XWNf18V8Xnn+9P0R62D/hhRRRXjnUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/HD/wAF3/8Ak9u0/wCxZsP/AEbcV+4v/Bvn/wAmIXn/AGNWof8Aom2r8Ov+C7//ACe3af8AYs2H/o24r9xf+DfP/kxC8/7GrUP/AETbV9/l3+60/Q8Wv/EkfuTRRRXaYhRRRQAUUUUAFFFFABRRRQB+RP8AwXL/AOUcfi7/AK/tJ/8ASyKv5jP+CPn/ACefY/8AYJv/AP0AV/Tn/wAFy/8AlHH4u/6/tJ/9LIq/mM/4I+f8nn2P/YJv/wD0AVcPiRFX4Gf1o0UUV2nlHyv+1t+0nH+zd8PrXUNF0/8AtrxR4ivI9J8P6ZnatzfznCb24wi5y3IzwoILZF79lj/gmf4a0HWI/wBoT9sRo/iF8UtS/f3DX4W407TWJ3JDbQMPLzD0VyMKf9WFHJ+JP2vviX4Y+HP/AAUd/Z6174jXRg0DTpbl2YnCQS3bCFZWORhQ4iLnOAq5weh/o9rkrSblY9DDwSjzdWFFFFZHQFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBVvrGy1Oym03UoUuLe4RopYpVDo6OMMrKcggg4IPBFfjD+1V/wTp1j4VXM37Sn/BOaBfCfjCxPn6l4dtCV0zWrdCGMS2+7y43GPljjCI2Tt2vhq/aiqt9fWWmWU2palMlvb26NLLLKwRERBlmZjgAADJJ4AoTsJq+jPy7/Zb/AGhNB/ab+DenfFHR4hZ3MjPa6jY7972V7DgSwvwDkZDLkAlGU4Ga+hq/If8A4Jf+N9H8d/Ev4/a94PldvD2o+MZtS01H7Q3ktyyt1PLRrHnk9OtfrxXdB3imeZVjyyaQV8df8FA/+TMPiJ/2CX/9DWvsWvjr/goH/wAmYfET/sEv/wChrTlsxQ+JH853/BIf/lI58Lv+v66/9I56/wBA6v8APx/4JD/8pHPhd/1/XX/pHPX+gdXAeqFFFFABRRRQAUUUUAFFFFAH5Ff8Fyv+Ucfi7/r+0n/0sir+V3/glN/yet4c/wCvXUf/AEmkr+qL/guV/wAo4/F3/X9pP/pZFX8rv/BKb/k9bw5/166j/wCk0la0P4kfVDW5/WfRRRXvlhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/Jh/wVZ/5PW8R/wDXrp3/AKTR1/WX/wAEVf8AlGZ8NP8AuM/+nW8r+TT/AIKs/wDJ63iP/r107/0mjr+sv/gir/yjM+Gn/cZ/9Ot5Xg1/4kvUh7n6mUUUViIKKKKACiiigAooooAKKKKACv46v+Djf/k6PwN/2Ko/9K7iv7Fa/jq/4ON/+To/A3/Yqj/0ruKBnsv/AARS/wCTWNf/AOxruv8A0js6/YCvx/8A+CKX/JrGv/8AY13X/pHZ1+wFaI93DfwohRRRQbBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABX8n//AAV6/wCTyr3/ALBVh/6Ca/rAr+T/AP4K9f8AJ5V7/wBgqw/9BNJ7HHjv4fzP6ev+CGn/ACjj8I/9f2rf+lktfrtX5E/8ENP+UcfhH/r+1b/0slr9dqg8cKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//R/v4ooooA/wA5/wD4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/7FXRv/SSKv5Xf+CjH/J+Hxc/7GnUv/RzV/VF+yh/ya18Nf8AsVdG/wDSSKuXFbI97Ifjn6Hv1FFFcJ9MFFFFABRRRQAUUUUAFfBPwA/5TE+Mf+ycL/6V2Vfe1fBPwA/5TE+Mf+ycL/6V2VdOF+M8jO/93Xqv1P2uooorvPkj+Yz9vz/gnn+2D8bP+C/n7Ov7bPwx8If2n8MfAmiaXZ65rP8AaFlD9lmt77U5pF+zy3CXMm2O4ibMcTg7sAkhgP6c6KKAP5C/+C0n7C//AAVJ8ef8Fd/hJ/wUA/YA+GFj48g+HHhTTreN9S1SwtLQ6lbX+pStDLDcX1ncMoiuY23IQp3YDZBA8v8A2hv2OP8Ag4i/4LJWvh79nn9vHw/4M+BfwqtNTh1LV/7Duo7m4u/IyF+SG+1FpXUOxijaSGHdhnyyrX9olFAH8wH/AAcC/wDBLj49ftJf8E8vhD+yT/wT68EjXovh1rlikGm/2haWX2bSrHTri0jJlvp4FcgtGpwxck5I6mv6SfhppGo+H/hz4f0HV4/Ju7HTbS3njyG2yRRKrDKkg4IIyCR6V21FAH8/3/BWr4a/8FZr74veGfHP7J3hnwr8dPgwLcJ4l+FfiSz0sfarhRInmi4vowzRlXV1CTB0kTlJEYqPzc/4JY/8Ek/2q7L/AIKtW/8AwUh+Jfwa0P8AZg8FaBp15BZeCtG1OPUGv7m8tZLUsywSPHFGBMZHBEI3xoEh5Zx/ZJRQAUUUUAfkX+x//wApMP2mP+4D/wCk5r9KfjR/yR3xZ/2Br/8A9EPX5rfsf/8AKTD9pj/uA/8ApOa/Sn40f8kd8Wf9ga//APRD0Afn3/wRk/5MA8Lf9fmqf+lcteL/APBUn/k7X9lr/sYNS/8ARunV7R/wRk/5MA8Lf9fmqf8ApXLXi/8AwVJ/5O1/Za/7GDUv/RunUpbM2w/8WHqvzPv+iiivIPvgooooAKKKKACvzE+Bf/KTv44f9grRP/SW2r9O6/MT4F/8pO/jh/2CtE/9JbatKe0vQ5cT8VL/ABf+2yP07ooorM6gooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/nI/wCC2/8AyVLwR/2Crj/0cK/Vv/g3H/5Nd8c/9jSf/SS3r8pP+C2//JUvBH/YKuP/AEcK/Vv/AINx/wDk13xz/wBjSf8A0kt69Oh8CPisz/3qf9dD+hyiiitTgCiiigAooooAKKKKACvw3/4OC/8Akw+0/wCxp0//ANE3NfuRX4b/APBwX/yYfaf9jTp//om5oA/F/wD4IBf8nj+Jf+xMvP8A0usa/r4r+Qf/AIIBf8nj+Jf+xMvP/S6xr+vivi88/wB6foj1sH/DCiiivHOoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD+OH/gu/8A8nt2n/Ys2H/o24r9xf8Ag3z/AOTELz/satQ/9E21fh1/wXf/AOT27T/sWbD/ANG3FfuL/wAG+f8AyYhef9jVqH/om2r7/Lv91p+h4tf+JI/cmiiiu0xCiiigAooooAKKKKACiiigD8if+C5f/KOPxd/1/aT/AOlkVfzGf8EfP+Tz7H/sE3//AKAK/pz/AOC5f/KOPxd/1/aT/wClkVfzGf8ABHz/AJPPsf8AsE3/AP6AKuHxIir8DP60aKKK7Tyj8df20PgZ4N/aV/4KCfCD4IePzMmla9oeuRySW77JY3itriWKRDyMpKiOAQVbGGBBIr2nwd+1n+0V/wAEzrWx+DH7aOi6h458BWmyHS/HukI0pggY7I4LuOQAb1P96USBRhRNwaZ8S/8AlLT8Av8AsE6//wCkV1X7V3tlZ6lZzadqMKXFvcI0csUih0dHGGVlOQQQcEHgiuOr8TPTofAjN+E3xv8AhF8dvDx8VfB7xHYeIrBW2vJZTCQxtllw6/eQkqcbgMgZGRzXqdfkH8Tf+CUXwE1bxHc/En9nrUdT+Efi98NBf+G5mitkcHJ3WoZV8s/LmOJ4VJUdPm3cCvif/gsR+zIz2t3Z6D8dvD1usYSdCunasI1BByAYgW4Ab5bhmyp3Z34zNT9uqK/GzT/+Cznwo8G6i3hn9qL4f+Lfhlq0T+XKLyz+1WgcBCVSVdkj/eLKRBtaMBgfmC19ofDX/goH+xT8W/LTwR8TNCkmm2eXb3lyLC4cvnAWG6EMjH5TkBcjjOMjIB9h0VVsb6y1Oyh1LTZkuLe4RZYpYmDo6OMqysMggg5BHBFWqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoqhqeqaZolhLqus3MVpawLukmmcRxovqzMQAPqa+M/il/wAFH/2Hvg9Cz+L/AIk6PNKFz5GmSnU5snoCloJipPbdgYOScc0AfbdFfjNff8Fh9B+Is0ujfsg/Crxd8Sr5GdTcJaG0sEX51SRpR5rqrMv/AC0jj47hgVrGuNO/4LAftPu0fiDV9B+A3hydpI2h09RqesmFxlSXDOgYdN0c1s4P8NAH6cfHv9p74D/sx+Gv+Ep+N/iW00KBlJhhkbfc3BHaGBA0sh9dqkDvgV+Rvjf4j/tOf8FW7X/hXfwf0zUPhd8ErrB1TxDqcZj1HXLck/ubSMHaYX/iwxQgHe/WF/of4M/8Eq/2Y/h3qFt4z+J0N38S/FsTCSTV/Es73W5/a3ZjDtB5USCRgf4q/SiGGG2hS3t0WOONQqqowqqOAAB0AoA/Av8A4JufDzwz8JfjV8f/AIY+DI3i0rQPElvY2iyOZHEUH2hV3MeScDk+tfrTX5nfsT/8nV/tM/8AY4L/AOhXNfpjXbS+FHm4j+Iwr46/4KB/8mYfET/sEv8A+hrX2LXx1/wUD/5Mw+In/YJf/wBDWqlsyIfEj+c7/gkP/wApHPhd/wBf11/6Rz1/oHV/n4/8Eh/+Ujnwu/6/rr/0jnr/AEDq4D1QooooAKKKKACiiigAooooA/Ir/guV/wAo4/F3/X9pP/pZFX8rv/BKb/k9bw5/166j/wCk0lf1Rf8ABcr/AJRx+Lv+v7Sf/SyKv5Xf+CU3/J63hz/r11H/ANJpK1ofxI+qGtz+s+iiivfLCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD+TD/gqz/yet4j/AOvXTv8A0mjr+sv/AIIq/wDKMz4af9xn/wBOt5X8mn/BVn/k9bxH/wBeunf+k0df1l/8EVf+UZnw0/7jP/p1vK8Gv/El6kPc/UyiiisRBRRRQAUUUUAFFFFABRRRQAV/HV/wcb/8nR+Bv+xVH/pXcV/YrX8dX/Bxv/ydH4G/7FUf+ldxQM9l/wCCKX/JrGv/APY13X/pHZ1+wFfj/wD8EUv+TWNf/wCxruv/AEjs6/YCtEe7hv4UQooooNgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr+T//AIK9f8nlXv8A2CrD/wBBNf1gV/J//wAFev8Ak8q9/wCwVYf+gmk9jjx38P5n9PX/AAQ0/wCUcfhH/r+1b/0slr9dq/In/ghp/wAo4/CP/X9q3/pZLX67VB44UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/9L+/iiiigD/ADn/APgox/yfh8XP+xp1L/0c1f1Rfsof8mtfDX/sVdG/9JIq/ld/4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/wCxV0b/ANJIq5cVsj3sh+Ofoe/UUUVwn0wUUUUAFFFFABRRRQAV8E/AD/lMT4x/7Jwv/pXZV97V8E/AD/lMT4x/7Jwv/pXZV04X4zyM7/3deq/U/a6vDf2ifjLffAT4XXXxI07w1qXi6W2mhiGmaRGZbyXzXCkxoAxbZnc3ooJ7V7lRXefJH49/8PW/GX/RvPxF/wDBc/8A8bo/4et+Mv8Ao3n4i/8Aguf/AON1+wlFAH49/wDD1vxl/wBG8/EX/wAFz/8Axuj/AIet+Mv+jefiL/4Ln/8AjdfsJRQB+Pf/AA9b8Zf9G8/EX/wXP/8AG6P+HrfjL/o3n4i/+C5//jdfsJRQB+Pf/D1vxl/0bz8Rf/Bc/wD8bo/4et+Mv+jefiL/AOC5/wD43X7CUUAc34M8QTeLPB+leKbmzl0+TU7OC7a1mGJYGmQOY3yB8yZ2ngciukoooA/Iv9j/AP5SYftMf9wH/wBJzX6U/Gj/AJI74s/7A1//AOiHr81v2P8A/lJh+0x/3Af/AEnNfpT8aP8Akjviz/sDX/8A6IegD8+/+CMn/JgHhb/r81T/ANK5a8X/AOCpP/J2v7LX/Ywal/6N06vaP+CMn/JgHhb/AK/NU/8ASuWvF/8AgqT/AMna/stf9jBqX/o3TqUtmbYf+LD1X5n3/RRRXkH3wUUUUAFFFFABX5ifAv8A5Sd/HD/sFaJ/6S21fp3X5ifAv/lJ38cP+wVon/pLbVpT2l6HLifipf4v/bZH6d0UUVmdQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAfzkf8ABbf/AJKl4I/7BVx/6OFfq3/wbj/8mu+Of+xpP/pJb1+Un/Bbf/kqXgj/ALBVx/6OFfq3/wAG4/8Aya745/7Gk/8ApJb16dD4EfFZn/vU/wCuh/Q5RRRWpwBRRRQAUUUUAFFFFABX4b/8HBf/ACYfaf8AY06f/wCibmv3Ir8N/wDg4L/5MPtP+xp0/wD9E3NAH4v/APBAL/k8fxL/ANiZef8ApdY1/XxX8g//AAQC/wCTx/Ev/YmXn/pdY1/XxXxeef70/RHrYP8AhhRRRXjnUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/HD/AMF3/wDk9u0/7Fmw/wDRtxX7i/8ABvn/AMmIXn/Y1ah/6Jtq/Dr/AILv/wDJ7dp/2LNh/wCjbiv3F/4N8/8AkxC8/wCxq1D/ANE21ff5d/utP0PFr/xJH7k0UUV2mIUUUUAFFFFABRRRQAUUUUAfkT/wXL/5Rx+Lv+v7Sf8A0sir+Yz/AII+f8nn2P8A2Cb/AP8AQBX9Of8AwXL/AOUcfi7/AK/tJ/8ASyKv5jP+CPn/ACefY/8AYJv/AP0AVcPiRFX4Gf1o0UUV2nlH5t/Ev/lLT8Av+wTr/wD6RXVftpX4l/Ev/lLT8Av+wTr/AP6RXVftpXHV+Jnp0PgQUUUVmalHUtM03WrCXS9Yt4ru1nXbJDMgkjdfRlYEEfUV8d/Ej/gnX+xH8V7qS+8Y/DbSPPmO6SWwR9NkdtxYszWbQlmYsSzEkt3JwK+0qKAPx7l/4I8+APBUpvP2bfid42+HMzbiyadqLGEsyhS2E8mTJwN2ZTkADitJf2S/+CnXgG88/wCGP7Sh1eEpjytf0iOT7h+VCX+1E5HDSLtY+lfrlRQB+QX/AAlP/BcP4dbkl034f+PlhRWJjZ7d5emVQs9kofg8soXJPXgC+/7bX/BUPwxckeL/ANmiO9jDoMadrMTHBGT80ZuByP4sYU9cniv1uooA/Jo/8FRv2kNDQt47/Zb8b2YRZC7WHmX8amM93W1jG3HO48emRzRD/wAFpPh1pkcq+OPhD8RtKmgRXkRdKikCcbm3GSeEgAYIJHI54r9ZaKAPyc03/guR+yzfb/tXhHx1Z7cY87SoTuznp5d0/TvnHWlH/Bdf9iWDUv7M1a28T6e4++bjTUGzjIyFmZueMfL39Oa/WKigD8sf+H5v7BP/AEEda/8ABa//AMVWNp//AAXZ/Yw1WY2+l6Z4suZFXcVi02N2CjjOBcHjmv1nooA/JzUv+C5H7LNjs+y+EfHV5uznydKhG3GOvmXSde2M9Knm/wCCyXhPUvN/4Qr4L/EnU/KTJ3aSiYc5wG8uaXAOOvXrxxX6uUUAfk1P/wAFPf2pdScDwb+yr40uFaVYwdRkk088gZJDWb4AJxnO3HORjFZs37aH/BVjxLbRL4L/AGbrWwml3YbUtXi2/Ke6tJbFeAcZbnIx6H9d6KAPyPXUv+C3HxGSRi/w++H8ckuQCJbqeONSBgcXkbFhzzjOP4eBUB/Y1/4KR+PWt7j4q/tN3lgVBeSLQNMjtR5mNoAeFrYFcc5Kdf4cnNfrvRQB+RNj/wAEdPgn4lvIda/aE8beMfiRqCKPMbV9TbyWba2SAAZlG92cDzjgnGT82763+G/7AX7GHwnaObwV8N9FSaFt0c95B9vnRsAZWW6Mrg4UdG9T1Jz9f0UAVrOys9Ptls9PiSCFM7UjUKoycnAGB1Oas0UUAFFFFAH4ffsT/wDJ1f7TP/Y4L/6Fc1+mNfmd+xP/AMnV/tM/9jgv/oVzX6Y120vhR5uI/iMK+Ov+Cgf/ACZh8RP+wS//AKGtfYtfHX/BQP8A5Mw+In/YJf8A9DWqlsyIfEj+c7/gkP8A8pHPhd/1/XX/AKRz1/oHV/n4/wDBIf8A5SOfC7/r+uv/AEjnr/QOrgPVCiiigAooooAKKKKACiiigD8iv+C5X/KOPxd/1/aT/wClkVfyu/8ABKb/AJPW8Of9euo/+k0lf1Rf8Fyv+Ucfi7/r+0n/ANLIq/ld/wCCU3/J63hz/r11H/0mkrWh/Ej6oa3P6z6KKK98sKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP5MP8Agqz/AMnreI/+vXTv/SaOv6y/+CKv/KMz4af9xn/063lfyaf8FWf+T1vEf/Xrp3/pNHX9Zf8AwRV/5RmfDT/uM/8Ap1vK8Gv/ABJepD3P1MooorEQUUUUAFFFFABRRRQAUUUUAFfx1f8ABxv/AMnR+Bv+xVH/AKV3Ff2K1/HV/wAHG/8AydH4G/7FUf8ApXcUDPZf+CKX/JrGv/8AY13X/pHZ1+wFfj//AMEUv+TWNf8A+xruv/SOzr9gK0R7uG/hRCiiql9f2OmWkl/qU0dvBENzySsERR6knAA+tDdtWbpNuy3LdFeVf8L2+CH/AEOWh/8Agxt//jlH/C9vgh/0OWh/+DG3/wDjlYfWqH/Pxfejv/snHf8APif/AIDL/I9Voryr/he3wQ/6HLQ//Bjb/wDxyj/he3wQ/wChy0P/AMGNv/8AHKPrVD/n4vvQf2Tjv+fE/wDwGX+R6rRXlX/C9vgh/wBDlof/AIMbf/45R/wvb4If9Dlof/gxt/8A45R9aof8/F96D+ycd/z4n/4DL/I9Voryr/he3wQ/6HLQ/wDwY2//AMco/wCF7fBD/octD/8ABjb/APxyj61Q/wCfi+9B/ZOO/wCfE/8AwGX+R6rRXlX/AAvb4If9Dlof/gxt/wD45R/wvb4If9Dlof8A4Mbf/wCOUfWqH/Pxfeg/snHf8+J/+Ay/yPVaK8q/4Xt8EP8AoctD/wDBjb//AByj/he3wQ/6HLQ//Bjb/wDxyj61Q/5+L70H9k47/nxP/wABl/keq0V5dF8cfgrPKsMPjDRHdyFVV1CAkk9ABvr1GrhVhP4JJ+hz18JXoW9tTcb7XTX5hRRRWhzhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRXP+K/FfhvwN4bvfF/i+9i07TNOiae5uZ22xxxr1JP8h1J4HNAHQUV+VHhf4s/tl/t/6hNbfsq2Q+Hnw5jnltn8X6inm3N15ZPzW0Lbe67GC7tpPLqQVHtVl/wRg+E/iuP+0v2ifiD4t8e6s0iSyTz3gghJVQpCxsJnUHBH+tOEwoxjJXMcNTHQi7RVz7tor4du/wDgi98CvDxk1D4HeN/GPgXUCrbJbDUQYwxAwWXYkjAMqsQJRnGMjgjwbVfif+2D/wAE99Vs9O/a+aPx78NrqZbO38W6dGTd2jsQE+1pwxG3JIYMzH7sjkbSuYKeOjJ2krH6h+IPEOgeE9GuPEfim+t9M060TzJ7q7lWGGJP7zu5CqPckV+dF/8A8FGx421658OfsqfDbxF8UntJGgkvLCJoLBZVfaQZ/LlCqVw4ZlAIZR344nwT4Zu/+Csfxk1q11S/vLL4E+BbuOFFst0DeINQUBiHkYZWNFIYgDcqOmNruHX94/BPgfwf8N/DFn4L8B6bb6TpVhEkNvbWyBI0RAFHA6nAGSck9zQ5GVfGu/LT+8/Fa4/aX/4KFaFp3/CR+If2bL+XT4lV5UstTSe72NgfJDHHJKzDOSoQn1xyR6V8Bv8AgoB8C/jl4sk+G0v23wn4rikMP9j67ELW4eQE5RPmKlwBkoSH54Bwa/Ymviz9tH9jb4P/ALVXw8upPGEdvo3iTSrdpdJ8TAeXcabJDl1ZpFZC0KkktG7bRksNrgMFzGMMbUT11NPxB4h0Dwno1x4j8U31vpmnWieZPdXcqwwxJ/ed3IVR7kivzd8S/wDBTHw74i8T3Xgv9lLwJr/xbv7FVNzJpMEqWke5wgJkEUsgX73zmIRkgYYgkjwf9jL4SftC/wDBTPw5pWv/ALVmrs/wo8Ky/ZktrQSWkviS8t/+WksgKuY0yFeRdmWG1AJPMdf6Ivh38M/h78I/CsHgj4YaLZ6BpNtzHa2MKwx7jgFiFA3O2Pmdssx5JJpuRrVxzelM/FaX9qj/AIKBaMtrqXiD9mrVJbO4cqVs77zpwB1JRInZfUb1Absec16L8If+CiXwG+IWuj4e/EBrn4e+MYn8m40XxFG1nJHMMfIJXCx5JICq+yRuyV+zlfOf7Sn7KnwU/av8CT+BPjBpKXIdCttfwqiX9k+QQ9vMVYocjkEFG6MrAkUuYyhjaieruYdFfml8FfHXxW/ZO+Ptp+wx+0jqn/CQW+p2xufBniLbtNxaR+YBbXJbpKojwBlmDELuYNGa/S2rPVpVVUjzRCiiig0CiiigAr+T/wD4K9f8nlXv/YKsP/QTX9YFfyf/APBXr/k8q9/7BVh/6CaT2OPHfw/mf09f8ENP+UcfhH/r+1b/ANLJa/XavyJ/4Iaf8o4/CP8A1/at/wClktfrtUHjhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//T/v4ooooA/wA5/wD4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/7FXRv/SSKv5Xf+CjH/J+Hxc/7GnUv/RzV/VF+yh/ya18Nf8AsVdG/wDSSKuXFbI97Ifjn6Hv1FFFcJ9MFFFFABRRRQAUUUUAFfBPwA/5TE+Mf+ycL/6V2Vfe1fBPwA/5TE+Mf+ycL/6V2VdOF+M8jO/93Xqv1P2uoorxD9of4Z+P/i58LbzwR8MfGNz4D1m4lheHWbSEzyQrG4Z1EYkiyHUFT84xnPOK7z5I9vor8e/+HfH7cn/R12u/+Cg//J1H/Dvj9uT/AKOu13/wUH/5OoA/YSivx7/4d8ftyf8AR12u/wDgoP8A8nUf8O+P25P+jrtd/wDBQf8A5OoA/YSivx7/AOHfH7cn/R12u/8AgoP/AMnUf8O+P25P+jrtd/8ABQf/AJOoA/YSivx7/wCHfH7cn/R12u/+Cg//ACdR/wAO+P25P+jrtd/8FB/+TqAP2Eorm/Bmi6l4a8H6V4d1i/k1W70+zgtp72UESXMkSBWlYFmO5yCxyxOT1PWukoA/Iv8AY/8A+UmH7TH/AHAf/Sc1+lPxo/5I74s/7A1//wCiHr81v2P/APlJh+0x/wBwH/0nNfpT8aP+SO+LP+wNf/8Aoh6APz7/AOCMn/JgHhb/AK/NU/8ASuWvF/8AgqT/AMna/stf9jBqX/o3Tq9o/wCCMn/JgHhb/r81T/0rlrxf/gqT/wAna/stf9jBqX/o3TqUtmbYf+LD1X5n3/RRRXkH3wUUUUAFFFFABX5ifAv/AJSd/HD/ALBWif8ApLbV+ndfmJ8C/wDlJ38cP+wVon/pLbVpT2l6HLifipf4v/bZH6d0UUVmdQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAfzkf8Ft/+SpeCP+wVcf8Ao4V+rf8Awbj/APJrvjn/ALGk/wDpJb1+Un/Bbf8A5Kl4I/7BVx/6OFfq3/wbj/8AJrvjn/saT/6SW9enQ+BHxWZ/71P+uh/Q5RRRWpwBRRRQAUUUUAFFFFABX4b/APBwX/yYfaf9jTp//om5r9yK/Df/AIOC/wDkw+0/7GnT/wD0Tc0Afi//AMEAv+Tx/Ev/AGJl5/6XWNf18V/IP/wQC/5PH8S/9iZef+l1jX9fFfF55/vT9Eetg/4YUUUV451BRRRQAUUV4v8AHj9of4N/sy+CE+I3xy1tNB0eS5jsknaKWcvPKGZUWOFJJGJVGbhTgKSeBVRi5NRirsTaSuzofip8X/hh8D/CT+O/i3rlp4f0hJUg+03kgRTLIflRe7McE4UE4BPQEj5i/wCHlv7CH/RT9G/77f8A+Ir8ev8AgrR/wUA/ZH/aZ/Zbt/hz8EPFv9t6ymuWl41v9gvbbEEUcys2+4giTguvG7PPAr6S/wCGr/8AghT/ANAvwb/4Rk3/AMrq9/A5KqtPmrXi77bfmcVbF8srRs0fef8Aw8t/YQ/6Kfo3/fb/APxFH/Dy39hD/op+jf8Afb//ABFfBn/DV/8AwQp/6Bfg3/wjJv8A5XUf8NX/APBCn/oF+Df/AAjJv/ldXZ/q9R/nf4GX16fZH3n/AMPLf2EP+in6N/32/wD8RR/w8t/YQ/6Kfo3/AH2//wARXwZ/w1f/AMEKf+gX4N/8Iyb/AOV1H/DV/wDwQp/6Bfg3/wAIyb/5XUf6vUf53+AfXp9kfef/AA8t/YQ/6Kfo3/fb/wDxFH/Dy39hD/op+jf99v8A/EV8Gf8ADV//AAQp/wCgX4N/8Iyb/wCV1H/DV/8AwQp/6Bfg3/wjJv8A5XUf6vUf53+AfXp9kfef/Dy39hD/AKKfo3/fb/8AxFH/AA8t/YQ/6Kfo3/fb/wDxFfBn/DV//BCn/oF+Df8AwjJv/ldR/wANX/8ABCn/AKBfg3/wjJv/AJXUf6vUf53+AfXp9kfef/Dy39hD/op+jf8Afb//ABFH/Dy39hD/AKKfo3/fb/8AxFfBn/DV/wDwQp/6Bfg3/wAIyb/5XUf8NX/8EKf+gX4N/wDCMm/+V1H+r1H+d/gH16fZH3n/AMPLf2EP+in6N/32/wD8RR/w8t/YQ/6Kfo3/AH2//wARXwZ/w1f/AMEKf+gX4N/8Iyb/AOV1fa3wa+Dv/BOv9oPwJb/Ev4PfD7wVrWiXLvHHcp4etYvnjOGUpLbo6kHqGUGj/V6j/O/wD69Psj6i+D/x++DPx/0q51z4M+I7LxHa2TrHcSWb7xE7ZwrcAqSBnB5xz0Ir1+vxo/4Je+H9B8KftFftNeGvC1jb6bptj4tghtrS1iWGCGJDdBUSNAFVQOAAABX7L187jsOqFeVKLul/kd9GbnBSYUUUVyGh/HD/AMF3/wDk9u0/7Fmw/wDRtxX7i/8ABvn/AMmIXn/Y1ah/6Jtq/Dr/AILv/wDJ7dp/2LNh/wCjbiv3F/4N8/8AkxC8/wCxq1D/ANE21ff5d/utP0PFr/xJH7k0UUV2mIUUUUAFFFFABRRRQAUUUUAfkT/wXL/5Rx+Lv+v7Sf8A0sir+Yz/AII+f8nn2P8A2Cb/AP8AQBX9Of8AwXL/AOUcfi7/AK/tJ/8ASyKv5jP+CPn/ACefY/8AYJv/AP0AVcPiRFX4Gf1o0UUV2nlH5t/Ev/lLT8Av+wTr/wD6RXVftpX4l/Ev/lLT8Av+wTr/AP6RXVftpXHV+Jnp0PgQUUUVmahRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH4ffsT/wDJ1f7TP/Y4L/6Fc1+mNfmd+xP/AMnV/tM/9jgv/oVzX6Y120vhR5uI/iMK+Ov+Cgf/ACZh8RP+wS//AKGtfYtfHX/BQP8A5Mw+In/YJf8A9DWqlsyIfEj+c7/gkP8A8pHPhd/1/XX/AKRz1/oHV/n4/wDBIf8A5SOfC7/r+uv/AEjnr/QOrgPVCiiigAooooAKKKKACiiigD8iv+C5X/KOPxd/1/aT/wClkVfyu/8ABKb/AJPW8Of9euo/+k0lf1Rf8Fyv+Ucfi7/r+0n/ANLIq/ld/wCCU3/J63hz/r11H/0mkrWh/Ej6oa3P6z6KKK98sKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPLvjhreq+Gvgt4v8R6FM1tfafomoXNvMuN0csUDsjDORkMAa/jD/4Jk23/AAW//wCCm/wL1j47fD39qN/DVpo+vTaC9rqNqksjywW9vcGQGOArtIuAMHnINf2UftGf8m9+O/8AsXdU/wDSaSv4Df8Agk9/wTx/bZ/al/4J+ePfjZ+xx8efE/gDVtB8R31nb+D9Lvruw0/Vrq3srOcu01vdRLHPKsoiDPC4/doGYLyvJXb54pX67OwmfuD/AMEwf28/2+/AX/BTbxj/AMEqf2/PEun/ABA1HTLGS80/XbKBEeKVLeG8RS8UUAaKW2lLHzo/MSUBd2OK/aj9oj/gpz+wR+yh48i+F/7QPxP0fw74hkVHbT3MlxPCsgyhmWBJPJDDkGXbkEHoRX88/wDwbIj9kzxL4v8AH/iDxHaa3/w01pyyw+JbjxPem7uZbN5gs0lorJG8f75US6WXzJkfaDIVfbX5k/8ABLPwv+0L+0d8Vv2gviG3wC8G/HvxTqerhfET+N9Tgtp9KN5JdM4gSeNivmurhpU2svlKo245iFaSjFLW9/OwXP7NP24P2iY7f/gmr8Tf2l/2aPFMFwbfwfqOraFrulSx3EXmRws0csTjejbWHfOCMEZ4r5//AOCOP7VPiz4n/wDBKDwV+1B+1j4wS5viutz6xr+ryxW0aw2mpXUKvK+EjVUiRVyccAd6/Ev9iv4K/Gr9n7/gh5+1j8OPiJrOhax4dbSdU1DQP7A16z1+3t1ubNhcRma0kkVOY422nAJZmAyWr88P2kPGnjvw/wD8Gxn7PPhbw9LNBouv+NdYh1YxkhZVgvtUmghkx1UyJ5gB/iiU9RTdZp87X2dvmB/aj8Av+CpH/BPz9qH4h/8ACp/gV8VNG17xG2/yrBWkt5bjyxlvIE6RifA5/dF+AT0Br2bwr+2F+zR42/aD1r9lPwx4vs7n4ieHYGutR0LEiXUMKiMliHRVYYmjYbWOVYEcc1/GB+1n+xp+1V4h+H/wX174ZfBn4V/AHWPC11aXvhfxRYeLtMs7vVhDGs0eWl8g3Um/ZcByXcEsf4zX6Hf8FhtH1L9hD/gpT+z3/wAFadFtzY6Rqd5B4V8b+XygRkaMs5HDu9lJMq54BtUPXmrVeVm2trfcwP6NPEH7X37Nfhb9ojSf2TNd8XWcPxH123+12OggSPdSw7ZH34RCqgJDIx3MMKuTxg181/Gv/gr/AP8ABNb9nj4jXfwl+Lnxb0jTfEOnSmC7s4UuL020w4aOZ7WGVI3U8MjsGU8ECvxm/wCCL1l/w2p+3/8AtD/8FgfH4xoUV9P4a8JzXAwkNnCib5Bn7rQ2MdsjEcEzSd818JeB7n4f/tV/BH4++Ov+CbX7LPgfS/hoo1Zde8efErU59Sv2aO1aeaS1ikM1zazLE4nQRysiSurFg3AHXly3XW9vQD+xzxJ+19+zL4S/Z3/4a01vxrpi/DYwwTjxDFL59kY7mZbeMhog5OZnWMjGVY4IBBx83+Mv+Cvf/BNL4f6xoegeL/jFoFndeIrO01CyUySOPs19Gs0EkzJGy24kjdXHnmM7WBPBr+TT4LXl5df8GnHxdguZC6W3jG2jiUnIRDq+kOQPQbmY/U19KfGr9iP9lrwh/wAGxNh8YdG8EaPH4zfQdB8Qt4g+yRnVDe3+o2yyk3RHmlTFM8QQtsCYAAwKn6xNq8Utrhc/Wr/guB/wV0u/+CevwG0KP9nq90bU/iF40lifT0uw1zHBpMscxbUIlQiOUCRERAz7cuGKsowf1k/ZZ/aQ+FH7VfwX0r4ufB3xFb+J9MnUW019aqyobuFV85MMqYKsecDHpX8T3/BU3wt4X1r/AIN+P2Tvi1qml2k/iiGbSNFTV3hQ3q6clhfsLYTkeYId0aN5e7buUHGQK/t0/Zr+FHws+DXwX0Hwh8H/AA5pnhfSHtYbo2ekWkVnbmeeNTJJ5cKqu9zyzYyT1q6U5SqO+1kB7rRRRXSMKKKKAP5MP+CrP/J63iP/AK9dO/8ASaOv6y/+CKv/ACjM+Gn/AHGf/TreV/Jp/wAFWf8Ak9bxH/166d/6TR1/WX/wRV/5RmfDT/uM/wDp1vK8Gv8AxJepD3P1MooorEQUUUUAFFFFABRRRQAUUUUAFfx1f8HG/wDydH4G/wCxVH/pXcV/YrX8dX/Bxv8A8nR+Bv8AsVR/6V3FAz2X/gil/wAmsa//ANjXdf8ApHZ1+wFfj/8A8EUv+TWNf/7Gu6/9I7Ov2ArRHu4b+FEK+Of+CgP/ACZ743/69oP/AEoir7Gr45/4KA/8me+N/wDr2g/9KIq87OP9wxH+Cf8A6Sz6vgz/AJKDLv8Ar/S/9ORNv9m7/gnr+xv41/Z28A+MvFHga1u9T1bw5pV7dztcXAMs89tG8jkLKACzEnAAHPFe0/8ADs/9hr/on1p/4E3X/wAer2T9kX/k1D4Yf9ilov8A6RxV8pa5/wAFmf8Agld4Z1288MeIPjv4Rs9Q0+eS1uYJb5VeKaJijowxwVYEH3FceDynAuhTboQvyr7Me3ocee8a8QwzLFQhmVdJVJpJValklJ6L3j0n/h2f+w1/0T60/wDAm6/+PUf8Oz/2Gv8Aon1p/wCBN1/8er274A/tU/s1/tVaBdeKP2bPHmheOrCxdYrqXRL6G8+zu4JVZRGxaNmAJAcAkDIr3yuj+yMB/wBA8P8AwGP+R5f+vHEf/Qzr/wDg6p/8kfCv/Ds/9hr/AKJ9af8AgTdf/HqP+HZ/7DX/AET60/8AAm6/+PV91UUf2RgP+geH/gMf8g/144j/AOhnX/8AB1T/AOSPhX/h2f8AsNf9E+tP/Am6/wDj1H/Ds/8AYa/6J9af+BN1/wDHq+6qKP7IwH/QPD/wGP8AkH+vHEf/AEM6/wD4Oqf/ACR8K/8ADs/9hr/on1p/4E3X/wAeo/4dn/sNf9E+tP8AwJuv/j1fdVFH9kYD/oHh/wCAx/yD/XjiP/oZ1/8AwdU/+SPhX/h2f+w1/wBE+tP/AAJuv/j1H/Ds/wDYa/6J9af+BN1/8er7luLiC0ge6unWKKNS7u5wqqOSSTwAB1NZ2ga/oXivQrLxR4XvYNS0zUoI7q0u7WRZoLiCZQ8ckciEq6OpDKykhgQQcUf2RgP+geH/AIDH/IP9eOI/+hnX/wDB1T/5I/Cf/gpp+xj+zH8Df2Wbzx18KvCVvo+rLqNnALmOWaRhHIx3ACSRhzjrjNfpV4Y/5FrT/wDr2i/9AFfOn/BYz/kyy+/7C1h/6Ea+i/DH/Itaf/17Rf8AoArhy7D0qOZ4iFGCiuSnokkt59j7fNMzxmP4Sy6vjq0qs/b4hc05OTso0NLybdvI3KKKK+jPgwooooAKKKKACiiigAooooAKKKKACiiigAooooAK/Ov4yf8ABQnwxofjIfBr9mvQLv4p+OJgwW00f95a25VijGaWMOf3Z5YKu0D7zp1rkPjh8Vvif+1d8eZP2GP2YrqfS4LQ/wDFaeJYVBFjaEbZIIiSMuSwU7WDF/lGFEhH6yfs0fst/B39kv4dx/Df4O6e1tbFhJdXU7CS7vJgMebPIAu5vQKqovRVUcVLZ5+JxnK+WB+YGkfsuf8ABVv4021tqfxR+JOifDK2mYTHT9Ethd3UG4tlJGHynYCAqrdSKwOWO5QT0l1/wTG/aphskl0j9pzxH9tiw2Z7NnhdlHTb9s4BbHUtgcYNftFRSuzz3Vm9XJn4V698P/8AgrL+zZHc61a3eifGrQoCrtAsP2PVPKyxfykjEeW6cZnbkBVODj5x8H/EuT/gqD+1n4d+BHjOwuPCPgrwlbPq3iDw9qc/kXepXsBA+z7F2yMqMV4wpWMSMdrFBX9MVfA37XH7Afw//aV1S3+KPhTUJ/BPxL0kI2m+JtN3LMrRkbROqMnmqFyoO4OoPBK5UlynXqOPK3ofdemaZpuiabb6No1vFaWdpEkMEEKCOKKKMBVRFUAKqgAAAAAcCr1YfhnTtW0jw9ZaXr2ovq19bwolxeyRpC08gHzOUjCou487VGB0rcpGIV85fteeBfGfxO/Zj8cfDz4eWFtqet61pM9nZ292yJE0kw25JkVkDKDuXcANwHzL94fRtFAHyv8AsUfs/wAf7MX7MHhH4PTxomo2FmJtTKENu1C5JluPnAG8LIxRGPOxVHQCvqiiigAryL49fB3R/wBoD4Pa/wDBrxBf3mmWPiG2NrPc6e6x3CIWDEKWVlw2NrgghkJHevXaKAPNfg58KvCvwO+Fmg/CPwVH5emeH7OKzhyAGfYPmkbHV5Gy7nuxJr0qiigAooooA/Mb/grd8Dh8XP2O9b8VaOhXXvAZXxDp86OyPEtqQbkhl5/1G9hx95V6dR1v7PnxZ0j44/Bbw38UdHuI7gatYQy3HlkER3O0CeM46NHIGUj1HHFfcHj7w2/jLwLrXhCN1jbVbC5swzjcqmeNkyR3AzyK/CTwJ/wRx+Jnwb+GGmeMvg946/sD4t6OZXlmtJpX0fVEEzSRRzpIgdfkKo3ytGdvKEktTTsdOGxHsm7rRn6v0V8S/sxftSeIPH/iTVfgH+0DpaeE/il4aYpe6bnEV5CACLm2JyGRgc4VmG0hgSp4+2qs9mE1Nc0dgooooKCv5P8A/gr1/wAnlXv/AGCrD/0E1/WBX8n/APwV6/5PKvf+wVYf+gmk9jjx38P5n9PX/BDT/lHH4R/6/tW/9LJa/XavyJ/4Iaf8o4/CP/X9q3/pZLX67VB44UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//U/v4ooooA/wA5/wD4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/7FXRv/SSKv5Xf+CjH/J+Hxc/7GnUv/RzV/VF+yh/ya18Nf8AsVdG/wDSSKuXFbI97Ifjn6Hv1FFFcJ9MFFFFABRRRQAUUUUAFfBPwA/5TE+Mf+ycL/6V2Vfe1fBPwA/5TE+Mf+ycL/6V2VdOF+M8jO/93Xqv1P2uoorzT4ufGH4bfAjwPc/En4s6omjaJaPHHNdSI8io0zBEBEau3LEDp3rvPkj0uivz3/4erf8ABP7/AKKRaf8AgLef/GKP+Hq3/BP7/opFp/4C3n/xigD9CKK/Pf8A4erf8E/v+ikWn/gLef8Axij/AIerf8E/v+ikWn/gLef/ABigD9CKK/Pf/h6t/wAE/v8AopFp/wCAt5/8Yo/4erf8E/v+ikWn/gLef/GKAP0Ior89/wDh6t/wT+/6KRaf+At5/wDGKP8Ah6t/wT+/6KRaf+At5/8AGKAP0IorG8OeINI8W+HrDxV4fm+0WGp28V3bS7WTfDModG2sAwypBwQCO4rZoA/Iv9j/AP5SYftMf9wH/wBJzX6U/Gj/AJI74s/7A1//AOiHr81v2P8A/lJh+0x/3Af/AEnNfpT8aP8Akjviz/sDX/8A6IegD8+/+CMn/JgHhb/r81T/ANK5a8X/AOCpP/J2v7LX/Ywal/6N06vaP+CMn/JgHhb/AK/NU/8ASuWvF/8AgqT/AMna/stf9jBqX/o3TqUtmbYf+LD1X5n3/RRRXkH3wUUUUAFFFFABX5ifAv8A5Sd/HD/sFaJ/6S21fp3X5ifAv/lJ38cP+wVon/pLbVpT2l6HLifipf4v/bZH6d0UUVmdQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAfzkf8ABbf/AJKl4I/7BVx/6OFfq3/wbj/8mu+Of+xpP/pJb1+Un/Bbf/kqXgj/ALBVx/6OFfq3/wAG4/8Aya745/7Gk/8ApJb16dD4EfFZn/vU/wCuh/Q5RRRWpwBRRRQAUV+KPw0/4LBeEn/bq8b/ALIXx4s7Pw3Y6frUuk+HtXR2EckkDeWY7xnYqrSuCY3UKgyEYZ+c/tdQAUUUUAFfhv8A8HBf/Jh9p/2NOn/+ibmv3Ir8N/8Ag4L/AOTD7T/sadP/APRNzQB+L/8AwQC/5PH8S/8AYmXn/pdY1/XxX8g//BAL/k8fxL/2Jl5/6XWNf18V8Xnn+9P0R62D/hhRRRXjnUFFFFAHy9+0x+2R+z7+yJZ6RefHbWX0v+3nmSxSK2muXl+zhDKcRI2AnmICTjlhjPOPw1/4KT/8FF/2Rf2l/hn4G8I/DLXJtQm0jxrpmr3yT2FxEi2NvFcJKx8yMBsGRRtGSQeAa+wP+CmcMNz+2j+yfb3CLJHJ4k1FWVhlWUy6cCCD1Br9bv8AhDPB/wD0CbP/AL8J/wDE19VlGXUnThiW3za+m7R52JryUnT6H5Ff8PM/+CT39yy/8JyT/wCMUf8ADzP/AIJPf3LL/wAJyT/4xX66/wDCGeD/APoE2f8A34T/AOJo/wCEM8H/APQJs/8Avwn/AMTX0RwH5Ff8PM/+CT39yy/8JyT/AOMUf8PM/wDgk9/csv8AwnJP/jFfrr/whng//oE2f/fhP/iaP+EM8H/9Amz/AO/Cf/E0AfkV/wAPM/8Agk9/csv/AAnJP/jFH/DzP/gk9/csv/Cck/8AjFfrr/whng//AKBNn/34T/4mj/hDPB//AECbP/vwn/xNAH5Ff8PM/wDgk9/csv8AwnJP/jFH/DzP/gk9/csv/Cck/wDjFfrr/wAIZ4P/AOgTZ/8AfhP/AImj/hDPB/8A0CbP/vwn/wATQB+RX/DzP/gk9/csv/Cck/8AjFH/AA8z/wCCT39yy/8ACck/+MV+uv8Awhng/wD6BNn/AN+E/wDiaP8AhDPB/wD0CbP/AL8J/wDE0AfkV/w8z/4JPf3LL/wnJP8A4xR/w8z/AOCT39yy/wDCck/+MV+uv/CGeD/+gTZ/9+E/+JrmvGfgzwf/AMIfq3/Eps/+POf/AJYJ/cP+zQB5N8EJf2V/2ifhpp/xb+FGgaRf6HqbTLBK+mRwvugkaJwyPGGUhkPUDIwRwRXxb/wRG/5MUsP+wzqP/oa103/BGT/kwDwt/wBfmqf+lctcz/wRG/5MUsP+wzqP/oa0AXf+Cbv/ACdL+1J/2OUX/oV1X7AV+P8A/wAE3f8Ak6X9qT/scov/AEK6r9gK+Fzf/e6ny/JHs4X+EgooorzTc/jh/wCC7/8Aye3af9izYf8Ao24r9xf+DfP/AJMQvP8AsatQ/wDRNtX4df8ABd//AJPbtP8AsWbD/wBG3FfuL/wb5/8AJiF5/wBjVqH/AKJtq+/y7/dafoeLX/iSP3JooortMQooooAKKK/ErxV/wWJ8MfCT9v7xJ+yp8cNIg0Xwdps9rYW3iNJHbyLu4hSUG7B+VYXLFQy48vblsruZAD9taKignguoEurV1kikUMjqcqynkEEcEEdDUtABRRRQB+RP/Bcv/lHH4u/6/tJ/9LIq/mM/4I+f8nn2P/YJv/8A0AV/Tn/wXL/5Rx+Lv+v7Sf8A0sir+Yz/AII+f8nn2P8A2Cb/AP8AQBVw+JEVfgZ/WjRRRXaeUfm38S/+UtPwC/7BOv8A/pFdV+2lfiX8S/8AlLT8Av8AsE6//wCkV1X7aVx1fiZ6dD4EFFFFZmoUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB+H37E/wDydX+0z/2OC/8AoVzX6Y1+Z37E/wDydX+0z/2OC/8AoVzX6Y120vhR5uI/iMK+Ov8AgoH/AMmYfET/ALBL/wDoa19i18df8FA/+TMPiJ/2CX/9DWqlsyIfEj+c7/gkP/ykc+F3/X9df+kc9f6B1f5+P/BIf/lI58Lv+v66/wDSOev9A6uA9UKKKKACiiigAor8dP2Uf+Ctngr41ftO+MP2Xfi5p8HhTVrLX77S/DVyJGa21FbOQxeQ7vgLdEjeoGFkDBAA4USfsXQAUUUUAfkV/wAFyv8AlHH4u/6/tJ/9LIq/ld/4JTf8nreHP+vXUf8A0mkr+qL/AILlf8o4/F3/AF/aT/6WRV/K7/wSm/5PW8Of9euo/wDpNJWtD+JH1Q1uf1n0UUV75YUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcz418K6f478Hat4I1d5I7TWbKexmeEgSLHcIY2KlgwDAMcEgjPUGvjH/gnj/wTv8Agr/wTS+DWq/A74FapreraTq+tTa7NNr08E9wtxNBBbsqtb29sgjCW6EAoW3FvmIwB96UUuVXv1A/Km+/4JAfs0Q/t+w/8FHfAeteJfCHjozrcX1no1zaxaTqDshjn+0wS2krsLlDifZKm5v3g2yZevD/ANpf/ggX+yL+0B8Z/EHx68H+JfGHwu17xf5g8QL4Q1FLO11Pz2LTtNFJDL80xOZArCNm+ZkLEk/uNXI+MfiB4D+Hem/2z8QdbsNCs+nn6hcx2sXH+1Iyj9ah0oNWaA+Ffht/wS2/ZU+D37EHiT9gb4Y2t/o3g/xdZXlpq19DOj6rdSX0YiluXnkjeMzFAqqTFsUKAECjFZ/g3/glJ+yZ4a/YGtf+CcPiS11DxV8PbP7U8MmrzxtqMc1zcy3YmWe3igVJYpZW8tljHyjawYFt36FeGvFXhfxnpMev+D9StdWsJchLmzmSeFsdcOhKn8DW9T9nHt5AfgR8Hv8Ag3U/Yx+GfxQ8NfELxt4q8bfEXT/BUiyeH9B8UanFdaXY7CrqBFHbxEorqCIwVjbADq4r9S/21P2OPhB+3n+zzrH7NXxv+2RaJrElvP8AadOeOK9tprWVZUkgeWOVFfKlSTGwKMy45r6srktN8feBNa0+81bR9asLu004M13NDcxyRwBQWJkZWITABJ3EYApKnBJpLcDwL9jr9jn4OfsP/s4aP+y98HUubjw7o/2kmXU2jmu7p7uV5ZXuHjjiR2Yvt4jUBAFAwK/Kbw5/wbhfsPeFvHWs3+j+JfHVv4H166F5f+BbfWzb6DcspJWOZYo0nkiTPyBpi69N5HFfvXoXiHQPFGnLrHhm+t9RtHJVZ7WVZoyVOCAyEg4PB5rYodKDSTWwH43eCP8AgiH+y74D/YJ8Z/8ABOjTfFPjC48B+N9Wg1m6uLi7sm1K2ngltZttvKtisSxs1pHuV4ZDy2CCcj6S8b/8E4vgh49/4J9Q/wDBNzWNV1yPwNBpOn6Ot9DPbrq3kabNFPExla3aDeWhUOfIwQTgA4I+/wCimqcV08gPyz+MP/BIj9l742/sEeF/+CenjO91x/Cfgv7LJo+prcQjVYJ7RZESUuIPIZik0iOPIClWOADgj6J/Ya/Yx8FfsHfAmH4C+AvEWu+J7GK8lvTe+IbiO5u98yopRWjjiVYlCDYm0leeTX2HRQoRTulqAUUUVYBRRRQB/Jh/wVZ/5PW8R/8AXrp3/pNHX9Zf/BFX/lGZ8NP+4z/6dbyv5NP+CrP/ACet4j/69dO/9Jo6/rL/AOCKv/KMz4af9xn/ANOt5Xg1/wCJL1Ie5+plFFFYiCiiigAooooAKKKKACiiigAr+Or/AION/wDk6PwN/wBiqP8A0ruK/sVr+Or/AION/wDk6PwN/wBiqP8A0ruKAPZf+CKX/JrGv/8AY13X/pHZ1+wFfj//AMEUv+TWNf8A+xruv/SOzr9gK0R72G/hRCvjn/goD/yZ743/AOvaD/0oir7Gr45/4KA/8me+N/8Ar2g/9KIq87OP9wxH+Cf/AKSz6vgz/koMu/6/0v8A05E+6P2Rf+TUPhh/2KWi/wDpHFX+el/wSdi/4JCSftQ/tTH/AIKtnw5sHieL/hGP7fM4P/H3qf23yfIOf+fffn/ZxX+hb+yL/wAmofDD/sUtF/8ASOKv4mP+Deb9h/8AZJ/bL/aq/bCH7UvgHSfHP/CN+J9POmDVYfNFqbu81jztnIx5nkx7vXaK0wX+70/8K/I+O4h/5GmL/wCvk/8A0pmF/wAETLD4LN/wcT+P7n/gl+1//wAM+waHei6Zhcm1Nq1vDhc3GZNn9pjNt53zmNTjjNfbng3/AIOHv+CmP7RXxc+JX7Pv7HH7OOmePPFPw/128jnlhuZVtYtHsp5LctKHmizczMo8tVcYw2Ek6L/Vt8Af2Xf2cf2VvDE3gz9m3wNongfTLpxLcQaLZRWgnkXIDymNQ0jAEgM5JA4ziv5U/wDg1qs4P+GtP25r8qDL/wAJjpsYbHIX7ZrZIH1OM/QV0njn3P8Aty/8Fpv2ifh1+1FoP/BOP9gH4W2XxX+Pz6dDe+Jbaa5aLRtGkeBJzEZGeDzMI4dpHmhSNWjBLSOUTof+Cef/AAWi+MnxZ/bI1D/gm1/wUY+F0fwg+NMVq97pcdnci503VI44vPZIm3y4fyleWNkmljdUcblddrflT8c/Fvir/giR/wAF9/H/APwUD/aH8J6vrXwV+NejT6fD4i0m3+1nT5bj7DLIsi5G14ri02eWzKXgcOm4qUFr9mvxj4j/AOC1v/Bf7wb/AMFFvgB4W1jQ/gr8F9CGlt4g1S3Np/aVxAl4Ujj2llMrz33Me8lbePc+0sqEA+ifhd/wXi/4KR/tR/HL40/st/sdfs96P408Y/DbXb20tryXUvsWlwaZY3FxbGW8a4mi8y5mdIxDDE6bv3jZ2occb+zp/wAHDn/BRj9uP4Na1pf7Gf7M1rr/AMTvAKzXPjKW81EQ6HZ2w3eQtukk0NxLdTmOUfZ/M3L5RKmTJ2Vf+DZtEP8AwUC/b4kIG4eNLUA98HUtbz/Ks7/g09iiH/DWz7RlvF9qp+g+3YH6mgD7i+AP/BerV/2h/wDgjf8AE3/go74a8FWmn+M/hdLLYaloVxM8mny3aG3ZHikXbJ5MkVwpwcMrqy/MAGb42s/+C+v/AAVg+Jv7IFr+3n8CP2XdMv8A4V+HrRpvE+sX2olWne1LLeyafbLOLgWtuw2tOY5wNrsQoVwn5F/8Ewv+VZj9sv8A7DS/+idOr2b9lv8A4Le/Bv8AZr/4IRD9hf4peC/Elv8AEfWfCmvaH4VjXTydN1u11ya7jhvYpyQrRwvO8cygMzPEwXLMQoB9jf8ABc//AIKO/Eb9tb/gh/4N/aG/ZW8PSQ/Db4i3Jt/G15LerDe6DdWd1BFFYlFkja4S4nE0blY2Vo1VyFDDP7df8EFfiD+1h47/AOCcvw9tf2nvAtn4LstE8O6Bp/g+a0u47o6x4eh0y1FrfyiOaUxSTLy0biNl7oK/nT+Kf7DH7QP7On/BpXqPgD4g6De23iefW7XxlqOkvG5utPsbjUIsebERujKQBJZlIzFlt+NrY/oj/wCCCX7bfwV/a9/4J4eAPCPwl+3i9+E3hrw94P10XsAhX+0bDTYI5PJIZvMiJQ7X4z6CgD1v/gsZ/wAmWX3/AGFrD/0I19F+GP8AkWtP/wCvaL/0AV86f8FjP+TLL7/sLWH/AKEa+i/DH/Itaf8A9e0X/oArxsL/AMjXEf4Kf5zP1Kp/yRuXf9f8T/6TQNyiiivdPkQooooAKKKKACiiigAooooAKKKKACiiigAr5f8A2yPj4n7Nf7O3iH4oWxQ6nFELXTEfB33tydkR2nhhGSZWXuiNX1BX5k/to2cXxU/as/Z8/Z3vSk2m6j4hk1vUbWYjypo9NCuqsNrE7o/PTHAO7Ge6pmNefJTckfen/BPP9lS1/ZV/Z40/Q9Zh3eL/ABBt1XxHdyHfPLezDd5bOckrADsAzt3bn6uxP3VRRUHghRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH5Gf8FVv2cLrWvAlj+2H8JY4bDx78LZF1Y3exi11ptrmSSGQRglwhw43/KE8xSQHJHu/wQ+Lfh747fCfQvi54VUpZa5bCdY2YM0TglJI2K8Fo3VkOO4r7zvbKz1Kzm07UYUuLe4Ro5YpFDo6OMMrKcggg4IPBFfg/wD8ExmufB2h/E79n2aZpYfh/wCMtR061R8Fo7feVC5BOcyRyNk55JwSOlRO7A1GpuPc/UGiiiqPWCv5P/8Agr1/yeVe/wDYKsP/AEE1/WBX8n//AAV6/wCTyr3/ALBVh/6CaT2OPHfw/mf09f8ABDT/AJRx+Ef+v7Vv/SyWv12r8if+CGn/ACjj8I/9f2rf+lktfrtUHjhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH/1f7+KKKKAP8AOf8A+CjH/J+Hxc/7GnUv/RzV/VF+yh/ya18Nf+xV0b/0kir+V3/gox/yfh8XP+xp1L/0c1f1Rfsof8mtfDX/ALFXRv8A0kirlxWyPeyH45+h79RRRXCfTBRRRQAUUUUAFFFFABXwT8AP+UxPjH/snC/+ldlX3tXwT8AP+UxPjH/snC/+ldlXThfjPIzv/d16r9T9rq5vxZ4O8IePNFk8NeOdKs9a06Uqz2t/AlzAxQ5UlJAykgjIyODXSUV3nyR4F/wyl+y5/wBE18K/+Ce0/wDjVH/DKX7Ln/RNfCv/AIJ7T/41XvtFAHgX/DKX7Ln/AETXwr/4J7T/AONUf8Mpfsuf9E18K/8AgntP/jVe+0UAeBf8Mpfsuf8ARNfCv/gntP8A41R/wyl+y5/0TXwr/wCCe0/+NV77RQB4F/wyl+y5/wBE18K/+Ce0/wDjVH/DKX7Ln/RNfCv/AIJ7T/41XvtFAFLTtO0/R9Pg0jSII7W0tY1hhhhUJHHGgCqqqoAVVAAAAwB0q7RRQB+Rf7H/APykw/aY/wC4D/6Tmv0p+NH/ACR3xZ/2Br//ANEPX5rfsf8A/KTD9pj/ALgP/pOa/Sn40f8AJHfFn/YGv/8A0Q9AH59/8EZP+TAPC3/X5qn/AKVy14v/AMFSf+Ttf2Wv+xg1L/0bp1bH/BIv44fBbwV+wx4Z8PeMvF+iaRqEV3qTPbXuoQW8yh7qQqSjurDIORkcivL/APgot8Tvht8Rv2tf2Y/+Fe+IdM177H4gv/tH9nXcV15XmS2Gzf5TNt3bWxnGcHHSlLZm2H/iw9V+Z+m9FFFeQffBRRRQAUUUUAFfl58JLqDRP+CqXxX0e6bEut+HdMvYNw25W2itomC9m5Oc5HQ8HBI/UOvys/bisNc+Afx08E/t0eHrP7ZYaGn9ieIoxlVFjdMyJK7KWb5Xm+XbETuCgkjArSlu13RyYzSManSLTfpqn+Z+qdFYHhXxV4c8ceHLLxf4QvYtR0zUYlntrmBt0ckbdCD/ADHUHg81v1mdSd9UFFFFAwooooAKKKKACiivye/a+/4LUfsG/sNfGWb4DftBa3qdj4jt7SC9eK102a6j8m5BKHegK5IHI7U1FvREVKsKa5puy8z9YaK/J/8AZY/4Lbf8E3f2wfiHbfCX4S+P1g8S3xCWWn6xazaa925OBHA86LFJISfliVzI3ZTg1+sFDi1ugp1YTV4NNeQUUUUiwooooAKKKKACiiigAooooAKKK8f0r9oD4Ka78Zr79njQvE1hfeNtL0/+1L7R7eUS3Npab0jDzqmRFuaRdquVZgcgEAmgTaW57BRRRQMKKKKAP5yP+C2//JUvBH/YKuP/AEcK/Vv/AINx/wDk13xz/wBjSf8A0kt6/KT/AILb/wDJUvBH/YKuP/Rwr9W/+Dcf/k13xz/2NJ/9JLevTofAj4rM/wDep/10P6HKK/Fr/guTea7F+zh8PtJ0LVb3Rzq3xD0mwnn0+drebyZ7W9DAMv4HBBGQCQcV5h/w5/8AhT/0VX4m/wDg8h/+RK1OA/fSivwL/wCHP/wp/wCiq/E3/wAHkP8A8iUf8Of/AIU/9FV+Jv8A4PIf/kSgD5l+Cf7M3ws/av8A2nP2x/hT8VrPzrabxTZSWt1HgXNlciXUgk0LkHa655HKspKsCpIr6e/Y/wD2v/in+xv8U7H9gv8Ab0vvOtpsReC/GkpItr+2BCxwTyMTtdchQWYsjEI5KlHb6h/ZM/Yi+Fv7HcniW98Aarret33iyW2l1C81y6S6nf7IJBGA0cUQwPNckkFjnk4AA9F/aZ/Zm+Fn7V/wsvPhT8VrPzrab95a3UeBc2VyAQk0LkHa655HKspKsCpIoA/QqivwP/Y//a/+Kf7G/wAU7H9gv9vS+862mxF4L8aSki2v7YELHBPIxO11yFBZiyMQjkqUdv3woAK/Df8A4OC/+TD7T/sadP8A/RNzX7kV+G//AAcF/wDJh9p/2NOn/wDom5oA/F//AIIBf8nj+Jf+xMvP/S6xr+viv5B/+CAX/J4/iX/sTLz/ANLrGv6+K+Lzz/en6I9bB/wwooorxzqCiiigD8Wf+Clv/J6/7Jn/AGMuof8Ao3Tq/Y6vxx/4KW/8nr/smf8AYy6h/wCjdOr9jq+5yf8A3OHz/Nnj4r+K/wCugUUV8t/tdftpfsy/sJfCaX41/tT+K7bwroKyrbwvKrzT3Vw/SK3giV5ZpMAkqiHaoLNhQSPTOc+pKK/A74Bf8HLX/BJn9oL4pWXwk0Xxrf8Ah7UdUuVtLG417TZbKyuJnIVF8/50i3k4BmMYzwSCQD++NABRRXwn8U/+Cjn7Lvwc/bU8F/sA+OdSvYfiT4/09NT0e0js5JLaS3ka5QF51GxDm0m4JzwPUUAfdlFfCfw2/wCCjn7LnxX/AG2fGH/BPrwbqV7N8S/AuntqerWklnJHbR26/ZslJyNjn/S4uAc8n0NfQPw9/aO+BPxZ+JXi74P/AAx8V6dr/iTwF9jHiGxsJhO+mvfmYQRzsmUSVvs8uY929AuWADLkA9rooooAK5rxn/yJ+rf9ec//AKAa6Wua8Z/8ifq3/XnP/wCgGgD81f8AgjJ/yYB4W/6/NU/9K5a5n/giN/yYpYf9hnUf/Q1rpv8AgjJ/yYB4W/6/NU/9K5a5n/giN/yYpYf9hnUf/Q1oAu/8E3f+Tpf2pP8Ascov/Qrqv2Ar8f8A/gm7/wAnS/tSf9jlF/6FdV+wFfC5v/vdT5fkj2cL/CQUUUV5pufxw/8ABd//AJPbtP8AsWbD/wBG3FfuL/wb5/8AJiF5/wBjVqH/AKJtq/Dr/gu//wAnt2n/AGLNh/6NuK/cX/g3z/5MQvP+xq1D/wBE21ff5d/utP0PFr/xJH7k0UV+Lf8AwXk8ZeL/AAT+w1Ff+DNVvNInuPEmnwSyWU727yRGOd9jFCpK7kVtp4yoPUCu0xP2kor8C/8Ahz/8Kf8AoqvxN/8AB5D/APIlH/Dn/wCFP/RVfib/AODyH/5EoA/fSv5zPB3wW+HH7QX/AAUF/ay+FXxV05NS0fUhoCujcPG4tjtkjbqkiHlWHIPtkHv/APhz/wDCn/oqvxN/8HkP/wAiV9MfspfsLfDD9kXX/EvirwZrniDxDqXilLSO8udfu47qULZ7wgVo4YTyHwd+7hVAwM5APjT9nf8AaJ+J3/BLf4naf+yR+1vqEur/AAk1eUw+DvGMwONPGfltLtv4Y1yBz/qeo/cn91/RFBPBdQJdWrrJFIoZHU5VlPIII4II6Gvij40/Bb4cftBfDjUfhV8VdOTUtH1JNro3DxuPuyRt1SRDyrDkH2yD+Wn7O/7RPxO/4Jb/ABO0/wDZI/a31CXV/hJq8ph8HeMZgcaeM/LaXbfwxrkDn/U9R+5P7oA/onoqKCeC6gS6tXWSKRQyOpyrKeQQRwQR0NS0AfkT/wAFy/8AlHH4u/6/tJ/9LIq/mM/4I+f8nn2P/YJv/wD0AV/Tn/wXL/5Rx+Lv+v7Sf/SyKv5jP+CPn/J59j/2Cb//ANAFXD4kRV+Bn9aNFFFdp5R+bfxL/wCUtPwC/wCwTr//AKRXVftpX4l/Ev8A5S0/AL/sE6//AOkV1X7aVx1fiZ6dD4EFFFFZmoUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB+H37E//J1f7TP/AGOC/wDoVzX6Y1+Z37E//J1f7TP/AGOC/wDoVzX6Y120vhR5uI/iMK+Ov+Cgf/JmHxE/7BL/APoa19i18df8FA/+TMPiJ/2CX/8AQ1qpbMiHxI/nO/4JD/8AKRz4Xf8AX9df+kc9f6B1f5+P/BIf/lI58Lv+v66/9I56/wBA6uA9UKK/B3/gtM3iXxD48/Z4+EmneINW0LS/GPi86bqJ0m7a1kaOeS1h3jGVLxrK/ll1YKWPBBIOb/w5/wDhT/0VX4m/+DyH/wCRKAP30or8C/8Ahz/8Kf8AoqvxN/8AB5D/APIlH/Dn/wCFP/RVfib/AODyH/5EoA+c/wBlD9lz4Z/tY+Av2gvh38RIWjlj+KGtT6dqMHF1p90Cu2aFuoIONy9GHB7Efev7G37ZPxM+GfxMt/2FP267hY/GkahPC/ihyRa+JbUfKgLtwLsDA55kPyt+9wZfYf2U/wBkr4c/sheDdU8HfDy/1XVRrWoyape3msXC3F1NcSqqksyRxLjC5+7kkkkmtL9qP9lz4Z/tY/DOb4d/ESFo5Y28/TtRg4utPuh92aFuoIONy9GHB7EAH6MUV+On7G37ZPxM+GfxMt/2FP267hY/GkahPC/ihyRa+JbUfKgLtwLsDA55kPyt+9wZf2LoA/Ir/guV/wAo4/F3/X9pP/pZFX8rv/BKb/k9bw5/166j/wCk0lf1Rf8ABcr/AJRx+Lv+v7Sf/SyKv5Xf+CU3/J63hz/r11H/ANJpK1ofxI+qGtz+s+iiivfLCiiui8P+Gb/xI8qWLxoYgCfMJHX0wD6VMpKKu9gOdor0j/hV2v8A/Pa3/wC+m/8AiaP+FXa//wA9rf8A76b/AOJrP6zS/mC6PN6K9I/4Vdr/APz2t/8Avpv/AImj/hV2v/8APa3/AO+m/wDiaPrNL+YLo83or0j/AIVdr/8Az2t/++m/+Jo/4Vdr/wDz2t/++m/+Jo+s0v5gujzeivSP+FXa/wD89rf/AL6b/wCJo/4Vdr//AD2t/wDvpv8A4mj6zS/mC6PN6K9Qg+FmqN/x9XMSf7uW/mBWonwpiA+e+JPtHj/2apeLpL7Qro8bor2b/hVNv/z+t/3wP/iqP+FU2/8Az+t/3wP/AIql9cpd/wAwujmPB3hS18QQNczsf3MoDLnAZCOfoR1FY3ibwzd+HLvy5Pnhf/Vyevsfevc/DHhlPDUEsCTGbzWDZK7cY/E1tajp1pqto9jfJvjfqPT3HvXI8a1UbWsRcx8mUV03ibwzd+HLvy5Pnhf/AFcnr7H3rma9KMlJXWxQUUUVQBRRRQAV/n0/ta+If2ZvFX/Bar4raH/wWvuvFVr4P0+WS38HrYNObG304yA2jMsKtOLeSDLk2y8zl9+Tmv8AQWr+SXx1/wAFO/2aviD+2J8Tf2Iv+C5Hw08J6JpnhW6eHwjrEukXNz5lv5jkSNPuuJovtcBhlhkgESgb1c5Kgc2JSaSb69dvmJnd/wDBHv8AYl+Hnwc/bM8Q/Hf/AIJ0fHnRfGXwB1W1MOpeExeSXOqwSSwAwtcRFEEciXKExSSKkhgLJyc5+h/E/wDwcD+CdO/aF+Jf7KngL4N+LvGvj7wLrVzo2n6ToC/bZdWNnLLHcXH7uMm3giEalmYO37xQFIDEfiP+wto/7OcX/Bfzwpc/8Eel1e6+FNtps3/CUSMbs6dHFJBcC5Aa5xMbYP8AZ/J+0E5ugNmVCGvQf2B/2zP2cf2OP+C6f7VOr/tJ6rD4a03xPrmvadZ63dRsbeC5TU2m8iSRQfLEyIxDNhS0YBOSKwhUsko6ateXyA/ot/4Jrf8ABWv4Tf8ABRTUvFHw4Tw3qnw9+Ivgpv8Aic+F9ax9pijD+WzxttRmEcn7uVXjjeNyoZfmBP8APf8A8EQ7vwTYf8E8P25r74lWd1qHhyG31iTVbWxlWC6nsl029M8cMrK6pI8e5UcqwViCQQMV7p/wTA8V6H+2D/wcGfHv9s/9nZZJvhlb6ENPbVEiaKC6uJIrG2QAMFb/AEiS0nuFyASqZYAnB+Xf+CQX/KLT/goD/wBgjxD/AOmi+p87k4t/3vmB2nxB/bUsP2cv+DfjRr3/AIJ6eF/GvhHRvFus6jYR6414Lu68PiLUY/Pe5vIII1jF5ueCBh5bBnAVi1ff37Df/BXvwt+zl/wSK0T43ftP+BPFXh+y8DWWjeHdMmvIWMviy7uLcsk9i8yxI8ThHkaQuwChjljhT+Y3g+xvL7/g0a8SizjaUxa0srhRkhF8R2+48dgOSew5r6X8T/tJ/wDBOD4z/wDBADwH4A/aAfxF4t0TwVp/h3SdZfwVbpLqXh3XFt5Fgkk+1NFCinZJCWYvG3mBeC6GlGUk73+yB97eDP8AgvF4s0f4o+C/Bf7V/wCzd43+FOheP7hLbRtcu83kTtIVAaWL7PCyqoYNJtLuiHdtIr+hqv8AOt1/9on40/8ABNw+APFP/BOf9r5vjjo/iK+trW18A3MU9zcwRSg7IZrCSS5SLcQISImgn3suxf4l/wBETS57y60y3utRg+zXEkSNLDu3eW5ALLkcHB4z3row9RyupPX5foCL1FFFdAwooooAKKKKAP5MP+CrP/J63iP/AK9dO/8ASaOv6y/+CKv/ACjM+Gn/AHGf/TreV/Jp/wAFWf8Ak9bxH/166d/6TR1/WX/wRV/5RmfDT/uM/wDp1vK8Gv8AxJepD3P1MooorEQUUUUAFFFfyYf8E1f+Cnvxz+CGkaTJ+2ddX+t/DLxxqVzBp3iy8ka5k03Ug5MsU8hJbyWJ37W5QEsmVDhQD+s+iqtjfWOqWMOp6ZMlxbXCLLFLEwdJEcZVlYZBBByCDgirVABRRRQAV/HV/wAHG/8AydH4G/7FUf8ApXcV/YrX8dX/AAcb/wDJ0fgb/sVR/wCldxQB7L/wRS/5NY1//sa7r/0js6/YCvx//wCCKX/JrGv/APY13X/pHZ1+wFaI97DfwohXxz/wUB/5M98b/wDXtB/6URV9jV8c/wDBQH/kz3xv/wBe0H/pRFXnZx/uGI/wT/8ASWfV8Gf8lBl3/X+l/wCnIn3R+yL/AMmofDD/ALFLRf8A0jir6Gr55/ZF/wCTUPhh/wBilov/AKRxV9DVpgv93p/4V+R8dxD/AMjTF/8AXyf/AKUwor5v8V/tgfsweBfEV54R8ZeOtI0vVLCQxXFrc3CxyxOOzK2COOR6jkcVz/8Aw3Z+x1/0UnQP/AxP8amWYYVNp1Y3/wAS/wAzSnwxnFSKnDBVXFq6apzaaezTtsfVc8EF1A9tcoskcilXRhlWU8EEHgg0ltbW9nbpaWkaxRRqFREAVVUdAAOABXyr/wAN2fsdf9FJ0D/wMT/Gj/huz9jr/opOgf8AgYn+NL+0cJ/z+j/4Ev8AMv8A1Uzv/oBrf+C5/wCR9YUV8n/8N2fsdf8ARSdA/wDAxP8AGj/huz9jr/opOgf+Bif40f2jhP8An9H/AMCX+Yf6qZ3/ANANb/wXP/I4v/gpX+y74x/bU/YW+JH7LXw+1Cy0vWfGemLZWt3qBcWsTiaOTMhjR3xhCPlUnNYP/BMb9kDxP+xN+wl8NP2W/ihdadrWveBbS5hlvbAO9uZJ7meYNCZUSQfJKFJKqevavUv+G7P2Ov8AopOgf+Bif40f8N2fsdf9FJ0D/wADE/xo/tHCf8/o/wDgS/zD/VTO/wDoBrf+C5/5H1eQGBVhkHqKqWGn2GlWiWGlwR20EedscShEGeeAAAOa8l+Gf7RHwO+M2pXGj/CrxTp3iC5tIhNPHYzCUxxkhQWx0BJwM9a9mrop1YVI81OSa7p3PJxeDxGFqOjiacoTXSScX9z1Pyw/4LGf8mWX3/YWsP8A0I19F+GP+Ra0/wD69ov/AEAV86f8FjP+TLL7/sLWH/oRr6L8Mf8AItaf/wBe0X/oArysL/yNcR/gp/nM/San/JG5d/1/xP8A6TQNyiiux03wRq2qWUd/byRBJASAxIPBx2U17p8fOcYq8mcdRXf/APCuNc/56wf99N/8TR/wrjXP+esH/fTf/E0XRn9ZpfzHAUV3/wDwrjXP+esH/fTf/E0f8K41z/nrB/303/xNF0H1ml/McBV/S7eO71O2tZvuSyojY9GIBrsP+Fca5/z1g/76b/4mrum+AdYs9Rt7yWSErFIjkBmzhSDx8tK6JliadnaRyniHw9daBdbH+eF/uP6+x9656vpy/sLXUrVrO8Xej9R6e4968E8Q+HrrQLrY/wA8L/cf19j70JmeGxSmuWW5z1FFFM7Aoori/iL8QfCXwp8D6n8RfHd2LHSNIga4uZiC21RwAFGSzMSFVRySQBQDdtWdpX5aeIvGHg/xH/wV2+CF54e12z1GOHSdYgljtrhJRDI1neFd21jtaTcAAQCcDr25DwJ8K/2q/wDgqXNB428c6hcfDT4ITvJHDp1lK0ep6vAB99iUaN0ZuNzjylwNkchBc/T8n/BJP4X/AAw+LPwu+Jf7MQi0CXwdrTX+tTajcTXU2oWjFP3aqQyh1UMiFTGqhiSHbmpbPKxOLU04RWnc/YOiiipOAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK/B7/gn1dr4t+K37QPxSsnNxY6348vY7WcFTHJFBJI6bSmQcRzJkgkEEHJ6n9DP2/v2nbL9lX9mvWvG1u7nX9URtJ0GKHBlbUbpGETgHORFgytwchcdSK/Nj/glP4m0vw58J9Y/Zo17TJ9D8a+BtQn/ALatLlVR5GupXKSrjBYKqiNic4wpztZacTrwVvaq5+qlFFFWeyFfyf8A/BXr/k8q9/7BVh/6Ca/rAr+T/wD4K9f8nlXv/YKsP/QTSexx47+H8z+nr/ghp/yjj8I/9f2rf+lktfrtX5E/8ENP+UcfhH/r+1b/ANLJa/XaoPHCiiigAoor4B/4KleMfFfgH9gP4leK/BGo3Ok6nbafCsN3aSNDNGJbmGN9jqQykozLkEHBoA+/qK/DL/gnJ/wUK+ID3/h/9kv9uIHTfGupadaXvhfXrhv3HiGyuYw8KtL0N1g7Q3WVgVbEwIf9zaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/9b+/iiiigD/ADn/APgox/yfh8XP+xp1L/0c1f1Rfsof8mtfDX/sVdG/9JIq/ld/4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/wCxV0b/ANJIq5cVsj3sh+Ofoe/UUUVwn0wUUUUAFFFFABRRRQAV8E/AD/lMT4x/7Jwv/pXZV97V8E/AD/lMT4x/7Jwv/pXZV04X4zyM7/3deq/U/a6vEf2h9Y+PWh/C281H9mrStO1nxcskItbXVXKWrRlx5pciSI5CZK4cc4617dRXefJH49/8LQ/4LX/9E38Af+BMv/yfR/wtD/gtf/0TfwB/4Ey//J9fsJRQB+Pf/C0P+C1//RN/AH/gTL/8n0f8LQ/4LX/9E38Af+BMv/yfX7CUUAfj3/wtD/gtf/0TfwB/4Ey//J9H/C0P+C1//RN/AH/gTL/8n1+wlFAH49/8LQ/4LX/9E38Af+BMv/yfR/wtD/gtf/0TfwB/4Ey//J9fsJRQBzPgu68UX3g7Sb3xvbR2etTWUD6hbwnMcV0yAyohDPlVfIHzNwOp6101FFAH5F/sf/8AKTD9pj/uA/8ApOa/Sn40f8kd8Wf9ga//APRD1+AlxbftZXP/AAUe+PQ/ZW8UaV4ZuBLpP9otqlsLgTJ9mXywmYpcFTuz0zkV7f4g8H/8FbfE2gX3hvVfip4VNrqFvLbTBdNVWMcqlWwfsvBwetQ6kU7NnVSwVepHnhC6PmP/AIJ3/sZfsyfGP9lfRPHvxL8Jwarq91cXqS3Mk06MyxTuijCSKvCgDpX6E+CP2GP2Tvhz4os/Gng3wVZ2eqafIs1tOZJpTFIpyGUSSMoYEcHGRWh+xv8AATWv2aPgBpHwj8RX8GpXtjJcyyzWyssWZ5Wkwu7DEAMBkgZ9K+oq8+pUbk7PQ+twuFpxpQ5oLmSXRbhRRRWR2hRRRQAUUUUAFYfibw1oPjLw9e+E/FNrHfabqUD21zbyjKSRSAqykehBrcryz40fGHwR8BvhtqfxQ+IF0LbT9Ojzjq80rcJFGOpd2wB6dTgAkNXvoTNpRblsfmJqHwu/aF/4JwHU/GvwNuI/Gnwn8z7VfaBqEvl32nh2AZraTox6YIBLZw0TMPMrv/B//BYD9knxBbeZ4iOraDKASUubTzhnJAAaBpOcYPIArkPh3+z78Wf29JbP45/tfXU2k+EbgeZo3g3T5HgiktH2uklzIrCQl9qt2dsBh5a4Sv0U8H/s3/ADwDpf9j+EPBmjWUBJZgtnEzOSScs7KWYjOBuJwOBxW8nH7Wr8jzKNOte9B8sOiev3LovK569p9/barYQanZEtDcxrLGWUoSrjIyrAMDg9CAR3q5RRXOeqFFFFABRRRQAV/Hf8f/C3hjxr/wAHYXw68M+MtOtdW0258OSedaXsKTwSbNC1F13RuCrYYBhkcEA9RX9iFfxn/wDBRez/AGvP2d/+C+Ogft2/B34EeMvizoPhfQIYVj0PTL1rW5kutOurJkF5BaXMatEZw7Dax42nGcjahu/Q8/Mfhg3spJv0PWf+DmH9jL9nv4afsmeHv2tPg14Z03wV458LeJrC3j1LQ7aPT5ZoLhZCFfyFTc8cqRyROfmTBAOCa+ov20/+CxPxS/Z9/Y1/Z6tfglocfib44/tC6Fos2i293GPs8E9/Ba+ZLLGpj3SSTXKxwxgqhYszHam1/wA/v2rLv/gqp/wXavPBv7M2rfs/6v8AAH4Y2Gswatr2p+I3lEzCINFvX7TbWbuY45ZDHBHExeQqWZVGR9rf8FlP+Cb/AMdru3+AX7Uv7CWjjxDr/wCzfLZR23hxzvuLyx06W2ltfKA2+Y0TQYkjBDOjkpyu1tFb3Yz3OWTm3Vq0E0ml037tLyR4X8Uf2/P+Cx//AASb8Z+BfiD/AMFL7nwn8R/hZ401BdO1C58OQeVd6TK48xlVkt7UNKkau6IUlSUIyh1OGH1n/wAFFv8AgpV+1jL+2v4E/wCCZv8AwTci0WPx74t09dXv/Eetp51nY2skck6hFw6/LBE00jtHJlWRUQsePzk/bU8V/t8/8F5Lv4ffsiaF+z74o+DPhHRNdi1nxRr/AIqglhhtpoo3t2EJmhtxL5Mc8pWNcySsy5WNVLV9Af8ABQ/9mL9qH9iP/gp78Ov+CpP7K3w51H4p+E9L0SHQNd0HRkebUIUhtZLHIjiWSUobdkdJFjZVkiIk2gqSWjdXSvr/AMATqVOWXJKTheOut7fat1PvT9gL4pf8FjPCH7Uuufsz/wDBQjwzp3jDwnFZ/adP+IegQJa2Yn2B1iddsHmK4yhC26vHKMHcjBhyX/BED/goF+0l+3N4k+O+m/tBX9nexeAvENtp2kC0tI7UxwSNdhg+z75xCnJ/rUX7A/7X3/BUb9tj9s7U/iF4z+HF58Iv2eNOsCkWmeJtP8nVb278sqhhlkjilO6VvNdgjQoieWGLnJ/LL9hXVv23/wDgkf8AtdfH74Ln9nTxj8TLf4j66t94a1PRIGGnSiGa5MDzXpja3jhkjuUMrlw0DKQ65PyrlupKyvoaqs4unJOTheW9+2nnbtc+uv2Jv+CqP7X3xw+B/wC3F468f6pp8+ofAvTtTuPCbRWMUSwSWtvqskZlVRiYBrSLIbrg+pr488D/APBST/guV8dv+Cb2oft/+BNX8GeH/DXw+N1/ajz2Qk1LxB9nuMyyRwmF7eGGCORItoaOR2ikbdyopf8AgmN+yn+2F8O/2S/+ChHhb42fDvXtJ8UeMtA1GDTIDpd0iaxevZ6yjrpu+MG7VpZUEZh37g6Y+8M/Sn7JH7On7QXhr/g2n8d/AjxF4E8Q2Hji803xGkHh650u5i1WV57p2jCWjRidi64KAIdw5GapqKb0W6OeDrTjG8pL3ZP5p6Hhfj3/AIKjf8FqviX+wTD/AMFUPhbF4I8EfDTQTb2tzorQvfX+rPHcLYXN4PNjIS3N4xVIkmjkREbLPtDv96ftpf8ABcLxN8Ev+CZfwk/aj+GPhq1f4j/G22ii0jTbktNZ2U6xj7XKcFGlWKQqkSFl3F1LcBgfnfQP2cv2g4P+DWGT9nqXwH4hTx8bC5T/AIRk6XcjWNzeJnuAPsXl+fkwnzQNnMfzfd5r5y/a8/4Jf/tQ/tD/APBFn9me/wDAPg+9uPH/AMHLK4l1DwjqNtJbX81pfMDOgt5dkhmRoIj5GA7ozbcttVi0G9e43LERi3FttwT+d9bfLoe/aD/wU0/4KU/sGftLfCvwX/wUQ8VeBfiV4G+LF4NOku/CZjNzoNy7xJ+8aCKFSIjMpIKSeYgfY+5efWP2xv8AgpL/AMFFPB//AAWGh/4J7fslW+garD4i0GBtKt9bi8q2s7ya1eeW8uJ41aZordI3kMS8vgKMk7T8A/BP4H+BP2j/ANpn4feBP2fv+Cfcnw+0e1njl8Z6149i1azj05kdGZrOX7RArNEA5RXRpJmKDZGoZj+gnin4BfHS5/4OdPDfx9g8Fa9J4Ft/C0lvJ4jXTbg6Skx0q5j2NebPID72CbS+dxA6mhqN9ujHGVVxSUnbmS63t11aRU/Y/wD2/wD/AIKT/C//AIKsz/8ABMT9vXVPDni668RaTc6jo2saNai1SF0tJL2IrtjiLRFIpI3SSIuHUEOVBL/lR/wS98Lf8FJW/wCC4XxVsdP8SeE18YafqMcnxNuGjk+yX2kpqNr9uj04fZsrM4x5RZYh6stfrF8VPgF8ddR/4Oc/hr8fdP8ABWvT+BbDwrPb3PiOPTbhtJhmOlalGEkvAnkK5eREClwdzKOpFfNvwitf2pP2F/8Agvx8WvHuo/BbxZ4x8K/GK9h0+y1vR7KeWwtbTUbu0le8knSKSMx2yB/OQsrKV5wDmhNWdktUKUZXjzt2jNq+u1tDjvEf/BXr9uz9pv8Aa9+Kfwe+E/xp+HP7O9h4C1i50fRtJ8ZwIlxq7Ws0sJMl1dQTRJIzR/OqshXeqqjYZz/SP/wTm+In7Z3xM/ZrsNf/AG6/D2j6F42E7osuhXsF7Z39kVVorkG3lmjR2JZXVJGQ7dy4DbV/mL/bV8M33jX9o74gaP8A8FLP2I9U8XXs8wTwx41+EFlfRS36LuVJLydJpIp5HTy8eapkiAKtE2Fx+mv/AAbefso/tV/sufsw+MIv2i9N1PwvpHiXW0vvDXhrWHJvbC2VCJZJYiF8lpyUBQojExFii7hmakY8l0a4SpU9vyybe/fT1TVl5WZ/RfRRRXMewfzkf8Ft/wDkqXgj/sFXH/o4V+rf/BuP/wAmu+Of+xpP/pJb1+Un/Bbf/kqXgj/sFXH/AKOFfq3/AMG4/wDya745/wCxpP8A6SW9enQ+BHxWZ/71P+uh7p/wXF/5IP8ACv8A7Khof/pPe1+kFfm//wAFxf8Akg/wr/7Khof/AKT3tfpBWpwBRRRQAUUUUAfPv7TP7M3ws/av+Fl58KfitZ+dbTfvLW6jwLmyuQCEmhcg7XXPI5VlJVgVJFfFP7Dn7VPxp/Zo+Otj/wAE3P2xpJdbvZ4s+CvE8KNN9vslDbIpwNzqVWNgHbJjKlXJXa5+gf2w/wBsPTP2btN07wR4I05vFnxL8WN9m8OeHLbLyzyudommCnKQIc5OQXIKqQA7p1/7Cv7CupfBPUr/APaO/aOv18WfGbxYu/U9TfDxadE4GLOzGAERBhWZQAQAq4QAEA/TCvw3/wCDgv8A5MPtP+xp0/8A9E3NfuRX4b/8HBf/ACYfaf8AY06f/wCibmgD8X/+CAX/ACeP4l/7Ey8/9LrGv6+K/kH/AOCAX/J4/iX/ALEy8/8AS6xr+vivi88/3p+iPWwf8MKKKK8c6gooooA/Fn/gpb/yev8Asmf9jLqH/o3Tq/Y6vxx/4KW/8nr/ALJn/Yy6h/6N06v2Or7nJ/8Ac4fP82ePiv4r/roFfy5/8HMn7AX7V/7V/g74QfH/APZY8PJ4/ufhBq17faj4QljFwNQhumtZFkFsSv2lUNqY5YFJkdJfkHDV/UZX86n/AAXQ+G//AAVT8NeKvhh+2N/wTW1jX9bt/AF2H8T+AtLu5lh1aCGVZ45Hs4nT7YjAPBPEgaUo6FFO1ivpnOfzyfF7/gph/wAEw/257vwl+zF/wV0/Zs1z9n7WvD17EseteGIUsmtFKtEyXMMtrDdw2eW3NEqXDKyKR0Nft9/wW/8A+CnH7Q//AATJ8L/sv2/7F99beJtC8YzT2tzHcpFfS63YWCaeLZY7oq217hJmHnIpyXDAHAr8uv8Agop+1X/wUU/4Lh/BjQv2L/h/+xR4n8D6rNrNpcXviXxPBcC20qSL76xXNxZWqW4bP712fcYwUEbFgRS/4OMPgj8Sf2a/2f8A9gD9nfw3qUeteL/A8cmg2l65IhuNR0+HR4I3BfBEZlQbd2CExmgD62/ar/4KP/8ABcv/AIJPfEP4fftH/wDBQb/hBvFXwg8darHp2qaF4Wt2EuiPIpmaBLh445WuFhWRoy0txFIYnUlcq5T/AIKB6hZav/wda/sk6tpsgmt7rwNZSxSL0ZHm18qR7EHNeCf8FK/G/wDwUm/4Lm3Pw0/4J5Wf7Mviz4QrofiSDV/GHiDX4ZG0i0uIIZbUyW92Y44JreOOeeRCsjPcfKI1PVvs/wDbM/ZW+OMn/ByT+yt8Ufh34D8Ral8OvB3gex0u98Q2mmXM+k2LW8mtKI7i8SMwROFkiJV3Bw68fMMgG58H/wBrP9pX4lf8F4f2qP2Q/hTY+D9K1Lw/8PtSufC+ry6JbQXo1cw6ULRr6/iha5nt1muMyI28FVX5TtUV+WH/AAbOeGv+CgU3/BQz493fhXxB4Yi8M6Z4qtl+LEMyP9p1G4aTWFtzpZFuQqrdCdn3tD8hXg9B+p37FP7Ov7QPhT/g58/aN+P3ijwL4h03wJrnhGW203xJdaZcw6ReTH+xcRwXjxiCV/3Unyo5PyNx8px8rf8ABH2y/a9/4J9f8FX/ANon9n74gfAzxffaT8avGQms/GMGn3DaHp9nZXGqTQ3ks6xGKWCdbyMAiVCrAq2GyAAeJ+CP+C2P/BS39uj4pfES5+Cvx2+FnwAl8Nalc2fh7wF4vhht7/VFhz5cbXl/C8Jmcjy22zR/vQf3caYav6/v2AvHv7XnxI/Ze8P+J/25PDOleFviLIrrfQaJeRXthcRcGG4iaGWZF8xCNyCVwGBIO0gV/Fx+1x4GuPid8TviPoP/AAU4/wCCffiHUPiZeXsx8P8Ai/4JWOoQ2WplwQJZ5VkuILiWRgZTM8UkuGCyQqwOf6BP+Dan9lD9rz9kT/gni/gb9r2G80i+1XX7rVNE0G/kL3OlaZLDCqxupJ8gyTJLL5H8G/LAOzqAD+hCua8Z/wDIn6t/15z/APoBrpa5rxn/AMifq3/XnP8A+gGgD81f+CMn/JgHhb/r81T/ANK5a5n/AIIjf8mKWH/YZ1H/ANDWum/4Iyf8mAeFv+vzVP8A0rlrmf8AgiN/yYpYf9hnUf8A0NaALv8AwTd/5Ol/ak/7HKL/ANCuq/YCvx//AOCbv/J0v7Un/Y5Rf+hXVfsBXwub/wC91Pl+SPZwv8JBRRRXmm5/HD/wXf8A+T27T/sWbD/0bcV+4v8Awb5/8mIXn/Y1ah/6Jtq/Dr/gu/8A8nt2n/Ys2H/o24r9xf8Ag3z/AOTELz/satQ/9E21ff5d/utP0PFr/wASR+5Nfhv/AMHBf/Jh9p/2NOn/APom5r9yK/Df/g4L/wCTD7T/ALGnT/8A0Tc12mJ+oFFFFABRRRQAV5X8afgt8OP2gvhxqPwq+KunJqWj6km10bh43H3ZI26pIh5VhyD7ZB9Ur4l/bV/bV8G/sieDLZEtm1/xrr7fZvD/AIftsvcXlw5CKSqZYRhiASBlm+VcseAD5M/ZG+OXxd/4J7/tHaD/AME8f2gr2TxT4K8UyCPwHroYPdWqu2xLW4TO4RBsIP8Anm2NuYjiL+hWvx6/YD/YD8ZeGfGc37aX7aU66/8AGDX18yCCTD2+gW7jCwQKMqJgp2sy8RrlEJy7v+wtAH5E/wDBcv8A5Rx+Lv8Ar+0n/wBLIq/mM/4I+f8AJ59j/wBgm/8A/QBX9Of/AAXL/wCUcfi7/r+0n/0sir+Yz/gj5/yefY/9gm//APQBVw+JEVfgZ/WjRRRXaeUfm38S/wDlLT8Av+wTr/8A6RXVftpX4l/Ev/lLT8Av+wTr/wD6RXVftpXHV+Jnp0PgQUUUVmahRRRQAV/Jr/wSu/bn/a6+H/8AwWf+Ov8AwS7/AG1/HN/4vhgW4vPBc+qLEsqwWbfaYFQxohJudOuFmfO4AwcHrn+sqv4sf+DjXwzrP7Cf/BRL9m3/AILDeAbZ1t9O1SDQfEvkDHmizZpVQkdXu7CS7gJ/uRAUAfTn/BY39t79rfXv+CqP7PP/AATC/Ye8b33g3UfEjJf+LbvS1ieUWV7LkhvMSTabWztbi4IAGRIpPav2S+Pn/BXf/gmp+y58U2+CHx1+MOhaD4phKpcaezy3ElqzDIW5aCOVIGxziZkOCD3Ffzff8EY28Q/t7f8ABTL9rH/gsfaWr6naaIl54f8AAYmQ4kdotlvsBHyyR2FtAjjH/L0eCTX5A/8ABHb4V/HT9pD9m/44eO9P/Z68BfHa68RapdR+J/FfjfXLaw1TS/PgE7yRNcxs0GXaS4N0rKTIvJ/d0Af6Vuk/Eb4f694Dh+Keia5p934YuLP+0YtXhuY3sXs9u/zxOGMZi2fNv3bcc5xX5yeCv+C23/BKP4ifFe3+Cfg/44+HLvxDd3C2lvGZJYrWedztVI7uSNbV2duECyncSAMkjP8AIb468I/tefsmf8GvXjr4O+L/ABFpOsadJ8QrWytr3wxrlrrVnD4d1D7PPLbi4spJUVXvtxeMsCVnOflbB/YAf8E/f+CFb/8ABHb4FfEP9rHStA8IeFbjR/Dt6/i6xVbPVL3Vr+1DTRz3tvG9zL50plM0TEqmz+ARDaAem/8ABXT/AILtxfsQ/tyfB39j/wCG2s6JZWN74k0eT4mapexST3Oi6LNc2kkkapjy08+yleRpQJGVPuBXww/cnxl+3B+yT8PP2cNO/a68d+PtJ0j4b6xbwXVhrt3KYre6jul3QiFWAkkeRQSsaoXIBwvBr+PT/gtZ8HP2YfEf/BUf9gHUfA+iaVr/AIZ+ImqeG7fUb+4gS7bxHpQv9Mtrc380ql71WsyEzcFy0bYPBNdn/wAFbPhx8LvGn/Ben9k39hX41WNron7PlholgdL8OQKLLRWuZZ71FhWKPZEomlt7W1ZFA/d4UY3cgH9Sn7KP/BTj9gj9uDWrrwx+yz8T9H8WatZxmeXTojJbXvlKcGRbe5SKZkU/edUKjIyRkZk+M3/BTL9gz9nf4ka78Ifjd8T9H8M+JPDWmrq+pWN80kckFnIEKSE7CrF/MQIikuzMFVSTiv5Tv+C8XwG+AX7Dv/BRD9kH4mfsC+GtI8A/E7VfEJgn0rwvbRadHd2yXNnDbGW2t1VFExmnt2bZ++QsjbgmBF+05+zN8I/2s/8Ag7e034T/AB10eDxD4WXw9a6leaZdLvt7prLRnlhSVejRiYIzKeGC7SCCRQB/UrrX/BV7/gnV4c/Z00X9rLX/AItaJZeAPEc01tpWpztIjXs1u2yaOC3MYuJHibiRViJT+LFdH+yX/wAFMP2Ef26dSvdC/ZS+Jek+LtS06H7RcWEXm216kGQpl+zXMcUxjDMoLhCoJAJyRX87f/Ba3/gmJpt58WfgB/wwDrnw28P+K/htHcweHvhN4murG3h1RL26e6DWNheMYZzJN5okjdVVtuVcMmK8A/4J6/tPWvwj/wCCvfg34Tf8FFP2R9B+D/x78X2b2ejeK/CZlsbWRJIp4ld7CK4nspVuAkkL3ULsd4AYEDKAH25+zr/wcVfD341/8FgvFX7M/iTxZ4f0b4IWWjvpnhPUYYpnn17xHc3enxwbpmUsp2yXKRxqkacEuWIUj91f2tv+Cjv7D/7CkunWn7WHxI0rwdd6shmtLOcyXF5LECVMi21uks3l7gV8woEyCM5Ffyh/8E7v2W/2Z73/AIOh/wBo74W6h8PvDcvhvwh4cn1bQdJk0u2ay0y/gutEaK5tYDH5cEyGSQrJGqspdiDyaf8A8ErvhD8F/wBuP/guv+15rf7fujad458XeEtUvrTw5ofiWFL+1h0+31Ca1LRWtwGR1tYEto4iUIVZdw5YNQB/Yh+zf+1b+zh+1/4C/wCFnfsy+M9L8aaGspgkudNmEhhlHPlzRnEkT452yKrEEHGCDXxZff8ABcD/AIJP6d4as/F158cPD6WF/qcukQPmcs13CsbyKUERdVRZYy0jKI13AFs1/Pn/AME9/Cngv9mH/g6Q+Mf7N37GEcen/DG+8OyTa9o+nN/xLrK4itbWdlRFyi+RfStGijHk+c8S4AK186/8Gqf7AP7J/wC0z4T+Mnxo/aI8E6Z4z1TRfEen6fpJ1WETrY+SHuWkhB4WR3Me5+uEAHBYEA/sB/aq/wCCmf7Bn7Eerad4e/ak+J2keEtT1WJZ7awnMk940LHaJGgt0llSMnIDuqqcHng4+kfgj8d/g1+0n8OLH4u/ATxNp/i3wzqW77PqOmTrPCzIcMpKn5XU8MjAMp4IBr/Pz/Z70v8AaK/aJ/4LiftY+IrT4HeEf2gvF+k61rNiui+PNQgt7fTtKtr9rKKSCK6jkSXy4I4LdWC/JGwx9+v2m/4NvP2b/wBoH9mj4xftDaJ4ubwrpvgbxFq0eo2Phvwx4msvEEWg6jHPcRy2rrayPJCUiKQkyKrN5ADDctAH9X9FFFABRRRQB+H37E//ACdX+0z/ANjgv/oVzX6Y1+Z37E//ACdX+0z/ANjgv/oVzX6Y120vhR5uI/iMK+Ov+Cgf/JmHxE/7BL/+hrX2LXx1/wAFA/8AkzD4if8AYJf/ANDWqlsyIfEj+c7/AIJD/wDKRz4Xf9f11/6Rz1/oHV/n4/8ABIf/AJSOfC7/AK/rr/0jnr/QOrgPVPwm/wCCwH/Jxn7J3/ZQIf8A0qsK/VGvyu/4LAf8nGfsnf8AZQIf/Sqwr9UaACiiigAooooA+b/2o/2XPhn+1j8M5vh38RIWjljbz9O1GDi60+6H3ZoW6gg43L0YcHsR4n+wj+2B8UtF+MF5/wAE9/2v50vviFoFqbnRtfgbzI9c01F3K03JZLlYxuJYZdQS3zjdJz/7bv7bt98E77Tv2f8A9n/Tj4t+MHi0iDSdJgAlFqJQcXFwMgAAAsqsQCAWYiME17l/wT7/AOCfdj+yvY3/AMXfi5fjxb8XvFoM2u67MTKYjKQzW1szAERggbmwDIQOAoRFAPPP+C5X/KOPxd/1/aT/AOlkVfyu/wDBKb/k9bw5/wBeuo/+k0lf1Rf8Fyv+Ucfi7/r+0n/0sir+V3/glN/yet4c/wCvXUf/AEmkrWh/Ej6oa3P6z6KKK98sK9a+FX/Hxe/7qfzNeS1618Kv+Pi9/wB1P5mufF/wpf11E9j2aiiivDICiiigAooooAKKKKACiiigAooooAKKKKAKWo6daaraPY3yb436j09x7181eI9Ebw/qj2BkEg+8pB5wemR2Ne0eMfGMWgxGysyHu3HA6hAe59/QV8/TTS3ErTzsXdzlmJySTXqYGE0uZ7FRIqKKK9AoKKKKACvA/jd+yt+zP+0pDbQ/tB/D/wAPeNfsSsls+tadBeyQK3JETyozR577CM175Xxp8ZP2z/DXwl+Kg+D9h4X1zxTrAskvpI9HtxOURyRgrkMcAAkgFRuAznIHHjsdh8JT9riZqMb217vp1PWybIsdm1d4bL6TnNJyaVlaK3bbaSSuup7f8IfgB8Cv2ftGm8PfAnwZofgyxuSrTQaHp8FhHKyAhWcQIgdhk8tk8n1r8Gf2IP8Aglv8TfDf/BQf9qf4oftc+AtH1n4ZfFfU7q60eHUms9TgvEfUZLmNpLUmQoQjKw8xAVPTBFfqD/w3dq3/AER7x7/4Km/xo/4bu1b/AKI949/8FTf415EuJMqdv323lL/5E+j/AOIa8R/9Av8A5PT/APkz61+E3wX+EPwG8IR+APgj4X0rwjocTtKtho9pFZW/mNgM5SJVUu2BuYgscck1y/g/9l79mj4e+FvEHgbwD8O/DGh6J4tSSPXNP0/SLW2tdTSZGjkW7ijjVJw6OyMJAwKsQeCa+cv+G7tW/wCiPePf/BU3+NH/AA3dq3/RHvHv/gqb/Gr/ANZ8q/5/f+Sy/wAh/wDENeI/+gX/AMnp/wDyZ9S+G/gB8CPB3wwn+CPhDwToOleDLpJo5tAs9Nt4NLkS5JMqtaoiwsJCSXBTDZ5zXMfDL9kv9lz4L+ENW8AfCX4deG/Dmia/xqljp2l29vb3wwQBcIkYWYAMQA+4AHA44rwH/hu7Vv8Aoj3j3/wVN/jR/wAN3at/0R7x7/4Km/xpf6z5V/z+/wDJZf5B/wAQ14j/AOgX/wAnp/8AyZ6f8Mf2DP2JPgr4yX4ifCL4R+EPDWvREtFqGm6NaW1zCWGD5UiRhowR1CEA19ZV+f3/AA3dq3/RHvHv/gqb/Gum+GX7bvh74gfFrS/g3rXg7xH4X1XWYppbT+17UW6uIEeRuC27G1GwQpGRitKPEeWTnGlCsryaS0au3olstzLEeHfENGjUxFTCvkhFyk1KDtGKvJ2Um7JK702PtuiiivdPigooooAKKKKAP5MP+CrP/J63iP8A69dO/wDSaOv6y/8Agir/AMozPhp/3Gf/AE63lfyaf8FWf+T1vEf/AF66d/6TR1/WX/wRV/5RmfDT/uM/+nW8rwa/8SXqQ9z9TK+bv2gf2vf2bf2WP7MX4/eLLXw2+s+b9iSZZJXlEO3eQsSOwC7gCSAMnFfSNfgF/wAFD/D+geKv+Cqn7Ovh/wAUWNvqVhdadqizW11Es0MihJjhkcFWGQDyOtYiPtv/AIe8f8E4/wDoqFj/AOAt5/8AGKP+HvH/AATj/wCioWP/AIC3n/xiuq/4Zk/Zt/6J74a/8FNr/wDGqP8AhmT9m3/onvhr/wAFNr/8aoA5X/h7x/wTj/6KhY/+At5/8Yr83v8Agk/8Jvh98cf+Caj/AAu+KOmxaromq6pqUU8Ev++pV0Yco6HDI6kMrAEHNfqX/wAMyfs2/wDRPfDX/gptf/jVeqeHfDHhrwhpUeheE9PttLsYvuW9pEkES/REAUfgKAPxw+B3xx+J3/BJj4nWP7Nf7Sl9ca98D9euDF4V8VSgu+kO5J+zXOBwg6kDgDMkY270T+imxvrHVLGHU9MmS4trhFliliYOkiOMqysMggg5BBwRXx38WfhN8Pvjj8PtS+F3xR02LVdE1WLyp4JfzV0Yco6HDI6kMrAEHNfk18Dvjj8Tv+CTHxOsf2a/2lL64174H69cGLwr4qlBd9IdyT9mucDhB1IHAGZIxt3ogB/RnRVWxvrHVLGHU9MmS4trhFliliYOkiOMqysMggg5BBwRVqgAr+Or/g43/wCTo/A3/Yqj/wBK7iv7Fa/jq/4ON/8Ak6PwN/2Ko/8ASu4oA9l/4Ipf8msa/wD9jXdf+kdnX7AV+P8A/wAEUv8Ak1jX/wDsa7r/ANI7Ov2ArRHvYb+FEK+Of+CgP/Jnvjf/AK9oP/SiKvsavjn/AIKA/wDJnvjf/r2g/wDSiKvOzj/cMR/gn/6Sz6vgz/koMu/6/wBL/wBORPuj9kX/AJNQ+GH/AGKWi/8ApHFX0NXzz+yL/wAmofDD/sUtF/8ASOKvoatMF/u9P/CvyPjuIf8AkaYv/r5P/wBKZ85eKv2Qv2YfHPiK78XeMvAuj6pql/IZbi6ubZZZZXPdmYEnjgeg4HFc/wD8ML/sd/8ARNvD/wD4BR/4V9W0VMsvwrbbpRv/AIV/kXT4mzinFQhjaqitElUmkktklc+Uv+GF/wBjv/om3h//AMAo/wDCj/hhf9jv/om3h/8A8Ao/8K+raKX9nYT/AJ8x/wDAV/kX/rTnX/QdV/8ABk//AJI+Uv8Ahhf9jv8A6Jt4f/8AAKP/AAo/4YX/AGO/+ibeH/8AwCj/AMK+raKP7Own/PmP/gK/yD/WnOv+g6r/AODJ/wDyR8pf8ML/ALHf/RNvD/8A4BR/4Uf8ML/sd/8ARNvD/wD4BR/4V9W0Uf2dhP8AnzH/AMBX+Qf6051/0HVf/Bk//kjxv4afs8/A/wCDepXGsfCrwtp3h+5u4hDPJYwrCZIwQwVtuMgEZGeleyUUV0U6UKceWnFJdkrHlYvGYjFVHWxNSU5vrJuT+93Z+WH/AAWM/wCTLL7/ALC1h/6Ea+i/DH/Itaf/ANe0X/oAr50/4LGf8mWX3/YWsP8A0I19F+GP+Ra0/wD69ov/AEAV5WF/5GuI/wAFP85n6TU/5I3Lv+v+J/8ASaBuV9B+D/8AkW7X/dP/AKEa+fK+g/B//It2v+6f/QjXuSPg8f8AAvU6WiiioPJCiiigAooooAKp39ha6latZ3i70fqPT3HvVyqOo6jaaVaNe3jbUX8yfQe9A43uuXc8G8Q+HrrQLrY/zwv9x/X2PvXPVu6/r93r13503yxrwiDoo/x9TWFWh9BT5uVc+4V+Uf7VemXn7V/7a3w5/Ybdpv8AhFYYj4k8T/Z2ZfMhh3lIZCpBUERhAwPDTqRyor9XK/OX9ja1utU/4KxfHHX9SG2Wx0LT7OJSpyIpEtGG0k5AIiDEDhic0mc+Nk1Tsup+1+i6NpXhzR7Tw/oVulpY2EMdvbwRjakcUShURR2CqAAPStOiioPGCiiigAooooAKKKKAPxE/4OFf2ovj1+x7/wAEz/EXxv8A2bfEU3hbxVZ6xpFtDqEEUUzpFcXASRdsySJ8ynHK59K+6/8AgnH8TPHPxo/YA+Cvxd+J2oPq3iPxP4J0LVNTvZFVGuLu6s4pJZCqBUBd2JIVQBngCvyX/wCDqr/lDz4r/wCw/oX/AKVLX6W/8Ek/+UXH7O//AGTnw1/6QQ0Afj9/wc3ft3ftZ/sOeBvgrqv7KnjO48H3HibXr+01N7eC3nNxDDHAUU+fFKAAWb7uDzX9Rlfxd/8AB49/yTb9nj/sZ9T/APRVtX9olAH8L3/Byx/wUZ/4KHfsr/8ABQrwx8Gf2P8A4iar4W0a5+HMPiC60+wSBkaaC61Rrmc+ZG5yLe1GecYTpX6M/wDBQD/grb4+8Hf8G+Hgr9tj4Q682kfET4m2Hh/SbDULcIzwazKQ2pbFZWUlBa3aD5eDg44xXxx/wVY+GPh742f8HPHwA+DXi5d+leLfhbdaNerjObe/i8RwScHr8rmvwV/Yd1v4pftQ/G39mL/gi78RLKX7L8I/i1r+pazAfmiks7WSK7nhweQYjb6kCSMYnHfIoA/qH/4Nfv2zP2z/ANrPRvjtpH7ZvjLUPFur+CtX0nT7Zb9Ylazd1vFuEHlIg5eJc5z93iv6sq/j2/4NVf8AkqX7Y/8A2PVp/wCjtSr+wmgAooooAKKKKACiiigD8y9S/Y++J3xx/bVm+OP7Td5bXvgnwQ8L+CNFs5n8kz8SG5uoyP8AWIwGefnZVB/dqA3z3+2Ro8P7O3/BQ/4ZftF6UiW2l/EmNvCuvMJWQSXShUtpXQDk4MShjuTbDghDhz+3Ffjp/wAFvLGeD9knR/HGn7FvPDPirTtQgZgD8wSaPHQ5BLqSMjOOvGCFQlyyUj7joqOGaK4iWeBg6OAyspyCD0IPcGpK0Pogr+T/AP4K9f8AJ5V7/wBgqw/9BNf1gV/J/wD8Fev+Tyr3/sFWH/oJpPY48d/D+Z/T1/wQ0/5Rx+Ef+v7Vv/SyWv12r8if+CGn/KOPwj/1/at/6WS1+u1QeOfEvxb/AOCjn7E3wK8e33wv+KvxAsdJ17Tdn2q0MU8zRGRQ6hjFE6glWBxnIzzXm/8Aw94/4Jx/9FQsf/AW8/8AjFfnT8Ifhx8PPiJ/wV4/aLt/iBoOna7Ha22mtCuoWsV0sbNDACVEittJwM461+oH/DMn7Nv/AET3w1/4KbX/AONUAcr/AMPeP+Ccf/RULH/wFvP/AIxXw3/wUo/4KUfsQfGn9iDx/wDC/wCF/j+11fXtXtbaKzs4ra6VpWW6hcgF4VUYVSeSOlfod/wzJ+zb/wBE98Nf+Cm1/wDjVSw/s1fs520yXFv4A8NxyRsGVl0q1DKw5BBEfBFAHyxrH7Jnwz/a9/Yh8AeAvHqNa31r4b0q40nVrcf6Vp119kixJGeCVJAEkZIDgdmCssf7Ev7bXxM8AfEyL9gz9vOVbXx7aqqeHPEbsfsviS1+7H+8bANwQMKTgykFXAmBD/ojDDDbQpb26LHHGoVVUYVVHAAA6AV8xftZ/smfDP8Aa9+Gb+AvHqNa31qxuNJ1a3H+laddcYkjPBKkgCSMkBwOzBWUA/Sqivxh/Yl/ba+JngD4mRfsGft5yra+PbVVTw54jdj9l8SWv3Y/3jYBuCBhScGUgq4EwIf9nqACiiigAor5yv8A9rf9nSx+Melfs/w+KrK98YaxLJDDplm32mWNoY3lfzjGGWHCoTiQqT2Br6NrOnWp1L+zknZ2dnez7PzOvFYDE4ZQeJpShzrmjzJrmjdrmV91dNXWmjCivir/AIKBftF61+zL+zNq/jfwWw/4SnUpYNH0BCiyFtRvW2oQjAqxjQPIFYEHZggg1wH/AAT1/aH+KfxV0Txr8IP2iLuG7+Inw31ybTNUlhiSFbi3kLNbzqkaooVwrqpCjKqGPLGuOWZUY4tYN352r+XXS/dpN27I9ulwnjqmSzz6PL7GMuVq75/spzStbkUpxi3f4pJW3t+ilFZ9xq2lWl/BpV1dRRXV1uMELuFkk2DLbVJy20cnAOBWJonjzwN4m1K40bw5rNjqF5af6+C2uY5ZYv8AfVWJXqOoruc4p2bPnlQqOLkouy1vbptf7zq6Kxdf8R+HvCmmPrXim/ttNs4yA891KsMSk9Ms5AH51Bovi3wp4l0k6/4d1O0v7BQSbm2mSWEADJ+dSV4HPWjnjflvqJUajh7RRfLe17aX7X7nQ0VR03VNN1myTUtIuIru2lzslhcOjYJBwykg4II+tRaTrWja/afb9Cu4b2DJXzIJFkTI6jKkjIp3QnCSvdbb+Rp0VnabrGkayksuj3UN2sMjRSGF1kCSL1VtpOGGRkHkVgab8Q/AGs67J4X0jXNPu9Thz5lpDcxvOmOuY1YsOncUueOmu5SoVHzWi9N9Hp69jsKKz73VtK02WCDUbqK3e6fy4VkcIZHP8Kgkbj7DmqOheKvDHihZ38M6la6iLWQwzG1mSYRyL1VthO1h3B5p8yva+ovZT5efldu/Q3qK8b+N/wAfvhR+zl4VtfHHxk1QaNpF3exaet00byIk0ysyb/LViqnYcsRgd8Dmu68GeOfBfxG8PQeLPh/q1nrel3IzFd2M6XEL/R0JXI7jORUKtTc3SUlzLW19behvLAYmOHji5UpKlJtKVnytrdKVrXXVXudVRRRWhyBRRRQB/9f+/iiiigD/ADn/APgox/yfh8XP+xp1L/0c1f1Rfsof8mtfDX/sVdG/9JIq/ld/4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/wCxV0b/ANJIq5cVsj3sh+Ofoe/UUUVwn0wUUUUAFFFFABRRRQAV+Yfg74vfC74Lf8Fa/Fnin4ta/Y+HNNuPAEdrHc6hMsETzvc2jhAzEAsVRiB6A+lfp5XgvxK/Zd/Z6+MOvL4p+JnhHTtX1JYxF9pmi/elF6BmUgsB2znHataNRQldnDmGFliKXJF2d7nvH/DfX7FH/RU/DX/gxi/+Ko/4b6/Yo/6Kn4a/8GMX/wAVXyJ/wwL+xx/0T7Sv++G/+Ko/4YF/Y4/6J9pX/fDf/FV1fWo9jxf7CrfzL8f8j67/AOG+v2KP+ip+Gv8AwYxf/FUf8N9fsUf9FT8Nf+DGL/4qvkT/AIYF/Y4/6J9pX/fDf/FUf8MC/scf9E+0r/vhv/iqPrUewf2FW/mX4/5H13/w31+xR/0VPw1/4MYv/iqP+G+v2KP+ip+Gv/BjF/8AFV8if8MC/scf9E+0r/vhv/iqP+GBf2OP+ifaV/3w3/xVH1qPYP7CrfzL8f8AI+u/+G+v2KP+ip+Gv/BjF/8AFUf8N9fsUf8ARU/DX/gxi/8Aiq+RP+GBf2OP+ifaV/3w3/xVH/DAv7HH/RPtK/74b/4qj61HsH9hVv5l+P8AkfXf/DfX7FH/AEVPw1/4MYv/AIqj/hvr9ij/AKKn4a/8GMX/AMVXyJ/wwL+xx/0T7Sv++G/+Ko/4YF/Y4/6J9pX/AHw3/wAVR9aj2D+wq38y/H/I+u/+G+v2KP8Aoqfhr/wYxf8AxVH/AA31+xR/0VPw1/4MYv8A4qvkT/hgX9jj/on2lf8AfDf/ABVH/DAv7HH/AET7Sv8Avhv/AIqj61HsH9hVv5l+P+R8/wD7Lfjjwf8AEn/goD+0D428A6lb6vpF/wD2M1teWriSGVUhKEqw4IDKRx3Ffp7XkHws+APwY+CP2w/Cfw5ZaE2obPtLWseHkEedoZjkkDJwM45Nev1yVZqUro93BYd0aMacnqr/AJhRRRWZ1hRRRQAUUUUAFFFFABX5KftGWaftL/8ABQLwL+zlfF7nw14Ksm8S6xbKo2PPn92JMt8ynMKY25AlYdGJH611+YHwUja8/wCCo/xmvJ3Jaz0PSLeIcABJbe1c54yTuHH1+laU9LvyOTFrmUIPZyV/ld/ofp/RRRWZ1hRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/OR/wW3/5Kl4I/wCwVcf+jhX6t/8ABuP/AMmu+Of+xpP/AKSW9flJ/wAFt/8AkqXgj/sFXH/o4V+rf/BuP/ya745/7Gk/+klvXp0PgR8Vmf8AvU/66H3D/wAFWv2a/jX+0z8CPC2h/ASxtdT13wx4v07xCbS7uFtlmhtYbiMqrvhd26ZSQSvyhsHOAfmT/hM/+C13/RHvBn/g1X/5Mr91qK1OA/Cn/hM/+C13/RHvBn/g1X/5Mo/4TP8A4LXf9Ee8Gf8Ag1X/AOTK/daigD8WP2Dv2u/jV+0R43+J/wAKvj54a07w54i+G1/aWNwmmzNLEz3BuFdTl5ASjW5wyuQwboMZPpH7Yf7Yemfs3abp3gjwRpzeLPiX4sb7N4c8OW2Xlnlc7RNMFOUgQ5ycguQVUgB3T8ifAP7WH/DNP7Zf7UmheDdFn8U/EDxn4wtbDwvocCM32q6SW/3vIVxiKLehfBDHIAwNzp+0v7Cv7CupfBPUr/8AaO/aOv18WfGbxYu/U9TfDxadE4GLOzGAERBhWZQAQAq4QAEAP2Ff2FdS+CepX/7R37R1+viz4zeLF36nqb4eLTonAxZ2YwAiIMKzKACAFXCAA/phRRQAV+G//BwX/wAmH2n/AGNOn/8Aom5r9yK/Df8A4OC/+TD7T/sadP8A/RNzQB+L/wDwQC/5PH8S/wDYmXn/AKXWNf18V/IP/wAEAv8Ak8fxL/2Jl5/6XWNf18V8Xnn+9P0R62D/AIYUUUV451BRRRQB+LP/AAUt/wCT1/2TP+xl1D/0bp1fsdX44/8ABS3/AJPX/ZM/7GXUP/RunV+x1fc5P/ucPn+bPHxX8V/10CiiivTOcK/If/gqJ/wSd0T/AIKY+N/g34z1fxvP4Qb4Q6zcavFFDYLei/M8lpJ5bFpovKA+ygZAbO7pxz+vFFABRRRQAUUUUAFFFFABXNeM/wDkT9W/685//QDXS1zXjP8A5E/Vv+vOf/0A0Afmr/wRk/5MA8Lf9fmqf+lctfml/wAE0PhF/wAFF/HX7Ndjq37OfxR0bwX4PGoXka2dxp8N5cmZWy8hMtrJ95iAAJQAozjOc9F/wTi/Z1/br+JP7LGg+Jfgz8aovBPhWSW+S200aXFdSRSpcyCQlmUFg7bmyWJGduMAV+2n7Df7K3/DG37P1j8E5Na/4SCaC5uLuW8EH2ZS9w24qse+QgKABktk9cDOB4mZZrGnFxoy99Pt952YfDOTvNaHmX7B/wCyB8UP2Y9Q+IHjL4x+Lbbxb4h8f6nDqN3PaWv2VA8Qk3MQNq5dpD8qoqqAMZzgfoXRRXydatOrN1JvVnpQgorlWwUUUVkUfxw/8F3/APk9u0/7Fmw/9G3FfuL/AMG+f/JiF5/2NWof+ibavw6/4Lv/APJ7dp/2LNh/6NuK/cX/AIN8/wDkxC8/7GrUP/RNtX3+Xf7rT9Dxa/8AEkfuTX5kf8Fa/wBlf4q/te/slSfDL4MwwXWu2msWWpR208qwCdIg8bqruQikCXf8xAIUgckA/pvRXaYn4U/8Jn/wWu/6I94M/wDBqv8A8mUf8Jn/AMFrv+iPeDP/AAar/wDJlfutRQB+FP8Awmf/AAWu/wCiPeDP/Bqv/wAmV1v7F/7VX7Q3xf8AjT8SPgP+0l4a0nw7r3gFNOMkelSvKu69V3KszSSK2FCEFSMcg57ftTX8qnj39sLw/wDsh/8ABQf9pbVhp0+veKfEVxoNh4d0a3Rne9vTbAAHYCQqllyBlmJCqCTQB+pP7av7avg39kTwZbIls2v+Ndfb7N4f8P22XuLy4chFJVMsIwxAJAyzfKuWPHOfsB/sB+MvDPjOb9tL9tKddf8AjBr6+ZBBJh7fQLdxhYIFGVEwU7WZeI1yiE5d3P2A/wBgPxl4Z8ZzftpftpTrr/xg19fMggkw9voFu4wsECjKiYKdrMvEa5RCcu7/ALC0AFFFFAH5E/8ABcv/AJRx+Lv+v7Sf/SyKv5jP+CPn/J59j/2Cb/8A9AFf05/8Fy/+Ucfi7/r+0n/0sir+Yz/gj5/yefY/9gm//wDQBVw+JEVfgZ/WjRRRXaeUfm38S/8AlLT8Av8AsE6//wCkV1X7aV+JfxL/AOUtPwC/7BOv/wDpFdV+2lcdX4menQ+BBRRRWZqFFFFABXxf+33+wh8Ef+Cj37Nmp/svfH19QttD1G6tL1LzSZIob+1uLOQSJJA80U8asy7o23RNmN2AwSCPtCigD4h/4J8fsAfAv/gmp+zla/sy/s+yald6NBf3WpTXusSxTX91dXbAs8zwQwRkqipEu2JcIig5IJP5cftAf8G0X7Dvxk+Knin4n/DzxZ46+FUfjt2bxJovg/VYrTSdRWQlpA1vLbzYDuxYpuMQJO2MA1/RLRQB8IfC7/gmn+xn8Jf2Lbj/AIJ/eHPB8Nx8ML+1mttQ067keSW+a4IaWeecFZDOzgOJVKtGyr5ewIoH47eD/wDg1B/4J1+HfG+m6n4k8U+PvE/hHRrxr2z8I6pq0LaSsjtudWEVtHL5bcZCSI7AfM7c5/p4ooA/JT/gpT/wRq/ZZ/4Kb6J4Gsvidfa14P1H4ctKNC1DwvNDaS28E3lboNskMsflr5MZj2qrRsvykAsDV+PP/BE79in9pr9kfwN+yJ8cI9a161+HNqlroXiea7jHiS3CjDE3awhH8wY8xGiMbFVYpuVSP11ooA/DD9iL/g34/Yn/AGK/jtB+062q+Kfib4805dml6r4zv4746cApRWgSKGFfMCNtDyeYU6x7DX1K3/BLL9n1/wDgpUv/AAVNOseIf+Fgrpf9kjT/ALRbf2N5P2U2m7yvs32jf5Zzn7RjdzjHFfpVRQB+Xn/BRn/gkX+yb/wUzXw/rvxrGraB4t8Jn/iTeJ/Dd0tlqtom8SeWHeOWN0Eg3qHjJRslCpZifD/2Lf8AghH+yv8AshftCQ/taeIfFXjH4t/Eqyt2ttP1zxzqa6jJYI6sjG3VYo8MUdlDSNJtDHZtya/bOigD8Nf2iP8AggT+yV+0J+3an/BQM+KfGPhDxhPc2N5qVt4fv4LeyvptOEQjaRZLaV1DiGMTIrhZNucKxLHof28/+CD37Fn7eXxfj/aM1m68Q/Dv4jLCIZfEPg28j0+5ugg2K1wHilWR1T5PMAWQphSxVVA/amigD80f+Cc3/BJz9kT/AIJg+HNY0/8AZ4sb++1zxIytrHiLXbhbzVb0ISyI8iJFGkalidsUaBjy+5gDUn/BNX/gll+z7/wSy8E+KvAX7PuseIdYs/F+qJq14/iG4triVJkj8sLEba2tgEx2YMc96/SqigD8R/22P+CDP7I37ZPx7m/ap0zxB4t+FXxGvrcW2oa34I1FdOk1BNojzcK8UoLeWoQtGYywA378Cvq//gnZ/wAEyf2XP+CYvwu1D4a/s32d7LPrtwl3rOtatMtzqepTxgqjTyKkabYwzbEjREUsxxuZif0JooAKKKKACiiigD8Pv2J/+Tq/2mf+xwX/ANCua/TGvzO/Yn/5Or/aZ/7HBf8A0K5r9Ma7aXwo83EfxGFfHX/BQP8A5Mw+In/YJf8A9DWvsWvjr/goH/yZh8RP+wS//oa1UtmRD4kfznf8Eh/+Ujnwu/6/rr/0jnr/AEDq/wA/H/gkP/ykc+F3/X9df+kc9f6B1cB6p+RH/BVH9mL9o3466z8IPiT+zVpVnresfDjxEdYezvbhLaJ9jQyx7md0yu+AKwU7sNxjFeQf8Jn/AMFrv+iPeDP/AAar/wDJlfutRQB+FP8Awmf/AAWu/wCiPeDP/Bqv/wAmUf8ACZ/8Frv+iPeDP/Bqv/yZX7rUUAfj/wDsCftSfFH9p3wn4yk+MOjafomu+D/EdzoM8Omu7QlrZE3cuz5IcsNwbBGMAdTzf7bv7bt98E77Tv2f/wBn/Tj4t+MHi0iDSdJgAlFqJQcXFwMgAAAsqsQCAWYiME1+UvwU/bK8Q/AfU/jH8DvgVo0vif4s+OPidrUWg6bHGXSJWYKbmXOFKoQxAJA+Us5VFY1+5n/BPv8A4J92P7K9jf8Axd+Ll+PFvxe8Wgza7rsxMpiMpDNbWzMARGCBubAMhA4ChEUAP+Cff/BPux/ZXsb/AOLvxcvx4t+L3i0GbXddmJlMRlIZra2ZgCIwQNzYBkIHAUIi/plRRQB+RX/Bcr/lHH4u/wCv7Sf/AEsir+V3/glN/wAnreHP+vXUf/SaSv6ov+C5X/KOPxd/1/aT/wClkVfyu/8ABKb/AJPW8Of9euo/+k0la0P4kfVDW5/WfRRRXvlhW/oXiTUPDryPYBCZQA28Z6VgUUpRUlZgehf8LM8Rf3Yf++T/AI0f8LM8Rf3Yf++T/jXntFZfV6f8qCyPQv8AhZniL+7D/wB8n/Gj/hZniL+7D/3yf8a89oo+r0/5UFkehf8ACzPEX92H/vk/417Vos95daVBdX+PNlQO23p83I/SvliCPzp0h/vsB+dfXQAAwOAK4cbCEVFRViZC013SNDJIQqqMkngACnV5/wDEfUpLLQRbQnDXL7D/ALoGT/QVxU4c8lFdSTmNY+J10LoxaLGnlLkbpASW9xgjArI/4WZ4i/uw/wDfJ/xrz2ivaWGppW5S7I9C/wCFmeIv7sP/AHyf8aP+FmeIv7sP/fJ/xrz2in9Xp/yodkfRPgjxFf8AiG0nmvwgaNwo2DHBH1pnjHxjFoMRsrMh7txwOoQHuff0FeUaF4suPD2lz2tiv7+ZwQzDIUAenr+lcrNNLcStPOxd3OWYnJJNcywadRya93sK2oTTS3ErTzsXdzlmJySTUVFFd4wooooAKKKKAPyM/a9/4KBfCzUPhNrXg/4H+J7u38UrcwxRTW0M0BCxTKZdspUAAqpGQeQcdDXzboniT9mqx8Wr8UYP2lPFVl4mms1tZb1NEuDciI4YxGUPllBA/L0r9JP+CQHgXwR4n/Z+8XX/AIk0ax1GdPGd/GslzbxyuEFtaEKC6k4yScdMk1+r3/CovhR/0K+k/wDgFD/8RX5M8Hjs4UMdXqR1StG00lZvXSotdd/Q/ovGcWZFwfXxHD2Cw1b93OXNU56DlPmjC6fPh5+4uXSK6t3b0t/ON/wvj4X/APR2/jj/AMFN3/8AHKP+F8fC/wD6O38cf+Cm7/8Ajlf0c/8ACovhR/0K+k/+AUP/AMRR/wAKi+FH/Qr6T/4BQ/8AxFV/q3iv+fsf/Kv/AMtPL/4itlH/AECVf/LP/wCYj+cb/hfHwv8A+jt/HH/gpu//AI5R/wAL4+F//R2/jj/wU3f/AMcr+jn/AIVF8KP+hX0n/wAAof8A4ij/AIVF8KP+hX0n/wAAof8A4ij/AFbxX/P2P/lX/wCWh/xFbKP+gSr/AOWf/wAxH843/C+Phf8A9Hb+OP8AwU3f/wAco/4Xx8L/APo7fxx/4Kbv/wCOV/Rz/wAKi+FH/Qr6T/4BQ/8AxFH/AAqL4Uf9CvpP/gFD/wDEUf6t4r/n7H/yr/8ALQ/4itlH/QJV/wDLP/5iP53/AIgeKfHth+zPrv7SnwI/aS8VeLU8O31pZz2lzBNZ7ZbiRFG8Sucja24YVlPQnIIH1V+0bd3F/wD8FLfgjfXbb5ZvCt3I7YAyzQXpJwOOtfCviSGK3/ZA/aYggUJGnxCt1VVGAALzgADoBX3D+0D/AMpIfgZ/2KVz/wCk97Xl5dNupSv1nQdryav7aabXM21dJdT7rOKEKft0rNxpZhFS5KcZcrwVCajJ04U4vlc5WfL1P0Cooor9rP5OCiiigAooooA/kw/4Ks/8nreI/wDr107/ANJo6/rL/wCCKv8AyjM+Gn/cZ/8ATreV/Jp/wVZ/5PW8R/8AXrp3/pNHX9Zf/BFX/lGZ8NP+4z/6dbyvBr/xJepD3P1Mr8Gf28P+Utn7N3/Xhqn/AKBNX7zV+DP7eH/KWz9m7/rw1T/0CasRH6vUUUUAFFFFABXmHxm+Gfwy+L/wy1j4f/GKyt77w5fW7fbFuSESNEG7zA+QY2jxvWQEFCMgjFejXt7Z6bZzajqMyW9vbo0kssjBEREGWZmOAAAMkngCvxF8YeMPir/wVy+Kt7+zx+zze3Hh/wCB/h+4WPxV4qjUq+qupB+y2uRhgw5AIxgiSQbdiOAdr/wRg+KnxUb4jePv2cvA+o3Hjn4IeDpJF0DxReoYXgmLpts4iciVWVmfAwFCBwEWREP9C1eY/Bv4N/Df4A/DfS/hL8JdLi0fQtHiEVvbxD8Wd2PzPI7ZZ3YlmYkkk16dQAV/HV/wcb/8nR+Bv+xVH/pXcV/YrX8dX/Bxv/ydH4G/7FUf+ldxQB7L/wAEUv8Ak1jX/wDsa7r/ANI7Ov2Ar8f/APgil/yaxr//AGNd1/6R2dfsBWiPew38KIV8c/8ABQH/AJM98b/9e0H/AKURV9jV8c/8FAf+TPfG/wD17Qf+lEVednH+4Yj/AAT/APSWfV8Gf8lBl3/X+l/6cifdH7Iv/JqHww/7FLRf/SOKvoavnn9kX/k1D4Yf9ilov/pHFX0NWmC/3en/AIV+R8dxD/yNMX/18n/6Uz85Piv8c/8AgoN4a+Iur6F8Lvg9Y+IvD9tOVsdRfUobdriLAO4xvMGUg5HIGcZxg157/wANIf8ABUT/AKILp/8A4OLf/wCP1+rtFcM8srSk5LFVFfouSy8tYNnv4fi7A06UKcsmw0mkk5P293Zbu1dK73dklfZJH5Rf8NIf8FRP+iC6f/4OLf8A+P0f8NIf8FRP+iC6f/4OLf8A+P1+rtFT/ZVb/oMqf+U//kDb/XPAf9CPC/8Alx/80H5Rf8NIf8FRP+iC6f8A+Di3/wDj9H/DSH/BUT/ogun/APg4t/8A4/X6u0Uf2VW/6DKn/lP/AOQD/XPAf9CPC/8Alx/80H5Rf8NIf8FRP+iC6f8A+Di3/wDj9H/DSH/BUT/ogun/APg4t/8A4/X6u0Uf2VW/6DKn/lP/AOQD/XPAf9CPC/8Alx/80Hxr+zR8Uf2vPH3iTUbP9ov4d2vgnTre2D2s0F5HdtPMWAK/JK+0Bcnkc+vHP2VRRXpYajKlBQlNzfd2v+CS/A+UzXH08ZiXXpYeFGLt7kOblVu3PKctd3eT8rLQ/LD/AILGf8mWX3/YWsP/AEI19F+GP+Ra0/8A69ov/QBXzp/wWM/5Msvv+wtYf+hGvovwx/yLWn/9e0X/AKAK83C/8jXEf4Kf5zP0Cp/yRuXf9f8AE/8ApNA3K63T/Gmr6ZZx2NsI9kYwMgk88+tclRXunx84RkrSVzuv+Fha9/di/wC+T/jR/wALC17+7F/3yf8AGuFoosjP6vT/AJUd1/wsLXv7sX/fJ/xo/wCFha9/di/75P8AjXC0UWQfV6f8qO6/4WFr392L/vk/41e0zx1rV5qVvaSiLbLKiHCnOGIHrXm9XtMuI7PUre7lztilRzjrhSDSshSw9OztE+jNR1G00q0a9vG2ov5k+g968C1/X7vXrvzpvljXhEHRR/j6mjX9fu9eu/Om+WNeEQdFH+PqawqEjPDYZU1zS3CiiimdYV+Xt/4i0z9mP/grJ4f+I3ie9h07w98WNAl0e4uZ8xRJeWojCB3b5CS0VugYEFfMwQB8x/UKvlv9r79mDwz+1f8ABy8+HWrNHaalGRcaXqDJua1uU78EEo65Rxz8pyBuCkJmGJpe0g0tz9TKK/Gf9kP/AIKOyeHdaP7LP7dssXhLx9oKx20OrXkmyy1eMfKkplbCJI6gHcWCSHJBVvkH7JwzQ3MKXFu6yRyKGVlOVZTyCCOoNQeG007MlooooEFFFFABRRRQB8Vf8FAP2EfhF/wUe/Zt1D9lz436jrGleH9Su7S9luNDmhgvBJZyCRAr3EFxGFJHzZjJI6EV+DCf8Gev/BNqNBHH8QvioqqMADVtLAA/8FNf1eUUAfgz8av+DeH9i/47/sd/Cr9iXxl4q8cQ+FvhBPqU+j3lrfWK6lO2qStNL9qkeweJwrMQnlxR4GM5PNfFf/EHx/wTd/6KJ8Vf/Bvpf/ypr+rqigD8p9T/AOCQH7Nerftl/CH9uO613xP/AMJb8FvC9n4T0S1F1a/2fcWVlHdRJJdobQyvMRdyFmjmiUkLhRgg43wN/wCCLX7If7P3/BQzxZ/wUr8EXevy+OvF0mpTz2F3cWz6TbXGrMGuZreJLVJ1kch+XncYkfjkY/XGigD83P8Agn//AMEuvgB/wTh1/wCJfiL4Iax4g1Wf4qatHrGrLrlxbTpDPG07BbcW9tblUzcPkOZDwOeuf0joooAKKKKAPIvjb8d/hV+zp4I/4WN8YtWTRtHFzBaee6NJmW4baoCoGY45ZsA4VSTwDXeeFPFnhjx34cs/GHgvULfVdK1GITW13ayCWGWNujKykgj+tHivwn4Y8d+HLzwf400+31XStRiMNzaXUYlhljbqrKwII/rX4i+Pfh38Qv8Agk98SY/jZ8Hbq51P4Ca1fxJ4l8PzyNN/YbXcqx/abUHJwCyquMs+BHIWyjqAfu3RWH4Y8S6F4z8Naf4w8LXSXumatbRXlpcR8pNBOgeN19mUgj2NblABX47/APBbCS51j9mHw38M9LZvt/izxdpunQIAMMWSZuSxAADBf4hz7ZI/Yivwx+P2tyftVf8ABTnwx8MdPgW48MfA23bVdSmDfI2q3ipJEoKkgtG6wkKeQY5QaEXThzSUe5+k1FFFaH0IV/J//wAFev8Ak8q9/wCwVYf+gmv6wK/k/wD+CvX/ACeVe/8AYKsP/QTSexx47+H8z+nr/ghp/wAo4/CP/X9q3/pZLX67V+RP/BDT/lHH4R/6/tW/9LJa/XaoPHP5+v2cP+Uv37SX/Xppf/oqCv19r8gv2cP+Uv37SX/Xppf/AKKgr9faACiiigAooryv40/Gn4cfs+/DjUfir8VdRTTdH01Nzu3LyOfuxxr1eRzwqjkn2yQAfLv/AAUc+Gv7Nnjv9mzVNY/aRvhoVroQNzpmswgG9sr0j939mGQZGkICmEECQDqpUOvZf8Eg/jn+0p8fP2RrHxZ+0jYOLi2nNrpOrz5W41axjVds8qEckNlPNz+927iM5Z/gD9n79n74q/8ABWT4q2X7U/7U9lPonwZ0Sdn8K+FXYr/aW0486bGN0bY+d/8Alp9xMICT/SDY2NjpdjDpmmQpb21uixRRRKESNEGFVVGAAAMAAYAoAtV/O3+1v4m/aeT4667p37bN94u8OfAz7ZOum3HgSCNrWWy8xhEdSnjZ50DRhfMR1OWzsUDBr+iSmuiyKUcBlYYIPIINedmeXvF01BVHGzv5PyktLryuj6rhLiaOS4mdeWGjV5la7spw/vUpNSUJ/wB5xlp0Phn9ifwZ+wZpHg8at+xhFoVxD5YW4u7NhPqOG7XDyk3Kk9dkm3HYCvuivkmD9hv9mXSvjfpX7RHhHw3D4e8VaVJK/n6UTaRXImjaNxPAmInyHLFtocsAS1fV91LJBbSTwxNO6KWWNCAzkDhQWIXJ6DJA9TV4ClUpUvZ1IRjbbk2a72tp6a+pzcSYvDYzGfWcNXq1edXk61nNSu9HNSamrWalaO9uVW1/n+/b6/am+CMP/BRL4bfDj41awdP8HfC5T4g1LZBLcmXV5kElpEY4Uc/uwIpMkY2u4PUV55pn7c/7NkH/AAVN8N/GT4E6+17oPxJ0+Lw74mSS1ntBHeBhHaznz0QHJWFSwztVXJI3V+jv/BOr9nn4vfDVviL8cf2jtMXS/HnxH1+W9uLUTxXX2exiz9niEkLyJgF3wA33QgPIr0T/AIKNfsy6r+1V+yxrXgDwjAJvE1hJFquhgusR+22pOFDuVVTJG0kYZmVQWBJAFfMTwOPqUZ42LSm5e0UXF83u6Rjfm0vFWty9WvM/XaHEXDmFx9Dh+rGUqMaP1WdaNaHsf3vvVKvJ7J3UasuZSVXVQi9lY+Mf+Ck/gBvip+25+zl8OWv7rTrfWX161u5rKUwTtZvHCLmJZFwy+dDviJHO1jXn/wC3r+yz8FP2OZvhL+0F+zHoy+D9esPGumaTK1jLKEubS5WVnSVWZt+fK2kn7yuwbPGPoTVfgz+1T8U/jd+zD8ZviF4YNpe+C7PVE8Xsby0f7LdTQJCrgJM3mCd0LgRb9oYBsGvYP+ClPwJ+Kvx/+Fngrw58JNK/ta90nxpperXcfnwweXZ2yTiSTMzxq20uvyqSxzwDzVYnA+2p4zEKi+dyi4Xi+bSENuqad07dVZ7EZVxF9RxWRZW8dFYeFOrCso1F7N3rYhNTs+VpxcXHm05ZKS+K7+TP+CkHhPWNJ/ao8F/Gz40eAdW+J3wd0jRZrabS9KU3AsdUeRy1zNbhgHBjMaguUQ4ALZUBr/7CsX7AXj39oPVfHX7IniW40D+1dGez1nwDcRPbwXHzEtP5UpKsyAhSIWZUGegdgfqH9pa0/bj+G3x60r44/s52w8f+En05rDVfBk17FYFZt24XUEso27iAoPVhggAhzt8b+HXwM+Pnx/8A22/C/wC2B8V/h/a/CrT/AAbYXUEVsL6G91PV5ruOSIGdrYBUjiEh4f5u3Ib5XUw8o49zhTcm5ptSg9tE5RqLSyX2ZX7W2IwuZ06nDSo18VGnCOHnFOnXjZyTlKNKphJ3k5ylZe1pqNrqfM7NnzZ8Evi9d/sg/sUftFfA2/uGj1L4R6rqFhpBY/MLbXCV06QDr80ztJ9DVb9hPxvrH7Avwp+O/wAEfiLLm/8Ah5p1l4ttUl4E0upWCFo0/wBkTrFH/vP65r2L9r39hX4z/FX9uPw94++H1is3w98VSaLL42Yzwx5bRJyybo3dZH3whEXYj4I54pv/AAUM/YU+Nn7QP7T3hXxb8KLUt4W8U2FpoHjiVLiGHy9Ps7+K7DlJHV5GIA2+UrN+6AOAeeOWGxtF+0pU23R9yCt8UZcyv6JOnd9OVnu0c24fx8fquMxNOMceliK7bX7upS9k3F9pSccTyxdnL2sOrV/lz4maj44/ZO/4Ja/DL4eaTe32ma98XdahuNev7JXbUPI1XdczeWEIYzmLyYSvVgGXqa5r4sWv/BPcfBK50L9n74aeOPDHjfRrU3Hh/XbbRr2G+XUYF3RNLcBtzB3ADkg7QSVAIGP2g/bq/ZS1X9pz4J2Phf4c38Wh+KfCmpWut+HbmQYgivLPIRH2qxCFWIGFO1gpwQMH5j8YfGH/AIKofErwK3wh8OfB+08FeJdQhFrd+K31y2lsbQNw9xBDHulDEZKjLtGcHDGrxmWypVJUpRbhyRjD9257JppNP3ZN63dr6O+mmORcWU8bhqWMo1IwrPEValZPExw696ScZSjKLdamoe4ox5mrOPJ76v8AIn7ZPiP4j/tHfs5fssXfi2S70HxT4s8S2em3syIbW5hup/8ARJJVVgDGxOXXjjIxxiv2Y/Zy/Y3/AGdv2Thqh+BOgf2M+tJbJeu1xNcvN9lDhDmZ3K/fYkLgEnOK+T/2nf2Yvjp4wH7OdhoUk/jO6+H/AIv0nU/EerXE0FvI0Ns8bT3JSR0LZIYiOPewGAAe/wCp1ezlmAti6tavC80oJSa1+BKVn57Oz8j4Li3iXnyXB5fl1dRoSlXc6cJPls67lTU46NpKzgpxTS1SV2c94r0rwprfhy803xxbWl3pEkTfaor5EktmiHJ8xZAUKjqd3Ffzl/HeL9kHwP8AEW5h/wCCaet+J7b4pSkn+z/h2raho8jg8G8jc/ZvJB6iJyidWSv3h/aD/Z1+Gf7T3giD4cfFyG4u9Eivob6S2gne3E7QBgqSNGQ5j+bJCspyBzxXX/DH4RfC74L+G08IfCfQLHw9pqY/cWMKwhiP4nIGXb1ZiWPc10Zll9TFzULRjFfa1c1/h25fW79DzOE+J8LklCVbnq1KknrRTUaEl09rfn9on/JyR2Xv9vLf2Rb79pXUfgVpN1+1pa2ln41Jk+1R2nl48vd+7L+UzRiQr94IduegFfS9FFerQpezpxp8zdla71b835nxmYYtYrE1cSqcYc8m+WCtGN3e0Vd2S2SvsFFFFanGf//Q/v4ooooA/wA5/wD4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/7FXRv/SSKv5Xf+CjH/J+Hxc/7GnUv/RzV/VF+yh/ya18Nf8AsVdG/wDSSKuXFbI97Ifjn6Hv1FFFcJ9MFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFfmJ8C/+Unfxw/7BWif+kttX6d1+YnwL/wCUnfxw/wCwVon/AKS21aU9pehy4n4qX+L/ANtkfp3RRRWZ1BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/OR/wW3/5Kl4I/wCwVcf+jhX6t/8ABuP/AMmu+Of+xpP/AKSW9flJ/wAFt/8AkqXgj/sFXH/o4V+rf/BuP/ya745/7Gk/+klvXp0PgR8Vmf8AvU/66H9DlFFFanAFFFFAHx18IP2Ff2fvgt8ffGX7TPhmxnu/GHjW6luri8vnWb7J55zLHagIvlpI3LZLOem7bha+xaKKACiiigAr8N/+Dgv/AJMPtP8AsadP/wDRNzX7kV+G/wDwcF/8mH2n/Y06f/6JuaAPxf8A+CAX/J4/iX/sTLz/ANLrGv6+K/kH/wCCAX/J4/iX/sTLz/0usa/r4r4vPP8Aen6I9bB/wwooorxzqCiiigD8Wf8Agpb/AMnr/smf9jLqH/o3Tq/Y6vxz/wCCq2g/FDTfjX+z/wDHTwN4N1nxjpngPWb++1WLRbV7qaKIvZSDKoDt3LDJtZsJlcFhkV0Phf8A4LR/sa396NL+Ig1/wRdBN0kesaZIdrAkFcWpnc8ggEqPfByB9vk0k8JBJ66/mzyMUn7Rv+tj9a6K+LfDf/BRb9hvxUqvpnxP0KIMwUfbLj7Gckkci4EeBxyTwByeCK9dh/ai/ZnuYUuLf4i+GJI5FDKy6vaFWU8ggiXkGvVOY91orxTUv2lf2c9GaVNY8f8Ahu0aBd0gm1W1jKLjOW3SDAxzz2rwbx9/wUq/YW+HMMsutfErSLxo1B2aVI2pli3QL9kWUE+vOB3IoA+5KK/Hq9/4K3WHxFkXSP2RPhT4s+JF9IjFZhbGzsUIKqS0oEzALuO4siDO1d3zZDIfCH/BYD9pVdvirWNA+B2iTeU3l6eg1DVNokOQSHkUHb8zbZYs4RMDMmOeti6NL+JNL+uxpGlOXwo/VXxx8R/h58MdI/4SD4la9p3h6w3BftOp3UVpDuJAA3ysq5JIHXqa/N74j/8ABYf9kHwnqknhj4dzap8QNZMW6C10CzaVZJCpbaJJPLBCgZdkD7QehIKhngL/AII3fs02mrQ+MPj5quvfFLxAG3zXeu30nlO+8v8A6uNg5XcSSsksgYk5yCRX6W/Df4S/C/4PaDH4Y+Ffh/T/AA9YRosfk2FukAYJkjcVALnLMSzEkliSckmvIrcQUo6U4t/gv6+R0wwUn8TsflW/7XH/AAU0+KM003wQ/Z4Gh2PlL5U/iy+W3l3NuIZ4He1kwQMGNclTglgGFWbX4f8A/BaT4heZca3408D+AYZnLBLC0a9ni29FVZoZ4yjerSlhX7G0V5tTPsRL4UkdEcFTW5+Nf/Dvz9vvW9Oz4i/ap1a1uZ/mmjs9IwiNnOEdbuFsfRV44xip5v8Agl/+0Bq8z/8ACTftP+PbiF4jGY7eeW2BB/vAXTKRgkHK5PrgYr9jaK5nm+Lf2/wX+Rf1Wl2Pmz9kn9mvQP2SfgZpfwN8Nalcata6ZLcyi6uVVJHa5laU/KvAA3YHXpmvpOiivPnOU5OUnqzdJJWQUUUVIwooooA/jh/4Lv8A/J7dp/2LNh/6NuK/cX/g3z/5MQvP+xq1D/0TbV+HX/Bd/wD5PbtP+xZsP/RtxX7i/wDBvn/yYhef9jVqH/om2r7/AC7/AHWn6Hi1/wCJI/cmiiiu0xCiiigAr4v8OfsD/s6eHP2s9c/bRGnz33jXW0iVWvJFltrJ0iWFpbaPYCkkiKAzMzEDITYGYH7QooAKKKKACiiigD8if+C5f/KOPxd/1/aT/wClkVfzGf8ABHz/AJPPsf8AsE3/AP6AK/pz/wCC5f8Ayjj8Xf8AX9pP/pZFX8xn/BHz/k8+x/7BN/8A+gCrh8SIq/Az+tGiiiu08o/Nv4l/8pafgF/2Cdf/APSK6r9tK/Ev4l/8pafgF/2Cdf8A/SK6r9tK46vxM9Oh8CCiiiszUKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/D79if/AJOr/aZ/7HBf/Qrmv0xr8zv2J/8Ak6v9pn/scF/9Cua/TGu2l8KPNxH8RhXx1/wUD/5Mw+In/YJf/wBDWvsWvjr/AIKB/wDJmHxE/wCwS/8A6GtVLZkQ+JH853/BIf8A5SOfC7/r+uv/AEjnr/QOr/Px/wCCQ/8Aykc+F3/X9df+kc9f6B1cB6oUUUUAFFFFAHxV+zr+wH+zv+zH8VPGXxr8AWdzd+JvG1/c3tzfajIk8lrHdyGZ7a1KonlwbznB3SNgb3bauPtWiigAooooA/Ir/guV/wAo4/F3/X9pP/pZFX8rv/BKb/k9bw5/166j/wCk0lf1Rf8ABcr/AJRx+Lv+v7Sf/SyKv5Xf+CU3/J63hz/r11H/ANJpK1ofxI+qGtz+s+iiivfLCiiigAooooAKKKKANLRv+Qxaf9do/wD0IV9XV8o6N/yGLT/rtH/6EK+rq8zMN4kyCvJfir/x72X+8/8AIV61XkvxV/497L/ef+Qrnwn8WP8AXQS3PGaKKK9ssKKKKACiiigAooooAKKKKACiiigD5I/4Iyf8m5+MP+x21D/0ls6/XevyI/4Iyf8AJufjD/sdtQ/9JbOv13r4Hh3/AJFtD0/Vn3vip/yVmY/4/wD21BRRRXtH58FFFFABRRRQB/LB4q/5NF/aa/7KHB/6W19u/tA/8pIfgZ/2KVz/AOk97XxF4q/5NF/aa/7KHB/6W19u/tA/8pIfgZ/2KVz/AOk97X5tlv8AEpf46H/p+of13nm+I/694/8A9V+FP0Cooor9tP5ICiiigAooooA/kw/4Ks/8nreI/wDr107/ANJo6/rL/wCCKv8AyjM+Gn/cZ/8ATreV/Jp/wVZ/5PW8R/8AXrp3/pNHX9Zf/BFX/lGZ8NP+4z/6dbyvBr/xJepD3P1Mr84/20/+CdPh/wDbC+IXhb4sW/jjXvA3iLwnBNbWd5orrG4jmJLEMNsiPyRuV8FSRiv0corER+J//Dov4rf9HQ/E3/wZTf8Ax6j/AIdF/Fb/AKOh+Jv/AIMpv/j1fthRQB+J/wDw6L+K3/R0PxN/8GU3/wAerl/+CRXxO8Y+O/2Jbfx18WfEN5rN3Fqeo+dqGr3b3EiwwkH5pZmYhEGepwBX7sV/FV/wTt+GX7Sv7cnwVsP2PPBMs/hP4U6RqE974w8QRDEt4Z3DrYwE8MxQAleVGd8mQERwD9CvGHjD4q/8Fcvire/s8fs83tx4f+B/h+4WPxV4qjUq+qupB+y2uRhgw5AIxgiSQbdiP+/vwb+Dfw3+APw30v4S/CXS4tH0LR4hFb28Q/Fndj8zyO2Wd2JZmJJJNHwb+Dfw3+APw30v4S/CXS4tH0LR4hFb28Q/Fndj8zyO2Wd2JZmJJJNenUAFFFFABX8dX/Bxv/ydH4G/7FUf+ldxX9itfx1f8HG//J0fgb/sVR/6V3FAHsv/AARS/wCTWNf/AOxruv8A0js6/YCvx/8A+CKX/JrGv/8AY13X/pHZ1+wFaI97DfwohXxz/wAFAf8Akz3xv/17Qf8ApRFX2NXxz/wUB/5M98b/APXtB/6URV52cf7hiP8ABP8A9JZ9XwZ/yUGXf9f6X/pyJ90fsi/8mofDD/sUtF/9I4q+hq+ef2Rf+TUPhh/2KWi/+kcVfQ1aYL/d6f8AhX5Hx3EP/I0xf/Xyf/pTCivzm+LP/BM34P8Axg+I2rfEzXPFfi7T7vWJvPlt9P1CKG2RsAERobdiAcZOWPJNed/8OhPgV/0PHjr/AMGsP/yLXDPFY9Sajhk10fPa/wD5Ke/h8m4ZnShKtm04zaV19Xbs7aq/tFez0vZXP1dor8ov+HQnwK/6Hjx1/wCDWH/5Fo/4dCfAr/oePHX/AINYf/kWp+uZj/0Cr/wYv/kTb+w+Ff8AocT/APCaX/y0/V2ivyi/4dCfAr/oePHX/g1h/wDkWj/h0J8Cv+h48df+DWH/AORaPrmY/wDQKv8AwYv/AJEP7D4V/wChxP8A8Jpf/LT9XaK/KL/h0J8Cv+h48df+DWH/AORaP+HQnwK/6Hjx1/4NYf8A5Fo+uZj/ANAq/wDBi/8AkQ/sPhX/AKHE/wDwml/8tP1dor42/Zo/Yk+HP7LniPUfE/g3XvEGs3GpWwtXXWruO5SNAwfKBIYypJAzyQRX2TXpYadWdNSrQ5Zdr3/GyPk81w+Do4h08BXdWnpaThyN6a+7eVrbb6n5Yf8ABYz/AJMsvv8AsLWH/oRr6L8Mf8i1p/8A17Rf+gCvnT/gsZ/yZZff9haw/wDQjX0X4Y/5FrT/APr2i/8AQBXm4X/ka4j/AAU/zmfoNT/kjcu/6/4n/wBJoG5RRRXunyIUUUUAFFFFABRRRQAUUUUAFFFFABXP+LPFGjeCPCup+NPEcvkadpFpNe3UmM7IbdDI7Y74VSa6Cvkf9vO6ns/2OfiJNbNtY6PMhOM/LIQrDn1BIoJk7Js+V/2GP2SvAv7d2i+N/wBsD9q3Rv7Zi8eXc1j4ftJZpF+wabZyFN0LRspRxInlhhgjy37SMD7nbf8ABHfRfB7C1+Dnxl8eeFbBZfOS1gvxtRgFClfKEGCu0AEgnAAzxk/dP7Cuh6b4e/Yw+FdhpMaxRSeFdKuWVQFBlurdJpDgADLO7EnqScnJya+rKzPnm23dlHTLWax023sriZriSGJEaVvvOygAsck8nr1NXqKKBBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVzXjLwb4V+IXhW/8ABHjewh1TSNUha3urW4XfHLG/UEH9D1B5HNdLRQB+RX/BMTxF4g+Fvir4l/sI+Mr2a+n+GGph9HnuFl8ybSbwl4iS7FV2qUYIqogEnybxkj9da/CT47fGT4a/shf8Fe7f4pfEvVF0jQfFfgAR6hdPA8oR1ndUUCJWkYk2cX3VZucYx03/ABd/wVJ+K/x+uz4I/wCCe3w+vNcmdQs/iXXovs2m2m7rtXcAzAZI8yRTuUgRSDqDUW3ZH2D+3n+2hpn7LvgaPwp4JU6v8TPFKm28N6PBH58zTSHYs8kYOREjdM/6xxtAIDlfBf2IP2aNV/Zw+FlzH45uV1Hxj4nvH1XXrwHeXuZeQm88sEycnoXZiODWP+zB+xw3wl8RXfxp+NeuTeO/ibqoK3Ot3jPJ9njYBfKtxISVUKNu7Cnb8qhU+WvuWrSPWwuG5PeluFFFFM7Qr+T/AP4K9f8AJ5V7/wBgqw/9BNf1gV/J/wD8Fev+Tyr3/sFWH/oJpPY48d/D+Z/T1/wQ0/5Rx+Ef+v7Vv/SyWv12r8if+CGn/KOPwj/1/at/6WS1+u1QeOfkP8cf+CTdl8UP2ivE/wC0f8PPiz4s+HuqeLRb/b4NCn8hWNvEkQ+dGRyrbA+1iQGJxgYA4f8A4dF/Fb/o6H4m/wDgym/+PV+2FFAH4n/8Oi/it/0dD8Tf/BlN/wDHq+Wf21/2Cfjj+y5+y94t+Pfhz9pL4japeeHIIJo7W51S4WKXzJ44iGKzhhw5II7+tf0rV+bv/BXj/lHH8Uf+vG1/9LIKAMjRv2gvBvwg/Y+8M/HX45az9ntY/Dum3V3dTHfNc3E1sjbUHWSWVycKOST6ZI/O39n79n74q/8ABWT4q2X7U/7U9lPonwZ0Sdn8K+FXYr/aW0486bGN0bY+d/8Alp9xMICT59+xH+yb8Yf+CkI8GfGj9ri3fS/hD4IsLSy8NeGgWVNVe0iSI3EucExOUyzkAyfcTCAk/wBQVjY2Ol2MOmaZClvbW6LFFFEoRI0QYVVUYAAAwABgCgAsbGx0uxh0zTIUt7a3RYooolCJGiDCqqjAAAGAAMAVaoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD/9H+/iiiigD/ADn/APgox/yfh8XP+xp1L/0c1f1Rfsof8mtfDX/sVdG/9JIq/ld/4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/wCxV0b/ANJIq5cVsj3sh+Ofoe/UUUVwn0wUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV+YnwL/5Sd/HD/sFaJ/6S21fp3X5ifAv/AJSd/HD/ALBWif8ApLbVpT2l6HLifipf4v8A22R+ndFFFZnUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH85H/Bbf/kqXgj/ALBVx/6OFfq3/wAG5H/Jrvjk/wDU0n/0kt6/KT/gtv8A8lS8Ef8AYKuP/Rwr9XP+Dcj/AJNc8c/9jUf/AEkt69Oh8CPisz/3qf8AXQ/obooorU4AooooAKKKKACiiigAr8N/+Dgv/kxCz/7GnT//AETc1+5Ffht/wcGf8mIWf/Y1af8A+ibmgD8YP+CAX/J4/iX/ALEy8/8AS6xr+viv5B/+CAX/ACeP4l/7Ey8/9LrGv6+K+Lzz/en6I9bB/wAMKKKK8c6gooooAK57xJ4R8J+MrBtK8X6XaaraupVobyFJ4yrYyCrgjBwM8dq6GimnbVAfI3in9gb9irxkk6638LvDYa4UiR7bT4rSQ5JJO+BY2DEnlgQ3vXkGof8ABJX/AIJ56lCILn4b26qG3Ziv76Js890uFOOemcV+jFFbRxVaO02vmyHTg90j84tO/wCCSH/BPHS9/wBm+HELb8Z87UL+bp6eZctjr2xmvd/A37D/AOx/8Nrv+0fBvw18PWt0GLLO9hFPMhKlTsklDugKkghSAQea+pqKJYqtL4pt/NgqcFskRQQQ20KW1sixxxqFVVGFVRwAAOgFS0UVgWFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAfxw/8ABd//AJPbtP8AsWbD/wBG3FfuL/wb5/8AJiF5/wBjVqH/AKJtq/Dr/gu//wAnt2n/AGLNh/6NuK/cX/g3z/5MQvP+xq1D/wBE21ff5d/utP0PFr/xJH7k0UUV2mIUUUUAFFFFABRRRQAUUUUAfkT/AMFy/wDlHH4u/wCv7Sf/AEsir+Yz/gj5/wAnn2P/AGCb/wD9AFf05/8ABcv/AJRx+Lv+v7Sf/SyKv5jP+CPn/J59j/2Cb/8A9AFXD4kRV+Bn9aNFFFdp5R+bfxL/AOUtPwC/7BOv/wDpFdV+2lfiX8S/+UtPwC/7BOv/APpFdV+2lcdX4menQ+BBRRRWZqFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAfh9+xP/wAnV/tM/wDY4L/6Fc1+mNfmd+xP/wAnV/tM/wDY4L/6Fc1+mNdtL4UebiP4jCvjr/goH/yZh8RP+wS//oa19i18df8ABQP/AJMw+In/AGCX/wDQ1qpbMiHxI/nO/wCCQ/8Aykc+F3/X9df+kc9f6B1f5+P/AASH/wCUjnwu/wCv66/9I56/0Dq4D1QooooAKKKKACiiigAooooA/Ir/AILlf8o4/F3/AF/aT/6WRV/K7/wSm/5PW8Of9euo/wDpNJX9UX/Bcr/lHH4u/wCv7Sf/AEsir+V3/glN/wAnreHP+vXUf/SaStaH8SPqhrc/rPooor3ywooooAKKKKACiiigDS0b/kMWn/XaP/0IV9XV8o6N/wAhi0/67R/+hCvq6vMzDeJMgryX4q/8e9l/vP8AyFetV5L8Vf8Aj3sv95/5CufCfxY/10EtzxmiiivbLCiiigAooooAKKKKACiiigAooooA+SP+CMn/ACbn4w/7HbUP/SWzr9d6/Ij/AIIyf8m5+MP+x21D/wBJbOv13r4Hh3/kW0PT9Wfe+Kn/ACVmY/4//bUFFFRzTQ28LXFwwSNAWZmOAAOSST0Ar2j8+SJKK+OvjD+33+yR8DpZNP8AGnjOym1CMsjWWmk39wrp1R1gDiJvaUpXx/qf/BTj4qfElC/7K3wc1nX7GSNjFqusMLK2ZxkfKq7kkUHB/wBerEcYBOR5lbOMHTn7Pn5p/wAsU5S+6N2fY5dwBn2MpLExwrhRf/Lyq40qfynUcYv5Nn7C0V+Ll146/wCCsPxCV5kvvB/gOMuwVIomupgpBA++t1GcHB5I5PTHy1mv8Gf+CgWuypP4i+P01qxLs4stMiUAt6BGhBHTggBe3u1jMVP+Fg6j9VGP/pUk/wADt/1JwlL/AHvOcLDyjKrVf/lOlKP3SPzA8a/Fiyh8BfHT9nHTtG1bUte8WeOXu7KSztxNbhbS7LOrkN5m8gfKFjb3Ir9T/gz+wz8Ofhr8QtH+NU2ueItZ1/T7VkiGr3aTpF58bI4wIUfgSOApbAJJxnmvQP2W/wBmqX9nHRtdh1TxDN4m1PxFqDaheXssIg3SMP7m+Q7iSxZi5yT0Hf6lrPh3hRUVHE5hFOorcsWl7lpSktU2m7u9+h9hx54m/WHUy3IJuOHlzc803++5qVOnL3ZRjKEbQtbrdt72Ciiivuj8VCiiigAooooA/kw/4Ks/8nreI/8Ar107/wBJo6/rL/4Iq/8AKMz4af8AcZ/9Ot5X8mn/AAVZ/wCT1vEf/Xrp3/pNHX9Zf/BFX/lGZ8NP+4z/AOnW8rwa/wDEl6kPc/UyiiisRBRRRQAVi6B4b8O+FdPGkeF7C2020DFhDaxLDGGbqdqADJ7nFbVFABRRRQAUUUUAFfx1f8HG/wDydH4G/wCxVH/pXcV/YrX8dX/Bxv8A8nR+Bv8AsVR/6V3FAHsv/BFL/k1jX/8Asa7r/wBI7Ov2Ar8f/wDgil/yaxr/AP2Nd1/6R2dfsBWiPew38KIV8c/8FAf+TPfG/wD17Qf+lEVfY1fHP/BQH/kz3xv/ANe0H/pRFXnZx/uGI/wT/wDSWfV8Gf8AJQZd/wBf6X/pyJ90fsi/8mofDD/sUtF/9I4q+hq+ef2Rf+TUPhh/2KWi/wDpHFX0NWmC/wB3p/4V+R8dxD/yNMX/ANfJ/wDpTCivzm+LP/BTr4DfBz4jat8MfE2ieJbm/wBGm8iaWzsY5YGbAOUczKSOfQc153/w+G/Zp/6F3xd/4LY//kiuGefZfCThKsk1oz38P4b8T16UK9HL6jhJJppaNNXT36o/V2ivyi/4fDfs0/8AQu+Lv/BbH/8AJFH/AA+G/Zp/6F3xd/4LY/8A5Iqf9Yct/wCf8Tb/AIhfxX/0Lqn3L/M/V2ivyi/4fDfs0/8AQu+Lv/BbH/8AJFH/AA+G/Zp/6F3xd/4LY/8A5Io/1hy3/n/EP+IX8V/9C6p9y/zP1dor8ov+Hw37NP8A0Lvi7/wWx/8AyRR/w+G/Zp/6F3xd/wCC2P8A+SKP9Yct/wCf8Q/4hfxX/wBC6p9y/wAz9XaK+Nv2aP24fhR+1T4j1Hwx8PtM1qwuNMthdStqlqlujIzBMIVlck5PPGMV9k16WGxNLEU1Voy5o90fJ5rlGMyzEPCY+k6dVWbi99Vdfej8sP8AgsZ/yZZff9haw/8AQjX0X4Y/5FrT/wDr2i/9AFfOn/BYz/kyy+/7C1h/6Ea+i/DH/Itaf/17Rf8AoArzcL/yNcR/gp/nM/Qan/JG5d/1/wAT/wCk0Dcooor3T5EKKKKACiiigAooooAKKKKACiiigArxf9ov4ZyfGT4FeLPhhbyPHPrOmT28DJtyJtuY/vELjeFyCRkZ5HUe0UUCaurM8T/4JX/GFPiz+xf4V0++Bi1bwfEfDd/buU8yF9OxHEGVcMuYRGcOobOc7vvH9FK/nz+IDeNP+CbP7QeqftV/DfSZtX+Fni8LH4p0PTwsf2C5AAjuo1Py/M5Zs/Ku52QlQyEftp8GPjl8Kf2hPA9t8RPhBrVvrWl3IB3wtiSJj1SWM4eNx3VwD+HNZs8CrTcJOLPWKKKKDMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiuH+JfxH8G/CHwDq/xO+IV6mnaLods93dzv/CiDoo6s7HCogyzsQqgkgUAfi38ZPC3hP46/8FepfD3jSwh1rTfBHgeJza30CzWyXMswdTsdWRm23QYEjORwflFfpZaWlrp9rFYWMSQwQIscccahURFGAqgcAAcADpX5r/8ABOjwlrfjGw8X/tlePTI+u/FPU57qETZDQabBI6QoB2BIO3HHlrHjiv0wq1se1hIctNX6hRRRTOoKKKKACv5P/wDgr1/yeVe/9gqw/wDQTX9YFfyf/wDBXr/k8q9/7BVh/wCgmk9jjx38P5n9PX/BDT/lHH4R/wCv7Vv/AEslr9dq/In/AIIaf8o4/CP/AF/at/6WS1+u1QeOFFFFABWVrmhaJ4m0i48P+JLODULC8QxT21zGssMqN1V0YFWB7ggitWigCrY2NjpdjDpmmQpb21uixRRRKESNEGFVVGAAAMAAYAq1RRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/9L+/iiiigD/ADn/APgox/yfh8XP+xp1L/0c1f1Rfsof8mtfDX/sVdG/9JIq/ld/4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/wCxV0b/ANJIq5cVsj3sh+Ofoe/UUUVwn0wUUUUAFFFFABRXEePfiX8PfhZow8Q/EjW7LQ7JnEazX06woznoqliMn2FfBmr/APBSzwT4o1dvC37MPgzxF8VNWAfCaTZypbgowU7pDGzhcEMXERUAjJ54uMJS2RhWxNKl/EkkfpVRX5/aV4O/4LD/ABiUmw8P+EfhfZSP8smpTm7u1Te3aM3CEhVA5iUNuyMfwdTZ/wDBKb9pT4kFbv8AaO/aF1u6SXDT2Hh+3FhCGKMCFcOEI3MR/wAe4yo6An5dlhZdTzamd0F8Kb/D+vuPrzXvE/hvwrZtqPifULbTbdQWMt1KsKADGSWcgYGRmvn3xL+2p+yZ4S3jWPiHoRaPO5ba8S6cEZyCsBc5GDxjP5itXwz/AMEQP2EdIPm+J7DW/E8xZC02p6pKHYIAME232cYbHPGfQivp7wh/wTc/YR8EOz6N8LNAnLNuP2+2/tAZxjgXRlAGOw4zz1rRYVdWcc8+n9mC+/8A4Y/OrV/+Cof7EOksY18Ym7cEArb2F4/BGc7jCFI+jE5/HHBT/wDBXH9kxr5dP0Qa5qsrlgotNPJJC85Ad0YgjJ6ZwOcV+6Gj/s//AAG8OzfafD/gjQLGTcrbrfTbeJtycqcrGDkdvSvTtP0vTNIhNtpVtFaxs24rEgRSx4zgAc4Aq1hYGDzvEPZL7n/mfzup/wAFXPgtc6h/Zuk+CfHF9I33PI0uJt+Bk4U3IbjnPHb0qW//AOCn3hWPZ/Znws8fzZzu83Skjx6YxM+f0r+iyin9WgQ85xPdfcfzp2H/AAU+8Kyb/wC0/hZ4/hxjb5WlJJn1zmZMfrUd3/wVY+D2m3aWWseBPHdk74P7/SoUwpON2PtOccHoD0r+jCij6tAFnOJ7r7j+dNv+Ctv7KlnMbbXYNf0yTaGVbrT9rMpyMgLI3GR3xXeaR/wVD/Yh1ZhG3jE2jkkBbiwvE4AzncISoH1YHP4Z/ea9sbLUbZrPUIUnhfG6ORQynByMg5HUZrzHV/gL8DPEG7+3vBehX25zKftGnW8uXOfmO5DzyeevNJ4WBazvELdL7v8Agn5i+Gf22P2SvF0og0b4haGHYKVW5ultS2/oAJ9mW/2RyPSvfvD/AIx8IeLIvP8ACuq2epoRu3Wk6TDHHOUJ45H5ivR/FP8AwTt/YZ8YY/tb4VeG4dqNH/oNjHY8N1/49hFk+jdR2NfKniv/AIIf/sE69LJP4e0rWPDbsqiNtN1SVjC6/wAaG6+0fN/vZHoKh4VdGbwz6f2oL77f5n0RRXxfqX/BJv44/DrN1+zJ+0B4j0tY5PMjsPECDUbdvmUjJDJGpADFv9HYScKQBkng9R8Af8Fj/grBLc6hpnhL4rWUEXmObCT7LeMq7/uqwtF3/dZlWOTIwqfMTWbwsuh1087ov401+P8AX3H6GUV+Zg/4KUaP8PNbTw3+1Z8O/E3wvupMCOW/tJJ7VyHKMUkEcbyIMEq8cbBgGx0Ab7s+Gnxf+F3xk0Z/EHws16y120ify5Xs5RIYn5+V1HzITjIDAZHI4waxlTlHdHpUcVRq/wAOSf8AXY9HoooqDoCiiigAooooAK/MT4F/8pO/jh/2CtE/9Jbav07r8xPgX/yk7+OH/YK0T/0ltq0p7S9DlxPxUv8AF/7bI/TuiiiszqCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD+cj/AILb/wDJUvBH/YKuP/Rwr9XP+Dcj/k1zxz/2NR/9JLevyj/4Lb/8lS8Ef9gq4/8ARwr9XP8Ag3I/5Nc8c/8AY1H/ANJLevTofAj4rM/96n/XQ/obooorU4AooooAKKKKACiiigAr8Nv+Dgz/AJMQs/8AsatP/wDRNzX7k1+G3/BwZ/yYhZ/9jVp//om5oGj8YP8AggF/yeP4l/7Ey8/9LrGv6+K/kH/4IBf8nj+Jf+xMvP8A0usa/r4r4vPP96foj1cH/DCiiivHOoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD+OH/gu//wAnt2n/AGLNh/6NuK/cX/g3z/5MQvP+xq1D/wBE21fh1/wXf/5PbtP+xZsP/RtxX7i/8G+f/JiF5/2NWof+ibavv8u/3Wn6Hi1/4kj9yaKKK7TEKKKKACiiigAooooAKKKKAPyJ/wCC5f8Ayjj8Xf8AX9pP/pZFX8xn/BHz/k8+x/7BN/8A+gCv6c/+C5f/ACjj8Xf9f2k/+lkVfzGf8EfP+Tz7H/sE3/8A6AKuHxIir8DP60aKKK7Tyj82/iX/AMpafgF/2Cdf/wDSK6r9tK/Ev4l/8pafgF/2Cdf/APSK6r9tK46vxM9Oh8CCiiiszUKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/D79if/k6v9pn/ALHBf/Qrmv0xr8zv2J/+Tq/2mf8AscF/9Cua/TGu2l8KPNxH8RhXx1/wUD/5Mw+In/YJf/0Na+xa+Ov+Cgf/ACZh8RP+wS//AKGtVLZkQ+JH853/AASH/wCUjnwu/wCv66/9I56/0Dq/z8f+CQ//ACkc+F3/AF/XX/pHPX+gdXAeqFFFFABRRRQAUUUUAFFFFAH5Ff8ABcr/AJRx+Lv+v7Sf/SyKv5Xf+CU3/J63hz/r11H/ANJpK/qi/wCC5X/KOPxd/wBf2k/+lkVfyu/8Epv+T1vDn/XrqP8A6TSVrQ/iR9UNbn9Z9FFFe+WFFFFABRRRQAUUUUAaWjf8hi0/67R/+hCvq6vlHRv+Qxaf9do//QhX1dXmZhvEmQV5L8Vf+Pey/wB5/wCQr1qvJfir/wAe9l/vP/IVz4T+LH+uglueM0UUV7ZYUUUUAFFFFABRRRQAUUUUAFFFFAH56t/wT50XwprM/iD4HfEDxT4IuLiZ5zHY3hMAdwAcKojc5IG7c7ZHHTGNaz+En/BRDwiRb+Efj0b2LG3dqWlwyvjC/wDPUXBzx1znv3NfelFfPS4Wy696cHB/3Jzj+EZJfgfdrxIz2aUcXOnXVrfvqNGq/wDwKcJS/E+D5/BH/BTjUyLfUvjfYxQiQENBpFsj7ccn5bdD3Py7sHAOfTmr39hPxr8So0T9o34ueJ/F8C5b7IkxtrZWcMGxGzTL/FgEBeBjocD9FaKlcK5e3+9Up+Upzkvucrfeil4kZzTX+xqjQfelh6FOX/gUaakvk0fO3w2/ZM/Z0+Evly+CfCdjFcR5IubhTdXGTjJEkxdh0HAIA7AZr6Joor3MPhaOHhyUIKMeySS/A+QzDNMZj6vt8dXlVn3nJyf3tthRRRW5whRRRQAUUUUAFFFFABRRRQB/Jh/wVZ/5PW8R/wDXrp3/AKTR1/WX/wAEVf8AlGZ8NP8AuM/+nW8r+TT/AIKs/wDJ63iP/r107/0mjr+sv/gir/yjM+Gn/cZ/9Ot5Xg1/4kvUh7n6mUUUViIKKKKACiiigAooooAKKKKACv46v+Djf/k6PwN/2Ko/9K7iv7Fa/jq/4ON/+To/A3/Yqj/0ruKAPZf+CKX/ACaxr/8A2Nd1/wCkdnX7AV+P/wDwRS/5NY1//sa7r/0js6/YCtEe9hv4UQr45/4KA/8AJnvjf/r2g/8ASiKvsavjn/goD/yZ743/AOvaD/0oirzs4/3DEf4J/wDpLPq+DP8AkoMu/wCv9L/05E+6P2Rf+TUPhh/2KWi/+kcVfQ1fPP7Iv/JqHww/7FLRf/SOKvoatMF/u9P/AAr8j47iH/kaYv8A6+T/APSmFFFFdJ44UUUUAFFFFABRRRQAUUUUAflh/wAFjP8Akyy+/wCwtYf+hGvovwx/yLWn/wDXtF/6AK+dP+Cxn/Jll9/2FrD/ANCNfRfhj/kWtP8A+vaL/wBAFeNhf+RriP8ABT/OZ+pVP+SNy7/r/if/AEmgblFFFe6fIhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAFe7tLXULWWwvokmgnRo5I5FDI6MMFWB4II4IPWvzS8ef8EwfhfJ4t/4WL+zz4i1b4W68rebHJo8hNqswPDiHcjAYLDYkqLg9MZB/TWiixE6cZq0kfiD+0v8Jf8AgpH8FPg9qfjrRvjjrfivTtKXff29tu0+8TT4wWknWYSSOGQKC2CWCljk4IP7M/sAaD4B0X9lfw1d/DDxZq3jPRNUR72G/wBYmE06ySHbPCvyIUSOZZBsYMytuBY1u3dpa6hay2F9Ek0E6NHJHIoZHRhgqwPBBHBB61+VT3HxE/4JZfEe6+I3gO3udf8AgT4jvPN1rRovnm0G4mIHn246CPoByFYARuQwjkqWjzsVhVFc0Fof0C0V5P8ABj45fCn9oTwPbfET4Qa1b61pdyAd8LYkiY9UljOHjcd1cA/hzXrFSeeFFFFABRX5e+N/2mvjB8CP+CjOg/B34s38U3wz+JenCDw0/wBnjiNpq8bKGieYKHkZ3IjC8gCeHoQ5b9QqACiiigAooooAK/H/APbU+Kupx/8ABQr9nv4NWniObQNP8281fU1W4+yw3KAgwRysXVJA72zoEPUvgAsVFfrve3tnptnNqOozJb29ujSSyyMEREQZZmY4AAAySeAK/mx8EfCT4d/8FNf2ivi1+0J8TLO6u/Bolg8PeF5kuHiZEs1AeaEAcbsLLhsqDMwKnnAkaU6bnLlif0r0V+Bulfsrft+fA6yj0j9mz47yz6TaOBaab4jtVnSKEBsR+Y6XPyjgfJGgwcgAqM9DLpv/AAWZ11bW0ufiV4N0OOJyJrizshPO6jjJSaxaM5xuABTrzjpTszR4WqtOU/Zn4ifEz4e/CPwrP43+J+tWegaTbcSXV9MsMe45IUFiNztj5UXLMeACa/BLxv4++IH/AAVz8b2Ph/RdOu/C/wACPDN/LLd3by7LnX7iI4jAXaCgUdFGRHuZmYybFT0Xw9/wTftPHHiq0+Iv7ZPjjVvitrFpGqw215I8GnwdCVWMOWKhgDgNGjnJdCWOP0g8P+HtA8J6Nb+HPC1jb6Zp1onlwWtpEsMMSf3URAFUewApqJ00ME73qfcWNJ0rTdB0q20PRoUtrOyiSCCGMYSOOMBVVR2AAAFaFFFUemFFFFABRRRQAV/J/wD8Fev+Tyr3/sFWH/oJr+sCv5P/APgr1/yeVe/9gqw/9BNKRx47+H8z+nr/AIIaf8o4/CP/AF/at/6WS1+u1fkT/wAENP8AlHH4R/6/tW/9LJa/XaoPHCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/T/v4ooooA/wA5/wD4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/7FXRv/SSKv5Xf+CjH/J+Hxc/7GnUv/RzV/VF+yh/ya18Nf8AsVdG/wDSSKuXFbI97Ifjn6Hv1FFFcJ9MFFFFABXwT8Zf2hfjJ48+Ksv7K/7E+lQ6542t4hLrGq3RA07RImxgysQVaUg/d5wcAK7ZVfvavgn/AIIPeLfh94z+F/xJ8UxyRnx1rPieW/1oO++4a1mQPbHJ5aMSPcYY/NvL56iujD01JtvoeRm+LnRhGNPRy6+h7x8If+CSPwmF6nxC/bB1a6+L/jNnWU3GpSSw6fbYwfKhtUk2NGDkESZRhyI06V+pnhbwh4S8DaOnh3wTpdpo+nxszJa2MCW8Ks5yxCRhVBJ5PHJroqK9A+Tbbd29QooooEFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGZrOiaN4j02TRvENpDf2c2PMguI1ljfaQwyrAg4IBGRwRmvyo+NX/AASM+CGua5cfE/8AZgvbr4TeNPmkhudEkeKxd9j4ja2B2RxO5TzFiCqVTGzJJP61UUDTad0fz6fC/wDaS+Onwb+N9h+yF+3BpkEHifUFP9j+JbA40/VwfugDy4wrk5XIVfmwpjQ4Lfo3XyB/wXf1LwRpX7Hun3WsNHH4iHiCzOhSqdtzFMgZ5WjIBYKIlO4gqN2zJztB+p/D11PfaBY31026Wa3id2xjLMoJOBx1rgxFNRaaPq8nxc60ZRqO7VtTYooormPYCiiigAr8xPgX/wApO/jh/wBgrRP/AEltq/TuvzE+Bf8Ayk7+OH/YK0T/ANJbatKe0vQ5cT8VL/F/7bI/TuiiiszqCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD+cj/gtv/yVLwR/2Crj/wBHCv1c/wCDcj/k1zxz/wBjUf8A0kt6/KP/AILb/wDJUvBH/YKuP/Rwr9XP+Dcj/k1zxz/2NR/9JLevTofAj4rM/wDep/10P6G6KKK1OAKKKKACiiigAooooAK/Db/g4M/5MQs/+xq0/wD9E3NfuTX4bf8ABwZ/yYhZ/wDY1af/AOibmgaPxg/4IBf8nj+Jf+xMvP8A0usa/r4r+Qf/AIIBf8nj+Jf+xMvP/S6xr+vivi88/wB6foj1cH/DCiiivHOoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD+OH/gu/8A8nt2n/Ys2H/o24r9xf8Ag3z/AOTELz/satQ/9E21fh1/wXf/AOT27T/sWbD/ANG3FfuL/wAG+f8AyYhef9jVqH/om2r7/Lv91p+h4tf+JI/cmiiiu0xCiiigAooooAKKKKACiiigD8if+C5f/KOPxd/1/aT/AOlkVfzGf8EfP+Tz7H/sE3//AKAK/pz/AOC5f/KOPxd/1/aT/wClkVfzGf8ABHz/AJPPsf8AsE3/AP6AKuHxIir8DP60aKKK7Tyj82/iX/ylp+AX/YJ1/wD9Irqv20r8S/iX/wApafgF/wBgnX//AEiuq/bSuOr8TPTofAgooorM1CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPw+/Yn/AOTq/wBpn/scF/8AQrmv0xr8zv2J/wDk6v8AaZ/7HBf/AEK5r9Ma7aXwo83EfxGFfHX/AAUD/wCTMPiJ/wBgl/8A0Na+xa+Ov+Cgf/JmHxE/7BL/APoa1UtmRD4kfznf8Eh/+Ujnwu/6/rr/ANI56/0Dq/z8f+CQ/wDykc+F3/X9df8ApHPX+gdXAeqFFFFABRRRQAUUUUAFFFFAH5Ff8Fyv+Ucfi7/r+0n/ANLIq/ld/wCCU3/J63hz/r11H/0mkr+qL/guV/yjj8Xf9f2k/wDpZFX8rv8AwSm/5PW8Of8AXrqP/pNJWtD+JH1Q1uf1n0UUV75YUUUUAFFFFABRRRQBpaN/yGLT/rtH/wChCvq6vlHRv+Qxaf8AXaP/ANCFfV1eZmG8SZBXkvxV/wCPey/3n/kK9aryX4q/8e9l/vP/ACFc+E/ix/roJbnjNFFFe2WFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH8mH/BVn/k9bxH/166d/6TR1/WX/AMEVf+UZnw0/7jP/AKdbyv5NP+CrP/J63iP/AK9dO/8ASaOv6y/+CKv/ACjM+Gn/AHGf/TreV4Nf+JL1Ie5+plFFFYiCiiigAooooAKKKKACiiigAr+Or/g43/5Oj8Df9iqP/Su4r+xWv46v+Djf/k6PwN/2Ko/9K7igD2X/AIIpf8msa/8A9jXdf+kdnX7AV+P/APwRS/5NY1//ALGu6/8ASOzr9gK0R72G/hRCvNfjD8LtB+NPw01f4XeJpZoLLWIRFJJbkCRNrB1ZSwI4ZQeQQa9KoqKtONSEqc1eLVmvJnbhcTVw9aGIoS5ZwalFrdNO6fyZ+dGkfsL/ABQ8P6Ta6DoPx38dWNjYwpb21tb380UUMUQCoiIsoVVVQAqgAADArR/4Yv8AjN/0cD4//wDBnP8A/Hq/QaivIXD+ASsoP/wKX/yR9bLxBz2TcpVotv8A6dUv/kD8+f8Ahi/4zf8ARwPj/wD8Gc//AMeo/wCGL/jN/wBHA+P/APwZz/8Ax6v0Gop/2Bgf5H/4FP8A+SF/r/nn/P2P/gqj/wDIH58/8MX/ABm/6OB8f/8Agzn/APj1H/DF/wAZv+jgfH//AIM5/wD49X6DUUf2Bgf5H/4FP/5IP9f88/5+x/8ABVH/AOQPz5/4Yv8AjN/0cD4//wDBnP8A/HqP+GL/AIzf9HA+P/8AwZz/APx6v0Goo/sDA/yP/wACn/8AJB/r/nn/AD9j/wCCqP8A8gfnz/wxf8Zv+jgfH/8A4M5//j1H/DF/xm/6OB8f/wDgzn/+PV+g1FH9gYH+R/8AgU//AJIP9f8APP8An7H/AMFUf/kD8+f+GL/jN/0cD4//APBnP/8AHqP+GL/jN/0cD4//APBnP/8AHq/Qaij+wMD/ACP/AMCn/wDJB/r/AJ5/z9j/AOCqP/yB+Z/jH/gnp4v+Iuit4a+IPxo8Y67pzOsjWuoXb3UBdPusUkkZcjscZFfpNYWcWn2MNhCSUgRY1LdcKMDPSrVFdeDy3DYWUpUI2crX1b2vbdvuzys44mzLNKdOljqvNGDbilGMUnK13aKW/Kt+wUUUV3HghRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVHNDFcRNBOodHBVlYZBB6gjuDUlFAH5v8AxI/YBk0bxdefFz9jrxbffCvxVdkSTw2Dsul3jKdwWWBeApbkjDx9/LJrUsf2p/8AgqX8HHubD4j/AAu0f4lWNnjZqWh3q2Ms6IoLHyiXcswUnC26jccKCMCv0MopWOWpg6cnfY+Df+HqHxxkkisrb9mnxsbkl1lDpKkSlem2U2u1gR3OB6ZzXMa5+1D/AMFTfjsJrH4OfDzSPhZp0pKJqHiGcXV4mVXDBCpAIJLHdauvIXkq2f0Zoo5UZrAQ6tn4+eJP+CVd5498M6p41+KHxF1nxL8VLqNZbPXLmZ0t7W4iO+NET55BGG+XIb5VwY0QjB+8P2DP24LX4oWbfs2/HyT+wvi14OC6bqFreygNqjQKF+1QMcCRpAN7hc53b1yhBH0nXyb+07+x98Nf2mdOtb3U3l0HxPpcqT6br+nAJe20sZynzjBdAQCF3AgjKlTzQ0FfBxa/d6NH6tUV+E+h/tIf8FFf2OFt/DXxi8Lj41eEbfcset6MJP7YVOq+egDltoHJaP6zE16va/8ABbT9kO2LWXjjTfE/hrUYuJbPUNNAlRwSrD5JX6FSOcH2zkCDzJwlF2kj9gaK/HHUP+C1P7P2t3Mei/BDwh4s8d6pJg/Z9PsAoUE45y7SZ9AsZB9RXjniNf8AgpJ+29dTWXju/T4GeAJHZG03TpPO1i7izgrJMpV8H5kY7oEIIJhkHJLDhSnN2ijT/bY/ak8V/tgeObn9gr9kCdLqyuf3XjHxLGC9vZ2yvtkgRvlVumHKtiTPlqfvkfeXwm+Fvg/4KfDnSPhZ4BgNvpOjQeTArHc7Eks7ucAF5HZncgAFieB0rm/gV+z78Kf2cfBMfgT4T6WlhajDTzMd9xdSgcyTSHl2PPoqjhQqgAe0VaVj18Nh1TV3uFFFFM6QooooAKKKKACiiigAooooAK/k/wD+CvX/ACeVe/8AYKsP/QTX9YFfyf8A/BXr/k8q9/7BVh/6CaUjjx38P5n9PX/BDT/lHH4R/wCv7Vv/AEslr9dq/In/AIIaf8o4/CP/AF/at/6WS1+u1QeOFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf//U/v4ooooA/wA5/wD4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/7FXRv/SSKv5Xf+CjH/J+Hxc/7GnUv/RzV/VF+yh/ya18Nf8AsVdG/wDSSKuXFbI97Ifjn6Hv1FFFcJ9MFFFFABX8+/8AwTm/Y1+J3jn9nq3/AGs/2V/FL+F/ib4e1m+tFhnLNYataxrbyC2nG7CKSWzlWRuAwUgOv9BFfDv/AAQp/wCTKLv/ALGW/wD/AEVb12YT7R87n/8Ay7+f6HafDP8A4K0P8P8AxVb/AAf/AOChngu8+FHih/lj1JY3uNFuyMAvG6mRkTcQoZGniHJaVelfq18Nfi78LfjJoEfij4U+IdP8RWEiJJ52n3CThQ+QNwQkocqwKsAQVIIBBFY3izwX4O8e6O/h3x1pNnrWnyZ32t/AlzC2VKnKSBlOVYg8dCR0Nfmt8QP+CRv7NWqaz/wmfwOvNZ+FniFfK2Xvhu9khUeUwP8Aq2JxnCn92yfOit13buw+dP2Gor8QLT4B/wDBXT4F2pg+FHxm0j4i6fbquy18U2ZiuJMKgz5uJ5S3ylcNchSCXJ3txtJ+3H/wUn+FM+z47fs5tr1qnyvd+ELz7SWw+3zI7dDdyENkEI5RgPmOADgA/aWivxotP+C2/wCzno0MSfFzwZ418F3DExv/AGjpa+SJVzuVXEu9iMYOY1OT06ke+eFv+Ctn/BPTxdlLD4kWtrIiK7rfWl3aYz23TQIrEdwrN+VAH6N0V8vaF+25+xx4lcRaN8VPCcsjMVEZ1e1SQkDJwjSBiMdwMdfQ167pHxf+E3iDb/YPijSL7cglH2e9hlyhxhhtc8cjnpzQB6JRVWyvrLUbZbzT5knhfO2SNgynBwcEZHUYq1QAUUVVvb6y062a81CZIIUxukkYKoycDJOB1OKALVFcBrHxY+Fnh2H7T4g8S6VYx7WbdcXkMS7U5Y5ZxwB19K8n139tD9kHw0hbXPil4Tt2Chth1i0MhUnAIQSliM+g7H0oA+l6K/PPxp/wVb/4J+eBHeHVfiTYXciqCF06G4vwxIJADW8UiZOMcsAD1Ir55vv+C3f7LeoXLad8L/DXjDxlctMIIF0zSwVmbGTt8yVX4HbZu6cY5AB+yVFfijN+3/8A8FCfi1bCH9nf9m+80rzMFL7xbdfZotrltreTILQkYXJ2zHqAOqlqZ+D3/BYj4yFk+I3xa0D4d6fcZWS38PWIuZ41aNVyrsiSA5LHi5GG5BxtwAfsT44+IfgP4ZaBP4p+Ims2Wh6bbIZJbm+nSCNVXAJ3OQOpA+pA6kV+UXxW/wCCufhTX/EbfCf9hjwtffF3xdIuBLbRPFpdtnjfLKQrMqnqcJH/ANNRVDwb/wAEff2eP7dHjL4/654h+KetOrGafX7+QxySOiKX2oRJkbfl3TNgEA52g1+nfgvwN4M+HHhy28H/AA/0q00XSrRdsNpZQrBCg9lQAZPc9SetAH81n7d37Knxyk/ZS8W/tdftr6//AG38RZprG10zS7RwNM0Oznuog0cKKNpkK/KxBIwSWaRyXr9pfCf/ACKumf8AXpD/AOgCvCP+Czf/ACYB4p/6/NL/APSuKvd/Cf8AyKumf9ekP/oArkxfQ+hyHep8v1OgoooriPowooooAK/MT4F/8pO/jh/2CtE/9Jbav07r8xPgX/yk7+OH/YK0T/0ltq0p7S9DlxPxUv8AF/7bI/TuiiiszqCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD+cj/AILb/wDJUvBH/YKuP/Rwr9XP+Dcj/k1zxz/2NR/9JLevyj/4Lb/8lS8Ef9gq4/8ARwr9XP8Ag3I/5Nc8c/8AY1H/ANJLevTofAj4rM/96n/XQ/obooorU4AooooAKKKKACiiigAr8Nv+Dgz/AJMQs/8AsatP/wDRNzX7k1+G3/BwZ/yYhZ/9jVp//om5oGj8YP8AggF/yeP4l/7Ey8/9LrGv6+K/kH/4IBf8nj+Jf+xMvP8A0usa/r4r4vPP96foj1cH/DCiiivHOoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD+OH/gu//wAnt2n/AGLNh/6NuK/cX/g3z/5MQvP+xq1D/wBE21fh1/wXf/5PbtP+xZsP/RtxX7i/8G+f/JiF5/2NWof+ibavv8u/3Wn6Hi1/4kj9yaKKK7TEKKKKACiiigAooooAKKKKAPyJ/wCC5f8Ayjj8Xf8AX9pP/pZFX8xn/BHz/k8+x/7BN/8A+gCv6c/+C5f/ACjj8Xf9f2k/+lkVfzGf8EfP+Tz7H/sE3/8A6AKuHxIir8DP60aKKK7Tyj8uv2qNfg+D3/BQH9n/AOO/ig/Z/Dyz3+hXN5JgQW81/E8CGRyyhVxOWLNgKqM3OCK/dWvgX9oL4CeAf2lPhdf/AAp+IsLvZXeJIpojtmt7hM+XNGeQGQnoQQQSCCCRXw78Nv2t/jr/AME9ILP4M/tlabeeLfA1omzTPHWnJJKYYQpEVtdRlTl9w2qWkDAYx5ijcOWrB3ud+HqJx5ep+7lFeafC34yfCz42eHV8WfCfXrPX9PbP720kD7cMyfMv3lyyMBuAzg44r0usTpCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKrXt7Z6bZzajqMyW9vbo0kssjBEREGWZmOAAAMkngCvFPjr+0v8DP2avDn/AAk/xq8R2miQspMMMjb7m4I7QwJmSQ+u1SB3IFfjz8QfjX+0J/wVGtm+HXwV0+9+Hnwbnk8vVtevlCahq0QzmGCMNjyn4DBWIP8AG+MxM0m3ZClJRV2dL/wTi1P/AIWL40+N/wAfNMhkXRvGHjO5k0yZwFE1vA0jKwGSc7ZV3MCVLZAPBr9Ra89+FPwu8F/Bb4eaV8Lvh7a/Y9H0eLyreMsWb5mLuzE9Wd2Z2PdiTXoVdsVZWPLqS5pNhXx1/wAFA/8AkzD4if8AYJf/ANDWvsWvjr/goH/yZh8RP+wS/wD6GtOWzCHxI/nO/wCCQ/8Aykc+F3/X9df+kc9f6B1f5+P/AASH/wCUjnwu/wCv66/9I56/0Dq4D1QooooAKKKKACiiigAooooA/Ir/AILlf8o4/F3/AF/aT/6WRV/K7/wSm/5PW8Of9euo/wDpNJX9UX/Bcr/lHH4u/wCv7Sf/AEsir+V3/glN/wAnreHP+vXUf/SaStaH8SPqhrc/rPooor3ywooooAKKKKACiiigDS0b/kMWn/XaP/0IV9XV8o6N/wAhi0/67R/+hCvq6vMzDeJMgryX4q/8e9l/vP8AyFetV5L8Vf8Aj3sv95/5CufCfxY/10EtzxmiiivbLCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD+TD/gqz/yet4j/wCvXTv/AEmjr+sv/gir/wAozPhp/wBxn/063lfyaf8ABVn/AJPW8R/9eunf+k0df1l/8EVf+UZnw0/7jP8A6dbyvBr/AMSXqQ9z9TKKKKxEFFFFABRRRQAUUUUAFFFFABX8dX/Bxv8A8nR+Bv8AsVR/6V3Ff2K1/HV/wcb/APJ0fgb/ALFUf+ldxQB7L/wRS/5NY1//ALGu6/8ASOzr9gK/H/8A4Ipf8msa/wD9jXdf+kdnX7AVoj3sN/CiFFFFBsFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABVO907T9TiEGpQR3CA7gsihwD64PfmrlFAEcMMVvEsEChEQBVVRgADoAOwFSUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFfyf/APBXr/k8q9/7BVh/6Ca/rAr+T/8A4K9f8nlXv/YKsP8A0E0pHHjv4fzP6ev+CGn/ACjj8I/9f2rf+lktfrtX5E/8ENP+UcfhH/r+1b/0slr9dqg8cKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//V/v4ooooA/wA5/wD4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/7FXRv/SSKv5Xf+CjH/J+Hxc/7GnUv/RzV/VF+yh/ya18Nf8AsVdG/wDSSKuXFbI97Ifjn6Hv1FFFcJ9MFFFFABXw7/wQp/5Mou/+xlv/AP0Vb19xV8O/8EKf+TKLv/sZb/8A9FW9dmE+0fO5/wD8u/n+h+zVFFFdh86FFFFAEU0MNzC9vcIskcilWVhlWU8EEHqDXg3iz9lL9mLx2qr4x+HnhvUWRdqPPpdu0iLnOFfy9ygnrgjNe/UUAfC2rf8ABM39g/Wt32z4Z6Sm5zIfI8235OenlSLgc/d6e3FeO65/wRo/4J+6shWw8J3emEqBm21S8Ygg5z++llGT0PbHQZ5r9S6KAPyK/wCHI37Cn/PhrP8A4MX/APiazbX/AIIg/sc6deSX2jah4psXkyP9H1JEwpOdoPkFscDqT05r9h6KAPx01D/gh7+x3q8wudV1TxVdSKu0NLqMbsFHOMm3PGSa1v8AhyN+wp/z4az/AODF/wD4mv11ooA/LTQ/+CNH/BP3SUC3/hO71MhSM3OqXikknOf3MsQyOg7Y6jPNeu6R/wAEyP2DNEm8+y+Gmlu25WxcNNcLlenEsjjHqMYPfNfd1FAHgPhD9lP9mLwBNHdeCvh54b0yeJgyz2+l26TBhnB8wR78jJxzwOBxXutnZWen2y2enxJBCmdqRqFUZOTgDA6nNWaKACiiigAooooA/LD/AILN/wDJgHin/r80v/0rir3fwn/yKumf9ekP/oArwj/gs3/yYB4p/wCvzS//AErir3fwn/yKumf9ekP/AKAK5MX0Poch3qfL9ToKKKK4j6MKKKKACvzE+Bf/ACk7+OH/AGCtE/8ASW2r9O6/MT4F/wDKTv44f9grRP8A0ltq0p7S9DlxPxUv8X/tsj9O6KKKzOoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP5yP+C2//JUvBH/YKuP/AEcK/Vz/AINyP+TXPHP/AGNR/wDSS3r8o/8Agtv/AMlS8Ef9gq4/9HCv1c/4NyP+TXPHP/Y1H/0kt69Oh8CPisz/AN6n/XQ/obooorU4AooooAKKKKACiiigAr8Nv+Dgz/kxCz/7GrT/AP0Tc1+5Nfht/wAHBn/JiFn/ANjVp/8A6JuaBo/GD/ggF/yeP4l/7Ey8/wDS6xr+viv5B/8AggF/yeP4l/7Ey8/9LrGv6+K+Lzz/AHp+iPVwf8MKKKK8c6gooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP44f+C7/wDye3af9izYf+jbiv3F/wCDfP8A5MQvP+xq1D/0TbV+HX/Bd/8A5PbtP+xZsP8A0bcV+4v/AAb5/wDJiF5/2NWof+ibavv8u/3Wn6Hi1/4kj9yaKKK7TEKKKKACiiigAooooAKKKKAPyJ/4Ll/8o4/F3/X9pP8A6WRV/MZ/wR8/5PPsf+wTf/8AoAr+nP8A4Ll/8o4/F3/X9pP/AKWRV/MZ/wAEfP8Ak8+x/wCwTf8A/oAq4fEiKvwM/rRooortPKCq93aWmoWkthfxJPBOjRyRyKGR0YYKsDwQRwQetWKKAPzn8cf8E2fhP/wmJ+Kf7Our6l8J/Fa5Md54fkKW2T1DW25V8tuN0UbRowGCOTXP6f8AEf8A4K2/s5R/ZtWstC+NWiwJEBKhFjqaqoII48oMRjBJSZ2yrZzvx+nFFZypRZtGvOPU+CvD3/BZT4M6Ffx+HP2mPBvib4Y6sXVHS/s3uLcZCbyroqyuE3ZJEHKbWGS22vs/4Z/t4/sc/F5kg8CfEbRZ55FDJb3VwLK4cEMflhuRFISApLALlRycAitbVdI0nXbCTStctYry1lxvhnQSRttIIyrAg4IBGR1FfJ/j/wDYD/Y6+JKyHxB4A0u3kkGDLp0Z0985J3ZtjFlsk5JzngHIAFZOh2ZusUuqP1LhmhuYUuLd1kjkUMrKcqynkEEdQalr8H/+HWHg/wAFSm7/AGePiR4x+H0rbiy6fqDeUWZQpbCeU+TgbsyHIAHFadr+z5/wU48BTeb8P/2hl1hQqKU1vTEcMq44PmC6IJ5ywIY+vPEOlI1WIg+p+5tFfidH8Uv+CyXgJ50u9G8B+N4wA4MDy20jcfcjLyWqjnk71x6GrkH7e3/BRDw/cCHxf+zeb753B/s/V0Awox95UuB15z0YdPWp5Jdi1Ui+p+0tFfjLbf8ABVH44afbM/jT9mnxtZSKnmH7Gkt5EFBOSZPssQGAAeR+mCbQ/wCCz3wq0izZ/HHwt+IOlXEW3zU/syFkTcBjLSXER5J4yoyMHvilZlJo/ZCivx9s/wDgtf8Ass3Nss83hrxnbs2cxyaVGWGD32XLLz14NRad/wAFx/2Hr3f9pbX7PbjHnaeDuznp5cr9PfHWkM/YeivyK/4fc/sKf8/+s/8Aguf/AOKrHm/4Lk/sUC++w2MHiS8LFVRodPTDlscKGmVs5OPu9aAP2Nor8fbz/gtf+yzbWzTw+GvGdwy4xHHpUYY5PbfcqvHXk1QH/BZn4a63biXwD8KPiDq7lHYD+zIlX5eBzHPNxngnHHvTswP2Ror8X3/4Kn/H7U4pJ/CH7M3jG7jARomu2ltA4bvk2j8dcbd3bOM024/bl/4KR+IYSPB37OsNjJMz+UdR1mIqqjOA4Y2/PA5JXd2HIp8r7EucerP2ior8TLnx3/wWU+IKokMfgPwJG8mCyCW5mjRSTk7jdxsWHHAHTovJrnz+zP8A8FI/HvlzfFH9o240xkfcY9C09YQQMDG6E2nUZ6qQDzg5JpqnLsQ60F1P3KvL2z0+2a81CVIIUxueRgqjJwMk4HU4r5A+If8AwUJ/Yo+FzeV4t+JWi+Zt3GOxmOoyKMZ+ZLQTMpI6AgE8Y6ivzus/+CVPwr8TXMWsftAeNPFfxE1BPvvqmouIm+90HzSjDOzf648/U5+nfA37Df7Inw5QL4Y+HujblziS8g+3SjICnD3JlccD17n1ObVGXUzeKj0PJtf/AOCxfgvxfNNo37KPw58T/Em+iLI00VsbWyU7GZcuBLLklfutEmVzg5GK5XUNT/4Kw/tJM0WsaronwQ8PTGRGh09RqOrmFx8pL7nUMOm6OW3cH+Gv0ntLS0sLdbWxiSGJM7UjUKoycnAGB1qxWiorqZSxUnsj8/vhn/wTh+A/hfXY/iB8WJL/AOJfi35Gl1bxNcPeFnXPIhdihHTAk8wrgYbrX37DDFbxLBAoSNAFVVGAAOgAHQCpKK1SS2OeUnLVsKKKKZIV8df8FA/+TMPiJ/2CX/8AQ1r7Fr46/wCCgf8AyZh8RP8AsEv/AOhrSlsy4fEj+c7/AIJD/wDKRz4Xf9f11/6Rz1/oHV/n4/8ABIf/AJSOfC7/AK/rr/0jnr/QOrgPVCiiigAooooAKKKKACiiigD8iv8AguV/yjj8Xf8AX9pP/pZFX8rv/BKb/k9bw5/166j/AOk0lf1Rf8Fyv+Ucfi7/AK/tJ/8ASyKv5Xf+CU3/ACet4c/69dR/9JpK1ofxI+qGtz+s+iiivfLCiiigAooooAKKKKANLRv+Qxaf9do//QhX1dXyjo3/ACGLT/rtH/6EK+rq8zMN4kyCvJfir/x72X+8/wDIV61XkvxV/wCPey/3n/kK58J/Fj/XQS3PGaKKK9ssKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP5MP+CrP/J63iP/AK9dO/8ASaOv6y/+CKv/ACjM+Gn/AHGf/TreV/Jp/wAFWf8Ak9bxH/166d/6TR1/WX/wRV/5RmfDT/uM/wDp1vK8Gv8AxJepD3P1MooorEQUUUUAFFFFABRRRQAUUUUAFfx1f8HG/wDydH4G/wCxVH/pXcV/YrX8dX/Bxv8A8nR+Bv8AsVR/6V3FAHsv/BFL/k1jX/8Asa7r/wBI7Ov2Ar8f/wDgil/yaxr/AP2Nd1/6R2dfsBWiPew38KIUUUUGwUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV/J/wD8Fev+Tyr3/sFWH/oJr+sCv5P/APgr1/yeVe/9gqw/9BNKRx47+H8z+nr/AIIaf8o4/CP/AF/at/6WS1+u1fkT/wAENP8AlHH4R/6/tW/9LJa/XaoPHCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/W/v4ooooA/wA5/wD4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/7FXRv/SSKv5Xf+CjH/J+Hxc/7GnUv/RzV/VF+yh/ya18Nf8AsVdG/wDSSKuXFbI97Ifjn6Hv1FFFcJ9MFFFFABXw7/wQp/5Mou/+xlv/AP0Vb19xV8O/8EKf+TKLv/sZb/8A9FW9dmE+0fO5/wD8u/n+h+zVFFFdh86FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAflh/wWb/5MA8U/wDX5pf/AKVxV7v4T/5FXTP+vSH/ANAFeEf8Fm/+TAPFP/X5pf8A6VxV7v4T/wCRV0z/AK9If/QBXJi+h9DkO9T5fqdBRRRXEfRhRRRQAV+YnwL/AOUnfxw/7BWif+kttX6d1+YnwL/5Sd/HD/sFaJ/6S21aU9pehy4n4qX+L/22R+ndFFFZnUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH85H/AAW3/wCSpeCP+wVcf+jhX6uf8G5H/Jrnjn/saj/6SW9flH/wW3/5Kl4I/wCwVcf+jhX6uf8ABuR/ya545/7Go/8ApJb16dD4EfFZn/vU/wCuh/Q3RRRWpwBRRRQAUUUUAFFFFABX4bf8HBn/ACYhZ/8AY1af/wCibmv3Jr8Nv+Dgz/kxCz/7GrT/AP0Tc0DR+MH/AAQC/wCTx/Ev/YmXn/pdY1/XxX8g/wDwQC/5PH8S/wDYmXn/AKXWNf18V8Xnn+9P0R6uD/hhRRRXjnUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/HD/wXf/5PbtP+xZsP/RtxX7i/8G+f/JiF5/2NWof+ibavw6/4Lv8A/J7dp/2LNh/6NuK/cX/g3z/5MQvP+xq1D/0TbV9/l3+60/Q8Wv8AxJH7k0UUV2mIUUUUAFFFFABRRRQAUUUUAfkT/wAFy/8AlHH4u/6/tJ/9LIq/mM/4I+f8nn2P/YJv/wD0AV/Tn/wXL/5Rx+Lv+v7Sf/SyKv5jP+CPn/J59j/2Cb//ANAFXD4kRV+Bn9aNFFFdp5QUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUARiGJZWnCgSMApbHJC5wCfQZOPqakoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvjr/goH/yZh8RP+wS//oa19i18df8ABQP/AJMw+In/AGCX/wDQ1pS2ZcPiR/Od/wAEh/8AlI58Lv8Ar+uv/SOev9A6v8/H/gkP/wApHPhd/wBf11/6Rz1/oHVwHqhRRRQAUUUUAFFFFABRRRQB+RX/AAXK/wCUcfi7/r+0n/0sir+V3/glN/yet4c/69dR/wDSaSv6ov8AguV/yjj8Xf8AX9pP/pZFX8rv/BKb/k9bw5/166j/AOk0la0P4kfVDW5/WfRRRXvlhRRRQAUUUUAFFFFAGlo3/IYtP+u0f/oQr6ur5R0b/kMWn/XaP/0IV9XV5mYbxJkFeS/FX/j3sv8Aef8AkK9aryX4q/8AHvZf7z/yFc+E/ix/roJbnjNFFFe2WFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH8mH/BVn/k9bxH/wBeunf+k0df1l/8EVf+UZnw0/7jP/p1vK/k0/4Ks/8AJ63iP/r107/0mjr+sv8A4Iq/8ozPhp/3Gf8A063leDX/AIkvUh7n6mUUUViIKKKKACiiigAooooAKKKKACv46v8Ag43/AOTo/A3/AGKo/wDSu4r+xWv46v8Ag43/AOTo/A3/AGKo/wDSu4oA9l/4Ipf8msa//wBjXdf+kdnX7AV+P/8AwRS/5NY1/wD7Gu6/9I7Ov2ArRHvYb+FEKKKKDYKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK/k/8A+CvX/J5V7/2CrD/0E1/WBX8n/wDwV6/5PKvf+wVYf+gmlI48d/D+Z/T1/wAENP8AlHH4R/6/tW/9LJa/XavyJ/4Iaf8AKOPwj/1/at/6WS1+u1QeOFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/X/v4ooooA/wA5/wD4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/7FXRv/SSKv5Xf+CjH/J+Hxc/7GnUv/RzV/VF+yh/ya18Nf8AsVdG/wDSSKuXFbI97Ifjn6Hv1FFFcJ9MFFFFABXw7/wQp/5Mou/+xlv/AP0Vb19xV8O/8EKf+TKLv/sZb/8A9FW9dmE+0fO5/wD8u/n+h+zVFFFdh86FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAflh/wWb/5MA8U/wDX5pf/AKVxV7v4T/5FXTP+vSH/ANAFeEf8Fm/+TAPFP/X5pf8A6VxV7v4T/wCRV0z/AK9If/QBXJi+h9DkO9T5fqdBRRRXEfRhRRRQAV+YnwL/AOUnfxw/7BWif+kttX6d1+YnwL/5Sd/HD/sFaJ/6S21aU9pehy4n4qX+L/22R+ndFFFZnUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH85H/AAW3/wCSpeCP+wVcf+jhX6uf8G5H/Jrnjn/saj/6SW9flH/wW3/5Kl4I/wCwVcf+jhX6uf8ABuR/ya545/7Go/8ApJb16dD4EfFZn/vU/wCuh/Q3RRRWpwBRRRQAUUUUAFFFFABX4bf8HBn/ACYhZ/8AY1af/wCibmv3Jr8Nv+Dgz/kxCz/7GrT/AP0Tc0DR+MH/AAQC/wCTx/Ev/YmXn/pdY1/XxX8g/wDwQC/5PH8S/wDYmXn/AKXWNf18V8Xnn+9P0R6uD/hhRRRXjnUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/HD/wXf/5PbtP+xZsP/RtxX7i/8G+f/JiF5/2NWof+ibavw6/4Lv8A/J7dp/2LNh/6NuK/cX/g3z/5MQvP+xq1D/0TbV9/l3+60/Q8Wv8AxJH7k0UUV2mIUUUUAFFFFABRRRQAUUUUAfkT/wAFy/8AlHH4u/6/tJ/9LIq/mM/4I+f8nn2P/YJv/wD0AV/Tn/wXL/5Rx+Lv+v7Sf/SyKv5jP+CPn/J59j/2Cb//ANAFXD4kRV+Bn9aNFFFdp5QUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV8df8FA/+TMPiJ/2CX/8AQ1r7Fr46/wCCgf8AyZh8RP8AsEv/AOhrSlsy4fEj+c7/AIJD/wDKRz4Xf9f11/6Rz1/oHV/n4/8ABIf/AJSOfC7/AK/rr/0jnr/QOrgPVCiiigAooooAKKKKACiiigD8iv8AguV/yjj8Xf8AX9pP/pZFX8rv/BKb/k9bw5/166j/AOk0lf1Rf8Fyv+Ucfi7/AK/tJ/8ASyKv5Xf+CU3/ACet4c/69dR/9JpK1ofxI+qGtz+s+iiivfLCiiigAooooAKKKKANLRv+Qxaf9do//QhX1dXyjo3/ACGLT/rtH/6EK+rq8zMN4kyCvJfir/x72X+8/wDIV61XkvxV/wCPey/3n/kK58J/Fj/XQS3PGaKKK9ssKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP5MP+CrP/J63iP/AK9dO/8ASaOv6y/+CKv/ACjM+Gn/AHGf/TreV/Jp/wAFWf8Ak9bxH/166d/6TR1/WX/wRV/5RmfDT/uM/wDp1vK8Gv8AxJepD3P1MooorEQUUUUAFFFFABRRRQAUUUUAFfx1/wDBxx/ydF4G/wCxWH/pXcV/YpX8df8Awccf8nReBv8AsVh/6V3FAHsn/BFL/k1jX/8Asa7r/wBI7Ov2Ar8f/wDgil/yaxr/AP2Nd1/6R2dfsBWiPew38KIUUUUGwUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV/J/wD8Fev+Tyr3/sFWH/oJr+sCv5P/APgr1/yeVe/9gqw/9BNKRx47+H8z+nr/AIIaf8o4/CP/AF/at/6WS1+u1fkT/wAENP8AlHH4R/6/tW/9LJa/XaoPHCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/Q/v4ooooA/wA5/wD4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/7FXRv/SSKv5Xf+CjH/J+Hxc/7GnUv/RzV/VF+yh/ya18Nf8AsVdG/wDSSKuXFbI97Ifjn6Hv1FFFcJ9MFFFFABXw7/wQp/5Mou/+xlv/AP0Vb19xV8O/8EKf+TKLv/sZb/8A9FW9dmE+0fO5/wD8u/n+h+zVFFFdh86Fcj4q+IHgPwL5H/Cba3YaP9q3eT9uuY7fzNmN23zGXdt3DOOmR6111fxLf8HeXhTSfHnxl/Y68D6+HNhrOteI7G5EbbXMNxPokb7T2O1jg9qAP7MvDXxM+G/jO6ax8H+INN1aZBuaOzu4p2AHchGJxXb1/FH/AMFJf+DbP9mn9jv9lLxX+2f+wH4q8W+C/iD8KbGXxLbSvqm9JLewHm3GyRI0nhmSFXaN0kALDawIbK/pT+yp/wAFwfBXhL/gh94P/wCCj/7Xgub/AFi13+HNQttLRXutU1m0nktkKBikaPcRxC5lJKogL4zhVIB/RnRX8u/gb/g5Un0P4s/D/wAGftl/s2+Nfgr4Z+J1wlvoHiPVnMsE3mmNVkMUlrbHy1MsZkMbSMiOrbSCK/Nf/gr3/wAFQ/2qfh//AMFxPhZ8N/D3gnxzeeD/AIaXVtc23g3TxMq+MbsNOwvrOFIv9JXDCFDtlVHgfbg7qAP7sKK/Bb9sf/guhon7MHin4ZfAjwD8GfF3xH+MvxL8PWviJPBGmRtDd6bDcxGQw3TmKRxPHsk3xrASixs8nljbu7P/AIJnf8FqvBX/AAUA+OPjH9k/4gfDfXvhB8WPBNq1/feHNcbzSbWOSOKRlk8uFg8bTRbkeJSVdWQsN20A/ZDw5418G+MftA8I6vZar9kcRz/Y7hJ/KY5wH2Mdp4PB9K6av86n/ghp/wAFGfEv7FWrftHeCPhH8G/F/wAbvGviDxUupRaN4XtndLawsmuklnuZ1jmMYLyIkaiJy5JHHGf65v8AgnP/AMFkv2Yv+Ch/wB8Y/GrQoL3wXe/DZJJPF2i6uA1zpcUaSS+dmPPmQskUmGCq26NlKAgZAP1wor+TPWf+DpG+n8Far+0T8O/2V/H2ufBLR777HceOJJRbWy/vFi3FBbyQqd7Ku03Qw7KrEMcV+m37UP8AwW+/ZR/Zz/Yn+Hv7aWj2GseMbX4ttDB4P0HToQmo39zKpLROrErF5LDy5SN5DkKgckZAP2Wor+ev9nz/AILv+J/Ff7VfhH9kv9sL9nHxt8Dta8fkJ4fvNTzfWtw7EKvmkQQNGpZlRmVZBG7qJNi5Yeo/8FC/+C3nw8/Yu/aE0n9jf4N/DjxF8bvjBqlsl6/hrwyvzWkEil08+RY5nEjIPM2LE22LDuVUqWAP3Dor8pP+CZX/AAVr+DP/AAUqg8WeEdG8O6x8PviJ4BnWDxH4R8QxeVfWe9mRXXhS6BkKPlEeNxh0UMhb9W6ACiiigD8sP+Czf/JgHin/AK/NL/8ASuKvd/Cf/Iq6Z/16Q/8AoArwj/gs3/yYB4p/6/NL/wDSuKvd/Cf/ACKumf8AXpD/AOgCuTF9D6HId6ny/U6CiiiuI+jCiiigAr8xPgX/AMpO/jh/2CtE/wDSW2r9O6/MT4F/8pO/jh/2CtE/9JbatKe0vQ5cT8VL/F/7bI/TuiiiszqCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD+cj/gtv/wAlS8Ef9gq4/wDRwr9XP+Dcj/k1zxz/ANjUf/SS3r8o/wDgtv8A8lS8Ef8AYKuP/Rwr9XP+Dcj/AJNc8c/9jUf/AEkt69Oh8CPisz/3qf8AXQ/obooorU4AooooAKKKKACiiigAr8Nv+Dgz/kxCz/7GrT//AETc1+5Nfht/wcGf8mIWf/Y1af8A+ibmgaPxg/4IBf8AJ4/iX/sTLz/0usa/r4r+Qf8A4IBf8nj+Jf8AsTLz/wBLrGv6+K+Lzz/en6I9XB/wwooorxzqCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/jh/4Lv8A/J7dp/2LNh/6NuK/cb/g30/5MQu/+xp1D/0TbV+HP/Bd/wD5PbtP+xZsP/RtxX7jf8G+n/Jh93/2NOof+ibavv8ALv8AdafoeLX/AIkj9yKKKK7TEKKKKACiiigAooooAKKKKAPyJ/4Ll/8AKOPxd/1/aT/6WRV/MZ/wR8/5PPsf+wTf/wDoAr+nP/guX/yjj8Xf9f2k/wDpZFX8xn/BHz/k8+x/7BN//wCgCrh8SIq/Az+tGiiiu08oKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK+Ov+Cgf/JmHxE/7BL/+hrX2LXx1/wAFA/8AkzD4if8AYJf/ANDWlLZlw+JH853/AASH/wCUjnwu/wCv66/9I56/0Dq/z8f+CQ//ACkc+F3/AF/XX/pHPX+gdXAeqFFFFABRRRQAUUUUAFFFFAH5Ff8ABcr/AJRx+Lv+v7Sf/SyKv5Xf+CU3/J63hz/r11H/ANJpK/qi/wCC5X/KOPxd/wBf2k/+lkVfyu/8Epv+T1vDn/XrqP8A6TSVrQ/iR9UNbn9Z9FFFe+WFFFFABRRRQAUVy3i3xx4K8AaWdc8d6xY6JZL1uL+4jtohj/bkZV/WrPhnxZ4V8aaUmu+DtTtNWsZPuXFlMk8TfR0LKfzoA7DSXSPVbaSQhVWVCSeAACK+mP8AhIdA/wCf63/7+r/jXyvRXPXwyqtNsTVz6o/4SHQP+f63/wC/q/415h8S9S06/gtBYzxzFWfPluGxnHXBryais6WDjCSkmFgooorsGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH8mH/BVn/k9bxH/wBeunf+k0df1l/8EVf+UZnw0/7jP/p1vK/k0/4Ks/8AJ63iP/r107/0mjr+sv8A4Iq/8ozPhp/3Gf8A063leBX/AIkvVkPc/UyiiishBRRRQAUUUUAFFFFABRRRQAV/HX/wccf8nReBv+xWH/pXcV/YpX8df/Bxx/ydF4G/7FYf+ldxQB7J/wAEUv8Ak1jX/wDsa7r/ANI7Ov2Ar8f/APgil/yaxr//AGNd1/6R2dfsBWiPew38KIUUUUGwUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV/J//wAFev8Ak8q9/wCwVYf+gmv6wK/k/wD+CvX/ACeVe/8AYKsP/QTSkceO/h/M/p6/4Iaf8o4/CP8A1/at/wClktfrtX5E/wDBDT/lHH4R/wCv7Vv/AEslr9dqg8cKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//9H+/iiiigD/ADn/APgox/yfh8XP+xp1L/0c1f1Rfsof8mtfDX/sVdG/9JIq/ld/4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/wCxV0b/ANJIq5cVsj3sh+Ofoe/UUUVwn0wUUUUAFfDv/BCn/kyi7/7GW/8A/RVvX3FXw7/wQp/5Mou/+xlv/wD0Vb12YT7R87n/APy7+f6H7NUUUV2HzoV/E/8A8Hc3iTRfBvxw/Y18X+JJ/s2naVrviG8uptrP5cEFxobu21QWOFBOACT2Ga/tgrwj42fstfsyftLf2Z/w0b8OfC/j/wDsXzv7P/4STSLTVfsn2nZ5vk/aopPL8zy49+zG7Yuc7RgA/mJ/4Kxf8HE//BOb4q/sI/ET9n39kfxbdfEXx18R9HuPC9jYWek6harGuqr9nllkku7aEHbE77Ej3u8m1cAEsPnH4h/Er9sP/ggf/wAG7Pwu0XwDpMGmfEnxxr0g1i7vLRbtNDGsrc3iq8MoaM3SwxwwFZUeNX8wEEhc/wBa/wAMf2G/2Kfgl4hh8XfBn4P+CPCOrW7For3RfD9hYXCMRglZIIUcHBI4PSvbPiP8Mvhx8YvBd98OPi1oGneJ/D2poI7zTNVto7y0nUHIEkMqsjAEAjIOCM9aAP8AMr/4Kw+PPhh4gu/gR4gf9rjWv2mfFtzqsOpa3ukSHw/oUMnkMPJtIkCW08rbwylxIEiw6JgV+2P/AAW0+KHgP9n3/g4l/ZO+PHxj1FNB8IaPoNo97qlwrGCFY77UA5YqGOE81C2AcBgTxX9SOnf8E6f2ANK+HH/Cn7T4IeAz4VN6mpNpMnh6wls3vY0eNLhonhZGmWOR0WVgXCsVBwSK9D+Nn7I37LH7SelaTof7Qfw58NeNbPQW3abDrel298lpkKCIRKjeWrBVDKuAwABBAoA/lR/4KK/8FY/i18S/+Cnngr9i7wN8crP9nX4Ia34YsfEcfxBFhDJPqsGq2RvIJIbm7AFvFJlYI3DQ7XDly52x18ff8EONd+F9/wD8HGnxSu/hZ8SNc+K+g3Xgy/gsfF3ia4NzqOsywnTFmlMrJGXjEkcqwYXAgRACQM1/af8AFH9hn9i/43aN4e8OfF/4TeEPE2n+EreOz0S21LRrS4i061hAVILdHjIihVVUCJAEwAMYFdXoP7KX7LvhX4h6b8XfC/w28Lab4s0eyXTbDWrXR7SHUbWySMwrbw3KRCWOFYyYxGrBQhK4xxQB/DL/AMG5v/BQ79kT9h/4x/tI+Gv2rfEEHghfF2vJdaXrN9DJ9kujpct359r5yIwEqC4jkRDywc45wD6b/wAEfPjT4w0T4sf8FEP+CtP7Pvhm41PwQseuar4atJYWih1K8FxdalCrIMOPLi2POqHcizYHJFf2G6l/wT8/YQ1fwTqPw2v/AIL+Bm8P6vff2ne6evh+xS2uL7aVFy8awhWnCsQJT84BIzX0D8PPhd8M/hF4JtPhp8KfD2meGfDmno0drpelWkVnZQo5JYJDEqxqCSScLySSetAH+bf8a/2z9Y/bU/4JY+Mv2gP2vP2wdVuviBrk1zbab8GvDMUGlWvmJdjYL6CCPdcW3lA3JdwFwADK0oIr7j+Idx/wT+13/g3S/ZT0T9uez8aQabd3GoxaF4q8GWsF2dE1KO9uUkF358qJ5UiliYgGdxC2zDoK/sl8J/8ABPP9gvwJrOueIfBvwW8D6Ze+Jba5stVmt9Aska7tbxSlxBLiH5op1JEsZ+SQE7gc16hpX7L/AOzToXwfl/Z60P4eeGbLwDOJBJ4at9JtYtHfzXMj5s1jEB3uSzfJy3J5oA/gV+FH7Vv7WX/BPL9tP4K/BP8AYo/a7j/aw8G/EHWrXT7jw1+/vntbOSaFDFJHPJdfZGaORmRoLhGQxs0kYTIbr/2s/Dnir9nj/g5O+JPiP4yfGfUf2ddP+IelLdaD48jsobqCW2ktbRVgZrgeXHFut5IGkyCskYUnaxJ/t++CH7B/7FH7NPiWXxp+z78JvCPgzWZleNtQ0fR7W0u/Lf7yCaONZAh7oGC+1eg/HL9mj9nb9pvQIPC37RfgXQPHWn2rM9vBr2nQagsDuAGaLzkfy2IAyyYPHWgD+Vj/AIIR+B/2aviB/wAFRfjN+0v8FfjL4y+Mnim00WbRfEmv6r4dttN0XURcXFr5U0F1b3D73Y2YMYaCMyIjv05b+xavKvg58Cvgp+zx4OT4e/AXwjo/gvQo5GlGn6JZQ2Ft5jY3OY4VRS7YGWIJPc16rQAUUUUAflh/wWb/AOTAPFP/AF+aX/6VxV7v4T/5FXTP+vSH/wBAFeEf8Fm/+TAPFP8A1+aX/wClcVe7+E/+RV0z/r0h/wDQBXJi+h9DkO9T5fqdBRRRXEfRhRRRQAV+YnwL/wCUnfxw/wCwVon/AKS21fp3X5ifAv8A5Sd/HD/sFaJ/6S21aU9pehy4n4qX+L/22R+ndFFFZnUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH85H/Bbf/kqXgj/sFXH/AKOFfq5/wbkf8mueOf8Asaj/AOklvX5R/wDBbf8A5Kl4I/7BVx/6OFfq5/wbkf8AJrnjn/saj/6SW9enQ+BHxWZ/71P+uh/Q3RRRWpwBRRRQAUUUUAFFFFABX4bf8HBn/JiFn/2NWn/+ibmv3Jr8N/8Ag4L/AOTD7T/sadP/APRNzQB+L/8AwQC/5PH8S/8AYmXn/pdY1/XxX8g//BAL/k8fxL/2Jl5/6XWNf18V8Xnn+9P0R62D/hhRRRXjnUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/HD/wAF3/8Ak9u0/wCxZsP/AEbcV+43/Bvp/wAmH3f/AGNOof8Aom2r8Of+C7//ACe3af8AYs2H/o24r9xv+DfT/kw+7/7GnUP/AETbV9/l3+60/Q8Wv/EkfuRRRRXaYhRRRQAUUUUAFFFFABRRRQB+RP8AwXL/AOUcfi7/AK/tJ/8ASyKv5jP+CPn/ACefY/8AYJv/AP0AV/Tn/wAFy/8AlHH4u/6/tJ/9LIq/mM/4I+f8nn2P/YJv/wD0AVcPiRFX4Gf1o0UUV2nlBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXx1/wAFA/8AkzD4if8AYJf/ANDWvsWvjr/goH/yZh8RP+wS/wD6GtKWzLh8SP5zv+CQ/wDykc+F3/X9df8ApHPX+gdX+fj/AMEh/wDlI58Lv+v66/8ASOev9A6uA9UKKKKACiiigAooooAKKKKAPyK/4Llf8o4/F3/X9pP/AKWRV/K7/wAEpv8Ak9bw5/166j/6TSV/VF/wXK/5Rx+Lv+v7Sf8A0sir+V3/AIJTf8nreHP+vXUf/SaStaH8SPqhrc/rPooor3ywooooAK5vxl4p0zwN4Q1XxrrR22ej2c99OfSK3QyN+imukrkPiF4N074i+Adc+H2r8Wmu6fc6dPxn93dRtG3HfhjQwP4oP+CcX7Gd3/wcAfE/4ift5f8ABQHxDq974X0rWpNG8P8AhvT7xore1JRLh7dHIJjt4IpYVAiCvK7F3bIO9n7YfwC1H/g3U/bI+F37SP7IniTVn+Ffjy+ex8ReG9QujLG6Wpj86N2CqrhoZme3d1aSGRGOSpwYP+CUP7dVh/wRij+NH/BPL9tO3/4RXxLZapd654Zvr+G4/sq/vzbrbqkksUUkkdtc/Z4HhuFjZChcsVIUN8d/tm/8FK9S/wCC4fxT+AX7KmtaJpnw/ksNflh16/uNTQ6XNLctFGZoJpPLKxrDHIURtzu8gRCzYLeW3BU1/P8Aje5J/Y38Yf8Agp34O+EH/BST4e/8E4r3wreX2q/EHSU1WDW47lFtrdH+2YRoipZj/obchh98elL8eP8Agpz4Q+BX/BRb4a/8E8NS8KXmoar8SNNi1KDWYrhEt7VZZLuPa8RUsxH2QnIYfeHpX4ef8FVfH3g/9l//AIOEf2bf2kvi/crongaDwxBZyam6MbeFkm1OF8lQfli+1Qs+M7VYE8V5T8c/2q/gv+15/wAHJH7PPjz9n/V18Q+G9E02DQ/7VgRhaXN3AdSuJfs8jACVEFwiFlyu8EA10us02r63S+Q7n7G/tdf8Fu/CfwL/AGl7/wDZC/Zt+FXib45+PdAg+067Z+G0Jj09Aquylo4p3d0VxvAjCKzKhfeSq+6fs0f8FbvgN+1R+xz8RP2rvh7pWo2t78LNO1G78R+F9QCwajaT6fbSXPkk/Mu2URMI5OmQwZVZWUfyoeAdK1/9nH/gsT+0n4M+Nvx81D9mu/8AEWraprVhr5sYJ4dWsru+e7gjMlwNqCSGVZE2naWRk+8qrX2N/wAE+vAfwA1H9lT9ub9oT4BePfFnj3/hIfCHiG11zUvEGhQaRa3moC0v5/tFs8FxKJC/mNIylI2RZULKpYLUxrTcvv006fiFz7z/AGf/APg4mtP2qfFnhDwd+z78AvFviKbX7sWGp3UcyrY6RdSySLDHNc+SYjuiQTOSUCo2BvYEV+h3/BNP/gqL8MP+Cj/wr8X/ABE0fQ7rwTeeB9TbT9W0zVJ0klgQRCRZ3ZQoVGIlXDAEGJs18Qf8GwGi6dpf/BLPTr+yiWOXUvE2sXFwyjBkkV0iBb1ISNR9AK/CT/gpj478ef8ABIf9uH9pfwR8N7WWLwz+074Oe50zyfkjt7vUp9lzLkcBoS2oCNV5UTRngc0e1nGEakndMLn9YH/BMv8A4KXaB/wU08J+MviN4C8G3/hvw34X1ZdItL++nSX+0ZQhkkKIqqY9kbQsQST+9A7Gv06r84v+CSv7Jo/Yu/4J+/Dn4KajbfZtc/s5dV1wEYf+09S/0idH9TCXEAP92MV+jtdVPm5VzbjCiiirAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD+TD/AIKs/wDJ63iP/r107/0mjr+sv/gir/yjM+Gn/cZ/9Ot5X8mn/BVn/k9bxH/166d/6TR1/WX/AMEVf+UZnw0/7jP/AKdbyvAr/wASXqyHufqZRRRWQgooooAKKKKACiiigAooooAK/jr/AODjj/k6LwN/2Kw/9K7iv7FK/jr/AODjj/k6LwN/2Kw/9K7igD2T/gil/wAmsa//ANjXdf8ApHZ1+wFfj/8A8EUv+TWNf/7Gu6/9I7Ov2ArRHvYb+FEKKKKDYKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK/k/wD+CvX/ACeVe/8AYKsP/QTX9YFfyf8A/BXr/k8q9/7BVh/6CaUjjx38P5n9PX/BDT/lHH4R/wCv7Vv/AEslr9dq/In/AIIaf8o4/CP/AF/at/6WS1+u1QeOFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf//S/v4ooooA/wA5/wD4KMf8n4fFz/sadS/9HNX9UX7KH/JrXw1/7FXRv/SSKv5Xf+CjH/J+Hxc/7GnUv/RzV/VF+yh/ya18Nf8AsVdG/wDSSKuXFbI97Ifjn6Hv1FFFcJ9MFFFFABXw7/wQp/5Mou/+xlv/AP0Vb19xV8O/8EKf+TKLv/sZb/8A9FW9dmE+0fO5/wD8u/n+h+zVFFFdh86FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAflh/wWb/5MA8U/wDX5pf/AKVxV7v4T/5FXTP+vSH/ANAFeEf8Fm/+TAPFP/X5pf8A6VxV7v4T/wCRV0z/AK9If/QBXJi+h9DkO9T5fqdBRRRXEfRhRRRQAV+YnwL/AOUnfxw/7BWif+kttX6d1+YnwL/5Sd/HD/sFaJ/6S21aU9pehy4n4qX+L/22R+ndFFFZnUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH85H/AAW3/wCSpeCP+wVcf+jhX6uf8G5H/Jrnjn/saj/6SW9flH/wW3/5Kl4I/wCwVcf+jhX6uf8ABuR/ya545/7Go/8ApJb16dD4EfFZn/vU/wCuh/Q3RRRWpwBRRRQAUUUUAFFFFABX4b/8HBf/ACYfaf8AY06f/wCibmv3Ir8N/wDg4L/5MPtP+xp0/wD9E3NAH4v/APBAL/k8fxL/ANiZef8ApdY1/XxX8g//AAQC/wCTx/Ev/YmXn/pdY1/XxXxeef70/RHrYP8AhhRRRXjnUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/HD/AMF3/wDk9u0/7Fmw/wDRtxX7jf8ABvp/yYfd/wDY06h/6Jtq/Dn/AILv/wDJ7dp/2LNh/wCjbiv3G/4N9P8Akw+7/wCxp1D/ANE21ff5d/utP0PFr/xJH7kUUUV2mIUUUUAFFFFABRRRQAUUUUAfkT/wXL/5Rx+Lv+v7Sf8A0sir+Yz/AII+f8nn2P8A2Cb/AP8AQBX9Of8AwXL/AOUcfi7/AK/tJ/8ASyKv5jP+CPn/ACefY/8AYJv/AP0AVcPiRFX4Gf1o0UUV2nlBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXx1/wUD/AOTMPiJ/2CX/APQ1r7Fr46/4KB/8mYfET/sEv/6GtKWzLh8SP5zv+CQ//KRz4Xf9f11/6Rz1/oHV/n4/8Eh/+Ujnwu/6/rr/ANI56/0Dq4D1QooooAKKKKACiiigAooooA/Ir/guV/yjj8Xf9f2k/wDpZFX8rv8AwSm/5PW8Of8AXrqP/pNJX9UX/Bcr/lHH4u/6/tJ/9LIq/ld/4JTf8nreHP8Ar11H/wBJpK1ofxI+qGtz+s+iiivfLCiiigAooooA8Q+M37M/7On7RllBp/x98CeH/GkVqrLbjW9OgvjAHxu8ppkYxk4GShB4r5B+Of8AwR8/4Ju/H/4Z2/wq8T/CbQNG0+xk820n8PWkej3du5wGKzWixsQwA3q+5WwCQSAR+ltFS4Re6A8K+I