-
Notifications
You must be signed in to change notification settings - Fork 58
/
Copy pathbrain.py
576 lines (519 loc) · 24.5 KB
/
brain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
# TODOs:
# - [ ] We can make ._new_w and ._new_winners function-local;
# they are only used inside .project.
# - [ ] We might want to turn .winners into a
# numpy.ndarray(dtype=numpy.uint32) for efficiency.
import numpy as np
import heapq
import collections
from scipy.stats import binom
from scipy.stats import truncnorm
from scipy.stats import norm
import math
import types
# Configurable assembly model for simulations
# Author Daniel Mitropolsky, 2018
EMPTY_MAPPING = types.MappingProxyType({})
class Area:
"""A brain area.
Attributes:
name: the area's name (symbolic tag).
n: number of neurons in the area.
k: number of neurons that fire in this area.
beta: Default value for activation-`beta`.
beta_by_stimulus: Mapping from stimulus-name to corresponding beta.
(In original code: `.stimulus_beta`).
beta_by_stimulus: Mapping from area-name to corresponding beta.
(In original code: `.area_beta`).
w: Number of neurons that has ever fired in this area.
saved_w: List of per-round size-of-support.
winners: List of winners, as set by previous action.
saved_winners: List of lists of all winners, per-round.
num_first_winners: ??? TODO(tfish): Clarify.
fixed_assembly: Whether the assembly (of winners) in this area
is considered frozen.
explicit: Whether to fully simulate this area (rather than performing
a sparse-only simulation).
"""
def __init__(self, name, n, k, *,
beta=0.05, w=0, explicit=False):
"""Initializes the instance.
Args:
name: Area name (symbolic tag), must be unique.
n: number of neurons(?)
k: number of firing neurons when activated.
beta: default activation-beta.
w: initial 'winner' set-size.
explicit: boolean indicating whether the area is 'explicit'
(fully-simulated).
"""
self.name = name
self.n = n
self.k = k
self.beta = beta
self.beta_by_stimulus = {}
self.beta_by_area = {}
self.w = w
# Value of `w` since the last time that `.project()` was called.
self._new_w = 0
self.saved_w = []
self.winners = []
# Value of `winners` since the last time that `.project()` was called.
# only to be used inside `.project()` method.
self._new_winners = []
self.saved_winners = []
self.num_first_winners = -1
self.fixed_assembly = False
self.explicit = explicit
def _update_winners(self):
self.winners = self._new_winners
if not self.explicit:
self.w = self._new_w
def update_beta_by_stimulus(self, name, new_beta):
self.beta_by_stimulus[name] = new_beta
def update_area_beta(self, name, new_beta):
self.beta_by_area[name] = new_beta
def fix_assembly(self):
if not self.winners:
raise ValueError(
f'Area {self.name!r} does not have assembly; cannot fix.')
return
self.fixed_assembly = True
def unfix_assembly(self):
self.fixed_assembly = False
def get_num_ever_fired(self):
if self.explicit:
return self.num_ever_fired
else:
return self.w
class Brain:
"""A model brain.
Attributes:
area_by_name: Mapping from brain area-name tag to corresponding Area
instance. (Original code: .areas).
stimulus_size_by_name: Mapping from a stimulus-name to its number of
neurons.
connectomes_by_stimulus: Mapping from stimulus-name to a mapping
from area-name to an activation-vector for that area.
(Original code: .stimuli_connectomes)
connectomes: Mapping from a 'source' area-name to a mapping from a
'target' area-name to a [source_size, target_size]-bool-ndarray
with connections. (TODO(tfish): Rename and replace with index-vector.)
The source-index, respectively target-index, reference neurons in the
"active assembly".
p: Neuron connection-probability.
save_size: Boolean flag, whether to save sizes.
save_winners: Boolean flag, whether to save winners.
disable_plasticity: Debug flag for disabling plasticity.
"""
def __init__(self, p, save_size=True, save_winners=False, seed=0):
self.area_by_name = {}
self.stimulus_size_by_name = {}
self.connectomes_by_stimulus = {}
self.connectomes = {}
self.p = p
self.save_size = save_size
self.save_winners = save_winners
self.disable_plasticity = False
self._rng = np.random.default_rng(seed=seed)
# For debugging purposes in applications (eg. language)
self._use_normal_ppf = False
def add_stimulus(self, stimulus_name, size):
"""Add a stimulus to the current instance.
Args:
stimulus_name: The name with which the stimulus will be registered.
size: Number of firing neurons in this stimulus(?).
