-
Notifications
You must be signed in to change notification settings - Fork 13
/
tpsr_demo.py
388 lines (313 loc) · 14.3 KB
/
tpsr_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
import time
import json
import os
import torch
import numpy as np
import sympy as sp
from parsers import get_parser
import symbolicregression
from symbolicregression.envs import build_env
from symbolicregression.model import build_modules
from symbolicregression.trainer import Trainer
from symbolicregression.e2e_model import Transformer, pred_for_sample_no_refine, respond_to_batch , pred_for_sample, refine_for_sample, pred_for_sample_test, refine_for_sample_test
from dyna_gym.agents.uct import UCT
from dyna_gym.agents.mcts import update_root, convert_to_json, print_tree
from rl_env import RLEnv
from default_pi import E2EHeuristic, NesymresHeuristic
from symbolicregression.metrics import compute_metrics
from nesymres.src.nesymres.architectures.model import Model
from nesymres.utils import load_metadata_hdf5
from nesymres.dclasses import FitParams, NNEquation, BFGSParams
from functools import partial
from sympy import lambdify
from reward import compute_reward_e2e, compute_reward_nesymres
import omegaconf
def evaluate_metrics(params, y_gt, tree_gt, y_pred, tree_pred):
metrics = [] # 7 metrics and for all samples to evaluate
results_fit = compute_metrics(
{
"true": [y_gt],
"predicted": [y_pred],
"tree": tree_gt,
"predicted_tree": tree_pred,
},
metrics=params.validation_metrics,
)
for k, v in results_fit.items():
print("metric {}: ".format(k), v)
metrics.append(v[0])
return metrics
def compute_nmse(y_gt , y_pred):
eps = 1e-9 # For avoiding Nan or Inf
return np.sqrt( np.mean((y_gt - y_pred)**2) / (np.mean((y_gt)**2)+eps) )
def compute_mse(y_gt , y_pred):
return np.mean((y_gt - y_pred)**2)
def main_e2e(case, params, equation_env, samples):
model = Transformer(params = params, env=equation_env, samples=samples)
model.to(params.device)
generations_ref, gen_len_ref = respond_to_batch(model, max_target_length=200, top_p=1.0, sample_temperature=None)
sequence_ref = generations_ref[0][:gen_len_ref-1].tolist()
rl_env = RLEnv(
params = params,
samples = samples,
equation_env = equation_env,
model = model)
dp = E2EHeuristic(
equation_env=equation_env,
rl_env=rl_env,
model=model,
k=params.width,
num_beams=params.num_beams,
horizon=params.horizon,
device=params.device,
use_seq_cache=not params.no_seq_cache,
use_prefix_cache=not params.no_prefix_cache,
length_penalty = params.beam_length_penalty,
train_value_mode=params.train_value,
debug=params.debug)
start = time.time()
agent = UCT(
action_space=[], # this will not be used as we have a default policy
gamma=1., # no discounting
ucb_constant=1.,
horizon=params.horizon,
rollouts=params.rollout,
dp=dp,
width=params.width,
reuse_tree=True,
alg=params.uct_alg,
ucb_base=params.ucb_base)
agent.display()
if params.sample_only:
# a bit hacky, should set a large rollout number so all programs are saved in samples json file
horizon = 1
else:
horizon = 200
done = False
s = rl_env.state
ret_all = []
for t in range(horizon):
if len(s) >= params.horizon:
print(f'Cannot process programs longer than {params.horizon}. Stop here.')
break
if done:
break
act = agent.act(rl_env, done)
s, r, done, _ = rl_env.step(act)
if t ==0:
real_root = agent.root
if params.debug:
# print the current tree
print('tree:')
# print_tree(agent.root, equation_env.equation_id2word)
ret = convert_to_json(agent.root, rl_env, act)
ret_all.append(ret)
with open("tree.json", "w") as outfile:
json.dump(ret_all, outfile)
print('took action:')
print(repr(equation_env.equation_id2word[act]))
print('========== state (excluding prompt) ==========')
print(s)
update_root(agent, act, s)
dp.update_cache(s)
time_elapsed = time.time() - start
y_gt = samples['y_to_fit'][0].reshape(-1)
y_gt_test = samples['y_to_pred'][0].reshape(-1)
y_ref , ref_str , ref_tree = pred_for_sample_no_refine(model, equation_env, sequence_ref ,samples['x_to_fit'])
NMSE_ref = compute_nmse(y_gt, y_ref)
ref_reward = rl_env.get_reward(sequence_ref, mode='test')
y_ref_search , ref_str_search, ref_tree_search = pred_for_sample(model, equation_env,samples['x_to_fit'],samples['y_to_fit'], refine=False, beam_type='search', beam_size=100)
NMSE_ref_search= compute_nmse(y_gt, y_ref_search)
y_ref_sample , ref_str_sample, ref_tree_sample = pred_for_sample(model, equation_env,samples['x_to_fit'],samples['y_to_fit'], refine=False, beam_type='sampling', beam_size=100)
NMSE_ref_sample = compute_nmse(y_gt, y_ref_sample)
y_ref_refine , ref_str_refine, ref_tree_refine = pred_for_sample(model, equation_env,samples['x_to_fit'],samples['y_to_fit'], refine=True, beam_type='sampling', beam_size=100)
NMSE_ref_refine = compute_nmse(y_gt, y_ref_refine)
