-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtest_adanet.py
637 lines (534 loc) · 24.1 KB
/
test_adanet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
""" Created by David Abekasis March 2018
AdaNet: Adaptive Structural Learning of Artificial Neural Networks
This helper module is used to implement and test the AdaNet_CVX.py API
- First part is loading 10 datasets for comparisons
- Second part is defining which classifiers will be used as baselines to test AdaNet (MLP-FFNN, LR)
- Third part is for scoring results and includes several functions to iterate and produce relevant scores
"""
from AdaNet_CVX import AdaNetCVX
import twospirals as ts_dataset
import AdaNet_CIFAR_10_feature_extraction as AdaFE
import csv
import itertools
import collections
import time
import os
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import ttest_rel
#Datasets are stored in a python dictionary
datasets = {}
# verbose with pyplot graph of Loss convergence on every set of parameters
verbose = True
verbose_graph = True
# number of folds in each repetition, of which in each repetition a test set will be set aside
# the rest will be used for validation and training
n_fold_splits = 3
# Fetch test dataset of two spirals
from sklearn.datasets import fetch_mldata
from sklearn.datasets.base import Bunch
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import MinMaxScaler, OneHotEncoder, label_binarize
from sklearn.utils import shuffle
from sklearn.model_selection import RepeatedKFold, train_test_split
from sklearn.metrics import accuracy_score, roc_auc_score, f1_score, recall_score
from sklearn.neural_network import MLPClassifier
from sklearn.linear_model import LogisticRegression
"""
#######################################
FIRST PART - Load datasets
#######################################
"""
data = ts_dataset.twospirals(44100,540*1,0,1)
datasets["twospirals"] = {
"X": data[:,:-1],
"y": (2*(data[:,-1])-1)
}
# Fetch german_data dataset from mldata.org
data = fetch_mldata("german-ida")
# training data has now zero mean and standard deviation one
datasets["german-ida"] = {
"X": data.data,
"y": (data.target)
}
# Fetch diabetes scale from mldata.org
data = fetch_mldata("diabetes_scale")
datasets["diabetes_scale"] = {
"X": data.data,
"y": label_binarize(data.target, classes=[-1, 1], neg_label=-1.0, pos_label=1.0).reshape(-1,).astype(float)
}
# Fetch wisconsin breast cancer from sklearn datasets
from sklearn.datasets import load_breast_cancer
data = load_breast_cancer()
datasets["wisconsin"] = {
"X": data.data,
"y": label_binarize(data.target, classes=[0, 1], neg_label=-1.0, pos_label=1.0).reshape(-1,).astype(float)
}
# Fetch tic tac toe from UCI Maching Learning Repository
def load_tic_tac_toe(return_X_y=False):
file_path = os.path.join(os.path.dirname(os.path.realpath(__file__)),'tic-tac-toe', 'tic-tac-toe.data')
with open(file_path) as f:
data_file = csv.reader(f, delimiter=';')
# first row of header, that will turn into feature_names
# temp = next(data_file)
# number of features = ??
# feature_names = np.array(temp)
data = []
target = []
with open(file_path) as f:
data_file = csv.reader(f, delimiter=',')
i = 0
firstline = False
for d in data_file:
if firstline:
# skip first line of header, as we already read it for features
firstline = False
else:
d = np.array(d)
#x=player x has taken, o=player o has taken, b=blank
d[d == 'x'] = 1.0
d[d == 'o'] = 2.0
d[d == 'b'] = 3.0
#positive (i.e., wins for "x")
d[d == 'positive'] = 1.0
d[d == 'negative'] = -1.0
d = np.array(d, dtype='float')
# load into data all column but the last, which is the target
data.append(d[:-1])
# load last column as target values
target.append(d[-1])
i += 1
data = np.array(data).astype(float)
target = np.array(target).astype(float)
if return_X_y:
return data, target
return Bunch(data=data,
target=target)
# last column is target value
data = load_tic_tac_toe()
datasets["tic_tac_toe"] = {
"X": data.data,
"y": data.target
}
# Fetch images of dog and horse from CIFAR10,
# based on the helper python file AdaNet_CIFAR_10_feature_extraction.py
dog_horse = AdaFE.CF10_pairs('dog','horse')
X_train, y_train, X_test, y_test = AdaFE.train_test_dataset(dog_horse)
datasets['dog_horse'] = {
