-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmax-subsequence-sum.cpp
98 lines (84 loc) · 3.05 KB
/
max-subsequence-sum.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
#include <iostream>
using namespace std;
struct RetData {
int begin;
int end;
int max;
};
RetData maxSubsequenceSum1(int input[], int begin, int end);
int maxSubsequenceSum2(int input[], int begin, int end);
int main(int argc, char** argv) {
//int input[8] = {4, -3, 5, -27, -1, 2, 6, -2}; // pass
//int input[1] = {1}; // pass
//int input[7] = {3, 0, -9, 7, 9,-43, 27}; // pass
//int input[0]; // pass
//int input[3] = {-2, -1, -3}; // pass
//int input[6] = {-2, -1, -3, 3, -1, 2}; // pass
int input[6] = {-2, -1, 3, -3, -1, 2}; // pass
//int input[6] = {-2, -1, 3, -3, 1, 2}; // pass
//int input[6] = {-2, -1, 0, 3, 2, 1}; // pass
int arrLen = sizeof(input) / sizeof(input[0]);
RetData ret = maxSubsequenceSum1(input, 0, arrLen);
int max = maxSubsequenceSum2(input, 0, arrLen);
cout << "Subsequence with max sum is [" << ret.begin << ", " << ret.end << "), " << "and max sum is " << ret.max << "." << endl;
cout << "Max sum is " << max << endl;
return 0;
}
// divide and conquer
RetData maxSubsequenceSum1(int input[], int begin, int end) {
RetData ret;
/// length of input array is zero (invalid input)
if (begin == end) {
ret.begin = -1;
ret.end = -1;
ret.max = -1;
return ret;
}
/// length of susequence is 1, return the value as max value
if (begin + 1 == end) {
ret.begin = begin;
ret.end = end;
ret.max = input[begin];
return ret;
}
/// calculate middle index of subsequence
int mid = (begin + end) >> 1;
/// find max subsequence sum of subsequence [begin, mid)
RetData headRet = maxSubsequenceSum1(input, begin, mid);
/// find max subsequence sum of subsequence [mid, end)
RetData tailRet = maxSubsequenceSum1(input, mid, end);
/// find max subsequence sum cross middle point (the sum of subsequence [headRet.begin, tailRet.end) )
int maxHead = headRet.max;
for (int i = headRet.end; i < mid; ++i) {
maxHead += input[i];
}
int maxTail = tailRet.max;
for (int i = mid; i < tailRet.begin; ++i) {
maxTail += input[i];
}
int maxCross = maxHead + maxTail;
/// compare and find which one is the max subsuquence sum
// cross case has highest priority, so longest subsequence with max sum will be returned
if (maxCross >= headRet.max && maxCross >= tailRet.max) {
ret.begin = headRet.begin;
ret.end = tailRet.end;
ret.max = maxCross;
return ret;
}
if (headRet.max >= tailRet.max && headRet.max >= maxCross) {
return headRet;
}
return tailRet;
}
int maxSubsequenceSum2(int input[], int begin, int end) {
int thisMax, maxSum;
thisMax = maxSum = 0;
for (int i = begin; i < end; ++i) {
thisMax += input[i];
if (thisMax > maxSum) {
maxSum = thisMax;
}
if (thisMax < 0) thisMax = 0;
}
return maxSum;
}