-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathModel.py
233 lines (199 loc) · 8.15 KB
/
Model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import theano, theano.tensor as T
theano.config.optimizer='fast_compile'
theano.config.exception_verbosity='high'
from sklearn.utils import shuffle
import numpy as np
import sys, pickle, re
from Recurrent_Unit import GRU
from Optimization import Adam, rmsprop
from util import init_weight
class RNN_Model:
def __init__(self, I=None, H=None, rnn_unit=GRU, opt=Adam, activation=T.nnet.elu):
self.D = I
self.hidden_layer_sizes = H
self.rnn_unit = rnn_unit
self.activation = activation
self.opt = opt
self.__setstate__()
def fit(self, X, Y, epochs=5, mu=0.9, reg=0., batch_sz=64, lr=0.002):
### Initialize X and Y, calculating other variables
thX = T.imatrix('X')
thY = T.imatrix('Y')
thStartPoints = T.ivector('start_points')
Z = thX
for ru in self.hidden_layers:
Z = ru.output(Z, thStartPoints)
py_x = T.nnet.softmax(Z.dot(self.Wo) + self.bo)
prediction = T.argmax(py_x, axis=1)
###
### Training variable and function
cost = T.mean(T.nnet.categorical_crossentropy(py_x, thY))
updates = rmsprop(cost, params=self.params, lr=lr)
self.train_op = theano.function(
inputs=[thX, thY, thStartPoints],
outputs=[cost, prediction, py_x],
updates=updates,
)
###
### iterating over input values
n_batches = len(X) // batch_sz
for i in range(epochs):
# t0 = datetime.datetime.now()
X, Y = shuffle(X, Y)
tn_correct = 0
tn_total = 0
cost = 0
for j in range(n_batches):
n_correct = 0
n_total = 0
sequenceLengths = []
input_sequence, output_sequence = [], []
for k in range(j * batch_sz, (j + 1) * batch_sz):
# don't always add the end token
input_sequence += X[k]
output_sequence += Y[k]
sequenceLengths.append(len(X[k]))
startPoints = np.zeros(sum(sequenceLengths), dtype=np.int32)
last = 0
for length in sequenceLengths:
startPoints[last] = 1
last += length
c, p, res = self.train_op(input_sequence, output_sequence, startPoints)
cost += c
for pj, yj in zip(p, output_sequence):
if pj == np.argmax(yj):
n_correct += 1
tn_correct += n_correct
tn_total += len(output_sequence)
print("batch: %d/%d" % (j, n_batches), "cost:", c, "accuracy:",(float(n_correct) / len(output_sequence)))
print("\nepoch: %d/%d cost: %f accuracy: %f\n"%(i,epochs,cost,float(tn_correct/tn_total)))
def predict(self, X):
thX = T.imatrix('X')
thStartPoints = T.ivector('start_points')
Z = thX
for ru in self.hidden_layers:
Z = ru.output(Z, thStartPoints)
py_x = T.nnet.softmax(Z.dot(self.Wo) + self.bo)
prediction = T.argmax(py_x, axis=1)
self.predict_op = theano.function(
inputs=[thX, thStartPoints],
outputs=[prediction, py_x],
allow_input_downcast=True
)
### iterating over input values
Y, PY_X =[], []
for x in X:
startPoints = np.zeros(len(x), dtype=np.int32)
startPoints[0] = 1
p, py_x = self.predict_op(x, startPoints)
Y.append(p)
PY_X.append(py_x)
return Y, PY_X
###
def __setstate__(self, state=None):
if state:
ru_params, Wo, bo = state
else:
Wo = init_weight(self.hidden_layer_sizes[-1], self.D)
bo = np.zeros(self.D)
ru_params = [None for i in self.hidden_layer_sizes]
Mi = self.D
self.hidden_layers = []
for i in range(len(self.hidden_layer_sizes)):
Mo = self.hidden_layer_sizes[i]
ru = self.rnn_unit(Mi, Mo, self.activation, state=ru_params[i])
self.hidden_layers.append(ru)
Mi = Mo
