-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_hypo.py
381 lines (310 loc) · 15.1 KB
/
train_hypo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
import argparse
import math
import os
import time
from datetime import datetime
import logging
import tensorboard_logger as tb_logger
import pprint
import torch
import torch.nn.parallel
import torch.nn.functional as F
import torch.optim
import torch.utils.data
import numpy as np
import wandb
wandb.login()
from sklearn.metrics import accuracy_score
from utils import (CompLoss, CompNGLoss, DisLoss, DisLPLoss,
AverageMeter, adjust_learning_rate, warmup_learning_rate,
set_loader_small, set_loader_ImageNet, set_model)
parser = argparse.ArgumentParser(description='Script for training with HYPO')
parser.add_argument('--gpu', default=6, type=int, help='which GPU to use')
parser.add_argument('--seed', default=4, type=int, help='random seed') # original 4
parser.add_argument('--w', default=2, type=float,
help='loss scale')
parser.add_argument('--proto_m', default= 0.95, type=float,
help='weight of prototype update')
parser.add_argument('--feat_dim', default = 128, type=int,
help='feature dim')
parser.add_argument('--in-dataset', default="CIFAR-10", type=str, help='in-distribution dataset', choices=['PACS', 'VLCS', 'CIFAR-10', 'CIFAR-100', 'ImageNet-100', 'OfficeHome', 'terra_incognita'])
parser.add_argument('--id_loc', default="datasets/CIFAR10", type=str, help='location of in-distribution dataset')
parser.add_argument('--model', default='resnet18', type=str, help='model architecture: [resnet18, wrt40, wrt28, wrt16, densenet100, resnet50, resnet34]')
parser.add_argument('--head', default='mlp', type=str, help='either mlp or linear head')
parser.add_argument('--loss', default = 'hypo', type=str, choices = ['hypo', 'erm'],
help='name of experiment')
parser.add_argument('--epochs', default=50, type=int,
help='number of total epochs to run')
parser.add_argument('--trial', type=str, default='0',
help='id for recording multiple runs')
parser.add_argument('--save-epoch', default=100, type=int,
help='save the model every save_epoch')
parser.add_argument('--start-epoch', default=0, type=int,
help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch_size', default= 32, type=int, #512 # batch-size
help='mini-batch size (default: 64)')
parser.add_argument('--learning_rate', default=5e-4, type=float,
help='initial learning rate')
# if linear lr schedule
parser.add_argument('--lr_decay_epochs', type=str, default='100,150,180',
help='where to decay lr, can be a list')
parser.add_argument('--lr_decay_rate', type=float, default=0.1,
help='decay rate for learning rate')
# if cosine lr schedule
parser.add_argument('--cosine', action='store_true',
help='using cosine annealing')
parser.add_argument('--momentum', default=0.9, type=float, help='momentum')
parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float,
help='weight decay (default: 0.0001)')
parser.add_argument('--print-freq', '-p', default=10, type=int,
help='print frequency (default: 10)')
parser.add_argument('--temp', type=float, default=0.1,
help='temperature for loss function')
parser.add_argument('--warm', action='store_true',
help='warm-up for large batch training')
parser.add_argument('--normalize', action='store_true',
help='normalize feat embeddings')
# add pacs specific
parser.add_argument('--prefetch', type=int, default=4, help='Pre-fetching threads.')
parser.add_argument('--target_domain', type=str, default='cartoon')
# debug
parser.add_argument('--use_domain', type=bool, default=False, help='whether to use in-domain negative pairs in compactness loss')
parser.add_argument('--mode', default='online', choices = ['online','disabled'], help='whether disable wandb logging')
parser.set_defaults(bottleneck=True)
parser.set_defaults(augment=True)
args = parser.parse_args()
torch.cuda.set_device(args.gpu)
state = {k: v for k, v in args._get_kwargs()}
date_time = datetime.now().strftime("%d_%m_%H:%M")
#processing str to list for linear lr scheduling
args.lr_decay_epochs = [int(step) for step in args.lr_decay_epochs.split(',')]
if args.in_dataset == "ImageNet-100" or args.in_dataset == 'CIFAR-10':
args.name = (f"{date_time}_{args.loss}_{args.model}_lr_{args.learning_rate}_cosine_"
f"{args.cosine}_bsz_{args.batch_size}_head_{args.head}_wd_{args.w}_{args.epochs}_{args.feat_dim}_"
f"trial_{args.trial}_temp_{args.temp}_{args.in_dataset}_pm_{args.proto_m}")