"""
self.stimulus_size_by_name[stimulus_name] = size
this_stimulus_connectomes = {}
for area_name in self.area_by_name:
if self.area_by_name[area_name].explicit:
this_stimulus_connectomes[area_name] = self._rng.binomial(
size, self.p,
size=self.area_by_name[area_name].n).astype(np.float32)
else:
this_stimulus_connectomes[area_name] = np.empty(0, dtype=np.float32)
self.area_by_name[area_name].beta_by_stimulus[stimulus_name] = (
self.area_by_name[area_name].beta)
self.connectomes_by_stimulus[stimulus_name] = this_stimulus_connectomes
def add_area(self, area_name, n, k, beta):
"""Add a brain area to the current instance.
Args:
area_name: The name of the new area.
n: Number of neurons.
k: Number of that can fire in this area, at any time step.
beta: default area-beta.
"""
self.area_by_name[area_name] = the_area = Area(area_name, n, k, beta=beta)
for stim_name, stim_connectomes in self.connectomes_by_stimulus.items():
stim_connectomes[area_name] = np.empty(0, dtype=np.float32)
the_area.beta_by_stimulus[stim_name] = beta
new_connectomes = {}
for other_area_name in self.area_by_name:
other_area = self.area_by_name[other_area_name]
other_area_size = other_area.n if other_area.explicit else 0
new_connectomes[other_area_name] = np.empty((0, other_area_size), dtype=np.float32)
if other_area_name != area_name:
self.connectomes[other_area_name][area_name] = np.empty(
(other_area_size, 0), dtype=np.float32)
# by default use beta for plasticity of synapses from this area
# to other areas
# by default use other area's beta for synapses from other area
# to this area
other_area.beta_by_area[area_name] = other_area.beta
the_area.beta_by_area[other_area_name] = beta
self.connectomes[area_name] = new_connectomes
def add_explicit_area(self,
area_name, n, k, beta, *,
custom_inner_p=None,
custom_out_p=None,
custom_in_p=None):
"""Add an explicit ('non-lazy') area to the instance.
Args:
area_name: The name of the new area.
n: Number of neurons.
k: Number of that can fire in this area, at any time step.
beta: default area-beta.
custom_inner_p: Optional self-linking probability.
custom_out_p: Optional custom output-link probability.
custom_in_p: Optional custom input-link probability.
"""
# Explicitly set w to n so that all computations involving this area
# are explicit.
self.area_by_name[area_name] = the_area = Area(
area_name, n, k, beta=beta, w=n, explicit=True)
the_area.ever_fired = np.zeros(n, dtype=bool)
the_area.num_ever_fired = 0
for stim_name, stim_connectomes in self.connectomes_by_stimulus.items():
stim_connectomes[area_name] = self._rng.binomial(
self.stimulus_size_by_name[stim_name],
self.p, size=n).astype(np.float32)
the_area.beta_by_stimulus[stim_name] = beta
inner_p = custom_inner_p if custom_inner_p is not None else self.p
in_p = custom_in_p if custom_in_p is not None else self.p
out_p = custom_out_p if custom_out_p is not None else self.p
new_connectomes = {}
for other_area_name in self.area_by_name:
if other_area_name == area_name: # create explicitly
new_connectomes[other_area_name] = self._rng.binomial(
1, inner_p, size=(n,n)).astype(np.float32)
else:
other_area = self.area_by_name[other_area_name]
if other_area.explicit:
other_n = self.area_by_name[other_area_name].n
new_connectomes[other_area_name] = self._rng.binomial(
1, out_p, size=(n, other_n)).astype(np.float32)
self.connectomes[other_area_name][area_name] = self._rng.binomial(
1, in_p, size=(other_n, n)).astype(np.float32)
