-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSpacySentiment.py
318 lines (279 loc) · 11.5 KB
/
SpacySentiment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
'''
Created on Sep 19, 2018
@author: g.werner
'''
"""
This example shows how to use an LSTM sentiment classification model trained using Keras in spaCy. spaCy splits the document into sentences, and each sentence is classified using the LSTM. The scores for the sentences are then aggregated to give the document score. This kind of hierarchical model is quite difficult in "pure" Keras or Tensorflow, but it's very effective. The Keras example on this dataset performs quite poorly, because it cuts off the documents so that they're a fixed size. This hurts review accuracy a lot, because people often summarise their rating in the final sentence
Prerequisites:
spacy download en_vectors_web_lg
pip install keras==2.0.9
Compatible with: spaCy v2.0.0+
"""
from langdetect import detect
from tensorflow import keras
from keras.layers import LSTM, Dense, Embedding, Bidirectional
from keras.layers import TimeDistributed
from keras.models import Sequential, model_from_json
from keras.optimizers import Adam
from spacy.compat import pickle
import numpy as np
import os
from os import listdir
from os.path import isfile, join
import pathlib
import plac
import random
import spacy
import thinc.extra.datasets
import toolz
def convert_scale(original_list):
aggregate = 0.0
for item in original_list:
aggregate += item
average = aggregate / len(original_list)
if average > 1.0:
average = 1.0
elif average < -1.0:
average = -1.0
return average
class SentimentAnalyser(object):
@classmethod
def load(cls, path, nlp, max_length=100):
with (path / 'config.json').open() as file_:
model = model_from_json(file_.read())
with (path / 'model').open('rb') as file_:
lstm_weights = pickle.load(file_)
embeddings = get_embeddings(nlp.vocab)
model.set_weights([embeddings] + lstm_weights)
return cls(model, max_length=max_length)
def __init__(self, model, max_length=100):
self._model = model
self.max_length = max_length
def __call__(self, doc):
X = get_features([doc], self.max_length)
y = self._model.predict(X)
self.set_sentiment(doc, y)
def pipe(self, docs, batch_size=1000, n_threads=2):
for minibatch in toolz.itertoolz.partition_all(batch_size, docs):
minibatch = list(minibatch)
sentences = []
for doc in minibatch:
sentences.extend(doc.sents)
Xs = get_features(sentences, self.max_length)
ys = self._model.predict(Xs)
for sent, label in zip(sentences, ys):
sent.doc.sentiment += label - 0.5
for doc in minibatch:
yield doc
def set_sentiment(self, doc, y):
doc.sentiment = float(y[0])
# Sentiment has a native slot for a single float.
# For arbitrary data storage, there's:
# doc.user_data['my_data'] = y
def get_labelled_sentences(docs, doc_labels):
labels = []
sentences = []
for doc, y in zip(docs, doc_labels):
for sent in doc.sents:
sentences.append(sent)
labels.append(y)
return sentences, np.asarray(labels, dtype='int32')
def get_features(docs, max_length):
docs = list(docs)
Xs = np.zeros((len(docs), max_length), dtype='int32')
for i, doc in enumerate(docs):
j = 0
for token in doc:
vector_id = token.vocab.vectors.find(key=token.orth)
if vector_id >= 0:
Xs[i, j] = vector_id
else:
Xs[i, j] = 0
j += 1
if j >= max_length:
break
return Xs
def train(train_texts, train_labels, dev_texts, dev_labels,
lstm_shape, lstm_settings, lstm_optimizer, batch_size=100,
nb_epoch=5, by_sentence=True):
print("Loading spaCy")
nlp = spacy.load('en_vectors_web_lg')
nlp.add_pipe(nlp.create_pipe('sentencizer'))
embeddings = get_embeddings(nlp.vocab)
model = compile_lstm(embeddings, lstm_shape, lstm_settings)
print("Parsing texts...")
train_docs = list(nlp.pipe(train_texts))
dev_docs = list(nlp.pipe(dev_texts))
if by_sentence:
train_docs, train_labels = get_labelled_sentences(train_docs, train_labels)
dev_docs, dev_labels = get_labelled_sentences(dev_docs, dev_labels)
train_X = get_features(train_docs, lstm_shape['max_length'])
dev_X = get_features(dev_docs, lstm_shape['max_length'])
model.fit(train_X, train_labels, validation_data=(dev_X, dev_labels),
epochs=nb_epoch, batch_size=batch_size)
return model
def compile_lstm(embeddings, shape, settings):
model = Sequential()
model.add(
Embedding(
embeddings.shape[0],
embeddings.shape[1],
input_length=shape['max_length'],
trainable=False,
weights=[embeddings],
mask_zero=True
)
)
model.add(TimeDistributed(Dense(shape['nr_hidden'], use_bias=False)))
model.add(Bidirectional(LSTM(shape['nr_hidden'],
recurrent_dropout=settings['dropout'],
dropout=settings['dropout'])))
model.add(Dense(shape['nr_class'], activation='sigmoid'))
model.compile(optimizer=Adam(lr=settings['lr']), loss='binary_crossentropy',
metrics=['accuracy'])
return model
def get_embeddings(vocab):
return vocab.vectors.data
def evaluate(model_dir, texts, labels, max_length=100):
nlp = spacy.load('en_vectors_web_lg')