else:
args.name = (f"{date_time}_{args.loss}_std_{args.model}_lr_{args.learning_rate}_cosine_"
f"{args.cosine}_bsz_{args.batch_size}_td_{args.target_domain}_head_{args.head}_wd_{args.w}_{args.epochs}_{args.feat_dim}_"
f"trial_{args.trial}_temp_{args.temp}_{args.in_dataset}_pm_{args.proto_m}")
args.log_directory = "logs/{in_dataset}/{name}/".format(in_dataset=args.in_dataset, name= args.name)
args.model_directory = "/nobackup2/yf/checkpoints/hypo_cr/{in_dataset}/{name}/".format(in_dataset=args.in_dataset, name= args.name)
args.tb_path = './save/hypo/{}_tensorboard'.format(args.in_dataset)
if not os.path.exists(args.model_directory):
os.makedirs(args.model_directory)
if not os.path.exists(args.log_directory):
os.makedirs(args.log_directory)
args.tb_folder = os.path.join(args.tb_path, args.name)
if not os.path.isdir(args.tb_folder):
os.makedirs(args.tb_folder)
#save args
with open(os.path.join(args.log_directory, 'train_args.txt'), 'w') as f:
f.write(pprint.pformat(state))
#init log
log = logging.getLogger(__name__)
formatter = logging.Formatter('%(asctime)s : %(message)s')
fileHandler = logging.FileHandler(os.path.join(args.log_directory, "train_info.log"), mode='w')
fileHandler.setFormatter(formatter)
streamHandler = logging.StreamHandler()
streamHandler.setFormatter(formatter)
log.setLevel(logging.DEBUG)
log.addHandler(fileHandler)
log.addHandler(streamHandler)
log.debug(state)
if args.in_dataset == "CIFAR-10":
args.n_cls = 10
elif args.in_dataset == "PACS":
args.n_cls = 7
elif args.in_dataset == "VLCS":
args.n_cls = 5
elif args.in_dataset == "OfficeHome":
args.n_cls = 65
elif args.in_dataset == 'terra_incognita':
args.n_cls = 10
elif args.in_dataset in ["CIFAR-100", "ImageNet-100"]:
args.n_cls = 100
#set seeds
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
np.random.seed(args.seed)
log.debug(f"{args.name}")
# warm-up for large-batch training
if args.batch_size > 256:
args.warm = True
if args.warm:
args.warmup_from = 0.001
args.warm_epochs = 10
if args.cosine:
eta_min = args.learning_rate * (args.lr_decay_rate ** 3)
args.warmup_to = eta_min + (args.learning_rate - eta_min) * (
1 + math.cos(math.pi * args.warm_epochs / args.epochs)) / 2
else:
args.warmup_to = args.learning_rate
def to_np(x): return x.data.cpu().numpy()
def main():
tb_log = tb_logger.Logger(logdir=args.tb_folder, flush_secs=2)
wandb.init(
# Set the project where this run will be logged
project="hypo",
# We pass a run name (otherwise it’ll be randomly assigned, like sunshine-lollypop-10)
name=args.name,
# Track hyperparameters and run metadata
mode=args.mode,
config=args)
if args.in_dataset == "ImageNet-100":
train_loader, val_loader, test_loader = set_loader_ImageNet(args)
else:
if args.in_dataset == 'CIFAR-10' or args.in_dataset == 'CIFAR-100':
train_loader, val_loader, test_loader = set_loader_small(args)
else:
train_loader, val_loader, test_loader = set_loader_small(args)
model = set_model(args)
criterion_comp = CompLoss(args, temperature=args.temp, use_domain = args.use_domain).cuda()
criterion_dis = DisLoss(args, model, val_loader, temperature=args.temp).cuda()
optimizer = torch.optim.SGD(model.parameters(), lr = args.learning_rate,
momentum=args.momentum,
nesterov=True,
weight_decay=args.weight_decay)
acc_best = 0.0
acc_best_id = 0.0
acc_test_best = 0.0
acc_test_best_id = 0.0
epoch_test_best = 0.0
epoch_val_best = 0.0
for epoch in range(args.start_epoch, args.epochs):
adjust_learning_rate(args, optimizer, epoch)
# train for one epoch
train_sloss, train_uloss, train_dloss, acc, acc_cor= train_hypo(args, train_loader, val_loader, test_loader, model, criterion_comp, criterion_dis, optimizer, epoch, log)
tb_log.log_value('train_uni_loss', train_uloss, epoch)
tb_log.log_value('train_dis_loss', train_dloss, epoch)
wandb.log({'Comp Loss Ep': train_uloss,'Dis Loss Ep': train_dloss })
tb_log.log_value('learning_rate', optimizer.param_groups[0]['lr'], epoch)
wandb.log({'current lr': optimizer.param_groups[0]['lr'], 'acc':acc, 'acc cor': acc_cor})
# save checkpoint
if acc >= acc_best_id:
acc_best = acc_cor
acc_best_id = acc
epoch_val_best = epoch
wandb.log({'val best ood acc': acc_best, 'val best id acc':acc_best_id})
print('best accuracy {} at epoch {}'.format(acc_best_id, epoch))
print('accuracy cor {} at epoch {}'.format(acc_best, epoch))
save_checkpoint(args, {
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'opt_state_dict': optimizer.state_dict(),