# MSE_ref_refine = compute_mse(y_gt, y_ref_refine)
y_ref_refine_train ,y_ref_refine_test, _, _= pred_for_sample_test(model, equation_env,samples['x_to_fit'],samples['y_to_fit'],samples['x_to_pred'], refine=True, beam_type='sampling', beam_size=100)
MSE_ref_refine = compute_mse(y_gt_test, y_ref_refine_test)
y_mcts , mcts_str , mcts_tree = pred_for_sample_no_refine(model, equation_env, s ,samples['x_to_fit'])
NMSE_mcts = compute_nmse(y_gt, y_mcts)
final_reward = rl_env.get_reward(s, mode='test')
y_mcts_refine , mcts_str_refine, mcts_tree_refine = refine_for_sample(params, model, equation_env, s, samples['x_to_fit'], samples['y_to_fit'])
NMSE_mcts_refine = compute_nmse(y_gt, y_mcts_refine)
# MSE_mcts_refine = compute_mse(y_gt, y_mcts_refine)
y_mcts_refine_train, y_mcts_refine_test , _, _ = refine_for_sample_test(model, equation_env, s, samples['x_to_fit'], samples['y_to_fit'],samples['x_to_pred'])
MSE_mcts_refine = compute_mse(y_gt_test, y_mcts_refine_test)
print('#'*40)
print('\nPre-trained E2E NMSE:', NMSE_ref)
print('Pre-trained E2E NMSE after Refine:', NMSE_ref_refine)
print('Pre-trained E2E NMSE (Beam Search):', NMSE_ref_search)
print('Pre-trained E2E NMSE (Sampling):', NMSE_ref_sample)
print('Pre-trained E2E MSE after Refine:', MSE_ref_refine)
print('#'*20)
print('TPSR+E2E NMSE:', NMSE_mcts)
print('TPSR+E2E NMSE after Refine', NMSE_mcts_refine)
print('TPSR+E2E MSE after Refine', MSE_mcts_refine)
print('TPSR+E2E Time Elapsed:', time_elapsed)
print('TPSR+E2E Sample Times (# of Explored Equation Candidates):', dp.sample_times)
print('#'*40)
replace_ops = {"add": "+", "mul": "*", "sub": "-", "pow": "**", "inv": "1/"}
for op,replace_op in replace_ops.items():
ref_str = ref_str.replace(op,replace_op)
ref_str_sample = ref_str_sample.replace(op,replace_op)
ref_str_search = ref_str_search.replace(op,replace_op)
mcts_str = mcts_str.replace(op,replace_op)
mcts_eq = sp.parse_expr(mcts_str)
mcts_eq_refine = sp.parse_expr(mcts_str_refine)
ref_eq = sp.parse_expr(ref_str)
ref_eq_search = sp.parse_expr(ref_str_search)
ref_eq_sample = sp.parse_expr(ref_str_sample)
ref_eq_refine = sp.parse_expr(ref_str_refine)
print("Pre-trained E2E Equation:", ref_eq)
print("\nPre-trained E2E Equation after Refine: ", ref_eq_refine)
print("\nPre-trained E2E Equation (Beam Search): ", ref_eq_search)
print("\nPre-trained E2E Equation (Sampling): ", ref_eq_sample)
print('#'*20)
print("\nTPSR+E2E Equation: ", mcts_eq)
print("\nTPSR+E2E Equation after Refine: ", mcts_eq_refine)
print('#'*40)
def main_nesymres(case,params,eq_setting,cfg,samples,X,y):
## Set up BFGS load rom the hydra config yaml
bfgs = BFGSParams(
activated= cfg.inference.bfgs.activated,
n_restarts=cfg.inference.bfgs.n_restarts,
add_coefficients_if_not_existing=cfg.inference.bfgs.add_coefficients_if_not_existing,
normalization_o=cfg.inference.bfgs.normalization_o,
idx_remove=cfg.inference.bfgs.idx_remove,
normalization_type=cfg.inference.bfgs.normalization_type,
stop_time=cfg.inference.bfgs.stop_time,
)
params_fit = FitParams(word2id=eq_setting["word2id"],
id2word={int(k): v for k,v in eq_setting["id2word"].items()},
una_ops=eq_setting["una_ops"],
bin_ops=eq_setting["bin_ops"],
total_variables=list(eq_setting["total_variables"]),
total_coefficients=list(eq_setting["total_coefficients"]),
rewrite_functions=list(eq_setting["rewrite_functions"]),
bfgs=bfgs,
beam_size=cfg.inference.beam_size #This parameter is a tradeoff between accuracy and fitting time
)
weights_path = "./nesymres/weights/10M.ckpt"
## Load architecture, set into eval mode, and pass the config parameters
model = Model.load_from_checkpoint(weights_path, cfg=cfg.architecture)
model.eval()
if torch.cuda.is_available():
model.cuda()
fitfunc = partial(model.fitfunc,cfg_params=params_fit)
output_ref = fitfunc(X,y)
### MCTS
rl_env = RLEnv(
params = params,
samples = samples,
model = model,
cfg_params=params_fit)
## Get self.encoded in the model to use for Sequence generation from given states
model.to_encode(X,y, params_fit)
dp = NesymresHeuristic(
rl_env=rl_env,
model=model,
k=params.width,
num_beams=params.num_beams,
horizon=params.horizon,
device=params.device,
use_seq_cache=not params.no_seq_cache,
use_prefix_cache=not params.no_prefix_cache,
length_penalty = params.beam_length_penalty,
cfg_params = params_fit,
train_value_mode=params.train_value,
debug=params.debug)
# for fair comparison, loading models and tokenizers are not included in computation time
start = time.time()
agent = UCT(
action_space=[],
gamma=1.,
ucb_constant=1.,
horizon=params.horizon,
rollouts=params.rollout,
dp=dp,
width=params.width,
reuse_tree=True
)
agent.display()
if params.sample_only:
horizon = 1
else:
horizon = 200
done = False
s = rl_env.state
for t in range(horizon):
if len(s) >= params.horizon:
print(f'Cannot process programs longer than {params.horizon}. Stop here.')
