-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
150 lines (133 loc) · 5.33 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
from PIL import Image
import os
from glob import glob
import torch
import pandas as pd
import argparse
import time
import torchvision
import torchvision.transforms as transforms
from torch.utils.data import Dataset, DataLoader
from util import create_params, flip
from model import create_model
from collections import OrderedDict
from tqdm import tqdm
normalize = transforms.Normalize(mean=[0.5754, 0.4529, 0.3986],
std=[0.2715, 0.2423, 0.2354])
class FacialDataset_test(Dataset):
def __init__(self, data_path, img_size):
if not os.path.exists(data_path):
raise Exception(f"[!] {self.data_path} not existed")
self.imgs = []
self.transform = transforms.Compose([
transforms.Resize((img_size,img_size)),
transforms.ToTensor(),
normalize
])
self.age_path = sorted(glob(os.path.join(data_path, "*.*")))
for pth in self.age_path:
img = pth
self.imgs.append(img)
def __getitem__(self, idx):
image = self.transform(Image.open(self.imgs[idx]))
return image
def __len__(self):
return len(self.age_path)
def eval():
config = create_params()
test_dataset = FacialDataset_test(config.data_dir+'/test', config.img_size)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,batch_size=1,shuffle=False)
if not os.path.exists(os.path.join(config.save_dir, config.arch)):
os.makedirs(os.path.join(config.save_dir, config.arch, 'best'))
os.makedirs(os.path.join(config.save_dir, config.arch, 'latest'))
print("Created directory ",str(os.path.join(config.save_dir, config.arch)))
# load checkpoint
checkpoint = None
centroid = None
if config.eval:
checkpoint = torch.load(os.path.join(config.output_dir, config.arch, 'best','model_{}.pt'.format(config.trial)))
if 'centroid' in checkpoint.keys():
centroid = checkpoint['centroid']
model = create_model(config)
if torch.cuda.device_count() > 1:
new_state_dict = OrderedDict()
for k, v in checkpoint['state_dict'].items():
name = k[7:] # remove `module.`
new_state_dict[name] = v
model.load_state_dict(new_state_dict)
else:
model.load_state_dict(checkpoint['state_dict'])
model.eval()
if config.use_gpu and torch.cuda.is_available():
model = model.cuda()
print('Make an evaluation csv file(best) for submission...')
Category = []
for input in tqdm(test_loader):
input = input.cuda()
output = model(input)
if config.arch == 'random_bin':
est = (output * centroid.view(1,-1)).view(-1, config.M, config.N)
y_hat = est.sum(dim=2)
y_bar = y_hat.mean(dim=1)
output = [y_bar.item()]
elif config.arch == 'dldlv2':
flipped = flip(input).cuda()
output_flipped = model(flipped)
output = [torch.sum(output*centroid, dim=1).item()/2 + torch.sum(output_flipped*centroid, dim=1).item()/2]
else:
output = [output.item()]
Category = Category + output
Id = list(range(0, len(Category)))
samples = {
'Id': Id,
'Category': Category
}
df = pd.DataFrame(samples, columns=['Id', 'Category'])
df.to_csv(os.path.join(config.save_dir, config.arch, 'best','submission_best_{}.csv'.format(config.trial)), index=False)
print('Done!!')
del model
checkpoint = None
centroid = None
if config.eval:
checkpoint = torch.load(os.path.join(config.output_dir, config.arch, 'latest','model_{}.pt'.format(config.trial)))
if 'centroid' in checkpoint.keys():
centroid = checkpoint['centroid']
model = create_model(config)
if torch.cuda.device_count() > 1:
new_state_dict = OrderedDict()
for k, v in checkpoint['state_dict'].items():
name = k[7:] # remove `module.`
new_state_dict[name] = v
model.load_state_dict(new_state_dict)
else:
model.load_state_dict(checkpoint['state_dict'])
model.eval()
if config.use_gpu and torch.cuda.is_available():
model = model.cuda()
print('Make an evaluation csv file(latest) for submission...')
Category = []
for input in tqdm(test_loader):
input = input.cuda()
output = model(input)
if config.arch == 'random_bin':
est = (output * centroid.view(1,-1)).view(-1, config.M, config.N)
y_hat = est.sum(dim=2)
y_bar = y_hat.mean(dim=1)
output = [y_bar.item()]
elif config.arch == 'dldlv2':
flipped = flip(input).cuda()
output_flipped = model(flipped)
output = [torch.sum(output*centroid, dim=1).item()/2 + torch.sum(output_flipped*centroid, dim=1).item()/2]
else:
output = [output.item()]
Category = Category + output
Id = list(range(0, len(Category)))
samples = {
'Id': Id,
'Category': Category
}
df = pd.DataFrame(samples, columns=['Id', 'Category'])
df.to_csv(os.path.join(config.save_dir, config.arch, 'latest','submission_latest_{}.csv'.format(config.trial)), index=False)
print('Done!!')
if __name__ == "__main__":
eval()