forked from cosimoNigro/agnpy_paper
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfigure_9_ec_blr_validation.py
231 lines (197 loc) · 7.41 KB
/
figure_9_ec_blr_validation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
# script to compare the EC on BLR against Finke 2016 and jetset
import numpy as np
import astropy.units as u
import pkg_resources
import matplotlib.gridspec as gridspec
import matplotlib.pyplot as plt
from agnpy.emission_regions import Blob
from agnpy.targets import PointSourceBehindJet, SphericalShellBLR
from agnpy.compton import ExternalCompton
from agnpy.utils.plot import load_mpl_rc, sed_x_label, sed_y_label
from pathlib import Path
from utils import time_function_call
# agnpy
spectrum_norm = 6e42 * u.erg
parameters = {
"p1": 2.0,
"p2": 3.5,
"gamma_b": 1e4,
"gamma_min": 20,
"gamma_max": 5e7,
}
spectrum_dict = {"type": "BrokenPowerLaw", "parameters": parameters}
R_b = 1e16 * u.cm
B = 0.56 * u.G
z = 1
delta_D = 40
Gamma = 40
blob = Blob(R_b, z, delta_D, Gamma, B, spectrum_norm, spectrum_dict)
# BLR parameters of Finke 2016
L_disk = 2 * 1e46 * u.Unit("erg s-1")
xi_line = 0.024
R_line = 1.1e17 * u.cm
blr = SphericalShellBLR(L_disk, xi_line, "Lyalpha", R_line)
# point sources approximating the BLR at very large distances
ps_blr = PointSourceBehindJet(blr.xi_line * L_disk, blr.epsilon_line)
# EC definition
# - inside the BLR, to be compared with the references
r_in = 1e16 * u.cm
blob.set_gamma_size(350)
ec_in = ExternalCompton(blob, blr, r=r_in)
# - out of the BLR, to be compared with the point-source approximation
r_out = 1e20 * u.cm
blob.set_gamma_size(350)
ec_out = ExternalCompton(blob, blr, r=r_out)
blob.set_gamma_size(700)
ec_ps = ExternalCompton(blob, ps_blr, r=r_out)
nu_ec = np.logspace(16, 28, 100) * u.Hz
sed_ec_in = ec_in.sed_flux(nu_ec)
sed_ec_out = ec_out.sed_flux(nu_ec)
sed_ec_ps = ec_ps.sed_flux(nu_ec)
# reproduce Figure 10 of Finke 2016 with agnpy
data_file_ref_blr = pkg_resources.resource_filename(
"agnpy", "data/reference_seds/finke_2016/figure_10/ec_blr_r_1e16.txt"
)
# reference SED, Figure 10 Finke Dermer
data_ref = np.loadtxt(data_file_ref_blr, delimiter=",")
nu_ref = data_ref[:, 0] * u.Hz
# make a denser frequency grid with intermediate points in log-scale
nu_denser = np.append(nu_ref, np.sqrt(nu_ref[1:] * nu_ref[:-1]))
nu = np.sort(nu_denser)
sed_ref = data_ref[:, 1] * u.Unit("erg cm-2 s-1")
# compute agnpy SEDs on the denser frequency grid
sed_ec_in_finke = time_function_call(ec_in.sed_flux, nu)
# jetset
from jetset.jet_model import Jet
jet = Jet(
name="ec_blr",
electron_distribution="bkn",
electron_distribution_log_values=False,
beaming_expr="bulk_theta",
)
jet.add_EC_component(["EC_BLR"], disk_type="BB")
# - blob
jet.set_par("N", val=blob.n_e_tot.value)
jet.set_par("p", val=blob.n_e.p1)
jet.set_par("p_1", val=blob.n_e.p2)
jet.set_par("gamma_break", val=blob.n_e.gamma_b)
jet.set_par("gmin", val=blob.n_e.gamma_min)
jet.set_par("gmax", val=blob.n_e.gamma_max)
jet.set_par("R", val=blob.R_b.value)
jet.set_par("B", val=blob.B.value)
jet.set_par("BulkFactor", val=blob.Gamma)
jet.set_par("theta", val=blob.theta_s.value)
jet.set_par("z_cosm", val=blob.z)
# - BLR
jet.set_par("L_Disk", val=L_disk.value)
jet.set_par("tau_BLR", val=blr.xi_line)
jet.set_par("R_BLR_in", val=0.8 * blr.R_line.value) # very thin BLR
jet.set_par("R_BLR_out", val=blr.R_line.value)
# - integration setup
jet.electron_distribution.update()
jet.set_gamma_grid_size(10000)
jet._blob.IC_adaptive_e_binning = True
jet._blob.theta_n_int = 500
jet.set_nu_grid(nu_ec[0].value, nu_ec[-1].value, len(nu_ec))
# - SED inside the BLR
jet.set_par("R_H", val=r_in.to_value("cm"))
jet.set_external_field_transf("disk")
# fixes by Andrea to reproduce Finke's approach
jet._blob.R_H_scale_factor = max(50, r_in.to_value("cm") / blr.R_line.to_value("cm"))
jet._blob.R_H_scale_factor = min(50, jet._blob.R_H_scale_factor)
