-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathadabn.py
228 lines (203 loc) · 6.68 KB
/
adabn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import os
os.environ['MXNET_CUDNN_AUTOTUNE_DEFAULT'] = '0'
import sys
import argparse
import numpy as np
import cv2
import random
import json
import mxnet as mx
def get_bn_input_symbol(bn_symbol):
for sym in bn_symbol.get_children():
#print(sym.name)
if sym.name.startswith('_plus') or sym.name.find('conv')>=0:
return sym
return None
def get_adabn_params(symbol, arg_params, aux_params, bn_layer_names = ['bn1','stage4_unit3_bn3']):
ret = {}
for _bn in bn_layer_names:
ret[_bn] = None
#print(aux_params[_bn])
bn_mean = aux_params[_bn+"_moving_mean"].asnumpy()
bn_var = aux_params[_bn+"_moving_var"].asnumpy()
bn_gamma = arg_params[_bn+"_gamma"].asnumpy()
bn_beta = arg_params[_bn+"_beta"].asnumpy()
print(bn_mean.shape)
print(bn_var.shape)
print(bn_gamma.shape)
print(bn_beta.shape)
#bn_layer_name = "bn1"
#print(arg_params.__class__)
#print(aux_params.__class__)
all_layers = sym.get_internals()
for layer in all_layers:
#print(layer.name)
if layer.name in ret:
bn_input = get_bn_input_symbol(layer)
assert bn_input is not None
ret[layer.name] = (bn_input, layer)
#for _sym in layer.get_children():
# if _sym.name in arg_params:
# print(_sym.name, arg_params[_sym.name])
# else:
# print(_sym.name)
return ret
def ch_dev(arg_params, aux_params, ctx):
new_args = dict()
new_auxs = dict()
for k, v in arg_params.items():
new_args[k] = v.as_in_context(ctx)
for k, v in aux_params.items():
new_auxs[k] = v.as_in_context(ctx)
return new_args, new_auxs
img_sz = 360
crop_sz = 320
batch_sz = 64
def image_preprocess(img_full_path, loop):
img = cv2.cvtColor(cv2.imread(img_full_path), cv2.COLOR_BGR2RGB)
img = np.float32(img)
ori_shape = img.shape
assert img.shape[2]==3
img = cv2.resize(img, (img_sz, img_sz), interpolation=cv2.INTER_CUBIC)
h, w, _ = img.shape
x0 = int((w - crop_sz) / 2)
y0 = int((h - crop_sz) / 2)
img = img[y0:y0+crop_sz, x0:x0+crop_sz]
if loop%2==1:
img = np.fliplr(img)
img = np.swapaxes(img, 0, 2)
img = np.swapaxes(img, 1, 2) # change to r,g,b order
return img
def apply_adabn(ctx, sym, arg_params, aux_params, imgs):
batch_head = 0
batch_num = 0
adabn = get_adabn_params(sym, arg_params, aux_params)
adabn_list = []
sym_list = []
X_list = []
for k,v in adabn.iteritems():
adabn_list.append( (k,v) )
sym_list.append(v[0])
X_list.append([])
#_adabn = (k,v)
num_bn = len(X_list)
req = mx.symbol.Group(sym_list)
new_auxs = dict()
for k, v in aux_params.items():
#print(v.__class__)
new_auxs[k] = v.as_in_context(ctx)
while batch_head<len(imgs):
print("processing batch %d" % batch_num)
current_batch_sz = min(batch_sz, len(imgs)-batch_head)
input_blob = np.zeros((current_batch_sz,3,crop_sz,crop_sz))
#print batch_head
idx = 0
ids = []
for idx in xrange(current_batch_sz):
index = batch_head+idx
filename = imgs[index]
img = image_preprocess(filename, 0)
input_blob[idx,:,:,:] = img
arg_params["data"] = mx.nd.array(input_blob, ctx)
arg_params["softmax_label"] = mx.nd.empty((current_batch_sz,), ctx)
exe = req.bind(ctx, arg_params ,args_grad=None, grad_req="null", aux_states=aux_params)
exe.forward(is_train=False)
#print(exe.outputs)
for i in xrange(num_bn):
net_out = exe.outputs[i].asnumpy()
net_out = np.mean(net_out, axis=(2,3))
#print(net_out.shape)
for d in xrange(net_out.shape[0]):
X_list[i].append(net_out[d])
batch_num+=1
batch_head+=current_batch_sz
#if batch_num==30:
# break
for i in xrange(num_bn):
X = X_list[i]
X = np.array(X, dtype=np.float32)
mean = np.mean(X, axis=0)
var = np.var(X, axis=0)
print(mean.shape)
print(var.shape)
name = adabn_list[i][0]
new_auxs[name+"_moving_mean"] = mx.nd.array(mean, ctx)
new_auxs[name+"_moving_var"] = mx.nd.array(var, ctx)
return arg_params, new_auxs
def do_eval(ctx, sym, arg_params, aux_params, imgs, labels):
batch_head = 0
batch_num = 0
X = None
while batch_head<len(imgs):
print("processing batch %d" % batch_num)
current_batch_sz = min(batch_sz, len(imgs)-batch_head)
input_blob = np.zeros((current_batch_sz,3,crop_sz,crop_sz))
#print batch_head
idx = 0
ids = []
for idx in xrange(current_batch_sz):
index = batch_head+idx
filename = imgs[index]
img = image_preprocess(filename, 0)
input_blob[idx,:,:,:] = img
arg_params["data"] = mx.nd.array(input_blob, ctx)
arg_params["softmax_label"] = mx.nd.empty((current_batch_sz,), ctx)
exe = sym.bind(ctx, arg_params ,args_grad=None, grad_req="null", aux_states=aux_params)
exe.forward(is_train=False)
#print(exe.outputs)
net_out = exe.outputs[0].asnumpy()
for idx in xrange(current_batch_sz):
index = batch_head+idx
gt_label = labels[index]
probs = net_out[idx,:]
score = np.squeeze(probs)
if X is None:
X = np.zeros( (len(imgs), len(score)), dtype=np.float32 )
X[index,:] += score
batch_num+=1
batch_head+=current_batch_sz
acc = 0.0
for i in xrange(len(imgs)):
score = X[i]
sort_index = np.argsort(score)[::-1]
prediction = sort_index[0]
if prediction==labels[i]:
acc+=1.0
acc /= len(imgs)
print("acc %f" % acc)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="adabn runner",
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--model', type=str,
help='load trained model')
parser.add_argument('--epoch', type=int,
help='load trained model epoch')
parser.add_argument('--gpu', type=int, default=0,
help='gpu used for validation')
parser.add_argument('--val', type=str, default='data/val.lst',
help='lst file used for validation')
args = parser.parse_args()
imgs = []
labels = []
val_file = args.val
with open(val_file, 'r') as f:
for line in f:
line = line.strip()
vec = line.split("\t")
id = int(vec[0])
label = int(vec[1])
image_path = vec[2]
imgs.append(image_path)
labels.append(label)
prefix = args.model
epoch = args.epoch
gpu_id = args.gpu
print("input epoch", epoch)
print("input gpu_id", gpu_id)
ctx = mx.gpu(gpu_id)
sym, arg_params, aux_params = mx.model.load_checkpoint(prefix, epoch)
arg_params, aux_params = ch_dev(arg_params, aux_params, ctx)
print('cal adabn params...')
arg_params, aux_params = apply_adabn(ctx, sym, arg_params, aux_params, imgs)
print('eval..')
do_eval(ctx, sym, arg_params, aux_params, imgs, labels)