'X': np.vstack((X_train,X_test)),
'y': np.vstack((y_train,y_test))
}
# Fetch images of dog and horse from CIFAR10,
# based on the helper python file AdaNet_CIFAR_10_feature_extraction.py
deer_horse = AdaFE.CF10_pairs('deer','horse')
X_train, y_train, X_test, y_test = AdaFE.train_test_dataset(deer_horse)
datasets['deer_horse'] = {
'X': np.vstack((X_train,X_test)),
'y': np.vstack((y_train,y_test))
}
# Fetch images of dog and horse from CIFAR10,
# based on the helper python file AdaNet_CIFAR_10_feature_extraction.py
deer_truck = AdaFE.CF10_pairs('deer','truck')
X_train, y_train, X_test, y_test = AdaFE.train_test_dataset(deer_truck)
datasets['deer_truck'] = {
'X': np.vstack((X_train,X_test)),
'y': np.vstack((y_train,y_test))
}
# Fetch images of dog and horse from CIFAR10,
# based on the helper python file AdaNet_CIFAR_10_feature_extraction.py
automobile_truck = AdaFE.CF10_pairs('automobile','truck')
X_train, y_train, X_test, y_test = AdaFE.train_test_dataset(automobile_truck)
datasets['automobile_truck'] = {
'X': np.vstack((X_train,X_test)),
'y': np.vstack((y_train,y_test))
}
# Fetch images of cat and dog from CIFAR10,
# based on the helper python file AdaNet_CIFAR_10_feature_extraction.py
cat_dog = AdaFE.CF10_pairs('cat','dog')
X_train, y_train, X_test, y_test = AdaFE.train_test_dataset(cat_dog)
datasets['cat_dog'] = {
'X': np.vstack((X_train,X_test)),
'y': np.vstack((y_train,y_test))
}
"""
##############################################################################
SECOND PART - Define experiments configurations, and helper functions
##############################################################################
"""
def write_line(filename, dict, is_first=False):
dict = collections.OrderedDict(sorted(dict.items()))
with open(filename, 'a') as csvfile:
writer = csv.DictWriter(csvfile, delimiter=',', lineterminator='\n', fieldnames=dict.keys())
if is_first:
writer.writeheader()
writer.writerow(dict)
# return a list of experimet with all the relevant parameters
def get_index_product(params):
i = 0
params_index = {}
for k, v in params.items():
params_index[k] = i
i += 1
params_list = [None] * len(params_index.values())
for name, loc in params_index.items():
params_list[loc] = params[name]
params_product = list(itertools.product(*params_list))
params_product_dicts = []
for params_value in params_product:
params_dict = {}
for param_name, param_index in params_index.items():
params_dict[param_name] = params_value[param_index]
params_product_dicts.append(params_dict)
return params_product_dicts
params_adanets = {
'maxLayers': [3], #[1,2,3],
'maxNodes': [2000], #, 150, 512, 1024, 2048],
'capitalLambda': [1.0, 1.045], #, 1.045, 0.1, 1, 10, 100
'Ck': [1], # 0.1, 10, 100
'Ck_bias': [0.1],
'lowerLambda': [1e-3], # ,1e-4,1e-5,1e-6
'beta': [1e-3],
'bolAugment': [True], #False,
'bolAugmentLayers': [True], #False,
'T': [50], #300
'optMethod': ['Nelder-Mead'], #'Nelder-Mead' 'BFGS'
'optIsGrad': [None] # True None
}
params_MLP = {
'max_iter': [10], # similar to T, number of epochs
'hidden_layer_sizes': [(10,),(10,10),(10,10,10)], #(2000,),(2000,2000),(2000,2000,2000)
'alpha': [1e-3], # similar to lambda, a L2 regularization term
'learning_rate_init': [0.001]
}
params_LR = {
'tol': [0.001],
'C': [1.0, 10.0] #0.1, 1.0, 10.0 , 100.0
}
#generate all combination of experiments with diffrent parameters
experiments_params_adanets = get_index_product(params_adanets)
experiments_params_MLP = get_index_product(params_MLP)
experiments_params_LR = get_index_product(params_LR)
is_first_write_val_adanet = True
is_first_write_val_MLP = True
is_first_write_val_LR = True
is_first_test_write = True
# dataset_experiment = {
# 'wine_quality': load_wine_quality()
# }
def update_adanet_stats(stats, adanet_best_mean_accuracy, adanet_accuracy, adanet_fit_time):
stats['adanet_fit_time'] = np.mean(adanet_fit_time)
stats['adanet_mean'] = np.mean(adanet_accuracy)
stats['adanet_std'] = np.std(adanet_accuracy)
stats['numN'] = adanet_clf.adaParams['numNodes']
stats['numL'] = adanet_clf.adaParams['numLayers']
stats['lossLast'] = adanet_clf.adaParams['lossStore'][-1][0]
stats['lossFirst'] = adanet_clf.adaParams['lossStore'][0][0]
