-
Notifications
You must be signed in to change notification settings - Fork 5.5k
/
Copy pathaugs.py
271 lines (248 loc) · 10.1 KB
/
augs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import numpy as np
import cv2
import os
import os.path as osp
import albumentations as A
from albumentations.core.transforms_interface import ImageOnlyTransform
from albumentations.pytorch import ToTensorV2
class RectangleBorderAugmentation(ImageOnlyTransform):
def __init__(
self,
fill_value = 0,
fg_limit = (0.7, 0.9),
always_apply=False,
p=1.0,
):
super(RectangleBorderAugmentation, self).__init__(always_apply, p)
#assert limit>0.0 and limit<1.0
assert isinstance(fg_limit, tuple)
assert fg_limit[1]>fg_limit[0]
self.fill_value = 0
self.fg_limit = fg_limit
#self.output_size = output_size
def apply(self, image, fg, top, left, **params):
assert image.shape[0]==image.shape[1]
oimage = np.ones_like(image) * self.fill_value
f = int(fg*image.shape[0])
t = int(top*image.shape[0])
l = int(left*image.shape[1])
oimage[t:t+f,l:l+f,:] = image[t:t+f,l:l+f,:]
return oimage
def get_params(self):
fg = np.random.uniform(self.fg_limit[0], self.fg_limit[1])
top = np.random.uniform(0.0, 1.0-fg)
left = np.random.uniform(0.0, 1.0-fg)
return {'fg': fg, 'top': top, 'left': left}
def get_transform_init_args_names(self):
return ('fill_value','fg_limit')
class SunGlassAugmentation(ImageOnlyTransform):
def __init__(
self,
fill_value = 0,
loc = [ (38, 52), (73, 52) ],
rad_limit = (10, 20),
always_apply=False,
p=1.0,
):
super(SunGlassAugmentation, self).__init__(always_apply, p)
#assert limit>0.0 and limit<1.0
assert isinstance(rad_limit, tuple)
self.fill_value = 0
self.loc = loc
self.rad_limit = rad_limit
def apply(self, image, rad, **params):
for i in range(2):
cv2.circle(image, self.loc[i], rad, self.fill_value, -1)
return image
def get_params(self):
rad = np.random.randint(self.rad_limit[0], self.rad_limit[1])
return {'rad':rad}
def get_transform_init_args_names(self):
return ('fill_value', 'loc', 'rad_limit')
class ForeHeadAugmentation(ImageOnlyTransform):
def __init__(
self,
height_min = 0.2,
height_max = 0.4,
width_min = 0.5,
always_apply=False,
p=1.0,
):
super(ForeHeadAugmentation, self).__init__(always_apply, p)
assert height_max > height_min
#assert limit>0.0 and limit<1.0
self.height_min = height_min
self.height_max = height_max
self.width_min = width_min
def apply(self, image, height, width, left, **params):
mask_value = np.random.randint(0, 255, size=(int(image.shape[0]*height), int(image.shape[1]*width), 3), dtype=image.dtype)
l = int(image.shape[1]*left)
image[:mask_value.shape[0], l:l+mask_value.shape[1], :] = mask_value
return image
def get_params(self):
height = np.random.uniform(self.height_min, self.height_max)
width = np.random.uniform(self.width_min, 1.0)
left = np.random.uniform(0.0, 1.0 - width)
return {'height': height, 'width': width, 'left': left}
def get_transform_init_args_names(self):
return ('height_min', 'height_max','width_min')
def get_aug_transform(cfg):
aug_modes = cfg.aug_modes
input_size = cfg.input_size
task = cfg.task
transform_list = []
is_test = False
if 'test-aug' in aug_modes:
#transform_list.append(
# A.RandomBrightnessContrast(brightness_limit=0.125, contrast_limit=0.05, p=0.2)
# )
transform_list.append(
A.ShiftScaleRotate(shift_limit=0.02, scale_limit=0.05, rotate_limit=5, interpolation=cv2.INTER_LINEAR,
border_mode=cv2.BORDER_CONSTANT, value=0, mask_value=0, p=1.0, always_apply=True)
)
is_test = True
if '1' in aug_modes:
transform_list.append(
A.RandomBrightnessContrast(brightness_limit=0.125, contrast_limit=0.05, p=0.2)
)
if '1A' in aug_modes:
transform_list.append(
A.RandomBrightnessContrast(brightness_limit=0.125, contrast_limit=0.05, p=0.2)
)
transform_list.append(
A.ShiftScaleRotate(shift_limit=0.02, scale_limit=0.03, rotate_limit=6, interpolation=cv2.INTER_LINEAR,
border_mode=cv2.BORDER_CONSTANT, value=0, mask_value=0, p=0.3)
)
if '2' in aug_modes:
transform_list.append(
A.RandomBrightnessContrast(brightness_limit=0.125, contrast_limit=0.05, p=0.2)
)
transform_list.append(
A.ShiftScaleRotate(shift_limit=0.05, scale_limit=0.1, rotate_limit=15, interpolation=cv2.INTER_LINEAR,