### seting tensors
self.Wo = theano.shared(Wo)
self.bo = theano.shared(bo)
self.params = [self.Wo, self.bo]
for ru in self.hidden_layers:
self.params += ru.params
###
def __getstate__(self):
ru_params = []
for h in self.hidden_layers:
ru_params.append(h.__getstate__())
return tuple([ru_params, self.Wo.get_value(), self.bo.get_value()])
# def save(self, filename):
# state = self.__getstate__()
# return state
# pickle.dump(state, open(filename,'wb'))
# def load(self, filename):
# state = pickle.load(open(filename, 'rb'))
# self.__setstate__(state)
# return
class CharPredictNNModel:
def __init__(self, seq_len=25, hidden_lay_sz=(64,), model_file='model_file.save'):
self.chars = ' !?`-,.:;"\'?<>{}[]+_()&%$@^#*0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'
self.i2c_map = {i + 1: self.chars[i] for i in range(len(self.chars))}
self.c2i_map = {v: k for k, v in self.i2c_map.items()}
self.i2c_map[0], self.c2i_map[''] = '', 0
self.D = len(self.i2c_map)
self.model_file = model_file
self.map_vect = {}
for i in self.c2i_map:
self.map_vect[i] = np.zeros(self.D)
self.map_vect[i][self.c2i_map[i]] = 1.0
self.seq_length = seq_len
self.opt = Adam
self.activation = T.nnet.relu
self.hidden_lay_sz = hidden_lay_sz
def compile(self):
self.model = RNN_Model(I=self.D, H=self.hidden_lay_sz, rnn_unit=GRU, opt=Adam, activation=T.nnet.relu)
# if model_file:
# self.load(model_file)
# elif os.path.isfile('model_file.save'):
# self.load('model_file.save')
# else:
# self.model.__setstate__()
def sample_formation(self, text):
text = re.sub(r'[^\!\?`\-,\.\:;"\'<>\{\}\[\]\+_\(\)\&\%\$\@\^#\*0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ]', ' ', text)
text = re.sub(r'[ \t\n]{2,}', ' ', text)
t_size = len(text)
X , Y = [], []
for i in range(0, t_size - self.seq_length - 1):
X.append([self.map_vect[j] for j in text[i: i + self.seq_length]])
Y.append([self.map_vect[j] for j in text[i + 1: i + self.seq_length + 1]])
return X, Y
def train(self, fname):
text = open(fname, 'r').read()
X, Y = self.sample_formation(text)
self.model.fit(X, Y)
self.save(self.model_file)
def save(self, filename):
params = (self.seq_length, self.hidden_lay_sz, self.model.__getstate__())
pickle.dump(params, open(filename, 'wb'))
def load(self, filename):
self.seq_length, self.hidden_lay_sz, state = pickle.load(open(filename, 'rb'))
self.compile()
self.model.__setstate__(state)
def test(self, fname):
text = open(fname, 'r').read()
X, Y = self.sample_formation(text)
X, Y = shuffle(X, Y)
Y_, _ = self.model.predict(X)
correct = 0
for i in range(len(Y_)):
if np.argmax(Y[i][-1]) == Y_[i][-1]:
correct += 1
return correct, len(X)
def pridect(self, text):
# if len(text) > self.seq_length:
# text = text[-self.seq_length:]
# elif len(text) < self.seq_length:
# text = ' '*(self.seq_length-len(text)) + text
x = [self.map_vect[j] if j in self.map_vect else self.map_vect[''] for j in text]
p, y = self.model.predict(np.array([x]))
prob = dict((i, y[0][-1][i]) for i in range(len(y[0][-1])))
prob = sorted(prob.items(), key=lambda kv: kv[1], reverse=True)
return {self.i2c_map[k]:v for k,v in prob[:2]}
if __name__ == '__main__':
fname = 'pg.txt'
cmodel = CharPredictNNModel(seq_len=32, hidden_lay_sz=(128,), model_file='model_file.save')
cmodel.compile()
cmodel.train(fname)
# testing
correct, total = cmodel.test(fname)
sys.stdout.write("accuracy :", float(correct)/total)