stats['lossFirstChange'] = np.mean(np.diff(np.hstack(adanet_clf.adaParams['lossStore'][:3])))
stats['lossLastChange'] = np.mean(np.diff(np.hstack(adanet_clf.adaParams['lossStore'][-3:])))
stats['actual_epochs'] = len(adanet_clf.adaParams['lossStore'])
stats.update(params_adanet)
if adanet_best_mean_accuracy < stats['adanet_mean']:
adanet_best_mean_accuracy=stats['adanet_mean']
return stats, adanet_best_mean_accuracy
def update_model_stats(stats, model_best_mean_accuracy, model_accuracy, model_fit_time, model_params):
stats[model+'_fit_time'] = np.mean(model_fit_time)
stats[model+'_mean'] = np.mean(model_accuracy)
stats[model+'_std'] = np.std(model_accuracy)
stats.update(model_params)
if model_best_mean_accuracy < stats[model+'_mean']:
model_best_mean_accuracy=stats[model+'_mean']
return stats, model_best_mean_accuracy
def update_test_stats(test_scores, model):
test_scores = {
model+"_dataset": dataset_name,
model+"_accuracy": np.mean(test_accuracy[model]),
model+"_accuracy_std": np.std(test_accuracy[model]),
model+"_f1score": np.mean(test_f1score[model]),
model+"_recall": np.mean(test_recall[model]),
model+"_fit_time": np.mean(test_fit_time[model]),
model+"_pred_time": np.mean(test_predict_time[model]),
model+"_auc": np.mean(test_auc[model])
}
return test_scores
"""
##############################################################################
THIRD PART - RUN experiments (ADANET, MLP, LR)
##############################################################################
"""
# run experiment for each of the parameters
for dataset_name, dataset in datasets.items():
X, y = shuffle(dataset['X'], dataset['y'], random_state=46)
# X = X.astype(np.float32)
# y = y.reshape(-1,1)
stats = {}
test_scores = {}
test_scores['dataset'] = dataset_name
stats['dataset'] = dataset_name
if verbose:
print (dataset_name)
test_accuracy = {}
# test_std = {}
test_f1score = {}
test_recall = {}
test_fit_time = {}
test_predict_time = {}
test_auc = {}
model = 'adanet'
test_fit_time[model]=[]
test_predict_time[model]=[]
test_accuracy[model]=[]
test_f1score[model]=[]
test_recall[model]=[]
test_auc[model]=[]
adanet_best_experiment_mean_accuracy = []
MLP_best_experiment_mean_accuracy = []
LR_best_experiment_mean_accuracy = []
################################
################################
# Adanet scores
################################
################################
# using cv to look for best hyperparameters
for params_adanet in experiments_params_adanets:
k_fold = RepeatedKFold(n_splits=n_fold_splits, n_repeats=3, random_state=46) #10)
#split_data = train_test_split(X, y, test_size=0.1, random_state=46)
#X_train, X_test, y_train, y_test = split_data
#evaluate each model and average in the end
adanet_accuracy = []
adanet_fit_time = []
adanet_best_mean_accuracy = 0 # lower bound value to find highest accuracy
is_first_fold = True
for i, (train_indices, test_indices) in enumerate(k_fold.split(X)):
# set aside true test set, that will not be trained or validated
# and update the validation mean accuracy
if i % n_fold_splits == 0:
if is_first_fold:
is_first_fold = False
else:
#is_first_fold = True
stats, adanet_best_mean_accuracy = update_adanet_stats(stats, adanet_best_mean_accuracy, adanet_accuracy, adanet_fit_time)
if verbose:
print (stats)
write_line('adanet_val_results.csv', stats, is_first_write_val_adanet)
is_first_write_val_adanet = False
adanet_accuracy = []
adanet_fit_time = []
else:
# the test set here are actually the validation set
X_train, y_train = X[train_indices], y[train_indices]
X_test, y_test = X[test_indices], y[test_indices]
adanet_clf = AdaNetCVX(**params_adanet)
start_time = time.time()
adanet_clf.fit(X_train, y_train)
adanet_fit_time.append(time.time() - start_time)
adanet_accuracy.append(accuracy_score(y_test,adanet_clf.predict(X_test)))
# update values of last validation set
stats, adanet_best_mean_accuracy = update_adanet_stats(stats, adanet_best_mean_accuracy, adanet_accuracy, adanet_fit_time)
if verbose:
print (stats)
write_line('adanet_val_results.csv', stats, is_first_write_val_adanet)
if verbose_graph:
plt.plot(adanet_clf.adaParams['lossStore'])
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.title(str(params_adanet))
plt.show()