break
if done:
break
act = agent.act(rl_env, done)
s, r, done, _ = rl_env.step(act)
if params.debug:
# print the current tree
print('tree:')
print_tree(agent.root, params_fit.id2word)
print('took action:')
print(repr(params_fit.id2word[act]))
print('========== state (excluding prompt) ==========')
print(s)
update_root(agent, act, s)
dp.update_cache(s)
time_elapsed = time.time() - start
print("NeSymReS Equation Skeleton: ", output_ref)
print("time elapsed: ", time_elapsed)
print("samples times: ", dp.sample_times)
print("generated ids: ", s)
loss_bfgs_mcts , reward_mcts , pred_str = compute_reward_nesymres(model.X, model.y, s, params_fit)
print("TPSR+NeSymReS Equation: ", pred_str)
print("TPSR+NeSymReS Loss: ", loss_bfgs_mcts)
print("TPSR+NeSymReS Reward: ", reward_mcts)
if __name__ == '__main__':
case = 1
parser = get_parser()
params = parser.parse_args()
np.random.seed(params.seed)
torch.manual_seed(params.seed)
torch.cuda.manual_seed(params.seed)
params.debug = True
params.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if params.backbone_model == 'e2e':
equation_env = build_env(params)
modules = build_modules(equation_env, params)
if not params.cpu:
assert torch.cuda.is_available()
symbolicregression.utils.CUDA = not params.cpu
trainer = Trainer(modules, equation_env, params)
#Example of Equation-Data:
# x0 = np.random.uniform(-2,2, 200)
x0 = np.linspace(-2,2, 200)
# y = (x0 **2) * np.sin(x0)
y= (x0**2 ) * np.sin(5*x0) + np.exp(-0.5*x0)
data = np.concatenate((x0.reshape(-1,1),y.reshape(-1,1)), axis=1)
samples = {'x_to_fit': 0, 'y_to_fit':0,'x_to_pred':0,'y_to_pred':0}
samples['x_to_fit'] = [data[:,:1]]
samples['y_to_fit'] = [data[:,1].reshape(-1,1)]
samples['x_to_pred'] = [data[:,:1]]
samples['y_to_pred'] = [data[:,1].reshape(-1,1)]
#Main
main_e2e(case, params, equation_env, samples)
if params.backbone_model == 'nesymres':
with open('nesymres/jupyter/100M/eq_setting.json', 'r') as json_file:
eq_setting = json.load(json_file)
cfg = omegaconf.OmegaConf.load("nesymres/jupyter/100M/config.yaml")
#Example of Equation-Data:
number_of_points = 500
n_variables = 2
max_supp = cfg.dataset_train.fun_support["max"]
min_supp = cfg.dataset_train.fun_support["min"]
X = torch.rand(number_of_points,len(list(eq_setting["total_variables"])))*(max_supp-min_supp)+min_supp
X[:,n_variables:] = 0
target_eq = "((x_1+0.76)*sin(0.8*exp(x_2))+(0.5*x_2))" #Use x_1,x_2 and x_3 as independent variables
# target_eq = "((x_1*sin(x_2)+x_3))" #Use x_1,x_2 and x_3 as independent variables
X_dict = {x:X[:,idx].cpu() for idx, x in enumerate(eq_setting["total_variables"])}
y = lambdify(",".join(eq_setting["total_variables"]), target_eq)(**X_dict)
samples = {'x_to_fit':0, 'y_to_fit':0}
samples['x_to_fit'] = [X]
samples['y_to_fit'] = [y]
#Main
main_nesymres(case,params,eq_setting,cfg,samples,X,y)