/7MH7OHxi8B6b8L/i14E0HxP4d0ZI49P0/VdPhvLe1WJQieSsqMIyqAKCuDjjpVfS/2Uf2W9E1zw54m0X4a+FbPUvB0Jt9Bu4dHtI59LhZnYpZyLEGt1LSOSsRUZZj1Jr32inyrsB4J8bP2V/2Z/2k47VP2gvh/wCHvGpsQVtX1rTYL2SAE5IjeVGZASOQpGe9dd4e+Cnwc8JfDJ/gr4W8J6Pp3g6W1lspNCtrGGLTXtp1KyxNbKgiMcisQ6lSGBIOcmvTaKLLcDz74Y/CX4VfBPwpH4D+DXhnSfCOhwyPKmnaLZQ2Foskhy7CGBEQMx5YgZJ61/LNrv7B3/BUn/gp3/wUB+G/xe/4KNeAfD/w7+GnwpuftENlp99b3h1IRypO0YWK5upG+0yRRLIZDEiQghQXzu/raoqJ0lKyewBRRRWgBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH8mH/BVn/k9bxH/166d/6TR1/WX/AMEVf+UZnw0/7jP/AKdbyv5NP+CrP/J63iP/AK9dO/8ASaOv6y/+CKv/ACjM+Gn/AHGf/TreV4Ff+JL1ZD3P1MooorIQUUUUAFFFFABRRRQAUUUUAFfx1/8ABxx/ydF4G/7FYf8ApXcV/YpX8df/AAccf8nReBv+xWH/AKV3FAHsn/BFL/k1jX/+xruv/SOzr9gK/H//AIIpf8msa/8A9jXdf+kdnX7AVoj3sN/CiFFFFBsFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFfyf/APBXr/k8q9/7BVh/6Ca/rAr+T/8A4K9f8nlXv/YKsP8A0E0pHHjv4fzP6ev+CGn/ACjj8I/9f2rf+lktfrtX5E/8ENP+UcfhH/r+1b/0slr9dqg8cKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//T/v4ooooA/wA7T/gphpkmkft9/Fm1k6v4iu5vwnIkH6NX9Pf7HeoJqf7KPw3uU6L4b0yL8YYEjP6rX87H/BZHQZvD/wDwUh+JUMkZRLmbT7pCRgMJ7G3ckevzEj6g1+73/BObXYPEP7FngO8hff5NnNat6hreeSIg/wDfP5Vy4r4Ue5kUv3sl5fqfbNFFFcJ9QFFFFABXw7/wQp/5Mou/+xlv/wD0Vb19xV8O/wDBCn/kyi7/AOxlv/8A0Vb12YT7R87n/wDy7+f6H7NUUUV2HzoUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB+WH/BZv8A5MA8U/8AX5pf/pXFXu/hP/kVdM/69If/AEAV4R/wWb/5MA8U/wDX5pf/AKVxV7v4T/5FXTP+vSH/ANAFcmL6H0OQ71Pl+p0FFFFcR9GFFFFABX5ifAv/AJSd/HD/ALBWif8ApLbV+ndfmJ8C/wDlJ38cP+wVon/pLbVpT2l6HLifipf4v/bZH6d0UUVmdQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAfzbf8FstQST41eD9KH3odEeU/SWdwP/QDX7B/8G52mSQfsheMNXb7tx4vniA/65WVoc/+P/pX4Z/8Fj9dg1b9rO006F9x0vw/Z27gfwu0s82P++ZFNf0Qf8EBdCl0j9gSPUJEKjVPEWpXSkjG4KIocj15iI/CvUor3EfEZi74mb8z9sqKKK0OIKKKKACiiigAooooAK/Df/g4L/5MPtP+xp0//wBE3NfuRX4b/wDBwX/yYfaf9jTp/wD6JuaAPxf/AOCAX/J4/iX/ALEy8/8AS6xr+viv5B/+CAX/ACeP4l/7Ey8/9LrGv6+K+Lzz/en6I9bB/wAMKKKK8c6gooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP44f8Agu//AMnt2n/Ys2H/AKNuK/cb/g30/wCTD7v/ALGnUP8A0TbV+HP/AAXf/wCT27T/ALFmw/8ARtxX7jf8G+n/ACYfd/8AY06h/wCibavv8u/3Wn6Hi1/4kj9yKKKK7TEKKKKACiiigAooooAKKKKAPyJ/4Ll/8o4/F3/X9pP/AKWRV/MZ/wAEfP8Ak8+x/wCwTf8A/oAr+nP/AILl/wDKOPxd/wBf2k/+lkVfzGf8EfP+Tz7H/sE3/wD6AKuHxIir8DP60aKKK7TygooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr46/wCCgf8AyZh8RP8AsEv/AOhrX2LXx1/wUD/5Mw+In/YJf/0NaUtmXD4kfznf8Eh/+Ujnwu/6/rr/ANI56/0Dq/z8f+CQ/wDykc+F3/X9df8ApHPX+gdXAeqFFFFABRRRQAUUUUAFFFFAH5Ff8Fyv+Ucfi7/r+0n/ANLIq/ld/wCCU3/J63hz/r11H/0mkr+qL/guV/yjj8Xf9f2k/wDpZFX8rv8AwSm/5PW8Of8AXrqP/pNJWtD+JH1Q1uf1n1HLLFBE087BEQFmZjgADqSewFeBftM/Er4l/Cf4U3PjD4UeHG8T6tHKiC1VXk8uNgS0pSP53C4GVUg85yAK+A/hDoHhT9syVbj48fFWTxBc53SeENPLaTbwsvVHibZNOF6bwAR/eNXjs6VHExwVKHNVkrpNqMfve/pFSfdH3OR8GTxmXTznFVvZ4WD5ZOMZVZ33+COkfKVSdOL6Nn6ueGfF3hfxpp7av4R1G31O0SV4TPayLLH5kZwyhlJBKng4PBrM+InxA8LfCzwTqPxA8aXItdM0uEzTP1OOgVR3ZmIVR3YgVL4F8A+DPhn4ag8H+AdNh0rTLbJjggXCgtySe5YnqxJJ7mvgX/gp5cTS/CTwp4dnkMWnar4osre9YHgxbJW2n2yN31Wtczx1bB5dUxMknUjHZXtzbetr/gc3DWSYTN+IaGW05SVCpO13bn5Fq9Fdczina11fuXPDXxr/AG5PjlYL43+DvhLQPDnhq5/eWLeI5JmurqLqr7YSNquORlcejEYJ9A+EH7U/jG4+KK/AH9o/w9H4V8WzxGawmtpPMsNRRQSfJYklTgHClmzggkMNtfa1ra21jax2VlGsMMKhI0QbVVVGAABwABwBX5tf8FGYk03/AIVd4v0YY1+x8W2sdkV++UkBZwD6F448ivKx9LFZdh/rv1mU5Ra5lK3LJNpNJJLlet42fk7n1GR4rK+IMw/sX+zqdGnUU1SnDn9pTkouUHKTk/aJ2tPmWzbjytI/SyivgjxNrmtx/wDBR/w74ejvJ10+TwZJM1sJGELSfaJxuKZ2lsADOM8Un7W+ua3pXx0+CNlpd5PbQ3viCWO4jikZFlQeT8rgEBhyeDmvRqZ1GFGtW5PgqKG+93FX/wDJvwPnqHBtSri8JhPbJOvQlWTtsoxqS5d9X+7tfz20PviivyS/aH+NXhTxx+1HffBD4qeNZ/BngjwvZwy3SWczQTanezosgRpI1LCNUkGV9VPcgrzPgb4x/C74M/tDeDvDP7Pvjq48TeE/F1z/AGZqOj3dxJciynkKrBNC8q7lDMwDDvg5zkbeCpxVh415U7LkU+RvnXNe/LdQ3cU9G733aTWp7tDwux1TBQrpy9rOl7aK9lN0+Tlc0nW+FTlBXUbON2ouSk7H7J0V+MXxU8VfD/Uf2o/Fvhb9svXtc0LS4jAPC8VtLPBpxtyDul3Qg5kJ25YjaG3BjwAPr39n/wCFh1T4deJ/B3/CwpPGvgrVpguj3NteGS+s4jkvE10hzuGVwBjbg8DdgdGEz54nETo0qa0cl8a5k43+KO8VK2j13TaOHNeBIZdgaWMxOJa5o05fwpezlGpZtU6t+Wc4J+9F8iupJSbR6t8Dfjy/x9+HmteOfCumNaNZX95YWkE7hmla2VdrPjAXex5AY4H8Vd58G9W+KWufDjTtU+NOl22jeJZfO+2Wdo4khj2yuI9rCSUHdGFY/OeSenSvzS/4J/8Aw10fSvgf4t+J9neX41CObWNPWM3Tm3EaKjB/Kzt8zIHz9ax/Cfxz+JPgz/gnh4FfwlfyS+K/GGrTaHa3ty5klia4vLkeZltxJVUCLn7uQR0xXl4DP6kaFHE4293SnNpNWdpQS0sveblZa2Wt73uvps84CoVMdjMvyfl5Y4qlSTmpKUOanWk/e5muRKDlO8XJtJq1mn+ydFfm741/Ypk8DfDu+8b/AA58a+I4/HOlWr3qanPfvIt3PCpcpLE2VKOQQBzjPO4ZB8e+P/x88e/Er9in4afF7wvdNpuv6l4jsopGgYojXMAuYmDKMZjeSPdsORggc16WIz+eGjU+tUOWUY86SkpXSaT1srNNq6tbXRs+dwHAVHMqlD+y8ap0p1VRlKUHBwm4ylFuN3eElGVndP3XeK0v+wdFfk9+0z+zTqXwY+Duo/Hvwf448Ry+NNA8m7lvri9Z47ktKiyKYsbFT5iVQfKANpBFfpf8OfEdz4x+HuheLrxVSbVdOtbx1X7oaeNXIHsCa7sFmNSriJ4avS5JpKS1Uk02102aa1X3NnhZzw7h8NgKOZYHFe2pTnKm/ccHGcFGT0bd4tSTjLR73imXNY8Z+EfD+s6f4d17U7WyvtW8z7FBPKsb3Bi27xGGI3Fd65Ayea6avIfjB8CPhP8AHfRYtE+KejxanHbbzbyktHNAXxuMciEMudq5AODgZBxX5deNviV4n/ZT8SweEP2dviU/xDdpREvhG/hfVbiMZwVjubcEoVHSMlMejVz5lnE8BJ1MRBOi7Wakub0cXa+u3K2/7p6HDnCVDPqUaGX1pLFpNyjOD9m1d2aqQ5uTS1/aRjFO757bftHRXJeAtb13xJ4J0nxB4o05tH1K9tIZ7qxdtzW8rqC0ZOBkqTjoK62vchNTiprZ6nxVejKlUlSnvFtOzTV1po1dP1WjCiiiqMgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP5MP+CrP/J63iP/AK9dO/8ASaOv6y/+CKv/ACjM+Gn/AHGf/TreV/Jp/wAFWf8Ak9bxH/166d/6TR1/WX/wRV/5RmfDT/uM/wDp1vK8Cv8AxJerIe5+plFFFZCCiiigAooooAKKKKACiiigAr+Ov/g44/5Oi8Df9isP/Su4r+xSv5FP+DkPRfI+Nnw28Q4/4+tDu7fP/XCcN/7VoA7v/gil/wAmsa//ANjXdf8ApHZ1+wFfiv8A8ER9Y8/4GeL9Az/x7a6LjH/Xe3jX/wBpV+1FWj3cN/CiFFFFM3CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACv5P8A/gr1/wAnlXv/AGCrD/0E1/WBX8kP/BWPUvt37bXiK1zn7FaadD9M20cn/s9KRx47+H8z+pj/AIIaf8o4/CP/AF/at/6WS1+u1flL/wAES9O+w/8ABNb4fzEYN1Lq8x/8GNyo/RRX6tVB44UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//1P7+KKKKAP45/wDg4t+F6+Hf2mfBvxWto9kXibQWtJDjhrjTZjuOfXy54h9AK9a/4Ix+Nv7c/Zx1rwXO+6XQtakKL/dguo0df/H1kr7u/wCC/fwIn+Jn7HVp8VdKjaS88AanHdybRk/Yr3EE3vw5hYnsFNfgX/wR3+Lo8EftG3vw1v5Qlp4xsGjRScA3dlmWL/yGZlHqWFY143gz0cqq8mJjfrp9/wDwT+oSiiivNPswooooAK+Hf+CFP/JlF3/2Mt//AOirevuKvhb/AIIm32neFvgX4y+A+rTeT4n8JeKrxdQsZMLNHHIkSJJtBPyM0bqCCeVPbBPZhOp89n60pv1/Q/aGiiiuw+cCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPyw/4LN/8mAeKf+vzS/8A0rir3fwn/wAirpn/AF6Q/wDoAr5h/wCC2HivTNK/Yrn8FO3man4o1jT7Kwtky000kcgnbYiglsCPB6DLAZyQD9VaHZS6Zotnps5Be3gjjYr0JRQDj24rjxfQ+hyHep8v1NSiiiuM+jCiiigAr8xPgX/yk7+OH/YK0T/0ltq/TuvzE+Bf/KTv44f9grRP/SW2rSntL0OXE/FS/wAX/tsj9O6KKKzOoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK8m+O/wATrP4M/BvxL8Ur3BGiafNcxqejzBcRJ/wOQqv400r6ClJRTk9kfyQ/t5eNv+Fgftf+PteV96Q6pJYIe22wC2wx7Hys+/Wv7kf+CaHw2Pwn/YM+FvhF4vJlfQ4dRlTuJdSJu3B9w0xBr+Cj4CfCrxJ+0x+0J4a+E9nI8t/4u1eK3mn6sqzPmaY/7ibnP0r/AEqNC0XTvDeh2fh3SE8q0sII7aBP7scShVH4ACvWirJI/P6s3Ocpvq7mrRRRTICiiigAooooAKKKKACvw3/4OC/+TD7T/sadP/8ARNzX7kV+G/8AwcF/8mH2n/Y06f8A+ibmgD8X/wDggF/yeP4l/wCxMvP/AEusa/r4r+Qf/ggF/wAnj+Jf+xMvP/S6xr+vivi88/3p+iPWwf8ADCiiivHOoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD+OH/AILv/wDJ7dp/2LNh/wCjbiv3G/4N9P8Akw+7/wCxp1D/ANE21fhz/wAF3/8Ak9u0/wCxZsP/AEbcV+43/Bvp/wAmH3f/AGNOof8Aom2r7/Lv91p+h4tf+JI/ciiiiu0xCiiigAooooAKKKKACiiigD8if+C5f/KOPxd/1/aT/wClkVfzGf8ABHz/AJPPsf8AsE3/AP6AK/pz/wCC5f8Ayjj8Xf8AX9pP/pZFX8xn/BHz/k8+x/7BN/8A+gCrh8SIq/A/Q/rRooortPKCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvjr/AIKB/wDJmHxE/wCwS/8A6GtfYtfHX/BQP/kzD4if9gl//Q1pS2ZcPiR/Od/wSH/5SOfC7/r+uv8A0jnr/QOr/Px/4JD/APKRz4Xf9f11/wCkc9f6B1cB6wUUUUCCiiigAooooAKKKKAPyK/4Llf8o4/F3/X9pP8A6WRV/K7/AMEpv+T1vDn/AF66j/6TSV/VF/wXK/5Rx+Lv+v7Sf/SyKv5Xf+CU3/J63hz/AK9dR/8ASaStaH8SPqhrc/rPr58+L/7LfwP+OGbrx1ocR1EYMepWv+j3qMPukSpgtt7B9yj0r6Dor2MThaOIg6VeClF9Gro9HL8zxeArrE4KtKnUW0otxf3r8jy/4P8Aw5v/AIVeCovBd9r1/wCIxbSyGG71J/MuRExysbP/ABbBwDgcdhXJftM/AvTv2ifg/qXw2u5ha3Mu24sbkjIhuouY2OOdp5Vsc7WOOa99orOeBozwzwko3ptcttdrW33OijneNpZjHNqdS1eM1NSSS95O97JJb7q1n2Pywuf2l/2jfAfw3ufhV8XPBXiW08VQW32S18R6BYrqtvO6gKk+GdE3tjLLuPJztXO0fPVp8Q/i54u+L/w+8f8A7c2k3/h7wvoLtJpkyWEkUM+ph18qS7RWZoWOFONoGUwFCljX7qVFPBBcxGC5RZEbqrDIP4Gvnq/DeIq8vNjJSjG1oySafK01zpNc1rb6N9Wz7/A+IuAwyqOllNOE6nNzThJqceeLjJ0XJT9ndPZ88V9lR3Pzs/aS074hfC39qXwp+1B4f8N3/ijQ7XSJdF1K30qPzruBS8siyLGDkgmTr90bSCRkGvM/iR4h+L37QXx6+FPjzSPAmt6N4U0DXAPM1G1aO7dpSjPNJEu/yYEVFCu7AMWPpx+slFdWIyB1JVEqzVOc1NxsviTi997PlTt3620PNy/j1Yanh5TwUJ16VKdGNRykv3clNfCny8yU5JS7dL+8fml8VvBHiv4I/tR6j+0JZ+D7jxx4U8WWUFtqttYW63V5ZXNuqosqQnl1KIMkYHzNkjAzu+CPHfj34y/GTRG+F3w+fwl4M0tmn1TUde0uO2uLlhgxpbJ94EEffBOMknBUBv0Qoq1kfLVk6dVxpuXO4pK927tKW6i3q15tJpMwlxv7TCwhiMJGdeFL2UZuUrcqjyRbp35XOEdIy20TcW1c/Onx78WPiJ4I+I/iLwX+0b8P7vxv4KvZxLod3pOlpfxxQtnMdwhz84yFycEkEgFSMVP2MPhTrGg/Fvxz8V9C8M3vgbwdrq28Om6Lfr5M7PEBvmaDJMQzu2qT/GQOAK/SGinHI/8AaYYirVcuSTlG6XMrpqzlu4q7svS97BV43tltbAYbCxputCMKjUpcjUXF8ypX5Izk4LmlrvKyi5M/K/8AZJPj74ceFvGv7OPjHwfrdpem41e/ttS+ys2nzxyKqoqTDhncglQAQR3zxXJ+Ff2cvin4x/4J9eC/DukafNpfjTwlqk2tWVjqERtpGlhvLgiN1l2lN6Sb1zgEheQDmv18ornp8M0lTVGpUcoqEoLZNRk4tarrHlVn9534jxLxLxM8XhsPGFSdalWlq5JzpwqQas/szVR3V9Oj1Pze8Z/tXfE34gfD+7+HHgn4XeKbPxprFs9kyXtkYbC0eddjStcsQCi5JQlVDY5xXCfGr9nPxf8ADr9kz4Y/B3wvZ3Ov3uheJ7C5vTYQST7d5uJZpMKpYRK8mNzAADGcZxX6uUVpVyB11N4qs5SceROyVldN6LdtpXfkrJHPhOPI4GdBZZg40qUKntZR5pS55qMoRvJ6qMYylypa+823J2t8v/to+H9e8U/sv+MPD/hiyuNSv7q0RYba1jaaaRhKhwqICzHAJ4FerfBiwvtL+D3hPTNThktrm20awililUo8bpAgZWU4IYEYIIyDXpVFeqsFFYuWLvq4qNvRt3/E+VlnM5ZVDKuVcsakql+t5RjG3p7t/mfPnx3/AGf7P4+nStK8Q6/qmmaJZeeb3T9Nm8hdQ8zZsWZhnKJtb5cc7uoxXZ/DD4K/Cr4M6X/ZHwx0K10iJgA7wpmaTH/PSVsyP/wJjXqFFVHAYdV3ifZr2j+1u9rWTey8lZddyJ59mEsDDLXXl9XjdqCdo3bbu0rczu9HK7S0WiSCiiius8kKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/kw/4Ks/8nreI/wDr107/ANJo6/rL/wCCKv8AyjM+Gn/cZ/8ATreV/Jp/wVZ/5PW8R/8AXrp3/pNHX9Zf/BFX/lGZ8NP+4z/6dbyvAr/xJerIe5+plFFFZCCiiigAooooAKKKKACiiigAr+Yb/g5N8FXdz4W+FHxFhX9xZXWq6bMcfx3SW8sQz9IJK/p5r8df+C6vwxn+IX/BP3Wdas4PPn8J6pYawuBllQObaRh7KlwxPsCe1AH4l/8ABDnxZaRal8Q/A0z4nni0+/hX1SIzRyH8C8f51/QdX8if/BLD4jD4fftleH7ad9lv4igudIlOf+ey+ZGPfM0cYr+uyrWx7OClelbsFFFFM6wooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr+M3/AIKHeKbLxj+2j8QNXsH8yOLUFsif9uxhjtnH4NERX9h3jLxPYeCfB+q+M9V4tdIs572bnH7u3QyNz9FNfwy6VYeJfjT8V7bS4czax4s1ZIlwMl7m/mAHHU5d6mR5+YS92MT+/L/glp4Iv/h9/wAE+fhX4f1NdssujLqGMYwuoyPdrkeu2YZr78rn/CXhrTfBnhXTPB+jLss9KtIbOBemI4ECKPyAroKk8sKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//1f7+KKKKAPOPjD8M9C+M3wp8R/CXxMoaw8Sabc6dNkZ2rcRlNw91J3D0Ir/ODlg+JH7KX7QLWt/EbHxP4F1grJG44E9nJgjB6o+PoynPQ1/ph1/Jr/wcHfseDQPFWkftj+C7XFrrBj0rxB5a8LdRr/o07YH/AC0jUxMT3RO7UDTad0fqB8Hfil4c+NXwx0T4p+E33WOtWqXCrnJjY8PG3+1G4KN7ivSq/nI/4JEftY23g7xJN+zP42n2WOuTG40aRj8sd4w+eEnsJQAV/wBsY6tX9G9eXVhySsfcYLEqvSU+vX1CiiiszrCvgz47/szfFLTvib/w1B+x3rsXhX4hCHyNQgnAaw1m3GP3dwpVlD7VAVipyQvKMA6/edFVCbi7oxr0IVoclRaHx78Pf+Cr3hrwpr0Xw4/bc8L33ws8Ru+yOeSN7nS7jLON0U0YfMagRq0gLJuY5IVSR+pfgz4g+AviPpQ134e63p+vWJxi4065juouenzxMy8/Wvkvxp4E8E/EfQZPC3xA0iz1vTZSGa2voUniLL0ba4IDDsRyO1fAPiT/AIJf/BO28Sjxx8Cdb174Z6yC37/Qb2RFw5DMAGJdBkZASRVH93gY7IYpfaPnq+R1E70ndee/9fcfvDRX4VWOkf8ABWf4LykeCPiH4f8AiTp4kDLB4htDbz45zzGA2055BuMjA245z1dh/wAFFP22PhvHJF8ff2fby+WBFMl74XuvtMZOOWEKi4O0kE8y5QcNk81uqkHszzKmCrw+KDP2qor8gdK/4LX/ALJAZbbx7pfijwncllUx6npo7gFmXyZZCVXI6gMR0Xmvofwl/wAFQv2B/Gjsmj/ErToSrbT9viuLAZxng3UUWR7jjPHWrOU+96K+fdB/a0/ZY8UbR4d+JPhe9Z9mEh1e1Z8yfdBUSbgT6EZzXrGh+OvBHiZgnhvWbHUGLFQLa4jlJYDJHyseQOT7UAdVRRRQAUUUUAFFc1rHjTwd4e8z+39Ws7HyceZ9onSLbuxjO5hjORjPrXlerftUfsw6Bu/t34j+F7La5jPn6xaR4cZ+U7pRzweOvFAHvNFfCXi3/gpv+wZ4LVX1j4l6XMGXcPsAmvzjOORaxy4Psecc9K+b9a/4LY/sgQyzWngix8TeKZkVNg03TcK7vwq/vpI2Bz1yv0yeKAP19or8U7j/AIKR/thfFC5ksv2eP2f9RggziPUPFFx9ijIDDJMTLCCAAR8k7HPrjB5S/t/+Cunxns3i8W+OfDfw1sbtDHLb6HbGe6QEMfldxIynJVd0dyCAMg5zuh1IrdnVTwVefwwZ+2Xi7xp4O+H+hTeKfHmrWeiaZb4828v50toEz03SSFVGfc1+W3xR/wCCtHw3n8R3Hwu/ZF8Oaj8WfFY+VG09TFpUROQXkuWBJVTg5VPLYceavWvCtC/4JkfC3XNbXxf+0f4m1/4oauu8B9YvJEt1DOX+REfzByTlTMUJJ+UdK++PA/w4+H/wy0j+wfh1oljoVkTuaGwt0t0ZsY3MEA3N6k5JrCeKivhPSoZJUlrVdl+P+R8VfBn9mv40+OPi/aftW/toa3FrHjG0heLStFtFX+ztIR+nl9QZACeRnBOS7thh+hFFFck5uTuz6HD4eFGHJTWgUUUVBuFFFFABX5UfsCXLfFT9oL42ftJ2KA6PrWrQ6Xps6oNs8VkGBZW3NkFPKLY+Uk5HTAsftIftOa7+0Dq95+yL+xxIdV16/LWmva7GHWx0i0JZZf34xmQ4xuTcMEqhaQ4X70+BXwb8L/AH4UaN8JfB+Ws9Ih2GVwA80rEtJK2P4nclj6ZwOBWtuWLvuzi5lWrRcfhjfXz2t8tbnrdFFFZHaFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFfhf/wWU/aNt9M8M6Z+zR4flDXOpNHqWrY5KQRNmCM89XcbyCMgIvY1+wvxh+K3hL4IfDbV/ij43nEGn6RA0rDOGkfokaeryMQqj1NfxleOvFvxG/ar+PVz4gNu994h8YakkVtaRZY75mEcMCZ7KNqL7DmunDU7y5n0PGzjFezpeyjvL8j9wP8Ag3j/AGbbvxZ8bPEX7Tmt2rf2b4UtG0zTpWxtbUL0DzCvfMdvkN/11Ff2AV8tfsXfsz6B+yL+zb4Z+BuibJJtMtxJqFwg/wCPi/m+e4l55wXJC56IFHavqWu8+UCiiigAooooAKKKKACiiigAr8N/+Dgv/kw+0/7GnT//AETc1+5Ffhv/AMHBf/Jh9p/2NOn/APom5oA/F/8A4IBf8nj+Jf8AsTLz/wBLrGv6+K/kH/4IBf8AJ4/iX/sTLz/0usa/r4r4vPP96foj1sH/AAwooorxzqCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/jh/wCC7/8Aye3af9izYf8Ao24r9xv+DfT/AJMPu/8AsadQ/wDRNtX4c/8ABd//AJPbtP8AsWbD/wBG3FfuN/wb6f8AJh93/wBjTqH/AKJtq+/y7/dafoeLX/iSP3IooortMQooooAKKKKACiiigAooooA/In/guX/yjj8Xf9f2k/8ApZFX8xn/AAR8/wCTz7H/ALBN/wD+gCv6kP8AgtlpR1P/AIJseP5kGWs5NJnA+mo2yn8gxNfynf8ABJbWRpf7cHhuzY4/tC01G3/K2kl/9p1UPiRFX4H6H9eVFFFdx5QUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV8df8FA/+TMPiJ/2CX/8AQ1r7Fr4O/wCCmniFfDf7D/ju6z89zBa2ij1NxcxRn8lYn8KmWzLp/Ej+fr/gkP8A8pHPhd/1/XX/AKRz1/oHV/A7/wAEWvDzeIP+Ckfw9JGY7H+07t8dvLsLjb/4+Vr++KuE9UKKKKACiiigAooooAKKKKAPy2/4LQ6F/bv/AATa+IqouZLQaZdJ7eVqFsWP/fG6v5GP+CXmo/YP23/BqE4W4XUIT+NlOR+oFf3GftufCq5+N37IvxF+F1gC13qug3i2qj+K5iQywj6GRFB9q/z+f2TPHw+GH7S3gjxtK2yG01e2WdvSCdvKlP8A37dq0pO04vzBH9sVFFFfQGgUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAfyL/APBUPUft/wC2/wCMkBytuunwj8LKAn9Sa/sR/wCCRWhf8I7/AME5fhdp+NvmWFzdY/6+rueb9d9fw0/tSfEYfFn9onxn8QYmDwajqtwbdhzm3jby4f8AyGq1/oYfsl/DOf4Nfsv/AA++Ft4CLnQvD+n2lxnj/SEhXzeO37zdx2r5+q7zk13M2fQtFFFZgFFFFABRRRQAUUUUAFFFFABXC/E/4feH/iz8ONe+F/iqMS6b4h0+4065UgN+7uYzGxAPcA5Hoa7qigD/ADJvFnh3xt+zt8bNQ8MXha08QeCtZkgL4KlbmwmIDAem5Aw9RX9q/wAEvihpPxq+Enh74q6LgQa5ZRXJQf8ALORhiRPqjhlPuK/Hv/g4H/ZH/wCEA+Luk/tW+EbXZpfjECx1by1wsep26fI5wMDz4V/Fo2J5Ncj/AMEcv2p7G1juv2WPF8yxNJJLf6HI7Y3s3zT249+DKvr8/tVRZ24Kryz5X1P6BKKKKo9cKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooqpqF/ZaVYT6pqcqQW1tG0sssh2qiIMsxJ4AAGSaAPym/wCCvPx5Hw0/Z5j+F2jz7NU8azG3YKRuWxgw8x9cOSkfuGb0r87P+CHHwEb4yftz6V4s1CEyaZ4DtZtcmPG37QuIrZfqJZBIMf8APM18f/t1/tMyftSfH7UPGunll0PT1/s/SY2yD9liYnzCMnDSsS59AQD0r+tL/giT+yJ/wzh+yfb/ABE8T2nk+J/iIY9Vud64kisQD9khOQCPkYykHoZMdqhs8PE1eeo2tj9laKKKRzhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH/1v7+KKKKACvNfjF8JfA/x3+F+ufB/wCJFr9s0TxBavaXUQO1trchkb+F0YB0b+FgD2r0qigD/Nw/at/Zv+In7F37ROrfB/xS7x3mjXC3OnX0RK/aLVjut7iMjoSBzj7rgr1Wv6S/2AP20dG/ap+HK6Pr0iQeM9ChRdSt8gfaEGFFzGO6ucbwPuOcdCuf0M/4Kdf8E8vDf7dnwhxoghsfHvh+OSTQ7+T5Vkzy1rMw58qQjg8+W/zDjcG/hw0TWvjH+yj8a/tcKXPhvxd4VvGingmUq8ckZ2vFIvRkcZDDlWU8ZBzWVWkprzO7AY2WHqX+y90f3D0V8g/shftjfDn9rXwQuq6A62PiCyjX+1NJdsyQOeC6f34WP3XH0YBuK+vq82UWnZn2dOpGpFTg7phRRRSLCiiigAooooAp6hp+n6tZyadqsEdzbzDbJFKodGHoVOQR9a8R8Vfssfs1+NmaXxR4D0G7lcbTM1hCs2ACAPMVQ+ADxzxXvVFNNrYmUIy+JXPibV/+Ccv7FOtqVvPANmgIC/6PPcW/AOf+WUqc+/UjjpXmOqf8Emv2LtQl8y00W+sRljtg1CcjB6D94znA7c59c1+k9FUqk+5g8HQe9Nfcj8tZ/wDgkD+ySbuO80+TXbJo8FfIvl4ZTkMC0TEH6HtVi9/4JOfAC6iEcHifxhbEHO6PU4ySPT54GGPwzX6hUU/bT7k/UMP/AM+0fl7Zf8EnPgBaxGOfxP4wuSTndJqcYIHp8kCjH4Zqu3/BIX9lG51D+0dVufEF9Ifveffq27jAyREG44xz29K/Uqij20+4vqGH/wCfaPzb0z/gk7+xXYY+1aFe3uH3fvtQuBkcfL+7ZOP15616Ppf/AATh/Yn0fy/sngK1fy848+4uZ+uevmTNnrxnOO3Svt2il7SfctYOgtqa+5HgPhr9lP8AZm8H7G8O+ANAt5I8bZf7PheUYxj94yF+wPXrz1r3Ky07T9MiMGmwR26E7isahAT64HfirlFS23ubxhGPwqwUUUUigooooAKKKKACiiigDn/Fmn6zq3hXU9K8OXn9nahdWk0Vrdbd3kTOhCSbe+xiGx3xX5sH/gnx8V/iQ0Vt+0t8aNe8UaWsjSPplhGNPgkDhgyuQ7hlYED7gKqWVSN2R+o9FVGbWxjVoQqW59fm7fd1PIfgx8B/hV+z94W/4RD4U6TFpls+xp3XmW4kjQIHlc8sxA57ZJOBk169RRSbvqzSMVFcsVZBRRRSKCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKinnhtoXubl1jjjUs7McKqjkkk9ABTpZYoImmmYIiAszMcAAdSTX86H/AAUi/wCCjdj8Q7O8/Z+/Z+vvM0RyYtZ1eE4F6B1t7du8Gf8AWSD/AFv3VPl5MmlOm5uyOXF4uFCHPP5LueM/8FMv23rD9onxVB8LfhhcvJ4Q0GZnedThNQuxlfMA7xxjIjJ+9kt0Ir9Ov+CCf7ApkkP7bnxUsflXzLbwrbzpwTyk16M+nMURx13t/dNfmN/wS4/4Js+Jv26fiQ3iPxWk2n/Djw7Oo1a+XKNdTABxZ27d5GUgyMP9UhBPzMgb+7jwr4W8O+B/DVh4N8IWcWnaVpdvHa2lrAu2OGGJQqIo7AAAV6UIqKsj4uvXlWm6k92b9FFFUYhRRRQAUUUUAFFFFABRRRQAV+If/BwFYXN5+wSlxAuVtfEunSyH0UpOmf8AvpgK/byvzP8A+CwPw11T4n/8E8PiJpmiRebd6VbW+sKPSPTp455z+ECyGgD+br/ggZqFrZftna5bXDYe78I3sUQ9XF3ZyY/75Qmv7Ba/hQ/4JUfFix+EP7dfgbV9WcR2Wr3EujTMxwAdQjaKI56ACYxk57Z+tf3X18dn0GsQpd0ergn+7sFFFFeIdYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH8bH/Bdi7guf24I4Yjlrfw5p8b+zF52/kwr92/8Ag39sLmz/AGCXuJ1wt14l1GWM+qhIEz/30pFfzM/8FVfipp/xb/bt8dazo7K9npVxFo8TKcgnT41hlOehBmWTGO2PrX9eX/BH74a6p8MP+CeHw70zW4vKu9VtrjWGHrHqM8k8B/GBozX6DgYOOHpxfZHiVnecmfphRRRXWZBRRRQAUUUUAFFFFABRRRQB8o/t0fCB/jz+x/8AEX4VWyl7rU9EuWtFH8V3bDz4B9DLGgPtX8Af7J3xTi+Cn7SPgz4m3bBLXTNTi+1M3AW2mzFMfwidiK/0qq/zt/8AgpJ+zm37Lv7ZXjT4Z2cJh0qW7Op6V6Gxvv3sar7RktF9UNNO2omrqx/ZerK6h0OQeQR3pa/PX/gmp+03D+0b+zpY2+sTB/EXhVY9M1JT95wi4hm6D/WIOf8AbVq/Qqu5O6ueVKLi7MKKKKZIUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABX4xf8Fr/idD4d+AOgfC+3cC68S6qJ3XPJtrFdzcf9dZIufY1+zhIAyeAK/jq/4KS/tMw/tJftG3tx4fmEvh7w0raXpjL92URsTLMOB/rHzt/2AtZVZWib4eF537H6A/8ABu78K28UftWeJ/ipcKTb+FNBaJCO1zqMqoh/79RzDH+Ff2W1+MP/AAQy/Zmb4F/sbW/xE1qIx6z8RphrEoPVLJAUtE6DgpulHX/W1+z1ch6IUUUUAFFFFABRRRQAUUUUAFf5zX/BQD4AX/7MP7YPjf4VshitINRe901gMBrG8/fwEY/uo4Q4/iUiv9GWv5vf+DgL9jPVviD4H0r9rvwJbCa78Jwf2frsca5kbT3fdFNwORBIzB89FfPRTQB6h+xX8ch+0L+zf4c+IF3KJdSWH7FqXqLy2wkhP+/xJ9GFfVVfymf8Eyf2tk/Z7+Ln/CC+M7oQ+E/FTpDcM/3LW7+7FNnOFU/ckP8AdIY/dr+rJWV1Docg8gjvXuYarzwT6lpi0UUV0DCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK+N/wBvX46r8AP2ZfEHimzl8rVdRj/svTecN9pugV3D3jTfJ/wGvsSaaK3iaedgkaAszMcAAdSSegFfyZf8FIv2s/8AhpP4xtoPhO58zwn4YZ7awMbHZczE4luPQ7iNqH+4AR941z4mt7OD7sTZ53/wTz/Z61H9p39sHwT8L7eMtZfb01DUmwCEsbIiabOcfeC+WP8AaYV/ou1/O5/wQE/Y21P4XfC3VP2rPHNv5Oo+N4UtdHjYfPHpcbbmkPGR9okAIH9yNW6NX9EdeGQFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAfOX7WX7Nvg39rX4BeIPgV42/dwavBm3uVAL2t3Ed8My+6OBkfxLlehr/PL8eeCfiz+yV8ebzwfr4k0bxZ4M1EDfG33ZYSGjkRv4kcYdT0ZSPWv9MGvwy/4LH/APBNC+/ay8IxfHf4K2qv4+8N2zRzWaKA2rWSZbywRyZ4uTFn74JTrtwAZf7HX7VXhL9rH4TW/jLRytvrFkEg1exz81vckdQOpjkwWjbuMjqCB9Y1/ED+zt+0F8R/2VfixbfEDwazxz2zmC/sJSUjuoM/vIJR26cHGUYAjkV/Yt8BPj78Nf2kPh1Z/En4ZXwubWcBZ4G4ntJ8AvDMmTtdM+6sMMpZSrG0z2sNiFUVnue0UUUUzqCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr8Lv+Cs/7aml6N4buP2XPhnfCXU7/A1+aLlYLfqLbcD/AKyQ4MgHRPlP3iB9M/8ABQz9vfRf2ZfCc/w++HtzDdePdTi2xIMONNikH/HxKOm/BzFG3U4ZgVGG/m5/Z7+AXxc/a/8AjdYfCr4cwyanrmtzNNc3U5ZkhjLZmubiTkhFzlmOSzEAZZgDLZ5+MxNl7OO/U+xf+CU/7BWo/ts/H2KXxPBIngTws8d5rdwF+Wcg5itFJ43TEHdjlYwx67c/3x29vb2lulpaIsUUShERAFVVUYAAHAAHQV8y/sffsp/Dz9jX4GaV8FPh4plS1Bmvr1wBLe3kgHmzPjpkgBVydiBVycZP1BUnlhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//9f+/iiiigAooooAK/I3/gpf/wAEqvh9+3DosvxB8GPD4f8AiVY2/l22oMCLe/SMfJBdhQTgfdSZQXQYBDqAo/XKigD/ADUdX0f9oP8AYs+OD6ZrEF74O8Z+HpfmRuGAb0IyksUi9wWjdT3Ff0Q/sb/8FOfht8fIrPwJ8Umh8NeL2UIN7bbK9ccZidj8jt/zzc9eFLV+237Z/wCwP8AP24/CMeifFixaDV7GN003WrPCXtoW5wGwRJHu5MTgqeo2n5q/iw/bg/4JrftD/sOa49x4ztP7a8JyuqWniGxRjaOX6JKDloJf9l+Cfus3Ws6lJTWp2YTHVMO/d27H9c1Ffyf/ALN3/BUn9oH4Gw2vhrxa6+MfD9uFjW3vnK3UUa4GIrgAtwBgCQOB0GK/c/4Gf8FHv2W/jfbwWseup4c1aXAaw1gi2bf6JKT5T89MPuP90dK4Z0JRPqMNmdCtpez7M+8aKjhmhuYUuLdxJHIAyspyGB5BBHUGpKxPQCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK4P4gfFL4cfCnRzr/xJ1yy0O0HSS8mWLd7KGILH2UE0CbSV2d5XB/En4neAfhB4SufHPxK1WDSNLtcb552wCx6Ko6sx7KoJPYV+RP7RP8AwWQ8AeGBP4e/Z20w+Ib0ZUalfK0Fkp5GUj4ll7dfLHua/Dv4ufHb45/tSeM7e++IOo3Wu38riGysoE/doXPCQwRjAJJxwCzcZJrpp4aT1lojycVnFKmmqfvP8P69D7i/bi/4KY+KP2hbW5+GHwmSfQvB7syXEjHbd6inTEmP9XEf+eYJLfxHHyhP+Cbn/BLP4lft1a+vi7xDJN4c+HNhPsvdWCDzrtkPzQWYYFWfs0rApFnJDsNh/Qj/AIJ+f8EHte8UNY/Fj9tZJNL07Ilg8LxPsupx1H2uRTmJT3iQ+Yf4ih4P9VXhDwf4W+H/AIXsPBPgjT4NK0jS4Ut7SztUEcMMSDCqqjAAFdsYKKsj5ivXnWnz1HdnNfCH4RfDn4D/AA50r4TfCfS4tG0DRYfJtbWHJCgkszMxJZ3diWd2JZmJYkk16RRRVGIUUUUAFFFFABRRRQAUUUUAFFFFABWR4g0LS/FGg33hnXIhPZajby2txG3R4plKOp+qkiteigD/ADYP2nPgR42/ZA/aP1/4P61JLDfeGr/dZXi5QzQZEltcIcD7yFWyOjZHUV/av+wF+1joP7Xv7OmjePo7qJ/ENlElnrtqhAeC9jGGYp1CTY8xD0wcZypx4J/wWR/4Jsaj+1v4Ig+N/wAHLYSePvC1q0TWiKN2qWCkv5Knr50ZLNFn72SnUrj+Tj9lD9qj4qfsXfGaD4k+Bcl4ibXVNLuCyRXlvn54ZR1VgRlGxlHAOCMqfNzPAfWado/Etv8AI6MPW9nLXY/0GqK+W/2Vf2wfgr+1/wCAIPGvwr1JDchM3ulTOq31lIMblljBJ25PyyDKN2OcgfUlfEThKEnGas0eummroKKKKgYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV8T/t+/tY6D+yF+zprPj6S6iTxDexPZ6FauQXnvZBhWCdSkOfMc9MDGcsM9p+1V+2D8Ff2QPAE/jX4qakguSmbLSoXVr69kOdqxRkg7cj5pDhF7nOAf4if2r/ANqj4qfto/Gaf4k+Osh5SLXS9LtyzxWdvn5IYh1ZiTl2xl3JOAMKPXyvLZV5qc17i/HyObEV1BWW5lfsx/Ajxt+1/wDtH6B8H9FklmvvEt/uvbxsuYYMmS5uHOD91AzZPVsDqa/0iPD+haX4X0Gx8M6HEILLTreK1t416JFCoRFH0UAV+Kf/AARu/wCCbGo/skeCJ/jf8Y7YR+PvFNqsS2jqN2l2DEP5LHr50hCtLj7uAnUNn9w6+1PICiiigAooooAKKKKACiiigAooooAK/Ev/AILXfsIt+098Cx8aPh7Zmfxt4DgklSOMEyXum/fmgAAJZ4+ZYh1zuUcvX7aUUAf5uP7Iv7UfjD9k34uWvxE8OhrqwlAt9UsN21bu1Jyy+gdfvRtjhvUEg/2dfC/4l+DfjF4A0v4mfD+8W+0jWIBPbyr1xyGVh/C6MCjqeVYEHkV+S3/BX/8A4JFazpms6j+1d+yjpP2nTbnfdeItAtF/e20v3mu7WMD54n5M0S/NG3zqGRmEX4q/sgftsfFT9kLxU134Yf8AtHw9fSBtQ0edyIZjgDzEPPlzAAAOByAAwYAAa06nLo9jnrUefVbn9p9FfKH7Nf7aPwF/al0tJPh3qyxasEDz6RdkRXsRxk/JnEij+/GWX1Ir6vrqTvqjgaadmFFFFMQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUVla5ruieGNIuNf8AEl5Dp9jaIZJri5kWKKNR3Z2IAHuTX4R/tr/8FdNGtNNuvhr+ylObm8mVorjxAyFY4QeCLVWwWf8A6aMNo6qCcETKSitS4U3J2R3f/BU79vmP4a6Rd/s2fCG7P/CRahFs1i9hb/jxt5V/1KkciaRTknjYh4+ZgV/KL/gml+xjqf7a37TWl+Bb2GT/AIRbSCuo+ILhMqEs424iDYIDzt+7Xvgsw+6a8j/Zb/ZT+On7b/xgXwB8L7aS+vLiT7RqmqXTMbezikb557mU5PJyQOXkbhQTX97X7HP7H/wq/Yq+Ddn8JfhjD5r8TalqUqgXGoXZGGlkxnA7IgJCLgDJyTxzk5O56VOmoKyPp/S9L07RNMttF0eBLa0s4kgghjUKkccYCqqgcAKAAB2FXqKKksKKKKACiiigAooooAKKKKACszW9F0nxHo134e163S7sb+GS3uIJRuSWKVSrow7hlJBHoa06KAP4Bv8Agp5/wT48S/sMfGaQaLDNdeAfEMsk2hX7Zbyx1a0lb/nrEOhP+sTDDncF+vf+CaX/AAUNtYLWz/Z1+PepbNmyDQtVuW+Xb0W1mc9McCJm4x8hIwuf61v2gPgD8MP2m/hTqvwa+L2njUNG1WPa2CFmglX7k0L4OyWM8q2D6EFSQf4Vf+Cg/wDwTY+L/wCwj41aW/WTXfA+oSY0zXoo8ISc4huFGfKnA7fdkHKH7yrrSqypy5kNM/rIor+ZH9jv/gqn41+DtrZ/Dr45RzeIvDcAWGC8U7r+0jHABLHEyKOikhgBwSMLX9D/AMLPjR8LPjZ4fj8TfC3XLTWbV1DN5EgMkWe0kZ+eNvZwDXs0q8Ki03KTPT6KKK2GFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFeS/Fz46/CX4FeHpPEvxU1210iBULIkrgzzY7RRDLyMcdFU1/Ot+2N/wVH8d/HC2vPh38HY5vDfheUtHLcFsX97GeMOVOIkYdUUkkcFsZWsa2IhTWu4mz6E/wCCmP8AwUIsNVsbv9nP4D6iJopd0Ou6nbnKMo4NrC46g/8ALVl4I+QEguK+Tv8AgmD/AME+fEv7cvxnjOtQzWvgHw9LHNrt8oKiQZ3LaRN/z1lHUj/VpljztDY//BPj/gmx8X/27vGqy2CyaF4H0+TGp69LHlARjMNupx5s5Hb7sY5c/dVv7qv2f/gD8MP2ZPhTpXwa+EOnjT9G0qPauSGmnlb780z4G+WQ8s2B6ABQAPGq1XUlzMls9V0fSNM8P6Ta6DokCWtlZQpb28MQ2pHFGoVFUDoFAAA9K0aKKyEFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH87n/BWT/gj1/wAL4vr/APaZ/Zcto7fxi6tNrOhriOLVmHJngPAS7I/1in5Z+G+WTcZf5fvgH+0H8YP2Rvig/iXwZJJZXdvIbbU9Mu1ZYp1iYhoZ4jghlOQDw6NnBHNf6UlfjV/wUd/4JB/DL9ss3XxT+GssPhX4ibAXutmLPUiowBdKoyHwABMuWAwGDADAOMmndHj/AOyn+238G/2rdAibwxdrp3iGNN13oty4FxGR94x9PNj7h16D7wU8V9i1/D18Yvgj8ef2RPim3g74mabe+FvEOmyeZbzIxQOFPE1vOhw6Hs6N7HByK/Un9mL/AILG+KfCdlB4S/aU0+XXrePaiavZBVu1QYH72M7UlI67gVb1DHmqUj1KOOT0qaM/o8orwT4L/tP/AAH/AGgrJbn4UeJbTU5tgd7Td5V3GCM/NC+2QY9cFeOCa97qjuUk1dBRRRQMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKazKil3ICgZJPAAr4N+Pf8AwUh/Zc+Axm0y71oeItYiBH2DR8XLBh2eUERJz1BfcP7poJlOMVeTPvGSRIkaWVgqqCSScAAdzX4yftz/APBUvwv8NtOuvhl+zdfQav4lk3w3Gqx4ltbDHB8snKzTenWNT13H5a/K79rL/gpF8bf2mGuPDOmSN4X8KSZQ6bZyEvcJnj7RLgGT/dAVPUE81f8A2E/+CY37QP7cesxaroFudA8FxSlLvxBeRnyfk+8lunBnkHTCkKp+8y1LkedXxt/dp/efN3wJ+APx7/bT+MyeBvhtaXHiDxBq0xuL69uXZo4Edv3lzdztu2oCcsxyzH5VDOQp/uq/YB/YB+F/7BnwuPhfwyy6r4l1QJJrWtvGElupF6IgySkEeTsTJ5JYksTXp/7In7HnwZ/Yt+FkPww+ENkV3lZdQ1GcBry/uAMeZM4A6chEGFQcAckn6oqTzgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP//Q/v4ooooAKKKKACiiigArP1bSdK17TZ9G1y2ivbO5QxzQToJI5EPVWVgQQfQitCigD8LP2t/+CD/7M3xtFz4o+BEh+HXiCTL+TbJ5ulSv6Nb5Biz6wsqjrsNfzo/tE/8ABI39uX9nP7RqOreEpPEujwZP9o+Hib+LaD95olAnQY5JeIAetf6ANFAH+aZ8NP2l/wBon4EySab8OvFWpaKkbbXtN++FWU8gwShowQeD8ue1fb/gf/gsR+1X4bKxeKodH8RR/wATXFqYJT9GgeNAfqhr+0b4u/sgfsufHmV7v4v+AdD126k4a7uLOMXX/f8AULKPwevzc+J3/BAz9g3xy8lz4Qh1zwfKxLKum35miBPqt4tw2PYMtRKnF7o6KeLrU9ITaPxRsv8Agt94yjx/aPw+spfXy7+SP+cT10if8FyHCgSfDAFu5GtYH5fYzX3XrH/Btx8Ip8/8I/8AE7WLb0+0WMM+P++Xirzyb/g2mgaUm3+NDKnYN4d3H8xqA/lUewp9joWa4r+f8F/kfLX/AA/J/wCqX/8Alb/+4qP+H5P/AFS//wArf/3FX1B/xDS/9Vq/8tz/AO+NH/ENL/1Wr/y3P/vjR9Xp9h/2tiv5/wAF/kfL/wDw/J/6pf8A+Vv/AO4qP+H5P/VL/wDyt/8A3FX1B/xDS/8AVav/AC3P/vjR/wAQ0v8A1Wr/AMtz/wC+NH1en2D+1sV/P+C/yPl//h+T/wBUv/8AK3/9xUf8Pyf+qX/+Vv8A+4q+oP8AiGl/6rV/5bn/AN8aP+IaX/qtX/luf/fGj6vT7B/a2K/n/Bf5Hy//AMPyf+qX/wDlb/8AuKj/AIfk/wDVL/8Ayt//AHFX1B/xDS/9Vq/8tz/740f8Q0v/AFWr/wAtz/740fV6fYP7WxX8/wCC/wAj5f8A+H5P/VL/APyt/wD3FR/w/J/6pf8A+Vv/AO4q+oP+IaX/AKrV/wCW5/8AfGj/AIhpf+q1f+W5/wDfGj6vT7B/a2K/n/Bf5Hy//wAPyf8Aql//AJW//uKj/h+T/wBUv/8AK3/9xV9Qf8Q0v/Vav/Lc/wDvjR/xDS/9Vq/8tz/740fV6fYP7WxX8/4L/I+X/wDh+T/1S/8A8rf/ANxUf8Pyf+qX/wDlb/8AuKvqD/iGl/6rV/5bn/3xo/4hpf8AqtX/AJbn/wB8aPq9PsH9rYr+f8F/kfL/APw/J/6pf/5W/wD7io/4fk/9Uv8A/K3/APcVfUH/ABDS/wDVav8Ay3P/AL40f8Q0v/Vav/Lc/wDvjR9Xp9g/tbFfz/gv8j5f/wCH5P8A1S//AMrf/wBxUf8AD8n/AKpf/wCVv/7ir6g/4hpf+q1f+W5/98aP+IaX/qtX/luf/fGj6vT7B/a2K/n/AAX+R8v/APD8n/ql/wD5W/8A7io/4fk/9Uv/APK3/wDcVfUH/ENL/wBVq/8ALc/++NH/ABDS/wDVav8Ay3P/AL40fV6fYP7WxX8/4L/I+X/+H5P/AFS//wArf/3FR/w/J/6pf/5W/wD7ir6g/wCIaX/qtX/luf8A3xo/4hpf+q1f+W5/98aPq9PsH9rYr+f8F/kfL/8Aw/J/6pf/AOVv/wC4qP8Ah+T/ANUv/wDK3/8AcVfUH/ENL/1Wr/y3P/vjR/xDS/8AVav/AC3P/vjR9Xp9g/tbFfz/AIL/ACPl/wD4fk/9Uv8A/K3/APcVH/D8n/ql/wD5W/8A7ir6g/4hpf8AqtX/AJbn/wB8aP8AiGl/6rV/5bn/AN8aPq9PsH9rYr+f8F/kfL//AA/J/wCqX/8Alb/+4qP+H5P/AFS//wArf/3FX1B/xDS/9Vq/8tz/AO+NH/ENL/1Wr/y3P/vjR9Xp9g/tbFfz/gv8j5f/AOH5P/VL/wDyt/8A3FR/w/J/6pf/AOVv/wC4q+oP+IaX/qtX/luf/fGj/iGl/wCq1f8Aluf/AHxo+r0+wf2tiv5/wX+R8v8A/D8n/ql//lb/APuKj/h+T/1S/wD8rf8A9xV9Qf8AENL/ANVq/wDLc/8AvjR/xDS/9Vq/8tz/AO+NH1en2D+1sV/P+C/yPl//AIfk/wDVL/8Ayt//AHFR/wAPyf8Aql//AJW//uKvqD/iGl/6rV/5bn/3xo/4hpf+q1f+W5/98aPq9PsH9rYr+f8ABf5Hy/8A8Pyf+qX/APlb/wDuKj/h+T/1S/8A8rf/ANxV9Qf8Q0v/AFWr/wAtz/740f8AENL/ANVq/wDLc/8AvjR9Xp9g/tbFfz/gv8j5f/4fk/8AVL//ACt//cVH/D8n/ql//lb/APuKvqD/AIhpf+q1f+W5/wDfGj/iGl/6rV/5bn/3xo+r0+wf2tiv5/wX+R8v/wDD8n/ql/8A5W//ALio/wCH5P8A1S//AMrf/wBxV9Qf8Q0v/Vav/Lc/++NH/ENL/wBVq/8ALc/++NH1en2D+1sV/P8Agv8AI+X/APh+T/1S/wD8rf8A9xUf8Pyf+qX/APlb/wDuKvqD/iGl/wCq1f8Aluf/AHxo/wCIaX/qtX/luf8A3xo+r0+wf2tiv5/wX+R8o3n/AAXF1Jx/oHw0ijP/AE01cv8AytVrhtc/4La/Fy4tXTw34L0i0mP3XuZprhR9VUxE/mK/QDSv+Dazw9C2db+MFxcD0g0NYT/49eSV6z4d/wCDcb9my0uI5PFXjzxJfxqculstrbbh6ZaKXFP2EOwnmmKf2/wX+R/P943/AOCo37Z3jRXgh8Sx6LA/WPTbWKLH0kZXlH4PXzT4T8AftF/tVeNnh8I6ZrnjvXZz+8eNJr2UZ5zJId2xepyxAFf3A/C7/gjn/wAE9PhascsHgKLXrpMZuNbuJb7dj1idvI/KIV+ivhHwT4M+H+ix+G/AWkWWiadFylrYW6W0C/RI1VR+Aq1FLZHJUr1Knxyb9T+QL9mb/g30/aI8f3dtrf7SWrWvgfSGCu9nbOt9qbAjO3CEwR9vmMjkf3K/pX/Zd/4J/wD7Kv7INig+DnhiGPVAu2TWL3F1qMnXOZnHyA55WIIh/u19m0VRkFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV+Ev/BUH/gjz4a/amF18bv2d4bbRPiHkyXtscQ2msZ6lzwsdxnkS9H6SckOv7tUUAf5onivwT+0P+yL8UI7LxRZax4E8Vaa4khc77WdcYIeKRSA6nj5kYqfU1+knwZ/4Lkfth/DmGPTfiAumeN7RF27r6H7PdcdMS2+xT7l42J9c81/aJ8W/gf8ACD48+Gj4P+M3hvT/ABLp2Syw38Cy+Wxx80bEbo24+8hB96/H34uf8G/H7F/jvUn1b4eX+ueC2ckm2tLhbu1GfRblXlH/AH9xjtWFbDUqqtUimXCpKPws/PPTf+DiLVoodur/AAlhnk/vQ62Yl/JrOT+daP8AxET/APVHv/Lg/wDvfXp+sf8ABtXoU9xu0D4wz20X9240JZ2/76W9iH6Vkf8AENL/ANVq/wDLc/8AvjXH/Y+D/wCff4v/ADNfrVXv+Rw//ERP/wBUe/8ALg/+99H/ABET/wDVHv8Ay4P/AL313H/ENL/1Wr/y3P8A740f8Q0v/Vav/Lc/++NH9j4P/n3+L/zD61V7/kcP/wARE/8A1R7/AMuD/wC99H/ERP8A9Ue/8uD/AO99dx/xDS/9Vq/8tz/740f8Q0v/AFWr/wAtz/740f2Pg/8An3+L/wAw+tVe/wCRw/8AxET/APVHv/Lg/wDvfR/xET/9Ue/8uD/7313H/ENL/wBVq/8ALc/++NH/ABDS/wDVav8Ay3P/AL40f2Pg/wDn3+L/AMw+tVe/5HD/APERP/1R7/y4P/vfR/xET/8AVHv/AC4P/vfXcf8AENL/ANVq/wDLc/8AvjR/xDS/9Vq/8tz/AO+NH9j4P/n3+L/zD61V7/kcP/xET/8AVHv/AC4P/vfR/wARE/8A1R7/AMuD/wC99dx/xDS/9Vq/8tz/AO+NH/ENL/1Wr/y3P/vjR/Y+D/59/i/8w+tVe/5HD/8AERP/ANUe/wDLg/8AvfR/xET/APVHv/Lg/wDvfXcf8Q0v/Vav/Lc/++NH/ENL/wBVq/8ALc/++NH9j4P/AJ9/i/8AMPrVXv8AkcP/AMRE/wD1R7/y4P8A730f8RE//VHv/Lg/+99dx/xDS/8AVav/AC3P/vjR/wAQ0v8A1Wr/AMtz/wC+NH9j4P8A59/i/wDMPrVXv+Rw/wDxET/9Ue/8uD/730f8RE//AFR7/wAuD/7313H/ABDS/wDVav8Ay3P/AL40f8Q0v/Vav/Lc/wDvjR/Y+D/59/i/8w+tVe/5Hm2pf8HEWrSw7dI+EsMEn96bWzKv5LZx/wA6+SfjN/wXI/bD+I0Mmm/D9dM8EWjrt3WMP2i6565luN6j2KRqR655r9FtH/4Nq9CguN2v/GGe5i/u2+hLA3/fTXso/Svqz4R/8G/H7F/gTUk1b4h3+ueNGQgi2u7hbS1OPVbZUlP/AH9xjtVwyvCwd1TXzu/zuJ4mo95H8jPhTwT+0P8AtdfFCSy8L2WseO/FWpOZJnG+6nbOSXlkYkIo5+Z2Cj1Ff1w/8Evv+CPPhr9lkWvxu/aIhttb+IeRJZWwxNaaPjoUPKyXGeTL0TpHyC7fsP8ACT4H/CD4DeGh4P8Agz4b0/w1p2QzQ2ECxeYwz80jAbpG5+85J969TrvSSVkYBRRRTAKKKKACiiigAooooAKKKKACiiigAooooAK/n7/b/wD+CGngD496vqfxf/Zlu4PCfiq9Z7m60uZcaXeykZJTYM28jtySAyEnJVSS1f0CUUAf5qfxi/Z7/aM/ZL8bppXxW0DU/CeqW0pNrdENHHIyE/Pb3CHY444aNzX0j8LP+Cp/7ZPwyaOC68Qx+JrRCP3GtQi4J+sqmOc/jIa/vy8aeBvBfxH8O3HhD4gaTZ63pV2u2a0voEuIHHTlHBU9fSvyr+K//BDf/gn58TDJcaPoF/4QuZAcy6JfOi59RFcCeIfRUApqTWxMop7o/CTRf+C5nxEgx/wkXgDTrr1+zXktv/6Ektdp/wAP2/8Aqln/AJXP/uKvtDxH/wAG3Hwmut3/AAiXxP1ex/u/bLCG6x9dkkGa87/4hpf+q1f+W5/98av2su5n7Cn2PnP/AIft/wDVLP8Ayuf/AHFR/wAP2/8Aqln/AJXP/uKvoz/iGl/6rV/5bn/3xo/4hpf+q1f+W5/98aPaz7h9Xp9j5z/4ft/9Us/8rn/3FR/w/b/6pZ/5XP8A7ir6M/4hpf8AqtX/AJbn/wB8aP8AiGl/6rV/5bn/AN8aPaz7h9Xp9j5z/wCH7f8A1Sz/AMrn/wBxUf8AD9v/AKpZ/wCVz/7ir6M/4hpf+q1f+W5/98aP+IaX/qtX/luf/fGj2s+4fV6fY+c/+H7f/VLP/K5/9xUf8P2/+qWf+Vz/AO4q+jP+IaX/AKrV/wCW5/8AfGj/AIhpf+q1f+W5/wDfGj2s+4fV6fY+c/8Ah+3/ANUs/wDK5/8AcVH/AA/b/wCqWf8Alc/+4q+jP+IaX/qtX/luf/fGj/iGl/6rV/5bn/3xo9rPuH1en2PnP/h+3/1Sz/yuf/cVH/D9v/qln/lc/wDuKvoz/iGl/wCq1f8Aluf/AHxo/wCIaX/qtX/luf8A3xo9rPuH1en2PnP/AIft/wDVLP8Ayuf/AHFR/wAP2/8Aqln/AJXP/uKvoz/iGl/6rV/5bn/3xo/4hpf+q1f+W5/98aPaz7h9Xp9j5z/4ft/9Us/8rn/3FR/w/b/6pZ/5XP8A7ir6M/4hpf8AqtX/AJbn/wB8aP8AiGl/6rV/5bn/AN8aPaz7h9Xp9j5z/wCH7f8A1Sz/AMrn/wBxUf8AD9v/AKpZ/wCVz/7ir6M/4hpf+q1f+W5/98aP+IaX/qtX/luf/fGj2s+4fV6fY+c/+H7f/VLP/K5/9xUf8P2/+qWf+Vz/AO4q+jP+IaX/AKrV/wCW5/8AfGj/AIhpf+q1f+W5/wDfGj2s+4fV6fY+c/8Ah+3/ANUs/wDK5/8AcVH/AA/b/wCqWf8Alc/+4q+jP+IaX/qtX/luf/fGj/iGl/6rV/5bn/3xo9rPuH1en2PmXUP+C62pyQ7dK+GMUMn96XWDKv5C0T+deIeOP+C1n7SOvWL2XgzRNF0Fn/5b+XJdTL/u+Y4j/NDX6OaX/wAG1Wjw3G7W/jFNcRf3YNBWFv8Avpr2QfpX0P4A/wCDdv8AZI8P3iXvjzxN4k8QhMfuFlgs4W9d2yJpPykFHtJdxqhBdD+Uj4q/tJftC/tDXUVl8UPE2o68HlBhsy22DzGOBsgiCxhieBhM+lfo7+xf/wAEUv2nP2lrq28UfFK2l+HnhJirtcajCRf3KHBxBattYZU8SS7V7jd0r+uD4B/sH/si/sxzrqHwX8C6dpV+qhRfyK13ecek9w0ki57hWAPpX1xWbdzRJLY+bv2Wf2UPgx+x58MIfhV8FtONpaBzNdXMxEl3eTnrLPJgbmxwAAFUcKAK+kaKKBhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXJeOvAfgv4neEb/wF8Q9LttZ0bU4jDdWd3GJYZUPYq3HB5B6ggEYIBrraKAP5PP26/wDggV4h0W4uviN+xJIdSsmJkl8M3swW4hGMn7LPIQJF9I5GDjszniv58Nb8O/HP9mf4gfY9etNY8EeJLBjgSrLY3K7T1U/KSpI6glT7iv8ATSrzL4qfBj4S/HDw4fCXxg8N6d4l04nIg1C3SdUbj5kLAlG4HKkH3oA/hG+H/wDwVh/bA8ErFb6vqVj4kgiwNup2i7ivu8Bhcn3Yk+ua+odM/wCC3XjWJV/tn4f2M57+TfSQ5+m6KTH61+6fxV/4ISfsBfEZpbnw7pWq+DriTJ3aPfsU3f8AXO6FwgHqFC+2K+Pte/4NuPhLcbv+EY+J+r2fp9qsIbnH12PDmt44mqtpDuz4VH/BcU45+GHP/Ya/+4qX/h+N/wBUv/8AK1/9xV9St/wbSruO3404HbPhzP8A7kaT/iGl/wCq1f8Aluf/AHxqvrlb+b8v8guz5b/4fjf9Uv8A/K1/9xUf8Pxv+qX/APla/wDuKvqT/iGl/wCq1f8Aluf/AHxo/wCIaX/qtX/luf8A3xo+uVv5vy/yC7Plv/h+N/1S/wD8rX/3FR/w/G/6pf8A+Vr/AO4q+pP+IaX/AKrV/wCW5/8AfGj/AIhpf+q1f+W5/wDfGj65W/m/L/ILs+W/+H43/VL/APytf/cVH/D8b/ql/wD5Wv8A7ir6k/4hpf8AqtX/AJbn/wB8aP8AiGl/6rV/5bn/AN8aPrlb+b8v8guz5b/4fjf9Uv8A/K1/9xUf8Pxv+qX/APla/wDuKvqT/iGl/wCq1f8Aluf/AHxo/wCIaX/qtX/luf8A3xo+uVv5vy/yC7Plv/h+N/1S/wD8rX/3FR/w/G/6pf8A+Vr/AO4q+pP+IaX/AKrV/wCW5/8AfGj/AIhpf+q1f+W5/wDfGj65W/m/L/ILs+W/+H43/VL/APytf/cVH/D8b/ql/wD5Wv8A7ir6k/4hpf8AqtX/AJbn/wB8aP8AiGl/6rV/5bn/AN8aPrlb+b8v8guz5b/4fjf9Uv8A/K1/9xUf8Pxv+qX/APla/wDuKvqT/iGl/wCq1f8Aluf/AHxo/wCIaX/qtX/luf8A3xo+uVv5vy/yC7Plv/h+N/1S/wD8rX/3FR/w/G/6pf8A+Vr/AO4q+pP+IaX/AKrV/wCW5/8AfGj/AIhpf+q1f+W5/wDfGj65W/m/L/ILs+W/+H43/VL/APytf/cVH/D8b/ql/wD5Wv8A7ir6k/4hpf8AqtX/AJbn/wB8aP8AiGl/6rV/5bn/AN8aPrlb+b8v8guz5b/4fjf9Uv8A/K1/9xUf8Pxv+qX/APla/wDuKvqT/iGl/wCq1f8Aluf/AHxo/wCIaX/qtX/luf8A3xo+uVv5vy/yC7Plv/h+N/1S/wD8rX/3FR/w/G/6pf8A+Vr/AO4q+pP+IaX/AKrV/wCW5/8AfGj/AIhpf+q1f+W5/wDfGj65W/m/L/ILs+W/+H43/VL/APytf/cVH/D8b/ql/wD5Wv8A7ir6k/4hpf8AqtX/AJbn/wB8aP8AiGl/6rV/5bn/AN8aPrlb+b8v8guz5b/4fjf9Uv8A/K1/9xUh/wCC4pxx8MOf+w1/9xV9S/8AENL/ANVq/wDLc/8AvjSr/wAG0q7hu+NOR3x4cx/7kaPrlb+b8v8AILs+MdT/AOC3XjWVW/sb4f2MB7edfSTY+u2KPP6V8s/EP/gq7+2B45SW20rVLLw3byggppdqoYL7STGVwfdWB9MV+3Gg/wDBtx8Jbfb/AMJP8T9XvPX7LYQ22fpvebFfYPwq/wCCEn7AXw5aK58RaVqvjG4jwd2sX7BN3/XO1FuhHoGDe+amWJqveQXZ/F14f8L/ABt/aQ8e/YPDdlq/jXxHfsNwiSW+uXyerH5mCgnkkgDucV/Qp+wp/wAECvEOtXFr8Rv225DptkpEkXhmymDXEwxkfap4yRGvrHGxc92Q8V/Tt8K/gx8Jfgf4cHhL4P8AhvTvDWnA5MGn26QK7c/M5UAu3J5Yk+9em1gI5LwL4D8F/DHwjYeAvh5pdto2jaZEIbWztIxFDEg7BV45PJPUkknJJNdbRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB4d8e/wBm34H/ALT3g0+A/jr4ctPEOnqWaHz1Ilt3YbS8MqkSRPj+JGB9a/mq/a0/4N5/FmjyXHiv9jzXRq9sSXGhazIsVyoP8MN18sb+gEojwOrk1/WNRQB/mj/FT4A/tFfsx+JIoPit4Z1jwhfxPmCeeJ4VZh3hnX5H78o5r1j4df8ABQr9sP4ZeXFovje9vreMBfI1PbfoVHQZnDuB/usDX+iRr/h3w/4r0mbQPFNjb6lY3A2y211Es0Mg9GRwVI+or86viR/wSB/4J4/EwSS3/wAOrXSbhySJtHmmsNpPpHDIsX4GMigqM5R+Fn8zfh//AILZfHuytY4fEnhbQr+RRhpIvPty3uQZHAPrjj2r0nTv+C5OvxAf2t8N7ef18nVGi/8AQrd6/Tvxb/wbofspapdvc+D/ABh4n0lH5EUz210in/Z/cxtj6sT714trH/Btd4SnJ/4R/wCLl3bDt9o0ZJ//AEG6ip3ZssVVX2j5F/4fof8AVLf/ACt//cVH/D9D/qlv/lb/APuKvpj/AIhpf+q1f+W5/wDfGj/iGl/6rV/5bn/3xoux/XK3835f5HzP/wAP0P8Aqlv/AJW//uKj/h+h/wBUt/8AK3/9xV9Mf8Q0v/Vav/Lc/wDvjR/xDS/9Vq/8tz/740XYfXK3835f5HzP/wAP0P8Aqlv/AJW//uKj/h+h/wBUt/8AK3/9xV9Mf8Q0v/Vav/Lc/wDvjR/xDS/9Vq/8tz/740XYfXK3835f5HzP/wAP0P8Aqlv/AJW//uKj/h+h/wBUt/8AK3/9xV9Mf8Q0v/Vav/Lc/wDvjR/xDS/9Vq/8tz/740XYfXK3835f5HzP/wAP0P8Aqlv/AJW//uKj/h+h/wBUt/8AK3/9xV9Mf8Q0v/Vav/Lc/wDvjR/xDS/9Vq/8tz/740XYfXK3835f5HzP/wAP0P8Aqlv/AJW//uKj/h+h/wBUt/8AK3/9xV9Mf8Q0v/Vav/Lc/wDvjR/xDS/9Vq/8tz/740XYfXK3835f5HzP/wAP0P8Aqlv/AJW//uKj/h+h/wBUt/8AK3/9xV9Mf8Q0v/Vav/Lc/wDvjR/xDS/9Vq/8tz/740XYfXK3835f5HzP/wAP0P8Aqlv/AJW//uKj/h+h/wBUt/8AK3/9xV9Mf8Q0v/Vav/Lc/wDvjR/xDS/9Vq/8tz/740XYfXK3835f5HzP/wAP0P8Aqlv/AJW//uKj/h+h/wBUt/8AK3/9xV9Mf8Q0v/Vav/Lc/wDvjR/xDS/9Vq/8tz/740XYfXK3835f5HzP/wAP0P8Aqlv/AJW//uKj/h+h/wBUt/8AK3/9xV9Mf8Q0v/Vav/Lc/wDvjR/xDS/9Vq/8tz/740XYfXK3835f5HzP/wAP0P8Aqlv/AJW//uKj/h+h/wBUt/8AK3/9xV9Mf8Q0v/Vav/Lc/wDvjR/xDS/9Vq/8tz/740XYfXK3835f5HzP/wAP0P8Aqlv/AJW//uKj/h+h/wBUt/8AK3/9xV9Mf8Q0v/Vav/Lc/wDvjR/xDS/9Vq/8tz/740XYfXK3835f5HzP/wAP0P8Aqlv/AJW//uKj/h+h/wBUt/8AK3/9xV9Mf8Q0v/Vav/Lc/wDvjR/xDS/9Vq/8tz/740XYfXK3835f5HzP/wAP0P8Aqlv/AJW//uKj/h+h/wBUt/8AK3/9xV9Mf8Q0v/Vav/Lc/wDvjR/xDS/9Vq/8tz/740XYfXK3835f5HzP/wAP0P8Aqlv/AJW//uKj/h+h/wBUt/8AK3/9xV9Mf8Q0v/Vav/Lc/wDvjR/xDS/9Vq/8tz/740XYfXK3835f5HzP/wAP0P8Aqlv/AJW//uKj/h+h/wBUt/8AK3/9xV9Mf8Q0v/Vav/Lc/wDvjR/xDS/9Vq/8tz/740XYfXK3835f5HzP/wAP0P8Aqlv/AJW//uKj/h+h/wBUt/8AK3/9xV9Mf8Q0v/Vav/Lc/wDvjR/xDS/9Vq/8tz/740XYfXK3835f5HzP/wAP0P8Aqlv/AJW//uKj/h+h/wBUt/8AK3/9xV9Mf8Q0v/Vav/Lc/wDvjR/xDS/9Vq/8tz/740XYfXK3835f5HzP/wAP0P8Aqlv/AJW//uKj/h+h/wBUt/8AK3/9xV9Mf8Q0v/Vav/Lc/wDvjR/xDS/9Vq/8tz/740XYfXK3835f5HzP/wAP0P8Aqlv/AJW//uKkP/Bc84O34XYPb/id/wD3FX0z/wAQ0v8A1Wr/AMtz/wC+NKv/AAbSruG/405HfHhzH/uRouw+uVv5vy/yPjvUv+C4njmXP9j/AA/sYPTzr6SX/wBBjjrxjxz/AMFlv2pPEdsbTwlY6L4dyP8AXQW73E2frO7x/wDkOv1n0b/g21+GEGP+Eh+KWqXXr9n06KDP/fUstfQ/w/8A+DfL9iHwtItx4wv/ABH4ncHLR3N5HbwkemLeKOQf9/KLsl4qq/tH8kfxI/ar/aP+LqSW/wAQ/Gmq6jbygh7b7Q0VsQ3XMMWyP/x2vXf2fP8AgnL+2X+01Jb3Hwx8D340ydgP7U1BfsNiF6lhLNtDgDtGHPoK/uI+EX/BPP8AYo+BV9Fqvwz+G+jWd7AMR3VxEb24T3WW5aV1PHUEGvsukYuTerZ/P7+yH/wQJ+A/wp+zeLP2m77/AIT7W0w/9nxboNJibngrxLPjg5cop6GM1+92iaHovhrSLfQPDlnBp9hZxiKC2to1ihiReioigKqjsAAK1KKBBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//R/v4ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/S/v4ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/T/v4ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/Z"}},"cell_type":"markdown","id":"231abd66","metadata":{},"source":[""]},{"cell_type":"markdown","id":"5e6a4d0c","metadata":{},"source":["我们已经接近完成一个功能性的聊天机器人了。我们讨论了`文档加载`、`切分`、`存储`和`检索`。我们展示了如何使用`检索 QA`链在 Q+A 中使用`检索`生成输出。\n","\n","我们的机器人已经可以回答问题了,但还无法处理后续问题,无法进行真正的对话。好消息是,在本章中,我们将解决这个问题。\n","\n","我们现在将创建一个问答聊天机器人。它与之前非常相似,但我们将添加聊天历史的功能。这是您之前进行的任何对话或消息。这将使机器人在尝试回答问题时能够考虑到聊天历史的上下文。所以,如果您继续提问,它会知道您想谈论什么。"]},{"cell_type":"markdown","id":"1f698037","metadata":{},"source":["## 一、环境配置"]},{"cell_type":"code","execution_count":null,"id":"926fc482-dd03-40e1-8083-171aad3e2b26","metadata":{"height":232,"tags":[]},"outputs":[],"source":["import os\n","import openai\n","import sys\n","sys.path.append('../..')\n","\n","import panel as pn # GUI\n","pn.extension()\n","\n","from dotenv import load_dotenv, find_dotenv\n","_ = load_dotenv(find_dotenv()) # read local .env file\n","\n","openai.api_key = os.environ['OPENAI_API_KEY']"]},{"cell_type":"markdown","id":"f71bd908","metadata":{"height":30},"source":["以下代码是为了 openai LLM 版本备案,直至其被弃用(于 2023 年 9 月)。LLM 响应通常会有所不同,但在使用不同模型版本时,这种差异可能会更明显。"]},{"cell_type":"code","execution_count":2,"id":"83558969-e5aa-4fbc-933c-9c1534decf0a","metadata":{"height":147,"tags":[]},"outputs":[{"name":"stdout","output_type":"stream","text":["gpt-3.5-turbo-0301\n"]}],"source":["import datetime\n","current_date = datetime.datetime.now().date()\n","if current_date < datetime.date(2023, 9, 2):\n"," llm_name = \"gpt-3.5-turbo-0301\"\n","else:\n"," llm_name = \"gpt-3.5-turbo\"\n","print(llm_name)"]},{"cell_type":"markdown","id":"baddf039","metadata":{},"source":["如果您想在 `Lang Chain plus` 平台上进行实验:\n","\n","- 前往 langchain plus 平台并注册\n","\n","- 从您的帐户设置创建 api 密钥\n","\n","- 在下面的代码中使用此 api 密钥"]},{"cell_type":"code","execution_count":null,"id":"ba19ea7d","metadata":{"height":96,"tags":[]},"outputs":[],"source":["#import os\n","#os.environ[\"LANGCHAIN_TRACING_V2\"] = \"true\"\n","#os.environ[\"LANGCHAIN_ENDPOINT\"] = \"https://api.langchain.plus\"\n","#os.environ[\"LANGCHAIN_API_KEY\"] = \"...\""]},{"cell_type":"code","execution_count":3,"id":"ab80dc86","metadata":{"height":113,"tags":[]},"outputs":[],"source":["# 加载向量库,其中包含了所有课程材料的 Embedding。\n","from langchain.vectorstores import Chroma\n","from langchain.embeddings.openai import OpenAIEmbeddings\n","persist_directory = 'docs/chroma/'\n","embedding = OpenAIEmbeddings()\n","vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding)"]},{"cell_type":"code","execution_count":5,"id":"b7a409bf","metadata":{"height":79,"tags":[]},"outputs":[{"data":{"text/plain":["3"]},"execution_count":5,"metadata":{},"output_type":"execute_result"}],"source":["# 对向量库进行基本的相似度搜索\n","question = \"What are major topics for this class?\"\n","docs = vectordb.similarity_search(question,k=3)\n","len(docs)"]},{"cell_type":"code","execution_count":4,"id":"d59d01b0","metadata":{"height":79,"tags":[]},"outputs":[{"data":{"text/plain":["3"]},"execution_count":4,"metadata":{},"output_type":"execute_result"}],"source":["question = \"这门课的主要内容是什么?\"\n","docs = vectordb.similarity_search(question,k=3)\n","len(docs)"]},{"cell_type":"code","execution_count":5,"id":"01c58c2b","metadata":{"height":79,"tags":[]},"outputs":[{"data":{"text/plain":["'Hello there! How can I assist you today?'"]},"execution_count":5,"metadata":{},"output_type":"execute_result"}],"source":["from langchain.chat_models import ChatOpenAI\n","llm = ChatOpenAI(model_name=llm_name, temperature=0)\n","llm.predict(\"Hello world!\")"]},{"cell_type":"code","execution_count":7,"id":"d683c6ed","metadata":{"height":336},"outputs":[{"data":{"text/plain":["'Yes, probability is assumed to be a prerequisite for this class. The instructor assumes familiarity with basic probability and statistics, and will go over some of the prerequisites in the discussion sections as a refresher course. Thanks for asking!'"]},"execution_count":7,"metadata":{},"output_type":"execute_result"}],"source":["# 初始化一个 prompt 模板,创建一个检索 QA 链,然后传入一个问题并得到一个结果。\n","# 构建 prompt\n","from langchain.prompts import PromptTemplate\n","template = \"\"\"Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer. Use three sentences maximum. Keep the answer as concise as possible. Always say \"thanks for asking!\" at the end of the answer. \n","{context}\n","Question: {question}\n","Helpful Answer:\"\"\"\n","QA_CHAIN_PROMPT = PromptTemplate(input_variables=[\"context\", \"question\"],template=template,)\n","\n","# 运行 chain\n","from langchain.chains import RetrievalQA\n","question = \"Is probability a class topic?\"\n","qa_chain = RetrievalQA.from_chain_type(llm,\n"," retriever=vectordb.as_retriever(),\n"," return_source_documents=True,\n"," chain_type_kwargs={\"prompt\": QA_CHAIN_PROMPT})\n","\n","\n","result = qa_chain({\"query\": question})\n","result[\"result\"]"]},{"cell_type":"code","execution_count":6,"id":"b8aa6c11","metadata":{"height":351,"tags":[]},"outputs":[{"data":{"text/plain":["'概率是课堂主题之一,但这门课程不会过多涉及编程。需要对基本概率和统计学有一定的了解,以及基本的线性代数知识。谢谢你的提问!'"]},"execution_count":6,"metadata":{},"output_type":"execute_result"}],"source":["# 构建 prompt\n","from langchain.prompts import PromptTemplate\n","template = \"\"\"使用以下上下文来回答最后的问题。如果你不知道答案,就说你不知道,不要试图编造答案。最多使用三句话。尽量使答案简明扼要。总是在回答的最后说“谢谢你的提问!”。\n","{context}\n","问题: {question}\n","有用的回答:\"\"\"\n","QA_CHAIN_PROMPT = PromptTemplate(input_variables=[\"context\", \"question\"],template=template,)\n","\n","# 运行 chain\n","from langchain.chains import RetrievalQA\n","question = \"概率是课堂主题吗?\"\n","qa_chain = RetrievalQA.from_chain_type(llm,\n"," retriever=vectordb.as_retriever(),\n"," return_source_documents=True,\n"," chain_type_kwargs={\"prompt\": QA_CHAIN_PROMPT})\n","\n","\n","result = qa_chain({\"query\": question})\n","result[\"result\"]"]},{"cell_type":"markdown","id":"84f8d2e2","metadata":{},"source":["## 二、记忆(Memory)"]},{"cell_type":"markdown","id":"5263e1ed","metadata":{"height":30},"source":["现在让我们更进一步,添加一些记忆功能。\n","\n","我们将使用 `ConversationBufferMemory`。它保存聊天消息历史记录的列表,这些历史记录将在回答问题时与问题一起传递给聊天机器人,从而将它们添加到上下文中。\n","\n","需要注意的是,我们之前讨论的上下文检索等方法,在这里同样可用。 "]},{"cell_type":"code","execution_count":7,"id":"7e99e754","metadata":{"height":113,"tags":[]},"outputs":[],"source":["from langchain.memory import ConversationBufferMemory\n","memory = ConversationBufferMemory(\n"," memory_key=\"chat_history\", # 与 prompt 的输入变量保持一致。\n"," return_messages=True # 将以消息列表的形式返回聊天记录,而不是单个字符串\n",")"]},{"cell_type":"markdown","id":"244e1b7a","metadata":{},"source":["## 三、对话检索链(ConversationalRetrievalChain)"]},{"cell_type":"markdown","id":"39700b1c","metadata":{"height":30},"source":["在检索 QA 链的基础上,对话检索链添加了新步骤,将历史记录和新问题压缩为一个独立的问题,并在向量库中进行相关文档的查找。此外,当有多个答案时,内存记录下所有答案。我们在运行和观察其效果后,可以在UI中查看具体细节。 \n","\n","对话检索链(ConversationalRetrievalChain)在 QA 检索链的基础上增加了一个新的环节,而不仅仅是 memery。\n","\n","具体来说,它增加了一个步骤,该步骤将历史记录和新问题浓缩为一个独立的问题,并将其传递给向量存储器以查找相关文档。\n","\n","\n","我们将在运行后在用户界面中查看其效果。但现在,让我们来试试。我们可以提出一个问题。这是没有任何历史记录的,看看我们得到的结果。然后我们可以针对答案提出一个后续问题。这和之前一样。所以我们问,概率是一个类主题吗?我们会得到一些答案。"]},{"cell_type":"code","execution_count":8,"id":"23700502","metadata":{"height":147,"tags":[]},"outputs":[],"source":["from langchain.chains import ConversationalRetrievalChain\n","retriever=vectordb.as_retriever()\n","qa = ConversationalRetrievalChain.from_llm(\n"," llm,\n"," retriever=retriever,\n"," memory=memory\n",")"]},{"cell_type":"code","execution_count":10,"id":"e25b9fbb","metadata":{"height":62,"tags":[]},"outputs":[{"name":"stdout","output_type":"stream","text":["Yes, probability is a topic that will be assumed to be familiar to students in this class. The instructor assumes that students have a basic understanding of probability and statistics, and will go over some of the prerequisites as a refresher course in the discussion sections.\n"]}],"source":["question = \"Is probability a class topic?\"\n","result = qa({\"question\": question})\n","print(result['answer'])"]},{"cell_type":"code","execution_count":9,"id":"622478ba","metadata":{"height":69,"scrolled":true,"tags":[]},"outputs":[{"name":"stdout","output_type":"stream","text":["是的,根据文本中的描述,概率是这门课程的一个基本主题,因此学生需要对基本的概率和统计知识有所了解。\n"]}],"source":["question = \"概率是一个课堂主题吗?\"\n","result = qa({\"question\": question})\n","print(result['answer'])"]},{"cell_type":"code","execution_count":11,"id":"5b280672","metadata":{"height":62,"tags":[]},"outputs":[{"name":"stdout","output_type":"stream","text":["The reason for needing those prerequisites in the class is that the instructor assumes that all students have a basic knowledge of computer science and knowledge of the basic computer skills and principles, such as knowing what big-O notation is.\n"]}],"source":["question = \"why are those prerequesites needed?\"\n","result = qa({\"question\": question})\n","print(result['answer'])"]},{"cell_type":"code","execution_count":10,"id":"fcd08a60","metadata":{"height":70,"tags":[]},"outputs":[{"name":"stdout","output_type":"stream","text":["学生需要对基本的概率和统计知识有所了解,因为这些知识是机器学习的基础。在机器学习中,我们需要使用概率和统计来理解和解决各种问题,例如分类、回归、聚类等。如果学生没有这些基础知识,将很难理解机器学习的概念和方法。此外,对于那些已经学过概率和统计的学生,这门课程将帮助他们将这些知识应用到机器学习中。\n"]}],"source":["question = \"为什么需要这些先决条件?\"\n","result = qa({\"question\": question})\n","print(result['answer'])"]},{"cell_type":"markdown","id":"31e0742e-2085-4635-b87d-6596925f1077","metadata":{"tags":[]},"source":["## 四、创建一个适用于您文档的聊天机器人"]},{"cell_type":"code","execution_count":12,"id":"8622a19c-0711-49aa-8d1d-9ddfb6af7032","metadata":{"height":181,"tags":[]},"outputs":[],"source":["from langchain.embeddings.openai import OpenAIEmbeddings\n","from langchain.text_splitter import CharacterTextSplitter, RecursiveCharacterTextSplitter\n","from langchain.vectorstores import DocArrayInMemorySearch\n","from langchain.document_loaders import TextLoader\n","from langchain.chains import RetrievalQA, ConversationalRetrievalChain\n","from langchain.memory import ConversationBufferMemory\n","from langchain.chat_models import ChatOpenAI\n","from langchain.document_loaders import TextLoader\n","from langchain.document_loaders import PyPDFLoader"]},{"cell_type":"markdown","id":"95f69afe","metadata":{},"source":["跟视频拍摄相比,聊天机器人代码已进行了一些更新。图形用户界面的外观也因运行平台而异。"]},{"cell_type":"code","execution_count":13,"id":"69dff120","metadata":{"height":404},"outputs":[],"source":["def load_db(file, chain_type, k):\n"," \"\"\"\n"," 该函数用于加载 PDF 文件,切分文档,生成文档的嵌入向量,创建向量数据库,定义检索器,并创建聊天机器人实例。\n","\n"," 参数:\n"," file (str): 要加载的 PDF 文件路径。\n"," chain_type (str): 链类型,用于指定聊天机器人的类型。\n"," k (int): 在检索过程中,返回最相似的 k 个结果。\n","\n"," 返回:\n"," qa (ConversationalRetrievalChain): 创建的聊天机器人实例。\n"," \"\"\"\n"," # 载入文档\n"," loader = PyPDFLoader(file)\n"," documents = loader.load()\n"," # 切分文档\n"," text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=150)\n"," docs = text_splitter.split_documents(documents)\n"," # 定义 Embeddings\n"," embeddings = OpenAIEmbeddings()\n"," # 根据数据创建向量数据库\n"," db = DocArrayInMemorySearch.from_documents(docs, embeddings)\n"," # 定义检索器\n"," retriever = db.as_retriever(search_type=\"similarity\", search_kwargs={\"k\": k})\n"," # 创建 chatbot 链,Memory 由外部管理\n"," qa = ConversationalRetrievalChain.from_llm(\n"," llm=ChatOpenAI(model_name=llm_name, temperature=0), \n"," chain_type=chain_type, \n"," retriever=retriever, \n"," return_source_documents=True,\n"," return_generated_question=True,\n"," )\n"," return qa \n"]},{"cell_type":"code","execution_count":14,"id":"b525019d-3acd-40ff-9844-141116155d68","metadata":{"height":1320,"tags":[]},"outputs":[],"source":["import panel as pn\n","import param\n","\n","# 用于存储聊天记录、回答、数据库查询和回复\n","class cbfs(param.Parameterized):\n"," chat_history = param.List([])\n"," answer = param.String(\"\")\n"," db_query = param.String(\"\")\n"," db_response = param.List([])\n"," \n"," def __init__(self, **params):\n"," super(cbfs, self).__init__( **params)\n"," self.panels = []\n"," self.loaded_file = \"docs/cs229_lectures/MachineLearning-Lecture01.pdf\"\n"," self.qa = load_db(self.loaded_file,\"stuff\", 4)\n"," \n"," # 将文档加载到聊天机器人中\n"," def call_load_db(self, count):\n"," \"\"\"\n"," count: 数量\n"," \"\"\"\n"," if count == 0 or file_input.value is None: # 初始化或未指定文件 :\n"," return pn.pane.Markdown(f\"Loaded File: {self.loaded_file}\")\n"," else:\n"," file_input.save(\"temp.pdf\") # 本地副本\n"," self.loaded_file = file_input.filename\n"," button_load.button_style=\"outline\"\n"," self.qa = load_db(\"temp.pdf\", \"stuff\", 4)\n"," button_load.button_style=\"solid\"\n"," self.clr_history()\n"," return pn.pane.Markdown(f\"Loaded File: {self.loaded_file}\")\n","\n"," # 处理对话链\n"," def convchain(self, query):\n"," \"\"\"\n"," query: 用户的查询\n"," \"\"\"\n"," if not query:\n"," return pn.WidgetBox(pn.Row('User:', pn.pane.Markdown(\"\", width=600)), scroll=True)\n"," result = self.qa({\"question\": query, \"chat_history\": self.chat_history})\n"," self.chat_history.extend([(query, result[\"answer\"])])\n"," self.db_query = result[\"generated_question\"]\n"," self.db_response = result[\"source_documents\"]\n"," self.answer = result['answer'] \n"," self.panels.extend([\n"," pn.Row('User:', pn.pane.Markdown(query, width=600)),\n"," pn.Row('ChatBot:', pn.pane.Markdown(self.answer, width=600, style={'background-color': '#F6F6F6'}))\n"," ])\n"," inp.value = '' # 清除时清除装载指示器\n"," return pn.WidgetBox(*self.panels,scroll=True)\n"," \n"," # 获取最后发送到数据库的问题\n"," @param.depends('db_query ', )\n"," def get_lquest(self):\n"," if not self.db_query :\n"," return pn.Column(\n"," pn.Row(pn.pane.Markdown(f\"Last question to DB:\", styles={'background-color': '#F6F6F6'})),\n"," pn.Row(pn.pane.Str(\"no DB accesses so far\"))\n"," )\n"," return pn.Column(\n"," pn.Row(pn.pane.Markdown(f\"DB query:\", styles={'background-color': '#F6F6F6'})),\n"," pn.pane.Str(self.db_query )\n"," )\n"," \n"," # 获取数据库返回的源文件\n"," @param.depends('db_response', )\n"," def get_sources(self):\n"," if not self.db_response:\n"," return \n"," rlist=[pn.Row(pn.pane.Markdown(f\"Result of DB lookup:\", styles={'background-color': '#F6F6F6'}))]\n"," for doc in self.db_response:\n"," rlist.append(pn.Row(pn.pane.Str(doc)))\n"," return pn.WidgetBox(*rlist, width=600, scroll=True)\n","\n"," # 获取当前聊天记录\n"," @param.depends('convchain', 'clr_history') \n"," def get_chats(self):\n"," if not self.chat_history:\n"," return pn.WidgetBox(pn.Row(pn.pane.Str(\"No History Yet\")), width=600, scroll=True)\n"," rlist=[pn.Row(pn.pane.Markdown(f\"Current Chat History variable\", styles={'background-color': '#F6F6F6'}))]\n"," for exchange in self.chat_history:\n"," rlist.append(pn.Row(pn.pane.Str(exchange)))\n"," return pn.WidgetBox(*rlist, width=600, scroll=True)\n"," \n"," # 清除聊天记录\n"," def clr_history(self,count=0):\n"," self.chat_history = []\n"," return \n"]},{"cell_type":"markdown","id":"54958d9d-2a0f-457d-9a2b-97e6c9859684","metadata":{"tags":[]},"source":["## 五、创建聊天机器人"]},{"cell_type":"code","execution_count":15,"id":"73b7f691-6314-4fcc-9e48-0d09d61099fd","metadata":{"height":691,"tags":[]},"outputs":[{"data":{},"metadata":{},"output_type":"display_data"},{"data":{"application/vnd.holoviews_exec.v0+json":"","text/html":["\n",""],"text/plain":["Column\n"," [0] Row\n"," [0] Markdown(str)\n"," [1] Tabs\n"," [0] Column\n"," [0] Row\n"," [0] TextInput(placeholder='Enter text here…')\n"," [1] Divider()\n"," [2] ParamFunction(function, _pane=WidgetBox, defer_load=False, height=300, loading_indicator=True)\n"," [3] Divider()\n"," [1] Column\n"," [0] ParamMethod(method, _pane=Column, defer_load=False)\n"," [1] Divider()\n"," [2] ParamMethod(method, _pane=Str, defer_load=False)\n"," [2] Column\n"," [0] ParamMethod(method, _pane=WidgetBox, defer_load=False)\n"," [1] Divider()\n"," [3] Column\n"," [0] Row\n"," [0] FileInput(accept='.pdf')\n"," [1] Button(button_type='primary', name='Load DB')\n"," [2] ParamFunction(function, _pane=Markdown, defer_load=False)\n"," [1] Row\n"," [0] Button(button_type='warning', name='Clear History')\n"," [1] Markdown(str)\n"," [2] Divider()\n"," [3] Row\n"," [0] Image(str, width=400)"]},"execution_count":15,"metadata":{"application/vnd.holoviews_exec.v0+json":{"id":"747fb5bf-923d-4aee-a1ad-027155ab96d6"}},"output_type":"execute_result"}],"source":["# 初始化聊天机器人\n","cb = cbfs() \n","\n","# 定义界面的小部件\n","file_input = pn.widgets.FileInput(accept='.pdf') # PDF 文件的文件输入小部件\n","button_load = pn.widgets.Button(name=\"Load DB\", button_type='primary') # 加载数据库的按钮\n","button_clearhistory = pn.widgets.Button(name=\"Clear History\", button_type='warning') # 清除聊天记录的按钮\n","button_clearhistory.on_click(cb.clr_history) # 将清除历史记录功能绑定到按钮上\n","inp = pn.widgets.TextInput( placeholder='Enter text here…') # 用于用户查询的文本输入小部件\n","\n","# 将加载数据库和对话的函数绑定到相应的部件上\n","bound_button_load = pn.bind(cb.call_load_db, button_load.param.clicks)\n","conversation = pn.bind(cb.convchain, inp) \n","\n","jpg_pane = pn.pane.Image( './img/convchain.jpg')\n","\n","# 使用 Panel 定义界面布局\n","tab1 = pn.Column(\n"," pn.Row(inp),\n"," pn.layout.Divider(),\n"," pn.panel(conversation, loading_indicator=True, height=300),\n"," pn.layout.Divider(),\n",")\n","tab2= pn.Column(\n"," pn.panel(cb.get_lquest),\n"," pn.layout.Divider(),\n"," pn.panel(cb.get_sources ),\n",")\n","tab3= pn.Column(\n"," pn.panel(cb.get_chats),\n"," pn.layout.Divider(),\n",")\n","tab4=pn.Column(\n"," pn.Row( file_input, button_load, bound_button_load),\n"," pn.Row( button_clearhistory, pn.pane.Markdown(\"Clears chat history. Can use to start a new topic\" )),\n"," pn.layout.Divider(),\n"," pn.Row(jpg_pane.clone(width=400))\n",")\n","# 将所有选项卡合并为一个仪表盘\n","dashboard = pn.Column(\n"," pn.Row(pn.pane.Markdown('# ChatWithYourData_Bot')),\n"," pn.Tabs(('Conversation', tab1), ('Database', tab2), ('Chat History', tab3),('Configure', tab4))\n",")\n","dashboard"]},{"cell_type":"markdown","id":"d2d2a016","metadata":{"height":30},"source":["请随意复制此代码并对其进行修改以添加您自己的功能。您可以通过更改 `load_db` 函数和 `convchain` 方法中的配置来尝试备用内存和检索器模型。[panel](https://panel.holoviz.org/) 和 [Param](https://param.holoviz.org/) 有许多有用的特性和小部件,可以用来扩展GUI。"]},{"cell_type":"markdown","id":"d0275b31-b5e3-4e15-a77f-1bf30c3e04e4","metadata":{},"source":["## 六、致谢\n","\n","基于 panel 的聊天机器人的灵感来自 Sophia Yang, [github](https://github.com/sophiamyang/tutorials-LangChain)"]}],"metadata":{"kernelspec":{"display_name":"Python 3 (ipykernel)","language":"python","name":"python3"},"language_info":{"codemirror_mode":{"name":"ipython","version":3},"file_extension":".py","mimetype":"text/x-python","name":"python","nbconvert_exporter":"python","pygments_lexer":"ipython3","version":"3.9.12"}},"nbformat":4,"nbformat_minor":5}
diff --git "a/content/\345\277\205\344\277\256\345\233\233-LangChain Chat with Your Data/requirements.txt" "b/content/\345\277\205\344\277\256\345\233\233-LangChain Chat with Your Data/requirements.txt"
deleted file mode 100644
index 929b8079..00000000
--- "a/content/\345\277\205\344\277\256\345\233\233-LangChain Chat with Your Data/requirements.txt"
+++ /dev/null
@@ -1,13 +0,0 @@
-chromadb==0.5.0
-docarray==0.40.0
-jupyter_bokeh==4.0.5
-lark==1.1.9
-langchain==0.2.3
-langchain_community==0.2.4
-openai==1.33.0
-panel==1.4.4
-pydub==0.25.1
-pypdf==4.2.0
-python-dotenv==1.0.1
-scikit-learn==1.5.0
-tiktoken==0.7.0
\ No newline at end of file
diff --git "a/content/\351\200\211\344\277\256-Functions, Tools and Agents with LangChain/1. \347\256\200\344\273\213 Introduction.md" "b/content/\351\200\211\344\277\256-Functions, Tools and Agents with LangChain/1. \347\256\200\344\273\213 Introduction.md"
deleted file mode 100644
index cd1a96fd..00000000
--- "a/content/\351\200\211\344\277\256-Functions, Tools and Agents with LangChain/1. \347\256\200\344\273\213 Introduction.md"
+++ /dev/null
@@ -1,26 +0,0 @@
-# 第一章 简介
-
-欢迎来到《使用 LangChain 的函数、工具和代理》课程,让我们一起开始本次学习!