jet._blob.R_H_lim = 0.5
jet._blob.theta_lim = 5
jet.eval()
sed_ec_in_jetset = jet.spectral_components.EC_BLR.SED.nuFnu
# - SED outside and very far from the BLR
jet.set_par("R_H", val=r_out.to_value("cm"))
jet.set_external_field_transf("disk")
# fixes by Andrea to reproduce Finke's approach
jet._blob.R_H_scale_factor = max(50, r_in.to_value("cm") / blr.R_line.to_value("cm"))
jet._blob.R_H_scale_factor = min(50, jet._blob.R_H_scale_factor)
jet._blob.R_H_lim = 0.5
jet._blob.theta_lim = 5
jet.eval()
sed_ec_out_jetset = jet.spectral_components.EC_BLR.SED.nuFnu
# figure 9
load_mpl_rc()
plt.rcParams["text.usetex"] = True
# gridspec plot setting
fig = plt.figure(figsize=(12, 6), tight_layout=True)
spec = gridspec.GridSpec(ncols=2, nrows=2, height_ratios=[2, 1], figure=fig)
ax1 = fig.add_subplot(spec[0, 0])
ax2 = fig.add_subplot(spec[0, 1])
ax3 = fig.add_subplot(spec[1, 0], sharex=ax1)
ax4 = fig.add_subplot(spec[1, 1], sharex=ax2, sharey=ax3)
# SED inside the BLR
# ax1.loglog(nu_ec, sed_ec_in, ls="-", lw=2.1, color="crimson")
ax1.loglog(nu, sed_ec_in_finke, ls="-", lw=2.1, color="crimson", label="agnpy")
ax1.loglog(nu_ref, sed_ref, ls="--", color="k", label="Fig. 10, Finke (2016)")
ax1.loglog(nu_ec, sed_ec_in_jetset, ls="--", color="dodgerblue", label="jetset")
ax1.set_ylabel(sed_y_label)
ax1.legend(loc="best", fontsize=10)
ax1.set_title(
"EC on spherical shell BLR, "
+ r"$r=1 \times 10^{16}\,{\rm cm} < R_{\rm Ly \alpha}$"
)
# SED outside the BLR
ax2.loglog(
nu_ec, sed_ec_out, ls="-", lw=2.1, color="crimson", label="agnpy, full calculation",
)
ax2.loglog(
nu_ec, sed_ec_ps, ls="--", color="k", label="agnpy, point-source approximation",
)
ax2.loglog(
nu_ec, sed_ec_out_jetset, ls="--", color="dodgerblue", label="jetset",
)
ax2.legend(loc="best", fontsize=10)
ax2.set_title(
"EC on spherical shell BLR, "
+ r"$r=1 \times 10^{20}\,{\rm cm} \gg R_{\rm Ly \alpha}$"
)
# plot the deviation from the references in the bottom panel
# remove every other value from the SED to be compared with the reference
# as it has been calculated on the finer frequency grid
deviation_ref = sed_ec_in_finke[::2] / sed_ref - 1
deviation_jetset_in = sed_ec_in / sed_ec_in_jetset - 1
ax3.grid(False)
ax3.axhline(0, ls="-", color="darkgray")
ax3.axhline(0.2, ls="--", color="darkgray")
ax3.axhline(-0.2, ls="--", color="darkgray")
ax3.axhline(0.3, ls="-.", color="darkgray")
ax3.axhline(-0.3, ls="-.", color="darkgray")
ax3.axhline(0.5, ls=":", color="darkgray")
ax3.axhline(-0.5, ls=":", color="darkgray")
ax3.set_ylim([-1.1, 1.1])
ax3.set_yticks([-1.0, -0.5, 0.0, 0.5, 1.0])
ax3.semilogx(
nu_ref, deviation_ref, ls="--", color="k", label="Fig. 10, Finke (2016)",
)
ax3.semilogx(
nu_ec, deviation_jetset_in, ls="--", color="dodgerblue", label="jetset",
)
ax3.legend(loc="best", fontsize=10)
ax3.set_xlabel(sed_x_label)
ax3.set_ylabel(r"$\frac{\nu F_{\nu, \rm agnpy}}{\nu F_{\nu, \rm ref}} - 1$")
# plot the deviation from the point like approximation and jetset in the bottom panel
deviation_approx = sed_ec_out / sed_ec_ps - 1
deviation_jetset_out = sed_ec_out / sed_ec_out_jetset - 1
ax4.grid(False)
ax4.axhline(0, ls="-", color="darkgray")
ax4.axhline(0.2, ls="--", color="darkgray")
ax4.axhline(-0.2, ls="--", color="darkgray")
ax4.axhline(0.3, ls="-.", color="darkgray")
ax4.axhline(-0.3, ls="-.", color="darkgray")
ax4.axhline(0.5, ls=":", color="darkgray")
ax4.axhline(-0.5, ls=":", color="darkgray")
ax4.set_ylim([-1.1, 1.1])
ax4.set_yticks([-1.0, -0.5, 0.0, 0.5, 1.0])
ax4.semilogx(
nu_ec, deviation_approx, ls="--", color="k", label="point-source approximation",
)
ax4.semilogx(nu_ec, deviation_jetset_out, ls="--", color="dodgerblue", label="jetset")
ax4.legend(loc="best", fontsize=10)
ax4.set_xlabel(sed_x_label)
Path("figures").mkdir(exist_ok=True)
fig.savefig(f"figures/figure_9.png")
fig.savefig(f"figures/figure_9.pdf")