-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathclassifier.py
157 lines (122 loc) · 7.92 KB
/
classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import jax
import jax.numpy as jnp
import pandas as pd
import os
import optax
from jax.flatten_util import ravel_pytree
import crystalformer.src.checkpoint as checkpoint
from crystalformer.src.utils import GLXYZAW_from_file
from crystalformer.extension.model import make_classifier
from crystalformer.extension.transformer import make_transformer
from crystalformer.extension.train import train
from crystalformer.extension.loss import make_classifier_loss
def get_labels(csv_file, label_col):
data = pd.read_csv(csv_file)
labels = data[label_col].values
labels = jnp.array(labels, dtype=float)
return labels
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description='')
group = parser.add_argument_group('dataset')
group.add_argument('--train_path', default='/data/zdcao/crystal_gpt/dataset/mp_20/train.csv', help='')
group.add_argument('--valid_path', default='/data/zdcao/crystal_gpt/dataset/mp_20/val.csv', help='')
group.add_argument('--test_path', default='/data/zdcao/crystal_gpt/dataset/mp_20/test.csv', help='')
group.add_argument('--property', default='band_gap', help='The property to predict')
group.add_argument('--num_io_process', type=int, default=40, help='number of io processes')
group = parser.add_argument_group('predict dataset')
group.add_argument('--output_path', type=str, default='./predict.npy', help='The path to save the prediction result')
group = parser.add_argument_group('physics parameters')
group.add_argument('--n_max', type=int, default=21, help='The maximum number of atoms in the cell')
group.add_argument('--atom_types', type=int, default=119, help='Atom types including the padded atoms')
group.add_argument('--wyck_types', type=int, default=28, help='Number of possible multiplicites including 0')
group = parser.add_argument_group('transformer parameters')
group.add_argument('--Nf', type=int, default=5, help='number of frequencies for fc')
group.add_argument('--Kx', type=int, default=16, help='number of modes in x')
group.add_argument('--Kl', type=int, default=4, help='number of modes in lattice')
group.add_argument('--h0_size', type=int, default=256, help='hidden layer dimension for the first atom, 0 means we simply use a table for first aw_logit')
group.add_argument('--transformer_layers', type=int, default=4, help='The number of layers in transformer')
group.add_argument('--num_heads', type=int, default=8, help='The number of heads')
group.add_argument('--key_size', type=int, default=32, help='The key size')
group.add_argument('--model_size', type=int, default=64, help='The model size')
group.add_argument('--embed_size', type=int, default=32, help='The enbedding size')
group.add_argument('--dropout_rate', type=float, default=0.3, help='The dropout rate')
group = parser.add_argument_group('classifier parameters')
group.add_argument('--sequence_length', type=int, default=105, help='The sequence length')
group.add_argument('--outputs_size', type=int, default=64, help='The outputs size')
group.add_argument('--hidden_sizes', type=str, default='128,128,64' , help='The hidden sizes')
group.add_argument('--num_classes', type=int, default=1, help='The number of classes')
group.add_argument('--restore_path', type=str, default="/data/zdcao/crystal_gpt/classifier/", help='The restore path')
group = parser.add_argument_group('training parameters')
group.add_argument('--lr', type=float, default=1e-4, help='The learning rate')
group.add_argument('--epochs', type=int, default=1000, help='The number of epochs')
group.add_argument('--batchsize', type=int, default=256, help='The batch size')
group.add_argument('--optimizer', type=str, default='adam', choices=["none", "adam"], help='The optimizer')
args = parser.parse_args()
key = jax.random.PRNGKey(42)
if args.optimizer != "none":
train_data = GLXYZAW_from_file(args.train_path, args.atom_types,
args.wyck_types, args.n_max, args.num_io_process)
valid_data = GLXYZAW_from_file(args.valid_path, args.atom_types,
args.wyck_types, args.n_max, args.num_io_process)
train_labels = get_labels(args.train_path, args.property)
valid_labels = get_labels(args.valid_path, args.property)
train_data = (*train_data, train_labels)
valid_data = (*valid_data, valid_labels)
else:
test_data = GLXYZAW_from_file(args.test_path, args.atom_types,
args.wyck_types, args.n_max, args.num_io_process)
test_labels = get_labels(args.test_path, args.property)
test_data = (*test_data, test_labels)
################### Model #############################
transformer_params, state, transformer = make_transformer(key, args.Nf, args.Kx, args.Kl, args.n_max,
args.h0_size,
args.transformer_layers, args.num_heads,
args.key_size, args.model_size, args.embed_size,
args.atom_types, args.wyck_types,
args.dropout_rate)
print ("# of transformer params", ravel_pytree(transformer_params)[0].size)
key, subkey = jax.random.split(key)
classifier_params, classifier = make_classifier(subkey,
n_max=args.n_max,
embed_size=args.embed_size,
sequence_length=args.sequence_length,
outputs_size=args.outputs_size,
hidden_sizes=[int(x) for x in args.hidden_sizes.split(',')],
num_classes=args.num_classes)
print ("# of classifier params", ravel_pytree(classifier_params)[0].size)
params = (transformer_params, classifier_params)
print("\n========== Prepare logs ==========")
output_path = os.path.dirname(args.restore_path)
print("Will output samples to: %s" % output_path)
print("\n========== Load checkpoint==========")
ckpt_filename, epoch_finished = checkpoint.find_ckpt_filename(args.restore_path)
if ckpt_filename is not None:
print("Load checkpoint file: %s, epoch finished: %g" %(ckpt_filename, epoch_finished))
ckpt = checkpoint.load_data(ckpt_filename)
_params = ckpt["params"]
else:
print("No checkpoint file found. Start from scratch.")
if len(_params) == len(params):
params = _params
else:
params = (_params, params[1]) # only restore transformer params
print("only restore transformer params")
loss_fn, forward_fn = make_classifier_loss(transformer, classifier)
if args.optimizer == 'adam':
param_labels = ('transformer', 'classifier')
optimizer = optax.multi_transform({'transformer': optax.adam(args.lr*0.1),
'classifier': optax.adam(args.lr)},
param_labels)
opt_state = optimizer.init(params)
print("\n========== Start training ==========")
key, subkey = jax.random.split(key)
params, opt_state = train(subkey, optimizer, opt_state, loss_fn, params, state, epoch_finished, args.epochs, args.batchsize, train_data, valid_data, output_path)
elif args.optimizer == 'none':
G, L, XYZ, A, W, labels = test_data
y = jax.vmap(forward_fn,
in_axes=(None, None, None, 0, 0, 0, 0, 0, None)
)(params, state, key, G, L, XYZ, A, W, False)
jnp.save(args.output_path, y)
else:
raise NotImplementedError(f"Optimizer {args.optimizer} not implemented")