-
-本教程由 LangChain 创始人 Harrison Chase 与 DeepLearning.AI 合作推出,将介绍如何使用 OpenAI 的 API 以及使用 LangChain 表达式语言(LCEL)来构建 Agent。
-
-## 一、背景
-
-随着大模型的快速发展,已经显示出了 LLM 使用自然语言与人类进行交互的强大能力。
-
-现在人们不仅限于用 LLM 来生成文本内容,而希望能与现有的软件基础设施进行交互,比如能够自主判断函数的调用,灵活地调用代码作为子程序。这样可以用来处理一些格式化的数据,这些数据有时候并不是很好的被 LLM 所理解,比如 JSON 格式数据的值,而不仅仅是单纯的文本。
-
-## 二、课程基本内容
-
-LangChain 是用于构建大模型应用程序的开源框架,搭建了一个开发者与 LLMs 之间的桥梁,并且能支持多个 LLMs 模型、向量存储等等功能,在前面的课程也有介绍过 LangChain。
-
-本次课程主要是顺应 LLMs 的潮流,如今 LangChain 与 ChatGPT 的 API 函数调用都有了新的更新,使用了一种名为`LangChain Expression Language(LCEL)`的新语法构建对话代理,用于标记、提取、工具选择和路由等任务。
-
-在本次课程中,主要内容如下
-
-1. 介绍 OpenAI 的 API 调用的新功能,能够格式化输出的格式。
-2. 学习 LangChain 表达语言 LCEL(Langchain Expression Language)的开发,简化了进行组合组件或链的过程。
-3. 学习如何将函数应用于标记和数据提取等任务
-4. 利用 LangChain 工具和 LLMs 函数构建一个功能强大的对话代理(Agent),能够灵活选择工具进行推理。
-
-通过使用这些工具和函数,我们可以让代理进行复杂的多步推理,并且自动选择工具来解决问题,增强 Agent 的智能,让我们一起探索 Agent 的强大能力吧!
diff --git "a/content/\351\200\211\344\277\256-Functions, Tools and Agents with LangChain/2. OpenAI\345\207\275\346\225\260\350\260\203\347\224\250 OpenAI Function Calling.ipynb" "b/content/\351\200\211\344\277\256-Functions, Tools and Agents with LangChain/2. OpenAI\345\207\275\346\225\260\350\260\203\347\224\250 OpenAI Function Calling.ipynb"
deleted file mode 100644
index 4b177a3a..00000000
--- "a/content/\351\200\211\344\277\256-Functions, Tools and Agents with LangChain/2. OpenAI\345\207\275\346\225\260\350\260\203\347\224\250 OpenAI Function Calling.ipynb"
+++ /dev/null
@@ -1,1259 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "id": "7134fad1",
- "metadata": {
- "id": "7134fad1"
- },
- "source": [
- "# 第二章 OpenAI 函数调用 OpenAI Function Calling\n",
- "\n",
- "本章主要介绍 OpenAI 的 API 提供的新功能,在最近几个月,OpenAI 对一些新的模型进行了微调,分别是`gpt-3.5-turbo-0613`和`gpt-4-0613`。\n",
- "\n",
- "假如我们有一个工具函数,在一些特定情况下需要调用,经过微调后,这些模型能够传入新的参数,可以通过这个新的参数来自动判断是否调用工具函数,如果判断需要调用工具函数,会返回这个工具函数和对应的输入参数。\n",
- "\n",
- "\n",
- "- [一、OpenAI函数新参数](#一openai函数新参数)\n",
- " - [1.1 简单例子:得到当前天气](#11-简单例子得到当前天气) \n",
- " - [1.2 新参数:functions](#12-新参数functions) \n",
- " - [1.3 相关提示调用结果](#13-相关提示调用结果) \n",
- " - [1.4 无关提示调用结果](#14-无关提示调用结果)\n",
- "- [二、Function Call参数模式](#二function-call参数模式)\n",
- " - [2.1 自动判断是否调用](#21-自动判断是否调用) \n",
- " - [2.2 强制不调用](#22-强制不调用) \n",
- " - [2.3 强制调用](#23-强制调用) \n",
- "- [三、函数调用以及执行函数](#三函数调用以及执行函数) \n",
- "- [四、英文版提示](#四英文版提示)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "d0d4e112",
- "metadata": {},
- "source": [
- "## 一、OpenAI函数新参数\n",
- "\n",
- "首先我们直接定义使用`OPENAI_API_KEY`,方便后续去调用OpenAI的API接口,并利用其函数。"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "id": "68b323d9",
- "metadata": {
- "id": "68b323d9"
- },
- "outputs": [],
- "source": [
- "import os\n",
- "import openai\n",
- "\n",
- "os.environ['OPENAI_API_KEY'] = \"YOUR_API_KEY\"\n",
- "openai.api_key = os.environ['OPENAI_API_KEY']"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "fba14f39",
- "metadata": {
- "id": "fba14f39"
- },
- "source": [
- "### 1.1 简单例子:得到当前天气\n",
- "\n",
- "首先我们使用 OpenAI 的使用的第一个例子,定义了一个`get_current_weather`的函数,正常来说,获取当前天气是语言模型本身不能完全做到的事情。因此,我们希望能够将语言模型和这样的函数结合起来,以当前的信息来增强它。\n",
- "\n",
- "在这个函数,我们固定了返回的值,比如温度固定为 22 摄氏度,但在实际应用中,这可能涉及到调用天气 API 或一些外部知识源。"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 28,
- "id": "041aacb9",
- "metadata": {
- "id": "041aacb9"
- },
- "outputs": [],
- "source": [
- "import json\n",
- "\n",
- "# 定义一个函数,用于获取给定位置的当前天气\n",
- "def get_current_weather(location, unit=\"摄氏度\"):\n",
- " \"\"\"获取指定位置的当前天气\"\"\"\n",
- " # 模拟返回相同的天气情况的示例函数\n",
- " # 在实际应用环境中,这可以是天气API\n",
- " # 创建一个天气信息的字典\n",
- " weather_info = {\n",
- " \"location\": location, # 天气的位置\n",
- " \"temperature\": \"22\", # 温度\n",
- " \"unit\": unit, # 温度单位,默认为摄氏度\n",
- " \"forecast\": [\"晴\", \"多云\"], # 天气预报\n",
- " }\n",
- " # 将天气信息转换为JSON格式的字符串并返回\n",
- " return json.dumps(weather_info)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "a7ba1a92",
- "metadata": {
- "id": "a7ba1a92"
- },
- "source": [
- "### 1.2 新参数:functions\n",
- "\n",
- "那我们如何将这样的函数传给语言模型呢?OpenAI引入了一个名为`functions`的新参数,通过该参数,我们可以传递一个函数定义列表。由于我们只有一个函数,所以列表中只有一个元素。这是一个JSON对象,具有几个不同的参数。\n",
- "\n",
- "- name:函数的名称\n",
- "- description:函数的描述\n",
- "- parameters:参数对象,里面有一些属性设置\n",
- " - type:类型\n",
- " - properties:本身是一个对象,传入的是对应的参数的描述。在例子中我们可以看到有两个元素,`location`和`unit`。每个这些元素都有一个类型,即字符串,然后是一个描述。`unit`是一个外部参数的设置,比如这里我们希望它可以是摄氏度或华氏度,所以我们可以在这里定义他的类型和以及枚举参数值。\n",
- " - required:必填的参数,比如这里我们需要的参数就是`location`。\n",
- "\n",
- "在函数定义中,`description`以及在`properties`中的参数非常重要,因为这些将直接传递给语言模型,语言模型将使用这些描述来判断是否使用此函数。"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 29,
- "id": "d00a4ad8",
- "metadata": {
- "id": "d00a4ad8"
- },
- "outputs": [],
- "source": [
- "# 定义一个函数\n",
- "functions = [\n",
- " {\n",
- " \"name\": \"get_current_weather\",\n",
- " \"description\": \"获取指定位置的当前天气情况\",\n",
- " \"parameters\": {\n",
- " \"type\": \"object\",\n",
- " \"properties\": {\n",
- " \"location\": {\n",
- " \"type\": \"string\",\n",
- " \"description\": \"城市和省份,例如:北京,北京市\",\n",
- " },\n",
- " \"unit\": {\"type\": \"string\", \"enum\": [\"摄氏度\", \"华氏度\"]},\n",
- " },\n",
- " \"required\": [\"location\"],\n",
- " },\n",
- " }\n",
- "]"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "ecfb5fd6",
- "metadata": {
- "id": "ecfb5fd6"
- },
- "source": [
- "### 1.3 相关提示调用结果\n",
- "\n",
- "接下来我们就可以定义一个有关于天气的问题,如”北京的天气怎么样?“,然后使用 OpenAI 的函数进行调用对话的 API。首先我们得选取较新的模型,如`gpt-3.5-turbo-0613`,然后我们再将上述定义的 function 函数传入,查看最后的响应结果。\n",
- "\n",
- "从结果上来看,返回的消息的角色是助手,内容为空,而是有一个函数调用参数`function_call`,其中包含两个对象,`name`和`arguments`。`Name`是`get_current_weather`,这与我们传递的函数的名称相同,然后`arguments`是这个 JSON 格式的字典,里面是我们需要的参数。"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "6c9d6e3a",
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{\n",
- " \"choices\": [\n",
- " {\n",
- " \"finish_reason\": \"function_call\",\n",
- " \"index\": 0,\n",
- " \"logprobs\": null,\n",
- " \"message\": {\n",
- " \"content\": null,\n",
- " \"function_call\": {\n",
- " \"arguments\": \"{\\n \\\"location\\\": \\\"\\u5317\\u4eac\\uff0c\\u5317\\u4eac\\u5e02\\\",\\n \\\"unit\\\": \\\"\\u6444\\u6c0f\\u5ea6\\\"\\n}\",\n",
- " \"name\": \"get_current_weather\"\n",
- " },\n",
- " \"role\": \"assistant\"\n",
- " }\n",
- " }\n",
- " ],\n",
- " \"created\": 1709602992,\n",
- " \"id\": \"chatcmpl-8zE7kIlpxzjsiuxH4q6wtRh8CLDH3\",\n",
- " \"model\": \"gpt-3.5-turbo-0613\",\n",
- " \"object\": \"chat.completion\",\n",
- " \"system_fingerprint\": null,\n",
- " \"usage\": {\n",
- " \"completion_tokens\": 30,\n",
- " \"prompt_tokens\": 95,\n",
- " \"total_tokens\": 125\n",
- " }\n",
- "}\n"
- ]
- }
- ],
- "source": [
- "import openai\n",
- "\n",
- "# 定义输入消息\n",
- "messages = [\n",
- " {\n",
- " \"role\": \"user\",\n",
- " \"content\": \"北京的天气怎么样?\"\n",
- " }\n",
- "]\n",
- "\n",
- "# 调用OpenAI的ChatCompletion API获取响应\n",
- "response = openai.ChatCompletion.create(\n",
- " model=\"gpt-3.5-turbo-0613\",\n",
- " messages=messages,\n",
- " functions=functions # 传入function参数\n",
- ")\n",
- "\n",
- "# 打印响应结果\n",
- "print(response)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "388c7dd5",
- "metadata": {},
- "source": [
- "我们也可以看到响应的参数,比如在这里就是两个参数,分别是`location`和`unit`。"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "88851464",
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{\n",
- " \"location\": \"北京,北京市\",\n",
- " \"unit\": \"摄氏度\"\n",
- "}\n"
- ]
- }
- ],
- "source": [
- "# 打印传入参数\n",
- "print(response[\"choices\"][0][\"message\"][\"function_call\"][\"arguments\"])"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "c04f92a6",
- "metadata": {
- "id": "c04f92a6"
- },
- "source": [
- "如果我们仔细看响应的话,我们会发现内容现在是空的,`function_call`是一个字典,`function_call`中的`arguments`参数本身也是一个 JSON 字典。因此我们可以使用`json.loads`将其加载到 Python 字典中。它返回的参数可以直接传递给我们上述定义的`get_current_weather`函数。\n",
- "\n",
- "我们会发现,使用 OpenAI 进行函数调用并不直接调用工具函数,我们还是需要去调用工具函数,它只是告诉我们要调用哪个函数,即名称,以及该函数的参数应该是什么。以及由于他并没有去执行函数,所以说,如果我们在使用`json.loads`解码的时候遇到了一些问题,那实际上是模型的问题,所以这一部分可以考虑在写工具函数的时候做一些保护措施,后续也会讨论这一个点。"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "23c71606",
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{\n",
- " \"content\": null,\n",
- " \"function_call\": {\n",
- " \"arguments\": \"{\\n \\\"location\\\": \\\"\\u5317\\u4eac\\uff0c\\u5317\\u4eac\\u5e02\\\",\\n \\\"unit\\\": \\\"\\u6444\\u6c0f\\u5ea6\\\"\\n}\",\n",
- " \"name\": \"get_current_weather\"\n",
- " },\n",
- " \"role\": \"assistant\"\n",
- "}\n"
- ]
- }
- ],
- "source": [
- "# 获取response里面的message信息\n",
- "response_message = response[\"choices\"][0][\"message\"]\n",
- "\n",
- "print(response_message)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "1f47fc65",
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{\n",
- " \"location\": \"北京,北京市\",\n",
- " \"unit\": \"摄氏度\"\n",
- "}\n"
- ]
- }
- ],
- "source": [
- "# 打印参数\n",
- "print(response[\"choices\"][0][\"message\"][\"function_call\"][\"arguments\"])"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "03007bf0",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "'{\"location\": {\"location\": \"\\\\u5317\\\\u4eac\\\\uff0c\\\\u5317\\\\u4eac\\\\u5e02\", \"unit\": \"\\\\u6444\\\\u6c0f\\\\u5ea6\"}, \"temperature\": \"22\", \"unit\": \"\\\\u6444\\\\u6c0f\\\\u5ea6\", \"forecast\": [\"\\\\u6674\", \"\\\\u591a\\\\u4e91\"]}'"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "# 将JSON格式的字符串转换为Python对象\n",
- "args = json.loads(response_message[\"function_call\"][\"arguments\"])\n",
- "\n",
- "# 调用get_current_weather函数并传入参数args\n",
- "get_current_weather(args)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "31263afb",
- "metadata": {
- "id": "31263afb"
- },
- "source": [
- "### 1.4 无关提示调用结果\n",
- "\n",
- "接下来,我们也探讨一下,如果问的问题与函数无关会产生什么样的,也就是与天气无关,会返回什么样的信息呢?从结果上来看,我们可以返回的内容正常并且没有`function_call`参数,也就是在语言模型中判断不使用工具函数。"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "4a1ea679",
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{\n",
- " \"choices\": [\n",
- " {\n",
- " \"finish_reason\": \"stop\",\n",
- " \"index\": 0,\n",
- " \"logprobs\": null,\n",
- " \"message\": {\n",
- " \"content\": \"\\u4f60\\u597d\\uff01\\u6709\\u4ec0\\u4e48\\u6211\\u53ef\\u4ee5\\u5e2e\\u52a9\\u4f60\\u7684\\u5417\\uff1f\",\n",
- " \"role\": \"assistant\"\n",
- " }\n",
- " }\n",
- " ],\n",
- " \"created\": 1709602993,\n",
- " \"id\": \"chatcmpl-8zE7lZ3keV5JGVTFqvAWOGxit4cXj\",\n",
- " \"model\": \"gpt-3.5-turbo-0613\",\n",
- " \"object\": \"chat.completion\",\n",
- " \"system_fingerprint\": null,\n",
- " \"usage\": {\n",
- " \"completion_tokens\": 19,\n",
- " \"prompt_tokens\": 88,\n",
- " \"total_tokens\": 107\n",
- " }\n",
- "}\n"
- ]
- }
- ],
- "source": [
- "# 与天气无关提示调用\n",
- "messages = [\n",
- " {\n",
- " \"role\": \"user\",\n",
- " \"content\": \"你好!\",\n",
- " }\n",
- "]\n",
- "\n",
- "response = openai.ChatCompletion.create(\n",
- " model=\"gpt-3.5-turbo-0613\",\n",
- " messages=messages,\n",
- " functions=functions,\n",
- " function_call=\"auto\",\n",
- ")\n",
- "\n",
- "print(response)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "6ed07bb6",
- "metadata": {},
- "source": [
- "由于编码问题,我们可以单独打印对应的返回的文本信息"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "a89df974",
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "你好!有什么我可以帮助你的吗?\n"
- ]
- }
- ],
- "source": [
- "print(response[\"choices\"][0][\"message\"][\"content\"])"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "c67fac41",
- "metadata": {
- "id": "c67fac41"
- },
- "source": [
- "## 二、Function Call参数模式\n",
- "\n",
- "`function_call`参数一共有3种模式,我们可以传递其他参数`function_call`以强制模型使用或不使用函数。\n",
- "\n",
- "1. 默认情况下,它设置为`auto`,也就是模型自行选择。\n",
- "2. 在第二种模式中,我们可以强制它调用一个函数。如果我们希望始终返回函数\n",
- "3. 另一种模式是`none`。这会强制语言模型不使用提供的任何函数。\n",
- "\n",
- "### 2.1 自动判断是否调用\n",
- "\n",
- "`auto`模式就是大模型自行选择是否要返回参数,这一部分也是默认的,上述所有的方式都是`auto`的模式\n",
- "\n",
- "### 2.2 强制不调用\n",
- "\n",
- "`none`模式对于这个例子来说并不重要,因为内容`你好`不需要函数调用,所以我们看到它没有被使用。"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "id": "ba400aa9",
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "ba400aa9",
- "outputId": "8b563e4f-c447-45a7-eb42-6390488a80b9"
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{\n",
- " \"id\": \"chatcmpl-8nfuv5tlp6UaSwUfmeHppJkQyFpCW\",\n",
- " \"object\": \"chat.completion\",\n",
- " \"created\": 1706849893,\n",
- " \"model\": \"gpt-3.5-turbo-0613\",\n",
- " \"choices\": [\n",
- " {\n",
- " \"index\": 0,\n",
- " \"message\": {\n",
- " \"role\": \"assistant\",\n",
- " \"content\": \"\\u4f60\\u597d\\uff01\\u6709\\u4ec0\\u4e48\\u53ef\\u4ee5\\u5e2e\\u52a9\\u4f60\\u7684\\u5417\\uff1f\"\n",
- " },\n",
- " \"logprobs\": null,\n",
- " \"finish_reason\": \"stop\"\n",
- " }\n",
- " ],\n",
- " \"usage\": {\n",
- " \"prompt_tokens\": 88,\n",
- " \"completion_tokens\": 17,\n",
- " \"total_tokens\": 105\n",
- " },\n",
- " \"system_fingerprint\": null\n",
- "}\n",
- "你好!有什么可以帮助你的吗?\n"
- ]
- }
- ],
- "source": [
- "# 无关提示强制不调用\n",
- "messages = [\n",
- " {\n",
- " \"role\": \"user\",\n",
- " \"content\": \"你好\",\n",
- " }\n",
- "]\n",
- "response = openai.ChatCompletion.create(\n",
- " model=\"gpt-3.5-turbo-0613\",\n",
- " messages=messages,\n",
- " functions=functions,\n",
- " function_call=\"none\", # 传入参数强制不调用\n",
- ")\n",
- "print(response)\n",
- "print(response[\"choices\"][0][\"message\"][\"content\"])"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "3bcd0bb1",
- "metadata": {
- "id": "3bcd0bb1"
- },
- "source": [
- "那如果我们在需要使用工具的函数时候强制不调用(也就是使用第二种模式)会出现什么结果呢?从结果上来看,他依然有正常的`role`和`content`,但是因为我们强制不调用函数,所以他在试图返回正确的参数,但是并不正确。"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "id": "d19386d5",
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "d19386d5",
- "outputId": "0f206c8e-21e9-4aca-c6b2-7674650d723e"
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{\n",
- " \"id\": \"chatcmpl-8nfv0wFX6tqcaoU2gT4KqICymXDxa\",\n",
- " \"object\": \"chat.completion\",\n",
- " \"created\": 1706849898,\n",
- " \"model\": \"gpt-3.5-turbo-0613\",\n",
- " \"choices\": [\n",
- " {\n",
- " \"index\": 0,\n",
- " \"message\": {\n",
- " \"role\": \"assistant\",\n",
- " \"content\": \"\\u8bf7\\u7a0d\\u7b49\\uff0c\\u6211\\u4e3a\\u60a8\\u67e5\\u627e\\u5317\\u4eac\\u7684\\u5929\\u6c14\\u60c5\\u51b5\\u3002\"\n",
- " },\n",
- " \"logprobs\": null,\n",
- " \"finish_reason\": \"stop\"\n",
- " }\n",
- " ],\n",
- " \"usage\": {\n",
- " \"prompt_tokens\": 95,\n",
- " \"completion_tokens\": 18,\n",
- " \"total_tokens\": 113\n",
- " },\n",
- " \"system_fingerprint\": null\n",
- "}\n",
- "请稍等,我为您查找北京的天气情况。\n"
- ]
- }
- ],
- "source": [
- "# 相关提示强制不调用\n",
- "messages = [\n",
- " {\n",
- " \"role\": \"user\",\n",
- " \"content\": \"北京天气怎么样?\",\n",
- " }\n",
- "]\n",
- "response = openai.ChatCompletion.create(\n",
- " model=\"gpt-3.5-turbo-0613\",\n",
- " messages=messages,\n",
- " functions=functions,\n",
- " function_call=\"none\", # 传入参数强制不调用\n",
- ")\n",
- "print(response)\n",
- "print(response[\"choices\"][0][\"message\"][\"content\"])"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "4ed657cb",
- "metadata": {
- "id": "4ed657cb"
- },
- "source": [
- "### 2.3 强制调用\n",
- "\n",
- "`function_call`参数的最后一个模式是强制调用函数,方法也是很简单,只要在参数里面传入这个函数的名字即可。在这一部分,我们指定`name`为`get_current_weather`,这将强制它使用`get_current_weather`函数。如果我们查看结果,我们实际上会看到返回了这个`function_call`对象,其中有`name`为`get_current_weather`的一些参数。\n",
- "\n",
- "为了好玩,这里面传了一个于天气无关的参数,然后强制他使用`get_current_weather`函数,但我们传入的参数中绝对没有任何信息关于它应该如何调用该函数。所以在这里,他编造了北京,北京市的参数,如果我们再次运行它,它会不断地调用北京市的参数。\n",
- "\n",
- "我们还可以尝试使用不同的模型函数来调用,不同的参数值,不同的输入消息,但是这里面要注意一个事情,首先,函数本身和描述都会计入传递给OpenAI的令牌使用限制。所以如果我们运行这个,我们可以看到返回的提示令牌是95。如果我们注释掉`functions`和`function_call`,我们可以看到提示令牌减少到15。因为OpenAI模型对令牌有限制,因此,在构造要传递给OpenAI的消息时,现在不仅需要注意消息的长度,还需要注意传递的函数的长度。"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "id": "c432ee4c",
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "c432ee4c",
- "outputId": "507ca457-04ae-4a97-f7cd-6c7efd278ea8"
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{\n",
- " \"id\": \"chatcmpl-8nfvkQDayf7kmYNdx4G84dkl1L5YC\",\n",
- " \"object\": \"chat.completion\",\n",
- " \"created\": 1706849944,\n",
- " \"model\": \"gpt-3.5-turbo-0613\",\n",
- " \"choices\": [\n",
- " {\n",
- " \"index\": 0,\n",
- " \"message\": {\n",
- " \"role\": \"assistant\",\n",
- " \"content\": null,\n",
- " \"function_call\": {\n",
- " \"name\": \"get_current_weather\",\n",
- " \"arguments\": \"{\\n \\\"location\\\": \\\"\\u5317\\u4eac\\uff0c\\u5317\\u4eac\\u5e02\\\"\\n}\"\n",
- " }\n",
- " },\n",
- " \"logprobs\": null,\n",
- " \"finish_reason\": \"stop\"\n",
- " }\n",
- " ],\n",
- " \"usage\": {\n",
- " \"prompt_tokens\": 95,\n",
- " \"completion_tokens\": 12,\n",
- " \"total_tokens\": 107\n",
- " },\n",
- " \"system_fingerprint\": null\n",
- "}\n",
- "{\n",
- " \"location\": \"北京,北京市\"\n",
- "}\n"
- ]
- }
- ],
- "source": [
- "# 无关提示强制调用函数\n",
- "messages = [\n",
- " {\n",
- " \"role\": \"user\",\n",
- " \"content\": \"你好!\",\n",
- " }\n",
- "]\n",
- "response = openai.ChatCompletion.create(\n",
- " model=\"gpt-3.5-turbo-0613\",\n",
- " messages=messages,\n",
- " functions=functions,\n",
- " function_call={\"name\": \"get_current_weather\"}, # 强制调用函数get_current_weather\n",
- ")\n",
- "print(response)\n",
- "print(response[\"choices\"][0][\"message\"][\"function_call\"][\"arguments\"])"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "f3306ca8",
- "metadata": {
- "id": "f3306ca8"
- },
- "source": [
- "## 三、函数调用以及执行函数\n",
- "\n",
- "最后,让我们看一下如何将这些函数调用和实际执行函数调用的结果传递回语言模型。这很重要,因为通常我们希望使用语言模型确定要调用的函数,然后运行该函数,但然后将其传递回语言模型以获得最终响应。\n",
- "\n",
- "我们会经过这样的流程,首先我们问问题得到一个带有`function call`参数的响应,然后我们将这个消息添加到我们的消息列表中。然后我们可以模拟使用语言模型提供的参数调用`get_current_weather`函数,并且保存到一个变量`observation`中。接着我们定义一个新的消息列表,表示刚刚调用函数的结果,这里面有一个重要的点就是`role`等于`function`,也就是告诉语言模型这是调用函数的响应。除此之外,还传递函数的名称`name`以及`content`变量,设为上述计算的`observation`。\n",
- "\n",
- "如果我们然后使用这个消息列表调用语言模型,我们可以看到语言模型回答的非常好:北京的天气目前是22摄氏度,天气以晴天为主,也有多云的情况。"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "f1636ae0",
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{\n",
- " \"choices\": [\n",
- " {\n",
- " \"finish_reason\": \"stop\",\n",
- " \"index\": 0,\n",
- " \"logprobs\": null,\n",
- " \"message\": {\n",
- " \"content\": \"\\u4f60\\u597d\\uff01\\u6709\\u4ec0\\u4e48\\u6211\\u53ef\\u4ee5\\u5e2e\\u52a9\\u4f60\\u7684\\u5417\\uff1f\",\n",
- " \"role\": \"assistant\"\n",
- " }\n",
- " }\n",
- " ],\n",
- " \"created\": 1709602993,\n",
- " \"id\": \"chatcmpl-8zE7lZ3keV5JGVTFqvAWOGxit4cXj\",\n",
- " \"model\": \"gpt-3.5-turbo-0613\",\n",
- " \"object\": \"chat.completion\",\n",
- " \"system_fingerprint\": null,\n",
- " \"usage\": {\n",
- " \"completion_tokens\": 19,\n",
- " \"prompt_tokens\": 88,\n",
- " \"total_tokens\": 107\n",
- " }\n",
- "}\n"
- ]
- }
- ],
- "source": [
- "# 与天气无关提示调用\n",
- "messages = [\n",
- " {\n",
- " \"role\": \"user\",\n",
- " \"content\": \"你好!\",\n",
- " }\n",
- "]\n",
- "\n",
- "response = openai.ChatCompletion.create(\n",
- " model=\"gpt-3.5-turbo-0613\",\n",
- " messages=messages,\n",
- " functions=functions,\n",
- " function_call=\"auto\",\n",
- ")\n",
- "\n",
- "print(response)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "b1577b5b",
- "metadata": {},
- "source": [
- "由于编码问题,我们可以单独答应对应的返回的文本信息"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "2f6dff4a",
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "你好!有什么我可以帮助你的吗?\n"
- ]
- }
- ],
- "source": [
- "print(response[\"choices\"][0][\"message\"][\"content\"])"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "5940bf6d",
- "metadata": {},
- "source": [
- "## 四、英文版提示\n",
- "\n",
- "**1.1 简单例子:得到当前天气**"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 17,
- "id": "61a23996",
- "metadata": {
- "id": "61a23996"
- },
- "outputs": [],
- "source": [
- "import json\n",
- "\n",
- "# Example dummy function hard coded to return the same weather\n",
- "# In production, this could be your backend API or an external API\n",
- "def get_current_weather(location, unit=\"fahrenheit\"):\n",
- " \"\"\"Get the current weather in a given location\"\"\"\n",
- " weather_info = {\n",
- " \"location\": location,\n",
- " \"temperature\": \"72\",\n",
- " \"unit\": unit,\n",
- " \"forecast\": [\"sunny\", \"windy\"],\n",
- " }\n",
- " return json.dumps(weather_info)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "44c5d2d2",
- "metadata": {
- "id": "44c5d2d2"
- },
- "source": [
- "**1.2 定义function函数**"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 18,
- "id": "4152b105",
- "metadata": {
- "id": "4152b105"
- },
- "outputs": [],
- "source": [
- "# define a function\n",
- "functions = [\n",
- " {\n",
- " \"name\": \"get_current_weather\",\n",
- " \"description\": \"Get the current weather in a given location\",\n",
- " \"parameters\": {\n",
- " \"type\": \"object\",\n",
- " \"properties\": {\n",
- " \"location\": {\n",
- " \"type\": \"string\",\n",
- " \"description\": \"The city and state, e.g. San Francisco, CA\",\n",
- " },\n",
- " \"unit\": {\"type\": \"string\", \"enum\": [\"celsius\", \"fahrenheit\"]},\n",
- " },\n",
- " \"required\": [\"location\"],\n",
- " },\n",
- " }\n",
- "]"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "668eb81c",
- "metadata": {
- "id": "668eb81c"
- },
- "source": [
- "**1.3 相关提示调用结果**"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 19,
- "id": "a6bd2994",
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "a6bd2994",
- "outputId": "ae7da376-c365-4177-a1d0-a4df92f6815e"
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{\n",
- " \"id\": \"chatcmpl-8nfyFSmPyo4RoV79D5Urk1QzLCf1C\",\n",
- " \"object\": \"chat.completion\",\n",
- " \"created\": 1706850099,\n",
- " \"model\": \"gpt-3.5-turbo-0613\",\n",
- " \"choices\": [\n",
- " {\n",
- " \"index\": 0,\n",
- " \"message\": {\n",
- " \"role\": \"assistant\",\n",
- " \"content\": null,\n",
- " \"function_call\": {\n",
- " \"name\": \"get_current_weather\",\n",
- " \"arguments\": \"{\\n \\\"location\\\": \\\"Boston, MA\\\"\\n}\"\n",
- " }\n",
- " },\n",
- " \"logprobs\": null,\n",
- " \"finish_reason\": \"function_call\"\n",
- " }\n",
- " ],\n",
- " \"usage\": {\n",
- " \"prompt_tokens\": 82,\n",
- " \"completion_tokens\": 18,\n",
- " \"total_tokens\": 100\n",
- " },\n",
- " \"system_fingerprint\": null\n",
- "}\n"
- ]
- }
- ],
- "source": [
- "messages = [\n",
- " {\n",
- " \"role\": \"user\",\n",
- " \"content\": \"What's the weather like in Boston?\"\n",
- " }\n",
- "]\n",
- "\n",
- "response = openai.ChatCompletion.create(\n",
- " model=\"gpt-3.5-turbo-0613\",\n",
- " messages=messages,\n",
- " functions=functions\n",
- ")\n",
- "\n",
- "print(response)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "a60020d4",
- "metadata": {
- "id": "a60020d4"
- },
- "source": [
- "**1.4 无关提示调用结果**"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 20,
- "id": "b04b3318",
- "metadata": {
- "id": "b04b3318"
- },
- "outputs": [],
- "source": [
- "messages = [\n",
- " {\n",
- " \"role\": \"user\",\n",
- " \"content\": \"hi!\",\n",
- " }\n",
- "]\n",
- "\n",
- "response = openai.ChatCompletion.create(\n",
- " model=\"gpt-3.5-turbo-0613\",\n",
- " messages=messages,\n",
- " functions=functions,\n",
- ")"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "bfdbfe18",
- "metadata": {
- "id": "bfdbfe18"
- },
- "source": [
- "**2.1 自动判断是否调用**\n",
- "\n",
- "自动判断是否调用函数,判断提示是否和函数相关"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 21,
- "id": "e8c48d2b",
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "e8c48d2b",
- "outputId": "cf492711-60a5-42a7-e154-09a3b3174da1"
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{\n",
- " \"id\": \"chatcmpl-8nfyHfC32MVE2gpE6HZxtmC7f7Mvi\",\n",
- " \"object\": \"chat.completion\",\n",
- " \"created\": 1706850101,\n",
- " \"model\": \"gpt-3.5-turbo-0613\",\n",
- " \"choices\": [\n",
- " {\n",
- " \"index\": 0,\n",
- " \"message\": {\n",
- " \"role\": \"assistant\",\n",
- " \"content\": \"Hello! How can I assist you today?\"\n",
- " },\n",
- " \"logprobs\": null,\n",
- " \"finish_reason\": \"stop\"\n",
- " }\n",
- " ],\n",
- " \"usage\": {\n",
- " \"prompt_tokens\": 76,\n",
- " \"completion_tokens\": 10,\n",
- " \"total_tokens\": 86\n",
- " },\n",
- " \"system_fingerprint\": null\n",
- "}\n"
- ]
- }
- ],
- "source": [
- "messages = [\n",
- " {\n",
- " \"role\": \"user\",\n",
- " \"content\": \"hi!\",\n",
- " }\n",
- "]\n",
- "response = openai.ChatCompletion.create(\n",
- " model=\"gpt-3.5-turbo-0613\",\n",
- " messages=messages,\n",
- " functions=functions,\n",
- " function_call=\"auto\",\n",
- ")\n",
- "print(response)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "32eb9b08",
- "metadata": {
- "id": "32eb9b08"
- },
- "source": [
- "**2.2 强制不调用**\n",
- "\n",
- "无关提示强制不调用,结果正常"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 22,
- "id": "ba53560e",
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "ba53560e",
- "outputId": "c529ab29-8c49-4b2c-9645-10ae8c018f7b"
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{\n",
- " \"id\": \"chatcmpl-8nfyfrOoacEQCPO3O2sYLukAdbxX4\",\n",
- " \"object\": \"chat.completion\",\n",
- " \"created\": 1706850125,\n",
- " \"model\": \"gpt-3.5-turbo-0613\",\n",
- " \"choices\": [\n",
- " {\n",
- " \"index\": 0,\n",
- " \"message\": {\n",
- " \"role\": \"assistant\",\n",
- " \"content\": \"Hello! How can I assist you today?\"\n",
- " },\n",
- " \"logprobs\": null,\n",
- " \"finish_reason\": \"stop\"\n",
- " }\n",
- " ],\n",
- " \"usage\": {\n",
- " \"prompt_tokens\": 77,\n",
- " \"completion_tokens\": 9,\n",
- " \"total_tokens\": 86\n",
- " },\n",
- " \"system_fingerprint\": null\n",
- "}\n"
- ]
- }
- ],
- "source": [
- "messages = [\n",
- " {\n",
- " \"role\": \"user\",\n",
- " \"content\": \"hi!\",\n",
- " }\n",
- "]\n",
- "response = openai.ChatCompletion.create(\n",
- " model=\"gpt-3.5-turbo-0613\",\n",
- " messages=messages,\n",
- " functions=functions,\n",
- " function_call=\"none\",\n",
- ")\n",
- "print(response)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "0e037da0",
- "metadata": {
- "id": "0e037da0"
- },
- "source": [
- "**2.3 强制调用**\n",
- "\n",
- "强制无关问题的调用"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 24,
- "id": "32b16792",
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "32b16792",
- "outputId": "37b06217-4632-46e4-ce07-453e73814081"
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{\n",
- " \"id\": \"chatcmpl-8nfyzFFeUyzJDYVbdiVDgPEtNrnKE\",\n",
- " \"object\": \"chat.completion\",\n",
- " \"created\": 1706850145,\n",
- " \"model\": \"gpt-3.5-turbo-0613\",\n",
- " \"choices\": [\n",
- " {\n",
- " \"index\": 0,\n",
- " \"message\": {\n",
- " \"role\": \"assistant\",\n",
- " \"content\": null,\n",
- " \"function_call\": {\n",
- " \"name\": \"get_current_weather\",\n",
- " \"arguments\": \"{\\n \\\"location\\\": \\\"San Francisco, CA\\\"\\n}\"\n",
- " }\n",
- " },\n",
- " \"logprobs\": null,\n",
- " \"finish_reason\": \"stop\"\n",
- " }\n",
- " ],\n",
- " \"usage\": {\n",
- " \"prompt_tokens\": 83,\n",
- " \"completion_tokens\": 12,\n",
- " \"total_tokens\": 95\n",
- " },\n",
- " \"system_fingerprint\": null\n",
- "}\n"
- ]
- }
- ],
- "source": [
- "\n",
- "messages = [\n",
- " {\n",
- " \"role\": \"user\",\n",
- " \"content\": \"hi!\",\n",
- " }\n",
- "]\n",
- "response = openai.ChatCompletion.create(\n",
- " model=\"gpt-3.5-turbo-0613\",\n",
- " messages=messages,\n",
- " functions=functions,\n",
- " function_call={\"name\": \"get_current_weather\"},\n",
- ")\n",
- "print(response)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "65b85a74",
- "metadata": {
- "id": "65b85a74"
- },
- "source": [
- "强制有关问题调用,结果和`auto`一样"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 26,
- "id": "b6f955de",
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "b6f955de",
- "outputId": "b8134f2e-1746-4139-83f4-ac51327549cb"
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "{\n",
- " \"id\": \"chatcmpl-8nfzav6WbYIDLPHXYwaBXTM0byxaj\",\n",
- " \"object\": \"chat.completion\",\n",
- " \"created\": 1706850182,\n",
- " \"model\": \"gpt-3.5-turbo-0613\",\n",
- " \"choices\": [\n",
- " {\n",
- " \"index\": 0,\n",
- " \"message\": {\n",
- " \"role\": \"assistant\",\n",
- " \"content\": null,\n",
- " \"function_call\": {\n",
- " \"name\": \"get_current_weather\",\n",
- " \"arguments\": \"{\\n \\\"location\\\": \\\"Boston, MA\\\"\\n}\"\n",
- " }\n",
- " },\n",
- " \"logprobs\": null,\n",
- " \"finish_reason\": \"stop\"\n",
- " }\n",
- " ],\n",
- " \"usage\": {\n",
- " \"prompt_tokens\": 89,\n",
- " \"completion_tokens\": 11,\n",
- " \"total_tokens\": 100\n",
- " },\n",
- " \"system_fingerprint\": null\n",
- "}\n"
- ]
- }
- ],
- "source": [
- "messages = [\n",
- " {\n",
- " \"role\": \"user\",\n",
- " \"content\": \"What's the weather like in Boston!\",\n",
- " }\n",
- "]\n",
- "response = openai.ChatCompletion.create(\n",
- " model=\"gpt-3.5-turbo-0613\",\n",
- " messages=messages,\n",
- " functions=functions,\n",
- " function_call={\"name\": \"get_current_weather\"},\n",
- ")\n",
- "print(response)"
- ]
- }
- ],
- "metadata": {
- "colab": {
- "provenance": []
- },
- "kernelspec": {
- "display_name": "Python 3",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.9.13"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 5
-}
diff --git "a/content/\351\200\211\344\277\256-Functions, Tools and Agents with LangChain/3. LangChain\350\241\250\350\276\276\345\274\217\350\257\255\350\250\200 LCEL.ipynb" "b/content/\351\200\211\344\277\256-Functions, Tools and Agents with LangChain/3. LangChain\350\241\250\350\276\276\345\274\217\350\257\255\350\250\200 LCEL.ipynb"
deleted file mode 100644
index 1832a8e5..00000000
--- "a/content/\351\200\211\344\277\256-Functions, Tools and Agents with LangChain/3. LangChain\350\241\250\350\276\276\345\274\217\350\257\255\350\250\200 LCEL.ipynb"
+++ /dev/null
@@ -1,1984 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "id": "c5f7fce3",
- "metadata": {
- "id": "c5f7fce3"
- },
- "source": [
- "# 第三章 LangChain 表达式语言 LangChain Expression Language\n",
- "\n",
- "在这一章我们会介绍 LangChain Expression Language(或称为 LCEL),被称之为 Langchain 的表达式语言。LCEL 是一种新的语法,是 LangChain 工具包的重要补充,他有许多优点,使得我们处理 LangChain 和代理更加简单方便。\n",
- "\n",
- "1. LCEL 提供了异步、批处理和流处理支持,这使得代码多功能化,并且代码可以快速在不同服务器中应用和运行。\n",
- " - 异步:程序可以同时执行多个任务,而不是按照顺序一个接一个地执行\n",
- " - 批处理:是一种将一组任务或数据作为一个批次进行处理的方法,而不是逐个处理\n",
- " - 流式处理:理是一种连续处理数据的方法,数据会持续不断地进入系统并被处理,流式处理能够在数据到达时立即进行处理,并且可以以持续且低延迟的方式处理数据。\n",
- "\n",
- "2. LCEL 拥有 fallbacks 措施,也叫回退安全机制,有时LLM得到的结果不可控,这时你可以将结果进行回退,甚至可以附加到整个链上\n",
- "\n",
- "3. LCEL 增加了 LLM 的并行性,LLM 运行通常是耗费时间的,并行可以加快得到结果的速度。\n",
- "\n",
- "4. LCEL 内置了日志记录,记录代理的运行情况。即使代理复杂,日志也有助于理解复杂链条和代理的运行情况。\n",
- "\n",
- "在前面的课程中,我们知道 LangChain 提供了组件 链(chain) 可以将组件组合起来发挥 LLM 更强大的功能,但是语法非常复杂。在这里,LCEL 提供了一种管道语法,使从基本组件构建复杂链变得容易,我们可以通过 LangChain 完成`Chain = prompt | LLM |OutputParser `的组合,具体使用我们将在下文内容中讨论。链(Chains)通常将大语言模型(LLM)与提示(Prompt)结合在一起,基于此,我们可以对文本或数据进行一系列操作。\n",
- "\n",
- "\n",
- "\n",
- "- [一、简单链 Simple Chain](#一、简单链-Simple-Chain)\n",
- "- [二、更复杂的链 More complex chain](#二、更复杂的链-More-complex-chain)\n",
- " - [1.1 构建简单向量数据库](#1.1-构建简单向量数据库)\n",
- " - [1.2 使用RunnableMap](#1.2-使用RunnableMap)\n",
- "- [三、绑定 Bind](#三、绑定-Bind)\n",
- " - [3.1 单函数绑定](#3.1-单函数绑定)\n",
- " - [3.2 多个函数绑定](#3.2-多个函数绑定)\n",
- "- [四、后备措施 Fallbacks](#四、后备措施-Fallbacks)\n",
- " - [4.1 使用早期模型格式化输出](#4.1-使用早期模型格式化输出)\n",
- " - [4.2 使用新模型格式化输出](#4.2-使用新模型格式化输出)\n",
- " - [4.3 fallbacks方法](#4.3-fallbacks方法)\n",
- "- [五、接口 Interface](#五、接口-Interface)\n",
- " - [5.1 invoke接口](#5.1-invoke接口)\n",
- " - [5.2 batch接口](#5.2-batch接口)\n",
- " - [5.3 stream接口](#5.3-stream接口)\n",
- " - [5.4 异步接口](#5.4-异步接口)\n",
- "- [六、英文版提示](#六、英文版提示)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "b631e459",
- "metadata": {},
- "source": [
- "## 一、简单链 Simple Chain\n",
- "\n",
- "接下来我们依旧会使用 OpenAI 的 API,所以首先我们要初始化我们的 API_Key,这个方法和上一章的方式是一样的。"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "cacb572a",
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "cacb572a",
- "outputId": "1acef39b-494e-445e-bde0-2e8f83a2a84c"
- },
- "outputs": [],
- "source": [
- "# !pip install langchain\n",
- "# !pip install openai==0.28\n",
- "# !pip install \"langchain[docarray]\"\n",
- "# !pip install tiktoken"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "id": "c52952e6",
- "metadata": {
- "id": "c52952e6"
- },
- "outputs": [],
- "source": [
- "import os\n",
- "import openai\n",
- "\n",
- "os.environ['OPENAI_API_KEY'] = \"YOUR_API_KEY\"\n",
- "openai.api_key = os.environ['OPENAI_API_KEY']"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "0a7f48e9",
- "metadata": {
- "id": "0a7f48e9"
- },
- "source": [
- "接下来首先导入 LangChain 的库,并且定义一个简单的链,这个链包括提示模板,大语言模型和一个输出解析器。我们可以看到,成功输出了大语言模型的结果,完成了一个简单的链。"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "id": "81ac70fe",
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 91
- },
- "id": "81ac70fe",
- "outputId": "00302a8a-42eb-4eaa-ff0f-8540245932cd"
- },
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/usr/local/lib/python3.10/dist-packages/langchain_core/_api/deprecation.py:117: LangChainDeprecationWarning: The class `langchain_community.chat_models.openai.ChatOpenAI` was deprecated in langchain-community 0.0.10 and will be removed in 0.2.0. An updated version of the class exists in the langchain-openai package and should be used instead. To use it run `pip install -U langchain-openai` and import as `from langchain_openai import ChatOpenAI`.\n",
- " warn_deprecated(\n"
- ]
- },
- {
- "data": {
- "application/vnd.google.colaboratory.intrinsic+json": {
- "type": "string"
- },
- "text/plain": [
- "'为什么熊不喜欢玩扑克牌?因为他总是把两个熊掌都露出来!'"