else: # we will fill these in on the fly
# TODO: if explicit area added late, this will not work
# But out_p to a non-explicit area must be default p,
# for fast sampling to work.
new_connectomes[other_area_name] = np.empty((n, 0), dtype=np.float32)
self.connectomes[other_area_name][area_name] = np.empty((0, n), dtype=np.float32)
self.area_by_name[other_area_name].beta_by_area[area_name] = (
self.area_by_name[other_area_name].beta)
self.area_by_name[area_name].beta_by_area[other_area_name] = beta
self.connectomes[area_name] = new_connectomes
def update_plasticity(self, from_area, to_area, new_beta):
self.area_by_name[to_area].beta_by_area[from_area] = new_beta
def update_plasticities(self,
area_update_map=EMPTY_MAPPING,
stim_update_map=EMPTY_MAPPING):
# area_update_map consists of area1: list[ (area2, new_beta) ]
# represents new plasticity FROM area2 INTO area1
for to_area, update_rules in area_update_map.items():
for from_area, new_beta in update_rules:
self.update_plasticity(from_area, to_area, new_beta)
# stim_update_map consists of area: list[ (stim, new_beta) ]f
# represents new plasticity FROM stim INTO area
for area, update_rules in stim_update_map.items():
the_area = self.area_by_name[area]
for stim, new_beta in update_rules:
the_area.beta_by_stimulus[stim] = new_beta
def activate(self, area_name, index):
area = self.area_by_name[area_name]
k = area.k
assembly_start = k * index
area.winners = list(range(assembly_start, assembly_start + k))
area.fix_assembly()
def project(self, areas_by_stim, dst_areas_by_src_area, verbose=0):
# Validate stim_area, area_area well defined
# areas_by_stim: {"stim1":["A"], "stim2":["C","A"]}
# dst_areas_by_src_area: {"A":["A","B"],"C":["C","A"]}
stim_in = collections.defaultdict(list)
area_in = collections.defaultdict(list)
for stim, areas in areas_by_stim.items():
if stim not in self.stimulus_size_by_name:
raise IndexError(f"Not in brain.stimulus_size_by_name: {stim}")
for area_name in areas:
if area_name not in self.area_by_name:
raise IndexError(f"Not in brain.area_by_name: {area_name}")
stim_in[area_name].append(stim)
for from_area_name, to_area_names in dst_areas_by_src_area.items():
if from_area_name not in self.area_by_name:
raise IndexError(from_area + " not in brain.area_by_name")
for to_area_name in to_area_names:
if to_area_name not in self.area_by_name:
raise IndexError(f"Not in brain.area_by_name: {to_area_name}")
area_in[to_area_name].append(from_area_name)
to_update_area_names = stim_in.keys() | area_in.keys()
for area_name in to_update_area_names:
area = self.area_by_name[area_name]
num_first_winners = self.project_into(
area, stim_in[area_name], area_in[area_name], verbose)
area.num_first_winners = num_first_winners
if self.save_winners:
area.saved_winners.append(area._new_winners)
# once everything is done, for each area in to_update: area.update_winners()
for area_name in to_update_area_names:
area = self.area_by_name[area_name]
area._update_winners()
if self.save_size:
area.saved_w.append(area.w)
def project_into(self, target_area, from_stimuli, from_areas, verbose=0):
# projecting everything in from stim_in[area] and area_in[area]
# calculate: inputs to self.connectomes[area] (previous winners)
# calculate: potential new winners, Binomial(sum of in sizes, k-top)
# k top of previous winners and potential new winners
# if new winners > 0, redo connectome and intra_connectomes
# have to wait to replace new_winners
rng = self._rng
area_by_name = self.area_by_name
if verbose >= 1:
print(f"Projecting {', '.join(from_stimuli)} "
f" and {', '.join(from_areas)} into {target_area.name}")
# If projecting from area with no assembly, complain.
for from_area_name in from_areas:
from_area = area_by_name[from_area_name]
if not from_area.winners or from_area.w == 0:
raise ValueError(f"Projecting from area with no assembly: {from_area}")
# For experiments with a "fixed" assembly in some area.
if target_area.fixed_assembly:
target_area_name = target_area.name
target_area._new_winners = target_area.winners
target_area._new_w = target_area.w
first_winner_inputs = []
num_first_winners_processed = 0
else:
target_area_name = target_area.name
prev_winner_inputs = np.zeros(target_area.w, dtype=np.float32)
for stim in from_stimuli:
stim_inputs = self.connectomes_by_stimulus[stim][target_area_name]
prev_winner_inputs += stim_inputs
for from_area_name in from_areas:
connectome = self.connectomes[from_area_name][target_area_name]
for w in self.area_by_name[from_area_name].winners:
prev_winner_inputs += connectome[w]
if verbose >= 2:
print("prev_winner_inputs:", prev_winner_inputs)
# simulate area.k potential new winners if the area is not explicit
if not target_area.explicit:
input_size_by_from_area_index = []
num_inputs = 0
normal_approx_mean = 0.0
normal_approx_var = 0.0
for stim in from_stimuli:
local_k = self.stimulus_size_by_name[stim]
input_size_by_from_area_index.append(local_k)