adanet_best_experiment_mean_accuracy.append(adanet_best_mean_accuracy)
#print(adanet_best_experiment_mean_accuracy)
best_index = (np.array(adanet_best_experiment_mean_accuracy)).argmax()
#print(best_index, experiments_params_adanets[best_index])
best_params_adanet = experiments_params_adanets[best_index]
# start test session with best params
for i, (train_indices, test_indices) in enumerate(k_fold.split(X)):
# use the set aside true test set, to train and test accuracy
if i % n_fold_splits == 0:
X_train, y_train = X[train_indices], y[train_indices]
X_test, y_test = X[test_indices], y[test_indices]
adanet_clf = AdaNetCVX(**best_params_adanet)
start_time = time.time()
adanet_clf.fit(X_train, y_train)
test_fit_time[model].append(time.time() - start_time)
start_time = time.time()
pred = adanet_clf.predict(X_test)
test_predict_time[model].append(time.time() - start_time)
test_accuracy[model].append(accuracy_score(y_test,pred))
test_f1score[model].append(f1_score(y_test,pred))
test_recall[model].append(recall_score(y_test,pred))
test_auc[model].append(roc_auc_score(y_test,adanet_clf.predict_proba(X_test)))
else:
# original train and validation sets to discard for this phase
pass
test_scores.update({'adanet_best_params': best_params_adanet,
'adanet_numL': adanet_clf.adaParams['numLayers'],
'adanet_numN': adanet_clf.adaParams['numNodes'] })
test_scores.update(update_test_stats(test_scores, model))
################################
################################
# MLP scores
################################
################################
model = 'MLP'
test_fit_time[model]=[]
test_predict_time[model]=[]
test_accuracy[model]=[]
test_f1score[model]=[]
test_recall[model]=[]
test_auc[model]=[]
stats = {}
stats['dataset'] = dataset_name
# using cv to look for best hyperparameters
for params_MLP in experiments_params_MLP:
k_fold = RepeatedKFold(n_splits=n_fold_splits, n_repeats=3, random_state=46) #10)
#split_data = train_test_split(X, y, test_size=0.1, random_state=46)
#X_train, X_test, y_train, y_test = split_data
#evaluate each model and average in the end
model_accuracy = []
model_fit_time = []
model_best_mean_accuracy = 0 # lower bound value to find highest accuracy
is_first_fold = True
for i, (train_indices, test_indices) in enumerate(k_fold.split(X)):
# set aside true test set, that will not be trained or validated
# and update the validation mean accuracy
if i % n_fold_splits == 0:
if is_first_fold:
is_first_fold = False
else:
#is_first_fold = True
stats, model_best_mean_accuracy = update_model_stats(stats, model_best_mean_accuracy, model_accuracy, model_fit_time, params_MLP)
if verbose:
print (stats)
write_line('MLP_val_results.csv', stats, is_first_write_val_MLP)
is_first_write_val_MLP = False
model_accuracy = []
model_fit_time = []
else:
# the test set here are actually the validation set
X_train, y_train = X[train_indices], y[train_indices]
X_test, y_test = X[test_indices], y[test_indices]
clf = MLPClassifier(**params_MLP)
start_time = time.time()
clf.fit(X_train, y_train)
model_fit_time.append(time.time() - start_time)
model_accuracy.append(accuracy_score(y_test,clf.predict(X_test)))
# update values of last validation set
stats, model_best_mean_accuracy = update_model_stats(stats, model_best_mean_accuracy, model_accuracy, model_fit_time, params_MLP)
if verbose:
print (stats)
write_line('MLP_val_results.csv', stats, is_first_write_val_MLP)
MLP_best_experiment_mean_accuracy.append(model_best_mean_accuracy)
#print(adanet_best_experiment_mean_accuracy)
best_index = (np.array(MLP_best_experiment_mean_accuracy)).argmax()
#print(best_index, experiments_params_adanets[best_index])
best_params_MLP = experiments_params_MLP[best_index]
# start test session with best params
for i, (train_indices, test_indices) in enumerate(k_fold.split(X)):
# use the set aside true test set, to train and test accuracy
if i % n_fold_splits == 0:
X_train, y_train = X[train_indices], y[train_indices]
X_test, y_test = X[test_indices], y[test_indices]
clf = MLPClassifier(**best_params_MLP)
start_time = time.time()
clf.fit(X_train, y_train)
test_fit_time[model].append(time.time() - start_time)
start_time = time.time()
pred = clf.predict(X_test)
test_predict_time[model].append(time.time() - start_time)