- ]
- },
- "execution_count": 2,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "# 导入LangChain所需的模块\n",
- "from langchain.prompts import ChatPromptTemplate\n",
- "from langchain.chat_models import ChatOpenAI\n",
- "from langchain.schema.output_parser import StrOutputParser\n",
- "\n",
- "# 使用 ChatPromptTemplate 从模板创建一个提示,模板中的 {topic} 将在后续代码中替换为实际的话题\n",
- "prompt = ChatPromptTemplate.from_template(\n",
- " \"告诉我一个关于{topic}的短笑话\"\n",
- ")\n",
- "\n",
- "# 创建一个 ChatOpenAI 模型实例,默认使用 gpt-3.5-turbo 模型\n",
- "model = ChatOpenAI()\n",
- "\n",
- "# 创建一个StrOutputParser实例,用于解析输出\n",
- "output_parser = StrOutputParser()\n",
- "\n",
- "# 创建一个链式调用,将 prompt、model 和output_parser 连接在一起\n",
- "chain = prompt | model | output_parser\n",
- "\n",
- "# 调用链式调用,并传入参数\n",
- "chain.invoke({\"topic\": \"熊\"})"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "7563f727",
- "metadata": {
- "id": "7563f727"
- },
- "source": [
- "如果我们去查看`Chain`的输出,我们会发现,他跟我们定义的是一样的,一共有三部分进行组成,也就是`Chain = prompt | LLM |OutputParser `。`|`符号类似于 unix 管道操作符,它将不同的组件链接在一起,将一个组件的输出作为输入提供给下一个组件。在这个链中,用户输入被传递给提示模板,然后提示模板输出被传递给模型,然后模型输出被传递到输出解析器。"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "id": "a351d14a",
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "a351d14a",
- "outputId": "e9a7f195-fdfb-4523-eb34-a708ce0e0b24"
- },
- "outputs": [
- {
- "data": {
- "text/plain": [
- "ChatPromptTemplate(input_variables=['topic'], messages=[HumanMessagePromptTemplate(prompt=PromptTemplate(input_variables=['topic'], template='告诉我一个关于{topic}的短笑话'))])\n",
- "| ChatOpenAI(client=, openai_api_key='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', openai_proxy='')\n",
- "| StrOutputParser()"
- ]
- },
- "execution_count": 3,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "# 查看Chain的值\n",
- "chain"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "35f8c80e",
- "metadata": {
- "id": "35f8c80e"
- },
- "source": [
- "## 二、更复杂的链 More complex chain\n",
- "\n",
- "接下来,我们会创建一个更复杂的链条,在之前的课程中,我们接触过如何进行检索增强生成。所以接下来我们使用 LCEL 来重复之前的过程,将用户的问题和向量数据库检索结果结合起来,使用 RunnableMap 来构建一个更复杂的链。\n",
- "\n",
- "### 2.1 构建简单向量数据库\n",
- "首先我们构建一个向量数据库,这个简单的向量数据库只包含两句话,使用 OpenAI 的 Embedding 作为嵌入模型,然后我们通过 `vector store.as_retriever `来创建一个检索器。"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "id": "308eab74",
- "metadata": {
- "id": "308eab74"
- },
- "outputs": [],
- "source": [
- "from langchain.embeddings import OpenAIEmbeddings\n",
- "from langchain.vectorstores import DocArrayInMemorySearch\n",
- "\n",
- "# 创建一个DocArrayInMemorySearch对象,用于存储和搜索文档向量\n",
- "vectorstore = DocArrayInMemorySearch.from_texts(\n",
- " [\"哈里森在肯肖工作\", \"熊喜欢吃蜂蜜\"],\n",
- " embedding=OpenAIEmbeddings() # 使用OpenAI的Embedding\n",
- ")\n",
- "\n",
- "# 创建一个检索器\n",
- "retriever = vectorstore.as_retriever()"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "768c1f68",
- "metadata": {
- "id": "768c1f68"
- },
- "source": [
- "通过之前的学习,如果我们调用`retriever.get_relevant_documents`,我们会得到相关的检索文档,首先我们问“哈里森在哪里工作?”,我们会发现返回了一个文档列表,他会根据相似度排序返回文档列表,所以其中最相关的放在了第一个。"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "id": "f83e9118",
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "f83e9118",
- "outputId": "4b3e4b1f-c378-43ec-8a2e-4b6a6a0d88b0"
- },
- "outputs": [
- {
- "data": {
- "text/plain": [
- "[Document(page_content='哈里森在肯肖工作'), Document(page_content='熊喜欢吃蜂蜜')]"
- ]
- },
- "execution_count": 7,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "# 获取与问题“哈里森在哪里工作?”相关的文档\n",
- "retriever.get_relevant_documents(\"哈里森在哪里工作?\")"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "a4b5eacb",
- "metadata": {
- "id": "a4b5eacb"
- },
- "source": [
- "如果我们换一个问题,比如\"熊喜欢吃什么\",可以看到问题的顺序就发生了变化。"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "id": "7d76aaf5",
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "7d76aaf5",
- "outputId": "8e79e2d9-8572-44e0-edf7-70cd254e0252"
- },
- "outputs": [
- {
- "data": {
- "text/plain": [
- "[Document(page_content='熊喜欢吃蜂蜜'), Document(page_content='哈里森在肯肖工作')]"
- ]
- },
- "execution_count": 8,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "# 获取与问题“熊喜欢吃什么”相关的文档\n",
- "retriever.get_relevant_documents(\"熊喜欢吃什么\")"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "fb34293a",
- "metadata": {
- "id": "fb34293a"
- },
- "source": [
- "### 3.2 使用RunnableMap\n",
- "\n",
- "上述例子返回两个结果是因为只有两个文档列表,这完全适用于更多文档情况。接下来我们会加入`RunnableMap`,在这个`RunnableMap`中,不仅仅有用户的问题,以及有对应的问题的文档列表,相当于这也为大模型的文档增加了上下文,这样就能完成检索增强的事情。如果我们正常问一个问题,可以看到,大模型正确的返回了文档里面的结果,得到了正确的输出。"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "id": "e8a9b652",
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 35
- },
- "id": "e8a9b652",
- "outputId": "d615b86a-a14b-4917-833f-e70c91730477"
- },
- "outputs": [
- {
- "data": {
- "application/vnd.google.colaboratory.intrinsic+json": {
- "type": "string"
- },
- "text/plain": [
- "'肯肖'"
- ]
- },
- "execution_count": 10,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "from langchain.schema.runnable import RunnableMap\n",
- "\n",
- "# 定义一个模板字符串template\n",
- "template = \"\"\"仅根据以下上下文回答问题:\n",
- "{context}\n",
- "\n",
- "问题:{question}\n",
- "\"\"\"\n",
- "\n",
- "# 使用 template 作为模板\n",
- "prompt = ChatPromptTemplate.from_template(template)\n",
- "\n",
- "# 创建一个处理链 chain ,包含了 RunnableMap、prompt、model 和 output_parser 组件\n",
- "chain = RunnableMap({\n",
- " \"context\": lambda x: retriever.get_relevant_documents(x[\"question\"]),\n",
- " \"question\": lambda x: x[\"question\"]\n",
- "}) | prompt | model | output_parser\n",
- "\n",
- "# 调用chain的invoke方法\n",
- "chain.invoke({\"question\": \"哈里森在哪里工作?\"})"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "394af88e",
- "metadata": {
- "id": "394af88e"
- },
- "source": [
- "如果我们想更深入挖掘一下背后的工作机理,我们可以看一下`RunnableMap`,我们把其创建为一个输入,用一样的方式进行操作。我们可以看到,在这之中,`RunnableMap`提供了`context`和`question`两个变量,一个是查询的文档列表,另一个是对应的问题,这个大模型就可以根据提供文档来总结回答对应的问题了。"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "id": "759d2af6",
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "759d2af6",
- "outputId": "fa16fa6c-dcb0-46e9-e538-428e711db372"
- },
- "outputs": [
- {
- "data": {
- "text/plain": [
- "{'context': [Document(page_content='哈里森在肯肖工作'),\n",
- " Document(page_content='熊喜欢吃蜂蜜')],\n",
- " 'question': '哈里森在哪里工作?'}"
- ]
- },
- "execution_count": 11,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "# 创建一个RunnableMap对象,其中包含两个键值对\n",
- "# 键 \"context\" 对应一个lambda函数,用于获取相关文档,函数输入参数为x,即输入的字典,函数返回值为retriever.get_relevant_documents(x[\"question\"])\n",
- "# 键 \"question\" 对应一个lambda函数,用于获取问题,函数输入参数为x,即输入的字典,函数返回值为x[\"question\"]\n",
- "inputs = RunnableMap({\n",
- " \"context\": lambda x: retriever.get_relevant_documents(x[\"question\"]),\n",
- " \"question\": lambda x: x[\"question\"]\n",
- "})\n",
- "\n",
- "# 调用 inputs 的 invoke 方法,并传递一个字典作为参数,字典中包含一个键值对,键为\"question\",值为\"哈里森在哪里工作?\"\n",
- "inputs.invoke({\"question\": \"哈里森在哪里工作?\"})"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "2c01b704",
- "metadata": {
- "id": "2c01b704"
- },
- "source": [
- "## 三、绑定 Bind\n",
- "\n",
- "在上一章我们介绍了OpenAI函数的调用,新的`function`参数可以自动判断是否要使用工具函数,如果需要就会返回需要使用的参数。接下来我们也使用LangChain实现OpenAI函数调用的新功能,首先需要一个函数的描述信息,以及定义函数,这里的函数还是使用上一章的`get_current_weather`函数。"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 12,
- "id": "1b00f651",
- "metadata": {
- "id": "1b00f651"
- },
- "outputs": [],
- "source": [
- "# 定义一个函数\n",
- "functions = [\n",
- " {\n",
- " \"name\": \"get_current_weather\",\n",
- " \"description\": \"获取指定位置的当前天气情况\",\n",
- " \"parameters\": {\n",
- " \"type\": \"object\",\n",
- " \"properties\": {\n",
- " \"location\": {\n",
- " \"type\": \"string\",\n",
- " \"description\": \"城市和省份,例如:北京,北京市\",\n",
- " },\n",
- " \"unit\": {\"type\": \"string\", \"enum\": [\"摄氏度\", \"华氏度\"]},\n",
- " },\n",
- " \"required\": [\"location\"],\n",
- " },\n",
- " }\n",
- "]"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "5d2ff71d",
- "metadata": {
- "id": "5d2ff71d"
- },
- "source": [
- "### 3.1 单函数绑定\n",
- "\n",
- "接下来我们使用`bind`的方法把工具函数绑定到大模型上,并构建一个简单的链。进行调用以后,我们可以看到返回了一个`AIMessage`,\t其中返回的`content`为空,但是返回了我们需要调用工具函数的参数。"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "id": "2f693ff9",
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "2f693ff9",
- "outputId": "9ebdd754-906f-4178-a31a-899ed3c7d304"
- },
- "outputs": [
- {
- "data": {
- "text/plain": [
- "AIMessage(content='', additional_kwargs={'function_call': {'name': 'get_current_weather', 'arguments': '{\\n \"location\": \"北京,北京市\"\\n}'}})"
- ]
- },
- "execution_count": 13,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "# 使用ChatPromptTemplate.from_messages方法创建一个ChatPromptTemplate对象\n",
- "prompt = ChatPromptTemplate.from_messages(\n",
- " [\n",
- " (\"human\", \"{input}\")\n",
- " ]\n",
- ")\n",
- "\n",
- "# 使用bind方法绑定functions参数\n",
- "model = ChatOpenAI(temperature=0).bind(functions=functions)\n",
- "\n",
- "runnable = prompt | model\n",
- "\n",
- "# 调用invoke方法\n",
- "runnable.invoke({\"input\": \"北京天气怎么样?\"})"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "89a5fb09",
- "metadata": {
- "id": "89a5fb09"
- },
- "source": [
- "### 3.2 多个函数绑定\n",
- "\n",
- "同时我们也可以定义多个`function`,大模型在对话的时候可以自动判断使用哪一个函数。这里面我们定义有两个函数,第一个函数是类似于前面的`weather_search`,搜索给定机场的天气,然后我们还定义了一个赛事体育新闻搜索的`sports_search`,查询天气的函数`weather_search`接受的参数为airport_code即机场代码,体育新闻搜索函数`sports_search`接受的参数为team_name即体育队名。由于这里我们不需要运行这些函数,因为大模型是通过问的问题来自动判断是否调用这些函数,并且返回参数,并不会直接帮我们调用。"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "id": "b95f4029",
- "metadata": {
- "id": "b95f4029"
- },
- "outputs": [],
- "source": [
- "functions = [\n",
- " {\n",
- " \"name\": \"weather_search\",\n",
- " \"description\": \"搜索给定机场代码的天气\",\n",
- " \"parameters\": {\n",
- " \"type\": \"object\",\n",
- " \"properties\": {\n",
- " \"airport_code\": {\n",
- " \"type\": \"string\",\n",
- " \"description\": \"要获取天气的机场代码\"\n",
- " },\n",
- " },\n",
- " \"required\": [\"airport_code\"]\n",
- " }\n",
- " },\n",
- " {\n",
- " \"name\": \"sports_search\",\n",
- " \"description\": \"搜索最近体育赛事的新闻\",\n",
- " \"parameters\": {\n",
- " \"type\": \"object\",\n",
- " \"properties\": {\n",
- " \"team_name\": {\n",
- " \"type\": \"string\",\n",
- " \"description\": \"要搜索的体育队名\"\n",
- " },\n",
- " },\n",
- " \"required\": [\"team_name\"]\n",
- " }\n",
- " }\n",
- "]"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "d4a77d53",
- "metadata": {
- "id": "d4a77d53"
- },
- "source": [
- "接着我们就可以使用函数绑定大模型,定义一个简单的链,我们可以看到,当我们问了相关的问题以后,大模型能够自动判断并且正确返回参数,知道需要调用函数了。"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 15,
- "id": "519e761d",
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "519e761d",
- "outputId": "7ad43d65-bd62-4339-c8f8-e5c74a414dac"
- },
- "outputs": [
- {
- "data": {
- "text/plain": [
- "AIMessage(content='', additional_kwargs={'function_call': {'name': 'sports_search', 'arguments': '{\\n \"team_name\": \"爱国者队\"\\n}'}})"
- ]
- },
- "execution_count": 15,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "# 绑定大模型\n",
- "model = model.bind(functions=functions)\n",
- "runnable = prompt | model\n",
- "\n",
- "runnable.invoke({\"input\": \"爱国者队昨天表现的怎么样?\"})"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "0b988820",
- "metadata": {
- "id": "0b988820"
- },
- "source": [
- "## 四、后备措施 Fallbacks\n",
- "\n",
- "在使用早期的OpenAI模型如\"text-davinci-001\",这些模型在对话过程中,不支持格式化输出结果即它们都是以字符串的形式输出结果,这对我们有时候需要解析 LLM 的输出带来一些麻烦,比如下面这个例子,就是利用早期模型\"text-davinci-001\"来回答用户的问题,我们希望 llm 能以 json 格式输出结果。\n",
- "\n",
- "我们定义了 OpenAI 的模型以及创建了一个简单的链,以此加入 json 希望能以 json 格式输出结果,我们让 simple_model 写三首诗,并以 josn 格式输出,每首诗必须包含:`标题,作者和诗的第一句`。我们会发现结果只有字符串,无法输出指定格式的内容,虽然里面有一些`[`,但是本质上还是一个大的字符串,这就无法让我们解析输出。\n",
- "\n",
- "> 由于OpenAI于2024年1月4日停用了模型text-davinci-001,你将使用OpenAI推荐的替代模型gpt-3.5-turbo-instruct。\n",
- "\n",
- "在使用语言模型时,你可能经常会遇到来自底层 API 的问题,无论这些问题是速率限制还是停机时间。因此,当你将 LLM 应用程序转移到实际生产环境中时,防范这些问题变得越来越重要。这就是为什么我们引入了`回退(Fallbacks)`的概念。"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "127d93a1",
- "metadata": {},
- "source": [
- "### 4.1 使用早期模型格式化输出"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 16,
- "id": "11e2b2e2",
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 180
- },
- "id": "11e2b2e2",
- "outputId": "1294676f-7fbf-4185-ac16-49fa5d0512f5"
- },
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/usr/local/lib/python3.10/dist-packages/langchain_core/_api/deprecation.py:117: LangChainDeprecationWarning: The class `langchain_community.llms.openai.OpenAI` was deprecated in langchain-community 0.0.10 and will be removed in 0.2.0. An updated version of the class exists in the langchain-openai package and should be used instead. To use it run `pip install -U langchain-openai` and import as `from langchain_openai import OpenAI`.\n",
- " warn_deprecated(\n"
- ]
- },
- {
- "data": {
- "application/vnd.google.colaboratory.intrinsic+json": {
- "type": "string"
- },
- "text/plain": [
- "'\\n\\n{\\n \"title\": \"春风\",\\n \"author\": \"李白\",\\n \"first_line\": \"春风又绿江南岸\",\\n \"content\": [\\n \"春风又绿江南岸\",\\n \"花开满树柳如丝\",\\n \"鸟儿欢唱天地宽\",\\n \"人间春色最宜人\"\\n ]\\n}\\n\\n{\\n \"title\": \"夜雨\",\\n \"author\": \"杜甫\",\\n \"first_line\": \"夜雨潇潇\",\\n \"content\": [\\n \"夜雨潇潇\",\\n \"孤灯照旧\",\\n \"思念如潮\",\\n \"泛滥心头\"\\n ]\\n}\\n\\n{\\n \"title\": \"山行\",\\n \"author\": \"王维\",\\n \"first_line\": \"远上寒山石径斜\",\\n \"content\": [\\n \"远上寒山石径斜\",\\n \"白云生处有人家\",\\n \"停车坐爱枫林晚\",\\n \"霜叶红于二月花\"\\n ]\\n}'"
- ]
- },
- "execution_count": 16,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "from langchain.llms import OpenAI\n",
- "import json\n",
- "\n",
- "# 使用早期的OpenAI模型\n",
- "simple_model = OpenAI(\n",
- " temperature=0,\n",
- " max_tokens=1000,\n",
- " model=\"gpt-3.5-turbo-instruct\"\n",
- ")\n",
- "simple_chain = simple_model | json.loads\n",
- "\n",
- "challenge = \"写三首诗,并以josn格式输出,每首诗必须包含:标题,作者和诗的第一句。\"\n",
- "\n",
- "simple_model.invoke(challenge)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "6a22ae8e",
- "metadata": {
- "id": "6a22ae8e"
- },
- "source": [
- "如果我们使用`simple_chain`来运行,我们就会发现出现了 json 解码错误的问题,因为返回的结果就是一个字符串,无法解析,所以下面代码就会报错。"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 17,
- "id": "08ee6ba5",
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 330
- },
- "id": "08ee6ba5",
- "outputId": "2ef7f71f-4398-47ed-a8d8-bcaa75bd91d8"
- },
- "outputs": [
- {
- "ename": "JSONDecodeError",
- "evalue": "Extra data: line 15 column 1 (char 147)",
- "output_type": "error",
- "traceback": [
- "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
- "\u001b[0;31mJSONDecodeError\u001b[0m Traceback (most recent call last)",
- "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0msimple_chain\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0minvoke\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mchallenge\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
- "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/langchain_core/runnables/base.py\u001b[0m in \u001b[0;36minvoke\u001b[0;34m(self, input, config)\u001b[0m\n\u001b[1;32m 2051\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2052\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mi\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mstep\u001b[0m \u001b[0;32min\u001b[0m \u001b[0menumerate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msteps\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2053\u001b[0;31m input = step.invoke(\n\u001b[0m\u001b[1;32m 2054\u001b[0m \u001b[0minput\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2055\u001b[0m \u001b[0;31m# mark each step as a child run\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/langchain_core/runnables/base.py\u001b[0m in \u001b[0;36minvoke\u001b[0;34m(self, input, config, **kwargs)\u001b[0m\n\u001b[1;32m 3505\u001b[0m \u001b[0;34m\"\"\"Invoke this runnable synchronously.\"\"\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3506\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mhasattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"func\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3507\u001b[0;31m return self._call_with_config(\n\u001b[0m\u001b[1;32m 3508\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_invoke\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3509\u001b[0m \u001b[0minput\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/langchain_core/runnables/base.py\u001b[0m in \u001b[0;36m_call_with_config\u001b[0;34m(self, func, input, config, run_type, **kwargs)\u001b[0m\n\u001b[1;32m 1244\u001b[0m output = cast(\n\u001b[1;32m 1245\u001b[0m \u001b[0mOutput\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1246\u001b[0;31m context.run(\n\u001b[0m\u001b[1;32m 1247\u001b[0m \u001b[0mcall_func_with_variable_args\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1248\u001b[0m \u001b[0mfunc\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;31m# type: ignore[arg-type]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/langchain_core/runnables/config.py\u001b[0m in \u001b[0;36mcall_func_with_variable_args\u001b[0;34m(func, input, config, run_manager, **kwargs)\u001b[0m\n\u001b[1;32m 324\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mrun_manager\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0maccepts_run_manager\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfunc\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 325\u001b[0m \u001b[0mkwargs\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"run_manager\"\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mrun_manager\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 326\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mfunc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0minput\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# type: ignore[call-arg]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 327\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 328\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/langchain_core/runnables/base.py\u001b[0m in \u001b[0;36m_invoke\u001b[0;34m(self, input, run_manager, config, **kwargs)\u001b[0m\n\u001b[1;32m 3381\u001b[0m \u001b[0moutput\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mchunk\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3382\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3383\u001b[0;31m output = call_func_with_variable_args(\n\u001b[0m\u001b[1;32m 3384\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfunc\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0minput\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mconfig\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrun_manager\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3385\u001b[0m )\n",
- "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/langchain_core/runnables/config.py\u001b[0m in \u001b[0;36mcall_func_with_variable_args\u001b[0;34m(func, input, config, run_manager, **kwargs)\u001b[0m\n\u001b[1;32m 324\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mrun_manager\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0maccepts_run_manager\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfunc\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 325\u001b[0m \u001b[0mkwargs\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"run_manager\"\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mrun_manager\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 326\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mfunc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0minput\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# type: ignore[call-arg]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 327\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 328\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;32m/usr/lib/python3.10/json/__init__.py\u001b[0m in \u001b[0;36mloads\u001b[0;34m(s, cls, object_hook, parse_float, parse_int, parse_constant, object_pairs_hook, **kw)\u001b[0m\n\u001b[1;32m 344\u001b[0m \u001b[0mparse_int\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mparse_float\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m \u001b[0;32mand\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 345\u001b[0m parse_constant is None and object_pairs_hook is None and not kw):\n\u001b[0;32m--> 346\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0m_default_decoder\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdecode\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ms\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 347\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mcls\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 348\u001b[0m \u001b[0mcls\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mJSONDecoder\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;32m/usr/lib/python3.10/json/decoder.py\u001b[0m in \u001b[0;36mdecode\u001b[0;34m(self, s, _w)\u001b[0m\n\u001b[1;32m 338\u001b[0m \u001b[0mend\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_w\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ms\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mend\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 339\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mend\u001b[0m \u001b[0;34m!=\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ms\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 340\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mJSONDecodeError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Extra data\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0ms\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mend\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 341\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mobj\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 342\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;31mJSONDecodeError\u001b[0m: Extra data: line 15 column 1 (char 147)"
- ]
- }
- ],
- "source": [
- "simple_chain.invoke(challenge)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "1c534366",
- "metadata": {
- "id": "1c534366"
- },
- "source": [
- "### 4.2 使用新模型格式化输出\n",
- "\n",
- "所以我们会发现早期版本的 OpenAI 模型不支持格式化的输出,所以即使使用 LangChain 并且加上了`json.load`但是还是会出现错误,但是如果我们使用新的`gpt-3.5-turbo`模型就不会出现这个问题。"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 18,
- "id": "f0e34ed7",
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "f0e34ed7",
- "outputId": "f3ae66a2-b0c7-4557-8914-687ac20b2a08"
- },
- "outputs": [
- {
- "data": {
- "text/plain": [
- "{'poem1': {'title': '春风',\n",
- " 'author': '李白',\n",
- " 'first_line': '春风又绿江南岸。',\n",
- " 'content': '春风又绿江南岸,明月何时照我还。'},\n",
- " 'poem2': {'title': '静夜思',\n",
- " 'author': '杜甫',\n",
- " 'first_line': '床前明月光,',\n",
- " 'content': '床前明月光,疑是地上霜。'},\n",
- " 'poem3': {'title': '登鹳雀楼',\n",
- " 'author': '王之涣',\n",
- " 'first_line': '白日依山尽,',\n",
- " 'content': '白日依山尽,黄河入海流。'}}"
- ]
- },
- "execution_count": 18,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "# 默认使用新的模型\n",
- "model = ChatOpenAI(temperature=0)\n",
- "chain = model | StrOutputParser() | json.loads\n",
- "\n",
- "chain.invoke(challenge)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "603a2605",
- "metadata": {
- "id": "603a2605"
- },
- "source": [
- "### 4.3 fallbacks方法\n",
- "\n",
- "那这个时候可能就会思考,有没有什么方法,在不用改变太多代码的情况下,让早期的模型也能达到格式化输出的效果,而不是写复杂的格式化输出的代码去对结果进行操作。这时候我们就可以使用`fallbacks`的方式赋予早期模型这样格式化的能力,从结果我们也可以看出,我们成功使用`fallbacks`赋予了简单模型格式化的能力。"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 19,
- "id": "7b1aede1",
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "7b1aede1",
- "outputId": "3823946c-a875-4807-9b0d-ba2910fe584d"
- },
- "outputs": [
- {
- "data": {
- "text/plain": [
- "{'poem1': {'title': '春风',\n",
- " 'author': '李白',\n",
- " 'first_line': '春风又绿江南岸。',\n",
- " 'content': '春风又绿江南岸,明月何时照我还。'},\n",
- " 'poem2': {'title': '静夜思',\n",
- " 'author': '杜甫',\n",
- " 'first_line': '床前明月光,',\n",
- " 'content': '床前明月光,疑是地上霜。'},\n",
- " 'poem3': {'title': '登鹳雀楼',\n",
- " 'author': '王之涣',\n",
- " 'first_line': '白日依山尽,',\n",
- " 'content': '白日依山尽,黄河入海流。'}}"
- ]
- },
- "execution_count": 19,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "# 使用with_fallbacks机制\n",
- "final_chain = simple_chain.with_fallbacks([chain])\n",
- "\n",
- "# 调用final_chain的invoke方法,并传递challenge参数\n",
- "final_chain.invoke(challenge)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "bb6f0aac",
- "metadata": {},
- "source": [
- "### 4.4 fallbacks 是如何实现的?\n",
- "\n",
- "当我们调用 LLM 时,经常会出现由于底层 API 问题、速率问题或者网络问题等原因,导致不能成功运行 LLM 。在这种情况下,我们就可以使用回退这种方法来解决这个问题,具体来说,他是通过使用另一种 LLM 来代替原先的不可运行的 LLM 产生结果,请看下面例子:"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "4dd3f251",
- "metadata": {},
- "outputs": [],
- "source": [
- "from langchain_core.chat_models.openai import ChatOpenAI\n",
- "from langchain_core.chat_models.anthropic import ChatAnthropic\n",
- "\n",
- "model = ChatAnthropic().with_fallbacks([ChatOpenAI()])\n",
- "model.invoke('hello')"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "1b8fb2aa",
- "metadata": {},
- "source": [
- "在这种情况下,通常会优先使用 ChatAnthropic 进行回答,但是如果调用 ChatAnthropic 失败了,会回退到使用 ChatOpenAI 模型来生成响应。如果两种 LLM 都失败了,将会回退到一种硬编码响应。硬编码的默认响应用于处理异常情况或者在无法从外部资源获取所需信息时提供一个备用选项,例如 \"Looks like our LLM providers are down. Here's a nice 🦜️ emoji for you instead.\"(看起来我们的 LLM 提供商出了问题,那么,这里有一个可爱的 🦜️ 表情符号给你。)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "438e1841",
- "metadata": {},
- "source": [
- "如果你想了解更多关于 fallbacks 的内容,请参考[官方文档](https://python.langchain.com/docs/guides/fallbacks)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "96e3229d",
- "metadata": {
- "id": "96e3229d"
- },
- "source": [
- "## 五、接口 Interface\n",
- "\n",
- "在使用LangChain中,存在许多接口,其中公开的标准接口包括:\n",
- "\n",
- "- stream:流式返回输出内容\n",
- "- invoke:输入调用chain\n",
- "- batch:在输入列表中并行调用chain\n",
- "\n",
- "这些也有相应的异步方法:\n",
- "\n",
- "- astream:异步流式返回输出内容\n",
- "- ainvoke:在输入上异步调用chain\n",
- "- abatch:在输入列表中并行异步调用chain\n",
- "\n",
- "首先我们定义给一个简单提示模板,也就是\"给我讲一个关于{主题}的短笑话\",然后定义了一个简单的链`Chain = prompt | LLM | OutputParser`。"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 20,
- "id": "72e228da",
- "metadata": {
- "id": "72e228da"
- },
- "outputs": [],
- "source": [
- "# 创建一个ChatPromptTemplate对象,使用模板\"给我讲一个关于{topic}的短笑话\"\n",
- "prompt = ChatPromptTemplate.from_template(\n",
- " \"给我讲一个关于{topic}的短笑话\"\n",
- ")\n",
- "\n",
- "# 创建一个ChatOpenAI模型\n",
- "model = ChatOpenAI()\n",
- "\n",
- "# 创建一个StrOutputParser对象\n",
- "output_parser = StrOutputParser()\n",
- "\n",
- "# 创建一个chain,将prompt、model和output_parser连接起来\n",
- "chain = prompt | model | output_parser"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "e8b02924",
- "metadata": {
- "id": "e8b02924"
- },
- "source": [
- "### 5.1 invoke接口\n",
- "\n",
- "接下来我们分别使用对应的接口,比如我们首先使用常规的`invoke`的调用,这个也是前面展现的方法,我们得到了对应结果。"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 21,
- "id": "e339d019",
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 53
- },
- "id": "e339d019",
- "outputId": "6893312f-8473-411f-d175-c351532e5646"
- },
- "outputs": [
- {
- "data": {
- "application/vnd.google.colaboratory.intrinsic+json": {
- "type": "string"
- },
- "text/plain": [
- "'当熊在森林里遇到一只兔子时,他问:“兔子先生,你有没有问题?”兔子回答道:“当然,先生熊,我有一个问题。你怎么会拉这么长的尾巴?”熊听后笑了起来:“兔子先生,这不是尾巴,这是我的领带!”'"
- ]
- },
- "execution_count": 21,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "chain.invoke({\"topic\": \"熊\"})"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "2520f449",
- "metadata": {
- "id": "2520f449"
- },
- "source": [
- "### 5.2 batch接口\n",
- "\n",
- "我们再尝试使用`batch`的接口,我们会发现大模型可以返回两个问题的答案,我们会给chain一个输入的列表,列表中可以包含多个问题,最后返回多个问题的答案。"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 23,
- "id": "d549ac8a",
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "d549ac8a",
- "outputId": "fbd34c84-26b2-4576-d7ce-aa73be98d755"
- },
- "outputs": [
- {
- "data": {
- "text/plain": [
- "['好的,这是一个关于熊的短笑话:\\n\\n有一天,一只熊走进了一家酒吧。他走到吧台前,对酒保说:“请给我一杯……蜂蜜啤酒。”\\n\\n酒保疑惑地看着熊,说:“对不起,我们这里没有蜂蜜啤酒。”\\n\\n熊有些失望地叹了口气,然后说:“好吧,那就给我来一杯……草莓酒吧。”\\n\\n酒保摇摇头,说:“抱歉,我们也没有草莓酒。”\\n\\n熊又叹了口气,然后说:“那请给我来一杯……蜜糖红酒吧。”\\n\\n酒保实在无法忍受了,他对熊说:“对不起,我们这里没有这些奇怪的酒,你是熊,你应该知道熊只能喝蜂蜜。”\\n\\n熊听后一愣,然后脸色一变,说:“原来你们这里没有蜂蜜啤酒,草莓酒和蜜糖红酒?那请给我来一杯……白开水吧。”',\n",
- " '有一天,一只狐狸在森林里遇到了一只兔子。狐狸笑嘻嘻地对兔子说:“喂,兔子,我有一个好消息和一个坏消息,你想先听哪个?”兔子有些好奇地问:“那就先告诉我好消息吧。”狐狸眯起眼睛说:“好消息是,你的智商比我高。”兔子高兴地跳了起来:“太好了,那坏消息是什么?”狐狸一脸轻松地说:“坏消息是,你的智商还比不过胡萝卜。”']"
- ]
- },
- "execution_count": 23,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "chain.batch([{\"topic\": \"熊\"}, {\"topic\": \"狐狸\"}])"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "307a41d2",
- "metadata": {
- "id": "307a41d2"
- },
- "source": [
- "### 5.3 stream接口\n",
- "\n",
- "接下来我们在看看`stream`接口,也就是流式输出内容,这样的功能很有必要,有时候可以免去用户等待的烦恼,让用户看到一个一个词蹦出来而不是一个空的屏幕,这样会带来更好的用户体验。"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 24,
- "id": "f934e46d",
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "f934e46d",
- "outputId": "872109e2-47cb-4da6-a439-eb010ed3530d"
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\n",
- "好\n",
- "的\n",
- ",\n",
- "这\n",
- "是\n",
- "一个\n",
- "关\n",
- "于\n",
- "熊\n",
- "的\n",
- "短\n",
- "笑\n",
- "话\n",
- ":\n",
- "\n",
- "\n",
- "有\n",
- "一\n",
- "天\n",
- ",\n",
- "一\n",
- "只\n",
- "小\n",
- "熊\n",
- "走\n",
- "进\n",
- "了\n",
- "一\n",
- "家\n",
- "酒\n",
- "吧\n",
- "。\n",
- "他\n",
- "走\n",
- "到\n",
- "吧\n",
- "台\n",
- "前\n",
- ",\n",
- "对\n",
- "酒\n",
- "保\n",
- "说\n",
- ":“\n",
- "酒\n",
- "保\n",
- ",\n",
- "给\n",
- "我\n",
- "一\n",
- "杯\n",
- "牛\n",
- "奶\n",
- "。”\n",
- "\n",
- "\n",
- "酒\n",
- "保\n",
- "惊\n",
- "讶\n",
- "地\n",
- "问\n",
- "道\n",
- ":“\n",
- "小\n",
- "熊\n",
- ",\n",
- "你\n",
- "怎\n",
- "么\n",
- "会\n",
- "来\n",
- "这\n",
- "里\n",
- "喝\n",
- "牛\n",
- "奶\n",
- "?\n",
- "”\n",
- "\n",
- "\n",
- "小\n",
- "熊\n",
- "深\n",
- "情\n",
- "地\n",
- "回\n",
- "答\n",
- ":“\n",
- "因\n",
- "为\n",
- "我的\n",
- "妈\n",
- "妈\n",
- "说\n",
- ",\n",
- "每\n",
- "当\n",
- "我\n",
- "喝\n",
- "酒\n",
- "的\n",
- "时\n",
- "候\n",
- ",\n",
- "我\n",
- "都\n",
- "会\n",
- "变\n",
- "得\n",
- "熊\n",
- "样\n",
- "!”\n",
- "\n"
- ]
- }
- ],
- "source": [
- "for t in chain.stream({\"topic\": \"熊\"}):\n",
- " print(t)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "fda98771",
- "metadata": {
- "id": "fda98771"
- },
- "source": [
- "### 5.4 异步接口\n",
- "\n",
- "我们还可以尝试异步来调用,使用`ainvoke`来调用。\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 25,
- "id": "cd372fec",
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 71
- },
- "id": "cd372fec",
- "outputId": "1232ac0b-7900-493c-aec6-7b99abb928d8"
- },
- "outputs": [
- {
- "data": {
- "application/vnd.google.colaboratory.intrinsic+json": {
- "type": "string"
- },
- "text/plain": [
- "'好的,以下是一个关于熊的短笑话:\\n\\n有一只熊走进了一家餐厅,他走到柜台前,对着服务员说:“我想要一杯咖啡和......嗯,一块...牛肉三明治。”\\n服务员疑惑地看着熊,然后问道:“对不起,先生,你是真的想要一块牛肉三明治吗?”\\n熊点了点头。\\n服务员又问:“那请问为什么你要来这里点餐呢?”\\n熊回答道:“因为我是个熊啊!”'"
- ]
- },
- "execution_count": 25,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "response = await chain.ainvoke({\"topic\": \"熊\"})\n",
- "response"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "926c23d0",
- "metadata": {
- "id": "926c23d0"
- },
- "source": [
- "## 六、英文提示词"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "nf-C5Y-9TR2d",
- "metadata": {
- "id": "nf-C5Y-9TR2d"
- },
- "source": [
- "**一、构建简单链**"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 26,
- "id": "urymAcXkTOQ2",
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 53
- },
- "id": "urymAcXkTOQ2",
- "outputId": "97d1aee3-86a0-44cb-c534-6db4ffb6a11b"
- },
- "outputs": [
- {
- "data": {
- "application/vnd.google.colaboratory.intrinsic+json": {
- "type": "string"
- },
- "text/plain": [
- "'Why did the bear bring a flashlight to the party?\\n\\nBecause he wanted to be the \"light\" of the bearbecue!'"
- ]
- },
- "execution_count": 26,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "prompt = ChatPromptTemplate.from_template(\n",
- " \"tell me a short joke about {topic}\"\n",
- ")\n",
- "model = ChatOpenAI()\n",
- "output_parser = StrOutputParser()\n",
- "\n",
- "chain = prompt | model | output_parser\n",
- "\n",
- "chain.invoke({\"topic\": \"bears\"})"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "e34b6bd6",
- "metadata": {},
- "source": [
- "**2.1 构建简单文档数据库**"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 27,
- "id": "J-IpScccTHtL",
- "metadata": {
- "id": "J-IpScccTHtL"
- },
- "outputs": [],
- "source": [
- "vectorstore = DocArrayInMemorySearch.from_texts(\n",
- " [\"harrison worked at kensho\", \"bears like to eat honey\"],\n",
- " embedding=OpenAIEmbeddings()\n",
- ")\n",
- "retriever = vectorstore.as_retriever()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 28,
- "id": "4nWE8nLjTJuT",
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "4nWE8nLjTJuT",
- "outputId": "65742853-5146-4a1c-fb0b-d1e456532b95"
- },
- "outputs": [
- {
- "data": {
- "text/plain": [
- "[Document(page_content='harrison worked at kensho'),\n",
- " Document(page_content='bears like to eat honey')]"
- ]
- },
- "execution_count": 28,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "retriever.get_relevant_documents(\"where did harrison work?\")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 29,
- "id": "hygSW50bTXzV",
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "hygSW50bTXzV",
- "outputId": "2f88f2d7-781d-41d0-c50e-fa18e0420c3d"
- },
- "outputs": [
- {
- "data": {
- "text/plain": [
- "[Document(page_content='bears like to eat honey'),\n",
- " Document(page_content='harrison worked at kensho')]"
- ]
- },
- "execution_count": 29,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "retriever.get_relevant_documents(\"what do bears like to eat\")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 31,
- "id": "-6iG51i5TZGJ",
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 35
- },
- "id": "-6iG51i5TZGJ",
- "outputId": "29de378b-2151-43fc-d2fc-f6a1b8d16896"
- },
- "outputs": [
- {
- "data": {
- "application/vnd.google.colaboratory.intrinsic+json": {
- "type": "string"
- },
- "text/plain": [
- "'Harrison worked at Kensho.'"
- ]
- },
- "execution_count": 31,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "template = \"\"\"Answer the question based only on the following context:\n",
- "{context}\n",
- "\n",
- "Question: {question}\n",
- "\"\"\"\n",
- "prompt = ChatPromptTemplate.from_template(template)\n",
- "\n",
- "chain = RunnableMap({\n",
- " \"context\": lambda x: retriever.get_relevant_documents(x[\"question\"]),\n",
- " \"question\": lambda x: x[\"question\"]\n",
- "}) | prompt | model | output_parser\n",
- "\n",
- "chain.invoke({\"question\": \"where did harrison work?\"})"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "aabda125",
- "metadata": {},
- "source": [
- "**3.2 使用RunnableMap**"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 33,
- "id": "JoLBmwfETg1L",
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "JoLBmwfETg1L",
- "outputId": "73127639-c19e-400c-e26e-8f68dfd93635"
- },
- "outputs": [
- {
- "data": {
- "text/plain": [
- "{'context': [Document(page_content='harrison worked at kensho'),\n",
- " Document(page_content='bears like to eat honey')],\n",
- " 'question': 'where did harrison work?'}"
- ]
- },
- "execution_count": 33,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "inputs = RunnableMap({\n",
- " \"context\": lambda x: retriever.get_relevant_documents(x[\"question\"]),\n",
- " \"question\": lambda x: x[\"question\"]\n",
- "})\n",
- "\n",
- "inputs.invoke({\"question\": \"where did harrison work?\"})"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "HqjgfGT8Tj2Z",
- "metadata": {
- "id": "HqjgfGT8Tj2Z"
- },
- "source": [
- "**3.1 单函数绑定**"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 34,
- "id": "_XZPKC1_Th6S",
- "metadata": {
- "id": "_XZPKC1_Th6S"
- },
- "outputs": [],
- "source": [
- "functions = [\n",
- " {\n",
- " \"name\": \"weather_search\",\n",
- " \"description\": \"Search for weather given an airport code\",\n",
- " \"parameters\": {\n",
- " \"type\": \"object\",\n",
- " \"properties\": {\n",
- " \"airport_code\": {\n",
- " \"type\": \"string\",\n",
- " \"description\": \"The airport code to get the weather for\"\n",
- " },\n",
- " },\n",
- " \"required\": [\"airport_code\"]\n",
- " }\n",
- " }\n",
- " ]"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 35,
- "id": "0UPE0nWDTm3T",
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "0UPE0nWDTm3T",
- "outputId": "a4762623-c42f-4950-a21e-da73f7efe0c9"
- },
- "outputs": [
- {
- "data": {
- "text/plain": [
- "AIMessage(content='', additional_kwargs={'function_call': {'name': 'weather_search', 'arguments': '{\\n \"airport_code\": \"SFO\"\\n}'}})"
- ]
- },
- "execution_count": 35,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "prompt = ChatPromptTemplate.from_messages(\n",
- " [\n",
- " (\"human\", \"{input}\")\n",
- " ]\n",
- ")\n",
- "model = ChatOpenAI(temperature=0).bind(functions=functions)\n",
- "\n",
- "runnable = prompt | model\n",
- "\n",
- "runnable.invoke({\"input\": \"what is the weather in sf\"})"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "bc6a3fd8",
- "metadata": {},
- "source": [
- "**3.2 多个函数绑定**"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 36,
- "id": "U2R9nKncTpy6",
- "metadata": {
- "id": "U2R9nKncTpy6"
- },
- "outputs": [],
- "source": [
- "functions = [\n",
- " {\n",
- " \"name\": \"weather_search\",\n",
- " \"description\": \"Search for weather given an airport code\",\n",
- " \"parameters\": {\n",
- " \"type\": \"object\",\n",
- " \"properties\": {\n",
- " \"airport_code\": {\n",
- " \"type\": \"string\",\n",
- " \"description\": \"The airport code to get the weather for\"\n",
- " },\n",
- " },\n",
- " \"required\": [\"airport_code\"]\n",
- " }\n",
- " },\n",
- " {\n",
- " \"name\": \"sports_search\",\n",
- " \"description\": \"Search for news of recent sport events\",\n",
- " \"parameters\": {\n",
- " \"type\": \"object\",\n",
- " \"properties\": {\n",
- " \"team_name\": {\n",
- " \"type\": \"string\",\n",
- " \"description\": \"The sports team to search for\"\n",
- " },\n",
- " },\n",
- " \"required\": [\"team_name\"]\n",
- " }\n",
- " }\n",
- " ]"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 37,
- "id": "i9yES-wwTrYO",
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "i9yES-wwTrYO",
- "outputId": "c4e1ae94-d087-454b-a8c1-7fab9df2b790"
- },
- "outputs": [
- {
- "data": {
- "text/plain": [
- "AIMessage(content='', additional_kwargs={'function_call': {'name': 'sports_search', 'arguments': '{\\n \"team_name\": \"patriots\"\\n}'}})"
- ]
- },
- "execution_count": 37,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "model = model.bind(functions=functions)\n",
- "\n",
- "runnable = prompt | model\n",
- "\n",
- "runnable.invoke({\"input\": \"how did the patriots do yesterday?\"})"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "300a9405",
- "metadata": {},
- "source": [
- "**4.1 使用早期模型格式化输出**"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 38,
- "id": "4lECkukwT4ua",
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 107
- },
- "id": "4lECkukwT4ua",
- "outputId": "88c67d19-6d26-406a-9d26-08827794dc4e"
- },
- "outputs": [
- {
- "data": {
- "application/vnd.google.colaboratory.intrinsic+json": {
- "type": "string"
- },
- "text/plain": [
- "'\\n\\n{\\n \"title\": \"Autumn Leaves\",\\n \"author\": \"Emily Dickinson\",\\n \"first_line\": \"The leaves are falling, one by one\"\\n}\\n\\n{\\n \"title\": \"The Ocean\\'s Song\",\\n \"author\": \"Pablo Neruda\",\\n \"first_line\": \"I hear the ocean\\'s song, a symphony of waves\"\\n}\\n\\n{\\n \"title\": \"A Winter\\'s Night\",\\n \"author\": \"Robert Frost\",\\n \"first_line\": \"The snow falls softly, covering the ground\"\\n}'"
- ]
- },
- "execution_count": 38,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "simple_model = OpenAI(\n",
- " temperature=0,\n",
- " max_tokens=1000,\n",
- " model=\"gpt-3.5-turbo-instruct\"\n",
- ")\n",
- "simple_chain = simple_model | json.loads\n",
- "\n",
- "challenge = \"write three poems in a json blob, where each poem is a json blob of a title, author, and first line\"\n",
- "\n",
- "simple_model.invoke(challenge)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "35c60800",
- "metadata": {},
- "source": [
- "**早期模型不支持,会出现解码错误**"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 39,
- "id": "aX0oo-25T9hE",
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 330
- },
- "id": "aX0oo-25T9hE",
- "outputId": "8425f5f7-5891-4448-d67d-be89208e05a9"
- },
- "outputs": [
- {
- "ename": "JSONDecodeError",
- "evalue": "Extra data: line 9 column 1 (char 125)",
- "output_type": "error",
- "traceback": [
- "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
- "\u001b[0;31mJSONDecodeError\u001b[0m Traceback (most recent call last)",
- "\u001b[0;32m\u001b[0m in \u001b[0;36m |