forked from simple-dmrg/simple-dmrg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimple_dmrg_04_eigenstate_prediction.py
executable file
·374 lines (326 loc) · 18 KB
/
simple_dmrg_04_eigenstate_prediction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
#!/usr/bin/env python
#
# Simple DMRG tutorial. This code integrates the following concepts:
# - Infinite system algorithm
# - Finite system algorithm
# - Conserved quantum numbers
# - Eigenstate prediction
#
# Copyright 2013 James R. Garrison and Ryan V. Mishmash.
# Open source under the MIT license. Source code at
# <https://github.com/simple-dmrg/simple-dmrg/>
# This code will run under any version of Python >= 2.6. The following line
# provides consistency between python2 and python3.
from __future__ import print_function, division # requires Python >= 2.6
# numpy and scipy imports
import numpy as np
from scipy.sparse import kron, identity, lil_matrix
from scipy.sparse.linalg import eigsh # Lanczos routine from ARPACK
# We will use python's "namedtuple" to represent the Block and EnlargedBlock
# objects
from collections import namedtuple
Block = namedtuple("Block", ["length", "basis_size", "operator_dict", "basis_sector_array"])
EnlargedBlock = namedtuple("EnlargedBlock", ["length", "basis_size", "operator_dict", "basis_sector_array"])
def is_valid_block(block):
if len(block.basis_sector_array) != block.basis_size:
return False
for op in block.operator_dict.values():
if op.shape[0] != block.basis_size or op.shape[1] != block.basis_size:
return False
return True
# This function should test the same exact things, so there is no need to
# repeat its definition.
is_valid_enlarged_block = is_valid_block
# Model-specific code for the Heisenberg XXZ chain
model_d = 2 # single-site basis size
single_site_sectors = np.array([0.5, -0.5]) # S^z sectors corresponding to the
# single site basis elements
Sz1 = np.array([[0.5, 0], [0, -0.5]], dtype='d') # single-site S^z
Sp1 = np.array([[0, 1], [0, 0]], dtype='d') # single-site S^+
H1 = np.array([[0, 0], [0, 0]], dtype='d') # single-site portion of H is zero
def H2(Sz1, Sp1, Sz2, Sp2): # two-site part of H
"""Given the operators S^z and S^+ on two sites in different Hilbert spaces
(e.g. two blocks), returns a Kronecker product representing the
corresponding two-site term in the Hamiltonian that joins the two sites.
"""
J = Jz = 1.
return (
(J / 2) * (kron(Sp1, Sp2.conjugate().transpose()) + kron(Sp1.conjugate().transpose(), Sp2)) +
Jz * kron(Sz1, Sz2)
)
# conn refers to the connection operator, that is, the operator on the edge of
# the block, on the interior of the chain. We need to be able to represent S^z
# and S^+ on that site in the current basis in order to grow the chain.
initial_block = Block(length=1, basis_size=model_d, operator_dict={
"H": H1,
"conn_Sz": Sz1,
"conn_Sp": Sp1,
}, basis_sector_array=single_site_sectors)
def enlarge_block(block):
"""This function enlarges the provided Block by a single site, returning an
EnlargedBlock.
"""
mblock = block.basis_size
o = block.operator_dict
# Create the new operators for the enlarged block. Our basis becomes a
# Kronecker product of the Block basis and the single-site basis. NOTE:
# `kron` uses the tensor product convention making blocks of the second
# array scaled by the first. As such, we adopt this convention for
# Kronecker products throughout the code.
enlarged_operator_dict = {
"H": kron(o["H"], identity(model_d)) + kron(identity(mblock), H1) + H2(o["conn_Sz"], o["conn_Sp"], Sz1, Sp1),
"conn_Sz": kron(identity(mblock), Sz1),
"conn_Sp": kron(identity(mblock), Sp1),
}
# This array keeps track of which sector each element of the new basis is
# in. `np.add.outer()` creates a matrix that adds each element of the
# first vector with each element of the second, which when flattened
# contains the sector of each basis element in the above Kronecker product.
enlarged_basis_sector_array = np.add.outer(block.basis_sector_array, single_site_sectors).flatten()
return EnlargedBlock(length=(block.length + 1),
basis_size=(block.basis_size * model_d),
operator_dict=enlarged_operator_dict,
basis_sector_array=enlarged_basis_sector_array)
def rotate_and_truncate(operator, transformation_matrix):
"""Transforms the operator to the new (possibly truncated) basis given by
`transformation_matrix`.