nlp.add_pipe(nlp.create_pipe('sentencizer'))
nlp.add_pipe(SentimentAnalyser.load(model_dir, nlp, max_length=max_length))
correct = 0
i = 0
for doc in nlp.pipe(texts, batch_size=1000, n_threads=4):
correct += bool(doc.sentiment >= 0.5) == bool(labels[i])
i += 1
return float(correct) / i
def evaluate_without_labels(nlp, texts, out_file=None):
sentiments = []
if out_file is None:
for doc in nlp.pipe(texts, batch_size=1000, n_threads=4):
try:
if detect(doc.text) != 'en':
sentiments.append(0.0)
else:
sentiments.append(doc.sentiment)
except:
sentiments.append(0.0)
else:
with open(out_file, mode='w', encoding="utf-8") as file:
for doc in nlp.pipe(texts, batch_size=1000, n_threads=4):
try:
if detect(doc.text) != 'en':
sentiments.append(0.0)
continue
except:
# if there is not enough to determine, then assume english as a default behaviour
pass
file.write(str(doc.sentiment) + '\n')
file.write(doc.text + '\n')
sentiments.append(doc.sentiment)
keras.backend.clear_session()
# we are forcing document only analysis for now
return convert_scale(sentiments)
def read_data(data_dir, limit=0):
examples = []
for subdir, label in (('pos', 1), ('neg', 0)):
for filename in (data_dir / subdir).iterdir():
with filename.open() as file_:
text = file_.read()
examples.append((text, label))
random.shuffle(examples)
if limit >= 1:
examples = examples[:limit]
return zip(*examples) # Unzips into two lists
@plac.annotations(
train_dir=("Location of training file or directory"),
dev_dir=("Location of development file or directory"),
model_dir=("Location of output model directory",),
is_runtime=("Demonstrate run-time usage", "flag", "r", bool),
nr_hidden=("Number of hidden units", "option", "H", int),
max_length=("Maximum sentence length", "option", "L", int),
dropout=("Dropout", "option", "d", float),
learn_rate=("Learn rate", "option", "e", float),
nb_epoch=("Number of training epochs", "option", "i", int),
batch_size=("Size of minibatches for training LSTM", "option", "b", int),
nr_examples=("Limit to N examples", "option", "n", int)
)
def main(model_dir=None, train_dir=None, dev_dir=None,
is_runtime=False,
nr_hidden=64, max_length=100, # Shape
dropout=0.5, learn_rate=0.001, # General NN config
nb_epoch=5, batch_size=256, nr_examples=-1): # Training params
if model_dir is not None:
print('We set the model_dir as ' + model_dir)
model_dir = pathlib.Path(model_dir)
if train_dir is None or dev_dir is None:
imdb_data = thinc.extra.datasets.imdb()
if is_runtime:
if dev_dir is None:
dev_texts, dev_labels = zip(*imdb_data[1])
else:
dev_texts, dev_labels = read_data(dev_dir)
acc = evaluate(model_dir, dev_texts, dev_labels, max_length=max_length)
print(acc)
else:
if train_dir is None:
train_texts, train_labels = zip(*imdb_data[0])
else:
print("Read data")
train_texts, train_labels = read_data(train_dir, limit=nr_examples)
if dev_dir is None:
dev_texts, dev_labels = zip(*imdb_data[1])
else:
dev_texts, dev_labels = read_data(dev_dir, imdb_data, limit=nr_examples)
train_labels = np.asarray(train_labels, dtype='int32')
dev_labels = np.asarray(dev_labels, dtype='int32')
lstm = train(train_texts, train_labels, dev_texts, dev_labels,
{'nr_hidden': nr_hidden, 'max_length': max_length, 'nr_class': 1},
{'dropout': dropout, 'lr': learn_rate},
{},
nb_epoch=nb_epoch, batch_size=batch_size)
weights = lstm.get_weights()
if model_dir is not None:
with (model_dir / 'model').open('wb') as file_:
pickle.dump(weights[1:], file_)
with (model_dir / 'config.json').open('w') as file_:
file_.write(lstm.to_json())
def benchmark_test():
bm_data = []
print('Getting data')
directory = os.fsencode('input/train')
for file in os.listdir(directory):
with open(os.path.join(directory, file), mode='r', encoding="utf-8") as file:
data = file.read()
# we don't have predictions, so just say for 0 for everything
this_list = [data, 0]
bm_data.append(this_list)
print('Zipping data')
texts, labels = zip(*bm_data)
print('Classifying')
nlp = spacy.load('en_vectors_web_lg')
nlp.add_pipe(nlp.create_pipe('sentencizer'))
nlp.add_pipe(SentimentAnalyser.load(pathlib.Path('model'), nlp, max_length=100))
evaluate_without_labels(nlp, texts, 'results.txt')
side_effect = []
def fetch_files(directory):
global side_effect
filelines = []
onlyfiles = [f for f in listdir(directory) if isfile(join(directory, f))]
for onlyfile in onlyfiles:
side_effect.append(onlyfile)
with open(join(directory, onlyfile), 'r', encoding="utf-8") as f:
filelines.append(f.readlines())
return filelines
if __name__ == '__main__':
#plac.call(main)
#benchmark_test()
nlp = spacy.load('en_vectors_web_lg')
nlp.add_pipe(nlp.create_pipe('sentencizer'))
nlp.add_pipe(SentimentAnalyser.load(pathlib.Path('model'), nlp, max_length=100))
print('Fetching files')
filelines = fetch_files('input/train')
print(len(filelines))
for i in range(0, len(filelines)):
print(i)
fileline = filelines[i]
document = '\n'.join(fileline)
result = evaluate_without_labels(nlp, document, 'results.txt')
print(result)