border_mode=cv2.BORDER_CONSTANT, value=0, mask_value=0, p=0.4)
)
if '3' in aug_modes:
transform_list.append(
A.RandomBrightnessContrast(brightness_limit=0.125, contrast_limit=0.05, p=0.6)
)
transform_list.append(
A.ShiftScaleRotate(shift_limit=0.1, scale_limit=0.2, rotate_limit=30, interpolation=cv2.INTER_LINEAR,
border_mode=cv2.BORDER_CONSTANT, value=0, mask_value=0, p=0.6)
)
if 'nist1' in aug_modes:
transform_list.append(
A.RandomBrightnessContrast(brightness_limit=0.125, contrast_limit=0.05, p=0.2)
)
transform_list.append(
A.ShiftScaleRotate(shift_limit=0.05, scale_limit=0.06, rotate_limit=6, interpolation=cv2.INTER_LINEAR,
border_mode=cv2.BORDER_CONSTANT, value=0, mask_value=0, p=0.4)
)
if 'nist2' in aug_modes:
transform_list.append(
#A.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.02, p=0.3)
A.RandomBrightnessContrast(brightness_limit=0.125, contrast_limit=0.05, p=0.2)
)
transform_list.append(
A.ShiftScaleRotate(shift_limit=0.06, scale_limit=0.06, rotate_limit=6, interpolation=cv2.INTER_LINEAR,
border_mode=cv2.BORDER_CONSTANT, value=0, mask_value=0, p=0.4)
)
transform_list.append(
A.OneOf([
RectangleBorderAugmentation(p=0.5),
ForeHeadAugmentation(p=0.5),
#SunGlassAugmentation(p=0.2),
], p=0.06)
)
transform_list.append(
A.ToGray(p=0.05)
)
transform_list.append(
A.geometric.resize.RandomScale(scale_limit=(0.7, 0.9), interpolation=cv2.INTER_LINEAR, p=0.05)
)
transform_list.append(
A.ISONoise(p=0.06)
)
transform_list.append(
A.MedianBlur(blur_limit=(1,7), p=0.05)
)
transform_list.append(
A.MotionBlur(blur_limit=(5,12), p=0.05)
)
transform_list.append(
A.ImageCompression(quality_lower=50, quality_upper=80, p=0.05)
)
if 'prod' in aug_modes:
transform_list.append(
#A.RandomBrightnessContrast(brightness_limit=0.125, contrast_limit=0.125, p=0.2)
A.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.02, p=0.3)
)
transform_list.append(
A.ShiftScaleRotate(shift_limit=0.06, scale_limit=0.1, rotate_limit=10, interpolation=cv2.INTER_LINEAR,
border_mode=cv2.BORDER_CONSTANT, value=0, mask_value=0, p=0.4)
)
transform_list.append(
A.OneOf([
RectangleBorderAugmentation(p=0.5),
ForeHeadAugmentation(p=0.5),
MaskAugmentation(mask_names=['mask_white', 'mask_blue', 'mask_black', 'mask_green'], mask_probs=[0.4, 0.4, 0.1, 0.1], h_low=0.33, h_high=0.4, p=0.2),
SunGlassAugmentation(p=0.2),
], p=0.2)
)
transform_list.append(
A.ToGray(p=0.05)
)
transform_list.append(
A.geometric.resize.RandomScale(scale_limit=(0.6, 0.9), interpolation=cv2.INTER_LINEAR, p=0.2)
)
transform_list.append(
A.ISONoise(p=0.1)
)
transform_list.append(
A.MedianBlur(blur_limit=(1,7), p=0.1)
)
transform_list.append(
A.MotionBlur(blur_limit=(5,12), p=0.1)
)
transform_list.append(
A.ImageCompression(quality_lower=30, quality_upper=80, p=0.1)
)
#if input_size!=112: # TODO!!
# transform_list.append(
# A.geometric.resize.Resize(input_size, input_size, interpolation=cv2.INTER_LINEAR, always_apply=True)
# )
transform_list += \
[
#A.HorizontalFlip(p=0.5),
A.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
ToTensorV2(),
]
#here, the input for A transform is rgb cv2 img
if is_test:
transform = A.ReplayCompose(
transform_list ,
keypoint_params=A.KeypointParams(format='xy',remove_invisible=False)
)
else:
transform = A.Compose(
transform_list,
keypoint_params=A.KeypointParams(format='xy',remove_invisible=False)
)
return transform
if __name__ == "__main__":
tool = MaskRenderer()
tool.prepare(ctx_id=0, det_size=(128,128))
image = cv2.imread("./test1.png")[:,:,::-1]
mask_image = "mask_blue"
#params = tool.build_params(image)
label = np.load('assets/mask_label.npy')
params = tool.decode_params(label)
#print(params[0][:20])
mask_out = tool.render_mask(image, mask_image, params, input_is_rgb=True, auto_blend=False)[:,:,::-1]
#print(uv_out.dtype, uv_out.shape)
cv2.imwrite('output_mask.jpg', mask_out)
transform = A.Compose([
MaskAugmentation(mask_names=['mask_white', 'mask_blue', 'mask_black', 'mask_green'], mask_probs=[0.4, 0.4, 0.1, 0.1], h_low=0.33, h_high=0.4, p=1.0),
#MaskAugmentation(p=1.0),
])
mask_out = transform(image=image, hlabel=label)["image"][:,:,::-1]
cv2.imwrite('output_mask2.jpg', mask_out)