-
Notifications
You must be signed in to change notification settings - Fork 375
/
Copy path8_queens_problem.cpp
78 lines (71 loc) · 1.61 KB
/
8_queens_problem.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
//the-threshold-frequency's solution to 8 Queen's Problem using backtracking approach
#include <iostream>
#include <cstdio>
#include <cstdlib>
#define N 8
using namespace std;
// function to print solution
void printSolution(int board[N][N])
{
for (int i = 0; i < N; i++)
{
for (int j = 0; j < N; j++)
cout<<board[i][j]<<" ";
cout<<endl;
}
}
// function to check if a queen can be placed on board[row][col]
bool isSafe(int board[N][N], int row, int col)
{
int i, j;
for (i = 0; i < col; i++)
{
if (board[row][i])
return false;
}
for (i = row, j = col; i >= 0 && j >= 0; i--, j--)
{
if (board[i][j])
return false;
}
for (i = row, j = col; j >= 0 && i < N; i++, j--)
{
if (board[i][j])
return false;
}
return true;
}
// function to solve the problem
bool solveNQUtil(int board[N][N], int col)
{
if (col >= N)
return true;
for (int i = 0; i < N; i++)
{
if ( isSafe(board, i, col) )
{
board[i][col] = 1;
if (solveNQUtil(board, col + 1) == true)
return true;
board[i][col] = 0;
}
}
return false;
}
// function to solve the 8 Queens problem using backtracking
bool solveNQ()
{
int board[N][N] = {0};
if (solveNQUtil(board, 0) == false)
{
cout<<"Solution does not exist"<<endl;
return false;
}
printSolution(board);
return true;
}
int main()
{
solveNQ();
return 0;
}