'dis_state_dict': criterion_dis.state_dict(),
'uni_state_dict': criterion_comp.state_dict(),
}, epoch + 1, save_best=True)
if acc_cor >= acc_test_best:
acc_test_best = acc_cor
acc_test_best_id = acc
epoch_test_best = epoch
wandb.log({'test best ood acc': acc_test_best, 'test best id acc':acc_test_best_id})
print('best test accuracy {} at epoch {}'.format(acc_test_best, epoch))
print('total val best ood accuracy {} id accuracy {} at epoch {}'.format(acc_best, acc_best_id, epoch_val_best))
print('total test best ood accuracy {} id accuracy {} at epoch {}'.format(acc_test_best, acc_test_best_id, epoch_test_best))
print('last epoch ood accuracy {} id accuracy {} at epoch {}'.format(acc_cor, acc, epoch))
summary_metrics = {
'val best ood accuracy': acc_best,
'val best id accuracy': acc_best_id,
'val best epoch': epoch_val_best,
'test best ood accuracy': acc_test_best,
'test best id accuracy': acc_test_best_id,
'test best epoch': epoch_test_best,
'last ood accuracy': acc_cor,
'last id accuracy': acc,
'last epoch': epoch
}
for metric_name, metric_value in summary_metrics.items():
wandb.summary[metric_name] = metric_value
def train_hypo(args, train_loader, val_loader, test_loader, model, criterion_comp, criterion_dis, optimizer, epoch, log):
"""Train for one epoch on the training set"""
batch_time = AverageMeter()
supcon_losses = AverageMeter()
comp_losses = AverageMeter()
dis_losses = AverageMeter()
losses = AverageMeter()
model.train()
end = time.time()
for i, values in enumerate(train_loader):
if len(values) == 3:
input, target, domain = values
elif len(values) == 2:
input, target = values
domain = None
warmup_learning_rate(args, epoch, i, len(train_loader), optimizer)
bsz = target.shape[0]
input = input.cuda()
target = target.cuda()
penultimate = model.encoder(input).squeeze()
if args.normalize: # default: False
penultimate= F.normalize(penultimate, dim=1)
features= model.head(penultimate)
features= F.normalize(features, dim=1)
dis_loss = criterion_dis(features, target)
comp_loss = criterion_comp(features, criterion_dis.prototypes, target, None)
loss = args.w * comp_loss + dis_loss
dis_losses.update(dis_loss.data, input.size(0))
comp_losses.update(comp_loss.data, input.size(0))
optimizer.zero_grad()
loss.backward()
optimizer.step()
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
log.debug('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Dis Loss {dloss.val:.4f} ({dloss.avg:.4f})\t'
'Comp Loss {uloss.val:.4f} ({uloss.avg:.4f})\t'.format(
epoch, i, len(train_loader), batch_time=batch_time, dloss=dis_losses, uloss = comp_losses))
wandb.log({'Dis Loss' : dis_losses.val, 'Comp Loss' : comp_losses.val})
model.eval()
with torch.no_grad():
accuracies = []
for i, values in enumerate(val_loader):
if len(values) == 3:
input, target, domain = values
elif len(values) == 2:
input, target = values
domain = None
input = input.cuda()
target = target.cuda()
features = model.forward(input)
feat_dot_prototype = torch.div(torch.matmul(features, criterion_dis.prototypes.T), args.temp)
# for numerical stability
logits_max, _ = torch.max(feat_dot_prototype, dim=1, keepdim=True)
logits = feat_dot_prototype - logits_max.detach()
pred = logits.data.max(1)[1]
accuracies.append(accuracy_score(list(to_np(pred)), list(to_np(target))))
acc = sum(accuracies) / len(accuracies)
if test_loader is None:
acc_cor = 0.
else:
with torch.no_grad():
accuracies_cor = []
for i, values in enumerate(test_loader):
if len(values) == 3:
input, target, domain = values
elif len(values) == 2:
input, target = values
domain = None
input = input.cuda()
target = target.cuda()
features = model.forward(input)
feat_dot_prototype = torch.div(torch.matmul(features, criterion_dis.prototypes.T), args.temp)
# for numerical stability
logits_max, _ = torch.max(feat_dot_prototype, dim=1, keepdim=True)
logits = feat_dot_prototype - logits_max.detach()
pred = logits.data.max(1)[1]
accuracies_cor.append(accuracy_score(list(to_np(pred)), list(to_np(target))))
acc_cor = sum(accuracies_cor) / len(accuracies_cor)
# measure elapsed time
return supcon_losses.avg, comp_losses.avg, dis_losses.avg, acc, acc_cor
def save_checkpoint(args, state, epoch, save_best = False):
"""Saves checkpoint to disk"""
if save_best:
filename = args.model_directory + 'checkpoint_max.pth.tar'
else:
filename = args.model_directory + f'checkpoint_{epoch}.pth.tar'
torch.save(state, filename)
if __name__ == '__main__':
main()