"""
return transformation_matrix.conjugate().transpose().dot(operator.dot(transformation_matrix))
def index_map(array):
"""Given an array, returns a dictionary that allows quick access to the
indices at which a given value occurs.
Example usage:
>>> by_index = index_map([3, 5, 5, 7, 3])
>>> by_index[3]
[0, 4]
>>> by_index[5]
[1, 2]
>>> by_index[7]
[3]
"""
d = {}
for index, value in enumerate(array):
d.setdefault(value, []).append(index)
return d
def single_dmrg_step(sys, env, m, target_Sz, psi0_guess=None):
"""Performs a single DMRG step using `sys` as the system and `env` as the
environment, keeping a maximum of `m` states in the new basis. If
`psi0_guess` is provided, it will be used as a starting vector for the
Lanczos algorithm.
"""
assert is_valid_block(sys)
assert is_valid_block(env)
# Enlarge each block by a single site.
sys_enl = enlarge_block(sys)
sys_enl_basis_by_sector = index_map(sys_enl.basis_sector_array)
if sys is env: # no need to recalculate a second time
env_enl = sys_enl
env_enl_basis_by_sector = sys_enl_basis_by_sector
else:
env_enl = enlarge_block(env)
env_enl_basis_by_sector = index_map(env_enl.basis_sector_array)
assert is_valid_enlarged_block(sys_enl)
assert is_valid_enlarged_block(env_enl)
# Construct the full superblock Hamiltonian.
m_sys_enl = sys_enl.basis_size
m_env_enl = env_enl.basis_size
sys_enl_op = sys_enl.operator_dict
env_enl_op = env_enl.operator_dict
superblock_hamiltonian = kron(sys_enl_op["H"], identity(m_env_enl)) + kron(identity(m_sys_enl), env_enl_op["H"]) + \
H2(sys_enl_op["conn_Sz"], sys_enl_op["conn_Sp"], env_enl_op["conn_Sz"], env_enl_op["conn_Sp"])
# Build up a "restricted" basis of states in the target sector and
# reconstruct the superblock Hamiltonian in that sector.
sector_indices = {} # will contain indices of the new (restricted) basis
# for which the enlarged system is in a given sector
restricted_basis_indices = [] # will contain indices of the old (full) basis, which we are mapping to
for sys_enl_Sz, sys_enl_basis_states in sys_enl_basis_by_sector.items():
sector_indices[sys_enl_Sz] = []
env_enl_Sz = target_Sz - sys_enl_Sz
if env_enl_Sz in env_enl_basis_by_sector:
for i in sys_enl_basis_states:
i_offset = m_env_enl * i # considers the tensor product structure of the superblock basis
for j in env_enl_basis_by_sector[env_enl_Sz]:
current_index = len(restricted_basis_indices) # about-to-be-added index of restricted_basis_indices
sector_indices[sys_enl_Sz].append(current_index)
restricted_basis_indices.append(i_offset + j)
restricted_superblock_hamiltonian = superblock_hamiltonian[:, restricted_basis_indices][restricted_basis_indices, :]
if psi0_guess is not None:
restricted_psi0_guess = psi0_guess[restricted_basis_indices]
else:
restricted_psi0_guess = None
# Call ARPACK to find the superblock ground state. ("SA" means find the
# "smallest in amplitude" eigenvalue.)
(energy,), restricted_psi0 = eigsh(restricted_superblock_hamiltonian, k=1, which="SA", v0=restricted_psi0_guess)
# Construct each block of the reduced density matrix of the system by
# tracing out the environment
rho_block_dict = {}
for sys_enl_Sz, indices in sector_indices.items():
if indices: # if indices is nonempty
psi0_sector = restricted_psi0[indices, :]
# We want to make the (sys, env) indices correspond to (row,
# column) of a matrix, respectively. Since the environment
# (column) index updates most quickly in our Kronecker product
# structure, psi0_sector is thus row-major ("C style").
psi0_sector = psi0_sector.reshape([len(sys_enl_basis_by_sector[sys_enl_Sz]), -1], order="C")
rho_block_dict[sys_enl_Sz] = np.dot(psi0_sector, psi0_sector.conjugate().transpose())
