forked from achlipala/frap
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathImp.v
219 lines (189 loc) · 5.87 KB
/
Imp.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
Require Import Frap.
Set Implicit Arguments.
Inductive arith : Set :=
| Const (n : nat)
| Var (x : var)
| Plus (e1 e2 : arith)
| Minus (e1 e2 : arith)
| Times (e1 e2 : arith).
Inductive cmd :=
| Skip
| Assign (x : var) (e : arith)
| Sequence (c1 c2 : cmd)
| If (e : arith) (then_ else_ : cmd)
| While (e : arith) (body : cmd).
Coercion Const : nat >-> arith.
Coercion Var : var >-> arith.
(*Declare Scope arith_scope.*)
Infix "+" := Plus : arith_scope.
Infix "-" := Minus : arith_scope.
Infix "*" := Times : arith_scope.
Delimit Scope arith_scope with arith.
Notation "x <- e" := (Assign x e%arith) (at level 75).
Infix ";;" := Sequence (at level 76). (* This one changed slightly, to avoid parsing clashes. *)
Notation "'when' e 'then' then_ 'else' else_ 'done'" := (If e%arith then_ else_) (at level 75, e at level 0).
Notation "'while' e 'loop' body 'done'" := (While e%arith body) (at level 75).
Definition valuation := fmap var nat.
Fixpoint interp (e : arith) (v : valuation) : nat :=
match e with
| Const n => n
| Var x =>
match v $? x with
| None => 0
| Some n => n
end
| Plus e1 e2 => interp e1 v + interp e2 v
| Minus e1 e2 => interp e1 v - interp e2 v
| Times e1 e2 => interp e1 v * interp e2 v
end.
Inductive eval : valuation -> cmd -> valuation -> Prop :=
| EvalSkip : forall v,
eval v Skip v
| EvalAssign : forall v x e,
eval v (Assign x e) (v $+ (x, interp e v))
| EvalSeq : forall v c1 v1 c2 v2,
eval v c1 v1
-> eval v1 c2 v2
-> eval v (Sequence c1 c2) v2
| EvalIfTrue : forall v e then_ else_ v',
interp e v <> 0
-> eval v then_ v'
-> eval v (If e then_ else_) v'
| EvalIfFalse : forall v e then_ else_ v',
interp e v = 0
-> eval v else_ v'
-> eval v (If e then_ else_) v'
| EvalWhileTrue : forall v e body v' v'',
interp e v <> 0
-> eval v body v'
-> eval v' (While e body) v''
-> eval v (While e body) v''
| EvalWhileFalse : forall v e body,
interp e v = 0
-> eval v (While e body) v.
Inductive step : valuation * cmd -> valuation * cmd -> Prop :=
| StepAssign : forall v x e,
step (v, Assign x e) (v $+ (x, interp e v), Skip)
| StepSeq1 : forall v c1 c2 v' c1',
step (v, c1) (v', c1')
-> step (v, Sequence c1 c2) (v', Sequence c1' c2)
| StepSeq2 : forall v c2,
step (v, Sequence Skip c2) (v, c2)
| StepIfTrue : forall v e then_ else_,
interp e v <> 0
-> step (v, If e then_ else_) (v, then_)
| StepIfFalse : forall v e then_ else_,
interp e v = 0
-> step (v, If e then_ else_) (v, else_)
| StepWhileTrue : forall v e body,
interp e v <> 0
-> step (v, While e body) (v, Sequence body (While e body))
| StepWhileFalse : forall v e body,
interp e v = 0
-> step (v, While e body) (v, Skip).
Global Hint Constructors trc step eval : core.
Lemma step_star_Seq : forall v c1 c2 v' c1',
step^* (v, c1) (v', c1')
-> step^* (v, Sequence c1 c2) (v', Sequence c1' c2).
Proof.
induct 1; eauto.
cases y; eauto.
Qed.
Global Hint Resolve step_star_Seq : core.
Theorem big_small : forall v c v', eval v c v'
-> step^* (v, c) (v', Skip).
Proof.
induct 1; eauto 6 using trc_trans.
Qed.
Lemma small_big'' : forall v c v' c', step (v, c) (v', c')
-> forall v'', eval v' c' v''
-> eval v c v''.
Proof.
induct 1; simplify;
repeat match goal with
| [ H : eval _ _ _ |- _ ] => invert1 H
end; eauto.
Qed.
Global Hint Resolve small_big'' : core.
Lemma small_big' : forall v c v' c', step^* (v, c) (v', c')
-> forall v'', eval v' c' v''
-> eval v c v''.
Proof.
induct 1; eauto.
cases y; eauto.
Qed.
Global Hint Resolve small_big' : core.
Theorem small_big : forall v c v', step^* (v, c) (v', Skip)
-> eval v c v'.
Proof.
eauto.
Qed.
Definition trsys_of (v : valuation) (c : cmd) : trsys (valuation * cmd) := {|
Initial := {(v, c)};
Step := step
|}.
Inductive context :=
| Hole
| CSeq (C : context) (c : cmd).
Inductive plug : context -> cmd -> cmd -> Prop :=
| PlugHole : forall c, plug Hole c c
| PlugSeq : forall c C c' c2,
plug C c c'
-> plug (CSeq C c2) c (Sequence c' c2).
Inductive step0 : valuation * cmd -> valuation * cmd -> Prop :=
| Step0Assign : forall v x e,
step0 (v, Assign x e) (v $+ (x, interp e v), Skip)
| Step0Seq : forall v c2,
step0 (v, Sequence Skip c2) (v, c2)
| Step0IfTrue : forall v e then_ else_,
interp e v <> 0
-> step0 (v, If e then_ else_) (v, then_)
| Step0IfFalse : forall v e then_ else_,
interp e v = 0
-> step0 (v, If e then_ else_) (v, else_)
| Step0WhileTrue : forall v e body,
interp e v <> 0
-> step0 (v, While e body) (v, Sequence body (While e body))
| Step0WhileFalse : forall v e body,
interp e v = 0
-> step0 (v, While e body) (v, Skip).
Inductive cstep : valuation * cmd -> valuation * cmd -> Prop :=
| CStep : forall C v c v' c' c1 c2,
plug C c c1
-> step0 (v, c) (v', c')
-> plug C c' c2
-> cstep (v, c1) (v', c2).
Global Hint Constructors plug step0 cstep : core.
Theorem step_cstep : forall v c v' c',
step (v, c) (v', c')
-> cstep (v, c) (v', c').
Proof.
induct 1; repeat match goal with
| [ H : cstep _ _ |- _ ] => invert H
end; eauto.
Qed.
Global Hint Resolve step_cstep : core.
Lemma step0_step : forall v c v' c',
step0 (v, c) (v', c')
-> step (v, c) (v', c').
Proof.
invert 1; eauto.
Qed.
Global Hint Resolve step0_step : core.
Lemma cstep_step' : forall C c0 c,
plug C c0 c
-> forall v' c'0 v c', step0 (v, c0) (v', c'0)
-> plug C c'0 c'
-> step (v, c) (v', c').
Proof.
induct 1; simplify; repeat match goal with
| [ H : plug _ _ _ |- _ ] => invert1 H
end; eauto.
Qed.
Global Hint Resolve cstep_step' : core.
Theorem cstep_step : forall v c v' c',
cstep (v, c) (v', c')
-> step (v, c) (v', c').
Proof.
invert 1; eauto.
Qed.