-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvsh.py
319 lines (282 loc) · 9.05 KB
/
vsh.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
"""
These functions are normalised such that
< (Y^l_m)^E | (Y^l_m)^E > = < (Y^l_m)^B | (Y^l_m)^B > = 1
They agree with the following Mathematica functions
YE[l_, m_, th_, ph_] := Block[{eth, eph, pol, az, DYDTH, DYDPH},
eth = {Cos[th] Cos[ph], Cos[th] Sin[ph], -Sin[th]};
eph = {-Sin[ph], Cos[ph], 0};
DYDTH = D[SphericalHarmonicY[l, m, pol, ph], pol] /. pol -> th;
DYDPH = D[SphericalHarmonicY[l, m, th, az], az] /. az -> ph;
Return[(DYDTH eth + DYDPH eph/Sin[th])/Sqrt[l (l + 1)]];]
YB[l_, m_, th_, ph_] := Block[{eth, eph, pol, az, DYDTH, DYDPH, grad, n},
eth = {Cos[th] Cos[ph], Cos[th] Sin[ph], -Sin[th]};
eph = {-Sin[ph], Cos[ph], 0};
DYDTH = D[SphericalHarmonicY[l, m, pol, ph], pol] /. pol -> th;
DYDPH = D[SphericalHarmonicY[l, m, th, az], az] /. az -> ph;
n = {Sin[th] Cos[ph], Sin[th] Sin[ph], Cos[th]};
grad = (DYDTH eth + DYDPH eph/Sin[th]);
Return[Cross[n,grad]/Sqrt[l (l + 1)]];]
"""
import numpy as np
import numpy.typing as npt
from scipy.special import lpmv
from math import factorial
def normalised_associated_Legendre_polynomial(
l: int,
m: int,
x: float,
):
"""
The Normalised Associated Legendre Polynomials
P^m_l(x), where x = cos(theta).
INPUTS
------
l: int
Harmonic polar index.
m: int
Harmonic azimuthal index.
x: float
cos(theta)
RETURNS
-------
ans: float
P^m_l(x)
"""
norm = (
np.sqrt((2*l + 1) / (4 * np.pi))
* np.sqrt(factorial(l - m) / factorial(l + m))
)
legendre = lpmv(m, l, x)
return norm * legendre
def scalar_spherical_harmonic_Y(
l: int,
m: int,
n: npt.NDArray,
):
"""
The Scalar Spherical Harmonics, Y^l_m(n)
INPUTS
------
l: int
Harmonic polar index.
m: int
Harmonic azimuthal index.
n: numpy array shape (3,)
The Cartesian coordinates of a point on the unit sphere.
RETURNS
-------
ans: float
"""
theta = np.arccos(n[2] / np.sqrt(np.einsum("...i,...i->...", n, n)))
phi = np.arctan2(n[1], n[0])
x = np.cos(theta)
return (
normalised_associated_Legendre_polynomial(l, m, x)
* np.exp(1j * m * phi)
)
def vector_spherical_harmonic_E(
l: int,
m: int,
n: npt.NDArray,
):
"""
The Gradient Vector Spherical Harmonics, (YE)^l_m(n).
INPUTS
------
l: int
Harmonic polar index.
m: int
Harmonic azimuthal index.
n: numpy array
The Cartesian coordinates of a point on the unit sphere.
Either a single point [shape=(3,)] or several [shape=(3,Npoints)].
RETURNS
-------
ans: numpy array shape (3,) or (3,Npoints)
"""
if n.ndim == 1:
n = np.array([n])
theta = np.arccos(n[...,2] / np.sqrt(np.einsum("...i,...i->...", n, n)))
phi = np.arctan2(n[..., 1], n[..., 0])
x = np.cos(theta)
# The Coordinate Basis Vectors Associated With The Spherical Polar Angles
e_theta = np.array([x * np.cos(phi), x * np.sin(phi), -np.sqrt(1 - x * x)])
e_phi = np.array([-np.sin(phi), np.cos(phi), np.zeros(len(phi))])
# The Derivative Of The Spherical Harmonic Function Y^l_m WRT To Theta
if m == 0:
dY_dtheta = (
np.sqrt(l * (l + 1))
* normalised_associated_Legendre_polynomial(l, 1, x)
* np.exp(1j * m * phi)
)
elif m == l:
dY_dtheta = (
-np.sqrt(l / 2)
* normalised_associated_Legendre_polynomial(l, l - 1, x)
* np.exp(1j * m * phi)
)
elif m == -l:
dY_dtheta = (
np.power(-1, m+1) * (
np.sqrt(l / 2)
* normalised_associated_Legendre_polynomial(l, l - 1, x)
* np.exp(1j * m * phi)
)
)
else:
c1 = np.sqrt((l + m) * (l - m + 1)) / 2
c2 = np.sqrt((l + m + 1) * (l - m)) / 2
dY_dtheta = (
- c1 * normalised_associated_Legendre_polynomial(l, m - 1, x)
+ c2 * normalised_associated_Legendre_polynomial (l, m + 1, x)
) * np.exp(1j * m * phi)
# The Derivative Of The Spherical Harmonic Function Y^l_m WRT To Phi
# Divided By Sin(Theta)
c1 = np.sqrt((2 * l + 1) * (l - m + 1) * (l - m + 2) / (2 * l + 3))
c2 = np.sqrt((2 * l + 1) * (l + m + 1) * (l + m + 2) / (2 * l + 3))
dY_dphi_over_sin_theta = - ((1 / 2) * (
c1 * normalised_associated_Legendre_polynomial(l + 1, m - 1, x)
+ c2 * normalised_associated_Legendre_polynomial(l + 1, m + 1, x)
) * 1j * np.exp(1j * m * phi))
v_E = (
np.einsum("i,ji->ij", dY_dtheta, e_theta)
+ np.einsum("i,ji->ij", dY_dphi_over_sin_theta, e_phi)
) / np.sqrt(l * (l + 1))
if v_E.shape[0] == 1:
v_E = v_E.flatten()
return v_E
def vector_spherical_harmonic_B(
l: int,
m: int,
n: npt.NDArray,
):
"""
The Curl Vector Spherical Harmonics, (YB)^l_m(n).