# Diagonalize each block of the reduced density matrix and sort the
# eigenvectors by eigenvalue.
possible_eigenstates = []
for Sz_sector, rho_block in rho_block_dict.items():
evals, evecs = np.linalg.eigh(rho_block)
current_sector_basis = sys_enl_basis_by_sector[Sz_sector]
for eval, evec in zip(evals, evecs.transpose()):
possible_eigenstates.append((eval, evec, Sz_sector, current_sector_basis))
possible_eigenstates.sort(reverse=True, key=lambda x: x[0]) # largest eigenvalue first
# Build the transformation matrix from the `m` overall most significant
# eigenvectors. It will have sparse structure due to the conserved quantum
# number.
my_m = min(len(possible_eigenstates), m)
transformation_matrix = lil_matrix((sys_enl.basis_size, my_m), dtype='d')
new_sector_array = np.zeros((my_m,), dtype='d') # lists the sector of each
# element of the new/truncated basis
for i, (eval, evec, Sz_sector, current_sector_basis) in enumerate(possible_eigenstates[:my_m]):
for j, v in zip(current_sector_basis, evec):
transformation_matrix[j, i] = v
new_sector_array[i] = Sz_sector
# Convert the transformation matrix to a more efficient internal
# representation. `lil_matrix` is good for constructing a sparse matrix
# efficiently, but `csr_matrix` is better for performing quick
# multiplications.
transformation_matrix = transformation_matrix.tocsr()
truncation_error = 1 - sum([x[0] for x in possible_eigenstates[:my_m]])
print("truncation error:", truncation_error)
# Rotate and truncate each operator.
new_operator_dict = {}
for name, op in sys_enl.operator_dict.items():
new_operator_dict[name] = rotate_and_truncate(op, transformation_matrix)
newblock = Block(length=sys_enl.length,
basis_size=my_m,
operator_dict=new_operator_dict,
basis_sector_array=new_sector_array)
# Construct psi0 (that is, in the full superblock basis) so we can use it
# later for eigenstate prediction.
psi0 = np.zeros([m_sys_enl * m_env_enl, 1], dtype='d')
for i, z in enumerate(restricted_basis_indices):
psi0[z, 0] = restricted_psi0[i, 0]
if psi0_guess is not None:
overlap = np.absolute(np.dot(psi0_guess.conjugate().transpose(), psi0).item())
overlap /= np.linalg.norm(psi0_guess) * np.linalg.norm(psi0) # normalize it
print("overlap |<psi0_guess|psi0>| =", overlap)
return newblock, energy, transformation_matrix, psi0
def graphic(sys_block, env_block, sys_label="l"):
"""Returns a graphical representation of the DMRG step we are about to
perform, using '=' to represent the system sites, '-' to represent the
environment sites, and '**' to represent the two intermediate sites.
"""
assert sys_label in ("l", "r")
graphic = ("=" * sys_block.length) + "**" + ("-" * env_block.length)
if sys_label == "r":
# The system should be on the right and the environment should be on
# the left, so reverse the graphic.
graphic = graphic[::-1]
return graphic
def infinite_system_algorithm(L, m, target_Sz):
block = initial_block
# Repeatedly enlarge the system by performing a single DMRG step, using a
# reflection of the current block as the environment.
while 2 * block.length < L:
current_L = 2 * block.length + 2 # current superblock length
current_target_Sz = int(target_Sz) * current_L // L
print("L =", current_L)
block, energy, transformation_matrix, psi0 = single_dmrg_step(block, block, m=m, target_Sz=current_target_Sz)
print("E/L =", energy / current_L)
def finite_system_algorithm(L, m_warmup, m_sweep_list, target_Sz):