num_inputs += 1
### if self._use_normal_ppf: # Not active currently.
### local_p = self.custom_stim_p[stim][target_area_name]
### normal_approx_mean += local_k * local_p
### normal_approx_var += ((local_k * local_p * (1 - local_p)) ** 2)
for from_area_name in from_areas:
# if self.area_by_name[from_area_name].w < self.area_by_name[from_area_name].k:
# raise ValueError("Area " + from_area_name + "does not have enough support.")
effective_k = len(self.area_by_name[from_area_name].winners)
input_size_by_from_area_index.append(effective_k)
num_inputs += 1
### if self._use_normal_ppf: # Disabled for now.
### local_p = self.custom_stim_p[from_area_name][target_area_name]
### normal_approx_mean += effective_k * local_p
### normal_approx_var += ((effective_k * local_p * (1-p)) ** 2)
total_k = sum(input_size_by_from_area_index)
if verbose >= 2:
print(f"{total_k=} and {input_size_by_from_area_index=}")
effective_n = target_area.n - target_area.w
if effective_n <= target_area.k:
raise RuntimeError(
f'Remaining size of area "{target_area_name}" too small to sample k new winners.')
# Threshold for inputs that are above (n-k)/n quantile.
quantile = (effective_n - target_area.k) / effective_n
if False:
pass
### if self._use_normal_ppf: # Disabled.
### # each normal approximation is N(n*p, n*p*(1-p))
### normal_approx_std = math.sqrt(normal_approx_var)
### alpha = binom.ppf(quantile, loc=normal_approx_mean,
### scale=normal_approx_std)
else:
# self.p can be changed to have a custom connectivity into this
# brain area but all incoming areas' p must be the same
alpha = binom.ppf(quantile, total_k, self.p)
if verbose >= 2:
print(f"Alpha = {alpha}")
# use normal approximation, between alpha and total_k, round to integer
# create k potential_new_winners
if False: # to update to: self._use_normal_ppf:
mu = normal_approx_mean
std = normal_approx_std
else:
mu = total_k * self.p
std = math.sqrt(total_k * self.p * (1.0 - self.p))
a = (alpha - mu) / std
# instead of np.inf below, could use b = (total_k - mu) / std
# then you don't need the logic immediately after which sets the sample to total_k if the
# truncnorm approximation gave something > total_k
# however, this may be less likely to sample large inputs than the true binomial distribution
potential_new_winner_inputs = (mu + truncnorm.rvs(a, np.inf, scale=std, size=target_area.k)).round(0)
for i in range(len(potential_new_winner_inputs)):
if potential_new_winner_inputs[i] > total_k:
potential_new_winner_inputs[i] = total_k
if verbose >= 2:
print(f"potential_new_winner_inputs: {potential_new_winner_inputs}")
# take max among prev_winner_inputs, potential_new_winner_inputs
# get num_first_winners (think something small)
# can generate area._new_winners, note the new indices
all_potential_winner_inputs = np.concatenate(
[prev_winner_inputs, potential_new_winner_inputs])
else: # Case: Area is explicit.
all_potential_winner_inputs = prev_winner_inputs
new_winner_indices = heapq.nlargest(target_area.k,
range(len(all_potential_winner_inputs)),
all_potential_winner_inputs.__getitem__)
if target_area.explicit:
for winner in new_winner_indices:
if not target_area.ever_fired[winner]:
target_area.ever_fired[winner] = True
target_area.num_ever_fired += 1
num_first_winners_processed = 0
if not target_area.explicit:
first_winner_inputs = []
for i in range(target_area.k):
if new_winner_indices[i] >= target_area.w:
