-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtfbasics.py
64 lines (47 loc) · 2.36 KB
/
tfbasics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist= input_data.read_data_sets('/tmp/data/',one_hot=True)
n_nodes_hl1=500
n_nodes_hl2=500
n_nodes_hl3=500
n_classes=10
batch_size=100
x=tf.placeholder('float',[None,784])
y=tf.placeholder('float')
def neural_network_model(data):
hidden_1_layer={'weights': tf.Variable(tf.random_normal([784,n_nodes_hl1])),\
'biases': tf.Variable(tf.random_normal([n_nodes_hl1]))}
hidden_2_layer={'weights': tf.Variable(tf.random_normal([n_nodes_hl1,n_nodes_hl2])),\
'biases': tf.Variable(tf.random_normal([n_nodes_hl2]))}
hidden_3_layer={'weights': tf.Variable(tf.random_normal([n_nodes_hl2,n_nodes_hl3])),\
'biases': tf.Variable(tf.random_normal([n_nodes_hl3]))}
output_layer={'weights': tf.Variable(tf.random_normal([n_nodes_hl3,n_classes])),\
'biases': tf.Variable(tf.random_normal([n_classes]))}
# (input_data* weights) + biases
l1=tf.add(tf.matmul(data,hidden_1_layer['weights']) , hidden_1_layer['biases'])
l1= tf.nn.relu(l1)
l2=tf.add(tf.matmul(l1,hidden_2_layer['weights']) , hidden_2_layer['biases'])
l2= tf.nn.relu(l2)
l3=tf.add(tf.matmul(l2,hidden_3_layer['weights']) , hidden_3_layer['biases'])
l3= tf.nn.relu(l3)
output= tf.matmul(l3,output_layer['weights']) + output_layer['biases']
return output
def train_neural_network(x):
prediction= neural_network_model(x)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=prediction, labels=y))
optimizer= tf.train.AdamOptimizer().minimize(cost)
hm_epochs=10
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for epoch in range(hm_epochs):
epoch_loss=0
for _ in range(int(mnist.train.num_examples/batch_size)):
epoch_x,epoch_y= mnist.train.next_batch(batch_size)
_,c = sess.run([optimizer,cost],feed_dict={x:epoch_x,y:epoch_y})
epoch_loss +=c
print('Epoch',epoch,'completed out of',hm_epochs,'loss:',epoch_loss)
correct= tf.equal(tf.argmax(prediction,1),tf.argmax(y,1))
accuracy= tf.reduce_mean(tf.cast(correct,'float'))
print('Accuracy',accuracy.eval({x:mnist.test.images,
y:mnist.test.labels}))
train_neural_network(x)