assert L % 2 == 0 # require that L is an even number
# To keep things simple, these dictionaries are not actually saved to disk,
# but they are used to represent persistent storage.
block_disk = {} # "disk" storage for Block objects
trmat_disk = {} # "disk" storage for transformation matrices
# Use the infinite system algorithm to build up to desired size. Each time
# we construct a block, we save it for future reference as both a left
# ("l") and right ("r") block, as the infinite system algorithm assumes the
# environment is a mirror image of the system.
block = initial_block
block_disk["l", block.length] = block
block_disk["r", block.length] = block
while 2 * block.length < L:
# Perform a single DMRG step and save the new Block to "disk"
print(graphic(block, block))
current_L = 2 * block.length + 2 # current superblock length
current_target_Sz = int(target_Sz) * current_L // L
block, energy, transformation_matrix, psi0 = single_dmrg_step(block, block, m=m_warmup, target_Sz=current_target_Sz)
print("E/L =", energy / current_L)
block_disk["l", block.length] = block
block_disk["r", block.length] = block
# Now that the system is built up to its full size, we perform sweeps using
# the finite system algorithm. At first the left block will act as the
# system, growing at the expense of the right block (the environment), but
# once we come to the end of the chain these roles will be reversed.
sys_label, env_label = "l", "r"
sys_block = block; del block # rename the variable
sys_trmat = None
for m in m_sweep_list:
while True:
# Load the appropriate environment block from "disk"
env_block = block_disk[env_label, L - sys_block.length - 2]
env_trmat = trmat_disk.get((env_label, L - sys_block.length - 1))
# If possible, predict an estimate of the ground state wavefunction
# from the previous step's psi0 and known transformation matrices.
if psi0 is None or sys_trmat is None or env_trmat is None:
psi0_guess = None
else:
# psi0 currently looks e.g. like ===**--- but we need to
# transform it to look like ====**-- using the relevant
# transformation matrices and paying careful attention to the
# tensor product structure.
#
# Keep in mind that the tensor product of the superblock is
# (sys_enl_block, env_enl_block), which is equal to
# (sys_block, sys_extra_site, env_block, env_extra_site).
# Note that this does *not* correspond to left-to-right order
# on the chain.
#
# First we reshape the psi0 vector into a matrix with rows
# corresponding to the enlarged system basis and columns
# corresponding to the enlarged environment basis.
psi0_a = psi0.reshape((-1, env_trmat.shape[1] * model_d), order="C")
# Now we transform the enlarged system block into a system
# block, so that psi0_b looks like ====*-- (with only one
# intermediate site).
psi0_b = sys_trmat.conjugate().transpose().dot(psi0_a)
# At the moment, the tensor product goes as (sys_block,
# env_enl_block) == (sys_block, env_block, extra_site), but we
# need it to look like (sys_enl_block, env_block) ==
# (sys_block, extra_site, env_block). In other words, the
# single intermediate site should now be part of a new enlarged
# system, not part of the enlarged environment.
psi0_c = psi0_b.reshape((-1, env_trmat.shape[1], model_d), order="C").transpose(0, 2, 1)
# Now we reshape the psi0 vector into a matrix with rows
# corresponding to the enlarged system and columns
# corresponding to the environment block.
psi0_d = psi0_c.reshape((-1, env_trmat.shape[1]), order="C")
# Finally, we transform the environment block into the basis of
# an enlarged block the so that psi0_guess has the tensor
# product structure of ====**--.
psi0_guess = env_trmat.dot(psi0_d.transpose()).transpose().reshape((-1, 1))
if env_block.length == 1:
# We've come to the end of the chain, so we reverse course.
sys_block, env_block = env_block, sys_block
sys_label, env_label = env_label, sys_label
if psi0_guess is not None:
# Re-order psi0_guess based on the new sys, env labels.
psi0_guess = psi0_guess.reshape((sys_trmat.shape[1] * model_d, env_trmat.shape[0]), order="C").transpose().reshape((-1, 1))
# Perform a single DMRG step.
print(graphic(sys_block, env_block, sys_label))
sys_block, energy, sys_trmat, psi0 = single_dmrg_step(sys_block, env_block, m=m, target_Sz=target_Sz, psi0_guess=psi0_guess)
print("E/L =", energy / L)
# Save the block and transformation matrix from this step to disk.
block_disk[sys_label, sys_block.length] = sys_block
trmat_disk[sys_label, sys_block.length] = sys_trmat
# Check whether we just completed a full sweep.
if sys_label == "l" and 2 * sys_block.length == L:
break # escape from the "while True" loop
if __name__ == "__main__":
np.set_printoptions(precision=10, suppress=True, threshold=10000, linewidth=300)
#infinite_system_algorithm(L=100, m=20, target_Sz=0)
finite_system_algorithm(L=20, m_warmup=10, m_sweep_list=[10, 20, 30, 40, 40], target_Sz=0)