INPUTS
------
l: int
Harmonic polar index.
m: int
Harmonic azimuthal index.
n: numpy array
The Cartesian coordinates of a point on the unit sphere.
Either a single point [shape=(3,)] or several [shape=(3,Npoints)].
RETURNS
-------
ans: numpy array shape (3,) or (3,Npoints)
"""
if n.ndim == 1:
n = np.array([n])
theta = np.arccos(n[...,2] / np.sqrt(np.einsum("...i,...i->...", n, n)))
phi = np.arctan2(n[..., 1], n[..., 0])
x = np.cos(theta)
# The Coordinate Basis Vectors Associated With The Spherical Polar Angles
e_theta = np.array([x * np.cos(phi), x * np.sin(phi), -np.sqrt(1 - x * x)])
e_phi = np.array([-np.sin(phi), np.cos(phi), np.zeros(len(phi))])
# The Derivative Of The Spherical Harmonic Function Y^l_m WRT To Theta
if m == 0:
dY_dtheta = (
np.sqrt(l * (l + 1))
* normalised_associated_Legendre_polynomial(l, 1, x)
* np.exp(1j * m * phi)
)
elif m == l:
dY_dtheta = (
-np.sqrt(l / 2)
* normalised_associated_Legendre_polynomial(l, l - 1, x)
* np.exp(1j * m * phi)
)
elif m == -l:
dY_dtheta = (
np.power(-1, m+1) * (
np.sqrt(l / 2)
* normalised_associated_Legendre_polynomial(l, l - 1, x)
* np.exp(1j * m * phi)
)
)
else:
c1 = np.sqrt((l + m) * (l - m + 1)) / 2
c2 = np.sqrt((l + m + 1) * (l - m)) / 2
dY_dtheta = (
- c1 * normalised_associated_Legendre_polynomial(l, m - 1, x)
+ c2 * normalised_associated_Legendre_polynomial (l, m + 1, x)
) * np.exp(1j * m * phi)
# The Derivative Of The Spherical Harmonic Function Y^l_m WRT To Phi
# Divided By Sin(Theta)
c1 = np.sqrt((2 * l + 1) * (l - m + 1) * (l - m + 2) / (2 * l + 3))
c2 = np.sqrt((2 * l + 1) * (l + m + 1) * (l + m + 2) / (2 * l + 3))
dY_dphi_over_sin_theta = - ((1 / 2) * (
c1 * normalised_associated_Legendre_polynomial(l + 1, m - 1, x)
+ c2 * normalised_associated_Legendre_polynomial(l + 1, m + 1, x)
) * 1j * np.exp(1j * m * phi))
v_B = -(
np.einsum("i,ji->ij", dY_dphi_over_sin_theta, e_theta)
- np.einsum("i,ji->ij", dY_dtheta, e_phi)
) / np.sqrt(l * (l + 1))
if v_B.shape[0] == 1:
v_B = v_B.flatten()
return v_B
def real_vector_spherical_harmonic_E(
l: int,
m: int,
n: npt.NDArray,
):
"""
The Real Gradient Vector Spherical Harmonics, (YE)^l_m(n).
INPUTS
------
l: int
Harmonic polar index.
m: int
Harmonic azimuthal index.
n: numpy array
The Cartesian coordinates of a point on the unit sphere.
Either a single point [shape=(3,)] or several [shape=(3,Npoints)].
RETURNS
-------
ans: numpy array shape (3,) or (3,Npoints)
"""
if m < 0:
return (
np.sqrt(2) * np.power(-1, -m)
* np.imag(vector_spherical_harmonic_E(l, -m, n))
)
elif m == 0:
return np.real(vector_spherical_harmonic_E(l, 0, n))
else:
return (
np.sqrt(2) * np.power(-1, m)
* np.real(vector_spherical_harmonic_E(l, m, n))
)
def real_vector_spherical_harmonic_B(
l: int,
m: int,
n: npt.NDArray,
):
"""
The Real Curl Vector Spherical Harmonics, (YB)^l_m(n).
INPUTS
------
l: int
Harmonic polar index.
m: int
Harmonic azimuthal index.
n: numpy array
The Cartesian coordinates of a point on the unit sphere.
Either a single point [shape=(3,)] or several [shape=(3,Npoints)].
RETURNS
-------
ans: numpy array shape (3,) or (3,Npoints)
"""
if m < 0:
return (
np.sqrt(2) * np.power(-1, -m)
* np.imag(vector_spherical_harmonic_B(l, -m, n))
)
elif m == 0:
return np.real(vector_spherical_harmonic_B(l, 0, n))
else:
return (
np.sqrt(2) * np.power(-1, m)
* np.real(vector_spherical_harmonic_B(l, m, n))
)