# Winner-index larger than `w` means that this winner was
# first-activated here.
first_winner_inputs.append(
all_potential_winner_inputs[new_winner_indices[i]])
new_winner_indices[i] = target_area.w + num_first_winners_processed
num_first_winners_processed += 1
target_area._new_winners = new_winner_indices
target_area._new_w = target_area.w + num_first_winners_processed
if verbose >= 2:
print(f"new_winners: {target_area._new_winners}")
# for i in num_first_winners
# generate where input came from
# 1) can sample input from array of size total_k, use ranges
# 2) can use stars/stripes method: if m total inputs,
# sample (m-1) out of total_k
inputs_by_first_winner_index = [None] * num_first_winners_processed
for i in range(num_first_winners_processed):
input_indices = rng.choice(range(total_k),
int(first_winner_inputs[i]),
replace=False)
num_connections_by_input_index = np.zeros(num_inputs)
total_so_far = 0
for j in range(num_inputs):
num_connections_by_input_index[j] = sum(
total_so_far + input_size_by_from_area_index[j] > w >= total_so_far
for w in input_indices)
total_so_far += input_size_by_from_area_index[j]
inputs_by_first_winner_index[i] = num_connections_by_input_index
if verbose >= 2:
print(f"For first_winner # {i} with input "
f"{first_winner_inputs[i]} split as so: "
f"{num_connections_by_input_index}")
# connectome for each stim->area
# add num_first_winners_processed cells, sampled input * (1+beta)
# for i in repeat_winners, stimulus_inputs[i] *= (1+beta)
num_inputs_processed = 0
for stim in from_stimuli:
connectomes = self.connectomes_by_stimulus[stim]
if num_first_winners_processed > 0:
connectomes[target_area_name] = target_connectome = np.resize(
connectomes[target_area_name],
target_area._new_w)
else:
target_connectome = connectomes[target_area_name]
first_winner_synapses = target_connectome[target_area.w:]
for i in range(num_first_winners_processed):
first_winner_synapses[i] = (
inputs_by_first_winner_index[i][num_inputs_processed])
stim_to_area_beta = target_area.beta_by_stimulus[stim]
if self.disable_plasticity:
stim_to_area_beta = 0.0
for i in target_area._new_winners:
target_connectome[i] *= 1 + stim_to_area_beta
if verbose >= 2:
print(f"{stim} now looks like: ")
print(self.connectomes_by_stimulus[stim][target_area_name])
num_inputs_processed += 1
# update connectomes from stimuli that were not fired this round into the area.
if (not target_area.explicit) and (num_first_winners_processed > 0):
for stim_name, connectomes in self.connectomes_by_stimulus.items():
if stim_name in from_stimuli:
continue
connectomes[target_area_name] = the_connectome = np.resize(
connectomes[target_area_name],
target_area._new_w)
the_connectome[target_area.w:] = rng.binomial(
self.stimulus_size_by_name[stim_name], self.p,
size=(num_first_winners_processed))
# connectome for each in_area->area
# add num_first_winners_processed columns
# for each i in num_first_winners_processed, fill in (1+beta) for chosen neurons
# for each i in repeat_winners, for j in in_area.winners, connectome[j][i] *= (1+beta)
for from_area_name in from_areas:
from_area_w = self.area_by_name[from_area_name].w
from_area_winners = self.area_by_name[from_area_name].winners
from_area_winners_set = set(from_area_winners)
from_area_connectomes = self.connectomes[from_area_name]
# Q: Can we replace .pad() with numpy.resize() here?
the_connectome = from_area_connectomes[target_area_name] = np.pad(
from_area_connectomes[target_area_name],
((0, 0), (0, num_first_winners_processed)))
for i in range(num_first_winners_processed):
total_in = inputs_by_first_winner_index[i][num_inputs_processed]
sample_indices = rng.choice(from_area_winners, int(total_in), replace=False)
for j in sample_indices:
the_connectome[j, target_area.w + i] = 1.0
for j in range(from_area_w):
if j not in from_area_winners_set:
the_connectome[j, target_area.w + i] = rng.binomial(1, self.p)
area_to_area_beta = (
0 if self.disable_plasticity
else target_area.beta_by_area[from_area_name])
for i in target_area._new_winners:
for j in from_area_winners:
the_connectome[j, i] *= 1.0 + area_to_area_beta
if verbose >= 2:
print(f"Connectome of {from_area_name} to {target_area_name} is now:",
the_connectome)
num_inputs_processed += 1
# expand connectomes from other areas that did not fire into area
# also expand connectome for area->other_area
for other_area_name, other_area in self.area_by_name.items():
other_area_connectomes = self.connectomes[other_area_name]
if other_area_name not in from_areas:
the_other_area_connectome = other_area_connectomes[target_area_name] = (
np.pad(
other_area_connectomes[target_area_name],
((0, 0), (0, num_first_winners_processed))))
the_other_area_connectome[:, target_area.w:] = rng.binomial(
1, self.p, size=(the_other_area_connectome.shape[0],
target_area._new_w - target_area.w))
# add num_first_winners_processed rows, all bernoulli with probability p
target_area_connectomes = self.connectomes[target_area_name]
the_target_area_connectome = target_area_connectomes[other_area_name] = (
np.pad(
target_area_connectomes[other_area_name],
((0, num_first_winners_processed), (0, 0))))
the_target_area_connectome[target_area.w:, :] = rng.binomial(
1, self.p,
size=(target_area._new_w - target_area.w,
the_target_area_connectome.shape[1]))
if verbose >= 2:
print(f"Connectome of {target_area_name!r} to {other_area_name!r} "
"is now:", self.connectomes[target_area_name][other_area_name])
return num_first_winners_processed