-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodel.py
19 lines (17 loc) · 846 Bytes
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#The model for dual-segmetnation netwrok
#Import the required libraries
import torch
import torch.nn as nn
import functools
import numpy as np
import sys
sys.path.append('./')
from models.FPN import model #import all the required models accordingly ({ENEt, DANet, ENCNet, and etc})
from models.proposed_models.segformer import*
from models.proposed_models.Transformer_based import*
from models.proposed_models.CNN_based import*
# net = model # Use this for CNN-based models
net = Transformer_based('ResT-S') #Proposed hybrid netwrok of trasnformer-encoder (ResT) and CNN-decoder (UperNet)
# net = CNN_based('ConvNeXt-S') #CNN-based hybrid Networks
net.init_pretrained('.../pretrained_weights/cpt/rest_small.pth') #Dowload the required pretrained weights for the backbone netwrok from official implementaiton cite
model = net