Skip to content

Latest commit

 

History

History
144 lines (100 loc) · 5.59 KB

03-Qwen1.5-7B-Chat WebDemo.md

File metadata and controls

144 lines (100 loc) · 5.59 KB

Qwen1.5-7B-Chat WebDemo 部署

Qwen1.5 介绍

Qwen1.5 是 Qwen2 的测试版,Qwen1.5 是基于 transformer 的 decoder-only 语言模型,已在大量数据上进行了预训练。与之前发布的 Qwen 相比,Qwen1.5 的改进包括 6 种模型大小,包括 0.5B、1.8B、4B、7B、14B 和 72B;Chat模型在人类偏好方面的性能显著提高;基础模型和聊天模型均支持多种语言;所有大小的模型均稳定支持 32K 上下文长度,无需 trust_remote_code。

环境准备

本文基础环境如下:

----------------
ubuntu 22.04
python 3.12
cuda 12.1
pytorch 2.3.0
----------------

本文默认学习者已安装好以上 PyTorch(cuda) 环境,如未安装请自行安装。

接下来开始环境配置、模型下载和运行演示 ~

pip 换源加速下载并安装依赖包

pip install --upgrade pip
# 更换 pypi 源加速库的安装
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple

pip install modelscope==1.16.1
pip install langchain==0.2.3
pip install streamlit==1.37.0
pip install transformers==4.43.2
pip install accelerate==0.32.1

考虑到部分同学配置环境可能会遇到一些问题,我们在AutoDL平台准备了Qwen1.5的环境镜像,该镜像适用于该仓库除Qwen-GPTQ和vllm外的所有部署环境。点击下方链接并直接创建Autodl示例即可。 https://www.codewithgpu.com/i/datawhalechina/self-llm/self-llm-Qwen1.5

模型下载

使用 modelscope 中的 snapshot_download 函数下载模型,第一个参数为模型名称,参数 cache_dir 为自定义的模型下载路径,参数revision为模型仓库分支版本,master 代表主分支,也是一般模型上传的默认分支。

先切换到 autodl-tmp 目录,cd /root/autodl-tmp

然后新建名为 model_download.pypython 文件,并在其中输入以下内容并保存

# model_download.py
from modelscope import snapshot_download

model_dir = snapshot_download('qwen/Qwen1.5-7B-Chat', cache_dir='/root/autodl-tmp', revision='master')

然后在终端中输入 python model_download.py 执行下载,注意该模型权重文件比较大,因此这里需要耐心等待一段时间直到模型下载完成。

注意:记得修改 cache_dir 为你的模型下载路径哦~

代码准备

/root/autodl-tmp路径下新建 chatBot.py 文件并在其中输入以下内容,粘贴代码后记得保存文件。下面的代码有很详细的注释,大家如有不理解的地方,欢迎提出issue。

# 导入所需的库
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
import torch
import streamlit as st

# 在侧边栏中创建一个标题和一个链接
with st.sidebar:
    st.markdown("## Qwen1.5 LLM")
    "[开源大模型食用指南 self-llm](https://github.com/datawhalechina/self-llm.git)"
    # 创建一个滑块,用于选择最大长度,范围在0到1024之间,默认值为512
    max_length = st.slider("max_length", 0, 1024, 512, step=1)

# 创建一个标题和一个副标题
st.title("💬 Qwen1.5 Chatbot")
st.caption("🚀 A streamlit chatbot powered by Self-LLM")

# 定义模型路径
mode_name_or_path = '/root/autodl-tmp/qwen/Qwen1.5-7B-Chat'

# 定义一个函数,用于获取模型和tokenizer
@st.cache_resource
def get_model():
    # 从预训练的模型中获取tokenizer
    tokenizer = AutoTokenizer.from_pretrained(mode_name_or_path, use_fast=False)
    # 从预训练的模型中获取模型,并设置模型参数
    model = AutoModelForCausalLM.from_pretrained(mode_name_or_path, torch_dtype=torch.bfloat16,  device_map="auto")
  
    return tokenizer, model

# 加载Qwen1.5-4B-Chat的model和tokenizer
tokenizer, model = get_model()

# 如果session_state中没有"messages",则创建一个包含默认消息的列表
if "messages" not in st.session_state:
    st.session_state["messages"] = [{"role": "assistant", "content": "有什么可以帮您的?"}]

# 遍历session_state中的所有消息,并显示在聊天界面上
for msg in st.session_state.messages:
    st.chat_message(msg["role"]).write(msg["content"])

# 如果用户在聊天输入框中输入了内容,则执行以下操作
if prompt := st.chat_input():
    # 将用户的输入添加到session_state中的messages列表中
    st.session_state.messages.append({"role": "user", "content": prompt})
    # 在聊天界面上显示用户的输入
    st.chat_message("user").write(prompt)
    
    # 构建输入     
    input_ids = tokenizer.apply_chat_template(st.session_state.messages,tokenize=False,add_generation_prompt=True)
    model_inputs = tokenizer([input_ids], return_tensors="pt").to('cuda')
    generated_ids = model.generate(model_inputs.input_ids, max_new_tokens=512)
    generated_ids = [
        output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
    ]
    response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
    # 将模型的输出添加到session_state中的messages列表中
    st.session_state.messages.append({"role": "assistant", "content": response})
    # 在聊天界面上显示模型的输出
    st.chat_message("assistant").write(response)
    # print(st.session_state)

运行 demo

在终端中运行以下命令,启动streamlit服务,并按照 autodl 的指示将端口映射到本地,然后在浏览器中打开链接 http://localhost:6006/ ,即可看到聊天界面。

streamlit run /root/autodl-tmp/chatBot.py --server.address 127.0.0.1 --server.port 6006

效果如下所示:

Alt text