forked from baranovmv/RoomResponse
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsignal_env.py
79 lines (67 loc) · 2.65 KB
/
signal_env.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import scipy.signal
import numpy as np
import math
class SoundEnvirenment:
"""
Emulates the envirenment. Method run(...)
gets samples to render with loadspeaker and returns measured
sample from a microphone.
"""
def __init__(self, ir, Fs=44100):
self.Fs = Fs
# self.Hspeaker = np.append( np.zeros(100), [1] )
self.Hspeaker = np.append( [1], np.zeros(100) )
self.speaker_conv_tail = np.zeros( self.Hspeaker.shape[0] - 1 )
self.Hroom = np.array(ir)
self.Hroom = np.append( np.zeros(200), self.Hroom )
self.room_conv_tail = np.zeros( self.Hroom.shape[0] - 1 )
self.noiser = self.noise_src(Fs)
self.t = 0
def run(self, samples_in):
# How many samples we should pass through
Nin = samples_in.shape[0]
out_2_input, self.speaker_conv_tail = self.conv(samples_in, self.Hspeaker, self.speaker_conv_tail)
# Generate a noise we're hoping to eliminate.
next_t = self.t+Nin/self.Fs
noise = np.array([self.noiser(float(i)/self.Fs+self.t) for i in range(Nin)])
self.t = next_t
res, self.room_conv_tail = self.conv( noise+out_2_input, self.Hroom, self.room_conv_tail )
# return out_2_input
return res
def conv(self, x, IR, tail):
"""
Here we convolve output samples with loudspeaker IR and manage with tail,
which left after convolution.
"""
assert( IR.shape[0] == tail.shape[0]+1 )
# Use time-domain convolution if batches are small.
res = scipy.signal.fftconvolve(x, IR, mode='full')
res[:tail.shape[0]] += tail
tail = res[-tail.shape[0]:]
# Cut the tail.
return res[:x.shape[0]], tail
def noise_src(self, sampling_freq=8000):
# Random phase
rand_phi = np.random.rand()*2*np.pi
# Sin frequency.
rand_F = (np.random.rand()*np.pi/64 + np.pi/4) / 2 / np.pi * self.Fs
# F = np.pi/16 * Fs
A = [0.5, 0.2]
freq=[rand_F, rand_F*1.7]
phi = [np.random.rand()*2*np.pi, np.random.rand()*2*np.pi]
SNR = 40 # dB
signal_power = np.square(np.linalg.norm(A))
# SNR = Psig/Pnoise
# Sigma_noise = Psig/SNR
noise_sigma = np.sqrt(signal_power / math.pow( 10, SNR/20 ))
def awgn(time):
return np.random.normal(0, noise_sigma)
def fan(time):
f = sum([a*np.sin(2*np.pi*f*time + p) for a,f,p in zip(A, freq, phi)])
f = f + awgn(time)
return f
def single_harm(time):
np.sin(rand_F*time + rand_phi)*0.5
def zero(time):
return 0
return awgn