-
Notifications
You must be signed in to change notification settings - Fork 314
/
Copy pathcaptcha_predict.py
36 lines (28 loc) · 1.29 KB
/
captcha_predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
# -*- coding: UTF-8 -*-
import numpy as np
import torch
from torch.autograd import Variable
#from visdom import Visdom # pip install Visdom
import captcha_setting
import my_dataset
from captcha_cnn_model import CNN
def main():
cnn = CNN()
cnn.eval()
cnn.load_state_dict(torch.load('model.pkl'))
print("load cnn net.")
predict_dataloader = my_dataset.get_predict_data_loader()
#vis = Visdom()
for i, (images, labels) in enumerate(predict_dataloader):
image = images
vimage = Variable(image)
predict_label = cnn(vimage)
c0 = captcha_setting.ALL_CHAR_SET[np.argmax(predict_label[0, 0:captcha_setting.ALL_CHAR_SET_LEN].data.numpy())]
c1 = captcha_setting.ALL_CHAR_SET[np.argmax(predict_label[0, captcha_setting.ALL_CHAR_SET_LEN:2 * captcha_setting.ALL_CHAR_SET_LEN].data.numpy())]
c2 = captcha_setting.ALL_CHAR_SET[np.argmax(predict_label[0, 2 * captcha_setting.ALL_CHAR_SET_LEN:3 * captcha_setting.ALL_CHAR_SET_LEN].data.numpy())]
c3 = captcha_setting.ALL_CHAR_SET[np.argmax(predict_label[0, 3 * captcha_setting.ALL_CHAR_SET_LEN:4 * captcha_setting.ALL_CHAR_SET_LEN].data.numpy())]
c = '%s%s%s%s' % (c0, c1, c2, c3)
print(c)
#vis.images(image, opts=dict(caption=c))
if __name__ == '__main__':
main()