test_accuracy[model].append(accuracy_score(y_test,pred))
test_f1score[model].append(f1_score(y_test,pred))
test_recall[model].append(recall_score(y_test,pred))
test_auc[model].append(roc_auc_score(y_test,clf.predict_proba(X_test)[:,0]))
else:
# original train and validation sets to discard for this phase
pass
test_scores.update({'MLP_best_params': best_params_MLP })
test_scores.update(update_test_stats(test_scores, model))
################################
################################
# LR scores
################################
################################
model = 'LR'
test_fit_time[model]=[]
test_predict_time[model]=[]
test_accuracy[model]=[]
test_f1score[model]=[]
test_recall[model]=[]
test_auc[model]=[]
stats = {}
stats['dataset'] = dataset_name
# using cv to look for best hyperparameters
for params_LR in experiments_params_LR:
k_fold = RepeatedKFold(n_splits=n_fold_splits, n_repeats=3, random_state=46) #10)
#split_data = train_test_split(X, y, test_size=0.1, random_state=46)
#X_train, X_test, y_train, y_test = split_data
#evaluate each model and average in the end
model_accuracy = []
model_fit_time = []
model_best_mean_accuracy = 0 # lower bound value to find highest accuracy
is_first_fold = True
for i, (train_indices, test_indices) in enumerate(k_fold.split(X)):
# set aside true test set, that will not be trained or validated
# and update the validation mean accuracy
if i % n_fold_splits == 0:
if is_first_fold:
is_first_fold = False
else:
#is_first_fold = True
stats, model_best_mean_accuracy = update_model_stats(stats, model_best_mean_accuracy, model_accuracy, model_fit_time, params_LR)
if verbose:
print (stats)
write_line('LR_val_results.csv', stats, is_first_write_val_LR)
is_first_write_val_LR = False
model_accuracy = []
model_fit_time = []
else:
# the test set here are actually the validation set
X_train, y_train = X[train_indices], y[train_indices]
X_test, y_test = X[test_indices], y[test_indices]
clf = LogisticRegression(**params_LR)
start_time = time.time()
clf.fit(X_train, y_train)
model_fit_time.append(time.time() - start_time)
model_accuracy.append(accuracy_score(y_test,clf.predict(X_test)))
# update values of last validation set
stats, model_best_mean_accuracy = update_model_stats(stats, model_best_mean_accuracy, model_accuracy, model_fit_time, params_LR)
if verbose:
print (stats)
write_line('LR_val_results.csv', stats, is_first_write_val_LR)
LR_best_experiment_mean_accuracy.append(model_best_mean_accuracy)
best_index = (np.array(LR_best_experiment_mean_accuracy)).argmax()
best_params_LR = experiments_params_LR[best_index]
# start test session with best params
for i, (train_indices, test_indices) in enumerate(k_fold.split(X)):
# use the set aside true test set, to train and test accuracy
if i % n_fold_splits == 0:
X_train, y_train = X[train_indices], y[train_indices]
X_test, y_test = X[test_indices], y[test_indices]
clf = LogisticRegression(**best_params_LR)
start_time = time.time()
clf.fit(X_train, y_train)
test_fit_time[model].append(time.time() - start_time)
start_time = time.time()
pred = clf.predict(X_test)
test_predict_time[model].append(time.time() - start_time)
test_accuracy[model].append(accuracy_score(y_test,pred))
test_f1score[model].append(f1_score(y_test,pred))
test_recall[model].append(recall_score(y_test,pred))
test_auc[model].append(roc_auc_score(y_test,clf.predict_proba(X_test)[:,0]))
else:
# original train and validation sets to discard for this phase
pass
test_scores.update({'LR_best_params': best_params_LR })
test_scores.update(update_test_stats(test_scores, model))
################################
################################
# Finishing with comparing ttest
################################
################################
# Adding t-test values, before writing all test restults into csv file
tvalue, tprob = ttest_rel(test_accuracy['adanet'],test_accuracy['MLP'])
test_scores.update({'AdaNet-MLP_ttest': tvalue, 'AdaNet-MLP_tprob': tprob})
tvalue, tprob = ttest_rel(test_accuracy['adanet'],test_accuracy['LR'])
test_scores.update({'AdaNet-LR_ttest': tvalue, 'AdaNet-LR_tprob': tprob})
write_line('test_results.csv', test_scores, is_first_test_write)
is_first_test_write = False